Inaugural-Dissertation

zur Erlangung der Doktorwiirde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultit

der

Ruprecht-Karls-Universitidt Heidelberg

vorgelegt von

Diplom-Mathematiker Peter Markowsky
aus Solingen

Tag der miindlichen Priifung:

Thema:

Model-based Stochastical Segmentation of
Higher-dimensional Data

Gutachter: Prof. Dr. Christoph Schnérr
Ruprecht-Karls-Universitit Heidelberg

Zusammenfassung

Der Ausgangspunkt dieser Arbeit ist das Problem der Segmentierung extrem verrauschter Bilder
geometrischer Objekte. Zu diesem Zweck untersucht sie die Kombination eines randomisierten Ansatzes
zur Losung des kombinatorischen Mengeniiberdeckungsproblems mit einem statistischen Modell der
Objekt-Interaktion.

Die Auffassung als Mengeniiberdeckungsproblem bietet die Mdoglichkeit einer stabilen Segmen-
tierung selbst in Fillen, in denen viele traditionelle Methoden der Bilderkennung aufgrund von Rauschen
und unvollstindiger Bildinformation versagen. Das statistische Modell liefert zusétzliche Information,
die nicht direkt durch die Bilddaten gegeben ist, und fiihrt zu einer realistischeren Widergabe physis-
cher Objekteigenschaften in der Segmentierung.

Diese Arbeit gliedert sich in drei Teile. Teil eins behandelt Themen der randomisierten kom-
binatorischen Optimierung. Dies beinhaltet die Verbesserung von Konvergenzgrenzen eines beste-
henden Ansatzes und dessen Parallelisierung. Ferner werden Verbindungen zwischen verwandten
Ansitzen zur Losung verschiedener kombinatorischer Probleme aufgezeigt, wie zum Beispiel des
Mengeniiberdeckungproblems und der generellen linearen Optimierung.

Im zweiten Teil der Arbeit wird ein punktprozessbasiertes, auf die spatere Anwendung zugeschnittenes
Modell von paarweiser Objekt-Interaktion erstellt. Diskutiert werden theoretische und praktische
Schwierigkeiten bei dessen Simulation, Schéitzung und Verbindung mit einem kombinatorischen Ansatz.

In Teil drei werden die bisher diskutierten Methoden empirisch ausgewertet. Dies umfasst den Ver-
gleich auf simulierten Datensédtzen sowie die Anwendung auf echte Daten in Form von mikroskopis-
chen Zellaufnahmen und dreidimensionalen pCT-Scans faserverstirkter Kunststoffe.

Abstract

This thesis is motivated by the problem of segmenting extremely noisy images of geometric objects.
To this end, it combines randomized combinatorial set cover optimization with a statistical model
of object interaction. The set cover approach provides stability and applicability in cases in which
many traditional methods of segmentation fail due to noise and imperfect data. The statistical model
provides additional information that is not directly supplied by the image, and leads to a more realistic
depiction of physical object properties in the resulting segmentation.

This dissertation is divided into three parts: The first covers topics of randomized combinatorial
optimization. This includes improving bounds of convergence and establishing a method of paral-
lelization for an existing approach, as well as linking solutions to different combinatorial problems,
such as geometric set cover and a general linear program.

Part two is concerned with constructing a point process model of object interaction that fits later
applications, and exploring some theoretical and practical pitfalls in its simulation, estimation, and
coupling with a combinatorial approach.

Part three compares previously discussed methods empirically, and demonstrates the performance
of the established combination of randomized optimization and statistical model on microscopic cell
images and 3D pCT scans of fiber reinforced materials.

Acknowledgements

First, I would like to thank Prof. Christoph Schnérr for introducing me to the topic of optimization-
based image segmentation, as well as the image and pattern analysis group Heidelberg, and providing
the framework for the development of this thesis.

My colleague Tabea Zuber proved to be a constantly reliable and insightful partner in the discus-
sion of our work. In addition, many other members of the IPA group offered interesting talks and
useful insights, in particular on the topic of code optimization.

On the subject of the segmentation of cell images, P.D. Karl Rohr supported me with many en-
couraging and illuminating discussions and tips, in particular for publishing on this topic. I would also
like to thank Svenja Reith for her enthusiastic and diligent attitude in our joint work.

In addition, my sincere thanks goes to Prof. Claudia Redenbach of the TU Kaiserslautern for acting
as a second advisor for my thesis.

Lastly, I would like to thank the faculty for mathematics and computational science Heidelberg
for providing the general framework that made it possible to complete this thesis.

Contents

II

Introduction

1.1 Overview and Motivation 0 it i e e
1.2 Related Work e
1.3 Contributions e e e
L4 Organization o v v i i e e e e e e e e e
Randomized Set Cover (RSC)

Background and Convergence

2.1 Introduction L e
2.2 Basic Definitions and Preliminaries L.
2.3 Generalized Iterative Reweighting with Tight Bounds

Parallel and Hierarchical RSC
3.1 Independent Weight Updates for a Parallelization with Tight Bounds
3.2 Hierarchical Weight Updates

Related Methods

4.1 Greedy Set CoOvering o v v v i e e e e e e e
4.2 Solving RSC via Linear Programming
4.3 Variants of the Set Cover Problem
4.4 Solving a Linear Program viaRSC
4.5 RSC as a Special Case of Multiplicative Weights
4.6 Comparison to Hough transformation

Set Covering with a Gibbs Prior

Gibbs Point Process Model

5.1 Introduction and OvVerview i i e e e
5.2 Basic Definitions: Point Processes
5.3 Pairwise Interaction/Gibbs Point Processes

OO0 ~J W =

10
10
13
14

17
17
26

28
28
29
31
33
37
39

41

5.4 Gibbs Model forFiberData
5.5 Simulation L e
5.6 Estimation of Model Parameters

Model-based Randomized Set Cover

6.1 Combining Gibbs Modeland RSC
6.2 CONVEIZENCE . . . v v v v i e e e e e e e e e e e e e e e e e
6.3 DataTerm Scaling

III Experimental Evaluation

7

10

Evaluation on Synthetic Data

7.1 Range and Parameter Structureand SetUp
7.2 RSC Approaches without an underlying Model
7.3 Model-based RSC

Pre- and Postprocessing Methods for Real Data
8.1 Preprocessing Methods
8.2 Data-specific Postprocessing

Application on Real Data
9.1 2DCellData e e e e
9.2 3DFiberData e

Conclusion and Outlook

Randomized Set Cover and c-Nets
A.1 Detailed Bounds of the Number of Weight-Doubling Steps
A2 Asymptotic Behaviour of eppax () . 0 . o oo oL

57
57
61
62

63

64
64
66
69

73
73
78

82
82
85

89

Chapter 1

Introduction

1.1 Overview and Motivation

Important properties of polymer materials reinforced with
glass or carbon fibers, such as durability and flexibility, are
determined by microscopic properties of the fibers them-
selves, such as length and relative orientation. These prop-
erties can be difficult to control during production, as dur-
ing manifacturing processes such as molding fibers may
bend or break. Therefore quality control based on microto-
mographical (uCT) scans of material samples such as the
one seen in figure 1.1, and consequently the segmentation
of these scans, has in recent years become an increasingly
interesting, yet largely unsolved problem.

This dissertation originated as part of the AniS project
of the German ministry of Education and Research. The
project was conceived as a cooperative effort between sev-
eral universities and companies; its aim was to further the

Figure 1.1: pCT data of Fiber Material

state of the art in the modeling and segmentation of porous foam rubber materials, as well as fiber-
reinforced plastics. The focus of the Heidelberg group was on micro CT scans of these fiber materials.
Specifically, the goal was a sensible local pre-processing of the given CT data, as well the conception
a probabilistic energy model that could be minimized to match physical fiber interaction in a possi-
ble segmentation. This was later extended to include the full segmentation and labeling of smaller

artificial and real data sets.

90

o P . In terms of image segmentation, fiber data presents several chal-

60
100

lenges: pCT data is usually noisy and dense — neighboring fibers

s N often lack clear borders, even after local pre-processing — see figure
> 1.2. This limits the use of many traditional methods that are based on
* - 2 ,“\\\ local morphology, such as thresholding, filtering, watershed transfor-
80 By

mations or identifying the connected components of foreground data.

80

90

Figure 1.2: Blurred local bor-
ders in fiber data

2 Chapter 1. Introduction

At the same time, the sheer increase in data size makes the naive transfer of many 2D methods
such as the Hough transform or the minimization of a global energy or linear program (LP) unfeasible.

On the other hand, the advantage in modeling and segmenting fiber data such as that shown in
figure 1.1 is that the rough structure of a single fiber is already known: It will in good approximation
be a long, thin cylinder, albeit with an unknown center, orientation and length. This naturally steers
the problem towards the use of parameter-based segmentation methods.

The Randomized Set Cover (RSC)
approach that served as the initial ba- ot
sis for this dissertation tries to make
use of this combined prior knowledge
of image data: Interpreting the prob-
lem of finding an optimal segmenta-
tion for a set of data points as the
global problem of minimally cover-
ing these points with a collection of
predefined geometric objects — namely
the cylindrical fiber shapes — supplies
high robustness towards local noise
and blurred edges. Knowledge of the
shape of objects allows us to parame-
terize the space of possible solutions to increase computational efficiency. At the same time, RSC
combats the problem of large data by approximating the global problem in an iterative, randomized
way, where each step of the approximation uses smaller, randomized collections of possible solutions.

The RSC algorithm operates by iteratively sampling a fixed number of pre-defined sets — which
will be cylinders in the case of fiber segmentation — and updating the probability distribution from
which these sets are sampled. To guarantee convergence to a full — if not necessarily minimal —
cover of all object voxels, the probability of covering voxels that were previously covered with low
probability is increased in each step, until all voxels are covered with a sufficiently high probability to
sample a full cover.

Mathematically, we find points covered with low probability using e-nets: Given a (discrete) col-
lection of sets R; with a probability distribution p;, we can define these as any collection of sets that
covers all points that are covered with probability > ¢ when sampling a single set 2. See the begin-
ning of chapter 2 for a more detailed examination of their mathematical background.

Figure 1.3: Segmentation as a minimal set cover of all data
points.

Although we can guarantee convergence for the RSC approach using e-nets, a segmentation pro-
duced purely as a cover of data voxels will not necessarily reflect the location of the physical objects.
Even simple properties, such as physical objects not overlapping, will not necessarily be reflected
when approximating a minimal cover of all data points — see figure 1.4. Thus, a natural second step
towards the segmentation and labeling of physical objects is to not only consider the given image
data and the the geometrical shape of each single given object, but also any a priori knowledge of the
interaction between two or more of these objects.

To achieve this, we modify the RSC algorithm so that the potential covers produced in every
step are not a simple random sample, but the minimizer of an energy that reflects object behavior.

1.2. Related Work 3

We derive this energy from the probability density of a statistical point process model. Specifically,
we try to strike a balance between a relatively accurate model of object interaction and the practical
applicability of said model by using a Pairwise Interaction Point Process, which we will later refer to
somewhat casually as the Gibbs model.

Without any prior knowledge, this model
can be as simple as prohibiting object overlap.
However when given a prior segmentation, we
can estimate a more refined pairwise interac-
tion model in a relatively straightforward way by
minimizing the quadratic difference of an esti-
mated statistic of our model to that of the previ-
ous segmentation. This knowledge can then be
used to better segment comparable data. If we
do not start with the ground truth of a data set,
we can first segment using the simplified model
of non-overlap, then produce a second segmenta-
tion using the object interaction estimated from
the first.

Figure 1.4: A naive approximate cover (right) will
not reflect physical properties of data (left), such as
the absence of overlap for solid objects.

1.2 Related Work

1.2.1 Randomized Set Cover Approach
Background

One of the first uses of iterative sampling to find a “critical set” was introduced by Clarkson [Cla88] in
1988 amongst several papers exploring the application of randomization in optimization algorithms.
This took the form of an algorithm geared towards solving an LP-type problem by finding its basis,
a minimal set of conditions that fully defined the problem. Initially, Clarkson uniformly sampled
random sets of conditions until an approximation of the basis is found. This algorithm was refined
by Clarkson in 1995 [Cla95]: conditions are no longer sampled uniformly, but a weight function is
assigned to possible candidates, and updated in each step depending on their performance. Conver-
gence is guaranteed by only increasing the probability of “light” elements, i.e. those that are assigned
a relatively low weight in the current updating step.

This concept was later generalized by by Bronnimann and Goodrich [BG95] to construct the
version of the RSC algorithm most cited today: It operates on a range space (X, R), i.e. aset X and a
collection R of subsets of X; we will refer to the subsets that constitute the space as “ranges”. Given
such a range space, their algorithm aims to find a hitting set, i.e. a set of elements x; that “hits”, or
has a non-empty intersection with, every range R € R. It should be noted that the problem of finding
a hitting set and the problem of finding a set cover are interchangeable, since the set cover of a range
space is equivalent to a hitting set of its dual range space, and vice versa — see section 2.2.

Bronnimann and Goodrich aim to find this hitting set in a way similar to Clarkson’s by iteratively
sampling and updating the weight of “light” subsets. Finding light subsets to update is achieved by

4 Chapter 1. Introduction

randomly sampling e-nets, approximations to a hitting set that do not hit all ranges, but those with a
high relative weight. If a set of points is an e-net for a weighted collection of ranges, then by definition
ranges that are not hit by this e-net have a relative weight of lower than €, and are considered “light”.
Their proof of convergence to an approximate solution is based on the knowledge that in each step an
e-net can be constructed via random sampling with high probability.

Some more recent approaches modify the scheme of iterative sampling and reweighting by first
calculating a weight system in which every range has a relative weight of € or more, and then con-
structing an e-net once for these weights. By definition, the e-net is then a hitting set for the range
space. This approach is used e.g. by Even et al. [ERSO5] — who find the e-net via solving a linear
program — and Agarwal et al. [AP14] — who use iterative reweighting — to achieve a higher degree
of parallelization compared to Bronnimann/Goodrich [BG95]. This approach can however lead to a
significant decrease in the quality of the approximation compared to an iterated construction in each
step. For a discussion of the problem of large constants in applying reweighting schemes see [BMR15]
. This paper was later developed by Bus in [BGMR16] to an algorithm with a similar idea as our ap-
proach of parallelization, though without a formal background or proof of convergence, and restricted
to disks. We later compare the work of Agarwal et al. [AP14] to our own parallelization approach that
calculates e-nets significantly less often, but more than once — see sections 3.1 and following.

e-net Construction

Convergence of all schemes related to the one used by Clarkson and Bronnimann/Goodrich rely on the
construction of e-nets to guarantee their convergence; the specific method used for this construction,
however, can vary greatly: Bounds on Clarkson’s original method of random sampling were estab-
lished using the Vapnik-Chernovenkis (VC)-dimension, a measure of combinatorical complexity for
the range space (X, R) — see section 2.2. The bounds on the cardinality required so that a randomly
sampled set of elements is likely an e-net were later tightened to their current state in [KPWO92].

Elbassioni [Elb16] extended the VC-based approach to infinite range spaces. Some more recent
approaches [Var10, Chal6, MDG16, KMP17] use a more complicated construction than random sam-
pling under the assumption that the shallow cell complexity, which defines the complexity of the
range space using the incidence matrix'of its elements and subsets, is known. It should be noted,
however, that for large scale problems even explicitly formulating and storing the incidence matrix of
the range space may not be computationally feasible. Similarly, methods that substitute solving the
linear program with a greedy approach [CM96, You95] can quickly lead to extremely long running
times; sampling-based-methods use global information only in a computationally inexpensive way,
i.e. by sampling from a distribution over all feasible ranges. Even for the moderately large problems
of our later applications this computational advantage far outweighs the worse bounds on net size.
Lastly, constructions with improved bounds compared to the general case have been established in
many specific geometric settings — see [MV17] or [PROS8] for an overview.

Regardless of the specific method used for constructing an e-net, the value of € used in its construc-
tion directly determines its cardinality, and thus the quality of the resulting solution to the minimal
hitting set problem. One aim of the later chapter 2 is to further tighten the limits for values of € under

'The incidence matrix is a binary matrix that indicates for each point p; and set r; if the point is covered by the set (1)
or not (0)

1.2. Related Work 5

which convergence is still guaranteed by formulating a modified version of the original proof of con-
vergence for the weight-update scheme, as seen e.g. in [BG95] in propositions 2.3.1 and A.1.1. One
important property of our parallelized weight update scheme proposed in section 3.1 is that it does not
compromise this new bound on ¢, and consequently the quality of the produced segmentation. This is
in constrast to e.g. the parallelized approach by Agarwal et al. [AP14], which trades the speedup via
parallelization for a significant decrease in the quality of the result.

Related Problems and Methods

One of the most prominent and intuitive methods to solve a minimal set cover problem is the greedy
algorithm that iteratively selects the set covering most points that have not been covered in previous
steps. While it can be guaranteed to have a cover cardinality of O(In(n)) * OPT, where OPT is the
optimal cover cardinality — see e.g. in [VazOl, chapter 2] — its speed tends to scale poorly for larger
problems .

Similarly, LP-based approaches generally trade good results for poor speed or even complete
inapplicability on larger problems. As mentioned in the previous section, even calculating and storing
the incidence matrix of a larger problem can be prohibitively expensive. They can however be useful
as a second step of postprocessing for larger problems. One of the most prominent approaches to solve
a set cover problem directly, i.e. without the use of e-nets, is the method of randomized rounding: We
first solve the relaxed version of classical set cover LP, then interpret the solution (z;) € [0, 1]" as the
probabilities of picking a range R; for the solution. It is shown e.g. in [Vaz01, chapter 14.2] that if
we sample ranges independently t = O(logn) times from the discrete distribution produced by (z;),
a cover is produced with high probability.

One natural extension of the set cover problem is the problem of covering all, or some points
multiple times. Chekuri, Clarkson and Har-Peled [CCHPO09] solve this by defining a new set system
based on creating multiple copies of each point; the multi-cover problem can then be reduced to
solving the original set cover problem for the newly-defined range space. This is achieved by Chekuri
et al. by bounding the VC-dimension of the new range space and then utilizing the same VC-based
framework as Clarkson/Bronnimann/Goodrich. Bien et al. [BT11] tackle the same problem using
two approaches similar to the randomized rounding and greedy methods for the classical set cover
problem.

Instead of using a linear program to solve a set cover problem, we can also use set cover-related
methods to solve a (general) linear program. As mentioned in the beginning of the section 1.2.1,
the RSC reweighting scheme by Bronnimann and Goodrich [BG95] is based on the method used by
Clarkson [Cla95] to find the basis of a linear program. We will later show in section 4.2 that — up
to the change of some constants — Clarkson’s algorithm can indeed be explicitly reduced to a special
case of applying the B/G reweighting scheme [BG95] to solving a minimal set cover problem of real
half-spaces, which represent the linear constraints of the LP.

The randomized B/G scheme for set covering shares some characteristics with the framework
of Online learning, as seen e.g. in [CBLO06]. Specifically, both repeatedly evaluate multiple non-
deterministic elements — “experts” in the case of online learning, randomly sampled sets in the case of
B/G - and adjustment their strategy depending on the current state of these elements sets in each step.
However, interpreting the sets randomly sampled by the B/G scheme as a form of “expert advice”,

6 Chapter 1. Introduction

we cannot meaningfully define cover quality for a single sampled set, but only for the collection of
all sets: Even if a single set covers many points, the use of two such sets may still result in a bad
solution to the overall minimal cover problem if they are almost identical. This distinguishes the B/G
scheme from the online learning approach, which relies on a collection of experts that can both be
judged individually via a loss function, and combined in a relatively straightforward way to define the
resulting strategy (i.e. one that still permits useful bounding, such as a weighted average).

The most direct link of online learning and randomized set cover is the multiplicative weights
method [AHK12], a framework that relies almost exclusively on the use of weights and sampling, and
generalizes both approaches. It also subsumes many other well-known algorithms, such as the Ada
boost algorithm [FS95], the Plotkin-Shmoys-Tardos algorithm [PST95] and the Winnow algorithm
[Lit88]. This very generalized approach can however come at the cost of less precise bounds on
convergence in the special cases. Indeed, applying the framework directly to the randomized set cover
approach results in estimates that will be trivial in almost all cases, as we later see in section 4.5.

The RSC approach also shares some similarities with the generalized Hough transform [Bal87],
which extended the method originally introduced to segment incomplete line segments via parameter
voting — see [IK88] — to all parameterizable objects. Both methods sequentially use single image
points to “vote”, i.e. update a discrete weight function, on the same space of object parameters. These
similarities are heightened further when comparing RSC to the later established randomized versions
of the hough transform [KHXO095, KKA00, WR02], in particular the Probabilistic Hough Transform
[KEB91] that votes on a random subset of image points; despite this, Hough-based approaches remain
somewhat limited in both theory and practice when compared to RSC. We will discuss their relation
in more detail in section 4.6 and give a numerical performance comparison in section 7.2.4.

1.2.2 Point Process Model

Possibly because of the potentially high computational requirements, literary examples of Bayesian
segmentation approaches are still relatively sparse; Dong [DA07] and Khan [KGS15] et al. minimize
energy (or, equivalently, maximize likelihood) over a Marked Point Processes (MPP) model for cell
segmentation. Two approaches by Soubies and Poulain [SWD15, PPSD15] iteratively minimize a
binary model (i.e. no object overlap) over a randomized sample. Regarding fiber segmentation, Jain
and Dubuisson [JD92] used a conditional probability model for gray value thresholding based on
Besag [Bes86]. The main advantage of a minimal set covering approach is its stability in the case of
noisy data. The specific advantage of the iterative RSC approach by Brénnimann/Goodrich [BG95] is
its ability to handle large data sizes by restricting itself to a randomized subset in each step. We can
retain both of these advantages by combining a stepwise energy minimization over a random sample
with the stepwise RSC probability update of Bronnimann/Goodrich.

However while a purely binary model, i.e. no object overlap, is not unfitting in the segmentation
of physical objects, we may wish to include prior knowledge more extensively.

For both the generation of test data sets and the statistical estimation of a more refined model,
we need to be able to sample from a given Gibbs density. We present two methods of simulation: a
Markov Chain Monte Carlo algorithm that is straightforward and fast to implement, but only approx-

1.3. Contributions 7

imates a given process, and a Dominated Coupling from the Past (DCFTP) algorithm that is able to
sample exactly from a given Gibbs density. The drawback of the latter is that it can be extremely slow
to converge, making it generally only feasible for single simulations, not statistical averaging over
large numbers of samples.

For our MCMC simulations, and most importantly MCMC-based estimation, we use the somewhat
straightforward algorithm of [HP99] which is itself based on [Rip77]. For our purposes, Markov
chains with a fixed number of points are sufficient. MCMC methods can however be applied in
different ways and a more general context — see e.g. [Mg@l99] for an overview of MCMC methods in
point process simulation.

The “Dominated Coupling from the Past” method can be used to draw perfect (non-approximative)
samples from a Gibbs density. While it is theoretically possible to replace the MCMC approximations
used for Monte Carlo root-finding method (see 5.6.2) with averages over perfect samples for parameter
approximation, the DCFTP method is far more computationally expensive in practice, too much so to
make the calculation of several thousand samples feasible in a reasonable time-frame. It can however
be useful for simulations of lower number, and to estimate the “burn-in” period of MCMC-based
approximations, i.e. the number of starting steps a markov chain needs until realizations are close
to its stationary target distribution. The DCFTP method used in later sections is based directly on
[BMO03, KMO0O0], up to some considerations for our somewhat different process model.

The ability to sample directly from the density of a point process is generally not a given, though it
is not unique to multiscale processes; as an example, in [Ken98] and [BVL95], Kendall and Baddeley
describe methods of perfect simulation and parameter estimation for area-interaction processes that
are comparable to the methods described in the later sections 5.5.2 and 5.6.2.

To estimate model parameters from given data, we minimize the quadratic difference of a suffi-
cient statistic of the data to its expected value in the model, using the Levenberg-Marquardt method
[Mar63]. Levenberg-Marquardt can be seen as an interpolation between the minimization methods
of Gauss-Newton [Bjo96]and gradient descent [Avr03]. In the case of point processes, the neces-
sary derivations can generally not be calculated explicitly, and are instead approximated by averaging
over MCMC chains; the resulting method is described as the Monte Carlo Marquardt algorithm and
applied to Gibbs processes in [HP99]. We later present a slightly different version that incorporates
two-dimensional object interaction.

For an overview of other methods of parameter estimation for pairwise interaction processes see
e.g. [DFG194].

1.3 Contributions

(1) We generalize the Randomized Set Cover approach and tighten existing bounds for convergence
for this generalized approach.

(i) We introduce a new method of parallelization for this approach, and compare it to an established
method of parallelization in both theory and practice. We also briefly discuss a hierarchical
approach that achieves a speed up via coarsening of the parameter space.

8 Chapter 1. Introduction

(iii)) We show that an established method of solving large linear programs can be understood as a
special case of the randomized set cover approach (up to constants), and bound the dual VC-
dimension, a measure of combinatorial complexity, for real half-spaces to this end. We also
show that Randomized Set Cover can be understood as a special case of the Multiplicative
Weights algorithm.

(iv) We modify existing point process models based on pairwise interaction between objects to be
based on two measures of object interaction instead of one, and discuss both theoretical and
practical pitfalls in applying existing methods of estimation and simulation for these point pro-
cess models.

(v) We establish two algorithms that combine an energy minimization on an estimated model of
object interaction with the Randomized Set Cover to approximate an image segmentation that
reflects physical object interaction probabilistically; we again discuss convergence on both a
theoretical and practical level.

(vi) We evaluate previously discussed approaches in practice; this includes a run-time and quality
comparison on synthetic data, as well as an evaluation on real 2D cell and 3D fiber data.

1.4 Organization

This dissertation is divided into three parts:

Part I is concerned with the problem of solving the combinatorial set cover problem optimally
and efficiently for large data sets. We give an introduction to the generalized Randomized Set Cover
approach and tighten existing bounds for its convergence in chapter 2. We introduce methods of
speeding it up up via parallel and hierarchical versions in chapter 3. Anything pertaining to related
methods, including the link to linear programs and Multiplicative Weights, is discussed in chapter 4.

In part II the combinatorial approach to segmentation is extended to include a model of physical
interaction of objects. We show how a Gibbs point process model can be adapted for cases in which
object interaction is multi-dimensional, and discuss methods of simulation and estimation in chapter
5. We discuss the combination of Gibbs model and randomized set cover in theory and practice in
chapter 6.

Part III is comprised of everything related to the application of the results of the previous two
parts. This includes a numerical evaluation of the examined methods on synthetic simulations in
chapter 7, a discussion of local pre- and post-processing methods for real data in chapter 8, as well as
as exemplifying segmentations of real data sets in chapter 9. As examples of real data sets we use 2D
cellular data provided by, and evalucated in cooperation with, the Biomedical Computer Vision Group
(BMCYV) Heidelberg in section 9.1 and 3D pCT fiber data provided by the BASF company in section
9.2.

Part I

Randomized Set Cover (RSC)

Chapter 2

Background and Convergence

2.1 Introduction

High amounts of noise in image data can make any threshold or region-based approach to image
segmentation partially or completely unfeasible. To be able to segment images in which voxel data
is difficult, but prior knowledge of object shapes is available, we can see image segmentation as a
minimal set cover problem: Given a collection of points X and a discrete collection of sets R € R,
we want to find the smallest collection of sets Ry, ..., R, that cover all points, i.e. have a non-empty
intersection with every element of X.

A minimal set cover problem itself is generally NP-hard [Kar72] and can thus in general only be
solved approximately. To this end, many different approaches exist— two of the most notable ones are
greedy set covering (see section 4.1) and solving a linear program (see section 4.2). However, both of
these approaches tend to scale badly for large problems — a greedy algorithm needs to search through
all available sets, or “ranges”, several times, while for an LP-based approach even calculating the
matrix representation of the cover problem [YNM™15] can be computationally expensive. To solve
large set cover problems, we instead base our approach on an algorithm that utilizes small random
subsets of the global problem:

The Randomized Set Covering (RSC) algorithm is an iterative reweighting scheme designed to
solve a large combinatorial problem in an approximate and randomized way. For its most prominent
version, formulated by Bronnimann and Goodrich [BG95], this is a minimal set covering problem. On
an intuitive level, the RSC algorithm can be seen as iteratively matching parameterized templates (the
ranges) to a set of points: in each step, we sample a collection of ranges according to a probability
distribution induced by weights w;, then check if they cover all image points. As long as there is
a point not covered by the currently sampled ranges, we increase the probability covering it in the
next step by doubling the weight of ranges that cover this point. We repeat the process of sampling
and reweighting until all image points are covered with high probability — see figure 2.1 — and we
eventually sample a full cover. The key to guaranteeing convergence to an approximate solution is
that the weight increase does not happen unconditionally, but only for points that are a priori covered
with a probability below a set threshold of € — we will refer to this as the “e-condition”. See algorithm
1 for an overview of the B/G set covering approach.

10

2.1. Introduction 11

Algorithm 1: Randomized Set Covering, Bronnimann and Goodrich (B/G)
Input: X, R, e, n.
Output: setcover Ry,..., R, of X.

begin
setw(R) = ﬁ, VReR // normalized starting weights/probabilties
sample sets Ry,..., R, ~u= ﬁw and // random approximate cover
set X. = X \ {z: z € R; for some R;} // points not covered

while X . # () do

pick any point x € X,
ifw(R;) <exw(R) // e-condition
then
L w(R) «— 2w(R), VR: {z} "R £ // update ranges covering x
sample sets Ry,..., Ry, ~ p = ﬁw and // repeat sampling
| set X.= X \ {z: z € R, for some R;}
| return Ry, ..., Ry,

Mathematically, we find points covered with low probability using e-nets: a collection of sets that
covers every point that is a priori covered with probability > ¢, thus guaranteeing that uncovered points
satisfy the e-condition. For a given probability distribution and set system, e-nets can be constructed
in several different ways; similarly, the definitions of a set cover and hitting set are closely related,
and can be applied in different contexts, such as the solution of a linear program. Consequently, many
different variants and special cases of the RSC algorithm exist. In this part of the thesis, we formulate
a proof of convergence for a generalized version of the RSC algorithm in section 2.3 that tightens
existing bounds after introducing the necessary formal definitions in section 2.2.

To facilitate fast run times for large problems in later applications, we introduce a method to
parallelize the algorithm without loss of quality in section 3.1 and compare it to the current state of
the art. We discuss how it can be sped up by coarsening the parameter space in section 3.2. In chapter
4 we discuss the relation of the RSC algorithm to several other iterative randomized methods; most
importantly, in section 4.4 we show how an algorithm introduced for the solving of linear programs
can be viewed as a special case of the RSC algorithm up to parameter values, leading to tightened
bounds for convergence and the applicability of the previously introduced method of parallelization.
Some sections in this part of the thesis, in particular those related to the proof of convergence and
parallelization, bear strong similarities to an as of yet unpublished paper by Markowsky et al.[MZ17].

12 Chapter 2. Background and Convergence

i . T T
P e e u, 4-!1 E‘
- - Ay, L e, i
. . g W
40 [e ATt :é - o
- £
60 ,__,;Efg f, ‘; f#’ jj_“
o R AF . Bl
100 ;:}. Ll ""9:#!"-*‘#“
.a!_'a"g: A F;t;f I
) | o . - HiF B T
1201 -?Tg = 4-""9;#""" L2
HE o FpE ” ¥ ¢
140 eirnﬂ':;u_—mmqyg;;}wmé_- E f B
""‘{V’;‘}' f"’g as . s % ;‘5‘
Ao B
i 4

160 | g o e
s F RS
20 40 60

80 100 120 140 160 180

(a) Simulated data (b) Probabilities of object centers, summed over
all orientations

(e) Orientation 3 (f) Orientation 4

Figure 2.1: Simulated 2D example, probabilities of object centers assigned by the RSC algorithm at
convergence (logarithmically scaled).

2.2. Basic Definitions and Preliminaries 13

2.2 Basic Definitions and Preliminaries

This section introduces basic definitions and results used in the subsequent sections. Basic references
include [HP11, Mat02] to which we refer for more background and details. Throughout this chapter,
we only consider finite sets.

Definition 2.2.1 (Range Space, Hitting Set, Set Cover). Let X be an arbitrary finite set, and let R be
a family of subsets of X. Then the pair (X, R) is called a range space with points x € X and ranges
ReR.

A set of elements N C X is called a hitting set for (X, R) if any range contains at least one point
of N,ie. VRe Rdx € N: z € R.

A set of ranges C C R is called a set cover for (X, R) if any point of X is contained in at least
onerangeinC,ie. Ve € XdR e C: z € R.

Definition 2.2.2 (Dual Range Space). Given a range space S = (X, R) and a point z € X, we define
the dual range of x as the set of all ranges containing x,

R,:={R€R:xz € R}. 2.2.1)
The dual range space corresponding to S is
S*:=(R,Rx) with Rx :={R,:z € X}. (2.2.2)

We can see immediately that for any point x and range R, z is contained in R iff R is contained
in the dual range of x:
r€R < ReRx. (2.2.3)

As a direct consequence, the a set cover of S = (X, R) is a hitting set of its dual range space S*, and
the dual range space of the dual range space S* is equivalent to S itself.

Definition 2.2.3 (¢-net). Let S = (X, R) be a range space and A C X.
(i) aset N C X is called an e-net for S if, for any range R € R with
|[RNA| > €|A|, (2.24)
R contains at least one point of N, i.e. RN N # ().
(ii) For a given probability measure p on X, condition (2.2.4) reads
wWRNA)>eu(A). (2.2.5)

Conditions (2.2.4) and (2.2.5) are equivalent if g is the uniform measure. Because any common
factor does not change the relation (2.2.5) any measure can be used as well. We denote such
weights by

w(RNA) >ew(A). (2.2.6)

14 Chapter 2. Background and Convergence

(iii) If the subset A C X is not specified in connection with an e-net N, then it is tacitly assumed
that A = X. In this case condition (2.2.5) reads

w(R) > ¢, (2.2.7)
i.e. N must intersect any range R with a probability measure not less than ¢.

Definition 2.2.4 (Shattering, VC-Dimension). Let S = (X, R) be a range space. For any Y C X the
family of subsets
Ry ={RNY: ReR} (2.2.8)

is called the projection of R onto Y. If R}y contains all subsets of YV, i.e. Ry = 2Y | then Y is
shattered by R. The Vapnik-Chervonenkis dimension dimy «(S) is the largest cardinality of subsets
Y that can be shattered by R. If subsets of arbitrary size can be shattered, then dimy¢(S) := oo.

Theorem 2.2.1 (Size Upper Bound for e-nets [KPW92, Thm. 3.1, Thm. 3.2]). Let S = (X, R) be a
range space with dimy ¢ (S) = d and let 11 be a probability measure defined on X such that all ranges
are p-measurable. If € > 0 is chosen sufficiently small depending on d such that AN € N with

d
N n\ (N—n)e—1
p.—2;<i> (1_N) <1, (2.2.9)
then any i.i.d. random sample X ™) := {2, ... 2"} C X with 2" ~ u of size
d
n = [log(1/2) +2loglog(1/2) + 3] (2.2.10)

is an e-net for the measure p with probability > 1 — p.

2.3 Generalized Iterative Reweighting with Tight Bounds

Since a set cover can be seen as a hitting set of the dual of a range space, and vice versa, the RSC
algorithm can be formulated equivalently as a minimal hitting set algorithm (see 2.2). This formulation
makes some proofs a little more intuitive, and we will be using it for the more theoretical sections 2.3
and 3. Although different versions of e-net based reweighting schemes can be constructed, they share
the same key elements that are necessary to guarantee convergence. We first formulate a reweighting
scheme that generalizes both the algorithms formulated by Bronnimann and Goodrich (B/G) [BG95]
and a sequential version of the simplified scheme proposed by Agarwal and Pan (A/P) [AP14]:

Algorithm 2: Sequential weight update scheme
Input: (X, R), e, w.
begin
while Convergence is not achieved do
pick arange R € R
if w(R) < ew(X) then
| w(z) +— 2w(z), Vz € R

return w

2.3. Generalized Iterative Reweighting with Tight Bounds 15

Here, “pick a range” has a slightly different meaning depending on the reweighting scheme used:
For approaches based on the B/G scheme, picking a range means constructing an e-net in each step
and picking a range that is not hit by this e-net. Agarwal et al.[AP14] originally check several ranges
R consecutively, and update all that satisfy w(R) < ew(X). In this sequential scheme, we first
only allow the update of one range per step. Similarly, “convergence is not achieved” has different
meanings depending on the different versions of the reweighting scheme: For versions based on the
B/G scheme the condition for termination is that the e-net constructed in a step is a hitting set for the
original problem. The original approach by Agarwal et al.[AP14] stops when less than L%j e-light
ranges are found after checking every range & € R. Our sequential version simply stops when no
more e-light ranges can be found.

In both cases, the key for guaranteeing convergence to a minimal hitting set is limiting the weight-
doubling to sets R that satisfy

w(R) < ew(X). (2.3.1)

Although the idea of the proof of convergence closely follows the general multiplicative weight up-
date scheme [AHK12], and has been formulated many times (see e.g.[BG95],[HP11]), we include a
modified version to establish tight bounds for ¢:

Proposition 2.3.1. If a hitting set of size n* exists, and
1
€ < Emax(n”) =277 — 1, (232)

then a range satisfying condition 2.3.1 can only be found for a finite number of steps. This bound on
€ cannot be improved in the general case.

Proof. Assume ¢ = 9@+ — 1 for some a> 1.
If an e-light range, i.e. one satisfying condition 2.3.1, can be found in every step, and its weight is
doubled, then the total weight of R after 7 steps is bounded by

Wi(X) < (1+)w X)) < (1+e)wd(X) = 2a w0 (X), (2.3.3)

On the other hand, suppose H is a hitting set of size n*. Let ¢;(j) denote the number of times the
weight of the jth element of H was doubled after ¢ iterations. By the definition of a hitting set, at least

one point is in each of the ranges which are doubled in weight, i.e. Z;L;l ti(7) > 1.
0

Defining w’ as the weight function after i steps, and w®, = minpepy w®(h), we can lower bound

the weight of H:

n* N
WiH) > Y 280w > 0= D0 s el 2i/mT (2.3.4)

min min
j=1
The second inequality is a direct consequence of the geometric mean lower-bounding the arithmetic
mean. Comparing equations 2.3.3 and 2.3.4, this means that since a > 1, the weight of a subset of X
grows faster in 4 than its total weight by a factor of O(2?), leading to a contradiction for a finite value
of ¢, and thus bounding the number of steps. See appendix section A.1 for the detailed bounds of the
number of steps under the assumption that condition 2.3.1 is satisfied with a positive probability ¢ or

16 Chapter 2. Background and Convergence

higher in all steps.

To prove general tightness, let Ry, ..., R, be a set of ranges that each cover exactly one element
of an optimal hitting set H, and choose uniform starting weights w(R) = wgﬁn = c. Consecutively
choosing these ranges for weight-doubling, not doubling the weight of one twice before the weight
of all others has been doubled, will make the bound in equation 2.3.4 tight for step numbers that
are an integral mutiple of |H| = n*: After tn* steps, with ¢ € N, every point h in H will have been
selected for weight-doubling exactly ¢ times, and have the weight 2'w®(h) = 2/ w0 . This scenario
generally occurs with a positive probability. Unless we can reliably bound the relative weight added
in each step lower than €, or can exclude the aforementioned scenario of iterative weight-doubling a
priori, the bound of €,,x as defined in equation 2.3.2 is thus the best we can establish for the general

case. O

It should be noted that in our experience the bounds on the cardinality of randomly sampled -nets
(see theorem 2.2.1), as originally used by Bronnimann and Goodrich [BG95], will be far from tight
in practice. However convergence is mathematically guaranteed by fulfilling the condition 2.3.1; For
the B/G scheme, sampling a full e-net is thus sufficient, but not necessary to guarantee convergence:
Since the condition 2.3.1 is explicitly checked in every step, the theoretical bounds on sample sizes
can be ignored without risking guaranteed convergence as long as the condition is still empirically
satisfied in a sufficient percentage of steps.

If we can establish a bound on the probability of condition 2.3.1 being satisfied, e.g. using theorem
2.2.1, we can also bound the expected number of overall steps of the algorithm. We formulate this in
theorem A.1.1 of the appendix.

Chapter 3

Parallel and Hierarchical RSC

3.1 Independent Weight Updates for a Parallelization with Tight Bounds

For any reweighting scheme in the form of algorithm 2, especially for B/G-type reweighting schemes
which construct an e-net in each step, an obvious way to save calculating time is to parallelize the
weight updates, i.e. update the weight of multiple ranges in each step.

However, when looking at the proof of convergence formulated in proposition 2.3.1, specifically
the context of equation 2.3.3, we can see that simply allowing the (successive) weight-doubling for all
ranges that are e-light in the current iteration will change the upper estimate for the added weight in
one step from

wTHX) = (1+¢e)w'(X)
to
w X)) = (1 + 2%e) W' (X),
assuming n; is the number of ranges selected for weight-doubling: potentially the ranges successively
doubled in weight can be almost identical; this sharply worsens the bound for the total weight of
the range space, and thus makes a much smaller value of ¢, and thus a much bigger sample size, a
requirement.

Our approach towards circumventing this problem is to allow the successive doubling of the

weights for any collection of ranges that do not intersect in X, i.e.

{RjﬂRk} :(DVRj,Rk (3.1.1)

If all ranges R; are e-light, they will satisfy the condition) |, w(R;) < eMw(X). On the other
hand, we can tightly bound total weight growth by using condition 3.1.1, and prove convergence of
the parallelized algorithm for the same value of €:

Proposition 3.1.1. If a hitting set of size n* exists, and
£ < Emax(n®) = 277 — 1, (3.1.2)

then for the parallelized algorithm 3 a range satisfying condition 2.3.1 can only be found for a finite
number reweighting steps. The number of reweighted ranges is limited by the same bound as the
number of steps of the non-parallelized algorithm 2.

17

18 Chapter 3. Parallel and Hierarchical RSC

Algorithm 3: Independently Parallelized Reweighting
Input: (X, R), e, w.
begin
while Convergence is not achieved do
pick a set of ranges R;, i =1,...,M € Rsuchthat {R; "R} NX =0V R;, Ry
if Y, w(R;) < eMw(X) then
| Vi:w(z) +— 2w(z), Vz € R;

return w

Proof. Let ¢ denote the total number of ranges R selected for weight-doubling in all steps up to a
certain point in the algorithm. Looking back at the proof of proposition 2.3.1, the original upper
estimate

Ww(X) <W(X) (1 +e)

will then still hold true: Let [be the numbers of steps taken, n; is the number of ranges doubled in
weight in step /. Condition 3.1.1 ensures that if all ranges I?; are e-light, no point x € U; R; has its
weight doubled more than once in each step, and the total weight is not increased by a factor of more
than (1 + n;e). Thus after [steps, and ¢ =) n; updates in total,

l

W'(X) <®(X) [T @+ me) <) (1+ 5);7”
1

=W(X)(1+e). (3.1.3)

Similarly looking back at equation 2.3.4, after ¢ weight-doubling steps, the total weight of a mini-
mal hitting set H will still at least be

n*

ti(j), ,0
ZQ ()wmin
J=1

since the weight of at least one element is still doubled for every weight-doubling step.

Since both upper and lower bound remain identical, with the exception of 7 not being the number
of steps, but the number of weight updates, convergence will still be guaranteed for the same value of
e, with the same limit! on 1. O

Updating several weights instead of one per step (i.e. per constructed e-net) can obviously provide
a significant speed-up. See figure 3.1 for a graphical example and subsection 3.1.2 for a theoretical
bound on running time.

'See appendix section A.1 for the detailed bounds on the number of steps of the sequential reweighting scheme 2 under
the assumption that condition 2.3.1 is satisfied with a positive probability ¢ or higher in all weight updates.

3.1. Independent Weight Updates for a Parallelization with Tight Bounds 19

\ A /
I AT YK
100 - \ ~_§/ \\
s A \\ ,\\ ./
e /\\ I\ \\

— — Vs —
250‘ V2R \ ~

N~ -

Singular updates, step 1 Multiple updates, step 1

Singular updates, step 5 Multiple updates, step 5

Singular updates, step 20 Multiple upd., step 20

Figure 3.1: Probabilites of choosing a rectangle for the set cover dependent on its middle point. After
20 steps, the rectangular structures begin visibly emerging in the case of multiple weight updates per
step, but not for singular ones.

20 Chapter 3. Parallel and Hierarchical RSC

3.1.1 Comparing independently parallelized RSC to Agarwal/Pan

The reweighting scheme described by Agarwal et al. [AP14] as a simpler, but more efficient version
of the B/G RSC scheme (algorithm 1) follows a similar pattern, with two major differences:

e it does not use e-nets to find e-light ranges in each step. One e-net is constructed when the
reweighting terminates, i.e. a net finder is called once instead of multiple times.

e Several ranges are updated in one step, and multiple times, i.e. a parallelization without the
constraint of non-intersection.

The obvious advantage of the first alteration by A/P is the decrease in running time: an e-net
needs to be constructed only once for the algorithm, instead of once for each step. The mathematical
downside to this can be summarized as: A range that is e-heavy before doubling the weight of one or
several other ranges generally is not afterwards. Specifically, after doubling the weight of n; ranges
that are all e-light, the total weight of the space X is bounded by

WTHX) < (14 e)"w'(X), (3.1.4)

and a range that was e-heavy before reweighting is only guaranteed to have a relative weight of e =
)

(g OF more afterwards. A/P combats this problem by limiting the number of reweightings to
n; < | 1], establishing a bound of £ on ¢. 2

The proof of convergence formulated in proposition 2.3.1 remains true whether e-nets are used in
each step or not, meaning that reweighting can be performed with any € < eyax(n*) = 27% — 1 for
both schemes.

The contribution of choosing parallel weight updates independently, i.e. of non-intersecting ranges,
is limiting the additional weight to a linear instead of exponential factor, namely (1 + n;e). This in
turn allows for a proof of convergence without changing the required value of ¢, since the weight of an
optimal subset is equally lower-bounded linearly. When parallelizing the B/G scheme, this means that
the same value of € < ep,,x can still be used when constructing e-nets as possible solutions. Following
the A/P scheme, the bounds for €9 are still worsened, but linearly — when doubling the weight of no
more than L%J ranges, as in the original paper, by a factor of % instead of % for dependent updates.

In total, both the decision whether to use e-nets in every step or once after reweighting, and
whether to parallelize independently or not, are a trade of running time versus the cardinality of the
resulting approximation. While the latter options will almost universally lead to faster times per step,
they both decrease the required value of €, and thus increase the required cardinality of the e-net, by
a significant factor. In applications a good compromise may be found by first reweighting using the
generally faster A/P scheme, and using the resulting weight function as input for an independently
parallelized B/G scheme for optimal quality.

*In the original paper [AP14], the maximal number of reweights is 2k for a value of ¢ = i For a general ¢, the value
of [1] preserves the same bounds on &5.

3.1. Independent Weight Updates for a Parallelization with Tight Bounds 21

Example

Set of points X, minimal set cover cardinality
n* =100

Independlently parallelized B/G scheme A/P scheme (dependent parallelization)
g1 = 27"+ — 1, cover cardinality 175 €2 = <L, cover cardinality 501

Figure 3.2: Graphical example of the results of our proposed parallelization of B/G vs. the A/P
scheme, applied to a set covering problem. Darker areas indicate a cover by multiple circles. The
lower value of €2 < €7 required for convergence of the A/P scheme leads to siginificantly larger
cover cardinalities in theory and practice.

See figure 3.2 for a graphical example of the results of our proposed parallelization applied to the B/G
scheme vs. the parallelized scheme proposed by Agarwal/Pan, applied to a set cover problem with
circles. Here, X C R? is the set of points depicted, R is the intersection of X with all circles of a
fixed radius, centered on the pixel grid. Since we wish to solve a set cover problem, we apply the
hitting set algorithm 3 to the dual range space S* of S = (X, R). Non-overlapping dual ranges are
found via the distance of their center points.

e-nets were constructed via random sampling for both algorithms. The sample sizes n; were
chosen empirically: In the case of the B/G scheme that samples e-nets repeatedly, a value n1; = 330
was chosen that allows finding e-light ranges and reweighting with high probability, empirically in
4394 out of 4546 steps. For the A/P scheme, an e2-net needs to be sampled only once, allowing for

22 Chapter 3. Parallel and Hierarchical RSC

more repetitions, and a relatively lower cardinality for the constructed e2-net. The Sampling size no
was chosen as a small value that empirically allows finding an £2-net via random sampling consistently
in less than 10000 attempts. In the depicted examples, a set of no = 660 ranges had to be sampled
58 times before finding the first ex-net. Double sampling leads cover sizes smaller than n; in the
approximative solutions produced by both algorithms.

In this example, the sample sizes n; are somewhat arbitrarily chosen input parameters of the
algorithms, and the specific number of attempts required to sample an e-net randomly can fluctuate
highly. However, the weight function that is produced upon termination of the reweighting algorithms
tends to be much more consistent, and is a direct result of the algorithms’ structure and the theoretical
bounds on ¢;. See figure 3.3 for a depiction of the weights from which the set covers in figure 3.2 were
sampled. Since we solve a set cover problem as a hitting set problem on the dual range space, weights
are assigned to the cyclic ranges that make up its elements. They are normalized to a maximum of 1,
and depicted as a function of their centers. As we would expect from the higher value of £; compared
to 9, the independently parallelized version of B/G shows a significantly sharper convergence to
optimal ranges than the dependently parallelized A/P scheme.

3.1. Independent Weight Updates for a Parallelization with Tight Bounds 23

0 200 400 600 800 1000 1200

200
100
0
100
200

600
700 gon

800
1000 400
100 4900

Figure 3.3: Weights produced by the independently parallelized B/G (left) and A/P (right) algorithms
upon termination. Scaled logarithmically (top)/with an 8" root (bottom). Convergence of weights to
optimal values is far sharper for the independently parallelized B/G scheme.

24 Chapter 3. Parallel and Hierarchical RSC

3.1.2 Quality and Running Time Analysis

The quality, i.e. cardinality, of an e-net based solution to a minimal hitting set problem depends on
the value of € used in the construction of the net: In general it is O(é log(%)), except in some special
geometric cases that allows e-nets of size O(%), see [MV17]. Any improvement to the value of € will

thus directly improve the quality of a hitting set by an equal or larger factor.

The bound of e, established in propositions 2.3.1 and 3.1.1 asymptotically approaches h;@ -
see section A.2 of the appendix. It applies to both any sequential reweighting, and an independently
parallelized B/G scheme. To our knowledge, the currently best bound of ¢ for a parallelization was

established by Agarwal et al. [AP14] as 2n1*e. 3 The new bound &, thus constitutes an improvement

of roughly a factor of 2eln 2 ~ 3.77 or better in the quality of the solution of a parallelized approach.

Using proposition 2.3.1 and reflections from the previous section 3.1.1, we can also establish a new
Emax(n*)
€

bound of ¢9 =
roughly 21n 2 ~ 1.39.

for the original A/P scheme, improving its original bounds by a factor of

For an independently parallelized approach, the increase in running time compared to the original
A/P scheme is caused by the need to find a preferably large number of non-overlapping ranges. While
in practice different approaches may be useful depending on the problem structure (see the end of the
subsection), we first give a general approach in order to bound running times: Given a set of e-light
ranges found by either the B/G or A/P scheme, we construct a graph in which vertices represent the
ranges of this subset, while edges represent mutual overlap. Solving the problem of finding a maximal
independent subset of this graph — that is, a subset of vertices that are not connected by any edge
— is then equivalent to finding maximal set of e-light ranges that do not overlap. If L denotes the
number of vertices of the graph, several established algorithms solve the maximal independent set
problem, such as Luby’s [Lub86] and Blelloch’s [BFS12] algorithm, with running times of O(log(L))
and O(log?(L)), respectively. At the same time, if £Z is the number of edges of the graph, Turan’s
theorem [NSO8] establishes a lower bound of % for the cardinality of this set, i.e. the number of
non-intersecting ranges the algorithms will find.

Parallelization can thus sharply decrease running times, especially for the B/G scheme. In the
vocabulary of the original paper [BG95], assume we know a “finder” that constructs an e-net in time
f(e), and a “verifier” that supplies e-light ranges that are not hit by the net in time ¢ (¢). By theorem
A.1.1, the maximal number of weight-doubling steps N is bound, with a finite expected value E[N].
Let €1 < emax. Then the expected running time for finder and verifier of the non-parallelized B/G
scheme is

[f(e1,-) + g1(e1,)] E[N]. (3.1.5)

For our proposed independently parallelized version, assume that on average we can use the verifier
to find L ranges, of which no more than % pairs overlap. We can find at least % non-overlapping
ranges in time O(log(L)) using Luby’s algorithm. The verifier thus needs to be executed 2d more
times, but we can simultaneously perform at least % update steps after using the net-finder once, in

3Speciﬁcally, [AP14] defines € = 2—];, where k/2 < n* < k. This value is largest (optimal) for k = n*.

3.1. Independent Weight Updates for a Parallelization with Tight Bounds 25

total establishing a running time of

f(e1,-) + O(log(L))

2d
L

+ g1(e1,-) | E[V] (3.1.6)

for an independently parallelized B/G scheme. Note that f (e,) varies depending on the exact method
of e-net construction used, but will in general be much larger than the cost g1 (e, -) of afterwards
finding an e-light range.

For the (parallel) A/P scheme, the number of reweightings is bound by the same value, but a
e-net is only constructed once, for ¢ = 9. In addition, the verifier checks whether a range is e-
light sequentially instead of using an e-net, leading to different running times. We will denote this
verifier by ga2(g). Given a range space (X, R), Agarwal/Pan establish its running time per range as
O(log(|X|)), and multiply this by a factor of O(].X| 4+ R) to establish the running time of checking
all ranges in R. If we assume similarly that the number of ranges that need to be checked on average
before finding the first e-light range is O(|.X| + |R|), this establishes a total running time of

f(e2,) + ga(er,) EIN] = f(e2,-) + [O((|1X]| + |R]) log | X|)] E[V] G.1.7)

for finder and verifier. Note that while the value €2 used by the finder is different from the one used by
B/G, the one used by the verifier g during reweighting is not. We omit discussion of the time taken
for steps that are the same for all reweighting schemes described

In a lot of applications we know that X C R?, ranges are characterized by a central point, i.e. for
circle ranges or a dual range R*, and the maximal distance of any point in the range from this central
point is bounded. In such situations we can efficiently find a large number of non-intersecting e-light
(dual) ranges for independent parallelization ranges with minimal cost in run time:

Given a set of ranges, we can lay a grid of a length that is larger or equal to the maximum (gen-
eralized) diameter of a range over their central points — see figure 3.4. Now, choose one type of
grid-sections (e.g. the light blue ones) in such a way that there is at least one point in these grid-
sections and pick one central point in each of these (light blue) grid-sections. Since this ensures that
the distance of all central points selected is greater than the diameter of the ranges, we know that no
two ranges can intersect. While this method does not necessarily find a maximal independent subset
of ranges, its running times will generally be significantly faster than any method which calculates the
maximal independent subset precisely.

26 Chapter 3. Parallel and Hierarchical RSC

100 100

. - -
90 90
80 . - O . 80 . ®
70 L . 70

.
60 L - . 60 »
50 . 50 .
40 L] - * 40
-
30 .e . 30 . -
20 . » e 20 > . -
-
10 s . B . - 10
.
o 20 40 60 80 100 o 20 40 60 80 100
Points partitioned Points in each grid separated by minimal dis-

tance

Figure 3.4: Separating ranges using a grid

3.2 Hierarchical Weight Updates

Though randomized approaches are generally the most apt to handle large data, the RSC algorithm
still needs to assign and update probabilities for all possible cover candidates R;. If higher accuracy
is demanded in the result, the space of possible ranges can be extensively large.

To improve tractability of larger problems, one intuitive approach is to first solve the cover problem
for a “rougher”, smaller range space S_ = (X, R_). For the purpose of theory, we will assume that
the ranges R;_ € R_ are a union of a number of the original ranges R; € R.

The minimum cardinality n of the input of the set cover algorithm 1 that guarantees convergences
is

n= g[log(l/s) + 2loglog(1/e) + 3] (3.2.1)

£ < 2w 1 (3.2.2)

where d is the VC-dimension of the range space and n* is the smallest possible size of a cover, as
stated in equations 2.2.10 and 2.3.2.

If a cover of size n* exists for the original range space, we will obviously also be able to find a
cover of the same size for a modified range space that consists of unions of the original ranges; indeed,
this will be true for any space of supersets, not just unions. The VC-dimension d_ of the modified
range S_ space on the other hand is not easily bounded based on the VC-dimension d of the origi-
nal range space S, and can in fact be largely depended on the specific way original ranges are united
and the shape of this union. In applications, the easiest way to circumvent this problem is to choose
unions of ranges in such a way that simple geometric forms with a known VC-dimension are pro-
duced; in particular, we can first disregard orientation by uniting all cylinders with a particular point
of origin to a ball (figure 3.6), or unite all cylinders of a certain orientation with points of origin in a

3.2. Hierarchical Weight Updates

27

cylinder of similar orientation to get one larger cylinder (figure 3.5). In terms of computational feasi-
bility, uniting several candidates allows us to reduce parameter space size via a rougher discretization.

If we do find an approximate cover using these larger candidates,
we can run a second RSC algorithm in which we assign non-zero
starting probabilities only to parameters which were combined into
the candidates of the initial cover. In total, this replaces one RSC
run on a large parameter space with two consecutive solutions on
smaller subsets. Comparable approaches exist for the Hough trans-
form which equally reweighs a discrete parameter space — [YTL92].
In practice, the hierarchical approach will usually lead to faster run-
ning times, but a drop in overall quality, as a good solution to the
overall problem is not guaranteed to exist as a subset of the rougher
solution. See section 7.2.3 for some numerical examples.

Figure 3.5: Union over all can-
didates in the form of a rectan-
gle (black) with points of ori-
gin in a rectangle (dark red) is
a larger rectangle (light red).

. P

N

Initial cover of white rectangles Cover using rectangles with points of
disregarding orientation (circles) origin in the initial cover.

Figure 3.6: RSC in two phases

Chapter 4

Related Methods

We use this section to compare and contrast the RSC method of Bronnimann/Goodrich [BG95] al-
gorithm to similar approaches, both for solving a minimal set cover problem and in a more general
context. In particular, we show that a reweighting algorithm introduced by Clarkson [Cla95] to find
the minimal base of a linear program can be shown to be a special case of the B/G RSC algorithm in
subsection 4.4.

4.1 Greedy Set Covering

Perhaps the most intuitive method of determining a small cover of a given finite set of points X from
a collection of ranges R (™) is to iteratively choose the ranges that cover the most points that previous
ranges did not cover, or, when using a custom cost function, that minimizes the ratio of its cost to the
number of these points:

Algorithm 4: Greedy Set Covering Algorithm
Input: X = {z1,...,2,}, R™ ={Ry,..., Ry}, C.
Output: set cover R(%) of X.
begin
set R() = () // listing ranges already used for the cover
and U = (), // union over ranges already used for the cover
while X \ U # () do
i :argminl&&% // best ratio of cost to new points covered
U=UUR;
R =RE U{Rx}

return R(©)

28

4.2. Solving RSC via Linear Programming 29

Using this method, a cover cost of of H,,, n* can be guaranteed, where
Hyo=) =, 4.1.1)

m is the number of sets we choose from, and n* is the optimal cover cost — see e.g. in [Vaz0l,
chapter 2]. While a greedy approach supplies results of relatively high quality (or low cardinality),
especially when compared to the theoretical limits for the results of the RSC algorithm as in theorem
2.2.1, it is as the name implies often not computationally efficient. We have found it to empirically be
orders of magnitude slower than the RSC approach for even moderate problem sizes. Since sampling
sizes needed for convergence of the RSC algorithm are however often much larger than those needed
for a full cover, the greedy set covering algorithm lends itself as a relatively straight-forward method
of post-processing, producing a smaller, fully covering subset from the output of an RSC algorithm or
similar.

4.2 Solving RSC via Linear Programming

4.2.1 e-nets for LP Set Cover

At the beginning of chapter 6.3 of “Geometric Approximation Algorithms” [HP11], a different ap-
proach to solving the Geometric Set Cover problem is introduced, here denoted with the slight modi-
fication of adding a cost function C":

If we assume we wish to cover the points P = {p1, ..., p,} using ranges {R1, ..., Ry, }, we can
formulate the problem by defining variables y; via

e y; = 1 if the range R; is part of the cover and
e 1y, = O otherwise,t=1,...,m

which lets us formulate the covering problem as

m
min Y y; 4.2.1)
=1
subject to Z yi > 1 Vp; € P (4.2.2)
p;ER;
y; € {0,1} Vi=1,...,m. (4.2.3)

If no other information is available, this function will default to 1.
To solve this problem, we can use the commonly employed method of instead solving a linear
programming relaxation of the problem:

30 Chapter 4. Related Methods

m
min [:= Z z; (4.2.4)
=1
subjectto Y w; > 1 Vp; € P (4.2.5)
p;ER;
z; € [0,1] Vi=1,...,m (4.2.6)

An equivalent formulation of the same problem is

min f
m
S.t. Z l‘l/f =1
=1
S.t. Z x,/fZI/f ijEP
up;ER;
2; >0 Vi=1,...,m

or, if we definee = 1/f and z; = z;/ f:

max ¢ 4.2.7)

m
st Y z= (4.2.8)

i=1
st Y zm>e Vp; € P (4.2.9)

1:p; ER;

2z >0 Vi=1,...,m. (4.2.10)
The restriction » ", z; = 1 lets us interpret the values of z; as probabilites assigned to the

ranges R;. Thus, if we are able to solve this problem, we can construct an e-net of size n =
g [log(1/e) + 2loglog(1/e) + 3] with respect to these probabilites using theorem 2.2.1. Via con-
dition 4.2.9 the e-net property necessitates that one range of our sample will be in each dual range
Rp, = {R;i: pj € R;} for j = 1,...,n, meaning that the set of points will be covered.

On the other hand, if we apply the original set covering Randomized Set Covering algorithm 1
with parameters g < 21/7" _ 1 and ng as given by theorem 2.2.1 , we have indirectly also found a
(non-optimal) solution for value € = n% for the LP 4.2.9 ff. if we choose z; = nio for our found set of
ranges. Since ng > % [log(1/e0) + 21loglog(1/ep) + 3], this solution will likely be far from optimal,
but computationally inexpensive, particularly if we can use parallelization. It can be applied as long
as we can bound the VC-dimension of the range space defined by the R,;.

If the original problem is formulated with a cost, i.e. has objective min ;" C(i) y;, we can
still use the first method of traditional LP solving followed by e-net construction by defining z; =
C'(i) x;/ f. However, RSC-based approaches are generally unable to take cost functions into account.

4.3. Variants of the Set Cover Problem 31

4.2.2 Randomized Rounding

If we want to use a different, arbitrary method to solve the relaxed set cover LP 4.2.4, we can produce
a set cover from a non-integer solution via randomized rounding: The condition z; € [0, 1] lets us
interpret x; as probabilities, specifically the probability of using a range R; in the cover. Following
this intuition, it is shown in [Vaz01, chapter 14.2] that if we independently draw ¢ = O(logn) times,
and pick a range R; for our cover if is has been picked with probability x; in any of these ¢ draws,
effectively picking R; with a probability of

1—(1—a), 4.2.11)

a cover of expected size t f,p; is achieved with high probability, where f,,; the optimal solution of
problem 4.2.4.

4.3 Variants of the Set Cover Problem

4.3.1 Set Multi-Cover

One natural extension of the set cover problem is the problem of covering all, or some points multiple
times. In LP formulation:

min f ::in (4.3.1)
i=1

subject to Z x; > d(pj) Vp; € P 4.3.2)
:p;ER;
z; € [0, 1] Vi=1,....m, (4.3.3)

where d(p;) indicates the number of times the point p; should be covered.

Chekuri, Clarkson and Har-Peled[CCHP09] solve this by defining a new set system based on
creating multiple copies of each point; the multi-cover problem can then be reduced to solving the
original set cover problem for the newly-defined range space. This is achieved by Chekuri et al. by
bounding the VC-dimension of the new range space and then utilizing the same VC-based framework
as Clarkson/Bronnimann/Goodrich.

4.3.2 Multi-class Set Cover

A similar, but slightly more complicated extension of the set cover problem is the Multi-class set cover
problem, in which a class [to both ranges and points p; € P:

32 Chapter 4. Related Methods

minimize Z &+ Z N + A Z a; St 4.3.4)

J7£z>772 i
G=1—) agl Vp; (4.3.5)
J piER]
m> Y, ah p (4.3.6)
J: Di€R;,yiF#l
al €{0,1} (4.3.7)

Here, aé = 1 indicates that the range R; is assigned to covering elements of class [; y; indicates
which class z; is assigned to.

Intuitively, &; penalizes cases where a point z; is not covered, whereas 7; grows larger when points
of different classes are included in the same range.

Bien et al. [BT11] apply two approaches similar to the randomized rounding and greedy methods
of sections 4.2.2 and 4.1. For randomized rounding, one can use constraint 4.3.7 to reduce the LP
problem to solving

minimize Z &+ Z Ci(y a s.t. (4.3.8)
]7£’L€,Pl i
G=1— > a¥ Va (4.3.9)
J: :ZTiERj
ah € {0,1}, (4.3.10)
where
Pr={picP:y =1} (4.3.11)
Ci(j) = A+ [R; N (P\ P, (4.3.12)

for each class /.

As before, &; penalizes cases where a point z; is not fully covered, whereas C;(7) is a fixed cost
(to minimize total number of ranges used) plus a penalty for cases of a range R; covering points not
in its class /.

This problem 4.3.8 can be relaxed and solved for each class [seperately; the resulting aé- € [0,1]
can be seen as probabilites, and a cover can be estimated by independently drawing from Ber(aé)
distributed random variables O(log ;) times, and using a range R; to cover class [if any of these
draws came up positive.

Alternatively, Bien et al. [BT11] propose a modified greedy(a)llgorithrn works very similarly to
C(i

algorithm 4; however, instead of repeatedly minimizing over Ao We introduce a new objective

function

4.4. Solving a Linear Program via RSC 33

AObj(4,1) = AL(4,1) — An(j,1) — X with (4.3.13)

AEGD =P (R\ | Ryl (4.3.14)
j/ERl(C)

An(4,1) := |R; N (P\ P, (4.3.15)

where Rl(c) is the set of all ranges I?; assigned to cover class [up to this step.

In words, AObj(j,() is the improvement of the cover gained by (newly) assigning range R; to
cover (points of) class {

With this definition we can solve multi-class set cover using a greedy approach:

Algorithm 5: Modified Greedy Algorithm: Set Covering
Imput: P ={p1,...,pn}, R={R1,...,Rm}.
Output: set cover R(%) of X.
begin

set Rl(c) =0 v

while AObj(j,1) > 0 do

L (4%,1%) = argmax AObj(j, 1)
R = Ri ULRG"))

returan(c) l=1,...,L

4.4 Solving a Linear Program via RSC

In this subsection, we show how the results of the previous sections can be applied to solve a gen-
eral linear program. This is achieved by presenting an algorithm introduced by Clarkson [Cla95] as a
special case of the B/G scheme, applied to minimally cover a subset of R?, consisting of possible solu-
tions, with half-spaces representing the linear constraints. We also determine the dual VC-dimension
(see section 2.2) of the corresponding range space to give reliable bounds on sampling sizes for e-nets.

In the notation of [MR95], the weighted version [Cla95] of Clarkson’s original randomized algo-

34 Chapter 4. Related Methods

rithm for LP solving [Cla88] reads the following way:

Algorithm 6: IterSampLP
Input: A set of constraints H, where |H| = n, a vector ¢
Output: A maximizer of ¢z, z € R?, under these constraints.
begin

setwp, =1Vhe H

if n < 9n*2 then
| return Simplex(H)

else
V<« H
while [V| > 0 do
Choose R C H with |R| = 9d? according to wy,
x < Simplex(R)
V < {h € H: x violates h}
if > ey wn < gn*%l > her Wh
then
| Vh eV setwy, < 2wy

L return x

Here, Simplex(R) is the optimum under the conditions R using the simplex method. The idea
of IterSampLP is to find a basis of H, i.e. a minimal set of conditions that define all feasible solutions,
through reweighting. Replacing the expression “z € R? violates conditon h : (Ax); < b;” with the
equivalent expression “x € .Sp,”, where

Sp = {(Az); > b}, (4.4.1)

the problem is equivalent to minimally covering all non-feasible solutions using the half-spaces Sy, —
see figure 4.1.
Similarly, defining

e X = {Simplex(R): R C H} where, if the con-
ditions in R form an unbounded linear problem,
Simplex(R) is an arbitrary point of high absolute
value that satisfies all conditions in R

OR:SH::{XﬂShZhGH}

then {s € Sy: x € s}, the set of all ranges that contain
the point x, is the dual range of x in the (finite) range space
' (X, R).

Figure 4.1: Finding the basis of an LP
is equivalent to minimally covering the
compliment of the space of admissable
solutions with the half-spaces of solu-
tions that violate a condition A

4.4. Solving a Linear Program via RSC 35

Indeed, the algorithm is very similar to the B/G scheme applied to a set cover problem, and using
random sampling as a net-finder [BG95, HP11] with the following exceptions:

e Some parameter values, e.g. the size of the random sample, are different
e The point z = Simplex(R) is a specific, not randomly chosen point not covered by Sg
e The condition for termination of the algorithm is not # € (J,,. , Sh. but rather [V'| > 0

However, the latter two differences are not relevant for the proof of convergence as given in propo-
sition 2.3.1.
Let n* be the cardinality of B(H), the basis of H. Set

£ < 2w 1 (4.4.2)

and n = n(e) a sample size that guarantees a random sample is an e-net with high probability for
spaces of limited VC-dimension — see e.g. theorem 2.2.1.

With these two parameters, we can formulate a version of the algorithm with tighter bounds, where
the proof of termination is still given by proposition 2.3.1, and the parallelization method of section
3.1 can be applied:

Algorithm 7: IterSampLP, RSC Version

Input: A set of conditions H, where |Sg| =n
Output: The optimum of a function cz, 2 € RY, under these constraints.
begin
setwp, = 1VR, € H
while |V| > 0 do
Choose R C H with |R| = n(e) according to wy,
x < Simplex(R)
V < {h € H: z violates S}, }
if > ey wh <€D pen Wh)
then
L Vh € V set wy, < 2wy,

L return x

The only problem remaining is determining the dual VC dimension of the range space (X, Sg) to
bound the needed size of a random sample n = n(e).

Lemma 4.4.1 (Dual VC-dimension of halfspaces). Let X be a subset of R%.
Let R = {{z € X:ajz > b;}: j=1,...,N} for some a; € R4 b; € R. Then the dual VC-
dimension of (X, R) is bounded by d.

Proof. The dual VC dimension of a space is the maximal number of ranges that can be shattered
using dual ranges (see definition 2.2.4). A set of ranges {{z € X : a;x > b;}]"_,} can be shattered by
intersecting with dual ranges iff there exists at least one point in every X N H; N ... N H,, where

H,; € {{ajx > bj}, {CLj.T > bj}c = {aja: < bj}} (4.4.3)

36

Chapter 4. Related Methods

forsome j € 1,...,n,1; # iy = ji # Jji, i.€. in every non-trivial intersection of ranges from this

set and their complements in X.

This can only be true if the vectors ay, . . ., a, are independent:

Assume without loss of generality that a,, = Z?;ll a; u;. Then

a;r > b; Vi#n:u; >0
a;r < b Vi#n:u; <0
implies that ujajz > ujb; Vj # n, and thus a,x > b} = Z?;ll u; b;.
Similarly,
ajr < bj, Vi#n:u; >
ajzc>bj, Vj;én:uj<0
implies that a,x < b};.
Consequently, if b}, > b, then
a;x > bj, Vi#n:uj >0
a;x < bj, Vi#n:u; <0
ant < by,
has no solution, since the first two lines imply a,z > b} > b,,.
Similarly, if b} < b,,, then
a;x < bj, Vi#n:u; >0
a;r > bj, Vi#n:u; <0
anx > by,

has no solution.

The maximal number of linearly independent vectors in R? is obviously d.

(4.4.4)
(4.4.5)

(4.4.6)
4.4.7)

(4.4.8)
(4.4.9)
(4.4.10)

4.4.11)
(4.4.12)
(4.4.13)

O]

In total, this establishes much better bounds than used in the original algorithm, while simulta-
neously allowing us to apply the methods of parallelization introduced in the previous section for

RSC.

4.5. RSC as a Special Case of Multiplicative Weights 37

4.5 RSC as a Special Case of Multiplicative Weights

In [AHK12] Arora et al. give an excellent overview of multiple well-known algorithms, such as the
Ada boost algorithm [FS95], the Plotkin-Shmoys-Tardos algorithm [PST95] and the Winnow algo-
rithm [Lit88], and subsumes them as special cases or slight modifications of the Multiplicative Weights
algorithm 8:

Algorithm 8: Multiplicative Weights algorithm

Input: n < L
maximal step number 7" € N,
a set of decisions 7,7 = 1, ...n, with a dynamic cost mﬁ Vi, t <T
T

Output: Probability distribution (p}) := & over the decisions, where ®7 := Y~ w! .
begin
setwi1 =1Vi,t=1
while t < T do

Choose decision i according to the distribution (p}) := (; w;?)
T

7

Observe the cost of the decision m
Set w!™ := wl(1 — nm}) Vi

i
t=t+1
| return (pl)

i

This algorithm supplies the following guarantee of convergence:

Theorem 4.5.1 ((AHK12]). Assume that all costs m} € [—1,1] and n < % Then after T rounds the
cost of any decision 1 is limited by the following equation:

logn .
> mbph <> ml 40 |mi] + Vi (4.5.1)
t.j t t K
If we formulate the algorithm with gains instead of losses, i.e. with costs u! = —m!, we obtain

the result

Theorem 4.5.2 ((AHK12]). Assume that all gains u} € [—1,1] and n < L' and the algorithm is run
with gains, i.e. positive update. Then after 'T' rounds:

1
Y ulpt >N ut Y ful] - % Vi (4.5.2)
t,j t t

The set covering algorithm 1, specifically the steps in which a weight update is actually performed,
can be understood as a special case of the Multiplicative Weights algorithm with gains instead of
losses: every “decision” 7 is a range R; € R, and we update with n = % anduf! =1 VR € Ry
where ! is a point not covered in step ¢, and u! = —1 otherwise to double the weight of ranges in
R+ relative to all others.

38 Chapter 4. Related Methods

Assuming that for all points x the size of their dual range |R,| > D € N, at least D points will
be updated with gain u; = 1 in each step, and theorem 4.5.2 supplies us with the bound

Zujp] >3 (2 L per,) 1) —1> 1-31log(|R|) Vi (4.5.3)
t t

1
IR| Zu]p] [2D ~ Rl -3 |R|} — 3|R|log R/, (4.5.4)

where the second inequality is obtained by summing over all ranges R;.
. . t
Since we assume that in each step) | R;eR, P; < €, we know that

Zujpj Do+) pi<e-(1-e)=2-1Wt (45.5)
RieRx RlﬁRvL
and thus
4
T|R|(2c —1) > T[2D - 2 [R[] - 3[R|log [R| (4.5.6)
1
T [21) —2:[R| -3 \R@ < 3|R|log R| (4.5.7)

However, since generally % |R| + 2¢ |R| will be much bigger than 2D, the prefactor of 7" will be
negative, and the bound is not very useful.

Alternatively, we can sum equation 4.5.4 not over all ranges, but over a subset { R;+ } of size n*
that we assume covers all points. Until all points are covered, at least one of these ranges will be
updated in each step, i.e.

T T T
22“5222 uj > Z+1+ (n*—=1)(-1)]=T[2-n"], (4.5.8)

i t=1 t=1 ¢*

resulting in the inequalities

1
n* g ubp > —n’] - Tgn* — 3n*log |R| (4.5.9)
* 4 * *
Tn*(2e—-1)>T[2— 3" | —3n"log |R| (4.5.10)
1
3n*log|R| >T[2— (§ + 2e)n”] (4.5.11)

However, since 2 — (% + 2¢)n* will generally not be positive, this will again not result in a useful
upper bound for the number of steps 7.

The given proof of the central theorem 4.5.1 follows the same basic idea as the proof of proposition
2.3.1 and theorem A.1.1, i.e. giving an upper bound to the factor by which the total weight grows in

4.6. Comparison to Hough transformation 39

each step, and thus the total weight growth, and comparing this to the growth of an interesting subset
of ranges.

However, in the proof of theorem 4.5.1, several estimates are made that will not always be tight;
on the other hand, the main bounding estimate for Theorem A.1.1, given in equation 2.3.3, will be
close tight in a lot of cases: Every time the weight of a range is doubled the probability that it will
not be selected for the cover and have its weight doubled in the next step decreases, increasing the
probability of a periodic update of each optimal range, for which the estimate is tight.

Thus, while theorem 4.5.1 is formulated for and applicable in a much more general context, it is
not surprising that the results do not improve the bounds stated in Theorem A.1.1.

4.6 Comparison to Hough transformation

The main advantage of the RSC algorithm is that, while it is designed for the detection of parame-
terizable objects, no additional assumptions are made. In particular, not relying on connectivity as-
sumptions and providing the opportunity to incorporate greyscale values into parameter voting makes
it robust in the detection of noisy objects; this makes it comparable to the relatively slow but sta-
ble method of Hough transform [IK88]. Though originally conceived as a parameter voting method
for lines, it can be generalized to arbitrary parameterized shapes in a straightforward way — see e.g.
[Bal87]. For the RSC algorithm, the dual ranges (see definition 2.2.2) that define which parameters
an image point votes for (i.e. reweighs) are exactly the admissable parameters used in generalized
Hough voting. On the other hand, the choice of image points that contribute to voting for the RSC
algorithm is randomized and dependent on the current weights, while it is simply sequential for the
original Hough transform.

Several randomized versions of the Hough transform have been established ([KHX095, KKAO0O,
WRO02]).Since the RSC algorithm fundamentally is parameter voting on a randomized subset, the
Probabilistic Hough Transform ([KEB91]) is the most directly comparable to RSC. Although both
procedures are essentially parameter voting on a randomized set of data points, and many heuristic
refinements of the basic Hough algorithm have been developed in the past, the theoretical foundation
of the Randomized Set Covering Algorithm offers several advantages:

o The fact that the desired cardinality of the cover is an input parameter offers an intuitive way of
regulating quality versus run time.

e The theoretical limits on e-net size, and thus achievable cover quality, are chosen for the case of
a uniform distribution, and are usually not exact in practice. However, they do supply a rough
idea of which quality of cover might be achieved in a certain geometric situation.

e Although theoretical limits for cover cardinality are not exact, condition (2.3.3), and thus en-
suring that condition (2.3.1) is satisfied in each update step, is close to a necessary condition
for ensuring that optimal ranges receive the most votes. Being able to ensure this via an easily-
checked condition is a big advantage compared to uncontrolled voting.

In practice, the probabilistic Hough transform performs far worse than the RSC scheme even for
simple problems; see the later section 7.2.4 for numerical results.

40

Chapter 4. Related Methods

Part 11

Set Covering with a Gibbs Prior

41

Chapter 5

Gibbs Point Process Model

5.1 Introduction and Overview

While the methods introduced in the previous section vary in their approach, they are all united in one
aspect: the segmentation produced relies either exclusively, or at least overwhelmingly, on image data.
Incorporation of prior knowledge of object behavior is either absent, or extremely simplified, like the
punishment of large overlap for the LP-based methods. In cases where image data is difficult or un-
reliable, but a priori knowledge can be obtained, e.g. because we need to segment several samples of
similar data, a natural refinement of a purely data-based method is to apply a Bayesian approach, i.e.
combine image data and a prior model to find the most likely segmentation. The goal of this section is
to introduce a model of object behavior that is simple enough to allow both repeated energy minimiza-
tion and the estimation of model parameters for 3D data with an acceptable amount of computational
expense, while being refined enough to approximate the pairwise behaviour of real physical objects —
see figure 5.1. We then show exactly how we can combine the iterative RSC approach with this model
in section 6.1, and demonstrate performance on self-generated, as well as real cell and fiber data sets
in sections 7.3, 9.1, and 9.2, respectively.

5.2 Basic Definitions: Point Processes

To establish a point process model of fiber, or more general object interaction, we first need a few
basic definitions for point processes. See e.g. [MWO04] for further elaboration on the existence and
uniqueness of the following definitions.

Definition 1 (Point Process). A spatial point process is a random countable subset of a space .S. We
restrict ourselves to real point processes, i.e. S C R¢, whose realizations x are locally finite, i.e.

|z N B| < oo for any bounded set B.

Definition 2 (Intensity Function, Intensity Measure). Given S C R<, an intensity function is a function
p: S — [0,00) that is locally integrable, i.e. [5 p(&§)d¢ < oo for any bounded B C S.

42

5.2. Basic Definitions: Point Processes 43

50 b C}} @) i 50 Oo O
100 | @) %] 100 F d @) OQ) @) o
[o]
150 |] 150 89 p o
200 | (@ &@% @ o | 200 F ©
: ©% 8 0 | : 0 O _ O oRdss
° O OO)
350 G‘@ % C%) 350 g)
400 | 0 ©)] @ i a0 b o
wf O) (&) 1 450 1 ©
500 : & : : i I . 500 : : : ‘ ‘
0 100 200 300 400 500 0 100 200 300 400 500
(a) Segmentation (b) Simulation 1
' ' M | ' oo "o Y
50 O% 1 50t o o
100 O Q)d]o D 1 100 F é@ 0O 8 O
150 | & o o) o 0O 1 150 | (@] O o %
200 o 0O Q O 1 200 (9% O O
250 | o] (% 1 250
(3@5 O
300 | &(3@0 O o © O 1 300 | o @8
350 [o o (@] 1 3s0 [o o o O o
0]
a0 | (@] 1 400 | (I:D [} @
450 O (ﬁ O%O] 450 O Cb (@O%@
500 O Fa O L QO 500 . L 0 Q
0 100 200 300 400 500 0 100 200 300 400 500
(c) Simulation 2 (d) Simulation 3

Figure 5.1: Segmentation of cell data; 3 samples of Gibbs point processes with the (estimatedly) same
clustering behaviour.

44 Chapter 5. Gibbs Point Process Model

The intensity measure i corresponding to p is given by

u(B) = [pleyie VB C 5. (5.2.1)
B
Definition 3 (Poisson Point Process). A point process X on S is called a Poisson Point Process with
intensity function p / intensity measure p if the following properties are satisfied:

e forany B C S with u(B) < oo, | X N B| ~ po(u(B)), the Poisson distribution with mean
1(B).

e foranyn € Nand B C S with 0 < p(B) < oo, conditional on | X N B| = n, |[X N B| ~
binom(B, n, f) with f(&) := p(&)/u(B).
We then write X ~ Poisson(S, p).

Definition 4 (Point Process Density). Given S C RY, let N, ¢ be the space of locally finite point
configurations:
Nip:={x CS: |xn B| < oo forall bounded B C S}. (5.2.2)

If X, and X5 are two point processes on S, then X is absolutely continuous with respect to X iff
P(XoeF)=0 = P(Xo€F)=0VFeNjy. (5.2.3)
Equivalently, by the Radon-Nikodym theorem there exists a function f: N;; — [0, c0) so that
P(X, € F) =E [Lix,er) f(X2)] VF € Ny. (5.2.4)
We call f a density for X7 with respect to Xos.

In the following, unless specified otherwise, densities of a point process on S are defined relative
to the Poisson Point Process on .S with intensity measure p = 1.

5.3 Pairwise Interaction/Gibbs Point Processes

A multiscale process is the natural extension of a binary/hard-core process, i.e. one that simply pro-
hibits object distances below a minimal radius. Instead of assigning binary probabilities based on one
minimal distance, we assign non-binary probabilities based on several object interaction radii — see
figure 5.2.

A multiscale point process is a special case of a pairwise interaction point process, i.e. a point
process that assigns probabilities based on pairs of points. It is defined by a density of the form

k
flx) ~ @ T 00, (5.3.1)
=1

where n(x) is the cardinality of the point vector z, 5 > 0 and

yi(@) := Y Ly, oy (g, 20)) (5.3.2)

k<l

5.4. Gibbs Model for Fiber Data 45

counts the number pairwise distances that fall into the discretized intervals [r;, r;+1). Although for-
mally, Gibbs point processes are a generalization of multiscale processes [Der17], we will somewhat
casually refer to this process as the Gibbs model.

Integrability is ensured [MWO04, chapter 6.2] if either

(i) 0<bf;<land0<H; <1,...,0<0,<1,0r
(ii) /1 =0and Oy > 0,...,6;, > 0.

In the case of the modelling of physical objects, we can reasonably define a minimal distance, i.e.
satisfy #; = 0 in our model. We thus choose the otherwise less restrictive condition (ii) and write our
density in the equivalent form

fz) ~ 8" exp(Ue(z)) (5.3.3)
k

Ue(x) = Givil) (5.3.4)
=1

@ G (b) ¢ (c) Gs

Figure 5.2: Multiscale processes assign probabilities are based on the discretized pairwise distance of
points. Depending on which domain the relative position of two points falls in, we assign a probability
using different parameters (; to the pair. A hard-core process corresponds to (; = —oco.

5.4 Gibbs Model for Fiber Data

Multiscale processes are usually defined based on the discretization of one pairwise object distance.
We refine this definition to model fiber data: In a pattern that is generated from a physical flow
through a constricted space, we expect objects of close distance to have a similar orientation as well.
Intuitively, the probability of a configuration should rely not only on the distance of two fibers, but
also their relative orientation.

We thus rewrite our model to define interaction based on two distances d; and ds; For our purposes,
dy (zg, ;) will be the distance of the two line segments that are the middle-axis of the two cylinders

46 Chapter 5. Gibbs Point Process Model

Figure 5.3: Flow: Similar orientation for close fibers (simulation)

xy, and x;; meanwhile do will be the distance of normed orientation vectors modulo reflection. For
details on d; see the subsection 5.4.1. For our two-dimensional model, we redefine our Interaction
Function ® as a two-dimensional step function of the two distances d; and do with steps of height ¢;;
and their limits on the points (7, 5;):

1
fop(x) = aﬁ”“) exp {Uc()} (5.4.1)
Ug(&?) = Z@(d1<$k,xl),d2(xk,$l)) (5.4.2)
k<l
®(dy,d2) 1 =Y Gl iy) ()L, (d2)- (5:4.3)
,J

Although multiscale processes are usually defined based on the single Euclidean distance, the
properties that are critical for the methods used in later sections remain for the modified model: well-
definedness and applicability of the DCFTP method (5.5.2) are guaranteed for locally stable processes
—see [MWO04, chapter 6.2] and [KMOO], respectively. Local stability is ensured for a standard multi-
scale process with a minimal distance because f(z) will be 0 if n(z) > ng for some ny — see [MWO04,
chapter 6.2]. The same will be true, however, if we define a minimal distance for a distance d; that
is smaller or equal to a Euclidean distance — like the distance between line segments, which is always
smaller or equal to the distance of their middle points. Applicability of the Monte Carlo root-finding
method in subsection 5.6.2 is based on the density being in the form of an exponential family, which
it still is. We only need to exercise caution when using a smoothing prior for the method. See the
subsection 5.6.2 for details.

5.4. Gibbs Model for Fiber Data 47

5.4.1 Distance between two Cylinders

Let V C R3 be a finite volume. Let Si denote elements of the 3-sphere for which the first coordinate
is positive.

Let (7, 0, L) be the parametrization of a cylinder by its central point Z € V/, its orientation & € S%
and length L € R,.. Note that the orientation of a cylinder is only defined up to reflection across its
central point, which is why we restrict to unit vectors with a positive first component.

We can calculate the difference of orientations of two cylindrical candidates in a straightforward
way as the angle between the vectors defining their orientation:

Mo ((g}; g,L), (<0, L’)) = 2 arcsin (0.5 %]| — J/H) . (5.4.4)

Since we will exclusively be looking at cases in which the length of a cylinder will be much larger
than its radius, a good approximation for cylinder distance will be the distance between the two line
segments that form their central axes, denoted here by

My ((:f, 3, L), (;E',&,L’)) . (5.4.5)

5.4.2 Distance between two Line Segments

See e.g.[SE02]. To calculate the distance between two line segments, we will first calculate the dis-
tance dist(s, p) between a line segment s and a point p, which we will need several times below. So
let

s:=r+1d 1€]0,L] (5.4.6)

be the central line segment of the cylinder defined by (Z, 7, L). Given a point 7 we can solve

T+lgo+ropu=p (5.4.7)
(@,3) = (5.4.8)
]l = 1 (5.4.9)

to find the point & + [y 0 closest to 7 on the full line that extends the line segment s. If [y € [0, L], this
point is on the line segment, and

dist(s,) = ||Z + lo & — pl| == ro. (5.4.10)

If Iy € (—0o0,0), the closest point in s to p is the starting point Z and
dist(s,) = ||Z — P - (5.4.11)

If iy € (L,), the closest point in s to p is the end point & + Lo and

dist(s,) = |+ L& — 7). (5.4.12)

48 Chapter 5. Gibbs Point Process Model

Now to calculate the distance between two line segments s; and sa, define

s i=2+18 1€, L] (5.4.13)
spi=a'+md mel0,L] (5.4.14)

We again assume without loss of generality that the directional vectors o), o' and later @ are unit vectors,

—

and that (0, 0) > 0.
If the line segments are parallel, i.e. o' = 0, solve

T4 1go+roi =o' (5.4.15)
(i, 8) = (5.4.16)
@ = (5.4.17)

to find a point in the line extension of line segment s1 closest to the starting point ' of line segment
2.
If Iy € [0, L], these are also a pair of closest line segment points, and the distance is 7.
Otherwise, if [y € (L, c0), we know that the whole line segment sz lies “above” line segment s1,
meaning
(p,d) < {(q,u) Yp € s1,q € sa, (5.4.18)

and the distance between the line segments is the distance of the end point of s; and the starting point

of s9, namely Hf + Lo—a'

If [y € (—00,0), we know that the starting point 2’ of s lies “below” line segment s1, implying
that either all of s; lies “above” s, or the closest point to Z in the line extension of ss lies in the line
segment s,. In both cases, the distance of the line segments is given by dist(s2, Z).

If they are not parallel, the first problem is finding the two closest points of the line extensions of
the line segments.
To accomplish this, solve

(i,3) =0 (5.4.19)
(it,0) =0 (5.4.20)
l[ul| = 1 (5.4.21)

for a i € S? that is orthogonal to both line segments, then solve
F+1lod+rod =" +moo (5.4.22)

to get the parameters [y and mg of closest line points and the distance rg of the two lines.

If both [y € [0, L] and mg € [0, L'], then r(is also the distance of line segments.

If exactly one parameter is not within limits, e.g. lp € [0, L] but my < 0, the distance of line
segments will be the distance of the line point closest to the calculated parameter, in this case ¢ =
ol +mq o with m1 = 0, and the other line.

5.5. Simulation 49

If both parameters are out of limits, e.g. I > L and mg < 0, again choose the parameters closest
to the optimal ones, here [y = L and m; = 0, and calculate distance to the other line segment for both
corresponding points. The distance of the two line segments will then be the minimum of these two
distances.

5.5 Simulation

5.5.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo methods of simulation can be implemented in a straightforward and effi-
cient way. Their main drawback is that they do not sample from a density directly, but rather approach
it starting from a (usually) uniform distribution. The number of steps until the target distribution is
approached sufficiently, usually referred to as “burn-in”, can generally only be determined empirically
in practice.

Algorithm 9: Point Process MCMC
Input: process space S, number of points n, number of steps 7’

Output: realization x1, ..., x,.
begin
Set t=0
Sample x = {z1, ..., x,} where each z; is i.i.d. uniformly in S
while t < T do
t+—t+1

Sample i € {1,...,n} uniformly
Sample a uniformly ~ [0, 1]
Sample a point z; from a uniform distribution in .S and define z = (x \ {x;}) U {z;}

. . fo 8(2)
if ¢ < min (1, f¢,5(x)> then
L X < %5

5.5.2 Perfect Sampling: Dominated Coupling from the Past Algorithm (DCFTP)

In contrast to an MCMC approximation, DCFTP guarantees an exact sample from a distribution, but is
significantly more computationally expensive. The DCFTP method described in this section is based
directly on [BM03, KMO0O], but slightly modified to use two point distances instead of one.

We first generate a dominating Markov chain D;, ¢ = 0, —1,—2, ... in the following way:
Let vg denote the hom. Poisson point process on S with rate 3 > 0. Then Dy ~ vg. For every
subsequent step ¢:

e with probability 3/(5+mn(D;)) make a “birth”: D;_; = D;U{n,} where n; is chosen uniformly
inS

e clse make a “death”: Drawn &; uniformly from D; and set D; 1 = D; \ {&;}.

50 Chapter 5. Gibbs Point Process Model

For every step j of the dominating chain D; we generate an upper process U; and lower process L;:

Initially set Uj = Dj and L? =0.Fori=35+1,...,0:

e Death,ie. D; = D;_1 \ {n;}
= U} = UL, \ {niy and I} = L]\ {m:}

e Birth,i.e. D; = D;_1 U{&;}

_ i Ul u{g}y ifM; < ILeri | ®(di(&,n), d2(&,m)) (5.5.1)
! Ul otherwise o
and I — Ll uf&) it M; < HneUij_l ®(d1(&ism), d2(&ism)) (5.52)
! Lg_l otherwise o
where M; "% Uniform|0, 1]
Set
L mf{—z: D; N Dy # @, D; 1NDy= @} if Dy 7é 0 (5.5.3)
0 otherwise
Jr =2 " Tnin (5.5.4)
T = inf{—jy: U = LI} (5.5.5)
Then
Uyl ~ faao (5.5.6)
In total:

e Generate Dy ~ vg and keep backwards generating D; until you reach the time 7,,,;, where no
original point of Dy is left.

e Then repeat for k = 0,1, 2, ... until Ug’“ = Lé’“:
(i) Generate backwards Dj, | _1,...,D;, and generate the associated M; for deaths

(ii) Generate forwards (Uj:, L?:), e (Ug’“, Lg)k)

e Return U1 ~ fs,0

5.6. Estimation of Model Parameters 51

5.6 Estimation of Model Parameters

5.6.1 Use of Summary Statistics

Looking back at equation 5.3.4 ff., to determine a Gibbs model from data we need to estimate the
interaction intervals [r;, r;+1) as well as the interaction strength parameters (;. [BMO03] presented
an approach to estimate both simultaneously — however, in practice the estimation of only the values
of (; tends to be slow to converge and computationally taxing, particularly for 3D data. We thus
forego the estimation of interaction intervals, instead use summary statistics to visually determine
distinct changes in attractive or repulsive behaviour depending on interaction radius, set interaction
intervals manually. Summary statistics are a common tool to detect anomalous spatial behavior in
point processes [RRSS17] — see e.g. [MWO04, LB96, GDGF10] for an introduction.

8 n a
8 — T Kobs{r)
o~ © T Ktheo(r)
Sy | a -
x = K,r)
(= n
g | Kn'D{r)
o -
I I I I I I I
0 20 40 60 80 100 120
=]
g N - E\Dbs{r)
—_ C,: === Lpeolr)
= © n
= — Lyi(r)
o | A
= Ln'D(r)
- —

| | | | | | |
0 20 40 60 80 100 120

Figure 5.4: K and L summary statistics of an approximate segmentation of 74 cells; gray envelopes
produced by 20 simulations

In particular we use Ripley’s K -function (see [MWO04, LB96]), estimated as

: W

K(r) = D A(d(ws, x5) < e (5.6.1)

n(n—1) =

where || is the area (or volume) of the observation window e;; is an edge correction factor, for which
we use the standard Ripley’s isotropic edge correction, see [Rip91]. The theoretical value of the K
function is K (r) = mr? (4 / 373 in 3D) for a (homogeneous) Poisson process [MW04, Definition 4.4
ff.]. Although the information given by the statistic is usually seen as only a partial examination of the

52 Chapter 5. Gibbs Point Process Model

underlying process, there are exceptions — for example [DGS87] derive a nonparametric estimator of
an interaction function directly from the K-statistic.
The equally commonly used L summary statistic, derived as

L(r) := I;(T) (2D) (5.6.2)
L) = ¥ ir(’”) (3D) (5.6.3)
3

has a theoretical value of L(r) = r in this case. To compare the behavior of a point process sample
to that of a completely random Poisson process, it is common practice to plot the estimated K or L
function of a sample of data points against both the theoretical values of the functions, as well as an en-
velope confined by their extreme values on a fixed number of Poisson point process samples [MWO04,
chapter 4.3.4.]. See figure 5.4 for a graphical example, produced from apporimately segmented cell
data. The implementation used is the R spatstat package, see [BRT15].

5.6.2 Monte Carlo Root-finding

Assume that both for a given sample and in later uses for segmentation, the cardinality n(x) of a re-
alizations is fixed; We can thus for the purposes of segmentation and interaction parameter estimation
simplify equation 5.4.1 by setting n(x) = n*. As a consequence, we can further set 3 = 1 without
loss of generality, integrating it into a single scaling factor cg o = c¢.

Understanding (;; as a vector with two indices in a slight abuse of notation, we can then express
equation 5.4.1 as an exponential family in canonical form[NGO09]:

Uc(a) = Gywig(x) = (¢ y(@)) (5.6.4)
i\j
Yij (.73) = Z ﬂ[ri,ri+1) (dl (mka xl))]l[si,si+1) (dQ(l‘lm xl)) (5.6.5)
k<l
I(¢,7) =log(fo(z)) = Us(z) —logce = (¢, y(x)) —log e (5.6.6)
(5.6.7)

Here (¢, z) is the log-likelihood, (;; are the natural parameters; y(x) is the natural sufficient
statistic, and F'(¢) = logc¢ is the log-normalizer. By the properties of exponential families [NG09],
we know that

Ec[y] = VF(() (5.6.8)
varcly] = V2F((). (5.6.9)

Consequently, for a fixed value of x we can express the derivatives of the log-likelihood as

9(¢) :== VI(¢) = y() — Ec[y] (5.6.10)
H(C) :=VTg(¢) = —varc[y]. (5.6.11)

5.6. Estimation of Model Parameters 53

Using a regular Gauss-Newton algorithm to maximize the maximum likelihood requires an update of
the form

M =¢F = H(F)Tg(¢h) (5.6.12)
for a given parameter value C*.

We can replace Hessian and gradient if we know the expected values and variance of the sufficient
statistic ¢ via 5.6.10 and 5.6.11. However, since we will usually be unable to calculate these values
explicitly, we replace them with empirical approximations generated via a Markov Chain Monte Carlo
simulation (see 9 or e.g. [MWO04, chapter 7]):

i) =y@) -y (5.6.13)

H(¢F) = -8, (5.6.14)

With a way to approximate gradient and Hessian of the target function, we can in principle use
any gradient-based optmization method. We follow the example of [HP99] and use a Levenberg-

Marquardt algorithm [Mar63] in combination with these MCMC approximations, resulting in updates
of the form

CH = ¢ — H\(¢M) T (¢h), (5.6.15)

where H is the result of multiplying the diagonal elements of the approximate Hessian H (¢*) with
a stabilizing factor of 1 + \; X starts at a fixed value Ao and gets multiplied (divided) by a factor of
after each step that resulted in a lower (higher) value of the merit function

=DM (5.6.16)

The idea behind, and advantage of, the use of this stabilizing factor in Levenberg-Marquardt is the
dynamic interpolation between the faster Gauss-Newton and the more stable gradient descent, see
also [Avr03] for details.

5.6.3 Smoothing Prior

One potential drawback of the Monte Carlo root-finding method is that depending on the discretiza-
tion of distances, the number of points interacting in a specific way may be small, leading to small,
highly varying entries of the sufficient statistic y;;(x). [HP99] combat this problem with a Bayesian
approach: We can introduce a smoothing prior 7(z) to give a bias towards similar values for close
intervals, leading to a modified log-likelihood (¢, z) + log w(x)with a gradient and Hessian of

9(¢) := Vlog m(x) + y(z) — Ec[y] (5.6.17)
H(¢) := V! Vlogn(zx) — varc[y]. (5.6.18)

In [HP99],the smoothing prior for the one-dimensional case was chosen in the following way:

Y; "5 N(0, ;) (5.6.19)

p
=YY, (5.6.20)
k=i

54 Chapter 5. Gibbs Point Process Model

In a similar manner, we define

X; “EEN(0, 01 (5.621)
1.3.d.
Y;; "= N(0,0%) (5.6.22)
p q
Gi=Y Xi+) Yij (5.6.23)
k=i I=j

In some cases, e.g. if we anticipate the interaction function to be minimal for small values and
close to one for large, it may make sense to choose means that are not zero, but gradually increasing
or decreasing.

One may wonder why the X; are chosen independently of j. However, if we assume that this were
not the case, consistency dictates that:

C-1),6-1) = Sig-1) T Xa-1,6-1) = Gig + X-n,g-n Hig-ny 6629
C-1,G-1) = S0 T Ya-0,6-1 = g + Xy +Yen,6-n 6625

X-1),6G-1) +Yig-1) = Xi1),j + Yi-1),6-1) (5.6.26)
Xi—1),-1) = X1, + Yi-1),6-1) ~ Yi,g-1)- (5.627)
Inductively, all X; ; are a function of X; , =: X; and {Y; ;: j =1,..., ¢}, meaning only one family

of variables may depend on both ¢ and j.

In practice, the optimal use and strength of a smoothing prior obviously depends on the ques-
tion to which degree the assumption of a smooth transition between values of (;; actually applies. In
general, the higher the number of data points, the finer the discretization that can be meaningfully es-
timated (i.e. for which each component of sufficient statistic [({,) is adequately large), and the more
likely the assumption of smoothness is justified. Sensible values of o;; will however still obviously
depend on the specific metric(s) measuring interaction and the specific discretization, and have to be
determined empirically from case to case.

5.6.4 Restricting Parameters and Starting Values

In practice, one significant problem, or at least pitfall, in applying Monte Carlo root-finding, or indeed
any gradient-based method with a merit function based on the sufficient statistic y, are the linear
dependencies of its values that are present by its definition:

Lemma 5.6.1. If X1,..., X, are linearly dependent, the determinant of their covariance matrix is
zero.

Proof. Assume without loss of generality that

n—1
X, = Z ai X; (5.6.28)
=1

5.6. Estimation of Model Parameters 55

Then

n—1 n—1
cov(X,, X;) = cov (Z ai X;, Xj) = cov(X;, X;), (5.6.29)
i=1 i=1

implying that the last row (column) of the joint covariance matrix is linearly dependent on the other
rows (columns), and its determinant is zero.]

The entries of the sufficient statistic y are oviously linearly dependent via Y y; = n(z)(n(z) —
1)/2, the number of pairs of points in x, being constant. This implies together with lemma 5.6.1 that
without restricting the optimization parameters, vare[y] is generally not invertible. The same is true if
the covariance matrix includes any y; that is constant — like values corresponding to distance intervals
below the minimal distance. Any gradient based method should thus be restricted to a subset of {(;},
using the corresponding submatrix of .S, and subvector of i for parameter updates.

To determine starting value of (p, [HP99] follow the somewhat intuitive idea of using a normal-
ization of the sufficient statistic of the data y(x),

Co = log (‘?(JI(? ;) (5.6.30)
1 n? 2 2
K= V(E)?ﬂ(ri —Tiq)- (5.6.31)

Here, v(FE) is the measure of the area in which the point process is located, and we write division
of two vectors with the meaning of element-wise division. When using a single Euclidean distance
measure dj, the values of K; correspond exaclty to the expected value E[y;(x)] where x is a Poisson
point process. To apply a similar idea when using two non-Euclidean distance measures, we instead
define our starting value as

Go = 1 log (y(yx)> ; (5.6.32)

a

where 7 is the average sufficient statistic over a Poisson-distributed MCMC chain, and «a is a nor-
malizing factor chosen purely for numerical convenience to limit the initial impact of outliers in the
implementation.

5.6.5 Stabilizing the MCMC-based Gradient

Another potential problem in using Monte Carlo root-finding in practice is that the variance of Gibbs
point processes, in particular those showing attractive patterns, can be extremely high: We have found
that MCMC chains of attractive point processes tend to exhibit two distinct, binary states: A “spread”
pattern in which points of a realization are distributed relatively evenly over the available space, and
a “clustered” pattern in which enough points have banded together that any new random point in
the Markov chain that is not within the cluster is assigned a low probability through the interaction
function — see figure 5.5; If a process is either repulsive or strongly attractive, it will stably converge to

56 Chapter 5. Gibbs Point Process Model

a spread or clustered pattern, respectively. However for mildly attractive processes, changes between
the patterns do occur, but with a very low probability. This means that the natural sufficient statistic
y(x) of the entries in the Markov chain can remain relatively stable for several hundred thousand
steps or more before a switch occurs, and its values are again stable, but completely different, for a
long time. As a result, the entries of 7 can empirically vary by 100% or more even when averaging over
several million steps. This obviously leads to difficulties when trying to converge to a local minimum
following a gradient that is estimated via from the Markov chain; in a naive implementation, pure
random fluctuation quickly overpowers the influence of the current parameter .

100 100

i 0
100 . 100 100%

100 100

(a) “spread” pattern, (b) “spread” pattern, (c) “clustered” pattern,
7 = (0,8.69,13.86,22.14, .. .) 7y = (0,8.65,13.81,22.14, .. .) 7y = (0,57.99, 33.53,22.70, .. .)

Figure 5.5: “Spread” and “clustered” realizations of three MCMC chains after 10° steps, sufficient
statistic y averaged over each chain. Despite the use of same parameter value ¢ for all chains, the
average ¥ is wildly different for the two types of pattern.

To allow a stable convergence in a computationally feasible scope, we modify the Monte Carlo
root-finding method in later applications: Instead of estimating E [y| and var, [y] from a single Markov
Chain, we average over 400 relatively short Markov chains of 10.000 steps each. To compensate for
the shorter chain length, we do not initialize with a uniformly distributed (Poisson) point pattern, but
always with the same point pattern — namely the data from which we wish to estimate — and use
no burn-in period. Ideally, i.e. if x is indeed a realization of a Gibbs density with the current value
of ¢, then we initialized the chain with a realization of the stationary distribution, making a burn-in
unnecessary. In any other situation the chain will not necessarily reach its stationary distribution after
10.000 steps, meaning the estimations of E¢[y| and var,[y] will not necessarily be close to their true
values; however we found that empirically, divergence from the initialization is large enough to make
a gradient-based approach feasible, while estimated values of the gradient and Hessian are stabilized
enough so that random effects do not overpower the influence of the current choice of parameter ¢
until it is close to its optimal value.

Chapter 6

Model-based Randomized Set Cover

6.1 Combining Gibbs Model and RSC

Recall that our overall aim is to find a subset of some given discrete segmentation candidates that
best fits our model of object interaction. To minimize a Gibbs energy (or, equivalently, maximize a
log-likelihood) on a discrete set of candidates {z; }, we need to find a binary vector z; that minimizes

U({z;i}) == 2T0({xi})z, (6.1.1)
where is © defined by the log-likelihood of our pairwise interaction model — see equations 5.4.1
Ora({zi}) = CiLip uyn) (A1 (@h 2) s,) (da (@, 1)) (6.1.2)

0.

In any application that concerns segmentation of image data, we obviously want to incorporate
how well each segmentation candidate fits not only the model of interaction, but the image as well; we
can achieve this with the introduction of a “data term” dj, weighing each single candidate, resulting in
a quadratic program in the standard form of

U{x;}) =dT2+ 270z. (6.1.3)

In any application on larger data, a global optimization over all segmentation candidates will
generally not be feasible by the size of © alone. One obvious solution is to use the same idea as
the Randomized Set Cover approach, restricting our optimization to repetitions over small, random
subsets. At the same time, we know that the RSC algorithm assigns a probability py to each candidate,
and updates them in such a way that the probability of optimal candidates increases in the long run
(see section 2.3). We can thus forego a case-specific, manual design of a data term, and instead use
the updating RSC probabilities pj, as the singular term for our quadratic optimization as well. Because
the RSC updates are exponential in the number of steps, we use a log scaling for the optimization:

dy, := —log py. (6.1.4)

Specifically, there are two obvious approaches to combining the stepwise RSC probability update
with an energy minimization: one for which in each step we draw a random sample of candidates

57

58 Chapter 6. Model-based Randomized Set Cover

that we use as input for both the the RSC update and the energy minimization, and one for which we
update sampling probabilities affer energy minimization, using all points that are not covered by the
resulting minimizer, rather than the input. We will call these MRSC, and MRSCy, respectively — see
algorithm 10 and algorithm 11. The RSC update shifts weight to points that are difficult to cover with
the current input; conceptually, we either find the solution to the original minimal set covering problem
that best fits our interaction model (a), or try to solve a set covering problem with additional constraints
(b). See figure 6.3 for an example of interaction-based segmentation: A dataset was sampled from a
density that penalizes significantly different orientations for close cylinders. These cylinders where
then segmented three times using MRSC,, and a penalty for the same class of cylinders that was either
non-existent, weak, or strong.

Pre-processing/ Pre-processing/

choice of candidates choice of candidates

N

Sample
Sample candidates
candidates ~pj
SetC ~ pj
crorer P minimize SetCover
date of p;
Hpae Ot P energy update of p;
v
Gibbs best
Energy subset
Segmentation Segmentation

Figure 6.1: RSC Figure 6.2: MRSC

6.1. Combining Gibbs Model and RSC

59

Algorithm 10: Model-Based Set Covering (a)

Sample C D Cg) ~ po

while 3p € P\ JC, do
Sample a new set of candidates N,y ~ fin,

Combine with old optimum: C(,,) = N, U C(*n—l)

Minimize energy: C(;,) = argmin U (X)
XECn)
Update p,, using the set cover probability update 12 with candidates C(,,)

*
return C (ma)

Algorithm 11: Model-Based Set Covering (b)

Set C§ = 0.
while 3p € P\ |JC;: do
Sample a new set of candidates N(,,) ~
Combine with old optimum: C(,,) = N, U CE“n_l)
Minimize energy: C(,,, = argmin U (X)
XCCn)
Update p,, using the set cover probability update 12 with candidates C E‘m

*
return C (ma)

Algorithm 12: RSC Probability Update

Input: Set of image points P,

collection of candidates C,,,

a distribution p, (c),

parameter €

Output: new distribution f1,, 1)(c)

begin

set P. =P\ JC,

if P. # () then

pick any point p € P,

if 11, (CP) < € then
Win+1)(€) ¢ 2pn(c), Veel?
W1y (€) «— pnlc), Ve g CP

Normalize: fi(,41)(c) +— #%, Veel

else
| Hnt1) S Kn)

60

Chapter 6

. Model-based Randomized Set Cover

(h) No interaction

(a) Data simulated with strong in-

teraction

(i) Weak interaction

(j) Strong interaction

Figure 6.3: Graphical Example

6.2. Convergence 61

6.2 Convergence

The difficulty of proving convergence is strongly dependent on which variant of the algorithm we
observe. For MRSC, — algorithm 10 — the RSC update, and thus the part of the algorithm that is
critical for convergence, is independent of the energy minimization, and we can re-use former results
in a relatively straightforward way:

Proposition 6.2.1. Let R« = {R7,..., R} .} be a minimal set cover of size n*.
If the drawn sample Ny,) is a e-net with prbability q > 0, then algorithm 10 must terminate after
a finite number of steps.

Proof. Algorithm MRSC, terminates exactly when the RSC algorithm terminates, i.e. when the ran-
domly drawn sample N, is a full cover. Since its probability update does not depend on the result of
the energy minimization, we can closely follow the proof of proposition 2.3.1 proving convergence of
the original set covering algorithm.

Assume ¢ = 2@ — 1 for some a > 1. Further assume in each step we can find a point p that is not
covered by a drawn sample N(,,y and satisfies 1, (CP) < &, which will be true in particular if the sample
is an e-net, but not (yet) a full cover. Following the proof of the proposition 2.3.1, especially equations
2.3.3 and 2.3.4, we then know that in each Set Cover probability update the weight of the optimal
subset R+ must grow faster than the weight of the whole range space R, leading to a contradiction in
a finite number of steps. 0

Note that as for the original RSC algorithm we can usually ensure that a drawn sample is an e-net
with relative ease —i.e. by random sampling a sufficient number of candidates via theorem 2.2.1.

For MRSCy, — algorithm 11 — we cannot use a similar proof for two reasons: First, the local energy
minimizer will not always be an e-net. We can easily choose an interaction energy in such a way
that any local minimum cannot contain more than one element, which will not be an e-net for almost
any range space. We can circumvent this problem as we we did when using the RSC algorithm with
sample sizes that are smaller than theoretical limits — by empirically checking that an e-light dual
range for an update can be found in a sufficient percentage of steps.

The second problem is that even if the total relative weight of an optimal cover grows in each
step, we cannot necessarily guarantee that it will selected as an energy minimum. However, if the
interaction energy is chosen in such a way that it does not penalize an optimal cover,

Z Cij]l[ri,ri+1) (dl (R:7 R;))ll[s]-,s]url) (dQ(R;ka R;)) =0, (6.2.1)

i#j
we can plausibly assume it is an increasingly likely energy minimizer: We know that the total weight of
a set of optimal (minimally covering) ranges grows; If the asymptotic behavior of each single optimal
range is not different from the total weight of optimal ranges, their data term becomes asymptotically
large enough relative to other candidates that it is an increasingly likely part of the energy minimizer.
The tendency of the RSC update to increase the weight of unlikely candidates, and decrease that of
likely ones, seems to make a similar asymptotic behavior likely; however, since transitional probabil-
ities for each update step depend on the specific local geometry of a given problem, any statements
about local rather than global probabilities in weight update schemes seem to be beyond the current

62 Chapter 6. Model-based Randomized Set Cover

state of the art. We thus restrict ourselves to empirically checking for e-light dual ranges and conver-
gence to an optimum.

6.3 Data Term Scaling

Even if we can ensure that a minimization of the energy 6.1.3 converges to a solution of optimal can-
didates asymptotically, in any application we will want to scale data and interaction term to get a set of
minimizing candidates of a reasonable cardinality from the start, and in as many of the following steps
as possible: if the penalties of the interaction term are very low compared to the data term, leading to a
minimizer of large cardinality, the difference to a standard RSC algorithm may be negligible. One the
other hand, if the penalties of the interaction term are very high compared to the data term, this will
result in a minimizer of very low cardinality, leading to suboptimal partial covers for both algorithms
— as well as possibly making it very difficult to update probabilities for MRSCy, since we need to find
a point in the complement of the small minimizer that satisfies 1, (R,) < ¢, i.e. is globally covered
with low probability.

Thus, in any later applications we define admissable minimal and maximal solution cardinalities
kmin and kmnax and use a modified data term of the form

dj, := —exp(\) <logpk — mlin(logpl)> . (6.3.1)

A is a scaling factor that gets increased (decreased) in each step if the cardinality of the energy
minimizer falls below the minimal (above the maximal) solution cardinality until we find a suitable
value via binary search. We additionally normalize the minimum data term of each set of random
candidates to zero to increase stability. Note that this does not influence convergence, since any range
that grows in relative weight globally will also do so relative to other members of the random sample.

Part 111

Experimental Evaluation

63

Chapter 7

Evaluation on Synthetic Data

In our empirical evaluation of the previously introduced segmentation methods, we first compare
performance on synthetic data for which we know ground truth. We distinguish approaches without
an underlying model as discussed in part I of this thesis, which we compare on a relatively basic data
set in section 7.2, and approaches that combine RSC with an underlying Gibbs energy as introduced
in part II, which we compare on a noisy data set in section 7.3.

7.1 Range and Parameter Structure and Set Up

In the following chapter, the focus will be on cyclic (2D) or cylindrical (3D) ranges; we will assume a
fixed radius for both of these. Thus, the space of possible ranges will generally be of the form
{Possible center points, i.e. image dimensions/voxels(2D/3D)} x
{directions we wish to distinguish (2D)} x
{cylinder lengths/circle radii we wish to distinguish }

or some subset thereof.
Cylinder lengths or circle radii will generally be uniformly discretized on an interval [l Climaz]s

To ensure a uniform distribution of directions in 3D, directions will be discretized on a geodesic
grid — see figure 7.1.
The construction of the geodesic grid as a subdivision of an icosahedron limits the possible number
of distinct directions to
10x4"+2, keN (7.1.1)

on a sphere. Since direction of a cylinder is only defined up to reflection in its center point, we need
only distinguish directions on a semi-sphere, limiting us to

ol L 554k 41 (7.1.2)

distinct directions. Note that we get slightly more than half the directions on a sphere due to wanting
to include the whole “equator” of the sphere for numerical convenience. We choose k = 3 for a total
of 337 directions on the semi-sphere in later applications.

64

7.1. Range and Parameter Structure and Set Up 65

Figure 7.1: Geodesic Grid on a sphere

7.1.1 Area Bias

If we want to solve a minimal set cover problem for candidates of varying area, in particular if we want
to use our solution as a segmentation, intuitively we wish to use a cover that consists of candidates
that are both as few as possible and each as small as posssible — covering two small objects with one
large is intuitively not a better fit.

However in the standard formulation of a minimal set cover problem, i.e. if we simply want to
minimize the cardinality of a full cover, a larger set will always be a better solution than any of its
subsets, as it obviously covers more points. This is reflected by the fact that for the RSC algorithm
1, the weight of a set will be doubled as least as many times as that of any of its subsets, and starting
with uniform weights for any R* O R we know that w(R') > w(R) in all steps; thus, in any later
application we need to introduce a bias to ensure that in the long run larger candidates will only be
chosen for a cover by the RSC algorithm if they truly cover more image points.

Specifically, assuming uniform starting weights, the weight of each range R after n steps is
w(R) =3 ,cp 2UP), where n(p) is the number of times each point p has been chosen for a weight
update. In a simplified model that simply repeatedly chooses all points sequentially for updates, we
expect (®)

W) on(R/|-IR|

o@D ~ 27 IFI=IRD) (7.1.3)
where |R| is the number of image points R covers, and P is the number of all points — in each
sequence of updating all points, R’ will be updated (|R’'| — |R|) times more. We thus modify our
starting probabilities introduce with an area bias of the form ~ m~ 4l where |A| is the area of a
candidate; The specific best value of m is chosen heuristically in applications, though equation (7.1.3)
may serve for orientation.

66 Chapter 7. Evaluation on Synthetic Data

7.2 RSC Approaches without an underlying Model

A}
40 3;
- \

20

40

Figure 7.2: Data Set used to compare non-model versions of the RSC algorithm

We will first evaluate the approaches that do not use an underlying point process model as pre-
sented in part I of this dissertation. We choose a synthetic data volume of size 507 filled with kopt = 60
cylinders — see figure 7.2. The cardinality of the intended cover will be an input variable, as it is the
main regulator in the trade-off of cover cardinality versus run time. To reduce randomness of results
and calculating times, cylinder lengths will be fixed at seven pixels.

For each cover cardinality n, the mean over 10 repetitions will be taken to reduce randomness. We
list the time taken by the algorithms, the total number of steps, the percentage of steps in which weights
were updated (i.e. the e-net condition was satisfied), as well as the cover cardinality after a greedy
postprocessing (see section 4.1). We present values for the orgininal RSC algorithm 1, two versions
of our parallelized approach presented in section 3.1, an example of the hierarchical approach from
section 3.2, a well as an evaluation of a probabilistic Hough transform — see section 4.6. Figure 7.3
depicts an overall graphical comparison of produced cover cardinality vs running time. The following
subsections contains a more detailed discussion of each method.

7.2.1 RSC Algorithm

Orignal RSC as defined in algorithm 1 serves as a baseline.

Ranges used 701 561 422 279

Time taken (s) 1031 1187 1258 2211
Steps taken 1081 1141 1234 1522
Percentage of update steps 999 99.8 99.1 091.6

Cardinality after greedy postprocessing 68.9 659 63.7 60.6

Table 7.1: Performance of the (B/G) RSC algorithm

7.2. RSC Approaches without an underlying Model 67

5 T T @/ T T T
—&— RSC
49 —o— PWU T
randPWU
4.8 | —©&— Hierarch |
—©— Hough
4.7 -
46 T
45 -
4.4 B
43 -
| G\g\@&m |
4.1 L L L
5 55 6 6.5 7 7.5 8

Figure 7.3: Graphical Performance Comparison: Cardinality of the cover result (y) against time taken
(%), log-log-scaling (natural log). Depicted are the RSC algorithm (RSC), the approach using paral-
lelized weight updates on a grid(PWU), the approach using parallelized weight updates on a random
grid (randPWU), a hierarchical RSC approach (Hierarch) and a probabilistic Hough transform with
the same number of weight updates as the RSC algorithm (Hough). The data point (6.26,6.80) of the
Hough transform was not depicted, as it is too much of a (negative) outlier.

7.2.2 Parallelized Weight Updates

As discussed in section 3.1. Two different versions are examined: In the first version, the order in
which the different grids are checked for non-emptiness is fixed: As long as there exists a point that
is not covered in the first grid, we update only points in the first grid, then the next, and so forth. In
the second version of the PWU algorithm, choice of update points, and by extension grid, is random.
Below are the values for both versions in this order.

Ranges used 701 561 422 279

Time taken (s) 401 449 586 1958
Steps taken 390 460 630 2066
Percentage of update steps 99.2 956 81.8 319

Cardinality after greedy postprocessing 63.3 62.5 61.5 60.7

Table 7.2: Performance of the parallelized approach, updates on the first possible grid

As we can see, both versions are considerably faster and even supply a better quality of cover
(lower cardinality) than the standard algorithm. However, the first version’s tendency to pick the same
points for weight-updating lowers the percentage of steps in which a point is chosen that is not already

68 Chapter 7. Evaluation on Synthetic Data

Ranges used 701 561 422 279
Time taken (s) 228 223 238 352
Steps taken 223 232 255 361
Percentage of update steps 100.0 99.83 984 85.15

Cardinality after greedy postprocessing 66.5 64.8 639 614

Table 7.3: Performance of the parallelized approach, updates on a random grid

covered with a probability of more than €. The second version is better in every aspect, especially
considering that using 279 ranges it is still faster than the first using 422, while providing a slightly
better quality. Thus, use of random grid points will be our standard way of applying PWU for further
applications.

7.2.3 Hierarchical RSC

As discussed in section 3.2. We first generate an approximate cover using candidates that are cl,qq = 6
pixels longer than the ground truth objects, then in a second phase use RSC again to find a solution
using all candidates of the correct length that are subsets of the first cover.

Ranges used 701 561 422 279
Total time taken (s) 842 851 963 1149
Time taken in first phase (s) 835 843 955 1092
Time taken in second phase (s) 7.3 7.9 8.1 56.9
Steps taken in first phase 782 835 956 1135
Steps taken in second phase 896 1139 1312 10867

Cardinality after greedy postprocessing 120.9 109.6 98.1 91.9

Table 7.4: Performance of a Hierarchical RSC approach

Compared to the values of the original RSC algorithm, we can see the expected trade of running
times for quality: While running times show an improvement over those of the original algorithm
that is increasingly significant the longer both algorithms run, ranging up to a halved running time
for the slowest version, the cardinality needed for a full cover via a greedy postprocessing is also
shows an increase between about 100% for the fastest, and 50% for the slowest version. It is clearly
most advantageous to use Hierarchical Set Covering when trying to solve a set cover problem using a
comparatively small number of ranges, however even then the faster running times may not be worth
the loss in quality.

7.2.4 Hough Transform

As discussed in section 4.6. Due to the form of its parameter updates, i.e. reweighting all parame-
ters within the dual range of a point, the RSC algorithm can be seen as a variant of the generalized

7.3. Model-based RSC 69

Hough transform that uses randomized updates on a small subset instead of sequential updates on
all image points. This makes the Probabilistic Hough Transform the most comparable version of the
classical Hough transform; we compare the RSC algorithm to two versions of the Hough transform —
a probabilistic Hough transform that performs the same number of steps/weight updates as the RSC
algorithm, and the classical Hough transform that performs a step/weight update for each point of the
image, which will usually be considerably more.

Ranges used in original algorithm 701 561 422 279
Total time taken (s) 527 546 560 548
Percentage of points covered 984 97.1 96.0 922
Ranges needed for total cover 3869 3884 3974 3891

Cardinality after greedy postprocessing 898.3 146.0 147.8 145.1

Table 7.5: Performance of the Probabilistic Hough transform, same number of steps/weight updates
as the RSC algorithm

Total time taken (s) 550
Percentage of points covered 95.9
Ranges needed for total cover 3929

Cardinality after greedy postprocessing 145.72

Table 7.6: Performance of the Hough transform, using all points for weight updates

As we can see, despite updates on specific points being identical, the RSC algorithm’s more in-
telligent choice of where to update via the e-net condition leads to slower running times for the same
number of updates, but a vast increase in quality (more than factor 2) over both a sequential update
on all points (non-probabilistic Hough), and the purely random choice by the probabilistic Hough
transform.

7.3 Model-based RSC

To examine the MRSC algorithm on a controlled data set, we simulate a small volume of cylinders
with a minimal distance and a bias towards parallel orientation. Specifically, we sample a realization
of cardinality n, = 15 from a Gibbs density of the form

1
fo(x) = aexp{Uc(x)} (7.3.1)
Uc(w) =Y (di(zk, 21), da(a, 21)) (7.3.2)
k<l
O(dy,d2) 1 = Y CijLipy ey (1)L, (d2), (7.3.3)

/L"j

70 Chapter 7. Evaluation on Synthetic Data

where d; is the distance of the two line segments that are the middle-axis of two cylinders and dg will
be the distance of normed orientation vectors modulo reflection (see section 5.4). To establish minimal
distance and bias towards local parallelity, we discretize cylinder distances and relative orientation via

(r;) = (0,2,10,00) (7.3.4)
(sj) =(0,0.3,1) (7.3.5)
with a numerical bias of
-50 1 0
3 _
Gy = <_50 0 0> (7.3.6)
Here, (.1 = —50 assigns an extremely small probability to all realizations in which a pair has

distance d; smaller than 2 , while (1o = 1 establishes a positive bias towards objects of distance
smaller than 10 and similar orientation. We choose a cylinder radius of 2, meaning that for a minimal
distance of 2 overlap is possible, but limited. This should reflect the fact that in real applications radius
estimation is usually not perfect, and overlap cannot be completely excluded. To further increase
difficulty of segmentation, we randomly delete about 50% of image points of the ground truth, and
add a “‘salt and pepper” white noise on the whole image that is 1 with 2% probability — see figure 7.4.

(a) Point Process Realization/ (b) True Positives (c) Data with Noise
Ideal Cover

Figure 7.4: Generation of Image Data with Noise

In section 6.1, we established two different versions of the MRSC algorithm: Both repeatedly
minimize model energy in each step, but the MRSC, algorithm 10 performs probability updates de-
pending on all candidates N(,,) sampled in the current step, meaning that the probabilites produced
will be extremely close to those of the original RSC algorithm 1: The only difference is that we add
the energy minimizer of the previous step Czknq) to the (much more numerous) randomly sampled
ranges. On the other hand, the MRSC,, algorithm 11 performs probability updates based only on the
energy minimizer C/ \ of the current step, which will usually be of much smaller cardinality — here,
we randomly sample 60 cylinders, while energy minimizers are of cardinality ~ 10 or less.

For both versions of the MRSC algorithm, we compare optimizations with different degrees of
prior knowledge: One binary version that only assumes minimal distance ('), one with a bias towards
minimal distance and similar orientation (¢?), and one that uses the true density parameter (3 which
encourages minimal distance, parallel orientation and clustering below a distance of 10.

7.3. Model-based RSC 71

L (=50 0 0
, (=50 1 1
42“_<—5O 0 0> (7.3.8)
s (=50 1 0
ij_(_50 0 0) (7.3.9)

Since the energy maximization problem is in general NP-hard we approximate it using the sequential
tree-reweighted message passing [Kol06] implementation of OpenGM?2 [ABK12]. We set the optimal
cover cardinality to the number cylinders used to produce the voxel data, n, = 15; and set ¢ =
27 — 1 (see equation 2.3.2) and randomly sample n = 60 cylinders for the RSC updates. Since
it is not advantageous to perform an energy minimization with a completely uniform data term, we
first perform 400 steps of the original RSC algorithm and use the resulting weights w; as starting
probabilities for all MRSC algorithms. We perform 600 steps for each MRSC algorithm, and repeat
each algorithm 10 times to reduce randomness. To scale the data term for the non-hard-core MRSC
covers (see section 6.3), we restrict energy minimizer cardinality to a minimum of 4 and a maximum
of 20.

For each algorithm we measure the cardinality of the produced cover (“Cardinality”), the per-
centage of true positive voxels covered (“Covered”), as well as the ratio of true positive voxels to all
voxels covered (“TP”). Since to produce our voxel data we randomly deleted about half the points of
the cylindrical realization of the point process, the ideal cover/ground truth covers 100% of all true
positive points, but its ratio of true positive points to all is 51% — the percentage of ground truth voxels
remaining after random deletion.

Ideal hard-core (¢') | Parallel (¢?) | True Prior (¢3) | hard-core (¢!) | Parallel (¢?) | True Prior (¢%)
H Cover MRSC, ‘ MRSC, ‘ MRSC, ‘ MRSC; ‘ MRSC, ‘ MRSC,
Cardinality 15 12.2 7.4 8.1 9.2 9.0 10.7
Covered [%] 100 32.6 33.5 34.1 46.3 46.7 49.3
TP [%] 51.7 18.8 30.2 30.6 34.1 34.8 35.5

Table 7.7: Comparison of all versions of the MRSC algorithm, averaged over 10 repititions.

Table 7.7 depicts our measures of quality for the ground truth, as well as those produced by all
versions of the MRSC algorithm. As we can see, the MRSC,, algorithm that updates probabilities
based on stepwise energy minimizers significantly outperforms the MRSC, for any value of (in
almost any category. The only exception is the cover cardinality of 12.2 produced by the hard-core
MRSC, algorithm, which is closest to the true value of 15. However since the sampled candidates are
clearly far worse matches for the data, as indicated by their lowest coverage and ratio of true positives,
this can hardly be seen as an overall improvement. This means we can safely assume that MRSCy
outperforms a vanilla RSC algorithm with a singular model energy optimization as a postprocessing
step as well, since the underlying probability updates of RSC are nearly identical to those of MRSC,,
while repeatedly searching for optima will outperform a single minimization. At the same time, as
we would expect intuitively, the quality of the cover improves with the amount of prior knowledge for

72 Chapter 7. Evaluation on Synthetic Data

both versions of the MRSC algorithm. We thus use the MRSCy, type algorithm for applications on real
data in the following sections 9.1 and 9.2. See figure 7.5 for graphical examples of the MRSCy-covers
with different degrees of prior knowledge.

Optimal values may depend on the goal of the segmentation: For example, if we lower the hard-
core penalty to ;. = —10, and set the minimum cardinality of a non-binary cover to 8 instead of 4
for the same data set, we achieve coverage of a higher number of data points, at the price a lower
percentage of true positives in the cover — see table 7.8. Relative performance of the algorithms
remains almost exactly the same as before.

Ideal || hard-core (¢') | Parallel (¢?) | True Prior (¢3) | hard-core (¢') | Parallel (¢?) | True Prior (¢%)
H Cover MRSC, ‘ MRSC, ‘ MRSC, ‘ MRSGC, ‘ MRSGC, ‘ MRSG,
Cardinality 15 12.1 12.7 12.0 9.3 13.3 14.6
Covered [%] || 100 34.1 433 46.1 40.0 54.4 56.0
TP [%)] 51.7 19.8 25.41 28.9 29.8 324 32.1

Table 7.8: Comparison of all versions of the MRSC algorithm, higher minimal cover, averaged over
10 repititions.

(a) Voxel Data (b) Ideal Cover

40 40 40

(c) Hard-core Cover (d) Hard-core and Parallel (e) True Prior Cover
Cover (hard-core, parallel, clustered)

Figure 7.5: Synthetic Data and Covers of the MRSC algorithms

Chapter 8

Pre- and Postprocessing Methods for
Real Data

In contrast to the controlled environment of synthetic data, an algorithm that searches for a full cover
of all image points can usually not be naively applied to a real data set without risking significant
oversegmentation thanks to image noise. At the same time, our range space — as introduced in chapter
7.1 — can be of siginificant size even for smaller data sets if it includes any possible combination of
location, direction and length of an object. Any method that can quickly and safely eliminate voxels
which are likely noise, as well as unlikely object parameters, can lead to a significant speedup and
improvement of any parameter-based approach for a relatively minor cost.

Lastly, even correctly recognized real objects will rarely perfectly fit the pre-defined shape of
ranges used by all set cover-based approaches. Particularly organic cell shapes tend to only roughly
match any parameterizable object, making additional post-processing based on an approximated min-
imal cover an option that can lead to a siginificant improvement of the segmentation with a minor cost.
Thus, we use the following chapter to briefly discuss a selection of pre- and postprocessing methods
we use for real data sets before moving on to an empirical evaluation.

8.1 Preprocessing Methods

Filter functions offer a quick and intuitive way to exclude certain parameters based on image data
and assumptions of noise structure. In later applications, we focus on both the exclusion of spatial as
well as directional paramters for cylindrical structures, and, in the former case, approximately cyclic
shapes.

Unlikely centers of shapes can be relatively easily excluded using isotropic Gaussian filters; the
exclusion of unlikely directions is slightly more complicated:

Although the convolution with a directed filter mask will supply information on the local direction
of the neighbourhood of a voxel, this method scales badly with the number of directions we wish to
distinguish. In addition, it does not use the information that in later applications most voxels will be
part of relatively thin, cylindrical shapes with a single direction.

73

74 Chapter 8. Pre- and Postprocessing Methods for Real Data

100

60

40

20

100

Figure 8.1: Data points (left, yellow) and an overlay with possible centers of fibers in one direction
(right, green). The result of a conservative filtering based on local directions generally includes points
of fibers pointing roughly in the chosen direction, as well as image points for which direction is
difficult to determine, such as fiber end points.

For these thin fiber structures, the smallest eigenvalue of the structure tensor is expected to be sig-
nificantly smaller than the other two, and its corresponding eigenvector indicates their main direction
[FLO3].

Thus, in later detection of cylindrical shapes, we will calculate the local structure tensor for each
voxel. For the discrete approximation of local derivations, we use the 3D Scharr operator because of
its relatively isotropic nature[SW00]. We then check if the smallest eigenvalue is indeed significantly
smaller than the other two and limit possible directional parameters to a neighbourhood of the corre-
sponding eigenvector. Both the value of the threshhold indicating “’significantly smaller” and the size
of the neighbourhood are determined empirically and chosen conservatively — see figure 8.1.

The following section, in particular example 8.1.1, may be useful to quantify cutoff values if the
random variables describing image noise are approximately independently normally distributed, or
follow any other distribution for which we can easily determine the quantiles of a linear combination
of said variables.

Definition 5 (Filter Response function). Given
(i) afinite set P C R! that will represent our picture,
(i1) a (nonnegative) greyscale function on this picture g : P — R,
(iii) and a (nonnegative) filter function f : P — R

we can define a filter response function

F(g,) =Y 9(z)f(x). (8.1.1)

zeP

8.1. Preprocessing Methods 75

In the context of set covering, it will often be reasonable to assume that the filter function is part
of a family of functions that depend on a parameter t € 7' C R™: f(z) = F(x,t);

Similarly, we can often safely assume that assume that the greyscale function of the image g(x)
is of the form G(z,u1) + ... + G(z,uk,,,), ui € U € R", where each component G(x,u;) > 0
represents one of the shapes that make up the image.

For example, in the context of 2D cylinders, u; could be defined as a starting point, an angle,
and possibly the length and/or width of the cylinder, while G(x, u;) is the indicator function of the
cylinder defined by these parameters.

In this context, we define, with a slight abuse of notation:

F(g,t) ==Y _g(y)F(y,1) (8.1.2)
yeP

F(u,t) =Y Gly,u)F(y,1) (8.1.3)
yeP

Remark 8.1.1. Note that .% as a function of either
e gand f or
e gand F(-,t) for a fixed value of ¢ or
e G(-,u)and F(-,t) for fixed values of u and ¢

is symmetric, linear and positive definite, and thus a valid inner product.
In particular, the Cauchy-Schwarz inequality applies: for an image composed of objects in the
form of the filter mask, the filter response will be maximal for the true function or parameter.

In the context of image analysis, we can thus see the filter response function as a measure of
the similarity of the filter mask described by the function F(-,t) and the image itself in the area
B :={y: F(y,t) > 0}.

For example, if we know there will be certain shapes in the image, but we do now know their exact
position, we can choose a filter mask in the form of this shape; by Cauchy-Schwarz, a normed filter
response at a certain point x can be viewed as the probability of the shape being located there.

If we assume that our image is made of certain shapes disturbed by a random noise, the following
proposition is handy:

Proposition 6. Let the greyscale function be of the form h = g + N, where g is a fixed function and
N is a random noise that is assigned to every position y € P in an i.i.d. way;

Let B C P be defined as B := {y: f(y) > 0},

Let QN be the cumulative distribution function of Syn = 3, cp f(y)N(y), and q1 and g3 be
the - and (1 — «)-quantiles of Q ¢ .

Define Sg =3, cp 9(y);

Then forany x € Pandt € T

PO f@N(Y) € la1,¢2)) > 1 -2 (8.1.4)
yeB

P(Z(h f) € [F (g, f) + a1, 7 (9, f) + 2]) 2 1 — 2« (8.1.5)

76 Chapter 8. Pre- and Postprocessing Methods for Real Data

And in the one-sided version:

PO fNy) =q)>1-a (8.1.6)
yeEB
P(Z(h, f)>F (9, f)+a)>1-a (8.1.7)

Proof. Equations 8.1.4 and 8.1.6 are a direct consequence of the definition of a quantile; equations
8.1.5 and 8.1.7 follow directly using the definition of the filter response function .%. O

Example 8.1.1. If we assume that N(y) ~;;q N(u,02), then f(y)N(y) ~ N(f(y)p, f(y)%c?)
independently and thus S¢y = > 5 f(y)N(y) ~ N(Syrp, S20?), where Sy := > yep f(y) and

Sf2 = ZyeB f(y)Q;
Then we can write Sy = | /U2Sf2X0 + Sy where Xo ~ N (0, 1);

Consequently, if ¢g is the a-quantile of the standard normal distribution, —gqq is its 1 — a-quantile,
and we can write

@1 =/Sp2oxqo+ pSy (8.1.8)
q2 = —y/Spz0 % qo+ puSy (8.1.9)

as the a- and 1 — a-quantiles of Q ¢y

For practical purposes, it will normally make sense not to try out every possible filter parameter ¢.
However, if we choose a filter value ¢, and our computation produces a certain filter response value
1, we can still assume that if

9(x) = G(z,u1) + ... + G(z,up,,) (8.1.10)

and u € {ul,...,uk },then

opt
Fi=F(g,01) = Y Flui,tr) > F(u, tr). (8.1.11)
i
In other words, all parameters v’ that would produce response values .% (v, t1) > % cannot be true
parameters, and the space of valid parameters is narrowed down to
U ={u: F(u,t1) < #}. (8.1.12)

Example 8.1.2. In the case of two-dimensional cylinders of a fixed length L and sidelength 2r, we
could characterize a cylinder using one point y and an angle «, for example:

G (z,a)) =14, A= {x+z7a+u_fb |a€[0,L],be[—rr],v= <cosa> W= (Sma)}

sin o —cos

(8.1.13)

8.1. Preprocessing Methods 77

Similarly, to quantify response to a cylindrical filter mask of "length” 2L ¢, ”width” 2WW;, and a
main direction defined by an angle 5 , we can use a function of the form

1 . 10
B 7 cos3 —sinf (yo — o)
F(y,(u,B)) =exp | — (Of m%,) X (sinﬁ cos 3) X <(y1 B Ul)) (8.1.14)
2 (cos B * (yo — uo) — sin B(yo — uo)) v
_ [z
- (V[I/J; (sin 8 * (y1 — u1) + cos B(y1 — u1)) 8-1.15)

Note that this filter function equally penalizes a distance of Ly in the direction of its main axis,
and a distance of W in the orthogal direction. The exponent of 10 is an arbitrary parameter to control
the strength of the penalty, and can be chosen by empirical convenience, though it should be even to
guarantee symmetry.

In the context of set covering, we can use filters to apply a prior weighting of ranges before
applying the set covering algorithm 1:

Recall that in the original algorithm we start with a uniform distribution on the ranges { R}, and
are required to have some prior knowledge of the shapes we wish to cover, up to some parameters
uelUCR"

Using the idea above, we exclude certain values of u, and thus certain ranges, possibly speeding
up calculation time of the algorithm. In certain situations, e.g. if F' = G and a large selection of filter
parameters t; = u; is tested, we may also be able to choose a non-uniform distribution dependent on
the calculated filter response values for the remaining ranges.

If we assume that the original image, is perturbed by a random noise N (), i.e. h = g + N, we
can use proposition 6 to achieve a-certainty for correctly excluding a range:
Again, if we assume that a certain value w is a true value, i.e.

g(x) = G(x,u1) + ...+ G(v, ug,,,) (8.1.16)

and u € {ui, e ,ukom}, then, writing f1 = F(-,t1) and B = {f1 > 0},

)
(

F :y(h,tl) =7 g,tl)—l-Sle (8.1.17)
= F(ui,t1) + Spn (8.1.18)
> F(u,ty) + SN (8.1.19)
> F(u,t1) + qi, (8.1.20)

with probability > 1 — «, where g1 is the a-quantile of Sg,n = >, 5 f1(y) N (y).
Thus, we can exclude all values v’ that produce response values .% (u/,t1) > %1 — q1 with high
probability, narrowing the space of valid parameter values down to

U1 = {u: ﬂ(u,tl) § 91 — ql} . (8.1.21)

78 Chapter 8. Pre- and Postprocessing Methods for Real Data

8.2 Data-specific Postprocessing

While in the application of fiber segmentation the shape of a graphite or glass fiber will be close to
that of a long, thin cylinder, the specific shape of grown cells can be somewhat more unpredictable;
we thus briefly present two methods that can be used to better match cyclic candidates produced by
an RSC algorithm to cell image data.

8.2.1 Estimating Linear Transformation of Circles

Both the RSC and MRSC methods work to select the best candidates from a discretized parameter
space. In the case of cell images, the obvious simplest parametrization of possible cell candidates
is cyclic, i.e. the combination a central point and radius. An equally intuitive first refinement of
this parameterization is the more flexible elliptic shape. Using such candidates directly will however
already significantly increase the parameter space, and thus running time and hardware requirements,
of the algorithms: If an ellipse is defined via directional vector and central point that are discretized
as finely as the cyclic centers and radius are, the size of the parameter space is squared. It can thus be
easier, or even necessary, to work with cylcic candidates and refine them in a second step.

The first method we present is based on the observation that an ellipse constitutes a linear trans-
formation of a circle. In other words, given a function g(x) describing the gray values of the image of
a (filled) circle, and a function h(z) describing those of an ellipse, we can find a matrix A and vector
c such that

h(z) = g(Ax + ¢). (8.2.1)

If a matrix is quadratic, real, and has a positive determinant, which we can ensure by restriction
later, singular value decomposition tells us it is of the form R * S * Ro, where R and R are rotary
matrices and .S is a scaling matrix. In the case of the transformation from circles to ellipses, one of the
rotary matrices is obviously superfluous, reducing the number parameters that need to be estimated
compared to a general matrix, and supplying an easy way to produce additional elliptic parameters
(rotiation, two axes) from circular ones.

To determine A and c, Hagege et al.[HF10] proposed a method for estimating the linear transfor-
mation of an image:

Starting with equation 8.2.1 , we can write

j=Arz+cor=A""j+bes = Ay (8.2.2)

where b:= —A~le,y == [1,71,...,9,) and A := [b|A1].
Their method is based on choosing a fitting set of functions {w;} and using the relation

/ awi(h(z)) = |[A7 Al/ ywi(g(y)) + ‘Al}Alc/ ywi(g(y)) (8.2.3)
R7 R"

n

to produce a set of equations

8.2. Data-specific Postprocessing 79

If we define
= [awalatu) - | 7w (o) 82.5
H, = [/" xwi (h(x))... /R” zwp(h(z))] (8.2.6)

this becomes s }
‘A H,=AG, (8.2.7)

and can be solved for A if @p is of full rank.

However, recall that the proposed application of the method is to estimate an approximate linear
transformation between the (binary) image of a cyclic candidate and possibly equally binary image
data. In this case, i.e. Image(g) = {0, 1}, the set of functions wp, : {0,1} — R is obviously too
limited to generally produce a matrix G’p of full rank.

To include the application on binary images we can use a modified approach based on [TLSK15]
and [DKFO08]: use equations of the form

Al | w(z) = / w(A™ly), (8.2.8)

F

where F} and F,, are the support of template and output, with functions w(x),, ... p, := 23" ... 2",

resulting in a set of equations

p 11 . tn—1 .
AL L= () (1) X (el i [
By =0 \"1/ j,—o \12 im0 \ ' Fo
(8.2.9)
where ¢;; := (A);;. To estimate the parameters g;; in a noisy case, generate the equations to a high
enough order, and minimize the quadratic difference between left and right side as a function of the
parameters. We can restrict this minimization to ensure we can apply singular value decomposition to
the results. This method can be thought of as a matching of the theoretically predicted and empirical
moments of the grayscale values of the image. See also [BF11] for a generalized approach.

Graphical Example

See figure 8.3 for a graphical example. Cell data (black) is first ‘
approximately segmented using model-based set covering (MRSC) =
with cyclic candidates/ranges. In practice, using the elliptical esti- ﬁ
mation as a form of post-processing does in principle allow for a

better matching segmentation without the use of the much higher-
dimensional parameter space needed to directly segment a picture
using ellipsoid candidates for MRSC. However, even though transla-
tions should theoretically be included in this form of postprocessing,
it empirically works best only if the cyclic segmentation is very good,

Figure 8.2: Good and bad el-
lipsoid matching in figure 8.3

80 Chapter 8. Pre- and Postprocessing Methods for Real Data

i.e. the centers of the cyclic candidates closely match real object cen-
ters. It should thus be used with caution. See the smaller image section in figure 8.2 for an example.

500

600

700

800 |3

900

1000

500

600

700

800

900

1000

200

Figure 8.3: Approximate segmentation using cylcic candidates (top) and estimated ellipsoids (bottom).

8.2. Data-specific Postprocessing

81

8.2.2 Seeded Watershed Transformation

If image data can be binarized with relative ease, a seeded water-
shed transformation ([Soil3, chapter 9]) can provide a somewhat
more flexible and stable alternative to the ellipsoid transformation de-
scribed in the previous section. For this method of postprocessing the
centers of the candidates output by the MRSC algorithm 11 are used
as seeds for the watershed transformation on the binarised image.
The result is obviously more flexible in shape compared to ellipsoid
candidates; it does however depend on a good binarization of the im-
age; this is especially true since the seeded watershed should prefer-
ably be applied to the connected components of the image seperately,
as otherwise the influence of close seeds may lead to oversegmenta-
tion — see figure 8.4. It also does not take gray values into account,
whereas the method of linear transformation explicitly can. Which

Figure 8.4: Oversegmentation
for close neighbours

method is preferably must thus be decided on a case-by-case basis, though the degree of gray scale
fluctuation in the image may be a good indicator; for the application given in 9.1, a good binarization
of the cell images could be achieved with relative ease via global thresholding, making the seeded
watershed method overall preferable to an estimation of ellipsoid candidates via linear transformation

— see figure 8.5.

(a) Approximate segmentation using circular candi- (b) Segmentation result after seeded watershed trans-

dates form

Figure 8.5: Seeded watershed transform for postprocessing

Chapter 9

Application on Real Data

9.1 2D Cell Data

In a first example of applications of the MRSC algorithm on real data, we perform a segmentation of
several 2D cell images; one relatively recent method of cell segmentation that is comparable to our
MRSC approach is the one by Soubies/Poulain et al.[SWD15, PPSD15]: Both methods iteratively
sample a random set of discrete segmentation candidates, and find the subset that best matches a
Gibbs model that combines image data and object interaction via energy minimization. The main
difference is that the Soubies/Poulain method samples candidates uniformly and uses a static data term
for its energy model; in contrast, our MRSC approach uses the probabilities dynamically generated
by the RSC update 12 as both sampling probabilities and data term. We compare both methods on
several images of cell data with varying difficulty of segmentation. For further details see the paper
by Markowsky et al.[MRZ " 17] that this section is partially based on.

9.1.1 Interaction Model and Input Parameters

The Soubies/Poulain method uses a binary interaction model that punishes candidate overlap that
exceeds a previously defined maximum. To establish a direct comparison, we likewise use a binary
model based on a single distance for the MRSC algorithm; in our notation, interaction is defined for
both methods via

Uc(a) = Dl(ag) + Y ®(dy(a, z)) O.1.1)
k k<l
O(dr) 1= G,y (da). (9.1.2)
1,7
(ri) = (—00,0,00) (9.1.3)
Gi = (—00,0). (9.1.4)

where D is the data term (dependent on the method) and any point z; of the point process rep-
resents a cyclical candidate defined by a center p; and radius r;; we choose the 9 possible radii
R = {7,8,...,15} based on an inspection of typical cell sizes. In the case of cells with strongly

82

9.1. 2D Cell Data 83

Figure 9.1: Example of a Cell Data Set

varying radii, it makes sense to make maximum admissable overlap dependent on candidate radius.
We thus define our distance as a slight modification of the Euclidean distance ||-||:

d(pi,pj,ri,75) = ||lpi — pjl| — 0.75 % (ri +rj). (9.1.5)

We use an isotropic Gaussian filter with conservative thresholding to eliminate all extremely im-
probable candidate centers as a pre-processing step for all algorithms (see section 8.1); Since this is a
case in which object diameter is significantly smaller than image size, we use the parallelized approach
of section 3.1 with a grid to speed up running times of RSC updates.

As a post-processing step, we perform a marker-controlled watershed segmentation on the thresh-
olded image, using the centres of segmented candidates as seeds, to improve the local matching of
candidate shape to image data (see section 8.2.2). Since the seeded watershed is prone to oversegmen-
tation, we apply the algorithm locally on the connected components of the thresholded image, and
ignore connected components of the result that are smaller than 5 pixels. We estimate the number &
of cells as a multiple of the connected components of the thresholded cell image: 1.4 for easy and
medium images, and 2.4 for hard ones. Furthermore, we heuristically set the sample size ||C,,|| = 3k

(see algorithm 11) , and the starting penalty for candidates of radius r to ¢(r) = 4’ (see the last
paragraph of section 7.1.1).

9.1.2 Data and Performance Measures

We evaluate three different approaches: First, our proposed approach, referred to as MRSC; its start-
ing probabilities are proportional to the output of the filter-based pre-processing multiplied by ¢(r).
Second, a version of the algorithm that uses static uniform sampling probabilities and the static data

84 Chapter 9. Application on Real Data

term for circles proposed in [Des16] (MBC) with parameter dy = 0.1, and third, an approach that
uses the data term of MBC multiplied by ¢(r) as starting probabilities, but is otherwise identical to
the first version (MRSC/MBC). Note that the second approach is similar to the Multiple Birth and
Cut algorithm proposed in [PPSD15], with the difference of using a slightly different data term, and
an interaction term that defines overlap based on distance instead of area. Additionally, in contrast to
[PPSD15], the repeated energy minimization is performed on a random set of size 3k using the TRWS
minimizer, instead of two sets of non-interacting candidates of roughly size k using graph cuts, for all
three versions.

We compare the three approaches with a standard segmentation method, namely Otsu threshold-
ing [Ots79] as implemented in Fiji/ImageJ [SACF"12]. We combine Otsu thresholding with slightly
different preprocessing steps consisting of local contrast enhancement using contrast limited adaptive
histogram equalization (CLAHE) and anisotropic diffusion filtering in order to optimize the segmenta-
tion result. For postprocessing the Otsu thresholded images, small holes (of less than 40 square pixels)
are filled if their circularity exceeds a value of 0.5. As a final postprocessing step for all approaches,
a basic morphological opening operation is applied using a disk with radius of 3 pixels as structuring
element.

We apply the approaches to previously acquired microscopy images of fluorescently labeled neu-
roblastoma cell lines (see [BHG " 12] for a detailed description of the data). The images have a size
of 1344 x 1024 pixels. For the evaluation, the image data is categorized into different degrees of diffi-
culty: the images of the cell line SH-EP exhibit a small to medium cell count and little clustering (low
to medium difficulty). The images of the cell line SK-N-BE(2)-C have a high cell count as well as
many clustering cells and constitute more challenging data. The evaluation is performed on 18 images
comprising of 6 images of each category, i.e. low, medium and high difficulty.

The performance of the approaches is evaluated with respect to manual segmentation by a human
expert. The values of the confusion matrix (True Positives, TP; False Positives, FP; True Negatives,
TN; and False Negatives, FN) are calculated and normalized with respect to the number of cells de-
termined by manual segmentation. Additionally, we investigate the performance of the approaches
using a selection of measures described in [TH15]. We used an overlap-based metric (Dice coeffi-
cient or F1-Measure), a distance-based metric (Hausdorff distance), and a pair-counting-based metric
(Adjusted Rand Index, ARI) to assess different characteristics of the segmentation results. For the
Hausdorff distance we calculate the modified Hausdorff distance as proposed in [DJ94] for the True
Positives. All measures are normalized with respect to the number of cells or pixels in the manually
segmented images and averaged over all images of the respective category of difficulty.

9.1.3 Results

On average, manual segmentation results in a total of 74 cells per image for easy, 419 cells for medium
and 641 cells for hard data. The results for the different performance measures averaged over all im-
ages of the respective difficulty are summarized in table 1. Although the MBC algorithm achieves the
highest number of TP, this is mainly the result of a consistent oversegmentation as evident in the far
larger percentage of FP. Otsu thresholding exhibits the lowest percentage of FP and is arguably the
best method with regard to the confusion matrix for easy and medium images. For difficult images
the MRSC and MRSC/MBC methods perform comparably, however. In terms of FN, MBC achieves

9.2. 3D Fiber Data 85

easy medium difficult
Otsu | MBC | MRSC/ | MRSC || Otsu | MBC | MRSC/ | MRSC || Otsu | MBC | MRSC/ | MRSC
MBC MBC MBC

TP [%] 879 | 914 | 8738 88.2 903 | 924 | 893 89.5 11698 798 | 69.5 71
FP [%] 1.06 | 26.1 4.05 6.4 1.02 | 182 | 2.83 292 42 | 305 | 4.71 11.9

FN [%] 12.1 | 8.63 12.6 12.2 9.92 | 7.61 11 10.7 || 33.5 | 20.2 34 31
Dice 0.846 | 0.859 | 0.876 | 0.876 || 0.865 | 0.871 | 0.888 | 0.887 || 0.81 | 0.8 | 0.857 | 0.826
Hausdorff || 1.77 | 1.75 1.87 1.86 9.63 | 9.16 | 9.52 942 | 11.8 | 12 15.6 14.4
ARI 0.839 1 0.852 | 0.869 | 0.869 || 0.82 | 0.825| 0.846 | 0.845 || 0.72 | 0.707 | 0.778 | 0.739

Table 9.1: Averaged values of different performance measures chosen for the segmentation approaches

99 99

applied to "easy”, "medium” and difficult” cell images. MCN is the mean cell number per image.

very low values due to its tendency to oversegment while the three other methods yield almost equal
results. Concerning the Hausdorff distance, MBC performs better than both MRSC and MRSC/MBC,
although it is outperformed by Otsu thresholding for easy and medium images. Both variants of the
proposed method based on MRSC are shown to consistently outperform Otsu thresholding as well
as MBC with regard to ARI and the Dice coefficient. The improvement is more prominent for dif-
ficult images with a high cell density and a higher amount of clustering. The combined approach
of MRSC/MBC yields results of equal or slightly better quality compared to the MBSC method for
almost all performance measures. The MRSC/MBC method demonstrates that although better tuned
starting probabilities do have a slight positive influence on the overall outcome, the Set Cover proba-
bility update has a far larger effect, and the algorithm is stable towards its initialization.

9.2 3D Fiber Data

Due to the lack of both ground truth data and established measures of cover quality for 3D fiber
data, as well as the significantly increased computational cost of a statistical analysis compared to
2D segmentations and model estimation, we restrict ourselves to a proof-of-concept demonstration of
the previously presented methods of model estimation and image segmentation on a 3D fiber volume.
To this end, we first segment the given volume using the MRSC algorithm with an underlying binary
model, as in the previous section 9.1, then estimate a Gibbs model of fiber interaction from the result
of the binary segmentation as presented in chapter 5 , before finally using the estimated model for a
refined, non-binary MRSC segmentation of the same volume.

Fibers are parameterized as 3D cylinders with varying center, orientation and length as described
in section 7.1; We distinguish 337 directions on the closed semisphere and three cylinder lengths of
20,40 or 60 pixels, and use an area (here: volume) bias of 1.5-14!. Cylinder diameter is set to a fixed
value of 4 heuristically.

Improbable origin points and directions are excluded via Gaussian filters and the local Scharr
operator as described in section 8.1. The large relative length of the fibers compared to the total image
dimensions make the MWU approach unfeasible. We thus use the standard MRSC algorithm 11.

86 Chapter 9. Application on Real Data

9.2.1 Hardcore Segmentation

We first perform a hardcore segmentation, i.e. a MRSC segmentation for which the underlying model
only punishes pairwise distance below object diameter, as a basis for both our model estimation and
second model-based segmentation. We start with weights that are uniform on all admissable parame-
ters except for the volume bias, and let the MRSC algorithm 11 run with a sample size of |N (n) | =300
for 10 000 steps. This results is an approximate cover consisting of 92 cylinders, depicted in figure
9.2. We cover 29.45% of object voxels, while the percentage of covered object voxels to total cover
size is 41.97%.

Figure 9.2: Hardcore Cover of Fiber Data

9.2. 3D Fiber Data 87

9.2.2 Estimation of Interaction parameters

After producing a preliminary segmentation based on a binary, hard-core interaction function, we use
the Monte Carlo root-finding algorithm described in section 5.6.2 to produce a better estimate of the
true interaction function of fiber objects and be able to base any following segmentation on a more
refined underlying object model.

We discretize the line segment distance d; and orientation distance dy via

(r;) = (0,4,10, 20, 30, 40, 50, 60, 70, c0) (9.2.1)
1 2

i) = -, =, 1). 9.2.2

(S]) (07 37 37) ()

Here, 4 is the diameter of our fibers/cylinders, and the minimal distance enforced in the binary/hard-
core-based segmentation. To avoid the problems that result from constant values and linear depen-
dencies in the sufficient statistic — 5.6.1 — we do not include the values of (., which correspond to
the distance interval [rg,71) = [0,2) below minimal distance, as well as the last value (g 1, in the
Levenberg-Marquardt optimization.

As discussed in section 5.6.4, we determine our starting value via the relation of the characteristic
statistic y(x) of our data in relation to the average 7 over a uniform/Poisson MCMC chain of of length
10°, but choose a somewhat more conservative' starting value of

_ L@
Co = 50 log(7)- (9.2.3)

Similarly, for the stabilizing factor A of Levenberg-Marquardt we choose a starting value of Ao = 1/16
and multiplying factor of 1 = 4, which are somewhat more conservative compared to the values of
Ao = 10~* and ; = 10 used in [HP99].

Using these parameters, we achieve a stable convergence; listed below are the values of the merit
function x? = (y(z) — ¥)?; accepted changes for which (; was updated in bold.

5133 1668 88.26 5.11 3.46 2.10 3.90 0.66 2.34 0.48 1.65 4.40 1.12

At this point, proposed changes to ¢ do not exceed 2 * 1073, and it seems likely that the effect of
random variance of x2 is overpowering the influence of the changes in (. We break off at

—oo —0.150 0.139 -0.045 -0.001 0.067 —0.045 —-0.018 0.021
(*=|-cc 0192 -0.095 0.084 0.076 —0.154 —0.031 0.033 0.004
—oo 0.041 -0.085 -0.021 0.057 —0.019 0.006 —0.055 —0.001

corresponding to the merit function value x> = 0.48. Since we can achieve a stable convergence
to a low value, we forego the use of a smoothing prior in this case. For practical use in the MRSC
algorithm, which works with finite values, we replace the hardcore penalty with (.; = —50.

Icloser to uniform

88 Chapter 9. Application on Real Data

9.2.3 Non-Hardcore Segmentation

As with the hardcore segmentation, we perform 10 000 steps with a sample size of |N (n)‘ = 300,
but use the (non-uniform) weights produced by the hardcore segmentation as starting weights. To
scale our data term against our estimated interaction term (see section 6.3), we start with a hardcore
segmentation, and rescale until the non-hardcore segmentation is of a cardinality between 80% and
130% of the hardcore cover. Since the cardinality of the energy minimizer can change as the data term
changes, we repeat this process in every consequent step in which the cover size is below (above) the
previously defined minimal (maximal) cover size.

The result is an approximate cover of 75 cylinders, depicted in figure 9.2. Despite the lower
cardinality of the solution, we achieve a better segmentation, covering 34.31% of object voxels, while
the percentage of covered object voxels to total cover size is 54.59%.

100

~_ J
100 100

Figure 9.3: Model-based Cover of Fiber Data

Chapter 10

Conclusion and Outlook

90

Our initial motivation was the segmentation of fiber data that is clotty
and noisy enough to invalidate many established approaches of image :
segmentation. &

To this end, we first examined a randomized set cover approach
that combines robustness towards noise and scalable, approximate
solutions for large problems in part I. We tightened existing bounds
for convergence for a generalized version of the approach, as well
as introducing a new approach for its parallelization that distinctly
outperforms established methods on both a theoretical and practical level. We also showed links
to other comparable combinatorial problems and algorithms. Among other things, we established a
method of approximately solving large linear programs as a special case of the RSC approach.

In part II of this thesis, we modified existing multiscale point processes to include several non-
Euclidean distances. This proposed model of object interaction strikes a balance between an accurate
and flexible representation of physical object behaviour, and the ability to simulate and estimate the
model with relative ease. We additionally showed how in applications, established methods of model-
ing and parameter estimation can and should be altered to avoid several practical pitfalls.

The combination of the inherent robustness of the randomized RSC algorithm with a multiscale
point process model as prior knowledge proposed in section 6.1 allows for the approximate segmen-
tation of extremely difficult data. We showed how this new, model-based set cover method can be
applied in several settings, including the segmentation of 2D cell and 3D fiber data, in part III. For
the purpose of application, we discussed the pre- and postprocessing methods best used in different
settings. We also showed how different versions of the RSC and MRSC approaches perform relative
to each other, and comparable established methods, for both synthetic and real data.

60
100

85

90

The combination of the use of prior knowledge and a dynamic, probabilistic approximation of
optima gives the MRSC approach a high degree of stability and a wide range of applications. However
on both a theoretical and practical level, several questions remain open:

The number of candidates we sample in each step is an important input parameter for all versions
of both RSC and MRSC, as it indirectly controls the trade-off of running time versus quality of the
resulting cover. On a theoretical level, the sampled candidates should form an e-net, or at least locally

&9

90 Chapter 10. Conclusion and Outlook

cover points with sufficient probability. To our knowledge, estimation of cardinalities of e-nets con-
structed via random sampling from discrete distributions p; is in current literature generally reduced to
a construction for uniform distributions. However both intuitively and empirically, the cardinality of
an e-net sampled from a distribution for which a lot of mass is concentrated in relatively few places, as
expressed by the variance or entropy, is much lower than in the uniform case, leading to a gap between
theoretical bounds and practice. The RSC algorithm usually starts with uniform, or close to uniform,
sampling probabilities that become increasingly concentrated with each step. Any estimation of e-net
sizes that takes the concentration of the underlying distribution explicitly into account might lead to
the possibility of a RSC algorithm with dynamic instead of static sampling sizes, possibly enabling a
sharper and more efficient convergence to an optimum, as well as a reduction of manual input.

At the same time, to our knowledge all established versions of proof of convergence for RSC in
some way follow the same idea as the more general multiplicative weight method, namely comparing
the growth of the summed weight of an optimal subset to the total weight of all candidates. The
bounds we established in section 2.3 are tight for a sequential reweighting of optimal ranges, and thus
can be expected to be close to tight in simpler geometric sitations, i.e. those in which a collection
optimal ranges has little to no mutual overlap. However, they do not supply any estimation of single
probabilities of optimal ranges or dual ranges for the general case. Any proof reliably bounds the
probabilities of single ranges, instead of a collection of optimal ranges, could again lead to sharper
estimations of convergence for more complicated geometrical situations, as well as closing the gap
between plausible consideration and formal proof for the convergence of the MRSCy, algorithm 11.

In section 5.6.5, we approximated a Monte Carlo estimation by averaging over many relative short
Markov chains with fixed starting points to combat the slow convergence and high variance of Markov
chains of weakly attractive multiscale point processes. While it heuristically led to huge improvements
in the stability and convergence of gradient-based parameter estimation, a more general application to
chains of high variance or slow convergence might merit a more formal, quantitative investigation of
the changes in speed and quality compared to a standard MCMC approximation.

Lastly, an interesting trade-off is present in the scaling of the cardinalities of energy minimizing
subsets used for the MRSC algorithm: a minimum of large cardinality will hardly take our prior
model into account, while one of low cardinality might only be an e-net with low probability (or
for high values of). Ideally, scaling should take into account both our certainty of the estimated
model and a dynamic estimation of the needed size for an e-net given the current concentration of
sampling probabilities. Any deliberations following this train of thought could be of interest both for
applications of the MRSC algorithm, and in the more general context of a model-based, Bayesian
probabilistic optimization.

In particular, the practical implications of link between RSC and the solution of linear programs
established on a theoretical level in section 4.4 remain relatively unexplored. While we are immedi-
ately supplied with the use of better bounds for quality and speed of convergence, the possible transfer
of parallelized or even Bayesian approaches to the context of solving linear programs offers opportu-
nities for further research.

Appendix A

Randomized Set Cover and s-Nets

A.1 Detailed Bounds of the Number of Weight-Doubling Steps

Algorithm 13: Randomized Set Covering

Input: X, R, e, n.
Output: setcover Ry,..., R, of X.

begin
setw(R) = ﬁ, VReR // starting weights
sample sets Ry,..., Ry ~ p= ﬁw and // random approximate cover
set X. = X \ {z: z € R; for some R;} // points not covered

while X . # () do

pick any point x € X,
ifw(R:) < ew(R) // e-condition
then
L w(R) +— 2w(R), VR: {z} N R# 0 // weight update
sample sets Ry,..., Ry, ~ p = ﬁw and // repeat sampling
| set X.= X \ {z: z € R; for some R;}

| return R(™

Although several ways of constructing e-nets are described in literature — see theorem 2.2.1 for the
general case — they share the property that an e-net is constructed with a high probability p € (0, 1].
We aim to bound the number of steps taken as tightly as possible under this assumption — substitute

p = 1 for deterministic approaches.

Theorem A.1.1 (Termination, Iteration Number Bound). Let w° denote the starting weights of algo-

rithm 2, and let
1
€ < Emax = 2»F — 1.

If a hitting set H of size n* exists, and condition 2.3.1 is satisfied in every step independently with
a probability of at least p for such a value of € then with probability one the number N of iterations

91

92 Appendix A. Randomized Set Cover and e-Nets

of Algorithm 2 is finite and

1
E[N] < —— Nua, (A.1.2)
1-p
where
Nya = |—2-1 WX 41 (A.1.3a)
wd — a— 1 g wgﬁn % n 1.
a>1 such that & = 2@ — 1, (A.1.3b)
(A.1.3c)
0 : 0
= h). A13d
Whyin = 00w (h) (A.1.3d)

Proof. We first focus on bounding the number of weight-doubling steps, i.e. steps in which condition
2.3.1 is satisfied, by the limit given in equation (A.1.3a). Using the same arguments as in the proof of
lemma 2.3.1, we can establish the upper and lower bounds:

Wi(X) < (1+e)w X)) < (14 e)iwd(X) = 2am w0 (X), (A.1.4)
WHH) = 372000 > im0 s 0 i/ (A.1.5)
j=1

(A.1.4) and (A.1.5) together yield

hinn'27 <20 W(X) e lgebun’ 4 — < —+1ge(X) (Al
& 4 Z*<1g<“’0(>> (A.1.6b)
n an Wi M*
(X
s i< 2 1g(“’0()>n*. (A.1.6¢)
a—1 Wi, MF

After i = Nq weight-doubling steps, inequality (A.1.6¢) is violated.

We conclude that after not more than Ny,q weight-doubling steps given by (A.1.3a) the algorithm
must terminate.

It remains to estimate the number of non-weight-doubling steps N5. To this end, we show that
for every weight-doubling step ¢, the expected number E[Nde] of non-weight-doubling steps until
weight-doubling step 7 + 1 is bounded by

E[NL] < !

ST (A.1.7)

Let (); denote the random variable that indicates whether condition 2.3.1 holds in step j. By the as-
sumptions of the theorem, all (); can be bounded by a set of variables that are i.i.d. ~ Ber(p).

A.2. Asymptotic Behaviour of &pax ()

93

Thus, after weight-doubling step ¢, the maximal number of non-weight-doubling steps (failures
of the Bernoulli variable) until condition 2.3.1 is satisfied and weights are updated again is bounded

by a geometrically distributed variable NLd with an expected value of E[N d] =

number of weight-doubling steps is bounded by N4, it immediately follows that the total number of

non-weight-doubling steps is bounded:

IA
T 5
= o

I
=

Consequently, the expected total number of steps is
p
E[N] = E[Nywq + Nygl < Nya + ﬂNwd

which equals (A.1.2).

A.2 Asymptotic Behaviour of ¢, ()

Lemma A.2.1. €px(z) = 2: —1 asympotically approaches @, Le.

lim é‘max(l') =

Proof.

.25 -1 exp(In(2)
lim T = lim
& 00 (%) z—00 In(2)
In(2)(—% In(2)L
o @ Hewm@d)

Z—00 1n(2)(—x—12) T—00

using the rule of L’Hospital for the transition to the second line.

(A.1.8)

(A.1.9)

(A.1.10)

(A.1.11)

O

(A2.1)

(A2.2)

(A.2.3)

Bibliography

[ABK12]

[AHK12]

[AP14]

[Avr03]

[Bal87]

[Bes86]

[BF11]

[BFS12]

[BGY5]

[BGMRI16]

[BHG'12]

[Bjo96]

B. Andres, T. Beier, and J.H. Kappes, Opengm: A C++ library for discrete graphical
models, CoRR abs/1206.0111 (2012).

S. Arora, E. Hazan, and S. Kale, The Multiplicative Weights Update Method: a Meta-
Algorithm and Applications., Theory of Computing 8 (2012), no. 1, 121-164.

P. K. Agarwal and J. Pan, Near-linear algorithms for geometric hitting sets and set cov-
ers, Proceedings of the thirtieth annual symposium on Computational geometry, ACM,
2014, p. 271.

M. Avriel, Nonlinear programming: analysis and methods, Courier Corporation, 2003.

D. Ballard, Generalizing the hough transform to detect arbitrary shapes, Readings in
computer vision, Elsevier, 1987, pp. 714-725.

J. Besag, On the statistical analysis of dirty pictures, Journal of the Royal Statistical
Society. Series B (Methodological) (1986), 259-302.

J. Bentolila and J.M. Francos, Combined affine geometric transformations and spatially
dependent radiometric deformations: A decoupled linear estimation framework, IEEE
Transactions on Image Processing 20 (2011), no. 10, 2886-2895.

G.E. Blelloch, J.T. Fineman, and J. Shun, Greedy sequential maximal independent set
and matching are parallel on average, Proceedings of the twenty-fourth annual ACM
symposium on Parallelism in algorithms and architectures, ACM, 2012, pp. 308-317.

H. Bronnimann and M. T. Goodrich, Almost optimal set covers in finite VC-dimension,
Discrete & Computational Geometry 14 (1995), no. 4, 463—-479.

N. Bus, S. Garg, N. H. Mustafa, and S. Ray, Tighter estimates for -nets for disks, Com-
putational Geometry 53 (2016), 27-35.

R. Batra, N. Harder, S. Gogolin, N. Diessl, Z. Soons, C. Jiger-Schmidt, C. Lawerenz,
R. Eils, K. Rohr, F. Westermann, et al., Time-lapse imaging of neuroblastoma cells to
determine cell fate upon gene knockdown, PloS one 7 (2012), no. 12, e50988.

A. Bjorck, Numerical methods for least squares problems, vol. 51, Siam, 1996.

94

Bibliography 95

[BMO3]

[BMRI15]

[BRT15]

[BT11]

[BVLOS5]

[CBLO6]

[CCHPO09]

[Chal6]

[Cla88]

[Cla95]

[CM96]

[DAO7]

[Derl7]

[Des16]

[DFG194]

K. K. Berthelsen and J. Mgller, Likelihood and non-parametric bayesian mcmc inference
for spatial point processes based on perfect simulation and path sampling, Scandinavian

Journal of Statistics (2003), 549-564.

N. Bus, N. H. Mustafa, and S. Ray, Geometric hitting sets for disks: theory and practice,
Algorithms-ESA 2015, Springer, 2015, pp. 903-914.

A. Baddeley, E. Rubak, and R. Turner, Spatial point patterns: Methodology and appli-
cations with R, Chapman and Hall/CRC Press, London, 2015.

J. Bien and R. Tibshirani, Prototype Selection for Interpretable Classification,
Ann. Appl. Stat. 5 (2011), no. 4, 2403-2424.

A. J. Baddeley and M.N.M. Van Lieshout, Area-interaction point processes, Annals of
the Institute of Statistical Mathematics 47 (1995), no. 4, 601-619.

N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games, Cambridge university
press, 2006.

C. Chekuri, K. Clarkson, and S. Har-Peled, On the set multi-cover problem in geometric
settings.

T. M. Chan, Improved deterministic algorithms for linear programming in low dimen-
sions, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics, 2016, pp. 1213-1219.

K.L. Clarkson, A Las Vegas algorithm for linear programming when the dimension is
small, Foundations of Computer Science, 1988., 29th Annual Symposium on, IEEE,
1988, pp. 452-456.

K. L. Clarkson, Las vegas algorithms for linear and integer programming when the di-
mension is small, Journal of the ACM (JACM) 42 (1995), no. 2, 488-499.

B. Chazelle and J. Matousek, On linear-time deterministic algorithms for optimization
problems in fixed dimension, Journal of Algorithms 21 (1996), no. 3, 579-597.

G. Dong and S. T. Acton, Detection of rolling leukocytes by marked point processes,
Journal of Electronic Imaging 16 (2007), no. 3, 033013-033013.

D. Dereudre, Introduction to the theory of gibbs point processes, arXiv preprint
arXiv:1701.08105 (2017).

X. Descombes, Multiple objects detection in biological images using a marked point
process framework, Methods (2016).

PJ. Diggle, T. Fiksel, P. Grabarnik, Y. Ogata, D. Stoyan, and M. Tanemura, On pa-
rameter estimation for pairwise interaction point processes, International Statistical Re-
view/Revue Internationale de Statistique (1994), 99-117.

96

Bibliography

[DGS87]

[DJ94]

[DKFO08]

[Elb16]

[ERSO5]

[FLO3]

[FS95]

[GDGF10]

[HF10]

[HP99]

[HP11]

[IK88]

[JD92]

[Kar72]

[KEBO91]

[Ken98]

PJ. Diggle, D.J. Gates, and A. Stibbard, A nonparametric estimator for pairwise-
interaction point processes, Biometrika 74 (1987), no. 4, 763-770.

M. P. Dubuisson and A. K. Jain, A modified hausdorff distance for object matching, Pat-
tern Recognition, 1994. Vol. 1 - Conference A: Computer Vision & Image Processing.,
Proc. of the 12th IAPR International Conference on, vol. 1, Oct 1994, pp. 566-568 vol.1.

C. Domokos, Z. Kato, and J. M. Francos, Parametric estimation of affine deformations
of binary images, 2008 IEEE International Conference on Acoustics, Speech and Signal
Processing, IEEE, 2008, pp. 889-892.

K. Elbassioni, Finding small hitting sets in infinite range spaces of bounded VC-
dimension, arXiv preprint arXiv:1610.03812 (2016).

G. Even, D. Rawitz, and S. M. Shahar, Hitting sets when the VC-dimension is small,
Information Processing Letters 95 (2005), no. 2, 358-362.

J.-J. Fernandez and S. Li, An improved algorithm for anisotropic nonlinear diffusion for
denoising cryo-tomograms, Journal of structural biology 144 (2003), no. 1, 152-161.

Y. Freund and R. Schapire, A desicion-theoretic generalization of on-line learning and
an application to boosting, Computational learning theory, Springer, 1995, pp. 23-37.

A. Gelfand, P. Diggle, P. Guttorp, and M. Fuentes, Handbook of spatial statistics, CRC
press, 2010.

R. Hagege and J. M. Francos, Parametric estimation of affine transformations: An exact
linear solution, Journal of Mathematical Imaging and Vision 37 (2010), no. 1, 1-16.

J. Heikkinen and A. Penttinen, Bayesian smoothing in the estimation of the pair potential
function of gibbs point processes, Bernoulli (1999), 1119-1136.

S. Har-Peled, Geometric Approximation Algorithms, AMS, 2011.

J. lllingworth and J. Kittler, A survey of the hough transform, Computer vision, graphics,
and image processing 44 (1988), no. 1, 87-116.

A. K. Jain and M.-P. Dubuisson, Segmentation of x-ray and c-scan images of fiber rein-
forced composite materials, Pattern Recognition 25 (1992), no. 3, 257-270.

R. Karp, Reducibility among combinatorial problems, Springer, 1972.

N. Kiryati, Y. Eldar, and A. M. Bruckstein, A probabilistic Hough transform, Pattern
recognition 24 (1991), no. 4, 303-316.

W. S. Kendall, Perfect simulation for the area-interaction point process, Probability to-
wards 2000, Springer, 1998, pp. 218-234.

Bibliography 97

[KGS15]

[KHXO95]

[KKAOO]

[KMOO]

[KMP17]

[Kol06]

[KPWO2]

[LBY6]

[Lit88]

[Lub86]

[Mar63]

[Mat02]
[MDG16]
[Mgl99]

[MRO5]

A. Khan, S. Gould, and M. Salzmann, A linear chain markov model for detection and
localization of cells in early stage embryo development, Proc. IEEE Winter Conference
on Applications of Computer Vision 2015, IEEE, 2015, pp. 526-533.

H. Kilvidinen, P. Hirvonen, L. Xu, and E. Oja, Probabilistic and non-probabilistic
Hough transforms: overview and comparisons, Image and vision computing 13 (1995),
no. 4, 239-252.

N. Kiryati, H. Kélvidinen, and S. Alaoutinen, Randomized or probabilistic Hough trans-
form: unified performance evaluation, Pattern Recognition Letters 21 (2000), no. 13,
1157-1164.

W.S. Kendall and J. Mgller, Perfect simulation using dominating processes on ordered
spaces, with application to locally stable point processes, Advances in Applied Proba-
bility (2000), 844—865.

A. Kupavskii, N. Mustafa, and J. Pach, Near-optimal lower bounds for epsilon-nets for
half-spaces and low complexity set systems, 2017.

V. Kolmogorov, Convergent tree-reweighted message passing for energy minimization,
IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (2006), no. 10,
1568-1583 (English).

J. Komlés, J. Pach, and G. Woeginger, Almost tight bounds for e-Nets, Discrete & Com-
putational Geometry 7 (1992), no. 1, 163-173.

M.N.M. van Lieshout and A.J. Baddeley, A nonparametric measure of spatial interaction
in point patterns, Statistica Neerlandica 50 (1996), no. 3, 344-361.

N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm, Machine learning 2 (1988), no. 4, 285-318.

M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM
journal on computing 15 (1986), no. 4, 1036-1053.

D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, Jour-
nal of the society for Industrial and Applied Mathematics 11 (1963), no. 2, 431-441.

J. Matousek, Lectures on Discrete Geometry, Springer, 2002.
N. Mustafa, K. Dutta, and A. Ghosh, A simple proof of optimal epsilon nets.
J. Mgller, Markov chain monte carlo and spatial point processes.

R. Motwani and P. Raghavan, Randomized algorithms, 1. publ. ed., Cambridge Univer-
sity Press, Cambridge [u.a.], 1995 (eng).

98

Bibliography

[MRZ*17]

[MV17]

[MW04]

[MZ17]

[NGO9]

[NSO8]

[Ots79]

[PPSD15]

[PROS]

[PSTO5]

[Rip77]

[Rip91]

[RRSS17]

[SACFT12]

[SE02]

P. Markowsky, S. Reith, T. Zuber, R. Konig, K. Rohr, and C. Schnérr, Segmentation
of cell structures using model-based set covering with iterative reweighting, Biomed-
ical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on, IEEE, 2017,
pp. 392-396.

N. H. Mustafa and K. Varadarajan, Epsilon-approximations and epsilon-nets, arXiv
preprint arXiv:1702.03676 (2017).

J. Moller and R. P. Waagepetersen, Statistical inference and simulation for spatial point
processes, CRC Press, 2004.

P. Markowsky and T. Zuber, Parallelizing -net-based reweighting with tight bounds,
2017.

F. Nielsen and V. Garcia, Statistical exponential families: A digest with flash cards, arXiv
preprint arXiv:0911.4863 (2009).

A. Noga and J. Spencer, The Probabilistic Method, Wiley, 2008.

N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on
Systems, Man, and Cybernetics 9 (1979), no. 1, 62-66.

E. Poulain, S. Prigent, E.l1 Soubies, and X. Descombes, Cells detection using segmen-
tation competition, 2015 IEEE 12th International Symposium on Biomedical Imaging
(ISBI), IEEE, 2015, pp. 1208-1211.

E. Pyrga and S. Ray, New existence proofs e-nets, Proceedings of the twenty-fourth an-
nual symposium on Computational geometry, ACM, 2008, pp. 199-207.

S. A. Plotkin, D. B. Shmoys, and E. Tardos, Fast approximation algorithms for fractional
packing and covering problems, Mathematics of Operations Research 20 (1995), no. 2,
257-301.

B. Ripley, Modelling spatial patterns, Journal of the Royal Statistical Society. Series B
(Methodological) (1977), 172-212.

, Statistical inference for spatial processes, Cambridge university press, 1991.

T. Rajala, C. Redenbach, A. Siarkki, and M. Sormani, A review on anisotropy analysis of
spatial point patterns, arXiv preprint arXiv:1712.01634 (2017).

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,
S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al., Fiji: an open-source platform
for biological-image analysis, Nature methods 9 (2012), no. 7, 676-682.

P. Schneider and D. H. Eberly, Geometric tools for computer graphics, Morgan Kauf-
mann, 2002.

Bibliography 99

[Soil3] P. Soille, Morphologische bildverarbeitung: Grundlagen, methoden, anwendung,
Springer-Verlag, 2013.

[SWO00] H. Scharr and J. Weickert, An anisotropic diffusion algorithm with optimized rotation
invariance, Mustererkennung 2000, Springer, 2000, pp. 460—467.

[SWDI15] E. Soubies, P. Weiss, and X. Descombes, Graph cut based segmentation of predefined
shapes: Applications to biological imaging, Pattern Recognition Applications and Meth-
ods, Springer, 2015, pp. 153-170.

[TH15] A. A. Taha and A. Hanbury, Metrics for evaluating 3d medical image segmentation:
analysis, selection, and tool, BMC Medical Imaging 15 (2015), no. 1, 29.

[TLSK15] A. Tanécs, J. Lindblad, N. Sladoje, and Z. Kato, Estimation of linear deformations of 2d
and 3d fuzzy objects, Pattern Recognition 48 (2015), no. 4, 1391-1403.

[Var10] K. Varadarajan, Weighted geometric set cover via quasi-uniform sampling, Proceedings
of the forty-second ACM symposium on Theory of computing, ACM, 2010, pp. 641—
6438.

[VazO1] V. V. Vazirani, Approximation algorithms, Springer, Berlin ; Heidelberg [u.a.], 2001
(eng), Auf dem Titelblatt falsche Schreibweise: Appromixation algorithms.

[WRO02] D. Walsh and A. E. Raftery, Accurate and efficient curve detection in images: the impor-
tance sampling Hough transform, Pattern Recognition 35 (2002), no. 7, 1421-1431.

[YNM™15] Q. Yang, A. Nofsinger, J. McPeek, J. Phinney, and R. Knuesel, A complete solution
to the set covering problem, Proceedings of the International Conference on Scientific
Computing (CSC), The Steering Committee of The World Congress in Computer Sci-
ence, Computer Engineering and Applied Computing (WorldComp), 2015, p. 36.

[You95] N. E. Young, Randomized rounding without solving the linear program, SODA, vol. 95,
1995, pp. 170-178.

[YTL92] R. Yip, P. Tam, and D. Leung, Modification of hough transform for circles and ellipses
detection using a 2-dimensional array, Pattern recognition 25 (1992), no. 9, 1007-1022.

	Introduction
	Overview and Motivation
	Related Work
	Contributions
	Organization

	I Randomized Set Cover (RSC)
	Background and Convergence
	Introduction
	Basic Definitions and Preliminaries
	Generalized Iterative Reweighting with Tight Bounds

	Parallel and Hierarchical RSC
	Independent Weight Updates for a Parallelization with Tight Bounds
	Hierarchical Weight Updates

	Related Methods
	Greedy Set Covering
	Solving RSC via Linear Programming
	Variants of the Set Cover Problem
	Solving a Linear Program via RSC
	RSC as a Special Case of Multiplicative Weights
	Comparison to Hough transformation

	II Set Covering with a Gibbs Prior
	Gibbs Point Process Model
	Introduction and Overview
	Basic Definitions: Point Processes
	Pairwise Interaction/Gibbs Point Processes
	Gibbs Model for Fiber Data
	Simulation
	Estimation of Model Parameters

	Model-based Randomized Set Cover
	Combining Gibbs Model and RSC
	Convergence
	Data Term Scaling

	III Experimental Evaluation
	Evaluation on Synthetic Data
	Range and Parameter Structure and Set Up
	RSC Approaches without an underlying Model
	Model-based RSC

	Pre- and Postprocessing Methods for Real Data
	Preprocessing Methods
	Data-specific Postprocessing

	Application on Real Data
	2D Cell Data
	3D Fiber Data

	Conclusion and Outlook
	Randomized Set Cover and -Nets
	Detailed Bounds of the Number of Weight-Doubling Steps
	Asymptotic Behaviour of max(x)

