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Abstract

This thesis reports the amplitude analysis of Λ0
b → Λ+

c D0K− decays using data collected by the LHCb
experiment from proton-proton collisions, corresponding to an integrated luminosity of 9.1 fb−1. A new
amplitude fitter has been developed in the context of this analysis, which exploits novel computing
concepts and software frameworks.
Numerous models predict large couplings of the pentaquark candidates observed by LHCb [1, 2] to the
Λ+

c D0 system. This makes the Λ0
b → Λ+

c D0K− channel meaningful to discriminate between models
which attempt to describe the internal structure of the pentaquark states.
Amplitude fits are performed to measure the contributions of intermediate resonances to Λ0

b → Λ+
c D0K−

decays and upper limits are set for the observation of pentaquark states in this channel. The results
obtained are in contrast with the expectations from the most popular theory models which describe
the pentaquark states as ΣD∗-Σ∗D molecules.

Kurzfassung

Diese Arbeit berichtet über die Amplitudenanalyse von Λ0
b → Λ+

c D0K− Zerfällen unter Verwendung
der vom LHCb gesammelten Daten aus Proton-Proton-Kollisionen, die einer integrierten Luminosität
von 9.1 fb−1 entsprechen. Im Rahmen dieser Analyse wurde ein neuer Amplituden-Fitter entwickelt,
der sich neuartige Rechenkonzept und Software-Frameworks zunutze macht.
Zahlreiche Modelle sagen große Kopplungen der von LHCb [1,2] beobachteten Pentaquark-Kandidaten
zum Λ+

c D0 System voraus. Daher ist der Λ0
b → Λ+

c D0K− Kanal bedeutsam um zwischen Modellen zu
unterscheiden, die versuchen, die interne Struktur der Pentaquark-Zustände zu beschreiben.
Amplitudenfits werden durchgeführt, um die Beiträge von Zwischenresonanzen zu Λ0

b → Λ+
c D0K−

Zerfällen zu messen. und Obergrenzen für die Beobachtung von Pentaquarkzuständen werden in diesem
Kanal gesetzt. Diese Ergebnisse stehen im Gegensatz zu den Erwartungen der weit verbreitesten
theoretischen Modelle, die die Pentaquark-Zustände als ΣD∗-Σ∗D-Moleküle beschreiben.
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Introduction

The so-called Standard Model of particle physics (SM) describes how particles and fields interact. Three
fundamental forces between particles, the electromagnetic, weak and strong interactions, are characterised
in the SM and their interaction strength expressed by coupling constants. The electromagnetic and
weak interactions, described by relatively small couplings, are well studied and consolidated thanks to
precise theoretical predictions and experimental results. Instead, the strong interaction between the
quarks composing the hadrons is represented by a large coupling value. Large uncertainties affect both
the theoretical and experimental aspects of the processes dominated by the strong force. Ultimately, a
better characterisation of the strong interaction is of crucial importance for a more complete formulation
of the Standard Model.

The difficulty in making predictions of processes involving the strong force makes experimental
approaches a key resource for shedding light on the theory models. In this framing, spectroscopy
searches hold a particular important role. Among the three fundamental interactions described in
the SM, the strong force is the most relevant for forming hadrons. Conventional hadrons are formed
by a pair (mesons) or by three (baryons) quarks, and have been well studied since the second part
of the last century. However, the theoretical framework does not forbid quarks to form hadrons
made of four (tetraquarks) or five (pentaquarks) quarks. The first tetraquark candidates have been
observed at the beginning of the 21st century. The Belle experiment claimed in 2003 the observation
of the X(3872) tetraquark candidate [3], and of the Z(4430) state in 2007 [4]. These states have
been later confirmed by the LHCb experiment. On other hands, pentaquarks have a particularly long
history of inconclusive experimental searches. A series of claims of observations, since the 1970s to the
early 2000s, always revealed to be not statistically significant. Finally, in 2015 the LHCb experiment
claimed the observation with striking significance of pentaquark-like candidates in the J/ψp system
from Λ0

b → J/ψK−p decays [1].
The observation of the pentaquark candidates by LHCb induced a strong interest in the theory

community. A large number of models have been developed with the attempt of describing their
properties and internal structure, in order to accommodate them into the Quantum ChromoDynamics
(QCD) theory framework together with the conventional hadrons. Popular theory models characterise
the observed pentaquark candidates as molecular bound systems. Within these models, the pentaquark

states are expected to decay to the Λ+
c D

(∗)0
system with a relatively large decay rate. This makes the

channel Λ0
b → Λ+

c D0K− particularly important for searching for eventual pentaquark candidates.
This thesis reports the amplitude analysis of the Λ0

b → Λ+
c D0K− decay and the search for eventual

pentaquark states, performed using data collected by the LHCb experiment. Amplitude analyses
disentangle the decay reaction in partial waves [5], corresponding to the partial contributions of the
intermediate resonances to the total decay. By performing an amplitude analysis, it is possible to
measure both the static properties of the intermediate states, such as mass, width, quantum numbers,
and their dynamical behaviour and interference patterns. The LHCb detector is installed on the Large
Hadron Collider at the CERN laboratory (Switzerland). It is highly-optimised for studying processes
involving hadrons with beauty (b) quarks and charm (c) quarks, even though it demonstrated to be very
versatile. Among the others, high-precision measurements have been performed of rare decays and of
processes of electro-weak and heavy-ions physics. Spectroscopy searches in the charm sector, in which
this analysis is framed, are also particularly relevant. The full LHCb data set collected during the
LHC Run 1 and Run 2 periods is employed in this analysis, corresponding to an integrated luminosity
of 9.1 fb−1.
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A preliminary analysis [6] of Λ0
b → Λ+

c D0K− decays has been performed in the last two years. It
observed this channel for the first time, and measured its branching fraction. Major contributions
have been made to that measurement: the efficiency evaluation of the data selection, the correction
of the data by the efficiency effects, the definition, fetching and preparation of the data samples and
of the simulated samples. Also, large contributions have been given to the definition of the analysis
workflow, and to the implementation of the strategies of analysis preservation and reproducibility. A
dedicated software framework has been implemented for the evaluation and treatment of the selection
efficiency. It has been employed by other analyses as well, such as the branching fraction measurement
of the Λ0

b → J/ψΛφ decay, which is currently under internal review of the LHCb experiment. Despite
the branching fraction of the Λ0

b → Λ+
c D0K− decay has been measured, a full amplitude analysis is

required in order to make significant statements about the eventual presence of pentaquark candidates
in such decays. In the context of this analysis, a new amplitude fitter has been developed which exploits
novel computing paradigms and software libraries such as TensorFlow [7].

This thesis is structured in the following way. A theoretical introduction to the quark model and to
the QCD framework is given in Chapter 1. The theoretical interpretation of the observed pentaquark
candidates, and the importance of the Λ0

b → Λ+
c D0K− channel, are addressed as well. A general

description of the LHCb experiment, namely its subdetectors, data-flow and reconstruction strategy, is
given in Chapter 2. The outline of the analysis, the relevant statistical concepts and the main software
tools used are described in Chapter 3. The selection of the data used by this analysis, and the fits to
the Λ0

b, Λ+
c and D0 invariant mass distributions are detailed in Chapter 4. The amplitude model used

by this analysis is introduced in Chapter 5. The amplitude fit to the data is presented in Chapter 6.
Chapter 7 groups the studies performed to verify the stability of the fit results, and to evaluate the
systematics uncertainty associated to the analysis results. The assessment of the statistical significance
of observation of pentaquark candidates in the Λ0

b → Λ+
c D0K− channel is described in Chapter 8.

The conclusions of this thesis are summarised in Chapter 9. Supplementary material is given in the
Appendix A.

The first part of the doctoral studies has been devoted to the optimisation of a tracking subdetector,
the Scintillating Fiber (SciFi) tracker [8], planned to be installed in the upgraded LHCb detector in
2020. Detailed studies with the goal of improving the tracking performances of the SciFi have been
realised. Different detector geometries have been implemented in the GEANT [9] simulation framework,
and the LHCb reconstruction algorithms have been adapted. The detector layout has been finally
optimised in terms of the track reconstruction performances. The studies and their results have been
reported in a public note [10].
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1 Theoretical background and motivation

One of the most important achievements of modern science is the unification of three of the four known
fundamental forces of Nature, the electromagnetic, weak and strong interactions, into the so-called
Standard Model (SM) of particle physics. The Standard Model has been formulated in a coherent
way starting from the 1960s, and has been able to describe with success most of the interactions at
the electroweak and strong nuclear scales of the subatomic particles observed so far. In particular,
processes driven by electromagnetic and weak interactions are in general well studied and determined
with great precision on both the theoretical and experimental sides.

However, the observation of some processes which are evading the SM predictions make clear that
some extensions of the model are required. Some of the key examples include the fact that neutrinos
are massive, the existence of dark matter at the level observed in the Universe, and the complexity to
incorporate gravity. Nevertheless, some aspects of the Standard Model are not fully determined neither
from the theoretical formulation nor from the experimental side. This especially concerns the strong
nuclear sector in a wide range of energy regimes. The latter is described by a quantum field theory
known as Quantum ChromoDynamics (QCD), which is plagued by large modelling uncertainties due
to its non-perturbative nature. Moreover, many tests of the electromagnetic and weak interactions
rely on studying hadron decays, which are driven by the strong force. Thus, a better understanding of
the QCD internal mechanisms is fundamental for a more complete description of the SM, and has an
impact on testing theories beyond the Standard Model.

Experimental approaches play a very relevant role in probing the QCD model. Indeed, due to the
intrinsic difficulties on formulating precise theory expectations, models are often driven by experimental
results. In this sense, a particularly active area in experimental searches is the spectroscopy of hadrons.
In recent years a number of resonances resulting from orbital excitation of ground state hadrons have
been discovered. Their fitting in the description of strong interaction is extremely valuable for a better
comprehension of processes in the non-perturbative regime of QCD.

An introduction to the QCD formulation and to the characterisation of hadrons is given in Sections
1.1-1.2. Section 1.3 introduces the search for exotic hadrons, and in particular for pentaquark states,
as experimental probe of the theory. The theoretical interpretation of the pentaquarks observed by
LHCb, and the relevance of searches in Λ0

b → Λ+
c D0K− decays, are presented in Sections 1.4-1.5.

1.1 Quantum ChromoDynamics and the quark model

The QCD Lagrangian is based on the Yang-Mills theory [11] of strong interactions, a gauge theory
based on the special unitary group SU(N). It was introduced with the aim of describing the behaviour
of elementary particles using non-abelian Lie groups. These groups are differentiable manifolds with
smooth group operations: roughly speaking, a Lie group is a continuous group in which elements are
described by several real parameters. The invariance of the Lagrangian under certain Lie groups of
local transformations 1 characterises a field theory as a gauge theory.

1A transformation θ is said to be global if it is performed identically at every point of the space (θ = const), in contrast
of being local (θ = θ(x)). The locality represents a stronger constraint.
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Let us introduce a set of field operators {φ(x)r=1,...,k} as a k-dimensional vector φφφ(x) 2 . The
Yang-Mills theory introduces transformations of such field operators, which under SU(N) transform
like:

φφφ(x)→ φ̃φφ(x) ≡ Uφφφ(x) = ei
∑N2−1
a=1 θa(x)Taφφφ(x) (1)

where N2−1 stands for the dimensionality of the SU(N) group, and Ta are its generators. The covariant
derivative must transforms as the field operators, to assure the Lagrangian to be gauge-invariant under
local transformations:

Dµφφφ(x)→ U(Dµφφφ(x)) = eiθ
a(x)TaDµφφφ(x) (2)

where the Einstein notation for summation [12] is used. Equation 2 is fulfilled by a covariant derivative
of the form:

Dµφφφ(x) = [∂µ + igAaµ(x)Ta]φφφ(x) (3)

with Aaµ(x) representing the set of N2 − 1 gauge vector fields coupled to φφφ(x) by the coupling g. The
quanta of the vector fields represent the gauge bosons of the theory. The fields transform like:

T aAµa(x)→ T aÃµa(x) ≡ UT aAµa(x)U−1 +
1

gs
(∂µU)U−1 (4)

Equation 4 can be explicited by expanding the infinitesimal gauge transformation U :

U = e−iθa(x)Ta ' 1− iθa(x)Ta + ... (5)

which leads to the following expansion of the gauge field transformations, up to terms linear in θa(x):

Aµa(x)→ Aµa(x)− 1

gs
∂µθa(x) + fabcθb(x)Aµc (x) (6)

A relation between the gauge fields and the field strength tensor F aµν is needed to formulate a locally-
gauge invariant Lagrangian. Let us introduce the structure constants f cab of the group, which are used
to explicit the product of two basis vectors in the algebra. This product can be uniquely extended to
all the vectors in the vector space, therefore it determines uniquely the product of the algebra. The
structure constants define the commutator property of the Lie algebra:

[Ta, Tb] = if cabTc (7)

which allows to define the commutator between covariant derivatives:

[∂µ, ∂ν ] = −igTaF aµν(x) (8)

Following the relations given in Equations 3 and 8, the field strength tensor F aµν(x) takes the form:

F aµν = ∂µA
a
ν(x)− ∂νAaµ(x) + gfabcA

b
µ(x)Acν(x) (9)

The product of F aµν(x) is a gauge-invariant quantity, the gauge field Lagrangian:

Lgf = −1

4
Fµνa (x)F aµν(x) (10)

2This analysis makes use of the bold-italic convention for indicating vector quantities.
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Introducing a Dirac field φ(x) for 1
2 spin fermions, the Lagrangian is expressed as sum of the gauge

field Lagrangian Lgf and of the Lagrangian L0(x) for a free Dirac fermion:

L(x) = Lgf (x) + L0(x)

= Lgf (x) + φ(x)(i��D −m)φ(x)
(11)

with ��D = γµDµ being the gauge covariant derivative, φ(x) = φ†(x)γ0, and m being the mass of the
fermion.

The above derivation of a Yang-Mills theory is valid for any SU(N) gauge group. QCD is based on a
SU(3) colour charge group described by a Yang-Mills theory. The number of colors has been determined
to be three by a series of empirical evidences. Among all, the comparison between predictions and
experimental results of the π0 → γγ decay and of the e−e+ annihilation to hadrons represented striking
indications in this direction. To take into account the existence of anticolour, the QCD formulation
needs to have irreducible complex representations in addition to the irreducible real ones. The only
gauge group with three irreducible real and complex representations, which is also a compact and
semi-simple Lie group results to be SU(3). The compactness of the group refers to its compact topology.
This means that it must be closed (i.e. it contains all its limit points) and bounded (all its points
lie within a fixed distance of each other). The semi-simplicity implies that any finite-dimensional
representation of the group has to be a direct sum of simple, thus irreducible, representations. The
local gauge transformations of the SU(3) colour charge group are introduced as:

U = e−iθa(x)λa
2 (12)

where θa(x) is a real function, a = 1, 2, ..., 8 is the index of the eight gauge fields (32 − 1 = 8 is the
group dimensionality) and λa are the Gell-Mann matrices [13]. The latter define the SU(3) generator
Ta = λa

2 . By denoting the gluon field (represented by A in the former Yang-Mills derivation) with G,
the covariant derivative takes the form:

Dµ = ∂µ − igsGµ(x) (13)

with gs being the strong gauge coupling, proportional to a coupling strength αs of the strong interaction.
With the help of Equation 13, the free Lagrangian for quarks reads:

L0 = qf (i��D −mf )qf

= qf (i�∂ −mf )qf + gsqf��G(x)qf

= qf (i�∂ −mf )qf + gsqf��G
a(x)

λa
2
qf

(14)

with qf being a quark field (corresponding to the field operator φ(x)), and mf the quark masses
generated by the Higgs mechanism. In the last term of Equation 14, the gluon field has been developed
in terms of the Gell-Mann matrices. Using the definition from Equation 9, the gluonic strength tensor
is given by:

F aµν = ∂µG
a
ν(x)− ∂νGaµ(x) + gsf

a
bcG

b
µ(x)Gcν(x) (15)

Finally, following Equation 11 the Equations 14-15 bring to the QCD Lagrangian:

LQCD(x) =− 1

4
(∂µG

a
ν(x)− ∂νGaµ(x))(∂µGνa(x)− ∂νGµa(x)) + qαf (i�∂ −mf )qαf

+ gsq
α
f��G

a(x)(
λa
2

)αβq
β
f

+
gs
2
f bca (∂µG

a
ν(x)− ∂νGaν(x))Gµb (x)Gνc (x)

− g2
s

4
fabefcdeG

µ
a(x)Gνb (x)Gcµ(x)Gdν(x)

(16)
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with α, β being the colour indices. Factors ∼ m2GµaGaµ are not appearing since they would violate gauge
invariance (Eq. 4), thus gluons result to be massless. In Equation 16 the first line makes explicit the
kinetic terms of the quark and gluon fields, the second the colour interaction between quark and gluons,
the third and fourth describe the self-interaction of third- and fourth-order of gluons, respectively. It
must be noted that the gluon self-interactions arise from the Lie commutator relation (Eq. 8) even in
absence of other fields.

The gluon self-interaction described by this formulation is of key importance to generate the
two main properties which characterise the QCD: the asymptotic freedom at high energy (i.e. small
distance), and the colour confinement at low energy (i.e. large distance). The first implies that the
quark interaction gets weaker at high energy, allowing for perturbative calculations. This behaviour
corresponds to a small coupling of the strong interaction. Instead, the colour confinement describes
the experimental evidence that particles with colour charge cannot be isolated or directly observed at
low energy scales.

In the regime of asymptotic freedom, the quantum field theory technique of perturbation theory
can be used to make precise predictions on processes involving the strong interaction. Within the
perturbative approach, a set of approximations (from the leading to the higher orders) are added
as perturbations to a simple quantum system for which the mathematical solutions are known. If
the perturbations are relatively small, they can be calculated used approximated methods. This
allows the description of a complex system in terms of a simpler one. Perturbative QCD is nowadays
well consolidated, and has been experimentally verified at percent-level. On the other hand, at low
energy regime the coupling of the strong force is large and perturbative methods cannot be applied.
Non-perturbative QCD calculations are extremely challenging on both the formal and computational
sides. Lattice QCD [14] computations are among the most popular and successful approaches to non-
perturbative QCD problems. Huge efforts have been spent to formulate a unified, analytical solution
valid for both the low- and high-energy ranges of QCD. On the other hand, phenomenological-based
models exist which describe relatively precisely the experimental observations. An overview of these
models is presented in Section 1.2.

The dependence of the QCD coupling strength αs on the energy can be formalised as function
to a renormalisation scale µ2, needed for applying perturbative techniques. The measurement of
this dependence is shown in Figure 1 [15]. Below the QCD scale (or Landau pole) µ2 = Λ2

QCD ∼
300− 1000 MeV [16], QCD becomes a strongly-coupled gauge theory and the perturbative expansion
diverges: thus, a perturbative treatment of QCD at low energy is highly challenging and not yet fully
successful. Quarks with mass above ΛQCD are usually referred to as heavy quarks, in contrast to
the light quarks with mass below this value. Nevertheless, their masses cannot be measured directly
because of quark confinement into hadrons, and must often rely to perturbative approaches. Table 1
lists the quark properties [17,18], such as their bare masses 3 , the third component of the isospin I3,
the strangeness S, charmness C, bottomness B and topness T . QCD conserves the flavour quantum
number, thus hadrons can be referenced to their minimum valence quark content. However, massless
virtual gluons compose the numerical majority of particles inside hadrons. Also, the strong force
binding energy between quarks composing the hadrons is large enough to create pairs of virtual quarks
and antiquarks which continuously appear and annihilate in the hadrons.

3The bare mass of an elementary particle is evaluated in the limit of infinite energy (i.e. zero distance). It differs
from the invariant mass because the latter includes the “clothing” of the particle by pairs of virtual particles that are
temporarily created by the surrounding force-fields.
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Figure 1: Measurements of the coupling strength αs as a function of the energy scale µ = Q [15]. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in brackets (NLO: next-to-leading
order; NNLO: next-to-next-to-leading order; res. NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO).

Quark Mass [MeV/c2] electric charge [e] I3 S C B T

u (up) 2.2+0.6
−0.4 +2

3 +1
2 / / / /

d (down) 4.7+0.5
−0.4 −1

3 −1
2 / / / /

c (charm) 1280 ± 30 +2
3 / / +1 / /

s (strange) 96+8
−4 −1

3 / -1 / / /
t (top) 173100 ± 600 +2

3 / / / +1 /

b (bottom) 4180+40
−30 −1

3 / / / / -1

Table 1: Quark properties and quantum numbers [17,18].
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1.2 SU(3) and the characterisation of hadrons

Hadrons have been historically grouped into multiplets of particles with same flavour numbers and
approximately same mass, relying on the quark fields to be (approximately) flavour-symmetric 4 . The
flavour group SU(3) of u, d and s quarks has two fundamental representations: the 3 representation
of quarks and its complex conjugate 3 for the antiquarks. These representations can be sketched in
a picturesque way in the Y − I3 plane (Fig. 2). Here Y = 2(Q− S) is the strong hypercharge, with
Q being the electric charge of the quark and S its strangeness, and I3 is the third component of the
isospin.

Y Y

I
3

Y

I
3

+1/3

-2/3

+1/3

-2/3

+1/2 -1/20 +1/2 -1/20

d u

s

s

u d

Figure 2: Weight diagrams for the quarks 3 (left) and antiquarks 3 (right) representations of the flavour group
SU(3).

Combining pairs of quark and antiquarks (qq), a nonet of states is formed. These bound states are
called mesons. The nonet can be decomposed into the trivial 1 and the adjoint 8 representations:

3⊗ 3 = 8⊕ 1 (17)

An example of this decomposition is given in Figure 3, forming the nonet of pseudoscalars mesons
with spin 0 and nonet of mesons with spin 1. In the limit of the quark fields to be exactly-flavour
symmetric, neglecting the electroweak interactions between quarks, all elements of the nonet would
have the same mass. However, symmetry breaking considerations generate different masses for the
quarks, and allows for the possibility of mixing between different multiplets.

Let us now consider states composed by three quarks (qqq), referred to as baryons. Since quarks
are fermions, the spin-statistics theorem [20, 21] implies that the wave function of baryons must be
anti-symmetric under exchange of two quarks 5 . This condition can be fulfilled by anti-symmetrising
the wave function in colour, and making it symmetric in combination of flavour, spin and space. The
anti-symmetry of the colour wave-function is a consequence of the fact that all observable particles are
a color singlet (i.e. colour-less), due to the colour confinement in QCD (Sec. 1.1). This also requires
baryons to be formed by three quarks: any mixed combination of quarks and antiquarks would not
result in a color singlet. The decomposition in flavour for qqq states takes the form of:

3⊗ 3⊗ 3 = (6S ⊕ 3A)⊗ 3

= 10S ⊕ 8M ⊕ 8M ⊕ 1A
(18)

4In the electroweak interaction the flavour symmetry is broken and flavour-changing processes exist, such as quark
flavour mixing and neutrino oscillation.

5The spin-statistics theorem applies to indistinguishable particles. Mesons are always constituted by distinguishable
particles (a quark and an antiquark pair), thus there is no symmetry requirement on their wave functions.
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where the indices S, A and M indicate multiplets which are respectively fully symmetric, fully anti-
symmetric or with mixed symmetry with respect to flavour. The fully-symmetric decuplet is constituted
by states with flavour wave functions of the form:

ψ = uuu;

ψ =
uud+ udu+ duu√

3

(19)

while the two mixed-symmetric octets are defined by flavour wave functions which are anti-symmetric
for exchange of a pair quarks:

ψ =
(ud− du)u√

2
anti-symmetric for 1-2 exchange ;

ψ =
u(ud− du)√

2
anti-symmetric for 2-3 exchange

(20)

A third octet can be derived, but is not independent from the previous ones. Finally the flavour singlet
is a completely anti-symmetric state represented by:

ψ =
uds− usd+ dsu− dus+ sud− sdu√

6
(21)

The decuplet of baryons with spin 3
2 and the octet of ground state baryons with spin 1

2 are shown in
Figure 4.

With similar arguments, flavour symmetry can be extended to all quark flavours and the ground
states follow the qualitative expectations from the quark model. The top flavour is an exception, since
its heavy mass results in a lifetime too short for forming hadrons.

The non-perturbative nature of QCD makes difficult to formulate precise theoretical calculations of
nuclear physics phenomena. Thus, experimental hadron spectroscopy plays an important role in hadron
physics to shed light on the internal mechanisms which lead to the formation of hadrons. Starting from
the ground states, a large number of bound states can be build from radial excitation. The spectra of
the charmonium system [22] and of mesons composed of heavy quarks [23] are especially rich. Many
of these states have been only recently observed, and the experimental searches are very active in
this direction. Similarly, the formation of non-conventional states made of four or five quarks is not
forbidden by the quark model. They eluded the experimental observation for decades until recent
years [24], and their study is now of primary importance in hadron physics.

(a) (b)

Figure 3: a) Nonet of pseudoscalar mesons with spin 0. b) Nonet of mesons with spin 1 [19].
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(a) (b)

Figure 4: a) Octet of ground state baryons with spin 1
2 . b) Decuplet of baryons with spin 3

2 [19].

1.3 Searches for pentaquark states

Experimental search for hadrons constituted by more than three valence quarks, called exotic hadrons,
has been a very active field since the first formulation of the quark model in the 1960s. Especially
the existence of pentaquark states qqqqq has been predicted since decades, but was always elusive
to observe. In the late 1980s, experiments of kaon-nucleon scattering suggested the observation of a
series of pentaquark candidates matching the predictions of the so-called Z+ and Z0 states. However,
their observation revealed to be not significant. In 1997 the existence of a new pentaquark candidate,
the Θ+ with uudds quark content, was predicted by a chiral quark soliton model [25]. Within this
formulation, light quark masses are considered massless (chiral limit). Baryons are introduced, starting
from a description of meson-meson scattering, as soliton solutions to the equations of motion. These
are solutions which correspond to a configuration of the meson fields that cannot be expanded in
a power series around unity [26]. The model was able to perform striking predictions of the small
widths of the baryon antidecuplet states in line with the experimental findings, and it gained in
popularity. Basing on these considerations, many experiments focused their searches on the Θ+. In
2003 the SPring-8 laboratory (Japan) reported its first potential observation [27,28] of the Θ+ state in
photon-C12 scattering. The result was soon followed by similar findings by the CLAS Collaboration at
the Jefferson Lab (US) [29], the DIANA experiment at the ITEP laboratory (Russia) [30], the SAPHIR
experiment at the ELSA laboratory (Germany) [31]. However, a subsequent re-analyses of the data led
to less confidence in the observation of the Θ+. To resolve this issue, dedicated experiments were set
up to perform precise measurements of the pentaquark candidate. Finally, in 2005 a group from the
INFN laboratories (Italy), studying the same reaction as the ELSA experiment but with much larger
data sample, found no evidence of the Θ+. Many other experiments later confirmed the non-existence
of the Θ+.

Since then, although searches actively continued, pentaquarks have been considered with scepticism.
A turning point finally happened in 2015, with the claim by the LHCb Collaboration of the observation
of two pentaquark candidates in the J/ψp system in Λ0

b → J/ψK−p decays [1]. A six-dimensional
amplitude analysis has been performed to LHC Run 1 data, and the fit with only ordinary known states
was not satisfactory. This implied the necessity of including two new states referred to as Pc(4380)+

and Pc(4450)+, with quark content uudcc. Mass projections of the J/ψp and pK− systems are shown in
Figure 5, with the fit model overimposed. Table 2 lists the measured properties of the two pentaquark
states, with the preferred assignments of spin and parity JP .

A model-independent analysis of the same decay channel was performed by LHCb in 2016 [32],
supporting the need for at least one exotic component consistent with the Pc(4450)+ state. This
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Figure 5: Invariant mass projections of the pK− (left) and J/ψp (right) systems from the observation of
pentaquark candidates by the LHCb experiment in 2015, using LHC Run 1 data [1]. The fit model (red points)
is overimposed.

State Mass [MeV/c2] Width [MeV/c2] JP

Pc(4380)+ 4380 ± 8 ± 29 205 ± 18 ± 86 3
2

−1

Pc(4450)+ 4449.8 ± 1.7 ± 2.5 39 ± 5 ± 19 5
2

+1

Table 2: Measured properties of the pentaquark candidates observed by the LHCb experiment in 2015, using
LHC Run 1 data [1]. The assignment of spin and parity JP of the states is not univocal, and the values reported
are the preferred by the measurement.

model-independent approach has not been able to confirm the Pc(4380)+ state because of its large width,
though. The Λ0

b → J/ψπ−p channel [33], the Cabibbo-suppressed partner of the Λ0
b → J/ψK−p decay,

has been also studied by LHCb. The analysis has not been able to disentangle the two pentaquark
states, but exotic contributions were needed to describe the data.

In 2019 the channel Λ0
b → J/ψK−p [2] has been re-analysed by LHCb, including data collected in

the LHC Run 2. An improved selection of the data increased the statistics of observed decays by an
order of magnitude with respect to the original analysis. Although a simpler 1-dimensional mass fit
has been performed in this analysis, rather than a full amplitude analysis of the process, a new narrow
state Pc(4312)+ has been observed. Its measured production rate is too small for having a chance to
observe it in the first analysis. The new analysis provided a significant evidence for the Pc(4450)+ to be
structured by two components, called Pc(4440)+ and Pc(4457)+. However, this analysis approach has
not been able to probe the evidence for a broad state such as the Pc(4380)+. Also, the JP assignments
of the states are ambiguous, and an amplitude analysis would be required to measure them. The
measured properties of the pentaquark candidates by this new analysis are reported in Table 3. The
listed JP assignments are desumed from models those predictions reasonably match the properties of
the observed candidates.

1.4 Theoretical interpretation of the pentaquark candidates observed by LHCb

The observation of the Pc(4380)+ and Pc(4450+ pentaquark candidates by LHCb arised vivid discussion,
especially concerning the nature of their internal structure. Their description would be valuable for a
better comprehension of hadrons formation, and ultimately for the description of QCD processes.

Formulations consider the pentaquark states as diquark-diquark-quark [34, 35] or diquark-triquark
[36] molecules. Alternative models refer to them as baryocharmonia [37], where the pentaquarks are
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Figure 6: Fit to the invariant mass distribution of the J/ψp system from the re-analysis of the Λ0
b → J/ψK−p

by the LHCb experiment in 2019, using LHC Run 1 and Run 2 data [2].

State Mass [MeV/c2] Width [MeV/c2] JP

Pc(4312)+ 4312.0 ± 1.0 < 13.7 (CL = 95%) (1
2

−
)

Pc(4440)+ 4450.5 ± 2.3 < 69 (CL = 95%) /

Pc(4457)+ 4457.3 ± 3.2 < 13.2 (CL = 95%) (1
2

−
, 3

2

−
)

Table 3: Measured properties of the pentaquark states observed by the LHCb experiment in 2019, using LHC
Run 1 and Run 2 data [2]. The assignments of spin and parity JP are desumed from theory predictions, but not
directly measured.

composites of J/ψ and excited nucleon states such as the N(1440) and the N(1520). Other works
suggest that the Pc states could be originated from kinematic effects [38] like reflections or anomalous
triangle singularities, rather than being real resonances. Particularly popular are models which describe
the Pcs as molecular-hidden-charm states [39]. In this picture, the pentaquarks are composed by loosely
bound states of charmed and anticharmed hadrons such as Σ∗c(2520)D, Σc(2455)D∗ in non-relativistic
regime. Within this class of models, the pentaquark molecules would preferably decay into Λ+

c D0

and Λ+
c D∗, as sketched in Figure 7. In particular, the Pc(4380)+ and Pc(4450)+ decay rates to these

channels is expected to be enhanced by factors 5-20 with respect to the first-observation channel
Λ0

b → J/ψK−p, as shown in Table 4.

Figure 7: Three-body decay of a Pc state in the Σ∗
c(2520)D molecular hypothesis [39].
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Widths [MeV/c2]
Mode Pc(4380)+ Pc(4450)+

DΣ∗c(
3
2

−
) D∗Σc(

3
2

−
) D∗Σc(

3
2

−
) D∗Σc(

5
2

+
)

D∗Λ+
c 131.3 41.6 80.5 22.6

J/ψp 3.8 8.4 8.3 2.0

D0Λ+
c 1.2 17 41.4 18.8

Table 4: Partial widths of the Pc(4380)+ and Pc(4450)+ states to D∗Λ+
c , J/ψp and D0Λ+

c decays, under the
hypotheses of being Σ∗

c(2520)D or Σc(2455)D∗ molecules [39].

A B

JP
zR[MeV/c2]

Couplings [10−3(MeV/c2)
− 1

2 ]
zR[MeV/c2]

Couplings [10−3(MeV/c2)
− 1

2 ]
g

D̄Λ+
c

gD̄Σc g
D̄Λ+

c
gD̄Σc

1
2

−
4295 - i 3.7 1.4 + i 0.2 13.2 + i 0.8 4297 - i 3.0 1.1 + i 0.2 10.9 + i 0.6

1
2

+
4334 - i 28 1.1 - i 1.1 -1.9 + i 3.6 4334 - i 30 1.0 - i 1.0 -1.9 + i 3.7

3
2

+
4325 - i 54 0.3 - i 1.1 0.8 - i 4.5 425 - i 54 0.3 - i 1.0 0.7 - i 4.6

3
2

−
4380 - i 147 0.5 - i 1.9 -1.4 + i 5.6 4378 - i 146 0.5 - i 1.7 -1.3 + i 5.6

Table 5: Pole positions zR, couplings and spin-parity assignments for the states in the hidden-charm sector with
I = 1

2 [40]. The parameters of the poles refer to two sets of cut-offs A and B used in the model. The properties
of the last pole match reasonably well with the Pc(4380)+ candidates observed by LHCb in [1].

Models, while attempting to describe the nature of the observed candidates, also predicts possible
pentaquark partners. In particular, a dynamical coupled-channel approach [40, 41] concludes that
additional hidden-charm states at the ∼ 4.3 GeV/c2 could possibly exist. Their predicted properties
are listed in Table 5. In the coupled channel approximation, the interaction potential is constructed by
a finite sum 6 of contributions from different reactions and partial waves. Within this approximation,
pentaquark states emerge naturally from the dynamic of the interaction itself (they are dynamically
generated). Also, the predicted properties of a pole (Tab. 5) match reasonably well the observation of
the Pc(4380)+ state by LHCb.

As already mentioned, the re-analysis of the Λ0
b → J/ψK−p channel with much higher statistics

changed the scenery. The new state Pc(4312)+ has been observed and a double-peak structure of the
previously-claimed Pc(4450)+ state has been determined, originating the Pc(4440)+ and Pc(4457)+

states. The Pc(4380)+ has not been confirmed, due to the simpler analysis technique. A variety
of theoretical works precedent the first analysis of 2015 have been predicting the possibility of ΣcD
molecular bound states to exist in correspondence to the new observed states. Therefore, they have
not been distracted by the evidence of the first Pc(4380)+ and Pc(4450)+ states.

In one of the first investigations [42,43], an interaction potential between (anti-)charmed baryons
and mesons is introduced, and described by exchange of vector mesons (ρ, ω, φ). Within this framing,
a ΣcD bound state arises at ∼ 4261 MeV/c2, well below the observed Pc(4312)+. Also, a ΣcD

∗ bound
state is predicted at a mass ∼ 4416 MeV/c2, again quite low with respect the Pc(4440)+ and Pc(4457)+

measured masses.
In a more sophisticated model [44], the quark-level forces are implemented via the extended chiral

SU(3) constituent quark model. In a simple chiral (i.e. in the limit of massless quarks) SU(3) quark
model, only the pseudo-scalar and scalar chiral fields are considered. It is extended by including vector
meson exchanges, to describe short range interactions [45]. In this formulation, nucleon resonances can
be described as baryon-meson resonances generated from the dynamic of the interaction [46,47]. This

6In general, the exact solution of the interaction potential cannot be written as a finite sum of contributions.
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model allows for an attractive ΣcD interaction, forming a state in the 4310-4316 MeV/c2 mass region.
The pentaquark resonance predicted by this model would have the possibility of decaying to the J/ψp
system, and it would fit reasonably well to the observed Pc(4312)+.

Other models introduce a baryon-meson interaction by a one-boson-exchange potential. Such a
formalism is an extension of the more traditional meson exchange models in nuclear force [48]. An
effective boson-exchange potential is first defined in the coordinate or momentum space. Then the
scattering problem of two hadrons and the bound state problem are solved. From the obtained binding
energy, the resonance properties can be extracted. In this particular one-boson-exchange model [49],
ΣcD and ΣcD

∗ interactions are described by exchange of light mesons (π, η, ρ, ω, σ). In this construction,
a ΣcD bound state is predicted at around the mass of the Pc(4312)+ state. Also, a ΣcD

∗ bound
state would be compatible with the Pc(4457)+ candidate, and the same system could potentially be
responsible for the Pc(4440)+ state as well.

Analogously, employing coupled-channels models and introducing potentials mediated by exchange
of only vector mesons, bound states compatible with the Pc(4312)+ and the Pc(4457)+ are foreseen [50].

1.5 The role of the Λ0
b → Λ+

c D0K− channel

As mentioned in Section 1.4, in the hypotheses of the Pc(4380)+ and Pc(4450)+ being Σ∗cD, ΣcD
∗

molecular bound states, a large decay rate is predicted to the Λ+
c D0 system. This makes the study

of the Λ0
b → Λ+

c D0K− decay of crucial importance for discriminating between the different proposed
models which attempt to describe the nature of the pentaquark states. Either the observation of
the pentaquark states in this channel, or limits put to their decays to Λ+

c D0, would be of primary
relevance. Moreover, the observation of the pentaquark candidates in different processes, in addition
to the Λ0

b → J/ψK−p decay, would be particularly meaningful. An estimation of the expected yields
for the Pc(4380)+ and Pc(4450)+ states to the Λ0

b → Λ+
c D0K−, based on the Σ∗cD-ΣcD

∗ molecular
model [39] as in Table 4, is presented in Section 8.1.

Unfortunately, the observation of the Pc(4312)+, Pc(4440)+ and Pc(4457)+ states is too recent
for having precise theoretical predictions of their decay rates to the D0Λ+

c system. Nevertheless, the
expected decay rates of the Pc(4380)+ and Pc(4450)+ states to D0Λ+

c , as presented in Table 4, are
based from couplings which are either deduced from experimental data of the decay widths of D∗, Σc,
and Σ∗c , or are relatively model-independent [51–54].

Nevertheless, a variety of theory predictions are being formulated in very recent time, which again
highlight the role of the Λ0

b → Λ+
c D0K− channel in establishing the nature of the newly-observed

pentaquark candidates. Large decay couplings of these states to the Λ+
c D0 system are predicted for

the ΣcD
(∗)

molecular model in [55]. An effective range expansion of the dynamics around the ΣcD
(∗)

threshold is considered, assuming a short-ranged scattering potential between the Σc and D particles.
Similarly, large couplings are expected by [56] which makes use of an extended chromomagnetic model.
Within this approach [57], only the hyperfine interaction between quarks is retained, and the Coulombic
short-ranged and linear long-ranged potentials are described by a constant. Alternative models, as the
hadrocharmonium hypothesis [58] of the pentaquarks being bound states of a nucleon and a charm
meson, also expect the Pcs to be relatively highly-coupled to the Λ+

c D0 system. At the time of this
analysis only couplings have been predicted, which are not enough for a direct comparison with the
observation channel Λ0

b → J/ψK−p. Indeed, non-trivial factors enter in the calculation of the expected
decay rates, such as phase-space terms which are channel-dependent.

On other hands, a very recent modelisation [59] of the interaction of the Σ
(∗)
c D

(∗)
channels resulted

in considerably different predictions. In this work, it is observed that the largest uncertainties on
the different predictions are originated from the subtraction constants needed to regularise the loops
involved in the calculations. By tuning these constants to the most recent data taken by LHCb,
considerably smaller couplings of the pentaquark decays to the Λ+

c D0 system are predicted, with
respect to the above-cited models. Following this model, the confidence in observing pentaquark
candidates in Λ0

b → Λ+
c D0K− decays is rather little.
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The above considerations make clear the potential of the Λ0
b → Λ+

c D0K− channel in discriminating
between different models which attempt to describe the nature of the observed pentaquark candidates.
Either an observation of Pc candidates, or stringent limits to their decays, would represent a valuable
input for theory models. Finally, the Λ0

b → Λ+
c D0K− channel is also interesting to test for the existence

of possible pentaquark partners of further hidden-charm states [40], as presented in Table 5.
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2 The LHCb experiment

The LHCb detector is a single-arm forward spectrometer that covers a pseudo-rapidity 7 range of
2 < η < 5. It is installed on the Large Hadron Collider (LHC) at the CERN laboratory (Switzerland),
a circular collider of 27 km circumference which accelerates and collides pp, Pb Pb or p Pb beams.
The LHC accelerates two pp beams from a center-of-mass energy of 450 GeV up to 13 TeV, or heavy
ion beams from 350 GeV to an energy of 5 TeV. The beams are pre-accelerated by a system of linear
(LINACs) and circular (PS, SPS) accelerators, and injected to the LHC for the last stage of acceleration.
Beams are accelerated by sixteen radiofrequency cavities, and kept in their circular trajectory by 1232
super-conducting dipole magnets which provide a magnetic field of 8 T.

The primary purpose of LHCb is to perform precision measurements in the search for New Physics
in CP violation and rare decays of beauty and charm hadrons. Requirements to fulfill such a physics
program are excellent tracking performances in terms of momentum, impact parameter and primary
vertex resolution, precise decay time resolution and excellent particle identification capabilities. To
limit the radiation damage of the detectors and the particle multiplicity, the instantaneous luminosity
L delivered to the LHCb experiment is kept a factor ∼ 5 lower than the maximum L delivered to other
experiments installed on the LHC, such as ATLAS and CMS. This allows to deliver to LHCb a constant
instantaneous luminosity, thanks to magnetic lenses which slightly tilt the colliding beams over the
LHC fills. Keeping a constant luminosity is beneficial for the detector running, and it permits to better
control the data taking and online selection conditions of the experiment. In LHCb the luminosity is
levelled in order to have on average 1-1.5 primary interactions between protons, per collision. Table 6
shows the average running conditions of LHCb in LHC Run 1 (2011-2012) and Run 2 (2015-2018),
where µ is the average number of visible pp interactions per bunch crossing.

Year Instantaneous luminosity Collision energy µ Colliding bunches LHCb integrated luminosity

2011 1− 4 · 1032cm−2s−1 7 TeV 1.5 1000-1300 1.11 fb−1

2012 4 · 1032cm−2s−1 8 TeV 1.7 ∼ 1300 2.08 fb−1

2015 0.5− 3.5 · 1032cm−2s−1 13 TeV 1.1 300-1500 0.33 fb−1

2016 3.5 · 1032cm−2s−1 13 TeV 1.1 1700-2000 1.65 fb−1

2017 3.5 · 1032cm−2s−1 13 TeV 1.1 1700-2300 1.71 fb−1

2018 4.4 · 1032cm−2s−1 13 TeV 1.1 ∼ 2300 2.19 fb−1

Total 9.07 fb−1

Table 6: Average running conditions of the LHC collider and the LHCb experiment over LHC Run 1 and Run 2.
Only the pp collisions are considered in the LHCb integrated luminosity. The energy is referred to the collision
center of mass.

Reconstruction of charged particles in LHCb is performed using information from the tracking
subdetectors: the Vertex Locator (VELO), the Silicon Tracker (ST) and the Outer Tracker (OT).
Particle identification is accomplished by the Ring C̆erenkov (RICH) detectors, the calorimetric system

7Pseudo-rapidity is defined as η = − ln tan θ
2
, with θ = pz

p
being the angle between the particle trajectory and the

beam pipe. For highly-relativistic particles, pseudo-rapidity is almost identical to the rapidity y = 1
2

ln E+pzc
E−pzc of the

particle. Here, E, p and pz are respectively the particle energy, momentum and projection of the momentum along the
beam direction (z direction).
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Figure 8: Side view of the LHCb detector [60].

and the muon stations. Figure 8 shows a side view of the LHCb detector. An overview of the
subdetectors characteristics is given in Sections 2.1-2.2; more details can be found in [60]. The LHCb
data-flow and main reconstruction strategies are presented in Section 2.3.

2.1 Tracking detectors and magnet

Measurements of the particle momenta are made possible by a warm dipole magnet in a window-frame
yoke, which match the LHCb detector acceptance. An integrated magnetic field of 4 Tm for 10 m
long tracks is provided. This accommodates the requirements of having a field as high as possible
between the tracking detectors, and a small field (below 2 mT) within the RICHs envelope. The main
magnetic field component is along the y direction 8 , while the Bx and Bz components are negligible
within per-cent level. The magnet polarity is periodically switched in opposite-directed magnetic
fields, to control possible systematic effects in the detector response and the particle reconstruction. A
perspective view of the LHCb dipole magnet and the map of the resulting magnetic field are shown in
Figure 9.

Three tracking systems are present in LHCb exploiting different technologies: the Vertex Locator
(VELO) surrounding the interaction point; the Trigger Tracker (TT) stations placed upstream of the
dipole magnet in the weak fringe magnetic field; and the main tracker (T tracker) installed downstream
the magnet. The TT stations provide an approximated value of the particle momentum, while the T
tracker measures it with high precision.

The VELO consists of a series of silicon modules displaced in 21 tracking layers, each of them
providing a measure of the r − φ 9 coordinates, arranged along the beam direction nearby the collision
region. It provides precise measurement of the track coordinates close to the interaction point, and
it is crucial to reconstruct primary and secondary vertices. The precision of the measurement of the
particle trajectory close to the interaction point improves as much the detector sensors move closer
to the collision point. Therefore the VELO sensors are placed at the closest position to the beams
allowed by its mechanical constrains. Their radial distance to the z axis is ≈ 8 mm. However, at a so

8In the LHCb reference system, the z axis is directed along the beam direction while the y axis is vertically oriented
and the x direction is horizontal (see Figure 8).

9r is the radial distance to the beam pipe; φ is the azimuthal angle with respect the y axis, on the xy plane.
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(a) (b)

Figure 9: a) Perspective view of the LHCb dipole magnet. The quoted distances are in units of cm. b) Map of
the LHCb magnetic field along the z axis [60]. The Bx and Bz components of the magnetic field are negligible.

Figure 10: Cross-section of the VELO detector [60]. The z axis corresponds to the beam pipe direction.

small distance to the beams the sensors would be damaged during the injection and acceleration stages
of the colliding particles. The tracking modules are therefore retractable and kept at safety distance
during beam preparation. Figure 10 shows a cross-section of the VELO detector. The VELO layout
has been optimised to minimise the amount of material in the acceptance, which is crucial to minimise
the reconstruction uncertainty due to multiple scattering. The sensor active area is about 5 cm x 5 cm
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in each layer. The radial and angular sensor pitches change with the distance from the layer center,
varying from ≈ 40 µm to ≈ 100 µm. Figure 11 shows a cross-section of a VELO layer. The individual
hit resolution of the sensors strongly depends on the sensor pitch and projected angle of the particle
trajectory 10, and varies in the range 10-25 µm.

Figure 11: Cross-section of a VELO layer [60]. Each half of the layer is provided of both the r- and φ-sensors,
placed on its front and back area. The order of the sensors are switched between the two halves of a layer,
resulting in each layer face having half r-sensors (left half of the picture) and half φ-sensors (right half of the
picture).

The Silicon Tracker includes detection layers placed in different tracking subdetectors, the Trigger
Tracker (TT) and the Inner Tracker (IT). Both make use of silicon micro-strip sensors, with a strip
pitch of ≈ 200 µm. The TT consists of four tracking layers in a x-u-v-x arrangement, where strips
are vertical in the first and last layers and are rotated by an angle −5 and +5 with respect to the
vertical in the second and third layers, respectively. This geometry has been optimised based on the
characteristic of the LHCb magnetic field. Since the only non-null component of the magnetic field
is directed vertically, particles are bent into the horizontal (xz) plane. The vertical strips of the TT
measure the displacement of charged particles onto the x direction due to the bending, while the tilted
modules give a rough estimation of the y coordinate of the particle intersection with the layers. Precise
measurement of the y coordinate of the intersections is provided by a linear extrapolation of the VELO
measurements. TT layers are 150 cm wide and 130 cm high, and they consist of a row of seven silicon
sensors. Figure 12 shows a sketch of a TT layer. The strip pitch is ≈ 200 µm, to meet the single-hit
resolution of 50 µm required by the reconstruction algorithms.

The Inner Tracker covers the inner region of the tracking stations downstream the magnet (T
stations), to cope with the high track occupancy characterising the beam pipe area. The IT is organised
in three tracking stations with four layers each. Within each station, the IT layers are arranged in a
x-u-v-x layout as for the Trigger Tracker detector. Each IT module consists of either one or two silicon
sensors, with strip pitch of about 200 µm. Figure 13 shows a sketch of an IT module.

The outer regions of the T layers are covered by the Outer Tracker (OT), a drift-time detector
designed as an array of individual, gas-tight straw-tubes modules. Each module contains two layers of
drift-tubes, with inner diameters of 4.9 mm. The single hit resolution of the OT is 200 µm. Analogously
to the Inner Tracker, the OT modules are arranged in three station in a x-u-v-x layout. The OT layers
are 6 m x 4.8 m sized. Figure 14 shows a sketch of the OT layout.

10The projected angle αp is the crossing angle of the particle projected perpendicular to the strips, given by tanαp = d
l⊥

[61]. Here, d is the sensor thickness and l⊥ is the track component perpendicular to a strip.
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Figure 12: Layout of a TT layer [60]. The sensors are arranged in rows of seven sectors, with the readout placed
on top and on the bottom of the layer.

Figure 13: Layout of an IT module [60].

Figure 14: Layout of the T stations, with the OT modules in cyan and the IT modules in purple [60].
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2.2 Particle identification detectors

Calorimeters are installed for detection of photons and separation of electrons and hadrons. The muon
detection is made possible by muon stations. Finally, two RICH detectors are installed to provide
separation of charged hadron species.

The main calorimeter system is constituted by an electromagnetic calorimeter (ECAL) followed by
a hadronic calorimeter (HCAL). Two additional detectors, the Scintillator Pad Detector (SPD) and the
PreShower (PS) are also present. The calorimeters play an key role for the online selection of events in
LHCb. In particular, a good measurement of the electron energy is essential for the electron trigger.
Therefore, the ECAL has been optimised to fully contain the showers from high energetic electrons and
photons, choosing a thickness of 25 radiation lengths. The HCAL thickness is 5.6 interaction lengths
due to space limitations. The calorimetric subdetectors adopts a variable lateral segmentation, since
the hit density varies by two orders of magnitude over the calorimeter surface. In all the calorimeters,
scintillation light is transmitted to photo-multipliers by wavelength-shifting plastic fibres. A shashlik
technology has been adopted by the ECAL, where a sampling scintillator-lead structure is readout
by the fibers. The HCAL instead is a sampling device made from iron and scintillating tiles running
parallel to the beam axis, as absorber and active material respectively. The energy resolution of ECAL
results to be σE/E ≈ 10%/

√
E ⊕ 1%, with E, the energy of the deposited signal, measured in GeV.

The energy resolution of HCAL is σE/E = (69%± 5%)/
√
E ⊕ (9%± 2%), with the energy E measured

in GeV. A schematic of the internal cell structure of the HCAL is shown in Figure 15.
The SPD and the PreShower detectors are put in front of the ECAL. Their design is similar,

consisting of two scintillating vertical planes each. Charged particles leave in the SPD a signal which is
detected, while photons do not interact. A lead sheet of 2.5 radiation length is sandwiched between the
two subdetectors. This lead converter initiates the electromagnetic showers, so that both electrons and
photons deposit a sizable amount of energy in the PS. Combining the SPD and the PS information
with the cluster position reconstructed in the ECAL, the nature of the electromagnetic particle (either
electron or photon) is determined. Moreover, the PreShower provides longitudinal segmentation of the
electromagnetic shower detection. This characterisation of the shower is essential for the rejection of
the large background of charged pions in the electron detection.

The muon chambers also play a key role for the online triggering of events in LHCb, and provide
important offline PID information for analysis of decay channels involving muons. The muon detector
is composed of five stations, M1-M5. M1 is placed in front of the calorimeters, and it is used to
improve the measurement of the particle transverse momentum, pt, for the online selection. Its inner
region make use of triple-GEM detector technology, to ensure good resistance to ageing. The M1 outer
region is based on multi-wire proportional chambers. The M2-M5 stations are placed downstream the
calorimeters and are interleaved with 80 cm thick iron absorbers to select penetrating muons. These
stations are based on multi-wire proportional chambers. A view of the muon detector layout is shown
in Figure 15.

Finally, two RICH detectors (RICH1 and RICH2) are employed for particle identification of hadrons
trough detection of the C̆erenkov emissions of charged particles in radiators. At large polar angles
the momentum spectrum of the particles is softer, while at small angles it is harder. Hence, the two
RICH detectors have been optimised to cover the full momentum range. RICH1 is placed upstream of
the magnet, while RICH2 is installed downstream. RICH1 covers the low momentum charged particle
range ∼ 1− 60 GeV/c using aerogel and C4F10 radiators (only the latter in Run 2). Instead, RICH2
covers the high momentum range from ∼ 15− 100 GeV/c using a CF4 radiator. In both the detectors
the C̆erenkov light is focused by a combination of spherical and flat mirrors to reflect the image out of
the spectrometer acceptance, where Hybrid Photon Detectors used to detect the C̆erenkov photons are
installed. In RICH1 the optical layout is developed vertically whereas in RICH2 it is horizontal, as
sketched in Figure 16.
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(a) (b)

Figure 15: a) Internal structure of a HCAL cell. b) Side view of the muon detector [60].
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Figure 16: a) Optical layout of RICH1, developed vertically. b) Optical layout of RICH2, developed horizontally
[60].
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2.3 LHCb data-flow and reconstruction strategy

The LHCb data-flow consists of an online and an offline processing steps. In the online processing
the bunch crossing rate provided by the colliding beams is reduced to a rate that is possible to be
stored permanently. This is followed by the offline step which processes the online-selected data to
achieve the best reconstruction quality for the analysis of data. An overview of both the online and
offline processings will be given in the following. Also, the particle reconstruction strategy will be
discussed [62].

2.3.1 Online selection of data

During Run 1 and Run 2 the LHC provided pp collisions at a rate of 40 MHz, however the LHCb
tracking detectors have a readout frequency of 1 MHz. Furthermore, only about ∼ 5− 10 kHz of data
rate can be written to permanent storage for offline analysis, because of the limits set by the available
computing resources. The required event-rate reduction is achieved by employing a multi-stage trigger
consisting in a hardware-based Level 0 (L0) trigger, and in two stages of the High Level Trigger (HLT)
implemented in software.

The L0 reduces the initial bunch crossing rate from 40 MHz to 1 MHz using information from
the calorimeters and the muon stations. It selects events with hadrons, electrons or photons with
high transverse energy or muons with high transverse momentum, which are signatures for the decay
of heavy-mass B mesons. A pile-up veto-system in the VELO estimates the number of primary pp
collisions in each bunch crossing and rejects events with a high number of interactions.

The HLT algorithms further reduce the data rate from 1 MHz to the permanent storing rate of
∼ 1− 5 kHz making use of the full-detector information. The HLT reconstruction algorithms run on a
large event filter farm which in Run 2 consisted of ∼ 51, 000 logical cores. The HLT is split into two
stages, the HLT1 and HLT2.

HLT1 takes as input the L0 decisions, and attempts to confirm them based on a partial reconstruction
of the events. Information from the tracking system, the calorimeters and the muon stations are used.
Primary vertices are reconstructed, and inclusive selections based on single- and two-tracks quantities
are performed. The HLT1 reduced the event rate from 1 MHz to 80 kHz in Run 1 and to 150 kHz in
Run 2.

HLT2 takes as input the events confirmed by HLT1, and performs a full reconstruction of the event.
A mixture of inclusive and exclusive selections are performed, employing particle identification (PID)
information from the RICH detectors as well. While the HLT1 stage kept the same basic structure for
both Run 1 and Run 2, HLT2 faced a deep evolution over the years.

During Run 1, events passing the L0 and HLT1 selections have been processed sequentially by
HLT2, writing to permanent storage a final data rate of ≈ 5 kHz. Because of the limited online
computing resources, there have been differences in the algorithms of pattern recognition and particle
selections with respect to the offline processing. Also, no hadron identification was provided online.
This resulted in a limited accuracy of the reconstruction provided by the HLT2 processing.

The trigger strategy, in particular for what concerns HLT2, drastically evolved in Run 2 with the
goal of running online an offline-like-quality reconstruction. However, this requires an offline-quality
alignment and calibration of the detectors to be performed on real time. This would have not been
feasible in the limited time budget per event given the trigger structure in Run 1. Therefore, a
deferred-triggering strategy has been adopted. Within this approach, events are buffered to disk and
processed between fills. Since stable beams are provided by the LHC for about 35% of the data taking
periods, the time budget available for processing buffered events increases dramatically. During Run 1
the 20% of L0 accepted events were deferred already, but in Run 2 100% of HLT1-accepted events were
moved to a buffer consisting of more than 10 PB of disk space. Embracing this new strategy, the HLT1
output can be used for online calibration and alignment of the full detector. This allows the HLT2
stage to perform a full event reconstruction with offline-like-quality, writing to permanent storage at a
≈ 12.5 kHz rate. The layout of the trigger strategies in Run 1 and Run 2 are compared in Figure 17.
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Figure 17: Layout of the LHCb trigger strategies in Run 1 (a) and Run 2 (b).

Achieving offline-like-quality on real time permits to perform physics analysis with HLT-
reconstructed objects. However, it would not be feasible to write on permanent storage the entire
HLT2 output, because of the limited amount of tape available. Thus, the so-called Turbo stream
has been implemented in 2015 [63]. In its first incarnation, only the HLT information related to the
signal candidate was stored removing most of the detector raw data. In this way the Turbo stream
processing decreased the space required to below 10% with respect the standard data stream. Allowing
to loosen the precedent selection criteria used online, Turbo stream revealed to be ideal for high-yield
analysis such as for charm-physics. Also, since offline reconstruction is not required to be processed,
Turbo data is available for analysis in ∼ days− weeks rather than months required by the standard
processing. During Run 2, the Turbo concept has evolved offering the possibility to save to disk the full
reconstructed event rather than the trigger candidate only (Turbo++), or either to choose what kind of
particles must be preserved (Turbo Selective Persistence [64]), while still skipping the raw information.
Therefore, the Turbo streams now covers the whole range of analysis-specific requirements.

2.3.2 Reconstruction strategy

Given the geometry of the LHCb detector, several track types are defined depending on the subdetectors
in which the tracks have measurements, as sketched in Figure 18. Long tracks intersect the entire
tracking system from the vertex locator to the tracking stations downstream the magnet, resulting
in the most precise measurements of momentum and impact parameter. VELO tracks only have
measurements in the vertex locator, and are mainly used for primary vertex reconstruction. T tracks
only have hits in the downstream tracking stations, and can be originated from the decay of long-lived
particles decaying after the upstream tracker. Upstream tracks have hits only in the vertex locator and
in the tracker downstream the magnet, and they mainly correspond to low-momentum particles which
are bent out of the acceptance of the downstream tracker. Downstream tracks have measurements in
the upstream and downstream trackers only, and usually correspond to daughter particles of long-lived
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Figure 18: Different types of tracks in LHCb, depending on the intersected subdetectors [62].

Figure 19: Main tracking algorithms in LHCb [62].

particles decaying out of the vertex locator, such as K0
S and Λ.

Several tracking algorithms have been developed to reconstruct the different track species, as
sketched in Figure 19. VELO tracking and T-seeding are standalone algorithms to reconstruct VELO
tracks and T tracks respectively. The Forward tracking is the main algorithm for the reconstruction of
long tracks. It takes as input reconstructed VELO tracks and attempts to extrapolate them to the
downstream tracking stations. Track matching also reconstructs long tracks, but matching tracklets
reconstructed independently by the VELO tracking and T-seeding algorithms. Both Forward tracking
and track matching reconstruct the same particles, and the reconstructed long tracks are finally matched
and merged to compensate the eventual reconstruction inefficiency of the individual algorithms. Finally,
VELO-TT and Downstream tracking reconstruct upstream and downstream tracks. The Forward
tracking can also take VELO-TT reconstructed tracks, rather than simple VELO tracks as input.
Thanks to the weak fringe magnetic field present in the TT detector, the VELO-TT algorithm provides
a rough estimation of the track momentum (δp/p ∼ 15%) permitting the Forward algorithm to select
hits on the downstream tracker considerably faster.

After tracks have been reconstructed, they are fitted by a Kalman Filter fit [65] in order to achieve
the most precise measurements of their parameters, in particular an excellent momentum resolution
δp/p ≈ 0.4%. Finally, a multivariate classifier named ghost probability [66,67] combines information
from different stages of the track reconstruction and from global event properties to assign to each
track a so-called TrackGhostProbability. This quantity indicates the probability of the track of being
mis-reconstructed and thus of not corresponding to a real particle intersecting the detector. Such
tracks are referred to as ghosts.

Primary vertex (PV) reconstruction is then performed [68]. An excellent separation between
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primary and secondary vertices is required to distinguish decay of b- and c-hadrons from the large
background of light quarks production. Therefore, the PV reconstruction is of crucial importance for
LHCb. It consists of two stages, the initial seeding followed by a final fitting. PV seeding searches
for primary vertex candidates, defined as point at which a sufficient number of tracks pass close to
each other. Once all the PV seeds of an event have been found, a fit based on an adaptive weighted
least square method [69] is performed on each of them. Excellent primary vertex resolutions on the
transverse directions δx, δy ≈ 0.04 − 0.01 mm and on the beam direction δz ≈ 0.2 − 0.04 mm are
achieved, depending on the track multiplicity.

Once all tracks in the event have been reconstructed, the trajectory of each particle through the
RICH radiator volumes can be determined [70]. This allows the computation of an assumed emission
point of the emitted photon candidates for each track. The candidate photons for each track are
determined by combining the photon emission point with the measured hit positions of the photons.
Once the photon candidates have been assigned, the C̆erenkov angle can be computed. The trajectory
of the photons are determined by an analytical solution of the RICH optics, taking into account the
mirror and HPD alignment. In order to determine the particle species for each track, the information of
the C̆erenkov angle must be combined with the track momentum measured by the tracking algorithms.
An overall event log-likelihood 11 algorithm is employed [70] to assign the particle type to the particle,
where all the tracks in the event are considered. The overall event likelihood is computed assuming all
particles are pions; then, for each track in turn, is recomputed varying the mass hypothesis to e, µ,
π, K and p. The mass hypothesis which gives the largest increase in the event likelihood is taken as
optimal assignment of the track. The differences in the log-likelihood for each track between the mass
hypothesis (with respect to the pion mass) are the final results of the particle identification procedure,
and are referred to as PIDe, PIDµ, PIDp and PIDk [71]. These variables, also called combined Delta
Log-Likelihoods (DLLs), are easy to understand but have some limitations. Multivariate classifiers
have therefore been developed combining measurements from all subdetectors, to give a better PID
performance. Artificial neural networks are trained on data, obtaining synthetic PID variables referred
to as ProbNNs [71] which have higher significance to discriminate different particle type assumptions.

2.3.3 Offline processing of data

Data selected online are permanently stored to tape with all the detector raw banks, apart from the
samples selected by the Turbo stream. Periodically, an offline processing of the data is performed.
Events are reconstructed making use of all the detector information, relaxing the selection criteria used
online and achieving the best accuracy on the track and vertex measurements.

Once events are reconstructed offline, they are further selected and categorised by the so-called
stripping procedure. Signatures of decays and processes are searched for in the data, making use
of requirements specified in stripping lines. The latter are defined by analysts, and generally one
stripping line corresponds to a single (either inclusive or exclusive) process of interest. The output of
the stripping lines represents the data actually used by analyses in LHCb, together with the output
of the Turbo streams. As example, this analysis makes use of the X2LcD0KD02KPiBeauty2Charm
stripping line, which is constructed to select events with {Λ0

b,B
0,B0

s} → Λ+
c D0K− decays, with the

D0 decaying into K+π−.

11The log-likelihood is introduced in Section 3.2.2.
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3 Analysis outline and tools

The basic analysis strategy is presented in Section 3.1, in particular for what concerns the decomposition
of a decay process in terms of partial waves. Section 3.2 describes the main statistical concepts that are
adopted by the analysis. Finally, an overview on the most important software packages and concepts
exploited in this analysis is given in Section 3.3.

3.1 Analysis strategy

As seen in Chapter 1, the non-perturbative nature of QCD makes it difficult to calculate processes where
light quarks are involved. Therefore, effective models must be build from measured properties of the
hadron spectrum, investigating the decay and scattering of hadrons, and identifying the intermediate
states contributing to the processes. This can be accomplished by disentangling the reactions in partial
waves [5], corresponding to the partial contributions of the intermediate resonances to the total decays.
The goal of amplitude analyses is to measure both the static properties of the intermediate states, such
as mass, width, quantum numbers, and their dynamical behaviour and interference patterns.

The decomposition of a scattering process in terms of partial waves can be accomplished by
expanding the scattering wave of the process, defined by the Schrödinger equation, in terms of the
Legendre polynomials [5]. Many methods have been developed to construct an amplitude from the
partial wave decomposition, which differ by the assumptions which must be taken to group particles
and to build the decay chains. This analysis makes use of the so-called isobar model [72], an empirical
approach in which the decay reaction is disentangled in a sequence of two-body decays. This is sketched
in Figure 20, by a three-body decay in which two final state particles are the decay product of an
intermediate state. In this approach, the decay of the intermediate state factorizes from the recoil
particle, which is involved in conserving the angular-spin properties of the process. The isobar model
has proven to work extremely well for most of the hadrons and in very different environments, while
being reasonably simple to construct. However more complex reactions exist which cannot be easily
treated by the isobar model. In these processes, such as ω → π+π−π0 and η → 3π, rescattering
between the intermediate state and the recoil particle have a large influence. In some cases the isobar
model can be retained if the rescattering process is refactorizable in terms of many isobar reactions.
This usually involves the introduction of many parameters, and may not lead to a sufficient description.
In those cases model assumptions have to be made. Nevertheless, the isobar approach is generally very
accurate in describing most of the decay processes, and it is the most common method followed by
amplitude analyses in LHCb.

  recoil particle

intermediate
state

Figure 20: Sketch of a three-body decay, proceeding through an intermediate resonance.
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Within the isobar model, each of the decay nodes are expressed by amplitudes. They are consisting
of an angular part, defined by the angular-spin properties of the process, and of a dynamical part.
There are multiple ways to express the spin structure of the reaction. This analysis makes use of the
so-called helicity formalism [73], in which a spin quantisation axis is chosen, and two-body decays
are defined by rotations with respect to it. In this particular formalism each of the particle spins is
quantised parallel to its own flight direction, resulting in the helicity to be diagonal. The amplitudes
corresponding to different values of the orbital angular momenta, spin and helicities are related through
couplings, determined by a fit to the data. The construction of the amplitude model specific to this
analysis is detailed in Chapter 5, and the amplitude fits are presented in Chapter 6.

Before that the amplitude fit can be performed to the data, some preliminary steps are required.
The data sample is first selected in order to reject as much background is possible, while keeping
the highest fraction of the signal. The selection procedure is described in Chapter 4. After that the
selection is applied, a mass fit to the Λ0

b invariant mass distribution is performed. This fit is employed
to derive the so called s-weights, a set of weights which indicate how much a candidate is probable to
represent signal or background process. The statistic procedure of extracting the s-weights is referred
to as sPlot, and it is described in Section 3.2. The mass fits are detailed in Chapter 4.

Once the amplitude model is fitted to the data, the statistical significance for the observation
of pentaquark candidates in Λ0

b → Λ+
c D0K− decays is assessed. This is done by testing different

pentaquark hypotheses performing profile likelihood ratio tests, that are introduced in Section 3.2.5.
The results of the statistical tests are described in Chapter 8.

3.2 Statistical foundations

This analysis employs several statistical methods and strategies for extracting results which are
statistically meaningful and solid. The fundamental concepts [74] are presented in Section 3.2.1. The
maximum likelihood, the sPlot technique and the profile likelihood ratio test, which are used for fitting
the model to the data and for assessing the statistical significance of observing pentaquark candidates
in the Λ0

b → Λ+
c D0K− decay process, are described in Sections 3.2.2-3.2.5. Finally, Boosted Decision

Trees are introduced in Section 3.2.6, which represent a key tool for selecting the signal candidates in
this analysis.

3.2.1 Fundamental concepts

Let us consider a random process, with outcome described by a variable x which can be either discrete
or continuous. The probability prediction for x can be expressed by a function f(x). If x is discrete,
f(x) is itself a probability. If x is continuous, f(x) is called probability density function (pdf) and the
probability of x of being in the interval of values A = [x0, x1] is given by:

p(x ∈ A) =

∫
A
f(x′)dx′ (22)

If x is a quantitative variable 12, for any function g(x) it is defined the so-called average or expected
value:

E[g] =
∑

g(x′)f(x′) ,

E[g] =

∫
g(x′)f(x′)dx′

(23)

in case of a discrete or continuous variable, respectively. The expected value of g(x) represents its
mean value. Particularly important is the expected value of the variable x itself, often denoted by µ.

12A variable is said quantitative if it assumes numerical values, in contrast to a qualitative variable.

28



Another property is the variance of the variable x:

V [x] ≡ σ2 = E[(x− µ)2] = E[(x− E(x))2] (24)

which gives a measure of the variability of the values taken by x, with respect to its expected value µ.
Its square root σ is said standard deviation.

Supposing to have a pdf f(x, y) which is function of two random variables x and y, the covariance
is defined to be:

cov[x, y] ≡ Vxy = E[x · y]− E[x] · E[y] (25)

The covariance measures the correlation between the variables x and y. A dimensionless alternative to
the covariance is the correlation ρxy:

ρxy =
cov[x, y]

σx · σy
(26)

Following the above definitions, the self-covariance Vxx of a variable x is its variance (Vxx = σ2
x) and

its self-correlation ρxx is the unity.

3.2.2 Parameter estimation and maximum likelihood

As introduced in the previous section, pdf functions involve a variable describing random quantities.
They can also be related to one or more parameters, generically indicated by θ in what follows. A pdf
of a variable x depending on a parameter θ is denoted by f(x|θ). The estimation of parameters from
the observed distributions plays a crucial role in the analysis of data. This procedure is said parameter
fitting, and its main concepts are described in the following.

Let us consider a sample of N measurements x = (x1, x2, ..., xN ) which are statistically independent
and each follow a pdf f(x). The properties of f(x) can be estimated by introducing a functional form
f(x,θ), with θ = (θ1, θ2, ..., θm) being a set of m parameters. It is possible to estimate the true value
θ∗ for each of the parameter θ. In the following, the set of true values of the parameters are denoted
by θ∗ The estimated values for the parameters θ are inferred through a statistic, i.e. a function of the
data, referred to as estimator θ̂ :

θ̂ = θ̂(x) : x→ θ (27)

Different ways how to build the estimator exist. This analysis makes use of a frequentist approach, and
attempts to use estimators which are unbiased, consistent, efficient and robust [74]. An estimator is
said to be unbiased if its expected value is equal to the true parameter value θ∗:

E[θ̂] = θ∗ (28)

The estimator is defined to be consistent when it is asymptotically unbiased, hence it converges to the
true value θ∗ in the limits of a large number of measurements:

lim
N→∞

θ̂ = θ∗ (29)

Note that an estimator can be biased but consistent, or unbiased but not consistent 13 . An estimator is
efficient if it estimates θ in the best possible way, or more quantitatively if it has the smallest variance.

13As example, given N measurements of decay times t1, t2, ..., tN of a particle, a consistent but biased estimator of

its mean lifetime τ is τ̂ =
∑N

ti=t1
ti

N−1
, while a unbiased but not consistent estimator is τ̂ = t1. A unbiased and consistent

estimator is τ̂ =
∑N

ti=t1
ti

N
.
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The minimum possible variance of a unbiased estimator is given by the Cramér-Rao-Frechet inequality
[75], [76]:

V [θ̂] ≥ I(θ)−1 (30)

with I(θ) being the information matrix computed over all the measurements xi:

Ijk(θ) = −E
[ N∑
i=1

∂2 ln f(xi|θ)

∂θi∂θk

]
(31)

Finally, the estimator is robust when it is not affected by outliers or by relatively small deviations from
the model assumptions.

Given a finite sample x of the observed data, a good (in the sense of the above-mentioned properties)
estimator is the (extended) maximum likelihood [77]: it is consistent, efficient, robust but not unbiased
for small statistics. Let us consider the xi measurements statistically independent, and following each
the pdf f(x|θ), with θ being a set of m parameters. The likelihood function is defined as the joint
probability density function for the observed values x:

L(x|θ) =

N∏
i=1

f(xi|θ) (32)

where the individual pdfs factorise because the measurements are independent. The maximum likelihood
estimate (MLE) θ̂ of the parameters θ is the value which globally maximises L(x|θ):

∂L
∂θi

∣∣∣
θi=θ̂i

= 0 for each θi ∈ θ (33)

Note that here θ̂ denotes the estimate itself of the parameters, and not the estimator function as in
Equation 27. Following this construction, the likelihood measures the probability of θ to take a given
value θ′, given the observed values x. Equivalently, the MLE minimises the negative log-likelihood
defined as:

l(x|θ) = − lnL(x|θ) = −
N∑
i=1

ln f(xi|θ) (34)

The negative log-likelihood is usually preferred to the simple likelihood function, because of computa-
tional considerations. In fact, − lnL(x|θ) is a convex function; this class of functions holds a prominent
role in the field of mathematical optimisation, and the so-called convex optimisation is a well studied
problem.

While in conventional sampling models experiments consist of taking a pre-determined number of
measurements, in this analysis the measurements are taken for a given fixed time and they can occur
randomly. This results in a total number of measurements n which fluctuates. A natural extension of
the maximum likelihood method, suited for the latter use case, is the maximum extended likelihood
technique [78]. In this method the normalisation of the standard likelihood function is replaced by a
Poissonian statistics:

Lext(x|θ, ν) =
νne−ν

n!

n∏
i=1

f(xi|θ) (35)

where n is the total number of observed events, being a Poisson random variable with mean value ν.
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3.2.3 sPlot technique

The so-called sPlot technique [79] is a statistical method which allows to unfold the distributions of
several contributions co-existing in a unique data sample. In this analysis it is exploited to categorise
signal-like and background-like events. The sPlot technique makes use of a set of variables for which
the distribution of all the sources of events are known, called discriminating variables. The latter is
used to infer the unknown distributions of a second set of variables, referred to be the control variables.
A basic assumption for this method to work, is that the discriminating and the control variables must
be uncorrelated. In this analysis the discriminating variable is represented by the invariant mass
distribution of the Λ0

b candidates, while the most relevant control variables are the invariant mass
distributions of the Λ+

c D0, D0K− and Λ+
c K− systems.

Let us introduce a total number n of measurements e = (e1, e2, ..., en), called events in what follows,
defining a data sample. Also, let us consider a number ns of species populating the sample and a
number nk of average expected events for each of the k species (k = 1, 2, ..., ns). Moreover, let y and
x be a set of discriminating and control variables, respectively. A set of pdfs fi is defined for the
discriminating variables of the species. Finally, let us denote by ye the values of the discriminating
variables for an event e. Knowing the pdfs fi, and having performed a fit to determine the yields of all
the species, a weight for a fixed i species can be näıvely defined as:

Pi(ye) =
nifi(ye)∑ns
k=1 nkfk(ye)

(36)

with ni being the yield obtained for the i species. Now let us introduce xe as the value taken by x for
the event e, and a set of values x′ defined by a neighbourhood of x of width δx, centered around the
values x̃:

x′ = (x̃− δx, x̃+ δx) (37)

The weight Pi defined in Equation 36 can be used to build the distribution M̃i of x, defining the
number of events of the i type:

niM̃i(x̃)δx ≡
∑
e⊂x′

Pi(ye) (38)

where the sum runs over the events for which xe ∈ x′. Following this construction, x′ represents a
bin of δx centered in x, niM̃i(x̃)δx represents the distribution of x obtained by “histogramming” the
events using Pi as weight. On average, this procedures reproduces the true distribution Mn(x̃) of x.
In fact on average, and in the limit of infinitesimal bin widths δx, the discrete sum in Equation 38 can
be replaced by:

E[
∑
e⊂x′

]→
∫
dy′

ns∑
k=1

nkfk(y
′) · δ(x(y′)− x̃)δx (39)

Analogously, considering ni as the expected number of events for the species i, Equation 38 becomes:

E[niM̃i(x̃)] =

∫
dy′

ns∑
k=1

nkfk(y
′) · δ(x(y′)− x̃) · δx · Pi(y′)

=

∫
dy′

ns∑
k=1

nkfk(y
′) · δ(x(y′)− x̃) · δx · nifi(y

′)∑ns
k′=1 nk′fk′(y

′)

= ni

∫
dy′ δ(x(y′)− x̃)fi(y

′)

≡ niMi(x̃)

(40)
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with Mn(x̃) being the true distribution of x. However, in this construction the weight Pi implicitly
depends on the pdfs of x via the test function δ(x(y)− x̃), which is equivalent to require fits to be
performed into sufficient small bins in x.

Assuming that the two sets of variables x and y are uncorrelated, the total pdfs fk(x,y) which
appear in Equation 40 factorize into the product Mk(x)fk(y), leading to:

E[niM̃i(x̃)] =

∫ ∫
dy′dx′

ns∑
k=1

nkMk(x
′)fk(y

′) · δ(x′ − x̃) · Pi(y′)

=

∫
dy′

ns∑
k=1

nkMk(x̃)fk(y
′) · nifi(y

′)∑ns
k′=1 nk′fk′(y

′)

= ni

ns∑
k=1

Mk(x̃)
(
nk

∫
dy′

fn(y′)fk(y
′)∑ns

k′=1 nk′fk′

)
6= niMi(x̃)

(41)

Equation 41 does not give the same results as before because of the correction term in parentheses.
However the extended log-likelihood can be introduced, which in this case looks:

L =

n∑
e=1

ln
( ns∑
k=1

nkfk(ye)
)
−

ns∑
k=1

nk (42)

and it can be observed that the correction term in Equation 41 is related to the inverse of the covariance
matrix given by the second derivatives of L, which is minimised by the fits:

V −1
qr =

∂2(−L)

∂nq∂nr
=

n∑
e=1

fq(ye)fr(ye)

(
∑ns

k′=1 nk′fk′(ye))
2

(43)

On average, and in the limit of small δx:

E[V −1
qr ] =

∫ ∫
dy′dx′

ns∑
k′=1

nk′Mk′(x
′)fk′(x

′)
fq(y

′)fr(y
′)

(
∑ns

k′ nk′fk′(y
′))2

=

∫
dy′

ns∑
k′

nk′fk′(y
′)

fq(y
′)fr(y

′)

(
∑ns

k′ nk′fk′(y
′))2
·
∫
Mk′(x

′)dx′

=

∫
fq(y

′)fr(y
′)∑ns

k′=1 nk′fk′(y
′)
dy′

(44)

which can be used in Equation 41 to rewrite it as:

E[M̃i(x̃)] =

ns∑
k

Mk(x̃) · nk · E[V −1
ik ] (45)

and inverting it, the initial distribution of interested is recovered:

niMi(x̃) =

ns∑
k

E[Vik] · E[M̃i(x̃)] (46)

This result can be formulated as follow: when x and y are uncorrelated variables, a new weight P si ,
referred in the following as s-weight, replaces the näıve weight:

P si (ye) =

∑ns
k=1 Vik · fk(ye)∑ns
k′ nk′fk′(ye)

(47)
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With the above defined s-weight, the distributions of the control variables can be obtained from the
sPlot histogram:

niM̃
s
i (x̃)δx ≡

∑
e⊂x′

P si (ye) (48)

and on average the true distributions are reproduced:

E[niM̃
s
i (x̃)] = niMi(x) (49)

Hence the s-weighting procedure results in a set of s-weights for each of the species included in the
model, for each of the measurements. In this analysis, s-weights are used to indicate how much a
candidate is likely to belong either to the signal species, or to the background ones.

3.2.4 Hypothesis testing and confidence interval

The agreement between the data and model used in this analysis is assessed by statistical inference.
The methods employed are based on the hypothesis testing procedure developed by Neyman and
Pearson [80], formulated from the null hypothesis and significance test theories by Fisher [81].

In the Neyman scheme two hypotheses H0 and H1, respectively referred to as null and alternate,
are tested based on the observed data. The test assesses the validity of one of the two hypotheses
against the other. Let x be a set of measurements xi, and S the space of all the possible outcomes.
The space S is divided in two regions, the critical region w and its complementary w, called acceptance
region. The level of agreement of a hypothesis with the observations is determined by a function of the
observations, called test statistic t(x). If the test statistics t(x) falls in the critical region w, then H0 is
rejected and H1 is accepted. If t(x) lies in the acceptance region w, H0 cannot be rejected. However,
the separation of the regions could be not perfectly efficient, leading to some observations falling in the
wrong partition, with a consequent contamination of the classes.

The test is adjusted by defining a critical region w such that the probability of losses, meaning the
probability of rejecting H0 when it is true, is kept smaller or equal to a fixed value α:

p(t ∈ w|H0 is true) =

∫
w
g(t′|H0 is true) dt′ ≤ α (50)

with g(t) being the pdf of the test statistic t(x). The probability α is said significance of the test. On
the other hand, the H1 hypothesis could be rejected while it is true, with a probability β:

p(t ∈ w|H1 is true) =

∫
w
g(t′|H1 is true) dt′ = β (51)

The probabilities α and β are called errors of the first and second type respectively. The test is prepared
by fixing α, and minimizing β. Finally, the probability of correctly classify H1 is called power of the
test:

p(t ∈ w|H1 is true) =

∫
w
g(t′|H1 is true) dt′ = 1− β (52)

and in general it depends on the choice of H1.
A concept closely related to hypothesis testing is the so-called confidence interval (CI) of a value of

a unknown parameter θ [82]. The CI is a type of interval estimate that might contain the true value
θtrue of the parameter under consideration, and it is defined from the choice of an associated confidence
level (CL). The confidence interval is constructed in such a way that, in new possible measurements
collected in the same conditions as the already observed ones, θtrue would be included in the interval a
fraction CL of times, as the number of measurements tends to infinity. The CL quantifies the level of
confidence that the true value of the parameter lies in the interval defined by the CI. Following this
construction, a given confidence level characterises a family of confidence intervals. It is important
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to stress that a given CL value for a confidence interval does not represent the probability that the
parameter value lies within the interval 14 . Instead, the confidence level of a CI gives a measure of the
reliability of the estimation procedure.

Following the above definitions, a confidence interval of fixed CL for the parameter θ is constructed
by finding all the true hypothetical values θtrue which are not rejected in a test of size 1 - CL, given an
observed value θobs of the parameter. Strictly speaking, the confidence interval is built by repeating a
hypothesis test for each value in the interval itself. This procedure is said inversion of a hypothesis test.

By definition, a confidence interval refers to a single observed value θobs of the parameter under
interest. A confidence belt is then introduced as a set of confidence intervals of fixed CL for different
possible outcomes of the measurement. This analysis exploits the profile likelihood ratio test technique
to build confidence belts referred to a variety of hypotheses, as it is described in the next section.

3.2.5 Profile likelihood ratio test

The statistical significance of the results of this analysis is assessed by performing profile likelihood
ratio tests [83]. Various hypotheses are tested, and hereafter a set of associated confidence intervals
are built. In particular this analysis is interested into evaluating the significance of the observation of
pentaquark candidates in Λ0

b → Λ+
c D0K− decays. The recourse to this procedure is motivated by the

Neyman-Pearson lemma [80], which states that the likelihood ratio test is the most powerful test (i.e.
it guarantees the maximum power 1 - β for a given significance α) to test two statistical hypotheses.
The test is introduced in the following.

Let us introduce a model describing the observable µ, which depends on a set of nuisance parameters
ω. We are interested to test a hypothesised value µ̃ of the observable. In this analysis, µ is represented
by the strength of the pentaquark presence in the sample and the remaining parameters of the amplitude
model correspond to ω. In the following µ is assumed to be non-negative, which reflects the definition
of the physically-allowed region for the observation of pentaquark signals. The profile likelihood ratio it
is introduced as:

λ(µ̃) ≡ L(µ̃, ω̂)

L(µMLE ,ωMLE)
(53)

where µMLE and ωMLE are the maximum-likelihood estimators (MLE) of µ and ω respectively. They
are obtained by maximising the unconditional, i.e. with no imposed conditions, likelihood function at
the denominator of Equation 53. In the numerator, the observable µ is kept fixed to the value µ̃ which
is under hypothesis, while ω̂ is the MLE estimator of ω of the conditional likelihood. The latter is
conditioned having fixed the observable to the constant value µ̃. From Equation 53 the test statistic
t(µ̃) can be defined as:

t(µ̃) ≡ −2 lnλ(µ̃) (54)

The global minimum of t(µ̃) represents the best compatibility between the data and the hypothesised
value µ̃. Increasing values of t(µ̃) reflect a higher level of disagreement between the considered
hypothesis and the data.

By inversion of the profile likelihood ratio test (Sec. 3.2.4), it is possible to build a confidence
interval for the observable µ. This interval contains all values µ0 such that a two-sided test 15 of the
null hypothesis H0 : µ = µ0 would not be rejected at a fixed level α of significance. The associated
confidence level of the interval is α. Under the assumption of the null hypothesis being true, the
Wilks’ theorem [84] states that t(µ) asymptotically follows a χ2 distribution. Basing on this result and

14As Neyman was pointing in his original paper [82]: “Consider now the case when a sample is already drawn, and the
calculations have given [particular limits]. Can we say that in this particular case the probability of the true value [falling
between these limits] is equal to α? The answer is obviously in the negative. The parameter is an unknown constant, and
no probability statement concerning its value may be made.”

15A statistical test is said two-sided if it tests the statistical significance of values which can be smaller or higher than
the hypothesised value of the parameter under test.
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Figure 21: a) Profile likelihood ratio distribution obtained from pseudo-experiments, for a true value 0.05 of
the Pc fraction. The vertical lines define the shortest CI interval of 95% CL. b) Confidence belt obtained using
profile likelihood ratio tests from pseudo-experiments. Coverage region of 68% is highlighted in green, of 95% in
yellow. For a measured value 0.04 of the Pc fraction, the [0.025, 0.052] interval with 95% CL is defined by the
horizontal lines.

profiling the likelihood ratio in only one parameter (µ), the hypothesis H0 is not rejected at a level α
of significance when the following relation holds [83]:

t(µ) < χ2
1−α(ndof = 1) (55)

Let us consider the particular case of α = 0.95 representing a 95% confidence level interval. From
Equation 55 the boundaries of the acceptance region are defined by the values of µ such that t(µ) =
χ2

0.05(n.d.of. = 1) = 3.84. Note that the above-defined acceptance region is referred to a unique true
value of the parameter µ, which is however unknown when performing the statistical test on real data.
Thus, a set of true values of µ are considered, and a profile likelihood ratio test repeated for each
of them. The ensemble of acceptance regions obtained in this way defines a confidence belt for the
hypothesised values µtrue, versus the (potentially) measured values µobs. A pedagogical example is
shown in Figure 21, in which an arbitrary fit fraction value of 5% for a pentaquark state is tested
on pseudo-experiments. A pseudo-sample is generated with a fixed pentaquark contribution. Next, a
profile likelihood ratio test is performed by fitting the sample with the unconditional likelihood (i.e.
fitting the fit fraction of the pentaquark), and for various hypotheses of the pentaquark fit fraction
(with the pentaquark fraction being constrained in the fit). This procedure is repeated for a set of
true contributions of pentaquarks, by generating different pseudo-samples and performing the profile
likelihood ratio test over them. The confidence belt is built before the actual measurement of µ from
the data, generally employing pseudo-experiments. Once the value of the parameter µ is measured in
the experiment, a vertical line is drawn corresponding to it. The lower and upper boundaries of the CI
defined by this measurement are given by the true values of µ corresponding to the interceptions of the
confidence belt with the above-constructed vertical line. In the example in Figure 21, for a measured
value 0.04 of the Pc fit fraction the shortest 16 95% CL interval is given by the [0.025, 0.052] interval.

The above-described procedure results in confidence belts which are valid for setting upper limits
and quoting two-sided confidence intervals in a unified way. The first case refers to the observation
of a negligible value (or smaller than the experiment sensitivity) of µ. The latter corresponds to a
measurement of µ which is different from zero, in a statistical meaningful way. Thanks to this unified
construction, hypotheses a-priori of the measurement regarding the expected value of µ are not required.

16Remember that a given CL defines a family of confidence intervals. Therefore, a criterion must be defined to choose a
CI. In this analysis the shortest interval related to a CL is chosen.
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Moreover, the confidence belt is built before the actual experiment is performed. This is a key aspect,
since confidence intervals näıvely built a-posteriori, basing on the observed data, might not fulfill the
required coverage [85]. Basing on these properties, this statistical procedure can be considered similar
to the unified approach of building confidence intervals proposed by Feldman and Cousins in [85].

3.2.6 Boosted Decision Tree classifiers

A number of techniques exists to address the problem of classifying observations into classes, such as
categorising an event as signal or background. Methods based on multivariate-analysis, i.e. capable to
combine several discriminating variables into one final discriminator, are particularly powerful. Among
them, this analysis makes use of so-called Boosted Decision Trees (BDT) classifiers to enhance the
signal and background separation in the data sample. A decision tree is defined by a consecutive set of
nodes representing rectangular cuts with binary outcome, and by final decisions referred to as leaves.
A sketch of a decision tree structure is shown in Figure 22.
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Figure 22: Schematic structure of a decision tree. A consecutive set of nodes represents a rectangular cuts with
binary outcome. The final classifier responses (either S or B) are represented by the tree leaves.

A decision tree has to be trained on a data set which already provides the outcome of the classification
process, such as simulated samples in which events are a-priori generated and labelled in different
categories. An important concept is the separation gain, which measures the separation between the
different populations consisting the sample, determined by a specific metric function. As example, one
of the most used metric is the so-called Gini-index [86], measuring the separation as p(1− p), with p
being the purity of the partitions determined by the decision tree. The node structure of the classifier
is optimised by maximising recursively the separation gain between the nodes. Equivalently, the
optimisation of the decision tree proceeds through the minimisation of the classification loss function,
which represents the mis-classification risk in a classification problem.

Despite decision trees are easy to interpret and relatively fast to train, a single independent tree is
not very strong in classification power. A common approach is to consider an ensemble of independent
trees, referred to as random forest, which combines the outcomes of all the trees to extrapolate its final
decision. In this way, many weak learners are combined in a strong classifier. Each tree of the forest
is created iteratively, and a weight is assigned to its output representing the related accuracy. Many
methods how to train a random forest have been developed. In this analysis the boosting method is
employed, which assigns to each sample a weight based on its mis-classification, after each iteration.
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The importance of mis-classified samples is then enhanced in the next iterations with respect to the
correctly-classified ones, so that the next trees improve the classification power over them. Random
forests trained with boosting techniques are referred to as boosted decision trees (BDTs). The gradient
boosting method is employed in this analysis for training BDTs [87]. This technique generalises the
definition of the BDT model by allowing the optimisation of arbitrary differentiable loss functions, and
proceeds by iteratively choosing a function which points in the negative gradient direction of the loss.

Although their power in addressing classification problems, BDTs are subjected to overtraining.
By construction, they tend to optimise their classification response to specific features of the training
sample which are not representative of a more general (or different) sample. As example, BDTs can be
overtrained by statistical fluctuations of the training sample. This issue is approached by exploiting the
bootstrap aggregating method, also known as bagging [88]. Given a training sample, bagging randomly
generates a number of sub-samples by sampling uniformly and with replacement the initial sample.
This means that the same elements might be included in multiple sub-samples. The BDT is then
trained on each of the sub-sample, and the final response is obtained by averaging or voting the single
outputs. Following this procedure, the possibility of overtrain a BDT is much reduced.

3.3 Software framework

This analysis makes use of an elaborate software framework, which relies on a number of software
packages developed in the specific context of this measurement or which are provided by the LHCb
Collaboration. Also, modern strategies of analysis preservation and replicability are employed, to
ensure the possibility to reproduce the analysis in a straightforward way and to preserve it in the
future. The main software strategies and packages are described in the following.

3.3.1 Software for particle identification of final-state tracks

Usage of particle identification (PID) information is of crucial importance in the LHCb experiment.
They hold a key role for defining a highly-efficient selection of signal events and an effective rejection of
background constituted by mis-identified particles. Particle identification of charged particles involve all
the devoted subdetectors of LHCb such as the RICH detectors, the calorimetric system and the muon
detectors (Secs. 2.2-2.3.2). A good description of their combined response, which also depends on the
kinematic of the particles, on the beam conditions, and on event-level quantities, is non trivial in the
simulation. Hence, data-driven techniques have been developed in LHCb to measure the performances
(efficiency and purity) of PID selections of final-state charged particles (protons, muons, charged kaons
and pions). Calibration data samples are provided where candidates have been selected without the use
of PID information. Then, arbitrary particle identification requirements can be tested. The response of
the PID variables (such as the PIDi and ProbNNi variables introduced in Section 2.3.2) are parametrised
in a set of variables, and their performances determined in function of them. Often, the most relevant
variables are the particle momentum and the track multiplicity in the event. Parametrised in such a
way, the obtained PID performances are valid for any track regardless if it belongs to the calibration
sample or not. This allows any analysis in LHCb to rely on the above-described calibration of the PID
variables and performance determination.

The PIDCalib software package [89], developed by the LHCb Collaboration, collects all the tools
needed for evaluating the performances of PID selections. The full parametrisation of the PID
performances allows to build efficiency look up tables from which the efficiency of a particular PID
selection can be extracted and combined with the efficiencies of the remaining selections.

3.3.2 Boosted Decision Trees classifiers for selection of charmed hadrons

Hadronic decays of beauty hadrons to final states with charmed hadrons play an important role in
the LHCb physics program. However, they are experimentally challenging because of the typical
large multiplicity of final state charged particles, ∼ 5 − 8 tracks, resulting in a large combinatorial
background. The latter can be reduced by applying PID selections on the final state particles. However,

37



the PID variables introduced in Section 2.3.2 have an important limitation: they neglect the existing
correlations between particles in the same events, and in particular originating from the same decay
process. In fact, the PID calibration is performed assuming that all particles are uncorrelated.

A more powerful selection can be achieved by making use of the correlations between the particle
identification information of these particles. Within this context, [90] introduced the idea of multivariate
classifiers trained to act as PID-like variables on non-prompt charm hadrons. Boosted Decision Trees
classifiers have been developed, referred to as D-from-B BDTs, and re-optimised in [91] in the context
of the branching fraction measurement of Λ0

b → Λ+
c D0K− decays. These BDTs are trained in a purely

data-driven way, by combining raw-PID information from the PID detectors and kinematic variables of
the c-hadron daughters. Calibration samples of Λ0

b → Λ+
c π
−, B− → D0π− and B0

s → D+
s π
− decays are

employed to train the BDTs to classify non-prompt Λ+
c (→ pK−π+), D0(→ K−π+), D+

s (→ K+K−π+)
charm hadrons in generic b-decays.

D-from-B BDTs have been proved to outperform standard cut-based or likelihood-based selections
of c-hadrons in signal selection efficiency and background rejection. Their power mainly comes from the
exploitation of the correlations in the responses of the PID detectors to the detection of the c-hadrons
daughters, in contrast to selections based on standard PID variables. D-from-B BDTs are employed in
this analysis for the selection of Λ+

c and D0 candidates.

3.3.3 TensorFlow-based framework for amplitude fits

TensorFlow [7] is an open-source software library for data-flow programming, which has the potential
to cross a large variety of tasks. It has been internally developed by Google within the Google Brain
project [92], and released with open-source license at the end of 2015. It was initially developed for
machine learning applications, and optimised to process large data-flows in highly-parallelised streams
over multiple computational architectures as CPUs and GPUs.

TensorFlow allows developers to create data-flow graphs, structures that describe how data moves
through a graph, or a series of processing nodes. Each node in the graph represents a mathematical
operation, and each connection between nodes is a multidimensional data array, or tensor. Data-flow
graphs are characterised by the relations existing between the data and operations, rather than by the
data itself. Therefore they are optimal in order to identify processes that can be executed in parallel,
and distributed over multiple devices and architectures.

Despite that the original purpose of TensorFlow has been to address machine learning problems, its
flexibility can be exploited to process in an efficient way the large amount of data that the experiments
at the LHC have collected in the last years. A pioneering software library based on TensorFlow,
TensorFlowAnalysis [93], is available in LHCb. It collects a set of scripts and functions useful for data
analysis.

In this analysis a complete framework for amplitude fitting has been implemented from first
principles, the TOAST fitter [94]. It relies on TensorFlow and on the basic functions provided by
the TensorFlowAnalysis library, such as the definitions of the main variable types, the mathematical
operations and the transformations between reference systems. The TOAST framework implements the
core part of the amplitude fit: the definition of the resonances and decays structures, the building of
the amplitude model, the handling of the amplitude parameters and the operations between them, the
fit itself, the input/output handling of the data and configurations. The framework is integrated with
PyROOT [95], the Python-based extension of the ROOT data analysis framework widely used in High
Energy Physics. This grants the access to the vast and standardised collection of libraries, classes and
functions implemented in ROOT. In particular, the highly-optimised likelihood minimisation package
of ROOT, Minuit [96, 97], is exploited by the amplitude fitter.

The TOAST fitter is fully-configurable via configuration files and options provided at command
prompt level. Scripts for performing pseudo-experiments, for fitting and for plotting are provided, and
they can be configured to be used for the different use-cases. The fitter is fully generic, and applicable
to any amplitude fits of decay channels with similar spin structure of the Λ0

b → Λ+
c D0K− channel.

This implies that, for most of the cases, analysts only need to configure the existing scripts to perform
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an amplitude fit instead of writing their own fitting routines. Development are ongoing to further
generalise the fitter to decays with different spin structures. The fitter is capable to run over CPU- or
GPU-based systems either, thanks to the flexibility provided by TensorFlow. The exact same code runs
over different architectures, which are enabled by setting a single configurable option. Configurations
are provided to run the fitter over local systems, over the CERN login machines lxplus [98], and on
the centralised batch system of CERN [99]. The fitting framework is integrated with the strategies of
analysis preservation and reproducibility that are described in Section 3.3.4. A modularised approach
is embraced in the framework: all the external libraries are included as so-called submodules [100], in
dedicated sub-directories of the fitter repository. This allows to keep the different software libraries
independent to each other, a key point in order to be able to develop them independently. The
modularised approach is particularly powerful when using libraries which are co-used by other software
projects, thus evolving on a time schedule which might be different to the own software. The code
of the TOAST fitter [94] is made public with LGPGL license 17 and re-usable. This analysis, and
specifically its amplitude fitter TOAST, represents one of the first examples in the LHCb collaboration
of application of TensorFlow in amplitude fits.

Considerable efforts have been invested in the implementation of the fitting framework, mainly due
to its basing on recent computing paradigm and libraries. On the other hand, the native parallelism
offered by TensorFlow grants immediate benefits from the point of view of the fitting execution time.
Amplitude fits are renowned for their computational complexity, and with standard code they can
take hours to days to be performed. Without any particular optimisation of the TOAST framework
code for what concerns the execution time, in this analysis the generation of pseudo-experiments and
amplitude fits of data with about ∼ 50 variables takes ∼ 5− 30 minutes on a 8-threads CPU mounted
on a commercial laptop. The most expensive process of the fit is the minimisation of the likelihood:
performing it on a non recent laptop GPU takes on average ≈ 40 − 50% less time. A dedicated
optimisation of the code would surely improve these performances, especially for running over GPU-
based systems. Nevertheless these numbers should be taken with a grain of salt, because the complexity
of amplitude fits, and therefore their execution time, widely depends on the particular problem and
amplitude model. However, TensorFlow-based frameworks show great potential to drastically reduce
the computational resources needed by amplitude fits, even with practically no optimisation of the
code.

3.3.4 Strategies of analysis preservation

The LHC provided a un-precedent high number of pp collisions to the experiments, resulting in vast
data samples collected over Run 1 and Run 2. Together with the large scale of the collaborations, which
extend from hundreds to thousands of scientists, the data preservation and the capability of reproducing
analysis results in the future are gaining in importance and they are taking a large role in the analysis
“good-practices”. A comprehensive summary of the main techniques adopted by CERN experiments for
analysis preservation is presented in [102]. The analyses of the Λ0

b → Λ+
c D0K− channel (starting with

the branching fraction measurement, to the current amplitude analysis) make use of advanced strategies
of data preservation, and have represented prototypes of “preserved and reproducible” measurements
in LHCb.

The full analysis code [103], comprehending source code and scripts, is hosted on GitLab [104], a
web-based Git-repository manager widely used by large technology companies. It provides easy tools
for team-collaboration on software development, and all the LHCb software projects are hosted through
it. Users can develop their code or improve parts of a software package by working on branches or
forks of the main software repository. They can submit their changes in merge requests, so that other
developers can review it and spot possible mistakes or room for improvements. Once the merge request

17GNU Lesser General Public License (LGPL) [101] is a free-software license. It allows developers to use and integrate
a software component (released under the LGPL) into their own (even proprietary) software without being required to
release the source code of their own components. However, any developer who modifies an LGPL-covered component is
required to make their modified version available under the same LGPL license.
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has been reviewed and accepted, the related code will be part of the main software project. This
analysis also embraces the so-called Continuous Integration (CI) integrated within GitLab. The CI is
a software development practice in which the code is built and tested every time that the developer
pushes it to the repository, minimising the occurrences that the changes in the code break the existing
software. Continuous Integration builds are running over dedicated servers: some CERN Virtual
Machine [105] instances have been configured as CI servers of this analysis, on slots provided by the
CERN OpenStack service [106].

The analysis workflow is fully automated exploiting the Snakemake functionalities [107]. Snakemake
is a workflow management tool focused on creating reproducible and scalable data analyses in a human
readable Python language. Snakemake-based workflows are defined by rules, each of them have input
and output defined by the developer. Once all the input and output relationships between the rules
have been defined, Snakemake builds automatically the workflow needed to produce the required
outputs. With a well defined workflow, analysis can be literally run with one single command making
straightforward to reproduce them. To avoid steps of the analysis, i.e. specific rules, to be re-run
when it is not required, Snakemake detects which of the needed outputs are missing, and triggers the
execution of the related rules only. If the output of an intermediate rule, which is used as input for a
subsequent part of the workflow, needs to be reproduced, all the rules in the workflow which depend of
that file are re-run. With a simple adaption of the code, it is also possible to instruct Snakemake to
check for eventual modifications of the code between commits of the repository, to trigger a re-run of
the related rules. All these features grant a full consistency of the intermediate and final results of the
analyses, at the same time optimising the execution time and the computing resources.

Reproducibility of the analysis is finally ensured by detailed instructions provided in the GitLab
repository how to set the needed software requirements, and how to run it. Configurations to run
the analysis over multiple platforms, like on the lxplus machines at CERN, on local clusters of the
Heidelberg University or on local machines, are provided.

The analysis is also integrated with the Docker [108] application. Docker is a software that performs
operating-system-level virtualisation, by running software packages called containers. Containers are
isolated from each other and bundle their own application, tools, libraries and configurations. All
containers are run by a single operating-system kernel and are thus more lightweight than standard
virtual machines. Containers are created from images that specify their precise contents. Docker
images into which is possible to run the analysis are also shipped with the analysis code. They allow
to run the analysis on any local or cluster system with Docker installed, without any specific software
requirement on the hosting machine. Docker images are also used to configure the instances of the CI
servers.

Data and simulated samples used for this analysis are stored on dedicated EOS [109] space at CERN,
for preservation and to make easier the analysis to be reproduced. EOS is a disk-based, low-latency
storage service provided by CERN. The main target area for the service is physics data analysis, which
is characterised by many concurrent users, a significant fraction of random data access and a large
file-open rate.
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4 Data selection and mass fits

The data sample used in this analysis must first be selected online by the L0, HLT1 and HLT2 trigger
systems of LHCb introduced in Section 2.3.3, then reconstructed offline, and selected by a dedicated
stripping selection (Sec. 2.3.3). Finally, the sample is refined by selection criteria specific to this
analysis. The online and offline selections are detailed in Section 4.1.

Once the signal data sample is defined, eventual multiple signal candidates present in the same
event are removed as it is described in Section 4.2. Events are then categorised to be signal- and
background-like by performing mass fits based on the sPlot technique introduced in Section 3.2.3. In
the branching fraction measurement of the channel under analysis [6], three-dimensional fits in the Λ0

b,
Λ+

c , D0 invariant mass distributions were required in order to fit the partially-reconstructed channel
Λ0

b → Λ+
c D0∗K−. In this analysis only the fully-reconstructed decay Λ0

b → Λ+
c D0K− is investigated,

thus a simpler and more stable one-dimensional fit in the Λ0
b invariant mass distribution is considered.

Three-dimensional and one-dimensional fits on the signal channel Λ0
b → Λ+

c D0K− are compared in
Sections 4.3.

4.1 Data selection

The Λ0
b → Λ+

c D0K− process investigated in this analysis proceeds through sequential decays of the Λ0
b,

Λ+
c and D0 particles, as sketched in Figure 23. The Λ0

b is produced in the primary vertex (PV ) of the
pp interaction, and flies in the detector for ∼mm-cm before decaying into the Λ+

c , D0 and K−. The
Λ+

c and D0 fly for a similar distance, before decaying into their stable daughters. Reconstructing the
final state particles of the overall decay (the bachelor K− from the Λ0

b and the Λ+
c , D0 daughters), the

secondary vertices (SVs) of the Λ0
b, Λ+

c and D0 decays can be reconstructed. The flight distance of the
decaying particles is large enough to be directly measured in the vertex detector. Thus requirements on
the displacement of particles with respect the PV and the SVs are the key ingredients for discriminating
signal candidates from background. Candidates are also required to have a relatively large momentum,
in order to reject background from soft collisions. These are the main requirements applied by the
online trigger selection, and they are detailed in Section 4.1.1.

The offline selection is more sophisticated, and makes use of particle identification information and
BDT classifiers trained to reject background. It is described in Sections 4.1.2-4.1.3.

4.1.1 Online selection

Events are first processed by the L0 hardware trigger. For the specific case of this analysis, all events
passing the L0Physics decision are considered. This decision is positive if at least one of the L0
physics-trigger lines 18 results in a positive decision. The most relevant L0 trigger line for the signal
channel of this analysis is the L0HadronDecision line. It selects events with a relatively large transverse
energy deposit in the hadronic calorimeter, to reject background events of elastic or soft collisions. The
L0HadronDecision energy thresholds are listed in Table 7, depending on the year of data taking. The
efficiency of the L0 trigger selection on Λ0

b → Λ+
c D0K− decays is ∼ 35− 45% for Λ0

b particles decaying
in the detector acceptance. The L0 trigger efficiency for this channel is not too high mainly because of

18L0 trigger lines are split between physics and operational ones. The latter are implemented for luminosity measurement
and rejection of events with too high pile-up.
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Figure 23: Sketch of the Λ0
b → Λ+

c D0K−signal decay. The Λ0
b is produced from the primary vertex (PV ) of

the pp interactions and flies for ∼mm-cm, before decaying into the Λ+
c , D0, K− particles (green dots). The Λ+

c

and D0 further decay into the final-state particles (blue dots). Dotted lines represent the path of neutral states,
which cannot be detected by the tracking detectors. Other particles produced in the PV, and their eventual
decay products, represent background from the underlying event.

the large number of final-state particles, which result in a relatively high chance for particles to escape
from the calorimeter acceptance.

2011 2012 2015 2016 2017, 2018

Et threshold 3.5 GeV 3.7 GeV 3.6 GeV 4.0 GeV 3.8 GeV

Table 7: Thresholds of the transverse energy deposited in the hadronic calorimeters for the L0HadronDecision
trigger line, depending on the year of data taking.

Events must then trigger a positive Hlt1TrackAllL0 decision [110]. This trigger line selects events
which include a well reconstructed track with a sufficient number of hits in the tracking detectors and
a small track-χ2 from the HLT1 reconstruction. The track is also required to have a relatively large
transverse momentum and impact parameter (IP) from the primary vertex, to reject prompt background.
The requirements are specified in Table 8. The selection efficiency of the HLT1 requirements on the
Λ0

b → Λ+
c D0K− channel is ∼ 50 − 55%, on L0-selected events. The trigger efficiency is limited by

the relatively small momenta carried by the final-state particles of this channel, since the initial Λ0
b

momentum has to be spread between the six final particles.

Quantity Cut value

Kinematic cuts p > 10 GeV/c, pt > 1.7 GeV/c
Minimum number of VELO hits 10

Minimum number of IT hits (x2) + OT hits 17
Reconstruction cuts track-χ2/ndof < 2.

Displacement cut IP (PV ) > 100 µm, IP χ2(PV ) > 16.

Table 8: Requirements of the Hlt1TrackAllL0 trigger line. Each hit of the Inner Tracker (IT) is given a weight of
2 to account for the smaller number of tracking layers in the IT region, with respect the number of active sensor
layers in the Outer Tracker region (see Section 2.1).

Finally, events must pass at least one of the Hlt2Topological trigger lines [111], a set of inclusive
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trigger lines based on BDT classifiers trained to select n = 2, 3, 4-body B decays with high signal
efficiency and large background rejection. Tracks which are input to the HLT2 topological lines
are required to have a relatively large momentum. A small track-χ2 from the HLT2 reconstruction
and a large IP χ2 are required to suppress background from ghosts (reconstructed tracks which
do not correspond to real particles intersecting the detector) and prompt particles. A summary of
the requirements on the input particles of the Hlt2Topological trigger lines is listed in Table 9. The
selection efficiency of the HLT2 requirements on the Λ0

b → Λ+
c D0K− channel is ∼ 50%, on L0- and

HLT1-selected events.

Quantity Cut value

Kinematic cuts p > 5 GeV/c, pt > 0.5 GeV/c
Reconstruction cuts track-χ2/ndof < 5.

Displacement cut IP χ2(PV ) > 16.

Table 9: Requirements on the input particles of the Hlt2Topological trigger lines.

An important point of the HLT2 topological trigger lines is how the candidates are built. Two input
particles are combined to form a two-body object. Another input particle is added to the two-body
object to build a three-body object. A fourth particle is added to the three-body object to constitute a
four-body candidate. Thus, an n-body candidate is formed by combining an (n - 1)-body candidate
and an additional particle, not by combining n particles. This is a crucial difference, and it greatly
improves the efficiency of the HLT2 topological lines [111].

4.1.2 Selection of the offline processing

Events which pass the online trigger selection are reconstructed offline, and further selected by the
X2LcD0KD02KPiBeauty2Charm stripping line. This line is constructed to select {Λ0

b,B
0,B0

s} →
Λ+

c D0K− decays, with the D0 decaying into K+π−. The line requires that events have passed any of
the Hlt2Topological trigger lines or any of the Hlt2*IncPhi lines. The latter are not relevant for this
analysis. Events with more than 500 tracks reconstructed as long tracks are discarded by the stripping
line, since a too high track multiplicity could lead to a too large rate of fake signal candidates built
from combinatorial background. In 2018, the data taking period with the highest track multiplicity
per event, the average number of reconstructed long tracks has been ∼ 100 per event and about 98%
of events had less than 500 long tracks.

The reconstructed final state particles p, K, π which are input to the stripping selection are required
to be reconstructed as long tracks, and to fulfil a requirement on the clone distance [112]. This quantity
is useful to reject clone tracks which are sharing only few hits in the tracking detectors but are very
close in phase-space. Loose cuts on the momentum are applied to the final state particles p, K, π.
They are required to be well reconstructed based on their track-χ2/ndof value resulting from the
Kalman fit performed in the offline reconstruction, and to have a small track ghost-probability (see
Section 2.3.2). Finally, they are required to be displaced from the primary vertex of the pp interaction
by requiring a large impact parameter χ2 resulting from the vertex fit. A summary of these base cuts
on the final state particles is listed in Table 10.

As next step, the intermediate Λ+
c and D0 are built from the previously-selected final state particles

applying further selection cuts. Loose particle identification requirements are applied to the p, K and
π particles. In particular, it is asked that the pions a have small probability to be identified as kaons.
All two-particle combinations used to form the c-hadrons are required to have a small distance of
closest approach. A cut on the minimum value of the summed transverse momentum of the c-hadron
daughters is applied, and at least one daughter is required to have large momentum and to be well
reconstructed. Finally, the combined invariant masses of the daughters must be close enough to the
masses of the respective c-hadrons. These selection cuts are detailed in Table 11, and are applied
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Quantity Cut value

Kinematic cuts p > 1 GeV/c, pt > 0.1 GeV/c
Reconstruction cuts track-χ2/ndof < 3., track ghost-probability < 0.4

Displacement cut IP χ2(PV ) > 4.

Table 10: Base selection cuts applied to the final state particles by the X2LcD0KD02KPiBeauty2Charm stripping
line.

Quantity Cut value

PID on p and K PIDp > −10., PIDK > −10.
PID on π PIDK < 20.

Distance of closest-approach DOCA < 0.5 mm
Sum of daughters’ pt

∑
i∈{daughters} pt,i > 1.8 GeV/c

Leading daughter track-χ2/ndof < 2.5, p > 5. GeV/c, pt > 0.5 GeV/c
Combined invariant mass, Λ+

c |m−m
Λ+

c
| < 0.1 GeV/c2

Combined invariant mass, D0 1764.85 MeV/c2 < m < 1964.84 MeV/c2

Table 11: Selection cuts applied by the stripping selection to the final state particles, to form the Λ+
c and D0.

The PIDj variables are the differences in the log-likelihood for each track between the j mass hypothesis and
the pion mass assignment, as defined in Section 2.3.2. The cuts are applied independently to the Λ+

c and D0

candidates.

independently to the Λ+
c and D0.

After that, a vertex fit is performed combining the c-hadron daughter particles, and cuts are applied
to the Λ+

c and D0 candidates. Prompt c-hadrons are rejected by cutting on the χ2-distance calculated
with respect to the related primary vertex. The decay vertices of the c-hadrons are required to be well
reconstructed by the vertex fit. The c-hadrons also have to point downstream with respect to the PV,
using the cosine of the angle between the hadron momentum and the vector pointing from the PV to
the hadron vertex. The above-mentioned selection is listed in Table 12.

The Λ0
b signal candidates are formed from the previously-built c-hadron candidates and the bachelor

K−, applying the final stripping selection. The bachelor track is required to have large momentum, and
to be well reconstructed. A cut on the minimum value of the summed transverse momentum of the
b-hadron (including eventual soft photons) is applied. At least one b-daughter (referred to as b-leading
daughter) is required to have large momentum, to be well reconstructed, and to be displaced from any
PV having large impact parameter value and χ2. The b-hadron candidate must point back to the best
primary vertex, using the cosine of the angle between its momentum and the vector pointing from the
PV to the decay vertex. The b-hadron is required to originate from the best primary vertex selecting on
the impact parameter χ2, and its decay vertex has to be well reconstructed. Combinatorial background
from the PV is rejected requiring the b-hadron to have a sufficiently large lifetime computed with
respect the best primary vertex. Finally, the combined invariant mass of the b-daughters must be close

Quantity Cut value

Distance to the PV χ2 − distance(PV ) > 36.
Decay vertex quality vertex-χ2/ndof < 10.

Decay direction cos(
pc−hadron· ˆdir(PV→decay vertex)

|pc−hadron|
) > 0.

Table 12: Selection cuts applied by the stripping selection to the Λ+
c and D0 candidates.
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enough to the Λ0
b mass. The cuts used to build the Λ0

b signal candidates are reported in Table 13.

Quantity Cut value

Bachelor K track-χ2/ndof < 2.5, p > 5. GeV/c, pt > 0.5 GeV/c
Sum of b-daughters pt

∑
i∈{b−daughters} > 5. GeV/c

Leading b-daughter track-χ2/ndof < 2.5, p > 10. GeV/c, pt > 1.7 GeV/c,
χ2 − IP (any PV ) > 4., IP (any PV ) > 0.1 mm

Decay direction cos(
p

Λ0
b
· ˆdir(PV→decay vertex)

|p
Λ0

b
| ) < 0.999

b-hadron production vertex χ2 − IP (PV ) < 25.
Decay vertex quality vertex-χ2/ndof < 10.
b-hadron lifetime lifetime > 0.2 ps

b-daughters comb. invariant mass 5.2 GeV/c2 < m < 6. GeV/c2

Table 13: Selection cuts applied by the stripping selection to the Λ+
c , D0 and bachelor K− to form the Λ0

b

candidates. The leading b-daughter is the daughter which satisfies all the requirements specified; the leading
daughter can be ambiguous.

4.1.3 Final analysis selection

In this analysis additional cuts are applied on top of the stripping selection, to purify and better
identify the signal candidates. The analysis selection is based on that of the first observation and
branching fraction measurement of the Λ0

b → Λ+
c D0K− decay channel [6]. A more detailed discussion

on the selection criteria can be found in [6], while in this Section they are only summarised.
The signal decay could be affected by a variety of background channels where a final state particle

has been mis-identified. This could possibly lead to narrow structures peaking in the mass distributions.
Four narrow peaks are present in the signal channel, as shown in Figures 24-25. Two are in the K+K−

mass distribution, originated from φ mesons where a kaon has been misidentified as the proton from the
Λ+

c decay. Similarly, two D∗(2010)− peaks are visible in the D0π− mass distribution, where to the K−

(the bachelor particle, or the Λ+
c daughter) is assigned the π− mass. These background channels are

vetoed by excluding the φ and D∗(2010)− peaks in the K+K−and D0π− mass distributions respectively.
Particle identification requirements are of crucial importance to efficiently suppress background in

decays with a large number of final state particles like in this analysis. A standard ProbNNK PID cut
is applied to the bachelor K−, and cuts based on the responses of the D-from-B BDT classifiers are
applied to select the Λ+

c and D0 (see Section 3.3.2).
Cuts are applied to the p K−π+, K+π−, Λ+

c D0K− invariant mass combinations around the Λ+
c ,

D0 and Λ0
b nominal masses, respectively. The mass cuts are relatively loose, to allow a proper

parametrisation of the combinatorial background by the sP lot technique employed in the mass fits.
Finally, a kinematic fiducial region is defined in the transverse momentum and pseudo-rapidity

space of the Λ0
b candidate.

A summary of the analysis selection cuts is listed in Table 14.
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Figure 24: K+K− invariant mass distributions with the vetoed φ signal (a, b), and Λ0
b invariant mass distribution

of the events rejected by the vetos (c, d). The kaon mass is assigned to the proton candidate, which is then
combined either with the kaon from the Λ+

c decay (a, c), or with the bachelor kaon (b, d). A φ veto is applied to
the invariant mass distributions.

Cut type Cut value

Fiducial 5.5 GeV/c < p
t,Λ0

b
< 30. GeV/c, 2.5 < y

t,Λ0
b
< 4.

φ veto 1011.7 MeV/c2 < m(K−
Λ+

c
,p → K+) < 1027.7 MeV/c2,

1011.7 MeV/c2 < m(K−bach, p → K+) < 1027.7 MeV/c2

D∗(2010)− veto 2010.4 MeV/c2 < m(D0,K−bach → π−) < 2013.4 MeV/c2,

2010.4 MeV/c2 < m(D0,K−
Λ+

c
→ π−) < 2013.4 MeV/c2

PID ProbNNK(Kbach) > 0.18, BDT (Λ+
c ) > −0.15, BDT (D0) > −0.25

Invariant mass 2258. MeV/c2 < m(pK−π+) < 2318. MeV/c2,
1822. MeV/c2 < m(K+π−) < 1912. MeV/c2,

5560. MeV/c2 < m(Λ+
c D0K−) < 5850. MeV/c2

Table 14: Criteria defining the final analysis selection.
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Figure 25: D0π− invariant mass distributions with the vetoed D∗(2010)− signal (a, b), and Λ0
b invariant mass

distribution of the events rejected by the vetos (c, d). The pion mass is assigned either to the kaon candidate from
the Λ+

c decay (a, c), or to the bachelor kaon (b, d). It is then combined with the D0 candidate. A D∗(2010)−

veto is applied to the invariant mass distributions.
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4.2 Treatment of multiple signal candidates in the same events

The probability of having more than one signal decay per collision is negligible. However, it occurs that
multiple signal candidates are reconstructed in one single event, especially in case of events with high
track multiplicity. These multiple candidates are either built from completely uncorrelated particles, or
they are sharing part of the reconstructed decays, but with the Λ0

b, Λ+
c or D0 candidates being built

from different tracks. In the first case only one candidate is potentially a pure-signal candidate, and
all the others are pure-combinatorics background. In the latter, the multiple candidates are sharing
part of the correct signal decay, thus their identification is more challenging. The presence of multiple
candidates could affect the sensitivity of a measurement contributing to the background present in
the data set, or they could even bias the result if treated as pure-signal events. To correct for this
effect, in this analysis multiple candidates are randomly-removed from the data sample: for each event
with multiple Λ0

b candidates, all but one are removed in a random way. This reduces the statistical
power of the data set lowering the number of signal candidates, but does not introduce any bias in the
measurement.

Multiple candidates are identified in the data sample, after the baseline selection described in the
previous section is applied. About 5% of events have multiple candidates, and ≈ 95% of them have
two candidates passing the selection. A large fraction of them (∼ 80%) are uncorrelated candidates,
while the rest are mainly formed sharing the same bachelor K−. After that the multiple candidates are
removed, the data sample is reduced by 1186 reconstructed candidates (∼ 5.3% of the initial sample).
The final number of candidates in the data sample surviving the selection and the removal of multiple
candidates are listed in Table 15, depending on the period of data taking.

Year of data taking Candidates

2011 1393
2012 3383
2015 953
2016 5482
2017 5215
2018 4410

Sum 20836

Table 15: Number of decay candidates in the data sample after the selection and the removal of multiple
candidates, for the different periods of data taking. The baseline data selection, as introduced in Section 4.1, is
considered.

4.3 Mass fits to the invariant mass distributions

4.3.1 Three-dimensional fits to the Λ0
b, Λ+

c , D0 invariant mass distributions

Two main background components are expected to contribute in the data sample. First, combinatorial
background is formed by reconstructed tracks which are randomly picked from the underlying event
to form the Λ0

b candidate. Secondly, the so-called charmless channels in which the Λ0
b decays to the

same final-state particles as the signal channel, but with only one of the two intermediate c-hadrons:
Λ0

b → Λ+
c [→ pK−π+] K+π−K− referred to as Λ+

c -charmless decay, or Λ0
b → pK−π+D0[→ K+π−] K−

called D0-charmless channel. Combinatorial components are also present in the charmless channels.
The case where the Λ0

b decays into the final-state particles with no intermediate resonances (“doubly-
charmless channel”, with Λ0

b → pK−π+K+π−K−) is indistinguishable by the combinatorial background,
and thus is not modelled.

The combinatorial background is expected to follow a decreasing exponential shape over the mass
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range, so a one-dimensional fit to the mass distribution of the Λ0
b candidates would be sufficient to

model it. Instead, the Λ+
c -charmless candidates appear as signal-like in the Λ+

c mass distribution and
as combinatorial background in the D0 mass distribution. Additionally, they peak under the signal
region of the Λ0

b invariant mass distribution. An analogous reasoning applies to the D0-charmless
candidates. Therefore, a three-dimensional fit in the Λ0

b, Λ+
c and D0 mass distributions is required to

disentangle the signal and background contributions in the charmless decays. In the following, the
pdf used to describe the different components of the fit are presented in a general way. The actual fit
observables and nuisance parameters are discussed afterwards.

The signal pdfs used to fit the Λ0
b, Λ+

c and D0 projections are the sum of two Crystal Ball
distributions [113]. This function is used to model peaking but asymmetric shapes, and it consists of a
Gaussian core with mean µ and width σ, and an exponential tail below a certain threshold determined
by a parameter α:

CB(x, µ, σ, α, n) =
1

σNCB
·

{
exp(− (x−µ)2

2σ2 ) for x−µ
σ > α

( n
|α|)

n · e−α2/2 · ( n
|α| − |α| −

x−µ
σ )−n for x−µ

σ ≤ α
(56)

with x being the observable variable, n describing the slope of the exponential tail, and NCB being a
normalisation factor:

NCB =
ne−α

2/2

|α|(n− 1)
+

√
π

2
[1 + erf(

|α|√
2

)] (57)

where the error function erf is defined by [114]:

erf(x) =
1

π

∫ x

−x
e−y

2
dy (58)

The two summed Crystal Ball functions have common mean µ and tail parameters n. The width σ
and the tail parameter α of the first Crystal Ball are expressed as functions of the parameters of the
second one, through multiplicative factors σk,f and αk,f , respectively. Finally, the first Crystal Ball is
multiplied by a scaling factor fk. In this description, k is an index to discriminate between the Λ0

b, Λ+
c

and D0 signal pdfs. Finally, the signal pdfs take the form:

Fsignal,k =fk · CB(x = mk, µ = µk, σ = σk, α = αk, n = nk)

+ CB(x = mk, µ = µk, σ = σk,f · σk, α = αk,f · αk, n = nk)
(59)

with mk being the observable of the fit, i.e. the invariant mass of the pK−π+K+π−K−, pK−π+ and
K+π− combinations, respectively in the Λ0

b, Λ+
c and D0 mass projections. The overall signal component

of the Λ0
b → Λ+

c D0K− decay is therefore modelled by a combination of signal pdfs in all the three
systems:

Fsignal = F
signal,Λ0

b
· F

signal,Λ+
c
· Fsignal,D0 (60)

A falling exponential distribution is used to describe the pdf of the combinatorial backgrounds:

Fcomb,k′ = exp(−
m′k
τ ′k

) (61)

with k′ indexing the invariant mass distribution (Λ0
b, Λ+

c or D0) in which the combinatorics is modelled.
The purely-combinatorial background of the signal channel consists of candidates which are built from
random tracks in all the three systems:

Fbkg = F
comb,Λ0

b
· F

comb,Λ+
c
· Fcomb,D0 (62)
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or from final-state particles from the decay of a single c-hadron, but combined with random tracks to
form the Λ0

b and the other c-hadron:

F
bkg,Λ+

c
= F

comb,Λ0
b
· F

signal,Λ+
c
· Fcomb,D0

Fbkg,D0 = F
comb,Λ0

b
· F

comb,Λ+
c
· Fsignal,D0

(63)

where F
bkg,Λ+

c
corresponds to a good Λ+

c candidate combined with a D0 candidate built from background

tracks, and Fbkg,D0 to a good D0 combined with a background Λ+
c . Finally, a combinatorial source is

constituted by particles coming from the decay of both the Λ+
c and D0, but combined with a random

kaon assigned to be the bachelor K− of the Λ0
b → Λ+

c D0K− decay:

F
bkg,Λ+

c−D0 = F
comb,Λ0

b
· F

signal,Λ+
c
· Fsignal,D0 (64)

The charmless contributions are modelled in the Λ0
b projection by the sum of two Gaussian distributions

with common mean µ
Λ0

b
, fixed to the value of the mean of the signal Λ0

b pdf (Eq. 60), and with widths

related by a factor σk′−cl,f :

F
k′−cl,Λ0

b
= fk′−cl ·G(µ = µ

Λ0
b
, σ = σk′−cl) +G(µ = µ

Λ0
b
, σ = σk′−cl,f · σk′−cl)] (65)

where k′ is an index distinguishing between the Λ+
c and D0 charmless channels. In Equation 65 the Λ0

b

subscript is used to stress that this pdf is only used to model the Λ0
b projection of the total fit. The

resonating components (Λ+
c or D0) of the charmless channels are modelled by the respective signal pdfs

introduced in Equation 59. The non-resonating components are modelled by background pdfs as in
Equation 61. Finally, the pdfs of the Λ+

c - and D0-charmless components are given respectively by:

F
Λ+

c−cl
= F

Λ+
c−cl,Λ0

b
· F

signal,Λ+
c
· Fbkg,D0

FD0−cl = F
D0−cl,Λ0

b
· F

bkg,Λ+
c
· Fsignal,D0

(66)

The total pdf used to fit the data is finally:

Ftot =N
Λ0

b
· [Fsignal + f

Λ+
c−cl,NΛ0

b

· F
Λ+

c−cl
+ fD0−cl,N

Λ0
b

· FD0−cl]

+Nbkg · (fbkg,Λ0
b
· F

bkg,Λ0
b

+ f
bkg,Λ+

c
· F

bkg,Λ+
c

+ fbkg,D0 · Fbkg,D0 + f
bkg,Λ0

b
−D0 · Fbkg,Λ+

c−D0)

(67)

with N
Λ0

b
representing the yield of Λ0

b signal candidates, Nbkg the total number of events from

combinatorial background, and fi the fractions of N
Λ0

b
or Nbkg for the i-th component.

The tail parameters αk, nk, sk,f and the fractions fk of the Crystal Balls distributions in the signal
pdf (Eq. 60) are not fitted to data, but extracted from three-dimensional fits performed to simulated
samples of the Λ0

b → Λ+
c D0K− signal channel. These samples are generated simulating both signal

and background processes, but the latter are excluded from the fitted data set by making use of the
so-called truth-information. It represents the a-priori knowledge of the characteristics of the simulated
decays, from the generation stage. The fits to the simulated samples are shown in Figure 26. All the
remaining parameters are fit to data.

The charmless channels are challenging to be described on data, since they peak under the signal
region in the Λ0

b mass projection. A variety of fit models are considered to investigate the charmless
contamination in the data sample. Three-dimensional fits without charmless contributions, with only
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Figure 26: Projections in the Λ+
c (a), D0 (b) and Λ0

b (c) invariant mass distributions of the three-dimensional
fits to the Λ0

b → Λ+
c D0K− simulated sample. Background candidates are removed from the sample making use

of the truth-information introduced in the text.

Cut variable Loose selection Tight selection

m
Λ0

b
[5560, 5850] MeV/c2 [5560, 5700] MeV/c2

BDT
Λ+

c
> -0.15 > -0.05

BDTD0 > -0.25 > -0.15

Table 16: D-from-B BDT cut values and cuts on the Λ+
c , D0, Λ0

b invariant masses for the loose and tight
selections of the three-dimensional mass fits.

one of them, and with both of them are performed. The main fit results which are useful to estimate
the charmless contributions are shown in Table 17, in particular the signal and background yields.
The fit projections are shown in Figure 27. Note that in order to correctly describe the combinatorial
backgrounds in all three mass projections, a considerable amount of background events must be included
in the Λ0

b invariant mass distribution, reducing the purity of the data sample.
A tight selection of the data sample with more strict cuts on the Λ0

b invariant mass and D-from-B
BDT is defined, for crosschecks of the obtained results. The set of cuts defining the old (loose) and
new (tight) selections are listed in Table 16. The fit results on the tight-selected sample are shown in
Table 18. For both the selections, the introduction of the charmless contributions in the total pdf (Eq.
60) does not effect the signal yields, but the background description only. The fractions fD0−cl,N

Λ0
b

,
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f
Λ+

c−cl,NΛ0
b

of the charmless contributions are negligible. A negligible contamination from the charmless

channels allows to perform a simpler one-dimensional fit to the Λ0
b invariant mass distribution, in

contrast to the three-dimensional fit investigated so far.

Fit parameter no charmless only D0-charmless only Λ+
c -charmless D0- and Λ+

c -charmless

N
Λ0

b
5535 ± 91 5530 ± 100 5511 ± 96 5512 ± 100

N
bkg,Λ0

b
15300 ± 130 15200 ± 380 15230 ± 160 15200 ± 1500

fD0−cl,N
Λ0

b

/ 0.02 ± 0.24 / 0.01 ± 0.28

f
Λ+

c−cl,NΛ0
b

/ / 0.017 ± 0.021 0.016 ± 0.027

Table 17: Results of the three-dimensional fit to data for different modelling of the charmless contributions: no
charmless components are considered, only the D0- or Λ+

c - component is described, or both the contributions are
used in the model.

Fit parameter no charmless only D0-charmless only Λ+
c -charmless D0- and Λ+

c -charmless

N
Λ0

b
5253 ± 82 5252.1 ± 5.3 5257 ± 88 5230 ± 280

Nbkg 6393 ± 89 6393.3 ± 5.7 6389 ± 94 6120 ± 300
fD0−cl,N

Λ0
b

/ 0 ± 3.9e-06 / 0.0025 ± 0.0010

f
Λ+

c−cl,NΛ0
b

/ / 0 ± 0.00092 0.0532 ± 0.0036

Table 18: Results of the three-dimensional fit to data for different modelling of the charmless contributions, for
tighter D-from-B BDT cuts on the Λ+

c and D0 and mass cut to the Λ0
b invariant mass. No charmless components

are considered, only the D0- or Λ+
c - component is described, or both the charmless contributions are used in the

model.

Further checks are performed employing simulated samples of the Λ0
b → Λ+

c K+π−K− decay,
corresponding to the Λ+

c -charmless background. The simulated events are selected by the same
stripping and analysis selections used for the Λ0

b → Λ+
c D0K− signal channel, apart from the D-from-B

BDT selections of Λ+
c and D0. The latter cannot be applied to the simulated samples, since the D-from-

B classifiers have been trained on data and they make use of variables which are not well reproduced in
simulation (Sec. 3.3.2). In order to be able to apply the PID selection on the bachelor K−, the simulated
samples are resampled in the response of the ProbNN classifiers (Sec. 2.3.2) using PIDGen [115],
a dedicated software developed within LHCb 19 . The number of simulated candidates passing the
selections, and which are truth-matched is shown in Table 19. The results are compared to what was
obtained with the simulated sample of the signal channel Λ0

b → Λ+
c D0K−. Because of the method used

to apply the selection to the Λ0
b → Λ+

c K+π−K− channel, the charmless reconstructed candidates which
are truth-matched are overestimated by a factor 15%-20%. The D-from-B BDT selection on the D0

would further suppress the eventual charmless reconstructed candidates by a considerably large fraction.
Indeed, this selection has proven to be highly efficient on signal (> 85%) while rejecting most of the
background (> 80%) [6], thus it would remove most of the Λ0

b → Λ+
c K+π−K− candidates in Table

19. The D-from-B BDT selection on the Λ+
c would act in a similar way on both the Λ0

b → Λ+
c D0K−

and the Λ0
b → Λ+

c K+π−K−, removing in equal proportions Λ+
c truth-matched candidates wrongly

identified as background. Hence, it would not modify the picture of the results presented here. Based

19The PIDGen software library [115] uses techniques of kernel density estimation of the PID pdfs from calibration data
samples, in order to achieve a reasonably good PID response in the simulated samples.
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Figure 27: Projections of the three-dimensional fits to data in the Λ0
b (a, b), Λ+

c (c, e), D0 (d, f) invariant mass
distributions. a, c, e) The charmless contributions are not modelled. b, d, f) Both the charmless contributions
are included in the fit model. 55



class of events Λ0
b → Λ+

c D0K− Λ0
b → Λ+

c K+π−K−

generated events 1.34 M 1.18 M
events after stripping selection 48258 8514

events after stripping selection — truth-matched 17447 552
events after analysis selection — truth-matched 12694 92

Table 19: Comparison of the generated and reconstructed events for the Λ0
b → Λ+

c D0K− signal channel and the
Λ0

b → Λ+
c K+π−K− charmless channel, from simulated samples. The D-from-B BDT selections on the Λ+

c and
D0 are not applied.

Cut variable Loose selection Tight selection

m
Λ+

c
[2258, 2318] MeV/c2 [2270, 2302] MeV/c2

mD0 [1822, 1912] MeV/c2 [1840, 1895] MeV/c2

m
Λ0

b
[5570, 5670] MeV/c2 [5580, 5660] MeV/c2

BDT
Λ+

c
> -0.15 > -0.05

BDTD0 > -0.25 > -0.15

Table 20: D-from-B BDT cut values and cuts on the Λ+
c , D0, Λ0

b invariant masses for the loose and tight
selections of the 1-dimensional mass fits.

on these considerations and on the results in Table 19, the suppression of the charmless channel is
estimated to be by a factor 1.5 · 10−3 with respect to the signal channel.

The studies on simulated samples cannot be considered conclusive, since their results depend on the
production rate of the Λ+

c -charmless decay in the real collisions, which is unknown. Nevertheless, they
corroborate the conclusion from the three-dimensional fits that the contamination of the charmless
channels in the data sample is negligible.

4.3.2 One-dimensional fits to the Λ0
b invariant mass distribution

In the previous section, the charmless contributions to the data sample have been proved to be
negligible. This allows to perform one-dimensional mass fits on the Λ0

b mass projection rather than
the three-dimensional fits investigated so far, gaining in simplicity and stability of the fit. Also, this
permits to cut away most of the background events which were needed to describe the Λ+

c and D0

background and signal components in the charmless contributions. This is done by tightening the mass
range of their invariant mass distributions.

The Λ0
b projection of the one-dimensional fit to the Λ+

c D0K− invariant mass distribution is shown
in Figure 28. The purity of the data sample is important in the amplitude fits, thus a tighter selection
is introduced with more strict cuts on the Λ+

c , D0, Λ0
b invariant masses and on the D-from-B BDT

selections. The criteria defining the old (loose) and new (tight) selections are compared in Table 20.
After the tight selection is applied to the data sample, about 3% of events have multiple candidates.

Following the procedure detailed in Section 4.2, 228 multiple candidates are removed, reducing the size
of the data sample by ∼ 3.4%. The number of candidates passing the tight selection and the removal
of multiple candidates are listed in Table 21.

The Λ0
b mass projection of the fit for the tight selection is also shown in Figure 28, and the fit

results for both the selections are listed in Table 22. The average mass and width values of the Λ0
b

signal contribution are compatible within the uncertainties, for both the selections.
The tight selection defined in Table 20 keeps a large fraction of the signal, ∼ 90%, while rejecting
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Year of data taking Candidates

2011 388
2012 926
2015 312
2016 1632
2017 1650
2018 1657

Sum 6565

Table 21: Number of signal and background candidates in the data sample after the selection and the removal of
multiple candidates, for the different periods of data taking.
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Figure 28: One-dimensional fit to the Λ+
c D0K− invariant mass for loose (a) and tight (b) cuts on the Λ+

c , D0

invariant masses and on the D-from-BDT BDT selection.

most of the background, ∼ 75%. Thus it considerably improves the purity of the data sample, and it
is used as a baseline in the following. The correlation matrix of the baseline mass fit is presented in
Table 23.
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Fit parameter Loose selection Tight selection

N
Λ0

b
5400 ± 110 4971 ± 92

Nbkg 6260 ± 110 1594 ± 71
µ

Λ0
b

5619.78 ± 0.15 5619.82 ± 0.13

σ
Λ0

b
6.99 ± 0.16 6.84 ± 0.14

τ
Λ0

b
-0.00167 ± 0.00046 -0.0031 ± 0.0013

Table 22: Fit results for the one-dimensional mass fits with looser (left) and tighter (right) cuts on the Λ+
c , D0

invariant masses and on the BDT selection.

N
Λ0

b
Nbkg µ

Λ0
b

σ
Λ0

b
τ

Λ0
b

N
Λ0

b
1.

Nbkg 0.53 1.
µ

Λ0
b

0.0048 -0.0062 1.

σ
Λ0

b
-0.38 0.49 -0.01 1.

τ
Λ0

b
-0.052 0.068 -0.22 0.05 1.

Table 23: Correlation matrix of the fit parameters from the Λ0
b mass fit. The baseline data selection, as

introduced in Section 4.3.2, is considered.
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5 Amplitude model

This analysis employs to the helicity formalism to parametrise the amplitude model used to describe
Λ0

b → Λ+
c D0K− decays, as introduced in Section 3.1. The coordinate transformations between reference

systems, which stand at the base of such a formalism, are developed in Section 5.1.
As introduced in Section 3.1, the isobar model is used to express the process in terms of subsequent

two-body decays. This decomposition is introduced in Section 5.2, and detailed in the next sections.
The K-matrix description for scattering amplitudes, a key element for this analysis, is described in
Section 5.3.

The discussion in this Chapter follows the notation used by the first observation of pentaquark
states by LHCb [1].

5.1 Helicity frame and coordinate transformations

Let us consider a two-body decay A → BC. A coordinate system r̂A0 = (x̂A0 , ŷ
A
0 , ẑ

A
0 ) is defined in

the rest frame of A, with k̂ being the unit vector directed along the k axis. ẑA0 is chosen to be
the quantisation direction of the spin of the particle A. Helicity is defined as the projection of the
particle spin onto the direction of its momentum. When the z axis coincides with the direction of
the particle momentum, its spin projection onto it is denoted as λ. Following the prescriptions of
the helicity formalism, the initial r̂A0 coordinate system is rotated to align the z axis to the direction
of the momentum of one of the daughter particles. Let us align the z axis to the momentum of pB
the particle B, obtaining the r̂A3 = (x̂A3 , ŷ

A
3 , ẑ

A
3 ) coordinate system as sketched in Figure 29. In this

reference system the relation ẑA3 ||pB holds. In the following, r̂A3 is referred to as the helicity frame of
the B particle.

A generic rotation can be formally expressed by an operator R(α, β, γ) in the three-dimensional
space, which first performs a rotation by the angle α around the ẑ0 axis, then a rotation by the angle
β around the rotated ŷ1 axis, and finally a rotation by the angle γ around the rotated ẑ2 axis.

rest frame of A
z0

A

x0
A

z
3

A

C

B

y0
A

Figure 29: Definition of the helicity frame r̂A3 of the particle B, obtained rotating the coordinate system r̂A0
defined in the rest frame of the particle A, in such a way to align the quantisation axis of the particle A, ẑA0 , to
the momentum direction of the particle B, ẑA3 .
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Figure 30: Rotation of the helicity frame of the particle A into the helicity frame of the particle B, by using the
azimuthal (φAB = α) and polar (θAA = β) angles of the momentum of B in the rest frame of the particle A.

The |JA, jA > spin eigenstates of the particle A in the r̂A0 reference can be expressed in the basis of
its spin eigenstates |JA, j

′
A > in the rotated r̂A3 reference, using the Wigner D-matrices DJA

jA,j
′
A

[116]:

|JA, jA >=
∑
j
′
A

DJA
jA,j

′
A

(α, β, γ)∗|JA, j
′
A > (68)

where the complex conjugates of the D-matrices are expressed as function of the small D-matrices
dJA
jA,j

′
A

[116]:

DJA
jA,j

′
A

(α, β, γ)∗ =< JA, jA|R(α, β, γ)|JA, j
′
A >

∗

= eijAαdJA
jA,j

′
A

(β)eij
′
Aγ

(69)

The exact dependence of the dJA
jA,j

′
A

on the angular and spins values is described in Section 5.2. In

Equation 68 the angular momentum conservation imposes j
′
A = j

′
B + j

′
C = λB − λC , where j

′
C = −λC

because pAC points in the opposite direction to ẑA3 . A rotation of the helicity frame of the particle A is
now performed into the helicity frame of the particle B. This is accomplished by using the azimuthal
(φAB = α) and polar (θAA = β) angles of the momentum of B in the rest frame of the particle A, as
sketched in Figure 30. As shown in Figure 30, the third rotation defined by the operator R(α, β, γ),
namely of the zA2 axis onto the final zA3 axis, is not needed. Therefore, the angle γ is set to zero.
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In the following, θAB is the helicity angle θA of the particle A, and φAB is denoted by φB. These
angles are given by:

φB = atan2(pABy , p
A
Bx)

= atan2(ŷA0 · pAB, x̂A0 · pAB) = atan2((ẑA0 × x̂A0 ) · pAB, x̂A0 · pAB),

cos θA = ẑA0 · p̂AB

(70)

It must be noted that the choice of the first set of coordinates r̂A0 is arbitrary, but the transformation
to the frame of the particle B is fixing a convention that must be propagated consistently between all
the subsequent transformations to different decays chains.

If the particle B subsequentially decays (B → DE), a second coordinate transformation is needed
to align the z axis of the rest frame of the particle B along the momentum of the particle D, defining
the ẑBD direction. The four-momenta of the daughters D and E must be first boosted to the rest frame
of B along the ẑA3 direction, which here coincides with ẑA2 since the third rotation is not performed.
The rotated r̂A3 coordinate system becomes now the initial coordinate system of quantisation of the
spin of the particle B, in its rest frame:

x̂B0 = x̂A3 ,

ŷB0 = ŷA3 ,

ẑB0 = ẑA3

(71)

This set of directions defines a reference frame referred to as r̂B0 . Using Equation 71, ẑB0 is set to the
direction of the momentum of the particle B in the rest frame of A:

ẑB0 ≡ ẑA3 = p̂AB (72)

To define the yB0 and xB0 directions as introduced in Equation 71, the intermediate axes of the x̂A1 , x̂A2
directions must be derived as follows. After the first rotation by the φB angle around ẑA0 , the x̂A1 axis
is directed along the p̂AB component perpendicular to the ẑ0

A axis:

ωAB⊥z0 ≡ (pAB)⊥ẑA0
= pAB − (pAB)||ẑA0

= pAB − (pAB · ẑA0 )ẑA0 ,

x̂A1 = ω̂AB⊥z0 =
ωAB⊥z0
|ωAB⊥z0 |

(73)

After the second rotation by the angle θA around ŷA1 , the following holds:

ẑA2 = ẑA3 = p̂AB (74)

and the x̂A2 = x̂A3 direction is anti parallel to the ẑA0 component which is perpendicular to the transformed
z axis (p̂AB) :

αAz0⊥B = (ẑ0
A)⊥pAB

= ẑA0 − (ẑA0 · p̂AB)p̂AB,

x̂B0 = x̂A3 = −α̂Az0⊥B = −
αAz0⊥B
|α̂Az0⊥B|

(75)
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From Equations 72-75, ŷB0 is finally given by:

ŷB0 = ẑB0 × x̂B0 (76)

Once the (x̂B0 , ŷ
B
0 , ẑ

B
0 ) directions are derived, ẑBD can be determined with the same transformations

introduced to align the z axis of the rest frame of A along the momentum direction of the particle B
(Eq. 70).

5.2 Matrix elements

The essential ingredient that defines the signal pdf used to fit the model to the data is a matrix element
M of the decay process of interest. It expresses both the kinematic and angular dependence of the
process. The connection between the decay matrix element and the signal pdf is detailed in Chapter 6.

Let us consider a decay process which proceeds through intermediate resonances. In the helicity
formalism the complete matrix element, which includes all the processes j of the intermediate states, is
expressed as sum over the initial- (λi) and final-state (λf ) helicities:

|M |2 =
∑
λi,λf

|
∑
j

M j
λi,λf
|2 (77)

In this formulation, a three-body decay A → BCD is decomposed into two subsequent two-body
decays, namely A → BX and X → CD, where X is an intermediate resonance. The intermediate
matrices M j

λi,λf
in Equation 77 are expressed by coherent sums over the intermediate-state helicities

λX :

MX
λA,λB ,λC ,λD

=
∑
λX

MA→BX
λA,λB ,λX

·MX→CD
λX ,λC ,λD

(78)

MA→BX
λA,λB ,λX

and MX→CD
λX ,λC ,λD

are two-body decay matrix elements which include the helicity amplitudes
H, the angular dependence through the small D-matrices d(θ) and the resonance shapes R(m):

MX→CD
λX ,λC ,λD

= HX→CD
λC ,λD

· dJXλX ,λC−λD(θ) · eiλX ·φ ·R(mC,D) (79)

and similarly for MA→BX
λA,λB ,λX

. The sum is performed over |λC | <= JC , |λD| <= JD, |λC − λD| <= JX
with J denoting the spin assignment of the states. In Equation 79, mC,D is the mass value of the C and
D invariant mass distribution. In what follows, the form of the terms H, d(θ) and R(m) are detailed
for the X → CD two-body decay. The construction for the A→ BX decay matrix is analogous.

The helicity amplitudes H are complex parameters, defined in general as:

HX→CD
λC ,λD

= aλC ,λD · e
iφλC,λD (80)

where aλC ,λD and φλC ,λD are the magnitude and phase of the polar representation of complex numbers.
This results in a different set of magnitude and phase for each possible combination of {λC , λD}
which have to be determined from a fit to data, leading to a large number of free parameters.
An alternative definition of the helicity amplitudes relates them to the Clebsch-Gordan coefficients
< JC , JD, S|λC ,−λD, λC − λD > and < L,S, JX |0, λC ,−λD, λC − λD >, with S = JC +JD being the
total spin of the daughter particles, and L the orbital angular momentum between them.
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Introducing the complex parameters BLS , referred to as BLS couplings, the helicity amplitude HX→CD
λC ,λD

takes the form:

HX→CD
λC ,λD

=
∑
L

∑
S

√
2L+ 1

2JX + 1
·BLS · < JC , JD, S|λC ,−λD, λC − λD >

· < L,S, JX |0, λC ,−λD, λC − λD >

(81)

where the (L, S) subscripts of the BLS couplings denote that one coupling is needed to describe each
possible combination of the allowed values for L and S. The BLS couplings are the actual parameters
of the signal pdf that must be fit to data, together with the parameters of the line shape R(m).

The formulation of the helicity amplitude in Equation 81 can be used to reduce the effective number
of independent free parameters. In fact, if the decay process conserves parity, the helicity amplitudes
are related by the PX , PC , PD parity values of the particles X,C,D:

HX→CD
−λC ,−λD = PX · PC · PD · (−1)JC+JD−JX ·HX→CD

λC ,λD
(82)

leading to a reduction of the number of independent amplitudes that must be summed.
The Wigner small d-matrices in Equation 79 express the angular dependence:

dJXλX ,λC−λD(θ) =
√

(JX + λC)! · (JX − λC)! · (JX + λD)! · (JX − λD)!

·
∑
s

[
(−1)s

(JX + λD − s)!s!(λC − λD + s)!(JX − λC − s)!

· (cosθ
2

)2JX+λD−λC−2s · (sinθ
2

)λC−λD+2s)]

(83)

where s is running over integers that make the factorials non negative.
Finally, the term R(mC,D) in Equation 79 describes the shape of the X resonance appearing in the

invariant mass distribution of the C and D particles of the 3-body decay A→ BCD:

R(mC,D) = BLX,B (p, p0, dX,B)(
p

p0
)LX,B · f(mC,D|mX ,ΓX) ·BLC,D(q, q0, dC,D)(

q

q0
)LC,D (84)

where LX,B and LC,D are respectively the orbital angular momentum between X and the spectator
particle B and between the X daughters, C and D. The invariant mass of the C−D system is denoted
by mC,D, and p is the momentum of the X resonance in the rest frame of A:

p =

√√√√(m2
C,D − (mC +mD)2) · (m2

C,D − (mC −mD)2

4 m2
C,D

(85)

while p0 is evaluated at the resonance peak (mC,D = mX). Analogously, q is the momentum of the C
particle in the X rest frame, and q0 is evaluated at the resonance peak of X. The BL terms are the
orbital angular momentum barrier factors also called Blatt-Weisskopf functions [117]. They describe
how it is likely to create an orbital angular momentum L depending on the momenta p, q and radii of
the decaying particle dA→XB and of the resonance dX→CD.
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The f(m,Γ) term in Equation 84 is the line shape function. It is mostly commonly parametrised by
the relativistic Breit-Wigner distribution:

f(mC,D|mX ,ΓX) =
1

m2
X −m2

C,D − imXΓ(mC,D)
(86)

where Γ(mC,D) is the mass-dependent width:

Γ(mC,D) = Γ0 · (
q

q0
)2LC,D+1 · mX

mC,D
·BLC,D(q, q0, dC,D)2 (87)

If the resonance X peaks near the C − D threshold (mC,D = mC + mD), its line shape is better
parametrised by the Flatté distribution [118], rather than by a Breit-Wigner description. An effective
pole mass m̃ is defined as follows:

m̃ = mmin + (mmax −mmin) · 1 + tanχ

2
(88)

with mmin, mmax being the mass values kinematically allowed:

mmin = mC +mD;

mmax = mA −mB
(89)

and χ defined as:

χ =
mX − mmin+mmax

2

mmax −mmin
(90)

In the evaluation of the p0, q0 parameters in Equation 84, mX is replaced by m̃. Also, a two-widths
parametrisation is used, replacing the width Γ in the relativistic Breit-Wigner distribution by Γ̃:

Γ̃ =
2ρ1Γ1 · 2ρ2Γ2

mX
(91)

with Γ1, Γ2 being parameters which act as decay widths, and ρ1, ρ2 given by:

ρ1 =
2q

mC,D

ρ2 =
2q′

mC,D

(92)

where q′ is evaluated from the dominant decay channel of X.
In some cases, the Breit-Wigner and Flatté parametrisation are not sufficient for a satisfactory

description of the line shape function. A more advanced formulation involves the so-called K-matrix
amplitude, which is described in the next Section.

5.3 K-matrix approach for scattering amplitudes

The above-described formulation of decay amplitudes is rooted in the S-matrix formalism of scattering
[119]. Formally, the S-matrix is represented by a unitary and analytic operator. Its unitarity, expressed
by the relation:

S†S = I (93)

is related to the normalisation to unity of the sum of all probabilities of decay and scattering processes.
The analyticity means that S can be locally expressed by a convergent power series.
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The element of the S-matrix connecting an initial-state a to a final-state b is defined by:

Sab = Iab − 2i
√
ρaTab

√
ρb (94)

with ρa and ρb being phase-space terms. T is the so-called scattering matrix, which describes the
interactions between the initial and final states. As consequence of the unitarity of the S-matrix, the
following holds:

Im(T ) = ρ|T |2 (95)

where all the channels contributing to the decay and scattering processes have to be taken into account.
Equation 95 is usually referred to as optical theorem [120].

Within the S-matrix formalism, physical states appear as poles of S, either on the physical sheet
(for bound states) or on the un-physical ones (for resonances). A pole is represented in the complex
S-plane by a complex quantity. Although both the real and imaginary parts of the pole are important
for describing its position and the properties of the associated state, measurements are performed
only on the real axis of the S-plane. This usually corresponds to the measurement of invariant mass
distributions.

Let us consider a pole P corresponding to a state X, represented in the S-plane by the coordinates:

sP = sR − iγ (96)

The amplitude g(s) can be expanded around the pole, assuming small values of γ:

g(s) = (s− sP )T (s) (97)

where s is the squared invariant mass, which represents the observable under measurement. The
expansion around the pole has a characteristic radius of convergence, determined by the closest
threshold or pole as sketched in Figure 31. Expanding the amplitude in terms of Taylor series, g(s)
reads:

g(s) = g(sP ) + (s− sP )g′(sP ) + ... (98)

s

P
s

P
 = s

R
 – i 

s
R

convergence
radius

s
1

Figure 31: Sketch of a pole P , with real part sR and imaginary component −γ. The amplitude around the pole
can be expanded in terms of Taylor series, with a given radius of convergence. The latter is determined by the
closest threshold or pole. s1 is a threshold in the example.
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At the first order, g(s) ≈ g(sP ) and the T (s) matrix is given by:

T (s) ≈ −g(sP )

sR − s− iγ
(99)

which corresponds to a Breit-Wigner distribution with fixed width, with the real part of the pole giving
the mass MX of the state, and its imaginary part being related to the width ΓX :

sR = M2
X

γ = MX · ΓX
(100)

Following the above derivation, it appears that the Breit-Wigner description is just the most simplistic
extrapolation of the measurement of the real part of the pole into the complex plane. Also, it must
be remembered that this formulation is only valid for small values of γ, i.e. for relatively narrow
states. Under this assumption and for only one pole, the unitarity condition Im(T ) = ρ|T |2 (Eq. 95)

of the scattering matrix T holds, with ρ =
√

1− 4M2
X/s. In presence of two or more poles, writing

the scattering matrix as simple sum of Breit-Wigner distributions:

T = − A2
1

s−M2
1 + iM1Γ1

− A2
2

s−M2
2 + iM2Γ2

− ... (101)

violates unitarity. In fact, for the simplest case of two poles and with σ = MiΓi/A
2
i :

Im(T ) =
A2

1M1Γ1

(s−M1)2 +M2
1 + Γ2

1

+
A2

2M2Γ2

(s−M2
2 ) +M2

2 Γ2
2

ρ|T |2 =
A2

1M1Γ1

(s−M1)2 +M2
1 + Γ2

1

+
A2

2M2Γ2

(s−M2
2 ) +M2

2 Γ2
2

+2ρRe(
A2

1

s−M2
1 + iM1Γ1

A2
2

s−M2
2 − iM2Γ2

)

(102)

where the last factor, expressing the interference between the two poles, violates the unitarity. Moreover,
the presence of a second pole limits the convergence radius of the expansion in Equation 98, weakening
the analyticity of the theory. Similarly, the convergence of the Breit-Wigner approximation is not
ensured in presence of thresholds of other channels. These behaviours are sketched in Figure 32.
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s
1

P
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(b)

Figure 32: Sketch of cases where the radius of convergence of the amplitude around a pole P is limited by the
presence of a second threshold s2 (a), or of a second pole P2 (b).

It has been shown that the usage of Breit-Wigner distributions is problematic for describing states
with large width, or close to thresholds of other channels. Also, the sum of Breit-Wigner functions for
describing multiple poles breaks unitarity. This last point is especially problematic for states which
are close in mass, and share the same quantum numbers. In such cases, the unitarity can be enforced
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by adopting the so-called K-matrix formalism [119] for constructing decay amplitudes. This analysis
makes use of this approach, which is described in the following.

Let us consider a particle H decaying into a a number N of intermediate resonances Rn, and a
spectator particle. The resonances Rn further decay in a number c of final-state channels labelled by
the indices a and b in the following. This decay decomposition is sketched in Figure 33.
The decay amplitude of H can be written as:

AHa (s) = γa(s)DabP
H
b (s) (103)

where s is the mass squared, and PHb is a vector in the channel space parametrised by:

PHb (s) = pb(s)−
N∑
n=1

gnbα
H
n

s−M2
n

(104)

with αHn being the coupling of H to the resonance Rn, gnb the coupling of Rn to the channel b, and Rn
having bare mass Mn. The factor pb(s) represents the coupling of H to the channel b, and in literature
is often called background term.
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Figure 33: Sketch of the decay of a particle H to an intermediate resonance Rn and a spectator particle, in
the K-matrix formalism. The resonance Rn decays to its final states having mass m1 and m2. The total decay
amplitude is the sum of the direct process through the single decay channel a (a), and the decay where the other
channels b contribute (b).
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The matrix D in Equation 103 is given by:

Dab = [1− V R(s)Σ(s)]−1
ab (105)

with Σ being the self-energy:

Σa(s) = iρa(s)γa(s)
2 (106)

and V R being the normalised vertex function:

V R
ab = −

N∑
n=1

gnbgna
s−M2

n

(107)

where the coupling gna of Rn to the channel a appears. In the self-energy (Eq. 106), ρ is the phase-space
factor and γ is the angular momentum barrier term.

In two-body decays into products with masses m1 and m2, the two-body phase-space factor is given
by:

ρa(s) =
1

16π
· 2qa(s)√

s
(108)

with q being the two-body breakup momentum defined as:

qa(s) =

√
(s− s2

a)(s− d2
a)

4s
(109)

where sa = m1 +m2 and da = m1 −m2 (neglecting the channel indices in the masses). The angular
momentum barrier γ in Equation 106 takes the form:

γa(s) = qLaa (110)

where La denotes the angular momentum of the decay products.
Within the K-matrix approach, the only parameters of the model are the masses Mn, the couplings

αHn , gna, gnb and the term pb. The widths of the resonances are generated by the scattering amplitude
itself, thus are not direct observables of the model. This leads to a more difficult application of the
K-formalism to practical uses in fit to data, with respect to the construction described in Section 5.2.
Also, a proper description of the K-matrix amplitude would require to sum over all the decay channels
a, b. However, for heavy states this is often challenging due to the large number of channels potentially
contributing, and the sum is usually truncated to the most relevant terms. Finally, the K-formalism
breaks the analyticity of the theory: the phase-space factor in Equation 108 is not well defined for
s = 0, and for unequal masses it develops a un-physical cut. Methods to improve the analyticity of
the model when using the K-matrix approach have been developed [121–124], but are more formally
enveloped.

The scattering amplitude AHa (s) of Equation 103 replaces the line shape function R(m) (Eq. 79) of
the construction presented in Section 5.2. The description of the orbital angular momentum barrier
effect, taken into account by the γa(s) function in Equation 110, can be improved by introducing the
Blatt-Weisskopf functions as in Equation 84.

5.4 Coordinate transformations for the Λ0
b → Λ+

c D0K−decay channel

In this Section the above-described derivation of the decay matrix elements is actualised to the specific
decay channel of this analysis. Intermediate resonance states can decay to all possible two-body system
combinations of the Λ+

c , D0, K− particles. In the following, the notation Ai → Λ+
c D0, Bi → D0K−
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Figure 34: Feynman diagrams describing the Λ0
b and subsequent decays for the A → Λ+

c D0, B → D0K− and
C → Λ+

c K− decay chains.

and Ci → Λ+
c K− is used to denote the possible types of intermediate resonances Ai, Bi, Ci

20. The
complete matrix element is expressed as sum of all the contributing decays over the initial- (λ

Λ0
b
) and

final-state (λ
Λ+

c
) helicities:

|M |2 =
∑

λ
Λ0

b
,λ

Λ+
c

|
∑
Ai

M
Λ+

c D0

λ
Λ0

b
,λ

Λ+
c

+
∑
Bi

M
D0K−

λ
Λ0

b
,λ

Λ+
c

+
∑
Ci

M
Λ+

c K−

λ
Λ0

b
,λ

Λ+
c

|
2

(111)

The Feynman diagrams describing those decays are shown in Figure 34. In the following, the matrix
elements for the A, B, C decay chains are described under the assumption that the Λ0

b and Λ+
c particles

are not polarised. Eventual polarisations can be taken into account introducing additional parameters
multiplying the incoherent sum of the decay amplitudes in Equation 111, as it is described in Section
7.1.8.

20The current notation Ai, Bi, Ci for the intermediate resonances of the Λ0
b → Λ+

c D0K−channel is not related to the
notation of the A, B, C particles used in the previous sections to introduce the coordinate transformations and matrix
elements.
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5.4.1 Coordinate transformations of the Ai → Λ+
c D0 decay chain

The choice of the ẑ0
Λ0

b direction for the Λ0
b spin quantisation is arbitrary. Previous studies of Λ0

b

decays in the LHCb experiment did not find evidence for Λ0
b polarisation [125,126], thus ẑ0

Λ0
b is chosen

to be the direction of the Λ0
b momentum in the laboratory frame. With this choice, its spin projection

onto ẑ0
Λ0

b gives the λ
Λ0

b
helicity. In the Λ0

b rest frame, the ẑ0
Λ0

b direction is defined by the direction

of the boost from the laboratory frame:

ẑ0
Λ0

b = p̂lab
Λ0

b
(112)

as shown in Figure 35. The θA
Λ0

b
helicity angle is given by:

cos θA
Λ0

b
= p̂lab

Λ0
b
· p̂

Λ0
b

K−
(113)

Parity conservation in the strong interaction forbids the Λ0
b to be longitudinally polarised, thus the

helicity values λ
Λ0

b
= +1

2 , λ
Λ0

b
= −1

2 are equally likely.

The choice of the x̂0
Λ0

b direction in the Λ0
b rest frame is also arbitrary. The Λ0

b → AK− decay
plane in the laboratory frame is used to define it, setting φA

K−
= 0 by definition.

The θA, φ
Λ+

c
are the polar and azimuthal angles of the Λ+

c in the A rest frame. The ẑ0
A direction

is defined by the boost direction from the Λ0
b rest frame to the A rest frame, which coincides with the

−p̂A
K−

direction in this frame. The θA helicity angle is then given by:

cos θA = −p̂A
K− · p̂

A

Λ+
c

(114)

From Equations 75-112, the following holds:

ω
Λ0

b
z0⊥A = p̂lab

Λ0
b
− (p̂lab

Λ0
b
· p̂

Λ0
b

A )p̂
Λ0

b
A ,

x̂A0 = x
Λ0

b
3 = −

ω
Λ0

b
z0⊥A

|ω
Λ0

b
z0⊥A|

(115)
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Figure 35: Decomposition of the helicity planes for the Λ0
b → A(→ Λ+

c D0)K− decay.
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The φA
Λ+

c
angle is finally given in the rest frame of A by Equation 70:

φA
Λ+

c
= atan2(−(p̂A

K− × x̂
A
0 ) · p̂A

Λ+
c
, x̂A0 · p̂AΛ+

c
) (116)

Finally, the intermediate matrices of the Λ0
b → AK− and A → Λ+

c D0 processes are given by coherent
sums over the intermediate-state (λA) helicities:

M
Λ+

c D0

λ
Λ0

b
,λ

Λ+
c

=
∑
λA

M
Λ0

b
→AK−

λ
Λ0

b
,λA

·MA→Λ+
c D0

λA,λ
Λ+

c

,

M
Λ0

b
→AK−

λ
Λ0

b
,λA

(θA
Λ0

b
) = H

Λ0
b
→AK−

λA
· d

J
Λ0

b
= 1

2

λ
Λ0

b
,λA

(θA
Λ0

b
),

M
A→Λ+

c D0

λA,λ
Λ+

c

(θA, φ
A

Λ+
c

) = H
A→Λ+

c D0

λ
Λ+

c

· dJAλA,λ
Λ+

c

(θA) · e
iλA·φA

Λ+
c ·R(m

Λ+
c D0)

(117)

It must be noted that the resonance shape term can be neglected in the two-body decay matrix of
the decaying Λ0

b. In fact, strictly speaking the resonance line shape represents the probability of a
resonance to be formed as function of the invariant mass of the daughter particles. This term is needed
to describe the intermediate resonances A, B, C which can potentially occur in the decay of the Λ0

b.
On the other hand, all the decays are originated from a Λ0

b particle, which consequentially does not
require a line shape term for being described.

5.4.2 Coordinate transformations of the Bi → D0K− decay chain

Similarly to Equation 113, the θB
Λ0

b
helicity angle in the B decay chain, as shown in Figure 36, is given

by:

cos θB
Λ0

b
= p̂lab

Λ0
b
· p̂

Λ0
b

Λ+
c

(118)

The x̂Λ0
b axis has been defined already by fixing by the φK− convention, thus φ

Λ+
c

cannot be set to

zero. Equation 75, leads to:

ω
Λ0

b

Λ+
c⊥z0

= p
Λ0

b

Λ+
c
− (p

Λ0
b

Λ+
c
· p̂lab

Λ0
b
)p̂lab

Λ0
b
,

x̂
Λ0

b
0 =

ω
Λ0

b

Λ+
c⊥z0

|ω
Λ0

b

Λ+
c⊥z0
|

(119)

and φB
Λ+

c
results to be:

φB
Λ+

c
= atan2((p̂lab

Λ0
b
× x̂

Λ0
b

0 ) · p̂
Λ0

b

Λ+
c
, x̂

Λ0
b

0 · p̂
Λ0

b

Λ+
c

) (120)

The ẑB0 direction is defined by the boost direction from the Λ0
b to the rest frame of the B particle,

which coincides with the −p̂B
Λ+

c
direction. The θB helicity angle is then given by:

cos θB = −p̂B
Λ+

c
· p̂B

D0 (121)

The x̂B0 direction is fixed by the convention used in the Λ0
b rest frame. From Equation 73, the following

relation holds:
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ω
Λ0

b
z0⊥B = plab

Λ0
b
− (p̂lab

Λ0
b
· p̂

Λ0
b

B )p̂
Λ0

b
B ,

x̂B0 =
ω

Λ0
b

z0⊥B

|ω
Λ0

b
z0⊥B|

(122)

The φB
D0 angle is finally given in the rest frame of the B particle by:

φB
D0 = atan2(−(p̂B

D0 × x̂B0 ) · p̂D0 , x̂
B
0 · p̂D0 · p̂B) (123)

The intermediate matrix elements for the Λ0
b → BΛ+

c decays are coherent sums over the intermediate-
state helicities λB:

MB
λ

Λ0
b
,λB

Λ+
c

=
∑
λB

M
Λ0

b
→BΛ+

c

λ
Λ0

b
,λB ,λ

B

Λ+
c

·MB→D0K−

λB
(124)

In Equation 124 the Λ+
c helicity is labelled with a B superscript to show that the spin quantisation

axis is different than in the A decay chain. The Λ+
c helicity axes are different because the particle

comes from a decay of different particles, in the A and B decay chains: the quantisation axes are
always along the Λ+

c direction in both the A (in the A decay chain) and Λ0
b (in the B decay chain)

rest frames, but they are different. These axes are anti-parallel to the particles recoiling against the
Λ+

c , i.e. the D0 and the B in the A and B decay chains respectively, and their directions are preserved
when boosting to the Λ+

c rest frame. Then it is possible to define a polar angle θAB
Λ+

c
between the two

quantisation axes of the Λ+
c . It is given by the opening angle between D0 and the particle B in the Λ+

c

rest frame, as shown in Figure 37:

cos θAB
Λ+

c
= p̂

Λ+
c

D0 · p̂
Λ+

c
B (125)

The azimuthal angle α
Λ+

c
which aligns the two Λ+

c helicity frames can be determined from:

α
Λ+

c
= atan2((ẑ0

Λ+
c (A) × x̂0

Λ+
c (A)) · x̂0

Λ+
c (B), x̂0

Λ+
c (A) · x̂0

Λ+
c (B)) (126)

where all the vectors are computed in the Λ+
c rest frame. x̂0

Λ+
c (B) is pointing to the direction of the x

axis when boosting from the B rest frame, x̂0
Λ+

c (A) and ẑ0
Λ+

c (A) are in the directions of the x and z
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Figure 36: Decomposition of the helicity planes for the Λ0
b → B(→ D0K−)Λ+

c decay.
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axes when boosting from the rest frame of A. In the Λ+
c rest frame, ẑ0

Λ+
c (A) = −p̂Λ+

c (A)

D0 holds. Also,

ẑ0
A = −p̂A

K−
and the x̂0

Λ+
c (A) direction is derived following Equation 75:

ωA
z0⊥D0 = −p̂A

K− + (p̂A
K− · p̂

A
D0)p̂A

D0 ,

x̂0
Λ+

c (A) =
ωA
z0⊥D0

|ωA
z0⊥D0 |

(127)

Similarly, x̂0
Λ+

c (B) is given by:

ω
Λ0

b
(B)

z0⊥B = ẑ
Λ0

b
(B)

0 − (ẑ
Λ0

b
(B)

0 · p̂
Λ0

b
(B)

B )p̂
Λ0

b
(B)

B ,

x̂0
Λ+

c (B) =
ω

Λ0
b

(B)

z0⊥B

|ω
Λ0

b
(B)|

z0⊥B

(128)

Finally the relation between the λ
Λ+

c
and λB

Λ+
c

states is given by:

|λ
Λ+

c
>=

∑
λB

Λ+
c

D
J

Λ+
c

λB
Λ+

c
,λ

Λ+
c

(α
Λ+

c
, θAB

Λ+
c
, 0)∗|λB

Λ+
c
> (129)

It must be noted that the azimuthal angle α
Λ+

c
results to be zero by construction. Indeed, because

of momentum conservation the three final state particles in the Λ0
b rest frame are always lying on the

same decay plane. Then, in the Λ0
b rest frame the A and B decay planes are the same, resulting in a

null angle α
Λ+

c
.
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The matrix element of the B decay chain (Eq. 124) must take into account the following additional

term in the M
Λ0

b
→BΛ+

c
λ

Λ0
b
,λB ,λ

Λ+
c

matrix element:

M
Λ0

b
→BΛ+

c
λ

Λ0
b
,λB ,λ

Λ+
c

(θAB
Λ+

c
, θB

Λ0
b
, φB

Λ+
c

) =
∑
λB

Λ+
c

D
J

Λ+
c

λB
Λ+

c
,λ

Λ+
c
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c
, 0)∗·

·H
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b
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λB ,λ
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· d
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λ
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Λ+
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(θB
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b
) · e

iλ
Λ0

b
·φB

Λ+
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=
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Λ+
c

d
J

Λ+
c

= 1
2

λB
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,λ

Λ+
c

(θAB
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c
) ·H

Λ0
b
→BΛ+

c

λB ,λ
B

Λ+
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· d
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2

λ
Λ0

b
,λB−λB

Λ+
c

(θB
Λ0

b
) · e

iλ
Λ0

b
·φB

Λ+
c ,

M
B→D0K−

λB
(θB, φ

B
D0) = HB→D0K− · dJBλB (θB) · e

iλB ·φB
D0 ·R(mD0K−)

(130)

5.4.3 Coordinate transformations of the Ci → Λ+
c K− decay chain

Analogously to Equations 113, 118 the helicity angle θ
Λ0

b
, as defined in Figure 38, is given by:

cos θC
Λ0

b
= p̂lab

Λ0
b
· p̂

Λ0
b

D0 (131)

and similarly to Equation 120 the azimuthal angle φC
D0 is:

φC
D0 = atan2((p̂lab

Λ0
b
× x̂

Λ0
b

0 ) · p̂
Λ0

b
D0 , x̂

Λ0
b

0 · p̂
Λ0

b
D0 ) (132)

The angle θC can be derived following Equations 114, 121:

cos θC = −p̂C
D0 · p̂CΛ+

c
(133)

and following Equations 116, 123 the angle φC
Λ+

c
results to be:

φC
Λ+

c
= atan2(−(p̂C

Λ+
c
× x̂C0 ) · p̂C

Λ+
c
, x̂C0 · p̂CΛ+

c
) (134)
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The same considerations about the spin quantisation axis of the Λ+
c , described in the previous

subsection, apply here. The θAC
Λ+

c
polar angle between the two quantisation axes of the Λ+

c , as sketched

in Figure 39, can be derived similarly to Equation 125 :

cos θAC
Λ+

c
= p̂

Λ+
c

D0 · p̂
Λ+

c
C (135)

The final matrix element MC
λ

Λ0
b
,λC

Λ+
c

and the intermediate matrices are listed below:

MC
λ

Λ0
b
,λ

Λ+
c

=
∑
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M
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b
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λ
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b
,λC
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λC ,λ
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c

,

M
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b
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λ
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b
,λC

(θC
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b
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λC
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b
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Λ+
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c K−

λC
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c

· dJC
λC ,λ

C

Λ+
c

(θC) · e
iλC ·φC

Λ+
c ·R(m

Λ+
c K−)

(136)

5.5 Reduction of the free helicity amplitudes and couplings

Each X resonance introduces helicity amplitudes at the top-level decay of the Λ0
b and for its subsequent

decay, namely HΛ0
b and HX , which depend on the helicities of the initial-, intermediate- and final-state

particles as shown in Equation 79.
The Λ0

b decays into the state A and a spin-less particle, thus the λA helicity can take only values ±1
2

to conserve angular momentum, independent of the spin of A. If A decays through strong interaction,
the parity conservation in the decay implies:

H
A→Λ+

c D0

λ
Λ+

c =− 1
2

= P
Λ+

c
· PD0 · PA · (−1)

J
Λ+

c
−JA ·HA→Λ+

c D0

λ
Λ+

c =+ 1
2

(137)

lowering the number of free parameters to be fitted.
The same reasoning applies for the decays involving the intermediate states C, because both the

D0 and the K− are spin-less particles and they can be treated in the same way as in the previous case.
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In particular, for strong decays of the C states the parity conservation implies that the H
C→Λ+

c K−

λ
Λ+

c
amplitudes are related by:

H
C→Λ+

c K−

λ
Λ+

c
=− 1

2

= PC · PΛ+
c
· PK− ·H

C→Λ+
c K−

λ
Λ+

c
=+ 1

2

(138)

The B → D0K− decay is described by one single helicity amplitude HB→D0K− which does not
show any dependence on the helicities of the B daughters, since they are spin-less particles.

From Equation 81, each partial wave contributing to the helicity amplitudes introduces two free
parameters to fit, leading to a high number of free parameters when considering all the possible waves
contributing to an amplitude. However, their number can be reduced thanks to considerations about
angular momentum and spins. The decomposition of the helicity amplitude in partial waves depends
on S, total spin of the daughters combination, and on L, orbital momentum in the decay. If the energy
release of the decay Q = M−m1−m2 is small compared to the mass M of the decaying particle (where
mi are the masses of the daughter particles), then high values of L are suppressed (angular momentum
barrier effect) lowering the number of partial waves contributing to the amplitude. This results in
a reduction of the fit parameters. Furthermore, for strong decays A → BC the parity conservation
constrains the values that can be taken by L:

PA ≡ PB · PC · (−1)L (139)

where Pi are the parities of the particles.
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6 Amplitude fit to data

Amplitude fits to data are performed based on the helicity formalism as introduced in Chapter 5. The
s-weighting procedure, described in Section 3.2.3, is employed to distinguish between signal-like and
background-like candidates in the same data set. An alternative fitting procedure which does not rely
on the s-weighting of the candidates is presented in Chapter 7.

The matrix elements of the decay chains A, B, C introduced in Chapter 5 depend on the angular
variables defined in the different coordinate systems, and on the invariant masses m(Λ+

c D0), m(D0K−),
m(Λ+

c K−). However, all the angular and mass variables can be expressed in terms of only three angles
and one invariant mass, via rotations and boosts. Ultimately, the amplitude fit is performed in only
four dimensions: the angular variables of the intermediate states A decaying to the Λ+

c D0 system
(cos θ

Λ0
b
, cos θA, φ

Λ+
c
) and the m(Λ+

c D0) invariant mass distribution. In the following, the angular

variable cos θA is referred to as cos θPc and the Λ+
c D0 invariant mass is denoted by m

Λ+
c D0 .

The signal pdf used to fit the data is introduced in Section 6.1. The amplitude model is detailed in
Section 6.3, and the results of the amplitude fits presented in Section 6.5.

6.1 Signal pdf and extended likelihood

In general, the signal pdf P depends on the m
Λ+

c D0 invariant mass, on the angular variables of the

decay chain of the states A (which is referred to as Ω in the following), and on the fit parameters w:

P(m
Λ+

c D0 ,Ω|w) =
1

N(w)
|M(m

Λ+
c D0 ,Ω|w)|2 · εsig(mΛ+

c D0 ,Ω) · φ(m
Λ+

c D0) (140)

where M(m
Λ+

c D0 ,Ω) is the matrix element describing the complete decay process from the Λ0
b to the

final-state particles Λ+
c , D0, K−. εsig is the efficiency of selecting signal events, φ is the phase-space

factor and N(w) is a normalisation factor:

N(w) = C · I(w) (141)

with C being a constant and I(w) having the form:

I(w) =

∫
|M(m

Λ+
c D0 ,Ω|w)|2 · dm

Λ+
c D0dΩ ∝

NMC∑
i=0

|Mi(mΛ+
c D0 ,Ω|w)|2 (142)

The normalisation integral I(w) is computed using a phase-space simulated signal sample, meaning
that the direct Λ0

b → Λ+
c D0K− decay is simulated without contributions from any intermediate state.

In Equation 142 the sum runs over the events of the simulated sample, of number NMC . The trigger,
reconstruction and analysis selections steps which are based on cuts over kinematic variables of the
candidates are simulated in the normalisation sample. On the contrary, the D-from-B BDT selections of
the Λ+

c and D0, and the PID-based selection of the bachelor K− are not simulated. In fact, the variables
on which these selections depend are not sufficiently well described in simulation. In particular, the
number of tracks in the events are relatively largely underestimated in the simulation. This is a relevant
quantity for the response of the PID classifiers used for the selection of the bachelor K−. Analogously,
the response of the D-from-B BDT classifiers cannot be easily reproduced in the simulation.
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The kinematic efficiency factor εsig,kin can be omitted in the signal pdf (Eq. 140), since it is
implicitly taken into account in the normalisation sample. On the other hand, the terms related to the
PID and D-from-B BDT selections must be explicitly included. The normalisation sample is simulated
within the detector acceptance, thus it implicitly includes the phase-space factor φ of the signal pdf.
These considerations lead to a signal pdf of the form:

P(m
Λ+

c D0 ,Ω|w) =
1

N(w)
|M(m

Λ+
c D0 ,Ω|w)|2

· εBDT
Λ+

c
(m

Λ+
c D0 ,Ω) · εBDT

D0
(m

Λ+
c D0 ,Ω) · εPID

K−
(m

Λ+
c D0 ,Ω)

(143)

with εBDT
Λ+

c
and εBDT

D0
denoting the efficiencies of the D-from-B BDT selections for the Λ+

c and D0,

respectively. Here it is assumed that the D-from-B BDT and PID selection efficiencies are uncorrelated,
since the selections are performed over different particles. This assumption is verified in Section 6.2
and Appendix A.3. The fitting strategy of this analysis is to minimise the negative logarithm of the
extended likelihood L(m

Λ+
c D0 ,Ω|w)ext, defined following Equation 35:

L(w, ν)ext ≡
νNe−ν

N !

N∏
i=1

p(m
Λ+

c D0
i
,Ωi|w) (144)

where N is the number of observed events, being a Poisson random variable with mean value ν, and p
is the probability density function afore-introduced. The pdf P is normalised to unity:∫

P(m
Λ+

c D0 ,Ω)dm
Λ+

c D0dΩ = 1 (145)

In the following, the amplitude variables m
Λ+

c D0 ,Ω are summarised as ξ. Using Equation 143 this

relation holds:

L(w, ν)ext =
νNe−ν

N !

N∏
i=1

|M(ξi|w)|2 · εBDT (ξi)∫
MC |M(ξ|w)|2 dξ

(146)

where the integral in the denominator is computed over the simulated sample used for normalisation of
the signal pdf. Equation 146 can be further simplified observing that ν expresses the expected number
of events predicted by the model:

ν =

∫
MC
|M(ξ|w)|2 dξ (147)

obtaining the following formulation for the extended likelihood:

L(w, ν)ext =
e−ν

N !

N∏
i=1

ν · |M(ξi|w)|2 · εBDT (ξi)∫
MC |M(ξ|w)|2 dξ

=
e−ν

N !

N∏
i=1

|M(ξi|w)|2 · εBDT (ξi) (148)

Finally the logarithm of L(w, ν)ext results to be:

lnL(w, ν)ext =
N∑
i=1

ln |M(ξi|w)|2 · εBDT (ξi)− ν − lnN !

=

N∑
i=1

ln |M(ξi|w)|2 · εBDT (ξi)− ν + const

(149)
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In the data set of this analysis the reconstructed candidates are weighted by s-weights, thus the quantity
to minimise is the weighted extended likelihood [127,128]:

L(w, ν)ext ≡
νNe−ν

N !

N∏
i=1

P(ξi,w)si (150)

leading to:

− lnL(w, ν)ext = −α(
∑
i

si ln |M(ξi|w)|2 · εBDT (ξi) + ln ν ·
∑
i

(1− si)− ν )

= −α(
∑
i

si ln |M(ξi|w)|2 · εBDT (ξi) + ln(

∫
MC
|M(ξ|w)|2 dξ) ·

∑
i

(1− si)

−
∫
MC
|M(ξ|w)|2 dξ )

(151)

where si is the s-weight of the candidate, the constant term is dropped out having no effect in the
minimisation of the likelihood, and α is a constant factor which takes into account the statistical
uncertainty due to the s-weighting procedure:

α =

∑
i si∑
i s

2
i

(152)

As already said, the phase-space factor φ(m
Λ+

c D0) in the signal pdf is taken into account by simulating

events within the detector acceptance, and thus must not be explicitly added in the likelihood
calculation.

6.2 Normalisation samples, Boosted Decision Trees and particle identification ef-
ficiencies

Phase-space simulated samples are used to normalise the signal pdf as described in the previous section,
and they represent an implicit correction of the data for the kinematic efficiencies. Samples are
simulated through the standard LHCb simulation framework for different conditions of the colliding
beams. The most representative conditions of LHCb data taking from 2011 to 2017 are simulated, split
evenly between the two magnet polarities as in data taking. At the time of performing this analysis,
simulated samples representing 2018 conditions have not yet been available. Nevertheless, 2018 data
taking conditions have been similar to the ones in 2017, and no major issues are expected to arise using
samples simulated with 2017 conditions for 2018 data. The sizes of the simulated samples approximately
reflect the size proportions between the samples of real data. This avoids the introduction of eventual
biases which might originate from different efficiencies over different periods. Note that 2017 samples
have roughly double the size than the 2017 data sample, to take into account 2018 data as well. The
number of simulated events of the normalisation samples is listed in Table 24.

The Λ+
c and D0 selections based on the response of the D-from-B BDT classifiers lead to efficiency

terms to be explicitly taken into account in the signal pdf. Efficiency maps binned in the flight distance
χ2 of the two c-hadrons and in the number of tracks of the event are available from the D-from-B
software package [91]. These maps are computed making use of an adaptive-binning technique developed
in the context of the branching fraction measurement of the Λ0

b → Λ+
c D0K− channel [129]. Within

this approach the binning scheme is not defined by constant bin widths, but by a minimum number of
events that must be contained in each of the bins, defined by the analyst. Thus, the adaptive-binning
approach allows to reduce the systematic effects originated by fluctuations in the number of events used
to describe the efficiency shapes. For each reconstructed Λ0

b candidate, the efficiency values of the Λ+
c

and D0 selections are retrieved, basing on the number of tracks in the event and on the flight distance
of the two c-hadrons. The efficiencies are then combined assuming the selections to be independent.
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Year of data taking Generated signal events Signal events after selection

2011 436,783 4,465
2012 1,097,239 10,373
2015 458,104 5,389
2016 1,662,019 22,575
2017 2,348,228 46,381

Sum 6,002,373 89,183

Table 24: Number of simulated events of the normalisation samples, before and after the trigger, reconstruction
and analysis selections. The D-from-B BDT- and PID- based selections are not applied.

The per-candidate efficiency is weighted by the candidate s-weight and efficiency maps are computed
over the angular variables, invariant mass distributions and Dalitz variables. They are presented in
Appendix A.3. The individual and combined efficiencies of the two D-from-B BDT classifiers do not
strongly depend on any of the variables. Also, the individual classifiers are proven to factorise and
to be independent. This is shown in Appendix A.3. This allows to combine the two D-from-B BDT
efficiency terms as multiplicative factors, as shown in Equation 143.

Figure 40 shows two-dimensional efficiency maps of the combined classifiers, over the possible
combinations of the angular variables and the invariant mass distributions, with the resulting correlation
between the binning variables. The efficiency map binned in the cosθPc and m

Λ+
c D0 variables, which

show the highest correlation, is used in the signal pdf and smoothed exploiting a kernel algorithm
implemented in the ROOT framework for data analysis [130].

As introduced in Section 3.3.1, the PIDCalib software package is employed to derive PID efficiency
maps parametrised in the number of tracks in the event, and in the momentum p and pseudo-rapidity
η of the bachelor K−. A traditional binning scheme with constant bin widths is used for the PID
efficiency maps. Per-candidate efficiencies are retrieved following a similar approach to what has been
described for the D-from-B BDT efficiencies. Figure 41 shows two-dimensional efficiency maps of the
PID selection over the combinations of the amplitude variables, weighted by the candidate s-weights.
The efficiency map binned in the cosθPc and m

Λ+
c D0 variables, which show the highest correlation, is

used in the signal pdf, and smoothed similarly to the efficiency maps of the D-from-B BDT selections.
Efficiency maps over the angular and mass variables are presented in Appendix A.4.

6.3 Resonances and amplitude model

Various known D∗s and Ξ0
c resonances are expected to decay to the D0K− and Λ+

c K− systems, respectively.
Following the notation introduced in Section 5.4, they correspond to the B and C decay chains.
Eventual pentaquarks would decay to the Λ+

c D0 system, representing the A decay chain. The D∗s and
Ξ0

c intermediate states which could possibly contribute to Λ0
b → Λ+

c D0K− decays are in Table 25. The
related energy release Q of the Λ0

b and resonance decays, normalised to their masses, are presented as
well. Theory expectations [131,132] predict the DsJ(3040) state to have unnatural parity assignment
JP = 1+, preventing it to decay to the D0K− system due to parity conservation in strong decays. Note
that the mass of the D∗s 0(2317) state is right below the physically-allowed mass threshold of the D0K−

system. Nevertheless, this does not prevent the state to possibly contribute to the amplitude model.
In the following, the general B,C notations in the variables of the related decay chains are replaced by
the D∗s, Ξ0

c indices, respectively. Similarly, the Pc notation replaces the A labelling.
Figure 42 shows the distributions of the amplitude variables on data weighted by the signal s-weights.

Their comparison with the phase-space distributions of the simulated samples is useful to identify
structures which are potentially arising from decays of intermediate resonances. A finer binning of these
distributions is proposed in Appendix A.1. Figure 43 shows the signal s-weighted data over the Dalitz
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Figure 40: Efficiency of the combined D-from-B BDT classifiers used to select the Λ+
c and D0 hadrons, over the

two-dimensional combinations of the angular variables and invariant mass distributions.

variables. The Dalitz plots suggest the presence of a D0K− state corresponding to ∼ (2.7)2 GeV2/c4

which could be identified as the D∗s 1(2700) state. Also, this state possibly shows interference with
Ξ0

c states at low mass region. A deep fall in the m(D0K−) invariant mass distribution is visible
at ∼ 2.9 − 2.92 GeV/c2, which corresponds to the opening of the D0

1(2420)K− threshold, placed at
2.914 GeV/c2. Some minor structures appear at the low-mass region of the same distribution, which
could be related to the presence of the D∗s 2(2573) state and to the threshold of the D∗0(2007)K−

channel at 2.500 GeV/c2. Multiple structures appear in the m(Λ+
c K−) invariant mass distribution,

which might be related to Ξ0
c states.
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Figure 41: Efficiency of the ProbNNk classifier used to select the bachelor K−, over the two-dimensional
combinations of the angular variables and invariant mass distributions.

As explained in Section 5.5, if the energy release Q of the decay of the Λ0
b and of the resonances is

small compared to the mass of the decaying particle, only one partial wave per process contributes
significantly to the amplitude. This wave corresponds to the minimum allowed value of the orbital

angular momentum of the decay, Lmin. From Table 25, the energy releases QΛ0
b of the Λ0

b decays
are not negligible for any of the listed decays. Therefore, partial waves with higher orbital angular
momentum L than Lmin might be relevant for the amplitude model. However, the D∗s states decay
to two scalar particles (D0 and K−), and only one value of orbital angular momentum L is possible
between them, which is Lmin.
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State Mass [MeV/c2] Width [MeV/c2] JP QΛ0
b/m

Λ0
b

Qres/mres

D∗s 0(2317) 2317.7 ± 0.6 < 3.8 (CL = 95%) 0+ 0.18 -0.01
D∗s 2(2573) 2569.1 ± 0.8 16.9 ± 0.7 2+ 0.14 0.08
D∗s 1(2700) 2708.3 ± 3.6 120 ± 11 1− 0.11 0.13
D∗s 1(2860) 2859 ± 27 159 ± 80 1− 0.08 0.17
D∗s 3(2860) 2860 ± 7 53 ± 10 3− 0.08 0.17

DsJ(3040) 3044+31
−9 239 ± 60 / 0.05 0.22

Ξ0
c(2790) 2792.8 ± 1.2 10.0 ± 1.1 1

2

−
0.17 0.005

Ξ0
c(2815) 2820.22 ± 0.32 2.54 ± 0.25 3

2

−
0.17 0.01

Ξ0
c(2930) 2929 ± 12 20 ± 11 / 0.15 0.05

Ξ0
c(2970) 2967.8 ± 0.8 28.1 ± 3.7 / 0.14 0.05

Ξ0
c(3080) 3079.9 ± 1.4 5.6 ± 2.2 / 0.12 0.10

Table 25: Established resonances expected to contribute in the D0K− (on the top part) and Λ+
c K− (on the

bottom part) mass spectra. The energy releases Q of the Λ0
b and resonance decays are normalised to their

masses.

The amplitude model used to fit the data has been optimised is such a way to include the minimum
number of states and parameters which are needed for a satisfactory description of the data. In fact,
increasing the number of free parameters in the fit could potentially reduce stability, large correlations
and uncertainties could arise between the fit parameters, and there is an increased risk of over-fitting
the data. Thus, the amplitude description is optimised by starting to fit the data with the most general
model including all possible resonances and partial waves. The model is then simplified by removing
step-by-step the components which are not contributing significantly. More quantitative statement
about this optimisation procedure are given in Chapter 7.

Finally, an amplitude model including the D∗s 0(2317), D∗s 1(2700), D∗s 1(2860), D∗s 3(2860), Ξ0
c(2790)

states is considered. The D∗s 1(2700) and D∗s 1(2860) states share the same quantum numbers and they
are relatively close in mass, considering their large widths. Hence they are described by a K-matrix
amplitude (Sec. 5.3). In spite of the considerations presented above, in the baseline model higher
partial waves are considered only for the K-matrix amplitude. The validity of this approximation is
investigated in Chapter 7. The complete matrix element defining the amplitude model takes the form:

M =
∑

λ
Λ0

b
,λ

Λ+
c

∣∣∣ ∑
λ

D∗s 0
(2317)

MD∗s 0(2317) +
∑

λD∗s Kmat

MD∗s Kmat +
∑

λ
D∗s 3

(2860)

MD∗s 3(2860) +
∑

λ
Ξ0

c (2790)

MΞ0
c(2790)

∣∣∣2
(153)

where the K-matrix contribution is labelled by the D∗sKmat index. Note that the helicity values taken
by the D∗s 1(2700) and D∗s 1(2860) states are the same, since they share the same quantum numbers.
These helicity values are denoted by λD∗s Kmat.

Each intermediate resonance introduces helicity amplitudes at the top-level decay of the Λ0
b, and for

its subsequent decay to the final-state particles (Eqs. 78-79). A summary of the amplitudes included
in the model is listed in Tables 26-28. The matrix elements of the resonance processes in Equation 153
are given by multiplying the amplitudes by the resonance line shapes (Sec. 5.2). The afore-mentioned
amplitudes are complex quantities, and they enter in the matrix element as a product (Eq. 78) resulting
in a product of two magnitudes and phases. Hence, it is not possible to measure the absolute values
of all the magnitudes and phases, but only their relative ratio. An overall magnitude and phase
convention must be set, by fixing some of the amplitudes to arbitrary values. The helicity amplitudes

H
Λ0

b
λ

D∗s 3
(2860)

=−1,λ
Λ+

c
=− 1

2

, H
Λ0

b
λ

Ξ0
c (2790)

=− 1
2

of the Λ0
b decays in the D∗s 3(2860) and Ξ0

c(2790) amplitudes are
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Figure 42: Distributions of the amplitude variables on s-weighted signal candidates compared to the distributions
from the phase-space simulated sample.

set to the unity. Additionally, the coupling B
D∗s 0(2317)→D0K−
0,0 of the D∗s 0(2317) decay is set to unity,

corresponding to fix the related amplitude and resulting into fewer free parameters.
Following the construction from Section 5.2, the amplitudes are known functions of the angular

variables, and they depend on the BLS couplings. The latter are complex quantities, and their real and
imaginary parts represent the main fit parameters of the amplitude model. Additional fitted quantities
are some of the line shape parameters and the couplings of the K-matrix amplitude.

The BLS couplings on which the amplitudes depend are summarised in Table 29. Being the BLS
couplings complex quantities, each of them introduces two free parameters. All the real and imaginary
parts of the BLS couplings are fitted to the data.
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Figure 43: Distributions of the Dalitz variables on s-weighted signal candidates.
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Table 26: Amplitudes of the Λ0
b → Λ+

c D∗
s 0(2317) decay included in the amplitude model.

The line shapes of the D∗s 3(2860) and Ξ0
c(2790) states are parametrised by the relativistic Breit-

Wigner distribution, using d
Λ0

b
= 1.5 GeV−1 and dD∗ns = 5 GeV−1 (Eq. 84). The D∗s 0(2317) state,

which is below-threshold, is instead parametrised by a Flatté distribution with the dominant decay
channel D∗s 0(2317) → D+

s π
0. The line shapes of the D∗s 1(2700) and D∗s 1(2860) states are represented by

a single K-matrix amplitude. An alternative amplitude model which describe them as two, independent
Breit-Wigner contributions is described in Appendix A.5. The mass and width values used to describe
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Table 27: Amplitudes of the Λ0
b → Λ+

c D∗
s decays included in the amplitude model, for D∗

s states with J > 0.

the D∗s 3(2860), Ξ0
c(2790), and Ξ0

c(2815) line shapes are fixed to those listed in the Particle Data Group
(PDG) review of 2018 [17]. The mass of the D∗s 0(2317) state is fixed to its PDG value. As discussed in
Section 5.2, the two widths used in the Flatté line shape parametrisation do not directly correspond
to physical widths of states. The main goal of this analysis is not to measure the static properties of
the resonances, thus these widths are considered as more “abstract” parameters useful to describe the
Flatté distribution. In the amplitude model, one of them is fixed to the value 15 MeV/c2, while the
other one is fitted.

The K-matrix amplitude is constructed by considering two poles corresponding to the D∗s 1(2700)
and D∗s 1(2860) states, and two contributing channels, the D0K− and the D∗0(2007)K−. The latter are
the two channels expected to contribute the most to the D∗s 1(2700) decays, according to the PDG. An
alternative choice of the channels is considered in Section 7.1.7, as crosscheck. Following the notation
introduced in Section 5.3, two couplings αn of the Λ0

b to the intermediate resonances are required.
Analogously, two couplings gnb of the resonances to the channel D∗0(2007)K− are needed. These
couplings are complex quantities, and all their real and imaginary components are fitted to data. The
background term p(s) is a two-dimensional vector with real components. They are considered to be
constant not depending on the mass squared s, and they are both fitted to data. Finally the bare
masses of the D∗s 1(2700) and D∗s 1(2860) states are fitted. The orbital angular momentum barrier effect
is taken into account by multiplying the K-matrix amplitude by two Blatt-Weisskopf functions, as
shown in Equation 84. The parameters q0 and p0 of these functions must be evaluated at the resonance
peak, but the K-matrix amplitude describes two poles together. Hence, q0 and p0 are evaluated at the
average of the two fitted values of the pole masses.
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Table 28: Amplitudes of the Λ0

b → Ξ0
cK− decays included in the amplitude model.

Decay BLS couplings

Λ0
b → D∗s 0(2317)Λ+

c B
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b
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Table 29: Couplings of the decays included in the amplitude model. Elements in parentheses correspond to
partial waves which are not included in the baseline amplitude model.
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6.4 Fit fractions and interference terms

The contribution of an intermediate state to the total decay amplitude is expressed by the so-called
fit fraction. The fit fraction Fi for a given i resonance is defined as ratio of integrals computed over
pseudo-samples. Two set of pseudo-experiments are performed, in one case describing an amplitude
model which includes the contributions from all the intermediate states (Eq. 153), and secondly a
model consisting of only the i resonance. The fit fraction Fi is then expressed by:

Fi =

∫
MC

∑
λ

Λ0
b
,λ

Λ+
c

|M i
λ

Λ0
b
,λ

Λ+
c

|2 dξ∫
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∑
λ

Λ0
b
,λ

Λ+
c

|
∑

kM
k
λ

Λ0
b
,λ

Λ+
c

|2 dξ
(154)

where the amplitude variables are summarised as ξ, the dependence of the matrix elements on them is
omitted, and k is running over all the contributing amplitudes of the full model. In general, the sum of
all the fit fractions is not necessarily the unity, due to the potential interference between resonances.
The interference term between two resonances i and j is given by:

Fij =

∫
MC

∑
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Λ0
b
,λ

Λ+
c

2 Re(MiM
∗
j ) dm

Λ+
c D0dΩ∫

MC
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b
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Λ+
c

|
∑

iMi|2 dmΛ+
c D0dΩ

(155)

and the unitarity condition can be finally expressed by:

∑
i

Fi +

i<j∑
i,j

Fij ≡ 1 (156)

The fit to data only provides the uncertainties on the fitted parameters, namely the couplings and
the line shape parameters. The uncertainties on the measured fit fractions and interference terms
are computed using pseudo-experiments, by sampling the fit parameters in the uncorrelated space as
described in the following. The covariance matrix resulting from the amplitude fit is diagonalised
decomposing it in its eigenvalues. The latter define a basis for a new space, where the fit parameters
are uncorrelated with each other. The fit parameters are transformed in the uncorrelated space and
sampled within their uncorrelated uncertainties, following a Gaussian sampling. The sampled parameter
values are finally transformed back in the original parameter space. The parameters are sampled 250
times, and for each set of parameters a pseudo-experiment is performed generating 100,000 events. A
large number of events, with respect to the number of signal candidates in the data set of this analysis,
is required in order to not add additional statistical uncertainties arising from the generation of the
pseudo-samples. The standard deviation of the distributions of generated fit fractions and interference
terms are assigned as statistical uncertainties on fitted quantities.

6.5 Results

The fitted fractions of the intermediate states contributing to the amplitude model, and their interference
terms, are listed in Tables 30-31 with their uncertainties. The D∗s K-matrix component is contributing
the most to the amplitude model. The interference between the states are negligible. The components
of the model are not independent, but constrained by the condition expressed in Equation 156. Thus,
the uncertainty on the sum of the fit fractions is not the sum in quadrature of the uncertainties of the
individual components.
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Component Fit fraction

D∗s 0(2317) 0.099 ± 0.013
Ds K-matrix 0.862 ± 0.029

D∗s 3(2860) 0.0181 ± 0.0077
Ξ0

c(2790) 0.0257 ± 0.0051

Sum 1.0029 ± 0.0041

Table 30: Fitted resonance fractions.

Ds K-matrix D∗s 3(2860) Ξ0
c(2790)

D∗s 0(2317) -0.012 ± 0.015 0.00006 ± 0.00079 -0.0059 ± 0.0021
Ds K-matrix / -0.00015 ± 0.00053 0.0059 ± 0.0099

D∗s 3(2860) / 0.0021 ± 0.0013

Table 31: Fitted interference terms between the components of the amplitude model.

Table 32 reports the fit results and related uncertainties for the parameters of the amplitude model,
where for each resonance of name state the notation is:

- state M Bl<i>s<j> are the BLS couplings of the Λ0
b decay for L = i, S = j values;

- state res Bl<i>s<j> are the BLS couplings of the resonance decay for L = i, S = j values.

The Ds Kmatrix alpha, Ds Kmatrix g and Ds Kmatrix background parameters are the components of
the couplings and of the background term of the K-matrix amplitude, as introduced in Section 5.3.

In order to plot the fitted amplitude model, a pseudo-sample is generated with the values of the
amplitude model parameters set to the results of the fit to data. The distributions of the amplitude
variables in such a sample, overimposed to the data, are shown in Figure 44. The bin uncertainties
shown for the fit model are derived from the same pseudo-samples used to assess the uncertainties of
the fit fractions and interference terms. Plots with finer binnings of the fit projections are proposed in
Appendix A.2.

Parameter Fitted value Parameter Fitted value

D∗s 0(2317) width 0.030 ± 0.016 Ds Kmatrix g 0 Real -8.37 ± 0.43
D∗s 0(2317) M Bl0s1 Real -0.017 ± 0.014 Ds Kmatrix g 1 Real 6.54 ± 0.13
D∗s 0(2317) M Bl0s1 Imag -0.1256 ± 0.0055 Ds Kmatrix g 2 Real 6.6 ± 1.2

Ds Kmatrix M Bl0s1 Real -1.8 ± 1.0 Ds Kmatrix g 3 Real -3.38 ± 0.25
Ds Kmatrix M Bl0s1 Imag 4.4 ± 1.9 Ds Kmatrix background 0 0.0135 ± 0.0017
Ds Kmatrix M Bl2s1 Real -7.05 ± 0.56 Ds Kmatrix background 1 0.0867 ± 0.0045
Ds Kmatrix M Bl2s1 Imag -4.06 ± 0.57 D∗s 3(2860) M Bl4s5 Real 0.32 ± 0.46
Ds Kmatrix M Bl2s3 Real 4.69 ± 0.72 D∗s 3(2860) M Bl4s5 Imag -0.33 ± 0.37
Ds Kmatrix M Bl2s3 Imag -4.73 ± 0.60 D∗s 3(2860) res Bl6s0 Real -0.036 ± 0.014
Ds Kmatrix res Bl2s0 Real -1.064 ± 0.048 D∗s 3(2860) res Bl6s0 Imag 0.015 ± 0.018
Ds Kmatrix res Bl2s0 Imag -0.722 ± 0.076 Ξ0

c(2790) M Bl0s1 Real -0.53 ± 0.32
Ds Kmatrix Ds12700 mass 2.7136 ± 0.0042 Ξ0

c(2790) M Bl0s1 Imag 0.69 ± 0.35
Ds Kmatrix Ds12860 mass 2.9671 ± 0.0099 Ξ0

c(2790) res Bl0s1 Real -0.0149 ± 0.0072
Ds Kmatrix alpha 0 Real 0.00272 ± 0.00024 Ξ0

c(2790) res Bl0s1 Imag -0.0295 ± 0.0051
Ds Kmatrix alpha 0 Imag -0.00715 ± 0.0002
Ds Kmatrix alpha 1 Real -0.00111 ± 0.00014
Ds Kmatrix alpha 1 Imag 0.00394 ± 0.00025

Table 32: Fitted values of the amplitude model parameters.
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Figure 44: Projections of the amplitude fit over the amplitude variables, overimposed to the data.
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The consistency between the data distributions and the fit model is quantified by the distribution of
pulls δ:

δ =
data− fit√
σ2
data + σ2

fit

(157)

with σdata being the statistical Poissonian uncertainty of the data, and σfit the fit uncertainty. In the
pull distributions, the horizontal dashed lines correspond to ±3σ levels of discrepancy between data
and the fit model.

The fitted amplitude model shows a general good agreement with the data. Although the absolute
contribution of the Ξ0

c(2790) to the model results to be small, this state is crucial for a good description
of the data at high values of cos(θD∗s ). This is verified in Chapter 7.

Nevertheless, tensions arise especially in the m(Λ+
c K−) invariant mass distribution. The data

distribution is characterised by an overall falling trend for increasing mass values, with three main
structures at 2.96− 3.08 GeV/c2, 3.12− 3.3 GeV/c2 and 3.4− 3.65 GeV/c2. These structures are not
well captured by the fit model, which attempts to interpolate them. The pulls of the mass region from
∼ 3.1 GeV/c2 to the end of the spectrum are overall smaller than 2.5σ because of the relatively large
uncertainties of both the data and fit model distributions. However a larger discrepancy is present in
the low mass region, with ≈ 2− 2.5σ significance.

The validity and stability of the obtained fit results have been assessed by performing a number
of crosschecks, which are presented in Chapter 7. In the same Chapter it is shown that alternative
amplitude models do not particularly improve the fit results. It must be noted that the description
of the Λ+

c K− system is particularly challenging in this analysis, due to the relatively small natural
width of the Ξ0

c(2790) state. This value is in the same range of the characteristic mass resolution
of the channel Λ0

b → Λ+
c D0K−. A complete treatment of this aspect would require sophisticated

methods such as the convolution of the line shape distribution with a resolution function, and it is
exceeding the aim of this analysis. Related to this issue, the relatively bad description of the m(Λ+

c K−)
distribution is reflected in a unsatisfactory description of the data at large values of the cos(θD∗s ) angle.
Possible improvements in describing the m(Λ+

c K−) distribution, which would translate in a better
characterisation of the cos(θD∗s ) distribution, are investigated in Chapter 7.
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7 Crosschecks and systematics studies

The stability of the obtained fit results is verified by performing different checks, which are presented
in this Chapter in Section 7.1. In particular, alternative models which could improve the description of
the data in the m(Λ+

c K−) invariant mass distribution are considered. More general amplitude models
to the one used in the baseline fit, meaning including more intermediate states and partial waves which
could possibly contribute to the description of the data, are tested as well.

This Chapter also presents the studies performed to assess the systematic uncertainties on the fit
results. The final systematic uncertainties are reported in Section 7.3.

7.1 Crosschecks of the stability of the fit results

In the next paragraphs, the choice of the data selection and amplitude model of the baseline fit are
validated by performing consistency checks of the results. Alternative selection criteria and amplitude
models are considered, and fits to data are repeated. The results are considered to be consistent
with the baseline fit if they do not differ from more than one standard deviation of the statistical
uncertainties.

Amplitude models with additional states are also tested. In such cases, the contributions from the
latter are considered negligible if their fit fractions and interference terms are smaller than 1%, and
compatible with zero at 1σ-level of the statistical uncertainties.

7.1.1 Amplitude fit with higher partial waves

The baseline amplitude model includes only partial waves corresponding to the lowest possible orbital
angular momentum Lmin for the D∗s 0(2317), D∗s 3(2860) and Ξ0

c(2790) states. Higher partial waves were
considered only for the K-matrix amplitude. However, higher partial waves for the other states could
in principle contribute in the amplitude fit to data.

A new amplitude model is constructed, including all the possible partial waves for all the states.
The amplitude fit to data is repeated, and its projections are shown in Figure 45. The fitted resonance
fractions are listed in Table 33. Although the results are consistent with the baseline amplitude fit,
the uncertainties are now much larger, as consequence of the higher number of free parameters which
have to be fitted to data. In fact, each additional partial wave carries one BLS coupling (i.e. two free
parameters) to be determined from data. These results confirm the validity of the approximation made
in the baseline amplitude fit, where only the lowest partial waves for the D∗s 0(2317), D∗s 3(2860) and
Ξ0

c(2790) states have been considered.

7.1.2 Amplitude fit without the Ξ0
c(2790) state

The absolute contribution of the Ξ0
c(2790) state to the fitted amplitude model is small, with a measured

fit fraction (2.57 ± 0.51)% (Tab. 30). Nevertheless, its inclusion in the model is necessary in order
to correctly describe the data. This can be seen especially in the cos(θPc) and cos(θD∗s ) angular
distributions shown in Figure 46, by comparing the baseline fit results with a fit model which does not
include the Ξ0

c(2790) contribution. The low-spectrum of the cos(θPc) distribution and the region of
large cos(θD∗s ) angles require the presence of the Ξ0

c(2790) state, to give a satisfactory description of
the data.
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Component Baseline model Model with all possible partial waves

D∗s 0(2317) 0.099 ± 0.013 0.094 ± 0.046
Ds K-matrix 0.862 ± 0.029 0.844 ± 0.067

D∗s 3(2860) 0.0181 ± 0.0077 0.030 ± 0.023
Ξ0

c(2790) 0.0257 ± 0.0051 0.026 ± 0.013

Sum 1.0029 ± 0.0041 0.9942 ± 0.0059

Table 33: Fitted resonance fractions. The baseline amplitude model, which includes only the lowest partial
waves for the D∗

s 0(2317), D∗
s 3(2860) and Ξ0

c(2790) states, is compared with a model which includes all possible
partial waves for all states.
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Figure 45: Projections of the amplitude fit to data. All possible partial waves are considered for all the states.
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Figure 46: Projections of the amplitude fits to data over the cos(θPc) (a, b) and cos(θD∗s ) (c, d) distributions. a,
c) Baseline amplitude model. b, d) Amplitude model without the Ξ0

c(2790) state.
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7.1.3 Amplitude fit including the D∗s 2(2573) state

The baseline amplitude model presented in Chapter 6 does not include the D∗s 2(2573) state, which
could potentially contribute to the description of the data. This is checked by defining an amplitude
model which includes it, and repeating the amplitude fit to the data. The m(D0K−) projection of the
fit is presented in Figure 47, compared to the baseline fit. The values of the fit fractions are reported in
Table 34. The contribution of the D∗s 2(2573) state results to be negligible, and the baseline amplitude
model describes better the mass region ≈ 2.52 GeV/c2 in the m(D0K−) distribution.
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Figure 47: Projections of the amplitude fits to data over the m(D0K−) distribution. a) Baseline amplitude
model, without the D∗

s 2(2573) contribution. b) Amplitude model including the D∗
s 2(2573) state.

Component Baseline model With D∗s 2(2573) contribution

D∗s 0(2317) 0.099 ± 0.013 0.106 ± 0.018

D∗s 2(2573) / 0.0064+0.0072
−0.0064

Ds K-matrix 0.862 ± 0.029 0.861 ± 0.035
D∗s 3(2860) 0.0181 ± 0.0077 0.0052 ± 0.0037
Ξ0

c(2790) 0.0257 ± 0.0051 0.023 ± 0.0066

Sum 1.0029 ± 0.0041 1.0021 ± 0.0048

Table 34: Fitted resonance fractions adding the D∗
s 2(2573) contribution to the amplitude model, compared to

the baseline fit.

7.1.4 Amplitude fit with a non-resonant contribution

In Chapter 6, only resonating contributions have been considered in the amplitude model. However an
additional flat contribution is often included, parametrised by a real quantity describing the size of its
amplitude. This contribution is usually referred to as non-resonant contribution, since it describes the
direct decay from the initial- to the final-state particles without any intermediate decays of resonances.
Anyhow this definition is un-precise, as this term could potentially describe eventual background
present in the data set, as well. Moreover, the non-resonant and the background contributions to the
amplitude cannot be disentangled within this term.
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A new amplitude model is considered, adding to the matrix element in Equation 153 (here denoted
by Mres) a non-resonant contribution of size Anon−res:

M = Mres + |Anon−res|2 (158)

The amplitude fit to data are repeated with the new model, and the fitted value of the non-resonant
size results to be:

Anon−res = 0.00± 0.013 (159)

where the Anon−res parameter has been allowed to take negative values as well. Hence, the non-resonant
contribution in the amplitude fit of this analysis results to be negligible.

7.1.5 Amplitude fits with the Ξ0
c(2815), Ξ0

c(2970), Ξ0
c(3055) and Ξ0

c(3088) states

In the baseline amplitude model, only the Ξ0
c(2790) state is included in the Λ+

c K− system. However
other Ξ0

c states might contribute, as listed in Table 25. Their inclusion could potentially improve the
fit quality, especially in the projection of the m(Λ+

c K−) invariant mass distribution.
The well-established Ξ0

c(2815) state is included in the amplitude model, and the amplitude fit to
data is repeated. All the possible partial waves of the Λ0

b and resonances decays are included in the
model. The fit fractions are reported in Table 35, and the fit projections are shown in Figure 48. The
contribution of the Ξ0

c(2815) state results to be negligible within the related fit uncertainties, and the
fit is not notably improved by its inclusion.

Component Baseline model With Ξ0
c(2815) and higher partial waves

D∗s 0(2317) 0.099 ± 0.013 0.106 ± 0.022
Ds K-matrix 0.862 ± 0.029 0.863 ± 0.035

D∗s 3(2860) 0.0181 ± 0.0077 0.0149 ± 0.0066
Ξ0

c(2790) 0.0257 ± 0.0051 0.0225 ± 0.0062
Ξ0

c(2815) / 0.00129 ± 0.0010

Sum 1.0029 ± 0.0041 1.0076 ± 0.0052

Table 35: Fitted resonance fractions. The Ξ0
c(2815) state is added to the baseline amplitude model, and all

possible partial waves of the Λ0
b and resonances decays are included.

Other Ξ0
c states, the Ξ0

c(2970), Ξ0
c(3055) and Ξ0

c(3088) resonances, are established and could
contribute in the Λ0

b → Λ+
c D0K− decays. However, their quantum numbers have not been established

by previous measurements yet. Hence, amplitude models are considered for different hypotheses of the
spin assignments for these states. All possible combinations between the assignments JP = 1

2

−
, 3

2

−

are considered, resulting in eight different amplitude models tested. The fit fractions resulting from
the amplitude fits to data are listed in Table 36, while the projections of the latter in the m(Λ+

c K−)
spectrum are reported in Appendix A.6. In all cases, the Ξ0

c states do not significantly contribute to the
amplitude model. The uncertainties on the fit fractions have not been computed since it would have
required huge computing resources for generating the required pseudo-experiments, without affecting
the outcome of these studies.
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Figure 48: Projections of the amplitude fit to data over the m(Λ+
c K−) distribution. a) Baseline amplitude model.

b) The Ξ0
c(2815) state is added to the amplitude model, and all possible partial waves of the Λ0

b and resonances
decays are included.
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]

Ξ0
c(2790) 0.0257 ± 0.0051 0.0235 0.0260 0.0234 0.0227 0.0235 0.0236 0.0233 0.0236

Ξ0
c(2815) / 0.0021 0.0031 0.0022 0.0023 0.0021 0.0021 0.0021 0.0020

Ξ0
c(2970) / 0.00012 0.0012 0.00015 0.000086 0.00059 0.00044 0.00045 0.00027

Ξ0
c(3055) / 0.0018 0.0038 0.0062 0.0041 0.0016 0.0029 0.0061 0.0072

Ξ0
c(3088) / 0.0020 0.0015 0.0030 0.0017 0.0021 0.0011 0.0030 0.0017

Table 36: Fitted resonance fractions including the Ξ0
c(2815), Ξ0

c(2970), Ξ0
c(3055) and Ξ0

c(3088) states to the
baseline amplitude model.. Different hypotheses for the spin assignments of the Ξ0

c(2970), Ξ0
c(3055), Ξ0

c(3088)
states are considered. The first value within brackets refer to the spin assignment of the Ξ0

c(2970), the second
value to the spin of the Ξ0

c(3055), the third value to the spin of the Ξ0
c(3088). All possible partial waves of the

Λ0
b and resonances decays are included in the amplitude model.
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7.1.6 Tighter selection of Λ+
c and bachelor K− candidates

The structures in the m(Λ+
c K−) invariant mass distribution (Fig. 44) could in principle be generated

by peaking background due to mis-reconstructed or mis-identified Λ+
c and K− particles. This is checked

by defining tighter D-from-B BDT and PID selections and by performing mass and amplitude fits on
the newly selected data sample. A Λ+

c D-from-B BDT cut value of 0.2 and a ProbNNk cut value on the
bachelor K− of 0.5 are chosen. These values have been determined from the D-from-B BDT and PID
response distributions on the raw and s-weighted data, shown in Figure 49, from the baseline selection.
The mass fit to the new data set is presented in Figure 50, and the results are listed in Table 37. The
m(Λ+

c K−) invariant mass distribution selected by the tighter D-from-B BDT and PID cut values is
presented in Figure 50, showing a similar shape to what was obtained with the baseline selection.

Fit parameter Baseline selection Tighter Λ+
c and K− selections

N
Λ0

b
4971 ± 92 4062 ± 78

Nbkg 1594 ± 71 640 ± 51
µ

Λ0
b

5619.82 ± 0.13 5619.73 ± 0.14

σ
Λ0

b
6.84 ± 0.14 6.8 ± 0.14

τ
Λ0

b
-0.0031 ± 0.0013 -0.0074 ± 0.0023

Table 37: Results of the fits to the m(Λ+
c D0K−) invariant mass distribution for the baseline and tighter selection

of the Λ+
c and K− particles.

Amplitude fits are performed to the new data set using the same amplitude model as for the default
selection. The resulting fit fractions are listed in Table 38, and the fit projections to the m(Λ+

c K−)
distributions are shown in Figure 51. The two selections give compatible results.
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Figure 49: Λ+
c D-from-B BDT response (a) and ProbNNk response on the bachelor K− (b) on raw (blue) and

s-weighted (red) data. The latter have been s-weighted by the mass fit performed on the data set defined by the
baseline selection. The tighter cut values of the two selections are pointed by the vertical, green dashed lines.
The cut values of the baseline selection are highlighted by the vertical, violet dashed lines.
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Figure 50: Mass fit to the m(Λ+
c D0K−) invariant mass distribution (a) and s-weighted m(Λ+

c K−) distribution
(b) with tighter D-from-B BDT and PID selection on the Λ+

c and bachelor K− respectively.

Component Baseline selection Tighter Λ+
c and K− selections

D∗s 0(2317) 0.099 ± 0.013 0.109 ± 0.033
Ds K-matrix 0.862 ± 0.029 0.845 ± 0.049

D∗s 3(2860) 0.0181 ± 0.0077 0.011 ± 0.0061
Ξ0

c(2790) 0.0257 ± 0.0051 0.026 ± 0.013

Sum 1.0029 ± 0.0041 0.986 ± 0.010

Table 38: Comparison of the fit fractions obtained with the baseline selection, and with tighter D-from-B BDT
and PID selections of the Λ+

c and K− particles.
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Figure 51: Projections of the amplitude fit over the m(Λ+
c K−) invariant mass distribution. a) Baseline selection.

b) Tighter D-from-B BDT and PID selections of the Λ+
c and K− particles.
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7.1.7 K-matrix amplitude with D0K− and D0
1(2420)K− channels

In the baseline amplitude model, the K-matrix amplitude is constructed considering the channels D0K−

and D0
1(2420)K−. However, all channels which might contribute to the process should be included to

obtain a correct description of the decay amplitude.
An additional channel which might be coupled to the D∗s 1(2700) and D∗s 1(2860) states is the

D0
1(2420)K−, corresponding to a threshold placed at 2.914 GeV/c2 in the m(Λ+

c D0) invariant mass
distribution. A complete description of the K-matrix amplitude should include all the three channels
D0K−, D∗0(2700)K− and D0

1(2420)K−. However, the amplitude model gets considerably more complex,
and the amplitude fit does not converge properly. Therefore, the stability of the fit results is checked
by defining a new amplitude model in which the D∗0(2007)K− channel in the K-matrix amplitude
is replaced by the D0

1(2420)K− one. The fit to data is then repeated. The resulting fit fractions are
presented in Table 39. The projection of the fit in the m(Λ+

c D0) invariant mass distribution is shown in
Figure 52, compared to the baseline fit. Fit projections with a finer binning are proposed in Appendix
A.2. The results are compatible with the baseline amplitude fit. Also, the latter better describes the
structure at ∼ 2.5 GeV/c2, and in general it shows smaller uncertainties. Hence, including only the
D0K− and D∗(2007)K− channels in the K-matrix amplitude is considered to be a good approximation.

Component D∗0(2007)K− - D0K− channels D0
1(2420)K− - D0K− channels

D∗s 0(2317) 0.099 ± 0.013 0.090 ± 0.023
Ds K-matrix 0.862 ± 0.029 0.873 ± 0.039

D∗s 3(2860) 0.0181 ± 0.0077 0.0054 ± 0.0042
Ξ0

c(2790) 0.0257 ± 0.0051 0.0255 ± 0.0067

Sum 1.0029 ± 0.0041 0.9943 ± 0.0047

Table 39: Comparison of the fit fractions obtained with the baseline amplitude model, and in the model where
the D∗0(2007)K− channel has been replaced by the D0

1(2420)K− channel in the K-matrix amplitude.
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Figure 52: Projections of the amplitude fit over the m(Λ+
c D0) invariant mass distribution. The D∗0(2007)K−

channel of the baseline amplitude model (a) has been replaced by the D0
1(2420)K− channel (b), in the K-matrix

amplitude.
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7.1.8 Measurement of eventual Λ0
b polarisation

Previous LHCb measurements of Λ0
b → J/ψΛ decays did not find evidence for Λ0

b polarisation [125,126].
This is verified in this analysis. Eventual polarisation of the Λ0

b particle is taken into account by
introducing additional parameters Pλ

Λ0
b
,λ

Λ+
c

which depend on the Λ0
b and Λ+

c helicity values. These

parameters are included in the total matrix element of Equation 153, as follows:

M =
∑

λ
Λ0

b
,λ

Λ+
c

Pλ
Λ0

b
,λ

Λ+
c

∣∣∣∑
X

∑
λX

MX
λX

∣∣∣2
(160)

where the sums are running over the matrix elements describing the decay processes of the resonances
X. It can be shown that in the Λ0

b → Λ+
c D0K− decays the polarisation factors of the Λ0

b, Λ+
c are

related by:

Pλ
Λ0

b
=±1,λ

Λ+
c

=±1 = Pλ
Λ0

b
=∓1,λ

Λ+
c

=∓1 (161)

An amplitude model is constructed in which Pλ
Λ0

b
=1,λ

Λ+
c

=1 = Pλ
Λ0

b
=−1,λ

Λ+
c

=−1 are set to unity,

Pλ
Λ0

b
=1,λ

Λ+
c

=−1 is fitted and Pλ
Λ0

b
=±−1,λ

Λ+
c

=1 is constrained to be equal to it. Amplitude fits to data

are performed, resulting in a Λ0
b polarisation factor:

Pλ
Λ0

b
=1,λ

Λ+
c

=−1 = 1.03± 0.10 (162)

The result shows non significant Λ0
b polarisation, agreeing with the previous LHCb measurements.

7.1.9 Distributions of background data

Eventual peaking backgrounds can be identified by selecting pure-background candidates from the
Λ0

b invariant mass sidebands, defined by the [5560, 5600] MeV/c2, [5640, 5680] MeV/c2 mass ranges.
Figures 53-54 show the distributions of the angular, invariant mass and Dalitz variables from sidebands
data. It is relevant to note that there are no clear structures visible neither in the m(Λ+

c K−) distribution,
or in the Dalitz variables.

It is also useful to check eventual background structures generating in the s-weighted-background
distributions, i.e. in the distributions of candidates weighted by the combinatorial background s-weights
rather than by signal weights. Figures 55-56 show the amplitude variables and Dalitz plots of the
s-weighted background candidates. Analogously to the previous case, no significant peaking structures
arise in the distributions.
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Figure 53: Angular and invariant mass distributions from sidebands candidates, defined by the [5560, 5600]
MeV/c2, [5640, 5680] MeV/c2 ranges of the Λ0

b invariant mass distribution.
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Figure 54: Distributions of the Dalitz variables from sidebands candidates.
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Figure 55: Angular and invariant mass distributions on s-weighted-background candidates.
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Figure 56: Distributions of the Dalitz variables on s-weighted-background candidates.
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7.1.10 Check of the s-weighting procedure

The amplitude fit of this analysis relies on a previously-s-weighted data set, in which candidates
have been categorised as signal- or background-like. As described in Section 3.2.3, in the s-weighting
procedure the control variables, i.e. the Λ0

b invariant mass in this case, are assumed to be independent
of the discriminating variables, which in this analysis are the Λ+

c D0, Λ+
c K− and D0K− invariant masses.

This is checked by plotting the Λ0
b invariant mass distribution in equally-populated slices of the Λ+

c D0,
Λ+

c K− and D0K− invariant mass projections, as shown in Figure 57.
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Figure 57: Λ0
b invariant mass distribution in equally-populated slices of the Λ+

c D0 (a), Λ+
c K− (b) and D0K− (c)

invariant mass projections.

Under the assumption of the control variable being independent of the discriminating ones, the
signal and background shapes of the Λ0

b invariant mass distribution in the above-mentioned slices
should be comparable, thus should overlap. Nevertheless, the results show that the Λ0

b peaking shape
differ in the m(D0K−) < 2.875 GeV/c2 and 2.656 GeV/c2 < m(D0K−) < 2.736 GeV/c2 regions. Thus,
the s-weighting procedure could in principle lead to problematic behaviours.

The validity of the s-weighting procedure is verified by removing background candidates from the
sidebands of the Λ0

b invariant mass distribution. A tighter Λ0
b mass cut in the [5600, 5640] MeV/c2

range is applied for this purpose. However, in this way combinatorial background candidates under the
Λ0

b peaking shape are not removed from the data set. An amplitude fit to the resulting data set is
performed without weighting candidates. The fit results are listed in Table 40, and the fit projections
are shown in Figure 58. The amplitude fit describes the unweighted data sample reasonably well, given
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the presence of combinatorial background candidates which now are fitted as signal ones. Overall, the
fit to the unweighted sample gives consistent results with the amplitude fit performed on the weighted
sample, thus the s-weighting procedure is considered to work properly.

Component Baseline weighted fit unweighted fit

D∗s 0(2317) 0.099 ± 0.013 0.119 ± 0.080
Ds K-matrix 0.862 ± 0.029 0.854 ± 0.074

D∗s 3(2860) 0.0181 ± 0.0077 0.0136 ± 0.0083
Ξ0

c(2790) 0.0257 ± 0.0051 0.021 ± 0.013

Sum 1.0029 ± 0.0041 1.0072 ± 0.0061

Table 40: Fitted resonance fractions obtained s-weighting the data set, and with an unweighted amplitude fit.

7.1.11 Studies on the normalisation samples

As described in Section 6.2, the simulated samples used as normalisation of the signal pdf are generated
with different detector conditions. In order to use them as a unique sample in the signal pdf, their
consistency in shapes of the amplitude variables is checked. Figure 59 shows their distributions for all
the simulated conditions. The samples show a good agreement in all the variables, allowing to merge
them and use them together.
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Figure 58: Projections of the amplitude fit to the unweighted data set.
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Figure 59: Distributions of the amplitude variables of the normalisation samples simulating different data taking
conditions.
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7.1.12 Fits to LHC Run 1 and Run 2 data sets

The amplitude fit presented in Chapter 6 is performed to data taken by LHCb during LHC Run 1 and
Run 2, with different beam and data taking conditions. The results are checked by performing mass
and amplitude fits to the LHC Run 1 and Run 2 data sets separately. The same mass and amplitude
fit models are employed, as for the baseline fits. Figure 60 shows the mass fits to the two split data
sets, and the fit results are reported in Table 41. Both the fit shapes and the results obtained from the
two samples are in good agreement, and they are compatible within their uncertainties. In particular,
the sum of the signal and background yields on the two split data sets is compatible with the results
obtained on the full LHCb data set.
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Figure 60: Fits to the m(Λ+
c D0K−) invariant mass distribution for split LHC Run 1 (left) and Run 2 (right)

data sets.

Fit parameter Full data set Run 1 data set Run 2 data set

N
Λ0

b
4971 ± 92 938 ± 41 4006 ± 81

Nbkg 1594 ± 71 376 ± 34 1244 ± 62
µ

Λ0
b

5619.78 ± 0.13 5620.66 ± 0.34 5619.59 ± 0.14

σ
Λ0

b
6.84 ± 0.14 7.6 ± 0.34 6.65 ± 0.15

τ
Λ0

b
-0.0031 ± 0.0013 -0.0019 ± 0.0026 -0.0034 ± 0.0015

Table 41: Results of the fits to the m(Λ+
c D0K−) invariant mass distribution for split LHC Run 1 and Run 2

data sets, compared to the fit results to the full LHCb data set.

Table 42 lists the fitted fit fractions over the two data sets. The results of the amplitude fits show
good agreement between the split and combined data sets.

Component Full data set Run 1 data set Run 2 data set

D∗s 0(2317) 0.099 ± 0.013 0.112 ± 0.036 0.096 ± 0.018
Ds K-matrix 0.862 ± 0.029 0.854 ± 0.054 0.853 ± 0.024

D∗s 3(2860) 0.0181 ± 0.0077 0.0245 ± 0.0083 0.0137 ± 0.0032
Ξ0

c(2790) 0.0257 ± 0.0051 0.0155 ± 0.0082 0.0286 ± 0.0064

Sum 1.0029 ± 0.0041 1.0064 ± 0.0071 0.9911 ± 0.0049

Table 42: Comparison of the resonance fractions obtained by fitting the complete LHCb data set, and fitting the
split Run 1 and Run 2 data sets.
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7.2 Source of systematic uncertainties

The procedures followed to asses the systematic uncertainties on the results of this analysis are detailed
in this Section. The resulting uncertainties are summarised in Section 7.3.

7.2.1 Size of the normalisation sample

The finite size of the normalisation sample used in the amplitude fit affects the precision on the results,
representing a source of systematic uncertainty. The impact of such effect is evaluated by performing
pseudo-experiments. One signal sample is simulated with the same amplitude model resulting from the
amplitude fit to data, and with same number of signal candidates as in the data sample. Phase-space
samples are generated with different sizes, and used as normalisation sample in the signal pdf. For a
fixed number of normalisation events, 250 phase-space samples are generated with different generation
seeds. Amplitude fits are performed to the signal sample afore-mentioned employing the same amplitude
model used to fit the data, and different normalisation samples are used. The difference between the
generated and fitted values of the resonance fractions and interference terms, relative to their generated
values, are computed. Finally, the standard deviation of the above-mentioned distributions are plotted
versus all the combination of signal and normalisation sample sizes. Figure 61 shows the obtained
results for the fit fractions; the interference terms show similar dependence on the normalisation sample
size.

The values obtained for the combination of 5,000 signal events and 89,000 normalisation events,
which represent best the size of the samples used in the amplitude fit to data, are quoted as a systematic
uncertainty due to the finite size of the normalisation sample. They are quoted in Tables 43-44.

7.2.2 Efficiency shapes of the selections based on Boosted Decision Trees
classifiers and particle identification

The binning schemes of the D-from-B BDT and PID efficiency maps chosen to correct the signal pdf
(Eq. 143) could affect the efficiency shapes. Hence, they represent sources of systematics uncertainties
on the final results.

The systematic effects related to the D-from-B BDT efficiency binning are studied by varying the
binning of the 2-dimensional D-from-B BDT efficiency map in the cos(θPc) and m(Λ+

c D0) variables,
from a 8x8 binning scheme to 22x22 bins in units of 2 bins. The default binning scheme used in
the nominal amplitude fit is 15x15 bins. Amplitude fits are performed to data with the resulting
efficiency look-up tables, making use of the default binning for the PID efficiency maps. The differences
between the obtained results and the nominal fit fractions and interference terms are computed, and the
standard deviation of their distributions are quoted as a systematic uncertainty to the BDT efficiency
binning.

The effect of the PID efficiency binning is examined by creating efficiency look-up tables from
the PIDCalib software package (Sec. 3.3.1) with different binning schemes in momentum and pseudo-
rapidity of the bachelor K−, and in the number of tracks of the events. Schemes from the 25x25x5 to
the 35x35x5 binnings in steps of 5 bins in the first two variables, the momentum p and pseudo-rapidity
η of the K−, are investigated. The binning in the number of tracks is kept constant. The default
binning in the nominal fit is 30x30x5 bins. For each of the above-mentioned binning schemes, the
2-dimensional efficiency maps in cos(θPc) and m(Λ+

c D0) are binned from a 10x10 bins scheme to 20x20
bins in units of 2 bins, with 15x15 bins being the default scheme. Amplitude fits are performed to data
with all combinations of the resulting PID efficiency maps, making use of the default D-from-B BDT
efficiency look-up tables. The differences between the obtained results and the nominal fit fractions
and interference terms are computed, and the standard deviation of their distributions are quoted as
systematic uncertainty to the PID efficiency binning.

The systematic uncertainties of assigned to the efficiency shapes of the D-from-B BDT and PID
selections are quoted in Tables 43-44.
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Figure 61: Distributions of the standard deviations of the difference between generated and fitted resonance
fractions, depending on the size of the normalisation sample. The size of the signal sample is kept constant. The
distributions are obtained from pseudo-experiments, in which the same amplitude model used to fit the data has
been employed. The last points (to the right) of the distributions reflect the sizes of the signal and normalisation
samples used in this analysis. They are quoted as a systematic uncertainty of the fit to data related to the finite
size of the normalisation sample.
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7.2.3 Line shape of the D∗s 0(2317) state

The line shape of the D∗s 0(2317) state is described in the baseline amplitude model by a Flatté
distribution. An alternative parametrisation makes use of a sub-threshold Breit-Wigner distribution,
where an effective pole mass m̃ is defined as in Equation 88, and it is used to evaluate the parameter
p0 in Equation 84. The rest of the line shape function keeps the same form as for the base relativistic
Breit-Wigner shape used to describe over-threshold states. An amplitude fit with this alternative
parametrisation of the D∗s 0(2317) resonance is performed, and the fit projections are presented in
Appendix A.7. The differences between these results and the baseline amplitude fit are quoted as
systematic uncertainties on the measured fit fractions and interference terms. They are reported in
Tables 43-44.

The quoted systematic uncertainties also include components of statistical errors, when assessed
following the above-described method. A more precise evaluation would involve fits to pseudo-
experiments. However, the values obtained are relatively small with respect the other contributions of
systematic uncertainties, hence this effect is not considered relevant in this case.

7.2.4 Fit biases

The amplitude fit could in principle introduce biases in the measurements of the parameters, fit
fractions and interference terms. Eventual fit biases are investigated by employing pseudo-experiments.
The fitted parameters of the amplitude model are sampled in the uncorrelated space following the
same method introduced in Section 6.4, and 250 models are defined accordingly. For each of them,
a pseudo-experiment is performed generating signal and normalisation samples with same number
of candidates as in the fit to data. The generated samples are fitted using the baseline amplitude
model. The distributions of the differences between the generated and fitted quantities are computed.
The mean values of such distributions represent the fit biases on the parameters under interest, and
are quoted in Tables 43-44. Once the fit biases are known, the fit results can be corrected for them.
However, additional systematics uncertainties would be introduced by this correction procedure. Since
the measured fit biases are small relatively to the absolute values of the fitted quantities, the fit biases
themselves are quoted as systematic uncertainties.

7.3 Systematic uncertainties

A summary of the systematic uncertainties is presented in Tables 43-44 for the fit fractions and the
interference terms, respectively. The uncertainty related to the normalisation sample size is the most
relevant for the K-matrix contribution and for the D∗s 0(2317) fit fraction. However, it could be easily
reduced by employing simulated samples of larger size. The uncertainties assigned to the D-from-B
BDT and PID efficiency shapes are the leading ones for the D∗s 3(2860) and Ξ0

c(2790) fit fractions.
It is believed that there is room for improvement on them. The estimated fit biases are the least
contributing to the systematic uncertainties, for all the states.

The individual systematic uncertainties are assumed to be uncorrelated and summed in quadrature,
leading to the final results presented in Tables 45-46. All interference terms are compatible with
zero. The resonance fit fractions are limited by the statistical uncertainties, apart by the D∗s 0(2317)
contribution which have statistical and systematic errors of the same order.
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Fit fraction Fitted value Norm. sample size BDT eff. shape PID eff. shapes D∗s 0(2317) line shape Fit biases

D∗s 0(2317) 0.099 0.014 0.003 0.003 0.0008 0.0002
Ds K-matrix 0.862 0.018 0.005 0.003 0.007 0.01

D∗s 3(2860) 0.0181 0.0009 0.0005 0.0009 0.0004 0.0002
Ξ0

c(2790) 0.0257 0.0001 0.0034 0.0015 0.0005 0.0012

Sum 1.0029 0.0100 0.0022 0.0031 0.0080 0.0044

Table 43: Fitted values of the fit fractions and list of systematic uncertainties.

Interference term Fitted value Norm. sample size BDT eff. shape PID eff. shapes D∗s 0(2317) line shape Fit biases

D∗s 0(2317) - Ds K-matrix -0.012 0.0002 0.000002 0.00002 0.0006 0.0003
D∗s 0(2317) - D∗s 3(2860) 0.00006 0.00003 0.0002 0.00354 0.000003 0.000003
D∗s 0(2317) - Ξ0

c(2790) -0.0059 0.00001 0.0002 0.0029 0.0007 0.000005
Ds K-matrix - D∗s 3(2860) -0.00015 0.00013 0.000005 0.00012 0.000007 0.00001
Ds K-matrix - Ξ0

c(2790) 0.0059 0.0007 0.0002 0.0014 0.0099 0.0005
D∗s 3(2860) - Ξ0

c(2790) 0.0021 0.0006 0.00006 0.0017 0.0006 0.0002

Table 44: Fitted values of the interference terms and list of systematic uncertainties.

Component Fit fraction

D∗s 0(2317) 0.099 ± 0.013 (stat.) ± 0.015 (syst.)
Ds K-matrix 0.862 ± 0.029 (stat.) ± 0.022 (syst.)

D∗s 3(2860) 0.0181 ± 0.0077 (stat.) ± 0.0014 (syst.)
Ξ0

c(2790) 0.0257 ± 0.0051 (stat.) ± 0.0039 (syst.)

Sum 1.0029 ± 0.0041 (stat.) ± 0.0141 (syst.)

Table 45: Fit fractions with statistical and systematic uncertainties.

Ds K-matrix D∗s 3(2860) Ξ0
c(2790)

D∗s 0(2317) -0.012 ± 0.015 (stat.) ± 0.0007 (syst.) 0.00006 ± 0.00079 (stat.) ± 0.00356 (syst.) -0.0059 ± 0.0021 (stat.) ± 0.0030 (syst.)
Ds K-matrix / -0.00015 ± 0.00053 (stat.) ± 0.01612 (syst.) 0.0059 ± 0.0099 (stat.) ± 0.0101 (syst.)

D∗s 3(2860) / 0.0021 ± 0.0013 (stat.) ± 0.0019 (syst.)

Table 46: Fitted interference terms between the components of the amplitude model.
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8 Search for pentaquark states

Amplitude fits neglecting any contributions from eventual pentaquark states have been performed so
far. This Chapter presents the statistical tests performed to asses the significance for the observation of
pentaquark states in Λ0

b → Λ+
c D0K− decays. Pentaquark candidates with same properties as observed

in Λ0
b → J/ψpK− decays [1, 2] are tested The possible presence of hidden-charm pentaquark states are

investigated in Section 8.4.

8.1 Expectations from the theory models

It is possible to estimate the number of reconstructed Pc(4380)+ and Pc(4450)+ pentaquark candidates
that are expected to be observed in the Λ0

b → Λ+
c D0K− channel, using the theoretical predictions for

their decay widths (Sec. 1.4, Tab. 4, [39]), and the measured properties from their first observation
[1]. Assuming the theory model presented in Section 1.4 to be valid, a näıve extrapolation of the
reconstructed Pc yields in the data set used in this analysis is given by:

NPc,9.1fb−1(Λ0
b → Λ+

c D0K−) =
Bth(Pc → Λ+

c D0)

Bth(Pc → J/ψp)
·
N9.1fb−1(Λ0

b → Λ+
c D0K−)

N3fb−1(Λ0
b → J/ψK−p)

·
B(Λ0

b → J/ψK−p)

B(Λ0
b → Λ+

c D0K−)
·NPc,3fb−1(Λ0

b → J/ψK−p)

(163)

where the ratio of the Bth terms represents the predicted relative branching fractions of the Pc states
decaying in Λ+

c D0 and J/ψp as presented in Table 4. The yield of reconstructed candidates for a specific
decay, at a given integrated luminosity, is represented by the Nlumi(decay) term. The NPc,lumi(decay)
factor is the number of observed Pc candidates for the specified decay and integrated luminosity. In
particular, NPc,3fb−1(Λ0

b → J/ψK−p) is derived from:

NPc,3fb−1(Λ0
b → J/ψK−p) = FPc,3fb−1(Λ0

b → J/ψK−p) ·N
Λ0

b
→J/ψK−p,3fb−1 (164)

with FPc,3fb−1(Λ0
b → J/ψK−p) being the fit fraction of the Pc state measured in its first ob-

servation. Using values N3fb−1(Λ0
b → J/ψK−p) = 26, 000, N9.1fb−1(Λ0

b → Λ+
c D0K−) = 5, 000,

FPc(4380)+,3fb−1(Λ0
b → J/ψK−p) = 4.2%, FPc(4450)+,3fb−1(Λ0

b → J/ψK−p) = 8.1%, B(Λ0
b →

J/ψK−p) = 3.2 · 10−4 and B(Λ0
b → Λ+

c D0K−) = 1.5 · 10−3, it is possible to estimate the yields
of the Pc(4380)+ and Pc(4450)+ states expected to be reconstructed in the data sample of this analysis.
The estimated yields and corresponding fit fractions are presented in Table 47. These are basic extrap-
olations which might be not precise and affected by uncertainties. Nevertheless, the molecular model
presented in Section 1.4 would expect a significant pentaquark signal in the Λ0

b → Λ+
c D0K−channel.

Hence, the reconstructed yield of the Pc states in the data sample of this analysis are the most relevant
quantity for the statistical tests.

8.1.1 Amplitude model with pentaquark states

A variety of hypotheses concerning the possible decays of pentaquark states in the Λ0
b → Λ+

c D0K−

channel are investigated employing profile likelihood ratio tests, as presented in Section 3.2.5.
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Model Pc(4380)+, JP = 3
2

−
Pc(4450)+, JP = 3

2

−
Pc(4450)+, JP = 5

2

+

Σ∗cD 29 / 0.6% - -

D∗Σc 185 / 3.6% 222 / 4.3% 419 / 8.2%

Table 47: Expected yields and fit fractions of the Pc(4380)+ and Pc(4450)+ states in the data sample of this
analysis, following the predictions by the Σ∗

c(2520)D and Σc(2455)D∗ molecular models [39].

First, the hypotheses of having independent contributions of the Pc(4380)+, Pc(4450)+, Pc(4312)+,
Pc(4440)+, Pc(4457)+ states in the Λ0

b → Λ+
c D0K− channel are studied. The properties measured in

the respective first observations (Tables 2-3) are used to characterise these states. Only upper limits
have been assigned to the widths of the Pc(4312)+, Pc(4440)+, Pc(4457)+ states, and their upper
boundaries are quoted as width values here.

Secondly, the hypotheses of having both the Pc(4380)+ and Pc(4450)+, or the Pc(4312)+, Pc(4440)+

and Pc(4457)+ contributions, are investigated. The relative fit fractions between the states are fixed to
what has been measured in their first observations [1]- [2].

The matrix elements of the Pc states are build analogously to what has been done in Chapter 6 for
the other resonances, and are added coherently to the complete matrix element (Eq. 153). The BLS
couplings of the Λ0

b and Pc decays are listed in Table 48. Only the partial waves corresponding to the
lowest values allowed of the orbital angular momentum are considered. From [2], the JP assignments

of the P(4440)+ and Pc(4457)+ states are not uniquely determined, and values JP = 1
2

−
, 3

2

−
are

considered plausible: in the following, both the hypotheses are tested.

Decay BLS couplings

Λ0
b → Pc(4380)+K− B

Λ0
b
→Pc(4380)+K−

1, 3
2

, B
Pc(4380)+→Λ+

c D0

2, 1
2

Λ0
b → Pc(4450)+K− B

Λ0
b
→Pc(4450)+K−

2, 5
2

, B
Pc(4450)+→Λ+

c D0

3, 1
2

Λ0
b → Pc(4312)+K− B

Λ0
b
→Pc(4312)+K−

0, 1
2

, B
Pc(4312)+→Λ+

c D0

0, 1
2

Λ0
b → Pc(4440)+K−, JP (Pc(4440)+) = 1

2

−
B

Λ0
b
→Pc(4440)+K−

0, 1
2

, B
Pc(4440)+→Λ+

c D0

0, 1
2

Λ0
b → Pc(4440)+K−, JP (Pc(4440)+) = 3

2

−
B

Λ0
b
→Pc(4440)+K−

1, 3
2

, B
Pc(4440)+→Λ+

c D0

2, 1
2

Λ0
b → Pc(4457)+K−, JP (Pc(4457)+) = 1

2

−
B

Λ0
b
→Pc(4457)+K−

0, 1
2

, B
Pc(4457)+→Λ+

c D0

0, 1
2

Λ0
b → Pc(4457)+K−, JP (Pc(4457)+) = 3

2

−
B

Λ0
b
→Pc(4457)+K−

1, 3
2

, B
Pc(4457)+→Λ+

c D0

2, 1
2

Table 48: Couplings of the decays including Pc contributions.

8.2 Likelihood ratio test implementation

Profile likelihood ratio tests are performed, as introduced in Section 3.2.5. They are employed to build
confidence belts which allow to determine either confidence intervals for the observation of pentaquark
states, or upper limits. A variety of methods have been developed to perform such statistical tests.
Particular popular are asymptotic methods such as described in [83]. However they are not well
suited for this analysis, since the observable under test, namely the yield (i.e. the fit fraction) of
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pentaquark candidates in the data set, are derived from the fitted parameters in a non-straightforward
way. Therefore, an alternative approach must be followed.

A pseudo-experiment is performed, and a sample is generated with the same amplitude model
as fitted to the data from Table 32. On top of the states fitted to data, a pentaquark contribution
with a given contribution fPc is added. An amplitude fit to such a sample is performed, with the
same amplitude model used to fit the data but with the addition of the pentaquark contribution. The
maximum likelihood estimator used as denominator in the likelihood ratio (Eq. 53) is obtained by
fitting the BLS couplings of the pentaquark contribution. As said in Section 8.1.1, pentaquarks with
properties as measured in [1, 2] are tested, thus their mass and width values are not fitted here. The
constrained likelihood fits (representing the numerator of the likelihood ratio in Equation 53) are
performed on the same simulated sample, but now fixing the couplings of the pentaquark component.
This translates into fixing the contribution f̃Pc of the Pc signal. Scanning a range of values f̃Pc over
a physically-allowed region, the pdf distribution of the likelihood ratio, given the true value fPc , is
obtained and the statistical test can be performed.

The above-described procedure is used to build confidence belts as introduced in Section 3.2.5.
In fact, this method allows to determine a single horizontal slice of the confidence, corresponding to
the true value of the pentaquark contribution fPc . A complete confidence belt can be constructed by
iterating this procedure for many values of fPc , which corresponds to scan the confidence belt in slices.

However, some “technical issues” arise when applying this procedure to the specific case of this
analysis. First, as already said the observable of interest, namely the pentaquark fit fraction, is not
directly fit but it is derived from the fitted BLS couplings of the pentaquark component. Therefore, the
likelihood ratio has to be profiled in the couplings, and the result translated into values of fit fractions.
More importantly, the free parameters which are needed to describe a single pentaquark contribution
are four, namely the magnitudes and phases (or real and imaginary parts) of the two BLS couplings
per Pc state, as listed in Table 48. The same reasoning applies when testing hypotheses involving more
than one Pc state, for which the number of Pc fit parameters increases linearly. Despite the fact that
in principle it is possible to profile the likelihood ratio in a multi-dimensional space, in fact this would
dramatically increase the computational resources required to perform the statistical tests with respect
to a one-dimensional profiling.

To overcome the difficulties of performing multi-dimensional tests, an approximated method is
followed. Let us consider testing the hypothesis of observing an individual pentaquark state in the
Λ0

b → Λ+
c D0K− channel. An amplitude fit to the data is first performed including the pentaquark

contribution of interest, and fitting the magnitude and phases of the related couplings. Then, the ratio
of the two magnitudes m̃ and the difference between the two phases φ̃ of the Pc contribution are taken:

m̃ ≡
mag

Λ0
b

magPc

φ̃ ≡ φ
Λ0

b
− φPc

(165)

where the Λ0
b and Pc subscripts indicate the components of the BLS couplings for the Λ0

b and the Pc
decays, respectively. The likelihood ratio is finally profiled in m̃, keeping constant φ̃. In this way the
likelihood ratio is profiled in only one dimension, and in a quantity which is directly related to the
pentaquark fit fraction.

A similar approach is followed in case of testing the hypothesis of multiple pentaquark signals, such
as the joint presence of the Pc(4438)+ and Pc(4450)+ or of the Pc(4312)+, Pc(4440)+ and Pc(4457)+

states. First, amplitude fits are performed to data fitting all the parameters of the Pc states. The ratios
of the magnitudes m̃i and phases φ̃i of the couplings are considered, for each of the ith pentaquark
contribution. The ratios φ̃i are kept fixed similarly to the previous case. The ratios m̃i are now
constrained in such a way to obtain relative fit fractions of the Pc candidates similar to what has
been measured in [1] for the Pc(4438)+ and Pc(4450)+ states and in [2] for the Pc(4312)+, Pc(4440)+

and Pc(4457)+ states. Once the ratios m̃i are fixed relatively to each others, their absolute scaling is

125



varied and used to profile the likelihood ratio. In this way confidence belts can be build for testing
the hypotheses of observing the Pc(4438)+ and Pc(4450)+ or the Pc(4312)+, Pc(4440)+ and Pc(4457)+

states with relative fractions as measured in [1, 2].

8.3 Hypothesis testing

The presence of the Pc(4380)+ and Pc(4450)+ states in Λ0
b → Λ+

c D0K− decays is tested first. Table 49
reports the results of amplitude fits to data in the hypotheses of having one Pc only at time, and in the
case of adding both of them. The mass, width and spin assignments are fixed to the values reported in
Table 2, as measured in their first observation [1]. To describe the other states, the baseline amplitude
model used to fit the data in Chapter 6 is used. The fit projections over the m(Λ+

c D0) invariant mass
distribution are shown in Figure 62.

Hypothesis Pc(4380)+ fit fraction Pc(4450)+ fit fraction

Pc(4380)+ only 0.0018+0.0022
−0.0018 /

Pc(4450)+ only / 0.0023+0.0025
−0.0023

Pc(4380)+ and Pc(4450)+ 0.0023+0.0032
−0.0023 0.00015+0.00021

−0.00015

Table 49: Fitted values of the Pc(4380)+ and Pc(4450)+ fit fractions, for different hypotheses. Only the statistical
uncertainties are shown.

Amplitude fits to the data are performed adding independently the two states to the amplitude
model, and the ratios of magnitudes and differences of phases (Eq. 165) of the couplings are determined.
About twenty pseudo-experiments are performed generating samples and varying uniformly the ratio
of the couplings magnitude m̃ of the pentaquark candidate under test, as described in the previous
section. This corresponds to making hypotheses about a range of Pc fractions. For each of them,
one unconstrained-likelihood fit is performed fitting the ratio m of the Pc contribution and all the
other parameters of the model. One hundred fits with fixed values of the ratio of magnitudes m are
performed, and their results combined to build a 95% confidence level interval for the corresponding
generated value m̃. The m values defining the lower and upper boundaries of the CI are then translated
to values of pentaquark fit fractions. The procedure is iterated for all the hypothesised m̃ values, finally
defining a confidence belt as shown in Section 3.2.5.

Figure 63 shows the confidence belts in the fit fraction space for the Pc(4380)+ and Pc(4450)+

pentaquark candidates. The fit fractions of these states measured on data are represented by vertical
lines. The general trend of the confidence belts reflects the expected behaviour for such a statistical
test, as in Figure 21. Nevertheless they are affected by fluctuations of the intervals, caused by the
uncertainties related to the amplitude fits and to the statistical size of the fitted samples. The
intersections of the lines corresponding to the measured fractions with the confidence belts determine
95% CL upper limits for the observation of the two states in the Λ0

b → Λ+
c D0K− channel:

Pc(4380)+ fit fraction < 0.0125 (95%CL)

Pc(4450)+ fit fraction < 0.007 (95%CL)
(166)

The same procedure is repeated testing the hypothesis of observing both the Pc(4380)+ and
Pc(4450)+, with their relative fit fractions constrained to the value R(Pc(4380)+/Pc(4450)+) = 2.05 as
measured in their first observation. The resulting confidence belts are shown in Figure 64, and the
corresponding upper limits on fit fractions of the pentaquark states result to be:

Pc(4380)+ fit fraction < 0.0095 (95%CL)

Pc(4450)+ fit fraction < 0.0047 (95%CL)
(167)
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Figure 62: Projections of the amplitude fits over the m(Λ+
c D0) invariant mass distribution, including the

Pc(4380)+ and Pc(4450)+ pentaquark states. a) The Pc(4380)+ state is included in the model. b) The Pc(4450)+

state is included in the model. c) The Pc(4380)+ and Pc(4450)+ states are included in the model.

The individual presence of the Pc(4312)+, Pc(4440)+ and Pc(4457)+ states is tested analogously.

Both the JP = 1
2

−
, 3

2

−
assignments are tested for the Pc(4440)+ and Pc(4457)+ states. The results of

the amplitude fits to data adding these pentaquark contributions are listed in Table 50. The projections
of the fits over the m(Λ+

c D0) invariant mass distributions are shown in Figures 65-66. Confidence belts
are shown in Figure 67, resulting in the following upper limits:

Pc(4312)+ fit fraction < 0.004 (95%CL)

Pc(4440)+, JP =
1

2

−
fit fraction < 0.006 (95%CL)

Pc(4440)+, JP =
3

2

−
fit fraction < 0.0045 (95%CL)

Pc(4457)+, JP =
1

2

−
fit fraction < 0.0045 (95%CL)

Pc(4457)+, JP =
3

2

−
fit fraction < 0.008 (95%CL)

(168)
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Hypothesis Pc(4312)+ fit fraction Pc(4440)+ fit fraction Pc(4457)+ fit fraction

Pc(4312)+ only 0.0009+0.0013
−0.0009 / /

Pc(4440)+ (JP = 1
2

−
) only / 0.0015+0.0021

−0.0015 /

Pc(4440)+ (JP = 3
2

−
) only / 0.000024+0.000025

−0.000024 /

Pc(4457)+ (JP = 1
2

−
) only / / 0.0015 ± 0.00015

Pc(4457)+ (JP = 3
2

−
) only / 0.00026 ± 0.0021

Pc(4312)+, Pc(4440)+ (JP = 1
2

−
), 0.0023 ± 0.0018 0.00034 ± 0.00027 0.000090 ± 0.000071

Pc(4457)+ (JP = 1
2

−
)

Pc(4312)+, Pc(4440)+ (JP = 3
2

−
), 0.0024+0.0025

−0.0024 0.0019 ± 0.0019 0.00010+0.00011
−0.00010

Pc(4457)+ (JP = 3
2

−
)

Table 50: Fitted values of the Pc(4312)+, Pc(4440)+ and Pc(4457)+ fit fractions, for different hypotheses. Only
statistical uncertainties are shown.
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Figure 63: Confidence belts for the Pc(4380)+ (a) and Pc(4450)+ (b) fit fractions at 95% confidence level, under
the hypothesis of observing only one of them in Λ0

b → Λ+
c D0K− decays. The blue vertical lines indicate the fit

fraction values measured on data.
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Figure 64: Confidence belts for the Pc(4380)+ (a) and Pc(4450)+ (b) fit fractions at 95% confidence level, under
the hypothesis of observing both of them in Λ0

b → Λ+
c D0K− decays. The blue vertical lines indicate the fit

fraction values measured on data. The ratio between the Pc fit fractions is fixed to the results obtained in [1].
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Figure 65: Projections of the amplitude fits over the m(Λ+
c D0) invariant mass distribution, including the

Pc(4312)+, Pc(4440)+, Pc(4457)+ states in the amplitude model. a) The Pc(4312)+ state is included in the

model. b) The Pc(4440)+ state is included in the model, with JP = 1
2

−
assignment. c) The Pc(4440)+ state

is included in the model, with JP = 3
2

−
assignment. d) The Pc(4457)+ state is included in the model, with

JP = 1
2

−
assignment. e) The Pc(4457)+ state is included in the model, with JP = 3

2

−
assignment.
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Figure 66: Projections of the amplitude fits over the m(Λ+
c D0) invariant mass distribution, including the

Pc(4312)+, Pc(4440)+, Pc(4457)+ states in the amplitude model. a) The Pc(4312)+, Pc(4440)+, Pc(4457)+

states are included in the model, with JP = 1
2

−
assignment for the Pc(4440)+ and Pc(4457)+ states. b) The

Pc(4312)+, Pc(4440)+, Pc(4457)+ states are included in the model, with JP = 3
2

−
assignment for the Pc(4440)+

and Pc(4457)+ states.
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Figure 67: Confidence belts for the Pc(4312)+ (a), Pc(4440)+ (JP = 1
2

+
(b), JP = 3

2

+
(c)) and Pc(4457+)

(JP = 1
2

+
(d), JP = 3

2

+
(e)) fit fractions at 95% confidence level, under the hypothesis of observing only one of

them in Λ0
b → Λ+

c D0K− decays. The blue vertical lines indicate the fit fraction values measured on data.
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Unfortunately, the procedure described in Section 8.2 for assessing the statistical significance for the
combined observation of Pc(4312)+, Pc(4440)+ and Pc(4457+) states does not lead to stable results.
This can be related to the model becoming too complex, which would require a different approach for
constructing the confidence intervals or a modification of the amplitude model. However, based on the
results obtained for testing these states individually, upper limits with upper boundary at per-cent
level are expected. A complete derivation is addressed to future studies.

The above results are in contrast with the expectations from the majority of the Σ(∗)D
(∗)

molecular
models of the pentaquark candidates observed by LHCb. Visible pentaquark signals decaying to
the D0K− system have been predicted by such models, in a quantitative way for the Pc(4380)+ and
Pc(4450)+ states ( [39], Section 8.1), and more qualitatively for the Pc(4312)+, Pc(4440)+ and Pc(4457)+

pentaquarks [55,56,133].

On the other hand, the results support the predictions of the Σ(∗)D
(∗)

molecular model from [59],
in which the couplings of the PC states to the Λ+

c D0 system are predicted to be small. As introduced
in Section 1.5, this work makes use of the most recent LHCb data to tune the constants involved in
the loop predictions.

8.4 Extra hidden-charm pentaquarks

The eventual presence of hidden-charm pentaquark states such as predicted in [40] is also tested. The
parametrisation of the states as described in [40] is not straightforward to implement in the amplitude
model of this analysis. Nevertheless, Breit-Wigner distributions are good approximations for the line
shapes of the first states (see Figure 5 in [40]). Thus, three states Pc,s11, Pc,d11, Pc,d13 are described by
making use of Breit-Wigner line shapes and resonance parameters as listed in Table 51. An amplitude
fit with the newly-defined model is performed to data.

State Mass [MeV/c2] Width [MeV/c2] JP

Pc,s11 4295 7.4 1
2

−

Pc,d11 4334 56. 1
2

−

Pc,d13 4395 108. 3
2

−

Table 51: Parameters used to describe the first partial waves described in [40].

The results of the amplitude fit to the data, including the three extra-hidden charm pentaquarks,
are listed in Table 52. The pentaquark contributions are compatible with zero within the related
statistical uncertainties.

Component Fit fraction

Pc,s11 0.00075+0.00087
−0.00075

Pc,d11 0.0004+0.0017
−0.0004

Pc,d13 0.00022+0.00047
−0.00022

D∗s 0(2317) 0.107 ± 0.047
Ds K-matrix 0.856 ± 0.039

D∗s 3(2860) 0.0153 ± 0.0045
Ξ0

c(2790) 0.022 ± 0.010

Sum 1.0015 ± 0.0078

Table 52: Fit results for the resonance fractions of the baseline amplitude model and hidden-charm pentaquark
states. Only statistical uncertainties are shown.
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9 Conclusions

This thesis reports the amplitude analysis of Λ0
b → Λ+

c D0K− decays collected by the LHCb experiment
in LHC Run 1 and Run 2, corresponding to an integrated luminosity of 9.1 fb−1. This channel is
important to discriminate between models which attempt to describe the nature of the pentaquark
candidates observed by LHCb in 2015 and in 2019.

The measured fit fractions of the intermediate resonances used to describe the data are reported in
the following:

D∗s 0(2317) fit fraction = 0.099± 0.013 (stat.)± 0.015 (syst.)

Ds K −matrix fit fraction = 0.862± 0.029 (stat.)± 0.022 (syst.)

D∗s 3(2860) fit fraction = 0.0181± 0.0077 (stat.)± 0.0014 (syst.)

Ξ0
c(2790) fit fraction = 0.0257± 0.0051 (stat.)± 0.0039 (syst.)

(169)

where the K-matrix term describes the contributions from the D∗s 1(2700) and D∗s 1(2860) states. The
interference terms between the above states are consistent with zero.

Upper limits have been derived on the presence of pentaquark states in the data set used in this
analysis. Under the hypothesis of observing the decay of only one pentaquark contribution in the
Λ0

b → Λ+
c D0K− channel, the upper limits on their observation are found to be:

Pc(4380)+ fit fraction < 0.0125 (95%CL)

Pc(4450)+ fit fraction < 0.007 (95%CL)

Pc(4312)+ fit fraction < 0.004 (95%CL)

Pc(4440)+, JP =
1

2

−
fit fraction < 0.006 (95%CL)

Pc(4440)+, JP =
3

2

−
fit fraction < 0.0045 (95%CL)

Pc(4457)+, JP =
1

2

−
fit fraction < 0.0045 (95%CL)

Pc(4457)+, JP =
3

2

−
fit fraction < 0.008 (95%CL)

(170)

assuming mass and widths of the pentaquark states as measured in [1, 2].
Under the assumption of observing both the Pc(4380)+ and Pc(4450)+ states with relative fit

fractions as measured in [1], upper limits are set for their observation in Λ0
b → Λ+

c D0K− decays:

Pc(4380)+ fit fraction < 0.0095 (95%CL)

Pc(4450)+ fit fraction < 0.0047 (95%CL)
(171)

The above results are in contrast with the expectations from the majority of the ΣD
∗
-Σ∗D molecular

models of the pentaquark candidates observed by LHCb. Given the statistics of Λ0
b → Λ+

c D0K−

channel studied in this analysis, [39] predicted in a quantitative way visible signals of the Pc(4380)+

and Pc(4450)+ states decaying to Λ+
c D0. In these models, the pentaquarks are described as loosely-

bound states of Σ∗c(2520)D− Σc(2455)D
∗

hadrons in non-relativistic regime. Only more qualitative
expectations for the Pc(4312)+, Pc(4440)+ and Pc(4457)+ are available at this time. Nevertheless,
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large couplings of the pentaquarks to the Λ+
c D0 system have been predicted by [55] using an effective

range expansion of the dynamics around the ΣcD
(∗)

threshold region, and by [56] making use of an
extended chromomagnetic model. Also, the results of this analysis are not in line with the predictions
of the hadrocharmonium description of the Pcs as modelled in [58].

On the other hand, the results corroborate the predictions of the Σ(∗)D
(∗)

molecular hypothesis
as presented in [59]. In this work, by tuning to the most recent LHCb data the constants involved
in the loop calculations, the couplings of the Pc states to the Λ+

c D0 system are predicted to be small.
More conclusive statement can only be made with the predictions of Pc branching fractions rather than
couplings, which are not available yet.

Similarly, the contributions from additional hidden-charm pentaquarks predicted in [40], which
describes reasonably well the observed Pc(4380)+, result to be negligible in Λ0

b → Λ+
c D0K− decays.
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A Appendices

A.1 Data distributions with finer binning

Figure 68 shows the distributions of the s-weighted signal candidates, with finer binning (400 bins) with
respect to the default plots (40 bins) shown in Figure 42. Distributions from phase-space simulated
samples are overimposed.
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Figure 68: Distributions of the amplitude variables on s-weighted signal candidates compared to the distributions
from the phase-space simulated sample.
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A.2 Fit distributions with finer binning

Figure 69 shows the projections of the amplitude fit to data with 60 bins. The default projections
shown in Figure 44 have 40 bins. The baseline amplitude model is considered.
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Figure 69: Projections of the baseline amplitude fit over the amplitude variables, overimposed to the data. 60
bins are used.
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Figure 70 shows the m(Λ+
c D0) projection of the amplitude fits to data replacing the D∗0(2007)K−

channel in the K-matrix amplitude by the D0
1(2420)K− channel. Two different binning schemes are

proposed.
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Figure 70: Projections of the amplitude fit over the m(D0K−) invariant mass distribution, overimposed to the
data. 40 bins (a, b) and 60 bins (c, d) are used. a, c) Baseline amplitude model, with the D∗0(2007)K− and
D0K− channels included in the K-matrix amplitude. b, d) The D∗0(2007)K− channel in the K-matrix amplitude
has been replaced by the D0

1(2420)K− channel.
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A.3 Efficiency maps of the Λ+
c and D0 selections based on Boosted Decision Trees

classifiers

Efficiency maps of the individual and combined D-from-B BDT selections of the Λ+
c and D0 are

shown in Figures 71-72-73 over the angular variables, invariant mass distributions and Dalitz plots,
respectively. The efficiency values are weighted by the candidate s-weights.

The efficiency shapes of the individual classifiers are compatible with each other. The efficiency
shape of the combined selection show a similar trend to the efficiency of the individual classifiers, and
its average efficiency is equal to the product of the mean efficiencies of the latter. Hence, the two BDT
classifiers factorise and the related efficiency terms in the signal pdf (Eq. 143) can be expressed as a
simple product.
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Figure 71: Efficiency over the angular variables of the default D-from-B BDT selection of the c-hadrons. a, d, g)
Individual efficiency of the D0 selection. b, e, h) Individual efficiency of the Λ+

c selection. c, f, i) Efficiency of
the combined selections of the Λ+

c and D0 hadrons.
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Figure 72: Efficiency of the default D-from-B BDT selection of the c-hadrons, over the invariant mass distributions
of the final-state particles. a, d, g) Individual efficiency of the D0 selection. b, e, h) Individual efficiency of the
Λ+

c selection. c, f, i) Efficiency of the combined selections of the Λ+
c and D0 hadrons.
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Figure 73: Efficiency over the Dalitz plots of the default D-from-B BDT selection of the c-hadrons. a, d, g)
Individual efficiency of the D0 selection. b, e, h) Individual efficiency of the Λ+

c selection. c, f, i) Efficiency of
the combined selections of the Λ+

c and D0 hadrons.

144



A.4 Efficiency maps of the K− selection based on particle identification

Efficiency maps of the ProbNN classifier for the default selection of the bachelor K− are shown in
Figures 74 over the angular variables, invariant mass distributions and Dalitz plots.
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Figure 74: Efficiency over the amplitude variables of the default PID selection of the bachelor K−.
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A.5 D∗s 1(2700) and D∗s 1(2860) states parametrised by a sum
of Breit-Wigner line shapes

The baseline amplitude model describes the D∗s 1(2700) and D∗s 1(2860) by a K-matrix amplitude. A more
näıve approach is to consider them as two independent contributions, parametrised by Breit-Wigner
line shapes. An amplitude model following the latter approach is considered, and the amplitude fit to
data is repeated. The resulting fit fractions are reported in Table 53, and the interference terms in
Table 54. Figure 75 shows the projections of the amplitude fit to data. A strong destructive interference
between the two states is modeled by the amplitude fit, which also results in an unstable fit. In this
case the Breit-Wigner approximation for the two states is failing, and it is necessary to resort to the
K-matrix approach.

Component Fit fraction

D∗s 0(2317) 0.138
D∗s 2(2573) 0.0104
D∗s 1(2700) 1.21
D∗s 1(2860) 0.340
D∗s 3(2860) 0.0183
Ξ0

c(2790) 0.0232
non-resonant 0.108

Sum 1.852781

Table 53: Fit results for the resonance fractions, parametrising the D∗
s 1(2700) and D∗

s 1(2860) states by two
independent Breit-Wigner line shapes..

D∗s 2(2573) D∗s 1(2700) D∗s 1(2860) D∗s 3(2860) Ξ0
c(2790)

D∗s 0(2317) 0.0001 -0.008 0.002 0.00007 0.0001
D∗s 2(2573) / 0.000004 -0.0001 -0.00002 0.0002
D∗s 1(2700) / / -0.93 -0.0008 0.02
D∗s 1(2860) / / / 0.0005 -0.01
D∗s 3(2860) / / / / 0.003

Table 54: Fit results for the interference terms between the components of the amplitude model, parametrising
the D∗

s 1(2700) and D∗
s 1(2860) states by two independent Breit-Wigner line shapes..
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Figure 75: Projections of the amplitude fit to data. The D∗
s 1(2700) and D∗

s 1(2860) states are parametrised by
two independent Breit-Wigner line shapes.

147



A.6 Fit to data with Ξ0
c(2970),Ξ0

c(3055),Ξ0
c(3080) states

Figure 76 shows the m(Λ+
c K−) projection of the amplitude fits to data adding the

Ξ0
c(2970),Ξ0

c(3055),Ξ0
c(3080) states to the baseline amplitude model. All combinations of spin-parity

assignment JP = 1
2

−
, 3

2

−
for these states are considered.
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Figure 76: m(Λ+
c K−) projection of the amplitude fits to data with Ξ0

c(2970), Ξ0
c(3055), Ξ0

c(3080) states for
different assignments of spin.

a) JP (Ξ0
c(2970)) = 1

2

−
, JP (Ξ0

c(3055)) = 1
2

−
, JP (Ξ0

c(3080)) = 1
2

−
.

b) JP (Ξ0
c(2970)) = 1

2

−
, JP (Ξ0

c(3055)) = 1
2

−
, JP (Ξ0

c(3080)) = 3
2

−
.

c) JP (Ξ0
c(2970)) = 1

2

−
, JP (Ξ0

c(3055)) = 3
2

−
, JP (Ξ0

c(3080)) = 1
2

−
.

d) JP (Ξ0
c(2970)) = 1

2

−
, JP (Ξ0

c(3055)) = 3
2

−
, JP (Ξ0

c(3080)) = 3
2

−
.

e) JP (Ξ0
c(2970)) = 3

2

−
, JP (Ξ0

c(3055)) = 1
2

−
, JP (Ξ0

c(3080)) = 1
2

−
.

f) JP (Ξ0
c(2970)) = 3

2

−
, JP (Ξ0

c(3055)) = 1
2

−
, JP (Ξ0

c(3080)) = 3
2

−
.

h) JP (Ξ0
c(2970)) = 3

2

−
, JP (Ξ0

c(3055)) = 3
2

−
, JP (Ξ0

c(3080)) = 1
2

−
.

g) JP (Ξ0
c(2970)) = 3

2

−
, JP (Ξ0

c(3055)) = 3
2

−
, JP (Ξ0

c(3080)) = 3
2

−
.

148



A.7 Line shape of the D∗s 0(2317) state parametrised by
a sub-threshold Breit-Wigner distribution

In the baseline amplitude model, the line shape of the D∗s 0(2317) state is parametrised by a Flatté
distribution. The projections of an amplitude fit where the Flatté line shape is replaced by a sub-
threshold Breit-Wigner function are presented in Figure 77.
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Figure 77: Projections of the amplitude fit parametrising the D∗
s 0(2317) state by a sub-threshold Breit-Wigner

distribution.
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