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Abstract

The drug-receptor binding kinetics are defined by the rate at which a given drug

associates with and dissociates from its binding site on its macromolecular receptor.

The lead optimization stage of drug discovery programs usually emphasizes optimiz-

ing the affinity (as described by the equilibrium dissociation constant, Kd) of a drug

which depends on the strength of its binding to a specific target. Since affinity is

optimized under equilibrium conditions, it does not always ensures higher potency

in vivo. There has been a growing consensus that, in addition to Kd, kinetic param-

eters (kon and koff ) should be optimized to improve the chances of a good clinical

outcome. However, current understanding of the physicochemical features that con-

tribute to differences in binding kinetics is limited. Experimental methods that are

used to determine kinetic parameters for drug binding and unbinding are often time

consuming and labor-intensive. Therefore, robust, high-throughput in silico meth-

ods are needed to predict binding kinetic parameters and to explore the mechanistic

determinants of drug-protein binding. As the experimental data on drug-binding

kinetics is continuously growing and the number of crystallographic structures of

ligand-receptor complexes is also increasing, methods to compute three dimensional

(3D) Quantitative-Structure-Kinetics relationships (QSKRs) offer great potential for

predicting kinetic rate constants for new compounds. COMparative BINding Energy

(COMBINE) analysis is one example of such approach that was developed to derive

target-specific scoring functions based on molecular mechanics calculations. It has

been used extensively to predict properties such as binding affinity, target selectivity,

and substrate specificity. In this thesis, I made the first application of COMBINE

analysis to derive Quantitative Structure-Kinetics Relationships (QSKRs) for the

dissociation rates. I obtained models for koff of inhibitors of HIV-1 protease and

heat shock protein 90 (HSP90) with very good predictive power and identified the

key ligand-receptor interactions that contribute to the variance in binding kinetics.

With technological and methodological advances, the use of all-atom unbiased

Molecular Dynamics (MD) simulations can allow sampling upto the millisecond

timescale and investigation of the kinetic profile of drug binding and unbinding

to a receptor. However, the residence times of drug-receptor complexes are usually



longer than the timescales that are feasible to simulate using conventional molec-

ular dynamics techniques. Enhanced sampling methods can allow faster sampling

of protein and ligand dynamics, thereby resulting in application of MD techniques

to study longer timescale processes. I have evaluated the application of τ -Random

Acceleration Molecular Dynamics (τRAMD), an enhanced sampling method based

on MD, to compute the relative residence times of a series of compounds binding to

Haspin kinase. A good correlation (R2 = 0.86) was observed between the computed

residence times and the experimental residence times of these compounds. I also per-

formed interaction energy calculations, both at the quantum chemical level and at

the molecular mechanics level, to explain the experimental observation that the res-

idence times of kinase inhibitors can be prolonged by introducing halogen-aromatic

π interactions between halogen atoms of inhibitors and aromatic residues at the

binding site of kinases. I determined different energetic contributions to this highly

polar and directional halogen-bonding interaction by partitioning the total inter-

action energy calculated at the quantum-chemical level into its constituent energy

components. It was observed that the major contribution to this interaction en-

ergy comes from the correlation energy which describes second-order intermolecular

dispersion interactions and the correlation corrections to the Hartree-Fock energy.

In addition, a protocol to determine diffusional kon rates of low molecular weight

compounds from Brownian Dynamics (BD) simulations of protein-ligand association

was established using SDA 7 software. The widely studied test case of benzamidine

binding to trypsin was used to evaluate a set of parameters and a robust set of op-

timal parameters was determined that should be generally applicable for computing

the diffusional association rate constants of a wide range of protein-ligand binding

pairs. I validated this protocol on inhibitors of several targets with varying complex-

ity such as Human Coagulation Factor Xa, Haspin kinase and N1 Neuraminidase,

and the computed diffusional association rate constants were compared with the

experiments. I contributed to the development of a toolbox of computational meth-

ods: KBbox (http://kbbox.h-its.org/toolbox/), which provides information about

various computational methods to study molecular binding kinetics, and different

computational tools that employ them. It was developed to guide researchers on the

use of the different computational and simulation approaches available to compute

the kinetic parameters of drug-protein binding.
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Zusammenfassung

Die Kinetik der Rezeptorbindung wird durch die Geschwindigkeit definiert, mit

der ein bestimmtes Medikament mit einem makromolekularen Rezeptor assoziiert

oder dissoziiert. Die Lead-Optimierungsphase von Drug-Discovery-Programmen

konzentriert sich in der Regel auf die Optimierung der Affinität (beschrieben durch

die Gleichgewichtsdissoziationskonstante, Kd) eines Medikaments, die von der Stärke

seiner Bindung an ein bestimmtes Ziel abhängt. Da die Affinität unter Gleichgewichts-

bedingungen optimiert wird, muss sie nicht unbedingt in vivo zu einer höheren Wirk-

samkeit führen. Es besteht ein wachsender Konsens darüber, dass neben Kd auch

die kinetischen Parameter (kon und koff ) optimiert werden sollten, um die Chan-

cen auf ein gutes klinisches Ergebnis zu verbessern. Allerdings ist das Verständnis

der physikalisch-chemischen Eigenschaften, die zu Unterschieden in der Bindungsk-

inetik beitragen, derzeit begrenzt. Experimentelle Methoden, die zur Bestimmung

kinetischer Parameter für die Bindung und Entbindung von Medikamenten einge-

setzt werden, sind oft zeitaufwendig und arbeitsintensiv. Daher werden robuste,

hochdurchsatzfähige In-silico-Methoden benötigt, um kinetische Bindungsparame-

ter vorherzusagen und die mechanistischen Determinanten der Wirkstoff-Protein-

Bindung zu untersuchen. Mit den kontinuierlich wachsenden experimentellen Daten

zur Arzneimittelbindungskinetik und der zunehmenden Anzahl kristallographischer

Strukturen von Liganden-Rezeptorkomplexen bieten Verfahren zur Berechnung drei-

dimensionaler (3D) Quantitativen-Struktur-Kinetik-Beziehungen (QSKRs) ein großes

Potenzial zur Vorhersage kinetischer Geschwindigkeitskonstanten für neue Verbindun-

gen. Die Comparative BINding Energy (COMBINE)-Analyse ist ein solcher Ansatz,

der entwickelt wurde, um zielgerichtete Scoring-Funktionen auf der Grundlage moleku-

larmechanischer Berechnungen abzuleiten. Es wurde umfassend genutzt, um Eigen-

schaften wie Bindungsaffinität, Zielselektivität und Substratspezifität vorherzusagen.

In dieser Arbeit habe ich die erste Anwendung der COMBINE-Analyse zur Ableitung

von Quantitative Structure-Kinetics Relationships (QSKRs) für die Dissoziation-

sraten durchgeführt. Ich erhielt Modelle für koff von Inhibitoren der HIV-1-Protease



und des Hitzeschockproteins 90 (HSP90) mit sehr guter Vorhersagekraft und iden-

tifizierte die wichtigsten Liganden-Rezeptoren-Interaktionen, die zur Varianz der

Bindungskinetik beitragen.

Mit technologischen und methodischen Fortschritten kann der Einsatz von All

Atomaren unbiased Molecular Dynamics (MD)-Simulationen bis in den Millisekun-

denbereich und die Untersuchung des kinetischen Profils der Medikamentenbindung

und -entbindung an einen Rezeptor ermöglicht werden. Die Lebensdauer vonWirkstoff-

Rezeptorkomplexen sind jedoch in der Regel länger als die Zeiten, die mit herkömm-

lichen molekularen Dynamikverfahren simuliert werden können. Verbesserte Ver-

fahren können eine schnellere Probenahme von Protein- und Ligandendynamik er-

möglichen, was zur Anwendung von MD-Techniken zur Untersuchung länger an-

dauernder Prozesse führt. Ich habe die Anwendung von τ -Random Acceleration

Molecular Dynamics (τRAMD), einer verbesserten Probenahmemethode auf MD-

Basis, zur Berechnung der relativen Verweilzeiten einer Reihe von Verbindungen, die

an die Haspin-Kinase binden, ausgewertet. Es wurde eine gute Korrelation (R2=

0,86) zwischen den berechneten Verweilzeiten und den experimentellen Verweilzeiten

dieser Verbindungen bestimmt. Ich habe auchWechselwirkungsenergieberechnungen

sowohl auf quantenchemischer als auch auf molekularmechanischer Ebene durchge-

führt, um die experimentelle Beobachtung zu erklären, dass die Verweilzeiten von

Kinase-Inhibitoren durch die Einführung von halogenaromatischen πWechselwirkun-

gen zwischen Halogenatomen von Inhibitoren und aromatischen Resten an der Bindestelle

von Kinasen verlängert werden können. Ich bestimmte verschiedene energetische

Beiträge zu dieser hochpolaren und gerichteten Halogen-Bindungswechselwirkung,

indem ich die auf quantenchemischer Ebene berechnete gesamte Wechselwirkungsen-

ergie in ihre konstituierenden Energiekomponenten aufteilte. Es wurde beobachtet,

dass der Hauptbeitrag zu dieser Interaktionsenergie aus der Korrelationsenergie

stammt, die intermolekulare Dispersionswechselwirkungen zweiter Ordnung und die

Korrelationskorrekturen zur Hartree-Fock-Energie beschreibt.

Darüber hinaus wurde mit Hilfe der SDA 7-Software ein Protokoll zur Bestim-

mung der Diffusions kon raten von niedermolekularen Verbindungen aus Brownian

Dynamics (BD)-Simulationen von Protein-Liganden-Assoziationen erstellt. Der aus-

führlich untersuchte Testfall der Benzamidinbindung an Trypsin wurde verwendet,

um eine Reihe von Parametern zu bewerten, und es wurde ein Satz optimaler Pa-

rameter bestimmt, der allgemein anwendbar sein sollten, um die Diffusionsratenkon-
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stanten für Assoziation einer breiten Palette von Protein-Liganden-Bindungspaaren

zu berechnen. Ich habe dieses Protokoll über Inhibitoren von mehreren Zielpro-

teine mit unterschiedlicher Komplexität wie Human Coagulation Factor Xa, Haspin

Kinase und N1 Neuraminidase validiert, und die berechneten Diffusionsratenkon-

stanten für Assoziation mit Experimenten verglichen. Ebenso habe ich an der En-

twicklung einer Toolbox von Berechnungsmethoden mitgewirkt: KBbox (http://

kbbox.h-its.org/toolbox/), die Informationen über verschiedene Berechnungsmeth-

oden zur Untersuchung der molekularen Bindungskinetik und verschiedene Berech-

nungswerkzeuge, die diese verwenden, liefert. Dieses Tool wurde entwickelt, um

Forscher bei der Suche nach neuen Simulationsmethoden unter der Berechnung von

kinetischen Parameter zu unterstützen.

ix

http://kbbox.h-its.org/toolbox/
http://kbbox.h-its.org/toolbox/




Contents

Abbreviations xv

1 Introduction 1

1.1 Drug-binding kinetics and its importance . . . . . . . . . . . . . . . . 2

1.2 Current state-of-the-art in computing drug-binding kinetics . . . . . . 4

1.2.1 Fast binding of small, rather rigid ligands: the trypsin–benzamidine

complex and fragment binding . . . . . . . . . . . . . . . . . . 5

1.2.2 Unbinding with conformational changes: kinase and heat shock

protein 90 (HSP90) inhibitors . . . . . . . . . . . . . . . . . . 8

1.2.3 Binding to membrane proteins: G protein coupled receptor

(GPCR) ligands . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Binding of flexible ligands to flexible proteins: peptide binding

to MDM2 protein and HIV-1 protease . . . . . . . . . . . . . 11

1.3 Objectives and Motivation of the work . . . . . . . . . . . . . . . . . 13

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Theoretical Methods and Software 17

2.1 COMparative BINding Energy (COMBINE) analysis . . . . . . . . . 17

2.1.1 Partial least squares (PLS) regression . . . . . . . . . . . . . . 19

2.2 Brownian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 The concept of Brownian motion . . . . . . . . . . . . . . . . 21

2.2.2 Simulation of Diffusional Association (SDA) software . . . . . 22

2.2.3 Calculation of protein-ligand association rates in SDA . . . . . 26

2.3 Molecular Dynamics (MD) technique . . . . . . . . . . . . . . . . . . 27

2.3.1 τ Random Acceleration Molecular Dynamics (τRAMD) . . . . 32

2.3.2 MM/GBSA free-energy calculations . . . . . . . . . . . . . . . 32

2.3.3 Møller–Plesset energy calculations . . . . . . . . . . . . . . . . 33

xi



2.4 Software and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Simulation software . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Structure preparation and general molecular modeling tools . 36

2.4.3 Structure Visualization tools . . . . . . . . . . . . . . . . . . . 38

3 Quantitative structure-kinetics relationships (QSKRs) for koff val-

ues of HSP90 and HIV-1 protease inhibitors 39

3.1 Systems studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Heat-shock protein 90 (HSP90) . . . . . . . . . . . . . . . . . 41

3.1.2 HIV-1 protease . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Dataset used for the COMBINE analysis . . . . . . . . . . . . . . . . 43

3.2.1 Heat-shock protein 90 . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 HIV-1 protease . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Preparation of protein and ligand structures . . . . . . . . . . 52

3.3.2 Generation of force field parameters and energy minimization 52

3.3.3 Selection of the training and the test datasets . . . . . . . . . 54

3.3.4 Calculation of the interaction energy terms and generation of

energy matrix for PLS analysis . . . . . . . . . . . . . . . . . 54

3.3.5 PLS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.6 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 COMBINE analysis model for HSP90 inhibitors . . . . . . . . 56

3.4.2 Results: COMBINE analysis model for HIV-1 protease in-

hibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Concluding Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Halogen-aromatic π interactions modulate inhibitor residence time 75

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Aim of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Quantum mechanical interaction energy calculations . . . . . . 80

4.3.2 Binding free energy calculations using MM/GBSA . . . . . . . 81

4.3.3 τ -Random Acceleration Molecular Dynamics (τ -RAMD) sim-

ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



4.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 The second order Møller-Plesset interaction energies (EMP2)

between the inhibitor and the gatekeeper residue correlate well

with dissociation rate constants and equilibrium dissociation

constants determined experimentally . . . . . . . . . . . . . . 85

4.4.2 Binding free energies calculated from MM/GBSA approach

correlate with experimental parameters for the halogen-gatekeeper

interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.3 Relative residence times from τ -RAMD simulations correlate

with the experimentally measured residence times . . . . . . . 90

5 Protocol for calculation of diffusional association rates for small

molecules using Brownian dynamics 93

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Trypsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.2 Human Coagulation Factor Xa . . . . . . . . . . . . . . . . . 95

5.1.3 Haspin kinase . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.4 Neuraminidase . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Preparation of protein and ligand structures . . . . . . . . . . 98

5.2.2 Preparation of PQR files . . . . . . . . . . . . . . . . . . . . . 100

5.2.3 Grids preparation . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.4 Effective charges for protein and ligands . . . . . . . . . . . . 103

5.2.5 Calculation of diffusion coefficients . . . . . . . . . . . . . . . 112

5.2.6 Generation of Reaction Criteria . . . . . . . . . . . . . . . . . 113

5.2.7 Association rate calculation with SDA . . . . . . . . . . . . . 116

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 Diffusional association rate constants (kon) computed for the

trypsin-benzamidine association . . . . . . . . . . . . . . . . . 120

5.3.2 Diffusional kon rate constants computed for the inhibitors of

Human Coagulation Factor Xa . . . . . . . . . . . . . . . . . 122

5.3.3 Diffusional kon rate constants computed for the inhibitors of

Haspin kinase . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.4 Diffusional kon rate constants computed for the inhibitors of

Neuraminidase . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xiii



5.4 Concluding Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 KBbox: A Toolbox of Computational Methods for Studying the

Kinetics of Molecular Binding 131

6.1 Technical Implementation . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Database Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.1 Query Interface to choose the methods . . . . . . . . . . . . . 135

6.3 Group of Methods available in KBbox . . . . . . . . . . . . . . . . . 136

6.4 List of Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Group of Computational tools in KBbox . . . . . . . . . . . . . . . . 137

6.6 List of Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7 Example Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7.1 What method should I use for a given project? . . . . . . . . . 139

6.7.2 Where can I find information on previous applications of a

method for studying kinetics? . . . . . . . . . . . . . . . . . . 141

7 Summary and Outlook 143

Bibliography 149

xiv



Abbreviations

Kd Equilibrium dissociation constant [M].

β2AR β2 adrenergic receptor.

τRAMD τ Random Acceleration Molecular Dynamics.

koff Dissociation rate constant [s−1].

kon Association rate constant [M−1s−1].

3D Three dimensional.

aMetaD Adiabatic bias MD with metadynamics.

AMS Adaptive multistate splitting.

AMSM Adaptive Markov state modelling.

APBS Adaptive Poisson–Boltzmann Solver; a program for calculating electrostatic

potentials for interacting protein and ligand molecules.

BD Brownian dynamics.

BEMD Bias-exchange metadynamics approach.

CDK8 Cyclin-dependent kinase 8.

CMD Conventional molecular dynamics.

CRF1R Corticotropin-releasing factor type 1 receptor.

CV Collective variable.

ECM Effective Charges for Macromolecules in solvent.

xv



ff14SB Amber force field ff14 Stony Brook.

fs femtosecond (10−15 s).

GAFF General Amber Force Field.

GB Generalised Born implicit model.

GPCR G protein coupled receptor.

Grp78 Glucose-regulated protein 78.

HIV Human immunodeficiency virus.

HSP90 Heat shock protein 90.

ITC Isothermal titration calorimetry.

MD Molecular dynamics.

MetaD) Metadynamics approach.

MFPT Mean First Passage Time.

MOE Molecular Operating Environment.

MOL2 Tripos molecular 3D structure file format.

MSM Markov state modelling.

NAMD Nanoscale Molecular Dynamics; a molecular dynamics simulation software.

NMA Normal mode analysis.

ns nanosecond (10−9 s).

OpenMP Open Multi-processing.

PBC Periodic Boundary Conditions.

PBE Poisson-Boltzmann equation.

PCA Principal component analysis.

xvi



PDB Protein Data Bank; also a molecular 3D structure file format.

PKPD Pharmacokinetic/Pharmacodynamic.

PLS Partial Least Squares Regression.

PME Particle Mesh Ewald summation method.

PMF Potential of Mean Force.

ps picosecond (10−12 s).

QM Quantum mechanics.

RAMD Random Acceleration Molecular Dynamics.

RMSD Root mean squared deviation.

rxna file format suffix for reaction criteria file, an input file required by SDA.

SDA Simulation of Diffusional Association Software.

SMD Steered molecular dynamics.

SPR Surface plasmon resonance.

tau Residence time [s].

TM Transition matrix.

UHBD University of Houston Brownian Dynamics software; here referred to as a

format for electrostatic potential files accepted by the SDA software.

vdW van der Waals.

VMD Visual Molecular Dynamics software for molecular graphics.

WE Weighted ensemble path sampling approach.

xvii



Amino Acid Abbreviations

Amino acid 3 letter 1 letter

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V



Chapter 1

Introduction

Drug binding can be considered as a bimolecular reaction where a drug binds to its

target receptor. Understanding the process of drug-receptor binding is crucial for

structure-based drug design and is of fundamental importance for pharmaceutical re-

search. The binding affinity, which determines the strength of drug-receptor binding,

is usually considered as the most important quantitative metric for estimating the

drug’s efficacy on the basis of strength of target binding. Therefore, drug discovery

programs mainly focus on the design of drug molecules with high receptor affinity

and selectivity. For this reason, several computational methods based on molecular

dynamics (MD) simulations have been developed to compute receptor-ligand bind-

ing affinities[1]. However, designing drug compounds to have high binding affinity

does not always result into higher potency in vivo. Over the past few years, it has

been becoming evident that drug binding kinetics may play a major role in efficacy.

Recently, it has been realized that the efficacy of a drug is sometimes more cor-

related with its residence time at the receptor than the affinity[2]. This has led to

widespread efforts in both industry and academia to consider the role of drug binding

kinetics in their drug discovery programs[3]. Therefore, the demand for both com-

putational and experimental methods for studying the drug-target binding kinetics

is expected to rise. With advances in the computational power and availability of

specialized architectures, now it is possible to apply simulation methodologies for

relatively longer time scales (upto a few milliseconds) and this has enabled studies of

the dynamics of ligand-receptor binding/unbinding using molecular simulations. In

addition, progress in machine learning technologies and the availability of datasets of

measured kinetic parameters has enabled the understanding of key ligand-receptor
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features[3]. Since the experimental approaches that are commonly used to determine

binding kinetic parameters are often time-consuming, labour intensive and expen-

sive, there is a need to develop robust and improved in silico methods that can be

used to compute and predict kinetic parameters for drug-receptor binding and can

be used during the drug discovery and design process. With the growing level of

interest in drug-binding kinetics, it can be expected that there will be an increased

application of computational approaches to study drug-binding kinetics and that

new methods will be developed for this purpose.

1.1 Drug-binding kinetics and its importance

The binding of a ligand (L) to its target receptor (R) can be considered as a bi-

molecular reaction which can be characterized by standard kinetic parameters: kon,

the association rate constant (M−1s−1) that defines the rate of formation of receptor-

ligand complex (RL); koff , the dissociation rate constant (s−1), which measures the

rate of dissociation of a receptor-ligand complex (RL); τ , the residence time (s),

which describes the lifetime of a receptor-ligand complex and is given by the inverse

of the dissociation rate constant (τ = 1/koff ); and by a thermodynamic parameter,

also known as the equilibrium dissociation constant, Kd ≡ [L][R]/[LR], (units: [M]).

Kd is related to the binding free energy ∆G as:

Kd = e
+∆G
kBT (1.1)

The simple one-step binding model with the transition state RL# (see Figure

1.1 A) can be represented as:

R + L
k1−−⇀↽−−
k−1

RL (1.2)

where k1 and k−1 are the rate constants for the association of receptor and ligand

to form the receptor-ligand complex (k1 = kon) and for the complex to dissociate

(k−1 = koff ), respectively (see Figure 1.1 A).

Under steady-state conditions:

Kd =
koff
kon

=
k−1

k1

(1.3)

In general, the process of ligand-receptor binding can be represented as a two-step

process with an intermediate state RL∗ (see Figure 1.1 B):
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Figure 1.1: Two models for describing bimolecular receptor-ligand (R-L) binding, (A) one-step

binding model and (B) two-step binding model. The plots show one-dimensional schemes of simpli-

fied energy landscapes where important free energy minima and maxima are marked; the heights

of these barriers are related to the kinetic parameters (see text). The figure is adapted from

Romanowska et al.[4]

R + L
k1−−⇀↽−−
k−1

RL∗
k2−−⇀↽−−
k−2

RL (1.4)

Here, the first step of the binding process describes the diffusion-controlled ap-

proach of the ligand (L) towards the receptor (R) to form a diffusional encounter

complex (RL∗) which is often characterized as a relatively stable, but not fully des-

olvated and ordered, arrangement of the ligand and receptor molecules[5, 6, 7]. The

equilibrium dissociation constant (K∗d) for this step can be given as K∗d = k1/k−1

[M]. The second step of the binding process involves overcoming an energetic barrier

(see RL## in Figure 1.1 B) to achieve a stable, low-energy bound state RL. This

step is often referred to as an induced-fit step as it is associated with the forma-

tion of short-range interactions (such as hydrogen bonds) between the interacting

molecules, the displacement of water molecules occupying the binding pocket, and

the conformational changes thereby allowing the ligand and receptor molecules to
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adapt to each other. This two-step model of binding leads to a more complicated

relationship between the rates of forward and reverse reactions and kon/koff . If the

second step is faster than the first step, the binding is considered to be diffusion-

limited, and in this case kon is mostly determined by the forward rate of the first

binding step (k1) and the ligand concentration, while koff is mostly determined from

the reverse rate of the second step (k−2) with τ ∼ 1/k−2[2, 8].

1.2 Current state-of-the-art in computing

drug-binding kinetics

In recent years, several promising computational methods have been developed for

the compution of rate constants for ligand-receptor binding and understanding the

mechanistic determinants of ligand-receptor binding processes[9] (see Figure 1.2);

for reviews see [1, 2, 3, 10, 11, 12, 13, 14]. These methods include different types of

enhanced sampling molecular dynamics simulations and the combination of energy-

based models with chemo-metric analysis. Some of these approaches are developed

for computing absolute association (kon) and/or dissociation (koff ) rate constants,

while others are developed for computing relative rate constants for a series of com-

pounds. While some of these methods provide detailed information on pathways

and binding/unbinding mechanisms, others just provide hints about the key deter-

minants of the rate constants. The choice of an appropriate computational method

depends on the level of complexity of the ligand-receptor binding process and the

specific challenges posed by the system of interest. The magnitude of the associa-

tion/dissociation rate constants, size and flexibility of the system are some of the key

factors that must be taken into account while making a choice of the appropriate

method[9]. Some of the computational methods make approximations that allow

increasingly challenging systems to be studied, while others are more computation-

ally rigorous and hence limited to certain classes of system (see following sections).

Recently Bruce et al.[9] assessed the key computational approaches to compute rates

for ligand-receptor binding processes, in terms of the classes of protein-ligand sys-

tems studied and the varying levels of complexity of the protein-ligand binding

processes (see Figure 1.3). The following sections discuss the examples of the ap-

plication of these computational methods to specific protein-ligand systems which

are categorized into 4 main categories (similar to categories described in Bruce et
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al.[9]) depending upon the level of flexibility of the proteins and ligands studied and

the complexity of the binding process simulated. While a few of the systems are

rather easier to simulate due to their low flexibility and faster binding, for others

simulating them might be very challenging as the binding might involve large con-

formational changes and therefore, the high flexibility of the interacting protein and

ligand molecules should be properly addressed.

Figure 1.2: Methods for computing ligand-receptor kinetics. The figure is taken from Bruce et

al.[9] and reproduced with permissions (Citations listed for recently published applications corre-

spond to cited articles in Bruce et al.[9]). The simulation time ranges correspond to those in these

applications. The simulation time depends on the properties of the system studied as well as the

methods used.

1.2.1 Fast binding of small, rather rigid ligands: the

trypsin–benzamidine complex and fragment binding

The relatively small size of both trypsin and benzamidine, their comparative rigid-

ity, as well as their relatively fast binding, have made the trypsin–benzamidine

complex a popular model system for developing and testing methods for computing
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protein–ligand binding kinetics (see Figure 1.3 A). In 2011, Buch et al.[15] applied

conventional molecular dynamics (CMD) simulations combined with Markov state

modelling (MSM) to identify multiple intermediate states for trypsin-benzamidine

binding and to compute the kinetics of an overall two-state binding model. In the

MSM approach, only partial binding or unbinding transitions are observed from a

simulated trajectory. These trajectories are first geometrically clustered in a prede-

fined conformational subspace from which a transition matrix (TM) of discretized

microstates is derived. Then, metastable states can be identified from the kinetic

clustering of the microstates by using eigenvectors of the TM. The kon and koff

values calculated by Buch et al.[15] using the MSM approach were 5-fold and 150-

fold greater than the respective experimental values. Recently, Plattner and Noe

[16] managed to compute kinetic rate constants closer to experimental values by

applying a more rigorous multiscale model for MSMs to trypsin-benzamidine bind-

ing. However, they needed three times (150 µs) more CMD sampling compared

to the CMD sampling (50 µs) required by Buch et al.[15]. Doerr and Fabritiis[17]

attempted to reduce this computational demand by demonstrating the application

of the Adaptive Markov state model (AMSM) method to trypsin-benzamidine bind-

ing and they managed to sample ligand binding one order of magnitude faster than

the classical sampling. AMSM methods iteratively perform multiple short trajecto-

ries of ensemble simulations. After each iteration, an MSM is constructed to learn

a simplified model of the simulations and provide information on the locations of

rarely sampled states. This information is then used to perform the next round of

simulations to facilitate the crossing of the transition barrier.

The trypsin-benzamidine system has also been studied using the metadynamics

(MetaD) approach[18]. In MetaD, a time-dependent biasing potential, represented

by a sum of Gaussian functions, is added along a particular geometric coordinate

(the so-called collective variable, CV) during a simulation, and this helps to sample

the regions that are separated by notable energy barriers. The CVs, to represent the

transition pathway or dissociation process (in the case of koff computation), must be

carefully chosen in MetaD. The method makes the critical assumption that the CVs

chosen, represent the dissociation process as a single rate-limiting transition between

two metastable states, and therefore the quality of the model can be evaluated by

a statistical analysis. The kon and koff rate constants calculated with MetaD were

2-fold and 70-fold lower, respectively, than the experiment[18].
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Teo et al.[19] applied the adaptive multistate splitting (AMS) method to com-

pute koff rates for the trypsin-benzamidine system and the computed koff values

were 2-fold slower than the experimental value. In the AMS method, an ensemble

of simulation trajectories is started from the bound state and they are periodically

pruned and restarted from the coordinates chosen so that the system progresses to-

wards the unbound state. Prior knowledge of the transition paths is however not

required in AMS. To enhance sampling of unbinding pathways for benzamidine from

trypsin, Dickson and Lotz[20] applied WExplore, a method based on Weighted en-

semble (WE) path sampling, and the computed koff values were 10 times higher

than experiment. The Weighted ensemble (WE) path sampling approach requires

defining a reaction coordinate which divides the progression from an initial (un-

bound) state to a target (bound) state into several bins. A number of trajectories

is started from the initial state having each trajectory assigned an equal weight

or probability. After a short time interval, the current bin of each trajectory is

recorded and the trajectories entering the new bins are either split or combined in

order to have a predetermined number of trajectories for each bin. In this way,

trajectories are periodically reweighted in a rigorous statistical manner, and the

whole process is iterated several times to generate a weighted trajectory ensem-

ble. This weighted ensemble provides information on transition probabilities and

the evolving configurational distribution. The Brownian dynamics (BD) is another

computationally inexpensive method that has recently been applied to compute dif-

fusional association rate constants for inhibitors, such as oseltamivir binding to the

neuraminidase[21]. BD is a stochastic method which uses an implicit continuum sol-

vent model and the diffusional motion of solutes is propagated by integration of the

overdamped Langevin equation. To account for solvent friction effects accurately,

the random collisions are modelled with the Langevin equation. Due to the use of

rigid structures, simplified force fields and an implicit solvent model in BD, it poses

significant limitations for small but flexible molecules, as well as conformation depen-

dent protein-binding. However, such limitations can be overcome by using multiscale

methods that combine BD with MD. In such multiscale approaches, BD simulations

can be used to model the initial diffusional association of two molecules, following

which an MD-based regime can be used to simulate the formation of the final bound

complex, thereby accounting for the flexibility of the molecules and the conforma-

tional changes. Votapka et al.[22] demonstrated the application of such a multiscale
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approach to the trypsin-benzamidine binding using their software SEEKR[22], which

uses a milestoning approach to combine BD and MD-based regimes. The kon rates

calculated from SEEKR were in good agreement with experiment whereas, the koff
value was within a factor of 10 of experimental values[22].

1.2.2 Unbinding with conformational changes: kinase and

heat shock protein 90 (HSP90) inhibitors

Both protein kinases and HSP90 are considered as challenging targets for comput-

ing drug-binding kinetics because of their high binding site flexibility (see Figure

1.3 B). Metadynamics (MetaD)[18], an approach that uses a time-dependent energy

function to enhance sampling of particular regions of configurational space, has been

applied to a number of protein kinases for computation of koff values. Tiwari et

al.[23] applied MetaD to compute the dissociation rates of dasatinib from c-Src ki-

nase. CVs used in this study were the distance between the ligand and the binding

pocket, and a term describing the solvation state of the binding pocket. Casasnovas

et al.[24] used MetaD to study the unbinding kinetics of a urea-based allosteric in-

hibitor from p38 MAP kinase. They have used two pathway-based CVs (along and

perpendicular to the pathway) which were identified from 8 snapshots from steered

MD (SMD) dissociation trajectories. The dissociation rates computed in both of

the studies were in good agreement with experiment. Callegari et al.[25] attempted

to estimate the relative koff values of a set of cyclin-dependent kinase 8 (CDK8)

inhibitors by proposing an alternative MetaD-based method. Seven CVs that en-

code both roto-translational and conformational motions of the ligand, were used

for driving the ligands to the point of dissociation. The authors managed to rank a

set of CDK8 inhibitors by their residence time, in good agreement with experiment.

Mollica et al.[26] proposed scaled or smoothed-potential MD, another simpler ap-

proach for ranking koff values, which does not involve the definition of CVs. This

approach involves smoothing the system’s potential energy with a constant scaling

parameter, resulting in the increased sampling of the conformational space. How-

ever, in applications to protein–ligand dissociation, a set of restraints is applied on

all protein heavy atoms outside the binding site to prevent protein unfolding and

keep the protein in its native conformation. The method was validated on several

ligands of HSP90, Glucose-Regulated Protein (Grp78), and adenosine A2A receptor

(A2A), and in all cases, method was able to rank these ligands correctly.
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Figure 1.3: Examples of protein–ligand systems for which binding kinetics have been computed,

illustrating some of the challenges posed for these calculations. The proteins are shown in cartoon

representation along with their ligands and selected residues in stick representation. The insets

show the molecular solvent accessible surface of the binding pockets as blue wireframes. (a) The

trypsin–benzamidine complex is a classic model system for studying ligand binding due to its fast

binding kinetics (PDB ID: 3PTB). Benzamidine binds in a surface exposed cleft, with the amidine

forming hydrogen bonds with the sidechain of D189 and the backbone carbonyl of G129 (inset).

(b) p38 MAP kinase with allosteric (upper inset, PDB ID: 1KV2) and orthosteric (lower insert,

PDB ID: 4ZTH) inhibitors and the kinase activation loop and the DFG motif highlighted (pink).

Computation of the binding kinetics of allosteric inhibitor binding to this and other kinases requires

consideration of a switch of the D and F positions in the DFG loop, which opens a concealed cavity

in the binding pocket that is otherwise blocked by the phenylalanine residue of the DFG loop. (c)

The A2A GPCR with a triazine derivative (PDB ID: 3UZC) bound in the orthosteric binding pocket

(inset). The dashed red line shows the location of a missing extracellular loop. The heterogeneous

membrane-bound environment of GPCRs poses additional challenges both to the determination

of accurate experimental structures and to simulation. (d) The HIV-1 protease homodimer with

ritonavir bound (PDB ID: 1HXW). HIV-protease has two β-hairpin loops (flaps) that exist in a

closed state (cyan) on ligand binding, but can also exist in semi-open (pink) or open (purple)

conformations in the unbound form. This protein flexibility, as well as the often high flexibility

of the ligands and the presence of a bridging water molecule (with H-bonds to the ligand and the

backbone amide nitrogen of I50), need to be treated in computations of binding kinetics (inset).

The figure is reproduced from Bruce et al.[9], with permissions.
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Niu et al.[27] proposed a computationally inexpensive approach by using random

acceleration molecular dynamics (RAMD) simulations and SMD to rank inhibitors of

B-RAF serine/threonine kinase by their residence time. RAMD[28, 29] simulations

were first used to obtain dissociation pathways of two inhibitors of B-RAF, followed

by application of SMD to generate potentials of mean force, which provided a struc-

tural rationale for the difference in transition state barrier in qualitative agreement

with the measured difference in binding kinetics. Recently Kokh et al.[29] developed

the τ -Random Acceleration Molecular Dynamics (τRAMD) procedure for estimation

of the relative residence times and demonstrated its application for sets of diverse

ligands of the N-terminal domain of HSP90. In τ -RAMD, an ensemble of MD sim-

ulations is run starting from the bound protein-ligand complex, and an artificial

randomly oriented force is applied to the centre of mass of the bound ligand. By

applying this artificial force, the unbinding of the ligands from the binding site can

be observed in short simulations of a few nanoseconds. The authors obtained a

good correlation between relative residence times computed from τRAMD and the

experimental residence times.

1.2.3 Binding to membrane proteins: G protein coupled

receptor (GPCR) ligands

GPCRs are considered challenging targets for computational studies due to their het-

erogeneous membrane-bound environments, and since GPCR ligands may partition

between the bilayer and solvent, it poses an extra challenge for their computer simu-

lation (see Figure 1.3 C). However, due to the increasing availability of experimental

structures of GPCR-ligand complexes over the past 10 years[30] and the importance

of engineering the residence times of GPCR-targeting compounds[31], there has been

increased interest in studying GPCRs computationally. Dror et al.[32] reported the

first computational study of GPCR binding kinetics using conventional molecular

dynamics (CMD), where they simulated the binding of antagonists and agonists to

the β2 adrenergic receptor (β2AR). The authors observed a total of 12 binding events

from 50 CMD simulations, each of up to 19 µs, of the membrane-bound receptors

with alprenolol or dihydroalprenolol antagonists. A total of 10 replicas of the al-

prenolol or dihydroalprenolol antagonists was used to improve the sampling. By

estimating the total time in which the ligand was available for binding, that is, in

aqueous solution, not penetrating the membrane, and modelling binding as a first-
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order Poisson process, the kon rate for alprenolol binding to β2AR was calculated to

be 3.1 x 107 M−1 s−1, which was in good agreement with the experimental value of

1.0 x 107 M−1 s−1. As mentioned in the previous section, Mollica et al.[26] applied

scaled MD to correctly rank a congeneric series of four A2A antagonists based on

their residence times.

Bortolato et al.[33] in 2015, reported a method that combines adiabatic bias MD

with metadynamics (aMetaD) to distinguish between short (residence time, τ < 20

min) and long (τ > 50 min) residence time compounds of 3 GPCRs, including 12

ligands of the corticotropin-releasing factor type 1 receptor (CRF1R). In adiabatic-

bias MD[34], a time-dependent harmonic energy barrier is used to drive a system

from an initial to a final state along a predefined reaction coordinate. The adiabatic-

bias metadynamics (aMetaD) approach combines a time-dependent harmonic energy

barrier to the ligand’s movements when it is not moving towards an unbound state

with MetaD using two CVs, the distance along an unbinding pathway and the dis-

tance perpendicular to the pathway. From each simulation, a score is computed that

describes the height of the traversed unbinding transition state barrier.

1.2.4 Binding of flexible ligands to flexible proteins: peptide

binding to MDM2 protein and HIV-1 protease

Several studies have been published recently that have successfully applied enhanced

sampling techniques to the calculation of rates of protein–peptide binding[35, 36].

Zwier et al.[36] computed the kon rate for the binding of the N-terminal peptide

fragment of p53 tumor suppressor to the MDM2 protein using a WE path sampling

method. In this study, the kon rate was calculated from 182 independent and con-

tinuous binding pathways obtained from a total of ≈120 µs of WE MD simulations,

from unbound to encounter complex and from encounter complex to bound state.

The computed kon value (7 ± 4 x 107 M−1 s−1) was within an order of magnitude

of the experimental value of 9.2 x 106 M−1 s−1[37]. Recently, the mechanism of

p53-MDM2 binding was studied in detail by Zhou et al.[38] using many unbiased

CMD simulations. The authors constructed MSMs from 831 µs of CMD simulations

for predicting p53 binding pathways, revealing both conformational selection and

induced-fit. The kon value (2.5 x 107 M−1 s−1) computed in this study was in good

agreement with the experimental value. However, compared to experiment[37] (2.1

s−1), the computed koff value (1.9 x 105 s−1) was strongly overestimated from tran-
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sition path theory analysis due to insufficient sampling of binding and unbinding

events.

HIV-1 protease is another challenging target known for its high flexibility and has

been studied extensively using computer simulations. It has two extended β-hairpin

loops, also known as flaps, that are known to exist in semi-open or open confor-

mations in the unbound form and these flaps close when the ligand is bound (see

Figure 1.3 D). For HIV-1 protease, the flap dynamics[39, 40] and the water-mediated

H-bonds between the flaps and the ligand[40, 41] have been shown to be important

for the binding and unbinding of its peptidomimetic inhibitors. Pietrucci et al.[35]

investigated the binding mechanism of a peptide substrate to HIV-1 protease us-

ing the bias-exchange MetaD (BEMD) approach. BEMD involves running several

replicas of metadynamics simulations for the same system at the same temperature,

with each replica biased by a time-dependent potential acting on a different set of

CVs. These replicas are then periodically allowed to exchange their configurations,

thereby allowing the biasing of a virtually unlimited number of CVs simultaneously.

The multidimensional nature of the bias makes it possible to explore a complex free

energy landscape with high efficiency. In this study, the authors sampled a total of 7

CVs which accounted for features such as flap opening, bridging water molecules, and

important physical interactions between the ligand and the protease. This conforma-

tional space was then used to construct a thermodynamic and kinetic model of the

binding process based on the weighted-histogram approach. The computed kon value

(1.26 x 106 M−1 s−1) was roughly 10 times the the experimental value[42] (≈ 0.16

x 106 M−1 s−1) whereas the computed koff value (57.1 s−1) was overestimated com-

pared to the experiment[42] (≈ 0.2-0.4 s−1). Since choosing correct CVs for BEMD

is a very difficult task, such methods cannot be applied on a high-throughput scale.

However, Sun et al.[43] recently demonstrated that for HIV-1 protease and several

other targets, it is possible to get a good agreement of koff with experiment for more

slowly dissociating drug-like compounds (koff ≈ 10−4 s−1) using standard MetaD

simulations even if the chosen set of CVs does not fully represent the slowest motion

with a single bottle-neck transition. The two CVs chosen by authors in this study

were the distance between the ligand and the binding pocket and the RMSD change

of the binding pocket. Authors were however not able to accurately calculate the

koff value for the kinase studied. But for the other 5 systems that they studied, they

managed to obtain the koff values within about an order of magnitude when using

12



a single short (ns) MetaD simulation of each complex, starting from a minimized

crystal structure.

Several chemometric approaches have also been used to derive quantitative struc-

ture–kinetics relationships (QSKRs) for HIV-1 protease inhibitors. Qu et al.[44] at-

tempted to model the kinetic and thermodynamic properties of a series of HIV-1

protease inhibitors using Volsurf descriptors that were derived from Grid water and

hydrophobic probes. The three-fold cross-validation (Q2) coefficients for their opti-

mal koff and kon models were 0.695 and 0.549, respectively. Such models however

only include static structural characteristics and may not sufficiently capture the dy-

namic features of binding processes. Chiu and Xie[45] tried to address this problem

by constructing multi-target machine learning classification models integrating ener-

getic features with conformational variability features, derived from coarse-grained

normal mode analysis, to classify HIV-1 protease inhibitors into binding kinetic

classes.

1.3 Objectives and Motivation of the work

The computational studies to investigate protein-ligand interactions and to estimate

kinetics of protein-ligand binding are often addressed using biomolecular simulation-

based approaches. To reduce the computational complexity and to extend their ap-

plication to larger systems and longer timescales, these approaches often make use of

simplifications such as coarse-graining, use of implicit solvent and rigid body mod-

els, and enhanced sampling. But still, each of these methods has specific limitations

and they usually do not address some of the key aspects of protein-ligand binding.

For example, BD simulations can effectively model the diffusional encounter of pro-

tein and ligand molecules based on long-range electrostatic interactions but they

do not explain short-range effects such as desolvation effects, side-chain rearrange-

ments and conformational changes during the induced-fit step. The more detailed

MD simulations on the other hand, can address these important issues but due to

their high computational requirements, they cannot be applied to longer timescales

corresponding to drug residence times which usually range from a few seconds to

a few hours. Therefore, there is a need to develop and apply methods that allow

the more accurate prediction and effective investigation of protein-ligand binding

kinetics in a systematic manner and to address specific challenges in investigating
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protein-ligand binding kinetics. This current work aims to apply different physics-

based and bio- and chemoinformatics approaches to predict kon or koff rates for

protein-ligand binding and to investigate the mechanistic determinants of protein-

ligand binding kinetics. In such direction, the present thesis addresses the following

fundamental questions:

• Can high-throughput regression-based quantitative structure-kinetics relation-

ship (QSKR) models be derived for a series of compounds using only the struc-

tural information from their complexes with a specific protein or receptor?

• Can these QSKR models accurately predict kinetic parameters for novel com-

pounds?

• What are the key protein-ligand interactions that distinguish ligands with slow

and fast binding kinetics?

• How can residence times for drug molecules be prolonged by introducing specific

interactions such as halogen-aromatic interactions between halogenated drugs

and aromatic residues of kinases?

• How can continuum solvent and rigid-body based BD simulations be used to

assist high-throughput prediction of diffusional association rate constants for

binding of drug-like compounds to their receptors?

• How accurately can the τRAMD enhanced sampling procedure based on molec-

ular dynamics simulations predict relative residence times for a series of com-

pounds?

In addition to answering the above questions, I contributed to the development

of a toolbox of computational methods: KBbox (http://kbbox.h-its.org/toolbox/)

to help researchers to guide them to use different computational methods available

to study molecular binding kinetics. This toolbox consists of a collection of tutorials,

example cases and a theoretical overview of the current state-of-the-art methods and

tools used for computing the kinetic parameters of protein-ligand binding.
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1.4 Organization of the thesis

This thesis consists of 7 chapters. Chapter 2 provides the theoretical basis for the

different bio- and chemoinformatics and simulation-based approaches used in this

work. An overview and theoretical background of methods, such as COMBINE

analysis, Brownian dynamics and molecular dynamics is discussed. An introduction

to molecular mechanics force-fields and basic information about the continuum sol-

vent models used in this work is given. Also, the techniques commonly employed

in molecular simulations are briefly introduced and an introduction to MM/GBSA

free-energy calculations, and Møller–Plesset energy calculations is given. Further,

chapter 2 provides a short overview on different software and tools used in this thesis.

Chapter 3 describes the application of the COMBINE analysis approach to de-

rive Quantitative Structure-Kinetics Relationships (QSKRs) for koff rates of Heat

shock protein 90 (HSP90) and HIV-1 protease inhibitors. Results on predictive

QSKR models derived for inhibitors of these two therapeutically important targets

and the important protein-ligand interactions that distinguish slow and fast off-rate

compounds are presented and discussed.

Chapter 4 discusses the modulation of the residence times of inhibitors by tar-

geting the interactions between halogen atoms, commonly found in drugs, and the

aromatic residues typically found in the drug binding sites on proteins. Using haspin,

a serine/threonine kinase as a model system and halogen substituted tubercidin in-

hibitors (close analogues of ATP) as model inhibitors, it has been suggested that

residence times of inhibitors can be increased by introducing halogen-aromatic π in-

teractions between the halogen atom of the inhibitors and the aromatic gatekeeper

residues of kinases. Results from quantum chemical interaction energy calculations,

MM/GBSA free-energy calculations and τRAMD are compared to the experimental

findings and are discussed.

In Chapter 5, a protocol to compute diffusional associational rates for small

molecule binding to proteins, using BD simulations with SDA, is presented. Simula-

tion parameters that were optimized for setting up BD simulation runs for diffusional

association of protein and small molecules, are presented and a standard workflow to

analyse and compute diffusional kon rates from SDA is described. Results for valida-

tion of the protocol on inhibitors of different protein systems of varying complexity

are also discussed.
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Chapter 6 describes the implementation and content of the KBbox (http://

kbbox.h-its.org/toolbox/), a toolbox of computational methods for studying the

kinetics of molecular binding. The software architecture and implementation of

KBbox is briefly introduced, followed by discussion on the organization of different

content in KBbox. Some of the use-cases are also described.

This thesis concludes with chapter 7 that consists of a brief conclusion and fu-

ture directions on the application of computational approaches to investigate kinetic

parameters of protein-drug binding.
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Chapter 2

Theoretical Methods and Software

This chapter gives a theoretical overview of the different chemoinformatics and

chemometric methods, as well as the methods based on bimolecular simulations,

that were employed in this work. The sequence of the methods described follows the

order in which they were employed in the subsequent chapters. In the end, a short

summary of each of the different software and tools that were employed is presented

along with the scope of their application for this study.

2.1 COMparative BINding Energy (COMBINE)

analysis

COMBINE analysis[46] is an approach for deriving quantitative structure-activity

relationships (QSAR) by exploiting the information contained in the 3D structures

of receptor-ligand complexes. In COMBINE analysis, the binding free energy, ∆G,

or a related property (such as Kd, koff , kon, pKi, pIC50) is correlated with a sub-

set of weighted interaction energy components determined from the structures of

energy-minimized receptor-ligand complexes. These interaction energy components

are typically Lennard-Jones (LJ) and Coulombic interaction energies decomposed

on a per amino acid residue basis. The binding free energies are calculated from

energy-minimized ligand-receptor complexes using a standard molecular mechanics

force field.

∆G =
nr∑
i=1

wLJi uLJi +
nr∑
i=1

wCi u
C
i + C (2.1)
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Where ∆G is the binding free energy, uLJi and uCi are intermolecular Lennard-

Jones and Coulombic interaction energies calculated between each ligand and nr

amino acid residues of the protein, wLJi and wCi are weights or coefficients of these

LJ and Coulombic interaction energy terms. If, a sufficiently large number of

molecules with known activities and 3D structures of ligand-receptor structures for

these molecules is used in the training set, the weights of these interaction energy

terms can be estimated by linear fitting. Due to the fairly large number of residual

interaction terms used in the linear fitting, the use of standard multiple regression

techniques is avoided, and instead partial least squares (PLS) analysis is applied to

perform statistical analysis to determine the weights and constant C. If required,

the ligands can also be further divided into nl fragments, and thus the equation 2.1

can be rewritten as:

∆G =
nr∑
i=1

nl∑
j=1

wLJij u
LJ
ij +

nr∑
i=1

nl∑
j=1

wCiju
C
ij + C (2.2)

To perform COMBINE analysis, an energy matrix is generated where the columns

represent each of these interaction energy terms (independent variables) and the rows

correspond to each ligand in the training set. The inhibitory activities or binding

kinetics (dependent variable) of these ligands are added to the final column in the

matrix. Then, the PLS method [47][48] is used to maximize the linear correlation

between the independent and the dependent variables by performing rotations of

this matrix in the latent variables (LV) or the Principal Components (PC) space. In

order to exclude energy terms that do not contribute to binding from the QSAR, a

variable selection procedure is carried out. The variable selection procedure involves

evaluation of the effects of each independent variable on the model predictivity and

is carried out iteratively using a combination of D-optimal and fractional factorial

designs[49]. In this thesis, we did not perform variable selection procedure. Rather,

we have only used a pre-screening procedure where only those interaction energy

terms which have standard deviation higher than a specified threshhold value were

selected for PLS regression and the rest of the energy terms showing little or no

variance across the training dataset, were eliminated from statistical analysis.

The main advantages of correlating inhibitory activity or kinetics (∆G, Kd, koff ,

kon, pKi, pIC50 etc.) with residue-based interaction energy components over simply

correlating with total computed binding energy is that the resultant COMBINE

analysis model can help to highlight key interactions that are important to explain
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the observed variances in the biological activity. This information could help in

providing insights for predicting the effects of point mutations in the protein and for

designing compounds with improved binding properties. In addition, during PLS

analysis, errors either resulting from the modeled 3D structures or from force-field

parameterization can be at-least partly filtered out. The calculation of weights also

allow an implicit description of terms contributing to the dependent variable which

are not explicitly included in the model.

2.1.1 Partial least squares (PLS) regression

PLS regression [47, 48] is a statistical approach used to determine a linear regres-

sion model by projecting both the dependent and independent variables to a new

space. PLS combines features from both principal component analysis (PCA) and

multiple linear regression (MLR). As in PCA, orthogonal Principal Components

(PCs) are extracted and a fitting procedure similar to MLR is performed to describe

the response variable (biological activities of compounds). PLS is used to model

the fundamental relations between two matrices, X and Y , by finding the multidi-

mensional direction in the X space that explains the maximum multidimensional

variance direction in the Y space. In COMBINE analysis, the X matrix consists of

independent variables which are interaction energy terms and, optionally, additional

variables, such as desolvation energy terms.

X =


C1

1 C1
2 ... C1

M L1
1 L1

2 ... L1
M

C2
1 C2

2 ... C2
M L2

1 L2
2 ... L2

M

... ... ... ... ... ... ... ...

CN
1 CN

2 ... CN
M LN1 LN2 ... LNM


where Ci

j and Lij are the Coulombic and Lennard-Jones variables, respectively.

N is the number of compounds and M is the number of residues in the protein.

The Y matrix consists of dependent variables i.e. the activities of the compounds.

Y =


y1

y2

...

yN


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where yi is the individual activity of compound i. In PLS, the X and Y matrices

are decomposed into one score matrix, T , and two different loading matrices, P and

Q (see equation 2.3)

X = TP T and Y = TQT (2.3)

The score matrix T contains information about the projections of compounds

onto the PCs. The PC space is normalized and has a mean of zero. The compounds

which behave as outliers usually have higher scores. The loading matrices P and Q

contain information about the variables in the so-called latent variables (LV) or PC

space. Latent variables are orthogonal vectors obtained as linear combinations of the

original variables in theX matrix. The coefficients in a given PC provide information

on the relative weights of the different terms and it can be useful to deduce the

importance of each individual ligand–residue interaction to explain the variance in

activity. The quality of the fit for the training set of compounds can be evaluated

using the regression coefficient (R2), cross-validation correlation coefficients (Q2),

average absolute errors (AAE) and root-mean squared errors (RME) (see equation

2.4 to equation 2.9).

R2 =

[∑N
i=1(yi − ȳ)(ŷi − 〈ŷi〉)

]2

∑N
i=1 (yi − ȳ)2∑N

i=1 (ŷi − 〈ŷi〉)2
(2.4)

Q2 = 1−
∑N

i=1 (yi − ŷi)2∑N
i=1 (yi − ȳ)2

(2.5)

AAE =
1

N

N∑
i=1

|ŷi − yi| (2.6)

RME =
1

N

N∑
i=1

√
(ŷi − yi)2 (2.7)

Where, ȳ is the average value of the experimental activities (y1, y2, .., yN)

ȳ =
1

N

N∑
i=1

yi (2.8)

And, 〈ŷ〉 is the average value of the calculated activities (ŷ1, ŷ2, .., ŷN)

〈ŷ〉 =
1

N

N∑
i=1

ŷi (2.9)
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2.2 Brownian Dynamics

Brownian dynamics (BD) simulations are used to simulate the diffusional processes

and dynamics of particles, such as proteins, that undergo Brownian motion. In BD,

rigid body representations of interacting particles are used. The effect of solvent is

modelled using a continuum, implicit solvent model and the stochastic and friction

effects of surrounding water molecules and ions are introduced by additional terms

in the motion equation. The flexibility of the interacting molecules can be simulated

using a coarse grained force field or by switching between conformations on the fly.

Since, the internal flexibility of the proteins is generally ignored, the conformational

changes upon binding of the ligand cannot be captured in BD. However, having

fewer degrees of freedom due to the rigid-body representation in implicit solvent,

allows longer time scales (µs-ms range) of diffusional processes to be simulated and

large systems (several µm) can also be studied using BD. With BD simulations, it is

also possible to compute kinetic parameters of binding processes which is otherwise

not possible with MD simulations. But, the computation of binding kinetics is

generally limited to diffusional encounter complexes rather than bound complexes,

as short-range effects are not modelled in BD.

2.2.1 The concept of Brownian motion

Brownian dynamics is named after Robert Brown who observed the random motions

of pollen particles in water and he suggested that the stochastic collisions of particles

with the solvent (water) resulted in their random motions. The diffusive displace-

ment (∆r) of a particle in 3D in BD for a given time-step (∆t) can be determined

from the following equation given by Einstein[50] and Smoluchowski[51].

∆r2 = 6D∆t (2.10)

Here, D is the translational diffusion coefficient of the particle and for spherical

objects, it can be calculated using the following formula:

D =
kBT

6πηa
(2.11)

Here, kB is the Boltzmann constant, T is the temperature in Kelvin, η is the

viscosity of the solvent and a is the hydrodynamic radius of the particle.
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Simulating diffusional encounter

Ermak and McCammon developed an algorithm to model Brownian motion for dif-

fusional encounter of proteins by considering both translational (∆r) and rotational

(∆w) motions[52].

The translational (∆r) displacement is given by:

∆r = (kBT )−1DTF∆t+R (2.12)

And, the rotational (∆w) displacement is given by:

∆w = (kBT )−1DRT ∆t+ Θ (2.13)

Here, DT and DR are translational and rotational diffusion coefficients of the

molecule respectively, F and T are the position-dependent interaction force and

torque acting on the molecule and they are computed prior to taking the step ∆t.

R is the random displacement and it should satisfy the following conditions.

〈R〉 = 0 (2.14)

〈R2〉 = 6D∆t (2.15)

Similarly, Θ is the random rotational angle and it should also satisfy:

〈Θ〉 = 0 (2.16)

〈Θ2〉 = 6D∆t (2.17)

For simulating diffusional protein-ligand association in any BD software such as

SDA, one of the molecules (usually a protein) is kept fixed and the movement of the

ligand is simulated. Therefore, to account for the diffusive motion of both of the

interacting molecules, the relative translational diffusion coefficient is used in the

calculations.

2.2.2 Simulation of Diffusional Association (SDA) software

SDA (https://mcm.h-its.org/sda/) is a software package that can be used to run

Brownian dynamics simulations of the diffusional association of solute molecules
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in a continuum implicit solvent[53, 54]. Using rigid-body structures and a suitable

force field, SDA can be used to apply BD simulations to calculate binding kinetics for

protein-protein or protein-ligand association. It can also be used to perform rigid-

body docking to record diffusional encounter complexes and to calculate bimolecular

electron transfer rate constants. In addition, protein flexibility and hydrodynamic

interactions can be introduced in SDA to account for protein’s internal motion and

induced solvent effects. The theoretical background on how different interaction

forces are computed in SDA, is outlined in the following sections.

Calculation of interaction forces

The diffusional association of interacting molecules is modelled as mainly driven by

the Poisson-Boltzmann (PB) equation-derived electrostatic interaction and limited

by the presence of exclusion forces. In SDA, electrostatic interaction, electrostatic

desolvation and hydrophobic (non-polar) desolvation energies are used to simulate

diffusional association of two solute molecules[54]. The total interaction energy

(∆G1−2) between these solutes is calculated using the following equation in SDA:

∆G1−2 = ∆G1−2
el + ∆G1−2

edesolv + ∆G1−2
DH (r) + ∆G1−2

np + ∆G1−2
rep (2.18)

Here, the first 3 terms approximate the Poisson-Boltzmann equation derived

electrostatic energy between a pair of solutes and the last 2 terms account for the

non-polar interactions between solutes and exclusion forces. ∆G1−2
el is the long-range

electrostatic interaction energy, ∆G1−2
edesolv is the short-range electrostatic desolvation

energy and ∆G1−2
DH is the distance-dependent Debye-Hückel correction to the long-

range energy term, accounting for the use of finite-sized grids in the calculations.

∆G1−2
np is the non-polar desolvation energy which account for the change in the

total solute-solvent interface area upon binding of solutes[55]. ∆G1−2
rep is soft-core

repulsion term that describes exclusion forces by applying a continuous, repulsive

potential which prevents solutes from overlapping[56]. The exclusion forces can also

be modelled as hard-core repulsion by defining an exclusion grid.

Electrostatic interactions and effective charges

The electrostatic potential (Φ) of a solute can be computed by solving the non-linear

second-order PB equation which describes the distribution of electric potential in a
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non-uniform dielectric. This equation (2.19) can be linearized and solved numerically

for discrete grid points in the system r.

−∇.(~ε(r)∇Φ(r)) = ρ(r) +
∑
i

ciqie
− qiΦ

kBT (2.19)

Here ~ε(r) is position-dependent dielectric constant, Φ(r) is the electrostatic po-

tential, ρ(r) is molecular charge density, ci is the concentration and qi is the charge

of ions in the solvent. kB is the Boltzmann constant and T is the temperature

in Kelvin. The Adaptive Poisson-Boltzmann Solver (APBS)[57] and University of

Houston Brownian Dynamics (UHBD)[58] are two of the most commonly used pro-

grams to calculate electrostatic potentials of biomolecules by numerically solving

the Poisson-Boltzmann equation. We have used APBS for generating electrostatic

potentials of different protein and ligand systems used in this thesis.

Since it is computationally very expensive to calculate electrostatic interaction

free energy between a pair of solutes at each time-step of the BD simulation, SDA

uses the Effective Charge Model (ECM)[59] to approximate the PB theory derived

electrostatic interaction. In this model, the electrostatic interaction energy between a

solute pair (∆G1−2
el ) is calculated as the interaction between PB derived electrostatic

potential (Φel) of one solute and a set of effective charges (qi) on the other solute, and

vice-versa. The total interaction energy is multiplied by a factor of 1/2 to prevent

double counting of the interaction. These effective charges are fitted in such a way

that, they reproduce the electrostatic potential derived with PB in a heterogeneous

dielectric medium, when they are placed in an uniform dielectric medium. For

proteins, these effective charges are assigned on Lys, Arg, Glu, Asp residues, and

C and N-termini of proteins. For small molecules, these charges are assigned on

hydrogen bond donor-acceptor atoms (N,O,F,S), halogen atoms (Cl,Br,I) and on P

and Fe atoms in case of co-factors.

∆G1−2
el =

1

2

∑
i1

qi1Φel2(ri1) +
1

2

∑
i2

qi2Φel1(ri2) (2.20)

Here, qin is an effective charge on solute n and Φelm(rin) is the electrostatic

potential of solute m, at the position of effective charge qin on solute n.
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Electrostatic desolvation interaction

Binding of two solutes results in the exclusion of high dielectric solvent from the

binding interface, which results in desolvation of the surface-lying charges. This

creates an unfavorable contribution to the binding interaction between two solutes.

This unfavorable penalty is corrected in SDA by an extended ECM model which

includes an electrostatic desolvation correction term (∆G1−2
edesolv), which is calculated

as:

∆G1−2
edesolv =

1

2

∑
i1

q2
i1

Φedesolv2(ri1) +
1

2

∑
i2

q2
i2

Φedesolv1(ri2) (2.21)

Here, Φedesolvm is the the electrostatic desolvation potential of solute m and it

accounts for the effect of reduction in the dielectric constant at the interface. The

electrostatic desolvation potential of a solute at point r is calculated by using the

following formula.

Φedesolv(r) = α
εs − εp

εs(2εs + εp)

∑
j

a3
j

(1 + κrj)
2

r4
j

e−2κrj (2.22)

Here, α is an emperical scaling parameter, εs and εp are the dielectric constants

of solvent and solute respectively, aj is the radius of atom j and κ is the inverse of

Debye length and it depends on ionic strength of the solvent.

Nonpolar desolvation interaction

The binding of two solutes at the interface leads to the reduction of total solute-

solvent interface area which results in increased binding affinity. This interaction

is modelled in SDA by nonpolar desolvation interaction energy[55] which is propor-

tional to the solvent accessible surface area (SASA) of a solute that is obstructed by

the interacting solute.

∆G1−2
np =

∑
i1

SASAi1Φnp2(ri1) +
∑
i2

SASAi2Φnp1(ri2) (2.23)

Here, Φnpm(rin) is the non-polar burial potential of solute m at the position of

atom in of interacting solute n and SASAin is solvent-accessible surface area of

surface atom in.
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2.2.3 Calculation of protein-ligand association rates in SDA

Figure 2.1: Schematic representation of the geometric setup for the diffusional association of

protein and ligand molecules in BD simulations.

Association rate constants of two interacting molecules can be computed from

BD simulations when the encounter is diffusion-controlled. The steady state rate

constant kD(b) of two spherical molecules approaching each other at a separation

distance r = b, can be given by the analytical Smoluchowski expression[60].

kD(b) =
4πD∫∞

b
e
E(r)
kBT

r2 dr

(2.24)

Here D is the relative diffusion constant, E(r) is the interaction potential acting

between two spherical molecules. To obtain the association rate constant kon of

protein-ligand association in BD simulations, the steady-state rate constant from

the previous equation is multiplied with the probability of formation of protein-

ligand encounter complex β∞. BD trajectories are run starting at a relatively large

protein-ligand separation b, where the centrosymmetric forces between protein and

ligand are negligible. Each trajectory is stopped when either reaction criteria are

satisfied or the molecules reach a much larger separation c (Figure 5.11). In case,

the reaction conditions are satisfied, the trajectory is considered as reactive. In

BD simulations, thousands of trajectories are run and β, the fraction of reactive
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trajectories is calculated. To account for the possibility that in case of non-reactive

trajectories, ligand may come back from c surface and form an encounter complex

with protein, β is corrected by a multiplying factor Ω to get β∞[61].

kon = kD(b)β∞ (2.25)

β∞ =
β

1− (1− β)Ω
(2.26)

Here, Ω describes the probability that the ligand at separation distance c > b

returns to b. It is given by:

Ω =
kD(b)

kD(c)
(2.27)

By substituting the values of β∞ and Ω, the equation 2.28 can be written as:

kon = kD(b)
β

1− (1− β)kD(b)
kD(c)

(2.28)

2.3 Molecular Dynamics (MD) technique

Molecular Dynamics (MD) simulation is one of the most common computer simu-

lation techniques to monitor time-dependent processes of biological molecules. MD

is widely used to gain insights into the molecular mechanisms of dynamic processes

such as protein-folding, membrane transport, self-assembly and for studying ther-

modynamic properties and kinetics of bimolecular association. In MD simulation,

movements for set of atoms and molecules are computed by numerically solving

Newton’s equations of motion as a function of time:

mi
∂2

∂t2
~ri = −∇E(~ri) (2.29)

where mi and ~ri are the mass and position of the particle i, E is the total potential

energy which depends on the positions of all particles in the system.

In order to run MD simulation, initial position ~ri and velocity ~vi of particles is

determined for t = 0 and a short time step ∆t is chosen. The force ~F acting on

each particle can be calculated from the total potential energy E as:

~Fi = −∂E
∂~ri

(2.30)
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And, the acceleration ~ai of each particle can be calculated from the force ~Fi as:

~ai =
~Fi
mi

(2.31)

The particles are moved for time ∆t and a new set of positions is computed for

the next time step (t + ∆t):

~ri(t+∆t) = ~ri + ~vi∆t+
1

2
~ai∆t

2 (2.32)

Therefore, for each MD time step, forces and velocities of particles are calculated

and integrated for next time step. The iteration of the above process for subsequent

time-steps gives the spatio-temporal evolution of the system. Since, small scale

motions such as vibration of bonds or hydrogen atoms occur very fast, the time step

of the integration chosen is usually very small (1 fs). For study of large scale motions,

dynamics of bonds with hydrogen atoms becomes no longer important. Therefore,

algorithms such as SHAKE[62] are used to constrain bonds with hydrogens which

allow a bigger time step (2 fs) to be used for MD simulation, thereby resulting in

increased computational efficiency.

Integration of Newton’s equation of motion

To integrate Newton’s equation of motion at finite time steps, a numerical integrator

is required. Verlet[63] is one of the most commonly used integrators in MD simula-

tions. The Verlet algorithm uses the Taylor expansion to approximate the particle’s

position and dynamic properties, where new positions ~rt+∆t and acceleration at time

t + ∆t are determined from the positions and acceleration at time t and from the

positions of the previous step ~rt−∆t:

~rt+∆t = ~rt + ~vi∆t+
1

2
~at∆t

2 + ... (2.33)

~rt−∆t = ~rt − ~vi∆t+
1

2
~at∆t

2 − ... (2.34)

Summing both equations:

~rt+∆t = 2~rt − ~rt−∆t + ~at∆t
2 (2.35)

And, the velocity is calculated as:
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~vt+∆t =
[~rt+∆t − ~rt−∆t]

2∆t
(2.36)

The Verlet algorithm is time-reversible which means that if the direction of ve-

locities of particles is reverse, the simulation will run in the reverse direction.

Molecular Mechanics force fields

A molecular mechanics force field is a set of energy functions or equations and the

associated constants to define the potential energy of a molecular system as a func-

tion of its three-dimensional structure in molecular mechanics or molecular dynamics

simulations. A force field is required in MD simulations to describe the time evolu-

tion of both bonding terms (such as bond lengths, bond angles, torsions) and the

non-bonding electrostatic and van der Waals interactions between atoms. During

MD simulations, pairwise potentials between atoms are calculated from this com-

mon potential energy function that describes both intramolecular and intermolecular

interactions. Force fields are always optimized for specific classes of molecules, for

example, AMBER ff14SB[64] was optimized for proteins and nucleic acids and

MMFF94[65] was optimized for small organic molecules.

A force field typically includes set of following energy functions:

Etotal =
∑
bonds

Kr(r − req)2 +
∑

angles

Kθ(θ − θeq)2 +
∑

dihedrals

Vn
2

[1 + cos(nφ− γ)]

+
∑
i<j

[
Aij
R12
ij

− Bij

R6
ij

+
qiqj
εRij

]
+

∑
H−bonds

[
Cij
R12
ij

− Dij

R10
ij

] (2.37)

Temperature and pressure control in MD simulations

Like experiments, it is also important to describe the thermodynamic state of the

system in MD simulations. Macroscopic properties that represent the thermody-

namic state of a system include number of particles (N), pressure (P), temperature

(T) and volume (V). An ensemble that describes a macroscopic or thermodynamic

state is a collection of different microscopic properties. MD simulations can be

run using different ensembles such as canonical (NVT), isothermal-isobaric (NPT),

and microcanonical (NVE) emsembles. In MD simulations, integration of Newton’s

equation of motion results in a microcanonical NVE emsemble with constant number

of particles, constant volume and constant energy. However, biological experiments
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are usually performed at constant temperature and constant volume (NVT) and/or

constant temperature and constant pressure (NPT). MD simulations therefore need

to be performed with any of these ensembles to compare the simulation results with

experiments.

For NVT ensemble, temperature need to be maintained constant using external

thermal bath and for this there are several thermostat algorithms available that can

be used to keep the temperature constant to any desired value. Berendsen weak-

coupling method[66], Nosé–Hoover and Langevin piston are some of the commonly

used thermostats in MD simulations. In the case of NPT ensemble, the constant

pressure is maintained by allowing the volume of the simulation box to change using

external barostats. The Nosé–Hoover Langewin piston[67] method, Berendsen weak-

coupling[66] and Parinello-Rahman[68] methods are some of the common barostats

used to maintain NPT conditions in MD simulations.

Implicit and Explicit Solvent Models

In order to model a realistic system, it is crucial to define the solvent environment

of a biological system appropriately. For MD simulations of biomolecules, solvent

effects can be treated using either explicit water model or implicit water model. In

explicit solvent model, large number of water molecules are explicitly included in

the simulation. This leads to enormous increase in the computational requirement,

especially if longer time scales need to be simulated. Transferable intermolecular

potential n point models (TIPnP)[69] from Jorgensen group and extended simple

point charge model (SPC/E)[70] from Berendsen group are the most commonly used

explicit water models. These models are based on standard non-polarizable force

fields and they have been parameterized to reproduce the characteristic properties of

real liquid water, such as density, diffusivity, energy and dielectricity. In this work,

the TIP3P water model has been used to model the explicit water in MD.

Implicit solvent models tend to greatly reduce the number of degrees of freedom

by using the continuum approximation of the discrete solvent, where the effect of

solvent on solute molecules is described by a set of polar and non-polar terms in-

cluded in the equation of energy. Using implicit solvent model has several advantages

over explicit model such as reduced computational cost, instantaneous thermody-

namic equilibrium with the solute, and enhanced conformational sampling. Poisson-

Boltzmann (PB) and Generalized Born (GB)[71] are the most widely used implicit
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solvent models in MD simulations of biomolecules. The GB model is an empiri-

cal approximation to the linear Poisson- Boltzmann equation. The GB model also

includes the charge screening effects caused by ions and salt and can describe the

solvent effects in MD fairly well but with very low computational cost. In order to

choose the optimal water model for the simulations, one must consider several factors

such as the molecular structure of biomolecules, available computational resources

and the specific questions related to the calculation, that are being addressed.

Periodic boundary conditions (PBC)

MD simulations are used to simulate finite systems with a finite number of molecules.

However, to predict properties at the bulk level, a relatively smaller system is used

and periodic boundary conditions (PBC) are applied in MD to make the system look

like an infinite one. By applying PBCs, a simulation box of unit size is replicated

in all directions and it is assumed that all the molecular properties are identical in

each of the unit cells. Existence of PBCs means that, if a particle exits from one

side of the simulation box, then it is replaced by an image particle entering from

the opposite side of box, thereby keeping the total number of particles constant

in the simulation. Therefore, PBC helps to avoid any boundary effects caused by

the box-edges and provides a homogeneous system to simulate bulk effects. The

most common box shapes used in MD with PBCs are cubic, hexagonal, octahedron

and rhombic dodecahedron. Using PBCs also has some limitations, for example, any

fluctuations in the system with wavelength greater than the unit cell are not possible

to observe. Moreover, the size of the simulation box chosen should be large enough

to avoid any periodic artifacts caused by the artificial long-range interactions with

the image molecule.
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2.3.1 τ Random Acceleration Molecular Dynamics

(τRAMD)

τRAMD is an enhanced sampling procedure based on MD simulations developed

to compute relative residence times of drug-like compounds and to explore ligand

exit pathways from the buried binding sites in proteins[29]. RAMD[28] simulations

are performed in an explicit solvent with parameters similar to the standard MD

simulations. In RAMD, during MD simulations of the bound protein-ligand com-

plex, a small additional randomly oriented force is applied to the centre of mass of

the ligand to accelerate its unbinding from the binding site. The movement of the

ligand is assessed at regular time intervals and the direction of the force is reas-

signed randomly if the ligand’s movement is smaller than the specified threshhold

distance. In RAMD simulations, ligands that have higher residence times take longer

to egress from the binding pocket or require application of a stronger force to exit

within a specified simulation time. By applying this artificial force, the unbinding

of the ligands from the binding site can be observed in short simulations of few

nanoseconds. Therefore, RAMD may be very useful and computationally efficient

approach to obtain relative estimates of residence times. The main advantage of

RAMD over other enhanced sampling methods such as Smoothed potential MD[26]

or Metadynamics[25], is that it does not require extensive parametrization or any

prior knowledge of the dissociation pathway. The magnitude of the random force is

the only parameter that needs to be set by the user in RAMD simulations and it

should be carefully chosen within a reasonable range, so that it does not affect the

computed relative residence times.

2.3.2 MM/GBSA free-energy calculations

In the molecular mechanics generalized Born surface area (MM/GBSA) method[72,

73], the binding free energy of a ligand to a protein to form a complex is obtained

as the difference:

∆Gbind = Gcomplex −Greceptor −Gligand (2.38)

The free energy of each of the molecular systems is given by the expression:

G = Ebnd + Eel + EvdW +Gpol +Gnp − TS (2.39)

32



where Ebnd, Eel and EvdW are the standard molecular mechanics energy terms

accounting for bonded, electrostatic and van der Waals interactions, respectively, in

the gas phase. Gpol and Gnp are polar and non-polar contributions to the solvation

free energies, and S is the entropy contribution arising from changes in the dynamics

upon ligand binding and it is calculated by a normal-mode analysis of the vibrational

frequencies. In MM/GBSA, the generalized Born (GB) model is used to estimate

Gpol, whereas Gnp is obtained from a linear relation to the solvent accessible surface

area (SASA).

2.3.3 Møller–Plesset energy calculations

In quantum chemistry, Moeller-Plesset perturbation theory (MP)[74] is one of the

post-Hartree-Fock ab initio methods commonly implemented in many computational

chemistry software packages. The Moeller-Plesset perturbation theory[74] improves

on the Hartree-Fock method by adding electron-correlation effects using Rayleigh-

Schrödinger perturbation theory to different orders (MP2, MP3, MP4 etc.) However,

MP theory is not variational which means that the energy calculated by MP the-

ory may be lower than the true ground state energy. Ab initio interaction energies

using Møller-Plesset perturbation theory to second order (MP2)[75] were calculated

using the GAMESS software[76], and partitioned into their constituent interaction

energy terms using the many body interaction energy decomposition scheme (EDS)

described by Góra et al.[77, 78]. In this scheme, the total interaction energy is cal-

culated in a super-molecular approach as the difference between the total energy of

a complex and the sum of the energies of its isolated constituents. In all calcula-

tions, the complex centered basis set (CCBS) was used consistently and the results

are therefore basis set superposition error (BSSE) free due to the full counterpoise

correction.

The total MP2 interaction energy (EMP2) includes the components of the Hartree-

Fock interaction energy (ESCF ) and the second order Coulomb correlation correc-

tion term (ECORR). This correlation energy term (ECORR) includes the second order

intermolecular dispersion energy and the correlation corrections to the SCF compo-

nents.

EMP2 = ESCF + ECORR (2.40)

The Hartree-Fock interaction energy (ESCF ) was partitioned into a first order
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Heitler-London component (EHL) and a higher order Hartree-Fock delocalization

interaction energy component (ESDEL), which encompasses the induction and the

associated exchange effects. Because their separation could lead to a non-physical

charge transfer, this component was not partitioned any further.

ESCF = EHL + EDEL (2.41)

The Heitler-London interaction energy component (EHL) can be separated into

the first-order electrostatic interactions (EEL) of monomers and the associated Heitler-

London exchange repulsion energy (EEX) due to the Fermi electron correlation ef-

fects. The electrostatic interaction energy (EEL) was obtained as a first-order term in

the polarization perturbation theory and the exchange repulsion term (EEX) was cal-

culated by subtracting the electrostatic interaction energy from the Heitler-London

energy (EEX = EHL − EEL).

EHL = EEL + EEX (2.42)

EEL,MTP refers to the electrostatic multipole component estimated from an

atomic multipole expansion, EEL,PEN is the electrostatic penetration energy cal-

culated by subtracting the electrostatic multipole component from the electrostatic

interaction energy (EEL,PEN = EEL − EEL,MTP )

EEL = EEL,MTP + EEL,PEN (2.43)

2.4 Software and Tools

In this project, a number of software packages and visualization and modelling tools

was employed for a range of different applications such as running MD and BD

simulations, modelling of ligands and protein-ligand complexes, visualization and

analysis of 3D structures and trajectories from MD and BD simulations. For doing

data analysis and to automate some of the tasks, several scripts were written using

the Python programming language and bash scripting. Some tcl scripts, previously

developed in the group, were also used for the running and analysis of RAMD

simulations. All the plots used in this thesis were generated either using the Gnuplot

program or with Microsoft Excel 2016. All the major tools/software employed and

their application areas are briefly discussed below.
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2.4.1 Simulation software

AMBER (Assisted Model Building with Energy Refinement)

AMBER refers to a suite of programs (http://ambermd.org/) used for running

molecular dynamics simulations of proteins and nucleic acids[79]. It has a number of

tools and program for the preparation of necessary input files, to setup and perform

molecular dynamics simulations and to analyze the simulation results. AMBER has

an efficient parallel scaling implementation making it one of the most widely used

programs for biomolecular studies. The name Amber also refers to a set of molec-

ular mechanics force fields used for the simulation of biomolecules. In this thesis,

Amber was used for the preparation of topology files and the energy minimization

of protein-ligand complexes for COMBINE analysis, for running MM/GBSA sim-

ulations, energy-minimization and equilibration of protein-ligand complexes before

running RAMD simulations.

Version used: AMBER 14

NAMD (NAnoscale Molecular Dynamics program)

NAMD is a molecular dynamics simulation package (http://www.ks.uiuc.edu/Research/

namd/) designed for high-performance simulation of large biomolecular systems[80].

NAMD includes a rich set of MD features such as multiple time stepping, constraints,

and dissipative dynamics and can be used with the AMBER and CHARMM poten-

tial functions, parameters, and file formats. The code is highly parallelized as it

can scale to thousands of processors on high-end parallel platforms. It can also be

run on individual desktops and laptops. In addition, NAMD can be connected to

the molecular graphics software VMD in order to provide an interactive simulation

tool for modifying and viewing the running MD simulations. The τRAMD[29] pro-

cedure has been implemented in the NAMD software using tcl scripts and, in this

thesis, NAMD was used to run RAMD simulations of protein-ligand dissociation for

inhibitors of haspin kinase.

Version used: NAMD 2.9

SDA (Simulation of Diffusional Association)

SDA[54, 53] is a software package (http://mcm.h-its.org/sda7/) to carry out Brow-

nian dynamics simulations of the diffusional association of solute molecules (e.g.
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proteins) in a continuum aqueous solvent. It can also be used to perform rigid-body

docking to record Brownian dynamics trajectories or encounter complexes and to

calculate bimolecular rate constants. In SDA, the interaction between the solutes is

given by an approximation to the Poisson-Boltzmann equation-derived electrostatic

interaction[59]. In addition, short-ranged hydrophobic desolvation and electrostatic

desolvation forces can also be considered. In SDA, simulation of the diffusion of

multiple proteins, in dilute or concentrated solutions can also be performed to study

macromolecular crowding effects. In this work, SDA was used to perform Brownian

dynamics simulations of protein and ligand association for calculation of diffusional

association rate constants.

Version used: SDA7.1

2.4.2 Structure preparation and general molecular modeling

tools

Schrödinger suite

Schrödinger (https://www.schrodinger.com/) is a suite of tools used for molecular

modeling, drug-discovery and materials science research. In this thesis, Schrödinger

was used to pre-process the structures of the protein-ligand complexes, to add miss-

ing side chains, to add disulphide bonds, and for optimizing the H-bond network to

assign hydrogen atom positions.

Version used: Release 2015-4

MOE (Molecular Operating Environment)

MOE is an interactive integrated suite of applications (https://www.chemcomp.

com/) that provides a wide range of functionality to support Molecular Modelling,

Chemoinformatics, Structure- based Design, Virtual Screening and a broad range

of life science applications. In this thesis, MOE was used to aid in preparation of

protein structures, modeling of ligands and deciding correct protonation states for

ligands and titratable residues.

Version used: MOE 11
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AmberTools

AmberTools consists of several tools/packages that are either used independently

or with the Amber program[79]. AmberTools include programs/tools to generate

force fields for general organic molecules and metal centers, preparation programs

for Amber simulations, programs for semi-empirical and DFTB quantum chemistry

calculations, tools to compute numerical solutions to Poisson-Boltzmann models,

programs for structure and dynamics analysis of trajectories. In this thesis, several

programs from AmberTools, such as antechamber, sqm, parmchk, RESP and LEaP,

were used to generate partial atomic charges for small molecules and to generate force

field parameters for protein-ligand complexes, ambpdb was used for interconversion

between different file formats, MMPBSA.py was used for free-energy calculations

of haspin-inhibitor complexes, cpptraj was used for analysis of MD and RAMD

trajectories from Amber and NAMD simulations.

Version used: AmberTools14

APBS (The Adaptive Poisson-Boltzmann Solver)

APBS (http://www.poissonboltzmann.org/) is a macromolecular electrostatics cal-

culation program used for solving the equations of continuum electrostatics for large

biomolecular systems[81]. The results of APBS calculations can be displayed as an

electrostatic potential molecular surface using PyMOL. Most of the APBS function-

ality is available through the online PDB2PQR web server (http://nbcr-222.ucsd.

edu/pdb2pqr_2.1.1/). In this thesis, APBS was used to generate electrostatic po-

tential grids of protein and ligand molecules for BD simulations and the PDB2PQR

webserver was used to generate PQR files for protein molecules.

Version used: APBS 1.4.1

HYDROPRO

HYDROPRO ( http://leonardo.inf.um.es/macromol/programs/hydropro/hydropro.

htm) is a computer program used to compute the hydrodynamic properties of rigid

molecules (proteins, small nucleic acids, macromolecular complexes, etc.) from their

atomic-level structure[82]. The HYDROPRO output comprises the basic hydrody-

namic properties: translational diffusion coefficient, sedimentation coefficient, intrin-

sic viscosity, and relaxation times, along with the radius of gyration. In this thesis,
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HYDROPRO was used to compute translational and rotational diffusion coefficients

of protein and ligand molecules required for simulating diffusional association with

SDA.

Version used: HYDROPRO10

2.4.3 Structure Visualization tools

PyMOL

PyMOL (https://www.pymol.org/) is a molecular visualization software used for

the manipulation of structures and generating high quality 3D images of biological

macromolecules, such as proteins. It also provides some basic functions that can

used to analyze molecular and chemical properties of biomolecules. In this thesis,

we have used PyMOL for visual inspection of the protein-ligand complexes and PDB

structures, and the creation and labelling of the crystallographic images.

Version used: PyMOL 1.7

VMD (Visual molecular dynamics)

VMD (http://www.ks.uiuc.edu/Research/vmd/) is another very commonly used vi-

sualization program designed for modelling, visualization and analysis of biological

systems, such as proteins, nucleic acids, lipid bilayer assemblies[83]. Most impor-

tantly, VMD can be used to view and analyze the results of MD simulations and to

visualize potential grids of the molecules. In this thesis, VMD was used to analyze

the trajectories from RAMD and MD simulations and to visualize potential grids of

proteins and ligands generated for running BD simulations in SDA.

Version used: VMD 1.9.3
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Chapter 3

Quantitative structure-kinetics

relationships (QSKRs) for koff
values of HSP90 and HIV-1 protease

inhibitors

This Chapter is based on the following publication:

Prediction of Drug–Target Binding Kinetics by Comparative Binding En-

ergy Analysis.

Gaurav K. Ganotra and Rebecca C. Wade, ACS Medicinal Chemistry Letters 2018

9 (11), 1134-1139

DOI: 10.1021/acsmedchemlett.8b00397

Quantitative structure activity relationships (QSARs) allow correlation of the

physio-chemical and structural descriptors/properties of a class of molecules with

their biological activities by applying regression-based machine learning techniques.

Over the time, a number of classical regression techniques have been developed

and successfully applied to derive QSARs for series of molecules[84, 85]. As more

number of three-dimensional (3D) structures of ligand-protein complexes is becom-

ing available, these QSAR approaches have been extended in three dimensions to

derive 3D-QSARs by incorporating information on ligand and protein interactions

into the models[86, 87, 88, 89]. COMparative BINding Energy (COMBINE) anal-

ysis is one of such medium-throughput approaches that has been successfully ap-
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plied to a number of protein targets to derive target specific scoring functions for

the prediction of binding affinity and target selectivity[46, 90, 91, 92, 93, 94, 95].

In COMBINE analysis, ligand-receptor interaction energies are computed using a

molecular mechanics model. These energies are then partitioned and subjected to

regression-based methods, such as Partial Least Squares (PLS) regression, to de-

rive a statistical model which relates the property of interest to weighted selected

components of the ligand-receptor interaction energy. COMBINE analysis seeks to

make complete and systematic use of the available information from 3D structures

of receptor–ligand complexes and the measured bioactivities of compounds, by ex-

plicitly including information about the receptor–ligand interaction energies. This

is in contrast to other 3D-QSAR approaches such as Comparative molecular field

analysis (CoMFA)[86] or Molecular Similarity Indices in a Comparative Analysis

(CoMSIA)[96] that only include information about the interaction properties of the

ligands based on their 3D structures.

Over the past few years, the interest in the evaluation of drug-binding kinetics

(kon and koff ) during lead optimization has increased considerably due to their in-

fluence on the time course of a drug’s effect. Since experimental assays used to

determine kinetic parameters for drug binding/unbinding are usually time consum-

ing and labor-intensive, robust, efficient and high-throughput in silico methods are

much in demand to predict kinetic parameters accurately and provide insights into

the mechanistic determinants of drug-protein binding. These insights can help in the

rational modulation of the binding kinetics during lead optimization. In this work,

we have applied COMBINE analysis to derive quantitative structure-kinetics rela-

tionships (QSKRs) for the dissociation rate constants (koff ) by studying two large

and chemically diverse sets of inhibitors of the well-characterized drug targets, heat-

shock protein 90 (HSP90) and HIV-1 protease. COMBINE analysis was originally

developed to derive QSARs for binding affinity; here, we provide its first applica-

tion to derive QSKRs for binding kinetic parameters. By performing COMBINE

analysis, we obtained QSKRs for dissociation rate constants (koff ) of HSP90 and

HIV-1 protease inhibitors with very good predictive ability. 70 structurally diverse

inhibitors of HSP90 and 36 inhibitors of HIV-1 protease with available experimental

kinetics data and co-crystallized or modelled protein-inhibitor complexes were used

to derive target-specific predictive models for koff rates. We have also identified key

protein-inhibitor interactions that distinguish inhibitors with slow and fast off-rates.
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3.1 Systems studied

For demonstrating the first application of COMBINE analysis for deriving QSKRs,

we studied two established and well-studied drug targets: HSP90 and HIV-1 pro-

tease. Both proteins have been well characterized experimentally and have been the

subject of extensive structure-based drug discovery efforts. However, these two tar-

gets present different challenges for the prediction of drug-binding kinetics as they

show high binding site flexibility and inhibitors with both slow and fast binding

kinetics are known[97, 40].

3.1.1 Heat-shock protein 90 (HSP90)

HSP90 is one of the common chaperone proteins that assists in the proper folding

of other proteins and stabilizes proteins against elevated temperatures. It is known

for its role in stabilizing a number of proteins essential for tumor growth, and it

is therefore an anti-cancer target[98]. The name HSP90 comes from the fact that

it weighs approximately 90 kiloDaltons (kDa). The N-terminal domain (NTD) of

HSP90 is a highly conserved domain and with a mass of approximately 25 kDa. The

binding pocket for ATP is situated in the NTD and therefore the ATPase function of

the NTD can be blocked by designing small molecule inhibitors that bind to the ATP

binding pocket. Blocking of the ATPase function disrupts the chaperone activity of

HSP90 which leads to degradation of client proteins and hence suppressed tumor

growth[99].

The structures of the NTD of HSP90 (N-HSP90) in complex with inhibitors are

known to have high plasticity and exist in "loop-in", "helical" or "loop-out" confor-

mations which differ at the side of the ATP-binding site where α-helix3 is located

(see Figure 3.1). Both loop conformations (loop-in and loop-out) have been ob-

served in the crystallographic structures of unbound apo-protein as well as in the

holo-structures with different small inhibitors bound to the ATP-binding pocket[97].

In contrast, the helix conformation, with a complete α-helix3, has been observed

only in holo-structures and only when the bound inhibitor occupies a transient hy-

drophobic subpocket between α-helix3 and the beta-strands, in addition to the ATP

binding site (see Figure 3.1 A).
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Figure 3.1: A) Helix conformation of the N-HSP90 in complex with the inhibitor bound to the

ATP binding-site (PDB ID: 5J20[97]). B) Loop-in conformation of the N-HSP90 in complex with

the inhibitor bound to the ATP binding-site (PDB ID: 5NYI[97]). The structures of N-HSP90 are

shown in ribbon representation where helices, β-sheets and loops are colored in red, yellow and

green, respectively, and inhibitors are shown with cyan stick representation.

3.1.2 HIV-1 protease

HIV-1 protease is a homodimeric aspartyl protease and it specifically cleaves the pre-

cursor Gag and Gag-Pol polyproteins into various viral capsid and other structural

proteins. As HIV-1 protease plays a critical role in viral maturation for producing

infectious virus particles, it is an attractive target for AIDS therapy[100].

Figure 3.2: A) The HIV-1 protease homodimer with DMP323 bound (PDB ID: 1QBS[101]). HIV-

protease has two β-hairpin loops (flaps) that exist in a closed state on ligand binding. B) semi-open

and C) open conformations of the flaps in unbound HIV-1 protease (conformations shown were

obtained from the MD simulation run of unliganded HIV-1 protease with PDB ID: 1HXW[102]).

The structures of HIV-1 protease are shown in ribbon representation where helices, β-sheets and

loops are colored in red, yellow and green, respectively and the DMP323 is shown with cyan stick

representation.
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Each subunit of HIV-1 protease is a polypeptide chain consisting of 99 residues.

The active site is located at the interface between both subunits and is composed of

the two conserved catalytic triplets (Asp25-Thr26-Gly27)[103]. Specific inhibitors of

HIV-1 protease, including clinically approved drug molecules, bind to the substrate

binding pocket[41] which is mainly formed by the side chains of Arg8, Leu23, Asp25,

Gly27, Ala28, Asp29, Asp30, Val32, Ile47, Gly48, Gly49, Ile50, Phe53, Leu76, Thr80,

Pro81, Val82, and Ile84 residues of both subunits. Each monomer contains an

extended β-sheet region (a glycine-rich loop), also known as the flap. These flaps

exist in a closed state in the liganded form, and can exist in either semi-open or

open conformations in the unbound form (see Figure 3.2).

3.2 Dataset used for the COMBINE analysis

3.2.1 Heat-shock protein 90

For generating the COMBINE analysis model of HSP90, 70 inhibitors with avail-

able experimental kinetics measurements, were used (see Table 3.1 for SMILES

strings and Figure 3.3 for their chemical structures). These inhibitors are struc-

turally very diverse and they belong to 11 different chemical classes: resorcinol,

indazole, hydroxylindazole, aminoquinazoline, benzamide, aminopyrrolopyrimidine,

7-imidazopyridine, 7-azaindole, aminothienopyridine, 6-hydroxyindole, adenine and

2-aminopyridine (see Figure 3.3). All of these inhibitors block the ATPase function

of HSP90 by binding to its ATP binding pocket located in the N-terminal domain

of HSP90 (N-HSP90). 57 of these inhibitors bind to the helical conformation of N-

HSP90 and hence will be referred to as "helix-binders" in the following sections. The

remaining 13 inhibitors bind to the N-HSP90 in the loop conformation and will be

termed "loop-binders". The experimental koff , kon andKd values for these inhibitors

were available from Kokh et al.[29]. The range of experimental koff rate constants

for these inhibitors spans over 4 orders of magnitude with the fastest and slowest

dissociating inhibitors having koff values of 0.83 s−1 and 0.0001 s−1, respectively,

and therefore ideal for deriving QSKRs using COMBINE analysis. In addition, 3D

crystallographic structures of protein-inhibitor complexes for 37 of these inhibitors

are available in the PDB database. For the remaining 33 inhibitors, it was possible

to model their bound complex with the protein by introducing small substitutions
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into similar compounds complexed with N-HSP90.

Compound

Id
SMILES

1 CCNC(=O)c1noc(-c2cc(C(C)C)c(O)cc2O)c1-c1ccc(C[NH+]2CCOCC2)cc1

2 CCNC(=O)c1noc(-c2cc(Cl)c(O)cc2O)c1-c1ccc(OC)cc1

3 CCNC(=O)c1[nH]nc(-c2cc(Cl)c(O)cc2O)c1-c1ccc(OC)cc1

4 CCNC(=O)c1noc(c2cc(Cl)c(O)cc2O)c1c3ccc(C[NH+]4CCOCC4)cc3

5 O=c1[nH]nc(-c2cc(Br)c(O)cc2O)n1-c1ccccc1F

6 COc1ccc(-c2c(C#N)c(N)nc3sc(C(N)=O)c(N)c23)cc1OCCCC(=O)O

7 CCc1cc(-c2n[nH]c(C)c2-c2ccccc2F)c(O)cc1O

8 O=c1[nH]nc(-c2ccc(O)cc2O)n1-c1ccccc1F

9 Cc1n[nH]c2cc(O)c(-c3ccnn3-c3ccccc3)cc12

10 COc1ccc(-c2c(-c3ccc(O)cc3O)n[nH]c2C)cc1

11 CN(Cc1ccco1)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O

12 Cc1ccccc1-n1c(-c2cc(C(=O)N(C)Cc3cccs3)c(O)cc2O)n[nH]c1=O

13 CCCCN(C)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O

14 Oc1cc(O)c(-c2ccnn2-c2ccccc2Cl)cc1CCc1ccccn1

15 CCCN(C)S(=O)(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O

16 CC(C)N(C)S(=O)(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O

17 Brc1cnc2[nH]cnc2c1C(=O)NC1c2ccccc2-c2c(-c3cnc4ccccc4c3)cccc21

19 O=C(NC1c2ccccc2-c2c(-c3nc4ccncc4[nH]3)cccc21)c1ccnc2[nH]ccc12

20 Cc1nn(-c2ccc(C(N)=O)c(N[C@H]3CC[C@H](O)CC3)c2)c2cccc(-c3cnc4ccccc4c3)c12

21 Cc1cn(-c2ccc(C(N)=O)c(N[C@H]3CC[C@H](O)CC3)c2)c2c1C(=O)CC(C)(C)C2

22 Cc1cn(-c2ccc(C(N)=O)c(NC3CCC(=O)CC3)c2)c2c1C(=O)CC(C)(C)C2

23 CC(C)N(C)S(=O)(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2Cl)c(O)cc1O

24 CCCN(C)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2C)c(O)cc1O

25 Cc1ccccc1-n1c(-c2cc(C(=O)N(C)Cc3ccccc3)c(O)cc2O)n[nH]c1=O

26 CCCCCCN(C)C(=O)c1cc(-c2ccnn2-c2ccccc2C)c(O)cc1O

27 Cc1cccc(CN(C)C(=O)c2cc(-c3n[nH]c(=O)n3-c3ccccc3C)c(O)cc2O)c1

28 Cc1ccccc1-n1c(-c2cc(C(=O)N(C)CC3CCCO3)c(O)cc2O)n[nH]c1=O

29 CCCCN(C)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2)c(O)cc1O

30 Cc1ccccc1-n1nccc1-c1cc(C(=O)N(C)Cc2ccco2)c(O)cc1O

31 Cc1ccccc1-n1c(-c2ccc(O)cc2O)n[nH]c1=O

32 O=c1[nH]nc(-c2ccc(O)cc2O)n1-c1ccccc1Cl

33 CCc1ccccc1-n1c(-c2ccc(O)cc2O)n[nH]c1=O
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Table 3.1 continued from previous page

Compound

Id
SMILES

34 CCCN(C)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O

35 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc5c(c4)OCO5)cc23)c1

36 C[NH+]1CCC(c2ccc(N(C)C(=O)c3cc4c(CCC(C)(C)C)n[nH]c4cc3O)cc2)CC1

37 CCCCN(C)C(=O)c1n[nH]c2cc(O)c(C(=O)N(C)c3ccc(N4CCOCC4)cc3)cc12

38 CN(Cc1ccc(Cl)cc1)C(=O)c2cc3c(Cc4ccccc4)n[nH]c3cc2O

39 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)Cc4ccccc4)cc23)c1

40 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)Cc4ccc(Cl)cc4)cc23)c1

41 Oc1cc2[nH]nc(Cc3ccccc3)c2cc1-c1ccnn1-c1ccccc1

42 Cc1ccc(N(C)C(=O)c2cc3c(Cc4cccc(C)c4)n[nH]c3cc2O)cc1

43 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCOCC5)cc4)cc23)c1

44 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccccc4)cc23)c1

45 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCCCC5)cc4)cc23)c1

46 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N(C)C)cc4)cc23)c1

47 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CC[NH2+]CC5)cc4)cc23)c1

48 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCN(C)CC5)cc4)cc23)c1

49 CO[C@H]1CCN(C(=O)c2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCOCC5)cc4)cc23)C1

50 CO[C@H]1CCCN(C(=O)c2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCOCC5)cc4)cc23)C1

51 CN(C(=O)c1cc2c(C(=O)N3CCCC3)n[nH]c2cc1O)c1ccc(N2CCOCC2)cc1

52 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCOCC5=O)cc4)cc23)c1

53 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(F)cc4)cc23)c1

54 COc1cccc(N(C)C(=O)c2cc3c(Cc4cccc(C)c4)n[nH]c3cc2O)c1

55 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4cccc(C)c4)cc23)c1

56 CN(C(=O)c1cc2c(cc1O)[nH]nc2C(=O)N1CCOCC1)c1ccc(N2CCOCC2)cc1

57 CN(C(=O)c1cc2c(C(=O)N3CCCCC3)n[nH]c2cc1O)c1ccc(N2CCOCC2)cc1

58 Nc1nc(C(=O)N2Cc3ccc(O)cc3C2)c2ccccc2n1

59 Nc1nc(C(=O)N2Cc3ccccc3C2)c2cc(O)ccc2n1

60 C[NH+]1CCN(S(=O)(=O)c2ccccc2-c2ccc3nc(N)nc(C(=O)N4Cc5ccccc5C4)c3c2)CC1

61 Cc1ccc2nc(N)nc(C(=O)N3Cc4ccccc4C3)c2c1

62 CNCc1ccccc1-c1ccc2nc(N)nc(C(=O)N3Cc4ccccc4C3)c2c1

63 Nc1nc(C(=O)N2Cc3ccccc3C2)c2cc(-c3cc(F)c(F)cc3CCc3nnn[nH]3)ccc2n1

64 Nc1nc(C(=O)N2Cc3ccccc3C2)c2ccccc2n1

65 Nc1nc(C(=O)N2Cc3ccccc3C2)c2cc(-c3ccccc3O)ccc2n1

66 COc1c(C)cnc(Cn2cc(C#CCC(C)(C)O)c3c(Cl)nc(N)nc32)c1C
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Table 3.1 continued from previous page

Compound

Id
SMILES

67 Cc1cnc(Cn2ccc3c(Cl)nc(N)nc32)c(C)c1Cl

68 C#CCCCn1c(Cc2cc(OC)c(OC)c(OC)c2Cl)nc2c(N)nc(F)nc21

69 N#Cc1ccc(N2CCN(CCCc3c[nH]c4cc(O)c(C#N)cc34)CC2)cc1

70 Nc1cc(C(=O)NC2c3ccccc3-c3c(-c4nc5ccncc5[nH]4)cccc32)ccn1

Table 3.1: List of the SMILES strings for the 70 HSP90 inhibitors used for the COMBINE

analysis.

46



Figure 3.3: 2D chemical structures of inhibitors of HSP90 used for the COMBINE analysis. These

70 inhibitors belong to 11 different chemical classes: resorcinol, hydroxyl-indazole, aminoquina-

zoline, benzamide, aminopyrrolopyrimidine, 7-imidazopyridine, 7-azaindole, aminothienopyridine,

6-hydroxyindole, adenine and 2-aminopyridine.
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3.2.2 HIV-1 protease

For the COMBINE analysis of HIV-1 protease, we decided to consider 36 inhibitors

in our analysis as it was possible to either model their bound structure with HIV-1

protease based on analogy or their co-crystallized structure was available in the PDB

database (see Table 3.2 for SMILES strings and Figure 6.1 for their chemical sruc-

tures). For 12 of these inhibitors, their co-crystallized structures with HIV-1 protease

were available in the PDB database and the remaining 24 protease-inhibitor com-

plexes were modelled by introducing small substitutions into co-crystallized struc-

tures of similar compounds complexed with HIV-1 protease. The experimental mea-

surements of koff rates for these compounds were available from Markgren et al.[? ].

The koff values of these inhibitors span over 5 orders of magnitude with the fastest

and slowest dissociating inhibitors having koff rate constants of 0.00022 s−1 and 83.3

s−1, respectively. These inhibitors are also structurally very diverse with their scaf-

folds belonging to different chemical classes such as cyclic ureas, cyclic sulfamides,

linear analogues of compound B268, and non-analogues of B268 (see Figure 6.1).

Compound

Id
SMILES

B435 O[C@H]([C@@H](O)[C@@H](OCc1ccccc1)C(=O)NC2[C@H](O)Cc3ccccc23)

[C@@H](OCc4ccccc4)C(=O)NCc5ccccc5

A047 CNC(=O)c1cccc(CN2[C@H](COc3ccccc3)[C@H](O)[C@@H](O)[C@@H](COc

4ccccc4)N(Cc5ccccc5)S2(=O)=O)c1

A023 OCCc1cccc(CN2[C@H](COc3ccccc3)[C@H](O)[C@@H](O)[C@@H](COc4ccc

cc4)N(Cc5cccc(CCO)c5)S2(=O)=O)c1

A024 COC(=O)c1ccc(CN2[C@H](COc3ccccc3)[C@H](O)[C@@H](O)[C@@H](COc4

ccccc4)N(Cc5ccc(CO)cc5)S2(=O)=O)cc1

B429 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccc(cc1)c2ccccn2)[C@H](O)[C@@H]

(O)[C@@H](OCc3ccc(cc3)c4ccccn4)C(=O)N[C@@H](C(C)C)C(=O)NC)C(C)C

B409 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccc(cc1)c2ccsc2)[C@H](O)[C@@H](

O)[C@@H](OCc3ccc(cc3)c4ccsc4)C(=O)N[C@@H](C(C)C)C(=O)NC)C(C)C

B268 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccccc1)[C@H](O)[C@@H](O)[C@@H

](OCc2ccccc2)C(=O)N[C@@H](C(C)C)C(=O)NC)C(C)C

A045 CNC(=O)c1cccc(CN2[C@H](COc3ccccc3)[C@H](O)[C@@H](O)[C@@H](COc

4ccccc4)N(Cc5cccc(c5)C(=O)NC)S2(=O)=O)c1

B425 O[C@H](C[C@@H](OCc1ccccc1)C(=O)NC2[C@H](O)Cc3ccccc23)[C@@H](O
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Compound

Id
SMILES

Cc4ccccc4)C(=O)NC5[C@@H](O)Cc6ccccc56

A021 OCc1ccc(CN2[C@H](COc3ccccc3)[C@H](O)[C@@H](O)[C@@H](COc4ccccc

4)N(Cc5ccc(CO)cc5)S2(=O)=O)cc1

saquinavir CC(C)(C)NC(=O)[C@@H]1C[C@@H]2CCCC[C@@H]2CN1C[C@@H](O)[C@H]

(Cc3ccccc3)NC(=O)[C@H](CC(=O)N)NC(=O)c4ccc5ccccc5n4

indinavir CC(C)(C)NC(=O)[C@@H]1CN(Cc2cccnc2)CCN1C[C@@H](O)C[C@@H](Cc3ccccc3

)C(=O)N[C@@H]4[C@H](O)Cc5ccccc45

ritonavir CC(C)[C@H](NC(=O)N(C)Cc1csc(n1)C(C)C)C(=O)N[C@H](C[C@H](O)[C@H]

(Cc2ccccc2)NC(=O)OCc3cncs3)Cc4ccccc4

DMP323 OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C@@H](Cc3ccccc3)

N(Cc3ccc(CO)cc3)C2=O)cc1

nelfinavir Cc1c(O)cccc1C(=O)N[C@H](CSc1ccccc1)[C@H](O)CN1C[C@H]2CCCC[C@H]2

C[C@H]1C(=O)NC(C)(C)C

B369 O[C@H]([C@@H](O)[C@@H](OCc1ccccc1)C(=O)NC2[C@@H](O)Cc3ccccc23

)[C@@H](OCc4ccccc4)C(=O)NC5[C@H](O)Cc6ccccc56

B388 CC(C)C(N(C)C(=O)[C@H](OCc1ccccc1)[C@H](O)[C@@H](O)[C@@H](OCc2

ccccc2)C(=O)NC3[C@@H](O)Cc4ccccc34)C(=O)O

A038 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccc(cc1)C2=C(O)C(=O)CCC2)[C@H](O)[

C@@H](O)[C@@H](OCc3ccc(cc3)C4=C(O)C(=O)CCC4)C(=O)N[C@@H](C(C)C)

C(=O)NC)C(C)C

A037 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccc(\C=C\C(=O)OC)cc1)[C@H](O)[C@@H]

(O)[C@@H](OCc2ccc(\C=C\C(=O)OC)cc2)C(=O)N[C@@H](C(C)C)C(=O)NC)C(C)C

B440 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccc(cc1)c2nccs2)[C@H](O)[C@@H](

O)[C@@H](OCc3ccc(cc3)c4nccs4)C(=O)N[C@@H](C(C)C)C(=O)NC)C(C)C

B439 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccc(CCc2ccccc2)cc1)[C@H](O)[C@@H]

(O)[C@@H](OCc3ccc(CCc4ccccc4)cc3)C(=O)N[C@@H](C(C)C)C(=O)NC)C(C)C

B408 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccc(Br)cc1)[C@H](O)[C@@H](O)[

C@@H](OCc2ccc(Br)cc2)C(=O)N[C@@H](C(C)C)C(=O)NC)C(C)C

B412 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccc(cc1)c2cccc(c2)[N+](=O)[O-])[C@H](O)

[C@@H](O)[C@@H](OCc3ccc(cc3)c4cccc(c4)[N+](=O)[O-])C(=O)N[C@@H](C(C)C)

C(=O)NC)C(C)C

U75875 CC[C@@H](C)[C@H](NC(=O)[C@H](C(C)C)[C@@H](O)[C@H](O)[C@H]

(CC1CCCCC1)NC(=O)[C@H](Cc2c[nH+]c[nH]2)NC(=O)COc3cccc4ccccc34)

C(=O)NCc5ccccn5
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Compound

Id
SMILES

A008 OCc1ccc(CN2C(COc3ccccc3)[C@H](O)[C@@H](O)C(COc4ccccc4)N(Cc5ccc

(CO)cc5)C2=O)cc1

B277 CCCO[C@H]([C@H](O)[C@@H](O)[C@@H](OCCC)C(=O)N[C@@H](C(C)C

)C(=O)NC)C(=O)N[C@@H](C(C)C)C(=O)NC

A030 C\C(=N/O)\c1cccc(CN2[C@H](COc3ccccc3)[C@H](O)[C@@H](O)[C@@H](CO

c4ccccc4)N(Cc5cccc(c5)\C(=N\O)\C)S2(=O)=O)c1

A015 CN(C(Cc1ccccc1)C(=O)O)C(=O)[C@H](OCc2ccccc2)[C@H](O)[C@@H](O)[C

@@H](OCc3ccccc3)C(=O)N(C)C(Cc4ccccc4)C(=O)O

A016 CN(C(Cc1ccc(O)cc1)C(=O)O)C(=O)[C@H](OCc2ccccc2)[C@H](O)[C@@H](O)[

C@@H](OCc3ccccc3)C(=O)N(C)C(Cc4ccc(O)cc4)C(=O)O

A017 CC(O)C(N(C)C(=O)[C@H](OCc1ccccc1)[C@H](O)[C@@H](O)[C@@H](OCc2

ccccc2)C(=O)N(C)C(C(C)O)C(=O)O)C(=O)O

B322 CCC(C)C(N(C)C(=O)[C@H](OCc1ccccc1)[C@H](O)[C@@H](O)[C@@H](OCc

2ccccc2)C(=O)N(C)C(C(C)CC)C(=O)O)C(=O)O

B365 CC(C)C(N(C)C(=O)[C@@H](C[C@@H](O)[C@@H](OCc1ccccc1)C(=O)N(C)

C(C(C)C)C(=O)O)OCc2ccccc2)C(=O)O

B347 CC(C)C(N(C)C(=O)[C@H](OCc1ccccc1)[C@@H](O)[C@H](O)[C@@H](OCc2

ccccc2)C(=O)N(C)C(C(C)C)C(=O)O)C(=O)O

A018 CSCCC(N(C)C(=O)[C@H](OCc1ccccc1)[C@H](O)[C@@H](O)[C@@H](OCc2c

cccc2)C(=O)N(C)C(CCSC)C(=O)O)C(=O)O

B249 COC(=O)C(NC(=O)[C@H](OCc1ccccc1)[C@H](O)[C@@H](O)[C@@H](OCc2c

cccc2)C(=O)NC(C(C)C)C(=O)OC)C(C)C

B376 CNC(=O)[C@@H](NC(=O)[C@H](OCc1ccccc1)[C@H](O)[C@@H](O)[C@@H

](OCc2ccccc2)C(=O)N[C@H](C(=O)NC)c3ccccc3)c4ccccc4

Table 3.2: List of the SMILES strings for the 36 HIV-1 protease inhibitors used for COMBINE

analysis.
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Figure 3.4: 2D chemical structures of inhibitors of HIV-1 protease used for COMBINE analysis.
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3.3 Methods

3.3.1 Preparation of protein and ligand structures

Coordinates of the 37 crystallographic structures of protein-inhibitor complexes

for N-HSP90 and 12 structures of HIV-1 protease-inhibitor complexes were down-

loaded from the PDB database (https://www.rcsb.org/). The remaining 33 protein-

inhibitor complexes for N-HSP90 and 24 complexes for HIV-1 protease were modeled

based on analogy by introducing small substitutions into similar compounds com-

plexed with the proteins, using the Schrödinger software (release 2015-4, Schrödinger,

LLC, New York). The Protein Preparation Wizard [104] of the Schrodinger suite was

used to prepare and pre-process the structures of the bound complexes. The prepa-

ration of complexes involved addition of missing side chains and disulphide bonds,

deletion of crystallographic waters present, and the optimization of the hydrogen

bonding network to assign hydrogen atom positions. The protonation states of

titratable residues were assigned at pH 7.0 using the PROPKA[105] program avail-

able through the Protein Preparation Wizard of Schrodinger. To get rid of bad

contacts and steric clashes, all of the prepared complex structures were subjected to

initial energy minimization using the Impref module [104] of the Schrodinger suite

with default parameters and the OPLS3 force field. The Impref minimization is a

two-step relaxation procedure in which first the rotatable hydrogen atoms are mini-

mized with all the torsional potentials removed, and then an all-atom minimization

is performed that is terminated either when the system is fully converged or when

it reaches a heavy-atom RMSD from the initial structure of 0.30 Å.

3.3.2 Generation of force field parameters and energy

minimization

The partial atomic charges of the inhibitors were calculated using the RESP ap-

proach, where the RESP [106] program was used to fit the atom-centered charges

to the molecular electrostatic potential (MEP) grid computed by the GAMESS

program[76]. The LEap program of the Amber14 software[79] was used to prepare

the force field parameters and topology files for all the protein-inhibitor complexes.

The ff14SB [107] and the General Amber Force Field (GAFF ) were used for the pro-

teins and inhibitors, respectively. For energy minimization, the PMEMD module of
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Amber14 software was used. The Amber minimization protocol involved 4 different

minimization procedures with gradually decreasing restraints on heavy atoms (100

kcal/mol.2, 100 kcal/mol.2 and 5 kcal/mol.2) to no positional restraints in the final

minimization procedure. For each minimization procedure, 500 steps of steepest-

descent minimization followed by 500 steps of conjugate-gradient minimization were

applied. Minimization was performed using implicit solvent and a distance depen-

dent dielectric constant (4r) was used.

Figure 3.5: Schematic outline of the different steps involved in applying COMBINE analysis to

derive a QSKR to predict drug-binding kinetics.
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3.3.3 Selection of the training and the test datasets

Four (compounds 6, 30, 65 and 69) of the 70 inhibitors of HSP90 were detected

as outliers during the chemometric analysis as they diminished the quality of the

model significantly. Interestingly, three of these compounds (30, 65 and 69) were

also identified as outliers in the recent work by Kokh et al.[29] where the authors

used τRAMD, an enhanced sampling procedure based on molecular dynamics simu-

lations, to calculate the relative residence times of HSP90 inhibitors. Therefore, we

decided to exclude these 4 outliers from our dataset and the remaining 66 inhibitors

were considered for further analysis. For generating training and test datasets for

COMBINE analysis for HSP90, all the inhibitors were ranked from high to low koff

values and every fifth inhibitor (≈ 20 %) in the ranked list was selected for the

test set, while the remaining (≈ 80 %) inhibitors were selected for the training set.

Therefore the training set and test set consisted of 53 and 13 inhibitors, respectively.

Out of the 36 inhibitors in the HIV-1 protease dataset, 3 inhibitors (U75875,

B249 and B376) were identified as outliers and hence not considered further. Two

of these outliers: B249 and B376, which are dihydroxy analogues of compound

B268, have a variety of substituents at the valine side chains of B268 and no crystal

structures were available for them. These small substitutions in B268 resulted in

large increases of koff rates by almost 1000-fold, and this effect was not captured

by the COMBINE analysis as the modeled complexes of these compounds were very

similar to the reference structure. Due to the smaller size of the dataset, we decided

to train our COMBINE analysis model with all of the 33 inhibitors and therefore

no separate test-set was chosen. The model was only validated with different cross-

validation methods such as leave-one-out, leave-two-out and leave-three-out cross-

validation.

3.3.4 Calculation of the interaction energy terms and

generation of energy matrix for PLS analysis

The gCOMBINE program[108] was used for the calculations of LJ and Coulombic in-

teraction energies between protein and inhibitors using Amber force field parameters

generated by the LEap program of the Amber14 software. gCOMBINE decomposes

the total LJ and Coulombic interaction energy between protein and the bound in-

hibitor on a per-residue basis, thereby resulting in a matrix of interaction energy
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terms where each energy term corresponds to Coulombic or LJ interaction energy

between one of the amino acid residues of the protein and the bound inhibitor.

Since there are 207 amino acid residues in the N-HSP90, gCOMBINE generated 207

Coulombic and 207 LJ energy terms for all HSP90 inhibitors. Similarly, 198 Coulom-

bic and 198 LJ energy terms were calculated for all HIV-1 protease inhibitors cor-

responding to 198 amino acid residues in the HIV-1 protease dimer (each monomer

of protease has 99 amino acids).

3.3.5 PLS analysis

PLS analysis was also performed using the gCOMBINE program. Only those inter-

action energy terms that showed variance across the entire training dataset, and have

a standard deviation greater than the specified cutoff value, were selected for PLS

analysis. Different cutoff values in the range of 0.2–1.0 kcal/mol were tested for both

datasets. For HSP90, choosing a standard deviation cut-off of 0.25 kcal/mol resulted

in the most robust model with the least sensitivity and best predictive performance

(Q2) observed in different cross-validation methods used. The best model for HIV-1

protease was obtained when a cutoff of 0.65 kcal/mol was chosen. Then the weights

(or the contributions) of these interaction energy terms and their projection over

different numbers of latent variables were determined from PLS regression by corre-

lating the interaction energies with the experimental log10(koff ) values. Projections

were made for up to 10 latent variables for both datasets. Regression coefficients

(R2), average absolute errors (AAE) and root-mean squared errors (RME) for differ-

ent models obtained with projection over different numbers of latent variables were

calculated by gCOMBINE.

3.3.6 Model validation

In order to access the sensitivity of the different models obtained, the models ob-

tained from PLS regression were subjected to different validation techniques such

as: leave-one-out (LOO), leave-two-out (L2O), leave-three-out (L3O) and random

groups of 7. The model with the best predictive power and least sensitivity was

selected as the best model.
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3.4 Results

3.4.1 COMBINE analysis model for HSP90 inhibitors

Lennard-Jones and Coulombic interaction energies were computed between inhibitors

and 207 residues in the N-terminal domain of HSP90 for all 66 N-HSP90-inhibitor

complexes in the training and test datasets (see Figure 3.6). As seen in Figure 3.6,

the interaction energies between bound inhibitors and amino acid residues close to

the active site (labelled residues) show high variation across the entire dataset and

should therefore be considered further for PLS regression. On the other hand, the

interaction energies between inhibitors and residues located far from the active site

are almost negligible.

Figure 3.6: Interaction energies between N-HSP90 amino acid residues and inhibitors. The first

207 columns on the x-axis correspond to Lennard-Jones energies (kcal/mol) for each residue and

the last 207 columns correspond to Coulombic energies (kcal/mol) between each inhibitor and

different residues. Each column has 66 data points corresponding to the 66 inhibitors used for the

COMBINE analysis.

The best QSKR model having least sensitivity and the best predictive power (Q2)

for koff rates constants of HSP90 inhibitors was obtained when a standard deviation
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cutoff of 0.25 kcal/mol was used to select a subset of interaction energy terms for PLS

analysis. A total of 42 inhibitor–residue interaction energy terms (12 coulombic and

30 LJ terms) that have standard deviation higher than 0.25 kcal/mol in the training

dataset were used in the PLS regression (see Figure 3.7). Nine amino acid residues:

N51, D54, K58, D93, G97, D102, L103, Y139, and T184, make contributions of both

coulombic and LJ interaction energies to the QSKR model.

Figure 3.7: Key protein-inhibitor interactions identified from the COMBINE analysis of HSP90

inhibitors. 30 LJ and 12 coulombic protein residue–inhibitor interaction energy terms were selected

based on variance over the inhibitors for deriving the PLS model. On the crystal structure (PDB

ID: 5J20) of compound 11 (cyan sticks) complexed with N-HSP90 (ribbon representation), the

residues are colored according to whether their coulombic (blue), LJ (red), or both coulombic and

LJ (magenta) interaction energies with the bound inhibitor contribute to the model. The figure is

taken from Ganotra and Wade, 2018[109].

Then the predictor variables (interaction energies) and the response variable (ex-

perimental log10(koff ) values) were projected over different numbers of latent vari-

ables in PLS analysis and the weights (or the contributions) of the 42 interaction

energy terms were determined from PLS regression (see Figure 3.9). The regres-

sion coefficients and standard mean errors were determined for different numbers of

latent variables (see Table 3.3). The models were then subjected to different cross-

validation techniques to access their sensitivity and predictive ability (see Table 3.5).

The model with three latent variables was found to have the best predictive power

57



and least sensitivity with a R2 of 0.80 and a leave-one-out (LOO) cross-validated

correlation coefficient (Q2) of 0.69 (see Table 3.4 and Figure 3.8). The average ab-

solute error (AAET ) and the root mean squared error (RMET ) for the training set

were calculated to be 0.37 (log10(s−1) units) and 0.46 (log10(s−1) units), respectively

(Table 3.3). The model obtained has good predictive power as the correlation coeffi-

cient for the test-set (R2
PRED) with 13 compounds was calculated to be 0.86 with an

AAETP of 0.33 and RMEP of 0.37 (see Figure 3.8 and Table 3.6). The values of the

average absolute error (AAEV ) and the root mean squared error (RMEV ) for differ-

ent cross-validation sets were found to be consistent for the different cross-validation

methods used (Table 3.5).

LV R2 Q2
LOO AAET AAEV RMET RMEV R2

PRED AAEP RMEP

1 0.43 0.31 0.61 0.67 0.78 0.85 0.33 0.60 0.79

2 0.75 0.66 0.39 0.45 0.51 0.60 0.71 0.44 0.52

3 0.80 0.69 0.37 0.45 0.46 0.57 0.86 0.33 0.37

4 0.82 0.72 0.35 0.44 0.44 0.55 0.87 0.32 0.35

5 0.85 0.71 0.32 0.45 0.40 0.55 0.86 0.31 0.36

6 0.87 0.71 0.30 0.45 0.38 0.56 0.89 0.26 0.33

7 0.88 0.69 0.27 0.45 0.36 0.58 0.89 0.27 0.33

8 0.89 0.66 0.26 0.47 0.34 0.60 0.86 0.32 0.36

9 0.90 0.64 0.25 0.46 0.33 0.62 0.85 0.33 0.37

10 0.91 0.55 0.23 0.51 0.31 0.70 0.69 0.48 0.54

Table 3.3: Summary of the models derived for different numbers of latent variables (LVs) for

the COMBINE analysis for koff rate constants of N-HSP90 inhibitors. The models were derived

using the log10(koff ) value (unit of koff rates in s−1) as the response variable in the PLS analysis.

The table lists the regression coefficient (R2) for the training set, the correlation coefficient for

leave-one-out cross validation sets (Q2
LOO), average absolute errors (AAET and AAEV ) and root

mean squared errors (RMET and RMEV ) for the training set and leave-one-out validation sets,

respectively, the correlation coefficient (R2
PRED) for the test-set (prediction set), average absolute

error (AAEP ) and root mean squared error (RMEP ) for the test-set.
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Compound

Id

N-HSP90

Binding site

conformation

PDB

Id

Experimental

log10(koff(s−1))

Fitted

log10(koff(s−1))

(PLS regression)

Predicted

log10(koff(s−1))

(LOO validation)

1 loop 2VCI -4.00 ± 0.00 -3.45 -2.57

3 loop 2BSM -2.00 ± 0.04 -2.54 -2.47

5 loop 5J2X -1.85 ± 0.07 -1.21 -1.16

7 loop 6ELO -1.20 ± 0.02 -0.77 -0.65

8 loop 5J64 -0.68 ± 0.07 -0.60 -0.65

9 loop n.a. -0.08 ± 0.03 -0.86 -1.13

10 loop 6ELN -0.60 ± 0.03 -1.12 -1.25

11 helix 5J20 -3.48 ± 0.03 -2.47 -2.37

12 helix 5J86 -2.75 ± 0.09 -2.80 -2.79

13 helix 5J9X -2.77 ± 0.12 -2.43 -2.41

14 helix 6ELP -0.76 ± 0.06 -1.91 -2.16

15 helix 5J27 -2.19 ± 0.03 -2.02 -2.00

16 helix 5J86 -1.85 ± 0.05 -2.09 -2.13

17 helix 5LRZ -3.56 ± 0.01 -3.99 -3.89

18 helix 5LR7 -3.72 ± 0.16 -3.18 -2.59

20 helix 5LQ9 -3.87 ± 0.01 -4.18 -4.11

21 helix 5LS1 -3.31 ± 0.12 -2.89 -2.80

22 helix 5T21 -3.12 ± 0.03 -2.61 -2.52

23 helix n.a. -2.02 ± 0.02 -1.80 -1.76

24 helix n.a. -2.33 ± 0.07 -2.06 -2.04

27 helix n.a. -2.92 ± 0.04 -2.53 -2.52

28 helix n.a. -2.34 ± 0.08 -2.59 -2.66

29 helix n.a. -2.52 ± 0.04 -2.43 -2.44

31 loop n.a. -0.96 ± 0.17 -1.26 -1.34

33 loop n.a. -1.15 ± 0.10 -0.64 -0.58

36 helix 5LO6 -2.86 ± 0.12 -3.21 -3.32

37 helix 5LNZ -2.70 ± 0.04 -3.13 -3.14

38 helix 6EY8 -1.54 ± 0.02 -2.09 -2.08

39 helix 6EFU -1.65 ± 0.02 -1.95 -1.93

40 helix 6EY9 -1.76 ± 0.01 -2.16 -2.13

41 helix 6EY8 -0.63 ± 0.04 -1.72 -1.87

42 helix n.a. -2.30 ± 0.08 -2.19 -2.17

43 helix 5OCI -3.17 ± 0.00 -2.81 -2.77
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Compound

Id

N-HSP90

Binding site

conformation

PDB

Id

Experimental

log10(koff(s−1))

Fitted

log10(koff(s−1))

(PLS regression)

Predicted

log10(koff(s−1))

(LOO validation)

44 helix n.a. -2.04 ± 0.05 -1.93 -1.91

46 helix n.a. -2.63 ± 0.07 -2.76 -2.78

47 helix n.a. -2.91 ± 0.03 -2.76 -2.75

48 helix n.a. -3.12 ± 0.07 -2.98 -2.94

50 helix 5ODX -3.53 ± 0.02 -3.34 -3.28

51 helix 5NYH -2.62 ± 0.01 -2.60 -2.56

52 helix n.a. -2.86 ± 0.14 -2.78 -2.73

55 helix n.a. -2.11 ± 0.27 -2.10 -2.08

56 helix n.a. -1.88 ± 0.02 -2.62 -2.67

57 helix n.a. -3.04 ± 0.12 -2.78 -2.72

58 helix n.a. -0.26 ± 0.12 -0.45 -0.63

59 helix n.a. -0.24 ± 0.02 -0.45 -0.57

60 helix 5OD7 -3.62 ± 0.11 -3.85 -3.64

62 helix 6EI5 -2.34 ± 0.04 -2.11 -2.06

63 helix n.a. -2.82 ± 0.05 -2.83 -3.25

64 helix n.a. -0.26 ± 0.04 -0.21 -0.29

66 helix n.a. -2.90 ± 0.08 -2.26 -2.17

67 helix 5LR1 -1.59 ± 0.02 -0.73 -0.68

68 helix 6EL5 -1.48 ± 0.02 -2.04 -2.19

70 helix 2YKJ -3.00 ± 0.06 -2.65 -2.27

Table 3.4: Comparison of log10(koff ) values calculated by the COMBINE analysis model in

PLS regression (column 5) and the experimental log10(koff ) values from Ref.[29] (column 4) for

different N-HSP90 inhibitors (53 compounds) used for training the COMBINE analysis model.

The log10(koff ) values predicted from leave-one-out (LOO) cross-validation for the training set of

inhibitors are given in the last column.
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Validation Q2 AAEV RMEV

Leave-one-out (LOO) 0.69 0.45 0.57

Leave-two-out (L2O) 0.69 0.45 0.58

Leave-three-out (L3O) 0.68 0.46 0.59

Random groups of 7 0.68 0.46 0.59

(10 iterations)

Table 3.5: Statistical measures of correlation for the COMBINE Analysis Models Derived for

log(koff ) of HSP90 inhibitors. Cross-validated correlation coefficient (Q2), average absolute errors

(AAEV ) and root mean squared errors (RMEV ) for different validation methods for the PLS model

derived with 3 latent variables for HSP90 inhibitors.

Compound

Id

N-HSP90

Binding site

conformation

PDB

Id

Experimental

log10(koff(s−1))

Predicted

log10(koff(s−1))

2 loop 2UWD -2.70 ± 0.03 -2.45

4 loop 5NYI -4.00 ± 0.00 -3.77

19 helix 2YKI -3.55 ± 0.07 -3.23

25 helix n.a. -2.96 ± 0.21 -2.45

26 helix n.a. -2.00 ± 0.07 -2.44

32 loop n.a. -0.92 ± 0.07 -1.32

34 helix n.a. -2.38 ± 0.05 -2.90

35 helix 6EYA -2.27 ± 0.03 -2.31

45 helix n.a. -3.13 ± 0.05 -2.67

49 helix n.a. -2.86 ± 0.06 -2.91

53 helix n.a. -1.50 ± 0.22 -1.96

54 helix n.a. -1.79 ± 0.10 -2.24

61 helix n.a. -0.58 ± 0.12 -0.42

Table 3.6: Comparison of log10(koff ) values predicted by the COMBINE analysis model and the

experimental log10(koff ) values from Ref.[29] (column 4) for different N-HSP90 inhibitors used in

the test set (13 compounds) for validation of the COMBINE analysis model.
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Figure 3.8: A) Plot of calculated vs experimental log(koff ) values for the training data set (R2

= 0.80) and LOO cross-validation (Q2 = 0.69). B) Plot of calculated vs experimental log(koff )

values for the test data set with 13 compounds (R2
PRED = 0.86). The diagonal straight lines in

both plots corresponds to y = x (ideal case).

Figure 3.9: Weights for different LJ and coulombic interaction energy contributions derived from

the PLS analysis (projection to 3 latent variables). The figure is taken from Ganotra and Wade,

2018[109].
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The major contribution to the koff rate constants comes from the LJ energies

of the hydrophobic residues lining the binding pocket (see Figure 3.9). Therefore,

compounds with slow koff rates tend to have bulky hydrophobic groups mediating

strong LJ interactions with the nonpolar binding site residues. Most of the helix-

binders are relatively bulkier in size and have lower koff rate constants, as they have

additional hydrophobic moieties which occupy a transient hydrophobic cavity formed

between α-helix3 and the β-strands and mediate strong van der Waals interactions

with hydrophobic residues L103, I104, N106, L107, G108, T109, I110, and A111 (see

Figure 3.10). On the other hand, loop-binders are usually smaller in size and have

relatively higher koff rates. Loop-binders that have lower koff rates have additional

polar moieties mediating coulombic interactions with amino acid residues such as

N51, E47, and G97, thereby stabilizing the bound-state (see Figure 3.10).

Figure 3.10: Comparison of the binding modes and the key interactions for a helix-binder (com-

pound 11, crystal structure PDB ID: 5J20), a faster dissociating loop-binder (compound 9, model

based on PDB ID: 5OCI), and a slower dissociating loop-binder (compound 4, crystal structure

PDB ID: 5NYI), respectively. Hydrophobic moieties (shown with a black circle in the left panel) of

helix-binders occupy a transient hydrophobic cavity formed by the helix conformation of N-HSP90

and mediate strong LJ interactions with hydrophobic residues. Most of the loop binders are smaller

in size and dissociate faster (middle panel). Some of the slower dissociating loop-binders have addi-

tional polar moieties (marked with red and black circles in the right panel) that mediate additional

electrostatic interactions with the binding-site residues. The figure is taken from Ganotra and

Wade, 2018[109].
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3.4.2 Results: COMBINE analysis model for HIV-1

protease inhibitors

HIV-1 protease is a homodimer with each monomer consisting of 99 amino acid

residues. Therefore, for each of the 33 protease inhibitors in the training dataset,

198 coulombic and 198 LJ energies were calculated using gCOMBINE (see Figure

3.11).

Figure 3.11: Interaction energies between HIV-1 protease residues and inhibitors. Lennard-Jones

and Coulombic interaction energies were computed between the inhibitors and 198 amino acid

residues of the protease dimer using the gCOMBINE program. The first 198 columns on the x-

axis correspond to Lennard-Jones energies (kcal/mol) for each residue and the last 198 columns

correspond to Coulombic energies (kcal/mol) between each inhibitor and different residues. Each

column has 33 data points corresponding to the 33 inhibitors used for the COMBINE analysis.

To select a subset of interaction energy terms for PLS, a standard deviation

cutoff range (from 0.2 to 1.0 kcal/mol) was tested and the choice of a cutoff of 0.65

kcal/mol resulted in the best model. Seventeen coulombic and 17 LJ terms that

have standard deviations higher than the cutoff value were used for PLS analysis

(see Figure 3.12). The models were derived for different numbers of latent variables

and validated using several validation methods (see Tables 3.7 and 3.8). The model
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with the best predictive ability and least sensitivity was obtained when projection

was made to six latent variables. The R2, AAET , and RMET for the training set are

0.94, 0.26 (log10(s−1) units), and 0.34 (log10(s−1) units), respectively (see Table 3.9

and Figure 3.13). The Q2 value for different validation methods ranged from 0.51

to 0.70 (Table 3.8).

LV R2 Q2
LOO AAET AAEV RMET RMEV

1 0.20 0.01 1.03 1.14 1.23 1.36

2 0.38 -0.01 0.86 1.09 1.09 1.38

3 0.56 0.06 0.70 1.02 0.91 1.33

4 0.74 0.34 0.55 0.89 0.70 1.11

5 0.83 0.38 0.46 0.83 0.57 1.08

6 0.94 0.70 0.26 0.58 0.34 0.75

7 0.96 0.77 0.23 0.52 0.27 0.66

8 0.97 0.83 0.20 0.47 0.23 0.57

9 0.98 0.83 0.18 0.47 0.20 0.56

10 0.98 0.83 0.16 0.48 0.19 0.57

Table 3.7: Summary of the models derived for different numbers of latent variables (LVs) for the

COMBINE analysis for koff rate constants of HIV-1 protease inhibitors. The models were derived

using the log10(koff ) value ( unit of koff rates in s−1) as the response variable in the PLS analysis.

The table lists the regression coefficient (R2) for the training set, the correlation coefficient for

leave-one-out cross validation sets (Q2
LOO), average absolute errors (AAET and AAEV ) and root

mean squared errors (RMET and RMEV ) for the training set and leave-one-out validation sets,

respectively. The model with 6 LVs displayed the best predictive performance and least sensitivity

in different cross-validation methods used.

Validation Q2 AAEV RMEV

Leave-one-out (LOO) 0.70 0.58 0.75

Leave-two-out (L2O) 0.51 0.68 0.96

Leave-three-out (L3O) 0.52 0.68 0.95

Random groups of 7 0.60 0.63 0.86

(10 iterations)

Table 3.8: Cross-validated correlation coefficient (Q2), average absolute errors (AAEV ) and root

mean squared errors (RMEV ) for different validation methods for the PLS model derived with 6

latent variables for HIV-1 protease inhibitors.
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Figure 3.12: Key protein-inhibitor interactions identified from the COMBINE analysis of HIV-1

protease inhibitors. 17 LJ and 17 coulombic protein residue–inhibitor interactions were selected

based on variance over the inhibitors. Residues are shown on the crystal structure (PDB ID: 1OHR)

of nelfinavir (cyan sticks) bound to HIV-1 protease (ribbon representation) colored according to

whether their LJ (red), coulombic (blue), or both LJ and coulombic (magenta) interaction energy

terms, contribute to the PLS model. The figure is taken from Ganotra and Wade, 2018[109].

Figure 3.13: Correlation plot for experimental log(koff ) values vs log(koff ) values calculated by

COMBINE analysis of HIV-1 protease inhibitors for the training dataset (R2=0.94) and leave-one-

out (LOO) cross-validation (Q2=0.78). The straight line corresponds to y=x (ideal case).
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Compound

Id

PDB

Id

Experimental

log10(koff(s−1))

Fitted

log10(koff(s−1))

(PLS regression)

Predicted

log10(koff(s−1))

(LOO validation)

B435 1D4H -2.19 ± 0.09 -1.48 -1.36

A047 1G2K -1.16 ± 0.10 -0.81 -0.74

A023 n.a. -0.86 ± 0.11 -0.66 -0.05

A024 1G35 -1.16 ± 0.10 -1.30 -1.44

B429 n.a. -3.43 ± 0.09 -3.71 -3.69

B409 1EC1 -3.37 ± 0.13 -3.21 -3.16

B268 n.a. -2.44 ± 0.05 -2.43 -2.49

A045 n.a. -0.58 ± 0.09 -0.90 -1.00

B425 1D4I -0.63 ± 0.00 -1.62 -2.06

A021 n.a. -1.56 ± 0.04 -1.16 -0.94

saquinavir 3OXC -3.64 ± 0.06 -4.00 -3.72

indinavir 2BPX -2.80 ± 0.04 -2.35 -0.77

ritonavir 1HXW -2.67 ± 0.06 -2.39 -1.69

DMP323 1QBS 1.92 ± 0.12 1.91 1.41

nelfinavir 1OHR -3.18 ± 0.04 -3.07 -2.08

B369 1EBY -1.88 ± 0.19 -2.09 -2.38

B388 n.a. -1.64 ± 0.15 -1.66 -1.67

A038 n.a. -3.31 ± 0.02 -3.01 -1.89

A037 n.a. -3.44 ± 0.04 -3.57 -3.05

B440 n.a. -3.52 ± 0.02 -3.54 -3.51

B439 n.a. -2.79 ± 0.06 -2.87 -2.89

B408 n.a. -2.77 ± 0.02 -2.52 -2.37

B412 n.a. -3.09 ± 0.19 -3.28 -3.29

A008 n.a. 1.64 ± 0.15 1.45 0.51

B277 n.a. -2.31 ± 0.17 -2.07 -1.96

A030 n.a. -1.38 ± 0.13 -1.00 -0.71

A015 n.a. -0.03 ± 0.37 -0.78 -1.35

A016 n.a. -1.22 ± 0.22 -1.37 -1.50

A017 n.a. -0.75 ± 0.09 -0.61 -0.71

B322 n.a. -1.17 ± 0.29 -1.43 -1.60

B365 n.a. -1.51 ± 0.06 -1.52 -1.60

B347 n.a. -1.57 ± 0.05 -1.31 -0.88

A018 n.a. -0.32 ± 0.20 -0.43 -1.28
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Table 3.9 continued from previous page

Compound

Id

PDB

Id

Experimental

log10(koff(s−1))

Fitted

log10(koff(s−1))

(PLS regression)

Predicted

log10(koff(s−1))

(LOO validation)

Table 3.9: Comparison of log10(koff ) values calculated by the COMBINE analysis model in PLS

regression (column 4) and the experimental log10(koff ) values from Ref.[? ] (column 3) for different

HIV-1 protease inhibitors used for training the COMBINE analysis model. The log10(koff ) values

predicted from leave-one-out (LOO) cross-validation for the training set of inhibitors are given in

the last column.

Of the 17 coulombic and 17 LJ interactions considered in the PLS analysis, many

make an unfavorable contribution to the dissociation kinetics (see Figure 3.14). It

was observed that some of the interactions of the inhibitors, specifically with the

residues in the flap region of HIV-1 protease, favor fast unbinding. For example, the

cyclic urea and cyclic sulfamide inhibitors have direct polar contacts with the I50

residues located in the flap regions of the HIV-1 protease dimer and have fast dissoci-

ation rates. The flaps are very dynamic in nature and are known to exist in different

conformations ranging from open to semiclosed to closed. Their fast movements

could lead to these small cyclic compounds being driven out of the binding pocket.

The cyclic urea inhibitors A008 and DMP323 have the highest koff rate constants,

and they have hydroxyl groups that make hydrogen bonds with the amide backbone

atoms of both D30 residues in the bound complexes. The interaction with D30B

was identified as unfavorable by the COMBINE analysis (Figure 3.14, bottom inset).

The acyclic inhibitors, on the other hand, are peptidomimetic and have relatively

slow dissociation rates. They do not form direct contacts with the flap residues

and their aromatic groups mediate favorable LJ interactions with residues such as

P81 and R08 (Figure 3.14, top inset). In some of the crystal structures of acyclic

inhibitors complexed with HIV-1 protease, bridging waters mediate the interaction

between the inhibitors and binding site residues such as D30 and I50. While inter-

facial water molecules can be considered explicitly in COMBINE analysis[95], we

omitted them in this study. Thus, the effect of the water-mediated interactions that

tend to correlate with slow dissociation rates appears to be represented implicitly

by direct hydrogen-bonding to the corresponding residues in the complexes of fast

dissociating inhibitors having negative weights in the PLS model.
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Figure 3.14: Weights for different LJ and coulombic interaction energy terms derived from the

PLS analysis (projection to six latent variables, the value of constant C was 0.134). A negative

weight means that an energetically favorable (negative) interaction energy term tends to shorten

the residence time. The labels of some of the interaction energy terms that characterize slow and

fast dissociating inhibitors are boxed, and the corresponding residues are also shown in the inset

figures. The top inset shows a few of the interactions (yellow) contributing to the long residence

time of the slowly dissociating inhibitor saquinavir (koff = 0.00023 s−1) and the bottom inset shows

the interactions (magenta) contributing to the short residence time of a very fast dissociating cyclic

urea inhibitor DMP323 (koff = 83.3 s−1) in the crystal structures with PDB IDs 3OXC and 1QBS,

respectively. The figure is taken from Ganotra and Wade, 2018[109].

3.5 Concluding Discussions

Using COMBINE analysis, we have obtained QSKRs for koff rates with very good

predictive power (Q2
LOO = 0.69, R2

PRED = 0.86 for N-HSP90 and Q2
LOO =0.70 for

HIV-1 protease) and identified the key ligand–receptor interactions that contribute

to the variance in binding kinetics. These specific interaction energy components

provide insights into the mechanisms of specific slow and fast dissociating classes of

compounds. Additionally, COMBINE analysis could be used to predict the effect

of specific mutations in the protein on the dissociation kinetics of its inhibitors.

COMBINE analysis was originally developed to derive QSARs for binding affinity

(or Kd, the equilibrium dissociation constant) for a congeneric series of compounds
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with a similar binding mode to a protein target. Here, we have not used congeneric

series, but rather diverse sets of compounds with very different scaffolds and binding

modes. We find that our COMBINE analysis models for Kd are not as predictive

as the COMBINE models for koff for these diverse sets of compounds (see Tables

3.10, 3.11, 3.12, 3.13). For deriving the model for Kd of the N-HSP90 inhibitors, the

full dataset of 66 compounds was initially used for training. 3 outliers (compounds

17, 50 and 67) were later removed from the PLS analysis to improve the quality

of the model. Therefore, the final model for Kd was trained with 63 compounds.

Inspite of training the model with the whole dataset, the model for Kd had only

weak predictive ability with R2 = 0.59 and Q2
LOO = 0.41 for 3 latent variables (see

Tables 3.10 and 3.11). Similarly, for deriving the model for Kd of HIV-1 protease

inhibitors, the full dataset of 36 compounds was initially used for training. 3 outliers

(compounds B435, A037 and B249) were later removed from the PLS analysis to

improve the quality of the model. Therefore, the final model for Kd of protease

inhibitors was trained with 33 compounds.

LV R2 Q2
LOO AAET AAEV RMET RMEV

1 0.33 0.13 0.66 0.74 0.90 1.02

2 0.55 0.34 0.58 0.68 0.73 0.89

3 0.59 0.41 0.57 0.67 0.70 0.84

4 0.64 0.39 0.52 0.67 0.66 0.85

5 0.69 0.40 0.49 0.67 0.61 0.85

6 0.70 0.32 0.48 0.68 0.60 0.90

7 0.72 0.16 0.47 0.74 0.58 1.00

8 0.74 0.09 0.45 0.76 0.56 1.04

9 0.74 -0.17 0.44 0.82 0.55 1.18

10 0.75 -0.75 0.44 0.91 0.54 1.44

Table 3.10: Summary of the models derived for different numbers of latent variables (LVs) for

the COMBINE analysis for Kd of the N-HSP90 inhibitors. The models were derived using the

log10(Kd) value (unit of Kd is M) as the response variable in the PLS analysis. The table lists

the regression coefficient (R2) for the training set, the correlation coefficient for leave-one-out cross

validation sets (Q2
LOO), average absolute errors (AAET and AAEV ) and root mean squared errors

(RMET and RMEV ) for the training set and leave-one-out validation sets, respectively.
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Validation Q2 AAEV RMEV

Leave-one-out (LOO) 0.41 0.67 0.84

Leave-two-out (L2O) 0.41 0.68 0.84

Leave-three-out (L3O) 0.38 0.70 0.86

Random groups of 7 0.37 0.69 0.87

(10 iterations)

Table 3.11: Statistical measures of correlation for the COMBINE Analysis models Derived for

log(Kd) of N-HSP90 inhibitors. The table lists the cross-validated correlation coefficient (Q2),

average absolute errors (AAEV ) and root mean squared errors (RMEV ) for different validation

methods for the PLS model derived with 3 latent variables for N-HSP90 inhibitors.

LV R2 Q2
LOO AAET AAEV RMET RMEV

1 0.30 0.08 1.04 1.22 1.23 1.42

2 0.39 0.16 0.95 1.13 1.15 1.35

3 0.55 0.27 0.78 1.05 0.99 1.26

4 0.64 0.37 0.68 0.96 0.88 1.17

5 0.69 0.45 0.63 0.85 0.82 1.09

6 0.78 0.53 0.50 0.79 0.69 1.02

7 0.80 0.53 0.47 0.78 0.65 1.01

8 0.83 0.53 0.45 0.76 0.60 1.01

9 0.86 0.43 0.41 0.89 0.54 1.11

10 0.89 0.24 0.39 1.01 0.50 1.28

Table 3.12: Summary of the models derived for different numbers of latent variables (LVs) for

the COMBINE analysis for Kd of the HIV-1 protease inhibitors. The models were derived using

the log10(Kd) value (unit of Kd is M) as the response variable in the PLS analysis. The table lists

the regression coefficient (R2) for the training set, the correlation coefficient for leave-one-out cross

validation sets (Q2
LOO), average absolute errors (AAET and AAEV ) and root mean squared errors

(RMET and RMEV ) for the training set and leave-one-out validation sets, respectively.

The R2 and Q2
LOO for the COMBINE analysis model derived with 6 latent vari-

ables are 0.78 and 0.53 respectively (see Tables 3.12 and 3.13). We do however,

obtain better statistics for a COMBINE model for Kd generated with a smaller data

set of resorcinol compounds that inhibit HSP90 and have a similar scaffold (Table

3.14). A possible explanation for the better predictions for koff than Kd may be

that dissociation rates are independent of the unbound state, and therefore differ-

ences in ligand and protein desolvation and conformational free energies are not so
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important.

Validation Q2 AAEV RMEV

Leave-one-out (LOO) 0.53 0.79 1.02

Leave-two-out (L2O) 0.46 0.81 1.08

Leave-three-out (L3O) 0.44 0.81 1.10

Random groups of 5 0.48 0.83 1.06

(10 iterations)

Table 3.13: Statistical measures of correlation for the COMBINE Analysis models Derived for

log(Kd) of HIV-1 protease inhibitors. The table lists the cross-validated correlation coefficient (Q2),

average absolute errors (AAEV ) and root mean squared errors (RMEV ) for different validation

methods for the PLS model derived with 6 latent variables for HIV-1 protease inhibitors.

Validation Q2 AAEV RMEV

Leave-one-out (LOO) 0.49 0.47 0.57

Leave-two-out (L2O) 0.45 0.47 0.59

Leave-three-out (L3O) 0.47 0.46 0.58

Random groups of 5 0.43 0.49 0.61

(10 iterations)

Table 3.14: Statistical measures of correlation for the COMBINE Analysis models Derived for

the log(Kd) of the resorcinol series of inhibitors of N-HSP90. For deriving the model for Kd, a

smaller dataset of 25 inhibitors belonging to the resorcinol series was used for training. 3 outliers

(compounds 23, 28, 30) were later removed from the PLS analysis to improve the quality of the

model. Therefore, the final model for Kd was trained with 22 compounds. The table lists the cross-

validated correlation coefficient (Q2), average absolute errors (AAEV ) and root mean squared errors

(RMEV ) for different validation methods used. These statistical measures correspond to a model

derived with 4 latent variables in PLS analysis.

The current applications to HSP90 and HIV-1 protease data sets with very di-

verse sets of inhibitors, using both crystal structures and modeled protein-inhibitor

complexes, demonstrates the potential of COMBINE analysis as a robust QSKR

approach with increasing scope for application as more data sets of measured ki-

netic parameters become available. COMBINE analysis complements a growing

number of methods based on biomolecular simulation and machine learning to pre-

dict drug–target binding kinetics[9]. Indeed, a possible extension of the COMBINE

analysis approach would be to the analysis of structures from molecular dynamics
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simulations, including intermediates along drug binding or unbinding pathways.
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Chapter 4

Halogen-aromatic π interactions

modulate inhibitor residence time

This Chapter is based on the following publication:

Halogen–Aromatic π Interactions Modulate Inhibitor Residence Times.

Christina Heroven, Victoria Georgi, Gaurav K. Ganotra, Paul E Brennan, Finn

Wolfreys, Rebecca C. Wade, Amaury E. Fernández-Montalván, Apirat Chaikuad,

Stefan Knapp, Angew. Chemie Int. Ed. 2018, 57 (24), 7220–7224.

4.1 Background

Designing drug molecules with longer residence times may result in increased drug

efficacy and prolonged inhibition after the free drug concentration has dropped owing

to in vivo clearance. Having slow off-rates specific for the target may also result in

kinetic-selectivity over off-targets with high dissociation rates despite similar bind-

ing constants[110]. Kinases are particularly dynamic proteins and after G-protein-

coupled receptors (GPCRs), kinases are the second most important group of drug

targets[111] under study with more than 150 kinase inhibitors in preclinical trials

waiting FDA approval[112]. There has been several reasons attributed to the slow

off-rates of several kinase inhibitors already approved as clinical drugs. In most

cases, an induced fit binding mechanism results in slow dissociation rates, where the

dissociation of the drug will require the structural rearrangement of the target. For

example, slow binding kinetics of a type II inhibitor of p38 MAP kinase, BIRB-796,

was suggested to be the result of its binding to an inactive conformation in which
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the DFG motif is displaced in a so-called “DFG-out” conformation[113]. However,

not all type II inhibitors that bind to “DFG-out” conformation show slow binding

kinetics[114]. Indeed, recent study by Schneider et al.[115] suggested that the slow

off-rates were the result of efficient hydrophobic contacts rather than the kinetic

dissociation barrier introduced by the DFG-out transition. In the case of the type I

CDK inhibitor roniciclib, the long residence time was considered to be the result of

changes in the arrangement of water molecules coupled to conformational adapta-

tion of the DFG motif[116]. In some cases, the presence of water-shielded hydrogen

bonds can also lead to slow off-rates[117].

Figure 4.1: The 5-iodotubercidin inhibitor (5-iTU) exhibits tight binding with slow dissociation

kinetics from haspin. A) Chemical structures of 5-iTU and adenosine. B) Superimposition of

haspin-5iTU and AMP (pdb id: 4ouc) reveals similar binding modes of the two compounds. C)

BLI sensorgram suggests slow kinetic behavior of the 5-iTU-haspin interaction. D) The iodide

and the benzene moieties of 5-iTU and F605, respectively, are located in close proximity with a

favorable geometry for a halogen-π bond. The figure is taken from Heroven et al.[118] with

permissions.

Herein, we present data that suggest that targeting the interactions between

halogen atoms, commonly found in drugs, and the aromatic residues, which are also

typically found in drug binding sites on proteins, can be utilized to design inhibitors
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with long residence times. We (Heroven et al.[118]) chose haspin, a serine/threonine

kinase with a known three-dimensional structure, as a model system and the close

analogue of ATP, 5-iodotubercidin (5-iTU) as a model inhibitor for an archetypal

active state (type I) kinase-inhibitor binding mode. From the analysis of 3D crys-

tallographic structures of haspin, it was observed that the binding modes of both

5-iTU and the nucleoside adenosine, are highly conserved (see Figure 4.1 A,B). Both

of these molecules are very similar except for the presence of the iodide moiety in

5-iTU, in close proximity to the F605 gatekeeper, which forms a halogen–aromatic

π interaction (see Figure 4.1 D). Compared to ATP or adenosine (Kd = 180 µM),

5-iTU showed a very high affinity (Kd = 0.78 nM) for haspin and an unexpectedly

long residence time. This tight binding of 5-iTU with slow binding kinetics was

further confirmed by isothermal titration calorimetry (ITC), biolayer interferometry

(BLI), and surface plasmon resonance (SPR) experiments (see Figure 4.1 C for BLI

results). We (Heroven et al.[118]) therefore hypothesized that this halogen-π inter-

action between iodide of 5-iTU and aromatic gatekeeper residue (phenylalanine) of

haspin contributes to most of the increase in the binding free energy (∆G) and could

be responsible for the long residence time of 5-iTU.

Figure 4.2: The σ-hole model and the polarization of the electrostatic surface potential. Electro-

static surface potentials of halogenated methane (top) and uridine nucleobase (bottom), adapted

from Auffinger et al.[119] and Scholfield et al.[120]. Potential energies are shown from red

(negative) to green (neutral) to blue (positive), viewing into the halogen atoms down the X-C

bond. The resulting polarization increases with the atomic size of the halogen, following the series

F < Cl < Br < I. For comparison, the potential surface of methane and methylated uridine is

shown on the right.
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Quantum mechanical calculations suggest that there is an anisotropic distribu-

tion of the electrostatic potential across the surface of the halogen[121]. According

to σ-hole model[122], this direction polarization is the result of the covalent σ-bond

(C-X) between a carbon atom and the halogen. Halogens have five electrons in

the p-atomic orbitals of their valence shell. While both px and py orbitals have

paired electrons, it is the single valence electron of the pZ orbital that is involved

in formation of the covalent C-X σ-bond. This depopulation of the pZ orbital di-

rectly opposite the C-X σ-bond creates a hole, also known as a σ-hole, that partially

exposes the positive nuclear charge of the halogen. The magnitude of the σ-hole

depends on the the polarizability of the halogen, which follows the series I > Br

> Cl > F (see Figure 4.2). This σ-hole magnitude also depends on the electron-

withdrawing ability of the molecule that the halogen is covalently bound to. As the

partial positive charge exposed along the C-X σ-bond diminishes with decreasing size

of the halogen atom, the iodide in 5-iTU was substituted by smaller halogen atoms

(Br, Cl and F) and the affinities and binding kinetics of these 5-iTU derivatives

were characterized using experimental assays. The affinities of 5-iTU derivatives

diminished with decreasing size of the substituted halogen atom, as confirmed by

ITC experiments (see Figure 4.3 A). In comparison to 5-iTU, removal of the halogen

atom in tubercidin (TU), resulted in a 42-fold decrease in the potency (see Figure

4.3 A). Similarly, substitution of iodide in 5-iTU with a smaller sized fluoride led to a

eightfold decrease of potency in 5-fluorotubercidin (5-fTU). Binding kinetics of these

five synthesized 5-tubercidin halogen derivatives with haspin were performed using

three independent techniques: kinetic probe competition assays (kPCAs), BLI, and

SPR. The Kd values determined by these three independent methods correlated well

with each other and also with the binding constants determined in solution by ITC

(see Figure 4.3 B). The off-rates (koff ) calculated from three different experimen-

tal showed the same behavior with the off-rates increasing with decreasing halogen

size from the 5-iodo- to the 5-fluoro-substituted tubercidin, and the unsubstituted

tubercidin showed the fastest off-rate (see Figure 4.3 C,D).
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Figure 4.3: Binding kinetics of haspin with five tubercidin derivatives harboring halogen sub-

stituents at the 5-position. A) ITC thermodynamic binding parameters. B) Comparison of dis-

sociation constants (KD) measured by ITC, BLI, SPR and kPCA shows good correlation of the

measured equilibrium data. C) SPR sensorgrams demonstrating increasingly slow dissociation rates

with increasing size of the halogens. D) Rate plot with Isoaffinity Diagonal (RaPID) of kon and

koff constants measured by BLI, SPR and kPCA. The red arrow indicates the trend to increasing

kon and decreasing koff upon increasing the atomic radii of the halogens. E) Crystal structures

reveal conserved binding modes of all five tubercidin derivatives, albeit with an additional water

molecule adjacent to the inhibitor and F605 gatekeeper in tubercidin. The figure is taken from

Heroven et al.[118] with permissions.
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4.2 Aim of the work

Based on the observations from kinetic, thermodynamic, and structural measure-

ments performed for characterization of the halogen-aromatic π interactions in the

haspin-inhibitor complexes, we wanted to answer few important questions such as:

1) How is the polarization-mediated anisotropic charge distribution on halogen atoms

involved in mediating such a strong electrostatic interaction in the binding pocket

of kinase?,

2) What are the different energetic components that contribute to this electrostatic

interaction?,

3) Can the mechanism of prolonging drug-target residence times by introducing

aromatic-halogen interactions be applied to other kinases having aromatic residues

at the gatekeeper position?

To answer these questions, we decided to perform quantum mechanical calcula-

tions as it was important to consider polarization and electronic effects for explaining

such polarization mediated interactions. Therefore, to analyze the nature of the in-

teractions of the core inhibitor scaffold with the gatekeeper aromatic residues, we

calculated post-Hartree-Fock ab initio interaction energies using the Møller–Plesset

perturbation theory (MP) to second order (MP2). Then, we evaluated how different

contributions to the interaction energy, derived from Energy Decomposition Scheme

based on Hybrid Variation-Perturbation Theory, perform in scoring the residence

times and affinities. To account for the complete protein structure in the com-

putation of the binding free energies of the haspin–ligand complexes, we used the

classical MM/GBSA approach with an implicit solvent model. We also applied a new

computational approach based on Molecular dynamics Simulations: τ -Random Ac-

celeration Molecular Dynamics (τ -RAMD)[29] for prediction of relative dissociation

rates.

4.3 Methods

4.3.1 Quantum mechanical interaction energy calculations

The energy contributions of the inhibitor-aromatic gatekeeper interaction in haspin-

inhibitor complexes were calculated using ab initio Møller–Plesset perturbation the-
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ory to second order (MP2). The Protein Preparation Wizard [104] of the Schrodinger

suite (release 2015-4, Schrödinger, LLC, New York) was used to pre-process the X-

ray crystallographic structures of the haspin-inhibitor complexes, to add missing

side chains and to optimize the H-bond network. The impref [104] program of the

Schrödinger suite was used for energy minimization using the OPLS3 [123] force field.

The default minimization protocol using impref involves optimization of the position

of hydrogen atoms followed by all-atom minimization where non-hydrogen atoms are

restrained with a harmonic potential using a force constant of 25 kcal/mol.Å2. The

coordinates of the inhibitor and the gatekeeper phenylalanine residue were extracted

from energy-minimized structures of haspin-inhibitor complexes. The termini of the

phenylalanine residue were capped with hydrogen atoms and their positions were

optimized using the OPLS3 force field in the Maestro program of the Schrödinger

suite (release 2015-4, Schrödinger, LLC, New York). In the case of the gatekeeper

mutants, the corresponding gatekeeper residues (tyrosine and threonine) were pre-

pared in the same way. The def2TZVP basis set was used for all calculations and

effective core potentials (ECPs) were used for the iodine atom. Ab initio inter-

action energies at the MP2 level were calculated using the GAMESS[76] software,

and partitioned into their constituent interaction energy terms using the many body

interaction energy decomposition scheme (EDS) described by Góra et al.[78, 77].

4.3.2 Binding free energy calculations using MM/GBSA

The molecular mechanics-generalized Born surface area (MM/GBSA) method was

used to estimate the binding free energy of the inhibitors to haspin kinase. The initial

coordinates of the haspin-inhibitor complexes were obtained from the co-crystallized

structures. The Protein Preparation wizard [104] of the Schrödinger suite (release

2015-4, Schrödinger, LLC, New York) was used for pre-processing of the structures,

formation of disulfide bonds, addition of hydrogen atoms and assigning protonation

states at pH 7.0. The pmemd module of the Amber14 software suite [79] was used

to perform the Molecular dynamics (MD) simulations together with the Amber

ff14SB [107] force field for protein. The LEap module of AmberTools14 was used to

construct the topologies of the haspin-inhibitor complexes. The ligand parameters

were generated based on the generalized Amber force field[124] (GAFF ). To improve

the description of charge, dipole moment and geometry of halogenated compounds

in molecular mechanical calculations, the positive region (σ-hole) centered on the
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halogen atom was represented by an extra-point charge (EP). This inclusion of an EP

results in improved modeling of halogen-bonding in MD simulations[125]. The force

field parameters for this EP were taken from Ibrahim et al.[125]. For generation of

the partial atomic charges for the ligands, the RESP [106] program was used to fit the

atom-centered charges to the molecular electrostatic potential (MEP) grid computed

by the GAMESS [76] program. The system was centred and aligned with the axes

to minimize the volume. The system was then solvated using the TIP3P [126] water

model by immersing the protein-ligand complex in a cubic box of water molecules,

such that the shortest distance between the edge of the solvation box and the complex

is 10 Å. The net charge (-2e) of the system was then neutralized by adding counter

ions such as Na+ and Cl- ions. For each system, energy minimization was performed

in three 1500-cycle consecutive runs using the steepest descent minimization method

followed by switching to the conjugate gradient method after 500 cycles. Gradually

decreasing harmonic restraints with force constants of 500, 1 and 0 kcal/mol.Å2 were

used for non-hydrogen atoms in three consecutive runs. Energy minimization was

followed by 1 ns of gradual heating from 10 K to 300 K with harmonic restraints

with a force constant of 50 kcal/mol.Å2 acting on non-hydrogen atoms. Then the

system was equilibrated for 1 ns under NPT conditions at 300K, with heavy atoms

(except solvent Na+ and Cl- ions) harmonically restrained with a force constant of

50 kcal/mol.Å2. This was followed by an NPT equilibration of 2 ns without any

positional restraints. The potential energy function and atomic coordinates were

calculated using a 2 fs time step. The SHAKE [62] algorithm was used to constrain

all the bonds involving hydrogen atoms. The Particle Mesh Ewald (PME)[127]

method was used to calculate the electrostatic interactions. A cut-off of 10 Å was

set for generating the non-bonded pair list and this pair list was updated after every

100 steps. After equilibration, data were collected over 6 ns of a simulation run

for binding free energy calculations and 3000 sets of atomic coordinates were saved

every 2 ps.

Then, MMGBSA calculations of the binding free energy were performed using

the MMPBSA.py module implemented in the Amber14 analysis tools. A single-

trajectory approach was used in which receptor, ligand and complex geometries

were extracted from a single MD trajectory. All the ions and water molecules were

stripped from the trajectory snapshots. A salt concentration of 0.15 M and the

Born implicit solvent model (igb=2 ) was used. Each binding free energy was com-
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puted as the sum of a molecular mechanics term (∆Egas), a Gibbs solvation term

(∆∆Gsolvation) and an entropic contribution (T∆Ssolute). For the entropic contribu-

tion to binding free energy, we computed translational and rotational entropies with

a rigid rotor model using the MMPBSA.py module. The calculation of vibrational

entropies using normal-mode analysis with MMPBSA.py failed due to the inclusion

of the EP in the force field. The free energy of binding for some of the derivatives

is positive since vibrational and conformational entropy terms are neglected.

4.3.3 τ -Random Acceleration Molecular Dynamics

(τ -RAMD) simulations

τ -RAMD is a computationally efficient procedure that involves application of Ran-

dom acceleration molecular dynamics simulations[28], to compute relative dissoci-

ation rates for ligand unbinding from the binding site of proteins[29]. To perform

τ -RAMD simulations, X-ray crystallographic structures of haspin-inhibitor com-

plexes were used as the starting structures. The Protein Preparation wizard [104]

of the Schrodinger suite (release 2015-4, Schrödinger, LLC, New York) was used to

pre-process the structures, to add missing side chains, and to optimizing the H-bond

network. The topologies of the systems were constructed using the LEap program of

the Amber14 software. The Amber ff14SB [107] force field was used for the proteins,

the General Amber Force Field[124] (GAFF ) for inhibitors, and the TIP3P [126]

model for waters. The partial atomic charges of the ligands were calculated accord-

ing to the AM1-BCC [128, 129] method using Antechamber module of Amber14. The

systems were then solvated in a cubic box of water, with water molecules extending

at least 14Å between the complex and the edge of the box. Na+ counter ions were

added to neutralize the net charge of the system. The pmemd module of Amber14

was used for carrying out energy minimization in four 1500 cycle consecutive runs

using the steepest descent minimization method followed by switching to the con-

jugate gradient method after 500 cycles. Gradually decreasing harmonic restraint

force constants of 500, 1 and 0.005 kcal/mol.Å2 were used for heavy atoms in the

first three consecutive runs and no positional restraints were used in the final min-

imization run. Each system was then heated for 40 ps from 10 K to 300 K with a

restraint with a force constant of 50 kcal/mol.Å2 acting on the heavy atoms. Then,

the systems were equilibrated in the NPT ensemble using a Langevin thermostat and

Nosé–Hoover Langevin pressure control to maintain the system at 1 atm and 300
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K. A two-stage equilibration for 400 ps (200 ps in each stage) was performed using

the pmemd module of Amber14. In the first stage, heavy atoms except Na+ and

Cl- ions were restrained with a harmonic with a force constant of 50 kcal/mol.Å2.

In the second stage, NPT equilibration with no restraints was performed for each

system. The SHAKE algorithm was used to constrain all bonds involving hydrogen

atoms and a time step of 2 fs was used. Electrostatic interactions were calculated

using the Particle Mesh Ewald (PME) method. The atomic coordinates of the equi-

librated system generated with AMBER were used as input for the production run

with the NAMD software[80]. Then, 2 ns long standard MD simulations were run

using the NAMD software with Langevin dynamics applied for constant tempera-

ture (300K ) and pressure control (1 atm). Atom pairs that were less than 14 Å

apart were included in the pair list, and non-bonded interactions were calculated

at every step for atom pairs that were within 12 Å cut-off distance. The atomic

coordinates and velocities obtained after 2 ns of this production run were used as

the starting input for the Random Acceleration Molecular Dynamics (RAMD) sim-

ulations. The RAMD simulation procedure[28] was implemented as a Tcl wrapper

around the NAMD software[80], and recently this Tcl wrapper was modified to take

the force magnitude rather than acceleration as an input parameter and to use new

functions available from version 2.10 of NAMD onward[29].

The RAMD simulations were performed in an explicit solvent with parame-

ters identical to the standard MD simulations. A randomly oriented force (F ) of

magnitude 8.0 kcal/mol.Å was applied to the centre-of-mass of the ligand and the

movement of the ligand was assessed after every 50 MD simulation steps (100 fs).

If the change in distance r moved by the ligand in this time was less than a thresh-

old distance of rmin = 0.025 Å, a new random direction of the force was generated.

Otherwise, the simulation was continued for the next 50 simulation steps with the

same direction of the force. The simulation was stopped when the distance between

the ligand and protein centre-of-mass exceeded 30 Å or if the ligand exit was not

observed within 3 ns. Coordinates were saved at 1 ps intervals. A set of 20 RAMD

dissociation trajectories was generated for each ligand by varying the initial direc-

tion of the artificial force F. The ligand egress times of the RAMD trajectories were

recorded for all the ligands employed in this method. As in the procedure described

by Kokh et al.[29], the residence time, τ , was defined as the simulation time re-

quired for ligand dissociation in 50% of the trajectories. A bootstrapping procedure
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(200 sets, each of the sets containing 80% of the trajectories chosen randomly) was

employed to compute the final residence time, τcomp, and its standard deviation.

4.4 Results and Discussions

4.4.1 The second order Møller-Plesset interaction energies

(EMP2) between the inhibitor and the gatekeeper

residue correlate well with dissociation rate constants

and equilibrium dissociation constants determined

experimentally

The second-order Møller–Plesset interaction energies (EMP2) between the 5-iTU

derivatives and the gatekeeper phenylalanine (F605) residue were calculated at con-

secutive levels of quantum mechanical theory and are outlined in Tables 4.1. The

contributions of isolated constituent energy terms to total interaction energy are

given in Table 4.2. EMP2 energies were also calculated between 5-iTU and mu-

tated gatekeeper residues (Tyrosine and Threonine) at the 605 position (F605Y and

F605T) (see Tables 4.3 and 4.4). The coordinates for these tyrosine and threonine

gatekeepers were extracted from the resolved crystallographic structures of mutant

haspin in complex with 5-iTU. We obtained a good correlation between interaction

energies calculated at the MP2 level of theory (EMP2) and the dissociation rate con-

stants (koff ) and affinities determined experimentally (see Figure 4.4 A,C). EMP2

energies correlate well with the size of halogens substituted on the inhibitors. The

Pearson correlation coefficient (R2) between calculated EMP2 energies (kcal/mol)

for 5-iTU derivatives with the gatekeeper (F605) residue and their log(koff ) values

from SPR experiments is 0.93. Similarly, calculated EMP2 energies also correlated

well with affinities (Kd) from ITC experiments with a Pearson correlation coefficient

of 0.80. The EMP2 interaction energy calculated for 5-iTU with F605 was approxi-

mately 1.5 kcal/mol higher than the EMP2 energy calculated for tubercidin (Table

4.1).

85



Inhibitor log koff

(SPR)

log koff

(BLI)

log Kd

(SPR)

log Kd

(ITC)

EEL EHL ESCF EMP2

5-iTU -2.62 -3.56 -9.10 -8.24 -1.85 2.79 2.15 -3.01

5-brTU -1.92 -3.19 -8.59 -7.76 -1.09 2.22 1.78 -2.74

5-clTU -1.84 -3.04 -8.18 -7.79 -0.52 1.91 1.58 -2.24

5-fTU -0.60 -2.20 -6.81 -7.37 0.17 1.15 0.94 -1.44

tubercidin -0.18 -1.32 -5.59 -6.62 -0.09 0.65 0.47 -1.48

Table 4.1: Total interaction energy [kcal. mol−1] between tubercidin derivatives and gatekeeper

Phe 605 residue at consecutively increasing levels of quantum mechanical theory. EEL is the

electrostatic energy only, EHL includes the Heitler-London energy, ESCF includes the Hartree-

Fock energy as well, and EMP2 is the full Moeller-Plesset second order energy. koff values were

measured by SPR and BLI, and Kd values were measured by SPR and ITC.

Inhibitor log

koff

(SPR)

log

koff

(BLI)

log

Kd

(SPR)

log

Kd

(ITC)

EEL,MTP EEL,PEN EEX EDEL ECORR

5-iTU -2.62 -3.56 -9.10 -8.24 2.48 -4.33 4.63 -0.64 -5.16

5-brTU -1.92 -3.19 -8.59 -7.76 1.03 -2.12 3.30 -0.42 -4.54

5-clTU -1.84 -3.04 -8.18 -7.79 -0.21 -0.32 2.44 -0.34 -3.82

5-fTU -0.60 -2.20 -6.81 -7.37 0.13 0.04 0.97 -0.21 -2.37

tubercidin -0.18 -1.32 -5.59 -6.62 -0.07 -0.01 0.74 -0.18 -1.94

Table 4.2: Contribution of the different interaction energy terms to the total interaction energy,

EMP2 [kcal. mol−1], between tubercidin derivatives and the gatekeeper Phe 605 residue. EEL,MTP

is the electrostatic multipole term, EEL,PEN is the penetration electrostatic term, EEX is the

exchange term, EDEL is the delocalization term, and ECORR is the correlation energy term. koff
values were measured by SPR and BLI, and Kd values were measured by SPR and ITC.

Partitioning of EMP2 into its constituent energy components (see Table 4.2) us-

ing a many-body interaction energy decomposition scheme showed that the major

contribution to EMP2 comes from the correlation energy (ECORR). ECORR describes

second-order intermolecular dispersion interactions and the correlation corrections

to the Hartree–Fock energy. Similar to EMP2, ECORR increases in magnitude with

an increase in the size of the halogen. A very high correlation was observed be-

tween ECORR and the dissociation rates measured experimentally with R2 = 0.97
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(see Figure 4.4 B). This indicates the importance of the halogen interaction with

the aromatic gatekeeper for the prolongation of residence times as the halogen size

increases. The computed ab initio energies also correlate for the interaction of 5-iTU

with the F605Y mutant but the magnitude of the interaction energy of 5-iTU with

the threonine mutant (F605T) was underestimated (see Table 4.3 and Figure 4.4).

System log koff

(SPR)

log koff

(BLI)

log Kd

(SPR)

log Kd

(ITC)

EEL EHL ESCF EMP2

Wild type -2.62 -3.56 -9.10 -8.24 -1.85 2.79 2.15 -3.01

F605Y ND -3.37 ND -8.34 -2.27 3.01 2.30 -3.13

F605T -1.72 -2.91 -7.89 -8.38 -0.78 1.38 0.99 -1.14

Table 4.3: Total interaction energy [kcal. mol−1] between 5-iTU and the gatekeeper residue for

the wild type and the two mutants, at consecutively increasing levels of quantum mechanical theory.

EEL is the electrostatic energy only, EHL includes the Heitler-London energy, ESCF includes the

Hartree-Fock energy as well, and EMP2 is the full Moeller-Plesset second order energy. koff values

were measured by SPR and BLI, and Kd values were measured by SPR and ITC.

System log

koff

(SPR)

log

koff

(BLI)

log

Kd

(SPR)

log

Kd

(ITC)

EEL,MTP EEL,PEN EEX EDEL ECORR

Wild type -2.62 -3.56 -9.10 -8.24 2.48 -4.33 4.63 -0.64 -5.16

F605Y ND -3.37 ND -8.34 0.41 -2.68 5.28 -0.71 -5.43

F605T -1.72 -2.91 -7.89 -8.38 -6.97 6.19 2.17 -0.39 -2.13

Table 4.4: Contribution of the different interaction energy terms to the total interaction energy,

EMP2 [kcal.mol−1] between 5-iTU and the gatekeeper residue for the wild type and the two mutants.

EEL,MTP is the electrostatic multipole term, EEL,PEN is the penetration electrostatic term, EEX

is the exchange term, EDEL is the delocalization term, and ECORR is the correlation energy term.

koff values were measured by SPR and BLI, and Kd values were measured by SPR and ITC.
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Figure 4.4: Correlation plots of computed quantum mechanical energies against experimental

binding parameters. A) Second-order Møller-Plesset interaction energy (EMP2) between the tu-

bercidin derivatives and the gatekeeper residue versus the experimental (SPR) dissociation rate

con-stants (koff ) of the tubercidin derivatives. B) The second-order correlation correction energy

term (ECORR) for the interaction between the tubercidin derivatives and the gatekeeper residue

versus the experimental (SPR) dissociation rate constants (koff ) of the tubercidin derivatives This

correlation energy (ECORR) includes second-order intermolecular dispersion interactions and the

correlation corrections to the Hartree-Fock (HF) energy. C) Second-order Møller-Plesset interac-

tion energy (EMP2) between tubercidin derivatives and gatekeeper residue ver-sus the experimental

(ITC) binding affinities (Kd) of the tubercidin derivatives. D) Second-order correlation correction

energy term (ECORR) for the interaction between the tubercidin derivatives and the gatekeeper

residue versus the experimental (ITC) binding affinities (Kd) of the tubercidin derivatives. The

correlation coefficients (R2) and the linear fits were computed omitting the outlier data points for

the F605T mutant. The error bars for the Kd (ITC) values are smaller than the size of the data

point symbols.
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4.4.2 Binding free energies calculated from MM/GBSA

approach correlate with experimental parameters for

the halogen-gatekeeper interaction.

In order to account for the complete protein structure, we computed the binding free

energies of the haspin–inhibitor complexes using the classical MM/GBSA approach

with an implicit solvent model (see Table 4.5). Each binding free energy was com-

puted as the sum of a molecular mechanics term (∆Egas), a Gibbs solvation term

(∆∆Gsolvation) and an entropic contribution (T∆Ssolute). Some ∆GMMGBSA values

are positive as they only include translational and rotational entropic terms and do

not include vibrational and conformational entropy contributions.

The binding free energies computed correlate well with the calorimetric data

measured by ITC, with the Pearson correlation coefficient, R2 = 0.83 between

enthalpic energies computed by MM/GBSA (∆Egas + ∆∆Gsolvation) and ITC en-

thalpies (∆HITC). Also, a good correlation (R2 = 0.62) was observed between the

binding free energies computed from MM/GBSA (∆GMMGBSA) and the ITC binding

free energies (∆GITC) of the interactions between haspin and halogenated deriva-

tives of 5-iTU. Therefore, the binding free energies computed from MM/GBSA, are

consistent with the increasingly favorable enthalpic contribution to binding as the

halogen size increases (see Figure 4.5 and Table 4.5).

Figure 4.5: Correlation of calculated binding free energies with experimental parameters for

the halogen-gatekeeper interaction. A) MMGBSA internal and solvation contributions (∆Egas

+ ∆∆Gsolvation) vs the ITC enthalpies (∆HITC) and (B) MMGBSA binding free energies

(∆GMMGBSA) vs the ITC binding free energies (∆GITC) of the interactions between haspin and

TU derivatives.
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Inhibitor
∆Egas + ∆∆Gsolvation

(kcal.mol−1)

T∆SMMGBSA

(kcal.mol−1)

∆GMMGBSA

(kcal.mol−1)

5-iTU -25.95 ± 2.93 -23.52 ± 0.02 -2.43 ± 2.95

5-brTU -26.00 ± 2.75 -23.27 ± 0.02 -2.73 ± 2.77

5-clTU -21.58 ± 3.33 -22.97 ± 0.02 1.39 ± 3.35

5-fTU -20.31 ± 3.04 -22.83 ± 0.01 2.52 ± 3.05

tubercidin -19.45 ± 2.87 -22.65 ± 0.02 3.20 ± 2.89

Table 4.5: Binding free energies calculated using the MMGBSA approach for the binding of

tubercidin derivatives with haspin.

4.4.3 Relative residence times from τ -RAMD simulations

correlate with the experimentally measured residence

times

The ligand egress times of 5-iTU derivatives from the haspin’s binding site were

recorded for the set of 20 dissociation trajectories simulated for each inhibitor using

τ -RAMD protocol. The RAMD residence time (τcomp) and its standard deviation

was computed for each of the 5-iTU derivative using a bootstrapping procedure

where bootstrapping was performed for a total 200 sets, and in each of the sets 80%

of the trajectories were chosen randomly (see Table 4.6).

Inhibitor

Experimental

residence time (SPR)

τexp (s)

Experimental

residence time (BLI)

τexp (s)

Computed

residence time

τcomp (s)

5-iTU 416.67 3623.19 1.62 ± 0.37

5-brTU 84.03 1557.63 1.29 ± 0.45

5-clTU 68.97 1084.60 0.89 ± 0.17

5-fTU 4.01 158.23 0.95 ± 0.15

tubercidin 1.52 21.10 0.64 ± 0.18

Table 4.6: Experimental residence times (τexp) and the computed residence times from τ -RAMD

(τcomp) for tubercidin derivatives.
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Figure 4.6: Correlation plot of experimental residence times (τexp) from (A) SPR experimental

assay and (B) BLI measurements versus the computed residence time (τcomp) from the τRAMD

procedure as described in Kokh et al.[29]. The solid line in both plots corresponds to a linear fit

with R2 values labelled on the plot.

A good correlation was observed between the computed RAMD residence time

(τcomp) and experimental residence times (τexp) of halogenated inhibitors of haspin

from SPR and BLI assay (see Figure 4.6 A and B). The computed residence times

(τcomp) correlated better with τexp values from BLI experiments with Pearson correla-

tion coefficient, R2 of 0.86 compared to R2 of 0.76 for τexp from SPR assay. However,

difference in residence time between 5-clTU and 5-fTU is not distinguished; suggest-

ing some effects of halogens may not be captured by the classical MM force field.

In this chapter, the biophysical and structural data presented from Heroven

et al.[118] on 5-halogen-substituted tubercidin derivatives along with our computa-

tional results using quantum chemical interaction energy calculations and MM/GBSA

binding free energy calculations, suggest that it could be a viable strategy to in-

crease the residence times of inhibitors by mediating their interactions with aro-

matic residues of proteins by incorporating heavier halogen atoms into inhibitors.

Our results provide a good basis for further research on this topic and it would be

interesting to explore the role of presence of halogen atoms to longer residence times

of drug candidates especially because many approved drugs have halogen atoms[130]

and the aromatic residues are also found frequently in the binding site of proteins,

especially kinases.
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Chapter 5

Protocol for calculation of diffusional

association rates for small molecules

using Brownian dynamics

5.1 Overview

The Brownian dynamics (BD) simulation technique is used to simulate the diffu-

sive dynamics of particles, such as proteins, that undergo Brownian motion. It

involves use of an implicit solvent model and the stochastic and friction effects

of the surrounding solvent are introduced in a separate term in the equation of

motion. BD is used to simulate protein-protein association or diffusion of mul-

tiple proteins to investigate biomolecular diffusion, binding kinetics, and the ef-

fects of macromolecular crowding. The procedure for simulating diffusional asso-

ciation of protein molecules with Brownian dynamics simulations using the SDA

software[54, 53, 131] is well established and numerous applications have been re-

ported in the past where SDA was used to compute diffusional association rate

constants (kon) for protein-protein association and the computed rates correlated

well with the experiments[131, 53, 7, 132, 6, 5, 133, 134]. However, this procedure to

compute diffusional kon rates using SDA has not been well optimized for computation

of association kinetics for binding of protein and small molecules. Considering the

increasing interest in simulating association of drug-like molecules with their target

proteins to compute kinetic parameters for binding, we decided to optimize the simu-
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lation parameters in SDA and implement a generalized protocol using SDA software

that allows calculation of diffusional kon rates for small molecules by running BD

simulations of diffusional association of protein and small molecules. We also imple-

mented new algorithms for assigning effective charge sites for small molecules and

for the systematic definition of reaction criteria as python scripts. These algorithms

differ from the algorithms already implemented for protein-protein association. The

implemented protocol was validated for several inhibitors of 4 different targets of

varying levels of structural complexity (see the following sections). While for some

of these protein-ligand systems, binding is mainly electrostatically driven, for others

short-range hydrophobic interactions play a key role in the binding as the inhibitors

are hydrophobic in nature.

5.1.1 Trypsin

Figure 5.1: 3D crystal structure of trypsin in complex with benzamidine (PDB ID: 3PTB[135]).

Trypsin is shown in ribbon representation with helices, β-sheets and loops shown in red, yellow

and green, respectively, and the bound benzamidine is shown in magenta stick representation.

Trypsin is a pancreatic serine protease and it hydrolyses proteins by cleaving peptides

on the C-terminal side of the amino acid residues, lysine and arginine. Trypsin is

characterized by the catalytic triad His57, Asp102 and Ser195. Trypsin is a globular

protein composed of 220 residues. The protein is composed of 13 beta-strands, 4
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regions of alpha-helix, and six disulfide bridges. The Ca2+-binding loop extends from

Glu70 to Glu80. Due to its relatively small size (25 kDa) and monomeric structure,

the trypsin–benzamidine complex has proven to be a popular model system for

developing and testing methods for computing protein–ligand binding kinetics.

5.1.2 Human Coagulation Factor Xa

Figure 5.2: 3D crystal structure of the Human Coagulation Factor X activated (FXa) with

rivaroxaban bound (PDB ID: 2W26[136]). FXa is shown in ribbon representation with helices, β-

sheets and loops shown in red, yellow and green, respectively, and rivaroxaban is shown in magenta

stick representation. The inset on the right shows the active site of FXa with rivaroxaban bound

and the four subpockets: S1, S2, S3 and S4 are labelled. The 2D structures of the FXa inhibitors

studied, rivaroxaban and apixaban, are also shown.

Coagulation Factor X activated (FXa) is a trypsin-like serine endo-peptidase and

an important enzyme (EC 3.4.21.6) of the blood coagulation cascade. It is formed

by the proteolysis of Factor X (FX). It is composed of two disulfide-linked subunits

that catalyze prothrombin to form thrombin (Factor IIa). Thrombin is also a serine

protease and it processes fibrinogen to form fibrin (Factor Ia). Fibrin, as the name

suggests, is a fibrous, non-globular protein which polymerizes with platelets and re-

sults in the formation of a blood clot. Because of its important role in the blood
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coagulation cascade, FXa is an important target for the treatment for thromboem-

bolic disorders and a number of selective, direct and indirect fXa inhibitors have been

approved for clinical use such as rivaroxaban[137], apixaban[138], betrixaban[139],

edoxaban[140] and fondaparinux[141]. Optimizing the kon of FXa inhibitors may be

important for the in vivo activities as kon for targeting free FXa has been identified

to influence the clinical coagulation behavior[142].

The active site of FXa can be subdivided into four sub-pockets: S1, S2, S3 and

S4[143](see Figure 5.2). Direct FXa inhibitors such as rivaroxaban and apixaban

bind in an L-shaped conformation where one part of the inhibitor occupies the

anionic S1 pocket and another part occupies the S4 pocket[136](see Figure 5.2, inset).

The S1 sub-pocket is surrounded by residues His57, Asp189, Ser195 and Tyr228, and

determines the major component of selectivity[137]. On the other hand, the S4 sub-

pocket consists of a narrow hydrophobic channel formed by aromatic residues, such

as Tyr99, Phe174 and Trp215. The first generation FXa inhibitors make direct

electrostatic interaction of a basic arginine-mimic P1 group with Asp189 at the

bottom of the S1 pocket[144, 145]. However, these basic groups are also generally

critical for oral bioavailability. A new class of oral fXa inhibitors has been developed

that does not require the presence of a basic P1 group and instead makes favourable

non-basic interactions with residues in the S1 sub-pocket. Rivaroxaban is one such

example which has a chlorothiophene moiety and its chlorine atom interacts with the

aromatic ring of Tyr228 at the bottom of the S1 pocket[145]. This chlorine–Tyr228

interaction accounts for high potency and oral bioavailability for the rivaroxaban.

5.1.3 Haspin kinase

Haspin, or germ cell-specific gene 2 protein (GSG2), is an atypical serine/threonine

kinase known for its role in cell cycle regulation[146, 147]. Haspin phosphorylates

Thr3 on histone H3 during prometaphase, which provides a signal for Aurora B

kinase to localize to the centromere of mitotic chromosomes[148]. Aurora B is part

of the chromosome passenger complex (CPC) and regulates several steps in mitotic

progression. The overall structure of the Haspin kinase corresponds to the conserved

eukaryotic protein kinase fold, which consists of two subunits: an amino-terminal

lobe (“N lobe”) and a larger carboxy-terminal lobe (“C lobe”)[149, 150]. The "N

lobe" is composed of an α-helix (helix αC) and a five-stranded β-sheet, while the

C lobe is predominantly helical[149, 150]. Both of these lobes are connected by a
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“hinge region” and the ATP binding pocket resides deeply between these lobes.

Figure 5.3: 3D crystal structure of the Haspin kinase in complex with 5-iodotubercidin (PDB

ID: 6G34[118]). Haspin is shown in ribbon representation with helices, β-sheets and loops shown

in red, yellow and green color respectively, and the 5-iodotubercidin (5-iTU) is shown in magenta

stick representation. 2D structures of haspin inhibitors studied, 5-iTU, 5-brTU, 5-clTU, 5-fTU and

tubercidin are also shown.

5.1.4 Neuraminidase

Neuraminidases are key targets for drug development against influenza because

of their significant role in the release of the virus from an infected cell. Neu-

raminidase is a homotetramer with circular symmetry and is composed of four iden-

tical subunits[151]. The four active sites (one in each subunit) are located in a deep

depression on the upper surface. The binding of its natural substrate, sialic acid, to

the active site results in the clipping of the glycosidic linkage between sialic acid re-

ceptor and sialic acid[152]. The structure of the active site depends upon a proximal

four-fold coordinated Ca2+ ion and the flexibility of the 150-loop consisting of amino

acid residues 148-151[151]. Several subtypes of Neuraminidase (N1, N4, N5, N8) are

known to have an open 150-loop structure in the unbound form, that closes upon

drug binding. The existence of Neuraminidase in an open 150-loop conformation

leads to the presence of an additional cavity also known as the 150-cavity, which is

absent in the bound closed form. Other Neuraminidase subtypes (N2, N3, N6, N7,
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N9) have been shown to exist in a closed conformation in both bound and unbound

forms, without a 150-cavity[153].

Figure 5.4: Tetrameric crystal structure of the N1 Neuraminidase (NA) complexed with os-

eltamivir (PDB ID: 2HU4[153]). NA is shown in ribbon representation with different monomeric

units shown with different colors and oseltamivir (orange stick representation) bound to each

monomer. The 150-loop is shown in red color. The 2D structures of NA inhibitors studied, os-

eltamivir and zanamivir, are also shown.

Currently, oseltamivir and zanamivir are the two FDA-approved drugs used to

battle influenza. They are transition-state analogues of the natural substrate, sialic

acid, and therefore, bind more tightly to the active site than the substrate. Both

oseltamivir and zanamivir are zwitterionic in nature and they comprise a central

ring structure with a carboxyl and an amino moiety.

5.2 Methods

5.2.1 Preparation of protein and ligand structures

The 3D coordinates of all the protein and ligand molecules studied were extracted

from the co-crystallized protein-ligand complexes available in the PDB database.

Table 5.1 lists the PDB IDs used for extracting the coordinates of the different
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protein-ligand systems studied. N1 Neuraminidase (NA) has a tetrameric structure

and each monomeric unit has a Ca2+ ion situated close to the active site and it is

tetrahedrally coordinated by backbone as well as side chain atoms. This Ca2+ ion

seemed to be important for structural stability around the active site of NA. Since

the coordinates for Ca2+ ions were missing in the PDB structures of the NA-inhibitor

complexes used in our study, they were taken from a high-resolution structure of NA

in complex with oseltamivir (PDB ID: 3TI6[154]) and modelled into all NA-inhibitor

crystal structures. The Protein preparation wizard [104] of the Schrödinger suite

(release 2015-4, Schrödinger, LLC, New York) was used for pre-processing of the

protein structures e.g. to add disulfide linkages and missing atom names, remove

crystallographic waters and for capping polypeptide chain termini. Any missing

residues or empty loops in the protein were modelled using the Prime program[155]

of Schrödinger. Then, the protein and ligand structures were protonated at pH

7.0 according to residue pKa values calculated by PROPKA[105]. The hydrogen-

bonding network of the protein-ligand complexes was optimized with the Schrödinger

suite to avoid any steric clashes and ensure favorable atom orientations. Then the

complexes were energy-minimized with a default energy minimization procedure

using the Impref [104] program of Schrödinger and OPLS3 force field. The Impref

minimization involves a two-step relaxation in which first the rotatable hydrogen

atoms are minimized with all the torsional potentials removed, and then an all-

atom minimization is performed that is terminated either when the system is fully

converged or when it reaches a heavy-atom RMSD from the initial structure of 0.30

Å. The coordinates of the protein and ligand molecules were then extracted from

the minimized complexes into separate PDB files.

Protein Ligand PDB ID
Resolution

(Å)

Trypsin benzamidine 3PTB 1.70

Coagulation Factor Xa rivaroxaban 2W26 2.08

Coagulation Factor Xa apixaban 2P16 2.30

Haspin kinase 5-iTU 6G34 1.76

Haspin kinase 5-brTU 6G35 1.55

Haspin kinase 5-clTU 6G36 1.46

Haspin kinase 5-fTU 6G37 1.48
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Protein Ligand PDB ID
Resolution

(Å)

Haspin kinase 5-hTU 6G38 1.47

Neuraminidase oseltamivir 2HTY (Neuraminidase) 2.50

2HU4 (oseltamivir) 2.50

Neuraminidase zanamivir 2HTY (Neuraminidase), 2.50

2HTQ (zanamivir) 2.20

Table 5.1: List of PDB structures of different protein-ligand complexes used for computation of

diffusional association rates using SDA.

5.2.2 Preparation of PQR files

The PDB2PQR web server[156] (http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1/) was

used to generate PQR files for protein structures for being used later in contin-

uum electrostatics calculations. PQR files are PDB files where the occupancy and

B-factor columns have been replaced by per-atom charge and radius. The AM-

BER force field was used to generate PQR files with the PDB2PQR server and the

protonation states determined from PROPKA in the previous step were retained.

The PDB2PQR webserver allows the setup, execution, and analysis of Poisson-

Boltzmann electrostatics calculations. However PDB2PQR cannot perform calcula-

tions for bound ligand molecules and Ca2+ ions. Therefore, AmberTools[79] was used

to generate PQR file for ligands. Partial atomic charges for ligand molecules were

generated using the RESP [106] program of AmberTools by fitting atom-centered

charges to the electrostatic potential computed by the GAMESS [76] program with

6-31+G basis sets. The force field parameters for ligand molecules (inpcrd-and

prmtop-files) were prepared with LEaP program of AmberTools with the GAFF[124]

force field, and these parameters were then used by ambpdb program of AmberTools

to generate PQR files. Coordinates, charges (+2e) and radii (1.713 Å) for Ca2+ ions

were manually added into PQR files of corresponding proteins.

5.2.3 Grids preparation

To calculate interaction forces acting between protein and ligand molecules during

the BD simulations of diffusional association, charges and radii from PQR files were
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used to generate grids of the electrostatic potential. Electrostatic potentials were

calculated by solving the linearized Poisson-Boltzmann equation using the APBS [57]

software. APBS calculates the electrostatic potential of the solute with respect to

its environment for every grid point of a 3D system. In addition to the PQR file,

APBS requires an input file with information on grid dimensions and grid spac-

ing. The grid sizes for different systems were chosen so as to ensure electrostatic

potentials with isovalues of ± 0.01 kcal/mol/e fit into the boxes. A grid size of

129x129x129 points was used for Trypsin, Coagulation Factor Xa and Haspin ki-

nase whereas a larger grid size of 161x161x161 points was used for Neuraminidase

due to its relatively bigger size. For all the ligands, a grid size of 65x65x65 points

was used. A grid spacing of 1.0 Å was consistently used for all protein and ligand

molecules. The temperature and ionic strength used for the grid calculations were

specific to the system studied, depending upon the experimental conditions in which

rates were measured (see Table 5.2). The solvent dielectric constant, protein dielec-

tric constant, and the ionic radius were set to 78, 2, and 1.5 Å, respectively. “Single

Debye-Hückel” boundary condition (bcfl sdh) was used where the potential at the

boundary is set to the values prescribed by a Debye-Hückel model for a single sphere

with a point charge, dipole, and quadrupole. For mapping the point charges to the

grid for a Poisson-Boltzmann calculation, traditional trilinear interpolation (chgm

spl0 ) was used where each charge is mapped onto the nearest-neighbor grid points.

The dielectric and ion-accessibility coefficients (srfm parameter) were defined using

the smol flag where the dielectric coefficient is defined based on a molecular sur-

face definition, and the ion-accessibility coefficient is defined by an inflated van der

Waals model. The electrostatic potential grids calculated by APBS are in units of

kT/e and cannot be directly used with SDA. Therefore, they were rescaled and con-

verted into UHBD format (kcal/mol.e) using the convert_grid program of the SDA

package. To take the desolvation forces into account, electrostatic and hydropho-

bic desolvation grids for the protein and ligand molecules were calculated using the

make-edhdlj-grid tool of SDA. A grid size of 110x110x110 points with a 1.0 Å spac-

ing was used and ionic strength, solvent dielectric constant and ion radius were set

to 0 mM, 78 and 1.5 Å, respectively. The value of empirical scaling parameter, α,

for electrostatic desolvation grids was set to 0.36 in the SDA input file. The pa-

rameterisation is based on the work by Gabdoulline and Wade[55] to reproduce the

Poisson-Boltzmann interaction energy of plastacyanin and cytochrome f. When α is
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set to 0.36, electrostatic desolvation potential is calculated assuming that no salt is

present. Therefore, ionic strength was set to 0 in the input file used for calculation

of electrostatic desolvation grids.

Figure 5.5: Electrostatic Potential Grids of A) Trypsin, B) Human Coagulation Factor Xa, C)

Haspin and D) Neuraminidase. For each system studied, electrostatic potential from the front and

the back are shown. Isosurfaces shown in the figure correspond to the isovalue of ± 0.01 kcal/mol/e

units. The grid sizes chosen for different systems are given in Table 5.2.
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Protein-ligand

system simulated

Ionic

Strength

mM

Temperature
◦C

Electrostatics

grid size

for protein

(Å3)

Reference for

experimental

conditions

Trypsin-benzamidine 100 25 129×129×129 [157]

FXa-rivaroxaban 150 37 129×129×129 [158]

FXa-apixaban 150 37 129×129×129 [158]

Haspin-5-iTU 150 25 129×129×129 [118]

Haspin-5-brTU 150 25 129×129×129 [118]

Haspin-5-clTU 150 25 129×129×129 [118]

Haspin-5-fTU 150 25 129×129×129 [118]

Haspin-5-hTU 150 25 129×129×129 [118]

Neuraminidase-

oseltamivir 100 25 161×161×161 [159]

Neuraminidase-

zanamivir 100 25 161×161×161 [159]

Table 5.2: Different experimental conditions (Ionic strength and Temperature) used for prepara-

tion of electrostatic grids for different protein-ligand complexes simulated with SDA for computa-

tion of diffusional association rates.

5.2.4 Effective charges for protein and ligands

Effective Charges for Macromolecules in solvent (ECM) are fitted charges in a uni-

form dielectric that can reproduce the electrostatic potential of the molecule com-

puted with the use of all partial atomic charges in a heterogeneous dielectric. The

accurate evaluation of electrostatic forces and interaction free energies for protein-

ligand association is computationally very demanding for realistic systems with thou-

sands of atomic charges in an environment with a non-uniform dielectric permittiv-

ity and a solvent of non-zero ionic strength. Therefore, a small number of effective

charges are calculated for each molecule that reproduce the intermolecular elec-

trostatic interactions with high accuracy in a uniform dielectric[160]. Determining

the effective charge sites is relatively simple for proteins where the test charges are

placed on the carboxylate oxygens of Asp, Glu, and the C-terminus, and the amine
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nitrogens of Lys, Arg, and the N-terminus. However, this approach does not work

for chemical compounds, cofactors etc. Therefore, a python script was written to

pick effective charge sites for small molecules and assign appropriate test charges to

them (see Figure 5.6 for the protocol).

Figure 5.6: Algorithm to assign test charges for computing effective charges for small molecules.

The script reads in the PQR file and determines the net charge on the molecule.

Then, the N, O, S, F, Cl, Br, I , P and Fe atoms present in drug like compounds and

organic cofactors are marked as effective charge sites. The partial atomic charges

of hydrogen atoms covalently bonded to these effective charge sites are added to

the respective partial charges of the effective charge site atoms. Then, the charge

difference between the net charge of the molecule and the cumulative sum of the

partial charges of the effective charge sites is calculated. This charge difference is

then redistributed equally to all the effective charge sites, so that the total test charge

on all effective charge sites is equal to the net charge of molecule. These updated test

charges are then written to an output file in a .tcha format, which is similar to pdb
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format with occupancy column replaced by the test charge of atoms. This output

.tcha file is then used by the ecm_expand tool of SDA to generate ECM charges. The

molecular structures of inhibitors of Human Coagulation Factor Xa, Haspin kinase

and N1 Neuraminidase are given in Figures 5.8, 5.9 and 5.10, respectively. Tables

5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 list the test charges and effective

charges assigned to the polar atoms of benzamidine, rivaroxaban, apixaban, 5-iTU,

5-brTU, 5-clTU, 5-fTU, 5-hTU, oseltamivir and zanamivir, respectively.

Figure 5.7: Atomic structure of benzamidine. Benzamidine has a net charge of +1e. Test and

effective charges for benzamidine are given in Table 5.3.

Figure 5.8: Atomic structures of A) rivaroxaban and B) apixaban. Both rivaroxaban and apix-

aban are neutral. Test and effective charges for rivaroxaban and apixaban are given in tables 5.4

and 5.5, respectively.
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Atom Name Test charge (e) Effective charge (e)

N1 0.50 0.524

N2 0.50 0.534

Net effective charge (e) 1.058

Electric dipole moment (Debye) 0.02 D 0.05 D (4.84 D)

Solvent accessible surface area (Å2) 311.15

Table 5.3: Test charges and effective charges assigned to polar atoms of benzamidine. The table

also lists the solvent accessible surface area of the molecule, and the electric dipole moment of the

molecule calculated after assignment of test charges and effective charges. The net electric dipole

moment of the molecule calculated using RESP atomic charges is given in parenthesis.

Atom Name Test charge (e) Effective charge (e)

CL 0.242 0.128

N2 0.217 0.865

O5 -0.130 -0.118

O13 -0.297 -0.606

N14 0.197 0.281

O17 -0.091 -0.196

O19 -0.279 -0.455

N21 0.033 0.901

S23 0.346 -0.401

O28 -0.239 -0.377

Net effective charge (e) 0.021

Electric dipole moment (Debye) 22.21 D 8.74 D (4.11 D)

Solvent accessible surface area (Å2) 997.46

Table 5.4: Test charges and effective charges assigned to polar atoms of rivaroxaban. The positions

of these atoms corresponding to effective charge sites can be visualized on the atomic structure

of rivaroxaban shown in Figure 5.8 A. The table also lists the solvent accessible surface area of

the molecule, and the electric dipole moment of the molecule calculated after assignment of test

charges and effective charges. The net electric dipole moment of the molecule calculated using

RESP atomic charges is given in parenthesis.
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Atom Name Test charge (e) Effective charge (e)

N1 0.494 0.445

O1 -0.329 -0.611

N2 0.209 0.827

O2 -0.291 -0.735

N3 0.186 0.414

O3 -0.245 -0.966

O4 -0.072 -0.009

N5 0.189 0.785

N6 -0.143 -0.143

Net effective charge (e) 0.006

Electric dipole moment (Debye) 5.41 D 9.98 D (7.19 D)

Solvent accessible surface area (Å2) 1171.93

Table 5.5: Test charges and effective charges assigned to polar atoms of apixaban. The positions

of these atoms corresponding to effective charge sites can be visualized on the atomic structure

of apixaban shown in Figure 5.8 B. The table also lists the solvent accessible surface area of the

molecule, and the electric dipole moment of the molecule calculated after assignment of test charges

and effective charges.

Figure 5.9: Atomic structures of A) 5-iTU, B) 5-brTU, C) 5-clTU, D) 5-fTU, and E) 5-hTU. All

5-iTU derivatives are neutral. Test and effective charges for 5-iTU derivatives are given in tables

5.6, 5.7, 5.8, 5.9 and 5.10, respectively.
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Atom Name Test charge (e) Effective charge (e)

N -0.450 -0.171

O 0.092 0.481

N1 -0.399 -0.715

O1 0.041 0.008

N2 0.267 -0.059

O2 0.099 0.163

N3 0.164 0.608

O3 -0.100 0.131

I 0.285 -0.474

Net effective charge (e) 0.028

Electric dipole moment (Debye) 13.77 D 14.61 D (7.54 D)

Solvent accessible surface area (Å2) 679.64

Table 5.6: Test charges and effective charges assigned to polar atoms of 5-iTU. The positions of

these atoms corresponding to effective charge sites can be visualized on the atomic structure of 5-

iTU shown in Figure 5.9 A. The table also lists the solvent accessible surface area of the molecule,

and the electric dipole moment of the molecule calculated after assignment of test charges and

effective charges.

Atom Name Test charge (e) Effective charge (e)

N 0.254 0.060

O -0.095 -0.237

N1 0.177 0.306

O1 0.105 -0.211

N2 -0.446 -0.040

O2 0.051 0.330

N3 -0.402 -0.451

O3 0.102 0.518

Br 0.254 -0.291

Net effective charge (e) -0.016

Electric dipole moment (Debye) 13.30 D 12.48 D (7.83 D)

Solvent accessible surface area (Å2) 674.31

Table 5.7: Test charges and effective charges assigned to polar atoms of 5-brTU. The positions

of these atoms corresponding to effective charge sites can be visualized on the atomic structure of

5-brTU shown in Figure 5.9 B. The net electric dipole moment of the molecule calculated using

RESP atomic charges is given in parenthesis.
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Atom Name Test charge (e) Effective charge (e)

N -0.449 0.305

O 0.103 0.442

N1 -0.397 -0.859

O1 0.056 0.145

N2 0.251 -0.345

O2 0.111 0.091

N3 0.187 0.236

O3 -0.088 0.207

Cl 0.225 -0.250

Net effective charge (e) -0.027

Electric dipole moment (Debye) 13.19 D 15.14 D (7.77 D)

Solvent accessible surface area (Å2) 669.62

Table 5.8: Test charges and effective charges assigned to polar atoms of 5-clTU. The positions of

these atoms corresponding to effective charge sites can be visualized on the atomic structure of 5-

clTU shown in Figure 5.9 C. The table also lists the solvent accessible surface area of the molecule,

and the electric dipole moment of the molecule calculated after assignment of test charges and

effective charges. The net electric dipole moment of the molecule calculated using RESP atomic

charges is given in parenthesis.

Atom Name Test charge (e) Effective charge (e)

N 0.238 -0.257

O -0.078 0.185

N1 0.206 0.309

O1 0.105 0.042

N2 -0.428 0.226

O2 0.077 0.180

N3 -0.386 -0.825

O3 0.111 0.433

F 0.158 -0.316

Net effective charge (e) -0.024

Electric dipole moment (Debye) 12.14 D 14.86 D (7.57 D)

Solvent accessible surface area (Å2) 658.29

Table 5.9: Test charges and effective charges assigned to polar atoms of 5-fTU. The positions of

these atoms corresponding to effective charge sites can be visualized on the atomic structure of

5-fTU shown in Figure 5.9 D.
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Atom Name Test charge (e) Effective charge (e)

O3 0.173 0.305

O -0.032 0.655

O1 0.180 0.579

O2 0.076 -0.432

N 0.327 -0.658

N3 -0.478 -0.980

N2 -0.503 0.268

N1 0.257 0.239

Net effective charge (e) -0.024

Electric dipole moment (Debye) 15.58 D 12.01 D (7.12 D)

Solvent accessible surface area (Å2) 631.48

Table 5.10: Test charges and effective charges assigned to polar atoms of 5-hTU. The positions of

these atoms corresponding to effective charge sites can be visualized on the atomic structure of 5-

hTU shown in Figure 5.9 E. The table also lists the solvent accessible surface area of the molecule,

and the electric dipole moment of the molecule calculated after assignment of test charges and

effective charges. The net electric dipole moment of the molecule calculated using RESP atomic

charges is given in parenthesis.

Figure 5.10: Atomic structures of A) oseltamivir and B) zanamivir. Both oseltamivir and

zanamivir are neutral and zwitter-ionic. Test and effective charges for oseltamivir and zanamivir

are given in tables 5.11 and 5.12, respectively.
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Atom Name Test charge (e) Effective charge (e)

O1A -0.408 -0.880

O1B -0.425 -0.571

N4 0.858 1.331

N5 0.180 0.844

O7 0.041 0.378

O10 -0.246 -1.086

Net effective charge (e) 0.017

Electric dipole moment (Debye) 20.73 D 24.50 D (22.24 D)

Solvent accessible surface area (Å2) 675.42

Table 5.11: Test charges and effective charges assigned to polar atoms of oseltamivir. The

positions of these atoms corresponding to effective charge sites can be visualized on the atomic

structure of oseltamivir shown in Figure 5.10 A. The table also lists the solvent accessible surface

area of the molecule, and the electric dipole moment of the molecule calculated after assignment

of test charges and effective charges. The net electric dipole moment of the molecule calculated

using RESP atomic charges is given in parenthesis.

Atom Name Test charge (e) Effective charge (e)

NE 0.272 0.492

NH1 0.304 0.498

NH2 0.285 0.270

O1A -0.464 -0.593

O1B -0.477 -0.674

N5 0.207 0.303

O6 0.100 0.197

O7 0.078 -0.188

O8 0.005 0.427

O9 0.037 -0.136

O10 -0.348 -0.572

Net effective charge (e) 0.024

Electric dipole moment (Debye) 25.82 D 21.11 D (25.20 D)

Solvent accessible surface area (Å2) 741.86

Table 5.12: Test charges and effective charges assigned to polar atoms of zanamivir. The positions

of these atoms corresponding to effective charge sites can be visualized on the atomic structure of

zanamivir shown in Figure 5.10 B.
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5.2.5 Calculation of diffusion coefficients

During BD simulations using SDA software, diffusional motion of a mobile solute

is modelled according to the translational and rotational Ermak-McCammon equa-

tions. Since one of the solutes (the protein) is kept fixed, SDA uses a relative trans-

lational diffusion constant D to account for diffusion of both protein and ligand. D

is calculated as the sum of the translational diffusion constant of the protein (Dprot)

and the translational diffusion constant of the ligand (Dlig). In our BD simulations,

translational and rotational diffusion coefficients for the protein and the ligand were

calculated using the HYDROPRO[82] software. A partial specific volume of 0.73

cm2mol−1, solvent density of 1.0 g/cm3, and solvent viscosity of 0.0091 poises was

used in the HYDROPRO input. The calculation mode (INDMODE parameter)

was set to 1 which corresponds to the atomic-level primary model and shell-based

methodology with up to 2000 minibeads. For proteins, the hydrodynamic radius

(AER) was set to 2.9 Å which is the recommended value to be used for proteins

when INDMODE is set to 1. The lowest (SIGMIN ) and the highest (SIGMAX )

value for sigma, the minibead radius, was set to 1.0 Å and 2.0 Å, respectively. The

NSIG parameter was set to 6 which corresponds to the number of values of the radius

of the minibead. However, for ligands, a smaller value of the hydrodynamic radius

(AER = 1.2 Å) was used. This value was optimized by Dr. Ariane Nunes-Alves,

based on control calculations on several small chemical compounds to reproduce

their experimental diffusion coefficients (data unpublished). Also, for ligands, the

NSIG parameter was set to -1 where the program estimates the two extreme values

of sigma, and therefore, there is no need to define SIGMIN and SIGMAX values.

The diffusion coefficients of the different protein and ligand molecules simulated in

this study are given in table 5.13.

Molecule

Name

Translational diffusion

coefficient

Å2/ps

Rotational diffusion

coefficient

radian2/ps

Trypsin 0.010550 0.000015

Coagulation Factor Xa 0.010460 0.000014

Haspin kinase 0.008663 0.000008

Neuraminidase 0.005707 0.000002

benzamidine 0.092250 0.009354
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Molecule

Name

Translational diffusion

coefficient

Å2/ps

Rotational diffusion

coefficient

radian2/ps

rivaroxaban 0.052000 0.001482

apixaban 0.048800 0.001173

5-iTU 0.063310 0.002976

5-brTU 0.063830 0.003063

5-clTU 0.063230 0.003080

5-fTU 0.064360 0.003165

5-hTU 0.065460 0.003408

oseltamivir 0.063450 0.002729

zanamivir 0.060030 0.002330

Table 5.13: Translational and rotational diffusion coefficients of different protein and ligand

molecules calculated using HYDROPRO.

5.2.6 Generation of Reaction Criteria

For docking and association rate calculations with SDA, the user needs to spec-

ify a set of reaction criteria that define the formation of an encounter complex.

Usually, donor-acceptor atom pairs in the bound protein-ligand complexes are con-

sidered as reaction criteria but other types of interacting atom pairs can also be

included. To generate reaction criteria for two interacting solutes automatically, we

wrote a python script ReactionCriteria.py that generates reaction criteria by tak-

ing into account the hydrogen bonding interactions, halogen-π interactions, and the

π-π interactions in the bound protein-ligand complex. It requires a total of three

mandatory parameters as input: 1) PDB file for protein, 2) PDB file for ligand, and

3) the reaction distance (in Å). The MOL2 file for the ligand can also be provided

as an optional fourth argument, if π-π interactions between the protein and ligand

also need to be considered for generating reaction criteria. In our association rate

calculations, we only considered possible donor-acceptor pairs (within 3.5 Å) and

halogen-π interactions (within 4.5 Å) between protein and ligand molecules for gen-

erating reaction criteria. Tables 5.14, 5.15, 5.16 and 5.17 lists the set of pairs of
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atoms used as reaction criteria for performing association rate calculations for the

different protein-ligand systems simulated.

Trypsin benzamidine

D171 OD1 N2

D171 OD1 N1

D171 OD2 N1

S172 OG N1

S172 O N2

S172 O N1

G196 O N2

Table 5.14: Reaction Criteria for SDA association rate constant calculations for benzamidine

binding to Trypsin.
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oseltamivir-Neuraminidase zanamivir-Neuraminidase

oseltamivir Neuraminidase zanamivir Neuraminidase

N4 E119 OE2 O1B R118 NH2

N4 D151 OD1 NH2 E119 OE1

O10 R152 NH2 NE E119 OE2

O1A R292 NH1 NH2 D151 O

O1A R292 NH2 NE D151 OD1

O1A Y347 OH O10 R152 NH2

O1A R371 NH1 NH2 R156 NH1

O1B R371 NH1 NH1 W178 O

NH2 W178 O

O9 R224 NE

O9 E276 OE1

O8 E276 OE2

O1A R292 NH1

O8 R292 NH1

O1A R292 NH2

O8 R292 NH2

O1A Y347 OH

O1A R371 NH1

O1B R371 NH2

O1A Y406 OH

O1B Y406 OH

O6 Y406 OH

Table 5.17: Reaction Criteria for SDA association rate constant calculations for inhibitors of N1

Neuraminidase (NA).

5.2.7 Association rate calculation with SDA

Simulation setup

Using trypsin-benzamidine as a model system, some of the parameters were opti-

mized to simulate protein-ligand association with SDA. For protein-ligand associa-

tion, a smaller probep radius of 1.40 Å (representative of hydrogen bond distance)

was used than the relatively larger radius of 1.7-2.0 Å used for protein-protein associ-

ation in previous studies. The value of the radius used for protein-protein association
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studies is chosen to represent the atomic radius of surface (non hydrogen) atoms and

therefore the value of this radius depends on the type of force field used, for example,

a smaller value (0.5 Å) should be used with the ProMetCS force field as it includes

a Lennard-Jones term. In the simulation setup, the protein molecules were kept

fixed at the center of a spherical system and the BD trajectories of ligand molecules

were started from a large center-to-center distance (of mass), b surface of 100 Å at

which the centrosymmetric forces acting between protein and ligand molecules are

assumed to be negligible (iso-potential values of electrostatic grids were lower than

± 0.01 kcal/mol units). A trajectory was stopped when the ligand left the outer c

surface = 300 Å. An encounter complex was considered to be formed when protein

and ligand satisfied 1 to 5 independent reaction contacts (nb-contacts parameter in

SDA input file), with the minimum distance between independent contacts (dind)

being 3 Å. Due to smaller size of the ligands and to ensure presence of at least 2

independent contacts, a smaller dind value of 3 Å was chosen for ligands compared

to 6 Å used for proteins. Due to the small size of the benzamidine, the distance

criteria for independent contacts (dind) was set to 2 Å to have at least 2 independent

contacts because having dind=3 Å resulted in only 1 independent contact.

Figure 5.11: Schematic representation of the geometric setup for the diffusional association of

protein and ligand molecules in BD simulations.
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Analysis of SDA output

Diffusional association rate constants were computed for encounter complexes satis-

fying one to five reaction contacts at different reaction distances starting from 3.0 Å

to 20.0 Å, with each reaction window separated by 0.5 Å. For each system, two sets of

simulations were run: with and without taking into account hydrophobic desolvation

(HD) potentials in simulating diffusional association (see Figure 5.12). Hydrophobic

desolvation potential grid values were multiplied by a factor of -0.013 (hdfct = -0.013)

to compute the short-range attractive nonpolar interaction forces. For each set of

simulations, four replica simulation runs were run with different starting position of

ligand at the b surface to gain statistically relevant results. 50,000 trajectories were

simulated in each run (total 4 x 50,000 = 200,000) of simulations when hydrophobic

desolvation (HD) potentials were considered. For simulations without hydropho-

bic desolvation taken into account, 500,000 trajectories were simulated for each run

(total 2 million trajectories were run). To increase the statistical significance, rate

constants from all four replica simulations of the same system were averaged and a

standard error was calculated using the SDA integrated tool nos2rates.

Figure 5.12: Schematic representation of BD simulations protocol to explore determinants of kon
rates for protein-ligand binding using SDA 7.
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For computing diffusional association rates, encounter complexes satisfying 3 in-

dependent reaction contacts between protein and ligand were considered by default.

In cases where reactions were not observed within 10 Å, rates for 2 reaction con-

tacts were taken into account (refer to Figure 5.12). However, for certain systems,

only encounter complexes with a maximum of 2 independent reaction contacts were

formed due to limited accessibility of the binding pocket due to the specific binding

mode. For such systems, encounter complexes satisfying 2 reaction contacts were

considered for computing association rates. Because desolvation interactions are

only relevant at distances less than 6 Å, for simulations run with only electrostatic

forces and no hydrophobic desolvation potentials, the reaction window starting at 6

Å (having kon > 0 and standard deviation < 25%) was used to record the association

rates.

Protein-ligand

system

simulated

Number of

reaction contacts

satisfied in

encounter

complexes

Distance

for recording

diffusional kon

(with

Hydrophobic

Desolvation)

(Å)

Distance

for recording

diffusional kon

(without

Hydrophobic

Desolvation)

(Å)

Trypsin-benzamidine 2 4.0 6.0

FXa-rivaroxaban 2 5.0 6.5

FXa-apixaban 2 6.5 8.0

Haspin-5-iTU 3 11.0 NA

Haspin-5-brTU 3 10.0 NA

Haspin-5-clTU 3 10.0 NA

Haspin-5-fTU 3 11.0 NA

Haspin-5-hTU 3 10.5 NA

Neuraminidase-oseltamivir 3 4.0 6.0

Neuraminidase-zanamivir 3 4.0 6.0

Table 5.18: Reaction criteria considered for defining successful encounter complexes and dis-

tances at which diffusional kon rates were recorded in both sets of simulations (with and without

hydrophobic desolvation forces) for different protein-ligand complexes studied.
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In simulations run with hydrophobic desolvation potentials, a smaller reaction

window of 4 Å was considered as cut-off window because short-range attractive

hydrophobic interaction leads to closer contacts. For more details on the criteria

used to record on-rates, please refer to protocol in Figure 5.12.

5.3 Results

5.3.1 Diffusional association rate constants (kon) computed

for the trypsin-benzamidine association

The Trypsin–benzamidine complex, due to its small size and monomeric structure,

is a popular model system frequently used for developing and testing the methods

for computing protein–ligand binding kinetics. Herein, we have also used the diffu-

sional association of benzamidine to trypsin for optimizing some of the SDA input

parameters used in our BD protocol to compute diffusional association (kon) rate

constants for protein-ligand association. Diffusional association rate constants were

computed for the association of trypsin and benzamidine using SDA and 2 sets of

simulations were run with hydrophobic desolvation (HD) interaction forces included

in the first set and excluded in the second set of simulations (Figure 5.13 B). The

encounter complexes between trypsin and benzamidine were formed starting at a

distance of 3.0 Å irrespective of the presence or absence of HD forces in the simula-

tion of diffusional encounter. The encounter complexes formed (in both simulations

with and without HD forces included) at 3.0 Å almost reproduced the bound state

with an RMSD of less than 1.0 Å between the orientation of benzamidine in the

encounter complex and the crystallized structure of trypsin-benzamidine complex

(Figure 5.13 A).

The computed diffusional association rate constants were consistently higher at

all reaction distances when HD forces were taken into account. A sharp decline in

the association rates was observed at distances below 8.0 Å when HD forces were not

considered. However, when HD forces were considered in the BD simulations, the

short-range hydrophobic forces become important as observed by considerably faster

on-rates, even at shorter distances (Figure 5.13 B). The HD forces within 6 Å might

result in some effective 2D surface diffusion of the ligand, thereby resulting in closer

contacts and faster on-rates. However, we did not analyse the individual trajectories

120



to visualize any surface diffusion. The diffusional kon rate constant computed for

binding of benzamidine to trypsin was approximately 15 fold overestimated (45.9 ±
2.16 x 107 M−1s−1) compared to the experimental value (2.9 x 107 M−1s−1), when

HD forces were considered. When HD forces were excluded, the computed on-rate

(0.82 ± 0.14 x 107 M−1s−1) was about 3 fold lower than the experimental value (for

which no information on experimental error was given).

Figure 5.13: A) Comparison of the orientation of benzamidine (shown with stick representation

in magenta) in the co-crystallized structure (PDB Id: 3PTB) with trypsin (shown with surface

representation) and in the encounter complex formed during BD simulations with hydrophobic

desolvation potentials using SDA (stick representation in green). B) Comparison of diffusional

kon rates calculated for the association of benzamidine with trypsin with and without inclusion of

HD forces in the diffusional association. Based on the analysis protocol described in Figure 5.12,

different reaction windows were selected specific to the protein-ligand system studied and the type

of simulation, with their corresponding computed kon values marked with circles (refer to Table

5.19 for exact numbers).

Protein-ligand

system

simulated

Experimental

kon value

(×106 M−1s−1)

Computed

kon value

(with HD)

(×106 M−1s−1)

Computed

kon value

(without HD)

(×106 M−1s−1)

Reference

for

experimental

value

Trypsin-

benzamidine 29.0 459.1 ± 21.56 8.17 ± 1.43 [157]

FXa-

rivaroxaban 29.00 ± 6.0 169.6 ± 22.55 1.45 ± 0.34 [158]

FXa-

apixaban 7.30 ± 1.60 88.55 ± 11.43 0.77 ± 0.17 [158]
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Protein-ligand

system

simulated

Experimental

kon value

(×106 M−1s−1)

Computed

kon value

(with HD)

(×106 M−1s−1)

Computed

kon value

(without HD)

(×106 M−1s−1)

Reference

for

experimental

value

Haspin-5-iTU 9.39 ± 2.03 39.14 ± 6.82 NA [118]

Haspin-5-brTU 9.71 ± 2.67 31.26 ± 2.01 NA [118]

Haspin-5-clTU 2.79 ± 1.26 11.83 ± 0.71 NA [118]

Haspin-5-fTU 2.06 ± 2.07 24.25 ± 4.12 NA [118]

Haspin-5-hTU 0.20 ± 0.16 10.10 ± 2.50 NA [118]

Neuraminidase-

oseltamivir 2.52 ± 0.21 111.25 ± 6.80 3.21 ± 0.09 [159]

Neuraminidase-

zanamivir 0.95 ± 0.08 552.50 ± 2.97 9.60 ± 0.40 [159]

Table 5.19: Comparison of experimental association rate constants and computed association

rate constants from SDA for different protein-ligand complexes simulated (HD = hydrophobic

desolvation potentials).

5.3.2 Diffusional kon rate constants computed for the

inhibitors of Human Coagulation Factor Xa

Association rate constants computed for association of rivaroxaban and apixaban

to Human Coagulation Factor Xa using SDA are shown in Figure 5.14 C,D. Both

rivaroxaban and apixaban bind to Factor Xa in an L-shaped conformation where

one part of the ligand occupies the anionic S1 pocket and another part occupies the

S4 pocket (see Figure 5.14 A,B). Since both protein and inhibitor molecules were

modelled as rigid bodies and internal conformational flexibility was neglected, the

encounter complexes of rivaroxaban and apixaban with Factor Xa satisfied maximum

2 reaction contacts within 10 Å reaction distance. Due to differences in the size of

the inhibitors and the diversity of atoms contributing to the reaction criteria, the

encounter complexes and hence, the rates were computed starting from different

reaction windows. For rivaroxaban, association events were observed starting at 4.5

Å when hydrophobic desolvation forces were also taken into account, and at 5.5 Å

when hydrophobic desolvation forces were excluded in the simulation of diffusional

122



encounter (see Figure 5.14 C and D). Apixaban, on the other hand, formed encounter

complexes with Factor Xa starting from 6 Å in the simulations run with hydrophobic

desolvation forces and from 7.5 Å when hydrophobic desolvation forces were ignored.

Figure 5.14: The orientations of A) rivaroxaban and B) apixaban (shown with stick represen-

tations in magenta) in the co-crystallized structures (PDB Ids: 2W26, 2P16 respectively) with

Coagulation Factor Xa (shown with surface representation, colored by polarity of residues with

positively charged, negatively charged and neutral residues shown in blue, red, and gray color

respectively) and in the encounter complex formed during BD simulations with hydrophobic des-

olvation forces using SDA (shown with stick representations in green). In the encounter complexes

of rivaroxaban with FXa, rivaroxaban did not occupy the S1 sub-pocket of FXa’s binding site

and its chlorothiophene moeity was surface exposed. On the other hand, apixaban occupied the

S1 sub-pocket in the majority of its encounter complexes with FXa formed at shorter distances.

Comparison of diffusional kon rate constants calculated for association of rivaroxaban and apixaban

with Coagulation Factor Xa: C) without HD forces included, and D) with HD forces included in

the simulation setup. The rates for shown for encounter complexes forming 2 reaction contacts.

Based on the analysis protocol described in Figure 5.12, different reaction windows were selected

specific to the protein-ligand system studied and the type of simulation, with their corresponding

computed kon values marked with circles (refer to Table 5.19 for exact numbers).

123



In calculations with HD forces included, the rate constants for reaction criteria

distances between 15 Å and 20 Å remained stable at around 1.0 x 1010 M−1s−1. For

both rivaroxaban and apixaban, this value corresponds to the diffusional motion of

ligands at a distance where they are not yet influenced by the distinct conformation

and electrostatic distribution of the active site. At reaction criteria distances be-

tween 4 and 8 Å, the association rate constants dropped for both rivaroxaban and

apixaban. The rate constant values are lower at shorter distances as encounter com-

plex formation depends on the proximity and correct orientation of bound ligands.

The latter requirement prevented multiple contacts being made at short distances.

The rate constants computed from BD sumulations with hydrophobic desolvation

included, were overestimated for both rivaroxaban and apixaban, with computed kon
values almost 5 fold and 12 fold higher than the experimental values for rivaroxaban

and apixaban, respectively (see Table 5.19). The computed kon for rivaroxaban and

apixaban from BD simulations without considering hydrophobic desolvation were

underestimated by about 1 order of magnitude compared to the experiments. How-

ever, both of the simulation protocols estimated higher kon values for rivaroxaban

compared to apixaban, which is in agreement with the experimental observations

(see Figure 5.14 C,D). The logP value of apixaban (2.22, source: DrugBank[161]) is

higher than the logP of rivaroxaban (1.74, source: DrugBank[161]) suggesting it to

be more hydrophobic than the rivaroxaban.

5.3.3 Diffusional kon rate constants computed for the

inhibitors of Haspin kinase

Association rate constants computed for the association of 5-iTU derivatives to

Haspin at different reaction distances are shown in Figure 5.15 B. Lack of the con-

formational flexibility and rigid modelling of both haspin and inhibitor molecules

restricted the access to the binding site by 5-iTU derivatives, with encounter com-

plexes starting to form at only distances greater than 8 Å from the binding pocket

(see Figure 5.15 A). In the BD simulations without HD forces taken into account,

encounter complexes were observed only from distances higher than 15 Å. There-

fore, for inhibitors of Haspin, we only computed rates from BD simulations with HD

forces included in simulating diffusional encounter. Diffusional kon rate constants

observed for all 5-iTU derivatives showed huge standard deviations at smaller dis-

tances and therefore rate constants were recorded at distances starting from 10 Å
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where the conditions specified in the SDA protocol (Figure 5.12) were met (refer to

Figure 5.15 B and Tables 5.19 and 5.18 for the specfic reaction windows considered

for different 5-iTU derivatives and the corresponding rate constants computed for

these reaction windows).

Figure 5.15: A) The orientations of 5-iTU (shown with stick representation in magenta) in the

co-crystallized structure (PDB Id: 6G34) with Haspin (shown with surface representation, colored

by polarity of residues with positively charged, negatively charged and neutral residues shown in

blue, red, and gray color respectively) and in the encounter complex formed during BD simulations

with hydrophobic desolvation forces (stick representation in green). B) Comparison of diffusional

kon rates calculated for association of 5-iTU derivatives with Haspin with HD forces included in

the simulation setup. Based on the analysis protocol described in Figure 5.12, different reaction

windows were selected specific to the protein-ligand system studied and the type of simulation,

with their corresponding computed kon values marked with circles (refer to Table 5.19 for exact

numbers).

Diffusional kon rate constants computed were higher for inhibitors containing

bigger halogen atoms such as 5-iTU, 5-brTu and 5-clTU than the inhibitors with a

smaller halogen (5-fTU) or no halogen substituted (5-hTU) (see Figure 5.15 B). This

is consistent with the experimental observations that substitution of bigger halogens

on tubercidin results in mediation of halogen-π interaction between halogen of in-

hibitors and aromatic ring of phenylalanine gatekeeper residue in the binding site

of Haspin, thereby resulting in an increase of kon rates and decrease of koff rates.

Since diffusional kon rate constants of inhibitors with bigger halogens were consis-

tently higher even at large reaction distances, changes in electrostatics induced by

halogen substitutions might result in stronger long-range electrostatic interaction

between the inhibitors and Haspin, leading to faster diffusion of halogenated in-
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hibitors towards Haspin’s binding site. Although, SDA was not able to exactly rank

these 5-iTU derivatives based on their kon rate constants, it managed to capture the

effects of changes in electrostatics and non-polar interactions of inhibitors due to

substitution of bigger halogens. The diffusional kon computed for all 5-iTU deriva-

tives were overestimated compared to the experimental values (see Table 5.19) as

we computed the rates at larger reaction distances, because at shorter distances,

rates were statistically not reliable and showed large error bars (see Figure 5.15 B).

These large errors at shorter distances could be attributed to the limited access to

the binding site, with BD trajectories in only a subset of simulations satisfying the

requirements for formation of an encounter complex.

5.3.4 Diffusional kon rate constants computed for the

inhibitors of Neuraminidase

Diffusional kon rate constants computed by SDA for diffusional association of os-

eltamivir and zanamivir with Neuraminidase at different reaction distances using

the 2 different simulation protocols (with and without HD forces) are shown in Fig-

ures 5.16 B and 5.16 C. The relatively exposed binding site of Neuraminidase, the

presence of a number of charged amino acid residues in its binding site, and the

zwitter ionic nature of both inhibitors contributed to the strong electrostatic inter-

action between the protein and the inhibitors with encounter complexes observed

at smaller distances from 4 Å. Due to the differences in the size of the ligands and

the diversity of atoms contributing to the reaction criteria, oseltamivir made up to

three, zanamivir up to five reaction contacts in the encounter complexes. When only

electrostatic forces were considered and no HD forces in the association, the on-rates

computed were higher for zanamivir than for oseltamivir (Figure 5.16 B). The com-

puted kon rate constant (3.21 ± 0.09 x 106 M−1s−1) for oseltamivir was very close to

the experimental values (2.52 ± 0.21 x 106 M−1s−1). In fact, this kon value computed

for oseltamivir by our protocol is very similar to the kon value (5.17 ± 0.08 x 106

M−1s−1) computed by Sung et al.[21] with their BD simulation procedure (without

including HD term in the simulations). The kon rate constant computed (9.60 ±
0.40 x 106 M−1s−1) for zanamivir was almost 10-times higher than the experimental

value (0.95 ± 0.08 x 106 M−1s−1). The electric dipole moment of zanamivir (25.20

Debye) calculated from RESP atomic charges was higher than the electric dipole

moment of oseltamivir (22.24 Debye) suggesting it to be slighly more polar than
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oseltamivir. This additional polarity might be because of the presence of additional

polar moieties on zanamivir such as diaminomethyl and trihydroxypropyl groups

which may result in stronger electrostatics interactions with the Neuraminidase and

this could be the reason why computed on-rates for zanamivir were higher than for

oseltamivir. Or, the higher on-rates for zanamivir could be due to the fact that

it might be relatively easier for zanamivir to satisfy the criteria of formation of 3

reaction contacts in the encounter complex due to its bigger size and presence of

more number of polar atoms on the list of contacts provided as the reaction criteria.

Figure 5.16: A) The orientations of the oseltamivir (shown with stick representation in magenta)

in the co-crystallized structure with Neuraminidase (shown with surface representation, colored

by polarity of residues with positively charged, negatively charged and neutral residues shown in

blue, red, and gray color respectively) and in the encounter complex formed during BD simulations

with hydrophobic desolvation forces (stick representation in green). Comparison of diffusional kon
rates calculated for association of oseltamivir and zamamivir with Neuraminidase: B) without HD

forces included, and C) with HD forces included in the simulation setup. Rates are shown for

encounter complexes satisfying the criteria for 3 reaction contacts. Based on the analysis protocol

described in Figure 5.12, different reaction windows were selected specific to the protein-ligand

system studied and the type of simulation, with their corresponding computed kon values marked

with circles(refer to Table 5.19 for exact numbers).

127



In the simulation protocol with HD forces included, computed on-rates for both

oseltamivir and zanamivir were very high (higher than 109 M−1s−1) even at shorter

distances (from 6 Å). After 7-8 Å, rates become stable at around 109 M−1s−1. This

trend was observed for both oseltamivir and zanamivir and describes the diffusional

motion of ligands in a distance, at which they are not yet influenced by the distinct

conformation and electrostatic distribution of the active site. At reaction criteria

distances between 4 and 6 Å, association rate constants dropped for both oseltamivir

and zanamivir, but the drop was higher for oseltamivir. Still, the computed kon rate

constants (111.25 ± 6.80 x 106 M−1s−1) were approximately 40 times higher for os-

eltamivir than the experiments (2.52 ± 0.21 x 106 M−1s−1). Similarly, for zanamivir,

computed kon value (552.50 ± 2.97 x 106 M−1s−1) was highly overestimated by more

than 2 orders of magnitude compared to the experimental value of 0.95 ± 0.08 x

106 M−1s−1. Also, Neuraminidase are known to have an open 150-loop structure

in the unbound form, that closes upon drug binding, and the polar residues in the

150-loop (Asp151, Arg152) interact with polar side chains of the inhibitors. This

suggests that the slower conformational changes of protein and inhibitor molecules

are associated with the formation of a fully bound protein-ligand complex and these

short-range conformational changes are not modelled in BD simulations, and we

have only used the Neuraminidase structure with an open 150-loop conformation

(PDB Id: 2HTY). Therefore, SDA results suggest that zanamivir, inspite of having

higher diffusional on-rates, has the slower experimental kon value than oseltamivir,

meaning that conformational adaptation might be slower for binding of zanamivir

to Neuraminidase than for oseltamivir.

5.4 Concluding Discussions

The current application of our protocol to different protein-ligand systems for the

calculation of diffusional association rate constants of the ligands demonstrate that

the protocol has some limitations in correctly ranking the ligands according to their

experimental on-rates. In some cases, especially for inhibitors binding to Coagula-

tion Factor Xa and Haspin kinase, the protocol managed to correctly distinguish

the inhibitors with slow and fast on-rates. However, for inhibitors binding to Neu-

raminidase, the protocol failed to capture the effects of faster binding of oseltamivir

compared to zanamivir. Since our protocol is solely based on BD simulations where
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we model the interacting molecules as rigid bodies and neglect the internal con-

formational flexibility of molecules, our protocol may not completely capture the

short-range effects of binding of small but flexible ligand molecules, especially when

the protein-ligand binding is conformation dependent. Although we have optimized

a set of parameters for the diffusional association of protein-ligand systems using

SDA software, this list is not complete and there are several other parameters that

need to be evaluated and optimized on a diverse set of systems. The short-range

desolvation forces acting between protein and ligand molecules might be sensitive

to the size of grid-spacing used for generating desolvation potentials grids. For the

generation of desolvation grid potentials, we have used the grid spacing value of 1

Å, that was used for protein-protein association studies in the past. We believe that

different values of grid spacing need to be evaluated for protein-ligand association,

especially because the rates (hence the binding) are very sensitive to the presence or

absence of short-range hydrophobic desolvation forces as observed in our calculations

when using HD term in the simulations. Moreover, the current dataset on protein-

ligand systems needs to be extended further and studied to have a well optimized

and robust protocol. As we have already discussed, this protocol, solely based on

BD simulations alone would not be sufficient to model the complete binding process

but it can serve as a good starting point for multiscale modelling, where, for exam-

ple, the less demanding BD simulations can be run using this protocol to model the

initial diffusional encounter of protein and ligand molecules, following which a more

computationally rigorous MD-based regime can be used to account for the flexibility

and conformational changes to simulate the formation of the final bound complex.

The association rates from these two different approaches can be combined using

specialized techniques such as milestoning to compute the on-rates for the complete

binding.
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Chapter 6

KBbox: A Toolbox of Computational

Methods for Studying the Kinetics of

Molecular Binding

I have contributed to the development of KBbox (http://kbbox.h-its.org/toolbox/),

a webserver which provides information about various computational methods to

study molecular binding kinetics, and different computational tools that employ

them. It is developed as an effort to guide less experienced researchers in the use of

different computational and simulation approaches available to compute the kinetics

parameters of drug-protein binding. The toolbox lists and provides an overview of

the current state-of-the-art computational approaches for studying molecular bind-

ing kinetics, with methods ranging from relatively high-throughput regression-based

chemoinformatics methods to computationally intensive atomic-level simulation ap-

proaches. KBbox provides a curated list of published applications of the methods,

providing users with an easy-to-find reference list. For a number of methods, de-

tailed tutorials are also provided that give the user an introduction into how to

run the calculations and to reproduce some of the example cases. KBbox provides a

query interface that asks a series of questions relating to structural and kinetics data

available to them, and the data they wish to calculate, and provides them with a list

of methods found in the toolbox that match their query, sorted approximately by

the computational resources required for their application. The web server is easily

extendable, allowing us to add new methods to the toolbox as they are developed

and published.
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Figure 6.1: A snapshot of the homepage of KBbox toolbox website (http://kbbox.h-its.org/

toolbox/). The key features/content of the toolbox are highlighted in different colors.
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6.1 Technical Implementation

KBbox was developed using the high-level python web framework Django (Version

2.2, Retrieved from https://djangoproject.com) for serving dynamic HTML con-

tent created from information stored in its database (see Database Structure). The

responsive web interface of the KBbox is provided through the use of JavaScript

and CSS plugins from the Bootstrap 3[162] framework. Biopython’s[163] Bio.Entrez

module is used for programmatic access to Entrez[164], a data retrieval system

that provides users access to NCBI’s databases such as PubMed. The Bio.Entrez

parser allows for example to search PubMed or download GenBank records from

within a Python script. This functionality is used in KBbox to add new exam-

ple cases directly by providing either a valid PubMed Id or a valid DOI iden-

tifier, and the data is parsed using the Beautiful Soup parser. KBbox uses the

CKEditor rich text editor in the Django-CKEditor python package to enable writ-

ing the content directly in web pages e.g. to add and format rich text for new

methods, tools or tutorials. In addition, KBbox also uses Pillow (version 4.0, re-

trieved from https://pillow.readthedocs.io/en/stable/), a Python Imaging Library

(PIL) fork which provides image processing capabilities to the Python interpreter.

6.2 Database Structure

KBbox uses SQLite, the default database available in the Django framework. SQLite

is included in Python and it is a fast, self-contained and highly-reliable SQL database

engine. The data structure used in KBbox is shown in the Figure 6.2. The main

data table contains the computational methods that comprise the toolbox (class

CompMethod). Each entry in the table contains a short summary description of

the method and a more detailed introduction to the method. It also contains a

number of Boolean parameters that are used for querying the methods in the tool-

box, to find which methods match the user’s needs. These relate to the data that

the user wishes to obtain (association rates—kon; dissociation rates—koff ; phar-

macokinetic/pharmacodynamics predictions—PKPD), whether training or atomic

structural data is required by the method, and whether the method is able to pro-

vide absolute data, or only relative data. Finally, the table contains an integer

(comp_cost field) describing the approximate computational cost of the method
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from 1 (least expensive) to 5 (most expensive). Values of 1 or 2 relate to methods

that can be run in short time on a desktop computer. Values in the range 3 to 5 cor-

respond to longer simulation-based methods. Each method is sorted into one group

(class CompMethodGroup), to allow KBbox to organize the methods into different

classes allowing users to search for methods more easily. Currently, these groups are

molecular modeling, molecular simulation, PKPD modelling and QSKR (qualitative

structure – kinetics relationships) approaches (discussed in the following sections).

Figure 6.2: Entity relationship diagram showing the data representation used in KBbox. (http:

//kbbox.h-its.org/toolbox/). For each of the 6 classes, name of the fields and their data types are

shown. This figure was prepared by Dr. Neil J. Bruce.

Each method is linked to one or more examples of previously published research,

or a report of currently unpublished data, in which that method was either the

primary method used, or one of a set of methods applied (class ExampleCase).

Each row in the table describing these examples contains author information and a

flag to say whether the work is published or unpublished. For published examples,

citation data is also provided. For some of the examples, tutorials are also provided

these are recorded in an additional table (class Tutorial).

A separate table is used to populate the list of computational tools described

by KBbox (class CompTool). Each row of this table contains a description of the
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tool, its license and a URL to its web page. In a similar manner to the methods,

the tools are grouped into classes (class CompToolGroup). Currently, these are data

analysis tools, PKPD modelling tools, preparation and general modelling tools, sim-

ulation tools and structure visualization tools (discussed in the following sections).

A particular tool could be a member of more than one group.

6.2.1 Query Interface to choose the methods

The toolbox also provides a query interface that asks users about information on

the amount of structural and kinetic data they have, and the data they want to

calculate, and suggests them a list of appropriate methods that they could use. This

list of methods is sorted based on the amount of computational resources required

by the methods. The query is built based on the information provided by users

on the data they want to estimate (kon, koff or PKPD modelling), amount of 3D

information available on protein-ligand complexes, and whether experimental kinetic

data is available for the ligands (see Figure 6.3). The methods that match this query

are provided, with methods sorted by the computational resources required for their

application (comp_cost field in CompMethod class).

Figure 6.3: Schematic outline of the query building workflow of the Interface to suggest list of

appropriate methods to the users. Note: This schema served as the starting point for the design of

the interface, however the design evolved with time and therefore, the actual workflow implemented

on the website might be different from the one shown here.
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6.3 Group of Methods available in KBbox

The Methods webpage provides a description of a number of computational meth-

ods that can be used to investigate binding kinetics. At present, the toolbox provides

information on 19 different computational approaches that have been broadly cate-

gorized into the following 4 groups:

• QSKR Approaches

QSKR (quantitive structure-kinetic relationship) are regression or classifica-

tion models that relate a set of physio-chemical properties or molecular de-

scriptors to the binding kinetics of compounds. QSKR regression models use

regression techniques to relate a set of molecular descriptors (referred to as

"predictor variables" in Machine Learning terminology) to the kinetic parame-

ter ("response variable") and predicted parameter is a continuous value. QSKR

classification models, on the other hand, relate the predictor variables to a cat-

egorical value (e.g. slow or fast, active or inactive) of the response variable.

• Molecular Simulation

Molecular simulation is a type of N-body simulation technique used for study-

ing the physical movements of atoms and molecules. In molecular simulation,

the dynamics of the system can be studied by allowing the atoms and molecules

to interact for a fixed period of time. In the most common version, forces be-

tween the interacting particles and their potential energies are calculated using

interatomic potentials or molecular mechanics force fields, and the trajectories

of atoms and molecules are determined by numerically solving the Newton’s

equations of motion.

• PKPD Modelling

PKPDmodeling (pharmacokinetic/pharmacodynamic modeling) combines dose-

concentration relationships (pharmacokinetics) and concentration-effect rela-

tionships (pharmacodynamics) into one set of mathematical expressions, that

allows to establish and evaluate dose-concentration-response relationships and

subsequently describe and predict the effect-time courses resulting from a drug

dose.

• Molecular Modelling

Molecular modelling tools are used to create and modify the 3D structures of
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molecules. When experimental structural data is missing, they can be used

to predict the structures of biomolecules, biomolecular complexes and of com-

plexes formed between biomolecules and small molecules. They are also used

to prepare existing structures for use in simulations.

6.4 List of Examples

The different computational methods described in KBbox are linked to one or several

of the example cases (also available under Examples webpage link) where they were

successfully applied. The toolbox currently lists total 33 example cases of which 31

are already published.

6.5 Group of Computational tools in KBbox

TheTools webpage lists a number of different computational tools that are employed

in binding kinetics studies. At the moment, there are total 18 computational tools

and software that are grouped under the following 5 categories:

• Simulation Tools

Currently, this section consists of information on 7 different simulation tools

such as Amber, Amber Tools, CHARMM, Gromacs etc.

• Preparation and General Modelling Tools

There are total 12 different tools available in this category that are generally

used for preparation and modeling of 3D structures and potential grids for use

in simulation and docking based methods.

• Pharmacokinetic and Pharmacodynamics (PKPD) Modelling Tools

This category currently lists only one PKPDmodelling tool: Berkeley Madonna,

which is a mathematical modelling software package used for numerically solv-

ing ordinary differential equations, difference equations and multi-dimensional

transcendental algebraic equation roots.

• Data Analysis Tools

This section lists tools and programming languages commonly used for analysing,

plotting and visualizing output from molecular simulations and chemoinfor-

matics methods.
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• Structure Visualisation Tools

This category lists tools such as PyMOL, VMD or MOE commonly used to

visualize 3D structures, trajectories from molecular simulations and potential

grids of biomolecules.

6.6 List of Tutorials

KBbox has list of tutorials available under the Tutorials webpage to introduce

newcomers to the different computational methods required to reproduce some of

the example cases. These tutorials are also linked to their published example cases.

These tutorials provide scripts, input dataset and input files along with detailed

instructions on using specific computational method for computing rates for binding

kinetics. Currently, KBbox has 5 different tutorials available on different methods:

• Estimation of relative residence times of protein-ligand complexes

using τ-Random Acceleration Molecular Dynamics (τRAMD)

This tutorial guides the user through the process of setting up and run-

ning RAMD simulations for estimation of the relative residence time (τ) of

a protein-small molecule complex[29]. The procedure is demonstrated for a

complex of a low molecular weight compound with the N-terminal domain of

the heat shock protein, HSP90.

• Data exploration and linear regression of a kinetic dataset using R

This tutorial guides the user through the process of doing Multiple Linear

regression and data exploration on 16 MAP38 kinase inhibitors within the

software package R. Explorative data analysis is carried out on this dataset,

containing precalculated physicochemical descriptors. Multiple linear regres-

sion and correlation analysis are utilized to identify descriptors influencing

koff .

• Compartmental modelling and simulation in Berkeley Madonna

This tutorial demonstrate the use of compartmental modelling and simulation

in Berkeley Madonna in predicting the receptor occupancy time profile in a

body tissue after intravenous administration of a receptor ligand. In this tu-

torial, the selective dopamine D2 antagonist raclopride is used as an example.
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The pharmacokinetics (PK) and dopamine D2 receptor occupancy (RO) in

brain after intravenous administration of raclopride to rat are simulated[165].

• Prediction of the rate of formation of a protein-protein complex us-

ing SDA

This tutorial describes the use of SDA to perform Brownian dynamics simula-

tions to predict the bimolecular association rate constant for the formation of

a protein-protein complex[131].

• Generation of Quantitative structure-kinetics relationships (QSKRs)

using Comparative Binding Energy (COMBINE) Analysis

This tutorial guides the user through the process of setting up and running

COMparative BINding Energy (COMBINE) analysis to derive Quantitative

structure-kinetics relationship (QSKR) for dissociation rate constants (koff ) of

inhibitors of a drug target[109]. The procedure is demonstrated for a dataset

of 70 inhibitors of heat shock protein 90 (HSP90) belonging to 11 different

chemical classes.

6.7 Example Use Cases

KBbox is useful for a variety of users with different needs and experiences. Here we

outline two potential use cases of the web server.

6.7.1 What method should I use for a given project?

A PhD student with some basic experience in computational modeling and simula-

tion, is interested in starting a new project where he has data on residence times

of a set of inhibitors for a given protein target. He also has crystallographic data

for these inhibitors bound to the target. He wants to use computational modeling

to predict the determinants of short and long residence time compounds and use

this knowledge to predict residence times of compounds with no experimental data

available. He arrives on the KBbox home page (Figure 6.4, black box), and click on

the button “Not sure what method to use for a particular problem? Click here!”, and

is then asked a set of questions relating to the data available to him, and the data

he is interested in calculating. After these questions are answered, KBbox checks

the database, and a list of methods, that match his query are presented to him
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(Figure 6.4, red boxes, anticlockwise). These methods are sorted approximately by

the computational resources required for the calculation. The student clicks on each

entry in this list, and he is taken to pages that give an overview of the methods,

along with a curated list of examples of previous applications of each method, with

links to the relevant journal articles. The student selects COMBINE analysis[46]

as the method he is interested in, and he then follows the link to the tutorial that

describes how to perform COMBINE analysis on his data (Figure 6.4, red boxes,

anticlockwise).

Figure 6.4: Representation of two of the example use cases of KBbox.
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6.7.2 Where can I find information on previous applications

of a method for studying kinetics?

A postdoctoral researcher is interested in using τ -Random Acceleration Molecular

Dynamics[29] (τRAMD) to study the unbinding of a set of compounds from a target

protein and to rank them according to their relative residence times. While he has

heard about the method, he does not have experience of running these simulations,

and is looking for more information on the method and examples of previously pub-

lished research using τRAMD. He arrives on the KBbox homepage and then clicks

on the “Methods” button at the top of the page. From here he selects “Molecular

Simulation” from the menu on the left-hand side of the page and find the entry for τ -

Random Acceleration Molecular Dynamics (Figure 6.4, green boxes, anticlockwise).

After clicking on this entry, he is presented with an overview of the method, and

a list of published examples of its application to binding kinetics studies. He/she

follows the links for the examples and is taken to the relevant journal pages.

The computation of binding kinetics is an active area of interest, and the devel-

opment and application of more robust and advanced computational approaches is

expected to increase in the future. Therefore, the KBbox will be extended continu-

ously to include data on new computational methods and their example cases. Also,

more tutorials on different computational approaches will be added in the future.

Hence, KBbox will be useful to the scientific community and will provide information

on state-of-the-art of computational methods available to investigate and estimate

kinetic parameters for molecular binding.
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Chapter 7

Summary and Outlook

A number of recent studies suggesting the better correlation of efficacy of a drug

with its residence time at its receptor than its affinity has led to widespread efforts

in both industry and academia to consider the role of drug binding kinetics in drug

discovery programs. This has resulted in a growing demand for in-silico and ex-

perimental methods that can estimate or predict kinetic parameters of drug-protein

binding. In addition, understanding the mechanistic determinants of drug-target

binding kinetics is important for aiding the design of lead molecules with optimized

kinetic properties.

One of the important aims of this thesis was to use the available information

from structures of protein-drug complexes and experimentally determined kinetic

parameters of protein-drug binding to derive Quantitative Structure-Kinetics Re-

lationships (QSKRs). For this purpose, I employed Comparative Binding Energy

(COMBINE) analysis, to derive protein-specific scoring functions for the koff rate

constants of inhibitors of HIV-1 protease and HSP90. For both of these protein

systems, I managed to derive statistical models which relate the koff rate constants

of their inhibitors to weighted selected components of the drug-receptor interaction

energy. Unlike the congeneric series of compounds normally used for training such

linear regression models, herein I have used diverse sets of inhibitors that have very

different scaffolds and binding modes. These models were found to have good predic-

tive ability as assessed using different cross-validation methods and a validation data

set. These models can therefore be used to make predictions for off-rates of novel

inhibitors of these proteins. Using COMBINE analysis, I was also able to identify

key protein-inhibitor interactions that explain the variance in the binding kinetics of
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the inhibitors. These specific components of interaction energy provide insights into

the mechanisms of specific slow and fast dissociating classes of inhibitors. My results

on two different targets with very diverse sets of inhibitors considered, suggests that

the COMBINE analysis has potential as a robust and medium-throughput QSKR

method and its scope of application is expected to grow as more data on measured

kinetic parameters becomes available.

Recent work on Haspin kinase and its halogenated inhibitors has demonstrated

that inhibitors with long residence times can be designed by introducing a halogen-

aromatic π interaction between a halogen atom which is commonly found in the

drugs, and an aromatic residue in the binding site. Substitution of an iodide moiety

in tubercidin to form 5-iodotubercidin (5-iTU), a close analogue of ATP, resulted in

the formation of a halogen-aromatic π interaction with the F605 gatekeeper residue

present in the binding site of Haspin, as confirmed from the analysis of the 3D crys-

tallographic structures of Haspin complexed with 5-iTU. 5-iTU shows a very high

affinity for Haspin and also a very long residence time compared to ATP and unsub-

stituted tubercidin. Characterization of the affinities and binding kinetics of 5-iTU

derivatives (substituted with smaller halogen atoms: Br, Cl and F) with different

experimental assays showed that the affinities as well as the residence times of 5-iTU

derivatives diminish with the decreasing size of the substituted halogen atom. I per-

formed quantum mechanical interaction energy calculations to analyze the nature of

the polarization mediated interactions of the core inhibitor scaffold with the gate-

keeper aromatic residues. I calculated the second-order Møller–Plesset interaction

energies (EMP2) between the 5-iTU derivatives and the gatekeeper phenylalanine

(F605) residue at consecutive levels of quantum mechanical theory and partitioned

the EMP2 energy into its constituent energetic components using a many-body energy

decomposition scheme. I found that the correlation energy (ECORR) makes a major

contribution to the total EMP2 interaction energy between 5-iTU derivatives and the

gatekeeper residue. Also, I observed a very high correlation between ECORR and the

experimentally measured residence times of 5-iTU derivatives with a correlation coef-

ficient (R2) of 0.97. This correlation energy explains the second-order intermolecular

dispersion interactions and the correlation corrections to the Hartree–Fock energy.

I also computed binding free energies of the Haspin-inhibitor complexes using the

classical MM/GBSA approach, to account for the complete protein structure. The

computed binding free energies correlated well with the calorimetric data obtained
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from experiments suggesting that the enthalpic contribution to binding increases

with the increase in size of the halogen atom substituted on inhibitors. In addition,

the residence times of the 5-iTU derivatives computed with the τ -RAMD procedure

correlated well with the experimentally measured residence times.

I then went on to establish a protocol for the high-throughput calculation of

diffusional association rate constants for protein-small molecule binding by running

continuum solvent and rigid-body based Brownian dynamics simulations using the

SDA 7 software. A number of simulation parameters were accessed using the associa-

tion of trypsin and benzamidine as a test system and an optimized set of parameters

was derived that should be generally applicable to simulating diffusional association

of a wide-range of protein-ligand binding pairs. I also established standard guide-

lines for recording diffusional on-rates corresponding to specific reaction conditions.

I validated this protocol on several inhibitors of different targets of varying com-

plexities. I observed that the protocol had limitations in explaining the binding

of small but flexible molecules, as well as conformation dependent protein-ligand

binding. However, this protocol can serve as a good starting point for multi-scale

approaches that combine BD with MD, where BD simulations can be run using this

protocol to model the initial diffusional association of protein and ligand molecules,

following which an MD-based regime can be used to account for the flexibility and

conformational changes to simulate the formation of the final bound complex. The

association rates from these two different approaches can be combined using spe-

cialized techniques such as milestoning, as demonstrated by Votapka et al.[22] using

their software SEEKR.

In addition, I contributed to the development of KBbox, a toolbox of computa-

tional methods, which provides access to information on state-of-the-art computa-

tional methods to study molecular binding kinetics, and example cases and tutorials

for these methods. KBbox also includes a collection of tutorials that provide the

users with an introduction into how to use different computational approaches to

compute the kinetic parameters of protein-ligand binding. Due to the growing in-

terest in evaluation of drug-binding kinetics, a plethora of computational methods

based on biomolecular simulations and chemoinformatics has emerged recently that

are designed to compute either kon or koff or both. Some of these methods can

provide absolute values of kon and/or koff whereas others can be used to get rel-

ative rates or they can rank or classify ligands according to their binding kinetics.
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Also, depending upon the complexity of the protein-ligand system being studied, the

assumptions of the methods, and the amount of data available on the system, the

computational requirement and accuracy of these methods vary to a great extent.

Therefore, the choice of an appropriate method for a specific problem is non-trivial.

To help the users in choosing appropriate methods, KBbox provides a query interface

that asks users a series of questions related to the amount of structural and kinetics

data available, data that users wish to calculate, and suggests them a list of methods

for their calculations, and these methods are sorted by the level of computational

resources required for their application. Also, KBbox is designed to be easily extend-

able, so that the data on the newly developed methods and their published examples

can be added. We therefore believe that it will be useful to continuously maintain,

and regularly update this toolbox, and that will help the researchers with an inter-

est in studying drug-binding kinetics to use different state-of-the-art computational

methods for their system of interest.

Despite a lot of progress being made in the development and application of com-

putational approaches to compute binding kinetic parameters, there are still many

different challenges for computing kon and koff rates. For computing kon rates accu-

rately, meaningful encounter states must be found. On the other hand, for correct

evaluation of koff rates, a method should be able to effectively capture the factors

determining the escape of a tightly-bound ligand and the associated transition bar-

rier. In addition, computational methods make a critical assumption that the force

fields used are able to fully represent binding and unbinding processes for computing

drug-binding kinetics. However, the employed molecular force-fields are parameter-

ized to reproduce the equilibrium populations of free-energy wells, rather than the

transition barrier heights between them. Therefore, it is important to recognize the

shortcomings in commonly-used force fields so that future force fields can provide im-

proved representations of barrier heights. Similarly, water models used in simulation

approaches also need to be significantly improved so that the computational meth-

ods are able to reproduce diffusionally-limited kinetic data. At present, there is no

method available that can calculate absolute values of both kon and koff accurately

in the same computational framework with only modest computational resources.

Since the development of computational methods to compute drug-binding kinet-

ics is a very active area of research, one can expect further testing, refinement and

validation of these methods, as well as new approaches in the next few years. More-
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over, the improvement in accuracy of computational methods will contribute to a

thorough understanding of ligand–receptor structure–kinetics relationships.
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