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Preface

"The only certainty in science is uncertainty!"

anonymous scientist

Every prediction, measurement or estimation is inevitably subject to uncertainty. No
matter how precisely predictions or estimation models will be designed or how accurately
measurement devices will be built, under the assumption of real-world conditions, there
is always going to be a residual uncertainty. This is why the best path forward is to accept
and mitigate uncertainties. The same paradigm also holds true for radiotherapy where
ionizing radiation is targeted to malignant cells. This manuscript presents an uncertainty
quantification and mitigation method for carbon ion therapy which is known to be prone to
uncertainties. In a subsequent optimization step the influence of uncertainties is minimized
to obtain a treatment plan that potentially results in safer patient treatments.

This work was funded by the German Research Foundation Grant No. BA 2279/3-1
and was carried out at the German Cancer Research Center (DKFZ) in Heidelberg in close
collaboration with the Max Planck Institute for Intelligent Systems in Tübingen between
February 2015 and September 2018.

Disclosure: This manuscript builds upon the work of (Bangert et al., 2013) for protons and
photons. To implement and evaluate the new methodology, first, an open-source treatment
planning module for carbon ions was realized and validated against a clinical system. Results
in that regard were published in print (Wieser et al., 2017a, 2018). The first findings of the
new methodology are presented in Chapter III and were first presented 2016 at the ICCR
meeting in London and later published in print (Wieser et al., 2017b). Further, I contributed to
two other publications from my colleague Niklas Wahl investigating two specific aspects of
the new approach (Wahl et al., 2017, 2018a). The latest findings, presented in the second half
of Chapter III, have not yet been published but were orally presented at the ESTRO Physics
Workshop 2017 and the ESTRO 37 annual meeting. Full disclosure of scientific contributions
can be found at the end of the manuscript. Lastly, the new algorithm and the core result of
this Ph.D. thesis are made available in a Matlab-based code repository APMtoolbox* and are
publicly accessible from the file hosting service GitHub.

Animations: The digital version of this manuscript contains PDF-animations that can be
viewed on screen. The animations are generated employing the animate† LATEXpackage and
are displayed correctly if the PDF is viewed in Adobe‡ Acrobat Reader > 3 (non-mobile),
PDF-XChange§ or Foxit Reader¶. However, all relevant information is still available if other
PDF viewers or the printed version is used for reading as the animations are mainly of
illustrative value.

*https://github.com/e0404/APMtoolbox
†https://ctan.org/pkg/animate [accessed May 2, 2019]
‡https://get.adobe.com/reader/ [accessed May 2, 2019]
§https://www.pdf-xchange.de [accessed May 2, 2019]
¶https://www.foxitsoftware.com/pdf-reader/ [accessed May 2, 2019]
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"Growth for the sake of growth is the ideol-
ogy of the cancer cell."

Edward Abbey, 1988

I
Introduction

Cancer is the unregulated growth of human cells anywhere in the human body with the ability
to spread to other locations or organs. Causes for cancer are contributed to genetic mutations
which are either inherited or triggered by environmental factors. Epidemiology studies
revealed that cancer is ranked as the leading cause of death in economically developed
countries. Notably, the situation for developing countries is slightly different, as cancer
represents the second highest leading cause of death (Stewart and Wild, 2014). From a global
perspective, the absolute number of cancer cases amounts to 14.1 million as reported in 2011
and this number is expected to rise to 24.6 million in 2030 mainly due to demographic aging
and the increasing world population (Atun et al., 2015). In about ten years, nearly every
sixth death will be evoked by cancer* (WHO, 2018). Despite various approaches to treat
cancer such as surgery, chemotherapy, immunotherapy or new treatments, nearly two-thirds
of all cancer patients are either treated with radiation therapy as primary treatment or in
combination with approaches mentioned above (Atun et al., 2015). Therefore, radiotherapy
represents an effective and fundamental component of cancer treatment.

The principal aim of radiotherapy is to prevent the division of cancerous cells by applying
hazardous ionizing radiation. Although other parts of the cell might get damaged too, the
primary goal is to break up the Deoxyribonucleic Acid (DNA) of cancerous cells. Specifically,
the most employed type of radiation therapy is external beam radiation therapy which is
characterized by directing high-energetic ionizing radiation (either wave- or corpuscular-
radiation) from the outside into the cancerous tissue to release bound electrons from the
atomic nucleus and to subsequently break the DNA. Ionizing radiation induces mutual
reactions in different domains and time scales. Firstly physical-, then chemical- and ultimately
biological processes are triggered. Depending on the tumor’s micro-environment and other
biological interdependencies (e.g. cell composition, cell cycle, oxygenation level) a relevant
clinical outcome, such as tumor control, is ideally reached.

*http://www.who.int [accessed June 2018]
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Chapter I: Introduction

Most of external beam radiation therapy patients are treated with radiation in the form of
megavolt (MV) photons generated with linear accelerators (LINACs). Another technique
is provided by particle (hadron) therapy which utilizes corpuscular-radiation by means of
accelerated mono-energetic charged particles created by synchrotrons or cyclotrons. Particle
therapy is currently applied to only ∼1 % of radiotherapy patients because of the significantly
higher costs to operate such facilities. Nevertheless, this small subfield of radiotherapy has
been receiving increased attention over the past two decades due to their very different
physical interactions with matter (Combs and Debus, 2013; Kamada et al., 2015). More
precisely, the characteristic inverse depth dose profile of high-energetic charged particles is
of interest revealing a maximum dose deposition in a certain depth. Moreover, the spatial
location of the maximum dose deposition depends on the kinetic energy of the incident
primary particle, which can be controlled precisely by particle accelerators (synchrotrons or
cyclotrons).

Unlike photons, charged particles exhibit an increasing energy deposition in depth, which
results in a pronounced maximum towards the end of the particle range. This maximum is
usually referred to as Bragg peak in honor of William Bragg, who discovered this phenomenon
in 1903 (Charlie Ma and Lomax, 2012). Then, 43 years later Robert R. Wilson suggested in 1946
the therapeutic use of charged particles for cancer treatment (Wilson, 1946). The characteristic
depth dose profile of charged particles mainly drove the exponentially increasing number
of particle acceleration installations for radiotherapy worldwide. As of now, there are 81
facilities in operation and 50 under construction† and close to 200.000 patients† have been
treated with particle therapy (PTCOG, 2018). Markedly only a tenth of the patients were
treated with carbon ions due to the additional technical effort.
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Figure I.1: Normalized depth dose profiles in water of 6 MeV photons ( ), 133 MeV u−1 protons ( ) and
250 MeV u−1 carbon ions ( ) considering fragmentation. Protons and carbon ions reveal their characteristic
Bragg peak around 124 mm, whereas the photon dose profile ( ) is decaying after the initial build up effect from
0 mm to 15 mm. Note that ( ) and ( ) denote laterally integrated depth dose (IDD) profiles.

†https://www.ptcog.ch[ accessed Nov. 2018]
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Chapter I: Introduction

Exemplary, Figure I.1 shows the decreasing depth dose profiles of photons ( ) together
with the Bragg peak of protons ( ) and carbon ions ( ). The greater selectivity of
dose deposition of accelerated charged particles make it possible to create superior dose
distribution compared to photons mainly due to their increased energy deposition density
in depth and the abrupt dose fall-off. As a result, the integral dose to healthy tissue is
reduced by a factor of 2 to 3 (Lomax et al., 1999). Protons are the most familiar charged
particle employed for radiotherapy treatments followed by carbon ions. Also helium ions are
available in some institutions but are as of now only used for research. A major advantage of
particle therapy is the localized energy deposition pattern triggering denser ionization events
than photons. Whereby the ionization density itself increases with the mass of the primary
projectile. These high ionization densities induce clustered lesions to the DNA double helix
structure, which is considered as damage of greater complexity since it is harder for the cell
to repair. Therefore, charged particles are, at the same physical dose, more effective regarding
cell killing compared to photon radiation, which is on the contrary treated as sparsely ionizing.
More details about the induced biological effects and the increased effectiveness of charged
particles are given later in Chapter II.2.

A state of the art component of external beam radiation therapy is treatment planning, a
heavily computer-aided process, performed before the actual patient irradiation. The purpose
of treatment planning is to simulate and optimize a dose distribution/deposition for the
individual patient. Ideally, the tumor receives 100% of the dose needed to control the tumor,
whereas the normal tissue or organs at risk (OAR) should not receive any dose in order
to avoid complications in healthy tissue. However, in practice this condition can never be
met due to the deposited dose in the entrance channel of each beam. For that reason, the
treatment planner needs to define clinical objectives and constraints that represent a trade-off
between tumor irradiation and sparing of adjacent healthy tissue. An introduction to the
process of treatment planning is provided in Chapter II.3.

Analogous to any physical experiment or measurement, also the application of ionizing ra-
diation to the patient’s body is inevitably prone to uncertainties for which reason an adequate
uncertainty analysis is desirable to increase the informative value of the results. In the context
of radiotherapy, a simulated treatment plan is unavoidably associated with physical uncer-
tainties, for example, due to the imperfect knowledge of the patient geometry. Especially
accelerated charged particles are sensitive to such changes and are consequently suscepti-
ble to uncertainties simply because of the advantageous highly peaked depth-dose profile
(see ( ) and ( ) in Figure I.1). This phenomenon implies that the dose distribution,
simulated during treatment planning, will most probably not be the one that is applied and
effective on the patient’s body during irradiation as it only represents one unique "best guess"
and neglects a number of uncertainty sources along the workflow (Bortfeld, 2006). Although
clinicians and the medical physics community refer to treatment planning, a more suitable
term in the context of uncertainties is treatment simulation or estimation as the simulated
in-silico irradiation might differ substantially from the actual real world irradiation.
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Chapter I: Introduction

This work focuses on carbon ion treatment planning which requires an accurate modeling
of the physical energy deposition and the biological response to radiation. In comparison to
lighter ions such as protons, carbon ions produce (i) a sharper Bragg peak (dose maximum),
(ii) a steeper lateral dose fall off and (iii) secondary fragments. The latter causes a non-
negligible dose behind the Bragg peak (Suit et al., 2010). Focusing on biological properties,
carbon ions elicit reduced cellular repair capabilities and exhibit a reduced sensitivity to
radioresistant tumors, which makes them a promising radiation modality. It is known in the
medical physics community that the biological properties of carbon ions play a superior role
due to the lower cell survival rate they induce. It is necessary to integrate these pronounced
radiobiological effects into the treatment planning process (Karger and Peschke, 2017; O. Jäkel,
M. Krämer, C. P. Karger, 2001) which is why adequate bio-physical models have been devel-
oped in the past decades to predict the tissue response of heavier charged particles. The most
prominent models nowadays are the Local Effect Model (LEM) (Scholz et al., 1997), the mixed-
beam model (Kanai et al., 1997), and the Micro Dosimetric Kinect (MKM) (Inaniwa et al.,
2015). Among other, the Heidelberg Ion Therapy (HIT) facility utilizes the LEM to account for
radiobiological effects of heavier charged particles. As clinical experience in middle Europe is
based on the LEM, it is also considered in this work. Admitting that these biological models
are subjected to pronounced uncertainty (Friedrich et al., 2013a,b), their variability has hardly
been incorporated into robust treatment planning. Moreover, even physical uncertainties are
only starting to be considered in simplified form. As of now existing robust carbon ion treat-
ment planning approaches cannot include physical and biological uncertainties alongside
fractionation effects due to conceptual limitations and the involved high computational effort.

To boil down the essence, physical and biological uncertainties compromise the dose distri-
bution and might yield to a sub-optimal patient treatment. Therefore, a full exploitation of
the advantages of intensity-modulated carbon ion therapy for clinical application is hindered.
To create a one-to-one correspondence between simulated and applied dose, it is key for
radiotherapy to quantify and mitigate uncertainties. The aim of this thesis is to overcome
problems arising from physical and biological uncertainties in carbon ion therapy by introduc-
ing a new method for robust carbon ion treatment planning. The specific goals of this thesis
are first to investigate uncertainty quantification of carbon ion treatment plan uncertainties.
Secondly, this information is used for uncertainty mitigation to create robust treatment plans
that are less sensitive to the aforementioned uncertainties. This is achieved by developing
a closed-form uncertainty quantification method that allows to simultaneously incorporate
physical uncertainties, biological uncertainties as well as fractionation effects. On this basis,
probabilistic optimization is carried out to create robust carbon ion treatment plans. The
advantages of probabilistic optimization are investigated and quantified for several clinical
scenarios. These clinical cases demonstrate how the developed methodology can be applied
to clinical patient cases. The novel methodology not only increases treatment confidence but
might also lower the variability of future patient treatment outcomes.
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The thesis in hand is divided into the following chapters: The background is provided in
Chapter II. Physical and radiobiological fundamentals are presented first in Sections II.1 and
II.2. Next, the physical and biological beam model of an implemented treatment planning
system serving as a basic framework for algorithm development are described in Sections
II.3 and II.4. Further, Section II.5 presents existing approaches to quantify and mitigate
uncertainties in carbon ion therapy. The materials and methods Chapter III outlines a newly
developed methodology for uncertainty quantification and mitigation for carbon ion therapy.
The first IV.1 out of two result Sections contains the validation of the developed treatment
planning system whereas the second Section IV.2 focuses on the outcome of uncertainty
quantification and mitigation of carbon ion treatment plans. Last, Chapters V and VI discuss
and conclude the thesis.
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"Nothing in life is to be feared, it is only to
be understood. Now is the time to under-
stand more, so that we may fear less."

Marie Curie, 1867- 1934

II
Background

II.1 Particle Therapy Physics

Since 1946, when charged particles were proposed for cancer treatment, the understanding of
the involved physical processes have advanced substantially. This chapter provides a brief
overview of fundamental characteristics of charged particles and their interaction with matter
but an in-depth description can be found elsewhere (Bichsel, 2013; Durante and Paganetti,
2016; Lomax, 2009; Newhauser and Zhang, 2015; Schardt et al., 2010).
The most important physical quantity in radiotherapy is the absorbed dose d in the patient’s
tissue caused by ionizing radiation, which is given in Gray [Gy = J kg−1] and defined as
follows:

d =
1
ρ

dE
dx

Φ =
S Φ

ρ
(II.1)

where dE
dx denotes the linear stopping power S in [MeV cm−1], Φ the particle fluence/flux

in [cm−2], which is the quotient of the number of particles N per unit and area A. Lastly
ρ expresses the material density given in [g cm−3]. For dose calculation, the initial particle
fluence at the patient surface is determined by the particle accelerator, the density of the
patient tissue is assessed via medical imaging and lastly, the stopping power S, which
depends on (i) the type of charged particle (ii) its energy (iii) and the target materials, is
derived from physical interaction models that are described next.

II.1.1 Particle Interaction Mechanisms

There are several interaction pathways, which according to the ICRU report 85 (Seltzer
et al., 2011) can be broken down into nuclear-, radiative- and electromagnetic- (electronic)
interactions. Every interaction causes the charged particle to experience a stopping power. In
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Chapter II: Background

detail, the mean energy loss E per unit path length x is called mass stopping power S
ρ and

depends on the type of charged particle and its energy. The mass stopping power S
ρ given in

Equation II.2 is the sum of three independent mass stopping powers caused by (i) nuclear
interactions Snuc

ρ , (ii) the emission of bremsstrahlung Srad
ρ and (iii) electronic interactions Sel

ρ :

S
ρ
=

1
ρ

(
dE
dx

)
nuc

+
1
ρ

(
dE
dx

)
rad

+
1
ρ

(
dE
dx

)
el
=

Snuc

ρ
+

Srad
ρ

+
Sel
ρ

(II.2)

Practically, the nuclear stopping power Snuc contributes only marginally in the low-energy
domain to the total mass stopping power S

ρ as illustrated by ( ) and ( ) in Figure II.1(a)
and can therefore, in first approximation, be neglected. In addition, the radiative stopping
power Srad can also be omitted for therapeutic particle energies due to their negligible contri-
bution. On the contrary, the electronic stopping power Sel represents the main contributor
to S

ρ . A physical theory behind the electronic stopping power Sel was developed by Bethe
(Bethe, 1930) and Bloch (Bloch, 1933) and is given by:

Sel
ρ

= −1
ρ

dE
dx

= 4πNAr2
e mec2 Z

A
z2 1

β2

[
ln

2mec2γ2β2

I
− β2 − δ

2
− C

Z

]
(II.3)

where NA denotes the Avogadro’s number, re and me the electron radius and mass, c the
speed of light, Z the atomic number of the target material, A the atomic weight of the target
material, z the charge of the projectile, β = v

c with v the velocity of the projectile, γ equals
(1 − β2)−

1
2 , I the mean excitation potential of the target material and finally two correction

terms δ and C according to (Fano, 1963).
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Figure II.1: Plot (a) depicts the electronic stopping powers of protons ( ) and carbon ions ( ) as well as the
respective nuclear stopping powers ( , ) in water based on ICRU report 90. Plot (b) denotes the range-energy
relation of protons ( ) and carbon ions ( ) in water. The range is defined as the position where the deposited
energy reaches 80 % of its maximum value behind the peak which coincides with the position, where half of the
incident projectiles stop. A power law fit was used to obtain the range r in [cm] by r = αEp, where E is given in
[MeV u−1] and α = 0.22. The p parameter was set to p = 1.74 (p = 1.65) for protons (carbon ions) (Bortfeld, 1997;
Sanchez-Parcerisa, 2009; Sigmund et al., 2005).
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Equation II.3 was taken from (Newhauser and Zhang, 2015) and defines the electronic
stopping power of a set of particles and not a single particle which would be affected
by statistical fluctuations. The most essential characteristics of Equation II.3 are (i) the
dependence on the chemical composition Z

A of the target material and (ii) the inversely
proportional relation of energy loss and the square of the particle’s velocity dE

dx ∝ 1
v2 . Directly

speaking, low-energetic (low velocity) particles possess a higher stopping power than high-
energetic (high velocity) particles because interaction times with bound electrons become
larger. This behavior is illustrated in the left plot of Figure II.1 depicting the electronic
stopping power Sel of protons ( ) and carbon ions ( ) in water. Moreover, the plot
shows that heavier particles with a greater charge entail for the same energy a higher stopping
power than lighter particles.

The process behind the electronic stopping power Sel can be explained via inelastic Coloumb
interactions (inelastic collisions) and occurs when the incident particle interacts with the
electromagnetic field of the target atom. The orbiting negatively charged electrons (hull
electrons) of the target atom can be released by the incident positively charged particle,
thereby ionizing the target atom. The freed electron can then in turn trigger a cascade of
ionizations of neighboring atoms. As protons are ∼1800 and carbon ions ∼22000 times
heavier than electrons, they stay on an almost straight trajectory and undergo depending on
the target material, many thousands of such processes and continuously slow down due to
loss of kinetic energy when penetrating matter.

Recapped, a fundamental rationale for charged particles is that, the higher the initial energy,
the higher the velocity and the deeper particles can penetrate a medium. Particles with high
kinetic energy deposit less energy and vice versa. While slowing down progressively more
and more energy is deposited. Focusing on the entrance channel (x= 0 mm) of the Bragg peak
shown in the introduction in Figure I.1, where projectiles have the highest energy (highest
velocity), the dose deposition is low. In contrast, when a projectile almost stops it exhibits
the maximum dose deposition (Bragg peak). Referring back to the right plot of Figure II.1,
which highlights the energy-range relationship of protons and carbons, it is clear that a higher
energy per nucleon is required for carbon ions (250 MeV u−1) to match the range of protons
(133 MeV u−1) by reasons of the increased weight and charge.

Although the literature often refers to mono-energetic particles, i.e., an ensemble of particles
that possess the exact same kinetic energy, the situation in practice is different. Accelerators
produce particles with an energy spectrum of σ ∼ 1 %. As a result, different particles possess
slightly different ranges and cause a longitudinal modulation or widening of the Bragg peak.
This is why the expression pseudo mono-energetic is used in this manuscript to highlight an
initial energy spread. But even if the incident primary particles would theoretically possess
the exact same initial energy, a widening would still occur as the energy deposition is a
stochastic process. Each particle undergoes different interactions with the target atoms and
loses along the way varying amount of energy. Some undergo more and some undergo
fewer interactions. This effect is called range straggling. In consequence, the effect of range
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straggling will even spread or blur the Bragg peak for perfect mono-energetic particles. As
a rule of thumb, heavier charged particles suffer, due to their heavier weight, much less
from range straggling, which can be observed by the sharper lateral dose profile and sharper
carbon ion Bragg peak.

The second dominant interaction mechanism of charged particles is represented by nuclear
interactions which can, in turn, be broken down into two processes, namely elastic Coulomb
interactions with the atomic nucleus and inelastic nuclear interactions. Both are described
next. The first process is given by Coulomb interaction with the atomic nucleus, also termed
elastic scattering, where the target nucleus stays intact. These processes occur when the
particle is deflected from its trajectory by a repulsive force with the nucleus. The repulsive
force is evoked by a positive charge of the incident particle and the target nucleus, which
simply repel each other. In contrast, to the interaction with hull electrons, where the projectile
trajectory is almost unchanged, for elastic scattering both, the incident particle and the target
nucleus are in a similar mass domain and cause therefore a deflection of the projectile. Elastic
scattering is the leading process for the lateral shape of dose deposition and increases with
depth resulting in a divergence of incident projectiles. It is worth mentioning that carbon
ions are less affected by elastic scattering because of their weight and consequently produce
a sharper lateral dose gradient.

The second process of nuclear interactions, responsible for the nuclear stopping power Snuc,
is given by inelastic (nonelastic) interactions. Here, the projectile breaks through the Coulomb
barrier of the target nucleus and enables direct interactions with hadrons of the nuclei. These
processes are less common but have a profound impact. Depending on the particle type, the
projectiles may fragment into their constituents and the projectiles may knock out nucleons
from the target material (abrasion-ablation model) (Serber, 1947). Regardless of how, this
process involves a change of the projectile trajectory, creation of fragments and yield to a
reduction of primaries. Heavier charged particles, such as carbon ions, can release in the
nuclear fragmentation process lighter ions which can penetrate to far deeper depths than
the initial range of the projectile. Well illustrated is this phenomenon by the dose deposition
behind the carbon ion Bragg peak shown in the introduction in Figure I.1 ( ). Generally,
only fragments possessing a lower atomic number Z than the initial projectile deposit dose
behind the Bragg peak (dose tail). Logically protons do not exhibit a dose tail.

Figure II.2 illustrates the relative fluences of a pseudo mono-energetic carbon ion beam
with 350 MeV u−1 in water and its fragments. It can be seen that carbon ions ( ) stop at a
range of ∼22.4 cm and only lighter fragments, in particular, deuterium ( ), helium ( ),
and lithium ( ) contribute to the dose tail. The effect of a reduction of projectiles due to
nuclear interaction can also be observed in Figure II.2 in ( ). Only ∼40 % of the carbon
ions reach the Bragg peak ∼22.4 cm. This effect is even more pronounced for carbon ions
with higher initial energies, i.e., 400 MeV u−1 where only ∼30 % reach the peak. This implies
that 60 %, respectively 70 % of the carbon ions already stopped before the Bragg peak due to
nuclear interactions. As carbon ions produce multiple lighter ions when traversing matter, a
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Figure II.2: Relative fluence of a pseudo mono-energetic carbon ion beam with 350 MeV u−1 in water including
fragments. All carbon ions ( ) stop around 22.4 cm and lighter ions A ≤ 6 contribute to the dose tail. Fluences
are obtained from Monte Carlo Fluka simulations modelling the Heidelberg Ion Therapy beam line.

mixed-radiation field composed of fragments with varying biological impact is created. It is
described later in Section II.3 how these mixed-field effects are considered in the treatment
planning process.

II.1.2 Linear Energy Transfer

The Linear Energy Transfer (LET), often referred to as restricted linear electronic stopping
power, is closely related to the stopping power S and denotes for a given projectile and
material according to the ICRU report 85 (Seltzer et al., 2011), the ratio of mean energy loss
dE∆ of charged particles due to electronic interactions by penetrating a distance dx.

LET∆ =
dE∆

dx
= Sel −

dEke,∆

dx
(II.4)

where dE∆ is the mean energy loss only considering secondary electrons with kinetic energy
smaller than ∆. For ∆ → ∞ the LET becomes the unrestricted LET (LET∞) which equals
directly the electronic stopping power Sel (Seltzer et al., 2011). Thus Eke,∆ indicates the energy
carried away from the primary track by high energetic secondary electrons with kinetic
energy greater than ∆ (Seltzer et al., 2011). Since projectiles and possible fragments are for
a given initial kinetic energy in a certain depth in water not mono- but poly-energetic and
consequently possess different stopping powers, it is practical to define an average LET. The
two most common definitions are track-averaged and dose-averaged LET. The latter is given
next:

LETd(x, E0) =
∑Z
∫ ∞

0 φ(x, Z, E, E0) S2
el(Z, E) dE

∑Z
∫ ∞

0 φ(x, Z, E, E0) Sel(Z, E) dE
(II.5)
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where x denotes the depth [mm], E0 the initial energy of the incident primaries [MeV u−1]
and E the energy spectrum [MeV] of ion type Z. Figure II.3 details the unrestricted LET∞ of
a pseudo mono-energetic carbon ion beam in water with an initial energy of 350 MeV u−1

including corresponding fragments. The dose-averaged LETd according to Equation II.5 is
represented by ( ). As all carbon ions stop ∼22.4 cm, only lighter fragments with smaller
stopping powers are present in the tail, which is the main reason for the drop in LETd ( )
behind the Bragg peak.
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Figure II.3: Relative unrestricted LET (LET∞) from deuterium ( ) to carbon ions ( ) of a pseudo mono-
energetic carbon ion beam with 350 MeV u−1 in water. The dose-averaged LETd considering all fragments according
to Equation II.5 is shown by ( ). The wiggles in ( ) from 22 to 25 cm are due to statistical noise induced by
the underlying Monte Carlo Fluka simulation of the HIT beam line (Krämer and Scholz, 2000).

Generally, charged particles such as carbon ions are considered as high LET radiation
causing dense ionization events. The LETd of carbon ions is roughly (Z2) 36 times higher
compared to protons. In contrast, photons are treated as low LET radiation as they induce
sparse ionization events. In practice, the LET is often considered as a synonym for the radia-
tion quality (ionization density) and its variation along the particle track directly motivates
a non-linear biological response to the physical particle dose. The next chapter introduces
radiobiological aspects of charged particles and then focuses on carbon ions.

II.2 Radiobiology

Radiobiology investigates radiation effects on the living organism. The affected physical,
radiochemical and biological processes range in space from the atomic sub-nm level to tissue
dimensions in mm and in time from fs to years. It is commonly known, that different radiation
modalities induce depending on the dose, dose rate and tissue under consideration, a distinct
effect on the biological system. To enable a comparison between effects of different radiation
modalities, the concept of a conversion factor, labeled Relative Biological Effectiveness (RBE)
was defined by the ICRU (2008).
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II.2.1 Relative Biological Effectiveness - RBE

For the same physical dose (see Equation II.1), it was found empirically, that carbon ions
are biologically more effective than photons (Kraft, 2000; Schardt et al., 2010). The ratio of
photon dose dx and dose deposited by ions dI , under the premise both induce an identical
effect (iso-effective), is called RBE and depicted in Equation II.6:

RBE =
dx

dI

∣∣∣∣
iso−e f f ective

(II.6)

For real treatments, the RBE shows a complex three-dimensional variability and depends,
among other, on the dose level, LET, tissue type and the selected endpoint. In a clinical
setting, the RBE of protons relative to photons is ∼1.1 and ranges for carbon ions from 2 to
5 within the tumor. In charged particle therapy, the RBE is weighted with the physical ion
dose dI (RBE × d) and used for clinical decision making. However, to calculate the RBE it is
necessary to determine iso-effectiveness by selecting a relevant endpoint for the actual clinical
problem under investigation. There are numerous endpoints to identify iso-effectiveness
ranging from DNA lesion induction over Normal Tissue Control Probability (NTCP) and
Tumor Control Probability (TCP) to late radiation effects on the living thing. Notably, the
most common endpoint for radiotherapy is cell survival, which will be described next.

II.2.2 Cell Survival and the Linear Quadratic Model

Cell survival curves are dose-response models and depict the surviving fraction of cells,
i.e. cells that maintain proliferation as a function of absorbed dose. Although there are
different forms of cell death, such as necrosis, apoptosis, autophagy or senescence which
can be reached by various pathways, typically, if not explicitly stated otherwise, clonogenic
cell survival is considered as endpoint. The expression "clonogenic" implies that a colony
of cells (cell culture) is grown in-vitro from a single cell. The underlying technique is called
clonogenic cell survival assay and was invented by (Puck and Marcus, 1956) in the 1950s
and essentially determines the number of proliferating cells after irradiation. To obtain cell
survival curves, clonogenic cell survival assays have to be repeated multiple times for several
dose points to obtain confident values. An example of cell survival curves is illustrated in
Figure II.4. The left plot shows a comparison of generic in-vitro cell survival curves of low
LET ( ) and high LET ( ) radiation. The vertical lines ( ) indicate the photon
dose dx and the carbon ion dose dc, respectively, for a cell survival level of 1.16 %. The
corresponding RBE on this cell kill level equals 8 Gy/ 4 Gy ≈ 2.

A cell survival curve can be parameterized sufficiently by a second order curve with two
parameters α and β that can be fitted to the experimentally measured data points (Kellerer
and Rossi, 1978; Sinclair, 1966). α and β are considered as radio-sensitivity parameters of the
underlying Linear Quadric Model (LQM). Although the involved processes from ionization
to cell death are complex, the shape of the cell survival curve as a function of absorbed dose
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Figure II.4: Left: Generic in-vitro cell survival curves of sparsely ionizing photons ( ) and densely ionizing carbon
ions ( ). Right: Cell survival curves irradiated with photons of two distinct generic tissues characterized by αx

βx
=

2 Gy ( ) and 10 Gy ( ).

is rather simple. The fraction of cell survival S is then given by:

S = e−ε = e−(αd+βd2) with: ε = αd + βd2 (II.7)

where ε represents the biological effect, α characterizes the initial slope and β the curvature
of the cell survival curve. Albeit in-vitro cell survival curves represent simplistic cell in-
activation as endpoint, they are not directly applicable to more complex in-vivo endpoints
as they represent an integral response influenced, among others, by the organ structure
(serial or parallel), the tissue micro-environment, metabolic factors, interaction of healthy and
cancerous cells. (Tommasino and Durante, 2015).

The radiation damage does not only depend on physical properties, but also on tissue
characteristics of the target. The underlying principle is that different tissues (cells) react
differently to ionizing radiation. This phenomenon is illustrated in the right plot of Figure II.4
showing photon survival curves for two different tissues characterized by αx

βx
= 2 Gy ( )

and αx
βx

= 10 Gy ( ). Further, the bending of the cell survival curve entails relevant tissue
characteristics. Focusing on the solid red curve ( ), a shoulder can be observed implying
damages can be repaired sufficiently in the low dose region. On the contrary, the repair
capabilities increasingly fail for higher doses (more complex damage caused by clustered
DNA lesions). The α

β -ratio essentially quantifies cell repair capabilities and marks the dose
level from which on the quadratic component in Equation II.7 is the dominant contributor.

Steeper cell survival curves, such as the carbon ion curve ( ) in Figure II.4, do not show
a shoulder and indicate that already at smaller doses the induced cell damage cannot be
repaired. In general, tissues associated with low α

β -ratios [1 to 4 Gy] indicate functioning
repair capabilities making such tissues radio-resistant. On the contrary, tissues described
with a high α

β -ratio [4 to 10 Gy] are considered to be radio-sensitive.
Treatment planning for carbon ions requires the knowledge of the radio-sensitivity pa-

rameters αI and β I . Unlike for photons, where αx and βx are constant, αI and β I show for
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particles various dependencies, e.g., on the particle type, stopping power, the target cell,
and irradiation conditions. The number of combinations to cover all dependencies with
clonogenic cell survival assays is practically infeasible as assays are not only time intense to
grow but also beam time is a limited resource. For this reason, biophysical models have been
intensively developed in the past. The biophysical model used throughout this work is the
Local Effect Model (LEM) and described next.

II.2.3 Local Effect Model LEM

The goal of the LEM is to predict the radio-sensitivity parameters αI and β I of the LQM for
heavier charged particles from the photon radios-sensitivity parameters αx and βx. The LEM
is grounded on the amorphous track structure approach where the radial dose distribution of a
single particle is continuous representing an average quantity over many tracks. The most
obvious difference between photons and charged particles which helps to describe the RBE,
is the microscopic dose deposition pattern (Scholz et al., 1997; Scholz and Kraft, 1996). As the
expected energy deposition of photons in small sub-volumes is constant over the cell nucleus
volume, the local cell survival of photon irradiation coincides with the global cell survival.
On the contrary, the expectation value of the energy deposition of charged particles is sharply
peaked around the ion’s trajectory. For that reason, the local effect does not equal the global
effect. To obtain the global effect on the basis of the LEM, it is necessary to firstly average the
local effect over the cell nucleus and then secondly over multiple cells to account for traversal
statistics.

The core assumption of the LEM is that equal local doses yield equal local effects. This
theory implies that the macroscopic damage to the cell’s DNA is independent of the radiation
modalities and only differs in magnitude. For both, photons and ions, DNA strand breaks
are primarily the result of ionizations via secondary electrons, which firstly deposit the
most substantial fraction of energy and are secondly independent of the primary projectile.
Assuming cell damage is identical for all radiation modalities requires consequently only to
consider the ionization density – which varies considerably (Kraft and Krämer, 1993). To
ultimately predict the radio-sensitivity of charged particles αI and β I with the LEM, three
parameters are required: (i) the photon dose-response curve, (ii) the cell nucleus and (iii) the
radial dose distribution of the incident projectile. All three inputs are described next and
additionally shown in Figure II.5.

(i) Photon dose-response curve: It is assumed that the photon dose-response curve (photon
radio-sensitivity) is represented by an adaption of the LQM:

Nlethal = −ln(Sx) =


αxD + βxD2 for D ≤ Dt

αxDt + βxD2
t + smax(D − Dt) if D > Dt

with: smax = αx + 2βxDt

(II.8)
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where Dt describes a transition from a shouldered to a pure exponential trend after 10 %
survival. As LEM requires interpolation at very high local doses of up to several thousand
Gy, this adaption was chosen to be in line with limited experimental data (Saager et al., 2015,
2016, 2014). Nevertheless, the elemental problem is the cell survival curve can practically,
due to the meager cell survival at high doses, hardly be determined. Further, it is important
to mention that αx,βx and Dt are considered as input parameters of the LEM, which could in
principle depict any other relevant endpoint than clonogenic cell survival.
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Figure II.5: Schematic illustration of the LEM. Plot (a) presents the radial dose distribution ( ) of a carbon ion
particle with 12 MeV u−1 which translates to a electronic stopping power of 1401 MeV cm g−2. Plot (b) shows the
cell nucleus ( ) hit by three projectiles with different energies. Concentric circles represent iso-dose lines of three
dose distributions each induced by a charged particle. The local total physical dose is then used to assess the local
cell survival by means of the adapted cell survival curve ( ) of photons depicted in the right plot (c).

(ii) Cell nucleus / geometrical structure: It is assumed the cell nucleus represents the
sensitive component for radiation and is, in first approximation, of cylindrical shape. Further,
an uniformly distributed radio-sensitivity throughout the whole cell nucleus is considered.
Damages to other parts of the cell are neglected and are not modeled. The size (radius) of the
cell nucleus is typically in the range of 5 µm to 10 µm (depending on the cell type). Assuming
the ion tracks traverse parallel to the central axis of the cell cylinder reduces the calculation
to a two-dimensional problem. Although the radio-sensitivity depends in theory on the cell
cycle, type, -stage, -age etc., these aspects are neglected at this point for simplicity.

(iii) Radial dose distribution: The dose distribution around an ion track can be approxi-
mated by a piece-wise function up to a certain threshold, labeled as track radius rmax. The
most energetic electrons referred to as δ-electrons produced by the primary projectile deter-
mine the track radius rmax. The radial dose distribution in the first LEM version is defined as
a piece-wise function:

D(r) =



λ LET
r2

min
if r < rmin

λ LET
r2 if rmin < r < rmax with: λ = 1

ρπ(1+ln( r2
max

r2
min

))

0 if r > rmax

(II.9)

The dose D is set to be constant within the region of rmin. Typical values of rmin and rmax are
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10 nm and 1-10 µm, respectively. λ represents a normalization constant to ensure the integral
over the whole track yields the LET. rmax can be assessed by using a fit of rmax = γEδ with
rmax in [µm], E in [MeV u−1] and γ = 0.05, δ = 1.7 (Scholz and Kraft, 1996).

It is assumed that the inactivation of a cell is a point-like event (lethal event) induced by the
deposited dose. The average number of such lethal events Nx(D) after photon irradiation
correlates with the dose D since higher doses yield more lethal events. The inventors of LEM
(Scholz and Kraft, 1996) assumed the lethal event distribution obeys a Poisson distribution
and derived the fraction of surviving cells via:

Sx(D) = e−Nx(D) ⇔ Nx(D) = − ln(Sx(D)) = αxD + βxD2 (II.10)

As the distribution of sensitive sites is homogenous throughout the cell nucleus, lethal
events Nx(D) are randomly distributed over the cell nucleus volume V and a dose-dependent
photon event density νx can be derived:

νx(D) =
Nx(D)

V
=

− ln Sx(D)

V
(II.11)

where νx is assumed to be constant for cells and all neighboring cells. On the contrary,
charged particles induce an inhomogeneous dose distribution d(x, y, z) which is sharply
peaked around the ions track resulting consequently in an inhomogeneous lethal event
density νion. Therefore, it is necessary to integrate the local event density over the cell nucleus
volume to obtain the average number of lethal events Nion:

Nion =
∫

V
νion[d(x, y, z)]dV (II.12)

Following the underlying assumption of LEM, i.e., equal local doses yield equal local effects,
independent of the radiation modality, allows to equate νx and νion to derive:

Nion = − ln(Sion) = −
∫

V

ln(Sx(d(x, y, z))
V

dV (II.13)

Thus, the effect of particle radiation in a macroscopic subvolume can be calculated from
the effect of photon irradiation, if the corresponding physical particle dose is known. The
biological effect in a cell can then be calculated by averaging the local effect over the cell
nucleus volume.

Equation II.13 highlights the link between the biological effect of photons ln(Sx) to that
of ions ln(Sion). The integration in Equation II.13 is not straightforward as the spatial distri-
bution of d(x, y, z) is strongly peaked and therefore highly irregular on the submicroscopic
level.

Ions produce a very localized but high biological effect in a small subvolume due to
high local doses (>1000Gy). Nevertheless, a high localized biological effect over a bigger
subvolume results in a decreased overall biological effect.

To account for different spatial distributions (ion hit positions) and fluences, ln(Sion) is
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considered to be the average number of multiple repetitions to account for the stochastic
spatial behavior. However, considering small fraction doses with low hit statistics allows to
obtain the initial slope αI employing an approximation. Here the ion cell survival curve of a
single particle can be obtained according to (Scholz et al., 1997) via:

αI(Z, E) =
1 − Sion

Nion
(II.14)

where αI(Z, E) denotes the predicted radio-sensitivity parameter of the LQM of particle
type Z and energy E on the basis of the LEM.

Summarized, the cell survival Sion induced by ions can be obtained via Sion = e−Nion

according to their response to photons (Scholz et al., 1997; Scholz and Kraft, 1996). The LEM
was further improved in its second version to more accurately predict the radio-sensitivity of
lighter ions such as protons and helium ions (Elsässer and Scholz, 2007). In particular, an
enhancement factor to model the increased damage of DNA lesions in close vicinity and a
smoothed radial dose profile were introduced. The third LEM version considered an energy-
dependent track core radius rmin, instead of a constant core radius of ∼10 nm (Elsässer et al.,
2008). In the latest LEM version IV, an intermediate step was introduced. From the physical
dose distribution of charged particles, an initial spatial DNA damage distribution is inferred.
The underlying assumption is that the relevant quantity to derive the local effect is supposed
to be the microscopic damage distribution of DNA lesions and not the physical dose (Elsässer
et al., 2010). Thus the narrative switches to equal local damage distributions lead to equal
local effects.

Shifting the focus back to this manuscript, then treatment planning for carbon ions is
based on the LEM I and IV. The version number is indicated by Roman numbers. I refers to
the first version and IV to the fourth model version. Up to here, all relevant physical and
biological properties of accelerated charged particles have been introduced which allows
now to describe the treatment planning process of carbon ions in the next section.

II.3 Radiation Treatment Planning

Radiation Treatment planning is one essential chain link in the radiotherapy workflow. Usu-
ally, the patient is first immobilized to ensure a consistent patient position for the subsequent
imaging procedure as well as for multiple patient irradiations. Afterward, a Computed
Tomography (CT) scan and potentially other anatomical or functional imaging scans (MRT,
PET) are acquired and eventually fused. The tumor volume and multiple Volumes of In-
terest (VOIs) are outlined/segmented in a further step to start in silico radiation treatment
planning.
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II.3.1 Treatment Planning and IntensityModulated ParticleTher-

apy

The treatment planner defines firstly beam angles to determine the directions from which
ionizing radiation will be guided into the patient’s body by the irradiation device. Next,
the irradiation geometry along with the pencil beam positions are determined by the
Treatment Planning System (TPS) before dose calculation for unit intensities is carried
out. Figure II.6 recaps the calculation of the irradiation geometry (steering information).

Figure II.6: Schematic illustration of the ray-pencil beam
concept. Taken from https://github.com/e0404/matRad/
wiki/Dose-influence-matrix-calculation

The yellow point indicates the virtual
source of irradiation, the green line the
patient surface and the red contour the
target volume. This example depicts a sin-
gle beam, whereby the black dotted line
( ) presents bixel/beamlet edges re-
quired for photon treatment planning and
black dots ( ) on ( ) show the spot
placement for treatment planning with
charged particles. For the latter, it is es-
sential to know the exact location of the pencil beam spots (black dots ) in the patient.
Therefore, the discretized patient’s geometry is initially obtained via a CT scan measuring
the photon attenuation in Hounsfield Units (HU). Then HU values are converted to Stopping
Power relative to Water (rSP) using a machine-specific calibrated look-up table (Newhauser
and Zhang, 2015). Next, ray tracing is performed to obtain the integral rSP for each ray (Sid-
don, 1985). The integral rSP is also often referred to as Water Equivalent Path Length (WEPL).
Only if the ray hits the target, multiple pencil beams are positioned longitudinally along the
ray as indicated by ( ) in Figure II.6. An important parameter in this regard is the lateral
pencil beam spacing which is determined based on a plane through the iso-center ( ) that
is perpendicular to the central ray of the irradiation angle. It specifies the lateral spacing of
rays and consequently the lateral density of pencil beam spots. Once the beam geometry,
including pencil beam positions, are calculated for each beam direction, dose calculation can
then be carried out. Unlike Monte Carlo dose calculation algorithms, which simulate dose in
material, analytical dose calculation algorithms calculate dose in water.

As dose calculation is done on a regular three-dimensional grid, a linear voxel index i
{i ∈ N|1 ≤ i ≤ I} is introduced to replace subscripts x, y, z. Dose calculation is performed
for each pencil beam spot successively for unit intensity. As it is necessary to re-evaluate
the dose distribution for different pencil beam intensities during optimization, the dose
information for unit intensities needs to be saved throughout the treatment planning process.
In this case, a matrix, referred to as dose influence matrix D, is created to store column-wise
the dose contribution to all voxels i for each pencil beam j, {j ∈ N|1 ≤ j ≤ J}. Let I be the
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total number of voxels and J be the total number of spots then the dose influence concept is
represented by:

di =
J

∑
j=1

Dijwj or d = D w (II.15)

where d denotes the physical dose ∈ RI×1, w the pencil beam weights ∈ RJ×1 and D
the dose influence matrix in ∈ RI×J . Equation II.15 shows the linear dose mapping to
calculate the deposited dose di in voxel i. The dose contribution of each pencil beam is
weighted by its intensity wj and summed up. The implemented analytical dose calculation to
derive individual dose influence elements Dij is described later in Chapter II.4. After dose
calculation, inverse optimization is the next link in the chain.

Here, the treatment planner needs to translate clinical goals into mathematical objectives
and constraints to sculpt the dose distribution to the patient’s needs. This process is iteratively
repeated until the optimized dose distribution is satisfying. For quality assurance reasons the
treatment plan is then reviewed by a clinician. Moreover, the application of the treatment
plan is tested before the patient is ordered into the hospital for the actual treatment. To
cover the complete tumor volume with the prescribed dose, it is required to place multiple
particle pencil beams with distinct range and lateral position inside the tumor volume as
shown in Figure II.6. As an example, a one-dimensional proton treatment plan is presented in
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Figure II.7: One-dimensional Spread out Bragg peak (SOBP)
in water comprised of 30 scanned proton pencil beams ( )
optimized for 3 Gy. The weighted superposition d of all individual
pencil beams is shown by ( ).

Figure II.7 in which proton pencil beams
with increasing beam energies are po-
sitioned in the target area ( ) from
100 mm to 170 mm. During optimization
an optimal set of pencil beam intensities
w producing according to given objec-
tives and constraints a minimal objec-
tive function value. In this case, a ho-
mogenous dose of 3 Gy was specified
for the target while keeping the dose to
the healthy tissue at the same time low.
The weighted superposition of all indi-
vidual pencil beams D w results in the
total dose d ( ) commonly known as
SOBP. The technique to modulate the in-

tensity of each pencil beam individually is called Intensity Modulated Particle Therapy (IMPT)
and is conceptually closely related to intensity modulated photon therapy (IMRT). Analyzing
Figure II.7, then special attention needs to be paid to the highly modulated pencil beam at
the distal edge of the SOBP as a miss-estimation of the pencil beam range might result in
under- or over-dosage of the tumor. This work focuses apart from uncertainty quantification
also on optimization strategies to create robust treatment plans that are less sensitive to such
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miss-estimations. The possibility to steer not only the depth position of the Bragg peak but
also the lateral position of each of the up to fifty thousand pencil beams for a single patient is
enabled by active pencil beam scanning, which is described next.

II.3.2 Pencil Beam Scanning

Currently, there are two distinct beam delivery techniques in clinical use. The common
denominator of both methods is the ability to control the intensity of the initial beam by
adapting the number of particles, but the range and lateral coverage are achieved differently.

The first beam application technique is given by passive beam shaping. Here the particle
beam is modulated by generic and patient-specific passive beam line elements (Krämer et al.,
2000). The main components of this method are (i) a range shifter wheel (ii) a scatterer
for broadening the beam to cover the whole tumor volume laterally, (iii) a collimator to
block unnecessary dose to healthy tissue and (iv) a patient-specific compensator to conform
the dose deposition to the target in depth. Besides the need to manufacture compensators
for each patient and beam individually, such systems induce due to the passive beam line
elements secondary radiation (neutrons), which increases the integral dose to the patient.
Further, the dose to nontumor tissue is increased in the proximal region of the SOBP since
dose conformity can only be achieved in the distal edge of the SOBP.

An evolving beam application system that allows for IMPT, is represented by active pencil
beam scanning (Haberer et al., 1993; Krämer et al., 2000). Here, each unscattered pseudo
mono-energetic pencil beam is deflected at the beam nozzle by so-called scanning magnets.
The magnetic field of these magnets alters the direction vector of the charged particle beam to
laterally cover (paint) the tumor as illustrated in Figure II.6 by different ray directions ( ).
To cover the tumor longitudinally, distinct initial pencil beam energies are applied, which is
schematically shown in Figure II.6 by black dots ( ) positioned on the same ray. Moreover,
at the HIT facility in Heidelberg, the pencil beam scanning technique allows to vary the initial
pencil beam width with respect to the tumor volume and initial beam energy. This mainly
affects protons, since lateral scattering is roughly ∼3 times higher compared to carbon ions.
Active pencil beam scanning does usually not require any additional beam modifying devices
(collimators, compensators). However, there is one exception to the latter statement. As the
carbon ion depth dose profile is extremely peaked, a ripple filter is added into the beam line,
to artificially increase range straggling (blurring the Bragg peak longitudinally) to ensure a
broader width of the Bragg peak. Otherwise, a homogenous dose distribution in the target
could not be reached by superimposing such extremely peaked pencil beam dose profiles.
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II.4 Treatment Planning and Robust Optimization

To implement uncertainty quantification and mitigation methods for carbon ion treatment
planning, firstly basic principles explained in the previous chapter needed to be translated
to computational algorithms to perform in silico radiation treatment planning. In a joint
effort, our group* developed a Matlab-based open-source treatment planning system called
matRad† (Cisternas et al., 2015; Wieser et al., 2017a). This chapter highlights the underlying
concepts of matRad’s dose calculation (physical- and biological-beam model) and inverse
optimization functionalities. Throughout this chapter, a particular focus is set on biological
treatment planning for carbon ions since this was one of my main contributions and more
importantly builds the groundwork for probabilistic carbon ion treatment planning explained
in the following chapters.

II.4.1 Physical Beam Model

In the physical beam model, it is assumed the physical dose d factorizes into two lateral
components Lx, Ly and one depth component Z. According to (Hong et al., 1996) and an
adaption of (Schaffner et al., 1999), the dose d of pencil beam j with initial beam energy E0 at
the spatial position x, y, z is defined as follows:

d(x, y, z, E0) = Lx(x, z, l, E0) Ly(y, z, l, E0) Z(z, E0) (II.16)

Equation II.4.1 can be further refined for the single Gaussian lateral beam model to:

d(x, y, z, E0) =
1√

2πσ2
x

e
− x2

2σ2
x

1√
2πσ2

y

e
− y2

2σ2
y Z(z, E0) (II.17)

with : σx = σy =
√

σ2
ini(E0) + σ2

air(l, E0) + σ2
scat(z, E0)

where x and y represent geometrical distances from the current point of interest to the central
pencil beam axis, z the integral stopping power relative to water (= WEPL), σini the initial
beam width at the beam nozzle, σair the divergence of primaries in air by travelling a distance
l from the beam nozzle to the patient surface and σscat the beam widening inside the patient
due to elastic scattering. Further, Z(z, E0) denotes the laterally integrated physical depth-
dose profile of the corresponding radiation modality. The total integral energy deposition is
guaranteed by the normalized two-dimensional lateral dose model in Equation II.4.1. Z(z, E0)

profiles are stored for each initial beam energy and were obtained from Monte Carlo Fluka

*https://www.dkfz.de/radopt
†www.matrad.org
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simulations (Parodi et al., 2012) which were in line with experimental measurements. The
lateral dose distribution is characterized in the simplest modeling approach via a single
radially symmetric two-dimensional Normal distribution. However, this approach does
not accurately capture the low-dose halo created by strongly scattered particles. Instead,
a superposition of two weighted normal distribution was proposed by (Parodi et al., 2012,
2013; Schwaab et al., 2011) and is also currently in clinical use and implemented in matRad
(Wieser et al., 2017a). An advisable overview of other parameterizations of the lateral dose is
provided by (Bellinzona et al., 2015).

All depth and energy dependent parameters in Equation II.4.1 are stored in a base data file
that is loaded into the matRad TPS upon dose calculation. A detailed description of the base
data parameters and their units can be found in (Wieser et al., 2017a). For a description of the
base data format and structure the reader is referred to (Wieser et al., 2018).

As previously mentioned, the dose of each pencil beam j is stored in the dose influence
matrix D, which is for a typical scenario a matrix of size D ∈ RI×J with I = 500 × 500 × 100
and J = 15000. To reduce storage requirements a sparse matrix format is facilitated. Following
the clinical standard, a constant scaling factor (RBE=1.1) is considered for proton treatment
planning. On the contrary, carbon ion treatment planning requires another level of complexity
because of the varying RBE throughout the treatment field, which will be described in the
next section.

II.4.2 Biological Treatment Planning Pipeline

Utilizing the LEM, the radio-sensitivity parameter αI can be obtained for different ion types as
a function of energy E from their response to photon radiation. Here, αI denotes an intrinsic
microscopic parameter which does not depend on the dose or particle fluence (Krämer and
Scholz, 2000). However, for treatment planning, it is required to obtain radio-sensitivity
parameter αc, βc in a mixed radiation field, where multiple fragments from different pencil
beams with varying energy and flux are present. Exemplary, Figure II.8(a) shows the output of
the LEM I for chordoma cells. In addition, the right plot in Figure II.8(b) illustrates the output
of LEM IV for the spinal cord. These values represent the essential biological information
to perform carbon ion treatment planning based on the LEM. To obtain the dependence on
higher doses (β I) the following derivation was proposed by (Scholz et al., 1997):

β I(Z, E) =
Smax − αI(Z, E)

2Dt
(II.18)

Herewith, the αI , β I parameters are entirely decoupled from the actual treatment situation
and only need to be produced once to be used for routine treatment planning.

In principle, there exist two approaches to derive αc and βc for a mixed radiation field. The
first approach is known as full simulation and is comprised of a two-step sampling process.
Firstly, the number of cell hits (ion traversals) are sampled from a Poisson distribution for
each voxel i considering the actual particle fluence. Next, the biological effect is determined
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Figure II.8: Raw LEM I and IV outputs for different particle types and tissues. Both figures show the initial slope
αI(Z, E) of the ion cell survival curve of a single central particle hit.

for each particle type from its local particle spectrum. The individual biological effects are
then accumulated to obtain the total effect. This procedure is repeated 500 to 1000 times to
finally assess a mean value which accounts for various particle combinations (Krämer and
Scholz, 2000). This approach is capable of predicting the RBE even for high doses, but the
two-step sampling process needs to be repeated every time pencil beam intensities change,
which is problematic for optimization.

The second approach to determine the radio-sensitivity parameters αc, βc is given by an
analytical approximation followed by the application of a beam mixing model. Admittedly
this approach is only valid in the low dose domain < 10Gy(RBE). The underlying assumption
of the approximation is the cell hit probability to reduce to a single hit probability in the low
dose domain - either hit or no hit. Furthermore, it is assumed the macroscopic cell survival
can also be described with the LQM. For that regard an approximation was found to account
for all possible ion traversal positions in a single cell (Krämer and Scholz, 2006):

α
single
I (Z, E) =

1 − S1(Z, E)
d1(Z, E)

with: S1(Z, E) = e−αI(Z,E) d1(Z,E) , d1(Z, E) = C
LET(Z, E)

A
(II.19)

where the subscript 1 highlights a single particle traversal, A indicates the cell nucleus area
and C the elementary charge. This approach is known as single particle approximation (SPA).
To obtain the high dose dependency β

single
I the following scaling was proposed (Krämer and

Scholz, 2006):

β
single
I (Z, E) =

(
α

single
I (Z, E)
αI(Z, E)

)2

β I(Z, E) (II.20)

As an example, Figure II.9(a) presents the single particle approximation α
single
I (Z, E) based
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on Equation II.19 using LEM I with αx = 0.1 Gy−1 and βx = 0.05 Gy−2. The respective
underlying data (αI) is already shown in Figure II.9(a).
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Figure II.9: Plot (a) shows the result of the single particle approximation (SPA) for LEM I based on the data shown
in Figure II.8(a). Plot (b) presents the resulting αc profiles of a carbon ion pencil beam with 275 MeV u−1 for LEM I
and IV on the basis of dose-averaged slope parameters (αI) considering fragmentation.

As a pseudo mono-energetic carbon ion pencil beam already creates a mixed radiation
field due to fragmentation, synergistic mixed field effects occur which need to be taken into
account (Zaider and Rossi, 1980). Depth-dependent dose-averaged radio-sensitivity LQM
parameters for a carbon ion pencil beams with initial energy E0 can be calculated via:

αc(x, E0) =
∑Z
∫ ∞

0 α
single
I (Z, E)φ(x, Z, E, E0) Sel(Z, E)dE

∑Z
∫ ∞

0 φ(x, Z, E, E0) Sel(Z, E)dE
(II.21)

√
βc(x, E0) =

∑Z
∫ ∞

0

√
β

single
I (Z, E)φ(x, Z, E, E0) Sel(Z, E)dE

∑Z
∫ ∞

0 φ(x, Z, E, E0) Sel(Z, E)dE
(II.22)

The resulting profiles, given in Equation II.21 and II.22, are calculated once for each tissue
type and are stored in the matRad base data so that they can be used for daily carbon ion
treatment planning. Figure II.9(b) illustrates the depth-dependent dose-averaged αc profile
of a carbon ion pencil beam with an initial beam energy of 276 MeV u−1. This plot shows not
only the αc profile based on LEM I predictions for αx = 0.1 Gy−1, βx = 0.05 Gy−2 ( ), but
also the prediction of LEM IV ( ).

Although ( ) and ( ) are calculated with different particle spectra, their main char-
acteristics can still be compared. Both LEM I and LEM IV predict a similar radio-sensitivity
around the Bragg peak, however, bigger differences can be observed in the entrance channel
and tail for which LEM I predicts a higher radio-sensitivity than LEM IV. This observation
implies that LEM I is currently overestimating the RBE weighted dose in the normal tissue
compared to LEM IV. This behavior is considered conservative and safe for the patient.

βc profiles are not explicitly shown here, but represent supplementary to the αc- and the
dose-profiles the underlying base data to perform carbon ion treatment planning.
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All previous steps describe basically the creation of biological base data that can be used
for routine analytical carbon ion treatment planning. The last missing link to compute the
RBE weighted dose, i.e., is its computation according to the LQM, which will be explained in
the next section.

II.4.3 Biological Beam Model

Clinically, the most relevant quantity for carbon ion treatment planning is the RBE weighted
dose (RBE × d). Let γ be αx

2βx
and ε be the biological effect then the RBE weighted dose can be

calculated on the basis of the LQM via:

RBE × d =

√
ε

βx
+ γ2 − γ =

√
αcd + βcd2

βx
+

(
αx

2βx

)2

− αx

2βx
(II.23)

Focusing on Equation II.23, it can be seen that the biological effect ε is part of the calculation
of the RBE × d. It was shown by (Wilkens and Oelfke, 2006), that the biological effect ε can
be used as an intermediate quantity for carbon ion treatment planning. To calculate the
biological effect in voxel i in a discretized patient geometry, dose contributions from all pencil
beams need to be considered (Wilkens and Oelfke, 2006):

εi = αi(w)di(w) + βi(w)d2
i (w) (II.24)

Equation II.24 demonstrates that different to αx and βx the radio-sensitivity parameters
αi and βi of charged particles depend on the pencil beam intensities and consequently on
the particle fluence. Very similar to the dose-averaging already performed to account for
fragmentation of individual carbon ion pencil beams (see Equation II.21 and II.22), now
dose-averaging is carried out to consider the synergistic effects of multiple pencil beam
contributions impinging within a short period of time into the patient tissue (Wilkens and
Oelfke, 2006; Zaider and Rossi, 1980):

αi(w) = d−1
i
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∑
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wjDijαij;
√

βi(w) = d−1
i

J

∑
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wjDij

√
βij; di =

J

∑
j=1

wjDij (II.25)

where αij and
√

βij depict the radio-sensitivity of pencil beam j to voxel i for the current
tissue under consideration. Substituting Equation II.25 into Equation II.24 then yields:
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where Dijαij and Dij
√

βij can directly be multiplied and stored in two separate sparse
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matrices Aij and Bij during dose calculation in the TPS. Unlike the linear dose mapping for
photons and protons (RBE= 1.1), a linear-quadratic dose mapping is required to calculate
the biological effect for carbon ions. It is noteworthy that the radio-sensitivity parameters are
assumed to be laterally constant and thereby only influence the depth dose component.

During dose calculation αij and βij are interpolated from the base data file based on the
integral rSP of voxel i. Similar to the physical beam model, each component can again be
broken into two lateral (Lx, Ly) and two depth components (Zα, Zβ), respectively:
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(II.28)

Equation II.28 represents the core equation of probabilistic carbon ion treatment planning
based on the biological effect ε. The exact calculation of each component of Equation II.28
will be introduced later in Chapter III. Having the linear and quadratic influence matrices
(Aij,Bij) of the biological effect calculated allows then for optimization.

II.4.4 Inverse Planning

Inverse planning can be understood as the reversion of forward planning. The goal of inverse
planning is to recover a set of parameters that produce the desired solution. In the context
of radiotherapy, inverse planning aims to reverse engineer a ’good’ treatment plan from
experience. Instead of re-evaluating different pencil beam intensities over and over again,
they are optimized according to prescribed treatment plan quality measures which produce
an optimum intensity distribution. The uppermost goal of the radiation oncologist is to
design a treatment plan that maximizes the biologically motivated Tumor Control Probability
(TCP) with a tolerable Normal Tissue Complication Probability (NTCP). However, in clinical
routine, although both TCP and NTCP can be calculated from radiation treatment plan
metrics, they are not directly used for treatment plan optimization. Instead, dose and dose-
volume criteria are facilitated as clinical input for inverse planning. This section describes
firstly the underlying optimization problem followed by clinical objectives/constraints and
lastly various robust optimization techniques.

II.4.4.1 The Optimization Problem

Given a prescribed dose vector d∗, optimal pencil beam intensities w∗ could in principle
be obtained by inverting the dose influence matrix D ∈ RI×J via w∗ = D−1d∗. However,
assuming an ideal prescribed dose d∗ with zero dose to healthy tissues and full dose to
the Planning Target Volume (PTV), does not allow to carry out matrix inversion because of
singularity. Using instead a realistic prescribed dose d∗ vector permitting dose to healthy
tissue to be greater than zero in the entrance channels of each beam, might result in a matrix
inversion with negative fluences. Negative fluences can not only be applied but also the
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matrix inversion might be computationally more expensive than inversely solving the system.
Because of the previously mentioned limitations, inverse planning is performed to derive
optimal pencil beam intensities by minimizing an objective function.

Given multiple objective functions fn, which denote individual clinical goals, inverse opti-
mization ideally finds a set of pencil beam weights w, such that the resulting dose distribution
produces overall a minimum objective function F according to defined objectives:

w∗ = argmin
w

F (d(w)) = ∑
n

pn fn (d(w))

subject to w ≥ 0

cl
k ≤ ck(w) ≤ cu

k

(II.29)

where pn is the penalty of objective function fn. Equation II.29 depicts the elemental inverse
optimization problem in radiotherapy. The overall objective function F is usually given as a
weighted sum of potentially non-linear objectives fn. The problem is solved subject to (i) a
positivity constraint on w that guarantees that no negative radiation fluences are used for the
solution and (ii) optional constraints on the dose ck, where cl

k and cu
k represent the lower and

upper bound of the k-th constraint.
The work presented here is based on an interior-point method, implemented in an open

source software package called IPOPT‡ that is provided by the COIN-OR initiative§. IPOPT
stands for interior-point optimizer and can be used to solve large-scale non-linear problems
considering constraints (Nocedal et al., 2009; Waechter and Biegler, 2006). The IPOPT project
is implemented in C++ and provides among others, an interface to Matlab in the form of
MEX-files. These wrapper files have been integrated into the optimization engine of matRad
to invoke the core C++ functionalities from the Matlab environment.

To calculate the first derivatives of the optimization parameters w, the chain rule needs to
be applied as the overall objective function F , is a function of dose, which in turn depends
on the pencil beam weights w.

∇wF =
∂F
∂w

=
∂F
∂d

∂d
∂w

(II.30)

Similar expressions can be derived for constraints, which requires the calculation of partial
derivatives (Jacobian). The second derivatives, i.e., the Hessian of the optimization parame-
ters w are approximated within IPOPT by means of the Quasi-Newton method using first
derivatives. Objective functions, constraints and corresponding gradient calculations are
implemented in matRad and are passed on via function-handles to the IPOPT interface. The
next subsection presents relevant clinical objectives fn and constraints ck.

‡https://projects.coin-or.org/Ipopt
§http://www.coin-or.org
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II.4.4.2 Clinical Objectives and Constraints

An excerpt of clinical objectives and constraints for inverse planning is presented in Table
II.1 (Wu and Mohan, 2000). Before explaining them in detail, it is worth mentioning that
objectives are usually defined for individual VOIs S and are secondly normalized by the total
number of voxels NS of the corresponding VOI. By this means, equal importance between
volumetrically small and big structures is ensured.

One of the most common objectives is the squared deviation objective ( fsq dev) which aims
to minimize the squared dose deviation between the actual dose di and a prescribed reference
dose d∗i (Oelfke and Bortfeld, 2001). This objective is mostly used for target structures to
create a homogenous dose distribution on a specific dose level, whereas both, under and
overdosage are equally important. The next two objectives are the piecewise squared under
and overdosage objective ( fsq underdosage, fsq overdosage). Both rely on the Heaviside function Θ
to trigger the particular objective. If the dose di falls below the reference dose d∗i , then the
square underdosage objective becomes effective and vice versa, if the dose di exceeds the
reference dose di∗, the square overdosage objective comes into force.
Table II.1: Objective and constraint functions with dose di in voxel i, prescribed reference dose d∗i , dose d̃ at prescribed
volume, structure S, number of voxels in structure NS, equivalent uniform dose (EUD) exponent a, Heaviside function
Θ(x), and log-sum-exp function parameter κ = 10−3 (Wieser et al., 2017a).

objectives constraints
fsq dev = 1

NS
∑iεS(di − d∗i )

2

fsq underdosage = 1
NS

∑iεS Θ(d∗i − di)(di − d∗i )
2 cmin dose = dmin − κ log

(
∑iεS e

dmin−di
κ

)
fsq overdosage = 1

NS
∑iεS Θ(di − d∗i )(di − d∗i )
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κ

)
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NS
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NS
∑iεS di

fEUD =
(

1
NS

∑iεS da
i

) 1
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(
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NS
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) 1
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fmin DVH = 1
NS

∑iεS Θ(d∗i − di)Θ(di − d̃)(di − d∗i )
2 cmin DVH = 1

NS
∑iεS Θ(d∗i − di)

fmax DVH = 1
NS

∑iεS Θ(di − d∗i )Θ(d̃ − di)(di − d∗i )
2 cmax DVH = 1

NS
∑iεS Θ(di − d∗i )

Further, the mean dose objective ( fmean) and the equivalent uniform dose (EUD) objective
( fEUD) are common measures to minimize dose to normal tissue. In particular, the latter
is biologically motivated as the EUD represents the homogenous dose given to a structure
S yielding an identical biological response as the actual non-uniform dose. Notably, this
concept has already been applied to carbon ion treatment planning considering the equivalent
uniform effect (EUE) instead of the EUD (Brüningk et al., 2015). The last two objectives are
minimum ( fmin DVH) and maximum dose-volume ( fmax DVH) objectives penalizing doses
that fall below or exceed a respective dose-volume prescription. Every objective can also
be defined as a hard constraint as shown in the right half of Table II.1 but is not explicitly
explained here.

It is important to mention that all objectives and constraints shown in Table II.1 are equally
applicable to the RBE-weighted dose and the biological effect ε, although for the latter
the trade-off between the target and normal tissue of the prescribed biological effect is
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slightly different due to the non-linear mapping from RBE-weighted dose to biological effect.
Following (Wilkens and Oelfke, 2006), the biological effect ε is employed throughout this
work for optimization.

II.4.4.3 Single Field and Multi Field Optimization

There are two main optimization approaches currently facilitated in IMPT, namely Single
Field Uniform Dose (SFUD) and Multi Field Optimization (MFO). SFUD is characterized by
optimizing all pencil beam intensities of the same beam direction simultaneously (Lomax,
2008a). Thus, a SOBP is optimized for each beam direction separately and the superposition
of each homogenous beam dose yields the total prescribed dose. On the contrary, MFO
optimizes pencil beam intensities of all beams simultaneously, thereby allowing for greater
flexibility to achieve the desired clinical goals (Lomax, 1999). In MFO the individual beam
doses might be highly modulated and certain tumor areas might only be covered from a
single beam.

Focusing on treatment plan robustness, MFO is generally more sensitive to changes in the
integral rSP due to highly modulated beam doses. Only if all beam dose contributions match
perfectly, they yield the desired and planned homogenous target dose.

Besides choosing robust beam angles and the margin concept, SFUD optimization is often
used as a first measure to create treatment plan robustness. Usually, the dose contributions of
each beam direction are equally split up so that a change in the integral rSP affects the total
dose distribution to a lesser extent. Although SFUD creates robust treatment plans, the full
potential of IMPT remains unused (Fredriksson et al., 2011).

Before further explaining robust treatment planning approaches in detail, it is necessary
to provide in the next section background information on potential uncertainty sources of
uncertainties in carbon ion therapy.

II.5 Uncertainties in Carbon Ion Therapy

The dose delivered to the patient’s body might not be the one simulated and displayed in
the TPS. The increased selectivity of dose deposition due to the inverse depth dose profile
of carbon ions along with its elevated RBE are inherently more sensitive to uncertainties
and impose new challenges to treatment planning. Moreover, carbon ions show a sharper
lateral dose gradient and a more distinct Bragg peak for which reasons the consideration
of uncertainties may particularly be important for carbon ions (Suit et al., 2010). There are
various factors of physical and biological nature that cause a discrepancy of planned and
delivered dose. For that reason, this section is split up to cover physical in II.5.1 and biological
uncertainties in II.5.2 separately. Section II.5.3 presents existing uncertainty quantification and
mitigation approaches of intensity-modulated particle therapy in general and then focuses in
the last Section II.5.4 on carbon ion therapy.
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II.5.1 Physical Uncertainties

There are various sources of physical uncertainties which might be broken into range, setup,
and motion. Additionally, fractionation induces the problem of handling the interplay of
random and systematic uncertainties which affects all sources of errors. Each source of
uncertainty is addressed individually next:

Range: Charged particles exhibit a strong dependence on the integral rSP experienced by
traversing matter. A change of material density causes a change of stopping powers and
consequently impacts the entire dose deposition (Lomax, 2008b). As of now, a patient-specific
range uncertainty analysis is not the clinical standard, because it is hard and partly impossible
to quantify the exact magnitude of each contributing factor. Instead, each particle therapy
center estimates a site- and machine-specific overall range uncertainty. Paganetti analysed and
quantified in this regard the contributing factors, which are mainly caused by an imperfect
knowledge of the actual stopping powers of the patient. Paganetti estimated the total range
uncertainty to lie between 2.7 % and 4.6 % plus an absolute error of 1.2 mm¶ assuming an
analytical dose calculation (Paganetti, 2012). Two artificial examples to showcase the impact
of range errors are presented in Figure II.10. Here, an over- ( ) and under-estimation
( ) of the rSP are shown for both, protons and carbon ions.
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Figure II.10: Two range error scenarios for a proton SOBP and carbon ion SOBP in an one-dimensional water phantom.
( ) represents for each modality the optimized nominal dose distribution. The y-axis represents the optimized
RBE weighted dose and ( ) indicates for both radiation modalities a range undershoot and ( ) denotes a
range overshoot. A constant RBE of 1.1 was assumed for protons and calculations for carbon ions are based on LEM
IV utilizing αx = 0.1 Gy−1 and βx = 0.05 Gy−2. Lastly, the gray area ( ) denotes the PTV.

The elemental problem is that the patient’s stopping power can in clinical practice not be
measured directly. Therefore, HU values of the CT scanner are converted to rSP or tissue
densities employing a piece-wise linear transformation to carry out an analytical- or Monte
Carlo-based dose calculation. To establish the linear mapping, a stoichiometric calibration
method with known material compositions is performed during commissioning (Schaffner
and Pedroni, 1998; Yang et al., 2012).

Further, submillimeter density variations result in different stopping powers that cannot be

¶(i) excluding biological range extension and (ii) given 1.5 standard deviations
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captured as they point to an identical HU value. Also the mean excitation potential I, as part
of the Bethe-Bloch Equation shown in Equation II.3, is subject to uncertainty and introduces
errors in the stopping power. Such errors have an accumulating effect and are therefore given
relatively. Besides CT related uncertainties, e.g., CT noise, grid, and calibration, there are
also range errors introduced by the analytical dose calculation algorithm. The first one is
given by range degradation caused by multiple high material density gradients in the beam
path like bone-soft tissue interfaces or alveoli in the lung (Taylor et al., 2017). As a result,
the Bragg peak spreads out longitudinally because of increased range straggling. This effect
results in an under-dosage of the tumor plus an additional dose to the healthy dose tissue.
Moreover, lateral heterogeneities induce, dependent on the patient case, a disequilibrium of
elastically scattered particles, which can cause substantial errors in dose distribution of up to
2.5 % ||(Paganetti, 2012). These two degradation effects are not captured by analytical pencil
beam dose calculation algorithms motivating the use of MC algorithms in particle therapy.

Setup: Patients cannot be positioned consistently throughout all fractions with respect to
the planning CT. Thus, the positioning variability introduces a lateral setup uncertainty.
Setup errors cause different densities to move into the beam path which then results in
particles to penetrate suddenly different tissues than on the planned CT scenario (Lomax,
2008b). It is known that particles are sensitive to setup errors and cause not only a lateral
dose deposition uncertainty but also a range uncertainty, which is more pronounced in
heterogeneous than in homogenous sites (Liebl et al., 2014).

Anatomical changes: Anatomical changes occur in different time scales and result, similar
to setup errors, in altered densities along the beam path. It is important to distinguish here
between inter- and intra-fractional anatomical changes. The former is caused by a systematic
organ or target displacement, induced by tumor shrinkage or an organ drift over the course
of treatment. In contrast, intra-fractional motion represents anatomical changes occurring
in a single fraction such as inter-field motions (Lomax, 2008b) or movements of the target
itself (lung cancer). In particular, for moving targets, an additional effect, referred to as the
interplay effect was observed for pencil beam scanning beam delivery (Seco et al., 2009). This
effect is caused by the interplay of two time-dependent processes. A temporal sequence of
consecutive pencil beams is applied to the patient’s body while the target is moving. This
effect distorts the homogenous dose distribution as individual pencil beams are administered
to a different target location.

Fractionation: A radiotherapy treatment is applied in several timely separated treatments
to make use of the greater cell repair capabilities of normal tissue. Usually 8 to 30 particle
fractions are applied to a single patient (Jensen et al., 2012) for which reason uncertainties
must be broken down into a random and systematic component. The nature of random
and systematic errors can be modeled with distinct correlation models. As systematic errors
are the same for all fractions, they can be considered perfectly correlated. Random errors,
however, which manifest differently in each realization (fraction) and must therefore be

||more pronounced for small tumor volumes
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considered completely uncorrelated.
Errors in the stopping power estimation of the patient are usually based on a single CT

acquired before treatment planning. Thus, the rSP of a patient is systematically wrong in
each fraction. Further the inaccurate modelling of range degradation, as it is the case for
analytical dose calculation algorithms, also introduces systematic errors. On the other hand,
positioning errors have primarily a random error component because systematic positioning
errors are inferior due to the technical developments of positioning systems.

Fractionation effects are, in most robust planning approaches, not considered since (i) ran-
dom errors partly compensate over the course of treatment and (ii) the additional complexity
to model fractionation effects. Nevertheless, it is still important to consider the interplay of
systematic and random errors for treatment planning due to their varying impact on different
fractionation schemes, especially for boost treatments which are employed at the HIT facility.

Others: There are also physical uncertainties which are not directly addressed in this
manuscript, for instance, errors in the segmentation of VOIs, CT artifacts, tumor shrinkage,
beam properties and beam reproducibility (Lomax, 2008b).

Regarding this thesis, lateral positioning errors and range errors are both modeled via
random and systematic error components to consider fractionation effects. A detailed expla-
nation of the utilized physical uncertainty model can be found in Chapter III.2.1.

II.5.2 Biological Uncertainties

A major problem in radiotherapy is the inability to measure the in-vivo radio-sensitivity of a
patient directly. Instead, clonogenic cell survival assays or preclinical in-vitro and in-vivo
studies are used as reference (Karger and Peschke, 2017). Treatment planning with carbon
ions based on the LEM, however, requires the knowledge of the radio-sensitivity parameters
of the LQM (αx, βx) along with intrinsic LEM parameters (e.g. Dt in Equation II.8) to infer
the radio-sensitivity parameters of carbon ions (αc, βc) in a mixed radiation field. Along
this workflow various biological uncertainties directly influence the resulting RBE and can
potentially yield to under- and over-dosage of the tumor and normal tissue, thereby causing
a suboptimal or even a failed treatment. For that reason, it is essential to quantify and predict
the RBE as accurately as possible. Different to photon therapy, where a dosimetric accuracy
of 5 % is recommended in the clinic, this threshold can most certainly not be met in carbon
ion therapy.

All measurement experiments are prone to uncertainties. This also holds true for the
determination of photon cell survival curves and the intrinsic LEM parameters. Not only
variabilities between different institutions arise due to differences in the actual experiment or
measurement but also inter and intra cell population variabilities are present. The transition
from in-vitro results to in-vivo conditions further complicate the situation. Usually, the radio-
sensitivity parameters of the LQM (αx, βx) represent mean values of multiple experiment
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repetitions. It is of great importance to report such values with corresponding probability
distributions to fully understand derived quantities like the α

β -ratio (Friedrich et al., 2010).
Especially, the βx parameter can only be measured to a certain extent as high doses result in
low survival which is hard to quantify in an experimental setup.

Sensitivity studies on this subject obtained from (Böhlen et al., 2012; Friedrich et al., 2013a)
show that a single-variation from 25 % to 50 % of LEM input parameters (e.g. αx, βx,Dt,rnuc)
result mainly in a proportionally lower impact on the RBE with very few exceptions. Notably,
the greatest impact was observed for (αx, βx). It was also found that (i) a miss-estimation
of the input parameter mainly resulted in an absolute RBE-error and (ii) RBE uncertainties
decreased in a SOBP compared to a single pseudo-mono energetic carbon ion pencil beam,
due to compensating mixed field effects. In addition, both studies suggest that a more
homogeneous radiation quality (LET) in the target might lower the impact of biological
uncertainties on the treatment outcome. With the development of the LEM from I to IV, the
accuracy of RBE predictions increased, in particular for lighter ions and high LET regions.
With the advancement of the LEM, it was also shown by (Elsässer et al., 2008) that the shape
of the track structure model, characterized by the microscopic radial dose profile (see Figure
II.5), proved to be a determining factor of the predicted RBE.

Uncertainties in the input parameters of the LEM directly propagate to uncertainties of
the model’s output. However, any model, including the LEM, needs to make assumptions
and can only predict data with a certain accuracy. Intrinsic model limitations can only be de-
tected by systematic deviations between the predicted and reference radio-sensitivity, which
reciprocate in clinical studies. However, it is generally difficult to assess errors introduced by
the model when the benchmark data itself is associated with uncertainties (Friedrich et al.,
2013b).

Not only radio-sensitivity parameters of photons (αx, βx) are subject to uncertainty, but
also the one of charged particles (αc, βc). A well-sorted in-vitro collection, called PIDE** of
dose-response data after particle irradiation including carbon ions (αc, βc) was published
for various irradiation conditions by (Friedrich et al., 2013b). From the database, it can be
observed, that the cell’s radio-sensitivity variation is lower after ion irradiation compared
to photons. Carbon ions possess a higher LET, which causes more complex damage to the
DNA. This is why LET and RBE are correlated for therapeutic beam energies. Interestingly,
this observation is also in line with a lower sensitivity to radioresistant tumors. It can be
inferred that the uncertainties in RBE after particle irradiation trace back to uncertainties in
the photon parameters as indicated by the sensitivity analysis presented in (Böhlen et al., 2012;
Friedrich et al., 2013a). However, again the in-vivo situation is influenced by many biological
interdependencies which elevate the level of uncertainty. Only scarce data is available to
validate predictions of the LEM (Karger et al., 2006; Saager et al., 2015, 2016, 2014).

Kamp et al. performed a variance-based sensitivity analysis for a one-dimensional carbon
ion treatment plan on the basis of LEM I. Different to (Böhlen et al., 2012; Friedrich et al.,

**Particle Irradiation Data Ensemble: https://www.gsi.de/bio-pide
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2013a), who varied LEM input parameter individually and did not account for potential inter-
play, Kamp et al. varied multiple input parameters of an optimized carbon ion treatment plan
(dose, αc and βc) simultaneously without considering correlation (Kamp et al., 2014). They
came to the conclusion, that αc was the most sensitive parameter with the most significant
impact on the resulting RBE-weighted dose. In contrast, βc only played an inferior role for
the fractionated plan under investigation.

Biological uncertainties also arise from the assumption of a single biological system, which
is distinctly different to the one that is actually treated (Böhlen et al., 2012). It is common
clinical practice to assume a homogenous radio-sensitivity not only throughout the tumor
but also for the normal tissue, thereby ignoring potential differences in radiosensitivity. This
is still the case due to the lack of knowledge of normal tissue radio-sensitivities. Further
inter-patient variabilities are currently not being considered in the clinic.

According to the PIDE database, a lower variation in αc and βc, is expected due to the
increased LET, but the determination of representative in-vivo mean values itself is associated
with large uncertainties. Ideally, radiobiological models should consider input uncertainties
in the form of probability distributions and transport this information to output uncertainties
in order to create a greater informative value.

To the best of my knowledge, very few publications, which will be discussed in the next
two subsections, can be found in the literature that include biological uncertainties for carbon
ion therapy. For this reason, the manuscript also addresses uncertainties in the biological
response to ion radiation by modeling uncertainties in the αc and βc parameters.

II.5.3 Uncertainty Quantification and Mitigation

Uncertainties in particle therapy, introduced in the previous chapter, can be addressed in
the TPS and complemented by hardware-related approaches. Before focusing on the former,
hardware-related mitigation approaches are briefly introduced below, although some of them
are at the moment admittedly far away from clinical application.

Errors originating from CT artifacts might be tackled by better reconstruction algorithms or
by new imaging devices, e.g., dual energy CT, whereas uncertainties caused by anatomical
changes and patient positioning might be minimized in the future with online adaptive
replanning and image guidance (Veiga et al., 2016). Moreover, range uncertainties can be
addressed by dual-energy CTs as they increase the accuracy of rSP predictions (Wohlfahrt
et al., 2018). Additionally, there are also experimental approaches currently under inves-
tigation, such as prompt gamma imaging for in-vivo range verification (Hueso-González
et al., 2018; Xie et al., 2017), proton CT imaging (Civinini et al., 2017) and ionoacoustic wave
measurements (Kellnberger et al., 2016; Lehrack et al., 2017).

The remaining chapter is about software-related approaches as part of the TPS to quantify
and/or mitigate uncertainties.
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II.5.3.1 Uncertainty Quantification

Adequate uncertainty analyses in radiotherapy are not part of daily clinical routine. The size
of the dose influence matrix D is the main limitation which is in the order of giga bytes. This
makes dose calculations for different error scenarios not only computationally challenging
but also time consuming. For that reason, sampling strategies and uncertainty quantification
methods were developed in the past decade.

Focusing briefly on photon therapy, (Baum et al., 2004; van Herk et al., 2002) applied
dose blurring techniques using uncertainty kernels to reveal the treatment plan’s variability
induced by geometrical uncertainties. Further, Sobotta et al. modeled the distribution of
treatment plan quality indicators (e.g. EUD) with a Gaussian Process (GP) in closed-form,
thereby only relying on a few discrete error scenarios (Sobotta et al., 2012). However, these
approaches considered photon irradiation and are only applicable in a limited way to particle
treatment plans.

Shifting the focus back to particle therapy, Albertini et al. proposed an importance sampling
strategy for proton therapy in which discrete samples are taken from the surface of a spherical
error-space to derive error bar dose distributions (Albertini et al., 2011). Each voxel in the
error bar dose distribution denotes the dose range on the 85 % confidence limit across all
samples. It was further shown that SFUD generally results in more robust treatment plans
than IMPT when comparing error bar volume histograms.

An extension was presented by Lowe et al., who additionally considered systematic and
random errors individually for protons herewith neglecting potential interdependencies
(Lowe et al., 2016). Here, two error bar distributions were obtained separately and then
weighted according to current fractionation scheme under investigation by a linear fractiona-
tion model. Specifically, the first error bar distribution denotes a single fraction treatment
and the second one a F fractionated treatment. For the reported head case considering
range and setup errors the error bar distribution resulted in a maximum value of 24 % with
respect to the prescribed dose. This means, that single voxels possessed a dose range (within
the 85 % confidence limit) of almost a quarter of the total dose. Furthermore, Lowe et al.
pointed out that neglecting fractionation effects yields to a considerable overestimation of
dose uncertainties. Casiraghi et al. (2013) compared the sampling approach of Albertini et al.
against random sampling and concluded that for a volumetric analysis the lower and upper
Dose Volume Histogram (DVH) error estimates are accurately predicted. This is due to the
fact as four-dimensional information (x,y,z,d) is collapsed onto the two-dimensional DVH
plane thereby averaging out potential differences. On a voxel by voxel comparison, the dose
error obtained from the sphere-surface sampling underestimates the uncertainty, especially
in high dose-gradient regions due to the small number of sampled scenarios.

Considering random sampling, then Authors mentioned in (Maleike et al., 2006; Sobotta
et al., 2012; Wieser et al., 2017b) and in particular (Wahl et al., 2017) showed that a high
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number of random samples (∼ 5000 − 10000)†† are required to obtain an accurate uncertainty
estimate. Five thousand samples ensured the standard deviation of standard deviation σ[σd]

to be less than 1 %. Further, Wahl et al. came to the conclusion that grid and importance
sampling strategies tend to underestimate the uncertainty in dose which is in line with
findings of (Casiraghi et al., 2013).

In a recent paper by Perkó et al., polynomial chaos expansion was introduced to derive
the probability distribution of proton treatment plan quality indicators. The idea is to ap-
proximate an exact solution with a set of polynomials under the presence of errors on the
basis of a discrete set of error scenarios. Once the meta-model is trained, various dose stat-
ics can be derived (Perkó et al., 2016). For head and neck cancer patients irradiated with
protons and a prescribed target dose of 66 Gy, a standard deviation in dose in the Clinical
Target Volume (CTV) of up to ∼13 Gy was observed when considering ±3 mm setup and
±3 %+1 mm range uncertainties. This method allows reducing the computational complexity
compared to random sampling without significantly affecting the model’s accuracy. However,
such meta-model approaches (Perkó et al., 2016; Sobotta et al., 2012) do not generalize to
optimization for which a re-evaluation of the dose distribution for different pencil beam
weights is needed.

Sakama et al. studied carbon ion treatment plan uncertainties taking fractionation into
account (Sakama et al., 2016). Up to 34 individual setup and range errors were modeled
to derive discrete dose error scenarios using a fast dose wrapping technique. The authors
reported a standard deviation of 30 % for setup errors of ±3 mm. Moreover, the consideration
of ±3 % range errors resulted in a standard deviation of nearly 50 % of the prescribed dose
for the reported prostate case. The mean value of relative standard deviation in the rectum
resulted in 12 %. For the reported head and neck case, the mean value of the relative standard
deviation reached for the optic nerve almost 18 %. These numbers directly motivate further
research not only for uncertainty quantification but also for uncertainty mitigation in carbon
ion therapy.

II.5.3.2 Uncertainty Mitigation

Nowadays, it is clinical standard to compensate geometrical uncertainties for unproblematic
cases during treatment planning with a generalized isotropic expansion of the CTV. The
resulting VOI is commonly known as PTV (Van Herk, 2004). For problematic cases besides
choosing robust beam angles, site- and beam-specific margins are facilitated considering
range uncertainties (Paganetti, 2012; Park et al., 2012). This safety margin concept is based
on the static dose cloud approximation originating from photon irradiation assuming the
delivered dose stays unaltered by density changes in the beam path (Bortfeld et al., 2004).
Admittedly, this assumption is not transferable to particle therapy as the geometrical position

††This number might be lower for less complex cases.
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of the Bragg peak strongly depends on the integral rSP (Albertini et al., 2011; Lomax, 2008b;
Unkelbach and Paganetti, 2018). Therefore, the safety margin concept does in general not
suffice to account for geometrical uncertainties in particle therapy.

The PTV margin concept and SFUD optimization are applied to patients that show manage-
able risk. However, to manage high-risk patients, other robust treatment planning approaches
have been developed in the past employing MFO. These approaches receive increased at-
tention as not only high risk but also patient cases associated with moderate setup and
range uncertainties might benefit. A general overview of robust optimization techniques in
intensity-modulated proton therapy is given in (Unkelbach et al., 2018).

For the mitigation of patient motion during a particle therapy treatment, the interested
reader is referred to (Graeff, 2014) who discusses different motion mitigation approaches for
scanned ion beam therapy with an emphasis on 4D optimization.

Worst Case Optimization Several papers appeared reporting on worst case optimization
where multiple discrete worst case error scenarios with equal occurrence probability built
the common basis. Instead of using a single dose influence matrix D, which corresponds to
the nominal patient geometry, multiple dose influence matrices De for the respective error
scenarios e, are calculated during dose calculation. Let e be the superscript enumerating over a
discrete set of E error scenarios. Typically, several fully correlated under and overshoot range
error scenarios are combined with multiple setup error scenarios. On the one hand range
error scenarios are realized by scaling the rSP (WEPL) and on the other hand, setup error
scenarios are realized by spatially shifting the iso-center. There are different flavors of worst
case optimization which mainly vary in the definition of the worst-case dose distribution or
the worst case objective function value FWC (Chen et al., 2012; Fredriksson and Bokrantz,
2016; Fredriksson et al., 2011; Liu et al., 2013; Lowe et al., 2016; Pflugfelder et al., 2008). The
most prominent worst case optimization approaches are explained next.

Voxel Wise Worst Case: In this approach, a physically inconsistent worst case dose distri-
bution is created on the basis of E error scenarios according to Equation II.31:

dWC
i =

min(de
i ) if: i ∈ Target

max(de
i ) if: i ∈ OAR

(II.31)

where the minimum/maximum dose across all scenarios in voxel i is considered if i belongs
to the target/OAR structure. The worst case objective function FWC is calculated on the
basis of dWC, penalized with pWC and then added to the existing objective function value
(Pflugfelder et al., 2008). An extension of this approach was presented by Liu et al., who
considered, in addition to the minimum worst case dose in the target, a maximum worst
case dose. By this means, the lower and upper worst case doses in the target are constrained
separately (Liu et al., 2013). This allows assigning a higher penalty on the under dose objective
to avoid under-dosage of the tumor which is considered to be of greater importance.

Objective Wise Worst Case: Objective wise worst case optimization requires the evaluation
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of each individual objective function f e
n on all error scenarios E. The overall objective function

value f is then calculated by taking the maximum of each individual objective function.
Hence, max

(
f e
1
)
+ max ( f e

2) + ... are added up and again a physically inconsistent total
objective function value FWC is obtained (Chen et al., 2012).

Composite Worst Case: Here, the total objective function value FWC e is calculated for each
scenario e in each step of the optimization. Next, the scenario with the maximum objective
function value (= current worst case) is chosen to be minimized in the next optimization
iteration. By this means the current worst case scenario is minimized which translates math-
ematically to: min

(
max

(
FWC e

(d)
))

. This approach is known as min max or composite
worst case optimization (Fredriksson et al., 2011) and different to the strategies mentioned
above, a physically consistent scenario is optimized.

Robust optimization approaches based on discrete error scenarios are computationally
demanding as (i) multiple dose influence matrices need to be held in storage and (ii) the
respective worst case objective function needs to be evaluated every time pencil beam
intensities change. As a consequence, the consideration of more error scenarios increases the
computation time linearly in each iteration of the optimization. Further, robust optimization
suffers from the number of combinations when interdependencies between different sources
of uncertainties, correlation models and fractionation effects are considered (the curse of
dimensionality).

Moreover, also from a theoretical point of view, a worst case scenario in the input space
does not per se correspond to the worst case dose distribution in the output space. This
means that there might be an intermediate error scenario, that actually represents the worst
case that is not covered by the E error scenarios. Nevertheless, all methodologies presented
so far can be used for robust optimization but can only be applied in a limited way for
uncertainty quantification. Although they yield robust treatment plans, these approaches
strongly dependent on the considered discrete error scenarios (point estimates), which act
as a lower bound for the treatment plan quality. The consideration of improbable scenarios
for worst case optimization might then result in a treatment plan that is too conservative
(Fredriksson and Bokrantz, 2014).

To facilitate a comparison between worst case optimization and probabilistic optimization,
which is described next, the calculation of dose influence error scenarios De was implemented
in matRad. Using a multi-dimensional cell array of sparse matrices allowed to store and
access respective error scenarios efficiently. However, the dose calculation time scaled linearly
with the number of E error scenarios. The comparison between robust and probabilistic
optimization is shown in the result Chapter IV.2.2.3.

Stochastic Programming - Probabilistic Optimization A key aspect of stochastic program-
ming approaches is the consideration of a weighting factor pe that allows steering the impor-
tance of each dose scenario. A special flavor is given by probabilistic optimization which
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treats pe as a probability. This allows associating more probable scenarios with a higher
and less probable scenarios with a lower probability (Sobotta et al., 2010; Unkelbach, 2006;
Unkelbach et al., 2018, 2009, 2007).

w∗ = argmin
w

E

∑
e=1

pe F (d(w))

≈ argmin
w

E[F (d(w))]

subject to w ≥ 0

(II.32)

Here the overall goal is to estimate the expected value of the objective function value
E[F ] from discrete error scenarios and then optimize E[F ] as illustrated in Equation II.32.
Unkelbach et al. estimated the expected objective function value E[F ] from discrete error
scenarios, whereby each individual objective function value is weighted with its occurrence
probability. In each step of the applied stochastic gradient descent optimization, a subset of
error scenarios is sampled to firstly reduce storage requirements and secondly still account
for different combinations. Sampling and calculating dose in each step of the optimization
resulted in run-times of several hours as reported by (Unkelbach et al., 2009). A simplification
of this approach is to consistently use a predefined set of discrete errors scenarios (De)
throughout optimization without sampling different scenarios in each optimization iteration.
One potential drawback of probabilistic optimization is essentially the optimization of the
expectation value of the objective function value which might result in too less conservative
treatment plans that are not robust against actual worst case scenarios.

To avoid sampling, authors mention in (Bangert et al., 2013) proposed to optimize the
expectation value of a squared deviation objective E[ fsq dev] in closed-form on the basis of
(Imhof, 1961; Liu et al., 2009). On the one hand, optimizing E[ fsq dev] in closed-form requires
the knowledge of the expectation value and (co-variance) of the dose distribution before
optimization but induces on the hand only minimal computational overhead to probabilistic
optimization. This approach represents the underlying probabilistic optimization strategy
used throughout this work. More details are presented later in Chapter III.4.

One group of probabilistic optimization strategies not covered here is given by coverage-
based methods which aim to optimize the coverage probability over a discrete set of error
scenarios. Herewith, the width of the resulting probability density is minimized. For detailed
information the reader is referred to (Baum et al., 2006; Gordon et al., 2010; Hysing et al., 2011;
Mescher et al., 2017).

II.5.4 Uncertainty Considerations for Carbon Ion Therapy

Most of the recent approaches were applied to proton therapy and so far only view publi-
cations can be found about carbon ions. Besides the work of Sakama et al., who quantified
the standard deviation in the RBE weighted dose to range from 30 to 50 % for individual
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voxels, Steitz et al. focused on carbon ion treatment plans too. Steitz et al. investigated
dosimetric implications of inter-fractional motion on pancreatic cancer patients on the basis
of conventional, SFUD and voxel wise worst case optimization. They concluded that robust
optimization can be applied to carbon ion therapy and that it is a beneficial tool to increase
target coverage (Steitz et al., 2016).

Both papers (Sakama et al., 2016; Steitz et al., 2016) motivate further investigations into
uncertainty quantification to subsequently mitigate their impact on the resulting carbon ion
treatment plan. Hence, the scope of this work is to quantify setup, range and biological
uncertainties within treatment planning and to mitigate their impact by re-modulating pencil
beam intensities in a robust manner.

The foundation of this work is called Analytical Probabilistic Modeling (APM) and was
first published by (Bangert et al., 2013) for protons and photons. The main difference between
previously discussed approaches and APM is that APM does not require the calculation of
discrete error scenarios to derive treatment plan uncertainties in the form of expectation value
and standard deviation. This concept was further developed for protons by (Wahl et al., 2017,
2018a). In contrast, this work focuses on the application of APM on carbon ion treatment
planning thereby taking the non-linear biological effects of carbon ions into account. The
central principle of APM is the closed-form calculation of statistical moments of treatment
plan quality indicators which is explained in detail in the next Chapter III.
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"How to quantify uncertainty?"

III
Material and Methods

The idea of Analytical Probabilistic Modeling APM is to calculate the expectation value
and higher order statistical moments of a function I(X) under the premise the probability
distribution pX(x) of ζ random variables X ∈ Rζ is known. The underlying concept is
often referred to as method of moments or law of the unconscious statistician (LOTUS) and is
shown in Equation III.1. In the context of radiotherapy, APM allows quantifying statistical
moments of radiation treatment plan quality indicators I in closed-form under the influence
of uncertainties:

E[I(X)n] =
∫

Rζ
pX(x)I(x)n dx (III.1)

Following Table III.1 and setting in Equation III.1 n = 1 allows to derive the expectation
value which is represented by the first raw moment (µ′

1), whereas the variance is given by the
second central moment (µ2). Also, higher order moments n > 2, shown in Table III.1, can in
principle be calculated to obtain for instance the skewness (µ3) or kurtosis (µ4) permitting a
more accurate description of the unknown probability distribution of p(I).

In this work, an analytical probabilistic model is built upon the biological effect ε (see
Equation II.7) and not the RBE weighted dose because it is mathematically convenient to

Table III.1: Overview of the first four raw and central statistical moments of a treatment plan quality indicator I. The
expectation value is given by the first raw moment µ′

1 and the variance by the second central moment µ2.
Type raw moment - about origin central moment - about mean

definition µ′
k = E[In] µk = E[(I − µ)n]

M0 µ′
0 = E[I0] µ0 = E[(I − µ)0]

M1 µ′
1 = E[I1] µ1 = E[(I − µ)1]

M2 µ′
2 = E[I2] µ2 = E[(I − µ)2]

M3 µ′
3 = E[I3] µ3 = E[(I − µ)3]

M4 µ′
4 = E[I4] µ4 = E[(I − µ)4]
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avoid the square root dependence of the RBE weighted dose (see Equation II.23). Thus a focus
is set on quantifying the expectation value and standard deviation of the distribution of the
biological effect p(ε) in a three-dimensional carbon ion treatment plan. In a subsequent step,
covered in Subsection III.5, moments of the biological effect ε are propagated to moments of
the RBE weighed dose.

Assuming the biological effect ε is a function of uncertain input parameters X , that follow
a specific probability distribution pX(x), the n-th raw moment can then be obtained via:

E[ε(X)n] =
∫

Rζ
pX(x)ε(x)ndx ≈

∫
Rζ

N (x,X , ΣX) ε̂(x)ndx (III.2)

In this formulation, the biological effect becomes a function of treatment plan uncertain-
ties, where X denotes uncertain input parameters such as the patient position, range, and
radio-sensitivity of charged particles. The uncertainty of the input parameters can as first
approximation be described with a multivariate Normal distribution N (x,X , ΣX), which is
explained in Section III.3. However, to solve Equation III.2 in closed-form, also the biological
effect ε needs to be integrable against Normal probability densities. Although a non-trivial
analytical formulation of the proton depth dose curve exists (Bortfeld, 1997), there is no
adequate analytical formulation of carbon ion depth dose profiles and dose-averaged αc and
βc profiles. This is why an analytical approximation is established for ε̂ in Section III.1 that
allows solving the integral in Equation III.2 in closed-form. From a mathematical point of
view, the solution of Equation III.2 is exact, if limitations of the pencil beam algorithm are
neglected and Gaussian error assumptions are correct. More details about the limitations of
APM are provided in the discussion Chapter in V.2.

The upcoming sections explain step by step how to propagate input uncertainties in closed-
form to output uncertainties without the need to sample discrete error scenarios.

III.1 Functional Approximation of Base Data

This section presents the functional approximations of physical depth-dose profiles, of αc

and βc profiles required to (i) calculate the biological effect ε̂ of carbon ions and (ii) to
solve the integral of Equation III.2 in closed-form. Thus, the primary challenge is to find
approximations that are at the same time accurate and computationally efficient.

III.1.1 Physical Dose of Protons & Carbon Ions

Bangert et al. decided to fit a weighted superposition of ten Gaussian components to the
proton depth dose profile (Bangert et al., 2013). The choice for using non-normalized Gaus-
sian components is motivated by their convenient mathematical properties (conditioning,
marginalization) as highlighted in Appendix A. Further, Bangert et al. showed that the
average deviation between the functional approximation and the original proton depth dose
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curves is less than 0.3 %. In a previous publication, Schölkopf showed that every Lipschitz-
continuous function such as particle depth dose profiles, can be approximated with increasing
quality by simply adding more and more Gaussian components to the fit (Schölkopf, 2002).
Increasing the number of Gaussian components results on the one hand in more accurate
approximations but causes on the other hand longer computation times.

Here, thirteen Gaussian components were used to describe the physical depth dose profile
of carbon ions. The choice for increasing the number of components to thirteen was motivated
due to the sharper Bragg peak and the additional dose tail that needs to be modeled for
carbon ions.
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Figure III.1: Plot (a) presents the functional approximation of the laterally integrated proton depth dose profile
(165 MeV u−1) using ten Gaussian components (Bangert et al., 2013). Plot (b) shows the functional approximation
of the laterally integrated carbon ion depth dose profile (277 MeV u−1) using thirteen Gaussian components. Crosses
indicate an excerpt of the original proton and carbon ion depth dose profiles.

Figure III.1(a) illustrates the fitting result of a laterally integrated physical proton depth dose
profile whereas Figure III.1(b) presents a laterally integrated carbon ion depth dose profile.
Crosses ( ) represent an excerpt of the corresponding original depth dose profile. Least
square fits were performed, similar to that of protons, to obtain for each initial beam energy
and each Gaussian component ( ) the mean µ, standard deviation σ and weight ω. Thus,
each tabulated depth dose profile is replaced by a functional approximation parameterized
with a set of 39 parameters (3 × 13).

Let k be the index of the k-th Gaussian component and zij be the WEPL of pencil j in voxel
i, then the physical depth dose can be calculated according to:

Zij =
K

∑
k=1

ωjk√
2πσ2

jk

e
−

(zij−µjk)
2

2σ2
jk (III.3)

The fitting procedure is done in an offline pre-computation that only needs to be carried out
once, to be used for routine treatment planning. The proton base data, exemplarily shown in
Figure III.1(a) for 165 MeV u−1 builds the basis for APM developments on the proton side
assuming a constant RBE of 1.1 (Wahl et al., 2017, 2018a). The proton base data is made
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available publicly in a one-dimensional treatment planning toolkit on Github*.
Focusing on carbon ion treatment planning additionally requires knowledge of the non-

linear biological response to irradiation of the current tissue under consideration. Thus,
physical depth dose profiles alone are not sufficient for clinical carbon ion treatment planning
for which reason the next subsection explains the functional approximation of the biological
effect ε̂.

III.1.2 Biological Effect

Depth-dependent physical and biological properties of a pseudo mono-energetic carbon
ion pencil beam for a certain tissue, can be described with a set of three profiles, namely a
laterally integrated physical dose-, a αc- and a βc-profile. The left plot of Figure III.2 depicts
these three profiles for a 277 MeV u−1 carbon ion beam. Following the formulation of the
biological effect ε from Equations II.7 and II.24 allows combining the αc and βc profile with
the d profile, respectively, employing a point-wise multiplication. The corresponding result
is shown in the right plot of Figure III.2. Herewith, the number of profiles that need to be
stored for a single tissue type is reduced from three to two.
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Figure III.2: The left plot shows the normalized integrated carbon ion depth dose profile of a 277 MeV u−1 beam
( ) in water along with corresponding dose-averaged αc ( ) and βc ( ) profiles of the LQM predicted
by LEM IV using αx = 0.1 Gy−1 and 0.05 Gy−2. The right plot shows the point-wise multiplication of αc and d in
( ) and

√
βc times d in line ( ).

Each profile, shown in Figure III.2(b), was used to fit thirteen Gaussian components. The
resulting parameters for each initial beam energy can afterwards be used to calculate the
depth-dependent components Zα

ij and Zβ
ij of the biological effect of each pencil beam j in the

patient according to Equation III.4: ωα
jk, ω

β
jk, µα

jk, µ
β
jk and δα

jk, δ
β
jk:

Zα
ij =

K

∑
k=1

ωα
jk√

2πδα
jk

2
e
−

(zij−µα
jk)

2

2δα
jk

2
; Zβ

ij =
K

∑
k=1

ω
β
jk√

2πδ
β
jk

2
e
−

(zij−µ
β
jk)

2

2δ
β
jk

2

(III.4)

*https://github.com/e0404/APMtoolbox
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The fitting results of the αcd and
√

βcd profiles are shown in Figure III.3 for one exemplary
energy. Comparing the fitting data against the ground truth yields a mean relative difference
of 0.25 % for αcd and 0.06 % for

√
βcd profiles. Because of the extremely peaked αcd profile,

it can be observed that the mean relative difference of αcd profiles is higher than the one of√
βcd profiles. Crosses ( , ) in Figure III.3 indicate an excerpt of the corresponding ground

truth data.
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Figure III.3: The left plot shows the fitting result of the αcd profile of a 277 MeV u−1 carbon ion beam ( ), whereas
the right plot presents the corresponding

√
βcd profile ( ). Crosses represent an excerpt of the corresponding

ground truth data. ( , ) represent an excerpt of the original data.

For simplicity, is assumed the lateral dose profile can be described in first approximation
with a single Gaussian profile. Let λij be the width of pencil beam j in voxel i taking into
account the WEPL zij and let N (x|µ, λ) define a Normal distribution with mean µ and
standard deviation λ. Additionally, let xij and yij be the geometrical distances from the
central ray of pencil beam j to voxel i, then the biological effect computation of εi in Equation
II.27 can be reformulated to:

εi ≈ ε̂i =
B

∑
j=1

wj N
(

xij|µx
j , λij

)
N
(

yij|µ
y
j , λij

) 13

∑
k=1

ωα
jk N

(
zij|µα

jk, δα
jk

)
+

[
B

∑
j=1

wj N
(

xij|µx
j , λij

)
N
(

yij|µ
y
j , λij

) 13

∑
k=1

ω
β
jk N

(
zij|µ

β
jk, δ

β
jk

)]2

(III.5)

It can be seen from Equation III.5, that the computation of εi solely relies on Gaussian
components, laterally as well as in depth. As the consideration of a superposition of Gaussian
components instead of tabulated data introduces only minor differences compared to the
uncertainties, discussed in the previous chapter, the hat-symbol in ε̂ will be dropped for
further considerations.

The fitted carbon ion beam parameters depicting a generic machine, were published on
Github† for two different tissue types on the basis of the LEM IV. The functional approxi-

†https://github.com/e0404/APMtoolbox
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mation in Equation III.5 allows now to integrate the biological effect against a multivariate
Normal distribution analytically.

III.2 Physical Uncertainties

This section details the mathematical methodology of channeling setup and range uncertain-
ties through the analytical calculation of the biological effect to derive the first and second
statistical moments of the biological effect. Firstly, Subsection III.2.1 covers the underlying
uncertainty model for setup and range uncertainties and secondly Subsections III.2.2 and
III.2.3 detail the respective moment calculation.

III.2.1 Uncertainty Model

Unlike most of the uncertainty quantification methods outlined in II.5 which consider un-
certainty sources in the voxel domain i {i ∈ N|1 ≤ i ≤ I}, APM models setup and range
uncertainties in the pencil beam space j {j ∈ N|1 ≤ j ≤ J}. By this means physical uncertain-
ties are not modeled in the patient geometry (CT scan) but instead they are modelled in the
lower dimensional pencil beam space (J << I) by being uncertain in their exact position. For
that reason setup and range errors affect each pencil beam by an offset (∆x, ∆y, ∆z ∈ RJ×1) in
the Gaussian components required for the biological effect calculation:

εi = ∑J
j=1 wj N

(
xij + ∆x

j |µx
j , λij

)
N
(

yij + ∆y
j |µ

y
j , λij

)
∑13

k=1 ωα
jk N

(
zij + ∆z

j |µα
jk, δα

jk

)
+[

∑J
j=1 wj N

(
xij + ∆x

j |µx
j , λij

)
N
(

yij + ∆y
j |µ

y
j , λij

)
∑13

k=1 ω
β
jk N

(
zij + ∆z

j |µ
β
jk, δ

β
jk

)]2

(III.6)

In first approximation, it is assumed that ∆x, ∆y and ∆z are jointly distributed p(∆x, ∆y, ∆z)

and obey a multi-variate Normal distribution N tot(∆x, ∆y, ∆z). In second approximation, ∆x,
∆y and ∆z are assumed to be independent from each other which implies uncorrelated error
sources although setup errors are in reality correlated with range errors. In principle, APM
permits to model such correlations between spatial dimensions to more accurately reflect
complex spatial interdependencies. However, the dimensionality of Gaussian evaluations
increases accordingly and with that the computational complexity. The simplification of
independent error sources made here are empirically evaluated in the result Section IV.2.2.1
and allow for the following factorization:

N tot(∆x, ∆y, ∆z|0, Σtot) = N (∆x|0, Σx)N (∆y|0, Σy)N (∆z|0, Σz) (III.7)

where each distribution is characterised with zero mean and a covariance matrix Σx/y/z ∈
RJ×J . Specifically, the latter allows to model arbitrary correlation assumptions in the pencil
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beam space while keeping the calculation and optimization complexity for different correla-
tion patterns constant. Not only the magnitude of the uncertainty of a pencil beam can be
modeled but also the correlation between different pencil beam combinations.

Examples for different correlation assumptions in the covariance matrix Σ assuming in total
thirteen pencil beams are shown in Figure III.4. Here, j and m denote pencil beam indices
and ρ depicts the correlation coefficient. The covariance matrices presented in Figure III.4
corresponds to a schematic treatment plan comprised of two beams, whereas each beam
consists of three rays and each ray is, except the second ray of the first beam is composed
of two pencil beams. Each element of the covariance matrix is defined via Σ(j, m) = ρ σjσm

and ρ = 1 ( ) indicates a perfect correlation between offsets for pencil beam j and m. In
contrast ρ = 0 ( ) implies uncorrelated offsets between pencil beam j and m. Figure III.4
depicts three different correlation patterns whereby all exhibit a block structure.

2 4 6 8 10 12

2

4

6

8

10

12

pencil beam index j

pe
nc

il
be

am
in

de
x

m

(a) Σ - unorrelation

beam sep.
ray sep.
ρ = 0
ρ = 1

2 4 6 8 10 12
pencil beam index j

(b) Σ - ray-wise corr.

2 4 6 8 10 12
pencil beam index j

(c) Σ - beam-wise corr.

Figure III.4: Three distinct correlations patterns for pencil beam interdependencies. The covariance matrices exhibit
block structure and schematically denote a treatment plan comprised of thirteen pencil beams delivered by two beam
directions. ( ) indicates the beam-separator and ( ) denotes the ray separator.

Firstly, Figure III.4(a) shows uncorrelated pencil beam combinations. All off-diagonal
elements are zero and only diagonal elements which define the variance of pencil beam j,
are greater than zero. The second Figure III.4(b) employs a ray-wise correlation model. As
highlighted by the ray-separation lines ( ) all pencil beam combinations belonging to the
same ray are perfectly correlated. On the contrary, pencil beam combinations from different
rays are uncorrelated. Lastly, Figure III.4(c) shows a beam-wise correlation model through
separator lines ( ). Here, all pencil beam combinations from the same beam direction are
correlated and uncorrelated otherwise.

A fully correlated covariance, as used for worst case optimization strategies modeling range
errors, might also be employed but is not explicitly shown here. For such cases, perfect
correlation means that we only consider scenarios where either all errors correspond to a
simultaneous over- or underestimation of the computed range.

Following the work of (Unkelbach et al., 2009) and (Bangert et al., 2013), a beam-wise
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correlation (see Figure III.4(c) is assumed for the lateral positioning error in x and y dimension.
The background to this is the assumption that positioning errors realize for each beam
direction independently. For the range error, a ray-wise correlation structure (see Figure
III.4(b)) is assumed, since all pencil beams belonging to the same ray penetrate the same
tissue and are therefore perfectly correlated.

The probability density p(∆x, ∆y, ∆z) induces an uncertainty over the biological effect ε that
can be described with a probability distribution p(ε). Generally, the unknown distribution
p(ε) is of non-Gaussian shape and can be described with statistical moments which will be
described next.

III.2.2 Expectation Value - First RawMoment

On the basis of the derivations for the biological effect computation in Equation II.28, the first
raw moment, also known as expectation value of the biological effect εi can be derived via:

E[εi] =
∫

d∆xd∆yd∆z p(∆x)p(∆y)p(∆z)εi(∆
x, ∆y, ∆z)

=
∫

d∆xd∆yd∆z p(∆x)p(∆y)p(∆z)
J

∑
j=1

wjLx
ijL

y
ijZ

α
ij +

(
J

∑
j=1

wjLx
ijL

y
ijZ

β
ij

)2

=
J

∑
j

wjLx
ijL

y
ijZ

α
ij +

J

∑
jm

wjwmΥx
ijmΥy

ijmΞβ
ijm (III.8)

where Lx/y
ij , Zα/β

ij in ∈ RI×J depict elements of the first raw moment influence matrices

of Lx/y
ij and Zα/β

ij , respectively. Additionally, Υx/y
ijm , Ξβ

ijm in ∈ RI×J2
denote elements of the

corresponding influence tensor of second raw moments and model the influence of pencil
beam combinations jm on the quadratic component of the expected biological effect E[εi].
Notably, E[εi] requires, due to the quadratic form of the second additive term of the biological
effect, the calculation of the second raw moment influence matrices (Υx/y

ijim and Ξβ
ijim). This

is different from the expectation value of the physical dose of protons which only requires
first raw moment influence matrices because of the purely linear dose mapping. The detailed
derivation of Equation III.8 is shown in Appendix B.1.

Usually, in treatment planning and also throughout this work, the dose per fraction is
optimized and then applied in F fractions. For a fraction dose in a carbon ion treatment, the
linear term of the biological effect is the main contributing factor, because of Aijw >> (Bijw)2

which was also observed by (Kamp et al., 2014).
To reduce the computational complexity, it is a reasonable approximation to neglect co-

variance elements (e.g. j 6= m) in the computation of terms Υx/y
ijim and Ξβ

ijim. By this means

the interdependencies of Lx/y
ij and Zβ

ij in the computation of the quadratic component of

E[εi] are neglected. As a result only diagonal elements (j = m) of terms Υx/y
ijim, Ξβ

ijim need to

48



Chapter III: Material and Methods

be considered. This can be done conveniently by simply squaring the first raw moments
Lx/y

i ,Zβ
i or by taking the outer product Ξβ ≈ Z βZβT. The full analytical calculation of E[εi]

can then be approximated by Ê[εi]:

Ê[εi] =
J

∑
j

wjLx
ijL

y
ijZ

α
ij +

(
J

∑
j

wjLx
ijL

y
ijZ

β
ij

)2

=
B

∑
j

wjAij +

(
J

∑
j

wjJij

)2

(III.9)

where Aij and Bij represent the expected probabilistic analog of Aij and Bij of Equation
II.28. This approximation reduces the computation of the expected biological effect to the
computation of Lx/y

ij and Zα/β
ij thereby minimizing the computational complexity from

O(I × J2) to O(I × J). Consequently, the calculation of the expectation value of the biological
effect E[εi] is as expensive as the nominal biological effect εi. An analysis and evaluation
of the proposed approximation is provided in the result Chapter IV.2. In the remaining
manuscript, the expected biological effect is calculated according to Equation III.9 and the
hat-symbol in Ê[εi] will be dropped.

As an example, the calculation of the expectation value of the lateral dose component Lx
ij in

x direction, assuming a Gaussian positioning error N (∆x|0, Σx) is given below in Equation
III.11:

Lx
ij = E[Lx

ij(∆
x)] =

∫ ∞

−∞
d ∆x p(∆x) Lx

ij(∆
x)

=
∫ ∞

−∞
d ∆xN (∆x|0, Σx) Lx

ij(∆
x) =

∫ ∞

−∞
d ∆x

j N (∆x
j |0, Σx

jj) Lx
ij(∆

x
j ) (III.10)

=
∫ ∞

−∞
d ∆x

j
1√

2πΣx
jj

e
−

(
∆x

j

)2

2Σx
jj

1√
2πλ2

ij

e
−

(
xij−µx

j +∆x
j

)2

2λ2
ij

=
1√

2π(Σx
jj + λ2

ij)
e
−

(
xij−µx

j

)2

2
(

Σx
jj+λ2

ij

)
�������������∫

d ∆x
j

1√
2πσ̃2

e−

(
µ̃−∆x

j

)2

2σ̃2︸ ︷︷ ︸
=1

(III.11)

where Equation III.10 can be derived from the marginalization properties of multivariate
Normal distributions (see Appendix A.3). Further, the integration of a Gaussian density
against another Gaussian density yields a new Gaussian distribution with an adapted mean
µ̃ and width σ̃ (see Appendix A.4). As a result the expectation value of the lateral dose Lx

ij is
given by a single Gaussian evaluation‡ with a modified width (Σx

jj + λ2
ij).

Similar expressions can be derived for the depth-dependent components Zα/β
ij by taking

additionally the sum over K Gaussian components into account:

‡assuming a single gaussian lateral beam profile
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Figure III.5: The left plot (a) shows the normalized nominal lateral dose profile ( ) and the corresponding expected
lateral dose ( ) assuming a setup uncertainty of 6 mm. The right plot (b) presents the normalized nominal Zα

profile ( ) profile. Moreover, the line ( ) denotes the expected depth dependent profile E[Zα], which is
comprised of thirteen Gaussian components ( ) assuming a relative range uncertainty of 6 %. The digital version
of this manuscript shows an animation with varying setup and range uncertainties from 0 mm to 6 mm and from 0 %
to 6 %.

Zα/β
ij = E[Zα/β

ij (∆z)] =
∫ ∞

−∞
d ∆z p(∆z) Zα/β

ij (∆z)

=
K

∑
k=1

ω
α/β
jk√

2π

(
δ

α/β
jk

2
+ Σz

jj

) e

−

(
zij−µ

α/β
jk

)2

2

(
δ
α/β
jk

2
+Σz

jj

)
(III.12)

The calculation shown in Equation III.12 is identical for the physical depth dose profile
of protons as well as for αd- and

√
βd-profiles for carbon ions. They only differ in the total

number of Gaussian components and in the corresponding Gaussian parameters itself. A
detailed derivation of Equation III.12 is given in the Appendix B.12.

Figure III.5(a) presents the nominal lateral dose component in ( ) and the corresponding
expectation value (first raw moment) E[Lx] = Lx in ( ). It can be observed, the higher
the input uncertainty, the more the expected lateral dose profile becomes washed out. In
addition, Figure III.5(b) depicts a nominal ( ) and expected ( ) depth-dependent Zα

profile assuming a relative range uncertainty of 6 %. With increasing range uncertainty, the
expected profile E[Zα] ( ) gets increasingly blurred.

To compute the variance/standard deviation in closed-form second raw moments, also
referred to as mixed terms, need to be calculated which are described next.
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III.2.3 Mixed Terms and Covariance

The calculation of the covariance (second central moment) of the biological effect Σε[εi, ε l]

requires the multiplication of first central moments E[εi]E[ε l] and the second raw moment
characterized by mixed terms E[εiε l]:

Σε
il[εi, ε l] = E[εiε l] − E[εi]E[ε l] (III.13)

Σε
ii[εi, εi] = E[ε2

i ] − E[εi]
2 (III.14)

Setting i = l allows deriving the variance of the biological effect Σε
ii[εi, εi] as shown in

Equation III.14. Let i, l be voxel- and j, m, o, q be pencil beam-indices, then the full analytical
computation of the second raw moment of the biological effect E[εiε l] is given by:

E[εiε l] =
∫

d∆xd∆yd∆z p(∆x)p(∆y)p(∆z)εi(∆
x, ∆y, ∆z)ε l(∆

x, ∆y, ∆z)

=
J

∑
jm

wjwmΥx
ijlmΥy

ijlmΞα
ijlm + 2

J

∑
jmo

wjwmwoΥx
ijlmioΥy

ijlmioΞα2β
ijlmio +

J

∑
jmoq

wjwmwowqΥx
ijlmiolqΥy

ijlmiolqΞβ
ijlmiolq (III.15)

where Υx/y
ijlm, Υx/y

ijlmio and Υx/y
ijlmiolq denote four-, six- and eight-dimensional tensors and repre-

sent higher order raw moment influence tensors of the lateral dose Lx/y. The full derivation
of Equation III.15 is provided in the Appendix B.2-B.5. To obtain now the variance of the
biological effect, which is stored in the diagonal (i = l) of the covariance matrix Σε

il as shown
in Equation III.14, the second voxel index l can be dropped to obtain:

E[εiεi] =
J

∑
jm

wjwmΥx
ijmΥy

ijmΞα
ijm + 2

J

∑
jmo

wjwmwoΥx
ijmoΥy

ijmoΞα2β
ijmo +

J

∑
jmoq

wjwmwowqΥx
ijmoqΥy

ijmoqΞβ
ijmoq

(III.16)

where Υx/y
ijmo ∈ RI×J3

and Υx/y
ijmoq ∈ RI×J4

denote sum-elements of the third and fourth raw

moment influence tensors of the lateral dose component Lx/y
i . Furthermore, Ξα

ijm ∈ RI×J2

represent sum-elements of the second raw moment influence tensor required to calculate the
second raw moment of Zα

i . Analog indicates Ξα2β
ijmo ∈ RI×J3

an element to derive the mixed

third raw moment of Zα/β
i and lastly, Ξβ

ijmoq ∈ RN×J4
an element of the fourth raw moment
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influence tensor to assess the fourth raw moment of Zβ
i . Individual entries of the three (e.g.

Υijm), four (e.g. Υijmo) and five (e.g. Υijmoq) dimensional tensors correspond to bi-, tri and
quadvariate Normal distributions obtained from the integration over multivariate Normal
distributions.

It is not feasible to store these four or five-dimensional tensors in memory for a clinical
scenario with 106 voxels and 2 × 104 pencil beams during routine therapy treatment planning
despite accounting for sparsity and symmetry.

Grounded on the approximations already made for the expectation value of the biological
effect E[εi], higher order moments n > 1 based on the

√
βd term in E[εiεi] are again repre-

sented by outer products of lower order moments. This approximation is motivated by the
fact that dose fractions are mainly determined by the linear component (αd) of the biological
effect for which reason it can be expected the variance of the biological effect is mainly driven
by the second raw moment of αd, derived from the second raw moment influence tensor
Ξα

ijm. On the contrary, higher order influence tensors of the
√

βd term show a decreasing
contribution to the overall computation and correspond therefore only to a minor correction.
Thus, interdependencies between pencil beam combination jm, jmo and jmoq in the

√
βd

term, stored in the off-diagonals, are neglected which allows deriving an approximated
second raw moment of the biological effect Ê[εiεi] as follows:

Ê[εiεi] =
J

∑
jm

wjwmΥx
ijmΥy

ijmΞα
ijm + 2

J

∑
jmo

wjwmwoΥx
ijmLx

io Υy
ijmL

y
io Z

α
ijZ

β
imZ

β
io +

J

∑
jm

wjwm(Υx
ijm)

2(Υz
ijm)

2(Zβ
ijZ

β
ij)

2 =
J

∑
jm

wjwmD̂
ε
ijm (III.17)

Neglecting covariances between double, triple and quadruple spot combinations in
√

βd

terms allows to define Υx/y
ijmo ≈ Υx/y

ijm Lx/y
io and Ξα2β

ijmo ≈ Zα
ijZ

β
imZ

β
io, which actually represent

the integration of a trivariate Gaussian distribution but now factorizes for Υx/y
ijmo into the

integration over a univariate and a bivariate Gaussian distribution. Further, Ξα2β
ijmo can even

be factorized into three univariate Gaussian distributions. Lastly, the integration over a
quadvariate Gaussian distributions (e.g Υx

ijomq) is approximated by the product over two
bivariate distributions (e.g.(Υx

ijm)
2).

To obtain the second raw moment D̂ε
ijm in Equation III.17, the sum for wo in the second

additive term has been collapsed to reduce the complexity for further consideration. The
approximations postulated for the second raw moment of the biological effect reduce the
computational complexity from O(I × J4) to O(I × J2). However, second raw moment
influence tensors (Υx/y

ijm , Ξα
ijm) of the lateral dose Lx/y and Zα the depth component still need

to be fully calculated to derive Ê[εiεi].
Let i, l be voxel indices and j, m be pencil beam indices and N (xijlm|µx

jm, Λijlm) be a Normal
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bivariate distribution with the following parameters:

xijlm =

(
xij

xlm

)
,µx

jm =

(
µx

j

µx
m

)
, ∆x

jm =

(
∆x

j

∆x
m

)
, Λijlm =

(
λ2

ij 0

0 λ2
lm

)
, Σjm =

(
Σx

jj Σx
jm

Σx
mj Σx

mm

)

where Σjm denotes the covariance matrix for the setup error between pencil beams j and m.
Consequently, the second raw moment of the lateral dose E[Lx

ijL
x
lm] in x direction is given by:

Υx
ijlm = E[Lx

ijL
x
lm] =

∫
d∆x p(∆x)Lx

ijL
x
lm

=
∫ ∞

−∞
d ∆x 1

2π
√
|Σx|

e−
1
2 ∆xT(Σx)−1∆x 1√

2πλ2
ij

e
−

(
xij−µx

j +∆x
j

)2

2λx
ij

1√
2πλ2

lm

e
−
(
xlm−µx

m+∆x
m
)2

2λx
lm

=
1

2π
√
|Λijlm + Σjm|

e−
1
2 (xijlm−µx

jm)
T(Λijlm+Σjm)−1(xijlm−µx

jm) (III.18)

The second raw moment influence tensor of the lateral dose Υx
ijlm is represented by an

integration over a bivariate Normal distribution. Detailed derivations are again presented
in the Appendix B.8. The full analytical expressions for elements of the third raw moment
influence tensor of the lateral dose (Υx/y

ijmo) and the depth dose (Ξα2β
ijmo) can also be found in the

Appendix (Equation B.11 and Equation B.16) although they are not employed throughout
this work.

To calculate the second moment of depth dose components, additionally a sum of Gaussians
needs to be considered. Let k and p be indices of individual Gaussian components, K, P be
the total number of Gaussian components and N (zijlm|µ

α/β
jkmq, θ

α/β
jkmp) be a bivariate Normal

distribution with the following parameters:

zijlm =

(
zij

zlm

)
,µα/β

jkmq =

(
µ

α/β
jk

µ
α/β
mq

)
, ∆z

jm =

(
∆z

j

∆z
m

)
, θ

α/β
jkmp =

δ
α/β
jk

2
0

0 δ
α/β
mp

2

 , Σjm =

(
Σz

jj Σz
jm

Σz
mj Σz

mm

)

employing a range error covariance matrix Σz
jm allows deriving elements of the second raw

moment influence tensor of Zα
ij and Zβ

ij as follows:
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Ξα/β
ijlm = E[Zα/β

ij Zα/β
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ω
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1
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α/β
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α/β
jkmp+Σjm)−1(zijlm−µ

α/β
jkmp) (III.19)

where, Ξα/β
ijlm can be interpreted as the sum over Normal bivariate distributions originat-

ing from a two-dimensional integration. The reader is referred to the Appendix B.14 for
detailed derivation. Throughout this work only Ξα

ijlm is fully calculated, whereas other
depth-dependent second or higher order moments are approximated.

On the basis of Equation III.13 and the second raw moment of the biological effect in
Equation III.17, the variance of the biological effect σ̂2[εi] can then be calculated via:

σ̂2[εi] = Σε
ii[εi, εi] = E[ε2

i ]− E[εi]
2 (III.20)

=
J

∑
jm

wjwm D̂ε
ijm −

[
Aijwj + (Bijwj)

2
] [

Aimwm + (Bimwm)
2
]

︸ ︷︷ ︸
=Vijm =Cijim

=
JM

∑
jm

wjwmVijm

where Vijm represents the variance influence tensor in ∈ RI×J×J which maps Vijm for given
pencil beam weights w to the variance. For the sake of completeness, calculating Equation
III.20 for i 6= l allows deriving the covariance influence tensor Cijlm in ∈ RI×J×I×J . Setting
i = l demonstrates that the variance influence tensor Vijm = Cijim is a sub-structure of the
covariance influence tensor. Ultimately, the covariance matrix for the biological effect can be
obtained via Σε

il[εi, ε l] = ∑jm wjwmCijlm.
Figure III.6(a) presents the normalized nominal lateral dose component in ( ), the cor-

responding expectation value (first raw moment) E[Lx] = Lx in ( ) and the standard
deviation (second central moment) σ[Lx] in ( ) considering a setup uncertainty of 6 mm.
Figure III.6(a) reveals that with increasing setup uncertainty the more pronounced the stan-
dard deviation bumps at the lateral dose fall-off region become. Additionally, Figure III.5(b)
shows the normalized nominal ( ) and expectation value ( ) of the depth-dependent
Zα profile assuming a relative range uncertainty of 6 %. Similar to the lateral dose profile, the
standard deviation, denoted by ( ) is of non-Gaussian shape and rises with increasing
range uncertainty.

Considering the two to threefold increased numerical computations required for carbon
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Figure III.6: The left plot shows the normalized nominal lateral dose profile ( ), the corresponding expected lateral
dose ( ) and the standard deviation ( ) assuming a setup uncertainty of 6 mm. The right plot presents the
normalized nominal Zα profile ( ), which is comprised of thirteen Gaussian components ( ). Furthermore, the
lines ( ) and ( ) indicate the corresponding expected depth dependent profile E[Zα] and standard deviation
modelling a relative range uncertainty of 6 %. The digital version of this manuscript shows an animation with varying
setup and range uncertainties from 0 mm to 6 mm and from 0 % to 6 %, respectively.

ion treatment planning in relation to proton treatment planning, the order of computational
complexity O(I × J2) for the variance is identical due to the omission of interdependencies
of triple and quadruple spot combinations.

Despite the approximations, it is still challenging to keep the full second raw moment D̂ε

for different voxel combinations il in memory. Therefore, D̂ε is calculated for each voxel
on the fly and only the integral variance Ωjm ∈ RJ×J over all voxels is kept in storage. The
integral variance Ωjm can then be used in a further step to optimize the expectation value of
the squared deviation objective which will be explained later in Section III.4.

The hat symbol in Equation III.20 emphasizes the variance of the biological effect is approx-
imated and derived from the full analytical expression shown in Equation III.16. The quality
of these approximations are investigated in Chapter IV.2.1.1 and are used throughout this
work if not explicitly stated otherwise.

So far, no distinction was made between random and systematic errors. Therefore, the
next chapter explains how the interplay between random and systematic errors and their
dependence on the number of fractions is modeled for carbon ions as part of the APM
formalism.

III.2.4 Fractionation Effects

A radiation treatment plan is typically delivered in multiple fractions f { f ∈ N|1 ≤ f ≤ F}
for which reason errors must be broken down into random (execution) and systematic
(preparation) errors. In this regard caution has to be taken since the total biological effect
εF directly derived from the total physical dose delivered in F fractions does not equal the
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additive effect from the individual fraction doses:

ε

(
F

∑
f=1

d f

)
6=

F

∑
f=1

ε f (III.21)

The APM framework permits to incorporate the interplay of random and systematic errors
by exploiting an additional correlation model between the two error types and was first
published for the physical dose by (Bangert et al., 2013). That is, systematic errors, as for
instance a miscalculated WEPL, realize identical throughout the whole course of treatment
and are therefore assumed to be perfectly correlated. On the contrary, random errors (e.g. a
miss-positioned patient) are uncorrelated between fractions as they mainly realize differently
in each treatment fraction f . Given a carbon ion treatment plan delivered in F fractions, the
total biological effect εF

i is represented by:

εF
i (∆

sys, ∆rnd
f ) =

F

∑
f=1

 J

∑
j=1

wj A
f
ij(∆

sys, ∆rnd
f ) +

(
J

∑
j=1

wjB
f
ij(∆

sys, ∆rnd
f )

)2
 (III.22)

where ∆rnd
f is different for each fraction f , A f

ij represents the linear part of the biologi-

cal effect in voxel i from pencil beam j in fraction f . Similarly, denotes B f
ij the squared

component of the biological effect. Assuming an identical Normal distribution for ∆rnd
f for

each fraction f allows in a further step to model systematic and random errors with respec-
tive covariance matrices from multivariate Normal distributions p(∆rnd

f ) ∼ N (∆rnd
f |0, Σrnd)

and p(∆sys) ∼ N (∆sys|0, Σsys). Knowing from Equation II.28 that Aij and Bij factorize into

Lx
ijL

y
ijZ

α
ij and Lx

ijL
y
ijZ

β
ij, the expected lateral dose component Lx/y from Equation III.11 results

for a fractionated treatment in:

Lx/y
ij = N (xij/yij, 0, λ2

ij + Σx/y,sys
jj + Σx/y,rnd

jj ) (III.23)

The expectation value of the lateral dose Lx/y = E[Lx/y] as part of the biological effect
shown in Equation III.23 is under fractionation identical to the computation of the physical
dose of protons. The identical complexity arises as biological beam properties are incorpo-
rated through dose-averaged depth-dependent α- and

√
β-profiles and logically affect only

the depth-dose and not the lateral component. Hence biological properties are assumed to be
laterally constant. Moreover, the expected depth dose components considering F fractions
are then given by:

FZα
ij = F
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wjk N (zij, µα
jk, δα
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2
+ Σz,sys

jj + Σz,rnd
jj ) (III.24)
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where FZβ
ij is weighted with

√
F due to the quadratic form of the biological effect. Using

Equation III.23 and III.24, the expectation value of the biological effect considering fractiona-
tion results therefore in:

E[εF
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]
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J
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(III.25)

=
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f=1

E[ε
f
i ] = F E[ε

f
i ] (III.26)

Equation III.25 shows that the linear term is applied F times and the quadratic term is
applied F times (considering the square in the latter). Now let f and g enumerate over the
total fraction number F, then the second central moment of the biological effect E[εF

i εF
l ] in a

fractionated treatment can be derived by:
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wmBg
lm

)2


︸ ︷︷ ︸
⇒∑J

jmo Υx
ijlmioΥy

ijlmioΞα2β
ijlmio

+

+
F

∑
f g=1

( J

∑
j

wjB
f
ij

)2( M

∑
m

wmBg
lm

)2


︸ ︷︷ ︸
⇒ see Equation III.15


(III.27)

An intermediate step to derive Equation III.27 is not shown here but is presented in
Appendix B in Equation B.17. Each block marked by square brackets [ ] in Equation III.27 can
be integrated separately. The full computation of III.27 is not shown here but, the computation
of the second central moment of the lateral dose component Υx

ijlm = E[Lx
ijL

x
lm] considering

fractionation is exemplarily fully exercised next. Analog is the computation for the remaining
terms (e.g. Ξα

ijlm). Let the systematic setup error ∆
x,sys
jm as well as the random setup error
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∆x,rnd
j f mg of pencil beam spot j and m be a multivariate Normal distribution with zero mean

vectors and corresponding covariance matrices Σx,sys
jm and Σx,rnd

j f mg . Further, let Λx
ijlm define the

variance of the lateral dose profile, then Υx
ijlm can be derived as follows:

Υx
ijlm =

F

∑
f=1

F

∑
g=1

∫ ∞

−∞
d∆x,sys N (∆x,sys, 0, Σx,sys

jm )
∫ ∞

−∞
d∆x,rnd N (∆x,rnd, 0, Σx,rnd

j f mg)

1

2π
√
|Λx

ijlm|
e−

1
2

(
xijlm−µjm+∆

x,sys
jm +∆x,rnd

j f mg

)T(
Λx

ijlm

)−1(
xijlm−µjm+∆

x,sys
jm +∆x,rnd

j f mg

)
(III.28)

Solving the integrals in Equation III.28 then yields:

Υx
ijlm =

F

∑
f=1

F

∑
g=1

1

2π
√
|Λx

ijlm + Σx,sys
jm + Σx,rnd

i f mg |
e−

1
2

(
xijlm−µjm

)T(
Λx

ijlm+Σx,sys
jm +Σx,rnd

i f mg

)−1(
xijlm−µjm

)

(III.29)

To exercise Equation III.29, two different scenarios have to be considered. Spatial correla-
tions, such as the ray-wise or beam-wise correlation assumptions for random errors, are valid
within an individual fraction ( f = g) and are therefore further denoted as correlated errors
Σrnd

corr. Across different fractions ( f 6= g) random errors do not correlate, which is modeled
with an uncorrelated random error covariance matrix Σrnd

uncorr = diag(Σrnd
corr). Thus, we can

define:

Σjm,sys =

(
Σx,sys

jj Σx,sys
jm

Σx,sys
mj Σx,sys

mm

)
; Σjm,rnd

corr =

(
Σx,rnd

jj Σx,rnd
jm

Σx,rnd
mj Σx,rnd

mm

)
; Σjm,rnd

uncorr =

(
Σx,rnd

jj 0

0 Σx,rnd
mm

)

This definition allows in a further step to resolve the double sum over fractions f and g:

Υx
ijlm

F =
F

2π
√
|Λx

ijlm + Σjm,sys + Σjm,rnd
corr |

e−
1
2

(
xijlm−µjm

)T(
Λx

ijlm+Σjm,sys+Σjm,rnd
corr

)−1(
xijlm−µjm

)

+
F(F − 1)

2π
√
|Λx

ijlm + Σjm,sys + Σjm,rnd
uncorr|

e−
1
2

(
xijlm−µjm

)T(
Λx

ijlm+Σjm,sys+Σjm,rnd
uncorr

)−1(
xijlm−µjm

)

= F Υx,corr
ijlm + F(F − 1)Υx,uncorr

ijlm (III.30)

where Υx,corr
ijlm and Υx,uncorr

ijlm present elements of the correlated and uncorrelated second cen-
tral moment influence tensor of the lateral dose taking into account fractionation. Considering
any number of fractions F effectively doubles the number of computation as it stays constant
for F > 1. Similar expressions in the form F Υcorr + F(F − 1)Υuncorr were derived for protons

58



Chapter III: Material and Methods

by (Bangert et al., 2013) in Equation 32.
As the fractionated dose is usually considered for carbon ion treatment planning and Υx

ijlm
F

cannot be directly converted to RBE weighted dose because of the fractionation effect (see
Equation III.21), it is desirable to convert elements of the of second central moment influence
tensor of the lateral dose Υx

ijlm
F to the equivalent single fraction dose level Υx

ijlm
f . Thus Υx

ijlm
F

can be divided by F2 to obtain the average Υx
ijlm

f of a single fraction f :

Υx
ijlm

f =
Υx

ijlm
F

F2 =
Υx,corr

ijlm

F
+

(F − 1)Υx,uncorr
ijlm

F
(III.31)

To explain Equation III.31, an example of a one-dimensional fractionated carbon ion SOBP
is shown in Figure III.7. The prescribed biological effect is 0.75 which corresponds to a target
dose of 3 Gy(RBE) for a tissue characterized by αx = 0.1 [Gy−1] and βx = 0.05 [ Gy−2].
Further, ( ) indicates the CTV and ( ) the margin expansion to derive the PTV. The
systematic range error is defined to be Σz,sys

jm = 0.035 rj × 0.035 rm and the random range error

to be Σz,rnd
jm = 42 mm2, where rj and rm depict the range of pencil beam j and m, respectively.

Figure III.7 illustrates the standard deviation of the fractionated biological effect σ[ε] f for
F = 1 ( ) and F = ∞ ( ) on the basis of Equation III.31. Within the digital version
of this manuscript, an animation for different fractionation assumptions is shown. It can be
observed that for an increasing number of fractions, the standard deviation shifts towards
σ[ε]F=∞.

Figure III.7: Fractionation effects of a 1D carbon ion SOBP with αx = 0.1 Gy−1 and βx = 0.05 Gy−2. The plan
was optimized for a reference dose of 3 Gy(RBE), which translates to a prescribed biological effect of 0.75. ( )
denotes the optimized nominal biological effect ε. Considering systematic and random range uncertainties, the
expected biological effect E[ε] results in ( ). The standard deviation of the biological effect σ[ε] f of the actual
fractionation scheme for 5 fractions is given by ( ) and is enclosed by σ[ε]

f
F=1 ( ) and σ[ε]

f
F=∞ ( ). The

digital version of this manuscript shows varying fractionation assumptions resulting in different standard deviations.

Assuming the biological effect ( ) is applied once in a single fraction (F = 1) then ( )
represents the corresponding standard deviation σ[ε]

f
F = σ[ε]

f
1 according to Equation III.31

for which the second additive term containing Υx,uncorr
ijlm becomes 0. Considering F = ∞ in
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Equation III.31 yields to full compensation of random uncertainties and lim
F→∞

Υx,corr
ijlm

f /F = 0

whereas lim
F→∞

[(F − 1)Υx,corr
ijlm

f
]/F results in Υx,corr

ijlm
f . Section III.5 shows later how to convert

σ[ε] f from Figure III.7 to σ[RBE × d] f , which allows consequently to obtain the total uncer-
tainty of the RBE weighted dose via:

σ[RBE × d]F = σ[RBE × d] f ∗ F (III.32)

A proof of concept for Equation III.32 is shown in the result Section IV.2.1.5 demonstrating
that the full fractionation spectrum of quantified carbon ion treatment plan uncertainties can
be explored.

Throughout this thesis, setup uncertainties in the spatial dimensions are modeled by a
random component of σrnd

x/y = 2 mm and a systematic component of σ
sys
x/y = 1 mm. Comple-

mentary, range uncertainties are assumed to possess an absolute random component of σrnd
z

= 1 mm and a relative systematic component of σ
sys
z = 3.5 % with respect to the pencil beam’s

range.

III.3 Biological Uncertainties

Up to now, it was uncertain where the actual biological effect is occurring inside the patient
because of physical uncertainties (setup- and range-error). The location uncertainty was mod-
eled by being uncertain in the mean position of individual Gaussian components constituting
the lateral and depth-dependent pencil beam components. Calculating statistical moments
assuming errors obey a multivariate Normal distribution resulted in turn in multivariate
Normal distributions, however, with a modified (co)-variance. In addition, to modeling
physical uncertainties the fundamental question arises, how effective the radiation will be
on the patient. In general, this is modeled for carbon ions by the RBE, which quantifies the
relative effectiveness of carbon ions to photon irradiation. To this end, the RBE modeling
approach introduces inevitably biological uncertainties as it is uncertain how effective an
individual carbon ion pencil beam will be.

Considering the one-dimensional examples given in previous chapters, range and setup
uncertainties were modeled along the first dimension – the x-axis. In contrast, biological
uncertainties are now expressed on the y-axis to model a uncertainty in the effectiveness. This
is why biological uncertainties result in a varying magnitude and introduce a new uncertainty
structure, which will be introduced step by step in this section.
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III.3.1 Gaussian Process

Analogously to the extension of a one- to a multi-dimensional (multivariate) Normal dis-
tribution, a Gaussian Process (GP) represents the extension to functions. Compared to a
multivariate Normal distribution, which specifies the distribution of individual variables x
by a mean vector µx and a covariance matrix Σx, a GP denotes the distribution of a function
h(x) and is entirely given by a mean function mh(x) and a covariance function kh(x, x).

Specifically, the mean function mh(·) of a GP denotes the shape of the expected/average
function and the standard deviation, obtained from the covariance function k(x, x), denotes
the variability of function h(x) for different inputs. Equation III.33 shows the general form a
GP aiming to parameterize p(h(x)):

p(h(x)) = N (h(x), mh(x), kh(x, x)) (III.33)

k(x, x) is also known as the kernel matrix because arbitrary kernels can be defined which
allow to model/specify the covariance between any two functions values. GPs are of interest
because they are mathematically convenient and allow for Bayesian inference. GPs are well
suited for iterative learning processes (e.g. reinforcement learning) in which (i) priors are
defined (ii) data is observed and (iii) the posterior likelihood is inferred. However, throughout
this manuscript the idea is, to model αcd and

√
βcd profiles, which are represented by

a superposition of Gaussians, as a GP. Instead of considering only the nominal profile,
biological uncertainties now introduce a distribution over αcd- and

√
βcd-profiles yielding

due to the GP parametrization to a mean- and a standard deviation-profile.

III.3.2 Integration into APM

Biological uncertainties cause an uncertainty in magnitude. This circumstance can be mod-
eled within the APM framework by introducing variability in the weights ω

α/β
k in the k-th

Gaussian components defining the αcd- and
√

βcd-profiles. So far the APM problem that is
solved for the biological effect accounting for setup and range uncertainties is given by:

E[ε(X)n] =
∫

Rζ
pX(x)ε(x)ndx ≈

∫
Rζ

N (x,X , ΣX) ε̂(x)ndx (III.34)

Equation III.34 assumes a multivariate Normal distribution for setup and range uncertain-
ties and derivations made in the previous sections allow to calculate the first raw and second
central moment of the biological effect in closed-form.

Now an additional uncertainty parameter Y is introduced, intended to model the vari-
ability in the magnitude of individual Gaussian components. A key feature of APM is that
the consideration of an additional uncertainty source does not increase the computational
complexity:
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E[ε(X ,Y )n] =
∫

Rζ
pX ,Y (x, y)ε(x, y)ndxdy =

∫
Rζ

pX(x)pY (y)ε(x, y)ndxdy

≈
∫

Rζ
N (x,X , ΣX)N (y,Y , ΣY ) ε̂(x, y)ndxdy (III.35)

where, pX ,Y denotes a new multivariate Normal distribution combining physical and
biological uncertainties. But since physical uncertainties are assumed to be uncorrelated to
biological uncertainties, pX ,Y can be factorized into pX and pY . As of now, no evidence
supports a different correlation assumption because setup and range errors do not show a
dependency on biological errors and vice versa.

Notwithstanding, it is important to state, that if a pencil beam is shifted either laterally or
longitudinally because of setup or range uncertainties also biological beam properties shift
accordingly. This behavior is already modeled by αcd and

√
βcd profiles as they directly

combine physical and biological beam properties in the form of physical depth dose profiles
and dose-averaged depth-dependent LQM profiles.
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Figure III.8: A pseudo mono-energetic carbon ion pencil beam with 277 MeV u−1 considering a tissue characterized
by αx = 0.1 [Gy−1] and βx = 0.05 [ Gy−2]. The ( ) line depicts the expectation value considering 2 % range
uncertainty and a biological uncertainty in the αc parameter of 25 %. The latter directly translates to a of 25 %
uncertainty in the weight component ωα

k of each Gaussian, which are illustrated in ( ). Their superposition results
in ( ). Horizontal error bars denote range uncertainties whereas vertical errors bars depict biological uncertainties.

Figure III.8 shows the expectation value of the αcd-profile ( ) of a pseudo mono-energetic
carbon ion pencil beam with 277 MeV u−1 for a tissue characterized with αx = 0.1 [Gy−1] and
βx = 0.05 [ Gy−2] and highlights two different aspects. First, physical range uncertainties
are expressed by an uncertainty in the mean position along the x-axis of each Gaussian
component, highlighted by horizontal error bars. As a result the expectation value ( )
is washed out and not as peaked as the nominal profile (not shown). Second, biological
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uncertainties are realized by an uncertainty in the weight ωα
k of each Gaussian component

along the y-axis as indicated by vertical error bars. In this work σ[ωα
k ] is assumed to be

25 %. Broad gaussian components in Figure III.8, for instance, the component with the
mean at 0 mm or around ≈ 95 mm are associated with relatively high weights for which
reason a 25 % error assumption logically yields a high vertical error bar. The resulting
biological uncertainty is shown in Figure III.8 by a light red colorwash and is due to the
relative uncertainty assumption biggest around the peak. The same methodology can also
be exercised for

√
βcd-profiles but is not explicitly shown here. The multivariate Normal

distribution pY , to model biological uncertainties via the weights ωα/β of each Gaussian
component, is described next.

III.3.3 Biological Uncertainty Model

Firstly a general uncertainty model is introduced that allows in principle to model biological
uncertainties and correlation within and between both, αcd and

√
βcd profiles. But because

the αcd profile is the main contributing component in the low fractionated dose domain,
a biological uncertainty model is in this work ultimately only used for αcd profiles and
described towards the end of this section. This assumption is in line with the approximations
already made for the moment calculations in the quadratic term (

√
βcd) of the biological

effect concerning physical uncertainties.
Here, it is assumed that the fitted weights ω obey a multivariate Normal distribution

∼ N (ω, Σω) with the mean value ω and the covariance matrix Σω in which the fitted
ω

α/β
k parameters (see Figure III.3) represent directly the mean value. Analog to physical

uncertainties, the covariance matrix Σω allows modeling the magnitude and structure of
biological uncertainties. In the previous section, range uncertainties were considered for each
pencil beam j but now biological uncertainties are modeled for each Gaussian component k
of each pencil beam j.

Let J be the total number of pencil beams, K be the number of Gaussian components per
pencil beam defined in this manuscript to be K = 13 since 13 Gaussian components were
fitted to the αcd- and

√
βcd-profile. Further, accounting for two different profiles (αcd and√

βcd) results then the covariance matrix Σω to be in ∈ RO×O with O = 2JK. The factor two
comes in because of two components, namely αcd and

√
βcd.

Figure III.9 illustrates the structure of the covariance matrix Σω for only two pencil beams
J = 2. As thirteen Gaussian components are used to model the respective αcd and

√
βcd

profiles, the covariance matrix Σω is in ∈ R52×52 as O = 2JK = 2 × 2 × 13.
Let u, v be linear indices from {u, v ∈ N|1 ≤ u, v ≤ O}, then the first block ( ) in the

upper left corner of the first plot in Figure III.9 from u, v = 1 . . . 26 models the correlation
between all Gaussian components of αcd profiles of both pencil beams. Focussing on the
right plot of Figure III.9, therefore A11 denotes a sub-block modelling the correlation of
Gaussian components of the αcd profile of the first pencil beam j = m = 1. Whereas A21
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Figure III.9: Illustration of the structure of the covariance matrix Σω to model biological uncertainties. This example
corresponds to a dummy treatment plan comprised of two J = 2 pencil beams. Assuming K = 13 Gaussian components
model each αcd- and each

√
βcd-profile results in Σω to be in ∈ R52×52 thereby exhibiting block structure. ( )

indicates the component separator between αcd and
√

βcd components and ( ) denotes the pencil beam separator.

depicts the correlation of Gaussian components of αcd profiles between the first (j = 1) and
second (j = 2) pencil beam. Analog represents the second block ( ) in the left plot of
Figure III.9 from u, v = 27 . . . 52, the correlation of all Gaussian components of

√
βcd profiles.

The covariance structure in off-diagonal blocks u/v = 1 . . . 26, v/u = 27 . . . 52 ( ) permits
in principle to model correlation or anti-correlation of biological uncertainties between αcd

and
√

βcd components.
In this work, biological uncertainties are only modeled for αcd profiles, whereas uncertain-

ties in
√

βcd profiles were neglected in first approximation due to their smaller contribution
to the biological effect. Further, it is assumed that all Gaussian components of αcd profiles of
all pencil beams are perfectly correlated. This implies biological uncertainties are believed to
correlate identical for all pencil beams independent of the beam direction or beam energy. It is
assumed that biological uncertainties are of systematic nature and realize equally throughout
all fractions. The underlying principle reflected here is that biological models make global
predictions which can be consistently (systematically) wrong or right.

The following paragraph describes briefly how the biological uncertainty estimate for αcd

profiles were derived. The LEM I was implemented in a Matlab prototype and validated
with ground truth data obtained from a reference implementation. Then, a Monte Carlo
sensitivity analysis was performed by varying the LEM input parameter (αx and βx) to
obtain the variability and further the uncertainty structure of resulting αcd profiles. The
obtained standard deviation profile was then used to design the covariance matrix Σω. In
first approximation, a relative uncertainty of 25 % was assumed for depth-depended dose-
averaged LQM αc parameters, which directly translate to a 25 % uncertainty in αcd profiles
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and further to ωα. Similar finding were reported by Friedrich et al. (2013a). Hence, the
covariance of αcd profiles between the j-th and m-th pencil beam Σωα

jm is in RK×K and can be
calculated on the fly, without the need to store a full (co)-variance matrix:

Σωα
jm = ρ 0.252

(
ωα

j ω
α
m

T
)
◦ K (III.36)

where ρ is set to 1 as all Gaussian components of the αcd profiles of all spot combinations jm
are perfectly correlated and the ◦ operator denotes the point-wise Hadamard matrix product.
Both, Σωα

jm and K are in RK×K and ωα
j/m denotes a vector in R13×1 containing the weights of

Gaussian components of pencil beam j and m, respectively.
The K matrix contains values ∈ [0 . . . 1] and allows to additionally steer the shape of the

uncertainty band. For instance, if only a biological uncertainty should be modeled around the
peak then combinations of Gaussian components k and p of pencil beam j and m contributing
to peak are associated with a value close to 1, while other component combinations not
contributing to the peak are associated with a value of 0. Throughout this work a perfect
correlation is assumed, thus the K matrix is filled with ones. Following Equation III.36, it is
not necessary to keep the full covariance matrix Σω in storage, which is in ∈ RO×O. Instead,
their block-wise elements Σωα

jm , also shown by A11, A21... in Figure III.9 can simply be
calculated on the fly when needed.

III.3.4 Moment Calculation

As biological uncertainties only affect depth related and not lateral components of the
biological effect, a focus is set on the former. The expectation value considering biological
and range uncertainties of depth components of the biological effect is given by:

Zα/β
ij = E[Zα/β

ij (∆z,ωα/β)] =
∫ ∞

−∞

∫ ∞

−∞
d∆z dωα/β p(∆z)p(ωα/β) Zα/β

ij (∆z,ωα/β) (III.37)

We already know from Equation III.12 in Section III.2.1 how to calculate the expectation
value of depth components considering range uncertainties. Thus, solving the integral in
Equation III.37 for range uncertainties yields:

Zα/β
ij = E[Zα/β

ij (∆z,ωα/β)] =
∫ ∞

−∞
dωα/β p(ωα/β)

K

∑
k=1

ω
α/β
jk√

2π(δ
α/β
jk

2
+ Σz

jj)

e
−

(
zij−µ

α/β
jk

)2

2(δ
α/β
jk

2
+Σz

jj)(III.38)

where p(ωα/β) obeys a multivariate Normal distribution ∼ N (ωα/β|µω, Σω) with mean
µ = ωα/β and covariance matrix Σω. For further consideration, the superscript α/β is dropped
because the following derivations are valid for both, αcd- and

√
βcd-profiles. Due to the
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marginalization property, Equation III.38 simplifies to:

Zij =
K

∑
k=1

∫ ∞

−∞
dωjk N (ωjk|µjk, Σω

jkk)ωjk︸ ︷︷ ︸
=E[ωjk]=µω

jk=ωjk

1√
2π(δjk

2 + Σz
jj)

e
−
(

zij−µjk
)2

2(δjk
2+Σz

jj) (III.39)

=
K

∑
k=1

ωjk√
2π(δjk

2 + Σz
jj)

e
−
(

zij−µjk
)2

2(δjk
2+Σz

jj) (III.40)

Under the assumption ωjk is normally distributed around the mean ωjk, the integration
from −∞ to ∞ yields the mean value, which is ωjk as highlighted by the curly bracket in
Equation III.39. Effectively, the expectation value of the biological effect considering biological
and range uncertainties, shown in Equation III.40 and Appendix B.20 equals the expectation
value of only considering range uncertainties (see Equation III.12).

As the weight of each Gaussian component ω
α/β
jk directly presents the mean value from a

Gaussian error distribution, calculating its expectation results logically in the mean value.
This is only the case as the biological error is assumed to follow a Gaussian distribution.
Other Probability Density Function (PDF)s, e.g. a skewed distribution would produce a
different expectation value.

Focusing on the calculation of the second central moment of Zα/β
ij considering additionally

biological uncertainties yields to:

Ξα/β
ijlm = E[Zα/β

ij (∆z,ωα/β), Zα/β
lm (∆z,ωα/β)]

=
∫ ∞

−∞

∫ ∞

−∞
d∆zdωα/β p(∆z)p(ωα/β) Zα/β

ij (∆z,ωα/β)Zα/β
lm (∆z,ωα/β) (III.41)

Next, let p(ωα/β) again be a multivariate Normal distribution given by N (ωα/β|µω =

ωα/β, Σω). Similar to the expectation value before, Equation III.41 was already solved for
physical uncertainties in Section III.2.2 (see Equation III.19) and resulted in:

Ξα/β
ijlm =

∫ ∞

−∞
dωα/β N (ωα/β|µω, Σω)

KP

∑
kp

ω
α/β
jk ω

α/β
mp

2π
√
|θα/β

jkmp + Σjm|
e−

1
2 (zijlm−µ

α/β
jkmp)

T(θ
α/β
jkmp+Σjm)−1(zijlm−µ

α/β
jkmp) (III.42)

To explain solving Equation III.42 in a further step, a brief example is given next. Let x be a
multi-dimensional normally distributed variable with mean µ and covariance Σ, then the
first raw moment is represented by E[x] = µ. This has already been proven in Equation III.39
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for calculating the expectation value. Knowing that ω represents the mean, calculating its
expectation results in turn in ω. Following the method of moments, the second raw moment
is then given by E[xxT] = µµT + Σ (Bishop, 2006) and Appendix A.5). Since the following
derivations are valid for any depth-dependent component we drop again the superscript α/β.
Further, moving ω

α/β
jk ω

α/β
mp in Equation III.42 out of the double sum result in:

Ξijlm =
∫ ∞

−∞
dωN (ω|µω, Σω)ωjω

T
m︸ ︷︷ ︸

E[ωjω
T
m]=µωµω T+Σω=ωjω

T
m+Σω

KP

∑
kp

1

2π
√
|θjkmp + Σjm|

e−
1
2 (zijlm−µjkmp)

T(θjkmp+Σjm)−1(zijlm−µjkmp) (III.43)

considering that µω = ωα/β the integral in Equation III.42 then results in ωjω
T
m + Σω.

Moving these terms back into the double sum yields:

Ξijlm =
KP

∑
kp

ωjkωmp + Σ
ωjm
kp

2π
√
|θjkmp + Σjm|

e−
1
2 (zijlm−µjkmp)

T(θjkmp+Σjm)−1(zijlm−µjkmp) (III.44)

where the additive term Σ
ωjm
kp (see Equation III.36) depicts for biological uncertainties

the covariance between different Gaussian components kp from two different pencil beam
combinations j and m. The second raw moment of depth-related components, shown in
Equation III.44 and in Appendix B.21, allows finally to calculate the standard deviation of
the biological effect accounting for biological and physical uncertainties. It can be seen from
Equation III.44 that the additional consideration of biological uncertainties results due the
analytical formulation only in an additive term which does not increase the computational
complexity of O(I × J2) for computing the standard deviation.

A proof of concept for an abstract toy example is shown in Figure III.10. This artificial
example mimics the biological effect of a simple treatment plan comprised of two pencil
beams f1 ( ) and f2 ( ).

The first pencil beam f1 ( ) is defined as a linear combination w1a1 + w1b1 and shown
in Figure III.10(a). Analog is the definition for the second pencil beam f2 ( ) which is
presented in Figure III.10(b). Each profile a1, b1, a2 and b2, modeling the two pencil beams,
is represented by a superposition of three Gaussian components. Range and biological
uncertainties are modeled for each Gaussian component as highlighted by vertical and
horizontal error bars in III.10(a) and (b). The resulting nominal quantities are shown in
Figure III.10(c) and probabilistic quantities considering uncertainties in x and y dimension
are shown in Figure III.10(d). The analytical expectation value E[ftot] ( ) is compared
to 1e5 random samples ( ) and results in a maximum relative difference of 0.31 % while the
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Figure III.10: Artificial example to mimic the situation for APM based carbon ion treatment planning. The first
pencil beam shown in plot (a) is comprised of two components a1 ( ) and b1 ( ). Each component is
represented by a superposition of three Gaussians and marked with horizontal and vertical error bars to model physical
and biological uncertainties. Analog shows plot (b) the second pencil beam with a2 ( ) and b2 ( ). Their
superposition ftot = f1 + f2 is shown in plot (c) in ( ) and plot (d) presents the expectation value ( ) and
standard deviation ( ) along with estimations based random sampling results as indicated by crosses.

standard deviation σ[ftot] ( ) yields compared to ( ) a maximum relative difference of
0.58 %. Figure III.10 (d) proves the correct incorporation of biological uncertainties in form
of vertical errors. This permits now the application of the APM formalism to the carbon
ion base data, where each depth-dependent profile is parameterized by thirteen Gaussian
components.

In that regard, Figure III.11 shows the resulting probabilistic quantities of an αcd profile
assuming 2 % range uncertainty and 25 % uncertainty in the corresponding ωα

k parameter,
which translates due the linear relationship to a biological uncertainty of 25 %. Specifically,
( ) shows the nominal αcd profile and ( ) its expectation value E[αcd] of a pseudo
mono-energetic carbon ion pencil beam with 280 MeV u−1.

Further a tissue, characterized by αx = 0.1 [Gy−1] and βx = 0.05 [ Gy−2] is assumed
and LEM IV was used to obtain the corresponding LQM parameter of carbon ions. The
lines ( ) represent the expectation value ± two standard deviations of simultaneously
considering range and biological uncertainties. Moreover, Figure III.11 illustrates two possible
realizations ( ) of the αd profile during patient treatment. The digital version of this
manuscript shows animated realizations ( ) on the basis of a technical note presented by
(Hennig, 2013) that is introduced later in Section III.6.4.

Throughout this work, biological uncertainties are only modeled in the linear component
αcd of the biological effect. Uncertainties in the quadratic

√
βcd component are as a first ap-

proximation neglected because the main contributing factor is the linear component. It can be
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Figure III.11: Probabilistic quantities of a αcd profile with 280 MeV u−1 accounting for ± 2 % range and ± 25 %
biological uncertainties. The shown profiles refer to a tissue described with αx = 0.1 [Gy−1] and βx = 0.05 [ Gy−2].
LQM parameter for carbon ions were predicted by the LEM IV. ( ) depicts the expectation value of the nominal
( ) αcd profile. The lines ( ) indicate the uncertainty band of two sigma units. Lastly, ( ) highlight two
possible realizations of the profile during patient treatment. In the digital version of the PDF, continuous samples
are drawn for animation to further demonstrate the potential variability of the αcd profile. Animations are based on
(Hennig, 2013).

seen from the calculation of the second raw moment of the biological effect in Equation III.17
that higher order moments (n>1) of the quadratic component are never calculated because of
the proposed approximations. To theoretically also consider biological uncertainties in the
quadratic

√
βcd component of the biological effect, third (Ξα2β

ijlmio) and fourth raw moments

(Ξβ
ijlmiolq) in Equation III.16 need to be calculated which would increase the computational

complexity from O(I × J2) to O(I × J4). Therefore, biological uncertainties are neglected
for the quadratic

√
βcd component. On this subject, the result Section IV.2.1.1 analyzes the

impact of only modeling biological uncertainties in the linear component αcd of the biological
effect.

In this section, it was shown how to calculate the expectation value and standard deviation
of the biological effect in close-form thereby accounting for physical and biological uncer-
tainties. The next section shows how this information can be incorporated for probabilistic
optimization.
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III.4 Probabilistic Optimization of the Biological Ef-

fect

Probabilistic optimization was introduced in Section II.5.3.2 and is used throughout this work
in combination with effect-based optimization as shown by (Wilkens and Oelfke, 2006). Here,
the prescribed RBE-weighted dose is converted to a reference effect ε∗ and the optimization
is carried out in the biological effect domain. After the optimization converged the optimized
biological effect is converted back to RBE-weighted dose.

So far it was shown how to calculate the first raw moment E[εi] (see Equation III.8), the
second raw moment E[εi, ε l] (see Equation III.15) and how to derive the (co)-variance matrix
Σε (see Equation III.13) of the biological effect modeling physical and biological uncertainties
as well as fractionation effects. This section is about how this probabilistic information of the
biological effect is used for optimization in order to minimize uncertainties in the treatment
plan.

Let P =diag(p1, ..., pI) denote a penalty matrix, then the squared deviation objective func-
tion fsq dev of the biological effect ε ∈ RI×1 is given in matrix notation by:

fsq dev = (ε− ε∗)T P (ε− ε∗) (III.45)

Assuming the biological effect ε can be described with a multivariate Normal distribution,
characterized by the first raw and second central statistical moment (mean E[ε] and co-
variance Σε), the expectation value E[·] of fsq dev can then according to (Imhof, 1961; Liu et al.,
2009) be described with a generalized χ2-distribution with the analytical expectation value:

E[ fsq dev(ε)] = tr(P Σε) + (E[ε]− ε∗)T P (E[ε]− ε∗) (III.46)

where tr represents the trace operator that only considers diagonal elements of P Σ for
summation. In this formulation, the expectation value of the squared deviation objective
is optimized by considering the full probability masses of ε. To evaluate Equation III.46
for different pencil beam intensities during each step of the optimization, it is necessary to
provide firstly expected linear E[A] = A and quadratic E[B] = B influences matrices of
the biological effect (see Equation III.9) such that the expected biological effect E[ε] can be
derived efficiently in each step of the optimization. Secondly, a variance influence tensor Vijm

which is ∈ RI×J×J (see Equation III.20) needs to be available to derive the integral variance
for different pencil beam intensities during optimization.

As it is practically infeasible to store the full variance influence tensor Vijm for clinical cases,
the following re-formulation was introduced by (Bangert et al., 2013) for protons and is now
applied to carbon ions. Let pi be the penalty of voxel i, then we can derive:
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tr(P Σε) =
I

∑
i=1

piΣε
ii =

I

∑
i=1

pi

J

∑
jm

wjwm Vijm (III.47)

=
J

∑
jm

wjwm

I

∑
i=1

pi Vijm = wTΩw (III.48)

where Ω ∈ RJ×J represents the penalized integral variance influence matrix of all pencil
beam combinations. Equation III.48 reduces the storage requirements drastically and can be
evaluated with a minimum amount of overhead. Moreover, Wahl et al. showed that Ω can
be computed for each VOI S separately so that re-optimization with different penalties can
be done without recomputing the integral variance influence (Wahl et al., 2017). Further, it
was shown that the Ω matrix can be approximated by only considering a certain sub set of
voxels for the calculation of the integral variance. For more information the interested reader
is referred to (Wahl et al., 2017).

To ultimately optimize the expected squared deviation objective on the basis of the biological
effect (see Equation III.46), also gradient information is required which can be obtained from:

∂

∂w
E[ fsq dev(ε))] =

∂

∂w

[
(E[ε]− ε̂)T P (E[ε]− ε̂)

]
+ 2Ωw (III.49)

Thus optimizing the expected squared deviation for the biological effect, reduces to comput-
ing the following probabilistic quantities: E[A], E[B] and Ω. The probabilistic optimization
itself imposes negligible overhead compared to a conventional optimization.

Nevertheless, prerequisites for probabilistic optimization for carbon ion therapy are the
probability densities of the biological effect distribution E[ε] and Σε. On the one hand
E[A], E[B] and Ω can be estimated by sampling techniques. For instance, E[A], E[B] can
simply be estimated by taking the (weighted) average and the integral variance Ω can be
estimated by exercising the inner product of AT A and BTB for multiple samples. On the
other hand, E[A], E[B] and Ω can be calculated by meta-model approaches such as APM.
Different to (Unkelbach et al., 2009), once E[A], E[B] and Ω are available no sampling is
required during optimization.

Here only the expected squared deviation objective is presented and used throughout this
work. For other novel probabilistic objective functions and constraints, the interested reader
is referred to the Ph.D. thesis of (Wahl, 2018).

III.5 From Biological Effect to RBE weighted Dose

Based on the APM formalism derived in the previous three sections, probabilistic quantities
like the expectation value and standard deviation of the biological effect ε can be derived
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analytically and probabilistic optimization can be carried out.
Notably, clinical decision making in carbon ion treatment planning is usually based on

the RBE weighted dose, for which reason the expectation value E[ε] and variance of the
biological effect σ2[ε] need to be propagated to expectation value E[RBE × d] and variance of
RBE weighted dose σ2[RBE × d]. Theoretically, the first two moments of the RBE weighted
dose could be calculated directly, however, for practical reasons it was decided to calculate
the first two moments of the biological effect and then employ a subsequent error propagation
to obtain E[ε] ⇒ E[RBE × d] and σ[ε] ⇒ σ[RBE × d]. Although the actual distribution of
ε under the assumption of input uncertainties is unknown, the first two moments can be
calculated exactly via APM§.

With γ = αx
2βx

, the calculation of the RBE weighted dose from Equation II.23 clearly shows
the non-linear dependency on a scaled version of the biological effect ε due to a square root:

RBE × d =

√
ε

βx
+ γ2 − γ (III.50)

For error propagation a fourth order Taylor expansion at E[εi] evaluating partial derivatives
at εi was used throughout this work to approximate the non-linear conversion of moments of
the biological effect (Anderson and Mattson, 2012):

E[RBE × di] ≈
√

β−1
x E[εi] + γ2 − γ − β−2

x

8(β−1
x E[εi] + γ2)

3
2

σ[εi]
2 −

5β−4
x

128(β−1
x E[εi] + γ2)

7
2

σ[εi]
2 (III.51)

σ[RBE × di]
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2
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x

8(β−1
x E[εi] + γ2)

3
2

)2

σ[εi]
4 (III.52)

The Taylor series expansion about εi is only locally valid meaning the approximation
quality generally shrinks when the variance of the biological effect increases. Another
limitation is the assumption of a Normal distribution of the biological effect modeled by two
parameters. Any deviation from the Normal distribution (skewed or bimodal distribution) is
not captured by the mean and variance and may compromise the accuracy of the proposed
error propagation in Equation III.51 and III.52. To increase the description of the unknown
probability distribution of the biological effect and the accuracy of error propagation, higher
order moments (skewness and kurtosis) of the biological effect need to be calculated.

§assuming analytical pencil algorithm and input uncertainty assumptions are correct

72



Chapter III: Material and Methods

III.6 Validation and Evaluation

Since basic treatment planning functionalities are required, this Section explains first in III.6.1
how the particle dose calculation module and the optimization module of the implemented
TPS matRad were validated. Based on this work, the APM formalism was implemented on
top to calculate statistical moments of the RBE-weighted dose in closed-form. Several artificial
and clinical patient cases evaluated with APM are presented in Subsection III.6.2. Statistical
moments obtained from APM are compared in a further step to estimated statistical moments
based on random sampling. Lastly, Subsection III.6.3 explains the γ-analysis used to quantify
the similarity of dose distributions and III.6.4 presents a novel uncertainty visualization
technique.

III.6.1 Basic Dose Calculation and Optimization Functionalities

Before implementing the APM formalism, basic dose calculation and optimization func-
tionalities were implemented and validated first. To validate the dose calculation engine
of the implemented TPS matRad, reference results were generated from the clinical TPS
SyngoRT planning (Siemens, Erlangen, Germany) which is currently used at the Heidelberg
Ion Therapy (HIT) facility. In total, eight treatment plans were investigated for protons and
carbons ions within SyngoRT.

For both modalities, protons and carbon ions, three dose calculations in water for individual
pseudo mono-energetic pencil beams with range 5 cm, 15 cm and 25 cm were performed in
SyngoRT. The treatment plan’s couch and gantry angle were both 0°. The dimensions of the
CT and the dose cube were 512 × 512 × 370 with a voxel resolution of x, y, z = 1 mm. In these
cases, no optimization within SyngoRT was performed.

Further, a realistic clinical treatment plan for protons and carbon ions for a cranial case
with a single beam of gantry angle 270° and couch angle 0° was computed. For protons, a
constant RBE of 1.1 was assumed and the plan was optimized for a target dose in the PTV
of 2 Gy(RBE). In contrast, for carbon ions a variable RBE was modelled on the basis of the
LEM I and the RBE weighted dose was optimized for a dose in the PTV of 3 Gy(RBE). The
optimization module of Syngo RT was configured to perform a full simulation (see Section
II.4.2) in each step of the optimization to assess the RBE. In particular, 1000 Monte Carlo
runs were used to obtain the accumulated biological damage produced by different ion
types of different energies. The CT and the optimized dose cube were in dimensions of
310 × 310 × 339 representing a voxel dimension of x, y, z = 1 mm.

The resulting dose cubes and pencil beam weights w were then exported together with
the CT, structures (VOIs) and the treatment plan information using the DICOM¶ file format.
Next, all DICOM files were imported into matRad. To ensure consistency between matRad
and SyngoRT, the same beam data (pencil beam profiles) modeling the HIT beamline and

¶format for Digital Imaging and Communications in Medicine
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HU look-up tables were used. The imported geometrical beam information such as beam
direction and pencil beam positions allowed a forward dose calculation in matRad under
the exact same prerequisites. The resulting dose cubes calculated by matRad were then
compared in terms of absolute differences and the γ-index (see Subsection III.6.3) to dose
cubes calculated by SyngoRT. By this means, the particle dose calculation engine was directly
compared and validated against SyngoRT. The main algorithmic difference between matRad
and SyngoRT is beside ray tracing that matRad features the single particle approximation (SPA)
algorithm presented in Equation II.19 to calculate the RBE in a mixed-radiation field, while
SyngoRT facilitates the full simulation. For more detailed information about the validation
of matRad, the reader is referred to (Wieser et al., 2017a). All validation related results of
matRad’s dose calculation engine are presented in Chapter IV.1 in Section IV.1.1.

To ensure mathematical consistency of the optimization module along with its objective
functions (see Table II.1), analytical gradients and partial derivatives were compared to
the corresponding numerical gradients. Furthermore, to validate the interface and the
communication to the IPOPT optimizer, the open-source TG119 phantom (Craft et al., 2014)
is optimized using two carbon ion beam directions from gantry angle 45° and 315°. The
corresponding couch angles were 0°. In total, three objectives and two constraints were
defined for optimization. The resulting DVH is analyzed in Chapter IV.1.2.

The last part evaluates the performance of the dose calculation and dose optimization in
matRad. Therefore, multiple treatment plans for the open-source CORT patient data set
(Craft et al., 2014) with varying problem size and a voxel resolution of 0.3 cm were executed
three times and the resulting average computation times of dose calculation and optimization
are presented in the result chapter in Section IV.1.3. The runtimes were measured on a
standalone computer with the following specifications: Intel Core i7 860, 2.6 GHz, 16 GB
RAM @ 1333 MHz. For dose calculation within matRad, there are two additional options
available which are considered for the performance evaluation. First, either a single or a
double Gaussian lateral beam model can be used for dose calculation, which yields for the
latter to bigger dose influence matrices in terms of storage and consequently results in longer
dose calculation times. This is because the lateral double Gaussian beam model considers
the low dose halo more accurately for which reason even dose for voxels far away from the
central beam axis of a spot is calculated and stored.

Summarized, the validations done for matRad ensure proper functioning of the dicom
import, the beam model, ray-tracing, dose calculation and optimization. APM was then
implemented on top of the existing and validated code. The next subsections describe the
implementation and validation of the APM related code.

III.6.2 Analytical Probabilistic Modeling

The implemented and validated carbon ion dose calculation was extended to use instead of
tabulated base data fitted Gaussian parameter. Instead of performing linear interpolations
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on the tabulated base data, a superposition of thirteen Gaussian components is evaluated.
Physical setup and range uncertainties are modeled separately for random and systematic
errors by covariance matrices stored in the Matlab sparse matrix format. For biological
uncertainties the covariance matrix is calculated on the fly and then additionally passed on
with the physical covariance matrices to the dose calculation function to determine expected
influence matrices. The complexity to calculate the nominal and expected influence matrices
is herewith equal.

Further, a function was added to the matRad code base to calculate the standard deviation
and the integral variance influence matrix Ω which is required for probabilistic optimization.
The core of this function is given by three nested-for loops. As the co-variance- Cijlm and
variance- Vijm influence tensor are too large to be stored on disk, the standard deviation is
calculated on the fly with the outer loop running through all voxels i. The two inner loops
evaluate all possible pencil beam combinations jm with the two-dimensional Gaussian kernel
from Equations III.18 and III.44.

Two applied approaches to optimize the performance of the implemented code were first to
replace the outer loop with a parfor|| loop to compute the standard deviation of different
voxel’s in parallel and second to provide the two-dimensional Gaussian kernel evaluations
in the form of C++ files with MEX interfaces. In particular, the latter allowed to call the
Gaussians kernel evaluations implemented in C++ from Matlab. Different solutions to
optimize the computational performance of APM are presented in (Wahl et al., 2017). For
instance, one approach is given by evaluating only a subset of jm pencil beam combinations
in the calculation of the standard deviation of voxel i. In detail, only the diagonal jj plus a
random subset of jm combinations is used to derive the standard deviation.

The implemented APM code on the basis of matRad is publicly available on Github** for
download. Moreover, a simplified implementation of APM can be found in the APMtool-
box††.

Before evaluating clinical patient cases, a simpler one-dimensional artificial phantom
is presented in the result Section IV.2.1 in order to verify first the proposed theoretical
approximated deviations of statistical moments of the RBE weighted dose and secondly to
investigate various aspects such as accuracy and fractionation. The 1D treatment plan models
a water phantom with two opposing carbon ion beams considering 3.5 % range uncertainty
and 25 % biological uncertainties. The optimized carbon ion SOBP is illustrated in Figure
III.12. The first beam comprised of 45 pencil beams enters the phantom from the left side
whereas the second beam also comprised of 45 pencil beams enters from the right side. The
light gray area ( ) denotes the CTV and the dark gray area ( ) the margin extension of
10 mm to obtain the PTV which ranges from 90 mm to 160 mm.

An effect-based optimization as proposed by (Wilkens and Oelfke, 2006) was carried out

||https://de.mathworks.com/help/distcomp/parfor.html [accessed May 2,2019]
**https://github.com/becker89/matRad/tree/dev_varRBEprobOpt [accessed May 2,2019]
††https://github.com/e0404/APMtoolbox [accessed May 2,2019
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using a squared deviation objective with a prescribed RBE weighted dose (RBE × d) of
3 Gy(RBE) in the PTV. The water phantom mimics a tissue characterized by αx = 0.1 Gy−1

and βx = 0.05 Gy−2. The LEM IV was used to obtain the radio-sensitivity parameter of
carbon ions. A squared overdosing objective with a lower penalty was defined to suppress
dose in the adjacent normal tissue structure. The line ( ) shows the optimized biological
effect ε. Applying the non-linear conversion from Equation III.50 yielded the RBE weighted
dose denoted by ( ). The resulting physical doses of each pencil beam (spot) is shown by
( ). It can be seen from Figure III.12 that the left side of the tumor is covered with spots
from the right beam and vice versa. The superposition of all individual pencil beam doses
yields the total physical dose deposition of carbon ions ( ).
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Figure III.12: One-dimensional carbon ion SOBP in water. The treatment plan is comprised of two opposing beams
whereby each beam is characterized by 45 pencil beams. A tissue defined by αx = 0.1 Gy−1 and βx = 0.05 Gy−2

and the LEM IV was used to perform an effect-based optimization aiming to deliver a homogenous RBE × d ( )
to the PTV. ( ) denotes the biological effect ε and ( ) depicts the physical carbon ion d.

In the result section, physical and biological uncertainties are quantified first separately and
then combined for conventional optimization. Afterward, also their impact on probabilistic
optimization is analyzed. Moreover, the impact of assuming non-Gaussian probability
distribution of errors is examined and compared to APM results which are grounded on the
Gaussian error assumption (see Result IV.2.1.3). Lastly, the aspect of assuming a different
biological model for forward dose calculation is investigated. In particular, a LEM I optimized
treatment plan is compared to the forward calculated treatment plan on the basis of LEM IV
for both conventional and probabilistic optimization (see Result IV.2.1.4).

In every probabilistic treatment plan optimization that accounts for range uncertainties, the
CTV is considered as target structure. Otherwise, the plan was optimized for PTV structure.
This holds for the one-dimensional phantom as well as for the patient cases introduced later.

All analytically quantified uncertainties with APM were verified with estimated moments
using 5000 random samples drawn from multivariate Normal distribution given in Section
III.2.1 and III.3.3. Specifically, 5000 random samples were used because it ensures the standard
error of the sampled mean σ[E[ε]] to fall below 1.4 % and the expected relative error of the
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standard deviation σ[σ[ε]] to drop below 1 % (Ahn and Fessler, 2003; Wahl et al., 2017). As the
proposed analytical approximations match sampled references, the use of APM is evaluated
on clinical cases.

Next, uncertainty quantification and probabilistic optimization for three-dimensional
intensity-modulated clinical treatment plans were evaluated. The APM formalism was
analyzed for carbon treatment planning studies using conventional and probabilistic opti-
mization considering setup-, range- and biological-errors alongside fractionation effects.
Table III.2: Information about patient cases and their corresponding plan parameters that were used for the APM
analysis in Section IV.2. The third row lat. spot distance denotes the lateral spot spacing in the iso-center plane and
# voxels σ depicts the number of voxels for which standard deviation was calculated. The number of pencil beams
and the number of voxels for σ calculation are the dominant factors for the overall runtime.

unit intra-cranial para-spinal prostate liver lung cranial
gantry angles [◦] 50°, 135° 135°, 180°, 225° 90°, 180° 310° 35°, 350° 90°, 180°
couch angles [◦] 0°, 0° 0°, 0°, 0° 0°, 0° 0° 0°,0° 0°,0°

lat. spot distance [mm] 3 4 5 5 5 5.5
resolution [mm] (1.2 × 1.2 × 3) (3 × 3 × 3) (2 × 2 × 3) (3 × 3 × 2.5) (3 × 3 × 2.5) (3 × 3 × 2.5)

# pencil beam - 2022 17756 15669 4312 8209 7275
# voxels σ - 0.95 × 105 1.2 × 105 0.83 × 105 0.72 × 105 0.6 × 105 0.4 × 105

# fractions f - 1 5 20 20 20 20
pres. fraction dose [Gy(RBE)] 3 3 3 3 3 3

The objective function applied for treatment planning features squared deviation objectives
with a prescribed fraction dose of 3 Gy(RBE) for the CTV and squared overdosing objectives
for the outer contour and critical structures. Both, conventional and probabilistic optimiza-
tion were performed for each case and the accuracy of APM moment computations was
investigated in comparison to random sampling for unfractionated treatment (fraction f = 1).
Three-dimensional γ-pass rates according to the following Section III.6.3, utilizing a distance
to agreement of 2 mm and a dose difference criterion of 2 % were used for the comparison
against estimation from sampled references.

The treatment plan parameters of the clinical patient cases are shown in Table III.2 and
evaluated in Section IV.2. All results presented in this manuscript assume photon reference
radio-sensitivity parameters αx = 0.1 Gy−1 and βx = 0.05 Gy−2. Further, a single biological
system characterized by identical photon reference radio-sensitivity parameters for all voxels i,
was assumed. A correlation measure between two dose distribution which is used throughout
this work is described next.

III.6.3 γ-analysis

The γ-analysis introduced by (Low et al., 1998) is a similarity measure allowing to compare
three-dimensional dose distributions quantitatively. Originally, the γ-analysis was introduced
to compare measured and calculated dose distributions. Throughout this manuscript, the γ-
analysis was used for two different use cases, first, to compare and validate three-dimensional
dose distributions calculated by matRad and the reference platform SyngoRT. Secondly, the
γ-analysis was used to analyze the similarity of statistical moments (expectation value and
standard deviation of dose) of APM and estimations based on random sampling.
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The key feature of the γ-analysis is given by a composite evaluation of two different
criteria with equal significance, namely a relative dose difference ∆d and a Distance to
Agreement (DTA) criteria. The γ-analysis is an advancement to absolute or relative dose
difference comparisons carried out at identical voxel position. Already small spatial shifts
in high dose-gradient regions result in large disagreements, which may be less important
than disagreements in low dose-gradient regions. On the contrary, the γ-analysis considers a
predefined local neighborhood in the reference cube to search for dose agreement. Only if
both criteria, ∆d and the DTA are fulfilled the current voxel under investigation passes the
γ-analysis.

Let ∆d be the relative dose difference criteria (e.g. 2 %), which can either chosen to be the
local- or the global-relative difference. Further, let DTA be the distance to agreement criteria
(e.g. 2 mm) and let rm be a single point in the measured reference dose cube. Next, r denotes
the relative spatial location to rm of the dose cube to be analyzed. Then rm − r represents
the geometrical distance between the measured reference point and the point to be analyzed.
Additionally, let dm(rm) depict the measured reference dose and d(r) be the dose at spatial
location r that is going to be tested. If |rm − r| ≤ DTA then the DTA is within acceptance
whereas |dm(rm)− d(r)| ≤ ∆d indicates a passed dose difference criteria. Both criteria are
ultimately combined and represent according to

1 =

√
|rm − r|2

DTA
+

|dm(rm)− d(r)|2
∆d

(III.53)

a threshold surface. In the case of a two-dimensional dose distribution, Equation III.53
denotes an ellipsoid whose surface represents the acceptance criteria (Low et al., 1998). The
first two principal axes of the ellipsoid are of equal length and are determined by the DTA.
The third principal axis is characterized by the dose difference criteria ∆d.

Calculating the γ-index for a single point r requires to loop over all voxels in the measured
reference cube:

γ(r) = min

{√
|rm − r|2

DTA
+

|dm(rm)− d(r)|2
∆d

, ∀r
}

(III.54)

According to Equation III.54 a γ(r) ≤ 1 represents a point inside or on the surface of the
ellipsoid and indicates acceptance. In contrast, γ(r) > 1 denotes a failed γ-analysis. The
resulting γ-index value quantifies the level of disagreement of the current dose point to the
measured reference dose cube.

The γ-analysis is of complexity O(I2) because each voxel of the dose distribution needs
to be checked against each voxel of the reference cube. To obtain a single quantitative value
for each voxel, the minimum value according to Equation III.54 is then used as the resulting
γ-analysis value. The implementation of the γ-analysis used throughout this manuscript can

78



Chapter III: Material and Methods

be found on GitHub‡‡.

III.6.4 Smooth Animations

The visualization of treatment plan uncertainties is an important aspect in order to make
the treatment planner aware of these effects and to provide guidance towards a more robust
solution. There are numerous ways to visualize treatment planning uncertainties ranging
from error bar distributions, over Standard Deviation RBE weighted Dose Volume Histogram
(SDDVH), to a set of DVHs, however, this section presents a new method, initially published
by (Hennig, 2013), to visualize treatment plan uncertainties.

First, it is assumed the RBE weighted dose obeys a general multivariate Normal distribution
N (µ, Σ), characterized by a mean vector µ and a covariance matrix Σ. These two parameters
can either be obtained via meta-model approaches such as APM or can be estimated from
discrete random samples. Once mean and covariance are determined, individual dose
samples ds can easily be drawn from N . The general procedure for this is to firstly draw
samples us from the standard multivariate Normal distribution N (0, I) and secondly to
linearly transform (map) this vector via the upper triangular matrix R of the Cholesky-
decomposition RRT = Σ back to the general multivariate Normal distribution N (0, Σ). In
the last step, the mean needs to be added to account for the offset ds = µ+ Rus.

Drawing individual independent samples ds limits to express and visualize the structure
of Σ. For that reason (Hennig, 2013), introduced a new sampling strategy by selecting an
equipotential set of samples to present covariance information along a third dimension
namely time. Displaying the resulting set of samples one after another creates then a smooth
animation. Knowing that N (0, I) denotes a multivariate spherical symmetric distribution, a
radius r can be selected that defines a hypersphere with equal probability. Note that each
point on the hypersphere represents an individual sample vector. In a further step, multiple
samples were then taken from a equipotential circular path around the hypersphere. If Q
frames are required for the animation, Q equally spaced points on the circular path are created.
In the last step, each point on the circular path us from the multivariate standard distribution
was mapped back to the general multivariate Normal distribution via ds = µ+ Rus. For
further details, the interested reader is referred to (Hennig, 2013).

Smooth animations of a conventional and a probabilistic carbon ion treatment plan for an
intra-cranial case considering physical uncertainties are presented in the results in Section
IV.2.2.4.

‡‡https://github.com/e0404/matRad/blob/master/tools/matRad_gammaIndex.m [accessed Sept. 2018]
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IV
Results

The results of validating basic dose calculation and optimization functionalities representing
the fundamental treatment planning framework used throughout this work are presented in
Section IV.1. Next, Section IV.2 presents the results of carbon ion treatment plan uncertainty
quantification and mitigation on the basis of Analytical Probabilistic Modeling APM applied
to artificial and clinical patient cases.

IV.1 Results of Validating a Treatment Planning Sys-

tem

This Chapter presents the validation results of the Matlab-based open-source TPS matRad*

(Cisternas et al., 2015; Wieser et al., 2017a). Firstly, the particle dose calculation module
of matRad is validated against the clinical TPS SyngoRT (Siemens, Erlangen, Germany).
Secondly, the optimization module is checked for mathematical consistency and seamless
communication with the IPOPT optimizer and thirdly, the performance of the implemented
dose calculation and optimization code is assessed for various treatment planning scenarios.
The results obtained in this Section were initially published in (Wieser et al., 2017a) and
represent the groundwork for the APM implementations shown in the subsequent Section
IV.2.

IV.1.1 Particle Dose Calculation Module

In the following, the reference dose cube computed with SyngoRT is referred to as Syngo dose
cube (ground truth). Analog is the dose cube calculated by matRad referred to as matRad

*www.matrad.org
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dose cube. The validation of the particle dose calculation module is split into two parts. First,
the validation is done for protons and then for carbon ions. The former is presented next.

IV.1.1.1 Elemental Proton Pencil Beams

Here, the comparison of the SyngoRT and matRad dose cube of three different pseudo mono-
energetic proton pencil beams of range 5 cm, 15 cm and 25 cm are grouped together in two
separate Figures. The first Figure IV.1(a) denotes the lateral dose profile of each pencil beam at
the peak position. Furthermore, the pencil beams are artificially scaled to spread the profiles
for visualization. Because of that, the proton pencil beam with 5 cm reaches a dose at the
peak of 2 Gy. In contrast, the deepest proton pencil beam with range 25 cm reaches a dose
maximum of 0.5 Gy. It is important to mention, that a radial symmetric double Gaussian
lateral beam dose profile is considered in the beam model on both platforms, SyngoRT and
matRad. Thus the lateral dose is a weighted superposition of a broad Gaussian component
modeling the dose halo due to strongly scattered particles and a narrow Gaussian component
aiming to model the core dose around the profile’s center. It was decided to plot the lateral
dose profile at the peak position as this is the most sensitive region. It can be seen in Figure
IV.1(a) that the lateral matRad dose is in good agreement not only in the center but also in the
low dose region.
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Figure IV.1: Three pseudo mono-energetic proton pencil beams for ranges 5 cm, 15 cm and 25 cm in water based on
calculations in matRad ( ) and the SyngoRT platform ( ). All three profiles were scaled for visualization to 2,
1 and 0.5 Gy. The left plot (a) shows the lateral dose profile at the peak position while the right plot (b) shows the
corresponding central depth dose profile.

Figure IV.1(b) presents the corresponding central depth dose profiles of Figure IV.1(b).
Specifically, central dose profiles are shown here which reveal potential deviations in magni-
tude best as presenting laterally integrated depth dose profile might obscure such deviations.
A good agreement between matRad and SyngoRT can be observed for the central depth
dose profile quantitatively confirmed by a global γ-index of 100 % for all three dose cubes
considering a DTA of 2 mm and a relative dose difference ∆d of 2 %.
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IV.1.1.2 Elemental Carbon Ion Pencil Beams

This section presents the validation of the carbon ion dose calculation for three elemental
pseudo mono-energetic pencil beams with range 5 cm, 15 cm and 25 cm in water which is
split into two parts. First, the physical dose is analyzed followed by the RBE weighted dose
(RBE × d).

The physical dose of the three carbon ion pencil beams, calculated on both platforms, is
shown in Figure IV.2. Specifically, Figure IV.2(a) presents the lateral carbon ion dose at the
peak position and Figure IV.2(b) highlights the central physical carbon ion depth dose profile.
Again ( ) denotes results obtained from matRad and ( ) depicts calculations based on
the SyngoRT platform.
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Figure IV.2: Three pseudo mono-energetic carbon ion pencil beams for ranges 5 cm, 15 cm and 25 cm in water based
on calculations in matRad ( ) and the SyngoRT platform ( ). All three profiles are scaled for visualization to
2, 1 and 0.5 Gy. The left plot (a) shows the lateral carbon ion profile at the peak position whereas the right plot (b)
presents the corresponding central carbon ion depth dose profile of the physical dose.
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Figure IV.3: Three pseudo mono-energetic carbon ion pencil beams for ranges 5 cm, 15 cm and 25 cm in water based
on calculations in matRad ( ) and the SyngoRT platform ( ). All three profiles are scaled for visualization to
2, 1 and 0.5 Gy(RBE). The left plot (a) highlights the lateral RBE × d profile at the peak position whereas the right
plot (b) shows the corresponding central carbon ion depth dose profile of RBE × d.
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Similar to the validation of proton pencil beams also the global γ-index for carbons ions
resulted in a global pass rate of 100 % for all three pencil beams using γ-criteria of (DTA=2 mm,
∆d = 2 %). In a further step, the same pencil beam energies were validated for the RBE
weighted dose (RBE × d). Here, both platforms are based on the same LEM I data but utilize
different algorithms to compute the RBE in a mixed radiation field (see Chapter II.2.3). On
the one hand SyngoRT features the full simulation (Krämer and Scholz, 2000) and on the other
hand matRad uses the single particle approximation (SPA) (Krämer and Scholz, 2006) which
limits the dose calculation to fraction doses ≤10 Gy(RBE). It can be observed in Figure IV.3
that ( ) encompasses statistical noise originating from the Monte Carlo component as
part of the full simulation. Although SyngoRT was set to perform 1000 Monte Carlo loops
for each calculated voxel, there were still considerable fluctuations present in the resulting
dose profiles. However, the Monte Carlo fluctuations are expected to have a lower impact in
a clinical setting due to averaging effects where multiple thousand pencil beams are used.
Nevertheless, the profiles calculated within matRad ( ) are in good agreement and 99 %
of the voxels receiving dose deviate less than 0.49 %, 0.21 % and 0.19 % for the pencil beams
with range 5 cm, 15 cm and 25 cm. Further, the global γ-index for (DTA=2 mm, ∆d = 2 %)
yielded 99.46 %, 99.93 % and 99.95 %, respectively.

IV.1.1.3 Cranial Patient

This section presents the validation result of the dose calculation module of matRad against
SyngoRT for a clinical cranial case using a single beam. Detailed information about the
patient case can be found in Subsection III.6.1. Figure IV.4 presents the transversal iso-
center slices of the CT superimposed by transparent dose colorwash, solid iso dose lines
and a black solid contour ( ) denoting the PTV. The dose is given in Gy because a
constant RBE of 1.1 is used which simply scales up the dose to 2 Gy(RBE). At first, no major
visual difference between the matRad dose in Figure IV.4(a) and the SyngoRT dose in Figure
IV.4(b) can be observed. Albeit a squared deviation objective was used for the PTV during
optimization aiming to homogenize the dose, there are subtle spikes around the 2 % dose
level. Interestingly, similar observations are made for the SyngoRT dose cube as well. The
root cause for this phenomena traces back to SyngoRT which uses a coarser dose grid for
optimization than for the dose recalculation on a finer 1 mm resolution. The finite pencil
beam spacing in depth along with the coarser dose grid used for optimization explains the
spikes occurring at voxel positions that are not considered during optimization.

Focusing on Figure IV.5(a) presenting the absolute difference of matRad dose slice minus
SyngoRT dose slice [IV.4(a) - IV.4(b)] reveals small differences. In detail, a jagged light-blue
area can be seen inside the PTV in Figure IV.4(c) indicating that matRad slightly underes-
timates the dose. Further, the jagged shape of the difference map points out systematic
deviations in the dose calculation modules between matRad and SyngoRT. Although both
dose cubes possess an identical resolution of (x, y, z = 1 mm), ray tracing is implemented
differently. SyngoRT performs for each voxel an exact ray-tracing on the original CT reso-
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lution (x = 0.60, y = 0.60, z = 3 mm) while matRad establishes a hit-matrix for each ray to
be traced behind the interpolated CT cube with a resolution of (x, y, z = 1 mm). Both, the
different resolution and the different ray-tracing techniques lead to small differences in the
WEPL of each voxel and consequently to dose differences.

(a) protons: matRad

PTV
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(b) protons: Syngo RT
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dose [Gy]
Figure IV.4: Transversal CT slices of the clinical cranial case. The CT is superimposed with transparent dose colorwash,
solid iso dose lines and a solid black contour ( ) denoting the PTV. The dose is given in [Gy] and originates
from an intensity-modulated single beam proton therapy treatment plan with gantry angle 270° and couch angle 0°.

(a) protons: matRad - Syngo
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(b) protons: γ-index

PTV
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Figure IV.5: A transparent colorwash represents the absolute dose difference of the dose in Figure IV.4(a) minus
the dose in Figure IV.4(b). Units are given in [Gy]. Further, ( ) denotes the contour of the PTV. Figure (b)
represents the global γ-analysis for the same slice using (DTA=2 mm, ∆d = 2 %). Values smaller than 1 indicate a
passed γ-analysis.

Furthermore, Figure IV.5(b) presents the global γ-index in the form of a transparent color-
wash. Values exceeding the value 1 indicate a violation of the tolerance levels (DTA=2 mm,
∆d = 2 %) and consequently fail the γ-analysis. It can be observed that mainly voxels in
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the dose fall-off at the distal edge of the SOBP do not pass the γ-analysis. Nevertheless,
considered globally, the γ-pass rate amounts to 99.84 % indicating good agreement between
the dose calculation module of matRad and SyngoRT for the intensity-modulated clinical
cranial proton treatment plan under investigation.

(a) C12: matRad
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(b) C12: Syngo RT
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Figure IV.6: Transversal CT slices of the clinical cranial case. The CT is superimposed with transparent dose colorwash,
solid iso dose lines and a black contour ( ) representing the PTV. The dose is given in [Gy(RBE)] and originates
from an intensity-modulated single beam carbon ion therapy treatment plan with gantry angle 270° and couch angle
0°.
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Figure IV.7: Transparent colorwash representing the absolute dose difference of the RBE × d in Figure IV.6(a) minus
the RBE × d in Figure IV.6(b). Units are given in [Gy(RBE)]. Further, ( ) denotes the contour of the PTV.
Figure (b) represents the γ-analysis for the same slice using (DTA=2 mm, ∆d = 2 %). Values smaller than 1 indicate
a passed γ-analysis.

Figure IV.6 and Figure IV.7 highlight the validation of the carbon ion dose calculation
module for the same clinical cranial case analogous to the proton validation, but this time the
RBE weighted dose (RBE × d) is presented. The statistical noise in the SyngoRT dose cube
originating from the Monte Carlo based RBE calculation is clearly visible in the absolute dif-

85



Chapter IV: Results

ference map of matRad minus SyngoRT in Figure IV.7 (a). The statistical noise superimposes
the effects of subtle spikes in the dose previously described for protons due to the coarser
optimization grid and a different CT grid used for ray tracing. Similar to the result of protons,
differences mainly occurred in the dose fall-off region (high negative dose gradient) but did
not increase in the fragmentation tail. 90 % of voxels received dose possess a lower deviation
than 1 % to the reference SyngoRT dose cube. Furthermore, the global γ-analysis revealed a
pass rate of 99.67 %.

Summarized the global γ-analysis of the pseudo mono-energetic pencil beam profiles and
the clinical cranial case resulted in pass rates ≥ 99.67 % which is considered to be accurate to
implement the APM formalism on top.

IV.1.2 Optimization Validation

Figure IV.8 presents the DVH of the RBE weighted dose (RBE × d) for the C-shaped TG119
phantom provided by the American Association of Physicists in Medicine Task Group 119 for
IMRT commissioning. Here two intensity-modulated carbon ion beams with gantry angles
45° and 315° were defined. The treatment plan is optimized for a RBE weighted dose of
2.5 Gy(RBE) in the PTV structure. In particular, a squared deviation objective fsq dev associated
with the highest priority was used for the PTV. It can be seen from the DVH in Figure IV.8
that ( ) obeys this specification. Further, a squared overdosing objective fsq over dosage
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Figure IV.8: Resulting dose volume histogram (DVH) of an
inversely optimized intensity-modulated carbon ion treat-
ment plan using two beam directions for the open-source
TG119 phantom. Given constraints are shown by the purple
and the red cross.

was used for the OAR structure located at
the distal edge of the PTV and the skin
structure encompassing the whole phantom
in order to reduce dose to normal tissue.
The RBE weighted dose to the OAR was
further limited by a maximum DVH con-
straint. In detail, 60 % of the OAR voxels
are constrained to receive a higher dose than
0.5 Gy(RBE). The constraint is highlighted
by the purple cross ( ). Moreover, a dose
maximum constraint was used restricting
the maximum RBE weighted dose of the
OAR to 1.25 Gy(RBE). The latter constraint
is indicated by the red cross ( ). The result-
ing DVH of the TG119 phantom in Figure

IV.8 obeys the given objectives and constraints indicating a proper communication of matRad
and the IPOPT optimization interface. Validation results of the optimization module of
matRad on the basis of an IMRT photon treatment plan for a head and neck patient can also
be found in (Wieser et al., 2017a).
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IV.1.3 Performance Analysis

To evaluate the efficiency of the dose calculation and optimization module in matRad, treat-
ment plans for various clinical scenarios with increasing complexity were computed. Default
objective functions as part of the open-source patients of matRad’s codebase were utilized
with standard convergence criteria given by the IPOPT options file. The resulting perfor-
mance evaluation is summarized in Table IV.1. The settings column in Table IV.1 denotes,
depending on the radiation modality different dose calculation settings. For protons and
carbon ions the lateral cutoff is assessed during runtime and accounts for X % of the integral
lateral dose on the basis of the single Gaussian (SG) or double Gaussian (DG) beam model.
The dose values inside the lateral cutoff are then scaled up during dose calculation to retain
the integral dose.
Table IV.1: Performance of matRad for selected treatment planning scenarios using a CT and dose grid resolution of
0.3 cm3. Columns from left to right show the radiation modality, X % of the integral lateral dose is fully calculated,
number of bixels/pencil beams, total number of dose influence elements, storage size of dose influence data, elapsed
time for dose calculation, number of optimization iterations, elapsed time for optimization and memory throughput
rate per second.

modality setting #beams #bixel Dij elem. Dij size tdose #iter. topt throughput
- [1e6] [GB] [s] [s] [GB s−1]

p 99.75 % SG 1 7797 19 0.29 22 123 41 1.78
p 99.75 % DG 1 5955 87 1.38 46 171 109 4.47
p 99.75 % SG 3 28097 56 0.89 68 67 187 4.90
p 99.75 % DG 3 24137 269 4.30 160 262 330 6.85
p 99.75 % SG 2 45574 116 1.86 97 218 137 6.13
p 99.75 % DG 2 27683 520 8.33 299 197 486 6.90

C12 99.75 % SG 1 11780 160 2.55 67 72 92 3.49
C12 99.75 % DG 1 9963 537 8.61 203 79 225 5.14
C12 99.75 % SG 3 42810 411 6.68 310 117 193 6.68
C12 99.75 % DG 3 31205 756 12.1 560 107 365 6.17
C12 99.75 % SG 2 24612 336 5.88 137 177 273 5.88
C12 99.50 % DG 2 16889 855 17.94 472 134 521 5.93

It can be observed from Table IV.1, that treatment planning for protons and carbon ions
can be done in matRad in a couple of minutes. Although the code is highly vectorized and
the number of nested for-loops is reduced to a minimum, there is still a gap in performance
to other radiotherapy software implemented in higher and more abstract programming
languages (Siggel et al., 2012). Total run-times for particles are in the range of 63 s to 993 s
thereby requiring a memory consumption of 0.29 GB to 17.94 GB. Considering matRad is
entirely written in the interpreted programming language Matlab, matRad is reasonably fast
taking into account the beneficial code readability and accessability of Matlab.
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IV.2 Results of Analytical Probabilistic Modeling

This Section presents the results of APM for intensity modulated carbon ion treatment plan-
ning to quantify treatment plan uncertainties. First Subsection IV.2.1 shows step by step the
proof of concept of the APM formalism introduced in Chapter III on a one-dimensional phan-
tom in water. In particular, various aspects of different uncertainty sources and uncertainty
assumptions are presented. Next, Section IV.2.2 highlights results of the APM implementation
in the TPS matRad and presents quantified and mitigated treatment plan uncertainties via
APM for clinical patient cases alongside a validation.

IV.2.1 One dimensional Artificial Phantom

This section presents the proof of concept to quantify uncertainties in carbon ion treatment
plans through APM in a one-dimensional artificial phantom in water introduced in Section
III.6.2. Each of the following subsections focuses on different aspects of APM from general
uncertainty quantification, over probabilistic optimization to fractionation effects. Focusing
on the one-dimensional phantom, the treatment plan previously shown in Figure III.12 is
referred to as nominal treatment plan which mimics clinical practice where uncertainties are
only considered by the expansion of the CTV ( ) to a PTV ( ). This treatment plan is
the starting point and used for uncertainty quantification in the following subsections.

IV.2.1.1 Uncertainty Quantification

Uncertainty quantification on the basis of APM described in Chapter III, allows deriving
statistical moments of the biological effect in closed-form. First only physical, then biological
and lastly both, physical and biological uncertainties were considered for uncertainty quan-
tification. Before showing results for the last two aspects, approximations for the expectation
value and standard deviation of the biological effect, derived in Sections III.2.1 and III.2.2
were verified, thereby only accounting for physical uncertainties. Parts of this Chapter were
published in print in (Wieser et al., 2017b).

Physical Uncertainties Throughout this section a relative range uncertainty of 3.5 % was
considered. Furthermore, all pencil beams on the same ray were perfectly correlated. This
means that in the one-dimensional example all pencil beams from the first beam were perfectly
correlated and all pencil beams from the second beam were perfectly correlated (see Figure
III.4(b) for ray-wise correlation model) and pencil beam combinations from different beams
were uncorrelated. Figure IV.9 shows in ( ) again the nominal biological effect ε as a
reference which is identical to ( ) in Figure III.12.

The consideration of range uncertainties yielded an expected biological effect E[ε] as
indicated by ( ). Because of range uncertainties, E[ε] is a blurred version of ε, in particular,
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in high-biological-effect gradient regions. Light green crosses ( ) represent the estimated E[ε]

based on 5000 random samples. The maximum absolute difference between the sampled and
the approximated analytical E[ε] based on Equation III.9 amounts to 0.89 %. It is important
to highlight the approximated analytical calculation of E[ε] was used instead of the full
analytical calculation to reduce the computational complexity. Herewith, the second raw

moment E[Zβ
i

2
] calculated out of the second raw moment influence tensor ∑jm wjwmΞβ

ijm

is approximated by squaring the first raw moment (∑j wjZ
β
ij)

2. The maximum difference
for E[ε] based on sampling and the full analytical calculation results in 0.72 %. Knowing
that estimated moments based on random sampling are affected by statistical errors, the
approximations made for the expected biological effect E[ε] in Equation III.9 were considered
to be reasonably accurate to represent the full analytical calculation in Equation III.8.
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Figure IV.9: Biological effect of a one-dimensional carbon ion SOBP optimized for a RBE × d level of 3 Gy(RBE),
which yields with αx = 0.1 Gy−1 and βx = 0.05 Gy−2 a prescribed biological effect of 0.75. ( ) denotes the
nominal biological effect which is identical to ( ) in Figure III.12. ( ) depicts the expectation value of the
biological effect E[ε] considering 3.5 % range uncertainty and ( ) represents the corresponding standard deviation
σ[ε]. ( ) denotes the 68 % confidence level E[ε]± σ[ε]. The histogram on the vertical axis shows the sampling
result at voxel position x = 162 mm. ( ) depicts the Gaussian approximation, which does not capture the biomodal
shape of the histogram, used for error propagation to the RBE weighted dose domain. Crosses ( , ) represent the
validation result obtained from sampling.

Further, ( ) in Figure IV.9 represents the standard deviation of the biological effect σ[ε]

as described in Section III.2.2. σ[ε] reaches its highest values at the fall-off regions of the
SOBP. This becomes clear when looking at individual pencil beams in Figure III.12 where the
left part of the PTV is mainly covered by pencil beams from the right beam and vice versa.
Although using opposing beam directions, the plan is not robust against range uncertainties
as a range under or overshoot directly results in a high standard deviation in dose fall-off
regions.

Again the approximations given in Equation III.17 were used instead of the full analytical
calculation shown in Equation III.16 to reduce the computational complexity. Orange crosses
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( ) indicate the σ[ε] based on 5000 random samples and yielded a maximum relative dis-
crepancy of 3.2 % caused by the approximations made in the squared term of the biological
effect. Nonetheless, one way to increase the accuracy of the σ[ε]-calculation is, instead of
approximating, to fully calculate the third raw moment influence tensors Υx/y

ijmo and Ξα2β
ijmo

in Equation III.16. Herewith the maximum relative discrepancy can be minimized to 1.7 %.
Performing a full analytical calculation including the fourth moment influence tensor Ξβ

ijmoq
further decreases the maximum relative discrepancy to 1.5 %.

Focusing on the voxel position x = 162 mm, then E[ε] equals 0.42 as highlighted by ( ).
The actual sampling distribution of ε at x = 162 mm is shown on the vertical axis in form of
a histogram revealing a bimodal shape with standard deviation σ[ε] = 0.23. The bimodal
shape of the histogram can be explained by the voxel position located in the SOBP fall-off
region. Because of the high biological effect gradient, small range shifts resulted either in a
high biological effect (∼ 0.75) or low biological effect (∼ 0.2) as indicated by the histogram
bumps on the vertical axis. For the subsequent error propagation to the RBE weighted dose
domain (E[RBE × d], σ[RBE × d]), however, we assume a Gaussian approximation, shown
by ( ) on the vertical axis in Figure IV.9. This assumption cannot model the full bimodal
shape of the underlying distribution.

To better understand the impact of the analytical approximations made for E[ε] and σ[ε],
the linear and a quadratic component of the biological effect ε were investigated separately
next. Since lateral components Lx/y of the biological effect were not considered, the linear
component of the biological dose based on Equation III.9 is given by Zα

i and the quadratic
component by Zβ

i . Both components are highlighted individually in Figure IV.10 and their
calculation is given in the title header. Their sum εi = Zα

i + Zβ
i results in the biological effect

( ) from Figure IV.9.
Figure IV.10 shows in addition to the nominal components Zα ( ) and Zβ ( ) also

the corresponding expectation value in E[Zα], E[Zβ] ( , ) along with the standard
deviation ( ) of the carbon ion treatment plan shown in the previous Figure IV.9 consid-
ering 3.5 % range uncertainty. When looking at the different scales of both plots in Figure
IV.10 then it can be seen that the biological effect ε is mainly determined by the linear part
( ) of the biological effect. The standard deviation of σ[Zα] in Figure IV.10(a) is correctly
calculated by APM resulting in a maximum relative deviation of 0.32 % which must be at-
tributed to statistical uncertainties in the sampling to estimate σ[Zα]. Although σ[Zβ] shows
a discrepancy of up to 27 % compared to sampled references due to the approximations in
the analytical calculation, the impact on σ[ε] plays only an inferior role. Despite neglecting
the interdependence of σ[Zα] and σ[Zβ] in the analytical approximations, the maximum
deviation of σ[ε] was 2.9 % proving that the linear component σ[Zα] is the main contributing
factor. Similar observations were made for a one-dimensional carbon ion SOBP treatment
plan comprised of a single carbon ion beam presented in (Wieser et al., 2017b).

In a subsequent step E[ε] and σ[ε] were propagated to the RBE weighted dose domain on
the basis of the computation laid out in Section III.5 to obtain E[RBE × d] and σ[RBE × d].
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Figure IV.10: The left plot (a) shows the nominal linear component Zα ( ) of the biological effect ε ( )
shown in Figures III.12 and IV.9. Correspondingly shows the right plot (b), the quadratic component Zβ. For both
components the respective expectation is given in ( ) and ( ) and the standard deviation in ( ). Crosses
indicates sampled references on the basis of 5000 random samples. Due to the approximations made for σ[Zβ]
deviations up to 27 % can be observed.

The resulting expectation value ( ) and standard deviation ( ) of the RBE weighted
dose are presented in Figure IV.11. The statistical moments E[RBE × d] and σ[RBE × d]
calculated by means of APM were again compared to estimations based on 5000 random
samples ( , ). The probability distribution of the RBE weighted dose at x = 162 mm is shown
in Figure IV.11 in form of a histogram on the vertical axis.
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Figure IV.11: One-dimensional SOBP of two opposing carbon ion beams modelling a range uncertainty of 3.5 %.
The profiles are based on Figure IV.9 and present the results after propagating the statistical moments to the RBE
weighted dose domain. ( ) denotes the expected physical dose, ( ) the nominal RBE weighted dose, ( ),
the expected RBE weighted dose, ( ) the standard deviation of the RBE weighted dose and ( ) highlights the
68 % confidence limit. Crosses ( , ) denote sampling results.
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The maximum relative difference for E[RBE × d] ( ) amounts to 0.96 % and a γ-analysis
with (DTA=1 mm, ∆d = 1 %) consequently yielded a pass rate of 100 %. In contrast, the maxi-
mum relative difference for σ[RBE × d] equals 13.7 % and the γ-analysis with (DTA=3 mm,
∆d = 3 %) resulted in a pass rate of 99.6 %. The discrepancies for the standard deviation
can also be observed in Figure IV.11 when visually comparing ( ) to ( ). In particular,
differences arise at locations where the standard deviation rises relative to the expectation
value yielding in the error-propagation with the fourth order Taylor expansion to a decreased
approximation quality of σ[RBE × d]. As already pointed out for the standard deviation
of the biological effect σ[ε] the accuracy of σ[RBE × d] could in principle be increased by
replacing the approximations with the full analytical expressions.

Considering the artificial and homogeneous one-dimensional phantom represents a rather
extreme example with high-dose gradients, the differences in σ[RBE × d] ( ) compared to
sampled references ( ) are willingly accepted in order to keep the computational complexity
low. Although opposing beam directions are considered to be a first measure to create robust
treatment plans alongside simple margin extensions from the CTV to the PTV, there is still a
non-negligible uncertainty present throughout the whole CTV structure (see ( ) in Figure
IV.11). Thus these two approaches might not reduce dose uncertainties within the CTV
sufficiently and directly motivate the application of robust/probabilistic optimization.

Biological Uncertainties So far 3.5 % range uncertainties were considered for uncertainty
quantification in the previous section. In contrast, this section considers now 25 % biological
uncertainty. As described in Section III.3.3 biological uncertainties were only modeled within
the APM formalism in the linear αcd component and are as a first approximation neglected in
the quadratic component of the biological effect. Notably, random sampling accounted for a
25 % biological uncertainty in ωα as well as independently in ωβ whereas the latter exhibited
a minor to negligible impact on the resulting uncertainty in RBE × d.

Moment calculations based on APM presented in Section III.3 are shown in Figure IV.12
and were compared to estimated moments grounded on 5000 random samples. Focusing
on the expectation value of the RBE weighted dose E[RBE × d] then it can be observed the
expectation value ( ) is slightly underestimated compared to the nominal RBE × d ( )
due to non-linearities as pointed out in Section III.3.4. Nevertheless, sampling ( ) revealed a
maximum relative difference of 0.45 % and a global γ-pass rate of 100 % using (DTA=1 mm,
∆d = 1 %).

Analyzing the standard deviation of the RBE weighted dose σ[RBE × d] resulted in a maxi-
mum relative difference of 3.9 %. Further, a γ-analysis with relaxed criteria of (DTA=3 mm,
∆d = 3 %) yielded a reduced pass rate of 84.4 %, which can also be observed by visually
comparing ( ) and ( ). The discrepancy originated from the non-linearities from Section
III.3.4 and the fact that random sampling also accounted for a 25 % biological uncertainty
in the quadratic component (

√
βcd) of the biological effect which is not modeled in this

first approximation of APM. Nevertheless, it can be seen that the general shape and mag-
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Figure IV.12: One-dimensional SOBP of two opposing carbon ion beams modeling a biological uncertainty of 25 %.
The profiles are based on Figure IV.9 and present the results after propagating the statistical moments to the RBE
weighted dose domain. ( ) denotes the expected physical dose, ( ) the nominal RBE weighted dose which is
in this case overlaid by the expected RBE weighted dose ( ). ( ) shows the standard deviation of the RBE
weighted dose and ( ) highlights the 68 % confidence limit. Crosses ( , ) represent sampling results.

nitude of the standard deviation of the RBE weighted dose σ[RBE × d] is still captured by
the linear component. Performing random sampling only for the linear component of the
biological effect yields a γ-pass rate of 100 % using (DTA=1 mm, ∆d = 1 %) proving a correct
implementation.

A relative biological uncertainty assumption of 25 % yields an uncertainty level of
∼0.45 Gy(RBE) inside the PTV which equals an uncertainty of ∼15 %. Similar to (Böhlen
et al., 2012; Friedrich et al., 2013a), the resulting uncertainty level in a mixed-radiation field is
generally lower than the initial uncertainty assumptions of the individual parameter. Further,
modeling biological uncertainties via a Gaussian process in individual pencil beams induces
a probability distribution over ε which is in turn of Gaussian shape due to its closure under
linear combinations. This behavior is indicated by the histogram on the vertical axis which
represents the sampling result of the RBE × d at voxel x = 162 mm.

Biological and Physical Uncertainties This section now combines the consideration of
3.5 % range uncertainties together with 25 % biological uncertainties. The uncertainty quan-
tification result of the one-dimensional SOBP is presented in Figure IV.13 and indicates good
agreement between the analytical expectation value E[RBE × d] ( ) and sampled refer-
ences ( ). The maximum relative discrepancy amounts to 0.71 % and a global γ-analysis
with (DTA=1 mm, ∆d = 1 %) yields a pass rate of 100 %. However, discrepancies increase
compared to sampled references ( ) for the standard deviation σ[RBE × d] ( ) indicated
by a maximum relative difference of 11.5 %. Furthermore, the γ-analysis reveals a pass rate
of 98.89 % considering the following relaxed criteria (DTA=3 mm, ∆d = 3 %). The decreased
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global γ-pass rate can be explained by three superimposed approximation effects. First,
physical range uncertainties are only modeled in the linear component of the biological
effect. Second, biological uncertainties are in turn only considered in the linear and not
in the quadratic component of the biological effect. Third, the errors introduced by the
error propagation using Gaussian approximations, which decreases in quality for increasing
standard deviation relative to the mean.
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Figure IV.13: One-dimensional SOBP of two opposing carbon ion beams modelling a 3.5 % range uncertainty and
a biological uncertainty of 25 %. The profiles are based on Figure IV.9 and present the results after propagating
the statistical moments to the RBE weighted dose domain. ( ) denotes the expected physical dose, ( ) the
nominal RBE weighted dose and ( ) the expected RBE weighted dose. ( ) presents the standard deviation of
the RBE weighted dose and ( ) highlights the 68 % confidence limit. Crosses ( , ) depict sampling results.

The discrepancies in the standard deviation of the RBE weighted dose σ[RBE × d] were
at this point knowingly accepted in exchange for the significantly reduced computational
complexity. If a higher accuracy for the uncertainty quantification is required, approximations
can be replaced by full analytical calculations.

IV.2.1.2 Conventional vs. Probabilistic Optimization

By means of APM, physical and biological uncertainties can be quantified in closed-form
and an integral variance influence matrix (Ω) can be calculated as laid out in Section III.4 in
Equation III.47. In a further step, probabilistic optimization of the squared deviation objective
can be carried out for the biological effect. In contrast to conventional optimization which uses
the PTV ( ) as target structure, probabilistic optimization considers throughout this work
the CTV ( ) as target structure if physical uncertainties are modeled. In the following,
three different uncertainty assumptions were considered for probabilistic optimization to
analyze their impact separately. First (i) only physical uncertainties are used for probabilistic
optimization. In the second case (ii) only biological uncertainties and in the last case (iii) both
physical and biological uncertainties were considered during probabilistic optimization.
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Physical Uncertainties Figure IV.14(a) presents the optimization result of a conventional
optimization assuming physical treatment plan uncertainties. The nominal RBE weighted
dose is given in ( ) and covers the PTV ( ) with 3 Gy(RBE). Further, ( ) denotes
the physical dose, ( ) the RBE, ( ) individual pencil beam doses and lastly ( )
presents the relative dose-averaged linear energy transfer LET. Considering now 3.5 % range
uncertainty for uncertainty quantification yielded a standard deviation shown in ( ).
Performing a subsequent probabilistic optimization on the CTV ( ) accounting for 3.5 %
range uncertainties resulted in the treatment plan shown in Figure IV.14(b).
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Figure IV.14: Comparison of conventional optimization shown in Figure (a) and probabilistic optimization presented
in Figure (b). ( ) denotes the nominal RBE weighted dose (RBE × d), ( ) the RBE, ( ) the physical
dose and ( ) the relative dose-averaged LET. Moreover, ( ) depicts the physical dose of individual pencil
beams. Figure (a) presents in ( ) the standard deviation considering 3.5 % range uncertainties from a conventional
optimization. This information is then used for probabilistic optimization and Figure (b) highlights the corresponding
standard deviation ( ) again considering 3.5 % range uncertainties.

Several things can be observed in this Figure. First, the nominal RBE weighted dose
( ) of the robust plan sufficiently covers the CTV ( ) and the RBE × d-gradient of the
probabilistic plan is reduced in the fall of region thereby increasing dose to the normal tissue
which can be seen in the dose-level of the beam entrance. This can be understood as the price
to achieve robustness. Lastly, and most interestingly the physical dose ( ), the RBE ( )
as well as the dose-averaged LET ( ) are homogenized inside the CTV ( ) during
probabilistic optimization. Thus not only physical but also biological related quantities are
homogenized in this beam setup indicating physical range uncertainties make the treatment
plan also biologically more robust when using opposing beams.

The lines ( ) in Figure IV.14 denote individual pencil beam doses and are in Figure
IV.14(b) modulated to a lesser extent because of probabilistic optimization. The corresponding
standard deviation of the RBE weighted dose is given by ( ) in Figure IV.14(b) and shows
not only reduced standard deviation bumps at the edges of the PTV but also a reduced
standard deviation inside the CTV.

To better understand the impact of probabilistic optimization Figure IV.15 presents the
biological effect of each beam direction from of conventional and probabilistic optimization.

95



Chapter IV: Results

The first beam enters from the left whereas the second beam impinges from the right. In
conventional optimization for intensity-modulated particle therapy, it can be the case that a
single beam mainly covers specific target regions. This phenomenon can be seen in Figure
IV.15 in ( , ), where the distal regions of the PTV are for the most part covered by a
single beam from the other side.
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Figure IV.15: Biological effect beam contributions of conventional
( , ) and probabilistic ( , ) optimization.

Furthermore, each beam direction
covers respectively not the proximal
but the distal part of the target struc-
ture. Thus, the highest RBE and LET
occur in the distal region of the PTV
as confirmed by Figure IV.14(a). This
poses a risk for the adjacent healthy
tissue when range uncertainties are
present. In contrast, probabilistic op-
timization inverts the biological ef-
fect profiles ( , ) and creates
falling wedges with reduced steepness
towards the distal edges of the target
structure thereby avoiding RBE and

LET peaks in distal regions. As a result, the target structure is more evenly covered by
both beams which makes the treatment plan less sensitive to range uncertainties.

Biological Uncertainties Figure IV.16 presents the impact of only considering biological
uncertainties for uncertainty quantification and probabilistic optimization. Specifically, Figure
IV.16(a) presents in ( ) the standard deviation of the RBE weighted dose considering 25 %
biological uncertainties. Incorporating this information into probabilistic optimization yields
IV.16(b). It can be observed that biological uncertainties have in this opposing beam setup
only a negligible impact on probabilistic optimization as indicated by almost identical dose
profiles in Figure IV.16(a) and (b). This is caused by the standard deviation profile of Figure
IV.16(a) which is almost constant relative to the RBE × d ( ) trend inside the PTV. Hence
the optimizer has no margin/leeway to reduce the standard deviation. Different to physical
uncertainties this in-silico experiment considers the PTV as target structure for probabilistic
optimization.

One additional aspect needed to be considered for probabilistic optimization including
biological uncertainties which holds also for the upcoming experiments considering physical
and biological uncertainties. The optimizer aims to first establish a constant biological effect
of 0.75 (=3 Gy(RBE)) of the expected biological effect inside the PTV and second to reduce the
level of uncertainty by lowering the integral variance. Once the optimizer found pencil beam
weights that sufficiently cover the target, the contribution to the objective function value
becomes low, whereas the contribution from the integral variance wTΩw stays more or less

96



Chapter IV: Results

0 50 100 150 200
0

1

2

3

[mm]

d
in

[G
y]

,R
B

E
×

d
in

[G
y(

R
BE

)] (a) conventional optimization
single spot
dose d
RBE × d
σ[RBE × d]
RBE
rel. LETd

0 50 100 150 200
[mm]

(b) probabilistic optimization
single spot
dose d
RBE × d
σ[RBE × d]
RBE
rel. LETd

Figure IV.16: Comparison of conventional optimization shown in Figure (a) and probabilistic optimization presented
in Figure (b). ( ) denotes the nominal RBE weighted dose (RBE × d), ( ) the RBE, ( ) the physical
dose and ( ) the relative dose-averaged LET. Furthermore, ( ) depicts the physical dose of individual pencil
beams. Probabilistic optimization considers in this case only 25 % biological uncertainties. The corresponding standard
deviation based on the conventional optimization is shown in Figure (a) by ( ). Figure (b) highlights the standard
deviation ( ) considering 25 % biological uncertainties based on probabilistic optimization.

identical. Logically the contribution from the integral variance to the total objective function
value becomes relatively more important. Therefore, the optimizer aims to minimize in
further iterations the integral variance which is simply achieved by lowering the dose level in
the PTV. As a result, the squared deviation contribution becomes again more important until
convergence is reached. In other words when the squared deviation and the integral variance
generate the minimum objective function value which is for 25 % biological uncertainties
the case when the PTV is slightly underdosed of about 5 %. To counteract against this
phenomenon, a minimum mean constraint was applied on the expected biological effect
for the PTV to avoid this under dose effect during probabilistic optimization. Another
observation made here, is that if the penalty of the overdose objective for the normal tissue is
too low and pencil beams are also defined outside of the target, the optimizer will "turn" them
on to cover the tumor with the respective entrance channel of each pencil beam. Particularly,
in the example of Figure IV.16 this would mean that pencil beams entering from the left would
not stop around ∼150 mm but instead around ∼180 mm to reduce biological uncertainties in
the target. This is because uncertainties are most prominent at the peak of each respective
pencil beam. This topic will be further discussed at the end of this manuscript in Section V.5.

Physical and Biological Uncertainties In the last scenario, both physical and biological
uncertainties are considered. The corresponding standard deviation of the RBE weighted
dose ( ) of a conventional optimization on the PTV is shown in Figure IV.17(a). Using
the statistical moments accounting for biological and physical uncertainties for probabilistic
optimization on the CTV yields Figure IV.17(b). The resulting dose profiles are similar
to the ones shown in Figure IV.14(b) which only accounts for physical uncertainties for
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probabilistic optimization indicating the additional consideration of biological uncertainties
for probabilistic optimization has only a minor impact.
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Figure IV.17: Comparison of conventional optimization shown in Figure (a) and probabilistic optimization presented
in Figure (b). ( ) denotes the nominal RBE weighted dose (RBE × d), ( ) the RBE, ( ) the physical
dose and ( ) the relative dose-averaged LET. Furthermore, ( ) depicts the physical dose of individual pencil
beams. Probabilistic optimization considers in this case both, range and biological uncertainties. The corresponding
standard deviation based on the conventional optimization is shown in Figure (a) by ( ). Figure (b) highlights the
standard deviation ( ) also considering 3.5 % range and 25 % biological uncertainties.

Nevertheless, it can be seen in Figure IV.17 the consideration of physical and biological
uncertainties also yielded a homogenization of the physical dose ( ), the LET ( ) and
consequently the RBE ( ) as it was the case for only accounting for physical uncertainties.

The last Figure IV.18 highlights a direct comparison of the impact of different sources of
uncertainties on probabilistic optimization. First, ( ) in Figure IV.18 denotes σ[RBE × d]
of a conventional optimization as a reference and is identical to ( ) from Figure IV.17(a).
For the remaining lines in Figure IV.18 the pencil beams are probabilistically optimized con-
sidering first only biological, then only physical and lastly both uncertainties for probabilistic
optimization. The robust pencil beam weights are then used to quantify treatment plan
uncertainties accounting for both biological and physical uncertainties and the resulting
σ[RBE × d] are shown in ( , , ).

Considering biological uncertainties from Figure IV.16(a) for probabilistic optimization and
then physical and biological uncertainties for uncertainty quantification yields ( ). It can
be seen that for the one-dimensional phantom, biological uncertainties have only a minor to
negligible impact on the re-modulation of pencil beam weights as σ[RBE × d]bio is similar to
( ) from conventional optimization.
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Figure IV.18: All σ[RBE× d] lines account for physical and biological
errors for quantification. ( ) shows σ[RBE× d] of a conventional
optimization as a reference. ( ) accounts only for biological
uncertainties for probabilistic optimization, whereas ( ) only
considers physical uncertainties. Lastly uses both uncertainty
sources for probabilistic optimization.

Further, ( ) indicates that ac-
counting for biological uncertain-
ties during probabilistic optimization
does not make the plan robust at all
as suggested by the bumps in the
PTV margin. The remaining two
lines ( ) and ( ) correspond to
considering only physical and both
physical and biological uncertainties
for probabilistic optimization, respec-
tively. The line ( ) is identical
to ( ) in Figure IV.17. Analyzing
( ) and ( ) indicates only mi-
nor differences in the additional con-
sideration of biological uncertainties
for probabilistic optimization. Cal-
culating the γ-index as a measure of

similarity between the standard deviation ( ) and ( ) in Figure IV.18 allows quan-
tifying the impact of additionally accounting for biological uncertainties for probabilistic
optimization for this two opposing beam setup. Using the following criteria (DTA=2 mm,
∆d = 2 %) resulted in a global γ pass rate of 95.2 % indicating good agreement between the
two probabilistic optimizations. Consequently, considering additionally biological uncer-
tainties for probabilistic optimization played in this one-dimensional example a negligible
role.

IV.2.1.3 Robustness Analysis for different Probability Density Functions

As described in Chapter III.2.1 this thesis consistently works with Gaussian uncertainties, i.e.,
it is assumed that all unknown parameters follow a multidimensional Normal distribution.
This allows then to calculate statistical moments of treatment plan quality indicators such as
the biological effect in closed-form.
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Figure IV.19: Histogram of 5000 random samples taken
from a Normal distribution with σ = ± 3.5 %

Figure IV.19 presents a histogram of the Gaus-
sian range error assumption of an individ-
ual pencil beam considering σ = ± 3.5 % of
the original pencil beam range. This section
presents a comparison of uncertainty quantifi-
cations assuming each time a different PDF for
random sampling. Here only physical range
uncertainties are considered and the ray-wise
correlation model is assumed which means for
the one-dimensional phantom, range errors are
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correlated within the beam but uncorrelated to the other beam direction. In particular, it
is investigated if the current Gaussian range error assumption stands against other PDFs.
Hence this section presents the dosimetric consequences if the current Gaussian uncertainty
model is inaccurate and consequently deviates from the actual ’unknown’ error distribution.
Further, the comparison is performed for both conventional and a probabilistic optimization
for which a normally distributed range error with σ = ± 3.5 % is considered for optimization.

Figure IV.20 presents different probability distributions that were tested against the Gaus-
sian uncertainty model. To cover different types of PDFs a bitriangular ( ), a skewed
( ), a uniform ( ) and a triangular ( ) distribution were considered. Lastly also a
Normal distribution with σ = ± 5.25 % was evaluated to mimic an underestimated range
error during optimization.
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Figure IV.20: Different probability density functions used for random sampling to estimate the expectation value and
standard deviation of the RBE weighted dose.

For each probability density function shown in Figure IV.20, random sampling (N=5000)
was performed to estimate the corresponding expectation value and standard deviation.
Afterward, the estimated moments are compared to reference moments calculated by APM
assuming 3.5 % normally distributed range errors.
Table IV.2: Global γ-pass rates for the expectation value (column 2 and 6) and standard deviation (column 4 and 8)
of the RBE-weighted dose on basis of 5000 random samples using each time a different probability distributions. The
results are compared to quantities obtained via APM using Gaussian error assumptions. A distance to agreement of
3 mm and a dose difference criteria of 3 % was used for the γ-analysis. Further, the maximum relative difference
(∆E, ∆σ) is shown to highlight the maximum discrepancy. The last row depicts results for a normal distribution with
σ = ± 5.25 %.

conv.opt. prob.opt.
PDF E[RBE × d] ∆E σ[RBE × d] ∆σ E[RBE × d] ∆E σ[RBE × d] ∆σ

triangular 100.00 % 2.00 % 72.07 % 34.13 % 100.00 % 1.24 % 88.28 % 21.06 %
uniform 100.00 % 5.98 % 79.27 % 26.17 % 100.00 % 2.03 % 85.58 % 30.78 %

bitriangular 89.78 % 12.46 % 66.96 % 39.40 % 100 % 5.36 % 56.45 % 49.23 %
skewed 67.86 % 24.07 % 86.48 % 34.60 % 92.19 % 9.75 % 80.18 % 52.04 %
normal 91.29 % 7.89 % 66.36 % 29.74 % 100.00 % 3.37 % 20.72 % 47.22 %

Table IV.2 summarizes results of the γ-analysis using (DTA=3 mm, ∆d = 3 %) and the
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maximum relative deviation (∆E, ∆σ). It can be seen from Table IV.2 the agreement of
quantified moments is apart from the skewed distribution reasonably good.
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Figure IV.21: Comparison of the expectation value in (a) and (b) and standard deviation in (c) and (d) utilizing
different PDFs for random sampling. Thin gray lines depict the dose of individual pencil beams. The left column shows
the result of conventional optimization and the right column presents the results based on probabilistic optimization
considering normally distributed range errors of 3.5 %.

Additionally, Figure IV.21 provides a visual impression of the estimated expectation values
and standard deviations. The reference expectation value obtained via APM is shown in the
upper row by ( ) and the standard deviation of the RBE weighted dose is presented in the
lower row by ( ). Analyzing the estimated moments ( ) of the triangular distribution,
it can be seen that both the expectation value and the standard deviation of conventional and
probabilistic optimization are in good agreement (see also Table IV.2) to moments calculated
with APM. This is because the triangular distribution possesses a similar shape to the Normal
distribution. Highest probability at the center and symmetrically decreasing probability away
from the center.

A similar result can be obtained for the uniform distribution, however, focusing on the bitri-
angular distribution the disagreement increases. The bitriangular distribution is symmetric
and shows an increasing probability with greater distance to the mean. Hence, in this case,
the chance is highest to either have a ±7 % range over/undershoot. Considering the fact that
the bitriangular distribution differs substantially from the Normal distribution, the discrep-
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ancies of the resulting expectation value and standard deviation are moderate. Interestingly,
albeit optimizing for normally distributed range errors, the resulting probabilistic treatment
plan is still robust against other probability distributions as shown in the lower right plot of
Figure IV.21. It can be seen, that for every PDF the standard deviation is substantially lower
compared to the conventional treatment plan even if the Gaussian error assumption used for
optimization is wrong.

Focusing on the only asymmetric distribution, a skewed Normal distribution where a posi-
tive range error is far more likely, the resulting expectation value of the RBE weighted dose
deviates significantly for the conventional treatment plan proven by a γ-pass rate of 67.86 %
and a visual comparison of ( ) in the upper left plot of Figure IV.21(a). The deviation
can be explained by the asymmetric distribution as range errors are not compensated by the
opposing beam. But again, performing probabilistic optimization based on normally dis-
tributed range errors, also creates a reasonable robust treatment plan for range errors obeying
a skewed probability distribution. Here the corresponding γ-pass rate of the expectation
value yields 92.19 %.

Looking at the estimated moments assuming a Normal distribution ( ) with σ = ±
5.25 % during random sampling, it can be seen that the result is logically a more washed out
version of the expectation value and a higher standard deviation. This holds for conventional
as well as for probabilistic optimization. Despite underestimating the range error of 1.75 %
probabilistic optimization still outputs a robust treatment plan.

IV.2.1.4 Probabilistic Optimization of different LEMVersions

In this section, the clinical impact of probabilistic optimization for carbon ions using different
LEM versions is demonstrated. In this in-silico experiment the LEM I, which is currently used
clinically, is compared to recalculations using the latest successor LEM IV. First, conventional
optimization without considering physical and biological uncertainties is performed to
optimize a homogenous dose of 3 Gy(RBE) in the PTV from 80 mm to 170 mm. Furthermore,
a tissue characterized by an αx

βx
of 2 Gy with αx = 0.1 Gy−1 and βx = 0.05 Gy−2 is used for

the LEM I. This setup is referred to as AB2 I and was originally established for the first
clinical trials at GSI†. AB2 I indicates a tissue characterized by αx

βx
= 2 Gy used in combination

with the first version of the LEM to predict the response of charged particles. Initially, these
parameters denote late toxicity in the central nervous system (Karger et al., 2006) as the
endpoint, however, due to the lack of reference data at that time these parameters were and
are still used for chordoma tissue. The underlying assumption is a similar biological response
(Grün et al., 2012). The two different tissues used in this section are highlighted in Table
IV.3. The result of the optimization is shown in Figure IV.22 by ( ). The corresponding
standard deviation assuming 3.5 % range and 25 % biological uncertainty is presented by
( ).

†Helmholtz Center for Heavy Ion Research
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Table IV.3: LEM parameter for two different configurations labelled as AB2 I ( ) and AB2 IV ( ) similar to
(Grün et al., 2012).

label LEM version αx [Gy−1] βx [Gy−2] αx
βx

[Gy] Dt [Gy]

AB2 I ( ) I 0.1 0.05 2 30
AB2 IV ( ) IV 0.003 0.0015 2 22

Using the conventionally optimized pencil beam weights and considering AB2 IV as tissue
for forward dose calculation results in ( ). Note that AB2 IV represents the updated LEM
parameter for the same endpoint. From Figure IV.22(a) it can be seen, that LEM I currently
predicts a lower RBE at high LET regions, which were in this case occurring at the PTV
margin. Further, higher gradients in ( ) also result in a higher standard deviation ( ),
specifically in the distal fall-off regions.
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Figure IV.22: Comparison of conventional optimization shown in Figure (a) and probabilistic optimization presented in
Figure (b). ( ) denotes the optimized RBE weighted dose (RBE × d) based on AB2 I, whereas ( ) presents a
forward dose calculation using instead of AB2 I, AB2 IV. Furthermore, ( ) and ( ) highlight the corresponding
standard deviation considering 3.5 % range and 25 % biological uncertainties.

Performing again probabilistic optimization on the CTV considering AB2 I results in a
RBE weighted dose as highlighted by ( ) in Figure IV.22(b). The dose gradients in the
fall-off regions are reduced and create a treatment plan with lower standard deviation. As
already shown in previous Figures IV.14 and IV.17, the consideration of range uncertainties
yielded a homogenization of the LET and consequently also a homogenization of the RBE
when performing probabilistic optimization. This can be observed in Figure IV.22(b) for the
forward dose calculation on the basis of the AB 2 IV (LEM IV) shown in ( ). Due to the
homogenized RBE, the RBE weighted dose ( ) exhibited in the right plot only a maximum
dose of 3.3 Gy(RBE) and a minimum dose inside the CTV of 2.93 Gy(RBE). In contrast,
conventional optimization outputs a maximum dose of 4.3 Gy(RBE) and a minimum dose of
2.43 Gy(RBE) inside the CTV.

If we believe in the successor LEM IV, then probabilistic/robust optimization might reduce
the standard deviation for LEM IV because of a more homogenous radiation quality and
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consequently minimizes the discrepancy between the two model versions. Ultimately, ro-
bust/probabilistic optimization might provide a lower variability in patient outcome due to
an indirect homogenization of the radiation quality.

IV.2.1.5 Fractionation

This subsection investigates the aspect of fractionation on the one-dimensional carbon ion
treatment plan. In this in-silico experiment a systematic relative range error of ∆sys

z = 3.5 %,
a random absolute range error of ∆abs

z = 4 mm and a systematic relative biological error of
∆sys

ω = 25 % were assumed. To facilitate a comparison to sampled references, a low number
of fractions F = 3 was selected in addition to a relatively large absolute random range error
of ∆abs

z = 4 mm to emphasis the impact of random errors on a low number of F = 3 fractions.
Each fraction f was repeatedly sampled 250 times each time with a different random error
and then summed up. In total, 100 courses of radiation treatments were sampled to capture
systematic errors and to assess subsequently the expectation value and standard deviation
of the total treatment. Hence, the overall number of individual samples was 75000. The
treatment plan was optimized for a total dose of 9 Gy(RBE) delivered in F = 3 fractions. The
results of APM moment calculations and estimated moments from random sampling are
presented in Figure IV.23.

Similar to before, the left Figure IV.23(a) highlights the outcome of conventional optimiza-
tion on the PTV and Figure IV.23(b) shows the results obtained from probabilistic optimization
using the CTV as the target structure.

0 50 100 150 200
0

2

4

6

8

[mm]

[G
y(

R
BE

)]

(a) conv.opt., 3 frac, ∆sys
z = 3.5 %, ∆rnd

z = 4 mm, ∆sys
ω = 25 %

0 50 100 150 200
[mm]

(b) prob.opt., 3 frac, ∆sys
z = 3.5 %, ∆rnd

z = 4 mm, ∆sys
ω = 25 %

E[RBE × d]
σ[RBE × d]F

Figure IV.23: Comparison of a fractionated carbon ion treatment F = 3 for conventional optimization shown in Figure
(a) and probabilistic optimization presented in Figure (b). ( ) denotes the optimized expected RBE weighted
dose (E[RBE × d]) divided by factor three. The line ( ) indicates the standard deviation of RBE weighted dose
(σ[RBE × d]). Crosses highlight estimated moments based on references. This scenario models a systematic relative
range uncertainty of ∆sys

z = 3.5 %, a random absolute range uncertainty of ∆abs
z = 4 mm and systematic relative

biological uncertainty of ∆sys
ω = 25 %. Crosses ( , ) indicate an excerpt from the reference result obtained from

sampling.

It can be seen from Figure IV.23 for both conventional and probabilistic optimization that
the expectation value ( ) is visually in good agreement to sampled references ( ). This
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is confirmed by a maximum relative difference of 1.03 % and 0.22 % as well as by global
γ-pass rates of 100 % in both cases using (DTA=1 mm, ∆d = 1 %). In Figure IV.23 denotes
( ) the analytical and ( ) the sampled standard deviation assuming F = 3 fractions.
The analytical σ[RBE × d]F was calculated on the basis of Equations III.31 and III.32 in
the method Section III.2.4. Very similar to previous in-silico experiments, the agreement
to sampled references decreases for the standard deviation where the maximum relative
difference amounts to 12.3 % for conventional optimization and to 6.5 % for probabilistic
optimization. Consequently the γ-pass rate with relaxed criteria of (DTA=3 mm, ∆d = 3 %)
yields to 94.0 % and to 97.6 %.

The discrepancy in the analytically calculated standard deviation of the RBE weighted
dose ( ) to the estimated standard deviation ( ) from sampling can be explained by
the approximations made in the quadratic term of the biological effect in the respective
calculation to account for physical and biological uncertainties. In addition, errors introduced
by the moment propagation to the RBE weighted dose domain and the sampling error itself
superimpose errors introduced by the approximations. Despite differences between ( )
and ( ) in Figure IV.23 the primary trend and characteristic of the uncertainty in the total
RBE weighted dose can still be captured via APM.

IV.2.2 Implementation of APM in a validated Treatment Plan-

ning System

In the previous section, different aspects of APM were investigated on a one-dimensional
treatment plan. Building on this, the implementation and functionality of the APM formalism
in the three-dimensional TPS matRad is presented here. First, Subsection IV.2.2.1 presents the
uncertainty quantification in form of statistical moments of the RBE weighted dose of three
carbon ion therapy treatment cases considering physical uncertainties. Further, APM based
moment calculations were compared to estimated moments obtained from sampling using
the γ-analysis. Lastly, the impact of probabilistic optimization is analyzed.

Subsection IV.2.2.2 presents a comprehensive analysis of various carbon ion treatment
planning scenarios, however, this time considering biological and physical treatment planning
uncertainties simultaneously.

IV.2.2.1 Proof of concept - physical uncertainties

This section presents the expectation value (= first raw moment) and the standard deviation
(= second central moment) of the RBE weighted dose calculated by the APM formalism pre-
sented in Chapter III of three carbon ion treatment plans based on conventional optimization
(conv.opt.). The three patient cases were introduced along with plan parameters in Table
III.2. The physical range uncertainty was modelled via σ

sys
z = 3.5 %, σrnd

z = 1 mm and the
physical lateral positioning uncertainty was defined to be σ

sys
lat = 1 mm, σrnd

lat = 2 mm. In this
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first evaluation, which was initially published in (Wieser et al., 2017b) biological uncertainties
were not considered.
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Figure IV.24: Transversal slices at iso-center of three scanned carbon ion therapy treatment plans as defined in Table
III.2. For the standard deviation calculation a different number of fraction were assumed each time ( f =1,5 and 20).
The CT image is overlaid with transparent dose colorwash, solid isodose lines and contours. Plots in the upper row (a),
(b) and (c) represent the expected RBE weighted dose (E[RBE × d]) assuming physical range and physical lateral
errors. The corresponding standard deviation (σ[RBE × d]) of these conventionally optimized treatment plans are
shown in the lower row in (d), (e) and (f). (Wieser et al., 2017b)

The expected dose for the intra-cranial, para-spinal and prostate case are shown in the
upper row in Figure IV.24(a), (b) and (c). The black contour ( ) indicates the CTV in each
scenario while the pink contour ( ) denotes the organ at risk - brainstem, spinal cord, and
rectum, respectively. It can be seen from Figure IV.24 that because of physical uncertainties
the expectation value of the RBE weighted dose (E[RBE × d]) may locally drop in the CTV
below the prescribed dose of 3 Gy(RBE), especially in distal regions.

The lower row (d), (e) and (f) of Figure IV.24 presents the corresponding standard deviation
of the RBE weighted dose (σ[RBE × d]). To reduce the computation time, σ[RBE × d] is only
calculated for voxels possessing an expectation value E[RBE × d] greater than 1 % of the
global maximum dose. By this means σ[RBE × d] was not calculated in low dose regions.

Focusing on the intra-cranial case in Figure IV.24(a) and (d), which is comprised of two
beam directions, one can observe the σ[RBE × d] becomes highest in the brainstem located
at the distal edge of the CTV. For the spinal case irradiated with three beams, peaks in
σ[RBE × d] can not only be seen in distal regions but also inside the CTV around the spinal
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cord. As carbon ion pencil beams stop directly before the spinal cord, they cause an increased
standard deviation at this location. For the prostate case with the two opposing beams setup,
σ[RBE × d] becomes highest in the lateral dose fall-off regions resulting in a peaked standard
deviation of 0.35 Gy(RBE) in the rectum.

As shown by Figure IV.24 carbon ion treatment plan uncertainties can be quantified using
APM formalism assuming various fractionation schemes. The next section investigates the
accuracy of the quantified moments.

Validation via random sampling This section compares analytical moment calculations
of the RBE weighted dose of the three patient cases, shown in the previous Section IV.2.2.1,
against estimated moments from 5000 random samples. The similarity between analytical
and estimated moments was quantified using the global γ-analysis with the following criteria:
(DTA=2 mm, ∆d = 2 %). The comparison was based on a single fractionated treatment and
assumes physical setup and physical range uncertainties and does not account for biological
uncertainties. Further, the comparison was carried out for moments based on two sets
of pencil beam weights translating to two different fluences. The first set stemmed from
conventional and the second one originated from probabilistic optimization. The results are
presented in Table IV.4 and provide analysis not only for the RBE weighted dose but also for
the biological effect. This allows establishing the impact of the approximations due to the
error propagation from moments of the biological effect to moments of the RBE weighted
dose presented in Chapter III.5.
Table IV.4: Global γ-pass rates for the expectation value and standard deviation of the biological effect (ε) and
RBE-weighted dose (RBE × d) obtained from APM and estimations based on random sampling (5000 samples). Three
patient cases (intra-cranial, para-spinal, prostate) are under investigation assuming a single fraction. The abbreviation
conv.opt indicates conventional optimization whereas prob.opt. denotes probabilistic optimization. A distance to
agreement of 2 mm and a dose difference criteria of 2 % was used for the γ-analysis. (Wieser et al., 2017b)

conv.opt. prob.opt.
case resolution [mm] E[ε] σ[ε] E[ε] σ[ε]

intra-cranial 1.1 × 1.1 × 3 100 % 99.88 % 100 % 99.82 %
paraspinal 3 × 3 × 3 99.71 % 97.56 % 99.98 % 98.30 %

prostate 3 × 3 × 3 100 % 99.41 % 99.49 % 98.70 %

E[RBE × d] σ[RBE × d] E[RBE × d] σ[RBE × d]
intra-cranial 1.1 × 1.1 × 3 100 % 98.82 % 100 % 99.44 %
paraspinal 3 × 3 × 3 99.99 % 94.95 % 99.15 % 96.28 %

prostate 3 × 3 × 3 100 % 98.76 % 97.63 % 97.56 %

Table IV.4 indicates generally good agreement between APM results and sampled references
which is justified by global γ-pass rates of ≥ 94.95 %. Similar to the one-dimensional phantom
previously investigated, pass rates are consistently higher for the expectation value E[.] than
for the corresponding standard deviation σ[.]. In addition, Table IV.4 indicates that due to
the moment propagation to the RBE weighted dose domain, the agreement of the standard
deviation of the RBE weighted dose σ[RBE × d] is mainly lower compared to the standard
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deviation of the biological effect σ[ε]. Nevertheless, the accuracy of moments in the RBE
weighted dose domain σ[RBE × d] is still reasonably accurate compared to moments based
on a relatively large number of 5000 random samples.

Probabilistic optimization The ultimate goal of probabilistic optimization is to create a
treatment plan that is less sensitive to treatment planning uncertainties. To demonstrate
this for the three carbon ion therapy treatment plans shown previously in Figure IV.24, Fig-
ure IV.25 presents the corresponding SDDVH based on conventional biological effect based
optimization without considering uncertainties by solid lines. In contrast, probabilistic opti-
mization of the expected squared difference of the biological effect considering uncertainties
is given by dotted lines. Here, only physical uncertainties are considered for uncertainty
quantification and probabilistic optimization.
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Figure IV.25: Standard deviation RBE weighted dose volume histograms (SDDVH) for the intra-cranial case assuming 1
fraction, the para-spinal case assuming 5 fraction, and the prostate case assuming 30 fractions. Solid lines ( , )
represent the results obtained from conventional optimization (conv.opt) and dashed lines are based on probabilistic
optimization (prob.opt.). Solid lines corresponding the standard deviations shown in Figures IV.24(d)-(f)

From Figure IV.24 it can be seen for all three patient cases that probabilistic optimization
reduces not only the standard deviation inside the CTV ( ) compared to conventional
optimization ( ) but also for the organ at risk as indicated by ( ). The dose uncertainty
for specific VOIs in Figure IV.25 provides comprehensive information on the treatment plan
robustness. Ultimately the treatment planner can create patient- and uncertainty-specific
robust carbon ion therapy treatment plans that are less sensitive to physical uncertainties.

IV.2.2.2 Proof of concept - biological and physical uncertainties

This section presents carbon ion therapy treatment plans modeling uncertainties with σ
sys
z =

3.5 %, σrnd
z = 1 mm, lateral positioning uncertainties via σ

sys
lat = 1 mm, σrnd

lat = 2 mm and bio-
logical uncertainties by σ[ω

sys
α ] = 25 % for different beam configurations under fractionation

(F = 20) if not explicitly stated otherwise. Each case is analyzed individually hereafter
for conventional and probabilistic optimization on the basis of the expected objective func-
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tion value of the squared deviation between the target effect and the prescribed effect as
introduced in Section III.4.

Single beam setup - liver For the single beam configuration, a liver patient case is presented.
The carbon ion liver treatment plan is comprised of a single beam impinging from a gantry
angle of 300°. The corresponding couch angle is 0°. The treatment plan was conventionally
optimized on the PTV using a squared deviation objective. Figure IV.26(a) presents the
expected RBE weighted dose (E[RBE × d]) considering the aforementioned physical and
biological uncertainties. Next, Figure IV.26(b) presents the standard deviation of the RBE
weighted dose (σ[RBE × d]) of only considering physical uncertainties (physUCT) applied
in 20 fractions. Complementary presents IV.26(c) the σ[RBE × d] of exclusively accounting
for biological uncertainties (bioUCT) which introduce a significant level of uncertainty in
the carbon ion treatment plan. Identical to the one-dimensional treatment plan and findings
reported in (Böhlen et al., 2012; Friedrich et al., 2013a), the biological uncertainty level is
generally damped in a mixed-radiation field compared to the initial uncertainty assumptions
of 25 %. Lastly, Figure IV.26(d) highlights σ[RBE× d] considering both physical and biological
uncertainties (biophysUCT) simultaneously.
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Figure IV.26: Uncertainty quantification of a liver treatment plan on the basis of conventional optimization. The
transversal CT image is superimposed by transparent dose colorwash, solid iso-dose lines and solid contours. Figure (a)
shows the expected RBE weighted dose (E[RBE × d]) assuming biological and physical uncertainties (biophysUCT).
Figure (b) shows the uncertainty in the RBE weighted dose originating from physical uncertainties (physUCT) whereas
Figure(c) highlights the uncertainty in dose stemming from biological uncertainties (bioUCT). Figure (d) shows the
uncertainty (σ[RBE × d]) of the combined consideration of physical and biological uncertainties (biophysUCT).

Figure IV.26(b) reveals σ[RBE × d] increases towards the distal edge of the dose falloff

109



Chapter IV: Results

structure ( ) and reaches a maximum value of 0.44 Gy(RBE) on this slice. The mean
σ[RBE × d] value inside the CTV ( ) is notably low with a value of 0.08 Gy(RBE). Biolog-
ical uncertainties shown in Figure IV.26(c) induced uncertainty in the RBE weighted dose
that is marginally increasing towards the distal edge of the CTV ( ) thereby revealing
a similar trend as the RBE or the LET distribution which is not shown here. A maximum
value of 0.44 Gy(RBE) is reached for σ[RBE × d], whereas the mean uncertainty in dose
is raised to 0.43 Gy(RBE). Despite assuming a relative biological uncertainty of 25 %, the
resulting uncertainty level only amounts to 16 %. The combined consideration of physical
and biological uncertainties further elevates σ[RBE × d] and causes biological uncertainties
from Figure IV.26(b) to also spread longitudinally in the depth due to range uncertainties.
The maximum value of σ[RBE × d] in IV.26(d) is 0.55 Gy(RBE) and the mean σ[RBE × d]
equals 0.46 Gy(RBE).

Comparing E[RBE × d] from Figure IV.26(a) and σ[RBE × d] from Figure IV.26(d) to sam-
pled references results in global γ-pass rates of 99.98 % and 98.78 %.
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Figure IV.27: Transversal CT image with transparent dose colorwash, solid contours and solid isodose lines represent
the expected RBE weighted dose after probabilistic optimization in Figure (a) and the corresponding standard deviation
in Figure (b). The probabilistic optimization is done on the CTV and not on the PTV accounting for biological and
physical uncertainties (biophysUCT).

Performing a probabilistic biological effect based optimization accounting for physical
uncertainties on the CTV using the expected squared deviation objective according to Section
III.4 yields Figure IV.27. In detail, Figure IV.27(a) presents the E[RBE × d] and IV.27(b) high-
lights the corresponding uncertainty in dose by means of σ[RBE × d]. Focusing on Figure
IV.27(a) then it can be seen, that parts of the CTV receive a higher E[RBE × d] than 3 Gy(RBE)
which is confirmed by the Expected RBE weighted Dose Volume Histogram (EDVH) pre-
sented in Figure IV.28(a). Here E[RBE × d] and σ[RBE × d] from a conventional optimization
( , ) are compared to probabilistic optimization ( , ). Further, through proba-
bilistic optimization the mean of the expected RBE inside the CTV was increased from to 2.17
to 2.33.

Focusing on Figure IV.26(d) and Figure IV.27(b) then it can be seen that probabilistic opti-
mization on the CTV reduces the integral dose and the uncertainty in dose significantly in the
dose fall-off structure compared to conventional optimization on the PTV. In particular, the
mean uncertainty in the dose fall-off structure is reduced from 0.30 Gy(RBE) to 0.20 Gy(RBE).
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This phenomenon is confirmed by the corresponding SDDVH presented in IV.28(b).
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Figure IV.28: (a) Expected RBE weighted dose volume histogram (EDVH) of conventional optimization (solid lines)
and probabilistic optimization (dashed lines). (b) Standard deviation RBE weighted dose volume histogram (SDDVH)
of contentional optimization (solid lines) and probabilistic optimization (dashed lines)

Moreover, Figure IV.28(b) indicates the uncertainty in the CTV cannot be minimized by
probabilistic optimization ( ), it even slightly increases. This can be attributed firstly to the
higher dose that is applied to the CTV as indicated by ( ) in Figure IV.28(a) and secondly
to the usage of a single beam, which limits the optimizer’s freedom to create robustness.
Nevertheless, σ[RBE × d] is reduced significantly in the dose falloff structure as indicated by
( ) in Figure IV.28(b) suggesting probabilistic optimization might also be a valuable tool
for single beam configurations.

The last Figure IV.29 presents the standard deviation of the RBE weighted dose (σ[RBE× d])
from conventional optimization considering physical and biological uncertainties for two
different fractionation assumptions. First Figure IV.29(a) shows σ[RBE × d] assuming in
the calculation of the standard deviation in Equation III.31 a single fraction and Figure
IV.29(b) denotes σ[RBE × d] modeling F = 20. Figure IV.29(a) has to be interpreted with
caution as it represents σ[RBE × d] of applying 3 Gy(RBE) once and does not allow due to
the fractionation effect to derive σ[RBE × d] for e.g. 60 Gy(RBE) delivered in a single fraction
(see also Equation III.21).

It can be seen from Figure IV.29(a) that the uncertainty level for F = 1 is higher than in
Figure IV.29(b) assuming F = 20. This can be explained by random uncertainties which
are most influential for F = 1 as there is no compensation of random errors in upcoming
fractions. Thus random uncertainties are responsible for the increased uncertainty in dose at
the distal edge of the CTV for F = 1 (see Figure IV.29(a)). It can also be seen how the influence
of random uncertainties compensate over the course of treatment when comparing Figure
IV.29(a) to Figure IV.29(b). Further Figure IV.29 proves that neglecting fractionation effects
considerably overestimates the uncertainty in dose which was also observed by (Bangert
et al., 2013; Lowe et al., 2016; Sakama et al., 2016)

Objectives and optimization parameters remained unchanged for conventional and proba-
bilistic optimization. The only difference was to use the CTV as target structure instead of
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Figure IV.29: Transversal CT image of the liver case overlaid with transparent dose colorwash, solid contours and solid
iso-dose lines to visualize the standard deviation of RBE weighted dose σ[RBE × d] after conventional optimization.
Figure (a) assumes a single fraction in the calculation of σ[RBE × d] whereas Figure (b) presents the σ[RBE × d]
assuming F = 20.

the PTV for probabilistic optimization. The background here is probabilistic optimization
should find a patient- and uncertainty-specific high dose margin autonomously to deliver
sufficient dose to the CTV.

Two beam setup - intra-cranial This section presents again the intra-cranial case previously
introduced only for physical uncertainties in the proof of concept Section IV.2.2.1 but this
time also with the consideration of biological uncertainties.

Figure IV.30(a) shows the expected RBE weighted dose (E[RBE × d]) considering physical
and biological uncertainties (biophysUCT) from a PTV based conventional optimization.
Different from the previous evaluation from Section IV.2.2.1 here the number of fractions is
set to F = 20 and the pencil beam placement is slightly adapted. These two reasons explain
why the standard deviation in RBE weighted dose (σ[RBE × d]) accounting for physical
uncertainties in Figure IV.30(b) is slightly different to Figure IV.24(d).

The mean value of σ[RBE × d] in the CTV in Figure IV.30(b) resulted in 0.14 Gy(RBE) and
the maximum σ[RBE × d] value on this slice was 0.43 Gy(RBE). Additionally, Figure IV.30(c)
shows the uncertainty in dose of exclusively considering biological uncertainties which
introduced again a significant level of uncertainty in dose characterized by a mean value of
σ[RBE × d] in the CTV ( ) of 0.45 Gy(RBE). Complementary, Figure IV.30(d) highlights
σ[RBE × d] for the combined consideration of physical and biological uncertainties and
further elevates the uncertainty level to a mean value of σ[RBE × d] in CTV to 0.49 Gy(RBE).
It can be seen from Figure IV.30 that APM allows quantifying the impact of individual
sources of uncertainty under fractionation on the resulting carbon ion therapy treatment plan
by calculating the expectation value and standard deviation in closed-form. Compared to
sampled references the global γ-index for E[RBE × d] (in Figure IV.30(a)) and σ[RBE × d] (
in Figure IV.30(d)) yielded a pass rate of 100 % and 99.23 %.

Using the information shown in Figure IV.30(a) and (d) for probabilistic biological effect
based optimization on the CTV results in Figure IV.31. Similar to the liver case, E[RBE × d]
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Figure IV.30: Uncertainty quantification of an intra-cranial carbon ion treatment plan on the basis of conventional
optimization. The transversal CT image is superimposed by transparent dose colorwash, solid isodose lines and solid
contours. Figure (a) shows E[RBE × d] assuming physical and biological uncertainties (biophysUCT). Figure (b)
shows σ[RBE × d] modelling physical uncertainties (physUCT) whereas Figure(c) highlights σ[RBE × d] stemming
from biological uncertainties. Lastly, Figure (d) shows σ[RBE × d] of the combined consideration of physical and
biological uncertainties. All uncertainty quantifications consider 20 fractions.

level is increased in the CTV quantified by a mean E[RBE × d] increase from 2.93 Gy(RBE)
to 2.98 Gy(RBE) to avoid under-dosage due to wash-out effects induced by physical uncer-
tainties. This characteristic is reflected in the corresponding EDVH by comparing ( ) to
( ) in Figure IV.32(a).

Comparing IV.30(a) and IV.31(a) reveals that the high dose margin of E[RBE × d] is after
probabilistic optimization tighter. Focusing on σ[RBE × d] in Figure IV.30(d) and on Figure
IV.31(b) allows for a fair comparison of the impact of probabilistic optimization on treatment
plan uncertainties for an identical uncertainty quantification considering biological and
physical uncertainties (biophysUCT). Although the uncertainty level could only be reduced
marginally in the CTV, it was minimized in the brainstem and in the skin structure. The
former is also confirmed by the corresponding SDDVH in Figure IV.32(b).
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(b) σ[RBE × d], prob.opt, biophysUCT
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Figure IV.31: Transversal CT image with transparent dose colorwash, solid contours and solid isodose lines represent
the expected RBE weighted dose after probabilistic optimization in Figure (a) and the corresponding standard deviation
in Figure (b). The probabilistic optimization is done on the CTV and not on the PTV and accounts for biological and
physical uncertainties (biophysUCT).
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(b) σ[RBE × d], biophysUCT

Figure IV.32: (a) Expected RBE weighted dose volume histogram (EDVH) of conventional optimization (solid lines)
and probabilistic optimization (dashed lines). (b) Standard deviation RBE weighted dose volume histogram (SDDVH)
of contentional optimization (solid lines) and probabilistic optimization (dashed lines)

Lastly, Figure IV.33 presents transversal CT images overlaid by σ[RBE × d] accounting for
biological and physical uncertainties (biophysUCT) originating from conventional (IV.33(a))
and probabilistic optimization (IV.33(b)) both modeling a single fractionated treatment. It can
be seen that the standard deviation hot-spots in IV.33(a) were reduced in IV.33(b) resulting in
a minimized uncertainty in the brainstem ( ). Complementary, Figure IV.33(c) and Figure
IV.33(d) shows the mitigation of physical uncertainties after probabilistic optimization for a
single fraction. A lower standard deviation level throughout the CTV can be observed after
probabilistic optimization.

Although uncertainties in dose could be mitigated through probabilistic optimization, the
RBE distribution itself changed only marginally manifested by a slight increase of the mean
expected RBE in the CTV from 2.86 to 2.95.

114



Chapter IV: Results

(a) σ, conv.opt., biophysUCT, F=1

0

0.1

0.2

0.3

0.4

0.5

0.6

[G
y

(R
B

E)
]

(b) σ, prob.opt., biophysUCT,F=1

0

0.1

0.2

0.3

0.4

0.5

0.6

[G
y

(R
B

E)
]

(c) σ, conv.opt., physUCT, F=1

0

0.1

0.2

0.3

0.4

0.5

0.6

[G
y

(R
B

E)
]

(d) σ, prob.opt., physUCT,F=1

0

0.1

0.2

0.3

0.4

0.5

0.6

[G
y

(R
B

E)
]

Figure IV.33: Transversal CT image with transparent dose colorwash, solid contours and solid isodose lines showing
σ[RBE× d] based on conventional optimization and a single fraction in (a). Complementary highlights (b) σ[RBE× d]
based on probabilistic optimization for 20 fractions but for uncertainty quantification also a single fraction is considered.

Two beam setup - lung This section presents the evaluation of a lung case assuming
increased physical uncertainties of σ

sys
z = 4 %, σrnd

z = 2 mm and σ
sys
lat = 3 mm, σrnd

lat = 3 mm.
Biological uncertainties were kept constant at σ[ω

sys
α ] = of 25 %. The results of conventional

optimization on the PTV are shown in Figures IV.34(a) and (c). In contrast, Figures IV.34(b)
and (d) show the results of probabilistic optimization.

In this evaluation, the σ[RBE × d] was only calculated for voxels if the corresponding
E[RBE × d] exceeded 5 % of the maximal dose. The analysis by means of EDVH is shown in
Figure IV.35 and revealed a decrease of the mean dose in the Internal Target Volume (ITV)
to 2.73 Gy(RBE). Performing probabilistic optimization elevated the mean dose back to
2.97 Gy(RBE). Concerning uncertainties in dose, they could slightly be reduced for the ITV
as well as for the surrounding organs at risk. In addition probabilistic optimization yielded
to an increase in the mean of the expected RBE in the ITV from 2.52 to 2.58.
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(b) E[RBE × d], prop.opt., biophysUCT
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(d) σ[RBE × d], prob.opt, biophysUCT
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Figure IV.34: Transversal CT image with transparent dose colorwash, solid contours and solid isodose lines representing
quantified treatment plan uncertainties on the basis of conventional optimization in (a) and (c) as well as of probabilistic
optimization in (b) and (d).
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(b) σ[RBE × d], biophysUCT

Figure IV.35: (a) Expected RBE weighted dose volume histogram (EDVH) of conventional optimization (solid lines)
and probabilistic optimization (dashed lines). (b) Standard deviation RBE weighted dose volume histogram (SDDVH)
of contentional optimization (solid lines) and probabilistic optimization (dashed lines)

Two opposing beams setup - cranial This section presents a carbon ion treatment plan
for a cranial patient with an opposing beams configuration for uncertainties assumptions
described in Section IV.2.2.2. Figure IV.36(a) presents the E[RBE × d] from a conventional
optimization and IV.36(b) E[RBE × d] from a probabilistic optimization. Figure IV.36(c) and
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(d) depict the corresponding σ[RBE × d] of exclusively assuming physical uncertainties for
20 fractions.
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Figure IV.36: Transversal CT image of a cranial patient with transparent dose colorwash, solid contours and solid
isodose lines representing quantified treatment plan uncertainties on the basis of conventional optimization in (a) and
(c) as well as of probabilistic optimization in (b) and (d).

Figure IV.36 shows the σ[RBE × d] is reduced in the CTV through probabilistic optimiza-
tion characterized by a drop in mean σ[RBE × d] from 0.06 Gy(RBE) to 0.03 Gy(RBE). The
corresponding evaluation of the EDVH and SDDVH are presented in Figure IV.37 and show
especially a decrease of integral dose to the ring structure, a uniform extension of the CTV by
10 mm which was used for optimization to create a high dose gradient. Further, the uncer-
tainty peaks around the CTV in Figure IV.36(b) are reduced through probabilistic optimization
which can be observed by comparing ( ) to ( ) in Figure IV.37(b).

Figure IV.38 depicts E[RBE × d] of the left (270°) carbon ion beam of conventional opti-
mization in Figure IV.38(a) and probabilistic optimization in Figure IV.38(b). It can be seen
that probabilistic optimization reduced the modulation of individual beam doses and mini-
mized as a consequence the in-field dose gradient to obtain a more homogenous beam dose
distribution. Identical observations were made for the first beam but are not explicitly shown.

Exemplarily shows Figure IV.39 the expected relative biological effectiveness E[RBE] in
the CTV for conventional optimization in Figure IV.39(a) and probabilistic optimization in
IV.39(b). Identical to the previous patient cases the mean E[RBE] increased from 2.38 to 2.48
in the CTV which can also be visually observed in Figure IV.39. Further, E[RBE] IV.39(b)
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(b) σ[RBE × d], biophysUCT

Figure IV.37: (a) Expected RBE weighted dose volume histogram (EDVH) of conventional optimization (solid lines)
and probabilistic optimization (dashed lines). (b) Standard deviation RBE weighted dose volume histogram (SDDVH)
of contentional optimization (solid lines) and probabilistic optimization (dashed lines)
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Figure IV.38: Transversal CT image with transparent dose colorwash, solid contours and solid isodose lines representing
E[RBE× d] of the second beam direction on the basis of conventional optimization in (a) and probabilistic optimization
in (b).
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Figure IV.39: Transversal CT image with transparent dose colorwash, solid contours and solid isodose lines characterizing
the expected RBE in the CTV structure on the basis of conventional optimization in (a) and probabilistic optimization
in (b).

shows a more homogenous E[RBE] than in Figure IV.39(a).
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IV.2.2.3 Comparison of robust optimization techniques

This section presents for the intra-cranial case a comparison between scenario based robust
optimization and probabilistic optimization on the expectation value of the squared deviation
objective. For robust optimization, the scenario based min max (composite worst case)
optimization, as proposed by (Fredriksson et al., 2011) and described in Section II.5.3.2, was
implemented in the validated treatment planning system matRad. In total, 9 scenarios were
considered comprised of the nominal scenario, and eight worst case scenarios modeled
via individual ± 3 mm single iso-center shifts in x,y,z and two fully correlated over and
undershoot scenarios of 4 % ± 2 mm. The resulting optimized pencil beam intensities were
then used as input for uncertainty quantification via APM.
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Figure IV.40: Uncertainty quantification of an intra-cranial carbon ion treatment plan using probabilistic optimization
in Figures (a) and (c) and scenario based robust optimization in Figures (b) and (d). The transversal CT image is
superimposed by transparent dose colorwash, solid isodose lines and solid contours. All uncertainty quantifications
consider 20 fractions.

In contrast, probabilistic optimization models the standard deviation of input uncertainties
by a range error of σ

sys
z = 3.5 %, σrnd

z = 1 mm, and the lateral positioning error via σ
sys
lat =

1 mm, σrnd
lat = 2 mm. Admittedly, the quantified input uncertainties in σ units for probabilistic
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optimization cannot be directly related to the maximum shifts and range errors defined in the
composite worst case optimization. For uncertainty quantification an additional biological
uncertainty of σ[ω

sys
α ] = 25 % and 20 fractions were assumed. Further, both optimization

techniques considered the CTV as target structure and neglected the PTV.
On the one hand, Figure IV.40(a) shows the expectation value E[RBE× d] and Figure IV.40(c)

the corresponding standard deviation σ[RBE × d] on the basis of probabilistic optimization
(prob.opt). Please note that these results are identical to Figure IV.31.

On the other hand, present Figure IV.40(b) and (d) the E[RBE × d] and the σ[RBE × d] of
the robustly optimized (rob.opt) treatment plan. The treatment planning uncertainties were
quantified via APM assuming the same uncertainty assumptions. Thus identical physical
and biological uncertainties were used for quantification in Figure IV.40(a,c) and (b,d). The
only difference is the optimization technique to obtain pencil beam intensities.

Firstly, both optimization techniques created a high dose margin around the CTV to create
robustness. Herewith, the size of the high dose margin strongly depends on the quantified
input uncertainties used for the respective optimization technique. Focusing on Figure IV.40(a)
and (b) allows to make the following observation. The optimization of the expectation value
of the squared deviation objectives in Figure IV.40(a) created a much tighter high dose margin
around the CTV and might as a consequence not be robust against actual worst cases. Vice
versa might the integral dose of the composite worst optimization in Figure IV.40(b) be
unnecessarily high as the optimizer has no incentive to optimize more probable scenarios
(Unkelbach and Paganetti, 2018). Analyzing the uncertainty in dose in Figure IV.40(c) and
(d) resulted in a mean σ[RBE × d] in the PTV (not shown) of 0.42 Gy(RBE) and 0.46 Gy(RBE)
and is consequently lower for probabilistic optimization.
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IV.2.2.4 Smooth Animations

The new sampling strategy explained in Section III.6.4 was applied to the three-dimensional
intra-cranial carbon ion treatment plan to produce smooth animations of the RBE weighted
dose assuming physical setup and range uncertainties. Biological uncertainties were not
modeled as they do due to their perfect Gaussian correlation assumption not have any
impact on the covariance structure of dose. By means of APM, uncertainties of RBE × d were
quantified (mean and covariance) for conventional and probabilistic optimization and were
subsequently used to create smooth animations. Figure IV.41(a) shows animated samples
on the basis of conventional optimization and in (b) identical samples from the exact same
circle path around the hypersphere, but considered pencil beam weights from probabilistic
optimization.

It can be seen from Figure IV.41(b) that physical uncertainties affect the resulting probabilis-
tic optimized treatment to a lesser extent compared to Figure IV.41(a) as cold and hot spots in
dose occur firstly more often and secondly to a more significant extent.

The animations provide an intuitive way for the treatment planner to quickly assess the
impact of the uncertainty structure on the resulting dose distribution.

Figure IV.41: Smooth animations of discrete samples for the intra-cranial carbon ion treatment plan on the basis of
conventional optimization and considering physical uncertainties is shown in plot (a). The transversal CT image is
superimposed by transparent dose colorwash, solid isodose lines and solid contours. On the contrary, Figure (b) shows
smooth animations of identical samples, however, pencil beam weights originate from a probabilistic optimization.
In the digital version of the PDF, continuous samples are drawn for animation to express the covariance in dose.
Animations are based on (Hennig, 2013).
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V
Discussion

Particle therapy is prone to uncertainties. This manuscript addresses this issue and provides
analytical expressions for the expectation value and standard deviation of the biological effect
and the RBE weighted dose for three-dimensional intensity modulated carbon ion treatment
plans on the basis of the analytical pencil beam algorithm. The proposed pipeline considers a
variable RBE and models range-, setup- and biological-uncertainties alongside fractionation
effects. All analytical formulations found in this work are compatible with the core advantages
of APM initially published for protons and photons (Bangert et al., 2013). In particular, the
developed analytical pipeline (i) enables the consideration of multi-dimensional linearly
correlated random input variables, (ii) the modeling of arbitrary correlation structures to best
reflect real-world conditions and (iii) generalizes to probabilistic optimization.

To perform treatment planning, basic carbon ion dose calculation- and optimization- func-
tionalities were implemented in the open-source treatment planning toolkit matRad. After
validating the functionality of each module, the APM formalism was implemented on top in a
prototype. The adapted dose calculation engine outputs in addition to the conventional dose
influence matrix the probabilistic counterparts characterized by expected influence matrices
and variance influence tensor. For a given set of pencil beam weights w, the analytically
quantified uncertainties in dose were characterized by the mean (first raw moment) and the
standard deviation (second central moment) and were in a subsequent step compared to
estimated moments based on random sampling showing a reasonably good agreement. A
subsequent probabilistic optimization avoided under-dosage of the CTV, less integral dose
and yielded to a mitigation of uncertainties in the RBE weighted dose of carbon ion treatment
plans.

A large number of studies is available on the proton side (Perkó et al., 2016; Unkelbach et al.,
2018) but investigations on the application of uncertainty quantification (Kamp et al., 2015;
Sakama et al., 2016) and robust/probabilistic optimization techniques (Steitz et al., 2016) to
carbon ion treatment planning are limited. The two central differences to existing approaches
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are that first APM does not rely on the computation of discrete error scenarios to quantify
uncertainties and second, APM allows computing expected influence matrices and variance
influence tensors that can directly be used for uncertainty quantification and probabilistic
optimization. The remainder of this chapter further addresses specific methodological choices
that were made for this thesis, provides additional interpretation of the established results,
and discusses potential extensions of this work.

V.1 Numerical Approximations

Switching to a parameterized representation of tabulated carbon ion base data together with
Gaussian error assumptions, modeled in the pencil beam space, enabled a straightforward
execution of the method of moments to obtain raw and central moments of the biological effect
ε in closed-form. In the proposed analytical pipeline the biological effect becomes a function
of uncertain input parameters such as the setup and range error. The integration over the
Gaussian error assumptions allows to derive raw moments. It was explicitly decided to
build the analytical pipeline upon the biological effect ε to avoid integrating over the square
root dependence of the RBE weighted dose from Equation II.23. The derived full analytical
moment calculations of the biological effect ε cannot be directly applied to clinical treatment
planning scenarios because of its computational complexity. For that reason an approximated
solution is proposed reducing the number of operations for the expected biological effect E[ε]

from O(I × J2) to O(I × J) and for the standard deviation of the biological effect σ[ε] from
O(I × J4) to O(I × J2) at reasonable loss in accuracy. In detail, the approximations neglect
correlation in terms containing the squared βd component of the biological effect ε. Compared
to sampled references this approximation resulted in excellent results for the expectation
value of the biological effect in the one-dimensional as well as in three-dimensional patient
cases manifested by γ-pass rates of 100 %. The situation for the standard deviation of the
biological effect is different as it is afflicted to a greater extent by the approximations leading
to γ-pass rates of >94 %. It is important to add, that discrepancies between APM and random
sampling can only partly be attributed to the approximations in the analytical calculation
as there is also a residual statistical sampling uncertainty in the estimated moments from
random sampling.

In this work, the approximations provide a significant increase in speed in exchange of
accuracy. Nevertheless, if more accurate results are required third and fourth order influence
tensors presented in the result section IV.2.1.1, can be added step by step to increase the
accuracy of the uncertainty estimate. Vice versa if calculation speed is to be increased for
the price of accuracy then influence tensors of second, third and fourth central moments can
be represented by the outer product of lower order moments as it is already done for the
proposed approximations. Assuming the presented uncertainty estimate should be improved
for a potential clinical application in the future, the best trade-off to increase the accuracy of
the standard deviation of the biological effect is to fully calculate the sub tensor Ξαβ

ijm of the
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original expression Ξα2β
ijmo from Equation III.16 to cover the interdependence of the linear and

quadratic term of the biological effect.
The approximations and results presented in this manuscript are mainly based on LEM IV

predictions modeling a generic tissue characterized with αx = 0.1 [Gy−1] and βx = 0.05 [
Gy−2]. In addition, the approximations were also checked and hold true for radio-sensitive
tissues characterized by αx = 0.5 [Gy−1] and βx = 0.05 [ Gy−2] but explicit results are not
presented here. Moreover, switching the biophysical model version from LEM IV to the
first model version I will probably lower the quality of the proposed approximations and
consequently minimize the accuracy of the uncertainty estimate in dose. That is because
the squared component of the biological effect, for which approximations were mainly
introduced in the moment calculation, possesses for LEM I a slightly increased contribution
to the total biological effect than in the fourth model version. This topic will be discussed
later in Subsection V.8 with respect to proton therapy.

The analytical biological effect calculation fully relied laterally and in depth upon Gaussian
components which allowed to model setup and range uncertainties in the respective mean
position of the Gaussian component. Complementary, biological uncertainties introduce
a new complexity and were modeled via an uncertainty in the weight of each Gaussian
component thereby expressing uncertainty in magnitude/effectiveness of each pencil beam.
By this means physical and biological uncertainties can be considered together without
increasing the computational complexity. This is a key feature of APM because different to
scenario-based approaches the computational complexity stays constant.

Covariances matrices, presented in Sections III.2 and III.3.3, need to be defined by the
treatment planer and allow to model the level and structure of uncertainty, i.e., the correlation
of individual pencil beams for each uncertainty source. In detail, four different covariance
structures were used throughout this work. First, setup uncertainties are correlated within
a beam direction, second range uncertainties are only correlated if the respective pencil
beams are located on the same ray position as they penetrate the same tissue (Bangert et al.,
2013) and thirdly biological uncertainties are assumed to be fully correlated. The usage
of an additional correlation model enables the consideration of fractionation effects, which
effectively doubles the number of computations for any arbitrary number of fractions. Further,
APM permits to break down the level of uncertainty into the related physical and biological
sources considering fractionation which is not possible in sampling approaches relying on
discrete scenarios. Thus, the impact of physical- and biological uncertainties can either
be assessed individually or can be calculated for a combined consideration accounting for
fractionation effects at almost constant runtime.

Another approximation is made for the unknown distribution of ε. Although the first
raw and second central moment of ε are correctly calculated from a mathematical point of
view, having only these two parameter limits the representation of more complex bimodal
distributions. Therefore it is assumed in a first approximation the biological effect ε obeys a
Normal distribution. It was demonstrated for the one-dimensional phantom this assumption
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becomes increasingly inaccurate in high dose gradient regions. In contrast, the distribution of
the biological effect agrees better with a Normal distribution the lower the dose gradient be-
comes. To more accurately estimate the unknown non-Gaussian distribution of the biological
effect ε higher order moments need to be calculated that allow the representation of skewed
or bimodal distributions. The assumption of a normally distributed biological effect is used
not only for probabilistic effect based optimization employing the expected objective function
value but also for the moment/error propagation to convert moments of the biological effect
to moments of the clinically relevant RBE weighted dose domain.

The error propagation from the biological effect to RBE weighted dose introduces an
additional layer of uncertainty. Although linear transformations of Normal distributions can
be calculated analytically, the non-linear transformations from the square root dependence of
the RBE weighted dose does not possess an exact solution. To approximate the square root,
we perform a Taylor expansion around the mean of the biological effect and evaluate partial
derivatives. Despite using a fourth order Taylor expansion, this method gets increasingly
inaccurate when the standard deviation of the biological effect becomes large relative to
the corresponding mean value because the probability mass on the negative orthant R−
increases and the discrepancy to the actual unknown probability distribution become larger
as a negative biological effect does not exist. The moment propagation can be improved in
the future, by either calculating higher order moments or by using of a different PDF (beta
distribution) for the distribution of biological effect p(ε) that does not allow negative values.

V.2 Accuracy of Pencil Beam Algorithm

The closed-form moment calculations on the basis of APM are exact, given a correct modelling
of input uncertainties and assuming the analytical pencil beam algorithm used for dose
calculation is accurate. The uncertainty assumptions are discussed later in Section V.6 and
the dose calculation accuracy is addressed next.

A limitation of the presented APM formalism is that it only works in conjunction with the
analytical pencil beam dose calculation algorithm and does not easily generalize to other dose
calculation algorithms. It is commonly known (Taylor et al., 2017) that the pencil beam dose
calculation shows limited accuracy when high tissue heterogeneities and low to high-density
interfaces are present in the beam path which was already addressed in detail in Section
II.5.1. These inaccuracies can be revealed by a Monte Carlo forward dose calculation given
optimized pencil beam weights, which is actually the most prominent use case for Monte
Carlo simulations in particle therapy. Although this work facilitates an improved version of
the pencil beam algorithm which takes the actual radiological depth of voxel i into account
and not its projection onto the pencil beam central axis, the dose distribution might still be
inaccurate for certain tumor sites (e.g. lung).

An approach called pencil beam fine sampling (Soukup et al., 2005) which also generalizes
to APM could further improve the accuracy of the current pencil beam algorithm. Here the
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primary fluence is decomposed into several sub-pencil beams of Gaussian shape located on
pre-defined sub-rays and their superposition results again in the primary fluence. This is
methodically identical to APM where a superposition of Gaussian components represents
depth related pencil beam components. It was shown by (Soukup et al., 2005) that this
adaption of a ’finer’ pencil beam algorithm improves the dosimetric accuracy with reference
to Monte Carlo simulations.

Although Monte Carlo dose calculation is assumed to be the gold standard for accurate dose
calculation (Battistoni et al., 2016), also the accuracy of this approach is compromised, analog
to the pencil beam algorithm, by the imperfect knowledge of the patient’s tissue densities.
The value of having an accurate dose calculation algorithm that assumes perfect conditions
(neglecting the impact of uncertainties) is to be questioned. The latter statement directly
motivates the use of robust or probabilistic optimization. However, it is computationally
demanding to create a Monte Carlo based dose influence matrix with sufficient statistics. This
becomes even more problematic for robust optimization where E error scenarios require E
Monte Carlo based dose influence matrices (Unkelbach et al., 2018). For such computationally
demanding treatment planning cases (robust/probabilistic or 4D) the analytical pencil beam
algorithm is still valuable.

Monte Carlo simulations compensate dosimetric uncertainties introduced by the pencil
beam algorithm but not uncertainties originating from changes in the patient geometry
(Paganetti, 2012). Thus, Monte Carlo simulations produce an accurate dose prediction,
however, only for the best case scenario (=nominal scenario). In contrast, APM generates a
less accurate dose prediction but provides, in addition, a full probabilistic description of the
treatment plan (Bangert et al., 2013; Wahl et al., 2017; Wieser et al., 2017b). To fully understand
the probabilistic consequences of using the analytical pencil beam algorithm within the APM
framework, Monte Carlo random sampling with high statistics needs to be carried out in the
future to estimate the expectation value and standard deviation based on accurate dosimetric
samples. This would permit to relate moments calculated via APM to moments estimated
from Monte Carlo random sampling and might reveal potential differences.

Throughout this work APM related calculations are based on the single Gaussian lateral
pencil beam model whereas the validation of the implemented TPS is done for the double
Gaussian lateral beam model (Parodi et al., 2013). The reason for using the single Gaussian
beam model for APM is the unsuitable radial symmetric parametrization of the double
Gaussian beam model.

In detail, the double Gaussian beam model is comprised of a weight w, σnarr denoting
the narrow Gaussian component and σbroad depicting the broad Gaussian component that
models the low dose halo. These parameters do not allow to decompose the lateral dose
Ltot into Lx

totL
y
tot to model setup errors individually in the spatial x and y dimensions. Let

Lnarr be the radial dose of the narrow Gaussian component and analog let Lbroad be the radial
dose of the broad Gaussian component. Then the total lateral dose Ltot is defined in the
double Gaussian beam model to be Ltot = (1−w)Lx

narrLy
narr +wLx

braodLy
braod. In contrast, APM
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currently assumes Ltot to factor into Lx
totL

y
tot and would require the following parametrization

Ltot = (1 − w)Lx
narrLx

bro + wLy
narrLy

braod.
Another solution to this is to either directly obtain moments of the two-dimensional dis-

tribution Ltot(x, y) or to approximate the uncertainty quantification by only considering the
narrow Gaussian component. Since the broader Gaussian component is at least 4 times the
value of σnarr, setup errors will have a minor impact on the broad Gaussian component.

The last paragraph discusses beneficial mathematical aspects of the Gaussian parametriza-
tion over tabulated base data used for the analytical pencil beam algorithm (Bangert et al.,
2013; Wieser et al., 2017b). Beyond the possibility to perform uncertainty quantification on the
basis of APM, the Gaussian parametrization permits, for instance, to efficiently model range
straggling in lung tissue in closed-form. The parametrization not only reduces the number of
parameters, it mathematically opens the door to use features of the well studied Gaussian
bell curve. In the future, also other quantities as the LET might be parameterized with a
superposition of Gaussian components. The linear dependency of the dose averaged LET on
the fluence would allow to directly derive the expected LET and the standard deviation of
LET within APM. In combination with future probabilistic constraints, discussed in the next
section, the dose-averaged LET might be controlled during optimization in a probabilistic
manner.

V.3 Probabilistic Optimization

Throughout this work, uncertainties were quantified with APM and subsequently used
for optimizing the penalized expected squared deviation objective of the biological effect
E[ fsq dev(ε)] of carbon ion treatment plans. In line with other publication based on protons
(Unkelbach et al., 2018, 2007; Unkelbach and Paganetti, 2018) probabilistically optimized
treatment plans were for every patient more robust against uncertainties than the convention-
ally optimized treatment plan on the PTV. However, the possibility to only probabilistically
optimize the squared deviation objective represent a limitation. State of the art treatment
planning systems facilitate in addition to the squared deviation objective more advanced
objective functions and constraints as illustrated in Table II.1 in Section II.4.4.2. The problem
from optimizing E[ fsq dev] is on the one hand that the resulting pencil beam intensities might
be too less conservative and consequently not be robust enough against actual worst cases
(see comparison of results IV.2.2.3). On the other hand, worst case optimization might be
too conservative by applying to much dose in the high dose margin around the CTV as
their no incentive during optimization to improve plan quality for more probable scenarios
(Unkelbach and Paganetti, 2018).

An intermediate solution is given by a distributionally robust approach that allows to
scale between worst case approaches and stochastic programming (Unkelbach et al., 2018).
(Fredriksson, 2012) proposed another intermediate solution called conditional value at risk
optimization which is a generalization of worst case and expectation value optimization
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and enables to optimize the average objective function value of the worst X% of error
scenarios. However, both approaches would require an analytical probabilistic representation
of objectives to be used in combination with APM.

For that reason (Wahl, 2018) investigated the moment calculation of other treatment plan
metrics and could derive exact and approximated expressions for the expectation value and
standard deviation of the mean dose, DVH points and the Equivalent Uniform Dose (EUD). In
further consequence Wahl established analytical expressions for novel probabilistic objectives
and constraints for the physical dose. Among other, analytical probabilistic expressions were
found for the expected piecewise squared deviation function that allowed the use of expected
squared over- and under-dose objectives for optimization.

But still the underlying problem of probabilistic and robust optimization is the treatment
planner can only indirectly steer the robustness of the resulting treatment plan by manipu-
lating input uncertainties without directly knowing how robust the resulting plan is going
to be. Objectives including probabilistic objectives are considered as cost functions that are
minimized during optimization. This means objectives are traded against each other to obtain
a minimal objective function value because no boundary condition (constraint) is defined.
Thus it is desirable in current clinical practice to be able to quantify and control the acceptable
level of robustness for robust/probabilistic optimization by using probabilistic constraints.

Because of the limitation mentioned above other treatment plan quality indicators such
as probabilistic min/max-dose, -EUD, -DVH constraints were developed by (Wahl, 2018)
and their applicability was tested for protons on a simplified one-dimensional prototype.
However, such advanced constraints, for instance, the α-DVH which represent the DVH for
a certain confidence level α require covariance information from the co-variance influence
tensor Cijlm in ∈ RI×J×I×J which cannot be stored for three-dimensional patient cases on
disk. Therefore efficient and accurate tensor approximation (tensor decomposition) might be
of interest in the future.

V.4 Sampling

The quantified uncertainties were compared to estimated moments based on random sam-
pling. Using 5000 samples ensured reliable reference estimates as the relative accuracy drops
below the 1 % level (Wahl, 2018; Wahl et al., 2017). Run-times for random sampling were
between 1-2 days* per patient case motivating the use of APM as it provides a better trade
off between speed and accuracy. The γ-pass rates were all above 94 % using (DTA=2 mm,
∆d = 2 %) thereby indicating good agreement between moments calculated via APM and
estimated moments. The approximations introduced in the analytical computations, the
moment propagation to the RBE weighted dose domain and the sampling statistics explain
the discrepancies.

*on a CPU based implementation in matRad using a computer with i7 processor and 32 GB of RAM
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Random sampling considers the effect of range errors induced by lateral shift but perform-
ing random sampling in clinical practice to quantify uncertainties in dose is currently not
feasible. Although the effect of range errors caused by lateral shift could be modeled in APM
via a higher dimensional correlation model it results in prohibitive computational effort. At
the moment, the effect of range errors caused by lateral shifts are currently not modeled in
APM. But since the γ-pass rates were high, it is believed that it may not have a major impact,
at least for the patient cases considered. Further, the study of (Wahl et al., 2017) demonstrated
for protons that APM provides consistently more accurate uncertainty estimates of dose than
grid or importance sampling strategies although the effect of range errors caused by lateral
shifts is not modeled in APM.

V.5 Impact of Biological Uncertainties

While physical uncertainties, i.e., range and setup errors, can be modeled with an uncertainty
about the location of the dose (i.e. geometrical shifts of the dose), biological uncertainties
have to be modeled as an uncertainty about the absolute magnitude of the effect within the
patient. Consequently, biological uncertainties were modeled throughout this manuscript
with a Gaussian uncertainty in the weight of each Gaussian component constituting the depth-
dependent αcd component of the biological effect. This represents a methodical extension of
the existing APM approach applied to protons (Bangert et al., 2013; Wahl et al., 2017, 2018a).
Here, a relative uncertainty in αc of 25 % directly translated to a relative uncertainty in the
respective weight ωα of the αcd profile. The corresponding covariance matrix allowed to
model the uncertainty structure of biological uncertainties. As thirteen Gaussian components
were used to represent depth-dependent αcd profiles, the freedom to design an uncertainty
band for the respective profile is limited because of the number and the position of the
Gaussian components. For instance the carbon ion dose tail is mostly represented by a
single broad Gaussian component which constraints the flexibility in this region. Whereas 25
equally spaced (with respect to the mean) Gaussian components would permit to model more
complex uncertainty bands with abrupt changes of uncertainty at specific locations. Further,
the uncertainty band could even act as a surrogate for the LET but biological uncertainties
would not be represented anymore.

The covariance matrix modeling biological uncertainties assumes a perfect correlation
between all Gaussian components of pencil beam j to all Gaussian components of pencil beam
m. Hence biological uncertainties are independent of the irradiation geometry and represent
herewith a systematic non-patient-specific uncertainty source. As biological uncertainties
are modeled identical to physical uncertainties in the pencil beam space and not the voxel
domain, this approach only allows modeling systematic biological uncertainties stemming
from the tissue response to ion radiation. The current implementation principally also permits
modelling random biological uncertainties which would express differently in each fraction,
but still in the pencil beam space. That means no voxel-specific information can be included.
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Instead, it is desirable to model random biological uncertainties in the voxel domain. Future
advanced functional imaging techniques could maybe highlight radio-resistance or radio-
sensitive regions along with an uncertainty estimate about the effectiveness in the tumor
upfront to the treatment. This would then trigger a potential adaption of the LQM parameter
αc and βc and the corresponding probability distributions p(αc) and p(αb) in these voxels.

The parametric representation of the base data via Gaussians allowed deriving closed-form
expressions for the first raw and second central moments of the RBE weighted dose con-
sidering physical and biological uncertainties. The additional consideration of biological
uncertainties was associated with negligible overhead in computational complexity. Dif-
ferent to other robust optimization techniques that rely on discrete error scenarios, every
additional source of uncertainty drastically increases the number of combinations (the curse
of dimensionality) that need to be covered for an accurate uncertainty estimate. In contrast,
the computational complexity within APM stayed constant for the additional consideration
of biological uncertainties.

Also, other correlation assumption like the beam wise correlation utilized for setup un-
certainties can easily be used for biological uncertainties, however, there is no argument
supporting this aspect from theoretical considerations.

In this manuscript, biological uncertainties are only modeled in the linear component of the
biological effect but can in principle also be considered in the quadratic component. It would
even be possible to model correlation or anti-correlation between αc and βc as described in
Section III.3.3. Further, it is at the moment not possible to directly model differences between
in-vivo and in-vitro data since one specific set of photon reference parameter αx and βx

characterizes a certain endpoint for specific conditions. In the current implementation a
change of αx and βx, triggers new LEM IV predictions, which is decoupled from the treatment
planning and requires subsequently to fit new Gaussian components.

Throughout this work, biological uncertainties are modeled in the tissue response to ion
radiation originating from the LQM reference parameter αx and βx of photons. To complete
the picture, it is necessary to also assume coherently uncertainty in these parameters for
the back transformation of the biological effect to the RBE weighted dose domain after
optimization. Ideally, the transformation into the RBE weighted dose domain in Equation
II.23 needs to be solved in a probabilistic manner by assuming probability distributions in the
involved parameters: αx ∼ N (αx, µα, σα) and βx ∼ N

(
βx, µβ, σβ

)
. Therefore, it is important

in the future to report such values with the corresponding PDF to increase the informative
value. The back transformation for probabilistic quantities itself is not trivial since the division
of Normal distributions with different means and variances is not straightforward. This issue
has not yet been solved for which reason this study is only capable of modeling uncertainties
in the tissue response of ion radiation.

Biological uncertainties exclusively influence the standard deviation and not the expectation
value as the expectation value equals the nominal biological effect if biological uncertainties
are modeled via a Normal distribution. Nevertheless, this will change when biological
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uncertainties are modeled with a different PDF (e.g., a skewed Normal distribution). The
uncertainty quantification in dose introduced by systematic biological uncertainties through
standard deviation was demonstrated. Due to the averaging effects of a mixed radiation field
the uncertainty in dose becomes smaller than the initial assumption of 25 %. This result is in
line with findings made in (Böhlen et al., 2012; Friedrich et al., 2013a).

The uncertainty in dose can be used for probabilistic optimization to minimize the expected
objective function value. As mentioned already for the one dimensional phantom case
in Section IV.2.1.2 the sole consideration of biological uncertainties leads for probabilistic
optimization of the biological effect to an under-dosage of the target structure and ultimately
to inferior dose distributions. To address this problem a minimum mean dose constraint
was used for the target structure. With this setup, probabilistic optimization accounting for
physical or biological and physical uncertainties resulted in very similar (almost identical)
results. Thus, the additional consideration of normally distributed biological uncertainties
to physical uncertainties did not yield improved treatment plans. Accounting for biological
uncertainties during probabilistic optimization it became even harder to steer the optimization
by adapting the penalties of objectives to obtain a reasonable good treatment plan. This
was the case because the integral variance term strongly out-weights the contribution of the
squared deviation objective on the expected biological effect.

To demonstrate the impact of only considering biological uncertainties for probabilistic
optimization Figure V.1 is presented. This treatment plan presents an artificial box phantom
filled with water and irradiated with two carbon ion beam directions with gantry angle of 0°
and 90°. The corresponding couch angles where 0°. For this example, neither a minimum
mean dose constraint for the PTV nor a squared deviation objective were defined for the
body structure ( ). Figure V.1(a) presents the expectation value of the RBE weighted
dose E[RBE × d] based on conventional optimization (conv.opt) considering biological un-
certainties (bioUCT). Note that as explained previously for normally distributed biological
uncertainties E[RBE × d] ≈ RBE × d. Figure V.1(b) presents E[RBE × d] from a probabilistic
optimization considering biological uncertainties.

From Figure V.1 it can be seen that after probabilistic optimization each beam significantly
overshoots the target to create robustness for biological uncertainties. The optimizer favors
this solution as the entrance channel of each pencil beam entails a lower biological uncertainty
compared to the peak position. Although this plan might be biologically robust, it is not
clinically favorable because of hot spots outside the target volume and on top the plan is not
robust against physical uncertainties. The second important observation made here, which
was also shown in the results (see IV.2.1.2), the mean dose inside the PTV dropped down
from 2.988 Gy(RBE) to 2.89 Gy(RBE) since no minimum mean dose constraint was used.

To create biological robustness (Böhlen et al., 2012; Friedrich et al., 2013a) suggested to aim
for a more homogenous radiation quality, e.g. LET, throughout the target volume. It was
observed in this manuscript that probabilistic optimization yielded treatment plans with
damped RBE peaks and consequently to a more homogenous LET. This phenomenon was

131



Chapter V: Discussion

(a) E[RBE × d], conv.opt., bioUCT

BODY
PTV

0

1

2

3

[G
y(

R
BE

)]

(b) E[RBE × d], prob.opt., bioUCT

BODY
PTV

0

1

2

3

[G
y(

R
BE

)]

Figure V.1: Transversal CT image of an artificial box phantom with transparent dose colorwash, solid contours
and solid isodose lines represent the expected RBE weighted dose (E[RBE × d]) after conventional optimization in
Figure (a). Figure (b) presents E[RBE × d] from a probabilistic optimization accounting for biological uncertainties
(bioUCT).

indirectly the result of considering physical uncertainties, however, a direct probabilistic
optimization on the LET or LET ×d might result in a more homogenous LET. The future
challenge is to create treatment plans that are on the one hand robust against physical and
biological uncertainties and on the other hand homogenize and increase the LET in the target
volume as much as possible by still satisfying given toxicity constraints.

V.6 Gaussian Error Assumption

Through this manuscript, all sources of uncertainties are assumed to obey a Normal distribu-
tion. While this is a common standard in radiotherapy, more studies similar to (Holloway
et al., 2017) are needed, presenting a method to obtain site-specific probability distributions,
in this case for range uncertainties. It is important to mention the APM formalism is not
limited to only consider Normal distributions. Other probability distributions can be used
too as long as the integral from the method of moments in Equation III.1 can be solved in
closed-form. If a proper analytical description of the probability distribution to be modeled
does not exist, then it can also be represented with a superposition of Gaussian components.
Approximating a non-integrable function by a superposition of Gaussians is one of the core
methodical steps of APM. Not only depth-dependent profiles and the lateral pencil beam
profile but also the probability distribution of input uncertainties itself can be represented
by a superposition of Gaussian components. Therefore the APM formalism is considered
flexible in that regard. Following that thought raises the question about the impact of using
different PDF in the error assumption which is discussed next.

According to Kamp et al. the shape of the probability distribution modeling the input
uncertainties considered for uncertainty analysis for an artificial carbon ion treatment plan
was of lower importance. A change from Gaussian distributions to uniformly distributed
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random input errors did not have a substantial effect on the sensitivity values and the
trends observed in the sensitivity analysis presented by (Kamp et al., 2014). This finding
is also confirmed in this manuscript in Section IV.2.1.3 which compared moments from
different error assumptions. In particular, other probability distributions were benchmarked
against the Gaussian error assumption. The bottom line of the analysis from Section IV.2.1.3
is that the shape of the probability distribution plays an inferior role and that Gaussian
error assumptions produce treatment plans that are also robust against other non-Gaussian
probability distributions.

According to (Bangert et al., 2013) the uncertainty structure (co-variance) of input uncertain-
ties determines the shape and magnitude of the resulting standard deviation in dose. Further
studies are required to best reflect real word conditions with respective co-variance matrices.
For instance, instead of the ray-wise correlation assumption for range uncertainties where all
pencil beams on the same ray are perfectly correlated and completely uncorrelated otherwise,
a smooth transition might be more realistic. Meaning that pencil beams from neighboring
rays, e.g. within 2 sigma of the lateral dose, could be modeled as partly correlated.

A Gaussian error assumption for biological uncertainties, where the nominal weights ωα

of individual Gaussian components directly represent the mean value, did not result in
improved treatment plans after probabilistic optimization. This might be different when
other more complex PDFs are assumed. In particular, the study of (Friedrich et al., 2010)
suggests that the αc parameter might follow a skewed Normal distribution, which causes the
expectation value to be different and would as a consequence produce a different probabilistic
treatment plan.

As of now, it is possible to model range-, setup- and biological uncertainties within APM,
however, geometrical uncertainties induces from motion cannot be modeled (Knopf et al.,
2013; Lomax, 2008c)

V.7 Performance

Treatment planning for carbon ions as it is implemented in this work requires to store two
influence matrices representing the linear and quadratic component of the biological effect.
Therefore treatment planning for carbon ions needs approximately twice the number of
numerical computation compared to protons. It was shown in Sections III.2.1 and III.2.2 that
the computational complexity of the expected biological effect via APM could be reduced
from O(I × J2) to O(I × J) through approximations with negligible loss in accuracy. Thus
the calculation of the expectation value of the RBE weighted dose is ultimately as expensive
as calculating its nominal value. An even bigger reduction in computation complexity could
be achieved with the approximations for the standard deviation of the biological effect
by reducing the complexity from O(I × J4) to O(I × J2). Considering the twice as many
numerical operations for carbon ion treatment planning compared to protons, the complexity
class of the standard deviation is identical.
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As indicated by the complexity specification O, the main determining factors for the
computation time are the number of voxels I paired with the number of pencil beams J.
Although carbon ions entail a reduced lateral scattering of factor ∼3 compared to protons,
the number of dose deposition points in a discretized geometry is usually higher because
of the fragmentation tail. Consequently, APM computations for carbon ions are generally
longer than for protons. In addition, the correlation model also influences the computation
time for the standard deviation significantly. It can be expected that individual voxels of a
carbon ion treatment plan possess a higher number of pencil beam contributions compared to
protons which lengthens the evaluation of pencil beam combinations jm for certain correlation
assumptions. For perfect correlation, as it is the case for biological uncertainties, a quadratic
form needs to be fully computed to evaluate all pencil beam combinations. Whereas the
ray-wise correlation model used for range uncertainties only requires to evaluate pencil beam
combination that are on the same ray.

According to Wahl et al. an approximated standard deviation can be derived by sampling a
subset of pencil beam combinations (Wahl et al., 2017). Specifically, the diagonal of pencil
beam combinations jj plus sampled off-diagonal combinations were considered. Using
sample sizes of 50 %, practically halves the computation time and yielded γ-pass rates of ∼
95 % compared to exact reference results depicting three patient cases. This approach offers
another way to trade accuracy for performance within the APM formalism.

During the course of this work, it was further investigated to find analytical approximations
for the standard deviation to reduce the computational complexity from O(I × J2) to O(I × J)
to avoid the evaluation of pencil beam combinations for each voxel. The aim was to linearize
the second raw moment calculation by using the outer product of the first raw moment plus
a correction term accounting for all off-diagonal information. This investigation did not yield
meaningful results and was stopped in further consequence, as the uncertainty structure,
stored in off-diagonal elements in the covariance matrix is a key factor for calculating the
standard deviation.

Once the expectation value and the integral variance influence matrix Ω are available,
probabilistic optimization entails a negligible overhead in computation complexity compared
to conventional optimization because the Ω matrix is only in ∈ RJ×J whereas the expectation
value itself is in ∈ RI×J . Compared to scenario based robust optimization, which requires the
evaluation of individual dose influence error scenario in each step during the optimization,
probabilistic optimization based on the probabilistic quantities E[ε] and Ω is per definition
faster.

The APM prototype was implemented upon a validated treatment planning system in
the interpreted numerical programming language Matlab. The computation time for three-
dimensional patient cases with a coarse voxel resolution varied from 4 to 8 hours depending
on the treatment plan complexity. The given computation time included a conventional
optimization, uncertainty quantification, probabilistic optimization and followed again by
an uncertainty quantification. The parallel computing toolbox of Matlab using eight parallel
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threads along with MEX files evaluating covariance tensor elements was used to speed
up the computation time. The run-times are still rather slow compared to a prototype
implementation in our C++ based in-house treatment planning system based on the MITK
† framework (Wolf et al., 2005). It was shown by (Wahl et al., 2017) for protons assuming a
constant RBE that APM computations only requires several minutes on a regular desktop
machine. A similar runtime can be expected for carbon ion treatment planning accounting
for twice the number of numerical operations.

In general, APM provides a better accuracy-performance trade-off, meaning that for the
same level of accuracy APM is faster than scenario based sampling (Wahl et al., 2017). The
same holds for carbon ions as APM calculation for the patient cases were roughly by factor 4
faster than random sampling, especially for the consideration of fractionation effect.

V.8 Applicability to other Ion Types

This manuscript presents the impact of physical and biological uncertainties on the RBE
weighted dose considering a dependence of the RBE on the particle spectra, tissue type
and dose level for carbon ion therapy. These aspects are not considered in the work of
(Bangert et al., 2013; Wahl et al., 2017, 2018a) who model the impact of physical uncertainties
on the physical dose for protons considering a constant RBE of 1.1, which prohibits their
application to heavier charged particles showing a stronger RBE dependence. In contrast, the
methodology presented here is in general applicable to any other ion type (protons or helium
ions) that is based on biological effect based treatment planning. Notwithstanding special
care must be taken when the proposed approximations for carbon ions are used for other ion
types as they might not be valid per se and yield inaccurate uncertainty estimates.

In recent years, the topic of using a variable RBE model also for protons has been receiving
increased attention (Giovannini et al., 2016; McNamara et al., 2015; Wedenberg et al., 2013).
There are arguments at the moment on both sides for whether using a constant or variable
RBE ranging from the lack of clinical evidence for switching to a different RBE model to a
free of doubt correlation between LET and RBE. A potential application of the developed
analytical pipeline to protons using a variable RBE is discussed in the following paragraph.

Through LEM IV or other phenomenological RBE models established from in-vitro and
partly from in-vivo data, the tissue response to ion radiation can be predicted. Further, they
can be processed to obtained dose-averaged radio sensitivity parameter within the LQM
for each tissue type and for each initial beam energy. Analog to the work presented here,
Gaussian components can be fitted to these profiles and enable a subsequent application
of APM. However, the approximations in the analytical moment computation for carbon
ions cannot be transferred directly to protons as the squared component of the biological
effect exhibits a far bigger contribution to the biological effect than for carbon ions. This

†http://mitk.org [accessed October 2018]
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Figure V.2: The biological effect ε of an optimized treatment plan for 2 Gy(RBE) for protons in Figure (a) and carbon
ions in Figure (b). A tissue characterized with LQM parameter αx = 0.1 [Gy−1] and βx = 0.05 [ Gy−2] is considered.
For protons a variable RBE was used for dose calculation. The quadratic component (Bw)2 of the optimized biological
effect is shown for protons in Figure (c) and for carbon ions in Figure (d).

phenomenon is illustrated in Figure V.2 which shows an artificial box phantom irradiated
with a single proton beam and a single carbon ion beam. The plan was optimized for
2 Gy(RBE) in the PTV which equals for αx = 0.1 [Gy−1] and βx = 0.05 [ Gy−2] to a prescribed
biological effect of 0.4. Figure V.2(a) shows the biological effect ε of protons using the variable
RBE model presented in (McNamara et al., 2015). The corresponding quadratic term (Bw)2

of the biological effect is shown in Figure V.2(c). In contrast, Figure V.2(b) denotes ε from
an identical treatment plan, however, irradiated with carbon ions using LEM IV. Figure
V.2(d) shows the quadratic term (Bw)2 of the biological effect which is in contrast to protons
much smaller. Hence the approximations for carbons ions are probably not valid for protons.
One theoretical solution to this problem is to perform the full analytical calculation of the
standard deviation which is practically infeasible. Thus another approach might be finding
new approximations that allow obtaining reasonably accurate results. Concretely, in addition
to the second raw moment influence tensor Ξα

ijm of the αd profile, which needs to be fully

calculated for carbon ions, the second raw moment influence tensor for Ξβ
ijm of the βd profile

and the second raw moment influence tensor of their combination (mixed components) Ξαβ
ijm

probably need to be computed to include the most important information to calculate an
accurate uncertainty estimate.

136



VI
Conclusion

The two main objectives of this manuscript were to quantify and to mitigate carbon ion
treatment plan uncertainties considering physical and biological errors alongside fraction-
ation effects. To address the research questions arising in this context, the thesis facilitated
Analytical Probabilistic Modeling (APM), a novel approach for uncertainty management
in radiation therapy planning that does not rely on scenario sampling but instead uses
closed-form expressions to directly compute and control probabilistic descriptors of radiation
therapy treatment plans.

Previously, APM has only been applied for range and setup uncertainties influencing
physical dose in photon and proton treatments. In Chapter III it was shown that it is
possible to also accommodate the non-linearities emerging from the computation of the
relative biological effectiveness of carbon ions within APM for range and setup uncertainties.
Specifically, it was demonstrated that it is possible to derive closed-form expressions of the
expected biological effect and its covariance. Hereby, the input error space was propagated
through the particle dose calculation engine to obtain uncertainties of the biological effect.
Representing depth-dependent base data used for analytical carbon ion dose calculation
by a superposition of thirteen Gaussian components resulted in a maximum deviation of
0.25 %. This Gaussian parametrization of the dose calculation engine together with Gaussian
error assumptions allowed to directly exercise the method of moments. Further, APM allowed
defining arbitrary linear correlation models to represent setup and range uncertainties. Not
only exact analytical expressions were derived in Chapter III but also fast low-rank tensor
approximations to calculate the expectation value and standard deviation with minimal loss
of accuracy at identical computational complexity to the physical dose. It was shown for
the one-dimensional carbon ion SOBP that the biological effect can exactly be calculated,
however, the exact computations O(I × J4) are associated with a prohibitive computational
effort to be applied for clinical cases. For that reason approximations O(I × J2) were utilized
throughout this manuscript. Statistical moments of the biological effect were then in a final
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step propagated to moments of the RBE weighted dose using a fourth-order Taylor expansion.
For uncertainties within the biological model that is used to compute RBE weighted dose, a

novel uncertainty structure was invented at the end of Chapter III to represent uncertainties in
the tissue response from carbon ion irradiation. A key feature of the analytical formulation is
that the additional consideration of biological uncertainties did not increase the computational
complexity.

Chapter IV.2 demonstrated first for the one-dimensional carbon ion SOBP uncertainty
quantification results for the individual and combined consideration of range and biological
uncertainties on the RBE weighted dose. The global γ-pass rate yielded for the combined
consideration a value of 98.89 % considering (DTA=3 mm, ∆d = 3 %). Modeling the fully-
fledged interplay between systematic and random uncertainties on three fractions resulted in
an agreement of 94.0 % to sampled references. The imperfect agreement between moments
obtained from APM and random sampling can be explained by (i) the approximations made
for physical uncertainties, (ii) employed approximations for biological uncertainties, (iii)
moment propagation errors from the Taylor expansion and (iv) sampling uncertainties itself.
The lower accuracy from the approximations was willingly accepted in exchange for the
significantly improved performance.

Section IV.2.1.3 revealed that the Gaussian range error assumptions in combination with
probabilistic optimization produce robust treatment plans that are also reasonably robust
against other PDFs. Herewith, it is demonstrated that the choice of PDF describing input
uncertainties only played an inferior role in probabilistic optimization. For instance, also the
assumption of uniformly distributed range errors would be a legitimate choice.

In addition, current clinical practice was mimicked in Section IV.2.1.4 by using LEM I for
conventional and probabilistic optimization. A forward dose calculation employing LEM IV
revealed, compared to the reference plan, a more homogenous dose for the probabilistically
optimized plan. This showed that probabilistic optimization considering range uncertainties
reduces discrepancies between different LEM versions due to a homogenization of the LET.

Accordingly, a general observation made for probabilistic optimization considering range
uncertainties was an indirect homogenization of the LET and RBE. Thus, a probabilistic
optimization accounting for range uncertainties caused a smoothing of LET and RBE peaks.
Further, it was shown that the consideration of normally distributed biological uncertain-
ties for probabilistic optimization did not yield improved treatment plans. Consequently,
biological uncertainties did not play a decisive role for optimization.

In order to investigate the uncertainty quantification and minimization with APM for realis-
tic treatment scenarios, the open-source treatment planning toolkit matRad was developed in
the context of this thesis. Its dose calculation and optimization functionality was successfully
validated against the clinically used treatment planning system SyngoRT planning at the
Heidelberg Ion-Beam Therapy Center showing beautiful agreement quantified by global
γ-pass rates ≥ 99.67 % for elementary pencil beams as well as complex patient cases (compare
Chapter IV.1). matRad is completely implemented in the interpreted programming language
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Matlab, yet still enabled treatment planning for clinically realistic use cases within a couple
of minutes. Due to its flexibility and efficiency, matRad also became interesting for colleagues
in the field; meanwhile it is used by more than 25 international research groups*.

In a further step, the carbon ion APM algorithm was implemented on top of matRad. The
proposed approximations were analyzed in detail in Chapter IV.2 on three-dimensional
patient cases revealing good agreement to sampled references as indicated by a minimum
global γ-pass rate of 94.95 %. Observations made for the one-dimensional SOBP were here
confirmed for the three-dimensional patient cases. Regarding computational performance,
APM offered a better trade-off between speed and accuracy compared to random sampling.

A subsequent probabilistic optimization, presented in Chapter IV.2 (i) avoided under-
dosage of the CTV because of wash-out effects, (ii) resulted in a reduced integral dose and
(iii) minimized uncertainty in dose for all patient cases. Robustness was created by reducing
the in-field dose gradient of each carbon ion beam. Another observation made here was a
slight increase of the mean RBE inside the target volume after probabilistic optimization.

A central aspect of the proposed analytical pipeline is that it is not required to calculate
individual error scenarios as APM outputs expected- and covariance-influence matrices/ten-
sors which can directly be used for uncertainty quantification and probabilistic optimization.

In conclusion, this manuscript presents first a flexible and accurate analytical method that
allows to quantify the uncertainty in dose of carbon ion treatment plans. In a second step, it
was demonstrated that the analytical model could be used in probabilistic optimization to
minimize uncertainties in dose by remodulating pencil beam intensities in a robust manner.
The latter yielded treatment plans that were more robust against involved uncertainties as
demonstrated for a number of different clinical scenarios. Along these lines of research,
this thesis provides a general characterization of the role of biological models within robust
treatment plan optimization.

Future robust treatment planning for carbon ions should first focus on physical uncertain-
ties and LET rather than on biological uncertainties as the inclusion of range uncertainties
yields biologically more robust plans. The consideration of normally distributed biological
uncertainties does not result in improved treatment plans. Further, it is worth investigating
the extension of APM to handle motion uncertainties which is at the moment not possible.
This would require to model uncertainties not in the pencil-beam space but instead in the
voxel-domain.

It would be interesting to derive new tensor approximations for the standard deviation of
the RBE weighted dose assuming a variable RBE for protons. Although the exact analytical
expressions, given in this manuscript, are generally valid, it is interesting in this regard which
correlation terms need to be considered to obtain a reasonably accurate uncertainty estimate
for protons. Another appealing idea is to represent the LET as a superposition of Gaussian

*www.tinyurl.com/matradmap [accessed May, 2019]
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to derive by means of APM the complete probabilistic information of the LET. Last but not
least, to make full use of the probabilistic information, probabilistic constraints need to be
developed for the biological effect to be able to control treatment plan uncertainties.
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VII
Summary

Probabilistic Treatment Planning for Carbon Ion Therapy

Intensity-modulated scanned particle therapy in combination with the characteristic depth
dose deposition of carbon ions entail a higher sensitivity to physical changes of the patient
geometry as compared to photons. As a result, carbon ions may stop at different spatial
locations than predicted during treatment planning. But also the patient’s response to ra-
diation is uncertain thereby further compromising the quality of the radiation treatment
plan. The unknown level of uncertainty in the carbon ion dose requires a patient specific
uncertainty analysis and uncertainty mitigation. For this reason the thesis at hand presents
a novel method to assess and quantify carbon ion treatment plan uncertainties considering
physical uncertainties, biological uncertainties as well as fractionation effects. Second, the
manuscript demonstrated how uncertainties were in a subsequent probabilistic optimization
mitigated. The proposed methodology was applied to multiple clinical scenarios and its
advantageous impact on the carbon ion treatment plan robustness was demonstrated.

On the basis of a concept called Analytical Probabilistic Model (APM) that was used
to quantify uncertainties of the proton dose deposition modeling setup and range errors
alongside fractionation effects in closed-form, this manuscript presents the extension of APM
to carbon ion treatment planning.

Unlike protons, carbon ion treatment planning needs to account for the increased non-
linear cell killing of carbon ions in a mixed radiation field which increases the treatment
planning complexity. With respect to uncertainties, not only the location of dose deposition is
uncertain for carbon ions but also their effectiveness which consequently introduces biological
uncertainties to treatment planning.

Different to scenario based approaches, this work presents exact and approximated non-
linear closed-form calculations of the expectation value and covariance of the RBE weighted
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dose accounting for setup-, range- and biological-uncertainties in fractionated carbon ion
therapy. The developed analytical pipeline allows propagating linearly correlated Gaussian
input uncertainties through the carbon ion pencil beam dose calculation algorithm to obtain
uncertainties in dose.

With I and J being the number of voxels and pencil beams, respectively, low-rank tensor
approximations were derived for the expectation value and standard deviation reducing the
computational complexity from O(I × J2) to O(I × J) and from O(I × J4) to O(I × J2) with
minimal loss in accuracy. The consideration of biological errors introduces a new uncertainty
structure in the analytical pipeline without increasing the computational complexity. The
calculation of expected dose and variance influence information via APM allows performing
a subsequent probabilistic optimization.

A proof of concept and several aspects such as accuracy, fractionation and the impact
of different probability densities to model input uncertainties were studied in detail on
a one-dimensional phantom case. Further, basic three-dimensional dose calculation and
optimization functionalities were implemented in the open-source treatment planning system
matRad. A subsequent validation against a clinical reference system revealed excellent
agreement for elementary pencil beams and patient cases as indicated by γ-pass rates above
99.67 %. Theoretical APM derivations were implemented on top and were then applied to
clinical carbon ion patient cases. The expectation value and standard deviation of the RBE
weighted dose were compared to estimated analogs stemming from 5000 random samples.
The γ-pass rate exceeded 94.95 % in all patient cases thereby proving the validity of the
proposed analytical pipeline. A subsequent probabilistic optimization avoided underdosage
of the target volume, reduced the integral dose and resulted in carbon ion treatment plans
with a minimized standard deviation of RBE weighted dose. Thus the developed Analytical
Probabilistic Model facilitates a flexible, effective and accurate probabilistic description of the
radiation treatment plan and generalizes to probabilistic optimization.

In conclusion, the manuscript presents an analytical method to quantify and minimize
the uncertainty in the delivery of carbon ion treatment plans. As a result, treatment plans
became more robust against the involved uncertainties as demonstrated for a number of
clinical scenarios.
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VIII
Zusammenfassung

Probabilistische Bestrahlungsplanung für die Kohlenstofftherapie

Die intensitätsmodulierte Partikeltherapie mit beschleunigten Kohlenstoffionen ist auf-
grund ihrer charakteristischen Dosisdeposition, im Vergleich zur Photonentherapie, anfäl-
liger gegenüber geometrischen Veränderungen im Patienten. Aus diesem Grund können
Kohlenstoffionen an einem anderen Ort im Patienten stoppen als in der Bestrahlungsplanung
vorhergesagt. Jedoch wird die Strahlentherapie sowohl durch physikalische Unsicherheiten
als auch durch biologische Reaktionen des Patientengewebes beeinflusst, was zu weiteren
Unsicherheiten in der vorhergesagten Dosis führt. Die Dosis-Unsicherheiten verlangen
eine patientenspezifische Unsicherheitsanalyse sowie eine anschließende Minimierung. Aus
diesem Grund beschäftigt sich die vorliegende Arbeit, mit der zentralen Frage wie Un-
sicherheiten in der Dosis unter der Berücksichtigung von physikalischen und biologischen
Variabilitäten sowie Fraktionierungseffekte quantifiziert werden können. Darüber hinaus
zeigt diese Arbeit wie die gewonnenen Informationen in einer probabilistischen Optimierung
verwendet werden können, um robuste Bestrahlungspläne für Kohlenstoffionen zu erhal-
ten. Die vorgestellte Methode wurde an mehreren klinischen Patientenfällen evaluiert und
der vorteilhafte Einfluss der entwickeltet Methode wurde an robusten Bestrahlungsplänen
dargelegt.

Basierend auf den Ergebnissen zur Analytisch Probabilistischen Modellierung (APM) von
Dosisunsicherheiten in der Protonentherapie unter der Berücksichtigung von Positionierungs-
fehlern, Tiefenunsicherheiten und Fraktionierungseffekte, beschreibt diese Arbeit die konzep-
tionelle Erweiterung zur Anwendung in der Kohlenstofftherapie. Im Gegensatz zur Photon-
und Protontherapie muss jedoch bei der Bestrahlungsplanung mit Kohlenstoffionen die er-
höhte nicht-lineare biologische Wirksamkeit in einem gemischten Strahlenfeld berücksichtigt
werden. Angesichts dieser Unsicherheiten ist nicht nur der exakte Ort der Energiedepo-
sition unklar sondern auch die biologische Wirksamkeit wodurch nun auch biologische
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Unsicherheiten in der Bestrahlungsplanung miteinzubeziehen sind.
Im Unterschied zu szenarienbasierten Ansätzen zeigt diese Arbeit exakte und angenäherte

nicht-lineare Berechnungen in geschlossener Form, um den Erwartungswert und die Kovar-
ianz der biologisch wirksamen Dosis für Positionierungsfehler, Tiefen- und Biologischen-
unsicherheiten in der fraktionierten Kohlenstofftherapie zu berechnen. Der entwickelte
analytische Algorithmus ermöglicht es, linear korrelierte Eingangsunsicherheiten in Form
von Normalverteilungen durch den Nadelstrahldosisalgorithmus zu propagieren um auf
Unsicherheiten in der Dosis zu schließen.

Angenommen I und J repräsentieren die Anzahl der Voxel, sowie die Anzahl der Nadel-
strahlen, dann wurden Annäherungen gefunden, welche die Rechenkomplexität bei mini-
malem Verlust an Genauigkeit für den Erwartungswert von O(I × J2) auf O(I × J) und für
Standardabweichungen von O(I × J4) auf O(I × J2) reduzieren. Die zusätzliche Betrachtung
von biologischen Unsicherheiten erhöht dabei jedoch nicht die ursprüngliche Rechenkom-
plexität. Die Berechnung von probabilistischen Größen der Dosis ermöglichte in weiterer
Folge die Anwendung einer probabilistischen Dosisoptimierung.

Anhand eines eindimensionalen Softwareprototypen wurden die analytisch berechneten
probabilistischen Größen auf unterschiedliche Aspekte, wie Genauigkeit, Fraktionierung Va-
lidität der Gaußschen Unsicherheitsannahmen analysiert. Anschließend wurden essentielle
Dosisberechnungs- und Optimierungsmodule in einem dreidimensionalen Bestrahlungs-
planungssystem implementiert und gegen ein klinisches Referenzsystem validiert. Eine
γ-Analyse zeigte eine globale Passrate von ≥99.67 % und bestätigt somit eine fast perfekte
Übereinstimmung zu der klinischen Referenzplattform. Darauf basierend wurde APM imple-
mentiert und an klinischen Patientenfällen getestet. Die quantifizierten Unsicherheiten in der
biologisch effektiven Dosis wurden gegen Schätzungen aus 5000 zufälligen Stichproben ver-
glichen und lieferten in der γ-Analyse eine Übereinstimmung von ≥94.95 %. Dieser Wert lässt
auf eine ordnungsgemäße Implementierung und Funktionalität von APM schließen. Eine
probabilistische Optimierung verhinderte eine potentielle Unterdosierung des Zielvolumens
und resultierte in Bestrahlungsplänen mit reduzierter Unsicherheit in der biologisch effek-
tiven Dosis, wodurch diese als robuster zu betrachten sind. Somit ermöglicht die Analytisch
Probabilistischen Modellierung eine flexible, effektive und genaue Unsicherheitsabschätzung
der biologisch effektiven Dosis in der Kohlenstofftherapie und erlaubt eine probabilistische
Optimierung.

Zusammengefasst stellt die vorliegende Arbeit eine neue analytische Methode zur Quan-
tifizierung und Minimierung von Bestrahlungsplanungsunsicherheiten in der Strahlenthera-
pie mit Kohlenstoff Ionen vor. Die berechneten Bestrahlungspläne für klinische Szenarien
wurden durch die vorgestellte Methode robuster gegenüber den involvierten Unsicherheiten.
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I.1 Properties of Multivariate Normal distributions:

Let x,µ be in ∈ RD and Σ ∈ RD×D, then a D-dimensional Normal distribution is given by:

N (x,µ, Σ) =
1

(2π)D/2|Σ|
1
2

e
[(

− 1
2 (x−µ)TΣ−1(x−µ)

)]
(A.1)

The integration of a multivariate Normal distribution yields one.∫
N (x|µ, Σ)dx = 1 (A.2)

Let x be [x1, x2, . . . , xr, xr+1, . . . , xR] ∼ N (x|µ, Σ), then the marginal distribution of a multi-
variate Normal distribution results again in a multivariate Normal distribution.∫

N (x|µ, Σ)dx = =
∫

dx1 dx2 . . . , dxr dxr+1 . . . dxR N (x|µ, Σ) = 1

=
∫

dx1 dx2 . . . , dxr N1:r(x1:r|µ1:r, Σ1:r) (A.3)

The product of two D-dimensional Normal distributions results in turn in a Normal distri-
bution:

N (x|µ1, Σ1)N (x|µ2, Σ2) = κ N (x|µ3, Σ3) (A.4)

with: κ =
1

(2π)D/2|Σ1 + Σ2|
1
2

e
[
− 1

2 (µ1−µ2)
T(Σ1+Σ2)

−1(µ1−µ2)
]

with: Σ3 = (Σ−1
1 + Σ−1

2 )−1 and µ3 = (Σ−1
1 µ1 + Σ−1

2 µ2)Σ3
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Looking at the moments of a multivariate Normal distribution then the first and second
raw moments of x are given by:

E[x] =
∫

N (x|µ, Σ)xdx = µ (A.5)

E[xxT] =
∫

N (x|µ, Σ)xxTdx = µµT + Σ (A.6)

I.2 Recurring Symbols and Notation:

Table A.1: Notation and symbols used to describe analytical probabilistic modeling for biological treatment planning

Notation Meaning Description Complexity
L L lateral dose in x, y O(I × J)
L E[L] 1st raw moment of lateral dose O(I × J)
Υ E[L2] 2nd raw moment of lateral dose O(I2 × J2)
Z Z depth dose in z O(I × J)
Z E[Z] 1st raw moment of depth dose O(I × J)
Ξ E[Z2] 2nd raw moment of depth dose O(I2 × J2)
D LxLyZ dose influence matrix O(I × J)
D E[D] = LxLyZ expected dose influence matrix O(I × J)
D E[D2] = ΥxΥyΞ 2nd raw moment of dose influence matrix O(I2 × J2)
V ΥxΥyΞ −D2(i = l) variance influence tensor O(I × J2)
C ΥxΥyΞ −D2(i 6= l) covariance influence tensor O(I2 × J2)

Zα Zα depth component αd in z O(I × J)
Zα E[Zα] 1st raw moment of depth αd O(I × J)
Ξα E[Zα 2] 2nd raw moment of depth αd O(I2 × J2)
Zβ Zβ depth component

√
βd O(I × J)

Zβ E[Zβ] 1st raw moment of depth
√

βd O(I × J)
Ξβ E[Zβ 2] 2nd raw moment of depth

√
β d O(I2 × J2)

A LxLyZα influence matrix of the linear term O(I × J)
A E[A] = LxLyZα expected linear term of bio. effect O(I × J)
Ψ E[A2] = ΥxΥyΞα 2nd central moment of linear term of bio. effect O(I2 × J2)

B LxLyZ
√

β influence matrix of the squared term O(I × J)
B E[B] = LxLyZ

√
β expected squared term of bio. effect O(I × J)

Φ E[B2] = ΥxΥyΞ
√

β 2nd central moment of squared term of bio. effect O(I2 × J2)
ε Aw + (Bw)2 biological effect O(I × J)

E[ε] Aw + wTΦw expected bio. effect O(I × J2)
Ê[ε] Aw + (Bw)2 approx. expected bio. effect O(I × J)
Dε - 2nd raw moment of bio. effect O(I2 × J4)
D̂ε - approx. 2nd raw moment of bio. effect O(I2 × J2)
Ĉε D̃ε − Ê[ε]2(i 6= l) approx. covariance influence tensor of bio. effect O(I2 × J2)
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II.1 Analytical Moment Calculations

The following sections contain detailed analytical derivations to calculate statistical moments
of the lateral dose and the depth dose components as part of the analytical pencil beam dose
calculation of charged particles.

II.1.1 First rawmoment of the biological effect considering setup
and range uncertainties

Let i be the voxel index {i ∈ N|1 ≤ i ≤ I}, j,m be pencil beam indices {j ∈ N|1 ≤ j ≤ J}
and {m ∈ N|1 ≤ m ≤ M} with J, M defining the total number of pencil beams. Then the
expectation value E[.] of the biological effect εi can be derived via:

E[εi] =
∫

d∆xd∆yd∆z p(∆x)p(∆y)p(∆z)εi(∆
x, ∆y, ∆z)

=
∫

d∆xd∆yd∆z p(∆x)p(∆y)p(∆z)
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ijimΥy

ijimΞ
√

β
ijim (B.1)

where Lx/y
ij denotes the lateral dose component and Zα/β

ij the depth dose components of the
biological effect. As independent error sources in x, y, z are assumed the integration can be
carried out for each component separately. Link back to main text III.8

II.1.2 Second raw moment of the biological effect considering
setup and range uncertainties

Let i, l be the voxel indices in {i ∈ N|1 ≤ i ≤ I} and {l ∈ N|1 ≤ l ≤ L}. Further, let j, m, o, q
be pencil beam indices and J, M, O, Q be the total number of pencil beams. Then the second
raw moment of the biological effect E[εiε l] can be derived via:
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E[εiε l] =
∫

d∆xd∆yd∆z p(∆x)p(∆y)p(∆z)εi(∆
x, ∆y, ∆z)ε l(∆

x, ∆y, ∆z) (B.2)

=
∫

d∆xd∆yd∆z p(∆x)p(∆y)p(∆z)
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Multiplying the curly bracket out and grouping spatial (x, y, z) components together yields:
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(B.3)

where for example
∫

d∆x p(∆x)Lx
ijL

x
lm represent elements of the second central moment

influence tensor of the lateral dose in x dimension. Analog denotes
∫

d∆x p(∆x)Lx
ijL

x
ioLx

lmLx
lq

elements of the fourth central moment influence tensor of the lateral dose. Accordingly can
the remaining terms in Equation B.3 be interpreted. Solving the central moment calculations
results in:

E[εiε l] =
J

∑
jm

wjwmΥx
ijlmΥy

ijlmΞα
ijlm + 2
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(B.4)

As the variance of each voxel i is stored along the diagonal of the covariance matrix i = l,
we can drop the voxel index l to obtain:

E[εiεi] =
J

∑
jm

wjwmΥx
ijmΥy

ijmΞα
ijm + 2

J

∑
jmo
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∑
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ijmoq

(B.5)
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Equation B.5 was used throughout this thesis to compute the variance of the biological
effect. Link back to text III.15

II.1.3 First raw moment of lateral dose component considering
setup uncertainties

Assuming p(.) denotes a multivariate Gaussian distribution depicting the setup error in x
with mean zero and covariance Σx allows deriving the expectation value of the lateral dose
Lx

ij via:

Lx
ij = E[Lx

ij(∆
x)] =

∫ ∞

−∞
d ∆x p(∆x) Lx

ij(∆
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=
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where i indicates the linear voxel index and j the linear pencil beam index. The marginal-
ization property of multivariate Normal distributions introduced in A.3 is used in line B.6.
Further, µ̃ and σ̃ represent the parameters of a new Normal distribution (see Equation A.4)
whose integration equals 1. Link back to text III.11

II.1.4 Second raw moment of lateral dose component consider-
ing setup uncertainties

Let N (∆x
jm|µx

jm, Λijlm) denote a bivariate Gaussian distribution with:

with: xijlm =
( xij

xlm

)
,µx
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)
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mj Σx

mm

)
Then elements of the second raw moment influence tensor of the lateral dose Υx

ijlm can be
computed via:

Υx
ijlm = E[Lx

ijL
x
lm] =

∫
d∆x p(∆x)Lx

ijL
x
lm =

∫ ∞

−∞
d ∆xN (∆x|0, Σx) Lx

ij(∆
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lm(∆
x) =

=
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2π
√
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e−
1
2 ∆xT(Σx)−1∆x 1√
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ij

e
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xij−µx

j +∆x
j

)2

2λx
ij

1√
2πλ2

lm

e
−
(
xlm−µx

m+∆x
m
)2

2λx
lm
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=
∫ ∞

−∞
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√
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1
2 ∆xT(Σx)−1∆x 1

2π
√
|Λijlm|
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1
2 (xijlm−µx
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−1(xijlm−µx

jm+∆x
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jm) (B.8)

For a specific voxel combination il, the integration over bivariate Gaussian distributions
results in turn in bivariate Gaussian distribution with an adapted width. Link back to text
III.18.

II.1.5 Third rawmoment of lateral dose component considering
setup uncertainties

Let i, l, n be linear voxel indices and j, m, o be linear pencil beam indices. Further, let
N (xijlmno|µx

jmo, Λijlmno) be a trivariate Gaussian distribution with the following parameter:

xijlmno =

( xij
xlmxno

)
,µx

jmo =

(
µx

j
µx

m
µx

o

)
, Λijlmno =

λ2
ij 0 0

0 λ2
lm 0

0 0 λ2
no

 (B.9)

∆x
jmo =

(∆x
j

∆x
m

∆x
o

)
, Σjmo =

Σx
jj Σx

jm Σx
jo

Σmj Σx
mm Σx

mo
Σx

oj Σx
om Σx

oo

 (B.10)

Elements of the third central moment influence tensor of the lateral dose component Υx
ijlmno

can be derived as follows:

Υx
ijlmno =

∫
d∆x p(∆x)Lx

ijL
x
lmLx

no

=
∫

d∆x p(∆x)
1√

2πλ2
ij

e
−

(xij−µx
j +∆x

j )
2

2λ2
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1√
2πλ2
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e
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m+∆x
m)2
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e
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2λ2
no

=
∫
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3
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√
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1
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3
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√
|Λijlmno|
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1
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T(Λijlmno)
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jmo+∆x
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=
∫
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=ζ

= 1 (B.11)

Link back to text III.18.

II.1.6 First raw moment of depth component considering range
uncertainties

Let i be the voxel index {i ∈ N|1 ≤ i ≤ I}, j be the pencil beam index with {j ∈ N|1 ≤ j ≤ J},
k be the index for the k-th Gaussian component {k ∈ N|1 ≤ k ≤ K}, µz

jk, δjk, ωjk be the fitted
parameter of the k-th Gaussian component of pencil beam j. Then the expectation value
E[Zij] of depth dependent components Zij can be derived via:

Zij = E[Zij(∆
z)] =

∫ ∞

−∞
d ∆z p(∆z) Zij(∆

z)

=
∫ ∞

−∞
d ∆zN (∆z|0, Σz) Zij(∆

z) =
∫ ∞

−∞
d∆z

j N (∆z
j |0, Σz

jj) Zij(∆z
j )

=
∫ ∞

−∞
d ∆z

j
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2πΣz
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e
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(
∆z

j

)2

2Σz
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K

∑
k=1

ωjk√
2πδ2

jk

e
−

(
zij−µz

jk+∆z
j

)2

2δ2
jk

=
K

∑
k=1

ωjk√
2π(δ2

jk + Σz
jj)

e
−

(
zij−µz

jk

)2

2(δ2
jk+Σz

jj) (B.12)

The equation is valid for any depth dose profile (physical dose-, αd- and βd-profile) repre-
sented by a superposition of Gaussian components. Link back to text III.12

II.1.7 Second rawmoment of depth component considering range
uncertainties

For the following considerations the subscript α/β is dropped to provide a generic formulation
because the fitted Gaussian parameter could in principle represent any arbitrary profile. Let
i, l be voxel indices, j, m be pencil beam indices, k,p be individual Gaussian components
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and let N (zijlm|µjkmq, θjkmp) denote a bivariate Gaussian distribution, then the second raw
moment of the depth dose component Ξijlm can be obtained:

with: zijlm =
( zij

zlm

)
,µjkmp =

( µjk
µmp

)
, ∆z

jm =

(
∆z

j
∆z

m

)
, θjkmp =

(
δ2

jk 0
0 δ2

mp

)
, Σjm =

(
Σz

jj Σz
jm

Σz
mj Σz

mm

)

Ξijlm = E[ZijZlm] =
∫

d∆zZijZlm

∫ ∞

−∞
d ∆zN (∆z|0, Σz) Zij(∆
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(B.13)

=
∫ ∞
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Link back to text III.19.
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II.1.8 Third rawmoment of depth component considering range
uncertainties

As an example, the deviation for Ξα2β
ijlmno is presented below. Given i,l,n denote voxel indices,

j,m,o pencil beam indices and k,p,r individual Gaussian components, we can define

zijlmno =

( zij
zlmzno

)
, µz

jkmpor =

 µα
jk

µ
β
mp

µ
β
or

 ∆z
jmo =

( ∆z
j

∆z
m

∆z
o

)

Θjkmpor =


δα

jk
2 0 0

0 δ
β
mp

2
0

0 0 δ
β
or

2

 , Σjmo =

Σz
jj Σz

mj Σz
oj

Σz
jm Σz

mm Σz
om

Σz
jo Σz

mo Σz
oo

 (B.15)

to solve:
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∫
d∆z p(∆z)Zα
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II.1.9 Second central moment considering fractionation

The second central moment of the biological effect E[εF
i εF

l ] in a fractionated carbon ion
treatment can be derived by:

E[εF
i εF

l ] =
∫ ∞

−∞
d∆sysN (∆sys|0, Σsys) d∆rnd

f N (∆rnd
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)2


2
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 (B.17)

 J
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(
J

∑
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wmBg
lm(∆

sys, ∆rnd
g )

)2


(B.18)

In Equation B.17, terms are multiplied out and the sum over f and g is applied to each
resulting term to derive:

E[εF
i εF

l ] =
∫ ∞

−∞
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︸ ︷︷ ︸
see Equation III.15


(B.19)

Link back to text III.27.
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II.1.10 First raw moment of depth components considering bi-
ological and range uncertainties

Exemplary, the computation of the expectation value of the Zα depth component is shown.
Let p(ωα) obey a Normal distribution with N (ωα|µωα

, Σωα
) with µωα

= ωα.
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Link back to text III.40.
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II.1.11 Second raw moment of depth components considering
biological and range uncertainties

Exemplary, the computation of the second raw moment the Zα depth component is shown
below. Again it is assumed p(ωα) obeys a Normal distribution N (ωα|µωα

, Σωα
) with µωα

=
ωα.
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Link back to Equation III.44.
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