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Zusammenfassung

Der 229mTh-Isomerenzustand bei 8.28 eV erregt groes Interesse als mglicher Kandidat fr die
Entwicklung einer nuklearen Uhr mit bislang unerreichter Przision und Stabilitt. Ein Ansatz zum
Bau einer solchen Uhr beruht auf der Anregung von Thoriumkernen, die in VUV-transparenten
Kristallen dotiert sind. Die Anregung in der Kristallumgebung muss allerdings noch experimentell
erreicht werden. In dieser Dissertation untersuchen wir von theoretischer Warte zwei Methoden
zur Anregung des Th-isomerenzustands in der Kristallumgebung. Wir betrachten zunchst die
Mglichkeit, Experimente mit nuklearer Vorwrtsstreuung durchzufhren, die eine eindeutige Sig-
natur der nuklearen Anregung liefern und damit die Verstimmung der treibenden Lasersysteme in
Bezug auf die fragliche bergangsenergie quantifizieren knnten. Diese Arbeit umfasst die Analyse
der Phasendifferenz und der Zeitverzgerung zwischen Anregungsimpulsen sowie die Rolle von Mag-
netfeldern und der Orientierung der Dotierung auf die Energieniveaus zur Anregung. Als zweite
Methode untersuchen wir Elektronenbrcke (EB) Prozesse in der Kristallumgebung, die bisher in der
Literatur noch nicht erforscht wurden. Der EB Ansatz nutzt die in nuklearer Vorwrtsstreuung ver-
nachlssigte Kopplung zwischen Kern und Elektronenhlle aus. Es werden neuartige EB-Schemata
in der Kristallumgebung vorgestellt, die darauf abzielen, die Isomerenpopulation unter Verwen-
dung von Breitbandanregungsquellen zu erhhen. Die Raten solcher EB-Prozesse werden berechnet
und ihre Vorteile im Vergleich zu die direkte Laseranregung werden prsentiert. Diese Erkenntnisse
untersttzen die zuknftige Entwicklung einer nuklearen Uhr.

Abstract

The 229mTh isomeric state at approximately 8.28 eV has generated significant interest as a
possible candidate for the development of a nuclear clock with cutting edge precision and stability.
One of the approaches to build such a clock relies on the excitation of thorium nuclei doped
into VUV-transparent crystals. Excitation in the crystal environment has yet to be achieved
experimentally. In this dissertation we investigate from the theoretical side, two methods aimed
at exciting thorium’s isomeric state within the crystal environment. We study first the possibility
to carry out nuclear forward scattering style experiments which could provide a unique signature
of the nuclear excitation along with quantifying the detuning of the driving laser systems to the
transition energy in question. This work includes analysis of the phase difference and time delay
between excitation pulses along with the role of magnetic fields and dopant orientations on the
level schemes available for driving. As a second method we investigate Electronic Bridge (EB)
processes within the crystal environment which have never been addressed so far in the literature.
EB exploits the coupling between the nucleus and the electronic shell which is neglected in the
direct laser excitation approach. Novel EB schemes in the crystal environment are introduced
which aim to increase the isomeric population with the use of broadband excitation sources. Rates
of such EB processes are calculated and their advantages with respect to the direct laser excitation
are discussed. These findings support the development of a solid-state nuclear clock.
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Introduction

Today’s global primary and secondary time standards are based on coherent light driving atomic
transitions. However, efforts are underway to extend the clock physical systems to atomic nuclei.
This development is based on a unique nuclear transition in the vacuum ultraviolet (VUV) range in
the actinide nucleus 229Th [1]. The first excited state of 229Th is an isomer, i.e., a long-lived excited
state, and lies at only Em = 8.28 ± 0.17 eV [2], being in the range of VUV lasers. The current
prediction for the radiative lifetime of the isomeric state is in the region of hours [3]. Advantageous
features of this isomeric transition towards the development of a nuclear clock include the very
small ratio of radiative width to transition energy Γγ/Em ≈ 10−20 and the isolation from external
perturbations promising amazing stability [1, 4]. There have been two methods proposed for
implementation of the nuclear clock, the first being with the use of trapped thorium ions [1, 5],
and the second with thorium doped VUV-transparent crystals [6–8]. A review that addresses
both methods can be found in [9]. Both approaches have their advantages, for instance, in the
case of trapped ions our investigation would be free of impurities. On the other hand the crystal
environment, although subject to impurities and line broadening due to interaction with the host
crystal, allows for interrogation of a far greater number of nuclei at one time. Dopant density
upwards of 1016 cm−3 [7, 10] can be achieved versus the approx 109 cm−3 seen for laser cooled
Coulomb crystals that could be formed using 229Th3+ ions [5, 11, 12]. The quantum instability of
a clock is σ ∝ Γ/(Em

√
N) where N is the total number of atoms addressed and Γ the transition

width [9, 13]. Thus, increased density achieved in the crystal environment could potentially lead
to a clock with orders of magnitude more stability than with trapped ions.

At present, efforts in the development of a nuclear frequency standard are centered around a
more accurate determination of the isomer state energy. At the start of this doctoral work, three
years ago, the accepted value of the isomeric state was 7.8 ± 0.5 eV. This value dates back to
indirect gamma-spectroscopy measurements performed in 2007 [14, 15]. Over the course of the
last few years there have been many achievements in the thorium community including the first
direct measurement of the excitation (however without providing information on the corresponding
energy) [16, 17], as well as a new determination of thorium’s isomeric energy, 8.28 ± 0.17 eV,
by looking at the emission of internal conversion (IC) electrons from neutral thorium atoms [2].
Further experimental investigation of the IC process has been proposed to gain an even more
accurate determination of the isomeric energy [18]. These new experimental measurements finally
eliminate the waning idea that the isomeric state may not even exist.

Direct excitation of the isomeric state has proven difficult due to the exact feature that makes
it so promising, its narrow linewidth. The ability to address a large number of 229Th nuclei should
lead to fluorescence rates sufficient for the use of broadband synchrotron light to directly measure
the transition energy [6]. Therefore, in the following dissertation we will focus on the theoretical
development of experimental approaches which make use of 229Th-doped VUV-transparent crystals,
where the larger nuclear density can be taken advantage of.

Due to their large band gap, crystals like CaF2 or LiCaAlF6 should be transparent in the region
of the isomer energy [8]. In practice, several attempts of direct photoexcitation of the isomeric
state with broadband light sources have been unsuccessful [10, 19, 20]. The two major sources
of background that might cover the nuclear spectroscopy signal, namely VUV photoluminescence,
caused by the probe light, and radioluminescence, caused by the radioactive decay of 229Th and
its daughters, have been investigated in [21]. Furthermore, attempted laser excitation can lead
to crystal damage and the formation of defects. Even without laser induced damage, the act
of doping thorium into CaF2 and other VUV-transparent crystals results in localized electronic
thorium states within the band gap of the crystal. These electronic states can be viewed as a crystal
defect, and are referred to as color-center states [8, 22]. Both laser induced and damage intrinsic to
the doping process can potentially decrease the transmission coefficient as well as adding parasitic
signals in the relevant UV/VUV region [23, 24].

Since inhomogeneous broadening in the crystal lattice environment compromises the traditional
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clock interrogation schemes, fluorescence spectroscopy was presented as an alternative [7]. A
significant suppression of the inhomogeneous broadening is expected as long as all nuclei experience
the same crystal lattice environment and are confined to the Lamb-Dicke regime, i.e., the recoilless
transitions regime [6, 25]. However, theoretical work has shown that these very conditions lead to
coherent light propagation through the sample and enhanced transient fluorescence in the forward
direction, with a speed up of the initial decay (homogeneous broadening) depending primarily on
the sample optical thickness [26]. These collective effects are actually well known from resonant
coherent light scattering in different parameter regimes such as nuclear forward scattering (NFS)
of synchrotron radiation [27] driving Mössbauer nuclear transitions in the x-ray regime, or from the
interaction of atomic systems with visible and infrared light [28–30]. The coherent enhancement
of the resonant scattering in the forward direction can be exploited for a more efficient excitation,
but also in combination with additional electromagnetic fields can provide a specific signature of
the nuclear excitation. First proposals in this direction have been discussed in [26, 31, 32].

In this work we go beyond the state of the art for NFS in thorium-doped crystals and investigate
for the first time both spontaneous and stimulated Electronic Bridge (EB) processes in the crystal
environment. NFS relies on direct photoexcitation of the thorium nuclei neglecting the electronic
shell, and EB capitalizes on the interaction between nuclei and surrounding electrons to aid in
excitation of the isomeric state. In the first part of this work we extend the study of collective effects
for the 229Th nuclear clock transition in VUV-transparent crystals and investigate theoretically
several NFS excitation schemes involving one or two VUV laser fields and a combination of VUV
laser field and external magnetic field. We go beyond the previous results in [26, 31, 32] to show
that each excitation scheme requires analysis of the crystal structure and dopant orientation, which
give information not only on the hyperfine structure of the levels to be driven, but also on the
orientation of the possible quantization axes. The hyperfine structure determines the required
energies to drive transitions as well as the angular momentum selection rules in the frame of
each individual Th nucleus. Knowledge of the quantization axis, which can be different between
dopant sites, determines which transitions will be driven in the bulk sample by a defined laser-pulse
polarization in the laboratory frame. We identify setups for the excitation of the nuclear clock
transition in 229Th:CaF2 and the correct interpretation of the experimental fluorescence spectra.
We also investigate the role of phase relations between VUV laser pulses for efficient nuclear
excitation by a pulse train. Our results show that the time interval between pulses, detuning, and
phase difference play a critical role for the scattered spectra. A setup comprising of two crystal
samples, one of which under the action of a moderate external magnetic field, is shown to provide
the desired nuclear excitation signature due to interference effects and a clear signal also when
using VUV pulse trains.

It is shown in Part I that narrowband excitation via NFS in the crystal environment has many
advantages but must be reserved for future experiments when the transition energy is defined more
accurately. Until that time, tuneable broadband lasers are being used to scan the energy region of
interest in hopes of exciting the nuclear transition directly. Provided excitation is seen, such an
experiment can determine the transition energy within the linewidth of the exciting laser. Thus
there are two important trade-offs to consider: (1) between the time the experiment takes and the
accuracy, and (2) between the lasers linewidth and the number of excitation photons with correct
energy to drive the transition. Clearly to get the most accurate measurement we must excite the
transition with a laser of small linewidth, however because the energy is not defined precisely, the
smaller the linewidth the longer the time it takes to scan the energy region of interest. Using
tuneable lasers with wider linewidth then has the issue of having fewer resonant photons and the
risk of blindly passing over the transition energy increases. Much effort has been put towards
broadband excitation of the isomeric state in the crystal environment [7, 8, 10, 19, 21, 33, 34],
even still, progress has been slow and nuclear excitation has yet to be achieved. These broadband
studies could instead be employed to characterize the electronic color-center states as these will be
of utmost importance in the excitation method covered in the latter part of this dissertation.

In the second part of this dissertation, as a prequel to experimental implementation of NFS we
investigate theoretically EB as a possible means to excite the isomer in the solid-state. EB may
be more easily realized currently with 229Th:CaF2 and has not been considered inside the crystal
environment until now. EB describes a process whereby the nucleus decays via transfer of energy
to the electronic shell with the emission of a photon. This process can allow the decay or excitation
to happen at a faster rate than would be seen with strictly the radiative decay channel.

The EB process and other closely related schemes have garnered interest recently when consid-
ering excitation of thorium ions where the IC channel is blocked [35–37]. Our goal is to understand
if EB processes which cause such a drastic effect for ions [36, 38] can also be harnessed in the crystal
environment for excitation purposes. In the literature, excitation of 229Th in the crystal has gone
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hand in hand with the assumption that both IC and other processes such as EB that affect the
lifetime of the isomeric state do not occur. In the case of IC, this assumption has been warranted
as thorium is usually in a charged state that prevents it from occurring based on the conservation
of energy. In the case of EB however, the enhancement if any has not been quantified and thus
the dominant decay rate inside the crystal has been assumed to be radiative.

Here we show how electronic color-center states, previously viewed as a hindrance in NFS,
may be used to our advantage for EB excitation. A variety of bridge schemes can be used for
nuclear excitation depending on the energy of the color-center and the available laser sources. The
most promising EB schemes will be covered, where initial photoexcitation of valence electrons to
color-center states will be the starting point for the most successful ones. We will consider initial
color-center excitation using a VUV lamp which is currently in use for experimental investigation
of 229Th:CaF2 [10]. Both excitation and decay of the isomer via EB are studied with an emphasis
on schemes used for excitation. Two closely related schemes, labeled Bst and C, show the most
promise in this regard. They both make use of the VUV lamp for initial electronic excitation to
the color-center, in addition to lasers in the range of 1 W/(m2Hz) to stimulate and drive the EB
process respectively. To our knowledge, stimulated EB processes in the crystal will also be covered
here for the first time. We discuss quenching of the excited isomer from two points of view. Firstly
as a negative, which leads to lower occupation probability of the isomeric state. Secondly as a
positive, where under certain circumstances can be controlled and triggered intentionally. These
schemes provide excitation channels that can be upwards of 103 faster than direct photoexcitation
with only the VUV lamp (depending on the energy of the color-center states).

This dissertation is structured in two parts, the first is dedicated to NFS and the second covers
EB. Starting with Chapter 1, we outline the theory of the Maxwell-Bloch Equations (MBE) that
allow us to calculate the NFS intensity spectrum. This chapter includes, in Section 1.1, a treat-
ment of the Bloch equations which describe the effect of a given field on a multilevel system. All
transformations and approximations used for their computation are outlined here. This is then
expanded upon in Section 1.2 with the introduction of Maxwell’s equations to describe the impact
the changing excitation in the multilevel system has on the exciting field. This is followed by a dis-
cussion of required initial conditions, resulting in the final set of equations used for the theoretical
calculation of NFS spectrum, as presented in Section 1.3. In Chapter 2, the theoretical quantum
optics model based on the MBE is put to work for the pulse propagation through the 229Th:CaF2

crystal. The most relevant features of coherent excitation of 229Th in crystal environment along
with the importance of the quantization axis are introduced. Our analysis allows for the simplifi-
cation of the multilevel systems into two and three-level systems showing both the enhancement
of the radiative decay as well as the quantum beat signature in the case of the three-level system.
Numerical results for excitation schemes using one pulsed and one continuous-wave VUV laser in
different configurations are presented followed by a discussion of pulse shape and repetition rate
for the realization of an effective continuous-wave laser as it applies to NFS in Section 2.1. Nu-
clear excitation with a pulse train is investigated along with the interplay between phase relation,
detuning and pulse spacing in Section 2.2. Section 2.3 considers a two-crystal setup with a static
magnetic field. Chapter 3 outlines important details of crystal structure including dopant orienta-
tion, quantization axis, and state mixing. This then defines the energy requirements for which the
results shown in Chapter 2 are valid.

Part II presents our work on EB in the crystal. Chapter 4 outlines the theory of EB along
with all required operators in their non-relativistic form and our computational method. Chapter
5 discusses the application of EB, first defined for ions, to the doped crystal environment. Here
too is a discussion of the electronic color-center states most important for the EB process in
229Th:CaF2, and the computation of their wave functions. Chapter 6 presents numerical results
and estimations for the decay and excitation rate of the isomeric state via various EB schemes. This
begins in Section 6.1 with a discussion of direct photoexcitation of both the isomer and electronic
color-center independently. Sections 6.2-6.4 then outline three EB schemes for excitation including
discussion of laser stimulation and comparison to direct photoexcitation of the isomer without EB.
The final two EB schemes studied, labeled Bst and C, make use of a VUV lamp for initial excitation
of the color-center as well as a second laser of energy equal to the difference between the color-center
and the isomer. The main difference between Bst and C is that the color-center states are assumed
above and below the isomer in energy, respectively. These are the most promising EB schemes
presented and could provide an enhancement upwards of 103 in excitation when compared to direct
photoexcitation of the isomer with the same VUV lamp. Chapter 7 outlines the benchmarking
measures taken during calculation of EB rates and wave functions along with a discussion of errors
due to the choice of a discrete three-dimensional grid and the summation over intermediate states
required for EB rate calculation.
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These two parts are brought to an end with the conclusions and outlook, followed by appendices
which outline details of assumptions and equations used throughout the work.
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Part I

Nuclear Forward Scattering in
Thorium-Doped Crystals

5



6



Chapter 1

Theoretical background for
Nuclear Forward Scatting (NFS)

The goal of this work is to investigate the excitation of thorium’s isomeric state within the crystal
environment. Our first approach is Nuclear Forward Scattering (NFS). Unlike fluorescence spec-
troscopy which relies on measuring spontaneous decay photons with spatial distribution of 4π,
NFS signal is emitted in the forward direction defined by the optical axis of the exciting laser. The
photons measured in NFS are the result of superradiant decay, post excitation, of a collection of
identical particles which in our case are the thorium nuclei. In the field of NFS, collective effects
refer to the formation of a delocalized excitation extended over a large part of the sample. This
delocalized excitation, which typically does not contain more than one single excited nucleus, is
also known as “nuclear exciton” and resembles a Dicke state [39]. The formation of the exciton
requires the indiscernibility of the possible scattering paths, i.e., recoilless transitions, no spin flips
or internal conversion. This is the case of coherent scattering when the nuclei return to their initial
state, such that the scattering path and the number of occurred events are unknown.

The decay of the collective excitation happens via a complicated temporal structure known
as the dynamical beat, which presents a speed-up decay at short times immediately after the
excitation and additional damping and oscillations at later times. The dynamical beat can be
very different from the natural decay of a single nucleus. Its origin is related to the process of
coherent multiple scattering of a single resonant photon in the sample. At early times the NFS
decay happens up to a factor ξ = NσL/4 faster than the spontaneous decay rate, where N is the
number density of active nuclei in the crystal, σ the resonant cross section and L the thickness
of the sample. The possibility to generate crystals with thorium-dopant densities N > 1016 cm−3

has been achieved [7, 10] suggesting that a significant enhancement factor could be expected. The
dynamical beat along with the speed-up effect and emission in the forward direction were initial
motivations for our investigation into NFS. Note that in our numerical results, the dynamical beat
feature is not obvious when looking at the graphs because the decay due to the decoherence rates
is the dominant component on the time scale of interest. As an example, the dynamical beat is
compared to the quantum beat in Appendix A.1 for the standard 57Fe sample.

In comparison with typical atomic physics superradiance, the collective effects in nuclear en-
sembles have to take into account two peculiarities. First, the condition that the wavelength is
much larger than the internuclear distance often does not hold, since typically nuclear transitions
are in the range of tens or hundreds of keV energy. 229Th is an exception, with the wavelength
at ∼ 150 nm. Second, the induced nuclear excitation is very small, i.e., typically one or very few
nuclei are excited. This is in contrast to typical atomic superradiance effects which become most
pronounced when approximately half of the atoms are excited. A quite comprehensive review on
the topic of nuclear excitons and collective effects in nuclear condensed-matter physics is given in
[27].

The experimental setup for NFS is illistrated in Figure 1.1, where a detector placed along the
optical axis records the intensity and time delay between decay photons from the sample and the
exciting laser pulses. This can be done provided the exciting laser pulse has a width much less
than the decay rate of the sample, δ � 1/Γ. The final NFS spectrum is a plot of intensity of
the decay photons emitted in the forward direction versus the time delay between arrival of the
excitation pulse and the decay photon respectively on the detector. The spectrum is thus built
up from the result of many trials, whereby an excitation pulse is sent through the sample and one
looks for decay photons. The number of trials required to build up the final intensity spectrum
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Figure 1.1: Depiction of typical NFS setup. A pulsed laser with temporal width δ � 1/Γ excites a
collective excitation in the sample. The collective excitation decays in the forward direction. The
enhanced rate at early time after excitation is ξΓ.

will depend on the strength of the excitation generated in the sample. For low excitation rates
each trial may yield only a single point in the final NFS time spectrum. The level structure driven
in NFS can be far more complicated than the simple two-level system depicted in Figure 1.1.
Furthermore, several lasers can be used on multilevel systems to generate different signatures in
the NFS spectrum beyond the dynamical beat.

As discussed above, the measured quantity in an NFS experiment is the intensity of the emitted
photons after excitation with a laser pulse. Our calculation must then consider not only the effect
of the applied field on the system but also the effect of the system on the field [40, p164]. For this
we must introduce equations for the evolution of the field to be solved self-consistently with those of
the collection of particles (thorium nuclei) in the sample. The set of equations are called Maxwell-
Bloch Equations (MBE). As the name suggests, the MBE combine Maxwell’s equations which
describe the applied field and the Bloch equations which describe the changing level populations
in the sample. The combination describe the evolution of the field during its interaction with the
sample.

Starting in Section 1.1 the Bloch equations for the two-level system will be covered which
provides a base from which we can expand the notation to cover all other more complicated
systems. Section 1.2 then introduces equations for the exciting laser field and its interaction with
the sample described by the previously outline Bloch equations. By solving the MBE, one can then
plot the NFS time spectrum, where the intensity is proportional to the square of the exciting field
amplitude, I ∝ |A |2. Furthermore it is shown that the exciting field amplitude is proportional to
the Rabi frequency A ∝ Ω and thus I ∝ |Ω|2.

We note here that solving the MBE is an equivalent approach to the iterative field equation
method commonly used in NFS to describe the coherent scattering and so-called collective effects
in coherent light propagation [41–43].

1.1 Bloch equations

The simplest case is to consider the interaction of a single quantum-optical two-level system1 with
a single-mode field [40, ch.5] [44, ch.15] [45, 46]. We seek a solution to the Hamiltonian of our
system Ĥ, as a linear combination of states of the unperturbed Hamiltonian Ĥ0,

|ψ(t)〉 = c1(t)|1〉+ c2(t)|2〉 (1.1)

where Ĥ0|n〉 = ~ωn|n〉, ~ the reduced Planck constant, and n ∈ {1, 2}. The density matrix is
written as

ρ̂ = |ψ〉〈ψ|, (1.2)

=

(
ρ11 ρ12

ρ21 ρ22

)
, (1.3)

=

(
c21 c1c

∗
2

c2c
∗
1 c22

)
. (1.4)

1Our particular application will be concerned with two-level nuclei, however, the Bloch equations can be used to describe
any two-level particle or group of particles where the applied field is not significantly affected by whatever excitation is
induced. In other words, the number of resonant photons is far greater than the number of particles taking part in the
excitation process. If the field becomes significantly affected one must move on to solving the MBE for the system.
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Expressing the unperturbed Hamiltonian in matrix form we make use of the identity operator
for the two-level system

Ĥ0 = (|1〉〈1|+ |2〉〈2|)Ĥ0(|1〉〈1|+ |2〉〈2|) (1.5)

=

(
~ω1 0

0 ~ω2

)
. (1.6)

The perturbing Hamiltonian is the result of the interaction of the impinging laser field with the
two-level system. The form of this potential depends on the transition in question. The interaction
Hamiltonian can be written in the most general form as

Ĥint = −1

c

∫
j(r, t) ·A(r, t) d3r, (1.7)

where j(r, t) is the nuclear charge current and A(r, t) the vector potential of the laser field. Typi-
cally the interaction Hamiltonian can be expanded into nuclear multipole moments and particular
terms selected according to the driven transition. For simplicity we consider an electric dipole (E1)
transition2, the potential of which can be written as3

Ĥint → V̂ = −di ·E(ri, t), (1.8)

where di is the electric dipole moment operator of our two-level atom i, and E(ri, t) the electric
field evaluated at the position of that atom ri.

Given a dipole moment di = ex x̂, where x̂ = x/|x| is the unit polarization vector, we can

define a monochromatic electric field E(ri, t) = E cos(νt) x̂ polarized along d̂i. With this imping-
ing monochromatic electric field polarized linearly along the same direction as the electric dipole
moment operator, the interaction Hamiltonian becomes,

V̂ = −exE(t) (1.9)

= −e(|1〉〈1|+ |2〉〈2|)x(|1〉〈1|+ |2〉〈2|)E(t) (1.10)

=

(
0 −e〈1|x|2〉E(t)

−e〈2|x|1〉E(t) 0

)
. (1.11)

where the spatial parameter is dropped in the notation, E(ri, t) = E(t) = E cos(νt). The total
Hamiltonian of the system is thus a sum of the unperturbed and interaction Hamiltonians, Ĥ =
Ĥ0 + V̂ .

The master equation4 that determines the dynamics of the level densities is given by

∂tρ̂ =
1

i~
[Ĥ, ρ̂]. (1.12)

In addition to this one must introduce a relaxation term

ρ̂r = −
∑
n,m

〈m|Γ̂in|n〉
(

1

2
|n〉〈n|ρ̂+

1

2
ρ̂|n〉〈n| − |m〉〈n|ρ̂|n〉〈m|

)
− 1

2
{Γ̂ex, ρ̂}, (1.13)

which allows for internal decay between levels within the system and external decay to and from
the system [40, p161] [49, p281] [50, p32] [51] not covered in the Hamiltonian Ĥ. The internal
relaxation is controlled by Γ̂in, i.e., between levels in the considered system, and Γ̂ex controls
external relaxation, i.e., from a level in the considered system to some level outside the system
or vice versa, where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator. The relaxation matrices take
the form 〈m|Γ̂ex|n〉 = γnδmn, 〈m|Γ̂in|n〉 = γmn(1 − δmn), where γn is the relaxation rate of level
|n〉 to any level outside the considered system, and γmn is the internal relaxation rate from level
|n〉 → |m〉. Other notation can be used for computation5.

2See [45, p202] for potential for other types of transitions.
3Diagonal elements are zero [46, p35] [47] due to parity selection rules [48, p98].
4Also referred to as the Liouville or von Neumann equation of motion.
5For computation we can rewrite (1.13) using the matrix

σ(n,m) =

m
↓



. . . · · ·
.
.
.

0 0 0
0 1 0 ← n
0 0 0

. . .
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The master equation is then,

∂tρ̂ =
1

i~
[Ĥ, ρ̂]−

2∑
n,m

γmn

(
1

2
|n〉〈n|ρ̂+

1

2
ρ̂|n〉〈n| − |m〉〈n|ρ̂|n〉〈m|

)
− 1

2
{Γ̂ex, ρ̂}. (1.14)

This set of equations are called the Bloch equations, written out here for our two-level system

ρ̇11 =
i

~
(V21ρ12 − V12ρ21)− γ21ρ11 + γ12ρ22 − γ1ρ11, (1.15)

ρ̇21 = − i
~
V21(ρ11 − ρ22)−

(
i(ω2 − ω1) +

1

2
γ12 +

1

2
γ21 +

1

2
(γ1 + γ2)

)
ρ21, (1.16)

ρ̇22 = − i
~

(V21ρ12 − V12ρ21) + γ21ρ11 − γ12ρ22 − γ2ρ22, (1.17)

where ρ12 = ρ∗21 and it is understood that the potential energy, the density matrix elements and
their rate of change are functions of position and time. Ignoring the effect of the applied potential,
if we only allow for the decay of level population then terms relating to excitation, {γmn|m > n},
are set to zero. Furthermore, we can impose a closed system by setting all external relaxation rates
γn to zero.

1.1.1 Unitary transformations and the Rotating-Wave Approximation
(RWA)

Interaction picture

Before implementation of the Bloch equations, we make use of the Rotating-Wave Approxima-
tion (RWA) which is more easily demonstrated in the interaction picture [40, p155]. Given the
Schrödinger equation,

i~∂t|ψ(t)〉 = Ĥ|ψ(t)〉 (1.18)

we define a new state vector
|ψ̃(t)〉 = Û†(t)|ψ(t)〉 (1.19)

where Û†(t) = eiÂt/~ is a unitary transformation. To have |ψ̃(t)〉 satisfy the Schrödinger equation
we solve the time evolution to find the form of the new Hamiltonian6

i~∂t|ψ̃〉 = i~∂tÛ†|ψ〉+ i~Û†∂t|ψ〉
= i~∂tÛ†Û |ψ̃〉+ Û†Ĥ|ψ〉
=

(
i~∂tÛ†Û + Û†ĤÛ

)
|ψ̃〉. (1.20)

Hence, the Hamiltonian in this new picture7 is given by ˆ̃H = i~∂tÛ†Û+Û†ĤÛ . All other operators

are then given by the typical transformation ˆ̃O = Û†ÔÛ .

The interaction picture is found by choosing Û = Û0 = e−iĤ0t/~, i.e., the unitary time-evolution
operator. For the two-state system Û0 = e−iω1t|1〉〈1| + e−iω2t|2〉〈2| and thus, the density matrix
transforms to

ρ̂I =

(
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
=

(
ρ11 e−iωtρ12

eiωtρ21 ρ22

)
, (1.21)

〈i|σ(n,m)|j〉 = δinδjm,

which serves the purpose of a raising and lowering operator on the state, σ(n,m)|m〉 = |n〉, giving

ρ̂r = −
∑
n,m

〈m|Γ̂in|n〉
(

1

2
σ(n, n)ρ̂+

1

2
ρ̂σ(n, n)− σ(m,n)ρ̂σ(n,m)

)
− 1

2
{Γ̂ex, ρ̂}.

6Dropping the explicit time dependence for notational simplicity.
7Converting back to the Schrödinger picture is done simply by inverse operation

Ĥ = Û ˆ̃HÛ
† − i~Û∂tÛ†,

Ô = Û ˆ̃OÛ
†
.
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where ω = ω2 − ω1 and ρ̃ij denote the density matrix elements in the transformed picture8.
Simplifying the Hamiltonian we find

ĤI = i~∂tÛ†0 Û0 + Û†0 ĤÛ0

= Û†0 V̂ Û0 (1.22)

hence, it is clear that the interaction picture is the one in which the unperturbed Hamiltonian is
zero. As a result,

ĤI =

(
0 e−i(ω2−ω1)tV12

ei(ω2−ω1)tV21 0

)
. (1.23)

At this point we must consider the form of the applied field. Here we assume a monochromatic
applied field polarized in the direction of d, as done in the last section, E(ri, t) = E cos(νt) x̂ and

d̂i = ex x̂. We can then expand the form of the perturbing Hamiltonian

V̂ = −(d21|2〉〈1|+ d∗21|1〉〈2|)E cos(νt) (1.24)

= −~
2

(Ω|2〉〈1|+ Ω∗|1〉〈2|)
(
eiνt + e−iνt

)
, (1.25)

where the Rabi frequency for the j → i transition is defined in general by

|~Ωij |2 =
{
|〈i|V̂ |j〉|2

}
=

1

T

∫ T

0

|〈i|V̂ |j〉|2 dt. (1.26)

Here V̂ is the interaction Hamiltonian9 and the curly braces denote a time average over optical
period T [45, p.175]. For this specific case of electric dipole interaction

1

T

∫ T

−T
|〈i|V̂ |j〉|2 dt =

1

T

∫ T

−T
|〈i|d|j〉 ·E|2 dt (1.27)

= |d21E |2
1

T

∫ T

−T
cos2(νt) dt

= |d21E |2.

resulting in,

Ω21 =
d21E

~
. (1.28)

Substituting into (1.23),

ĤI = −~
2

(
0 Ω∗(e−i(ω+ν)t + e−i∆t)

Ω(ei(ω+ν)t + ei∆t) 0

)
(1.29)

where ∆ = ω−ν. In the Rotating-Wave Approximation the e±i(ω+ν)t terms are dropped because we
assume driving the transition close to its resonance frequency ν ≈ ω. This is strictly a mathematical
argument as these terms are highly oscillatory and centred on zero. Thus, upon integration to find
the occupation probability10, their contribution tends to zero compared to that of the slowly
oscillating e±i∆t terms. Hence we have,

ĤI
RWA≈ −~

2

(
0 Ω∗e−i∆t

Ωei∆t 0

)
. (1.30)

8To prevent cluttered notation, only a distinction between the Schrodinger picture density matrix elements ρij and the
transformed density matrix elements ρ̃ij will be made. Refer to the text for details on the exact transformation used. In
this case for example, ρ̃ii = ρii.

9Not to be confused with the full Hamiltonian transformed into the interaction picture ĤI .
10Given by the density matrix, ρ.
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The resulting Bloch equations in the RWA are then11,

ρ̇11 = − i
2

(Ωei∆tρ̃12 − Ω∗e−i∆tρ̃21)− γ21ρ11 + γ12ρ22 − γ1ρ11, (1.31)

˙̃ρ21 =
i

2
Ωei∆t(ρ11 − ρ22)−

(
1

2
γ12 +

1

2
γ21 +

1

2
(γ1 + γ2)

)
ρ̃21, (1.32)

ρ̇22 =
i

2
(Ωei∆tρ̃12 − Ω∗e−i∆tρ̃21) + γ21ρ11 − γ12ρ22 − γ2ρ22. (1.33)

Alternate picture

The interaction picture is particularly useful to understand the RWA and which terms to drop to
make this approximation. However, other unitary transformations can be used to achieve a more
appealing form. Even still, the resulting sets of equations are equivalent when solved, provided the
same approximations are made. The form of the terms that have to be dropped when making the
RWA will change depending on the form of the unitary transformation. In all cases however, it is
the fast oscillating terms that are neglected.

As an example of an alternate picture, we first define the lowest state energy in the system as
zero and reference all other energies to it, hence

Ĥ =

(
0 V12

V21 ~ω

)
. (1.34)

Then we define the unitary transformation using12

Û =

(
1 0
0 e−iνt

)
(1.36)

where ν is the resonant driving frequency for, in this case, the 1↔ 2 transition. Which gives the
transformed density matrix as

ˆ̃ρ =

(
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
=

(
ρ11 e−iνtρ12

eiνtρ21 ρ22

)
, (1.37)

and Hamiltonian

ˆ̃H =

(
0 e−iνtV12

eiνtV21 ~∆

)
, (1.38)

where ∆ = ω − ν. As before we assume linearly polarized light, hence, to make the RWA in this
picture we expand V and drop the e±2iνt terms giving,

ˆ̃H
RWA≈ −~

2

(
0 Ω∗

Ω −2∆

)
. (1.39)

11Before notational substitution

∂tρ̇I =

(
˙̃ρ11 ˙̃ρ12
˙̃ρ21 ˙̃ρ22

)
=

(
ρ̇11 −iωe−iωtρ12 + e−iωtρ̇12

iωeiωtρ21 + eiωtρ̇21 ρ22

)
,

ρ̇11 =
i

~
(V21ρ12 − V12ρ21)− γ21ρ11 + γ12ρ22 − γ1ρ11,

˙̃ρ21 = e
iωt

(
− i

~
V21(ρ11 − ρ22)−

(
1

2
γ12 +

1

2
γ21 +

1

2
(γ1 + γ2)

)
ρ21

)
,

ρ̇22 = − i
~

(V21ρ12 − V12ρ21) + γ21ρ11 − γ12ρ22 − γ2ρ22.

12For a larger system this unitary transformation is given by [52]

Û =


1 0 . . .

0 e−iν2t

.

.

.
. . .

e−iνnt

 (1.35)

where νn are the resonant driving frequency for that level, i.e., at resonance ωn = νn. This will be referred to as the
resonant driving unitary transformation.
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The resulting Bloch equations in the RWA are then

ρ̇11 = − i
2

(Ωρ̃12 − Ω∗ρ̃21)− γ21ρ11 + γ12ρ22 − γ1ρ11, (1.40)

˙̃ρ21 =
i

2
Ω(ρ11 − ρ22)−

(
i∆ +

1

2
γ12 +

1

2
γ21 +

1

2
(γ1 + γ2)

)
ρ̃21, (1.41)

ρ̇22 =
i

2
(Ωρ̃12 − Ω∗ρ̃21) + γ21ρ11 − γ12ρ22 − γ2ρ22, (1.42)

which are equivalent the set we found in the last section. The unitary transformation used is
somewhat arbitrary, with the goal being to simplify the form of the Bloch equations. As such, the
form of the unitary transformation used can change depending on the system in question, and on
how we wish to simplify the Bloch equations.

1.1.2 Two-state system

|1〉

|2〉

Ω

∆

Γ

Figure 1.2: Schematic of the two-state system. We use the notation, ground state |1〉, excited state
|2〉, decay rate Γ, Rabi frequency Ω due to laser with detuning ∆.

Simplifying the two-state electric-dipole system driven by a single linear polarized field and
allowing for only internal decay channels is depicted in Figure 1.2 and represented by the set of
equations,

∂tρ̂ =
1

i~
[Ĥ, ρ̂] + ρ̂r,

ρ̂ =

(
ρ11 ρ̃12

ρ̃21 ρ22

)
,

Ĥ = −~
2

(
0 Ω∗

Ω −2∆

)
,

Ω =
2

~
|〈2|Ĥ|1〉|,

ρ̂r = −Γ

2

(
−2ρ22 ρ̃12

ρ̃21 2ρ22

)
.

The resulting Bloch equations are

ρ̇11 = − i
2

(Ωρ̃12 − Ω∗ρ̃21) + Γρ22,

˙̃ρ21 =
i

2
Ω(ρ11 − ρ22)−

(
i∆ +

1

2
Γ

)
ρ̃21,

ρ̇22 =
i

2
(Ωρ̃12 − Ω∗ρ̃21)− Γρ22.

The effect of the decay rate, Γ, and detuning of the laser field, ∆, can then be seen by plotting
the excited state occupation probabilty as a function of time, as shown in Figures 1.3 and 1.4.
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Figure 1.3: Occupation probability of the excited state, ρ22, for various decay rates Γ = Ω ·
{0, 0.1, 0.5, 1, 2}. We consider the Rabi frequency Ω = 1 and detuning ∆ = 0.
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Figure 1.4: Occupation probability of the excited state, ρ22, for various detunings ∆ = Ω ·
{0, 0.5, 1, 2, 5}. We consider the Rabi frequency Ω = 1, and decay rate Γ = 0.

1.2 Maxwell’s field equation

Bloch equations can be used to understand the changing population13 of levels in the system. Now
we would like to know how this changing excitation impacts the output field. Namely, how does
the changing population affect the Hamiltonian Ĥ.

The starting point is Maxwell’s macroscopic equations [40, 53], given here in SI units,

∇ ·D = ρf , (1.43)

∇ ·B = 0, (1.44)

∇×E = −∂B
∂t

, (1.45)

∇×H = Jf +
∂D

∂t
, (1.46)

where

D = ε0E + P , (1.47)

H =
1

µ0
B −M , (1.48)

Jf = σE. (1.49)

In the equations above, E is the electric field, B is the magnetic field, withD andH their auxiliary
fields, respectively14, P and M are the macroscopic polarization15 and magnetization respectively,
ρf and Jf the free-charge and free-current density respectively, σ the conductivity, ε0 and µ0 are
the vacuum and vacuum permeability, respectively.

13Here the terms population and occupation probability are used interchangeably to refer to diagonal values of the density
matrix, i.e probability to be in a specific state. The total number of nuclei in a given state is obtained by integrating the
diagonal elements of the density matrix over the sample.

14Naming conversions vary among textbooks, D may be referred to at the electric displacement field and H the magnetic
field strength.

15Not to be confused with the polarization of the field.
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Here we are interested in nuclear excitation. As such the total current density is J = Jf +
∂P /∂t +∇×M , resulting from a sum of the free currents Jf and bound currents JP = ∂P /∂t
and JM = ∇×M resulting from the macroscopic polarization and magnetization of the sample,
respectively. The total charge density16 ρ = ρf + ρb is thus related to the nuclei not the electrons
of the system. In such a nuclear system there is no analog to the free charge or free current density
(i.e., ρf = Jf = 0). Here, the impinging field affects local nuclei causing excitation which in the
case of electric dipole transitions (E1) can be considered as a macroscopic polarization. In the case
of E1 transitions we let M = 0 and develop the wave equation as follows,

∇× (∇×E) = − ∂

∂t
∇×B (1.50)

= −µ0
∂

∂t

(
∂D

∂t

)
(1.51)

= −µ0ε0
∂2E

∂t2
− µ0

∂2P

∂t2
. (1.52)

(1.53)

With µ0ε0 = 1/c2 and using the identity ∇ (∇ ·A) − ∇2A = ∇ × (∇×A) we obtain the wave
equation,

∇2E −∇ (∇ ·E)− 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
. (1.54)

Assuming a plane wave traveling along the z-direction with unit polarization vector ê = e/|e|
we have an electric field17 in complex form

E(z, t) = E (z, t)ei(kz−ωt)ê, (1.55)

and then must have a macroscopic polarization of the form

P (z, t) = P(z, t)ei(kz−ωt)ê. (1.56)

The electric field oscillates perpendicular to the direction of travel, therefore ∇ · E = 0 holds
regardless of the electric field polarization vector ê. As a result,

∇2E − 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
, (1.57)(

∂

∂z
+

1

c

∂

∂t

)(
∂

∂z
− 1

c

∂

∂t

)
E = µ0

∂2P

∂t2
. (1.58)

Now making the Slowly Varying Envelope Approximation (SVEA) we enforce [40, 47]

∂2
tU � ω∂tU � ω2U (1.59)

∂2
zU � k∂zU � k2U (1.60)

where U = E ,P. We find that (
∂

∂z
− 1

c

∂

∂t

)
E ≈ 2ikE, (1.61)

∂2P

∂t2
≈ −ω2P, (1.62)

where we have dropped the polarization vectors as they are the same18. This results in,(
∂

∂z
+

1

c

∂

∂t

)
E ≈ iµ0ω

2

2k
P =

iπ

ε0λ
P (1.63)

where k = 2π/λ = ω/c is the wave vector and λ the wavelength of the transition.
Here we will now consider the form of the macroscopic polarization. The expectation value

of an operator O is 〈O〉 = Tr[Oρ] where Tr is the trace and ρ is the density operator [40, p74]
[44, p909]. Therefore, considering electric dipole transitions the macroscopic polarization can be

16Not to be confused with the occupation probability.
17Physical field is found by taking the real part.
18 E = Eê, P = P ê.
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written as P = N〈d〉 or P = N Tr[(d · ê)ρ] which for a two-state system is19 P = 2N (d12 · ê)ρ21,
where d is the electric dipole moment, and N the number density of active nuclei in the sample.

The electric dipole interaction potential is given by [45, p202]

V̂ E1 = −d ·E(0, t), (1.64)

making the Rabi frequency20 ΩE1 = (d · E)/~. Substitution results in the final form of the field
equation for E1 transitions,(

∂

∂z
+

1

c

∂

∂t

)
Ω21 ≈ i

2πN(d21 · ê)2

ε0λ~
ρ21. (1.65)

Similarly, in the case of magnetic dipole transitions (M1), the interaction potential is [45, p202]

V̂M1 = −m ·B(0, t) (1.66)

where the magnetization M = N〈m〉 [45, p705]. In such a transition it is the interaction of
the magnetic field B with the magnetic moment m that is important. Developing the wave
equation for the magnetic field where Jf = P = 0, B(z, t) = B(z, t)ei(kz−ωt)b̂, and M(z, t) =

M (z, t)ei(kz−ωt)b̂, where b̂ = b/|b| is the unit polarization vector of the magnetic field, results in

∇2B − 1

c2
∂2B

∂t2
= −µ0∇× J (1.67)

which after making the SVEA results in(
∂

∂z
+

1

c

∂

∂t

)
B ≈ iµ0k

2
M . (1.68)

Making the substitution for Rabi frequency ΩM1 = (m ·B)/~ results in the final form of the field
equation for M1 transitions,(

∂

∂z
+

1

c

∂

∂t

)
Ω21 ≈ iµ0kN(m21 · b̂)2

~
ρ21. (1.69)

In both cases we can define the resonant cross section, as shown in Section 1.2.1 to be,

σE1 =
4π(d · ê)2

ε0λ~Γ
, (1.70)

σM1 =
2µ0k(m · b̂)2

~Γ
, (1.71)

which allows us to write field equation for both E1 and M1 in the same final form,(
∂

∂z
+

1

c

∂

∂t

)
Ω21 = i

NσΓ

2
ρ21 = iηρ21 (1.72)

where η = NσΓ/2. In the literature, for example in [54, 55], it is common to reference to the
effective resonant thickness as ξ = NσL/4, where L is the thickness of the sample along the optical
axis, hence we may also write η = 2ξΓ/L.

In the following sections we will generalize the field equation to allow us to study systems with
an arbitrary number of levels.

1.2.1 Resonant cross section

In order to write the final field equation (1.72) we had to make the connection between (1.65) and
(1.69). To do so we defined the transition’s resonant cross section. Both E1 and M1 transitions
have different cross sections, however they both refer to the same quantity, namely the ratio of
scattered power to incident energy flux resulting in units of area. The proof of the resonant cross
section is as follows.

19<{z} = (z + z∗)/2, hence d12ρ21 + d21ρ12 = 2d12ρ21.
20See (1.26). Here the time averaging is left out to avoid cluttered notation.
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Starting from the Bloch equations for a two-state system where ρ11 + ρ22 = 1,

ρ̇11 = − i
2

(Ωρ̃12 − Ω∗ρ̃21) + Γρ22,

˙̃ρ21 =
i

2
Ω(ρ11 − ρ22)−

(
i∆ +

1

2
Γ

)
ρ̃21,

ρ̇22 =
i

2
(Ωρ̃12 − Ω∗ρ̃21)− Γρ22,

we find the steady state solution. This is found in the limit as time goes to infinity or equivalently
as the rate of change of population goes to zero [56, p.194][57, p.72 & 345][44, p.779, p.892]

ρ22 =
i

2Γ
(Ωρ̃12 − Ω∗ρ̃21)

ρ̃21 =
iΩ(1− 2ρ22)

2i∆ + Γ
.

Solving for ρ22 we find,

ρ22 =
(Ω/Γ)2

1 + 4(∆/Γ)2 + 2(Ω/Γ)2
. (1.73)

The rate of production of scattered photons by a single two-level atom is then [56, 58]

R = Γρ22 (1.74)

=
Γ

2

I/I0
1 + 4(∆/Γ)2 + I/I0

, (1.75)

where we have introduced the intensity, I, and saturation intensity, I0. Using I = cε0E 2/2 and
ΩE1 = (d · ê)E /~,

I

I0
= 2

(
Ω

Γ

)2

, (1.76)

I0 =
cε0Γ2~2

4(d · ê)2
. (1.77)

Finally we can define the scattering cross section as the power radiated divided by the incident
energy flux, σ = R~ω/I [45, p.286 & 462] we have

σ =
σ0

1 + 4(∆/Γ)2 + I/I0
, (1.78)

where the resonant cross section is,

σ0 =
~ωΓ

2I0
,

σE1
0 =

4π(d · ê)2

ε0λ~Γ
. (1.79)

In the case of magnetic dipole transitions we first solve for the laser intensity in terms of the
magnetic field amplitude. Electric and magnetic components of the electromagnetic field are always
perpendicular to each other and the direction of travel21,

E = E ei(kz−ωt)ê,

B = Bei(kz−ωt)b̂,

∇×E = −∂B
∂t

,

∂zE = −∂tB,
ikE = −iωB,

E /c = B.

Finally we have, I = c3ε0B2/2. Using then ΩM1 = (m · b̂)B/~ and following the same steps as
above, we find

σM1
0 =

2µ0k(m · b̂)2

~Γ
. (1.80)

21For example ê = x̂ and b̂ = ŷ for linear polarization.
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1.2.2 Initial conditions: Rabi Frequency

In order to understand any physical system we must know the equations governing it as well as
the initial conditions. The sections up until now have discussed formulation of the MBE. Here we
will discuss the initial conditions required to solve your system of choice.

We must first define the initial state of our system. This refers to the initial occupation
probabilities of the levels in the system. Here it is assumed that before laser interaction all systems
exist in their respective ground states, i.e., all level populations are zero except ground which is
unity, ρij(z, 0) = δigδjg. This approximation is made assuming our system is cooled such that the
thermal energy is less than the spacing between low lying levels. This will be further discussed in
later sections.

Secondly, we must define the initial state of the laser pulse. This is done by defining the initial
form of the Rabi frequency Ω. Recall from (1.76) that the Rabi frequency is proportional to the
exciting laser field amplitude. As such we define the shape of the laser pulse by defining an initial
form of the Rabi frequency. For Ω(z, t) = const. we have continuous wave excitation. For pulsed

excitation we have to define a pulse shape such as Gaussian, Ω(0, t) = Ω0e
−((t−tp)/T )2 , where Ω0

is the peak frequency, tp the pulse delay time and T controls the pulse width.
To calculate the peak frequency we start from equation (1.76) which describes the Rabi fre-

quency for the continuous driving of a two-level system,

Ω =

√
ΓI

~ω
σ0.

Here we are concerned with transitions between two nuclear levels with angular momentum Ig =
5/2 and Ie = 3/2 for the ground and excited states respectively. These states can be split into
(2I + 1) sub levels denoted by their angular momentum projection mI = {I, I − 1, . . . ,−I}. We
will be concerned with specific transitions between the ground and excited state sub-levels. Hence
we can make a change in notation to Γ → γmg,me , where γmg,me is a partial decay rate from
|Ie,me〉 → |Ig,mg〉.

The resonant cross section22is given by [61, p.593] [48, p.507] [49, p.169] [45, p.180] [59, p.57]

σ0 =
λ2

π
(2K + 1). (1.82)

The partial decay rate being a transition rate can be written via Fermi’s golden rule as

γmg,me =
2π

~
|〈Igmg|HλK,q|Ieme〉|2, (1.83)

where HλK,q is the interaction Hamiltonian expressed in the spherical basis and λ = (E,M) refers
to the interaction type23 electric or magnetic, K is the transition multipolarity and q the spherical
component which can take values {K,K−1, . . . ,−K}. The total decay rate from state |Ie〉 → |Ig〉
is [62, p.589],

Γ =
1

2Ie + 1

∑
mg,me,q

γmg,me =
2(K + 1)

~ε0K((2K + 1)!!)2

(
E

~c

)2K+1

B↓. (1.84)

where B↓ reduced transition probability for the decay e→ g and E nuclear transition energy. Via
the Wigner-Eckhart theorem [63], see Appendix A.2, we can write the matrix element in terms of
reduced matrix elements,

|〈Igmg|HλK,q|Ieme〉|2 =
1

2K + 1

(
C Ig Ie K
mg−me q

)2

|〈Ig||HλK ||Ie〉|2, (1.85)

22As discussed in [59, p.57], [60, p.435] and [48, p.613] the Breit-Wigner formula for and unpolarized beam is,

σ =
λ2(2J + 1)

π(2sa + 1)(2sb + 1)

Γ/4

(E − ER)2 + Γ/4
. (1.81)

In our case we consider a polarized excitation of a specific, fixed m sub-level transition, as such the statistical averaging

factor
(2J+1)

(2sa+1)(2sb+1)
is not necessary and thus reduces to (2K + 1).

23Not to be confused with the wavelength.
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where C Ig Ie K
mg−me q are Clebsch-Gordan coefficients24. Summing over sub-levels and spherical basis

components allows us to write the total rate Γ for a given multipolarity K in terms of the reduced
matrix element

1

2Ie + 1

∑
me,mg,q

|〈Igmg|HλK,q|Ieme〉|2 =
1

2K + 1

|〈Ig||HλK ||Ie〉|2
2Ie + 1

∑
me,mg,q

(
C Ig Ie K
mg−me q

)2

, (1.87)

=
|〈Ig||HλK ||Ie〉|2

2Ie + 1
=

Γ

2π/~
. (1.88)

This then allows us to write the partial decay rate in terms of reduced transition probabilities B
which we know from literature [3],

γmg,me =
2Ie + 1

2K + 1

(
C Ig Ie K
mg−me q

)2

Γ. (1.89)

Finally, for the Rabi frequency25

Ω =

√
I

~ω
λ2

π
(2Ie + 1)

(
C Ig Ie K
mg−me q

)2 2(K + 1)

~ε0K((2K + 1)!!)2

(
E

~c

)2K+1

B↓ (1.90)

=

√
8πI

~2ε0c

K + 1

K((2K + 1)!!)2

(
E

~c

)2K−2 (
C Ig Ie K
mg−me q

)2

(2Ig + 1)B↑ (1.91)

where the wavenumber 2π/λ = E/(~c), and B↑ = 2Ie+1
2Ig+1B↓.

Finally the initial condition of the field is the shape of the pulse with peak amplitude given
by Ω0 shown in (1.91), where we know the nuclear reduced transition probabilities from literature
and we choose the desired laser intensity I.

1.2.3 Factoring of Clebsch-Gordan coefficients

As seen in equation (1.91), the Rabi frequency for the excitation between specific sub-levels is

proportional to the corresponding Clebsch-Gordan coefficient for the decay process, C Ig Ie K
mg−me q .

Often we will consider an applied field that drives more than one transition. In this case we must
factor the Clebsch-Gordan coefficients out of the Rabi frequency. Considering the M1 transition
we start with the field equation (1.68),(

∂

∂z
+

1

c

∂

∂t

)
B ≈ iµ0k

2
M ,

which is equivalent to, (
∂

∂z
+

1

c

∂

∂t

)
Ω

m · b̂
=
iµ0k

2~
N Tr[(m · b̂)ρ], (1.92)

where Ω = (m · b̂)B/~, and M = N Tr[(m · b̂)ρ]. Looking closer at the trace we can define
mij = |Cji|m resulting in,

Tr[(m · b̂)ρ] = Tr


m11 · b̂ m12 · b̂ . . .

m21 · b̂ m22 · b̂ . . .
...

...
. . .


ρ11 ρ12 . . .
ρ21 ρ22 . . .
...

...
. . .


 (1.93)

= (m · b̂)
∑
ij

|Cij |ρij = 2(m · b̂)
∑
i,j,
j<i

|Cij |ρij (1.94)

24Several notations are used here, such as,

Cfi = CIgmg,Ieme = C
Ig Ie K

mg−me q . (1.86)

This is done to avoid cluttered notation, however the first two are somewhat ambiguous and thus the last one is used when
the notation is not as easily understood.

25For consistency with published values note that |Cij | = |Cji| or with complete notation,

(
C
Ie Ig K

me−mg−q

)2
=

1

2K + 1

(
Ie Ig K
me −mg q

)2

=
1

2K + 1

(
Ig Ie K
mg −me −q

)2

=
(
C
Ig Ie K

mg−me q

)2
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where Cij are Clebsch-Gordan coefficients. The only elements of (m · b̂) that survive are the

transitions that can be driven with polarization b̂. Here, we set all diagonal terms mii to zero.
Strictly speaking the diagonal terms are non-zero. They represent the static magnetic moments
which are not of interest here as they do not correspond to a nuclear transition26. As a result we
have, (

∂

∂z
+

1

c

∂

∂t

)
Ω =

iµ0kN(m · b̂)2

~
∑
i,j,
j<i

|Cij |ρij = iη
∑
i,j,
j<i

|Cij |ρij ,

where Ωij = |Cji|Ω.

1.3 Nuclear forward scattering and the Maxwell-Bloch Equa-
tions

The complete set of MBE and initial conditions for single pulsed excitation can then be written
as,

∂tρ̂ =
1

i~
[Ĥ, ρ̂] + ρ̂r,(

∂

∂z
+

1

c

∂

∂t

)
Ω = iη

∑
i,f,
f<i

|Cfi|ρfi,

(1.95)

(1.96)

ρij(z, 0) = δigδjg,

Ω(z, 0) = Ω0e
−((tp)/T )2 ,

Ω(0, t) = Ω0e
−((t−tp)/T )2 ,

Ω0 =

√
8πI0
~2ε0c

K + 1

K((2K + 1)!!)2

(
E

~c

)2K−2 (
C Ig Ie K
mg−me q

)2

(2Ie + 1)B↓

(1.97)

(1.98)

(1.99)

(1.100)

where the field Ω drives all transitions i→ f with individual Rabi frequency Ωfi = |Cif |Ω = |Cfi|Ω.
At this point it should be clear that the Rabi frequency is not only the oscillation frequency of
the population at zero detuning and decay, but from its definition is proportional to

√
I and thus

the amplitude of the exciting field for electric and magnetic dipole transitions. We can therefore
loosely refer to it as an amplitude. As such, by solving the MBE self consistently we can plot
the relative intensity of the scattering signal I/I0 ∝ |Ω/Ω0|2, where I0 is the peak intensity of the
exciting field. This approach can also be generalized by allowing for multiple lasers to excite our
sample. This involves then multiple field equations each with their own initial conditions.

26When considering direct nuclear excitation with photons there cannot be a transition between a state and itself due to

energy conservation. Disregarding energy conservation, the terms (m· b̂)Ciiρii satisfy the selection rules for a ∆m = 0 type
M1 transition but would require zero energy photons and are thus neglected. In the case of EB, presented in Part II, this
is different as energy must be conserved as a whole between nucleus and electron shell, as such there can be contributions
from transitions where the initial, intermediate and final states can be the same.
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Chapter 2

NFS in 229Th:CaF2

The complete outline of the MBE in the previous chapter now allows us to consider our specific
system of thorium-doped calcium fluoride 229Th:CaF2. The host crystal CaF2 has an experimen-
tally measured band gap of 11− 12 eV [64–66], rendering it transparent in the energy range of the
229mTh nuclear transition. This property allow us to use CaF2 as an inert host for the thorium
nuclei which can be doped at high densities upwards of 1016 cm−3 [7, 10].

Ca

F

Th4+

F−

(a) (b)

90◦
180◦

Figure 2.1: Th:CaF2 structure, dopant orientation with (a) 90◦ and (b) 180◦ fluoride interstitials.

The CaF2 crystal displays a cubic lattice structure. Thorium-doped in the CaF2 crystal has
charge state 4+ and replaces one of the calcium ions introducing two more interstitial fluorine ions
for charge compensation. A density-functional study [8] shows that there exists preferred doping
configurations, among which the two with lowest energy are the cases when the two fluorine
interstitial ions are in a 90◦ and a 180◦ configuration relative to the thorium nucleus, as illustrated
in Figure 2.1.

As a result of the CaF2 crystal environment, the doped 229Th nuclei experience quadrupole
level splitting [7, 8, 67] according to the Hamiltonian

ĤE2 =
eQVzz

4I(2I − 1)

[
3Î2
z − Î +

η

2

(
Î2
+ + Î2

−
)]
, (2.1)

where e is the electric charge, Qg = 3.11 b [5, 68] and Qe = 1.8 b [67, 69] are the quadrupole
moments of the ground and isomer state, respectively, where b = 10−24 cm2, Vzz is the dominant
component of the electric field gradient at the thorium nuclei, Ig = 5/2 and Ie = 3/2 are the nuclear
spin angular momenta of the ground or isomer state, respectively, and Iz = m its projection on
the quantization axis (q-axis). Furthermore, Î and Îz are the angular momentum and projection
operators with raising and lowering operators Î+ and Î−, respectively. Finally, η = (Vxx−Vyy)/Vzz
is the asymmetry parameter of the electric-field gradient27.

In the case of the two dopant orientations shown in Figure 2.1, we can diagonalize the Hamilto-
nian (2.1) to find the energy eigenvalues and eigenvectors. These energy levels are shown in Figure
2.2 (not to scale) resulting from the values of Vzz = (223,−296.7) VÅ−2 and η = (0.48, 0) for the
90◦ and 180◦ orientations, respectively [8].

27Not to be confused with η of the Maxwell-Bloch field equation introduced earlier.
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180◦, η = 0, Vzz = −296.7 VÅ−2

≈ 8.28 eV
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+
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Figure 2.2: 229Th:CaF2 nuclear quadrupole splitting level scheme (not to scale) for the 90◦ and
180◦ fluoride interstitials doping configurations respectively. Open circles define the eigenstates of
Iz. In the case of nonzero asymmetry parameter η, the angular momentum projection m is no
longer a good quantum number. In this case, open circles define the largest contribution to the
eigenstate, where a mixture from states with crosses can be present.

Certain simplifications can be made when considering driving by a narrowband VUV laser.
Detailed explanation of these assumptions will be saved for Chapter 3 in order to provide an
overview of how the system works before considering its intricacies. To this end, we present in the
following a number of assumptions concerning the sample and field in order to demonstrate their
consequences on the scattering spectra.

1. To simplify the initial discussion we consider the second most likely case of 180◦ fluoride
interstitials where η = 0 (no state mixing) and Vzz = −296.7 VÅ−2. As discussed in Chapter
3, the state mixing can safely be neglected also for the lowest energy case with 90◦ fluoride
interstitials and η = 0.48, as such all methods outlined here will still apply.

2. We consider the case of coherent driving with a narrowband laser. When driving transitions
near resonance, our calculations in Chapter 3 show that one can reduce the 229Th:CaF2 10-
level scheme to a simpler effective system with uniform quantization axis. This is justified
because the detuning in energy to the transition of interest E∆i = ~∆i is less than the energy
width of the excitation pulse Ep = ~/T , where Ep is less than the quadrupole level splitting
EQ and does not overlap with multiple hyperfine levels, E∆i < Ep < EQ. In such a case many
levels can be neglected in systems with mismatched q-axes, because even though selection
rules are satisfied, they are far out of resonance in comparison to the transitions of interest.
In this limit, plots of relative intensity will show correct functional behaviour but will have
to be scaled by factors relating the fraction of population taking part in the transitions.

3. We assume that crystal cooling will reduce the ground-state population to only the lowest
hyperfine sub-levels. This is not a necessary condition, as its only purpose is to prevent
relaxation between ground states. Even if this condition is not met the results will be similar
in function but with lower intensity due to less population taking part.

For the 180◦ fluoride interstitials doping orientation, the hyperfine-split nuclear level scheme is
illustrated in Figure 2.3. Considering the positive parity of both the ground and isomeric states,

(Ig, Ie) =
(

5
2

+
, 3

2

+
)

, selection rules require that the nuclear transition is of magnetic dipole (M1)

character. Weak multipole mixing of an electric quadrupole (E2) channel is possible which can
be safely disregarded when considering the radiative excitation or decay of the nucleus [36]. The
hyperfine splitting that occurs allows for several excitation schemes to be investigated such as a
two-level system driven by one VUV laser field and a three-level system driven by two VUV laser
fields illustrated in Figure 2.3, addressed previously in [26]. Each scheme has its own benefits.
Our goal is to identify an NFS spectrum that has a defined signature of the nuclear excitation,
from which we can gain information about the isomeric state. The signature that we aim to create
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34

56

78

910

Two-level

| 52 , 52 〉

| 32 , 32 〉

Ωp

∆p

Γ

Three-level

| 52 , 52 〉

| 52 , 32 〉

| 32 , 32 〉

Ωp

∆p

Ωc

∆c

γ2

γ1

Figure 2.3: 229Th:CaF2 nuclear quadrupole splitting level scheme (not to scale) for the 180◦

fluoride interstitials doping configuration. Both ground state and isomeric state have positive
parity. The possible projections of the nuclear spin angular momentum on the quantization axis
are denoted by m. All states are labeled numerically from 1 → 10. Assuming that only the two
lower ground state hyperfine levels are populated, probe (Ωp) and couple (Ωc) VUV laser pulses
can couple to a two- and three-level schemes depicted in the panels on the right-hand side. ∆p/c

stands for the corresponding detunings of the probe and couple laser pulses.

is that of quantum beats induced by interference. This is typically induced by considering an
effective V-type system. Here we consider two ways of constructing an effective V-type system:
first, using two lasers to create Autler-Townes splitting of the excited state and second, by exciting
two crystals successively using the same laser pulse where one of the two crystals is in a static
magnetic field. Beyond this, we study for the first time in 229Th:CaF2 the effect of pulse shape as
well as excitation with a pulse train of varying pulse spacing and detunings on the generated NFS
signatures. All of these options will be discussed in the following pages.

Concentrating on the | 52 , 5
2 〉 level as the initial state we construct the two- and three-level

systems by choosing the appropriate driving lasers’ orientation and polarization. Being an M1
transition we will refer to the polarization vector of the magnetic component of the exciting laser.
First, a left-handed circularly polarized probe pulse Ωp moving parallel to the quantization axis
can be used to excite the isomeric ∆m = −1 transition, | 52 , 5

2 〉 ↔ | 32 , 3
2 〉. Secondly, for the three-

level system, a linearly polarized continuous-wave (cw) couple laser Ωc polarized parallel to the
quantization axis and moving perpendicular to it drives the ∆m = 0 transition, | 52 , 3

2 〉 ↔ | 32 , 3
2 〉.

Following the development of the MBE presented in the last chapter, we can write out the set of
equations that will be used to solve the above outlined two- and three-level schemes.

The nuclear wave function of the three-level system in question can be written as |ψ〉 =
A1(t)| 52 , 5

2 〉+A2(t)| 52 , 3
2 〉+A3(t)| 32 , 3

2 〉 where we can change notation to the following | 52 , 5
2 〉 = |1〉,

| 52 , 3
2 〉 = |2〉, and | 32 , 3

2 〉 = |3〉. The Hamiltonian of the three-level system with two fields driving
the 1→ 3 and 2→ 3 transitions is easily written as,

Ĥ =

 0 0 V13

0 ~ω2 V23

V31 V32 ~ω3

 (2.2)

where ωn is the frequency of level n and Vij is the field component acting on the j → i transition.
If we set V32 = 0 this is identical to the two-level system.

The quantization axis is assumed fixed in a known orientation, q̂ = ŷ. We know from earlier
that for M1 transitions the perturbing Hamiltonian is,

V̂ = −m̂ ·B(0, t), (2.3)

where m̂ is the transition magnetic dipole moment and B is the magnetic component of the
impinging laser field. Selection rules for the probe-field driving the 1→ 3 transition, require a left
circular polarization of the the impinging magnetic component of the field, moving in a direction
parallel to the quantization axis which can be written as,

B31(r, t) = B31e
i(ky−νpt)b̂, (2.4)
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where b̂ = 1√
2
(ẑ − ix̂) is the polarization vector, νp the probe frequency and B31 amplitude.

Selection rules for the couple-field driving the 2→ 3 transition require a linearly polarized magnetic
component parallel to the quantization axis and moving perpendicular to it giving,

B32(r, t) = B32 cos(kz − νct)ŷ. (2.5)

The probe-field which carries the relevant information is typically of lower intensity than the couple-
field and thus can be difficult to discern from the large background if recorded simultaneously on
the same detector. For this reason one needs to find a way to suppress the couple-field at the
detector by any means, such as with shutters and polarizers. The selection rules for M1 transition
help us not only in simplifying the level scheme as described in earlier sections, but they also help
during the measurement as the probe and couple-fields are separated in space. The probe-field is
recorded by a detector placed along the y axis, and the couple-field by a detector along z. Because
of this, there is no chance for the couple-field to blind the sensitive detector used to measure the
probe-field.

With the magnetic fields determined, the potentials take the form

V31 = −~Ω31e
−iνpt, (2.6)

V32 = −~
2

Ω32

(
eiνct + e−iνct

)
, (2.7)

where Ωeg = 〈e|m̂|g〉 ·BBB/~ is the Rabi frequency, BBB = Bb̂ is the magnetic field amplitude of the
impinging laser field including its polarization vector, and where νp and νc are the frequency of
the probe and couple-fields respectively.

Making the unitary transformation,

Û =

0 0 0
0 e−it(νp−νc) 0
0 0 e−itνp

 , (2.8)

gives the transformed density matrix ˆ̃ρ = Û†ρ̂Û ,

ˆ̃ρ = (ρ̃ij) =

 ρ11 e−i(νp−νc)tρ12 e−iνptρ13

ei(νp−νc)tρ21 ρ22 e−iνctρ23

eiνptρ31 eiνctρ32 ρ33

 (2.9)

and the transformed Hamiltonian ˆ̃H = i~∂tÛ†Û + Û†ĤÛ

Ĥ =

 0 0 e−iνptV13

0 ~(ω2 + νc − νp) ecνptV23

eiνptV31 eiνctV32 ~(ω3 − νp)

 . (2.10)

Making the Rotating-Wave Approximation (RWA) [40]28, where ∆p/c are the detunings of the
fields to their respective transitions, ω3 = νp + ∆p, ω3 − ω2 = νc + ∆c, and factoring out the
Clebsch-Gordan from the matrix element Ωij = |Cji|Ω [70], gives the final Hamiltonian of the
system

ˆ̃H
RWA≈ −~

 0 0 |C13|Ω∗p
0 −(∆p −∆c) |C23|Ω∗c/2

|C13|Ωp |C23|Ωc/2 −∆p

 . (2.11)

The relaxation contribution is given by (1.13), where only internal decay from the excited state to
ground state, i.e not between the split levels, is allowed. After the unitary transformation we have

ˆ̃ρr =

γ13ρ33 0 −Γ
2 ρ̃13

0 γ23ρ33 −Γ
2 ρ̃23

−Γ
2 ρ̃31 −Γ

2 ρ̃32 −Γρ33

 . (2.12)

Here to correctly describe the relaxation process we introduce terms that only affect the coherences
not the populations. Such terms are of the form [40, p163][45, p354] ρcnm = (1 − δnm)γcnmρnm,
where γcnm = γcmn hence,

ˆ̃ρr =

 γ13ρ33 −γc12ρ̃12 − 1
2 (Γ + 2γc13)ρ̃13

−γc12ρ̃21 γ23ρ33 − 1
2 (Γ + 2γc23)ρ̃23

− 1
2 (Γ + 2γc13)ρ̃31 − 1

2 (Γ + 2γc23)ρ̃32 −Γρ33

 (2.13)

28See discussion in [40, p158] where there are no counter rotating terms for left circularly polarized light.
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where γc are decoherence rates due to spin relaxation in case of 180◦ doping configuration,
(γc13, γ

c
23, γ

c
12) = 2π × (251, 108, 30) Hz [7]. The radiative partial rates γij are given by (1.89).

Finally, the MBE describing the coherent pulse propagation of the probe, Ωp, and couple, Ωc,
fields are given by,

∂t ˆ̃ρ =
1

i~
[ ˆ̃H, ˆ̃ρ] + ˆ̃ρr, (2.14)

1

c
∂tΩp + ∂zΩp = iη |C13| ρ31, (2.15)

1

c
∂tΩc + ∂zΩc = iη |C23| ρ32. (2.16)

Here the field equation for the coupling laser (2.16), is neglected as the high intensity of the coupling
field is negligibly affected by the sample. We also assume that no other decay channels are allowed
in the crystal environment other than radiative decay; therefore, the radiative decay rate is equal
to the total decay rate of the isomeric state Γγ = Γ.

Equations (2.14) and (2.15) are solved with initial conditions corresponding to a Gaussian input
probe pulse and a cw couple laser,

ρij(z, 0) = δi1δj1, (2.17)

Ωp(z, 0) = Ωp0e
−(tp/T )2 , (2.18)

Ωp(0, t) = Ωp0e
−((t−tp)/T )2 , (2.19)

Ωc(z, t) = Ωc0, (2.20)

where T = 10 µs is the pulse half-width and tp = 50 µs the pulse delay time. The peak amplitude
is given by (1.91) written here as,

Ωp/c0 =

√
16πI

~2ε0c

(2Ie + 1)

((3)!!)2
B↓ (2.21)

where B↓ is the reduced transition probability for the nuclear M1 transition which has been evalu-
ated theoretically to BW (M1; 3/2+(7.8 eV)→ 5/2+(0.0 eV)) ≈ 0.7×10−2 Weisskopf units, converts
via B↓(M1; i → f) = BW × 1.790 × µ2

N where µN = e~
2mpc

[3, 71] and mp is the proton mass. I0

is the intensity of the exciting lasers, which for the couple was chosen to be 2 kW/cm2. The
normalized NFS intensity, I = |Ωp/Ωp0|2, is independent of the chosen probe intensity Ip0 pro-
vided no Rabi oscillations occur while the pulse is active, hence provided Ωp0 < π/T . This can
be seen clearly in Figure 1.3 and Figure 1.4 where the first maximum population of the excited
state is reached at t = 2π/Ω′ where Ω′ =

√
Ω2 + ∆2. Hence, for a pulse half-width of T we require

T < π/
√

Ω2
p0 + ∆2, or for small detuning ∆� Ωp0, Ωp0 < π/T to prevent Rabi oscillations.

The detuning is taken here as ∆ = ∆c = ∆p [26], and the crystal thickness is taken as L = 1
cm. There is a wide range of possible dopant densities in the range of 1016 − 1018 cm−3 [7, 10].
Here we choose N = 1016 cm−3. The radiative lifetime of the isomeric state 229mTh is in the
region of several hours, τ ≈ 6 h [72], and τ ≈ 2.5 h [B↓(M1) ≈ 0.007 Wu. [3]], see Appendices
A.3 and A.4. We consider the decay rate as Γγ = 1/τ ≈ 1 × 10−4 s−1, which is consistent with
recent measurements of the internal conversion rate of 229mTh [17]. The resonant cross section is
σ = 3λ2/π ≈ 2.4× 10−10 cm2, as a result the effective resonant thickness is ξ ≈ 6× 105.

The scattered intensity for driving the two-level system is illustrated in Figure 2.4, which shows
the exponential decay of the isomeric state. This system is described by the same set of equations
presented above where Ωc = 0. The rate of decay of the NFS spectrum intensity is dependent
not only on the radiative decay of the level population but also on the decay of the coherence in
the system, see Appendix A.5. As such the exponential decay rate that can be observed in the
calculated NFS spectrum is ΓF = Γcoh+ξΓγ+f(∆), where f(∆) is a function of the laser detuning
to the driven transitions where f(0) = 0. The NFS intensity for this two-level system displays an
exponential decay rate ΓF = 2γc31 + Γ + ξΓ + f(∆p) where the largest contribution comes from
the decay of the coherence Γcoh = 2γc31 + Γ. Other than the exponential decay of the intensity,
this two-level system does not provide any unique features that could help us differentiate it from
other decay channels experimentally.

When the strong couple laser is active, both the second and third levels experience Autler-
Townes splitting whereby each level splits into two. For a small detuning ∆c � ω32, the energy
separation of the splitting is ~Ω32 = ~|C23|Ωc, where each split level is displaced ±~Ω32/2 around
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Figure 2.4: Scattered intensity for the case of the two-level system for ∆ = 0 ∼ 108Γ (black solid
line) and ∆ = 109Γ (red dashed line). The excitation occurs for ∆ < 1010Γ ≈ ~/Ep.
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Figure 2.5: Scattered intensity for the case of the three-level system for ∆ = 0 ∼ 106Γ (black
solid line) and ∆ = 108Γ (red dashed line). The excitation occurs for ∆ < 1010Γ ≈ ~/Ep.

the unsplit level energy [45, 49]. The quantum beat in the NFS spectrum as a result of the split
third state, | 32 , 3

2 〉, decaying to the first, | 52 , 5
2 〉, is shown in Figure 2.5. The frequency of the

quantum beat depends on the difference in energy of the two transitions [73] and hence the energy
splitting of the third state. In this case, the frequency of the quantum beat is fQB = Ω32/2π
and the minima occur at times tminn = (n+ 1

2 )/fQB + tp, where n is an integer. Hence the larger
the splitting, the smaller the time separation between minima. Note that the beat frequency in
Figure 2 of [26] is in error by

√
2Ig + 1 =

√
6 due to this missing factor in the initial calculation

of Ωc.

2.1 Modified couple laser Ωc

The experimental realization of a cw VUV laser is technically difficult. As such, the use of a
pulsed coupling laser Ωc would simplify the experimental implementation of the thorium three-
level system shown above. In the following we consider the case of a three-level system driven by
pulsed probe and couple lasers for two couple pulse shapes.

2.1.1 Square pulse

Before considering a Gaussian pulse shape we examine the result of abruptly turning the cw laser
on and off again after excitation by the probe pulse. For this we modify the initial conditions of
the couple to be that of a square pulse

Ωc(z, 0) = 0 (2.22)

Ωc(0, t) =

{
Ωc0, t↑ < t < t↓
0, otherwise

(2.23)

where (t↑, t↓) are the turn on and off times, respectively. As expected the beating only occurs
while the couple laser is on, i.e., while the upper state is split; otherwise the intensity spectrum
returns to that of the two-level system. Furthermore, the beating does not restart every time the
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Figure 2.6: NFS intensity of the three-level thorium system resulting from abruptly switching the
couple laser on and off (black solid line, left axis) together with the relative intensity of the couple
pulse (red dashed line, right axis).

couple is turned off and then on, but rather continues from where it previously ended. Similar
to the ideas of storage via magnetic switching [74], if the couple is switched off at a minimum
of the quantum beat, the beating can be revived with maximal intensity in the next on cycle as
illustrated in Figure 2.6.

If we then consider many on-off cycles where the time spacing between the end of one cycle
and the start of the next goes to zero, the NFS spectrum will approach that of a cw laser, i.e.,
Figure 2.5. As such we can envisage the use of a pulsed couple laser where the pulse spacing is far
less than the time scale of the quantum beat, i.e., � 2π/Ω32.

2.1.2 Gaussian pulse

To convert Ωc from cw to a Gaussian pulse laser we introduce a Gaussian pulse shape to the initial
conditions

Ωc(z, 0) = Ωc0e
−(tc/Tc)

2

, (2.24)

Ωc(0, t) = Ωc0e
−((t−tc)/Tc)2 , (2.25)

where tc is the delay of the pulse and Tc is the half width of the pulse. Similar to the case of the
square pulse, the choice of tc and Tc determine the time interval over which the quantum beat is
visible. Provided there is no time delay between the couple and probe, tc = tp, and the width of
the pulse Tc � 10 ms, the result is the same as shown in Figure 2.5.

Our numerical results for the Gaussian couple pulse are illustrated in Figure 2.7. Reducing the
temporal width of the couple pulse will begin to erase the quantum beat in the region outside Tc.
This is because, for a Gaussian pulse, the period of the induced quantum beat

TQB =
2π

|C23|Ωc0e−((t−tc)/Tc)2 (2.26)

increases gradually as the pulse intensity diminishes. This is in contrast to TQB →∞ in the case
of the square-pulse couple-laser abruptly turning off, Ωc0 → 0.

This can be easily generalized to a pulse train with pulse spacing δ

Ωc = Ωc0

N∑
n=1

e−((t−tc−nδ)/Tc)2 . (2.27)
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Figure 2.7: NFS scattered intensity for the three-level thorium system with a Gaussian pulse couple
laser (black solid line, left axis) together with the couple pulse relative intensity (red dashed line,
right axis) for tc = tp = 50 µs and Tc = 4 ms.

When both width and spacing of the Gaussian pulses become small compared to the time scale of
the quantum beat at peak intensity, (Tc, δ)� 2π/(|C23|Ωc0), the resultant spectrum tends towards
that of a cw laser.

2.2 Train of probe pulses

In experiment the intensity of the resonant pulse is usually weak, i.e., much fewer resonant photons
per pulse than number of nuclei in the sample. As such, to generate the NFS signal, many
pulses are used and the sum of the measured counts and time delays are used to build the final
intensity spectrum. A variety of pulse shapes can be constructed from a single mode wave E(t) =
cos(νt + φ) by multiplying with the desired envelope; for simplicity we use a Gaussian E(t) =

e−((t−t0)/T )2 cos(νt+φ). Here we study the effect of introducing multiple excitation pulses varying
both time delay and relative phase.

2.2.1 Two-level system with ∆ = 0

First, in order to identify the main features of the problem we consider for simplicity driving the
two-level system seen in Figure 2.3 with no laser detuning ∆ = 0 such that the exciting field has
the same frequency as the transition. For further discussion we consider next to the total scattered
intensity also the square of the real <{Ω}2 and imaginary ={Ω}2 components. In the case of zero
detuning (={Ω})2 = 0, and the NFS intensity is I = |Ω/Ω0|2 = (<{Ω}/Ω0)2. By changing the
initial conditions of the calculation we can add a phase shift to the pulse

Ω(0, t) = Ω0e
−(t/T )2eiφ, (2.28)

which for a single pulse has no effect on the resultant intensity spectrum, proof of this is given in
Appendix A.6. When introducing multiple excitation pulses the relative phase becomes important.
Figure 2.8 shows the result of considering two pulses with a relative phase shift of φ = (0, π),

Ω(0, t) = Ω0

(
e−(t/T )2 + e−((t−t0)/T )2eiφ

)
, (2.29)

with a time delay t0 = 50 µs and pulse width T = 0.1 µs, where both incoming pulses have the same
intensity. The incoming pulses arriving in phase to each other lead to constructive interference
and an increased signal, while the pulses arriving in antiphase cancel each other and lead to a
decreased signal in comparison with the case of a single incident pulse.

In more detail, this variation in NFS intensity is a manifestation of superposition where the
intensity is proportional to the number of excited nuclei. The mth pulse excites Nm(0) nuclei
which have the option to decay back to the ground state Nm(t) = Nm(0)e−ΓF t/2, but cannot be
excited further in the two-level system. Provided there are enough nuclei in the ground state and
all weak pulses m have the same resonant intensity, then all Nm(0) are equal. In such a case the
total intensity of the emitted decay signal after a train of excitation pulses is

I(t) ∝
∣∣∣∣∣∑
m

Nm(t)eiφm

∣∣∣∣∣
2

. (2.30)
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Figure 2.8: Scattered intensity for the two-level thorium system with ∆ = 0, t0 = 50 µs, and
T = 0.1 µs. (Red dashed line) NFS intensity after the first pulse impacting at t = 0. (Black solid
line) with the additional excitation of a second pulse in phase with the first φ = 0. (Black dotted
line) with the additional excitation of a second pulse with φ = π.

Considering just two pulses as before where t0 is the delay time, the intensity {I(t)|t > t0} is

I(t) ∝
∣∣∣Ne−ΓF t/2 +Ne−ΓF (t−t0)/2eiφ

∣∣∣2 (2.31)

= N2
(
e−ΓF t + e−ΓF (t−t0) + 2e−ΓF (2t−t0)/2 cosφ

)
.

The maximal (minimal) intensity is reached when there is no separation between the pulses and
they add constructively φ = 0 (destructively φ = π). Furthermore, it should be clear that, for
long delay time, i.e., t0 � 1/ΓF , the initial excited population decays to the ground state and the
intensity after the second pulse becomes once again independent of phase I(t) ≈ N2e−ΓF (t−t0).
See Appendix A.7 for further discussion on testing this superposition model.

2.2.2 Two-level system with ∆ 6= 0

Next, we consider the same system as above but now driven with a detuning ∆ = 109Γ. In the case
∆ 6= 0 both the real <{Ω} and imaginary ={Ω} components of the NFS intensity have a nonzero
value. Figure 2.9(a) shows the oscillation of the squared real (red dashed line) and imaginary (blue
dash-dotted line) components along with the NFS intensity (black solid line) as a result of a single
pulse centered at t = 0. The oscillation frequencies of <{Ω} and ={Ω} correspond to the detuning
of the laser to the transition frequency, fΩ = ∆/2π. Alternatively for the intensity, due to the
square of the amplitude, i.e., <{Ω}2 and ={Ω}2, the oscillation frequency is fΩ2 = ∆/π.

Introducing additional pulses is implemented by modifying the initial conditions as shown
earlier in Eq. (2.29). The results for φ = (0, π) with t0 = (π/∆, 3π/2∆, 2π/∆) are shown in Figs.
2.9(b)−2.9(d). Clearly in the case of ∆ 6= 0, not only the relative phase φ but also the time
separation t0 are of critical importance. This is expressed in the intensity as

I(t) ∝
∣∣∣Ne−ΓF t/2ei∆t +Ne−ΓF (t−t0)/2ei(∆(t−t0)+φ)

∣∣∣2
= N2

(
e−ΓF t + e−ΓF (t−t0)

+2e−ΓF (2t−t0)/2 cos(∆t0 − φ)
)
. (2.32)

For φ = 0, maximal (minimal) intensity happens for t0 = nπ/∆, where n is an even (odd) integer.
Therefore, by choosing the correct timing and phase we can use multiple pulses to cause increased
excitation within the sample that will add constructively at the detector resulting in increased
signal intensity.

When searching for a transition with an unknown energy, the case of zero laser detuning is
experimentally unlikely. Excitation will first be seen when driven with some nonzero detuning.
However, to cause excitation we need to know the energy of the transition well enough to enforce
E∆i < Ep, i.e., the energy width of our pulse has to be wider than the detuning.

To reliably increase the NFS decay intensity with a train of pulses, each successive pulse must
cause a constructive excitation in the sample. For this to be the case the detuning of the laser to the
excitation must be known. Because this is not the initially true in the search for the Th isomeric
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Figure 2.9: Scattered intensity for the two-level thorium system with ∆ = 109Γ and T = 0.1
µs for (a) a single pulse at t = 0, (b) the first pulse at t = 0 followed by the second one at
t0 = π/∆, (c) the same but with delay between pulses t0 = 3π/2∆, and (d) for delay between
pulses t0 = 2π/∆. (Black solid line) NFS intensity |Ω/Ω0|2 when using two pulses of the same
phase. (Black dotted line) NFS intensity |Ω/Ω0|2 when using two pulses with phase shift π. (Red
dashed line) (<{Ω}/Ω0)2. (Blue dash-dotted line) (={Ω}/Ω0)2.

state, we must prevent the chance of destructive interference between the excitation caused by
neighboring pulses. To this end, excitation pulses should be spaced out such that t0 � 1/ΓF . In
this scenario, increasing the NFS intensity can only be accomplished by increasing the number of
resonant photons in a single pulse.

If resonance is found in the two-level system, then additional excitation pulses can be intro-
duced. The time delay between the additional excitation pulse can then be varied to find the peak
intensity. By plotting the change in intensity as a function of pulse delay, the detuning could be
more accurately determined. Repeating the process with a larger pulse train will serve to increase
the accuracy of this determination.
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Figure 2.10: Three-level thorium system driven by (a) a single pulse at t = 0 or (b) a single pulse
at t = 0 followed by a second identical pulse at t = t0, which is chosen as the first minimum
of (={Ω}/Ω0)2. (Black solid line) NFS intensity |Ω/Ω0|2 when using two pulses of the same
phase. (Black dotted line) NFS intensity |Ω/Ω0|2 when using two pulses with phase shift π. (Red
dashed line) (<{Ω}/Ω0)2. (Blue dash-dotted line) (={Ω}/Ω0)2. For the calculation we have used
∆ = 108Γ, and T = 0.5 µs.

2.2.3 Three-level system

The same train of probe pulses can also be applied to drive the three-level thorium system. Anal-
ogous to the two-level system, when there is zero detuning the probe pulses of the same phase
will always add constructively to the excitation in the sample. However, for nonzero detuning, as
shown in the two-level case, both the phase and delay time between pulses play a critical role in the
intensity of the NFS spectrum. It is clear here, however, that the complication of this functionality
grows quickly with the number of energy levels participating in the signal’s generation, as illus-
trated in Figure 2.10, which shows the calculated spectrum for the three-level system. Our earlier
approximation of the (<{Ωp})2 and (={Ωp})2 oscillation frequency as fΩ2 = ∆p/π is inapplicable
here. As a result, multiple pulses spaced equally in time will not cause the same constructive effect
for ∆p 6= 0.

To take advantage of a pulse train one must start by exciting the two-level system. Immediately
after excitation is generated, the couple laser between states | 52 , 3

2 〉 → | 32 , 3
2 〉 can be introduced.

During the time interval when Ωc is on, the quantum beat is visible with an increased intensity
due to the larger excitation in the sample. Then, only after the couple laser is turned off should
the sample be further excited with the probe pulse.

2.3 Applied static magnetic field

As mentioned at the start of this chapter, quantum beating can be induced also without the
use of a second laser. Instead, we can consider two crystals excited one after the other by the
same laser pulse as illustrated in Figure 2.11. By placing one of the two crystals in a static
magnetic field the energy levels will be shifted by ∆B = (mgµg +meµe)B/~, where (µg, µe, B) =
(0.45µN ,−0.08µN , 10−4T) and µN = 5.05× 10−27 J/T. The NFS spectrum is then the result of a
pair of two-level systems which mimic the results of a three-level system. The resulting quantum
beat shown in Figure 2.12 is due to the additional energy shift of the levels in the static magnetic
field, resulting in a period TQB = 2π/∆B .

Analogous to the role of the coupling laser in the three-level system, the static magnetic field
can be turned off and on as well as adjusted in magnitude. This allows for switching between a
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Figure 2.11: Two 229Th:CaF2 target setup. A left circularly polarized probe field drives the
| 52 , 5

2 〉 ↔ |32 , 3
2 〉 isomeric transitions in both crystals. The detuning of the probe to the unperturbed

resonance frequency is denoted by ∆p. ∆B denotes the total Zeeman shift due to the external
magnetic field B.
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Figure 2.12: Scattered intensity for the case of the two-level system for ∆ = 0 ∼ 108Γ (black solid
line) and ∆ = 109Γ (red dashed line) with static magnetic field B = 10−4 T . The excitation
occurs for ∆ < 1010Γ ≈ ~/Ep.

two-level decay and a three-level quantum beat of variable frequency seen in Figure 2.13, where
the applied external magnetic field changes value at the start or end of a beat cycle corresponding
to times tswitch ≈ (2, 4, 6.6) ms.
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Figure 2.13: Scattered intensity for the two crystal system considering ∆ = 0. The applied external
magnetic field takes the values B = 5× 10−4 T, 0 T, 10−4 T, and again 5× 10−4 T.
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This setup is more advantageous than the three-level system outlined above because it requires
only one tunable laser. Furthermore, when undergoing multipulsed excitation the oscillation fre-
quencies of <{Ω} and ={Ω} are the same as that of the two-level system fΩ = ∆/2π (fΩ2 = ∆/π)
and thus the intensity can be reliably changed by varying the frequency of probe pulses while the
static field is on. This removes the complication of switching off the couple laser during excitation
as would be required in the three-level case.

As a side remark, a slightly modified level scheme becomes available when considering the 90◦

interstitial configuration or when thorium is doped in a different crystal such as LiCaAlF6. In these
cases, due to the change in sign of the electric-field gradient, the lowest-energy level corresponds
to | 52 ,± 1

2 〉, seen in Figure 2.2. This state will be initially populated, allowing for two ∆m = 0
transitions to be driven at the same energy. Applying a static magnetic field will split these two
transitions in opposite directions due to the sign of m, which results in quantum beating without
the use of a second crystal. Thus, in such crystals the two-crystal setup discussed here can be
reduced to only a single crystal in a static magnetic field.
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Chapter 3

The role of crystal structure and
quantization axis

The orientation of the quantization axis (q-axis) plays an important role for the NFS modeling.
The q-axis along with the polarization of the exciting field determine the allowed transitions based
on angular momentum selection rules. Dopant nuclei with aligned q-axes will undergo the same
transitions when exposed to fields of like polarization, however, the same can in general not be
said for nuclei with misaligned q-axes. The use of polarized fields to selectively drive transitions is
therefore only possible if the majority of the dopant nuclei share a q-axis, or if misaligned nuclei
do not contribute to the signal. Thus it is compulsory that one considers the impact of the crystal
structure and q-axes at the different Th dopant sites for a reliable modeling of the scattering.

Ca

F

Th4+

F−

Figure 3.1: Th:CaF2 structure with 180◦ fluoride interstitials showing the three possible rotations
allowed in a bulk crystal.

As a starting case we will consider the more straightforward treatment of the 180◦ dopant
configuration shown in Figure 2.1 (b). The cubic lattice of CaF2 is identical when rotated in the
xy, yz, or zx planes in increments of 90◦. As a result of this rotational symmetry, at low dopant
densities where dopant sites do not interact there are three possible orientations of the 180◦ F-Th-F
bond, Figure 3.1. As no orientation is favored, all three options are populated by 1/3 of the total
dopant density N . The quantization axis is fixed by the electric-field gradient at the location of
the Th nuclei, which in this case is along the F-Th-F bond as shown in Appendix A.8. Hence
the three q-axes are mutually perpendicular and can be aligned with the laboratory-frame axes by
rotating the crystal and viewing the resulting spectrum.

The energy splitting of all three orientations are the same; however, the angular momentum
projections are along the mutually perpendicular q-axis directions. To understand what transitions
will be driven we transform the driving field polarization vector into the reference frame of the
dopant nuclei. There is no parity change from the ground to excited state making the transition
that of a magnetic dipole (M1), therefore as shown in Appendix A.9, ∆m = 0, i.e., π transitions,
require a linearly polarized magnetic component of the field parallel to the quantization axis and
moving perpendicular to it. ∆m = +(−)1, i.e., σ+(−) transitions, require right(left)-circular
polarization of the the impinging magnetic component of the field, moving in a direction parallel
to the subsystems q-axis29. The resultant spectrum is then a combination of the excitation of all
three orientations and all driven states.

29In this semi classical approach, the wording is meant to draw the parallel between the selection rules of electric and
magnetic dipole transitions. If one chooses to strictly talk about the electric field, then the polarization is opposite in the
case of magnetic dipole transitions i.e., a M1 transition with ∆m = −1 requires as σ− B field or equivalently σ+ E field
moving along the quantization axis.
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Figure 3.2: Polarization vectors of fields used to drive the (π, σ+, σ−) transitions relative to the
laboratory frame (x, y, z).

Looking at the 180◦ case in Figure 2.2 there are 10 states and 12 possible transitions, four of each
(π, σ+, σ−), for each of the three q-axes q = (x, y, z). By introducing a polarized field, for example
σ−y (left-circular polarization in the direction y in the laboratory frame), only σ− transitions can
be driven for dopant nuclei with q-axis along y (1/3 of the total). The same σ−y polarization can
be broken down into components which satisfy the selection rules for driving all transitions in the
other two orientations (πx/z, σ

+
x/z, σ

−
x/z) (see Figure 3.2) albeit with lower intensity.

Clearly this situation appears complicated; however, excitation by one and two fields can be
simplified to resemble the two- and three-level schemes, respectively shown in Figure 2.3. The key
to this simplification becomes obvious only when you consider the relative energy scales of the level
widths and their separation, as well as that of the laser field used for excitation. Introducing some
notation, let the linewidth of the 229mTh transition in energy be Eγ , the energy spread of a laser
pulse with half width in time T be Ep = ~/T , and let the detuning of the laser to the ith transition
be E∆i = ~∆i. Eγ ≈ 7× 10−20 eV, which is so narrow that it can be considered an exact energy
on the scale of the energy spread of the laser pulses used as well as on the scale of the quadrupole
level splitting which is EQ = O(10−6) eV.

If E∆i > Ep there is negligible excitation of the ith transition by the pulse when compared to
transitions of smaller detuning. Based on numerical limitations we use pulse widths on the order of
µs making the energy spread Ep = O(10−10) eV30. Therefore, when considering driving a transition
close to resonance, the quadrupole splitting rules out the possibility for the same pulse driving more
than two transitions, where the two transitions are degenerate in energy differing only in the sign
of the momentum projections ±∆m. As a result, for resonance we have Eγ � E∆i

< Ep < EQ
and transitions away from resonance and corresponding states can be safely neglected during
calculation. This energy consideration is depicted in Figure 3.3, showing transition |0〉 ↔ |1〉 is
resonance and state |2〉 can be neglected.

Continuing the earlier example with a σ−y field is used in resonance with | 52 ,± 5
2 〉 → | 32 ,± 3

2 〉
transition, we will compare calculations of the full 10-state level scheme with that of the two-state

30Throughout this work we use the notation O() to denote the order of magnitude of a given quantity.
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Eγ = ~Γ
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E∆1
= ~∆1

~ν

Ep = ~/T

Figure 3.3: Pictorial representation of notation (not to scale). Eγ is the linewidth of the transition
in energy; Ep = ~/T the energy spread of a laser pulse; E∆i = ~∆i the detuning of the laser to
the ith transition and EQ the quadrupole splitting.

system shown in Figure 2.3, both with a single q-axis along y. The dopant density used in the two
calculations are normalized to that of a crystal with three quantization axes. As such the dopant
density of the 10-state system with one q-axis is N/3. The initial occupation probability is split
equally among the two lowest states | 52 ,± 5

2 〉, i.e. ρ11 = ρ22 = 1/2. Equivalently, the two-state
system has an dopant density of of N/6 where there is only a single ground state | 52 , 5

2 〉 with initial
population of unity. The relative difference in spectrum intensity (Ia − Ib)/Ia was calculated as a
function of time showing a difference of 0.01%, however this value is dependent on how accurately
one solves the set of MBE. Higher accuracy can be reached albeit with increasing computation time.
As a result, it is clear that removing the additional levels for which E∆i > Ep has a negligible
effect on the spectrum, making both calculations effectively identical. This can be understood as
follows: For the 10-state system and referring to the state notation in Figure 2.3, the |1〉 → |7〉
and |2〉 → |8〉 are the only transitions that are in resonance, however only |1〉 → |7〉 is driven due
to selection rules for σ−. Furthermore, though there is a minor increase in population of levels |3〉
and |5〉 due to radiative decay from |7〉, they cannot be re-excited due to energy conservation. As
such the dominant effect is that of the two-state resonance |1〉 → |7〉.

At this point it is clear that the calculation can be simplified by removing levels far out of
resonance. Now let us consider the effect of multiple quantization axes in a single sample. We
recall that σ−y field has components along (πx/z, σ

+
x/z, σ

−
x/z), i.e., fractions of the field have correct

polarization to drive all transitions in the other two q-axis orientations. However, the frequency of
the field is only in resonance with the σ± corresponding to | 52 ,± 5

2 〉 → | 32 ,± 3
2 〉. Hence we neglect

all other levels which reduces the 10 states to the four states (|1〉, |2〉, |7〉, |8〉). As discussed, there
is no preferred orientation so the total dopant density N is split with 1/3 in each possible q-axis
orientation. Initial occupation probability is equal among the two lowest states | 52 ,± 5

2 〉. Figure
3.4 compares the numerical results of the four-state calculation with three q-axes to that of the
simple two-state system of only one q-axis.

As with the last case, here the calculations compare in their functional behavior, however,
now yield differing intensities. If the intensity of the signal at time t for the two-state calculation
with one q-axis is I2

1 (t) and four state calculation with three q-axes is I4
3 (t), respectively, then

I4
3 (t) ≈ 4I2

1 (t). This is because the intensity of the signal is proportional to the square of the
total number of nuclei making the transition. The intensity of the three q-axis system is greater
because σ−y can drive more nuclei to the excited state due to its projection on the other two q-axes,
which were neglected in the simplified two-state calculation. Vector projection gives fields of half

amplitude driving σ
+/−
x/z , which result in a contribution of ≈ 1

2I
2
1 (t) from each of the x and z q-axis

populations. These then add in superposition with matching polarization to give the final result,

I4
3 ≈

(
Ax +

Ax
2

+
Ax
2

)2

+

(
Az +

Az
2

+
Az
2

)2

= 4(A2
x +A2

z) = 4I2
1 . (3.1)

The intensity differences written here correspond to exactly a combination of independent sys-
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Figure 3.4: Scattered intensity for (black solid line) two-state system, one q-axis, dopant density
N/6 with initial population of | 52 , 5

2 〉 and (red dashed line) four-state system, three q-axes, dopant
density N with 1/3 in each possible q-axis orientation, initial population split equally among
two lowest states | 52 ,± 5

2 〉. The calculations were performed considering ∆ = 0 for the transition
| 52 ,± 5

2 〉 → |32 ,± 3
2 〉.

tems. Our numerical calculations show a slight deviation from this independent system treatment
due to multiple scattering between q-axis subsystems. This difference is on the order of a few
percent which can easily be neglected when looking at the main effects involved. A detailed de-
scription of the implementation of multi-quantization axis calculations is presented in Appendix
A.10.

3.1 Lowest energy configuration: η 6= 0

The lowest-energy dopant configuration found in [8] requires fluoride interstitials making a 90◦

angle with the dopant thorium, which takes the position of a Ca shown in Figure 2.1(a). The same
symmetry applies where the crystal can be rotated in the xy, yz, or zx planes in increments of 90◦;
only in this case due to the angled F-Th-F bond there are 12 orientations. This is not a problem
as the electric-field gradient runs perpendicular to the plane defined by the angled F-Th-F bond
making the 12 orientations fourfold degenerate. As such there are only three orientations of the
quantization axis, just like before.

In this dopant orientation Vzz = 223 VÅ−2 [8], and the change in sign of the electric-field
gradient reverses the ordering of the split levels in terms of energy as compared to the 180◦ case
shown in Figure 2.3. Furthermore, the 90◦ configuration has a nonzero asymmetry parameter
η = 0.48. In this case, the angular momentum projection m is no longer a good quantum number
to define the nuclear states. 0 ≤ η ≤ 1 and the larger η becomes, the more mixing there is between
sublevels. The E2 Hamiltonian (2.1) given again here,

ĤE2 =
eQVzz

4I(2I − 1)

[
3Î2
z − Î +

η

2

(
Î2
+ + Î2

−
)]
,

can be diagonalized to find the eigenvalues and eigenvectors, which are shown here for the relevant

angular momentum (Ig, Ie) =
(

5
2

+
, 3

2

+
)

[75–78]. Figures 3.5 and 3.7 show the energy of the split

ground and excited states where Cg/e = eQg/eVzz/(4Ig/e(2Ig/e−1)). Figures 3.6 and 3.8 show the
squared projection of the state vectors with the eigenstates of nuclear spin angular momentum.
The energy splitting is still of the order 10−6 eV. Therefore, once again when driving a transition
close to resonance, the quadrupole splitting rules out the possibility for the same pulse driving
more than two transitions, where the two transitions are degenerate in energy differing only by the
sign of the states’ m projections.

What is different in this case is that the angular momentum selection rules can be satisfied
in more than one way for a given transition. Each state can now be defined as a superposition
of angular momentum eigenstates where the probability to be in a given eigenstate is given by
|〈I,m′|I, ψm(η)〉|2, where |I,m〉 is an eigenstate of angular momentum with projection m and
|I, ψm′(η)〉 =

∑
m am(η)|I,m〉 is the state vector with the largest contributing component coming

from state |I,m′〉. For example, consider the transition from | 52 , ξ1/2(η)〉 → |32 , φ1/2(η)〉. If the laser
has the correct energy within the energy width of the pulse, then only the polarization determines
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Figure 3.5: Energy eigenvalues of ĤE2 for I = Ie = 3/2 as a function of the asymmetry parameter
η. Labeled with the spin projection me with respect to the largest field component.
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Figure 3.6: Squared projection of state vector | 32 , ψm(η)〉 on overlapping eigenstates of angular
momentum as a function of the asymmetry parameter η.

whether the transition will be driven. Expanding the state vectors we see

| 52 , ξ1/2(η)〉 = a1| 52 , 1
2 〉+ a2| 52 ,− 3

2 〉+ a3| 52 , 5
2 〉,

| 32 , φ1/2(η)〉 = b1| 32 , 1
2 〉+ b2| 32 ,− 3

2 〉, (3.2)

and hence only ∆m = 0 transitions are possible. To understand the relative strength of the
transitions we calculate the square of the overlap integral |〈Ig,mg|〈J,M |Ie,me〉|2 [76, 79], where
the excited state |Ie,me〉 is connected to the ground state |Ig,mg〉 and the emitted photon |J,M〉
via the Clebsch-Gordan coefficients,

|Ie,me〉 =
∑
M

C
Ig J Ie
mgMme

|J,M〉|Ig,mg〉. (3.3)

For the above transition

〈 52 , ξ1/2(η)|〈J,M | 32 , φ1/2(η)〉 = b1〈 52 , ξ1/2(η)|〈J,M |
∑
mg,M

C
5
2 J 3

2

mgM
1
2

|J,M〉| 52 ,mg〉

+ b2〈 52 , ξ1/2(η)|〈J,M |
∑
mg,M

C
5
2 J 3

2

mgM− 3
2

|J,M〉| 52 ,mg〉, (3.4)
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Figure 3.7: Energy eigenvalues of ĤE2 for I = Ig = 5/2 as a function of the asymmetry parameter
η. Labeled with the spin projection mg with respect to the largest field component.

Focusing on M1 type transitions we can have J = 1 with M = {1, 0,−1} which leaves only,

〈 52 , ξ1/2(η)|〈1,M | 32 , φ1/2(η)〉 = b1〈 52 , ξ1/2(η)|
∑
mg,M

C
5
2 1 3

2

mgM
1
2

| 52 ,mg〉

+ b2〈 52 , ξ1/2(η)|
∑
mg,M

C
5
2 1 3

2

mgM− 3
2

| 52 ,mg〉, (3.5)

= a1b1C
5
2 1 3

2
1
2 0 1

2

+ a2b2C
5
2 1 3

2

− 3
2 0− 3

2

, (3.6)

(3.7)

where the Clebsch-Gordan coefficients require mg + M = me to be non zero. The coefficients
for η = 0.48 are (a1, a2, a3, b1, b2) = (0.95, 0.29, 0.08, 0.99, 0.13) and correspond to the square root
of values taken from Figs. 3.6 and 3.8. Comparing the intensity to a transition between pure
eigenstates of angular momentum (i.e., the unmixed case of η = 0) results in∣∣〈 52 , ξ1/2(0.48)|〈1, 0| 32 , φ1/2(0.48)〉

∣∣2∣∣〈 52 , 1
2 |〈1, 0| 32 , 1

2 〉
∣∣2 ≈ 0.98. (3.8)

Hence the intensity of this transition is lowered by ≈ 2% due to mixing of states. In general, for
our case |〈I,m|I, ψm(0.48)〉|2 > 0.9 for all I and m. As a result the intensity of the signal will
drop in relation to the smaller population undergoing the transition. Clearly, this is negligible
for our purposes. As such the results shown in Chapter 2 apply in this case with minor intensity
corrections.
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Figure 3.8: Squared projection of state vector | 52 , ψm(η)〉 on overlapping eigenstates of angular
momentum as a function of the asymmetry parameter η.
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Electronic Bridge process in
Doped Crystals
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Chapter 4

Theoretical Background for
Electronic Bridge

The large band gap of VUV-transparent crystals would ideally make them transparent in the energy
region of interest for the nuclear excitation of thorium’s isomeric state. In practice however, crystals
such at CaF2 do not provide us with an inert host. As discussed in the introduction, the act of
doping thorium into CaF2 results in crystal defects in the form of localized electronic states around
the thorium nuclei, termed color-center states. These states are believed to sit within the band gap
of the crystal [8, 22]. Their presence makes not only the direct nuclear excitation more difficult
but also the measurement of the nuclear decay via schemes such as NFS. This is because during
experiment there are additional parasitic signals coming form the electronic shell which are not
considered in NFS. The previous part of this dissertation covering NFS neglects the role of the
color-center states, and focuses on direct nuclear excitation alone. In this part, we are interested
in the use of color-center states for nuclear excitation via Electronic Bridge (EB). We will calculate
of the rate of excitation of the isomeric state via EB and compare it to rate of direct excitation.

In this chapter we will begin with a general treatment of EB theory and outline the non-
relativistic operators involved. In Chapter 5 we contrast the electronic wave functions of the crystal
environment with atomic wave functions of ions, both within the context of EB rate calculation.
We then apply for the first time the general EB formalism to thorium-doped crystals. Our results
for a variety of spontaneous and stimulated EB schemes are given in Chapter 6. EB will be shown
to provide a promising channel of excitation that exploits color-center states for the purpose of
nuclear excitation. Finally, Chapter 7 outlines the computational difficulties and approximations
related to calculation of EB rates within the crystal.

EB describes a process whereby the nucleus decays via transfer of energy to the electronic
shell with the emission of a photon. It is assumed that there is a mismatch between the nuclear
transition energy and the available electronic transitions. Note that in EB, the decaying nucleus
does not provide enough energy to cause ionization as is the case in IC [37, 80].

|i〉 |n〉 |f〉

|m〉 |g〉

|i〉 |n〉 |f〉

|m〉 |g〉

Figure 4.1: Electronic transition moves along single solid line from |i〉 → |n〉 → |f〉, and nuclear
transition moves along double solid line from |m〉 → |g〉. The initial, intermediate and final
electronic states are |i〉, |n〉 and |f〉 respectively. The nuclear isomeric and ground states are |m〉
and |g〉 respectively. The wiggly lines represent transfer of energy via photon.

The Feynman diagrams describing this process [38] are shown in Figure 4.1 where the electronic
state moves along the single solid line from initial state |i〉 to intermediate |n〉 to final |f〉, and
nuclear state moves along the double solid line from the isomeric |m〉 to the ground state |g〉. The
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wiggly lines represent photons. There are two Feynman diagrams differing in the order in which
the transition happens, i.e., first a transfer of energy between the nucleus and the electronic shell
or first the emission of a photon from the electronic shell. Moving from left to right in Figure 4.1
describes decay of the isomeric state. Both diagrams contribute to the EB process.

An alternative illustration of EB is given in Figure 4.2. The combined nuclear and electronic
system moves from its initial to final state (labeled “Start” and “Finish” respectively) via the two
possible paths corresponding to the two Feynman diagrams of Figure 4.1. The top and bottom
paths of Figure 4.2 correspond to the first and second Feynman diagrams of Figure 4.1. Following
the top path, upon the decay of the nucleus the electron is excited to a virtual state at the energy
of the nuclear transition, ωv − ωi ≡ ωvi = ωmg. This virtual state decays to a real electronic
state emitting a real photon of energy equal to the energy difference of the nuclear and electronic
transitions, ωp = ωmg−ωfi. Alternatively on the bottom path, the electron first decays to a virtual
state emitting a photon and is then excited to the final state via the decay of the nucleus.

Start

Elec.

e
|i〉

Nuc.

|g〉

|m〉

e
|i〉

|v〉

|g〉

|m〉 e

|f〉

|v〉

|g〉

|m〉

ωp = ωmg − ωfi

e
|i〉

|v〉

|g〉

|m〉

ωp = ωmg − ωfi
e

|f〉

|v〉

|g〉

|m〉

Finish

Elec.

e
|f〉

Nuc.

|g〉

|m〉

Figure 4.2: Illustration of nuclear decay via EB process. Both possible EB paths from Start to
Finish are shown. In the top path, the excited nucleus decays |m〉 → |g〉 passing its energy to an
electron which is excited to a virtual (dashed) state |i〉 → |v〉. The virtual electronic state then
decays to a real state |v〉 → |f〉 emitting a real photon. In the bottom path, first the electronic
state under goes decay emitting a photon and is then excited to the final state by the decaying
nucleus.

Following [38], provided the intermediate and final electronic states are of opposite parity, the
rate can be effectively described as an electric dipole (E1) transition. Thus, the outgoing photon
lines from the electronic shell in Figure 4.1 are E1 photons. As such the EB process can be described
by the amplitude of the electric dipole transition mediated by the nuclear transition from isomeric
state to ground state. The effective E1 bridge operator D̃E1 is given by,

〈g, f |D̃E1|m, i〉 =
∑
n

〈f |DE1|n〉〈g, n|Hint|m, i〉
εi + Em − εn − Eg + iΓn/2

+
∑
k

〈g, f |Hint|m, k〉〈k|DE1|i〉
εf + Eg − εk − Em + iΓk/2

(4.1)

where the states are denoted for example |m, i〉 = |m〉|i〉 where m represents the quantum numbers
defining the nuclear state (in this case the isomer) and i the quantum numbers of the electronic
state (in this case the initial state). The energy of the ith electronic state is εi, and the energy of
the nuclear isomer and ground states are Em and Eg respectively. The widths of the intermediate
states, Γn, are assumed small in comparison to the energies of the involved transitions and thus
are neglected.

Our units of choice for this section are atomic units with ~ = e = me = 4πε0 = 1 where
c ≈ 137, unless otherwise stated. The interaction Hamiltonian is given by separating the nuclear
and electronic components. In spherical basis, see Appendix A.11, we can write

Hint =
∑
λK,q

Mq
λKTλK,q =

∑
λK,q

(−1)qMλK,−qTλK,q (4.2)
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where MλK,q are the multipole nuclear moments and TλK,q the electronic coupling operators
with λ = (E,M) referring to the interaction type electric or magnetic, where K is the rank and
q = {K,K − 1, . . . ,−K} the spherical basis component. As a result the effective electric dipole
operator is,

〈g, f |D̃E1|m, i〉 =∑
λK,q

(−1)q

[∑
n

〈f |DE1|n〉〈n|TλK,q|i〉
ωin + ωN

+
∑
k

〈f |TλK,q|k〉〈k|DE1|i〉
ωfk − ωN

]
〈g|MλK,−q|m〉,

where ωin = ωi − ωn, ωfk = ωf − ωk and ωN = ωmg = ωm − ωg are transition energies between
the respective states. The two summations over intermediate states {n, k} correspond to the two
Feynman diagrams in Figure 4.1. It is these summations that contribute to the so called virtual
state |v〉. All states that take part are assumed to be unoccupied such that a transition, however
unlikely, could take place via these levels, i.e., occupied levels cannot be used. The contribution of
each term in the summation to the rate depends on the energy difference between these states as
seen in the denominators of the summands. If the electronic transition energy to the intermediate
state is far greater (ωin, ωfk) � ωN or far less (ωin, ωfk) � ωN than the nuclear transition, the
denominator becomes large and the intermediate state does not contribute significantly to the total
rate. Hence, the number of intermediate states must be increased until the matrix elements of the
effective electric dipole operator converge.

The decay rate of the EB process is given by,

ΓEB =
4

3

(ωp
c

)3 1

NmNi

∑
m,g,
i,f,q

|〈g, f |D̃E1,q|m, i〉|2,

where we sum over all possible intermediate and final states and average over initial states, and
Nm and Ni are the number of degenerate states in the set of nuclear {|m〉} and electronic {|i〉}
levels respectively. D̃E1,q are the spherical basis components of the effective electric dipole operator
where q = {1, 0,−1}. The energy of the emitted photon is given by ωp and depends on the energy
of the initial and final states of the electronic shell as well as that of the nucleus. In the case of
spontaneous decay of the isomeric state via EB, we require that ωN > ωfi and hence ωp = ωN−ωfi.
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Figure 4.3: Illustration of nuclear excitation via EB process. Both possible EB paths from Start
to Finish are shown. In the top path, the excited electron decays |i〉 → |v〉 exciting the nucleus
first |g〉 → |m〉 and then further decays |v〉 → |f〉 emitting a photon of energy ωp = ωif − ωmg. In
the bottom path, the electron decays by first emitting a photon and then exciting the nucleus.

Up until this point we have discussed the EB process in the context of a decaying nucleus. EB
can however be used for excitation of the nucleus provided we have initially excited an electron to
a bound state with energy larger than that of the nuclear transition. This is depicted in Figure
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4.3, where once again there are two EB paths corresponding to the two the Feynman diagrams in
Figure 4.1 with the nuclear states swapped in position |m〉 ↔ |g〉. In the top path, the electron
decays to a virtual state exciting the nucleus and then further decays to a real final state emitting
a photon with energy ωp = ωif − ωN . In the bottom path, the electron decays to a virtual state
emitting a real photon with energy ωp = ωif−ωN , and then further decay to a real state passing the
difference in energy, ωvf = ωmg, to the nucleus. To avoid clutter, all following figures will display
only one of these paths, however unless otherwise stated both contribute and are considered.

Both of these EB processes are spontaneous in that with the nucleus and electronic shell
prepared in the described initial states the processes require no additional energy to take place. This
being said, to differentiate the schemes while making note that we are discussing the spontaneous
EB process, we will refer to the direction of the nuclear transition involved. As such, Figure 4.2,
refers to spontaneous decay of the isomeric state via EB, and Figure 4.3, refers to spontaneous
excitation of the isomeric state via EB. It should be clear that both cases happen spontaneously
with a release of a real photon. The only difference is the direction of energy transfer, either from
the nucleus to the electronic shell or vice versa.

Rewriting the relevant equations we have first for spontaneous decay via EB

ΓspEB(g, f ;m, i) =
4

3

(ωp
c

)3 1

NmNi

∑
m,g,
i,f,q

|〈g, f |D̃E1,q|m, i〉|2, (4.3)

〈g, f |D̃E1|m, i〉 =
∑
λK,q

(−1)q

[∑
n

〈f |DE1|n〉〈n|TλK,q|i〉
ωin + ωN

+
∑
k

〈f |TλK,q|k〉〈k|DE1|i〉
ωfk − ωN

]
〈g|MλK,−q|m〉,

(4.4)

where the emitted photon energy is ωp = ωN − ωfi. Similarly, for spontaneous excitation via EB

ΓspEB(m, f ; g, i) =
4

3

(ωp
c

)3 1

NgNi

∑
m,g,
i,f,q

|〈m, f |D̃E1,q|g, i〉|2, (4.5)

〈m, f |D̃E1|g, i〉 =
∑
λK,q

(−1)q

[∑
n

〈f |DE1|n〉〈n|TλK,q|i〉
ωin − ωN

+
∑
k

〈f |TλK,q|k〉〈k|DE1|i〉
ωfk + ωN

]
〈m|MλK,−q|g〉,

(4.6)

where the emitted photon energy is now ωp = ωif − ωN . The notation used here is similar
to Sobelman [81]: Γζ(β, b;α, a) represents the transition rate from the nuclear state |α〉 with
electronic state |a〉 to that of nuclear state |β〉 and electronic state |b〉 via process ζ. The notation
can explicitly state if the process happens spontaneously (sp) or is stimulated (st) or requires
absorption (a) of photon with energy Eω coming from a source with power Pω and where ω = ωp.
By calculating the rate of the spontaneous process we can determine the rate of the stimulated
process or inverse process requiring absorption of an externally provided laser photon. This is done
using the following formula [81, p.204][82][37, p.40],

Γst(b; a) = Γsp(b; a)
4π3c2~2

E3
ω

Pω = Γsp(b; a)FωPω (4.7)

Γa(a; b) = Γsp(b; a)FωPωδ(b; a) (4.8)

where Γsp(b; a) is the rate of the spontaneous process from |a〉 → |b〉, Γst(b; a) is the rate of the
stimulated process from |a〉 → |b〉, and Γa(a; b) is the rate of the inverse absorption process from
|b〉 → |a〉. The spectral power of the laser source is Pω in W/(m2 Hz), with the required photon
energy Eω = ~ω, and δ(b; a) = Na/Nb is the ratio of number of levels in the sets {|a〉} vs {|b〉}. As
can be seen for example in (4.3) the rate is averaged over the number of initial nuclear and electronic
states, and hence Na = NmNi is the total degeneracy of the initial state of the combined nuclear
and electronic system. Therefore, δ takes into account the change in averaging when reversing the
process, i.e., change in degeneracy or change in number of levels considered for initial and final
states. Note that FωPωδ(b; a) is dimensionless. In this section all equations are in atomic units,
however here we chose to use SI and quote the powers in the more standard W/(m2 Hz). Energy
is still listed in eV but must be converted to J for use here or Hartree in the case of atomic units.

In the following section we will discuss application of these equations to EB in the crystal
environment along with the operators,MλK,−q TλK,q andDE1, required to calculate EB transition
rates.
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4.1 Operators

The operators of interest here are electric dipole (E1), as well and magnetic dipole (M1) electric
quadrupole (E2) coupling operators. The nuclear transition decays via both M1 and E2 channels
as shown in [3, 36]. Depending on the situation the higher multipolarity E2 transition may even
dominate and as such it cannot be ignored.

4.1.1 Nuclear operators

The absolute value of matrix elements of the nuclear transition operator are found using reduced
transition probabilities from [3] given as B↓ values in Weisskopf units

BW (M1,m→ g) = 0.0076 W.u., (4.9)

BW (E2,m→ g) = 27.04 W.u., (4.10)

which convert to usual units of µ2
N and e2(fm)4 respectively via [62],

B(M1,m→ g) = BW (M1,m→ g) · 1.790 · µ2
N , (4.11)

B(E2,m→ g) = BW (E2,m→ g) · 5.940 · 10−2 ·A4/3e2(fm)4, (4.12)

where A is the number of nucleons, µN = e~/(2mpc) is the nuclear magneton and fm = 10−15m.
In atomic units e = 1, µN = 1/(2mpc), mp ≈ 1836, c ≈ 137, fm ≈ 1.89 × 10−5. The reduced
nuclear matrix element is given by,

|〈Ig||MλK ||Im〉| =
√

4π(2Im + 1)

2K + 1
B(λK, Im → Ig), (4.13)

and the matrix element is then found with the use of the Wigner-Eckhart theorem [63],

|〈Ig,Mg|MλK,q|Im,Mm〉| =
(−1)Im−Mm

√
2K + 1

C
Ig Im K
Mg−Mm q 〈Ig||MλK ||Im〉. (4.14)

where I and M the total nuclear angular momentum and its projection quantum number respec-

tively, (Ig, Im) =
(

5
2

+
, 3

2

+
)

. Note also that,

BλK↑ =
2Im + 1

2Ig + 1
BλK↓ , (4.15)

where BλK↑ = B(λK, g → m), and BλK↓ = B(λK,m→ g).

4.1.2 Electronic operators

The most general form of EB was presented in the last section with no strict requirements placed
on the form of the nuclear and electronic wave functions. Current literature surrounding EB in
Th ions [35–38, 82, 83] use the relativistic formalism of the electronic states. Here as a first
approximation of EB in thorium-doped crystals, non-relativistic wave functions will be used. This
is due to the increased complexity of generating wave functions in the crystal, which will be done
using Density Functional Theory (more on this in Chapter 5). In this section we will outline the
operators required for this non-relativistic treatment.

Let {|β〉}, be our set of non-relativistic electronic wave functions, where β represents all of the
quantum numbers that define the state, apart from the spin31. These are only functions of spatial
variables, thus each of these wave functions can define a spin up or down electron and therefore
spin sub-states are degenerate. To introduce the spin |β,ms〉 we define,

ψ↑β(r) = |β〉| 12 〉 = |β〉
(

1
0

)
, ψ↓β(r) = |β〉| − 1

2 〉 = |β〉
(

0
1

)
. (4.16)

The matrix elements of electronic operators will therefore be given below in the form 〈ms|OλK,q|m′s〉
where the spin component is solved. In this form they are ready to act directly on non-relativistic
wave functions of spatial variables only.

31For example, in the case of eigenstates of orbital angular momentum we have |β〉 = |n, l,ml〉, or in the case of states
defined only by energy |β〉 = |E〉.
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Electric dipole operator

DE1 = −r (4.17)

The electric dipole operator does not act on spin, therefore we can easily write this in the spherical
basis with the spin component solved giving,

〈ms|DE1,1|m′s〉 =
1√
2

(x+ iy)δmsm′s =
1√
2

(r sin θ cosφ+ ir sin θ sinφ)δmsm′s (4.18)

〈ms|DE1,−1|m′s〉 = − 1√
2

(x− iy)δmsm′s = − 1√
2

(r sin θ cosφ− ir sin θ sinφ)δmsm′s (4.19)

〈ms|DE1,0|m′s〉 = −z δmsm′s = −r cos θ δmsm′s . (4.20)

Magnetic dipole coupling operator

The Hamiltonian we are interested in describes the interaction of the nucleus with the electron
shell. As such we can model this as an electron in the field created by the nucleus. In the case of
M1 transitions, this is simply the hyperfine interaction Hamiltonian where the matrix element of
the nuclear transition 〈g|MλK,q|m〉 is non-diagonal allowing for nuclear transitions.

The relativistic treatment can be found in [84, p.137] starting with the interaction Hamiltonian,

H = eφ− ecα ·A, (4.21)

where A and φ are the vector and scalar potentials respectively. A more general treatment can
also be seen in [37, 38].

As discussed earlier, we will be making the non-relativistic approximation. To do so we begin
with the relativistic Hamiltonian of a Dirac particle in an electromagnetic field. In Gaussian units
we follow [85, p.124] and [86, p.171], see also [87, 88] [61, p.1025].

H = cα ·
(
p+ e

cA
)
− eφ+ βmec

2, (4.22)

where β =
(
1 0
0 −1

)
, α = ( 0 σ

σ 0 ), σ = (σx, σy, σz) are the Pauli matrices and p is the momentum

operator. Acting on the relativistic wave function
(
ψ̃L
ψ̃S

)
where ψ̃L and ψ̃S are the large and small

components we have,

i~
∂

∂t

(
ψ̃L
ψ̃S

)
= cα ·

(
p+ e

cA
)(ψ̃L

ψ̃S

)
− eφ

(
ψ̃L
ψ̃S

)
+ βmec

2

(
ψ̃L
ψ̃S

)
,

now separating out the rest energy
(
ψ̃L
ψ̃S

)
=
(
ψL
ψS

)
e−i(mec

2/~)t gives,

i~
∂

∂t

(
ψL
ψS

)
= c(σ ·Π)

(
ψS
ψL

)
− eφ

(
ψL
ψS

)
+mec

2

(
ψL
−ψS

)
−mec

2

(
ψL
ψS

)
,

= c(σ ·Π)

(
ψS
ψL

)
− eφ

(
ψL
ψS

)
− 2mec

2

(
0
ψS

)
,

where Π = p+ e
cA. Focusing on the small component equation,

i~
∂

∂t
ψS = c(σ ·Π)ψL − eφψS − 2mec

2ψS ,

ψS
non−rel.

=
σ ·Π
2mec

ψL.

In the non-relativistic approximation the kinetic energy and potential energy are small compared
to the rest energy, |eφψS | � |mec

2ψS | �
∣∣i~ ∂

∂tψS
∣∣ [85, p.124]. Then for the large component we

have,

i~
∂

∂t
ψL =

(σ ·Π)(σ ·Π)

2me
ψL − eφψL,

and can write the non-relativistic Hamiltonian32 as,

H
non−rel.

=
1

2me

(
p+ e

cA
)2

+
e~

2mec
σ ·B − eφ. (4.23)

32Known as the Pauli equation.
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Considering now only the magnetic interaction, we drop the electric interaction term eφ to be
covered later, and the kinetic energy term p2/(2me) leaving,

Hmag =
e

2mec
(p ·A+A · p) +

e~
2mec

σ ·B,

=
e

mec

l · µI
r3

+
e~

2mec
σ ·B,

where the vector potential due to the nuclear magnetic dipole moment is A = µI × r/r3, the
orbital angular momentum of the electron is l = r × p = −i~r ×∇ and for first-order calculation
we have neglected terms quadratic in A [86, p.171].

The magnetic field, B, is due to the nuclei’s magnetic dipole moment, given by [53, p.188]

B(r) =

[
−µI
r3

+
3r(r · µI)

r5
+

8π

3
µIδ(r)

]
, (4.24)

which results in the magnetic interaction Hamiltonian [86, p.171] [61, p.258],

Hmag =
2µB
~

[
l · µI
r3

+ s ·B
]
,

=
2µB
~
µI ·

[
l

r3
− s

r3
+

3r(s · r)

r5
+

8π

3
sδ(r)

]
, (4.25)

where s = ~
2σ, µB = e~/2mec. Writing the nuclear magnetic dipole moment in tensor notation

µI = MM1 allows us to deal with transitions, where the interaction matrix element is given by

〈f, g|Hmag|m, i〉 =
2µB
~

〈g|MM1|m〉 · 〈f |
[
l

r3
− s

r3
+

3r(s · r)

r5
+

8π

3
sδ(r)

]
|i〉. (4.26)

The nuclear part was already discussed earlier, so we now concentrate on the electronic part,

T M1 =
2µB
~

[
l

r3
− s

r3
+ 3

r(s · r)

r5
+

8π

3
sδ(r)

]
. (4.27)

Converting to our units of choice, atomic units ~ = e = me = 4πε0 = 1 and c ≈ 137, yields the
final result

T M1 =
1

c

[
l

r3
− σ

2r3
+ 3

r(σ · r)

2r5
+

8π

6
σδ(r)

]
. (4.28)

We then write the vector components in the spherical basis, see Appendix A.11. Starting with
the orbital angular momentum,

l = −ir ×∇ (4.29)

= −ir ×
(
r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ

)
(4.30)

= −i
(
φ̂
∂

∂θ
− θ̂

sin θ

∂

∂φ

)
(4.31)

lx = x̂ · l = i

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
(4.32)

ly = ŷ · l = i

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
(4.33)

lz = ẑ · l = −i ∂
∂φ

(4.34)

we construct the spherical basis

l+ = − 1√
2

(lx + ily) = − e
iφ

√
2

(
∂

∂θ
+ i cot θ

∂

∂φ

)
(4.35)

l− =
1√
2

(lx − ily) =
e−iφ√

2

(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
(4.36)

l0 = lz = −i ∂
∂φ
. (4.37)
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Moving on now to the Pauli matrices σ = (σx, σy, σz)

σx =

(
0 1
1 0

)
, 〈ms|σx|m′s〉 = 1− δms,m′s , (4.38)

σy =

(
0 −i
i 0

)
, 〈ms|σy|m′s〉 = 2im′s(1− δms,m′s), (4.39)

σz =

(
1 0
0 −1

)
, 〈ms|σz|m′s〉 = 2m′sδms,m′s , (4.40)

we convert them to spherical basis components giving,

σ+ = − 1√
2

(σx + iσy) = −
(

0
√

2
0 0

)
, 〈ms|σ+|m′s〉 = −

√
2δms,m′s+1, (4.41)

σ− =
1√
2

(σx − iσy) =

(
0 0√
2 0

)
, 〈ms|σ−|m′s〉 =

√
2δms,m′s−1, (4.42)

σ0 = σz =

(
1 0
0 −1

)
, 〈ms|σ0|m′s〉 = 2m′sδms,m′s . (4.43)

Considering the second term of T M1,

3
r(σ · r)

2r5
=

3r

2r5
(σxx+ σyy + σzz), (4.44)

=
3r

2r4
(σx sin θ cosφ+ σy sin θ sinφ+ σz cos θ), (4.45)

〈ms|3
r(σ · r)

2r5
|m′s〉 =

3r

2r4

[
(1− δms,m′s)e2m′siφ sin θ + 2m′sδms,m′s cos θ

]
. (4.46)

In a spherical basis r = (r+, r−, r0) [61, p.203],

r+ = − 1√
2

(x+ iy) = − 1√
2

(r sin θ cosφ+ ir sin θ sinφ), (4.47)

r− =
1√
2

(x− iy) =
1√
2

(r sin θ cosφ− ir sin θ sinφ), (4.48)

r0 = z = r cos θ. (4.49)

The magnetic-dipole coupling-operator in the spherical basis that acts on the spatial compo-
nents of wave functions is then,

〈ms|TM1,+1|m′s〉 =
1

c

[
l+δms,m′s

r3
+
δms,m′s+1√

2r3
+

3r+

2r5
〈ms|σ · r|m′s〉 −

8π

3
√

2
δms,m′s+1δ(r)

]
, (4.50)

〈ms|TM1,−1|m′s〉 =
1

c

[
l−δms,m′s

r3
− δms,m′s−1√

2r3
+

3r−
2r5
〈ms|σ · r|m′s〉+

8π

3
√

2
δms,m′s−1δ(r)

]
, (4.51)

〈ms|TM1,0|m′s〉 =
1

c

[
l0δms,m′s

r3
− m′sδms,m′s

r3
+

3r0

2r5
〈ms|σ · r|m′s〉+

8πm′s
3

δms,m′sδ(r)

]
. (4.52)

See Appendix A.12 for further details on the computation of these matrix elements.

Electric quadrupole coupling operator

The E2 transition operator is given by [89]

TE2,q = − 1

r3

√
4π

5
Y2,q(θ, φ) (4.53)

〈ms|TE2,q|m′s〉 = − 1

r3

√
4π

5
Y2,q(θ, φ)δmsm′s (4.54)
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where q ∈ (−2,−1, 0, 1, 2) and Y2,q ar the spherical harmonics given explicitly by,

Y2,−2(θ, φ) =
1

4

√
15

2π
e−2iφ sin2 θ, (4.55)

Y2,−1(θ, φ) =
1

2

√
15

2π
e−iφ sin θ cos θ, (4.56)

Y2,0(θ, φ) =
1

4

√
5

2π
(3 cos2 θ − 1), (4.57)

Y2,1(θ, φ) = −1

2

√
15

2π
eiφ sin θ cos θ, (4.58)

Y2,2(θ, φ) =
1

4

√
15

2π
e2iφ sin2 θ. (4.59)

4.1.3 Order of computation

Now that we have an understanding of the EB rate equations as well as the operators involved
we can discuss how the computation of rates is carried out. First, matrix elements are calculated
for all operators involved in the process. Starting with the nuclear transition matrix elements,
here only the reduced transition probabilities B↓ are required. From these the nuclear transition
matrix elements for decay |〈IgMg|MλK,q|ImMm〉| and excitation |〈ImMm|MλK,q|IgMg〉| are given
directly with (4.14), and the result is a matrix of size (2Ig + 1)× (2Im + 1) or (2Im + 1)× (2Ig + 1)
respectively, one element for each possible transition.

Using the set of single-component non-relativistic wave functions {|β〉}, the spin is introduced
|β,ms〉 using (4.16) , where operators have been given in the form 〈ms|OλK,q|m′s〉 in the above
sections. The final form of the transition operators is thus obtained via,

〈f |OλK,q|i〉 = 〈β,ms|OλK,q|β′,m′s〉 =

∫
ψ∗β〈ms|OλK,q|m′s〉ψβ′r2 sin θ dr dθ dφ. (4.60)

For our purposes the entire matrix is usually needed. As such this generates matrices with dimen-
sion 2N × 2N where there are 2N wave functions in the set

{|β,ms〉} = {|β1,
1
2 〉, |β1,− 1

2 〉, . . . , |βN , 1
2 〉, |βN ,− 1

2 〉}. (4.61)

For computational purposes, this is broken into real and imaginary components, considering the
matrix element 〈ψ|O|φ〉

〈ψ|O|φ〉 = 〈<ψ|<O|<φ〉 − 〈<ψ|=O|=φ〉+ 〈=ψ|<O|=φ〉+ 〈=ψ|=O|<φ〉
+i (〈<ψ|<O|=φ〉+ 〈<ψ|=O|<φ〉 − 〈=ψ|<O|<φ〉+ 〈=ψ|=O|=φ〉) (4.62)

where the operator and wave functions are complex. This is done for all electronic operators of
interest. In our case this results in three matrices representing DE1,q where q = {1, 0,−1}, three
matrices for TM1,q where q = {1, 0,−1}, and five matrices for TE2,q where q = {2, 1, 0,−1,−2}.

Generating these large matrices is the most computationally expensive part of the EB rate
calculation. Once this is done all matrices can be saved and different EB processes can be calcu-
lated. This is done by first determining the bridge scheme one is interested in, and defining the
set of initial and final states of the nucleus and electronic shell. From this information matrix
elements of the effective bridge operator, (4.4) or (4.6) for the spontaneous decay or excitation
process respectively, can be calculated and then the rate can be directly found via (4.3) and (4.5)
respectively.
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Chapter 5

EB in Thorium-doped crystals

In the last chapter, EB was discussed for a general system made up of a nucleus and surrounding
electrons. In this work, we are interested in thorium-doped crystals and in the crystal environment
we do not deal with electrons in atomic orbitals but rather energy bands. These are states of
valence electrons in the crystals unit cell, i.e., electronic ground states and excited states such as
those of the crystals conduction band. Some of these electronic states are localized tightly around
thorium (resembling atomic orbitals) and others have their origin elsewhere in the crystal’s unit cell
or may not even have an origin. Furthermore, due to lack of rotational and reflection symmetry33

the wave functions of electrons in the crystal environment are not necessarily eigenstates of either
angular momentum or parity. They are only defined by their energy and hence the set of these wave
functions is given by {|En〉}, where n denotes the level numbering. We therefore define nuclear
decay via EB in the crystal as a process whereby the nucleus of interest decays by transfer of
energy to a valence electron in the crystals units cell accompanied by the emission of a photon. In
the present chapter we will first discuss calculation of electronic wave functions for thorium-doped
crystals followed by the application of EB theory to the crystal environment.

Electronic wave functions in the crystal

The electronic wave functions used for this section were calculated by Martin Pimon, who works
in the group of Peter Mohn at the Technische Universität Wien, using Density Functional Theory
(DFT) within the Vienna Ab initio Simulation Package (VASP) for which they specialize [22, 90].
The specific method used to calculate the wave functions involved here is called the Projector
Augmented Wave Method (PAW) described in [91] along with its implementation in VASP given
in [92].

To gain a general understanding of DFT terminology without its many intricacies, we present
a brief outline of the Kohn-Sham (KS) equations which lay at its core. Kohn and Sham in [93]
introduced a self-consistent method to solve a system of non-interacting electrons with an effective
potential which results in the correct electron density of the same system of interacting electrons.
Following [94, p.142], the single electron KS equation34 is given by[

−1

2
∇2 + veff (r)

]
ψn = Enψn, (5.1)

where ψn and En are the N lowest single electron eigenstates and eigenvalues, and the wave
functions are orthonormal ∫

ψ∗n(r)ψm(r) dr = δnm. (5.2)

The total electron density is given by

ρ(r) =

N∑
n=1

∑
s

|ψn(r, s)|2, (5.3)

The KS effective potential is

veff (r) = v(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
= v(r) +

∫
ρ(r′)
|r − r′| dr

′ + vxc(r), (5.4)

33Different from the case involving ions.
34Single electron Schrödinger equation with effective KS potential.
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where v(r) is the potential due to the nuclei as well as any externally applied potential, J [ρ] =
1
2

∫∫ ρ(r)ρ(r′)
|r−r′| dr dr′ is the classical electron-electron repulsion energy and vxc(r) = δExc[ρ]

δρ(r) the so-

called exchange-correlation potential. The system is solved by giving an initial guess of ρ(r) from
which the effective potential can be found via (5.4). Inputting this in the KS equation (5.1) gives
a new prediction of the single electron wave functions which in turn give the new density using
(5.3). This iterative nature depicted in Figure 5.1 is what makes the calculation self-consistent.

ρ(r) veff (r)

KSψi(r)

Figure 5.1: Self-consistent method via Kohn-Sham equations. Given an initial guess of ρ(r) the
effective potential can be found via (5.4), inputting this in the KE equation (5.1) gives a new
prediction of the single electron wave functions from which the new density is found using (5.3).

Once the predicted density and therefore energy converges within the set bounds the calculation
is finished. The total energy of the system is written as

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +

∫
ρ(r)v(r) dr (5.5)

where

Ts[ρ] =

N∑
n=1

∑
s

ψ∗n(r, s)

(
1

2
∇2

)
ψn(r, s), (5.6)

is the KS kinetic energy and Exc[ρ] is the exchange-correlation functional. It is in the definition
of the exchange-correlation functional where all the details of DFT are hidden. This is because
to solve the KS equations, Exc[ρ] is the only unknown and therefore the only approximation.
The mathematical form Exc[ρ] remains an intense field of research since the KS method was first
proposed, and the resultant research is some of the most cited work in physics today [95].

For further calculations using these wave functions, it is important that they are (1) numerically
orthonormal and (2) the energies of the wave functions are properly calculated. Unfortunately,
in our case these two properties are not an easy task computationally. Orthonormality of the
generated wave functions is a required condition in PWA and thus will be numerically orthonormal
provided there is sufficient sampling in the three-dimensional space for which the wave functions
are defined, more on this in Chapter 7.

Unfortunately, it is well known [8] that DFT methods do not accurately predict the energy
of the calculated states. Our crystal of interest CaF2 has an experimentally measured band gap
in the region of 11 − 12 eV [64–66] which we approximate as 11.5 eV. As a result, the energies
predicted by DFT and the PAW method are scaled to match this band gap value at 11.5 eV. In
the case of the two exchange-correlation functionals PBE (Perdew-Burke-Ernzerhof) [96] and HSE
(Heyd-Scuseria-Ernzerhof) [97] used here, all energies are scaled by a multiplicative factor of 1.54
and 1.18 respectively. This is the simplest method of scaling and the only one available to us
without further experimental measurements.

Calculations suggest that doping thorium into CaF2 results in localized thorium states, called
color-center states, within the band gap of the crystal [8, 22]. The term color-center is given to a
wide range of impurities in crystals, both natural and laser induced. For crystals these impurities
can act to provide an otherwise transparent crystal with “color” by absorbing light in a given
wavelength range [23]. We can view doping thorium into CaF2 as the introduction of defects and
as such will refer to it as a color-center [8, 24]. At this time, there are no experimental energy
measurements of the color-center states in 229Th:CaF2. Therefore, it is unclear if the energy of
thorium states sitting within the band-gap scale linearly with all other states. This is however the
simplest option and its consequences will be discussed further in Section 6.4.

The unit cell chosen has 66 fluorine, 31 calcium and a single thorium nucleus, where periodic
boundary conditions are applied to the unit cell. The unit cell has approximate dimensions of
(10 Å)3 which corresponds to a dopant density of N = 10−3 Å−3 = 1021 cm−3. This concentration
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Figure 5.2: Energy of single electron states calculated using PBE and HSE functionals respectively.
PBE and HSE energies are scaled by a multiplicative factor of 1.54 and 1.18 respectively, to match
the experimentally determined CaF2 band gap of 11.5 eV. color-center states |c〉 corresponding to
band numbers {361− 368} are circled.

is larger than the expected experimental densities in the range of 1016 − 1018 cm−3. This size was
chosen to decrease computation times. The current calculation uses 98 nuclei. To get to a dopant
density to 1016 cm−3 we would require ≈ 9.8 × 106 nuclei which is not computationally feasible.
Even still, calculations using several hundred nuclei can be an aim for future work.

We can divide the states of interest into three groups, depicted in Figure 5.3. The first being
electronic ground states of the valence electrons in the unit cell of which there are 360, denoted
|o〉 = {1, . . . , 360}. State 360 is the highest occupied level in the ground state also called the Fermi
edge which is taken as 0 eV. Each energy state is spin-degenerate, thus state 360 is made up of
two levels |360〉 → |360〉|ms〉 → |360↑,↓〉. Then there are the localized excited thorium color-center
states of which there are eight, denoted |c〉 = {361, . . . , 368}, and finally there are conduction band
states which begin at band 369 and increase in energy and decrease in energy spacing until the
continuum, denoted |b〉 = {369, . . .}. Each of these states are spin-degenerate.

Elec.

|o〉
Electronic ground states

|b〉 Conduction band

|c〉
Color-center states

e

Nuc.

|g〉

|m〉

Nuc. ground

Nuc. isomer

Figure 5.3: Fixed notation for the nuclear and electronic levels. The ground and isomeric states of
the nucleus are |g〉 and |m〉 respectively. The electronic ground states are given by |o〉, electronic
color-center states within the band-gap of the crystal by |c〉 and the conduction band shown by
the slashed box by |b〉.

The predicted energies of each level depend on the functional used, however as stated above
are scaled to match the experimental band gap of CaF2. Once scaled, each functional should
agree for us to be confident in the calculated energies. The scaled energies of the two methods
are shown in Figure 5.2 where the eight color-center states denoted |c〉 are circled and correspond
to bands 361− 368. The ground and conduction band states differ on the order of 0.1 eV for the
bands plotted, where as the color-center states differ on the order of 1 eV. PBE color-center is
at an average energy of 9.9 eV, or 1.6 eV above the isomer, and the HSE color-center is at an
average energy of 10.5 eV, or 2.2 eV above the isomer. The energy width of the PBE and HSE
color-centers are 0.6 eV and 1.1 eV respectively. As such we cannot be confident in the location of
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the color-center states until further theoretical and experimental work is carried out.
The electron densities of the color-center states which are localized around the thorium nucleus

are seen in Figure 5.4. Electron density of color-center wave functions are labeled 361 → 368
corresponding to increasing energy and the band numbering seen in Figure 5.2. Each image is
shown at the same magnification, and corresponding PBE and HSE wave functions, denoted by
“↔”, are shown from the same viewpoint. Moving down the column the viewpoint changes. All
functions were individually scaled to unity and so do not share the same max and min values.
These images are intended to give an qualitative idea of the spatial structure. In the case of PBE
functions 364 and 367, two different scalings where used to demonstrate the less obvious shape.
The right most image is scaled to unity and displays the highest density sections. In the left
most image a cutoff value was chosen such that the high density sections did not dominate the
image and the lower density structure could be seen. PBE functions are matched with the closest
corresponding HSE function and the pair are shown from the same viewpoint. There are some
visual similarities to f-type atomic orbitals, however skewed by the crystal environment. Visually
comparing the color-center electron density calculated using the two functionals shows some clear
similarities, although there are no exact matches and the ordering in energy is not the same. Further
investigation of these and other functionals must carried out to gain a better understanding of the
color-center states. All calculations of bridge processes will strongly depend on the energy of the
states involved and the form of the wave functions as seen in equations (4.3)-(4.6) . Based on the
above it should be clear that the values of rates given here serve to demonstrate the feasibility of
the EB schemes discussed in the following sections. More accurate rates can be calculated pending
further experimental and theoretical investigation.

Application to the Electronic Bridge

Now that we have an understanding of the form of the wave functions we will be using we can
adjust our mathematical view of EB to the crystal environment. Recall that our electronic wave
functions are not eigenstates of either angular momentum or parity. Furthermore, in the crystal
environment we will not be targeting a specific transition but rather an averaged transition between
sets of non-degenerate electronic levels35. With this in mind we can rewrite equations (4.3) and
(4.5) as follows36

ΓspEB(g, f ;m, i) =
4

3

1

NmNi

∑
m,g,
i,f,q

(
ωN − ωfi

c

)3

|〈g, f |D̃E1,q|m, i〉|2, (5.9)

where Nm and Ni are the number of initial nuclear and electronic states in the sets {|m〉} and
{|i〉} respectively that take part in the process. Each set of electronic states in the crystal is not
degenerate, therefore the emitted photon energy is not a constant. This is why the emitted photon
energy ωp has been moved within the summation. Similarly, for spontaneous excitation of the
nucleus via EB

ΓspEB(m, f ; g, i) =
4

3

1

NgNi

∑
m,g,
i,f,q

(
ωif − ωN

c

)3

|〈m, f |D̃E1,q|g, i〉|2. (5.10)

The effective electric dipole operators are still given by (4.4) and (4.6) respectively, where all
operators outlined in the last chapter apply to the crystal as well with no modification. In the
context of the thorium-doped crystals, the intermediate summations seen in (4.4) and (4.6) are
once again over all unoccupied states. This includes the ground, color-center, conduction band

35Note that although these wave function sets are non-degenerate, the energy spacing between levels in a set is smaller
than the total energy width of the set which will be . 0.5 eV.

36The bridge rates studied here are that of the effective E1 bridge operator. One could also construct an effective M1
bridge written here for nuclear decay in the crystal [81, p.225],

Γ
sp
EB(g, f ;m, i) =

1

3c5
1

NmNi

∑
m,g,
i,f,q

(ωN − ωfi)3|〈g, f |M̃M1,q|m, i〉|2, (5.7)

〈g, f |M̃M1|m, i〉 =
∑
λK,q

(−1)
q

[∑
n

〈f |MM1|n〉〈n|TλK,q|i〉
ωin + ωN

+
∑
k

〈f |TλK,q|k〉〈k|MM1|i〉
ωfk − ωN

]
〈g|MλK,−q|m〉,

(5.8)

where MM1 = l+ 2s is the the is the magnetic dipole operator with l = −r ×∇ the orbital angular momentum operator
and s the spin operator. This rate is hampered by the extra factor 1/c2 and is thus assumed negligible when compared to
the E1 rate.
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?↔ 361

365
?↔ 363

366 ↔ 367

367 ↔ 366
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Figure 5.4: Electron density of color-center wave functions labeled 361 → 368 corresponding to
increasing energy. Each image is shown at the same magnification but differing viewpoints to
show the structure more clearly. PBE functions are matched with the closest corresponding HSE
function and viewed from the same location. The “?” stands for cases where identification is not
clear.
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and unbound free states. The number states included in these intermediate summations must be
increased until the rate converges.

Lastly, because the emitted photon energy is not a constant, the laser photons required for
stimulated emission and absorption processes do not have an individual energy but rather the
laser used must have a linewidth that overlaps the required energy range. The linewidth required
will depend on the total energy width of the levels in the initial and final sets of electronic states
{|i〉} and {|f〉} respectively. Of course if a narrower linewidth is used only a fraction of the
electronic levels will take part in the stimulated or driven processes. There is thus an interplay
between broadband excitation addressing more levels with less power per level, and narrowband
excitation exciting a specific level with large power. This will be discussed further in the following
sections.
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Chapter 6

Excitation of the nuclear isomer

There are a variety of excitation schemes that one can investigate depending on the lasers/radiation
sources available as well as the electronic and nuclear level structure in question. Before discussing
these options, recall the notation for the nuclear and electronic levels is shown in Figure 5.3.
The set of ground and isomeric states of the nucleus are given by {|g〉} and {|m〉} respectively.
The electronic ground states of valence electrons are given by {|o〉} the electronic color-center
states within the band-gap of the crystal {|c〉} and the conduction band levels {|b〉}. Notation
introduced earlier will also be used such as |i〉 for initial |f〉 for final and |v〉 for virtual electronic
states, however the corresponding states change depending on the scheme of interest. Note that
each of these states is actually made up of a cluster of states as shown in the Chapter 5. In the
case of the nuclear states we assume that all (2I + 1) magnetic sub-states are degenerate as the
quadrupole splitting, of the order 10−6 eV, is far less than the energy difference of the electronic
levels considered. The spin sub-states, i.e., spin up and spin down, of the electronic states that
make up the color-center |c〉, ground state |o〉 and conduction band |b〉 are degenerate.

In the following sections we will discuss first the direct excitation rate of the nuclear isomeric
state and color-center states independently. These values will then be used to compare with rates
achieved using a variety of EB schemes. In addition to calculation of excitation rates, we also
discuss the steady state occupation probability of the isomeric state as a rough measure of how
successful the excitation scheme is.

6.1 Direct photoexcitation

Before considering transition rates due to EB processes, it is helpful to consider the direct excitation
rates of (1) the nucleus and (2) electron shell independently. These will be considered here first,
to be compared with the EB process in the following pages.

|i〉 |f〉
e

|g〉

|m〉

|i〉

|f〉

e
|g〉

|m〉

Figure 6.1: Direct photoexcitation of the nuclear isomer (Left) and electronic color-center (Right)
states respectively. Here |i〉 is the initial state of the electron on the Fermi edge, |f〉 the final
electronic state which is equal to |i〉 in the first case and the color-center state in the second case.
Higher slashed states are that of the conduction band. |g〉 is the ground state of the thorium
nucleus, and |m〉 the nuclear isomeric state.
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(1) The direct photoexcitation rate of the isomer can be found by considering its spon-
taneous radiative decay rate, Γspγ (g;m) ≈ 10−4 s−1. This rate considers no interaction with
electrons in the shell. To consider the driven inverse process, i.e., excitation, we make use of
the equation (4.8)

Γaγ(m; g) = Γspγ (g;m)FωPωδ(g;m), (6.1)

where δ(g;m) = (2Im + 1)/(2Ig + 1) = 2/3 is the ratio of degeneracy of the initial and final
states for the Γspγ (g;m) decay process. The required photon energy Eω = 8.3 eV is that of
the isomeric state. Thus, all elements of this equation are given except that of the power of
the excitation source.

From here we can write the steady state occupation probability. This is the same as the
density matrix treatment used for NFS where ρa corresponds to ρaa, i.e. the diagonal elements
of the density matrix in the notation used in Part I. of the isomeric state if driven directly
with photons of matching energy. Excitation, spontaneous emission and stimulated emission
are considered,

ρ̇m = ρgΓ
a
γ(m; g)− ρm(Γspγ (g;m) + Γstγ (g;m)) (6.2)

where ρg = 1− ρm. Taking the steady state solution ρ̇m = 0,

ρm =
Γaγ(m; g)

Γspγ (g;m) + Γstγ (g;m) + Γaγ(m; g)
=

FωPωδ(g;m)

1 + FωPω[δ(g;m) + 1]
. (6.3)

Thus for large power Pω the occupation probability of the isomeric state can be as high as
ρm ≈ 2/5.

The experimental group working on 229Th:CaF2 is lead by Thorsten Schumm at the Tech-
nische Universitt Wien. For excitation in the crystal environment Schumm’s group currently
uses a broad band VUV lamp described in [10] with N ≈ 3 photons/s/Hz, a focus of f = 0.5
mm2 which gives Pω = NEω/f ≈ 10−11 W/(m2 Hz) and a FWHM linewidth of ≈ 0.5 eV.
This gives a direct excitation rate of

Γaγ(m; g) ≈ 4× 10−11 s−1, (6.4)

and a steady state isomeric occupation probability of

ρm ≈ 4× 10−7, (6.5)

which could be reached in τ ≈ ρm/Γaγ(m; g) = 104 s−1.

(2) The direct photoexcitation rate of the color-center states can be calculated in a two
step process. First, the spontaneous decay rate of the color-center states to ground states is
calculated using the equation [98, p.300] [84, p.171],

ΓspE1(o; c) =
4

3

1

Nc

∑
i,f,q

(ωif
c

)3

|〈of |DE1,q|ci〉|2, (6.6)

where the spontaneous decay is approximated by transition via the E1 channel. Here ωif =
ωci − ωof is the emitted photon energy given by the difference in energy of the initial |ci〉
and final |of 〉 states, Nc is the number of initial states |ci〉 in the decay process, and DE1,q

is the electric dipole operator, not to be confused with the effective electric dipole operator
as used for the bridge calculation. Note that ωif is not fixed here due to the color-center
and electronic ground states not being degenerate in energy. For the reverse process, i.e.
excitation, ωif will be the photon energy required. We assume here that the laser/excitation
source used to populate the color-center overlaps the entire color-center, i.e. the 0.5 eV lamp
outlined above. In this case, we do not know which level the electron is excited to. As such in
the decay process we average over all possible color-center states, seen by the 1/Nc in (6.6).

A plot of the decay rate from the complete set of color-center states {|c〉} to a individual
electronic ground state |of 〉 is shown in Figure 6.2 for both HSE and PBE wave functions.
The energy of the states differ between PBE and HSE calculations. An equal number of
ground states were chosen in both cases to investigate. The energy of the ground states
ranged from {0 → −0.63} eV in the case of PBE and {0 → −0.51} eV for HSE. Ground
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Figure 6.2: Spontaneous decay rate of the color-center states |c〉 to individual ground states |of 〉
at energies Ef .

states up to ≈ 0.5 eV below the Fermi edge were first considered due to the linewidth of
the lamp currently used in the group of Schumm. Spontaneous decay rates to these states
ranged from ΓspE1(of ; c) = {0.2→ 6.2× 106} s−1.

The rate of the inverse process i.e., the excitation ΓaE1(c; o) depicted in Figure 6.1, is calcu-
lated using (4.8) where the power of the laser is required and δ(o; c) = Nc/No. As we are
only considering a single electron transition, at any given moment only one of the electronic
ground states is excited to the color-center, and all other ground states are occupied. The
rate of excitation from a given state is proportional to the decay rate to that state, as seen
in (4.8). Therefore, the dominant contribution to the excitation rate from the set of ground
states to the set of color-center states {|o〉} → {|c〉} will come from the ground state with
largest rate shown in Figure 6.2, provided the laser/excitation source overlaps the transition.
The largest decay rates presented in Figure 6.2 are all of the same order, thus the average
excitation rate from an individual ground state will be of the same order as well. Hence,
we approximate the EB rates in the following by considering only one of these energy levels.
For this, we will consider the highest occupied the spin-degenerate ground state level at the
Fermi edge, 0 eV37.

With the average energy of the color-center states as Eω = Ēco ≈ 10 eV, we can estimate
the excitation rate for Schumm’s above outlined VUV lamp,

ΓaE1(c; o) = ΓspE1(o; c)FωPωδ(o; c) ≈ 7 s−1, (6.7)

where δ(o; c) = 8 as there are eight spin-degenerate color-center states and only a single
spin-degenerate ground state.

6.2 A: EB starting in the electronic ground state

In the following we consider our first EB scheme labeled A and depicted in Figure 6.3. The color-
center states are assumed to be higher in energy than the isomer. With both the nucleus and
the electronic shell in their respective ground states, a laser of energy ωp = ωN − ωfi is used to
drive the EB process. The EB process can be thought of as the electron undergoing a transition
from the ground state to a virtual state |v〉, with the input of an laser photon at the energy of
the nuclear transition, and upon its decay back to the electronic ground state passes the energy to
the nucleus, causing its excitation to the isomeric state. In this scheme, both the initial and final
electronic states belong to the set of electronic ground state levels {|o〉}. This set is approximated
by the spin-degenerate state at 0 eV, as discussed earlier. In this approximation, ωfi = 0, however
if other ground states are used this is not necessarily true.

To calculate the excitation rate of the isomer we first determine the rate of the inverse process,
which is found by reversing process seen in Figure 6.3. This is achieved by swapping the initial
and final state of both the electron and nucleus, and reversing the direction of all arrows including
that of the photon (i.e. the photon is emitted not absorbed). The inverse is then a spontaneous

37If lower ground state levels were excited instead, a more rigorous treatment of the dynamics of decay between levels
within the ground state would be required. This complication is unnecessary in the first approximation as spontaneous
decay from the color-center to the largest contributing individual ground states all yield rates of the order 106 s−1.
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Figure 6.3: EB scheme A: excitation of the nuclear isomer via EB where the electronic shell,
initially in the ground state, first absorbs the incoming laser photon of energy ωp = ωN −ωfi, and
then passes the energy to the nucleus with transition back to the ground state.

decay process which is calculated using (5.9) where NmNi = (2Im + 1)No written here as,

ΓspA (g, o;m, o) =
4

3

1

(2Im + 1)No

∑
Mm,Mg,
i,f,q

(
ωN − ωfi

c

)3

|〈Ig,Mg, of |D̃E1,q|Im,Mm, oi〉|2, (6.8)

where all notation is presented in the theory section with the exception of No = 2 which is the
number of initial electronic ground states |oi〉 used38.

The effective electric dipole operator is calculated using (4.4), where the two summations
correspond to the two Feynman diagrams shown in Figure 4.1. The dominant contribution in
this case is due to the first summation corresponding the the nuclear isomer decaying first to its
ground state and then transferring a photon to the electronic shell which is subsequently excited
to an intermediate state (virtual) which decays emitting a photon out of the system. This first
summation is pictorially represented by the reverse of Figure 6.3. The second summation does
not contribute as it requires that first the electron undergoes a decay emitting a photon from the
system and then the nucleus decays bring the electron back up to the Fermi edge. This process is
blocked as all levels below the Fermi edge are assumed to be filled, thus the initial decay of the
electron is not allowed.

The EB rate considering electronic ground states |o〉 ∈ {360↑,↓} and summing over intermediate
states |n〉 ∈ {360↑,↓, . . . , 407↑,↓} results in ΓspA (g, o;m, o) = O(10−8) s−1. This rate does not
exceed the radiative decay Γspγ (g;m), and thus is only a correction to the direct radiative decay or
excitation process,

ΓaA(m, o; g, o)

Γaγ(m; g)
=

ΓspA (g, o;m, o)

Γspγ (g;m)
≈ 10−8

10−4
= 10−4. (6.9)

The decay rate of the spontaneous process and laser excitation rate are related by (4.8).

6.3 B: EB starting from the color-center with energy
greater than the isomer

The second EB scheme B is depicted in Figure 6.4 and is equivalent to moving from left to right in
the Feynman diagrams in Figure 4.1 where m and g are swapped. The initial state of the electron
is in the color-center which is assumed higher in energy than the isomeric state. Upon its decay
it excites the isomer and emits a photon with energy equal to the difference in energy between
the color-center and the isomer. The electron can decay emitting the photon either before or after
exciting the nucleus, see once again Figure 4.1.

38Single energy, spin-degenerate ground state.
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Figure 6.4: EB scheme B: excitation of the nuclear isomer via EB where the electronic shell,
initially in the excited color-center, decays passing the energy to the nucleus as well as emitting
a real photon of energy ωp = ωif − ωN . Note the electronic state can decay in two ways, first
emitting the photon and then exciting the nucleus, or vice versa. Both options contribute to the
rate. Here only the first is depicted.

This is not a laser driven process39 and therefore the rate of excitation of the isomer assuming
the color-center is populated is given by (5.10) where the averaging factor NgNi = (2Ig + 1)Nc
giving,

ΓspB (m, o; g, c) =
4

3

1

(2Ig + 1)Nc

∑
Mm,Mg,
ci,of ,q

(
ωif − ωN

c

)3

|〈Im,Mm, of |D̃E1,q|Ig,Mg, ci〉|2, (6.10)

with the effective electric dipole matrix elements given by (4.6).
The EB rate considering electronic ground states |o〉 ∈ {360↑,↓}, color-center states |c〉 ∈

{361↑,↓, . . . , 368↑,↓} and summing over intermediate states |n〉 ∈ {360↑,↓, . . . , 407↑,↓} results in
ΓspB (m, o; g, c) = O(10−8) s−1. This assumes that the color-center is populated. As such to obtain
the true reaction rate we must multiply by the occupation probability of the color-center states.
This can be see easily when writing the rate of change of the occupation probability of the nuclear
isomeric state ρ̇m as a master equation

ρ̇m = ρgρcΓ
sp
B (m, o; g, c) + . . .− ρmΓspγ (g;m)− . . . (6.11)

The ellipsis (. . .) in the master equation are meant to include all other processes that change
the occupation probability of the isomeric state. It can also be assumed that the occupation
probability of the nuclear ground state ρg = 1 − ρm ≈ 1 as the nuclei are for the most part
naturally in the ground state when the crystal is created. Here we can see that the rate of change
of isomer population depends on the ρcΓ

sp
B (m, o; g, c), i.e., the population of the color-center states

multiplied by the rate of the process B starting in the color-center states.
A similar master equation can be written for the color-center states occupation probability. The

color-center is populated by excitation from the ground state via photon absorption. Assuming
continuous pumping of the color-center states we can write,

ρ̇c = ρoΓ
a
E1(c; o)− ρc

[
ΓspE1(o; c) + ΓstE1(o; c)

]
(6.12)

where E1 absorption, spontaneous E1 decay and stimulated E1 decay are taken into account.
Taking the steady state solution ρ̇c = 0 gives the approximate occupation probability of the color-
center,

ρc =
ΓaE1(c; o)

ΓspE1(o; c) + ΓstE1(o; c) + ΓaE1(c; o)
=

FcoPcoδ(o; c)

1 + FcoPco[1 + δ(o; c)]
, (6.13)

where ρo = 1 − ρc, Eco is the difference in energy between the color-center |c〉 and the electronic
ground |o〉, Pco the power of the photon source at energy Eco, and δ(o; c) = Nc/No is the ratio of

39Besides the initial excitation of the electron to the color-center.
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number of states in each set. Considering again only one ground state δ(o; c) = 8, we can see that
for the low powered VUV lamp, where 1+FcoPco[1+δ(o; c)] ≈ 1 or Pco � 1/(Fco[δ(o; c)+1]) that,

ρc ≈ FcoPcoδ(o; c) ≈ 2× 105Pco = 2× 10−6. (6.14)

For a higher power excitation source in the region of optical lasers Pco = 1 W/(m2 Hz), then
ρc = 8/9.

Now that we know what the occupation probability of the color-center is we can write the true
reaction rate as

Γ↑m = ρcΓ
sp
B (m, o; g, c) ≈ 2× 10−14 s−1, (6.15)

when using the VUV lamp for exciting the color-center states. Calculating the steady state occu-
pation probability of the isomeric state via process B we have,

ρm =
ρcΓ

sp
B (m, o; g, c)

Γspγ (g;m) + ρcΓ
sp
B (m, o; g, c)

. (6.16)

Inputting values shows the occupation probability of the isomeric state can climb to ρm ≈ 2×10−10

using the VUV lamp in a time τ ≈ ρm/Γ↑m = 104 s−1. With a high powered laser for the |o〉 → |c〉
transition with Pco = 1 W/(m2 Hz) one could reach ρm ≈ 9 × 10−5 for via this process. This is
less than the value shown earlier for direct nuclear excitation. Furthermore, comparing the rate of
isomer excitation due to process B with that of direct nuclear excitation,

ρcΓ
sp
B (m, o; g, c)

Γaγ(m; g)
= 5× 10−4 Pco

Pmg
≈ 5× 10−4. (6.17)

The difference in energy between the color-center and isomer is not known exactly. However,
based on the current DFT calculations this difference is ≈ 2 eV. Because the transitions are close
in energy, here it was assumed that the available power of the excitation sources at the isomeric
energy ωmg = ωm − ωg and the color-center ωco = ωc − ωo where equal Pmg = Pco. This is to
say, if we have two lasers with equal power, one with wavelength ωco and the other with ωmg then
direct nuclear excitation is three orders faster than process B.

If one does not have access to equal power sources in the required energy ranges then this
ratio of course changes, and the bridge process B may be a promising candidate for excitation.
Although the color-center is still not well understood experimentally, based on the DFT calculation
the group of color-center states takes up an energy region around 0.5−1 eV thick, possibly making
their excitation experimentally easier than that of the isomer with its narrow linewidth.

6.3.1 Stimulated Electronic Bridge

It is the interaction with the decaying electron that leads to EB excitation of the nucleus. The
total energy of electronic decay from |i〉 → |f〉 is broken up into two pieces, one of these pieces is
given to the nucleus and the other is emitted as a photon. To our knowledge, here we study for
the first time the idea of stimulated EB. This is achieved with the use of external photons with
frequency matched to the emitted photon in the spontaneous EB process. These external photons
cause stimulated emission via a desired path in the electronic shell and thus increase the rate of a
specific decay channel.

In the following, we will study this idea applied to the process B, as shown in Figure 6.5, in
an effort to increase the EB excitation rates. This is done by providing photons with energy equal
to the difference between the isomer and the color-center. Referring to the notation in Figure 6.5
we can write the required laser photon energy as ωp = ωif − ωN = ωcm. With this energy in the
region of ≈ 2 eV we assume a typical optical laser power of Pcm ≈ 1 W/(m2 Hz) to be available.
The rate of a stimulate process in terms of its spontaneous version is given by (4.7). Thus the rate
of the isomer excitation for both the spontaneous and stimulated processes B and Bst is then

Γ↑m = ρgρc
[
ΓspB (m, o; g, c) + ΓstB (m, o; g, c)

]
= ρgρcΓ

sp
B (m, o; g, c) [1 + FcmPcm]

≈ 8× 10−8 s−1, (6.18)

where the VUV lamp was used for initial excitation of the electron to the color-center. Comparing
to direct nuclear excitation using the VUV lamp,

Γ↑m

Γaγ(m; g)
=
ρgρcΓ

sp
B (m, o; g, c) [1 + FcmPcm]

ρgΓ
sp
γ FmgPmgδ(g,m)

≈ 2× 103, (6.19)
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Figure 6.5: Stimulated EB scheme Bst: stimulation of scheme B with the use of laser photons of
energy ωp = ωif − ωN . Note the electronic state can decay in two ways, first emitting the photon
and then exciting the nucleus, or vice versa. Both options contribute to the rate. Here only the
first is depicted.

where Pmg = Pco = 10−11 W/(m2 Hz) is the power of the VUV lamp in the energy range of ωN .
This stimulated scheme is three orders faster than directly driving the isomeric transition with the
VUV lamp. Thus, the stimulated process is our most promising scheme as it can speed up the
excitation of the isomer proportional to the power Pcm of the c→ m of the optical laser used. Of
course this scheme is more complicated as we require two excitation sources, the VUV lamp for
initial population of the color-center and then an optical laser for the stimulation.

|i〉

|v〉

|f〉

e
|g〉

|m〉

Bqst

Figure 6.6: Quenching of isomeric state via EB scheme Bqst: the use of laser photons of energy
ωp = ωfi − ωN can cause an increased decay rate of the isomeric state if the electronic shell is in
its ground state. Note the electronic state can be excited in two ways, first by getting energy from
the nucleus and then the laser photon, or vice versa. Both options contribute to the rate. Here
only the first is depicted.

There are two important points to consider with this stimulated process:

1. The first is depicted in Figure 6.6. With the nuclei in the excited state and the electron shell
in the ground state, the laser driving with energy ωp = ωfi − ωN = ωcm (= ωif − ωN = ωcm
in Figure 6.5) can cause quenching, i.e., decay, of the isomeric state. This happens when the
nucleus decaying to the ground state passes the energy to the electronic shell and the driving
photon makes up the difference to bump the electron into the color-center. This is exactly
the inverse of scheme B making the rate,

ΓaB(g, c;m, o) = ΓspB (m, o; g, c)FcmPcmδ(m, o; g, c) ≈ 0.5 s−1. (6.20)
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The total decay rate of the isomeric state including spontaneous decay is then,

Γ↓m = ρm
[
Γspγ (g;m) + ρoΓ

a
B(g, c;m, o)

]
, (6.21)

hence the decay rate of the isomer increases with the use of the stimulating laser Pcm as well.
Looking at the master equation for the isomeric level,

ρ̇m = ρgρc
[
ΓspB (m, o; g, c) + ΓstB (m, o; g, c)

]
− ρm

[
Γspγ (g;m) + ρoΓ

a
B(g, c;m, o)

]
. (6.22)

The steady state occupation probability of the isomeric state is,

ρm =
ρc [ΓspB (m, o; g, c) + ΓstB (m, o; g, c)]

ρc [ΓspB (m, o; g, c) + ΓstB (m, o; g, c)] + Γspγ (g;m) + ρoΓaB(g, c;m, o)
, (6.23)

=
ρcΓ

sp
B (m, o; g, c)[1 + FcmPcm]

Γspγ (g;m) + ΓspB (m, o; g, c) [FcmPcmδ(m, o; g, c) + ρc [1 + FcmPcm − FcmPcmδ(m, o; g, c)]]
.

(6.24)

Recall that Γspγ (g;m) ≈ 10−4 s−1, ΓspB (m, o, g, c) ≈ 10−8 s−1 and δ(m, o; g, c) = 8(2Ig +
1)/(2Im + 1) = 12. For the low powered VUV lamp ρc ≈ 2 × 10−6, and using Pcm ≈ 1
W/(m2 Hz) in the range of optical lasers we get

ρm ≈ 2× 10−7. (6.25)

Therefore, even with quenching this scheme provides a steady state occupation probability
larger than that seen without stimulation. Revisiting the quench rate (6.21) we can input
values where ρo = 1− ρc giving

Γ↓m ≈ 8× 10−8 s−1. (6.26)

For high power Pco, ρc = 8/9 and the isomeric occupation probability would be ρm ≈ 1.
We can understand this by noting that the Pco laser empties the electronic ground state
preventing the stimulated quenching process Bqst. Turning off the Pco laser which is used for
initial population of the color-center will then leave the electronic shell predominantly in the
ground state. Then the Pcm laser could be used intentionally to cause rapid quenching of
the isomeric level which could aid in its measurement.

|i〉

|f〉

e

|g〉

|m〉

Figure 6.7: Laser photon intended to stimulate EB scheme B could act to further excite the electron
initially in the color-center to the conduction band.

2. The second is that even if the nucleus is in the ground state, such that the above quenching
process Bqst doesn’t occur, the electron in the color-center could be further excited into the
conduction band by the input photon. This happens instead of the electron being stimulated
to decay via process Bst, and is depicted in Figure 6.7. Excitation of the conduction band
states from color-center states via E1 with photons ωcm is the familiar

ΓaE1(b; c) =

4

3

1

Nb

∑
bi,cf ,q

(ωif
c

)3

|〈cf |DE1,q|bi〉|2
FcmPcmδ(c; b), (6.27)
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where the laser providing photons of central frequency ωcm will have a linewidth which
determines the bounds of the summation according to overlap.

This two stage electron excitation o → c → b decreases the occupation probability of the
color-center, ρc, by promoting electrons to the conduction band. The master equation of
the color-center with two excitation sources (one for the initial pumping of the color-center
o→ c with energy ωco; and a second intended to stimulate the EB process with energy ωcm
but eventually causing excitation of the conduction band instead) is given by

ρ̇c = ρoΓ
a
E1(c; o) + ρb

[
ΓspE1(c; b) + ΓstE1(c; b)

]
− ρc

[
ΓaE1(b; c) + ΓspE1(o; c) + ΓstE1(o; c)

]
. (6.28)

From here we can approximate the steady state occupation probability provided we make
some assumptions on the lasers being used. Assuming the color-center is initially populated
ρc ≈ 1, we know from earlier,

ρb =
FbcPbcδ(c; b)

1 + FbcPbc + FbcPbcδ(c; b)
= 1− ρc (6.29)

here the c → b laser’s intended use is to stimulate the bridge process requiring energy ωcm.
Hence, for excitation of the conduction band, there must be conduction band states such
that ωbc = ωcm, i.e., δ(c; b) > 0. Writing in terms of the color-center

ρc =
1 + FcmPbc

1 + FcmPbc + FcmPbcδ(c; b)
. (6.30)

With the color-center less than ωcm away from the conduction band then for large power Pcm
the occupation probability of the color-center drops to ρc = 1/[1+ δ(c; b)]. If the color-center
is farther that Ecm away from the conduction band than there will be no conduction band
excitation, and the population of the color-center will remain unchanged.

Therefore, one must be aware of (1) the possibility of quenching which can reduce the isomeric
population and (2) additional excitation channels that, with the use of the stimulating laser, may
deplete the population of the color-center states leading to reduced EB excitation rates.

6.4 C: EB starting from the color-center with energy less
than the isomer

As discussed in Chapter 5, the energy of the color-center states in 229Th:CaF2 are not known
experimentally. Furthermore, DFT calculations do not provide a reliable value. As such we cannot
be sure that the color-center has energy larger than that of the isomer. With the color-center lower
in energy than the isomer, other EB schemes become available.

The last EB scheme C is depicted in Figure 6.8. In this case the color-center is initially
populated and assumed to be at lower energy than the nuclear isomeric state. The process is
driven with a laser of energy ωp = ωN − ωif = ωmc and the electron is excited to a virtual state
at the energy of the isomer which decays to the electronic ground state passing the energy to the
nucleus and exciting it to the isomeric state. This is analogous to the stimulated scheme Bst where
the color-center energy is less than the one of the isomer.

Once again we can calculate the rate by first determining the rate of the spontaneous process,
i.e., the inverse of Figure 6.8 using (4.4) written here as,

ΓspC (g, c;m, o) =
4

3

1

(2Im + 1)No

∑
Mm,Mg,
oi,cf ,q

(
ωN − ωfi

c

)3

|〈Ig,Mg, cf |D̃E1,q|Im,Mm, oi〉|2, (6.31)

with the effective electric dipole matrix elements given by (4.4).
To approximate this, we use the same matrix elements of electronic operators DE1, T M1 and

T E2 as calculated using the HSE wave functions. When computing the EB rates we scale the
energy of only the color-center states down to below the isomer. Presented in Figure 6.9 is the
spontaneous decay rate of the isomer via inverse of scheme presented in Figure 6.8 where the average
energy of the isomer was varied. The electronic ground states used were |o〉 ∈ {360↑,↓}, color-center
states |c〉 ∈ {361↑,↓, . . . , 368↑,↓} and summing over intermediate states |n〉 ∈ {360↑,↓, . . . , 407↑,↓}.
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C

Figure 6.8: EB scheme C: excitation of the nuclear isomer via EB where the color-center states,
which are initially populated, are lower in energy than the isomer. The electron in the color-center
absorbs an externally supplied photon of energy ωp = ωN −ωif , and then passes the energy to the
nucleus. Note the electronic state can first absorb the laser photon and then decay or vice versa.
Both options contribute to the rate. Here only the first is depicted.
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Figure 6.9: Spontaneous EB rate due to (6.31), i.e., inverse of process depicted in Figure 6.8, as
a function of the average energy of the set of color-center states {|c〉}. Wave functions generated
using HSE functional were used here.

The excitation rate via process C with the use of a laser of energy ωp = ωN − ωif = ωcm is
given by,

Γ↑m = ρcΓ
a
C(m, o; g, c) = ρcΓ

sp
C (g, c;m, o)FcmPcmδ(g, c;m, o) (6.32)

where δ(g, c;m, o) = 1/δ(m, o; g, c) = 1/12. This is similar to the stimulated EB rate via the Bst
process. Figure 6.10 compares EB excitation rates via process C and Bst respectively where the av-
erage energy of the color-center is varied. When calculating (6.32), recall that Fcm = 4π3c2~2/E3

cm,
hence the factor ~3/E3

cm = 1/(ωN − ωfi)3 cancels the (ωN − ωfi)3 seen in ΓspC (g, c;m, o). Look-
ing closer, we see that the dependence on energy is the result of only the denominators of the
intermediate state summations in (4.4) which we will call ∆ω. Therefore, the energy dependence
is

Γ↑m ∝ |〈Ig,Mg; cf |D̃E1,q|Im,Mm; oi〉|2 ∝
1

(∆ω)2
. (6.33)

Thus as the color-center moves closer to the isomeric energy there is a resonance. This is because the
dominant terms in the intermediate state summations of (4.4) are those where ∆ω = ωin+ωN → 0
or ∆ω = ωfk − ωN → 0, i.e., ωni → ωN or ωfk → ωN respectively. Resonance thus happens when
there is a real intermediate state close to the virtual state |v〉 sitting at the isomeric energy,
ωvo = ωN . This resonance is also seen in similar laser induced electronic bridge (LIEB) processes
for ions [35, 37]. As a result, by varying the color-center energy we see a resonance of the form

70



6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

2

4

6

×10−7

Average Energy of {|c〉} [eV]

Γ
↑m ζ

(m
,o

;g
,c

)
[s
−
1
]

ζ = C ζ = Bst

Figure 6.10: EB excitation rates via process C (red solid) and Bst (red dashed) respectively where
the average energy of the color-center is varied. The isomeric energy is shown as a vertical dotted
line at 8.3 eV. Wave functions generated using HSE functional were used here.

Γ↑m ∝ 1/(ωN − ωco)2, where the process Bst and C define the excitation of the isomer when the
color-center is higher and lower in energy than ωN respectively.

If the electron’s initial state were a level within the color-center with energy equal to the isomer,
ωif ≡ ω(ci, of ) = ωN , than there would be no emitted photon during its decay to the electronic
ground state and subsequent nuclear excitation. Nuclear excitation in this case would be described
as Nuclear Excitation by Electron Transfer (NEET). Here we are interested in EB processes only,
and as such, the electronic transition must always move from initial to final over an intermediate
state where by a real photon is emitted. This photon energy will vary depending on the scheme in
question. To stimulate or drive the EB process one requires the input of external photons with this
energy. We can then note that to stimulate or drive the EB process (Bst and C respectively) as
ωif → ωN one requires a laser with photon energy where ωp → 0. Clearly if this energy difference
is too small than laser sources with sufficient power may not be available. We must also take care
as we move towards resonance to include the level widths Γn in (4.1) previously neglected.

As with the stimulated process Bst, our EB rate is increased with the use of a second laser
Pcm = 1 W/(m2Hz) to bridge the gap between the color-center and the isomeric energy. Both
processes yield similar excitation rates and require a similar laser setup, VUV lamp for initial
excitation of an electron to the color-center and then a second laser in the optical or infrared range
depending on the color-center energy.

When comparing to direct nuclear excitation with the VUV lamp alone we have similar en-
hancement for both Bst and C schemes. With average color-center energy at ≈ ±2 eV,

Γ↑mζ (m, o; g, c)

Γaγ(m; g)
≈ 103. (6.34)

If the color-center states are found to be closer to the isomeric energy this rate will move towards
the resonance, 1/(∆ω)2, as shown in Figure 6.10. To this end we look forward to the prospect of
first experimental measurements and characterization of the color-center states.

6.4.1 Internal conversion from excited states

The last rate that is of interest is that of Internal Conversion (IC) from the excited electronic
color-center. With the nucleus in the isomeric state and the electron in the excited color-center,
the decaying isomeric state could provide enough energy to promote the electron to a free electronic
state and expel the electron from the crystals unit cell. IC is outlined in [37] for single atoms and
can be calculated, however requires better knowledge of the conduction band levels and beyond
which we currently lack in the crystal environment. To this end it will be an interesting topic for
future investigation.

If IC is possible within the crystal, then it will act as a channel to quench the nuclear population
that is in the isomeric state, similar to the quenching shown in Bqst. The quench rate via IC will of
course depend on the occupation probability of the isomeric state. In the thorium-doped crystal,
before excitation the occupation probability of the isomer is negligible. Therefore, in the initial
stages of excitation these quenching channels will not contribute. Only once a significant excitation
is achieved, will the quenching channels play a role.
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Figure 6.11: Illustration of IC channel, where the decaying nuclear isomer passes its energy to an
already excited valence electron. The valence electron can then be removed from the system. This
may happen with or without the addition of an external laser photon.
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Chapter 7

Discussion of errors and
approximations

Calculation of EB rates within the thorium-doped crystal provided many difficulties which are
different to those seen in the calculation with ions. These were not all obvious at the outset of the
project. Here we outline the various checks and approximations made during the generation of the
calculation method for Th:CF2.

7.1 Benchmark with quasi-relativistic wave functions

Before using wave functions for the thorium-doped crystal, the theory presented in Chapter 4
was benchmarked with previously published values for EB rates in ions. This was done using
relativistic wave functions calculated with GRASP2K [37, 99, 100]. The relativistic wave functions
|nlj〉 = {5f5/2, 6d5/2, 7s1/2, 7p1/2, 8s1/2, 7d3/2} were calculated for electronic states in Th3+. Using
these wave functions, matrix values for the operators involved in the EB process were calculated
and compared for accuracy.

Previous calculations done by Bilous [37], involved thorium ions. The ions have electronic wave
functions which are eigenstates of angular momentum and parity. As such, angular integration
can be carried out analytically leaving only the radial integration to be performed numerically.
Because of this only the radial component without spin was calculated. Files were organized in
columns (r, Pnlj(r), Qnlj(r)) where P and Q are the large and small components of the Dirac wave
functions respectively, n is the principal quantum number l the orbital angular momentum and j
the total angular momentum.

From these relativistic wave functions, we create a set of single-component non-relativistic wave
functions40 by using the large component Pnlj(r) = Pnl(r) only. The resulting wave functions can
then be generated in all space via,

ψnlml(r, θ, φ) =
1

r
Pnl(r)Ylml(θ, φ). (7.1)

where ml is the projection of l. The spin component then is added once again by hand. For
electrons, spin s = 1/2 and its projection can be ms = ±1/2. To account for this we can write

|n, l,ml〉|s,ms〉 = |n, l,ml〉|ms〉 = ψnlm

(
ψ( 1

2 )
ψ(− 1

2 )

)
(7.2)

where the electron spin can be left out of the notation as it is always s = 1
2 , and where |ψ(± 1

2 )|2
is the probability to be spin up, ms = 1/2, or down, ms = −1/2. For this there are two options

|n, l,ml〉| 12 〉 = ψnlm

(
1
0

)
, |n, l,ml〉| − 1

2 〉 = ψnlm

(
0
1

)
. (7.3)

The relativistic wave functions have a defined total angular momentum j. Hence, given our set
of approximate wave functions |n, l,ml〉|s,ms〉 we can then generate a new and final set of wave
functions with defined j and its projection mj , where for electrons j = l ± 1

2 and mj = ml + ms.

40Quasi-relativistic as they are generated using the relativistic functions.
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For this we construct,

|n, l, j,mj〉 =
∑
ms,ml

C s l j
msmlmj |ms〉|n, l,ml〉 (7.4)

where the value of j is given by the relativistic wave function from which we approximated, and
C s l j
msmlmj is the Clebsch-Gordan coefficient. We call these quasi-relativistic wave functions. Quan-

tum numbers n, l, j are given by the wave functions from Bilous and projection mj can take (2j+1)
values, {−j,−j + 1, . . . , j}.

In practice matrix elements are calculated via,

〈n, l, j,mj |O|n′, l′, j′,m′j〉 =
∑

ms,ml,m′s,m
′
l

C s l j
msmlmj C

s′ l′ j′

m′sm
′
lm
′
j
〈n, l,ml|〈ms|O|m′s〉|n′, l′,m′l〉 (7.5)

where the spin component is solved using,

〈n, l,ml|〈ms|O|m′s〉|n′, l′,m′l〉 =

∫
ψ∗nlml〈ms|O|m′s〉ψn′l′m′lr

2 sin θ dr dθ dφ, (7.6)

and 〈ms|O|m′s〉 has been given in Section 4.1. Using this procedure matrix elements of all operators
can be calculated, as well as EB rates using the usual

ΓEB =
4

3

(ωp
c

)3 1

(2Im + 1)(2ji + 1)

∑
Mm,Mg,
mi,mf ,q

|〈Ig,Mg, nf , lf , jf ,mf |D̃E1,q|Im,Mm, ni, li, ji,mi〉|2,

(7.7)

where the states are denoted by

|I,M, n, l, j,mj〉 = |I,M〉|n, l, j,mj〉, (7.8)

with I and M the total nuclear angular momentum and its projection quantum number respec-
tively41.

Here we are dealing with eigenstates of angular momentum and parity. Because of this we know
the selection rules for each matrix operator, which determine the overall symmetry of the matrix.
All matrix elements of each operator are calculated numerically and then checked to ensure they
posses this known symmetry due to selection rules. The check involves comparing matrix elements
known to be zero analytically with their numerically calculated values. This check is only possible
because we know the symmetry ahead of time, something that is not the case for DFT wave
functions in the crystal environment. Further discussion of this covered in the Section 7.2.1.

Several interesting points were found to be noteworthy. Firstly, following the above procedure
only considers the large component, P (r), of the relativistic wave functions. This was assumed to
be sufficient as the small component, Q(r), was at least an order of magnitude smaller and did not
contribute significantly to the normalization of the wave functions,

∫
ψ∗ψ dr = 1. It was found

however, that despite the size of the small component it was the dominant contribution for some
matrix elements and thus the final transition rate. Secondly, the importance of the so called Fermi
Contact (FC) term became apparent. The FC term referring to the delta function in the magnetic
dipole coupling operator, TM1,q shown in equation (4.28), is dominant when considering transition
between s-states. More specifically, it is the value of the wave function at the nucleus that is of
critical importance. This is a know issue in the literature [101–105] as it is difficult to accurately
calculate the value of the wave function at the origin. In this case a fitting procedure was used
to determine an approximate value of the wave function at zero, as discussed in Appendix A.12.
In the case of thorium-doped crystals, there is little s-like character to the wave functions used
for the bridge process considered here and thus the FC term does not cause a significant effect.
Moving forward, it is clear that a fully relativistic treatment would be beneficial to check the results
presented here. Such a calculation would avoid both of these issues as (1) the small component
would be addressed, and (2) the FC delta function does not appear in the fully relativistic operator
seen in [37, 38, 84], and thus error due to the calculation of the origin point would be removed.

41In general other quantum numbers for the nucleus and electronic shell can be added to define the states.
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7.2 DFT wave functions of undefined (j,mj)

7.2.1 Checks based on selection rules

The wave functions of Th in the crystal environment are neither eigenstates of angular momentum
nor of parity. They are only defined by their energy, |Ei〉. Because of this we cannot predict via
selection rules the symmetry of the transition operators. This can be understood by considering
the following example of a symmetry check of the E1 operator:

Let {|φn〉} be the full set of wave functions which are eigenstates of angular momentum and
thus possess a defined parity, since the inversion operator commutes with the angular momentum
operator [48, p.97] 42. Then any other wave function can be expressed as a linear combination of
wave functions from this set,

|Ei〉 =
∑
n

cin|φn〉. (7.9)

Consider as an example the electric dipole operator DE1, acting on these new wave functions,

〈Ef |DE1,q|Ei〉 =
∑
n,m

c∗fmcin〈φm|DE1,q|φn〉. (7.10)

Due to selection rules for the E1 operator 〈φn|DE1,q|φn〉 = 0 as {|φn〉} have defined parity and
E1 transitions require a change in parity to be nonzero. If we then consider the set {|Ei〉}, we see
that diagonal elements are not necessarily zero43

〈Ei|DE1,q|Ei〉 =
∑
n,m,
m 6=n

c∗imcin〈φm|DE1,q|φn〉. (7.11)

Based on the above we can see that the symmetry of DE1 related to parity is only obvious
when acting on states |φn〉 but not |En〉. Checking the symmetry of the numerically calculated
operators is a powerful tool to rule out bugs during computation. Continuing with the above
example, one can compare matrix elements known to be zero analytically with their numerically
calculated values. Similar checks are available when considering angular momentum selection rules
via the Wigner-Eckhart theorem44, however in both cases are not useful when working with wave
functions that are not eigenstates of angular momentum and parity.

This is why the check with quasi-relativistic wave functions was so important, as these properties
could be used to ensure there were no errors by checking matrix operators had the proper symmetry
before moving blindly into the calculation using crystal wave functions.

7.2.2 Brute force checks: grid choice

In the crystal environment, there is only one method to test for integration error in the calculation,
the brute force method. Here this is described using the ortho-normalization condition.

Numerical integration requires dealing with discretely sampled functions. The choice of sam-
pling frequency will be called the grid. This grid is simply the three dimensional array of points
in space for which we generate values of our wave functions. Improper choice of grid will result in
loss of information as the functions are not well represented by the chosen discretization. This is
an overall error in this calculation. The error due to choice of grid can be most easily seen in the
evaluation of the ortho-normalization matrix of the form

〈Ef |Ei〉 =

∫
ψ∗fψi dr. (7.12)

Analytically we know the answer to this,

〈Ef |Ei〉 =

∫
ψ∗fψi dr = δfi, (7.13)

all diagonal elements should equal unity, and all off diagonal elements zero. However, in practice
this relies heavily on the choice of grid. If the wave functions are sampled sufficiently this will hold

42Hence these wave functions can be relabeled as {|n, j,mj〉} where, n is the principal quantum number for energy, j
that of angular momentum and mj its projection.

43This should be especially clear in the crystal environment, as there can be permanent dipoles formed due to the
interaction of neighbouring atoms.

44A matrix element 〈jmj |Ok,q|j′m′j〉 is only non-zero provided j = j′ + k and mj = m′j + q.
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true and if they are under sampled it will not. The closer the diagonal elements are to unity the
better the grid is at representing that particular wave function.

The problem is that there is not one choice of grid that can sample all wave functions in
the crystal sufficiently. For example, states that are localized around the thorium nucleus are
well represented by a spherical grid centered on Th where there is a fixed number of points in
the angular dimensions θ and φ, and grid points are spaced at a distance rn = en/κ · r0 in the
radial direction, r0 is the smallest r value and κ a scaling factor chosen to sample the region, and
n = {0, 1, 2, . . .}. Such a grid has a high sampling rate near Th and it becomes less and less as
you move farther away. Integration of the norm squared of wave functions localized on Th with
this grid yield results close to unity. For de-localized wave functions with respect to this choice
of grid, carrying out the same integral can yield results below 0.5. By changing the grid one can
favor one region of the unit cell over another to better represent wave functions localized in a given
area, however it must be noted that not all wave functions are localized around an origin such as
those representing the crystals conduction band. These de-localized wave functions cannot be well
represented by any spherical grid regardless of the choice of origin.

One could choose, instead of a spherical grid, a linear Cartesian grid. This grid will equally
sample all wave functions in the unit cell which looks appealing at first glance. Upon further
inspection, it becomes a game of numbers and computational power. With linear sampling on the
Cartesian grid there is a fixed spacing between grid points, i.e ∆V = ∆x∆y∆z. For the same total
number of points in the grid, the Cartesian grid poorly samples all wave functions, where as the
spherical grid well represents those localized around the origin and poorly those at the edges. As
such if we denote ε(x, S/C) as the error on calculation of x using the Spherical S grid centered on
Th or Cartesian C grid with equal total number of points to the spherical option, then

ε(〈c|O|c〉, S) < {ε(〈c|O|o〉, S), ε(〈b|O|c〉, S)} < {ε(〈b|O|b〉, S), ε(〈b|O|o〉, S), ε(〈o|O|o〉, S)},
ε(〈c|O|c〉, C) ≈ {ε(〈c|O|o〉, C), ε(〈b|O|c〉, C)} ≈ {ε(〈b|O|b〉, C), ε(〈b|O|o〉, C), ε(〈o|O|o〉, C)}.

Comparing the two grids,

ε(〈c|O|c〉, S) < ε(〈c|O|c〉, C),

ε(〈c|O|o〉, S) < ε(〈c|O|o〉, C),

ε(〈b|O|c〉, S) < ε(〈b|O|c〉, C),

{ε(〈b|O|b〉, S), ε(〈o|O|o〉, S), ε(〈b|O|o〉, S)} ' {ε(〈b|O|b〉, C), ε(〈o|O|o〉, C), ε(〈b|O|o〉, C)}

where |o〉, |c〉 and |b〉 refer the electronic ground, color-center and conduction band states respec-
tively. Note these rules apply to matrix elements 〈i|O|j〉 and 〈j|O|i〉 in the same way.

Calculations presented here use a spherical grid where the number of points (Nr, Nθ, Nφ) =
(353, 29, 60), the spacing in angular components is constant and the spacing in the radial component
follows rn = en/κ ·r0 where r0 = 0.000135 a0, a0 is the Bohr radius, and κ = 31.25 chosen by default
in VASP. Spherical grids as large as (Nr, Nθ, Nφ) = (353, 44, 90) or≈ 2.3× as many total grid points
where used, however, the order of magnitude of EB rates calculated did not change and thus the
smaller grid was chosen for computation speed.

To visualize the errors discussed above, we compare the results from calculation of ΓspE1(of ; c)
using both a Cartesian and spherical grid respectively. The Cartesian grid has discretization
(Nx, Ny, Nz) = (85, 85, 85) and the spherical grid has (Nr, Nθ, Nφ) = (353, 29, 60), i.e., both grids
have approximately the same total number of points, however with different distributions in space.
Both calculations use the same wave functions calculated using the HSE functional. The results
are shown in Figure 7.1, where the rates as calculated on the spherical grid where shown earlier in
Figure 6.2. As we can see, all rates calculated with the Cartesian grid are less than those seen for
the spherical grid. We know from above, ε(〈c|O|o〉, S) < ε(〈c|O|o〉, C), that the error is larger for
the Cartesian grid when it comes to transitions from |c〉 → |o〉. More specifically, the Cartesian grid
under samples all wave functions equally. This means with the chosen discretization

∫
dr|ψ|2 < 1

for all wave functions. In contrast, the spherical grid does a good job of sampling wave functions
localized around the thorium nucleus. Hence the color-center wave functions are well represented,∫

dr|ψ|2 ≈ 1, and thus their interaction with other wave functions is also better represented. The
rate plotted in Figure 7.1 depends only on transition matrix elements of the form 〈o|O|c〉 and thus
the spherical grid is more accurate than the Cartesian grid in calculation of the spontaneous decay
from the color-center to the ground states, ΓspE1(of ; c).

The issues presented above show that there is not an ideal choice of grid for every case. In
particular, the de-localized wave functions are not sampled well using the spherical grid, and thus
a Cartesian grid should be chosen in the future to check values of matrix element between all
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Figure 7.1: Comparison of rates ΓspE1(of ; c) calculated using both a Cartesian and spherical grid
respectively. The Cartesian grid has discretization (Nx, Ny, Nz) = (85, 85, 85) and the spherical
grid has (Nr, Nθ, Nφ) = (353, 29, 60). Both calculations use the same wave functions calculated
using the HSE functional.

de-localized wave functions. Then one must increase the number of total points in the three-
dimensional grid until the calculation of rates Γ and normalization |ψ|2 converge.

7.2.3 Brute force checks: intermediate states

When calculating EB processes there is an additional convergence test that must be carried out.
All EB processes require calculation of matrix elements similar to equation (4.4), re-written here
for reference,

〈g, f |D̃E1|m, i〉 =∑
λK,q

(−1)q

[∑
n

〈f |DE1|n〉〈n|TλK,q|i〉
ωin + ωN

+
∑
k

〈f |TλK,q|k〉〈k|DE1|i〉
ωfk − ωN

]
〈g|MλK,−q|m〉,

where there is a summation over intermediate states represented by sets {|n〉} = {|k〉}. In principle
this summation is over all open states, that includes ground, color-center, conduction band and
continuum. Looking at the denominator of the two summations we see there is the energy difference
between initial and intermediate or final and intermediate states. As this energy difference becomes
large the terms contribute less and less to the calculated rate. Here both the ground states and
color-center states are used in all calculations. We must then include an increasing number of
conduction band states in the set of intermediate states {|n〉} until the EB rate converges below a
predefined tolerance.
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Figure 7.2: Convergence test of ΓspA (g, o;m, o) carried out by increasing the number of conduction
band states considered in the sum over intermediate states. Note that each conduction band states
|b〉 is spin degenerate so the total number of states accounting for degeneracy is twice as much as
that shown on the x-axis.

The rates of process A and B covered in Chapter 6 as a function of conduction band states are
shown in Figure 7.2 and Figure 7.3, respectively. In both graphs, the result of using two different
sets of wave functions generated using the PBE and HSE functionals respectively are shown.
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We expect that with increasing number of conduction band states, the final rate should be
monotonically increasing as it approaches an asymptotic limit. This is because the EB rate is pro-
portional to

∑
i,f,q |〈f |D̃E1,q|i〉|2 and each additional conduction band state will add a smaller and

smaller positive value to this summation. This brings us to our first point. Figure 7.2 shows that
the rate increases with increasing number of conduction band states, however, the data points are
not monotonically increasing. This suggests there is a problem with the matrix elements involved
and most likely is due to sampling on the grid as discussed in Section 7.2.2. This makes sense
as the rate in question, ΓspA (g, o;m, o), has both initial and final states as part of the delocalized
ground state set {|o〉} which are poorly sampled on the spherical grid. Therefore, more of the
matrix elements involved in the calculation will be in the largest error category45 as compared to
rates where either the initial, final or both states are the well sampled color-center states.

Looking now at Figure 7.3 we see that we have a monotonically increasing rate as a function
of number of conduction band states. Based on the same argument as before we expect this rate
to be more accurate as the initial electronic state is always part of the well sampled color-center
{|c〉}. There exists a step like behavior that shows there are some states contributing more to the
EB rates that others. This behavior may also be an artifact of poor sampling of wave functions
by the grid, and if so should become less and less apparent with increased sampling.
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Figure 7.3: Convergence test of ΓspB (m, o; g, c) carried out by increasing the number of conduction
band states considered in the sum over intermediate states. Note that each conduction band states
|b〉 is spin degenerate so the total number of states accounting for degeneracy is twice as much as
that shown on the x-axis.

As discussed earlier, the larger the difference in energy between the intermediate state and the
initial or final state, ωin and ωfk respectively, the smaller the contribution to the rate. This is

because of the denominators of the intermediate summations seen in D̃E1. However, we note that
a summation proportional to

∑
x 1/x does not converge, and therefore the numerator, i.e., terms

like 〈f |DE1|n〉〈n|TλK,q|i〉 must also decrease with increasing energy for convergence to take place.
In the case of ions, it is clear that with increasing energy the wave functions become more and
more delocalized. Thus their overlaps with localized wave functions as well as their matrix elements
decrease to the point where they can be neglected. In the case of EB in the crystal environment,
we deal with only few localized wave functions. The majority are delocalized, even in the most
crude approximation of few total states. Therefore delocalized states play a significant role for all
EB processes in the crystal. This makes computation more difficult that in the case of ions.

The rate at which the numerator 〈f |DE1|n〉〈n|TλK,q|i〉 decreases with increasing intermediate
state energy is unclear at this point. If further investigation revealed this rate, one could attempt
to find the contribution of higher energy states by considering the intermediate summation as an
integration involving the density of states g(ω) of the conduction band which could be calculated
using DFT, ∑

n

〈f |DE1|n〉〈n|TλK,q|i〉
ωin + ωN

−→
∫ ∞
ω

f(ω)g(ω) dω.

Currently our only option to improve the estimate of EB rates in the crystal environment is
via brute force, both higher sampling and more intermediate states. To this end, we expect EB
rates will only be larger than the values quoted here.

45Defined in Section 7.2.2 for the spherical grid as, {ε(〈b|O|b〉, S), ε(〈b|O|o〉, S), ε(〈o|O|o〉, S)}.
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Conclusions & Outlook

This dissertation was dedicated to the theoretical investigation of 229Th’s isomeric excitation in the
crystal environment. This was broken down into two main parts, the first covering direct excitation
of the nuclear isomer via NFS style schemes and the second covering excitation with EB.

Part I of this dissertation covered nuclear forward scattering with the use of narrowband po-
larized lasers. Excitation schemes for both two- and three-level systems in 229Th:CaF2 crystals
were investigated theoretically. We showed that the complex crystal system with 10 levels and
three q-axes can be understood when looking at simplified two- and three-level systems with a
single quantization axis. We defined a resonance condition E∆i

< Ep < EQ, where E∆i
is the

detuning in energy of the driving laser to the ith transition, Ep is the energy spread of the laser
pulse and EQ the quadrupole level splitting. The level simplifications are valid provided we satisfy
this condition of resonance for only the levels of interest. If so, all other transitions can be safely
neglected. Within these approximations, the result of selectively driving (with polarized fields)
two- and three-level systems where explored.

It was shown that both the time delay and phase shift between excitation pulses can cause a
change in intensity of the measured signal in NFS experiments. To reliably increase the signal
intensity using multiple excitation pulses, the detuning of the driving laser to the transition of
interest must be known. Once initial excitation is found in the two-level system (| 52 , 5

2 〉 → |32 , 3
2 〉),

multipulsed excitation can be used to increase the intensity of the signal and determine the laser
detuning in the system. Additionally, a signature of excitation in the form of quantum beating
can be created by (i) a second laser to couple the | 52 , 3

2 〉 and | 32 , 3
2 〉 levels or (ii) a second crystal in

a static magnetic field. Where both the intensity of the couple laser and strength of the applied
static magnetic field serve to change the period of the quantum beating.

These findings are anticipating first coherent driving of the thorium nucleus with VUV sources,
which have so far failed mainly due to our poor knowledge of the transition frequency. A more
exact value for the latter remains a prerequisite for any attempt to directly excite with lasers the
nuclear isomer in the simplified NFS schemes outlined here. Once this is known to the level of the
quadrupole splitting in the crystal environment, one can discuss further these schemes presented
here as well as other possibilities using NFS.

Due to the strict energy requirements of the NFS schemes presented, their realization exper-
imentally is not within reach at the current time. Therefore in Part II we investigated for the
first time EB processes in thorium-doped crystals. EB relies on interaction of the nucleus with
the electronic shell. In a variety of schemes we studied how energy could be exchanged between
electronic color-center states and the nucleus with the goal of isomeric excitation. To drive the
EB processes in question our lasers/radiation sources need to excite sets of electronic levels which
can be far broader in energy than the nuclear isomer. Hence, these EB schemes would allow for
excitation of thorium’s isomeric state without the strict energy requirements of the NFS schemes
presented earlier.

Two of the EB schemes studied here show the most promise. They are schemes Bst and C
respectively and are actually closely related. The main difference is the assumption on the energy
of the color-center. As discussed in Chapter 5 we do not know at the moment what the energy of
these electronic color-center states are. As such scheme Bst and scheme C assume the color-center
to be above and below the energy of the isomer respectively. Both schemes make use of a VUV
lamp for initial excitation of the color-center states as well as an optical laser to stimulate (in the
case of Bst) or drive (in the case of C) the respective bridge excitation schemes. These two schemes
resulted in excitation rates on the order of 10−7 s−1 when the average color-center state energy was
assumed to be ≈ ±2 eV from the nuclear isomeric state. These EB rates are linearly dependent on
the occupation probability of the electronic color-center states and the inverse square of the energy
difference between the color-center energy and the nuclear isomeric state, Γ↑m ∝ ρc/(ωN − ωco)2.
Hence, the true occupation probability as well as color-center energy will determine this rate in
future experimental efforts. In the context of the energy values and laser powers discussed, these
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rates are three orders of magnitude larger than the direct excitation with the VUV lamp alone.
Beyond excitation, we have also shown how the optical laser can cause rapid quenching of the

excited isomeric state when the VUV lamp is turned off. This process initially thought to be a
detriment for excitation could in fact be used to aid in the experimental measurement process.
As discussed in Section 6.3.1 initial excitation of the isomeric state could be achieved using EB,
followed by deliberate quenching of that population at later time.

The two EB systems Bst and C have the potential to make an impact on current efforts to
study excitation in the crystal environment. It should be noted that the results shown have several
limitations such as grid sampling and limited summation over intermediate states as discussed in
Chapter 7. This being said we expect that more accurate rates will only be larger than the ones
quoted and hope to show this with future computational efforts. The limiting factor on immediate
experimental implementation of these EB schemes is only in better experimental classification of
the energy of the color-center states which is currently under way in the group of T. Schumm at
the Technische Universität Wien.

There are many topics for future theoretical study surrounding the EB process in the crystal
environment. The first would be to solidify our current results by increasing both the discrete
sampling of wave functions and the number if intermediate states used in the computation. Our
hope is to reach convergence in both of these areas thus bringing us closer to the true rate of
the EB processes discussed. Beyond this the question of IC within the crystal can be explored
to understand its impacts on EB excitation rates. If possible, IC could hinder the EB process by
depleting the excited electronic states before nuclear excitation can occur. Similarly, we would
like to further investigate other possible processes that deplete color-center population leading to
reduced EB rates. Finally, we are also interested in looking at the relativistic corrections to EB
processes in the crystal environment as discussed in Section 7.1. A non-relativistic first treatment
was given here, however, as discussed is Section 7.1 the small component of the relativistic wave
functions can play an important role in increasing EB rates in some cases.
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Appendix: Details in development

A.1 Dynamical beat: 57Fe

To demonstrate the dynamical beat seen in NFS spectrum we will consider a solid state 57Fe target.
The internal magnetic field B0 can be several 100 kG [106] in iron. This internal magnetic field
causes Zeeman splitting of the nuclear energy levels. The splitting depends on the magnetic dipole
moments of the ground and excited states which are µg ≈ 0.09µN and µe ≈ −0.15µN [107, 108].

Due to iron’s ferromagnetic nature, we can align the magnetic domains in the sample and
therefore the magnetic dipole moments of all nuclei by applying a small46 static external magnetic
field [109, 110]. The strength of the field depends on the size of the sample but is usually on the
order of a few 100’s to a few 1000 G for these type experiments [106, 111] with foils on the order
of µm thickness. The direction of the static external magnetic field defines the quantization axis
of the entire sample taken here as B = Bz.

The levels Ig = 1
2 and Ie = 3

2 are thus split into (2I + 1) magnetic sub-levels where the energy
shift due to the Zeeman splitting is given by ∆EI = µmIB0/~ where mI is the projection of total
angular momentum along the static magnetic field axis, Bz. This is shown, not to scale, in Figure
A.1.
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Figure A.1: Zeeman level-scheme of 57Fe as a result of applied static magnetic field. Ω is the
driving rabi frequency, Ig/e are nuclear spins of the ground and excited state, respectively and
mg/e the projection on the z-axis.

We can excite the two ∆m = 0 transitions in this level structure with a single mode laser of
frequency ν impinging along the y direction with polarization of the magnetic component matching
the quantization axis along z. Being an M1 transition the interaction Hamiltonian is given by

V̂ = −m̂ ·B, (A.14)

and the full Hamiltonian can be written as,

Ĥ =


0 0 0 V14

0 ~ω2 V23 0
0 V32 ~ω3 0
V41 0 0 ~ω4

 , (A.15)

where ωn is the frequency of level n and Vij is the field component acting on the two ∆m = 0,
j → i transitions.

46In comparison the internal magnetic field at the Fe nucleus. When calculating the splitting this value can usually be
neglected in comparison to the internal field.
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The Zeeman splitting of the ground and excited state is given by ∆g and ∆e respectively, and
ω is the frequency difference between the unsplit excited and ground state. Hence,

ω2 = 2∆g, (A.16)

ω3 = ω + ∆g −∆e, (A.17)

ω4 = ω + ∆g + ∆e. (A.18)

The relaxation contribution is given by (1.13), where only internal decay from the excited state
to ground state, i.e not between the split levels, is allowed

ρ̂r =


γ13ρ33 + γ14ρ44 0 − 1

2
(γ13 + γ23)ρ13 − 1

2
(γ14 + γ24)ρ14

0 γ23ρ33 + γ24ρ44 − 1
2
(γ13 + γ23)ρ23 − 1

2
(γ14 + γ24)ρ24

− 1
2
(γ13 + γ23)ρ31 − 1

2
(γ13 + γ23)ρ32 −(γ13 + γ23)ρ33 − 1

2
(γ13 + γ23 + γ14 + γ24)ρ34

− 1
2
(γ14 + γ24)ρ41 − 1

2
(γ14 + γ24)ρ42 − 1

2
(γ13 + γ23 + γ14 + γ24)ρ43 −(γ14 + γ24)ρ44

 .

Making the unitary transformation

Û =


1 0 0 0
0 1 0 0
0 0 e−iνt 0
0 0 0 e−iνt

 , (A.19)

gives the transformed density matrix ˆ̃ρ = Û†ρ̂Û

ˆ̃ρ = (ρ̃ij) =


ρ11 ρ12 e−iνtρ13 e−iνtρ14

ρ21 ρ22 e−iνtρ23 e−iνtρ24

eiνtρ31 eiνtρ32 ρ33 ρ34

eiνtρ41 eiνtρ42 ρ43 ρ44

 , (A.20)

and the transformed Hamiltonian ˆ̃H = i~∂tÛ†Û + Û†ĤÛ ,

ˆ̃H =


0 0 0 e−iνtV14

0 2~∆g e−iνtV23 0
0 eiνtV32 ~(∆ + ∆g −∆e) 0

eiνtV41 0 0 ~(∆ + ∆g + ∆e)

 , (A.21)

where ∆ = ω − ν.
The RWA is then made by expanding the form of the applied potential V̂ , and dropping the

fast oscillating terms,

H̃eg = eiνtVeg (A.22)

= −~
2

Ωeg
(
e2iνt + 1

)
(A.23)

RWA≈ −~
2

Ωeg. (A.24)

The Bloch equations ∂t ˆ̃ρ = 1
i~ [ ˆ̃H, ˆ̃ρ] + ˆ̃ρr in the RWA where Clebsch-Gordan coefficients have been

factored out as usual, Ωij = |Cij |Ω and γij = C2
ijΓ gives

ρ̇11 = − i
2
|C41|(Ωρ̃∗41 − Ω∗ρ̃41) + Γ(C2

31ρ33 + C2
41ρ44), (A.25)

ρ̇22 = − i
2
|C32|(Ωρ̃∗32 − Ω∗ρ̃32) + Γ(C2

32ρ33 + C2
42ρ44), (A.26)

˙̃ρ32 =
i

2
|C32|Ω(ρ22 − ρ33)− 1

2

(
2i∆32 + Γ(C2

31 + C2
32)
)
ρ̃32, (A.27)

ρ̇33 =
i

2
|C32|(Ωρ̃∗32 − Ω∗ρ̃32)− Γ(C2

31 + C2
32)ρ33, (A.28)

˙̃ρ41 =
i

2
|C41|Ω(ρ11 − ρ44)− 1

2

(
2i∆41 + Γ(C2

41 + C2
42)
)
ρ̃41, (A.29)

ρ̇44 =
i

2
|C41|(Ωρ̃∗41 − Ω∗ρ̃41)− Γ(C2

41 + C2
42)ρ44, (A.30)

where ∆32 = ω3 − ω2 − ν = ∆−∆g −∆e, ∆41 = ω4 − ν = ∆ + ∆g + ∆e are the detunings to the
3↔ 2 and 4↔ 1 transitions respectively. The field equation is given by

1

c
∂tΩ + ∂zΩ = iη(|C32|ρ32 + |C41|ρ41) (A.31)
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where η = NσΓ
2 and σ = λ2

π(1+α) (2K + 1). In the case of pure iron sample we can find the number

density N = 7.89 g cm−3÷ 55.8 g mol−1× 6.022 · 1023 atoms mol−1 = 8.5 · 1022 atoms cm−3. The
decay rate of the upper state is Γ = 1/τ ≈ 107 s−1 (τ ≈ 141 ns [112]). The transition wavelength
is λ = 2π~c/E ≈ 8.6 · 10−11 m where the transition energy is E = 14.4 keV, and for M1 transition
K=1. Lastly, in the case of iron we must consider the internal conversion coefficient which is α ≈ 9
[113] making the cross section σ ≈ 10−19.

We then use as initial conditions for the MBE,

ρ11(z, 0) = ρ22(z, 0) =
1

2
, (A.32)

Ω(z, 0) = Ω0, (A.33)

Ω(0, t) = Ω0e
−(t/T )2 . (A.34)

The pulse strength and width are chosen such that Ω0T < 1 to prevent Rabi oscillations during
the time the pulse is acting on the nuclei in the sample. For computational purposes, we choose
Ω0 � 1/T and a pulse width of T = 1 ns47.

Solving for Ω as a function of time and plotting I/I0 ∝ |Ω/Ω0|2 gives the NFS intensity
spectrum, Figure A.2. We pick an internal magnetic field of B0 = 25 T, sample thickness L = 1
µm and laser detuning ∆ = 0. The red curve shows the quantum beating as a result of the Zeeman
splitting (caused by B0) of the ground and excited states ∆g and ∆e respectively. The dynamical
beat due to multiple scattering is seen as the envelope to the quantum beats, and is given by
the black curve. The dynamical beat curve is found by artificially setting B0 = 0 and η → η/2
which reduces the system to a two-level system with total population 1/2 of the 4-state system.
Increasing the thickness of the sample will increase the chance of multiple scattering and thus the
period of the dynamical beat decreases.
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Figure A.2: NFS intensity spectrum for 57Fe sample discussed in text with internal magnetic field
B0 = 25 T, sample thickness L = 1 µm and laser detuning ∆ = 0. The red curve shows the
quantum beating as a result of B0. The black curve shows the dynamical beat where B0 = 0 and
η → η/2.

This system is the poster child of Mössbauer spectroscopy and thus can be seen in many
publications including [54, 112, 114, 115].

A.2 Clebsch-Gordan coefficients, Wigner-Eckhart theorem

Clebsch-Gordan coefficients arise in the coupling of two eigenstates of angular momentum,

|j,m〉 =
∑
m1,m2

C j1 j2 j
m2m2m |j1,m1〉|j2,m2〉. (A.35)

Although Clebsch-Gordan coefficients and 3j-symbols are well defined, reduced matrix elements
differ in the literature along with the statement of the Wigner-Eckhart theorem. In many cases
different constants are absorbed into the reduced matrix element.

Starting with the definition of the Clebsch-Gordan coefficient shown in different notations [48,

47As long as the condition Ω0T < 1 is satisfied the NFS spectrum will be the same.
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p.436] [45, p.1177] [116, p.65] [117, p.224] [118, p.1056] [62, p.583] [89, p.475]

C j1 j2 j
m1m2m = 〈j1m1j2m2|jm〉 = 〈j1j2m1m2|jm〉 = 〈m1m2|jm〉 (A.36)

= (−1)j1−j2+m
√

2j + 1

(
j1 j2 j
m1 m2 −m

)
(A.37)

The Clebsch-Gordan coefficients as well as the 3j-symbols are real [48, p.435-7] . As such, we can
rewrite the phase factor, (−1)n = eiπn, and thus n must be an integer for (−1)n to be real. For n
and integer, we also have (−1)n = (−1)−n. Therefore we can also write,

C j1 j2 j
m1m2m = (−1)−j1+j2−m

√
2j + 1

(
j1 j2 j
m1 m2 −m

)
(A.38)

where j1 − j2 +m is an integer. Rules for 3j-symbols can be seen for example in [45, p.1325]. The
3j-symbol (

j1 j2 j
m1 m2 −m

)
,

is only non-zero provided m1 +m2−m = 0 and j1, j2, j must form sides of a triangle having integer
perimeter i.e |j1 − j2| ≤ j. Furthermore, we know from the properties of angular momentum that:

1. j1, j2, j are all positive, and 2j1, 2j2, 2j are all positive integers.

2. The projection of total angular momentum m = (j, j − 1, . . . ,−j), and thus 2m1, 2m2, 2m,
are all integers.

3j-symbols are invariant under cyclic permutations, and are multiplied by (−1)j1+j2+j for non-
cyclic permutations. Replacing all magnetic quantum numbers by there negative (m1,m2,−m)→
(−m1,−m2,m) gives the same factor (−1)j1+j2+j .

Several equivalent statements of Wigner-Eckhart theorem are [63],

〈βjm|Tkq|β′j′m′〉 = (−1)j−m
(

j k j′

−m q m′

)
〈βj||Tk||β′j′〉 (A.39)

=
(−1)k−j

′+j

√
2j + 1

〈kqj′m′|jm〉〈βj||Tk||β′j′〉 (A.40)

=
(−1)j

′−m′+2k

√
2k + 1

〈jmj′ −m′|kq〉〈βj||Tk||β′j′〉 (A.41)

=
(−1)2k

√
2j + 1

〈j′m′kq|jm〉〈βj||Tk||β′j′〉. (A.42)

Note that we are concerned with tensor operators Tkq, where k is an integer, i.e., electric (Ek, q)
of magnetic (Mk, q) transition operators. As such, 2k is an even integer and factors (−1)2k = 1,
thus can be dropped. q = k, k − 1, . . . ,−k.

A useful relation between Clebsch-Gordan coefficients is also given by [63, p.38] [89, p.259],∑
m1,m2

C j1 j2 j
m1m2mC

j1 j2 j′

m1m2m
′ = δm,m′δj,j′δ(j1, j2, j). (A.43)

A.3 Decay rate, linewidth and lifetime

According to the Heisenberg’s uncertainty principle

∆E∆t & ~, (A.44)

hence the width of a state in units of energy is

∆E ≈ ~Γ, (A.45)

where Γ =
∑
i Γi is the total decay rate of the state, a sum of rates from all possible decay paths

to all other possible states. The branching ratio, Bi = Γi/Γ determines the fraction of particles
decaying to the ith state.

The population of the decaying state can be written

ρ(t) = e−Γt, (A.46)
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where the lifetime is given by τ = 1/Γ. Therefore, the probability of being in that state is

|ψ(t)|2 ∝ e−Γt (A.47)

ψ(t) ∝ e−iEt/~e−Γt/2 (A.48)

where the time dependence of the wave function was introduced with central energy of the state
E. Taking the Fourier transform in terms of angular frequency ω gives the wave function of the
state in terms of ω where ω0 = E/~

φ(ω) =

∫ ∞
−∞

ψ(t)eiωtdt (A.49)

∝
∫ ∞

0

e−iEt/~e−Γt/2eiωtdt (A.50)

=

∫ ∞
0

ei(ω−ω0+iΓ/2)tdt (A.51)

=

[
1

i(ω − ω0 + iΓ/2)
ei(ω−ω0+iΓ/2)t

]∞
0

(A.52)

=
i

ω − ω0 + iΓ/2
. (A.53)

The probability as a function of ω is then given by

|φ(ω)|2 ∝ 1

(ω − ω0)2 + (Γ/2)2
(A.54)

which has a width at half max of Γ. Hence, Γ is both the decay rate and the linewidth when
the spectrum is plotted as a function of ω, i.e Γ has units of ω. This is an important point as
both angular ω and linear f frequency are quoted in the literature and proper conversion must
be applied. The above argument carried out using the Fourier transform in terms of the linear
frequency f

φ(f) =

∫ ∞
−∞

ψ(t)e2πiftdt (A.55)

gives the intensity as

|φ(f)|2 ∝ 1

4π2(f − f0)2 + (Γ/2)2
. (A.56)

Measuring the width at half max for this spectrum plotted as a function of linear frequency would
then give Γ/2π. Both values are in units of per second however in literature the decay rate quoted
in terms of ω is usually given in units of [s−1] where as linear frequency f units are given by [Hz].

A.4 Weisskopf units

The reduced transition probability for the nuclear electric (EL) or magnetic (ML) transition is
given by

B(EK, i→ f) = BW (EK, i→ f)
1

4π

(
3

K + 3

)2

(1.2A)2Ke2(fm)2K (A.57)

B(ML, i→ f) = BW (MK, i→ f)
10

π

(
3

K + 3

)2

1.2(2K−2)/2µ2
N (fm)2K−2 (A.58)

BW is the value in Weisskopf units, K the multipolarity of the transition, R = 1.2A1/3 is the radius
of the nucleus in units of femtometers (fm = 10−15m) with A the number of nucleons. µN = e~

2mpc

is the nuclear magneton.

A.5 Early time decay rate in NFS spectrum

Following [119, p.16] the emitted electric field from a two state system excited by a delta pulse,
Ω(t, 0) = δ(t− τ), with detuning ∆ = 0 is given by,

E(t) ∝ ξ exp(−Γt/2)J1(
√

4ξΓt)/
√
ξΓt

85



where ξ = NσL/4, η = 2ξΓ/L, and J1 is the first Bessel function of the first kind. In the case of
early time after excitation Γt� 1/(1 + ξ)

E(t) ∝ ξ exp(−(1 + ξ)Γt/2)

making the intensity
I(t) ∝ ξ2 exp(−(1 + ξ)Γt)

and thus there is an enhancement of the decay rate for early time of (1 + ξ). The factor ξ comes
from the decay rate of the population and the additional factor of 1 comes from the decay of the
coherence. Hence, if there are additional decoherence terms, as there are for the thorium doped
crystal, than the coherence terms can take the form seen in equation (2.13). For example the decay
rate of the coherence term ρ31 is given by

γc13 + Γ/2

therefore the early time NFS spectrum looking at the 3 → 1 transition will have a decay rate of
2γc13 + Γ + ξΓ as discussed in Chapter 2.

A.6 Introducing pulse phase shift in initial conditions

In Section 2.2 we discussed the use of multi pulsed excitation with laser pulses of differing phase.
To achieve pulses with differing phases we first consider E1 excitation with a single mode field
E(ri, t) = E cos(νt+ φ)x̂. The interaction potential is,

V̂ = −di ·E(ri, t), (A.59)

= −(d21|2〉〈1|+ d∗21|1〉〈2|)E cos(νt+ φ), (A.60)

applying unitary transformation

Û =

(
1 0
0 e−iνt

)
(A.61)

we arrive at,

ˆ̃V = −(d21e
iνt|2〉〈1|+ d∗21e

−iνt|1〉〈2|)E cos(νt+ φ) (A.62)

= −~
2

(
d21

(
ei(2νt+φ) + e−iφ

)
|2〉〈1|+ d∗21

(
eiφ + e−i(2νt+φ)

)
|1〉〈2|

)
(A.63)

RWA≈ −~
2

(
d21e

−iφ|2〉〈1|+ d∗21e
iφ|1〉〈2|

)
(A.64)

= −~
2

(Ω|2〉〈1|+ Ω∗|1〉〈2|) , (A.65)

where now we define the Rabi frequency as Ω = d21E e−iφ/~. The only difference here to the usual
case of excitation with E(ri, t) = E cos(νt)x̂ is phase factor eiφ. The initial conditions of the NFS
calculation then defines the phase of the pulse,

Ω(0, t) = Ω0e
−(t/T )2eiφ. (A.66)

The phase only has an impact on the excitation when there is more than one excitation pulse. In
the case of multiple pulses it is then the relative phase that affects the intensity seen in the NFS
spectrum. Both relative phase and time delay can have a significant effect as shown for example
with equation (2.29) for two pulses with time delay and phase difference.

A.7 Multipulsed excitation: superposition

Testing the solution for multiple pulses exciting the two-state system against the MBE: Consider
2 pulses arriving at the sample at t1, t2, with phases φ1, φ2,

In(t) ∝
∣∣∣∣∣∑
n

Ne−Γ(t−tn)/2ei(∆(t−tn)+φn)

∣∣∣∣∣
2

, (A.67)

I2(t) ∝ N2
(
e−Γ(t−t1) + e−Γ(t−t2) + 2e−Γ(2t−t1−t2)/2 cos(∆(t2 − t1)− (φ2 − φ1))

)
. (A.68)
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The intensity of the exciting pulse cannot be separated from the signal therefore we must compare
two intensity points after the excitations have happened, i.e we cannot compare intensities directly
at t = t1, t2. The intensity at time δ, where t2 > δ > t1, after the first pulse is then,

I1(δ) = N2e−Γ(δ−t1), (A.69)

N2 =
I1(δ)

e−Γ(δ−t1)
. (A.70)

Plugging into the above equation for the intensity after the second pulse we find

I2(t) = I1(δ)e−Γ(t−δ) + I1(δ)e−Γ(t−δ−t2+t1) + 2I1(δ)e−Γ(t−δ− t2−t12 ) cos(∆(t2 − t1)− (φ2 − φ1)).

(A.71)

Hence we can compare the intensity after the second pulse I2(t) using first the above equation
and secondly using the MBE. In both cases I1(δ) is given as a starting intensity from the MBE
calculation. This simple model does not yield an exact match in intensities, however, predicts the
correct trends in the output intensity which is valuable for a basic understanding of the system.

A.8 Electric field gradient

The quantization axis is aligned with the dominant component of the electric field gradient expe-
rienced by the thorium nucleus inside the crystal environment. Following [76, p124], the electric
field gradient (EFG) tensor is given by

∇E = −

Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 , Vnm =
∂2V

∂n∂m
, (A.72)

E = −∇V = −(x̂Vx + ŷVy + ẑVz). (A.73)

The eigenvectors of the diagonalized EFG tensor define the principal axes. Once diagonalized,
∇2V = Vxx + Vyy + Vzz = 0. By convention, we define the axes such that |Vzz| ≥ |Vyy| ≥ |Vzz|,
and η = (Vxx − Vyy)/Vzz is the asymmetry factor such that η = 0 defines axial symmetry.

Here we discuss the most relevant cases of 90◦ and 180◦ dopant orientations using point charges
to represent the flouride interstitials. Consider the thorium nuclei at the origin and the two fluoride
interstitials placed a distance a and b in the x-y plane at 90◦ with the origin giving,

V (90) = −ke
[
((x− a)2 + y2 + z2)−1/2 + (x2 + (y − b)2 + z2)−1/2

]
, (A.74)

V (90)
xx |0 = ke

(
1

|b|3 −
2

|a|3
)
, (A.75)

V (90)
yy |0 = ke

(
1

|a|3 −
2

|b|3
)
, (A.76)

V (90)
zz |0 = ke

(
1

|a|3 +
1

|b|3
)
, (A.77)

η(90) =
3

|b|3 −
3

|a|3 . (A.78)

Placing the F− either side thorium along the z axis for 180◦ gives,

V (180) = −ke
[
(x2 + y2 + (z − a)2)−1/2 + (x2 + y2 + (z + b)2)−1/2

]
, (A.79)

V (180)
xx |0 = V (180)

yy |0 = ke

(
1

|a|3 +
1

|b|3
)
, (A.80)

V (180)
zz |0 = −ke

(
2

|a|3 +
2

|b|3
)
, (A.81)

η(180) = 0. (A.82)

87



A.9 Multipole radiation selection rules

In the case of electric (magnetic) dipole transitions, the transition moment operator ME1(M1)

is a rank-1 tensor i.e., vector. Hence we can write it in its spherical basis components χ−q see
Appendix A.11,

ME1(M1) =

q=1∑
q=−1

(−1)qME1(M1),qχ−q. (A.83)

The electric and magnetic dipole interaction Hamiltonians are

V̂ E1 = −d ·E, (A.84)

V̂M1 = −m ·B, (A.85)

where d andm are more standard notation for the electric (magnetic) transition moment operators
and E and B the exciting electric and magnetic fields respectively [45, p.202]. The electric and
magnetic fields can be expanded in the spherical basis, and the inner product carried out to give

V̂ E1 = −
q=1∑
q=−1

(−1)qDE1,qE−q, (A.86)

V̂M1 = −
q=1∑
q=−1

(−1)qMM1,qB−q. (A.87)

As a result we can deduce the required polarization of the field to drive each transition. Magnetic
dipole transitions are more relevant to this work so as an example, for a MM1,−1 (∆m = −1)

transition, we require a left-handed circularly polarized magnetic field B = Bb̂ = B1χ−1 where

b̂ = χ−1 = 1√
2
(x̂− iŷ). In the context of transitions, the polarization (χ0,χ1,χ−1) is also referred

to as (π, σ+, σ−).
In addition to the type and polarization of the exciting field, we know from the Wigner-

Eckhart theorem and the properties of the Clebsch-Gordan coefficients, that a matrix element
〈jmj |Ok,q|j′m′j〉 is only non-zero provided j = j′ + k and mj = m′j + q. Furthermore, the multi-
polarity of a transition given by the change in angular momentum l = ∆I defines the parity P of a
multipole transition is P = (−1)l for electric 2l-pole El and P = (−1)l−1 for magnetic 2l-pole Ml
transitions. Thus, for both E1 and M1 transitions we require ∆j = 0,±1 and ∆m = 0,±1, and
for E1 Pf = −Pi, and M1 Pf = Pi.

A.10 Multi-quantization axis calculations

Calculations involving samples with multiple quantization axes rely on the ability to project the
exciting laser field’s polarization vector onto the different q-axis frames. By doing so one can
determine the transitions that will be driven in each frame and then the resulting polarization of
the emitted radiation. Fields resulting from the decay of the excited states with like polarization
in the lab frame then add in superposition resulting in the final recorded spectrum.

To keep track of the polarization vectors throughout the calculation we define the lab frame
by (x̂, ŷ, ẑ), and the quantization axis frame by (α̂, β̂, q̂), where the quantization axis has vector
components q̂ = (qx, qy, qz) in the lab frame and,

α̂ =
ẑ − (ẑ · q̂)q̂

|ẑ − (ẑ · q̂)q̂| , (A.88)

β̂ = q̂ × α̂. (A.89)

The polarization vectors for a given transition can then be defined in the q-axis frame,

π̂q = q̂, (A.90)

σ̂+
q = − 1√

2
(α̂+ iβ̂), (A.91)

σ̂−q =
1√
2

(α̂− iβ̂). (A.92)
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Given a field with unit amplitude polarized along p̂ in the lab frame, one then projects onto vectors
χ̂q = (π̂q, σ̂

+
q , σ̂

−
q ) to give the amplitude A of the field driving each transition in the q frame,

A0
q = p̂ · π̂q = pxπ

∗
q,x + pyπ

∗
q,y + pzπ

∗
q,z, (A.93)

A+
q = p̂ · σ̂+

q , (A.94)

A−q = p̂ · σ̂−q . (A.95)

The amplitude projections are used as initial conditions to define the peak Rabi frequency for each
transition type, and in each q-axis frame. For each q-axis frame there are three field equations,(

∂

∂z
+

1

c

∂

∂t

)
Ω(0,+,−)
q = iη

∑
i,f

Cfiρ
(0,+,−)
fi , (A.96)

one for each polarization direction (π̂q, σ̂
+
q , σ̂

−
q ). Here ρ

(0,+,−)
fi , denotes the density matrix elements

for transitions of type (0,+,−) from initial state i to final state f .

Upon completion of the calculation all resultant fields Ω
(0,+,−)
q are projected onto the lab frame

axes giving components in (x, y, z),

Ω(0,+,−)
q = Ω(0,+,−)

q χ̂q,(0,+,−) = (Ω(0,+,−)
q,x ,Ω(0,+,−)

q,y ,Ω(0,+,−)
q,z ). (A.97)

(x, y, z) components of each field can then be added in superposition to find the resultant intensity.
This method was used to consider crystals with multiple quantization axes as well as multiple

crystals excited sequentially, where the output field from one crystal forms the input to the next.

A.11 The spherical basis

The spherical basis is used extensively when talking about polarized excitations, as such a brief
overview is presented here following [116, p.23] [89].

A vector in Cartesian basis is given by,

f = fxx̂+ fyŷ + fzẑ. (A.98)

Vectors in the spherical basis are given by,

f =

1∑
µ=−1

fµχµ =

1∑
µ=−1

fµχ
∗
µ =

1∑
µ=−1

(−1)µfµχ−µ, (A.99)

where the unit vectors are that of linear and circular polarization,

χ0 = ẑ, (A.100)

χ±1 = ∓ 1√
2

(x̂± iŷ). (A.101)

The spherical basis vectors obey χµχ
∗
µ′ = δµµ′ and the spherical coordinates in contravariant and

covariant form are given by,

f0 = fz, f
±1 = ∓ 1√

2
(fx ∓ ify), f0 = fz, f±1 = ∓ 1√

2
(fx ± ify). (A.102)

The inner product is defined by,

f · g =

1∑
µ=−1

fµgµ =

1∑
µ=−1

gµfµ =

1∑
µ=−1

(−1)µfµg−µ. (A.103)

A.12 Computation of magnetic-dipole coupling operator

In an effort to simplify notation we can break down the matrix elements further and denote
TM1,q → T1q,

〈ms|T1,+1|m′s〉 =
1

c

[
l+δms,m′s

r3
+
δms,m′s+1√

2r3
+

3r+

2r5
〈ms|σ · r|m′s〉 −

8π

3
√

2
δms,m′s+1δ(r)

]
,

〈ms|T1,−1|m′s〉 =
1

c

[
l−δms,m′s

r3
− δms,m′s−1√

2r3
+

3r−
2r5
〈ms|σ · r|m′s〉+

8π

3
√

2
δms,m′s−1δ(r)

]
,

〈ms|T1,0|m′s〉 =
1

c

[
l0δms,m′s

r3
− m′sδms,m′s

r3
+

3r0

2r5
〈ms|σ · r|m′s〉+

8πm′s
3

δms,m′sδ(r)

]
.
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Solving the spin component,

〈 12 |T1+| 12 〉 =
1

c

[
l+
r3

+
3r+ cos θ

2r4

]
, (A.104)

〈− 1
2 |T1+| − 1

2 〉 =
1

c

[
l+
r3
− 3r+ cos θ

2r4

]
, (A.105)

〈 12 |T1+| − 1
2 〉 =

1

c

[
1√
2r3

+
3r+e

−iφ sin θ

2r4
− 8π

3
√

2
δ(r)

]
, (A.106)

〈− 1
2 |T1+| 12 〉 =

1

c

[
3r+e

iφ sin θ

2r4

]
, (A.107)

〈 12 |T1−| 12 〉 =
1

c

[
l−
r3

+
3r− cos θ

2r4

]
, (A.108)

〈− 1
2 |T1−| − 1

2 〉 =
1

c

[
l−
r3
− 3r− cos θ

2r4

]
, (A.109)

〈 12 |T1−| − 1
2 〉 =

1

c

[
3r−e−iφ sin θ

2r4

]
, (A.110)

〈− 1
2 |T1−| 12 〉 =

1

c

[
− 1√

2r3
+

3r−eiφ sin θ

2r4
+

8π

3
√

2
δ(r)

]
, (A.111)

〈 12 |T10| 12 〉 =
1

c

[
l0
r3
− 1

2r3
+

3r0 cos θ

2r4
+

8π

6
δ(r)

]
, (A.112)

〈− 1
2 |T10| − 1

2 〉 =
1

c

[
l0
r3

+
1

2r3
− 3r0 cos θ

2r4
− 8π

6
δ(r)

]
, (A.113)

〈 12 |T10| − 1
2 〉 =

1

c

[
3r0e

−iφ sin θ

2r4

]
, (A.114)

〈− 1
2 |T10| 12 〉 =

1

c

[
3r0e

iφ sin θ

2r4

]
. (A.115)

When comparing matrix elements, it is clear that many terms are similar. This can be useful
during computation. Comparing T1± for ms = m′s we can define48,

1 = − 1√
2r3

ily =
1√
2r3

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
, (A.116)

2 = − 1√
2r3

lx
i

= − 1√
2r3

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, (A.117)

3 = −3 cos θ sin θ cosφ

2
√

2r3
, (A.118)

4 = −3 cos θ sin θ sinφ

2
√

2r3
, (A.119)

making the final matrix elements,

〈 12 |T1+| 12 〉 =
1

c

[
( 1 + 3 ) + i( 2 + 4 )

]
, (A.120)

〈− 1
2 |T1+| − 1

2 〉 =
1

c

[
( 1 − 3 ) + i( 2 − 4 )

]
, (A.121)

〈 12 |T1−| 12 〉 =
1

c

[
( 1 − 3 ) + i(− 2 + 4 )

]
, (A.122)

〈− 1
2 |T1−| − 1

2 〉 =
1

c

[
( 1 + 3 ) + i(− 2 − 4 )

]
. (A.123)

48
∫
f(r, θ, φ) dV =

∫
f(r, θ, φ)r2 sin θ dr dθ dφ =

∫
k(r, θ, φ)r2 dr dθ dφ when building the functions to be integrated

multiply through by sin θ from dV to remove the undefined values for cot θ at 0 and π in the data set prior to the
integration step.
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Comparing now 〈 12 |T1+| − 1
2 〉 with 〈− 1

2 |T1−| 12 〉, and 〈− 1
2 |T1+| 12 〉 with 〈 12 |T1−| − 1

2 〉 we define,

5 =
1√
2r3

, (A.124)

6 =
3r+e

−iφ sin θ

2r4
= −3r−eiφ sin θ

2r4
= −3 sin2 θ

2
√

2r3
, (A.125)

7 = − 8π

3
√

2
δ(r), (A.126)

8 = −3 sin2 θ

2
√

2r3
cos(2φ), (A.127)

9 = −3 sin2 θ

2
√

2r3
sin(2φ), (A.128)

giving,

〈 12 |T1+| − 1
2 〉 =

1

c

[
5 + 6 + 7

]
, (A.129)

〈− 1
2 |T1+| 12 〉 =

1

c

[
8 + i 9

]
, (A.130)

〈 12 |T1−| − 1
2 〉 =

1

c

[
− 8 + i 9

]
, (A.131)

〈− 1
2 |T1−| 12 〉 =

1

c

[
− 5 − 6 − 7

]
. (A.132)

Comparing 〈 12 |T10| 12 〉 with 〈− 1
2 |T10| − 1

2 〉, and 〈 12 |T10| − 1
2 〉 with 〈− 1

2 |T10| 12 〉 we define

10 = − 1

r3

∂

∂φ
, (A.133)

11 =
3 cos2 θ

2r3
, (A.134)

giving,

〈 12 |T10| 12 〉 =
1

c

[
i 10 − 1√

2
5 + 11 − 1√

2
7

]
, (A.135)

〈− 1
2 |T10| − 1

2 〉 =
1

c

[
i 10 +

1√
2

5 − 11 +
1√
2

7

]
, (A.136)

〈 12 |T10| − 1
2 〉 =

1

c

[
−
√

2 3 + i
√

2 4
]
, (A.137)

〈− 1
2 |T10| 12 〉 =

1

c

[
−
√

2 3 − i
√

2 4
]
. (A.138)

The Fermi contact term

Each element of TM1,q has a term ∝ aδ(r) where a is a constant. These are the Fermi contact
(FC) terms which must be considered carefully.

When benchmarking with quasi-relativistic wave functions as done in Section 7.1 the following
procedure was used to determine the value of the wave functions at the origin. The delta function
in spherical coordinates is defined as δ(r) = δ3(r, θ, φ) = 1

r2 sin θ δ(r)δ(θ)δ(φ). The set of quasi-
relativistic wave functions are of the form ψnlm = 1

rPnl(r)Ylm(θ, φ), where we approximate the
radial component of the wave function with the large component of the relativistic wave function
P . We can then solve,

〈nlm|δ(r)|n′l′m′〉 =

∫
ψ∗fδ(r)ψir

2 sin θ dr dθ dφ (A.139)

=

∫
ψ∗fδ(r)δ(θ)δ(φ)ψi dr dθ dφ (A.140)

=

∫
P ∗nl
r
δ(r)

Pn′l′

r
dr

∫
Y ∗lmδ(θ)δ(φ)Yl′m′ dθ dφ (A.141)

=

[
P ∗nl(r)Pn′l′(r)

r2

]
r=0

[Y ∗lm(θ, φ)Yl′m′(θ, φ)]θ=0
φ=0

. (A.142)
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We know from [48, p.120] that the radial wave function which for us is Rnl(r) = Pnl(r)/r is
proportional to rl at the origin. Therefore, the radial component is different from zero only for
s-states (l = 0) at the origin r = 0. As a result we have

〈nlm|δ(r)|n′l′m′〉 =
δl0δll′δmm′

4π

[
P ∗nl(r)Pn′l′(r)

r2

]
r=0

. (A.143)

To deal with the delta function numerically, fit Pnl with a polynomial of order rl+1 giving
Pnl ≈

∑l
k=0 ankr

k+1. Then the radial component49, Rnl =
∑l
k=0 ankr

k = anlr
l and at the origin

Rnl(0) ≈ anlδl0 giving the final result as

〈nlm|δ(r)|n′l′m′〉 =
a∗nlan′l′

4π
δl0δll′δmm′ . (A.144)

The wave functions used for electrons in the crystal environment are already non-relativistic,
as such we do not have to deal with the above fitting procedure. Rather we must extrapolate the
wave function directly to get an approximate value at the origin. The origin in the case of EB in
the crystal is the thorium nucleus. None of the wave functions used had a significant value at the
origin, and thus the FC terms in the crystal had negligible effect here. This can be understood if
we look at the color-center wave functions in Figure 5.4 which are the most localized around the
thorium nucleus. These wave functions are predominantly f -like making the value at the origin
negligible. In the case of the few wave functions with a significant s character such as PBE 364
and 367 or HSE 361 the FC term is still negligible as it only acts on s → s type transitions of
which there are effectively none.

49As we know from earlier all ank = 0 except for k = l. Numerically, this is not strictly the case due to error, however
the anl should be dominant.
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troscopy for a precise energy determination of 229mTh. Hyperfine Interactions 240, 23 (2019).

19. Jeet, J. et al. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy
229Th Nuclear Isomeric Transition. Phys. Rev. Lett. 114, 253001 (2015).

20. Yamaguchi, A. et al. Experimental search for the low-energy nuclear transition in 229Th with
undulator radiation. New Journal of Physics 17, 053053 (2015).

21. Stellmer, S., Schreitl, M. & Schumm, T. Radioluminescence and photoluminescence of Th:CaF2

crystals. Sci. Rep. 5, 15580 (2015).

22. Pimon, M. & Mohn, P. private communication 2019.

93



23. Rix, S. Radiation-induced Defects in Calcium Fluoride and Their Influence on Material
Properties under 193 nm Laser Irradiation PhD thesis (Johannes Gutenberg-Universität,
Mainz, 2011).

24. Dessovic, P. Ab-initio calculations for Thorium doped Calcium Fluoride (CaF2) Diplomar-
beit, Technischen Universität Wien (2016).

25. Dicke, R. H. The Effect of Collisions upon the Doppler Width of Spectral Lines. Phys. Rev.
89, 472 (1953).

26. Liao, W. T., Das, S., Keitel, C. H. & Pálffy, A. Coherence-Enhanced Optical Determination
of the 229Th Isomeric Transition. Phys. Rev. Lett. 109, 262502 (2012).

27. Hannon, J. P. & Trammell, G. T. Coherent γ-ray optics. Hyperfine Interactions 123/124,
127 (1999).

28. Crisp, M. D. Propagation of Small-Area Pulses of Coherent Light through a Resonant
Medium. Phys. Rev. A 1, 1604 (1970).

29. Hartmann, H. J. & Laubereau, A. Coherent pulse propagation in the infrared on the pi-
cosecond time scale. Opt. Commun. 47, 117 (1983).

30. Rothenberg, J. E., Grischkowsky, D. & Balant, A. C. Observation of the Formation of the
0π Pulse. Phys. Rev. Lett. 53, 552 (1984).

31. Das, S., Pálffy, A. & Keitel, C. H. Quantum interference effects in an ensemble of 229Th
nuclei interacting with coherent light. Phys. Rev. C 88, 024601 (2013).

32. Liao, W. T. & Pálffy, A. Optomechanically induced transparency of x-rays via optical control.
Sci. Rep. 7, 321 (2017).

33. Stellmer, S., Schreitl, M., Kazakov, G. A., Sterba, J. H. & Schumm, T. Feasibility study of
measuring the 229Th nuclear isomer transition with 233U-doped crystals. Phys. Rev. C 94,
014302 (2016).

34. Barker, B. J. et al. Oxidation State of 229Th Recoils Implanted into MgF2 Crystals. Science
Journal of Chemistry 6 (2018).

35. Bilous, P. V., Peik, E. & Pálffy, A. Laser-induced electronic bridge for characterization of the
229mTh → 229gTh nuclear transition with a tunable optical laser. New Journal of Physics
20, 013016 (2018).

36. Bilous, P. V., Minkov, N. & Pálffy, A. The electric quadrupole channel of the 7.8 eV 229Th
transition. Phys. Rev. C 97, 044320 (2018).

37. Bilous, P. V. Towards a nuclear clock with the 229Th isomeric transition PhD thesis (Uni-
versity of Heidelberg, 2018).

38. Porsev, S. G. & Flambaum, V. V. Effect of atomic electrons on the 7.6-eV nuclear transition
in 229Th3+. Phys. Rev. A 81, 032504 (2010).

39. Dicke, R. H. Coherence in Spontaneous Radiation Processes. Phys. Rev. 93, 99 (1954).

40. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge University Press, 1999).

41. Shvyd’ko, Y. V. Nuclear resonant forward scattering of x rays: Time and space picture. Phys.
Rev. B 59, 9132 (1999).

42. Gunst, J. Mutual control of x-rays and nuclear transitions PhD thesis (University of Heidel-
berg, 2015).

43. Gunst, J. & Pálffy, A. X-ray quantum-eraser setup for time-energy complementarity. Phys.
Rev. A 94, 063849 (2016).

44. Mandel, L. & Wolf, E. Optical coherence and quantum optics (Cambridge University Press,
1995).

45. Shore, B. W. The Theory of Coherent Atomic Excitation (Wiley, 1990).

46. Allen, L. & Eberly, J. H. Optical resonance and two-level atoms (Wiley, 1975).

47. De Valcarcel, G. J., Roldan, E. & Prati, F. Semiclassical Theory of Amplification and Lasing.
Revista Mexicana de Fisica E 52, 198–214 (2006).

48. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics Non-Relativistic Theory 3rd ed. (Perg-
amon Press, 1991).

49. Boyd, R. Nonlinear Optics 3rd ed. (Academic Press, 2008).

94



50. Keeling, J. Light-Matter Interactions and Quantum Optics (CreateSpace Independent Pub-
lishing Platform, 2014).

51. Del Valle Reboul, E. Quantum Electrodynamics with Quantum Dots in Microcavities PhD
thesis (Universidad Autonoma de Madrid, 2009).

52. Fujii, K., Higashida, K., Kato, R. & Wada, Y. N Level System with RWA and Analytical
Solutions Revisited. arXiv:quant-ph/0307066v2 (2003).

53. Jackson, J. Classical Electrodynamics 3rd ed. (John Wiley & Sons, Inc., 1999).

54. Shvyd’ko, Y. V. et al. Hybrid beat in nuclear forward scattering of synchrotron radiation.
Phys. Rev. B 57, 3552–3561 (1998).
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91. Blöchl, P. E., Först, C. J. & Schimpl, J. Projector augmented wave method:ab initio molec-
ular dynamics with full wave functions. Bulletin of Materials Science 26, 33–41 (2003).

92. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave
method. Phys. Rev. B 59, 1758–1775 (1999).

93. Kohn, W. & Sham, L. Self-Consistant Equations Including Exchange and Correlation Effects.
Physical Review 140, 1133–1138 (1965).

94. Parr, R. & Yang, W. Density functional theory of atoms and molecules (Oxford University
Press, 1989).

95. Noorden, R. V., Maher, B. & Nuzzo, R. The top 100 papers: Nature explores the most-cited
research of all time. Nature 514, 550–553 (2014).

96. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density
functional approximations. J. Chem. Phys. 105, 9982 (1996).

97. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb
potential. J. Chem. Phys. 118, 8207 (2003).

98. Davydov, A. S. Quantum Mechanics (Pergamon Press, 1965).

99. Jönsson, P., Gaigalas, G., Bieron, J., Fischer, C. F. & Grant, I. P. New version: Grasp2K
relativistic atomic structure package. Computer Physics Communications 184, 2197 (2013).

100. Bilous, P. V. private communication 2019.

101. Kennedy, W. L. Partial equivalence of the correct and incorrect versions of the Darwin term.
J. Phys. A: Math. Gen. 21, 3021 (1988).

102. Hiller, J., Sucher, J. & Feinberg, G. New techniques fro evaluating parity-conserving and
parity-violating contact interactions. Phys. Rev. A 18 (1978).

103. Geertsen, J. Calculation of the indirect nuclear spin-spin coupling constant in HD using a
golbal operator representation of the Fermi contact operator. Chem. Phys. Lett. 116 (1985).

104. Ozmen, A., Cakr, B. & Yakar, Y. Electronic structure and relativistic terms of one-electron
spherical quantum dot. Journal of Luminescence 137, 259–268 (2013).

105. Foldy, L. L. & Wouthuysen, S. A. On the Dirac Theory of Spin 1/2 Particles and its Non-
Relativistic Limit. Phys. Rev. 78 (1950).

106. Childs, W. J. & Goodman, L. S. Hyperfine Interactions and the Magnetic Fields Due to
Core Polarization in Fe57. Phys. Rev. 148, 74–78 (1966).

96
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115. Lübbers, R. Magnetism and Lattice Dynamics under High Pressure Studied by Nuclear Res-
onant Scattering of Synchrotron Radiation PhD thesis (Universität Paderborn, 2000).

116. Akhiezer, A. I. & Berestetski, V. B. Quantum Electrodynamics (Interscience Publishers,
1965).

117. Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics 2nd ed. (Addison-Wesley, 2011).

118. Messiah, A. Quantum Mechanics (North-Holland, 1967).

119. Liao, W. T. Coherent Control of Nuclei and X-Rays PhD thesis (University of Heidelberg,
2013).

97



98



Acknowledgements

I would first and foremost like to thank my supervisor PD Dr. Adriana Pálffy-Buß who gave me
the opportunity not only to complete my doctoral studies in her group, but also for providing the
opportunity to experience a new culture by living here in Germany while doing so. Her discussion
on the scientific topics presented here as well as general scientific writing style and presentation
has proved invaluable.

I would like to thank Assoc. Prof. Dr. Wen-Te Liao. His discussion during the early stages of
this doctoral work was important to bring me up to speed on the work previously done by himself
and A. Pálffy-Buß regarding NFS in thorium doped crystals, as well as the use of the MBE to
model such systems.

I would like to thank Dr. Pavlo Bilous. He was instrumental in helping me make the transition
from the study of NFS to that of EB. His discussion helped not only in my understanding of EB
processes in ions, which he is a expert in, but also application to the crystal environment which is
the new work presented here.

I would like to acknowledge Prof. Dr. Thorsten Schumm for his initial idea to use defects
within the thorium-doped crystals as a means to excite the thorium nucleus. I would also like to
thank him for the discussion of this topic as well as initiating the collaboration between our group
at the MPIK in Heidelberg, Germany with the group of Prof. Dr. Peter Mohn as well as his own
group at the Technische Universität Wien, Austria.

I would like to thank Martin Pimon who is currently working on his Doctorate in the group
of P. Mohn. The work on EB could not be completed without his careful calculation of electronic
wave functions in the crystal environment.

I would like to thank Kjeld Beeks who is currently working on his Doctorate in the group of
T. Schumm. His discussion regarding crystal damage and their experimental efforts to measure
the isomeric state of thorium as well as the electronic color-center states in 229Th:CaF2 has been
helpful.

I would like to thank the nuClock consortium headed by T. Schumm which was funded by the
European Unions Horizon 2020 research and innovation programme under grant agreement No.
664732. The nuClock consortium brought together research partners and provided funding for the
development of a nuclear clock based on the isomeric state of 229Th. I benefited greatly from this
funding which allowed me to conduct my research along with travel to a variety of conferences
across Germany as well as in Belgium and Austria to discuss my results and learn from others in
the field.

Thank you to, Assoc. Prof. Dr. Wen-Te Liao, Dr. Pavlo Bilous and Dr. Sergey Bragin for
reading parts of this dissertation and providing helpful suggestions and corrections.

Finally, I would like to thank Honorarprofessor Dr. Christoph H. Keitel for providing me with
the opportunity to work in his division and the MPIK, as well as to all of my colleagues and
administration who created an encouraging working environment.

99


	Introduction
	I Nuclear Forward Scattering in Thorium-Doped Crystals 
	Theoretical background for Nuclear Forward Scatting (NFS) 
	Bloch equations 
	Unitary transformations and the Rotating-Wave Approximation (RWA)
	Two-state system

	Maxwell's field equation 
	Resonant cross section 
	Initial conditions: Rabi Frequency
	Factoring of Clebsch-Gordan coefficients

	Nuclear forward scattering and the Maxwell-Bloch Equations 

	NFS in 229Th:CaF2 
	Modified couple laser Oc 
	Square pulse
	Gaussian pulse

	Train of probe pulses
	Two-level system with = 0
	Two-level system with =0
	Three-level system

	Applied static magnetic field 

	The role of crystal structure and quantization axis 
	Lowest energy configuration: =0


	II Electronic Bridge process in Doped Crystals 
	Theoretical Background for Electronic Bridge 
	Operators 
	Nuclear operators
	Electronic operators
	Order of computation


	EB in Thorium-doped crystals 
	Excitation of the nuclear isomer 
	Direct photoexcitation 
	A: EB starting in the electronic ground state 
	B: EB starting from the color-center with energy greater than the isomer 
	Stimulated Electronic Bridge 

	C: EB starting from the color-center with energy less than the isomer 
	Internal conversion from excited states


	Discussion of errors and approximations 
	Benchmark with quasi-relativistic wave functions 
	DFT wave functions of undefined (j,mj)
	Checks based on selection rules 
	Brute force checks: grid choice
	Brute force checks: intermediate states

	Conclusion & Outlook
	Appendix: Details in development
	Dynamical beat: 57Fe 
	Clebsch-Gordan coefficients, Wigner-Eckhart theorem 
	Decay rate, linewidth and lifetime 
	Weisskopf units 
	Early time decay rate in NFS spectrum 

	Introducing pulse phase shift in initial conditions 
	Multipulsed excitation: superposition
	Electric field gradient 
	Multipole radiation selection rules 
	Multi-quantization axis calculations 
	The spherical basis 
	Computation of magnetic-dipole coupling operator 
	Bibliography
	Acknowledgements







