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abstract

Neuroscientists are increasingly convinced that it is necessary to reconstruct
the precise wiring and synaptic connectivity of biological nervous systems to
eventually decipher their function. The urge to reconstruct ever larger and more
complete synaptic wiring diagrams of animal brains has created an entire new
subfield of neuroscience: Connectomics. The reconstruction of connectomes is
difficult because neurons are both large and small. They project across distances
of many millimeters but each individual neurite can be as thin as a few tens of
nanomaters. In order to reconstruct all neurites in densely packed neural tissues,
it is necessary to image this tissue at nanometer resolution which, today, is only
possible with 3D electron microscopy (3D-EM).

Over the last decade, 3D-EM has become significantly more reliable than ever
before. Today, it is possible to routinely image volumes of up to a cubic millimeter,
covering the entire brain of small model organisms such as that of the fruit fly
Drosophila melanogaster. These volumes contain tens or hundreds of tera-voxels
and cannot be analyzed manually. Efficient computational methods and tools
are needed for all stages of connectome reconstruction: (1) assembling distortion
and artifact free volumes from serial section EM, (2) precise automatic recon-
struction of neurons and synapses, and (3) efficient and user-friendly solutions
for visualization and interactive proofreading. In this dissertation, I present new
computational methods and tools that I developed to address previously unsolved
problems covering all of the above mentioned aspects of EM connectomics.

In chapter 2, I present a newmethod to correct for planar and non-planar axial
distortion and to sort unordered section series. This method was instrumental for
the first ever acquisition of a complete brain of an adult Drosophila melanogaster
imaged with 3D-EM.

Machine learning, in particular deep learning, and the availability of public
training and test data has had tremendous impact on the automatic reconstruction
of neurons and synapses from 3D-EM. In chapter 3, I present a novel artificial
neural network architecture that predicts neuron boundaries at quasi-isotropic
resolution from non-isotropic 3D-EM. The goal is to create a high-quality over-
segmentation with large three-dimensional fragments for faster manual proof-
reading.

In chapter 4, I present software libraries and tools that I developed to support
the processing, visualization, and analysis of large 3D-EM data and connectome
reconstructions. Using this software, we generated the largest currently existing
training and test data for connectome reconstruction from non-isotropic 3D-EM.
I will particularly emphasize my flexible interactive proof-reading tool Paintera
that I built on top of the libraries and tools that I have developed over the last
four years.
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zusammenfassung

Neurowissenschaftler sind zunehmend davon überzeugt, dass es notwendig ist,
die synaptische Verbindung und den „Schaltplan“ biologischer Nervensysteme
präzise zu rekonstruieren, um deren Funktion zu entschlüsseln. Die Dringlichkeit,
immer größere und vollständigere synaptische Schaltpläne zu rekonstruieren, hat
eine gänzlich neue Disziplin der Neurowissenschaften begründet: Konnektomiks.
Die Rekonstruktion von Konnektomen ist deshalb schwer, weil Nervenzellen
zugleich sehr groß und sehr klein sind. Eine einzelne Zelle kann sich übermehrere
Millimeter erstrecken, während einzelne Neuriten dünner als hundert Nanometer
sind. Um alle Neuriten in dichtgepacktem neuronalen Gewebe vollständig zu
rekonstruieren, ist es notwendig, das Gewebe mit einer Auflösung von wenigen
Nanometern pro Pixel abzubilden. Das ist heutzutage ausschließlich mit 3D-
Elektronen-Mikroskopie (3D-EM) möglich.

Im Verlauf des letzten Jahrzehnts ist 3D-EM immer zuverlässiger geworden.
Heute ist es möglich, Volumina von bis zu einem Kubikmillimeter aufzunehmen,
die das gesamte Gehirn kleiner Modellorganismen, wie z.B. der Fruchtfliege Dro-
sophila melanogaster, enthalten. Diese Volumina haben eine Größe von mehreren
zehn oder gar hundert Teravoxeln und können nicht mehr vollständig manuell
analysiert werden. Alle Aspekte der Konnektom-Rekonstruktion erfordern den
Einsatz effizienter computerbasierter Methoden und Werkzeuge: (1) Die Rekon-
struktion verzerrungs- und störungsfreier Volumina aus EM-Bildserien, (2) die
präzise und automatische Rekonstruktion von Neuronen und Synapsen, und
(3) benutzerfreundliche und effizienter Lösungen für die Visualisierung und
manuelle Korrektur dieser Resultate. In dieser Dissertation beschreibe ich com-
puterbasierte Methoden, die ich entwickelt habe, um bislang ungelöste Probleme
aus allen der drei aufgezählten Bereiche zu adressieren.

In Kapitel 2 präsentiere ich eine neue Methode, planare und nicht-planare
axiale Verzerrungen zu entfernen, sowie unsortierte Bildserien zu sortieren.
Diese Methode war von entscheidender Bedeutung für die erfolgreiche 3D-EM-
Aufnahme des ersten vollständigen Gehirns einer erwachsenen Drosophila melano-
gaster.

Maschinelles Lernen, insbesondere „Deep Learning“, sowie die Verfügbarkeit
öffentlicher Trainings- und Test-Datensätze haben die automatische Rekonstruk-
tion vonNeuronen und Synapsen in 3D-EM bemerkenswert verbessert. In Kapitel
3 beschreibe ich eine neue Architektur für künstliche neuronale Netzwerke, die
aus nicht-isotropen 3D-EM-Daten quasi-isotrope Rekonstruktionen von Nerven-
zellen generiert. Ziel ist es, eine qualitativ hochwertige Übersegmentierung aus
großen Fragmenten zu erzeugen, um die manuelle Korrektur zu beschleunigen.

In Kapitel 4 beschreibe ich Programmierbibliotheken und Anwendungen, die
ich für die Verarbeitung, Visualisierung und Analyse großer 3D-EM Daten und
Konnektomrekonstruktionen entwickelt habe. Mit Hilfe dieser Anwendungen
haben wir den derzeit größten existierenden Trainings- und Testdatensatz für die
Rekonstruktion von Konnektomen aus nicht-isotroper 3D-EM generiert. Beson-
dere Beachtung widme ich meinem flexiblen interaktiven Visualisierungs- und
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Bearbeitungswerkzeug Paintera, das ich unter Zuhilfenahme dieser Bibliotheken
und Werkzeuge entwickelt habe.
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1
INTRODUCTION

Understanding the brain or, more generally, nervous systems is one of the biggest
and most fascinating challenges that scientists face today. In the quest of under-
standing the brain, the multi-disciplinary field of neuroscience utilizes tools from
many other sciences, including but not restricted to molecular biology, cell biol-
ogy, mathematical modeling, physics, and many others (Ayd 2000, p. 688): Elec-
trodes measure electrical activity within the brain (electrophysiology; Buzsaki
et al. 1988); fluorescent molecules track action potentials through calcium concen-
trations at axon terminals (calcium imaging, T.-W. Chen et al. 2013); expansion
microscopy (F. Chen, Tillberg, and Boyden 2015) surpasses the diffraction limit
of light by expanding the specimen without distorting the anatomy; optogenet-
ics (Boyden et al. 2005) controls memory (X. Liu et al. 2012; Ramirez et al. 2013)
and behavior (Lin et al. 2011) with light; electron microscopes image neural tissue
at synapse resolution (G. Knott et al. 2008b; Zhang et al. 2016; Eberle and Zeidler
2018) for the study of circuit connectivity in nervous systems(Sporns, Tononi,
and Kötter 2005). Like in many other scientific fields, with throughput of data
acquisition ever increasing, computational methods have become an essential
tool for modern-day neuroscientists for curating and extracting information and
scientific results from the acquired data.

1.1 connectomics

Nervous systems are unique among organ systems (Morgan and Jeff W Lichtman
2013): A much higher diversity of cell types can be found in nervous systems,
neurons with complicated geometries connect to many cellular partners through
synapses to form diverse directional circuits, and the structure itself is not only
formed by genetic instruction but also by the personalized experiences of each
individual. Despite recent efforts, the understanding of the relation between
this complex structure and function remains poor at best (Jeff W Lichtman and
Winfried Denk 2011). Connectomics (Jeff W Lichtman and Sanes 2008) studies
the connectome (synaptic connectivity of neurons) of a nervous systems with the
goal of understanding the complex structural features of nervous systems and
their relation to function. In analogy to electric circuits, this is sometimes called a
“wiring diagram”, albeit it currently only considers connections (while wiring
diagrams consider a variety of things, e.g. resistor, capacitor, etc). One important
and ongoing task of connectomics is the reconstruction of connectomes from
micrographs. This encompasses many steps, from preparation of the specimen,
over imaging and assembly of the micrograph, to the actual reconstruction of the
connectome from the micrograph.

Neuronal anatomy and the idea that nervous systems consist of many neurons
that are connected were first formulated in the late 19th century (Cajal 1899)

17
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Table 1: Sizes of structures in nervous system tissue.

Structure Size

Axons & Dendrites > 100nm
Synapses > 200nm
Membranes ≈ 20nm
Synaptic Vesicles ≈ 20nm
Synaptic Cleft ≈ 20nm
Microtubules ≈ 20nm
Gap Junctions ≈ 15nm up to < 3nm

but the study of neural circuit synaptic connectivity has become possible only
with the availability of microscopic imaging at synaptic resolution. Starting
in the 1970s, decades before the term connectome was introduced, (White et
al. 1986) reconstructed the connectome of the nematode C. elegans from serial
section electron micrographs. Even though the hermaphrodite organism has
only 302 neurons, completion of the reconstruction took 14 years. The advent of
high-throughput serial section electron microscopy (EM) in neuroscience (K. L.
Briggman and D. D. Bock 2012) has made it possible to image much larger and
more complex nervous systems in their entirety (Zheng et al. 2018).

The connectome is a simplified representation of a nervous system that disre-
gards important features such as physical and chemical properties of neurons,
temporal dynamics, or enzymatic processes, which are all expected to play an
important role in nervous systems; advocates had to defend connectomics against
the criticism of fruitlessness (Morgan and Jeff W Lichtman 2013). I believe that
there is a lot of value in understanding the structure of a nervous systems: While
function cannot be deducted solely from a connectome, it can certainly be con-
strained and tested (Seung 2009). Instead of dismissing connectomics as a futile
approach at being the sole explanation of function of nervous systems, critiques
would be well advised to accept it as another useful tool in the box.

In the following, I will show that modern connectomics is impossible without
electronmicroscopy and that it is important to correct for asmany imaging artifacts
as possible.

1.1.1 Electron Microscopy

Microscopy reveals small structures that cannot be seen with the naked eye
and is one of the most important tools of neuroscience. Without microscopy,
it would be impossible to understand organisms at cellular and sub-cellular
level. The resolution of any microscopy modality is ultimately limited by the
diffraction limit (Abbe 1873) which depends on the wavelength of the electro-
magnetic radiation or the speed of the particle stream used for imaging. The
resolution of light microscopy in the order of 100nm is too coarse to resolve
relevant structures (table 1). Instead, neuroscientists resort to EM to overcome
the diffraction limit of light. Modern, high-throughput EMproduces vast amounts
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of data at nanometer resolution. EM is used in transmission (TEM, section 2.1.1)
and scanning (SEM, section 2.1.2) modes (K. L. Briggman and D. D. Bock 2012).
Volumetric data is acquired as a series of two-dimensional scans (of mosaics) of
sections or block-faces of the specimen, which are then assembled into a three-
dimensional volume by serial section alignment (Saalfeld, Cardona, et al. 2010;
Saalfeld, Fetter, et al. 2012; Wang, Gosno, and Y.-S. Li 2015). TEM and SEM differ
in resolution, throughput, and contrast (K. L. Briggman and D. D. Bock 2012).
During the highly precise and sensitive sample preparation and imaging process,
various artifacts can be introduced, e.g. section folds and tears, staining artifacts,
missing sections, or axial distortions.

One common artifact shared between both the TEM and SEM modalities are
non-planar axial distortion along the axis orthogonal to the imaging plane: The
thickness of TEM sections is not constant, and the abrasion or milling of the
block-face for SEM can be variable and may not be planar across the field-of-view.
Additionally, TEM sections series can be assembled in the wrong order. While
the imaging quality of modern EM is excellent and error- and artifact rates are
low, even a moderate presence of these artifacts can have a dramatic effect on
downstream analysis, such as the reconstruction of the connectome, and thus
correction of axial artifacts is addressed in chapter 2. For example, a small number
of the sections in the TEM section series of a female adult drosophila brain (Zheng
et al. 2018) were out of order, which had not been identified via visual inspection;
instead, the method I will describe in chapter 2 was able to identify and correct
for this setion misordering.

1.1.2 Neuron Reconstruction

Ultimately, a complete connectome requires that all neurons and their connec-
tivity through synapses are identified. In a typical manual workflow, expert
annotators trace individual neurons through volumetric data, one neuron at
a time. This is a laborious task and experts spend thousands of hours to ex-
tract the connectome even for moderately sized data sets. With the throughput of
electron microscopy ever increasing, analysis remains the bottleneck of connec-
tomics (Helmstaedter 2013; Titze and Genoud 2016). One of the biggest criticisms
of connectomics is that, while methods and tools have greatly improved since
the first reconstruction of the C. elegans connectome, connectomics remains an
“industrial effort” (Morgan and Jeff W Lichtman 2013): the reconstruction of the
connectome of a single cortical column is estimated to require more than 10,000
years of PhD work1,2 (Kevin L Briggman and Winfried Denk 2006). It is thus
vital for the success of connectomics to automate the reconstruction process as
much as possible. Typically, machine learning models learn to predict neuron
boundary maps from densely annotated ground truth data. Super-voxels, or frag-
ments, are then extracted from the predicted boundary maps and agglomerated

1https://www.economist.com/science-and-technology/2009/04/08/wired
2I confirmed that all web links in this dissertation are active and refer to the intended targets

on June 6, 2019.

https://www.economist.com/science-and-technology/2009/04/08/wired
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into segments. Finally, human experts proof-read the reconstruction and correct
for two types of error:

under-segmentation or false merge errors occur when voxels are incorrectly
grouped into the same fragment or segment.

over-segmentation or false split errors mean that a set of voxels is incorrectly
partitioned into two disjoint segments.

In general, under-segmentation can have a more catastrophic effect on the over-
all reconstruction result and is harder to correct for, in particular if the under-
segmentation occurs at the fragment level: While over-segmentation can be cor-
rected by simple edge contraction in the neighborhood graph of the segmentation,
under-segmentation correction may require voxel-wise manipulation of frag-
ments.

Increasingly complex machine learning models, in particular deep learning,
have benefited from an unprecedented wealth of publicly available ground truth
annotations and have had a tremendous impact on the reconstruction of neu-
rons and synapses from 3D-EM. Recent advances in network architecture design
have been adopted widely in neuron reconsturction: (1) In order to minimize
costly under-segmentation errors, pairwise affinities between neighboring voxels
were introduced to virtually increase the resolution of the prediction (Turaga,
Kevin L Briggman, et al. 2009): Object boundaries are defined by low affinities be-
tween voxels instead of on the voxel grid. (2) Current state-of-the performance is
achieved by three-dimensional variants of the popular U-Net architecture (Çiçek
et al. 2016) that consider context along each spatial dimension.

Contrary to isotropic SEM, fragment extraction typically does not consider
the 3D structure of the data in an anisotropic TEM setting. Instead, fragments
are extracted within the 2D section planes (Funke, Tschopp, et al. 2018) and are
only merged along the low-resolution 𝑧-axis during agglomeration. As a result,
agglomeration models and proof-readers have to handle a much larger number
of fragments.

I will present a novel artificial neural network architecture that predicts neuron
boundaries at quasi-isotropic resolution from non-isotropic 3D-EM in chapter 3
to facilitate extraction of 3D fragments. The goal is to create a high-quality over-
segmentation with large three-dimensional fragments for faster manual proof-
reading.

Proof-reading and ground truth annotation is a challenging task for experts
and user-friendly software and tools are necessary to keep up with the growing
demand for dense ground truth annotations for the training of powerful machine
learning models as well as for proof-reading and correcting automatic predictions.
During my PhD I developed and contributed to many software libraries and
tools to support the processing, visualization, and analysis of large 3D-EM data
and connectome reconstructions. This software was used to generate the largest
currently existing training and test data for connectome reconstruction from non-
isotropic 3D-EM.3

3https://cremi.org

https://cremi.org
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1.2 contribution

My contribution to the field of connectomics with this dissertation is three-fold:

1. Correction of axial distortion artifacts in 3D-EM (chapter 2),

2. A novel deep learning model for the automatic reconstruction of neurons at
quasi-isotropic resolution from anisotropic TEM data (chapter 3), and

3. The development of software libraries and tools to support the processing,
visualization, and analysis of large 3D-EM data and connectome reconstruc-
tions (chapter 4), most prominently Paintera (section 4.1), an extensible in-
teractive proof-reading and ground truth annotation tool for connectomics
that can handle arbitrarily large data.

1.2.1 Publications

I published my work on axial artifact correction for 3D-EM data in the ISBI
conference and the journal Bioinformatics (Hanslovsky, Bogovic, and Saalfeld
2015; Hanslovsky, Bogovic, and Saalfeld 2017) and will present the Java-Python
bridge for shared memory access between NumPy and ImgLib2 data structures
at the 2019 SciPy conference (Hanslovsky 2019).

1.2.2 Software

Good software libraries and tools are vital to reproducible andmeaningfulmodern
research. Repeated execution of an experiment with the same parameter setting
should always produce the same result. Software should be accessible to all
scientists. Tools should be intuitive and created in close collaboration with the
scientists who use them. I am a strong supporter of open source software in
research and I believe that scientifc software should be accessible to all scientists.
Consequently, all software libraries and tools that I developed during my PhD
are publicly available on GitHub under permissible open-source licenses:

• Paintera4 (section 4.1) is a user-friendly interface for efficient ground truth
generation and proof-reading arbitrarily large data with 2D cross-sectional
views and adaptive 3D visualization.

• label-utilities5 is a Java library for manipulation of label data, most impor-
tantly distance-transform based interpolation of sections of labeled data (sec-
tion 3.4.1.2)

• EQIP6 (section 4.2) is a Python library for the creation and management of
reproducible deep learning experiments.

4https://github.com/saalfeldlab/paintera
5https://github.com/saalfeldlab/label-utilities
6https://github.com/saalfeldlab/eqip

https://github.com/saalfeldlab/paintera
https://github.com/saalfeldlab/label-utilities
https://github.com/saalfeldlab/eqip
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• imglyb7 (section 4.3) creates a bridge between Python and Java for shared-
memory access between NumPy and ImgLib2 data structures.

• Fiji plugins for the axial distortion correction8 and section sorting9 (chapter 2)

• Parallelized correction of non-planar axial distortion10 on distributed-memory
compute clusters with Apache Spark (Zaharia et al. 2010) (chapter 2)

• flintstone11 helps distributing batch jobs onto the Janelia Spark cluster.

• Fuse12 extends Gunpowder for training quasi-isotropic network architec-
tures.

Additionally, I contributed to these open-source software libraries and tools:

• jgo13 (section 4.4) executes arbitrary Java applications from Maven coor-
dinates. I contributed the Python bindings and any Java program that is
available through publicMaven repositories can now be distributed through
conda or the Python package index.

• BigCAT14 is the predecessor of Paintera and was used to to generate the
largest currently existing training and test data for connectome reconstruc-
tion from non-isotropic 3D-EM15. Most importantly, I contributed various
paint modes that are also available in Paintera, e.g. 2D flood-fill for splitting
fragments.

• ImgLib216,17 is a general-purpose, multi-dimensional image processing li-
brary. In particular, I contributed

– A parallel and multi-dimensional implementation of sampled func-
tions (Felzenszwalb and Huttenlocher 2012)

– A parallel and multi-dimensional implementation of Hessian eigen-
value extraction.

– Multi-dimensional flood-filling (also used in Paintera).
– Connected component analysis.
– A shear transformation.
– Various bug-fixes and utility methods.

I attended the 201718 and 201919 DAIS Learnathons as a tutor and ImgLib2
specialist.

7https://github.com/imglib/imglyb
8https://github.com/saalfeldlab/z-spacing
9https://github.com/saalfeldlab/section-sort

10https://github.com/saalfeldlab/z-spacing-spark
11https://github.com/saalfeldlab/flintstone
12https://github.com/saalfeldlab/fuse
13https://github.com/scijava/jgo
14https://github.com/saalfeldlab/bigcat
15https://cremi.org
16https://github.com/imglib/imglib2
17https://github.com/imglib/imglib2-algorithm
18https://imagej.net/2017-06-18_-_DAIS_learnathon
19https://indico.mpi-cbg.de/event/162/

https://github.com/imglib/imglyb
https://github.com/saalfeldlab/z-spacing
https://github.com/saalfeldlab/section-sort
https://github.com/saalfeldlab/z-spacing-spark
https://github.com/saalfeldlab/flintstone
https://github.com/saalfeldlab/fuse
https://github.com/scijava/jgo
https://github.com/saalfeldlab/bigcat
https://cremi.org
https://github.com/imglib/imglib2
https://github.com/imglib/imglib2-algorithm
https://imagej.net/2017-06-18_-_DAIS_learnathon
https://indico.mpi-cbg.de/event/162/


2
ARTIFACT CORRECTION

Electron microscopy is one of the most important tools for connectomics: Without
the nanometer-resolution of electron micrographs, synnaptic connections cannot
be reconstructed. In this chapter, I present novel algorithms for the correction
of non-planar axial distortions perpendicular to the image plane of electron
micrographs. The work presented in this chapter was published at the ISBI
conference and in the journal Bioinformatics (Hanslovsky, Bogovic, and Saalfeld
2015; Hanslovsky, Bogovic, and Saalfeld 2017).

2.1 introduction

Serial section microscopy has been used for over a century to reconstruct volumet-
ric anatomy of biological samples (Born 1883). Beyond its classical application in
biology, zoology, and medical research, serial sectioning in combination with elec-
tron microscopy (EM) has become the de-facto standard for the reconstruction
of dense neural connectivity of animal nervous systems at synaptic resolution
(K. L. Briggman and D. D. Bock 2012; Stephen M. Plaza, Louis K. Scheffer, and
Chklovskii 2014; Jeff W. Lichtman, Pfister, and Shavit 2014): The axial dimension
of the volume is sampled by physically removing thin sections from the embed-
ded specimen and subsequently imaging either the block-face or the section se-
ries. A resolution of less than 10nm per pixel is necessary to separate individual
neural processes and to recognize chemical synapses. Sample preparation and
data acquisition at this resolution are highly sensitive procedures and, as a result,
imaging noise and artifacts during acquisition can be minimized at best, but not
entirely avoided. In this paper, we will focus on two major acquisition modalities
for large 3D electron microscopy that are used in EM connectomics: high through-
put serial section transmission EM (ssTEM; Davi D. Bock et al. 2011) and block
face scanning EM with focused ion beam milling (FIB-SEM; Xu and Hess 2011; G.
Knott et al. 2008a; Heymann et al. 2006). While we have developed our methods
with a strong focus on these two modalities, we expect them to generalize well to
other applications.

We made our work available as libraries for the ImageJ distribution Fiji and for
deployment in a high performance parallel computing environment. Our sources
are open and available on GitHub. 1,2,3

1http://github.com/saalfeldlab/section-sort
2http://github.com/saalfeldlab/z-spacing
3http://github.com/saalfeldlab/z-spacing-spark
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55 57 59 xz before
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Figure 1: Left: Three FIB-SEM 𝑥𝑦-section scans showing Drosophila melanogaster neural
tissue overlaid with color-coded local 𝑧-spacing, serial index top left. Color overlay was
chosen arbitrarily to visualize the wave-like evolution of height variance. Scale bar 1µm.
Right: Magnified crop of an 𝑥𝑧-cross-section of the original (top) and corrected (bottom)
series, 𝑧-compression by the “wave” is completely removed. Scale bar 250 nm.

2.1.1 Serial Section Transmission Electron Microscopy

A series of ultra-thin sections is generated by cutting the plastic embedded speci-
men using an ultra-microtomewith a diamond knife. Section ribbons are collected
on tape (K. J. Hayworth et al. 2006) or manually. Manual collection in particular
bears the risk of ordering mistakes that in practice occur frequently. The nomi-
nal section thickness ranges between 30nm and 90nm which defines the axial
resolution. Yet, discontinuous operation of the ultra-microtome and precision
limits of the instrument cause variations of section thickness between and within
sections. Shearing forces applied by the knife and during collection introduce
deformations to individual sections. Section folds, tears, and staining artifacts
further complicate the comparison of sections in the series and require that sec-
tions be aligned after imaging (Saalfeld, Fetter, et al. 2012). However, compared
with block face SEM as discussed in the next paragraph, ssTEM has two major
advantages: (1) sections can be post-stained which results in improved contrast
of structures of interest (e.g. synapse T-bars), and (2) imaging is performed in
transmission mode which enables high acquisition speed and significantly higher
in-plane resolution at high signal to noise ratio.

2.1.2 Focused Ion Beam Scanning Electron Microscopy

Block face scanning EM follows a cycle of imaging the block face of a plastic-
embedded specimen with a scanning electron microscope (SEM) followed by
material removal until complete acquisition of the specimen. In FIB-SEM, focused
ion beam (FIB) milling is used for material removal. This procedure, in practice,
generates inhomogeneous 𝑧-spacing and non-planar block faces leading to dis-
torted volumes (K. M. Boergens and W. Denk 2013; H. G. Jones, Mingard, and
Cox 2014). These distortions exhibit a wave-like evolution of height variances
throughout the acquired data and can be severe enough to seriously impede the
correct reconstruction of small neural processes (figure 1). FIB-SEMhas twomajor
advantages over the previously discussed ssTEM: (1) focused ion beam milling
enables significantly higher axial resolution than physical sectioning, which en-
ables the acquisition of isotropic volumes at less than (10 nm)3 voxel size, and (2)
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fully automatic integration of serial imaging and milling in the vacuum chamber
of the microscope bears a lower risk for variances in image quality and provides
better initial section alignment and correct section order.

2.1.3 Contribution

We developed methods for the identification and correction of ordering mistakes
aswell as planar and non-planar axial distortions through image-based signal anal-
ysis without the need for any further apparatus or physical measurements (sec-
tion 2.3). We thoroughly assess efficacy and efficiency in virtual ground truth
experiments, demonstrate their applicability to real world problems (section 2.4),
and compare with state of the art (section 2.4.2.2). We published our methods as
open source libraries for the ImageJ distribution Fiji and for deployment in high
performance parallel computing environments using Spark (Zaharia et al. 2010).

2.2 related work

To the best of our knowledge, both post-acquisition order correction for serial
section microscopy and non-planar section thickness correction have not yet been
addressed in a rigorous way. However, several methods exist for measuring or
correcting section thickness or spacing. De Groot (1988) reviews four different
methods for estimating section thickness, all of which require additional physi-
cal measurements, specialized apparatus, or even destructive modifications of
previously acquired sections, rendering the proposed methods impractical or
even impossible for certain imaging modalities, e.g. block face SEM. Similarly,
H. G. Jones, Mingard, and Cox (2014) introduce an artifact as a fiducial mark
from which section thickness can be estimated in FIB-SEM acquisitions under the
assumption of planar sections. Berlanga et al. (2011) correct small volumes by
evening out top and bottom surfaces that have been manually annotated by the
user and transforming the whole series accordingly by a single transformation,
which fails to capture varying thickness. K. M. Boergens and W. Denk (2013)
reduce non-planar distortions during acquisition by using measurements of the
intensity of the ion beam to control the FIB-SEM milling process. In addition,
they estimate section thickness post-acquisition by adjusting 𝑧 coordinates such
that the peaks of auto-correlations in several 𝑥𝑧-cross-sections have the same half-
width in both dimensions.

Most related to our method for image based estimation of planar section
thickness is the work by Sporring et al. (2014). They assume an isotropic signal
that is sampled at less than isotropic axial resolution, with planar thickness
variation. A reference similarity curve is obtained from in-section pixel intensities.
The corrected spacing between adjacent sections is then determined by evaluating
the inverse of the reference similarity curve at the measured pairwise similarity.
We compared Sporring et al.’s method with ours and showed that our global
approach has superior performance where individual sections are compromised
by staining artifacts (section 2.4.2.2).
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To our best knowledge, we are first to propose solely image based methods
for the correction of section ordering mistakes and non-planar axial distortion.
Other than existing methods for planar section thickness correction, we do not ac-
cumulate pairwise distance estimates relative to a constant reference. Instead, we
jointly optimize and update the axial distortion field and an idealized observation
along the axial dimension. This allows us to explicitly account for artifacts that
compromise the signal in individual images, and to cope with varying properties
of the reference signal along the axis of distortion.

2.3 method

In the following, we describe our image-basedmethods for the correction of contin-
uous and discontinuous non-planar axial distortions in serial section microscopy.
Our only assumptions are — true for correct section order and spacing — mono-
tonic decrease of pairwise similarity of sections with distance and a slow rate
of change of biological tissue, i.e. the shape of the similarity function is locally
constant (section 2.3.1). Violations of these assumptions indicate wrong section
order or spacing. We will describe in detail how the coordinate space is trans-
formed to re-establish correctness of these assumptions, and thereby correcting
section order mistakes (sections 2.3.2 and 2.3.3), planar 𝑧-spacing (section 2.3.3),
and non-planar 𝑧-spacing (section 2.3.4).

2.3.1 Similarity Measure

We define pairwise similarity 𝑠(𝑃𝑖, 𝑃𝑗) of two sections 𝑃𝑖, 𝑃𝑗 ∈ 𝐼, indexed by
their respective positions 𝑖, 𝑗 along the 𝑧-axis within an image series that has
correct section order and spacing, as a symmetric function that decreases strictly
monotonically with distance |𝑗 − 𝑖|:

𝑠 ∶ 𝐼 × 𝐼 → [0, 1] ⊂ ℝ (1)
(𝑃𝑖, 𝑃𝑗) → 𝑠(𝑃𝑖, 𝑃𝑗) = 𝑓 (|𝑗 − 𝑖|) (2)
|𝑗 − 𝑖| < |𝑘 − 𝑙| ⟹ 𝑓 (|𝑗 − 𝑖|) > 𝑓 (|𝑘 − 𝑙|) (3)
𝑠(𝑃𝑖, 𝑃𝑗) = 𝑠(𝑃𝑗, 𝑃𝑖) (4)

For a series of 𝑍 sections, all pairwise similarities are stored in a 𝑍 × 𝑍 matrix
denoted by S such that

S𝑖𝑗 = 𝑠(𝑃𝑖, 𝑃𝑗). (5)

By definition, S is a symmetric matrix. In practice, we use noisy surrogate mea-
sures for the inaccessible ideal 𝑠 such that equation (3) may not hold for long
distances. Thus, for deformation estimation, we ignore measurements for which
|𝑗 − 𝑘| > 𝑟, for a user specified 𝑟 that depends on the data set.

We implemented three similarity measures: (1) the Pearson product-moment
correlation coefficient (PMCC) for aligned series, (2) the best block matching
coefficient (BBMC) for approximately aligned series, and (3) the percentage of
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true positive feature matches under a transformation model (inlier ratio) for
unaligned data. In our experiments (section 2.4), we used PMCC and feature
inlier ratio.

2.3.1.1 Pearson Product-Moment Correlation Coefficient

The PMCC of two statistical samples 𝐴, 𝐵 ∶ |𝐴| = |𝐵| = 𝑁 is defined as

𝜌𝐴𝐵(𝐴, 𝐵) =
cov(𝐴, 𝐵)

√var(𝐴)var(𝐵)
∈ [−1, 1] (6)

with sample co-variance

cov(𝐴, 𝐵) =
1
𝑁 ∑

𝑖,𝑗
(𝐴𝑖𝑗 − 𝜇𝐴) (𝐵𝑖𝑗 − 𝜇𝐵) , (7)

where 𝜇𝐴 = 1
𝑁 ∑𝑖,𝑗 𝐴𝑖𝑗 is the sample mean, and var(A) = cov(A,A) is the sample

variance. PMCC is invariant to changes of the mean and variance of samples 𝐴
and 𝐵 and therefore robust against contrast and gain variations across the image
series. In order to comply with equation (1), we use

𝑠(𝐴, 𝐵) = ̃𝜌𝐴𝐵 = max(𝜌𝐴𝐵, 0) ∈ [0, 1]. (8)

2.3.1.2 Best Block Matching Coefficient

Similarity estimates using PMCC require the series to be perfectly aligned which,
in practice, is not always guaranteed. We therefore implemented an alternative
similarity measure that is robust against small local translations, the average over
local best block matching coefficients (BBMC). For any rectangular region 𝑅𝑖 ⊂ 𝑃𝑖,
the best correspondence 𝑅∗

𝑗 ⊂ 𝑃𝑗 is determined by maximizing pairwise PMCC
over a set of correspondence candidates 𝑅𝑗 ⊂ 𝑃𝑗 of the same width and height,
sampled in a small radius around the center of the region. The pairwise similarity
of sections 𝑃𝑖 and 𝑃𝑗,

S𝑖𝑗 =
1
𝑁 ∑

𝑅𝑖

max
𝑅𝑗

𝑠(𝑅𝑖, 𝑅𝑗), (9)

is the average of all pairwise similarities between 𝑅𝑖 and corresponding 𝑅∗
𝑗 , where

𝑁 is the total number of regions 𝑅𝑖 within 𝑃𝑖.

2.3.1.3 Inlier Ratio

Even BBMC requires that the series is approximately aligned. In ssTEM series,
however, approximate alignment is often not available, and aligning the seriesmay
be impossible because the correct order of sections has not yet been established.
To recover the correct order of sections, we need a similarity measure that is
independent of alignment. Using transformation invariant features, we match
automatically extracted interest points across pairs of sections. We then use a
variant of RANSAC in combination with a least squares local trimming estimator
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Figure 2: Warp the coordinate space such that contour-lines of the transformed similarity
matrix 𝒮(c𝑖, c𝑗) are parallel to diagonal.

(Fischler and Bolles 1981; Saalfeld, Cardona, et al. 2010) to estimate a model 𝑀
that transforms one set of interest points onto the other. The estimator groups all
matches into inliers ℐ that conformwith 𝑀 and outliers 𝒪 that do not (ℐ ∩𝒪 = ∅).
The similarity of two sections is then given by the inlier ratio

𝑠(⋅) =
|ℐ|

|ℐ ∪ 𝒪|
∈ [0, 1]. (10)

For our experiments, we use SIFT (Lowe 2004). Where interest point detection
and matching are part of the image alignment pipeline, (e.g. Saalfeld, Fetter, et al.
2012), this similarity can be extracted at virtually no cost.

2.3.2 Section Order Correction

Incorrect section order breaks the monotonicity assumption for similarity mea-
sures. With pairwise similarity as a proxy for distance between sections, visiting
every section in the correct order is equivalent to visiting every section exactly
once on the shortest path possible based on distances derived from pairwise simi-
larity. This can be formulated as an augmented traveling salesman problem (TSP;
Voigt 1831; D. L. Applegate et al. 2011). To that end, we represent the image
sections {𝑃𝑖|𝑖 = 1, … , 𝑍} as vertices 𝒱 = {1, … , 𝑍} of a fully connected graph
𝒢 = (𝒱, ℰ) with edges ℰ = 𝒱 × 𝒱 and associated edge weights 𝑤(𝑎, 𝑏) ∀ (𝑎, 𝑏) ∈ ℰ.
Based on the intuition that sections are more similar when they are close to one
another, we chose 𝑤(𝑎, 𝑏) = 105 × exp(|1 − S𝑎𝑏|) to transfer the similarities into
distances.4 With the addition of a “start” vertex ̃𝒱 = {0} and zero distance edges

̃ℰ = {(0, 𝑖), (𝑖, 0) ∶ ∀𝑖 ∈ 𝒱}, 𝑤(𝑎, 𝑏) = 0 ∀(𝑎, 𝑏) ∈ ̃ℰ, establishing correct section
order is equivalent to solving the TSP for the augmented graph

̃𝒢 = (𝒱 ∪ ̃𝒱, ℰ ∪ ̃ℰ). (11)

The TSP solution will place the “start” node between the first and the last section
of the sorted stack. Assuming that the first section appears before the last section

4While the monotonicity of this function is equivalent to the simpler |1 − S𝑎𝑏|, we found that
stretching out similarities of nearby sections helped the TSP solver to find a correct solution.
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in the initial stack, the correct order can be established by traversing the TSP
solution accordingly.

2.3.3 Simultaneous Section Spacing and Order Correction

We observed that TSP-sorted series occasionally contain small mistakes such
as flipped section pairs. Pairwise comparison alone does not capture global
consistency if the similarity measure is too noisy to reliably distinguish between
pairs of sections (figure 4) because similarity to any neighbor higher than first
order is completely ignored. We therefore developed a method that, assuming
that sections are in approximately correct order, compares shapes of complete
similarity matrices to determine globally consistent order of sections and their
relative spacing.

Based on the assumption of monotonically decreasing pairwise similarity and
local constancy of the similarity decay, we formulate an optimization problem
that simultaneously estimates a real valued position c𝑖 for each section 𝑖, a scalar
factor m𝑖 to compensate for the influence of uncorrelated noise in individual
sections to their pairwise similarity scores, and the “true” similarity ̄𝑠(⋅). Correct
section order can be established by sorting c in increasing order. We summarize
all variables, parameters and measurements in table 2.

We forgo any assumptions other than monotonicity and constancy of shape in
a local neighborhood. Instead, we estimate the similarity ̄𝑠𝑖(𝑑) as a function of the
distance 𝑑 = 𝑘−𝑗 between two sections 𝑗 and 𝑘 in a local neighborhood around each
section 𝑖. We constrain this neighborhood by a windowing function 𝑤𝑠(𝑖, 𝑗) that
specifies the locality of the estimate (equation (13)). These local estimates capture
both changes in tissue and image properties along the 𝑧-axis. For all 𝑗 within
this neighborhood, the measured similarities 𝒮(c𝑗, c𝑗 + 𝑑) evaluated at integer
distances 𝑑 from the position of the section c𝑗 contribute to the similarity function
estimate weighted by 𝑤𝑓(⋅). Simultaneously, we warp the coordinate space such
that all measured similarities agree with the function estimate (equation (14)).
In terms of the pairwise similarity matrix that means aligning the contour lines
such that they are parallel to the diagonal (c.f . figure 2).

Noise in individual sections decreases the pairwise similarity with all other
sections in conflict to what ̄𝑠(⋅) suggests and would thus distort the estimate of
c. Therefore, we estimate a scaling factor m for each section 𝑖 to distinguish be-
tween displacement and other noise that could distort position correction (equa-
tion (15)). Using m𝑖 and m𝑗 to lift all pairwise similarities S𝑖𝑗 closer to ̄𝑠𝑖(c𝑖 − c𝑗)
will account for this effect. Sections that need displacement will not have a con-
sistent bias towards decreased or increased similarities and remain unaffected by
this “quality assessment”.

The windowing function 𝑤𝑟(⋅) restricts the evaluation of pairwise similari-
ties to a range 𝑟 to avoid estimation based on distant sections whose similarity
measures tend to be unreliable. In general, we define this window using the Heav-
iside step function parameterized by range 𝑟,

𝑤𝑟(𝑖, 𝑗) = 𝜃(𝑟 − |𝑗 − 𝑖|). (12)
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Table 2: Summary of variables and parameters introduced in equations (13) to (16)

Input
S𝑖𝑗 Symmetric matrix containing measures of similarity for all pairs

of sections indexed by 𝑖 and 𝑗.

Variable
𝑖,𝑗,𝑘 Indices referencing (sub-)sections within the data.
c𝑖 Location of index 𝑖 in corrected coordinate space.
m𝑖 Scaling factor for section 𝑖 to compensate for independent artifacts.
𝒮( ⋅ ) S, corrected by m and warped by c:

𝒮 (c𝑖, c𝑗) = m𝑖 × m𝑗 × S𝑖𝑗
̄𝑠𝑖(𝑑) Local estimate of the similarity curve around 𝑖 for all distances 𝑑,

sampled at integer coordinates, evaluated at 𝑑 ∈ ℝ.

Parameter
𝑤𝑠(𝑖, 𝑗) Windowing function that specifies the locality of similarity esti-

mates ̄𝑠𝑖(𝑑).
𝑤𝑟(𝑖, 𝑗) Windowing function to exclude noisy similarity measures of dis-

tant sections.

Each of equations (13) to (15) contribute to a joint objective (equation (16)) that
is optimized over the function estimate ̄𝑠(⋅) within the support range constrained
by 𝑤𝑟(⋅), the factors m, and the coordinates c:

SSEfit = ∑
𝑖

∑
𝑗

𝑤𝑠(𝑖, 𝑗) (13)

∑
𝑘

𝑤𝑟(𝑗, 𝑘) ( ̄𝑠𝑖(𝑘 − 𝑗) − 𝒮(c𝑗, c𝑗 + 𝑘 − 𝑗))
2

SSEshift = ∑
𝑖

∑
𝑗

𝑤𝑟(𝑖, 𝑗) (14)

( ̄𝑠−1
𝑗 (m𝑖m𝑗S𝑖𝑗) − (c𝑖 − c𝑗))

2

SSEassess = ∑
𝑖

∑
𝑗

𝑤𝑟(𝑖, 𝑗) (15)

(m𝑖m𝑗S𝑖𝑗 − ̄𝑠𝑖(c𝑗 − c𝑖))
2

̄𝑠∗,m∗, c∗ = argmin
̄𝑠,m,c

𝛼SSEfit + 𝛽SSEshift + 𝛾SSEassess (16)

We find a local optimum for equation (16) by alternating least squares. In
this optimization scheme, the weights 𝛼, 𝛽, and 𝛾 do not affect the argmin, and
are therefore neglected. In the benign case that the series is in approximately
correct order and that similarity measures capture sensible information about
relative distances between sections, this local optimum is typically the correct
solution. We avoid trivial solutions by meaningful regularization: all m𝑖 tend
towards 1, and c is limited by locking the first and last 𝑧-positions. If section order
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is guaranteed to be correct (as in FIB-SEM), then we do not allow reordering
and enforce c𝑖+1 − c𝑖 > 0 at any iteration. In addition, we enforce monotonicity
of ̄𝑠 during estimation of both ̄𝑠 and c. More precisely, if any scaled similarity
estimate 𝒮(c𝑖, c𝑗) violates the monotonicity assumption, this measurement and all
subsequent estimates 𝒮(c𝑖, c𝑘) with |c𝑘 − c𝑖| > |c𝑗 − c𝑖| are ignored for this iteration.

2.3.4 Non-Planar Axial Distortion Correction

Section spacing estimation (section 2.3.3) does not require to consider complete
sections but can be applied to any sub-volume defined by a local neighborhood
in 𝑥 and 𝑦 if similarity can be estimated for pairs of sections in that sub-volume.
Hence, non-planar deformation fields can be estimated by solving equation (16)
for a grid of independent similarity matrices, each extracted from a local field of
view. If grid locations were optimized independently, local smoothness could not
be guaranteed which is particularly objectionable as similarity measures typically
degrade with a smaller field of view and become increasingly susceptible to noise.
Coupling terms between the optimization problems at each grid location would
enforce local smoothness, but results in a single large optimization problem
instead of many independent optimizations. We therefore apply a multi-scale
hierarchical approach: Starting with a large field of view— typically the complete
section — the spacing between sample points and the field of view around each
sample point are decreased at each stage. Both parameters are freely adjustable
and can result in overlapping or disjoint grid areas. Local smoothness is enforced
through regularization

SSEreg = ∑
𝑖

(c𝑖 − (𝜆b𝑖 + (1 − 𝜆) ̄c𝑖))
2

(17)

towards the inferred coordinates b at the previous stage. A unique b for each
sample point at the current stage is generated by interpolated re-sampling of the
previous stage. The impact of regularization is controlled by a parameter 𝜆 ∈
[0, 1] with ̄c being the result of equation (14) at each iteration of the alternating
least squares solution of equation (16). All optimization problems at one stage
of the hierarchy depend solely on the results of the previous stage which makes
it straightforward to parallelize the solution over all grid cells. The resolution
and field of view considered at each stage, the regularization parameters 𝜆, and
the range of interest (equation (12)) for pairwise similarity measurement in the
𝑧-series are exposed as adjustable parameters to the user.

2.4 experiments

Following the outline of section 2.3, we first describe the evaluation of section
order correction, both using TSP and section spacing estimation (section 2.4.1),
before we elaborate on experiments on spacing correction for planar and non-
planar distortion (section 2.4.2).
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Figure 3: Similarity matrices for randomly permuted ssTEM-a series before and after
section order correction. Similarities were calculated using PMCC (a) and SIFT inlier
ratio (b).

2.4.1 Section Order Correction

We began the evaluation of section order correction with a proof of concept on
a small serial section TEM data set (ssTEM-a5) of size 2580× 3244×63px3 and
nominal voxel size 4 × 4×40 nm3. We perturbed the correctly ordered series using
(1) a completely random permutation and (2) a permutation that randomly
reassigned the position of sections within a range of ±4 for the approaches
introduced in sections 2.3.2 and 2.3.3, respectively. For (1), we evaluated both
PMCC and SIFT inlier ratio as similarity measure from images scaled to 12.5% of
their original size. For (2), we used PMCC only. Similarity matrices before and
after section order correction are shown in figures 3 and 6 for TSP (PMCC and
SIFT inlier ratio) and section spacing (PMCC and 𝑥𝑧-cross-section), respectively.
Note that, for (2), section order and 𝑧-spacing are estimated simultaneously and
therefore the sortedmatrix appears warped. TSP re-established the correct section
order for both PMCC and SIFT inlier ratio. The run times for optimization of the
TSP problems are negligible compared to the time required to extract pairwise
similarities (14ms vs. 720ms for PMCC and 19ms vs. 9064ms for SIFT inlier
ratios). Shorter run times for solving the TSP in the PMCC experiment indicate
that, with PMCC, the problem is easier due to better similarity measures. PMCC
is superior to SIFT inlier ratio as a similarity measure for well aligned series. Even
for larger examples, the run time for the TSP solution remains short, e.g. 2070ms
for 2051 sections (data not shown). All experiments were carried out on a Dell
Precision T7610 workstation using the TSP solver concorde (D. Applegate et al.
2006).

With this successful proof of concept at hand, we proceeded with section
order correction of a longer section series (ssTEM-b5). We chose an unaligned
series of 251 complete sections for which we manually curated the correct section
order. The objective of the experiment was to re-establish correct section order
from an initially unaligned series with ordering mistakes. We therefore extracted
the SIFT inlier ratio matrix from the unaligned series and estimated section order
via TSP. The solution included small pairwise ordering mistakes. However, these

5ssTEM of Drosophila melanogaster CNS, courtesy of D. Bock, R. Fetter, K. Khairy, E. Perlman, C.
Robinson, Z. Zheng, HHMI Janelia
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Figure 4: Section order correction for ssTEM-b. Inlier ratiomatrix for original sequence (a)
and after correction (b). The major disturbance (bottom right) could be resolved but two
sections remain flipped (magnified view). This becomes more apparent in the PMCC
matrix of the aligned series (c). Repeated TSP correction resolves this remaining issue (d).
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Figure 5: 𝑧-position correction experiment for FIB-SEM-a: Top/bottom show an 𝑥𝑧-cross-
section (a) and corresponding intensity-encoded pairwise similarity matrices (PSM;b)
before/after 𝑧-position correction. (a) and (b) share the same coordinate frame in 𝑧.
Arrows highlight areas that are visually stretched or compressed in the original acquisition
and appear biologically plausible after correction.

disturbances were sufficiently local to enable elastic alignment (Saalfeld, Fetter, et
al. 2012) of the corrected series and to extract a PMCC similarity matrix. We then
used the TSP method to estimate order from the PMCC similarities (figure 4),
decreasing the number of misplaced sections from 2 (0.80%) to zero.

2.4.2 Spacing Correction

Similar to the experiments for section order correction, we started with a proof of
concept, followed by an extensive experiment for the evaluation of non-planar
distortion correction using an artificial ground truth deformation on a real world
data set.
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Figure 6: 𝑧-position correction experiments for ssTEM-a: original series (left), missing
sections (center), and randomized order (right) with a shared coordinate frame in 𝑧, as
indicated by the white grid. Top/bottom show an 𝑥𝑧-cross-section (left sub-column) and
corresponding intensity-encoded pairwise similarity matrices (right sub-column) be-
fore/after 𝑧-position correction. Arrows in the center column highlight removed sections.

2.4.2.1 Section Spacing Correction

For the evaluation of section spacing correction, we corrected and visually in-
spected distortions in two data sets: ssTEM-a and FIB-SEM-a6 with dimensions
2048× 128× 1000 px3 and nominal voxel size 8 × 8× 2nm3. The latter is an excerpt
of a larger data set with dimensions chosen such that axial distortions can be
considered approximately planar.

Figure 6 shows 𝑥𝑧-cross-sections and the according similarity matrices be-
fore and after section spacing correction for (a) the original ssTEM-a data set,
(b) sections 20, 21, 22, 46, 48 removed, and (c) randomized section order. Our
experiments show that for the original data set, 𝑧-spacing varies between 0.6 px
and 1.6 px (24nm and 64nm). Section spacing correction of (b) and (c) was
evaluated by comparing the estimated transformations with the result of (a) as
“ground truth”. The estimated transformation for (b) correctly stretches the data
where sections were removed and deviates (absolute value) from the ground
truth by 0.13 px (5.2 nm) on average, and not more than 0.28 px (11.2 nm). Sec-
tions removed for this experiment do not contribute to the evaluation. For the
simultaneous order and spacing correction (c), we measured an absolute devia-
tion from the ground truth of 0.044px (1.76 nm) on average, and not more than
0.13 px (5.2 nm). All ssTEM-a section spacing correction experiments finished
in 0.6 s (similarity matrix calculation) and 0.4 s (inference, 100 iterations) on a
Dell Precision T7610 workstation using the default parameters of the provided
Fiji plugin.

We observed stronger distortions in FIB-SEM-a as shown in figure 5 (top).
Stretched/condensed regions are highlighted in an 𝑥𝑧-cross-section and appear
in the respective similarity matrix as regions with slow/fast decay of similarity.
After section spacing correction (figure 5 bottom), the corrected 𝑥𝑧-cross-section
appears homogeneously sampled and similarity decay is approximately constant.
The estimated section spacing varies between 0.14 px and 10.2 px, or 0.28 nm

6FIB-SEM of Drosophila melanogaster CNS, courtesy of K. Hayworth, H.Hess, C. Shan Xu, HHMI
Janelia (Kenneth J. Hayworth et al. 2015)
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and 20.4 nm. On the Dell Precision T7610 workstation used for this experiment,
similarity matrix estimation and inference (150 iterations) took 62.3 s and 49.4 s,
respectively using the default parameters of the provided Fiji plugin, with the
exception of 𝑟 = 55 (equation (12)).

2.4.2.2 Comparison With Sporring

We compared our method with the work by Sporring et al. (2014) which is most
related to ours. Please note that Sporring et al.’s method addresses planar thick-
ness estimation in non-isotropic section series against a constant reference, but
not section series order correction or non-planar distortion correction. Therefore,
this comparison covers only planar thickness correction for non-isotropic data.

We used the Transmission Electron Microscopy (TEM) series ssTEM-a (sec-
tion 2.3.2) from Hanslovsky, Bogovic, and Saalfeld (2015) for all subsequent
experiments. For lack of ground truth, we considered the respective thickness
estimates for each method as ‘correct’ solutions. These solutions are not the same
for both methods as shown in figure 8. We believe that this difference can be at-
tributed to the accumulation of false estimates by (Sporring et al. 2014) caused by
imaging and preparation artifacts. However, we did not consider this in the evalu-
ation, and, in all subsequent experiments, compared the results to each method’s
own reference. We used the example source code that Sporring et al. provided
in their publication with a small modification: we prepended 𝜎0 = 0 to the mea-
sured standard deviations as a proxy for comparing a section to itself, which is
necessary to estimate distances along 𝑧 that are smaller than the resolution within
𝑥𝑦. In our experiments, we introduced known modifications to the ssTEM series
and then compared the predictions on the modified series with the reference to
evaluate correctness and robustness of each method. Ideally, modifications to the
series should be identified and the reference solution should be reproduced. In
particular, we modified the series by (a) removing varying numbers of sections at
random locations, and (b) adding artificial circular stains that reasonably resem-
ble staining artifacts that we observe in real data. We repeated each randomized
experiment with 25 different seeds for each set of parameters. Before we continue
with the experiments, we introduce terminology and definitions. In agreement
with the main text, we denote the estimated 𝑧-coordinates by c. The reference
coordinates are indicated by ̄c. We denote the forward difference approximation
of the gradient of the estimated coordinates c as

Δc𝑖 = c𝑖+1 − c𝑖. (18)

As Sporring et al.’s method generates Δc rather than c, we derive c as the cumula-
tive sum over Δc.

Removed Sections

We found our own method to perform optimally when images are scaled to
isotropic or sub-isotropic resolution. ssTEM-a is non-isotropic at a ratio of ap-
proximately 1:10. We therefore used a scale factor of 0.05 applied to all section
images when testing our own method. For Sporring et al.’s method, we tested (a)
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(a) Sporring et al. (b) Ours

Figure 7: Finite difference gradient for original series and with a total of seven removed
sections as indicated by shaded areas in the plots. Where sections {𝑚, … , 𝑛} have been
removed, no gradient is calculated. The gradient of the coordinates for the original series
at position 𝑧 = 𝑚 − 1 is estimated by c𝑛+1 − c𝑚−1. For a correct estimate of the spacing of
the removed sections, the gradient of the transformation for the modified series must be
the same as the gradient for the original series at all relevant locations. For the purpose
of visualization, there is a small offset between the gradients for the original and the
modified series.

Figure 8: Estimated coordinate mapping for original series and with a total of seven
removed sections as indicated by shaded areas in the plots (Sporring et al. (2014) and
ours). Predicted coordinates are mapped to the corresponding reference with a linear
function that minimizes the square displacement between corresponding coordinates.
For the purpose of visualization, we introduced a small offset along the 𝑥-axis.
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Figure 9: Optimzing scale for Sporring et al. (2014). Color encodes the scale factor of the
image series in 𝑥𝑦 as indicated by the color bar.

for ten different scale factors (0.05, 0.1, … , 0.5). We found that Sporring et al.’s
method generally performs poorly at isotropic or sub-isotropic scales. This means
that, other than our method, Sporring et al.’s approach is not ideal for isotropic
data or for data where the axial resolution is higher than the planar resolution
(e.g. FIB-SEM). We picked the best performing scale factor 0.4 for comparison
with our method (figure 9). We also used that scale factor for (b). For each exper-
iment, we show scatter plots of the differences d = Δc − Δ ̄c between estimated
and ground truth distances between adjacent sections. In order to account for
irrelevant scale differences, we mapped the references for both Sporring et al.’s
method and ours onto the initial interval [0, 62] and scaled c such that the sum of
all d𝑖 that were not affected by modifications is minimal. This way we guaran-
tee maximal fairness to Sporring et al.’s method where all unmodified d𝑖 can be
perfectly reproduced.

For each number 𝑛 ∈ {1..13}, we generated 25 image series with 𝑛 randomly
chosen sections removed from the series. A single (13) removed section(s) is
equivalent to roughly 2% (21%) of all sections. Figure 8 shows an anecdotal
example of coordinate mapping estimates for a series with 7 removed sections,
taken from this series of experiments. It highlights the qualitative differences of
both methods. In the following, scatter plots of gradient differences as shown in
figures 7(a) and 7(b) form the basis for our evaluation. Figure 9 indicates that
Sporring et al.’s method performs best at a scale of 0.4 in 𝑥𝑦. Therefore, we scaled
each image series by 0.4 before applying their method. For our method, we scaled
each series by a factor of 0.05, and modifed the default options to use a range of
𝑟 = 6 neighboring sections, run for 1000 iterations, and disallow re-ordering of
the series.

The scatter plots of d shown in figure 10 indicate that–for a small number of
removed sections–both methods are able to accurately reproduce the respective
reference and estimate the correct spacing, including removed sections with an
error of less than 0.25 px. With increasing number of sections removed, perfor-
mance decreases for both methods. Sporring et al.’s method performs slightly bet-
ter than ours which we attribute to it being less affected by false initial estimates
of the reference similarity function and considering only pairwise differences.
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Figure 10: Comparison of performance for removed sections between Sporring et al. (2014)
and ours. The spread along the 𝑥-axis is introduced for the purpose of visualization.

Figure 11: Example of artificial staining artifacts.

In our method, the reference similarity function is compromised by removing
sections from the series which manifests as increasing deviation from the refer-
ence solution. For both methods, the error remains low, almost always below 1px
which corresponds to the average thickness of one section.

Staining Artifacts

In order to simulate EM staining artifacts, we added circular speckles to randomly
selected sections, such that for any circle with radius 𝑟, and center 𝑥0, 𝑦0, we
multiply (degrade) the intensity at each location

(𝑥, 𝑦) ∈ {(𝑥, 𝑦) ∈ ℝ2|√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 ≤ 𝑟} (19)
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Figure 12: Comparison of performance for stained section between Sporring et al. (2014)
and ours. The spread along the 𝑥-axis is introduced for the purpose of visualization.

by a factor

𝑓 = 1 − 𝑒− 1
2

(𝑥−𝑥0)2+(𝑦−𝑦0)2

𝑟2 . (20)

Be 𝑝 ∈ {0.03, 0.05, 0.07, 0.09} the staining artifact probability. We ran 25 experi-
ments with different random seeds for each 𝑝. In each experiment, we drew any
section with a probability of 𝑝. For any drawn section, we created 20 circles cen-
tered at random locations and with radii uniformly distributed over the interval
[20, 400]px. Each circle then stains the image with a probability of 0.5. An ex-
ample image with artificial staining artifacts is shown in figure 11. Again, we
chose a scale of 0.4 in 𝑥𝑦 for (Sporring et al. 2014). For our method, we picked
a scaling factor of 0.05 for 𝑥𝑦, and modifed the default options to use a range of
𝑟 = 4 neighboring sections, run for 200 iterations, and disallow re-ordering of
the series. The scatter plots of d in figure 12 show that Sporring et al.’s method
strongly overestimates the distance between sections if at least one of them dis-
plays staining artifacts. In our method, the consideration of more than pairwise
competing distance predictions and the scalar factors for compensation of uncor-
related noise address this problem effectively such that we can reliably reproduce
the reference.

2.4.2.3 Non-Planar Distortion Correction

We evaluated the performance of non-planar deformation correction against syn-
thetic ground truth. To that end, we applied synthetic non-planar axial distortion
to a distortion free reference series, estimated the distortion with our method
(section 2.3.4), and compared the estimate with the synthetic ground truth. Since
distortion free volumes do not exist, we had to first correct the original image vol-
ume using the same non-planar axial distortion correction method. The resulting
series, from the perspective of our method, is free of distortions. To compensate
for the apparent bias in this approach, we ran our experiment not only in the
original orientation but permuted the coordinate axes such that the new axial
dimension falls into the unprocessed image plane.
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(a) Estimate of non-planar distortion along 𝑧-axis.
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(b) Estimate of non-planar distortion along 𝑦-axis.

Figure 13: Normalized histograms (left) of differences between estimated transformation
and ground truth (GT) and visualization of the estimated transformation for all stages
and GT for experiments on both sub-volumes (a) and (b) via 𝑥𝑧 cross-sections of the
gradient (right). Histogram bins range from -2px to 2px, with maximum counts of 3
and 2 for (a) and (b), respectively. The gradients range from 0px to 2px.

The data used in this experiment is a subset of FIB-SEM-b6 with dimensions
4000× 2500× 2100 px3 and voxel resolution 8× 8× 2nm3. Initial non-planar axial
distortion correction was distributed onto 60 compute nodes with 16 cores each
and took 120 minutes to finish. We scaled the corrected series along the 𝑧-axis by a
factor of 0.25 resulting in an isotropic volume of 4000× 2500× 525 px3 fromwhich
we extracted two sub-volumes: (a) 100 complete 𝑥𝑦-sections starting at 𝑧=25,
and (b) 100 𝑥𝑧-cross-sections of dimension 3000× 475 px2 starting at 𝑦=1000. For
(b), we flipped the 𝑦- and 𝑧-axes such that the synthetic distortion could be consis-
tently applied along the 𝑧-axis. Our synthetic distortion model is this: Randomly
oriented planes superimposed with trigonometric functions act as attractors that
shift the coordinates towards the attractor along the 𝑧-axis as a monotonically
decreasing function of the distance to the attractor along 𝑧. This generates waves
and plateaus that approximately resemble phenomena that we observed in the
original volume before correction. We then applied non-planar distortion correc-
tion to the synthetically deformed series as described in section 2.3.4 (parameters
listed in appendix A.1). We compared estimated and ground truth distortions at
every stage of the hierarchical solution and show histograms of the pixel-wise
differences (figure 13). Since we are not interested in low frequency distortion of
the volume, we mapped each estimate onto the ground truth using a linear trans-
formation that minimizes the squared difference of corresponding look-up table
entries within local support defined by a Gaussian window with 𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧).
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The evolution of the estimated distortion for each of the sub-volumes is shown
shown in figure 13. For intuitive visualization, the gradient is displayed. Starting
at a complete field of view and a resolution of 1 px2 in 𝑥 and 𝑦 at stage 1 (planar
estimate), the field of view/resolution is decreased/increased by a factor of two in
both 𝑥 and 𝑦 with every sub-sequential stage which allows for a more accurate es-
timate of the deformation. At the same time, noise in the data will have a stronger
influence on smaller fields of view (c.f . figure 13, stage 6) and sets a limit to the
resolution at which the deformation can be estimated. The histograms of differ-
ences did not improve after (a) stage 6 or (b) stage 4. We chose 𝜎= (∞, ∞, 120px)
for the Gaussian window to estimate the linear transformation. The mean of dif-
ferences between estimate and ground truth is approximately zero for all stages.
We therefore used the standard deviation of the error 𝜎̃𝑖 for stage 𝑖 including the
baseline 𝑖 = 0 as a quality indicator. Smaller 𝜎̃𝑖 means better estimates of the
ground truth. For (a), we found 𝜎̃0 =0.550 px and 𝜎̃6 =0.176 px, and for (b), we
found 𝜎̃0 =0.523px and 𝜎̃4 =0.227px. As expected, non-planar axial distortion
correction considerably decreased the distortion of the series in both experiments.

2.5 discussion

We developed novel methods to address two previously unsolved problems: (1)
establish the correct order of unordered section series, (2) compensate for planar
and non-planar axial distortion. We demonstrated through extensive experiments
that our methods work reliably and with high accuracy and efficiency on both
ssTEM and FIB-SEM data. We went beyond pure proof of concept and showed
that our methods are applicable to and perform well on large real world data sets.

In large ssTEM series, the combination of automatic alignment and series
sorting has the potential to greatly reduce the need for manual intervention.
Non-planar axial distortion correction addresses the peculiar wave-problem in
FIB-SEM which, we believe, will have a strong impact on the future application
of FIB-SEM for high resolution 3D reconstruction.

In this work, we made only mild assumptions about the data, i.e. monotonic
decrease of pairwise similarity and local constancy of the shape of the similarity
curve. While this means that our methods can be applied to a wide range of data,
we predict that many problems would benefit from domain specific modeling.
For example, explicit modeling of FIB-SEM-waves has the potential to further
increase the accuracy of the estimated deformation field. We will work on these
ideas in our future research.
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3
NEURON RECONSTRUCTION

A synaptic connectome consists of all neurons and the synapses connectimg
them. Reoconstructions from 3D-EM been achieved through manual expert
annotation for small to moderately-sized data sets: In laborious efforts and thou-
sands of hours, expert annotators traced neurons in serial section electron micro-
graphs (Eichler et al. 2017). While computational power of computers, tools, and
user interfaces have greatly improved (Saalfeld, Cardona, et al. 2009) since the
reconstruction of the first connectome (White et al. 1986), which took 14 years
to completion, it is clear that reconstruction of larger (parts of) nervous systems
or even multiple specimens is intractable — both financially and temporally —
with a purely manual approach. Instead, the power of modern computers must
be utilized to automate neuron reconstruction and to minimize the human effort
that is required to reconstruct connectomes.

Supervised machine learning (section 3.2), in paticular deep neural net-
works section 3.2.1, have driven the performance of automatic reconstruction
closer to human performance than ever before (Beier et al. 2017). Neuron segmen-
tation cannot be trained end-to-end. In a typical automatic neuron reconstraction
workflow (section 3.1), deep learning models predict boundary maps from which
fragments (super-voxels) are extracted. These fragments are then agglomerated
into segments to complete the reconstruction (Beier et al. 2017; Funke, Tschopp,
et al. 2018). Boundary map prediction and fragment extraction are usually par-
allelized over moderately sized sub-volumes of the data but agglomeration is a
global operation. Ultimately, the number of the fragments is the limiting factor
for agglomeration, in particular for complex models like multi-cuts (Beier et al.
2017). This is especially severe in anisotropic TEM because, typically, 2D — and
therefore many more — fragments are generated.

I developed a novel deep learning network architecture for neuron boundary
prediction at quasi-isotropic resolution from anisotropic TEM (section 3.4). Larger,
three-dimensional fragments can be extracted from quasi-isotropic boundaries to
reduce the number of fragments. In order to utilize existing anisotropic ground
truth annotations and to avoid laborious manual annotation of data, I developed a
novel scheme for the interpolation of sections of label data (section 3.4.1.2). I eval-
uated performance in extensive experiments (section 3.4.2) and show promising
results of quasi-isotropic boundary prediction and neuron reconstruction from
anisotropic TEM. Finally, I will discuss current limitations and future research
directions to fully utilize the capacity of neuron reconstruction at quasi-isotropic
resolution in section 3.4.3.

First, I will start with a more detailed description of a typical automatic neu-
ron reconstruction workflow (section 3.1), followed by an overview of relevant
supervised machine learning techniques, in particular artifical neural networks,
in section 3.2 and related work (section 3.3).

43
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3.1 automatic reconstruction

In a typical manual reconstruction workflow, annotators create sparse tree repre-
sentations of neurons, also known as skeletons. Tracing a single neuron through
section series, annotators add prominent points to the neuron tree. Sub-trees can
be merged or split to combine and correct existing skeletons, and synapses can be
annotated to connect individual skeletons (Saalfeld, Cardona, et al. 2009). Sparse
reconstructions minimize the effort for annotators compared to dense reconstruc-
tions but valuable information about neuron anatomy is lost and ambiguity is
added: Any dense segmentation could be representated by many different skele-
tons.

Automatic reconstruction, in contrast, typically reproduces a dense representa-
tion of the neurons and is a special case of the traditional instance segmentation task
in computer vision for 3D data: all voxels of a three-dimensional volume are clus-
tered into distinct objects of interest, also called segments. Neuron reconstruction
has additional challenges compared to classical 2D image segmentation:

large amounts of data are generated for single nervous systems, even for small
model organisms: The electron micrograph of a single adult Drosophila
melanogaster brain imaged at the resolution necessary to reconstruct all
neurons and synapses consists of hundreds of teravoxels.

sample preparation and imaging at the nanometer scale make it impossible to
generate artifact-free data. This includes section folds and tears, missing
sections, or incomplete cell boundaries.

registration of section series has a huge impact on the segmentation result. Bad
registration can render neuron reconstruction impossible.

neuron shapes are not compact and individual neurons span a substantial sub-
space of the entiremicrograph. Decomposition of the segmentation problem
into smaller, independent problems is impossible and seemingly minuscule
local mistakes can have a huge impact on the global segmentation result.
Note that over-segmentations errors are preferred over under-segmentations
because they are easier to fix for proof-readers.

the data is densely packed with visually similar neurons and it is impossible to
distinguish between objects based on appearance features. Instead, classi-
fiers need to detect boundaries, which can be incomplete. In the ideal case
of flawless boundary predictions, the neurons could be reconstructed as
connected components from the (inverse) boundary map. For real world
problems, a more involved workflow is required that I will describe below.

the additional spatial dimension increases neural network model size dramat-
ically and also increases the risk of false negative boundary classification
between two distinct objects.

spatial anisotropy in ssTEM data introduces another source of reconstruction
error as the nominal resolution of 40nm orthogonal to the sectioning plane
is rather coarse compared to small neural processes and synapses (table 1).
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(a) raw data (b) boundaries (c) fragments (d) segments

Figure 14: Automated neuron reconstruction workflow. Machine learning classifiers pre-
dict boundaries (b) from raw electron micrographs (a). The boundary map is partitioned
into fragments (c) that are then agglomerated into segments (d). Experts proof-read the
final segmentation to ensure correctness and correct for over- and under-segmentation
errors.

ground truth data is not as readily available as in natural image processing and
laborious generation requires expert knowledge. Recent developments such
as the CREMI challenge1 addressed this problem but the thirst for training
data of mega-parameter artificial neural networks will probably never be
satisfied.

These complicating factors havemade end-to-end neuron reconstruction impossible
to date; currently there is no single model that directly predicts a segmentation
from raw data. Instead, with few exceptions, cell boundaries are used as proxies
for objects. In practice, the boundary predictions are not good enough to extract
objects through simple thresholding, and a multi-step workflow of advanced
image processing, computer vision, andmachine learning techniques is employed
to reconstruct neurons as well as possible (figure 14):

1. Predict neuron boundaries from raw image data with a boundary classifier.

2. Over-segment the boundary predictions into fragments or super-voxels, mean-
ingful clusters of voxels that (ideally) respect neuron boundaries, similar to
super-pixels in two-dimensional image processing.

3. Agglomerate the fragments into segments. Clustering schemes like hierarchi-
cal clustering (Nunez-Iglesias, Kennedy, Stephen M Plaza, et al. 2014) or
multi-cut (correlation clustering) (Bansal, Blum, and Chawla 2004; Bjoern
Andres, Kappes, et al. 2011; Bagon and Galun 2011; Kim et al. 2011; Yarkony,
Ihler, and Fowlkes 2012) are popular choices for this task. The parameters
of these agglomeration can be learned. Under-segmentation errors at the
fragment level (2) cannot be corrected for during agglomeration. Ideally,
these segments coincide with the biological neurons that are present in the
data.

4. Proof-read the final reconstruction to confirm correctness and manually
correct for any mistakes in the automatic segmentation or agglomeration.

Boundary predictions can either be scalar voxel-wise boundary probabilities or a
vector ofweights that describe the local affinity to neighboring voxels, i.e. how likely

1https://cremi.org/

https://cremi.org/
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(a) (b)

Figure 15: It can be impossible to create a correct segmentation with scalar boundary
predictions in a scenario where resolution is not much higher than the spatial extent of
small objects and foreground objects are adjacent without room for boundary voxels in
between. All three colors yellow, blue, and red represent valid objects in (a). Specifically,
there are no boundary pixels (gray background) between any of these objects. The true
segmentation cannot be recovered with voxel-wise boundary predictions. Affinities of
pairs of neighboring voxels virtually increase the resolution (b): The boundary (dotted
lines) is now defined as low affinity (black squares) in the virtual grid between the
original voxels.

two voxels are part of the same connected component. Affinity graphs virtually
increase the resolution because the boundary is now between voxels instead of
on the voxel grid (figure 15). This is particularly useful for anisotropic TEM with
low resolution along the axial dimension. The concept of affinity graphs can be
trivially generalized to arbitrary neighborhoods with long-range or multi-range
connectivity.

Most successful neuron reconstruction approaches follow this scheme (Jain
et al. 2007; Turaga, Kevin L Briggman, et al. 2009; Dan Cireșan et al. 2012; Ron-
neberger, Fischer, and Brox 2015; Fakhry, Peng, and Ji 2016; Beier et al. 2017; Parag
et al. 2017). Flood-filling networks (Januszewski et al. 2016) — to the best of my
knowledge, the only noteworthy exception — skip boundary prediction and di-
rectly generate fragments from raw data. Their computational cost, however, is
prohibitive for large-scale use in most labs outside tech-giants like Google. Luther
and Seung (2019) learn local feature-descriptors instead of boundaries but the
general reconstruction workflow remains the same. As indicated above, the final
step of any automatic reconstruction workflow is manual curation of the segmen-
tation result. This can be a tedious procedure: The most severe segmentation
errors — under-segmentation at the fragment level — can only be corrected for
by manipulation of individual voxels. As a result, reconstruction workflows are
usually tuned to encourage over-segmentation and suppress under-segmentation.

In order to give the reader a basic understanding of the algorithms andmodels
that I will use, I will begin with a brief introduction to machine learning and
relevant artificial neural network architectures, followed by a survey of related
work. I will start by explaining the broader concept of supervised machine
learning and how it can be used to automate the dense reconstruction of neurons
frommicgrographs. Then, I will introduce a novel machine learningmodel for the
dense isotropic reconstruction of neurons from anisotropic electron micrographs.
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3.2 supervised machine learning

In a classical computer program, the programmer instructs the computer how
to translate the input into output. It is the programmer’s responsibility that all
possible configurations of inputs produce an appropriate and correct output value.
With a sufficiently complex task, the number of possible input configurations
becomes intractable and overwhelming and it can be impossible to write such a
program. In supervised machine learning, in contrast, the programmer specifies
a parameterized model (function)

𝑓𝜃 ∶ 𝒳 ↦ 𝒴 (21)
𝑥 ↦ 𝑓𝜃(𝑥)

that maps the input space 𝒳 into the output space 𝒴, where 𝜃 are the parameters of
the model. 𝑓𝜃 can be an arbitrarily complex function with millions of parameters.
The parameters 𝜃 of the model are then inferred from a finite sample of known
input-output-pairs {(𝑥, 𝑦) ∈ 𝒳 × 𝒴} — the ground truth or training data — by
minimizing a scalar loss 𝐿 that penalizes deviation of predicted outputs ̂𝑦 = 𝑓𝜃(𝑥)
from the ground truth:

̂𝜃 = argmin
𝜃

𝐿(𝑦, ̂𝑦) (22)

In other words, the exact parameterization of the model is not determined by the
expertise and knowledge of the programmer; instead, the parameterization of
the model is learned from the provided ground truth data. In that sense, machine
learning is an optimization problem. A common optimization framework for the
optimization of differentiable objective functions over the real domain without
closed-form solution are gradient descent (Barber 2012, appendix A.6) or variants
thereof.

Computer vision is a field in computer science that is occupied with the acquisi-
tion, processing, analysis, and understanding of two- or multi-dimensional digital
images. Machine learning has been crucial for image understanding, and — as
neuron segmentation ultimately is an image understanding task — is thus the
logical choice of tool for neuron reconstruction. The inputs 𝑋 of a computer vi-
sion machine learning task are 𝑛-dimensional arrays, sometimes referred to as
tensors (Abadi et al. 2016). The output depends on the prediction task, e.g. a sin-
gle vector of class probabilities for image classification, an 𝑛-dimensional tensor
for voxel-wise boundary classification, or an 𝑛 + 1-dimensional tensor for the
prediction of affinity graphs or local feature vectors.

3.2.1 Artificial Neural Networks

In the past decade, artifical neural networks have outperformed other models
in many computer vision and other machine learning tasks, e.g. Krizhevsky,
Sutskever, and Hinton (2012) and Ronneberger, Fischer, and Brox (2015). In the
following I will introduce basic concepts that are relevant for understanding the
archicteture of the artificial neural network I will use for neuron reconstruction.
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The basic computational unit of a neural network— in analogy to nervous systems
also called a neuron — is a weighted sum of inputs 𝑥 = (𝑥1, … , 𝑥𝑛) and bias 𝑏
followed by non-linear activation function 𝑓:

𝑠(𝑥) =𝑓 (
𝑛

∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) (23)

=𝑓 (w𝑇x + 𝑏)

with parameters (𝑤, 𝑏). Typically, multiple units are organized in layers. Units
within the same layer are not connected and have the same activation function.
The output of a layer can then be summarized with matrix notation:

s(x) = 𝑓 (𝑊x + b) (24)

with parameters (𝑊,b). The non-linear function 𝑓 is applied to each element of
𝑊x + b. Commonly used activation functions are the sigmoid function

𝑓 (𝑥) =
1

1 + 𝑒−𝑥 , (25)

the tangens hyperbolicus

𝑓 (𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 , (26)

or the rectified linear unit (ReLU) function

𝑓 (𝑥) = max{0, 𝑥}. (27)

In some cases it is useful to omit the non-linearity and use identity (or linear)
activation

𝑓 (𝑥) = 𝑥. (28)

In feed-forward neural networks, information flows in only one direction (forward):
Data is passed from the input layer to an arbitrary number of successive hidden
layers, and finally to the output layer. In other words, the computation graph does
not contain any loops and is a directed acyclic graph. Without any non-linear
activation, a neural network is just a composition of linear functions, i.e. a linear
function, and cannot describe any non-linear input-output relations.

Typically, backpropagation (Widrow and Lehr 1990; LeCun et al. 1989) is used
for learning the parameters, and thus the activation function of each unit must
have a non-vanishing gradient (at least for some of the domain). A network is
considered deep if it has at least two non-linear layers. For networks with a non-
linear output layer, one non-linear hidden layer is sufficient to meet this criterion.
In practice, however, feed-forward neural networks with many hidden layers and
millions of parameters are used. The design or layout of the network, i.e. the
number of layers, the sequence of layers, connectivity between layers, and other
constraints, are referred to as the architecture of a neural network.

In the following, I will only consider feed-forward neural networks with
tensors as inputs and outputs and use the terms (artificial) neural networks
and feed-forward neural networks interchangeably. I will describe the classes of
layers that I used for the architecture of the quasi-isotropic network (figure 21).
A schematic (figure 16) visualizes a neural network with various layer types.
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Figure 16: Neural network with two hidden layers as indicated by the shaded area. Units
are indicated by circles. The explicit visualization of the activation function is omitted for
ease of notation. Each unit of the dense layer is connected to all inputs. The convolutional
layer (Conv) connects only sparsely and has shared weights as indicated by the colors of
the arrows. Multiple features are indicated by transparent units and arrows. A single
skip connection is indicated by the arrow from a unit in the dense layer to the output.
Note that usually complete layers/features are passed as skip connections instead of just
a single unit from that layer. The different layers and connection types are described in
detail in sections 3.2.1.1 to 3.2.1.5

3.2.1.1 Fully Connected

All units of a fully connected or dense layer take the outputs of all units in the
previous layer as input. The parameters (𝑊,b) are unconstrained and the learned
weights and biases can be different for all units in the layer. Fully connected layers
have a large number of parameters and are typically used in the final layers of
image classification networks.

3.2.1.2 Pooling

Pooling layers are used to sub-sample the input tensor and thus reduce the number
of parameters: A single output is selected from a small field-of-view within
the input tensor with respect to a specific criterion, e.g. maximum or average
activation (Serre et al. 2007; Scherer, Müller, and Behnke 2010). Typically, the
fields-of-view do not overlap in input space. This reduces over-fitting, extracts
representative features from the input tensor, and increases the receptive field,
in particular for purely convolutional (section 3.2.1.3) networks. The smaller
number of paramaters also reduces the overall size of the architecture and allows
for faster training or additional layers.
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Figure 17: A two-dimensional input (blue) is convolved with a 3 × 3 kernel: The kernel
slides over the input with unit stride and computes output (red) pixels as the weighted
sum of its field-of-view in the input. The weights are speicifed by the kernel and are
independent of the spatial location of the kernel. The input can be padded (top row,
dashed) to produce an output of the same size. No padding (bottom row) ensures that
every output pixel is generated from valid data only but reduces tensor size.
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3.2.1.3 Convolutional

In a convolutional layer, the weights and bias are shared between units. This
constrains the weight matrix, e.g. for one-dimensional tensors with 𝑛 non-zero
weights 𝑤1, 𝑤2, … , 𝑤𝑛,

𝑊 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑤1 𝑤2 ⋯ 𝑤𝑛 0 0 0 ⋯
0 𝑤1 𝑤2 ⋯ 𝑤𝑛 0 0 ⋯
0 0 𝑤1 𝑤2 ⋯ 𝑤𝑛 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

. (29)

Optionally, the bias b can be omitted or shared among units:

𝑏𝑖 = 𝑏𝑗 ∀ 𝑖, 𝑗. (30)

The constrained matrix 𝑊 describes a discrete cross-correlation of a function 𝑔
with kernel 𝑘:

(𝑔 ⋆ 𝑘) [𝑛] =
∞
∑

𝑚=−∞
𝑔[𝑚] × 𝑘[𝑚 + 𝑛] (31)

=
∞
∑

𝑚=−∞
𝑔[𝑚 − 𝑛] × 𝑘[𝑚] (32)

Cross-correlation is equivalent to convolution with the reflection ̃𝑔[𝑚] = 𝑔[−𝑚]
of 𝑔:

(𝑔 ⋆ 𝑘) [𝑛] =
+∞
∑

𝑚=−∞
𝑔[𝑚] × 𝑘[𝑚 + 𝑛] (33)

=
−∞
∑

𝑚=+∞
𝑔[−𝑚] × 𝑘[−𝑚 + 𝑛] (34)

=
−∞
∑

𝑚=+∞
̃𝑔[𝑚] × 𝑘[𝑛 − 𝑚] (35)

(𝑔 ⋆ 𝑘) [𝑛] = ( ̃𝑔 ∗ 𝑘) [𝑛] (36)

By convention, cross-correlation is referred to as convolution in the context of
convolutional neural networks and I will follow this convention throughout this
dissertation.2

Typically, kernels have a limited field-of-view with 2𝑗 + 1 non-zero entries.
Only non-zero entries of the kernel are considered in this summation.

(𝑔 ⋆ 𝑘) [𝑛] =
𝑗

∑
𝑚=−𝑗

𝑔[𝑚 − 𝑛] × 𝑘[𝑚] (37)

Conceptually, the kernel is shifted over the entire input at integral strides. The
output at each location is the weighted sum of the local field-of-view (figure 17).
Appropriate padding preserves the size of the input tensor. No (or valid) padding
reduces the tensor size but only valid data is processes.

2The reason for the choice of nomenclature is unclear. The use of convolutions in digital signal
and image processing may be an explanation.
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Figure 18: 2D convolution of a 4 × 4 sized input with a kernel of size 3 × 3 into a 2 × 2
output. All steps are visualized.

Multiple kernels can be a combined in a single convolutional layer: The outputs
of the individual kernels are concatenated as channels of a single tensor, usually
called a featuremap. Early convolutional layers in a neural network are usually low-
level image features that sometimes resemble classical hand-crafted digital image
processing features like edge detectors (Zeiler and Fergus 2014). Convolutional
layers at a later stage in the network produce higher-level features.

Possible extensions of convolutional layers include non-unit strides for learned
down-sampling similar to pooling (section 3.2.1.2) and dilated convolutions (Yu
and Koltun 2016) for an increased receptive field without increasing the number
of parameters. The kernel considers only every 𝑙th entry of the input:

(𝑔 ⋆𝑙 𝑘) [𝑛] =
∞
∑

𝑚=−∞
𝑔[𝑛 + 𝑙 × 𝑚] × 𝑘[𝑚] (38)

3.2.1.4 Transposed Convolutions

In a fully convolutional setting with downsampling layers (pooling, non-unit
stride convolutions) it can be necessary to upsample a layer. Instead of using
engineered interpolation methods (nearest neighbor, linear, cubic), transposed
convolutions learn the correct way to up-sample the data. The field-of-view in
the output tensor corresponds to a single voxel in the input tensor. The kernel
is scaled by the value of the input voxel and added to the field-of-view in the
output tensor. Unrolling the 2D input and output tensors of figure 18 into 16-
dimensional and 4-dimensional vectors, respectively, the convolution operation
can be formulated as mulitplication with a sparse matrix

𝐾 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑘1,1 𝑘1,2 𝑘1,3 0 𝑘2,1 𝑘2,2 𝑘2,3 0 𝑘3,1 𝑘3,2 𝑘3,3 0 0 0 0 0
0 𝑘1,1 𝑘1,2 𝑘1,3 0 𝑘2,1 𝑘2,2 𝑘2,3 0 𝑘3,1 𝑘3,2 𝑘3,3 0 0 0 0
0 0 0 0 𝑘1,1 𝑘1,2 𝑘1,3 0 𝑘2,1 𝑘2,2 𝑘2,3 0 𝑘3,1 𝑘3,2 𝑘3,3 0
0 0 0 0 0 𝑘1,1 𝑘1,2 𝑘1,3 0 𝑘2,1 𝑘2,2 𝑘2,3 0 𝑘3,1 𝑘3,2 𝑘3,3

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

Here, the kernel is centered at 𝑘2,2 for ease of notation. During training, errors
are propagated by mulitplication of the loss with the transpose 𝐾𝑇: The kernel
𝑘 defines both 𝐾 and 𝐾𝑇 and thus a transformation from 2 × 2 input to a 4 × 4
output with compatible connectivity. Consequently, a transposed convolution
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Figure 19: The 2D convolution of a 2 × 2 sized input with a kernel of size 3 × 3 into a 5 × 5
output with unit stride, 2 × 2 border padding, and 1 × 1 padding between input voxels is
an equivalent representation of the transpose of convolving an input 5 × 5 with a 3 × 3
kernel and 2 × 2 stride.

swaps forward and backward passes of a convolution matrix (Dumoulin and
Visin 2016). A transposed convolution has an equivalent representation by a
convolution with appropriate kernel size, padding between input pixels, border
padding, and stride (figure 19).

Other common names are fractionally strided convolutions, inverse, up, or
backward convolutions, or deconvolutions (Shi et al. 2016). The latter is mis-
leading as transposed convolutions are not the inverse operation of convolutions.
Throughout this dissertation, I will therefore use the term transposed convolu-
tions.

3.2.1.5 Skip Connections

Features from early layers can provide meaningful information for layers much
deeper in the network but the information is heavily processed by non-linear
layers in between. Skip or copy-crop (Funke, Tschopp, et al. 2018) connections
bypass intermediate layers and feed the output of layer 𝑘 directly to layer 𝑗 ≥ 𝑘 + 2.
The outputs of layer 𝑘 are concatenated with other inputs for layer 𝑗. Intermediate
layers may change the size of tensors and consistency is ensured by cropping.
In networks with down-sampling (pooling, non-unit stride convolutions) and
up-sampling (transposed convolutions), naive skip connections are only possible
between layers that have the same voxel size.

3.3 related work

Automatic neuron reconstruction approaches have been following a multi-step
workflow as outlined in section 3.1. Methods typically differ in the algorithms
that are used for the prediction of boundaries from raw data, the generation of
fragments from boundary predictions, and the agglomeration of fragments into
segments that ideally coincide with the neurons present in the raw data. As
a general rule of thumb, higher quality boundary predictions and fragments
simplify both the agglomeration task and subsequent proof-reading.
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Supervised machine learning was first used for boundary classification in EM
by Jain et al. (2007): A three-dimensionl (purely) convolutional neural network
with 34041 free parameters outperformed markov random fields and conditional
random fields for pixel classification. Björn Andres et al. (2008) extended that
work in two ways: They used computationally cheaper random forest classi-
fiers (Breiman 2001) instead of a neural network without loss of performance
and they introduced an agglomeration scheme as described in section 3.1 and
figure 14: Fragments from seeded watersheds on the boundary map are merged
based on weights learned from another random forest classifier.

Turaga, Murray, et al. (2010) were the first to use neural networks to learn
affinity graphs for neuron reconstruction fromground truth annotations. Together
with their minimax loss (Turaga, Kevin L Briggman, et al. 2009), they can directly
minimize the rand index (Rand 1971) during training. They argue that learning
better affinities will allow for more simple agglomeration or graph partitioning.

Dan Cireșan et al. (2012) adapted image classification neural networks (D.
Cireșan, Meier, and Schmidhuber 2012) withmax-pooling layers (Serre et al. 2007;
Scherer, Müller, and Behnke 2010) for pixel-wisemembrane probability prediction
in two-dimensional images of electron micrographs. The outputs of multiple
networks are averaged to reduce variance. Contrary to convolutional networks,
the network predicts the probability for a single voxel only: The receptive field
for each voxel prediction is increased at the cost of longer inference times during
prediction.

Targeting anisotropic TEM section series, Funke, Bjoern Andres, et al. (2012)
generated multiple two-dimensional segmentation hypotheses within sections
from different parameterizations of the graph-cuts algorithm (Boykov and Kol-
mogorov 2004). A graphical model was formulated with consistency constraints
and costs for linking hypotheses across sections. Costs were predicted with a
random forest classifier. The optimal linkage and segmentationwas foundwith in-
teger linear programming. Similarly, Kaynig et al. (2015) fused two-dimensional
segmentation hypotheses Vazquez-Reina et al. (2011) from random forest bound-
ary predictions. The similarity to the cell tracking problem has inspired similar
models in that domain (Schiegg et al. 2014).

Seyedhosseini, Sajjadi, and Tasdizen (2013) increased context by cascading
multiple classifiers. T. Liu et al. (2014) used boundary predictions from Dan
Cireșan et al. (2012) and Seyedhosseini, Sajjadi, and Tasdizen (2013) to generate
two-dimensional fragments frommorphological watersheds (Beare and Lehmann
2006) and then learned the weights of hierarchical merge trees with random
forest classifieres for agglomeration in 3D.

Nunez-Iglesias, Kennedy, Parag, et al. (2013), Nunez-Iglesias, Kennedy, Stephen
M Plaza, et al. (2014), and C. Jones et al. (2015) extended hierarchical agglom-
eration with an active-learning scheme: The weights were learned from expert
annotations during an interactive proof-reading process. The segmentation was
updated and presented to the user on-the-fly.

Similar to Funke, Bjoern Andres, et al. (2012), Kaynig et al. (2015) fused two-
dimensional segmentation hypotheses Vazquez-Reina et al. (2011) from random
forest boundary predictions. Uzunbas, C. Chen, and Metaxas (2016) extended
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that idea by guiding proof-readers to locations of uncertainty of the agglomeration
model.

Ronneberger, Fischer, and Brox (2015) introduced a newneural networkmodel
that utilizes multiple scales and drastically extends the field of view for pixel-
wise boundary classification, the U-net: A cascade of convolutional and down-
sampling layers increases the field-of-view and captures context. Alternated
convolutions and up-sampling then enable precise localization. Upsampled layers
are connected to their respective counterparts in the down-sampling branch via
skip connections. The use of extensive data augmentations virtually increases the
limited amount of available training data. Çiçek et al. (2016) extended the U-net
to three spatial dimensions.

Funke, Tschopp, et al. (2017) and Funke, Tschopp, et al. (2018) trained a 3D U-
net for affinity graphs (Turaga, Murray, et al. 2010) with a more efficient revision
of Turaga, Kevin L Briggman, et al. (2009). They argued that, due to signficantly
lower 𝑧-resolution in anisotropic TEM, voxel-wise boundary classification cannot
separate all objects; affinity graphs virtually increase resolution to solve this
problem. Two-dimensional fragments are extracted for agglomeration. Even
with simple percentile-based agglomeration, they outperform existing models.
The U-net has been adapted successfully for other 3D-EM prediction tasks, e.g.
synaptic cleft reconstruction (Heinrich, Funke, et al. 2018). The latter extended
Funke, Tschopp, et al. (2017) for application in anisotropic TEM micrographs:
Modified kernel sizes ensure near-isotropic field-of-views for most layers without
a change to the overall design. They showed that a near-isotropic field of view
boosts performance (figure 20).

Beier et al. (2017) use multi-cut agglomeration after long-range affinity pre-
diction with cascaded random forests or neural networks to outperform previ-
ous work. Following the argument of Funke, Tschopp, et al. (2017) and Funke,
Tschopp, et al. (2018), fragments are two-dimensional.

Most recently, Luther and Seung (2019) adapted deep metric learning for
semantic image segmentation (De Brabandere, Neven, and Van Gool 2017; Fathi
et al. 2017) to neuron reconstruction. Similarly, Sheridan et al. (in preparation)
learn local shape descriptor features.

Building on this body of previous work, in particular (Çiçek et al. 2016; Funke,
Tschopp, et al. 2017; Funke, Tschopp, et al. 2018; Heinrich, Bogovic, and Saalfeld
2017; Heinrich, Funke, et al. 2018; Beier et al. 2017), I will present a novel neural
network architecture for the prediction of multi-range affinity graphs at quasi-
isotropic resolution from anisotropic TEM.

3.4 quasi-isotropic network architecture

Recent serial section TEM (Zheng et al. 2018) has a nominal spatial resolution of
4×4×40nm3. As a result of this significant anisotropy, boundary predictions
cannot capture rapid change of cross-sections of individual neurons along the
axial dimension and under-segmentation errors are a common observation in 3D
fragments. Under-segmentation at the fragment level cannot be recovered during
agglomeration and state-of-the-art neuron reconstruction workflows (Beier et al.
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Figure 20: 3D U-net architectures for synaptic cleft predictions (taken from Heinrich,
Funke, et al. (2018)). Isotropy of 𝑥 and 𝑦 allows to collapse both dimensions into the
second dimension in the sketch without loss of expressiveness. Each layer is annotated
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consideration of the voxel sizes are visualized as rectangles. A square shapemeans perfect
isotropy. While the FOV remains anisotropic for all of the downsampling pathway of
DTU1, DTU2 approaches near-isotropic FOV early in the downsampling pathway.
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2017; Funke, Tschopp, et al. 2018) thus extract 2D fragments within individual 𝑥𝑦-
planes and agglomerate these fragments in three dimensions. The larger number
of 2D fragments compared to 3D fragments can be a limiting factor for complex
agglomeration schemes and proof-reading.

Naturally, larger 3D fragments can be extracted from boundary predictions at
high isotropic resolutions. I propose a novel neural network architecture to create
boundary predictions at high, quasi-isotropic resolution from anisotropic TEM
with low resolution along the axial dimension.

TEM oversamples the data along the higher-resolution 𝑥 and 𝑦 dimensions
for the purpose of neuron reconstruction. It is thus possible to achieve quasi-
isotropic resolution by down-sampling 𝑥- and 𝑦-dimensions by a factor of 3 and up-
sampling the 𝑧-dimension by a factor of 3 for a spatial resolution of 12 × 12 × 40/3 nm3.
Down-sampling in 𝑥 and 𝑦 reduces the amount of data but should not impede neu-
ron reconstruction as the down-sampled resolution of 12nm is still significantly
finer than relevant processes.

I created a novel U-net like architecture based on Heinrich, Funke, et al. (2018)
to predict quasi-isotropic affinity graphs at a resolution of 12 × 12× 40/3 nm3. Fig-
ure 21 shows a sketch of my quasi-isotropic architecture: Two convolutional
layers (section 3.2.1.3) with kernel size 3 × 3 × 1, 12 features and ReLU (equa-
tion (27)) activation function are followed by a pooling layer (section 3.2.1.2)
with kernel size 3 × 3 × 1 for a voxel size of 12× 12×40nm3. This is followed
by a U-net with three levels of resolution with symmetric down-sampling and
up-sampling with factors 3 × 3 × 1 (for a voxel size of 36× 36×40nm3) and
3 × 3 × 3 (108× 108× 120 nm3). Two consecutive convolutional layers with ReLU
activation preceed each down-sampling and succeed each up-sampling layer. The
number of features increases by a factor of 6 with each level of the U-net. Skip
connections (section 3.2.1.5) connect down-sampling path and up-sampling path
for all but the bottom layer of the U-net. At the end of the U-net, the voxel size is
12× 12×40nm3. An additional transposed convolution (section 3.2.1.4) brings
the voxel size to quasi-isotropic 12× 12× 40/3nm3, followed by a convolutional
layer with kernel size 3 × 3 × 3, 12 features, and ReLU activation, and a convolu-
tional layer with kernel size 1 × 1 × 1 and identity (equation (28)) activation to
predict 12 affinity channels and glial cell probability (section 3.4.1.1).

The key change in network architecture is to up-sample the 𝑧-dimension by a
factor of 3 instead of the 𝑥 and 𝑦 dimensions in the final up-sampling layer of the
network. As a result, skip connections cannot be used for that layer, as the voxel
size is inconsistent with the corresponding layer in the downsampling pathway.
Figure 22 visualizes the absolute and relative fields-of-view at each layer of the
network in the same way as figure 20.

I implemented the network architecture in the Python3 programming language
using the Gunpowder4 framework for machine-learning on multi-dimensional
images with tensorflow5 (Abadi et al. 2016) as backend. I adapted the U-net im-

3https://www.python.org
4https://github.com/funkey/gunpowder
5https://www.tensorflow.org/

https://www.python.org
https://github.com/funkey/gunpowder
https://www.tensorflow.org/
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Figure 22: Quasi-isotropic network architecture is an extension of DTU2 in figure 20: The
last up-sampling is along the 𝑧-dimension instead of the 𝑥- and 𝑦-dimensions. Note that
the outermost skip connection had to be dropped because voxel sizes are inconsistent at
the corresponding levels. Legend: see figure 20.

plementation from Larissa Heinrich’s CNNectome repository6. I implemented
additional Gunpowder nodes that were required for my new network architec-
ture in the fuse7 Python package. The network architecture and management
of reproducible experiments is available through the eqip8 Python package (sec-
tion 4.2).

3.4.1 Ground Truth

In general, powerful modern convolutional neural networks have millions of
parameters and good performance can only be achieved with a sufficient amount
of densely annotated ground truth training data. Ground truth generation is
a time-consuming process and, thus, the amount of publicly available ground
truth data is limited. To address this problem, the CREMI challenge9 provided an
unprecedented wealth of densely annotated ground truth: three pairs (training
and test data) — identified as samples A, B, and C; “+” indicates test data — of
(5µm)3 or (1250 × 1250 × 125px3) cubes from different regions of the adult fly
brain with nominal anisotropic voxel size 4×4×40nm3, totaling to 1171875000
voxels (or about 1.2 gigavoxels) of annotated data. The training ground truth
data is publicly available through the challenge website. Scott Lauritzen, Arlo
Sheridan and Constantin Pape proof-read predictions from Constantin Pape on
three similarly-sized blocks from the same adult fly brain identified as samples
0, 1, and 2. They also proof-read samples A, B, and C. I use 75% of proof-read
samples 0, 1, 2 and realigned samples A, B, C for training. The remaining 25%

6https://github.com/saalfeldlab/CNNectome
7https://github.com/saalfeldlab/fuse
8https://github.com/saalfeldlab/eqip
9https://cremi.org

https://github.com/saalfeldlab/CNNectome
https://github.com/saalfeldlab/fuse
https://github.com/saalfeldlab/eqip
https://cremi.org
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are used for evaluation. The ground truth is annotated at the same anisotropic
spatial resolution as the raw data: 4 × 4×40nm3.

3.4.1.1 Glial Cells

The central nervous system is intermingled by glial cells — non-neuronal cells
that can be similar in appearence to neurons in 3D-EM. Instance segmentation
of glial cells is susceptible to under-segmentation errors because individual glial
cells are hard to identify. The effect on neuron reconstruction can be catastrophic
in combination with confusion of glial cells with neurons: Prohibitively large
numbers of neurons are falsely merged.

I implemented the following strategy to minimize glial cell related under-
segmention: The separation of glial cells into individual instances with distinct
labels is not relevant for neuron reconstruction. An additional dedicated label for
glial cells in the ground truth data encourages zero affinity between neurons and
glial cells. Optionally, affinities within glial cells can be ignored for calculating
the loss during training. The additional semantic segmentation task for the
detection of glial cells employs the benefits of multi-task learning (Caruana 1997):
Individual tasks can inform each other about the inherent structure of the data
or a task through shared representations. Furthermore, the predicted glial cell
mask can be used to restrict super-voxels and avoid undersegmentation caused
by confusion of glial cells with neurons at prediction time. Glial cell annotations
were generated in a combined effort by Arlo Sheridan, Constantin Pape, Scott
Lauritzen, and Jan Funke.

3.4.1.2 Label Interpolation

While the CREMI challenge provides a wealth of densely annotated ground truth
data for neuron reconstruction from TEM, ground truth data at a quasi-isotropic
resolution is not available. The generation of dense ground truth data is laborious
and manual interpolation of ground truth data is challenging at best. Therefore,
I developed a simple yet effective distance-transform based label interpolation
method in order to generate quasi-isotropic ground truth data from anisotropic
annotations. Given a regular grid 𝒢 and a sampled function, i.e. an image,

𝑓 ∶ 𝒢 ↦ ℝ (39)
𝑝 ∈ 𝒢 ↦ 𝑓 (𝑝)

and a distance 𝑑, Felzenszwalb and Huttenlocher (2012) define the distance
transform for 𝑝 ∈ 𝒢

𝒟𝑓(𝑝) = min
𝑞∈𝒢

𝑑(𝑝, 𝑞) + 𝑓 (𝑞). (40)

Then, the binary distance transform of a set of points 𝑃 ⊆ 𝒢 is a special case

𝒟𝑃(𝑝) = min
𝑞∈𝒢

𝑑(𝑝, 𝑞) + 𝟙𝑃(𝑞), (41)
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(a) (b)

(c) (d)

Figure 23: Distance transform interpolation between two thick, one-dimensional sections:
Signeddistance transforms in thick sections (a) are thresholded at zero to create associated
objects (b). After interpolation of the distance transforms (c), the transition between
objects in adjacent sections appears smoother (d). The contrast range for the distance
transform is [−79, 33].

where the indicator

𝟙𝑃(𝑞) =
⎧{
⎨{⎩

0 if 𝑞 ∈ 𝑃,
∞ otherwise.

(42)

I calculate the binary distance transform for all labels 𝐿𝑛 = {𝑙 ∶ 𝑓 𝑛(𝑝 ∈ 𝑆𝑛) = 𝑙} of
the 𝑛th section 𝑆𝑛 of an annotaed series of 𝑁 sections:

{𝐷𝑛
𝑃𝑙

∶ ∀𝑙 ∈ 𝐿𝑛} (43)

Then, for all ordered pairs of successive sections 𝑛, 𝑛 + 1 ∶ 1 ≤ 𝑛 < 𝑁, 𝑘 intermedi-
ate sections are generated at equi-distant spacing between sections 𝑛 and 𝑛 + 1 by
interpolating the distance-transforms of each section with appropriate weights
for each label, and using a label for a pixel if the interpolated signed distance
transform is smaller or equal to zero. The number of intermediate sections 𝑘 is
chosen such that the resulting voxel resolution is (nearly) isotropic. figure 23 pro-
vides an example for one-dimensional sections. For a resolution of 4 × 4×40 nm3

a value of

𝑘 = 9 (44)

would result in an isotropic resolution that would highly oversample the data for
neuron reconstruction. Therefore, the data is downsampled by a factor of 3 along
each of 𝑥 and 𝑦 and a choice of

𝑘 = 2 (45)

achieves a quasi-isotropic voxel resolution 12 × 12× 40
3 nm3 and reduces the amount

of total voxels by a factor of 3×3
3 = 3 with respect to the original data. In particular,

the costly computation and interpolation of distance transforms for all labels in
pairs of sections is not executed as many times.

3.4.1.3 Limitations of Distance Transform Interpolation

Interpolation of the distance transform is an approximation of interpolation of ob-
jects that does not explicitly model objects. As a result, the size of interpolated ob-
jects in interpolated sections is underestimated when there is little overlap across
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(a) (b)

(c) (d)

Figure 24: Failure modes of label data interpolation by means of distance transform
interpolation: Objects that have only very small overlap across sections (a) are thinned
out by distance transform interpolation (c). In the extreme case of no overlap (b), the
interpolation will create two separate connected components that shrink and finally
disappear (d).

Table 3: Quasi-isotropic network settings: # MSE and # Malis denote the number of
training iterations with mean squared error and malis losses, respectively. A check-
mark (cross-mark) in the “Intra-Glial Loss” column indicates that affinities within glial
cells are considered (ignored) in the loss.

Network # MSE # Malis Intra-Glial Loss
qi-mse 450, 000 0 3

qi-mse-ng 450, 000 0 7

qi-mls 0 450, 000 3

qi-mls-ng 0 450, 000 7

qi-mls-pre 20, 000 430, 000 3

qi-mls-pre-ng 20, 000 430, 000 7

sections (figure 24 left column) or — in the extreme case of no overlap (figure 24
right column) — the interpolated objects are disconnected into two separate con-
nected components, favoring over-segmentation. While over-segmentation is the
preferred failure mode over under-segmentation, a more appropriate interpo-
lation mode would decrease label noise and improve reconstruction accuracy.
The most simple extension of a distance transform interpolation would be to en-
sure that the objects are concentric by some measure, e.g. center of mass, and
then interpolate the distance transforms of the centered objects and translate the
interpolated objects by the interpolation of the original centers of mass. This
can be very effective for rigid, compact objects that are only translated across
sections (figure 25) but fails to capture rotations or any other non-translational
transformations of the object across sections, and it is easy to construct an exam-
ple with little or no overlap of the concentric objects, e.g. annuli. Instead, repre-
sentations of objects as two-dimensional polygons can be easily interpolated by
matching vertices of the polygons and then simply interpolating the positions of
the vertices. These optimizations of the label interpolation method will be the
subject of future work.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 25: Aligning objects by their centers-of-mass can alleviate narrowing (c) or van-
ishing (d) objects in little (a) or no overlap (b) situations: First, the objects are aligned
by their respective centers-of-mass (e)(f). Then, distance transforms are interpolated as
before (g)(h). Finally, each section section is translated such that each of the original
objects are in the crorrect place (i)(j).

3.4.2 Experiments

I trained a total of six networks with quasi-isotropic (qi) architecture with three
different losses, and ignoring or considering loss within glial cells (section 3.4.1.1):
mean squared error loss considering (qi-mse) and ignoring (qi-mse-ng) intra-
glial loss, malis loss (Turaga, Kevin L Briggman, et al. 2009) considering (qi-mls)
and ignoring (qi-mls-ng) intra-glial loss, and malis loss, pre-trained with mean
squared error, considering (qi-mls-pre) and ignoring (qi-mls-pre-ng) intra-glial
loss. The network settings are summarized in table 3. Regardless of the loss type,
ground truth affinities as well as glial cell labeling are balanced. The network
architecture was implemented within the tensorflow framework and each of the
instances was trained with the Adam optimizer (Kingma and Ba 2014) with
parameters settings as shown in table 4.

The structure of the affinity graph is defined by a matrix

𝑂 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑂1,1 𝑂1,2 𝑂1,3
𝑂2,1 𝑂2,2 𝑂2,3

⋮
𝑂𝑁,1 𝑂𝑁,2 𝑂𝑁,3

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

∈ ℤ𝑁×3 (46)

where each row 𝑖 defines an offset such that there is an edge between voxels 𝑝
and 𝑞 = 𝑝 + 𝑂𝑖,∗ in the affinity graph. The offsets are defined in integral units of
voxels along each dimension of the data. Similarly, the affinities at voxel location
𝑝 are represented by an 𝑁-dimensional real-valued vector

a(𝑝) = (𝑎1(𝑝), 𝑎2(𝑝), … , 𝑎𝑁(𝑝))𝑇 ∈ ℝ𝑁 (47)
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Assuming that the affinity graph is undirected and symmetric

𝑂𝑖,𝑘 = − 𝑂𝑖+𝑁/2,𝑘 ∀ 𝑖 ≤ 𝑁/2, 𝑘 ∈ {1, 2, 3} (48)
𝑎𝑖(𝑝) =𝑎𝑖+𝑁/2(𝑝 + 𝑂𝑖,∗) ∀ 𝑖 ≤ 𝑁/2, (49)

it is sufficient to consider only the top half of the structuring matrix

𝑂̃ ∈ ℤ𝑁/2×3 (50)
𝑂̃𝑖𝑘 = 𝑂𝑖𝑘 ∀ 𝑖 ≤ 𝑁/2, 𝑘 (51)

and affinities

̃𝑎(𝑝) ∈ ℝ𝑁/2 (52)
̃𝑎𝑖(𝑝) = 𝑎𝑖(𝑝) ∀ 𝑖 ≤ 𝑁/2. (53)

For my experiment, I use four offsets along each dimension of the data to include
long-range affinities:

𝑂̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 0 0
−2 0 0
−5 0 0

−10 0 0
0 −1 0
0 −2 0
0 −5 0
0 −10 0
0 0 −1
0 0 −2
0 0 −5
0 0 −10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(54)

Beier et al. (2017) used multi-range affinities in combination with a mean square
error loss. To the best of my knowledge, I am the first to train multi-range affinities
networks with the malis loss.

Binary ground truth affinities 𝑎∗(𝑝) ∈ {0, 1}𝑁 are generated from ground truth
neuron label data 𝑙(𝑝) to indicate if two voxels belong to the same object:

𝑎∗
𝑖 (𝑝) =

⎧{
⎨{⎩

1 if 𝑙(𝑝) = 𝑙(𝑝 + 𝑂𝑖,∗),
0 otherwise.

(55)

The scalar glia channel prediction at location 𝑝 is denoted as 𝑔(𝑝) ∈ ℝ and the
ground truth 𝑔∗ is provided directly by a binary glia mask. While the ground
truth for both affinities and glia takes binary values, values outside the unit
interval [0, 1] are possible — for example, the values 0.8 and 1.2 have the same
contribution to the loss for a ground truth value of 1.0 under mean squared error
loss — and the notation

𝑎𝑢
𝑙 (𝑝) =

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

max {min {𝑎1(𝑝), 𝑢} , 𝑙}
max {min {𝑎2(𝑝), 𝑢} , 𝑙}

⋮
max {min {𝑎𝑁(𝑝), 𝑢} , 𝑙}

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(56)

𝑔𝑢
𝑙 (𝑝) = max{min{𝑔(𝑝), 𝑏}, 𝑎} (57)
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Table 4: Parameters for Adam optimizer used for the training of quasi-isotropic archi-
tectures: 𝛼 is the learning rate, 𝛽1 and 𝛽2 are the decay rates for linear and quadratic
momentum of the gradient, respectively, and ̂𝜖 is a small constant to ensure numerical
stability.

Parameter 𝛼 𝛽1 𝛽2 ̂𝜖
Value 5 × 10−5 0.95 0.999 10−8

restricts predictions to the interval [𝑙, 𝑢]. For ease of notation, the argument 𝑝 is
omitted if possible without ambiguity, i.e.

𝑎 ≡ 𝑎(𝑝), (58)
𝑎𝑖 ≡ 𝑎𝑖(𝑝), (59)

̃𝑎 ≡ ̃𝑎(𝑝), (60)
̃𝑎𝑖 ≡ ̃𝑎𝑖(𝑝), (61)

𝑎∗ ≡ 𝑎∗(𝑝), (62)
𝑎∗

𝑖 ≡ 𝑎∗
𝑖 (𝑝), (63)

̄𝑎 ≡ ̄𝑎(𝑝), (64)
𝑔 ≡ 𝑔(𝑝), (65)

𝑔𝑢
𝑙 ≡ 𝑔𝑢

𝑙 (𝑝). (66)

The provided field of view of the training data extends beyond the annotated
ground truth data and affinities of edges with at least one voxel outside the
annotated area are ignored for training. Optionally, affinities that are entirely
within the glia mask can be ignored. Note that affinities between any neuron id
and glia mask are always zero and will never be ignored. Ground truth affinities
and glia are balanced per training sample.

3.4.2.1 Augmentations

Data augmentation has been established to virtually increase the amount of
training data, to minimize overfitting, and to model data defects that may be
under-represented in the training samples (Krizhevsky, Sutskever, and Hinton
2012; Dosovitskiy et al. 2014; Ronneberger, Fischer, and Brox 2015; Beier et al.
2017; Funke, Tschopp, et al. 2018; Heinrich, Funke, et al. 2018). I use the following
random data augmentations in experiments (availability in Gunpowder or fuse
as specified):

elastic (fuse) Deform data with a low-frequency elastic transformation defined
by random jitter of sparse control points and rotate by a random angle
around the 𝑧-axis.

misalign (fuse) Randomly translate a random 𝑥𝑦-section within the 𝑥𝑦-plane:
Shifts affect the section and all subsequent sections in the series, slips only
affect the randomly selected section and label data can be excluded from
slips.
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simple (gunpowder) Randomly mirror or transpose a sample. Due to the an-
isotropic voxel resolution of the raw data, only the 𝑥 and 𝑦-axes are consid-
ered for transposition.

intensity (gunpowder) Apply a random scale and shift to the intensity of the
data.

defect (gunpowder) Model various instances of imaging noise and defects by
randomly introducing missing sections, low-contrast sections, or imaging
artifacts from a separate artifact provider.

Training samples are queried uniformly from the six training data sets — samples
A, B, C, 0, 1, and 2 — at random locations and are randomly augmented on the
fly with the augmentation nodes in the Gunpowder framework as available.
Training samples are rejected if less than half of the volume contains ground
truth annotation. As raw data and ground truth labels have different resolution
in the quasi-isotropic prediction framework, nodes were extended to support
augmentation of data with non-uniform voxel sizes as needed.

3.4.2.2 Prediction & Reconstruction

Affinity prediction on test data can be trivially parallelized over independent
blocks in the output space that have the same size as the network output tensor.
GPU idle time is minimized with the daisy framework10 and the processing time
per mega voxel and GPU is 𝑡𝑝 = 2.13s ± 0.25s. The increased resolution of the
quasi-isotropic prediction allows for a reduction of the affinity vector at location
𝑝 with 𝑁 affinities into a scalar average

̄𝑎(𝑝) =
1
𝑁

𝑁
∑
𝑖=1

𝑎𝑖(𝑝) (67)

without loss of boundary information to simplify the subsequent agglomeration
task: Super-voxels can be extracted — and possibly agglomerated — from a
scalar boundary map instead of the affinity graph, potentially with long-range
affinities. Scaling the averaged affinities ̄𝑎(𝑝) by the inverse of the glia predictions
1 − 𝑔1

0(𝑝) (section 3.4.1.1) suppresses potential incorrect high affinities within
glia cells. Optionally, glia predictions above a user-specified threshold 𝑡𝑔 > 0 are
masked out and considered background during reconstruction. Figure 26 shows
a small excerpt of affinity predictions for CREMI sample C.

Initial fragments are generated with a highly over-segmenting seeded water-
sheds transform on the square root of the distance transform (section 3.4.1.2) of
the squared scaled affinity prediction average

𝐷(𝑝) = √min
𝑞∈𝒢

𝑑(𝑝, 𝑞) + ((1 − 𝑔1
0(𝑞)) × ̄𝑎(𝑞))2 (68)

10https://github.com/funkelab/daisy

https://github.com/funkelab/daisy


3.4 quasi-isotropic network architecture 67

(a) Raw (b) 𝑎1, 𝑎5, 𝑎9 (c) 𝑎2, 𝑎6, 𝑎10 (d) 𝑎3, 𝑎7, 𝑎11 (e) 𝑎4, 𝑎8, 𝑎12 (f) ̄𝑎 (1 − 𝑔1
0)

Figure 26: Excerpt of affinity predictions for CREMI sample C: The top, center, and
bottom are screenshots of the top-left, top-right, and bottom-left cross-sectional views of
Paintera, respectively. The screenshots were rotated to align better with the page layout.
The raw data is displayed in column (a), followed by RGB-mapped subsets of the affinity
predictions as indicated by the channel indices in (b)–(e), and the averaged affinities ̄𝑎(f).
The contrast range for the affinities was set to [0.2, 1]. Brighter pixels indicate high affinity,
dark pixels indicate cell boundary or glia. White pixels in (b)–(e) have high affinity
along all dimensions. While the resolution of the raw data is anisotropic, the original
lower-resolution dimension cannot be identified in the quasi-isotropic predictions and
the recovered level of details is remarkable.
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with a weighted squared Euclidian distance

𝑑(𝑝, 𝑞) = 𝑎
3

∑
𝑖=1

𝑤2
𝑖 (𝑝𝑖 − 𝑞𝑖)

2 , (69)

𝑤 =
⎛⎜⎜⎜⎜
⎝

1
1

10/9

⎞⎟⎟⎟⎟
⎠

. (70)

The weight vector 𝑤 compensates for the slight an-isotropy in the quasi-isotropic
predictions. The parameter 𝑎 weighs the distance against the scaled affinity
prediction average and can be considered a soft threshold. The distance transform
helps close or narrow gaps in the boundary prediction and small initial fragments
minimize the impact of under-segmentation. Smaller values of 𝑎 result in wider
boundaries. Watershed seeds are extracted as local maxima of the thresholded
distance transform

𝐷𝑡(𝑝) =
⎧{
⎨{⎩

𝐷(𝑝) if 𝐷(𝑝) > 𝑡𝑑,
−∞ otherwise.

(71)

Local maxima below the threshold 𝑡𝑑 are not considered seeds. Then, fragments
are generated with seeded watersheds on the negative distance transform −𝐷(𝑝).
If 𝑡𝑔 < ∞, watershed regions cannot grow into the thresholded glia prediction.
Finally, in order to reduce the number of fragments drastically, any pair of frag-
ments is merged if the median of affinities along their shared boundary is below
a user-specified threshold 𝑡𝑚.

3.4.2.3 Results

Ultimately, the quality of neuron reconstruction from network predictions is
the benchmark for the performance evaluation of the quasi-isotropic networks.
This is true in particular for the affinity predictions and, thus, I evaluated the
quasi-isotropic networks with respect to the quality of the subsequent neuron
reconstruction instead of simply comparing voxel-wise affinity predictions to
ground-truth. Additionally, I evaluated performance of the glial cell predictor by
voxel-wise comparison of glial cell predictions with ground truth. The goal of the
glial cell prediction is not the identification of individual glial cell instances but a
semantic segmentation of voxels into glial and non-glial cells and, therefore, a
voxel-wise evaluation is much more reasonable for this predictor. The evaluation
of glial cell prediction for various settings for the threshold 𝑡𝑔 also gives justifica-
tion for the parameter range of 𝑡𝑔 that was used in the grid search to determine
the best performing network architecture with respect to neuron reconstruction.
Figure 27 shows example network predictions for affinity and glial cells, neuron
reconstruction, and ground truth on sample 1 for the best performing network
architecture qi-mse-ng after 450,000 iterations of training with merge threshold
𝑡𝑚 = 0.7 and glia threshold 𝑡𝑔 = 0.5. Similar visualizations are provided for all
samples in figures 59 to 63 of appendix B.1. Note that 𝑡𝑔 = 0.3 would be a better
choice (table 9) but table 22 shows that the difference is minuscule and evalua-
tion shows that the glia threshold has only a minor effect on the segmentation
outcome.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 27: Cross-section of prediction and reconstruction for sample 1 with best per-
forming network qi-mse-ng (table 9): The horizontal (𝑥)/vertical (𝑦) image axes are
aligned with the third/second axis of the data. The corresponding resolution (𝑥 × 𝑦)is
40nm × 4nm for raw data, and 40/3nm × 12nm for interpolated ground truth, predictions
and reconstruction. The annotated area spans 5 × 103 nm = 5µm from left to right (en-
closed by magenta shading (b)). Each set of affinity channels, 𝑎1, 𝑎5, 𝑎9(a), 𝑎2, 𝑎6, 𝑎10(c),
𝑎3, 𝑎7, 𝑎11(e), and 𝑎4, 𝑎8, 𝑎12(g), is projected onto RGB channels with contrast range [0, 1].
Yellow glia predictions 𝑔 with contrast range [0, 1] are overlaid with blue ground truth
in (b) to highlight false negative (blue), false positive (yellow), and correct predic-
tions (white) within the masked area. Glia annotations are not available outside the
annotated and yellow predictions cannot be considered false there. The averaged and
scaled affinities ̄𝑎 (1 − 𝑔1

0) are restricted to the annotated volume (d). Predicted glia vox-
els are not considered for neuron reconstruction (f). The ground truth (h) is shown for
comparison and with glia highlighted in blue color.



70 neuron reconstruction

glial cell prediction The bi-modal distribution of glia voxel predictions with
two distinct peakswith similarmass as their respective ground truth counter-parts
confirms robustness with respect to the glia threshold parameter 𝑡𝑔 (figure 28):
Varying the threshold 𝑡𝑔 outside the two distinct peaks will only change a small
number of predictions from positive to negative and vice versa. The histograms
also show a high imbalance of labels — most voxels are not glia — and, thus,
precision (what fraction of the positive predictions were correct) and recall (what
fraction of all positive labels was recovered) are good metrics for evaluation:

Precision =
#tp

#tp + #fp , (72)

Recall =
#tp

#tp + #fn , (73)

where #tp is the number of true positives, i.e. correct classification as positive, #fp
is the number of false positives, i.e. incorrect classification as positive, and #fn is
the number of false negatives, i.e. incorrect classification as negative. The large
number of true negative predictions is not considered and therefore does not skew
precision or recall to give a false impression of good performance of classifiers that
are good at predicting the over-represented negative class but fails to consistently
predict the positive class. Precision-recall curves give a good intuition for the
tradeoff between precision and recall. Figure 29 shows precision-recall curves for
all networks and the highlighted precision-recall curve for the parameter range
0.1 ≤ 𝑡𝑔 ≤ 0.9 confirms robustness with respect to the glia threshold. Recall
is high for all samples within the relevant parameter range with the exception
of sample B. Similarly, precision is good for all samples with the exception of
samples B and 2.

The F-measure

𝐹𝛽 = (1 + 𝛽2)
precision × recall

𝛽2precision + recall
(74)

with paramater𝛽 ≥ 0 to balance betweenprecision and recall combines precision-recall
pairs into a single scalar value. For 𝛽 = 1, the

𝐹1 = 2 ×
precision × recall
precision + recall (75)

measure is the harmonic mean of precision and recall. The 𝐹2 measure puts a
stronger emphasis on the recall and, as high recall of glial cells reduces under-
segmentation errors caused by confusion with glial cells, the plateaus of the 𝐹2-
measure in figure 30 for the interval [0.1, 0.9] confirm that any specific choice of 𝑡𝑔
within this interval should not have a strong effect on neuron reconstruction. The
bad performance with respect to precision on samples B and 2, and in particular
with respect to recall on sample B is reflected by lower 𝐹2 scores across the entire
parameter range.

affinity predictions Figure 31 shows examplary affinity prediction on the same
subset of sample 1 for each network architecture. For visualization, affinities are
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Figure 28: Histograms of glia voxel predictions for all samples A, B, C, 0, 1, 2 for network
qi-mse-ng with log-scale y-axis. Histograms are provided for prediction on test set
only or prediction on all annotated data with corresponding distributions of labels for
ground truth annotations. The bi-modal distribution of predicted values with two distinct
peaks suggests that the reconstruction is not sensitive for glia thresholded parameter
𝑡𝑔 ∈ [0.1, 0.9]. Prediction histograms extend beyond [0, 1] and have different binning
than ground truth histograms because glia predictions are not restricted to the interval
[0, 1].
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Figure 29: Precision-recall curves for glia predictions for each network, evaluated per
sample and combined for all samples. The parameter range 0.1 ≤ 𝑡𝑔 ≤ 0.9 used in the
reconstruction experiments is highlighted on the combined precision-recall curve for all
samples.
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Figure 30: 𝐹2 measures for for glia predictions for each network, evaluated per sample
and combined for all samples. The paramter range 0.1 ≤ 𝑡𝑔 ≤ 0.9 is highlighted as shaded
area in each graph.

split into tuples of three channels that are then mapped into red, green, and blue
channels and are overlaid over raw data. The subsets of channels are selected
such that each channel triplet consists of one affinity channel for each of the three
data dimensions and each affinity channel represents the same offset in units of
voxels, e.g. (𝑎1, 𝑎5, 𝑎9). The affinities represented by the red, green, and blue color
channels are aligned with the orthogonal of the image plane, the vertical image
axis, and the horizontal image axis, respectively.

The predictions for the two mean-squared-error trained networks (indicated
by blue shade), qi-mse and qi-mse-ng, do not differ qualitatively: The qi-mse
network merely seems to predict slightly wider boundaries than the qi-mse-ng
network. Smaller regions disappear for longer range-predictions as expected but
still appear in the average ̄𝑎.

For all malis trained networks (red shade), in contrast, many small objects are
lost at the nearest-neighbor affinity predictions (𝑎1, 𝑎5, 𝑎9). Longer range affinity
predictions do not produce any meaningful output at all — very small values
around 0 or negative numbers — and, consequently, averaged affinities ̄𝑎 are
much smaller than expected: Averaged affinities are displayed with a contrast
range of [0.0, 0.3] for malis trained networks.

neuron reconstruction Figure 32 provides an intuition of topological correct-
ness of reconstructed neurons with 3D mesh renderings of a randomly selected
subset. Neuron topology appears biologically plausible and no severe under-
segmentation errors can be observed. Examples of neuron reconstruciton results
for various samples are provided in figure 33(c).

For each CREMI sample A, B, C, 0, 1, and 2 and each network architecture (ta-
ble 3), I evaluated the performance for glia thresholds 𝑡𝑔 ∈ {∞} ∪ {0.1, 0.2, … , 0.9}
and merge thresholds 𝑡𝑚 ∈ {0.1, 0.3, … , 0.9} with fixed distance transform weight
𝑎 = 0.1 and distance transform threshold 𝑡𝑑 = 0.3 for watersheed seed extrac-
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𝑎1, 𝑎5, 𝑎9 𝑎2, 𝑎6, 𝑎10 𝑎3, 𝑎7, 𝑎11 𝑎4, 𝑎8, 𝑎12 ̄𝑎
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Figure 31: Examples of affinity predictions on sample 1 and average ̄𝑎 for all networks.
The low-resolution dimension of the raw data is aligned with the horizontal image
axis. Predictions are split up into channels 𝑎1, 𝑎5, 𝑎9 (first column), 𝑎2, 𝑎6, 𝑎10 (second),
𝑎3, 𝑎7, 𝑎11 (third), and 𝑎4, 𝑎8, 𝑎12 (fourth) that are mapped into RGB space with contrast
ranges [0.5, 0.1] for mean-squared-error trained networks (blue shade) and [0.2, 1.0] for
malis trained networks (red shade). Malis trained networks do not produce meaningful
outputs for long-range affinities (𝑎2, 𝑎3, 𝑎4, 𝑎6, 𝑎7, 𝑎8, 𝑎10, 𝑎11, 𝑎12) and contrast ranges for
those channels are chosen arbitrarily for visualization. The contrast ranges for the average
affinities ̄𝑎 are [0.3, 1.0] and [0.0, 0.3] for mean-squared-error trained networks and malis
trained networks, respectively.
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Figure 32: Neuron reconstrution for sample A with 3D rendering of randomly selected
neurons. Affinities of network architecture qi-mse-ngwere usedwith parameters 𝑡𝑚 = 0.7
and 𝑡𝑔 = 0.5.

tion. I report the CREMI metrics11 variation of information for splits (VOI𝑠) and
merges (VOI𝑚), the adapted Rand error (RAND), and the combined CREMI score

CREMI = √(VOI𝑠 + VOI𝑚) × RAND, (76)

the geometric mean of the variation of information metrics and the adapted Rand
error. For all of these metrics, a smaller value generally means better performance.
Following the CREMI evaluation, I ignore ground truth voxels that are within
25nm of neuron boundary for evaluation to compensate for ambiguities of the
neuron boundary that do not affect the overall reconstruction result. Contrary to
the CREMI evaluation and due to the quasi-isotropic resolution of my predictions,
I apply this boundary filter in three instead of two dimensions.

For each network and metric the best-performing parameters are those that
minimize the average across all samples of (a) the CREMI score or (b) each
individual metric. The metrics of the best-performing reconstruction parameter
settings (𝑡𝑚, 𝑡𝑔) of each networks are listed in tables 6 to 9 and visualized in
figures 34 to 37. Networks are evaluated on either 25% of the data that were
not used for training, or on the entire annotated data including the training
data (table 5). The evaluation for the complete set of parameters is provided in
tables 15 to 22 of appendix B.2.

Note that the CREMI leaderboard scores, when shown or listed for compari-
son, are averaged over performance on test samples A+, B+, C+, which are sub-
stantially larger than the 25% of the unused training data available for testing in
my experiments. The average over all CREMI test samples is used because there
are no CREMI evalutation data sets that are the equivalent of samples 0, 1, and
2 in my experiments. For better comparison, I show results on each individual
sample A, B, C, 0, 1, and 2, as well as averages over all samples.

Consistent with the observations in the visual inspection, the mean-squared-
error trained networks perform better overall: With the exception of qi-mls,

11https://cremi.org/metrics

https://cremi.org/metrics
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(a) A-𝑥𝑧: qi-mse (b) C-𝑥𝑦: qi-mls-pre (c) 0-𝑥𝑦: qi-mse-ng (d) 2-𝑧𝑦: qi-mse-ng

(e) B-𝑧𝑦: qi-mse-ng (f) A-𝑥𝑧: qi-mls-pre (g) A-𝑥𝑧: qi-mls-pre (h) A-𝑥𝑦: qi-mls-ng

Figure 33: Quasi-isotropic neuron reconstruction examples and error modes for samples
and network architectures as specified in captions. The axis alignment of horizontal and
vertical image axes with the data is specified after the sample, e.g. 𝑥𝑦. Large objects in
sample A are reconstructed without obvious under-segmentation(a). Some neurons are
highlighted for easier distinction of neighbors with similar color mapping. Both large and
small neurons are recovered in sample C(b) but the large orange connected component
contains false merges. Smaller objects are more likely to be over-segmented. Large objects
in sample 0 are reconstructedwithout obvious under-segmentation(c). Amix of large and
small objects in sample 2 is reconstructed in(d). Small objects are generally reconstructed
heavily over-segmented(e) but under-segmentation can still occur(f). Reconstructions
from malis-trained networks suffer from severe under-segmentation: Large parts (g) or
almost all of the data(h) are merged into a single segment.

Table 5: The best performing parameter set (𝑡𝑚, 𝑡𝑔) with respect to a metric is the parame-
ter set that minimizes the average of either that metric or the CREMI score. Performance
is evaluated on either the complete annotated data (100%) or on only the 25% that were
not used for training. The respective tables and figures are listed in this table.

Data Minimize Table Figure
25% Individual Score table 6 figure 34
100% Individual Score table 7 figure 35
25% CREMI Score table 8 figure 36
100% CREMI Score table 9 figure 37
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Table 6: Performance of different network architectures evaluated on 25% of the data,
excluding training data. Parameters are optimized for each metric individually. Score
averages over all samples are listed in the ⌀-column. A “—” in the 𝑡𝑔 column means that
the glia predictions were not considered during super voxel generation and merging.
Metrics of the current CREMI leader by each individual metric are listed for comparison.

Metric Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
CREMI leader 0.318
VOI𝑠 qi-mse 0.1 0.6 0.128 0.008 0.018 0.588 0.102 0.044 0.01
VOI𝑠 qi-mse-ng 0.1 0.6 0.117 0.006 0.011 0.62 0.003 0.056 0.007
VOI𝑠 qi-mls-pre 0.1 0.4 0.869 0.931 0.719 1.412 0.717 0.614 0.819
VOI𝑠 qi-mls-pre-ng 0.1 0.5 0.574 0.561 0.544 0.805 0.588 0.198 0.747
VOI𝑠 qi-mls 0.1 0.2 0.978 0.808 1.035 1.438 0.998 0.431 1.16
VOI𝑠 qi-mls-ng 0.1 0.1 0.078 0.0 0.0 0.0 0.148 0.053 0.266
CREMI leader 0.062
VOI𝑚 qi-mse 0.9 0.9 0.074 0.011 0.171 0.038 0.107 0.048 0.072
VOI𝑚 qi-mse-ng 0.9 0.8 0.062 0.015 0.192 0.036 0.013 0.053 0.064
VOI𝑚 qi-mls-pre 0.5 0.9 0.966 1.068 1.151 0.835 1.035 0.517 1.189
VOI𝑚 qi-mls-pre-ng 0.3 0.9 2.148 2.39 2.035 1.952 2.174 1.624 2.711
VOI𝑚 qi-mls 0.5 0.9 0.081 0.033 0.112 0.084 0.06 0.067 0.128
VOI𝑚 qi-mls-ng 0.1 — 5.56 6.385 5.804 5.07 5.773 4.633 5.695
CREMI leader 0.108
RAND qi-mse 0.7 0.6 0.217 0.052 0.285 0.517 0.127 0.228 0.092
RAND qi-mse-ng 0.7 0.3 0.23 0.085 0.302 0.52 0.127 0.242 0.105
RAND qi-mls-pre 0.1 0.5 0.809 0.852 0.872 0.639 0.93 0.684 0.876
RAND qi-mls-pre-ng 0.3 — 0.764 0.789 0.712 0.786 0.764 0.745 0.79
RAND qi-mls 0.1 0.6 0.228 0.163 0.142 0.525 0.177 0.235 0.126
RAND qi-mls-ng 0.1 — 0.99 1.0 1.0 1.0 0.979 0.999 0.963
CREMI leader 0.221
CREMI qi-mse 0.7 0.3 0.425 0.136 0.6 0.848 0.338 0.321 0.306
CREMI qi-mse-ng 0.7 0.3 0.433 0.173 0.611 0.856 0.278 0.354 0.328
CREMI qi-mls-pre 0.1 0.5 1.742 1.765 1.948 1.36 2.049 1.363 1.965
CREMI qi-mls-pre-ng 0.3 0.4 1.803 1.834 1.755 1.834 1.789 1.673 1.933
CREMI qi-mls 0.1 0.6 0.508 0.39 0.457 0.952 0.451 0.374 0.428
CREMI qi-mls-ng 0.1 0.4 2.361 2.527 2.409 2.252 2.419 2.163 2.397

Malis trained architectures that show good performance with respect to under-
segmentation fail with respect to over-segmentation, and vice versa. As a result,
the overall CREMI score turns out higher (worse) for malis trained networks.
In particular when comparing on the CREMI score optimizing parameters, all
but one malis trained network (qi-mls-ng) perform badly with respect to the
VOI𝑠 and RAND metrics that consider over-segmentation. The comparably bet-
ter performance of qi-mls-ng with respect to over-segmentation metrics can be
easily understood in figure 33(h): Almost all voxels are grouped into a single
connected component and, as a result, there is no over-segmentation. Accord-
ingly, qi-mls-ng performs badly in all other metrics and is the worst network with
respect to the CREMI score. The best-performing networks are the mean-squared-
error trained networks qi-mse and qi-mse-ng, closely followed only by one malis
trained network, qi-mls.

I evaluated the effect of the merge threshold 𝑡𝑚 for a fixed value of the glia
threshold 𝑡𝑔 (figure 38), and vice versa (figure 39), for the best performing archi-
tecture qi-mse-ng. In accordance with table 9 I choose 𝑡𝑚 = 0.7 and 𝑡𝑔 = 0.3, re-
spectively. Small values of 𝑡𝑚 achieve good performance on the over-segmentation
metric VOI𝑠 but perform badly on the under-segmentation metric VOI𝑚.

Larger values of 𝑡𝑚 improve performance on VOI𝑚 at the expense of worse
VOI𝑠 scores, but the effect is not as dramatic, which is reflected in the combined
RAND and CREMI scores: Even a heavily over-segmenting merge threshold
𝑡𝑚 = 0.9 performs better than a seemingly moderate choice for 𝑡𝑚 = 0.5 and
smaller. The ideal merge threshold is 𝑡𝑚 = 0.7, which is in agreement with table 9
disregarding networks trained with malis loss (figure 31).
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Table 7: Performance of different network architectures evaluated on 100% of the data,
including training data. Parameters are optimized for each metric individually. Score
averages over all samples are listed in the ⌀-column. A “—” in the 𝑡𝑔 column means that
the glia predictions were not considered during super voxel generation and merging.
Metrics of the current CREMI leader by each individual metric are listed for comparison.

Metric Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
CREMI leader 0.318
VOI𝑠 qi-mse 0.1 0.6 0.144 0.004 0.026 0.763 0.042 0.018 0.012
VOI𝑠 qi-mse-ng 0.1 0.6 0.14 0.002 0.025 0.772 0.006 0.022 0.01
VOI𝑠 qi-mls-pre 0.1 0.6 0.803 0.859 0.657 1.611 0.441 0.75 0.503
VOI𝑠 qi-mls-pre-ng 0.1 0.2 0.549 0.423 0.536 0.765 0.56 0.519 0.49
VOI𝑠 qi-mls 0.1 0.3 0.984 0.956 1.062 2.04 0.377 0.711 0.756
VOI𝑠 qi-mls-ng 0.1 0.1 0.141 0.377 0.068 0.13 0.087 0.051 0.132
CREMI leader 0.062
VOI𝑚 qi-mse 0.9 0.9 0.031 0.005 0.066 0.013 0.044 0.021 0.039
VOI𝑚 qi-mse-ng 0.9 0.8 0.03 0.012 0.082 0.013 0.005 0.031 0.036
VOI𝑚 qi-mls-pre 0.5 0.9 0.883 1.007 1.097 1.171 0.446 0.752 0.825
VOI𝑚 qi-mls-pre-ng 0.5 0.9 2.127 2.371 1.86 2.704 1.7 1.765 2.362
VOI𝑚 qi-mls 0.5 0.9 0.067 0.027 0.085 0.093 0.024 0.084 0.088
VOI𝑚 qi-mls-ng 0.3 — 6.014 7.343 6.528 6.361 4.598 5.554 5.703
CREMI leader 0.108
RAND qi-mse 0.7 0.6 0.356 0.167 0.16 0.398 0.222 0.732 0.456
RAND qi-mse-ng 0.7 0.8 0.36 0.165 0.18 0.403 0.224 0.733 0.455
RAND qi-mls-pre 0.1 0.6 0.836 0.971 0.928 0.807 0.496 0.908 0.907
RAND qi-mls-pre-ng 0.3 — 0.845 0.817 0.784 0.841 0.917 0.871 0.841
RAND qi-mls 0.1 — 0.387 0.25 0.141 0.422 0.41 0.642 0.457
RAND qi-mls-ng 0.3 — 0.988 0.966 0.992 0.997 0.998 0.998 0.979
CREMI leader 0.221
CREMI qi-mse 0.7 0.5 0.522 0.312 0.423 0.873 0.28 0.693 0.551
CREMI qi-mse-ng 0.7 0.3 0.519 0.288 0.485 0.871 0.243 0.689 0.539
CREMI qi-mls-pre 0.1 0.6 1.832 2.178 2.117 1.903 1.083 1.819 1.894
CREMI qi-mls-pre-ng 0.3 0.4 1.954 1.962 1.911 2.156 1.798 1.874 2.025
CREMI qi-mls 0.1 0.4 0.647 0.505 0.424 1.004 0.464 0.82 0.667
CREMI qi-mls-ng 0.3 0.7 2.466 2.727 2.558 2.544 2.174 2.367 2.424

Table 8: Performance of different network architectures evaluated on 25% of the data,
excluding training data. Parameters that minimize CREMI score are used for all metrics.
Score averages over all samples are listed in the ⌀-column. Metrics of the current CREMI
leader by overall CREMI score are listed for comparison.

Metric Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
CREMI leader 0.339
VOI𝑠 qi-mse 0.7 0.3 0.797 0.564 0.878 1.841 0.298 0.591 0.611
VOI𝑠 qi-mse-ng 0.7 0.3 0.722 0.458 0.778 1.768 0.212 0.554 0.563
VOI𝑠 qi-mls-pre 0.1 0.5 0.825 0.86 0.658 1.608 0.599 0.731 0.496
VOI𝑠 qi-mls-pre-ng 0.3 0.4 2.216 2.392 2.733 2.748 1.488 1.857 2.082
VOI𝑠 qi-mls 0.1 0.6 0.992 0.962 1.067 2.046 0.378 0.74 0.757
VOI𝑠 qi-mls-ng 0.1 0.4 0.153 0.377 0.068 0.13 0.116 0.052 0.174
CREMI leader 0.115
VOI𝑚 qi-mse 0.7 0.3 0.087 0.02 0.255 0.071 0.058 0.059 0.057
VOI𝑚 qi-mse-ng 0.7 0.3 0.131 0.059 0.391 0.115 0.052 0.094 0.074
VOI𝑚 qi-mls-pre 0.1 0.5 3.221 4.019 4.177 2.876 1.919 2.881 3.452
VOI𝑚 qi-mls-pre-ng 0.3 0.4 2.184 2.373 1.88 2.707 1.859 1.842 2.442
VOI𝑚 qi-mls 0.1 0.6 0.223 0.091 0.288 0.304 0.269 0.193 0.193
VOI𝑚 qi-mls-ng 0.1 0.4 6.031 7.386 6.528 6.365 4.61 5.551 5.745
CREMI leader 0.108
RAND qi-mse 0.7 0.3 0.356 0.167 0.163 0.398 0.222 0.732 0.456
RAND qi-mse-ng 0.7 0.3 0.363 0.16 0.201 0.403 0.224 0.732 0.455
RAND qi-mls-pre 0.1 0.5 0.853 0.97 0.928 0.807 0.595 0.907 0.907
RAND qi-mls-pre-ng 0.3 0.4 0.879 0.807 0.792 0.852 0.966 0.95 0.907
RAND qi-mls 0.1 0.6 0.389 0.242 0.131 0.428 0.326 0.738 0.466
RAND qi-mls-ng 0.1 0.4 0.992 0.969 0.992 0.997 0.999 1.0 0.994
CREMI leader 0.221
CREMI qi-mse 0.7 0.3 0.523 0.312 0.429 0.872 0.281 0.69 0.552
CREMI qi-mse-ng 0.7 0.3 0.519 0.288 0.485 0.871 0.243 0.689 0.539
CREMI qi-mls-pre 0.1 0.5 1.854 2.176 2.118 1.903 1.224 1.811 1.892
CREMI qi-mls-pre-ng 0.3 0.4 1.954 1.962 1.911 2.156 1.798 1.874 2.025
CREMI qi-mls 0.1 0.6 0.647 0.504 0.422 1.003 0.46 0.83 0.665
CREMI qi-mls-ng 0.1 0.4 2.469 2.743 2.558 2.544 2.173 2.367 2.426
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Table 9: Performance of different network architectures evaluated on 100% of the data,
including training data. Parameters that minimize CREMI score are used for all metrics.
Score averages over all samples are listed in the ⌀-column. Metrics of the current CREMI
leader by overall CREMI score are listed for comparison.

Metric Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
CREMI leader 0.339
VOI𝑠 qi-mse 0.7 0.5 0.803 0.565 0.884 1.849 0.301 0.606 0.614
VOI𝑠 qi-mse-ng 0.7 0.3 0.722 0.458 0.778 1.768 0.212 0.554 0.563
VOI𝑠 qi-mls-pre 0.1 0.6 0.803 0.859 0.657 1.611 0.441 0.75 0.503
VOI𝑠 qi-mls-pre-ng 0.3 0.4 2.216 2.392 2.733 2.748 1.488 1.857 2.082
VOI𝑠 qi-mls 0.1 0.4 0.985 0.962 1.061 2.037 0.38 0.716 0.753
VOI𝑠 qi-mls-ng 0.3 0.7 0.159 0.381 0.068 0.13 0.128 0.053 0.194
CREMI leader 0.115
VOI𝑚 qi-mse 0.7 0.5 0.079 0.018 0.235 0.067 0.052 0.051 0.051
VOI𝑚 qi-mse-ng 0.7 0.3 0.131 0.059 0.391 0.115 0.052 0.094 0.074
VOI𝑚 qi-mls-pre 0.1 0.6 3.225 4.03 4.172 2.875 1.924 2.894 3.452
VOI𝑚 qi-mls-pre-ng 0.3 0.4 2.184 2.373 1.88 2.707 1.859 1.842 2.442
VOI𝑚 qi-mls 0.1 0.4 0.231 0.092 0.302 0.314 0.277 0.198 0.201
VOI𝑚 qi-mls-ng 0.3 0.7 6.015 7.323 6.528 6.365 4.603 5.552 5.718
CREMI leader 0.108
RAND qi-mse 0.7 0.5 0.356 0.167 0.16 0.398 0.222 0.732 0.456
RAND qi-mse-ng 0.7 0.3 0.363 0.16 0.201 0.403 0.224 0.732 0.455
RAND qi-mls-pre 0.1 0.6 0.836 0.971 0.928 0.807 0.496 0.908 0.907
RAND qi-mls-pre-ng 0.3 0.4 0.879 0.807 0.792 0.852 0.966 0.95 0.907
RAND qi-mls 0.1 0.4 0.388 0.242 0.132 0.429 0.327 0.736 0.466
RAND qi-mls-ng 0.3 0.7 0.991 0.965 0.992 0.997 0.999 1.0 0.994
CREMI leader 0.221
CREMI qi-mse 0.7 0.5 0.522 0.312 0.423 0.873 0.28 0.693 0.551
CREMI qi-mse-ng 0.7 0.3 0.519 0.288 0.485 0.871 0.243 0.689 0.539
CREMI qi-mls-pre 0.1 0.6 1.832 2.178 2.117 1.903 1.083 1.819 1.894
CREMI qi-mls-pre-ng 0.3 0.4 1.954 1.962 1.911 2.156 1.798 1.874 2.025
CREMI qi-mls 0.1 0.4 0.647 0.505 0.424 1.004 0.464 0.82 0.667
CREMI qi-mls-ng 0.3 0.7 2.466 2.727 2.558 2.544 2.174 2.367 2.424
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Figure 34: Performance of different network architectures evaluated on 25% of the data,
including training data. Parameters are optimized for each metric individually. Score
averages over all samples are indicated by horizontal dashes lines in matching colors.
The current best scores as reported on the CREMI web site is shown as a black dotted
horizontal line.
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Figure 35: Performance of different network architectures evaluated on 100% of the data,
including training data. Parameters are optimized for each metric individually. Score
averages over all samples are indicated by horizontal dashed lines in matching colors.
The current best score as reported on the CREMI web site is shown as a black dotted
horizontal line.
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Figure 36: Performance of different network architectures evaluated on 25% of the data,
including training data. Parameters that minimize CREMI score are used for all metrics.
Score averages over all samples are indicated by horizontal dashed lines in matching
colors. The current best score as reported on the CREMI web site is shown as a black
dotted horizontal line.
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Figure 37: Performance of different network architectures evaluated on 100% of the data,
including training data. Parameters that minimize CREMI score are used for all metrics.
Score averages over all samples are indicated by horizontal dashed lines in matching
colors. The current best score as reported on the CREMI web site is shown as a black
dotted horizontal line.

The particular choice of 𝑡𝑔 on the other hand does not have a strong effect
on performance with respect to any of the metrics. Only disregarding the glia
prediction for fragment extraction and merging seems to negatively affect the
reconstruction, resulting in significantly worse performance. Even for a glia
threshold as small as 𝑡𝑔 = 0.1 the impact on the score appears to be insiginficant,
which is consistent with the evaluation of glia prediction performance for various
thresholds 𝑡𝑔 in figures 29 and 30 and the very distinctly bi-modal distribution of
glia predictions (figure 28). Performance varies by sample: In particular the poor
performance on sample B with respect to the under-segmentation metric 𝑉𝑂𝐼𝑚 is
remarkable. The low recall of glial cells on sample B (figures 29 and 30) indicates
that glial cell related under-segmentation is a major contributing factor.

3.4.3 Discussion

I created a novel convolutional neural network architecture to predict quasi-
isotropic 3D affinity graphs from anisotropic raw data with an additional supple-
mentary learning task of identifying glial cells. The supplementary predictions
can be used to minimize under-segmentation error modes. I evaluated six dif-
ferent network architectures and showed that, with the right loss, good perfor-
mance can be achieved with respect to under-segmentation metrics. The slightly
worse performance with respect to over-segmentation metrics indicates that the
best network architectures and parameters tend to over-segment. In general, the
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Figure 38: Evaluation of merge threshold for a fixed glia threshold 𝑡𝑔 = 0.3 on 100% of the
data for network qi-mse-ng. Merge thresholds 𝑡𝑚 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} are represented
by color-coded markers The performance for each merge threshold is plotted per sample.
The average over all samples is displayed as a horizontal line in the same color. As
expected, lower thresholds score better with respect to VOI𝑠, higher thresholds perform
better overall and in particular with respect to VOI𝑚.

over-segmentation error mode is preferred over under-segmentation as it can be
corrected for more rapidly in subsequent proof-reading sessions.

Currently, two watershed fragments are merged greedily if the median of
all affinities along their shared boundary is above a user-specified threshold
𝑡𝑚. In order to avoid under-segmentation, 𝑡𝑚 has to be set very conservatively.
The resulting over-segmentation could be further reduced with more advanced
agglomeration schemes like multicuts that solve a globally optimal configuration
of merged and split edges, or hierarchical agglomeration with adaptive edge
weights that are adjusted whenever two fragments are merged.

Additionally, while the median counteracts the effect to some extent, using the
predicted affinities as merge criterion propagates bad performance of the network
to the merging stage. Instead, a richer set of both fragment and boundary features
on the predicted affinities as well as on the actual raw data could improve agglom-
eration, in particular when combined into a scalar score with a machine learning
classifier such as random forests (Breiman 2001). Such features include but are
not limited to size, statistical moments of the raw data or affinities with respect
to fragments and boundaries, ratios of moments of fragments or fragments and
boundaries, histograms of raw data or affinities, and shape features of fragments
and boundaries. Preferably, features should be used that can be easily combined,
e.g. additive features like histograms, in particular when applying a hierarchical
agglomeration scheme or when distributed computation of the features is of the
essence.



82 neuron reconstruction

A B C 0 1 2

0.5

1.0

1.5

2.0

2.5

VOIs

N/A
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

A B C 0 1 2

0.1

0.2

0.3

0.4

VOIm

N/A
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

A B C 0 1 2

0.2

0.3

0.4

0.5

0.6

0.7

RAND

N/A
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

A B C 0 1 2
0.2

0.4

0.6

0.8

1.0

1.2

1.4

CREMI

N/A
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

Figure 39: Evaluation of glia threshold for a fixed merge threshold 𝑡𝑚 = 0.7 on 100%
of the data. Glia thresholds 𝑡𝑔 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are represented by
color-coded markers. The average over all samples is displayed as a horizontal line in the
same color. Black diamond markers and a dashed black line indicate the performance
when glia mask is not considered during reconstruction. Considering the glia during
reconstruction generally performs better. The effect of the particular choice of 𝑡𝑔 within
the evaluated range is negligible compared to 𝑡𝑚 (figure 38).
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The major benefit of quasi-isotropic predictions is the extraction of 3D frag-
ments (super-voxels) instead of 2D fragments as is common in neuron recon-
struction from anisotropic data. As a result, fragments tend to be larger — and,
therefore, the total number of fragments is smaller — and thus agglomeration
becomes more effficient or in some cases (expensive agglomeration schemes and
large datasets) feasible at all.

Another benefit is the recovery of small processes at about the size of the
lowest spatial resolution, e.g. so-called “nests” that are hard to trace even for
expert proof-readers. Reasonable segmentation hypotheses in the form of over-
segmenting fragments are expected to benefit proof-reading: experts can rely on
the fragments as guidance and only need to agglomerate them into a meaningful
segmentation.

Surprisingly, all malis trained networks performed badly in the neuron recon-
struction evaluation. The explanation can be found in visualizations of the affinity
predictions (figure 31): While nearest-neighbor affinity predictions appear to be
reasonable, predicted longer range affinities do not, but rather seem to have been
barely trained at all. Indeed, with long range affinities, redundancy is added to
the affinity graph and it is possible that the malis loss ignores those redundant
paths. This may be resolved by summing separate losses for each of the affinity
triplets (𝑎1, 𝑎5, 𝑎9), (𝑎2, 𝑎6, 𝑎10), (𝑎3, 𝑎7, 𝑎11), and (𝑎4, 𝑎8, 𝑎12) instead of a single loss
for (𝑎1, 𝑎2, … , 𝑎12). However, already for the nearest-neighbor affinities, the visu-
alizations show that some small objects are not recovered and it is questionable if
networks trained with a separate loss per each affinity triplet would outperform
mean-squared-error trained networks.

It may seem counter-intuitive that the performance on 25% of the data not
used during training is better than on the entire dataset, 75% of which was used
for training. Assuming a constant error-probability per cable length and that
biological neuron cable length is proportional to the size of the observed dataset,
it becomes clear that, in general, errors are more likely for larger datasets because
the cable length of individual neurons tends to be larger. This is true in particular
for the more catastrophic under-segmentation or merge error mode. It will thus
be crucial not only for this network architecture to evaluate performance on even
larger datasets than what is available in the CREMI challenge.

Label data interpolation is not a trivial task and the current approach of in-
terpolating signed distance transforms tends to shrink objects (section 3.4.1.3).
In the extreme case of no overlap, objects can vanish in the interpolated sec-
tions (figure 24). Most aggloemration schemes fail to connect objects without
shared boundaries and quasi-isotropic reconstructions that were trained with
ground truth generated by this interpolation scheme tend to suffer more from
over-segmentation.

Future work will focus on creating better quasi-isotropic ground truth data by
improving the label interpolation and the application of advanced agglomeration
schemes like hierarchical agglomeration or multi-cut, possibly in combination
with on-line learning concepts as discussed in section 4.1.8. The lowest-hanging
fruit for improving label interpolation is aligning object masks by their respective
centers of mass before interpolation as suggested in figure 25. In the presence



84 neuron reconstruction

of multiple disconnected and possibly non-convex shapes for the same object id
within a single section, it will be necessary to describe shapes more specifically
and match shapes across sections. Polygons with a fixed number of vertices, for
example, are a good candidate because they can be trivially interpolated through
their individual vertices.

The significant variability of section thickness in TEM (chapter 2) should
be considered during label interpolation for truly quasi-isotropic ground truth:
Currently, labeled sections are positioned along the axial dimension at the equi-
distant centers of the raw data sections without considering axial distortion.
Instead, the labeled sections should be centered at the estimated locations before
interpolation which may not be equi-distant or at the centers of the raw sections.
The spacing of sections in the interpolated target space would remain the same:
three sections at equi-distant axial spacing per raw section.

Another lane of future research is the improvement of local shape descrip-
tors for EM neuron segmentation. Current work in metric learning explores the
possibility of learning feature vectors that are similar within neurons and dissim-
ilar across neuron boundaries for segmentation by clustering (Luther and Seung
2019). Like affinity graphs, in particular in the presence of long range affinities,
those feature vectors can be interpreted as a local shape descriptor but the shape
description is only implicit. Schmidt et al. (2018) use star-convex polygons to ex-
plicitly describe the shape of cells and nuclei for detection and segmentation. This
nucleus detector could be adapted for EM neuron segmentation as a local shape
descriptor: Instead of describing a complete nucleus, the star-convex polygon
extends to the nearest boundary from the center voxel along predefined radial
directions. All local shape predictors then cast votes to create a boundary map. I
expect neuron reconstruction to benefit from star-shaped polygons because they
are more flexible in describing local shape than affinity graphs. While affinity
graphs can only detect boundaries at pre-defined distances along pre-defined
directions, star-shaped polygons can detect boundaries at any distance along pre-
defined directions at equi-distant angles. Star-convex polygons are less expressive
in highly anisotropic TEM because many of the bounded rays along these direc-
tions pass through the same set voxels and should be learned and predicted with
a quasi-isotropic architecture, as well.
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SOFTWARE

During the course ofmy PhD, I created or contributed to various software libraries.
In this chapter, I present a selection of my most important work. First, I developed
Paintera (section 4.1), an extendable visualization tool for the rapid and efficient
generation of densely annotated ground-truth and proof-reading of large 3D-EM
connectomics. The success of deep learning models in neuron reconstruction
relies on the availability of large amounts of high quality densely annotated
ground truth data. Attempts to generate ground-truth annotations for the CREMI1
challenge with existing tools failed to achieve a satisfying level of correctness.
Consequently, we developed BigCAT as a targeted solution for realitively small
datasets2 to improve the CREMI ground truth annotations. I developed Paintera
as the direct successor of BigCAT and re-used the annotation and proof-reading
functionality that I had initially developed for BigCAT.

My extensive experiments with neuron reconstruction at quasi-isotropic reso-
lution from anisotropic 3D-EM (chapter 3) required a reliable framework for the
creation of reproducible experiments. I created the EQIP library (section 4.2) to
create, run, and monitor these experiments.

During my time as a scientist I have had experience with two of the most pop-
ular ecosystems for multi-dimensional image processing and analysis in bioinfor-
matics: The multi-dimensional array of the NumPy library is the fundamental
data structure of many image processing and analysis frameworks and has been
a major contributor to the success of Python programming language in scien-
tifict computing. ImageJ is an established Java framework for the processing and
analysis of multi-dimensional biological images. The ImageJ distribution Fiji pro-
vides a wealth of tools that are not available in other frameworks. Both Python
with NumPy and ImageJ are extremely popular for bioinformatics research. Java
programs are executed in a virtual machine and cannot access native memory
programs like NumPy arrays. As a result, simultaneous use of NumPy and Im-
ageJ in a single workflow is extremely cumbersome at best. I developed the imglyb
Python library (section 4.3) to bridge the chasm between NumPy based image
processing and analysis frameworks and modern ImageJ2 that builds upon the
multi-dimensional generic image processing Java library ImgLib2.

One of the major benefits of Java over native languages is the ease of distribu-
tion: Java runs in a JVM and software can be distributed without platform-specific
compilation. Build automation tools like ApacheMaven3 have simplified the build
management and deployment process through online repositories but there is no
straight-forward way to execute a Java application from Maven coordinates alone.

1https://cremi.org
2CREMI still provides the larges amount of ground truth annotations for 3D-EM connectomics

to date.
3https://maven.apache.org
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Figure 40: Chris Patrick captured this screenshot of Paintera while proof-reading the
automatic reconstruction by Constantin Pape (Beier et al. 2017) of a small subset of the
FAFB dataset (Zheng et al. 2018). The left view shows a 2D cross-section at abitrary
rotation. Selected neurons are highlighted with higher opacity and visualized in 3D as
triangle meshes on the right. Synaptic cleft predictions by Larissa Heinrich (Heinrich,
Funke, et al. 2018) that intersect with selected neurons are rendered as white triangle
meshes (section 4.1.5.4). All triangle meshes are generated on demand and memory-
cached.

The jgo4 command line tool executes Java applications from Maven coordinates. I
developed a Python interface for jgo (section 4.4) that simplifies distribution of
Java software: Any application that is available as a Maven artifact can now be
distributed through the Python package index or conda with just a few lines of
Python code.

All software is available freely on GitHub5 under permissive open source
licenses.

4.1 paintera

Automatic machine learning based neuron reconstruction depends on high-
quality training data. Efficient proof-reading of high quality automatic segmen-
tation requires that large datasets can be navigated rapidly and that the conse-
quences of corrections are immediately visible to the user. In order to support
the intended use for ground truth generation, I created a comprehensive list of
requirements for an appropriate proof-reading tool:

1. Render a set of three orthogonal, two-dimensional cross-sections of arbi-
trarily large three-dimensional data at arbitrary orientations and zoom lev-

4https://github.com/scijava/jgo
5https://github.com

https://github.com/scijava/jgo
https://github.com
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els. For efficient loading and continuous user experience, volumetric data
should be accessible as small three-dimensional blocks (or chunks) instead
of large two-dimensional section series.

2. Support visualization ofmulti-channel rawdata as arbitrary color-composites
with configurable contrast range and color-mapped label data that is appro-
priately overlaid over raw image data.

3. Agglomerate fragments into segments with click-based merge and split
actions on fragments.

4. Modify label voxel data with basic brush and flood-fill operations similar
to image manipulation software such as MS Paint, GIMP, or Photoshop.
Brush strokes should be two-dimensional and aligned with the current
cross-section and operate at any zoom level.

5. Create three-dimensional mesh representations of label data as needed on
the fly. Pre-computed meshes are not an option as paint and assignment op-
erations change the underlying data. Changes in the segmentation through
agglomeration or voxel modifications update the 3D representation imme-
diately.

6. Support multi-scale label data that degenerates gracefully at lower zoom
levels so that 3D-visualization still supports meaningful proof-reading in-
teractions.

7. Access to multi-dimensional image processing6 libraries and computational
resources of client computer for performant client-side processing.

8. Easy ways to add extensions like new data types beyond the supported raw
and label data, controls, or workflows, e.g. active learning proof-reading.

Besides these requirements, familiarity with the main programming language
of the tool is a beneficial factor as it leads to cleaner and potentially more effi-
cient code. Ideally, the platform allows for easy distribution on major operating
systems (Windows, macOS, Linux distributions).

4.1.1 Related Work

Recent years have seen an emergence of a wealth of great visualization and proof-
reading tools to support connectome reconstruction for 3D-EM.CATMAID7 (Saalfeld,
Cardona, et al. 2009) is a collaborative annotation tool with a focus on tracing
neuron skeletons and annotating synaptic connections in arbitrarily large section
series. CATMAID focues on tracing and does not support editing dense segmen-
tations.

6Volume processing could be considered a more appropriate term.
7https://catmaid.org

https://catmaid.org


88 software

Ilastik8 (Sommer et al. 2011) was designed for interactive pixel classification
with random-forest classifiers from user annotations. It is extensible and work-
flows have been added for object classification, tracking of cells or animals, density
counting, carving, and multi-cut segmentation. As a Python project, ilastik has
access to the many image processing and machine learning libraries that expose a
Python interface, e.g.VIGRA9 (Köthe et al. 2008), scikit-image10 (Van derWalt et al.
2014), OpenCV 11, or scikit-learn12 (Pedregosa et al. 2011). Ilastik visualizes raw
and label — albeit scalar — data as orthogonal cross-sections. It favors the HDF5
as data format and supports stacks of various two-dimensional image formats but
no format that supports non-scalar label data. Cross-sections cannot be orientated
freely and are always aligned with the axes of the data. There is no proof-reading
workflow for neuron segmentation and segmentations cannot be visualized in
3D.

Mojo and Dojo13 form a pair of standalone proof-reading client and web-based
crowd-sourced annotation tools, respectively (Haehn et al. 2014). The two tools
target two different audiences and differ in their respective level of complexity
(and thus proof-reading power): Mojo targets expert users and offsers a more
complex and powerful toolset; Dojo on the other hand sees strength in numbers: a
large number of non-expert users proof-read volumes collaboratively — the user
interface thus needs to be simple and intuitive. Mojo was considered for ground
truth annotations for the CREMI challenge14 but painting was not responsive
enough for effective annotations. Cross-sections cannot be oriented arbitrarily,
and corrections of segmentations have to be made slice by slice. Mojo and Dojo
support only two-dimensional fragments and corrections. Note that, at the time
of writing of this dissertation, the link to a beta distribution of Mojo 2.015 is
inactive, and the last commit to the Mojo GitHub repository16 was made on Nov
18 2013, more than 5 years ago. The build instructions17 say only “The libraries
in Mojo2.0\Mojo\Sdk is not included in the repository - ask Seymour for a zip
(download link pending)” — it is thus safe to assume that the development of
Mojo has been discontinued.

NeuTu18 (Zhao et al. 2018) was developed as a tool for proof-reading segmen-
tations in large scale connectomics. It offers split and merge actions to refine
segments and 3D fragments. Segments can be visualized in a 3D viewer with
polygon meshes (only pre-computed; no support for interactive mesh genera-
tion) or as a set of spheres for immediate updates of the 3D visualization when
fragments or segments are modified. NeuTu uses seeded watersheds to split frag-
ments; seeds are added as 2D brush strokes or by ray tracing in the 3D view. While

8https://www.ilastik.org
9https://ukoethe.github.io/vigra

10https://scikit-image.org
11https://opencv.org
12https://scikit-learn.org/stable
13https://www.rhoana.org
14https://cremi.org
15http://people.seas.harvard.edu/~seymourkb/Mojo
16https://github.com/Rhoana/Mojo
17https://github.com/Rhoana/Mojo/blob/b0d79bc4/BUILD.txt
18https://github.com/janelia-flyem/NeuTu

https://www.ilastik.org
https://ukoethe.github.io/vigra
https://scikit-image.org
https://opencv.org
https://scikit-learn.org/stable
https://www.rhoana.org
https://cremi.org
http://people.seas.harvard.edu/~seymourkb/Mojo
https://github.com/Rhoana/Mojo
https://github.com/Rhoana/Mojo/blob/b0d79bc4/BUILD.txt
https://github.com/janelia-flyem/NeuTu
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seed points can be painted with a brush, there is no general painting tool for fine-
grained changes or annotations without existing segmentations. NeuTu is tightly
coupled19 to the DVID (Katz and Stephen M Plaza 2019) data-service and there-
fore does not support non-scalar label types. Basic navigation modes — zoom
to change the field-of-view, translate within or orthogonal to the cross-section —
are supported but cross-sections cannot be oriented arbitrarily. Mipmaps are
only supported for generating 3D visualizations of segments more efficiently but
not for the two-dimensional cross-sectional view. 2D-rendering is thus not as
responsive as it is for viewers that support mipmap-rendering.

BigDataViewer20 (Pietzsch, Saalfeld, et al. 2015) renders two-dimensional
cross-sections of arbitrarily large three-dimensional volumes (and time-series)
at arbitrary orientations. At its core, a multi-resolution CPU renderer selects the
appropriate level in a mipmap pyramid based on the current zoom level and
renders a cross-section through each source converted into ARGB space; these
cross-sections are then combined according to customizable composition rules,
e.g. addition, alpha composition, or others. To further improve performance and
guarantee uninterrupted user experience, BigDataViewer supports non-blocking
rendering, triple buffering, and CPU rendering at multiple screen scales — lower
resolution cross-sections are rendered to update the screen more quickly dur-
ing navigation. Efficient transformation from local coordinates into viewer space
and manipulation of voxels without unnecessary copies of data are made pos-
sible by the use of the highly optimizied generic multi-dimensional image pro-
cessing library ImgLib221 (Pietzsch, Preibisch, et al. 2012) for the Java Virtual
Machine (JVM),22 in particular virtualized pixel access, transparent, virtualized
image extension, interpolation, coordinate transformations, and caching. Big-
DataViewer was designed for visualization of selective plane illumination mi-
crographs (Huisken et al. 2004; Pitrone et al. 2013) and consequently does not
offer any EM annotation or proof-reading functionality; its extensibility as well
as efficient and responsive rendering have inspired visualization and annotation
frameworks for connectomics that I will describe in the following.

Neuroglancer23 uses JavaScript24 and WebGL25 for web browser based visu-
alization of volumetric data with a focus on electron micrographs of nervous
systems. The GPU accelerated renderer was inspired by the CPU rendering mech-
anism of BigDataViewer. Neuroglancer meets many of the requirements outlined
above: GPU rendering through WebGL makes navigation fast and responsive in
multi-scale raw and label data, a 3D viewer renders (pre-computed) meshes of
neurons, orthogonal cross-sections can be arbitrarily oriented, and distribution of
web-browser based software is simple — users only need a (compatible) web-
browser. Neuroglancer is extensible. Certain missing features — merge and split
actions on fragments, for example — could be easily implemented; the lack of

19NeuTu is referred to as a client of DVID in Zhao et al. (2018).
20https://imagej.net/BigDataViewer
21https://imagej.net/ImgLib2
22Any programming language that runs in the JVM can use ImgLib2.
23https://github.com/google/neuroglancer
24https://www.javascript.com
25https://get.webgl.org

https://imagej.net/BigDataViewer
https://imagej.net/ImgLib2
https://github.com/google/neuroglancer
https://www.javascript.com
https://get.webgl.org
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Figure 41: The memory limit of Chrome26 (version 72.0.3626.119) on Arch Linux is
about 2.2GB per browser tab.

multi-dimensional image (or volume) processing frameworks in JavaScript and
limited browser memory (figure 41) and threading support without shared data
through web workers impede client-side computations and implementation of
certain missing features like multi-scale painting or on-the-fly 3D mesh gener-
ation. (Micro-)services would be a viable workaround but would introduce a
layer of complexity and send copies of data across processes.

Knossos27 is aQt528 based tool for visualization of volumetric datawith support
for skeleton tracing, dense annotations, and proof-reading. Three views render
orthogonal 2D slices that are axis-aligned with the data at arbitrary zoom levels.
An optional 2D slice can be rendered at arbitrary orientations in an additional view.
Skeletons and the orthogonal slices are visualized in a 3D view. Dense annotations
are modified with 2D brush strokes that are axis-aligned with the data. Pre-
computed meshes can be loaded from Polygon File Format files for visualization.
Mesh generation on-the-fly is supported on the current development branch but
restricted to data blocks that have already been loaded into memory. Knossos
was initially used to generate the dense CREMI neuron annotations but did not
produce satisfactory results. webKnossos29 (Kevin M Boergens et al. 2017) is a
similar, web-browser based tool for tracing and proof-reading. In addition to the
regular Knossos features, it introduces a novel “flight” mode for more focused
tracing and supports visualization and on-the-fly generation of 3D iso-surface
meshes as an experimental feature.

BigCAT30 is a tool for the fast and efficient annotation of dense neuron anatomy
and synaptic clefts and partners. We created it after previous attempts to gener-
ate the dense CREMI neuron annotations with a Knossos based workflow had
saturated at an unsatisfying level of correctness. BigCAT uses BigDataViewer to
render label data on top of raw data. It can be considered the immediate ancestor
to Paintera and I initially developed many of the features of modern Paintera in
BigCAT, e.g. brush strokes (3D sphere) and flood-fill painting tools. BigCAT was
a targeted solution for the annotation of relatively small data sets (albeit still the
largest amount of publicly available ground truth for 3D-EM connectomics to
date) and as such has a narrow focus on the supported format (HDF5) and is not
designed for extensibility or large datasets.

The features and shortcomings of these tools have inspired the architecture of
Paintera, which I will describe in the following.

27https://knossos.app
28https://www.qt.io
29https://webknossos.org
30https://github.com/saalfeldlab/bigcat

https://knossos.app
https://www.qt.io
https://webknossos.org
https://github.com/saalfeldlab/bigcat


4.1 paintera 91

4.1.2 Architecture & Design

In recent years, I have been using languages that run in the JVM in professional
settings almost exclusively — Java (and JVM based languages) is now the pro-
gramming language that I used professionally more than any other language —
and I have become an expert in the Java multi-dimensional image processing
framework ImgLib2. Considering my professional focus on the JVM and the
review of related software (section 4.1.1), it was an obvious decision to build
Paintera around the BigDataViewer multi-resolution renderer (Pietzsch, Saalfeld,
et al. 2015, Supplementary Note 2) within the Java environment. A beneficial
side-effect is ease of distribution — the JVM adds a layer of abstraction and is its
own platform that is agnostic of the operating system it runs on: code compiled
on one computer will run on any other computer, which is generally not true for
native languages.

The BigDataViewer graphical user interface (GUI) is built on top of the Java
GUI toolkit Swing. I chose to develop Paintera in the most recent Java GUI
framework, JavaFX, because it offers a more modern design, e.g. a scene graph,
event capturing and bubbling phases, and built-in support for 3D rendering.

After experiments had established that including Swing elements like the
core GUI element of BigDataViewer — the ViewerPanel — in a JavaFX GUI is
not very performant, I decided to re-implement the multi-resolution renderer
for JavaFX based GUI elements that would be accessible for rendering through
a JavaFX port of the ViewerPanel — the ViewerPanelFX. The major difference
between single and multiple cross-sections is how data sources are transformed
affinely from local voxel space into the viewer plane. Pietzsch, Saalfeld, et al.
(2015, Supplementary Note 2) define two transforms for that purpose:

• 𝑇𝑖 maps the local voxel coordinates of the 𝑖th source into a global coordinate
space — an arbitrarily defined isotropic 3𝐷 coordinate system. This can be
used to, for example, consider the resolution of a source or a relative offset
between sources.

• 𝑉 maps from global coordinate space to the viewer space.31 This transform
also accounts for changes of the size of the viewer window — when resizing
the viewer window, the field-of-view should not change.

Each source is then mapped into viewer space by concatenation of these trans-
forms 𝑉𝑇𝑖. It is clear that, in order to support multiple synchronized cross-
sectional views, 𝑉 would need to be decomposed into a shared component and
components that are specific to each individual view:

• 𝐺 is the shared or global component. Changes to the orientation, position,
or field-of-view of the set of cross-sections should modify this transform
accordingly.

31Note that Pietzsch, Saalfeld, et al. (2015) use 𝑇𝑉𝑊 for this transform. I changed the name to
avoid ambiguity with the local-to-global transform of each source 𝑇𝑖, in particular when using
multiple cross-sectional views.
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Grid Cell Contents
top left 𝑋𝑌 cross-sectional view
top right 𝑍𝑌 cross-sectional view
bottom left 𝑋𝑍 cross-sectional view
bottom right 3D scene

Table 10: Alignment of cross-sectional views and 3D scene in a two-by-two grid.

• 𝑂𝑖 defines the orientation of a cross-section and should be considered con-
stant. For orthogonal cross-sections, there are three possible configurations
(the translation components of the affine transformations are zero and there-
fore omitted):

𝑂𝑋𝑌 =
⎡⎢⎢
⎣

+1 0 0
0 +1 0
0 0 +1

⎤⎥⎥
⎦

(77)

𝑂𝑍𝑌 =
⎡⎢⎢
⎣

0 0 +1
0 +1 0

−1 0 0

⎤⎥⎥
⎦

(78)

𝑂𝑋𝑍 =
⎡⎢⎢
⎣

+1 0 0
0 0 +1
0 −1 0

⎤⎥⎥
⎦

(79)

The indices 𝑋𝑌, 𝑍𝑌, and 𝑋𝑍 indicate the orientation of each cross-section in
world space if the global transform 𝐺 is diagonal, i.e. it does not have any
rotation component.

• 𝑆𝑖 accounts for changes of the size of the viewer window.

The transformation 𝑉𝑖 of each individual viewer 𝑖 ∈ {𝑋𝑌, 𝑍𝑌, 𝑋𝑍} is the concate-
nation 𝑉𝑖 = 𝑆𝑖𝑂𝑖𝐺. All 𝑉𝑖 need to be updated whenever 𝐺 changes. User inputs
to change the orientation or field-of-view of the cross-sections changes only 𝐺,
while 𝑆𝑖 and 𝑂𝑖 remain unaffected. Overlays over the cross-sections are rendered
independently but are aware of the viewer transform 𝑉𝑖: Cross-hairs indicate the
intersection point of the cross-sections and higlight the currently active viewer —
if any — through color-coding, wire-frame representations visualize orientation
of sources relative to the cross-section, and a circle represents the brush size when
painting. The viewers are arranged in a two-by-two grid (GridPane32) such that
neighboring views share a coordinate axis (table 10). The remaining grid cell
holds a 3D scene for visualization of currently selected segments (figure 42).
To help orientation, all visible 2D cross-sections can be embedded into the 3D
scene. The individual cells are resizable and modes to display only the 𝑋𝑌 cross-
sectional view can be toggled (table 11): alone (figure 42(d)) or alongside the 3D
scene (figure 42(a)). A status bar at the bottom bar holds information such as
the current location of the mouse cursor (in viewer space and global space) and
the value under the mouse cursor of the currently selected source. A preferences

32javafx.scene.layout.GridPane
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(a) Paintera shows a maximized 2D cross-section at arbitrary orientation and the 3D view with the
status bar at the bottom and the preference pane on the right.

(b) All 2D cross-sections (axis
aligned) and the 3D view are
visible.

(c) All 2D cross-sections at ar-
bitrary orientation and the 3D
view are visible.

(d) Maximized view of the sin-
gle 𝑋𝑌 cross-section at arbi-
trary orientation.

Figure 42: Layout of the cross-sectional views and 3D scene. Each image captures the
entire Paintera window without mouse pointer or operating system specific window
titlebar and borders. The sources are the datasets volumes/raw and volumes/labels

/neuron_ids of the padded sample B of the CREMI challenge.33 Currently selected
segments are highlighted in cross-sections and rendered in the 3D scene. Meshes are
generated on the fly and memory-cached.

pane on the right contains a list of all sources with source-specific settings and
configuration of Paintera (see section 4.1.2.1). The visibility of both the status
bar and preferences pane can be toggled (figure 42). Sources can be added as
command-line parameters or via the opener dialog. The single, currently active
source can have additional event handlers for user input on top of the navigation
and controls that are always active (tables 11 to 13).

4.1.2.1 Preference Pane

The preference pane consists of two collapsible main sections: The sources section
lists all sources with individual settings per source. The settings depend on the
type of source, but all sources expose common configurations. The settings section
exposes general settings for Paintera. In addition, a save button stores the current
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state of a Paintera project in the project directory. The prefernce pane is toggled
by pressing the P key and can be resized by dragging its left border.

Expanding the sources section reveals a list of collapsible panes for each source.
A check-box to the left of the source name toggles visibility; the cross-mark to the
right removes the source from Paintera after confirmation by the user. Sources are
composed in the order — top to bottom — in which they are listed. The order can
be re-arranged by dragging and dropping individual sources. This is particularly
useful if sources were loaded in the wrong order, e.g. raw data was loaded after
label data. While each source type provides a set of its own specialized settings,
the following settings are generally available:

axis order re-maps the spatial axes of the source onto the spatial axes of the
arbitrary global coordinate system. By default, trivial correspondence is
assumed, i.e. the transformation from local source coordinates into the
global coordinate system has only scaling and translational components.

argb composite changes the composition mode (section 4.1.2.2) for this source.

converter exposes settings for conversion from the source data type into ARGB
color space such as contrast, alpha value, or false color. These are specific
for each source type (section 4.1.5).

Some source types may offer additional configuration beyond these standard set-
tings, e.g. 3D polygon mesh settings for label sources. The general settings change
the look-and-feel, help with navigation, or improve the rendering performance:

navigation Displays and sets the intersection point of cross-sections as indicated
by the crosshairs. The check box to the right of “Rotations” toggles rotation
navigations. Rotation speeds for key navigation can be set in “Key Rotation
Speeds”.

crosshair The check box toggles crosshair visibility. Color highlights for on/off
focus views can be adjusted through dialogs.

ortho-views Toggle visibility of individual or all cross-sections in 3D scene.

3d viewer Toggle the 3D scene. If 3D representations are irrelevant, this can boost
overall performance.

screen scales In order to update the screen as rapidly as possible, cross-sections
are rendered atmultiple scales. The screen scales are a strictlymonotonously
decreasing sequence 𝑠𝑛 of numbers between zero (exclusive) and one (in-
clusive): 𝑠𝑛 ∈ (0, 1] ∧ 𝑠𝑛+1 < 𝑠𝑛. These scales can be set to accomodate to
different hardware: The number of pixels to be CPU rendered and com-
posed is proportional to the square of a screen scale. For HiDPI monitors,
for example, I typically set the maximum screen scale to 0.5; this means that
only a quarter of the pixels needs to be rendered compared to a screen scale
of 1.

memory Set the cache size that is used for data loading.
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(a) Raw data only (b) Copy (c) Alpha add (d) Alpha YCbCr

Figure 43: Composition modes of label data over raw data (a): Copy overwrites the raw
data (b), alpha addition oversaturates easily (c), alpha addition in YCbCr space yields
the best contrast for label data over raw data (d). Selected ids are highlighted with a
higher alpha value.

4.1.2.2 Composition Modes

As laid out by Pietzsch, Saalfeld, et al. (2015, Supplementary Note 2), sources
can have arbitrary data types that need to be rendered into ARGB space before
composition. The converters are source-specific and are explained in detail in
section 4.1.5. Visible sources — as indicated by the check box next to their names
in the preferences pane — are rendered and composed in the order listed in the
preference pane. Paintera offers the following composition types that can be
selected in the ARGB Composite section of the settings for each individual source
(note that compositions are defined as pixel-wise operations and alpha values
may vary across pixels depending on the converter):

copy overwrites the ARGB value disregarding the current value, if any. This is
only meaningful for the first source. Raw data is typically added as the first
source and defaults to this composition mode.

alpha ycbcr combines theY-channel of current valuewith theCb andCr channels
of the ARGB-mapped source, and mixes the result into the current value
weighted by the current source’s alpha value. This is the default composition
mode for label data.

alpha add multiplies the ARGB-mapped source by its alpha value and adds it
to the current value. This is useful for composing multi-color raw data, e.g.
boundary or affinity predictions, onto raw data.

The composition modes are visualized in figure 43 for raw and label sources.

4.1.3 Paintera Project

Paintera can persist its state into a Paintera project (an N5 container) for re-use
in subsequent sessions. The Paintera state is serialized into a Json object that is
stored in the key "paintera" in the attributes of the root group of the Paintera
project. The structure of the serialized state (figure 44) resembles the layout of the
preference pane (section 4.1.2.1). The attributes file is human-readable and can be
modified, e.g. to add sources that cannot be added yet through the Paintera GUI.
The location of the container can be specified at start-up time, either via command
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line argument, or via GUI dialog if no argument is specified.34 (section 4.1.4) Each
source knows the location of the project container and can use it to store temporary
data, e.g. canvases for painting (section 4.1.5.4). Additionally, a lock file located
at `.paintera/lock' relative to the Paintera project container is used to prevent
multiple Paintera instances from accessing the same project simultaneously.

4.1.4 Installation & Synopsis

Paintera depends on JDK 835 and Apache Maven.36 The open source alternative
OpenJDK37, requires manual installation of JavaFX. OpenJDK, JavaFX, andMaven
can be installed through the package managers of many Linux distributions, for
example:

1 # Arch Linux

2 pacman -S jdk8-openjdk

3 pacman -S java-openfx

4 pacman -S maven

5 # Ubuntu

6 apt install default-jre default-jdk

7 apt install maven

8 apt install openjfx

9 # JavaFX installation on Ubuntu 18.04

10 apt install \

11 openjfx=8u161-b12-1ubuntu2 \

12 libopenjfx-java=8u161-b12-1ubuntu2 \

13 libopenjfx-jni=8u161-b12-1ubuntu2

14 apt-mark hold openjfx libopenjfx-java libopenjfx-jni

OnUbuntu 18.10 and newer, the bionic repositories are required for the installation
of JavaFX.38

At the time of writing this dissertation, the ImgLib2-cache dependency used
for disk-caching is incompatible with more recent versions of Java than Java 8
due to internal changes to garbage collection. Once all upstream dependencies
are compatible with more recent Java versions, Paintera will be updated to use
a more recent Java version. In particular, JavaFX will be available as a maven
dependency for more recent Java versions and will not be required to be installed
in advance. The easiest way to install Paintera is through conda:39

1 conda install -c conda-forge -c hanslovsky paintera

It is important to note that OpenJDK available through the conda-forge channel
on conda does not provide JavaFX and thus should not be installed into the
same conda environment as paintera. The paintera conda package provides a
paintera executable with the following synopsis:

1 paintera [jgo/jvm arguments --] [Paintera options] [PROJECT]

34Currently, the project directory of a running Paintera instance cannot be changed but there
are plans to make this possible in the future.

35https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html
36https://maven.apache.org/
37https://openjdk.java.net/install
38https://bugs.launchpad.net/ubuntu/+source/openjfx/+bug/1799946
39https://conda.io

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/
https://openjdk.java.net/install
https://bugs.launchpad.net/ubuntu/+source/openjfx/+bug/1799946
https://conda.io
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1 {

2 "n5": "2.0.2",

3 "paintera": {

4 "sourceInfo": {

5 "sources": [

6 {

7 "type": "fully.quallified.class.Name",

8 "state": {}

9 }

10 ],

11 "currentSourceIndex": 0,

12 "numSources": 1

13 },

14 "globalTransform": [

15 1.0, 0.0, 0.0, 0.0,

16 0.0, 1.0, 0.0, 0.0,

17 0.0, 0.0, 1.0, 0.0

18 ],

19 "windowProperties": {"width": 1920, "height": 2062},

20 "gridConstraints": {

21 "previousFirstRowHeight": 50.0,

22 "previousFirstColumnWidth": 50.0,

23 "isFullScreen": false,

24 "firstRowHeight": 50.0,

25 "firstColumnWidth": 50.0

26 },

27 "crosshairConfig": {

28 "onFocusColor": "#FF0088FF",

29 "offFocusColor": "#FFFFFFFF",

30 "isVisible": false

31 },

32 "orthoSliceConfig": {

33 "enabled": true,

34 "showTopLeft": true,

35 "showTopRight": true,

36 "showBottomLeft": true,

37 "delayInNanoSeconds": 200

38 },

39 "navigationConfig": {

40 "allowRotations": true,

41 "buttonRotationSpeeds": {

42 "slow": 0.5,

43 "regular": 5.0,

44 "fast": 45.0

45 }

46 },

47 "viewer3DConfig": {"areMeshesEnabled": true},

48 "screenScalesConfig": {"scales": [1.0, 0.5, 0.25]}

49 }

50 }

Figure 44: Example Paintera project with a single source. Note that the source is not a
valid source but a Json schema: the "state" Json object is deserialized as an instance of
class "type". See section 4.1.5 for real examples of serialized states.
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1 git clone https://github.com/saalfeldlab/paintera.git

2 cd paintera

3 mvn clean install

4 jgo \

5 [jgo arguments] \

6 -r imagej.public=https://maven.imagej.net/content/groups/public \

7 org.janelia.saalfeldlab:paintera:<VERSION>+org.slf4j:slf4j-simple:1.7.25

Figure 45: Install and run the the latest development version of Paintera. The example
expects git to be installed on the system. If that is not possible, the source code can be
downloaded as zip archive fromGitHub. See section 4.4 formore details (including instal-
lation) for jgo. Replace <VERSION> with the version you installed, e.g. 0.11.1-SNAPSHOT.

For a list of available Paintera options, invoke paintera with the --help flag. See
section 4.4.1 for available jgo arguments and java -help for jvm arguments. By
default, Paintera uses half the system’s memory as maximum Java heap size. The
-Xmx JVM option overrides that value. The latest development version is avail-
able on the master branch of the official Paintera GitHub repository40. Building
and running the current development requires only a few simple commands (fig-
ure 45).

4.1.5 Supported Data

While Paintera is extensible with custom data types, the current focus is proof-
reading 3D-EM connectomics and thus, by default, single- and multi-channel
raw and label data are supported through the N5-API. Data can be added via the
UI (section 4.1.5.1) or by modifiying the Paintera project. Additional specialized
source types are available for the visualization of synaptic clefts from synaptic
cleft predictions (Heinrich, Funke, et al. 2018). Currently, these source types
can not be added in the UI. Instead, they have to be added by manipulation of
the Paintera project. While performance is optimal when using Paintera-specific
datasets stored as filesystem-based multi-resolution N5, HDF5 and Google Cloud
are supported as well. By convention, resolution and an offset in an arbitrary
global coordinate system of a data set is specified with the "resolution" and
"offset" attributes.

Unsupported data types or data backends can be made available through
Paintera extensions (section 4.1.7).

4.1.5.1 Open Dataset Context Menu

Datasets can be added through a context menu at the current location of the
mouse cursor (table 11). The context menu lists the supported data backends and
can be extended with custom entries to load arbitrary kinds of data (section 4.1.7).
For the supported-by-default “N5”, “HDF5”, and “Google Cloud” menu entries,
a dialog prompts for the selection of container and dataset as well as meta set-
tings (figure 46). After confirmation of the selection with the “OK” button, a data
source is appended to Paintera. The newly added source is rendered on top of the

40https://github.com/saalfeldlab/paintera

https://github.com/saalfeldlab/paintera
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(a) N5 Filesystem (b) N5 HDF5 (c) N5 Google Cloud

Figure 46: Dataset dialogs for supported N5 backends. Thanks to the shared N5-API,
the dialogs differ mainly in the container prompt: N5 filesystem (a) and N5 HDF5 (b)
dialogs support mnemonics that are triggered with the ALT key and find containers via a
file browser or from recently used containers or favorite locations defined in the paintera
config at ~/.config/paintera.yml, theGoogle Cloud backend prompts for requiredmeta
data and authentication when clicking the “Browse” button (c). Once a valid container
is selected, available data sets are discovered automatically — Paintera data sets, regular
datasets and legacy multi-scale groups are considered. Once discovery has finished,
datasets can be selected via the “Dataset” drop-down menu with fuzzy-matching. The
name field is then auto-populated as the last segment of the dataset name. The “Type”
drop-down specifies the data type (raw or label). Resolution and offset are read from the
dataset, if available, and can be modified as needed. For raw data, the contrast can be
specified with the intensity range that is initialized from the dataset attributes or with
meaningful defaults.

already existing sources using a reasonable default composition mode (figure 43).

4.1.5.2 Paintera Datasets

In order to use Paintera to its full potential, the conversion of single-scale datasets
into the preferred Paintera dataset format is recommended. At its core, the
Paintera dataset is a group in an N5 file system container with a “painteraData”
attribute containing a Json object that specifies the data type as string at the “type”
key. Currently, “raw” (section 4.1.5.3), “label” (section 4.1.5.3), and “channel”
are possible options.41 All paintera dataset groups must contain a multi-scale
subgroup “data” with boolean attribute “multiScale” set to “true” and optional
floating-point array attributes “resolution” and “offset” that specify how to map
local coordinates into a global coordinate space as well as data type specific at-
tributes. The multi-scale “data” group contains datasets “s0” to “sN” for the
levels of the mipmap pyramid, where “s0” is the highest resolution data set.
Each dataset must have the floating point array attribute “downsamplingFac-
tors” relative to the “resolution” attribute of the “data” group: If not specified,
“downsamplingFactors” will default to identity. Besides the “data” group, any ad-

41At the moment, the open-dataset dialog for N5 file system containers (section 4.1.5.1) only
tests for presence of the “painteraData” attribute to determine if a group is a Paintera dataset but
ignores the “type” for pre-selecting the data type.



100 software

(a) 𝑡𝑅 = 𝑡𝐺 = 𝑡𝐵 = 255
𝑚 = 0
𝑀 = 255

(b) 𝑡𝑅 = 𝑡𝐺 = 𝑡𝐵 = 255
𝑚 = 255
𝑀 = 0

(c) 𝑡𝑅 = 𝑡𝐺 = 255
𝑡𝐵 = 179
𝑚 = 100
𝑀 = 180

Figure 47: Raw data with various converter settings: default color and contrast range
for 8-bit unsigned integer data (a), inverted (b), and with different color and increased
contrast (c). Full opacity (𝑐𝐴 = 255) is used for all settings.

ditional subgroup, dataset or plain directory can be added to the Paintera dataset
group as needed by specific data types. This is used, for example, to maintain
an index for efficient lookup of all blocks (chunks) that contain a label for each
label (section 4.1.5.4). While Paintera datasets are preferred, loading data as plain
N5 datasets or multi-scale groups is supported as well. Custom data types that
are added as extensions may or may not follow this convention. It is the exten-
sion’s responsibility to make sure that data is formatted and added appropriately.

4.1.5.3 Raw Data

Raw data generally refers to three-dimensional micrograph volumes but, practic-
tally, any scalar-valued, non-categorical data like boundary predictions or image
features can be considered raw data and is treated as such in Paintera. Raw data
can be added through the open dataset context menu (section 4.1.5.1) by selecting
the “RAW” type (figure 46). Voxel values 𝑣 are mapped into 32-bit ARGB color 𝑐
by scaling each color channel of a target color 𝑡 by the voxel value relative to a
contrast range [𝑚, 𝑀]:

𝑐𝑖 = min {255,max {0, ⌊𝑡𝑖 ×
𝑣 − 𝑚
𝑀 − 𝑚⌉}} ∀𝑖 ∈ {𝑅, 𝐺, 𝐵}, (80)

where ⌊𝑥⌉ denotes rounding to the nearest integer. Setting 𝑀 < 𝑚 inverts the
color mapping, i.e. black areas appear as white and vice versa. Figure 47 shows
the effect for different choices of target color 𝑡 and contrast range [𝑚, 𝑀]. The
opacity or alpha component 𝑐𝐴 is a separate parameter that is used for alpha color
composition (section 4.1.2.2) of raw data, e.g. for overlaying boundary predictions.
The conversion parameters can be adjusted in the “Converter” pane (figure 48) of
the settings for a raw source inside the preference pane (section 4.1.2.1). Pressing
the I-key toggles between tri-linear and nearest-neighbor interpolation.
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Figure 48: Converter pane for raw data with color dialog for 𝑡, text fields to set contrast
range [𝑚, 𝑀], and a slider for opacity 𝑐𝐴. The selected opacity 𝑜 ∈ [0, 1] ⊂ ℝ is mapped
linearly into [0, 255] ⊂ ℤ by multipliaction and rounding: ⌊255 × 𝑜⌉

4.1.5.4 Label Data

In image instance segmentation in general and neuron reconstruction in particular,
individual voxels are grouped into objects with label ids, unique integer-valued
identifiers. Typically, label ids are positive integers ℤ+ with an additional zero-
valued label indicating background. 64-bit unsigned integer types are preferred
over smaller integer representations to guarantee a sufficient number of unique
label ids: 32-bit unsigned integer types can represent 232 − 1 ≈ 4.3 × 109 non-
background label ids; for 64-bit unsigned integer, that number is 10 orders of
magnitude larger with 264 − 1 ≈ 1.8 × 1019.

For visiual distinction of individual fragments, label ids are mapped into
ARGB color space with a lookup table that cannot be pre-calculated because
memory requirements may exceed system limitations or the number of label ids
may be unknown a-priori or variable. Consequently, it is impossible to guarantee
uniform distribution of the label ids across RGB space. Calculating pseudrandom
for a virtual pseudorandom number stream comes at a steep computational cost
depending on the label id. Instead, Paintera distributes label ids around the fully-
saturated color circle in steps of the golden ratio Φ = 2(1 + √5)−1 (figure 49).
Different sets of label ids can have different distributions onto the color wheel, e.g.
clustered within a small subset of the color wheel (figure 49(b)), and an integral
scaling factor 𝑠 is applied to the label id to allow for modification of the color
scheme if objects are not distinct enough in ARGB color space. The scaling factor
can be incremented by one, decremented by one, or set specifically (table 13). For
efficiency, instead of picking a hue value in HSV space and subsequent conversion
into RGB space, colors are interpolated from six equidistant colors on the color
wheel (HTML color codes in parantheses): red (#FF0000), yellow (#FFFF00),
green (#00ff00), cyan (#00ffff), blue (#0000ff), and magenta (#ff00ff). the
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(b) 𝑠 = 1
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(c) 𝑠 = 7

Figure 49: Parameterized golden angle color assignment for label ids: The six base
colors are enscribed into a color wheel. A choice of 𝑠 = 1 for the seed parameter nicely
separates label ids {1, 2, 3, 4, 5, 6} on the color wheel(a) but label ids {3, 14, 16, 27, 77, 87}
are clustered within only a small subset of the color circle(b). A different choice for the
seed parameter 𝑠 = 7 achieves better separation for the latter set of label ids(c).

color 𝑐 = (𝑟, 𝑔, 𝑏) that is assigned to a label 𝑗 is then an interpolation of consecutive
rows of the color matrix 𝑐:

𝑐 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

255 0 0
255 255 0
0 255 0
0 255 255
0 0 255

255 0 255
255 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(81)

𝑝 = 6 × (𝑠 × 𝑗 × 𝜙 − ⌊𝑠 × 𝑗 × 𝜙⌋) (82)
𝑤 = ⌈𝑝⌉ − 𝑝 (83)
𝑐𝑖 = ⌊𝑤𝑐⌈𝑝⌉,𝑖 + (1 − 𝑤)𝑐⌈𝑝⌉+1,𝑖⌉∀𝑖 ∈ {1, 2, 3}, (84)

where ⌈𝑥⌉ denotes the ceiling function that maps a real number 𝑥 to the smallest
integer greater than or equal to 𝑥. The last row of the color matrix is a duplicate
of the first row to avoid range checks before interpolation. A fragment can be
colored either with its own label id or with the id of the segment it is assigned to.
Individual fragments can be de-/selected via left click onto the 2D cross-sectional
views. Right click toggles selection of a fragment without deselecting other
selected fragments. Selected fragments are highlighted with a higher opacity
and all fragments that are in the same segment are highlighted with an opacity
between explicitly selected fragments and regular opacity. Regular, selected
fragment, and selected segment opacities are exposed as sliders in the source-
specific settings inside the preference pane. The segment id of the last selected
fragment can be locked/unlocked with the l to indicate (temporary) completion
for specific neurons. All fragments of a locked segment are rendered with zero
opacity to help proof-readers focus on unfinished segments.

As outlined in section 3.1, automatic neuron reconstruction usually is a multi-
step process: machine learning algorithms predict boundaries within the data,
voxels are grouped into fragments, and, finally, fragments are assembled into seg-
ments. The proof-readinger experience thus benefits from tools that are aware of
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(a) 4×4×40nm3 (b) 8× 8×40nm3 (c) 16× 16×40nm3

(d) 32× 32×40nm3 (e) 64× 64× 80nm3 (f) 128× 128× 160 nm3

Figure 50: Triangle meshes for neuron 568025 of CREMI sample B at multiple mipmap
levels 0 ≤ 𝑙 ≤ 5, ordered from highest (a) to lowest (f) resolution, with voxel resolutions
starting at a nominal resolution of 4 × 4×40nm3. The anisotropy of the data is apparent
in the highest resolution mipmap level (a) and the mesh appears to be a composed of
discs. After multiple levels of anisotropic down-sampling, a near-isotropic resolution is
reached in (d). The right choice for the mesh representation is usually a compromoise
between computational efficiency and the desired level of detail.

and exploit this structure. In the following, I will explain how Paintera can be uti-
lized to create or modify existing fragment-segment agglomerations represented
as assignments or lookup tables and to correct fragments or create segmentations
from scratch with various painting operations.

3d-representation Segments are represented in the 3Dviewer as surface-rendered
triangle meshes. In order to allow for interactive updates of meshes when seg-
ments are modified by merge/detach actions or painting, meshes cannot be pre-
computed. Instead, meshes are generated on request with the marching cubes
algorithm (Lorensen and Cline 1987). Several measures are implemented to en-
sure fast and responsive generation of triangle meshes:

1. Only relevant blocks that contain at least one voxel of the requested segment
are processed. To that end, Paintera maintains an index for efficient lookup
of all blocks (chunks) that contain a label for each label.

2. Meshes can be generated at any scale of the mipmap pyramid. This is in
particular useful for larger datasets (less data to process and smaller mesh
size) and for anisotropic data (generate meshes at isotropic resolution).

3. A memory cache avoids unnecessary repeated generation of meshes.
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(a) 3D representation of two fragments with
notable boundary.

(b) 3D representation of segment after merging
two fragments.

Figure 51: Automatic update of meshes after merge: Two neighboring fragments are
selected and displayed in 3D (a). The boundary surface between the two fragments is
notable as indicated by the white ellipsoid overlay. After merging the two fragments into
a single segment, the mesh is updated automatically (b). The formerly visible boundary
between the fragments in the 3D representation has vanished as the mesh is generated
for the complete segment rathern than a combination of individual fragment meshes.

The index of blocks that contain a label (1) is provided in the “label-to-block-
mapping” directory of a Paintera label dataset. Whilemesh support is available for
other label datasets, mesh generation without this index can be slow because the
entire dataset has to be processed and multi-scale data may not be available. Con-
version into Paintera datasets is therefore highly recommended (section 4.1.5.5).
Mesh settings like the mipmap level (“Scale”) or smoothing settings (“Lambda”,
“Iterations”) and a list of current meshes are exposed in the “Meshes” pane
of a label source within the preference pane (section 4.1.2.1). Meshes use the
global mesh settings by default but can be set to use specific settings. When-
ever the fragment-segment assignment is modified through merge or detach
actions, meshes of affected segments are updated automatically. After painting,
in contrast, the mesh update is triggered manually by the user (R or the “Refresh
Meshes” button in the mesh settings) instead.

fragment-segment agglomeration Agglomeration or assignment of fragments
into segments is a function Α that maps from fragment label id space 𝐹 ⊆ ℤ+ into
segment label id space 𝑆 ⊆ ℤ+:

Α∶ 𝐹 ↦ 𝑆 (85)
∀𝑠 ∈ 𝑆 ∶ 𝑠 = Α(𝑠) ⟺ ∄ ̂𝑠 ∈ 𝑆 ∶ Α( ̂𝑠) = Α(𝑠)

In particular, this means that, when two single-fragment segments are merged, a
new unique label id 𝑙∗ ∈ ℤ+ ∖ (𝐹 ∪ 𝑆) must be created. In practice, it is easy to
track the maximum label. A new unique label is the smallest positive integer that
is larger than the maximum label:

𝑙∗ = 1 + max(𝐹 ∪ 𝑆) (86)
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While there might be unused labels

𝑈 = {𝑢 ∈ ℤ+ ∖ (𝐹 ∪ 𝑆) ∶ min{𝐹 ∪ 𝑆} < 𝑢 < max{𝐹 ∪ 𝑆}}, (87)

and it might appear wasteful to disregard those, it is unlikely that all possible will
be used up in a realistic scenario: Exhausting all available label ids provided by an
64-bit unsigned integer type would take more than 500 years at an unrealistically
fast request rate of one unique label id per nanosecond:

𝑡 =
264

1/ns =
264

109 s ≈ 585yr (88)

Multiple fragments can be assigned to the same segment, and Α is thus not
invertible. It is still useful to define Ᾱ−1 mapping from 𝑆 to the subspace 𝐹𝑠 ⊆ 𝐹
of all fragments contained in a segment:

Ᾱ−1 ∶ 𝑆 ↦ {𝐹𝑠 ⊆ 𝐹 ∶ 𝑠 ∈ 𝑆} (89)
⋃
𝑠∈𝑆

𝐹𝑠 = 𝐹

𝐹𝑗 ∩ 𝐹𝑘 = ∅∀𝑗 ≠ 𝑘

The fragment-segment mapping Α is implemented as a lookup table in Paintera.
It is initialized from the “fragment-segment-assignment” dataset inside the root
group of the source if the data is provided in Paintera format, or identity Α(𝑓 ) =
𝑓 ∀𝑓 ∈ 𝐹 otherwise. The following assignment actions are applied on top of the
initial lookup to create an updated lookup table Α∗:

merge actions combine two segments as the union of all contained fragments.
The segments are identified by the currently selected fragment — the last
selection in case of multiple selections — and a second fragment specified
with shift left click:

𝑓1, 𝑓2 ∈ 𝐹 ∶ Α(𝑓1) ≠ Α(𝑓2) (90)
𝑠𝑖 = Α(𝑓𝑖)

Α∗(𝑓 ∈ 𝐹𝑠1
) = Α∗(𝑓 ∈ 𝐹𝑠2

) =

⎧{{
⎨{{⎩

Α(𝑓1) if Α(𝑓1) ≠ 𝑓1
Α(𝑓2) if Α(𝑓2) ≠ 𝑓2
1 + max{𝐹 ∪ 𝑆} otherwise.

detach or split actions remove individual fragments from a segment. shift

right click identifies the fragment 𝑓𝑟 ∈ 𝐹 to be removed from the segment
containing the currently selected fragment 𝑓𝑠 ∈ 𝐹 ∶ Α(𝑓𝑠) = Α(𝑓𝑟) ∧ 𝑓𝑠 ≠ 𝑓𝑟:

Α∗(𝑓𝑟) = 𝑓𝑟 (91)

Α∗(𝑓𝑠) =
⎧{
⎨{⎩

𝑓𝑠 if |𝐹Α(𝑓𝑠)| = 2
Α(𝑓2) otherwise.

Note that the detach action is not the inverse of a merge action: If two segments
𝑗 ≠ 𝑘 ∶ |𝐹𝑗| > 1 are merged into 𝐹𝑗 ∪ 𝐹𝑘 by representative fragments 𝑓𝑗 ∈ 𝐹𝑗 and
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(a) (b) (c)

Figure 52: The word “Paintera” is painted into a cross-section of an empty label dataset
over raw data (a). The meshes are available after explicitly re-freshing the mesh cache (b).
Disabling the ortho-slices in the 3D view demonstrates that an actual 3D representation
of the painted labels is created and rendered (c).

𝑓𝑘 ∈ 𝐹𝑘 and, subsequently, fragment 𝑓𝑗 is detached from 𝐹𝑗 ∪ 𝐹𝑘, then the resulting
segments {𝑓𝑗} and 𝐹𝑗 ∪ 𝐹𝑘 ∖ 𝑓𝑗 are not equal to 𝐹𝑗 and 𝐹𝑘:

{{𝑓𝑗}, 𝐹𝑗 ∪ 𝐹𝑘 ∖ 𝑓𝑗} ≠ {𝐹𝑗, 𝐹𝑘} (92)

This becomes obvious as

𝑓𝑗 ∈ 𝐹𝑗, (93)

and thus, by definition,

𝑓𝑗 ∉ 𝐹𝑘 ⟹ {𝑓𝑗} ≠ 𝐹𝑘. (94)

Furthermore, {𝑓𝑗} and 𝐹𝑗 are not equivalent — and thus not equal — by definition:

|𝐹𝑗| ≠ 1 = |{𝑓𝑗}| ⟹ 𝐹𝑗 ≠ {𝑓𝑗} (95)

Unintentional incorrect merges can result in laborious efforts to reconstruct the
initial state. For that reason, the history all actions is tracked and individual actions
can be undone or redone through the “Assignments” of the specific label source
within the preference pane (section 4.1.2.1). The action history is persisted into the
Paintera project and available across multiple sessions. When the data is provided
as a Paintera data set, the current fragment-segment lookup table with all actions
can be committed into the “fragment-segment-assignment” dataset in order to
make the updated lookup table available outside the current Paintera session:
Check the fragment-segment assignments box in the commit-dialog (table 13).
The action history is cleared after persisting and previous actions cannot be
undone anymore.

painting While merging or detaching fragments is a powerful tool, in many
cases that is not enough: In order to resolve undersegmentation in fragments or to
create ground truth data from scratch, Paintera offers multiple tools for the direct
manipulation of label data voxel values or — more intuitively — paint operations:
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2d brush strokes are painted into label data at the currently displayed mipmap
level and at the arbitrary orientation of the 2D cross-sectionval view. The
paint brushmode is activewhile the space bar is down and a circular overlay
indicates the brush size that can be adjusted with the mouse-wheel. Various
mouse clicks or drags trigger different actions:

• Left click or drag paints with the currently selected label id

• Right click or drag paints transparent, i.e. the underlying data is un-
covered.

• shift Right click or drag paints with the background label.

While paint brush strokes are inherently two-dimensional, it is possible to
add depth or thickness to the paint brush with shift-space scroll.

flood-filling overwrites the voxel values of constant regions with a new label
id and is always applied at the highest resolution mipmap level. This is
particular useful for splitting fragments: First, find an orientation of the 2D
cross-sectional view that separates the fragment as desired. Then, apply
a 2D floodfill (F-left click) with a new id (N) within this cross-section of
the fragment of interest to split the fragment. Finally, apply a 3D flood-fill
(shift-F-left click) to one side of the split fragment to ensure that one of
the fragment parts is assigned a different id than the original fragment id.

Voxel manipulations are not applied to the underlying data (background) right
away. Instead, two layers of shorter-lived layers are overlayed: a disk-cached
multi-scale canvas with one scalar label volume per backgorund mipmap level
contains a mipmap pyramid of all paint operations, and a binary mask to track
the current paint operation at a specific level in the background mipmap pyramid.
At any time, only one mask can be associated with a label source. Any paint
operation requests a new mask and subsequent paint operations have to wait
until completion of the current paint operation and the current mask is discarded.
Once a paint operation is completed, the canvas at the appropriate mipmap level
is overwritten with the associated label id as indicated by the mask. The changes
are propagated to all mipmap levels of the canvas with up-sampling or down-
sampling as appropriate and an in-memory label-block lookup keeps track of
additional blocks that contain a specific label id. Finally, the current mask is
discarded and new paint operations can be triggered. The canvas is considered
a temporary volume and is not persisted between individual Paintera sessions.
Unless committed into the background (table 13), painted data is lost when
closing a Paintera session. While there is no undo operation for painting, it is
possible to clear the entire canvas in the “Canvas” pane of a label source within the
preference pane (section 4.1.2.1). This is a rather drastic measure and — in order
to minimize potential loss of work — commiting the canvas into the background
frequently is highly recommended.

label multi-sets In contrast to raw data, there is no obvious way to downsample
label data by summarizing multiple voxels for the creation of mipmap pyramids.
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(a)WTAdownsampled data; el-
lipses highlight discontinuities.

(b) Label multisets (c) Multiset mesh (lines, ma-
genta) over solid WTA mesh
(cyan).

Figure 53: Comparison of 3D polygon meshes generated for id 568025 of CREMI sam-
ple B at a moderate scale level of a mipmap pyramid generated with winner-takes-all
downsampling (a) or with label multisets (b). While connectivity is preserved in the
multiset mesh, the object is divided into multiple connected components for winner-
takes-all downsampling. Moreover, the winner-takes-all meshes are subject to shrinking,
which becomes apparent when rendering the multiset mesh on top (c). The resolution at
the selected mipmap level is 64× 64× 80nm3.

Typically, a winner-takes-all (WTA) scheme is employed: The downsampled voxel
is the most frequent label within a small window. Winner-takes-all downsam-
pling deletes thin or small objects. This is in particular apparent when generating
3D meshes from low-resolution winner-takes-all mipmap levels: Meshes, even
for large connected components, are incomplete at relatively early levels of the
mipmap pyramid (figure 53(a)). Paintera uses a non-scalar data type that sum-
marizes voxel contents: Label multi-sets42 are sorted sets of label-count pairs for
a voxel. Figure 53 demonstrates the improved conservation of information in
multisets compared to winner-takes-all downsampling. The sets are sorted by
label to facilitate efficient containment checks through binary search. Conver-
sion into RGB color space follows the conversion of scalar label types: The RGB
representations of all contained labels are combined into a single RGB color as a
weighted channel-wise sum with weights proprtional to the individual count of
each label.

The distribution of synapses is a helpful guide for proof-reading segmenta-
tions. If synaptic cleft predictions are available, the subset of thresholded synapses
that intersect with any selected neuron are rendered as meshes in the 3D viewer
as well (figure 40). Like neuron meshes, synapse meshes are generated on-the-
fly and memory-cached. Meshes are automatically updated when the synapse
threshold is adjusted. At the time of writing this dissertation, this features is still
experimental and not yet available through the Paintera GUI but I plan to add
GUI support in the future.

42https://github.com/saalfeldlab/n5-label-multisets

https://github.com/saalfeldlab/n5-label-multisets
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4.1.5.5 Conversion Helper

The Apache Spark based paintera-conversion-helper43 is a tool to convenient-
ley convert single-scale datasets from HDF5 or N5 containers into Paintera data
format. The conversion task is trivially parallizable and Apache Spark is used
to multi-thread on local workstations as a command line tool or to distribute
onto compute clusters. The command line tool is available through conda on the
hanslovsky channel

1 $ conda install -c hanslovsky paintera-conversion-helper

and is automatically installed if Paintera is installed through conda (section 4.1.4).
For submission to distributed Spark clusters, the fat must be compiled and the
appropriate arguments passed to spark-submit:

1 git clone https://github.com/saalfeldlab/paintera-conversion-helper

2 cd paintera-conversion-helper

3 mvn -Pfat clean package

4 spark-submit \

5 [spark-submit arg ...] \

6 --jar=<path/to/paintera-conversion-helper-<version>.jar> \

7 --class org.janelia.saalfeldlab.conversion.CommandLineConverter \

8 [paintera-conversion-helper args]

A detailed usage example is provided in listing C.1. The help message
1 paintera-conversion-helper --help

provides additional information on the available parameters and options.

4.1.6 Controls & Shortcuts

Paintera has global controls and shortcuts for navigation and general interac-
tion (table 11) as well as source-specific controls that are only active for specific
source types (table 12 and table 13) to acommodate for data-type specific interac-
tion requirements. Controls or shortcuts that are specific to the cross-sectional
views (CS) or the 3D viewer (3D) will not be handled unless the appropriate UI
element is focussed or the cursor is inside that particular UI element.

Table 11: Global navigation controls and shortcuts. The first column specifies the target
UI element for each control, if any.

Shortcut Action

P Toggle preference pane (section 4.1.2.1)
ctrl-O Pop-up dataset opener context menu
ctrl-tab Cycle current source forward
shift-ctrl-tab Cycle current source backward
V Toggle visibility of current source

CS M Maximize current cross-sectional view

Shortcut Action
Table 11 — continued on next page

43https://github.com/saalfeldlab/paintera-conversion-helper

https://github.com/saalfeldlab/paintera-conversion-helper
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Table 11 — continued
Shortcut Action

shift-M Toggle single cross-sectional view with 3D
viewer

ctrl-S Save current project state
ctrl-shift-N Create new label dataset

CS left drag Rotate cross-sectional view
CS ctrl-left drag Rotate cross-sectional view (slow)
CS shift-left drag Rotate cross-sectional view (fast)
CS right drag Translate within cross-sectional plane
CS scroll Translate perpendicular to cross-sectional

plane
CS ctrl-scroll Translate perpendicular to cross-sectional

plane (slow)
CS shift-scroll Translate perpendicular to cross-sectional

plane (fast)
CS ctrl-shift-scroll Change zoom level
CS up Zoom in
CS down Zoom out
CS left/right Rotate left/right
CS ctrl-left/right Rotate left/right (slow)
CS shift-left/right Rotate left/right (fast)
CS shift-Z Axis-align
3D left drag Rotate data in 3D view
3D right drag Translate data within 3D view
3D scroll Move towards/away from data within 3D

view
3D shift-scroll Move towards/away from data within 3D

view (fast)
3D right click Open Context menu for mesh under cursor.

Shortcut Action

Table 12: Raw-data specific controls and shortcuts. The first column specifies the target
UI element for each control, if any.

Shortcut Action

ctrl-T Create thresholded source from current raw
source



4.1 paintera 111

Table 13: Label-data specific controls and shortcuts. The first column specifies the target
UI element for each control, if any.

Shortcut Action

CS left click Select fragment under cursor as currently ac-
tive (de-select all others)

CS right click Select fragment under cursor as currently ac-
tive (keep others selected if any)

CS shift-left click Merge segments of currently active fragment
and fragment under cursor

CS shift-right click Detach fragment under cursor from segment
of currently active fragment (if the same)

CS space-left click or
drag

Paint with currently active id

CS space-right click or
drag

Erase within canvas

CS shift-space-right
click or drag

Paint background

CS space-scroll Change Brush Size
CS shift-space-scroll Change Brush Depth
CS F-left click 2D Flood-fill at cursor with currently active

id
CS shift-F-left click 3D Flood-fill at cursor with currently active

id
N Create new, previously unused id
ctrl-C Commit canvas into background and

fragment-segment lookup
C Increment scaling factor for golden angle

color mapping by one
shift-C Decrement scaling factor for golden angle

color mapping by one
ctrl-shift-C Set scaling factor for golden angle color map-

ping
shift-V Toggle visibility of non-selected ids
R Clear mesh-caches and refresh meshes
L “Lock” segment for currently active fragment

Shortcut Action

4.1.7 Extensions

I developed Paintera as a special-purpose tool with a specific focus on neuron
reconstruction for large 3D-EM. Large parts of its core functionality, however,
can be re-used for processing and analysis of other kinds of volumetric data
and Paintera can be extended simply by adding jars or classes with appropriate
annotations and dependencies to the class path. In particular, the extensions need
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to provide an implementation of SourceState,44 additional entries in the open-
dataset context menu for access through the user interface, and — if persistence
is a requirement — serializers and deserializers for all relevant classes. In the
following, I will explain how to add each of these extensions by means of a new
source type that approximates the spatial gradients along each data dimension
as finite differences and then computes the gradient magnitude. Project structure
and imports will be omitted for better readability but the complete working
example is provided in section C.1.2 of appendix C.1.

4.1.7.1 Source State

Instead of creating two implementations of the SourceState interface, common
functionality of finite difference gradients and gradient magnitude features are
extracted into the Feature interface:

1 interface Feature {

2 DataSource<DoubleType, VolatileDoubleType> featureSource(

3 String cacheDir,

4 SourceState<? extends RealType<?>, ?>... dependsOn);

5 }

The Feature interfaces creates a new source from one or more data sets. A
sub-directory of the cacheDir is used as a disk-cache for features. A Feature in-
stance is passed to the FeatureSourceState constructor. Instead of implementing
SourceState, it is more convenient to extend the MinimalSourceState in many
cases:

1 public class FeatureSourceState extends MinimalSourceState<

2 DoubleType,

3 VolatileDoubleType,

4 DataSource<DoubleType, VolatileDoubleType>,

5 ARGBColorConverter<VolatileDoubleType>> {

6
7 private final Feature feature;

8
9 public FeatureSourceState(

10 final Feature feature,

11 final String name,

12 final String cacheDir,

13 SourceState<? extends RealType<?>, ?>... dependsOn) {

14 super(

15 feature.featureSource(cacheDir, dependsOn),

16 new ARGBColorConverter.InvertingImp1<VolatileDoubleType>(),

17 new ARGBCompositeAlphaAdd(),

18 name,

19 dependsOn);

20 this.feature = feature;

21 converter().setMin(0.0);

22 converter().setMax(50.0);

23 }

24
25 }

The generic arguments for the MinimalSourceState specify the type of the data (in
this case, DoubleType), the type of the data that is passed to the viewer (in prac-
tice, volatile types like VolatileDoubleType are used), the source that manages
data loading (DataSource<DoubleType, VolatileDoubleType>), and a converter

44org.janelia.saalfeldlab.paintera.state.SourceState
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to map converted viewer data into ARGB space. It will be necessary to keep the
Feature instance as a member variable for serialization. The converter is arbi-
trarily pre-set to a reasonable value range for CREMI sample B. Overriding the
SourceState.onAdd ensures that the cross-sectional views are being re-rendered
on changes of the converter settings:

1 @Override

2 public void onAdd(PainteraBaseView paintera) {

3 InvalidationListener reqRep = obs -> paintera

4 .orthogonalViews()

5 .requestRepaint();

6 converter().minProperty().addListener(reqRep);

7 converter().maxProperty().addListener(reqRep);

8 converter().colorProperty().addListener(reqRep);

9 converter().alphaProperty().addListener(reqRep);

10 }

The majority of the code lives in the individual implementations of the Feature
interface, GradientFeature and MagnitudeFeature, respectively. As the imple-
mentation detail is more of an exercise in ImgLib245 and not particularly relevant
for the demonstration of Paintera extensions, I refer the reader to section C.1.2 for
the specific implementations and the ImgLib2 tutorials if a deeper understanding
is desired.

4.1.7.2 Context Menu Entry

The open dataset context menu can be extended with additional entries by imple-
menting the OpenDialogMenuEntry and annotating the implementing class as a
SciJava Plugin:

1 @Plugin(type = OpenDialogMenuEntry.class, menuPath = "_Features>_Gradient Magnitude")

2 class MenuEntry implements OpenDialogMenuEntry

The menuPath annotation parameter specifies the location inside the open dataset
menu tree: > indicates sub-menus, and underscores before a character create
mnemonics for accelerated access when the appropriate key is pressed. The
single interface method

1 BiConsumer<PainteraBaseView, String> onAction();

defines the behavior of the new menu entry. The returned BiConsumer takes
the Paintera viewer class and the project directory as input. In the example
implementation, the return value is implemented as a Java8 lambda expression:46

1 return (pbv, directory) -> {

2 // implementation goes here

3 }

First, all available real-valued data sources are extracted from the viewer
1 final Predicate<SourceState<?, ?>> isReal =

2 state -> state

3 .getDataSource()

4 .getDataType() instanceof RealType<?>;

5 final List<SourceState<? extends RealType<?>, ?>> sources =

6 pbv

45https://imagej.net/ImgLib2
46https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

https://imagej.net/ImgLib2
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
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7 .sourceInfo()

8 .trackSources()

9 .stream()

10 .map(pbv.sourceInfo()::getState)

11 .filter(isReal)

12 .map(s -> (SourceState<? extends RealType<?>, ?>)s)

13 .collect(Collectors.toList());

Next, a JavaFX dialog is created with UI elements to prompt the user to choose
from the available real-valued data sources:

1 final Alert alert = PainteraAlerts.alert(

2 Alert.AlertType.CONFIRMATION,

3 true);

4 final ObservableList<SourceState<? extends RealType<?>, ?>> choices =

5 FXCollections.observableArrayList(sources);

6 final ComboBox<SourceState<? extends RealType<?>, ?>> comboBox =

7 new ComboBox<>(choices);

8 alert.getDialogPane().setContent(comboBox);

9 final Optional<ButtonType> bt = alert.showAndWait();

If the user made a valid selection and clicked the “OK” button,
1 if (bt.filter(ButtonType.OK::equals).isPresent()

2 && comboBox.getValue() != null)

first, partial derivatives along each data dimension are created:
1 final SourceState<? extends RealType<?>, ?> raw = comboBox.getValue();

2 final int nDim = raw.getDataSource().getDataSource(0, 0).numDimensions();

3 final FeatureSourceState[] gradients = IntStream

4 .range(0, nDim)

5 .mapToObj(dim -> new GradientFeature(dim))

6 .map(feat -> new FeatureSourceState(

7 feat,

8 raw.nameProperty().getName() + "-gradient", directory, raw))

9 .toArray(FeatureSourceState[]::new);

Second, the gradient magnitude is calculated from the partial derivatives:
1 final FeatureSourceState magnitude = new FeatureSourceState(

2 new MagnitudeFeature(),

3 raw.nameProperty().getName() + "-gradient-magnitude",

4 directory,

5 gradients);

Third, converters are set up to map the partial derivatives to red, green, and blue
color, respectively:

1 gradients[0]

2 .converter()

3 .setColor(Colors.toARGBType("#ff0000"));

4 gradients[1]

5 .converter()

6 .setColor(Colors.toARGBType("#00ff00"));

7 gradients[2]

8 .converter()

9 .setColor(Colors.toARGBType("#0000ff"));

And, finally, the partial derivatives and gradient magnitude are added to the
viewer:

1 Stream.of(gradients).forEach(pbv::addState);

2 Stream.of(magnitude).forEach(pbv::addState);

It is now possible to create gradient features for arbitrary real-valued data sources.
If serialization of the Paintera project with gradient features is required, JSON
serializers and deserializers have to be provided as described in the next section.



4.1 paintera 115

4.1.7.3 Serialization

The Gson47 Java library is used for serialization into and deserialization from
JSON strings. Gson (de-)serializers need to be added for all added classes that
cannot be automatically (de-)serialized by Gson. In order to auto-detect these (de-
)serializers and register them with Gson instances, Paintera extends extends the
JsonSerializer and JsonDeserializer interfaces of the Gson library to specify
the target class for serialization or deserialization:

1 interface ScijavaUtils.HasTargetClass<T> {

2 Class<T> getTargetClass();

3 }

4 interface PainteraSerialization.PainteraDeserializer<T> extends

5 JsonDeserializer<T>,

6 SciJavaPlugin,

7 SciJavaUtils.HasTargetClass<T> {

8 default boolean isHierarchyAdapter() {

9 return false;

10 }

11 }

12
13 interface PainteraSerialization.PainteraSerializer<T> extends

14 JsonSerializer<T>,

15 SciJavaPlugin,

16 SciJavaUtils.HasTargetClass<T> {

17 default boolean isHierarchyAdapter() {

18 return false;

19 }

20 }

21
22 public interface PainteraSerialization.PainteraAdapter<T> extends

23 PainteraSerializer<T>,

24 PainteraDeserializer<T>,

25 SciJavaUtils.HasTargetClass<T> {

26 default boolean isHierarchyAdapter() {

27 return false;

28 }

29 }

If the optional isHierarchyAdapter method returns true, the serializer, deseri-
alizer, or adapter is registered as hierarchy adapter. Implementations of these
interfaces need to be annotated as SciJava Plugin appropriately:

1 @Plugin(type = PainteraSerialization.PainteraSerializer.class)

2 class Serializer

3 implements PainteraSerialization.PainteraSerializer {}

4 @Plugin(type = PainteraSerialization.PainteraDeserializer.class)

5 class Serializer implements

6 PainteraSerialization.PainteraDeserializer {}

7 @Plugin(type = PainteraSerialization.PainteraAdapter.class)

8 class Adapter implements

9 PainteraSerialization.PainteraAdapter {}

In some cases — e.g. this example — the viewer state and project directory are
needed for (de-)serialization and (de-)serializers or adapters cannot be instanti-
ated before the viewer is initialized. Instead, factories can be provided to create
stateful (de-)serializers and adapters:

1 interface StatefulSerializer.SerializerFactory<

2 T,

47https://github.com/google/gson

https://github.com/google/gson
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3 S extends JsonSerializer<T>> extends

4 SciJavaPlugin,

5 SciJavaUtils.HasTargetClass<T> {

6 S createSerializer(

7 Supplier<String> projectDirectory,

8 ToIntFunction<SourceState<?, ?>> stateToIndex);

9 }

10
11 interface StatefulSerializer.DeserializerFactory<

12 T,

13 S extends JsonDeserializer<T>> extends

14 SciJavaPlugin,

15 SciJavaUtils.HasTargetClass<T> {

16 S createDeserializer(

17 Arguments arguments,

18 Supplier<String> projectDirectory,

19 IntFunction<SourceState<?, ?>> dependencyFromIndex);

20 }

21
22 interface StatefulSerializer.SerializerAndDeserializer<

23 T,

24 D extends JsonDeserializer<T>,

25 S extends JsonSerializer<T>> extends

26 SerializerFactory<T, S>,

27 DeserializerFactory<T, D>,

28 SciJavaPlugin,

29 SciJavaUtils.HasTargetClass<T> {}

Similar to the annotations of stateless (de-)serializers, the factories need to be
annotated for automatic detection and registration:

1 @Plugin(type = StatefulSerializer.SerializerFactory.class)

2 class Serializer

3 implements StatefulSerializer.SerializerFactory {}

4 @Plugin(type = StatefulSerializer.DeserializerFactory.class)

5 class Serializer implements

6 StatefulSerializer.DeserializerFactory {}

7 @Plugin(type = StatefulSerializer.SerializerAndDeserializer.class)

8 class SerializerAndDeserializer implements

9 StatefulSerializer.SerializerAndDeserializer {}

The source in this gradient feature example depends on other sources that are
only available when the viewer is initialized and populated with the dependen-
cies, and thus stateful (de-)serializers are provided by a StatefulSerializer.

SerializerAndDeserializer factory. The serializer
1 class Serializer implements JsonSerializer<FeatureSourceState> {

2
3 private final ToIntFunction<SourceState<?, ?>> sourceToIndex;

4
5 private Serializer(final ToIntFunction<SourceState<?, ?>> sourceToIndex) {

6 this.sourceToIndex = sourceToIndex;

7 }

8
9 @Override

10 public JsonElement serialize(

11 FeatureSourceState src,

12 Type typeOfSrc,

13 JsonSerializationContext context) {

14 final JsonObject map = new JsonObject();

15 // populate map

16 return map;

17 }

18 }
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overrides the serialize method to return a JSON object that holds a list of de-
pendencies identified by their respective indicies,

1 map.add(DEPENDS_ON_KEY, context.serialize(Stream

2 .of(src.dependsOn())

3 .mapToInt(sourceToIndex)

4 .toArray()));

the feature instance,
1 map.add("feature", serializeWithClassInfo(

2 src.feature,

3 context));

and user-specified settings of the source, e.g. converter or composition mode:
1 map.add("composite", serializeWithClassInfo(

2 src.compositeProperty().get(),

3 context));

4 map.add("converter", serializeWithClassInfo(

5 src.converter(),

6 context));

7 map.add(INTERPOLATION_KEY, context.serialize(

8 src.interpolationProperty().get(),

9 Interpolation.class));

10 map.addProperty(

11 IS_VISIBLE_KEY,

12 src.isVisibleProperty().get());

13 map.addProperty(NAME_KEY, src.nameProperty().get());

Similarly, the deserializer
1 class Deserializer implements JsonDeserializer<FeatureSourceState> {

2 private final IntFunction<SourceState<?, ?>> dependencyFromIndex;

3
4 private final String cacheDir;

5
6 private Deserializer(

7 final IntFunction<SourceState<?, ?>> dependencyFromIndex,

8 final String cacheDir) {

9 this.dependencyFromIndex = dependencyFromIndex;

10 this.cacheDir = cacheDir;

11 }

12
13 @Override

14 public FeatureSourceState deserialize(

15 JsonElement json,

16 Type typeOfT,

17 JsonDeserializationContext context) throws JsonParseException {

18 final JsonObject map = json.getAsJsonObject();

19 try {

20 // instantiate and return state from map

21 } catch (ClassNotFoundException e) {

22 throw new JsonParseException(e);

23 }

24 }

25 }

overrides the deserialize method to ensure that all dependencies were deserial-
ized,

1 final SourceState<? extends RealType<?>, ?>[] dependsOn

2 = IntStream

3 .of(context.deserialize(

4 map.get(DEPENDS_ON_KEY),

5 int[].class))

6 .mapToObj(dependencyFromIndex)
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7 .toArray(SourceState[]::new);

8 if (Stream.of(dependsOn).anyMatch(Objects::isNull))

9 return null;

then deserializes the feature instance and instantiates the source state,
1 final FeatureSourceState fs = new FeatureSourceState(

2 deserializeFromClassInfo(

3 map.getAsJsonObject("feature"),

4 context),

5 map.get(NAME_KEY).getAsString(),

6 cacheDir,

7 dependsOn);

and finally updates the state with serialized settings and returns the state:
1 final ARGBColorConverter<VolatileDoubleType> converter =

2 deserializeFromClassInfo(

3 map.getAsJsonObject("converter"),

4 context);

5 fs.converter().setColor(converter.getColor());

6 fs.converter().setMin(converter.getMin());

7 fs.converter().setMax(converter.getMax());

8 fs.converter().alphaProperty().set(converter.alphaProperty().get());

9 fs.compositeProperty().set(deserializeFromClassInfo(

10 map.getAsJsonObject("composite"),

11 context));

12 fs.interpolationProperty().set(context.deserialize(

13 map.get(INTERPOLATION_KEY),

14 Interpolation.class));

15 fs.isVisibleProperty().set(map.get(IS_VISIBLE_KEY).getAsBoolean());

16 return fs;

The SerializationFactory class creates stateful (de-)serializes and appropriate
annotation ensures that the factory is detected automatically:

1 @Plugin(type = StatefulSerializer.SerializerAndDeserializer.class)

2 class SerializationFactory implements

3 StatefulSerializer.SerializerAndDeserializer<

4 FeatureSourceState,

5 Deserializer,

6 Serializer> {

7
8 @Override

9 public Deserializer createDeserializer(

10 StatefulSerializer.Arguments arguments,

11 Supplier<String> projectDirectory,

12 IntFunction<SourceState<?, ?>> dependencyFromIndex) {

13 return new Deserializer(

14 dependencyFromIndex,

15 projectDirectory.get());

16 }

17
18 @Override

19 public Serializer createSerializer(

20 Supplier<String> projectDirectory,

21 ToIntFunction<SourceState<?, ?>> stateToIndex) {

22 return new Serializer(stateToIndex);

23 }

24
25 @Override

26 public Class<FeatureSourceState> getTargetClass() {

27 return FeatureSourceState.class;

28 }

29 }
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The extension is now complete with support for serialization. The complete ex-
ample is provided as a Maven project with installation and execution instructions
in appendix B.2.

4.1.8 Interactive Agglomeration

One of the intended use-cases for Paintera is an optimized proof-reading work-
flow that utilizes user annotations to train an agglomeration model online: Start-
ing from an existing segmentation, expert users provide examples for pairs of
fragments that should be merged or split. A machine-learning algorithm learns
the parameters of an agglomeration model from these annotations and an up-
dated agglomeration that respects the annotations as constraints is presented to
the users. This workflow can be used to rapidly proof-read automatic neuron
reconstructions for use in biological analysis or the rapid creation of vast amounts
of training data.

Multi-cuts have been used succesfully for agglomeration of fragments in the
context of neuron reconstruction. Given a graph 𝒢 = (𝑉, 𝐸, 𝑤) with 𝑁 vertices
𝑉 = {𝑣 ∈ ℕ+ ∶ 𝑣 ≤ 𝑁}, edges 𝐸 ⊂ 𝑉 × 𝑉, and weights 𝑤 ∈ ℝ|𝐸| associated with
each edge 𝑒 ∈ 𝐸, the multi-cut objective

𝑦∗ = argmin
𝑦∈{0,1}|𝐸|

|𝐸|
∑
𝑖=1

𝑤𝑖𝑦𝑖 (96)

subject to ∀𝐶 ∈ cycles(𝒢) ∀𝑒 ∈ 𝐶 ∶ 𝑦𝑒 ≤ ∑
𝑒′∈𝐶∖{𝑒}

𝑦𝑒′ (97)

partitions the vertices into clusters, where 𝑦𝑖 = 1 means that an edge 𝑒 ∈ 𝐸 is
“cut”, i.e. 𝑒1 and 𝑒2 are not in the same cluster. Positive weights are attractive — i.e.
two vertices are more likely to be part of the same cluster; negative weights are
repulsive — two vertices are more likely to be in different clusters. The multi-cut
constraints prevent so-called dangling edges: For a cut edge 𝑒 ∈ 𝐸 there is a path
of uncut edges that connects 𝑒1 and 𝑒2.

A binary random forest classifier is trained from user annotations to predict
the weights 𝑤 of the multi-cut model. Two annotations at the minimum — one
per each class — are required for training the random forest. Typically, random
forests achieve good accuracy with only few and sparse annotations, and users
should expect reasonable — but not perfect — results within minutes of proof-
reading work.

Optimization of themulti-cut objective is NP-Hard (Bansal, Blum, and Chawla
2004) and solving for optimality usually requires commercial integer linear pro-
gramming (ILP) frameworks like CPLEX48 or Gurobi.49 The high cost of licenses
for these frameworks can be prohibitive for users who do not have access to free
or cheaper academic licenses. The C++ library OpenGM (Bjoern Andres, Beier,
and Kappes 2012) for discrete graphical models implements — besides ILP opti-
mization with CPLEX or Gurobi — approximate solvers that are both reasonably

48https://www.ibm.com/analytics/cplex-optimizer
49http://www.gurobi.com

https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com
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fast and accurate for the use of multi-cut agglomeration in neuron reconstruction.
Beier et al. (2017) used the C++ library for graph-based image segmentation
nifty50 (Beier 2018) as an alternative solver for the multi-cut model. Unfortu-
nately, Java can access native code — such as compiled C or C++ — only through
the Java Native Interface (JNI), which is cumbersome at best. Instead, I decided
to build a client-server architecture with ZeroMQ51 based communication: User
annotations are sent from Paintera-based client (section 4.1.8.1) to a server (sec-
tion 4.1.8.1) that trains a predictor for the agglomeration parameters from user
annotations, optimizes the multi-cut objective with updated parameters, and
broadcasts the agglomeration result back to the client.

4.1.8.1 Paintera Interactive Solver Server

The Paintera Interactive Solver Server (pias)52 is implemented in Python: High-
level language features reduce boiler-plate code and both nifty and ZeroMQ are
readily available through extensive Python bindings.

Pias requires Python 3.6 or more recent and most dependencies are available
through PyPI and installed automatically when using pip. The nifty and z5py53

Python packages are not available through the Python Package Index (PyPI)54
and have to be built from source (follow instructions on the respective GitHub
repositories) or can be installed through conda through the cpape and conda-

forge channels, respectively:
1 conda install -c cpape nifty

2 conda install -c conda-forge z5py

If the pyzmq dependency is not installed through conda, make sure that libzmq
https://github.com/zeromq/libzmq is installed on your system.

Finally, pias is available on PyPI for installation with pip:
1 pip install pias

Alternatively, the latest development version can be installed directly fromGitHub:
1 pip install --user git+https://github.com/saalfeldlab/pias

This installs the piac Python library and the piac command:
1 pias --help

2 usage: pias [-h] --container CONTAINER --paintera-dataset PAINTERA_DATASET

3 [--directory DIRECTORY] [--num-io-threads NUM_IO_THREADS]

4 [--log-level {NOTSET,DEBUG,INFO,WARN,ERROR,CRITICAL,FATAL,TRACE}]

5 [--version]

6
7 optional arguments:

8 -h, --help show this help message and exit

9 --container CONTAINER

10 N5 FS Container with group that contains edges as

11 pairs of fragment labels and features

12 --paintera-dataset PAINTERA_DATASET

13 Paintera dataset inside CONTAINER that also contains

50https://github.com/DerThorsten/nifty
51http://zeromq.org
52https://github.com/saalfeldlab/pias
53https://github.com/constantinpape/z5
54https://pypi.org

https://github.com/DerThorsten/nifty
http://zeromq.org
https://github.com/saalfeldlab/pias
https://github.com/constantinpape/z5
https://pypi.org
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14 datasets `edges' and `edge-features'

15 --directory DIRECTORY

16 Directory for ipc sockets and serialization of server

17 state.

18 --num-io-threads NUM_IO_THREADS

19 --log-level {NOTSET,DEBUG,INFO,WARN,ERROR,CRITICAL,FATAL,TRACE}

20 --version show program's version number and exit

The container is the path to a filesystem N5 container that contains a paintera
dataset (section 4.1.5.2) with additional datasets “edges” and “edge-features”.
“edges” is a two-dimensional, uint64 dataset with dimensions 2 × 𝑛𝑒, where 𝑛𝑒 is
the number of pairwise edges between pairs of neighboring fragments. Each row
of the list represents an edge identified by the pair of label ids (𝑖𝑑1, 𝑖𝑑2) ∶ 𝑖𝑑1 < 𝑖𝑑2
of the fragments. “edge-features” is a two-dimensional float64 dataset with
dimensions 𝑛𝑐 × 𝑛𝑒, where 𝑛𝑐 is the number of feature channels. Each row in
the “edge-features” dataset is the feature vector for the edge identified by the
corresponding row in the “edges” dataset. It is the user’s responsibility to create
those datasets (and update them if necessary) to follow these specifications.
The server will use this directory to store temporary data and to create multiple
ZeroMQ inter-process transport (ipc) sockets for communication with the client—
note that all messages are sent in big endian order (all paths relative to the server
directory):

server The server reply (REP) socket can be used to request general informa-
tion about the server through multiple endpoints. The /help endpoint sends a
single zmq string response. All endpoints under /api send at least two messages:

1. a single integer

0 endpoint is known
1 unknown error during processing
2 endpoint is unknown

2. a single integer specifying the number of messages to be sent (may be zero)

3. optional, if number of messages is larger than zero, n times:

• integer indicating type of message
0 string
1 bytes
2 integer
3 unknown/structured (look at help if available, will be sent as bytes)

• actual contents

These endpoints are available:

/ Ping the server with an arbitrarymessage (possibly empty). The pong response
is sent as an empty string message.

/help Request a help message.
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/api/n5/container Path to n5 container holding paintera dataset with edges
and features

/api/n5/dataset Path to paintera dataset in n5 container

/api/n5/all Send both container and dataset as multiple messages

/api/save-ground-truth-labels Serialize current ground truth labels (uv-pairs
and labels) into server directory

server-ping The server can be pinged through the server-ping REP socket with
an arbitrary message (possibly empty). The pong response is sent as an empty
string message.

server-current-solution The latest valid solution of the agglomeration model
can be requested with an arbitrary message to the server-current-solution

REP socket. The response is an array of uint64 with segment assignments for all
fragments.

server-set-edge-labels Submit ground-truth edge annotations to the server as
an array of a sorted pair of two uint64 fragment ids identifying the edge and a
single int32 edge label: 0 for split, 1 for merge.

server-update-solution Request an update of the agglomerationmodel solution:
First, a random forest classifier is trained with the current annotated edge labels,
then the multi-cut model with predicted edge-weights is optimized to update the
agglomeration.

4.1.8.2 Paintera Interactive Solver Client

Building on top of the existing support for label data in Paintera, the Paintera
Interactive Solver Client (piac)55 is implemented in the Kotlin programming
language56 as a Paintera extension (section 4.1.7). In order to communicate with
the server-side zmq sockets, piac uses the jzmq57 library that wraps native zmq
for use in Java through the JNI. Before installing piac, make sure that the native
zmq library is installed and compile the jzmq JNI bindings:

1 git clone https://github.com/zeromq/jzmq

2 cd jzmq/jzmq-jni

3 ./autogen.sh

4 ./configure

5 make

6 make install

Currently, piac has not been released yet and has to be installed from source:
1 git clone https://github.com/saalfeldlab/piac

2 cd piac

3 mvn clean install

55https://github.com/saalfeldlab/piac
56https://kotlinlang.org
57https://github.com/zeromq/jzmq

https://github.com/saalfeldlab/piac
https://kotlinlang.org
https://github.com/zeromq/jzmq
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Figure 54: Connect to a pias instance: The server URL is composed of protocol (ipc://),
the path to the server directory (/tmp/pias/ in this example), and the server socket.
The server provides N5 container location and dataset for the label dataset. Meta data
are read from the dataset attributes but can be adjusted before the dataset is added after
confirmation.

Then, start Paintera with support for interactive agglomeration with
1 paintera \

2 --additional-endpoints \

3 org.janelia.saalfeldlab:piac:0.1.0-SNAPSHOT \

4 --

The open dataset context menu will show an additional “Pias” item that toggles
a dialog to connect to a pias instance (figure 54). On confirmation, a label dataset
is added to Paintera. Following the controls for label data, examples of merge
and split edges are provided to the pias instance with mouse clicks with an active
fragment: Shift-left click creates a merge example, shift-right click indicates a
split (figure 55).

4.2 eqip

The Python machine learning community has seen a wealth of frameworks for
general machine learning (Pedregosa et al. 2011) and deep learning (Bergstra
et al. 2010; Jia et al. 2014; Abadi et al. 2016) emerge over the past decade. The
Gunpowder58 framework was created to facilitate machine learning workflows
for volumetric, multi-dimensional images. Gunpowder is developed and main-
tained at Janelia and is used mostly in the context of electron micrographs of
nervous systems, and it was thus a logical decision to implement and train the
quasi-isotropic network architecture with Gunpowder and TensorFlow as a deep
learning backend. While Gunpowder greatly simplifies the construction of ma-
chine learning workflows, it is not concerned with reproducibility: the same ex-
periment, for example, could be executed twice with different Python interpreters

58https://github.com/funkey/gunpowder

https://github.com/funkey/gunpowder
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(a) Initial state (b) Merge (c) Split (d) Merge (e) Updated state

Figure 55: Providing merge and split examples to a pias instance generates reasonable
agglomerations with only a few mouse clicks: In the initial state (a), fragments are not
agglomerated. After providing one example for merge (b) and split (c) edges, the pias
instance can train a predictor for the agglomeration model parameters and update the
agglomeration (d). Additional examples (d) help refine the agglomeration (e).

that use different versions of required packages and, consequently, results may
differ as bug fixes or new features change the behavior of individual packages.
Preferrably, an experiment reproduces the same result every time it is executed.
A computational experiment should not be corrected by changing its internal
state but rather by making a copy that contains the necessary updates of code
and dependencies. I created a collection of Electron-microscopy Quasi-Isotropic Pre-
diction59 scripts to construct an environment of reproducible experiments for the
training of quasi-isotropic networks as described in chapter 3 with different pa-
rameters and losses. Training and prediction workflows build on Gunpowder
with additional specialized nodes for quasi-isotropic networks that are available
in the Gunpowder extension package fuse.60 Furthermore, EQIP uses Daisy61 to
make use all local GPUs of a GPU server for distributed prediction.

4.2.1 Architecture

Reproducibility of an experiment requires that changeable parameters such as
software dependencies or program options and model parameters are encapsu-
lated in an unmodifiable entity. Initially, I used Docker containers (Merkel 2014)
to manage software versions and text files to store experiment parameters. Even-
tually, the additional effort for maintenance and debugging when using Docker
images and — more importantely — the lack of TensorFlow Docker images with

59https://github.com/saalfeldlab/eqip
60https://github.com/saalfeldlab/fuse
61https://github.com/funkelab/daisy

https://github.com/saalfeldlab/eqip
https://github.com/saalfeldlab/fuse
https://github.com/funkelab/daisy
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support for Python3.662 led to the decision to use conda63 instead of Docker for
managing software. While conda does not offer a separation that is as strict as
Docker containers, it is sufficient for the use case of neural network training, in par-
ticular in an environment without cluster management software. The availability
of Python versions 3.6 and more recent and TensorFlow with GPU through conda
packages ensure efficient use of graphics cards and recent updates of Python.

Experiment management is simple: First, an experiment is created as a direc-
tory that contains a conda environment with EQIP and all its dependencies, a
sub-directory for all the data used in the experiment, a Python script to create a
new setup for this experiment, and scripts for prediction and further processing
as needed. A setup is an instantiation of the experiment with specific parameters,
such as the loss or the number of and range of affinities in neuron-reconstruction
experiments. Setup data is stored in a sub-directory of the experiment with
alpha-numeric name counting up as more setups are created. The setup direc-
tory contains a conda environment, separate shell scripts to create the network
architecture and to initiate or re-start training, and additional files for meta-data
if necessary. By default, a setup inherits the experiment’s conda environment
but additional packages can be specified as needed. It is best practice, however,
to create a new experiment if additional packages or updates introduce major
changes.

Accidental changes to experiment or setup are prevented by setting read-
only — and executable as needed — flags for all text files and shell or Python
scripts. In order to enable byte-code caching of Python packages or use of other
temporary files, the conda environments are left modifiable. While this is a risk
for unintended modification of these conda environments, this is highly unlikely
to occur in practice, as the experiment and setup environments are stored in the
appropriate sub-directories of the experiment directory tree.

4.2.2 Installation & Use

EQIP can be installed through the package installer for Python (pip):
1 # install the latest development version:

2 $ pip install git+https://github.com/saalfeldlab/eqip

3 # install release version 0.5.1

4 $ pip install git+https://github.com/saalfeldlab/eqip@0.5.1

Currently, EQIP has to be installed from GitHub directly as some dependencies
are not (yet) available on the Python Package Index (PyPI). Specific versioned
releases can be installed through the @<version> syntax.

4.2.2.1 Creation of Quasi-Isotropic Experiments and Setups

The create-experiment command is installed with EQIP:
1 $ create-experiment EXPERIMENT_TYPE [OPTIONS]

2 $ create-experiment -h

62The operating system on TensorFlow Docker images is Ubuntu 16.04, which only provides
Python 3.5: https://github.com/tensorflow/tensorflow/issues/22292

63https://conda.io

https://github.com/tensorflow/tensorflow/issues/22292
https://conda.io
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3 usage: create-experiment [-h] {affinities-with-glia}

4
5 positional arguments:

6 {affinities-with-glia}

7
8 optional arguments:

9 -h, --help show this help message and exit

Currently, only the affinities-with-glia (section 3.4) experiment type is avail-
able. The experiment options are used to specify the experiment directory, data,
and EQIP revision, for example for the affinities-with-glia experiment:

1 $ create-experiment -- affinities-with-glia --help

2 usage: create-experiment [-h] [--experiment-name EXPERIMENT_NAME]

3 --data-pattern PATTERN [--copy-data] [--overwrite]

4 [--conda-sh CONDA_SH] [--eqip-revision EQIP_REVISION]

5 [--log-level {DEBUG,INFO,WARN,ERROR,CRITICAL}]

6 PATH

7
8 positional arguments:

9 PATH Path to experiment directory

10
11 optional arguments:

12 -h, --help show this help message and exit

13 --experiment-name EXPERIMENT_NAME

14 Defaults to basename of PATH.

15 --data-pattern PATTERN

16 Glob pattern specifying the data to be used. Files are

17 sym-linked by default.

18 --copy-data Copy data instead of sym-linking.

19 --overwrite Overwrite experiment if it already exists

20 --conda-sh CONDA_SH Path to conda.sh

21 --eqip-revision EQIP_REVISION

22 EQIP revision to use in experiment. Defaults to latest

23 master

24 --log-level {DEBUG,INFO,WARN,ERROR,CRITICAL}

25 Set log level for experiment creation.

The positional PATH argument specifies the experiment directory. Experiment cre-
ation fails if the experiment directory already exists and the ptin is not set. The
experiment name is inferred from the base path of the experiment directory but
can be set explicitly through the --experiment-name option. Files or directories
that match the glob pattern specified by --data-pattern are linked symbolically
or copied with the --copy-data flag into the data sub-directory inside the ex-
periment directory. Conda is used for dependency management and conda.sh

activates the experiment and setup environments in the respective scripts. If
conda is not installed in a default location or a different conda installation is pre-
ferred, the path to conda.sh can be specified through the --conda-sh option. The
--eqip-revision option sets the EQIP revision for the experiment. By default,
this is the version of the installed EQIP package or the current master branch if
not on a release version. The --log-level sets the logging verbosity for experi-
ment creation and is helpful for debugging experiment creation. Setups can be
created with the create-setup.py script inside the experiment directory (PATH):

1 $ cd $PATH

2 $ conda activate $PWD/conda-env

3 $ ./create-setup.py --help

4 usage: create-setup.py [-h] --affinity-neighborhood-x AFFINITY_NEIGHBORHOOD_X

5 [AFFINITY_NEIGHBORHOOD_X ...] --affinity-neighborhood-y

6 AFFINITY_NEIGHBORHOOD_Y [AFFINITY_NEIGHBORHOOD_Y ...]
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7 --affinity-neighborhood-z AFFINITY_NEIGHBORHOOD_Z

8 [AFFINITY_NEIGHBORHOOD_Z ...] --mse-iterations

9 MSE_ITERATIONS --malis-iterations MALIS_ITERATIONS

10 [--data-provider DATA_PROVIDER]

11 [--log-level {DEBUG,INFO,WARN,ERROR,CRITICAL}]

12 [--additional-pip-packages ADDITIONAL_PIP_PACKAGES

13 [ADDITIONAL_PIP_PACKAGES ...]]

14
15 Create new setup for experiment `test-experiment'. Unknown arguments will be

16 collected and passed to `train-affinities-on-interpolated-ground-truth-with-

17 glia' as additional arguments. See `train-affinities-on-interpolated-ground-

18 truth-with-glia --help' for details and avoid duplicate arguments.

19
20 optional arguments:

21   -h, --help            show this help message and exit

22   --affinity-neighborhood-x AFFINITY_NEIGHBORHOOD_X [AFFINITY_NEIGHBORHOOD_X ...]

23                         Affinity ranges for x-axis of data.

24   --affinity-neighborhood-y AFFINITY_NEIGHBORHOOD_Y [AFFINITY_NEIGHBORHOOD_Y ...]

25                         Affinity ranges for y-axis of data.

26   --affinity-neighborhood-z AFFINITY_NEIGHBORHOOD_Z [AFFINITY_NEIGHBORHOOD_Z ...]

27                         Affinity ranges for z-axis of data.

28   --mse-iterations MSE_ITERATIONS

29                         Number of iterations of training with mean squared

30                         error loss.

31   --malis-iterations MALIS_ITERATIONS

32                         Number of iterations of training with malis loss.

33   --data-provider DATA_PROVIDER

34                         Specify data providers if other than

35                         EXPERIMENT_DIR/data/*

36   --log-level {DEBUG,INFO,WARN,ERROR,CRITICAL}

37                         Set log level for setup creation.

38   --additional-pip-packages ADDITIONAL_PIP_PACKAGES [ADDITIONAL_PIP_PACKAGES ...]

39                         Install additional packages through pip. Experiment

40                         conda environment will be cloned instead of sym-

41                         linked.

The create-setup.py script will create a new sub-directory with the smallest
unused integral number starting at zero as name. The setup directory contains
the setup-specific conda environment at conda-env that is a sym-link to the ex-
periment conda environment unless additional Python packages are installed
through the --additional-pip-packages flag — then, a clone of the experiment
conda environment is updated with the new packages. The offsets text file spec-
ifies the connectivity of the affintiy graph in units of voxels along each dimension
as specified by the various affinity-neighborhood-{x,y,z} options. Affinities
are symmetric and therefore it is sufficient to specify and train only half of the
connections per voxel. By convention, neighborhoods are specified as negative
numbers but positive numbers can be used as well. A network architecture for
nearest neighbor affinities only, for example, would by specified by setting each
affinity neighborhood to −1. Quasi-isotropic networks can be trained with a com-
bination of mean squared error (MSE) loss followed by malis loss (Turaga, Kevin
L Briggman, et al. 2009). The number of iterations for each MSE and malis can
be specified with the --mse-iterations and the --malis-iterations options,
respectively, and either can be set to zero. Unmatched arguments are passed as
additional arguments for training. 64. Finally, the mknet.sh and train.sh should
be run in succession, to create the network architecture and initiate or re-start

64train-affinities-on-interpolated-ground-truth-with-glia --help lists available train-
ing options.
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training, respectively. train.sh expects the index of the GPU that is selected for
training as single positional argument. Then, creating an experiment and a setup
from scratch and initiating training is as simple as:

1 create-experiment \

2 affinities-with-glia \

3 $HOME/my-experiment \

4 --data-pattern='/data/labeled/sample_*.n5'

5 cd $HOME/my-experiment

6 conda activate $PWD/conda-env

7 ./create-setup.py \

8 --affinity-neighborhood-x -1 -2 -5 -10 \

9 --affinity-neighborhood-y -1 -2 -5 -10 \

10 --affinity-neighborhood-z -1 -2 -5 -10 \

11 --mse-iterations=400000 \

12 --malis-iterations=0 \

13 --pre-cache-num-workers=10 \

14 --pre-cache-size=20 \

15 --ignore-labels-for-slip \

16 --save-checkpoint-every=2000 \

17 --snapshot-every=250

18 cd 0

19 ./mknet.sh

20 ./train.sh 0

This creates a network architecture for an affinity graph with axis-aligned affinity
offsets with steps (−1, −2, −5, −10) along each data dimension. The network is
trained with MSE loss for 400,000 iterations and zero iterations for Malis loss.
Pre-caching 20 samples with 10 parallel CPU workers minimizes GPU idle time
during expensive data-loading and augmentation. Single-section misalignment
augmentations are not applied to label data with the --ignore-labels-for-slip
option; misalignment augmentations that affect larger parts of a section series
will still be considered. Model checkpoints are saved every 2000 iterations to
allow to resume training in case of errors or intended interruptions. Snapshots of
relevant data help monitor training progress (section 4.2.2.2) beyond the training
loss and are created as HDF5 files every 500 training iterations. The mknet.sh

creates the network architecture and train.sh starts training on the first GPU.

4.2.2.2 Monitoring Experiments

Typically, the training loss is evaluated to monitor the progress of an experiment,
e.g. TensorBoard visualizes training loss as a function of iterations or wall time. It
is not unusual for deep neural networks to be trained for hundreds of thousands
of iterations. For a more insightful analysis and understanding, it is necessary to
examine actual network predictions at intermediate stages of training. Raw data,
ground truth, predictions, loss, and other data as requested can be summarized
and written to disk in snapshots. Writing snapshots to disk is relatively slow
compared to a network training iteration. In order to minimize GPU idle time and
reduce disk usage, snapshots are created only sparsely, usually every few hundred
or thousand training iterations. While it is certainly possible to use a combination
of Linux command line tools to find the latest snapshot, it is more intuitive and
accessible to use the list-latest-snapshot command that is shipped with EQIP:

1 $ list-latest-snapshot --help

2 usage: list-latest-snapshot [-h] [--experiment EXPERIMENT]
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(a) 𝑎1, 𝑎5, 𝑎9 (b) 𝑎2, 𝑎6, 𝑎10 (c) 𝑎3, 𝑎7, 𝑎11 (d) 𝑎4, 𝑎8, 𝑎12

Figure 56: Visualization of snapshot of quasi-isotropic network after 30751 training
iterations with the paintera-show-container command: Affinity prediction channels
are overlaid over raw data.

3 [--setup SETUP [SETUP ...]]

4 [--snapshots-directory SNAPSHOTS_DIRECTORY]

5
6 optional arguments:

7 -h, --help show this help message and exit

8 --experiment EXPERIMENT, -e EXPERIMENT

9 Path to experiment directory. Defaults to current

10 working directory.

11 --setup SETUP [SETUP ...]

12 Print latest snapshot for these setups. Defaults to

13 all setups.

14 --snapshots-directory SNAPSHOTS_DIRECTORY

15 Sub-directory of experiment that contains the

16 snapshots. Defaults to `snapshots'

The paintera-show-container command (section 4.1) can then be used to visu-
alize the latest snapshot, e.g. for setup 0 of the fictious quasi-isotropic (chapter 3)
experiment from section 4.2.2.1:

1 $ list-latest-snapshot \

2 --experiment=$HOME/my-experiment \

3 --setup=0

4 30751

5 $ paintera-show-container \

6 --channels 8,4,0 9,5,1 10,6,2 11,7,3 \

7 --revert-array-attributes \

8 $HOME/my-experiment/0/snapshots/batch_30751.hdf \

9 --exclude='.*' \

10 --include '.*raw.*' '/volumes.*glia.*' '.*prediction.*'

The --channels groups affinity channels of ground truth, predictions, and loss by
offset magnitude in voxels. The --revert-array-attributes option is necessary
because array attributes like "offset" and "resolution" are stored in reversed
order in the snapshot. Datasets matching any of the regular expression patterns
providedwith the --exclude option are ignored but regular expressions provided
with the --include option can be used to override exclusion formatching datasets.
Here, we add the raw data, all predictions, and glial cell ground truth annota-
tions. The --channels options groups the affinity predictions into multi-channel
datasets (𝑎1, 𝑎5, 𝑎9), (𝑎2, 𝑎6, 𝑎10), (𝑎3, 𝑎7, 𝑎11), and (𝑎4, 𝑎8, 𝑎12). figure 56 shows the
visualization of training snapshot 30751 with the paintera-show-container com-
mand.

In a similar way, the latest checkpoint can be inquired with the list-latest-
checkpoint command:
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1 $ list-latest-checkpoint --help

2 usage: list-latest-checkpoint [-h] [--experiment EXPERIMENT]

3 [--setup SETUP [SETUP ...]]

4 [--checkpoint-filename CHECKPOINT_FILENAME]

5
6 optional arguments:

7 -h, --help show this help message and exit

8 --experiment EXPERIMENT, -e EXPERIMENT

9 Path to experiment directory. Defaults to current

10 working directory.

11 --setup SETUP [SETUP ...]

12 Print latest snapshot for these setups. Defaults to

13 all setups.

14 --checkpoint-filename CHECKPOINT_FILENAME

15 File that stores latest checkpoint (relative to

16 experiment). Defaults to `checkpoint'

This is particularly useful for using the network for prediction at its latest training
stage.

4.3 imglyb

The multi-dimensional numpy.ndarray (NumPy array) of the NumPy65 (Van Der
Walt, Colbert, and Gael Varoquaux 2011) Python library is the essential data
structure for multi-dimensional image processing and analysis in the Python
programming language. Many multi-image processing libraries use NumPy
arrays as their core data structure, e.g. scikit-image66 (Van der Walt et al. 2014),
or expose NumPy array compatible Python interfaces, e.g. VIGRA,67 ITK,68 or
OpenCV.69 The NumPy array is a pointer into native memory with additional
meta information like the size (shape) or the data type. The NumPy library and,
by extension, all Python libraries with appropriate interfaces provide a wealth of
efficient vectorized functions that would otherwise be inefficient if implemented
in Python. Essentially, the NumPy library and ecosystem have been a major
contributor to the success of the Python programming language in scientific
computing, including bioimage informatics.

Java programs are executed inside a Java virtual machine (JVM) and cannot
access native memory including NumPy arrays. ImageJ70 (Schneider, Rasband,
and Eliceiri 2012; Schindelin, C. T. Rueden, et al. 2015) is the most important multi-
dimensional image processing and analysis frameworks for bioinformatics in
Java. The Fiji71 (Schindelin, Arganda-Carreras, et al. 2012) distribution of ImageJ
ships with a large number of plugins, e.g. TrakEM272 (Cardona et al. 2012) or
Trainable Weka Segmentation73 (Arganda-Carreras et al. 2017), and contributors
can provide their software through separate update sites.74

65https://www.numpy.org
66https://scikit-image.org
67https://ukoethe.github.io/vigra
68https://itk.org
69https://opencv.org
70https://imagej.net
71https://fiji.sc
72https://imagej.net/TrakEM2
73https://imagej.net/Trainable_Weka_Segmentation
74https://imagej.net/Update_Sites
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https://imagej.net/TrakEM2
https://imagej.net/Trainable_Weka_Segmentation
https://imagej.net/Update_Sites
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While many scientists use both environments for their research, the lack of
direct interaction results in rather crude and cumbersome solutions: Typically,
part of an analysis is conducted in Python/ImageJ. The results are then written to
file and loaded for further analysis in ImageJ/Python. This requires, of course,
that compatible file formats are available in both environments. Instead, many
scientists prefer to use frameworks like the popular Jupyter Notebooks (Kluyver
et al. 2016) for execution in a single process, documentation, and publication of
entire analyses, which is impossible when using both Python and ImageJ.

Modern ImageJ2 (C. T. Rueden, Schindelin, et al. 2017; C. T. Rueden and
Eliceiri 2018) builds upon the ImgLib2 (Pietzsch, Preibisch, et al. 2012) Java
library for generic multi-dimensional image processing. One of the core features
of ImgLib2 is the separation of data representation and access of voxel values and
coordinates: Virtualization of pixel access at minimal performance penalty allows
to transparently exchange the underlying data representation. In other words,
the caller of an ImgLib2 data structure can access the voxel values without any
knowledge of how the underlying data is provided.

The RandomAccessibleInterval75 interface is the ImgLib2 representation of
voxel data in a discrete and finite multi-dimensional grid. Implementations
of this interface can provide data through arbitrary backends or accesses: The
ListImg76 is backed by a List77 of individual object instances. The PlanarImg78
represents data as a list of image planes backed by primitive type arrays. The
ArrayImg79 holds data in a single primitive type array for efficient access. The
CellImg80 divides the coordinate domain into a grid of cells (blocks, chunks),
each backed by a primitive type array, for image sizes that exceed the capac-
ity of Java arrays (≈ 231). Other implementations do not hold their own data:
The ConvertedRandomAccessibleInterval81 converts pixel values as requested
and avoids unnecessary copies of the data. The StackView82 combines a stack
of 𝑛-dimensional RandomAccessibleInterval into a single 𝑛 + 1-dimensional
RandomAccessibleInterval.

This virtualization makes shared memory between ImgLib2 and NumPy data
structures possible. I extended the ImgLib2 ArrayImg with data backends that
access native memory in the imglib2-unsafe83 and imglib2-imglyb84 Java libraries. I
developed the imglyb Python library that uses the Python-Java bridge PyJNIus85
to expose imglib2-imglyb in Python for shared memory access between NumPy
arrays and ImgLib2 in a single process. In particular, ImgLib2 can access native
NumPy array memory without copying data. Conversely, NumPy can access only
ImgLib2 data structures that were created with native memory backend.

75net.imglib2.RandomAccessibleInterval
76net.imglib2.img.list.ListImg
77java.util.List
78net.imglib2.img.planar.PlanarImg
79net.imglib2.img.array.ArrayImg
80net.imglib2.img.cell.CellImg
81net.imglib2.converter.read.ConvertedRandomAccessibleInterval
82imglib2.view.StackView
83https://github.com/imglib/imglib2-unsafe
84https://github.com/imglib/imglib2-imglyb
85https://github.com/kivy/pyjnius
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https://github.com/kivy/pyjnius
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First, I will review Python-Java bridge frameworks that follow different strate-
gies to enable interaction of Python and the JVM.

4.3.1 Python-Java Bridges

Jython86 is a JVM based re-implementation of CPython — the reference imple-
mentation in C of the Python programming language. As such, it inter-operates
flawlessly with Java but the wealth of CPython extensions like NumPy cannot be
used through Jython. JyNI (Richthofer 2014; Richthofer 2016) uses the Java Na-
tive Interface87 (JNI) to make native CPython extensions like NumPy accessible
from Jython. The general lack of support for Python 3 in Jython renders its future
usefulness questionable, in particular considering the end of lifetime of Python 2
on January 1st, 202088 — many major projects have pledged to drop support for
Python 2 by that time.89

Java Embededded Python90 (Jep) — contrary to the other frameworks reviewed
in this section — starts CPython interpreters from within a JVM through the JNI.
Jep supports conversion between some Java and Python types, in particular Java
primitive arrays and numpy.ndarray. Instead of sharing memory, however, data
is copied during conversion.91

Py4J92 starts two independent processes for Python and Java. Data and objects
are shared through sockets, i.e. by copy and not by shared memory.

Jpy93 is unique insofar as it is a bi-directional Python bridge: Java classes and
methods can be called from Python and vice versa. Furthermore, it is possible to
wrap Python classes as implementations of Java interfaces in Java — to my under-
standing it is not possible to pass Python classes as interfaces to Java methods
from Python code. Disambiguation of overloaded methods in an interface is not
possible in Python classes.

In a similar way, JPype94 interfaces between Java and Python through the JNI.
Java interfaces can be implemented in Python and passed as call-back to Java
methods called from Python but overloaded methods cannot be disambiguated.

Finally, PyJNIus builds on the JNI as well: Java classes and methods can be
called from Python and interfaces can be implemented with disambiguation of
overloaded methods through Python decorators — the exact signature must be
specified for each implemented method.

Only JNI based Python-Java bridges enable shared memory between NumPy
and ImgLib2 data structures. Out of these, only PyJNIus supports implementation

86https://www.jython.org
87https://docs.oracle.com/javase/8/docs/technotes/guides/jni
88https://github.com/python/devguide/pull/344
89https://python3statement.org
90https://github.com/ninia/jep
91Java arrays are fundamentally different from c-style arrays (pointers).
92https://www.py4j.org/
93https://github.com/bcdev/jpy
94https://github.com/jpype-project/jpype
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https://www.py4j.org/
https://github.com/bcdev/jpy
https://github.com/jpype-project/jpype
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of arbitrary Java interfaces with overloadedmethods in Python: JPype95 and Jpy96

match Python and Java methods by name and Python does not support method
overloading. PyJNIus uses decorators to specify the exact method signature and
to unambiguously map Python methods to Java methods.97 At the time of the
creation of imglyb, I was unable to implement any Java interfaces in JPype or
JPy without producing segmentation faults.98 PyJNIus was therefore the logical
choice for a Python/NumPy-ImgLib2 bridge.

4.3.2 Architecture & Design

The ImgLib2 ArrayImg99 uses accesses as an abstraction of the underlying data. In
the standard implementation, accesses are backed by Java primitive arrays such
as long[], double[], etc. While similar in name and function, native C-arrays —
simply pointers to contiguous native memory — differ entirely from Java arrays —
objects in the JVM heap that can be fragmented. It is thus impossible to use an
ArrayImg backed by Java arrays for shared memory access of a numpy.ndarray

that is backed by a C-array. Thanks to the abstraction of data through accesses, it
is possible to implement alternative accesses that understand C-arrays— or rather
a memory address: The Unsafe100 class exposes native memory for allocation and
read/write-access to the JVM — of course guarantees such as safe memory access
are lost and segmentation faults may occur for invalid memory access. This is a
problem in particular with two independent garbage collectors for Python and
Java, respectively, but the solution is simple: The memory owner — typically the
object that allocated the memory — must not be destroyed or garbage collected
while any other object holds a reference to that memory location. I developed the
imglib2-unsafe Java package to provide these accesses. Furthermore, as ArrayImg
is limited to about 231 – array size is limited by the maximum value of signed
32bit integer and loops are optimized for integer but not for long indices in Java —
and a numpy.ndarray can allocate arbitrarily large amounts of native memory, I
implemented the UnsafeImg101 to support such use-cases. In practice, however, it
is usually preferable to process large data in small chunks.

The NumPy-ImgLib2 bridging layer is split into the imglib2-imglyb102 Java
and imglyb103 Python packages for Java and Python layers, respectively. These
packages address, most importantly, reference management to ensure validity
of memory addresses and mapping of NumPy meta data such as data types or
strides into ImgLib2 space.

95https://jpype.readthedocs.io/en/latest/userguide.html#jproxy
96https://jpy.readthedocs.io/en/latest/intro.html#implementing-java-interfaces-

using-python
97https://pyjnius.readthedocs.io/en/stable/api.html#jnius.java_method
98Re-visiting while writing this thesis, segmentation faults to not seem to be an issue anymore.
99net.imglib2.img.array.ArrayImg

100The internal sun.misc.Unsafe class is not part of the Java API and thus subject to potentially
breaking changes or removal in subsequent releases.

101net.imglib2.img.unsafe.UnsafeImg
102https://github.com/imglib/imglib2-imglyb
103https://github.com/imglib/imglyb
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https://pyjnius.readthedocs.io/en/stable/api.html#jnius.java_method
https://github.com/imglib/imglib2-imglyb
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Core functionality that is independent of image processing— in partiuclar the
use of jgo (section 4.4) to resolve Apache Maven dependencies — have since been
moved to the scyjava104 package for availability and use in unrelated projects,
most notably the ImageJ-Python integration pyimagej.105

4.3.3 Installation

The easiest way to install imglyb is through conda:

1 $ conda install -c conda-forge imglyb

This installs the PyJNIus and OpenJDK dependencies from the conda-forge chan-
nel. If a different JDK — e.g. Oracle JDK or OpenJDK8 with JavaFX — is preferred,
PyJNIus has to be built separately106 and the PYJNIUS_JAR environment variable
has to be set appropriately (build instructions for Unix-like operating systems;
check the Makefile and adapt as needed for installations on Windows). Apache
Ant107 is required for the build process and Apache Maven108 at runtime.

1 $ export JAVA_HOME= # specify JDK

2 $ PYJNIUS_SRC_DIR= # specify directory for PyJNIus sources

3 $ git clone https://github.com/kivy/pyjnius.git $PYJNIUS_SRC_DIR

4 $ cd $PYJNIUS_SRC_DIR

5 $ make

6 $ make tests

7 $ pip install $PYJNIUS_SRC_DIR

8 $ export PYJNIUS_JAR=$PYJNIUS_SRC_DIR/build/pyjnius.jar

Now, imglyb can be installed via the Python package installer for Python pip:109

1 $ pip install imglyb

The latest imglyb development version is available on GitHub.110

4.3.4 Usage

The environment variables JAVA_HOME and PYJNIUS_JAR need to be set appro-
priately as described in section 4.3.3. Imglyb implicitly imports PyJNIus and
PyJNIus — the Python module is jnius — immedietaly starts a JVM when im-
ported into Python. Thus, any Java settings and the classpath need to be specified
before imglyb or PyJNIus are imported with any of these import statements:

1 import imglyb

2 import jnius

3 from jnius import ...

In general, imglyb should be imported before PyJNIus. The sole exception is
jnius_config, which can be used to set JVM options and the classpath:

104https://github.com/scijava/scyjava
105https://github.com/imagej/pyimagej
106https://github.com/kivy/pyjnius#usage-on-desktop
107https://ant.apache.org
108https://maven.apache.org
109https://pip.pypa.io/en/stable
110https://github.com/imglib/imglyb
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1 import jnius_config

2 jnius_config.set_classpath(*paths)

3 jnius_config.add_classpath(*paths)

4 jnius_config.set_options(*options)

5 jnius_config.add_options(*options)

In a similar way, the version of the imglib2-imglyb Maven artifact can be specified
through imglyb_config:

1 import imglyb_config

2 imglyb_config.set_imglib2_imglyb_version

AdditionalMaven dependencies and jgo (section 4.4) settings can bemanipulated
trough scyjava_config:

1 import scyjava_config

2 # add additional maven dependencies

3 scyjava_config.add_endpoints(*endpoints)

4 # add repositories for maven dependencies

5 scyjava_config.add_repositories(*repos)

For convenience, scyjava_config also exposes the functions in jnius_config. In
general, Python code that uses imglyb should be structured like this:

1 # optional:

2 import scyjava_config

3 # configure scyjava/pyjnius as needed

4 # optional:

5 import imglyb_config

6 # configure imglyb as needed

7
8 # import imglyb before jnius

9 import imglyb

10
11 # optional: import jnius as needed

12 import jnius

13 from jnius import ...

14
15 # actual code goes here

The most important functions in imglyb convert numpy.ndarray to an ImgLib2
RandomAccessibleInterval,111 or — in the reverse direction — from an ImgLib2
ArrayImg backed by native access to a numpy.ndarray:

1 import imglyb

2 import numpy as np

3
4 # numpy.ndarray to ImgLib2:

5 # create some dummy data:

6 array = np.random.rand(10, 20, 30) * 256

7 img = imglyb.to_imglib(array)

8 # interpret data as ARGB

9 # numpy.uint32 and numpy.int32 only:

10 argb_arr = array.astype(np.int32)

11 argb_img = imglyb.to_imglib_argb(argb_arr)

12
13 # ImgLib2 to numpy.ndarray:

14 # create some data, here we just

15 # make a copy of the converted img

16 from jnius import autoclass

17 package = 'net.imglib2.python'

18 clazz = 'ArrayImgWithUnsafeStoreFactory'

19 class_name = '%s.%s' % (package, clazz)

111net.imglib2.python.ReferenceGuardingRandomAccessibleInterval
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20 Factory = autoclass(class_name)

21 factory = Factory(img.randomAccess().get())

22 copy = factory.create(img)

23
24 # copy (slow, do not use for large images)

25 s = imglyb.util.Views.flatIterable(img).cursor()

26 t= imglyb.util.Views.flatIterable(copy).cursor()

27 while s.hasNext():

28 t.next().set(s.next())

29 from_img = imglyb.to_numpy(copy)

30 # converted copy should be element-wise

31 # equal to original

32 assert np.all(from_img == array)

Additionally, visualization of data through BigDataViewer is made available in
the imglyb.util module. Python is unaware of any JVM threads and the Python
interpreter — unless in interactive mode — needs to be kept alive as desired:

1 import imglyb

2 import imglyb.util as util

3 import numpy as np

4
5 # create random ARGB data

6 data = np.random.randint(

7 0,

8 2**32,

9 size=(30, 25, 35),

10 dtype=np.uint32)

11 img = imglyb.to_imglib_argb(data)

12 bdv = util.BdvFunctions.show(img, 'random')

13
14 # python does not know about Java threads

15 # instead of keeping python interpreter alive

16 # infinitely, keep it alive only while window is showing

17 from jnius import autoclass

18 import threading

19 import time

20 package = 'net.imglib2.python'

21 clazz = 'BdvWindowClosedCheck'

22 check = autoclass('%s.%s' % (package, clazz))()

23 swing = autoclass('javax.swing.SwingUtilities')

24 vp = bdv.getBdvHandle().getViewerPanel()

25 frame = swing.getWindowAncestor(vp)

26 frame.addWindowListener(check)

27
28 def sleep():

29 while check.isOpen():

30 time.sleep(1.0)

31
32 t = threading.Thread(target=sleep)

33 t.start()

34 t.join()

Figure 57 shows the BigDataViewer window as created by above Python code.
Unfortunately, due to an incompatibility between the Java awt and Cocoa event
loops, Java awt applications cannot currently be started from Python on OSX.
Donald Olbris contributed a wrapper script that ensures that the respective event
loops are started in the correct order and Java awt applications can be used on
OSX as well.112

112https://github.com/imglib/imglyb#awt-through-pyjnius-on-osx
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(a) (b)

Figure 57: Visualization of a random integer-valued NumPy array in BigDataViewer
through imglyb; the values are interpreted as ARGB color: Initial state of the viewer (a) ,
and after arbitrary navigation (b). Cross-sections can be arbitrarily oriented. Rendering
and navigation are fast and responsive.

Visualization is not restricted to BigDataViewer: In a more comprehensive
effort, I developed the payntera113 package to expose Python bindings for Paintera.
Meshes can be generated on the fly from a numpy.ndarray and rendered inside
the Paintera 3D-view. In contrast to Java awt, no wrapper script is required to
start JavaFX applications in Python on OSX. JavaFX requires explicit control of
the event loop, which is also handled in the payntera package:114

1 # set heap size to reasonable value

2 import jnius_config

3 jnius_config.add_options('-Xmx2g')

4
5 import numpy as np

6 import payntera

7 import payntera.jfx

8 import scipy.ndimage

9 import time

10
11 # imglyb and jnius must be imported after

12 # payntera is imported!

13 import imglyb

14 # jnius must be imported after imglyb is imported!

15 from jnius import autoclass, JavaException

16
17 payntera.jfx.init_platform()

18
19 package = 'org.janelia.saalfeldlab.paintera'

20 clazz = 'PainteraBaseView'

21 class_name = '%s.%s' % (package, clazz)

22 PainteraBaseView = autoclass(class_name)

23 viewer = PainteraBaseView.defaultView()

24 pbv = viewer.baseView

25 pane = viewer.paneWithStatus.getPane()

26 scene, stage = payntera.jfx.start_stage(pane)

27

113https://github.com/saalfeldlab/payntera
114https://github.com/saalfeldlab/payntera/blob/3f28f130/example-blobs.py
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28 # generate some data

29 shape = (80,80,50)

30 x, y, z = np.indices(shape)

31 fx, fy, fz = 2 \

32 * np.pi / np.array(shape) \

33 * np.array([10, 1, 3])

34
35 raw = (1+np.sin(x * fx)) \

36 * (1+np.sin(y * fy)) \

37 * (1+x*y/(shape[0]*shape[1]))**2 \

38 * (1+np.cos(z * fz)) \

39 * ((x+y+z)/np.sum(shape))

40 raw_img = imglyb.to_imglib(raw)

41 labels, nb = scipy.ndimage.label(raw > 0.5)

42 labels_img = imglyb.to_imglib(labels)

43
44 # show in Paintera

45 raw_state = pbv.addSingleScaleRawSource(

46 raw_img,

47 [1.0, 1.0, 1.0], # resolution

48 [0.0, 0.0, 0.0], # offset

49 np.min(raw), # contrast min

50 7, # contrast max

51 'raw') # name

52 state = pbv.addSingleScaleLabelSource(

53 labels_img,

54 [1.0, 1.0, 1.0], # resolution

55 [0.0, 0.0, 0.0], # offset

56 nb+1, # max label

57 'labels') # name

58
59 viewer.keyTracker.installInto(scene)

60 ANY = autoclass('javafx.scene.input.MouseEvent').ANY

61 scene.addEventFilter(ANY, viewer.mouseTracker)

62
63 while stage.isShowing():

64 time.sleep(1.0)

The synthetic data from this example is visualized in figure 58. Payntera has been
particularly useful for the visual inspection of data augmentations for the train-
ing (section 4.2) of a quasi-isotropic neural network architecture (section 3.4) that
were fully implemented in Python. More advanced examples— e.g. the implemen-
tation of a brush in Python to paint into a numpy.ndarray with BigDataViewer or
image processing with NumPy and ImgLib2 and shared memory — and tutorials
in the form of Jupyter notebooks are available on GitHub.115,116

4.3.5 Discussion & Future Work

With imglyb, I was able to create a bridge between two of the most widely used
frameworks in (biological) multi-dimensional image processing and, hopefully,
researchers will be able to benefit from combining both frameworks in analysis
pipelines with shared memory access. While, at the moment, imglyb is used
mostly by the ImageJ community, I will present imglyb at the SciPy conference
2019 (Hanslovsky 2019) and, with increased awareness, hopefully, some of the re-
maining issues can be addressed by the open-source Python community: Current

115https://github.com/hanslovsky/imglyb-learnathon
116https://github.com/hanslovsky/imglyb-examples
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Figure 58: Paintera visualizes NumPy arrays with on-the-fly mesh generation and 3D
rendering for label data. The raw data is synthesized as a product of simple trigonometric
functions and polynomials. The labels are generated as connected components on the
thresholded raw data.

lead developers and maintainers are proficient mostly in JVM-based languages
and some of the issues below may have causes in low-level Python functionality,
e.g. garbage collection and reference counting.

Currently, use of imglyb is restricted to relatively simple scenarios: NumPy
arrays need to remain in scope when being wrapped into ImgLib2 data struc-
tures. This is most likely caused by a reference counting issue inside PyJNIus.117
Attempts to visualize multi-dimensional chunked arrays like dask arrays (Rock-
lin 2015) in BigDataViewer or Paintera have so far been unsuccessful. I suspect
that this is related to the same reference counting issue. Currently, pyjnius.jar
is required to be available locally as specified by the PYJNIUS_JAR enviornment
variable even though pyjnius.jar is not platform-dependent. This could be sim-
plified by distributing pyjnius.jar through a Java package manager, e.g. Apache
Maven, and downloading pyjnius.jar as needed. On top of that, auto-detection
of the JDK when JAVA_HOME is not set is currently discussed for the upstream
scyjava library.118

4.4 jgo

Apache Maven119 is a dependency manager and build automation tool for Java.
The central element of a maven project is the project object model (POM) that
specifies a so-called artifact. A Maven artifact is identified by a coordinate with

117https://github.com/kivy/pyjnius/issues/345
118https://github.com/scijava/scyjava/pull/7
119https://maven.apache.org
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three components: groupId— the owner or context of the package, artifactId—
the name of the package, and its version. Typically, a coordinate is specified as a
colon-separated string:

1 groupId:artifactId:version

Artifacts can be distributed and made available through Maven repositories such
as the Central Repository,120 or the ImageJ Maven repository.121 Artifacts that are
installed or downloaded through maven are cached locally. While it is possible to
compile and execute an artifact from a POM file

1 $ # brackets indicate optional arguments

2 $ mvn -Pexec [-f /path/to/pom.xml]

an artifact cannot be executed just from its coordinates, even if it is available
through a repository. To address this, Curtis Ruedenwrote jgo,122 formerly known
as jrun, a bash script that downloads and executes a maven artifact identified
by its coordinates and its dependencies from online repositories. A local cache
at ~/.jgo speeds up subsequent executions of the same artifact. By default, jar
files are hard-linked from the local maven repository to minimize the storage
footprint if possible. I realized that jgo would be a great way to make Java
applications — e.g. Paintera — available for non-expert users that are not familiar
with Maven or the general software build and compilation process. While the
bash language is available on Unix(-like) operating systems like macOS or Linux,
distributing to Windows operating systems would be challenging. Instead, I
decided to re-implement jgo in an operating system agnostic way using the Python
programming language. Users can now simply install jgo through the package
installer for Python pip:123

1 $ pip install jgo

or conda
1 $ conda install -c conda-forge jgo

As a result, JVM-based applications can be installed simply through pip or conda;
the only additional non-Python dependencies are Java and Maven. The latest
development version is available on the jgo GitHub repository.

4.4.1 Usage

Jgo tries to simplify execution of Maven artifacts as much as possible and thus
employs a simple synopsis:

1 $ # brackets indicate optional arguments

2 $ jgo [jgo and java options] endpoint [program options]

The endpoint consists of one or more Maven coordinates, separated by a `+'-sign.
In more detail (additional line-breaks introduced for better readabilty):

120https://search.maven.org
121https://maven.imagej.net
122https://github.com/scijava/jgo
123https://pip.pypa.io
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1 $ jgo --help

2 usage: jgo [-v] [-u] [-U] [-m] [--ignore-jgorc] [--link-type type] [--additional-jars

3 jar [jar ...]] [--additional-endpoints endpoint [endpoint ...]]

4 [JVM_OPTIONS [JVM_OPTIONS ...]] <endpoint> [main-args]

5
6 Run Java main class from maven coordinates.

7
8 optional arguments:

9 -h, --help show this help message and exit

10 -v, --verbose verbose mode flag

11 -u, --update-cache update/regenerate cached environment

12 -U, --force-update force update from remote Maven repositories (implies -u)

13 -m, --manage-dependencies

14 use endpoints for dependency management (see "Details" below)

15 -r REPOSITORY [REPOSITORY ...], --repository REPOSITORY [REPOSITORY ...]

16 Add additional maven repository (key=url format)

17 -a ADDITIONAL_JARS [ADDITIONAL_JARS ...], --additional-jars ADDITIONAL_JARS

18 [ADDITIONAL_JARS ...]

19 Add additional jars to classpath

20 --additional-endpoints ADDITIONAL_ENDPOINTS [ADDITIONAL_ENDPOINTS ...]

21 Add additional endpoints

22 --ignore-jgorc Ignore ~/.jgorc

23 --link-type {hard,soft,copy,auto}

24 How to link from local maven repository into jgo cache.

25 Defaults to the `links' setting in ~/.jrunrc or 'auto'

26                         if not specified.

27
28 The endpoint should have one of the following formats:

29
30 - groupId:artifactId

31 - groupId:artifactId:version

32 - groupId:artifactId:mainClass

33 - groupId:artifactId:version:mainClass

34 - groupId:artifactId:version:classifier:mainClass

35
36 If version is omitted, then RELEASE is used.

37 If mainClass is omitted, it is auto-detected.

38 You can also write part of a class beginning with an @ sign,

39 and it will be auto-completed.

If no main class is specified in the Maven artifact or to run a different main class,
either of the groupId:artifactId:mainClass or groupId:artifactId:version:
mainClass endpoint syntaxes is used. The mainClass of an additional endpoint
is ignored if specified. Part of the fully qualified mainClass — starting at the
beginning of the class name — can be replaced by a single wildcard @-sign to
avoid overly verbose commands.

4.4.1.1 Configuration

Jgo can be configured with an optional configuration file at ~/.jgroc that is
structured similarly to a Windows INI file:124 properties in three sections —
repositories, settings, and shortcuts — are specified as `='-separated key-
value pairs, e.g.

1 [repositories]

2 ; add ImageJ repository to resolve Maven artifacts

3 imagej = https://maven.imagej.net/content/groups/public

4 [settings]

5 ; location of the local Maven repository

6 ; defaults to ~/.m2/repository if not specified

124https://en.wikipedia.org/wiki/INI_file
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7 ; replace with valid path:

8 m2Repo = /path/to/.m2Repo

9 ; location of the jgo cache dir

10 ; defaults to ~/.jgo if not specified

11 ; replace with valid path:

12 cacheDir = /path/to/.jgo

13 ; change link type for jars in jgo cache:

14 ; - hard

15 ; - soft

16 ; - copy

17 ; - auto (default) uses hard links if possible,

18 ; soft links otherwise

19 links = soft

20 [shortcuts]

21 repl = imagej:org.scijava.script.ScriptREPL

22 imagej = net.imagej:imagej

Shortcuts are expanded per endpoint from the beginning of the string until no
further expansion is possible. With this config file, for example, the invocation of
the SciJava script REPL125

1 $ jgo \

2 -r ij=https://maven.imagej.net/content/groups/public \

3 net.imagej:imagej:org.scijava.script.ScriptREPL

is simplified to just
1 $ jgo repl

In the following, I will present a few usage examples to help explain and build
intuition for the synopsis.

4.4.1.2 Examples

The command line interface of the Parsington126— the SciJava127 parser for math-
ematical expressions— can simply be invoked without the need for installation:

1 $ jgo org.scijava:parsington 1+3

2 4

Omitting the command line argument will start an interactive console shell. Addi-
tional jars can be added through the `+'-notation or the --additional-endpoints
option. This is useful to modify behavior or add functionality ao a program. For
example, the SciJava script REPL interprets different programming languages
depending on the classpath (assuming repositories to be configured as in sec-
tion 4.4.1.1):

1 # JRuby:

2 $ jgo org.scijava:scijava-common:@REPL+org.scijava:scripting-jruby

3 $ jgo \

4 --additional-endpoints org.scijava:scripting-jruby \

5 org.scijava:scijava-common:@REPL

6 # Jython:

7 $ jgo org.scijava:scijava-common:@REPL+org.scijava:scripting-jython

8 $ jgo \

9 --additional-endpoints org.scijava:scripting-jython \

10 org.scijava:scijava-common:@REPL

11 # Groovy:

125https://github.com/scijava/scijava-common
126https://github.com/scijava/parsington
127https://scijava.org
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12 $ jgo org.scijava:scijava-common:@REPL+org.scijava:scripting-groovy

13 $ jgo \

14 --additional-endpoints org.scijava:scripting-groovy \

15 org.scijava:scijava-common:@REPL

Similarly, logging backends for the popular Java logging facade framework SLF4J128
can be easily exchanged as preferred (assuming repositories to be configured as
in section 4.4.1.1):

1 # No logging:

2 $ jgo org.janelia.saalfeldlab:paintera

3 # slf4j-simple:

4 $ jgo org.janelia.saalfeldlab:paintera+org.slf4j:slf4j-simple:1.7.25

5 # slf4j-log4j12:

6 $ jgo org.janelia.saalfeldlab:paintera+org.slf4j:slf4j-log4j12:1.7.25

7 # slf4j-jdk14:

8 $ jgo org.janelia.saalfeldlab:paintera+org.slf4j:slf4j-jdk14:1.7.25

9 # logback:

10 $ jgo org.janelia.saalfeldlab:paintera+ch.qos.logback:logback-classic:1.2.3

4.4.2 Discussion

By channeling the powerful dependency management of Apache Maven, jgo
makes running Maven-based JVM applications straightforward and convenient.
The Python implementation makes distribution of applications extremely easy.
Python jgo can also be used to populate the classpath from Maven dependencies
when using Java-Python bridging frameworks (section 4.3).

128https://www.slf4j.org
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A
ARTIFACT CORRECTION

a.1 parameters

We make use of an alternating least squares scheme for solving equation (16)
More explicitly, we repeatedly solve

̄𝑠∗ = argmin
̄𝑠

SSEfit (98)

m∗ = argmin
m

SSEassess (99)

c∗ = argmin
c

SSEshift (100)

equations (98) to (100) in sequence with two of three variables ( ̄𝑠, m, c) fixed to
the current value until convergence or a user-specified number of iterations is
reached. This alternating least squares approach requires a set of user defined
parameters that are defined in table 14, along with default values. Only the most
important parameters are exposed in the Fiji “Z-Spacing Correction” plugin, as
indicated in table 14.

For non-planar distortion estimation, locality and resolution, as well as infer-
ence parameters for each stage need to be specified. A config file in the JSON
format holds these parameters along with meta information, such as input and
output paths. The list defined at the key “options” holds a JSON object of the
parameters for each stage. The “steps” parameter defines the spacing in 𝑥 and
𝑦 between local estimates. The value of “steps” should be decreasing with each
stage for an increasingly fine grid of estimates. The “radii” define the size of the
field of view for similarity measure calculation of the local estimates and should
vary approximately proportional to “steps”, as an increasing resolution of the
grid of estimates requires an increased locality of each estimate. Lastly, the “in-
ference” parameters define the inference options (table 14) at each stage. If an
option is not specified, it defaults to the value of the previous iteration, or–for the
first stage–to the respective default value listed in table 14.

The parameters used for the non-planar distortion experiments in section 2.4.2.3
are listed in listings A.1 and A.2, omitting any meta information to avoid unneces-
sary clutter.
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Table 14: Parameters for planar section spacing estimation.

Parameter Exposed in Fiji as Default
comparisonRange Consider only as many

neighbors in similarity
curve.

test maximally 10

nIterations Number of iterations for
alternating least squares
optimization (eq. 16 in
the main text).

outer iterations 100

shiftProportion Introduce damping by ap-
plying only proportional
shift at each iteration of
optimization.

outer regularization
1 − shiftProportion

0.6

scalingFactorEstimationIt-
erations

Number of iterations
for optimization of
scaling factors m (equa-
tion (99)).

inner iterations 10

scalingFactorRegularizer-
Weight

Element-wise regulariza-
tion of m towards 1.

inner regularization 0.1

withReorder Allow re-ordering of sec-
tions if set to true.

allow reordering true

minimumSectionThickness Minimum distance be-
tween sections if withRe-
order is set to false and sec-
tions are re-ordered in the
estimate. The initial or-
der is kept and the spac-
ing is set to minimumSec-
tionThickness.

— 0.01

coordinateUpdateRegulariz-
erWeight

Element-wise regulariza-
tion towards initial coor-
dinates

— 0

regularizationType Confine estimate to initial
interval (BORDER), map
linearly onto starting coor-
dinates (IDENTITY), or
do not regularize at all
(NONE).

— BORDER

forceMonotonicity Ignore similarity mea-
surements that break
assumption of mono-
tonicity. In practice this
happens only for distant
section pairs.

— false

estimateWindowRadius Spacing and field of view
for estimates of ̄𝑠𝑖. Use
complete field of view if
negative.

— -1
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Listing A.1: Parameters used in Experiment 2.4.2.3 (a).
1 {

2 "options": [

3 {

4 "steps": [4000, 2500],

5 "radii": [2001, 1251],

6 },

7 {

8 "steps": [2000, 1250],

9 "radii": [1001, 626],

10 "inference": {

11 "regularizationType": "NONE",

12 "coordinateUpdateRegularizerWeight": 0.1,

13 "comparisonRange": 15,

14 "nIterations": 1000

15 }

16 },

17 {

18 "steps": [1000,625],

19 "radii": [666, 416],

20 "inference": {

21 "regularizationType": "NONE",

22 "coordinateUpdateRegularizerWeight": 0.1,

23 "comparisonRange": 15,

24 "nIterations": 1000

25 }

26 },

27 {

28 "steps": [500, 312],

29 "radii": [500, 300],

30 "inference": {

31 "regularizationType": "NONE",

32 "coordinateUpdateRegularizerWeight": 0.2,

33 "comparisonRange": 15,

34 "nIterations": 200

35 }

36 },

37 {

38 "steps": [250, 156],

39 "radii": [300, 300],

40 "inference": {

41 "regularizationType": "NONE",

42 "coordinateUpdateRegularizerWeight": 0.2,

43 "comparisonRange": 15,

44 "nIterations": 100

45 }

46 },

47 {

48 "steps": [125, 78],

49 "radii": [200, 200],

50 "inference": {

51 "regularizationType": "NONE",

52 "coordinateUpdateRegularizerWeight": 0.3,

53 "comparisonRange": 10

54 }

55 },

56 {

57 "steps": [62, 39],

58 "radii": [100, 100],

59 "inference": {

60 "regularizationType": "NONE",

61 "coordinateUpdateRegularizerWeight": 0.4,

62 "comparisonRange": 10,

63 "nIterations": 50

64 }
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65 },

66 {

67 "steps": [31, 19],

68 "radii": [50, 50],

69 "inference": {

70 "regularizationType": "NONE",

71 "coordinateUpdateRegularizerWeight": 0.5,

72 "comparisonRange": 5,

73 "nIterations": 10

74 }

75 }

76 ]

77 }



A.1 parameters 163

Listing A.2: Parameters used in Experiment 2.4.2.3 (b).
1 {

2 "options": [

3 {

4 "steps": [3000, 475],

5 "radii": [1500, 474],

6 },

7 {

8 "steps": [1500, 475],

9 "radii": [1000, 474],

10 "inference": {

11 "regularizationType": "NONE",

12 "coordinateUpdateRegularizerWeight": 0.1,

13 "comparisonRange": 15,

14 "nIterations": 100

15 }

16 },

17 {

18 "steps": [750, 474],

19 "radii": [666, 416],

20 "inference": {

21 "regularizationType": "NONE",

22 "coordinateUpdateRegularizerWeight": 0.1,

23 "comparisonRange": 15,

24 "nIterations": 100

25 }

26 },

27 {

28 "steps": [500, 312],

29 "radii": [500, 300],

30 "inference": {

31 "regularizationType": "NONE",

32 "coordinateUpdateRegularizerWeight": 0.2,

33 "comparisonRange": 15,

34 "nIterations": 20

35 }

36 },

37 {

38 "steps": [250, 156],

39 "radii": [300,300],

40 "inference": {

41 "regularizationType": "NONE",

42 "coordinateUpdateRegularizerWeight": 0.2,

43 "comparisonRange": 15,

44 "nIterations": 10

45 }

46 },

47 {

48 "steps": [125,78],

49 "radii": [200, 200],

50 "inference": {

51 "regularizationType": "NONE",

52 "coordinateUpdateRegularizerWeight": 0.3,

53 "comparisonRange": 10

54 }

55 },

56 {

57 "steps": [62, 39],

58 "radii": [100, 100],

59 "inference": {

60 "regularizationType": "NONE",

61 "coordinateUpdateRegularizerWeight": 0.4,

62 "comparisonRange": 10,

63 "nIterations": 10

64 }
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65 },

66 {

67 "steps": [31, 19],

68 "radii": [50, 50],

69 "inference": {

70 "regularizationType": "NONE",

71 "coordinateUpdateRegularizerWeight": 0.5,

72 "comparisonRange": 5,

73 "nIterations": 10

74 }

75 }

76 ]

77 }
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b.1 prediction and reconstruciton examples

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 59: Cross-section of prediction and reconstruction for sample A with best per-
forming network qi-mse-ng (table 9): The horizontal (𝑥)/vertical (𝑦) image axes are
aligned with the third/second axis of the data. The corresponding resolution (𝑥 × 𝑦)is
40nm × 4nm for raw data, and 40/3nm × 12nm for interpolated ground truth, predictions
and reconstruction. The annotated area spans 5 × 103 nm = 5µm from left to right (en-
closed by magenta shading (i)). Each set of affinity channels, 𝑎1, 𝑎5, 𝑎9(a), 𝑎2, 𝑎6, 𝑎10(b),
𝑎3, 𝑎7, 𝑎11(c), and 𝑎4, 𝑎8, 𝑎12(d), is projected onto RGB channels with contrast range [0, 1].
The inverted affinities (e)–(h) are displayed with contrast range [0.5, 0.7]. Yellow glia
predictions 𝑔 with contrast range [0, 1] are overlaid with blue ground truth in (i) to high-
light false negative (blue), false positive (yellow), and correct predictions (white) within
the masked area. Glia annotations are not available outside the annotated and yellow
predictions cannot be considered false there. The averaged and scaled affinities ̄𝑎 (1 − 𝑔1

0)
are restricted to the annotated volume (j). Predicted glia voxels are not considered for
neuron reconstruction (k). The ground truth (l) is shown for comparison and with glia
highlighted in blue color.

165
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 60: Cross-section of prediction and reconstruction for sample B with best per-
forming network qi-mse-ng (table 9): The horizontal (𝑥) and vertical (𝑦) image axes
are aligned with the third and second axis of the data, respectively. The corresponding
resolution (𝑥 × 𝑦)is 40nm× 4nm for raw data, and 40/3nm× 12nm for interpolated ground
truth, predictions and reconstruction. The annotated area spans 5 × 103 nm = 5µm
from left to right (enclosed by magenta shading (i)). Each set of affinity channels,
𝑎1, 𝑎5, 𝑎9(a), 𝑎2, 𝑎6, 𝑎10(b), 𝑎3, 𝑎7, 𝑎11(c), and 𝑎4, 𝑎8, 𝑎12(d), is projected onto RGB channels
with contrast range [0, 1]. The inverted affinities (e)–(h) are displayed with contrast
range [0.5, 0.7]. Yellow glia predictions 𝑔 with contrast range [0, 1] are overlaid with blue
ground truth in (i) to highlight false negative (blue), false positive (yellow), and correct
predictions (white) within the masked area. Glia annotations are not available outside
the annotated and yellow predictions cannot be considered false there. The averaged
and scaled affinities ̄𝑎 (1 − 𝑔1

0) are restricted to the annotated volume (j). Predicted glia
voxels are not considered for neuron reconstruction (k). The ground truth (l) is shown
for comparison and with glia highlighted in blue color.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 61: Cross-section of prediction and reconstruction for sample C with best per-
forming network qi-mse-ng (table 9): The horizontal (𝑥)/vertical (𝑦) image axes are
aligned with the third/second axis of the data. The corresponding resolution (𝑥 × 𝑦)is
40nm × 4nm for raw data, and 40/3nm × 12nm for interpolated ground truth, predictions
and reconstruction. The annotated area spans 5 × 103 nm = 5µm from left to right (en-
closed by magenta shading (i)). Each set of affinity channels, 𝑎1, 𝑎5, 𝑎9(a), 𝑎2, 𝑎6, 𝑎10(b),
𝑎3, 𝑎7, 𝑎11(c), and 𝑎4, 𝑎8, 𝑎12(d), is projected onto RGB channels with contrast range [0, 1].
The inverted affinities (e)–(h) are displayed with contrast range [0.5, 0.7]. Yellow glia
predictions 𝑔 with contrast range [0, 1] are overlaid with blue ground truth in (i) to high-
light false negative (blue), false positive (yellow), and correct predictions (white) within
the masked area. Glia annotations are not available outside the annotated and yellow
predictions cannot be considered false there. The averaged and scaled affinities ̄𝑎 (1 − 𝑔1

0)
are restricted to the annotated volume (j). Predicted glia voxels are not considered for
neuron reconstruction (k). The ground truth (l) is shown for comparison and with glia
highlighted in blue color.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 62: Cross-section of prediction and reconstruction for sample 0 with best per-
forming network qi-mse-ng (table 9): The horizontal (𝑥)/vertical (𝑦) image axes are
aligned with the third/second axis of the data. The corresponding resolution (𝑥 × 𝑦)is
40nm × 4nm for raw data, and 40/3nm × 12nm for interpolated ground truth, predictions
and reconstruction. The annotated area spans 5 × 103 nm = 5µm from left to right (en-
closed by magenta shading (i)). Each set of affinity channels, 𝑎1, 𝑎5, 𝑎9(a), 𝑎2, 𝑎6, 𝑎10(b),
𝑎3, 𝑎7, 𝑎11(c), and 𝑎4, 𝑎8, 𝑎12(d), is projected onto RGB channels with contrast range [0, 1].
The inverted affinities (e)–(h) are displayed with contrast range [0.5, 0.7]. Yellow glia
predictions 𝑔 with contrast range [0, 1] are overlaid with blue ground truth in (i) to high-
light false negative (blue), false positive (yellow), and correct predictions (white) within
the masked area. Glia annotations are not available outside the annotated and yellow
predictions cannot be considered false there. The averaged and scaled affinities ̄𝑎 (1 − 𝑔1

0)
are restricted to the annotated volume (j). Predicted glia voxels are not considered for
neuron reconstruction (k). The ground truth (l) is shown for comparison and with glia
highlighted in blue color.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 63: Cross-section of prediction and reconstruction for sample 2 with best per-
forming network qi-mse-ng (table 9): The horizontal (𝑥)/vertical (𝑦) image axes are
aligned with the third/second axis of the data. The corresponding resolution (𝑥 × 𝑦)is
40nm × 4nm for raw data, and 40/3nm × 12nm for interpolated ground truth, predictions
and reconstruction. The annotated area spans 5 × 103 nm = 5µm from left to right (en-
closed by magenta shading (i)). Each set of affinity channels, 𝑎1, 𝑎5, 𝑎9(a), 𝑎2, 𝑎6, 𝑎10(b),
𝑎3, 𝑎7, 𝑎11(c), and 𝑎4, 𝑎8, 𝑎12(d), is projected onto RGB channels with contrast range [0, 1].
The inverted affinities (e)–(h) are displayed with contrast range [0.5, 0.7]. Yellow glia
predictions 𝑔 with contrast range [0, 1] are overlaid with blue ground truth in (i) to high-
light false negative (blue), false positive (yellow), and correct predictions (white) within
the masked area. Glia annotations are not available outside the annotated and yellow
predictions cannot be considered false there. The averaged and scaled affinities ̄𝑎 (1 − 𝑔1

0)
are restricted to the annotated volume (j). Predicted glia voxels are not considered for
neuron reconstruction (k). The ground truth (l) is shown for comparison and with glia
highlighted in blue color.
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b.2 performance evaluation of all parameter sets

Table 15: VOI𝑠 performance on 25% of the data that were not used for training for all
architectures and parameter sets. A “—” in the 𝑡𝑔 column means that the glia predictions
were not considered during super voxel generation and merging.

Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 — 0.189 0.004 0.001 0.777 0.032 0.301 0.018
qi-mse 0.1 0.1 0.148 0.014 0.054 0.593 0.122 0.072 0.034
qi-mse 0.1 0.2 0.136 0.009 0.037 0.585 0.113 0.054 0.021
qi-mse 0.1 0.3 0.132 0.008 0.029 0.582 0.109 0.047 0.015
qi-mse 0.1 0.4 0.129 0.008 0.024 0.583 0.106 0.044 0.012
qi-mse 0.1 0.5 0.128 0.008 0.02 0.585 0.104 0.043 0.01
qi-mse 0.1 0.6 0.128 0.008 0.018 0.588 0.102 0.044 0.01
qi-mse 0.1 0.7 0.128 0.008 0.016 0.592 0.101 0.044 0.009
qi-mse 0.1 0.8 0.129 0.009 0.014 0.598 0.099 0.046 0.009
qi-mse 0.1 0.9 0.133 0.01 0.014 0.613 0.097 0.052 0.009
qi-mse 0.3 — 0.385 0.059 0.068 1.264 0.116 0.739 0.066
qi-mse 0.3 0.1 0.165 0.017 0.076 0.604 0.176 0.075 0.042
qi-mse 0.3 0.2 0.154 0.012 0.061 0.595 0.168 0.056 0.029
qi-mse 0.3 0.3 0.149 0.011 0.053 0.594 0.164 0.051 0.023
qi-mse 0.3 0.4 0.148 0.011 0.049 0.596 0.161 0.049 0.021
qi-mse 0.3 0.5 0.148 0.011 0.046 0.598 0.16 0.049 0.021
qi-mse 0.3 0.6 0.148 0.012 0.044 0.601 0.159 0.052 0.02
qi-mse 0.3 0.7 0.151 0.013 0.044 0.608 0.159 0.061 0.02
qi-mse 0.3 0.8 0.154 0.014 0.043 0.62 0.158 0.071 0.02
qi-mse 0.3 0.9 0.165 0.017 0.045 0.643 0.164 0.098 0.021
qi-mse 0.5 — 0.88 0.252 0.61 2.183 0.43 1.186 0.617
qi-mse 0.5 0.1 0.435 0.128 0.457 0.985 0.387 0.198 0.456
qi-mse 0.5 0.2 0.427 0.124 0.437 0.981 0.379 0.191 0.45
qi-mse 0.5 0.3 0.43 0.123 0.461 0.983 0.376 0.189 0.449
qi-mse 0.5 0.4 0.433 0.124 0.483 0.979 0.374 0.193 0.447
qi-mse 0.5 0.5 0.437 0.125 0.487 0.984 0.375 0.201 0.454
qi-mse 0.5 0.6 0.447 0.125 0.491 1.008 0.386 0.219 0.454
qi-mse 0.5 0.7 0.452 0.127 0.494 1.021 0.385 0.231 0.454
qi-mse 0.5 0.8 0.458 0.129 0.496 1.035 0.387 0.245 0.457
qi-mse 0.5 0.9 0.472 0.132 0.505 1.066 0.391 0.271 0.464
qi-mse 0.7 — 1.257 0.509 0.959 2.62 0.828 1.527 1.097
qi-mse 0.7 0.1 0.74 0.338 0.853 1.267 0.758 0.326 0.898
qi-mse 0.7 0.2 0.738 0.335 0.847 1.27 0.756 0.327 0.894
qi-mse 0.7 0.3 0.742 0.341 0.848 1.273 0.758 0.336 0.895
qi-mse 0.7 0.4 0.748 0.342 0.848 1.296 0.759 0.347 0.896
qi-mse 0.7 0.5 0.751 0.343 0.847 1.302 0.761 0.357 0.897
qi-mse 0.7 0.6 0.756 0.344 0.852 1.311 0.762 0.369 0.898
qi-mse 0.7 0.7 0.764 0.345 0.86 1.322 0.771 0.382 0.902
qi-mse 0.7 0.8 0.773 0.347 0.864 1.341 0.785 0.398 0.905
qi-mse 0.7 0.9 0.789 0.351 0.872 1.375 0.793 0.432 0.909
qi-mse 0.9 — 3.107 4.089 2.255 3.773 2.94 2.675 2.912
qi-mse 0.9 0.1 2.539 3.911 2.165 2.298 2.715 1.375 2.769
qi-mse 0.9 0.2 2.542 3.912 2.164 2.302 2.715 1.389 2.772
qi-mse 0.9 0.3 2.551 3.917 2.171 2.307 2.729 1.4 2.778
qi-mse 0.9 0.4 2.555 3.921 2.174 2.313 2.733 1.405 2.782
qi-mse 0.9 0.5 2.559 3.922 2.175 2.323 2.735 1.416 2.784
qi-mse 0.9 0.6 2.571 3.927 2.178 2.332 2.739 1.461 2.789
qi-mse 0.9 0.7 2.579 3.929 2.184 2.343 2.742 1.48 2.796
qi-mse 0.9 0.8 2.589 3.935 2.189 2.359 2.749 1.503 2.8
qi-mse 0.9 0.9 2.608 3.943 2.196 2.398 2.768 1.537 2.808
qi-mse-ng 0.1 — 0.16 0.005 0.0 0.763 0.019 0.166 0.006
qi-mse-ng 0.1 0.1 0.132 0.009 0.037 0.624 0.017 0.072 0.03
qi-mse-ng 0.1 0.2 0.124 0.007 0.026 0.618 0.009 0.061 0.02
qi-mse-ng 0.1 0.3 0.12 0.006 0.021 0.616 0.006 0.057 0.015
qi-mse-ng 0.1 0.4 0.118 0.006 0.017 0.616 0.004 0.055 0.011
qi-mse-ng 0.1 0.5 0.117 0.006 0.014 0.618 0.003 0.055 0.008
qi-mse-ng 0.1 0.6 0.117 0.006 0.011 0.62 0.003 0.056 0.007
qi-mse-ng 0.1 0.7 0.117 0.006 0.01 0.624 0.003 0.056 0.006
qi-mse-ng 0.1 0.8 0.119 0.006 0.009 0.632 0.004 0.06 0.005
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Continued on next page…
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…continued: Table 15 (VOI𝑠 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse-ng 0.1 0.9 0.126 0.006 0.01 0.651 0.007 0.074 0.006
qi-mse-ng 0.3 — 0.332 0.036 0.039 1.261 0.105 0.527 0.025
qi-mse-ng 0.3 0.1 0.134 0.01 0.042 0.626 0.019 0.075 0.032
qi-mse-ng 0.3 0.2 0.126 0.007 0.031 0.62 0.012 0.066 0.022
qi-mse-ng 0.3 0.3 0.123 0.007 0.025 0.619 0.009 0.062 0.017
qi-mse-ng 0.3 0.4 0.121 0.007 0.022 0.619 0.007 0.06 0.014
qi-mse-ng 0.3 0.5 0.121 0.007 0.018 0.622 0.006 0.06 0.012
qi-mse-ng 0.3 0.6 0.121 0.007 0.016 0.625 0.006 0.062 0.011
qi-mse-ng 0.3 0.7 0.124 0.007 0.016 0.635 0.007 0.067 0.01
qi-mse-ng 0.3 0.8 0.129 0.007 0.016 0.654 0.008 0.079 0.01
qi-mse-ng 0.3 0.9 0.139 0.008 0.017 0.687 0.011 0.101 0.011
qi-mse-ng 0.5 — 0.693 0.186 0.358 1.997 0.269 0.892 0.456
qi-mse-ng 0.5 0.1 0.324 0.09 0.27 0.954 0.134 0.152 0.343
qi-mse-ng 0.5 0.2 0.321 0.09 0.263 0.952 0.128 0.153 0.337
qi-mse-ng 0.5 0.3 0.309 0.087 0.26 0.891 0.125 0.156 0.333
qi-mse-ng 0.5 0.4 0.321 0.087 0.269 0.958 0.124 0.156 0.331
qi-mse-ng 0.5 0.5 0.323 0.087 0.269 0.963 0.123 0.166 0.33
qi-mse-ng 0.5 0.6 0.326 0.087 0.272 0.97 0.123 0.174 0.331
qi-mse-ng 0.5 0.7 0.334 0.09 0.279 0.989 0.124 0.19 0.333
qi-mse-ng 0.5 0.8 0.334 0.091 0.281 0.95 0.125 0.211 0.344
qi-mse-ng 0.5 0.9 0.349 0.092 0.291 0.992 0.13 0.245 0.347
qi-mse-ng 0.7 — 1.143 0.377 0.868 2.48 0.749 1.356 1.028
qi-mse-ng 0.7 0.1 0.652 0.252 0.748 1.256 0.496 0.313 0.845
qi-mse-ng 0.7 0.2 0.654 0.25 0.751 1.249 0.52 0.314 0.837
qi-mse-ng 0.7 0.3 0.651 0.249 0.752 1.26 0.488 0.319 0.838
qi-mse-ng 0.7 0.4 0.659 0.249 0.752 1.267 0.528 0.326 0.834
qi-mse-ng 0.7 0.5 0.664 0.25 0.754 1.283 0.529 0.336 0.835
qi-mse-ng 0.7 0.6 0.669 0.25 0.754 1.292 0.529 0.348 0.838
qi-mse-ng 0.7 0.7 0.677 0.25 0.757 1.308 0.531 0.373 0.841
qi-mse-ng 0.7 0.8 0.689 0.251 0.763 1.329 0.538 0.405 0.846
qi-mse-ng 0.7 0.9 0.71 0.26 0.773 1.378 0.546 0.449 0.852
qi-mse-ng 0.9 — 2.658 3.306 1.905 3.486 2.415 2.354 2.483
qi-mse-ng 0.9 0.1 2.106 3.125 1.813 2.133 2.138 1.143 2.284
qi-mse-ng 0.9 0.2 2.111 3.13 1.815 2.139 2.142 1.157 2.284
qi-mse-ng 0.9 0.3 2.115 3.133 1.821 2.147 2.141 1.168 2.283
qi-mse-ng 0.9 0.4 2.123 3.139 1.821 2.165 2.142 1.186 2.286
qi-mse-ng 0.9 0.5 2.128 3.139 1.822 2.172 2.144 1.2 2.29
qi-mse-ng 0.9 0.6 2.137 3.147 1.827 2.187 2.147 1.218 2.296
qi-mse-ng 0.9 0.7 2.146 3.157 1.832 2.2 2.15 1.236 2.299
qi-mse-ng 0.9 0.8 2.156 3.162 1.837 2.223 2.153 1.262 2.301
qi-mse-ng 0.9 0.9 2.181 3.169 1.843 2.271 2.178 1.31 2.314
qi-mls-pre 0.1 — 1.018 1.015 0.756 1.853 0.649 0.855 0.983
qi-mls-pre 0.1 0.1 0.872 0.941 0.758 1.403 0.69 0.592 0.846
qi-mls-pre 0.1 0.2 0.871 0.932 0.742 1.401 0.725 0.597 0.829
qi-mls-pre 0.1 0.3 0.872 0.931 0.728 1.405 0.719 0.625 0.824
qi-mls-pre 0.1 0.4 0.869 0.931 0.719 1.412 0.717 0.614 0.819
qi-mls-pre 0.1 0.5 0.885 0.931 0.712 1.421 0.724 0.703 0.819
qi-mls-pre 0.1 0.6 0.889 0.928 0.707 1.432 0.724 0.725 0.817
qi-mls-pre 0.1 0.7 0.893 0.928 0.703 1.445 0.725 0.741 0.817
qi-mls-pre 0.1 0.8 0.908 0.929 0.716 1.477 0.73 0.777 0.816
qi-mls-pre 0.1 0.9 0.935 0.93 0.721 1.527 0.749 0.867 0.816
qi-mls-pre 0.3 — 5.798 6.008 5.403 6.094 5.575 5.851 5.855
qi-mls-pre 0.3 0.1 5.349 5.848 5.265 5.067 5.292 4.956 5.667
qi-mls-pre 0.3 0.2 5.354 5.846 5.262 5.085 5.295 4.975 5.663
qi-mls-pre 0.3 0.3 5.36 5.846 5.26 5.098 5.296 4.996 5.663
qi-mls-pre 0.3 0.4 5.365 5.845 5.257 5.112 5.297 5.017 5.661
qi-mls-pre 0.3 0.5 5.371 5.846 5.25 5.128 5.3 5.04 5.66
qi-mls-pre 0.3 0.6 5.379 5.846 5.248 5.146 5.303 5.07 5.66
qi-mls-pre 0.3 0.7 5.389 5.846 5.247 5.171 5.307 5.103 5.66
qi-mls-pre 0.3 0.8 5.404 5.847 5.246 5.204 5.315 5.155 5.66
qi-mls-pre 0.3 0.9 5.433 5.848 5.246 5.268 5.332 5.247 5.661
qi-mls-pre 0.5 — 6.272 6.224 6.013 6.536 5.826 6.847 6.186
qi-mls-pre 0.5 0.1 5.723 6.022 5.8 5.436 5.457 5.661 5.965
qi-mls-pre 0.5 0.2 5.728 6.02 5.796 5.452 5.459 5.681 5.96
qi-mls-pre 0.5 0.3 5.732 6.019 5.792 5.465 5.459 5.7 5.959
qi-mls-pre 0.5 0.4 5.737 6.019 5.789 5.478 5.46 5.721 5.957
qi-mls-pre 0.5 0.5 5.743 6.019 5.786 5.495 5.462 5.743 5.956
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Continued on next page…
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…continued: Table 15 (VOI𝑠 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre 0.5 0.6 5.751 6.019 5.784 5.513 5.465 5.773 5.955
qi-mls-pre 0.5 0.7 5.761 6.019 5.782 5.537 5.468 5.806 5.955
qi-mls-pre 0.5 0.8 5.776 6.02 5.781 5.57 5.476 5.857 5.955
qi-mls-pre 0.5 0.9 5.805 6.021 5.78 5.634 5.493 5.948 5.955
qi-mls-pre 0.7 — 6.272 6.224 6.013 6.536 5.826 6.847 6.186
qi-mls-pre 0.7 0.1 5.723 6.022 5.8 5.436 5.457 5.661 5.965
qi-mls-pre 0.7 0.2 5.728 6.02 5.796 5.452 5.459 5.681 5.96
qi-mls-pre 0.7 0.3 5.732 6.019 5.792 5.465 5.459 5.7 5.959
qi-mls-pre 0.7 0.4 5.737 6.019 5.789 5.478 5.46 5.721 5.957
qi-mls-pre 0.7 0.5 5.743 6.019 5.786 5.495 5.462 5.743 5.956
qi-mls-pre 0.7 0.6 5.751 6.019 5.784 5.513 5.465 5.773 5.955
qi-mls-pre 0.7 0.7 5.761 6.019 5.782 5.537 5.468 5.806 5.955
qi-mls-pre 0.7 0.8 5.776 6.02 5.781 5.57 5.476 5.857 5.955
qi-mls-pre 0.7 0.9 5.805 6.021 5.78 5.634 5.493 5.948 5.955
qi-mls-pre 0.9 — 6.272 6.224 6.013 6.536 5.826 6.847 6.186
qi-mls-pre 0.9 0.1 5.723 6.022 5.8 5.436 5.457 5.661 5.965
qi-mls-pre 0.9 0.2 5.728 6.02 5.796 5.452 5.459 5.681 5.96
qi-mls-pre 0.9 0.3 5.732 6.019 5.792 5.465 5.459 5.7 5.959
qi-mls-pre 0.9 0.4 5.737 6.019 5.789 5.478 5.46 5.721 5.957
qi-mls-pre 0.9 0.5 5.743 6.019 5.786 5.495 5.462 5.743 5.956
qi-mls-pre 0.9 0.6 5.751 6.019 5.784 5.513 5.465 5.773 5.955
qi-mls-pre 0.9 0.7 5.761 6.019 5.782 5.537 5.468 5.806 5.955
qi-mls-pre 0.9 0.8 5.776 6.02 5.781 5.57 5.476 5.857 5.955
qi-mls-pre 0.9 0.9 5.805 6.021 5.78 5.634 5.493 5.948 5.955
qi-mls-pre-ng 0.1 — 0.663 0.66 0.5 1.213 0.476 0.328 0.801
qi-mls-pre-ng 0.1 0.1 0.581 0.562 0.586 0.748 0.6 0.249 0.743
qi-mls-pre-ng 0.1 0.2 0.576 0.514 0.554 0.804 0.597 0.245 0.741
qi-mls-pre-ng 0.1 0.3 0.579 0.527 0.56 0.803 0.592 0.243 0.748
qi-mls-pre-ng 0.1 0.4 0.576 0.564 0.553 0.804 0.59 0.198 0.747
qi-mls-pre-ng 0.1 0.5 0.574 0.561 0.544 0.805 0.588 0.198 0.747
qi-mls-pre-ng 0.1 0.6 0.575 0.564 0.539 0.814 0.588 0.2 0.747
qi-mls-pre-ng 0.1 0.7 0.577 0.566 0.551 0.819 0.587 0.196 0.746
qi-mls-pre-ng 0.1 0.8 0.604 0.571 0.568 0.901 0.587 0.249 0.746
qi-mls-pre-ng 0.1 0.9 0.631 0.579 0.569 0.93 0.621 0.268 0.818
qi-mls-pre-ng 0.3 — 2.307 1.993 2.366 2.585 2.237 2.433 2.229
qi-mls-pre-ng 0.3 0.1 2.068 1.927 2.303 2.029 2.137 1.843 2.169
qi-mls-pre-ng 0.3 0.2 2.063 1.923 2.297 2.024 2.129 1.848 2.16
qi-mls-pre-ng 0.3 0.3 2.065 1.921 2.29 2.035 2.128 1.853 2.162
qi-mls-pre-ng 0.3 0.4 2.068 1.923 2.287 2.04 2.127 1.866 2.162
qi-mls-pre-ng 0.3 0.5 2.07 1.924 2.288 2.042 2.126 1.876 2.162
qi-mls-pre-ng 0.3 0.6 2.072 1.924 2.287 2.051 2.126 1.884 2.162
qi-mls-pre-ng 0.3 0.7 2.076 1.925 2.287 2.057 2.126 1.899 2.164
qi-mls-pre-ng 0.3 0.8 2.085 1.926 2.287 2.093 2.126 1.912 2.164
qi-mls-pre-ng 0.3 0.9 2.099 1.932 2.292 2.127 2.127 1.951 2.167
qi-mls-pre-ng 0.5 — 2.308 1.994 2.366 2.585 2.237 2.433 2.235
qi-mls-pre-ng 0.5 0.1 2.069 1.927 2.303 2.029 2.137 1.843 2.173
qi-mls-pre-ng 0.5 0.2 2.064 1.923 2.297 2.024 2.129 1.848 2.164
qi-mls-pre-ng 0.5 0.3 2.065 1.921 2.29 2.035 2.128 1.853 2.166
qi-mls-pre-ng 0.5 0.4 2.068 1.923 2.287 2.04 2.127 1.866 2.166
qi-mls-pre-ng 0.5 0.5 2.07 1.924 2.288 2.042 2.126 1.876 2.166
qi-mls-pre-ng 0.5 0.6 2.073 1.924 2.287 2.051 2.126 1.884 2.166
qi-mls-pre-ng 0.5 0.7 2.077 1.925 2.287 2.057 2.126 1.899 2.168
qi-mls-pre-ng 0.5 0.8 2.085 1.926 2.287 2.093 2.126 1.912 2.168
qi-mls-pre-ng 0.5 0.9 2.1 1.932 2.292 2.127 2.127 1.951 2.171
qi-mls-pre-ng 0.7 — 2.308 1.994 2.366 2.585 2.237 2.433 2.235
qi-mls-pre-ng 0.7 0.1 2.069 1.927 2.303 2.029 2.137 1.843 2.173
qi-mls-pre-ng 0.7 0.2 2.064 1.923 2.297 2.024 2.129 1.848 2.164
qi-mls-pre-ng 0.7 0.3 2.065 1.921 2.29 2.035 2.128 1.853 2.166
qi-mls-pre-ng 0.7 0.4 2.068 1.923 2.287 2.04 2.127 1.866 2.166
qi-mls-pre-ng 0.7 0.5 2.07 1.924 2.288 2.042 2.126 1.876 2.166
qi-mls-pre-ng 0.7 0.6 2.073 1.924 2.287 2.051 2.126 1.884 2.166
qi-mls-pre-ng 0.7 0.7 2.077 1.925 2.287 2.057 2.126 1.899 2.168
qi-mls-pre-ng 0.7 0.8 2.085 1.926 2.287 2.093 2.126 1.912 2.168
qi-mls-pre-ng 0.7 0.9 2.1 1.932 2.292 2.127 2.127 1.951 2.171
qi-mls-pre-ng 0.9 — 2.308 1.994 2.366 2.585 2.237 2.433 2.235
qi-mls-pre-ng 0.9 0.1 2.069 1.927 2.303 2.029 2.137 1.843 2.173
qi-mls-pre-ng 0.9 0.2 2.064 1.923 2.297 2.024 2.129 1.848 2.164
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…continued: Table 15 (VOI𝑠 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre-ng 0.9 0.3 2.065 1.921 2.29 2.035 2.128 1.853 2.166
qi-mls-pre-ng 0.9 0.4 2.068 1.923 2.287 2.04 2.127 1.866 2.166
qi-mls-pre-ng 0.9 0.5 2.07 1.924 2.288 2.042 2.126 1.876 2.166
qi-mls-pre-ng 0.9 0.6 2.073 1.924 2.287 2.051 2.126 1.884 2.166
qi-mls-pre-ng 0.9 0.7 2.077 1.925 2.287 2.057 2.126 1.899 2.168
qi-mls-pre-ng 0.9 0.8 2.085 1.926 2.287 2.093 2.126 1.912 2.168
qi-mls-pre-ng 0.9 0.9 2.1 1.932 2.292 2.127 2.127 1.951 2.171
qi-mls 0.1 — 1.189 0.837 1.074 1.973 1.116 0.865 1.27
qi-mls 0.1 0.1 0.979 0.799 1.037 1.423 1.002 0.445 1.166
qi-mls 0.1 0.2 0.978 0.808 1.035 1.438 0.998 0.431 1.16
qi-mls 0.1 0.3 0.98 0.81 1.034 1.443 0.995 0.438 1.16
qi-mls 0.1 0.4 0.98 0.818 1.032 1.446 0.997 0.439 1.149
qi-mls 0.1 0.5 0.983 0.818 1.031 1.453 1.007 0.442 1.147
qi-mls 0.1 0.6 0.986 0.818 1.033 1.466 0.999 0.447 1.154
qi-mls 0.1 0.7 0.99 0.824 1.036 1.473 0.997 0.456 1.158
qi-mls 0.1 0.8 1.001 0.824 1.043 1.485 1.006 0.491 1.159
qi-mls 0.1 0.9 1.017 0.829 1.048 1.511 1.013 0.538 1.164
qi-mls 0.3 — 3.329 3.052 3.445 3.688 3.41 3.054 3.328
qi-mls 0.3 0.1 3.032 3.011 3.327 3.065 3.267 2.285 3.239
qi-mls 0.3 0.2 3.05 3.014 3.342 3.082 3.277 2.34 3.246
qi-mls 0.3 0.3 3.062 3.017 3.345 3.102 3.291 2.362 3.253
qi-mls 0.3 0.4 3.072 3.026 3.35 3.114 3.296 2.381 3.267
qi-mls 0.3 0.5 3.083 3.03 3.354 3.146 3.3 2.395 3.272
qi-mls 0.3 0.6 3.093 3.032 3.359 3.163 3.309 2.415 3.28
qi-mls 0.3 0.7 3.104 3.037 3.364 3.179 3.311 2.44 3.29
qi-mls 0.3 0.8 3.118 3.041 3.373 3.203 3.324 2.467 3.299
qi-mls 0.3 0.9 3.147 3.053 3.384 3.25 3.34 2.537 3.316
qi-mls 0.5 — 10.528 10.186 10.79 10.16 10.422 11.145 10.466
qi-mls 0.5 0.1 10.272 10.15 10.728 9.566 10.32 10.496 10.373
qi-mls 0.5 0.2 10.282 10.151 10.736 9.578 10.324 10.52 10.38
qi-mls 0.5 0.3 10.287 10.151 10.742 9.587 10.326 10.535 10.384
qi-mls 0.5 0.4 10.292 10.151 10.745 9.596 10.327 10.546 10.387
qi-mls 0.5 0.5 10.296 10.151 10.747 9.604 10.328 10.555 10.389
qi-mls 0.5 0.6 10.299 10.151 10.75 9.613 10.328 10.564 10.39
qi-mls 0.5 0.7 10.303 10.152 10.751 9.624 10.329 10.574 10.391
qi-mls 0.5 0.8 10.309 10.152 10.754 9.638 10.33 10.588 10.392
qi-mls 0.5 0.9 10.322 10.153 10.759 9.667 10.334 10.625 10.396
qi-mls 0.7 — 10.528 10.186 10.79 10.16 10.422 11.145 10.466
qi-mls 0.7 0.1 10.272 10.15 10.728 9.566 10.32 10.496 10.373
qi-mls 0.7 0.2 10.282 10.151 10.736 9.578 10.324 10.52 10.38
qi-mls 0.7 0.3 10.287 10.151 10.742 9.587 10.326 10.535 10.384
qi-mls 0.7 0.4 10.292 10.151 10.745 9.596 10.327 10.546 10.387
qi-mls 0.7 0.5 10.296 10.151 10.747 9.604 10.328 10.555 10.389
qi-mls 0.7 0.6 10.299 10.151 10.75 9.613 10.328 10.564 10.39
qi-mls 0.7 0.7 10.303 10.152 10.751 9.624 10.329 10.574 10.391
qi-mls 0.7 0.8 10.309 10.152 10.754 9.638 10.33 10.588 10.392
qi-mls 0.7 0.9 10.322 10.153 10.759 9.667 10.334 10.625 10.396
qi-mls 0.9 — 10.528 10.186 10.79 10.16 10.422 11.145 10.466
qi-mls 0.9 0.1 10.272 10.15 10.728 9.566 10.32 10.496 10.373
qi-mls 0.9 0.2 10.282 10.151 10.736 9.578 10.324 10.52 10.38
qi-mls 0.9 0.3 10.287 10.151 10.742 9.587 10.326 10.535 10.384
qi-mls 0.9 0.4 10.292 10.151 10.745 9.596 10.327 10.546 10.387
qi-mls 0.9 0.5 10.296 10.151 10.747 9.604 10.328 10.555 10.389
qi-mls 0.9 0.6 10.299 10.151 10.75 9.613 10.328 10.564 10.39
qi-mls 0.9 0.7 10.303 10.152 10.751 9.624 10.329 10.574 10.391
qi-mls 0.9 0.8 10.309 10.152 10.754 9.638 10.33 10.588 10.392
qi-mls 0.9 0.9 10.322 10.153 10.759 9.667 10.334 10.625 10.396
qi-mls-ng 0.1 — 0.089 0.0 0.0 0.0 0.194 0.064 0.278
qi-mls-ng 0.1 0.1 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.1 0.2 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.1 0.3 0.078 0.0 0.0 0.0 0.148 0.054 0.267
qi-mls-ng 0.1 0.4 0.085 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.1 0.5 0.086 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.1 0.6 0.086 0.0 0.0 0.0 0.192 0.055 0.267
qi-mls-ng 0.1 0.7 0.087 0.0 0.0 0.0 0.192 0.055 0.274
qi-mls-ng 0.1 0.8 0.087 0.0 0.0 0.0 0.192 0.056 0.274
qi-mls-ng 0.1 0.9 0.087 0.0 0.0 0.0 0.192 0.057 0.274
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…continued: Table 15 (VOI𝑠 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-ng 0.3 — 0.089 0.0 0.0 0.0 0.194 0.064 0.278
qi-mls-ng 0.3 0.1 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.3 0.2 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.3 0.3 0.078 0.0 0.0 0.0 0.148 0.054 0.267
qi-mls-ng 0.3 0.4 0.085 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.3 0.5 0.086 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.3 0.6 0.086 0.0 0.0 0.0 0.192 0.055 0.267
qi-mls-ng 0.3 0.7 0.087 0.0 0.0 0.0 0.192 0.055 0.274
qi-mls-ng 0.3 0.8 0.087 0.0 0.0 0.0 0.192 0.056 0.274
qi-mls-ng 0.3 0.9 0.087 0.0 0.0 0.0 0.192 0.057 0.274
qi-mls-ng 0.5 — 0.089 0.0 0.0 0.0 0.194 0.064 0.278
qi-mls-ng 0.5 0.1 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.5 0.2 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.5 0.3 0.078 0.0 0.0 0.0 0.148 0.054 0.267
qi-mls-ng 0.5 0.4 0.085 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.5 0.5 0.086 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.5 0.6 0.086 0.0 0.0 0.0 0.192 0.055 0.267
qi-mls-ng 0.5 0.7 0.087 0.0 0.0 0.0 0.192 0.055 0.274
qi-mls-ng 0.5 0.8 0.087 0.0 0.0 0.0 0.192 0.056 0.274
qi-mls-ng 0.5 0.9 0.087 0.0 0.0 0.0 0.192 0.057 0.274
qi-mls-ng 0.7 — 0.089 0.0 0.0 0.0 0.194 0.064 0.278
qi-mls-ng 0.7 0.1 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.7 0.2 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.7 0.3 0.078 0.0 0.0 0.0 0.148 0.054 0.267
qi-mls-ng 0.7 0.4 0.085 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.7 0.5 0.086 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.7 0.6 0.086 0.0 0.0 0.0 0.192 0.055 0.267
qi-mls-ng 0.7 0.7 0.087 0.0 0.0 0.0 0.192 0.055 0.274
qi-mls-ng 0.7 0.8 0.087 0.0 0.0 0.0 0.192 0.056 0.274
qi-mls-ng 0.7 0.9 0.087 0.0 0.0 0.0 0.192 0.057 0.274
qi-mls-ng 0.9 — 0.089 0.0 0.0 0.0 0.194 0.064 0.278
qi-mls-ng 0.9 0.1 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.9 0.2 0.078 0.0 0.0 0.0 0.148 0.053 0.266
qi-mls-ng 0.9 0.3 0.078 0.0 0.0 0.0 0.148 0.054 0.267
qi-mls-ng 0.9 0.4 0.085 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.9 0.5 0.086 0.0 0.0 0.0 0.192 0.054 0.267
qi-mls-ng 0.9 0.6 0.086 0.0 0.0 0.0 0.192 0.055 0.267
qi-mls-ng 0.9 0.7 0.087 0.0 0.0 0.0 0.192 0.055 0.274
qi-mls-ng 0.9 0.8 0.087 0.0 0.0 0.0 0.192 0.056 0.274
qi-mls-ng 0.9 0.9 0.087 0.0 0.0 0.0 0.192 0.057 0.274
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Table 16: VOI𝑚 performance on 25% of the data that were not used for training for all
architectures and parameter sets. A “—” in the 𝑡𝑔 column means that the glia predictions
were not considered during super voxel generation and merging.

Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 — 5.496 6.383 5.803 4.283 6.029 4.556 5.92
qi-mse 0.1 0.1 5.199 6.246 5.714 3.774 5.89 3.83 5.741
qi-mse 0.1 0.2 5.196 6.246 5.715 3.767 5.889 3.823 5.737
qi-mse 0.1 0.3 5.24 6.246 5.715 3.767 5.889 4.088 5.736
qi-mse 0.1 0.4 5.24 6.246 5.715 3.767 5.89 4.089 5.736
qi-mse 0.1 0.5 5.242 6.247 5.715 3.77 5.891 4.091 5.736
qi-mse 0.1 0.6 5.243 6.248 5.715 3.773 5.892 4.094 5.736
qi-mse 0.1 0.7 5.245 6.249 5.716 3.778 5.894 4.099 5.737
qi-mse 0.1 0.8 5.248 6.251 5.717 3.782 5.896 4.104 5.738
qi-mse 0.1 0.9 5.253 6.254 5.718 3.794 5.899 4.115 5.74
qi-mse 0.3 — 5.345 6.334 5.717 4.112 5.946 4.104 5.859
qi-mse 0.3 0.1 5.146 6.242 5.66 3.643 5.789 3.824 5.72
qi-mse 0.3 0.2 5.162 6.242 5.658 3.749 5.787 3.818 5.716
qi-mse 0.3 0.3 5.14 6.242 5.657 3.632 5.786 3.814 5.712
qi-mse 0.3 0.4 5.14 6.242 5.656 3.632 5.786 3.813 5.71
qi-mse 0.3 0.5 5.14 6.243 5.655 3.634 5.786 3.814 5.708
qi-mse 0.3 0.6 5.141 6.244 5.653 3.637 5.787 3.815 5.708
qi-mse 0.3 0.7 5.14 6.244 5.652 3.638 5.788 3.812 5.708
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…continued: Table 16 (VOI𝑚 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.3 0.8 5.14 6.245 5.651 3.638 5.789 3.811 5.708
qi-mse 0.3 0.9 5.139 6.246 5.651 3.644 5.781 3.803 5.709
qi-mse 0.5 — 1.261 1.192 2.112 0.54 0.892 1.86 0.968
qi-mse 0.5 0.1 1.235 1.135 2.708 0.447 1.021 1.08 1.017
qi-mse 0.5 0.2 1.203 1.082 2.673 0.427 1.01 1.045 0.983
qi-mse 0.5 0.3 1.207 1.096 2.625 0.419 0.95 1.265 0.887
qi-mse 0.5 0.4 1.22 1.08 2.583 0.415 0.974 1.254 1.013
qi-mse 0.5 0.5 1.156 1.161 2.575 0.413 0.894 1.018 0.879
qi-mse 0.5 0.6 1.079 1.088 2.16 0.41 0.868 1.064 0.882
qi-mse 0.5 0.7 1.069 1.018 2.158 0.402 0.866 1.059 0.91
qi-mse 0.5 0.8 1.08 0.976 2.157 0.402 0.863 1.173 0.909
qi-mse 0.5 0.9 1.042 1.062 2.152 0.403 0.737 0.996 0.906
qi-mse 0.7 — 0.198 0.05 0.412 0.206 0.082 0.259 0.176
qi-mse 0.7 0.1 0.187 0.024 0.445 0.149 0.192 0.163 0.15
qi-mse 0.7 0.2 0.162 0.017 0.425 0.129 0.14 0.13 0.134
qi-mse 0.7 0.3 0.154 0.015 0.416 0.12 0.133 0.114 0.125
qi-mse 0.7 0.4 0.149 0.014 0.41 0.116 0.128 0.105 0.12
qi-mse 0.7 0.5 0.146 0.014 0.406 0.114 0.126 0.099 0.117
qi-mse 0.7 0.6 0.143 0.014 0.401 0.112 0.123 0.094 0.116
qi-mse 0.7 0.7 0.141 0.014 0.398 0.111 0.119 0.09 0.114
qi-mse 0.7 0.8 0.139 0.014 0.396 0.111 0.116 0.086 0.113
qi-mse 0.7 0.9 0.138 0.014 0.395 0.112 0.113 0.084 0.112
qi-mse 0.9 — 0.115 0.032 0.187 0.109 0.064 0.187 0.113
qi-mse 0.9 0.1 0.117 0.02 0.22 0.076 0.145 0.127 0.111
qi-mse 0.9 0.2 0.098 0.014 0.2 0.056 0.132 0.094 0.093
qi-mse 0.9 0.3 0.09 0.012 0.19 0.047 0.125 0.078 0.085
qi-mse 0.9 0.4 0.085 0.011 0.184 0.043 0.121 0.069 0.081
qi-mse 0.9 0.5 0.081 0.011 0.18 0.04 0.118 0.062 0.078
qi-mse 0.9 0.6 0.079 0.011 0.177 0.039 0.115 0.057 0.076
qi-mse 0.9 0.7 0.077 0.011 0.174 0.037 0.113 0.053 0.074
qi-mse 0.9 0.8 0.075 0.011 0.172 0.037 0.11 0.049 0.073
qi-mse 0.9 0.9 0.074 0.011 0.171 0.038 0.107 0.048 0.072
qi-mse-ng 0.1 — 5.505 6.382 5.804 4.286 6.038 4.592 5.931
qi-mse-ng 0.1 0.1 5.229 6.244 5.714 3.738 5.835 4.106 5.74
qi-mse-ng 0.1 0.2 5.227 6.243 5.713 3.735 5.833 4.102 5.736
qi-mse-ng 0.1 0.3 5.226 6.242 5.712 3.734 5.832 4.102 5.734
qi-mse-ng 0.1 0.4 5.227 6.242 5.712 3.736 5.831 4.103 5.735
qi-mse-ng 0.1 0.5 5.238 6.243 5.712 3.805 5.831 4.105 5.734
qi-mse-ng 0.1 0.6 5.24 6.243 5.714 3.808 5.831 4.109 5.734
qi-mse-ng 0.1 0.7 5.242 6.243 5.714 3.814 5.831 4.117 5.734
qi-mse-ng 0.1 0.8 5.245 6.244 5.715 3.821 5.832 4.125 5.734
qi-mse-ng 0.1 0.9 5.239 6.245 5.716 3.767 5.832 4.139 5.734
qi-mse-ng 0.3 — 5.427 6.35 5.768 4.115 5.964 4.454 5.91
qi-mse-ng 0.3 0.1 5.226 6.242 5.707 3.735 5.832 4.104 5.737
qi-mse-ng 0.3 0.2 5.222 6.241 5.698 3.732 5.83 4.099 5.732
qi-mse-ng 0.3 0.3 5.221 6.241 5.698 3.731 5.829 4.098 5.731
qi-mse-ng 0.3 0.4 5.221 6.241 5.697 3.731 5.828 4.098 5.729
qi-mse-ng 0.3 0.5 5.221 6.241 5.699 3.732 5.825 4.1 5.726
qi-mse-ng 0.3 0.6 5.221 6.241 5.699 3.734 5.825 4.103 5.726
qi-mse-ng 0.3 0.7 5.221 6.242 5.696 3.733 5.825 4.106 5.725
qi-mse-ng 0.3 0.8 5.161 6.242 5.697 3.366 5.825 4.109 5.725
qi-mse-ng 0.3 0.9 5.163 6.243 5.698 3.37 5.826 4.118 5.725
qi-mse-ng 0.5 — 3.563 3.186 4.414 1.378 4.782 3.603 4.014
qi-mse-ng 0.5 0.1 3.547 3.151 4.528 1.319 4.651 3.327 4.306
qi-mse-ng 0.5 0.2 3.506 2.962 4.52 1.281 4.722 3.297 4.253
qi-mse-ng 0.5 0.3 3.544 3.039 4.515 1.427 4.72 3.286 4.278
qi-mse-ng 0.5 0.4 3.516 3.045 4.508 1.298 4.719 3.285 4.24
qi-mse-ng 0.5 0.5 3.516 3.155 4.503 1.262 4.618 3.322 4.238
qi-mse-ng 0.5 0.6 3.498 3.107 4.499 1.258 4.617 3.276 4.232
qi-mse-ng 0.5 0.7 3.436 2.94 4.488 1.144 4.549 3.267 4.229
qi-mse-ng 0.5 0.8 3.463 3.003 4.487 1.268 4.548 3.257 4.212
qi-mse-ng 0.5 0.9 3.464 3.028 4.467 1.268 4.549 3.257 4.213
qi-mse-ng 0.7 — 0.281 0.161 0.475 0.216 0.181 0.37 0.283
qi-mse-ng 0.7 0.1 0.226 0.107 0.504 0.177 0.128 0.231 0.207
qi-mse-ng 0.7 0.2 0.212 0.104 0.49 0.158 0.12 0.208 0.193
qi-mse-ng 0.7 0.3 0.206 0.103 0.483 0.149 0.116 0.197 0.187
qi-mse-ng 0.7 0.4 0.2 0.102 0.469 0.143 0.114 0.189 0.182
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Continued on next page…



176 reconstruction

…continued: Table 16 (VOI𝑚 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse-ng 0.7 0.5 0.197 0.102 0.465 0.139 0.112 0.184 0.179
qi-mse-ng 0.7 0.6 0.195 0.102 0.463 0.136 0.111 0.179 0.177
qi-mse-ng 0.7 0.7 0.193 0.102 0.461 0.133 0.111 0.176 0.176
qi-mse-ng 0.7 0.8 0.192 0.102 0.459 0.131 0.111 0.172 0.175
qi-mse-ng 0.7 0.9 0.192 0.102 0.458 0.131 0.111 0.173 0.175
qi-mse-ng 0.9 — 0.13 0.051 0.215 0.105 0.073 0.204 0.129
qi-mse-ng 0.9 0.1 0.095 0.02 0.227 0.082 0.031 0.114 0.096
qi-mse-ng 0.9 0.2 0.081 0.017 0.213 0.063 0.022 0.091 0.082
qi-mse-ng 0.9 0.3 0.075 0.016 0.207 0.055 0.019 0.079 0.076
qi-mse-ng 0.9 0.4 0.071 0.016 0.202 0.049 0.016 0.07 0.071
qi-mse-ng 0.9 0.5 0.068 0.015 0.198 0.045 0.015 0.064 0.068
qi-mse-ng 0.9 0.6 0.065 0.015 0.196 0.041 0.014 0.059 0.066
qi-mse-ng 0.9 0.7 0.063 0.015 0.193 0.038 0.013 0.055 0.065
qi-mse-ng 0.9 0.8 0.062 0.015 0.192 0.036 0.013 0.053 0.064
qi-mse-ng 0.9 0.9 0.062 0.015 0.192 0.036 0.014 0.053 0.064
qi-mls-pre 0.1 — 3.01 2.551 3.506 1.903 4.037 2.58 3.481
qi-mls-pre 0.1 0.1 2.967 2.722 3.642 1.555 3.892 2.42 3.572
qi-mls-pre 0.1 0.2 2.945 2.723 3.622 1.532 3.821 2.397 3.575
qi-mls-pre 0.1 0.3 2.927 2.722 3.647 1.522 3.809 2.27 3.59
qi-mls-pre 0.1 0.4 2.938 2.722 3.644 1.477 3.807 2.375 3.602
qi-mls-pre 0.1 0.5 2.872 2.722 3.641 1.473 3.789 2.011 3.592
qi-mls-pre 0.1 0.6 2.873 2.754 3.639 1.471 3.788 1.997 3.591
qi-mls-pre 0.1 0.7 2.871 2.743 3.638 1.472 3.787 1.996 3.589
qi-mls-pre 0.1 0.8 2.856 2.744 3.549 1.473 3.787 1.996 3.588
qi-mls-pre 0.1 0.9 2.855 2.745 3.544 1.478 3.779 1.994 3.588
qi-mls-pre 0.3 — 1.061 1.121 1.2 1.02 1.103 0.648 1.272
qi-mls-pre 0.3 0.1 1.013 1.071 1.22 0.891 1.062 0.608 1.227
qi-mls-pre 0.3 0.2 0.996 1.068 1.199 0.867 1.05 0.578 1.213
qi-mls-pre 0.3 0.3 0.989 1.067 1.188 0.855 1.044 0.557 1.226
qi-mls-pre 0.3 0.4 0.983 1.067 1.179 0.848 1.041 0.545 1.221
qi-mls-pre 0.3 0.5 0.981 1.067 1.173 0.845 1.039 0.543 1.218
qi-mls-pre 0.3 0.6 0.977 1.067 1.168 0.842 1.037 0.534 1.216
qi-mls-pre 0.3 0.7 0.975 1.067 1.164 0.842 1.035 0.529 1.214
qi-mls-pre 0.3 0.8 0.974 1.067 1.161 0.843 1.035 0.526 1.213
qi-mls-pre 0.3 0.9 0.973 1.068 1.158 0.846 1.035 0.52 1.211
qi-mls-pre 0.5 — 1.052 1.121 1.193 1.006 1.103 0.63 1.262
qi-mls-pre 0.5 0.1 1.006 1.071 1.213 0.88 1.062 0.606 1.205
qi-mls-pre 0.5 0.2 0.989 1.068 1.193 0.856 1.05 0.575 1.191
qi-mls-pre 0.5 0.3 0.982 1.067 1.181 0.845 1.044 0.554 1.204
qi-mls-pre 0.5 0.4 0.976 1.067 1.172 0.838 1.041 0.542 1.199
qi-mls-pre 0.5 0.5 0.973 1.067 1.166 0.834 1.039 0.54 1.196
qi-mls-pre 0.5 0.6 0.97 1.067 1.161 0.832 1.037 0.531 1.194
qi-mls-pre 0.5 0.7 0.968 1.067 1.157 0.832 1.035 0.527 1.192
qi-mls-pre 0.5 0.8 0.967 1.067 1.154 0.832 1.035 0.523 1.191
qi-mls-pre 0.5 0.9 0.966 1.068 1.151 0.835 1.035 0.517 1.189
qi-mls-pre 0.7 — 1.052 1.121 1.193 1.006 1.103 0.63 1.262
qi-mls-pre 0.7 0.1 1.006 1.071 1.213 0.88 1.062 0.606 1.205
qi-mls-pre 0.7 0.2 0.989 1.068 1.193 0.856 1.05 0.575 1.191
qi-mls-pre 0.7 0.3 0.982 1.067 1.181 0.845 1.044 0.554 1.204
qi-mls-pre 0.7 0.4 0.976 1.067 1.172 0.838 1.041 0.542 1.199
qi-mls-pre 0.7 0.5 0.973 1.067 1.166 0.834 1.039 0.54 1.196
qi-mls-pre 0.7 0.6 0.97 1.067 1.161 0.832 1.037 0.531 1.194
qi-mls-pre 0.7 0.7 0.968 1.067 1.157 0.832 1.035 0.527 1.192
qi-mls-pre 0.7 0.8 0.967 1.067 1.154 0.832 1.035 0.523 1.191
qi-mls-pre 0.7 0.9 0.966 1.068 1.151 0.835 1.035 0.517 1.189
qi-mls-pre 0.9 — 1.052 1.121 1.193 1.006 1.103 0.63 1.262
qi-mls-pre 0.9 0.1 1.006 1.071 1.213 0.88 1.062 0.606 1.205
qi-mls-pre 0.9 0.2 0.989 1.068 1.193 0.856 1.05 0.575 1.191
qi-mls-pre 0.9 0.3 0.982 1.067 1.181 0.845 1.044 0.554 1.204
qi-mls-pre 0.9 0.4 0.976 1.067 1.172 0.838 1.041 0.542 1.199
qi-mls-pre 0.9 0.5 0.973 1.067 1.166 0.834 1.039 0.54 1.196
qi-mls-pre 0.9 0.6 0.97 1.067 1.161 0.832 1.037 0.531 1.194
qi-mls-pre 0.9 0.7 0.968 1.067 1.157 0.832 1.035 0.527 1.192
qi-mls-pre 0.9 0.8 0.967 1.067 1.154 0.832 1.035 0.523 1.191
qi-mls-pre 0.9 0.9 0.966 1.068 1.151 0.835 1.035 0.517 1.189
qi-mls-pre-ng 0.1 — 4.668 4.913 4.89 3.58 5.161 4.435 5.028
qi-mls-pre-ng 0.1 0.1 4.525 5.103 4.921 3.185 4.867 3.955 5.119
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…continued: Table 16 (VOI𝑚 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre-ng 0.1 0.2 4.513 5.158 4.957 3.093 4.825 3.966 5.081
qi-mls-pre-ng 0.1 0.3 4.484 5.124 4.842 3.088 4.822 3.969 5.057
qi-mls-pre-ng 0.1 0.4 4.475 5.08 4.839 3.087 4.821 3.97 5.056
qi-mls-pre-ng 0.1 0.5 4.477 5.082 4.843 3.088 4.82 3.974 5.055
qi-mls-pre-ng 0.1 0.6 4.478 5.081 4.844 3.091 4.82 3.978 5.054
qi-mls-pre-ng 0.1 0.7 4.477 5.08 4.837 3.094 4.82 3.981 5.054
qi-mls-pre-ng 0.1 0.8 4.464 5.079 4.832 3.072 4.819 3.928 5.053
qi-mls-pre-ng 0.1 0.9 4.464 5.079 4.835 3.111 4.757 4.012 4.988
qi-mls-pre-ng 0.3 — 2.275 2.431 2.055 2.112 2.351 1.874 2.829
qi-mls-pre-ng 0.3 0.1 2.197 2.372 2.075 1.94 2.193 1.871 2.729
qi-mls-pre-ng 0.3 0.2 2.17 2.377 2.048 1.918 2.18 1.777 2.72
qi-mls-pre-ng 0.3 0.3 2.169 2.376 2.037 1.936 2.176 1.77 2.717
qi-mls-pre-ng 0.3 0.4 2.162 2.385 2.031 1.936 2.175 1.731 2.714
qi-mls-pre-ng 0.3 0.5 2.163 2.385 2.038 1.936 2.174 1.73 2.713
qi-mls-pre-ng 0.3 0.6 2.161 2.385 2.036 1.938 2.173 1.72 2.713
qi-mls-pre-ng 0.3 0.7 2.16 2.385 2.035 1.94 2.173 1.716 2.712
qi-mls-pre-ng 0.3 0.8 2.16 2.386 2.033 1.936 2.173 1.718 2.711
qi-mls-pre-ng 0.3 0.9 2.148 2.39 2.035 1.952 2.174 1.624 2.711
qi-mls-pre-ng 0.5 — 2.275 2.431 2.055 2.112 2.351 1.874 2.829
qi-mls-pre-ng 0.5 0.1 2.197 2.372 2.075 1.94 2.193 1.871 2.729
qi-mls-pre-ng 0.5 0.2 2.17 2.377 2.048 1.918 2.18 1.777 2.72
qi-mls-pre-ng 0.5 0.3 2.169 2.376 2.037 1.936 2.176 1.77 2.717
qi-mls-pre-ng 0.5 0.4 2.162 2.385 2.031 1.936 2.175 1.731 2.714
qi-mls-pre-ng 0.5 0.5 2.163 2.385 2.038 1.936 2.174 1.73 2.713
qi-mls-pre-ng 0.5 0.6 2.161 2.385 2.036 1.938 2.173 1.72 2.713
qi-mls-pre-ng 0.5 0.7 2.16 2.385 2.035 1.94 2.173 1.716 2.712
qi-mls-pre-ng 0.5 0.8 2.16 2.386 2.033 1.936 2.173 1.718 2.711
qi-mls-pre-ng 0.5 0.9 2.148 2.39 2.035 1.952 2.174 1.624 2.711
qi-mls-pre-ng 0.7 — 2.275 2.431 2.055 2.112 2.351 1.874 2.829
qi-mls-pre-ng 0.7 0.1 2.197 2.372 2.075 1.94 2.193 1.871 2.729
qi-mls-pre-ng 0.7 0.2 2.17 2.377 2.048 1.918 2.18 1.777 2.72
qi-mls-pre-ng 0.7 0.3 2.169 2.376 2.037 1.936 2.176 1.77 2.717
qi-mls-pre-ng 0.7 0.4 2.162 2.385 2.031 1.936 2.175 1.731 2.714
qi-mls-pre-ng 0.7 0.5 2.163 2.385 2.038 1.936 2.174 1.73 2.713
qi-mls-pre-ng 0.7 0.6 2.161 2.385 2.036 1.938 2.173 1.72 2.713
qi-mls-pre-ng 0.7 0.7 2.16 2.385 2.035 1.94 2.173 1.716 2.712
qi-mls-pre-ng 0.7 0.8 2.16 2.386 2.033 1.936 2.173 1.718 2.711
qi-mls-pre-ng 0.7 0.9 2.148 2.39 2.035 1.952 2.174 1.624 2.711
qi-mls-pre-ng 0.9 — 2.275 2.431 2.055 2.112 2.351 1.874 2.829
qi-mls-pre-ng 0.9 0.1 2.197 2.372 2.075 1.94 2.193 1.871 2.729
qi-mls-pre-ng 0.9 0.2 2.17 2.377 2.048 1.918 2.18 1.777 2.72
qi-mls-pre-ng 0.9 0.3 2.169 2.376 2.037 1.936 2.176 1.77 2.717
qi-mls-pre-ng 0.9 0.4 2.162 2.385 2.031 1.936 2.175 1.731 2.714
qi-mls-pre-ng 0.9 0.5 2.163 2.385 2.038 1.936 2.174 1.73 2.713
qi-mls-pre-ng 0.9 0.6 2.161 2.385 2.036 1.938 2.173 1.72 2.713
qi-mls-pre-ng 0.9 0.7 2.16 2.385 2.035 1.94 2.173 1.716 2.712
qi-mls-pre-ng 0.9 0.8 2.16 2.386 2.033 1.936 2.173 1.718 2.711
qi-mls-pre-ng 0.9 0.9 2.148 2.39 2.035 1.952 2.174 1.624 2.711
qi-mls 0.1 — 0.367 0.158 0.496 0.404 0.262 0.53 0.355
qi-mls 0.1 0.1 0.274 0.121 0.484 0.297 0.175 0.23 0.337
qi-mls 0.1 0.2 0.259 0.118 0.466 0.28 0.165 0.201 0.321
qi-mls 0.1 0.3 0.248 0.116 0.454 0.271 0.158 0.178 0.31
qi-mls 0.1 0.4 0.242 0.116 0.447 0.268 0.154 0.165 0.303
qi-mls 0.1 0.5 0.237 0.116 0.443 0.262 0.149 0.156 0.298
qi-mls 0.1 0.6 0.234 0.116 0.441 0.26 0.148 0.148 0.294
qi-mls 0.1 0.7 0.233 0.116 0.44 0.259 0.147 0.144 0.291
qi-mls 0.1 0.8 0.231 0.116 0.433 0.26 0.146 0.139 0.29
qi-mls 0.1 0.9 0.233 0.117 0.435 0.266 0.147 0.143 0.289
qi-mls 0.3 — 0.186 0.068 0.234 0.185 0.15 0.28 0.201
qi-mls 0.3 0.1 0.176 0.058 0.25 0.174 0.135 0.199 0.241
qi-mls 0.3 0.2 0.159 0.054 0.233 0.156 0.123 0.166 0.224
qi-mls 0.3 0.3 0.15 0.053 0.223 0.147 0.115 0.146 0.213
qi-mls 0.3 0.4 0.143 0.052 0.214 0.14 0.111 0.132 0.206
qi-mls 0.3 0.5 0.138 0.052 0.209 0.136 0.108 0.122 0.201
qi-mls 0.3 0.6 0.135 0.052 0.206 0.134 0.107 0.115 0.197
qi-mls 0.3 0.7 0.133 0.052 0.203 0.133 0.106 0.11 0.195
qi-mls 0.3 0.8 0.132 0.053 0.202 0.133 0.105 0.105 0.193
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…continued: Table 16 (VOI𝑚 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls 0.3 0.9 0.132 0.053 0.202 0.136 0.105 0.106 0.191
qi-mls 0.5 — 0.084 0.027 0.127 0.097 0.068 0.079 0.105
qi-mls 0.5 0.1 0.13 0.04 0.169 0.127 0.092 0.172 0.18
qi-mls 0.5 0.2 0.112 0.036 0.15 0.109 0.079 0.137 0.163
qi-mls 0.5 0.3 0.102 0.035 0.138 0.099 0.072 0.117 0.152
qi-mls 0.5 0.4 0.095 0.034 0.13 0.093 0.068 0.103 0.145
qi-mls 0.5 0.5 0.09 0.034 0.124 0.088 0.065 0.092 0.139
qi-mls 0.5 0.6 0.087 0.033 0.12 0.086 0.063 0.084 0.135
qi-mls 0.5 0.7 0.084 0.033 0.116 0.084 0.061 0.078 0.133
qi-mls 0.5 0.8 0.082 0.033 0.114 0.084 0.061 0.072 0.13
qi-mls 0.5 0.9 0.081 0.033 0.112 0.084 0.06 0.067 0.128
qi-mls 0.7 — 0.084 0.027 0.127 0.097 0.068 0.079 0.105
qi-mls 0.7 0.1 0.13 0.04 0.169 0.127 0.092 0.172 0.18
qi-mls 0.7 0.2 0.112 0.036 0.15 0.109 0.079 0.137 0.163
qi-mls 0.7 0.3 0.102 0.035 0.138 0.099 0.072 0.117 0.152
qi-mls 0.7 0.4 0.095 0.034 0.13 0.093 0.068 0.103 0.145
qi-mls 0.7 0.5 0.09 0.034 0.124 0.088 0.065 0.092 0.139
qi-mls 0.7 0.6 0.087 0.033 0.12 0.086 0.063 0.084 0.135
qi-mls 0.7 0.7 0.084 0.033 0.116 0.084 0.061 0.078 0.133
qi-mls 0.7 0.8 0.082 0.033 0.114 0.084 0.061 0.072 0.13
qi-mls 0.7 0.9 0.081 0.033 0.112 0.084 0.06 0.067 0.128
qi-mls 0.9 — 0.084 0.027 0.127 0.097 0.068 0.079 0.105
qi-mls 0.9 0.1 0.13 0.04 0.169 0.127 0.092 0.172 0.18
qi-mls 0.9 0.2 0.112 0.036 0.15 0.109 0.079 0.137 0.163
qi-mls 0.9 0.3 0.102 0.035 0.138 0.099 0.072 0.117 0.152
qi-mls 0.9 0.4 0.095 0.034 0.13 0.093 0.068 0.103 0.145
qi-mls 0.9 0.5 0.09 0.034 0.124 0.088 0.065 0.092 0.139
qi-mls 0.9 0.6 0.087 0.033 0.12 0.086 0.063 0.084 0.135
qi-mls 0.9 0.7 0.084 0.033 0.116 0.084 0.061 0.078 0.133
qi-mls 0.9 0.8 0.082 0.033 0.114 0.084 0.061 0.072 0.13
qi-mls 0.9 0.9 0.081 0.033 0.112 0.084 0.06 0.067 0.128
qi-mls-ng 0.1 — 5.56 6.385 5.804 5.07 5.773 4.633 5.695
qi-mls-ng 0.1 0.1 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.1 0.2 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.1 0.3 5.567 6.385 5.804 5.07 5.811 4.631 5.699
qi-mls-ng 0.1 0.4 5.562 6.385 5.804 5.07 5.785 4.631 5.699
qi-mls-ng 0.1 0.5 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.1 0.6 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.1 0.7 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.1 0.8 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.1 0.9 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.3 — 5.56 6.385 5.804 5.07 5.773 4.633 5.695
qi-mls-ng 0.3 0.1 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.3 0.2 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.3 0.3 5.567 6.385 5.804 5.07 5.811 4.631 5.699
qi-mls-ng 0.3 0.4 5.562 6.385 5.804 5.07 5.785 4.631 5.699
qi-mls-ng 0.3 0.5 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.3 0.6 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.3 0.7 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.3 0.8 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.3 0.9 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.5 — 5.56 6.385 5.804 5.07 5.773 4.633 5.695
qi-mls-ng 0.5 0.1 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.5 0.2 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.5 0.3 5.567 6.385 5.804 5.07 5.811 4.631 5.699
qi-mls-ng 0.5 0.4 5.562 6.385 5.804 5.07 5.785 4.631 5.699
qi-mls-ng 0.5 0.5 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.5 0.6 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.5 0.7 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.5 0.8 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.5 0.9 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.7 — 5.56 6.385 5.804 5.07 5.773 4.633 5.695
qi-mls-ng 0.7 0.1 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.7 0.2 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.7 0.3 5.567 6.385 5.804 5.07 5.811 4.631 5.699
qi-mls-ng 0.7 0.4 5.562 6.385 5.804 5.07 5.785 4.631 5.699
qi-mls-ng 0.7 0.5 5.562 6.385 5.804 5.07 5.785 4.632 5.699
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Continued on next page…



B.2 performance evaluation of all parameter sets 179

…continued: Table 16 (VOI𝑚 on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-ng 0.7 0.6 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.7 0.7 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.7 0.8 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.7 0.9 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.9 — 5.56 6.385 5.804 5.07 5.773 4.633 5.695
qi-mls-ng 0.9 0.1 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.9 0.2 5.567 6.385 5.804 5.07 5.811 4.631 5.7
qi-mls-ng 0.9 0.3 5.567 6.385 5.804 5.07 5.811 4.631 5.699
qi-mls-ng 0.9 0.4 5.562 6.385 5.804 5.07 5.785 4.631 5.699
qi-mls-ng 0.9 0.5 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.9 0.6 5.562 6.385 5.804 5.07 5.785 4.632 5.699
qi-mls-ng 0.9 0.7 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.9 0.8 5.561 6.385 5.804 5.07 5.785 4.632 5.693
qi-mls-ng 0.9 0.9 5.561 6.385 5.804 5.07 5.785 4.632 5.693
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Table 17: RAND performance on 25% of the data that were not used for training for all
architectures and parameter sets. A “—” in the 𝑡𝑔 column means that the glia predictions
were not considered during super voxel generation and merging.

Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 — 0.917 0.969 0.938 0.804 0.961 0.891 0.942
qi-mse 0.1 0.1 0.919 0.968 0.936 0.826 0.961 0.882 0.939
qi-mse 0.1 0.2 0.919 0.968 0.936 0.827 0.961 0.882 0.94
qi-mse 0.1 0.3 0.921 0.968 0.936 0.827 0.961 0.894 0.94
qi-mse 0.1 0.4 0.921 0.968 0.936 0.827 0.961 0.894 0.94
qi-mse 0.1 0.5 0.921 0.968 0.936 0.828 0.961 0.895 0.94
qi-mse 0.1 0.6 0.921 0.968 0.936 0.828 0.961 0.895 0.94
qi-mse 0.1 0.7 0.921 0.968 0.936 0.828 0.961 0.895 0.94
qi-mse 0.1 0.8 0.921 0.968 0.936 0.828 0.961 0.895 0.94
qi-mse 0.1 0.9 0.922 0.968 0.937 0.829 0.961 0.896 0.94
qi-mse 0.3 — 0.92 0.969 0.937 0.826 0.961 0.888 0.942
qi-mse 0.3 0.1 0.918 0.968 0.936 0.822 0.96 0.881 0.939
qi-mse 0.3 0.2 0.919 0.968 0.936 0.826 0.96 0.882 0.939
qi-mse 0.3 0.3 0.918 0.968 0.936 0.823 0.96 0.882 0.939
qi-mse 0.3 0.4 0.918 0.968 0.936 0.823 0.96 0.882 0.939
qi-mse 0.3 0.5 0.918 0.968 0.936 0.823 0.96 0.883 0.939
qi-mse 0.3 0.6 0.918 0.968 0.936 0.823 0.96 0.883 0.939
qi-mse 0.3 0.7 0.918 0.968 0.936 0.823 0.96 0.883 0.939
qi-mse 0.3 0.8 0.918 0.968 0.936 0.823 0.96 0.883 0.939
qi-mse 0.3 0.9 0.918 0.968 0.936 0.824 0.96 0.883 0.939
qi-mse 0.5 — 0.55 0.542 0.763 0.53 0.428 0.677 0.359
qi-mse 0.5 0.1 0.528 0.513 0.841 0.53 0.454 0.471 0.358
qi-mse 0.5 0.2 0.523 0.502 0.839 0.529 0.453 0.469 0.347
qi-mse 0.5 0.3 0.53 0.518 0.837 0.529 0.443 0.537 0.315
qi-mse 0.5 0.4 0.535 0.502 0.835 0.529 0.449 0.536 0.358
qi-mse 0.5 0.5 0.521 0.553 0.835 0.528 0.421 0.469 0.32
qi-mse 0.5 0.6 0.505 0.517 0.768 0.529 0.418 0.478 0.321
qi-mse 0.5 0.7 0.503 0.494 0.768 0.529 0.418 0.478 0.329
qi-mse 0.5 0.8 0.51 0.486 0.768 0.529 0.418 0.529 0.329
qi-mse 0.5 0.9 0.488 0.51 0.768 0.529 0.326 0.468 0.329
qi-mse 0.7 — 0.224 0.062 0.286 0.515 0.115 0.26 0.106
qi-mse 0.7 0.1 0.221 0.052 0.287 0.516 0.151 0.231 0.092
qi-mse 0.7 0.2 0.217 0.051 0.286 0.516 0.129 0.229 0.091
qi-mse 0.7 0.3 0.217 0.052 0.285 0.516 0.128 0.228 0.092
qi-mse 0.7 0.4 0.217 0.052 0.285 0.517 0.128 0.228 0.092
qi-mse 0.7 0.5 0.217 0.052 0.285 0.517 0.127 0.228 0.092
qi-mse 0.7 0.6 0.217 0.052 0.285 0.517 0.127 0.228 0.092
qi-mse 0.7 0.7 0.217 0.052 0.285 0.517 0.128 0.228 0.092
qi-mse 0.7 0.8 0.217 0.052 0.285 0.517 0.129 0.228 0.092
qi-mse 0.7 0.9 0.218 0.052 0.285 0.518 0.129 0.229 0.092
qi-mse 0.9 — 0.39 0.517 0.302 0.556 0.408 0.323 0.234
qi-mse 0.9 0.1 0.385 0.503 0.303 0.556 0.408 0.297 0.242
qi-mse 0.9 0.2 0.384 0.503 0.302 0.555 0.407 0.296 0.242
qi-mse 0.9 0.3 0.385 0.503 0.302 0.555 0.411 0.296 0.242
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…continued: Table 17 (RAND on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.9 0.4 0.385 0.503 0.302 0.555 0.411 0.295 0.242
qi-mse 0.9 0.5 0.385 0.504 0.302 0.555 0.41 0.295 0.242
qi-mse 0.9 0.6 0.387 0.504 0.302 0.555 0.411 0.304 0.244
qi-mse 0.9 0.7 0.387 0.504 0.302 0.556 0.41 0.305 0.244
qi-mse 0.9 0.8 0.387 0.504 0.302 0.556 0.411 0.305 0.244
qi-mse 0.9 0.9 0.388 0.504 0.302 0.557 0.414 0.306 0.245
qi-mse-ng 0.1 — 0.917 0.969 0.938 0.803 0.961 0.888 0.942
qi-mse-ng 0.1 0.1 0.92 0.968 0.936 0.824 0.96 0.894 0.94
qi-mse-ng 0.1 0.2 0.921 0.968 0.936 0.824 0.96 0.894 0.94
qi-mse-ng 0.1 0.3 0.921 0.968 0.936 0.825 0.96 0.895 0.94
qi-mse-ng 0.1 0.4 0.921 0.968 0.936 0.825 0.96 0.895 0.94
qi-mse-ng 0.1 0.5 0.921 0.968 0.936 0.829 0.96 0.895 0.94
qi-mse-ng 0.1 0.6 0.922 0.968 0.936 0.829 0.96 0.895 0.94
qi-mse-ng 0.1 0.7 0.922 0.968 0.936 0.83 0.96 0.896 0.94
qi-mse-ng 0.1 0.8 0.922 0.968 0.936 0.83 0.96 0.896 0.94
qi-mse-ng 0.1 0.9 0.921 0.968 0.937 0.827 0.96 0.896 0.94
qi-mse-ng 0.3 — 0.922 0.969 0.937 0.828 0.961 0.896 0.942
qi-mse-ng 0.3 0.1 0.92 0.968 0.936 0.824 0.96 0.894 0.94
qi-mse-ng 0.3 0.2 0.92 0.968 0.936 0.824 0.96 0.894 0.94
qi-mse-ng 0.3 0.3 0.921 0.968 0.936 0.824 0.96 0.895 0.94
qi-mse-ng 0.3 0.4 0.921 0.968 0.936 0.825 0.96 0.895 0.94
qi-mse-ng 0.3 0.5 0.921 0.968 0.936 0.825 0.96 0.895 0.94
qi-mse-ng 0.3 0.6 0.921 0.968 0.936 0.825 0.96 0.895 0.94
qi-mse-ng 0.3 0.7 0.921 0.968 0.936 0.825 0.96 0.895 0.94
qi-mse-ng 0.3 0.8 0.913 0.968 0.936 0.778 0.96 0.896 0.94
qi-mse-ng 0.3 0.9 0.913 0.968 0.936 0.778 0.96 0.896 0.94
qi-mse-ng 0.5 — 0.853 0.851 0.914 0.627 0.947 0.876 0.905
qi-mse-ng 0.5 0.1 0.857 0.856 0.915 0.643 0.944 0.868 0.917
qi-mse-ng 0.5 0.2 0.854 0.842 0.915 0.639 0.946 0.868 0.916
qi-mse-ng 0.5 0.3 0.857 0.849 0.915 0.649 0.946 0.868 0.917
qi-mse-ng 0.5 0.4 0.857 0.853 0.916 0.643 0.946 0.868 0.916
qi-mse-ng 0.5 0.5 0.857 0.859 0.915 0.638 0.944 0.87 0.916
qi-mse-ng 0.5 0.6 0.856 0.856 0.915 0.638 0.944 0.868 0.916
qi-mse-ng 0.5 0.7 0.851 0.844 0.915 0.618 0.943 0.868 0.916
qi-mse-ng 0.5 0.8 0.853 0.849 0.915 0.629 0.943 0.868 0.916
qi-mse-ng 0.5 0.9 0.853 0.849 0.915 0.629 0.943 0.868 0.916
qi-mse-ng 0.7 — 0.245 0.091 0.303 0.517 0.155 0.269 0.136
qi-mse-ng 0.7 0.1 0.231 0.085 0.303 0.521 0.129 0.244 0.106
qi-mse-ng 0.7 0.2 0.233 0.085 0.303 0.52 0.143 0.243 0.105
qi-mse-ng 0.7 0.3 0.23 0.085 0.302 0.52 0.127 0.242 0.105
qi-mse-ng 0.7 0.4 0.233 0.085 0.302 0.519 0.144 0.242 0.104
qi-mse-ng 0.7 0.5 0.233 0.085 0.302 0.519 0.144 0.242 0.104
qi-mse-ng 0.7 0.6 0.233 0.085 0.302 0.519 0.144 0.242 0.104
qi-mse-ng 0.7 0.7 0.233 0.085 0.302 0.519 0.144 0.243 0.104
qi-mse-ng 0.7 0.8 0.233 0.085 0.302 0.519 0.144 0.243 0.105
qi-mse-ng 0.7 0.9 0.233 0.086 0.302 0.519 0.144 0.244 0.105
qi-mse-ng 0.9 — 0.358 0.461 0.279 0.549 0.341 0.308 0.213
qi-mse-ng 0.9 0.1 0.346 0.454 0.279 0.548 0.315 0.283 0.196
qi-mse-ng 0.9 0.2 0.345 0.454 0.279 0.547 0.314 0.283 0.195
qi-mse-ng 0.9 0.3 0.345 0.454 0.279 0.546 0.314 0.283 0.195
qi-mse-ng 0.9 0.4 0.345 0.455 0.279 0.547 0.314 0.283 0.195
qi-mse-ng 0.9 0.5 0.346 0.455 0.279 0.547 0.315 0.283 0.197
qi-mse-ng 0.9 0.6 0.346 0.455 0.279 0.547 0.315 0.284 0.197
qi-mse-ng 0.9 0.7 0.346 0.456 0.279 0.546 0.315 0.284 0.197
qi-mse-ng 0.9 0.8 0.347 0.457 0.279 0.547 0.315 0.285 0.197
qi-mse-ng 0.9 0.9 0.348 0.457 0.28 0.547 0.323 0.285 0.198
qi-mls-pre 0.1 — 0.814 0.827 0.863 0.618 0.932 0.777 0.866
qi-mls-pre 0.1 0.1 0.826 0.852 0.87 0.643 0.933 0.784 0.875
qi-mls-pre 0.1 0.2 0.826 0.852 0.871 0.643 0.931 0.785 0.875
qi-mls-pre 0.1 0.3 0.825 0.852 0.871 0.643 0.931 0.775 0.875
qi-mls-pre 0.1 0.4 0.826 0.852 0.872 0.639 0.931 0.788 0.875
qi-mls-pre 0.1 0.5 0.809 0.852 0.872 0.639 0.93 0.684 0.876
qi-mls-pre 0.1 0.6 0.81 0.855 0.872 0.639 0.93 0.686 0.876
qi-mls-pre 0.1 0.7 0.81 0.855 0.872 0.639 0.93 0.686 0.876
qi-mls-pre 0.1 0.8 0.809 0.855 0.868 0.639 0.93 0.686 0.876
qi-mls-pre 0.1 0.9 0.809 0.855 0.869 0.638 0.93 0.687 0.876
qi-mls-pre 0.3 — 0.941 0.949 0.939 0.959 0.934 0.912 0.955
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…continued: Table 17 (RAND on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre 0.3 0.1 0.951 0.953 0.939 0.979 0.939 0.938 0.958
qi-mls-pre 0.3 0.2 0.951 0.953 0.938 0.979 0.938 0.937 0.957
qi-mls-pre 0.3 0.3 0.951 0.953 0.938 0.979 0.938 0.937 0.958
qi-mls-pre 0.3 0.4 0.951 0.953 0.938 0.979 0.938 0.937 0.958
qi-mls-pre 0.3 0.5 0.95 0.953 0.938 0.979 0.938 0.937 0.958
qi-mls-pre 0.3 0.6 0.95 0.953 0.937 0.979 0.938 0.937 0.958
qi-mls-pre 0.3 0.7 0.95 0.953 0.937 0.979 0.938 0.937 0.958
qi-mls-pre 0.3 0.8 0.95 0.953 0.937 0.979 0.938 0.937 0.958
qi-mls-pre 0.3 0.9 0.95 0.953 0.937 0.979 0.938 0.936 0.958
qi-mls-pre 0.5 — 0.955 0.952 0.958 0.967 0.942 0.948 0.962
qi-mls-pre 0.5 0.1 0.961 0.956 0.956 0.985 0.942 0.963 0.966
qi-mls-pre 0.5 0.2 0.961 0.955 0.956 0.985 0.942 0.962 0.965
qi-mls-pre 0.5 0.3 0.961 0.955 0.955 0.985 0.942 0.962 0.966
qi-mls-pre 0.5 0.4 0.961 0.955 0.955 0.985 0.942 0.962 0.966
qi-mls-pre 0.5 0.5 0.961 0.955 0.955 0.985 0.941 0.962 0.966
qi-mls-pre 0.5 0.6 0.961 0.955 0.955 0.984 0.941 0.962 0.966
qi-mls-pre 0.5 0.7 0.961 0.955 0.955 0.984 0.941 0.962 0.966
qi-mls-pre 0.5 0.8 0.96 0.955 0.955 0.984 0.941 0.961 0.966
qi-mls-pre 0.5 0.9 0.96 0.955 0.955 0.984 0.941 0.961 0.966
qi-mls-pre 0.7 — 0.955 0.952 0.958 0.967 0.942 0.948 0.962
qi-mls-pre 0.7 0.1 0.961 0.956 0.956 0.985 0.942 0.963 0.966
qi-mls-pre 0.7 0.2 0.961 0.955 0.956 0.985 0.942 0.962 0.965
qi-mls-pre 0.7 0.3 0.961 0.955 0.955 0.985 0.942 0.962 0.966
qi-mls-pre 0.7 0.4 0.961 0.955 0.955 0.985 0.942 0.962 0.966
qi-mls-pre 0.7 0.5 0.961 0.955 0.955 0.985 0.941 0.962 0.966
qi-mls-pre 0.7 0.6 0.961 0.955 0.955 0.984 0.941 0.962 0.966
qi-mls-pre 0.7 0.7 0.961 0.955 0.955 0.984 0.941 0.962 0.966
qi-mls-pre 0.7 0.8 0.96 0.955 0.955 0.984 0.941 0.961 0.966
qi-mls-pre 0.7 0.9 0.96 0.955 0.955 0.984 0.941 0.961 0.966
qi-mls-pre 0.9 — 0.955 0.952 0.958 0.967 0.942 0.948 0.962
qi-mls-pre 0.9 0.1 0.961 0.956 0.956 0.985 0.942 0.963 0.966
qi-mls-pre 0.9 0.2 0.961 0.955 0.956 0.985 0.942 0.962 0.965
qi-mls-pre 0.9 0.3 0.961 0.955 0.955 0.985 0.942 0.962 0.966
qi-mls-pre 0.9 0.4 0.961 0.955 0.955 0.985 0.942 0.962 0.966
qi-mls-pre 0.9 0.5 0.961 0.955 0.955 0.985 0.941 0.962 0.966
qi-mls-pre 0.9 0.6 0.961 0.955 0.955 0.984 0.941 0.962 0.966
qi-mls-pre 0.9 0.7 0.961 0.955 0.955 0.984 0.941 0.962 0.966
qi-mls-pre 0.9 0.8 0.96 0.955 0.955 0.984 0.941 0.961 0.966
qi-mls-pre 0.9 0.9 0.96 0.955 0.955 0.984 0.941 0.961 0.966
qi-mls-pre-ng 0.1 — 0.898 0.952 0.916 0.771 0.951 0.884 0.914
qi-mls-pre-ng 0.1 0.1 0.893 0.957 0.919 0.737 0.945 0.882 0.915
qi-mls-pre-ng 0.1 0.2 0.891 0.959 0.921 0.721 0.944 0.886 0.914
qi-mls-pre-ng 0.1 0.3 0.889 0.958 0.917 0.715 0.944 0.887 0.914
qi-mls-pre-ng 0.1 0.4 0.889 0.958 0.918 0.716 0.944 0.885 0.914
qi-mls-pre-ng 0.1 0.5 0.889 0.958 0.918 0.716 0.944 0.885 0.914
qi-mls-pre-ng 0.1 0.6 0.889 0.958 0.918 0.716 0.944 0.885 0.914
qi-mls-pre-ng 0.1 0.7 0.889 0.958 0.918 0.716 0.944 0.886 0.914
qi-mls-pre-ng 0.1 0.8 0.889 0.958 0.918 0.719 0.944 0.884 0.914
qi-mls-pre-ng 0.1 0.9 0.89 0.958 0.919 0.722 0.943 0.89 0.911
qi-mls-pre-ng 0.3 — 0.764 0.789 0.712 0.786 0.764 0.745 0.79
qi-mls-pre-ng 0.3 0.1 0.772 0.778 0.713 0.846 0.744 0.783 0.766
qi-mls-pre-ng 0.3 0.2 0.771 0.779 0.713 0.845 0.744 0.778 0.766
qi-mls-pre-ng 0.3 0.3 0.771 0.779 0.713 0.846 0.744 0.777 0.766
qi-mls-pre-ng 0.3 0.4 0.771 0.781 0.713 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.3 0.5 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.3 0.6 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.3 0.7 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.3 0.8 0.772 0.781 0.714 0.847 0.744 0.778 0.766
qi-mls-pre-ng 0.3 0.9 0.768 0.781 0.714 0.847 0.744 0.756 0.766
qi-mls-pre-ng 0.5 — 0.764 0.789 0.712 0.786 0.764 0.745 0.79
qi-mls-pre-ng 0.5 0.1 0.772 0.778 0.713 0.846 0.744 0.783 0.766
qi-mls-pre-ng 0.5 0.2 0.771 0.779 0.713 0.845 0.744 0.778 0.766
qi-mls-pre-ng 0.5 0.3 0.771 0.779 0.713 0.846 0.744 0.777 0.766
qi-mls-pre-ng 0.5 0.4 0.771 0.781 0.713 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.5 0.5 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.5 0.6 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.5 0.7 0.771 0.781 0.714 0.846 0.744 0.778 0.766
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Continued on next page…



182 reconstruction

…continued: Table 17 (RAND on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre-ng 0.5 0.8 0.772 0.781 0.714 0.847 0.744 0.778 0.766
qi-mls-pre-ng 0.5 0.9 0.768 0.781 0.714 0.847 0.744 0.756 0.766
qi-mls-pre-ng 0.7 — 0.764 0.789 0.712 0.786 0.764 0.745 0.79
qi-mls-pre-ng 0.7 0.1 0.772 0.778 0.713 0.846 0.744 0.783 0.766
qi-mls-pre-ng 0.7 0.2 0.771 0.779 0.713 0.845 0.744 0.778 0.766
qi-mls-pre-ng 0.7 0.3 0.771 0.779 0.713 0.846 0.744 0.777 0.766
qi-mls-pre-ng 0.7 0.4 0.771 0.781 0.713 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.7 0.5 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.7 0.6 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.7 0.7 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.7 0.8 0.772 0.781 0.714 0.847 0.744 0.778 0.766
qi-mls-pre-ng 0.7 0.9 0.768 0.781 0.714 0.847 0.744 0.756 0.766
qi-mls-pre-ng 0.9 — 0.764 0.789 0.712 0.786 0.764 0.745 0.79
qi-mls-pre-ng 0.9 0.1 0.772 0.778 0.713 0.846 0.744 0.783 0.766
qi-mls-pre-ng 0.9 0.2 0.771 0.779 0.713 0.845 0.744 0.778 0.766
qi-mls-pre-ng 0.9 0.3 0.771 0.779 0.713 0.846 0.744 0.777 0.766
qi-mls-pre-ng 0.9 0.4 0.771 0.781 0.713 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.9 0.5 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.9 0.6 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.9 0.7 0.771 0.781 0.714 0.846 0.744 0.778 0.766
qi-mls-pre-ng 0.9 0.8 0.772 0.781 0.714 0.847 0.744 0.778 0.766
qi-mls-pre-ng 0.9 0.9 0.768 0.781 0.714 0.847 0.744 0.756 0.766
qi-mls 0.1 — 0.247 0.158 0.146 0.488 0.216 0.325 0.151
qi-mls 0.1 0.1 0.23 0.159 0.144 0.525 0.179 0.242 0.131
qi-mls 0.1 0.2 0.229 0.161 0.144 0.525 0.178 0.239 0.129
qi-mls 0.1 0.3 0.229 0.161 0.142 0.525 0.178 0.237 0.128
qi-mls 0.1 0.4 0.228 0.163 0.142 0.525 0.178 0.236 0.127
qi-mls 0.1 0.5 0.228 0.163 0.141 0.525 0.179 0.236 0.126
qi-mls 0.1 0.6 0.228 0.163 0.142 0.525 0.177 0.235 0.126
qi-mls 0.1 0.7 0.228 0.163 0.142 0.525 0.177 0.235 0.126
qi-mls 0.1 0.8 0.229 0.163 0.142 0.525 0.178 0.243 0.126
qi-mls 0.1 0.9 0.23 0.164 0.142 0.525 0.178 0.245 0.126
qi-mls 0.3 — 0.505 0.535 0.479 0.597 0.537 0.529 0.352
qi-mls 0.3 0.1 0.497 0.567 0.449 0.649 0.528 0.436 0.356
qi-mls 0.3 0.2 0.498 0.567 0.449 0.649 0.529 0.44 0.356
qi-mls 0.3 0.3 0.498 0.567 0.448 0.649 0.531 0.44 0.355
qi-mls 0.3 0.4 0.499 0.568 0.448 0.649 0.531 0.44 0.356
qi-mls 0.3 0.5 0.499 0.568 0.448 0.651 0.532 0.44 0.356
qi-mls 0.3 0.6 0.5 0.569 0.448 0.651 0.532 0.441 0.356
qi-mls 0.3 0.7 0.5 0.569 0.448 0.651 0.532 0.442 0.356
qi-mls 0.3 0.8 0.5 0.569 0.449 0.651 0.533 0.443 0.357
qi-mls 0.3 0.9 0.502 0.57 0.45 0.652 0.535 0.445 0.358
qi-mls 0.5 — 0.968 0.981 0.998 0.924 0.97 0.943 0.991
qi-mls 0.5 0.1 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.5 0.2 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.5 0.3 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.5 0.4 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.5 0.5 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.5 0.6 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.5 0.7 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.5 0.8 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.5 0.9 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 — 0.968 0.981 0.998 0.924 0.97 0.943 0.991
qi-mls 0.7 0.1 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 0.2 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 0.3 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 0.4 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 0.5 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 0.6 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 0.7 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 0.8 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.7 0.9 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.9 — 0.968 0.981 0.998 0.924 0.97 0.943 0.991
qi-mls 0.9 0.1 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.9 0.2 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.9 0.3 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.9 0.4 0.999 0.998 0.999 1.0 0.999 1.0 0.999
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…continued: Table 17 (RAND on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls 0.9 0.5 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.9 0.6 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.9 0.7 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.9 0.8 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls 0.9 0.9 0.999 0.998 0.999 1.0 0.999 1.0 0.999
qi-mls-ng 0.1 — 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.1 0.1 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.1 0.2 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.1 0.3 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.1 0.4 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.1 0.5 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.1 0.6 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.1 0.7 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.1 0.8 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.1 0.9 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.3 — 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.3 0.1 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.3 0.2 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.3 0.3 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.3 0.4 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.3 0.5 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.3 0.6 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.3 0.7 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.3 0.8 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.3 0.9 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.5 — 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.5 0.1 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.5 0.2 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.5 0.3 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.5 0.4 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.5 0.5 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.5 0.6 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.5 0.7 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.5 0.8 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.5 0.9 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.7 — 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.7 0.1 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.7 0.2 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.7 0.3 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.7 0.4 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.7 0.5 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.7 0.6 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.7 0.7 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.7 0.8 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.7 0.9 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.9 — 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.9 0.1 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.9 0.2 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.9 0.3 0.991 1.0 1.0 1.0 0.982 0.999 0.963
qi-mls-ng 0.9 0.4 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.9 0.5 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.9 0.6 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.9 0.7 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.9 0.8 0.99 1.0 1.0 1.0 0.979 0.999 0.963
qi-mls-ng 0.9 0.9 0.99 1.0 1.0 1.0 0.979 0.999 0.963
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Table 18: CREMI score performance on 25% of the data that were not used for training
for all architectures and parameter sets. A “—” in the 𝑡𝑔 column means that the glia
predictions were not considered during super voxel generation and merging.

Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 — 2.283 2.487 2.333 2.016 2.413 2.08 2.366
qi-mse 0.1 0.1 2.212 2.462 2.324 1.9 2.403 1.855 2.329
qi-mse 0.1 0.2 2.209 2.461 2.321 1.897 2.401 1.849 2.326
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
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…continued: Table 18 (CREMI score on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 0.3 2.221 2.461 2.319 1.897 2.4 1.923 2.325
qi-mse 0.1 0.4 2.22 2.461 2.318 1.897 2.4 1.923 2.324
qi-mse 0.1 0.5 2.221 2.461 2.317 1.898 2.4 1.923 2.324
qi-mse 0.1 0.6 2.221 2.461 2.317 1.9 2.4 1.924 2.324
qi-mse 0.1 0.7 2.222 2.462 2.317 1.902 2.4 1.926 2.324
qi-mse 0.1 0.8 2.222 2.462 2.317 1.905 2.4 1.928 2.324
qi-mse 0.1 0.9 2.225 2.463 2.317 1.911 2.4 1.932 2.324
qi-mse 0.3 — 2.296 2.489 2.328 2.108 2.414 2.074 2.362
qi-mse 0.3 0.1 2.203 2.462 2.317 1.868 2.393 1.854 2.326
qi-mse 0.3 0.2 2.205 2.461 2.313 1.895 2.391 1.848 2.323
qi-mse 0.3 0.3 2.199 2.461 2.311 1.865 2.39 1.846 2.321
qi-mse 0.3 0.4 2.199 2.461 2.31 1.865 2.389 1.846 2.32
qi-mse 0.3 0.5 2.199 2.461 2.31 1.866 2.389 1.847 2.32
qi-mse 0.3 0.6 2.199 2.461 2.309 1.868 2.389 1.848 2.32
qi-mse 0.3 0.7 2.2 2.461 2.309 1.87 2.389 1.849 2.32
qi-mse 0.3 0.8 2.201 2.462 2.308 1.872 2.389 1.852 2.32
qi-mse 0.3 0.9 2.203 2.463 2.309 1.879 2.389 1.856 2.32
qi-mse 0.5 — 1.078 0.885 1.441 1.201 0.752 1.436 0.754
qi-mse 0.5 0.1 0.935 0.805 1.631 0.871 0.799 0.776 0.726
qi-mse 0.5 0.2 0.919 0.778 1.615 0.863 0.793 0.762 0.705
qi-mse 0.5 0.3 0.927 0.795 1.607 0.861 0.766 0.883 0.649
qi-mse 0.5 0.4 0.936 0.778 1.6 0.858 0.778 0.881 0.723
qi-mse 0.5 0.5 0.907 0.843 1.599 0.859 0.731 0.756 0.653
qi-mse 0.5 0.6 0.875 0.792 1.427 0.866 0.724 0.783 0.655
qi-mse 0.5 0.7 0.871 0.752 1.427 0.868 0.723 0.785 0.67
qi-mse 0.5 0.8 0.882 0.733 1.428 0.872 0.723 0.866 0.671
qi-mse 0.5 0.9 0.856 0.78 1.428 0.881 0.606 0.77 0.671
qi-mse 0.7 — 0.565 0.186 0.626 1.206 0.323 0.682 0.368
qi-mse 0.7 0.1 0.438 0.137 0.61 0.855 0.378 0.336 0.31
qi-mse 0.7 0.2 0.426 0.134 0.603 0.85 0.339 0.324 0.305
qi-mse 0.7 0.3 0.425 0.136 0.6 0.848 0.338 0.321 0.306
qi-mse 0.7 0.4 0.425 0.136 0.598 0.855 0.337 0.321 0.305
qi-mse 0.7 0.5 0.426 0.137 0.597 0.856 0.336 0.322 0.305
qi-mse 0.7 0.6 0.426 0.137 0.597 0.858 0.335 0.325 0.305
qi-mse 0.7 0.7 0.428 0.137 0.599 0.861 0.337 0.328 0.305
qi-mse 0.7 0.8 0.43 0.137 0.599 0.867 0.341 0.333 0.306
qi-mse 0.7 0.9 0.435 0.138 0.601 0.877 0.341 0.344 0.307
qi-mse 0.9 — 1.116 1.459 0.859 1.469 1.107 0.961 0.841
qi-mse 0.9 0.1 0.998 1.407 0.85 1.148 1.08 0.668 0.835
qi-mse 0.9 0.2 0.994 1.406 0.845 1.144 1.076 0.662 0.833
qi-mse 0.9 0.3 0.995 1.406 0.844 1.143 1.083 0.661 0.833
qi-mse 0.9 0.4 0.995 1.407 0.844 1.144 1.083 0.659 0.833
qi-mse 0.9 0.5 0.995 1.407 0.843 1.146 1.082 0.66 0.833
qi-mse 0.9 0.6 0.999 1.408 0.843 1.147 1.082 0.679 0.836
qi-mse 0.9 0.7 1.001 1.409 0.844 1.15 1.082 0.683 0.837
qi-mse 0.9 0.8 1.003 1.411 0.845 1.154 1.084 0.688 0.838
qi-mse 0.9 0.9 1.008 1.412 0.846 1.165 1.091 0.696 0.84
qi-mse-ng 0.1 — 2.278 2.487 2.333 2.014 2.412 2.056 2.365
qi-mse-ng 0.1 0.1 2.218 2.461 2.32 1.896 2.37 1.933 2.328
qi-mse-ng 0.1 0.2 2.216 2.46 2.318 1.894 2.369 1.93 2.326
qi-mse-ng 0.1 0.3 2.215 2.46 2.317 1.894 2.368 1.929 2.324
qi-mse-ng 0.1 0.4 2.215 2.46 2.316 1.895 2.367 1.929 2.324
qi-mse-ng 0.1 0.5 2.218 2.46 2.316 1.915 2.367 1.93 2.323
qi-mse-ng 0.1 0.6 2.219 2.46 2.315 1.916 2.367 1.931 2.323
qi-mse-ng 0.1 0.7 2.219 2.46 2.315 1.919 2.367 1.933 2.322
qi-mse-ng 0.1 0.8 2.221 2.46 2.315 1.922 2.367 1.936 2.322
qi-mse-ng 0.1 0.9 2.22 2.46 2.316 1.911 2.368 1.943 2.323
qi-mse-ng 0.3 — 2.304 2.487 2.333 2.11 2.415 2.112 2.365
qi-mse-ng 0.3 0.1 2.218 2.461 2.32 1.895 2.37 1.933 2.328
qi-mse-ng 0.3 0.2 2.216 2.46 2.316 1.894 2.369 1.93 2.325
qi-mse-ng 0.3 0.3 2.215 2.46 2.315 1.894 2.368 1.929 2.324
qi-mse-ng 0.3 0.4 2.214 2.46 2.314 1.894 2.367 1.929 2.323
qi-mse-ng 0.3 0.5 2.214 2.46 2.313 1.895 2.366 1.93 2.322
qi-mse-ng 0.3 0.6 2.215 2.46 2.313 1.896 2.366 1.931 2.322
qi-mse-ng 0.3 0.7 2.215 2.46 2.313 1.898 2.366 1.933 2.321
qi-mse-ng 0.3 0.8 2.194 2.46 2.313 1.768 2.367 1.937 2.321
qi-mse-ng 0.3 0.9 2.197 2.46 2.313 1.776 2.368 1.944 2.322
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…continued: Table 18 (CREMI score on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse-ng 0.5 — 1.903 1.694 2.089 1.455 2.186 1.984 2.011
qi-mse-ng 0.5 0.1 1.816 1.666 2.096 1.209 2.126 1.738 2.065
qi-mse-ng 0.5 0.2 1.802 1.603 2.092 1.195 2.142 1.731 2.051
qi-mse-ng 0.5 0.3 1.812 1.63 2.091 1.227 2.141 1.729 2.056
qi-mse-ng 0.5 0.4 1.807 1.635 2.091 1.204 2.14 1.728 2.046
qi-mse-ng 0.5 0.5 1.809 1.669 2.09 1.191 2.116 1.742 2.045
qi-mse-ng 0.5 0.6 1.804 1.654 2.09 1.192 2.116 1.731 2.044
qi-mse-ng 0.5 0.7 1.785 1.599 2.089 1.148 2.099 1.732 2.044
qi-mse-ng 0.5 0.8 1.794 1.62 2.089 1.181 2.099 1.735 2.042
qi-mse-ng 0.5 0.9 1.799 1.628 2.087 1.192 2.1 1.744 2.043
qi-mse-ng 0.7 — 0.587 0.222 0.638 1.181 0.379 0.682 0.423
qi-mse-ng 0.7 0.1 0.439 0.175 0.616 0.864 0.283 0.364 0.335
qi-mse-ng 0.7 0.2 0.438 0.173 0.613 0.855 0.302 0.356 0.329
qi-mse-ng 0.7 0.3 0.433 0.173 0.611 0.856 0.278 0.354 0.328
qi-mse-ng 0.7 0.4 0.436 0.173 0.607 0.856 0.304 0.353 0.326
qi-mse-ng 0.7 0.5 0.437 0.173 0.607 0.859 0.304 0.355 0.325
qi-mse-ng 0.7 0.6 0.438 0.173 0.606 0.861 0.303 0.358 0.325
qi-mse-ng 0.7 0.7 0.44 0.173 0.606 0.865 0.304 0.365 0.326
qi-mse-ng 0.7 0.8 0.443 0.173 0.608 0.87 0.306 0.375 0.327
qi-mse-ng 0.7 0.9 0.45 0.177 0.61 0.885 0.308 0.39 0.328
qi-mse-ng 0.9 — 0.995 1.244 0.769 1.404 0.921 0.887 0.747
qi-mse-ng 0.9 0.1 0.859 1.195 0.755 1.102 0.826 0.597 0.683
qi-mse-ng 0.9 0.2 0.857 1.196 0.752 1.097 0.825 0.594 0.68
qi-mse-ng 0.9 0.3 0.857 1.196 0.751 1.097 0.824 0.594 0.678
qi-mse-ng 0.9 0.4 0.858 1.198 0.751 1.1 0.824 0.596 0.678
qi-mse-ng 0.9 0.5 0.859 1.198 0.75 1.101 0.824 0.598 0.681
qi-mse-ng 0.9 0.6 0.86 1.2 0.751 1.103 0.825 0.602 0.682
qi-mse-ng 0.9 0.7 0.862 1.203 0.752 1.106 0.825 0.606 0.682
qi-mse-ng 0.9 0.8 0.865 1.205 0.753 1.111 0.826 0.612 0.683
qi-mse-ng 0.9 0.9 0.872 1.207 0.754 1.123 0.841 0.624 0.686
qi-mls-pre 0.1 — 1.808 1.718 1.918 1.524 2.09 1.634 1.966
qi-mls-pre 0.1 0.1 1.779 1.767 1.957 1.38 2.068 1.537 1.966
qi-mls-pre 0.1 0.2 1.773 1.765 1.949 1.373 2.057 1.533 1.963
qi-mls-pre 0.1 0.3 1.767 1.765 1.952 1.371 2.053 1.498 1.966
qi-mls-pre 0.1 0.4 1.771 1.765 1.95 1.359 2.052 1.535 1.967
qi-mls-pre 0.1 0.5 1.742 1.765 1.948 1.36 2.049 1.363 1.965
qi-mls-pre 0.1 0.6 1.744 1.775 1.947 1.362 2.048 1.366 1.965
qi-mls-pre 0.1 0.7 1.744 1.772 1.946 1.365 2.049 1.37 1.964
qi-mls-pre 0.1 0.8 1.744 1.772 1.925 1.373 2.05 1.38 1.964
qi-mls-pre 0.1 0.9 1.75 1.773 1.925 1.385 2.052 1.402 1.964
qi-mls-pre 0.3 — 2.541 2.601 2.49 2.612 2.498 2.435 2.609
qi-mls-pre 0.3 0.1 2.458 2.568 2.467 2.416 2.442 2.284 2.57
qi-mls-pre 0.3 0.2 2.455 2.567 2.462 2.414 2.44 2.281 2.566
qi-mls-pre 0.3 0.3 2.455 2.567 2.459 2.414 2.439 2.281 2.569
qi-mls-pre 0.3 0.4 2.455 2.567 2.457 2.416 2.438 2.283 2.567
qi-mls-pre 0.3 0.5 2.455 2.567 2.454 2.418 2.438 2.287 2.567
qi-mls-pre 0.3 0.6 2.456 2.567 2.453 2.421 2.439 2.291 2.566
qi-mls-pre 0.3 0.7 2.458 2.567 2.451 2.426 2.439 2.297 2.566
qi-mls-pre 0.3 0.8 2.461 2.567 2.451 2.433 2.44 2.307 2.565
qi-mls-pre 0.3 0.9 2.466 2.567 2.45 2.446 2.444 2.324 2.565
qi-mls-pre 0.5 — 2.644 2.645 2.628 2.7 2.555 2.662 2.676
qi-mls-pre 0.5 0.1 2.542 2.603 2.589 2.494 2.478 2.456 2.631
qi-mls-pre 0.5 0.2 2.539 2.602 2.584 2.492 2.476 2.453 2.628
qi-mls-pre 0.5 0.3 2.539 2.602 2.581 2.492 2.474 2.453 2.63
qi-mls-pre 0.5 0.4 2.539 2.602 2.579 2.494 2.474 2.455 2.629
qi-mls-pre 0.5 0.5 2.539 2.602 2.577 2.496 2.474 2.458 2.628
qi-mls-pre 0.5 0.6 2.54 2.602 2.575 2.499 2.474 2.462 2.627
qi-mls-pre 0.5 0.7 2.542 2.602 2.574 2.504 2.474 2.468 2.627
qi-mls-pre 0.5 0.8 2.544 2.602 2.573 2.51 2.476 2.477 2.627
qi-mls-pre 0.5 0.9 2.549 2.602 2.572 2.523 2.479 2.493 2.626
qi-mls-pre 0.7 — 2.644 2.645 2.628 2.7 2.555 2.662 2.676
qi-mls-pre 0.7 0.1 2.542 2.603 2.589 2.494 2.478 2.456 2.631
qi-mls-pre 0.7 0.2 2.539 2.602 2.584 2.492 2.476 2.453 2.628
qi-mls-pre 0.7 0.3 2.539 2.602 2.581 2.492 2.474 2.453 2.63
qi-mls-pre 0.7 0.4 2.539 2.602 2.579 2.494 2.474 2.455 2.629
qi-mls-pre 0.7 0.5 2.539 2.602 2.577 2.496 2.474 2.458 2.628
qi-mls-pre 0.7 0.6 2.54 2.602 2.575 2.499 2.474 2.462 2.627
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…continued: Table 18 (CREMI score on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre 0.7 0.7 2.542 2.602 2.574 2.504 2.474 2.468 2.627
qi-mls-pre 0.7 0.8 2.544 2.602 2.573 2.51 2.476 2.477 2.627
qi-mls-pre 0.7 0.9 2.549 2.602 2.572 2.523 2.479 2.493 2.626
qi-mls-pre 0.9 — 2.644 2.645 2.628 2.7 2.555 2.662 2.676
qi-mls-pre 0.9 0.1 2.542 2.603 2.589 2.494 2.478 2.456 2.631
qi-mls-pre 0.9 0.2 2.539 2.602 2.584 2.492 2.476 2.453 2.628
qi-mls-pre 0.9 0.3 2.539 2.602 2.581 2.492 2.474 2.453 2.63
qi-mls-pre 0.9 0.4 2.539 2.602 2.579 2.494 2.474 2.455 2.629
qi-mls-pre 0.9 0.5 2.539 2.602 2.577 2.496 2.474 2.458 2.628
qi-mls-pre 0.9 0.6 2.54 2.602 2.575 2.499 2.474 2.462 2.627
qi-mls-pre 0.9 0.7 2.542 2.602 2.574 2.504 2.474 2.468 2.627
qi-mls-pre 0.9 0.8 2.544 2.602 2.573 2.51 2.476 2.477 2.627
qi-mls-pre 0.9 0.9 2.549 2.602 2.572 2.523 2.479 2.493 2.626
qi-mls-pre-ng 0.1 — 2.187 2.303 2.222 1.923 2.315 2.052 2.309
qi-mls-pre-ng 0.1 0.1 2.133 2.329 2.25 1.703 2.273 1.926 2.316
qi-mls-pre-ng 0.1 0.2 2.127 2.332 2.253 1.677 2.262 1.932 2.307
qi-mls-pre-ng 0.1 0.3 2.12 2.327 2.226 1.668 2.261 1.932 2.303
qi-mls-pre-ng 0.1 0.4 2.117 2.325 2.224 1.669 2.26 1.92 2.303
qi-mls-pre-ng 0.1 0.5 2.117 2.325 2.223 1.67 2.26 1.922 2.302
qi-mls-pre-ng 0.1 0.6 2.117 2.325 2.223 1.672 2.259 1.923 2.302
qi-mls-pre-ng 0.1 0.7 2.118 2.325 2.224 1.674 2.259 1.924 2.302
qi-mls-pre-ng 0.1 0.8 2.121 2.326 2.227 1.69 2.259 1.922 2.302
qi-mls-pre-ng 0.1 0.9 2.128 2.328 2.228 1.708 2.252 1.952 2.3
qi-mls-pre-ng 0.3 — 1.871 1.868 1.774 1.922 1.872 1.791 1.999
qi-mls-pre-ng 0.3 0.1 1.811 1.829 1.767 1.832 1.795 1.705 1.937
qi-mls-pre-ng 0.3 0.2 1.803 1.83 1.76 1.826 1.79 1.679 1.933
qi-mls-pre-ng 0.3 0.3 1.803 1.829 1.757 1.833 1.789 1.678 1.933
qi-mls-pre-ng 0.3 0.4 1.803 1.834 1.755 1.834 1.789 1.673 1.933
qi-mls-pre-ng 0.3 0.5 1.804 1.834 1.757 1.834 1.789 1.675 1.933
qi-mls-pre-ng 0.3 0.6 1.804 1.834 1.757 1.837 1.788 1.674 1.932
qi-mls-pre-ng 0.3 0.7 1.805 1.835 1.756 1.839 1.788 1.677 1.933
qi-mls-pre-ng 0.3 0.8 1.807 1.835 1.756 1.847 1.788 1.68 1.933
qi-mls-pre-ng 0.3 0.9 1.803 1.837 1.758 1.858 1.789 1.644 1.933
qi-mls-pre-ng 0.5 — 1.871 1.868 1.774 1.922 1.872 1.791 2.001
qi-mls-pre-ng 0.5 0.1 1.811 1.829 1.767 1.832 1.795 1.705 1.938
qi-mls-pre-ng 0.5 0.2 1.803 1.83 1.76 1.826 1.79 1.679 1.934
qi-mls-pre-ng 0.5 0.3 1.803 1.829 1.757 1.833 1.789 1.678 1.934
qi-mls-pre-ng 0.5 0.4 1.803 1.834 1.755 1.834 1.789 1.673 1.934
qi-mls-pre-ng 0.5 0.5 1.804 1.834 1.757 1.834 1.789 1.675 1.933
qi-mls-pre-ng 0.5 0.6 1.804 1.834 1.757 1.837 1.788 1.674 1.933
qi-mls-pre-ng 0.5 0.7 1.805 1.835 1.756 1.839 1.788 1.677 1.933
qi-mls-pre-ng 0.5 0.8 1.807 1.835 1.756 1.847 1.788 1.68 1.933
qi-mls-pre-ng 0.5 0.9 1.803 1.837 1.758 1.858 1.789 1.644 1.934
qi-mls-pre-ng 0.7 — 1.871 1.868 1.774 1.922 1.872 1.791 2.001
qi-mls-pre-ng 0.7 0.1 1.811 1.829 1.767 1.832 1.795 1.705 1.938
qi-mls-pre-ng 0.7 0.2 1.803 1.83 1.76 1.826 1.79 1.679 1.934
qi-mls-pre-ng 0.7 0.3 1.803 1.829 1.757 1.833 1.789 1.678 1.934
qi-mls-pre-ng 0.7 0.4 1.803 1.834 1.755 1.834 1.789 1.673 1.934
qi-mls-pre-ng 0.7 0.5 1.804 1.834 1.757 1.834 1.789 1.675 1.933
qi-mls-pre-ng 0.7 0.6 1.804 1.834 1.757 1.837 1.788 1.674 1.933
qi-mls-pre-ng 0.7 0.7 1.805 1.835 1.756 1.839 1.788 1.677 1.933
qi-mls-pre-ng 0.7 0.8 1.807 1.835 1.756 1.847 1.788 1.68 1.933
qi-mls-pre-ng 0.7 0.9 1.803 1.837 1.758 1.858 1.789 1.644 1.934
qi-mls-pre-ng 0.9 — 1.871 1.868 1.774 1.922 1.872 1.791 2.001
qi-mls-pre-ng 0.9 0.1 1.811 1.829 1.767 1.832 1.795 1.705 1.938
qi-mls-pre-ng 0.9 0.2 1.803 1.83 1.76 1.826 1.79 1.679 1.934
qi-mls-pre-ng 0.9 0.3 1.803 1.829 1.757 1.833 1.789 1.678 1.934
qi-mls-pre-ng 0.9 0.4 1.803 1.834 1.755 1.834 1.789 1.673 1.934
qi-mls-pre-ng 0.9 0.5 1.804 1.834 1.757 1.834 1.789 1.675 1.933
qi-mls-pre-ng 0.9 0.6 1.804 1.834 1.757 1.837 1.788 1.674 1.933
qi-mls-pre-ng 0.9 0.7 1.805 1.835 1.756 1.839 1.788 1.677 1.933
qi-mls-pre-ng 0.9 0.8 1.807 1.835 1.756 1.847 1.788 1.68 1.933
qi-mls-pre-ng 0.9 0.9 1.803 1.837 1.758 1.858 1.789 1.644 1.934
qi-mls 0.1 — 0.611 0.397 0.479 1.077 0.545 0.673 0.496
qi-mls 0.1 0.1 0.518 0.382 0.468 0.95 0.459 0.404 0.443
qi-mls 0.1 0.2 0.514 0.387 0.464 0.95 0.456 0.389 0.437
qi-mls 0.1 0.3 0.511 0.387 0.459 0.948 0.453 0.382 0.434
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…continued: Table 18 (CREMI score on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls 0.1 0.4 0.509 0.39 0.458 0.948 0.452 0.378 0.429
qi-mls 0.1 0.5 0.509 0.389 0.457 0.949 0.455 0.375 0.426
qi-mls 0.1 0.6 0.508 0.39 0.457 0.952 0.451 0.374 0.428
qi-mls 0.1 0.7 0.509 0.392 0.458 0.953 0.45 0.376 0.427
qi-mls 0.1 0.8 0.513 0.392 0.457 0.957 0.452 0.391 0.427
qi-mls 0.1 0.9 0.518 0.393 0.459 0.966 0.454 0.408 0.428
qi-mls 0.3 — 1.328 1.292 1.327 1.521 1.383 1.328 1.115
qi-mls 0.3 0.1 1.255 1.319 1.267 1.449 1.341 1.041 1.113
qi-mls 0.3 0.2 1.256 1.319 1.267 1.449 1.34 1.05 1.111
qi-mls 0.3 0.3 1.257 1.32 1.264 1.452 1.345 1.05 1.11
qi-mls 0.3 0.4 1.258 1.322 1.264 1.454 1.345 1.052 1.112
qi-mls 0.3 0.5 1.26 1.324 1.264 1.462 1.346 1.053 1.111
qi-mls 0.3 0.6 1.262 1.324 1.264 1.465 1.348 1.056 1.113
qi-mls 0.3 0.7 1.264 1.326 1.265 1.469 1.349 1.061 1.115
qi-mls 0.3 0.8 1.267 1.327 1.267 1.474 1.353 1.067 1.117
qi-mls 0.3 0.9 1.275 1.331 1.27 1.486 1.357 1.085 1.121
qi-mls 0.5 — 3.204 3.165 3.301 3.079 3.19 3.254 3.237
qi-mls 0.5 0.1 3.223 3.19 3.299 3.113 3.225 3.266 3.247
qi-mls 0.5 0.2 3.222 3.189 3.298 3.112 3.223 3.264 3.245
qi-mls 0.5 0.3 3.221 3.189 3.297 3.112 3.222 3.263 3.244
qi-mls 0.5 0.4 3.221 3.189 3.296 3.112 3.222 3.263 3.243
qi-mls 0.5 0.5 3.221 3.189 3.295 3.113 3.222 3.263 3.243
qi-mls 0.5 0.6 3.221 3.189 3.295 3.114 3.221 3.263 3.243
qi-mls 0.5 0.7 3.221 3.189 3.295 3.115 3.221 3.263 3.242
qi-mls 0.5 0.8 3.222 3.189 3.295 3.117 3.221 3.265 3.242
qi-mls 0.5 0.9 3.223 3.189 3.295 3.122 3.222 3.269 3.242
qi-mls 0.7 — 3.204 3.165 3.301 3.079 3.19 3.254 3.237
qi-mls 0.7 0.1 3.223 3.19 3.299 3.113 3.225 3.266 3.247
qi-mls 0.7 0.2 3.222 3.189 3.298 3.112 3.223 3.264 3.245
qi-mls 0.7 0.3 3.221 3.189 3.297 3.112 3.222 3.263 3.244
qi-mls 0.7 0.4 3.221 3.189 3.296 3.112 3.222 3.263 3.243
qi-mls 0.7 0.5 3.221 3.189 3.295 3.113 3.222 3.263 3.243
qi-mls 0.7 0.6 3.221 3.189 3.295 3.114 3.221 3.263 3.243
qi-mls 0.7 0.7 3.221 3.189 3.295 3.115 3.221 3.263 3.242
qi-mls 0.7 0.8 3.222 3.189 3.295 3.117 3.221 3.265 3.242
qi-mls 0.7 0.9 3.223 3.189 3.295 3.122 3.222 3.269 3.242
qi-mls 0.9 — 3.204 3.165 3.301 3.079 3.19 3.254 3.237
qi-mls 0.9 0.1 3.223 3.19 3.299 3.113 3.225 3.266 3.247
qi-mls 0.9 0.2 3.222 3.189 3.298 3.112 3.223 3.264 3.245
qi-mls 0.9 0.3 3.221 3.189 3.297 3.112 3.222 3.263 3.244
qi-mls 0.9 0.4 3.221 3.189 3.296 3.112 3.222 3.263 3.243
qi-mls 0.9 0.5 3.221 3.189 3.295 3.113 3.222 3.263 3.243
qi-mls 0.9 0.6 3.221 3.189 3.295 3.114 3.221 3.263 3.243
qi-mls 0.9 0.7 3.221 3.189 3.295 3.115 3.221 3.263 3.242
qi-mls 0.9 0.8 3.222 3.189 3.295 3.117 3.221 3.265 3.242
qi-mls 0.9 0.9 3.223 3.189 3.295 3.122 3.222 3.269 3.242
qi-mls-ng 0.1 — 2.361 2.527 2.409 2.252 2.417 2.166 2.398
qi-mls-ng 0.1 0.1 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.1 0.2 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.1 0.3 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.1 0.4 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.1 0.5 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.1 0.6 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.1 0.7 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.1 0.8 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.1 0.9 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.3 — 2.361 2.527 2.409 2.252 2.417 2.166 2.398
qi-mls-ng 0.3 0.1 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.3 0.2 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.3 0.3 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.3 0.4 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.3 0.5 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.3 0.6 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.3 0.7 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.3 0.8 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.3 0.9 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.5 — 2.361 2.527 2.409 2.252 2.417 2.166 2.398
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…continued: Table 18 (CREMI score on 25%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-ng 0.5 0.1 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.5 0.2 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.5 0.3 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.5 0.4 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.5 0.5 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.5 0.6 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.5 0.7 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.5 0.8 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.5 0.9 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.7 — 2.361 2.527 2.409 2.252 2.417 2.166 2.398
qi-mls-ng 0.7 0.1 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.7 0.2 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.7 0.3 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.7 0.4 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.7 0.5 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.7 0.6 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.7 0.7 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.7 0.8 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.7 0.9 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.9 — 2.361 2.527 2.409 2.252 2.417 2.166 2.398
qi-mls-ng 0.9 0.1 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.9 0.2 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.9 0.3 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.9 0.4 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.9 0.5 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.9 0.6 2.361 2.527 2.409 2.252 2.419 2.163 2.397
qi-mls-ng 0.9 0.7 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.9 0.8 2.361 2.527 2.409 2.252 2.419 2.164 2.397
qi-mls-ng 0.9 0.9 2.361 2.527 2.409 2.252 2.419 2.164 2.397
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Table 19: VOI𝑠 performance on 100% of the data including training data for all architec-
tures and parameter sets. A “—” in the 𝑡𝑔 column means that the glia predictions were
not considered during super voxel generation and merging.

Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 — 0.435 0.011 0.002 0.864 0.602 0.734 0.395
qi-mse 0.1 0.1 0.162 0.017 0.062 0.772 0.06 0.033 0.028
qi-mse 0.1 0.2 0.152 0.008 0.046 0.765 0.05 0.023 0.018
qi-mse 0.1 0.3 0.147 0.005 0.038 0.763 0.041 0.02 0.015
qi-mse 0.1 0.4 0.145 0.004 0.031 0.762 0.043 0.018 0.013
qi-mse 0.1 0.5 0.145 0.004 0.028 0.762 0.042 0.018 0.013
qi-mse 0.1 0.6 0.144 0.004 0.026 0.763 0.042 0.018 0.012
qi-mse 0.1 0.7 0.144 0.004 0.024 0.764 0.042 0.019 0.012
qi-mse 0.1 0.8 0.145 0.004 0.024 0.766 0.042 0.021 0.013
qi-mse 0.1 0.9 0.148 0.005 0.026 0.77 0.045 0.027 0.016
qi-mse 0.3 — 0.632 0.082 0.071 1.039 0.88 1.125 0.598
qi-mse 0.3 0.1 0.173 0.023 0.077 0.784 0.075 0.042 0.035
qi-mse 0.3 0.2 0.163 0.014 0.061 0.777 0.066 0.032 0.026
qi-mse 0.3 0.3 0.159 0.011 0.054 0.775 0.062 0.028 0.023
qi-mse 0.3 0.4 0.157 0.01 0.05 0.775 0.06 0.028 0.022
qi-mse 0.3 0.5 0.157 0.01 0.047 0.775 0.059 0.028 0.022
qi-mse 0.3 0.6 0.157 0.01 0.046 0.776 0.059 0.03 0.022
qi-mse 0.3 0.7 0.158 0.01 0.047 0.778 0.059 0.034 0.023
qi-mse 0.3 0.8 0.161 0.011 0.05 0.782 0.061 0.039 0.024
qi-mse 0.3 0.9 0.168 0.012 0.06 0.788 0.067 0.053 0.027
qi-mse 0.5 — 1.286 0.351 0.693 1.883 1.288 2.163 1.335
qi-mse 0.5 0.1 0.475 0.175 0.48 1.37 0.157 0.319 0.346
qi-mse 0.5 0.2 0.469 0.167 0.467 1.372 0.149 0.316 0.345
qi-mse 0.5 0.3 0.469 0.165 0.471 1.373 0.146 0.315 0.343
qi-mse 0.5 0.4 0.471 0.164 0.484 1.371 0.145 0.318 0.342
qi-mse 0.5 0.5 0.474 0.164 0.486 1.373 0.149 0.322 0.347
qi-mse 0.5 0.6 0.48 0.177 0.492 1.38 0.153 0.333 0.348
qi-mse 0.5 0.7 0.482 0.167 0.498 1.384 0.154 0.339 0.35
qi-mse 0.5 0.8 0.49 0.18 0.505 1.389 0.157 0.349 0.359
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…continued: Table 19 (VOI𝑠 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.5 0.9 0.502 0.182 0.522 1.401 0.167 0.365 0.376
qi-mse 0.7 — 1.76 0.821 1.254 2.408 1.551 2.718 1.808
qi-mse 0.7 0.1 0.796 0.568 0.886 1.838 0.299 0.573 0.611
qi-mse 0.7 0.2 0.793 0.564 0.877 1.838 0.297 0.574 0.608
qi-mse 0.7 0.3 0.797 0.564 0.878 1.841 0.298 0.591 0.611
qi-mse 0.7 0.4 0.801 0.565 0.882 1.849 0.299 0.6 0.611
qi-mse 0.7 0.5 0.803 0.565 0.884 1.849 0.301 0.606 0.614
qi-mse 0.7 0.6 0.807 0.566 0.89 1.853 0.302 0.615 0.615
qi-mse 0.7 0.7 0.813 0.567 0.901 1.858 0.312 0.625 0.618
qi-mse 0.7 0.8 0.822 0.57 0.91 1.866 0.322 0.641 0.623
qi-mse 0.7 0.9 0.837 0.578 0.929 1.879 0.332 0.669 0.634
qi-mse 0.9 — 3.322 4.133 2.587 3.787 2.519 3.789 3.119
qi-mse 0.9 0.1 2.309 3.854 2.172 3.206 1.172 1.609 1.844
qi-mse 0.9 0.2 2.316 3.861 2.176 3.209 1.174 1.62 1.858
qi-mse 0.9 0.3 2.322 3.867 2.183 3.212 1.181 1.627 1.862
qi-mse 0.9 0.4 2.326 3.876 2.189 3.214 1.183 1.63 1.866
qi-mse 0.9 0.5 2.332 3.882 2.193 3.217 1.187 1.636 1.876
qi-mse 0.9 0.6 2.339 3.888 2.198 3.224 1.192 1.653 1.881
qi-mse 0.9 0.7 2.347 3.897 2.206 3.228 1.196 1.665 1.888
qi-mse 0.9 0.8 2.357 3.903 2.219 3.234 1.204 1.684 1.901
qi-mse 0.9 0.9 2.371 3.911 2.238 3.246 1.216 1.705 1.909
qi-mse-ng 0.1 — 0.299 0.014 0.001 0.859 0.274 0.315 0.33
qi-mse-ng 0.1 0.1 0.152 0.012 0.046 0.779 0.019 0.032 0.023
qi-mse-ng 0.1 0.2 0.145 0.006 0.035 0.774 0.012 0.026 0.016
qi-mse-ng 0.1 0.3 0.142 0.004 0.031 0.772 0.009 0.023 0.013
qi-mse-ng 0.1 0.4 0.141 0.003 0.028 0.772 0.007 0.022 0.011
qi-mse-ng 0.1 0.5 0.14 0.003 0.026 0.772 0.006 0.022 0.01
qi-mse-ng 0.1 0.6 0.14 0.002 0.025 0.772 0.006 0.022 0.01
qi-mse-ng 0.1 0.7 0.14 0.002 0.024 0.773 0.006 0.023 0.01
qi-mse-ng 0.1 0.8 0.141 0.002 0.025 0.776 0.008 0.026 0.011
qi-mse-ng 0.1 0.9 0.146 0.003 0.03 0.781 0.013 0.034 0.015
qi-mse-ng 0.3 — 0.511 0.052 0.102 1.024 0.57 0.82 0.5
qi-mse-ng 0.3 0.1 0.155 0.013 0.049 0.781 0.026 0.035 0.025
qi-mse-ng 0.3 0.2 0.148 0.007 0.039 0.776 0.019 0.028 0.018
qi-mse-ng 0.3 0.3 0.145 0.005 0.034 0.775 0.016 0.026 0.015
qi-mse-ng 0.3 0.4 0.144 0.004 0.032 0.774 0.014 0.025 0.014
qi-mse-ng 0.3 0.5 0.143 0.004 0.03 0.775 0.013 0.025 0.014
qi-mse-ng 0.3 0.6 0.144 0.004 0.029 0.775 0.013 0.027 0.014
qi-mse-ng 0.3 0.7 0.145 0.004 0.031 0.778 0.014 0.029 0.014
qi-mse-ng 0.3 0.8 0.148 0.004 0.036 0.783 0.016 0.034 0.015
qi-mse-ng 0.3 0.9 0.156 0.004 0.051 0.793 0.022 0.046 0.02
qi-mse-ng 0.5 — 0.976 0.207 0.492 1.644 1.005 1.589 0.918
qi-mse-ng 0.5 0.1 0.351 0.11 0.238 1.222 0.073 0.226 0.236
qi-mse-ng 0.5 0.2 0.349 0.105 0.231 1.22 0.068 0.23 0.238
qi-mse-ng 0.5 0.3 0.343 0.104 0.23 1.192 0.065 0.228 0.237
qi-mse-ng 0.5 0.4 0.348 0.099 0.229 1.225 0.064 0.231 0.236
qi-mse-ng 0.5 0.5 0.35 0.099 0.233 1.229 0.064 0.238 0.237
qi-mse-ng 0.5 0.6 0.352 0.104 0.236 1.226 0.065 0.243 0.238
qi-mse-ng 0.5 0.7 0.357 0.105 0.244 1.235 0.067 0.251 0.241
qi-mse-ng 0.5 0.8 0.359 0.105 0.255 1.21 0.07 0.262 0.249
qi-mse-ng 0.5 0.9 0.372 0.109 0.28 1.225 0.079 0.282 0.255
qi-mse-ng 0.7 — 1.61 0.69 1.151 2.285 1.408 2.483 1.641
qi-mse-ng 0.7 0.1 0.725 0.472 0.781 1.767 0.216 0.547 0.564
qi-mse-ng 0.7 0.2 0.723 0.459 0.777 1.765 0.22 0.552 0.562
qi-mse-ng 0.7 0.3 0.722 0.458 0.778 1.768 0.212 0.554 0.563
qi-mse-ng 0.7 0.4 0.727 0.466 0.783 1.77 0.224 0.558 0.563
qi-mse-ng 0.7 0.5 0.731 0.47 0.787 1.775 0.228 0.563 0.564
qi-mse-ng 0.7 0.6 0.735 0.47 0.792 1.778 0.23 0.571 0.567
qi-mse-ng 0.7 0.7 0.741 0.471 0.799 1.784 0.233 0.589 0.57
qi-mse-ng 0.7 0.8 0.753 0.473 0.819 1.791 0.244 0.612 0.578
qi-mse-ng 0.7 0.9 0.77 0.477 0.847 1.809 0.258 0.641 0.586
qi-mse-ng 0.9 — 2.906 3.38 2.259 3.461 2.235 3.448 2.651
qi-mse-ng 0.9 0.1 1.918 3.022 1.784 2.911 0.932 1.384 1.477
qi-mse-ng 0.9 0.2 1.925 3.037 1.79 2.913 0.937 1.39 1.48
qi-mse-ng 0.9 0.3 1.93 3.042 1.797 2.916 0.941 1.402 1.483
qi-mse-ng 0.9 0.4 1.937 3.056 1.8 2.923 0.945 1.412 1.488
qi-mse-ng 0.9 0.5 1.947 3.063 1.826 2.927 0.948 1.423 1.493
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…continued: Table 19 (VOI𝑠 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse-ng 0.9 0.6 1.953 3.071 1.84 2.931 0.952 1.431 1.495
qi-mse-ng 0.9 0.7 1.967 3.086 1.851 2.942 0.958 1.457 1.511
qi-mse-ng 0.9 0.8 1.979 3.097 1.867 2.949 0.967 1.469 1.523
qi-mse-ng 0.9 0.9 2.002 3.12 1.902 2.965 0.985 1.502 1.539
qi-mls-pre 0.1 — 1.079 0.973 0.842 1.851 0.689 1.194 0.925
qi-mls-pre 0.1 0.1 0.804 0.871 0.684 1.599 0.533 0.658 0.476
qi-mls-pre 0.1 0.2 0.808 0.863 0.672 1.599 0.577 0.665 0.475
qi-mls-pre 0.1 0.3 0.811 0.86 0.662 1.602 0.575 0.682 0.485
qi-mls-pre 0.1 0.4 0.814 0.861 0.657 1.603 0.583 0.689 0.488
qi-mls-pre 0.1 0.5 0.825 0.86 0.658 1.608 0.599 0.731 0.496
qi-mls-pre 0.1 0.6 0.803 0.859 0.657 1.611 0.441 0.75 0.503
qi-mls-pre 0.1 0.7 0.811 0.859 0.66 1.615 0.454 0.767 0.512
qi-mls-pre 0.1 0.8 0.832 0.86 0.668 1.624 0.481 0.826 0.53
qi-mls-pre 0.1 0.9 0.878 0.866 0.69 1.64 0.564 0.94 0.566
qi-mls-pre 0.3 — 6.513 6.645 6.267 6.731 6.424 6.275 6.735
qi-mls-pre 0.3 0.1 5.587 6.403 5.842 6.211 4.945 4.426 5.696
qi-mls-pre 0.3 0.2 5.596 6.401 5.843 6.215 4.96 4.45 5.705
qi-mls-pre 0.3 0.3 5.604 6.4 5.844 6.219 4.974 4.472 5.713
qi-mls-pre 0.3 0.4 5.612 6.399 5.845 6.222 4.987 4.496 5.721
qi-mls-pre 0.3 0.5 5.622 6.399 5.846 6.226 5.005 4.524 5.732
qi-mls-pre 0.3 0.6 5.644 6.399 5.851 6.232 5.078 4.561 5.744
qi-mls-pre 0.3 0.7 5.66 6.399 5.858 6.239 5.101 4.606 5.757
qi-mls-pre 0.3 0.8 5.686 6.399 5.868 6.248 5.146 4.674 5.778
qi-mls-pre 0.3 0.9 5.738 6.4 5.889 6.267 5.23 4.818 5.826
qi-mls-pre 0.5 — 6.784 6.793 6.578 6.932 6.694 6.747 6.959
qi-mls-pre 0.5 0.1 5.741 6.511 6.024 6.366 5.058 4.648 5.837
qi-mls-pre 0.5 0.2 5.748 6.508 6.025 6.369 5.072 4.67 5.844
qi-mls-pre 0.5 0.3 5.755 6.506 6.026 6.372 5.085 4.691 5.852
qi-mls-pre 0.5 0.4 5.763 6.505 6.027 6.375 5.097 4.716 5.859
qi-mls-pre 0.5 0.5 5.774 6.505 6.029 6.38 5.115 4.743 5.87
qi-mls-pre 0.5 0.6 5.795 6.505 6.033 6.385 5.188 4.779 5.881
qi-mls-pre 0.5 0.7 5.811 6.505 6.04 6.392 5.211 4.824 5.894
qi-mls-pre 0.5 0.8 5.837 6.505 6.05 6.401 5.255 4.893 5.915
qi-mls-pre 0.5 0.9 5.889 6.505 6.071 6.42 5.339 5.035 5.962
qi-mls-pre 0.7 — 6.784 6.793 6.578 6.932 6.694 6.747 6.959
qi-mls-pre 0.7 0.1 5.741 6.511 6.024 6.366 5.058 4.648 5.837
qi-mls-pre 0.7 0.2 5.748 6.508 6.025 6.369 5.072 4.67 5.844
qi-mls-pre 0.7 0.3 5.755 6.506 6.026 6.372 5.085 4.691 5.852
qi-mls-pre 0.7 0.4 5.763 6.505 6.027 6.375 5.097 4.716 5.859
qi-mls-pre 0.7 0.5 5.774 6.505 6.029 6.38 5.115 4.743 5.87
qi-mls-pre 0.7 0.6 5.795 6.505 6.033 6.385 5.188 4.779 5.881
qi-mls-pre 0.7 0.7 5.811 6.505 6.04 6.392 5.211 4.824 5.894
qi-mls-pre 0.7 0.8 5.837 6.505 6.05 6.401 5.255 4.893 5.915
qi-mls-pre 0.7 0.9 5.889 6.505 6.071 6.42 5.339 5.035 5.962
qi-mls-pre 0.9 — 6.784 6.793 6.578 6.932 6.694 6.747 6.959
qi-mls-pre 0.9 0.1 5.741 6.511 6.024 6.366 5.058 4.648 5.837
qi-mls-pre 0.9 0.2 5.748 6.508 6.025 6.369 5.072 4.67 5.844
qi-mls-pre 0.9 0.3 5.755 6.506 6.026 6.372 5.085 4.691 5.852
qi-mls-pre 0.9 0.4 5.763 6.505 6.027 6.375 5.097 4.716 5.859
qi-mls-pre 0.9 0.5 5.774 6.505 6.029 6.38 5.115 4.743 5.87
qi-mls-pre 0.9 0.6 5.795 6.505 6.033 6.385 5.188 4.779 5.881
qi-mls-pre 0.9 0.7 5.811 6.505 6.04 6.392 5.211 4.824 5.894
qi-mls-pre 0.9 0.8 5.837 6.505 6.05 6.401 5.255 4.893 5.915
qi-mls-pre 0.9 0.9 5.889 6.505 6.071 6.42 5.339 5.035 5.962
qi-mls-pre-ng 0.1 — 0.753 0.52 0.536 1.028 0.973 0.898 0.563
qi-mls-pre-ng 0.1 0.1 0.56 0.423 0.534 0.732 0.567 0.612 0.494
qi-mls-pre-ng 0.1 0.2 0.549 0.423 0.536 0.765 0.56 0.519 0.49
qi-mls-pre-ng 0.1 0.3 0.59 0.42 0.533 0.918 0.564 0.614 0.489
qi-mls-pre-ng 0.1 0.4 0.552 0.43 0.529 0.763 0.551 0.55 0.487
qi-mls-pre-ng 0.1 0.5 0.558 0.425 0.537 0.763 0.586 0.55 0.486
qi-mls-pre-ng 0.1 0.6 0.562 0.412 0.568 0.766 0.586 0.552 0.487
qi-mls-pre-ng 0.1 0.7 0.578 0.413 0.577 0.767 0.67 0.551 0.487
qi-mls-pre-ng 0.1 0.8 0.587 0.419 0.587 0.816 0.658 0.566 0.476
qi-mls-pre-ng 0.1 0.9 0.602 0.442 0.588 0.824 0.638 0.593 0.527
qi-mls-pre-ng 0.3 — 2.851 2.535 2.913 3.002 2.695 3.046 2.914
qi-mls-pre-ng 0.3 0.1 2.217 2.398 2.74 2.75 1.489 1.84 2.082
qi-mls-pre-ng 0.3 0.2 2.214 2.393 2.738 2.746 1.489 1.839 2.08
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…continued: Table 19 (VOI𝑠 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre-ng 0.3 0.3 2.213 2.391 2.735 2.747 1.488 1.838 2.081
qi-mls-pre-ng 0.3 0.4 2.216 2.392 2.733 2.748 1.488 1.857 2.082
qi-mls-pre-ng 0.3 0.5 2.223 2.392 2.734 2.748 1.523 1.86 2.083
qi-mls-pre-ng 0.3 0.6 2.226 2.392 2.74 2.751 1.523 1.863 2.083
qi-mls-pre-ng 0.3 0.7 2.254 2.392 2.744 2.752 1.682 1.869 2.084
qi-mls-pre-ng 0.3 0.8 2.26 2.393 2.752 2.762 1.687 1.881 2.088
qi-mls-pre-ng 0.3 0.9 2.324 2.398 2.775 2.772 1.943 1.91 2.145
qi-mls-pre-ng 0.5 — 2.851 2.535 2.913 3.002 2.696 3.046 2.916
qi-mls-pre-ng 0.5 0.1 2.217 2.398 2.74 2.75 1.489 1.84 2.083
qi-mls-pre-ng 0.5 0.2 2.214 2.393 2.738 2.746 1.489 1.839 2.081
qi-mls-pre-ng 0.5 0.3 2.214 2.391 2.735 2.747 1.489 1.838 2.082
qi-mls-pre-ng 0.5 0.4 2.217 2.392 2.733 2.748 1.488 1.857 2.083
qi-mls-pre-ng 0.5 0.5 2.223 2.392 2.734 2.748 1.523 1.86 2.084
qi-mls-pre-ng 0.5 0.6 2.226 2.392 2.74 2.751 1.524 1.863 2.084
qi-mls-pre-ng 0.5 0.7 2.254 2.392 2.744 2.752 1.682 1.869 2.085
qi-mls-pre-ng 0.5 0.8 2.261 2.393 2.752 2.762 1.688 1.881 2.089
qi-mls-pre-ng 0.5 0.9 2.324 2.398 2.775 2.772 1.944 1.91 2.146
qi-mls-pre-ng 0.7 — 2.851 2.535 2.913 3.002 2.696 3.046 2.916
qi-mls-pre-ng 0.7 0.1 2.217 2.398 2.74 2.75 1.489 1.84 2.083
qi-mls-pre-ng 0.7 0.2 2.214 2.393 2.738 2.746 1.489 1.839 2.081
qi-mls-pre-ng 0.7 0.3 2.214 2.391 2.735 2.747 1.489 1.838 2.082
qi-mls-pre-ng 0.7 0.4 2.217 2.392 2.733 2.748 1.488 1.857 2.083
qi-mls-pre-ng 0.7 0.5 2.223 2.392 2.734 2.748 1.523 1.86 2.084
qi-mls-pre-ng 0.7 0.6 2.226 2.392 2.74 2.751 1.524 1.863 2.084
qi-mls-pre-ng 0.7 0.7 2.254 2.392 2.744 2.752 1.682 1.869 2.085
qi-mls-pre-ng 0.7 0.8 2.261 2.393 2.752 2.762 1.688 1.881 2.089
qi-mls-pre-ng 0.7 0.9 2.324 2.398 2.775 2.772 1.944 1.91 2.146
qi-mls-pre-ng 0.9 — 2.851 2.535 2.913 3.002 2.696 3.046 2.916
qi-mls-pre-ng 0.9 0.1 2.217 2.398 2.74 2.75 1.489 1.84 2.083
qi-mls-pre-ng 0.9 0.2 2.214 2.393 2.738 2.746 1.489 1.839 2.081
qi-mls-pre-ng 0.9 0.3 2.214 2.391 2.735 2.747 1.489 1.838 2.082
qi-mls-pre-ng 0.9 0.4 2.217 2.392 2.733 2.748 1.488 1.857 2.083
qi-mls-pre-ng 0.9 0.5 2.223 2.392 2.734 2.748 1.523 1.86 2.084
qi-mls-pre-ng 0.9 0.6 2.226 2.392 2.74 2.751 1.524 1.863 2.084
qi-mls-pre-ng 0.9 0.7 2.254 2.392 2.744 2.752 1.682 1.869 2.085
qi-mls-pre-ng 0.9 0.8 2.261 2.393 2.752 2.762 1.688 1.881 2.089
qi-mls-pre-ng 0.9 0.9 2.324 2.398 2.775 2.772 1.944 1.91 2.146
qi-mls 0.1 — 1.479 1.067 1.268 2.292 1.087 1.705 1.457
qi-mls 0.1 0.1 0.988 0.956 1.068 2.039 0.39 0.713 0.763
qi-mls 0.1 0.2 0.984 0.954 1.063 2.04 0.381 0.708 0.759
qi-mls 0.1 0.3 0.984 0.956 1.062 2.04 0.377 0.711 0.756
qi-mls 0.1 0.4 0.985 0.962 1.061 2.037 0.38 0.716 0.753
qi-mls 0.1 0.5 0.99 0.962 1.062 2.042 0.382 0.735 0.754
qi-mls 0.1 0.6 0.992 0.962 1.067 2.046 0.378 0.74 0.757
qi-mls 0.1 0.7 0.996 0.966 1.069 2.049 0.38 0.751 0.76
qi-mls 0.1 0.8 1.005 0.972 1.077 2.054 0.385 0.777 0.763
qi-mls 0.1 0.9 1.021 0.982 1.1 2.066 0.399 0.807 0.774
qi-mls 0.3 — 3.614 3.38 3.605 4.284 3.224 3.688 3.504
qi-mls 0.3 0.1 3.012 3.198 3.386 4.0 2.32 2.407 2.761
qi-mls 0.3 0.2 3.027 3.207 3.399 4.01 2.34 2.438 2.77
qi-mls 0.3 0.3 3.038 3.216 3.406 4.019 2.355 2.461 2.775
qi-mls 0.3 0.4 3.049 3.225 3.417 4.025 2.37 2.473 2.783
qi-mls 0.3 0.5 3.056 3.231 3.423 4.033 2.373 2.482 2.796
qi-mls 0.3 0.6 3.073 3.243 3.431 4.04 2.417 2.498 2.809
qi-mls 0.3 0.7 3.085 3.256 3.44 4.049 2.438 2.513 2.818
qi-mls 0.3 0.8 3.1 3.27 3.453 4.058 2.45 2.531 2.836
qi-mls 0.3 0.9 3.127 3.302 3.477 4.076 2.481 2.573 2.857
qi-mls 0.5 — 11.324 10.878 11.735 11.625 12.431 10.182 11.093
qi-mls 0.5 0.1 10.735 10.772 11.508 11.361 11.473 8.936 10.36
qi-mls 0.5 0.2 10.743 10.774 11.521 11.366 11.484 8.947 10.365
qi-mls 0.5 0.3 10.747 10.774 11.529 11.369 11.489 8.954 10.368
qi-mls 0.5 0.4 10.75 10.774 11.536 11.371 11.493 8.958 10.37
qi-mls 0.5 0.5 10.753 10.775 11.541 11.374 11.496 8.962 10.372
qi-mls 0.5 0.6 10.756 10.775 11.546 11.376 11.498 8.967 10.373
qi-mls 0.5 0.7 10.759 10.775 11.551 11.379 11.501 8.972 10.374
qi-mls 0.5 0.8 10.763 10.776 11.558 11.383 11.505 8.98 10.377
qi-mls 0.5 0.9 10.776 10.777 11.578 11.392 11.517 9.005 10.385
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…continued: Table 19 (VOI𝑠 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls 0.7 — 11.324 10.878 11.735 11.625 12.431 10.182 11.093
qi-mls 0.7 0.1 10.735 10.772 11.508 11.361 11.473 8.936 10.36
qi-mls 0.7 0.2 10.743 10.774 11.521 11.366 11.484 8.947 10.365
qi-mls 0.7 0.3 10.747 10.774 11.529 11.369 11.489 8.954 10.368
qi-mls 0.7 0.4 10.75 10.774 11.536 11.371 11.493 8.958 10.37
qi-mls 0.7 0.5 10.753 10.775 11.541 11.374 11.496 8.962 10.372
qi-mls 0.7 0.6 10.756 10.775 11.546 11.376 11.498 8.967 10.373
qi-mls 0.7 0.7 10.759 10.775 11.551 11.379 11.501 8.972 10.374
qi-mls 0.7 0.8 10.763 10.776 11.558 11.383 11.505 8.98 10.377
qi-mls 0.7 0.9 10.776 10.777 11.578 11.392 11.517 9.005 10.385
qi-mls 0.9 — 11.324 10.878 11.735 11.625 12.431 10.182 11.093
qi-mls 0.9 0.1 10.735 10.772 11.508 11.361 11.473 8.936 10.36
qi-mls 0.9 0.2 10.743 10.774 11.521 11.366 11.484 8.947 10.365
qi-mls 0.9 0.3 10.747 10.774 11.529 11.369 11.489 8.954 10.368
qi-mls 0.9 0.4 10.75 10.774 11.536 11.371 11.493 8.958 10.37
qi-mls 0.9 0.5 10.753 10.775 11.541 11.374 11.496 8.962 10.372
qi-mls 0.9 0.6 10.756 10.775 11.546 11.376 11.498 8.967 10.373
qi-mls 0.9 0.7 10.759 10.775 11.551 11.379 11.501 8.972 10.374
qi-mls 0.9 0.8 10.763 10.776 11.558 11.383 11.505 8.98 10.377
qi-mls 0.9 0.9 10.776 10.777 11.578 11.392 11.517 9.005 10.385
qi-mls-ng 0.1 — 0.194 0.391 0.068 0.133 0.18 0.104 0.291
qi-mls-ng 0.1 0.1 0.141 0.377 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.1 0.2 0.141 0.377 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.1 0.3 0.148 0.377 0.068 0.13 0.087 0.052 0.174
qi-mls-ng 0.1 0.4 0.153 0.377 0.068 0.13 0.116 0.052 0.174
qi-mls-ng 0.1 0.5 0.153 0.378 0.068 0.13 0.116 0.052 0.175
qi-mls-ng 0.1 0.6 0.155 0.378 0.068 0.13 0.128 0.053 0.175
qi-mls-ng 0.1 0.7 0.159 0.378 0.068 0.13 0.128 0.053 0.194
qi-mls-ng 0.1 0.8 0.159 0.378 0.068 0.13 0.129 0.054 0.195
qi-mls-ng 0.1 0.9 0.16 0.381 0.068 0.13 0.129 0.056 0.197
qi-mls-ng 0.3 — 0.195 0.397 0.068 0.133 0.18 0.104 0.291
qi-mls-ng 0.3 0.1 0.141 0.38 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.3 0.2 0.142 0.381 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.3 0.3 0.149 0.381 0.068 0.13 0.087 0.052 0.174
qi-mls-ng 0.3 0.4 0.153 0.381 0.068 0.13 0.116 0.052 0.174
qi-mls-ng 0.3 0.5 0.154 0.381 0.068 0.13 0.116 0.052 0.175
qi-mls-ng 0.3 0.6 0.156 0.381 0.068 0.13 0.128 0.053 0.175
qi-mls-ng 0.3 0.7 0.159 0.381 0.068 0.13 0.128 0.053 0.194
qi-mls-ng 0.3 0.8 0.159 0.381 0.068 0.13 0.129 0.054 0.195
qi-mls-ng 0.3 0.9 0.161 0.386 0.068 0.13 0.129 0.056 0.197
qi-mls-ng 0.5 — 0.195 0.397 0.068 0.133 0.18 0.104 0.291
qi-mls-ng 0.5 0.1 0.141 0.38 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.5 0.2 0.142 0.381 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.5 0.3 0.149 0.381 0.068 0.13 0.087 0.052 0.174
qi-mls-ng 0.5 0.4 0.153 0.381 0.068 0.13 0.116 0.052 0.174
qi-mls-ng 0.5 0.5 0.154 0.381 0.068 0.13 0.116 0.052 0.175
qi-mls-ng 0.5 0.6 0.156 0.381 0.068 0.13 0.128 0.053 0.175
qi-mls-ng 0.5 0.7 0.159 0.381 0.068 0.13 0.128 0.053 0.194
qi-mls-ng 0.5 0.8 0.159 0.381 0.068 0.13 0.129 0.054 0.195
qi-mls-ng 0.5 0.9 0.161 0.386 0.068 0.13 0.129 0.056 0.197
qi-mls-ng 0.7 — 0.195 0.397 0.068 0.133 0.18 0.104 0.291
qi-mls-ng 0.7 0.1 0.141 0.38 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.7 0.2 0.142 0.381 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.7 0.3 0.149 0.381 0.068 0.13 0.087 0.052 0.174
qi-mls-ng 0.7 0.4 0.153 0.381 0.068 0.13 0.116 0.052 0.174
qi-mls-ng 0.7 0.5 0.154 0.381 0.068 0.13 0.116 0.052 0.175
qi-mls-ng 0.7 0.6 0.156 0.381 0.068 0.13 0.128 0.053 0.175
qi-mls-ng 0.7 0.7 0.159 0.381 0.068 0.13 0.128 0.053 0.194
qi-mls-ng 0.7 0.8 0.159 0.381 0.068 0.13 0.129 0.054 0.195
qi-mls-ng 0.7 0.9 0.161 0.386 0.068 0.13 0.129 0.056 0.197
qi-mls-ng 0.9 — 0.195 0.397 0.068 0.133 0.18 0.104 0.291
qi-mls-ng 0.9 0.1 0.141 0.38 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.9 0.2 0.142 0.381 0.068 0.13 0.087 0.051 0.132
qi-mls-ng 0.9 0.3 0.149 0.381 0.068 0.13 0.087 0.052 0.174
qi-mls-ng 0.9 0.4 0.153 0.381 0.068 0.13 0.116 0.052 0.174
qi-mls-ng 0.9 0.5 0.154 0.381 0.068 0.13 0.116 0.052 0.175
qi-mls-ng 0.9 0.6 0.156 0.381 0.068 0.13 0.128 0.053 0.175
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…continued: Table 19 (VOI𝑠 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-ng 0.9 0.7 0.159 0.381 0.068 0.13 0.128 0.053 0.194
qi-mls-ng 0.9 0.8 0.159 0.381 0.068 0.13 0.129 0.054 0.195
qi-mls-ng 0.9 0.9 0.161 0.386 0.068 0.13 0.129 0.056 0.197
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Table 20: VOI𝑚 performance on 100% of the data including training data for all architec-
tures and parameter sets. A “—” in the 𝑡𝑔 column means that the glia predictions were
not considered during super voxel generation and merging.

Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 — 5.969 7.706 6.604 5.916 4.365 5.397 5.824
qi-mse 0.1 0.1 5.487 7.561 6.359 5.637 3.713 4.687 4.963
qi-mse 0.1 0.2 5.534 7.558 6.356 5.633 3.719 4.68 5.258
qi-mse 0.1 0.3 5.547 7.556 6.352 5.632 3.719 4.77 5.255
qi-mse 0.1 0.4 5.556 7.556 6.355 5.631 3.714 4.769 5.31
qi-mse 0.1 0.5 5.556 7.556 6.356 5.632 3.713 4.769 5.31
qi-mse 0.1 0.6 5.557 7.557 6.357 5.633 3.712 4.77 5.31
qi-mse 0.1 0.7 5.557 7.557 6.359 5.634 3.712 4.772 5.31
qi-mse 0.1 0.8 5.557 7.557 6.363 5.636 3.698 4.775 5.311
qi-mse 0.1 0.9 5.56 7.559 6.37 5.64 3.699 4.781 5.312
qi-mse 0.3 — 5.635 7.655 6.553 5.811 3.238 5.183 5.372
qi-mse 0.3 0.1 5.309 7.553 6.331 5.576 2.786 4.663 4.947
qi-mse 0.3 0.2 5.309 7.55 6.325 5.613 2.776 4.652 4.939
qi-mse 0.3 0.3 5.293 7.51 6.321 5.569 2.771 4.649 4.935
qi-mse 0.3 0.4 5.291 7.51 6.319 5.569 2.769 4.647 4.933
qi-mse 0.3 0.5 5.29 7.51 6.317 5.569 2.767 4.646 4.931
qi-mse 0.3 0.6 5.286 7.51 6.315 5.567 2.749 4.646 4.931
qi-mse 0.3 0.7 5.286 7.51 6.315 5.566 2.749 4.644 4.93
qi-mse 0.3 0.8 5.285 7.51 6.314 5.566 2.749 4.644 4.93
qi-mse 0.3 0.9 5.286 7.51 6.315 5.568 2.748 4.642 4.931
qi-mse 0.5 — 1.658 1.465 2.868 0.911 0.908 2.13 1.664
qi-mse 0.5 0.1 1.561 1.597 2.891 1.114 0.607 1.556 1.601
qi-mse 0.5 0.2 1.5 1.478 2.79 1.067 0.585 1.535 1.545
qi-mse 0.5 0.3 1.501 1.529 2.762 1.033 0.566 1.627 1.486
qi-mse 0.5 0.4 1.499 1.482 2.734 1.022 0.569 1.614 1.574
qi-mse 0.5 0.5 1.462 1.507 2.722 1.031 0.546 1.511 1.453
qi-mse 0.5 0.6 1.415 1.441 2.516 1.017 0.536 1.53 1.452
qi-mse 0.5 0.7 1.416 1.451 2.509 1.024 0.535 1.527 1.447
qi-mse 0.5 0.8 1.419 1.446 2.506 1.009 0.534 1.567 1.454
qi-mse 0.5 0.9 1.359 1.451 2.503 1.009 0.504 1.475 1.212
qi-mse 0.7 — 0.237 0.085 0.203 0.137 0.386 0.305 0.306
qi-mse 0.7 0.1 0.116 0.037 0.294 0.088 0.106 0.09 0.079
qi-mse 0.7 0.2 0.094 0.024 0.27 0.076 0.065 0.068 0.064
qi-mse 0.7 0.3 0.087 0.02 0.255 0.071 0.058 0.059 0.057
qi-mse 0.7 0.4 0.081 0.019 0.242 0.065 0.054 0.054 0.053
qi-mse 0.7 0.5 0.079 0.018 0.235 0.067 0.052 0.051 0.051
qi-mse 0.7 0.6 0.076 0.018 0.227 0.066 0.05 0.043 0.05
qi-mse 0.7 0.7 0.074 0.018 0.222 0.066 0.048 0.041 0.049
qi-mse 0.7 0.8 0.073 0.018 0.219 0.065 0.047 0.04 0.049
qi-mse 0.7 0.9 0.073 0.018 0.217 0.066 0.048 0.04 0.049
qi-mse 0.9 — 0.17 0.058 0.079 0.069 0.333 0.239 0.241
qi-mse 0.9 0.1 0.069 0.024 0.142 0.036 0.076 0.066 0.07
qi-mse 0.9 0.2 0.051 0.011 0.114 0.023 0.06 0.045 0.054
qi-mse 0.9 0.3 0.043 0.007 0.099 0.018 0.053 0.035 0.048
qi-mse 0.9 0.4 0.039 0.006 0.089 0.016 0.049 0.03 0.044
qi-mse 0.9 0.5 0.036 0.005 0.082 0.015 0.047 0.027 0.042
qi-mse 0.9 0.6 0.034 0.005 0.077 0.014 0.045 0.024 0.041
qi-mse 0.9 0.7 0.033 0.005 0.072 0.013 0.044 0.022 0.04
qi-mse 0.9 0.8 0.032 0.005 0.069 0.013 0.043 0.021 0.039
qi-mse 0.9 0.9 0.031 0.005 0.066 0.013 0.044 0.021 0.039
qi-mse-ng 0.1 — 6.038 7.705 6.604 5.917 4.688 5.494 5.82
qi-mse-ng 0.1 0.1 5.496 7.519 6.278 5.621 3.517 4.779 5.261
qi-mse-ng 0.1 0.2 5.53 7.517 6.353 5.62 3.659 4.774 5.256
qi-mse-ng 0.1 0.3 5.537 7.555 6.353 5.619 3.671 4.773 5.254
qi-mse-ng 0.1 0.4 5.537 7.555 6.354 5.62 3.67 4.772 5.253
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…continued: Table 20 (VOI𝑚 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse-ng 0.1 0.5 5.544 7.554 6.355 5.643 3.69 4.772 5.252
qi-mse-ng 0.1 0.6 5.545 7.554 6.357 5.644 3.689 4.773 5.251
qi-mse-ng 0.1 0.7 5.547 7.554 6.362 5.646 3.689 4.776 5.251
qi-mse-ng 0.1 0.8 5.549 7.555 6.367 5.649 3.69 4.78 5.252
qi-mse-ng 0.1 0.9 5.549 7.555 6.378 5.631 3.69 4.787 5.254
qi-mse-ng 0.3 — 5.882 7.64 6.556 5.831 4.21 5.352 5.704
qi-mse-ng 0.3 0.1 5.493 7.518 6.274 5.618 3.515 4.775 5.259
qi-mse-ng 0.3 0.2 5.526 7.516 6.345 5.616 3.654 4.769 5.253
qi-mse-ng 0.3 0.3 5.524 7.515 6.346 5.615 3.651 4.767 5.251
qi-mse-ng 0.3 0.4 5.523 7.514 6.346 5.615 3.649 4.766 5.249
qi-mse-ng 0.3 0.5 5.473 7.514 6.348 5.616 3.647 4.766 4.945
qi-mse-ng 0.3 0.6 5.473 7.513 6.349 5.617 3.647 4.766 4.944
qi-mse-ng 0.3 0.7 5.473 7.513 6.35 5.616 3.646 4.767 4.943
qi-mse-ng 0.3 0.8 5.444 7.513 6.353 5.438 3.646 4.768 4.943
qi-mse-ng 0.3 0.9 5.446 7.513 6.354 5.439 3.649 4.773 4.945
qi-mse-ng 0.5 — 4.099 5.293 5.56 3.006 2.513 3.968 4.256
qi-mse-ng 0.5 0.1 3.927 5.197 5.565 2.937 2.343 3.581 3.941
qi-mse-ng 0.5 0.2 3.837 5.193 5.538 2.849 2.045 3.501 3.898
qi-mse-ng 0.5 0.3 3.836 5.073 5.526 3.001 2.041 3.503 3.871
qi-mse-ng 0.5 0.4 3.807 5.061 5.528 2.866 2.025 3.472 3.892
qi-mse-ng 0.5 0.5 3.757 5.04 5.519 2.81 2.013 3.597 3.562
qi-mse-ng 0.5 0.6 3.725 5.003 5.515 2.814 1.997 3.478 3.543
qi-mse-ng 0.5 0.7 3.7 4.974 5.485 2.732 1.979 3.474 3.556
qi-mse-ng 0.5 0.8 3.715 4.957 5.483 2.88 1.978 3.471 3.519
qi-mse-ng 0.5 0.9 3.711 4.948 5.478 2.878 1.981 3.47 3.515
qi-mse-ng 0.7 — 0.313 0.139 0.381 0.176 0.47 0.369 0.343
qi-mse-ng 0.7 0.1 0.149 0.068 0.418 0.128 0.066 0.122 0.091
qi-mse-ng 0.7 0.2 0.137 0.062 0.4 0.119 0.056 0.106 0.079
qi-mse-ng 0.7 0.3 0.131 0.059 0.391 0.115 0.052 0.094 0.074
qi-mse-ng 0.7 0.4 0.126 0.057 0.379 0.112 0.049 0.089 0.071
qi-mse-ng 0.7 0.5 0.124 0.056 0.373 0.11 0.047 0.086 0.069
qi-mse-ng 0.7 0.6 0.122 0.056 0.368 0.109 0.046 0.084 0.067
qi-mse-ng 0.7 0.7 0.12 0.056 0.364 0.108 0.045 0.082 0.066
qi-mse-ng 0.7 0.8 0.113 0.056 0.326 0.107 0.045 0.081 0.066
qi-mse-ng 0.7 0.9 0.114 0.056 0.322 0.107 0.048 0.083 0.068
qi-mse-ng 0.9 — 0.188 0.079 0.097 0.069 0.371 0.26 0.25
qi-mse-ng 0.9 0.1 0.058 0.025 0.134 0.034 0.027 0.067 0.061
qi-mse-ng 0.9 0.2 0.046 0.017 0.116 0.024 0.016 0.051 0.049
qi-mse-ng 0.9 0.3 0.04 0.015 0.107 0.02 0.012 0.044 0.044
qi-mse-ng 0.9 0.4 0.037 0.014 0.1 0.017 0.009 0.039 0.041
qi-mse-ng 0.9 0.5 0.034 0.013 0.094 0.016 0.007 0.036 0.039
qi-mse-ng 0.9 0.6 0.032 0.013 0.089 0.014 0.006 0.034 0.037
qi-mse-ng 0.9 0.7 0.031 0.013 0.085 0.013 0.005 0.032 0.036
qi-mse-ng 0.9 0.8 0.03 0.012 0.082 0.013 0.005 0.031 0.036
qi-mse-ng 0.9 0.9 0.031 0.012 0.08 0.012 0.008 0.033 0.037
qi-mls-pre 0.1 — 3.559 3.607 4.102 3.016 3.341 3.143 4.144
qi-mls-pre 0.1 0.1 3.266 4.023 4.233 2.911 1.844 3.023 3.565
qi-mls-pre 0.1 0.2 3.247 4.025 4.223 2.902 1.766 3.017 3.55
qi-mls-pre 0.1 0.3 3.224 4.022 4.22 2.897 1.765 2.971 3.469
qi-mls-pre 0.1 0.4 3.231 4.02 4.212 2.878 1.792 3.019 3.467
qi-mls-pre 0.1 0.5 3.221 4.019 4.177 2.876 1.919 2.881 3.452
qi-mls-pre 0.1 0.6 3.225 4.03 4.172 2.875 1.924 2.894 3.452
qi-mls-pre 0.1 0.7 3.231 4.027 4.167 2.875 1.955 2.912 3.451
qi-mls-pre 0.1 0.8 3.253 4.026 4.135 2.875 2.136 2.89 3.458
qi-mls-pre 0.1 0.9 3.251 4.027 4.118 2.872 2.132 2.889 3.468
qi-mls-pre 0.3 — 0.985 1.071 1.157 1.263 0.546 0.924 0.951
qi-mls-pre 0.3 0.1 0.961 1.024 1.195 1.2 0.656 0.826 0.867
qi-mls-pre 0.3 0.2 0.943 1.014 1.169 1.188 0.64 0.799 0.85
qi-mls-pre 0.3 0.3 0.934 1.011 1.151 1.182 0.631 0.785 0.846
qi-mls-pre 0.3 0.4 0.928 1.009 1.136 1.179 0.626 0.775 0.841
qi-mls-pre 0.3 0.5 0.924 1.008 1.126 1.177 0.623 0.77 0.839
qi-mls-pre 0.3 0.6 0.892 1.008 1.118 1.175 0.45 0.766 0.836
qi-mls-pre 0.3 0.7 0.89 1.007 1.111 1.175 0.449 0.763 0.834
qi-mls-pre 0.3 0.8 0.888 1.007 1.105 1.175 0.445 0.762 0.833
qi-mls-pre 0.3 0.9 0.885 1.007 1.099 1.176 0.446 0.753 0.83
qi-mls-pre 0.5 — 0.983 1.071 1.154 1.258 0.545 0.919 0.948
qi-mls-pre 0.5 0.1 0.959 1.024 1.193 1.195 0.656 0.825 0.862
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…continued: Table 20 (VOI𝑚 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre 0.5 0.2 0.941 1.014 1.167 1.183 0.64 0.798 0.845
qi-mls-pre 0.5 0.3 0.932 1.011 1.149 1.177 0.631 0.784 0.841
qi-mls-pre 0.5 0.4 0.926 1.009 1.135 1.174 0.626 0.774 0.836
qi-mls-pre 0.5 0.5 0.922 1.008 1.124 1.172 0.623 0.769 0.834
qi-mls-pre 0.5 0.6 0.89 1.008 1.116 1.171 0.45 0.765 0.831
qi-mls-pre 0.5 0.7 0.888 1.007 1.109 1.17 0.448 0.763 0.83
qi-mls-pre 0.5 0.8 0.886 1.007 1.103 1.17 0.445 0.761 0.828
qi-mls-pre 0.5 0.9 0.883 1.007 1.097 1.171 0.446 0.752 0.825
qi-mls-pre 0.7 — 0.983 1.071 1.154 1.258 0.545 0.919 0.948
qi-mls-pre 0.7 0.1 0.959 1.024 1.193 1.195 0.656 0.825 0.862
qi-mls-pre 0.7 0.2 0.941 1.014 1.167 1.183 0.64 0.798 0.845
qi-mls-pre 0.7 0.3 0.932 1.011 1.149 1.177 0.631 0.784 0.841
qi-mls-pre 0.7 0.4 0.926 1.009 1.135 1.174 0.626 0.774 0.836
qi-mls-pre 0.7 0.5 0.922 1.008 1.124 1.172 0.623 0.769 0.834
qi-mls-pre 0.7 0.6 0.89 1.008 1.116 1.171 0.45 0.765 0.831
qi-mls-pre 0.7 0.7 0.888 1.007 1.109 1.17 0.448 0.763 0.83
qi-mls-pre 0.7 0.8 0.886 1.007 1.103 1.17 0.445 0.761 0.828
qi-mls-pre 0.7 0.9 0.883 1.007 1.097 1.171 0.446 0.752 0.825
qi-mls-pre 0.9 — 0.983 1.071 1.154 1.258 0.545 0.919 0.948
qi-mls-pre 0.9 0.1 0.959 1.024 1.193 1.195 0.656 0.825 0.862
qi-mls-pre 0.9 0.2 0.941 1.014 1.167 1.183 0.64 0.798 0.845
qi-mls-pre 0.9 0.3 0.932 1.011 1.149 1.177 0.631 0.784 0.841
qi-mls-pre 0.9 0.4 0.926 1.009 1.135 1.174 0.626 0.774 0.836
qi-mls-pre 0.9 0.5 0.922 1.008 1.124 1.172 0.623 0.769 0.834
qi-mls-pre 0.9 0.6 0.89 1.008 1.116 1.171 0.45 0.765 0.831
qi-mls-pre 0.9 0.7 0.888 1.007 1.109 1.17 0.448 0.763 0.83
qi-mls-pre 0.9 0.8 0.886 1.007 1.103 1.17 0.445 0.761 0.828
qi-mls-pre 0.9 0.9 0.883 1.007 1.097 1.171 0.446 0.752 0.825
qi-mls-pre-ng 0.1 — 5.219 6.723 5.763 5.094 3.554 4.635 5.544
qi-mls-pre-ng 0.1 0.1 4.881 6.771 5.58 5.021 3.249 3.65 5.015
qi-mls-pre-ng 0.1 0.2 4.927 6.727 5.56 4.973 3.255 4.05 4.994
qi-mls-pre-ng 0.1 0.3 4.856 6.727 5.517 4.852 3.244 3.81 4.986
qi-mls-pre-ng 0.1 0.4 4.892 6.707 5.512 4.968 3.228 3.954 4.984
qi-mls-pre-ng 0.1 0.5 4.888 6.715 5.499 4.967 3.205 3.955 4.983
qi-mls-pre-ng 0.1 0.6 4.886 6.736 5.472 4.968 3.205 3.955 4.983
qi-mls-pre-ng 0.1 0.7 4.895 6.736 5.467 4.969 3.258 3.956 4.983
qi-mls-pre-ng 0.1 0.8 4.881 6.725 5.468 4.945 3.243 3.933 4.975
qi-mls-pre-ng 0.1 0.9 4.978 6.663 5.537 4.949 3.765 3.883 5.072
qi-mls-pre-ng 0.3 — 2.274 2.483 1.945 2.796 1.924 2.151 2.346
qi-mls-pre-ng 0.3 0.1 2.226 2.374 1.931 2.714 1.929 1.944 2.467
qi-mls-pre-ng 0.3 0.2 2.203 2.368 1.9 2.701 1.91 1.894 2.448
qi-mls-pre-ng 0.3 0.3 2.197 2.371 1.888 2.704 1.887 1.886 2.445
qi-mls-pre-ng 0.3 0.4 2.184 2.373 1.88 2.707 1.859 1.842 2.442
qi-mls-pre-ng 0.3 0.5 2.181 2.373 1.878 2.706 1.849 1.841 2.441
qi-mls-pre-ng 0.3 0.6 2.179 2.373 1.869 2.706 1.849 1.838 2.44
qi-mls-pre-ng 0.3 0.7 2.175 2.373 1.867 2.707 1.829 1.835 2.44
qi-mls-pre-ng 0.3 0.8 2.166 2.374 1.867 2.709 1.802 1.827 2.419
qi-mls-pre-ng 0.3 0.9 2.127 2.371 1.86 2.704 1.7 1.765 2.362
qi-mls-pre-ng 0.5 — 2.274 2.483 1.945 2.796 1.924 2.151 2.346
qi-mls-pre-ng 0.5 0.1 2.226 2.374 1.931 2.714 1.929 1.944 2.467
qi-mls-pre-ng 0.5 0.2 2.203 2.368 1.9 2.701 1.91 1.894 2.448
qi-mls-pre-ng 0.5 0.3 2.197 2.371 1.888 2.704 1.887 1.886 2.445
qi-mls-pre-ng 0.5 0.4 2.184 2.373 1.88 2.707 1.859 1.842 2.442
qi-mls-pre-ng 0.5 0.5 2.181 2.373 1.878 2.706 1.849 1.841 2.441
qi-mls-pre-ng 0.5 0.6 2.179 2.373 1.869 2.706 1.849 1.838 2.44
qi-mls-pre-ng 0.5 0.7 2.175 2.373 1.867 2.707 1.829 1.835 2.44
qi-mls-pre-ng 0.5 0.8 2.166 2.374 1.867 2.709 1.802 1.827 2.419
qi-mls-pre-ng 0.5 0.9 2.127 2.371 1.86 2.704 1.7 1.765 2.362
qi-mls-pre-ng 0.7 — 2.274 2.483 1.945 2.796 1.924 2.151 2.346
qi-mls-pre-ng 0.7 0.1 2.226 2.374 1.931 2.714 1.929 1.944 2.467
qi-mls-pre-ng 0.7 0.2 2.203 2.368 1.9 2.701 1.91 1.894 2.448
qi-mls-pre-ng 0.7 0.3 2.197 2.371 1.888 2.704 1.887 1.886 2.445
qi-mls-pre-ng 0.7 0.4 2.184 2.373 1.88 2.707 1.859 1.842 2.442
qi-mls-pre-ng 0.7 0.5 2.181 2.373 1.878 2.706 1.849 1.841 2.441
qi-mls-pre-ng 0.7 0.6 2.179 2.373 1.869 2.706 1.849 1.838 2.44
qi-mls-pre-ng 0.7 0.7 2.175 2.373 1.867 2.707 1.829 1.835 2.44
qi-mls-pre-ng 0.7 0.8 2.166 2.374 1.867 2.709 1.802 1.827 2.419
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…continued: Table 20 (VOI𝑚 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre-ng 0.7 0.9 2.127 2.371 1.86 2.704 1.7 1.765 2.362
qi-mls-pre-ng 0.9 — 2.274 2.483 1.945 2.796 1.924 2.151 2.346
qi-mls-pre-ng 0.9 0.1 2.226 2.374 1.931 2.714 1.929 1.944 2.467
qi-mls-pre-ng 0.9 0.2 2.203 2.368 1.9 2.701 1.91 1.894 2.448
qi-mls-pre-ng 0.9 0.3 2.197 2.371 1.888 2.704 1.887 1.886 2.445
qi-mls-pre-ng 0.9 0.4 2.184 2.373 1.88 2.707 1.859 1.842 2.442
qi-mls-pre-ng 0.9 0.5 2.181 2.373 1.878 2.706 1.849 1.841 2.441
qi-mls-pre-ng 0.9 0.6 2.179 2.373 1.869 2.706 1.849 1.838 2.44
qi-mls-pre-ng 0.9 0.7 2.175 2.373 1.867 2.707 1.829 1.835 2.44
qi-mls-pre-ng 0.9 0.8 2.166 2.374 1.867 2.709 1.802 1.827 2.419
qi-mls-pre-ng 0.9 0.9 2.127 2.371 1.86 2.704 1.7 1.765 2.362
qi-mls 0.1 — 0.452 0.164 0.382 0.372 0.766 0.58 0.446
qi-mls 0.1 0.1 0.263 0.107 0.354 0.327 0.312 0.247 0.232
qi-mls 0.1 0.2 0.246 0.097 0.332 0.316 0.294 0.222 0.215
qi-mls 0.1 0.3 0.238 0.094 0.328 0.31 0.284 0.207 0.206
qi-mls 0.1 0.4 0.231 0.092 0.302 0.314 0.277 0.198 0.201
qi-mls 0.1 0.5 0.225 0.091 0.294 0.305 0.272 0.193 0.195
qi-mls 0.1 0.6 0.223 0.091 0.288 0.304 0.269 0.193 0.193
qi-mls 0.1 0.7 0.22 0.091 0.284 0.304 0.267 0.186 0.191
qi-mls 0.1 0.8 0.219 0.09 0.277 0.303 0.266 0.184 0.19
qi-mls 0.1 0.9 0.22 0.091 0.274 0.305 0.27 0.188 0.191
qi-mls 0.3 — 0.233 0.09 0.219 0.178 0.315 0.342 0.255
qi-mls 0.3 0.1 0.157 0.073 0.232 0.176 0.091 0.19 0.178
qi-mls 0.3 0.2 0.139 0.064 0.209 0.165 0.072 0.165 0.161
qi-mls 0.3 0.3 0.129 0.06 0.193 0.159 0.061 0.151 0.151
qi-mls 0.3 0.4 0.123 0.059 0.181 0.156 0.054 0.142 0.145
qi-mls 0.3 0.5 0.118 0.058 0.172 0.154 0.05 0.136 0.14
qi-mls 0.3 0.6 0.115 0.057 0.165 0.153 0.046 0.131 0.137
qi-mls 0.3 0.7 0.113 0.057 0.16 0.152 0.044 0.129 0.135
qi-mls 0.3 0.8 0.112 0.057 0.156 0.152 0.043 0.127 0.134
qi-mls 0.3 0.9 0.112 0.057 0.155 0.153 0.045 0.129 0.134
qi-mls 0.5 — 0.075 0.029 0.108 0.102 0.037 0.1 0.074
qi-mls 0.5 0.1 0.115 0.044 0.169 0.118 0.075 0.152 0.135
qi-mls 0.5 0.2 0.098 0.035 0.145 0.107 0.055 0.126 0.117
qi-mls 0.5 0.3 0.087 0.031 0.128 0.101 0.044 0.112 0.108
qi-mls 0.5 0.4 0.08 0.029 0.116 0.098 0.037 0.102 0.101
qi-mls 0.5 0.5 0.076 0.028 0.106 0.095 0.032 0.096 0.096
qi-mls 0.5 0.6 0.072 0.028 0.099 0.094 0.029 0.091 0.093
qi-mls 0.5 0.7 0.07 0.028 0.093 0.093 0.026 0.088 0.091
qi-mls 0.5 0.8 0.068 0.027 0.088 0.093 0.024 0.085 0.089
qi-mls 0.5 0.9 0.067 0.027 0.085 0.093 0.024 0.084 0.088
qi-mls 0.7 — 0.075 0.029 0.108 0.102 0.037 0.1 0.074
qi-mls 0.7 0.1 0.115 0.044 0.169 0.118 0.075 0.152 0.135
qi-mls 0.7 0.2 0.098 0.035 0.145 0.107 0.055 0.126 0.117
qi-mls 0.7 0.3 0.087 0.031 0.128 0.101 0.044 0.112 0.108
qi-mls 0.7 0.4 0.08 0.029 0.116 0.098 0.037 0.102 0.101
qi-mls 0.7 0.5 0.076 0.028 0.106 0.095 0.032 0.096 0.096
qi-mls 0.7 0.6 0.072 0.028 0.099 0.094 0.029 0.091 0.093
qi-mls 0.7 0.7 0.07 0.028 0.093 0.093 0.026 0.088 0.091
qi-mls 0.7 0.8 0.068 0.027 0.088 0.093 0.024 0.085 0.089
qi-mls 0.7 0.9 0.067 0.027 0.085 0.093 0.024 0.084 0.088
qi-mls 0.9 — 0.075 0.029 0.108 0.102 0.037 0.1 0.074
qi-mls 0.9 0.1 0.115 0.044 0.169 0.118 0.075 0.152 0.135
qi-mls 0.9 0.2 0.098 0.035 0.145 0.107 0.055 0.126 0.117
qi-mls 0.9 0.3 0.087 0.031 0.128 0.101 0.044 0.112 0.108
qi-mls 0.9 0.4 0.08 0.029 0.116 0.098 0.037 0.102 0.101
qi-mls 0.9 0.5 0.076 0.028 0.106 0.095 0.032 0.096 0.096
qi-mls 0.9 0.6 0.072 0.028 0.099 0.094 0.029 0.091 0.093
qi-mls 0.9 0.7 0.07 0.028 0.093 0.093 0.026 0.088 0.091
qi-mls 0.9 0.8 0.068 0.027 0.088 0.093 0.024 0.085 0.089
qi-mls 0.9 0.9 0.067 0.027 0.085 0.093 0.024 0.084 0.088
qi-mls-ng 0.1 — 6.023 7.394 6.528 6.361 4.598 5.554 5.703
qi-mls-ng 0.1 0.1 6.052 7.387 6.528 6.365 4.638 5.551 5.842
qi-mls-ng 0.1 0.2 6.052 7.386 6.528 6.365 4.637 5.551 5.842
qi-mls-ng 0.1 0.3 6.035 7.386 6.528 6.365 4.637 5.551 5.745
qi-mls-ng 0.1 0.4 6.031 7.386 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.1 0.5 6.024 7.345 6.528 6.365 4.61 5.551 5.745
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…continued: Table 20 (VOI𝑚 on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-ng 0.1 0.6 6.023 7.345 6.528 6.365 4.603 5.552 5.745
qi-mls-ng 0.1 0.7 6.018 7.345 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.1 0.8 6.018 7.345 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.1 0.9 6.026 7.392 6.528 6.365 4.603 5.553 5.718
qi-mls-ng 0.3 — 6.014 7.343 6.528 6.361 4.598 5.554 5.703
qi-mls-ng 0.3 0.1 6.044 7.341 6.528 6.365 4.638 5.551 5.842
qi-mls-ng 0.3 0.2 6.044 7.34 6.528 6.365 4.637 5.551 5.842
qi-mls-ng 0.3 0.3 6.028 7.34 6.528 6.365 4.637 5.551 5.745
qi-mls-ng 0.3 0.4 6.023 7.34 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.3 0.5 6.02 7.323 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.3 0.6 6.019 7.323 6.528 6.365 4.603 5.552 5.745
qi-mls-ng 0.3 0.7 6.015 7.323 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.3 0.8 6.015 7.323 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.3 0.9 6.015 7.322 6.528 6.365 4.603 5.553 5.718
qi-mls-ng 0.5 — 6.014 7.343 6.528 6.361 4.598 5.554 5.703
qi-mls-ng 0.5 0.1 6.044 7.341 6.528 6.365 4.638 5.551 5.842
qi-mls-ng 0.5 0.2 6.044 7.34 6.528 6.365 4.637 5.551 5.842
qi-mls-ng 0.5 0.3 6.028 7.34 6.528 6.365 4.637 5.551 5.745
qi-mls-ng 0.5 0.4 6.023 7.34 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.5 0.5 6.02 7.323 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.5 0.6 6.019 7.323 6.528 6.365 4.603 5.552 5.745
qi-mls-ng 0.5 0.7 6.015 7.323 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.5 0.8 6.015 7.323 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.5 0.9 6.015 7.322 6.528 6.365 4.603 5.553 5.718
qi-mls-ng 0.7 — 6.014 7.343 6.528 6.361 4.598 5.554 5.703
qi-mls-ng 0.7 0.1 6.044 7.341 6.528 6.365 4.638 5.551 5.842
qi-mls-ng 0.7 0.2 6.044 7.34 6.528 6.365 4.637 5.551 5.842
qi-mls-ng 0.7 0.3 6.028 7.34 6.528 6.365 4.637 5.551 5.745
qi-mls-ng 0.7 0.4 6.023 7.34 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.7 0.5 6.02 7.323 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.7 0.6 6.019 7.323 6.528 6.365 4.603 5.552 5.745
qi-mls-ng 0.7 0.7 6.015 7.323 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.7 0.8 6.015 7.323 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.7 0.9 6.015 7.322 6.528 6.365 4.603 5.553 5.718
qi-mls-ng 0.9 — 6.014 7.343 6.528 6.361 4.598 5.554 5.703
qi-mls-ng 0.9 0.1 6.044 7.341 6.528 6.365 4.638 5.551 5.842
qi-mls-ng 0.9 0.2 6.044 7.34 6.528 6.365 4.637 5.551 5.842
qi-mls-ng 0.9 0.3 6.028 7.34 6.528 6.365 4.637 5.551 5.745
qi-mls-ng 0.9 0.4 6.023 7.34 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.9 0.5 6.02 7.323 6.528 6.365 4.61 5.551 5.745
qi-mls-ng 0.9 0.6 6.019 7.323 6.528 6.365 4.603 5.552 5.745
qi-mls-ng 0.9 0.7 6.015 7.323 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.9 0.8 6.015 7.323 6.528 6.365 4.603 5.552 5.718
qi-mls-ng 0.9 0.9 6.015 7.322 6.528 6.365 4.603 5.553 5.718
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Table 21: RAND performance on 100% of the data including training data for all architec-
tures and parameter sets. A “—” in the 𝑡𝑔 column means that the glia predictions were
not considered during super voxel generation and merging.

Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 — 0.92 0.988 0.961 0.921 0.813 0.901 0.933
qi-mse 0.1 0.1 0.926 0.989 0.961 0.921 0.79 0.953 0.944
qi-mse 0.1 0.2 0.928 0.989 0.962 0.921 0.79 0.953 0.951
qi-mse 0.1 0.3 0.928 0.989 0.962 0.921 0.79 0.955 0.951
qi-mse 0.1 0.4 0.928 0.989 0.962 0.921 0.79 0.955 0.952
qi-mse 0.1 0.5 0.928 0.989 0.962 0.921 0.79 0.955 0.952
qi-mse 0.1 0.6 0.928 0.989 0.962 0.921 0.79 0.955 0.952
qi-mse 0.1 0.7 0.928 0.989 0.962 0.921 0.79 0.955 0.952
qi-mse 0.1 0.8 0.928 0.989 0.962 0.921 0.79 0.955 0.952
qi-mse 0.1 0.9 0.928 0.989 0.962 0.921 0.791 0.955 0.952
qi-mse 0.3 — 0.9 0.989 0.961 0.923 0.677 0.917 0.931
qi-mse 0.3 0.1 0.9 0.989 0.961 0.92 0.634 0.953 0.944
qi-mse 0.3 0.2 0.9 0.989 0.961 0.921 0.634 0.953 0.944
qi-mse 0.3 0.3 0.9 0.989 0.961 0.92 0.634 0.953 0.944
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…continued: Table 21 (RAND on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.3 0.4 0.9 0.989 0.961 0.92 0.634 0.953 0.944
qi-mse 0.3 0.5 0.9 0.989 0.961 0.92 0.634 0.953 0.944
qi-mse 0.3 0.6 0.9 0.989 0.961 0.92 0.633 0.953 0.944
qi-mse 0.3 0.7 0.9 0.989 0.962 0.92 0.633 0.953 0.944
qi-mse 0.3 0.8 0.9 0.989 0.962 0.92 0.633 0.953 0.944
qi-mse 0.3 0.9 0.9 0.989 0.962 0.92 0.633 0.953 0.944
qi-mse 0.5 — 0.642 0.613 0.88 0.515 0.315 0.846 0.684
qi-mse 0.5 0.1 0.664 0.657 0.882 0.626 0.249 0.827 0.741
qi-mse 0.5 0.2 0.657 0.627 0.88 0.621 0.248 0.827 0.737
qi-mse 0.5 0.3 0.663 0.666 0.879 0.617 0.247 0.834 0.733
qi-mse 0.5 0.4 0.658 0.63 0.878 0.617 0.247 0.833 0.74
qi-mse 0.5 0.5 0.658 0.647 0.878 0.619 0.246 0.827 0.729
qi-mse 0.5 0.6 0.65 0.625 0.86 0.616 0.245 0.827 0.729
qi-mse 0.5 0.7 0.651 0.629 0.86 0.618 0.245 0.827 0.729
qi-mse 0.5 0.8 0.652 0.63 0.86 0.615 0.245 0.833 0.729
qi-mse 0.5 0.9 0.634 0.628 0.859 0.615 0.243 0.824 0.637
qi-mse 0.7 — 0.369 0.187 0.153 0.4 0.279 0.731 0.464
qi-mse 0.7 0.1 0.357 0.168 0.163 0.398 0.226 0.732 0.457
qi-mse 0.7 0.2 0.356 0.167 0.163 0.398 0.223 0.731 0.456
qi-mse 0.7 0.3 0.356 0.167 0.163 0.398 0.222 0.732 0.456
qi-mse 0.7 0.4 0.356 0.167 0.16 0.398 0.222 0.732 0.456
qi-mse 0.7 0.5 0.356 0.167 0.16 0.398 0.222 0.732 0.456
qi-mse 0.7 0.6 0.356 0.167 0.16 0.398 0.222 0.732 0.456
qi-mse 0.7 0.7 0.356 0.167 0.16 0.398 0.222 0.732 0.456
qi-mse 0.7 0.8 0.356 0.167 0.16 0.398 0.222 0.732 0.456
qi-mse 0.7 0.9 0.356 0.168 0.16 0.398 0.222 0.732 0.457
qi-mse 0.9 — 0.475 0.618 0.21 0.455 0.289 0.759 0.517
qi-mse 0.9 0.1 0.464 0.6 0.213 0.454 0.236 0.767 0.516
qi-mse 0.9 0.2 0.464 0.6 0.212 0.454 0.235 0.767 0.518
qi-mse 0.9 0.3 0.464 0.6 0.212 0.454 0.235 0.767 0.518
qi-mse 0.9 0.4 0.465 0.604 0.211 0.454 0.234 0.767 0.518
qi-mse 0.9 0.5 0.465 0.605 0.211 0.454 0.234 0.767 0.519
qi-mse 0.9 0.6 0.466 0.606 0.211 0.454 0.234 0.769 0.519
qi-mse 0.9 0.7 0.466 0.608 0.211 0.454 0.235 0.769 0.52
qi-mse 0.9 0.8 0.466 0.608 0.211 0.454 0.235 0.77 0.52
qi-mse 0.9 0.9 0.467 0.608 0.211 0.454 0.235 0.77 0.52
qi-mse-ng 0.1 — 0.916 0.988 0.961 0.921 0.817 0.875 0.934
qi-mse-ng 0.1 0.1 0.926 0.989 0.961 0.92 0.779 0.955 0.951
qi-mse-ng 0.1 0.2 0.928 0.989 0.962 0.92 0.79 0.955 0.951
qi-mse-ng 0.1 0.3 0.928 0.989 0.962 0.92 0.79 0.955 0.951
qi-mse-ng 0.1 0.4 0.928 0.989 0.962 0.921 0.79 0.955 0.951
qi-mse-ng 0.1 0.5 0.928 0.989 0.962 0.921 0.791 0.955 0.951
qi-mse-ng 0.1 0.6 0.928 0.989 0.962 0.921 0.791 0.955 0.951
qi-mse-ng 0.1 0.7 0.928 0.989 0.962 0.921 0.791 0.955 0.951
qi-mse-ng 0.1 0.8 0.928 0.989 0.962 0.921 0.791 0.955 0.951
qi-mse-ng 0.1 0.9 0.928 0.989 0.962 0.921 0.791 0.955 0.951
qi-mse-ng 0.3 — 0.92 0.988 0.962 0.923 0.802 0.907 0.939
qi-mse-ng 0.3 0.1 0.926 0.989 0.961 0.92 0.779 0.955 0.951
qi-mse-ng 0.3 0.2 0.928 0.989 0.962 0.92 0.79 0.955 0.951
qi-mse-ng 0.3 0.3 0.928 0.989 0.962 0.92 0.79 0.955 0.951
qi-mse-ng 0.3 0.4 0.928 0.989 0.962 0.92 0.79 0.955 0.951
qi-mse-ng 0.3 0.5 0.927 0.989 0.962 0.921 0.79 0.955 0.944
qi-mse-ng 0.3 0.6 0.927 0.989 0.962 0.921 0.79 0.955 0.944
qi-mse-ng 0.3 0.7 0.927 0.989 0.962 0.921 0.79 0.955 0.944
qi-mse-ng 0.3 0.8 0.926 0.989 0.962 0.914 0.79 0.955 0.944
qi-mse-ng 0.3 0.9 0.926 0.989 0.962 0.914 0.79 0.955 0.944
qi-mse-ng 0.5 — 0.863 0.976 0.955 0.851 0.565 0.913 0.918
qi-mse-ng 0.5 0.1 0.874 0.976 0.955 0.849 0.594 0.939 0.928
qi-mse-ng 0.5 0.2 0.859 0.977 0.955 0.844 0.514 0.938 0.928
qi-mse-ng 0.5 0.3 0.861 0.976 0.955 0.855 0.514 0.938 0.927
qi-mse-ng 0.5 0.4 0.859 0.975 0.955 0.846 0.512 0.938 0.928
qi-mse-ng 0.5 0.5 0.856 0.975 0.955 0.842 0.51 0.941 0.912
qi-mse-ng 0.5 0.6 0.855 0.974 0.955 0.842 0.509 0.938 0.912
qi-mse-ng 0.5 0.7 0.854 0.974 0.955 0.836 0.506 0.938 0.912
qi-mse-ng 0.5 0.8 0.855 0.974 0.955 0.848 0.506 0.938 0.911
qi-mse-ng 0.5 0.9 0.855 0.974 0.955 0.847 0.507 0.938 0.911
qi-mse-ng 0.7 — 0.376 0.181 0.2 0.405 0.291 0.717 0.46
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…continued: Table 21 (RAND on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse-ng 0.7 0.1 0.364 0.165 0.203 0.404 0.225 0.733 0.456
qi-mse-ng 0.7 0.2 0.363 0.161 0.202 0.403 0.224 0.733 0.455
qi-mse-ng 0.7 0.3 0.363 0.16 0.201 0.403 0.224 0.732 0.455
qi-mse-ng 0.7 0.4 0.363 0.164 0.201 0.403 0.224 0.732 0.455
qi-mse-ng 0.7 0.5 0.363 0.165 0.201 0.403 0.224 0.732 0.455
qi-mse-ng 0.7 0.6 0.363 0.165 0.201 0.403 0.223 0.732 0.455
qi-mse-ng 0.7 0.7 0.363 0.165 0.201 0.403 0.223 0.733 0.455
qi-mse-ng 0.7 0.8 0.36 0.165 0.18 0.403 0.224 0.733 0.455
qi-mse-ng 0.7 0.9 0.36 0.165 0.181 0.403 0.224 0.733 0.455
qi-mse-ng 0.9 — 0.453 0.55 0.192 0.441 0.29 0.747 0.498
qi-mse-ng 0.9 0.1 0.437 0.516 0.183 0.439 0.233 0.759 0.495
qi-mse-ng 0.9 0.2 0.437 0.518 0.182 0.439 0.232 0.759 0.495
qi-mse-ng 0.9 0.3 0.438 0.519 0.182 0.439 0.232 0.759 0.495
qi-mse-ng 0.9 0.4 0.438 0.522 0.181 0.44 0.232 0.759 0.495
qi-mse-ng 0.9 0.5 0.44 0.523 0.187 0.44 0.232 0.76 0.496
qi-mse-ng 0.9 0.6 0.44 0.524 0.188 0.44 0.232 0.76 0.496
qi-mse-ng 0.9 0.7 0.441 0.527 0.188 0.44 0.232 0.763 0.497
qi-mse-ng 0.9 0.8 0.441 0.527 0.188 0.44 0.232 0.763 0.498
qi-mse-ng 0.9 0.9 0.443 0.533 0.189 0.44 0.232 0.763 0.498
qi-mls-pre 0.1 — 0.847 0.951 0.924 0.803 0.75 0.754 0.899
qi-mls-pre 0.1 0.1 0.853 0.97 0.928 0.807 0.584 0.919 0.91
qi-mls-pre 0.1 0.2 0.85 0.97 0.928 0.808 0.565 0.92 0.91
qi-mls-pre 0.1 0.3 0.849 0.97 0.929 0.808 0.563 0.919 0.907
qi-mls-pre 0.1 0.4 0.851 0.97 0.929 0.807 0.57 0.921 0.907
qi-mls-pre 0.1 0.5 0.853 0.97 0.928 0.807 0.595 0.907 0.907
qi-mls-pre 0.1 0.6 0.836 0.971 0.928 0.807 0.496 0.908 0.907
qi-mls-pre 0.1 0.7 0.837 0.971 0.928 0.807 0.498 0.909 0.907
qi-mls-pre 0.1 0.8 0.845 0.971 0.928 0.807 0.549 0.908 0.907
qi-mls-pre 0.1 0.9 0.845 0.971 0.927 0.807 0.551 0.907 0.907
qi-mls-pre 0.3 — 0.957 0.964 0.96 0.979 0.943 0.948 0.951
qi-mls-pre 0.3 0.1 0.978 0.966 0.964 0.983 0.976 0.99 0.988
qi-mls-pre 0.3 0.2 0.978 0.966 0.963 0.983 0.976 0.99 0.988
qi-mls-pre 0.3 0.3 0.978 0.966 0.963 0.983 0.976 0.99 0.988
qi-mls-pre 0.3 0.4 0.978 0.966 0.963 0.983 0.976 0.989 0.988
qi-mls-pre 0.3 0.5 0.978 0.966 0.963 0.983 0.976 0.989 0.988
qi-mls-pre 0.3 0.6 0.974 0.966 0.963 0.983 0.955 0.989 0.988
qi-mls-pre 0.3 0.7 0.974 0.966 0.963 0.983 0.955 0.989 0.988
qi-mls-pre 0.3 0.8 0.974 0.966 0.963 0.983 0.955 0.989 0.988
qi-mls-pre 0.3 0.9 0.974 0.966 0.962 0.983 0.955 0.989 0.988
qi-mls-pre 0.5 — 0.959 0.965 0.965 0.981 0.944 0.951 0.952
qi-mls-pre 0.5 0.1 0.979 0.967 0.966 0.984 0.977 0.991 0.989
qi-mls-pre 0.5 0.2 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.5 0.3 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.5 0.4 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.5 0.5 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.5 0.6 0.975 0.967 0.965 0.984 0.955 0.991 0.988
qi-mls-pre 0.5 0.7 0.975 0.967 0.965 0.984 0.955 0.991 0.988
qi-mls-pre 0.5 0.8 0.975 0.967 0.965 0.984 0.955 0.991 0.988
qi-mls-pre 0.5 0.9 0.975 0.967 0.964 0.984 0.955 0.991 0.988
qi-mls-pre 0.7 — 0.959 0.965 0.965 0.981 0.944 0.951 0.952
qi-mls-pre 0.7 0.1 0.979 0.967 0.966 0.984 0.977 0.991 0.989
qi-mls-pre 0.7 0.2 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.7 0.3 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.7 0.4 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.7 0.5 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.7 0.6 0.975 0.967 0.965 0.984 0.955 0.991 0.988
qi-mls-pre 0.7 0.7 0.975 0.967 0.965 0.984 0.955 0.991 0.988
qi-mls-pre 0.7 0.8 0.975 0.967 0.965 0.984 0.955 0.991 0.988
qi-mls-pre 0.7 0.9 0.975 0.967 0.964 0.984 0.955 0.991 0.988
qi-mls-pre 0.9 — 0.959 0.965 0.965 0.981 0.944 0.951 0.952
qi-mls-pre 0.9 0.1 0.979 0.967 0.966 0.984 0.977 0.991 0.989
qi-mls-pre 0.9 0.2 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.9 0.3 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.9 0.4 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.9 0.5 0.979 0.967 0.965 0.984 0.976 0.991 0.989
qi-mls-pre 0.9 0.6 0.975 0.967 0.965 0.984 0.955 0.991 0.988
qi-mls-pre 0.9 0.7 0.975 0.967 0.965 0.984 0.955 0.991 0.988
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
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…continued: Table 21 (RAND on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre 0.9 0.8 0.975 0.967 0.965 0.984 0.955 0.991 0.988
qi-mls-pre 0.9 0.9 0.975 0.967 0.964 0.984 0.955 0.991 0.988
qi-mls-pre-ng 0.1 — 0.908 0.986 0.954 0.903 0.845 0.848 0.914
qi-mls-pre-ng 0.1 0.1 0.943 0.987 0.952 0.908 0.949 0.919 0.943
qi-mls-pre-ng 0.1 0.2 0.947 0.987 0.952 0.906 0.949 0.944 0.943
qi-mls-pre-ng 0.1 0.3 0.946 0.987 0.951 0.906 0.949 0.938 0.943
qi-mls-pre-ng 0.1 0.4 0.945 0.987 0.951 0.905 0.948 0.938 0.943
qi-mls-pre-ng 0.1 0.5 0.945 0.987 0.951 0.905 0.948 0.938 0.943
qi-mls-pre-ng 0.1 0.6 0.945 0.987 0.951 0.905 0.948 0.938 0.943
qi-mls-pre-ng 0.1 0.7 0.943 0.987 0.951 0.905 0.935 0.938 0.943
qi-mls-pre-ng 0.1 0.8 0.943 0.987 0.951 0.904 0.935 0.937 0.943
qi-mls-pre-ng 0.1 0.9 0.938 0.987 0.952 0.905 0.904 0.936 0.944
qi-mls-pre-ng 0.3 — 0.845 0.817 0.784 0.841 0.917 0.871 0.841
qi-mls-pre-ng 0.3 0.1 0.88 0.807 0.793 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.3 0.2 0.879 0.807 0.792 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.3 0.3 0.879 0.807 0.792 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.3 0.4 0.879 0.807 0.792 0.852 0.966 0.95 0.907
qi-mls-pre-ng 0.3 0.5 0.879 0.807 0.792 0.852 0.966 0.949 0.907
qi-mls-pre-ng 0.3 0.6 0.879 0.808 0.792 0.852 0.966 0.949 0.907
qi-mls-pre-ng 0.3 0.7 0.878 0.808 0.792 0.852 0.958 0.949 0.907
qi-mls-pre-ng 0.3 0.8 0.878 0.808 0.792 0.853 0.958 0.949 0.906
qi-mls-pre-ng 0.3 0.9 0.871 0.808 0.792 0.853 0.939 0.948 0.888
qi-mls-pre-ng 0.5 — 0.845 0.817 0.784 0.841 0.917 0.871 0.841
qi-mls-pre-ng 0.5 0.1 0.88 0.807 0.793 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.5 0.2 0.879 0.807 0.792 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.5 0.3 0.879 0.807 0.792 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.5 0.4 0.879 0.807 0.792 0.852 0.966 0.95 0.907
qi-mls-pre-ng 0.5 0.5 0.879 0.807 0.792 0.852 0.966 0.949 0.907
qi-mls-pre-ng 0.5 0.6 0.879 0.808 0.792 0.852 0.966 0.949 0.907
qi-mls-pre-ng 0.5 0.7 0.878 0.808 0.792 0.852 0.958 0.949 0.907
qi-mls-pre-ng 0.5 0.8 0.878 0.808 0.792 0.853 0.958 0.949 0.906
qi-mls-pre-ng 0.5 0.9 0.871 0.808 0.792 0.853 0.939 0.948 0.888
qi-mls-pre-ng 0.7 — 0.845 0.817 0.784 0.841 0.917 0.871 0.841
qi-mls-pre-ng 0.7 0.1 0.88 0.807 0.793 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.7 0.2 0.879 0.807 0.792 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.7 0.3 0.879 0.807 0.792 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.7 0.4 0.879 0.807 0.792 0.852 0.966 0.95 0.907
qi-mls-pre-ng 0.7 0.5 0.879 0.807 0.792 0.852 0.966 0.949 0.907
qi-mls-pre-ng 0.7 0.6 0.879 0.808 0.792 0.852 0.966 0.949 0.907
qi-mls-pre-ng 0.7 0.7 0.878 0.808 0.792 0.852 0.958 0.949 0.907
qi-mls-pre-ng 0.7 0.8 0.878 0.808 0.792 0.853 0.958 0.949 0.906
qi-mls-pre-ng 0.7 0.9 0.871 0.808 0.792 0.853 0.939 0.948 0.888
qi-mls-pre-ng 0.9 — 0.845 0.817 0.784 0.841 0.917 0.871 0.841
qi-mls-pre-ng 0.9 0.1 0.88 0.807 0.793 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.9 0.2 0.879 0.807 0.792 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.9 0.3 0.879 0.807 0.792 0.852 0.967 0.952 0.907
qi-mls-pre-ng 0.9 0.4 0.879 0.807 0.792 0.852 0.966 0.95 0.907
qi-mls-pre-ng 0.9 0.5 0.879 0.807 0.792 0.852 0.966 0.949 0.907
qi-mls-pre-ng 0.9 0.6 0.879 0.808 0.792 0.852 0.966 0.949 0.907
qi-mls-pre-ng 0.9 0.7 0.878 0.808 0.792 0.852 0.958 0.949 0.907
qi-mls-pre-ng 0.9 0.8 0.878 0.808 0.792 0.853 0.958 0.949 0.906
qi-mls-pre-ng 0.9 0.9 0.871 0.808 0.792 0.853 0.939 0.948 0.888
qi-mls 0.1 — 0.387 0.25 0.141 0.422 0.41 0.642 0.457
qi-mls 0.1 0.1 0.39 0.24 0.135 0.429 0.33 0.738 0.467
qi-mls 0.1 0.2 0.389 0.24 0.134 0.429 0.328 0.737 0.467
qi-mls 0.1 0.3 0.389 0.241 0.136 0.429 0.328 0.736 0.466
qi-mls 0.1 0.4 0.388 0.242 0.132 0.429 0.327 0.736 0.466
qi-mls 0.1 0.5 0.389 0.242 0.131 0.428 0.327 0.738 0.466
qi-mls 0.1 0.6 0.389 0.242 0.131 0.428 0.326 0.738 0.466
qi-mls 0.1 0.7 0.389 0.242 0.131 0.428 0.326 0.738 0.465
qi-mls 0.1 0.8 0.389 0.243 0.131 0.428 0.326 0.743 0.465
qi-mls 0.1 0.9 0.39 0.244 0.131 0.429 0.326 0.743 0.466
qi-mls 0.3 — 0.575 0.628 0.394 0.65 0.368 0.78 0.631
qi-mls 0.3 0.1 0.587 0.628 0.395 0.662 0.345 0.816 0.673
qi-mls 0.3 0.2 0.587 0.629 0.395 0.662 0.346 0.817 0.673
qi-mls 0.3 0.3 0.587 0.629 0.393 0.662 0.346 0.818 0.673
qi-mls 0.3 0.4 0.587 0.63 0.393 0.662 0.347 0.818 0.673
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
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…continued: Table 21 (RAND on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls 0.3 0.5 0.587 0.63 0.393 0.662 0.347 0.818 0.674
qi-mls 0.3 0.6 0.588 0.632 0.393 0.662 0.35 0.818 0.674
qi-mls 0.3 0.7 0.589 0.633 0.394 0.662 0.351 0.818 0.675
qi-mls 0.3 0.8 0.589 0.635 0.394 0.662 0.352 0.819 0.675
qi-mls 0.3 0.9 0.59 0.638 0.394 0.662 0.352 0.819 0.676
qi-mls 0.5 — 0.959 0.989 0.976 0.982 0.966 0.911 0.932
qi-mls 0.5 0.1 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.5 0.2 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.5 0.3 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.5 0.4 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.5 0.5 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.5 0.6 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.5 0.7 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.5 0.8 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.5 0.9 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 — 0.959 0.989 0.976 0.982 0.966 0.911 0.932
qi-mls 0.7 0.1 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 0.2 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 0.3 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 0.4 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 0.5 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 0.6 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 0.7 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 0.8 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.7 0.9 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 — 0.959 0.989 0.976 0.982 0.966 0.911 0.932
qi-mls 0.9 0.1 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 0.2 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 0.3 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 0.4 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 0.5 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 0.6 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 0.7 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 0.8 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls 0.9 0.9 1.0 0.999 1.0 1.0 1.0 1.0 1.0
qi-mls-ng 0.1 — 0.989 0.97 0.992 0.997 0.998 0.998 0.979
qi-mls-ng 0.1 0.1 0.992 0.969 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.1 0.2 0.992 0.969 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.1 0.3 0.992 0.969 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.1 0.4 0.992 0.969 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.1 0.5 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.1 0.6 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.1 0.7 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.1 0.8 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.1 0.9 0.992 0.97 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.3 — 0.988 0.966 0.992 0.997 0.998 0.998 0.979
qi-mls-ng 0.3 0.1 0.992 0.966 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.3 0.2 0.992 0.966 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.3 0.3 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.3 0.4 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.3 0.5 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.3 0.6 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.3 0.7 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.3 0.8 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.3 0.9 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.5 — 0.988 0.966 0.992 0.997 0.998 0.998 0.979
qi-mls-ng 0.5 0.1 0.992 0.966 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.5 0.2 0.992 0.966 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.5 0.3 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.5 0.4 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.5 0.5 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.5 0.6 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.5 0.7 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.5 0.8 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.5 0.9 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.7 — 0.988 0.966 0.992 0.997 0.998 0.998 0.979
qi-mls-ng 0.7 0.1 0.992 0.966 0.992 0.997 0.999 1.0 0.996
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…continued: Table 21 (RAND on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-ng 0.7 0.2 0.992 0.966 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.7 0.3 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.7 0.4 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.7 0.5 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.7 0.6 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.7 0.7 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.7 0.8 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.7 0.9 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.9 — 0.988 0.966 0.992 0.997 0.998 0.998 0.979
qi-mls-ng 0.9 0.1 0.992 0.966 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.9 0.2 0.992 0.966 0.992 0.997 0.999 1.0 0.996
qi-mls-ng 0.9 0.3 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.9 0.4 0.991 0.966 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.9 0.5 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.9 0.6 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.9 0.7 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.9 0.8 0.991 0.965 0.992 0.997 0.999 1.0 0.994
qi-mls-ng 0.9 0.9 0.991 0.965 0.992 0.997 0.999 1.0 0.994
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2

Table 22: CREMI score performance on 100% of the data including training data for all
architectures and parameter sets. A “—” in the 𝑡𝑔 column means that the glia predictions
were not considered during super voxel generation and merging.

Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.1 — 2.425 2.762 2.519 2.499 2.01 2.35 2.409
qi-mse 0.1 0.1 2.278 2.737 2.485 2.429 1.727 2.121 2.17
qi-mse 0.1 0.2 2.288 2.735 2.481 2.427 1.726 2.118 2.24
qi-mse 0.1 0.3 2.29 2.734 2.479 2.427 1.724 2.138 2.239
qi-mse 0.1 0.4 2.292 2.734 2.478 2.426 1.723 2.138 2.251
qi-mse 0.1 0.5 2.292 2.734 2.478 2.427 1.723 2.138 2.251
qi-mse 0.1 0.6 2.292 2.734 2.478 2.427 1.723 2.138 2.251
qi-mse 0.1 0.7 2.292 2.734 2.478 2.427 1.722 2.139 2.251
qi-mse 0.1 0.8 2.292 2.734 2.478 2.428 1.719 2.14 2.251
qi-mse 0.1 0.9 2.293 2.735 2.48 2.43 1.721 2.143 2.252
qi-mse 0.3 — 2.372 2.765 2.523 2.514 1.67 2.405 2.357
qi-mse 0.3 0.1 2.212 2.737 2.482 2.419 1.347 2.117 2.168
qi-mse 0.3 0.2 2.21 2.735 2.478 2.425 1.342 2.113 2.165
qi-mse 0.3 0.3 2.206 2.727 2.476 2.416 1.34 2.111 2.163
qi-mse 0.3 0.4 2.205 2.726 2.475 2.416 1.339 2.111 2.163
qi-mse 0.3 0.5 2.205 2.726 2.474 2.416 1.338 2.111 2.162
qi-mse 0.3 0.6 2.204 2.726 2.473 2.416 1.333 2.111 2.162
qi-mse 0.3 0.7 2.204 2.727 2.473 2.416 1.333 2.112 2.162
qi-mse 0.3 0.8 2.204 2.727 2.474 2.417 1.334 2.113 2.162
qi-mse 0.3 0.9 2.206 2.727 2.476 2.419 1.335 2.115 2.163
qi-mse 0.5 — 1.366 1.055 1.77 1.2 0.832 1.906 1.433
qi-mse 0.5 0.1 1.156 1.079 1.724 1.247 0.437 1.245 1.201
qi-mse 0.5 0.2 1.131 1.016 1.693 1.231 0.426 1.237 1.18
qi-mse 0.5 0.3 1.136 1.062 1.686 1.218 0.419 1.272 1.157
qi-mse 0.5 0.4 1.132 1.019 1.681 1.215 0.42 1.269 1.19
qi-mse 0.5 0.5 1.121 1.04 1.678 1.22 0.413 1.231 1.146
qi-mse 0.5 0.6 1.104 1.005 1.608 1.216 0.411 1.241 1.146
qi-mse 0.5 0.7 1.106 1.009 1.608 1.22 0.411 1.242 1.145
qi-mse 0.5 0.8 1.11 1.012 1.609 1.215 0.412 1.263 1.15
qi-mse 0.5 0.9 1.081 1.012 1.612 1.218 0.404 1.231 1.006
qi-mse 0.7 — 0.851 0.411 0.471 1.009 0.735 1.486 0.991
qi-mse 0.7 0.1 0.532 0.318 0.438 0.875 0.302 0.697 0.562
qi-mse 0.7 0.2 0.524 0.313 0.433 0.873 0.284 0.685 0.554
qi-mse 0.7 0.3 0.523 0.312 0.429 0.872 0.281 0.69 0.552
qi-mse 0.7 0.4 0.522 0.312 0.425 0.873 0.28 0.692 0.551
qi-mse 0.7 0.5 0.522 0.312 0.423 0.873 0.28 0.693 0.551
qi-mse 0.7 0.6 0.522 0.312 0.423 0.874 0.28 0.694 0.551
qi-mse 0.7 0.7 0.524 0.313 0.424 0.875 0.283 0.698 0.552
qi-mse 0.7 0.8 0.527 0.313 0.425 0.877 0.287 0.706 0.554
qi-mse 0.7 0.9 0.532 0.316 0.428 0.88 0.291 0.721 0.558
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…continued: Table 22 (CREMI score on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mse 0.9 — 1.276 1.609 0.748 1.325 0.907 1.748 1.319
qi-mse 0.9 0.1 1.018 1.525 0.702 1.213 0.542 1.134 0.994
qi-mse 0.9 0.2 1.016 1.525 0.697 1.211 0.538 1.13 0.996
qi-mse 0.9 0.3 1.015 1.525 0.695 1.211 0.538 1.129 0.995
qi-mse 0.9 0.4 1.016 1.532 0.694 1.211 0.537 1.129 0.995
qi-mse 0.9 0.5 1.017 1.534 0.693 1.211 0.538 1.13 0.998
qi-mse 0.9 0.6 1.019 1.536 0.693 1.212 0.539 1.135 0.999
qi-mse 0.9 0.7 1.021 1.54 0.694 1.213 0.539 1.139 1.001
qi-mse 0.9 0.8 1.024 1.541 0.695 1.214 0.541 1.146 1.005
qi-mse 0.9 0.9 1.027 1.543 0.698 1.217 0.544 1.153 1.007
qi-mse-ng 0.1 — 2.407 2.762 2.519 2.498 2.013 2.254 2.397
qi-mse-ng 0.1 0.1 2.278 2.729 2.465 2.427 1.66 2.143 2.242
qi-mse-ng 0.1 0.2 2.286 2.727 2.479 2.426 1.703 2.141 2.239
qi-mse-ng 0.1 0.3 2.287 2.734 2.478 2.426 1.706 2.14 2.238
qi-mse-ng 0.1 0.4 2.286 2.733 2.477 2.426 1.705 2.14 2.237
qi-mse-ng 0.1 0.5 2.288 2.733 2.477 2.431 1.71 2.14 2.237
qi-mse-ng 0.1 0.6 2.288 2.733 2.478 2.431 1.71 2.14 2.237
qi-mse-ng 0.1 0.7 2.289 2.733 2.478 2.432 1.71 2.141 2.237
qi-mse-ng 0.1 0.8 2.289 2.733 2.48 2.433 1.711 2.142 2.237
qi-mse-ng 0.1 0.9 2.29 2.733 2.483 2.43 1.712 2.146 2.238
qi-mse-ng 0.3 — 2.423 2.757 2.53 2.515 1.958 2.366 2.414
qi-mse-ng 0.3 0.1 2.278 2.729 2.465 2.427 1.661 2.143 2.241
qi-mse-ng 0.3 0.2 2.285 2.727 2.478 2.426 1.703 2.14 2.239
qi-mse-ng 0.3 0.3 2.285 2.726 2.477 2.425 1.702 2.139 2.238
qi-mse-ng 0.3 0.4 2.284 2.726 2.477 2.425 1.701 2.139 2.237
qi-mse-ng 0.3 0.5 2.272 2.726 2.477 2.425 1.701 2.139 2.164
qi-mse-ng 0.3 0.6 2.272 2.726 2.477 2.426 1.7 2.139 2.163
qi-mse-ng 0.3 0.7 2.272 2.726 2.477 2.426 1.7 2.14 2.163
qi-mse-ng 0.3 0.8 2.266 2.726 2.479 2.385 1.701 2.142 2.164
qi-mse-ng 0.3 0.9 2.268 2.726 2.482 2.387 1.703 2.145 2.165
qi-mse-ng 0.5 — 2.092 2.317 2.404 1.989 1.41 2.252 2.179
qi-mse-ng 0.5 0.1 1.928 2.276 2.354 1.879 1.198 1.891 1.969
qi-mse-ng 0.5 0.2 1.891 2.275 2.347 1.854 1.042 1.87 1.959
qi-mse-ng 0.5 0.3 1.891 2.247 2.345 1.893 1.04 1.871 1.952
qi-mse-ng 0.5 0.4 1.884 2.243 2.345 1.861 1.034 1.863 1.957
qi-mse-ng 0.5 0.5 1.869 2.238 2.344 1.844 1.03 1.899 1.862
qi-mse-ng 0.5 0.6 1.861 2.231 2.344 1.845 1.024 1.868 1.857
qi-mse-ng 0.5 0.7 1.856 2.225 2.339 1.821 1.018 1.869 1.861
qi-mse-ng 0.5 0.8 1.861 2.221 2.341 1.862 1.018 1.871 1.853
qi-mse-ng 0.5 0.9 1.863 2.219 2.345 1.865 1.021 1.876 1.853
qi-mse-ng 0.7 — 0.844 0.387 0.554 0.998 0.739 1.43 0.956
qi-mse-ng 0.7 0.1 0.527 0.298 0.493 0.875 0.252 0.7 0.547
qi-mse-ng 0.7 0.2 0.522 0.289 0.487 0.871 0.249 0.695 0.54
qi-mse-ng 0.7 0.3 0.519 0.288 0.485 0.871 0.243 0.689 0.539
qi-mse-ng 0.7 0.4 0.52 0.293 0.483 0.871 0.247 0.688 0.537
qi-mse-ng 0.7 0.5 0.52 0.294 0.483 0.872 0.248 0.69 0.537
qi-mse-ng 0.7 0.6 0.521 0.294 0.483 0.872 0.248 0.692 0.537
qi-mse-ng 0.7 0.7 0.523 0.294 0.483 0.873 0.249 0.702 0.538
qi-mse-ng 0.7 0.8 0.522 0.295 0.455 0.875 0.254 0.713 0.542
qi-mse-ng 0.7 0.9 0.529 0.297 0.459 0.879 0.262 0.729 0.546
qi-mse-ng 0.9 — 1.173 1.38 0.673 1.248 0.869 1.664 1.202
qi-mse-ng 0.9 0.1 0.896 1.254 0.592 1.138 0.472 1.049 0.872
qi-mse-ng 0.9 0.2 0.895 1.258 0.589 1.136 0.47 1.046 0.87
qi-mse-ng 0.9 0.3 0.895 1.259 0.588 1.136 0.47 1.048 0.869
qi-mse-ng 0.9 0.4 0.897 1.266 0.587 1.137 0.47 1.05 0.87
qi-mse-ng 0.9 0.5 0.9 1.269 0.6 1.137 0.47 1.053 0.871
qi-mse-ng 0.9 0.6 0.901 1.271 0.602 1.138 0.471 1.055 0.871
qi-mse-ng 0.9 0.7 0.906 1.278 0.603 1.14 0.473 1.066 0.877
qi-mse-ng 0.9 0.8 0.909 1.281 0.605 1.142 0.475 1.07 0.881
qi-mse-ng 0.9 0.9 0.916 1.292 0.612 1.145 0.48 1.082 0.886
qi-mls-pre 0.1 — 1.981 2.087 2.137 1.977 1.739 1.808 2.135
qi-mls-pre 0.1 0.1 1.86 2.179 2.136 1.908 1.178 1.839 1.917
qi-mls-pre 0.1 0.2 1.853 2.178 2.132 1.906 1.15 1.84 1.914
qi-mls-pre 0.1 0.3 1.847 2.177 2.129 1.906 1.147 1.832 1.893
qi-mls-pre 0.1 0.4 1.852 2.176 2.126 1.902 1.163 1.848 1.894
qi-mls-pre 0.1 0.5 1.854 2.176 2.118 1.903 1.224 1.811 1.892
qi-mls-pre 0.1 0.6 1.832 2.178 2.117 1.903 1.083 1.819 1.894
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…continued: Table 22 (CREMI score on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre 0.1 0.7 1.836 2.178 2.117 1.904 1.095 1.829 1.896
qi-mls-pre 0.1 0.8 1.855 2.178 2.111 1.906 1.199 1.837 1.902
qi-mls-pre 0.1 0.9 1.866 2.179 2.112 1.908 1.218 1.864 1.913
qi-mls-pre 0.3 — 2.679 2.727 2.669 2.798 2.564 2.612 2.704
qi-mls-pre 0.3 0.1 2.524 2.679 2.604 2.699 2.338 2.28 2.546
qi-mls-pre 0.3 0.2 2.522 2.676 2.599 2.698 2.338 2.279 2.545
qi-mls-pre 0.3 0.3 2.522 2.675 2.596 2.697 2.339 2.281 2.546
qi-mls-pre 0.3 0.4 2.523 2.675 2.593 2.697 2.34 2.284 2.546
qi-mls-pre 0.3 0.5 2.524 2.675 2.591 2.697 2.344 2.289 2.548
qi-mls-pre 0.3 0.6 2.518 2.675 2.59 2.698 2.297 2.296 2.55
qi-mls-pre 0.3 0.7 2.52 2.675 2.59 2.699 2.302 2.305 2.552
qi-mls-pre 0.3 0.8 2.525 2.675 2.591 2.701 2.31 2.319 2.556
qi-mls-pre 0.3 0.9 2.535 2.675 2.593 2.705 2.328 2.347 2.564
qi-mls-pre 0.5 — 2.73 2.754 2.731 2.834 2.614 2.7 2.743
qi-mls-pre 0.5 0.1 2.555 2.699 2.64 2.728 2.362 2.329 2.573
qi-mls-pre 0.5 0.2 2.553 2.697 2.635 2.726 2.362 2.328 2.571
qi-mls-pre 0.5 0.3 2.553 2.696 2.632 2.725 2.362 2.329 2.572
qi-mls-pre 0.5 0.4 2.553 2.695 2.629 2.725 2.364 2.332 2.573
qi-mls-pre 0.5 0.5 2.554 2.695 2.627 2.726 2.367 2.337 2.574
qi-mls-pre 0.5 0.6 2.548 2.695 2.626 2.727 2.321 2.344 2.576
qi-mls-pre 0.5 0.7 2.551 2.695 2.626 2.728 2.325 2.353 2.578
qi-mls-pre 0.5 0.8 2.555 2.695 2.627 2.729 2.333 2.367 2.582
qi-mls-pre 0.5 0.9 2.565 2.695 2.629 2.733 2.351 2.394 2.59
qi-mls-pre 0.7 — 2.73 2.754 2.731 2.834 2.614 2.7 2.743
qi-mls-pre 0.7 0.1 2.555 2.699 2.64 2.728 2.362 2.329 2.573
qi-mls-pre 0.7 0.2 2.553 2.697 2.635 2.726 2.362 2.328 2.571
qi-mls-pre 0.7 0.3 2.553 2.696 2.632 2.725 2.362 2.329 2.572
qi-mls-pre 0.7 0.4 2.553 2.695 2.629 2.725 2.364 2.332 2.573
qi-mls-pre 0.7 0.5 2.554 2.695 2.627 2.726 2.367 2.337 2.574
qi-mls-pre 0.7 0.6 2.548 2.695 2.626 2.727 2.321 2.344 2.576
qi-mls-pre 0.7 0.7 2.551 2.695 2.626 2.728 2.325 2.353 2.578
qi-mls-pre 0.7 0.8 2.555 2.695 2.627 2.729 2.333 2.367 2.582
qi-mls-pre 0.7 0.9 2.565 2.695 2.629 2.733 2.351 2.394 2.59
qi-mls-pre 0.9 — 2.73 2.754 2.731 2.834 2.614 2.7 2.743
qi-mls-pre 0.9 0.1 2.555 2.699 2.64 2.728 2.362 2.329 2.573
qi-mls-pre 0.9 0.2 2.553 2.697 2.635 2.726 2.362 2.328 2.571
qi-mls-pre 0.9 0.3 2.553 2.696 2.632 2.725 2.362 2.329 2.572
qi-mls-pre 0.9 0.4 2.553 2.695 2.629 2.725 2.364 2.332 2.573
qi-mls-pre 0.9 0.5 2.554 2.695 2.627 2.726 2.367 2.337 2.574
qi-mls-pre 0.9 0.6 2.548 2.695 2.626 2.727 2.321 2.344 2.576
qi-mls-pre 0.9 0.7 2.551 2.695 2.626 2.728 2.325 2.353 2.578
qi-mls-pre 0.9 0.8 2.555 2.695 2.627 2.729 2.333 2.367 2.582
qi-mls-pre 0.9 0.9 2.565 2.695 2.629 2.733 2.351 2.394 2.59
qi-mls-pre-ng 0.1 — 2.327 2.673 2.451 2.351 1.956 2.167 2.362
qi-mls-pre-ng 0.1 0.1 2.254 2.664 2.413 2.285 1.903 1.979 2.279
qi-mls-pre-ng 0.1 0.2 2.266 2.656 2.409 2.28 1.903 2.077 2.274
qi-mls-pre-ng 0.1 0.3 2.259 2.656 2.399 2.286 1.901 2.038 2.272
qi-mls-pre-ng 0.1 0.4 2.258 2.654 2.397 2.278 1.893 2.055 2.271
qi-mls-pre-ng 0.1 0.5 2.258 2.654 2.396 2.278 1.896 2.055 2.271
qi-mls-pre-ng 0.1 0.6 2.259 2.656 2.397 2.278 1.896 2.056 2.271
qi-mls-pre-ng 0.1 0.7 2.263 2.656 2.398 2.279 1.917 2.056 2.271
qi-mls-pre-ng 0.1 0.8 2.261 2.655 2.4 2.282 1.91 2.053 2.267
qi-mls-pre-ng 0.1 0.9 2.282 2.648 2.415 2.285 1.995 2.047 2.299
qi-mls-pre-ng 0.3 — 2.079 2.025 1.951 2.208 2.058 2.128 2.103
qi-mls-pre-ng 0.3 0.1 1.965 1.962 1.924 2.158 1.818 1.898 2.031
qi-mls-pre-ng 0.3 0.2 1.959 1.959 1.917 2.154 1.813 1.885 2.026
qi-mls-pre-ng 0.3 0.3 1.957 1.96 1.913 2.155 1.806 1.883 2.026
qi-mls-pre-ng 0.3 0.4 1.954 1.962 1.911 2.156 1.798 1.874 2.025
qi-mls-pre-ng 0.3 0.5 1.956 1.961 1.911 2.156 1.805 1.875 2.025
qi-mls-pre-ng 0.3 0.6 1.956 1.962 1.911 2.157 1.805 1.875 2.025
qi-mls-pre-ng 0.3 0.7 1.961 1.962 1.911 2.157 1.834 1.875 2.025
qi-mls-pre-ng 0.3 0.8 1.96 1.962 1.912 2.16 1.828 1.876 2.021
qi-mls-pre-ng 0.3 0.9 1.959 1.963 1.915 2.161 1.849 1.866 2.001
qi-mls-pre-ng 0.5 — 2.079 2.025 1.951 2.208 2.058 2.128 2.103
qi-mls-pre-ng 0.5 0.1 1.965 1.962 1.924 2.158 1.818 1.898 2.031
qi-mls-pre-ng 0.5 0.2 1.959 1.959 1.917 2.154 1.813 1.885 2.027
qi-mls-pre-ng 0.5 0.3 1.957 1.96 1.913 2.155 1.807 1.883 2.026
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…continued: Table 22 (CREMI score on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls-pre-ng 0.5 0.4 1.955 1.962 1.911 2.156 1.799 1.874 2.025
qi-mls-pre-ng 0.5 0.5 1.956 1.961 1.911 2.156 1.805 1.875 2.025
qi-mls-pre-ng 0.5 0.6 1.956 1.962 1.911 2.157 1.805 1.875 2.025
qi-mls-pre-ng 0.5 0.7 1.961 1.962 1.911 2.157 1.834 1.875 2.026
qi-mls-pre-ng 0.5 0.8 1.96 1.962 1.912 2.16 1.829 1.876 2.021
qi-mls-pre-ng 0.5 0.9 1.959 1.963 1.915 2.161 1.849 1.866 2.001
qi-mls-pre-ng 0.7 — 2.079 2.025 1.951 2.208 2.058 2.128 2.103
qi-mls-pre-ng 0.7 0.1 1.965 1.962 1.924 2.158 1.818 1.898 2.031
qi-mls-pre-ng 0.7 0.2 1.959 1.959 1.917 2.154 1.813 1.885 2.027
qi-mls-pre-ng 0.7 0.3 1.957 1.96 1.913 2.155 1.807 1.883 2.026
qi-mls-pre-ng 0.7 0.4 1.955 1.962 1.911 2.156 1.799 1.874 2.025
qi-mls-pre-ng 0.7 0.5 1.956 1.961 1.911 2.156 1.805 1.875 2.025
qi-mls-pre-ng 0.7 0.6 1.956 1.962 1.911 2.157 1.805 1.875 2.025
qi-mls-pre-ng 0.7 0.7 1.961 1.962 1.911 2.157 1.834 1.875 2.026
qi-mls-pre-ng 0.7 0.8 1.96 1.962 1.912 2.16 1.829 1.876 2.021
qi-mls-pre-ng 0.7 0.9 1.959 1.963 1.915 2.161 1.849 1.866 2.001
qi-mls-pre-ng 0.9 — 2.079 2.025 1.951 2.208 2.058 2.128 2.103
qi-mls-pre-ng 0.9 0.1 1.965 1.962 1.924 2.158 1.818 1.898 2.031
qi-mls-pre-ng 0.9 0.2 1.959 1.959 1.917 2.154 1.813 1.885 2.027
qi-mls-pre-ng 0.9 0.3 1.957 1.96 1.913 2.155 1.807 1.883 2.026
qi-mls-pre-ng 0.9 0.4 1.955 1.962 1.911 2.156 1.799 1.874 2.025
qi-mls-pre-ng 0.9 0.5 1.956 1.961 1.911 2.156 1.805 1.875 2.025
qi-mls-pre-ng 0.9 0.6 1.956 1.962 1.911 2.157 1.805 1.875 2.025
qi-mls-pre-ng 0.9 0.7 1.961 1.962 1.911 2.157 1.834 1.875 2.026
qi-mls-pre-ng 0.9 0.8 1.96 1.962 1.912 2.16 1.829 1.876 2.021
qi-mls-pre-ng 0.9 0.9 1.959 1.963 1.915 2.161 1.849 1.866 2.001
qi-mls 0.1 — 0.852 0.555 0.482 1.061 0.872 1.211 0.933
qi-mls 0.1 0.1 0.659 0.505 0.439 1.007 0.481 0.842 0.682
qi-mls 0.1 0.2 0.652 0.502 0.432 1.005 0.471 0.828 0.674
qi-mls 0.1 0.3 0.65 0.503 0.435 1.004 0.465 0.822 0.669
qi-mls 0.1 0.4 0.647 0.505 0.424 1.004 0.464 0.82 0.667
qi-mls 0.1 0.5 0.647 0.504 0.422 1.003 0.462 0.827 0.665
qi-mls 0.1 0.6 0.647 0.504 0.422 1.003 0.46 0.83 0.665
qi-mls 0.1 0.7 0.648 0.506 0.422 1.004 0.46 0.832 0.665
qi-mls 0.1 0.8 0.651 0.508 0.421 1.005 0.461 0.845 0.666
qi-mls 0.1 0.9 0.657 0.512 0.425 1.008 0.467 0.86 0.67
qi-mls 0.3 — 1.477 1.476 1.227 1.703 1.141 1.773 1.54
qi-mls 0.3 0.1 1.344 1.433 1.195 1.663 0.913 1.456 1.407
qi-mls 0.3 0.2 1.344 1.435 1.193 1.663 0.913 1.458 1.405
qi-mls 0.3 0.3 1.345 1.436 1.189 1.663 0.914 1.461 1.403
qi-mls 0.3 0.4 1.346 1.438 1.19 1.664 0.917 1.462 1.404
qi-mls 0.3 0.5 1.347 1.439 1.189 1.665 0.916 1.463 1.407
qi-mls 0.3 0.6 1.351 1.444 1.19 1.666 0.929 1.467 1.41
qi-mls 0.3 0.7 1.354 1.448 1.19 1.668 0.934 1.47 1.412
qi-mls 0.3 0.8 1.357 1.453 1.192 1.67 0.936 1.475 1.416
qi-mls 0.3 0.9 1.365 1.464 1.197 1.674 0.943 1.488 1.422
qi-mls 0.5 — 3.306 3.285 3.401 3.394 3.47 3.061 3.226
qi-mls 0.5 0.1 3.291 3.287 3.416 3.388 3.398 3.015 3.239
qi-mls 0.5 0.2 3.289 3.286 3.415 3.387 3.397 3.012 3.238
qi-mls 0.5 0.3 3.288 3.285 3.414 3.386 3.396 3.011 3.236
qi-mls 0.5 0.4 3.288 3.285 3.413 3.386 3.396 3.01 3.236
qi-mls 0.5 0.5 3.287 3.285 3.412 3.386 3.395 3.01 3.235
qi-mls 0.5 0.6 3.287 3.285 3.412 3.386 3.395 3.009 3.235
qi-mls 0.5 0.7 3.287 3.285 3.412 3.387 3.395 3.01 3.235
qi-mls 0.5 0.8 3.288 3.285 3.412 3.387 3.395 3.011 3.235
qi-mls 0.5 0.9 3.289 3.285 3.414 3.389 3.397 3.015 3.236
qi-mls 0.7 — 3.306 3.285 3.401 3.394 3.47 3.061 3.226
qi-mls 0.7 0.1 3.291 3.287 3.416 3.388 3.398 3.015 3.239
qi-mls 0.7 0.2 3.289 3.286 3.415 3.387 3.397 3.012 3.238
qi-mls 0.7 0.3 3.288 3.285 3.414 3.386 3.396 3.011 3.236
qi-mls 0.7 0.4 3.288 3.285 3.413 3.386 3.396 3.01 3.236
qi-mls 0.7 0.5 3.287 3.285 3.412 3.386 3.395 3.01 3.235
qi-mls 0.7 0.6 3.287 3.285 3.412 3.386 3.395 3.009 3.235
qi-mls 0.7 0.7 3.287 3.285 3.412 3.387 3.395 3.01 3.235
qi-mls 0.7 0.8 3.288 3.285 3.412 3.387 3.395 3.011 3.235
qi-mls 0.7 0.9 3.289 3.285 3.414 3.389 3.397 3.015 3.236
qi-mls 0.9 — 3.306 3.285 3.401 3.394 3.47 3.061 3.226
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
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…continued: Table 22 (CREMI score on 100%)
Architecture 𝑡𝑚 𝑡𝑔 ⌀ A B C 0 1 2
qi-mls 0.9 0.1 3.291 3.287 3.416 3.388 3.398 3.015 3.239
qi-mls 0.9 0.2 3.289 3.286 3.415 3.387 3.397 3.012 3.238
qi-mls 0.9 0.3 3.288 3.285 3.414 3.386 3.396 3.011 3.236
qi-mls 0.9 0.4 3.288 3.285 3.413 3.386 3.396 3.01 3.236
qi-mls 0.9 0.5 3.287 3.285 3.412 3.386 3.395 3.01 3.235
qi-mls 0.9 0.6 3.287 3.285 3.412 3.386 3.395 3.009 3.235
qi-mls 0.9 0.7 3.287 3.285 3.412 3.387 3.395 3.01 3.235
qi-mls 0.9 0.8 3.288 3.285 3.412 3.387 3.395 3.011 3.235
qi-mls 0.9 0.9 3.289 3.285 3.414 3.389 3.397 3.015 3.236
qi-mls-ng 0.1 — 2.472 2.748 2.558 2.544 2.183 2.376 2.422
qi-mls-ng 0.1 0.1 2.471 2.743 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.1 0.2 2.471 2.743 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.1 0.3 2.469 2.743 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.1 0.4 2.469 2.743 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.1 0.5 2.467 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.1 0.6 2.467 2.731 2.558 2.544 2.174 2.367 2.426
qi-mls-ng 0.1 0.7 2.466 2.731 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.1 0.8 2.466 2.731 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.1 0.9 2.469 2.745 2.558 2.544 2.174 2.368 2.424
qi-mls-ng 0.3 — 2.47 2.735 2.558 2.544 2.183 2.376 2.422
qi-mls-ng 0.3 0.1 2.469 2.731 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.3 0.2 2.469 2.731 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.3 0.3 2.466 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.3 0.4 2.467 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.3 0.5 2.466 2.727 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.3 0.6 2.466 2.727 2.558 2.544 2.174 2.367 2.426
qi-mls-ng 0.3 0.7 2.466 2.727 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.3 0.8 2.466 2.727 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.3 0.9 2.466 2.728 2.558 2.544 2.174 2.368 2.424
qi-mls-ng 0.5 — 2.47 2.735 2.558 2.544 2.183 2.376 2.422
qi-mls-ng 0.5 0.1 2.469 2.731 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.5 0.2 2.469 2.731 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.5 0.3 2.466 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.5 0.4 2.467 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.5 0.5 2.466 2.727 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.5 0.6 2.466 2.727 2.558 2.544 2.174 2.367 2.426
qi-mls-ng 0.5 0.7 2.466 2.727 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.5 0.8 2.466 2.727 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.5 0.9 2.466 2.728 2.558 2.544 2.174 2.368 2.424
qi-mls-ng 0.7 — 2.47 2.735 2.558 2.544 2.183 2.376 2.422
qi-mls-ng 0.7 0.1 2.469 2.731 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.7 0.2 2.469 2.731 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.7 0.3 2.466 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.7 0.4 2.467 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.7 0.5 2.466 2.727 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.7 0.6 2.466 2.727 2.558 2.544 2.174 2.367 2.426
qi-mls-ng 0.7 0.7 2.466 2.727 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.7 0.8 2.466 2.727 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.7 0.9 2.466 2.728 2.558 2.544 2.174 2.368 2.424
qi-mls-ng 0.9 — 2.47 2.735 2.558 2.544 2.183 2.376 2.422
qi-mls-ng 0.9 0.1 2.469 2.731 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.9 0.2 2.469 2.731 2.558 2.544 2.173 2.367 2.44
qi-mls-ng 0.9 0.3 2.466 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.9 0.4 2.467 2.731 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.9 0.5 2.466 2.727 2.558 2.544 2.173 2.367 2.426
qi-mls-ng 0.9 0.6 2.466 2.727 2.558 2.544 2.174 2.367 2.426
qi-mls-ng 0.9 0.7 2.466 2.727 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.9 0.8 2.466 2.727 2.558 2.544 2.174 2.367 2.424
qi-mls-ng 0.9 0.9 2.466 2.728 2.558 2.544 2.174 2.368 2.424
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c.1 paintera

c.1.1 Data Conversion

This example shows how to convert the /volumes/raw and /volumes/labels/

neuron_ids data sets of padded CREMI sample A1 into multi-scale, Paintera com-
patible datasets. First, install the paintera-conversion-helper tool (section 4.1.5.5).
In the following, $HOME refers to the user’s home directory. Assuming that the
padded sample A was downloaded into the $HOME/Downloads directory, the com-
mand

Listing C.1: Conversion of HDF5 data into Paintera-friendly format.
1 paintera-conversion-helper \

2 -d $HOME/Downloads/sample_A_padded_20160501.hdf,volumes/raw,raw \

3 -d $HOME/Downloads/sample_A_padded_20160501.hdf,volumes/labels/neuron_ids,label \

4 -b 64,64,64 \

5 -s 2,2,1 2,2,1 2,2,1 2,2,2 2,2,2 2,2,2 \

6 -m -1 -1 5 4 3 2 2 1 \

7 --revert \

8 --label-block-lookup-backend-n5=10000 \

9 --outputN5=$HOME/data/sample_A_padded_20160501.n5

creates a new N5 container $HOME/data/sample_A_padded_20160501.n5with the
converted datasets. During conversion, you can track the progress by opening the
Spark Jobs status page in a web browser, e.g. http://localhost:4040/jobs for
local Spark Jobs. Then, you can either open the datasets through the Paintera UI or
load a Paintera project, e.g. paintera $HOME/data/project.n5with the following
attributes.json (Replace $HOME appropriately):

Listing C.2: Example Paintera project
1 {

2 "n5": "2.0.2",

3 "paintera": {

4 "sourceInfo": {

5 "sources": [

6 {

7 "type": "org.janelia.saalfeldlab.paintera.state.RawSourceState",

8 "state": {

9 "composite": {},

10 "converter": {

11 "alpha": 1.0,

12 "color": "#FFFFFF",

13 "min": 0.0,

14 "max": 255.0

15 },

16 "compositeType": "org.janelia.saalfeldlab.paintera.composition.CompositeCopy",

17 "converterType": "net.imglib2.converter.ARGBColorConverter$InvertingImp1",

18 "interpolation": "NEARESTNEIGHBOR",

1https://cremi.org/static/data/sample_A_padded_20160501.hdf
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19 "isVisible": true,

20 "sourceType": "org.janelia.saalfeldlab.paintera.data.n5.N5DataSource",

21 "source": {

22 "metaType": "org.janelia.saalfeldlab.paintera.data.n5.N5FSMeta",

23 "meta": {

24 "n5": "$HOME/data/sample_A_padded_20160501.n5",

25 "dataset": "/volumes/raw"

26 },

27 "transform": [

28 4.0,

29 0.0,

30 0.0,

31 0.0,

32 0.0,

33 4.0,

34 0.0,

35 0.0,

36 0.0,

37 0.0,

38 40.0,

39 0.0

40 ]

41 },

42 "name": "raw",

43 "dependsOn": [],

44 "axisOrder": "XYZ"

45 }

46 },

47 {

48 "type": "org.janelia.saalfeldlab.paintera.state.LabelSourceState",

49 "state": {

50 "composite": {},

51 "converter": {

52 "converterType": "org.janelia.saalfeldlab.paintera.stream.

HighlightingStreamConverterLabelMultisetType",

53 "streamType": "org.janelia.saalfeldlab.paintera.stream.

ModalGoldenAngleSaturatedHighlightingARGBStream",

54 "seed": 1

55 },

56 "compositeType": "org.janelia.saalfeldlab.paintera.composition.

ARGBCompositeAlphaYCbCr",

57 "converterType": "org.janelia.saalfeldlab.paintera.stream.

HighlightingStreamConverterLabelMultisetType",

58 "interpolation": "NEARESTNEIGHBOR",

59 "isVisible": true,

60 "sourceType": "org.janelia.saalfeldlab.paintera.data.mask.MaskedSource",

61 "source": {

62 "source": {

63 "metaType": "org.janelia.saalfeldlab.paintera.data.n5.N5FSMeta",

64 "meta": {

65 "n5": "$HOME/data/sample_A_padded_20160501.n5",

66 "dataset": "/volumes/labels/neuron_ids"

67 },

68 "transform": [

69 4.0,

70 0.0,

71 0.0,

72 3644.0,

73 0.0,

74 4.0,

75 0.0,

76 3644.0,

77 0.0,

78 0.0,

79 40.0,

80 1520.0
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81 ]

82 },

83 "sourceClass": "org.janelia.saalfeldlab.paintera.data.n5.N5DataSource",

84 "persistCanvasClass": "org.janelia.saalfeldlab.paintera.data.n5.CommitCanvasN5",

85 "persistCanvas": {

86 "class": "org.janelia.saalfeldlab.paintera.data.n5.N5FSMeta",

87 "data": {

88 "n5": "$HOME/data/sample_A_padded_20160501.n5",

89 "dataset": "/volumes/labels/neuron_ids"

90 }

91 }

92 },

93 "name": "neuron_ids",

94 "dependsOn": [],

95 "axisOrder": "XYZ",

96 "selectedIds": {

97 "lastSelection": -2,

98 "activeIds": []

99 },

100 "assignment": {

101 "type": "org.janelia.saalfeldlab.paintera.control.assignment.

FragmentSegmentAssignmentOnlyLocal",

102 "data": {

103 "actions": [],

104 "persister": {

105 "type": "org.janelia.saalfeldlab.util.n5.N5

FragmentSegmentAssignmentPersister",

106 "data": {

107 "N5": {

108 "type": "org.janelia.saalfeldlab.paintera.data.n5.N5FSMeta",

109 "data": {

110 "n5": "$HOME/data/sample_A_padded_20160501.n5",

111 "dataset": "/volumes/labels/neuron_ids/fragment-segment-assignment"

112 }

113 }

114 }

115 },

116 "initialLut": {

117 "type": "org.janelia.saalfeldlab.util.n5.N5

FragmentSegmentAssignmentInitialLut",

118 "data": {

119 "N5": {

120 "type": "org.janelia.saalfeldlab.paintera.data.n5.N5FSMeta",

121 "data": {

122 "n5": "$HOME/data/sample_A_padded_20160501.n5",

123 "dataset": "/volumes/labels/neuron_ids/fragment-segment-assignment"

124 }

125 }

126 }

127 }

128 }

129 },

130 "lockedSegments": [],

131 "meshSettings": {

132 "globalSettings": {

133 "numScaleLevels": 7,

134 "scaleLevel": 6,

135 "simplificationIterations": 0,

136 "smoothingLambda": 0.5,

137 "smoothingIterations": 3,

138 "opacity": 1.0,

139 "inflate": 1.0,

140 "isVisible": true,

141 "drawMode": "FILL",

142 "cullFace": "FRONT"

143 },
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144 "meshSettings": []

145 },

146 "labelBlockMapping": {

147 "type": "n5-filesystem",

148 "root": "$HOME/data/sample_A_padded_20160501.n5",

149 "scaleDatasetPattern": "volumes/labels/neuron_ids/label-to-block-mapping/s%d"

150 },

151 "idService": {

152 "type": "org.janelia.saalfeldlab.paintera.id.N5IdService",

153 "data": {

154 "N5": {

155 "type": "org.janelia.saalfeldlab.paintera.data.n5.N5FSMeta",

156 "data": {

157 "n5": "$HOME/data/sample_A_padded_20160501.n5",

158 "dataset": "/volumes/labels/neuron_ids"

159 }

160 }

161 }

162 }

163 }

164 }

165 ],

166 "currentSourceIndex": 0,

167 "numSources": 2

168 },

169 "globalTransform": [

170 0.06512006512006512,

171 0.0,

172 0.0,

173 -399.96743996743993,

174 0.0,

175 0.06512006512006512,

176 0.0,

177 -399.96743996743993,

178 0.0,

179 0.0,

180 0.06512006512006512,

181 -259.17785917785915

182 ],

183 "windowProperties": {

184 "width": 1600,

185 "height": 800

186 },

187 "gridConstraints": {

188 "previousFirstRowHeight": 50.0,

189 "previousFirstColumnWidth": 50.0,

190 "isFullScreen": false,

191 "firstRowHeight": 50.0,

192 "firstColumnWidth": 50.0

193 },

194 "crosshairConfig": {

195 "onFocusColor": "#FF0088FF",

196 "offFocusColor": "#FFFFFFFF",

197 "isVisible": true

198 },

199 "orthoSliceConfig": {

200 "enabled": true,

201 "showTopLeft": true,

202 "showTopRight": true,

203 "showBottomLeft": true,

204 "delayInNanoSeconds": 200

205 },

206 "navigationConfig": {

207 "allowRotations": true,

208 "buttonRotationSpeeds": {

209 "slow": 0.5,
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210 "regular": 5.0,

211 "fast": 45.0

212 }

213 },

214 "viewer3DConfig": {

215 "areMeshesEnabled": true

216 },

217 "screenScalesConfig": {

218 "scales": [

219 1.0,

220 0.5,

221 0.25

222 ]

223 }

224 }

225 }

c.1.2 Extensions — Complete Example

The extension example provided in section 4.1.7 can be implemented as a Maven
project with a single Java file:

.

├── pom.xml

└── src

└── main

└── java

└── my

└── group

└── FeatureSourceState.java

with pom.xml:
1 <project xmlns="http://maven.apache.org/POM/4.0.0"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

4         http://maven.apache.org/xsd/maven-4.0.0.xsd">

5 <modelVersion>4.0.0</modelVersion>

6
7 <parent>

8 <groupId>org.scijava</groupId>

9 <artifactId>pom-scijava</artifactId>

10 <version>25.0.0</version>

11 </parent>

12
13 <properties>

14 <enforcer.skip>true</enforcer.skip>

15 </properties>

16
17 <groupId>my.group</groupId>

18 <artifactId>my.artifact</artifactId>

19 <version>0.1.0-SNAPSHOT</version>

20
21 <repositories>

22 <repository>

23 <id>imagej.public</id>

24 <url>http://maven.imagej.net/content/groups/public</url>

25 </repository>

26 </repositories>

27
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28 <dependencies>

29 <dependency>

30 <groupId>org.janelia.saalfeldlab</groupId>

31 <artifactId>paintera</artifactId>

32 <version>0.11.1</version>

33 </dependency>

34 </dependencies>

35 </project>

The single java source file contains all the necessary code for the gradient feature
extension including an additional entry for the opener menu and support for
serialization:

1 package my.group;

2
3 import bdv.util.volatiles.VolatileViews;

4 import bdv.viewer.Interpolation;

5 import com.google.gson.JsonDeserializationContext;

6 import com.google.gson.JsonDeserializer;

7 import com.google.gson.JsonElement;

8 import com.google.gson.JsonObject;

9 import com.google.gson.JsonParseException;

10 import com.google.gson.JsonSerializationContext;

11 import com.google.gson.JsonSerializer;

12 import com.google.gson.annotations.Expose;

13 import javafx.beans.InvalidationListener;

14 import javafx.collections.FXCollections;

15 import javafx.collections.ObservableList;

16 import javafx.scene.control.Alert;

17 import javafx.scene.control.ButtonType;

18 import javafx.scene.control.ComboBox;

19 import net.imglib2.RandomAccessible;

20 import net.imglib2.RandomAccessibleInterval;

21 import net.imglib2.algorithm.gradient.PartialDerivative;

22 import net.imglib2.cache.img.CellLoader;

23 import net.imglib2.cache.img.DiskCachedCellImgFactory;

24 import net.imglib2.cache.img.DiskCachedCellImgOptions;

25 import net.imglib2.converter.ARGBColorConverter;

26 import net.imglib2.converter.Converters;

27 import net.imglib2.interpolation.InterpolatorFactory;

28 import net.imglib2.interpolation.randomaccess.NLinearInterpolatorFactory;

29 import net.imglib2.interpolation.randomaccess.NearestNeighborInterpolatorFactory;

30 import net.imglib2.loops.LoopBuilder;

31 import net.imglib2.realtransform.AffineTransform3D;

32 import net.imglib2.type.numeric.NumericType;

33 import net.imglib2.type.numeric.RealType;

34 import net.imglib2.type.numeric.real.DoubleType;

35 import net.imglib2.type.volatiles.VolatileDoubleType;

36 import net.imglib2.view.Views;

37 import org.janelia.saalfeldlab.paintera.PainteraBaseView;

38 import org.janelia.saalfeldlab.paintera.composition.ARGBCompositeAlphaAdd;

39 import org.janelia.saalfeldlab.paintera.data.DataSource;

40 import org.janelia.saalfeldlab.paintera.data.RandomAccessibleIntervalDataSource;

41 import org.janelia.saalfeldlab.paintera.serialization.StatefulSerializer;

42 import org.janelia.saalfeldlab.paintera.state.MinimalSourceState;

43 import org.janelia.saalfeldlab.paintera.state.SourceState;

44 import org.janelia.saalfeldlab.paintera.ui.PainteraAlerts;

45 import org.janelia.saalfeldlab.paintera.ui.opendialog.menu.OpenDialogMenuEntry;

46 import org.janelia.saalfeldlab.util.Colors;

47 import org.scijava.plugin.Plugin;

48
49 import java.lang.reflect.Type;

50 import java.nio.file.Paths;

51 import java.util.List;

52 import java.util.Objects;

53 import java.util.Optional;
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54 import java.util.function.BiConsumer;

55 import java.util.function.Function;

56 import java.util.function.IntFunction;

57 import java.util.function.Predicate;

58 import java.util.function.Supplier;

59 import java.util.function.ToIntFunction;

60 import java.util.stream.Collectors;

61 import java.util.stream.IntStream;

62 import java.util.stream.Stream;

63
64 import static org.janelia.saalfeldlab.paintera.serialization.SerializationHelpers.

deserializeFromClassInfo;

65 import static org.janelia.saalfeldlab.paintera.serialization.SerializationHelpers.

serializeWithClassInfo;

66 import static org.janelia.saalfeldlab.paintera.serialization.sourcestate.

SourceStateSerialization.DEPENDS_ON_KEY;

67 import static org.janelia.saalfeldlab.paintera.serialization.sourcestate.

SourceStateSerialization.INTERPOLATION_KEY;

68 import static org.janelia.saalfeldlab.paintera.serialization.sourcestate.

SourceStateSerialization.IS_VISIBLE_KEY;

69 import static org.janelia.saalfeldlab.paintera.serialization.sourcestate.

SourceStateSerialization.NAME_KEY;

70
71 public class FeatureSourceState extends MinimalSourceState<

72 DoubleType,

73 VolatileDoubleType,

74 DataSource<DoubleType, VolatileDoubleType>,

75 ARGBColorConverter<VolatileDoubleType>> {

76
77 private interface Feature {

78 DataSource<DoubleType, VolatileDoubleType> featureSource(

79 String cacheDir,

80 SourceState<? extends RealType<?>, ?>... dependsOn);

81 }

82
83 private static class GradientFeature implements Feature {

84
85 @Expose

86 private final int dim;

87
88
89 public GradientFeature(final int dim) {

90 this.dim = dim;

91 }

92
93 @Override

94 public DataSource<DoubleType, VolatileDoubleType> featureSource(

95 final String cacheDir,

96 final SourceState<? extends RealType<?>, ?>... dependsOn) {

97 if (dependsOn.length != 1)

98 throw new RuntimeException("Expected exactly one dependency but got " +

dependsOn.length);

99 final DataSource<? extends RealType<?>, ?> dataSource = dependsOn[0].getDataSource

();

100 final int numLevels = dataSource.getNumMipmapLevels();

101 final AffineTransform3D[] tfs = IntStream

102 .range(0, numLevels)

103 .mapToObj(lvl -> { AffineTransform3D tf = new AffineTransform3D();

dataSource.getSourceTransform(0, lvl, tf); return tf;})

104 .toArray(AffineTransform3D[]::new);

105
106 final RandomAccessibleInterval<DoubleType>[] data = new RandomAccessibleInterval[

numLevels];

107 final RandomAccessibleInterval<VolatileDoubleType>[] vdata = new

RandomAccessibleInterval[numLevels];

108
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109 final DiskCachedCellImgOptions options = DiskCachedCellImgOptions

110 .options()

111 .tempDirectory(Paths.get(cacheDir))

112 .tempDirectoryPrefix("gradient-")

113 .deleteCacheDirectoryOnExit(true)

114 .cellDimensions(32, 32, 32)

115 .volatileAccesses(true);

116
117
118 for (int lvl = 0; lvl < numLevels; ++lvl) {

119 final RandomAccessibleInterval<DoubleType> raw = Converters.convert(

120 dataSource.getDataSource(0, lvl),

121 (src, tgt) -> tgt.setReal(src.getRealDouble()),

122 new DoubleType());

123 final int nDim = raw.numDimensions();

124 final RandomAccessible<DoubleType> rawExtended = Views.extendBorder(raw);

125 final DiskCachedCellImgFactory<DoubleType> factory = new

DiskCachedCellImgFactory<>(new DoubleType(), options);

126
127 CellLoader<DoubleType> loader = img -> PartialDerivative.

gradientCentralDifference(rawExtended, img, dim);

128
129 data[lvl] = factory.create(raw, loader, options);

130 vdata[lvl] = VolatileViews.wrapAsVolatile(data[lvl]);

131 }

132 return new RandomAccessibleIntervalDataSource<>(

133 data,

134 vdata,

135 tfs,

136 () -> {

137 },

138 new InterpolationFunc<>(),

139 new InterpolationFunc<>(),

140 "");

141 }

142 }

143
144 private static class MagnitudeFeature implements Feature {

145
146 @Override

147 public DataSource<DoubleType, VolatileDoubleType> featureSource(

148 final String cacheDir,

149 final SourceState<? extends RealType<?>, ?>... dependsOn) {

150 // TODO check consistency of all sources, as long as it is called only

privately, do not care

151 final DataSource<? extends RealType<?>, ?> dataSource = dependsOn[0].

getDataSource();

152 final int numLevels = dataSource.getNumMipmapLevels();

153 final AffineTransform3D[] tfs = IntStream

154 .range(0, numLevels)

155 .mapToObj(lvl -> { AffineTransform3D tf = new AffineTransform3D();

dataSource.getSourceTransform(0, lvl, tf); return tf;})

156 .toArray(AffineTransform3D[]::new);

157
158 final RandomAccessibleInterval<DoubleType>[] data = new

RandomAccessibleInterval[numLevels];

159 final RandomAccessibleInterval<VolatileDoubleType>[] vdata = new

RandomAccessibleInterval[numLevels];

160
161 final DiskCachedCellImgOptions options = DiskCachedCellImgOptions

162 .options()

163 .tempDirectory(Paths.get(cacheDir))

164 .tempDirectoryPrefix("gradient-")

165 .deleteCacheDirectoryOnExit(true)

166 .cellDimensions(32, 32, 32)

167 .volatileAccesses(true);
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168
169
170 for (int lvl = 0; lvl < numLevels; ++lvl) {

171 final RandomAccessibleInterval<DoubleType> raw = Converters.convert(

172 dataSource.getDataSource(0, lvl),

173 (src, tgt) -> tgt.setReal(src.getRealDouble()),

174 new DoubleType());

175 final DiskCachedCellImgFactory<DoubleType> factory = new

DiskCachedCellImgFactory<>(new DoubleType(), options);

176 final int flvl = lvl;

177
178 CellLoader<DoubleType> loader = img -> {

179 for (SourceState<? extends RealType<?>, ?> state : dependsOn) {

180 LoopBuilder

181 .setImages(Views.interval(state.getDataSource().

getDataSource(0, flvl), img), img)

182 .forEachPixel((src, tgt) -> tgt.setReal(tgt.getRealDouble

() + src.getRealDouble() * src.getRealDouble()));

183 }

184 img.forEach(px -> px.setReal(Math.sqrt(px.getRealDouble())));

185 };

186
187 data[lvl] = factory.create(raw, loader, options);

188 vdata[lvl] = VolatileViews.wrapAsVolatile(data[lvl]);

189 }

190 return new RandomAccessibleIntervalDataSource<>(

191 data,

192 vdata,

193 tfs,

194 () -> {

195 },

196 new InterpolationFunc<>(),

197 new InterpolationFunc<>(),

198 "");

199 }

200 }

201
202 private final Feature feature;

203
204 private FeatureSourceState(

205 final Feature feature,

206 final String name,

207 final String cacheDir,

208 SourceState<? extends RealType<?>, ?>... dependsOn) {

209 super(

210 feature.featureSource(cacheDir, dependsOn),

211 new ARGBColorConverter.InvertingImp1< >(),

212 new ARGBCompositeAlphaAdd(),

213 name,

214 dependsOn);

215 this.feature = feature;

216 converter().setMin(0.0);

217 converter().setMax(50.0);

218 }

219
220 private static class InterpolationFunc<D extends NumericType<D>>

221 implements Function<Interpolation, InterpolatorFactory<D, RandomAccessible<D>>> {

222
223 @Override

224 public InterpolatorFactory<D, RandomAccessible<D>> apply(Interpolation interpolation)

{

225 if (interpolation == Interpolation.NLINEAR)

226 return new NLinearInterpolatorFactory<>();

227 else

228 return new NearestNeighborInterpolatorFactory<>();

229 }
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230 }

231
232 @Plugin(type = OpenDialogMenuEntry.class,

233 menuPath = "_Features>_Gradient Magnitude")

234 public static class MenuEntry implements OpenDialogMenuEntry {

235
236 @Override

237 public BiConsumer<PainteraBaseView, String> onAction() {

238 return (pbv, directory) -> {

239 final Predicate<SourceState<?, ?>> isReal =

240 state -> state

241 .getDataSource()

242 .getDataType() instanceof RealType<?>;

243 final List<SourceState<? extends RealType<?>, ?>> sources =

244 pbv

245 .sourceInfo()

246 .trackSources()

247 .stream()

248 .map(pbv.sourceInfo()::getState)

249 .filter(isReal)

250 .map(s -> (SourceState<? extends RealType<?>, ?>)s)

251 .collect(Collectors.toList());

252 final Alert alert = PainteraAlerts.alert(

253 Alert.AlertType.CONFIRMATION,

254 true);

255 final ObservableList<SourceState<? extends RealType<?>, ?>> choices =

256 FXCollections.observableArrayList(sources);

257 final ComboBox<SourceState<? extends RealType<?>, ?>> comboBox =

258 new ComboBox<>(choices);

259 alert.getDialogPane().setContent(comboBox);

260 final Optional<ButtonType> bt = alert.showAndWait();

261 if (bt.filter(ButtonType.OK::equals).isPresent() && comboBox.getValue() !=

null) {

262 final SourceState<? extends RealType<?>, ?> raw = comboBox.getValue();

263 final int nDim = raw.getDataSource().getDataSource(0, 0).numDimensions();

264 final FeatureSourceState[] gradients = IntStream

265 .range(0, nDim)

266 .mapToObj(dim -> new GradientFeature(dim))

267 .map(feat -> new FeatureSourceState(

268 feat,

269 raw.nameProperty().getName() + "-gradient", directory, raw

))

270 .toArray(FeatureSourceState[]::new);

271 final FeatureSourceState magnitude = new FeatureSourceState(

272 new MagnitudeFeature(),

273 raw.nameProperty().getName() + "-gradient-magnitude",

274 directory,

275 gradients);

276 gradients[0]

277 .converter()

278 .setColor(Colors.toARGBType("#ff0000"));

279 gradients[1]

280 .converter()

281 .setColor(Colors.toARGBType("#00ff00"));

282 gradients[2]

283 .converter()

284 .setColor(Colors.toARGBType("#0000ff"));

285 Stream.of(gradients).forEach(pbv::addState);

286 Stream.of(magnitude).forEach(pbv::addState);

287 }

288 };

289 }

290 }

291
292 @Override

293 public void onAdd(PainteraBaseView paintera) {
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294 InvalidationListener reqRep = obs -> paintera

295 .orthogonalViews()

296 .requestRepaint();

297 converter().minProperty().addListener(reqRep);

298 converter().maxProperty().addListener(reqRep);

299 converter().colorProperty().addListener(reqRep);

300 converter().alphaProperty().addListener(reqRep);

301 }

302
303 @Plugin(type = StatefulSerializer.SerializerAndDeserializer.class)

304 public static class SerializationFactory implements

305 StatefulSerializer.SerializerAndDeserializer<

306 FeatureSourceState,

307 Deserializer,

308 Serializer> {

309
310 @Override

311 public Deserializer createDeserializer(

312 StatefulSerializer.Arguments arguments,

313 Supplier<String> projectDirectory,

314 IntFunction<SourceState<?, ?>> dependencyFromIndex) {

315 return new Deserializer(

316 dependencyFromIndex,

317 projectDirectory.get());

318 }

319
320 @Override

321 public Serializer createSerializer(

322 Supplier<String> projectDirectory,

323 ToIntFunction<SourceState<?, ?>> stateToIndex) {

324 return new Serializer(stateToIndex);

325 }

326
327 @Override

328 public Class<FeatureSourceState> getTargetClass() {

329 return FeatureSourceState.class;

330 }

331 }

332
333 private static class Serializer implements JsonSerializer<FeatureSourceState> {

334
335 private final ToIntFunction<SourceState<?, ?>> sourceToIndex;

336
337 private Serializer(final ToIntFunction<SourceState<?, ?>> sourceToIndex) {

338 this.sourceToIndex = sourceToIndex;

339 }

340
341 @Override

342 public JsonElement serialize(

343 FeatureSourceState src,

344 Type typeOfSrc,

345 JsonSerializationContext context) {

346 final JsonObject map = new JsonObject();

347 map.add("composite", serializeWithClassInfo(

348 src.compositeProperty().get(),

349 context));

350 map.add("converter", serializeWithClassInfo(

351 src.converter(),

352 context));

353 map.add("feature", serializeWithClassInfo(

354 src.feature,

355 context));

356 map.add(INTERPOLATION_KEY, context.serialize(

357 src.interpolationProperty().get(),

358 Interpolation.class));

359 map.addProperty(
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360 IS_VISIBLE_KEY,

361 src.isVisibleProperty().get());

362 map.addProperty(NAME_KEY, src.nameProperty().get());

363 map.add(DEPENDS_ON_KEY, context.serialize(Stream

364 .of(src.dependsOn())

365 .mapToInt(sourceToIndex)

366 .toArray()));

367 return map;

368 }

369 }

370
371 private static class Deserializer implements JsonDeserializer<FeatureSourceState> {

372 private final IntFunction<SourceState<?, ?>> dependencyFromIndex;

373
374 private final String cacheDir;

375
376 private Deserializer(

377 final IntFunction<SourceState<?, ?>> dependencyFromIndex,

378 final String cacheDir) {

379 this.dependencyFromIndex = dependencyFromIndex;

380 this.cacheDir = cacheDir;

381 }

382
383 @Override

384 public FeatureSourceState deserialize(

385 JsonElement json,

386 Type typeOfT,

387 JsonDeserializationContext context) throws JsonParseException {

388 final JsonObject map = json.getAsJsonObject();

389 try {

390 final SourceState<? extends RealType<?>, ?>[] dependsOn =

391 IntStream

392 .of(context.deserialize(map.get(DEPENDS_ON_KEY), int[].class))

393 .mapToObj(dependencyFromIndex)

394 .toArray(SourceState[]::new);

395 if (Stream.of(dependsOn).anyMatch(Objects::isNull))

396 return null;

397 final FeatureSourceState fs = new FeatureSourceState(

398 deserializeFromClassInfo(

399 map.getAsJsonObject("feature"),

400 context),

401 map.get(NAME_KEY).getAsString(),

402 cacheDir,

403 dependsOn);

404 final ARGBColorConverter<VolatileDoubleType> converter =

405 deserializeFromClassInfo(

406 map.getAsJsonObject("converter"),

407 context);

408 fs.converter().setColor(converter.getColor());

409 fs.converter().setMin(converter.getMin());

410 fs.converter().setMax(converter.getMax());

411 fs.converter().alphaProperty().set(converter.alphaProperty().get());

412 fs.compositeProperty().set(deserializeFromClassInfo(

413 map.getAsJsonObject("composite"),

414 context));

415 fs.interpolationProperty().set(context.deserialize(

416 map.get(INTERPOLATION_KEY),

417 Interpolation.class));

418 fs.isVisibleProperty().set(map.get(IS_VISIBLE_KEY).getAsBoolean());

419 return fs;

420 } catch (ClassNotFoundException e) {

421 throw new JsonParseException(e);

422 }

423 }

424 }

425 }
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Paintera can be executed with this extension simply by installing the project into
the local maven repository

1 mvn clean install

and adding the project as additional endpoint to the Paintera command:
1 paintera \

2 --additional-endpoints \

3 my.group:my.artifact:0.1.0-SNAPSHOT \

4 --

The installation step can be skipped if an extension is available through remote
maven repositories.
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