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I 

 

Abstract 

 

Gamma oscillations are associated with several higher cognitive functions; selective attention, memory 

formation, and sensory perception. Gamma oscillations represent a balanced fast interplay between 

excitation and inhibition. Inhibition provides temporal windows for excitatory cells to fire in synchrony. 

Whether excitation or inhibition requires more energy is still unknown. Disturbances of gamma oscillations 

occur rapidly during metabolic stress. However, the underlying mechanisms are not fully understood. In 

this study, we performed calcium imaging (CamKII.GCaMP6f) to explore the presence of pyramidal cell 

ensembles in rat hippocampus and challenge them metabolically. Using a low concentration of rotenone 

we achieved a mild metabolic stress condition. The stress level results in suppressing gamma oscillations 

without being terminated. We found that (1) synchronized activity is significantly reduced before 

observing a reduction in the overall activity of pyramidal cells. (2) Pyramidal cells recruited in ensembles 

formation tend to be more active upon mild stress. We performed spike sorting and found that (3) slow-

spiking units are more active upon mild metabolic stress. Furthermore, (4) power of gamma oscillations 

was reduced without changes in the firing of fast-spiking units. These findings suggest that ensemble 

formation is highly vulnerable to metabolic stress, and disturbances occur likely because of functional 

alterations in the presynaptic compartment of fast-spiking units. This reveals a plausible mechanism for 

altered cognitive functions during mild metabolic stress conditions. 

 

Zusammenfassung 

 

Gamma-Oszillationen werden bei verschiedenen höheren kognitiven Leistungen beobachtet: selektive 

Aufmerksamkeit, Gedächtnisbildung und sensorische Wahrnehmung. Gamma-Oszillationen hängen von 

einem ausgewogenen Zusammenspiel von erregenden und hemmenden Einflüssen ab. Die Hemmung 

bietet zeitliche Fenster, in denen exzitatorische (Pyramiden)zellen synchron feuern können. Es ist noch 

nicht bekannt, ob die erregenden oder hemmenden Zellen mehr Energie benötigen. Störungen von 

Gamma-Oszillationen treten schnell bei metabolischer Belastung auf. Die zugrunde liegenden 

Mechanismen sind jedoch nicht vollständig verstanden. In dieser Studie haben wir Calcium-Imaging 

(CamKII.GCaMP6f) durchgeführt, um im Hippocampus der Ratte die Existenz von Ensembles aus 

Pyramidenzellen nachzuweisen und die Auswirkungen von metabolischer Belastung zu untersuchen. Dazu 

haben wir eine niedrige Konzentration von Rotenon verwendet, die die Intensität der Gamma-Ozillationen 

schwächt ohne sie ganz zu unterdrücken. Wir fanden heraus, dass (1) die synchronisierte Aktivität von 

Pyramidenzellen signifikant reduziert ist, ohne dass sich deren Gesamtaktivität verändert. (2) 

Pyramidenzellen, die bei der Bildung von Ensembles rekrutiert wurden, werden bei leichtem Stress aktiver. 

Die nähere Analyse des Spikeverhaltens (Generation von Aktionspotentialen) der beteiligten Zellen ergab, 

dass (3) langsam spikende Zellen bei metabolischem Stress aktiver sind. Darüber hinaus wurde (4)  die 

Intensität der Gamma-Oszillationen vermindert, ohne dass sich die Aktivität schnell spikender Zellen 

verändert. Diese Ergebnisse deuten darauf hin, dass die Ensemblebildung sehr anfällig für metabolischen 

Stress ist und Störungen wahrscheinlich durch funktionelle Veränderungen im präsynaptischen Bereich 

von schnell spikenden Zellen auftreten. Die Daten können die Veränderung kognitiver Fähigkeiten bei 

(leichten) metabolischen Stressbedingungen erklären. 



II 

 

Declaration  
 

 

 

I, Shehabeldin Elzoheiry, hereby declare that the work in this thesis represents my original 

research results. The thesis has been written by myself using the references and resources 

indicated. Any work of others has been appropriately marked. The work has been conducted 

under the joint supervision of Prof. Dr. Hilmar Bading and Prof. Dr. med. Andreas Draguhn. This 

thesis is being submitted for the degree of Doctor of Natural Sciences at Heidelberg University, 

Germany, and has not been presented to any other university as part of an examination or degree.  

 

 

 

_______________         ___________________ 

     Place & Date                           Shehabeldin Elzoheiry 

  

 

 

 

 

 

 

 

 

 

 

 



III 

 

Parts of this work that were done by others: 

*Organotypic hippocampal slice cultures were prepared by Andrea Lewen. 

*Calculations of cerebral metabolic rates were performed by Dr. Nikolaus Berndt. 

 

Parts of this work were presented in the following conferences: 

-IZN retreat 2019 (Poster). 

-NWG 2019 - 13th Göttingen Meeting of the German Neuroscience Society (Poster). 

-IZN retreat 2018 (Poster). 

-IZN retreat 2017 (Poster). 

-NWG 2017 - 12th Göttingen Meeting of the German Neuroscience Society (Poster). 

-IZN retreat 2016 (Poster). 



IV 

 

List of abbreviations 

AAV5 Adeno-associated virus serotype 5 

ACSF Artificial cerebrospinal fluid 

AD Alzheimer’s disease 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AP Action potential 

ATP  Adenosine triphosphate 

AuC Area under the curve 

CA Cornu ammonis 

CaMKII Ca2+/calmodulin-dependent protein kinase II 

CCH Carbachol 

CMRO2 Cerebral metabolic rate of oxygen 

DG Dentate gyrus 

DIV Days in vitro 

DL-AP5 DL-2-Amino-5-phosphonopentanoic acid 

DNQX 6,7-Dinitroquinoxaline-2,3-dione 

f Frequency 

FFT Fast Fourier transform 

FWHM Full width at half-maximum 

GABA Gamma-Aminobutyric acid 

GAD Glutamic acid decarboxylase 

GAT  Gamma-Aminobutyric acid transporters 

GECI Genetically encoded calcium indicator 

ISI Inter-spike interval 

LFP Local field potential  

OHSC Organotypic hippocampal slice culture 

PC Principal component 

PCA Principal component analysis 

PSD Power spectral density 

PV Parvalbumin  

Pyr Pyramidale 

Rad Radiatum  

ROI Region of interest 

Rot Rotenone  

SEM Standard error of the mean 

SV40 Simian vacuolating virus 40 

TTX Tetrodotoxin  

WPRE Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element 

 

 



V 

 

Table of contents 

Abstract .............................................................................................................................................. I 

Declaration ........................................................................................................................................ II 

List of abbreviations .......................................................................................................................... IV 

Table of contents ............................................................................................................................... V 

1 Introduction................................................................................................................................ 1 

1.1 Neuronal Ensembles ................................................................................................................. 1 

1.1.1 Basic features of neuronal ensembles ............................................................................... 3 

1.1.2 Neuroenergetics and ensembles formation ....................................................................... 4 

1.2 Neuroenergetics of Neuronal Ensembles .................................................................................. 4 

1.2.1 Interneuron energy hypothesis ......................................................................................... 5 

1.2.2 Metabolic stress ............................................................................................................... 6 

1.3 Gamma Oscillations .................................................................................................................. 7 

1.3.1 Inhibition-inhibition model ............................................................................................... 8 

1.3.2 Excitation-inhibition model ............................................................................................... 8 

1.3.3 Gamma oscillations in the hippocampus ........................................................................... 8 

1.3.4 In situ chemical models of gamma oscillations .................................................................. 9 

1.3.5 Glutamatergic and cholinergic gamma oscillation models ................................................. 9 

1.3.6 GABAergic interneurons .................................................................................................. 10 

1.4 Aims ....................................................................................................................................... 13 

2 Materials and Methods ............................................................................................................. 15 

2.1 Animal preparation................................................................................................................. 15 

2.2 Organotypic slice cultures ....................................................................................................... 15 

2.3 Acute slice preparation ........................................................................................................... 15 

2.4 Solutions and drugs ................................................................................................................ 16 

2.5 Electrophysiology ................................................................................................................... 16 

2.6 Metabolic stress using different oxygen fractions ................................................................... 17 

2.7 Calcium imaging ..................................................................................................................... 18 

2.8 Ensembles detection .............................................................................................................. 18 

2.9 Oxygen concentration recordings ........................................................................................... 20 

2.10 Data analysis .......................................................................................................................... 21 

2.11 Statistical evaluation .............................................................................................................. 21 

3 Results ...................................................................................................................................... 24 



VI 

 

3.1 Validation of OHSCs for studying neuronal networks .............................................................. 24 

3.2 Induction of mild metabolic stress .......................................................................................... 24 

3.2.1 Metabolic stress using different oxygen fractions............................................................ 24 

3.2.2 Gamma oscillations in submerged condition ................................................................... 30 

3.2.3 Metabolic stress using rotenone ..................................................................................... 32 

3.3 Challenging pyramidal cell ensembles ..................................................................................... 35 

3.3.1 Algorithm for minimizing cross-talk ................................................................................. 35 

3.3.2 Synchronized activity is more vulnerable than the overall activity. .................................. 37 

3.3.3 Pyramidal cells are mildly disinhibited and ensembles are disrupted. .............................. 40 

3.4 Mild metabolic stress disinhibits slow-spiking units ................................................................ 43 

3.5 CMRO2 in different gamma models and laminae of the hippocampus ..................................... 45 

4 Discussion ................................................................................................................................. 49 

4.1 The validity of organotypic hippocampal slice cultures for studying ensembles ...................... 49 

4.2 Neuroenergetics of gamma oscillations .................................................................................. 51 

4.2.1 Hypoxia as a metabolic stressor ...................................................................................... 52 

4.2.2 Rotenone as a metabolic stressor ................................................................................... 53 

4.2.3 Synchronized activity exhibits high vulnerability.............................................................. 53 

4.2.4 CMRO2 in different gamma models and laminae of the hippocampus ............................. 54 

4.2.5 Interneuron energy hypothesis ....................................................................................... 55 

4.3 A mechanism for the alteration of gamma oscillations ............................................................ 57 

4.4 Gamma oscillations and brain disorders ................................................................................. 58 

4.5 Limitations of the study .......................................................................................................... 59 

4.6 Outlook .................................................................................................................................. 61 

5 Bibliography ............................................................................................................................. 62 

Acknowledgements .......................................................................................................................... 83 

 

 

 

 



 

1 

 

1 Introduction 

1.1 Neuronal Ensembles 

The Human brain is composed of around 100 billion neurons, which are the most complex 

mammalian cells. Each cell is involved in at least 1000 innervations with other neurons, resulting 

in 100 trillion connection points, synapses (Herculano-Houzel, 2009; Kandel et al., 2012; Williams 

and Herrup, 1988). These synapses are plastic, endowing the brain with an unlimited number of 

paths for transferring information. The unlimited paths for information transfer highlight one 

prominent feature of the nervous system, which is its connectivity (Cajal, 1899).  

The nervous system is capable of exhibiting reproducible adaptive behaviors (Ardiel and Rankin, 

2010; Whishaw and Kolb, 2004). The explanation for how reproducible behavior can emerge from 

such a system is the presence of specific cells (spatial pattern) firing within a certain time frame 

(temporal pattern; Figure 1). This sheds light on the presence of reproducible patterns of neuronal 

activity underlying behavior. These patterns result from co-active neurons, which define the term 

‘ensembles’. Other terms exist in the literature, such as neuronal avalanches and attractor states 

(Durstewitz et al., 2010; Grillner and Wallen, 1985; Ikegaya et al., 2004; Lin et al., 2006; Plenz and 

Thiagarajan, 2007).  However, the ensemble is the umbrella term for a transiently stable group of 

neurons that are repetitively active. It is believed that ensembles are bridging between single-cell 

activity and emerging higher cognitive functions such as memory, attention, and perception 

(Buzsáki, 2010). 

Combinatorial explosion is an important output of the ensemble concept. With the recruitment 

of groups of co-active neurons, the computational representation of information expands 

enormously, a necessary feature for the functioning of a complex organ like the brain (Ainsworth 

et al., 2012; Ohiorhenuan et al., 2010; Olshausen and Field, 2004). 
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Structural and functional properties of neuronal networks are highly heterogeneous, however, 

common principles exist. Principles include homeostasis (Kann et al., 2016; Zenke et al., 2013), 

sparsity, local connectivity, and temporal organization. Homeostasis indicates the preservation of 

excitation-inhibition balance thus avoiding pathological activity (Ingram et al., 2014; Nanou et al., 

2018; Rubin et al., 2017). Sparsity refers to the low percentage of cells being active at a time point, 

which is an energy-efficient model for information transfer (Ainsworth et al., 2012; Buzsáki and 

Draguhn, 2004; Ohiorhenuan et al., 2010). 

 

Figure 1. Schematic drawing of ensembles during network activity. Blue 

and green ensembles represent two different possibilities for temporal 

matrices. Neurons recruited in an ensemble can have sequential firing 

pattern (green) or simultaneous (blue) or a mixture of both. Black trace 

represents a gamma oscillation epoch of the network, a state where it is 

believed that neurons fire in a synchronized pattern.  
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1.1.1 Basic features of neuronal ensembles 

1) Selective coupling, implying that neurons recruited in an ensemble have privileged 

connections. This is crucial for having temporal matrices were individual neurons know when to 

fire action potentials in synchrony with other members of the same ensemble (Hoshiba et al., 

2017). 

2) State-dependent activity. A neuronal ensemble can be activated in different network states, 

thereby executing different functions depending on the context. For instance, during theta-

gamma activity, an ensemble may contribute to the formation of a new memory (Backus et al., 

2016; Nyhus and Curran, 2009). The same ensemble can be involved in memory consolidation 

during sharp-wave ripples (Joo and Frank, 2018; Olafsdottir et al., 2018).  

3) Region-specific activity. Properties of ensembles may be different between local networks. 

Ensembles identified in the dentate gyrus are composed of neurons that fire sparsely, which is 

fundamental for a major function in the dentate gyrus, pattern separation (Berron et al., 2016; 

Faghihi and Moustafa, 2017; Leutgeb et al., 2007; Leutgeb and Leutgeb, 2007). On the contrary, 

ensembles detected in the CA3 region are composed of neurons that are not sparsely firing, which 

are involved in pattern completion (Guzman et al., 2016; Leutgeb and Leutgeb, 2007; Leutgeb et 

al., 2006; Rolls, 2013). 

4) Network plasticity. An ensemble of neurons can be assembled rapidly during the exploration 

of a new environment encoding spatial information. For this to be accomplished, networks should 

be adaptable and plastic for the unlimited number of new environments that can be explored 

(Hoshiba et al., 2017; Neves et al., 2008; Zarnadze et al., 2016). 

5) Background suppression. During activation of a certain ensemble, other non-recruited neurons 

should be silenced. The suppression ensures that the output has a sufficient signal-to-noise ratio. 

This feature sheds light on the important role of inhibitory interneurons during the formation of 

neuronal ensembles (Bartos et al., 2007; Kann et al., 2014). 
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1.1.2 Neuroenergetics and ensembles formation 

Recruitment of neurons into ensembles require selective activation, which involves informing 

neurons when they are supposed to fire action potentials and when to be silenced. From 

neuroenergetics perspective, it is believed that suppression of background during synchronized 

network activity costs much energy (Kann et al., 2014). These costs may set boundaries for 

eliciting structured activity patterns (Sengupta et al., 2013). Studying the neuroenergetics 

underlying formation of neuronal ensembles favors understanding bigger concepts and questions 

regarding the interpretation of functional neuroimaging (Attwell and Iadecola, 2002). 

1.2 Neuroenergetics of Neuronal Ensembles 

The mammalian brain is a highly active organ. In adult humans, 20% of the utilized oxygen is 

consumed by the brain, although contributing only 2% to the total body mass (Erecińska and 

Silver, 2001; Rolfe and Brown, 1997). Indicating that information processing requires high energy 

budget. This explains the vulnerability of higher brain functions to metabolic stress (Hansen, 1985; 

Kann, 2012; Shulman et al., 2001; Verweij et al., 2007). The energy budget includes costs of resting 

membrane potential, action potentials, postsynaptic potentials and neurotransmitter 

metabolism (Harris et al., 2012; Kann, 2012).  

Studies on brain energy metabolism have focused mainly on broad aspects. This includes the 

energy budget of excitatory neuronal signaling (Attwell and Laughlin, 2001; Lutas and Yellen, 

2013; Martinez-Francois et al., 2018), the favorable energy substrate for neurons (Chih et al., 

2001; Díaz-García et al., 2017; Diaz-Garcia and Yellen, 2019; Erecińska and Silver, 2001), and the 

contributions of glycolysis and oxidative phosphorylation to ATP generation (Yellen, 2018). 

Important aspects of brain energy metabolism, that are still largely unknown, is the vulnerability 

of inhibitory and excitatory neurons to metabolic stress. This question is made challenging due to 

the difficulty of dissecting the network into excitatory and inhibitory cells and determining 

afterwards the energy budget for individual populations.  
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1.2.1 Interneuron energy hypothesis 

Inhibitory cells play a fundamental role in synchronizing activity patterns of principal cells. Among 

several types of interneurons, fast-spiking basket cells appear to be an interesting candidate for 

neuroenergetics studies (Gulyás et al., 2010; Kann, 2016). Previous studies have shown that fast-

spiking interneurons are equipped with a large number of mitochondria. Furthermore, 

mitochondria were found to be enriched with cytochrome C and cytochrome C oxidase, also 

known as complex IV (Gulyás et al., 2006; Kageyama and Wong-Riley, 1982). This indicates that 

fast-spiking interneurons consume much energy, which implies that they might be sensitive to 

mild metabolic insults. Energy is consumed in several processes (Kann, 2016), such as the 

following: 

1.2.1.1 Fast-spiking behavior 

The high firing rate is enabled by several properties of the interneurons. Their resting membrane 

is ~10-15 mV closer to firing threshold in comparison to principal cells (Hu et al., 2014; Hu and 

Jonas, 2014). Additionally, they show resonance at beta-gamma frequencies (Pike et al., 2000).  

1.2.1.2 Presynaptic GABA release 

At the presynapse, GABA is required to be recycled at a very high rate to cope with fast signal 

transmission required for the arriving action potentials. Recycling includes the fast and efficient 

release of the transmitter, reuptake, and vesicles filling (Roth and Draguhn, 2012). 

Endowed by the tight coupling of release sensors and calcium channel composition, GABA release 

is characterized by high release probability and large quantal size (Bucurenciu et al., 2008; 

Kraushaar and Jonas, 2000). Re-uptake of GABA includes the activity of GABA-transporter-1 (GAT-

1) in presynaptic terminal and GAT-3 in astrocytes enwrapping synaptic clefts. The vesicular filling 

includes the activity of one of the two glutamic acid decarboxylase (GAD) isoforms, which is GAD-

65. Additionally, it includes the activity of vesicular H+-ATPase which provides the driving force 

required by the vesicular GABA transporter (Bak et al., 2006; Roth and Draguhn, 2012; 

Waagepetersen et al., 2001; Walls et al., 2011). 
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These are secondary-active processes, which depend on gradients produced by Na+/K+-ATPase 

pump and other transporters. All processes depend on ATP whether directly or indirectly (Attwell 

and Laughlin, 2001; Rangaraju et al., 2014). 

1.2.1.3 Postsynaptic effect 

Inhibitory conductance involves chloride influx in large postsynaptic population innervated by the 

highly branched axon. Fast-spiking interneurons that are involved in fast-brain oscillations, target 

the perisomatic region (Hájos and Paulsen, 2009). Restoration of ion gradients across 

postsynaptic membrane involves activity of several transporters e.g. the secondary-active 

transporter, K+/Cl- cotransporter (Chamma et al., 2012; Kann, 2016).  

1.2.2 Metabolic stress 

Stressing the formation of neuronal ensembles mildly might reveal the most vulnerable 

population to energy restriction: inhibitory or excitatory neurons. Stress can be achieved by 

several means. This includes reduced oxygen supply or nutrients such as glucose or by application 

of toxins such as rotenone (Galow et al., 2014; Kann et al., 2011), which is a highly selective 

inhibitor of complex I of the mitochondrial respiratory chain (Sherer et al., 2003), thereby partially 

blocking the synthesis of ATP. 

Homeostasis endows biological materials with versatility in facing disturbing environmental 

conditions (Kann et al., 2016; Vodovozov et al., 2018). Therefore to study break down of a 

function, the biological material has to be stressed severely.  An alternative would be the 

induction of mild stress while setting the biological matter to function near its limits. Gamma 

oscillations represent a brain state associated with high energy consumption (Kann, 2012, 2016; 

Kann et al., 2011; Kann et al., 2014; Schneider et al., 2017). Therefore, modeling gamma 

oscillations can simulate thrusting the brain tissue to the limits, and further induction of mild 

metabolic stress can reveal mechanistically the collapse of the network, helping to understand 

the underlying physiology. 
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1.3 Gamma Oscillations 

Different brain activities and rhythms are associated with a wide range of higher cognitive 

functions such as attention, memory formation, and consolidation, etc. (Buzsáki and Draguhn, 

2004; Colgin, 2016; Paulsen and Moser, 1998; Uhlhaas and Singer, 2010). Here we focus on 

gamma oscillations, which represent the oscillatory activity in the frequency band of 30-100 Hz 

(Buzsáki and Wang, 2012).  

Several regions of the brain are known for expressing gamma oscillations. These include striatum 

(Berke et al., 2004; Tort et al., 2008), amygdala (Halgren et al., 1977; Popescu et al., 2009), 

entorhinal cortex (Chrobak and Buzsáki, 1998), olfactory bulb (Adrian, 1942), hippocampus, 

neocortex (Buzsáki et al., 1983; Whittington et al., 1995), and thalamus (Pinault and Deschenes, 

1992). 

These oscillations are known to be associated with several complex brain functions, including 

selective attention and sensory perception (Bartos et al., 2007; Kann et al., 2014; van Vugt et al., 

2010). Gamma oscillations provide the temporal matrix necessary for synchronizing the neuronal 

activity, which is required for these functions to arise (Haider and McCormick, 2009; Mainen and 

Sejnowski, 1995).  

Synchronization of several neurons’ output results in fluctuations of summed postsynaptic 

potentials. These subthreshold summed activities can be sensed in local field potentials using an 

extracellular electrode. The gamma oscillations waveform emerges from the fluctuation of 

synaptic potentials which results from the interplay between excitatory principal cells and 

inhibitory interneurons (Hájos and Paulsen, 2009). The fluctuations reflect time windows of 

increased and reduced excitability in the targeted population (Buzsáki et al., 1983; Soltesz and 

Deschenes, 1993). These time windows are necessary for recruiting targeted population into 

ensembles, which play an important role in information processing (Poschel et al., 2002). 

There are two underlying models for the generation of gamma oscillations, inhibition-inhibition 

and excitation-inhibition models (Buzsáki and Wang, 2012). 
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1.3.1 Inhibition-inhibition model 

The inhibition-inhibition model involves repetitive cycles of inhibition between mutually 

connected inhibitory interneurons. This results in cycles of inhibitory postsynaptic potentials, 

IPSPs, which underlie the gamma oscillation waveform. The frequency of the oscillations in this 

model is determined by the subunit composition of GABA receptors which govern the duration of 

IPSPs (Wang and Buzsáki, 1996; Whittington et al., 1995).  

1.3.2 Excitation-inhibition model 

The excitation-inhibition model includes the coordinated activity of pyramidal cells (excitatory) 

and interneurons (inhibitory). The frequency of the oscillations in this model is determined by the 

delay between pyramidal and interneuron spikes, caused by axonal conduction and synaptic 

delays (Borgers and Kopell, 2003; Brunel and Wang, 2003; Ermentrout and Kopell, 1998; Geisler 

et al., 2005; Leung, 1982; Wilson and Cowan, 1972). 

1.3.3 Gamma oscillations in the hippocampus 

In the hippocampus, principal cells reside in a special laminated architecture, contrary to other 

cortical regions. This architecture favors the summation of population activity. Therefore, gamma 

oscillations detected in the hippocampus show higher power compared to signals detected in 

other brain regions, where cells do not reside in similar spatial configuration (Forster et al., 2006).  

Pyramidal cells in the hippocampus are the principal excitatory cells which are known to compute, 

store and retrieve information (Uhlhaas and Singer, 2010). These are fundamental tasks that 

underlie information processing and higher cognitive functions. During gamma oscillations, the 

excitatory output is synchronized and consequently, pyramidal cells are recruited into ensembles. 

Therefore, gamma oscillations play an important role in cortical information processing (Engel et 

al., 2001). 

The fact that gamma oscillations are detected in the hippocampus during specific behaviors 

rendered the hippocampus an interesting model to study the relation between neuronal network 

activity and behavior (Bragin et al., 1995). Additionally, since the hippocampus is involved in 

navigation and memory, the study of network activity will relate to coding, storage, and retrieval 
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of information (Lisman, 1999; O'Keefe and Recce, 1993; Skaggs et al., 1996). Combined together, 

these intrinsic properties of the hippocampus depicted it as an appealing model to study gamma 

oscillations. 

1.3.4 In situ chemical models of gamma oscillations 

Gamma oscillations can be induced in situ by different means, including electrical stimulation, 

application of chemical agonists or optogenetic stimulation. Chemical induction includes agonists 

of metabotropic glutamate receptors, muscarinic acetylcholine receptors, kainate receptors, and 

even potassium salt solutions. Nevertheless, the synaptic activity and balance of excitation and 

inhibition underlying gamma oscillations are different in each model (Fellous and Sejnowski, 

2000; Fisahn et al., 2004; Fisahn et al., 1998; Hájos et al., 2000; LeBeau et al., 2002; Whittington 

et al., 1995). 

1.3.5 Glutamatergic and cholinergic gamma oscillation models 

Metabotropic glutamate receptors and kainate receptor-induced gamma oscillations 

(glutamatergic model) were found to be blocked by bicuculline (GABAA receptor blocker). 

However, AMPA receptor blockers did affect the oscillations (Fisahn et al., 2004). 

Gamma oscillations induced by carbachol (cholinergic model) resemble the glutamatergic model 

of gamma oscillation in which the oscillations are abolished by GABAA receptor blockers. 

However, they are affected by AMPA receptor blocker. Cholinergic model is employed in many 

studies because it simulates inputs of the septum to the hippocampus when gamma oscillations 

are detected in-vivo. 

Based on previous studies, it is believed that metabotropic glutamate receptors and kainate 

receptors activate interneurons and muscarinic acetylcholine receptors activate principal cells. 

Therefore, glutamatergic gamma oscillation model is not based on phasic excitation which is 

necessary for activating interneurons in the cholinergic model (Fisahn et al., 2004; Fisahn et al., 

2002; McBain et al., 1994; van Hooft et al., 2000). 

In conclusion, glutamatergic gamma oscillation model is dependent on inhibition but not 

excitation, while cholinergic models are based on both (Figure 2). As a result, the differences in 
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these models can be utilized to study the contribution of excitation and inhibition underlying 

activity of gamma oscillations (Bartos et al., 2007). 

1.3.6 GABAergic interneurons 

GABAergic interneurons constitute around 10 to 20% of neurons in cortical circuits. The rest are 

principal cells, which are usually glutamatergic (Aika et al., 1994; Freund and Buzsáki, 1996; Halasy 

and Somogyi, 1993). Interneurons are considered to be the ‘brakes’ that control principal cells 

activity in the brain. This maintains a physiological excitation-inhibition balance which protects 

from pathological activity such as seizures and loss of cognitive functions (Hermann and 

Seidenberg, 2007; Lenck-Santini and Scott, 2015). 

In the hippocampus, more than twenty types of interneurons are identified. They are categorized 

based on different properties. 1- Morphological features and targeted compartments in 

innervated cells (dendritic, somatic, axonic). 2- Calcium-binding proteins (parvalbumin, calbindin, 

etc.) or neuropeptides (cholecystokinin, somatostatin, etc.) that are expressed. 3- Functional 

features such as firing rates and adaptation. However, classifications often result in the 

overlapping categorization of interneurons (DeFelipe et al., 2013; Somogyi and Klausberger, 

2005).  

Among these types, fast-spiking PV+ interneurons are particularly of main interest when studying 

gamma oscillations. These cells are believed to be essential for the generation of gamma 

oscillations. Fast-spiking interneurons fire action potentials that are highly coherent to the gamma 

Figure 2. Schematic diagram for dependence of gamma 

oscillation models on excitation and inhibition. Cholinergic 

models are based on both excitation and inhibition while 

glutamatergic models are based on inhibition. Modified 

after Bartos et al. 2007 
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oscillation cycle. These spikes occur few milliseconds after the firing of neighboring pyramidal 

cells. In pyramidal cells, inhibitory postsynaptic potentials are phase-locked to gamma oscillation 

cycles. (Hasenstaub et al., 2005; Mann et al., 2005; Penttonen et al., 1998; Soltesz and Deschenes, 

1993; Whittington et al., 1995). These subthreshold fluctuations shape the gamma oscillation 

waveform (Gloveli et al., 2005; Hasenstaub et al., 2005; Mann et al., 2005; Penttonen et al., 1998; 

Quilichini et al., 2010).  

Further support for the role of fast-spiking interneurons in generating gamma oscillations is the 

induction of gamma oscillations by optogenetic stimulation of PV+ cells. The oscillations power 

were even reduced when PV+ cells were inhibited (Bartos et al., 2007; Cardin et al., 2009; Sohal 

et al., 2009). Additionally, fast-spiking interneurons show a resonant property in the range of 

gamma-band frequencies (Cardin et al., 2009). 

The ability to maintain high firing rates during gamma oscillations, indicate that fast-spiking 

interneurons are endowed with special molecular and morphological features to perform such 

function. 

1.3.6.1 Dendritic features 

Fast-spiking interneurons sample inputs and integrate information from a large number of 

principal cells (16000 ~ 34000 synapses) along their long dendritic tree (Gulyas et al., 1999; Tukker 

et al., 2013). The dendrites are equipped with a low density of voltage-gated Na+ channels. On 

the contrary, they have a high density of voltage-gated K+ channels. Potassium channels are of 

the Kv3 type, which has a high activation threshold, fast activation and deactivation kinetics (Rudy 

and McBain, 2001). Thus the composition of ion channels enables fast decay of excitatory 

postsynaptic potentials, consequently, the time available for temporal summation is shortened. 

Therefore, these cells are able to generate action potentials with high temporal precision and at 

very high rates. 

1.3.6.2 Axonal features 

Axons form a highly branched arbor at the peri-somatic region, like baskets, hence the name 

basket cells. These cells show a unique distribution of Na+ channels along their axons. There is a 
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decremental increase in the channels density from soma towards distal axons reaching 

‘supercritical’ densities (Hu and Jonas, 2014; Martina and Jonas, 1997). This ensures high 

reliability of propagation and firing rates. Additionally, it compensates for the small diameter of 

unmyelinated axons, and extensive arborization which acts against maintaining reliable action 

potential propagation (Parnas and Segev, 1979). 

Furthermore, the axons contain Kv3 channels similar to the dendrites (Goldberg et al., 2005; Hu 

and Jonas, 2014). Therefore, they are able to maintain high firing rates with high temporal 

precision (Weiser et al., 1995). 

1.3.6.3 Presynaptic terminal 

Fast-spiking is retarded by synaptic delay, however, basket cells are equipped with proper 

machinery to minimize this delay. 

The presynaptic terminal contains mainly P/Q-type Ca2+ channels (Bucurenciu et al., 2010; Hefft 

and Jonas, 2005; Rossignol et al., 2013; Zaitsev et al., 2007), which has the fastest gating in 

comparison to other Ca2+ channels (Li et al., 2007). Additionally, Ca2+ channels are tightly coupled 

to release sensors (in the range of 10-20 nm) at the presynaptic terminal (Bucurenciu et al., 2008; 

Eggermann et al., 2011). Furthermore, the number of channels per release site is low (2 ~ 3 

channels), thus limiting any broadening of action potentials (Bucurenciu et al., 2010). Combined 

together, all these features result in fast signal transmission with high efficacy and temporal 

precision (Bucurenciu et al., 2008). 

Fast-spiking cells are not only involved in simple control of principal cells’ excitation but are rather 

involved in feedback and feedforward inhibition, which play an important role on the network 

level. For instance, feedforward inhibition enhances the temporal resolution for summation of 

postsynaptic potentials and initiation of action potentials, thereby broadening the dynamic range 

of neuronal ensembles (Pouille et al., 2009; Pouille and Scanziani, 2001).   
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1.4 Aims 

Disturbances of cognitive functions occur rapidly during metabolic stress. However, the 

underlying mechanisms are not fully understood. Alterations of gamma oscillations have been 

studied so far at the network level (Huchzermeyer et al., 2008; Huchzermeyer et al., 2013; Kann 

et al., 2011; Schneider et al., 2017). Here, it was aimed to study the alterations at the level of 

neuronal ensembles, which can bridge between disturbances at the cellular level and altered 

cognitive functions. 

In this study, it is hypothesized that: 

• Pyramidal cell ensembles exist during induction of gamma oscillations. 

• Formation of pyramidal cell ensembles is sensitive to metabolic stress. 

• Inhibitory function during gamma oscillations is energetically more demanding than 

excitatory function. 

To test these hypotheses, the following aims were addressed. 

• Detection of pyramidal cell ensembles. 

o This was fulfilled by performing calcium imaging, which enabled monitoring 

activity of a large number of neurons simultaneously. Moreover, analytical 

methods for the detection of synchronized activity were employed to detect co-

active neurons (ensembles) with repetitive patterns of activity. 

• Determination of metabolic stress condition to challenge gamma oscillations. 

o The stress level should be mild in comparison to previous studies (Huchzermeyer 

et al., 2008; Huchzermeyer et al., 2013; Kann et al., 2011). Additionally, it should 

be sufficient to attenuate gamma oscillations without inducing pathological 

activity (spreading depolarization or epileptiform discharges). 

• Determination of cerebral metabolic rates in different models of gamma oscillations.  

o This was achieved by performing oxygen depth profiles using Clark-type oxygen 

microsensors. The plan was to utilize the difference in the balance of dependence 

on inhibition and/or excitation of different models (cholinergic and glutamatergic). 
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This was planned to enable investigating whether inhibition or excitation costs 

more. 

• Performing spike sorting on units detected during gamma oscillations. 

o This was applied to provide insight about changes in firing behavior upon 

metabolic stress. This could reveal the vulnerability of different populations, i.e. 

pyramidal cells or inhibitory interneurons. 

In this study, rat organotypic hippocampal slice cultures, OHSC, (Gähwiler et al., 1997; Noraberg 

et al., 2005; Schneider et al., 2015) and mouse acute hippocampal slices (Lein et al., 2011) were 

used as in situ models. The methods applied included: local field potential, LFP, (Einevoll et al., 

2013), calcium imaging (Chen et al., 2013; Grienberger and Konnerth, 2012; Kwan, 2008; Podor 

et al., 2015), oxygen microsensor recordings (Huchzermeyer et al., 2008; Huchzermeyer et al., 

2013; Schneider et al., 2017) and spike sorting (Buzsáki and Draguhn, 2004; Quiroga et al., 2004). 

The combination of the above-mentioned techniques provided us with information about the 

neuronal network on different temporal and spatial resolutions. 
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2 Materials and Methods 

2.1 Animal preparation 

C57BL/6 Mice and Wistar rats were purchased from Charles-River (Sulzfeld, Germany). Caring and 

sacrificing of the animals were performed according to the recommendations of the European 

directive (2010/63/EU) and the authorities of Baden-Württemberg (T96/15 and T45/18). 

2.2 Organotypic slice cultures 

Hippocampal slice cultures were prepared as described earlier (Kann et al., 2003a,b, 2011). 

Briefly, rats were sacrificed at the age of 7 to 9 days. Under sterile conditions, a McIlwain tissue 

chopper (Mickle Laboratory Engineering Company Ltd., Guildford, UK) was used to cut 

hippocampal slices (~400 µm). The slices were then maintained on Biopore™ membranes 

(Millicell standing inserts, Merck Millipore, Schwalbach, Germany). 

Exchange of culture medium (1 ml) was performed three times per week. The culture medium is 

composed of 50% minimal essential medium, 25% Hank’s balanced salt solution (Sigma-Aldrich, 

Taufkirchen, Germany), 25% horse serum (Life Technologies, Darmstadt, Germany) and 2 mM L-

glutamine (Life Technologies). Slices were kept in a humidified atmosphere (5% CO2, 36.5°C) in an 

incubator (Heracell, Thermo Scientific, Dreiech, Germany), and pH was maintained at 7.3. 

*Organotypic hippocampal slice cultures were prepared by Andrea Lewen. 

2.3 Acute slice preparation 

Male C57BL/6 mice (p29-34) were anesthetized using Isoflurane Vapor 19.3 (Dräger, Lübeck, 

Germany) and laughing gas (70% N2O and 30% O2) then decapitated. The brain was quickly 

extracted and maintained in pre-cooled (~4 °C) artificial cerebrospinal fluid (ACSF), saturated with 

95% O2 and 5% CO2. Hippocampal slices were cut horizontally into 400 µm slices using VT 1000s 

vibratome (Leica, Bensheim, Germany). Then stored in a Haas-type interface chamber at 34 ± 1 

°C for 2 h (recovery). The gas supply to the interface chamber was 1.5 l/min (95% O2 and 5% CO2). 
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2.4 Solutions and drugs 

Slice cultures / acute slices were constantly supplied with ACSF that contained: 129 mM NaCl, 3 

mM KCl, 1.25 mM NaH2PO4, 1.8 mM MgSO4, 1.6 mM CaCl2, 21 mM NaHCO3 and 10 mM glucose. 

A gas mixture of 95% O2 and 5% CO2 was used to saturate the recording solution and the pH was 

7.4. For ACSF used in the submerged chamber, the concentration of NaHCO3 was increased to 26 

mM (see calcium imaging below). 

Gamma oscillations were induced (for spike sorting and calcium imaging, see below) by constant 

bath application of cholinergic receptor agonist, carbachol (20 µM and 10 µM in the interface and 

submerged chambers, respectively).  

Gamma oscillations were also induced for oxygen concentration recordings (see below) using 

cholinergic agonist, acetylcholine (8 µM) and acetylcholine esterase inhibitor, physostigmine (2 

µM) or kainic acid (100 nM; glutamatergic model) in acute slices. In cultures, acetylcholine and 

physostigmine were used at 2 µM and 0.4 µM, respectively. 

Drugs mixture used to block neuronal activity (for oxygen concentration recordings, see below) 

includes tetrodotoxin (TTX, fast voltage-gated Na+-channels blocker), DNQX (Selective non-NMDA 

receptor antagonist), DL-AP5 (selective NMDA antagonist), and atropine (cholinergic receptor 

antagonist). 

Salts, acetylcholine, carbachol, rotenone, and atropine were purchased from Sigma-Aldrich, 

Germany. TTX and kainic acid from Biotrend, Cologne, Germany. DNQX, DL-AP5 and 

physostigmine from Tocris (R&D Systems GmbH, Wiesbaden-Nordenstadt, Germany). 

2.5 Electrophysiology 

Experiments were conducted at 9-10 days in vitro (DIV) for recordings for spike sorting and at 4-

5 weeks for calcium imaging if not otherwise stated. 

Intact Biopore™ membranes were inserted into the interface chamber (spike sorting and oxygen 

concentration recordings; see below), and supplied with pre-warmed ACSF at 34 ± 1°C. Cut 

Biopore™ membranes (with Vannas-Tübingen Spring scissor; 15008-08, Fine Science Tools GmbH, 
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Heidelberg, Germany) were inserted in the submerged chamber for calcium imaging. Recording 

solution was pre-warmed at 32 ± 1°C. The flow of ACSF was 1.5 - 1.8 ml/min in the interface 

chamber and 8 ml/min in the submerged chamber. The ambient gas mixture in the interface 

chamber (95% O2 and 5% CO2) was supplied at a flow rate of 1.5 l/min. 

Glass electrodes were made from GB150F-8P borosilicate filaments (Science Products GmbH, 

Hofheim, Germany) for LFP, and from GC120F-10 borosilicate filaments (Clark Electromedical 

Instruments, Reading, UK) for juxtacellular recording electrodes. Electrodes (tip diameter 3 - 5 µm 

for LFP recordings and 1.5 µm juxtacellular recordings) were pulled using Zeitz DMZ Puller (Zeitz-

Instruments Vertriebs GmbH; Martinsried, Germany) and filled with recording solution. 

Mechanical micromanipulators (MX-4, Narishige International Ltd, London, UK) aided the 

positioning of electrodes in the targeted regions for recording. Recordings were performed using 

an EXT 10-2F amplifier in EPMS-07 housing (npi electronic GmbH, Tamm, Germany). Recordings 

were low-pass filtered at 3 kHz and digitized at 10 kHz and 20 kHz (LFP, juxtacellular recordings, 

respectively) using CED 1401 interface and Spike2 software (Cambridge Electronic Design, 

Cambridge, UK) for storage of data on a computer disk for offline analysis. 

We performed spike sorting on recordings with metal electrodes made from 12.5 µm tungsten 

wire (California Fine Wire Company, Grover Beach, CA, USA) in the interface chamber. Here, an 

EXT-T1M amplifier was used (npi electronic GmbH, Tamm, Germany). Recordings were low-pass 

filtered at 3 kHz and digitized at 20 kHz using CED Power3 1401 interface (Cambridge Electronic 

Design, Cambridge, UK). 

2.6 Metabolic stress using different oxygen fractions 

Combinations of low oxygen fractions (10%, 5%, and 2%) with standard (10 mM) and reduced (5 

mM) glucose concentrations were used to induce different levels of metabolic stress in slice 

cultures. 

The experimental protocol involved recording baseline gamma oscillations (in 95% oxygen 

fraction) for 10 minutes after having a stable recording. This was followed by a switch to a lower 
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oxygen fraction (10%, 5% or 2%) for 15 minutes, then further 10 minutes of recovery were oxygen 

fraction was switched back to 95%. 

Five different combinations were tested. Two oxygen fractions (10% and 5%) with standard 

glucose concentration (10 mM), and three (10%, 5% and 2%) with reduced glucose concentration 

(5 mM). 

2.7 Calcium imaging 

Slice cultures were infected with adeno-associated virus (AAV) obtained from Penn Vector Core 

(Philadelphia, PA, USA) encoding GCaMP6f under the control of the CaMKII promoter 

(AAV5.CamKII.GCaMPf.WPRE.SV40, Lot # V5392MI-S). AAV transduction was achieved, under 

sterile conditions, by applying 0.8 µl of the viral particles solution (qTiter: 1.55e13 GC/ml) on top 

of the slices.  

Imaging of the hippocampal CA3 region (with 20x magnification) was performed at 4-5 weeks in 

vitro (3-4 weeks post-viral infection), if not otherwise stated. Slices were maintained in the 

submerged chamber of Olympus BX51WI microscope (Olympus, Hamburg, Germany). GCaMP6f 

was excited at 485 ± 10 nm. Fluorescence images (emission at 521 ± 10 nm) were recorded at 4 

Hz using a CCD camera (ORCA-ER; Hamamatsu Photonics, Hamamatsu City, Japan). 

Before transferring slice cultures to the submerged chamber (10 µM carbachol) for imaging, 

persistent gamma oscillations were induced in the interface chamber (20 µM carbachol). Imaging 

was performed for 5 minutes during baseline gamma oscillations. Rotenone was then applied and 

after ~ 5 minutes imaging was resumed for an additional 5 minutes during the mild metabolic 

stress condition. 

2.8 Ensembles detection 

Fluorescent traces were obtained from raw pixel values from manually-drawn regions of interest 

(ROI) using Fiji (Schindelin et al., 2012). A custom-made algorithm (Matlab 2018b, MathWorks, 

Natick, MA, USA) algorithm was used to calculate average fluorescent signal from pixels within 

ROIs that reported true signal after discarding pixels reporting cross-talk contamination. A 
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standard deviation projection for the full acquisition time is constructed. The darkest 5% of the 

total area of the hippocampal tissue was considered a background. After background subtraction, 

F/F0 was calculated by comparing the maximum value (F) during an event to baseline directly 

before the event (F0). 

For a true signal to be detected (Figure 11A), two conditions have to be satisfied. First, traces from 

all pixels within the relevant ROI should show higher values (at least 95% of the pixels) than the 

baseline fit of the traces. This indicates that the whole ROI is fluorescing which occurs if a cell is 

active. However, out of focus background can increase pixel values in the ROI as well, leading to 

false positive signal. Therefore, the second condition is that the average pixel values from the 

surrounding region (border of the ROI) is lower than the values of pixel within the ROI (less than 

the lowest 5%). 

On the contrary, when contamination of the complete ROI occurs (Figure 11B), transients from 

the surrounding region are high enough relative to values of pixels within the ROI (higher than 

the lowest 5%), thereby, violating the second condition described above. In this case, the 

difference between activity outside and within the ROI during the events was linearly interpolated 

between the beginning and end of the relevant event. In the case of partial overlap contamination 

(Figure 11C), violation of the first condition occurs, in which only a portion of pixels show elevated 

transients. These pixels are clustered using K-means and their fluorescent transients are 

discarded from calculating the final average fluorescent signal. The ratio between the highest and 

lowest 5% of pixel values for every time point is used to detect such false events. If the ratio 

during an event is higher than 95% of ratio values calculated for the full acquisition time, the 

event is a result of partial contamination of the relevant ROI and is labeled as a false event. 

For detection of synchronized activity, fluorescence transients were smoothed by sliding average 

window of 1s. The preprocessed calcium traces were analyzed as described before (Hamm et al., 

2017). Briefly, the method depends on bootstrapping which is applied to identify above-chance 

population activity, producing population vectors as an output. The vectors are then filtered 

based on their similarity indices to yield only ‘repetitive’ above-chance activity. Afterwards, 

calcium transients were translated to binary output in which recruited cells at the time points of 
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synchronized activity were translated to ones (Figure 13A). The output is population vectors in 

binary code. These vectors were then categorized by principal component analysis followed by 

clustering using Fuzzy C-means and Dunn’s index (Sasaki et al., 2007) into ensembles of pyramidal 

cells (Figure 13B). 

2.9 Oxygen concentration recordings 

Oxygen recordings were performed using Clark-type oxygen microsensor, OX-10 (Unisense, 

Aarhus, Denmark) connected to a 4-channel Microsensor Multimeter (Unisense). The spatial 

resolution of O2-sensor at the tip diameter is 8–12mm. The O2-sensor was polarised with 800 mV 

overnight. Calibration is performed before and between experiments using a two-point 

calibration, by ACSF (salinity 11%) which was saturated with 0% O2 (0% O2 and 100% N2) and 95% 

O2 (95% O2 and 5% CO2) at 34 °C. Oxygen depth profiles were measured in CA3 stratum pyramidale 

in cholinergic and glutamatergic gamma models. In another set of experiments, profiles were 

measured in CA3 stratum pyramidale and stratum radiatum simultaneously in glutamatergic 

gamma model. The profile measurements were performed starting at tissue surface and further 

steps of ~20 µm along vertical axis until oxygen concentration increased again due to supply from 

beneath the tissue (recording solution). Wash of TTX (0.5 µM), atropine (1 µM), DNQX (10 µM) 

and DL-AP5 (50 µM) followed oxygen depth profiles of cholinergic and glutamatergic models (in 

stratum pyramidale), to block neuronal activity and serve as a reference. Oxygen concentrations 

were used in a mathematical reaction-diffusion model to estimate the local CMRO2 in a tissue 

volume of 1 x 105 to 2.25 x 105 mm3 [V = (d/2)2 x π x L, with d corresponding to the tip diameter 

of the O2-sensor, and L corresponding to the mean tissue depth of 199.2 mm]. The oxygen 

concentration in ACSF saturated with 95% O2 at 34 °C was 941 mM. The corresponding oxygen 

partial pressure (pO2) was 684.3 mmHg (pO2 = (patm - pvapor) x 95%), with atmospheric pressure, 

patm = 760 mmHg and water vapor pressure, pvapor = 39.7 mmHg at 34 °C. Thus, the factor to 

convert µM to mmHg was 0.73 mmHg/µM. * Calculations of cerebral metabolic rates were 

performed by Dr. Nikolaus Berndt. 
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2.10 Data analysis 

Analysis of the electrophysiological signals was accomplished off-line using Spike2 and Matlab. 

LFP signals of 5 min were subdivided into segments of 30 s, band-pass filtered (fast Fourier 

transform, FFT, pass-band frequency: 5 - 200 Hz, 8th order) and processed with Welch’s algorithm 

and a fast Fourier transformation (FFT size: 8192). Gamma oscillations were analyzed for peak 

frequencies, peak power, full width at half-maximum (FWHM) and area under the curve (AuC) of 

power spectra using custom-made Matlab algorithms. FWHM reflects the synchrony of activated 

synapses. The direction of gamma oscillations propagation was determined by performing cross-

correlation analysis which detects time lag between signals recorded from different regions in the 

hippocampus. Spike sorting was performed using Wave_Clus (Quiroga et al., 2004). Parameters 

used for analysis are provided in Table 1. We categorized sorted units according to their firing 

rates during baseline gamma oscillations. Based on our juxtacellular recordings and a previous 

study (Csicsvari et al., 1999; Zemankovics et al., 2013), we set a threshold of 10 Hz for FSUs, and 

5 Hz for SSUs. 

Data are collected from ‘n’; the number of slices prepared from ‘N’; the number of animals or 

preparations. Data are summarized by their median ± the interquartile range (IQR = 75% 

percentile - 25% percentile), error bars indicate minimal and maximal values. Figures were 

generated using CorelDRAW X7 (Corel, Ottawa, Canada). 

2.11 Statistical evaluation 

Statistical analysis was performed using Prism 6 (GraphPad, CA, USA). Shapiro-Wilk test was used 

to test for normality in the data distribution. Comparisons among paired data were made with 

paired t-test (two groups) or repeated measures ANOVA with Holm-Sidak’s multiple comparisons 

test (more than two groups) if normally distributed, otherwise Wilcoxon signed-rank test (two 

groups) or Friedman with Dunn’s multiple comparison test (more than two groups). Comparisons 

among unpaired data were made with unpaired t-test (two groups) or one-way ANOVA with 

Holm-Sidak’s multiple comparisons test (more than two groups) if normally distributed, otherwise 

Mann-Whitney test (two groups) or Kruskal-Wallis with Dunn’s multiple comparisons test (more 

than two groups). To test for correlations, the correlation coefficient r and p-values were 
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computed using the Pearson correlation. p-values less than 0.05 (indicated by asterisks) were 

considered to indicate a significant difference between compared groups. To test the difference 

between the cumulative distribution functions, we used two-sample Kolmogorov-Smirnov test. 
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Table 1 Parameters used in Wave_Clus, the spike sorting Matlab algorithm. 

par.segments_length 5 

par.sr 20000 

par.cont_segment true 

par.max_spikes_plot 1000 

par.print2file true 

par.cont_plot_samples 100000 

par.to_plot_std 1 

par.all_classes_ax 'mean’ 

par.plot_feature_stats false 

par.mintemp 0.00 

par.maxtemp 0.251 

par.tempstep 0.01 

par.SWCycles 100 

par.KNearNeighb 11 

par.min_clus 20 

par.max_clus 200 

par.randomseed 0 

par.temp_plot 'log' 

par.c_ov 0.7 

par.elbow_min 0.4 

par.tmax 'all' 

par.tmin 0 

par.w_pre 20 

par.w_post 44 

par.alignment_window 10 

par.stdmin 5 

par.stdmax 50 

par.detect_fmin 300 

par.detect_fmax 3000 

par.detect_order 4 

par.sort_fmin 300 

par.sort_fmax 3000 

par.sort_order 2 

par.ref_ms 1.5 

par.detection 'neg' 

par.int_factor 5 

par.interpolation 'y' 

par.min_inputs 10 

par.max_inputs 0.75 

par.scales 4 

par.features 'wav' 

par.template_sdnum 3 

par.template_k 10 

par.template_k_min 10 

par.template_type 'center’ 

par.force_feature 'spk' 

par.force_auto false 

par.match 'n' 

par.max_spk 4000000 

par.permut 'n' 

par.nbins 100 

par.bin_step 1 
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3 Results 

3.1 Validation of OHSCs for studying neuronal networks 

In a set of experiments, we performed simultaneous LFP recordings using four electrodes. Gamma 

oscillations were induced by constant bath application of acetylcholine (2 µM) and physostigmine 

(400 nM) in the interface chamber. The oscillations were recorded from four different regions of 

the hippocampus, i.e. dentate gyrus (DG), proximal CA3, distal CA3 and CA1 (Figure 3). Similar 

patterns of activity were observed in the different examined locations, indicating that a specific 

activity state is present globally across a large portion of the hippocampus rather than being 

restricted to a specific region. 

Additionally, we determined the propagation direction of gamma oscillations by performing 

cross-correlation analysis. Signals from DG, distal CA3 and CA1 were observed to lag the signals 

from the proximal CA3, therefore proximal CA3 was used as a reference. The time shifts between 

proximal CA3 and signals from DG, distal CA3, and CA1 were 0.48 ± 0.12 ms, 0.28 ± 0.13 ms and 

1.39 ± 0.20 ms, respectively (n=11, N=4).  

Besides, in another set of experiments, simultaneous LFP recordings in stratum pyramidale and 

stratum radiatum showed a reversal in the signal potential. This complies with known current 

source densities in previous studies (Hájos and Paulsen, 2009; Vodovozov et al., 2018). 

3.2 Induction of mild metabolic stress  

3.2.1 Metabolic stress using different oxygen fractions 

Here, we determined the combination of oxygen fraction and glucose concentration that induces 

a controllable metabolic stress condition. We used OHSCs in the interface chamber and induced 

gamma oscillations by constant application of acetylcholine (2 µM) and physostigmine (400 nM). 

Three phases were analyzed for comparison, baseline reflecting stable gamma oscillations in 95% 

oxygen fraction, followed by hypoxia for 15 minutes and finally recovery, were oxygen fraction is 

switched back to 95%. 
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Figure 3. Characteristics of gamma oscillations 

in different regions of the hippocampus. A, 

Diagram of the hippocampus and the regions 

where simultaneous recordings were 

performed. Times represent the lag (mean ± 

SEM) between different regions in reference to 

proximal CA3 (electrode ‘b’). Ba-d, Example 

traces of gamma oscillations from different 

regions as indicated in A (n=11, N=4). LFP traces 

are presented (top) with corresponding wavelet 

transformations (bottom) showing the power of 

frequency domains over time. Heat-scale colors 

encode for power in arbitrary units (a.u). C, 

Cross-correlation of representative traces. The 

red curve represents the autocorrelation of 

proximal CA3 recording (electrode ‘b’ in A). In 

blue, recording from distal CA3 (electrode ‘c’) is 

cross-correlated to proximal CA3 (electrode ‘b’). 

In green, recording from the dentate gyrus 

(electrode ‘a’) is cross-correlated to proximal 

CA3 (electrode ‘b’) trace from. In black, 

recording from CA1 (electrode ‘d’) is cross-

correlated to proximal CA3 (electrode ‘b’). D, Lag 

between different regions. Comparison of cross-

correlations from different regions (b-a, b-c, and 

b-d) was performed in relation to the location of 

electrode ‘b’ (b-b). Values indicate mean and 

range. Friedman test was performed, followed 

by Dunn’s multiple comparison test. E, Sample 

traces of gamma oscillations recorded 

simultaneously in stratum pyramidale (a) and 

stratum radiatum (b) in CA3. Corresponding 

wavelet transformations (bottom) show the 

power of frequency domains over time. Heat-

scale colors encode for power in arbitrary units 

(a.u). * p < 0.05 
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Hypoxia included 10%, 5% or 2% oxygen fraction. Glucose concentration was fixed during the 

three phases, either standard (10 mM) or reduced (5 mM). See 2.6 in Materials and Methods for 

the applied combinations. 

Time series (Figure 4) show the changes in frequency and power during the three phases for all 

tested combinations. It is noted that the reductions in power occur rapidly after switching to 

hypoxia and the ongoing dynamic phase lasts only for a short period. 

The parameters analyzed for gamma oscillations include frequency, power, FWHM and AuC 

(Figure 5). It is observed that power showed significant changes in combinations of low oxygen 

fraction and reduced glucose concentration (5 mM).  Interestingly, FWHM showed significant 

changes only with 5% and 2% oxygen fractions. Since FWHM reflects synchrony, we further 

investigated if the effects on power or FWHM result from low glucose concentration or oxygen 

fraction, respectively. 

To isolate the effect of glucose concentration, we pooled measures of baseline power from 

recordings with 10 mM glucose and compared them to recordings with 5 mM glucose. 

Surprisingly, neither power nor FWHM was changed (Figure 6). 

Following, we isolated the effect of changing oxygen fractions. Dose-response curves in standard 

glucose concentration showed no changes in power nor in FWHM (Figure 7A). However, in 

reduced concentration (Figure 7B), significant changes were observed in all calculated 

parameters. 

These results showed that the available durations for analysis upon induction of metabolic stress 

are short for implementing a robust analysis. Therefore, we examined a different approach 

(pharmacological) for inducing stress, which is the application of rotenone (inhibitor of complex I 

of the electron transport chain). 
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Figure 4. Metabolic stress combinations of 

hypoxia and glucose (Glc) concentration. A-E, Time 

series for frequency (f) and peak power spectral 

density (Power). Grey rectangles highlight periods 

of comparisons between baseline, hypoxia, and 

recovery. Glc concentrations (top) were used 

during the whole recording. Oxygen concentration 

(in red, hypoxia) was used only during hypoxia. n/N 

slices/preparations: A 21/4; B 21/3; C 18/3; D 29/3; 

E 29/3. 
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Figure 5. Synopsis of metabolic stress 

combinations of hypoxia and glucose (Glc) 

concentration. Gamma oscillations were analyzed 

for different parameters. Comparisons between 

baseline, hypoxia, and recovery. n/N 

slices/preparations in A-D: a 21/4; b 21/3; c 18/3; 

d 29/3; e 29/3. A, Peak frequency (f). Aa, Friedman 

with Dunn’s multiple comparison test. Ab, one-way 

ANOVA with Holm-Sidak’s multiple comparisons 

test. Ac-e, Friedman with Dunn’s multiple 

comparison test. B, Full width at half-maximum 

(FWHM). Ba, one-way ANOVA with Holm-Sidak’s 

multiple comparisons test. Bb-e, Friedman with 

Dunn’s multiple comparison test. C, Peak of power 

spectral density (Power). D, Area under the curve 

(AuC). C-D Friedman with Dunn’s multiple 

comparison test. * p < 0.05. Data are summarized 

by their median ± the interquartile range (IQR = 

75% percentile - 25% percentile), error bars 

indicate minimal and maximal values. 
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Figure 6. Isolated effect of glucose on gamma oscillations. Gamma oscillations 

were analyzed for different parameters. n/N slices/preparations in A-D: 42/6 

pooled for 10 mM glucose, 76/6 pooled for 5 mM glucose. A, Peak frequency (f). 

B, Full width at half-maximum (FWHM). C, Peak of power spectral density 

(Power). D, Area under the curve (AuC). A-D, Mann-Whitney test. * p < 0.05. 

Data are summarized by their median ± the interquartile range (IQR = 75% 

percentile - 25% percentile), error bars indicate minimal and maximal values. 

Figure 7. Dose response of different oxygen fractions. Gamma oscillations were 

analyzed for different parameters (Frequency, FWHM, Power, and AuC) in 

standard (A) and reduced (B) glucose concentrations. n/N slices/preparations in 

A: 42/6 pooled for 95% O2, 21/4 for 10% O2 and 21/3 pooled for 5% O2. n/N in 

B: 76/6 pooled for 95% O2, 18/3 for 10% O2, 29/3 for 5% O2 and 29/3 for 2% O2.  

A-B, Kruskal-Wallis with Dunn’s multiple comparisons test. * p < 0.05. Data are 

summarized by their median ± the interquartile range (IQR = 75% percentile -

25% percentile), error bars indicate minimal and maximal values. 
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3.2.2 Gamma oscillations in submerged condition 

In this set of experiments, cultures were maintained for at least 25 minutes in an interface 

chamber to induce gamma oscillations in optimal conditions. Carbachol was used at 20 µM in the 

interface chamber. Following, cultures were transferred to the submerged chamber, where 10 

µM of carbachol was used.  

The carbachol concentration, temperature and flow rate were sufficient for inducing persistent 

gamma oscillations in the slices (Figure 8). The oscillations lasted stably for more than 25 minutes 

in the submerged chamber without any significant changes in the measured parameters; 

frequency, power, FWHM, and AuC. 

The stable duration of gamma oscillations is considered satisfactory for performing imaging with 

OHSCs in submerged conditions. Thereby, the activity of a large number of cells can be monitored 

simultaneously. 
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Figure 8. Stable gamma oscillations can be induced persistently in submerged 

condition. A, Sample trace of LFP recording during gamma oscillation (top). Red 

arrows indicate time points in B at higher temporal resolution. Corresponding 

wavelet transformations (bottom) showing the power of frequency domains 

over time. Heat-scale colors encode for power in arbitrary units (a.u.). Gamma 

oscillations were analyzed for different parameters for the first and last 5 

minutes of the recordings. n/N slices/preparations: 7/2. C, Peak frequency (f), 

paired t-test. D, Full width at half-maximum (FWHM), Wilcoxon matched-pairs 

signed-rank test. E, Peak of power spectral density (Power), paired t-test. F, 

Area under the curve (AuC), paired t-test. This experiment was conducted 

within 2-3 weeks in vitro. Data are summarized by their median ± the 

interquartile range (IQR = 75% percentile - 25% percentile), error bars indicate 

minimal and maximal values. 
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3.2.3 Metabolic stress using rotenone 

In order to challenge the coordinated activity of the neuronal network, we applied rotenone at a 

low concentration (0.1 µM). The resulting partial block of the electron transport chain lowers the 

mitochondrial ATP production and finally leads to metabolic stress. Application of rotenone 

affected the network only mildly; no significant changes in frequency or FWHM were detected 

(Figure 9C-D). However, power and AuC were significantly reduced (Figure 9E-F). At the induced 

stress level we did not observe any pathologic activity in the LFP (wavelet spectra in Figure 9). 

It is observed that during the application of rotenone the changes were dynamic (Figure 9A top 

right). Therefore, we further analyzed the ongoing decay of gamma oscillations during metabolic 

stress to exclude the loss of gamma oscillations during the application of rotenone (Figure 10). 

Although power and AuC were significantly reduced, the network activity itself was still in the 

gamma range. 

Our data show that the low concentration of rotenone causes mild metabolic stress which 

attenuates the gamma oscillations on the network level. But the effects on the cellular level were 

still to be examined. Therefore, we performed calcium imaging to record changes in the activity 

of pyramidal cells under metabolic stress conditions. 
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Figure 9. Gamma oscillations challenged by mild metabolic stress using 

rotenone. Local field potentials were recorded in submerged condition. A, 

Sample traces of cholinergically induced gamma oscillations (blue, top left) and 

during additional application of rotenone (0.1 µM, red, top right). Red arrows 

indicate time points in B at higher temporal resolution. Corresponding wavelet 

transformations (bottom) showing the power of frequency domains over time. 

Heat-scale colors encode for power in arbitrary units (a.u.). Note that wavelet 

transformations during rotenone application are normalized to transformations 

during baseline. Gamma oscillations were analyzed for different parameters for 

the shown duration of baseline and rotenone application in A. n/N 

slices/preparations: 8/3. C, Peak frequency (f), Wilcoxon matched-pairs signed-

rank test. D, Full width at half-maximum (FWHM), paired t-test. E, Peak of power 

spectral density (Power), Wilcoxon matched-pairs signed-rank test. F, Area under 

the curve (AuC), Wilcoxon matched-pairs signed-rank test. * p < 0.05. Data are 

summarized by their median ± the interquartile range (IQR = 75% percentile -

25% percentile), error bars indicate minimal and maximal values. 



 

34 

 

 

 

Figure 10. Metabolic stress induced by rotenone is dynamic but mild. A, Sample 

trace of LFP recording during mild metabolic stress. Gray rectangles (one minute 

each) indicate time windows compared in the following statistics. n/N 

slices/preparations: 8/3. Red arrows indicate time points in C at higher temporal 

resolution and corresponding wavelet transformations showing the power of 

frequency domains over time in D. B, Area under the curve for calcium fluorescence 

reflecting the overall activity of pyramidal cells, paired t-test. Gamma oscillations 

were analyzed for different parameters. E, Peak frequency (f). F, Full width at half-

maximum (FWHM). G, Peak of power spectral density (Power). H, Area under the 

curve (AuC), E-F, Wilcoxon matched-pairs signed-rank test. Note the difference 

between AuC in B (calcium fluorescence of pyramidal cells) and AuC in F (derived 

from power spectra of LFP). * p < 0.05. Data are summarized by their median ± the 

interquartile range (IQR = 75% percentile - 25% percentile), error bars indicate 

minimal and maximal values. 
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3.3 Challenging pyramidal cell ensembles 

3.3.1 Algorithm for minimizing cross-talk 

Cross-talk is a common issue in imaging with wide-field microscopes due to overlapping somata 

of different neurons. We developed a custom-made MATLAB algorithm to reduce contamination 

in reported calcium transients (see Materials and Methods).  

Briefly, 1) a true signal (Figure 11A) is detected when first, the pixel values (within ROI) are above 

the baseline and second, the average pixel values from surrounding region (border of ROI) is lower 

than pixel values within the ROI. 2) Complete overlap of ROI with background activity (Figure 11B) 

is detected when activity from the surrounding region (border) is relatively high to pixel values 

within the ROI. In this case, the difference between activity outside and within ROI is interpolated 

linearly between the beginning and end of the event. 3) Partial overlap (Figure 11C) with a 

neighboring active cell is detected when only a small portion of pixels show elevated transients. 

These pixels are clustered and their calcium transients are discarded from constructing the final 

calcium transients.  
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Figure 11. Algorithm for reducing cross 

contamination of calcium fluorescence 

signal. Three possible conditions can occur, 

true signal (A), contamination with complete 

overlap with the region of interest (ROI) 

because of background activity (B), or partial 

contamination due to overlap with active 

neighboring cells (C). A, Light grey traces (top) 

represent calcium fluorescence transients of 

all pixels within the ROI marked with yellow 

(bottom). Red, green and blue traces (top left) 

represent average calcium fluorescence 

within ROI, baseline and average calcium 

fluorescence of ROI’s surrounding border,

respectively. The black line (top right) shows 

the output of the algorithm. At the bottom, 

the four time points are marked with red 

arrows (top left) indicating that observed 

signal is a true intrinsic activity of the ROI. B, 

Dashed black line (top right) indicate 

contaminated signal (equal to the red line, 

left). The solid black line shows the output of 

the algorithm. C, Note the active neighboring 

cell (white arrow at ‘t2’, bottom) overlapping 

with ROI. Scale bar 20 µm. 
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3.3.2 Synchronized activity is more vulnerable than the overall activity. 

To monitor the changes at the cellular level, we used GCaMP6f to report the neuronal activity of 

pyramidal cells. Juxta-cellular recordings show the action potential firings underlying the 

fluorescent transients during gamma oscillations (Figure 12A-B). The average firing rate of 

pyramidal cells was 2.18 ± 0.23 Hz (mean ± SEM, 17 cells from 17 slices from 5 preparations). We 

imaged for five minutes during baseline gamma oscillations and during mild metabolic stress, 

similar to the experiments shown in Figure 9. In this dataset (8 slices, 3 preparations) we 

monitored the activity of 50 up to 155 neurons.  

The current model (slice cultures in submerged condition) and custom-made algorithms (see 

Materials and Methods) enabled detecting synchronized, ‘above chance’, activity. Beginnings of 

these events are marked with black dots (Figure 12C). The spatial distribution of a subset of these 

cells (dashed rectangle in Figure 12C) is shown in Figure 12D. The wide distribution of these cells 

proves the absence of cross-talk and that the observed synchronized activity in Figure 12E (Base) 

is intrinsic to the network activity underlying gamma oscillations. 

Although achieved metabolic stress is mild, however, synchronized activity is clearly perturbed 

(Figure 12E, Right), indicating their high vulnerability at the current stress level. Figure 12F shows 

the similarity between events of synchronized activity (black dots in Figure 12C). The similarity is 

based on comparing the set of contributing cells to these events. The brighter the heat-scale color 

for any pair of compared events, the more similar is the set of pyramidal cells active during these 

events. The duration of image acquisition is considered sufficient for robust analysis since we 

already detected repetitive patterns of synchronized activity (Figure 12F) during baseline gamma 

oscillations (Figure 12E, left).  

To quantify the changes in synchronized activity, we used two measures. First, the percentage of 

recruited cells, second, the summed duration of synchronized activity (Figure 12G-H). These 

parameters report the number of cells participated in any synchronized event (black dots in Figure 

12C) and the summed duration of these events compared to total acquisition time (5 min). A clear 

reduction is observed in both measures. Interestingly, the overall activity of pyramidal cells 

(Figure 12I) reported as AuC of calcium transients showed no change upon mild metabolic stress. 
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These findings demonstrate that recruiting groups of cells into synchronized patterns of activity 

is metabolically more demanding than maintaining their overall activity. Following the 

investigation on the cellular level, we further investigated effects occurring at the ensemble’s 

level. 
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Figure 12. Mild metabolic stress attenuates the synchronized but not the overall activity of pyramidal 

cells. Calcium fluorescence and simultaneous juxtacellular signals were recorded in submerged condition. 

A, Traces of calcium fluorescence (top) with corresponding cell activity (juxtacellular recording, middle). 

Black lines indicate times of action potentials fired by recorded cell (bottom), cells/slices/preparations: 
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17/17/5. Dashed rectangles (a-b) indicate traces at higher resolution in Ba-b. C, Traces of calcium 

fluorescence for all detected cells (n = 155) in one slice. Black dots (top) indicate beginnings of periods of 

synchronized activity and participating cells. Dashed rectangle (bottom) marks the 11 cells represented in 

D-E. D, Standard deviation projection of calcium fluorescence for the whole acquisition time during 

baseline gamma oscillations (5 min). Note that the highlighted cells elicit synchronized activity (in E, left). 

str. oriens, Stratum oriens; str. pyr., Stratum pyramidale; str. rad., Stratum radiatum. E, Highlighted cells 

in C-D show synchronized activity during baseline gamma oscillations (blue, left) while in the presence of 

rotenone activity shifts to a less synchronized pattern (red, right). F, Similarity matrix for events of 

synchronized activity (marked with black dots in C). Note the bright blue spots far from the diagonal. The 

brighter, the more similar the set of active cells in compared events. This indicates that these set of cells 

are repetitively active. Synchronized and overall activity were analyzed for different parameters. For 

cells/slices/preparations: 713/8/3. G, Percentage of recruited cells during synchronized activity. H, 

Percentage of the summed duration of the synchronized activity. I, Area under the curve (AuC) for calcium 

fluorescence, reflecting the overall activity of pyramidal cells. G-I paired t-test, * p < 0.05. Data are 

summarized by their median ± the interquartile range (IQR = 75% percentile - 25% percentile), error bars 

indicate minimal and maximal values. 

3.3.3 Pyramidal cells are mildly disinhibited and ensembles are disrupted. 

To determine the number of pyramidal cell ensembles underlying the synchronized events, we 

translated calcium transients into a binary output (Sasaki et al., 2007), i.e. calcium transients of 

active cells during synchronized events are translated to logical ‘ones’. The output of this 

operation is population vectors (Figure 13A-B). These vectors were then differentiated by PCA 

followed by clustering using Fuzzy C-means and Dunn’s index into ensembles of pyramidal cells 

(Figure 13C-D).  

We observed that most of the detected cells are recruited into ensembles. We also investigated 

whether there is a difference in the number of cells participating only in a single or multiple 

ensembles. The lack of any significant difference (Figure 13E), indicates that a fixed portion (~ 

50%) of the detected cells is recruited in ensembles formation. The number of detected 

ensembles ranged from one to three per slice (Figure 13F). A total of 17 ensembles from all slices 

showed an average of 58.5 ± 8.3 constituent cells (mean ± SEM, n = 8 slices from 3 preparations).   

To determine whether slices with a low number of active cells hindered ensembles detection, we 

calculated correlations between the number of cells, events and detected ensembles (Figure 13F-

H). The absence of any correlation suggests that the number of detected cells and events reflect 

the intrinsic activity underlying gamma oscillations and did not hinder the detection of ensembles. 



 

41 

 

We examined how individual pyramidal cells (recruited in ensembles) behave upon mild 

metabolic stress compared to their activity during baseline gamma oscillations. In the example 

shown in Figure 13, we observed an increase in the activity of pyramidal cells (Figure 13I). We 

next normalized the activity of individual cells (during baseline or metabolic stress) to the average 

activity of their corresponding ensemble during baseline. This was performed for all cells from all 

slices. For better visualization, the normalized activity of cells was sorted for both conditions 

(Figure 3J). The corresponding distributions are shown in Figure 13K. During metabolic stress, a 

shift towards increased activity is observed (Figure 13K, right). 

Although the overall activity of all cells showed no significant difference (Figure 12I), we observed 

an increase of pyramidal cell activity on the ensemble level during mild metabolic stress. Our 

findings show that the formation of ensembles is disturbed probably by partial disinhibition of 

pyramidal cells. To further elucidate the underlying mechanism, we studied the changes in the 

firing patterns of slow- and fast-spiking units (SSUs, FSUs) in response to metabolic stress. 
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Figure 13. Clustering events of synchronized activity to identify neuronal ensembles. A, Transferring 

calcium fluorescence transients into binary population vectors (red arrows). B, Principal component 
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analysis applied to categorize vectors in the first three principal components, followed by Fuzzy C-means 

clustering with the aid of Dunn index (black crosses; the center of clusters). C, Traces of calcium 

fluorescence for all detected cells in one slice with color-coded events according to the ensembles 

clustered in B. D, Spatial map of cells belonging to the two identified ensembles corresponding to the 

shown example. Data were analyzed for different parameters. n/N slices/preparations: 8/3. Gray circles 

represent cells not recruited into the presented ensemble. str. oriens, Stratum oriens; str. pyr., Stratum 

pyramidale; str. rad., Stratum radiatum. E, Difference between cells recruited in only one ensemble or 

multiple ensembles or none. One-way ANOVA with Holm-Sidak’s multiple comparisons test, * p < 0.05. F-

H, Correlations between numbers of identified cells, events and ensembles. No significant correlation is 

observed. I, Spatial map (similar to D) showing fold change in AuC of cells’ activity during mild metabolic 

stress in relation to their individual activity during baseline gamma oscillations. J, Activity of each cell is 

normalized to the average activity of their corresponding ensemble, followed by sorting according to 

baseline gamma oscillation (top left) or mild metabolic stress (bottom right). K, Histogram of cells’ sorted 

activity (analogous to top left and bottom right in J). Note the multimodal distribution (right), and the shift 

of pyramidal cells to be more active upon mild stress, two-sample Kolmogorov-Smirnov test (D = 0.226, p 

< 0.05). Data are summarized by their median ± the interquartile range (IQR = 75% percentile - 25% 

percentile), error bars indicate minimal and maximal values. 

3.4 Mild metabolic stress disinhibits slow-spiking units 

In order to uncover the underlying mechanisms for the observed loss of synchrony, we performed 

spike sorting with extracellular recordings. The high temporal resolution allows for detecting fast-

spiking units (FSU) in addition to slow spiking units (SSU, putative pyramidal cells), thus enabling 

us to distinguish between their responses to mild metabolic stress. 

To achieve similar metabolic stress as in the submerged chamber (Figure 9), rotenone 

concentration was raised to 0.5 µM. Indeed, gamma oscillations were maintained while power 

was significantly attenuated (Figure 14). Additionally, none of the slices showed pathological 

activity (e.g. spreading depolarization or epileptiform discharges), which allowed us to use these 

conditions to further study the spiking behavior of individual cells.  

To extract multi-units activity, we first band-pass (300-3000 Hz) filtered the recorded signals 

(Figure 15A). Afterward, the identified spikes were sorted based on their wavelet transformations 

(Quiroga et al., 2004). We were able to distinguish between different units and determined their 

firing rates (Figure 15B-C). Based on their firing rates, we categorized the units into FSUs (>10 Hz) 

and SSUs (<5 Hz). While FSUs maintained their firing rate (Figure 15D), SSUs increased their firing 

rate during mild metabolic stress (Figure 15E). These findings further support our previous 

observation that pyramidal cells are slightly disinhibited upon mild metabolic stress. 
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Figure 14. Mild metabolic stress of gamma oscillations in interface condition. A, Sample trace 

of LFP recording in interface chamber during baseline gamma oscillations (first 10 minutes) and 

additional application of 0.5 µM rotenone. Red arrows indicate time points in B at higher 

temporal resolution. Corresponding wavelet transformation (bottom) showing the power of 

frequency domains over time. Heat-scale colors encode for power in arbitrary units (a.u.). Note 

that wavelet transformations during rotenone application are normalized to transformations 

during baseline. Gamma oscillations were analyzed for different parameters for the last 5 

minutes in each phase (baseline and rotenone application), n/N slices/preparations: 34/6. C,

Peak frequency (f). D, Full width at half-maximum (FWHM). E, Peak of power spectral density 

(Power). F, Area under the curve (AuC). C-F, Wilcoxon matched-pairs signed-rank test. * p < 

0.05. Data are summarized by their median ± the interquartile range (IQR = 75% percentile -

25% percentile), error bars indicate minimal and maximal values. 
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3.5 CMRO2 in different gamma models and laminae of the hippocampus 

In acute hippocampal slices of the mouse, we induced different models of gamma oscillations and 

performed oxygen depth profiles. We adopted glutamatergic and cholinergic models, using kainic 

acid (100 nM) and acetylcholine (8 µM) with physostigmine (2 µM), respectively. Persistent 

oscillations were maintained by constant bath application of the relevant drug in the interface 

chamber.  

Figure 15. Fast-spiking units are highly vulnerable to mild metabolic stress A, 

Sample trace of original LFP recording (top), band-pass filtered at 5-200 Hz and 

300-3000 Hz (middle and bottom, respectively), highlighting gamma 

oscillations and units firing. B, Sample of a fast-spiking unit, mean ± SD. C, Inter-

spike interval, ISI for the unit in B during baseline gamma oscillations. D-E, 

units/slices/preparations: 18/18 /6. D, Action potential (AP) frequency for units 

with > 10 AP/s during baseline, Wilcoxon matched-pairs signed-rank test. E, AP 

frequency for units with < 5 AP/s during baseline, paired t-test. FSUs and SSUs; 

fast- and slow- spiking units, respectively. * p < 0.05. Data are summarized by 

their median ± the interquartile range (IQR = 75% percentile - 25% percentile), 

error bars indicate minimal and maximal values. 
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In the first set of experiments, we compared the cerebral metabolic rate of oxygen in stratum 

pyramidale of the hippocampus between the two models (Figure 16). Following the oxygen depth 

profile, a mixture of blockers (0.5 µM TTX, 10 µM DNQX, 50 µM DL-AP5 and 1 µM atropine) was 

applied to silence neuronal activity. Consequent oxygen depth profiles were performed to serve 

as a reference for individual slices.  

Analysis of the gamma oscillations showed higher power in case of induction using kainic acid. 

This is reflected in the AuC as well. Frequencies appeared not to be different in both models. 

However, FWHM was significantly higher in kainic acid-induced gamma oscillations. This implies 

higher synchrony in the network. 

Oxygen consumption is reported after normalizing cerebral metabolic rates during gamma 

oscillations to rates measured during silenced activity. No difference was detected between the 

two models. 

The second set of experiments involved simultaneous oxygen depth profiles in stratum 

pyramidale and stratum radiatum. Only the glutamatergic model was employed; gamma 

oscillations were induced using kainic acid (Figure 17). 

Gamma oscillations in stratum pyramidale showed higher amplitudes, reflected in power and 

AuC. Frequencies showed faster signal in stratum pyramidale, additionally, FWHM reflected 

higher synchrony in the pyramidal layer. Oxygen consumption was significantly higher in the 

pyramidal layer. This may infer higher energy consumption in stratum pyramidale compared to 

stratum radiatum. However, the significant difference can result simply from the significantly 

more powerful signal in stratum pyramidale rather than the nature of the underlying processes 

(inhibition or excitation). 
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Figure 16. The cerebral metabolic rate of oxygen 

(CMRO2) in CA3 stratum pyramidale of 

hippocampus. A-B, Sample traces of gamma 

oscillations induced by acetyl choline and 

physostigmine (cholinergic model, left), and kainic 

acid (glutamatergic model, right). Corresponding 

wavelet transformations (bottom) showing the 

power of frequency domains over time. Heat-scale 

colors encode for power in arbitrary units (a.u). Red 

arrows indicate time points in B (top) at higher 

temporal resolution. B, LFP traces (middle) during 

blocked neuronal activity (TTX + Atropine + DNQX 

+DL-APV). Bottom, corresponding wavelet 

transformation for LFPs on top. Gamma oscillations 

were analyzed for different parameters.  For n/N 

slices/animals: ACh 25/11; KA 27/10.  C, Peak 

frequency (f), unpaired t-test. D, Full width at half-

maximum (FWHM). E, Peak of power spectral 

density (Power). F, Area under the curve (AuC). D-

F, Mann-Whitney test. G, Oxygen depth profile. 

Red and grey time series represent profiles of 

cholinergic and glutamatergic models, respectively 

after blocking neuronal activity. H, normalized 

CMRO2, Mann-Whitney test. * p < 0.05. Data are 

summarized by their median ± the interquartile 

range (IQR = 75% percentile - 25% percentile), error 

bars indicate minimal and maximal values.

Calculations of cerebral metabolic rates were 

performed by Dr. Nikolaus Berndt. 
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Figure 17. The cerebral metabolic rate of oxygen 

(CMRO2) in CA3 stratum pyramidale (Pyr) and 

stratum radiatum (Rad) of the hippocampus. A-

B, Sample traces of gamma oscillations induced 

by kainic acid in Pyr and Rad, left and right, 

respectively. Corresponding wavelet 

transformations (bottom) showing the power of 

frequency domains over time. Heat-scale colors 

encode for power in arbitrary units (a.u). Red 

arrows indicate time points in B (top) at higher 

temporal resolution. B, Bottom, corresponding 

wavelet transformations. Gamma oscillations 

were analyzed for different parameters.  For n/N 

slices/animals: 33/7. C, Peak frequency (f), 

Wilcoxon matched-pairs signed rank test. D, Full-

width half maximum, Wilcoxon matched-pairs 

signed rank test. E, Peak of power spectral 

density (Power), Wilcoxon matched-pairs signed 

rank test. F, Area under the curve (AuC), 

Wilcoxon matched-pairs signed rank test. G, 

Oxygen depth profile. H, normalized CMRO2, 

paired t-test. * p < 0.05. Data are summarized by 

their median ± the interquartile range (IQR = 75% 

percentile - 25% percentile), error bars indicate 

minimal and maximal values. Calculations of 

cerebral metabolic rates were performed by Dr. 

Nikolaus Berndt. 
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4 Discussion 

4.1 The validity of organotypic hippocampal slice cultures for studying ensembles 

Gamma oscillations can be induced in vitro by different pharmacological, electrical and 

optogenetic approaches (Bartos et al., 2007; Kann et al., 2016). In this study, we mainly employed 

the cholinergic model (carbachol or acetylcholine and physostigmine) of gamma oscillations 

which mimics cholinergic input from the septum to the hippocampus during exploratory behavior 

in vivo (Fisahn et al., 1998; Hájos and Paulsen, 2009; Marrosu et al., 1995).  

Gamma oscillations in vitro are known to show comparable properties to the oscillations detected 

in vivo. 1- The phase of gamma oscillations shows a reversal in polarity of LFP between signals 

recorded from stratum pyramidale and stratum radiatum. 2- Similar current source density 

profiles are observed. 3- Low-frequency firing rates of pyramidal cells in vivo and in vitro during 

gamma oscillations, ~0.5 - 3 Hz. 4- Similar discharge probabilities of pyramidal cells and inhibitory 

neurons in correspondence to the phase of the LFP signal (Bartos et al., 2007; Hájos and Paulsen, 

2009).  

We show in our experiments that gamma oscillations in OHSC have similar properties. This 

includes the reversal of potential between stratum pyramidale and stratum radiatum (Figure 3E) 

and firing rates of pyramidal cells within the range (Figure 12A-B) known from previous studies 

(Zemankovics et al., 2013). Cross-correlation analysis (Figure 3) revealed that gamma oscillations 

in the CA3 region precede the signals detected in neighboring regions (dentate gyrus and CA1). 

Therefore, we conclude that the CA3 in OHSCs is the location where gamma oscillations are 

generated as known from the literature (Bragin et al., 1995; Csicsvari et al., 2003; Fisahn et al., 

1998; Hájos and Paulsen, 2009; Penttonen et al., 1998).  

Additionally, former studies presented comparable developmental properties to those observed 

in the in-vivo hippocampus as well as the maturation of interneurons and expression of 

parvalbumin (Hasam-Henderson et al., 2018; Tsintsadze et al., 2015). Therefore, we conclude that 

the choice of OHSCs is valid for modeling gamma oscillations in vitro and studying underlying 

network activity. 
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OHSCs have a residual thickness of ∼200 µm (Schneider et al., 2015) offering better diffusion 

distance for oxygen and metabolites in comparison to acute slices, in addition to the supply of 

nutrients from beneath the Biopore membrane. For our study, slice cultures are superior to acute 

slices, since layers of dead cells are removed during the incubation period (Bahr et al., 1995), 

therefore offering clearer morphology for live imaging. Additionally, the usage OHSCs enabled 

the application of viral vector carrying a genetically encoded calcium sensor (GECI) under sterile 

conditions. This provides the additional advantage of transmitting the GECI to all pyramidal cells 

since the viral vector is applied on top of the slices. The capability of OHSCs to elicit gamma 

oscillations after more than ~4 weeks (Schneider et al., 2015), provided sufficient incubation 

period for the expression of the GECI, GCaMP6f, which is known for its fast kinetics (Chen et al., 

2013; Podor et al., 2015). 

Although gamma oscillations are energetically highly demanding (Huchzermeyer et al., 2013; 

Kann et al., 2016; Schneider et al., 2017), we were able to induce persistent oscillations in 

submerged conditions for more than 25 minutes (Figure 8). This duration provided sufficient 

periods of baseline recordings and induction of metabolic stress that are long enough for robust 

analysis. 

We targeted pyramidal cells by expressing GCaMP6 under the control of CaMKII promoter 

(Badura et al., 2014; Chen et al., 2013; Podor et al., 2015). Despite the low temporal resolution of 

calcium imaging, the high spatial resolution enabled identifying and monitoring of large pyramidal 

cell population simultaneously, permitting detection of neuronal ensembles (Carrillo-Reid et al., 

2017; Grienberger and Konnerth, 2012; Hamm et al., 2017; Kwan, 2008). 

We developed an algorithm (Figure 11) for reducing cross-talk among different ROIs and 

combined it with a previously known method for detection of ‘above-chance activities’ (Hamm et 

al., 2017; Sasaki et al., 2007). Briefly, the method depends on bootstrapping which is applied to 

identify above-chance population activity, producing population vectors as an output. Afterward, 

the vectors are filtered based on their similarity indices to yield only ‘repetitive’ above-chance 

activity (Figure 12F). This means that vectors (population activity) consisting of a similar group of 
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neurons are kept. Thereby fulfilling the definition of ensembles, as a group of repetitively co-

active neurons. 

Our adopted model of OHSCs and applied algorithms enabled detection of ensembles with 

simultaneous but not sequential activity (Figure 1). The number of detected active neurons during 

acquisition time of imaging ranged from 55 up to 155 cells in different slices. A possible 

explanation could be that intrinsic activity underlying the gamma oscillations show a different 

number of active neurons at different periods. Another possibility is that the quality of slices is 

not consistent. Therefore, the reliability of the model was tested to ensure that the quality of 

slices did not hinder the detection of more active cells or ensembles. We calculated correlations 

between the number of identified cells, synchronized events, and the number of detected 

ensembles (Figure 13F-H). We observed that differences in the numbers of detected cells in 

different slices did not correlate significantly to the number of identified ensembles. In 

conclusion, we believe that differences in the identified number of cells reflect the underlying 

intrinsic activity of gamma oscillations rather than unreliable slices quality. Besides, no difference 

is shown between the numbers of cells recruited in one or multiple ensembles, indicating that a 

fixed portion of pyramidal cells is active when ensembles are detected (Figure 13E).  

The performed characterization of gamma oscillations in OHSCs demonstrates the validity of 

adopting it as a model for studying neuronal ensembles and their different aspects. We focused 

in this study on the energetic aspect underlying the formation of pyramidal cell ensembles in the 

hippocampus. 

4.2 Neuroenergetics of gamma oscillations 

Research in neuroenergetics has focused mainly on excitatory glutamatergic cells (Attwell and 

Laughlin, 2001; Hyder et al., 2013; Yu et al., 2017). In the hippocampus, these are the pyramidal 

cells, which are believed to compute, store and retrieve information during higher brain functions 

(Hájos and Paulsen, 2009; Lisman and Buzsáki, 2008). Precise temporal windows are necessary 

for these cells to elicit synchronized activity patterns underlying higher brain functions. However, 

less focus was given to the inhibitory interneurons which play a key role in providing the temporal 

windows required for synchronizing pyramidal cells. Main reasons include their low percentage 
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of neuronal population in the hippocampus (10-15%), and their wide diversity (Gloveli et al., 2005; 

Somogyi and Klausberger, 2005). Fast-spiking basket cells are of specific interest for synchronizing 

the activity of pyramidal cells in gamma oscillations (Agetsuma et al., 2018; Gulyás et al., 2010; 

Hájos and Paulsen, 2009; Penttonen et al., 1998). 

Fast-spiking interneurons are able to fire up to 100 Hz. They are endowed with several properties 

to fulfill this function. This includes: membrane potential with 10 ~ 15 mV closer to firing 

threshold compared to pyramidal cells, rapid time course of action potentials, high reliability of 

action potential propagation along axonal plexus and resonance at frequencies within gamma-

frequency band (Hu et al., 2014; Hu and Jonas, 2014; Jonas et al., 2004; Martina et al., 1998; 

Penttonen et al., 1998; Pike et al., 2000; Sugino et al., 2006). Although interneurons constitute a 

small percentage of neurons and early estimations suggest their requirement for low energy 

budget (Attwell and Laughlin, 2001), consideration has to be taken for effects of their massive 

branching axonal plexus (Caeser and Aertsen, 1991; Freund, 2003; Freund and Buzsáki, 1996). 

GABAergic interneurons can innervate up to 2000 pyramidal cells, rendering the dissection of 

neuronal populations of the networks difficult, and consequently determining the most sensitive 

population to metabolic stress. We approach this issue by challenging pyramidal cell ensembles 

during gamma oscillations which reflect a highly synchronized activity of neuronal machinery 

operating at its limit. Inducing mild metabolic stress can, therefore, reveal the most vulnerable 

population. 

4.2.1 Hypoxia as a metabolic stressor 

Gamma oscillations and the associated higher cognitive functions are rapidly lost during ischemia 

due to the required high energy expenditure (Barth and Mody, 2011; Kann, 2012, 2016; Kann et 

al., 2011; Kann et al., 2014; Schneider et al., 2017). Therefore we simulated the ischemic condition 

using different combinations of oxygen fractions and glucose concentrations. 

Significant changes in the power of gamma oscillations started appearing at 5% oxygen fraction 

(Figure 5). The changes occurred rapidly and the dynamic phase of metabolic stress lasted for a 

short period which is insufficient for performing robust analysis. However, interestingly it was 

noticed that FWHM showed changes when glucose concentration was reduced, and power was 
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changed only with 5% and 2% oxygen fraction regardless of glucose concentration. FWHM reflects 

the synchronization of the underlying network activity. Low values indicate a narrow band of 

frequencies contributing to the detected signal, thereby higher synchrony of neuronal activity 

and vice versa. Therefore, we further analyzed the isolated effect of glucose concentration and 

oxygen fractions, to determine if FWHM or power is sensitive more to one of the variables. The 

analysis of the isolated effect of glucose showed that slice cultures can tolerate reduced 

concentration and elicit persistent gamma oscillations. Besides, dose-response curves of different 

oxygen fractions revealed that low fractions showed effect only when combined with low glucose.  

We conclude that with the used combinations, we did not detect specific reliance of power or 

FWHM on oxygen fractions or glucose concentrations, respectively. 

4.2.2 Rotenone as a metabolic stressor 

We investigated if a pharmacologic stressor would provide a slower dynamic effect, thereby 

enabling the analysis of longer durations of baseline and stress conditions. We selected rotenone 

which is a highly selective complex I inhibitor, and its lipophilic nature leads to rapid interference 

with mitochondrial function and production of ATP (Kann et al., 2003b; Schuchmann et al., 2001; 

Sherer et al., 2003). We used rotenone in relatively low concentrations, 0.1 µM, and 0.5 µM, in 

submerged and interface chambers, respectively. At these concentrations, we achieved a mild 

metabolic stress level, reflected in the reduction of power without loss of gamma-band frequency 

(Figure 9 and 10). It is essential that stress level is not drastic, otherwise, it will hinder revealing 

the most vulnerable neuronal population by suppressing the whole network. We note that there 

was no pathological activity such as spreading depolarization or epileptiform discharges were 

detected at achieved stress levels. 

4.2.3 Synchronized activity exhibits high vulnerability 

Changes in synchronized activity were quantified by two parameters. First, the summed durations 

of synchronized events and second, the number of recruited cells in any synchronized event. 

These parameters showed significant reduction upon mild metabolic stress as expected (Figure 

12). This reflected the disorganized activity of pyramidal cells upon stressing the network. 
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Interestingly, no reduction in the overall activity of pyramidal cells was detected during the stress 

condition. A possible explanation for this observation is that the stress was mild but sufficient to 

impair the control of fast-spiking interneurons over pyramidal cells. However, the stress was not 

sufficient to diminish the activity of pyramidal cells. Another explanation is that the excitatory 

tone of principle cells upon interneurons is reduced. As a result, the inhibitory control is reduced 

leading to the observed disorganized activity of pyramidal cells. However, pyramidal cells 

appeared to have a shift towards higher activity (Figure 13J-K), thus disapproving the second 

explanation.  

These results hence uncover the high energy demands of synchronizing the firing patterns of 

neurons, which is crucial for information processing. This provides an insight on how the rapid 

loss of higher cognitive functions upon insults e.g. ischemia occurs. 

4.2.4 CMRO2 in different gamma models and laminae of the hippocampus 

In this study, we induced gamma oscillations additionally using the glutamatergic model which is 

based on constant bath application of kainic acid. As known, gamma oscillations involve an 

interplay between excitatory and inhibitory activity (Hájos and Paulsen, 2009). Previous studies 

indicated that glutamatergic models of gamma oscillations rely more on inhibition. On the 

contrary, cholinergic models are dependent more on excitation (Bartos et al., 2007). We exploited 

this and performed oxygen depth profiles to determine a rough estimate for the energy costs of 

excitation and inhibition. Oxygen depth profiles provided through a mathematical reaction-

diffusion model information about the cerebral metabolic rate of oxygen, CMRO2 (Huchzermeyer 

et al., 2013; Schneider et al., 2017). Oxygen consumption provides an indirect measure of 

metabolic rates since it is the final acceptor of electrons in the respiratory chain (Rolfe and Brown, 

1997). 

The depth profiles were measured in both models of gamma oscillations from the CA3 stratum 

pyramidale where the highest signal power can be detected (Kann et al., 2011). 

The observed power and FWHM of gamma oscillations were higher in the glutamatergic model, 

reflecting a higher level of activity and synchrony underlying the oscillations. Therefore, it was 
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expected that higher energy consumption is associated with the glutamatergic model and 

consequently higher CMRO2 levels. However, no significant difference in CMRO2 was detected 

between the two models. Thereby, it is rendered difficult to confirm that glutamatergic model 

(which relies mostly on inhibition) is associated with more energy consumption. As a result, we 

planned thereafter to employ a single model and exploit that different laminae receive different 

ratios of excitatory and inhibitory inputs. 

In the hippocampus, stratum pyramidale receive mainly inhibitory inputs and stratum radiatum 

receive excitatory inputs (Megias et al., 2001; Spruston, 2008). Simultaneous recordings of oxygen 

depth profiles in both layers can provide information on the energy requirement of inhibition and 

excitation. Comparison of CMRO2 in both layers demonstrated significantly higher values in 

stratum pyramidale, which implies that processes occurring in stratum pyramidale are associated 

with higher energy consumption in comparison to processes in stratum radiatum. Consequently, 

inferring that inhibition costs energetically more than excitation. Taking into consideration the 

significant difference in gamma oscillations power between stratum pyramidale and stratum 

radiatum, the interpretation can be contradicted. Accordingly, the difference in CMRO2 can be 

attributed to the power of the signal rather than the underlying processes.  

Measures of CMRO2 were expected to support our findings from the study of neuronal ensembles 

which points to high vulnerability of inhibition. Accompanied differences in power and FWHM, 

which are known to correlate to CMRO2 (Schneider et al., 2017), complicated the interpretation 

and could contradict any reductionist conclusion. 

4.2.5 Interneuron energy hypothesis 

It is known that neuronal energy expenditure increases significantly during gamma oscillations 

(Kann, 2012, 2016; Kann et al., 2014). The strong correlation between gamma oscillations power 

and oxygen consumption rate (Huchzermeyer et al., 2013; Kann et al., 2011; Schneider et al., 

2017), the requirement of high concentration of energy substrates to fuel gamma oscillations 

(Galow et al., 2014), and the findings of functional imaging in cats, monkeys and humans (Lachaux 

et al., 2007; Niessing et al., 2005; Schölvinck et al., 2010) support this association. 
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The remarkable increase in neuronal firings and postsynaptic potentials during gamma 

oscillations contribute to the high energy budget (Hájos and Paulsen, 2009; Whittington and 

Traub, 2003; Wong-Riley, 1989). As a consequence of these activities, ion fluxes across neuronal 

membranes dissipates the gradients of Na+ K+ Ca2+ and Cl-. Meanwhile, ion pumps consume 

energy to restore these gradients by catalyzing ATP (Attwell and Laughlin, 2001; Erecińska and 

Silver, 2001; Wong-Riley, 1989), which is provided mainly by oxidative phosphorylation in 

mitochondria (Buzsáki et al., 2007; Kann et al., 2014). 

Fast-spiking interneurons also require high energy expenditure. They fire at high rates (> 100 Hz) 

and are equipped with a large number of mitochondria that are larger in size than pyramidal cells’ 

mitochondria (Gulyás et al., 2006; Gulyas et al., 1999). Additionally, they express supercritical 

densities of Na+ channels and fast deactivating Kv3 subtype of K+ channels, ensuring reliable 

propagation and fast kinetics of action potentials (Hu et al., 2014; Hu and Jonas, 2014). 

Furthermore, their mitochondria are enriched with cytochrome C and cytochrome C oxidase, also 

known as complex IV (Gulyás et al., 2006; Kageyama and Wong-Riley, 1982). 

Taking into consideration the findings of previous studies, our results appear to meet 

expectations. It was anticipated that fast-spiking interneurons will set a low threshold for 

disturbances of gamma oscillations and inhibition will display high vulnerability. 

Fast-spiking interneurons play an important role in feedback and feedforward inhibition rather 

than just acting as simple breaks for excitatory neurons (Zemankovics et al., 2013). One 

consequence of feedforward inhibition is the enhancement of the temporal resolution for 

summation of postsynaptic potentials and initiation of action potentials. As a result, the dynamic 

range of neuronal ensembles is expanded which is advantageous for information coding (Ferrante 

et al., 2009; Pouille et al., 2009; Pouille and Scanziani, 2001). Therefore, the observed high 

vulnerability of fast-spiking interneurons points to one of the functions that will be impaired upon 

insults to neuronal networks. 
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4.3 A mechanism for the alteration of gamma oscillations 

Fast-spiking interneurons generate action potentials during gamma oscillations, almost phase-

locked to each cycle. Therefore, the fast release of GABA leads to rhythmic inhibition in a large 

population of pyramidal cells. Synchronized inhibitory postsynaptic potentials in stratum 

pyramidale rather than excitatory postsynaptic potentials or action potentials shape the gamma 

oscillations signal in the LFP (Dugladze et al., 2012; Gloveli et al., 2005; Gulyás et al., 2010; Hájos 

et al., 2004; Klausberger et al., 2003; Mann et al., 2005; Oren et al., 2010; Penttonen et al., 1998). 

Consequently, the reduction in gamma oscillations power during mild metabolic stress can result 

from failures in action potentials generation or propagation along the axons of fast-spiking 

interneurons. Another possibility is the reduction in GABA released from the presynaptic 

terminal. It was predicted that energy demand for action potential generation and postsynaptic 

ion fluxes is higher than the demand of processes occurring at the presynaptic terminal (Attwell 

and Gibb, 2005; Attwell and Laughlin, 2001; Harris et al., 2012; Howarth et al., 2012). 

Nevertheless, it was also shown that energy demands for presynaptic processes: Ca2+ removal, 

transmitter release, and uptake and vesicles turnover require more energy than previously 

expected (Liotta et al., 2012; Rangaraju et al., 2014). 

Spike sorting was performed to acquire a deeper insight into the alterations of neuronal firing 

rates upon metabolic stress. A major issue with spike sorting is clustering. Several algorithms 

assume a Gaussian shape of clusters. However, there are many causes for non-Gaussian shapes. 

These include 1- electrode drifting due to slice shrinkage or swelling, 2- correlation between 

spiking and LFP 3- changes in spike waveform of bursting units 4- the presence of multi-unit 

activity. Wave_Clus, the algorithm we used, is based on superparamagnetic clustering which is 

found to overcome the assumption of clusters with Gaussian shape (Blatt et al., 1996; Quiroga et 

al., 2004; Wild et al., 2012). 

Spike sorting showed that slow-spiking units are surprisingly more active during mild metabolic 

stress. This runs in parallel with the tendency of pyramidal cells to be more active in comparison 

to the average activity of their corresponding ensemble (Figure 13 J-K). This implies that SSUs are 

disinhibited and indicates that inhibitory cells are highly vulnerable to mild metabolic stress. 
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Interestingly, firing rates of fast-spiking units were not affected although gamma oscillations 

power was significantly reduced. This indicates that the loss of gamma oscillations begins with 

failures occurring in the presynaptic terminal before changes in firing rates start to appear. 

In summary, our findings suggest a high vulnerability of inhibitory cells in gamma oscillations 

which is a model for neuronal machinery functioning at its limits. This explains the tendency 

observed in a portion of pyramidal cells being more active (Figure 13 J-K) due to disinhibition 

when only mild stress is induced.  

Furthermore, the presynaptic terminal appears to be the weakest link in a chain of processes 

involved in synchronizing neuronal population activity. This provides a basic understanding of 

alterations in gamma oscillations. Additionally, it exposes a plausible mechanism for the 

pathophysiology of losing higher brain functions in conditions of acute insult such as ischemia or 

chronic conditions such as aging or Alzheimer’s disease (AD). 

4.4 Gamma oscillations and brain disorders 

Since gamma oscillations are known to be associated with selective attention, memory formation, 

and sensory perception (Buzsáki and Draguhn, 2004; Colgin, 2016; Colgin and Moser, 2010; 

Paulsen and Moser, 1998; Uhlhaas and Singer, 2010), it is not surprising that disturbances in 

gamma oscillations are observed in many brain disorders. This includes AD (Hidisoglu et al., 2018; 

Hollnagel et al., 2019), schizophrenia (Hamm et al., 2017), ischemia (Barth and Mody, 2011), 

psychosis (Ahnaou et al., 2017), and depression (Fitzgerald and Watson, 2018). The question 

remains in these diseases, whether alterations of gamma oscillations are a by-product or are 

contributing to cognitive impairments. 

Several studies showed that improving gamma oscillations lead to a rescuing effect of the 

pathology of AD (Adaikkan et al., 2019; Iaccarino et al., 2016; Mably and Colgin, 2018). Following 

optogenetic stimulation of fast-spiking PV+ interneurons, gamma oscillations were enhanced and 

Aβ plaques were reduced most likely via increased microglial uptake (Iaccarino et al., 2016). 

Entrainment of gamma oscillations in the visual cortex and hippocampus by non-invasive light 

flicker and in the auditory cortex by auditory tone stimulation showed similar effects in different 



 

59 

 

AD mouse models (Adaikkan et al., 2019; Martorell et al., 2019). The pathology of some AD 

models is known to have disturbed excitation-inhibition balance resulting from the accumulation 

of peptides such as apolipoprotein E4 and amyloid β (Kurudenkandy et al., 2014; Tong et al., 

2014). Overexpression of voltage-gated sodium channel subunit Nav1.1 in interneurons enhanced 

gamma oscillations and improved the cognitive function in human amyloid precursor protein 

transgenic mice (Martinez-Losa et al., 2018). 

Inducing mild metabolic stress simulates deficiencies in the hemodynamic response which might 

be responsible for the decline (rather than loss) in cognitive functions. These disturbances occur 

in Alzheimer’s disease, cardiovascular diseases and aging (Love and Miners, 2016; Riddle et al., 

2003). They occur as well in mitochondrial diseases associated with impaired mitochondrial 

function and oxidative stress (Burté et al., 2014; Morán et al., 2012; Zsurka and Kunz, 2013). 

Studying the neuroenergetic aspect of insults to the brain will help to bridge the gap between 

cellular damage and cognitive deficits.   

4.5 Limitations of the study 

Our study provides us with valuable information which helps to understand in depth a rational 

pathophysiological mechanism for the loss of gamma oscillations which can be related to loss of 

higher cognitive functions. However, the applied methodology in our study has some limitations. 

Although calcium imaging provides an impressive spatial resolution which enables monitoring a 

large number of neurons, however, the temporal resolution lags behind if compared to other 

methods such as multi-electrode array recordings of neuronal activity. The algorithms used were 

designed for calcium imaging data. Nevertheless, the identified ensembles represent co-active 

neurons with simultaneous activity and lack the full spectrum of ensembles which includes also 

sequentially active ensembles (Figure 1). 

Several factors contribute to the lagging temporal resolution. On the hardware level, this includes 

the sampling rate which is limited by the specifications of used cameras and exposure time. With 

new technologies, the limitations are becoming reduced, but this comes with the expense of 

phototoxicity and photobleaching (Icha et al., 2017; Magidson and Khodjakov, 2013). On the 
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biological level, the kinetics of the chosen calcium indicator plays an important role. Usually 

kinetics of sensors are on the scale of hundreds of milliseconds and for some tens of milliseconds, 

however, neurons fire action potentials on the millisecond scale.  

Several algorithms that can identify the broad spectrum of ensembles (sequentially and 

simultaneously active) are recently published (Russo and Durstewitz, 2017). Nonetheless, to yield 

the optimal outcome from such modeling algorithms, data with a high temporal and spatial 

resolution are required. 

Spike sorting provides information about firing behavior of detected units, but it has an intrinsic 

problem which is present in all extracellular recordings intended for spike sorting. The problem is 

the doubt that comes with the spike sorting process. Major issues include drifting of electrodes, 

bursting units, overlapping spikes and spiking behavior that is modulated by underlying field 

potentials (Mokri et al., 2017; Rey et al., 2015). Filtering, spike detection, and clustering are 

several steps of the process that until now are not standardized to a benchmark (Lewicki, 1998). 

Several published algorithms tackle these issues, however, no current method can resolve all 

concerns.  

In our study, we suffered an unexpected low yield of sorted units. A possible explanation is the 

significantly increased activity of neurons during gamma oscillations which renders finding 

clusters with clear refractory period difficult. Usually, home-built electrodes are of sufficient 

quality however they lack the standardization of commercial electrodes.  

Oxygen sensor recordings offer very fine spatial resolution (8-12 µm). Measures reflect the 

oxygen utilized by oxidative phosphorylation, the major process in producing ATP. Nevertheless, 

a reductionist point of view is assumed when interpreting oxygen consumption. The complication 

arises from the fact that ATP is produced by several other processes (Erecińska and Silver, 2001). 

Moreover, measured CMRO2 is not necessarily reporting energy consumption of inhibitory or 

excitatory tone per se, but is also correlated to the power of gamma oscillation as well, which 

reflects the size of the active neuronal population. Thereby interpretations are made difficult 

while trying to dissect the processes underlying the reported CMRO2. 
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4.6 Outlook 

Further support for our findings is required. Voltage imaging can provide information about 

subthreshold activities, excitatory and inhibitory postsynaptic potentials (Bayguinov et al., 2017; 

Catterall, 2010; Peterka et al., 2011). Such information can provide quantification of the reduction 

in inhibitory and excitatory tone upon different metabolic stress levels. Furthermore, correlation 

to LFP can be determined since the gamma oscillation waveform is shaped by subthreshold 

activities. 

ATP imaging combined with optogenetic induction of gamma oscillations will provide information 

about energetic costs of inhibition and excitation (Lobas et al., 2019; Sohal, 2012; Sohal et al., 

2009; Tantama et al., 2013). Channelrhodopsin channels can be targeted to interneurons or 

pyramidal cells depending on the utilized promoter (Schneider et al., 2015; Sjulson et al., 2016). 

A necessary requirement is stimulation protocols for the different populations that result in 

comparable gamma oscillation power. Upon blockage of neuronal transmission (using TTX), ATP 

can be imaged upon optogenetic stimulation. Thereby we ensure the isolation of excitatory and 

inhibitory populations while measuring simultaneously ATP changes in the network. 

Lastly, to expand the type of ensembles that can be identified and studied (simultaneously and 

sequentially active), calcium imaging can be combined with high-density multi-electrode arrays 

(Franke et al., 2012; Ito et al., 2014; Muthmann et al., 2015). Calcium imaging will validate the 

yield of spike sorting of large neuronal populations, hence acquiring information about spike 

timings with optimal temporal resolution. Studying the full spectrum of ‘ensembles’ definition 

will provide a further understanding of the basic mechanisms of higher cognitive functions from 

the energetic aspect. 
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