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Abstract

Computations of multiparticle scattering amplitudes in scalar field theories at
high multiplicities hint at a rapid growth with the number of final state particles,
rendering the theory in conflict with unitarity at high energies. This questions
the validity of the perturbative approach or even the interpretation of the un-
derlying quantum field theory. We study the quantum mechanical equivalent of
high multiplicity amplitudes in λφ4-theory, namely transition amplitudes from
the vacuum to highly excited states in the anharmonic oscillator with a quar-
tic potential. Using recursive relations, we compute these amplitudes to high
order in perturbation theory and provide evidence that they can be written in
exponential form. By resummation techniques, we then construct its exponent
beyond leading order and investigate the behaviour of the amplitudes in the region
where tree-level perturbation theory violates unitarity constraints. We find that
for both the single- and the double-well potential the resummed amplitudes are
in agreement with unitarity bounds. We then extend our results to anharmonic
oscillators with general monomial potentials and point out possible problems of
perturbative expansions even in potentials with a single minimum. Finally, we
comment on the relevance of our results for the field theoretical problem.

Zusammenfassung

Berechnungen von Mehrteilchen-Streuamplituden in skalaren Feldtheorien bei
hohen Multiplizitäten deuten auf deren rapides Wachstum mit der Anzahl an
Teilchen im Endzustand hin. Ein solches Verhalten steht im Widerspruch
zur Unitarität der Theorie bei hohen Energien und stellt die Richtigkeit eines
perturbativen Ansatzes oder sogar die Interpretation der zugrunde liegenden
Quantenfeldtheorie infrage. Wir untersuchen das quantenmechanische Äquiva-
lent der Amplituden bei hohen Multiplizitäten in λφ4-Theorie. Dies entspricht
Übergangsamplituden vom Vakuum zu hochenergetischen Zuständen im quan-
tenmechanischen anharmonischen Oszillator mit quartischem Potential. Mithilfe
von Rekursionsrelationen berechnen wir die Amplituden bis zu hohen Ordnungen
in Störungstheorie und liefern Hinweise, dass sie als Exponentialfunktion darstell-
bar sind. Mit Resummationstechniken konstruieren wir den Exponenten jenseits
der führenden Ordnung und untersuchen das Verhalten der Amplituden in jener
Region, in der Störungstheorie in führender Ordnung Unitarität verletzt. Wir
finden heraus, dass für Potentiale sowohl mit einem als auch mit zwei entarteten
Minima die resummierten Amplituden die Unitaritätseinschränkungen erfüllen.
Schließlich erweitern wir unsere Resultate auf anharmonische Oszillatoren mit
verallgemeinerten monomiellen Potentialen weisen auf potentielle Probleme von
störungstheoretische Reihenentwicklungen sogar für Potentiale mit einem einzi-
gen Minimum hin. Abschließend kommentieren wir die Relevanz unserer Resul-
tate im Hinblick auf das feldtheoretische Problem.
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1 Introduction

Current experimental measurements have lead high energy physics from the high
energy frontier into an era of precision tests. The most recent milestones are the
confirmation of the well established Standard Model of particle physics (SM) [5–7]
by the Higgs boson discovery at the LHC experiments [8, 9] as well as the obser-
vation of gravitational wave signals by advanced LIGO [10]. Apart from that, the
lack of astonishing discoveries challenges our current research efforts and makes us
reconsider our current understanding of the field.

In high energy theory, the situation before the Higgs discovery was different from
today. It was expected that the LHC would almost certainly find something new,
because otherwise the perturbative cross section for weak gauge boson scattering
would violate unitarity bounds. Based on this observation, it was argued that either
there is a Higgs boson with a mass below the TeV-scale, new degrees of freedom
beyond the SM appear, or scattering processes of electroweak gauge bosons enter a
non-perturbative regime [11,12]. A posteriori, this problem has been settled by the
observation of a Higgs boson with a mass of 125 GeV.

The situation today is vastly different. So far, except for the Planck scale,
where quantum gravity effects are expected to become important [13–15], there is no
profound theoretical prediction for a fundamental energy scale at which new physics
phenomena beyond the SM have to appear. Therefore, one might indeed wonder if
the electroweak sector of the SM is valid up to arbitrarily high energies. Fortunately,
the Higgs boson might be key in addressing this question. As it marks the ultimate
test bed for the underlying framework of spontaneous symmetry breaking [16–21] in
perturbative quantum field theory, it can give us insights towards where new physics
phenomena beyond the SM might be hiding.

As a major example, to date it is not clear if the SM vacuum is stable or if
it is subject to decay via tunneling [22–28]. Given the measured Higgs mass, the
renormalization group flow of its self-coupling exhibits an energy scale below the
Planck scale, where it may become negative. This would imply that the electroweak
vacuum is not the global minimum of the action, as there can either be vacua of
lower energy, or the scalar potential is not even bounded from below. Therefore,
the SM vacuum may be unstable unless new physics phenomena appear that change
the behaviour of the β-function. However the corresponding energy scale, where the
vacuum becomes meta-stable, is expected to be around Λ ∼ 1010 GeV or even higher
(see, e.g., [28]), which is far beyond the reach of any experiment in the near future.
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Chapter 1. Introduction

In fact, analogously to the prediction of a new physics scale by unitarity con-
straints on scattering processes of weak gauge bosons before the Higgs discovery,
the electroweak sector of the SM may indicate an energy scale where the theory
behaves inconsistently. Due to the Adler-Bell-Jackiw anomaly [29, 30], electroweak
interactions do not conserve the sum of baryon and lepton number, B + L, in the
SM [31]. Processes inducing (B + L)-violation are given by transitions between
vacua classified by their weak topological charge, while the amount of violation is
determined by the change of that charge. Different paths in field space that in-
terpolate between different vacuum configurations can minimize the height of the
energy barriers between the vacua. The field configurations at the top of these bar-
riers are called sphalerons [32, 33]. They have an associated energy given by the
height of the barrier, which is of the order of 9 TeV in the SM [33]. If the energy
available in a given process is much less than the sphaleron energy, B + L can only
be violated by quantum tunneling, that can be described by well known instanton
solutions [34, 35]. Their transition rate will typically be exponentially suppressed,
exp (−2π/αw) ∼ 10−80, practically rendering such a process unobservable. However,
it was suggested that (B + L)-violating scattering processes induced by instantons
may be enhanced in the electroweak theory at high energies [36–38]. This enhance-
ment is associated to the production of a large number nw of electroweak gauge and
Higgs bosons, as the leading S-matrix elements are of order nw! exp (−2π/αw). The
factorial growth might eventually overcome the instanton suppression factor such
that the cross section is drastically enhanced. Therefore, it is expected that the
cross section reaches its unitarity limit at energies in the multi-TeV range, such that
perturbation theory breaks down in the electroweak instanton sector.

Soon it has been realized that similar growth for multiparticle production at high
energies is also present in topologically trivial theories without baryon- and lepton-
number violation [39,40]. In fact, the problem appears in most weakly coupled theo-
ries, the most simple example being scalar λφ4-theory. At sufficiently high energies,
the production of many particles in the final state becomes possible. Qualitatively,
at leading order in perturbation theory, the production of n scalar particles by a few
initial states will be proportional to n!λn/2. This is because for each additional pair
of particles in the final state an additional power of the coupling is needed. At the
same time, due to the lack of destructive interference between different Feynman
diagrams, the number of tree graphs grows factorially (see also, e.g., [41,42]). There-
fore, even at weak coupling, for a large number of bosons, n & 1/λ, the factorial
factor eventually overcomes the power suppression of the small coupling, such that
the tree-level amplitudes grow rapidly for large n.

Evidence for factorial growth of scattering amplitudes, corresponding to pro-
cesses of the form φ? → φn or φφ → φn, is provided by perturbative [39, 40, 43–47]
as well as semiclassical [48–51] calculations, rendering the theory in conflict with uni-
tarity as n→∞. This raises questions about the consistency of the computational
techniques or possibly even about the interpretation of the underlying quantum field
theory itself. In particular, it has been conjectured that in the double scaling limit,
n → ∞ and λ → 0 while keeping λn fixed, the amplitudes take on an exponential
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form [52–56], A ∼ exp (F/λ), where the exponent F is a function of the combination
λn only. Analogously to instanton suppression factors, this form signals an intrin-
sic non-perturbative nature of the corresponding amplitudes. Intriguingly, similar
exponential structures have been recently discovered for scattering amplitudes in
N = 8 supergravity [57–60].

From a theoretical point of view, as we will later confirm the exponential form in
explicit perturbative computations in a quantum mechanical setting, there appears
to be a very deep relation between (suitably resummed) perturbation theory and
non-perturbative phenomena. Apparently, the perturbative ansatz intrinsically cap-
tures its non-perturbative counterpart. Naively, to some extent, this observation is
in line with the theory of resurgence [61] and transseries expansions, which formalizes
the idea that the asymptotic nature of perturbative series encode deep and valu-
able information about the exact answer. For instance, the formalism has already
been successfully applied to quantum mechanics [62–73], (supersymmetric) quan-
tum field theory [74–83] and topological string theory [84–88]. These results suggest
that perturbation theory and non-perturbative physics are closely intertwined: an
observation that we, to some extent, recover in our analysis of multiparticle produc-
tion in scalar field theory. For a pedagogical introduction to resurgence theory see,
e.g., [89, 90].

From a phenomenological point of view, in contrast to scalar field theory, in
Yang-Mills theory gauge symmetry and on-shell conditions lead to diagrammatic
cancellations in the calculation of scattering amplitudes (see, e.g., [91]) such that
gluons do not violate unitarity. Still, it turns out that the corresponding amplitudes
in a spontaneously broken gauge theory, e.g. a gauge-Higgs theory, exhibit factorial
growth in the number of both particle species, i.e. in the number of scalars as well
as of gauge bosons [92,93].

These considerations can of course be applied to the Higgs sector of the SM. Here,
the rapidly growing cross sections for multiparticle production give indications for
an explicit energy scale Λ . 1600 TeV at tree level [94, 95], beyond which unitarity
constraints are violated. More refined (and more optimistic) computations indicate
that this scale could also be much lower, possible even within reach of next generation
colliders [95]. That is, remarkably, the Higgs boson essentially reveals an energy scale
where something has to happen, if we do not want to give up on unitary quantum
field theory1. Therefore, in order to restore unitarity at high energies, either novel
non-perturbative behaviour or possibly even new physics phenomena have to appear.

For example, a new physics phenomenon could come in form of a Higgsplo-
sion and Higgspersion effect, recently proposed in [97]. It describes novel non-
perturbative behaviour of a scalar field theory by suppressing the propagator at
an energy scale where the scattering amplitudes become large, thereby effectively
cutting off loop-integrals. If this energy scale is low, it was argued that this mech-
anism can potentially even address the hierarchy problem, while at the same time
allowing for interesting particle phenomenology [98–100]. In addition, applied to

1Even though it is a very natural assumption of a quantum theory, it may, of course, also be
questioned [96].
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Chapter 1. Introduction

the electroweak sector of the SM, the suppression of the scalar field propagator at a
potentially low energy scale drastically changes the β-function of the theory. There-
fore, provided that the SM is a higgsplosive theory, this can have severe consequences
for the stability of the electroweak vacuum.

In fact, high multiplicity Higgs production can even be used to probe the Higgs
potential beyond its vacuum. The above arguments can be reversed to obtain a
classical scalar potential with a unitarity preserving behaviour at high energies. In
particular, unitarity bounds on tree-level scattering imply that, asymptotically, the
potential should at most grow as V (φ) ∼ m2φ2 log2 (φ/m) for large field values [101].
That is, leading-order consistency conditions predict a behaviour for a scalar poten-
tial at large field values, that is drastically different from a prototypical quartic
polynomial, such as in the electroweak sector of the SM.

In this thesis, we want to follow a different, slightly more conservative approach.
The calculations of the scattering amplitudes associated to multiparticle production
in scalar field theory that initially established unitarity violation for a large number
of bosons in the final state mostly relied on perturbative or semiclassical techniques
at leading order, or at most they included the first quantum correction [47, 52,
102]. Beyond that, conventional methods become intractable at higher loop-orders
such that the perturbative results might question the validity of the approach at
high energies or, equivalently, at high multiplicities. Indeed, there is the possibility
that the rapid growth of the scattering amplitudes is merely an artefact of this
approximation. Our approach is based on the assumption that the problem could
be resolved by refined calculational techniques, i.e. by obtaining the exact amplitude
without relying on perturbation theory to finite order.

In Chapter 3 we take some initial steps towards this idea. Here, we aim at
shedding light on what are the relevant features giving rise to factorial growth of
scattering amplitudes at high multiplicities. Furthermore, we address the question
if this growth can be cured by improved computational techniques. Although, in the
end, we are interested in quantum field theory, we consider a simplified, yet instruc-
tive toy model. That is, we study the quantum mechanical analogue of massive
φ4-theory, i.e. the anharmonic oscillator with quartic coupling λ. Here, the scat-
tering amplitudes for multiparticle production correspond to quantum mechanical
transition amplitudes from the vacuum to highly excited states. Quantum mechan-
ics has already been a rich testbed for investigations of the asymptotic behaviour
of perturbation theory (see, e.g., [68, 103–108]). Most considerations, however, fo-
cussed on energy levels and wave functions in the ground state, with only a few
notable exceptions [43,109–114].

The quantum mechanical setting, in fact, enables us to explicitly perform com-
putations to very high orders in perturbation theory. Powerful resummation tech-
niques, such as exact perturbation theory [108, 115], then allow us to access to the
large n regime of the perturbative expansion of the high multiplicity scattering am-
plitudes beyond the point where tree-level perturbation theory violates unitarity
constraints.

Compared to our quantum mechanical toy system, we should, however, be aware
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that, due to its higher-dimensional nature, quantum field theory is subject to ad-
ditional complications, such as a nontrivial phase space or the presence of weakly
coupled, asymptotic states. Nevertheless, our work can give important insights into
possible features responsible for the rapid growth of the high multiplicity amplitudes.
In particular, as we find that refined computational techniques restore unitarity at
high energies, we are in turn lead to focus efforts of establishing new physics phe-
nomena on those aspects of quantum field theory, that are genuinely different from
quantum mechanics.

The structure of this work is as follows. In Chapter 2 we review the theoretical
foundations of scattering processes in interacting quantum field theories. In partic-
ular, we demonstrate how to obtain S-matrix elements from a classical Lagrangian
via the LSZ reduction. Then we introduce the basic notation and framework for
the computation of multiparticle production in scalar field theories and derive the
factorial growth of tree-level perturbation theory and beyond. Chapter 3 is devoted
to a discussion of the quantum mechanical analogue of high multiplicity amplitudes
in scalar field theories both with and without spontaneous symmetry breaking. In
this setting, we use recursive relations to compute quantum mechanical transition
amplitudes from the vacuum to highly excited states to high orders in perturba-
tion theory. By doing so, we provide evidence that the transition amplitude is of
exponential form. Using advanced resummation techniques, such as exact pertur-
bation theory, we then construct the corresponding exponent beyond leading order
and investigate the behaviour of the amplitude in the region where tree-level pertur-
bation theory violates unitarity bounds. In particular, we show that the exponent
remains negative at high energies, such that it avoids problems with unitarity. We
finally extend our results in two ways. First, we generalize our methods to compute
amplitudes involving more general local operators. Second, we consider potentials
involving higher self-interaction terms, such as, e.g., the sextic oscillator and pos-
tulate a conjecture on the form of the transition amplitudes in these potentials.
Finally, we briefly summarize and conclude in Chapter 4.
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2 Quantum Fields and Particle
Interactions

An important method for our studies of the fundamental building blocks of nature at
the smallest length scales, or equivalently at the high energy frontier, are scattering
experiments. The Standard Model of particle physics was originally built from the
bottom-up by means of scattering experiments, including the discovery of the weak
gauge bosons, quarks and gluons or, most recently, the Higgs boson.

A modern interpretation of measurements in particle scattering experiments re-
lies on quantum field theory (QFT), which has proven extremely successful in the
description of elementary particles and the interactions between them. Here, the
key observable in the scattering of particles, that is measured in experiments, is the
scattering cross section. Roughly speaking, it describes the probability of a certain
particle interaction to take place as a function of the energies and momenta of the
particles that are involved in the scattering process. A more refined quantity is
the differential cross section, which, in addition, takes the angular distribution of
the scattered particles into account. In any quantum theory the differential cross
section is proportional to the norm squared of the quantum scattering amplitude,
dσ/dΩ ∝ |A|2. Naively, this is, to some extent, analogous to the fact that the
probability density (in position space) of a quantum particle is given by the norm
squared of its wave function, ρ = |ψ|2.

Therefore, scattering amplitudes determine physical observables and can, in the
above sense, be understood as the fundamental ingredients of an interacting quan-
tum theory. Even more importantly, they immediately bridge the gap between
fundamental theory and experimental measurements. Over the years it has been re-
alized that amplitudes themselves exhibit a rich mathematical structure and physical
insights. In the following sections, we therefore want to discuss and explore several
theoretical and phenomenological aspects of scattering amplitudes and scattering
processes in quantum theories.

In our basic review of scattering processes in quantum field theory, we closely
follow the standard textbook [116]. For a more modern interpretation of scattering
amplitudes, we refer the reader to [117].
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Chapter 2. Quantum Fields and Particle Interactions

2.1 Scattering processes in quantum field theory

In a quantum theory, a scattering process can be considered as a transition from an
initial state |i〉 to a final state |f〉, each being a particle state that is characterized
by particle species and corresponding momenta. Formally, this can be achieved by
the scattering operator S, also called the S-matrix, which maps the initial states to
the final states, 〈f |S|i〉. That is, the probability of scattering from the initial state
|i〉 to a given final state |f〉 is given by |〈f |S|i〉|2. We can also separate the trivial
part from the S-matrix, i.e. the part of the interaction process where no scattering
occurs, by writing

S = 1 + iT . (2.1)

The scattering amplitude that determines the differential cross section of the scat-
tering process |i〉 → |f〉 is then given by the corresponding T -matrix element,
A = 〈f |T |i〉.

Almost by definition, a nontrivial scattering process in any quantum theory re-
quires interactions between the particles that are involved. In quantum field theories
with a Lagrangian description, interactions are described by potentials, that can be
understood as formal power series in the fields beyond quadratic order. To preserve
causality in the interacting quantum theory, the particle interactions have to be
localized in spacetime. That is, the terms of the potential may only involve fields
evaluated at the same spacetime point, e.g. terms of the form φ(x)φ(y) are not
allowed.

In high energy physics, one of the major aims is to find an exact solution of
any interacting quantum field theory, i.e. to determine the spectrum and compute
all interactions exactly. So far, this has only been possible for theories with a lot
of symmetry, such as certain conformal field theories in two dimensions or four-
dimensional QFTs with enough supersymmetry. In practice, however, one often has
to treat the interaction terms of the potential as a perturbation of the free theory
and apply perturbation theory. One then requires that the perturbation is small
enough to obtain a reasonable approximation of the exact answer.

Perturbative expansions of scattering amplitudes have a remarkably simple struc-
ture. In fact, they can be computed and visualized to arbitrary order by means of
Feynman diagrams. Let us briefly recall this diagrammatic way of computing scat-
tering amplitudes in the following section.

2.1.1 The LSZ reduction

So far, our discussion of scattering processes in quantum theories has been rather
conceptual. In this and also the following section, we want to discuss how to obtain
scattering amplitudes and cross sections in an interacting quantum field theory in
practice. That is, we want to obtain an expression for the S-matrix element 〈f |S|i〉,
for some initial and final states of definite momenta. This is commonly done by
means of perturbation theory in terms of Feynman diagrams. For concreteness, let
us consider a massive scalar field theory in the following.
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2.1. Scattering processes in quantum field theory

When treating the interaction terms as a perturbation of the free theory, the
S-matrix elements can be formulated by asymptotic in- and outgoing states. In the
asymptotic past, t→ −∞, the ingoing states can be described by free wave packets,
that correspond to well separated single-particle states. This is an immediate conse-
quence of the locality of the interaction. Therefore, as these wave packets approach
each other, they eventually start to interact and finally scatter into the final state
particles. In the asymptotic future, t → ∞, these final state particles are again
described by asymptotically free single-particle states1.

In quantum field theory the concept of asymptotic states can be formalized in
terms of in- and outgoing fields2. This is necessary, since, in crucial contrast to the
free theory, an interacting field φ cannot be written as a linear superposition of its
Fourier modes, because it does not obey the free equation of motion. Instead it
satisfies (

�+m2
)
φ = j , (2.2)

for a suitable current j, which vanishes only in a non-interacting theory. Therefore,
φ acting on the vacuum of the interacting theory, |Ω〉, does not generate a simple
single-particle state as it does in the free theory. In turn, the asymptotic in- and
outgoing fields φi and φf , respectively, are defined such that they do obey the free
mode equation, (

�+m2
)
φi,f = 0 . (2.3)

Since asymptotically, t → ±∞, all interactions between these fields cease to exist,
we can therefore think of them as free fields with single-particle states, E2

p = p2+m2.
However, the self-interaction of the field is still present. Therefore, the single-particle
states have a mass m of the full interacting theory instead of its free counterpart.
In addition, the self-interaction of the field also leads to a nontrivial wave function
renormalization.

Having established the concept of asymptotic in- and outgoing fields, we can
proceed to compute scattering amplitudes in an interacting quantum field theory
explicitly. As a particular example, we want to consider the scattering of r incoming
particles with momenta ql into n particles in the final state with momenta pk, i.e. we
are interested in the S-matrix element 〈p1 . . . pn|S|q1 . . . qr〉.

The asymptotic in- and outgoing fields are essential ingredients of the so-called
Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [118]. It connects the
S-matrix to the time-ordered correlation functions, i.e. vacuum expectation values

1The Hilbert spaces of asymptotic in- and outgoing states are isomorphic Fock spaces. Mathe-
matically, this is the reason why there exists a scattering operator S that maps the outgoing states
onto the ingoing states.

2Note that this is, in fact, not possible for conformal field theories. Due to scale invariance,
there is no meaningful notion of asymptotically separated states and hence the S-matrix cannot
be defined properly.
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Chapter 2. Quantum Fields and Particle Interactions

of time-ordered products of field operators, of the interacting quantum theory,
n∏
k=1

i
√
Z

p2
k −m2

r∏
l=1

i
√
Z

q2
l −m2

〈p1 . . . pn|S|q1 . . . qr〉
∣∣∣
connected

=
n∏
k=1

∫
d4yk eipkyk

r∏
l=1

∫
d4xl e

−iqlxl 〈Ω|T
n∏
k=1

φ(yk)
r∏
l=1

φ(xl)|Ω〉 .
(2.4)

Note that, here, only the connected part of the S-matrix plays a role. This means
that all particles do participate in the scattering process, i.e. no initial and final
state particles are trivially the same.

By means of (2.4) the computation of S-matrix elements can be reduced to
the computation of time-ordered correlation functions. Therefore, the LSZ re-
duction formula is a step towards computing scattering processes, that are mea-
surable in experiment, from the abstract Lagrangian of a quantum field theory.
Note that all momenta appearing in the reduction are on-shell, because they corre-
spond to the physical momenta of the incoming and outgoing single-particle states,
i.e. p2

k −m2 = 0 = q2
l −m2. As the S-matrix is a quantum probability amplitude,

it has to be nonsingular. Therefore, the time-ordered correlation function has to
exhibit a suitable pole structure to compensate each kinematic factor (p2

k −m2)
−1

and (q2
l −m2)

−1
. For instance, terms with fewer poles would at best contribute to

disconnected pieces of the scattering amplitude.
Using the LSZ reduction, we have arrived at a prescription to compute the con-

nected S-matrix elements of an interacting quantum field theory by time-ordered
correlation functions. We are now left with is the evaluation of the latter. As we will
see, this is commonly done in perturbation theory by means of Feynman diagrams.

2.1.2 Perturbation theory and Feynman diagrams

The LSZ reduction formula (2.4) connects the S-matrix elements to the time-ordered
correlation functions of an interacting quantum field theory.

The correlation functions are the fundamental building blocks that encode the
dynamics of the interacting quantum field theory. For instance, the insertion of two
fields, 〈Ω|Tφ(x)φ(y)|Ω〉, describes the amplitude for the propagation of a particle
between the two space time points. In the free theory, it would correspond to the
Feynman propagator. Essentially, there are two approaches for the determination
of correlation functions.

In the modern path integral approach to quantum theory they are defined by
functional derivatives of the generating functional

Z[J ] =

∫
Dφ exp

(
iS[φ] + i

∫
d4x Jφ

)
, (2.5)

where J is an auxiliary source-term. As the name already suggests, it generates all
correlation functions of the quantum theory, in the sense that

〈Ω|T
n∏
i=1

φ(xi)|Ω〉 =
1

Z[0]

δ

iδJ(x1)
. . .

δ

iδJ(xn)
Z[J ]

∣∣∣∣
J=0

. (2.6)

10



2.1. Scattering processes in quantum field theory

That is, formally, if one can compute the generating functional as a function of the
source analytically, i.e. in closed form, one has essentially solved the dynamics of
the quantum field theory.

In the sequel, however, we want to consider the second, probably more pedestrian
and intuitive approach. That is, we aim to reduce the computation of the correlation
functions, such that it only involves quantities which are tractable more easily. In
particular, this means, that it should only contain the vacuum and field operators of
the free theory. It is hence suggestive to separate the dynamics of the interactions
from the free theory, i.e. in terms of the Hamiltonian H = H0 +Hint.

Commonly, this is done by considering field operators in the Dirac picture, φI ,
which by construction satisfy a free mode equation. Therefore, such formalism allows
us to rewrite the correlation function in terms of the free vacuum, |0〉, and free field
operators only,

〈Ω|T
n∏
i=1

φ(xi)|Ω〉 = lim
t→∞(1−iε)

〈0|T
{∏n

i=1 φI(xi)e
−i

∫ t
−t dt′HI(t′)

}
|0〉

〈0|T
{

e−i
∫ t
−t dt′HI(t′)

}
|0〉

. (2.7)

Here, HI denotes the interaction Hamiltonian in the Dirac picture.
Up to this point, (2.7) is an exact relation. However, in practice, it is well suited

for a perturbative approach, since the exponential function can easily be expanded
in a power series of the coupling of the theory. For instance, in scalar φ4-theory with
coupling λ, the exponential would read,

exp

(
−i
∫

d4z
λ

4
φ4
I(z)

)
=1− iλ

4

∫
d4z φ4

I(z)

+
1

2

(
−iλ

4

)2 ∫
d4z1d4z2 φ

4
I(z1)φ4

I(z2) +O
(
λ3
)
.

(2.8)

This expansion is one of the key points of perturbative quantum field theory, as it
reduces the time-ordered correlation functions of the interacting theory to an infinite
sum of correlation functions involving only the free vacuum and free field operators,
〈0|T {φI(x1) . . . φI(xn)} |0〉.

By Wick’s theorem, these correlation functions vanish for an odd number of field
operator insertions. For an even number of field insertions, they reduce to a sum
over all possible contractions between two fields. Each contraction then corresponds
to the free Feynman propagator between the two spacetime points that the field
operators are evaluated at. That is, in summary, Wick’s theorem turns the above
correlator into a sum of products of Feynman propagators.

This procedure suggests that we can replace the evaluation of time-ordered cor-
relation functions in the interacting theory by the intuitive evaluation of Feynman
diagrams. In fact, the denominator of (2.7) is the partition function of the theory
and hence cancels all vacuum contributions to the correlator, i.e. vacuum bubbles or
disconnected pieces of the diagram. Therefore, we conclude that the time-ordered
correlation function 〈Ω|T {φ(x1) . . . φ(xn)} |Ω〉 can be written as the sum over all (at
least partially) connected Feynman diagrams with n external points.
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Chapter 2. Quantum Fields and Particle Interactions

The language of evaluating correlation functions by Feynman diagrams together
with the LSZ reduction formula allows us to write down S-matrix elements, or,
more precisely, scattering amplitudes, in a particularly elegant way. Recall that in
the LSZ reduction (2.4), the connected S-matrix elements, 〈p1 . . . pn|S|q1 . . . qr〉, by
themselves cannot be proportional to the kinematic factors p2

k − m2 or q2
l − m2,

because otherwise it would vanish on-shell, i.e. no scattering would occur. Similarly,
it cannot contain powers of the inverse of the kinematic factors, as it would be
divergent on-shell and hence singular. Therefore, the only Feynman diagrams that
are relevant are the ones with exactly (n + r) poles at the physical single-particle
mass m2. In fact, these are precisely the ones that contribute to the fully connected
correlation function. Here, each external line exhibits a factor of (p2 −m2)−1 near
the pole mass such that all external lines yield the correct singularity structure.
For example, partially connected diagrams come with fewer kinematic factors and
consequently do not contribute to the connected S-matrix element.

In summary, we conclude that the S-matrix elements are given by

〈p1 . . . pn|S|q1 . . . qr〉
∣∣∣
connected

=
(√

Z
)n+r

×

×

(
n∏
k=1

∫
d4yk eipkyk

r∏
l=1

∫
d4xl e

−iqlxl 〈Ω|T
n∏
k=1

φ(yk)
r∏
l=1

φ(xl)|Ω〉
∣∣∣
fc

)∣∣∣∣∣
amp

.
(2.9)

Here, by the fully connected, amputated correlation function we denote the cor-
responding Feynman diagram after removing all external lines, that come with a
kinematic factor of the fully resummed propagator. We will later make use of the
LSZ reduction formula in the above form to derive multiparticle scattering ampli-
tudes in a diagrammatical approach.

Finally, we have arrived at an elegant prescription for the computation of phys-
ical scattering amplitudes by considering a perturbative expansion of the latter in
terms of Feynman diagrams that have to be evaluated. In the following, we want
to consider a particular set of scattering amplitudes associated to multiparticle pro-
duction in scalar field theories, which have been attracting some renewed attention
recently.

2.2 Unitarity violation by multiparticle produc-

tion in scalar field theory

In general, in any particle scattering at sufficiently high energies the production
of many particles becomes kinematically possible. As we will see momentarily,
in a scalar field theory, the mathematical and physical structure of the scattering
amplitudes corresponding to the production of a large number of bosons by a few
initial particles is remarkably rich and rises some intriguing physical questions. Most
critically, the scattering cross section for multiparticle production seems to rise at
high energies, or, more precisely, at high multiplicities. This ultimately renders the
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2.2. Unitarity violation by multiparticle production in scalar field theory

theory in conflict with the fundamental principle of unitarity in quantum field theory.
Let us hence outline the basic considerations leading to this alarming conclusion in
the following.

From the rather general discussion of the previous section, we therefore want to
move to a massive scalar field with a quartic self-interaction,

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4
φ4 . (2.10)

In this theory we aim to study the behaviour of multiparticle scattering processes
at high energies.

At weak coupling such a scattering process can be expressed by means of Feyn-
man diagrams (cf. our discussion in Section 2.1.2). Qualitatively, at leading order in
the perturbative expansion, the production of n scalar particles by a few initial ones
will be proportional to n!λn/2. Essentially, this is because, in the diagrammatical
approach, for each pair of particles that is produced in addition an additional power
of the coupling constant is necessary, while at the same time the number of tree
graphs grows factorially due to the lack of destructive interference between differ-
ent diagrams. Therefore, even in a weakly coupled theory, for occupation numbers
n & 1/λ the factorial factor compensates the power suppression due to the small
coupling, such that the tree-level amplitudes grow rapidly for large n. Naively, this
means that, independently of the small coupling, it becomes more and more likely
to produce a large rather than small number of particles in the final state.

This qualitative estimate appears to be in deep conflict with the fundamental
requirement of unitarity in quantum field theory. Unitarity ensures that probabilities
are conserved in scattering processes3 and is therefore a very natural assumption in
interacting quantum theories. Formally, it is imposed by requiring that the S-matrix
is unitary. At the level of scattering amplitudes, the optical theorem is an immediate
consequence of this property. It relates the imaginary part of a forward-scattering
amplitude to the total cross section of a process. As the norm squared of partial
amplitudes contributing to a process cannot exceed the total cross section, it in turn
implies (see, e.g., [95]) ∑

n6=i

∣∣A (φi → φn
)∣∣2 ≤ 1 , (2.11)

where A denotes the scattering amplitude corresponding to the process φi → φn.
That is, loosely speaking, the probability of something happening should not exceed
a hundred percent. This situation is even more dire than the problem of divergences
of perturbation theory at large orders [119–122]. While the latter typically reflects
the asymptotic nature of perturbative series expansions in quantum field theory (as,
e.g., Dyson argues for quantum electrodynamics [119]), here we encounter an un-
physical breakdown of perturbation theory already at leading order of the expansion.

3From a different perspective, the time evolution operator of quantum theory is required to
be unitary, such that is preserves the norm of a state during time evolution. In other words, the
probability to find a normalized state |ψ〉 in the state |ψ〉 is required to be one over all times.
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Chapter 2. Quantum Fields and Particle Interactions

In other words, such processes are only accessible at a high order in the perturbative
expansion. This either indicates an end of perturbative behaviour, or possibly even
a breakdown of the theory itself.

In order to make this assertion precise let us consider processes, where a large
number of massive scalars are produced by a few initial particles, |i〉 → |n〉. Here, |i〉
denotes the initial state with small particle number and |n〉 is a multiparticle state
of multiplicity n. In particular, we restrict |i〉 to be a one- or two-particle state.
Hence, strictly speaking, we are considering two different physical situations. If |i〉
is a single-particle state, this process describes a decay of an off-shell scalar into n
on-shell particles, φ? → φn, while for a two-particle initial state, we are dealing with
physical scattering of two on-shell states, φφ → φn. Nevertheless, our qualitative
estimate from above still applies to both cases. More precisely, the single-particle
initial state has to be understood as a highly virtual particle that is subject to
decay. As such it has to be produced, e.g., in a particle collision at high energies.
For instance, in a physical high energy scattering process, X → φn, the virtual one-
particle state would correspond to the s-channel resonance which then subsequently
decays into n on-shell particles. In this example, the amplitude A (φ? → φn) then
corresponds to the decay of the resonance in the scattering process.

In the following, we want to work out the physical as well as mathematical details
of these scattering processes. For concreteness, we will focus on the amplitudes
corresponding to the decay of a virtual boson state, φ? → φn. We will, however,
comment on the physical scattering processes involving only on-shell external states,
φφ→ φn, whenever it is qualitatively different from the former.

2.2.1 Tree-level processes at the kinematic threshold

Our previous estimate of rapidly growing multiboson amplitudes, A ∝ n!λn/2, was
entirely based on simple counting of tree-level Feynman diagrams. We now want to
move to precise expressions for the corresponding scattering amplitudes. In order to
simplify and clarify our discussion, let us first consider topologically trivial φ4-theory
in the symmetric phase, i.e. we choose m2 > 0 in (2.10).

Evidence for factorial growth of multiboson amplitudes was first provided by
perturbative arguments [39,40,43–47]. Similar to our intuitive counting arguments,
these rely on the diagrammatical approach to particle scattering. As we are dealing
with a large number of diagrams that can be grouped into several subdiagrams,
recursive relations turn out to be extremely useful for the computation of the cor-
responding amplitudes. That is, we can recursively generate any tree-level diagram
by connecting all sets of subdiagrams (at tree level) to the original vertex of the
incoming particle. More precisely, the scattering amplitude A(n) corresponding to
the process φ? → φn can be written as a sum over all possible combinations of
subtrees that originate from this root vertex [44,45],

A(n) = λ
∑

n1,n2,n3
odd

δn,n1+n2+n3

n!

n1!n2!n3!
D(n1)A(n1)D(n2)A(n2)D(n3)A(n3) . (2.12)
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2.2. Unitarity violation by multiparticle production in scalar field theory

Here, D(ni) denotes the propagator connecting the subtree with ni particles to the
root vertex. In addition, the combinatorial factor n!/(n1!n2!n3!) counts the number
of possibilities of how n particles can be grouped into three subsets of n1, n2 and n3

final states. In fact, as the theory exhibits a Z2 symmetry at the Lagrangian level,
the occupation number of all final states has to be odd. Therefore, the sum over all
subsets only involves odd integers ni.

Note carefully, that the propagators appearing in (2.12) arise because of the
definition of the objects A(n). In fact, as they are defined as scattering amplitudes,
the propagators of all external states are amputated (cf. Section 2.1.2). In contrast,
the corresponding n-point Green’s function would be obtained by multiplying with
the external propagators accordingly.

So far, the recursive relation (2.12) is an exact equation that generates all tree-
level Feynman diagrams contributing to the process φ? → φn. Unfortunately, it
can only be solved in closed form in certain kinematic regions. A specific region
of phase space, where such a solution can be found, is the kinematic threshold, at
which all final state particles have vanishing momentum. That is, we consider a
highly virtual initial boson of energy nm decaying into n bosons of mass m at rest.
In this kinematic setting, the tree-level amplitude takes the form [44]

Atree(n) = m2(n2 − 1)n!

(
λ

8m2

)n−1
2

, (2.13)

where n is necessarily odd. As pointed out earlier, the factor m2(n2 − 1) now
corresponds to the inverse propagator of the off-shell initial state with energy nm.

Note that, so far, we have only considered φ4-theory in the symmetric phase, for
which (2.13) is the exact result for the tree-level amplitude. In a theory featuring
spontaneous symmetry breaking, m2 < 0, the recursive relations (2.12) are modified
by the appearance of additional cubic interactions (see, e.g., [45]). Nevertheless, the
modified equations still allow for an exact, closed form solution at the kinematic
threshold. It reads [45]

Atree(n) = m2(n2 − 1)n!

(
1

2v

)n−1

, (2.14)

where v denotes the vacuum expectation value of the field, given by v =
√
−m2/λ.

Here, the scattering amplitude now refers to the field excitations around the mini-
mum, i.e. around 〈φ〉 = v. In addition, because of the broken symmetry, n does not
necessarily need to be odd anymore. Thus, modulo numerical factors, the tree-level
amplitudes in theories both with and without spontaneous symmetry breaking are
equal.

We conclude that our naive arguments based on simple counting of Feynman
diagrams are indeed correct and we find rapid factorial growth of the scattering am-
plitudes A (φ? → φn) at leading order in perturbation theory. This growth appears
in φ4-theory both with and without spontaneous symmetry breaking. Therefore,
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Chapter 2. Quantum Fields and Particle Interactions

the amplitudes are in conflict with the unitarity principle of quantum field theory,
rephrased in (2.11). A different way to see this involves the non-amputated am-
plitudes, i.e. Green’s functions. By the LSZ reduction formula (2.9), the matrix
element of the process, 〈p1 . . . pn|φ(0)|0〉, will be proportional to the propagator
times the Fourier transform of the time-ordered correlation function with n+ 1 field
insertions. In this setting, the corresponding Green’s function can be understood
as the probability amplitude of the field operator φ(x) to create n particles of fixed
energy from the vacuum at x = 0, 〈n|φ(0)|0〉 (see also (2.17)). In summary, we
obtain the relation between the scattering amplitude and the corresponding Green’s
function,

〈n|φ(0)|0〉 = D(n)A(n) . (2.15)

As can be seen from this relation, these amplitudes are part of the definition of the
Källén-Lehmann spectral density, ρ(s) =

∑
n 2πδ (s−m2

n) |〈n|φ(0)|0〉|2, where the
sum has to be understood as a summation over a continuum of states. Hence, they
are integral part of the definition of an interacting quantum field theory. Explicitly
evaluating the vacuum expectation value of the commutator of the canonical field
variables, 〈0| [φ(x),Π(y)] |0〉, at equal times yields (see also the discussion on the
spectral decomposition in [123])∑

n

|〈n|φ(0)|0〉|2 = 1 . (2.16)

This condition and the unitarity constraint (2.11), are clearly violated by the tree-
level amplitudes (2.13) and (2.14) as n → ∞, independently of the coupling of the
theory.

However, one might indeed argue that our conclusions should not worry us too
much for two reasons. First, the kinematic setting of the amplitudes we are con-
sidering lies outside the physical phase space region. More precisely, the kinematic
threshold just describes the very edge, or, mathematically, it is a null set, of the
physical phase space. Therefore, strictly speaking, the corresponding cross section
vanishes. Reliable estimates of the cross section should hence use bounds which
lie inside physical phase space regions (see, e.g., [45]). Second, it is a perturbative
computation at leading order of a scattering amplitude, which, in addition, is only
part of a physical scattering process. For instance, in contrast, it is known that
multiparticle tree-level amplitudes corresponding to physical processes φφ→ φn are
exactly vanishing at the kinematic threshold [47, 52, 124–126]. Moreover, there are
hints that this even holds when quantum corrections are taken into account [125].
Therefore, the physical relevance of unitarity violating φ? → φn processes at tree
level is questionable to some extent. However, as we will see, the problem still per-
sists in a more physically relevant setting. Note, for instance, that pure φ4-theory
is very special in this regard. For example, in the Standard Model nullification
of tree-level amplitudes at threshold only occurs for certain values of the particle
masses [124,127,128].
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2.2. Unitarity violation by multiparticle production in scalar field theory

We are going to address these aspects in the following section, where we aim to
go beyond tree-level perturbation theory as well as to comment on the corresponding
amplitudes beyond the kinematic threshold.

2.2.2 Going beyond tree-level perturbation theory

In this section, we want to consider the results of the previous section from a slightly
different point of view by going beyond leading order perturbation theory at the
kinematic threshold.

The original approach to include the first quantum correction beyond tree level,
however, did not rely on the recursive methods of (2.12). Instead it makes use of the
generating field technique by Brown [43], which is based on evaluating the matrix
element of the initial state, 〈0out|φ(x)|0in〉ρ, in the presence of a source term, ρφ,
and then applying the LSZ reduction,

〈n|φ(x)|0〉 =
n∏
a=1

lim
p2a→m2

∫
d4xa eipaxa(m2 − p2

a)
δ

δρ(xa)
〈0out|φ(x)|0in〉ρ

∣∣∣∣∣
ρ=0

. (2.17)

As the tree-level amplitudes themselves can be understood as classical objects, they
are then obtained by replacing the initial state matrix element by a solution to the
classical field equation in the presence of ρ. That is, the classical field is now a
functional of the source, φ0 [ρ]. At the kinematic threshold, where all final state
particles are at rest, ~pa = 0, the source can be taken to be spatially constant.
Differentiating the matrix element with respect to the source and sending it to zero
afterwards, one indeed obtains an exact expression for all tree-level amplitudes at
threshold. Schematically, this relation can be written as [43]

Atree(n) = m2(n2 − 1)

(
∂

∂z

)n
φ0

∣∣∣∣
z=0

, (2.18)

where z is now a change of variable involving the original source ρ.
The first quantum correction to the threshold amplitudes can then be obtained

by linearizing the field around the generating function for the tree-level amplitudes,
i.e. around the classical background, and keeping track of the quantum correction
throughout the procedure [47, 52]. Later, the recursive methods (2.12) have been
extended to also include the one-loop correction [102]. It turns out that the first
quantum correction is of order λn2 compared to the tree-level result. Naively, this is
because there are order n2 possible ways to introduce an internal propagator into the
tree-level amplitude with n external legs. Due to this scaling, in the large n regime,
in particular for n & 1/λ, the unitarity violating behaviour of the amplitudes still
persists.

Analogously, we expect the kth loop contribution to be of order (λn2)
k

com-
pared to tree level [102]. Therefore, when probing the regime n & 1/λ beyond
tree-level perturbation theory, a robust calculation of the scattering amplitude re-
quires the resummation of all terms of the perturbative expansion, which, obviously,
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becomes more and more complicated at higher loop-orders. However, if one is in-
terested the leading-n contribution at each loop-order, one can drastically simplify
the computation. They key point is that the contribution from the kth loop-order,
φk, is completely determined by the leading singularity structure of the classical
background, φ0 ∼ cosh−1(τ), in Euclidean time τ [53]. Taking only the leading sin-
gularity into account, one then tries to determine the loop contribution, 〈0|φk|0〉, to
the matrix element in the classical background φ0 by means of Feynman diagrams.
That is, naively, one only considers tadpole graphs at each loop-order and represents
them by their leading singularity structure by cutting all internal lines to obtain a
connected tree graph. Finally, these tree graphs can be evaluated by Feynman rules
that are modified by the classical background [53].

This sophisticated technique is, in fact, well suited to probe the regime n & 1/λ
beyond tree-level perturbation theory, as it in principle gives access to the leading-n
behaviour of arbitrary loop-orders. A useful limit in this regime is the double scaling
limit λ→ 0 and n→∞ while keeping λn fixed. In this limit, the loop contributions
exhibit a remarkable structure. It is conjectured that the scattering processes for
multiboson production in φ4-theory take on exponential form [52–56],

A(n) = Atree(n) exp

(
1

λ
F

)
, (2.19)

where F is sometimes called holy grail function and depends on the particular scalar
field model in question. At the kinematic threshold F is a function of the combina-
tion λn only [53],

F (λn) = Bλ2n2 +O
(
λ3n3

)
, (2.20)

with coefficients B = −
(
ln
(
7 + 4

√
3
)
− iπ

)
/ (64π2) for the symmetric theory, and

B =
√

3/ (8π) for a theory with spontaneously broken symmetry [47,52,102].
The exponentiation of the amplitudes for multiparticle production (2.19) is quite

remarkable. Naively, similar to exponential suppression factors in theories with in-
stanton solutions, this form signals an intrinsic non-perturbative nature of the cor-
responding scattering amplitudes in the weakly coupled theory, λ→ 0. Intriguingly,
the exponentiation even appears to be independent of the precise nature of the ini-
tial state, as long as it is still of comparably small occupation number, i.e. one would
expect that 〈n|φ2|0〉 ∼ 〈n|φ|0〉 up to subleading, non-exponential prefactors [54]. In
practice, as we will see later, the leading-n exponentiation is highly nontrivial and
allows to study the corresponding scattering amplitudes in a regime, where tree-level
perturbation theory is in clash with unitarity.

So far, the precise, analytic form of the exponent F is unknown. Still, for the
consistency of the field theory at high energies the sign of F is crucial. If F is
positive for some positive value of λn, one always finds unitarity violation in the
limit where λn is kept fixed at that value while the coupling is sent to zero, λ→ 0. In
light of the above results, the case for φ4-theory both with and without spontaneous
symmetry breaking is unclear. Both theories, however, appear to be very different,
as the quantum corrections to the holy grail function, Bλ2n2, are of opposite sign.
While the correction in the symmetric phase is negative, providing some hope for
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convergence, the correction in the broken phase is positive, leaving the situation
even more unclear.

The observation of rapidly growing tree-level amplitudes and the exponentation
of quantum corrections is further supported by computations based on semiclassi-
cal techniques [48–51]. The exponential form (2.19) is inherent to the semiclassical
approach to multiboson production in scalar field theories, which, in fact, only
attempts to compute the exponent F . This approach is modeled after the Landau-
WKB method known from quantum mechanics [129] and makes use of functional
integrals in the coherent state representation. One of the main assumptions used in
the Landau-WKB method is that, to exponential accuracy, the amplitude in ques-
tion is independent of the precise form of the local operator, 〈n|φ2|0〉 ∼ 〈n|φ|0〉,
which we will support with explicit computations in Section 3.4. The initial and
final states are specified as boundary conditions for the functional integral, which
can be evaluated using Morse theory and steepest descent methods (or in the lan-
guage of complex variables, Picard-Lefschetz theory). The integration will then be
dominated by certain (classical) field configurations, which, in the path integral lan-
guage, correspond to saddle-points of the action. For a recent review of the technical
details of these semiclassical techniques see [130].

Let us close our discussion of the exponentiation of scattering amplitudes for
multiparticle production with a few words on their kinematics. Up to this point, we
have been dealing with multiboson production at the kinematic threshold, i.e. all
final state particles are at rest. Both the perturbative as well as the semiclassical
approach allow to move away from the threshold by going into a regime where the
final state particles are non-relativistic, i.e. their momenta are small compared to
their mass. The non-relativistic regime can be characterized by the kinetic energy of
the final state particles in their center-of-mass frame, T . In fact, non-relativistically,
one can treat the kinetic energy as a small perturbation to the kinematic threshold,
which in turn corresponds to T = 0. Due to the permutation symmetry of the par-
ticle momenta and Galilean invariance, the leading order correction to the threshold
amplitude is proportional to the kinetic energy itself [53],

A (p1, . . . , pn) = Aε=0(n) +M(n)nε+ . . . . (2.21)

Here, ε denotes the kinetic energy per particle per mass, ε = T/(nm). The non-
relativistic limit is then equivalent to the condition ε� 1.

Even when going beyond the kinematic threshold by (2.21), the modified recur-
sion relation can still be solved for the tree-level amplitude (see, e.g., [93]). In the
regime n → ∞ and ε → 0 with nε fixed, the perturbative solution reproduces the
observation first made in [53],

A (p1, . . . , pn) = Aε=0
tree(n)eAnε . (2.22)

Here, Aε=0
tree(n) denotes the tree-level amplitude at the kinematic threshold, previ-

ously given in (2.13) and (2.14). The prefactor of the exponent is given by A = −5/6
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for the symmetric theory and A = −7/6 for the theory with spontaneously broken
symmetry.

Finally, we have arrived at an expression for the kinematic dependence of the
tree-level amplitudes in the non-relativistic regime. However, importantly, the char-
acteristic factorial growth inherent to the tree-level amplitudes at the kinematic
threshold still persists. That is, even inside the physical regions of phase space, we
encounter unitarity violating behaviour of multiparticle production in φ4-theory.

In summary, we have gone beyond tree-level perturbation theory in multiparticle
production in scalar field theory away from the kinematic threshold, where we find
a remarkable exponentiation of the quantum corrections. Still, we find rapid growth
of the corresponding amplitudes, rendering the theory in conflict with unitarity
constraints. In the following section we want to discuss physical consequences of this,
both from a theoretical as well from a phenomenological perspective. In addition, we
comment on possible ways how unitarity might be restored in multiparticle processes.

2.3 Towards the restoration of unitarity in multi-

particle processes

In φ4-theory both with and without spontaneous symmetry breaking, one finds
strong indications that unitarity is violated by multiboson production in scattering
processes at the kinematic threshold and even in the non-relativistic regime of the
final state particles. The rapid growth of these amplitudes is caused by the factori-
ally growing number of diagrams at large n, as there is no destructive interference
between different Feynman diagrams in a scalar field theory.

The factorial growth of high multiplicity amplitudes in the scalar theory can be
compared to its equivalent in gauge theory. In Yang-Mills theory gauge symmetry
and on-shell conditions lead to diagrammatic cancellations in the computation of
scattering amplitudes. This can, for instance, be seen by the application of maxi-
mal helicity violating (MHV) rules [131] or Britto–Cachazo–Feng-Witten (BCFW)
recursion relations [132]. As a particular example, for any n, the amplitude4 for
n-gluon scattering is given by the famous Parke-Taylor expression [91], which does
not yield rising cross sections for large n. That is, in contrast to scalars, gluons do
not seem to violate unitarity. It is therefore natural to investigate the behaviour
of a scalar field charged under a gauge symmetry at high energies. The case of
a spontaneously broken gauge theory, i.e. a gauge-Higgs theory, has been studied
in [92, 93]. In particular, all tree-level amplitudes involving n scalar fields and m
longitudinal vector bosons in the final state have been calculated. Similar to the
pure scalar field case, they again exhibit factorial growth in both species, A ∝ n!m!,
which is also expected to be true when quantum corrections are included at fixed
order perturbation theory.

4For introductions to the spinor helicity formalism see, e.g., [117,133,134].

20



2.3. Towards the restoration of unitarity in multiparticle processes

From a phenomenological point of view, although spontaneously broken gauge
theory only resembles a toy system, these results indicate a breakdown of perturba-
tive behaviour in the electroweak sector of the Standard Model. Hence, the discovery
of a scalar Higgs boson [8,9] has turned this problem into an issue of the electroweak
theory. In such a scenario, the rapidly growing cross sections provide us with an
explicit upper scale Λ . 1600 TeV [94, 95], beyond which conventional field theory
techniques cease to be meaningful. Higher order quantum corrections indicate that
this scale could even be lower, possibly within the range of the next generation of
colliders [95].

In order to restore unitarity at high energies, either non-perturbative behaviour
or new physics must set in. A possible form of novel non-perturbative behaviour,
that was recently proposed, could be a Higgsplosion and Higgspersion effect [97].
The idea is that the increase in the φ? → φn amplitudes leads to an increase of the
decay width of the particle. This large width suppresses the propagator, such that
loop-integrals are effectively cut off at the energy scale where the amplitudes become
large. As this scale can potentially be low, in the Standard Model, this mechanism
can possibly even address the hierarchy problem. At the same time, a low scale
allows for a rich particle phenomenology [98–100]. For a discussion on the nature of
the underlying quantum field theory, in particular, on aspects of localizability in a
theory featuring Higgsplosion see [135–137].

For the remainder of this work, we, however, want to pursue a different ap-
proach. The exponentiation of the multiparticle amplitudes at high multiplicities,
A ∼ exp (F/λ), intrinsically inherits some form of non-perturbative nature in the
limit λ → 0, demanding for a deeper investigation. So far, the calculations of
multiparticle production in scalar field theory mostly relied on perturbative or semi-
classical methods at leading order, or possibly including the first quantum correc-
tion. Beyond that, conventional Feynman diagrams to higher loop-orders become
intractable and the perturbative answer might not be reliable at high energies. For
instance, taking the exponentiation of the amplitude into account, we observe that,
at tree-level, the exponent F turns positive beyond some critical value of λn, signal-
ing an instability of the perturbative expansion. In fact, it is possible that the rapid
growth is merely an artefact of an “incomplete” calculation and could possibly be
lifted by writing down the full scattering amplitude without relying on perturbation
theory to finite order. Here, we are particularly interested in establishing the sign
of the holy grail function F .

In order to shed light on this problem, we want to make use of advanced computa-
tional techniques. Although we are ultimately interested in quantum field theory, we
will consider a much simpler quantum mechanical system. That is, we will study the
quantum mechanical analogue of φ4-theory, which corresponds to the anharmonic
oscillator with a quartic potential. The quantum mechanical setting will allow us
to do explicit calculations to very high order in perturbation theory, that, by re-
summation theory, later enable us to investigate the large λn regime of scattering
amplitudes at high multiplicities.
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3 High Multiplicity Amplitudes in
Quantum Mechanics

In Chapter 2 we have argued that scattering amplitudes, corresponding to the pro-
cess φ? → φn in scalar φ4-theory, are in conflict with fundamental unitarity con-
straints of quantum field theory for large n. This indicates the end of the pertur-
bative regime or even the need for new physics phenomena. In this chapter, our
aim is somewhat conservative, as we want to focus on the former possibility. That
is, we want to shed some light on the question what are the relevant features of
the theory to exhibit rapidly growing amplitudes at a large number of particles.
Furthermore, we aim to determine whether this flaw of the theory can be cured by
improved computational techniques.

We will do so by considering a simplified toy model of scalar quantum field
theory: quantum mechanics with a quartic potential, both with and without spon-
taneous symmetry breaking. We study the quantum mechanical equivalent of high
multiplicity amplitudes in φ4-theory, which correspond to transition amplitudes from
the vacuum to highly excited states in the anharmonic oscillator with a quartic po-
tential. Using recursive relations, we compute these amplitudes to high order in
perturbation theory and provide evidence that they can be written in exponential
form. We then construct the exponent beyond leading order and investigate the
behaviour of the amplitudes in the region where tree-level perturbation theory vi-
olates unitarity constraints. Furthermore, we generalize our results and study the
asymptotic behaviour of perturbation theory in potentials with self-interactions of
arbitrary power. Finally, we comment on the similarities and differences of our
results on quantum mechanics and quantum field theory.

The contents of this chapter presented in Sections 3.2, 3.3, 3.4 and the related
Appendices A, B and C are based on work in collaboration with Joerg Jaeckel
(Heidelberg U.) that has been previously published in [1, 2]. Almost all the results
presented in these sections, including the Figures as well as significant part of the
text are identical to the published works. The contents of Section 3.5 are based
on work in progress together with Florent Baume (Madrid, Autonoma U., IFT)
and Joerg Jaeckel (Heidelberg U.) to appear in [4]. All results presented there are
preliminary and subject to change.
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Chapter 3. High Multiplicity Amplitudes in Quantum Mechanics

3.1 Introduction

As pointed out at the beginning of this chapter, quantum mechanics will serve as
an instructive toy system for our investigation of multiparticle production in scalar
field theories at high energies. That is, we want to consider the quantum mechani-
cal analogue of massive φ4-theory, corresponding to the anharmonic oscillator with
quartic coupling λ,

V (x) = m2x2 + λx4 . (3.1)

At the level of scattering amplitudes, we reduce the complexity of the problem by
making the identification1 (cf. Section 2.2.1)

〈n|φ|0〉 ↪→ 〈n|x̂|0〉 . (3.2)

That is, after a dimensional reduction, we aim at computing vacuum transition
amplitudes 〈n|x̂|0〉 in the quartic anharmonic oscillator. Therefore, we essentially
reduce the problem to determining the spectrum of the Schroedinger operator asso-
ciated to the above potential.

Such a quantum mechanical setting allows us to explicitly perform computations
to high orders in perturbation theory. A resummation of the perturbative series
then enables us to investigate the large λn behaviour of the scattering amplitude.
We will consider the case of a symmetric theory, m2 > 0, and a theory exhibiting
spontaneous symmetry breaking, m2 < 0, separately.

Ever since, quantum mechanics has been providing an instructive testbed for
investigations of high order perturbation theory and non-perturbative effects (see,
e.g., [68, 103–108]). Most works, however, focussed on energy levels and wave func-
tions in the ground state (for a few exceptions see [43,109–114]). Here, in contrast,
we are interested in computing transition amplitudes to highly excited states.

3.2 The symmetric anharmonic oscillator

In order to introduce notation and computational techniques let us consider the
anharmonic oscillator with a single minimum first,

V (x) = x2 + λx4 , (3.3)

where λ > 0 and we normalize everything to the mass term, m2 = 1. If necessary,
the mass can be easily reintroduced on dimensional grounds.

In this potential we want to compute the quantum mechanical amplitudes 〈n|x̂|0〉.
In practice, this requires the determination of the exact spectrum of the Schroedinger
operator, (

− d2

dx2
+ x2 + λx4 − E

)
ψ = 0 , (3.4)

1Note that, here, we naively identify quantum mechanics with a (0+1)-dimensional quantum
field theory. In Section 3.6 we will comment on the similarities and differences between both
theories with respect to particle scattering.
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3.2. The symmetric anharmonic oscillator

where we stick to the quantum field theory conventions, ~ = 1. In the following, we
will reconstruct the spectrum perturbatively.

3.2.1 The wave functions of the anharmonic oscillator

As they are integral part of the vacuum transition amplitudes, we want to find solu-
tions of the Schroedinger equation (3.4). An efficient way to organize perturbative
calculations to high orders are recursion relations. For the anharmonic oscillator
such relations were first introduced by Bender and Wu [103, 104]. Let us briefly
recall their methods.

In order to find the spectrum we start by making a perturbative ansatz for both
the n-th energy level En and its corresponding wave funcion ψn,

En(λ) = 2n+ 1 +
∞∑
m=1

λmanm , (3.5)

ψn(x, λ) = cne−
x2

2

∞∑
m=0

λmBn
m(x) . (3.6)

Here, cn is a normalization constant and the Bn
k (x) are polynomials of the form,

Bn
m(x) =

∑
k

Bn
m,kx

k . (3.7)

To simplify the notation we will drop the eigenstate label n from now and keep it
implicit instead.

Plugging this ansatz into the Schroedinger equation (3.4) and solving it order by
order in the coupling, we can derive a recursive set of differential equations for the
polynomials Bm(x). At order O (λm) one finds

− d2

dx2
Bm + 2x

d

dx
Bm + x4Bm−1 = 2nBm +

m−1∑
k=0

am−kBk . (3.8)

For instance, at leading order m = 0 we obtain the well-known differential equation

d2

dx2
B0 − 2x

d

dx
B0 + 2nB0 = 0 , (3.9)

which is solved by the Hermite polynomials of order n, i.e. Bn
0 (x) = Hn(x).

We now want to go beyond leading order. As we make a polynomial ansatz for
the functions Bm(x), the differential equation (3.8) can in turn be translated into a
recursive relation for the polynomial coefficients Bm,k, which reads

(k + 1)(k + 2)Bm,k+2 = 2(k − n)Bm,k +Bm−1,k−4 −
m−1∑
p=0

am−pBp,k . (3.10)

Solutions to the above recursion relation, with m ≥ 1, can be distinguished by
two physical cases. Because the theory is symmetric under parity, we can either
consider even or odd wave functions, i.e. even or odd n, respectively.
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Chapter 3. High Multiplicity Amplitudes in Quantum Mechanics

(i) For even n the odd coefficients of the polynomial expansion of Bm(x) have to
vanish, i.e. Bm,k = 0 for all odd k. In addition, if (3.10) is evaluated for k = 0,
we obtain

2Bm,2 + 2nBm,0 = −
m−1∑
p=0

am−pBp,0 . (3.11)

If we set2 Bm,0 = 0 for m ≥ 1, we obtain the values of the energy expansion
coefficients,

am = −2
Bm,2

B0,0

. (3.12)

(ii) Similarly, for odd n the even coefficients of the polynomial expansion of Bm(x)
have to vanish, i.e. Bm,k = 0 for all even k. Similar to the case considered
before, evaluating (3.10) for k = 1 yields

6Bm,3 − 2(1− n)Bm,1 = −
m−1∑
p=0

am−pBp,1 . (3.13)

Fixing Bm,1 = 0 for m ≥ 1 finally gives the energy expansion coefficients

am = −2
Bm,3

B0,1

. (3.14)

Both cases can be summarized in the relation

(k+1)(k+2)Bm,k+2−2(k−n)Bm,k−Bm−1,k−4 =

{
2

B0,0

∑m−1
p=0 Bm−p,2Bp,k n even

6
B0,1

∑m−1
p=0 Bm−p,3Bp,k n odd

.

(3.15)
Together with the initial condition Bn

0 (x) = Hn(x), the above recursion relation in
k can easily be solved for all coefficients Bm,k at each order in m.

Note that for each order m the recursion relation becomes vacuous for sufficiently
large values of k. That is, the polynomial coefficients become proportional to each
other Bm,k+2 ∝ Bm,k for k ≥ kmax, which, by an explicit computation, can be shown
to happen at kmax = n + 4m + 2. From a physical point of view, we expect this
behaviour, since the wave function has to be square-integrable. This can be achieved
by truncating the polynomial expansion at order kmax, i.e. by setting Bm,k = 0 for
k ≥ n+ 4m+ 2. Due to the proportionality between the coefficients at high orders
the polynomial will then be finite.

The Bender and Wu method yields sufficient information to reconstruct the n-
th energy level and the corresponding wave function. In particular, both can in
principle be determined to arbitrary order in perturbation theory. For instance, the

2Similar to the theory of ordinary differential equations, we are free to fix the boundary condi-
tions of a recursive relation.
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3.2. The symmetric anharmonic oscillator

lowest states of the spectrum read

ψ0 = c0e−
x2

2

(
1− λ

8

(
x4 + 3x2

)
+

λ2

384

(
3x8 + 26x6 + 93x4 + 252x2

)
+ . . .

)
,

(3.16)

ψ1 = c1e−
x2

2

(
2x− λ

4

(
x5 + 5x3

)
+

λ2

192

(
3x9 + 38x7 + 177x5 + 660x3

)
+ . . .

)
.

(3.17)

What remains undetermined so far for each state is the wave function normalization
constant cn. It is fixed by the normalization condition

〈n|n〉 =

∫
R

dxψ†nψn = 1 , (3.18)

which again yields a perturbative series in powers of the coupling of the theory. For
example, at leading order we recover the well known harmonic oscillator result,

|cn|20 =
1√
π2nn!

. (3.19)

3.2.2 Exponentiation of the amplitude and the holy grail
function

Given the efficient way to compute the spectrum of the anharmonic oscillator to
high order in perturbation theory, we now want to proceed and consider transitions
from the vacuum to highly excited states. In our perturbative approach these are
given by the expression

〈n|x̂|0〉 =

∫
R

dxψ†nxψ0 =

∫
R

dx xe−x
2
∑
m

λmBn
m(x)

∑
p

λpB0
p(x) . (3.20)

Using the polynomial coefficients derived from (3.15), the amplitude can then be
written as3

〈n|x̂|0〉 =
∞∑
m=0

λmtnm with tnm =
m∑
p=0

n+4p∑
k=0

4(m−p)∑
l=0

Bn
p,kB

0
m−p,lΓ

(
k + l + 2

2

)
. (3.21)

At this stage, let us point out two immediate yet nontrivial observations. First,
we observe that the amplitude vanishes for all even n. This reflects the fact that
the theory exhibits a Z2 symmetry, i.e. parity in our case, at the Lagrangian level.
Furthermore, we can read off that tnm = 0 for m < (n− 1)/2. In fact, this is exactly

3Note carefully that we exchange the order of integration and summation here. This, however,
might not be strictly allowed and may indeed give rise to problems of perturbation theory.
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Chapter 3. High Multiplicity Amplitudes in Quantum Mechanics

what we would expect from a naive tree-level Feynman diagram approach in the
scalar field theory given in (2.13),

〈n|x̂|0〉tree ∼ λ
n−1
2 . (3.22)

Similar to the computation of the transition amplitude, we can also give the
perturbative expression for the wave function normalization,

〈n|n〉 =
∞∑
m=0

λmµnm with µnm =
m∑
p=0

n+4p∑
k=0

n+4(m−p)∑
l=0

Bn
p,kB

n
m−p,lΓ

(
k + l + 1

2

)
. (3.23)

Since only quantum mechanical amplitudes involving suitably normalized wave func-
tions are physical, we will focus on the normalized amplitude in the following,

An =
〈n|x̂|0〉√
〈n|n〉

√
〈0|0〉

. (3.24)

In principle, the proper wave function normalization could also be ignored without
qualitatively changing any of our conclusions.

We now want to find the explicit analytic dependence of An on the quantum
number n, which is contained in the numerical expressions (3.21) and (3.23) only
implicitly. However, since we are dealing with a finite number of degrees of free-
dom, we can match the analytic behaviour to the numerical power series by fitting
polynomial coefficients. An explicit computation yields

An = Atree
n ×(

1− λ

16

(
17n2 + 5n− 12

)
+

λ2

512

(
289n4 + 1170n3 + 13n2 + 664n− 944

)
+ . . .

)
,

(3.25)

where the tree-level factor is given by

Atree
n =

√
n!

2

(
λ

8

)n−1
2

. (3.26)

That is, the amplitude completely factorizes into a tree-level part and higher order
contributions, An = Atree

n AΣ. In particular, we observe that An has the schematic
form

An = Atree
n

∞∑
m=0

λmP2m(n) , (3.27)

where P2m(n) denotes a polynomial of degree 2m in n.
In fact, the tree-level result is precisely what we expect from the corresponding

field theory counterpart (2.14). Note, however, that the reduced factorial factor√
n! instead of n! arises from the normalization condition in quantum mechanics.

In quantum field theory this role is played by the phase space integration of the
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3.2. The symmetric anharmonic oscillator

squared matrix element. Here, the phase space volume element contains a factor of
1/n!, effectively reducing the growth of the matrix element by

√
n!.

Remarkably, the structure of An is much more rich than we mentioned so far.
For example, the first few leading terms of AΣ in λn2,

AΣ ∼ 1− 17

16
λn2 +

289

512
λ2n4 − 4913

24576
λ3n6 +O

(
λ4n8

)
, (3.28)

resemble the series representation of the exponential function,

AΣ ∼ exp

(
−17

16
λn2

)
. (3.29)

This observation strongly supports the conjecture that in the double scaling limit
n → ∞ and λ → 0 with λn fixed the amplitude is of exponential form [49, 52–56],
as we already pointed out in Section 2.2.2,

An ∼ exp

(
1

λ
F (λn)

)
. (3.30)

The exponent F is called holy grail function.
This exponentiation of the amplitude can be understood as a powerful (partial)

resummation of its perturbative expansion, because a finite number of terms con-
tained in the exponent F will generate an infinite number of terms in the series
representation of the amplitude. All physical information, in particular about the
large n regime, is then encoded in the holy grail function. In particular, the sign
of F is crucial. If F > 0 for some value of λn, there is always rapid growth of the
amplitudes in the double scaling limit n→∞ where we keep λn fixed at this value
(cf. Section 2.2.2),

An →∞ (n→∞) . (3.31)

In the spirit of (3.30) we now want to investigate the structure of the amplitude
An beyond leading order. Therefore, we write

An = Atree
n AΣ ∼ exp

(
1

λ

(
F tree + FΣ

))
, (3.32)

i.e. we separate F into a tree-level part and higher order contributions,

F (λn) = F tree(λn) + FΣ(λn) . (3.33)

Here, F tree and FΣ correspond to the factors Atree
n and AΣ of the amplitude, respec-

tively. For convenience let us introduce the abbreviation

ε = λn . (3.34)

Let us consider the tree-level contribution (3.26) first. It can trivially be written
in exponential form. We can then use Stirling’s formula as n → ∞ to obtain the
approximate form of the holy grail function,

F tree(ε) ∼ ε

2

(
ln
ε

8
− 1
)
. (3.35)
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Figure 3.1: Tree-level holy grail function F tree corresponding to the tree-level am-
plitude in the double scaling limit n → ∞, ε = λn = const. Corrections of order
1/n are neglected. It exhibits a minimum at ε = 8 and a root at ε = 8e.

It is illustrated in Fig. 3.1.

At tree-level, the holy grail function F tree exhibits two phenomenologically rele-
vant points, the global minimum at εmin = 8 and the root at ε0 = 8e. As pointed out
earlier, since F tree changes from negative to positive sign at ε0, i.e. for any ε > ε0 the
tree-level amplitude diverges at large n, Atree

n →∞ as n→∞. Therefore, for highly
excited states, unitarity is violated and hence this result cannot be meaningful in a
quantum mechanical setup. In particular, it implies4 〈n|x̂|0〉 > (2En)−1, which is,
however, incompatible with the canonical commutation relation [x̂, p̂] = i [43].

This raises the question of how this behaviour is changed, if corrections beyond
leading order are included. Phenomenologically, we are most interested in the overall
sign of F for any value of ε. Therefore, we now want to compute F explicitly in the
regime n→∞ with ε fixed. In fact, we will find that the full perturbative expansion
of the amplitude can be reproduced by writing5

An = Atree
n exp

(
1

λ
FΣ(ε, n)

)
, (3.36)

with

FΣ(ε, n) = F0(ε) +
F1(ε)

n
+
F2(ε)

n2
+ . . . , (3.37)

where the Fi(ε) are analytic functions in ε.

4To see this, one can, for example, explicitly compute the vacuum expectation value of the
double commutator [x̂, [H, x̂]].

5In general, one could be tempted to write Atree
n = exp

(
1
λF

tree
)

with F tree = F tree
0 (ε)+ 1

nF
tree
1 +

. . . . However, using Stirling’s formula to higher orders we would have to factor out a power of λ3/4

in order to arrive at this form. Furthermore, one should keep in mind that Stirling’s series is only
asymptotic, suggesting missing pieces of the type we discuss in the main text.
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3.2. The symmetric anharmonic oscillator

The polynomial structure of AΣ given in (3.25) completely determines the pos-
sible coefficients and powers of ε present in FΣ. Schematically it is given by

FΣ(ε, n) =
∞∑

i,j=0

cij
εi−j+2

nj
with cij = 0 for j >

i+ 2

2
. (3.38)

Then a series expansion yields

exp

(
1

λ
FΣ

)
=
∞∑
k=0

λ−k

k!

(
cij
εi−j+2

nj

)k
= ec01

(
1 + λ

(
c00n

2 + c11n+ c22

)
+ . . .

)
,

(3.39)
where a sum over i and j is understood. The emerging structure might be described
as a triangular expansion of F and can be schematically written as

FΣ(ε, n) '



c00ε
2 c01

1
n
ε1

c10ε
3 c11

1
n
ε2

c20ε
4 c21

1
n
ε3 c22

1
n2 ε

2

c30ε
5 c31

1
n
ε4 c32

1
n2 ε

3

c40ε
6 c41

1
n
ε5 c42

1
n2 ε

4 c43
1
n3 ε

3

...
. . .


. (3.40)

Here, the i-th column corresponds to the terms of the polynomial Fi(ε), e.g.

F0(ε) = c00ε
2 + c10ε

3 + c20ε
4 + c30ε

5 + . . . . (3.41)

The a priori unknown coefficients cij can be determined by expanding the ex-
ponential and matching it to the perturbative expansion of the amplitude order by
order in the coupling. This way, F can in principle be determined to arbitrary order
in ε and 1/n. However, in practice, the computational effort increases rapidly. For
instance, the first few terms of the holy grail function read

FΣ(ε, n) = −17

16
ε2 +

125

64
ε3 + · · ·+ 1

n

(
− 5

16
ε2 +

99

128
ε3 + . . .

)
+O

(
1

n2

)
. (3.42)

Remarkably, such a partial resummation of the amplitude allows us to translate a
perturbative expansion of An in powers of λn2 into a series expansion of F in powers
of λn. The latter to be small is a much less restrictive requirement. Moreover, the
exact correspondence between the amplitude and the holy grail function is very
powerful, because a finite number of terms in F will generate infinitely many terms
of An.

In fact, it is nontrivial that all coefficients of perturbation theory can be recovered
exactly by the exponential. Let us briefly describe why this is the case. In principle,
we can trivially write any function B(λ, n) as an exponential,

B(λ, n) = exp (L(λ, n)) , (3.43)
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where L(λ, n) = log (B(λ, n)). Let us now go to the double scaling limit n → ∞
with λn fixed. Assuming that in this regime L behaves as L ∼ nκ + O (1/n), we
schematically have

L(λ, n) = nκL̂(λn) +O
(

1

n

)
=

1

λκ
(λn)κ L̂(λn) +O

(
1

n

)
, (3.44)

where the function L̂ now only depends on the combination λn. Defining f(λn) =
(λn)κL̂(λn), we arrive at the desired form

B(λ, n) ∼ exp

(
1

λκ
f(λn)

)
. (3.45)

Indeed, this result can be generalized to also include 1/n corrections by writing

B(λ, n) ∼ exp

(
1

λκ

(
f0(λn) +

1

n
f1(λn) + . . .

))
. (3.46)

In this section we explicitly computed such 1/n-corrections for the anharmonic os-
cillator and have found the remarkable property that we have exact exponentiation
in the sense that all coefficients of perturbation theory, i.e. not only those that are
dominant in the limit n→∞ and λn fixed, can be recovered from the exponent, if
it is calculated to sufficiently high order. In particular, we have κ = 1.

Note that in more general quantum mechanical systems this is not universally
true. Instead, the statement has to be modified as we will discuss in Section 3.5.

In order to illustrate that an exact exponentiation is far from trivial let us con-
sider the following example,

B(λ, n) = 2 cosh

(
1

λ
(λn)2

)
= 2 + λ2n4 +

1

12
λ4n8 + . . . . (3.47)

We now identify f(λn) = (λn)2, which remains true to all orders in 1/n. However,
the function that we want to reconstruct,

exp

(
1

λ
f(λn)

)
= 1 + λn2 +

1

2
λ2n4 +

1

6
λ3n6 +

1

24
λ4n8 + . . . , (3.48)

contains terms that are not part of the expansion of the original function. Instead,
the logarithm of the original function differs from f(λn) by

L(λ, n)− f(λn)

λ
= exp (−2(λn)n)− 1

2
exp (−4(λn)n) + . . . , (3.49)

i.e. the logarithm of the original function contains terms that are exponentially
suppressed as n → ∞ with λn fixed. These terms, that are not a function of the
combination λn only, encode all the information about the coefficients that are not
correctly reproduced by the exponential exp (f(λn)/λ).
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Figure 3.2: Holy grail function F in the double scaling limit n → ∞ with ε = λn
fixed, neglecting corrections of order 1/n. The label denotes the highest polynomial
order in ε that is included. Using a naive summation, the asymptotic behaviour for
large ε is governed the truncation of the series expansion.

As we have just pointed out, it is nontrivial that a finite number of coefficients
of F reproduce infinitely many terms of the amplitude exactly. Lacking a rigorous
proof, we have nevertheless verified this to very high order in perturbation theory.
For instance, we have checked that the first three nontrivial terms of the holy grail
function,

FΣ = −17

16
ε2 +

125

64
ε3 − 5

16

ε2

n
+ . . . , (3.50)

reproduce the subleading corrections (λn2)
k
/n of AΣ up to order k = 15.

In the 1/n-expansion of the holy grail function, all information about the large
n asymptotics of An is contained in the leading order contribution,

F0(ε) = −17

16
ε2 +

125

64
ε3 − 17815

3072
ε4 +

87549

4096
ε5 + . . . . (3.51)

The holy grail function F including the above leading order corrections is shown
in Fig. 3.2.

We find that the leading order correction F0 of the holy grail function is given
by an alternating sum with monotonically growing coefficients. That is, the large
ε asymptotics of the expansion will be governed by the truncation of the series.
Therefore, naively, we cannot simply read off the value of F for large ε. In order to
still make sense of it, we have to resum the perturbative series. Since we only know a
finite (but still arbitrary) number of terms of F , we make use of Padé approximation.
For details of this approximation procedure see Section A.1. The first few Padé
approximants of the diagonal sequence Pm

m and Pm
m+1 are shown in Fig. 3.3. Note

that we use a compact notation here. The labels we use here, Pm
n , correspond to

the Padé approximants of order [m,n] denoted by Z[m,n] in Section A.1.
The Padé resummation of F drastically enhances the predictivity for large ε

(note the different scale in ε as compared to Fig. 3.2). When going to higher order
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Figure 3.3: Diagonal sequence of Padé approximants of the holy grail function F
in the double scaling limit n → ∞, ε = λn fixed. We consider the leading order in
1/n, i.e. F = F tree + F0.
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Figure 3.4: Padé approximants of F evaluated at the minimum ε = 8 (left) and the
root ε = 8e (right) of F tree. We use the limit n → ∞, ε = λn fixed and neglect
corrections of order 1/n.

in the approximants Pm
m+1 the minima and roots are shifted towards large values

of ε. In addition, the diagonal approximants Pm
m monotonically decrease without

exhibiting any minima or roots at all. As we point out in Appendix A, the true
value of F for any value of ε is then bounded from above and below by the diagonal
Padé approximants Pm

m+1 and Pm
m . All these observations give good evidence that

the holy grail function F is negative for any ε in the limit n→∞. That is, the cor-
responding transition amplitude does not diverge, but remains finite in that regime
and, in particular, does not violate unitarity at high energies. This observation is
further supported by Fig. 3.4, where we evaluate the diagonal Padé sequence at the
minimum, ε = 8, and root, ε = 8e, of the tree-level holy grail function. We find a
good convergence to a value of F , which is still negative at ε = 8e.

Furthermore, we find that the holy grail function which we systematically com-
puted in this section is in line with two nontrivial results on the large n behaviour of
the amplitudes 〈n|x̂|0〉. First, in [109] Bachas rigorously derives a nontrivial upper
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Figure 3.5: Highest Padé approximants of the holy grail function F at leading order
in 1/n compared to earlier works. B1 and B2 are rigorous bounds corresponding to
the regimes ε� 1 and ε� 1, respectively [109]. The label WKB corresponds to an
explicit result obtained by complex WKB methods [113]. The Padé resummed holy
grail function is consistent with both.

bound on |〈n|x̂|0〉|. If the exponential form of the amplitude is indeed correct, this
also implies that the exponent F is bounded, too, and in particular negative for any
value of ε as n → ∞. Bachas gives explicit bounds for two regimes, ε � 1 and
ε� 1, which in Fig. 3.5 we denote by B1 and B2, respectively. Second, in [111–113]
the authors use complex WKB methods in order to derive an explicit behaviour for
〈n|x̂|0〉 for large n. In particular, for ε� 1, they obtain [113]

〈n|x̂|0〉 ∼ exp
(
−π

2
n
)
. (3.52)

We illustrate this result as a solid black line in Fig. 3.5.
In summary, Fig. 3.5 illustrates that our method of systematically computing

the holy grail function F is in agreement with (rigorous) results of earlier works.
In particular, this indicates that in the double scaling limit the vacuum transition
amplitude 〈n|x̂|0〉 indeed fully resums to an exponential function with a negative
exponent F , hence preventing rapid growth for large n.

Finally, we conclude that for the anharmonic oscillator with a quartic coupling
in the symmetric phase the vacuum transition amplitudes 〈n|x̂|0〉 can be recovered
exactly from the exponential function

〈n|x̂|0〉 = exp

(
1

λ
F

)
. (3.53)

In particular, we find that in the regime n→∞ the exponent F is negative for any
value of λn, therefore preventing a rapid growth of the vacuum transition amplitudes
involving highly excited states.
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3.3 The spontaneously broken anharmonic oscil-

lator

Having established powerful techniques to study high order perturbation theory for
the anharmonic oscillator with a single minimum, we now want to move to the
anharmonic oscillator with a symmetric double-well potential,

V (x) = m2x2 + λx4 with m2 < 0 , (3.54)

where, similar to the symmetric case, λ > 0. In particular, we want to make use
of the same perturbative techniques that have proven suitable for the single-well
potential.

Yet, this is not a straightforward generalization, as there is a delicate issue
when applying perturbative techniques to potentials with degenerate minima, such
as the double-well. Indeed, almost by construction, all known methods rely on
perturbations around the harmonic oscillator solution. A naive application to the
symmetric double-well would imply a perturbation theory in an inverted harmonic
oscillator background, including the obvious problems arising from the instability
of the potential. Therefore, one has to choose another (locally harmonic) reference
point for the perturbative expansion. A suitable point of the symmetric double-
well is one of the two minima x± = ±

√
−m2/2λ. Then, expanding around6 x+,

shifting the coordinate x̃ = x− x+ and subtracting the zero-point energy yields the
asymmetric double-well potential

Ṽ (x̃) = m̃2x̃2 + 2
√
m̃2
√
λx̃3 + λx̃4 (3.55)

with m̃2 = −2m2. In the field theoretical picture this expansion corresponds to a
spontaneous breaking of the symmetry by a tachyonic scalar field that acquires a
vacuum expectation value x±.

Note that a constant shift in the ground state energy or in the definition of the
position operator does not alter the transition amplitude 〈n|x̂|0〉. The former does
not have any effect, as, even in quantum mechanics, only energy differences are
relevant7 which do not change by an additional constant in the Hamiltonian. The
latter does not have any effect, because 〈n|x̂|0〉 involves different energy eigenstates,
which are orthogonal to each other. Consequently, a constant shift in the position
operator does not modify the transition amplitude between those states.

Naively, due to the positive mass term, the potential Ṽ is well suited for the
perturbative techniques that we established in the previous section. However, com-
putationally this comes at the cost of introducing an additional cubic term

√
λx̃3.

By the approach of Bender and Wu [103, 104] presented in the previous section,
we can then reconstruct the spectrum of the Schroedinger operator associated to
the potential Ṽ order by order in the coupling λ. However, note some important

6Both choices are equivalent, since they are related by parity.
7This picture drastically changes for a gravitational theory, where absolute energies have a

physical meaning.
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Figure 3.6: Tree-level holy grail function of the symmetric double-well potential in
the double scaling limit n→∞, ε = λn = const. It exhibits a minimum at ε = 4

√
2

and a root at ε = 4
√

2e.

technicality here. Since the cubic term
√
λx3 appears with a fractional power of

the coupling, we instead define Λ =
√
λ and solve the recursion relations by integer

orders in Λ.

Similar to the single-well potential, we find that the (normalized) transition
amplitudes can be factorized into a tree-level and higher order part, An = Atree

n AΣ.
Here, the tree-level contribution reads

Atree
n =

√
n!

2m̃

(
λ

2m̃3

)n−1
2

. (3.56)

In particular, it again turns out that the perturbative expansion of the amplitude is
reproduced exactly by an exponential function with a suitable exponent,

An = Atree
n exp

(
1

λ
FΣ

)
. (3.57)

In order to determine the large n asymptotics of the transition amplitude, we there-
fore rewrite it as

An ∼ exp

(
1

λ

(
F tree + FΣ

))
, (3.58)

such that, for phenomenological purposes, we can focus on the sign of the exponent.
The part of the exponent that corresponds to the tree-level contribution (3.56) reads

F tree(ε) ∼ ε

2

(
ln

ε

4
√

2
− 1

)
. (3.59)

This is illustrated in Fig. 3.6.
Similar to the symmetric case, F tree exhibits a root at ε = 4

√
2e where it changes

from negative to positive sign, ultimately leading to a rapid growth of the amplitude
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Figure 3.7: Holy grail function F of the symmetric double-well potential in the
double scaling limit n →∞ with ε = λn fixed, neglecting corrections of order 1/n.
The label denotes the highest polynomial order in ε that is included. The asymptotic
behaviour for large ε is governed the truncation of the series expansion, indicating
that we have to apply resummation techniques.

as n→∞. For the single-well anharmonic oscillator, we have seen in Section 3.2 that
a suitable resummation of FΣ resolves this issue. However, a direct resummation for
the double-well potential is problematic. Let us briefly outline why this is the case.
In the double scaling limit n → ∞ with ε fixed, the only relevant contribution in
the 1/n expansion is the leading order correction F0, which reads

F0(ε) =
17

32
ε2 +

125

64
√

2
ε3 +

17815

3072
ε4 +

87549

2048
√

2
ε5 +O

(
ε6
)
. (3.60)

As can be seen in Fig. 3.7, it is not possible to read off the sign of F directly, as
the position of the root strongly depends on the series truncation. In contrast to
the single-well, however, the series representation of F0 only contains positive (and
growing) coefficients, indicating problems with an unambiguous Borel resummation.
Ambiguities in a Borel resummation can, e.g., arise due to poles in the Borel plane.
These can lead to imaginary contributions that are possibly lifted by including non-
perturbative effects (see, e.g., [66, 68]). Therefore, to this point, the overall sign of
the holy grail function F for the symmetric double-well potential remains unclear.

In summary, ordinary perturbation theory – even when naively resummed – does
not allow for a clear resolution of the rapid growth of high multiplicity amplitudes.
Let us therefore turn to more powerful methods.

3.3.1 Exact perturbation theory

From a perturbative point of view, the crucial difference between the single- and the
double-well case is the presence of two degenerate vacua. These can lead, e.g., to
instantonic configurations which cannot be captured by a conventional perturbative
ansatz. Still, in principle, they have to be included in the quantum mechanical
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3.3. The spontaneously broken anharmonic oscillator

path integral where they appear as nontrivial saddle points of the action8. It is
well known that such quantum effects can cause perturbative expansions (of e.g. the
vacuum energy) to be non Borel-resummable [139–144].

Non-perturbative effects (and their relation to perturbation theory) in quantum
mechanics and quantum field theory have been widely studied in the literature,
e.g. in [66,106,138,145–155]. Instead of applying these well known techniques, such
as instanton calculus, we want to follow a novel approach put forward by Serone
et al. in [108, 115]. As we will see later, this approach makes efficient use of our
previous results on the single-well case, making it well suited for our study. Let us
briefly outline its basic concepts.

The key idea is to recover non-perturbative contributions from the perturbative
expansion by smart deformations thereof. In this sense, it is in line with the notion
of resurgence and trans-series expansions in quantum mechanics and quantum field
theory, see, e.g., [68,79]. Applied to our example, suitable deformations exploit the
nontrivial exponentiation of the amplitude.

Very generally, let us consider a quantum mechanical potential V (x;λ) with cou-
pling λ. We require it to admit bound states, or, more precisely, lim|x|→∞ V (x;λ) =

∞. If it, in addition, satisfies V (x;λ) = V (x
√
λ; 1)/λ, we call the potential classi-

cal, because then a perturbative expansion in λ coincides with the expansion in ~,
i.e. with the quantum loop-expansion.

Now let us consider two such classical potentials, V0(x;λ) and V1(x;λ). Cru-
cially, if V0(x;λ) admits a theory with perturbative expansion that is Borel re-
summable exactly, the perturbative series of V (x;λ) = V0(x;λ) + λV1(x;λ) is also
Borel resummable to the exact result, given that V1 is asymptotically bounded,
lim|x|→∞ V1(x; 1)/V0(x; 1) = 0. That is, we treat the part of the potential that leads
to an ambiguous Borel resummation as a perturbation of order λ, thereby rearrang-
ing the perturbative expansion. This procedure was coined exact perturbation theory
in [108,115].

Obviously, each of the two potentials can depend on an additional auxiliary
parameter λ0. Therefore, we can also try to find potentials, suitably depending on
λ0, such that

V̂ (x;λ, λ0) = V0(x;λ, λ0) + λV1(x;λ, λ0) (3.61)

and

V̂ (x;λ, λ) = V (x;λ) . (3.62)

That is, we want to find an auxiliary potential V̂ (x;λ, λ0) for which we recover the
original potential V (x;λ), if we set λ0 = λ. If we have such auxiliary potential at
hand, we can extract the full information about V (x;λ) by performing a perturbative
expansion in λ in V̂ (x;λ, λ0) and removing the deformation by setting λ0 = λ after
carrying out the Borel resummation. Serone et al. discuss a variety of quantum
mechanical examples in [108,115].

8The quantum mechanical double-well potential is the prime example where instanton solutions
play an important role. For instance, they lift the vacuum degeneracy (see, e.g. [106,138]).
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Exact perturbation theory can be useful for systems, where standard perturba-
tion theory is not applicable or does not admit an unambiguous Borel resummation.
In the following we want to apply it to the double-well potential,

V (x;λ) = −x2 + λx4 , (3.63)

which we now have normalized to the mass, m2 = 1. As pointed out before, we want
to find an auxiliary potential V̂ (x;λ, λ0) = V0(x;λ, λ0) + λV1(x;λ, λ0) that repro-
duces V (x;λ) at finite coupling. Furthermore, V0(x;λ) has to admit a perturbative
expansion that is Borel resummable to the exact result.

Obviously, the choice of V̂ is by no means unique. In fact, there is a plethora
of different choices of V0 and V1 which are more or less suited depending on what
quantity we are interested in. In general, neglecting constant and linear terms of
the potential, the requirement on V0 and V1 to be classical gives the most general
form of V̂ ,

V̂ (x;λ, λ0) = (v2 + λw2)x2 + (v3 + λw3)
√
λx3 + v4λx

4 . (3.64)

Here, the coefficients vi and wi belong to V0 and V1, respectively. In particular, they
are functions of λ0 only, vi = vi(λ0) and wi = wi(λ0). Furthermore, in order to re-
produce the symmetric double-well potential at the coupling λ = λ0, the coefficients
have to satisfy the conditions

v2(λ) + λw2(λ) = −1 , (3.65)

v3(λ) + λw3(λ) = 0 , (3.66)

as well as the trivial normalization

v4 = 1 . (3.67)

Up to terms in vi and wi that exactly cancel at λ0 = λ, this implies that the
properties of the perturbative ansatz are entirely controlled by the functions vi(λ0)
which we can choose suitably. In the end, the only requirement is then that V0 has
to admit a perturbative expansion that is Borel summable.

While the above conditions yield the most general choice of the auxiliary poten-
tial V̂ , we will discuss a specific example with a simple but nontrivial v2,

V0(x;λ, λ0) = x2 + λx4 , (3.68)

V1(x;λ, λ0) = − 2

λ0

x2 , (3.69)

where the single-well anharmonic oscillator V0 is known to be Borel resummable [105,
156]. The associated auxiliary potential is then

V̂ (x;λ, λ0) =

(
1− 2

λ

λ0

)
x2 + λx4 . (3.70)
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3.3. The spontaneously broken anharmonic oscillator

It reproduces the symmetric double-well potential when setting λ0 = λ,

V̂ (x;λ, λ) = −x2 + λx4 . (3.71)

Note that this simple example is just a particular case, v2 = 1, of a more gen-
eral parametrization, v2(λ0) = const. In Appendix B we discuss the convergence
properties of the associated perturbation theory as a function of v2.

According to the idea of exact perturbation theory we can now consider the
potential V̂ (x;λ, λ0) instead of the double-well potential V (x;λ). In this potential
we can then compute any quantity of interest by a perturbative expansion in λ
(while keeping λ0 fixed), perform the Borel resummation and finally remove the
deformation of the perturbative expansion, λ0 = λ.

3.3.2 Reconstructing the holy grail function

Let us now make use of the powerful idea of exact perturbation theory. Accord-
ingly, in order to obtain 〈n|x̂|0〉 in the double-well potential, we could in principle
repeat the original computation of the wave functions and transition amplitudes
of Section 3.2.1 in the auxiliary potential V̂ (x;λ, λ0). However, we observe that
the deformation V1 of the single-well potential effectively introduces a mass term
that depends on the coupling, m2(λ) = 1 − 2λ/λ0. Therefore, as an alternative
approach, we can use our previous results on 〈n|x̂|0〉 obtained for the symmetric
case in Section 3.2.2 by simply plugging in the λ-dependent mass term.

For convenience, let us briefly recall our previous results for the single-well po-
tential. Reintroducing the positive mass term m2 > 0, we found

〈n|x̂|0〉 = 〈n|x̂|0〉tree exp

(
1

λ
FΣ

)
(3.72)

where

〈n|x̂|0〉tree =

√
n!

2m

(
λ

8m3

)n−1
2

. (3.73)

The leading order correction in the 1/n-expansion of the holy grail function reads

F0(ε) = −17

16

ε2

m3
+

125

64

ε3

m6
− 17815

3072

ε4

m9
+

87549

4096

ε5

m12
+O

(
ε6
)
. (3.74)

Note that, in general, a mass term that depends on the coupling of the theory might
introduce additional factors in the 1/n-expansion of FΣ which are not subdominant
anymore. However, this does not happen for our choice of deformation, which, in
fact, partially motivates this particular choice.

Plugging in the mass term m2 = 1−2λ/λ0, performing a perturbative expansion
in λ and thereby rearranging the result in the corresponding 1/n-expansion then
yields

F̂0 (ε, ε0) = −17

16
ε2 +

125

64
ε3 − 17815

3072
ε4 + · · ·+ 1

ε0

(
3

2
ε2 − 51

16
ε3 + . . .

)
+O

(
ε3

ε20

)
,

(3.75)
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where we defined the abbreviation ε0 = λ0n, which will be useful for the double
scaling limit that we consider later. We can now obtain the holy grail function F
associated to the double-well potential by resumming F̂0 as a series in ε before the
deformation is finally lifted by evaluating it at ε0 = ε.

Note that the order of resummation and removing the deformation is important
here. For example, performing a Borel summation requires a computation of the
Laplace transformation F (ε, ε0) =

∫∞
0

dt exp (−t)BF (εt, ε0), where BF (εt, ε0) is the
Borel sum of the power series in εt while ε0 is still treated as an auxiliary parameter.
In particular, the argument in the integral is εt while the external parameter ε0
is not multiplied by the integration variable t. Only after performing the Laplace
transformation correctly we can finally evaluate F (ε, ε).

Similar to the symmetric case, in order to resum the series expansion of the
holy grail function we make use of Padé approximation. However, here a crucial
difference is that we have to perform a separate Padé resummation for every value
of ε0 that we want to probe.

We find that, while the different Padé approximants converge well to negative
values for large values of ε, the approximation seems to be spoiled by spurious poles
in the region of small ε. Such spurious poles can also occur in the Padé approxi-
mation for a number of well-behaved functions and might question the validity of
the approximation beyond the pole9. In fact, looking more closely at the series ex-
pansion for ε0 < 1, we find that the series seems to forfeit oscillating signs of the
coefficients that typically indicate stability in a resummation with a finite number
of known terms. We discuss the technical details of such instability in Appendix B
where the relevant sign structure is illustrated in Fig. B.1.

In order to avoid these problems we have tried several different approxima-
tion schemes, for which the Borel-Padé approximation scheme turns out to provide
good results. The first few diagonal approximants of F in that scheme are shown
in Fig. 3.8.

Using Borel-Padé approximation, we observe that F is negative for a wide range
of values of ε. In particular, this is even more pronounced when going to higher
orders in the approximation. Therefore, similar to the single-well, we find strong
hints that suitably resummed perturbation theory is sufficient to resolve the rapid
growth of 〈n|x̂|0〉 as n→∞.

However, we also remark that some potential problems of the approximation
still remain. For small values of ε the Padé approximant of the Borel sum inherits
the problem of spurious poles. However, these poles do not contribute significantly
in the Laplace transformation when taking the principal value for the integral. At
large values of ε the effect of spurious poles is subdominant, because the integrand
of the Laplace transform is exponentially suppressed in the region containing the
poles. Overall, this gives the smooth estimate of F illustrated in Fig. 3.8. We

9For instance, the third diagonal Padé approximant of the exponential function, P 3
3 (x) =(

1 + x
2 + x2

10 + x3

120

)
/
(

1− x
2 + x2

10 −
x3

120

)
, features a pole on the real axis, at x ≈ 4.64, which

is not present in the original function.
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Figure 3.8: Diagonal Borel-Padé approximants of the holy grail function F associ-
ated to the symmetric double-well potential in the double scaling limit n→∞, ε =
λn = const. Higher order corrections in the 1/n-expansion are neglected. F is
obtained with the ansatz of exact perturbation theory using the auxiliary poten-
tial (3.70).

further note that liftable poles are a common feature of Borel-Padé approximation,
as Padé approximants sometimes suffer from poles along the real axis. Hence, in
order to verify the results obtained by Borel-Padé approximation, we have tried a
number of other resummation schemes, which are briefly presented in Appendix A.
A particularly promising resummation scheme, that makes use of the large order
Borel asymptotics, we point out in Section 3.3.3. All of them consistently feature
negative values of F for large ε but also some instability to a certain degree. For
example, in Fig. 3.9 we illustrate their behaviour at the minimum and the root of
the tree-level contribution to the holy grail function (3.59). We observe that, while
convergence is not completely monotonous everywhere, the different approximations
generally agree well with each other. For instance, at the tree-level root the spread
between the different results is smaller than the distance to zero, strongly indicating
that the sign of the holy grail function is indeed negative at this point.

Furthermore, in Fig. 3.10 we compare the different approximations of the holy
grail function to earlier results from WKB estimates [113] and a rigorous bound by
Bachas [109]. We find that F obtained within exact perturbation theory is in line
with both results, providing even further evidence that our ansatz is indeed valid.

Finally, we conclude that, similar to the single-well potential, suitably resummed
(exact) perturbation theory resolves the rapid growth of the vacuum transition am-
plitudes 〈n|x̂|0〉 in the symmetric double-well potential for large n.

3.3.3 Resummation by guessing the Borel asymptotics

We have just seen that, due to possible instabilities, different resummation schemes
are more or less suitable in the framework of exact perturbation theory. In conven-
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Figure 3.9: Value of the different approximants of the holy grail function F associ-
ated to the symmetric double-well potential in the double scaling limit n→∞, ε =
λn fixed at the minimum, ε = 4

√
2, (left panel) and at the root, ε = 4

√
2e, (right

panel) of the tree-level holy grail function. The k denotes the number of coefficients
of the power series of F taken into account in the corresponding approximation
scheme. The approximation schemes shown are Padé, Borel-Padé (BP), Meijer G
(MG), Shafer (Sh) and an α-exponential scheme (α-Exp), all of which are discussed
in Appendix A and Section 3.3.3.

tional resummation schemes, including the large order behaviour in an approxima-
tion scheme seems promising, as is, for instance, done by the Meijer G approximation
scheme discussed in Section A.4. Yet, in the Meijer G scheme, it might happen that
the successive ratios of coefficients in the Borel sum are not well approximated by a
constant. For instance, in our scenario of exact perturbation theory for the double-
well anharmonic oscillator, we find that they behave approximately as

bn+1

bn
∼ f (ε0)nα (3.76)

with α in the range 1
2
. . . 1 and the function f depending on the precise value of α.

The large order Borel asymptotics can then be accounted for with a so called
α-exponential,

expα (f(ε0)ε) =
∞∑
k=0

f(ε0)k

k!α
εk with 0 < α ≤ 1 . (3.77)

The function f can be expressed as an expansion in 1/ε0 by fitting to the known
coefficients of the Borel sum.

As expected, this function does not very well represent the low order behaviour
of the series. Therefore, we can correct the Borel transform by explicitly including
the known coefficients (up to n = 14),

BF (ε, ε0) =
∞∑
k=0

f (ε0)k

k!α
εk +

14∑
k=0

(
F0,k(ε0)

k!
− f (ε0)k

k!α

)
εk . (3.78)

In principle, we could now proceed by Laplace transforming BF with respect to ε
while keeping ε0 fixed. However, the behaviour can be significantly improved by

44



3.3. The spontaneously broken anharmonic oscillator

0 5 10 15 20 25 30
-70

-60

-50

-40

-30

-20

-10

0

Figure 3.10: Different approximants (to highest available order) of the holy grail
function F of the symmetric double-well potential in the double scaling limit n →
∞, ε = λn = const (as in Fig. 3.8) compared to WKB estimates [113] and a rigorous
bound derived by Bachas [109], labelled WKB and B, respectively. The other labels
are as in Fig. 3.9.

applying a Padé approximation to the remainder function given by the second term
on the right hand side of (3.78). In practice, we apply a Padé approximation of the
same order to the remainder function as well as the α-exponential.

Let us now apply this resummation procedure to our problem of exact perturba-
tion theory in the symmetric double-well potential. Fitting the known coefficients
for the remainder function we find,

f(ε0) ≈ −1.476 + 0.66/ε0 + 0.064/ε20 for α =
1

2
. (3.79)

The results are illustrated in Fig. 3.11. We remark that this approximation is
only good for ε0 & 2 . Therefore, the spread in the different Padé orders possibly
underestimates the true uncertainty.

Finally, let us finish this discussion with some technical remarks. In principle,
by estimating the large order behavior of the Borel sum BF from the coefficients at
low order, we gain access to the Borel-Padé approximants of higher order. However,
a subtle issue arises when naively summing BF . Although the α-exponential has
an infinite radius of convergence, BF cannot be summed term by term as it still
contains the exact coefficients at low order. That is, the remainder function is a
polynomial that will dominate over the quickly falling α-exponential above a certain
critical value of ε, most likely yielding the wrong asymptotics of the Borel sum.
Consequently, the Laplace transform of BF does not give a good approximation of
the function F . Therefore, we think that a Padé approximation of both sums yields
a better estimate of the asymptotics for large ε. In fact, we have checked that it
indeed does not exceed the α-exponential term for a large range of values ε & 2 ,
but still gives a significant contribution to the Laplace transform.
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Figure 3.11: Diagonal Borel-Padé approximants of the holy grail function F with
an estimated large order behaviour using (3.78). The higher order approximants
are already nicely converged. Note, however, that this does not represent the full
error. There is an additional systematic uncertainty at small ε due to the use of the
approximate formula (3.79), as well as a general uncertainty due to our guessing of
the large order behaviour.

3.4 Transition amplitudes involving general local

operators

So far we have only considered transition amplitudes from the vacuum to highly
excited states, 〈n|x̂|0〉. In this section we want to go beyond that and use our
techniques to compute transitions between arbitrary states involving arbitrary local
operators, 〈n|x̂q|m〉, where, for simplicity, q is integer. In particular, we will argue
that, in the double scaling limit n→∞ with λn and m fixed, the transition ampli-
tudes are, to exponential accuracy, independent of the power of the local operator.
More precisely, we want to show that

〈n|x̂q|m〉 ∼ Rq(n,m)
〈n|x̂|0〉
〈m|x̂|0〉

, (3.80)

where Rq follows at most a power law of the quantum numbers n and m.
In fact, by this computation, we will support a crucial assumption of the semi-

classical approach to multiparticle production (cf. Section 2.2), where, to exponen-
tial accuracy, the amplitude is supposed to be independent of the local operator,
〈n|φ2|0〉 ∼ 〈n|φ|0〉.

Our general idea is to compute 〈n|x̂q|m〉 and compare it to the right hand side
of (3.80). In principle, this can be done recursively by reducing the power of the
local operator with suitable insertions of the identity,

〈n|x̂q|m〉 =
∑
l

〈n|x̂q−1|l〉 〈l|x̂|m〉 . (3.81)
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Therefore, the basic building blocks are indeed the transition amplitudes involving
only a linear local operator, q = 1. In terms of the perturbative ansatz (cf. Sec-
tion 3.2) they read

〈n|x̂|m〉 =
∞∑
i=0

λitn,mi with tn,mi =
i∑

p=0

n+4p∑
k=0

m+4(i−p)∑
l=0

Bn
p,kB

m
i−p,lΓ

(
k + l + 2

2

)
.

(3.82)
Using properly normalized states, we can again extract the tree-level amplitude,

〈n|x̂|m〉tree =

√(
n

m

)
+

(
m

n

)√
|n−m|!

2

(
λ

8

) |n−m|−1
2

. (3.83)

Note that here some care has to be taken when establishing a correspondence
between 〈n|x̂|m〉 and its field theory analogue. In fact, the interpretation in terms of
a quantum field theory is not at all obvious. For instance, increasing m in the above
expression effectively decreases the number of couplings, i.e. vertices, for a given
transition from m to n. However, naively, in the Feynman language of perturbative
quantum field theory we would expect the opposite, as the number of couplings
corresponds to the number of vertices in a connected diagram. Indeed, 〈n|x̂|m〉tree

not only contains information about the fully connected amplitude, but also about
all disconnected pieces.

Nevertheless, the transition amplitude between arbitrary states exhibits a rich
and interesting structure. Let us point out a few features in the following. For
example, the tree-level part shows a certain form of crossing symmetry,

〈n|x̂|m〉tree =

√(
n

m

)
+

(
m

n

)
〈|n−m| |x̂|0〉tree . (3.84)

Furthermore, it completely factorizes into distinct amplitudes. For example, taking
n > m to write (3.83) as

〈n|x̂|m〉tree =

√
n!√
m!

2−n/2

2−m/2

(
λ

4

)n−m−1
2

, (3.85)

we observe that the tree-level contribution is in fact a quotient of two distinct tree-
level amplitudes,

〈n|x̂|m〉tree =

√
m+ 1

2

〈n|x̂|k〉tree

〈m+ 1|x̂|k〉tree

. (3.86)

Here, |k〉 denotes an arbitrary state with k ≤ m and n+ k odd. For odd n we could
for example choose k = 0 or k = 1 for n even.

Below we will show that these properties are not limited to the tree-level con-
tribution, but indeed also hold for the full amplitude to all orders in perturbation
theory.
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The higher order corrections of the amplitude can be computed using the meth-
ods of Section 3.2. They are given by

〈n|x̂|m〉 = 〈n|x̂|m〉tree

(
1 +

λ

16

(
−17n2 − 5n+ 17m2 + 29m+ 12

)
+
λ2

512

(
289n4 + 289m4 + . . .

)
+ . . .

)
.

(3.87)

Remarkably, the states n and m completely decouple, i.e. the first mixed terms of the
form nxmy appear only at quadratic order in the coupling, O (λ2n2m2). Therefore,
it is straightforward to again rewrite the amplitude in exponential form, satisfying

〈n|x̂|m〉 = 〈n|x̂|m〉tree exp

(
1

λ
FΣ(λ, n,m)

)
, (3.88)

where the exponent is given by

FΣ(λ, n,m) = λ2

(
−17

16
n2 − 5

16
n+

17

16
m2 +

29

16
m+

3

4

)
+O

(
λ3
)
. (3.89)

The decoupling of n and m then implies that the holy grail function can be written
as a sum of two independent components,

FΣ(λ, n,m) = FΣ(λ, n) + F̂Σ(λ,m) , (3.90)

where FΣ is determined by the vacuum amplitude 〈n|x̂|0〉 given in (3.25) and F̂Σ

denotes the additional contribution from the initial state |m〉. Intriguingly, it can
be fully recovered from the vacuum amplitude by observing

F̂Σ(λ,m) = −FΣ(−λ,−(m+ 1)) . (3.91)

Therefore, 〈n|x̂|m〉 for arbitrary m is in principle fully determined by the vacuum
amplitude 〈n|x̂|0〉. This has remarkable consequences, as it allows us to extend the
tree-level result (3.86) to the full amplitude to all orders,

〈n|x̂|m〉 ∼
√
m+ 1

2

〈n|x̂|k〉
〈m+ 1|x̂|k〉

. (3.92)

Note that here we neglect terms of the order 1/n in the exponent, i.e. we drop terms
of the form exp(1/n). It is therefore valid to exponential accuracy.

The above observation is key for the computation of transition amplitudes be-
tween arbitrary states for polynomials of local operators,

〈n|P (x̂) |m〉 =
∑
q

aq 〈n|x̂q|m〉 . (3.93)
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Hence, we now want to generalize the above results to the transition amplitudes
〈n|x̂q|m〉. At leading order in the 1/n expansion of the holy grail function, our
general claim for an arbitrary power of local operators is

〈n|x̂q|m〉 ∼ cq

(
(n+ 1)

3
2 − (m+ 1)

3
2

)q−1 〈n|x̂|kn〉
〈m+ 1|x̂|km〉

, (3.94)

where cq is a positive constant and we take n > m with n+m+ q and m+ km even
while n + kn is odd. For example, it is convenient to choose kn,m = 0, 1 depending
on the parity of the states |n〉 and |m〉.

By induction in q, we now want to argue that (3.94) holds in general. Because
of parity even and odd q have to be considered separately.

Let us consider the case with n,m and q even explicitly. In this case the claim
reads

〈n|x̂2p|m〉 ∼ c2p

(
(n+ 1)

3
2 − (m+ 1)

3
2

)2p−1 〈n|x̂|1〉
〈m+ 1|x̂|0〉

, (3.95)

where q = 2p. The first nontrivial case p = 1, for which the full derivation be found
in Appendix C, can be shown to be

〈n|x̂2|m〉 ∼ (n+ 1)
3
2 − (m+ 1)

3
2

3
√

2

√
m+ 1

2

〈n|x̂|1〉
〈m+ 1|x̂|0〉

. (3.96)

Having established the first nontrivial case, we can now proceed with the induction
step p→ p+ 1 and insert the identity operator,

〈n|x̂2(p+1)|m〉 =
∞∑
l=0

〈n|x̂2p|l〉 〈l|x̂2|m〉 . (3.97)

Depending on the state |l〉, the sum can be split into three different contributions

〈n|x̂2(p+1)|m〉 ∼ c2p (S1 + S2 + S3) (3.98)

where we defined

S1 = 〈n|x̂|1〉 〈m|x̂|1〉

×
m∑
l=0

l + 1

2

(
(n+ 1)

3
2 − (l + 1)

3
2

)2p−1 (m+ 1)
3
2 − (l + 1)

3
2

3
√

2

1

〈l + 1|x̂|0〉2
,

(3.99)

S2 =

√
m+ 1

2

〈n|x̂|1〉
〈m+ 1|x̂|0〉

×
n∑

l=m

√
l + 1

2

(
(n+ 1)

3
2 − (l + 1)

3
2

)2p−1 (l + 1)
3
2 − (m+ 1)

3
2

3
√

2

〈l|x̂|1〉
〈l + 1|x̂|0〉

,

(3.100)

S3 =

√
(n+ 1)(m+ 1)

2

1

〈n+ 1|x̂|0〉 〈m+ 1|x̂|0〉

×
∞∑
l=n

(
(l + 1)

3
2 − (n+ 1)

3
2

)2p−1 (l + 1)
3
2 − (m+ 1)

3
2

3
√

2
〈l|x̂|1〉2 .

(3.101)
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Here, we already applied the induction hypothesis (3.94) together with the initial re-
sult (3.96). That is, there are three different contributions to the leading n behaviour
of the transition amplitude, which can be analysed independently with respect to
their large n asymptotics.

(i) The sum contained in the first contribution S1 does not exhibit any explicit
dependence on n. Therefore, the term with the highest power of n will be the
dominant contribution. That is, we can write

S1 ∼ (n+ 1)
3
2

(2p−1) 〈n|x̂|1〉 . (3.102)

(ii) The second contribution S2, however, depends on n both explicitly and im-
plicitly, as it involves a sum where n appears as a boundary term. However,
because of the relation 〈l|x̂|1〉 / 〈l + 1|x̂|0〉 ∼ O(1), we can evaluate this sum
explicitly by rewriting it as an integral. Taking into account that the only
non-vanishing contributions come from even l, we conclude

S2 ∼

(
(n+ 1)

3
2 − (m+ 1)

3
2

)2p+1

(3
√

2)22p(2p+ 1)
〈n|x̂|1〉 . (3.103)

(iii) In contrast to the first two contributions, S3 cannot be evaluated exactly,
because the sum not only involves n as a boundary term but also depends on
the explicit form of 〈l|x̂|1〉. In order to recover the parametric dependence on
n, we make use of our earlier observation that the amplitudes are of exponential
form,

〈n|x̂|0, 1〉 ∼ e−cn , (3.104)

with c being a positive constant. Such parametric ansatz allows us to establish
an upper bound for the sum contained in S3 by writing

∞∑
l=n

(
(l + 1)

3
2

)3p

〈l|x̂|1〉2 ∼
∫ ∞
n/2

dl (2l + 1)3pe−4cl

=
1

2
e2c(n+ 1)3p+1E−3p (2c(n+ 1)) ,

(3.105)

where Em(z) denotes the exponential integral function. Note that the inte-
gration takes into account that the only non-trivial contributions to the sum
come from even l. Using the large z asymptotics of Em(z),

Em(z) ∼ e−z

z

(
1− m

z
+O

(
m2

z2

))
(z →∞) , (3.106)

we conclude that the dominant terms of S3 are at most of order

S3 . (n+ 1)
3
2(2p+ 1

3)
√
m+ 1

2

〈n+ 1|x̂|0〉
〈m+ 1|x̂|0〉

. (3.107)
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Comparing all the asymptotic expressions for large n from above, we find that
the dominant contribution is given by S2. Therefore, finally, we conclude

〈n|x̂2(p+1)|m〉 ∼ c2(p+1)

(
(n+ 1)

3
2 − (m+ 1)

3
2

)2(p+1)−1
√
m+ 1

2

〈n|x̂|1〉
〈m+ 1|x̂|0〉

,

(3.108)
which is exactly the induction hypothesis for p→ p+ 1.

A similar computation can be carried out for odd n and m also for odd q (with n
and m of different parity) without changing the general conclusions. For simplicity,
however, we will skip this straightforward proof here.

In summary, we find that the transition amplitude between arbitrary states for
any power of a local operator is equivalent to the linear one to exponential accuracy,

〈n|x̂q|m〉 ∼ cq

(
(n+ 1)

3
2 − (m+ 1)

3
2

)q−1 〈n|x̂|kn〉
〈m+ 1|x̂|km〉

, (3.109)

where cq is a positive constant and the parities of |n〉 , |m〉 and |kn,m〉 are chosen
suitably. In particular, this implies that

〈n|x̂q|0〉 ∼ cq(n+ 1)
3
2

(q−1) 〈n|x̂|0〉 , (3.110)

suggesting that, for large n and to exponential accuracy, the linear vacuum transition
amplitude 〈n|x̂|0〉 contains all the information about amplitudes of the form 〈n|x̂q|0〉.
Therefore, if 〈n|x̂|0〉 is exponentially suppressed for large n, 〈n|x̂q|0〉 will also be
suppressed and hence remain finite as n→∞.

Finally, our result supports a key assumption of semiclassical calculations al-
ready pointed out in Section 2.2.2. That is, to exponential accuracy, the scattering
amplitude in question is independent of the precise form of the local operator, for
example [54]

〈n|φ2|0〉 ∼ 〈n|φ|0〉 . (3.111)

However, note that, as the semiclassical methods of [49–51] make use of the local
operator j−1 exp (jφ), some caution is needed. For finite j, (3.110) is not sufficient
to guarantee that there are no exponential prefactors, such that the limit j → 0 has
to be taken with care.

3.5 Generalization to higher monomial potentials

The suitable resummation of perturbation theory appears to play an important role
in the restoration of unitarity in scalar field scattering amplitudes at high multiplic-
ities. In particular, for theories with spontaneous symmetry breaking, the inclusion
of non-perturbative effects in the perturbative ansatz seems to be crucial. Among
the two quantum mechanical examples that we studied, however, this might be a
very special feature of the quartic anharmonic oscillator as we will see in this section.

Let us consider the vacuum transition amplitudes 〈n|x̂|0〉 in massive anharmonic
oscillators with potential,

V (x) = x2 + λx2M , (3.112)
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where M ≥ 2 is integer, λ is positive and we have normalized everything to the
mass, m2 = 1. That is, we explicitly consider potentials that are not subject to
spontaneous symmetry breaking. Due to the lack of instantonic configurations, we
therefore naively expect perturbation theory to work well.

Note carefully, that for M ≥ 3, there is no obvious uplift to a quantum field
theory that is (perturbatively) renormalizable. For instance, scalar field theories
with potentials such as V (φ) = m2φ2 +λφ6 in more than two dimensions suffer from
divergences that cannot be regularized consistently. Nevertheless, these toy models
exhibit some very instructive features of perturbation theory and its relation to
non-perturbative phenomena.

3.5.1 The sextic anharmonic oscillator

As the first nontrivial example we want to consider the sextic oscillator, M = 3,

V (x) = x2 + λx6 . (3.113)

In this potential, similar to the quartic anharmonic oscillator, we are interested in
finding the analytic form of the vacuum transition amplitudes 〈n|x̂|0〉. In prac-
tice, for this computation we make use of the perturbative techniques developed
in Section 3.2.1, which can be applied to the present example in a straightforward
way.

By our field theory intuition, we can already note some important differences
to the quartic case. For instance, in addition to the restrictions imposed by the Z2

symmetry of the Hamiltonian, we expect that there is only a subset of states that
can be excited at tree level, i.e. truly without loop corrections. Indeed, these states
are given by the condition n = 4k + 1 for natural numbers k. For simplicity, in the
following we will focus on these states only.

Using the perturbative techniques of Section 3.2.1, we find that, similar to the
quartic case, the amplitudes factorize into a tree-level and higher order part, An =
Atree
n AΣ, where the tree-level amplitude is now given by

Atree
n =

√
n!

2n

(
(n− 3)/4

(n− 1)/4

)(
λ

4

)n−1
4

. (3.114)

By an explicit computation we find that the higher order contribution can in turn
be written as a perturbative expansion in the coupling where the coefficients are
polynomials in n. For instance, the first few terms read

AΣ = 1 + λ

(
1

8
n4 − 7

6
n3 − 3

4
n2 − 233

96
n+

45

32

)
+ λ2

(
1

384
n8 − 1

6
n7 + . . .

)
+ . . . .

(3.115)
Recall that for the quartic anharmonic oscillator we have observed an exact

exponentiation of the perturbative expansion. Intriguingly, in the sextic case we
find a more complicated structure. In fact, the leading terms of the higher order
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contributions in λn4, compared to tree-level perturbation theory,

AΣ ∼ 1 +
1

8
λn4 +

1

384
λ2n8 +

1

46080
λ3n12 +O

(
λ4n16

)
, (3.116)

represent the Taylor series expansion of the hyperbolic cosine function,

AΣ ∼ cosh

(√
λn4

4

)
. (3.117)

This observation, together with the exponentiation for the quartic oscillator, inspires
us to conjecture that the above results is indeed true for the full amplitude to all
orders in perturbation theory. That is, in case of the sextic oscillator we expect

An = Atree
n cosh

(√
F

λ

)
, (3.118)

where F is analogous to the holy grail function we have found for the quartic case.
Note, however, that the precise form of F is different here.

Indeed, the first subleading corrections O
(
λkn4k−1

)
at each order k of the per-

turbative expansion are reproduced by a combination of hyperbolic cosine functions.
Each of these comes with a different argument,

AΣ =
1

4

∑
i,j=±

cosh

(√
Fij
λ

)
. (3.119)

The different arguments read

F±±(ε, n) =
1

4
ε4 ± 17

6
√

6
ε5 − 17

216
ε6 + · · ·+ 1√

n

(
±i
√

17

6
ε4 + . . .

)

+
1

n

(
−7

3
ε4 + . . .

)
+

1

n
3
2

(
±i 283

8
√

102
ε4 + . . .

)
+ . . . ,

(3.120)

where, for convenience, we defined the abbreviation ε =
√
λn. The indices of F

denote the signs of the first and second coefficient in order, i.e. the coefficients of the
terms ε5 and ε4/

√
n, which can be chosen independently of each other. The last sign

in order, i.e. the coefficient of ε4/n3/2 is, however, not independent but is instead
equal to the first one, ε5, in any combination. We have verified this relation up to
order k = 8.

As the sextic anharmonic oscillator now involves hyperbolic cosine functions in-
stead of simple exponentials of the quartic case, the resummation of the perturbative
expansion of the amplitude appears to be much more complicated. In contrast to
the quartic case, where we determined the holy grail function in an 1/n-expansion,
we observe that for the sextic oscillator we need additional terms of the form 1/

√
n

to systematically reconstruct the entire function of F . We furthermore need a sum-
mation over contributions that come with different signs of certain coefficients
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In addition, this structure has phenomenologically important consequences. How-
ever, before discussing these in detail, we want to generalize the above results and
postulate a conjecture on the general form of vacuum transition amplitudes in arbi-
trary potentials. In the general case, the physical implications are even more severe,
as we will discuss in the following section.

3.5.2 Resummation beyond tree-level

All the results we obtained for the sextic oscillator in Section 3.5.1 can be straight-
forwardly generalized to an arbitrary power of the self-interaction term of potential,

V (x) = x2 + λx2M . (3.121)

Defining q = 2(M − 1), we can again use the diagrammatical approach of per-
turbative quantum field theory to argue that there is only a certain subset of final
states that can be reached at tree-level. In general, this set is given by n = qk + 1
for natural numbers k. As we did before, we will only focus on those states in the
following.

Even for the general case, we find a complete factorization of the amplitudes,

An = Atree
n

∑
k

λkPqk(n) , (3.122)

where Pqk(n) denotes a polynomial of degree qk in n. In this case, the tree-level
contribution is given by

Atree
n =

√
n!

2n

(
(n+ 1)/q − 1

(n− 1)/q

)(
λ

4

)n−1
q

. (3.123)

In principle, using the recursive techniques of Section 3.2.1, the perturbative
series representation of the amplitude can be computed to arbitrary order in the
coupling. Doing this to very high order, in line with our results on the quartic
and sextic anharmonic oscillator, where we found the series representations of ex-
ponential and hyperbolic cosine functions, respectively, we observe an even more
interesting pattern in the general case. Noting that the hyperbolic cosine is a linear
combination of two exponential functions, we find indications that for any M the
amplitude is given by

An = Atree
n

1

M − 1

∑
M−1 roots

exp

(
1

Λ
M−1
√
F

)
, (3.124)

where we define Λ = λ1/(M−1). That is, the vacuum transition amplitude can be
written as a tree-level factor times a sum of exponentials over all complex roots of an
analytic function F , that we similarly call holy grail function. Note carefully that this
is not a rigorous result, but we have checked it for different theories, M = 3, 4, 5, 6,
each to leading order in λnq. In this sense (3.124) is only a conjecture.

54



3.5. Generalization to higher monomial potentials

In summary, we find that the vacuum transition amplitudes in a general anhar-
monic oscillator are represented by a linear combination of exponential functions.
This appears to be an immediate extension of the quartic anharmonic oscillator,
where the amplitudes can be written as a single exponential (2.19). We remark,
however, that, even beyond our discussion in Section 3.2.2, the exact exponentia-
tion seems to be a peculiar feature of the quartic case with a single- or symmetric
double-well potential. For instance, in the case of a general, asymmetric double-well
potential, V (x) = x2+µ

√
λx3+λx4, we find indications that an exact exponentiation

only occurs for µ = 0 and µ = 2, i.e. for the single-well or the symmetric double-well
discussed in Section 3.2 and Section 3.3. For arbitrary µ, however, the resummation
seems to involve more complicated linear combinations of exponentials.

Speculatively, the exponentiation, or more precisely the combination of expo-
nential functions, might be ultimately related to the classical energy-momentum
relation, p2(x) = 2 (E − V (x)). Geometrically, this relation can be understood as
an algebraic curve that defines surfaces of constant energy in (complex) phase space.
The shape of the potential then determines the topology of this curve, in particular
its genus. Remarkably, it was recently shown that if the algebraic curve is of genus
one, i.e. an elliptic curve, perturbation theory captures all non-perturbative effects
and vice versa, to all orders in the WKB approach [72]. This is a very explicit
realization of the resurgence idea. In fact, the quartic single-well and the symmetric
double-well potential exactly fall into this class of quantum spectral problems of
genus one, while the general asymmetric double-well potential does not. For exam-
ple, there is a class of sextic and higher monomial potentials, the so-called Chebyshev
potentials, which define elliptic curves of genus one. It would be interesting to see,
if these potentials feature an exact exponentiation that we found for the symmetric
quartic case. We will discuss this in future work [4].

The general form of (3.124) also has some important physical consequences. In
contrast to the quartic anharmonic oscillator, for M ≥ 3 it does not allow for a
decrease of the amplitudes 〈n|x̂|0〉 at high energies, or equivalently, at large n. This
is because, in the complex plane, the M − 1 complex roots of the function F will
generally arrange in a regular polygon with M−1 vertices. Then, as long as M ≥ 3,
there will always be at least one root with a positive real part, thereby dominating
the sum of exponentials (3.124). Note that this is completely independent of the
precise form of the holy grail function F . Therefore, any combination of exponents
or roots will generically lead to exponential growth of the amplitudes for large n.
This will then ultimately lead to a violation of unitarity as n→∞.

In summary, we conclude that, in contrast to the quartic anharmonic oscillator,
a suitable resummation of perturbation theory in higher monomial potentials does
not seem to be sufficient to guarantee the restoration of unitarity in the quantum
mechanical transition amplitudes 〈n|x̂|0〉 as n→∞. In this sense, the quartic case
that we discussed in Section 3.2 and Section 3.3, is special, because the resummation
involves only a single exponential whose exponent can be and indeed is negative,
thereby restoring unitarity at high energies.

Nevertheless, as we are dealing with potentials with a unique minimum, we
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would naively expect standard perturbation theory to work well. That is, a suitable
resummation of the perturbative expansion should be able to reconstruct all physical
observables of the theory, because non-perturbative effects, such as, e.g., instantons
in double-well potentials, should be absent. By our observation, this, however,
does not seem to be the case for theories with M ≥ 3. Let us therefore comment
on possible reasons as well as resolutions to this puzzling problem. However, we
should be keenly aware that the result (3.124) is by no means rigorous, but merely
a conjecture based on the leading-n correction at each order in perturbation theory.
It is well possible that this structure is no longer valid, once subleading corrections
are included, as is, for example, suggested by the sextic case (3.119). Therefore, our
conclusions have to treated with some care.

On the speculative side of things, the apparent breakdown of perturbation theory
in these quantum mechanical examples might be related to the increasing number
of vacua and possible (non-)perturbative trajectories connecting them.

In the path integral formulation of a quantum theory, any correlation function
or transition amplitude will be dominated by the classical trajectories, which, by
definition, minimize the action. When we argued that we do not expect any non-
perturbative configurations to play a role in our quantum mechanical example, we
only considered real trajectories. These trajectories can be associated to the per-
turbative vacuum of the theory. In principle, however, there might also be complex
trajectories that contribute to the path integral (see, e.g., [108]). These, in turn,
can be related to the non-perturbative saddle points of the action, which connect
the different complex vacua (or rather extrema) of the theory. That is, to some
extent, we still seem to be missing non-perturbative contributions in the perturba-
tive expansion in the theory. This is in line with recent discussions on resurgence
and transseries expansions, which relate perturbation theory and non-perturbative
phenomena in a very intricate way (see also our discussion in Chapter 1). For an
overview on these aspects see, e.g., [68, 79].

For the general case, the number of the complex vacua is 2M − 1, which again
describe a polygon with 2(M − 1) vertices10 in the complex plane. Speculatively,
this is also why the quartic case, M = 2, might be special. Here, the polygon
is degenerate, such that the complex trajectories might contribute with opposite
sign, thereby canceling each other11. Such cancellation does not seem to happen
for M ≥ 3. Therefore, to obtain physical results from a perturbative expansion
in these theories, a naive resummation of perturbation theory is not sufficient. In-
stead, all classical trajectories, i.e. real and complex ones, might have to be taken
into account consistently. There might be some accidental cancellations between the
complex trajectories for the case of the quartic anharmonic oscillator. This possibil-
ity certainly merits some further investigation. A promising approach might involve

10Note that we subtracted the perturbative vacuum at the origin here.
11This is also reflected by the fact that the quartic oscillator with a single minimum can be

transformed into the double-well potential by the rotation x→ ix. The vacua are all aligned on a
single axis. In this sense, both theories are similar, but, importantly, the latter admits additional
non-perturbative configurations compared to the single minimum case.
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resurgent transseries expansions [68] or path integral methods of exact perturbation
theory [108]. We will discuss this in detail in future work [4].

3.6 Quantum mechanics versus quantum field

theory

Let us close our discussion on high multiplicity amplitudes in quantum mechanics
with a few remarks on the relation between our results and higher-dimensional
quantum field theory. Here, we closely follow the arguments given in [130].

The quantum mechanical example allowed us to do explicit calculations to high
order in perturbation theory, which gave important insights into the amplitudes
corresponding to processes φ? → φn at high energies. Nevertheless, we should
be aware that quantum field theory in higher dimensions is subject to additional
features and complications.

In the beginning of this chapter we have made the naive identification of quantum
mechanics with quantum field theory in (0+1) dimensions. In general, the canonical
field theory is then defined by the Hamiltonian [103]

H =
1

2
φ̇2 +

m2

2
φ2 +

λ

4
φ4 , (3.125)

together with the commutation relation[
φ, φ̇

]
= i . (3.126)

That is, implicitly, we imposed the correspondence of fields φ(~x, t) ∼ x(t) in (0+1)
dimensions. This field theory describes a single degree of freedom which is the
coherently oscillating field without any spatial dependence. Therefore, in a particle
interaction there is no phase space to integrate over, such that we are left with the
computation of the squared matrix element only. In fact, this is one of the reasons
why the calculation in this toy model is tractable.

Furthermore, as there are no spatial degrees of freedom, there are no weakly
coupled, asymptotic states in the quantum theory and, strictly speaking, hence no
particle scattering. In particle interactions in higher-dimensional quantum field the-
ory, the fields become solutions of the free field equations at early and late times,
t → ±∞, as they are spatially separated from each other (cf. Section 2.1). This,
however, is not possible in quantum mechanics. Energy eigenstates of the theory are
trapped in the potential of the anharmonic oscillator and hence cannot be asymp-
totically free.

In addition, in quantum mechanics it is impossible to distinguish between energy
E and occupation number n. Both are instead related,

E = nm(1 + ε) . (3.127)

Here, the parameter ε depends on the energy level n and is determined by the
specific quantum mechanical model that we consider. That is, unlike in quantum
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field theory, it is not a free parameter in quantum mechanics. In particular, ε is
negative valued, because the energy levels of an anharmonic oscillator with non-
vanishing self-interaction are spaced more densely compared to the harmonic one.
Consequently, transitions E → nm are kinematically not allowed in quantum me-
chanics. In quantum field theory such decays are only disfavored because of the
vanishing phase space at the kinematic threshold. However, they become possible
for arbitrarily small particle momenta in the final state corresponding to a small
positive ε.

In practice, semiclassical techniques for the computation of high multiplicity
amplitudes do not work in quantum mechanics either, as it lacks a meaningful
boundary value problem in (0+1) dimensions. These computations rely on the
nontrivial extremization of singularity surfaces, for which there is no meaningful
zero-dimensional analogue in quantum mechanics. For a detailed discussion of this
issue we refer the reader to the review article [130].

In summary, quantum field theory in higher dimensions provides for much more
structure and complications compared to quantum mechanics. Amongst others, the
most important differences include the nontrivial phase space and the existence of
weakly coupled, asymptotic states in the quantum theory. Nevertheless, our findings
on the quantum mechanical anharmonic oscillator can give important insights into
the features that are shared between both theories, such as the quartic potential or
the presence of a single or multiple degenerate vacua. In particular, as we argue that
advanced computational techniques restore unitarity at high energies, we are in turn
lead to focus efforts to establish the onset of new, most likely non-perturbative, phe-
nomena on those aspects of quantum field theory, that are different from quantum
mechanics.
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4 Conclusion

Scattering experiments have proven extremely useful for our study of the funda-
mental building blocks of nature at the smallest length scales, or, equivalently, at
the high energy frontier. Being physical observables, scattering cross sections im-
mediately bridge the gap between theory and experiment. On the theory side, the
corresponding scattering amplitudes encode the dynamics of all particle interactions
and thus are crucial ingredients of the interacting quantum theory. A very natural
and fundamental assumption of this quantum theory is the conservation of prob-
abilities in scattering processes. Formally, this is imposed by the unitarity of the
scattering matrix. Loosely speaking, this means, that the probability of something
happening in a scattering process should not exceed one. However, there are indica-
tions that scalar quantum field theory in the high energy regime is in conflict with
this fundamental principle.

In this thesis, we studied the consistency of scalar field theories at high energies.
In particular, we considered scattering processes in massive φ4-theory associated to
the production of a large number of bosons by a few initial state particles, i.e. pro-
cesses of the form φ? → φn or φφ → φn for large n. Due to the lack of destruc-
tive interference between different Feynman diagrams, these processes exhibit rapid
growth, n!λn/2, with the number of particles in the final state, rendering the theory
in clash with unitarity constraints as n→∞, independently of the coupling λ. Evi-
dence for factorial growth of these amplitudes is given by perturbative [39,40,43–47]
as well as semiclassical calculations [48–51]. This raises questions about the consis-
tency of the computational techniques, or possibly even about the interpretation of
the underlying quantum field theory.

Applied to the Higgs sector of the Standard Model, the rapidly growing cross
sections provide us with an explicit upper energy scale, possibly within the reach
of future particle colliders, beyond which conventional field theory interpretations
cease to be meaningful [94, 95]. That means, in order to restore unitarity at high
energies, either novel non-perturbative behaviour or new physics phenomena have
to appear. For instance, possible phenomena in the electroweak sector of the Stan-
dard Model might allow for entirely different phenomenology such as a Higgsplosion
mechanism [97].

In this work, we follow a more conservative approach. The calculations of mul-
tiparticle production in scalar field theory that established unitarity violation for
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a large number of bosons mostly relied on perturbative or semiclassical techniques
at leading order. Beyond that, conventional methods become intractable at higher
loop-orders such that the perturbative answer might not be reliable at high ener-
gies. It is possible that the rapid growth of the scattering amplitudes is merely an
artefact of this “incomplete” calculation and could possibly be resolved by obtaining
the exact amplitude without relying on perturbation theory to finite order.

In Chapter 3 we take some initial steps towards this direction. As a simplified, yet
instructive, toy model of scalar φ4-theory we study its quantum mechanical equiva-
lent, the anharmonic oscillator with quartic coupling λ, both with and without spon-
taneous symmetry breaking, respectively. That is, we identify the high multiplicity
scattering amplitudes of the scalar field theory with quantum mechanical transi-
tion amplitudes from the vacuum to highly excited states, 〈n|φ|0〉 ↪→ 〈n|x̂|0〉. This
identification reduces the problem to determining the spectrum of the Schroedinger
operator of the quartic anharmonic oscillator. By means of recursive relations due
to Bender and Wu [103, 104], we construct the wave functions and energy levels to
very high orders in perturbation theory. These are then used to derive perturbative
expressions for the corresponding transition amplitudes.

We find that they take on an exponential form, 〈n|x̂|0〉 ∼ exp (F/λ), where
the exponent F depends on the combination λn only. That is, we provide crucial
evidence for this form conjectured in the field theory counterpart [52–56]. In fact,
it is nontrivial that the perturbative expansion of the amplitude is reproduced by
the exponential function exactly. In order to study the asymptotic behaviour of
perturbation theory in the large n regime, we systematically construct the exponent
F in a 1/n-expansion beyond leading order.

From a phenomenological point of view, the sign of F is crucial. For instance,
we observe that, at tree level, F turns positive beyond some critical value of λn,
indicating an instability of the perturbative expansion. We are therefore interested
in establishing the sign of the exponent in the double scaling limit n → ∞ and
λ→ 0 while keeping λn fixed. In this regime the large-n behaviour of the amplitude
is governed by the tree-level and leading order contribution of the 1/n-expansion of
the exponent F .

For the anharmonic oscillator with a single minimum discussed in Section 3.2, we
observe that a Padé resummation of the series representation of F significantly im-
proves its predictivity for large values of λn. Importantly, we find strong indications
that the holy grail function is negative, F < 0, for any value of λn, thereby avoiding
problems with unitarity and rigorous as well as semiclassical bounds [109,113].

For the anharmonic oscillator with a symmetric double-well potential as pre-
sented in Section 3.3, the situation is more complicated. Indeed, in the standard
perturbative approach we find that F has a series representation with only positive,
growing coefficients, such that a Borel resummation may suffer from ambiguities.
Therefore, we turn to more powerful methods and make use of exact perturbation
theory (EPT) [108, 115]. This technique was recently put forward for the pertur-
bative study of quantum mechanical and field theoretical models that are governed
by non-perturbative effects. In this approach, we are able to obtain the holy grail
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function associated to vacuum transitions in the symmetric double-well potential.
Using different schemes to resum the exact perturbative series (in the sense of EPT),
we confirm that, similar to the quartic case with a single minimum, F is negative
everywhere in the double scaling limit. Therefore, also in the double-well case, the
vacuum transition amplitudes are in line with fundamental unitarity constraints.

We conclude that suitably resummed perturbation theory seems to prevent a
rapid growth of quantum mechanical amplitudes 〈n|x̂|0〉 in the anharmonic oscillator
both in the symmetric and in the broken phase.

Although our results are obtained for its quantum mechanical equivalent, they
still suggest a guideline for resolving the factorial growth of multiparticle amplitudes
in scalar field theory, including the case of the Standard Model Higgs. However, note
carefully that φ4-theory, being a higher-dimensional quantum field theory, is subject
to additional complications. Most importantly, these include a nontrivial phase
space and the presence of weakly coupled, asymptotic states. Both do not exist in
our quantum mechanical setup.

From a theoretical point of view, as our calculational techniques appear to re-
store unitarity in the quantum mechanical amplitudes, it would be very interesting
to go beyond this simplified toy model. It is tempting to apply similar methods
to systems that are closer to quantum field theory in higher dimensions, for in-
stance, by incorporating more of the distinguishing features of a quantum field theory
into our approach. For instance, in contrast to the discrete spectrum of the quan-
tum mechanical anharmonic oscillator, quantum field theory exhibits a continuous
spectrum. Furthermore, since the exponentiation of the multiparticle amplitudes,
A ∼ exp (F/λ), intrinsically inherits a form of non-perturbative nature in the limit
λ→ 0, there appears to be a very deep relation between the resummation of pertur-
bation theory and non-perturbative phenomena. Supported by the application of
exact perturbation theory to the symmetric double-well potential, apparently, the
perturbative ansatz intrinsically captures its non-perturbative counterpart. This
suggests that both cannot rigorously be distinguished but are essentially the same
instead. Moreover, as we find hints for unitarity violation in the resummation of
perturbation theory, our results presented in Section 3.5 indicate that perturbative
expansions can be unphysical even in potentials with a single minimum. However,
in these potentials, one would naively expect perturbation theory to work well due
to the lack of instantonic configurations associated to degenerate vacua. This hints
at missing non-perturbative contributions, which, however, might be recovered in
resurgence theory and transseries expansions, see, e.g., [68, 79].

Perhaps, as a next step, a promising testbed for the combination of both ideas
would be the quantum mechanical Mathieu system, V (x) ∼ cos2(x), which also
exhibits a continuous spectrum, see, e.g., [157]. Due to its band structure and the
infinite number of classically degenerate vacua, important results on the connection
between perturbation theory and the different instanton sectors of this theory could
already be obtained by means of resurgence theory [69,70].

One could then proceed by investigating low-dimensional quantum field theories,
where dualities and integrable structures might be beneficial, see, e.g., [158,159]. If
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a restoration of unitarity occurs, it would be very interesting to determine its phe-
nomenological consequences. These could include, e.g., deviations from perturbative
behaviour in analogue systems or the appearance of instantonic field configurations,
that could be observed at collider experiments, see, e.g., [36,37,160–165]. Perhaps, it
might even be possible that high energy scattering amplitudes might self-unitarize by
the production of extended, classical objects. These so-called classicalons play the
analogous role of black holes in non-gravitational theories [166]. The above aspects
go beyond the scope of high multiplicity amplitudes and would have important impli-
cations on our general knowledge on quantum mechanics and quantum field theory.
For example, they could deepen our understanding of non-perturbative effects in the
path integral of a generic quantum theory or even provide a non-perturbative defi-
nition of quantum field theory in the continuum, which is computationally tractable
at the same time.

From a phenomenological point of view, unitarity might also be restored by addi-
tional, possibly new, physics phenomena. For instance, in Yang-Mills theory gauge
symmetry and on-shell conditions lead to diagrammatic cancellations in the com-
putation of scattering amplitudes (see, e.g., [91]), such that, in contrast to scalars,
gluons do not seem to violate unitarity. Following this result, one might well ask,
what are the distinct features of a quantum field theory in order to exhibit scat-
tering amplitudes that violate unitarity at high energies, i.e. how is the problem
manifest in the landscape of quantum field theories. In this bottom-up approach,
highly symmetric quantum field theories, where exact computations are possible,
could potentially serve as a laboratory.

On the more speculative side, one possible new physics phenomenon could come
in form of the recently proposed Higgsplosion mechanism [97]. If realized in na-
ture, this mechanism would have remarkable consequences and gives access to yet
unexplored territory of physics beyond the SM. However, so far it is unclear if Hig-
gsplosion can be consistently realized in a scalar quantum field theory. Currently,
there is an active discussion on the nature of the underlying quantum field the-
ory, in particular, on aspects of localizability [135–137]. In fact, a theory featuring
Higgsplosion requires a Källén-Lehmann spectral density that grows exponentially
with energy. Naively, this seems to be in conflict with the common requirement
of a quantum field theory to be local, which would only allow the spectral density
to grow polynomially. However, due to works by Jaffe [167], there is a weaker no-
tion of locality in (constructive) quantum field theory. In fact, one can rigorously
distinguish between strictly localizable, quasi-localizable and non-localizable field
theories, all of which can exhibit exponentially growing spectral densities at high
energies. The different classes are determined by the power scaling of its exponent
with energy [168]. As the Higgsplosion mechanism does not make a prediction for
the exponent of the sprectral density, it would be interesting to address the ques-
tion to which of the above classes a quantum field theory featuring Higgsplosion
belongs, i.e. if Higgsplosion still renders a scalar field theory local and hence in line
with conventional quantum field theories or if such a theory is non-localizable and
hence exhibits non-localities. The possible phenomenological consequences of these
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theories would be remarkable. For instance, if a higgsplosive theory turns out to be
non-localizable, it might cease to respect CPT symmetry [169, 170]. Consequently,
a theory that features Higgsplosion consistently would give access to intriguing ob-
servable consequences that can possibly be tested in experiment.

In summary, calculations of scattering amplitudes associated to multiparticle
production in scalar field theories seem to reveal an inherent energy scale beyond
which non-perturbative behaviour or even new physics phenomena have to set in. We
shed light on the high energy behaviour by studying the high multiplicity scattering
amplitudes in the quantum mechanical analogue of φ4-theory. Using advanced per-
turbative resummation techniques, we provide evidence for their non-perturbative
behaviour at high energies, An ∼ exp (F/λ). The exponential form is nontrivial
and at least in quantum mechanics we show that the exponent is negative, thereby
demonstrating a nontrivial restoration of unitarity at high energies by suitably re-
summed perturbation theory. There are many promising research possibilities and
directions to explore in view of and even beyond the approach described in this
thesis. Possible implications include the interplay between perturbation theory and
non-perturbative phenomena or observable consequences of a restoration of unitarity
that is either non-perturbative or that is due to the localizability properties of the
underlying quantum field theory. These go far beyond the scope of the calculation
of scattering amplitudes at high multiplicities and will likely deepen our current
understanding of the high energy behaviour of scalar quantum field theories.
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A Resummation of Power Series

A key ingredient in order to make sense of perturbation theory is the resummation of
divergent power series expansions. In this chapter we want to give a brief overview
of different resummation techniques.

In practice, often only a finite number of terms of a power series expansion is
known. This is why we sometimes have to deal with approximations of a (divergent)
series rather than the formal analytic continuation. In the following, let us consider
the formal power series

Z(g) =
∞∑
k=0

zkg
k . (A.1)

A.1 Padé approximation

One of the most widely used techniques to resum divergent series expansions where
only a finite number of terms is available is Padé approximation [171]. It tries to
approximate Z(g) by a rational function of two polynomials PM(g) and QN(g) of
degree M and N , respectively, such that this rational function reproduces the first
few coefficients of Z,

PM +QNZ(g) = O
(
gM+N+1

)
. (A.2)

That is, the Padé approximant Z[M,N ](g) of order [M,N ] is defined by the condition

PM +QNZ[M,N ](g) = 0 . (A.3)

Typically the diagonal sequence of approximants, Z[N,N ], features the best con-
vergence properties to reconstruct Z,

Z[N,N ](g)→ Z(g) (N →∞) . (A.4)

In particular, if the coefficients of Z(g) have an oscillating sign, the true value of Z(g)
will normally1 lie in between neighbouring Padé approximants, Z[N,N ] and Z[N,N+1].

1Mathematically, a sufficient condition is that the approximated function Z(g) is a Stieltjes
function (see, e.g., [172]). However, this cannot be rigorously deduced from a finite number of
series coefficients.
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A.2 Borel resummation

A common resummation technique if the large order asymptotics of the series coef-
ficients are known is Borel resummation [173]. The idea is to cancel any (possibly
factorial) growth of the coefficients zk that can cause the series to be divergent by
considering the Borel transform of Z(g),

BZ(g) =
∞∑
k=0

zk
k!
gk , (A.5)

therefore providing much better chances for convergence of BZ(g) compared to Z(g).
Inspired by the integral formula for the factorial function,

n! =

∫ ∞
0

dt tne−t , (A.6)

the factorial factor can be recovered by a Laplace transform,

Z(g) =

∫ ∞
0

dt e−tBZ(gt) . (A.7)

However, in practice, the large order asymptotics of the coefficients zk might not
be known analytically. Therefore, for all practical purposes, Borel-Padé approxima-
tion is typically used to make sense of Z(g). Instead of explicitly computing the
Borel sum BZ(g), it tries to approximate it using Padé approximation (cf. previous
section). The corresponding Padé approximants BZ[M,N ](g) can then be Laplace
transformed. In particular, the diagonal Padé sequence will then converge to the
exact result, ∫ ∞

0

dt e−tBZ[N,N ](gt)→ Z(g) (N →∞) . (A.8)

In this sense, Borel-Padé approximation is literally the combination of Padé
approximation and Borel resummation.

A.3 Shafer approximation

Naively, the Shafer approximation [174] can be viewed as the quadratic extension
of Padé approximation. That is, it tries to approximate Z(g) by means of three
polynomials PL(g), QM(g) and RN(g) of degree L,M and N , respectively, such that

PL +QMZ(g) +RNZ
2(g) = O

(
xL+M+N+2

)
. (A.9)

The Shafer approximant Z[L,M,N ] of order [L,M,N ] is then defined by the quadratic
equation

PL +QMZ[L,M,N ](g) +RNZ
2
[L,M,N ](g) = 0 . (A.10)

Similar to the Padé approximants, the diagonal Shafer approximants Z[N,N,N ]

typically features the best convergence properties to Z,

Z[N,N,N ](g)→ Z(g) (N →∞) . (A.11)
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A.4 Meijer G approximation

The recently proposed Meijer G approximation scheme [175] is closely related to
the idea of Borel-Padé approximation. While the latter reconstructs the Borel sum
BZ(g) by means of Padé approximation, the Meijer G approximation tries to esti-
mate the large order asymptotics of the Borel transform by representing it through
generalized hypergeometric functions,

BZ(g) ∼ N+1FN (x,y; g) . (A.12)

Here, the argument vectors x and y are defined by singular points of the Padé
approximants of successive coefficient ratios of BZ(g). Then the Laplace transform
of the Borel sum can be performed analytically and yields a Meijer G function. For
further details we refer the reader to the original work [175].
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B Exact Perturbation Theory and
Choice of Auxiliary Potentials

In general, the auxiliary potential,

V̂ (x;λ, λ0) = V0(x;λ, λ0) + λV1(x;λ, λ0) , (B.1)

used in exact perturbation theory has to satisfy only very requirements. These are,
apart from recovering the original potential V (x;λ) when the deformation is lifted,
λ0 = λ,

V̂ (x;λ, λ) = V (x;λ) , (B.2)

that the potential V0 has to admit bound states and both Vi have to be classical,
i.e. their perturbative expansion in λ coincides with the expansion in ~.

In particular, this means that the choice of V̂ is not unique and we are left with
a plethora of possibilities to construct the auxiliary potential. It is obvious that
the physical result after removing the potential deformation must be independent
of the choice of V0 and V1. Still, the particular choice of deformation can affect
the convergence properties of the perturbative expansion. In fact, different choices
might be more or less useful for different computational tasks. In the following we
aim to discuss different choices of the potentials V0 and V1.

In line with the example we presented in Section 3.3 we focus on the auxiliary
mass term v2. Let us discuss the most simple case of a constant mass, v2(λ0) = v2,
corresponding to the potentials

V0(x;λ, λ0) = v2x
2 + λx4 (B.3)

and

V1(x;λ, λ0) = −v2 + 1

λ0

x2 . (B.4)

In addition, the potential V0 has to admit a perturbation theory that is Borel re-
summable to the exact result. Therefore, we require v2 > 0. Altogether, we deal
with the auxiliary potential

V̂ (x;λ, λ0) =

(
v2 −

λ

λ0

(v2 + 1)

)
x2 + λx4 . (B.5)
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Figure B.1: Sign of each coefficient of F̂0(ε, ε0) =
∑

k F̂0,k(ε0)εk for different values
of ε0 shown on the vertical axes. Blue dots denote a positive while red dots denote
a negative sign, respectively. The left panel corresponds to v2 = 1 whereas the right
panel is for v2 = 1/2. All input parameters are normalized to the mass, m2 = 1.
Note the different scales for ε0.

The effective dimensionless1 coupling of the theory with potential V0 is λ/v
3/2
2 . This

is why different choices of v2 can affect the converge properties of perturbative
expansions in that theory. Note that the choice v2 = 1 corresponds to the simple
example discussed in Section 3.3. We now want to move away from this point and
consider the two regimes v2 � 1 and v2 � 1.

In the first case, v2 � 1, already the theory given by V0 is strongly coupled, as
the effective coupling of this theory is λ/v

3/2
2 . That is, even at small λ we are trying

to do a perturbative expansion that is not well-defined to begin with.
In the second case, v2 � 1, perturbation theory for V0 naively should work well,

because the effective coupling is small. However, at the same time V1 is large in this
case, indicating potential issues. We will see momentarily that this is indeed the
case.

In general, according to exact perturbation theory, the perturbative expansion of
F has to be Borel summable at fixed values of both v2 and λ0. An alternating sign at
high orders (i.e. up to a finite number of exceptions) typically indicates well-behaved
Borel summability. In our example, this criterion is problematic, as by construction
we only know a finite number of terms of the perturbative series of F .

In Fig. B.1 we illustrate the sign of the k-th coefficient of F̂0(ε, ε0) =
∑

k F̂0,k(ε0)εk

for various values of ε0 and two values of v2. We can see that, for v2 = 1, the series
is only fully alternating for ε0 > 1, indicating a good convergence with the first few
approximants for ε > 1 after removing the deformation ε0 = ε. In addition, this
alternating sign pattern is preserved for smaller values of ε0 when lowering the value
of v2. However, as argued above, in this case the effective coupling is larger, such
that we need more terms of the series for good convergence (despite the alternating
signs).

1Note, again, that we use the common quantum field theoretical conventions.
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Unfortunately, increasing v2 can turn out problematic, too. In this case the alter-
nating sign pattern only appears for large values of ε0. Even though the alternating
series is eventually restored at high orders in perturbation theory, approximations
based on the low order coefficients clearly cannot capture this and behave as if the
theory were not Borel summable. In this sense such choice of v2 is expected to
exhibit worse convergence properties.

In summary, we note that the choice v2 � 1 is problematic because we try to
do perturbation theory in a strongly coupled theory, while v2 � 1 suffers from an
apparent absence of Borel summability. Therefore, for a reasonable range of ε the
choice v2 ' O(1) seems suitable. An optimal choice of v2 in turn will depend on the
desired range of ε.
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C Transition Amplitudes
Involving Quadratic Position
Operators

The simplest example of transitions amplitudes involving local operators of higher
powers is the quadratic one, 〈n|x̂2|m〉. Because of the Z2 symmetry of the theory, the
states |n〉 and |m〉 have to be of the same parity in order to obtain a non-vanishing
result. Therefore, we can distinguish between the two cases of even and odd parity.
First, let us consider the case of n and m odd.

As already pointed out in the main text, we want to reduce the power of the
local operator by insertion of the identity operator,

〈n|x̂2|m〉 =
∞∑
l=0

〈n|x̂|l〉 〈l|x̂|m〉 , (C.1)

where we only have non-vanishing contributions for even l. That is, we have traded
one power of the operator for an infinite sum. The latter can then be split into three
different contributions (depending on l). Using the nontrivial result (3.92), we can
therefore write

〈n|x̂2|m〉 ∼ 〈n|x̂|0〉 〈m|x̂|0〉
m∑
l=0

m+ 1

2

1

〈l + 1|x̂|0〉2

+

√
m+ 1

2

〈n|x̂|0〉
〈m+ 1|x̂|1〉

n∑
l=m

√
l + 1

2

〈l|x̂|1〉
〈l + 1|x̂|0〉

+

√
n+ 1

2

√
m+ 1

2

1

〈n+ 1|x̂|1〉
1

〈m+ 1|x̂2|1〉

∞∑
l=n

〈l|x̂|1〉2 ,

(C.2)

where each sum only takes even l into account.
We are only interested in the large n asymptotics of the amplitude 〈n|x̂2|m〉.

Hence, it is sufficient to determine the dominant of the three contributions for large
n. Let us discuss them separately.

(i) The large n behavior of the first contribution,

S1 = 〈n|x̂|0〉 〈m|x̂|0〉
m∑
l=0

m+ 1

2

1

〈l + 1|x̂|0〉2
, (C.3)
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is straightforward to determine, as the sum does not involve any terms that
depend on n. That is, the leading terms of S1 behave as

S1 ∼ 〈n|x̂|0〉 . (C.4)

(ii) In contrast to (i) the second contribution,

S2 =

√
m+ 1

2

〈n|x̂|0〉
〈m+ 1|x̂|1〉

n∑
l=m

√
l + 1

2

〈l|x̂|1〉
〈l + 1|x̂|0〉

, (C.5)

involves n both explicitly and implicitly as a boundary term of the summation.
However, using 〈l|x̂|1〉 / 〈l + 1|x̂|0〉 ∼ O(1), we can estimate the parametric
dependence of the sum on n. By going to the continuum limit we therefore
evaluate

n∑
l=m

√
l + 1

2
=

∫ n
2

m
2

dl

√
l +

1

2
=

(n+ 1)
3
2 − (m+ 1)

3
2

3
√

2
, (C.6)

where we used that the summation contains only terms with even l. That is,
for large n, S2 parametrically behaves as

S2 ∼
(

(n+ 1)
3
2 − (m+ 1)

3
2

)
〈n|x̂|0〉 . (C.7)

(iii) The remaining contribution,

S3 =

√
n+ 1

2

√
m+ 1

2

1

〈n+ 1|x̂|1〉
1

〈m+ 1|x̂2|1〉

∞∑
l=n

〈l|x̂|1〉2 , (C.8)

can be evaluated in a similar way like S2. This time the summation in addition
involves the a priori unknown amplitudes 〈l|x̂|1〉. However, in Section 3.2.2
we found that these should parametrically be of exponential form,

〈l|x̂|0, 1〉 ∼ e−cl , (C.9)

with c > 0. With this ansatz the sum can again be rewritten as an integral,
such that we obtain

∞∑
l=n

〈l|x̂|1〉2 ∼ e−2cl ∼ 〈n|x̂|0〉2 . (C.10)

Thus, we conclude that for large n the third contribution behaves as

S3 ∼
√
n+ 1

2
〈n+ 1|x̂|1〉 . (C.11)
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In summary, comparing all three different contributions, we find that, for large
n, the dominant contribution to the amplitude 〈n|x̂2|m〉 is given by S2. Therefore,
we conclude

〈n|x̂2|m〉 ∼ (n+ 1)
3
2 − (m+ 1)

3
2

3
√

2

√
m+ 1

2

〈n|x̂|0〉
〈m+ 1|x̂|1〉

, (C.12)

for n and m odd and n > m. Similarly, the same computation can be carried out for
n and m even. Here, the low lying states are exchanged because of parity symmetry,
such that the final result reads

〈n|x̂2|m〉 ∼ (n+ 1)
3
2 − (m+ 1)

3
2

3
√

2

√
m+ 1

2

〈n|x̂|1〉
〈m+ 1|x̂|0〉

. (C.13)
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[3] G. Alonso-Álvarez, J. Gehrlein, J. Jaeckel, and S. Schenk, “Very Light
Asymmetric Dark Matter,” arXiv:1906.00969 [hep-ph].

[4] F. Baume, J. Jaeckel, and S. Schenk in preparation .

[5] S. L. Glashow, “Partial Symmetries of Weak Interactions,” Nucl. Phys. 22
(1961) 579–588.

[6] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19 (1967) 1264–1266.

[7] A. Salam, “Weak and Electromagnetic Interactions,” Conf. Proc. C680519
(1968) 367–377.

[8] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS detector at the
LHC,” Phys. Lett. B716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[9] CMS Collaboration, S. Chatrchyan et al., “Observation of a New Boson at a
Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B716
(2012) 30–61, arXiv:1207.7235 [hep-ex].

[10] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Observation
of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett.
116 no. 6, (2016) 061102, arXiv:1602.03837 [gr-qc].

[11] B. W. Lee, C. Quigg, and H. B. Thacker, “The Strength of Weak
Interactions at Very High-Energies and the Higgs Boson Mass,” Phys. Rev.
Lett. 38 (1977) 883–885.

79

http://dx.doi.org/10.1103/PhysRevD.98.096007
http://arxiv.org/abs/1806.01857
http://dx.doi.org/10.1103/PhysRevD.99.056010
http://dx.doi.org/10.1103/PhysRevD.99.056010
http://arxiv.org/abs/1811.12116
http://arxiv.org/abs/1906.00969
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1103/PhysRevLett.38.883
http://dx.doi.org/10.1103/PhysRevLett.38.883


References

[12] B. W. Lee, C. Quigg, and H. B. Thacker, “Weak Interactions at Very
High-Energies: The Role of the Higgs Boson Mass,” Phys. Rev. D16 (1977)
1519.

[13] M. P. Bronstein, “Kvantovanie gravitatsionnykh voln,” Zh. Eksp. Theor. Fiz
6 (1936) 195–236.

[14] M. P. Bronstein, “Quantentheorie schwacher gravitationsfelder,” Phys. Z.
Sowjetunion 9 no. 2–3, (1936) 140–157.

[15] J. A. Wheeler, “Geons,” Phys. Rev. 97 (1955) 511–536.

[16] Y. Nambu and G. Jona-Lasinio, “Dynamical Model of Elementary Particles
Based on an Analogy with Superconductivity. 1.,” Phys. Rev. 122 (1961)
345–358. [,127(1961)].

[17] J. Goldstone, “Field Theories with Superconductor Solutions,” Nuovo Cim.
19 (1961) 154–164.

[18] J. Goldstone, A. Salam, and S. Weinberg, “Broken Symmetries,” Phys. Rev.
127 (1962) 965–970.

[19] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys.
Lett. 12 (1964) 132–133.

[20] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys.
Rev. Lett. 13 (1964) 508–509. [,160(1964)].

[21] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector
Mesons,” Phys. Rev. Lett. 13 (1964) 321–323. [,157(1964)].

[22] I. V. Krive and A. D. Linde, “On the Vacuum Stability Problem in Gauge
Theories,” Nucl. Phys. B117 (1976) 265–268.

[23] N. V. Krasnikov, “Restriction of the Fermion Mass in Gauge Theories of
Weak and Electromagnetic Interactions,” Yad. Fiz. 28 (1978) 549–551.

[24] P. Q. Hung, “Vacuum Instability and New Constraints on Fermion Masses,”
Phys. Rev. Lett. 42 (1979) 873.

[25] H. D. Politzer and S. Wolfram, “Bounds on Particle Masses in the
Weinberg-Salam Model,” Phys. Lett. 82B (1979) 242–246. [Erratum: Phys.
Lett.83B,421(1979)].

[26] A. D. Linde, “Vacuum Instability, Cosmology and Constraints on Particle
Masses in the Weinberg-Salam Model,” Phys. Lett. 92B (1980) 119–121.

80

http://dx.doi.org/10.1103/PhysRevD.16.1519
http://dx.doi.org/10.1103/PhysRevD.16.1519
http://dx.doi.org/10.1103/PhysRev.97.511
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1007/BF02812722
http://dx.doi.org/10.1007/BF02812722
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1016/0550-3213(76)90573-3
http://dx.doi.org/10.1103/PhysRevLett.42.873
http://dx.doi.org/10.1016/0370-2693(79)90746-9
http://dx.doi.org/10.1016/0370-2693(80)90318-4


References

[27] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice,
G. Isidori, and A. Strumia, “Higgs mass and vacuum stability in the
Standard Model at NNLO,” JHEP 08 (2012) 098, arXiv:1205.6497
[hep-ph].

[28] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio,
and A. Strumia, “Investigating the near-criticality of the Higgs boson,”
JHEP 12 (2013) 089, arXiv:1307.3536 [hep-ph].

[29] J. S. Bell and R. Jackiw, “A PCAC puzzle: π0 → γγ in the σ model,” Nuovo
Cim. A60 (1969) 47–61.

[30] S. L. Adler, “Axial vector vertex in spinor electrodynamics,” Phys. Rev. 177
(1969) 2426–2438. [,241(1969)].

[31] G. ’t Hooft, “Symmetry Breaking Through Bell-Jackiw Anomalies,” Phys.
Rev. Lett. 37 (1976) 8–11. [,226(1976)].

[32] R. F. Dashen, B. Hasslacher, and A. Neveu, “Nonperturbative Methods and
Extended Hadron Models in Field Theory. 3. Four-Dimensional Nonabelian
Models,” Phys. Rev. D10 (1974) 4138.

[33] F. R. Klinkhamer and N. S. Manton, “A Saddle Point Solution in the
Weinberg-Salam Theory,” Phys. Rev. D30 (1984) 2212.

[34] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin,
“Pseudoparticle Solutions of the Yang-Mills Equations,” Phys. Lett. B59
(1975) 85–87. [,350(1975)].

[35] G. ’t Hooft, “Computation of the Quantum Effects Due to a
Four-Dimensional Pseudoparticle,” Phys. Rev. D14 (1976) 3432–3450.
[,70(1976)].

[36] A. Ringwald, “High-Energy Breakdown of Perturbation Theory in the
Electroweak Instanton Sector,” Nucl. Phys. B330 (1990) 1–18.

[37] O. Espinosa, “High-Energy Behavior of Baryon and Lepton Number
Violating Scattering Amplitudes and Breakdown of Unitarity in the
Standard Model,” Nucl. Phys. B343 (1990) 310–340.

[38] L. D. McLerran, A. I. Vainshtein, and M. B. Voloshin, “Electroweak
Interactions Become Strong at Energy Above Approximately 10-TeV,” Phys.
Rev. D42 (1990) 171–179.

[39] J. M. Cornwall, “On the High-energy Behavior of Weakly Coupled Gauge
Theories,” Phys. Lett. B243 (1990) 271–278.

[40] H. Goldberg, “Breakdown of perturbation theory at tree level in theories
with scalars,” Phys. Lett. B246 (1990) 445–450.

81

http://dx.doi.org/10.1007/JHEP08(2012)098
http://arxiv.org/abs/1205.6497
http://arxiv.org/abs/1205.6497
http://dx.doi.org/10.1007/JHEP12(2013)089
http://arxiv.org/abs/1307.3536
http://dx.doi.org/10.1007/BF02823296
http://dx.doi.org/10.1007/BF02823296
http://dx.doi.org/10.1103/PhysRev.177.2426
http://dx.doi.org/10.1103/PhysRev.177.2426
http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1103/PhysRevD.10.4138
http://dx.doi.org/10.1103/PhysRevD.30.2212
http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1103/PhysRevD.18.2199.3, 10.1103/PhysRevD.14.3432
http://dx.doi.org/10.1016/0550-3213(90)90300-3
http://dx.doi.org/10.1016/0550-3213(90)90473-Q
http://dx.doi.org/10.1103/PhysRevD.42.171
http://dx.doi.org/10.1103/PhysRevD.42.171
http://dx.doi.org/10.1016/0370-2693(90)90850-6
http://dx.doi.org/10.1016/0370-2693(90)90628-J


References

[41] C. A. Hurst, “The Enumeration of Graphs in the Feynman-Dyson
Technique,” Proc. Roy. Soc. Lond. A214 (1952) 44.

[42] C. M. Bender and T. T. Wu, “Statistical Analysis of Feynman Diagrams,”
Phys. Rev. Lett. 37 (1976) 117–120.

[43] L. S. Brown, “Summing tree graphs at threshold,” Phys. Rev. D46 (1992)
R4125–R4127, arXiv:hep-ph/9209203 [hep-ph].

[44] M. B. Voloshin, “Multiparticle amplitudes at zero energy and momentum in
scalar theory,” Nucl. Phys. B383 (1992) 233–248.

[45] E. N. Argyres, R. H. P. Kleiss, and C. G. Papadopoulos, “Amplitude
estimates for multi - Higgs production at high-energies,” Nucl. Phys. B391
(1993) 42–56.

[46] B. H. Smith, “Properties of perturbative multiparticle amplitudes in phi**k
and O(N) theories,” Phys. Rev. D47 (1993) 3521–3524,
arXiv:hep-ph/9211238 [hep-ph].

[47] B. H. Smith, “Summing one loop graphs in a theory with broken symmetry,”
Phys. Rev. D47 (1993) 3518–3520, arXiv:hep-ph/9209287 [hep-ph].

[48] S. Yu. Khlebnikov, “Semiclassical approach to multiparticle production,”
Phys. Lett. B282 (1992) 459–465.

[49] D. T. Son, “Semiclassical approach for multiparticle production in scalar
theories,” Nucl. Phys. B477 (1996) 378–406, arXiv:hep-ph/9505338
[hep-ph].

[50] V. V. Khoze, “Multiparticle production in the large λn limit: realising
Higgsplosion in a scalar QFT,” JHEP 06 (2017) 148, arXiv:1705.04365
[hep-ph].

[51] V. V. Khoze, “Semiclassical computation of quantum effects in multiparticle
production at large lambda n,” arXiv:1806.05648 [hep-ph].

[52] M. B. Voloshin, “Summing one loop graphs at multiparticle threshold,”
Phys. Rev. D47 (1993) R357–R361, arXiv:hep-ph/9209240 [hep-ph].

[53] M. V. Libanov, V. A. Rubakov, D. T. Son, and S. V. Troitsky,
“Exponentiation of multiparticle amplitudes in scalar theories,” Phys. Rev.
D50 (1994) 7553–7569, arXiv:hep-ph/9407381 [hep-ph].

[54] M. V. Libanov, D. T. Son, and S. V. Troitsky, “Exponentiation of
multiparticle amplitudes in scalar theories. 2. Universality of the exponent,”
Phys. Rev. D52 (1995) 3679–3687, arXiv:hep-ph/9503412 [hep-ph].

82

http://dx.doi.org/10.1098/rspa.1952.0149
http://dx.doi.org/10.1103/PhysRevLett.37.117
http://dx.doi.org/10.1103/PhysRevD.46.R4125
http://dx.doi.org/10.1103/PhysRevD.46.R4125
http://arxiv.org/abs/hep-ph/9209203
http://dx.doi.org/10.1016/0550-3213(92)90678-5
http://dx.doi.org/10.1016/0550-3213(93)90140-K
http://dx.doi.org/10.1016/0550-3213(93)90140-K
http://dx.doi.org/10.1103/PhysRevD.47.3521
http://arxiv.org/abs/hep-ph/9211238
http://dx.doi.org/10.1103/PhysRevD.47.3518
http://arxiv.org/abs/hep-ph/9209287
http://dx.doi.org/10.1016/0370-2693(92)90669-U
http://dx.doi.org/10.1016/0550-3213(96)00386-0
http://arxiv.org/abs/hep-ph/9505338
http://arxiv.org/abs/hep-ph/9505338
http://dx.doi.org/10.1007/JHEP06(2017)148
http://arxiv.org/abs/1705.04365
http://arxiv.org/abs/1705.04365
http://arxiv.org/abs/1806.05648
http://dx.doi.org/10.1103/PhysRevD.47.R357
http://arxiv.org/abs/hep-ph/9209240
http://dx.doi.org/10.1103/PhysRevD.50.7553
http://dx.doi.org/10.1103/PhysRevD.50.7553
http://arxiv.org/abs/hep-ph/9407381
http://dx.doi.org/10.1103/PhysRevD.52.3679
http://arxiv.org/abs/hep-ph/9503412


References

[55] F. L. Bezrukov, M. V. Libanov, D. T. Son, and S. V. Troitsky, “Singular
classical solutions and tree multiparticle cross-sections in scalar theories,” in
High-energy physics and quantum field theory. Proceedings, 10th
International Workshop, Zvenigorod, Russia, September 20-26, 1995,
pp. 228–238. 1995. arXiv:hep-ph/9512342 [hep-ph].

[56] M. V. Libanov, “Multiparticle threshold amplitudes exponentiate in
arbitrary scalar theories,” Mod. Phys. Lett. A11 (1996) 2539–2546,
arXiv:hep-th/9610036 [hep-th].

[57] S. G. Naculich, H. Nastase, and H. J. Schnitzer, “Two-loop graviton
scattering relation and IR behavior in N=8 supergravity,” Nucl. Phys. B805
(2008) 40–58, arXiv:0805.2347 [hep-th].

[58] A. Brandhuber, P. Heslop, A. Nasti, B. Spence, and G. Travaglini,
“Four-point Amplitudes in N=8 Supergravity and Wilson Loops,” Nucl.
Phys. B807 (2009) 290–314, arXiv:0805.2763 [hep-th].

[59] C. Boucher-Veronneau and L. J. Dixon, “N ≥ 4 Supergravity Amplitudes
from Gauge Theory at Two Loops,” JHEP 12 (2011) 046, arXiv:1110.1132
[hep-th].

[60] P. Di Vecchia, A. Luna, S. G. Naculich, R. Russo, G. Veneziano, and C. D.
White, “A tale of two exponentiations in N = 8 supergravity,”
arXiv:1908.05603 [hep-th].
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1999.

[66] U. D. Jentschura and J. Zinn-Justin, “Instantons in quantum mechanics and
resurgent expansions,” Phys. Lett. B596 (2004) 138–144,
arXiv:hep-ph/0405279 [hep-ph].

83

http://arxiv.org/abs/hep-ph/9512342
http://dx.doi.org/10.1142/S021773239600254X
http://arxiv.org/abs/hep-th/9610036
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.001
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.001
http://arxiv.org/abs/0805.2347
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.010
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.010
http://arxiv.org/abs/0805.2763
http://dx.doi.org/10.1007/JHEP12(2011)046
http://arxiv.org/abs/1110.1132
http://arxiv.org/abs/1110.1132
http://arxiv.org/abs/1908.05603
http://dx.doi.org/10.1016/0370-1573(81)90016-8
http://dx.doi.org/10.1016/0370-1573(81)90016-8
http://dx.doi.org/10.1016/j.physletb.2004.06.077
http://arxiv.org/abs/hep-ph/0405279


References

[67] G. V. Dunne and M. Unsal, “Generating nonperturbative physics from
perturbation theory,” Phys. Rev. D89 no. 4, (2014) 041701,
arXiv:1306.4405 [hep-th].

[68] G. V. Dunne and M. Unsal, “Uniform WKB, Multi-instantons, and
Resurgent Trans-Series,” Phys. Rev. D89 no. 10, (2014) 105009,
arXiv:1401.5202 [hep-th].

[69] G. Basar and G. V. Dunne, “Resurgence and the Nekrasov-Shatashvili limit:
connecting weak and strong coupling in the Mathieu and Lamé systems,”
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