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Abstract 

Increased activation of the complement system has been measured in various malignancies. 

Previous studies indicated that the complement system activates endothelial cells (ECs) and 

neutrophils. However, in the context of tumor progression, knowledge on the crosstalk 

between the vascular endothelium, the complement system and the neutrophil associated 

innate immunity is still scarce. Here, we report the tumor-specific complement activation in 

patients suffering from malignant melanoma. Using mouse and human tumor tissue samples, 

we showed that accumulation of complement effectors such as C3 fragments and C5a around 

tumor blood vessel walls were increased. Moreover, we detected high levels of the mannose 

binding lectin (MBL) at the endothelium suggesting the involvement of the lectin pathway as 

main trigger of the melanoma mediated complement activation. However, the complement 

cascade terminated by the formation of the membrane attack complex (MAC) not on the 

endothelium but on perivascular neutrophils. In vitro experiments with human ECs and 

neutrophils confirmed this complement mediated crosstalk. Further in vitro experiments 

demonstrated that MAC positive neutrophils released reactive oxygen species (ROS) and 

neutrophil extracellular traps (NETs). In close proximity to the endothelium, complement 

activated neutrophils were able to increase the vascular permeability allowing the 

transmigration of melanoma cells. MAC deposition on tumor-associated neutrophils was also 

found in human melanomas but not in rarely metastasizing basal cell carcinomas, 

keratoacanthoma, or non-metastatic nevocytic nevi. Interference with the deposition of 

complement factors on the EC surface through the low-molecular weight heparin tinzaparin 

prevented MAC formation and thus ROS and NETs release from neutrophils. Moreover, 

tinzaparin treatment stabilized the vascular permeability and might contribute to a reduced 

metastasis as previously published. In summary, we discovered a triangular communication 

between the complement system, neutrophils and the vascular endothelium mediating 

NETosis, endothelial dysfunction and subsequently melanoma cells extravasation. Therefore, 

targeting complement activation envisions a new therapeutic strategy for the treatment of 

malignant melanoma. 
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Zusammenfassung 

Eine verstärkte Aktivierung des Komplementsystems konnte bereits in verschiedenen 

Tumorerkrankungen nachgewiesen werden. Vorangegangene wissenschaftliche Arbeiten 

weisen darauf hin, dass das Komplementsystem Endothelzellen (EZ) und neutrophile 

Granulozyten aktiviert. Dennoch ist das Wissen hinsichtlich der Interaktion zwischen dem 

Gefäßendothel, dem Komplementsystem und dem mit den Neutrophilen assoziierten 

Immunsystem, im Kontext der Tumorprogression, begrenzt. Hier berichten wir über die 

tumorspezifische Komplementaktivierung bei am malignen Melanom erkrankten Patienten. 

In von der Maus stammenden und humanen Gewebeproben haben wir eine vermehrte 

Anreicherung der Komplementeffektoren C3b und C5a um Tumorblutgefäßwände gefunden. 

Darüber hinaus haben wir hohe Spiegel des Mannose bindenden Lektins (MBL) am Endothel 

festgestellt, welche auf eine Beteiligung des Lektin Weges, bei der Melanom vermittelten 

Komplementaktivierung hinweist. Jedoch endete die Komplementkaskade in der Formation 

des Membran Angriff Komplexes (MAK) nicht auf dem Endothel, sondern auf den 

perivaskulären Neutrophilen. In in vitro Experimenten mit humanen EZ und Neutrophilen 

wurde ihre Komplement vermittelte Wechselwirkung bestätigt. In vitro Experimente haben 

auch gezeigt, dass Neutrophile reaktive Sauerstoffspezies (ROS) und neutrophile 

extrazelluläre Fallen (NEF) ausschütten. Komplementaktivierte neutrophile Granulozyten 

waren daher in der Lage, im eng benachbarten Endothel die vaskuläre Permeabilität zu 

erhöhen. Ein Mechanismus, der die Transmigration von Melanomzellen erleichtert. Die 

Ablagerung des MAK auf Tumor assoziierten Neutrophilen wurde in humanem Melanom 

gefunden, aber nicht im selten metastasierenden Basalzellkarzinom, Keratoakanthom, oder 

nicht metastasierenden nävozytischen Nävi. Das niedermolekulare Heparin Tinzaparin 

interferiert mit der Ablagerung der Komplementfaktoren auf der EZ Oberfläche und 

verhindert die MAK Bildung und somit in der Folge die Freisetzung von ROS und NEF aus 

Neutrophilen. Darüber hinaus stabilisierte Tinzaparin die vaskuläre Integrität und reduzierte 

die Metastasierung des Melanoms. Zusammenfassend beschreiben wir hier die trianguläre 

Kommunikation zwischen dem Komplementsystem, neutrophilen Granulozyten und dem 

vaskulären Endothel im Mikromilieu des Melanoms. Aufgrund der hier aufgezeigten 

Bedeutung der Komplement vermittelten NEF-Bildung und der damit einhergehenden 

endothelialen Dysfunktion und Extravasation von Melanomzellen,  erscheint die Inhibition 

der Komplementaktivierung als eine neue therapeutische Strategien bei der Behandlung des 

malignen Melanoms besonders sinnvoll. 
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1 Introduction 

1.1 The complement system 

Complement system is a major part of innate immunity and has been traditionally considered 

as the first line of defense against microbial infections. Complement activation can be 

initiated by three distinct pathways: the classical, lectin and alternative pathways (Figure 1)
1
. 

IgM or IgG binds to the surface of microbial intruders to create immune complexes, which 

are recognized by C1q. C1q serves as the initiator of classical pathway activation and it 

subsequently activates C1r and C1s serine protease subunits, which cleave complement 

components C4 and C2, resulting in the formation of C4bC2a, the C3 convertase in the 

classical pathway. 

The activation of lectin pathway can be triggered by the aberrant carbohydrates or 

glycoproteins exposed on the surface of pathogens or damaged cells
2
. The pattern-recognition 

molecules of the lectin pathway are mannose-binding lectin (MBL), ficolins and collectins
1
. 

Collectins have carbohydrate recognition domains, which are able to bind sugar patterns. 

MBL belongs to the collectin family and it can recognize microbial polysaccharides or 

glycoconjugates rich in mannose or N-acetylglucosamine
2
. Similarly, Ficolins contain the C-

terminal recognition fibrinogen-like domains and can recognize acetyl groups on the surface 

of bacteria. After binding, these pattern-recognition molecules will form a complex with 

MBL-associated serine proteases (MASP1 and MASP2), cleaving C4 and C2 to form the C3 

convertase C4bC2a, which is same with classical pathway route. 

The alternative pathway initiates by spontaneous hydrolysis of C3 to form C3(H2O); a 

process also known as the “tickover” of C3
1
. C3(H2O) binds to factor B, and then factor B 

can be cleaved by factor D and results in the formation of the C3 convertase C3(H2O)Bb, 

which is the initial C3 convertase of the alternative pathway. This proteolytic complex can 

convert C3 into reactive C3b. C3b can bind Factor B and Factor D forming the predominant 

alternative pathway C3 convertase C3Bb. Although this convertase is a short lived complex, 

its association with properdin (also known as factor P) can enhance C3Bb stability. 

All of the complement activation pathways lead to the cleavage of C3 into C3a and C3b. C3b 

binds either to the invading pathogen, abnormal cells or to the C3 convertases to generate C5 

convertases. The C5 convertase cleaves C5 into C5a and C5b. In the classical and lectin 

pathways the C5 convertase is composed of C3bC4bC2a whereas the alternative pathway 
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convertase is formed by C3bBbC3b. C5b recruits complement components C6, C7, C8 and 

multiple C9 to form the terminal pathway component C5b-9, also known as membrane attack 

complex (MAC). 

The complement system is strictly controlled at several steps by complement regulators, 

which have been grouped into two categories: soluble and membrane-bound regulators
1
. C1 

inhibitor (C1INH) binds and inactivates C1r, C1s and MASP-2 in the classical and lectin 

pathway. Complement receptor 1 (CR1, also known as CD35), C4-binding protein (C4bp) 

and decay-accelerating factor (DAF, also known as CD55) dissociate the C3 and C5 

convertases. Moreover, factor H, membrane cofactor protein (MCP, also known as CD46), 

DAF and CR1 serve as cofactors for factor I mediated cleavage of C4b and C3b to their 

inactive fragments iC4b and iC3b. CD59 is expressed on most of cell types and blocks the 

assembly of MAC on cell membrane
3
. In addition, Factor P stabilizes the C3 convertase and 

is therefore the only known positive regulator of the complement system. 

As a central part of innate immunity, complement plays a key role in pathogens elimination 

and clearance of damaged cells. The process of covalent deposition of complement effectors 

such as C1q, C3 fragments (C3b/iC3b) and C4b on the target cell surface is called 

opsonization
1
. Opsonization accelerates the amplification loop of the complement pathways 

and promotes the phagocytosis of the opsonized cell (e.g. tumor cells, pathogens, apoptotic 

cells) by phagocytic cells such as neutrophils and macrophages. Complement anaphylatoxins, 

C3a and C5a, trigger the inflammatory response by activating immune cells via C3a receptor 

(C3aR) and C5a receptor (C5aR)
4
. Moreover, C3a and C5a play a critical role in the 

recruitment of immune cells with phagocytic properties.  

Complement activation terminates in the formation of the lytic MAC on the surface of 

invading pathogens, and is thus considered as a hallmark of the complement attack. In order 

to avoid accidental host cell damage, MAC formation is tightly regulated. For example, 

nucleated cells are protected from lysis by expression of CD59, which is known as the most 

important regulatory factor for MAC formation. For many years, the classical view of the 

MAC is the formation of membrane pore. However, lytic effects of MAC on nucleated cells 

are counteracted through the combination of complement surface regulators and activated 

recovery processes, resulting in the activation of host cells and proinflammatory signal 

transduction
5, 6

. 
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Figure 1. Complement activation cascade.  

The complement system is activated by three distinct pathways: the classical pathway, the alternative 

pathway and the lectin pathway. The classical pathway is activated through antigen-antibody 

complexes; the lectin pathway begins with the binding of MBL or Ficolins to carbohydrate ligands on 

the surface of pathogens and the alternative pathway initiates by spontaneous hydrolysis of C3. All 

complement activation pathways converge on the formation of C3 convertase and the subsequent 

generation of C5 convertase, which then cleaves C5 to anaphlatoxin C5a and C5b. C5b forms a 

membrane attack complex with C6, C7 C8 and multiple of C9. C1-INH inhibits the function of C1r, 

C1s and MASP2. CR1, C4bp and DAF can work as a co-factor for factor I to inactive C3b or C4b. 

Moreover, those factors can directly inhibit the C3 convertase function to negatively regulate 

complement activation. CD59 can disassemble the MAC formation. 

 

1.2 Terminal complement complex as a trigger for inflammation 

In principle, deposition of critical amounts of MACs disrupts the bilayer of the cell 

membranes, leading to cell lysis. However, next to gram-negative bacteria, only aged 

erythrocytes are susceptible to MAC induced cell lysis under physiological conditions
6
. MAC 

formation on nucleated cell membrane is tightly regulated and can be easily eliminated. 

CD59 is a 20 kDa glycolipid anchored protein which is expressed on most nucleated cells, 

and it binds tightly with C5b-8 to inhibit further recruitment of C9, consequently preventing 

MAC formation. Vitronectin is a 80 KDa glycoprotein and binds to the nascent C5b-7 to 
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produce water soluble C5b-7 (SC5b-7)
7
. This SC5b-7 is unable to further bind on the cell 

membrane but can bind C8 or three C9 molecules to form soluble C5b-8 or C5b-9, thereby 

limiting the generation of MAC pore on the membrane. Similarly, clusterin is another 70 kDa 

glycoprotein and it can interact with C7, C8 and C9b to block the assembly of C5b-7, C5b-8 

and C5b-9 respectively
8
. Moreover, ion pumps can counteract the lytic effects of MAC. For 

example, in rat oligodendrocytes, non-lethal complement attack led to reversible cell injury, 

recovery following a transient rise in intracellular calcium and fall in ATP
9
. Nucleated cells 

can also escape MAC lysis through endocytosis or membrane shedding
10

. 

Growing evidence indicates that sublytic levels of MAC create a variety of effects in different 

cell types
5, 11

. In Schwann cells, MAC has been shown to activate the small G-protein Ras 

and PI3K/AKT pathway to regulate cell cycle specific genes and promote cell proliferation
12

. 

Some research also reported that sublytic C5b-9 can trigger neutrophil and macrophage to 

synthesis and secrete inflammatory cytokines
5
. Furthermore, in retinal epithelial cells, MAC 

stimulates them to release interleukin-6 (IL-6), IL-8 and vascular endothelial growth factor 

(VEGF)
13

. MAC formed on human ECs can be rapidly internalized through clathrin-mediated 

endocytosis, and it can further activate proinflammatory functions via noncanonical nuclear 

factor-κB (NF- κB) signaling
14, 15

.  

Collectively, nucleated cells avoid MAC-mediated killing by diverse resistance mechanisms. 

Moreover, sublytic concentrations of MAC could activate pro-inflammatory signaling in 

many cell types
5, 9, 10, 13, 16

. 

 

1.3 Complement in cancer 

The complement system belongs to the innate immunity and is thus part of the classical 

pathogen defense
1, 6

. In that context, complement activation is triggered by pathogen-

associate molecular patterns and culminates in the formation of MACs on the surface of the 

invading pathogen
17, 18, 19, 20

. Nowadays, complement activation has been reported to enhance 

tumor progression and to increase metastasis suggesting its contribution beyond pathogen 

elimination
6, 21, 22

.  

Soluble complement factors are mainly produced in the liver and located in the blood. 

However, some cell types, like endothelial cell (EC), immune cells and fibroblast cells can 

produce complement proteins
21, 23

. Furthermore, it has been reported that complement 
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proteins produced by tumor cells can act in an autocrine manner to stimulate tumor growth 

through C3aR and C5aR mediated PI3K/AKT pathway
24

. During inflammatory and 

pathological conditions, deposition of complement fragments in tissue due to a boost 

complement production can be detected. 

Danger signals in tumor microenvironment for triggering complement activation have been 

reported by several studies recently. C1q has been shown to deposit along the tumor vessels 

and bind directly to the phospholipids in A549 and H157 lung cancer cells
25

. The damage 

associated molecular patterns (DAMPs) including modified glycolipids, glycoproteins and 

mucins exposed on the surface of tumor cells can trigger the complement activation in the 

tumor microenvironment
21, 26

. Natural or adaptive IgM antibodies against tumor associated 

antigens could also induce the complement activation
21, 27

. Surace et al. reported that 

radiotherapy induces local complement activation which is mediated by the IgM binding to 

necrotic tumor cells
28

. Moreover, in the tumor microenvironment, serine proteases like 

plasmin and thrombin cleave C3 and C5 directly, enhancing the complement terminal 

pathway activation via generation of the C3/C5 intermediates (e.g. C3a, C5a)
29, 30, 31

. 

Complement activation promotes chronic inflammation and supports an immunosuppressive 

tumor microenvironment. Markiewski et al. reported that C5a in the tumor microenvironment 

recruits myeloid derived suppressor cells (MDSCs) and induces the release of reactive 

oxygen species (ROS), resulting in the suppressing of antitumor CD8
+
 T cell-mediated 

response
32

. Consistent with these findings, C3a has also been reported to be implicated in 

tumorgenesis. In a spontaneous intestinal tumorgenesis mouse model, lipopolysaccharide, 

leaking from the intestine, was able to induce the complement activation and upregulation of 

C3aR on neutrophils
33

. C3aR-mediated signaling activation further polarizes neutrophils 

toward a pro-tumorigenic phenotype and triggers neutrophil extracellular traps (NETs)
33

. 

Recently, Wang et al. reported that in CD8
+
 tumor-infiltrating lymphocytes, autocrine 

complement C3 inhibits IL10 production via C3aR and C5aR, inhibiting IL10-dependent T 

cell mediated antitumor immunity
23

. In accordance with the idea of an immunosuppressive 

role of the complement, a combined blockade of the immune checkpoint molecule PDL1 and 

of complement receptors might be beneficial
34

.  

Apart from fuelling inflammation, a wealth of research has provided compelling evidence 

regarding the contribution of complement to the tumor growth. For example, C3a/C5a 

activate PI3K/AKT pathway to promote tumor cell proliferation
24

. Deposition of sublytic 
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levels of MAC on tumor cells induces cell cycle progression
35, 36

. Furthermore, C1q has been 

shown to support angiogenesis in the melanoma mouse model
37

. In line with that, 

complement activation correlates with poor outcome in cancer patients
38, 39, 40, 41

. 

Pharmacological blockade of complement related mediators or the deficiency of complement 

factors (e.g. C1q, C3) correlates with decreased tumor growth in experimental mouse 

models
23, 32, 33, 41

.  

 

1.4 Therapeutic regulation of the complement  

Complement activation mediates multiple roles in tumor progression, including promotion of  

chronic inflammation
42

, the establishment of an immunosuppressive tumor 

microenvironment
4, 21, 32

 and the activation of cancer growth signaling pathways
21, 24

. In this 

context, therapeutic manipulation of complement activation in tumor microenvironment has 

great potential. 

Eculizumab, an antibody against complement C5, is the first complement specific drug 

approved by the US Food and Drug Administration for the treatment of paroxysmal nocturnal 

hemoglobinuria (PNH)
43

 and atypical hemolytic uremic syndrome
44

. However, there are only 

very few clinical reports about the treatment with Eculizumab in cancer. Additionally, C5a 

has been shown to be a potent proinflammatory mediator in tumor microenvironment and 

contributes to the tumor growth
21

. C5aR antagonists, including PMX-53
22

 and AON-D21
34

, 

have been reported to inhibit tumor growth effectively in mice. Furthermore, combined 

blockage of PD-1/PD-L1 and C5a improves the antitumor immune responses and results in a 

substantial improvement in the efficacy of anti-PD1 antibody against lung cancer 

metastasis
23, 34

. 

Many complement factors interact with proteoglycans on the cell membrane or in the 

extracellular matrix and these interactions can be used for intervention of complement 

activation
45

. Notably, heparin and heparin related derivatives can be used for this purpose. 

Heparins are strongly related to the naturally occurring heparin sulfate, a major component of 

the endothelial glycocalyx. Low molecular weight heparins (LMWHs) are derived from 

unfractionated heparin by enzymatic or chemical depolymerization and used widely for the 

anticoagulant treatment. Coagulation and complement systems are evolutionarily related 

enzymatic cascades
29, 30, 31

. Interestingly, heparin is also demonstrated to have the anti-
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complement effects by many previous studies. For example, Girardi et al. showed that 

LMWH prevents antiphospholipid antibody induced fetal loss by inhibiting complement 

activation, rather than by their anticoagulant effects
46

. In the early studies, Wardle et al. 

confirmed that short-term administration of heparin could decrease 25% complement 

activation in nephritic patients
47

. Another study by Weiler et al. showed that treatment with 

heparin or N-acetyl heparin are effective to reduce cobra venom factor induced complement 

activation in guinea pigs
48

. A more recent research reported the inhibition of classical 

pathway via the interaction of LMWH with C1q in pregnant women
49, 50

. All of those studies 

showed the use of heparins as potential modulators of the complement system. 

Previous studies identified several anti-complementary effect mechanisms by heparin. For 

example, a lot of complement factors were found to be associated with the alteration of 

glycan profiles on the inflamed endothelium
45, 51

. Heparins can block those interactions and 

thus inhibit complement activation. Apart from this, heparin can inhibit the binding of C1q to 

immune complex and interfere the interaction of C4 with C1s and C2, blocking the initiation 

of classical pathway activation
46, 48, 52

. Furthermore, it has been reported that LMWH can 

inhibit the alternative pathway convertase formation by blocking the binding of C3b and 

factor B
46, 53

. LMWH could also inhibit complement mediated lysis of PNH red blood cells 

by the inhibition of C5b-6 binding to red blood cell membranes in vitro
46, 54

. 

Altogether, heparins can interact with multiple complement factors and a large body of 

research supports the use of heparin as inhibitor for complement activation. Imbalanced 

complement activation in the tumor microenvironment plays plenty of functions in tumor 

progression. Heparin based drugs targeting the complement envisions new therapeutic 

strategies in cancer therapy. 

 

1.5 Neutrophil in the tumor microenvironment 

Neutrophils, accounting for almost 50-70% of the white blood cells, are the first responders 

of defense against pathogens infection and tissue damage. Targeting microorganisms, 

neutrophils directly mediate host defense through phagocytosis and intracellular killing. In 

addition, neutrophils can also release granular antimicrobial protease and ROS or form NETs 

to trigger the innate immune response. Although neutrophils are well known for the host 
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protection, uncontrolled neutrophils activation potentiates chronic inflammation and tissue 

damage
55

.  

Many proinflammatory signals mediate neutrophil recruitment to damaged tissue or tumor 

site, including DAMPs, lipid mediators like LTB4, chemokines like CXCL1/2, cytokines like 

tumor necrosis factor α (TNF-α), IL17 and hydrogen peroxide
55, 56

. In addition, in the context 

of complement activation, immune cells such as neutrophils are recruited to the site of 

inflammation. The attraction of neutrophils is directly triggered by the chemoattractant 

anaphylatoxins C3a and C5a cleaved from the complement factors C3 and C5 as by-products 

of the complement cascade. Moreover, accumulation of the C3 fragments (C3b/iC3/C3c) on 

the endothelial surface promotes a rapid adhesion of blood-circulating neutrophils to the 

vessel wall
57

.  

Emerging evidence indicates a positive correlation between enhanced level of neutrophils and 

poor human tumor patient outcome
55, 56

. In the last years, a growing body of evidence 

indicated that neutrophils were educated by primary tumors in order to support the formation 

of metastasis in distant organs
55, 56, 58

. Importantly, neutrophil produced factors can directly 

enhance tumor proliferation and invasion, stimulate angiogenesis and induce 

immunosuppressive effects
55, 56

. For example, it has been reported that tumor related 

neutrophils can release granules containing neutrophil elastase and matrix metallopeptidase 

8/9 (MMP8/9) to remodel the extracellular matrix or modulate the inflammation in tumor 

microenvironment, supporting tumor progression and dissemination
55, 56, 59

. In addition, 

neutrophils can also release ROS to enhance tumorigenesis by inducing DNA damage and 

genetic instability
55, 56

. 

The tumor related microenvironment mediates activation of neutrophils and triggers the 

activation of oxidative burst, during which their NADPH oxidase gets activated to yield large 

amounts of superoxide
55, 60

. ROS contain superoxide, hydrogen peroxide and hydroxyl 

radical, which are generated by the reduction of O2 with a single electron, two electrons and 

three electrons in mitochondria respectively
61

. ROS not only mediate antimicrobial activity 

directly but also participate in stress signaling in normal cells
61

. In cancer cells, ROS amplify 

the tumorigenic phenotype by oxidizing nuclear or mitochondria DNA
60

. The released ROS 

are essential for the regulation of inflammatory response
61

. For example, ROS have been 

shown to regulate cell signaling pathway or trigger stress response in immune system to 

exacerbate or dampen inflammatory response
61

. Recent studies reported that neutrophil 
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released ROS inhibit CD8 T cell functions to create an immunosuppressive 

microenvironment
62

. It is interesting to note that those oxidant released from neutrophils can 

modify extracellular target and affect the function of surrounding cells, causing 

cytotoxicity
63

. ROS induce Ca
2+

 entry across the EC membrane and promote the formation of 

interendothelial gaps
64

.  

Tumor or complement mediated activation of neutrophil triggers also the release of NETs
55, 

65, 66
, which are large web-like extracellular structures composed of histones and neutrophil 

granule constituents that assembled on a scaffold of decondensed chromatin. This process, 

commonly called NETosis, occurs in response to infectious stimuli, sterile inflammation and 

cancer
65, 67

 and the release of the chromatin by neutrophils is dependent on the generation of 

ROS. ROS stimulate myeloperoxidase (MPO) to trigger the activation and the translocation 

of neutrophil elastase from granules to nucleus, resulting in histone degradation and DNA 

decondensation
68

.  

The molecular impact of those NETs is versatile and their functions not only limit to defense 

against pathogens but also contribute to cancer progression. There is evidence that NETs 

formed in the circulation provide a scaffold to promote cancer associated thrombosis
65

. In 

mouse models of cancer, NETs adhere to the endothelium and favor the arrest of circulating 

tumor cells, hence allowing tumor metastasis
33, 66, 67

. Moreover, NETs-associated histones 

and proteases can also be toxic for EC, contributing to vascular injury
59, 69

. Importantly, 

during NETosis, the released protumor factors, including MMP9, elastase, ROS can directly 

stimulate tumor cell proliferation and invasion
70, 71

. 

Complement and neutrophil are critical parts of the humoral and blood cell mediated innate 

immunity and many studies indicate the crosstalk between them
31

. C3a and C5a can recruit 

neutrophils to inflammatory site. Complement C3b opsonization on pathogens not only 

induces neutrophil phagocytosis but also facilitates NETs formation. Neutrophils in either C3 

or C3aR knock-out mice were not able to form NETs, suggesting the importance of the 

complement system for NETosis
33

.  

In addition, activated neutrophil can sever as a platform for complement activation
31

. 

Neutrophils activation under the treatment of LPS, TNF-α or PMA mediates the release of 

properdin, which binds to the membrane of neutrophil and initiates the alterative pathway 

activation
72

. Complement activation can also occur on released NETs
73

. Numerous 

complement factors, including properdin, C3, factor B have been reported to be deposited on 
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NETs
31, 74

. Additionally, granular proteases MPO and elastase that are present on NETs are 

able to directly cleave C3 or C5 in to their activated fragments
31

. 

 

1.6 Tumor endothelium 

Complement activation and Netosis can trigger EC activation and may be involved in vessel 

diseases such as vasculitits, thrombotic microangiopathy or tumor progression. However, the 

influential role of the crosstalk between complement and neutrophil on tumor endothelium 

dysfunction remains poorly understood and only few recent publications address this issue. 

Tumor cells rely on vascular network to get nutrition and oxygen, supporting their growth 

and dissemination
75

. In healthy tissue, endothelial monolayers are quiescent and the vascular 

endothelium maintains the regular blood flow by providing  a barrier to plasma and cell 

extravasation
75

. However, in the tumor microenvironment tumor cells secrete a variety of 

growth factors, especially VEGF, to stimulate EC proliferation and migration
76

. In addition, 

tumor ECs and the tumor cells utilize MMP9 to modulate the degradation of extracellular 

matrix, allowing tumor cells migration
77

. Multiple proinflammatory factors, like TNF, 

interleukin, ROS and complement related effectors can stimulate EC activation. Upon 

activation, ECs can upregulate cell adhesion molecules to capture or arrest circulating 

immune cells. For example, Albrecht et al. reported that C5a stimulates Human Umbilical 

Vein Endothelial Cells (HUVEC) showing progressive increases in gene expression for cell 

adhesion such as E-selectin, intercellular cell adhesion molecule 1 (ICAM-1), vascular cell 

adhesion molecule 1 (VCAM-1), and related receptors (VEGFC, IL-6, IL-18R)
78

. Similarly, 

the research from Wu et al. revealed that the complement component C3a activate 

phosphorylation of p38 mitogen-activated protein kinase (MAPK) and NFκB to induce 

murine primary cerebral ECs activation and the expression of adhesion molecules, such as E-

selectin and VCAM-1
79

. In addition, tumor associated changes of the endothelium have 

previously been linked to an altered proteoglycan expression at the EC surface
80, 81

. It has 

been reported that the expression of biglycan, a small leucine-rich-repeat proteoglycan, was 

specifically upregulated in highly metastatic tumor-derived EC
81, 82

. Interestingly, 

proteoglycans are able to accumulate different complement factors at the blood vessel wall 

and they are therefore also able to support localized complement activation
45

. 
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A prerequisite for metastasis formation is the change of vascular permeability, allowing 

tumor cells to cross the barrier. On the one hand, tumor cells can produce several factors to 

induce interendothelial junction disassembly, such as VEGF, IL-6, IL-8 etc. On the other 

hand, through binding on the adhesion molecules expressed on activated EC, activated 

neutrophil can mediate barrier dysfunction through the generation of ROS. A large body of 

literature indicated the oxidant induced endothelial structural alteration. Cytoskeletal 

remodeling by ROS leads to the disruption of endothelium barrier integrity and formation of 

paracellular gap. For example, HUVEC treatment with H2O2 results in the remolding of the 

actin microfilament network, from submembranous bundles into long transcytoplasmic stress 

fibers
83

. ROS can increase the level of intracellular Ca
2+

, which subsequently cause 

phosphorylation of myosin light chain, resulting in actin polymerization and enhanced 

endothelial permeability
84, 85

. Furthermore, MAPK and protein kinase signal pathway also 

take part in the oxidative stress mediated reorganization of the actin cytoskeleton
86

. 

ROS are also able to promote the release of NETs. NETs associated endothelial dysfunction 

is reported in many diseases, such as atherosclerosis, venous thromboembolism and systemic 

lupus erythematous
87

. Neting neutrophils secrete variety cytotoxic mediators that have been 

implicated in increased EC permeability. Neutrophil elastase and cathepsin G can digest VE-

cadherin and lead to the increase of EC permeability in vitro
88, 89

. Moreover, Carmona-Rivera 

et al. reported that MMP2/MMP-9 released from NETs specifically impaired murine aortic 

endothelium-dependent vasorelaxation and induced endothelial cell apoptosis
90

.  

 

1.7 Aims of study 

The role of the complement in protection against invasive pathogens through direct lysis and 

mobilization of adaptive immunity has been extensively studied. However, recent discoveries 

provide new perspectives on additional physiological roles of the complement in the tumor 

microenvironment. Complement activation derived effectors in tumors can promote tumor 

progression by creation of an immunosuppressive environment and by triggering tumor 

growth and metastasis.  

Melanoma is one of the most aggressive forms of skin cancer. High capacity of metastases is 

malignant melanoma´s main characteristics and melanoma is considered to be an 

immunogenic tumor. Although recent data demonstrate the contribution of several 
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complement effectors (such as C3a, C5a) to melanoma initiation
91, 92

, the distinctly different 

function for complement activation that might promotes melanoma metastasis has not yet 

been explored. Therefore, the present study aims to investigate the activation status of the 

complement system in melanoma and the impact of activated complement on malignant 

behavior of melanoma. 

Complement system and neutrophil are two major effectors of humoral and blood cell 

mediated innate immunity. Neutrophils are the first responder recruited to the site of 

inflammation under a variety of signals including lipid mediators, chemokines and C3a and 

C5a. Released from activated neutrophils, ROS and NETs-associated histones and proteases 

can be toxic for EC, resulting in vascular injury. A growing body of evidence indicates the 

crucial involvement of neutrophil in tumor cell dissemination. A prerequisite for metastasis 

formation is the dysfunction of the endothelium, followed by tmelanoma cells extravasation. 

Notably, many reports suggest a connection between complement and neutrophil activation. 

However, so far, data on the triangular crosstalk between the complement, neutrophils and 

the endothelium within the tumor microenvironment are scarce. Here, we used distinct mouse 

models and human tumor tissues to study complement activation, the functional relevance of 

complement activation on neutrophils and ECs and the impact on melanoma cell 

dissemination.  

The activity of many complement factors is controlled by their interaction with heparan 

sulfate exposed on the EC surface
45

. Intervention of these interactions can attenuate 

complement activation and heparin sulfates related LMWH has previously been used for this 

purpose
45

. Additionally, our previous work has shown that tinzaparin treatment attenuated 

tumor progression and metastatic burden in murine animal models
93, 94

. Therefore, our study 

also investigated the impact of LMWH on complement activation and the crosstalk between 

neutrophils and the endothelium.
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2 Methods 

2.1 Chemicals and tissue culture materials 

All general chemicals are commercially available analytical reagents and were purchased 

from Sigma, Roth, Merck, Neolab and Biozym. Cell culture reagents were purchased from 

Invitrogen, PAA, Lonza and Sigma. Cell culture materials were from BD. The information 

about important reagent is shown in the following method description. 

 

2.2 Antibodies 

Product Description Company Catalog  NO. 

mouse anti-human C3b/iC3b  Hycult HM2286 

rabbit anti-human VWF  Dakocytomation A0082 

mouse anti-human CD15 Abcam Ab188610 

rabbit anti-human TCC-FITC Hycult HM2167F 

rat anti-mouse C3b/iC3b/C3c Hycult HM1065 

rat anti-mouse CD31 BD Bioscience 550274 

rabbit anti-mouse C5a Biorbyt Orb10213 

rat anti-mouse ly6g BD Bioscience 551459 

rabbit anti mouse C5b-9-FITC Biobyt Orb102206 

rabbit anti-human Histone H3 Abcam Ab5103 

GAPDH loading control antibody Thermo MA5-15738 

goat anti-mouse IgG-HRP Santa cruz Sc2005 

rat anti-mouse C1q Hycult HM1044 

Mouse anti-human C9 Santa cruz Sc390000 

Rat anti-mouse F4/80  BD Bioscience 565409 

Hamster anti-mouse CD11c-APC  Biolegend 117310 

Rat anti-mouse CD3 BD Bioscience 555273 

Rabbit anti-mouse Factor B  Lifespan 114998 

Rat anti-mouse C4  Hycult HM1046 

Rat anti-mouse MBL-C Hycult HM1038 

Goat anti-mouse SDC1  R&D AF3190 
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FITC-conjugated goat anti-rat BD Pharmingen 554016 

FITC-conjugated goat anti-rabbit BD Pharmingen 554020 

Alexa® 555-conjugated goat anti-rat Invitrogen A21434 

Alexa® 555-conjugated goat anti-rabbit  Invitrogen A21428 

Alexa® 555-conjugated goat anti-mouse (IgG) Invitrogen A21422 

Alexa® 555-conjugated goat anti-mouse (IgM) Invitrogen A21426 

Alexa® 647-conjugated goat anti-rabbit Invitrogen A21244 

 

2.3 Kits 

Product Description Company Catalog  NO. 

Human C5a ELISA Kit R&D DY2037 

Human C3a ELISA Kit Hycult HK354 

Human C3 ELISA Kit Abcam Ab108822 

Human C3b ELISA Kit Abcam Ab195461 

Pierce® BCA protein assay kit Thermo 23225 

SuperSignal™ West Pico PLUS 

Chemiluminescent Substrate 

Thermo 34580 

RNeasy Mini Kit QIAGEN 74106 

Reverse Transcription System Promega A3500 

GoTaq® qPCR Master Mix Promega A6001/2 

Cell Death Detection ELISA Roche 11920685001 

 

2.4 Cell lines and cell culture 

The human melanoma cell lines (WM9, MV3 and IGR37) were cultured in DMEM (Gibco, 

Life Technologies) with 10% FBS. Human melanoma cell lines (BCL, WM3211, Mel-6, SB-

CL-2, BLM, WM4511 and G361) were cultured in RPMI-1640 (Gibco, Life Technologies) 

with 10% FBS. Mouse melanoma cell lines Ret were cultured in RPMI-1640 (Gibco, Life 

Technologies) with 10% FBS, 1% non-essential amino acids (Sigma) and 1% L-Glutamine. 

Mouse melanoma cell lines B16 were cultured in DMEM (Gibco, Life Technologies) with 

10% FBS, 1% NEAA (Sigma) and 1% L-Glutamine. 
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HUVEC were isolated from donor umbilical cord according to the ethical regulation (Ethics 

committee, University medical Centre Mannheim, Germany) and were cultivated in the 

Endothelial Cell Growth Medium (Promocell, C-22010) supplemented with SupplementMix 

(Promocell, C-39215). The HUVEC isolation was done using our lab established protocol. 

All cell lines were cultured in humidified incubator at 37°C in a humidified 5% CO2 

atmosphere. The cells were passaged at a confluency of about 90% according to stander 

protocol. 

 

2.5 Mouse procedures  

All animal experiments were approved by the government animal care authorities and mice 

were maintained under specific pathogen free conditions. C57BL/6J wild type and C5-

deficient mice were purchased from the Jackson Laboratory, backcrossed as previously 

reported 
95

. 7.5×10
5
 ret transgenic melanoma cells in 100 µl PBS per mouse were i.d. injected 

into 8-12 week old mice. After 15 days, mice were sacrificed and tumors were embedded in 

Tissue Tek
®
 for cryosectioning. 5×10

5
 B16F10 melanoma cells in 100 µl PBS were 

intravenously injected into the tail veins of mice to induce lung metastases. The mice were 

sacrificed after 14 days, and the metastatic lungs were dissected and photographed. 

For heparin treatments, Tinzaparin (600 IU/kg) dissolved in 100 μl NaCl were 

subcutaneously injected into the mice to check the effect of anti-complement on tumor 

progression. The application took place the first day before the injection of melanoma cells, 

then daily until the day of scrification (2 weeks). Control mice were injected with 100 μl of 

physiological saline. For anti-NETs therapies, Cl-amidine (10mg per kg body weight; 

Millipore) or PBS was injected intraperitoneally on days 12, 13, 14 and 15. The intradermal 

tumor was excised and immediately embedded in in Tissue Tek
®
, placed on dry ice and snap-

frozen at -80 ° C. 

 

2.6 Human malignant melanoma patients’ plasma and tissue 

EDTA-plasma samples and melanoma tumor tissues were obtained from stage UICC IV 

malignant melanoma patients. Skin tumors tissue samples were obtained from the department 

of human pathology, UKE, Germany. This study received the approval from the ethics 
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committee of the Medical Faculty of Mannheim, Heidelberg University and the University 

Medical Center Hamburg-Eppendorf. 

 

2.7 Tissue immunofluorescence staining  

10 µm frozen sections were prepared with a microtome, and the sections were stored at -20 

°C until staining. This staining was a two-step method: First, a primary antibody binds 

specifically to the structure to be detected. Then, a second antibody labeled with a fluorescent 

dye binds to species-specific epitopes on the primary antibody. As a result, the cell structures 

were stained indirectly.  

Tissue cryosections (10µm) were fixed in 4% PFA for 15min, and then washed with PBS and 

blocked with 10% goat serum for 30 min. After a single wash with PBS, the cryosections 

were incubated with primary antibody for two hours in room temperature or 4 °C overnight. 

Negative controls sections were incubated only with PBS-T to recognize non-specific binding 

of the secondary antibody. After washing three times with PBS-T, the slides were incubated 

with secondary antibody diluted in 10% goat serum for 1 hour in room temperature. In order 

to stain the second cell structure, the sections were washed again three times with PBS-T, 

blocked for 30 min, and then the above procedures were repeated with corresponding 

antibodies. Nuclei were stained with DAPI (Sigma). FITC–conjugated wheat germ agglutinin 

(WGA, sigma) were used to stain glycocalyx. Finally, the tissue sections were washed 

thoroughly with PBST, and slides were mounted with mowiol-DABCO (0.5ml Mowiol4-88 + 

25mg DABCO) (Sigma) by coverslips. The staining was viewed with Zeiss Axiovert 200 

microscope. Images were processed with Axio Vision software and Image J. 

 

2.8 Immunofluorescence cell staining  

Prior to immunofluorescence staining, ECs were seeded on 10% gelatin coated coverslips in a 

12-well plate. This was followed by stimulation of the ECs according to the procedure 

described below. Subsequently, the cells were washed with PBS and fixed in 4% PFA for 10 

min, and then washed with PBS and blocked with 10% goat serum for 30 min. Appropriate 

antibodies were used for the following staining procedures, which were same according to 
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tissue immunofluorescence staining protocol described above. After the final washing step, 

coverslips were mounted on glass slides and viewed with microscope. 

 

2.9 ELISA assay 

ELISA was performed in accordance with the instructions of the manufacturer. BioTek 

PowerWave XS2 Photometer was used to determine the optical density of each well at the 

wavelength of 450 nm. The relative amounts of C3, C3 fragments, C3a and C5a were 

calculated basing on the standard curve generated according to the respective manufacturer’ 

protocols. 

 

2.10 RNA extraction and qPCR 

RNA was extracted by using RNeasy Plus Mini Kit (Qiagen), and cDNA was synthesized by 

using Reverse Transcription System (Promega). qPCR reactions (GoTaq® qPCR Master 

Mix, Promega) were performed using a real-time PCR system (Light cycler 96 system, 

Roche). The expression of each gene was normalized to its housekeeping gene GAPDH, 

calculated by 2^
(-ΔΔCt)

. The expression profile of the different cell populations was shown in a 

heat map. Primers can be found in attached table.  

 

CD46-FP (Gene ID:4179) AAGTGGTCAAATGTCGATTTCCA 

CD46-RP (Gene ID:4179) TCGAGGTAAAAACCCTTATCGC 

CD55-FP (Gene ID:1604) AGAGTTCTGCAATCGTAGCTGC 

CD55-RP (Gene ID:1604) CACAACAGTACCGACTGGAAAAT 

CD59-FP (Gene ID:966) CAGTGCTACAACTGTCCTAACC 

CD59-RP (Gene ID:966) TGAGACACGCATCAAAATCAGAT 

FactorP-FP (Gene ID:5199) TGCTCTGCTTCACCCAGTATG 

FactorP-RP(Gene ID:5199) CCACTACGTTTCTGGTAGGCA 

GAPDH-FP (Gene ID:2597) GGAGCGAGATCCCTCCAAAAT 

GAPDH-RP (Gene ID:2597) GGCTGTTGTCATACTTCTCATGG 
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2.11 Neutrophil isolation  

Blood was drawn from healthy donors into EDTA coated tube. Neutrophil isolation was 

performed by using Histopaque-1119 (Sigma) and Percoll Plus (GE Healthcare) gradients as 

described
96

, which cause minimal neutrophil activation during isolation
97

. 6 ml Histopaque-

1119 was added to a 15 ml Falcon tube and 7 ml whole blood was carefully added on the top 

of Histopaque. After that, tube was centrifuged for 20 min at 800g without braking. Attached 

Figure 1 shows the tube after centrifugation and we can find four different layers from up to 

down - plasma, PBMC, neutrophil mixed with erythrocytes and erythrocytes layer. 

 

Figure 1. Falcon tube after the first time of 800 × g centrifugation.  

7 ml whole blood was carefully added on the top of 6 ml Histopaque and the tube was centrifuged for 

20 min at 800 × g without braking. After centrifugation, four different layers can be observed. 

 

Next, the plasma and PBMC layers were discarded and only the reddish neutrophil layer was 

transferred into a fresh Falcon tube. Cells were washed with 10 ml PBS and mixed by 

inverting the capped tube 5 times, and then centrifuged for 10 min at 300 g. At the meantime, 

2 ml 10 × PBS was added to 18ml 100% Percoll and mixed it by inverting the capped tube 

several times. 85 %, 80 %, 75 %, 70 % and 65 % Percoll were prepared according to 

following table. 
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 85 % Percoll 80% Percoll 75% Percoll 70% Percoll 65% Percoll 

Mixed Percoll 3.4ml 3.2ml 3ml 2.8ml 2.6ml 

1 × PBS 0.6ml 0.8ml 1ml 1.2ml 1.4ml 

 

After that, Percoll gradient was performed in a new Falcon tube by layering 2 ml of different 

percentage Percoll on top of each other in decreasing order. This procedure should be done 

carefully and slowly. Cell pellets after 300g centrifugation were resuspened in 4 ml of PBS 

and then 2 ml of the cell resuspension was added on the top of Percoll gradient carefully. 

After that, centrifuge for 20 min at 800 × g without braking. Attached figure2 shows the tube 

after centrifugation and neutrophils rich layer was found at the 80% Percoll phase (red 

arrow). After centrifugation, discared top and 65% layer and collected remaining lyers until 

85% layer into new tube. Neutrophils were washed with 10 ml PBS and mixed by inverting 

the capped tube 5 times, and then centrifuged for 10 min at 300 g. After centrifugation, the 

supernatant was removed and 2 ml RPMI was used to resuspend the sedimented neutrophils. 

Normally, we can isolate 1 × 10
7
 neutrophils from 7 ml blood. RPMI was used as the basic 

medium for following neutrophil in vitro experiments. 

 

Figure 2. Falcon tube after the second time of 800 × g centrifugation.  

2 ml of the neutrophil resuspension (in PBS) was added on the top of Percoll gradient carefully and 

the tube was centrifuged for 20 min at 800 × g without braking. Red arrow showed the neutrophil rich 

layer after centrifugation. 
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2.12 Complement activation on ECs and co-culture with neutrophil 

HUVEC were seeded on 10% gelatin coated coverslips in a 12-well plate. After the cells 

reached to subconfluency, cells were sensitized by CD31 antibodies (DAKOCytomation, 

1:50 dilution, 20 min). Antibody-labeled HUVECs were washed with PBS and then exposed 

to 10% normal human serum (NHS) for 15 min. After that, non-sensitized neutrophils 

(1×10
5
) co-cultured with HUVEC. After 30 min incubation, MAC formation was analyzed by 

immunofluorescence cell staining. 

 

2.13 In vitro sublytic MAC formation and detection on neutrophil 

The induction of sublytic MACs on neutrophils was performed as described by B.P. 

Morgan
10

. Briefly, anti-human CD15 antibody (Abcam, 1:100 dilution, 15 min) was used to 

sensitize neutrophils and then neutrophils were washed with PBS and exposed to 10% NHS 

to induce MACs formation. Heat inactivated serum (56°C for 30min; HIS) and C5-depleted 

serum were used as negative controls. 

For the detection of in vitro MAC formation on neutrophils, antibody sensitized neutrophils 

were exposed to 10% of NHS or HIS for 30 min first and then cells were washed 3 times with 

PBS. For western blot detection, neutrophils were resuspended in cold lysis buffer containing 

Complete
TM

 protease inhibitor cocktail (Roche). 20µg of protein was separated by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot was 

performed according to standard protocols using monoclonal antibody to C9 (Santa Cruz, 

1:50) for detection. 

 For FACS detection, cells were washed with PBS and then incubated with rabbit anti-human 

TCC-FITC antibody (Hycult, 1:100) for 30 min and acquisition was done using FACS Canto 

II (BD bioscience). FACS was performed according to standard protocols. 

 

2.14 ROS detection 

MAC mediated intracellular ROS production was measured with dichlorofluorescindiacetate 

(DCFDA, Sigma). Neutrophils were stained with 20 μM DCFDA at 37°C for 30 min. Then 
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neutrophils were washed once, and the dichlorofluorescein (DCF) level was evaluated by 

microscope (Axiovert 200, Zeiss) or flow cytometer (FACS Canto II, BD).  

Luminol chemiluminescence was used to monitor the kinetics of the MAC induced ROS 

production. Prior to Luminol-Assay, the following reagents were prepared. 

 Luminol (Sigma) stock solution, in DMSO: 0.25 mol/L (50×) 

 P-coumaric acid (Sigma) stock solution, in DMSO: 0.09 mol/L (50×) 

 Neutrophil suspension in Medium RPMI (Gibico): 2 × 10
6
 /ml 

 Mastermix for stimulation, based on medium RPMI. 

o Luminol: 5 mmol/L 

o P-coumaric acid: 1.8 mmol/L 

PMA (Sigma) was used as postive control. Luminescence measurement was performed on 96 

white wells plate (BRANDplates
®
). 50 µl neutrophil suspensions was added in each well first 

and then incubated with 50 µl Mastermix in each well. After adding the Mastermix, 

luminescence was measured immediately on Tecan M200 microplate reader. 

Final concentrations per well (100 µl) during stimulation: 

o Luminol: 2.5 mmol/L 

o P-coumaric acid: 0.9 mmol/L 

o PMA 0.1 µg/ml (Positive control) 

o 1× 10
5
  neutrophils per well 

 

2.15 DNA-Histone fragments detection   

Antibody sensitized neutrophils were treated with 10% NHS, HIS, C5 deplete serum and 

NHS with the addition of tinzaparin (100IU/ml) for 3 hour. The supernatants were collected 

and centrifuged to remove cell debris. Histone-associated DNA fragments were quantified by 

the ELISA Kit (Roche) following the manufacturer’s protocol. Citrullinated histone H3 
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(H3Cit) in supernatants was evaluated by Western Blot using the antibody from Abcam. 

Western Blot was performed according to standard protocols. 

 

2.16 Neutrophil stimulation by C5a 

Isolated neutrophils were incubated with human recombinant C5a (100ng/ml, R&D) for 

30mins and then FACS was used to check the changes for neutrophil morphology and ROS 

production. C5a stimulated neutrophils were treated with HIS or NHS for 1 hour. MAC 

formation was checked by FACS and the neutrophil supernatants were collected for the 

analysis of NETs. 

 

2.17 MACs and NETs staining 

Neutrophils treated with NHS, HIS or NHS with the addition of tinzaparin (100IU/ml) for 30 

min. Cytospin (Shandon
®

) was used for the preparation of neutrophil for microscopy. 

Neutrophils were fixed with 4% PFA for 10 min. Anti-human MAC-FITC antibody (Hycult) 

and anti-human anti-citrullinated histone H3 antibody (Abcam) were used for the MACs and 

NETs immunofluorescence staining. DAPI was used to stain the nuclei and the released 

DNA. 

 

2.18 EC layer integrity staining 

HUVEC were seeded on 10% gelatin coated coverslips in a 12-well plate one day before the 

experiment. After the HUVECs reached to 100% confluence, HUVEC co-cultured with MAC 

positive neutrophils and control neutrophils (5×10
5
 per well) for 6 hours. After one time wash 

with PBS, HUVEC was fixed with 4% PFA for 10 min, and blocked with 2% BSA for 20 

min. Mouse anti-human CD31 (DAKO Cytomation) and DAPI were used for following 

staining. 

 

2.19 Electric Cell-substrate Impedance Sensing (ECIS) 
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The trans-endothelial electrical resistance (TEER) of an ECs monolayer was measured by 

ECIS, using established protocols
98

. Briefly, HUVECs were grown to confluence on gelatin 

coated gold electrodes, and then co-cultured with MAC positive neutrophils (1×10
5
 per well) 

or untreated control neutrophils as described above. The real time changes in TEER were 

measured, and data was presented as change in HUVECs layer resistance normalized to value 

at the beginning time for the co-culture. For the inhibition of NETosis, MAC-neutrophils 

were co-cultured with HUVECs in the media containing Tinzaparin (100IU/ml) or DNase I 

(100U/ml, sigma) or Cl-amidine (50µM, Millipore). 

 

2.20 Human melanoma cells transmigration assay  

Melanoma cells transmigration assay was performed as described previously
99

. MAC positive 

neutrophils or control neutrophils (1× 10
5
 per well) co-cultured with confluent HUVECs for 6 

hours in the cell culture inserts (24 well plate, Greiner Bio-one) and then the neutrophils were 

removed by washing with PBS. Human melanoma MV3 (1× 10
5
 per well) was labeled by 

Celltrace calcein green (Invitrogen) and then added to the upper chambers. After 12 hours, 

microscope was used to detect the migrated labeled cells. 

 

2.21 Complement assay 

The effect of tinzaparin on the haemolytic activity of the classical pathway (CH50) and the 

alternative pathway (APH50) was assessed according to the described procedures by 

Wehling
100

and Joiner
101

et al. The CH50 tests the total hemolytic activity of the classical and 

terminal pathways by human serum, and this method depends upon lysis of sheep red blood 

cells pre-coated with rabbit anti-sheep red blood cell antibody. Like the CH50 assay, the 

APH50 assay measures the total alternative pathway hemolytic activity to lyse unsensitized 

chicken erythrocytes by human serum. Results were showed in reference to a pool of normal 

human serum as standard (100%). The reagents and devices were provided by Prof. Dr. 

Kirschfink and this experiment was done in their lab (Institute for Immunology, University of 

Heidelberg, Heidelberg, Germany). 

 

2.22 Statistical analysis 
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Statistical analysis was performed with GraphPad Prism 6 software and significance was 

tested by Student’s t-test. All results are presented as the means ± standard error as indicated 

in the legend. P< 0.05 was considered as significant difference. 
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3 Results 

3.1 The complement system is activated in human malignant melanoma. 

To investigate the activation status of the complement system in melanoma patients (stage 

IV), we measured the levels of C3 in blood samples by ELISA (Figure 1A). In healthy 

controls, the mean plasma level of C3 was 2210 ± 81.75μg/ml. In cancer patients C3 was 

significantly decreased to 1665 ± 155.3μg/ml. This result suggests the consumption of C3 due 

to the activation of the complement system. C3 plays a central role in the complement 

cascade activation and its activation is required for both classical and alternative pathways. 

Therefore, we further analyzed the C3 derived fragments C3a and C3b (Figure 1B-C). The 

concentration of C3a in healthy control was 263.3 ± 9.6ng/ml, this was significantly 

increased to 301.3 ± 9.3 ng/ml in melanoma patients (Figure 1B). Similarly, the mean plasma 

level of C3b in healthy controls was 1059 ± 24.7μg/ml and increased to 1175 ± 24μg/ml in 

melanoma patients (Figure 1C). C3a is an inflammatory mediator and recruits immune cells 

to inflammatory sites. The increased concentrations of C3 cleavage products in the plasma of 

cancer patients confirm the melanoma-related complement activation. In both classical and 

alternative pathways, C3b binds to the C3 convertases (C4b2a  and C3bBb) to form C5 

convertases, which cleave C5 to produce C5a and C5b.To further prove the activation course 

of the complement cascade, we measured the plasma levels of C5a (Figure 1D). In line with 

the supposed activation of the complement system, C5a levels were significantly elevated to 

1354 ± 137.8pg/ml in melanoma patients compared with 989.9 ± 88.9pg/ml for the controls. 

C5a is the downstream product of the C3b-catalized cleavage of C5 during the complement 

activation. C5a plays critical role in supporting inflammation by the mobilization of immune 

cells and activation of cells expressing C5a receptors. 
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Figure 1. Quantification for complement effectors in plasma samples from control donors and 

melanoma patients. 

Systemic complement effector levels in plasma samples from control donors and stage IV malignant 

melanoma (MM) patients (A-D) were analyzed by ELISA. C3 levels in blood samples of MM patients 

were decreased compared with healthy control donors (A). In contrast, C3 activation fragments C3b 

and anaphylatoxins C3a and C5a were increased in the plasma of cancer patients (B-D).*P< 0.05, 

**P< 0.005. 

 

3.2 Complement activation fragments deposit in human melanoma tissue. 

To support our ELISA data, we evaluated the presence of C3 fragments C3b/iC3b in 

cryosections of human malignant melanoma tissues (n=5, stage IV). Healthy skin was used as 

control tissue. To this end, tumor cryosections were stained for C3b/iC3b and Von 

Willebrand factor (VWF), and VWF was used as endothelial cell marker. 

Immunofluorescence analysis revealed that C3b/iC3b colocalized with the endothelium of 

tumor blood vessels suggesting the deposition of C3 fragments on the vessel wall and thus 

complement activation around the vasculature (Figure 2A, right). C3 fragments deposition 

was scarcely present in healthy skin, which was used as control tissue (Figure 2A, left), 

indicating the quiescent complement activation in healthy tissue. The corresponding 

quantification revealed that only 4.9% of vessels in healthy skin contained C3 fragments, and 
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this was significantly increased to 12.1% in the human melanoma tissue (Figure 2B). Because 

the complement cascade terminates in the formation of the MAC, we further analyzed the 

presence and localization of this terminal complex in the tumor tissue. To our surprise, we 

could not detect significant levels of MAC at the endothelium (date not shown); however we 

discovered that about 52% of all tumor-related neutrophils were MAC positive (Figure 2C-

D). In healthy skin, not so many neutrophils were found and most of those neutrophils were 

MAC negative.  

 

Figure 2. Complement activation in human malignant melanoma patients. 

Immunofluorescence analysis of C3b/iC3b (A) or CD15 and MAC (C) in cryosections (scale 

bars=20µm) of human MM tissues (stage IV, n=5) and healthy skins was performed; VWF was used 

as blood vessel marker. Nuclei were stained with DAPI. Representative images of melanoma tissue 

show the blood vessel associated deposition of C3b/iC3b whereas analysis of healthy skin indicates 

the absence of C3 fragments (A). Quantification revealed significantly increased numbers of vessels 

with C3b/iC3b deposition in tumors compared with healthy skin (B). MACs were detectable on 

neutrophils in tumor tissue whereas no MACs were formed on healthy skin neutrophils (C). 

Neutrophils with or without MACs were quantified and the number of MAC positive neutrophils were 

significantly increased compared with healthy skin (D). Bars indicate the mean ± SD, **P< 0.005, 

***P< 0.0005. 
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3.3 MACs deposit on neutrophils in murine tumors. 

The results from the human samples suggest that the melanoma microenvironment promotes 

complement activation. Moreover, the finding of strongly elevated levels of MAC+ 

neutrophils in the tumor tissue indicates a crosstalk between the humoral complement system 

and the cell mediated neutrophil innate immunity. To further investigate the impact of the 

complement system on melanoma progression and the potential connection to neutrophil 

activation, we checked the levels of different complement factors by immune fluorescence in 

tissue sections of primary tumors generated by the intradermal injection of human ret 

transgenic murine melanoma cells into the dorsal skin of mice.  

In line with the human melanoma tissue, C3 cleavage products (C3b, iC3b and C3c) were 

extensively deposited along almost 30% of the tumor vessels, indicative of an activate 

complement environment around tumor vessels, whereas deposition of those C3fragments 

was absent in control skin (Figure 3A-B). Recently, it was shown that blood vessels in early 

staged melanomas (1 week tumor) retained only neglectable amounts of C3 fragments. We 

confirmed these previous findings in our melanoma model, indicating that complement factor 

deposition and complement activation is related to advanced melanomas (Figure 3C). The 

anaphylatoxin C5a, a potent immune mediator and neutrophil attractant protein was also 

elevated in the proximity of tumor blood vessels when compared to healthy skin (Figure 3D-

E). In correlation with the increased C5a levels, we also found the recruitment of neutrophils 

to C5a rich areas (Figure 3F). In addition, we analyzed the staining of MACs, and in analogy 

to our human tissue analysis, we found MACs deposited not on the endothelium but on 

neutrophils (Figure 3G). Quantification revealed almost 85.1% of tumor-associated 

neutrophils exhibited positive MAC (Figure 3H). In summary, our findings suggest that the 

complement cascade is initiated on the endothelium, whereas the terminal MACs is 

established on adjacent neutrophils. 
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Figure 3. Immunofluorescence analysis of complement components in mouse engrafted tumor.  

Cryosections (n=5, scale bars=20µm) from mice primary tumors were stained for VWF and C3 

cleavage products (C3b, iC3b and C3c) (A, C) or CD31 and C5a (D) or Ly6g and MAC (G). Nuclei 

were stained with DAPI. In healthy mouse control skin, no complement effectors (C3 fragments, C5a, 

MAC) were detected, indicating a quiescent complement milieu (A, D, G left). Representative images 

of mice melanoma show that C3 cleavage products were deposited along the tumor vessels (A). 

Quantitative analysis demonstrates an increased number of tumor blood vessels with C3 fragment 
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deposition, as compared with healthy skin control (B). Immunofluorescence staining show that no 

obvious C3 cleavage products (C3b/iC3b) deposit on the vessels walls in cryosections of 1 week 

mouse melanoma tumors (C). C5a shows a punctuate staining in the proximity of blood vessels (D) 

and quantification revealed a significantly increased number of vessels with C5a accumulation (E). 

Neutrophils were recruited to C5a rich areas of the tumor (F, Scale bar=50µm) and MACs deposited 

on tumor associated neutrophils (G-H). Bars indicate the mean ± SD, *P< 0.05, **P< 0.005, ***P< 

0.0005. 

 

3.4 Complement activation occurs locally in tumor. 

To further investigate whether the complement activation occurs systemically or only locally, 

we checked the complement activation status in the peripheral organs of tumor bearing mice. 

We were not able to detect an enhanced C3b/iC3b deposition in the vasculature of other 

tissues (e.g. kidney, lung and liver; Figure 4A) except in tumors. So, local tumor-specific 

complement activation appeared to be evident. In further control experiments regarding 

MACs location, we detected MAC deposition neither on tumor associated macrophages, 

dendritic cells and T Cells (figure 4B) nor on neutrophils in mouse peripheral organs such as 

lung, liver and kidney (figure 4C), confirming that the MAC forms only on tumor-associated 

neutrophils. 
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Figure 4. Complement factor deposition in murine tissues.  

Kidney, lung and liver tissues were obtained from melanoma bearing animals (n=4 each). 

Cryosections were stained for VWF (green) and C3 cleavage products (C3b/ iC3b, red) (A) or MAC 

(green) and Ly6g (red) (B, C). No C3 cleavage product deposition and MAC positive neutrophils 

were observed in the peripheral organs (A, C). MAC was neither formed on tumor associated 

macrophages (F4/80 staining, red), T cells (CD3 staining, red) nor in DC (CD11c staining, red) (B). 

 

3.5 The lectin pathway is predominantly involved for the complement activation. 

To clarify which of the complement pathways contributed to the measured production of 

anaphylatoxins and the formation of MACs, we compared the endothelial expression of C1q, 

MBL and factor B (Figure 5A). Lack of factor B deposition on the tumor endothelium 

suggested a negligible contribution of the alternative pathway. In line with the previous work 

published by Bulla et al
37

, we were able to detect C1q at the blood vessel wall. However, we 

also detected a considerable amount of blood vessels positive for MBL. Through 

quantification of tissues sections of 5 different melanomas we found that about 25% of the 

blood vessels were positive for MBL whereas only 12% of the blood vessels were C1q 
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positive indicating that the lectin pathway is mainly responsible for the complement 

activation (Figure 5A). Conform to the supposed activation of the classical and especially the 

lectin pathway we found the deposition of C4 as well (Figure 5A). The MBL recognizes 

pathogen-associated carbohydrate structures rich in mannose, N-acetylglucosamine or 

glucose
2
. Although those carbohydrates are not exposed by healthy mammalian cells, a 

growing body of evidence indicates that under pathophysiological conditions an aberrant EC 

glycosylation allows the binding of MBL
2, 102

. Interestingly, the function of various 

complement factors is tuned by their interaction with carbohydrates. For instance, the binding 

of factor P to specific epitopes of heparan sulfate has been shown to initiate alternative 

pathway activation
51

. To further clarify whether the endothelial glycosylation controlled the 

tumor blood vessel wall restricted complement activation, we correlated the C3b/iC3b 

deposition with the endothelial expression of N-acetylglucosamine, a major component of 

heparan sulfate. N-acetylglucosamine was stained by wheat germ agglutinin (WGA). As 

shown in Figure 5B, deposition of C3b/iC3b along the blood vessel wall co-localize with the 

WGA staining. Quantifications reveal that significant more C3b/iC3b deposited on WGA 

positive blood vessels. In line with the WGA staining, deposition of C3b/iC3b correlated also 

with increased levels of the heparan sulfate exposing proteoglycan syndecan 1 (SDC1) 

(Figure 5C).This data suggest that an aberrant glycosylation of the tumor EC may trigger 

complement activation.  
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Figure 5. Proteoglycan induces the restricted complement activation on tumor vessel walls. 

Immunofluorescence stainings of early complement components (C1q, MBL, FB (Factor B) and C4) 

were performed (scale bars=20µm). Quantification indicates a comparable high abundance of MBL 

positive vessels. Less are positive for C1q. Blood vessel wall deposition of factor B was not 

detectable (A). Cryosections of primary tumors were stained for WGA (green), VWF (white), C3 

cleavage products (C3b/ iC3b, red) and nuclei were stained with DAPI (blue) (B). Representative 

image and quantification showed C3 fragment deposition on blood vessels with high levels of N-
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acetylglucosamine (B). Immunofluorescence staining of SDC1 (red) and C3b/iC3b (green) in 

cryosections obtained from mouse melanoma tumors (C, scale bars=20µm, n=4). Quantification 

shows that higher levels of SDC1 expression were accompanied by enhanced C3b/iC3b deposition 

(C). Bars indicate the mean ± SD, *P< 0.05, **P< 0.005. 

 

3.6 MACs form on neutrophils in close proximity to the tumor. 

Our ex vivo data demonstrated the association between complement activation (C3b 

deposition) and the glycosylation (WGA staining and SDC-1 expression) of the tumor 

endothelium. Even more indicative for a local complement activation was the discovery of 

neutrophils that began to gain MAC deposition at the interface of the blood vessels (Figure 

6A-B yellow arrows), while neutrophils without physical contact to the endothelium 

remained MAC negative (Figure 6A-B, white arrow). To further prove whether the initiation 

of the complement system on ECs could finally lead to MAC deposition on neutrophils which 

were in direct physical contact with the endothelium, we aimed to mimic our in vivo findings 

by an in vitro approach. To enable the initiation of complement on HUVECs, we sensitized 

the ECs with antibodies directed against CD31. Antibody-labeled HUVECs were then 

exposed to 10% normal human serum (NHS) and non-treated neutrophils. Finally, MAC 

formation was analyzed by immune fluorescence microscopy. Although complement 

activation was intentionally induced on HUVECs, we discovered MAC formation exclusively 

on neutrophils (Figure 6C). This result is further supported by expression analysis of the 

complement regulatory proteins, CD46, CD55, CD59 and factor P in HUVEC, neutrophil and 

several human melanoma cell lines (Figure 6D). CD46 serves as a cofactor for factor I-

mediated proteolysis of C3b/C4b and CD55 accelerates the decay of the C3 convertase
1
. 

CD59 prevents recruitment of C9 to the C5b-8 complex and inhibits the final step of MAC 

formation
1
. Interestingly and in agreement with our assumption that the complement cascade 

is initiated on the endothelium but terminated on neutrophils, HUVECs were found to express 

even 3.5 time higher levels of CD59 than tumor cells, which are known to highly express 

CD59 as indicated by previous studies
21, 42

. Therefore, HUVECs appears to be able to prevent 

MAC deposition on their plasma membrane, whereas low levels of CD46 and CD55 suggest 

vulnerability to the deposition of the early complement factors C3b and the C3 convertase. In 

contrast, neutrophils showed high levels of CD46 and CD55, but only low levels of CD59 

enabling MAC formation. Moreover and in contrast to HUVECs and melanoma cells, 

neutrophils expressed comparable high levels of factor P. This is also in good agreement with 
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the expression of factor P by neutrophils which we found in close proximity to the tumor 

endothelium (Figure 6E).  

Neutrophils are the most abundant circulating leukocytes and recently neutrophils have been 

shown to alter the tumor microenvironment to support tumor progression
55, 56

. Our finding 

that MAC formed on neutrophils in both human and mice tumor tissues suggest that MAC 

positive neutrophils contribute to melanoma metastasis. 

 

Figure 6.  MACs deposit on tumor associated neutrophils but not on EC. 

Cryosections of primary tumors were stained for MAC (green), VWF (white), Ly6g (red) and nuclei 

were stained with DAPI (blue). Representative image of luminal MAC negative neutrophils distant to 

the blood vessel wall (A, white arrow, scale bars=20µm) and MAC positive neutrophils upon contact 

with the endothelium (A, yellow arrows, dotted line reflecting endothelial-luminal interface). The 

MAC intensity on neutrophils in lumen or attached with endothelium was quantified (B). 

Representative microscope image of neutrophils co-cultured with CD31 antibody sensitized HUVECs 

in 10% NHS (C). MAC deposition was detected by immunofluorescence (C, scale bar=20µm). 

HUVECs and neutrophils were distinguished by the shape of their nuclei (HUVEC: oval nucleus; 

neutrophils: polymorphous nucleus). Quantification of fluorescence intensities revealed that MACs 

formed only on neutrophils but not on the endothelial cells (C). Gene expression of complement 

regulatory proteins (CD46, CD55, CD59 and factor P) in human melanoma cell lines (BCL, WM3211, 

WM9, Mel-6, SB-CL-2, MV3, IGR37, BLM, WM4511 and G361), HUVECs and neutrophils suggest 
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that neutrophils are susceptible to MAC deposition (D). Representative image shows that factor P is 

expressed by tumor associated neutrophils (E, scale bars=20µm). Data are shown as the mean ± SD, 

**P< 0.005, ***P< 0.0005. 

 

3.7 MACs on neutrophil leads to ROS production. 

To gain insight into the pathophysiological function of MAC on neutrophil, we adapted the 

aforementioned in vitro model to induce the deposition of MAC on neutrophil. In contrast to 

the experiment with HUVEC, we directly sensitized neutrophils with CD15 antibodies
10

. 

Sensitized neutrophils were treated with either NHS (10%) as a complement source or heat 

inactive serum (HIS) as a control.  FACS analysis confirmed that NHS treated neutrophil can 

lead to the MAC deposition on neutrophil (Figure 7A). For the MAC formation, multiple 

copies of C9 need to interact with C5b-8. After three times washes with PBS, NHS and HIS 

treated neutrophils lysates were collected and measured by western blot. As expected, C9 

deposition was detected in NHS treated neutrophils, but not in HIS treatment control group 

(Figure 7B), confirming the MAC formation in our in vitro model. One of the hallmarks of 

neutrophil activation is the oxidative burst. We asked whether MAC deposition could also 

trigger the neutrophil activation. To answer this question, we measured the release of ROS by 

different techniques. DCFH-DA is a fluorogenic dye that measures intracellular ROS activity. 

After cell uptake, DCFH-DA is deacetylated by cellular esterases and later oxidized by ROS 

into 2’-7’dichlorofluorescein (DCF), which can be detected by FACS or fluorescence 

microscopy. As shown in figure 7C, in comparison to the HIS treated control group, 

neutrophils treated with NHS produced elevated intracellular ROS levels as indicated by the 

increased oxidation of the intracellular fluorescent probe DCFHDA. The corresponding 

quantification revealed almost threefold increased DCF intensity in MAC positive 

neutrophils, compared with that in control neutrophils. These data were further confirmed by 

corresponding flow cytometric experiments. Intracellure oxidant was detected in NHS treated 

neutrophils, but not in control cells (Figure 7E). ROS react with luminol causing the light to 

be emitted, which can be detected with luminescence plate reader. So, the kinetics of the ROS 

generation can be monitored using this luminol-dependent chemiluminescence assay. In our 

study, we also verified that MAC+ neutrophil released increased levels of ROS by this assay 

(Figure 7D). 
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Figure 7. MACs form on neutrophils in vitro and promote ROS production.  

Antibody sensitized neutrophils were treated with 10% NHS or HIS for 30 min and then washed with 

PBS. FACS results show the formation of MAC on NHS treated neutrophils (A). Neutrophil lysate 

were electrophoresed and immunoblotted using anti-C9 antibody. The amount of C9 deposition is 

higher on NHS treated neutrophils, compared with HIS group (B). Intracellular ROS was measured by 

the staining of DCFDA (20 μM, 30 min, scale bar=20µm) (C). Quantification of the microscope based 

detection of the intracellular ROS levels (C). Flow cytometric analysis of MAC mediated intracellular 

ROS production (E). Luminol chemiluminescence was used to monitor the kinetics of the MAC 

induced ROS production (D). Data are shown as the mean ± SD, *P< 0.05, **P< 0.005. 

 

3.8 MAC on neutrophil induces NETs. 

Neutrophil can undergo NETosis, a process of antimicrobial infection and implicate in 

inflammatory disease and tumor progression
65

. Because oxidative stress is a strong promoter 

of NETosis, we next analyzed the effect of MACs on NETs formation. Sensitized neutrophils 
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were treated with NHS, HIS or C5 depleted serum for 3 hours and the respective supernatants 

were collected. ELISA analyses demonstrated a strongly increased concentration of DNA-

Histones fragments in supernatants of NHS treated neutrophils, but not in HIS and C5 

depleted serum treated supernatants (Figure 8A). Citrullination of the histone 3 (CitH3) is 

used as a common marker for NETosis. Accordingly, a robust western blot signal of 

citrullinated Histone3 was detected in MAC+ neutrophil supernatants. In contrast, no CitH3 

was found in the HIS and C5 depleted serum control groups (Figure 8B). 

Immunofluorescence images of NHS treated neutrophils show that externalized DNA 

structures co-localized with the NET-associated CitH3. Neither DNA release nor a positive 

CitH3 staining was detectable in the HIS treated control group (Figure 8C-D). To prove those 

in vitro findings, we then examined the release of CitH3 from MAC positive neutrophils in 

murine (Figure 8E) and human tumor tissues (Figure 8F). In agreement with our in vitro 

results, CitH3 and MAC staining was in close proximity in both human and mouse tissue.  
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Figure 8. MACs promote NETs formation. 

Sensitized neutrophils were treated with 10% NHS for 3 hours to induce NETosis. HIS or C5 depleted 

serum were used as control. ELISA was used to analyze the release of DNA-Histones fragments in the 

supernatants. NHS treated neutrophils released significantly more DNA-Histones fragments,compared 

with control groups (A). Citrullinated Histone3 (CitH3) was detected in NHS treated neutrophil 

supernatant by western blot (B). NHS treated neutrophils and HIS treated control neutrophils were 

stained with an anti-CitH3 antibody and DAPI. Fluorescence microscopy revealed externalized DNA 

structures co-localized with the NETs-associated CitH3 in MAC positive neutrophils but not on 

control neutrophils (C, scale bar=20µm). For quantification, NETs were counted on the whole slide 

and expressed as NETs per view (D). Representative immunofluorescence staining of MACs (green) 

and CitH3 (red) in the cryosections (n=5, scale bars=20µm) of mice melanoma tumor (E) and human 

MM tissues (F) showing the close association between CitH3 and MAC. Bars indicate the mean ± SD, 

*P< 0.05, **P< 0.005. 
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3.9 C5a can not induce MAC formation and neutrophil activation. 

Generated after complement activation, C5a is a potent chemoattractant for pro-inflammatory 

leukocytes and recruits neutrophils to areas of inflammation. As an immune mediator, it plays 

an important role in the initiation and regulation of inflammatory response. Because 

neutrophil activation might not only be related to MAC deposition but also be induced by 

C5a, in further experiments, we analyzed the impact of C5a on neutrophil activation (ROS 

production, NETosis) and MAC formation. Neutrophils were stimulated by recombinant C5a 

(100ng/ml) and FACS was used to measure the changes in neutrophil morphology, ROS 

release and MAC formation. In line with previous studies 
103, 104, 105

 , we found that 

stimulation of neutrophils with C5a promoted cell swelling but failed to induce ROS 

generation and MAC deposition (Figure 4A-C). The C5a induced increase in cell size has 

recently been reported and might represent the reorganization of the cytoskeleton necessary 

for chemotaxis
103

. Also the stimulation of neutrophils with recombinant C5a was not able to 

induce the release of DNA-histone fragments (Figure 9D), suggesting that not C5a 

stimulation but MAC formation is highly relevant for NETosis. 
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Figure 9. C5a is not able to induce neutrophil ROS release, MAC and NETs formation.  

FACS showed that stimulation of neutrophils with recombinant C5a (100ng/ml) induced cell swelling 

(A) but failed to induce ROS generation (B). C5a (100ng/ml) stimulated neutrophils were further 

treated with 10% NHS for 30 min to induce MAC formation on neutrophils, 10% HIS was used as a 

control. MAC formation was measured by FACS and quantification indicates the failure of MAC 

formation upon stimulation with C5a (C). C5a stimulation was neither able to induce the release of 

DNA-Histone fragments in the HIS nor the NHS treatment group. As a positive control, CD15 
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antibody primed neutrophils released significantly increased levels of DNA-Histones fragments after 

incubation with NHS (D). Bars indicate the mean ± SD, *P< 0.05, **P< 0.005. 

 

3.10 Neutrophils in close proximity to the tumor blood vessel wall. 

Although C5a stimulation was not potent to induce ROS production or NETosis in 

neutrophils, the presence of C5a around the tumor vasculature (Figure 3D-E) and the 

complement activation fragments deposition on the vessel wall (Figure 3A-B) suggest that 

neutrophils might be recruited around the tumor vessel. We hypothesized that neutrophils 

recruited around tumor vessel mediate EC dysfunction. To this end, we first checked the 

distribution of neutrophils in mice and human melanoma.  Human and mouse cryosections 

were stained for neutrophil and VWF. In human tissue, CD15 was used as a marker for 

neutrophil, while Ly6g was used as mouse neutrophil marker. Within the tumor, numerous 

neutrophils marginated along or penetrated the wall of blood vessels in both human (Figure 

10A) and mouse tumor tissue (Figure 10B), which is also conform with the C5a induced cell 

swelling (Figure 9A).  
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Figure 10. Neutrophils marginate along or penetrate the blood vessel walls in human and mice 

tumor.  

Cryosections of mice and human malignant melanoma tissue were analyzed by immunofluorescence 

staining for the distribution of neutrophils. Nuclei were stained with DAPI. VWF antibody was used 

to identify tumor vessel. Ly6g antibody was used to stain mouse neutrophil (A) and human neutrophil 

was stained with CD15 antibody (B). Within the tumor, numerous neutrophils marginate along or 

penetrate the wall of vessel (A-B, n=5, scale bar=20µm). 
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3.11 MAC-activated neutrophils contribute to endothelial barrier disruption in vitro. 

We have shown that MAC on neutrophil mediated neutrophil ROS release and NETs 

formation (Figure 7-8). ROS as well as NETs could potentially be toxic for ECs
59, 64, 69

. 

Therefore, we postulated that in close contact with EC, MACs activated neutrophils could 

induce the dysfunction of ECs. To study neutrophil-EC crosstalk, we co-cultured HUVEC 

with NHS treated neutrophils in vitro. As shown in Figure 11A, MAC positive neutrophils 

induced gap formation in a confluent EC monolayer. The mean level of relative gap areas in 

co-culture with MAC+ neutrophils was almost twofold increased compared with control 

group (Figure 11A). Electric Cell-substrate Impedance Sensing (ECIS) is a real time 

impedance based method to study the barrier function of ECs. The trans-endothelial electrical 

resistance (TEER) of a ECs monolayer can be measured by ECIS. ECs at confluence exhibit 

a high TEER, reflecting the integrity of the EC monolayers. When the permeability of the 

monolayer is disrupted, the electrical resistance will dramatically decrease. Data from ECIS 

experiments further confirmed that co-culture with MAC positive neutrophils decreased the 

TEER of an endothelial monolayer suggesting an increased vascular permeability (Figure 

11B).  

To further prove the NETs formation is the cause of the disrupted vascular barrier, we 

performed additional ECIS experiments with the treatment of NETosis inhibitors. Blockage 

of NETosis by the protein arginine deiminase 4 (PAD4) inhibitor CI-amidine prevented the 

neutrophil induced breakdown of the endothelial resistance (Figure 11C). Also the treatment 

with DNAse was able to slightly counteract the endothelial destructive effect of the NETs. 

However the effect was statistically not significant indicating that histones or other NETs 

related cytotoxic factors remained unaffected by DNAse treatment (Figure 11C).  
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Figure 11. Activated neutrophils provoke EC dysfunction.  

Integrity of a HUVEC layer after 6 hours of treatment with MAC positive neutrophils or control 

neutrophils was analyzed by immunofluorescence staining of CD31 and DAPI (A, scale bar=50µm). 

HUVECs and neutrophils were distinguished by the shape of their DAPI stained nuclei (HUVEC: 

oval nucleus; neutrophils: polymorphous nucleus). Gap areas in the HUVEC monolayer were 

measured and corresponding quantifications show increased relative gap areas after co-culture with 

MAC positive neutrophils (A). Permeability of HUVEC was determined using Electric Cell-substrate 

impedance sensing (ECIS). Co-culture with MAC neutrophils (1×10
5
 per electrodes) decreased the 

impedance of the endothelial monolayer, indicating an increased vascular permeability (B). The 

PAD4 inhibitor CI-amidine (50µM) prevented the MAC neutrophil induced breakdown of the 

endothelial resistance. Treatment with DNAse (100U/ml) was less effective (C). Bars indicate the 

mean ± SD, *P< 0.05, **P< 0.005. 

 

3.12 Perivascular neutrophils increase the endothelium permeability in tumor tissue. 

We intended to measure this supposed permeability increase across the endothelial barrier 

also in our tumor tissue sections. For this purpose, we analyzed the leakage of IgG from the 

blood vessel into the adjacent tissue by immune fluorescence analysis. Normally endothelial 

monolayers are quiescent and vascular endothelium stabilization keeps the regular blood flow 

and provide barrier to plasma and cell extravasation. The leakage of IgG from the blood 

vessel can be used as a marker for disrupted endothelial barrier. To this end, tumor 

cryosections were stained for Ly6g, VWF, anti-mouse IgG and DAPI. In the absence of 
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perivascular neutrophils, IgG located only along the blood vessel wall (Figure 12A, 

arrowheads); however, IgG were found in the tissue beyond the blood vessel in neutrophil 

rich region (Figure 12A arrows). Quantitative analysis revealed significant more IgG leakage 

from vessels disrupted by neutrophil accumulation (Figure 12B). This suggests that 

neutrophils in the vicinity of the blood vessels disrupt the ECs monolayer barrier and increase 

the permeability. To better attribute the increased leakage of the endothelial barrier to 

neutrophil activation we treated tumor-bearing mice with the PAD4 inhibitor CI-amidine. We 

cannot exclude that the impairment of the neutrophil activation through PAD4 inhibition. 

Therefore, to allow a reliable quantification, we compared the IgG leakage in vessels with or 

without neutrophils. The results show that impaired neutrophil activation (Figure 12C-D) 

abolished the ability of the neutrophils to compromise the endothelial barrier. 

 

 

Figure 12. IgG leakage from the blood vessel into the adjacent tissue by immune fluorescence 

analysis. 

For the in vivo proof of our findings, immunofluorescence staining of Ly6g (white), VWF (green) and 

IgG (red) in cryosections of mouse primary tumors were performed to measure the blood vessel 

integrity in vivo (A, scale bar=20µm). Nuclei were stained with DAPI (blue). In the absence of 

perivascular neutrophils, IgG locates only along the blood vessel wall (arrowheads). In neutrophil rich 

regions, IgG leaks out into the tissue and was detected beyond the blood vessel border (arrows, A). 

IgG leakage areas to the vessel perimeter ratio were quantified. Vessels with perivascular 
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accumulation of neutrophils exhibit a higher ratio compared with the vessels without neutrophils 

recruitment (B). Immunofluorescence staining of Ly6g (white), VWF (red) and IgG (green) in 

cryosections of CI-amidine (10mg/kg, n=5) treated mouse tumors were performed to measure the 

blood vessel integrity (C). Quantitative analysis revealed no significant difference of IgG leakage 

between vessels with or without neutrophils (D). Scale bars = 20µm. Bars indicate the mean ± SD, 

*P< 0.05. 

 

3.13 Disruption of the MAC formation protects the vascular integrity. 

The tight physical contact between the MAC-activated neutrophils and the tumor 

endothelium induced the disruption of the tumor blood vessel barrier. To confirm these 

findings at the functional level, the relevance of the complement system for endothelial 

barrier disruption was tested in C5
-/-

 mice. In mouse models of cancer, complement 

deficiencies (C3, C4 or C5aR) and treatment with complement inhibitors have been 

associated with impaired tumor growth and suppressed metastasis
23, 24, 32, 33

, whereas C5 

deficiency did not affect the growth of the primary tumor
37

. Our experiments with C5
-/-

 mice 

confirmed these results (Figure 13A-B). In addition, the recruitment of neutrophils due to a 

lack of C5a in the C5
-/-

 mice affected the total amount of neutrophils within the tumors tissue 

(Figure 13D). Therefore, to allow a reliable quantification, we compared the IgG leakage in 

vessels with or without neutrophils in tumor tissues of C5
-/-

 mice. The results show that the 

disruption of the complement cascade (Figure13C) abolished the ability of the neutrophils to 

compromise the endothelial barrier. To prove whether an impaired endothelial barrier may 

promote tumor cell extravasation we measured the transmigration of human melanoma cells 

by transwell assays. In line with an increased vascular permeability, the number of 

transmigrated melanoma cells through an endothelial monolayer was almost twofold 

increased in the presence of MAC positive neutrophils (Figure 13E). To further investigate 

the impact of complement activation and MAC formation in melanoma metastasis, we 

performed a group of lung metastasis experiments by intravenous injection of melanoma into 

WT and C5 deficient mice. As shown in the figure 13F, we detected less lung metastasis in 

C5 deficient mice. Taken together, our data indicate that perivascular MAC positive 

neutrophils increase the EC barrier permeability, promoting tumor cells transmigration in 

vitro. 

 



50 

 

Figure 13. Effect of C5 deficiency on tumor growth and metastasis.  

Wild type mice (n=5) and C5
-/-

 mice (n=5) received an intradermal injection of 7.5×10
5
 ret transgenic 

melanoma cells. After 15 days, mice were sacrificed and tumors weight and volume were measured. 

C5 deficiency did not affect the primary tumor growth (A-B). Immunofluorescence staining of Ly6g 

(white), VWF (green) and IgG (red) in cryosections of C5 deficient mouse tumors were performed to 

measure the blood vessel integrity (C, scale bar=20µm). The IgG leakage in vessels with or without 

neutrophils was quantified and not obvious IgG leakage was observed around vessel with neutrophils 

(C). Compared with wild type mice, the total amount of neutrophils was decreased but not 

significantly in C5 deficient mice (D). Transmigration of the human melanoma cells MV3 through 

confluent HUVEC layers co-cultured for 6 h prior to the tumor cell challenge with MAC positive 

neutrophils or HIS treated control neutrophils (E). 5×10
5
 B16F10 melanoma cells in 100 µl PBS were 

intravenously injected into the tail veins of wild type mice (n=5) and C5
-/-

 mice (n=5) to induce lung 

metastases. Lung metastasis was decreased in C5 deficiency mice (F). Bars indicate the mean ± SD, 

NS: not significant, *P< 0.05. 
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3.14 Undetectable complement activation and less MAC-neutrophils in human non-

metastatic skin tumors. 

The crosstalk between complement and neutrophil affects the permeability of tumor blood 

vessels, which further potentially impact the tumor metastasis. To further confirm the 

pathophysiological relevance of this crosstalk for metastasis in humans, we compared four 

different types of human skin tumors. The selected tumor entities differ in their potential to 

metastasize. Malignant melanomas are highly metastatic skin cancer. Human basal cell 

carcinoma (BCC) and keratoacanthoma (KA) are two rarely metastasizing, semi-malignant 

skin tumors. Nevocytic nevi (NCN) are non-metastatic, benign skin tumors. We compared 

the complement activation status (C3b/iC3b deposition at the blood vessel wall, Figure 14A) 

and the presence of MAC-neutrophils (Figure 14B). Highly conform to the metastatic 

property of those four human skin tumors, we detected a very limited number of C3b/iC3b 

deposited in vessels (<5%) of BCC, KA and NCN tissues; in contrast 12% of melanoma 

vessels are positive for C3b/iC3b staining (Figure 14A). In comparison to 52% MAC positive 

neutrophils in melanoma, we also found less MAC positive neutrophils in BCC (16%) and 

KA (12%). No MAC-neutrophils were detectable in NCN (Figure 14B). These results 

indicate a positive correlation between complement activation and the ability of human skin 

tumors to metastasize. 

 

Figure 14. complement activation status in human skin cancers.   

Human basal cell carcinoma (BCC, n=6), keratoacanthoma (KA, n=5) and Nevocytic nevi (NCN, n=5) 

tissue samples were stained for VWF and C3 cleavage products (C3b/ iC3b) (A) or CD15 and MAC 

(B). Nuclei were stained with DAPI. Quantification showed a very limited number of C3b/iC3b 
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deposited in vessels (<5%) of BCC, KA and NCN tissues in comparison to melanoma (A). In addition, 

less MAC positive neutrophils were detected in BCC (16%), KA (12%) and non-detectable MAC-

neutrophils in NCN compared to 52% MAC positive neutrophils in melanoma (B). Bars indicate the 

mean ± SD, *P< 0.05, **P< 0.005. 

 

3.15 LMWH blocks complement activation in vitro. 

The observed correlation between the glycocalyx related C3b deposition (Figure 5B-C) 

followed by the recruitment and activation of neutrophils and the disruption of the tumor 

vasculature(Figure 10-12), prompted us to assess whether LMWHs are able to prevent tumor 

related complement activation. Heparins are strongly related to the naturally occurring 

heparin sulfate, a major component of the endothelial glycocalyx. Zaferani et al.
45

 showed 

that various complement factors have heparin binding sites enabling their storage within the 

endothelial glycocalyx and thus their deposition at the blood vessel wall. To better understand 

the anti-metastatic properties of heparins and the impact of heparin on tumor-associated 

complement activation, we performed further in vitro and in vivo experiments.  

In the first set of experiment, we compared the two LMWHs, tinzaparin and N-acetylheparin 

(NAH, a heparin without anticoagulant properties). The complement inhibitory activity of 

both LMWHs was assessed by analyzing the haemolytic activity of the classical pathway 

(CH50) and the alternative pathway (APH50). The CH50 assay tests the total hemolytic 

activity of the classical and terminal pathways, which depends upon lysis of sheep red blood 

cells pre-coated with rabbit anti-sheep red blood cell antibody by human serum. Similarly 

with the CH50 assay, the APH50 assay measures the total alternative pathway hemolytic 

activity to lyse unsensitized chicken erythrocytes by human serum. Both CH50 and APH50 

assay results were showed in reference to a pool of normal human serum as standard (100%). 

Treatment with tinzaparin significantly blocked the classical (Figure 15A) and the alternative 

(Figure 15B) complement pathway by 80% and 95% respectively. NAH were also able to 

decrease the CH50 and APH50 values; however tinzaparin was significantly more efficient 

than NAH (Figure 15A-B). In the next set of experiments, we analyzed whether treatment 

with tinzaparin could also inhibit MACs formation on neutrophils. Sensitized neutrophils 

were treated with NHS, HIS or NHS with the supplement of tinzaparin (100IU/ml) for 30 

min. Anti-human MAC-FITC antibody and anti-human citrullinated histone H3 antibody 

were used for the MACs and NETs immunofluorescence staining. As shown in Figure 15C, 
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MACs presented on NHS treated neutrophils whereas administration of tinzaparin was 

sufficient to completely inhibit MACs formation. Quantification also revealed a significant 

reduction of the intensity of MAC on neutrophils for tinzaparin treatment. 

 

Figure 15.Tinzaparin inhibits complement activation in vitro.  

Haemolytic complement function of the classical pathway (CH50) and the alternative pathway 

(APH50) was significantly reduced by the LMWH tinzaparin and NAH. Tinzaparin was more 

efficient than NAH (A-B). Representative immunofluorescence images of antibody sensitized 

neutrophils treated with 10% NHS or with 10% NHS supplemented with tinzaparin (100IU/mL). The 

speckled MAC staining on NHS treated neutrophils was significantly abolished by tinzaparin (C, 

scale bar=20µm). Bars indicate the mean ± SD, *P< 0.05, **P< 0.005, ***P< 0.0005. 

 

3.16 Tinzaparin blocks MAC-related neutrophil activation in vitro. 

We have shown that MAC is a potent activator of neutrophil activation, resulting in oxidative 

burst and formation of NETosis. We next analyzed the impact of tinzaparin treatment on 
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MAC-induced neutrophil activation. As show in Figure 16A, compared with NHS treated 

neutrophils group, DNA-histone fragments were significantly reduced in the supernatant of 

tinzaparin-NHS treated neutrophils. Western blot results further proved that tinzaparin could 

significantly prevent the release of CitH3 into the supernatant (Figure 16B). In comparison to 

the NAH, tinzaparin was again more efficient to block NETosis (Figure 16A-B) suggesting 

that tinzaparin was more applicable for further experiments. The effect of tinzaparin on ROS 

production was measured by chemiluminescence assay. Compared with the NHS group, 

tinzaparin treatment reduced the MACs induced ROS release from neutrophils (Figure 16C). 

As MAC positive neutrophils reduce the endothelial barrier function, we checked whether 

tinzaparin was sufficient to protect the endothelium. ECIS measurement showed that 

tinzaparin effectively prevented MAC induced break down of the electrical resistance (Figure 

16D). Taken together, our in vitro results indicate that tinzaparin significantly inhibited 

MACs formation and prevented ROS release, NETs formation and thereby attenuated MAC 

activated neutrophil mediated EC dysfunction.  
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Figure 16. Tinzaparin treatment blocks ROS release and Netosis formation in vitro. 

To analyze the tinzaparin treatment effect for neutrophils activation, we detected the NETs formation 

and ROS release. Tinzaparin was more efficient than NAH to block NETosis in NHS-treated 

neutrophils as indicated by the significantly reduced release of DNA-histone fragments (Tinzaparin, 8 

µM; NAH, 8 µM) (A) and citrullinated histone3 (B). Luminol chemiluminescence assay shows a 

reduction of MAC-induced ROS release in the presence of tinzaparin (C). TEER measurement reveals 

that supplementation of NHS with tinzaparin (100IU/mL) counteracts the NHS induced ECs 

dysfunction (D). Bars indicate the mean ± SD, *P< 0.05, **P< 0.005, ***P< 0.0005. 

 

3.17 Tinzaparin block complement activation in vivo. 

We selected tinzaparin also for our following in vivo experiments because this LMWH has 

frequently been demonstrated to possess anti-complement effects
45, 46, 52

. In addition, our own 

previous work showed that the treatment with tinzaparin attenuated tumor progression and 
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metastatic burden in murine animal models
93, 94

. To prove of our findings in vivo, we treated 

ret tumor engrafted mice with tinzaparin. The complement activtion status in tinzaparin 

treated primary tumor were measured by immunofluorescence. Daily intradermal 

administration of tinzaparin to ret tumor engrafted mice prevented the deposition of the C3 

fragment C3b/iC3b at tumor blood vessel walls (Figure 17A-B). In agreement with our in 

vitro experiments, MAC formed on neutrophils in primary control tumor; however, blocking 

complement activation by tinzaparin decreased MACs formation on tumor neutrophils 

(Figure 17C). Quantification also revealed a significant reduction of MAC intensity by 75% 

in tinzaparin treated tumors, compared with non-treated tumors (Figure 17D). Taken together, 

these results confirmed the complement inhibition effect by LMWH in vivo. A schematic 

model of current study is present in Figure 18. 

 

Figure 17. Tinzaparin blocks complement activation in primary tumor.  

Tumor bearing mice were treated with vehicle or tinzaparin and cryosections of primary tumors were 

analyzed by immunofluorescence staining (n=5, scale bar=20µm). Tinzaparin treatment reduced the 

deposition of C3fragments along the vessel wall compared with control tumors (A). Quantification 

revealed a significant reduction of C3 fragments deposition after tinzaparin treatment (B). MAC 

positive neutrophils are showed in the in tumors of control mice. In contrast, treatment with tinzaparin 

results in a decreased MAC formation on neutrophils (C). Quantification showed a significant 

reduction of MAC intensity on neutrophils after tinzaparin treatment (D). Data are shown as mean ± 

SD, *P< 0.05, **P< 0.005.  
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Figure 18. Schematic model of current study. 

The schematic overview shows the crosstalk between the complement system, neutrophils and ECs in 

the tumor microenvironment (A-B). Complement activation at the endothelial-blood interface leads to 

the C5a mediated recruitment of neutrophils. Upon contact with the endothelium, MACs are formed 

on neutrophils, which mediate neutrophil activation represented by ROS release and NETs formation. 

Complement activated neutrophils increase the permeability of the endothelium allowing the 

transmigration of melanoma cells. Treatment with tinzaparin can block complement activation and 

thus tumor cell transmigration. 
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4 Discussion 

The complement system is a major effector of the innate immunity and its role in pathogen 

defense has been extensively studied
1, 4

. High capacity of metastases is the malignant 

melanoma´s main characteristics and several complement effectors (such as C3a, C5a) 

contribute to melanoma progression
91, 92

. In the frame of the complement activation, 

neutrophils are recruited to the inflamed site and manipulated by the primary tumor to 

participate in various steps of the metastatic cascade
55, 56, 77

. The aim of our study was to 

investigate the involvement and crosstalk between complement, neutrophils and the tumor 

endothelium in the melanoma microenvironment. 

To study the role of complement in malignant melanoma, we analyzed tumor biopsies of 

melanoma patients, we applied murine melanoma models and we used several in vitro 

experiments. In summary, we showed that tumoral ECs recruit complement factors from the 

blood to their surface to provide a platform for the initiation of the complement cascade, 

especially the lectin pathway activation. The associated production of the complement C3 

fragments and C5a correlated with neutrophil attraction. In close proximity to the blood 

vessel wall, these recruited neutrophils are further activated by the complement-derived 

MAC. Profound neutrophil activation, characterized by an oxidative burst and the NETs 

formation, therefore increased the permeability of the tumor endothelium which in turn 

enables extravasation of tumor cells. We were able to block this effect by chemical inhibition 

of the MAC, and likewise the metastatic spread of melanoma cells was prevented in C5 

deficient mice, which were unable to form MAC. MAC deposition on tumor-associated 

neutrophils was also found in human melanomas but not in rarely metastasizing basal cell 

carcinomas or non-metastatic keratoacanthoma and nevocytic nevi. Interestingly, 

administration of the LMWH tinzaparin to melanoma bearing mice prevented complement 

associated neutrophil activation and stabilized the vascular barrier explaining the efficient 

blockage of tumor cell metastasis. 

The complement system and its crosstalk with the cells of innate and adaptive immune 

responses is an emerging field of research in life sciences, as evidenced by several recent 

articles in high-impact journals
22, 42, 106

. Our work describes the first functional analysis of the 

MAC and its impact on neutrophil activation during the progression of melanoma (Figure 

18). Moreover, our results provide a sound explanation of a triangular molecular crosstalk 
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wherein the imbalanced complement activation in tumors promotes neutrophil activation 

followed by endothelial dysfunction and thus increased metastasis. 

 

4.1 Complement activation in melanoma microenvironment 

A growing body of data show that imbalanced complement activation in the tumor 

microenvironment participates in chronic inflammation and suppressive immune responses
23, 

32
. In addition, clinical data demonstrated complement activation in cancer patients. Levels of 

complement effectors such as C3a, C5a, C3 and MBL in patients’ plasma/serum sample or 

tumor tissues positively correlate with promoted tumor growth and poor outcome in patients 

suffering from lung cancer
38, 107

, ovarian cancer
39

, colorectal cancer
40

 and chronic lymphatic 

leukemia
108

.  

Melanoma is one of the most aggressive forms of skin cancer and exposure to sun or ultra 

violet (UV) radiation has been accounted for the major cause of melanoma
109, 110

. UV 

radiation contributes to the DNA damage and leads to immunosuppression, which is a major 

risk factor for melanoma development
109

. Previous reports showed that C3 fragments C3b 

and C3d were deposited on epidermal cells after the exposure of the skin to UVB
111

. 

Moreover, UVA is a potent oxidizer of cellular molecules, and complement can be triggered 

in to action by UVA-altered cell lipids and other cell structure
112

. Accordingly, recent 

evidence indicated that radiation induced tumor cell damage could induce transient 

complement activation and up regulate the release of C3a and C5a, subsequently leading to 

DC and CD8 anti-tumor response
28

. Based on these observations, we postulate that melanoma 

progression is associated with complement activation.  

C3 plays a key role in the classical and alternative pathways of the complement system. In 

non-small cell lung cancer, low C3 level is related to shorter overall survival and disease-free 

survival rates
38

. Apart from cancer, anti-neutrophil cytoplasmic antibody associated vasculitis 

(AAV) is a group of autoimmune disease and complement activation is crucial for the 

development of AAV. Accumulating evidence has shown that low serum C3 level at 

diagnosis was associated with severity and poor out-comes of AAV
113

. In this study, ELISA 

results show decreased C3 level in stage IV melanoma patients’ plasma (Figure 1A). Several 

studies suggested the use of complement as biomarkers for cancer diagnosis and prognosis. 

Increased levels of C3 fragments (e.g. C3b/C3c and C3f) have been detected in serum of a 
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variety of cancer patients
21

, including breast cancer, pancreatic cancer, leukaemia and 

lymphoma. Moreover, C3a and C5a are potent proinflammatory mediators. Increased levels 

of C3a have been reported in the serum of patients with lymphoma, oesophageal cancer and 

colorectal cancer
21

. At higher concentration, C5a recruits MDSCs into tumor and exert 

immunosuppressive effects by ablating CD8 T cell response
32

. C5a could also stimulate 

angiogenesis and promote cancer cell invasion and migration
22, 91

. Inhibition of the binding of 

C5a to its receptors was demonstrated to be associated with a decreased tumor growth in 

experimental mouse models
91, 114

. In the present study, we show that the complement 

effectors C3b, C3a and C5a are elevated in human melanoma blood samples, indicating 

systemic complement activation in melanoma patients (Figure 1B-D). Thus, the 

determination of complement related proteins may be potentially useful in the melanoma 

screening and tumor staging. 

To support our ELISA data, we evaluated the presence of complement effectors in 

cryosections of human and mice malignant melanoma tissue. In our study, C3 cleavage 

products deposit along the tumor vasculature in both human and mice tumor tissues, 

indicating that activation of complement proteins occur at the blood vessel interface (Figure 

2A and 3A). In agreement to a previous study, we detected no complement activation in 

murine melanomas at an early stage (Figure 3C) but only in advanced tumors suggesting a 

stage-dependent complement-promoting environment. The work by Marks et al.
57

 reported 

that enforced deposition of complement factors at EC is a potent and rapid stimulus for 

neutrophil-endothelial adhesion. The binding of neutrophils to the vascular endothelium is an 

early event in their recruitment into acute inflammatory lesions. In strong accordance with the 

notion of tumor blood vessel restricted complement activation, we also detected high levels 

of C5a in close proximity to blood vessels (Figure 3D). C5a is a potent chemoattractant for 

pro-inflammatory leukocytes and recruits neutrophils to areas of inflammation and tissue 

damage
1
 (Figure 3F). Thus, the enrichment of complement effector C3 fragments and C5a 

along the vasculature is a sound explanation for the observed recruitment of neutrophils 

around tumor vessels (Figure 10). However, C5a is not able to induce ROS formation and 

NETosis by its own (Figure 9) further emphasizing the potential relevance of MAC as a 

potent physiological activator of neutrophils. Additionally, we found no evidence of C3b 

deposition on the vasculature of the lung, liver and kidney of tumor bearing animals (Figure 

4), indicating the complement activation is specific in the tumor microenvironment. 

Accordingly, MAC deposition was not found on tumor-associated macrophages, dendritic 
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cells or T cells, or on the neutrophils of peripheral organs, suggesting MAC forms only on 

tumor associated neutrophils. 

To better understand the initiation of the complement cascade in our animal model, we 

quantify the accumulation of early complement components (Figure 5A; C1q, C4, MBL and 

Factor B). Our experiments suggest the predominant involvement of the lectin pathway. 

However, the tight molecular interconnection of the complement system does not exclude the 

contribution of the other activation routes. For instance, previous studies suggested that 

coagulation and fibrinolytic cascade related proteases such as thrombin and plasmin are able 

to trigger complement activation through the direct cleavage of C5
22

. In the earlier study, we 

showed that melanoma cells are able to induce coagulation through the formation of thrombin 

via tissue factor or through the release of VEGF
115, 116

. In the present study we also 

investigated the potential crosstalk between coagulation and the complement; however we 

were not able to found a significant correlation between blood vessel occlusion and 

complement activation suggesting that in the melanoma microenvironment hypercoagulation 

is less relevant for complement activation. 

MBL deposition and the presence of C3 cleavage products along the tumor vasculature, 

suggest that activation of complement proteins occurred at the blood vessel interface in a 

subset of tumor blood vessels. The MBL can recognize ECs with an aberrant glycosylation at 

their surface
102

 and evidence for the activation of lectin pathway has been reported in patients 

suffering from colorectal
117

 and ovarian cancer
39

. In this study we discovered that the degree 

of C3b/iC3b deposition was related to the endothelial glycosylation and the surface 

expression of SDC1suggesting that tumor ECs exhibit a disease-related phenotypes (Figure 

5B-C). Interestingly, the expression of endothelial SDC1 (a highly glycosylated 

proteoglycan) has previously been linked to enhanced complement activation
51

. So, the 

altered expression of SDC1 and the changed glycosylation of the surface structures may 

explain the prevailed involvement of the lectin pathway 
118, 119, 120, 121

.This is also supported 

by the recent findings from Talsma et.al documenting that a modified heparan sulfate 

synthesis in ECs is associated with an increased deposition of the MBL
102

 . However, more 

details about altered surface structures of tumor ECs and the crosstalk between the 

glycosylation and complement activation should be further explored.  

In addition, SDC1 is involved in several physiological processes such as angiogenesis
122

. 

Removal of SDC1 from the endothelial surface is a common marker for endothelial cell 
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damage 
123, 124

. In this study, we found a positive correlation between SDC1 expression and 

C3b/iC3b deposition indicating that the initiation of the complement is not triggered by 

damaged ECs but dependent on an intact endothelium. 

 

4.2 MAC formed on neutrophils but not on EC 

Classical, alternative and lectin pathways converge on a common terminal pathway: the 

formation of the MAC. To investigate the distinguish role of complement in melanoma 

environment, we further analyzed the presence and localization of this terminal complex in 

the tumor tissue by immunofluorescence staining. We have already found C3 fragments 

deposit around tumor vasculature, so we hypothesized the deposition of MAC along the 

tumor vessel. To our surprise, we could not detect significant levels of MAC at the 

endothelium; however, we discovered that about 60% of all tumor-related neutrophils were 

MAC positive in both human and mice primary tumor tissue (Figure 2C and 3G). 

One of the main functions of complement system is to directly kill invading pathogens 

through the formation of MAC. In principle, deposition of critical amounts of MACs disrupts 

the bilayer of the cell membranes, leading to cell lysis. However, most nucleated cells, 

including neutrophil, have several protection mechanisms to counteract complement-

mediated cellular lysis. For example, through a combination of ion pumps, complement 

regulators (CD59) and active recovery processes (endocytosis), most nucleated cells actively 

remove the MAC 
5, 10, 16

. Neutrophils can also protect themselves against lytic killing by 

transient cell swelling and metabolic depletion
5, 10

. At sublytic levels, MAC deposition 

permits Ca
2+

 influx and interacts with other signaling molecules involving G-protein-coupled 

receptors and NF-κB
5, 15, 16, 125

. MACs are able to induce many different effects that have 

been associated with altered cell proliferation, induction or inhibition of apoptosis and 

inflammasome activation in various cell types, for example, macrophage, microglia, 

epithelial cell and some tumor cells
5, 16, 125

 . 

In this study, we further analyzed the localization of MAC negative and MAC positive 

neutrophils within the tumor vasculature. We observed that in mice tumor tissues most of 

non-attached luminal neutrophils remained MAC negative, whereas neutrophils attached to 

the tumor endothelium gain the MAC complex (Figure 6A-B). This result suggests that the 

deposition of the MAC assembly on the neutrophils occurs at surface of the blood vessel wall 
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during neutrophils recruitment and transmigration from the blood through the endothelium 

into the tumor tissue.  

To test whether the initiation of the complement system on ECs could finally lead to MAC 

deposition on adjacent neutrophils, we intentionally induced the complement activation on 

HUVECs prior to the co-culture with neutrophils. MAC in vitro staining shows that MACs 

exclusively form on neutrophils but not on HUVEC (Figure 6C), indicating MAC is de novo 

formed on neutrophils but not transferred from EC surface. Moreover, Morgan et al. reported 

that neutrophils can remove MAC by endocytosis
126

. Our staining result also shows that 

MAC can be detected both on the neutrophil surface and in the cytoplasm. To further 

understand the mechanism of MAC formation exclusively on neutrophils, we next analyzed 

the expression of the complement regulatory proteins CD46, CD55, CD59 and factor P in 

HUVEC, neutrophil and several human melanoma cell lines (Figure 6D). Our data reveals 

that in contrast to CD59, neutrophils strongly express factor P. Factor P can recruit the 

C3(H2O) and C3b to the cell surface and serves as the platform for alternative pathway 

activation
1
. Furthermore, Factor P can also stabilize the C3 convertase and bind on the 

pathogens or activated cells surface to promote the complement activation. Neutrophils can 

further amplify the complement cascade e.g. by the release of factor P which lead to a 

positive feedback loop of neutrophil activation
72

. Our results also show that neutrophils are 

almost the only cells expressing factor P, suggesting neutrophils tend to mediate complement 

related disease (Figure 6E). Expressed on most of nucleated cell, CD59 is the most important 

negative regulator of the MAC formation. CD46 acts as a cofactor for the inactivation of C3b 

and C4b. CD55 dissociates the C3 convertase. Therefore, CD46 and CD55 are not able to 

inhibit MAC formation directly. In agreement with our assumption that the complement 

cascade is initiated on the endothelium but terminated on neutrophil, weak expression of 

CD59 by neutrophils (Figure 6D) suggests that they could not sufficiently prevent the 

formation of the MAC. In contrast to neutrophils, ECs express high levels of CD59 

suggesting their protection against MAC formation whereas low levels of CD46 and CD55 

may promote the deposition of early complement factors.  

 

4.3 MAC on neutrophil lead to ROS production and NETs 

To gain further insights into the pathophysiological function of MAC on neutrophil, we 

induced the MAC formation on neutrophils in vitro and further confirmed the MAC 
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formation by FACS and western blot (Figure 7A-B). One of the hallmarks of neutrophil 

activation is the oxidative burst, so, we first checked the ROS release from MAC positive 

neutrophils. We measured the release of ROS by different techniques, including DCF 

fluorescence staining, FACS and chemiluminescence assay. Using these methods, we 

confirmed that MAC on neutrophils leads to ROS production (Figure 7C-E). ROS can 

mediate antimicrobial activity and participate in stress signaling in cells. Moreover, ROS 

cause cell death and are associated with tissue damage. For example, ROS initiated Ca
2+

 

signaling plays an important role in regulating endothelial barrier function
85

. Interestingly, 

neutrophil-derived ROS have been reported to directly activate the complement in fluid 

phase
127 

. 

Oxidative stress is a strong promoter of NETosis
128

, which involves the secreted nuclear 

chromatin and the release of granule proteins. We therefore further investigated MAC 

induced NETs formation (Figure 8). Histone citrullination is a decisive event during NETosis 

and thus used as molecular marker.  As expected, a robust western blot signal of citrullinated 

Histone3 (CitH3) and the release of DNA-histone fragments were detected in MAC+ 

neutrophil supernatants. We can also find the externalized DNA structures co-localized with 

the NETs-associated CitH3 in NHS treated neutrophils.  For the in vivo proof of our findings, 

we evaluated cryosections of tumor tissues for the MAC associated CitH3 staining. In 

agreement with our in vitro results, CitH3 and MAC staining were in close proximity in both 

human and mouse primary tumor tissues. Notably, NETs can activate the alternative 

complement pathway
129

 and NETs may influence different steps of the tumor development, 

including tumor growth, metastasis and cancer associated thrombosis
65, 67, 130

. 

Taken together, our results show that in human and murine melanoma tissue the complement 

system is activated at the endothelial-blood interface. Complement effector molecules C3 

fragment and C5a are produced and neutrophils are thereby recruited and activated. The 

terminal formation of MAC at the neutrophils surface drives further neutrophil activation 

characterized by ROS production and release of NETs. 

 

4.4 Perivascular activated neutrophils contribute to endothelial barrier disruption 

Neutrophils are the most abundant immune cells in human immune system and many 

proinflammatory factors contribute to the recruitment of neutrophils to the inflammatory 
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sites. Our study indicates an imbalanced complement system resulting in MAC formation in 

the tumor microenvironment. In the course of the complement cascade chemoattractant C5a 

is formed and deposited around tumor vessels suggesting neutrophil recruitment to the tumor 

blood vessel. Neutrophils have varied functions in the tumor microenvironment and 

increasing body of evidence suggests that neutrophils are educated by primary tumors in 

order to support the formation of metastasis in distant organs
58

. Tumor metastasis depends on 

in increased permeability of the endothelium. Therefore, we hypothesize that imbalanced 

complement cascade mechanistically links neutrophil activation with dysfunction of 

endothelium and subsequent melanoma cells extravasation.  

In human and mice tumor tissues, numerous neutrophils marginated along or penetrated into 

the wall of tumor blood vessels (Figure 10). Because MAC deposition on neutrophils 

promotes an oxidative burst (Figure 7) and induces NETosis (Figure 8), these neutrophils can 

locally induce or amplify the permeability of the endothelium
131

. For example, ROS interact 

with ECs and increase the intracellular oxidative stress, which may provoke cellular damage 

and transformation
64

. NETs-associated cytotoxic histones and proteases could injure the 

surrounding endothelium, leading to vascular leakage
59, 69

. 

To study the neutrophil-EC crosstalk, we co-cultured HUVEC with MAC positive 

neutrophils in vitro. MAC positive neutrophils induce gap formation in a confluent EC 

monolayer (Figure 11A). ECIS assay can be used to detect the integrity of EC monolayer, 

and in this study the results show that co-culture with MAC positive neutrophils decreases the 

TEER of an endothelial monolayer, suggesting an increased vascular permeability (Figure 

11B). In vivo, tumor blood vessels with increased levels of neutrophils are characterized by 

IgG leakage from the blood into the adjacent tissue suggesting increased vascular 

permeability (Figure 12A-B).  

To highlight the fundamental role of neutrophils, we blocked neutrophil activation (NETs 

formation) by inhibiting PAD4 in additional in vitro and animal experiments (Figure 11C and 

12C-D).The results indicated that PAD4 inhibitor treatment prevent the neutrophil induced 

break down of the endothelial resistance in vitro and IgG leakage in vivo, suggesting 

neutrophil activation is needed to increase tumor blood vessel permeability. To confirm these 

findings at the functional level, we performed in vivo experiments in C5 deficient mice, 

which are unable to generate the MAC (Figure 13). We found that lack of C5 reduced 

neutrophil recruitment into the tumor tissue underlining the high relevance of C5a for the 
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recruitment neutrophils. In accordance with our conclusion, blood vessel permeability was 

not decreased even in blood vessels with a comparable high amount of neutrophils, indicating 

that neutrophils without MAC are not able to increase the permeability of the tumor blood 

vessel.  

To study the influence of the impaired endothelial barrier on tumor cell extravasation, we 

measured the transmigration of human melanoma cells by transwell assays. As expected, we 

found that the MAC induced increase of the vascular permeability promoted tumor cell 

transmigration (Figure 13E). Moreover, we conducted additional lung metastasis experiments 

in C5 knockout mice (Figure 13F). In agreement with our hypothesis, the inability to generate 

the MAC correlated with a significantly reduced rate of metastasis. We also analyzed human 

skin tumors differing in their metastatic potential to gain further insight into the impact of 

complement activation and the role of MAC formation (Figure 14). In accordance with this 

clinical phenotype and our hypothesis that complement activation contributes to metastasis, 

we detected significantly weaker complement activation and less frequent MAC deposition 

on neutrophils in non-metastatic skin cancers compared to melanoma. This result highlights 

the correlation between complement activation, MAC deposition on neutrophils and cancer 

cell dissemination. It also provides insight into the mechanisms of melanoma metastasis and 

emphasizes the relevance of our findings for the clinical phenotyping of melanoma. 

Taken together, these results demonstrate MAC+ neutrophils play an important role in 

controlling EC paracellular permeability allowing the transmigration and thus metastasis of 

melanoma cells.  

 

4.5 Tinzaparin blocks complement-related neutrophil activation in vitro and in vivo  

Given the pro-tumor effect of the activated complement system, the idea of complement 

inhibition as anti-cancer treatment is gaining recognition
6, 21, 41

. Previous studies identified 

LMWH as potent inhibitor of the complement cascade. Different modes of action have been 

reported including inhibition of C1q binding to immune complexes, blockade of the C3 

convertase formation and inhibition of the MAC assembly
45, 52, 132

. Various complement 

factors and complement regulators react with polysaccharide glycosaminoglycan (GAG) on 

cellular membranes
45

. Accordingly, in our study we observed a positive correlation between 

complement activation (C3b/iC3b deposition) and the glycosylation of the tumor endothelium 
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(WGA staining and syndecan-1 expression, Figure 5B-C). These interactions might serves as 

potential target for blocking complement activation. Heparan sulfate related GAGs especially 

LMWHs can be used to intervene in the interaction of complement factors with 

proteoglycans on the cell membrane or in the extracellular matrix to limit the complement 

activation
45

. In addition, we previously showed that tinzaparin treatment attenuated tumor 

progression and metastatic burden in murine animal models
93, 94

. So, we selected LMWH for 

further complement inhibition studies. 

Tinzaparin is produced by chemical or enzymatic depolymerization of porcine unfractionated 

heparin and it is a heterogeneous carbohydrate mixture with an average molecular weight of 

6.5 kDa
133

. Therefore, tinzaparin is not a single compound, but a mixture of 

glycosaminoglycan chains with different chain lengths and structure features
133, 134

. We first 

checked the complement inhibition effect by tinzaparin in vitro (Figure 15A-B). The CH50 

and APH50 assay were applied to detect the impact of LMWHs on the complement system 

activation. The results show that treatment with tinzaparin significantly blocks the classical 

and alternative pathway activation. Additionally, treatment with the LMWH tinzaparin 

blocked MACs formation on neutrophils (Figure 15C). Taken together, those in vitro 

experiments clearly confirmed the complement inhibitory effects of tinzaparin.  

Because MACs on neutrophils are strong trigger for NETs and ROS production, we next 

analyzed the blocking effect of tinzaparin (Figure 16). DNA-histone fragments are 

significantly reduced or even absent in the supernatants of tinzaparin treated neutrophils. 

Western blot results further prove that tinzaparin could significantly prevent the release of 

CitH3. We next checked the tinzaparin induced complement inhibition efficiency Western 

blot results confirmed that 10 U/ml is the minimal working concentration.  

To measure the complement inhibition efficiency of non-coagulative heparins we analyzed 

commercially available N-acetylheparin (NAH) lacking anti-coagulative properties but still 

owing anti-complement activity
135

. In our analysis we found that NAH was able to efficiently 

block the classical and alternative pathway as measured by CH50 and APH50 assays (Figure 

15A-B). NAH was also able to prevent NETosis. However at equimolar concentrations, NAH 

was significantly less efficient than Tinzaparin, especially the inhibitory effect on NETosis 

(Figure 16A-B). 

In line with the result of NETs detection, treatment with tinzaparin decreases the ROS 

release, which was measured by a chemiluminescence assay (Figure 16C). As MAC positive 
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neutrophils could induce EC dysfunction, we next checked the treatment effect of tinzaparin 

in a neutrophil/HUVEC co-culture system. The TEER result shows that tinzaparin effectively 

abolishes the EC dysfunction through by inhibiting the complement activation effects on 

neutrophils (Figure 16D). 

To further investigate the treatment effect of tinzaparin in vivo, we treated ret tumor engrafted 

mice with tinzaparin, and followed by analysis of complement activation (Figure 17). As 

expected, the C3 fragments deposition along vessel wall in tumor is decreased in tinzaparin 

treated tumor tissue. Furthermore, inhibition of complement activation by tinzaparin blocks 

the MAC deposition on neutrophils.  

LMWHs are used as clinical antithrombotic agents. Indeed, heparin is not a specific blocker 

of the complement but it can also interfere with coagulation and the action of growth factors 

and chemokine
45

. Therefore, clinical usage of heparins to attenuate complement activity 

should be done carefully, and heparins that specifically block complement activation should 

be selected to minimize the cross reactivity with coagulation and non-complement mediated 

inflammation
45

. Within this context we tested the complement and NETs inhibitory activity 

of NAH, a heparin with reduced anti-coagulative properties. However, it was less efficient 

than tinzaparin. Further research is required to optimize potential heparins and heparin related 

molecules to identify subtypes of heparins with precisely defined inhibitory properties.  

 

4.6 Outlook 

Malignant melanoma is an immunogenic tumor. To our knowledge, our manuscript reports 

for the first time the formation of the MAC on tumor-associated neutrophils and considers the 

pathophysiological consequences in melanoma (Figure 18). The complex crosstalk between 

the complement system and immune cells during tumor progression is an emerging field of 

research because many of the pathophysiological mechanisms remain unclear
21, 42

. Notably, 

extensive evidence obtained in experimental models suggests that the complement can 

modulate T cell responses in a variety of inflammatory diseases
21, 42

. However, the impact of 

MAC positive neutrophils on adaptive immune responses in the tumor microenvironment is 

still poorly understood and need further exploration. Recently, Ajona.D et al.
34

 reported the 

blockade of C5a resulted in a substantial improvement in the efficacy of anti PD-1 antibody 

against lung cancer. In this study, we highlight the potential use of LMWH as an anti-
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complement reagent. For the treatment of melanoma, a combined blockade of complement 

signaling by tinzaparin with other immunotherapy might be an alternative therapeutic 

strategy. As discussed above, although LMWH can block the complement activation 

efficiently, it is still not a specific inhibitor. So, it would be also worth to investigate the 

subtypes of heparins with precisely defined inhibitory properties. A better understanding of 

heparins and related derivatives will reveal new therapeutic options in the future. Another 

interesting finding is the association between glycosylation and complement activated factor 

deposition in tumor microenvironment. However, the precise biological role of aberrant 

glycosylation on tumor endothelial surface triggering complement activation requires further 

clarification. 

Apart from tumor, complement, neutrophil and EC are also the main participators of many 

immunological, hematological and dermatological related disease. We are convinced that our 

findings and proposed mechanisms (complement factor deposition, neutrophil activation and 

the loss of blood vessel integrity) not only improve the understanding of this triangular 

crosstalk in the context of melanoma progression, but are transferable to other human 

diseases such as vasculitis
136

, thrombotic microangiopathy
131

, immunothrombosis
137

. 
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Abbreviations 

AAV Anti-neutrophil cytoplasmic antibody associated vasculitis 

APH50 Haemolytic activity of the alternative pathway assay 

BCC Basal cell carcinoma 

C1INH C1 inhibitor 

CR1 Complement receptor 1 

C4bp C4-binding protein 

C3aR C3a receptor 

C5aR C5a receptor 

sC5b-7 Soluble C5b-7 

CitH3 Citrullination of the histone 3 

CH50 Haemolytic activity of the classical pathway assay 

DAF Decay-accelerating factor 

DAMPs Damage associated molecular patterns 

DCF 2’-7’dichlorofluorescein 

DAPI 4′,6-diamidino-2-phenylindole 

ECIS Electric Cell-substrate Impedance Sensing 

ECs Endothelial cells 

FB Factor B 

GAG Glycosaminoglycan 

HUVEC Human Umbilical Vein Endothelial Cells 

HIS Heat inactive serum 

ICAM-1 Intercellular cell adhesion molecule 1 

KA Keratoacanthoma 

LMWHs Low molecular weight heparins 

MBL Mannose binding lectin 

MAC Membrane attack complex 

MASP MBL-associated serine proteases 

MDSCs Myeloid derived suppressor cells 

MPO Myeloperoxidase 

MMP9 Matrix metallopeptidase 9 

MAPK Mitogen-activated protein kinase 

NFκB Nuclear factor-κB 

NETs Neutrophil extracellular traps 

NE Neutrophil elastase 

NHS Normal human serum 

NCN Nevocytic nevi 

NAH N-acetylheparin 
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PNH Paroxysmal nocturnal hemoglobinuria 

PAD4 Protein arginine deiminase 4 

ROS Reactive oxygen species 

SDC1 Syndecan 1 

TEER Trans-endothelial electrical resistance 

UV Ultra violet 

VWF Von Willebrand factor 

VEGF Vascular endothelial growth factor 

VCAM-1 Vascular cell adhesion molecule 1 

WGA Wheat germ agglutinin 
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