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Breast cancer is the leading cause of death in women worldwide and these deaths

are mostly attributed to metastasis and tumour recurrence following initially successful

therapy. Metastasis refers to the development of invasive disease, wherein malignant

cells dissociate from primary tumours, infiltrating other organs and tissues to give rise

to secondary outgrowths. Previously, metastasis was thought to be initiated in advanced

tumours, but breast cancer cellsh with metastatic potential have now been shown to

disseminate very early from the primary site via largely unknown mechanisms. These early

interactions of tumour cells with their cellular micro-environment and normal neighbours

also results in early tumour cell heterogeneity and must therefore be elucidated such that

we can prevent metastatic spread in the patient situation and better treat the resulting

heterogenous tumours. However, studying tumour initiation is not possible in patients

because it happens on a cellular level not detectable by current technology. Tumour

recurrence is another major cause of breast cancer related death and is believed to be

caused by residual disease cells that survive initial therapy. These are a reservoir of

refractory cells that can lay dormant for many years (sometimes decades) before resulting

in relapse tumours. They are also difficult to obtain from human patients, since they are

very few and cannot be detected easily, and thus their molecular mechanisms have not

been fully explored.

In addition to the unavailability of human tissue, mouse models of breast cancer also fall

short in helping us study early cancer initiation, because they allow oncogenic expression in

all cells of the tissue instead of initiating cancer like in the human situation—one neoplastic

transformed cell proliferating unchecked in a normal epithelium. To address this issue, we

used primary organoids from an inducible mouse model of breast cancer and lentivirally

transduced single cells within these organoids to express oncogenes. We further optimized

parameters for long term imaging using light sheet microscopy and developed big data

analysis pipelines that lead us to discern that single transformed cells had a lower chance

at establishing tumorigenic foci, when compared to clusters of cells. Thus, we postulate

a proximity-controlled signalling that is imperative to tumour initiation within epithelial

tissues using the first ever in vitro stochastic breast tumorigenesis model system. This new

stochastic tumorigenesis system can be further used to identify the molecular interactions

in the early breast cancer cells.

Our group has already revealed distinct characteristics, such as dysregulated lipid

metabolism, of the residual disease correlate obtained from an inducible mouse model.

As survival mechanisms invoked by residual cells remain largely unknown, we analysed

the dynamic transcriptome of regressing tumours at important timepoints during the

establishment of residual disease. Key molecular players upregulated during regression –

like c-Jun and BCL6 – were identified and the inflammatory arm of the Nf-kB cascade was

found to be dysregulated among others. Further validation of these molecular targets as

potentially synthetic lethal interactors remains to be performed so that they can be used

to limit the residual disease reservoir and eventually tumour recurrence.
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Brustkrebs ist die häufigste Todesursache bei Frauen weltweit. Die auftretenden

Todesfälle sind dabei hauptsächlich auf Metastasen und Brustkrebs im Rezidiv nach

anfänglich erfolgreicher Therapie zurückzuführen. Unter Metastasen versteht man Tu-

morzellen die den Zellverbund des Primärtumors verlassen haben, und sich in weit ent-

fernten Organen sowie Geweben des Körpers neu anzusiedeln. Lange wurde angenom-

men, dass besonders fortgeschrittene Tumore Metastasen bilden. Heute weiß man, dass

sich Brustkrebszellen bereits frühzeitig und noch auf ungeklärte Weise vom Primärtumor

lösen können. Die somit schon frühen Interaktionen von Krebszellen mit ihrer Umgebung

sowie gesunden Nachbarzellen führen zu heterogenen Tumoren. Diese gilt es eingehend

zu erforschen um Metastasen und daraus resultierende heterogene Tumore in Brustkreb-

spatienten besser behandeln zu können. Die frühzeitige Erkennung der Brustkrebsbildung

ist in Patienten derzeit unmöglich, da sich anfangs nur wenige Tumorzellen bilden, welche

zudem mit heutigen Techniken nicht zu identifizieren sind. Eine weitere Ursache für den

Tod von Brustkrebspatienten ist das erneute ausbrechen bereits erfolgreich behandelter

Tumore, sogenannte Rezidive. Rezidive sind auf wenige widerstandsfähige Tumorzellen

zurückzuführen, welche während einer ersten Behandlung nicht vollständig abgestorben

sind. Diese Zellen können in inaktivem Zustand über Jahre im Körper des Patienten

überdauern und auch noch nach Jahrzenten einen weiteren Brustkrebs hervorrufen. Bisher

sind solch inaktive Tumorzellen unmöglich aus bereits behandelten Patienten zu isolieren,

da sie in geringer Zahl vorliegen und mit heutigen Techniken nicht zu identifiziert sind.

Aus diesem Grund sind molekulare Grundlagen für Rezidive unzureichend erforscht.

Um Rezidive besser zu erforschen sind neben der Unverfügbarkeit menschlicher Tu-

morproben auch Brustkrebsmodelle aus Mäusen wenig Hilfreich. In Mausmodellen lassen

sich Tumore derzeit nur in allen Zellen eines Gewebes auslösen. Mein Ziel hingegen ist,

Brustkrebs durch nur eine Krebszelle in einem sonst gesunden Gewebe hervorzurufen,

ähnlich wie es bei Brustkrebspatienten der Fall ist. Daher verwende ich primäre Organoide

welche aus induzierbaren Brustkrebs Mausmodellen gewonnen wurden. Dabei wird eine

einzelne Zelle dieses Organoids durch einen Lentivirus infiziert, wodurch entsprechende

Krebs Gene aktiviert werden. Zudem habe ich die nötigen Parameter zur Langzeit-

bildgebung mittels Light Sheet Mikroskopie“ optimiert. Die zusätzliche Entwicklung

von big data analysis pipelines“ erlaubte mir herauszufinden, dass einzelne Krebszellen

weniger wahrscheinlich zu Tumorherden beitragen als ganze Gruppen von Krebszellen.

Durch die erstmalige Verwendung eines stochastischen in-vitro Brustkrebsmodells kon-

nte ich zeigen, dass eine Umgebungskontrollierte Signalübertragung unabdingbar ist um

Brustkrebs hervorzurufen. Dieses neuartig stochastische Brustkrebsmodell kann zudem

zur Identifizierung von makromolekularen Interaktionen in noch frühen Brustkrebszellen

verwendet werden.

Durch induzierbare Brustkrebsmodelle in der Maus konnte unser Labor bereits charak-

teristische Eigenschaften von Rezidiven identifizieren. Eine Haupteigenschaft war dabei

ein dysregulierter Lipid Metabolismus. Da Überlebensmechanismen von inaktiven aber
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jederzeit rückfälligen Tumorzellen unbekannt sind, haben wir zu verschiedenen Zeitpunk-

ten das Transkriptom jener Brustkrebszellen analysiert, die auf dem Weg der Inaktivierung

waren. Dabei hat sich herausgestellt, dass Schlüsselproteine wie c-Jun und BCL6 während

der Tumorregression vermehrt exprimiert wurden. Zudem war der inflammatorische Sig-

nalweg der Nf-kB Kaskade neben anderen Signalwegen dysreguliert. Die Validierung dieser

Molekularen Targets als potentiell synthetisch letale Interaktoren steht noch aus. Sobald

diese durchgeführt wurden, werden identifizierte Targets möglicherweise dazu beitragen

inaktive Tumorzellen zu behandeln und ein erneutes Auftreten des Brustkrebses zu ver-

hindern.
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Introduction

1.1 Breast Cancer

Breast anatomy

Breasts, medically known as the mammary glands, are composed of two compartments -

glandular and stromal. The stromal compartment of the mammary gland consists of the

fat tissue and connective tissue that surrounds the glandular compartment. The glandular

compartment, in turn, is made up of lobules and ducts. Lobules are milk-producing struc-

tures, and a system of ducts transports milk from the lobules to the nipple. Blood vessels

along with the lymph nodes, immune cells and nerve endings are located throughout the

breast (Figure 1.1) [1].

Chest wall

Pectoralis muscles

Lobe

Nipple

Areola

Milk Ducts

Fat tissue

TDLU 
(Terminal Ductal 

Lobular Unit)

Lobular Acinus

Lobe

Intralobular 
duct

Extralobular 
duct

Luminal epithelial cells

Myoepithelial cells

Basement Membrane

Figure 1.1: Human breast anatomy showing the glandular and stromal cell compartments

of the mammary tissue. The functional unit of the mammary tissue is the TDLU that

is composed of hundreds of acini- each of which consist of a double epithelial cell layer

enclosing the lumen. Figure modified from [2]

Each breast has 12 to 20 sections, or lobes, that surround the nipple in a radial manner,

like spokes on a wheel. The lobes are composed of lobules, the structural and functional

units of the mammary gland also called terminal ductal lobular units (TLDUs) [3] [4].

The innermost layer of a TDLU is formed of polarized luminal epithelial cells. The lu-

men formed by these cells is where milk is secreted during lactation (in the lobules) and

transported (in the ducts). The second layer of cells surrounding this lumen consists of

myoepithelial (basal) cells [5]. These are divided from the surrounding stroma by a base-
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ment membrane, which serves as an important barrier and dynamic structure composed

of extra-cellular matrix proteins [6]. Breast cancer arises mostly from abnormal epithelial

cells contained within the glandular epithelial compartment of the breast.

Breast carcinoma

Transformed epithelial cells in the breast proliferate and start to fill the lumen in the

earlier stages of carcinoma known as the non-invasive stage. Ductal carcinoma in situ

(DCIS) is confined to the milk ducts. It is the most common form of non-invasive breast

cancer accounting for up to 80% of clinical cases. Lobular carcinoma in situ (LCIS) is

confined to the milk-producing glands (Figure 1.2). Unlike DCIS, LCIS is not known to

be a pre-malignant condition, but rather a marker that identifies women at an increased

risk for invasive breast cancer [7]. As the disease progresses to invasive and metastatic

cancer, cells breach the basement membrane and grow into the surrounding normal tissue

and eventually home in distant organs [8].

Figure 1.2: Ductal carcinoma (left panel) involves abnormal cell proliferation in the mam-

mary gland ducts, while in lobular carcinoma outgrowths are seen in the lobules (right

panel). When the transformed cells are confined to the duct/lobule it is called carcinoma

in situ. Invasion of surrounding tissue by cancer cells in both cases is seen in metastatic

disease. Figure modified from [9].

Breast carcinoma is the leading cause of death among women in most developed coun-

tries[10]. Last year, over 2 million new cases of breast cancer were reported in the world

15
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and over 620,000 women succumbed to this disease and died [11]. For decades, we have

been trying to limit and eradicate this disease and yet the fatalities continue to persist.

This has, primarily, to do with the fact that cancer, irrespective of it’s tissue of origin, is a

complex collection of diseases which exhibit in biologically different entities and governed

by intrinsic cell properties and system factors. Thus, it can have distinct clinical implica-

tions on an individual patient basis [12] [13] [14].

Molecular classification of Breast Cancer

Traditional clinico-pathological variables have been conventionally used for patient prog-

nosis and management. These include factors like tumor size, tumor grade and nodal

involvement, invasive behaviour and some standard immunohistochemistry (IHC) mark-

ers for hormone receptors [15] [16]. Our advances in the genetic profiling of tumors have

proven that response to treatment is actually not determined by anatomical prognostic

factors but rather by intrinsic molecular characteristics that can be defined by gene ex-

pression patterns of specific tumors [17][18].

As such, gene expression signatures are now commonly used to classify breast cancers

[12] in five intrinsic sub-types with distinct clinical outcomes:

• Luminal A

• Luminal B

• HER2 over-expressed

• Basal

• Normal-like

Each of the five intrinsic sub-types is nicely mapped to an IHC-defined sub-type [19]

[20] (Table 1.1) except for the normal-like tumors which share a similar IHC status with

the Luminal A sub-type and are characterized by a normal breast tissue profiling [21]. In

addition to this gene signature basis for classification of breast tumors, information such

as lncRNA and epigenetic data plays critical roles in tumor progression and classification,

providing novel perspectives on breast tumor sub-typing.

The luminal-like tumors are the most common sub-types among breast cancer. They

express hormone receptors, with expression profiles reminiscent of the luminal epithelial

component of the breast [21]. Luminal A tumors have higher expression of Estrogen

Receptor(ER)-related genes and lower expression of proliferative genes than luminal B

cancers [19] [22]. Luminal A tumors are commonly treated with endocrine therapy, while

luminal B tumors, which are more proliferative, with a combination of anti-proliferative
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Molecular Sub-type Prevalance IHC status Prognosis

Luminal A 23.7% ER+, PR+, HER2 -, KI67 - Good

Luminal B 52.8% ER+, PR+, HER2+/-, KI67+ Intermediate/Poor

HER2 over-expressing 11.2% ER -, P R-, HER2+ Poor

Basal-like 12.3% ER -, PR -, HER2 -, basal marker+ Poor

Normal-like 7.8% ER+, PR+, HER2 -, KI67 - Intermediate

Table 1.1: Classification and prevalence of the five breast cancer intrinsic sub-types with

associated clinical parameters

and hormonal treatment.

Basal tumors are composed of Estrogen Receptor(ER) negative, Progesterone Recep-

tor(PR) negative and Human Epidermal growth factor Receptor 2 (HER2) receptor neg-

ative (triple negative) tumors with high expression of basal markers (such as keratins 5,

6, 14, 17, EGFR) and proliferation related genes [21] [23]. Tumors characterized by basal

cytokeratin expression frequently also have low BRCA1 expression [24] and harbor TP53

mutations [25]. These cancers follow an aggressive clinical course and currently lack any

form of standard targeted systemic therapy. Given the triple negative receptor status,

basal tumors are not amenable to most conventional targeted breast cancer therapies,

leaving chemo-therapy as the only option in some cases in the clinic.

HER2 over-expressing breast tumors

HER2 over-expressing tumors are ER negative, PR negative and HER2 receptor positive

tumors, that show either an over expression of the HER2 receptor or mutation-induced

activation of the receptor. HER2 over expressing tumors are characterized by the over-

expression of other genes in the HER2 amplicon such as GRB7 and PGAP3 or mutation

in the TP53 gene [26]. Patients with these tumors have a poor prognosis.

HER2 is a member of the human epidermal growth factor receptor family of trans-

membrane proteins that respond to extra-cellular ligands by dimerization and trans phos-

phorylation of their intra-cellular domains, activating various signaling pathways in the

cell [27]including cell proliferation and survival. HER2 receptor positive cancers account

for 20-30% of all breast carcinomas [28] and show dependence on the HER2 oncogene for

survival.

These tumors, like others that show dependence on one or a few oncogenic proteins

or pathways to maintain their malignant phenotype, display a phenomenon called “onco-

17



Introduction

gene addiction”, a term first coined by Bernard Weinstein [29]. It provides a rationale for

molecular targeted therapy, whereby acute inhibition of onco-protein function by targeted

agents leads to “tumor shrinkage” and regression, associated with proliferative arrest,

apoptosis and/or differentiation. This response to targeted therapy is explained by the

concept of “oncogenic shock”. Oncogenic shock is defined as the acute imbalance of pro-

apoptotic and pro-survival signaling from an oncogenic kinase, upon drug-mediated kinase

inhibition [30]. A large number of antibodies and drugs that target specific oncogenes are

based on this concept.

Figure 1.3: Molecular approaches to HER2 targeted therapy. Figure from [31]

.

Several targeted therapies have also been developed for HER2-enriched tumors (Figure

1.3) and have successfully led to dramatically improved prognoses, increasing the overall

survival of Her2 positive patients [32]. This is seen especially in the case of the anti-HER2

antibody trastuzumab. But PTEN loss [33] and CXCR4 up-regulation [34] have been

implicated in trastuzumab resistance and commonly prevent complete tumor cell eradica-

tion. This incomplete anti-tumor activity of targeted therapeutics across a wide range of

cancers has been attributed to “residual disease”. Residual disease is therefore defined as

the population of tumor cells within a mostly therapy sensitive tumor, that survive initial

treatment. This leads to accumulation of drug resistant clones that cause an inadvertent

relapse that is more often than not, incurable and fatal [35].
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Taken together, although great progress has been made in identifying cancer-initiating

lesions and effective targeted therapies have been developed, tumor recurrence originating

from minimal residual disease is the most common cause of death along with metastatic

disease [36].
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1.2 Mouse models of human carcinomas

Advances in the genomic analysis of human cancers, has led to a much better understand-

ing of tumour evolution and heterogeneity, aided better classification of cancer subtypes

and helped to shed light on the role of the tumour micro-environment. However, large

sample numbers have to be obtained to analyse vaguely defined human tumour subtypes,

confounding lifestyle factors have to be considered and ethical hurdles have to be overcome

in order to obtain human samples and properly characterize disease in humans. Further,

a mechanistic analysis of tumour progression and therapy response is hard to achieve

with independent patient samples, since they reflect only a snap shot of these dynamic

processes. To this end, mouse models have proved to be an invaluable resource to system-

atically and reproducibly analyse mechanisms in tumourigenesis [37] [38].

Specifically, conditional Genetically Engineered Mouse Models(GEMMS) permit the

regulation of cancer inducing genes at a given time-point in a tissue specific manner allow-

ing us to study as well as visualize the outcome of drug treatment. They are engineered to

allow normal developmental processes in mice, enabling genomic manipulation that leads

to de novo tumour formation in the adult tissue. These conditional mouse models allow

tissue specific gene regulation either via Cre-ER mediated gene recombination upon ta-

moxifen administration or through the use of tetracycline inducible transgenes that permit

reversible control over target-gene expression [39]. They also serve as a tool to understand

late tumour stages by giving access to minimal residual disease following therapy and

homing metastatic cells, both cellular populations that largely remain elusive in patient

samples [40].

Organoid cultures of primary cells taken directly from GEMM mice are capable of

preserving the original architecture and signaling events within the tumour, allowing in-

depth mechanistic analysis. The establishment of 3D culture techniques [41] [42] [43]

started in the late 1980s and still continues for the development of growth factor cocktails

and scaffolds that mimic stem cell niches to allow the growth and long-term maintenance

of organoids [44]. Organoids grown from the primary cells harvested from GEMMs can

now be used to recapitulate tumourigenesis and study this process in great detail with the

help of multifaceted analysis, including ‘omics’ approaches, and fluorescence imaging – all

in a dish [45][46].
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TetO-cMYC/TetO-Neu/MMTV-rtTA mouse model

Our laboratory employs the TetO-cMYC/TetO-Neu/MMTV-rtTA tetracycline inducible

model of breast cancer together with a 3D culture approach to better understand the mech-

anisms of HER2 positive breast disease in conjunction with c-MYC activation. GEMM

mice in this model have two transgenes – oncogenes that play an important role in breast

tumorigenesis: c-MYC (MYC) which contains the truncated human gene with exon 2 and

3 [47] and activated rat Neu (Human ERBB2/ HER2 homolog)[48].

HER2 is a member of the EGFR family of receptors that is activated in 20-30% of

breast cancers. Her2 has been thoroughly characterized in breast carcinogenesis with many

therapeutics made available in the market for HER2 positive cancers [49]. The c-MYC

transgene encodes the transcription factor MYC that has been implicated in many primary

cancers in humans, mostly for its profound effect on tumor cell metabolism. It can be the

primary oncogenic protein in some human cancers like for instance, Burkitt’s lymphoma,

while in other types MYC is more often an “early-response” gene that is downstream of

other activated oncogenic pathways and signaling from ligand-receptor complexes. MYC

amplification has been closely linked with HER2 amplification and proliferative activity

in breast cancer [50] and by combining both oncogenes at the same time, we can model a

breast cancer sub-type with poor prognosis in the clinic [51].

Reverse tetracycline-dependent transcriptional activator (rtTA) regulates temporal ex-

pression of the oncogenes which are under control of the tetracycline-dependent minimal

promoter (TetO). Mouse mammary tumor virus long terminal repeat (MMTV-LTR) se-

quence enables spatial control of rtTA gene expression in the mammary gland of these

mice. The system is regulated by doxycycline (antibiotic from tetracycline class). Ad-

dition of doxycycline to the media (in primary 3D cultures) or in the animal diet allows

the rtTA inducer protein to bind to the TetO promoters controlling transcription of both

oncogenes. Supplemented with doxycycline, the mammary glands or organoids undergo

tumorigenesis, where tumor maintenance is dependent on the action of these two onco-

genes, mimicking the phenomenon of oncogene addiction. Upon removal of doxycycline

from the animal diet or 3D culture media, the oncogenes are switched off, mimicking per-

fect targeted therapy aimed at the driver oncogenes. The resulting population of cells

in this instance, have all suffered and survived oncogenic insult and thus resemble the

residual disease reservoir (detailed review in Section 3.1.1).

Previous efforts in the lab with this tetracycline inducible model of breast cancer have

led to the characterization of the mechanisms that these residual cells employed to relapse

in vitro. These cells showed a deregulated lipid metabolism resulting in ROS production

and DNA adduct formation. These features could be verified in the mouse model in vivo,

as well as in patient derived residual disease samples, collected after successful neoadjuvant

treatment [52]. These studies form the basis of the scientific questions asked and answered
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during my PhD.

In the following report, this very mouse model has been further adapted to mimic

stochastic tumorigeneisis of the breast (Project 1) and unravel mechanisms involved in

residual disease establishment (Project 2).
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2.1 Introduction

Breast cancer, like all cancers, is thought to arise from the aberrant proliferation of a single

mutated cell within the epithelial layer [53]. The role of the tumour micro-environment in

breast cancer has been shown to be of extreme importance [54] and is explained by the sig-

nificant alterations in the surrounding stroma or tumour micro-environment of established

tumours [55]. However, although much research has gone into studying cell types like the

fibroblasts [56], macrophages [57], lymphocytes [58] and even the extracellular matrix [59]

that are found in the micro-environment, not much is known about the normal epithelial

cells that neighbour neoplastic cells.

Especially in the context of tumour initiation, one would expect that the normal ep-

ithelial cells could play a repressive role on tumour formation owing to the protective effect

of epithelial cell polarity [60]. Studies in the Drosophila model organism have played a

pivotal role in elucidating cell-polarity pathways in cancer. For example, the case of po-

larity proteins Lgl, Dlg and Scrib is well documented. These proteins, when knocked down

in Drosophila, result in neoplastic transformation and tumour-like growth in their larval

imaginal discs and brains [61]. Consequently, the re-expression of Dlg and Lgl proteins

in human tumour cell lines was shown to reduce viability and aggressiveness [62] [63].

These same polarity proteins have also been implicated, via loss of function, in primary

tumours from human patients [64] [65] [66] [67]. These results, taken together, imply that

cell polarity is disrupted in cancer, but the question is is this a by-product or a causal

mechanism of cancer?

In the context of oncogenes and their downstream activated pathways, there are a few

studies that shed more light on this matter. E6 oncogenes found in human papilloma virus

(HPV) target cell polarity proteins Dlg and Scrib for proteolytic degradation [68] [69] [70].

The ability to degrade these cell-polarity proteins correlates with the malignant potential

of E6 oncogenes. Similarly, in cancers caused by ErbB2 (also known as HER2) [71] [72]

[27], the Ras-PI3K-PLC pathway is activated to stimulate cell proliferation but it has been

shown to directly disrupt cell polarity through its interaction with the Par6-aPKC protein

complex [73]. These results support the idea that along with loss of tumour suppressor

genes, the disruption of cell-polarity mechanisms can play a causal role in tumour initia-

tion and is not just a by-product.

Similar to oncogenic pathways, there is an intimate connection between cell-polarity

pathways and tumour suppression. The von Hippel-Lindau (VHL) tumour suppressor gene

mutations have been uncovered in the development of hemangioblastoma, clear-cell renal

carcinoma and pheochromocytomas [74][75]. Wildtype VHL poly-ubiquitinates activated

aPKC trageting it for degradation [76] and regulates polarized microtubule growth and
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formation of primary cilia [77]. This function makes VHL an important regulator of cell

polarity because polarized growth of microtubules is crucial for cell polarization. Similarly,

the network regulation of Phosphatase and tensin homolog (PTEN) is also closely inter-

twined with cell polarity. PTEN negatively regulates the phosphatidylinositol 3-kinase

(PI3K) pathway by dephosphorylating the PI3K product, phosphatidylinositol (3,4,5)-

trisphosphate [PtdIns(3,4,5)P3] [78]. Spatial membrane segregation of PtdIns(4,5)P2 and

PtdIns(3,4,5)P3 is crucial for apical-basal cell polarity [79] because it effects the apical

localization of Annexin A2 (ANXA2), Cell division control protein 42 homolog (Cdc42)

and atypical PKC proteins.

Clearly, much has been revealed about the disruption of cell polarity in cancer via onco-

genes and tumour suppressors within a tumour. However, close to nothing is known about

the effect of healthy surrounding cells and their epithelial polarity effects on transformed

cells in an epithelial sheet. The major hurdle to studying these interactions between early

neoplastic cells and the normal epithelium is the inability to model stochastic tumourige-

nesis in tissues in a way that it can be followed on a single cell level.

Mouse models, especially in conjunction with 3D organotypic cultures, have been used

to study various stages of cancer [52, 80]. However, these mouse models are genetically

engineered to express oncogenes in all cells of the epithelial tissue and end up modelling

a tissue wide neoplastic transformation that is not analogous to human disease establish-

ment. It also fails to generate a certain heterogeneity at the early tumour initiation stages

that is a hallmark of cancer [81]; since all cells start to proliferate in a highly “trans-

formed” tissue environment instead of evolving and acquiring accruing genetic mutations

in a dynamic cancer initiation niche. Molecular, phenotypic, and functional diversity

within a patient’s tumour (intra-tumour heterogeneity) and among tumours from differ-

ent patients (inter-tumour heterogeneity) are features that can complicate diagnosis and

challenge therapy. So it is on prime importance that we uncover the molecular mechanisms

underlying early tumour initiation that give rise to heterogeneity.

In this project, we report the establishment of the very first stochastic breast tumouri-

genesis model using organoid cultures transduced with lentiviral vectors – a first step

towards modelling disease from its inception to gain insights into the largely unknown

healthy-tumour cell interactions in an intact epithelium.

Further, we report the optimization of Selective Plane Illumination Microscopy (SPIM)

to visualize the stochastic breast tumourigenesis events occurring in the 3D organoids.

Imaging of delicate primary cell organoids can be tricky and was possible only because

SPIM microscopy facilitates rapid imaging, with low photo-toxicity, greater penetration

depths and low scattering owing to illumination with a light sheet instead of a point
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camera (CCD, sCMOS, ..)

detection objective

excitation laser beam

cylindrical lens

lightsheet

sample

fluorescence light

Figure 2.1: Selective Plane Illumination Microscopy provides optical sectioning of the

sample using a laser light sheet for sample illumination. Only a thin slice of the sample is

illuminated perpendicular to the detection plane and image acquisition with this method

is faster and less photo-toxic than traditional confocal microscopy. Figure from [82]

.

source (Figure 2.1). SPIM imaging has a very low photonic load and therefore has been

used to visualize tumour dynamics in 3D cultures [83]. But to date, studies have been

limited in their cellular and temporal resolution. High resolution imaging can allow us

to track single cell dynamics. But this limits the time frame in which organoids can be

imaged without phototoxic effects[84]. Conversely, imaging primary organoids for longer

time periods requires an offset of temporal and cellular resolution that eventually does not

facilitate single cell fate tracking [85].

One of the drawbacks of SPIM imaging in 4D time-lapse is the generation of large

amounts of data that needs to be analyzed. Big-image data compatibility is still quite

limited in common image analysis tools used in bio-image analysis. Therefore, we devel-

oped a novel image analysis pipeline that allowed data handling and processing such that

the dynamic cell behaviors in developing tumours could be segmented and tracked over

time.
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2.2 Objectives

The main aim of this project was to establish a model of breast tumourigenesis that

better recapitulates the clinical situation in human disease. By initiating oncogenic trans-

formation in single cells in an intact epithelium, we aimed to better recapitulate tumour

initiation that is believed to occur in the human breast epithelium - one rouge cell that

acquires a genetic mutation and proliferates to establish tumourigenesis. We planned

to employ the 3D culture organoids of primary cells grown from TetO-Myc/TetO-Neu

mice. The oncogenic constructs in this mouse model are under the control of the TetO

promoter, that can only be activated to transcribe the oncogenes in the presence of the

rtTA inducer protein and doxycyxline. In order to activate the oncogenes in single cells

of the organoids’ epithelial layer, we planned to deliver the rtTA inducer via a lentiviral

construct. To further our aim of understanding the mechanisms of tumour establishment

in the intact epithelium, we wanted to image the organoids at a resolution in space and

time that would allow us to track single cells and their proliferative/apoptotic dynamics

while single cells were expressing oncogenes in the otherwise normal epithelial organoid.

To achieve these aims, we established the following objectives for the study:

1. Establish stochastic lentiviral transduction of single cells within organoids such that

they have been conferred the ability to express the c-MYC and Neu oncogenes, and can

be followed in culture by a fluorescence reporter protein (GFP).

2. Optimize imaging conditions necessary to record stochastic tumourigenesis from

the moment the oncogenes are induced in GFP marked cells (via doxycycline addition to

the media) and up to 96 hours after.

3. Implement a big image data analysis work-flow that facilitates the visualization

of terabytes of image data, further allowing the segmentation and tracking of the nuclei

(marked with GFP) within a stochastically transformed organoid.
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2.3 Results

2.3.1 Establishing a 3D in vitro model of stochastic breast tumourige-

nesis

The TetO-MYC/TetO-Neu/MMTV-rtTA mouse model is an inducible breast cancer model

and has been previously been shown to faithfully recapitulate human breast disease in our

group[52]. In this tri-transgenic model of tumourigenesis two oncogenes – Myc and Neu

–are spatially and temporally controlled in the mouse breast tissue. The oncogenic con-

structs have the tetracycline promoter TetO that allows expression of oncoprotein when

bound by the reverse tetracycline transactivator (rtTA) protein [86] in the presence of

the tertracycline analogue – doxycycline. Spatial control of oncogenes is achieved by the

MMTV promoter upstream of the rtTA construct than restricts rtTA protein expression

to the epithelial cells of the breast. Temporal control of the oncogenes is achieved by the

regulation of doxycycline in the animal diet. This way, the mice can be induced to ex-

press oncogenes in their breast epithelial tissue when they reach adulthood (8-10 weeks).

Primary mammary epithelial cells from this tri-transgenic mouse model have been grown

in 3D cultures and induced to express oncogenes in vitro [87, 48].

To model stochastic tumourigenesis and mimic the clinical situation better, we used a

modified version of the above-mentioned tri-transgenic system. We only retained the two

oncogenic constructs and bred bi-transgenic mice for experiments. We facilitated onco-

genic expression in a few cells by delivering the rtTA gene construct to random cells in

organoids in vitro, using a lentiviral delivery system developed in the lab.

Single cells digested from the mammary glands of the transgenic mice are seeded in

a 3D matrix and cultured to form hollow acini. After 3-4 days of growth, these acini are

digested out of the Matrigel matrix and mixed with lentiviral particles in solution. The

organoids and virus are seeded back into the 3D matrix and after a 3-day recovery period,

induced with doxycycline in the media, to facilitate expression of oncogenes in rtTA ex-

pressing cells (Figure 2.2).

Organoids grown from the mammary cells of bi-transgenic mice are transduced with

the Inducer-reporter (pLenti-rtTA-GFP) lentiviral particles that express rtTA in single

cells and mark them with H2B-GFP. Introducing doxycycline into the media expresses

c-MYC and Neu oncogenes in the randomly transduced subset of cells in the organoid.

When and if tumours are established in these organoids, they develop in the presence

and of normal epithelial cells in their micro-environment. The random transduction and

subsequent transformation of single cells in these acini (representing normal epithelia) is

aligned more closely with the patient situation and represents a stochastic model of tu-

mourigenesis.
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Figure 2.2: Schematic representation of the mouse models and the in vitro culture meth-

ods used. Organoids are grown from single cells harvested from the mammary glands of

either bi-trangenic (B) or tri-trangenic (T) mice, transduced with lentiviral particles in

solution and re-seeded into 3D cultures. Doxycycline is added to the media to induce

the expression of oncogenes in cells expressing rtTA. B mice have the c-MYC and Neu

oncogene constructs in their genome. These oncogenes are activated in single cells infected

with the Inducer-reporter (pLenti-rtTA-GFP) lentiviral particles, in the presence of doxy-

cycline — modelling stochastic breast tumourigenesis (bottom panel). T mice have the

rtTA transducer construct along with the oncogenes and all cells in T organoids can be

induced to express oncogenes in 3D culture in the presence of doxycycline. T mice infected

with Reporter (pLenti-NULL-GFP) lentiviral particles are used as infection controls (top

panel). Both viral particles mark single cells in the organoids with H2B-GFP.
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As transduction controls, organoids grown from the mammary cells of tri-transgenic

mice were transduced with the Reporter (pLenti-GFP) lentiviral particles that simply

mark single cells with H2B-GFP. Since all cells in the tri-transgenic organoids have the

rtTA construct, introducing doxycycline into the media expresses c-MYC and Neu onco-

genes in the whole organoid. All cells proliferate rapidly, and the monolayer epithelial

organoids form tumours with multiple layer rims. The tumours are established in a com-

pletely tumourigenic environment and thereby this system models tissue wide tumourige-

nesis.

Since the rtTA protein expression is driven by a different promoter in both systems, the

doxycycline concentration used in the stochastic system was normalized to the established

concentration of doxycycline used to induce organoids of the tissue wide system. Quantifi-

cation of c-MYC and Neu mRNA in single cells across both systems was performed using

qPCR, at various doxycycline concentrations (see Figure 2.3). The doxycycline concentra-

tion used to induce oncogenic expression in the tri-transgenic system has been optimized

at 800 ng/ml by previous efforts in the group. Based on the qPCR quantification, 600

ng/ml of doxycycline in the stochastic system leads to similar expression of the oncogenes

in single cells of the stochastic system. This concentration was used in all further experi-

ments involving the stochastic system.
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Figure 2.3: Fold changes in the mRNA expression of transgenes, Myc and Neu in trans-

duced mammary epithelial cells of B mice (n=2) infected with Inducer-reporter virus or

T mice (n=2) with Reporter virus. The doxycycline dosage of 800 ng/ml (T800) is well

established in the T cells and was used as control to normalize the gene expression, and

also to determine the dose for transduced B cells (600 ng/ml). Data represented as mean

±SEM ; ∗P < 0.05.

Immunofluorescence staining of PFA fixed 3D gels, shown in Figure 2.4 validate the
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TetO-MYC/TetO-Neu/MMTV-rtTA (T) 
mammary organoids infected with 

Reporter virus

TetO-MYC/TetO-Neu (B) mammary 
organoids infected with Inducer-

repotrter virus

DAPI MergeH2B-GFP c-MYC

 

Never 
Induced

72 hrs 
ON DOX

24 hrs 
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DAPI MergeH2B-GFP c-MYC

Figure 2.4: Representative immunoflourescence staining images of fixed 3D gels with B

organoids transduced with Inducer-reporter virus or T organoids transduced with Reporter

virus before induction (top), 24 hours post induction and (middle) 72 hours post induction

(bottom) with doxycycline. c-MYC oncogene (magenta), GFP expressing transduced cells

(green), DAPI nuclear stain(blue). Scale bar, 10 µm.

expression of MYC in only the transduced cells of the bi-transgenic organoids (stochastic

system). A co-localisation of MYC protein is seen in the cells transduced with the Inducer-

reporter virus (marked with H2B-GFP). In contrast, the MYC stain is positive for all

cells in the tri-transgenic organoids (tissue wide tumourigenesis system). Here the cells

expressing GFP are simply marked by the Reporter virus.
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2.3.2 Live organoid imaging reveals early tumour dynamics in 4D at

single cell resolution

To visualize the establishment of tumours in the otherwise healthy epithelial rim and

analyse their evolution on a single cell scale, we crossed the fluorescence reporter H2B-

mCherry into the bi-transgenic and tri-transgenic mouse lines using a R26-H2B-mCherry

line. Lentivirus-transduced organoids grown from these H2B-mCherry lines were then

imaged during induction using Selective Plane Illumination Microscopy (SPIM). Light

sheet microscopy employs a sheet of laser light to scan the sample. In comparison to

confocal and spinning disc microscopy methods, this offers faster acquisition, high sample

penetrance and a low photonic load. All the imaging experiments for this project were

performed on the InVi SPIM microscope (Luxendo Light-Sheet, Bruker Corporation).

Sample mounting for the InVi SPIM is performed using a custom-made sample holder.

The holder has a trough with a slit at the deep end where the sample is placed for

imaging. The sample is placed on a 25 µm thin membrane which is glued onto the sample

holder using a mould. We transferred gel slivers containing transduced bi/tri transgenic

organoids onto the FEP sheet of the holder and induced oncogenic expression by adding

media supplemented doxycycline to the sample holder (Figure 2.5).

a. b.

 

1cm

5500um

c.

Figure 2.5: (a) The FEP membrane is glued onto the sample holder with the help of a

mold and bio-compatible glue. (b) Gel slivers are transferred to the FEP sheet trough in

the sample holder (c) Gel slivers are overlaid with fresh matrigel to prevent drift during

imaging. Media is added after the upper matrigel layer solidifies.

The process of tumour establishment in both systems was then recorded in 4D. Images

were recorded as 2D planes ranging from 100-500 in number, depending on the organoid

size. Each 3D stack of planes was recorded in 2 channels - mCherry (all cells) and GFP

(transduced cells). Depending on the duration of the time lapse imaging, 450-600 image

stacks (equivalent to 72-96 hours) were recorded per organoid at 10-minute intervals. A

series of optimization experiments, involving different laser powers, exposure times and
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z-step sizes yielded laser powers of 13.1 microWatts for 488 nm and 36.4 microWatts for

594 nm, 100 millisecond exposure time per frame and 1µm z-spacing between frames to

be optimal for long term imaging (96-120 hours) without photo-bleaching or photo-toxic

effects on growth.

Tri-transgenic organoids transduced with the Reporter virus showed high cell prolifera-

tion and rapid expansion when the oncogenes were expressing in the cells. The single layer

organoid rims sustained high cell proliferation to result in the filling of the lumen. The

tumour organoids have multiple cell layers and pronounced apoptosis that is associated

with tumour evolution (Figure 2.6a).

In contrast, the bi-transgenic organoids transduced with the Inducer-reporter virus

showed a dual phenotype during imaging. Some lentivirus transduced cells within organoids

proliferated under the oncogenic push and established small tumour foci within the organoid.

They sustained high proliferative rates in their niches within the normal epithelium and

started to fill in the hollow lumens. Other lentivirus-transduced cells did not seem to pro-

liferate at all. They remained integrated in the normal epithelium and did not proliferate

or establish any tumourigenic foci within the organoids (Figure 2.6b).

To exclude for imaging artefacts, we performed immunofluorescence staining on PFA

fixed 3D sister gels grown in the incubator (Figure 2.7). Consistent with the light-

sheet movies, 3D gels grown in the incubator showed a similar dual phenotype for the

bi-transgenic (stochastic tumourigenesis) organoids while the tri-transgenic (tissue wide

tumourigenesis) organoids consistently formed tumours upon oncogene induction.
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H2B-mCherry marked TetO-MYC/TetO-Neu/MMTV-
rtTA (T) mammary organoids infected with Reporter 

H2B-mCherry marked TetO-MYC/TetO-Neu (B) 
mammary organoids infected with Inducer-reporter 

24 hrs ON 84 hrs ON 60 hrs ON 36 hrs ON 72 hrs ON 48 hrs ON 96 hrs ON 

24 hrs ON 64 hrs ON 48 hrs ON 32 hrs ON 56 hrs ON 40 hrs ON 72 hrs ON 

b.

a.

Figure 2.6: 3D images of selected timepoints during live-cell time-lapse microscopy of

induced T organoids transduced with Reporter virus (a) or B organoids transduced with

Inducer-reporter virus (b). All cells in the organoids express H2B-mCherry (magenta)

and only cells transduced with lentiviral particles express H2B-GFP (green). Imaging

was started 24 hours after oncogenic induction with doxycycline. In (b) the upper panel

shows the proliferative phenotype seen with stochastic transformation, whereas the lower

panel shows the non-proliferative phenotype observed in some stochastically transformed

organoids. (Imaging conditions: H2B-mCherry 594nm Ex, 610 LP Em; H2B-GFP 488nm

Ex and 497-554 nm Em). Scale bar, 20 µm.
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Figure 2.7: Representative immunofluorescence staining images of PFA fixed 3D gels with

(a) T organoids (transduced with Reporter virus) and (b) B organoids (transduced with

Inducer-reporter virus), before induction and 96 hours post induction with doxycycline.

Polarity markers include alpha-6-Integrin (magenta) and ZO-1 (yellow). Transduced cells

are marked with GFP (green) and nucleus is counter-stained with DAPI (blue). Scale bar,

20µm.
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2.3.3 Development of big-image data compatible analysis workflow al-

lows tracking of cell lineages during early tumour formation

To analyse the 3D time-lapse movies recorded at the InVi SPIM, we developed an im-

age analysis workflow using Fiji plugins[88] and Imaris (commercial software[89]). The

workflow was designed and developed with the help of Christian Tischer at the Center for

Bioimage analysis (CBA) at EMBL, Heidelberg.

The establishment of stochastic tumours in bi-trangenic organoids transduced with

the Inducer-Reporter virus was recorded in two channels - H2B-mCherry—all cells in

the organoid, H2B-GFP—transduced cells within the organoid. The raw files from the

microscope in .h5 format were streamed using the Big Data Processor (BDP) Fiji plugin

[90]. The Fiji plugin provides a virtual viewer that allows lazy loading of the image stacks

in 2D for visual inspection. The “Chromatic Shift Correction” tab of the BDP was used to

align the two-channel data. The “Cropping” tab of BDP was used to crop out empty/black

pixels and remove empty planes. The “Saving” tab of the BDP was used to bin images (3

x 3 x 1 in x, y, z), perform 8-bit conversion and convert .h5 files from the InVi SPIM into

an Imaris compatible multi-resolution file format (.ims) for further analysis (Figure 2.8).

Lazy Loading Chromatic Shift
Correction

Cropping Binned Saving

Dataset Size : 1264.2 GB

Before

After

Before

After
Dataset Size : 15.5 GB

Figure 2.8: The Big Data Processor Fiji plugin was employed for pre-processing light-sheet

microscopy images. Two-channel raw images were lazily loaded in 2D slice mode for visual

inspection. Channel shift correction was performed to align the two channels. Then, the

whole dataset was cropped in x,y,z to remove black pixels and empty planes. The cropped

dataset was then saved in an 8-bit Imaris format with 3x3 binning applied in x and y.
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The lentivirus-transduced cells marked with H2B-GFP showed heterogeneous mor-

phologies and varying intensity textures in the time-lapse recordings. This makes it diffi-

cult to segment them using conventional thresholding approaches, such as the ones in-built

in Imaris. Therefore, we used a trainable segmentation approach to convert the raw in-

tensity values into pixel probability maps, using the Fiji plugin Context Aware Trainable

Segmentation (CATS) [91]. We trained three pixel classes: background, nucleus center

and nucleus boundary on the input files (H2B-GFP channel images). On these we drew

about 20 (background), 120 (nucleus center), 100 (nucleus boundary) labels distributed

across the different time-frames of the movie for training the classifier. After feature com-

putation and training of a Random Forest classifier the whole dataset was processed on

EMBL’s high performance computer cluster. The nucleus centre probability maps were

then exported from CATS and added as an additional channel to the converted intensity

data in the processed .ims files (Figure 2.9).

The data were then loaded into Imaris and visualized, segmented and tracked in 3D

(Figure 2.10) The “surfaces” function on Imaris was used to segment the cell nuclei using

the nucleus centre probability map channel. Probability maps were manually thresholded

using a surface smoothening parameter of 0.3 µm; the minimum quality parameter for

seed points was set to 0.1, and object splitting was applied for objects larger than 5.5 µm.

Objects with volumes less than 20 µm3 were excluded.

Segmentation accuracy was assessed by analyzing wrongly segmented cells. In Figure

2.11 an example organoid, whose transduced cells were segmented, is shown at 4 time

points, counting: True Positives (correctly segmented cells, highlighted in green), False

Merges (two cells merged as one, highlighted in orange), and False Splits (one cell split in

two, highlighted in purple). Unidentified cells are indicated as False Negatives and Ground

Truth indicates the actual number of cells at each time point. Majority of errors in the

object segmentation were clearly the false merges, where two cells were segmented as one.

This kind of error is frequently not sustained in the previous or following time-points and

hence, an increased gap size parameter of the tracking algorithm should not affect tracking.

This was verified by tracking the objects identified using Imaris’ Lineage tracking function

with a maximum distance between objects in subsequent time-points limited to 10 µm and

a maximum gap size between identification of the object in a particular track limited to 10

time points. The final track trees of transduced cells within the organoid were corrected

manually within Imaris, e.g., excluding apoptotic cells and auto-fluorescent debris.

In Figure 2.12 we see an example bi-transgenic organoid transduced stochastically by

the Inducer Reporter virus. The implementation of the analysis workflow allowed us to

track the evolution of single cells when induced with doxycycline over 3 days. Clearly,

single transduced cells within one organoid show a difference in proliferation and cell fate

as indicated in the representative tracks.
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Trainable segmentation

Pixel probability map overlay

Figure 2.9: The CATS Fiji plug-in was used to generate pixel probability maps for H2B-

GFP images. Left panel shows the manual training done by drawing labels on the dataset

to classify pixels into 3 classes – background(grey), nucleus boundary (red) and nucleus

center (green). The right panel shows the pixel probability output for all three classes

overlaid on the intensity data. Only the pixel probabilities from the nucleus center class

were exported from CATS and linked to the Imaris data set for further segmentation and

tracking on Imaris.
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Pixel Probability Map Generation 

3D Visualization, Nuclear Segmentation, Tracking

Image Acquisition

Background 

Nucleus center
Nucleus Boundary

Figure 2.10: Schematic representation of the big-image data analysis pipeline developed

to analyze the light sheet microscopy images. Images are acquired in two channels (H2B-

mCherry in magenta and H2B-GFP in green) at 10-minute intervals for 3-4 days. Big

Data Processor Fiji plugin is used to pre-process the raw images and CATS Fiji plugin

is used for generation of pixel probability maps. Image pixels of the H2B-GFP images

are classified into background (black), nucleus centre (green), nucleus boundary (blue)

classes by manual training. Processed raw images along with the probability maps from

the nucleus center channel (green) are exported to Imaris for 3D visualization, nuclear

segmentation and single cell tracking.
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True Positives 17 52 69 74

False negatives 0 1 0 0

Ground Truth 17 61 82 76

T = 1 T = 447T = 300T = 150

H2B-mCherry
True Positives
False Merges
False Splits

0 4 6 1False Merges

0 0 2 0False Splits

Figure 2.11: Image panels show the H2B-mCherry signal (magenta) along with the seg-

mented H2B-GFP cells of an organoid at four equidistant timepoints. Segmentation ac-

curacy was assessed, counting: True Positives (correctly segmented cells, highlighted in

green), False Merges (two cells merged as one, highlighted in orange), and False Splits (one

cell split in two, highlighted in purple). Unidentified cells are indicated as False Negatives

and Ground Truth indicates the actual number of cells at each timepoint. The average

True Positive to Ground Truth ratio for the four time-points is 0.92. Scale bar, 20 µm.
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T = 00:00 hh: mm

 

T = 00:00 hh: mm

T = 74:20 hh: mm

T = 74:20 hh: mm

Figure 2.12: Representative B organoid transduced with the Inducer-reporter virus at the

beginning of the time-lapse (24 hours post induction with each transduced cell surface

rendered with Imaris) and the organoid at the end of the time-lapse (∼76 hours post

induction with doxycycline). The bottom panel shows the lineage trees of each individual

cell over the time lapse recording. Lineage trees of single cells are grouped into proliferative

(highlighted in red, orange) and non-proliferative (highlighted in blue) cell clusters. Color

coding of each cell maintained in all panels. Scale bar, 15um.
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2.3.4 Feature analysis of lentivirus-transduced organoids indicates that

the origin of tumours may be in cell clusters and not in single

transformation events

The implementation of the image analysis workflow on the time lapse recordings shows

us a variation in proliferation rate and cell fates of bi-transgenic organoid cell transduced

with the Inducer-reporter virus. This difference in behavior of single transduction events,

even among cells of the same organoid, in turn affects the establishment of tumour foci

within the healthy epithelia. Why do single cells expressing the same oncogenes behave

differently? Observation suggested that the cells that undergo transformation in proximity

with each other seem to be successful in establishing tumour foci. It could also be that

the more cells transduced in an organoid, the higher the chances of tumour formation. To

better understand the parameters that positively affect a transduced cell in the stochastic

tumourigenesis model to start proliferating and establish a tumour within a normal ep-

ithelium, we extracted 9 features of the organoids (n=20; Table 5.1) and all the transduced

cells in these organoids (n=150) at the start of the imaging.

Basing the analysis of the observation that “proximity” might be the deciding factor

for tumour formation, first, we exported the center of mass coordinates of all cells of the

organoid so they could be represented in a 3D space for distance calculations. Next, we

aimed to cluster the cells that were transduced. We computed the pairwise Euclidean

distances between all oncogene-expressing cells in an organoid and applied hierarchical

clustering with complete linkage. Clusters were identified automatically by cutting the

branches of the trees using the dynamic tree cut algorithm [92]. A cluster was defined as

a group of transduced cells that are closer to each other than to other transduced cells

within the same organoid. So logically, a cluster can be composed of a single cell if this cell

is comparatively isolated from other transduced cells. Mathematically, a “cluster volume”

can be calculated as the volume of the sphere centered at the center of mass of the cluster

with diameter equal to the distance between the two farthest oncogene-expressing cells of

the cluster. This served as boundary parameter for estimation of features involving the

state of the immediate micro-environment of single transduced cells.

Then we asked, what features of this organoid could play a role in tumour promotion?

(1) Number of cells in the organoid?

(2) Cell density of the organoid’s epithelial layer?

(We expressed “cell density” as the ratio of number of cells to organoid surface area.

Organoid surface area was computed by assuming the organoid is a sphere with diameter

equal to the distance between the two most distant cells)

(3) Number of oncogene-expressing cells in the organoid?

(4) Number of cells (including both oncogene-expressing and normal cells) in the cluster

volume?

(5) Number of oncogene-expressing cells in the cluster?
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Figure 2.13: Schematic representation of the 9 features of stochastically transformed cells

extracted at the beginning of time lapse imaging. These features were assessed for their

impact on tumour cell proliferation within B organoids transduced with the Inducer-

reporter virus using logistic regression.

(6) Average pairwise distance between all cells in the cluster volume?

(7) Average pairwise distance between oncogene-expressing cells in the cluster?

(8) Fraction of oncogene-expressing cells in the cluster volume

(9) Number of contacts between oncogene-expressing cells in the cluster?

(Two cells are presumed in contact if they are less than the average cell diameter + 2

standard deviations apart).

The above nine features were further tested for their effect on tumour formation (Figure

2.13).

Since all transduced cells were tracked over time, using the previously described big-

image data compatible workflow, we were able to associate each cluster with a tumour

outcome (if any of its cells lead to tumour formation). To identify which features were

linked to this outcome, we took an information-theoretic approach to model selection.

We fitted a logistic regression model for all possible linear combinations of features

and selected the best model based on the Akaike information criterion (with correction for

small sample sizes) [93]. This model included only three contributing features: (5) Number

of oncogene-expressing cells in the cluster (3) Number of oncogene-expressing cells in the

organoid and (4) Number of cells in the cluster. Additionally, as indicated in Figure 2.14,

p-value calculations show that only the Feature (5) Number of oncogene-expressing cells in

the cluster contributed significantly to tumour formation with an odds ratio of 9.1. This

means, that each additional transduced cell in a cluster increases the odds of this cluster

forming a tumour by 9.
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Figure 2.14: Best logistic regression model for all possible linear combinations of features

based on the Akaike information criterion. Coefficients (represented as odds ratios) of

the three features included in the best logistic regression model, colored horizontal bars

represent the 95 percent confidence interval of the estimate. ** indicates p-value (of having

no effect) less than 0.01, * indicates p-value less than 0.05. The vertical grey line indicates

the position of no effect.
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Figure 2.15: Alternate regression model fitted including all features using LASSO regu-

larization. Numbers correspond to features shown in 2.13

Additionally, we also built a logistic regression model including all features (not just

the best combination) and using LASSO regularisation to select features. The output of

this model shown in Figure 2.15 confirmed our previous results that only the Feature (5)

Number of transduced cells in the cluster shows a positive effect on tumour establishment.

This is further demonstrated by representative organoids shown in Figure 2.16. Here,

the cells that are likely to proliferate, cluster together at the start of the time lapse imaging

and the non-proliferative cells are more sparsely located within the organoid, as shown in

the hierarchical clusters. These data confirm our hypothesis that there is indeed a higher

chance of tumour establishment by single transduced cells if they are in close proximity

to other transduced cells.
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Figure 2.16: Representative B mammary organoids stochastically transduced with the

Inducer-reporter virus and induced with doxycycline. Left panels show organoids 24 hours

post induction. Color highlights indicate clusters of transduced cells identified from hierar-

chical clustering (shown in middle panels) with proliferative clusters highlighted in orange

and non-proliferative clusters highlighted in blue. Right panels show the same organoids

72-76 hours post induction. Scale bar, 20µm.
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2.4 Discussion

The rationale for this study, as explained earlier, is the inaccessible mechanisms of early

breast cancer initiation in an intact epithelium. In humans, the detection of the earliest

events in cancer initiation is limited by its cellular scale and the lack of detection tech-

nology. Even in mouse models of breast cancer we are able to achieve only a tissue wide

neoplastic transformation, where the oncogenes are being expressed in all cells of the mam-

mary epithelium. To truly understand how single transformed cells survive and proliferate

in a healthy epithelilal cell layer, we established the first ever in vitro stochastic model of

breast cancer using lentiviral transduction of single cells in murine mammary organoids

(Objective 1). Further, to explore the processes underlying tumor initiation and the role

of normal epithelium in these processes, we established live cell imaging of these organoids

such that we could acquire images at the resolution and time interval needed to track

single cells in a complex 3D system (Objective 2). Finally, we developed and optimized

an image analysis workflow that could process big image data files generated during light

sheet microscopy, and allowed for nuclear segmentation and tracking (Objective 3).

Modelling stochastic tumourigenesis in murine mammary organoids has shown, for

the first time in 3D organoid cultures, that the normal epithelium has a profound effect

on early tumour establishment. Light sheet imaging over four days, following every cell,

in conjunction with feature analysis and mathematical modelling bolster the observation

that small groups of oncogene-expressing cells within the healthy organoid are much more

successful at establishing tumourigenic foci in comparison to isolated oncogene express-

ing cells. This indicates that a possible proximity controlled paracrine signalling network

is established within the transduced cells that allows them to proliferate and evolve as

tumours. Conversely, the inability to proliferate, that seen in the isolated oncogene ex-

pressing cells, is indicative of the “repressive” effect of the normal epithelium that has

been reported before via paracrine soluble factors and even microRNAs [94].

The interaction of tumour cells with the immediate microenvironment has been sub-

ject of extensive studies with regards to immune cells [95] and other tumour associated

cell types [54], however, the interaction with the normal neighboring cells has not been

explored in real time using an organotypic mammalian model system. Rather, questions

of cell competition in heterogenous tissues have mainly been addressed in either 2D cul-

ture systems or in the Drosophila wing [96]. Organ-specific mammalian cell types that

self-organize in a manner similar to the in vivo situation can now be studied in specialized

organoid 3D culture conditions in vitro [44]. Furthermore, these organoids can be used to

model disease and serve as an alternative system for drug testing that better recapitulate

effects as compared to conventional 2D cell culture [80] [97].
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The established paradigm that cancers in epithelial tissues arise from single mutated

cells has been challenged by these findings and the cell of origin of tumours has been found

to be cell clusters of origin. Further characterization and multi-omics analysis of this model

will validate this hypothesis in the future. Apart from the tumour cell of origin debate,

this system has the ability to further investigate the importance of epithelial polarity pro-

teins on the establishment of breast tumour progression and metastasis. For example,

the loss of important polarity proteins like Par3 and Par4/LKB1 have highlighted their

function as non-canonical tumour suppressors in breast tumourigenesis [98, 99]. However,

other reports on the tumour initiating potential of Par3 [100] and the alternative pathways

triggered by the loss of the Par4/LKB1 polarity protein[101], indicate that they could be

drivers of tumour formation. Clearly, to better interrogate such conflicting reports, there

is a need for a more detailed analysis, employing a model system that does not show mod-

ification of all cells in the tissue. To this end, our new stochastic tumourigenesis system

can be employed to settle conflicting reports. Introducing a knockout phenotype of any of

the epithelial polarity proteins into the mouse model via somatic mutation or additional

lentiviral delivery is an option that can be explored.

The amenability of this system to interference with small molecule inhibitors, viral

shRNA vectors and genomic editing has the potential to further our understanding of

the mechanisms important during tumour initiation. The ability to distinguish marked

tumour cells from the normal epithelium will now allow us to perform single cell RNA

sequencing analysis on select sorted cells. This will help delineate the signalling networks

within the immediate tumour micro-environment.

Taken together, we strongly believe that our integration of a true stochastic tumour

model with the ability to image single-cell fates will successfully bridge the gap between

genetically modified model systems and the clinical situation, helping gain novel insights

on early breast cancer events .
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2.5 Conclusions

The in-depth characterization of early tumor initiation events in breast cancer, that give

rise to tumor heterogeneity and early dissemination of metastatic cells, have not been fully

characterized. The gap in our knowledge of these early initiation events is a result of lack

of samples at this stage - a black box of patient material. Modelling the conditions of

early tumor initiation using mouse models also fails to recapitulate the human situation,

driving a tissue wide neoplastic phenomenon instead.

Adapting an already well characterized oncogene inducible mouse model of breast can-

cer, we developed an in vitro organoid system that is truer to the human situation and

can activate oncogenes in single cells of the healthy organoid epithelium via lentiviral

transduction. Characterization of this in vitro stochastic tumorigenesis system helped us

observe that not all transformed single cells in the organoid epithelium had the capacity

to proliferate and establish tumorigenic foci. Some cells resisted proliferation over many

days of oncogene exposure unable to expand despite confirmed onco-protein localization.

In an effort to better understand this dual phenotype of single transformed cells we

then established live cell imaging of these stochastically transformed organoids in 3D over

3-4 days using light sheet microscopy. Overcoming light sheet data limitations, we also im-

plemented an image analysis workflow that allowed us to track single cells as they evolved

within the organoid. Feature analysis of of over 150 transformed cells in 20 organoids

showed that the cells in clusters were more likely to form tumors than isolated oncogene-

expressing cells.

These results point to a proximity controlled signalling network between single trans-

formed cells that is imperative to the growth and establishment of tumors within healthy

epithelia. As a result, this study provides a whole new perspective on cell of origin of

tumors, postulating rather a cell cluster of origin governed by signals from its healthy and

neoplastic neighbours. What these signals are and how they are transmitted can now be

explored using this model. Clearly, the role of the neighbouring healthy epithelial cells via

cell polarity mechanisms needs further investigation as does the transcriptomic profiles of

all cells in the cancer initiation niche, so that we can better understand early tumor events

in the breast.
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3.1 Introduction

3.1.1 Minimal Residual Disease

Definitions from the lab and the clinic

In the present age of precision medicine, when molecular dependencies of various tumours

are being unraveled by sequencing and functional assays, a panoply of therapeutics that

target kinases, transcriptional modifiers, immune checkpoints and other cancer vulnerabil-

ities are being used in the clinics with excellent short-term prognosis. Consequently, the

response to therapy has greatly improved for patients whose tumours have been profiled

extensively, such as those with chronic myeloid leukaemia (CML), KIT proto-oncogene

receptor tyrosine kinase (KIT)-mutated gastrointestinal stromal tumours [102], epider-

mal growth factor receptor (EGFR)-mutated or ALK receptor tyrosine kinase (ALK)-

rearranged lung adenocarcinoma [103] [104][105] and BRAF-mutated melanoma [106][107].

Most patients with these diseases now achieve what is known as a complete remission (CR).

CR in patients with cancer is traditionally defined as the absence of a visible tumour by use

of sensitive radiological imaging (PET, MRI or CT). This means, CR, whether achieved

by chemotherapy, targeted therapy, radiation, surgery or a combination, typically requires

>99% (that is, >2–3 log10) reduction in tumour burden [108][109]. In a hypothetical

patient with five metastatic lesions averaging 2 cm3 each, this would equate to a reduc-

tion from approximately 1010 tumour cells to <108 tumour cells [110]. This implies that

despite the high sensitivity of various cancers to treatment, some residual cancer cells

persist anyway. These persistent cells have been reported to lead to tumour recurrence

and treatment failure. As such, this cell reservoir surviving these precision therapies is

called “minimal residual disease”. These residual cancer cells can persist locally, in the

bloodstream as circulating tumour cells or in distant organs as disseminated tumour cells

[111]. But just because cells remain in the patient body after therapy, does not necessary

mean they will cause relapse. In some cases, residual cells share phenotypic similarity (for

example, histologic appearance and lineage markers) and genetic heritage (for example,

truncal mutations and chromosomal rearrangements) with the original tumour cells, but

they are not fully malignant [110]. It is therefore probably only the “malignant” reservoir

of residual cells that harbor somatic alterations and/or phenotypic alterations resembling

a tumour that need to be targeted to prevent tumor recurrences. This is the therapeutic

challenge of the precision age.

Mechanisms of establishment of minimal residual disease.

Based on its definition using the complete remission(CR) theory mentioned above, the

residual disease cells left behind at CR stage may seem an arbitrary selection – stochasti-

cally unaffected by the therapy method. However, breast cancer minimal residual disease

studies in mouse models [112] for BRCA1-deficient breast cancer, show that repeated
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treatments with the drug could not limit the residual cell reservoir completely even at

titrated doses and higher therapeutic duration. This hints towards there being defined

biological mechanisms that favor the survival of residual tumour cells.

Early observations in the clinical situation suggested there was a subset of tumour

cells that had somehow mutated and was insensitive to drugs. These insensitive cells

were postulated to be the only survivors of therapy. This was supported by findings in

lung cancer patients [113] where residual cells developed a mutant allele of the oncogene

being targeted. Another common mechanism of therapy evasion was the activation of

an alternative signaling pathways as decribed in great detail in Niederst and Engelman,

2013 [114]. These mechanisms were coined as “secondary resistance” mechanisms and are

still being unraveled today. For example, mutant BRCA1 or BRCA2 breast and ovarian

cancer relapses have been found to have secondary mutations of the BRCA1/2 genes that

apparently restore BRCA1/2 function [115][116]. These relapse tumours with secondary

resistance no longer respond to the previously successful Poly (ADP-ribose) polymerase

(PARP) Inhibitors [117][118] [119]and DNA cross-linking drugs [120].

Indeed, the identification of secondary resistance mechanisms is of extreme importance

to develop therapeutic interventions for late stage patients. But therapy evasion cannot

be the only mechanism used by cells to survive in a tumour under attack. This is proven

by clinician statements that patients with recurrent disease respond again when the ini-

tial therapy is repeated. These cases cannot be explained by the “drug insensitive cell

subset” theory of residual disease establishment. These observations point to cell intrinsic

molecular mechanisms – for example, entering senescence to evade drugs targeting prolif-

erative cells — that may cause residual disease in these patients. In addition, dynamics

of the tumour micro-environment such as fibroblast signaling, immune cell intervention,

extra-cellular matrix effects and the vascular network may play a role. Therefore, residual

disease establishment mechanisms may be attributed to cell intrinsic and cell extrinsic

factors [121]
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Cell-intrinsic mechanisms of establishment of minimal residual disease.

CSC conferred resistance

The cancer stem cell (CSC) tumour model postulates that there is an inherent hierar-

chy within tumours[122] – growth depends on a few cancer stem cells that are capable of

self-renewal. According to this model these self-renewing CSCs are inherently more drug-

or radiotherapy-resistant and are therefore responsible for local tumour recurrence and

distant metastases appearing after initial treatment [123][80]. Pro-survival mechanisms

in CSCs include: elevated apoptosis resistance, drug-efflux pumps, enhanced DNA repair

efficiency and epithelial to mesenchymal transition (EMT)[124]. Another interesting ob-

servation is the increased re-population rate of CSCs during radio- or chemotherapy [125].

Following initial therapy response, an accelerated re-population during successive cycles

of therapy causes tumour relapse in the absence of any change in the intrinsic sensitivity

of the tumour cells. Accelerated growth of tumour-repopulating cells here is attributed to

re-oxygenation of cells upon reduction of tumour burden or the release of prostaglandinE2

(PGE2) from tumour cells killed by chemotherapy [126].

Metabolic dependency Studies in an inducible mouse model of pancreatic ductal

adenocarcinoma (PDAC) has shown that the residual cells were less glycolytic and more

dependent on mitochondrial pathways for energy production. Accordingly, surviving cells

showed high sensitivity to oxidative phosphorylation inhibitors, which successfully blocked

tumour relapse in this model. Intriguingly, residual cells had a distinct metabolic profile

and this was considered critical for the survival of these cells[127].

Autophagy

Autophagy or ”self-devouring” is the natural, regulated mechanism of the cell that

removes unnecessary or dysfunctional components [128]. It allows the orderly degradation

and recycling of cellular components. Surprisingly, this process has been shown to help

the establishment of residual disease in various cancers. For example, in an osteosarcoma

xenograft model, the dormant state correlated with enhanced autophagy and the pres-

ence of extracellular glutamine [129]. Inhibiting autophagy or depleting glutamine was

sufficient to increase chemotherapeutic sensitivity in this model for osteosarcoma. Since

autophagy is executed by the activity of lysosomes, sequestration of hydrophobic weak

base chemotherapeutics in the lysosomes may be the mechanism of therapy evasion [130].

Cell Senescence

Therapy Induced senescence (TIS) is another concept that could explain MRD estab-

lishment [131]. It is frequently seen in the form of giant polyploid cells that occur at the
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primary site after initial intervention. These cells are formed because of cancer cells that

enter a cell cycle arrest by suspending their mitotic activity while maintaining DNA dupli-

cation [132]. The DNA endoreduplication generates polyploid cells which can survive for

weeks as non-proliferating mono-or multi-nucleated giant cells. A study also showed that

viable progeny can arise from polyploid TIS cells in a process that strikingly resembles

that of daughter cell budding exhibited by many protozoans. This could be because of an

increased expression of cyclin-dependent kinase 1 (CDK1)[133].

Chromatin remodelling mediated drug tolerance

Studies done in non-small-cell lung cancer (NSCLC) cell lines with tyrosine kinase

inhibitors (TKIs), proved the existence of a surviving population of cells that survived

drug concentrations 100-fold above the IC50. Gene expression profiling of these persister

cells revealed KDM5A/Jarid1A and a histone H3K demethylase to be up-regulated. These

genes have functions spanning chromatin modification and the authors compared them to

persisting bacterial cells that survive antibiotic therapy. Perhaps the comparison is valid,

considering that the bacterial survivors were a result of stochastic gene modifications that

allowed the population subset to survive. Although, persistence in cancer cells could be

due to many individual single cell mechanisms [134].
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Cell-extrinsic mechanisms of establishment of minimal residual disease.

The profound effect of the tumour micro-environment during all stages of tumourigenesis

and therapy has been investigated for decades, so naturally, the effect of the tumour micro-

environment on the establishment of minimal residual disease has also been revealed to

a large extent. Micro-environmental factors like oxygenation, interstitial fluid pressure,

acidity and proximity to fibroblasts or immune cells vary greatly in the context of a large

solid tumour and as such may result in gradients in cell proliferation and more importantly

a variation in the efficacy of anticancer drugs[135]. More specifically, cancer cells or cells

within the tumour micro environment have been shown to secrete growth factors [136]

or tyrosine kinase ligands that then activate pathways mediating cell survival and drug

resistance of cancer cells[137].

The concept of cancer immunoediting [138] probably best describes the effect of the

immune system on the tumour micro-environment and growth, unraveling how cancer

cells use this to survive therapeutic intervention. The sequential phases of immune editing

include elimination followed by establishment of equilibrium and eventually escape. In the

elimination phase, tumour cells are destroyed by cytotoxic CD8+ T lymphocytes (CTLs)

by inducing tumour cell lysis [139]. Despite this efficient clean-up of transformed cells,

some rare cells survive in a dormant state [140]. The theory behind their survival rests on

the fact that they evade the immune system via molecular changes and this allows them

to lay dormant over a long period of time (equilibrium). As a consequence of constant

immune selection pressure on genetically unstable tumour cells, changes that favor growth

of the surviving tumour cells are eventually selected. These are no longer recognized by

the immune system and thus “escape” immunosurveillance.

Another crucial component of the micro-environment that effects tumour progression

is the vasculature. It provides the growing tumour mass with nutrients and oxygen and as

such can cause profound effects if it grows abnormally or does not penetrate the tumour

mass efficiently. Abnormal vasculature may result in a dynamic metabolic landscape for

cancer cells due to tumour patches where there is hypoxia and malnutrition. This kind of

“angiogenic dormancy” can prevent tumour growth [135]. Studies have shown that apart

from the diffusion of nutrients and gases, the clearance of acidic metabolites is also a

vital function of the vasculature [141]. Decreased clearance at distal tumour lobules that

are not vascularized efficiently can cause pH changes that in turn effect the activity of

anti-cancer drugs [142] aiding therapy evasion. Another cellular mechanism used by the

surviving population of cancer cells with regards to vasculature patterns and hypoxia, is

the activation of oxygen sensitive transcription factors – HIF1 and HIF2. These transcrip-

tional modulators activate multiple programs to combat apoptosis, including induction of

autophagy as the ultimate survival process before cell death [70].

Following this discussion of the many cell-intrinsic and cell-extrinsic mechanisms, used

by residual disease cells to persist at the site of tumour after therapy, it is probably
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not completely unreasonable to hypothesize that multiple of these mechanisms may be

employed by different cells in the same tumour. This variation could depend on factors

like the type of tumour, the location of the tumour and the micro-environment it grows in.

Encompassing this variability however, is one of the central mechanisms used by residual

cells to survive – tumour dormancy. All cells surviving initial insult therapy lay dormant

for a variable period (ranging from months to decades) of time before re-establishing

malignant disease [143][144] at the initial site or at a distant metastatic site.

Tumour dormancy is a phenomenon observed in clinical practices which refers to a

temporary halt in tumour progression, with a prolonged latency. This means, the patient

is rendered disease-free during the tumour dormancy period and complete remission (CR)

is coupled with absence of clinically detectable tumour recurrence[145]. The presence

of tumour dormancy in patients has been shown in many cases of breast cancer[143],

prostate cancer [144], melanoma renal cell carcinomas [146] and other tumour sub-types.

Recurrences in these patients are sometimes seen after decades of disease-free survival.

Tumour dormancy can be on a cellular level or more on a whole tumour mass scale. tu-

mour mass dormancy happens due to the factors that constrain tumour expansion despite

cell proliferation. The balance between cell division and apoptosis is achieved through

the conditions in the microenvironment, be it the lack of nutrients and oxygen or immune

system responses that efficiently eliminate the tumour cells [147]. The cellular dormancy,

on the other hand, is a true mitotic arrest in the tumour cells. Residual disease establish-

ment is quite possibly a combination of both these dormancy inducing processes. In this

project, I aim to explore the cellular dormancy mechanisms that cause residual disease so

as find ways to target the cellular reservoir of dormant cells that will revert to refractory

disease eventually.
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Rationale for targeting regressing tumours and the residual disease state

Unraveling so many mechanisms by which residual cells can survive leads to hypotheses

that targeting the establishment and persistence of residual cells may be the ultimate way

to cure cancer –eradication of all tumour cells capable of driving relapse. In the clinic,

targeting residual disease is a logical choice due to the following main reasons:

First, there is a reduction of tumour burden at this stage. This confers many advantages

to the treatment of residual disease, for example, a presumably smaller number of treat-

ment refractory clones persist at this point. This implies that there is a reduced likelihood

of sub clonal resistance to one or more therapeutics [148]. Reduced tumour burden also

weakens the actual cancer cells that have survived. They are fewer in number and less ef-

fective at remodelling microenvironments, reprogramming infiltrating hematopoietic cells

and inducing chemoprotective niches [149]. As a result, certain drugs may have greater

efficacy against MRD than against the same cancer at the time of clinical relapse.

Second, if the drugs for treating the residual cells are toxic and lead to many side effects

(as they commonly do), a patient treated for residual disease eradication at this stage has

a better chance of survival than for example in the relapse tumour stage, when the body

is under active tumor stress.

Despite these many mechanistic and practical reasons mentioned above, the most con-

vincing evidence that targeting residual disease may be the best option for pateints with

cancer, is the proof of principle published by researchers and technicians using neoadjuvant

therapy. Assuming the prevention of relapse, is a measurable surrogate for cure, patients

following resection of epithelial tumours and sarcomas, treated with adjuvant (and to some

extent neo-adjuvant) therapy intended to eradicate MRD achieve long-term disease-free

survival with the combination of surgery and adjuvant (or neoadjuvant) therapy than with

surgery alone [150] [151] [152] [153] [154] [155] [156]. Similarly, for haematological cancers

such as acute leukaemias or aggressive lymphomas, a single cycle of intensive chemother-

apy can induce complete remission , but virtually no patients are cured without additional

therapy to eradicate residual disease[157]. Additional therapy aimed at residual disease

in combination with targeted tumor therapy could thus have the potential to limit re-

lapse tumor prevalence and the concept of synthetic lethal interactions within tumour

cells could help us identify the most promising combinational therapies to achieve this

goal, as discussed in the following chapter.
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3.1.2 Synthetic Lethality

Synthetic lethality was discovered by fruit fly researchers in the early 20th century[158].

They discovered that, certain non-allelic genes were lethal only in combination, even

though the homozygous parents were perfectly viable. Synthetic lethality is thus de-

fined as an interaction that occurs between two genes when a perturbation (a mutation,

RNA interference knockdown or inhibition) that affects either gene alone is viable but the

perturbation of both genes simultaneously is lethal [159].

The question of why synthetic lethal interactions occur is probably best answered by

studying biological processes like evolution, developmental canalization (ability to pro-

duce the same phenotype regardless of genotype) and cancer (also other multifactorial

diseases)[160][161]. The need to maintain homeostasis in the face of diverse genetic and

environmental challenges in these processes, frequently leads to synthetic lethal interac-

tions. These interactions make the organism or process more genetically robust[162] [163].

Robustness is mostly provided by two well studied mechanisms of buffering:

1. Via non-homologous genes operating in the same cellular process or in back-up

pathways[164].

2. Via “capacitors” like heat shock proteins and chromatin regulators that can mask

the effects of many different mutations [165] [166].

Thus, cellular systems maintain homeostasis partly by ensuring that processes do not

depend on any single component, which could easily be perturbed by mutation or envi-

ronmental effects, setting the scene for synthetic lethal interactions[167].

Exploiting synthetic lethal interactions to identify new anticancer drug targets has been

pursued by researchers for over 20 years now [168]. In cancer cells, the process of ”oncogene

addiction” is well studied and exploited for therapy by targeting the oncogenes that the

cells get addicted to[169]. But although small-molecule and antibody-based inhibitors of

oncogenes have proved to be effective for some tumour genotypes, not all tumours have

targetable gain-of-function oncogenes, and therapeutic resistance is a common outcome.

However, these cancer cells got through a lot of genotoxic stresses and have been

shown by us in the lab and others, that they have distinct profiles from their wild type

counterparts[52][127]. This points to a ”re-wiring” process that could expose new ge-

netic vulnerabilities. Synthetic lethal interaction partners of cancer-associated molecular

changes – “non-oncogene addiction“ interactions – have therefore become of great value

for therapeutic opportunities [170].

The protein product of a gene that has a synthetic lethal interaction with a frequently

occurring tumour-specific somatic mutation would be an excellent anticancer drug tar-
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get, because a therapeutic that exploits the synthetic lethal interaction should result in

favourable therapeutic indices, in which only tumour cells that harbour the mutation

would be sensitive to the therapeutic (Figure 3.1) .
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Figure 3.1: Exploiting synthetic lethality for anti-cancer therapy

One of the early and possibly still the best examples of this kind of therapy is seen in

the case of DNA repair enzyme called PARP that was proved to be synthetic lethal with

DNA repair genes BRCA1 and BRCA2, mutations in which can cause breast and ovarian

cancer. tumours of patients carrying these mutations could be successfully treated using

a chemical PARP inhibitor with remarkably mild side effects [171] [172].
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3.2 Objectives

The main aim of this project was to better understand the molecular basis of residual

disease in mouse mammary carcinoma and gain insight into the apoptotic pathways acti-

vated in the regressing tumour mass as well as understand the senescence, growth arrest

and repolarization pathways activated in the residual cells. The goal was to understand

the survival mechanisms invoked by residual cells and target the key molecular players

involved in them. This would allow us to identifying potential synthetic lethal targets for

clearing residual disease.

To achieve this aim, we established the following objectives for this study:

1. Characterize the in vitro reductionist model of the TetO-MYC/ TetO-Neu/ MMTV-

rtTA organoids during tumour regression and analyze the kinetic transcriptome signature

during this process.

2. Characterize the analogous in vivo path to residual disease in TetO-MYC/ TetO-

Neu/ MMTV-rtTA mice with induced tumours and establish reproducible timelines for

tumour progression and regression both in-vitro and in-vivo

3. Employ an unbiased data analysis approach to identify genes specifically up-

regulated during regression to rescue surviving residual cells both in the reductionist in

vitro system and immune proficient mouse model. If successful, this objective extends to

testing the efficacy of inhibiting these targets using an appropriate experimental setup.

4. Perform live cell imaging of regressing tumours, in vitro, using Selective Plane

Illumination Microscopy (SPIM) in a more biased approach, to understand regression dy-

namics and draw inferences on potential survival mechanisms used by cells reintegrating

into the residual rims.
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3.3 Results

3.3.1 Characterization of minimal residual disease in vitro using pri-

mary organoids

The TetO-MYC/ TetO-Neu/ MMTV-rtTA mouse model, described in detail in the In-

troduction section of this report, was employed to obtain a correlate of minimal residual

disease in vitro.

3D matrigel cultures were established from single cells, isolated from the mammary

glands of adult TetO-MYC/ TetO-Neu/ MMTV-rtTA female mice. Subsequent to 4-7

days growth in embedded matrigel matrix, these single cells grow to resemble acinar-

looking, polarized structures with a central lumen (Figure3.2a, left panel). Continuing

on, these hollow acinar structures without any exposure to oncogenic proteins will be

referred to as the “Normal” or “Never Induced” acini. Owing to their resemblance in

structure and function to the basic ductal units of mammary glands, they are considered

the healthy mouse correlate of the healthy human breast morphology. The left panel in

Figure 3.2b shows this stage in an immunofluorescence staining of 3D cultures with the key

polarity markers : Alpha 6 integrin (ITGA6, shown in red) has a basal localization; Zonula

Occludens (ZO-1, shown in green) is apical, staining occludins at the tight junctions and

the Golgi matrix protein (GM-130, shown in magenta) is restricted to apical part of the

cell, marking the Golgi.

Upon introduction of doxycycline into the culture media, bright field microscopy shown

in Figure 3.2a, middle panel shows the establishment of a tumourigenic phenotype after

five days of doxycycline exposure. The activation of oncogenes c-MYC and Neu in the

hollow acinar cells results in high proliferation rates and crowding of cells in the lumen.

Subsequent breaking of polarized epithelium phenotype results in filling of the lumen and

expansion of these acini to several times their original dimensions. Several lobules are

formed and the growth is prolific, accompanied by a higher apoptosis rate, as is commonly

observed in proliferating tumour cells. This tumourigenic acinar state is referred to as “5

Days ON DOX” and is the correlate of “Tumour” in human disease. The immunofluo-

rescence staining of 3D cultures at this this stage vary greatly from what is seen in the

“never induced” state as seen in the middle panel of Figure 3.2b.

Owing to the principle of oncogene induction discussed earlier, withdrawal of doxy-

cycline from the media results in rapid death and lumen clearing of the “tumour” acini.

Figure 3.2a, right panel shows the resulting acinar phenotype “7 Days OFF DOX”. De-

spite oncogenic exposure, the cells remaining in the reintegrated rims at this stage could

be compared to the human correlate of “Minimal Residual Disease” and will be alluded

to as such in this study. As shown by the IF staining of 3D cultures at this stage, residual

disease structures are phenotypically very similar to “never induced” state as seen in the

Figure 3.2b, right panel.

The advantageous use of 3D cultures established from primary murine mammary ep-
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Figure 3.2: Representative (a) Bright field microscopy images (Scale bar, 100 µm) and

(b) Immunofluorescence staining images (Scale bar, 25 µm) of fixed 3D gels with TetO-

Myc/TetO-Neu/MMTV-rtTA organoid culture. Left panels show the normal mammary

acini grown from primary cells harvested from the mice. Middle panels show the tumour

organoids that develop post induction with doxycycline for 5 days in culture. Right panels

show the regressed tumours after 7 days of doxycycline withdrawal. Polarity markers

include alpha-6-Integrin (red), GM-130 Golgi marker (magenta), ZO-1 (green) and DAPI

nuclear stain (blue).

ithelial cells allowed close monitoring of the c-MYC and Neu expressing tumour phenotype.

This included observing initiation and regression closely under the microscope and estab-

lishing the timeline for oncogene activation and dependence during tumour formation and

similarly “oncogenic shock” upon acute onco-protein inactivation. Immunofluorescence

staining experiments utilizing 3D gels harvested and fixed at multiple time points during

the kinetic processes of apoptosis, repolarization and establishment of residual rims during

the tumour regression phase have shed much light on the molecular characteristics of these

cells over the seven days of in vitro regression. After 5 days of induction with doxycycline

media, oncogenic protein degrades within 12 hours of de-induction. The inner tumour

mass undergoes apoptosis rapidly and re-establishment of the polarized epithelial rim is

seen within 72 hours. The surviving rim enlarges and apoptosis is near complete by day

7 after removal of doxycycline from the media.

Detailed characterization of the regression phase after de-induction of oncogenes has
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allowed for better characterization of the cellular events that occur in this phase: onco-

protein depletion (6-8 hours after de-induction), apoptosis (as early as 8 hours after de-

induction), clearing of the tumour core (24-36 hours after de-induction), re-polarization of

epithelial cells around a central lumen (36-72 hours after de-induction) and establishment

of a dormant residual rim (by 7 days after de-induction). Figure 3.3 shows representative

IF stains demonstrating these findings.
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Figure 3.3: Representative Immunofluorescence staining images of fixed 3D gels with

TetO-Myc/TetO-Neu/MMTV-rtTA organoids harvested during tumour regression(upon

doxycycline withdrawal). Left panels show polarity staining with markers including

alpha-6-Integrin (red), GM-130 golgi marker (magenta), ZO-1 (green) and DAPI nuclear

stain(blue). Right panels show cell death with the help of the cleaved Caspase-3 stain

(green). E-cadherin(red) is used as membrane marker and DAPI is the nuclear stain(blue).

Scale bar, 50 µm.
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3.3.2 RNA sequencing analysis of in vitro organoids during the estab-

lishment of MRD

Equipped with the aforementioned findings, the objective to unravel the kinetic transcrip-

tome during tumour regression and minimal residual disease establishment was furthered,

in that we could now ascertain the hallmark timepoints at which “transcriptomic snap-

shots” would be worth exploring in these in vitro cultures. We established organoid

cultures from single cells isolated from the mammary glands of four different adult TetO-

MYC/ TetO-Neu/ MMTV-rtTA female mice, induced and then de-induced oncogenic

expression in the resulting mammary acini and collected RNA samples at the hallmark

points on the regression time-scale (Figure 3.4).

Cdh1 (E-cadherin membrane marker) and c-MYC immunofluorescence staining per-

formed early during tumour induction with doxycycline, revealed that the expression of

oncogenes is relatively quick, already visible with c-MYC co-localization in some acinar

cells at the 4 hours ON DOX timepoint (Figure 3.4, right upper panel). To capture the

very early tumour signaling networks, we included 1, 2 and 4 hours ON DOX timepoints

into the scheme. Similarly, Cdh1 (E-cadherin membrane marker) and c-MYC immunoflu-

orescence staining at early timepoints after doxycycline depletion from the culture media,

showed that the oncoprotein had a very short half-life and the protein was no longer

visible as early as 8 hours OFF DOX(Figure 3.4, right middle panel). Coupled with a

Cdh1 (E-cadherin membrane marker) and cleaved Casp3 (Caspase-3 apoptotic marker)

immunofluorescence stain at the same time point (Figure 3.4, right lower panels), we see

that Caspase-3 has already been cleaved in some cells implying that the depletion of the

oncogene and decision to apoptose has already been taken at this point. To gain as much

insight into the transcriptomic signatures during this important “survive-vs.-apoptose”

stage, we included 4, 6, 8, 10 and 12 hours OFF DOX timepoints into the scheme. Be-

cause all the transcriptomic snap shots would be compared to the “Never Induced” tran-

scriptomic snap shot, the evolution of the transcriptomic signature of the normal acini

were taken into account. Cultures grown without doxycycline alongside other cultures on

doxycycline were collected at the 5 days ON DOX timepoint and similarly after 7 days

at the 7 Day OFF DOX timepoint. I performed immunofluorescence staining in parallel

3D matrigel cultures for oncogenic, apoptotic and polarity markers to ensure the organoid

characteristics did not vary too much from the expected. RNA samples were sequenced at

the Genomics Core Facility at EMBL Heidelberg using NGS HiSeq protocol – 75bp read

length, 30x coverage.
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Figure 3.4: Hallmark time points during tumour progression (purple) and tumour regres-

sion (green). RNA was collected from in vitro matrigel cultures at these timepoints and

RNA sequencing was performed to unravel the dynamic transcriptome. Scale bar, 50 µm.
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Principal Component Analysis (PCA) plotting of data points across the time series and

subsequent bioinformatics analysis was performed by Katharina Zirngibl from the Patil

Group at EMBL, Heidelberg. The first and the second principal components accounted

for 38% and 22% of the variance, respectively. It is apparent (Figure 3.5) that the “7

days OFF DOX” timepoint (represented by the darkest green dots in the green regression

kinetic arrow) indeed had a distinctive transcriptomic profile that distinguished it from

both the “5 days ON DOX” (represented by the darkest purple dots in the purple regression

kinetic arrow) and “Never Induced” (shown in gray) timepoints. This clearly indicates

that although the residual disease stage is phenotypically similar to the normal acini as

seen in the staining experiments, there is, in reality, a significant difference between them

on a transcriptomic level. These findings correlate with data published formerly by the

lab showing a distinct transcriptomic profile between “Never Induced and “7 days OFF

DOX” regressed acini on microarray chips. The residual disease substrate in this study

was also found to have an increased lipid metabolism and elevation of ROS species [52].

DeSeq2 expression analysis showed that over 5300 genes were significantly dysregulated

along the tumour progression and regression time course (compared to never induced

control, q value0,05), with a false discovery rate (FDR) of 1%. This is far too large

a number of genes to allow untangling of network connections using standard GO (Gene

Ontology) enrichment analysis. It was therefore decided to perform clustering of the genes

based on their expression trajectories along the time course.

Clustering would proved to have a twofold advantage :

1. Provide information regarding the broad gene expression trajectories during onco-

genesis/regression and discussion on which trajectories might belong to potential synthetic

lethal targets.

2. Serve as guidelines for classifying genes into fewer clusters for efficient network

analysis.

Clustering of the differentially regulated genes (over 5000) across the time series using

the GP Clust algorithm yielded 75 unique clusters (Figure 3.6). Each tiny graph in the

Figure 3.6 represents the average gene expression trajectory of a subset of genes. The

midpoint of the Y axis (at the marking ‘10’) indicates the point of de-induction along the

time course. Since the induction was performed for 5 days and de-induction for 7 days,

the gene expression trajectories have been normalized to fit an equidistant axis. The gene

expression levels all start at 0 (represented by the X axis) at the start and then either

increase or decrease. An inflection point normally occurs at the center (at the timepoint

when the organoids were de-induced) and not all gene expression values return to baseline.
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In Figure 3.7, the grey clusters on the left represent gene expression clusters that seem

to be upregulated (top) or downregulated (bottom) during tumour induction and then

return to normal along the course of regression. Conversely, the other four colorful clusters

in Figure 3.7 represent gene expression profiles that seem to be up-regulated temporarily or

permanently in varying intensities and peaks during tumour regression. Closer inspection

of the gene cluster trajectories is informative, therefore, in hypothesizing the gene clusters

that are simply a consequence of oncogene activation and addiction from the gene clusters

that seems to be upregulated during the establishment of minimal residual disease and

could therefore be potential synthetic lethal targets.

The clustering of over 5000 differentially regulated genes into 75 unique clusters based

on their expression trajectory, paved the path for us to manually curate the interesting

trajectory clusters and has helped us classify interesting trajectories into 5 broad clusters:

1. Sustained targets – upregulated consistently during regression up to residual disease

state

2. Early responders – upregulated early during regression before apoptosis decisions

are made (up to 8 hours after de-induction)

3. Intermediate responders – upregulated after apoptosis decisions are made to poten-

tially salvage residual cells/aid in tissue rearrangement to increase survival (12-24 hours

after de-induction)

4. Late targets – upregulated during re-polarization of epithelial cells into residual rim

(36 hours after de-induction onwards)

5. Shoulder trajectories – upregulated in tumours and continued sustained expression

during regression (at least up to 34 hours after de-induction)

To better understand the gene networks linked with the expression of oncogenes, gene

trajectories like the grey ones on Figure 3.7 were classified into “Expected Up” or “Ex-

pected Down” clusters. Genes in the “Expected Up” cluster seem to be upregulated during

tumour induction and then return to normal along the course of regression. Genes in the

“Expected Down” cluster, conversely, seem to be downregulated during tumour induction

and then return to normal along the course of regression.
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Figure 3.5: PCA plot for RNA Sequencing data of samples collected at hallmark timepoints

during tumour progression and regression (See Figure 3.4). Every dot along the arrows

is a data point for a biological replicate for the particular time point (arrows and points

colored purple for tumour progression, green for tumour regression and grey for never

induced controls). In-lay images show immunofluoresence staining for polarity markers at

the 3 endpoints. Scale bar, 50 µm.
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Figure 3.6: Genes found to be significantly deregulated along the time course shown in

Figure 3.5, with a false discovery rate (FDR) of 1%, were clustered across the time series

using the GP Clust algorithm to yield the 75 unique clusters shown in this figure.

The genes (number indicated in the box on the right-hand corner of each graph in

Figure 3.6), that belonged to the clusters with trajectories that looked similar to the

selected seven interesting trajectories, were pooled into manually curated clusters. Further,

to prevent loss of gene targets that did not meet stringent quality criteria but show similar

expression trajectories over the time course, we developed a correlation analysis algorithm.

Only the trajectories from the five potentially “synthetic-lethal” clusters (Figure 3.8 a)

were used to pull out other genes with similar trajectories from the whole data-set (Figure

3.8 b). Stringent filtering on fold change and significance of gene expression has yielded

a total of 473 potential synthetic lethal targets among these 5 interesting trajectories.

Including the “Expected Up” and “Expected Down” clusters the number of genes totals

1796 (Table 3.1).
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Figure 3.7: Example gene cluster trajectories from the 75 unique clusters (see Figure

3.6). Grey gene trajectories show gene expression deregulated due to oncogene expression.

This aberrant expression seems to return to normal upon oncogene de-induction. Colored

trajectories show genes with aberrant activity before and/or after oncogene withdrawal

that are hypothesized to help residual disease cells survive tumour regression. Time units

are normalized for graphical representation and grey lines at position 10 in each graph

show the point of oncogene de-induction.

Collaboration with Matt Rogon, Center for Biomolecular Network Analysis, EMBL,

Heidelberg was established so as to perform Gene Ontology Enrichment analysis of these

1796 genes in 7 manually curated clusters. Enriched GO terms for each of the 5 potentially

synthetic lethal clusters is shown in Figures 5.3, 5.4, 5.5, 5.6 and 5.7. A combined multi-

cluster gene enrichment analysis on all these potentially synthetic lethal gene clusters

is shown in Figure 3.9. The pathway enrichment information from the five potentially

synthetic lethal clusters – individually and in comparison – allowed us to narrow the list

of molecular players vital to establishment of residual rims.

This was done in a two-step process: first, we manually picked interesting GO terms

that seemed to be novel yet logical in the residual disease establishment landscape. These

included GO terms shown in Table 3.2

Next, we mapped each of these networks based on protein-protein interaction databases.
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Curated Cluster FDR Clustering Correlation Analysis Total

Expected-Up 1087

Expected-Down 236

Sustained Target 18 109

Early Response Target 33 9

Late Response Target 11 86

Intermediate Response Target 58 94

Shoulder Target 31 24

1796

Table 3.1: Gene numbers and sources for manually curated and potentially synthetic lethal

clusters that were used for gene enrichment and network analysis.

GO Term identifier GO Term

GO:0002819 Regulation of adaptive immune response

GO:0098742 Cell-cell adhesion via plasma-membrane adhesion molecules

GO:0002009 Morphogenesis of an epithelium

GO:0001213 Formation of the cornified envelope

GO:0031663 Lipopolysaccharide-mediated signaling pathway

GO:0017017 MAP kinase tyrosine/serine/threonine phosphatase activity

GO:0000097 Downregulation of ERBB4 signaling

GO:0000618 Oxidative Stress Induced Senescence

GO:0008593 Regulation of Notch signaling pathway

GO:0000571 FAS pathway and Stress induction of HSP regulation

Table 3.2: GO Terms enriched in the five potentially synthetic lethal clusters manually

curated from RNA Seq analysis.

As shown in Figures 5.8 to 5.17, we mapped the network proteins for each pathway and

further expanded the net by including the first neighbor proteins of all the proteins in

the particular network. First neighbors are proteins that have been shown, experimen-

tally and/or theoretically, to interact in a cellular environment. Filtering the GO-term

-protein + first-neighbor network based on availability of drugs for inhibition of gene/

protein target further helped in narrowing the list of potential synthetic lethal targets to

interfere with minimal residual disease. Further, manual filtering for biological relevance

was postulated to provide a comprehensive list of targets for validation.
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Shoulder 
target trajectory

Intermediate response 
target trajectory

Early response
target trajectory

Sustained target 
trajectory

Late response 
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a.

b.

Figure 3.8: (a)Five broad, interesting gene expression trajectories that could belong to

potential synthetic lethal targets – picked manually based on biological criteria. (b) Cor-

relation analysis algorithm used to pull out genes from the whole RNA Seq data set to

enrich single gene trajectory clusters in (a)
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Figure 3.9: Schematic representation of enriched GO terms within the genes in clusters

with potential synthetic lethal trajectories. GO term groups that are connected with

grey lines and shown in the same color represent grouping based on broader a Molecular

Function(MF) analysis.74
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3.3.3 Characterization of minimal residual disease in vivo in mice

Establishing a pure correlate of minimal residual disease using mouse mammary glands

and organoid cultures has proved useful in elucidating mechanisms of tumour regression

as seen in the previous findings of the lab [52] and the findings so far in this report.

However, although the 3D culture system is clean and synchronous it provides a rather

reductionist approach, owing to the fact that key cell compartments of the breast tissue are

missing from this system: fat cells, myoepithelial cells, fibroblasts and most importantly,

a functioning immune system. Without the complexity encountered in living organisms,

it was deemed important to validate our in vitro findings in an in vivo context, using

mouse experimentation. Before we started to explore certain synthetic lethal targets and

the effect of their inhibitors in vitro, we wanted to know that these targets were indeed

upregulated in mice with full organ morphology and a proficient immune environment.
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Figure 3.10: Immunohistochemistry (IHC) staining of mouse mammary tissue sections

during the regression of mammary tumours upon withdrawal of doxycycline from the

diet of TetO-MYC/ TetO-Neu/ MMTV-rtTA mice. (a) IHC stains for Ki67 proliferative

marker and (b) cleaved Casp3 apoptotic marker in mammary glands at the indicated

times during tumour regression. Counter stained with haematoxylin. Scale bar, 50 µm.

The first step was naturally characterizing the inducible tumour model in vivo. TetO-
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MYC/ TetO-Neu/ MMTV-rtTA adult female mice (between 8-10 weeks old) were ad-

ministered food with doxycycline so that they developed tumours. Palpable tumours were

observed within 5-6 weeks (median time to tumour = 38 days) when oncogenes are induced

in their mammary glands by administration of food with doxycycline. Tumours were al-

lowed to grow until the tumour burden was considered too high (any tumour lobule is

more than 2 cm in diameter) and then the mice were switched to normal food without

doxycycline. Thereafter, rapid tumour regression follows, wherein tumours are no longer

palpable as early as 2-3 weeks after removal of doxycycline from the animal diet. However,

upon sacrificing and dissecting mice 2-3 weeks OFF DOX we observed micro tumours and

regressing nodules in the mammary glands. Consequently, the animals were allowed to

regress for longer to allow complete regression. IHC staining for apoptosis and prolifera-

tive markers was performed at various timepoints during in vivo regression (Figure 3.10)

and 9 weeks OFF DOX was ascertained as the “residual disease” state. Animals showed

continued apoptosis in their mammary gland tissue, until 6 weeks after removal of doxy-

cycline from the animal diet. Analogous to the in vitro regression, IHC stains early after

doxycycline withdrawal from the animal diet, showed massive cell death and depletion of

oncogene within 48 hours. This contributed to deciding the hallmark timepoints during

in vivo mammary tumour regression in this mouse model.

At the hallmark time points shown in Figure 3.11, tissue samples were collected from

3 mice (biological replicates) per time point. An age matched control was also harvested

with each tumour/regressing tumour mouse. This was frequently a wild type or unin-

ducible genotype sibling. Typical harvest from these mice included:

1. Fixed tissue for paraffin embedding and histology

2. Frozen tissue for DNA, RNA, protein extraction

3. Estrous smears to control for estrous cycle effects on gene expression/protein levels

RNA samples from mouse mammary tissue were run on microarray chips for gene

expression profiling. Analysis of the microarray data and differentially regulated genes

and pathways compared to control mice was performed using the Transcriptome Analysis

Console (TAC) 4.0 software. Principal Component Analysis (PCA) plotting of this mi-

croarray dataset (Figure 3.11) follows the trend observed in the in vitro dataset with the

residual disease correlate clustering distinctly from the control samples despite phenotypic

similarity in tissue morphology.
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4 days
 OFF DOX

1 day
 OFF DOX

2 weeks 
OFF DOX

1 week
 OFF DOX

 4 weeks 
OFF DOX

Control 
(Never ON DOX)

Tumour 
(6-8 weeks ON DOX)

Residual Disease
8- 9 weeks OFF DOX)

Figure 3.11: PCA analysis plot for micro array data from samples collected at hallmark

time points during tumour regression in mice. Each dot on the plot represents a biological

replicate and the stage of harvest is color coded with the schematic bubbles.

Now equipped with the gene expression changes in the mouse model with organismal

complexity, we performed a manual overlay of gene enrichment analysis for both in vivo

and in vitro datasets. This yielded the following interesting subgroups of pathways that

seem to be altered both in reductionist 3D cultures and immune proficient mice during

tumour regression:

(a) Focal Adhesion PI3K- AKT-mTOR Sinalling Pathway

(b) MAPK Signalling (specifically: c-Jun Kinase/Stress-activated Pathway)

(c) TNF-alpha and NF-κB signalling pathway
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(d) Tgf-Beta Signalling pathway

(e) DNA damage response (ATM dependent)

(f) Apoptosis pathways.

Key molecular players from these pathways were selected for validation, including c-

Jun, BCl-6 and CCl5.
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3.3.4 Validation of selected targets for synthetic lethality during estab-

lishment of MRD

Key molecular players that were identified and hypothesized to be involved in the estab-

lishment of residual disease— c-Jun, BCl-6, CCL5 — were taken forward for validation.

These targets were identified from network analysis on in vivo and in vitro transcriptomic

datasets and so the logical next level of validation would be the protein level.

Using IHC and immunofluorescence staining, c-Jun protein was shown to be enriched

significantly in the MRD correlate of the in vitro 3D cultures (Figure 3.12a) as well as the

tissue sections of the regressed mammary glands harvested from mice (Figure 3.12b). As

indicated in the graphs in Figure 3.12a & b, c-Jun was upregulated on the transcriptomic

level. It is an important transcription factor involved in numerous cell activities, such

as proliferation, apoptosis, survival, tumourigenesis and tissue morphogenesis[173]. It

has already been shown to be relevant in the human breast cancer landscape because it

cooperates with NF-B to prevent apoptosis induced by TNF [174]. Protein validation of

c-Jun warranted further functional validation of this target. We aimed to functionally

validate c-Jun first in the in vitro context by testing the effect of its inhibition on the

establishment of residual disease rims.

Sylwia Gawrzak in the group collaborated with me to adapt our primary murine mam-

mary cultures to her inhibitor screening pipeline using 3D cultures, high throughput imag-

ing and cell viability and toxicity assays. Inhibitors of potential synthetic lethal targets

were to be tested in in vitro cultures in the context of combinatorial treatment — inhibitors

were to be added during removal of doxycycline (“ideal therapy”). The hypothesis was,

that if the cells surviving therapy and reintegrating to form residual disease rims were

dependent on the synthetic lethal target, then an inhibitor for the target applied during

oncogene withdrawal would reduce the number of cells surviving and limit the reservoir

of cells establishing the minimal residual disease correlate. As such, we expected to see

reduced cell viability and increased cell death in regressing organoids that were taken off

doxycycline (“ideal therapy”) along with an inhibitor against the synthetic lethal target

as compared to simply organoids regressing because of doxycycline withdrawal.
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Never Induced Tumor 7 days OFF DOX

Control Tumor 9 weeks OFF DOX

Figure 3.12: (a) Gene expression profile for c-jun in 3D cultures undergoing tumour

regression are shown in the blue graph. Y-axis indicates the log2 Foldchange values of

gene expression at each timepoint as compared to the Never Induced timepoint. The

IF staining panels below show protein localization of c-jun (green) in 3D acinar cultures

at Never Induced(control), 5 day ON DOX (Tumour) and 7 days OFF DOX (residual

disease) timepoints. Cdh1 (E-cadherin) used as membrane marker in red. (b) Gene

expression profile for c-jun in mammary tissue of mice undergoing tumour regression are

shown in the orange graph. Y-axis indicates the log2Foldchange values of gene expression

at each timepoint as compared to the Control. The IHC staining panels below show

protein localization of c-jun in mammary tissue sections of control mice , tumour mice

and mice harvested after 9 weeks OFF DOX (residual disease stage). Counterstained with

haematoxylin. Scale bar, 50 µm.
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CellTox™ Green Cytotoxicity Assay

Fluorescence Read-out

CellTiter-Glo® Luminescent Cell Viability Assay

Luminescence Read-out

ScanR automated imaging

Optical Read-out

oncogenes
induced (ON DOX)

oncogenes de-
induced (OFF DOX)

SYNTHETIC
LETHAL
DRUG

Figure 3.13: Experimental design for the in vitro target validation. To test the synthetic

lethality of identified genes, their inhibitors would be supplemented in the culture media

starting from the point of doxycycline withdrawal. Optical, Luminescence and Fluores-

cence readouts were incorporated to evaluate phenotype variation, cell viability and cell

death.

To test this hypothesis, we adapted our 3D culture method to mini 3D gels (5ul) in

a 96 well format (experimental design summarized in Figure 3.13). This format allows

for experimental reproducibility and reduced variability – because one can test varying

concentrations of the inhibitors on the same plate with the appropriate controls and enough

technical replicates to perform statistical testing. The 96- well mini-gel format also allowed

for:

(a) Optical readout via high throughput ScanR imaging

This facilitated following whole gels over the time course visually to demarcate phe-

notypic changes.

(b) Cell Viability read-out using CellTiter-Glo R© Luminescent Assay

This outputs a well-wide viability parameter that is ATP dependent and can be used

to compare metabolically active cells in each well using a luminescence read-out.

(c) Cytotoxicity and Cell Death readout via CellToxTM Green Fluorescence Assay This

outputs a well-wide cell toxicity parameter that is biomarker dependent and can be used

to compare apoptosis in each well using a fluorescence read-out.
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Table 3.3 shows the list of inhibitors tested using this pipeline on 3D cultures grown

from TetO-MYC/ TetO-Neu/ MMTV-rtTA mouse mammry glands. We tested inhibitors

for c-Jun namely Tanshinone IIA and JNK inhibitor SP600125; BCL-6 namely FX-1 and

79-6 inhibitor and two targets that form integral parts of the NF-κB cascade, CCL5

with it’s antagonist Maraviroc and the IKK2 kinase with the IKK2 -IV and IKK2-VIII

inhibitors.

Inhibitor tested Inhibitor target Concentration range(µM) tested

Tanshinone IIA (AP-1 inhibitor) c-Jun 0.1 - 80

SP600125(JNK inhibitor) c-Jun 0.02 - 80

FX-1 Inhibitor Bcl6 15.6 - 4000

79-6 Inhibitor Bcl6 1.95 - 1000

IKK2 Inhibitor IV Ikbkb 3.125 - 50

IKK2 Inhibitor VIII Ikbkb 0.39 - 100

Maraviroc CCL5 antagonist 6.25 - 100

Table 3.3: Inhibitor list tested for synthetic lethality in regressing mammary matrigel

cultures using the pipeline outlined in 3.13.

Bcl6 is a strong transcriptional repressor implicated in B-cell lymphomas and other

solid cancers. It has recently been implicated to have a role in human breast cancers using

cell line models and bioinformatic analysis [175]. It has also been shown that higher BCl-

6 expression reduces relapse free survival in HER2+ patients (Online KM plotter[176]).

In our model system, commonly repressed proteins like the ones controlling DNA dam-

age sensing (eg: Atr, Chek1, Trp53, Cdkn2a) and proliferation checkpoints (eg: Cdkn1a,

Cdkn1b, Cdkn2b, Pten) are found to be downregulated during tumour regression. These

are all known to be repressed by Bcl6. In addition, Bcl6 upregulation could be validated

on a protein level in the 3D cultures where it was found to be enriched in regressed rims as

compared to never induced acini (Figure 3.14). Combined with the elevated transcriptomic

signatures from the in vitro and in vivo experiments, it qualified for functional validation

with the inhibitor screening pipeline.

Similarly, targets from the NF-κB cascade were also tested for synthetic lethality using

this pipeline. The NF-κB complex proteins such as Rel and Relb were shown to be

upregulated in vitro and in vivo during regression. Previous literature suggests that

TNFα-induced NF-κB activation induces transcription and expression of genes encoding

anti-apoptotic factors Birc2, Birc3 and Bcl2 homologue Bcl2l1 [174]. Transcriptome levels

of all these anti-apoptotic factors along with the Tnf RNA are also upregulated in the

minimal residual disease correlates in our system (See schematic in Figure 3.15).

As hypothesized earlier, inhibiting a true synthetic lethal target is expected to have

a pronounced deleterious effect on regressing tumours. Controlling for inhibitor toxicity

was performed using a dose curve method of experimental design and by applying the
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inhibitor on Never Induced acini in gels grown on the same plate. As such, upon addition

of a synthetic lethal target inhibitor, we would expect the regressing tumour acini to show

decreased viability and at the same time we would expect no effect on the Never induced

acini. A target cannot be synthetic lethal if it’s inhibitor, at a given concentration, is less

toxic towards regressing organoids in comparison with normal mammary acini.

Figures 3.16 and 3.17 show the readouts from the CellTiter-Glo R© Luminescent Assay

(viability) and CellToxTM Green Fluorescence Assay (cell death) for two c-Jun inhibitors

– Tanshinone IIA and JNK inhibitor SP600125. Both experimental readouts for both

inhibitors indicate that although the inhibitor severely reduces residual disease viability

at higher doses, this correlate is far more refractory than normal never induced mammary

organoids. Similar results were obtained during the testing of all the inhibitors mentioned

in Table 3.3 ( See Supplementary Figures 5.18, 5.19, 5.20 and 5.21).
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Figure 3.14: Gene expression profile for Bcl6 in 3D cultures undergoing tumour regression

are shown in the blue graph. Gene expression profile for Bcl6 in mammary tissue of mice

undergoing tumour regression are shown in the orange graph. Y-axis indicates the log2

Foldchange values of gene expression at each timepoint as compared to the Never Induced

timepoint or Control mice. IF staining panels show protein localization of Bcl6 (green)

in 3D acinar cultures at Never Induced (Control), 5 day ON DOX (Tumour) and 7 days

OFF DOX (residual disease) timepoints. Cdh1 (E-cadherin) used as membrane marker in

red. Scale bar, 50 µm.
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Figure 3.15: Schematic representation of the molecular players in the NF-κB cascade and

their feedback signalling loop with CCR5 receptor anti-apoptic signalling during in vitro

breast cancer regression. Molecular targets highlighted in red were up-regulated along the

regression transcriptome of our 3D culture system.
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Figure 3.16: Cell Viability and Cell Death readouts from synthetic lethality testing of

inhibitor Tanshinone II A against the identified traget c-Jun. Upper left graph shows the

readout from the CellTiter-Glo R© Luminescent Assay. Cell viability readouts for the 5

doses of Tanshinone IIA tested and normalized against the control are shown. Derived

from this graph is the upper right graph depicting the Cell Viability response curve. IC50

values for Tanshinone IIA in the Cell Viability response curve are 0.0029 mM for Never

Induced and 0.025 mM for Regressed cultures. Lower left graph shows the readout from the

CellToxTM Green Fluorescence Assay. Cell death readouts for the 5 doses of Tanshinone

IIA tested and normalized against the control are shown. Derived from this graph is the

lower right graph depicting the Cell Death response curve. IC50 values for Tanshinone IIA

in the Cell Death response curve are 0.0063 mM for Never Induced and 0.0265 mM for

Regressed cultures.
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Figure 3.17: Cell Viability and Cell Death readouts from synthetic lethality testing of

inhibitor JNK Inhibitor SP600125 against the identified traget c-Jun. Upper left graph

shows the readout from the CellTiter-Glo R© Luminescent Assay. Cell viability readouts

for the 5 doses of JNK Inhibitor SP600125 tested and normalized against the control are

shown. Derived from this graph is the upper right graph depicting the Cell Viability

response curve. IC50 values for JNK Inhibitor SP600125 in the Cell Viability response

curve are 0.011 mM for Never Induced and 0.023 mM for Regressed cultures. Lower

left graph shows the readout from the CellToxTM Green Fluorescence Assay. Cell death

readouts for the 5 doses of JNK Inhibitor SP600125 tested and normalized against the

control are shown. Derived from this graph is the lower right graph depicting the Cell

Death response curve. IC50 values for JNK Inhibitor SP600125 in the Cell Death response

curve are 0.024 mM for Never Induced and 0.0246 mM for Regressed cultures.
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3.3.5 Imaging tumour organoid regression using light sheet microscopy

The primary focus of this study was to identify key molecular players in minimal residual

disease of breast cancer and the transcriptomic method described so far is an unbiased

approach to elucidate the mechanisms of establishment of minimal residual disease using

gene expression analysis (RNA Seq). In a more biased approach, we aimed to image the

special dynamics during regression to analyze mechanisms of survival of residual disease

cells in our 3D culture system.

To better understand the spatio-temporal dynamics of regressing tumours and visualize

the establishment of a minimal residual disease correlate, we exploited the 3D culture

method combined with the inducible TetO-MYC/ TetO-Neu/ MMTV-rtTA mouse model.

The reporter protein H2B mCherry was bred into the mouse line to fluorescently mark

the nuclei for imaging –to image regression in vitro. SPIM microscopy was ascertained

to be the most adept technique for this objective because it facilitates rapid live cell

imaging, with low photo-toxicity, greater penetration depths and low scattering owing to

illumination with a light sheet instead of a point source.

a.

b.

0:0 hrs 1:0 hrs 2:0 hrs 3:0 hrs 4:0 hrs

0:0 hrs 1:0 hrs 2:0 hrs 3:0 hrs 4:0 hrs

Figure 3.18: tumour organoids recorded at the In-Vi SPIM (Luxendo) for short periods

to test phototoxicity. (a) shows image acquisition with a z-step size of 0.5 µm, while (b)

shows image acquisition with a z-step size of 1 µm. Time stamps on the upper left corner

of panel images show times since the start of image acquisition at 10-minute intervals.

H2B-mCherry fluorescence in cells shown in grey. Scalebar, 10 µm.

However, one of disadvantages of this alternate optical arrangement- illumination with

a light sheet perpendicular to detection – is that SPIM microscopes often require spe-

cial sample mounting for imaging. Mounting procedures are sometimes incompatible with

optimal growth conditions for the 3D mammary epithelial cell cultures and must be estab-
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lished differently. For example, during my efforts to image mouse mammary acini with the

Mu-Vi SPIM (Multi-view SPIM), growth seemed to be impaired due to lack of diffusion

of nutrients with the media because the 3D cultures had to be seeded in 1mm diameter

FEP tubes. Similarly, I also experienced sample mounting incompatibility with the Leica

SP8 Confocal-SPIM for our 3D system. To suit the mounting needs of the SP8 SPIM, we

seeded matrigel cultures on 2 mm wide FEP strips and mounted them at an elevation to

allow the light sheet formation through the sample. Although we could image a few movies

on this system, the gel cultures were increasingly unstable over time and we experienced

frequent sample drift. Another disadvantage of this system was the inability to image at

multiple positions in the gel culture efficiently. However, the InVi SPIM made by Luxendo

was eventually shown to be ideal for our sample as detailed in the previous project in this

thesis.

Imaging on the InVi SPIM set up was optimized to reduce phototoxicity and so that the

imaging conditions would not affect cellular fates. In Figure 3.18, the upper panel shows a

movie recorded at the InVi SPIM over 4 hours, every 10 mins, with 0.5 µm z-step size. The

panels, as they progress from left to right, show bleaching of the fluorophore and eventual

phototoxicity in the sample. The lower panel of Figure 3.18 shows a similar recording

of organoid growth wherein the parameters were optimized to prevent photobleaching:

laser powers of 13.1 microWatts for the 488 nm laser and 36.4 microWatts for the 594

nm laser, 100 millisecond exposure time per frame, 1m z-spacing between frames and 10-

minute imaging intervals. A series of optimization experiments, involving different laser

powers, exposure times and z-step sizes yielded these parameters to be optimal for long

term imaging (96-120 hours) without photo-bleaching or photo-toxic effects on growth.
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Figure 3.19: Tumour regression recorded at the In-Vi SPIM (Luxendo) with manual track-

ing . Blue tracking dot marks a cell that exhibited movement to the surviving rim during

apoptosis of the core. Time stamps on the upper left corner of panel images show times

since doxycycline withdrawal from the 3D culture media. H2B-mCherry fluorescence in

cells shown in grey. Scalebar, 10 µm.

90



Quest for the Achilles’ heel in breast cancer residual disease

Once the sample mounting and imaging conditions were optimized, we proceeded with

the objective of recording tumour organoid regression. Video stills in the Figure 3.19

show that imaging this process from the point of de-induction of oncogenes to almost 72

hours OFF DOX, is indeed possible. The inlay images in Figure 3.19 show the same single

cell marked with a blue dot in the entire time frame. The cell looks to have journeyed

from the center of the tumour organoid at 9 hours OFF DOX to integrating into the

regressed rim at 33 hours OFF DOX. Clearly these movies of tumour regression already

show some interesting phenomenon exhibited by cells during regression — cell movement

to the basement membrane and repolarization into the epithelial monolayer as a method

of survival.

But these anecdotal observations could not be reproduced simply because the datasets

are too convoluted for the current image analysis methods described in detail in the pre-

vious project of this thesis (Figure 2.10). Inability to segment these structures into single

cells in 3D impedes tracking their movement, divisions and apoptosis. Figure 3.20a shows

the raw images (left panels) and resultant pixel probability maps (right panels) for two

images of varying complexity. The lower panel images are from a tumour acinus and the

upper panel images are from a never induced acinus – both recorded at the InVi SPIM

during 96-hour image acquisitions. Clearly the algorithm cannot correctly classify pixels

in the chaotic tumour acinus 2D frame efficiently.

To circumvent this technological deficit, we propose a lentiviral delivery system to

stochastically mark single cells within an organoid before induction and de-induction

of oncogenes (Figure 3.20b). Introducing, via lentiviral delivery, a reporter fluorophore

(H2B-GFP) into some of the acinar cells before induction with doxycycline will allow us

to selectively image them in a separate channel without the chaotic microenvironment.

This imaging and image analysis modality are similar to the one successfully used for the

stochastic model mentioned in the previous project. Two channel imaging with randomly

marked tumour cells should therefore be able to simplify segmentation, allowing for track-

ing of some cells, if not all, during tumour regression. This imaging and data analysis are

planned for my bridging postdoctoral period after PhD defence.
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Figure 3.20: (a)Example segmentation using the CATS tool (Fiji) that uses a machine

learning algorithm to classify image pixels via feature identification. Left panels show

raw image planes(grey- H2B mCherry) and right panels show segmentation results (pink-

nucleus boundary pixel class; green- nucleus center pixel class). (b) Schematic showing

lentiviral marking strategy to reduce complexity of images recorded and simplify segmen-

tation.
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3.4 Discussion

The rationale for targeting breast cancer residual disease is clear from the clinical situ-

ation today. Upon treatment with targeted therapeutics, designed to specifically inhibit

oncogenes, 30-40% of patients who receive satisfactory remission with targeted therapy,

present with relapse tumors. This tumor recurrence is frequently attributed to residual

disease: a reservoir of tumour cells that evade primary therapy and persist in a dormant

state for long periods. This reservoir of cells represents a black box in terms of availability

of patient material. This has resulted in our limited understanding of the mechanisms of

residual disease survival and the molecular players that facilitate therapy evasion.

To address the need of molecular targets to combat this disease reservoir, we mod-

elled an in vitro substrate of this disease using cells from an inducible mouse model. As

described in the results section, this reconfirmed the observation [52] that the residual

population of cells resulting from ideal targeted therapy (oncogene de-induction) were

indeed not transcriptomically similar to their oncogene nascent (never induced) counter-

parts. RNA Seq analysis at the identified hallmark timepoints along the time course of

establishment of a residual disease substrate further informed us of the demarcation be-

tween oncogene regulated pathways (Expected Up and Expected down clusters in Figure

3.7) and novel pathways triggered by oncogenic shock (Table 3.2). These pathways could

be targeted to induce synthetic lethality in residual disease cells and represent a gene sig-

nature evolution that could be interfered with at multiple points during and after tumour

regression (Objective 1).

Further, we performed in-depth analysis of the immune proficient mouse model during

tumour regression, establishing time lines for tumor growth and regression in the animals

based on IHC staining. We used these time lines to select time points for microarray anal-

ysis. Analysis of the transcriptomic data during mouse tumor regression, corroborated

the finding that novel pathways are activated during tumour regression, independent of

the oncogene and distinct from normal cells(Objective 2).

The subset of signalling pathways that could be validated both in the mouse model

and its reductionist in vitro counterpart were evaluated for potentially synthetic lethal

targets. Careful analysis of the molecular players in the pathways identified warranted

the selection of Bcl6, c-Jun and the molecular players in the NF-κB cascade, as potential

synthetic lethal targets(Objective 3). Below is a bullet list of biological findings that

support the selection of each of these targets.

BCL6
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• BCL6 rests at the centre of the DNA Damage Response pathway shown to be dys-

regulated during residual disease establishment in our model system. BCL6 has

been shown to reduce the cells sensitivity to DNA damage [177] due to its direct

repression of the ATR gene, which prevents DNA-damage responding ATR targets

from being expressed. BCL6 also directly represses the CHEK1 gene, which is a crit-

ical mediator of the ATR-dependent DNA damage-signaling pathway[178]. BCL6

can also directly repress the TP53 and CDKN1A genes, thus severely impairing the

function of cellular DNA damage checkpoints at multiple levels [179][180]. All these

genes have also been downregulated significantly during tumour regression in the in

vitro 3D culture model.

• BCL6 is a transcriptional repressor protein that confers B-cells the ability to tol-

erate rapid proliferation and simultaneous genetic recombination[181]. This ability

conferred in residual cells could allow therapy evasion.

• In germinal centers (GC) (transient and dynamic cellular compartments that form

within secondary lymphoid organs), BCL6 plays a big role in B-cell maturation to

generate antibodies against specific antigens [182]. It does so by allowing rearrange-

ment and mutation of the immunoglobulin loci [183]. This points to a phenotype

of physiological genomic instability induced by BCL6 that could lead to cancer.

Naturally, genetic lesions that cause constitutive expression of BCL6 in GCs are

commonly associated with diffuse large B-cell lymphomas (DLBCL) [184] [185].

• BCL6 is expressed in most breast cancer cells lines and that its genetic locus is

amplified in approximately 50% of breast tumour samples. Studies targeting BCL6

have proven its importance for breast cancer [175].

• Higher BCl-6 expression reduces relapse free survival in HER2+ patients (OnlineKM

plotter [176]).

c-JUN

• c-Jun in combination with c-Fos, forms the AP-1 early response transcription factor.

It has been implicated in many cancers as a potent oncogene. Naturally, seeing this

gene upregulated in the residual cells (validated even on a protein level both in vitro

and in vivo) motivated us to test its synthetic lethality.

• c-Jun has been shown to mediate an anti-apoptotic function in response to TNFα.

TNFα is upregulated in our models during tumour regression and we hypothesized

that c-Jun overexpression in some cells was protecting them from apoptosis [186].
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• In breast cancer modelling with HER2 over-expression (analogous to the mouse

model we employed with out rat Neu oncogene), the knocking out of of c-Jun, re-

duced cellular migration, invasion, and mammosphere formation of ErbB2-induced

mammary tumours[187]. In this study, researchers have shown that secreted inflam-

matory cytokines like CCL5 – induced by ErbB2 expression — were dependent upon

endogenous c-JUN expression and that CCL5 rescued the c-Jun-deficient breast tu-

mour cellular invasion phenotype. Since CCL5 was also upregulated in our model of

tumour regression, both in vitro and in vivo, we postulated an intertwined signalling

between these two targets.

• A study analyzing gene expression data derived from serial tumour samples of pa-

tients with breast cancer who received Neo-Adjuvant Chemotherapy (NAC) in the

I-SPY 1 TRIAL showed that the key transcriptional regulator AP-1, JUN and FOSB

were among the 32 upregulated genes in residual tumours after chemotherapy. This

points to a human relevance of c-JUN in residual disease [188].

Molecular players in the Nf-κB cascade

As mentioned above, the TNFα upregulation during the process of tumour regression

observed in our model, propelled interest in the cascades activated by this cytokine. TNFα

induced NF-κB activity seemed like a viable downstream progression – especially since

all the NF-κB subunits were also upregulated in our transcriptomic data. We proposed

that this TNFα induced NF-κB activity was causing the upregulation of anti-apoptotic

mediators like Bir2, Birc3 and BCl2l2 (all of which are enriched in the residual cell tran-

scriptome). These observations warranted targeting of the NF-κB activation cascade. We

tried to do this using IKK2 inhibitors (Table 3.3). IKK2 is a multiprotein kinase complex

that is responsible for the TNFα induced phosphorylation of IκB(Inhibitor of κB) which

then dislocates and allows the NF-κB transcription factor to translocate to the nucleus

and induce expression of certain genes. Another interesting target in this cascade was the

inflammatory cytokine CCL5.

CCL5

• CCL5 has been shown to play an important role in many facets of tumour pro-

gression, such as invasion, metastasis, neoangiogenesis, and immune cell infiltration

[189].

• In TNBC (triple negative breast cancer) patients , CCL5 expression has been shown

to be enriched in larger tumours remaining after neoadjuvant chemotherapy indicat-

ing it’s role in residual disease survival [190].
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• In prostate cancer, the role of CCL5 in proliferation and metastasis was shown to be

mediated through F-actin polymerization and Maraviroc, a CCR5 antagonist was

successfully used to block it’s effects [191] [192]

• In gene expression data-sets from breast cancer patients treated with neoadjuvant

targeted or chemotherapy [193] [194]), CCL5 expression is elevated in residual tu-

mour cells that survive therapy [195].

• Another group at Duke University recently published data with the same inducible

mouse model used in this project. They also observe that oncogene withdrawal led

to hyperactivation of the NF-κB pathway and downstream upregulation of CCL5.

Confirming our hypothesis, they prove that this program was mediated by autocrine

TNFα and dependent upon IKK/NF-κB signaling [195](also shown recently in lung

cancer [196]). They implicated CCL5 in macrophage recruitment, collagen deposi-

tion and tumour recurrence.

The targets detailed above were tested using the screening pipeline (see Figure 3.13,

Table 3.3) and residual disease cells that were treated with target inhibitors were as-

sayed for viability and cell death. The experimental readouts for all inhibitors indicate

that although the inhibitor severely reduces residual disease viability at higher doses, this

correlate is far more refractory than normal never induced mammary organoids. These

results indicate that the in vitro testing assay might not be the optimal readout for assess-

ing synthetic lethality. 90% of the tumour mass apoptoses upon removal of doxycycline

from induced organoids and the cell viability/death assay read outs might not be sensitive

enough to record the additional 1% death caused by synthetic lethality of the proposed

targets. Therefore, alternate validation methods will be required to validate the “synthetic

lethality” of these targets. An in vivo validation in mice with a “Relapse free survival”

read out might be an ideal method of target validation, given that prevention of relapse

in inhibitor treated mice might be considered cure because of the eradication of residual

cells with repopulating potential.

In an effort to identify targets in a more biased approach – observing regressing cells

and identifying their vulnerabilities in a spatio-termporal dimension – we set up live cell

imaging using light sheet microscopy for regressing tumour organoids (Objective 4).

As described earlier, the inner core of a tumour organoid in vitro undergoes rapid

apoptosis upon removal of doxycycline from the media and we see repolarized epithelial

rims within 72 hours of oncogene inactivation. So far, we do not know, how cells rearrange

during this process to form a repolarized, surviving rim after 72 hours. Is there any traf-

ficking of survivor cells from the core to the edge to form part of the re-polarized rim? Or

do the inner cells apoptose simply because they do not have connection to the basement
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membrane to latch onto, activate signaling pathways and survive? Clarification of these

spatio-temporal dynamic mechanisms is hypothesized to point to possible interference ap-

proaches. For example, blocking of integrin signaling could be synthetic lethal in case we

observe a major involvement of basement membrane signaling for survival in the residual

cells.

Big-data analysis work-flows allow for visualization of tumour regression in 3D but

current machine learning algorithms cannot segment these regressing tumour data-sets

to allow for single cell tracking. To circumvent this hurdle, lentiviral reporter delivery is

currently being adopted to allow for simplified segmentation and tracking (Figure 3.20).
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3.5 Conclusions

Tumor recurrence is a major cause of death in women with breast cancer. Tumor re-

currence or relapse is attributed to a subset of cells that somehow circumvent targeted

therapeutics and lay dormant before resulting in refractory relapse tumours. These resid-

ual cells are a black box of patient material and consequently their molecular mechanisms

are yet to be fully understood.

Using an inducible mouse model of breast cancer, we modelled residual disease us-

ing organoid cultures and characterized them during tumor regression using IF staining.

We further explored this dynamic process of tumor regression and residual disease es-

tablishment on a transcriptomic level, using RNA sequencing at hallmark time points.

Identification of hallmark time points during tumor regression coupled with kinetic tran-

scriptome data further expanded our understanding of the pathways activated when a

tumor organoid is no longer expressing oncogenes and is undergoing massive apoptosis. In

addition to oncogene dependant signalling pathways, our sequencing data revealed a tran-

scriptomic signature unique to residual tumor cells and provided the possibility to explore

associated molecular pathways that could be responsible for their survival. Once equipped

with this information that we derived from clean, reductionist 3D culture organoids, we

aimed to validate them in the immune proficient conditions of the mouse model.

We performed an in depth characterization of the regressing mammary glands of mice

using IHC staining and the transcriptomic analysis performed along the course of in vivo

mouse tumor regression was overlaid onto the in vitro regression transcriptome. Molecular

targets identified in the organoid cultures and validated in the mouse mammary glands,

such as c-Jun, BCL6 and players of the Nf-κB cascade, were then evaluated for their syn-

thetic lethality in vitro, although more robust, sensitive and relevant methods of assessing

synthetic lethality need to be established.

In a more biased approach, to unravel the mechanisms of residual disease establishment

in our in vitro tumour organoids, we set up long-term live cell imaging of regressing

organoids using light sheet microscopy. Imaging movies that we recorded show some

interesting anecdotal characteristics exhibited by cells during regression — cell movement

to the basement membrane and repolarization into the epithelial monolayer as a method

of survival. Athough our efforts in unravelling the spatio-temporal dynamics of tumor

regression are currently impeded by image analysis limitations, we intend to circumvent

them as detailed in the project above.
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Contributions:

This thesis contains experiments performed by me in conjunction with members of the

Jechlinger Group and analyzed with the help of various collaborators at EMBL, Heidel-

berg.

I cultured mammary organoids for all experiments, genotyped mice, performed regular

checks of the mouse colony, harvested in vivo samples and performed the various analy-

ses using bright-field, confocal and light-sheet microscopy. I also performed all the im-

munohistochemistry stains, immunofluorescence stains, Real-Time qPCR analysis, RNA

extractions and image analysis workflow implementations described in this thesis.

Ksenija Radic (Jechlinger Group, Cell Biology and Biophysics Unit, EMBL Heidel-

berg) contributed significantly to the in vitro culture experiments including doxycycline

titration, IF staining and collection and extraction of RNA.

Lucas Chaible (Jechlinger Group, Cell Biology and Biophysics Unit, EMBL Heidelberg)

set up the stochastic tumorigenesis system including cloning, organoid transduction and

lentivirus production experiments and contributed to imaging experiments.

Sabine Reither (Advanced Light Microscopy Facility, EMBL, Heidelberg) was con-

sulted during imaging experiments and helped set up light sheet imaging.

Christian Tischer (Center for Bioimage Analysis, EMBL, Heidelberg) created the tools

for SPIM data processing and segmentation. He also consulted on Imaris software usage

and contributed to figure design and manuscript writing.

Jean-Karim Heriche performed computational feature analysis for single cells of the

stochastic tumor organoids.

Katharina Zirngibl (Patil group, Structural and Computational Biology Unit, EMBL

Heidelberg) performed RNA-sequencing data analysis (differential expression analysis,

clustering analysis, correlation analysis for gene expression profiles and manual curation

of clusters and gene targets).

Matt Rogon (Centre for Biomolecular Network Analysis, EMBL Heidelberg) performed

the Gene Enrichment analysis and Network analysis for identification of synthetic lethal

targets.

Ksenija Radic, Savannah Jackson and Marta Garcia Montero ( all from the Jechlinger

Group, Cell Biology and Biophysics Unit, EMBL Heidelberg) helped maintaining the

mouse colony and harvesting samples. Marta Garcia Montero also provided technical

assistance with histology.

Sylwia Gawrzak (Jechlinger Group, Cell Biology and Biophysics Unit, EMBL Heidel-

berg) helped design and perform experiments for synthetic lethal inhibitor testing using

in 3D vitro cultures

Yuanyuan Chen (Sotillo Group, DKFZ, Heidelberg) helped perform IHC experiments

and subsequent imaging.
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RNA sequencing and RNA microarray-chip runs were performed at the Genomic Core

Facility at EMBL.

Dr. Martin Jechlinger supervised the project, designed experiments and contributed

to manuscript writing.

Publications:

1. Tracking the cells of tumor origin in breast organoids by light sheet

microscopy

Alladin, A and Chaible, L and Reither, S and Löschinger, M and Wachsmuth, M and

Hériché, JK and Tischer, C and Jechlinger, M

bioRxiv, 2019, 617837; DOI: https://doi.org/10.1101/617837.

2. Towards a holistic and mechanistic understanding of tumourigenesis via

genetically engineered mouse models

Ashna Alladin and Martin Jechlinger

Current Opinion in Systems Biology, 2017; Volume 6, Pages 74-79, 2452-3100. DOI:

10.1016/j.coisb.2017.10.004

3. Metabolic shifts in residual breast cancer drive tumor recurrence

Kristina M. Havas, Vladislava Milchevskaya, Ksenija Radic, Ashna Alladin, Eleni

Kafkia, Marta Garcia, Jens Stolte, Bernd Klaus, Nicole Rotmensz, Toby J. Gibson, Bar-

bara Burwinkel, Andreas Schneeweiss, Giancarlo Pruneri, Kiran R. Patil, Rocio Sotillo,

Martin Jechlinger

J Clin Invest. 2017; 127(6):2091-2105. DOI:10.1172/JCI89914.
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4.1 Animal models

The mouse strains TetO-MYC/ MMTV-rtTA [87] and TetO-Neu/ MMTV-rtTA [48], that

have been described previously, were bred in order to establish the tri-transgenic strain

TetO-MYC/TetO-Neu/ MMTV-rtTA or bi-transgenic strain TetO-MYC/TetO-Neu. Re-

porter H2B-mCherry was crossed into the B and T lines using a R26-H2B-mCherry line

[197] (RIKEN, CDB0239K). The mice were all bred in FVB background. Animals were

kept on a 12-hour light/12-hour dark cycle, with constant ambient temperature (23±1◦C)

and humidity (60±8%), with pellet food and water ad libitum. Food pellets containing

doxycycline (doxycycline hyclate 625 mg/kg) were obtained from Envigo Teklad. Breeding

and maintenance of mouse colony was done in LAR (Laboratory Animal Resources) facility

of EMBL Heidelberg, under veterinarian supervision and in accordance to the guidelines

of the European Commission, revised Directive 2010/63/EU and AVMA Guidelines 2007.

4.1.1 Genotyping

After weaning, the LAR facility at EMBL, Heidelberg provided tail/ear cuts from all

the mice and their genotypes were then determined by PCR on genomic DNA. Genomic

DNA was extracted by digesting the tail/ear piece in 75 µl of digestion buffer (NaOH

25 mM, EDTA 0.2 mM) in an Eppendorf tube at 98◦C for 1 hour at 1000 rpm shak-

ing. Then, the solution was neutralized by addition of 75 µl Tris-HCl (40 mM, pH

5.5). The tube was then centrifuged at 4000 rpm for 3 min. 2 µl of the supernatant

was used in the PCR reactions. Primer sequences for the transgenes used are as fol-

lows: Tet-O Neu (Forward: GACTCTCTCTCCTGCGAAGAATGG and Reverse: CCT-

CACATTGCCAAAAGACGG); Tet-O MYC (Forward: TAGTGAACCGTCAGATCGC-

CTG and Reverse: TTTGATGAAGGTCTCGTCGTCC); MMTV-rtTA (Forward: GT-

GAAGTGGGTCCGCGTACAG and Reverse: GTACTCGTCAATTCCAAGGGCATCG).

Agarose gel-electrophoresis was used for the detection of PCR products (MYC 630 bp, Neu

386 bp, rtTA 380 bp), which was done on the 1.5 % agarose (Sigma, Cat. #A9539-500G)

gel with Ethidium bromide solution in a final concentration of 0.5 µg/ml (Sigma, Cat. #

E1510-10ML). The products were visualized using Quantum-Capt1 documentation system

and instrument (Peqlab).

4.1.2 In vitro experimental design

Female virgin mice of the desired genotype and between 8-10 weeks old were sacrificed by

asphyxiation and dissected with a small cut at the level of the pubis, followed by a median

longitudinal cut superior to the chin. The skin was then dissected and turned on one

side exposing the the subcutaneous, superficial lymph nodes and mammary glands. All

ten mammary glands were harvested, digested and singularized for establishing organoid

cultures
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4.1.3 In vivo experimental design and harvest

In vivo tumour formation and regression was achieved by regulating doxycycline in the

animal diet for TetO-MYC/TetO-Neu/ MMTV-rtTA animals. For induction of tumours,

food pellets supplemented with doxycycline (625 mg/kg) was given to the mice once they

reached 8 weeks of age. Animals were monitored weekly for tumor development and overall

health. Full blown tumors developed in the period of 4-8 weeks in triple transgenic mice.

When the tumour burden was too large (diameter of the largest nodule was more than 2

cm), animals were given food without doxycycline which resulted in the fast tumour re-

gression to a non-palpable state. After 9 weeks of doxycycline withdrawal from the animal

diet the tumours were considered fully regressed. Wild-type (or non-inducible) siblings

were treated in the same way alternating food containing doxycycline. They represented

age-matched controls and were harvested at the same time and in the same manner. Har-

vesting triple transgenic animals at the point of high tumor burden or along the regression

phase (after doxycycline withdrawl) was done in an organized fashion. Before harvesting,

the mice were evaluated for the phase of estrous cycle they were in, by taking vaginal

smears according to the modified protocol in [198]: 20-40 µl of 1x Phosphate Buffered

Saline (PBS) was used to obtain vaginal lavage. The smears were dried on the slide at

room temperature and further fixed in 10 % formalin, washed in 1x PBS, stained with

Crystal Violet solution (Sigma, Cat. # V5265) washed in tap water and visualized using

Leica Application Suite X and Leica DFC7000 T microscope (Leica Microsystems). If

the mice were found to be in Diesterous phase of the esterous cycle, harvest was post-

poned by 1-3 days. If the esterous cycle phase was evaluated to be ideal for harvest, the

mouse was first sacrificed by asphyxiation. Then the external appearance was recorded

by photographing. The mouse was dissected open and all affected mammary glands were

removed and the tumour material was partitioned for paraffin embedding (for histology

staining), OCT embedding (for cryo-histology) and tissue freezing (in liquid nitrogen to

preserve DNA, RNA and protein).
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4.2 3D Cell culture

4.2.1 Matrigel culture

Mammary glands harvested from mice (see above), were digested in order to prepare a

single cell solution. For this, the tissue was divided in four loosely capped 50 ml falcons,

each supplemented with 5 ml serum-free media (DMEM/F12 supplemented with 25mM

HEPES and 1% Pen Strep (100 U/ml Penicillin; 100 µg/ml Streptomycin; ThermoFisher

Cat. # 15140122)), 750 U of Collagenase Type 3 (Worthington Biochemical Corp, Cat.

# LS004183), 20 µg of Liberase (Roche Cat. # 5401020001) and incubated overnight

(not more than 16 hours) at 37◦C and 5%CO2. The glands were then mechanically

disrupted using a 5 ml pipette, and washed in PBS before being pelleted at 1000 rpm

for 5 minutes. The interphase between upper fat layer and cell pellet was removed and 5

ml of 0.25% Trypsin-EDTA (Invitrogen, Cat.# 25200-056 ) was added and incubated for

45 minutes at 37◦C and 5%CO2. The enzymatic reaction was then neutralized using 40 ml

of serum supplemented media (DMEM/F12 with 25mM HEPES, 1% Pen Strep and 10%

FBS Tetracycline Free certified (Biowest Cat. # S181T)). The cells were pelleted again,

resuspended in Mammary Epithelial Cell Basal Medium (PromoCell Cat. # C-21210)

and seeded in collagen coated plates (Corning Cat. # 354400) overnight at 37◦C and 5%

CO2. This allows for epithelial cells to adhere to the surface of the plates while the other

cell types float on top in the media and can be easily removed by vacuum suction. The

epithelial cells were detached from the collagen coated plates by incubating them with

0.25% Trypsin-EDTA for 5-7 minutes at 37◦C and 5%CO2, following inactivation with

serum supplemented media. The single cell solution was pelleted, resuspended in MEBM

and counted. For seeding 3D culture gels, typically 10,000-12,000 cells we mixed rapidly

on ice with the prepared Matrigel-collagen mixture – 4:2:1 proportions of Matrigel Matrix

basement Membrane growth factor reduced phenol red free (Corning Cat. # 356231),

Cultrex 3D Collagen I rat tail (TEMA Ricerca, Cat. # 3447-020-01) and cell suspension

diluted in PBS(1x) respectively. Matrigel-collagen-cell mixture droplets 100 µl in volume

, were then dispensed into flat bottom wells (Corning CellBIND 12 Well Clear Multiple

Well Plates, Cat. # 3336) and incubated for 30-40 minutes at 37◦C and 5%CO2, until the

matrigel solidified. The gels were supplemented with 1.5 ml MEBM and allowed to grow

at 37◦C and 5%CO2.

For induction of oncogenes in the cells of the organoids, doxycycline (Sigma Cat. #

D9891) was supplemented in the media. During oncogene de-induction of the organoids

the media supplemented with doxycycline was removed from the plate wells and the gels

were washed thrice for 10 mins, using serum supplemented media, PBS(1x) and serum

free media, in that order.

For RNA seq sample collection experiments, from the start of experiment until collec-

tion, media was changed every alternate day at precisely the same time. An extra media

change was performed after 24 hours following the de-induction of oncogenes by removing
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doxycycline.

4.2.2 Organoid transduction

For transduction of organoids either with Inducer-reporter (pLenti-rtTA-GFP) lentiviral

particles or Reporter (pLenti-GFP) lentiviral particles transduction, Matrigel cultures

were established as mentioned above. After 3 days of growth, the gels were mechanically

disrupted and placed in a 15 ml falcon. Two disrupted gels were placed in one 15 ml falcon

with 2ml of MEBM supplemented with 25U of Collagenase type I and 5 µg of Liberase.

Following incubation in this solution for 2 hours at 37◦C and 5%CO2, when the matrigel

was totally digested, the organoids were washed 3 times with 15 ml of serum supplemented

media and once with 15 ml of serum free media, and pelleted at 1000 rpm for 5 minutes.

We then supplemented the organoid pellet (from two original gels) in 10 µl of MEBM and

added 6 x 105 lentivirus particles to the solution. We then mixed this solution with 90 µl

matrigel and plated it in 35 mm dishes (Greiner Bio-One Cat. # 627160) and placed in

incubator for 30-40 minutes until the matrigel solidified. The gels were supplemented with

3 ml MEBM and incubated for 2 days at 37◦C and 5%CO2 in order to allow for organoid

recovery and lentiviral gene expression.

For induction of oncogenes in the cells of the organoids, doxycycline (Sigma Cat. #

D9891) was supplemented in the media. 800 ng/ml of doxycycline was used to induce

tri-transgenic organoids and 600 ng/ml was used for the bi-transgenic organoids. qPCR

analysis was used to standardize the doxycycline dosage for bi-transgenic organoids.

4.2.3 Target validation pipeline

For testing synthetic lethality of identified targets, target inhibitors were supplemented

in the media during tumour regression of organoids grown in 96 well plates (Falcon R©
96-well Black/Clear Flat Bottom TC-treated Imaging Microplate with Lid, Corning, Cat.

# 353219). Brightfield imaging was performed to follow the organoid regression visually

and cell assays were implemented at end points to ascertain cell viability and cell death.

Mouse mammary glands were harvested and processed into single cell suspension as

detailed above. Matrigel-cell suspension mixture was prepared on ice as usual, consisting

of Matrigel:CellSuspension ratio in 2:1 part. The mixture contained 10,000 cells per 100

µl. Small 5 µl gels were seeded into the wells of a 96 well plate from this mixture, resulting

in 500 cells dispensed into each well. The gels were incubated for 30-40 minutes at 37◦C

and 5%CO2, until the matrigel solidified. Using a multi-channel pipette, 200 µl of MEBM

was supplemented into each well of the 96 well plate and the gels were allowed to grow

at 37◦C and 5%CO2. Wells on the corners were not used to prevent edge-effect of assay

readouts and other anomalies in culture systems frequently experienced.

Media was replenished every alternate day to support growth of single cells into

organoids. After 4-5 days of normal growth, the media was supplemented with 200 ng/ml
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of doxycycline. Induction of oncogenes with doxycycline was carried out for 5 days via

usual media replenishment. After 5 days of maintaining the 3D cultures on doxycycline,

the gels were washed thrice for 10 mins, using serum supplemented media, PBS(1x) and

serum free media, in that order. MEBM with increasing concentrations of the inhibitor of

choice was added along with the necessary controls. Five technical replicates were analysed

per condition. Normal uninduced cells, grown alongside induced tumours, were used as

internal controls to test for the toxicity of the inhibitor being tested at all concentrations.

Gels were supplemented with media and supplements every alternate day as usual. Seven

days after de-induction and addition of inhibitors, the experiment had reached it endpoint

and was processed for cell viability and cell death assays.

Inhibitors tested via this assay included: BCL6 Inhibitors: 79-6 (Calbiochem, Cat.

# 197345), FX-1 (MedKoo, Cat. # 407501) c-Jun Inhibitors: Tanshinone IIA -AP-1

inhibitor (Enzo, Cat. # BML-GR336-0005), SP 600125 (Tocris, Cat. # 1496/10). Nf-kB

Pathway Inhibitors: CCL5 Inhibitor- Maraviroc (Sigma, Cat. # PZ0002), IKK-2 Inhibitor

IV - CAS 507475-17-4(Merck, Cat. # 401481), IKK-2 Inhibitor VIII - CAS 406208-42-2

(Merck, Cat. # 401487)

ScanR imaging and data representation

Inhibitor testing experiments performed in all 96-well plates were imaged on the ScanR

(High Content Screening Station, Olympus) immediately after de-induction and at “Day0”

of inhibitor treatment and then again after seven days at “Day 7” of inhibitor treatment.

4x objective was used to image the 3D cultures in 4 quadrant fields of view per well. 21

images were recorded at z-step intervals of 100 µm in each of the four fields of view to

cover the entire three-dimensional range of organoids occurring in the gel. The z stacks

in each field of view were processed to show a “maximum projection” image and all 4

maximum projections per well were “stitched” together to get an overview of the whole

gel drop in each well. Custom-made codes, including the macros created by the Advance

Digital Microscopy Core Facility at IRB Barcelona used for image analysis, are available

upon request from the authors of Gawrzak, et al., 2018 [199].

Cell Titre Glow and CellTox assay multiplexing

At the end point of each inhibitor validation experiment, i.e., after seven days of oncogene

de-induction and Day 7 of inhibitor treatment, the cultures were assayed for cell viability

and cell death. After removal of 100 µl of media from each well, 20 µl of the working solu-

tion of CellToxTM Green Cytotoxicity Assay (Promega, Cat. # G8741) was added to the

media in each well and the whole plate was gently shaken at room temperature for 1 hour.

The CellToxTM Green Cytotoxicity Assay is based on detection of biomarkers released

into the medium upon cell death and membrane perforation. The substrate in the assay

binds to the cytotoxic indicator markers and produces a green fluorescence signal that is
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proportional to overall cell death in each matrigel culture drop. The fluorescence from

the whole 96-well plate was recoded at the Chemical Core Facility at EMBL Heidelberg,

using a EnVisionTM Multilabel Plate Reader (PerkinElmer).

After recording the cell death, 50 µl of CellTiter-Glo R© Luminescent Cell Viability

Assay (Promega, Cat. # G7570) was added to the media in each well and the whole plate

was gently shaken at room temperature for 1 hour. CellTiter-Glo R© Luminescent Cell

Viability Assay is a method of determining the number of viable cells in culture based

on quantitation of the ATP present, an indicator of metabolically active cells. The assay

results in cell lysis and generation of a luminescent signal proportional to the amount of

ATP present. The amount of ATP is directly proportional to the number of cells present in

culture. It generates a ”glow-type” luminescent signal that was measured similarly, using

a EnVisionTM Multilabel Plate Reader (PerkinElmer), at the Chemical Core Facility at

EMBL Heidelberg, in RLU (relative luminescence units).

Raw data from the plate reader was analysed to ascertain the inhibitor’s effect on the

never induced and regressed organoids. This was done by constructing a dose-response

curve. A dose-response curve describes the relationship between increasing the dose (or

concentration) of the drug (inhibitor) and the change in response that results from this in-

crease in concentration. The concentration ranges spanned by the inhibitors are indicated

in Table 3.3. The dose in these curves is usually represented using a semi-logarithmic plot.

On a semi-logarithmic plot, the amount of drug(inhibitor) is plotted (on the X axis) as

the log of drug concentration and response is plotted (on the Y axis)using a linear scale.

Dose response curve analysis and calculation of IC50 values for each drug and assay was

performed using the GraphPad 6 (Prism) statistical analysis software.
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4.3 Immunofluorescence staining

Matrigel cultures required for immunofluorescence analysis were grown as described in

Section 4.2 on either NuncTM Lab-TekTM II chambers (Thermo Cat. # 155382) or on

glass slides placed in 12-well tissue culture plates (Corning CellBIND 12 Well Clear Mul-

tiple Well Plates, Cat. # 3336). At pre-defined timepoints, the gels were transferred to

deactivated clear glass screw neck vials (Waters Cat.# 186000989DV) and fixed using 4%

PFA for 2-3 mins, following three 10 min washes with PBS (1x) and one 20 min wash

with IF buffer (containing NaCl, Na2HPO4, NaN3, BSA, TritonX-100, Tween-20; pH

7.4). The gels were blocked with Blocking Buffer (1x IF buffer with 10 % goat serum

(Jackson Immuno Research Cat.# 005-000-121)) for 2 hours at room temperature. The

gels were incubated with primary antibodies (diluted in Blocking Buffer) overnight at 4◦C

and washed 3 times the next day in 1x IF buffer for 20 mins per wash. Glass vials were

then covered in aluminum foil and the gels were incubated in blocking buffer with sec-

ondary Alexa antibodies and DAPI (4’, 6’-diamino-2-phenylindole) (ThermoFisher Cat.

# 62248, ddilution 1:1000) for 1 hour. Following incubation with secondary Alexas and

DAPI, the gels were washed briefly in PBS(1x) for 5 mins. The gels were then trans-

ferred to a NuncTM Lab-TekTM II chamber and mounted in anti-fading mounting medium

VECTASHIELD R© Mounting Medium with DAPI (Vecto Cat. # H1500-10). Stained gels

were imaged on Leica SP5 confocal microscope using 63x water lens and the LAS AF

imaging software.

The following primary antibodies and dilutions were used for Matrigel cultures: c-MYC

(Cell Signaling Technologies, Cat. # D84C12, dilution 1:900), alpha6-integrin (Millipore

Cat. # MAB1378, dilution 1:80), ZO1 (Life Technologies Cat. # 61-7300, dilution 1:500),

GM-130 (BD Biosciences Cat. # 610823, diluted 1:100), E-cadherin (Invitrogen Cat. #

3-1900, diluted 1:200) , Cleaved Caspase3 (Cell Signalling, Cat. # 9661S, diluted 1:100),

c-Jun (Cell Signalling (60A8), Cat. # 9165, diluted 1:100 ) and BCL6 (Atlas antibodies,

Cat. # HPA004899, diluted 1:50). Anti-rabbit, anti-mouse, and anti-rat antibodies were

purchased coupled with Alexa Fluor dyes (Invitrogen, Cat.# A21247, A11034, A11036)

for secondary staining.
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4.4 Immunohistochemistry staining

Harvested mammary gland tissue and tumor tissue during progression and regression was

fixed in 10 % formalin solution (neutral buffered; Sigma, Cat.# HT501128-4L) overnight

on a shaker to allow optimal penetration of fixing agent. Subsequent to embedding in

paraffin via standardized procedures, the embedded tissue was sectioned at 5 µm thickness

with a microtome (Leica, Cat.# RM 2135) and placed on slides (Superfrost , Cat.#

VWR630-0954). Tissue sections were incubated at 37◦CC for 16 hours before storage

and further staining. Staining by Hematoxylin QS (Vector, Cat.#H-3404) and Eosin 1 %

Aqueous (RA Lamb, Cat.# LAMB/100-D) was done following the standard protocol and

samples were analyzed at microscope (Leica, Cat.# LMD 7000).

Cleaved Caspase3 (Cell Signalling, Cat. # 9661S, diluted 1:100), c-Jun (Cell Signalling

(60A8), Cat. # 9165, diluted 1:350 ), BCL6 (Atlas antibodies, Cat. # HPA004899, di-

luted 1:750) and Ki67 (Vector, Cat.# VP-K451, diluted 1:100) antibody staining was done

on FFPE tissue following the standard IHC protocol: deparaffinization and rehydration

of the samples, followed by antigen retrieval using citric acid-based Antigen unmasking

solution (Vector, Cat.# H-3300) for 30 min in a steamer and inactivation of endogenous

hydrogen peroxidase activity with 10 % H2O2 solution (Sigma, Cat.# H1009) for 10-15

mins. Blocking was done using 10 % Normal goat serum (Jackson Immuno Research,

Cat.# 00500121) in 1x Phosphate Saline Buffer (PBS) for 2 hours, following incubation

with primary antibody (diluted in blocking buffer) at 4◦CC overnight. Next day, the slides

were washed 3 times for 5 mins each using PBS(1x). Incubation with biotinylated anti-

body from Vectastain Elite ABC HRP Kit (Peroxidase, Rabbit IgG; Vector Laboratories,

Cat.# PK-6101) was done for 30 min, followed by washing and incubation with Horse

Radish Peroxidase (HRP) conjugated antibody. Detection of antibody localization was

done using DAB Peroxidase (HRP) Substrate Kit (Vector, Cat.# SK-4100). Counter-

staining was done using Hematoxylin QS (Vector, Cat.#H-3404), after which the sections

were dehydrated, mounted with DPX Mountant for histology (Sigma, Cat.# 06522) and

analyzed using a wide-field microscope (Leica, Cat.# LMD 7000) equipped with Leica

CD310 digital camera and LASV3.7 (Leica) software.
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4.5 qPCR analysis

The qPCR technique was performed following the MIQE guidelines, where the total

RNA was isolated from the mammary gland organoids using RNA PureLink Mini Kit

(ThermoFisher Cat. # 12183018A) and 2.5ug was reverse transcribed to cDNA us-

ing SuperScript VILO cDNA Synthesis Kit (ThermoFisher Cat. # 11754050). Using

Primer3 software we designed specific primers for DNA intercalating fluorescent dye ap-

proach for the transgenes Neu (Forward: CGTTTTGTGGTCATCCAGAACG and Re-

verse: CTTCAGCGTCTACCAGGTCACC) and c-MYC (Forward: GCGACTCTGAG-

GAGGAACAAGA and Reverse: CCAGCAGAAGGTGATCCAGACT). As endogenous

controls, mCherry (Forward: GAGGCTGAAGCTGAAGGAC and Reverse: GATGGT-

GTAGTCCTCGTTGTG) and Pum1 (Forward: AATGTGTGGCCGGATCTTGT and

Reverse: CCCACAGTGCCTTATACACCA) were used. Primer efficiency was verified

and established between 95% and 105% Each sample was analyzed in duplicate and non-

template controls were used in each qPCR run. Analyses were carried out using a StepOne

device (Applied Biosystems, USA). Analysis of relative gene expression data was performed

according to the 2∆∆Cq method and the results were expressed as fold change of ∆∆Cq

values obtained from the reference T800 organoids.
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4.6 Lentivirus cloning and production

The lentivirus design is based on pWPXL backbone, which was a gift from Didier Trono

(Addgene Cat. #12257). The coding region from the original plasmid was excised using

ClaI and NdeI in order to insert a new multiple cloning site (MCS). The pGK promoter

was PCR amplified from pLVPT-GDNF-rtTR-KRAB-2SM2, which was a gift from Patrick

Aebischer Didier Trono (Addgene Cat.#11647) and cloned using XhoI and EcoRI restric-

tion sites. For the plasmid pLenti-rtTA-GFP the synthetic region rtTA-p2A-H2B-GFP

was cloned downstream of the pGK promoter using EcoRI and NheI sites. The plasmid

pLenti-Null-GFP is derived from the pLenti-rtTA-GFP by removing the rtTA sequence,

using the restriction sites EcoRI and BamHI, and retaining H2B-GFP in the coding re-

gion. For production of lentivirus particles, we seeded 1.6 x 107 HEK-293T cells (Lenti-X

- Clontech Cat. # 632180) in 500cm2 square dishes (Corning Cat. # 431110). Af-

ter 24 hours, the cells were supplemented with media containing 25uM of chloroquine

diphosphate (Sigma-Aldrich Cat. # C6628). After a 5-hour incubation, using 360 µg of

polyethyleneimine (4 µg for each µg of plasmid), we transfect the cells with a mixture

of endotoxin free plasmids: 20 µg pCMV-VSV-G (Addgene Cat. #8454); 30 µg psPAX2

(Addgene Cat.#12260); 40 µg transfer plasmids pLenti-rtTA-GFP or pLenti-Null-GFP.

We harvested the media 48 hours, 72 hours and 96 hours post transfection. Concentration

of the lentivirus from the collected media was performed using an ultracentrifuge (Beck-

man Sw32 rotor) at 25,000 rpm for 2 hours at 4◦C. The lentivirus pellet was resuspended in

1000 µl of HBBS buffer, aliquoted and stored at -80◦C. The lentivirus titer was measured

using FACS analyses as described by Kutner and colleagues [200].
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4.7 Selective Plane Illumination Microscopy

4.7.1 Sample holder preparation and mounting

Imaging was performed on the InVi SPIM (Inverted light-sheet microscope from Luxendo

Light-Sheet, Bruker Corporation). Sample mounting for the InVi SPIM is suitable for 3D

matrigel cultures that are used to grow and transduce mammary organoids (see above).

The sample holder is made of medical grade plastic (PEEK). A 25 µm thin membrane

(FEP; Luxendo) with a refractive index matching that of water is glued to the upper

surface of a groove in the sample holder with a biocompatible silicone glue (Silpuran 4200;

Wacker), forming a trough with transparent bottom. Matrigel cultures were carefully cut

with a scalpel into rectangular slivers and transferred onto the FEP membrane’s trough.

Once the gel sliver was aligned in place, 20-30 µl of fresh matrigel drops were poured onto

the gel sliver in the sample holder until there was a thin layer of liquid matrigel on top

of the gel sliver. The setup was incubated for 20 minutes at 37◦C in a 5% CO2 incubator

to allow the matrigel layer on top to solidify. Once the gel was solidified, 600-800 µl of

MEBM supplemented with/without doxycycline was added to the sample holder’s FEP

sheet trough. Preferably, freshly mounted sample gels were allowed to settle overnight

in the incubator to prevent any gel drift during imaging, when the holder is placed into

the imaging chamber of the microscope. The imaging chamber acts as an incubator with

environmental control and it has a reservoir for immersion medium, which is filled with

water so that both objective lenses and the bottom of the sample holder are below the

water surface.

4.7.2 Imaging configurations and conditions

The InVi SPIM is equipped with a Nikon CFI 10x/0.3NA water immersion lens for illumi-

nation and a Nikon CFI-75 25x/1.1NA water immersion lens for detection. For excitation

of GFP and mCherry, 488 nm and 594 nm laser lines were used, respectively, while emission

was selected using a 497-554 nm band pass filter and a 610 nm long pass filter, respectively.

3D image stacks were acquired with a light-sheet thickness of 4 µm, a final magnification

of 62.5x, resulting in 104 nm pixel size. The In-Vi SPIM environmental control was set to

37◦C, 5% CO2 and 95% humidity. A series of optimization experiments, involving different

laser powers, exposure times and z-step sizes yielded laser powers of 13 µW for 488 nm and

36 µW for 594 nm, 100 millisecond exposure time per frame and 1µm z-spacing between

frames to be optimal for long term imaging (96-120 hours) without photo-bleaching or

photo-toxic effects on growth. Images were recorded as 2D planes ranging from 100-500

in number, depending on the organoid size. Each 3D stack of planes was recorded in 2

channels - mCherry (all cells) and GFP (transduced cells). Depending on the duration of

the time lapse imaging, 450-600 image stacks (equivalent to 72-96 hours) were recorded

per organoid at 10-minute intervals.
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4.7.3 Big-image data analsysis workflow

Big Data Processor, a Fiji plugin for lazy loading of big image data, was used to visualize

the images in 2D slicing mode, crop stacks in x, y, z, and t, bin images (3 x 3 x 1 in x, y, z),

perform chromatic shift correction between channels and convert .h5 files from the InVi

SPIM into an Imaris compatible multi-resolution file format (.ims) for further analysis [90].

The oncogenic cells (H2B-GFP channel) displayed heterogeneous morphologies as well as

varying intensity textures, making it difficult to segment them using conventional thresh-

olding approaches. We thus used a trainable segmentation approach to convert the raw

intensity values into pixel probability maps, using the Fiji plugin called CATS [91]. Using

the H2B-GFP channel images as input, we trained three pixel classes: background, nucleus

center and nucleus boundary. For training we drew about 20(background), 120(nucleus

center), 100(nucleus boundary) labels distributed across the different time-frames of the

movie. After feature computation and training of a Random Forest classifier the whole

dataset was processed on EMBL’s high performance computer cluster. The segmentation

of one data set -typically 100 timepoints- is distributed across few hundred jobs, each

job using 32 GB RAM, 16 cores, and running for about 30 minutes. The nucleus center

probability maps were then exported from CATS and added as an additional channel to

the converted intensity data.

The data were then loaded into Imaris [89] for 3D visualization and further processing.

Using the Imaris’ Surfaces function, we segmented the nucleus center probability maps

into objects. To do so, probability maps were manually thresholded, using a surface

smoothening parameter of 0.3 µm; the minimum quality parameter for seed points was

set to 0.1, and object splitting was applied for objects larger than 5.5 µm. Objects

with volumes less than 20 µm3 were excluded. Next, all objects were tracked over time

using Imaris’ Lineage tracking algorithm with a maximum distance between objects in

subsequent time-points limited to 10 µm and a maximum gap size between identification

of the object in a particular track limited to 10 time points. Most of the errors in the

object segmentation were false merges, where two cells were segmented as one (Figure

2.11. This kind of error is frequently not sustained in the previous or following time-

points and the maximum gap size parameter of the tracking algorithm thus frequently

provides correct tracks nonetheless. The resulting lineage trees of proliferating tumour

cells within the organoid were corrected manually within Imaris, e.g., excluding apoptotic

cells and auto-fluorescent debris. Center of mass coordinates of each cell were measured

and exported from Imaris for subsequent feature analysis.

4.7.4 Computational feature analysis

Observations suggest that tumors in organoids originate from clusters of oncogene-expressing

cells produced by independent transduction events. To identify these clusters, we com-

puted the pairwise Euclidean distances between all oncogene-expressing cells in an organoid
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at the start of the experiment and applied hierarchical clustering with complete linkage.

Clusters were identified automatically by cutting the branches of the trees using the dy-

namic tree cut algorithm [92]. This defined a cluster as a group of oncogene-expressing

cells that are closer to each other than to other oncogene-expressing cells of the same

organoid. Note that a cluster can be composed of a single cell if this cell is comparatively

isolated from other transduced cells. For each cluster we identified the following features

as possibly linked to tumor formation:

(1) number of cells in the organoid

(2) cell density expressed as the ratio of number of cells to organoid surface area computed

by assuming the organoid is a sphere with diameter equal to the distance between the two

most distant cells

(3) number of oncogene-expressing cells in the organoid

(4) number of cells (including both oncogene-expressing and normal cells) in the cluster

volume defined as the sphere centered at the center of mass of the cluster with diameter

equal to the distance between the two farthest oncogene-expressing cells of the cluster

(5) number of oncogene-expressing cells in the cluster

(6) average pairwise distance between all cells in the cluster volume

(7) average pairwise distance between oncogene-expressing cells in the cluster

(8) fraction of oncogene-expressing cells in the cluster volume

(9) number of contacts between oncogene-expressing cells in the cluster. Two cells are

presumed in contact if they are less than the average cell diameter + 2 standard deviation

apart.

Oncogene-expressing cells were tracked over time and a cluster was associated with a

tumor outcome if any of its cells lead to tumor formation. To identify which features were

linked to this outcome, we took an information-theoretic approach to model selection.

We fitted a logistic regression model for all possible linear combinations of features and

selected the best model based on the Akaike information criterion (with correction for

small sample sizes) [93]. This model included only three features: number of oncogene-

expressing cells in the cluster, number of oncogene-expressing cells in the organoid and

number of cells in the cluster of which only the first (number of oncogene-expressing cells

in the cluster) contributed significantly to tumor formation with an odds ratio of 9.1.

Computing relative variable importance across all models also indicated that the number

of oncogene-expressing cells in a cluster is the most important feature.
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4.8 RNA Seq data analysis

4.8.1 RNA extraction

For RNA sequencing analysis of organoids in 3D culture, 2 gels of 100µl volumes were

pooled during harvest. At the predetermined timepoint, media from the wells were re-

moved and gels were digested using 900 µl of mirVana lysis buffer, and subsequently

extracted using mirVana miRNA Isolation Kit (Ambion, Cat. # AM1560). RNA quality

and concentration was assessed using the Bioanalyzer (Agilent 2100, Cat. # G2939BA)

at the Genomics Core facility, EMBL, Heidelberg. RNA was sequenced in the Genomics

Core on Illumina NextSeq 500 platform, using NGS HiSeq protocol – 75bp read length,

30x coverage.

4.8.2 RNA Seq data analysis

After assessing the quality of the raw RNA sequencing reads by FastQC version 0.11.3

[201], adapter trimming using cutadapt version 1.9.1 [202] with default options providing

the standard Illumina TrueSeq Index adapters was done. FaQCs version 1.34 [203] was

used for subsequent quality trimming and filtering, applying following parameters: -q 20

-min L 25 -n 5 -discard 1. This resulted in 34,1 to 52 million total reads per sample.

Reads were further aligned to the reference genome (mouse-GRCm38.p4) using Tophat2

version 2.0.10 [204] with the following parameter: -G -T -x 20 -M - -microexon-search -

- nocoverage-search - -no-novel-juncs-mate-std-dev 100-r 50 -min-segment-intron 20 -I 30

-a6. For differential expression analysis, only reads with unique mappings were consid-

ered. The count HTSeq python library version 0.6.1.pl. script [205] with default options

was used to obtain gene level count tables. All reads mapped in total to 19500-20800

genes and the statistical analysis was done with Bioconductor package DESeq2 version

1.12.4 [206]. Normalization was done based on size-factor to control for batch effects and

inter-sample variability. Package defaults were used for dispersion estimation and differ-

ential expression analysis, which include multiple testing correction, independent filtering

and Cook’s cutoff [207] for outlier detection. For comparison of gene expression between

residual versus normal cells, DESeq2 raw p-values were used as input to fdrtool version

1.2.15 [208] to compute q-values. Genes with q-value0,05 were considered as significantly

differentially expressed. For comparison of gene expression between tumor versus normal

cells, Bonferroni correction was used for multiple testing correction and genes with padj

0,1 were considered as significantly differentially expressed. R V.3.3.1. (R Development

Core Team) was used for conducting biostatistical analyses. For performing dimensional-

ity reduction with Principal Component analysis (PCA) and hierarchical clustering rlog

DESeq2 transformed transcript counts were utilized. For the calculation of the ellipses on

the PCA plots the “sat ellipse” function from the R package ggplot2 was used.
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4.8.3 Clustering and Correlation analysis

Clustering analysis using GPClust [209], yielded over 2000 genes into 75 clusters with

FDR (false discovery rate) of 1%. Individual analysis of gene trajectories in interesting-

trajectory clusters was used to classify interesting trajectories into 5 broad manually cu-

rated clusters:

I. Sustained targets – upregulated consistently during regression up to MRD state

II. Early responders – unregulated early during regression before apoptosis decisions are

made (up to 8 hours after de-induction)

III. Intermediate responders – unregulated after apoptosis decisions are made to poten-

tially salvage residual cells/aid in tissue rearrangement to increase survival (12-24 hours

after de-induction)

IV. Late targets – unregulated during re-polarization of epithelial cells into residual rim

(36 hours after de-induction onwards)

V. Shoulder trajectories – Upregulated in tumors and continued sustained expression dur-

ing regression (at least up to 34 hours after de-induction).

Correlation analysis performed by Katharina Zirngibl was used to enrich the afore-

mentioned clusters from the whole dataset of differentially regulated genes based on gene

expression trajectories.
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4.8.4 Gene enrichment analysis

Gene enrichment analysis was performed on the 1796 identified targets from the 5 man-

ually curated clusters using Cytoscape software by Matt Rogon. Analysis of individual

and multi-cluster gene ontology analysis yielded a wealth of interesting pathways and gene

families that were differentially regulated. The following Gene Ontology terms were man-

ually picked for further network mapping and druggable target analysis on Cytoscape:

I. GO:0002819 Regulation of adaptive immune response

II. GO:0098742 Cell-cell adhesion via plasma-membrane adhesion molecules

III. GO:0002009 Morphogenesis of an epithelium

IV. GO:0001213 Formation of the cornified envelope

V. GO:0031663 Lipopolysaccharide-mediated signaling pathway

VI. GO:0017017 MAP kinase tyrosine/serine/threonine phosphatase activity

VII. GO:0000097 Downregulation of ERBB4 signaling

VIII. GO:0000618 Oxidative Stress Induced Senescence

IX. GO:0008593 Regulation of Notch signaling pathway

X. GO:0000571 FAS pathway and Stress induction of HSP regulation
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4.9 Microarray data analysis

4.9.1 RNA extraction

TetO-MYC/ TetO-Neu/ MMTV-rtTA adult female mice induced to have tumors were

organ-harvested during regression phase after removal of doxycycline from the animal

diet. During harvest 20-30 mg tissue pieces were snap frozen in liquid nitrogen for RNA

extraction. The snap frozen tissue pieces were ground in a mortar and pestel (maintained

at -50◦C by placing it in a trough full of dry ice). The frozen tissue powder was then

transferred to an Eppendorf tube with 900µl of mirVana lysis buffer. Total RNA was

subsequently extracted using mirVana miRNA Isolation Kit (Ambion, Cat. # AM1560).

RNA quality and concentration were assessed using the Bioanalyzer (Agilent 2100, Cat.

# G2939BA) at the Genomics Core facility, EMBL, Heidelberg. RNA extracted from

the mammary gland tissues at hallmark time points during regression were were run on

Affymetrix MoGene-2 microarray chips.

4.9.2 Microarray data analysis

Microarray data files was analysed using the Transcriptome Analysis Console (TAC) 4.0

software. Principal Component Analysis (PCA) plotting and differentially regulated path-

ways compared to the control samples were curated manually. Manual overlay of gene en-

richment analysis for both in vivo and datasets yielded the following interesting subgroup

of pathways:

(a) Focal Adhesion PI3K- AKT-mTor Sinalling Pathway

(b) MAPK Signalling (specifically: c-Jun Kinase/Stress-activated Pathway)

(c) TNF-alpha and NfKb signalling pathway

(d) Tgf-Beta Signalling pathway

(e) DNA damage response (ATM dependent)

(f) Apoptosis pathways.

Key molecular players from these pathways were selected for validation, including c-Jun,

BCl-6, CCL5 and c-Rel.
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Organoid Movie Code Tumor outcome

Organoid-1 0308S1 Yes

Organoid-2 0308S2 Yes

Organoid-3 0308S3 No

Organoid-4 0308S4 Yes

Organoid-5 0308S8 Yes

Organoid-6 2607S0 Yes

Organoid-7 2607S2 No

Organoid-8 2607S6 No

Organoid-9 2607S11 Yes

Organoid-10 3107S0 No

Organoid-11 3107S1 No

Organoid-12 3107S2 Yes

Organoid-13 3107S3 No

Organoid-14 31074 No

Organoid-15 3107S5 No

Organoid-16 2111S0 Yes

Organoid-17 2111S2 No

Organoid-18 2111S4 Yes

Organoid-19 2111S6 Yes

Organoid-20 2111S8 Yes

Table 5.1: List of transduced organoids analyzed for feature analysis.
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Figure 5.1: Hierarchical clustering of transduced cells in bi-transgenic organoids undergo-

ing stochastic tumourigenesis. Organoids are name coded according to Table 5.1.
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Figure 5.2: Hierarchical clustering of transduced cells in bi-transgenic organoids undergo-

ing stochastic tumourigenesis. Organoids are name coded according to Table 5.1.
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Figure 5.3: Gene Ontology Enrichment analysis of genes with ’Target’ trajectories.
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Figure 5.5: Gene Ontology Enrichment analysis of genes with ’Intermediate Responder’

trajectories.
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Figure 5.6: Gene Ontology Enrichment analysis of genes with ’Late Responder’ trajecto-
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Figure 5.7: Gene Ontology Enrichment analysis of genes with ’Shoulder’ trajectories.
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Figure 5.8: Gene network for the ’Cell-cell adhesion via plasma-membrane adhesion

molecules’ GO Term. Yellow diamonds represent all genes in the network. Blue cir-

cles represent the first neighbours of all genes based on protein-protein interactions. Pink

diamonds represent the deferentially regulated genes in the network during the process of

tumor regression in the organoid cultures. Dark blue borders on genes indicate that the

gene is druggable with known inhibitors.
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Figure 5.9: Gene network for the ’FAS pathway and Stress induction of HSP regulation’
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the first neighbours of all genes based on protein-protein interactions. Pink diamonds

represent the deferentially regulated genes in the network during the process of tumor

regression in the organoid cultures. Dark blue borders on genes indicate that the gene is

druggable with known inhibitors.
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Figure 5.10: Gene network for the ’Formation of the cornified envelope’GO Term. Yellow

diamonds represent all genes in the network. Blue circles represent the first neighbours of

all genes based on protein-protein interactions. Pink diamonds represent the deferentially

regulated genes in the network during the process of tumor regression in the organoid

cultures. Dark blue borders on genes indicate that the gene is druggable with known

inhibitors.
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Figure 5.11: Gene network for the ’MAP kinase tyrosine/serine/threonine phosphatase

activity’ GO Term. Yellow diamonds represent all genes in the network. Blue circles

represent the first neighbours of all genes based on protein-protein interactions. Pink

diamonds represent the deferentially regulated genes in the network during the process of

tumor regression in the organoid cultures. Dark blue borders on genes indicate that the

gene is druggable with known inhibitors.
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Figure 5.12: Gene network for the ’Regulation of adaptive immune response’ GO Term.

Yellow diamonds represent all genes in the network. Blue circles represent the first neigh-

bours of all genes based on protein-protein interactions. Pink diamonds represent the

deferentially regulated genes in the network during the process of tumor regression in the

organoid cultures. Dark blue borders on genes indicate that the gene is druggable with

known inhibitors.
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Figure 5.13: Gene network for the ’Lipopolysaccharide-mediated signaling pathway’ GO

Term. Yellow diamonds represent all genes in the network. Blue circles represent the first

neighbours of all genes based on protein-protein interactions. Pink diamonds represent

the deferentially regulated genes in the network during the process of tumor regression

in the organoid cultures. Dark blue borders on genes indicate that the gene is druggable

with known inhibitors.
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Figure 5.14: Gene network for the ’Oxidative Stress Induced Senescence’GO Term. Yellow

diamonds represent all genes in the network. Blue circles represent the first neighbours of

all genes based on protein-protein interactions. Pink diamonds represent the deferentially

regulated genes in the network during the process of tumor regression in the organoid

cultures. Dark blue borders on genes indicate that the gene is druggable with known

inhibitors.
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Figure 5.15: Gene network for ’Downregulation of ERBB4 signaling’ GO Term. Yellow

diamonds represent all genes in the network. Blue circles represent the first neighbours of

all genes based on protein-protein interactions. Pink diamonds represent the deferentially

regulated genes in the network during the process of tumor regression in the organoid

cultures. Dark blue borders on genes indicate that the gene is druggable with known

inhibitors.
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Figure 5.16: Gene network for the ’Regulation of Notch signaling pathway’ GO Term.

Yellow diamonds represent all genes in the network. Blue circles represent the first neigh-

bours of all genes based on protein-protein interactions. Pink diamonds represent the

deferentially regulated genes in the network during the process of tumor regression in the

organoid cultures. Dark blue borders on genes indicate that the gene is druggable with

known inhibitors.
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Figure 5.17: Gene network for the ’Morphogenesis of an epithelium’ GO Term. Yellow

diamonds represent all genes in the network. Blue circles represent the first neighbours of

all genes based on protein-protein interactions. Pink diamonds represent the deferentially

regulated genes in the network during the process of tumor regression in the organoid

cultures. Dark blue borders on genes indicate that the gene is druggable with known

inhibitors.
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Figure 5.18: Cell Viability and Cell Death readouts from synthetic lethality testing of the

CXCR5 antagonist Maraviroc. Upper left graph shows the readout from the CellTiter-

Glo R© Luminescent Assay. Cell viability readouts for the 5 doses of Maraviroc tested and

normalized against the control are shown. Derived from this graph is the upper right

graph depicting the Cell Viability response curve. IC50 values for Maraviroc in the Cell

Viability response curve are 0.0287 mM for Never Induced and 0.0286 mM for Regressed

cultures. Lower left graph shows the readout from the CellToxTM Green Fluorescence

Assay. Cell death readouts for the 5 doses of Maraviroc tested and normalized against

the control are shown. Derived from this graph is the lower right graph depicting the Cell

Death response curve. IC50 values for Maraviroc in the Cell Death response curve are 0.1

mM for Never Induced and 0.028 mM for Regressed cultures.
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Figure 5.19: Cell Viability and Cell Death readouts from synthetic lethality testing of

the IKK2 Inhibitor IV. Upper left graph shows the readout from the CellTiter-Glo R©
Luminescent Assay. Cell viability readouts for the 5 doses of IKK2 Inhibitor IV tested

and normalized against the control are shown. Derived from this graph is the upper right

graph depicting the Cell Viability response curve. IC50 values for IKK2 Inhibitor IV in the

Cell Viability response curve are 0.02 mM for Never Induced and 0.017 mM for Regressed

cultures. Lower left graph shows the readout from the CellToxTM Green Fluorescence

Assay. Cell death readouts for the 5 doses of IKK2 Inhibitor IV tested and normalized

against the control are shown. Derived from this graph is the lower right graph depicting

the Cell Death response curve. IC50 values for IKK2 Inhibitor IV in the Cell Death

response curve are 0.02 mM for Never Induced and 0.00073 mM for Regressed cultures.
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Figure 5.20: Cell Viability and Cell Death readouts from synthetic lethality testing of

the IKK2 Inhibitor VIII. Upper left graph shows the readout from the CellTiter-Glo R©
Luminescent Assay. Cell viability readouts for the 5 doses of IKK2 Inhibitor VIII tested

and normalized against the control are shown. Derived from this graph is the upper

right graph depicting the Cell Viability response curve. IC50 values for IKK2 Inhibitor

VIII in the Cell Viability response curve are 0.016 mM for Never Induced and 0.035 mM

for Regressed cultures. Lower left graph shows the readout from the CellToxTM Green

Fluorescence Assay. Cell death readouts for the 5 doses of IKK2 Inhibitor VIII tested

and normalized against the control are shown. Derived from this graph is the lower right

graph depicting the Cell Death response curve. IC50 values for IKK2 Inhibitor VIII in the

Cell Death response curve are 0.027 mM for Never Induced and 0.03055 mM for Regressed

cultures.
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Figure 5.21: Cell Viability and Cell Death readouts from synthetic lethality testing of

FX-1. Upper left graph shows the readout from the CellTiter-Glo R© Luminescent Assay.

Cell viability readouts for the 5 doses of FX-1 tested and normalized against the control

are shown. Derived from this graph is the upper right graph depicting the Cell Viability

response curve. IC50 values for FX-1 in the Cell Viability response curve are 0.009 mM for

Never Induced and 0.013 mM for Regressed cultures. Lower left graph shows the readout

from the CellToxTM Green Fluorescence Assay. Cell death readouts for the 5 doses of

FX-1 tested and normalized against the control are shown. Derived from this graph is the

lower right graph depicting the Cell Death response curve. IC50 values for FX-1 in the

Cell Death response curve are 0.0174 mM for Never Induced and 0.022 mM for Regressed

cultures.
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[152] Thierry André et al. “Improved overall survival with oxaliplatin, fluorouracil, and

leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC

trial”. In: J clin oncol 27.19 (2009), pp. 3109–3116.

[153] Early Breast Cancer Trialists’ Collaborative Group et al. “Comparisons between

different polychemotherapy regimens for early breast cancer: meta-analyses of long-

term outcome among 100 000 women in 123 randomised trials”. In: The Lancet

379.9814 (2012), pp. 432–444.

[154] Nabeel Pervaiz et al. “A systematic meta-analysis of randomized controlled trials

of adjuvant chemotherapy for localized resectable soft-tissue sarcoma”. In: Can-

cer: Interdisciplinary International Journal of the American Cancer Society 113.3

(2008), pp. 573–581.

[155] Zhu Yu et al. “Adjuvant endocrine monotherapy for postmenopausal early breast

cancer patients with hormone-receptor positive: a systemic review and network

meta-analysis”. In: Breast Cancer 25.1 (2018), pp. 8–16.

[156] Timothy Winton et al. “Vinorelbine plus cisplatin vs. observation in resected non–

small-cell lung cancer”. In: New England Journal of Medicine 352.25 (2005), pp. 2589–

2597.

[157] EMIL FREI et al. “The effectiveness of combinations of antileukemic agents in

inducing and maintaining remission in children with acute leukemia”. In: Blood

26.5 (1965), pp. 642–656.

[158] Calvin B Bridges. “The origin of variations in sexual and sex-limited characters”.

In: The American Naturalist 56.642 (1922), pp. 51–63.

[159] Nigel J O’Neil, Melanie L Bailey, and Philip Hieter. “Synthetic lethality and can-

cer”. In: Nature Reviews Genetics 18.10 (2017), p. 613.

[160] Greg Gibson. “Decanalization and the origin of complex disease”. In: Nature Re-

views Genetics 10.2 (2009), p. 134.

[161] Marc Kirschner and John Gerhart. “Evolvability”. In: Proceedings of the National

Academy of Sciences 95.15 (1998), pp. 8420–8427.

[162] Joanna Masel and Meredith V Trotter. “Robustness and evolvability”. In: Trends

in Genetics 26.9 (2010), pp. 406–414.

151



BIBLIOGRAPHY

[163] John L Hartman, Barbara Garvik, and Lee Hartwell. “Principles for the buffering

of genetic variation”. In: Science 291.5506 (2001), pp. 1001–1004.

[164] Angelique W Whitehurst et al. “Synthetic lethal screen identification of chemosen-

sitizer loci in cancer cells”. In: Nature 446.7137 (2007), p. 815.

[165] Suzanne L Rutherford and Susan Lindquist. “Hsp90 as a capacitor for morpholog-

ical evolution”. In: Nature 396.6709 (1998), p. 336.

[166] Ben Lehner et al. “Systematic mapping of genetic interactions in Caenorhabdi-

tis elegans identifies common modifiers of diverse signaling pathways”. In: Nature

genetics 38.8 (2006), p. 896.

[167] Sebastian MB Nijman. “Synthetic lethality: general principles, utility and detection

using genetic screens in human cells”. In: FEBS letters 585.1 (2011), pp. 1–6.

[168] Leland H Hartwell et al. “Integrating genetic approaches into the discovery of an-

ticancer drugs”. In: Science 278.5340 (1997), pp. 1064–1068.

[169] I Bernard Weinstein. “Addiction to oncogenes–the Achilles heal of cancer”. In:

Science 297.5578 (2002), pp. 63–64.

[170] Nicole L Solimini, Ji Luo, and Stephen J Elledge. “Non-oncogene addiction and the

stress phenotype of cancer cells”. In: Cell 130.6 (2007), pp. 986–988.

[171] Helen E Bryant et al. “Specific killing of BRCA2-deficient tumours with inhibitors

of poly (ADP-ribose) polymerase”. In: Nature 434.7035 (2005), p. 913.

[172] Peter C Fong et al. “Inhibition of poly (ADP-ribose) polymerase in tumors from

BRCA mutation carriers”. In: New England Journal of Medicine 361.2 (2009),

pp. 123–134.

[173] Michael Karin, Zheng-gang Liu, and Ebrahim Zandi. “AP-1 function and regula-

tion”. In: Current opinion in cell biology 9.2 (1997), pp. 240–246.

[174] Cun-Yu Wang et al. “NF-κB induces expression of the Bcl-2 homologue A1/Bfl-

1 to preferentially suppress chemotherapy-induced apoptosis”. In: Molecular and

cellular biology 19.9 (1999), pp. 5923–5929.

[175] Sarah R Walker et al. “The transcriptional modulator BCL6 as a molecular target

for breast cancer therapy”. In: Oncogene 34.9 (2015), p. 1073.

[176] Balazs Györffy et al. “An online survival analysis tool to rapidly assess the effect of

22,277 genes on breast cancer prognosis using microarray data of 1,809 patients”.

In: Breast cancer research and treatment 123.3 (2010), pp. 725–731.

[177] Stella Maris Ranuncolo et al. “Bcl-6 mediates the germinal center B cell pheno-

type and lymphomagenesis through transcriptional repression of the DNA-damage

sensor ATR”. In: Nature immunology 8.7 (2007), p. 705.

152



BIBLIOGRAPHY

[178] Stella M Ranuncolo, Jose M Polo, and Ari Melnick. “BCL6 represses CHEK1 and

suppresses DNA damage pathways in normal and malignant B-cells”. In: Blood

cells, molecules, and diseases 41.1 (2008), pp. 95–99.

[179] Ryan T Phan and Riccardo Dalla-Favera. “The BCL6 proto-oncogene suppresses

p53 expression in germinal-centre B cells”. In: Nature 432.7017 (2004), p. 635.

[180] Ryan T Phan et al. “BCL6 interacts with the transcription factor Miz-1 to suppress

the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center

B cells”. In: Nature immunology 6.10 (2005), p. 1054.

[181] Renee D Paulsen and Karlene A Cimprich. “The ATR pathway: fine-tuning the

fork”. In: DNA repair 6.7 (2007), pp. 953–966.

[182] Deborah L Hardie et al. “Quantitative analysis of molecules which distinguish func-

tional compartments within germinal centers”. In: European journal of immunology

23.5 (1993), pp. 997–1004.

[183] Laura Pasqualucci et al. “Hypermutation of multiple proto-oncogenes in B-cell

diffuse large-cell lymphomas”. In: Nature 412.6844 (2001), p. 341.

[184] Giorgio Cattoretti et al. “Deregulated BCL6 expression recapitulates the pathogen-

esis of human diffuse large B cell lymphomas in mice”. In: Cancer cell 7.5 (2005),

pp. 445–455.

[185] Beverly W Baron et al. “The human BCL6 transgene promotes the development

of lymphomas in the mouse”. In: Proceedings of the National Academy of Sciences

101.39 (2004), pp. 14198–14203.

[186] Pramod C Rath and Bharat B Aggarwal. “TNF-induced signaling in apoptosis”.

In: Journal of clinical immunology 19.6 (1999), pp. 350–364.

[187] Xuanmao Jiao et al. “c-Jun induces mammary epithelial cellular invasion and breast

cancer stem cell expansion”. In: Journal of Biological Chemistry 285.11 (2010),

pp. 8218–8226.

[188] Mark Jesus M Magbanua et al. “Serial expression analysis of breast tumors dur-

ing neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways

associated with recurrence and response”. In: Breast Cancer Research 17.1 (2015),

p. 73.

[189] Donatella Aldinucci and Alfonso Colombatti. “The inflammatory chemokine CCL5

and cancer progression”. In: Mediators of inflammation 2014 (2014).

[190] Jhajaira M Araujo et al. “Effect of CCL5 expression in the recruitment of immune

cells in triple negative breast cancer”. In: Scientific reports 8.1 (2018), p. 4899.

[191] Marco Velasco-Velázquez et al. “CCR5 antagonist blocks metastasis of basal breast

cancer cells”. In: Cancer research 72.15 (2012), pp. 3839–3850.

153



BIBLIOGRAPHY

[192] Santosh Kumar Singh et al. “CCR5/CCL5 axis interaction promotes migratory and

invasiveness of pancreatic cancer cells”. In: Scientific reports 8.1 (2018), p. 1323.

[193] Chad J Creighton et al. “Residual breast cancers after conventional therapy display

mesenchymal as well as tumor-initiating features”. In: Proceedings of the National

Academy of Sciences 106.33 (2009), pp. 13820–13825.

[194] Michael Untch et al. “Pathologic complete response after neoadjuvant chemother-

apy plus trastuzumab predicts favorable survival in human epidermal growth fac-

tor receptor 2–overexpressing breast cancer: results from the TECHNO trial of

the AGO and GBG study groups”. In: Journal of Clinical Oncology 29.25 (2011),

pp. 3351–3357.

[195] Andrea Walens et al. “CCL5 promotes breast cancer recurrence through macrophage

recruitment in residual tumors”. In: eLife 8 (2019), e43653.

[196] Ke Gong et al. “TNF-driven adaptive response mediates resistance to EGFR in-

hibition in lung cancer”. In: The Journal of clinical investigation 128.6 (2018),

pp. 2500–2518.

[197] Takaya Abe and Toshihiko Fujimori. “Reporter mouse lines for fluorescence imag-

ing”. In: Development, growth & differentiation 55.4 (2013), pp. 390–405.

[198] Ashleigh C McLean et al. “Performing vaginal lavage, crystal violet staining, and

vaginal cytological evaluation for mouse estrous cycle staging identification”. In:

JoVE (Journal of Visualized Experiments) 67 (2012), e4389.

[199] Sylwia Gawrzak et al. “MSK1 regulates luminal cell differentiation and metastatic

dormancy in ER+ breast cancer”. In: Nature cell biology 20.2 (2018), p. 211.

[200] Robert H Kutner, Xian-Yang Zhang, and Jakob Reiser. “Production, concentration

and titration of pseudotyped HIV-1-based lentiviral vectors”. In: Nature protocols

4.4 (2009), p. 495.

[201] Simon Andrews et al. FastQC: a quality control tool for high throughput sequence

data. 2010.

[202] Marcel Martin. “Cutadapt removes adapter sequences from high-throughput se-

quencing reads”. In: EMBnet. journal 17.1 (2011), pp. 10–12.

[203] Chien-Chi Lo and Patrick SG Chain. “Rapid evaluation and quality control of next

generation sequencing data with FaQCs”. In: BMC bioinformatics 15.1 (2014),

p. 366.

[204] Daehwan Kim et al. “TopHat2: accurate alignment of transcriptomes in the pres-

ence of insertions, deletions and gene fusions”. In: Genome biology 14.4 (2013),

R36.

154



BIBLIOGRAPHY

[205] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. “HTSeq—a Python frame-

work to work with high-throughput sequencing data”. In: Bioinformatics 31.2

(2015), pp. 166–169.

[206] Michael I Love, Wolfgang Huber, and Simon Anders. “Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2”. In: Genome biology 15.12

(2014), p. 550.

[207] Simon Anders and Wolfgang Huber. “Differential expression analysis for sequence

count data”. In: Genome biology 11.10 (2010), R106.

[208] Korbinian Strimmer. “fdrtool: a versatile R package for estimating local and tail

area-based false discovery rates”. In: Bioinformatics 24.12 (2008), pp. 1461–1462.

[209] Magdalena Strauss et al. “GPseudoClust: deconvolution of shared pseudo-trajectories

at single-cell resolution”. In: BioRxiv (2019), p. 567115.

155



BIBLIOGRAPHY

156



CHAPTER 7

LISTS OF ABBREVIATIONS, FIGURES

AND TABLES

157



Lists of Abbreviations, Figures and Tables

Akt AKT Serine/Threonine Kinase 1

ALK Anaplastic Lymphoma Kinase

AP-1 Activator Protein 1

aPKC Atypical Protein kinase C

ATM ATM serine/threonine kinase

ATR ATR serine/threonine kinase

Bcl-2 B-cell lymphoma 2

BCL2L1 Bcl-2-like protein 1

BCL6 B-cell lymphoma 6

BDP Big Data Processor

BIRC2 Baculoviral IAP Repreat Containing 2

BRAF Serine/threonine-protein kinase B-Raf

BRCA1 Breast Cancer 1 susceptibility protein

CASP3 Caspase-3

CATS Context Aware Trainable Segmentation

CCL5 Chemokine (C-C motif) ligand 5

Cdc42 Cell division control protein 42 homolog

CDH1 Cadherin-1

CDK1 Cyclin-dependent kinase 1

CHEK1 Checkpoint kinase 1

CDKN2A cyclin-dependent kinase Inhibitor 2A

CML Chronic myelogenous leukemia

CR Complete Remission

CSC Cancer stem cell

CT Computed tomography

CTL Cytotoxic T lymphocyte

CXCR4 C-X-C chemokine receptor type 4

158



Lists of Abbreviations, Figures and Tables

CXCR5 C-X-C chemokine receptor type 5

DAB 3,3-Diaminobenzidine

DAPI 4,6-diamidino-2-phenylindole

DCIS Ductal carcinoma in situ

DLBCL Diffuse large B-cell lymphoma

Dlg Discs large homolog 1

DMEM Dulbecco’s modified Eagle’s medium

DNA Deoxyribonucleic acid

DOX Doxycycline

E6 Viral oncogene E6

EDTA Ethylenediaminetetraacetic acid

EGFR Epidermal growth factor receptor

EMT Epithelial–mesenchymal transition

ER Estrogen receptor

FACS Fluorescence-activated cell sorting

FAS CD95 or Apoptosis antigen 1

FDR False Discovery Rate

FEP Fluorinated ethylene propylene

FFPE Formalin-fixed paraffin-embedded

FosB FBJ murine osteosarcoma viral oncogene homolog B

FVB Friend leukemia virus B mouse strain

GC Germinal Centers

GEMM Genetically engineered mouse model

GFP Green fluorescent protein

GM130 Golgin subfamily A member 2

GO Gene Ontology

GRB7 Growth factor receptor-bound protein 7

159



Lists of Abbreviations, Figures and Tables

H2B Histone H2B

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HER2 Human epidermal growth factor receptor 2

HIF1 Hypoxia-inducible factor 1

HPV Human papillomavirus

Hsp Heat shock protein

IC50 Half maximal inhibitory concentration

IF Immunofluorescence

IHC Immunohistochemistry

IKK2/4 Inhibitor of nuclear factor kappa-B kinase 2/4

ITGA6 Alpha-6 integrin

KDM5A Lysine-specific demethylase 5A

Ki67 Proliferation marker Ki67

c-Kit Mast/stem cell growth factor receptor

LASSO Least absolute shrinkage and selection operator

LCIS Lobular carcinoma in situ

Lgl Lethal 2 giant larvae protein homolog 1

LKB1 Liver kinase B1

lncRNA Long non-coding RNA

MAPK Mitogen-activated protein kinase

MF Molecular Function

miRNA Micro RNA

MMTV Mouse mammary tumor virus

MRD Minimal residual disease

MRI Magnetic resonance imaging

mTOR mammalian target of rapamycin

Myc V-myc avian myelocytomatosis viral oncogene homolog

160



Lists of Abbreviations, Figures and Tables

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NGS Next-generation sequencing

NSCLC Non-small-cell lung carcinoma

OCT Optimal cutting temperature compound

PARP Poly (ADP-ribose) polymerase

PBS Phosphate-buffered saline

PCA Principal component analysis

PDAC Pancreatic ductal adenocarcinoma

PET Positron emission tomography

PFA Paraformaldehyde

PGAP3 Post-GPI Attachment To Proteins 3

PGE2 Prostaglandin E2

PI3K Phosphoinositide 3-kinase

PLC Phospholipase C

PR Progesterone receptor

PtdIns3P Phosphatidylinositol 3-phosphate

PTEN Phosphatase and tensin homolog

qPCR Quantitative polymerase chain reaction

RAS Ras (Rat sarcoma) oncoprotein

c-Rel REL proto-oncogene, NF-kB subunit

RLU Relative Luminescence Units

RNA Ribonucleic acid

ROS Reactive Oxygen Species

rtTA Reverse tetracycline-controlled transactivator

Scrib Scribbled homolog (Drosophila)

SEM Standard error of the mean

SPIM Selective Plane Illumination Microscopy

161



Lists of Abbreviations, Figures and Tables

TAC Transcriptome Analysis Console

TDLU Terminal duct lobular unit

Tet Ten-eleven translocation

TGFβ Transforming growth factor beta

TIS Therapy Induced Senescence

TKI Tyrosine kinase inhibitor

TNBC Triple-negative breast cancer

TNFα Tumor necrosis factor alpha

TP53 Tumor protein p53

VHL von Hippel–Lindau tumor suppressor

WPRE Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element

ZO-1 Zonula occludens-1

162



LIST OF FIGURES

1.1 Breast anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Ductal and Lobular carcinomas of the breast . . . . . . . . . . . . . . . . . 15

1.3 Molecular approaches to HER2 targeted therapy. . . . . . . . . . . . . . . . 18

2.1 Principles of Selective Plane Illumination Microscopy . . . . . . . . . . . . . 26

2.2 Schematic showing the adaptation of the tissue wide tumourigesis model in

3D culture to allow stochastic transformation . . . . . . . . . . . . . . . . . 29

2.3 qPCR expression analysis of oncogene expression for establishing optimal

doxycycline concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Oncogene co-localization analysis in tissue wide and stochastic breast tu-

mour organoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Sample mounting procedure for light sheet microscopy with the InVi SPIM 32

2.6 Time lapse imaging of stochastically transduced organoids . . . . . . . . . . 34

2.7 Characterization of stochastic tumourigeneis in vitro . . . . . . . . . . . . . 35

2.8 Pre-processing of big data images acquired at the light sheet microscope. . . 36

2.9 Nuclear segmentation of tumourigenic cells within a stochastically trans-

formed organoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Schematic representation of the big-image data analysis pipeline developed

to analyze the light sheet microscopy images. . . . . . . . . . . . . . . . . . 39

2.11 Assesment of nuclear segmentation accuracy on Imaris . . . . . . . . . . . . 40

2.12 Respresentaive tracking of single transformed cells in breast organoids . . . 41

2.13 Feature analysis of stochastically transformed cells within organoids . . . . 43

2.14 Best logistic regression model for all possible linear combinations of features

based on the Akaike information criterion . . . . . . . . . . . . . . . . . . . 44

2.15 Alternate logistic regression model for all possible combinations of features

using LASSO regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

163



LIST OF FIGURES

2.16 Representative stochastic tumourigenesis shown in organoids at the start

and end of light sheet imaging . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Exploiting synthetic lethality for anti-cancer therapy . . . . . . . . . . . . . 60

3.2 Characterization of the in vitro culture system to model minimal residual

disease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Characterization of the in vitro cultures during tumour organoid regression

using immunofluorescence staining. . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Hallmark timepoints of in vitro tumour progression and regression at which

RNA sequncing was performed . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 PCA analysis plot for RNA Sequencing data from in vitro cultures . . . . . 69

3.6 Clustering analysis of deferentially regulated genes along the RNA Sequenc-

ing kinetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Example gene cluster trajectories from clustering analysis . . . . . . . . . . 71

3.8 Manual clustering and gene list curation using trajectory and correlation

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 GO terms enriched in potential synthetic lethal target trajectory clusters . 74

3.10 Characterization of the in vivo modelling of minimal residual disease . . . . 75

3.11 PCA analysis plot for micro array datasets from in vivo harvests during

tumour regression in mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.12 Transcriptomic levels and protein validation of c-jun as a target for syn-

thetic lethality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.13 Experimental design for the in vitro target validation . . . . . . . . . . . . . 81

3.14 Transcriptomic levels and protein validation of Bcl6 as a target for synthetic

lethality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.15 Schematic representation of the molecular players in the NF-κB cascade

that are upregulated in vitro breast cancer regression. . . . . . . . . . . . . 85

3.16 Cell Viability and Cell Death readouts from synthetic lethality testing of

inhibitor Tanshinone IIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.17 Cell Viability and Cell Death readouts from synthetic lethality testing of

inhibitor JNK Inhibitor SP600125. . . . . . . . . . . . . . . . . . . . . . . . 87

3.18 Optimizing image acquisition parameters at the InVi SPIM . . . . . . . . . 88

3.19 Tumour regression recorded at the In-Vi SPIM with manual tracking . . . . 90

3.20 Segmentation of nuclei during tumour regression. . . . . . . . . . . . . . . . 92

5.1 Hierarchical clustering of transduced cells in bi-transgenic organoids under-

going stochastic tumourigenesis. . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Hierarchical clustering of transduced cells in bi-transgenic organoids under-

going stochastic tumourigenesis. . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Gene Ontology Enrichment analysis of genes with ’Target’ trajectories. . . . 122

164



LIST OF FIGURES

5.4 Gene Ontology Enrichment analysis of genes with ’Early Responder’ tra-

jectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 Gene Ontology Enrichment analysis of genes with ’Intermediate Responder’

trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Gene Ontology Enrichment analysis of genes with ’Late Responder’ trajec-

tories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Gene Ontology Enrichment analysis of genes with ’Shoulder’ trajectories. . 123

5.8 Network mapping analysis for GO:0098742 (Cell-cell adhesion via plasma-

membrane adhesion molecules) . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9 Network mapping analysis for GO:0000571 (FAS pathway and Stress induc-

tion of HSP regulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.10 Network mapping analysis for GO:0001213 (Formation of the cornified en-

velope) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.11 Network mapping analysis for GO:0017017 (MAP kinase tyrosine/serine/threonine

phosphatase activity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.12 Network mapping analysis for GO:0002819 (Regulation of adaptive immune

response) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.13 Network mapping analysis for GO:0031663 ( Lipopolysaccharide-mediated

signaling pathway) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.14 Network mapping analysis for GO:0000618 (Oxidative Stress Induced Senes-

cence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.15 Network mapping analysis for GO:0000097 (Downregulation of ERBB4 sig-

naling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.16 Network mapping analysis for GO:0008593 (Regulation of Notch signaling

pathway) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.17 Network mapping analysis for GO:0002009 (Morphogenesis of an epithelium)133

5.18 Cell Viability and Cell Death readouts from synthetic lethality testing of

inhibitor Maraviroc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.19 Cell Viability and Cell Death readouts from synthetic lethality testing of

inhibitor IKK2 Inhibitor IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.20 Cell Viability and Cell Death readouts from synthetic lethality testing of

inhibitor IKK2 Inhibitor VIII. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.21 Cell Viability and Cell Death readouts from synthetic lethality testing of

inhibitor FX-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

165



LIST OF TABLES

1.1 Overview of the molecular sub-types of breast cancer . . . . . . . . . . . . 17

3.1 Overview of gene numbers in selected manual clusters . . . . . . . . . . . . 72

3.2 GO Terms enriched in the five potentially synthetic lethal clusters manually

curated from RNA Seq analysis . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Inhibitor list tested for synthetic lethality in regressing mammary matrigel

cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 List of transduced organoids analyzed for feature analysis. . . . . . . . . . 120

166



LIST OF TABLES

167


	Introduction
	Breast Cancer
	Mouse models of human carcinomas

	Unravelling stochastic tumourigenesis, one cell at a time
	Introduction
	Objectives
	Results
	Establishing a 3D in vitro model of stochastic breast tumourigenesis 
	Live organoid imaging reveals early tumour dynamics in 4D at single cell resolution
	Development of big-image data compatible analysis workflow allows tracking of cell lineages during early tumour formation
	Feature analysis of lentivirus-transduced organoids indicates that the origin of tumours may be in cell clusters and not in single transformation events

	Discussion
	Conclusions

	Quest for the Achilles' heel in breast cancer residual disease
	Introduction
	Minimal Residual Disease
	Synthetic Lethality 

	Objectives
	Results
	Characterization of minimal residual disease in vitro using primary organoids
	RNA sequencing analysis of in vitro organoids during the establishment of MRD
	Characterization of minimal residual disease in vivo in mice
	Validation of selected targets for synthetic lethality during establishment of MRD
	Imaging tumour organoid regression using light sheet microscopy

	Discussion
	Conclusions

	Materials and Methods
	Animal models
	Genotyping
	In vitro experimental design
	In vivo experimental design and harvest

	3D Cell culture
	Matrigel culture
	Organoid transduction
	Target validation pipeline

	Immunofluorescence staining
	Immunohistochemistry staining
	qPCR analysis
	Lentivirus cloning and production
	Selective Plane Illumination Microscopy
	Sample holder preparation and mounting
	Imaging configurations and conditions
	Big-image data analsysis workflow
	Computational feature analysis

	RNA Seq data analysis
	RNA extraction
	RNA Seq data analysis
	Clustering and Correlation analysis
	Gene enrichment analysis

	Microarray data analysis
	RNA extraction
	Microarray data analysis


	Supplementary Material
	Bibliography
	Lists of Abbreviations, Figures and Tables

