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Summary

Over the last 15 years the human microbiome has received increasing attention. During this

time, many studies have contributed to shed light on the complex network of interactions both

between the microorganisms and their host, and within microbial communities themselves.

While traditionally aiming at assessing composition, recent studies have broadened this scope

to multi-dimensional aspects, using multi-omics approaches. By integrating information about

genomes, transcripts, proteins and metabolites, a holistic understanding of the microbiome is

nowwithin reach. However progressive, these studies generally suffer from a lack of closure, as

interpretation and integration of this data is all but straightforward.

In the particular case of metatranscriptomes, species abundance and gene expression are cou-

pled into a single readout. Consequently, normalization of this data is a crucial but poorly

understood and unresolved problem. Here I present different approaches to normalise meta-

transcriptomes and highlight procedural concerns when obtaining this type of data.

Results show that better normalization strategies are necessary when integrating multi-omics

data and that controlled pilot experiments are required for a better understanding of the intri-

cate dynamics and interactions between members of these communities. This work further ex-

poses concerns about the interpretation of functional aspects ofmicrobial populations, primarily

driven by the many uncontrolled sources of variation herein discussed.

As these new data types becomemore widespread, methods will certainly evolve towards better

standardization and controlled procedures. This will help the microbiome field to move beyond

its descriptive state into one able to provide a more detailed and mechanistic understanding.
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Zusammenfassung

In den letzten 15 Jahren hat das menschliche Mikrobiom zunehmend Aufmerksamkeit erhal-

ten. In dieser Zeit haben viele Studien dazu beigetragen, das komplexe Netzwerk der Wechsel-

wirkungen zwischen den Mikroorganismen und ihrem Wirt, sowie innerhalb der mikrobiellen

Gemeinschaften selbst zu beleuchten.

Existierende Studien beschäftigten sich vor allem mit der Analyse der bakteriellen Zusam-

mensetzung. Eine neue Entwicklung ist, auch mehrdimensionale Aspekte zu betrachten, vor

allem mit sogenannten “Multi-Omics”-Studien. Durch die Integration von Informationen

über Genome, Transkripte, Proteine und Metaboliten ist nun ein ganzheitliches Verständnis

des Mikrobioms in greifbarer Nähe. Trotz aller Fortschritte mangelt es im Allgemeinen an

greifbaren Schlussfolgerungen die alle Stränge miteinander verbinden, da die Interpretation

und Integration dieser Daten alles andere als einfach ist.

Im speziellen Fall von Metatranskriptomen werden Spezies-Abundanz und Genexpression in

einer einzigen Messung erfasst. Folglich ist die Normalisierung dieser Daten ein entscheiden-

des, aber wenig verstandenes und ungelöstes Problem. Hier stelle ich verschiedene Ansätze zur

Normalisierung von Metatranskriptomen vor und erörtere die praktischen Probleme bei der

Gewinnung dieser Art von Daten.

Die Ergebnisse zeigen, dass bei der Integration von Multi-Omics-Daten bessere Normal-

isierungsstrategien erforderlich sind und dass kontrollierte Vorstudien erforderlich sind, um

die komplexe Dynamik und Interaktion zwischen Mitgliedern dieser Gemeinschaften besser

zu verstehen. Diese Arbeit zeigt weiterhin die momentanen Grenzen hinsichtlich der Interpre-

tation funktionaler Aspekte mikrobieller Populationen auf. Diese sind hauptsächlich durch die

vielen unkontrollierten Variationsquellen bedingt.

Mit zunehmender Verbreitung dieser neuen Datentypen werden sich die Methoden zu

einer besseren Standardisierung und zu kontrollierten Verfahren entwickeln. Dies wird der

Mikrobiom-Forschung helfen, über qualitative Studien hinaus zu quantitativen Ansätzen zu

gelangen, die ein detailliertes und mechanistisches Verständnis liefern können.

iii



iv



1
Introduction

1.1 Microbiome studies

With recent technological advances in DNA and RNA sequencing technologies scientific disci-

plines such asmicrobial ecology and in particular experienced a burst of information availability.

In little over a decade the repertoire of known prokaryotic species and the knowledge of their

interactions and importance has expanded several fold. In the context of human health, the find-

ings that these microorganisms have a significant impact on well-being and can be causative or

predictive of some diseases (68, 129, 133) has lead to an increased interest in their study, the

study of the microbiome.

A large part of this scientific advance has been made possible thanks to techniques such as

metagenome and metatranscriptome shotgun sequencing, targeting DNA and RNA, respec-

tively. These techniques allow peeking into the biological potential and activity of entire

communities by providing a snapshot of the DNA and RNA content at a given point in

time. However, the dynamic nature of these environments poses interesting challenges both

logistically (sampling, preservation, …) and experimentally (design, extraction, sequencing,

analysis, …). In the case of the human gut, periodic cycles linked to behavioral patterns such as

daily or weekly routines (28), as well as, diet, geographical, demographic and epidemiological

changes (131, 136) define a multidimensional problem whose implications and relevance is still
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an active topic of research. Together with technical aspects, the interpretation of these results is

very challenging and has lead to conflicting interpretations (1, 39).

Comparative studies using metagenomes and metatranscriptomes while having great potential

are also very challenging from a technical standpoint with elaborate protocols and time sensitive

steps. Latest studies follow a best effort approach where some but not all recommended practices

are followed. This includes some form of preservation and conservation of the biological mate-

rial after collection, simultaneous extraction of DNA and RNA and depletion of ribosomal RNA

(rRNA) and transfer RNA (tRNA). One should also emphasise that these practices, although rec-

ommended, also introduce bias of different nature. Due to the availability of several options and

commercial kits, the field has yet to converge on universal and standard protocols that address

most of these issues. As such, while these bias are somewhat uniform within project, they pose

significant challenges when integrating several projects.

1.2 Moving beyond function potential with metatranscrip-

tomics

While working towards the understanding of the complex interactions in the microbiome, one

must not only focus on the functional potential but also in its realization. Many studies (9, 11, 19,

83, 132) evaluate and discuss functional aspects of the microbiome. Yet, by using only metage-

nomic data, their interpretation is but an assessment of the possible functions that the micro-

biome can perform, not of those actually being performed. In order to assess the actual func-

tional activity one must move beyond metagenomes DNA towards readouts that better reflect

what these communities are doing, such as metatranscriptomics RNA, metaproteomics (pro-

teins) and metabolomics.

Whilemoving towards functional analysis, both proteins andmetabolites are highly variable and

available methods are still plagued with obstacles in assigning experimental readouts to their

respective sources. Consequently, the use of metatranscriptomics provides the best compromise.

As protocols not unlike those used for metagenomics can be used to sequence transcriptomes,

this readout is reachable and approachable. However, the highly dynamic nature of RNA poses

technical challenges that transpire into the final result.

In the specific case of metatranscriptomics, composition and expression are intertwined in the

final output (fig. 1.1). As the use of metatranscriptomic for human studies is still in its early days

(37, 43, 70), current approaches overlook many of the technical aspects underlying this data. In

hope that biological signal outweighs noise, such studies focus primarily on the end-goal, relying

on several assumptions along the way.
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Figure # 1.1: Convolution of abundance and expression signals - illustrating scenarios with different biological
behavior and same transcriptomic readout.
A-A species that has not changed its transcriptional programme despite changing its representation in the community,
B-A stably prevalent species that displays a different transcriptional programme over the specified time frame
C-The most common scenario, where expression and abundance are convolved over time.
Neither of the three scenarios is distinguishable without the ability to deconvolute abundance from expression.

One example is seen in Franzosa et al (36) and the HUMANn2 software. Here, an older software

MetaPhlAn2 (118) is used to taxonomically profile metagenomic samples and subsequently used

as reference abundance to normalise associated metatranscriptomes. This approach is in princi-

ple valid, but relies on the assumption that the estimates produced by the profiler are accurate

and concordant with the species composition of the sample. Were this assumption to fail, the

functional responses seen in the metatranscriptome would be normalized to an incorrect level,

resulting in an erroneous interpretation of the results.

One additional confounder in metatranscriptomic studies is that of rRNA. Bacterial RNA is

known to be composed of 95-97% rRNA and tRNA (97). Such high percentage would result

in a high proportion of sequenced reads belonging to rRNA reads while shadowing remain-

ing transcripts. Consequently, metatranscriptomic protocols often require the removal of rRNA

and tRNA transcripts by different means. In the case of eukaryotes, mRNAs contain a poly-

A sequence amenable to hybridization. This principle is exploited by kits that use poly-T rich

columns to bind poly-A sequences allowing rRNA and tRNA, that lack such sequence, to be

washed through. Bound molecules can afterwards be released yielding almost pure mRNA se-

quences. On bacteria however, RNA does not possess poly-A and as such this approach cannot

be used. Instead solutions often involve binding to specific regions of rRNA and tRNA, either

with a similar principle to the poly-A or as part of an enzymatic reaction that degrades bound

regions. With this approach, rRNA and tRNA can be brought down to as little as 1% or even

less. Yet, designing universal sequences targeting a wide range of species is challenging, leading

to species-specific biases that can be misinterpreted in the context of relative abundances (119).

In light of these challenges, efforts towards a better understanding of the implications of different
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normalization strategies and the impact of technical noise in the interpretation of metatranscrip-

tomes, is in order.

1.3 Microbiome software

Over the years, the expression academic software has been used as synonym of poor quality. The

main contribution to this reputation is the fact that scientific projects are fast moving and short

lived and software is often released to the public with little care for its future. Thanks to initia-

tives such as the European Academic Software Award (10), the adoption of a code required policy by

most publishing institutions, increasing awareness towards reproducibility and standardization

in science (91) and large community efforts to improve the scientific bioinformatics ecosystem

(3, 41), this reputation has changed to more positive notes.

The complex and dynamic nature of the microbiome field is also reflected in its software and

available methods. A plethora of popular and well maintained tools exist (13, 21, 36, 75, 82, 101,

110, 118) allowing the design of studies that require the analysis of large or very large amounts

of data (2, 43, 44, 70, 100, 102, 109, 120). However their use often involves building custom

multi-step pipelines and execution with non default parameters. While perfectly natural this

approach adds to the challenge of standardization by making projects isolated in their analysis

and difficult to compare without significant effort. Similarly the use of different experimental

and computational protocols and technologies increases the likelyhood of effects of unknown or

uncontrolled origin (24). Although some of these effects can be mitigated batch correction tech-

niques, their use often comes at the cost of loss of signal (26, 38). Be that as it may, efforts towards

standardization, transparency and reproducibility of computational approaches are crucial not

just as best practice but also to ensure a sustainable scientific endeavour.

1.4 Artificial communities

The so called microbiome field is often perceived to be at odds with traditional microbiology.

Both of these disciplines try to understand microbial communities. While microbiome studies

often use a top-down approach, collecting large amounts of data, and trying to find patterns

in the data that are explanatory or associate with different conditions, traditional microbiology

focuses on small scale experiments, controlled environments and mechanistic understanding of

the underlying biology of these species.

In recent years, the microbiome field is recognizing that the top-down approach has limitations

and that larger amounts of data are unlikely to change this trend. Consequently, these disciplines

are converging, primarily driven by an attempt to move microbiome studies beyond associative

and into a more mechanistic direction (111). Similarly, traditional microbiology is scaling up
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by using high-throughput technologies such as microfluidics (121), or introducing automation

through robot assisted experimental setups.

These efforts typically aim at creating in vitro, and controllable environments, mimicking the

conditions experienced in vivo, where multiple species are grown together. This kind of setup

allows mechanistic studies by analyzing the interactions between the different members of the

community, and evaluate their evolution under different conditions and perturbations. Some of

these efforts are now coming to public and are already providing interesting biological insight

into these communities and both synergistic and antagonistic behaviors seen when organisms

are brought together (42, 55, 72).

The use of these systems also brings advantages in terms of protocol validation and optimization.

One often mentioned concern in microbiome studies is the poor use of standards and controls.

This criticism is often coupled with recommendations on approaches that could address these

issues. Such is the case of spike-ins (99), used to control efficiency of DNA/RNA extraction

and sequencing bias. Despite reasonable, these recommendations have been received with re-

sistance and are yet to been implemented and integrated into common practice. An often used

argument is that metagenomics and metatranscriptomics protocols are already quite complex,

both in terms of sampling and processing, and introducing additional steps will only increase

the sources of bias, a point of view that while valid is arguably flawed. Consequently, the adop-

tion of these and other best practices has given microbiome studies a reputation of being lax in

terms of scientific rigor.

In all, the study of artificial communities while losing some of the properties of in vivo systems,

allows an entirely different level of control overmany source of noise. In time, these communities

will certainly provide the much needed mechanistic insight that will help push the microbiome

field forward.

1.5 Objectives

Following from the need to develop better approaches to analyse metatranscriptomic data, sev-

eral objectives are outlined:

• Define a set of standard approaches for metagenomic studies

• Identify a robust strategy to normalize and analyse metatranscriptomic data

• Understand the impact and validity of these strategies under different conditions and per-

turbations

Each of these will be explored in a different chapter of this thesis.
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2
Method development in microbiome analysis

2.1 Introduction

A large number of microbiome studies use, as the basis of their analysis, DNA or RNA sequenc-

ing data. Be it 16S rRNA amplicon, shotgun metagenomics or shotgun metatranscriptomics,

these datasets are typically large in both size and numbers. As a consequence, the use of com-

puter assisted methods for their analysis is inevitable.

In this chapter I describe two softwares and one resource created to provide support for such

analysis. The first software is a taxonomic profiler which provides estimates of the abundance of

species inmetagenomic samples. This kind of tool is often a starting point ofmanymetagenomic

studies. The second is a generalist nucleotide sequence processing, pipelining, analysis tool and

language. This tool provides an all around modular framework for quality control, mapping,

assembling, annotating, profiling and feature counting of sequence data. Last but not least, I

describe a global gene catalog resource that can be used both to discover unknown and novel

genes in different habitats and also as reference to future metagenomic and metatranscriptomic

studies.
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2.2 Consistency between taxonomic profilers

Asmany, if not most, microbiome analysis require an assessment of the species composition and

abundance of any given sample, tools such asmOTUs (110) andMetaPhlAn2 (118) are frequently

a critical point in these studies, either as standalone or integrated into larger pipelines such as

HUMANn2 (36). These tools try to estimate abundance by using universal (mOTUs) or clade-

specific (MetaPhlAn2) marker genes. Other tools rely on assigning individual reads to genomic

or taxonomic databases (48, 127, 128). However, as closely related genomes tend to have regions

of high similarity, reads mapping to such regions have to either be distributed across all equally

scoring hits or be masked and ignored entirely. Both of these approaches introduce normaliza-

tion and technical bias leading to skewed abundance estimates. This problem can be partially

overcome by using marker genes which are by design unique and taxon- or clade- specific. This

is the case for both mOTUs and MetaPhlAn2. Additionally, if marker genes can be universally

defined, that is, encompassing the entirety of the tree of life (here only the prokaryotic branch),

estimating abundance from species lacking a complete reference genome becomes a possibility.

This is the case for mOTUs and in contrast toMetaPhlAn2, which requires reference genomes in

order to construct its database of clade-specific markers.

Using simulated test datasets generated by the Critical Assessment of Metagenome Interpreta-

tion (CAMI) group (103), the performance of both tools was assessed. These datasets include

three groups with variable complexity reflecting different habitats, environments and sequenc-

ing depths (see tbl. 6.1).

While comparing output of both tools (see fig. 2.1), two outstanding issues were noticeable.

First, the results show reasonable performance at genus level but poor at species level, with

MetaPhlAn2 scoring slightly better. Second, the biggest challenge, and a definite source of loss

of signal, is the mapping of the outputs of both tools to a common and comparable taxonomic

reference. This step only slightly affects the profiling obtained by mOTUs tool, since NCBI tax-

onomy identifiers are included in the output, However, the mapping step represents a bigger

problemwhen usingMetaPhlAn2-derived profiles. In fact, not onlyMetaPhlAn2 doesn’t provide

any NCBI taxonomy identifiers, it further complicates this integration by using species labels

with masked non-alphanumeric characters. This masking approach results in over 60,000 la-

bels, that could not be mapped back to the NCBI taxonomy. As a result, this method leads to

an inflated rate of false positives, and, consequently, a lower precision rate. Moreover, the fact

that these tools were released at different points in time implies that their underlying taxonomic

reference is different, requiring additional translation to common ground and comparable iden-

tifiers. Similar hurdles were found by the authors of the CAMI study that, although using a

slightly different strategy, achieved an identical result (103).

8



Figure # 2.1: Evaluation of mOTUs-v1 profiler and MetaPhlAn v2.5 on CAMI test datasets - medium and
high complexity datasets approximate a real sample and as such represent a more realistic outcome. MetaPhlan2 shows
overall better performance
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These and many other methods have been since benchmarked, with larger datasets, as part of

the CAMI effort (103), which aims at providing a broad and unbiased assessment of different

metagenomic analysis tools.

After this initial assessment, and as part of the work towards an improved version of themOTUs

profiler, this analysis was re-done using the newer version of the profiler,mOTUs2. This analysis

has been also included in the mOTUs2 publication (82). In the paper, a significant improvement

is also visible, specially when compared to the original mOTUs1 (see fig. 2.2). where a signifi-

cant improvement is visible compared to its previous version (see fig. 2.2). This improvement

spans throughout the entire range of taxonomic levels we investigated (panels h-o), as well as

in genomes assembled frommetagenomic samples (panels a-g). For the latter, the improvement

is particularly outstanding, compared not only to mOTUs but also to alternative publicly avail-

able profiling tools. One relevant exception is visible in (panel n), where species-level profiling

remains challenging, especially in terms of recall, for all the tools considered, due to the high-

complexity nature of the datasetwe investigated. This scenario reflects a simulation strategy that

penalizes most profiling tools by including circular elements (see tbl. 6.1) that are particularly

challenging to profile.

As of the writing of this work, mOTUs v2.5 has been made public. This version expands the

underlying database with close to 60,000 new reference genomes, effectively duplicating the

range of species that can be profiled with this tool. MetaPhlAn2’s database, although large, has

not been updated since its initial release. It will be interesting to see how the latest versions of

these tools perform, something which is likely to happen soon since a second iteration of the

CAMI challenge is, at the time of writing, underway.

Despite their partial disagreement and their sub-optimal ability to profile simulated samples

at species level, mOTUs and MetaPhlAn2 remain among the most widely used and best tools

for this task. The increasing availability of reference genomes will help improving the internal

databases of these tools and consequently their profiling performance.

2.3 Reproducible microbiome analysis with NGLess

The topic of reproducibility in science has since long been a concern and recurs when high im-

pact science faces concerns of irreproducibility (53, 96), in some cases by the same authors of

the initial study (69). Reproducibility in metagenomic studies is particularly challenging, both

experimentally and computationally. Experimental reproducibility can be improved by the use

of standard protocols and procedures (74, 115, 116). On the other hand, computational repro-

ducibility requires a set of good practices, such as the use of versioning for resources and soft-

ware, logging for pipeline steps and settings (40), just to name a few (well illustrated in fig. 2.3).
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Figure # 2.2: Evaluation of mOTUs profiling against MetaPhlAnv2 and other tools - in Milanese et al. (82)
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Conciseness, readability and extensive and detailed documentation also remarkably improve

the reusability of computational pipelines and the reproducibility of their results. NGLess and

its ng-meta-profilers (21) (see also lst. A.1) have been conceived and developed keeping in mind

these aspects, in order to maximise reproducibility, accessibility and readability.

Figure # 2.3: Hidden reproducibility challenges in computational analysis - being able to use a published
method often involves dealing with issues not considered by the authors such as system incompatibilities, a big list of
checks - in Kim et al. (56)

NGLess is both a language and a framework. Software and resources are versioned and either

built-in or downloaded on first use. Parameters and pipeline steps are explicitly defined as

part of the NGLess language, itself also versioned. Moreover, computations are automatically

considered outdated if either the recipe or any of its parameters is modified, thereby ensuring a

consistent and clean execution of the task, avoiding unwanted mixture of results from different

configurations.

NGLesshas borrowed inspiration from existing software, in particularMOCAT2 (60), which used

a convenient folder organization. Similarly, the first version ofmOTUs (110) was reimplemented

inNGLess in amore convenient, bug ridden and reusable format. Additionally,NGLesswas built

with modularity in mind and as such provides interfaces to extend the vocabulary of actions, al-

lowing users to use tools beyond those provided as built-in. This is the case of ngless-contrib

(138), a collection of external modules open to community contribution and one of my contribu-

tions to this project.

As part of the process to build NGLess into a robust tool, thousands of samples were processed

(see sec. 2.4), hundreds of bug reports, bug fixes and new features were implemented, includ-

ing the addition of algorithms to better support the analysis of metatranscriptomic data. This
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involved not just a conspicuous software development effort over several years but also con-

stant testing, improving documentation and occasionally providing training to users. Direct

contact with users and feedback through surveys allowed us to reassess design decisions, im-

prove overall usability and readability. On average 70% of users found the NGLess language

easy to interpret on first contact, reaching almost 100% after training.

In all, the batteries included approach of NGLess, the emphasis on reproducibility and the ef-

fort in standardizing common metagenomic analysis through ng-meta-profilers, make this frame-

work a convenient and reliable platform for microbiome studies and more generically, process-

ing of Next Generation Sequencing (NGS) sequencing data. This work is publicly available at

http://ngless.embl.de and has been published in Coelho et al. 2019 (21).

2.4 Capturing genetic novelty beyond reference genomes

High quality genome assemblies are the most reliable reference for metagenomic analysis. Well

studied species and strains often have detailed genetic annotations both in terms of the defini-

tion of genes and its functional capabilities and behaviors. Model bacterial organisms such as

Escherichia coli, Bacillus subtilis and Mycoplasma genitalium are a small example in an ever grow-

ing list of high quality references. Reaching such high depth of understanding of a species often

requires culturing in isolation. While culturing is in itself challenging (84, 108), large efforts are

ongoing (35, 137). Once successful, these efforts will open up a new range of possibilities. The

availability of isolated species will allow the design of perturbation studies in controlled envi-

ronment. Similarly, pure cultures will warrant high quality DNA, free of contaminations, that

will provide high quality reference genomes.

One of the great findings enabled bymetagenomic studies is the fact thatmicroscopic life ismuch

richer and more diverse than initially thought. Many new species have been found through 16S

rRNA profiling and metagenomic shotgun sequencing. Occasionally, entirely new taxonomic

clades have been discovered, such as our proposed Borkfalki ceftriaxensis, representative of a new

Comantemales order (44). In the same direction, recent studies managed to almost double the cur-

rent repository of reference genomes by assembling and binning a large amount ofmetagenomes

in order to obtain Metagenome Assembled Genomes (MAGs) (4), a technique that can yield low-

to-high quality reference genomes (85, 89, 126). Several strategies have been used to generate

MAGs, some such asMetaBat2, packaged as a reusable pipeline (54). These approaches usually

consist of twomain steps. First, contigs are assembled from individual samples or co-assembled

frommany samples and scanned for marker genes. Second, by assessing the abundance of these

contigs and marker genes across samples it is possible to bin them based on co-abundance un-

der the assumption that contigs originating from the same species have approximately the same

abundance. A MAGs is therefore the result of binning co-assembled contigs based on their co-
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abundance across several samples. While these techniques are highly prone to the generation

of chimeric sequences by fusion of unrelated species, their usefulness is undeniable and contin-

ued efforts will most certainly improve the quality of the resulting genomes and minimize the

creation of artifacts.

As microbiome studies often focus on understanding the dynamic nature of these communities,

another useful approach is to center the analysis on genes. With the increase of metatranscrip-

tomic studies, genes became the primary target of most analysis, be it as part of differentially

expression analysis or simply as a proxy for functional inference. A logical step in this direction

are gene catalogues (23, 67, 92, 109, 130) and MetaGenomic Species (MGS) (87). The first, as the

name implies, consists of catalogues of genes compiled from assembled metagenomes and/or

metatranscriptomes. The second, and akin toMAGs, consists of binning genes based on their co-

abundance across samples. While gene catalogues and MGSs can primarily serve as reference

to future studies, they are also a good way to discover novel genes potentially originating from

unknown species and in some cases having no homology to existing databases.

Given the focus of this work onmetatranscriptomic analysis I had the opportunity to collaborate

in the creation of the first version of the Global Microbial Gene Catalogue (GMGC). This cata-

logue was derived from 12,743 publicly available high quality metagenomes spanning different

habitats and body sites tbl. 2.1. A total of 2,007,736,046 Open Reading Frames (ORFs) were pre-

dicted and clustered together with 312,020,843 genes from 84,029 high quality genomes in the

ProGenomes database (78) for a total of 302,655,267 gene clusters (22). The analysis and genera-

tion of this catalogue required over 10 million Central Processing Unit (CPU) hours distributed

over the period of a year on a cluster with over 3000 CPU cores at European Molecular Biology

Laboratory (EMBL). My contributions to this work involved an initial benchmark, co-designing

the first steps of the pipeline (which included processing the 12,743 metagenomes into the cat-

alogue of 300 million gene clusters), re-processing the initial samples against the gene clusters

and annotating the catalogue. In addition to driving a large part of the computation effort re-

quired for this project, I was also responsible for a strategic decision that allowed reducing the

computational time required from 20 million CPU hours (estimated) to little over 6 million CPU

hours, effectively reducing the project time frame from 9 to 3 months.

Table 2.1: Distribution of samples used to build GMGC(v1)

Habitat / Body site Category Number of samples

human_gut Human 7059

human_oral Human 1593

human_skin Human 1139

human_nose Human 228
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Habitat / Body site Category Number of samples

human_vagina Human 173

pig_gut Animal 295

mouse_gut Animal 230

dog_gut Animal 129

cat_gut Animal 124

soil Soil 312

marine Water 130

freshwater Water 104

wastewater Water 22

built-environment Buildings 1205

Total 12743

Figure # 2.4: Identifying novel and rare genes - number of genes and their prevalence across samples in different
habitats - in Coelho et al. (in review) (22)

As part of themany outcomes of this work, of special mention is the somewhat surprising size of

the catalogue, which reflects a richer breadth andwider coverage than initially expected, and an

increase in the number of novel and rare genes (see fig. 2.4). This work expands previous efforts

(23, 67, 92, 109, 130) with over 100 million genes, largely due to the increased number of habitats

and samples included. Thanks to this effort we now have a resource that is able to capture a

significantly larger portion of novelty in a wider range habitats. Yet, similar future efforts will

likely be necessary, since we still didn’t capture a large fraction of the biodiversity present in

highly diverse and less studied habitats such as marine and soil environments (see fig. 2.5).
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Figure # 2.5: Mapping rates against GMGC-v1 - habitats with higher biodiversity are still poorly represented in the
catalogue, reflecting also lower number of samples, while well studied habitats such as human gut are well represented
- in Coelho et al. (in review) (22)
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2.5 Discussion

As previously shown, (see fig. 2.2) mOTUs (particularly mOTUs2) and MetaPhlan2 provide the

best performance to estimate abundance frommetagenomes and a starting ground for metatran-

scriptomic analysis. In the following chapter (sec. 3) I will revisit these tools and their application

for profiling both metagenomes and, more importantly, metatranscriptomes.

Together with NGLess, these tools provide the foundation for the integration of metagenomes

and metatranscriptomes.

As following work required the analysis of thousands of samples, having a robust, performant

and streamlined solution is invaluable. In large computational data processing efforts it is in-

evitable that unexpected system failures happen due to the many components involved, both at

software and hardware levels. Being able to perform the bulk of the data processing in a com-

putationally efficient way and with the reassurance of data consistency and reproducibility is

an invaluable advantage.

Finally, while the use of theGMGC for furthermetatranscriptomic analysis could not be pursued

due to time constraints, a publication (22) is, at the time of writing, under review. Regardless,

this resource will certainly be of value for future metagenomic and metatranscriptomic studies

as it provides the widest survey of prokaryotic genes to date.
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3
Integrating metatranscriptomes and

metagenomes

3.1 Introduction

As previously introduced, the readout of a metatranscriptomics experiment is the result of a

combination of two sources of variation: abundance and expression (fig. 1.1). When paired

metagenomes and metatranscriptomes are available, current strategies to normalize metatran-

scriptomes (36), simply subtract metagenome derived abundances from metatranscriptome

counts. This approach assumes that the metagenome reflects the real species abundance and

that the same baseline applies to the paired metatranscriptome.

Since the discrepancy betweenmetagenomes andmetatranscriptomes could be due to biological

effects, one could argue the assumption still holds. However, given the fact that RNA is quickly

degraded, is very dynamically regulated and RNA experiments typically involve protocols with

many steps, the most likely source of discrepancy is of technical rather than biological nature.

Following this, I postulated the possibility of deconvoluting species abundance and gene expres-

sion from metatranscriptomes alone, allowing normalization independent from metagenomes.

If successful, one would be able to rely solely on metatranscriptomes, and perform both taxo-

nomic and functional assessments of a community. Additionally, being able to rely entirely and
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solely on metatranscriptomes would also have a significant economic impact as the need for

metagenomes would be drastically reduced. This principle is not entirely novel in the field of

RNA-seq, but its application to metatranscriptomes is limited. One example of this approach

is seen in Klingenberg et al. (57). In this work, scaling factors are calculated for every species in

order remove the effect of species abundance, and before performing differential gene expres-

sion analysis. Said scaling factors are extrapolated from gene counts and are roughly equivalent

to an average across all genes. While suitable for differential gene expression, this approach

is not reliable for species abundance estimation. Factors such as genome size, length of genes,

paralogy and orthology are not considered, leading to different kinds of bias when estimating

species abundance with these methods.

On a different note, abundance is estimated based on sequencing coverage of a genome or, as is

the case of the tools considered,marker genes. This approach assumes that different species have

an approximately equivalent ratio of DNA to cell number. This assumption has been challenged

in the past (90) and recently revisited (107) but due to technical limitations, relying on coverage

remains the best approximation currently available.

Being able to deconvolute species abundance from expression would warrant a more reliable

solution to the problem of normalization. In this chapter I will explore existing approaches and

present an alternative method to normalize metatranscriptomic data.

3.2 Metagenomes, metatranscriptomes and reference genomes

In order to pursue the goals of this chapter, publicly available paired metatranscriptomes and

metagenomes, that is, extracted simultaneously and from the same biological sample, were ob-

tained.

All publicly available datasets considered in this work consist of human stool samples (sec. 6.2),

originating from projects researching diseases potentially related with the human gut. As a

well studied environment, the majority of most prevalent species has had its genome sequenced

and reference genomes are publicly available. Building on existing knowledge, the present work

uses representative reference genomes obtained from the curated proGenomes database (78) and

further reduced to species found to be present in the human body (sec. 6.2.2).

3.2.1 Fragmentation in high quality genomes

Although the reference genomes obtained from proGenomes are curated, many still display a

high degree of fragmentation and are either of scaffold or contig quality.

As an initial analysis I assessed the distribution of genome quality. Results are illustrated in
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(fig. 3.1).

Figure # 3.1: Contig distribution in proGenomes reference genomes

Surprisingly, despite considered high quality, most representative genomes still display a high

level of fragmentation. Of the 871 genomes considered, 35%are composed ofmore than 5 contigs

and more than 20 have 200 or more fragments.

The high level of fragmentation complicates the analysis of these species. The lack of complete

reference genomes affects the ability to map reads to poorly assembled regions, increasing the

fraction of unmapped reads. Additionally, as assemblies are imperfect, higher levels of fragmen-

tation are likely to reflect in increased rates of chimeric contigs due to low coverage at the time

of assembly.

After this result, manual inspection revealed that themajority of the affected species are typically

reported as having low prevalence and abundance in human gut samples. In light of these

results, the exclusion of fragmented genomes was considered but deemed unnecessary.

As genomes are a foundational part of this work, future iterations will certainly benefit from the

availability of higher quality and complete references.

3.2.2 Public datasets and taxonomic variation

Public datasets from six public projects (tbl. 6.2) were found to meet the requirements for this

work (sec. 6.2). In order to assess the distribution of samples in terms of richness and compo-

sition, taxonomic abundances were estimated with mOTUs2 and displayed in a Principal Coor-

dinates Analysis (PCoA) plot (fig. 3.2) using Bray-Curtis dissimilarity (14). In the plot we can

see clusteringmost HPFS-MLVS samples together with T1D_LCSB, InternalGT and Franzosa2014,

and a few outlier samples. A significant spread is also seen inAxis 2 affecting some samples from

HPFS-MLVS and T1D_LCSB. A more concerning effect is visible on HMP2-IBD and HMP2-IBDMDB
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samples. These not only display the largest internal dissimilarity, they also sub-cluster by sam-

pling/sequencing institution. Data from HMP2-IBDMDB was collected in three different locations,

of which at least two sub-clusters are clearly distinguishable in fig. 3.2.

Figure # 3.2: PCoA plot of Bray-Curtis dissimilarity on metagenome derived mOTUs2 abundances

3.3 Taxonomic profilers in metatranscriptomic data

As presented in the previous chapter (sec. 2.2), taxonomic profiling is a frequent and often criti-

cal step in metagenomic analysis. Here I evaluate the use of metagenomic profilers on metatran-

scriptomes and their agreement with profiles generated from the paired metagenomes.

Similarly to what was seen in the previous section (sec. 3.2.2), projects that displayed increased

dissimilarity also show accentuated disagreement between paired metagenomes and metatran-

scriptomes fig. 3.3. Such is the case of HMP2-IBD and a contrast to HMP2-IBDMDB. Surprisingly,

samples from HPFS-MLVS also show accentuated lack of correlation. This discrepancy can be

partially explained by metadata inconsistencies, identified after several interactions with the au-

thors of this work. Regardless, the fact that a considerable number of samples, from this and

other projects, display low correlation or even anti-correlation, reflects poorly on the pairing of

this data. Likely, this lack of agreement is a symptom of difficulties in handling the preparation

of RNA samples.

On a different note, two additional aspects are visible in fig. 3.3 and highlighted in fig. A.1.

First, profiles generated with mOTUs2 show consistently better performance than those with

MetaPhlAn2. This aspect is not entirely unexpected given thanMetaPhlAn2 uses a larger number

of marker genes than mOTUs2, and consequently, is more likely to be affected by fluctuations

in expression.

Second, despite reasonable consistency and performance in some datasets, correlation scores

rarely reach 0.8 and show an overall median score of 0.574 for mOTUs2 and 0.403 for
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Figure # 3.3: Correlation of taxonomic profiles on paired metagenomes and metatranscriptomes - spear-
man correlation of taxonomic abundances profiled with mOTUs2 and MetaPhlAn2 on paired metagenomes and
metatranscriptomes

MetaPhlAn2 (tbl. A.2).

In summary, we see that while these tools were designed to profile metagenomes, their perfor-

mance on metatranscriptomes is subpar.

Both taxonomic profiling tools considered (mOTUs and MetaPhlAn2) rely on marker genes de-

signed to profile metagenomes. Given the suboptimal performance above, I considered that a

different set of marker genes, selected specifically to profile metatranscriptomes, could outper-

form existing tools.

As such, throughout the remaining of this chapter, I will explore alternatives aiming at improv-

ing existing methods while addressing the problem of normalization.

3.4 Counting strategies and mapping thresholds

An initial step in the approach consisted of identifying if the 97% threshold for species delineation

previously defined on metagenomes (79), is equally valid for metatranscriptomes.

The result is shown in fig. 3.4 togetherwith uniquemapping rates at different identity thresholds.

Given this result, the 97% identity threshold was deemed equally appropriate.

In metagenomic studies, the problem of reads mapping non-uniquely to different regions of the
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Figure # 3.4: Validation of mapping identity threshold - shown is the fraction of reads mapping uniquely at
different identity thresholds. The red vertical line highlights 97% identity corresponding to the species threshold as
defined inMende et al. 2013

same or different reference genomes is common. This issue is aggravated by the high sequence

similarity shared between many of the species and strains present in reference databases. A fre-

quent strategy to avoid this problem is to reduce databases to have only representative genomes

and few or no related strains. For this reason, NGLess implements several different strategies to

count such reads, ranging from counting all hits equally to distributing non-unique reads based

on the proportion of uniquely mapped reads. In this work, and in order to avoid introducing

noise by any such strategies, only uniquely mapped reads were considered. This decision is

supported by the relatively high mapping rates seen (fig. 3.4) even when discarding non-unique

reads.

In summary, the threshold of 97% sequence identity and the sole use of uniquely mapped reads,

were considered adequate.

3.5 Marker gene selection

3.5.1 eggNOG orthology

Much likemOTUs and in contrast toMetaPhlAn2, universally definedmarker genes were consid-

ered better targets for profiling metatranscriptomes. Following the same approach used by mO-

TUs, genes were selected based on sequence conservation across species using orthology annota-

tions derived from eggNOG (46). mOTUs relies on universal and single-copy marker genes (110).

In eggNOG this corresponds to theNon-supervisedOrthologousGroup (NOG) level (eggNOG 4.5)

and mOTUs genes are a subset of Cluster of Orthologous Groups (COGs) (114), originally de-

fined at the highest level of taxonomy (superkingdom).

For the approach used in this work, the criteria of single-copy was dropped as it was considered

too restrictive, yielding the same set of markers used bymOTUs. Instead, all orthologous groups

defined at eggNOG’s, bactNOG level were considered.
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In order to identify and annotate NOGs in the reference genomes considered (sec. 3.2),

eggnog-mapper (45) was used together with its database constructed from eggNOG v4.5. These

annotations were in turn used to create an annotation file consisting of genes NOGs and their

corresponding annotated regions for every genome.

In turn, once quality controlled and mapped against the reference genomes, samples were pro-

filed using said annotation file as described in sec. 6.2.5.

Finally, candidate marker genes were subsequently selected from these gene profiles, using a

combination of supervised and unsupervised approaches described in the following sections.

3.5.2 Supervised strategies

Using an empirical understanding of what could define an ideal set of marker genes, two strate-

gies were outlined (sec. 6.2.6.1).

1. Display small and stable dynamic range of expression

2. Display good correlation with species abundance

The top and bottom ranking genes for each approach are shown in fig. 3.5.

The results from the two approaches, while intuitive by design, reveal interesting properties

about the selected candidate genes.

Upon closer inspection, strategy 1. aiming at identifying genes with a small dynamic range of

expression, showed inconsistent results across datasets. This resulted in a different rank order

and therefore, a different set of genes for each project, which is undesirable. Interestingly, only

one of gene families included in the mOTUs set appeared in the top 20 of this approach (fig. 3.5

- panel A).

Similarly, strategy 2., while stable across datasets, benefited gene families with large numbers

of paralogs, such as COG0642 - Histidine kinase and COG0534 - Mate efflux family protein. This

property interestingly reveals that large families, while covering a larger portion of the genome

of each species, recruit a larger number of reads. Consequently, this drives the correlation score

to higher values by introducing outliers with higher count numbers. Gene families with high

numbers of paralogs, while better at recapitulating the metagenomic abundance, are also very

variable across species, something, once again, undesirable. In contrast to the first strategy, none

of the 10 gene families included in the mOTUs set ranked in either the top or bottom 20 sets

(fig. 3.5 - panel B).

In order to have a better understanding of the performance of these strategies, in the following

section, both selections will be revisited and assessed in context with unsupervised approaches.
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Figure # 3.5: Ranked genes in supervised strategies - shown are top and bottom 20 ranking genes in both strategies
considered.
A-Ranked dynamic expression range of conserved marker genes - plotted is mean log2 of gene abundance
derived from metatranscriptomes an normalized by species abundance estimated on metagenomes. The red dashed
line represents a mean expression identical to species abundance. Highlighted in green are genes also used by the
mOTU tool. Genes are ranked by standard deviation.
B-Ranked spearman correlation of gene and species abundance - plotted is correlation of gene abundances
derived from metatranscriptomes and species abundance estimated on metagenomes
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3.5.3 Unsupervised strategies

Upon realisation that the supervised strategies underperformed, a set of neutral approaches

were considered. Using machine-learning and regression models, additional sets of candidate

genes were selected and evaluated in context with the previous strategies (see sec. 6.2.6.2).

Figure # 3.6: Assessment of supervised and unsupervised strategies - shown are models trained on all available
data and assessed on the same data (training data). The red line highlights the performance of the mOTUs2 profiler

In fig. 3.6 we see the summary of all strategies considered. As expected, random sets of mark-

ers always performed worse than the mOTUs profiler but, selecting a larger number of markers

clearly shows an increase in overall performance. In fact, making use of all available genes results

in a theoretical maximumperformance of this approach. However one should keep inmind that

these results are assessed on the training data and as such including all available genes is quite

likely to result in over-fitting of the models to the data.

Most promisingly, the LASSO approach displays the overall best performance with a reduced

set of marker genes.

Similarly, selecting the most prevalent, that is, the genes most frequently found across all sam-

ples, also displays good performance. Once again, this strategy follows the same direction as

the supervised approach 2. in sec. 3.5.2, by prioritizing large families of genes which are more

likely to be detected in a wider ranger of species.

Complementing what has been presented in the previous chapter (sec. 3.5.2) we now see that,

both supervised approaches display poor performance, with exception of the correlation approach

(approach 2. in sec. 3.5.2) that the mOTUs profiler when the top 50 or 100 genes are used. This

result is somewhat expected since, in this particular strategy, both the selection and assessment

share the same underlying principle.
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Finally, and to some degree surprisingly, the selection of 10 mOTUs genes and 40 specI under-

performed. This reflects a loss of signal due to the fact that eggNOG v4.5 annotations are used.

The results shown in this figure while assessed on training data already display a concerning

pattern.

Unfortunately upon evaluation of these models on test data, by using a cross-validation ap-

proach across and within projects, all but one model (all genes), underperformed.

Figure # 3.7: Model performance on the two largest datasets - approx. 1000 genes were used to build the models
shown,
A-model was training on both datasets and evaluated on the same data
B-model was trained in one dataset and assessed on the other
C-D-models were trained in one dataset and assessed on the same data

At this point, it was suggested that the approach might be suffering from batch effects or other

sources of non-homogeneous variation across all considered datasets. To confirm if this was the

case, the largest datasets (HMP2-IBDMDB and T1D_LCSB), that also displayed a reasonable agree-

ment in sec. 3.3, were used to train and cross-validate a larger model using approximately 1000

candidate genes.

The results shown in fig. 3.7, highlight the underlying problem. While the models show an

improvement over the results by the mOTU profiler, they generalise poorly to other datasets.

The lack of generalization of the models is a symptom of two likely causes. First, the nature of

the datasets in terms of the disease being studied (HMP2-IBDMDB-Inflammatory Bowel Disease;

T1D_LCSB-Type-1 diabetes) and the geographical location of sampling (HMP2-IBDMDB-United

States of America, North America; T1D_LCSB-Luxembourg, Europe). Second, not enough data,

something which is known to be a problem with most machine-learning approaches when

dealing with hard or noisy data.
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If considering the above together with sources of technical noise derived from experimental

handling, the problem becomes extremely challenging or even intractable.

Figure # 3.8: Model performance on high prevalence species - shown are 73 species detected in both datasets
(HMP2-IBDMDB, T1D_LCSB)

Once again and reassessing the main source of noise, a decision was made to discard low abun-

dance species. As these are too variable across samples, a high rate of absence is likely to confuse

and penalize most genes negatively when training the models. By focusing on highly abundant

(>1%) and prevalent species (73 species detected in both datasets), we managed to improve upon

the previous result considerably (see fig. 3.8). In addition to this improvement, the result also

shows that prevalence is a clear driver of performance. Prevalent species are consistently better

predicted using our model when compared to results from the mOTU profiler.

Lastly, this result also supports the argument that more data is required, not just in terms of

absolute number of samples, but, more importantly, samples in which the same species consis-

tently detected. In other words, the fact that many species are lowly abundant in many samples

introduces uncertainty. This is primarily due to a sampling effect which ultimately affects the

final gene counts,

To complement this approach, a wide range of machine-learning algorithms, available in the

mlr package, were also evaluated. Additionally, samples were partitioned into controls and

cases using available metadata, in order to assess the impact of these variables in variation and

the performance of the models. No significant improvements over the random forest approach

described above were seen. Deep neuronal networks were also considered but were found to

mostly over-fit the data, something which, once again, supports the argument in favor of the

need of more data. Finally, a marker gene selection strategy using a genetic algorithm was also

tested but the result, once again, did not yield significant improvements.

In all, the results presented in this section revealed that the approach of estimating species abun-

dance using only metatranscriptomes is viable but requires larger datasets in order to build gen-

29



eralizable models. On the other hand, in light of this work it is possible that for sufficiently large

projects, the number metagenomes required for adequate abundance normalization is reduced,

having a desirable economic impact.

3.5.4 Selected orthologous groups

After the findings in sec. 3.5.2 regarding the properties of the selected marker genes, I decided

to investigate these same properties in the final selection of genes from the previous chapter.

Figure # 3.9: Properties of marker genes (NOGs) selected through unsupervised approaches - red vertical
lines represent marker genes selected through the final unsupervised strategy (~1000 genes)
A-Number of orthologous group occurrences in reference genomes - shown are the total number of annotations
of each NOG in the reference genomes considered.
B-Number of paralogs in orthologous groups - shown are the mean number of annotations for the same ortholo-
gous group (paralogs) in each reference genome.

Shown in fig. 3.9 - panel A are the sizes of gene families considered in the study sorted by the

number of times they are identified in the reference genomes. Here we see that most selected

genes originate from prevalent gene families, that is, families with members present in most

species considered. Surprisingly, in fig. 3.9 - panel B, the final selection of genes covers a wide

range of families with variable paralogy sizes. This result is somewhat unexpected and con-

trasts with the selection of genes from supervised strategies (sec. 3.5.2), where all selected genes

corresponded to families with high number of paralogs.

3.6 Discussion

Given the results shown in this chapter, we see that the problem of normalization of metatran-

scriptomes and in particular deconvoluting species abundance and gene expression is a difficult

challenge. The many strategies outlined revealed that this approach is viable but larger samples

sizes are required to properly calibrate adequate and generalizable models.

As shown, predicting lowly abundant or lowly prevalent species is specially challenging due

to lack of data. Similarly, when focusing on high prevalence species the problem becomes con-

siderably easier. Regardless, even when enough data is available, predictions are still subpar,
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reflecting the inherent variation in this data. This aspect became clear when comparing projects

from different backgrounds (disease and geography). Models were able to capture project spe-

cific traits manifesting their underlying biology.

Another aspect which was initially considered but not revisited is that of the quality of the refer-

ence genomes. The effect of genome fragmentation on the final estimates was not assessed but

will certainly correlate with poor performance and abundance estimates.

A key aspect and weakness in this work is the lack of a true species abundance or, at the very

least, a second source of such information. This limitation presents itself in two forms. On

one hand, the entire approach relies on good pairing of metagenomes and metatranscriptomes.

Specifically, that underlying technical and biological variation between the two outputs will be

shadowed by the real species abundance. On the other, the species abundance used as reference

is determined bywhat was considered the best metagenomic profiler available. As consequence,

the inherent inaccuracies of the profiler will persist as part of the trained models unless better

abundance estimates are possible.

In what concerns technical and biological variation, one should also consider the sampling pro-

cedure and how it affects the sample. For instance, exclusive anaerobic species are likely to see

larger deviations than facultative species, due to exposure to oxygen during sample collection.

As seen in some of the projects, the agreement of metatranscriptomes andmetagenomes is often

poor. One could argue that the difference is due to biological causes but it is unlikely that such

high variation is seen if samples are collected with minimal atmospheric exposure and rapidly

preserved in liquid nitrogen. Despite considered best practices in the microbiome field, these

steps are rarely followed due to practical reasons. Samplingwith such rigor requires a controlled

environment, not always available, and a procedure that minimizes the risks to the donor, often

an ethical concern. In all, while ideal, technical variation will remain an obstacle and, unless

controlled for, an unknown source of variation.

With regards to alternative sources for real abundances one could consider two options. First,

alternative software based on different approaches. This would be viable if the bacterial species

present in the communitywere consistently the same across samples, somethingwhich is known

not to be the case. Second, alternative readouts from the same community. While this alignswith

the motivations behind multi-omics studies, not many publicly available projects have followed

this direction. The few examples of such practice often focus on obtaining readouts from dif-

ferent sources (genome, transcripts, proteins, metabolites), rather than multiple from the same

source.

In the following chapter I will present additional work in this direction following a multi-omics

approach as an attempt to control for some of the limitations mentioned above.
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4
Small scale community dynamics

4.1 Introduction

Most microbiome studies focus on analysing complex communities with many different species,

often poorly characterized. This complexity is also reflected in the interpretation and analysis

of the data by creating confounding effects due to unexpected or uncontrolled interactions.

Many studies have come to the conclusion that in order cope with this complexity and to ob-

tainmechanistic understanding, experimental designs targeting concrete questions are required.

Such designs, while still far from simple, control for several aspects that are difficult to address

with in vivomodels. For instance, whilemice are an often studiedmodel organism, they naturally

display coprophagic behavior that poses challenges to the interpretation of their gut dynamics.

This is specially truewhen trying to establish parallelismswith human or other non-coprophagic

organisms. As such, using in vitro systems allows, not only to have tightly controlled environ-

ments, it enables designs targeting specific questions often inaccessible in vivo due to ethical or

practical reasons.

I this chapter I will present a pilot experimental in vitro setup using artificial communities de-

signed to mimic the human gut environment. Although primarily focusing on the challenge

of normalizing metatranscriptomes, this experimental setup also addresses practical aspects

affecting most microbiome studies. Additionally, in order to avoid developing methods and
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approaches that only apply to artificial scenarios, and to allow a broader understanding of tran-

scriptomic variation in different conditions, the experimental setup was designed to include

perturbations by addition of human targeting drugs. Given their design targets, these drugs

are not expected to have an effect on the community. However, recent studies (72) have shown

that this is not the case, revealing interesting dynamics and unforeseen mechanisms of action

for different human drugs. Specifically, together with genetic and phenotypic characteristics of

host, the microbiome is likely to play a role in the plasticity of the response to a drug treatment.

Bypursuing such experimental setup in a controlled environment, sampling andhandling biases

are minimized, creating the ideal conditions to obtain metatranscriptomic and metagenomic

readouts with a much desired, high quality and agreement.

4.2 Designing a controlled experiment

As seen in the previous chapter, the need for better control over experimental variables, and

an additional source of abundance estimation, is required to properly calibrate and assess the

approach previously outlined.

For this purpose a pilot experimental setup was designed using bacterial species commonly

found in the human gut and for which medium-high quality genomes were available. These

species were grown together to allow for interactions and to reach a stable state, at which point

they were perturbed by the addition of a drug (details in sec. 6.3).

Figure # 4.1: Mock experiment design, community stabilization, drug perturbations, timepoints and data
types collected

The experimental setup, conditions, timepoints and datatypes collected is illustrated in fig. 4.1

and described in detail in the methods (sec. 6.3).

The inclusion of perturbations but use of drugs, allows not just studying how these affect the
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community, but also increasing variability across samples to cover a wider ranger of potential

expression. Similarly, having multiple close timepoints after exposure, allows inspecting how

the community is reacting and rearranging its expression to cope with the perturbation.

While the experiment was designed with a multi-omics approach in mind, this work focuses

only on 16S rRNA readouts, metagenomes and metatranscriptomes.

During the execution of the design, several obstacles of technical and practical nature were en-

countered.

First, RiboZero, the kit used to deplete rRNA and tRNA in all projects included in this study, and

mentioned in several standard metagenomics protocols, was found to have been discontinued

as of 2018 and no alternative from the same company was available (August 2019 (139)). With

an unclear justification, the absence of this kit will, yet again, introduce changes in standard

protocols that will likely complicate integration attempts of existing and future projects.

Second, to our surprise we realized that gene prediction and annotation was not a solved prob-

lem, at least for some of the species considered in this study. As having accurate gene predictions

is a critical starting point for metatranscriptomic analysis, this point was further investigated.

Results are discussed below.

Lastly, while considered essential for the goals of this work and included in the design, it was

not possible to obtain reliable measurements for cell counts.

4.3 Ribosomal RNA depletion challenges

With the discontinuation ofRiboZero an alternative kit had to be considered. As available kits are

typically designed to target a subset of species, we were approached by New England Biolabs

(NEB) which offered the possibility of using a new kit under development, targetting a wider

ranger of species. Due to its development state and thanks to knowing the exact species in the

community, the efficiency of depletion was assessed for every species and sample.

In fig. 4.2 we can see an overview of the rRNA depletion efficiency. As expected the depletion

was not homogeneous across species. This primarily reflects the mechanism of action of this

kit, that uses specific DNA probes to target rRNAs and degrade them, by use of an enzyme that

cleaves DNA/RNA hybrids.

Notably, as the basis of this kit was constructed from Escherichia coli, depletion of this species

was almost 100% efficient. In contrast, species like Bacteroides vulgatus, Bifidobacterium adolescen-

tis, Clostridium perfringens andDorea formicigenerans had considerably worse depletion efficiency

(fig. 4.2 and also, fig. A.3, fig. A.4, fig. A.5).
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Figure # 4.2: Overall rRNA depletion efficiency

Figure # 4.3: B.vulgatus and E.coli rRNA analysis after depletion - data shown for all samples
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Finally, and also surprisingly, the efficiency of depletion across samples is quite variable fig. 4.3,

somethingwhichmay be caused by chemical interactionswith reagents from extraction, ormore

likely, variable RNA qualities and degradation (see fig. 4.3).

4.4 Identifying genes in metagenomic samples

As part of the preparation of the reference genomes for metatranscriptomics analysis, an un-

usual annotation pattern was noticed. Annotations originating from RefSeqwhere quite variable

across species, both in terms of number of predicted genes and the ratio of coding to non-coding

bases. This motivated the use of an alternative method that would provide consistent annota-

tions across genomes.

Figure # 4.4: Agreement between gene predictions - gene predictions from Prokka and RefSeq were compared by
counting the number of bases that were predicted as coding by both approaches. Species are sorted by ascending order
of agreement

Following this finding, Prodigal (50) was used to predict genes in all 32 genomes (see sec. 6.3.9).

Results are displayed in fig. 4.8, where we can see that a few genomes showed severe disagree-

ment between the two methods.

In order to avoid skewing results on these genomes, Prodigal gene predictionswere used through-

out the remaining of this analysis.

Despite consistent use of gene predictions, once reads were mapped against the genomes, it was

found that a significant proportion originated from anti-sense transcripts (see fig. A.2). This phe-

nomenon is known in bacteria and speculated to serve regulatory purposes by an RNA silencing

mechanism. However, the trigger for anti-sense expression and how this process is regulated

is not well understood. No correlation was seen between variation of anti-sense expression and
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the drug treatments, suggesting the absence of a regulatory response induced by the drugs.

Figure # 4.5: Overlap between gene predictions and mapped reads - reads mapped against reference genomes
do not always reflect predicted gene annotation. Red and light blue lines represent reads mapping to the forward and
reverse strand, respectively. Thick blue lines define predicted genes. The profiles in gray show read coverage.

Finally, the overlap between reads and predictedORFs is also frequently inconsistent. While this

may hint at poor gene predictions, the appearance of peaks and troughs (fig. 4.5) in coverage

profiles, is known to be primarily caused by sequencing bias and related to thermodynamic

aspects of RNA, including the formation of hairpins and other secondary structure elements.

4.5 Species abundance through different approaches

In continuation of the work presented in the previous chapter, abundance estimations were per-

formed using three of the readouts from the experiment.

Results are shown in fig. 4.6 for the two biological replicates, where we see that both biological

runs are mostly consistent across samples and conditions, displaying only significant variation

in the last time-points. In the figure a dominance of blue and green colors is visible correspond-

ing to E.coli and C.perfringens, respectively. These two species overtook the community in the

initial time-points, possibly due to better efficiency in replication or pathways that make use of

nutrients readily available in themedium. Similarly,V. parvula only bloomed at later time-points

reflecting its known secondary metabolizer role (32, 106).

In global terms, communitymostly recovered its initial state in the latest time-points (see fig. 4.7).

One exception is the chlorpromazine treatment, that displayed the largest response to the drug,

and where Bacteroides, Parabacteroides, Bifidobacterium and Fusobacterium were almost entirely re-

moved from the community. Additionally, and proportionally to the rest of the community, the

species A. muciniphila and P. merdae, were also significantly reduced in the niclosamide treatment.

Last but not least, the metformin treatment had no noticeable effect on the community. This is

consistent with the results found byMaier et al. (72) and, to some degree, a contrast to Forslund
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Figure # 4.6: Relative abundance estimated using different readouts - shown are two biological replicates
(runA and runB) and abundance estimates under in control (no_drug) and different drug treatments (metforming,
niclosamide and chlorpromazine)
16S-abundance estimated by mapping reads to a database of 16S rRNA regions matching the strains in the study
metaG-abundance estimated by mapping reads to complete genomes
metaT-abundance estimated by mapping reads to complete genomes after excluding rRNA regions and reads
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Figure # 4.7: Fraction of metatranscriptomic reads mapped to entire genome - reads were mapped against the
genome of each species and normalized by its size. Ribosomal regions were excluded from the analysis
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et al. (34) where an effect was measurable. This result likely reflects an effect driven by the host

rather than the community. Metformin is a drug that regulates sugar levels in the blood. Conse-

quently, reduction of the availability of sugar is a more likely driver of the changes described in

the work by Forslund et al. (34). On top of this, due to the mode of action of this drug, the effect is

unlikely to be reproducible in artificial communities where no host-mediated sugar regulation

occurs.

An interesting result, clearly visible in fig. 4.7, is the disagreement between estimates from

metagenomes (metaG) andmetatranscriptomes (metaT). Noticeably, species that have a low rep-

resentation in the community (by 16S and metaG) have high expression levels (metaT), or vice-

versa. Such are the case of C.bolteae that is low abundant in early time-points and comparatively,

highly active in the final time-point, and C.perfringens that although highly abundant, shows

almost no expression at later time-points, reflecting what seems to be a stationary or dormant

phase.

Finally, the different relative abundance estimates produced in this section will be used in the

following to further validate the deconvolution of metatranscriptomic composition and gene

expression.

4.6 Revisiting abundance estimation from metatranscriptomes

Revisiting the work in the previous chapter, now applied to the metatranscriptomes from the

artificial communities, we can now make use of the additional readouts as alternative reference

abundance estimates.

The results are shown in fig. 4.8, where predictions with the same 10 marker genes used by

the mOTU profiler, perfectly recapitulate the abundance derived from metagenomes using the

mOTUs profiler. In contrast, when using the 40 specImarkers (79), an increase in dispersal of esti-

mates becomes visible, something which is equally true for models that include a larger number

of genes.

These results, intuitively, suggest that the output provided by the mOTUs profiler on metatran-

scriptomes reflects the expression of the 10 marker genes and that these perfectly recapitulate

the species abundance. Such striking result is unsettlingwhen considering results obtained from

publicly available datasets. While having the exact genomes for the species included in the study

certainly would help improving the overall approach, this by itself is not enough justification.

Reasoning on the possible causes for such an excellent result, a few arguments can be presented.

On one hand, the species considered for the artificial community are common and prevalent gut

members with available reference genomes. As such, enough data is available allowing for the
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Figure # 4.8: Performance of model built using the 10 mOTUs and 40 specI markers - shown are abundance esti-
mates on both metagenomes (metaG) and metatranscriptomes (metaT) plotted against reference abundances generated
with mOTUs-profiler on metagenomes
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mOTUs approach to include better representations of the sequences of these species and conse-

quently perform reliably. More importantly, the fact that this artificial community was grown

and sampled in a controlled environment, following all best-practices in terms of preservation

and extraction of DNA and RNA, reinforces the argument that most discrepancy seen is due to

technical noise, introduced during or after sampling.

Whereas the outcome of this experiment is strikingly positive, a few aspect will benefit from fur-

ther investigation. Primarily, assessing if species beyond those included in this artificial commu-

nity display equally good agreement when profiled with mOTUs when sampled in a controlled

environment. And subsequently, if the variation seen in public data is somehow revealing of a

biological state of the gut environment. In other words, that the gut, and particularly the colon,

is in constant state of change, not allowing for metagenomic and metatranscriptomic readouts

to agree with the same level of exactitude seen in this artificial community.

4.7 Discussion

In line with what was discussed in the previous chapter, the results outlined here are supportive

of poor technical handling of the stool samples. While this is less of a concern for metagenomes,

metatranscriptomes are very sensitive due to their dynamic nature, consequently leading to dis-

crepancies.

In light of these results, it is fair to argue that, the approaches discussed before were effectively

capturing primarily technical noise. This is further supported by the fact that the models while

being trained failed to generalize across datasets, something which is to be expected if assuming

that experimental bias is a major contributor to the variation in the data.

In summary, I am inclined to support the 10 marker genes used by the mOTUs profiler as the

best candidates to achieve the objective proposed for this work, and to defend that better exper-

imental practices are required when targeting metatranscriptomics.

Other issues were presented in this chapter. Gene prediction and its overlap with sequenced

reads was assessed, revealing a reasonable effect introduced by the sequencing platform. This

is a widely known problem affecting short-read sequencing platforms and often disregarded.

Newer long-read sequencing platforms are known to not be as dramatically affected by this

problem and may prove to be a more reliable option.

The effect of the drug perturbations was evaluated both in terms of regulation of anti-sense

transcription and overall composition of samples. A few species were found to be affected by

the drugs included in this study. In particular, chlorpromazine showed a dramatic impact in the

community, with several genera being greatly reduced. While the modes of action of these drugs
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on bacteria are not known, the fact that chlorpromazine is an antipsychotic drug poses interesting

questions with regards to the relation between the microbiome and mental health.

Finally, while a valuablemulti-omics datasetwas produced as the result of the experiment herein

described, many directions remain unexplored. The analysis of this data will continue beyond

the work presented here and will certainly provide interesting biological insights about this

artificial community and its response to the different drug perturbations.
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5
Conclusion

In this work, I presented an overview of methods and their application to metatranscriptomics

studies.

In light of the objectives defined for this project, the endeavour was mostly successful. A sur-

vey of available tools was performed and standard approaches to analyse metagenomic data

were outlined. Two products (NGLess and GMGC) were possible thanks to the many contribu-

tions during this period. Similarly, while its robustness is debatable, a strategy to normalize and

analyse metatranscriptomic data was presented and its limitations discussed. Last but not least,

these strategies were evaluated in an artificial bacterial community, revealing surprising results

that strongly suggest a significant contribution from technical noise to the variation seen in the

data.

In short, the main messages to be taken are that metatranscriptomic data is noisy and careful

analysis is required. Several limitations of current approaches were highlighted and both tech-

nical and methodological concerns were expressed. As such, functional studies making use of

this type of data should be interpretedwith caution, particularly in what concerns technical han-

dling, experimental controls and best-practices. More importantly, when reasoning over meta-

transcriptomic results from a functional point of view, one should be careful not to interpret

functional alterations due to experimental handling as biologically relevant for the condition

being studied.
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During the realization of this work, many analysis were performed and many more were con-

sidered. In its present form, it is fair to say that, time was its biggest obstacle and that, although

reaching the proposed objectives, a definite and final answer to this topic has not been reached.

Several analysis could have benefited from additional thoroughness and rigor but, regardless,

this thesis stands as a proof-of-concept and paves the way to future efforts in the same or similar

directions.
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6
Materials and Methods

6.1 Comparison of taxonomic profilers

6.1.1 Assessment of mOTUs1 and MetaPhlan2

The two tools were initially assessed using simulated metagenomes (see tbl. 6.1) from the first

iteration of CAMI. Metagenomes, a reference taxonomy database and the expected result after

profiling (gold standard) were downloaded from the official CAMI website (https://data.cami-

challenge.org).

Table 6.1: Characteristics of the CAMI test datasets

Complexity Base-pairs Genomes Circular elements Number of Samples

Low 15Gbp 40 20 1

Medium 40Gpb 132 100 4

High 75Gbp 596 478 5

All simulated metagenomes were profiled with both mOTUs1 and MetaPhlAn2. Results were

converted to comply with the CAMI format and assesed against the gold standard using the pro-

vided scripts. As the CAMI format requires the presence of National Center for Biotechnology
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Information (NCBI) taxonomic identifiers and their entire lineage, the output of each tool was

remapped to the same reference taxonomy included as part of the CAMI challenge. Since no

NCBI taxonomy identifers are present in the output of MetaPhlAn2, a name matching strategy

was used. This strategy is error prone and aggravated by the fact thatMetaPhlAn2masks certain

characters from the species names. The performance of both tools is possibly affected by the

lossy nature of this identifier translation.

6.1.2 GMGC creation

The procedure to create the GMGC is described in Coelho et al. (22).

In brief, metagenomes and metatranscriptomes were preprocessed and quality controlled using

NGLess (21) and individually assembled into contigs using MEGAHIT (62). ORFs were predicted

from contigs using MetaGeneMark (135) and clustered into groups of genes using a custom graph

approach (22). Samples were thenmapped to the clustered genes using minimap2 (64) and rarity

of geneswas assessed using coverage as a proxy. Geneswere 6-frame translated to proteins using

fna2faa (6) and functionally annotated with eggnog-mapper (45). Taxonomic assignments for

each gene were obtained by using a Last Common Ancestor approach (22) on sequence similarity

results obtained by using diamond (15) against UniRef90 (112) and UniProt+TrEMBL (140).

6.2 Integration of metagenomes and metatranscriptomes

In order to identify comparable public human gut datasets containing metagenomes and meta-

transcriptomes, a literature survey was performed and projects meeting the following require-

ments were considered:

• Samples preserved and conserved with chemical agent (e.g. RNALater) and/or tempera-

ture (-20°C/-80°C)

• Simultaneous DNA/RNA extraction (paired extraction)

• rRNA and tRNA depletion (e.g. RiboZero)

A total of 5 projects were found to meet these requirements in addition to a few samples gener-

ated in the Bork group (see tbl. 6.2).

Table 6.2: Project identifiers and publications used in the study

Download source Alias Samples Publication

PRJNA188481 Franzosa_2014 8 (37)

PRJNA389280 HMP2-IBD 78 (100)

PRJNA398089 HMP2-IBDMDB 761 (70)
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Download source Alias Samples Publication

PRJNA354235 HPFS-MLVS 372 (77)

PRJNA289586 T1D_LCSB 88 (43)

Generated in-house InternalGT 9

6.2.1 Data acquisition

Public data was downloaded from European Nucleotide Archive (ENA) between February and

June 2018. The project HMP2-IBDMDB was originally downloaded from ibdmdb.org, but most of

its data has since been made available on ENA under the accession number PRJNA398089.

6.2.2 Reference genomes

Bacteria and Archaea reference genomes were obtained from proGenomes v1.0 (78), containing

5510 genomes. In order to further improve the quality of the genomes used, contigs smaller

than 100 base-pairs (bp) were excluded and only species associated with human body sites were

considered. Body site associations were curated from Patric database metadata (124). In total,

871 genomes were used for subsequent analysis.

6.2.3 Orthology and functional annotations

Orthology and functional annotations for all genomes in proGenomes v1.0were generatedusing

an early development version of eggNOG-mapper (45) using NOGs as defined in eggNOG v4.5

(46).

6.2.4 Sequence processing using NGLess

Quality control of raw reads was performed using NGLess (21) and the script lst. 6.1. After this

step, reads shorter than 45bp were discarded. Reads that passed quality control were subse-

quently mapped against a human reference database at a 90% identity threshold. Reads map-

ping more than 45 contiguous bases at this identity cutoff were discarded. The human reference

contains a primary assembly of the human genome (release GRCh38.p10), cDNA sequences ac-

cording to Ensembl gene predictions and sequences corresponding to 45S ribosomal clusters, all

of which downloaded from the Ensembl project repository (134).

Once quality controlled, reads were mapped against the filtered database of reference prokary-

otic genomes using the NGLess script lst. 6.2 and the default BWA-MEM (65) mapper together

with the option to report all hits (mode_all=True).
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Listing 6.1 NGLess code used to quality control raw reads and remove human contamination
ngless "0.8"
import "parallel" version "0.6"
import "mocat" version "0.0"

samples = readlines(ARGV[2])
sample = lock1(samples)
input = load_mocat_sample(ARGV[1] + '/' + sample)

input = preprocess(input, keep_singles=True) using |read|:
read = substrim(read, min_quality=25)
if len(read) < 45:

discard
mapped = map(input,

fafile='<references>/Homo_sapiens.GRCh38.p10.cdna+dna+45S.fna')

mapped = select(mapped) using |mr|:
mr = mr.filter(min_match_size=45, min_identity_pc=90, action={unmatch})
if mr.flag({mapped}):

discard

write(as_reads(mapped),
ofile='outputs/' + sample + '/' + sample + '.filtered.fq.gz')

collect(qcstats({fastq}),
ofile='outputs/preprocessing_fqstats.txt',
current=sample, allneeded=samples)

The choice of a 97%mapping identity threshold (79) was validated in parallel by mapping reads

at a minimum identity threshold of 95% and subsequently filtering in increments of 1% up to

100% identity (see fig. 3.4).

6.2.5 Counting reads overlapping regions of interest

NGLess was once again used together with BAM files produced in the previous steps and Gen-

eral Feature Format (GFF) files containing eggNOG orthology annotations to generate gene

count tables from metatranscriptomes.

Several variations of counts were produced, including different strategies to handle reads map-

ping to multiple regions (multiple-mappers), normalization based on size of the genome, features

being counted as well as eggNOG annotations defined at different taxonomic resolution levels.

6.2.6 Selection of candidate genes for normalization

6.2.6.1 Supervised approaches

Two strategieswere used to rank and select genes based on empirical knowledge. Ideal candidate

genes for normalization were considered to meet a set of criteria a priori. The assumptions and

formulation used are:

50



Listing 6.2 NGLess code used to map against reference genomes
ngless "0.8"
import "parallel" version "0.6"
import "mocat" version "0.0"
import "samtools" version "0.0"

samples = readlines(ARGV[3])
sample = lock1([ARGV[1]])
input = load_mocat_sample(ARGV[2] + '/' + sample)

mapped = map(input,
fafile="<references>/v11-v2-rep-v2UL-contigs-min100-human_gut.fna",
mode_all=True)

mapped = select(mapped) using |mr|:
mr = mr.filter(min_match_size=45, min_identity_pc=97, action={drop})

write(mapped, ofile='outputs/' + sample + '.human_gut-v11UL.bam')

sorted = samtools_sort(mapped, by={name})
write(sorted,

ofile='outputs/namesorted/' + sample + '.human_gut-v11UL.namesorted.bam')

Listing 6.3 NGLess code used to count reads overlapping regions of interest
ngless "0.8"
import "parallel" version "0.6"

samples = readlines("all.samplefile")
sample = lock1([ARGV[1]])
FEATURE = ARGV[2] # one of "bactNOG", "arNOG"
input = samfile('outputs/namesorted/' + sample + '.human_gut-v11UL.namesorted.bam')

counts = count(input, features=['eggnog45'], subfeatures=[FEATURE],
multiple={unique_only},
gff_file="<references>/v11-v2-rep-v2UL-(…)_annotations-v2.gff")

collect(counts, ofile="outputs/feature_counts.tsv",
current=ARGV[3], allneeded=samples)

1. Display small and stable dynamic range of expression - 𝑙𝑜𝑔2(𝑚𝑒𝑡𝑎𝑇 /𝑚𝑒𝑡𝑎𝐺)
2. Display good correlation with species abundance - 𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑚𝑒𝑡𝑎𝑇 , 𝑚𝑒𝑡𝑎𝐺)

where 𝑚𝑒𝑡𝑎𝐺 represents the abundance of each species as estimated by the mOTUs2 profiler

(82) on the paired metagenome and 𝑚𝑒𝑡𝑎𝑇 , the expression of each gene (on the paired meta-

transcriptome) belonging to the same group of orthologs (bactNOG level as of eggNOG v4.5).

Genes were sorted according to these measures and their performance assessed by comparing

the mean gene abundance across all candidates.

Additionally, as the mOTUs approach uses 10 marker genes, a subset of an initial larger set of

40 universal markers (specImarkers) (79), both the 10 and 40 marker list was re-evaluated, using

the same counting strategy outlined above.
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6.2.6.2 Unsupervised approaches - Machine learning models

Following the supervised approaches described in sec. 6.2.6.1 several unsupervised approaches

were considered with different degrees of stringency. Genes with less than 100 non-zero obser-

vations were excluded and only species with average abundance above 0.1% were considered.

A LASSO regression was used to select a small and representative list of candidates. Random

sets of genes with cardinality 10, 50, 100 and 144 (same number as LASSO approach) were also

selected and evaluated together with the previous approaches.

Random forest models were trained on the selected sets of genes in order to tune the coefficients

for each marker. Initial models were 6-fold cross-validated across project and repeated 4 times.

The final evaluation was performed on only the two largest datasets (HMP-IBDMDB and T1D_LSCB

- see tbl. 6.2), the same that displayed better metagenome - metatranscriptome aggreements (see

fig. 3.3). Random forest models were 2-fold cross-validated across and within project and the

process repeated 4 times.

This analysis was implemented using the mlr package (12) and the R language (95). Plots were

generated from derived models and results using ggplot2 part of tidyverse (30, 125).

6.3 Artificial gut communities

6.3.1 Species selection and reference genomes

The selection of species used in this study represents a subset of thosemost abundant and preva-

lent in the human gut. In total, 32 species (see tbl. 6.3) were selected based on two prior in-house

studies (117) and availability of reference genomes in public databases. Reference genomes, pro-

teomes aswell as gene and functional annotationswere downloaded fromRefSeq onMarch 2019

(release 92).

Table 6.3: Species/strains considered in the study

Identifier Species/Sub-species Strains

NT5001 Bacteroides vulgatus DSM 1447, ATCC 8482

NT5002 Bacteroides uniformis DSM 6597, ATCC 8492

NT5003 Bacteroides fragilis DSM 2151, ATCC 25285

NT5004 Bacteroides thetaiotaomicron DSM 2079, ATCC 29148

NT5006 Clostridium ramosum DSM 1402, ATCC 25582

NT5009 Eubacterium rectale DSM 17629

NT5011 Roseburia intestinalis DSM 14610
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Identifier Species/Sub-species Strains

NT5017 Veillonella parvula DSM 2008, ATCC 10790

NT5019 Prevotella copri DSM 18205

NT5021 Akkermansia muciniphila DSM 22959, ATCC BAA-835

NT5022 Bifidobacterium adolescentis DSM 20083, ATCC 15703

NT5024 Eggerthella lenta DSM 2243, ATCC 25559

NT5025 Fusobacterium nucleatum nucleatum DSM 15643, ATCC 25586

NT5026 Clostridium bolteae DSM 15670, ATCC BAA-613

NT5028 Bifidobacterium longum longum DSM 20219, ATCC 15707

NT5032 Clostridium perfringens DSM 11782

NT5036 Bilophila wadsworthia ATCC 49260

NT5037 Clostridium saccharolyticum DSM 2544, ATCC 35040

NT5038 Streptococcus salivarius DSM 20560, ATCC 7073

NT5042 Lactobacillus paracasei ATCC SD5275

NT5045 Ruminococcus bromii ATCC 27255

NT5046 Ruminococcus gnavus ATCC 29149

NT5047 Ruminococcus torques ATCC 27756

NT5048 Coprococcus comes ATCC 27758

NT5069 Blautia obeum DSM 25238, ATCC 29174

NT5071 Parabacteroides merdae DSM 19495, ATCC 43184

NT5072 Streptococcus parasanguinis DSM 6778, ATCC 15912

NT5073 Collinsella aerofaciens DSM 3979, ATCC 25986

NT5074 Parabacteroides distasonis DSM 20701, ATCC 8503

NT5076 Dorea formicigenerans DSM 3992, ATCC 27755

NT5078 Escherichia coli ED1a

NT5081 Odoribacter splanchnicus DSM 20712, ATCC 29572

A database of 16S rRNA regions was constructed, for amplicon analysis, by manually querying

the SILVA rRNA database (93) and extracting the nearest strain representative sequence. Com-

plementarily Prokka (v1.14.0) (104) was used to predict the location of rRNA regions in the 32

genomes. The generated GFF file containing predicted coordinates was used for subsequent

analysis.

6.3.2 Selection of drugs

Three human targeted drugs were selected based on previous results. In addition to its primary

target, all drugs included in the study have been reported to have antimicrobial effects (25, 34,
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72, 113). Drugs used in this study are listed in tbl. 6.4.

Table 6.4: Drugs used to perturb the mock community

Drug Human disease target

Chlorpromazine Schizophrenia

Metformin Type-2 Diabetes (T2D)

Niclosamide Tapeworm infections

6.3.3 Pre-inoculation and stabilization of mixed culture

Species were pre-inoculated in isolation on liquidmedium from pure stocks and incubated at 37

̊C under anaerobic condition for a period of 3 or 5 days, depending on the growth rate of each

species (see tbl. A.1). Optical density (OD) of all monocultures was measured after this period

and used to calculate ratios that would warrant a mixed culture with equal proportions of each

species under the assumption that all species have equal OD properties. The mix of species was

then inoculated into mGAM liquid medium.

In order to allow species to reach a stable state (stabilization stage), the culture was grown for

48 hours before being transferred into fresh medium, in duplicate. This process was repeated

3 times for a total of 144 hours at which stage the experimental perturbation was started. OD

measurements were performed in the penultimate transfer in order to determine the start of

exponential phase and the ideal time to start the drug exposure.

6.3.4 Medium and drug preparation

mGAM medium was prepared according to manufacturer’s instructions. Chlorpromazine and

Niclosamide were added from DMSO stock solution. Metformin was added as powder directly

into the medium at 10x concentration. The mediumwas then filtered sterile and diluted further

to 1x concentration. Final concentrations of each drug in the medium were Metformin - 5 mM,

Chlorpromazine - 20 µM, Niclosamide - 20 µM, chosen based on previous work (72).

6.3.5 Start of experiment and sample collection

Following the stabilization phase OD of the culture was monitored in order to select the optimal

start of the experiment. The experiment was started when the community reached logarithmic

phase (OD ~ 2-3) at which point they were inoculated to each of the four conditions (control + 3

drugs) in duplicate. The cultures were sampled at fixed time intervals (see fig. 4.1). The first sam-

ple, corresponding to time-point 0, was obtained immediately after the addition of the culture to

the medium with drug. Samples were also collected at time-points: 15 minutes, 30m, 1hour, 3h,

54



48h and 96h. At 48h the culture was transferred to fresh medium and collected prior to transfer.

After centrifugation and removal of medium, samples were kept as pellet at -80 °C until extrac-

tion. Collected samples were then processed to obtain multiple readouts including, rRNA 16S

amplicon sequencing, metagenomic and metatranscriptomic shotgun sequencing, and extra cel-

lular metabolomics (secretome) andmetaproteomics via mass spectrometry. Mass spectroscopy

readouts were processed by external collaborators and have not been used in this study.

6.3.6 DNA extraction and library preparation

Genomic DNA and total RNA were extracted from flash-frozen samples using Qiagen Allprep

Powerfecal DNA/RNA kit (ID: 80244) following the included protocol with minor changes for

an additional 700µl phenol-chloroform step after lysing samples via TissueLyser II. DNA was

measured by Invitrogen Qubit fluorometric quantitation using Qubit™ dsDNA HS Assay Kit

(ID: Q32854) and was stored at −20°C. RNA was measured via Bioanalyzer (Aligent) with Pico

and Nano chips depending on the sample concentration and stored at -80°C for further analysis.

Extracted DNA was split into two aliquots for ribosomal 16S amplicon sequencing and

metagenomics shotgun sequencing. DNA samples were amplified using primers target-

ing the V4 region of the 16S rRNA gene with the following primer sequences: F515 5’-

GTGCCAGCMGCCGCGGTAA-3’and R806 5’-GGACTACHVGGGTWTCTAAT-3’ (18). PCR

was performed according to the manufacturer’s instructions of the KAPA HiFi HotStart PCR

Kits (Kapabiosystems) using barcoded primers with minor modifications after a two-step PCR

protocol (NEXTflex™ 16S V4 Amplicon-Seq Kit, Bioo Scientific, Austin, Texas, USA). PCR

products were removed with SPRIselect magnetic beads (0.8x ratio) after pooling.

RNA samples were depleted for rRNA and tRNA using the NEB experimental kit NEBNext Bac-

teria rRNA Depletion Kit (2018)with additional experimental probes for Eggerthella lenta and sub-

sequently libraries were prepared using the NEBNext Ultra II Directional RNA Library Prep Kit,

multiplexed into three pools and single-end sequenced on an Illumina NextSeq500 platform

with a High Output 75 cycles flow cell.

All samples were sequenced at Genomics Core Facility (GeneCore) at EMBL on Illumina© (San

Diego, USA) platforms with configurations listed in tbl. 6.5.

Table 6.5: Platforms and settings used to sequence the different mock data types

Data type Platform Sequencing Target depth

16S amplicon Illumina© MiSeq 250bp paired-end 50 Mbp

metagenomic shotgut Illumina© HiSeq 4000 150bp paired-end 1.5 Gbp

metatranscriptomic shotgut Illumina© NextSeq 500 84bp single-end 2.5 Gbp
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6.3.7 Sequence processing using NGLess

Amplicon and Metagenomic reads were pre-processed with NGLess using the same approach

described in sec. 6.2.4. BAM files were kept for subsequent analysis. Metatranscriptomic reads

were processed using the same approach but the quality trimming algorithm smoothtrim()

was used instead due to a high rate of single-base quality drop affecting the Illumina NextSeq

platform.

Amplicon, metagenomes and metatranscriptomes were mapped against the reference database

of 32 species (see sec. 6.3.1) using the same approach described in sec. 6.2.4.

Amplicon reads were additionally mapped against the database of 16S regions extracted from

SILVA (see sec. 6.3.1) using MAPseq (v1.2.4) (75). Paired reads were mapped independently

and assignments were only considered upon agreement.

6.3.8 Metatranscriptome rRNA data analysis

Two approaches were used to quantify the fraction and distribution of rRNA present in all sam-

ples after depletion. In order to assess the proportion of reads originating from every rRNA sub-

unit (5S, 16S and 23S) of every species, NGLess was used to count the number of mapped reads

intersecting the rRNA regions predicted by Prokka (see sec. 6.3.1). Additionally SortMeRna

v3.0.3 (59) was used to estimate total rRNA subunit contributions.

6.3.9 Gene annotation concordance

Gene annotations were obtained from RefSeq together with reference genomes (see sec. 6.3.1)

and compared with Prokka (v1.14.0) (104) predictions. Agreement between the two annotations

was assessed by comparing the number of predicted genes and total coding bases on both DNA

strands.

6.3.10 Abundance estimation using metagenomes and metatranscriptomes

Abundance estimates were produced by counting the number of readsmapping to each genome

included in the study. For metagenome derived estimates, total counts were normalized by the

size of the genome (number of base-pairs).

For metatranscriptome derived estimates, additional steps were required. rRNA reads were

removed using SortMeRNA with default parameters. Gene predictions by Prokka/Prodigal were

used to calculate the total number of coding bases per genome, after exclusion of rRNA regions.

Finally, total read counts were normalized by the number of coding bases on each genome.
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Abbreviations and glossary

amplicon a segment of DNA or RNA that is both the source and/or product of amplification or

replication. 7

assembly the computational process by which overlapping reads are merged into contigs. 21

BAM binary version of a SAM file. 56

bp base-pairs. 49

CAMI Critical Assessment of Metagenome Interpretation. 8, 10, 47, 48

COG Cluster of Orthologous Group. 24

contig a set of overlapping DNA sequence fragments used to construct a physical map of a chro-

mosome. 13, 20, 21, 48, 59, 60

CPU Central Processing Unit. 14

eggNOG evolutionary genealogy of genes: Non-supervised Orthologous Groups. 50

EMBL European Molecular Biology Laboratory. 14, 55

ENA European Nucleotide Archive. 49

Ensembl An online platform that provides integrated genome, gene, variation, gene regulation

and comparative genomics data. 49

GeneCore Genomics Core Facility. 55

GFF General Feature Format. 50, 53

GMGC Global Microbial Gene Catalogue. 14

MAG Metagenome Assembled Genome. 13, 14

marker gene genes that due to their conserved sequence or properties are of special interest to

a specific application. 8, 13

metagenome DNA sequencing from microbial communities. 2, 48, 52

metatranscriptome RNA sequencing from microbial communities. 2, 48, 52

MGS MetaGenomic Species. 14

NCBI National Center for Biotechnology Information. 47, 48, 60
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NEB New England Biolabs. 35, 55

NGLess a domain-specific language for NGS data processing. 49, 50

NGS Next Generation Sequencing. 13, 60

NOG Non-supervised Orthologous Group. 24, 25, 49

ORF Open Reading Frame. 14, 38, 48

PCoA Principal Coordinates Analysis. 21

RefSeqNCBI’s curated database of annotated genomic, transcript, and protein sequence records.

52, 56

rRNA ribosomal RNA. 2, 3, 7, 13, 35, 48, 53, 55, 56

SAM tab-delimited text file that contains sequence alignment data. 59

scaffold the result of merging contigs when their order is known but they do not overlap - place-

holder sequences are often used to fill gaps. 20

tRNA transfer RNA. 2, 3, 35, 48, 55
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A
Appendix - Images, tables and code

Figure # A.1: Overall correlation of taxonomic profiles on paired metagenomes and metatranscriptomes -
spearman correlation of taxonomic abundances profiled withmOTUs2 andMetaPhlAn2

Table A.1: Characteristics of the species included in the study and medium used during individual growth

Identifier Genera O2 tolerance Gram Growth Medium

NT5001 Bacteroides anaerobic negative normal mGAM

NT5002 Bacteroides anaerobic negative normal mGAM

NT5003 Bacteroides anaerobic negative normal mGAM
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Identifier Genera O2 tolerance Gram Growth Medium

NT5004 Bacteroides anaerobic negative normal mGAM

NT5006 Clostridium anaerobic positive normal mGAM

NT5009 Eubacterium anaerobic positive slow mGAM

NT5011 Roseburia anaerobic positive normal mGAM

NT5017 Veilonela anaerobic negative normal Todd-Hewitt+0.6% sodium lactate

NT5019 Prevotella anaerobic negative slow mGAM

NT5021 Akkermansia anaerobic negative slow mGAM

NT5022 Bifidobacterium anaerobic positive normal mGAM

NT5024 Eggerthella anaerobic positive slow mGAM

NT5025 Fusobacterium anaerobic negative slow mGAM

NT5026 Clostridium anaerobic positive normal mGAM

NT5028 Bifidobacterium anaerobic positive normal mGAM

NT5032 Clostridium anaerobic positive normal mGAM

NT5036 Bilophila anaerobic negative normal 60 mM sodium formate, 10 mM taurine

NT5037 Clostridium anaerobic positive normal mGAM

NT5038 Streptococcus fac. aerobic positive normal mGAM

NT5042 Lactobacillus fac. aerobic positive normal mGAM

NT5045 Ruminococcus anaerobic positive slow mGAM

NT5046 Ruminococcus anaerobic positive normal mGAM

NT5047 Ruminococcus anaerobic positive slow mGAM

NT5048 Coprococcus anaerobic positive normal mGAM

NT5069 Blautia anaerobic positive normal mGAM

NT5071 Parabacteroides anaerobic positive normal mGAM

NT5072 Streptococcus anaerobic positive normal mGAM

NT5073 Collinsella anaerobic positive normal mGAM

NT5074 Parabacteroides anaerobic negative normal mGAM

NT5076 Dorea anaerobic positive normal mGAM

NT5078 Escherichia anaerobic negative normal mGAM

NT5081 Odoribacter anaerobic negative normal mGAM

Table A.2: Spearman correlation of taxonomic profiles from paired metagenomes and metatranscriptomes

Dataset Tool mean(spearman) median(spearman)

Franzosa2014 mOTUs2 0.483 0.513

MetaPhlAn2 0.338 0.369

HMP2-IBD mOTUs2 0.221 0.425
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Dataset Tool mean(spearman) median(spearman)

MetaPhlAn2 0.076 0.174

HMP2-IBDMDB mOTUs2 0.602 0.624

MetaPhlAn2 0.440 0.445

HPFS-MLVS mOTUs2 0.261 0.356

MetaPhlAn2 0.149 0.178

InternalGT mOTUs2 0.746 0.745

MetaPhlAn2 0.618 0.666

T1D_LCSB mOTUs2 0.656 0.695

MetaPhlAn2 0.511 0.524

Overall mOTUs2 0.496 0.574

MetaPhlAn2 0.351 0.403
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Figure # A.2: Proportion of antisense reads per gene - shown is the ratio of antisense and sense mapped reads
across all genes with at least 10 reads and proportion > 10−7. Sense was defined using ORF predictions from
Prokka/Prodigal
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Figure # A.3: B.adolescentis rRNA analysis after depletion

Figure # A.4: C.perfringens rRNA analysis after depletion
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Figure # A.5: D.formicigenerans rRNA analysis after depletion
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Listing A.1 ng-meta-profiler - human-gut-profiler
#!/usr/bin/env ngless
ngless "0.9"
import "mocat" version "0.0"
import "specI" version "0.1"
import "motus" version "0.1"
import "igc" version "0.9"

input = load_mocat_sample(ARGV[1])
RESULTS = ARGV[2]

qc_reads = preprocess(input, keep_singles=False) using |read|:
read = substrim(read, min_quality=25)
if len(read) < 45:

discard

human_mapped = map(qc_reads, reference='hg19')

non_human = select(human_mapped) using |mr|:
mr = mr.filter(min_match_size=45, min_identity_pc=90, action={unmatch})
if mr.flag({mapped}):

discard

non_human_reads = as_reads(non_human)

igc_mapped = map(non_human_reads, reference='igc', mode_all=True)
igc_mapped_post = select(igc_mapped) using |mr|:

mr = mr.filter(min_match_size=45, min_identity_pc=95, action={drop})
if not mr.flag({mapped}):

discard

igc_counts = count(igc_mapped_post, features=['OGs'],
multiple={dist1}, normalization={scaled})

write(igc_counts, ofile=RESULTS </> 'eggNOG.traditional.counts.txt',
auto_comments=[{hash}, {script}])

mapped_refmg = map(non_human_reads, reference='refmg')
mapped_refmg = select(mapped_refmg) using |mr|:

mr = mr.filter(min_match_size=45, min_identity_pc=97, action={drop})
if not mr.flag({mapped}):

discard

write(count(mapped_refmg, features=['specI_cluster']),
ofile=RESULTS </> 'specI.raw.counts.txt')

write(count(mapped_refmg, features=['specI_cluster'], normalization={scaled}),
ofile=RESULTS </> 'specI.scaled.counts.txt')

specI_reads = as_reads(mapped_refmg)

motus_mapped = map(specI_reads, reference='motus', mode_all=True)
motus_raw_gene_counts = count(motus_mapped, features=['gene'], multiple={dist1})

write(motus(motus_raw_gene_counts), ofile=RESULTS </> 'motus.counts.txt')

81



82



B
Appendix - Software

The following software was used throughout the development of this work.

• barrnap v0.9 (105)

• bbmap v38.26 (16)

• bedops v2.4.35 (86)

• bedtools v2.27.1 (94)

• breseq v0.33.2 (29)

• BWA-MEM (65)

• cmessi v1.2.1 (80)

• datamash v1.2

• diamond v0.9.34-38 (15)

• docker (81)

• eggnog-mapper (45)

• fastANI v1.1 (51)

• FastQC v0.11.5 (8)

• fastx-toolkit v0.0.14

• fetchMG v1.0 (60)

• fna2faa v0.1.1 (6)

• hmmer v3.1b2 (31)
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• HUMAnN2 (36)

• jellyfish v2.2.10 (73)

• jug-schedule (5)

• Jupyter (58)

• Linux operating system

• MapSeq v1.2.3 (75)

• Mauve (27)

• MEGAHIT (62)

• MetaGeneMark v3.38 (135)

• MetaPhlAn v2.5.0-2.7.0 (118)

• minimap2 v2.14 (64)

• MOCAT2 (60)

• mOTUs v1-v2.0 (82, 110)

• ncbiBLAST+ v2.8.1 (17)

• NGLess v0.5-1.0.0 (22)

• Pandoc

• prodigal v2.6.3 (50)

• prokka v1.1.0 (104)

• Python v2.7, v3.5-3.6

• Python packages:

– HTSeq (7)

– jug 1.6.4-1.6.7 (20)

– matplotlib (47)

– numpy (88)

– pandas (76)

– SciPy (52)

– seaborn (122)

• R language v3.4, v3.5 (95)

• R packages:

– mlr (12)

– patchwork

– rmarkdown (12)

– tidyverse (30, 125)

• RStudio (98)

• samtools (63)

• seqtk v1.3 (66)

• singularity v3.0 (61)
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• SortMeRNA v3.0.3 (59)

• syncthing v0.14.51

• ViennaRNA v2.4.13 (71)

• vim

• Visual Studio Code

• xsv v0.12.2
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