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Abstract

Various modeling and simulations have been done to study the organization of chro-
mosomes under different circumstance and for different purposes. In this thesis, we
would first study the influence of bending rigidity and spatial confinement on the
organization of the chromatin. More concretely, the effect of heterogeneity and the
definition of contacts will be addressed. We find that the definition of a contact does
not change the asymptotic behavior of the contact probability. The heterogeneity of
bending rigidity is shown to render the chain more flexible by comparing the persis-
tent length and the contact probability of homogeneous and heterogeneous chains.
In addition, we simulate semiflexible chains in rectangular confinements with dif-
ferent aspect ratios. An oscillation in the contact probability and the orientational
correlation function is found due to the spiraling of polymer when the box size is
small enough.

The entanglement of chains is another important aspect when studying chro-
matins. The processes of disentanglement of two flexible chains are studied using
the Monte Carlo simulation. Specifically, several measurements such as the inter-
contact of chains, dynamic structure factor are analyzed in the process. When only
the excluded volume interaction exists in the system, the average time required for
segregation is barely influenced by the initial configurations of the two chains ac-
cording to our results. However, the intertwinement of chains indeed could impede
the segregation at a small time scale. The number of contacts inside a self-avoiding
chain is also analyzed. It is found that the total number N, grows linearly with the
length of a free chain, while in cubic confinement it grows quadratically. The distri-
bution function of contacts number between two halves N.(AB) shows a power-law
decay behavior and then an exponential decay for a free chain. In confinement, the
function has a maximum. As the chain becomes longer, the percentage of inter-half
contacts among the total contacts has a power-law decay behavior with an exponent
close to -1, which supports that the number of contacts between two halves is finite
even when the chain is infinitely long.

Finally, we studied the fractality and the topology in the self-avoiding walks.
Specifically, we calculate the fractal dimension and growth rates of the Betti numbers
of the system. These growth rates can be viewed as a topological signature for
different systems. The intra-contacts of the self-avoiding walk is a subset of the
original walk, and we find that this subset may have a slight multifractal property.
In addition, the topological exponents are also different from the self-avoiding walk.
Further, each contact gives rise to the formation of a loop. To elucidate how these
loops influence the structure of the self-avoiding walk, we delete the loops in a similar
way to the loop-erased random walk, thus producing a new walk: loop-deleted
self-avoiding walk (LDSAW). The critical exponent of LDSAW is approximated by



studying the scaling behavior of mean end-to-end distance, and the dependence
of the mean length of LDSAW on the length of the original self-avoiding walk.
Afterward, the fractal dimension and growth rates of Betti numbers of this LDSAW
are calculated. The same calculations are also performed on the projection and
random subsets of self-avoiding walks.



Zusammenfassung

Verschiedene Modellierung und Simulationen wurden durchgefiihrt, um die Organ-
isation von Chromosomen unter verschiedenen Umstdnden zu untersuchen und z
verschiedene Zwecke. Im In dieser Arbeit untersuchen wir zunéchst den Einfluss
der Biegesteifigkeit und der rdumlichen Begrenzung auf die Organisation von das
Chromatin. Konkreter wird auf den Effekt der Heterogenitidt und die Definition
von Kontakten eingegangen. Wir stellen fest, dass die Definition eines Kontakts
das asymptotische Verhalten der Kontaktwahrscheinlichkeit nicht verdndert. Die
Heterogenitat der Biegesteifigkeit macht die Kette flexibler, indem die Dauerliange
und die Kontaktwahrscheinlichkeit von homogenen und heterogenen Ketten ver-
glichen werden. Dariiber hinaus simulieren wir semiflexible Ketten in rechteckigen
Begrenzungen mit unterschiedlichen Aspektverhéltnissen. Eine Schwingung in die
Kontaktwahrscheinlichkeit und die Orientierungskorrelationsfunktion ist gefunden
aufgrund der Spiralbildung des Polymers, wenn die Schachtelgréfle klein genug ist.

Die Verflechtung von Ketten ist ein weiterer wichtiger Aspekt bei der Unter-
suchung von Chromatinen. Die Entflechtungsprozesse zweier flexibler Ketten werden
mit der Monte-Carlo-Simulation untersucht. Insbesondere mehrere Messungen wie
die Dabei werden die Wechselwirkungen von Ketten und dynamischer Strukturfak-
tor analysiert. Wenn nur die ausgeschlossene Volumenwechselwirkung im System
vorhanden ist, wird die durchschnittliche Zeit, die fiir die Entmischung benotigt
wird, nach unseren Ergebnissen kaum von den anfénglichen Konfigurationen der
beiden Ketten beeinflusst. Die Verflechtung von Ketten konnte jedoch tatséchlich
die Trennung in einem kleinen Zeitmafstab behindern. Die Anzahl der Kontakte
innerhalb einer selbstvermeidenden Kette wird ebenfalls analysiert. Es zeigt sich,
dass die Gesamtzahl N, linear mit der Lénge von wachst eine freie Kette, wiahrend
sie in kubischem Einschluss quadratisch wéchst. Die Verteilungsfunktion der Kon-
taktnummer zwischen zwei Halften zeigt N.(AB) ein Potenzgesetz-Zerfallsverhalten
und dann einen exponentiellen Zerfall fiir eine freie Kette. In Haft, Die Funktion
hat ein Maximum. Wenn die Kette langer wird, wird der Prozentsatz der Kontakte
zwischen den Halften unter den Gesamtkontakten angegeben hat ein Potenzgesetz-
Abklingverhalten mit einem Exponenten nahe -1, was unterstiitzt, dass die Anzahl
der Kontakte zwischen zwei Hélften ist endlich, auch wenn die Kette unendlich lang
ist.

Schliefllich haben wir die Fraktalitat und die Topologie in den selbstvermeidenden
Wanderungen untersucht. Insbesondere berechnen wir die fraktale Dimension und
die Wachstumsraten der Betti-Zahlen des Systems. Diese Wachstumsraten kénnen
als topologische Signatur fiir angesehen werden verschiedene Systeme. Die Intra-
Kontakte des selbstvermeidenden Gehens sind eine Untergruppe des urspriinglichen
Gehens, und wir stellen fest, dass diese Untergruppe eine leichte multifraktale Eigen-



schaft haben kann. Dariiber hinaus unterscheiden sich auch die topologischen Ex-
ponenten von der selbstvermeidenden Wanderung. Ferner fithrt jeder Kontakt zur
Bildung von a Schleife. Um herauszufinden, wie diese Schleifen die Struktur des
selbstvermeidenden Gehens beeinflussen, 16schen wir die Schleifen in ahnlicher Weise
Weg zum geloschten Random Walk, wodurch ein neuer Walk entsteht: Loop-Deleted
Self-Avoiding Walk (LDSAW). Das kritische Der Exponent von LDSAW wird durch
Untersuchung des Skalierungsverhaltens des mittleren End-to-End-Abstands und
der Abhéngigkeit von approximiert Die mittlere Lénge von LDSAW auf der Léinge
des urspriinglichen, sich selbst vermeidenden Spaziergangs. Danach die fraktale
Dimension und das Wachstum Raten von Betti-Nummern dieser LDSAW werden
berechnet. Die gleichen Berechnungen werden auch fiir die Projektion und durchge-
fithrt zuféllige Untergruppen von selbstvermeidenden Spaziergéngen.
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Aims and Scope of this Thesis

1.1 Introduction

DNA is one of the most important molecules in living systems in that it carries
the genetic information which controls the processes of functioning, growth, and
reproduction in these systems. During these processes, DNA undergoes many tran-
sitions between different forms of organization, where many other molecules such as
the RNAs and proteins may be involved. Although biologists have gained plentiful
knowledge about their organization through experiments, the study of the under-
lying physical mechanism is still the focus of many research. The development of
biophysics has integrated numerous physics concepts, theories, and techniques, es-
pecially those from statistical physics, into biology, and has seen great success in
the illustration of many biological phenomena.

In eukaryotic cells, the native state of DNA is double-stranded and supercoiled.
Moreover, it is usually combined with special proteins, forming a complex called
chromatin. These special proteins are histones, which are usually positively charged,
and have an electrostatic attraction to certain sites of DNA that has positive charges.
The interactions between DNA and histones are also influenced by many other fac-
tors such as the salinity of the solvent [1], some remodeling enzymes [2]. The pattern
of the DNA-histone binding is depicted by nucleosome, which is the repeating units
of chromatin, and composed of a DNA segment about 146 base pairs and eight
histone proteins [3,4]. These nucleosomes and the linker DNA connecting them

15



16 1. Aims and Scope of this Thesis

are generally described by the “beads on a string” model. These complex reorga-
nizations are of important biological significance. For example, the supercoiling of
DNA reduces the spatial distance of operators that are bound on DNA strands and
are separated by a large contour distance, which would assist the gene regulation
process. Also, the formation of chromatin has many advantages: it organizes DNA
into a more compact state, facilitates the mitosis and meiosis processes, prevents
possible DNA damages, controls the expression and replication of genes.

1
At the simplest level, chramatin
is a double-stranded helical
structure of DMA.

aY V. lwuﬂ&l/ﬂ}'uﬂ“ ‘t;
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v N eight histone proteins around
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H1 histone of a nucleosome plus the
5 ‘ H1 histone.
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Figure 1.1: The organization of chromatin in different length scales. The figure is
from [4].
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The organization of chromatin in the nucleus is an important subject in biology.
In a human cell, the total length of DNA is about 1 meter. The supercoiling of
DNA and combining with histones result in chromatin of extended length about
14 centimeters. Since the diameter of the nucleus is only around 10 microns, the
chromatin must adopt highly compacted structures. In molecular biology various
techniques are used to analyze the organization of chromatin, such as the chromatin
immunoprecipitation (ChIP) [5] and the chromosome conformation capture (3C)
techniques [6]. It is found that the formation of loops is one of the most important
features in the organization of chromatin. As an effective way to pack the chromatin
in a narrow space, loops exist in many length scales [7]. What’s more, they are
closely related to the regulation of genes in that loops can lead to the physical
proximity of genes with large genomic distance [8,9], which facilitates the expression
or repression of certain genes. Many experimental techniques including the ChIP and
3C methods can detect these loops by examining the spatially proximal chromatin
segments [10,11]. Several coarse-grained models have also been developed to describe
the formation of loops, such as the random loop model [12], the dynamic loop
model [13] and the fractal globular model [14,15]. The validities of these models are
usually verified by comparison of some important measurements with experimental
results. These measurements include the scaling behavior of the physical distance
with relation to the genomic distance of chromatin sites, the distribution of loop
size and so on. Successful models provide an insight into the mechanism of the loop
formation. For example, the dynamic loop model attributes the loop formation to
the diffusion motion of chromatin fibers. Another important feature of chromatin
organization is the existence of the topologically associating domains (TADs) [16]. A
topologically associating domain is defined as a compartment in which the chromatin
segments have more interaction than those segments outside the compartment. An
important difference of TAD with other kinds of self-interacting regions such as sub-
TADs, loops is that TADs have similar domain boundaries in different cell types
in certain organism [17]. It has been reported that TADs are important in many
genetic activities. One example is that genes within the same TAD have correlated
expression profiles [18,19]. On the other side, disrupting the TADs could lead
to unexpected contact between genes and thus may cause misregulation and some
disease in human and mice [20]. The mechanism of TAD formation is not fully
understood yet, but many proteins are believed to be involved in the TAD formation
process, two of which are the protein CTCF [21] and the cohesin complex [22].
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1.2 Scope of This Thesis

In this thesis, we address three aspects in the modeling of chromatin organization.
Firstly we focus on the effect of bending rigidity as well as its heterogeneity on the
polymers. Further, its competing effect with the confinement is also discussed. We
found that heterogeneity makes the polymer more flexible on average. Next, we
study the self-entanglement of a single chain and entanglement of two chains, in
which the behavior of the number of intra-and inter-contact is analyzed. Finally, we
want to find out the geometrical and topological features of the spatial distribution
of contacts by estimating the fractal dimension and one kind of topological index:
growth rates of Betti numbers. In addition, a new walk, the loop-deleted self-
avoiding walk, is introduced and analyzed.

Many factors can influence the organization of chromatin, one of the internal
factors are the intrinsic stiffness of the chromatin. The rigidity of chromatin has
several origins. One origin is the stiffness of DNA. It is reported that the base
pair stacking effects contributes to the rigidity of DNA strands [23]. Moreover,
the interaction between nucleosomes via histone tails is also important in providing
the rigidty [24]. There are some other factors that may influence the rigidity of
chromatin, such as the methylation of histones [25]. On the other side, chromatin
is usually heterogeneous as a result of the DNA sequence and the positioning of
nucleosomes [26], which implies that chromatin could have different stiffness along
the backbone. The modeling of the rigidity of chromatins has been intensively
studied [27-30], where various kinds of rigidity such as the bending rigidity, torsional
rigidity, and stretching rigidity are incorporated. Nonetheless, few studies have
discussed the heterogeneity of the stiffness. In light of this, we will investigate the
influence of this heterogeneity by studying the properties of a semiflexible chain with
a distribution of rigidity along the backbone.

Another factor that is of vital importance to the organization of chromatin is
the geometrical constraint. The shape of these constraints varies, depending on not
only the species but also the scales of inspection. For eukaryotic cells, the nucleus
where chromatins reside in is spherical or oval, while bacterial chromosomes are
often assumed to be confined in a cylindrical volume. When examining specific
chromatin, the constraints imposed by other molecules may be irregular. The effect
of spatial confinement on the chromatin organization is an important topic and
has also gained persistent attention [31-33]. Furthermore, the competing effect of
stiffness, confinement, and entropy is also a crucial issue. Fritsche [34] and Ostermeir
[35] have studied the spatial organization of homogeneous stiff ring polymers in
rectangular and weak spherical confinement separately. Liu [36] investigated 2D
linear semi-flexible polymers in confined space. A semiflexible chain in nanochannel
was discussed in [37]. As a part of this thesis, we will study how the heterogeneity
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of stiffness and the change of confinement size would influence the organization of a
single chain.

The contacts of chromatins apparently play a key role in the accomplishment of
many biological functions. For instance, the gene expression is achieved after the
promoters and enhancers come into contact [22]. These contacts are also closely
related to the organization of chromatins and can be detected by previously men-
tioned techniques [38]. Usually by analyzing the Hi-C data, one can obtain some
interesting properties such as the contact probability [39-41] and chromosomal con-
tact networks [42,43]. Note that not all contacts correspond to certain physical or
biological functions since they can be simply driven by stochastic process [44]. In
the modeling of chromatins, the contact probability is also an important quantity to
be compared with experimental results [45]. Some studies discussed the number of
contacts. In [15,46] it shows that in the fractal globule model the number of contacts
of a certain region with the rest is linear with its volume, rather than the surface
area. In addition, the contacts number of two regions is proportional to the prod-
uct of their volumes. This behavior is related to the scaling of contact probability.
Besides, the number of contacts for a chain without constraints is also studied in
the context of the self-avoiding walk. It shows that the average number of contacts
has an asymptotic behavior as the length of the walk N goes to infinity [47]. Baiesi
et. al showed that the contact number of two halves of a self-avoiding walk is finite
even if the walk is infinitely long [48]. We would further study the dependence of the
contact number on the length of segments and the size of geometrical constraints.

The segregation of chromosome is a significant phenomenon in living systems.
In eukaryotic cells, two sister chromatids will separate from each other in order to
realize the DNA replication or to create haploid cells during the mitotic and mei-
otic processes. These kinds of segregation are facilitated by cohesin [49] and many
other factors [50,51]. In prokaryotes, the chromosome segregation is also controlled
by several mechanisms. For instance, it is found that several genes are involved in
the segregation [52], while [53] states that active mitotic-like machinery contributes
to the segregation of bacterial chromosomes. Aside from all these external factors,
entropy and the structure of chromosomes are also important inducements to the
chromosomal segregation under confinement [31,54,55]. The dynamics of the segre-
gation process has also been studied by molecular dynamics simulation and Monte
Carlo simulation [56,57]. We further want to study how other factors may influence
the segregation, such as the stiffness and the entanglement of chains. Further, we
are also interested in how a linear chain is organized if we view it as two or more
connected segments.

While most studies concentrate on the probability and number of contact of
polymers, few foci are placed on the distribution of the contacts in physical space.
It is obvious that the set of contact points a subset of the polymers, but whether this
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subset has different distribution properties is an open question. Since the contacts
cannot be viewed as connected like a chain, we turn to other quantities that may
describe the structure of the contact points. Omne is the fractal dimension, and
another one called growth rate of Betti number comes from a topological theory,
i.e. the persistent homology. This theory is attracting considerable interest in many
fields [58,59] due to its powerful ability to characterize the topological features of
an object [60]. In particular, it can also be applied in the analysis of biomolecule
structures including proteins [61] and chromatins [62]. In addition, following the
scheme of loop-erased random walk, we define a new walk: loop-deleted self-avoiding
walk. We seek to find for this new walk what the values of critical exponent, fractal
dimension and the growth rate of Betti number are.

1.3 Structure of this Thesis

In chapter 2 we introduce the modeling and simulation method in polymer studies.
First, the principles of Monte Carlo simulation are introduced, where the Metropolis-
Hastings sampling method is stressed. The estimation of errors when applying the
MC simulation is also presented. Then some basic polymer models, i.e. ideal chain,
self-avoiding chain, and worm-like chain are discussed. The main established results
of these models are also exhibited. Typically, the simulation techniques of the self-
avoiding walks are given since this is an important subject in simulations. In the
last of this chapter, we review three intensively studied topics of the chain systems:
chains in geometrical constraints, the topology in polymers and the contacts of poly-
mers. These three topics are also closely related to the above-mentioned questions
that will be discussed this thesis.

In chapter 3 we explore two factors that could influence the organization of chro-
matin: the bending rigidity and confinement. For the first factor, we additionally
address the effect of heterogeneity of the polymer. The results show that heteroge-
neous polymers are more flexible than homogeneous polymers assuming that they
have the same mean value of bending parameter. Whether the asymptotic behavior
of contact probability depends on the definition of contact is also analyzed. Single
semiflexible chain systems in rectangular boxes with various sizes and aspect ra-
tios are simulated. The conformations are analyzed by some properties such as the
contact probability, orientational correlation function, and an order parameter.

We in chapter 4 concentrate on the two topics: the self-contact and self-entanglement
of a linear chain in free space and confinement, the disentanglement of two chains in
confinement. The dependence of the contact of two halves of a chain on the length
scale under inspection is investigated. It is reasonable that geometrical constraints
would impose more contact inside a chain. We want to analyze whether there are
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different kind of dependence when the constraints are imposed. Particularly, we
study the limit when the total space is occupied by the chain, i.e. the Hamiltonian
path. In addition, the packaging of the two halves in confinement is also studied. It
has been revealed that two flexible chains tend to be segregated under confinement.
The dynamic process of this segregation is inspected by tracking some measurement
of the segregation, such as the dynamic structure factor, the distance of mass centers
and the crossing number of the chain. Further, we also study possible factors that
may influence the segregation process.

The chapter 5 deals with some geometrical and topological features of the dis-
tribution of contacts inside a chain. Specifically, we calculate the fractal dimension
and growth rates of the Betti numbers of the system. In the simplest case, we con-
sider the chain as a self-avoiding walk without any other interaction. It is obvious
that the set of contacts is a subset of the original walk, and the question arises
as to whether this subset has different geometrical or topological features with the
self-avoiding walk. Further, each contact gives rise to the formation of a loop. To
elucidate how these loops influence the structure of the self-avoiding walk, we delete
the loops in a similar way to the loop-erased random walk, thus producing a new
walk: loop-deleted self-avoiding walk (LDSAW). The critical exponent of LDSAW is
approximated by studying the scaling behavior of mean end-to-end distance, and the
dependence of the mean length of LDSAW on the length of the original self-avoiding
walk. Afterward, the fractal dimension and growth rates of Betti numbers of this
LDSAW are calculated. The same calculations are also performed on the projection
and random subsets of self-avoiding walks.

In chapter 6 we give a summary of our work. Also, we discuss the possible
directions for further studies.
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The Monte Carlo Method and
Polymer Models

Chapter Summary

This chapter discusses the modeling and simulation method in polymer studies.
First, the principles of Monte Carlo simulation are introduced, where the Metropolis-
Hastings sampling method is stressed. The estimation of errors when applying the
MC simulation is also presented. Next, we discuss some basic polymer models, i.e.
ideal chain, self-avoiding chain, and worm-like chain. The main established results
of these models are also exhibited. Typically, the simulation techniques of the self-
avoiding walks are given. Finally, we review three intensively studied topics of the
chain systems: chains in geometrical constraints, the topology in polymers and the
contacts of polymers. These three topics are also closely related to the results in the
following chapters.

23



24 2. The Monte Carlo Method and Polymer Models

2.1 Simulation Method

The molecular dynamics (MD) simulation and Monte Carlo (MC) simulation are
two widely used methods in the numerical study of biological systems. The basic
principle of MD simulation is to capture the evolution of the system state by solving
the dynamic equations of the system numerically. In classical mechanics, the sys-
tem state means the coordinates, velocities of every particle in the system and the
dynamic equations are the Newton’s equations of motion, where the forces include
many kinds of interactions such as the electrostatic and van der Waals forces. To
improve the accuracy of the simulation, in the hybrid QM /MM [63] approach some
parts of the system are handled in a quantum mechanics way by introducing the QM
energy. The MD simulation provides a way to understand the dynamics of a complex
many-body system and thus is prevailing in many areas. Typically, it is a powerful
tool to investigate the structure of proteins [64,65] and other biomolecules [66]. The
MC simulation, on the other hand, emphasizes on the states of the system in ther-
modynamic equilibrium and studies its statistical properties. Most of the results in
this thesis are obtained by the MC simulation. In this section, the principles of the
MC simulation are introduced.

2.1.1 The Monte Carlo Method

Suppose the system under study has a phase space X which is a collection of the
system state x: X = {z|r € X}. Let f(x) be the probability that the system is in
state . Then the expectation of a measurement M (z) defined on the phase space
X is:

(M) = [ M(@)f(2)da (2.1

The Monte Carlo method to calculate (M) numerically is to average it over sufficient
samples in X: x;. If x; is uniformly distributed in X, then

N

(M) = M(x;) f(2:), (2.2)

i=1

where N is the number of samples. This kind of sampling is simple random sampling.
In most cases the simple sampling is quite inefficient, especially for high-dimensional
systems, it is possible that most samples contribute to a small part of the summation,
therefore one needs quite large amount of samples to estimate (M). An alternative

way is to generate the samples x; according to the probability distribution function
f(x), thus,

(M) = 5 3 M(z). (2.3
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If f(x) is simple enough, one can generate such samples using the inverse transform
sampling. Unfortunately, f(z) is too complex or implicit in many practical problems.
The importance sampling suggests generating samples from a different distribution
g(x) when sampling from f(x) is unfeasible. For each sample x; from g(z), the
importance weight is w; = f(z;)/g(z;), the (M) is estimated by:

(2.4)

Apparently, the choice of g(x) can influence the accuracy of (M), given a finite
samples. To minimize the variance of the estimation, the best choice of g(x) is
proportional to M (z)f(z) [67].

When dealing with a high-dimensional system in statistical physics, the Metropo-
lis algorithm is often adopted to obtain samples from the probability distribution
function f(x) of the system. This algorithm uses the Markov chain to generate lots
of samples with the strategy of accepting and rejecting until the distribution of these
samples approximates f(x), which is called the equilibrium state. The steps of the
Metropolis algorithm are as follows:

1. Give an arbitrary initial sample xy. The choice of this initial sample can influ-
ence the speed to reach the equilibrium state, but usually this computational
cost is negligible compared to that of generating sufficient independent samples
after reaching the equilibrium.

2. Generate a new sample 2’ from the current sample x; = x and a proposal
distribution g(2'|x).

3. Accept this new sample x;,; = 2’ with probability

o F@eele)
Az’ x) = (1, F@)g(@ ) ) , (2.5)

Otherwise x;,1 = x.
4. Repeat step 2 and 3.

Finally we get n samples {xq, 1, - ,z,_1}. The acceptance probability A(z’, z) is
derived so that the process observes the principle of detailed balance, which means
that the process should be reversible at equilibrium. Let w(z’|z) be the transition
probability from state z to x’, the detailed balance is:

w(a'|z) f(z) = wlzla’) f (). (2.6)
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Since w(z'|z) = g(2'|x)A(2, x), we have

Al x)  f(2) g(a]a)
A(z,2)  f(z) g(a'|z)

It can be easily proved that the form of A(z/,x) in Equation 2.5 satisfies the above
condition.

In statistical mechanics, for a canonical ensemble, the probability that the system
is under a state x is given by:

(2.7)

(@) = Le—E@/ksT (2.8)
Z

where F(z) is the energy, T is the temperature of the system, kp is the Boltz-

mann constant, Z = Y, e P@/ksT ig the canonical partition function. According

to the Metropolis algorithm described above, if the proposal distribution g(z'|z) is

symmetric: g(2'|z) = g(x|2’), then the probability of accepting a new state 2’ is

determined by the energy difference AFE:

A(z', ) = min(1,e"2F), AE = E(2) — E(). (2.9)

If the energy of new state 2’ is lower than the state z (AE < 0), 2’ is always
accepted, otherwise it is accepted with probability e=2F.

The equation 2.6 states an important principle of this Markov chain Monte Carlo
method: the detailed balance. Another important principle is the ergodicity, which
means the scheme of generating new sample should be guaranteed so that as the
number of samples goes to infinite, the distribution of samples converges to f(x),
regardless of the initial sample. Only when these two principles are met can one get
a trustworthy estimation of the system if we put aside the statistical errors.

2.1.2 The Statistical Errors of MC samples

Recall that the Metropolis algorithm starts from an arbitrary initial state, and the
Markov process converges to the distribution f(z) only after long time of iterations.
This means that the samples before the system reaches the equilibrium state has a
different distribution from f(x), therefore they should be discarded when calculating
the expectation of certain measurement (M). Actually the bias of (M) resulting from
these initial conformation has the order 1/N, where N is the number of samples to
calculate (M), which is much smaller than the statistical error with the order 1/v/N.

Another important source of the bias of (M) is the autocorrelation of the samples
generated by the Metropolis algorithm. If 21, 2, ..., )y are successive samples of the
process after discarding the initial samples, and M; = M (x;), t = 1,2,..., N are
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the values of the measurement on these samples, the autocorrelation function of the
measurement M is

C(t) = ((M; — (M;)) (M — (M) |ji—ji=e = (MiM;)]ji—j— — (M), (2.10)
For large t, the asymptotic behavior of C(t) can be described by:
t
C(t) ~ exp (— > , t— o0. (2.11)
7—exp

Texp il the above equation is called the exponential autocorrelation time. The sta-
tistical error of the expectation (M) is

o) = (| 2308 - <M>>r>. (212)

After some simplification [68], the error can be rewritten by:

a%m@>:$ﬂ%M)Q+2§§(y_;)gg». (2.13)

Define the integrated autocorrelation time 7, as:

N-1

t\ C(t)
Tt = 1—). (2.14)

' Z}( NJ C(0)

Thus, the error is
2
M

o2 ((M)) = (1 + 27iny) - = EV ) (2.15)
The last term # is the statistical error when the samples x1, zs, ..., xy are inde-

pendent, therefore the autocorrelation between the samples contributes to a factor
of 27;. This indicates one should use the samples at an interval of at least 27,; to
calculate the expectation (M). Suppose the chosen interval is denoted as At, then

the error of the estimation is (1 + 27,/ At)%.

Generally, the two autocorrelation times 7., and 7, mentioned above are not
equal. They characterize two processes of the MC simulation. The relaxation pro-
cess from the initial state to equilibrium states is characterized by Teyp, While Tin
influences the statistical errors of the measurement by sampling in the equilibrium
states. To reduce the bias caused by the relaxation process, it is safe to discard the
first 207.x, samples before estimating (M) [69]. Nevertheless, one does not need to
calculate both autocorrelation times since they are of the same order. The compu-
tation of 7y, is not exactly guided by the Equation 2.14 considering that for long
time C'(t) contains more noise than the correlation information. A truncation of the
summation needs to be implemented. Detailed discussion can be found in [70].
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2.2 Polymer Models

Before performing any simulation, one should establish a well-defined model of the
molecules under study. Suppose one wants to study the organization of chromatin
or the folding of proteins, the most direct model is the one including all of the
atoms, called all-atom model, and the simulation is all-atom simulation. Usually
for small proteins, all-atom simulation is practical and reliable. However, most
macromolecules in living systems are too large to perform all-atom simulations due
to the restriction of computer resources. In thus cases, one can instead use the
coarse-grained representation of the original system. In a coarse-grained model,
a collection of atoms in the molecule are replaced by a monomer, resulting in a
simplified molecule. The key in this coarse-graining process is to keep the most
important characters of the system. The ideal chain and self-avoiding walk (SAW)
are two simplest coarse-grained models that can describe molecules.

2.2.1 The ldeal Chain

Consider a chain with N 4+ 1 monomers connected by N segments with fixed length
[, if each segment can point in any direction in space with equal probability, without
any dependence on the direction of other segments and the position of monomers,
then this chain is an ideal chain or freely-jointed chain. Because of the arbitrariness
of each segment, two monomers have the chance to occupy the same position in
space. If we denote the N segments by 7;(i = 1,2,..., N) (Figure 2.1), then the
end-to-end vector is R, = SN LT



2.2. Polymer Models 29

Figure 2.1: The ideal chain. The image is from wikipedia.

Since 7; is randomly oriented, (R.) = >N, (73) = 0. On the other side, the mean

square end-to-end distance (R?) is not zero:

mbz«gﬁf>=i@%+iﬁm> (2.16)

i=1 i#£j

Because the directions of segments are totally independent from each other, the last
term is zero. Therefore,

(R = 372 = NE = L, (2.17)

i=1

where L = NI is the total length of the walk. The average end-to-end distance
(R.) ~ (R2)Y/? = /NI is much shorter than the total contour length L = NI. The
distribution of R, is a Gaussian function. This distance is an important measure
of the size of the chain, but it is not sufficient to describe the distribution of the
monomers and the volume they occupy. One quantity for this is the gyration tensor

: 1 N & pm) pm)ypm) ()
Smn:2(N+1)QZZ(Ri _Rj )(Rz _Rj) (2'18)

i=0 j=0
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where m, n are the indexes of the coordinate of each monomer R; If the chain resides
in 3D space, the gyration tensor S = (S,,,) is a 3 x 3 matrix. By diagonalizing the
gyration tensor, one gets three eigenvalues A,, Ay, A;, called the principle moments,
where are nonnegative, and represent the distribution spans of these monomers along
three principle axes. The radius of gyration R, is defined by R2 Az Ay + A, and

can be rewritten as:
R? = § j§ : 2.19
g N+ 1 AN +1)2 i=0i=0 ( )

which describes the overall size of the distribution of the monomers. Other quantities
that can depict the distribution are the asphericity b = X, — (A, +A,)/2, acylindricity
c = Ay — Ay, if the eigenvalues are ordered so that A\, < A, < ..
For the ideal chain, the average square radius of gyration is (RZ) = §NI* =
(Rz) The distribution of monomers for ideal chain is not symmetric in space, the
asymptotic ratio of its three average eigenvalues when N — ocois Ay : Ay : A, =1
2.7:12 [71].

Since the ideal chain model does not consider any interaction, it is not applicable
to most real polymer systems, where two monomers cannot occupy the same position
according to the excluded volume effect. However, under certain conditions, the
polymer systems can have some features of the ideal chain. One example is the
polymer in a theta solvent, where the temperature of the solvent is Ty so that the
interaction between polymer and solvent cancels the interaction between segments
for real polymer. Another example is the polymer melt, when many chains in the
system are heavily overlapped. In this case, at large length scale the excluded volume
effect is screened, therefore the chains behave like ideal chains [72].

The computational realization of ideal chain model is usually simplified into
lattice random walk. The arbitrary direction of each segment is instead actualized by
keeping moving in four directions for square lattice or eight directions for cubic lattice
with equal probability. One interesting topic of the random walk is its recurrence.
If the position of step ¢ is denoted as R;, define p as:

p=P{R;, = Ry for some i > 0}, (2.20)
then a random walk is called recurrent if p = 1. For one dimensional random walk,
P{R, = Ry} = p*(1 - p). (2.21)
Thus the average number of steps (k) when the random walk is recurrent is:
o p
=> kpp—1) = —. (2.22)
k=1 L=p

This means that one needs infinite steps to make sure that a random walk is recur-
rent.
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2.2.2 The Self-Avoiding Chain
The Excluded Volume Interaction

There are many kinds of interactions in real polymer system, one of which is the
excluded volume interaction. This kind of interaction corresponds to the hard sphere
potential, defined by:

d
Uy =42 "% (2.23)
0 T>d0,

where r is the distance between two monomers, and it cannot be smaller than d,
and when r > dy there is no interaction between monomers. Thus, in this hard
sphere model, each monomer can be represented by a hard sphere with diameter
dp. In 3D, the excluded volume of each monomer is eight times its own volume.
This model is a very rough simplification of the real system because it does not con-
sider the attraction of monomers. Other forms of inter-monomer potential include
the square-well potential, the Lennard-Jones potential and the Sutherland potential
which take into account the attraction part. Nonetheless, considering the computa-
tional efficiency, the hard sphere potential is acceptable to explore the properties of
many systems in MD and MC simulations.

The chain with this excluded volume effect is self-avoiding chain, which is ex-
panded compared with the ideal chain because of the non-overlapping of monomers.
Although the implementation of excluded volume seems simple, it leads to much
more complex properties of the chain. The mean square end-to-end distance thus
has a different asymptotic behavior. In the long chain limit N — oo, the self-
avoiding chain has:

(R%) ~ N*I2, N — oo. (2.24)

Various theories have been developed to study the asymptotic behavior of (R?). The
most well-known is the Flory theory where the critical exponent is approximated
as v = 3/5 for 3D self-avoiding chain. The renormalization group method gives
v = 0.588 [73]. Other theories and methods include the perturbation calculation
and mean field theory. Lots of Monte Carlo simulations of the self-avoiding chain
also provide similar results of v [74-76]. The same exponent holds for the mean
radius of gyration:

(R2) ~ N*I?, N — oo. (2.25)

For ideal chain, the asymptotic value of (RZ)/(R?) is 6, while for self-avoiding chain,
(R2)/(RZ) ~ 6.45 [77]. Also, the three principal moments of the gyration tensor
have another ratio when N — oo, A, : A\, : A\, =1:2.98: 14 [71].

—

The distribution of the end vector p(R., V) is not Gaussian function any more,
and has been studied both theoretically and numerically [78-84]. For R, much larger
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than the mean value, the probability distribution function is:

R\ 24 N
p(Re, N) ~ exp [—a (JA;) } , for R, > R.. (2.26)

e

For R, much smaller than the mean value, due to the excluded volume effect, the
function is approximated by:

R\ 02 N
p(Re, N) ~ <~e> , for R, < R.. (2.27)

(]

These two equations can be combined together, hence
R\ (Re ) 2.43
R, N)~ | = exp |—a| = , 2.28
)~ (F) e |- ( 229

e
where Rve is the mean end-to-end distance and Ee ~ NV,
Now we consider the average number of monomers n(r) of the chain within sphere
of radius r. From Equation 2.25 we should have (R;) ~ N”, therefore

n(r) ~ri/v. (2.29)

This implies that the fractal dimension of the self-avoiding chain is d = 1/v. The
fractality of self-avoiding chain is deduced in detail in [85,86].

n(r) can also be expressed by the pair distribution function g(r) which describes
the distribution of distances between monomers contained within sphere of radius
T

n(r) = /OT g(r)amrdr'. (2.30)

From this equation and the relation n(r) ~ r'/¥, we have g(r) ~ r0=3/v,

In experiments one often uses the neutron scattering to investigate the structure
of polymers [87,88]. The structure factor S(q) obtained from these experiments can
measure the spatial correlation of monomers. It is defined as follows:

5(0) = (0 > expliT- () (231)

=0 j=0

S(q) is the Fourier transformation of the pair distribution function:

N+1
S(q) = il /g e T, (2.32)
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where V is the average volume the chain occupies. Since g(r) ~ r3=3")/¥ the second
term in S(q) has the power law relation:
S(q) ~ g~ (2.33)

For the ideal chain, v = 0.5, S(q) ~ ¢~2, and for the self-avoiding chain, v = 0.588,
S(q) ~ a7

MC Simulation of the Self-Avoiding Chain

Compared with the ideal chain, the computer simulation of the self-avoiding chain
is much more complex. Similarly, the self-avoiding chain can be remodeled as self-
avoiding walk on lattice. The difference from lattice random walk is that each lattice
site should be occupied by only one monomer 2.2.

Figure 2.2: The random walk (a) and self-avoiding walk (b) on square lattice. The
figures are from [68].

By generating sufficient and independent conformations of the self-avoiding walk,
the asymptotic behaviors of the mean square end-to-end distance and many other
quantities could be obtained. Lots of algorithms based on the Monte Carlo simula-
tion have been developed to get samples of the self-avoiding walk [89,90]. Generally,
they are classified into two groups: static Monte Carlo methods and dynamic Monte
Carlo methods.

Static Monte Carlo Sampling Methods
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(1) The Simple Sampling Method. The most straightforward method is simple sam-
pling method, the idea of which is to generate lots of random walks, and discard
those that are not self-avoiding. This simple sampling method is not practical since
when N is large, most samples of the random walk are not self-avoiding. Specifically,
the probability that a N-step walk is self-avoiding is:

Ny_lzé\fff Nu—l

2N (2/2e)N’

where z = 4 for square lattice and z = 6 for cubic lattice, z.g < z — 1 is the effective
coordination number. As N gets larger, the probability decreases rapidly to zero,
meaning that it is very hard to find a self-avoiding walk. Actually the simple sam-
pling method can only produce samples of self-avoiding walk up to length 100.

N — oo, (2.34)

(2) The Rosenbluth Sampling and Pruned-Enriched Rosenbluth Method. One reason
for the inefficiency of simple sampling is that the whole walk is discarded once a new
step leads to overlapping. The Rosenbluth sampling method suggests that one can
continue the walk by discarding the overlapped step and reproducing a new step.
This operation would impose a bias towards the distribution of the self-avoiding
walks since each walk is not sampled with equal probability any more. This bias is
eliminated by assigning a weight wy, to each sample of walk z; generated by this
Rosenbluth sampling.

N
WnN, = H ag, (235)
k=1

where aj is the number of available choices for the k-th step. The corresponding
unnormalized probability for this sample z; is p; = 1/wy,. Any measurement A on
the self-avoiding walk can be estimated by:

_ XipiAlr) XAz /w,
> Di > 1wy, '

The performance of the Rosenbluth sampling is obviously better than the simple
sampling. Still, it can only sample the self-avoiding walk up to a few hundred steps
because there is high possibility that no choice is available for the new step when k
is large.

To simulate longer walks, the Pruned-Enriched Rosenbluth method (PERM) was
proposed by Grassberger [91]. The essence of the PERM algorithm is to increase
the samples of walk with high weight and to reduce the samples with low weight.
To avoid the bias of sampling, the related weights have to be adjusted while these
increasing and reducing are carried out. First one needs to define what are high
weight and low weight by two thresholds w” and w! at step m. Suppose that when

(4) (2.36)
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the walk is grown to length m, the weight w,, = I}, ax is larger than the predefined
high threshold w” , this m step walk is enriched by adding s copies of it. The weight
of each copy is adjusted to 2% to eliminate the concomitant bias. Afterwards each
copy of the walk continues to grow till length n following the same procedure of
Rosenbluth sampling. On the other side, if the weight w,, is smaller than the low
threshold w! , this walk is discarded with probability ¢, and kept with probability
1 — q. The weight is adjusted to me before the m-step walk continues to grow if it
is kept.

There are several parameters to be determined in the PERM algorithm, namely,
wh w! s and g. Typically, s is set to 1 and ¢ is set to 1/2. The values of w” , w!
are usually chosen to be roughly proportional to the partition function at step m:

wh = C"Z,,, wh = C'Z,,. (2.37)

m

Z,, is an approximation of the partition function. It is tested that a ratio of C"/C! ~
10 can give good results. The first sample is generated with w!, = 0 and a very
large w” , corresponding to the Rosenbluth sampling method.

The Pruned-Enriched Rosenbluth method is high-efficient, it can simulate ¢ poly-
mers up to length 1 000 000. Further, various variants of PERM have been developed
to study different kinds of systems, such as the Multicanonical PERM [92], the flat-
histogram PERM [93] and the dynamic PERM [94].

Dynamic Monte Carlo Sampling Methods

In section 2.1.1 the Metropolis algorithm is introduced to obtain samples from
the probability distribution function of the system. This algorithm is especially ap-
plicable to high-dimensional systems, and can also be used to generate samples of
the self-avoiding walk. The process starts from an arbitrary initial sample. From
a N-step walk, the most simple one is a walk with all segments having the same
direction. Next, a new sample z;,1 needs to be obtained from the old one x;, which
is the kernel of the Monte Carlo simulation of the self-avoiding walk. This step is
normally achieved by an operation on the old sample, i.e. elementary moves. Many
kinds of moves are designed to achieve this sampling, generally classified as local
moves and non-local moves. Since the excluded volume interaction is described by
the hard sphere potential (Equation 2.23), according to Equation 2.9, if the elemen-
tary move leads to overlapping of monomers, the energy difference AE = oo, thus
the accepting probability A(x;.1,2;) = 0, which means this elementary move should
be rejected and the new walk z;,; is same as the old one x;. Otherwise it is accepted
as a new walk.

(1) Single-monomer move. The simplest kind of move is single-monomer move,
which means generating a new walk by moving a random monomer of the old walk
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(Figure 2.3). First a random monomer is selected from the N + 1 monomers, then
the number of possible moves m of this monomer that will not lead to overlapping
is checked. If m = 0, then x;,; = x;. If m > 1, randomly choose one of these m
moves and create the new walk ;.

Figure 2.3: The single-monomer move of self-avoiding walk on square lattice. The figure
is from [95].

Although simple, the single-monomer move has two problems: the samples are
nonergodic and strongly correlated. The nonergodicity can be illustrated by some
“double cul-de-sac” conformations (Figure 2.4), in which any single-monomer move
is impossible. In fact, other kinds of local moves such as the two-monomer moves face
the same nonergodicity problem [96]. However, the local moves are still very popular
in many studies because the samples like these “double cul-de-sac” conformations
only occupy a small part of the entire phase space [97].
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Figure 2.4: One possible conformation that cannot be changed by local moves. The
figure is from [95].

The strong correlation between samples leads to a quite large autocorrelation
time 7y, especially when the length of walk N is large, which means that one needs
huge amount of Monte Carlo steps to reduce the bias caused by initialization and
correlation. According to [98], the autorcorrelation time scales as Ty, ~ N3. There-
fore, other kinds of moves are needed to simulate long chains.

(2) The reptation algorithm. This algorithm suggests that in each Monte Carlo step
the monomer at one random end of the walk is removed, then at the other end, an
additional monomer is placed in a random available position that could avoid over-
lapping. If there is no such available position, the move is discarded and the new
sample is same as the old one x;,1 = x;. This procedure is repeated until sufficient
samples are generated. The reptation is not a local move, and thus has a smaller
autocorrelation time compared with the local moves, 7ip, ~ N2 for cubic lattice
and iy, ~ N1 for square lattie [99]. This algorithm also encounters the nonergod-
icity problem, for example it cannot change the conformation in Figure 2.4. Due to
the same reason as the local moves, the statistical error caused by the nonergodicity
is inconsiderable.

(3) The pivot algorithm. The pivot algorithm was widely used in simulating long
chains due to its high efficiency and facility to implement [100,101]. The first step is
to randomly select a monomer of the self-avoiding walk as the pivot point; secondly,
a random symmetry operation is selected and applied to the latter part of the
walk starting from the pivot monomer; thirdly, the new walk after the symmetry
operation is accepted if it is self-avoiding, otherwise the new walk is discarded.
Rotation and reflection are two main types of symmetry operation. The number of
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possible operation depends on the type of lattice. For example there are 8 kinds
of symmetry operation on a square lattice and 48 kinds on a cubic lattice [100]. A
schematic illustration of an operation on square lattice is shown in Figure 2.5.

Figure 2.5: One symmetry operation on a square lattice: rotate the latter part (from
monomer 6) by 90° Counterclockwise. The figure is from [95].

An off-lattice pivot algorithm was implemented by my college K. Li on the basis
of the algorithm by Kennedy [102]. In the off-lattice algorithm, the pivot move is
achieved by two transformation matrices: the rotation matrix and the reflection
matrix. The rotation of an random angle 6 € (0,27) about an axis with unit vector
(I,m,n) in 3D space is described by the rotation matrix (Equation 2.38) [103].
The reflection matrix (Equation 2.39) reflects a point through a plane defined by
ar + by +cz = 0.

(1 —cosf)+cosf ml(l—cosf) —nsind nl(l— cosf)+ msinbd
Ty = | Im(1l —cosf) +nsinf mm(l —cosf)+ cos nm(l—cost)— lsinb
In(l—cosf) —msind mn(l —cosf)+1lsinf nn(l— cosd)+ cosd

(2.38)

1—2a> —2ab —2ac
Ty=| —2ab 1-—2b> —2bc (2.39)
—2ac —2bc 1 —2¢2

The two unit vectors (I,m,n) and (a,b,c) are set by four random angles as in
Equation 2.40, where ¢1, ¢o € (0,7), 1, p2 € (0,27) are random variables.

[ = sin ¢ cos 1, m = sin ¢y sin 1, n = cos P,

a = sin ¢ oS Y, b = sin ¢9 sin s, ¢ = oS P9 (2.40)

A monomer 7 to be pivoted is transformed to a new position ToTy7. In this off-
lattice chain, each monomer is represented by a sphere of diameter dy, therefore the
distance between any two monomers should be larger than dy, otherwise this pivot
move is rejected.
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The two principles of the Monte Carlo simulation, detailed balance and ergodic-
ity, are fulfilled by the pivot algorithm with symmetry operations. Besides this, the
main advantage over the previous two algorithm is its high efficiency in generating
independent samples. Since the symmetry operation changes the conformation of
walk globally, it is apparent that one need only far less accepted steps to decorre-
late the samples compared with local moves. The problem is that the fraction of
accepted pivots decreases as NP, where p is a positive number and depends on the
dimension of space [100]. Also, the check for self-avoiding after the pivot requires
much time than the local moves. Kennedy [102,104] argued that one should em-
phasize on the time required for accepting a pivot, and proposed an implementation
that can reduce this time to O(NY), where ¢ is about 0.7 for the 2D walk and 0.9
for the 3D walk.

In [105], a generalization of the pivot algorithm, the “cut-and-paste” algorithm,
is combined with the local moves to study self-avoiding walks with variable length
and fixed endpoints. The idea of the “cut-and-paste” algorithm is to cut the walk
into several pieces, then apply a random symmetry operation to each piece individ-
ually, finally these pieces are connected in a random order.

The pivot algorithm has exceptional performance for chains in free space and
polymers in dilute solvent. Nonetheless, it encounters an obstacle when simulating
chains in dense melt and finite constraints [106, 107] since the global pivot move
can easily result in the overlapping of monomers or violation of spatial constraints.
Especially, [106] proved that the pivot algorithm is not ergodic a two-dimensional
strip. For polymers grafted to a surface, Causo [108] used a hybrid of the pivot
move and “cut-and-paste” move to avoid the quasi-ergodic problem of pure pivot
algorithm. [106] introduced several bilocal algorithms to simulate self-avoiding walk
in finite space. When studying long chains melt system, Auhl et al. [107] applied a
double-bridging algorithm to change the conformations of two chains simultaneously
by splitting two bonds of the original chains and creating two bonds to bridge two
parts belonging to different old chains.

(4) The bond fluctuation model. Most of the Monte Carlo simulations of self-avoiding
walk, implemented with the local moves or non-local moves, are carried out on a
square lattice or a cubic lattice owing to its simplicity. However, this kind of lattice
has many practical problems [109,110]. The first one is the mentioned nonergodicity
of local moves and reptation algorithm. Although the consequent error is negligible
for many systems, this is not ensured for some special systems, such as the dense
system. While the pivot algorithm is ergodic, the pivot move is not related to
any dynamics of the real chains. Secondly, the simulation of self-avoiding walk
on a square lattice is quite problematic since the excluded volume effect is more
pronounced than in 3D space [111]. This leads to small fraction of acceptance of
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local moves and thus large relaxation time. In addition, the simulation of branched
polymers are hard to implement in cubic lattice because the branching point cannot
move according to the scheme of local moves. The bond fluctuation model (BFM)
was therefore proposed to clear up these problems.

In the 2D BFM, each monomer is represented by a unit cell of a square lattice,
and thus occupies 4 lattice sites. To avoid the overlapping of monomers and bond
crossing, the bond length [ has 6 possible values: 2,1/5,v/8,3,v/10,v/13. There are
in total 36 bond vectors and 41 possible bond angles. The local moves of monomers
in this model have to satisfy with this constrict of bond length and the self-avoiding
condition. The extention to 3D BFM is straightforward, in which each monomer
occupies 8 lattice sites, i.e., a cubic cell (Figure 2.6). The possible values of bond
length [ are 2,v/5,1/6,3,v/10. The possible bond vectors are obtained by all per-
mutation and sign combinations of the basic vectors (2,0,0), (2,1,0), (2,1,1), (2,2,1),
(3,0,0) and (3,1,0), thus resulting in 87 possible values of bond angle.
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Figure 2.6: The 3D bond fluctuation model. Each monomer are represented by a cubic
cell that occupies 8 lattice sites. This figure is from [112].

In the Monte Carlo simulation of polymers using the 3D BFM, a single-monomer
move typically has 6 possible direction, leading to a local conformation change of
polymers. But for long chains this “L.6” move usually leads to long relaxiation and
strong autocorrelation between samples. In [113] Wittmer et al. used a hybrid of
the “L.26” moves, the reptation moves and the double-bridging algorithm to simulate
long-range correlations in polymer melts. To study the behavior of bottle-brush
polymers a combination of the “L26” moves and pivot moves is applied in [114]. In
chapter 3 and 4, we use the bond fluctuation model and the “L6” move to simulate
chains up to length N = 320 in confinement.
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The problems mentioned above does not exist in the BEFM. The nonergodicity is
avoided by the allowance of various bond vectors, thus with local moves the walk can
escape from the “double cul-de-sac” . It is also possible to reproduce the realistic
dynamics of polymer system in the BEM with local moves [115]. The simulations
of 2D self-avoiding walk and branched polymers are feasible since the branching
monomer can move under this framework.

2.2.3 The Worm-Like Chain

Since the ideal chain in section 2.2.1 considers no interaction among monomers and
segments, and the self-avoiding chain in section 2.2.2 only considers the excluded
volume interaction of monomers, they can only be applied to model limited systems.
The real polymers such as chromatins and proteins have many kinds of interactions,
among which the bending stiffness is one kind of simple interaction in DNA [116,
117]. The bending stiffness describes how hard it is to bend a polymer. This
interaction acts locally, and on large length scales the polymer is still flexible due
to the entropy. Clearly, the bending stiffness can influence the conformation of
polymers. Further, the combined influence of this stiffness, entropy and spatial
constraints on the organization of polymers is an important subject in polymer
studies [36,118-120].

This section starts with the worm-like chain, where only the bending interaction
is considered. The worm-like chain is a continuous linear chain of length L, described
by the position vector 7(s) where s € (0, L) (Figure 2.7).
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Figure 2.7: The worm-like chain. 7#(s) is the position vector and #(s) is the normalized
direction vector. This figure is from Wikipedia.

or(s)

The direction vector #(s) is the derivative of the position vector: £(s) = P

Thus the bending energy Ej can be represented by:

1 L (0ts) ?
Eb_ikBT/O zp< o ) ds, (2.41)
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where kp is the Boltzmann constant, 7" is the temperature, [, is a stiffness parameter
which is defined as the persistent length.

In order to obtain the orientation correlation function (f(s) - #(0)) = (cosf(s))
of the worm-like chain, we first consider the bending energy for a sufficient small
fragment of the chain As:

. kBT s0+As 875(3) . k’BTlpAS 0

where 6 is the bending angle of this fragment. This bending angle is a random
variable due to the thermal disturbance and its mean square value is [121]

(6?) = o) exp(=AE/kpT)0%d0 _  As

Jexp(—AE,/kgT)do — 1, (2.43)

The factor 2 in the above equation means that the fragment can bend in two direc-
tion. Thus the mean cosine of @ is:
1 A
(cosf) ~1— 5(6’2) =1- TS, As <1 (2.44)
P
On the other side, the orientation correlation function (cos §(s)) has the property
of multiplicativity [122], which means that if a worm-like chain is composed of two

successive chains of length s; and s, then
(cosB(s1 + s2)) = (cosB(sy)){cosb(s2)). (2.45)

This multiplicativity indicates that the bending behaviors of different parts of the
worm-like chain are independent [72], i.e. the interaction is local. The orienta-
tion correlation function (cosf(s)) can be derived by the Equation 2.44 and Equa-
tion 2.45:

—

(t(s) - 1(0)) = (cosO(s))

s/As A S/AS
= lim [] (cos@) = lim (1 — S)
=1

As—0 - As—0

S
= exXp —7
p

This equation shows that the persistence length [, characterizes the length scale of
the correlated orientations and the stiffness. On the length scale smaller than [,,
the chain behaves like a rod, and on length scale much larger than [,, the chain
behaves like a flexible ideal chain. The persistence length varies for different kinds
of polymers. For double-strand DNA [, is about 50 nm, and for the actin filament
l, is about 10 pm.

(2.46)
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The end vector of the worm-like chain is R, = JE t(s)ds. With Equation 2.46,
the mean square end-to-end distance (R?) is:

(R?) = (R, R.)
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Two limits are usually considered in the above equation. One is when the persistence
length is much larger than the total length 1, > L, (R?) ~ L?, which means that
the chain behaves like a rod. Another limit is when [, < L, (R?) ~ 2l,L. Recall
that for random walk, (R?) = Ni? = LI (Equation 2.17), this means that in this
limit the worm like chain behaves like a random walk with bond length 2i,.

Similarly, the mean square radius of gyration <R§> can also be calculated. In the
continuous case,

2L2/ / ) — 7(s2)]*)ds1dsy

lp
- — — e
_2L2/0 /0 Zplss = sal{1 = 20— e dsidss (2.9

lp 3 2 2 3 L
=32 [L —3L%l, +6Ll, — 6L, | 1 —exp _E .

In the two limits mentioned above, the mean square radius of gyration has much

simpler forms:
172
(Rg) = {FL]; i i Zp’ (2.49)
3P P
corresponding to the rod-like and random walk like behaviors respectively. The
values of the ratio (R?)/(R?2) are 12 and 6 in the two limits.

The structure factor S(g) of the worm-like chain also has different behaviors over
different length scales. The range ¢ < i corresponds to large length scale, where
the chain behaves like random walk, therefore S(q) ~ ¢~2. In the range q > i, the
chain is like a rod, S(g) ~ ¢! [123,124].

The discrete forms of the above formulas in a discrete model where monomers

are connected by bonds {r7,7 = 1,2, ..., N} can be easily obtained. For example, the
exponential decay of the orientation correlation function is (7;-77;) = e~li=1l/%» where
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[ is the bond length. The persistent length defined in this way is a quite important
characteristic of polymers that can quantify its flexibility. However, the exponen-
tial decay in Equation 2.46 is not valid for all polymers. In [86] and [125] Havlin
and Schafer stressed that since the self-avoiding walk is self-similar, its orientation
correlation function should also have a scaling behavior:

(cosB(s)) = (7} - Tipg) ~ 5207 1 s < N (2.50)

where v & 0.588 is the critical exponent of self-avoiding walk. Consequently, for a
semiflexible real chain where both the bending energy and excluded volume potential
are present, the orientation correlation function is:

exp(—s/l,) 1<s<g,

2.51
s720-v) £, < s< N, (2:51)

(cosB(s)) ~ {

where &, (> [,) is the length scale below which the excluded volume effect does not
kick in. This length scale is also detectable in the structure factor of semiflexible
real chain, where three crossovers exists [126]. Further, although real chains in
melt condition and theta-solvent have the same scaling of the end-to-end distance
(R?) ~ N, (cosf(s)) also shows a power law decay for certain range of s [127,128]:

(cosf(s)) ~ s 1< s< N (2.52)

For this reason, different alternative definitions of the persistent length were put
forward for real chain systems [129-131], see [132] for a review of these definitions.
The simulation of semiflexible chains by the dynamics Monte Carlo method has
the same procedure as that of the self-avoiding walk discussed in section 2.2.2.
The difference is that their equilibrium states have different probability distribution
function. For the N-step self-avoiding walk, the distribution function is f(x) =
1/Zy, where Zy is the total number of possible conformations of the N-step self-
avoiding walk. For the semiflexible real chain, f(z) = E(x)/ >, E(z). The energy
E(x) is:
kT V=
E(l‘) = Eb( ) + Eexcluded T Z 7ﬁz+1 + Eexcluded<x>7 (253)

where the first term is the discrete form of the bending energy (7; is bond vector),
the second term is the excluded volume potential, x denotes a conformation of the
walk. To simulate semiflexible ideal chain, only the bending energy term is consid-
ered. In each Monte Carlo step, the elementary move such as the local move and
pivot move could lead to the change of bond angles, and thus the energy difference
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AFE. In a cubic lattice, the bond angle has only two values: 0 and 7/2, while in
the 3D BFM lattice, there are 87 possible values of bond angle. This distinction
in the available values of bond angle gives rise to different approximation of the
persistent length [133,134]. Theoretically the persistence length obtained by fitting
the orientation correlation function should be equal to the [, in the energy term in
Equation 2.53 if ignoring the second term FEeycugea- Nonetheless, the existence of
the excluded volume effect could enhance the correlation of bond vectors on length
scale larger than the persistence length. On the other side, the discreteness of the
chain and limited choice of the bond angle could also affect the approximation of the
persistence length. Specifically, the chains on the BFM lattice are more flexible than
those on the cubic lattice [133]. We estimated the persistence length for semiflexible
real chain in an off-lattice model using the continuous pivot algorithm and got a
relatively reliable estimation of [, [135].

2.2.4 Chains in Confinement

The chains represented in the above sections are not subject to any external influ-
ence. In most real systems, the chains are influenced by many other factors, such as
the interaction with other chains, external forces, and geometrical constraints. How
the constraints would influence the organization of chains is a long-standing topic
due to its importance and complicatedness in the field of biology and chemistry,
where different shapes of the constraints and various kinds of chains system arise.
One classic type of geometrical constraints is a tube. The simplest cases, a single
linear chain and two linear chains confined in a tube will be discussed in this section.

A single chain in a tube

For a chain in confinement, the scaling behaviors are still unaffected in length scale
smaller than the dimension of the confinement, while beyond this dimension, the
organization of the chain depends on the shape of the confinement. Consider a flexi-
ble chain consisting of N segments confined in a tube with diameter D (Figure 2.8),
within length scale D, the chain segments behave like they are in free space and thus
have the same scaling behaviors. The area these segments occupy is named as blob
which is of size D. Suppose there are g segments inside each blob, then according
to the scaling behavior, one can get D =~ ag”, where a is a prefactor, v is the critical
exponent. The number of blobs is given by ny = N/g ~ N (%)‘1/ Y. The length that
the chain takes up along the tube is

N D —-1/v D (v=1)/v
Lo~ ~D=ND () — aN () . (2.54)
g

a a
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And the volume fraction of the chain is

AN 4 D (1-3v)/v
Cm =~ D2 Lo, s <a> (2:55)
Blobs
g links D

Figure 2.8: A single chain in a tube with diameter D is reorganized as many connected
blobs. This figure is from [121].

The free energy of this confined chain is
N D —-1/v
F =~ kBTnb1 = ]{?BT* = k’BTN () . (256)
g a

The tube is not the only kind of constraint where the chain inside can be viewed as
a series of blobs. For example, for a chain confined in a spherical cavity, the picture
of connected blobs also works if the volume fraction of the chain is smaller than
0.15 [136]. The difference is that the blobs are not arranged along a straight line.

For a semiflexible chain with length L and persistence length [,,, there is a length
scale £, below which the excluded volume effect is not present as mentioned in
the previous section. If the diameter of the tube is much larger than this length
scale D > ¢, the above descriptions of blobs still hold. If [, < D <« &,, the
blobs are stretched into ellipsoids. Further, if the diameter is much smaller than
the persistence length D < [,, then the chain has a wave-like organization in the
narrow tube (the Odijk regime, Figure 2.9). In this case, the deflection length A and
deflection angle 6 can be defined [137].

X

A
v

N/ D

Figure 2.9: A semiflexible chain in a narrow tube. This figure is from [121].
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For a very small deflection angle, § ~ tan 6 = %. With the equation 2.43, we get

the following relation:
2

07 = 25 0 2 (D> | (2.57)

1/3
Therefore \ ~ (D 2lp> / . The length that the chain takes up along the tube is

1-0.7 <D>2/3] . (2.58)

Ly

Ly, = L{cosf) =~ L

The free energy of this stiff chain can be written as F ~ kpT% ~ kgT LI /D=3,

Two chains in a tube

In the two chains system, besides the geometrical constraints, the organization of
each chain is impacted by the interchain interaction. The states of mixing and
segregation are of special interest. First consider two chains of same length confined
in a infinite long tube. A typical state of the two chains is shown in Figure 2.10.
There are three regions, two of which are occupied by the two chains separately,
with distance [, along the tube. In the middle the chains are mixed or overlapped,
and take up distance [, along the tube. According to [138], in the mixed region,
the single chain description remains valid, but each chain is confined in an effective
tube with diameter Deg = D/v/2.

A
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Figure 2.10: Two linear chains of same length in a infinite long tube. Shown is the
state between totally mixed and segregated. In the overlapping region the chains take up
distance I, along the tube. This figure is from [139)].

The free energy of the system is again purely contributed to the entropy term,
and can be written as [139]:

F(ng) = 2kT[ng + (ny — ng)2"?], (2.59)

where ng is the number of blobs in the region at one end, n, = N/g is the number
of blobs when one chain is confined in the tube. Since ny; does not change with
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the state of the two chains, the free energy is only dependent on ny. The totally
mixed state corresponds to ng = 0, and has free energy Fix = o1+1/ 2nnksT, while
the totally segregated states corresponds to ng = npi, thus Fieg = 2npikgT’. Clearly,
Fyeg < Fhix, therefore the two chains tend to segregate. The dynamics process from
the mixed state to segregated state is discussed in [139] by studying the segregate
rate, where they concluded that there is an acceleration of segregation during the
process.

Things become more complicated in the case of a closed tube. The state of two
chains depends on the size of the tube and the concentration of the chains. For a
tube with length L; equal to 2Ls. (see Equation 2.54), the free energy difference
between mixed state and segregated state is same with the case of a infinite long
tube. As the tube length becomes smaller, the free energy difference also decreases
since the available conformations of each chain are less when segregated. When
L; = D, the chains tend to mix with each other. The phase diagram of the chains
states is shown in Figure 2.11, where the z-axis denote the size of the tube, and the
y-axis is the concentration of the chains. Detailed discussion about the regimes can
be found in [54].

increasing volume fraction —
y = RF/E

0.1 1 10 100 1000
X=RF/D

Figure 2.11: The phase diagram of the state of two chains confined in a tube. This
figure is from [136].
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2.2.5 Topology in Polymers

Besides many geometrical properties of polymers, their topological features also
play an important role in their organization. One important kind of such features
is the entanglement of polymers. In many biological processes, the entanglement
or disentanglement of biomolecules is very common and important. For example,
two strands of DNA can be transformed between the intertwined state and isolated
state with the help of topoisomerase [140,141]. In another case, the folding time of
protein is correlated to the topology of its native state by k; oc p?, where k 7 is the
folding rate, @ is the crossing number of the protein [142,143]. For closed polymers
there are lots of studies on their topological complexity, such as the topology in-
variants [144,145]. Some similar measurements have also been proposed to describe
the entanglement complexity of open polymers [146,147]. The writhe and average
crossing number are two important quantities to describe the self-entanglement of
a open or closed polymer [148,149].

In knot theory, the writhe of diagram is the sum of all signed crossings. By
signed crossing, it means that there are two kinds of crossings, which can be defined
into positive crossing and negative crossing. The usual way of defining this is the
right-hand rule. For a oriented curve, if the lower part goes from right to left, the
it is a positive crossing, otherwise it is a negative crossing (Figure 2.12).

A\ A\

Figure 2.12: The signs of crossing: the left one is positive crossing and the right one is
negative crossing according to the right-hand rule.

For a curve in 3D space, its writhe is the average writhe of the projections of
the curve from all vantage points. If C' is the curve with length L and 7(s) is the
position vector, s € (0, L), the writhe Wr is

o= L[ G ) 1) =), 200

0 |7(s) = r(@)]°

For a chain consisting of NV segments, the following form is often used in the numer-
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ical calculation of the writhe:

Wr—iig”—QZN:ZQ” (2.61)
e i Pt '

J<t

where €Q;;/4m is the integral of the ith and jth segments of the chain. The second
equivalence comes from the fact that €2;; = Q;; and €2; ;11 = Q;; = 0. There are sev-
eral ways to calculate the term €2;; /47, one of which is a geometrical approach [150].
First assign the monomers connected by the ith and jth segments to four numbers
1 ~ 4, and let 7,,, be the vector from monomer p to monomer ¢, and define four
unit vectors as follows:

T3 X T'14 T4 X Ty Taq X T3 To3 X T3

m=—-s——5M=—=S"—>5"NM3=>5——=>"4= 55— (2-62)
\7"13 X 7“14’ ’7“14 X To4 T2q4 X T23 T23 X 7’13‘

Next step is to calculate 2*:
0" = arcsin (71 - Mlp) + arcsin (7y - 13) + arcsin (113 - 74) + arcsin (Mg - 771)  (2.63)
The sign of 2 is determined by (734 X 72) - 713, therefore:

Q Q. . Sy o

1 = 1 5en (T34 X T12) - T13) (2.64)
Following this algorithm, one could calculate the writhe of a closed or open chain.
The calculation of the average crossing number Cnof a chain is similar, but the sign
of the crossing is neglected.

1 /L (L |(F(5) x 7(t)) - (F(s) — 7(t))]
ACN = @/o /0 o) —FOF ds dt (2.65)

-T

—
—

The increasing of writhe and average crossing number with the size of random
walk or self-avoiding walk have been studied in lots of literatures. In [148] Orlandini
et al. found that both the average writhe and mean average crossing number of self-
avoiding walks has a power law increase with the length of the walks with exponents
around 0.5 and 1.1 respectively. Another kind of increasing law of the mean average
crossing number aN log N+bN for random walk and self-avoidng walk was discussed
in [149,151,152]. For random walks a = -%, and for self-avoiding walks a ~ 0.039.

167

2.2.6 The Contacts of Polymes

The contacts of intra- and inter-polymers are another subject of vital importance in
the field of biology because many biological functions are achieved by the contacts
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of different parts of macromolecules. Moreover, the presence of contacts can also
influence the dynamics of biomolecules. For example, proteins with more local
contacts are found to fold more rapidly and experience less transition states than
those with more non-local interactions [142]. For polymers in solution, the average
and variance of the contact number are related to the internal energy and specific
heat of system [153]. Usually many specific contacts of biomolecules are regulated
by short-range interaction or some agents such as enzymes. However, the thermal
fluctuation is also one importance source of contacts. For self-avoiding walks where
only excluded volume potential is considered, the contacts between monomers are
purely due to the randomness. The contact probability and contact number are two
important focuses when studying the contacts of self-avoiding walks.

The contact probability is the probability that two monomers with certain con-
tour length come into contact. The scaling behavior of this probability was found
in [154,155] by studying the correlation properties of a long polymer. The func-
tion they studied is the probability distribution of the vector 7 connecting two
monomers inside a chain, denoted as Ps n(7), where N is the contour length of
the two monomers, s is used to label three situations of the positioning of the two
monomers (Figure 2.13). s = 0 is the case when two monomers are at the end of a
chain with length N, s = 1 is the case when only one monomer is at one end of a
chain, s = 2 is the case when the two monomers are both inside a chain. In the first
case P; n(7) is the distribution of the end vector of a self-avoiding walk discussed in
section 2.2.2.

Figure 2.13: Three situations of the positioning of the two monomers.

Using the renormalization method, the probability distribution function has the
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following form:

Pon(F) = N7"f (r/NY), fo(x) oc 2™, (2.66)

where d is the dimension of the space, v is the critical exponent of self-avoiding walk.
For self-avoiding walks in 3D space, the values of 6, is 0y = 0.273,6; = 0.46,0, =
0.71. Redner [155] gave the estimation of 6 ~ 0.67 and 1.93 for self-avoiding walks
on the FCC and triangular lattices by exact enumeration. On a simple cubic lattice,
if the contact is defined when two nonconsecutive monomers are nearest neighbors,
i.e. r = 1, the contact probability of a long chain can be deduced from Equation 2.66:

PZ,N X Ni’y,’)/ = (3 + HQ)V ~ 218, (267)

N is the contour length between the two monomers in contact. The results for 2D
self-avoiding walks were given in [156): 6; = 2,6, = 15.

Another important topic, the number of contacts, was also studied both for
random walks and for self-avoiding walks. In both cases the average number of
nearest-neighbor contact (m) has an asymptotic behavior as the length of the walk
N goes to infinity [47]:

(m) ~aN +bN® +¢c, N — oo, (2.68)

where a,b and ¢ are constants, the exponent ¢ is dependent on the dimension d of
space, for random walks ¢ = 2 — d/2. The values of the three constants and the
exponent for various dimensions were estimated by Douglas using direct enumeration
and 1/d expansion methods. For 3D self-avoiding walk, a ~ 0.2,b ~ —0.55,¢ ~
0.06, ¢ = 0.15. In addition, for rather short chains, an algebraic method to determine

the number of conformations of self-avoiding walk with fixed number of contact was
developed in [157].
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Chapter Summary

The conformations of chromatin can be manipulated by many factors. Specifically,
in the regulation of gene expression the bending rigidity of the chromatin polymer
and its heterogeneity play a critical role in the conformational change. To eluci-
date this we investigate the effect of bending rigidity as well as its heterogeneity
on various polymer properties. In the study of chromatin organization, the contact
probability is a significant measure. We analyze whether there is any ambiguity
in the definition of a contact and show that results for the contact probability do
not depend on the range of contact in the limit of a large contour length between
monomers. We further compute the persistence length as a function of the bending
rigidity in the homogeneous and heterogeneous cases and find the persistence length
is systematically smaller in the heterogeneous case. Another important factor is
confinement. Chromosomes are confined in the nucleus and by examining specific
loci, the local chromatin part changes much faster than the entire environment. In
conjunction with bending rigidity we analyze conformations in rectangular confine-
ments with several aspect ratios. An oscillation in the contact probability and the
orientational correlation function is found due to the spiraling of polymer when the
box size is small enough. In addition, the influence of the bending rigidity and
confinement on the crossing number are analyzed.
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3.1 Introduction

Contact probabilities are at center stage in measuring the conformations of chro-
mosome [158,159]. One measures the number of self-contacts inside chromosomes
as well as the inter-chromosomal contacts because these could give topological in-
formation on the spatial organization of chromosomes in these experiments. Since
the chromosomes are confined in the nucleus, how they are packaged and how the
packaging influences the intra-chromosomal contacts are questions to be studied.
Further, how would the stiffness of chromatin influence all of this?

The packaging of chromosomes is of vital importance to the biological func-
tion [160, 161]. One example is the packing of DNA with the help of histone pro-
teins in the formation the beads-on-string chain [4,162]. A further packaging is the
30nm fiber (chromatin) and the packaging of the fiber into the nucleus [163]. Pack-
ing on the scale beyond 30nm is mainly accomplished by the dynamic formation of
loops and higher order loop structures (loops of loops) [164]. These build up local
compartments of varying densities which in turn are organized into chromosome ter-
ritories [165,166]. Therefore the fiber cannot be considered to be in free space and
the contacts that the chain can have with itself are largely influenced by two factors:
the kind of local confinement the fiber finds itself in and the bending rigidity of the
fiber which for example is controlled by chromosome remodeling [167,168].

The compartmentalization of the nucleus (such as in human cells) implies the
existence of a rather symmetric confinement of the chain. For E. coli, on the other
hand, the confinement is rectangularly shaped and this confinement influences the
interaction [169]. Then one may ask: how does the shape influence the contact
probabilities?

There are several factors that can influence the bending rigidity of a chromo-
some. For human chromosomes the existence of nucleosomes and their distribution
along the backbone of the chain [170-172] indicate a distribution of the bending
rigidity along the fiber. A further factor is the repulsion of the histone tails, i.e.
methylation [173]. Furthermore histone H1 depletion has a great impact on the
flexibility of the chain [174,175].

In brief, chromatin is not totally flexible, that is to say, chromatin is a semiflex-
ible polymer fiber with bending rigidity. Moreover, generally speaking, chromatin
is heterogeneous, which means that different parts of the polymer could have differ-
ent distributions of bending rigidity. This possible causation could be the genome
sequence or the distribution of nucleosomes along the backbone [176]. Apparently
this heterogeneity itself is important to the chromatin organization as well [177] and
thus has an impact on the contact probability.

Chromatin undergoes structural transformation to perform biological functions
properly. For a long chromatin chain, the change of the overall conformation is slow,
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while at smaller scales the change is much faster and is confined in a narrower space
in contrast to the overall volume the chromatin takes up. Therefore, in this chapter,
when studying polymers in confinement, we concentrate on short chains, where the
influence of bending rigidity, the size and aspect ratio of the confining volume is
studied.

This chapter is organized as follows. In section 3.2 we introduce two polymer
models that we use and the implementation of the heterogeneity of the bending
rigidity with different distributions. Actually the heterogeneity of polymer has been
modeled in several approaches [178,179]. In our model it is implemented via the
variance of the bending parameter x along the chain. In section 3.3 the results on
our main questions are presented. In section 3.3.1 we address the question: What
is a contact? This question arises both in the context of lattice polymers as well as
in continuum. Further, how the bending rigidity, especially its heterogeneity, affects
the contact is illustrated. Next, we focus on properties like persistence length and
the structure factor in section 3.3.2. In section 3.3.3 we address the question how the
linear semiflexible chain is organized in confinements with different sizes and shapes.
Further the influence of the heterogeneity of bending rigidity on this organization is
investigated. In terms of the second question, Fritsche [34] and Ostermeir [35] have
studied the spatial organization of homogeneous stiff ring polymers in rectangular
and weak spherical confinement separately. Liu [36] investigated 2D linear semi-
flexible polymers in confined space. In this context we study how the stiffness
and its heterogeneity affect the organization of linear polymers in 3D rectangular
confinement with different sizes and aspect ratios. Our conclusions are presented in
section 3.4.

3.2 The Model

The polymer is modeled as a self-avoiding walk. We introduce the bending rigidity
as in the Kratky-Porod model, or the worm-like chain model in continuum. In the
Kratky-Porod model the origin of stiffness of a polymer is the intrinsic bending
energy H,, which is the sum of energies of successive segments:

N-2
Hb = — Z KU - Uit1, (3].)
=1

where k; is the stiffness parameter, u; is the normalized bond vector, N is the
number of monomers. To model a heterogeneous chromatin chain having a variable
bending rigidity along the chain, x; can be set to obey a distribution of interest,
while k; = k for a homogeneous chromatin chain. When studying heterogeneous
chains, we assume that ; obeys the Gaussian distribution with mean value (k) and
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standard deviation o.

The continuous version of the Kratky-Porod model is the worm-like chain model,
where the persistence length [, is defined through the exponential decay of the
orientational correlation function:

(u(sy +s)-u(sy)) = (cosf(s)) = e/, (3.2)
or(s)

Here u(s) = %2> is the unit tangent vector to the chain at contour distance s, and
r(s) is the position vector along the chain. Although chains in a dense melt or at
the ©-point in solution behave like ideal chains without excluded volume effect, as
the worm-like chain does, recently it was shown that the orientational correlation
function for chains in these conditions shows a power law decay s~%/? instead of the
above exponential decay for certain range of contour length 1 < s < N [180, 181].
For real chains Hsu et al. [132] have shown that the standard definition of persistence
length does not describe the local "intrinsic" stiffness either, with (cos §(s)) ~ s for
1 < s < N, 3 being a different power law exponent 3 = 2(1—v) ~ 0.824. However,
the exponential decay fits well at short length scales s for simple linear chains without
a complex architecture such as side chains, and it is capable of approximating the
stiffness parameter « fairly. In free space and for the homogeneous chain, the stiffness
parameter k; = k is actually related to I, defined in equation (3.2) via I, ~ &,
(where energy is measured in the units of kgT"). The deviation of [, results from
the discretization of the continuous worm like chain which makes [, slightly smaller
than x , and the self-avoiding effect, which makes [, larger compared to random
walk. But the latter is negligible when & is large enough. [, is the averaged bond
length. For the heterogeneous chain, the average persistence length over the entire
chain is determined by the distribution ({x) and ¢ for Gaussian distribution), which
will be discussed in Section 3.3.2.

In this paper we use two models to perform the Monte Carlo simulation and
study the questions defined in section 3.1. First, when simulating very long chains
in order to investigate the key question on the definition of a contact we employ a
pivot algorithm based on the original idea of Sokal and Kennedy [70,102] in contin-
uous space. There have been several applications of the continuous pivot algorithm
in different polymer models. Adamo and Pelissetto [182] have implemented the off-
lattice pivot algorithm to study the impact of the thickness of monomers, i.e. the
effectiveness of the excluded volume interaction, on the asymptotic behavior of poly-
mer chains. Also, a continuous pivot algorithm with narrower choice of pivot angles
is used to study the effects of macromolecular crowding on protein stability [183].
Horwath, Clisby and Virnau [184] use the standard implementation of the pivot
algorithm to investigate knots in finite memory walks where the excluded volume
effects are considered only at short length scales.

In this algorithm, a pivot with a random pivot point on the chain and a random
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symmetry matrix is carried out at each Monte Carlo move, producing a global con-
formation change of the chain. This algorithm is highly efficient in that it reduces
remarkably the relaxation time to reach the equilibrium state and de-correlates con-
formations much faster compared to algorithms based on local moves. Kennedy [102]
proposed a faster implementation of the existing pivot algorithm for self-avoiding
walks on a lattice, requiring a time O(N}) per accepted pivot with ¢ < 0.85 for a
3D lattice instead of O(Ny) for other pivot algorithms. N, is the number of bonds
(N, = N — 1 for a linear chain). We extended this faster on-lattice pivot algo-
rithm into a continuous one, each monomer being a hard sphere of radius r = 0.4.
Furthermore, the bending energy is also implemented to simulate long semiflexible
chains.

The second model is a lattice polymer model, specifically, we are using the Bond
Fluctuation Model (BFM) [109] to simulate short linear chains of size up the N =
160 in cubic and rectangular confinement. The local “L6" move is used at each
Monte Carlo move. These conformations are correlated due to the local moves. We
calculate the autocorrelation time 7;,; following the routine outlined in Sokal [70]
based on the radius of gyration. We took conformations into account that are
separated at least 27;,; Monte Carlo steps [185]. About 10 000-15 000 independent
conformations were generated for each parameter set.

The autocorrelation time 7;,,; for longer and highly stiff chains can be extremely
high. A combination of the local “LL26” move and a pivot move are employed within
the BFM to simulate longer and stiffer bottle-brush polymers owing to the reduction
of relaxation and autocorrelation time [114]. For polymer chains in confinement,
the local moves are kind of indispensable because of the high rejection rate of global
moves in finite space. In our case, the BFM with “L6” move is adequate to simulate
short chains in cubic and rectangular confinement.

3.3 Results

3.3.1 Contact probability of the semi- and flexible chains

Does the contact probability as a function of the contour distances depend on the
definition of what a contact is? On a lattice we can define a contact if two monomers
occupy nearest neighbor sites. But then, we could also define a contact taking place
at next nearest neighbor sites. In continuum we need to define a distance such
that whenever two monomers are within the defined distance this would count as a
contact. We refer to this defined distance as the cut-off distance d.. Figure 3.1(a)
shows the number of monomers which are in contact with monomer i (solid point).
The number of contacts depends on the value of the cut-off distance d.. Specifically,
the contact probability with d. fixed is calculated as follows: if the distance d;;
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between monomer ¢ and monomer j is smaller than d., then the contribution to
the contact probability is p.(]i — j|) = 1 (k is the stiffness parameter of the chain),
otherwise p,(|i —j|) = 0. The entire contact probability is the average over all pairs
of i,7 and sufficient independent conformations in equilibrium: Py (s) = ((px(|t —
J1))ji—jl=s)c Where s is the contour distance between monomers.

To establish the asymptotic behavior of the contact probability Py(s) with re-
spect to contour length s, we simulated long chains (see Figure 3.1(b)). In Fig-
ure 3.1(b) the result for a semiflexible homogeneous chain N, = 10000, £ = 10 using
the continuous pivot algorithm is shown. The contact probability of this chain is
calculated with three cut-off distances d. = 1.1,2.7,4.1. Only the range s < 1000 is
shown since P,(s) for bigger s has rather large statistical fluctuations. The results
prove that how we define the cut-off distance d. for the contact of monomers does
not change the asymptotic behavior of the contact probability P, (s). As long as the
value of d, is not too large compared to the persistence length, P, (s) has a similar
structure over all length scales: a minimum (only for relatively large r, discussed
later) when s is small, and the same power law decay (roughly s=*2) when s > 1,
(c.f. inset). Shown in the inset are the ratios of contact probabilities for d. = 2.7
and 4.1 over Py(s) for d. = 1.1. When s is large enough, the ratios level out, showing
that the contact probabilities have the same asymptotic behavior only with different
prefactors.
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Figure 3.1: Panel A shows the definition of a contact within the cut-off distance d..
All the other monomers inside the dashed circle (sphere in 3D) with radius d. are in
contact with monomer i (solid point). Certainly if the cut-off distance d. is larger, there
are potentially more monomers contributing as contacts. Panel B shows the contact
probabilities for different cut-off distances d.. The results are for a chain of length N, =
10000, x = 10, bond length [, = 1 and the radius of hard sphere representing one monomer
of » = 0.4. These results were obtained using the continuous pivot algorithm. Only the
range s < 1000 is shown. Different d. only affect P.(s) in the range of small s, while
the asymptotic power law decay behavior of P, (s) is recovered as is shown in the inset,
where we plot the ratios of the probabilities. Other values of polymer length N, and
give similar results.

The influence of bending rigidity and its distribution on the contact probability
P,(s) (the cut-off distance d. is set to be 1.1) is shown in Figure 3.2, where results
for chains of homogeneous (panel A) and heterogeneous stiffness (panel B) are
presented. In panel A, the contact probabilities of semiflexible chains exhibit a
drop in the range of small s compared to the flexible chain (blue line). This is
because of the fact that bending energy contributes to the parallel of successive
chain segments, inducing larger separation between monomers than flexible chains.
A local minimum exists if & is large enough (roughly x > 3). When s > 1, P,_(s)
shows the asymptotic behavior of P,_y(s) ~ s7° for flexible chains. The exponent
Yo is approximated by 3(1 — 3v) ~ —2.3 if the monomers are considered as particles
independently distributed in space, or more precisely by (3 + 0)v ~ —2.2 where 0
is a parameter about 0.70 [154,155] and v ~ 0.588 is the critical exponent of self-
avoiding walk. For £ > 0, in the region [, < s < 1000 the exponent 7, deviates from
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this value as can be seen from the inset of Figure 3.2, instead it’s a larger exponent
for k > 0. Nevertheless, this doesn’t mean that for even larger s the semiflexible
chains have a different exponent from the flexible chain, since Py~o(s) is leaning
down when s grows to 1000.

Figure 3.2(b) shows the contact probabilities of chains with Gaussian distributed
stiffness parameter ;. The mean values of k; = 2,5, 10 are same as for the homoge-
neous chains. The corresponding standard deviations are 0 = 1,2, 3,1. Comparison
of Figure 3.2(a) and 3.2(b) reveals that the heterogeneous chains have more contact
in the small s region than the homogeneous chains with the same averaged stiffness
parameter. What’s more, for the Gaussian distribution of k; we studied, the contact
probability increases with the standard deviation ¢. This means that x; smaller
than (k) has more influence on the conformation than x; which is larger than (k).
In other words, the heterogeneity flexibilizes the chain. Nonetheless, in length scale
much larger than the persistence length, they have the same contact probability
despite the heterogeneity.
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Figure 3.2: Contact probability Px(s) for flexible and semiflexible chains with homoge-
neous and heterogeneous stiffness. The homogeneous chains have the rigidity parameter
k = 2,5,10 (panel A). In the heterogeneous chains each r; is sampled from a Gaussian
distribution with mean values (k) = 2,5,10,10 and corresponding standard deviation
o =1,2,3,1 (panel B). Only the region s < 1000 is showed since P,(s) for bigger s has
large statistical fluctuations. The black dashed line in both figures is the power law s~2-
which is the predicted asymptotic behavior for the self-avoiding walk [154]. The star points
indicate the values of persistence length [, in these cases. The chains N, = 10000 are sim-
ulated using the pivot algorithm. For the homogeneous chains (panel A), when s < [,
the bending energy that tends to align neighboring bond vectors prevails over the entropy,
therefore P, (s) shows a drop compared to the flexible chain (x = 0), and a minimum exists
if s is large enough. In the range I, < s < 1000, P,o(s) shows a power law decay with
an exponent slightly larger than the flexible chain. The persistence lengths extracted from
the orientational correlation function are I, = 2.09,4.88,9.90 for k = 2,5, 10. For the het-
erogeneous chains (panel B), the contact probabilities drop less in the small contour length
range compared to the homogeneous chains due to the heterogeneity of stiffness along the
chain even though the mean values are the same (I, = 2.00,4.20,8.77,9.80 for the four
cases). Nevertheless, they have similar asymptotic behavior in the range I, < s < 1000.

Hence, the bending rigidity and its heterogeneity mainly exert influence on con-
tact probability in the region where s is smaller than the persistence length [, for
the polymers in free space, while the asymptotic behavior of P,(s) are similar. For
semiflexible chains in finite space, the bending rigidity not only leads to a drop of
contact probability in region s < [,, but also introduces an oscillation for s > [, as
will be shown later.
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3.3.2 Persistence Length and Structure Factor

For the worm-like chain without the excluded volume effect, the mean square end-
to-end distance is:

(R?) = 2I,L |1 — le(l — e Litny| (3.3)

where the persistence length [, is defined by (cos(6(s))) = exp(—s/l,). In the limit
L>>1,, (R?) = 2l,L < Nj.

For most of the real chain systems except those in the melt condition or in the
f-solvent where polymers act like ideal chains, the excluded volume effect leads to
chain swelling, resulting in different scaling exponent v =~ 0.588 for the end-to-end
distance and radius of gyration according to the renormalization group method, or
v = 0.6 by the Flory approximation:

(RZ) = CNJ¥, (R2) = CyN, Ny — o0, (3.4)

where C,, C, are related to the persistence length.

However, despite the existence of excluded volume effects, equation (3.3) does
validate itself in semiflexible real chain systems for limited length scale determined
by the persistence length [, [126]. In fact there are two regimes where equation (3.3)
does apply: the first one is s < [, where the chain behaves like a rod; the second one
is [, < s < s* where the chain can be viewed as ideal since monomers can hardly
“collide" and consequently the excluded volume effects are negligible. The value of
s* depends on the persistence length [, as s* o lﬁ according to the Flory argument,
or numerically s* oc 2 [186].

There are several ways to determine the persistence length. The traditional one
is defined through the exponential decay of the orientational correlation function
(cosB(s)) (Equation (3.2)). Although for both random walk and self-avoiding walk
the orientational correlation function shows a power law decay behavior [132, 180,
181] at a large length scale s > s*, this stays a good estimator considering that it
can recover the stiffness parameter x (Figure 3.4) and that [, should not depend
on the polymer length (Figure 3.3 blue solid line). Another way is to calculate [,
from equation 3.3 or simply (R?)/2N,l, when L is large enough. Clearly for real
chains this is not reliable since (R?) ~ NZ” due to the excluded volume effect, thus
(R?) /2Nyl would increase with N, (Figure 3.3 green solid line). On the other side,
(R?)/2N2"1, doesn’t give reliable results either as shown in Figure 3.3 (red solid line)
because when N is not very large the stiffness weakens the excluded volume effect.
Shown in Figure 3.4 is the dependence of persistence length [, on the bending rigidity
parameter s and its distribution, in which [, is extracted by fitting the exponential
decay to the orientational correlation function. The values of persistence length
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for homogeneous N, = 1000 chains are represented by blue open circles, the linear
fitting of which has a slope equal to 1, suggesting the relation {, ~ k() (I, = 1).

The heterogeneous chains have various stiffness parameter k;, hence persistence
length [,,, along the backbone. We are interested in how the average persistence
length over the chain would change due to the heterogeneity. As mentioned above,
we assume that x; obeys the Gaussian distribution with mean value (k) and stan-
dard deviation o. Considering the exponential decay of orientational correlation
function in equation (3.2), when s = 1 the persistence length is roughly approxi-
mated by [/, ~ —1/In(cosf). For homogeneous chains, (cosf) ~ exp(—1/x), while
for heterogeneous chains,

(cosf) ~ (exp(—1/k)) = /OOO exp(—1/k) f(k)dk, (3.5)

where f(k) is the distribution function of the stiffness parameter. The integration
starts from 0 because we don’t make allowances for negative stiffness parameter .
The consequential bias from Gaussian distribution is negligible when we take the
standard deviation o < (k)/3. Obviously on the right hand side of this equation
the smaller values of k contribute more to the integration, leading to a smaller
(cos@) and hence a smaller [, compared to the homogeneous case. The dashed
lines in Figure 3.3 and open circles in Figure 3.4 show the simulation results of
the average persistence length for heterogeneous chains. These chains have smaller
persistence lengths and end-to-end distances, which leads to the conclusion that the
heterogeneity flexibilizes the chain.
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Figure 3.3: Shown is the persistence length [, for homogeneous chains (solid lines) and
heterogeneous chains (dashed lines) calculated from (1) blue lines: the exponential fit to
the orientational correlation function (see equation 3.2); (2) green lines: (R2)/2Nyly; (3)
red lines: (R2?)/2NZ"l,. The average bending rigidity parameter is (k) = 10, and o = 3
for the heterogeneous case.
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Figure 3.4: Dependence of average persistence length [, on the bending rigidity parame-
ter k and its distribution with different standard deviation o = 0,0.2,0.3,0.4. The relation
between [, and (k) can be considered linear, with slope dependent on o. The open circles
indicate values of [, while the solid lines are the linear fitting results. [, is extracted by
fitting an exponential decay to the orientational correlation function. The bond length is
[, = 1 in the continuous pivot algorithm. Results for N, = 100 and 500 are not shown
as they are almost on top of the data for N, = 1000. The results show for homogeneous
chains that the relation between persistence length and stiffness parameter is 1, = k(lp).
In the heterogeneous case the average persistence length would be smaller with increasing
.

Experimentally the persistence length [, is usually calculated from the structure
factor S(g) which can be measured by the neutron scattering experiments, ¢ is the
wavenumber. The structure factor S(q) is defined as:

S(a) = 33 (>0 - explid- (7 — 7)) (3.

i=1j=1

The semiflexible chain behaves rod-like at a small length scale s < [,, and recov-
ers the self-avoiding property at a much larger length scale s* > [,. This indi-
cates the existence of two regimes in S(q): the self-avoiding regime and the rod-like
regime. In addition, as discussed above, in the region [, < s < s*, the semiflexible
chain behaves more like a random walk since the excluded volume effect can be
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ignored. Thus there are several corresponding features for these different regimes
in the structure factor S(g). When ¢ is quite small, S(¢q) ~ 1 — ¢*(R?2)/3, which is
the Guinier regime. In the region ¢ > 1/(R?), S(q) shows the self-avoiding regime:
S(q) o< ¢~'/*. Then the crossover from self-avoiding region to random walk region
occurs at qR* = 1 (R* oc [2) [126], where S(q) changes to S(¢) o ¢~>. When
ql, > 1, S(q) exhibits the rod-like property S(q) « ¢~'. In the Kratky plot ¢S(q)
(Figure 3.5), the rod-like region is the “Holtzer plateau”. Therefore the persis-
tence length [, can be approximated from the onset of the horizontal region in the
Kratky plot. Based on the above discussion, there should be three crossovers for
S(q) [126,133], but not all the crossover can be seen clearly in the S(g)-plot. The
Guinier, self-avoiding and rod-like regimes are present in Figure 3.5, while the ran-
dom walk regime is hidden. The Gaussian random walk regime can be visible only
when the persistence length [, is large enough [126]. The structure factor of homo-
geneous k = 5,10 chains and heterogeneous chain with (k) = 10,0 = 3 are shown
in Figure 3.5. The latter has a smaller persistence length, hence its structure factor
is shifted compared to the homogeneous x = 10 chain.

-_— k=10 - k=10
—_— k=5 = wem (k) =10,0=3
i — ¢ S(g)~1 , \ — ¢ S(@)~1
10" —_ 0T =t 10" ~ ,
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Figure 3.5: Kratky log-log plot of ¢S(q) versus ¢ for homogeneous and heterogeneous
chains. The chain length is N, = 1000. In panel A, the green and blue lines are for
homogeneous chains with x = 5 and £ = 10. Three regimes can clearly be seen: the
Guinier regime S(g) ~ 1 when ¢ < 1 (cyan line), the self-avoiding regime ¢S(q) o< ¢*~ /¥
(red lines), the rod-like regime ¢S(q) o< ¢° (yellow line). The random walk regime is
absent because the persistence length [, or x is not large enough. Panel B compares the
structure factors of homogeneous chain and heterogeneous chain with the same (k) = 10.
The latter has a smaller persistence length, hence its structure factor is shifted compared
to the homogeneous chain.
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3.3.3 The Chain in Confinement

There have been studies on semiflexible linear and ring polymers under different
kinds of confinements, for example in a spherical capsule [187], in a channel and in
a cavity [188], in a cylinder [189] and in rectangles [34,36]. Here we will use the
bond fluctuation model to explore different aspects of the structure of semiflexible
chains in cubic and rectangular confinement, including the contact probability, the
ordering of chain segments and the orientational correlation function.

Within finite space, the conformations of semiflexible chains depend on the per-
sistence length [, and the linear dimension a of the enveloping space, resulting in a
“shape transition” [36,187,188]. When [, < a, chain segments are randomly ori-
entated (Figure 3.6(a), 3.6(b)), although at length scales smaller than [,, they
are more ordered due to the bending rigidity. However, when the persistence length
l, is comparable to or larger than the linear dimension a, the chain has to adopt
an ordering (Figure 3.6(c), 3.6(d)) as a consequence of the competition between
confinement, bending energy and entropy.
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Figure 3.6: Typical conformations of N = 160 in a cubic box with side length a and
bending rigidity parameter x: A a = 40,k = 9,1, = 24.3; B a = 16,k = 2,1, =~ 5.4;
Ca=16,k = 9,0, = 24.3; D a = 16,x = 20,1, = 54. The persistence length [, here
refers to the value when no confinement is imposed, and is roughly approximated by
l, = (lp)k ~ 2.7k. When [, is smaller than the box, the chain forms spirals but they are
randomly ordered (see A, B). When [, is comparable to or larger than the box size, the
spirally chain has to arrange itself in an orderly way (see C, D). Meanwhile, figures C,
D show that the conformations do not differ significantly as l,/a becomes even bigger.

The significant difference between the contact probability of polymers in sym-
metric confinement and in free space is that for the former it does not drop when
s > l,. Instead, considering for example a cubic box with side length a = 40, P,(s)
levels off after s > s. (Figure 3.7(a), 3.7(b)) where s, depends on the box size and
k, even when k is not zero, corresponding to the conformations before the “shape
transition” occurs. In this case s, < N/2, which means that monomers that are
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separated by N/2 or more monomers actually have the same probability to contact
each other, suggesting that the maximum distance of monomers has been reached in
the finite box [190,191]. Within this space, chains with small k£ do not form spirals,
while for larger k, the semiflexible chains begin to spiral but the spirals are not reg-
ularly organized in size and direction (Figure 3.6(a)). As the space becomes smaller
and k is larger, the “shape transition" condition is satisfied, the semiflexible chain
will organize into spirals to accommodate itself in the finite space (Figure 3.6(c)).
The formation of these spirals leads to an oscillation of the contact probability for
the length scale larger than the size of spirals (Figure 3.7(c), 3.7(d), 3.7(e), 3.7(f)).

In the left column of Figure 3.7 are the contact probabilities for homogeneous
N = 160 chains with x = 0,3,7,9 confined in cubic boxes of side length a =
40,25,16. The right column shows contact probabilities of corresponding heteroge-
neous chains, with standard deviation ¢ = 1 or 3. In section 3.3.1 and 3.3.2 we have
mentioned that the heterogeneity flexibilizes the chain and induces more contact at
a length scale smaller than the persistence length. Here, when in confinement, the
heterogeneity could also weaken the oscillation of contact probability in the large s
regime because of the enhanced flexibility (Figure 3.7(d), 3.7(f)).
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Figure 3.7: Contact probability P,(s) for N = 160 homogeneous (left column) and het-
erogeneous (right column) chains with different bending rigidity (x) = 0,3,7,9 in different
sizes of cubic boxes: a = 16,25,40. When the space is finite but not too narrow, P.(s)
begins to level off after s > s.. When & is larger and the box size is smaller, the chain has
to spiral, hence oscillations in Py(s) appear in large s regime. The heterogeneity induces
more contact and weakens oscillation in P(s).
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For the chains in asymmetric space, the contact probability exhibits a slightly
different behavior in the region s > s. compared to the symmetric case. Shown in
Figure 3.8 are the contact probabilities for flexible and semiflexible chains (N =
160) in rectangle boxes with different aspect ratios. As the box is elongated, the
oscillation in P,(s) is distorted for semiflexible chains. The volume of the boxes is
about 4000. While in a symmetric box the spirals of the chain have the same radius
in all directions on average, in rectangle boxes, the spirals are also elongated, like
ellipsoids. The local minimum part is smaller than cubic box case since the space
in this direction is narrower and the monomers have higher probability of contact.
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Figure 3.8: The contact probability of chains in rectangle boxes with different aspect
ratios. In each figure the probability functions are shifted vertically in order to have a
better view of them. (a)x = 0; (b)x = 3; (¢)k =T7; (d)k = 9.
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3.3.4 The effect of bending rigidity

Here we investigate how the shape of the confinement affects the packing of a semi-
flexible chain. We choose rectangular boxes of different aspect ratios but the same
volume: a : b:c= 1:1:1, 2:1:1, 4:1:1, 8:1:1, 4:2:1. Fritsche et al. [34] showed that
a semiflexible ring polymer prefers the long axis of the surrounding envelope. This
conclusion holds for semiflexible linear chains as well. Figure 3.9 shows conforma-
tions for N = 160 and x = 9 where the chain is confined in selected boxes.
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Figure 3.9: Chain (N = 160,x = 9) conformations in rectangular boxes of different
aspect ratios but the same volume V = 4000. The aspect ratios are: 1:1:1, 2:1:1, 4:1:1,
8:1:1, 4:2:1. To minimize the free energy in the narrow space, the semiflexible chain would
stretch along the long axis, and spirals around the shortest axis.

To quantify the ordering of chain segments, we use the order parameter S fol-
lowing [34] which is defined as:

S = ﬁ <Nf @ cos? 0 — %)> , (3.7)
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where #; is the angle between chain segment u; and the local direction n of the
confined geometry of interest. In the rectangular confinement, n has three choices,
which are parallel to the three sides, namely, n, = (1,0,0),n, = (0,1,0) and n, =
(0,0,1). Thus, we have three order parameters S, Sy, S,, each ranging from -0.5 to
1. If the chain segments u; have no orientational preference along a given direction n,
the order parameter would be S' = 0, whereas the chain with all u; parallel to n gives
S =1, and chain with all u; perpendicular to n has S = —0.5. Therefore, S < 0
means that the chain segments have a tendency to be organized perpendicularly to
n, S > 0 indicates the tendency of being parallel to n.

Figure 3.10 shows the order parameters S, S, S, for chains of different bending
rigidity x in rectangular boxes of different aspect ratios. In the cubic case, the chain
segments have no orientational preference, S;,S,, S, are almost zero, both for the
flexible and semiflexible chains. When the box has a longer side (z direction),
S, is positive which means chain segments tend to be parallel to the = direction,
while S, S, are smaller than 0. Note that even for the flexible chain (x = 0) in a
rectangular box, Figure 3.10 shows a positive S, this is mainly due to the artificial
lattice setting. When the chains are stiffer, we get a larger S, and hence smaller
Sy and S,. This means that bending rigidity makes the chain order itself along the
longer axis in a rectangle confinement.
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Figure 3.10: The order parameter S;, Sy, S, for chains of different bending rigidities « in
rectangular boxes of different aspect ratios: 1:1:1(cubic), 2:1:1, 8:1:1, 4:2:1. A positive S
means that the chain segments are more parallel to the corresponding axis. Bending rigid-
ity makes the semiflexible chain order itself along the longer axis, therefore S, increases
with k for each aspect ratio except the cubic one.

3.3.5 The orientation of bond vectors

Since bending rigidity forces the chain to order itself along the long side of the
confinement and to form spirals, the orientational correlation function (cos(6(s)))
also behaves differently from the exponential decay or power law decay in large
contour length regime [132] in free space. Instead, the orientational correlation
function shows an oscillation due to the existence of spirals. This correlation function
for different confining geometries has been studied extensively both by simulations
and experiments [192,193].

Figure 3.11(a) shows the orientational correlation functions for N = 160 with
different bending rigidity x = 0,2, 3,5,7,9 confined in a cubic box with side length
a = 16. When the chain becomes stiffer, the spirals get larger and better ordered.
As a result, the oscillations in this function are more pronounced. Another fact from
this figure is that the periodicity of the function doesn’t change with the value of .
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This may imply that it may be determined by the box size, which will be discussed
later in this section. In Figure 3.11(b) we compare the orientational correlation
function of the heterogeneous chains with the homogeneous one. The difference is
more identifiable for the o = 3 case (red line). This means that the heterogeneity
weakens the oscillation by enhancing the flexibility.
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Figure 3.11: Orientational correlation function for different bending rigidity parameters
and distributions. Panel A shows the orientational correlation function (cosf(s)) for
chains with N = 160 and bending rigidities (= 0,2,3,5,7,9) in boxes of size a = 16.
Only the range s < 80 is shown. As k becomes larger, the spirals in the finite space are
more ordered, therefore (cos 6(s)) has larger oscillations. Panel B compares the correlation
function of the heterogeneous chains with homogeneous one. The oscillation is weakened
due to the heterogeneity.

Figure 3.12 shows the orientational correlation functions for N = 160 and k = 9
in cubical boxes of different sizes. As the space becomes narrower, the chain has
more spirals and they are more orderly, thus the amplitude and frequency of the
oscillation in (cos(6(s))) get larger.
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Figure 3.12: The orientational correlation function (cos#(s)) for chains of size N = 160
and k = 9 in different cubical boxes with side lengths a = 16,25,41,59,150. Only the
range s < 80 is shown. As the space becomes narrower, the chain has to spiral more
orderly, which contributes to the oscillation in (cos6(s)).

Liu [36] studied the form of the orientational correlation function (cos#(s)) in
a 2D square confinement for a worm-like chain, concluding that the leading con-
tribution to (cosf(s)) is e T cos 5, where [, is the effective persistence length, d is
linearly related to the size of box a.

s

Figure 3.13 shows the fitting of the orientational correlation function to e~ cos 2

for chain lengths of N = 20,40, 80, 160 and bending rigidity parameter k = 9. The
fitting values of [, and d are listed in the caption. The side lengths of the cubic
boxes for these four chains are a = 8,10,13,16. We have roughly the same ratios
of a/d : 8/1.526 = 5.24,10/1.883 = 5.31,13/2.375 = 5.47,16/2.863 = 5.59, which
means that d is almost proportional to the box size.
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Figure 3.13: Fitting of the leading term e le cos 3 to the orientational correlation data
for different chain lengths N = 20,40, 80, 160 with bending rigidity parameter x = 9. The
points are data calculated from Monte Carlo simulations, and the solid lines are the curves
fitted to corresponding points. Only the range s < 40 is shown. The fitting parameters
are: (1)N = 20,1l = 11.71,d = 1.526; (2)N = 40,1, = 13.51,d = 1.883;(3)N = 80,[. =
14.61,d = 2.375; (4)N = 160, [, = 14.92,d = 2.863.

3.3.6 Average Crossing Number

The average crossing number (ACN) is a parameter to quantify the self-entanglement
of a chain, defined as the average of the crossing number of the chain when projected
onto planes orthogonal to all the directions. Given a chain composed of N, segments,
we use the method in [150] to calculate the ACN. The mean average crossing number
(mACN) is obtained by averaging the ACN over all the conformations in thermo-
dynamic equilibrium.

In [151] Diao et al. showed that the relation between the mACN and the number
of chain segments N, can be approximated by aN, In N, +bN, for equilateral random
walks and polygons. Diesinger and Heermann [152] investigated the influence of
excluded volume interactions on the relation for Gaussian and equilateral random
walks, concluding that the Ny In Ny-behavior and the power law a N} fits well for the
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mACN of self-avoiding chains.
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Figure 3.14: The fit of the relations a1 Ny In Ny + b1 N, and anNé’2 to mACN versus the
segments number N for chains with different bending rigidities in free space. N, ranges
from 100 to 20000, and x = 0,2,5,10,15. The chains are simulated using the continuous
pivot algorithm with fixed bond length. The NjIn IV, and power law relations both fit
well for flexible and semiflexible chains, with the coefficients having a dependence on the
stiffness parameter k. The approximated coefficients are: (1) k = 0,a; = 0.0168,b; =
0.1268,a2 = 0.1629; (2) k = 2,a; = 0.0119,b; = 0.0648,a2 = 0.1014; (3) K = 5,a1 =
0.008,b1 = 0.0193,a2 = 0.0542; (4) k = 10,a; = 0.0054,b; = 0.0004,ay = 0.0297; (5)
k = 15,a1 = 0.0044, b; = —0.0059, a2 = 0.0204. The exponent by in the power law relation
is assumed to be independent of k. Its value is estimated by fitting the power relation
for flexible chain. The residual sum of squares (RSS) and the coefficient of determination
(Rsquare) for the two kinds of fitting are shown in table 3.1.
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In this section we study the mean average crossing number of semiflexible real
chains. Fig 3.14 shows the fitting of mACN for semiflexible chains with excluded
volume interactions. The chains are simulated by the continuous pivot algorithm,
with chain length ranging from 100 to 20000, and bending rigidity parameter x =
0, 2, 5, 10, 15. By fitting the N,In N, and power law aN? relations to the data
sets (see Figs 3.14(a),3.14(b)), we get the estimations of coefficients for flexible and
semiflexible chains. In the fitting of power law, we assume that the exponent b does
not change for different s since on length scale much larger than the persistence
length, the chain behaves like a flexible self-avoiding walk. This assumption is
checked in figure 3.15 where the ratios between the mean average crossing number
and the power law is presented. The leveling off of the ratios for large NV, indicates
that the same scaling behavior holds for different x. The corresponding residual sum
of squares (RSS) and the coefficient of determination (Rsquare) which can quantify
the goodness of fit are summarized in table 3.1.
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Figure 3.15: The ratio of mean average crossing number to the power law Nb1‘0593 for
k = 0,2,5,10,15. The leveling off for large IV, indicates that the same scaling behavior
holds for different .
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k=0 K =2 K=2D5 k=10 k=15

RSS1 383.79 200.62 102.09 65.34 14.23
RSS2 653.89 1043.69  1989.48  1892.44  1684.77
Rsquarel 0.999995 0.999993 0.999988 0.999975 0.999988
Rsquare2 0.999991 0.999964 0.999764 0.999263 0.998628

Table 3.1: The residual sum of squares (RSS) and the coefficient of determination
(Rsquare) of the aNyIn Ny + b, relation (RSS1, Rsquarel) and the power law aNé’ rela-
tion (RSS2, Rsquare2) of the mACN for flexible and semiflexible chains. The chain length
N ranges from 100 to 20000. Both the two relations fit well with data sets of mACN
according to the Rsquare, but the Ny In IV, relation seems to be slightly better than the
power law relation.

In figure 3.16 we calculate the mean average crossing number for heterogeneous
chains (dashed lines) and compare it with homogeneous chains (solid lines). The
values of mACN for heterogeneous chains are larger, which is consistent with the
conclusion that the heterogeneity enhances flexibility and thus induces more crossing
of chain segments.
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Figure 3.16: The mean average crossing number of homogeneous chains (solid line)
and heterogeneous chains (dashed line) with (k) = 5,10,15 and ¢ = 1.5,3.0,4.5. The
heterogeneous chains have more crossing of chain segments due to the enhanced flexibility.
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Geometrical constraints imposed on the chains could influence their crossing
and packing within the finite space. It is reasonable that the size of the confinement
would affect the mACN, i.e. the chains have more crossing in smaller space. Here
we argue that the symmetry of the confinement will also influence the number of
crossing. Fig 3.17 shows the mACN of linear chains in rectangular boxes with
different aspect ratios and same volume. The aspect ratios are 1:1:1 (cubic), 2:1:1,
4:2:1, 4:1:1, 8:1:1. The more symmetric the boxes are, the larger mACN is, i.e., the
chains are more intermingled.

120 * qag:b:c=1:1:1 Fe—k a:b:c:4:1:1_
—* q:b:c=2:1:1 —k aq:b:c=8:1:1
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Figure 3.17: The mean average crossing number (mACN) of chains (N = 160) in cubic
and rectangular boxes with different aspect ratios and same volume(~ 4000). It is shown
that the symmetry of confinement increases mACN, i.e. makes the chain more crossed.
This is because the symmetry reduces the effect of bending energy that tends to minimize
crossing by stretching along some preferred directions in confinement.

3.4 Conclusion

In this chapter we stressed the contact definition of monomers and the invariability
of asymptotic behavior when different cut-off distances and bending rigidity come
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into play. At very large length scale, the contact probability for linear chains in free
space will exhibit the same power law decay P(s) ~ s~%?2 with different coefficients
when the cut-off distance for contact is involved.

Secondly, we investigated how the bending rigidity influences the conformations
of a linear chain under geometric confinement, represented here by means of cubic
and rectangle boxes. The bending potential reshapes the chain due to the competi-
tive interplay of stiffness, entropy and confinement. Moreover, there exists a “shape
transition” from overall randomness to orderliness when the persistence length is
comparable to the size of confinement. One measure that can reflect the impact of
bending rigidity and confinement is the contact probability. The contact probability
of a flexible or semiflexible chain in sufficient small confinement has a plateau region
in the large contour length region, as opposed to the power law decay in free space.
Moreover, if the bending rigidity is big enough compared to the size of the confine-
ment, this plateau region will turn into an oscillation (Figure 3.7), which indicates
the existence of spirals formed by the chain.

The ordering of the chain according to the shape of geometric confinement can
also be studied by constraining the chain into rectangle boxes of different aspect
ratios. An order parameter S is defined to quantify the ordering of chain segments. It
is shown that the semiflexible chain preferably chooses the long direction of the boxes
to order the segments. The orientational correlation function (cosf(s)) of bond
vectors is also dramatically changed due to the bending rigidity and confinement,
and the oscillation in it serves as a direct evidence of the formation of spirals. The
leading term of the analytical expression of (cosf(s)) consists of two parts: the
first one is the exponential decay term that gives the effective persistence length
of the semiflexible chain in confinement; the second part is a cosine function which
determines the period of the oscillation mentioned above. This period is dependent
on the box size.

The presence of bending rigidity leads to less crossing inside a chain. However,
the asymptotic behavior of the mean average crossing number of semiflexible chains
stays the same as the flexible case. Two kinds of relationships can describe the
dependence of mACN on the chain length. On the other side, the geometrical
constraints could induce more crossing, where both the size and symmetry of the
constraints kick in. In particular, the more symmetric the confinement is, the more
crossing the chain has. The reason is that the symmetry reduces the effect of bending
energy that tends to minimize crossing by stretching along some preferred directions
in confinement.

It has been pointed out that the three-dimensional organization of chromosomes
is tightly coupled to the mechano-genomic code [194]. Our study shows that the
modulation of the bending rigidity may be part of the mechano-genomic code reg-
ulating the contact probability and thus the three-dimensional organization. It re-
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mains to decipher the mechano-genomic code. Here, one of the leading contender is
the nucleosomal organization. Nucleosomes contribute due to their steric repulsion
and their absence alone to the bending rigidity.
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The Contacts and Segregation in
Chains System

Chapter Summary

The self-contacts inside a self-avoiding chain and the contacts between two halves
of a chains in free space and in confinement are investigated in this chapter. The
total number of self-contacts N. grows linearly with the length of a free chain,
while in cubic confinement it grows quadratically. The distribution function of
contacts number between two halves N.(AB) shows a power law decay and then an
exponential decay for a free chain. In confinement, the function has a maximum.
As the chain becomes longer, the percentage of inter-half contacts among the total
contacts has a power law decay with an exponent close to -1, which supports that
the number of contacts between two halves is finite even when the chain is infinitely
long. The segregation of two chains in a rectangular box starting from different
initial conformations is studied. The results show that without monomer friction,
the segregation is dominated by the slow diffusion, thus the required times are similar
for these different cases. However, the intertwinement of chains indeed could impede
the segregation at small time scale.

89
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4.1 Introduction

The segregation of chromosome under certain circumstance is a significant phe-
nomenon in living systems. In eukaryotic cells, two sister chromatids will separate
from each other in order to accomplish the DNA replication or to create haploid cells
during the mitotic and meiotic processes. These kinds of segregation are facilitated
by cohesin [49] and several other factors [50,51]. In prokaryotes, the chromosome
segregation is also achieved under several mechanisms. For instance, it is found
that several genes are involved in the segregation [52], while [53] states that ac-
tive mitotic-like machinery contributes to the segregation of bacterial chromosomes.
Aside from all these biological factors, it is found that the entropy and the structure
of chromosomes are also important inducements to the chromosomal segregation
under confinement [31,54, 55].

To elucidate the effects of entropy, lots of analysis and simulations have been
performed to study the segregation process and the dynamics of two polymer chains
system. Specifically, [54] gave a detailed theoretical analysis on the free energy of
mixed and segregated states while varying the size of the confinement and the length
of chains. Arnold [56] studied the time scale 7 of segregation of two flexible real
chains confined in a infinitely long cylinder confinement due to the entropic effect
using the molecular dynamics simulation, concluding that the time is proportional
to 7 ~ N? wherer N is the length of each chain. Liu et al. [57] investigated the
dependence of the segregation time 7 on the length L of a 2D box in which two
chains are confined by solving the first-passage time problem and by performing
Monte Carlo simulations. Their results showed that there is a minimum of 7 as a
function of L. Polson et al. [195] measured the dependence of the free energy of the
system on the distance between the centers of mass for various confinement aspect
ratios and volume fractions of the chains, and found that the free energy at mixed
state is reduced if the chains are semiflexible. In addition, the formation of loops
inside chains can further enhance the segregation of chains according to [55,138].

On the other side, the segregation time 7 should not only depend on the the
shape of the confinement, the size and structure of the chains, but also be related to
how the two chains are initially organized. One may assume that it takes longer time
for two highly entangled chains to be finally separated. In [196] the Baumgértner
and Muthukumar found that the disentangling of two intertwined chains in free
space is characterized by two stages: the unwinding of double helix conformation
to interpenetrating chains, and the segregation to isolated chains. The first stage
has a time scale 7, ~ N30 while the second has a time scale 75 ~ N33, In another
literature [197], Diddens et al. studied the positive correlation between segregation
time and the number of contacts of the initial conformation of the two chains in a
dilute solution. Moreover, they found that initial conformations with larger winding
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number usually take longer time to arrive at the segregation state. Inspired by
this, we in this chapter discuss how the number of contact and entanglement will
influence the segregation process of two linear chains under confinement.

In [197], one method of creating the initial conformations of two chains is to cut
a linear chain into two halves. Afterward, these two chains are segregated due to
the entropy effect. However, one would ask how these two halves are organized if
they are still bonded. We argue that they are more or less separated on average,
and this is why the pivot algorithm works so efficiently. In order to unveil this, we
analyze the number of contact between the two halves of a chain both in free space
and confinement.

The intra-and inter-contact of polymers is also an important topic in biology
since it is closely related to the function of these polymers [22]. These contacts
are also closely related to the organization of chromatins and can be detected by
previously mentioned techniques [38]. Usually by analyzing the Hi-C data, one
can obtain some interesting properties such as the contact probability [39-41] and
chromosomal contact networks [42,43]. Some studies concentrated on the number
of contacts. In [15,46] it shows that in the fractal globule model the number of
contacts of a certain region with the rest is linear with its volume, rather than the
surface area. In addition, the contacts number of two regions is proportional to
the product of their volumes. This behavior is related to the scaling of contact
probability. Besides, the number of contacts for a chain without constraints is also
studied in the context of the self-avoiding walk. It shows that the average number
of contacts of a self-avoiding walk has an asymptotic behavior aN + bN? + ¢ as the
length of the walk N goes to infinity [47]. Baiesi et. al showed that the contact
number of two halves of a self-avoiding walk is finite even if the walk is infinitely
long [48]. In section 4.3.1 we discuss the contacts within one of the bisection pieces
of the chain (c.f. Figure 4.1).

4.2 The Model and Simulation

In order to analyze the self-contact of a single chain, we use the Bond Fluctuation
Model (BFM) to perform the Monte Carlo simulation of a self-avoiding walk with
length N = 160 in free space and in cubic boxes with different side lengths a. In
the limit case when the volume fraction of the chain is 1, the walk is a Hamiltonian
path. The algorithm in [198,199] is used to generate different Hamiltonian paths. In
addition, we also use the continuous pivot algorithm to simulate longer chains (N =
1000) in free space. In each case, about 10 000-15 000 independent conformations
are generated. Two nonconsecutive monomers are in contact when their distance
is smaller than a cut-off distance dy. The maximum of bond length in the BFM is
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V10, therefore we set dy = v/10. In the pivot algorithm, the bond length is 1, and
dy is set to 1.1. We shall be using the following measures of the self contacts: First
is the number of contacts N, that will be calculated as a function of the contour
length s,,, where the subscript denoted from the mid-point (c.f. Figure 4.1). The
second measures the number of contacts when distinguishing between the left and
right hand side from the mid-point monomer N.(AB), and third and fourth N.(AA)
and N.(BB) the contacts within left and right side from the mid-point, respectively.

Figure 4.1: The sketch shows how we partition the self-avoiding walk into two equal arms
from the mid-point monomer m. The contour length s for possible contacts is measured
from the mid-point.

Two linear chains are confined in rectangular box when studying their segregation
process. Since the influence of the sizes of the confinement and the chains on the
segregation has already been intensively discussed in other literatures, here we set
the length of the chain N = 200, and the width and height of the box L, = L, = 8.
The average extension along the longitude of the box for one such chain is about
215. The length of the box is set to L = 100 and 200. The initial conformations
of the two chains are prepared in three ways. Firstly, the two chains are placed
so that they are fully overlapped along the longitude of the box but separated by
the plane z = 4 (Figure 4.2(a)). Secondly, the two chains intertwine with each
other [196], thus they have a large winding number (Figure 4.2(b)). Another way is
that we tether the mid-monomer my, my of the two chains and obtain by simulation
the equilibrium states of them in the box (Figure 4.2(c)). Thus the two chains
are always overlapped in the equilibrium states. Further, they would have different
number of contacts. By studying the segregation of these initial conformations, we
can explore the influence of contacts and intertwinement on the segregation time 7.
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Figure 4.2: The initial conformations of two chains. (a) They are overlapped along the
longitude but separated seeing from the transverse section. (b) The chains are intertwined
with each other. (c) We get the equilibrium conformations of the two chains with the
mid-monomer mi,mo tethered, thus they are overlapped and have different number of
contacts.

4.3 The Results

4.3.1 Two halves of a single polymer

In this section we will show the main results related to the self-contact of a single
polymer chain. First we calculate the probability distribution function of the num-
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ber of contacts f(N.(AB)) between the two halves of a chain consisting of N = 160
monomers in free space and in confinement (Figure 4.3). We use the Monte Carlo
method and the bond fluctuation model to simulate the chain in free space and in
cubic boxes. The volume fractions of the chain are p = 0.02,0.04,0.08,0.16. For
the very dense system p = 0.96, the conformations of the chain are generated using
the algorithm of Hamiltonian path. In dilute condition, the distribution function
f(N.(AB)) decreases monotonically with the N.(AB), which means that two halves
of most conformations of the chain are nearly spatially separated. As the cubic con-
finement becomes narrower, f(N.(AB)) has a maximum at certain value of N.(AB)
as shown in Figure 4.3.
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Figure 4.3: The log-log plot of the distribution function of the number of contact between
two halves of a linear chain f(N.(AB)) in free space and in cubic boxes. The length
of the chain is N = 160. The volume fractions of the chain in cubic boxes are p =
0.02,0.04,0.08,0.16,0.96. In the case p = 0.96, the chain is simulated using the algorithm
of Hamiltonian path, while the others are simulated using the Monte Carlo method and
the BFM. The cut-off distance for contact is set to v/10.

In [197] it is reported that there is a scaling law behavior in f(N.(AB)) for free
chains. This can be seen for longer chains (Figure 4.4). The pivot algorithm is used
to simulate the chain with length N = 10000. Different definitions of d. give similar
behavior of f(N.(AB)) but lead to different exponents. Here the cut-off distance for
d. is set to 2.0 in order to get a better approximation. For small N.(AB)), the dis-
tribution function f(N.(AB)) shows a power law decay f(N.(AB)) < N.(AB)~102
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while in large N.(AB)) region, the function has an exponential decay. The distribu-
tion of N.(AB)) for different chain lengths also show that the number of contacts
of the two halves is finite [48,200].
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Figure 4.4: The log-log plot of the distribution function of the number of contact between
two halves of a linear chain f(N.(AB)). The length of the chain is N = 10000. The cut-off
distance for contact is set to 2.0 in order to get a better approximation. For small N.(AB)
the function has a power law decay with exponent around -1.02. At the tail it instead has
an exponential decay. The change of cut-off distance for contact only affects the value of
the exponent.

Secondly we analyze the dependence of the number of contacts on the segments
we are looking at. The segment starts at the mid-monomer and extends to both
sides by a contour length s,, (Figure 4.1). Therefore the segment is composed by two
parts, denoted as A and B, and has the length 2s,,. The total number of contacts
within this segment N, has the following relation: N, = N.(AA)+N.(BB)+N.(AB).
In figure 4.5 we plot the ratio of the number of contacts N, to s,, versus s,, for a
linear chain in free space and in cubic confinement. In the cubic boxes, the volume
fractions of the chain are 0.16, 0.26, and 0.96 respectively. The length of the chain
is N = 160. In free space, N, grows linearly N, ~ s, after the length of the segment
exceeds some value 2s’ . In contrast, when the cubic constraints is imposed, N,
grows quadratically N, ~ s when s,, > s . In other words, if we lengthen the
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segment by 2As,,, then for chains in free space
AN, ~ As,,. (4.1)

The number of newly-formed contacts only depends on the new fragment. For chains
in cubic confinement,

AN, ~ 5,,As,,. (4.2)

The number of newly-formed contacts also depends on the old segment, which means
that the new fragment penetrates the region that the segment occupies under con-
finement.

9
— N,/s,, ~ 0.80
8t — ]V{'/sm ~ 0'015771, , p=0.16
— N,/s,, ~0.03s,,, p=0.32
7 N./s,, ~ 0.07s,,, p=0.96
6 *
8, =21
)
o
3
Z 4
3
2
00
oooogoo M
1 80000 13020,0,0:0761020.0.0026.6.0,0.0,0,0,0,0,0,0,0,0,0,0,0,0,0
goooOOOOO(
0
0 10 20 30 40 50 60 70 80

Sm

Figure 4.5: Shown is the ratio of number of contacts N, to the contour length from the
mid-monomer S,, versus s,,. The chain with N = 160 monomers is placed in free space
(blue) and cubic boxes of different sizes. The solid lines are the results of a least square
fit to the data from s}, onward. In free space the contact number grows linearly, while in
constraint space it grows quadratically.

Next we consider the percentage of the inter-contacts of the two halves: p, . (s;) =
N.(AB)/N, (Figure 4.6). For a chain in free space, p,, decreases monotonically with
Sm, which means that as the chain becomes longer, the number of contacts within
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a halve of the chain increases more rapidly. The reason is that the excluded volume
effects are more pronounced, thus the two halves drift apart. In a cubic box, for
rather small s,,, the percentage of inter-contacts is the same as the free chain case,
i.e. the short segment does not feel the constraint. As the segment becomes longer,
it is compressed by the remaining parts of the chain, inducing more contacts between
two halves of the segment. In the limit when the segment occupies the whole space
(Hamiltonian path), the percentage of N.(AB) is pf}f ~ 0.33. This means that in
this case we have pf ; = pilP = plE which is reasonable since every site is occupied

and each contact has the same probability of counting into N.(AA), N.(BB), and
N.(AB).
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Figure 4.6: Shown is the proportion of inter-contacts of the two halves N.(AB) to the
total contacts IV, versus s,, for chain in free space and in confinement. In free space, the
proportion is always decreasing, while it sees an increase after some contour distance s,
if the box is sufficiently small. (p > 0.04).

For a linear chain in free space, the asymptotic behavior of p, , (s,,) for large s, is
plotted in Figure 4.7. The open circles are the data we calculate. By linearly fitting
the region s,, > 2000 in the log-log plot, we get an exponent -0.97 of the power law
decay: p,,(sm) ~ $;097. Recall that from figure 4.5 we get for a free chain the total
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number of contacts grows linearly with s,,. Actually this linear growth has already
been discussed in [47], where they gave the asymptotic scaling N, ~ aN + bN? + ¢
(N is the length of the self-avoiding walk). The last two terms are rather small
compared with the leading term aN. Approximately we have N, ~ N = 2s,,,. Thus,
the number of inter-chain contacts is N.(AB) = p,, N, ~ s%:%. We surmise that for
sufficiently large s,, or N, we should have p,,(s,) ~ s, and N.(AB) ~ s%, which
is consistent with the conclusion that the number of contacts between two halves is
strictly finite [48]. Much longer chains should be analyzed to fill the gap.

10°
- =097
o pAB(Sm ) Sm
(@]
O o .
(@)
C
10" RS
(@]
OOO
%o
OOo
/E e}
V)
=
< 10—2
1073
10* 102 103

Sm

Figure 4.7: The power law decay of p, . (s,) in the large s, region. The open circles are
the data we calculate. The blue line indicates the power law decay with exponent —0.97.
We get this exponent by the linear fitting of the region s,, > 2000 in the log-log plot.

Finally we look at the overlap of the two halves by the projection of monomers
on the line connecting the centers of mass of two halves. In the figure 4.8 we show
the results of chains in free space (blue), cubic box (red) and rectangle box with
aspect ration 4:1:1 (green) and 8:1:1 (yellow). The distance d is given in units of
the center-of-mass distance. The gray line indicates the positions of the centers of
mass. In free space and the longer rectangle box, the monomers of one halve that
penetrates into the other halve have a very small proportion, which means that in
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the two cases, the two halves of the chain are nearly separated. For chains in cubic
box and shorter rectangle box, the two halves penetrate into each other, i.e. they
are more mixed.
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Figure 4.8: Distributions of monomers projected onto the line connecting the centers of
mass of two halves of the linear chain. The distance d is given in units of the center-of-
mass distance. The origin corresponds to the middle of the centers of mass, and the gray
vertical lines represent the positions of the centers of mass. The distributions for chain in
free space (blue), cubic box (red), rectangle box with aspect ration 4:1:1 (green) and 8:1:1
(yellow) are shown.

4.3.2 The Segregation of Two chains

The segregation process of two polymer chains could be influenced by many factors.
One important and well-studied factor is the geometrical constraint, where both its
shape and size matter. Also, the intra-and inter-actions of the chain systems play
a crucial role in this process, for example, the bending rigidity and the attraction
between the chains. The coaction of these factors is quantified by the free energy
F(x) = E(x) —TS(x), where x denotes the state of the system. By minimizing this
free energy, one can obtain the equilibrium states. The relaxation to these equilib-
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rium states from an initial state that have a high free energy is usually characterized
by the relaxation time 7. On the free energy landscape, the relaxation process can
be described by pathways. Although the pathways are influenced by thermal fluc-
tuation, where this process starts also determines how the pathways go. The main
results of the section show whether and how different initial states carry weight in
the segregation of two chains.

We use two quantities to distinguish different initial conformations of the two
chains: the number of their contacts N, and the winding number W. The distance
of centers of mass is often used to describe the states of the two chains, yet it only
gives the overall information about their relative position. The number of contacts,
on the other side, provides the local proximity of the two chains. In the presence of
monomer friction, these contacts would impede the segregation process. We further
want to study the effect of intertwining of the chains on the segregation, where the
winding number W is used to measure this intertwining.

We only consider the excluded volume interaction, that is, there is no monomer
friction in the system. The segregation is driven by the entropy of the system.
Figure 4.9 shows the time dependence of the distance of mass centers r.;,(t) for
the case L = 100. The segregation starts from 7 different initial conformations:
separated by the plane z = 4 (Figure 4.2(a)), intertwined (Figure 4.2(b)), and
mid-monomers fixed but with different numbers of contacts N.(0) (Figure 4.2(c)).
For each initial conformations, we perform 100 independent runs of Monte Carlo
simulation. The total time required for segregation is almost same for these 7 initial
conformations: 7 ~ 3.5 x 107mcs. In the case L = 200 the results are similar, with
7 ~ 8.0 x 10°mcs. This means that with the entropy as the only driven force of
segregation, the contacts and the intertwinement have little effects on the entire
segregation process.
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Figure 4.9: The time dependence of the distance of mass centers r.,(t) for the case
L = 100. The segregation starts from 7 different initial conformations as indicated in the
legend. The results are averaged over 100 independent runs.

The number of contacts of the two chains N.(t) is shown in Figure 4.10 (L =
100) and Figure 4.11 (L = 200). Although the contacts number for these initial
conformation differs much at the beginning, they come closer shortly. The time
scale of this 7; is much smaller than the scale of the overall segregation process,
with 71 ~ 2 x 10%mes for L = 100 and 7, ~ 2 x 10°mcs for L = 200. In particular,
for two chains that are initially intertwined (the green line), it takes longer time for
N,(t) to join the other curves. The time is 75 &~ 4.6 x 10°mcs for L = 100, and
7y &~ 1 x 10%mes for L = 200. This implies that the intertwinement could indeed
slow down the separation of two chains. The winding number of them W (t) has
similar behavior (Figure 4.12 and 4.13)
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Figure 4.10: The number of contacts between the two chains N.(¢) in the segregation
process for different initial conformations in the case L = 100. The inset shows a zoom
for the beginning phase of the segregation.
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Figure 4.11: The number of contacts between the two chains N.(¢) in the segregation
process for different initial conformations in the case L = 200. The inset shows a zoom
for the beginning phase of the segregation.
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Figure 4.12: The semi-log plot of the winding number of the two chains W(¢) in the
segregation process for different initial conformations the case L. = 100. The inset shows
a zoom for the beginning phase of the segregation.
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Figure 4.13: The semi-log plot of the winding number of the two chains W(¢) in the
segregation process for different initial conformations the case L = 200. The inset shows
a zoom for the beginning phase of the segregation.

Experimentally the neutron scattering is often used to analyze the structural
disorder of alloys., where the structure factor is calculated to identify the organiza-
tion of metals [201,202]. In a binary alloy model, the dynamics of unmixing process
of two kinds of atoms A and B is associated with the following dynamic structure

factor
1

S(at) = 75 2 elia - ril{c(t) — () = [(¢]") = (")), (4.3)

where c(t), cP(t) denote the occupancy of the lattice site i at time ¢, e.g., if it is
occupied by an A-atom, ¢! = 1. L is the size of the lattice. During the unmixing
process of A-atom and B-atom, the peak of the S(q,t) is growing [202]. Similarly,

for two chains (A and B) with the same length N, the dynamic structure factor is
N N
> expliq -y, (t)] — D expliq - r,) (1))

rewritten as follows:
> (4.4)
= S%q.t) + $%(aq,t) — S*%(a,t)

1
S0t = 33 {
where 12 (1), rB(t) are the positions of the m-th and n-th monomers of chain A and

m n
B respectively. The first two terms are the single-chain structure factors for chain

2
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A and B, while the last term is the interchain structure factor:

S (q.t) = 5 3 O (explia - (£A(0) — ¥2(0)] + explia - (5(1)) — AD]) (15)

m=1n=1

Figure 4.14 shows the dynamic structure factor of the two chains at different
Monte Carlo steps during the segregation process. At the beginning, the two chains
are intertwined, and S(q,0) has several small peaks. After that S(q,t) only has a
major peak and the peak is growing as the segregation goes on. Thus the growth of
the peak can also reflect this segregation process (Figure 4.15).
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Figure 4.14: The dynamic structure factor S(q,t) of the two chains at different Monte
Carlo steps during the segregation process.
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Figure 4.15: The growth of peak value of the dynamic structure factor S(q,t) during
the segregation process for two chains confined in the L = 200 rectangular box.

4.4 Conclusion

In this chapter we focused on two main topics: the self-contact of two halves of a
single polymer chain and the segregation of two chains in a rectangular box. First
we studied the distribution function of the number of contacts f(N.(AB)) of two
halves for a single chain with and without confinement. For a chain in free space,
the distribution function exhibits a power law decay in small N.(AB) region, and a
exponential decay in large N.(AB) region. For a single chain confined in a cubic box,
when the size of the box is small enough, the distribution function first increases
with N.(AB), then decreases rapidly. Next we studied the dependence of total
number of contacts N, on the size of the segment we are looking at. For free chain,
N, grows linearly with the length of the segment s,,, while for confined chain, N,
grows quadratically. Further, we studied the percentage of the inter-contacts of the
two halves of the segment p,,(s,), finding that it has a power law decay for free
chains, with an exponent slightly larger than -1. We assume that the discrepancy is
caused by statistical error and finite size effects. This power law decay demonstrates
that the number of contacts between two halves of a self-avoiding chain is finite as
the length of the chain goes to infinity, which indicates that the two halves are
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nearly separated. For confined chain, in small s, region, p, . (s.,) overlaps with the
free chain case, meaning that in small length scale, the segment does not feel the
constraints. As s,, becomes larger, the confinement induces more contacts between
two halves of the chain. Specifically, for a Hamiltonian path, the total number of
inter-contacts is equal to the intra-contact, i.e. pfF ~ 0.33. The separation of
two halves of a self-avoiding chain is also revealed by the distribution of monomers
projected onto the line connecting the mass centers of the two halves.

The segregation of two chains in a rectangular box starting from different initial
conformations is also investigated. We create three kinds of initial conformations:
separated, intertwined, mid-monomers fixed but with different numbers of inter-
contacts. By looking at the evolution of mass centers distance, number of inter-
contacts, winding number, and the peak value of dynamic structure factor, we find
that for the system only with excluded volume interaction, these different initial
conformations have similar segregation time because this process is mainly governed
by a much slower diffusion of chains. However, the intertwinement indeed would
impede the segregation process at the beginning.

In the presence of other interaction such as the attraction between nearest neigh-
bors, the dynamics of this segregation process will have more interesting features.
It is found that in free space, the segregation time is proportional to the number
of initial contacts between the two chains [197]. We will implement this kind of
interaction and study this dynamics for two confined chains in future works.



Fractality and Topology in the
Self-Avoiding Walks

Chapter Summary

In this chapter we deal with some geometrical and topological features of the contacts
inside a chain. Specifically, we calculate the fractal dimension and growth rates of
the Betti numbers of the system. In the simplest case, we consider the chain as
a self-avoiding walk without any other interaction. The set of contacts is a subset
of the original walk, and we found that this subset may have a slight multifractal
property. In addition, the topological exponents are also different from the self-
avoiding walk. Further, each contact gives rise to the formation of a loop. To
elucidate how these loops influence the structure of the self-avoiding walk, we delete
the loops in a similar way to the loop-erased random walk, thus producing a new
walk: loop-deleted self-avoiding walk (LDSAW). The critical exponent of LDSAW is
approximated by studying the scaling behavior of mean end-to-end distance, and the
dependence of the mean length of LDSAW on the length of the original self-avoiding
walk. Afterward, the fractal dimension and growth rates of Betti numbers of this
LDSAW are calculated. The same calculations are also performed on the projection
and random subsets of self-avoiding walks.

109
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5.1 Introduction

The self-avoiding walk (SAW) has been investigated both theoretically and numer-
ically due to its applicability in the coarse-grained modeling of various polymer
systems. The fractality of SAW is defined and measured by Havlin and Ben-
Avraham [85,86], with the fractal dimension dp = 1/v (v is the critical exponent).
The contacts of polymers, especially biomolecules, play an important role in corre-
sponding systems. For example, certain biological functions are accomplished via
the contact and interaction of different parts of molecules [22]. Experimentally the
Hi-C contact maps are used to study the 3D organization of genome. The scaling
behavior of contact probability of SAW as a function of contour length was studied
in [135,154,155]. The average number of contacts (m) of SAW is found to have an
asymptotic behavior (m) ~ a., N, where N is the length of the SAW [47]. Baiesi [48]
studied the contacts between two halves of a SAW and found that they are strictly
finite in number. The dependence of the number of contacts on the radius of gyra-
tion of a SAW also has a simple scaling law [203]. In this chapter, we would rather
inspect the spatial distribution of these contacts from geometrical and topological
aspects of view. Since every contact occurs when two monomers become the nearest
neighbors, the set of these contact points is actually a subset of the original SAW.
Then the question arises that what the differences between them are in terms of the
fractality and topology.

Each contact of SAW indicates a formation of loop. Lawler [204,205] introduced
a different kind of self-avoiding walk by erasing the loops in a random walk, namely
LERW (Loop-Erased Random Walk). Due to its close relation to the uniform span-
ning tree and the Laplacian random walk, the LERW has received lots of atten-
tion [206-208]. The LERW is self-avoiding but belongs to a different universality
class from the normal SAW. It has a slightly larger critical exponent v, ., ~ 0.616
in 3D which was intensively estimated in [209-212]. Instead, one may consider
what if we erase the loops of a self-avoiding walk. To distinguish from LERW, we
denote this new kind of walk as loop-deleted self-avoiding walk (LDSAW). Clearly,
the configuration space of the LDSAW is a subspace of that of the SAW, and a
LDSAW is one subset of the original SAW. Whether this LDSAW has a different
critical exponent is a question we will study.

Topologically, people have examined the knots [149, 184,213], writhe [148, 150]
in self-avoiding walks since these are very important features in the packing of
DNA [214,215]. When calculating the writhe of a polymer, the 3D object is projected
onto planes from all directions, then the writhe of each knot diagram is calculated
and averaged. This means that the projections share some topological features of
the 3D object. So how are the points projected on the plane distributed? What is
the fractal dimension?
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Recently, owing to the powerful ability of persistent homology to reveal the
underlying topological features of data at different resolutions [216,217], the ap-
plication of persistent homology is quite prevailing in many areas such as machine
learning [59,218], disease examination [219,220], brain network [221] and so forth.
Specifically, the fractal property of data is linked to the persistent homology as they
both measure the data at different scales. Robins proposed the growth rates in the
number of connected components or holes as the resolution goes to zero, and ex-
plained the relation between these growth rates and fractal dimension in her PhD
thesis [222]. Afterwards, Macpherson and Schweinhart [223] defined a persistent ho-
mology dimension based on the birth and death of holes to measure the complexity
of the data. Another method to define the fractal dimension was introduced in [224].
Further, an estimator of fractal dimension in terms of the minimum spanning trees
and higher dimensional persistent homology was proposed in [225-227]. Despite
all these different definitions, the fractal dimension established on the persistent
homology gives a description of the complexity of the system under investigation.

In this chapter we would first use geometrical methods to study the fractal
properties of contacts of the SAW, loop-deleted self-avoiding walk (LDSAW) and
projections of SAW. For comparison, a random subset of SAW would also be studied.
Following are the analysis of these systems on the topological aspect. This chapter is
organized as follows. In section 5.2 we introduce some concepts of fractal and several
algorithms for calculating the fractal properties. Then the basic idea of persistent
homology will be presented, together with the fractal dimensions defined on this.
The results of our analysis for different systems are given in section 5.3. Finally in
the last section we conclude our work.

5.2 Concepts and Methods

5.2.1 Definitions of Fractal Dimension

Fractals have an important property called self-similarity which means that they
have similar patterns at different scales. This is the foundation for various def-
initions of fractal dimension. In general, self-similarity is only well founded for
artificial fractals, or deterministic fractals, such as the Cantor set and Sierpinski
triangle, while in nature, as a consequence of the ubiquitous randomness, objects
of interest would rather repeat a pattern stochastically at different scales, i.e., they
are statistical self-similar, therefore they are random fractals. Typical examples of
random fractals include the coastline of England, Brownian motion and so on. The
self-avoiding walk is also a random fractal.

The definition of box counting dimension is straightforward. If S is the fractal



112 5. Fractality and Topology in the Self-Avoiding Walks

under study,

.. logN(L)
Do) = i 10,1/

where N(L) is the number of boxes of side length L needed to cover S. An equivalent
definition is given by

(5.1)

DMB(S) =n— lim 710g VOI(SL)

5.2
L—0  logL (5:2)

where vol(Sy) is the influence volume of S by dilating S by a sphere of radius L [228,
229]. Another important definition of fractal dimension is the mass dimension, which
is defined as the exponent of power law relation between the mass M (L) within a
ball of radius L centered at a point:

(5.3)

The mass dimension is quite intuitive if we consider that for a n(= 1,2, 3) dimen-
sional object, M (L) is proportional to L™ [230,231]. The difference in the sequence
of taking the limit and averaging M (L) over every point gives the information di-
mension and the correlation dimension [232]. The box-counting dimension together
with the information dimension and correlation dimension are special case of the
generalized dimension which is:

D — lim ﬁlOg (Xip))
g =

M T los (L) (54)

where p; is the percentage of points in box i, ¢ is the moment. For a monofractal,
the value of D, will not change with ¢, while if an object is a combination of different
fractals, then D, exhibits a decreasing with ¢, which indicates the structure of this
multifractal. Specifically, D,, and D_,, correspond to the most dense and least
dense areas.

Instead of counting the mass within a box of size L, Termonia and Alexandrow-
icz [233] defined the fractal dimension by finding the scaling behavior of the average
radius (R,,) of m nearest-neighbor points with m:

(Ry,) ocm'/P, (5.5)

Afterwards, it is proposed in [234] that the Equation (5.5) can be extended to the
moment of order 7:

(Ry,) oc m™/ P, (5.6)
where 7 = (¢—1)D,, D(7) = D,. The algorithms based on Equation (5.1) and (5.4)
are fixed-size algorithms, while algorithms based on Equation (5.5) and (5.6) are
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fixed-mass algorithms [232]. The latter outperforms the fix-sized algorithms in some
cases, especially when ¢ < 1 [235,236].

The critical exponent v of self-avoiding walk or other kind of walk is always a key
subject in the field of polymers, which can be estimated by the asymptotic behavior
of the mean-square end to end distance and radius of gyration [74,76,101]. The cor-
responding fractal dimension of the walk is D = 1/v. In this chapter, since we intend
to investigate the structure of contacts of a self-avoiding walk, which is not a typical
walk, but rather a point-cloud, we want to use the typical algorithms for estimat-
ing the fractal dimension. Both the self-avoiding walk and its contacts are random
fractals, therefore it’s necessary to average over some point-clouds in order to get a
better estimation of the fractal dimension. To check the performance of the algo-
rithms, the self-avoiding walk is also analyzed. The algorithms we have assessed are:
(1) a fast box-counting method implemented in [237]; (2) the Bouligand-Minkowski
method [229, 238], which is an variant of the box-counting method [228]; (3) the
Barycentric fixed-mass method [239]. The last two methods are capable of carrying
out the multifractal analysis. The Bouligand-Minkowski method is based on the
Equation (5.2) and is modified to quantify the multifractality using the derivative
of the influence volume vol(Sy) in [238,240]. The Barycentric fixed-mass method is
based on the Equation (5.6) and incorporates the barycentric pivot point selection
and nonoverlapping coverage criteria to reduce the edge effects.

5.2.2 Persistent Homology

The scheme of persistent homology is to discover how the topological features of a
shape, such as the connected components, holes and voids, would change at different
scales. In the first place, the point-cloud that describes the shape needs to be
represented by a simplicial complex. Then a filtration is started by growing the balls
centered at every point (Figure 5.1). The radius of the balls, or the resolution is
denoted by e. During this growing process, the number of the connected components
is always nonincreasing, while the holes and voids could appear and disappear when
increasing €. The corresponding values of € are usually denoted as €y and €geqn.
The intervals (€pirtn, €gearn) Tepresent the underlying topological property of the given
shape, and can be visualized as the persistent barcodes and the persistent diagram.
The long intervals, which means that the holes or voids persist through a large
range of resolution, indicate important topological features, and small intervals are
considered as noise. For example, in [61] the barcodes are used to detect the existence
of alpha helix and beta sheet in proteins. In addition, various definitions of distance
between two persistent diagrams provide different measures for the similarity of two
shapes, e.g. two yH2AX clusters [241]. Detailed mathematical description for the
persistent homology can be found in [217,242].
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Figure 5.1: The filtration process for 2D points. The image is from Christian Bock [243].

The connection of persistent homology with fractality is proposed by Robins [222],
where the growth rates of Betti numbers are studied. The numbers of connected
components, holes and voids of a shape are the Oth, 1st, 2nd persistent Betti num-
ber f;(i = 0,1,2). As mentioned above, these numbers would change during the
filtration process, that means 3; depends on €. For a shape that is fractal, suppose
as € — 0, 5;(€) — oo, an exponent ; could be defined if the asymptotic behavior is
a power law:

. log Bi(e)

"= et (5.7)
If the limit does not exist, alternatively limsup or liminf is used. These three topolog-
ical growth rates could also serve as the characteristics of the fractal in discussion.
By applying these to some well-defined fractals, Robins showed that the growth
rates can distinguish sets with the same Hausdroff dimension but different homol-
ogy. However, the relation between them and fractal dimension remains an open
question. Several other definitions of persistent homology fractal dimension are
studied in [223,225-227].

Since a self-avoiding walk with equal bond length is already a minimal spanning
tree, By is N or 1. The loops in the self-avoiding walk are actually one kind of holes
in the first dimension of persistent homology. In section 5.3, we will show the results
of 7, and ~, for the self-avoiding walk, its contact and other related systems.

5.3 Results

5.3.1 The Fractal Dimension of the 3D Self-Avoiding Walk

The well known critical exponent for 3D SAW is v &~ 0.588.., which is the inverse of
the fractal dimension D = 1/v & 1.7 [85]. The most common way to calculate the
fractal property numerically is to use the asymptotic behavior of mean-square end
to end distance or radius of gyration: (R?) ~ N?”, <R§> ~ N?¥. Since our task is to
get the fractal information from one or several point-clouds, such as the contacts of
SAW, the performance of the algorithms mentioned in section 5.2.1 on self-avoiding
walk could serve as a criterion for the accuracy of different methods in our systems.
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The results of the fast box-counting algorithm on self-avoiding walks of length
N = 10%,10°,3 x 10°,10%,2 x 10° are shown in Figure 5.2. Due to the intrinsic
randomness of the system, single point-clould of the walk does not give a reliable
estimation of the fractal dimension. Therefore, the box number n(L) is averaged
over a lot of conformations (point-clouds) for each N. The numbers of conformations
are 15 000, 200, 200, 100, 50, respectively. By fitting the linear region of the log-log
plot of (n(L)) versus L, the fractal dimension D is approximated. The values are
1.5155, 1.6319, 1.6442, 1.6673, 1.6782, respectively. Due to the finite resolution and
edge effects, the box-counting method is quite sensitive to the system size and noise,
therefore the estimated fractal dimension is not reliable for the SAW.

25 ‘ ‘
— N=10*, D=1.5155
. — N=10°, D=1.6319
20/ — N=3x10°, D=1.6442 | |
o N-10°, D= 16673
515, R — N=2x10%, D=1.6782 |
\é ................
N
L10
5/ ',

9% 20 22 24 26 28 30 32
log, L
Figure 5.2: The log-log plot of the box number n(L) versus the box size L. The fractal

dimension D of SAW with different lengths are estimated by fitting the linear region. The
fast box-counting algorithm is implemented by Kruger [237].

The Bouligand-Minkowski method is applied to the same systems of self-avoiding
walks, with results shown in Figure 5.3. The estimated fractal dimensions for dif-
ferent lengths of SAW are 1.6187, 1.6769, 1.6754, 1.6901, 1.7014, which are better
than the fast box-counting method, but still sensitive to the finite size effects. The
multifractal analysis of this method is not robust in such a random system, and
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therefore does not give the result that SAW is statistically monofractal.

15.0 : : ‘
— N=10*, D=1.6187
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— N=3x10°, D=1.6754
106 _
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logL

Figure 5.3: The log-log plot of the influence volume V(L) versus the radius L (up to
20) of sphere at each point. The fractal dimension D is equal to 3 — a, where a is the
coefficient by linear regression. Self-avoiding walks of different lengths are analyzed by
this Bouligand-Minkowski method.

Because of the limitation of computer resources, the algorithm of Barycentric
Fixed-Mass method provided by Kamer can only calculate the fractal information
of systems with up to 3 x 10° points. The Figure 5.4 and 5.5 show respectively the
log-log plot of Equation 5.6 for ¢ ~ 0 and D, — ¢ curve for the self-avoiding walks
with N = 10%,10%,3 x 10°. The numbers of conformations for averaging are 15000,
200, 100. When ¢ ~ 0, the estimated values of Dy are 1.6962, 1.7012, 1.7008 for
the three systems, which is much better than the results of the above two methods.
Since the self-avoiding walk is statistically monofractal, D, should be the same when
varying q. The slight increase in Figure 5.5 is attributable to the finite size effect
and statistical deviation. Considering these reliable results, this method will be
employed in the analysis of the contacts of SAW and other systems.
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Figure 5.4: The log-log plot of one moment of R,, versus m. The moment order is
selected so that ¢ =~ 0. The system sizes are N = 10%,10°,3 x 10°. The fractal dimension
D is related to the slope a of the linear parts of the points by D = —1/a. The data for

N = 10° and N = 3 x 10° are shifted downwards by 0.5 and 1 artificially to avoid the
overlap of the points.
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Figure 5.5: D, versus ¢ for self-avoiding walk with N = 10° and N = 3 x 10°. In
principle D, should not change with ¢ for self-avoiding walk. The slight increase is due to
the finite size effect and statistical error.

The routine of persistent homology is applied to the self avoiding walk using the
package Dionysus. The alpha complexes are constructed for the filtration due to its
high efficiency when dealing with large systems. We analyzed self-avoiding walks
of length N = 3 x 10° and N = 10°, 500 and 300 independent conformations of
which are generated to average. Figure 5.6 and 5.7 show the growth of the first and
the second Betti number. The estimated values of 7, and v, from linear fitting are
about 1.75 and 1.72 respectively.



5.3. Results 119

6—1.7425 , N= 106

— . 6—1.7643, N=5x10°

aen )

loge

Figure 5.6: The log-log plot of the dependence of the first betti number 5; on the
resolution € for self-avoiding walks. The lengths of the walks are N = 10% and N = 5 x 10°.
The results are averaged by 300 and 500 independent conformations. By fitting the linear
regions of both set of points, we get the growth rate v; &~ 1.76. The inset shows the ratio
between the original data and the power law.
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Figure 5.7: The log-log plot of the dependence of the second betti number S5 on the
resolution € for self-avoiding walks. The lengths of the walks are N = 10% and N = 5 x 10°.
The results are averaged by 300 and 500 independent conformations. By fitting the linear
regions of both set of points, we get the growth rate v9 &~ 1.72. The inset shows the ratio
between the original data and the power law.

5.3.2 The Geometric and Topological Properties of the Contact
of Self-Avoiding Walk

The contacts of inter or intra biomolecules often indicate the realization of some
biological functions. These contacts are driven by many kinds of interactions such
as electrostatic forces and hydrogen bonds. For a totally flexible linear chain, the
contacts are caused by randomness. The average number of contacts of self-avoiding
walks is found to have an asymptotic behavior with respect to the length of the walks
((Ne)saw ~ aooN) [47]. In this section we investigate the distribution of the contacts
from geometric and topological aspects.

In the cubic lattice model of SAW, when two nonconsecutive monomers are
nearest neighbors, they are counted as a contact, the position of which is the average
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of these two monomers. The set of those contact points is clearly near the backbone
of the original SAW, that means it is a subset of the SAW. However, the fractality is
not necessarily the same. Due to the excluded volume effect, two densely contacted
regions should be separated spatially (Figure 5.8).

Figure 5.8: The contacts of a self-avoiding walk. Each contact is represented by a
green sphere. The blue lines do not mean that the contacts are connected, just show the
separation of different contacted regions.

Different from the self-avoiding walk, the point-cloud of contact seems to be dis-
ordered. But do they have the self-similar property? To explore this, the Barycentric
Fixed-Mass method is applied to study its fractality. The contacts of N = 10° and
N = 2 x 106 self-avoiding walks are recorded, each with 250 and 200 conformations.
By calculating the relation in Equation 5.6, we indeed find a power law depen-
dence(Figure 5.9), which suggests that the set of contacts is fractal. However, D,
exhibits a decreasing with the moment order ¢ (Figure 5.10), which implies that the
set of contacts is multifractal.
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Figure 5.9: The log-log plot of three moments of R,, versus m for the contacts of N = 10°
self-avoiding walk. The moments are 7 = —5, 2, 10.
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Figure 5.10: The D, — ¢ relation for the contact points of the SAW N = 105 and

N =2 x 106.

The growth of the first and second Betti number of the contacts is shown in
Figure 5.11 and 5.12. The estimated values of y; for the contacts of SAW N = 2x 108
and N = 10% are 1.7707 and 1.7735. The estimated values of v, are 1.8108 and

1.8029.
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Figure 5.11: The dependence of first Betti number on resolution € for contacts of N =
2x10% and N = 106 SAW. The first Betti number is averaged over 200 and 250 independent
conformations of SAW. Shown in the inset is the ratio between the Betti number and the
power law.
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Figure 5.12: The dependence of second Betti number on resolution ¢ for contacts of
N =2 x10% and N = 105 SAW. The second Betti number is averaged over 200 and 250
independent conformations of SAW. Shown in the inset is the ratio between the Betti
number and the power law.

5.3.3 The Loop-Deleted Self-Avoiding Walk

When two nonconsecutive monomers come into contact, a loop appears. What will
the walk be like if we erase these loops? For random walk, the loop erasure produces
a new kind of walk [204,205]: the loop-erased random walk (LERW), or loop-erased
self-avoiding walk (LESAW) in some literatures. To avoid any ambiguity, we denote
the same procedure for self-avoiding walk as loop deletion, and the resulting new
walk is loop-deleted self-avoiding walk (LDSAW) (Figure 5.13). Clearly, the LDSAW
is also self-avoiding, but the minimal distance between nonconsecutive monomers is
V2 if the SAW is on a square or cubic lattice. The LERW has a different critical
exponent from the SAW: vpgrw ~ 0.616 [209-212]. Similarly, we expect another
critical exponent A for LDSAW.
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Figure 5.13: The loop deletion of a 2D self-avoiding walk on a square lattice. The
nonconsecutive monomer A and B of SAW come into contact and a loop arises. By
deleting all the monomers between A and B (the grey part) and connecting A, B, we get
the LDSAW (blue lines).

Different from the LERW, to obtain the LDSAW, it is impractical to delete the
loops while growing the SAW due to its low efficiency. Instead, we choose the second
way: first generate sufficient samples of the SAW, then the loops are detected and
deleted. The pivot algorithm [102] is used to simulate 3D SAW on a cubic lattice.
Given a self-avoiding walk of length N, deleting all the loops in chronological order
results in a walk of length My. Clearly My is a random number ranging from 2
to N. Following the definition for LERW in [209], if we consider the asymptotic
behavior of the average length of the LDSAW:

(My) ~ NY# N — o, (5.8)

Then we have:
(R2)1psaw = (R2)saw ~ N ~ (My)**". (5.9)

This gives a definition of the critical exponent of LDSAW: X\ = 2vu, where v &~ 0.588
is the exponent for the SAW.

Alternatively, the exponent could also be extracted from the relation (R?) ~ m?
by generating sufficient conformations of LDSAW of length M. To get an almost
complete of samples of LDSAW with length M, we delete the loops of SAW of
length N, and take the segment of length M from all resulting new walks as long as
My > M. N should be much larger than M so that samples of M-step LDSAW from
deleting loops of SAW longer than N account for a negligible part of the ensemble
of M-step LDSAW.

A
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Figure 5.14 shows the relation between (My) and N. By a linear fitting in the
log-log plot of (My) versus N, we get u ~ 0.511. Thus the estimated critical expo-
nent for LDSAW is A = 2ur =~ 0.600. The asympotitic behavior of the mean squared
end-to-end distance of LDSAW is displayed in Figure 5.15. By linear regression, we
get the exponent A\ = 0.601. These two methods give the same values for A, there-
fore we conclude that the new walk has a critical exponent 0.60. This new exponent
is larger than the exponent v of SAW, which is reasonable since the loop deletion
basically stretches the self-avoiding walk. On the other hand, we could also define
a stretched self-avoiding walk (SSAW) with minimal distance v/2 between noncon-
secutive monomers. Nonetheless, this SSAW has the same critical exponent with
SAW. Therefore as with LERW and SAW, SSAW and LDSAW are not in the same
universality class. Another point worth mentioning is that although the LDSAW
is more stretched, it has a smaller critical exponent than the LERW (0.612). The
reason is that the stretching of LDSAW is more local compared with the LERW.

— (M, )=0.66N""® 1,=0.51057

(My)

103 |

10° 10°
N

Figure 5.14: The log-log plot of average length of LDSAW (Mpy) versus N. Shown in
the inset is the ratio between (My) and the power law by fitting.
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Figure 5.15: The dependence of the mean squared end-to-end distance (R2) of LDSAW
on the length M. The inset is the ratio between (R?) and the power law.

Via the critical exponent, we can get the fractal dimension of the LDSAW D' =
1/X\ = 1.667. To verify this value, the Barycentric fixed-mass method is applied to
the LDSAW with length M = 10°,3 x 10°. Figure 5.16 shows the log-log plot of one
moment of R,, versus the mass m (Equation 5.6). 7 is selected so that ¢ &~ 0. The
lengths of the LDSAW are M = 10° and M = 3 x 10°. The results are averaged
over 200 conformations.
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Figure 5.16: The log-log plot of one moment of R,, versus m. The moment order is
selected so that ¢ ~ 0. The lengths of the LDSAW are M = 10° and M = 3 x 10°. By
determining the slope a of the linear parts, the fractal dimension of LDSAW is D' ~ 1.6674

and 1.6682.

The growth of the first and second Betti number of the LDSAW is shown in
Figure 5.17 and Figure 5.18. The estimated values of 7; for deleting the loops of
SAW N =5 x 10° and N = 10° are 1.6742 and 1.6689, which are very close to the
fractal dimension 1.67. On the other side, the performance of estimating 5 is poor,
with values 1.6980 and 1.6579. More conformations should be used to reduce the

statistical error.
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Figure 5.17: The dependence of first Betti number on resolution € for LDSAW of length
M = 10° and M = 3 x 10°. The first Betti number is averaged over 200 independent
conformations of LDSAW. Shown in the inset is the ratio between the Betti number and
the power law.
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Figure 5.18: The dependence of second Betti number on resolution & for LDSAW of
length M = 10° and M = 3 x 10°. The second Betti number is averaged over 200
independent conformations of LDSAW. Shown in the inset is the ratio between the Betti
number and the power law.

5.3.4 The Projection of Self-Avoiding Walk on A Plane

By projecting the 3D self-avoiding walk onto a plane, the knots information can be
obtained, such as the writhe and generalized linking number [244,245]. Shown in
Figure 5.19 is the projection of a 3D SAW onto a plane determined by two vectors
€, = (0.804, 0.525, 0.280), €, = (0.238, 0.149, —0.960).
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Figure 5.19: The projection of a 3D SAW onto a random plane. The red part is zoomed
in the inset.

Clearly the walk on the plane is not self-avoiding any more, but it seems to be
self-similar. We wonder what kinds of geometrical and topological information are
hidden, and how they may be related to the properties of the original 3D SAW. By
calculating the fractal dimension using the Barycentric Fixed-Mass method (Fig-
ure 5.20), the projection of SAW is monofractal and has a fractal dimension around
1.62.
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Figure 5.20: The D(q) — q plot of the projection of a 3D SAW. The lengths of the SAW
are N = 10° and N = 3 x 10°. 200 conformations are used for these two walks.

The growth of the first Betti number of the projection is shown in Figure 5.21.
The estimated values of 7, for the projections of N = 10% and N = 3 x 10° are
1.7834 and 1.8108.
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Figure 5.21: The dependence of first Betti number on resolution ¢ for projection of 3D
SAW (N = 10° and N = 3x 10%). The first Betti number is averaged over 200 independent
conformations. Shown in the inset is the ratio between the Betti number and the power
law.

5.3.5 Randomly Deleting Points of SAW

Either the contacts of SAW or the LDSAW in section 5.3.2 and 5.3.3 is one subset
of the SAW, but they carry different geometrical and topological information. In
this section, for comparison we study another subset of the SAW by deleting points
in a SAW with equal probability. It is expected that this kind of subset shares the
same information with the SAW. In Figure 5.22 is the multifractal analysis of three
random subsets of the N = 10° SAW using the Barycentric Fixed-Mass method.
The three subsets contain 10%, 20%, 30% points of the SAW respectively. The
results are averaged over 300 conformations. It shows that this random subset has
same fractality with the SAW: it is monofractal with dimension D™ ~ 1.7.
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Figure 5.22: The D(q) — ¢ plot of three random subsets of the N = 10° SAW using the
Barycentric Fixed-Mass method. The three subsets contain 10%, 20%, 30% points of the
SAW respectively. The results are averaged over 300 conformations.

The growth of the first and second Betti number of the random subsets of SAW
are shown in Figure 5.23 and Figure 5.24. The estimated values of v; for 300 0000
points and 500 000 points are 1.7577 and 1.7682, while the values of 5 are 1.7559
and 1.7603. Therefore we have v; ~ v, =~ 1.76.
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Figure 5.23: The dependence of first Betti number on resolution ¢ for random subsets
of a SAW with N = 10%. The first Betti number is averaged over 300 independent
conformations. Shown in the inset is the ratio between the Betti number and the power
law.
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Figure 5.24: The dependence of second Betti number on resolution ¢ for random subsets
of a SAW with N = 105. The second Betti number is averaged over 300 independent
conformations. Shown in the inset is the ratio between the Betti number and the power
law.

5.4 Conclusion

The fractal and topological features of the self-avoiding walk, its contacts, and
the loop-deleted self-avoiding walk are studied in this chapter. First we select the
Barycentric Fixed-Mass method to calculate the fractal dimension considering its
accuracy in these systems. The fractal dimension of the self-avoiding walk is about
1.7, which is consistent with the existing result. We also calculate the fractal di-
mension of the contacts of a self-avoiding walk and find that the contacts exhibit
a feature of multifractality. By deleting the loops inside a self-avoiding walk, we
define the loop-deleted self-avoiding walk (LDSAW). Its critical exponent A is esti-
mated through the scaling behavior of average length and mean square end-to-end
distance. The estimated value of A is about 0.60. Then we use the same method to
calculate its fractal dimension. The result is about 1.667, which is the reciprocal of
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A. The projection of a self-avoiding walk on a random plane is also analyzed, with
a fractal dimension about 1.62. For comparison, we also study the random subset
of a self-avoiding walk. As expected, its fractal dimension of the random set is also
1.7.

As for the topological features, we calculate the growth rates of the Betti numbers
~1 and ¥, within the framework of persistent homology, which provide the topological
signature of different systems. Further, these two growth rates are related to the
fractal dimension, but the relation has not been fully understood till now.



Conclusion and Outlook

6.1 A Summary of the Results

We studied several important topics in the modeling of chromosomes organization in
this thesis, including the bending rigidity and confinement, the contacts segregation
in chains system, and the fractal and topological features in the self-avoiding walks.
We believe that our findings could provide some new perspective into the study of
chromosomes organization.

In chapter 3 we stressed the contact definition of monomers as well as the in-
variability of asymptotic behavior for different cut-off distances in the definition and
when the bending rigidity comes into play. At very large length scale, the contact
probability for linear chains in free space will exhibit the same power-law decay
P(s) ~ s722 with the coefficient depending on the cut-off distance for contact.
Secondly, we investigated the effects of bending rigidity and its heterogeneity on the
conformations of a linear chain in free space and under geometric confinement. We
found that the heterogeneity of bending rigidity makes the chain more flexible by
measuring the contact probability and persistence length. Under confinement, the
bending potential reshapes the chain due to the competitive interplay of stiffness,
entropy, and the geometrical constraints. Moreover, there exists a “shape transition”
from overall randomness to orderliness when the persistence length is comparable
to the size of confinement. We analyzed the contact probability of a flexible or
semiflexible chain and found that in sufficient small space it has a plateau region
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in the large contour length region, as opposed to the power-law decay in free space.
Moreover, if the bending rigidity is big enough compared to the size of the confine-
ment, this plateau region will turn into an oscillation (Figure 3.7), which indicates
the existence of spirals formed by the chain. The ordering of the chain according to
the shape of geometric confinement can also be studied by constraining the chain
into rectangle boxes of different aspect ratios. We used the order parameter S to
quantify the ordering of chain segments. It is shown that the semiflexible chain
preferably chooses the long direction of the boxes to order the segments. The orien-
tational correlation function (cosé(s)) of bond vectors is also dramatically changed
due to the bending rigidity and confinement, and the oscillation in it serves as di-
rect evidence of the formation of spirals. The presence of bending rigidity leads to
less crossing inside a chain. However, the asymptotic behavior of the mean average
crossing number of semiflexible chains stays the same as the flexible case. Two kinds
of relationships can describe the dependence of mACN on the chain length. On the
other side, the geometrical constraints could induce more crossing, where both the
size and symmetry of the constraints kick in. In particular, the more symmetric the
confinement is, the more crossing the chain has. The reason is that the symmetry
reduces the effect of bending energy that tends to minimize crossing by stretching
the chain along some preferred directions in confinement.

In chapter 4 we focused on two main topics: the self-contact of two halves of a
single polymer chain and the segregation of two chains in a rectangular box. First
we studied the distribution function of the number of contacts f(N.(AB)) of two
halves for a single chain with and without confinement. For a chain in free space,
the distribution function exhibits a power law decay in small N.(AB) region, and a
exponential decay in large N.(AB) region. For a single chain confined in a cubic box,
when the size of the box is small enough, the distribution function first increases
with N.(AB), then decreases rapidly. Next we studied the dependence of total num-
ber of contacts V. on the size of the segment we are looking at. For free chain, N,
grows linearly with the length of the segment s,,,, while for confined chain, N, grows
quadratically. Further, we studied the percentage of the inter-contacts of the two
halves of the segment p, ,(s,,), finding that it has a power law decay for free chains,
with an exponent slightly larger than -1. We assume that the discrepancy is caused
by statistical error and finite size effects. This power law decay demonstrates that
the number of contacts between two halves of a self-avoiding chain is finite as the
length of the chain goes to infinity, which indicates that the two halves are nearly
separated. For confined chain, in small s, region, p, (s, ) overlaps with the free
chain case, meaning that in small length scale, the segment does not feel the con-
straints. As s, becomes larger, the confinement induces more contacts between two
halves of the chain. Specifically, for a Hamiltonian path, the total number of inter-
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contacts is equal to the intra-contact, i.e. pf ; ~ 0.33. The separation of two halves
of a self-avoiding chain is also revealed by the distribution of monomers projected
onto the line connecting the mass centers of the two halves. The segregation of two
chains in a rectangular box starting from different initial conformations is also in-
vestigated. We created three kinds of initial conformations: separated, intertwined,
mid-monomers fixed but with different numbers of inter-contacts. By looking at the
evolution of mass centers distance, number of inter-contacts, winding number, and
the peak value of dynamic structure factor, we found that for the system only with
excluded volume interaction, these different initial conformations have similar seg-
regation time because this process is mainly governed by a much slower diffusion of
chains. However, the intertwinement indeed would impede the segregation process
at the beginning.

In chapter 5 the fractal and topological features of the self-avoiding walk, its
contacts, and the loop-deleted self-avoiding walk were studied. First we used the
Barycentric Fixed-Mass method to calculate the fractal dimension considering its
accuracy in these systems. The fractal dimension of the self-avoiding walk is about
1.7, which is consistent with the existing result. We also calculated the fractal
dimension of the contacts of a self-avoiding walk and found that the contacts exhibit
a feature of multifractality. By deleting the loops inside a self-avoiding walk, we
defined the loop-deleted self-avoiding walk (LDSAW). Its critical exponent A\ was
estimated through the scaling behavior of average length and mean square end-to-
end distance. The estimated value of A is about 0.60. Then we used the same
method to calculate its fractal dimension. The result is about 1.667, which is the
reciprocal of A\. The projection of a self-avoiding walk on a random plane was also
analyzed, with a fractal dimension about 1.62. For comparison, we also studied the
random subset of a self-avoiding walk. As expected, its fractal dimension of the
random set is also 1.7. As for the topological features, we calculated the growth
rates of the Betti numbers ~; and v, within the framework of persistent homology;,
which provided the topological signature of different systems.

6.2 QOutlook

We have presented some results on some topics in the modeling of chromosomes
organization in our work. However, some questions remain open and are worth pon-
dering. In chapter 3 we have studied the heterogeneity of the chromosome stiffness,
where we assume that the bending parameter for consecutive bonds follows a Gaus-
sian distribution. However, in real systems, the heterogeneity of chromosome is often
manifested in a different manner. For example, in [246] the distribution of inter-
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detection distances is used to measure the chromatin heterogeneity. One important
source of the heterogeneity is the nonuniformity of the nucleosomes distribution on
chromatin [247,248], e.g., different intensity of interaction between alternate nucle-
osomes [249]. To illustrate the experimental results, the model should implement
an appropriate form of interaction in the chromatin which can reflect the property
of the heterogeneity.

The asymptotic behavior of the mean average crossing number (mACN) of the
self-avoiding walk is now described by two forms: aNIn N + bN and aN®, where
N is the length of the walk. Both forms show an excellent compatibility with the
simulation results. It is assumed that much longer chains are needed to determine
which one is better.

The number of contacts is one main issue we dealt with in chapter 4. When
studying the distribution function of contacts number between two halves of a chain,
we found that the function shows a power law decay and then an exponential decay
for a free chain. For a chain in a cubic box, the function has a maximum at certain
contacts number. It is unclear whether the function has similar behaviors. To
elucidate this, longer chains need to be simulated and more conformations should
be used to reduce the statistical error. Besides, the dependence of this function on
the shape and size of confinement is also interesting. In this chapter we also studied
the segregation of two chains in a rectangular box, in which case only the excluded
volume interaction is considered. We think that it would be more interesting if
we implement other kinds of interaction, such as the attraction between nearest
neighbors. Moreover, as shown in the results, two halves of a linear chain are more
or less separated in free space and in confinement. The dynamics of this separation
is also interesting.

In chapter 5 we studied the fractality and topology in the self-avoiding walks. In
the organization of chromosomes, some fractal properties have also been detected by
experiments and found to be able to indicate possible anomaly in living systems [250—
252]. The multifractality of contacts of a self-avoiding walk is a new result in our
study, but according to the D(q) — ¢ plot, the multifractality is weak. More studies
should be done to corroborate this. In addition, we defined a new walk: loop-deleted
self-avoiding walk, and found it has a critical exponent A ~ 0.60. We are not very
clear whether this walk has any counterpart in real systems. We further calculated
the growth rates of the Betti number, which can serve as a topological signature of
the system. However, the method is very sensitive to noise, therefore more robust
methods should be developed. The relation of the growth rates with the fractal
dimension is also an open question.
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