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Zusammenfassung: Die vorliegende Arbeit befasst sich mit der Erfassung, Modellierung
und Anreicherung von Materialreflektanzen zur hochgenauen Simulation von synthetischen
Datensätzen für das Rechnersehen. Das Thema wird in drei Kapiteln behandelt: Zunächst
untersuche ich die Möglichkeiten der Reflektanzerfassung, indem ich synthetisierte Bilder von
hochmodernen BTF-Reflektenzfeldern mit realen Aufnahmen vergleiche. Ich zeige, dass diese
als gleichwertiger Ersatz für die Bewertung von optischem Fluss verwendet werden können.
Im nächstfolgenden Kapitel präsentiere ich zwei Methoden, um effizientere BRDF Modelle
aus den gemessenen BTF-Daten zu erzeugen. Gemeinsam angewandt erhalten die Methoden
alle relevanten Reflektanzinformationen sowie die pixelgenaue Oberflächengeometrie. Weiter-
hin zeige ich, dass diese Modelle zur Synthetisierung von Referenzdaten für Optischen Fluss
geeignet sind und nahezu identische Ergebnisse wie die ineffizienteren BTF-Modelle liefern.
Zuletzt präsentiere ich eine Methode um real aufgenommene Bilddatensätze für das Rechn-
ersehen, mit synthetischen Niederschlagseffekten anzureichern. Dies beinhaltet eine Wasser-
benetzung der Bodenflächen, Wassertropfen auf der Windschutzscheibe, sowie Spritzwasser.
Verwirklicht wird dies durch eine Projektion der originalen Bilddaten auf eine rekonstruierte
Szene, eine Manipulation der Szene und Oberflächenreflektanzen und eine Simulation der
Lichtausbreitung der Niederschlagseffekte.

Abstract: This thesis is concerned with the acquisition, modeling, and augmentation of
material reflectance to simulate high-fidelity synthetic data for computer vision tasks. The
topic is covered in three chapters: I commence with exploring the upper limits of reflectance
acquisition. I analyze state-of-the-art BTF reflectance field renderings and show that they
can be applied to optical flow performance analysis with closely matching performance to
real-world images. Next, I present two methods for fitting efficient BRDF reflectance models
to measured BTF data. Both methods combined retain all relevant reflectance information as
well as the surface normal details on a pixel level. I further show that the resulting synthesized
images are suited for optical flow performance analysis, with a virtually identical performance
for all material types. Finally, I present a novel method for augmenting real-world datasets
with physically plausible precipitation effects, including ground surface wetting, water droplets
on the windshield, and water spray and mists. This is achieved by projecting the real-
world image data onto a reconstructed virtual scene, manipulating the scene and the surface
reflectance, and performing unbiased light transport simulation of the precipitation effects.
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1
Introduction

1.1. General Introduction

Whatare the systematic differences between
synthetic and real-world datasets and where do

they originate? How can we improve synthetic datasets in the
context of optical flow estimation? Can synthetic datasets be
used to assess and increase robustness towards critical corner
cases? Those are the underlying questions of my thesis. How-
ever, first, I want to review the boundary conditions of my work.

Computer vision is the research field of estimating high-level
and low-level information from images or image sequences. High-
level vision algorithms are concerned with extracting image se-
mantics. This is includs object classification [14, 19, 84], object
detection [125, 124, 150], and segmentation [32, 115, 134]. Low-
level vision algorithms extract physical properties. For example,
disparity [58, 88] and structure from motion [162, 70] algorithms
can be used to estimate depth and position. Inverse rendering
methods can estimate material properties or object shape [117,
91, 41], and even full virtual scene descriptions [81]. Optical
Flow algorithms are concerned with estimating motion [100,
133].

As for any estimation methods, accurate reference data is
needed in the development and validation process of computer
vision algorithms. With the recent emergence of Deep Neural
Networks for most computer vision tasks, the need for reference
data is further amplified for training and testing purposes.

Creating accurate computer vision reference datasets is a costly,
challenging, and a time-consuming task. Manual labeling is typ-
ically used to generate ground truth for high-level semantics or
object detection [21, 31]. Labeling low-level information on a
pixel scale can be achieved, but is complex and severely lim-
ited by the accuracy of the manual process [25]. Expensive
measurement devices, e.g., laser scanners and state-of-the-art
camera rigs, are used to create large-scale reference datasets like
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CHAPTER 1. INTRODUCTION

(a) (b) (c)

(d) (e) (f)

Figure 1.1.: Toprow: Synthetic
renderings with varying degree of
realism, a skylight with the sun
from the front, and a scanned phys-
ically based gravel ground surface
from Substance Source1. Bottom-
row: The corresponding optical
flow computed for a still image-pair
where the light source was rotated
clockwise by 10 degrees. HSV
color-coding of Middlebury [6] is
used, where white depicts a cor-
rectly estimated flow of zero. The
image in (a) visualizes a diffuse ren-
dering that conforms with the op-
tical flow brightness constancy as-
sumption. Consequently, the flow
errors in (d) are minimal. Man-
ually adding a spatially constant
specular term in (b) incurs addi-
tional errors to the flow fields (e).
However, the realistic appearance
of the scanned material (c) signif-
icantly increased specular and ge-
ometric details and causes flow er-
rors in (f) with a vastly different,
higher-frequency spatial distribu-
tion. Most datasets use models
as in (a) and (b). Consequently,
the confidence of the datasets is
decreased and systematical differ-
ences to real-world images occur.

KITTI [38] or the HCI Benchmark Suite [71]. However, the accu-
racy of such ground truth is inherently limited by measurement
errors [72]. For the algorithm class of optical flow, the motion
ground truth is further restricted to that of static or rigidly mov-
ing objects within engineered scenes [6]. By contrast, synthetic
datasets, generated with computer graphics, have perfect ground
truth available. Additionally, computer graphics facilitate the
ability to parametrize the scene conditions, such as weather and
lighting, at will, which in turn allows creating a large number of
varying image sequences.

Synthetic datasets are particularly enticing for the develop-
ment process of flow algorithms, due to the lack of accurate
real-world ground truth. However, systematic differences were
identified between the performance on real-world and synthetic
datasets, due to lighting, scene composition, and the general
appearance of the images [147, 101]. Throughout the work pre-
sented in this thesis, I address this problem. However, first,
I briefly explain where the problems originate and how I ap-
proached a solution.

The underlying assumption of optical flow methods is that of
brightness constancy, i.e., a diffuse world with static lighting.
Consequently, scene conditions that severely violate brightness
constancy are critical optical flow corner cases, i.e., reflections,
the motion of high-frequency shadowing effects, and light trans-
mission. As depicted in Figure 1.1, the performance of opti-
cal flow algorithms highly depends on the spatiotemporal dis-
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1.1. GENERAL INTRODUCTION

tributions of image intensities. A realistic and discriminating
synthetic optical flow dataset should, therefore, simulate all dy-
namic appearances changes accurately.

Ignoring all camera aspects, a topic which I do not address
in this thesis, appearance is the product of two aspects (c.f .,
Figure 1.2): First, the light sources of the scene. Second, the re-
flectance properties of scene materials. While the former mostly
exhibits low-frequency changes over space and time, the latter
can convolve the incident light to high-frequency spatiotemporal
appearance. A light transport algorithm simulates this convolu-
tion. For creating realistic and discriminating synthetic reference
data, which best conforms with reality in spatial and temporal
domains, a physically based light transport algorithm [118] is,
therefore, an essential requirement and physically accurate re-
flectance data is critical.

Figure 1.2.: Simulating the appear-
ance of a scene is a joint problem.
The appearance of an observed
surface depends on all incident
light and its reflectance proper-
ties. Light can be directly incident
from light sources, or via reflection
or scattering of other surfaces and
volumes. Typically, light is emit-
ted with low-frequency changes
over space and time, e.g., consider
the slow changes of the sunlight.
However, light-matter interaction
can create higher-frequency spa-
tiotemporal appearance changes,
e.g., from specular highlights or
the shadows of dynamic objects.
Physically based light transport
can simulate even most complex
light paths [118]. However, phys-
ically plausible descriptions of sur-
face reflectance are required to cre-
ate critical high-frequency appear-
ance effects with high realism. In
this work, I explore methods for
accurately recovering surface re-
flectance from measurements and
the impact of various reflectance ef-
fects on optical flow performance.

However, existing synthetic datasets, such as [26, 16], pre-
dominantly use physically implausible rendering systems with-
out separation of lighting and reflectance. More precisely, light-
ing information is statically precomputed and encoded in the
material textures. Additionally, the utilized textures are artis-
tically driven and do not represent real-world reflectance. As
a result, the simulated are unrealistic and dynamic effects from
the real-world become static and thus unchallenging to optical
flow algorithms.

In the following chapters, I explore ways of accurately captur-
ing and modeling the material reflectance to improve the confi-
dence of synthetic reference data for optical flow algorithms. I
further show that by using physically based material models, it
is possible to augment the appearance of materials in a plausible
way. I conducted all my experiments with unbiased path trac-
ing to ensure that no error is introduced from the light transport
algorithm.

1.1.1. Topics

The topics of this thesis are Reflectance Field Renderings For
Synthetic Optical Flow Datasets, Acquisition and Benchmarking
of BRDF Models For Synthetic Optical Flow Datasets and Aug-
mentation of Physically Plausible Precipitation Effects. They
relate to the problem stated above and are summarized in the
following paragraphs:

3



CHAPTER 1. INTRODUCTION

Reflectance Field Renderings For Synthetic Optical Flow
Datasets The motivation for the work of this chapter arose
from the observation of insufficient realism in existing synthetic
datasets. In this context, I explored ways of accurately cap-
turing surface reflectance. I show that by using state-of-the-art
reflectance field measurements, the quality of synthetic datasets
can be sufficiently improved. Compared to datasets captured
with a real-world camera, the synthesized datasets are almost
indistinguishable to optical flow algorithms. The remaining mi-
nor differences can be accounted for by increasing the sampling
density of the capturing process.

Creating Compact BRDFs From Reflectance Fields For Syn-
thetic Optical Flow Datasets Reflectance Field renderings are
computationally expensive and infeasible for real-time applica-
tions. Analytical BRDF models can, however, be used to model
physically accurate reflectance properties. I show that by fitting
BRDF models to the reflectance fields, the quality of synthetic
datasets can be maintained. I further identify and thoroughly
assess the most critical reflectance effects for optical flow per-
formance analysis and propose the minimal BRDF quality for
various material types. The resulting BRDF textures can be
applied to real-time and offline rendering systems alike and are
efficiently rendered.

Augmenting Real-World Datasets with Physically Based Pre-
cipitation Effects Not for all computer vision tasks, purely
synthetic datasets are always desired. On the other hand, real-
world datasets are limited with respect to variety and often lack
critical corner cases. I present a method for augmenting real-
world datasets with ground surfaces wetting, water droplets on
the windshield, and water particles in the form of mists and wa-
ter spray. In contrast to existing phenomenological approaches,
the proposed method augments the original image data in 3D
world space and is, therefore, capable of producing physically
plausible results.

4



2
Background

In this chapter I present the conceptual and theoretical back-
ground for this thesis. Dense optical flow estimation meth-

ods are the computer vision algorithms at issue. In Section 2.1,
I present their underlying principles and how those lead to a de-
pendency on statistical brightness variations in the images. Syn-
thetic datasets are a commonly used tool in the development and
validation process of optical flow algorithms. Synthesizing im-
ages with physically realistic brightness variations can increase
the confidence of the datasets.

The required methods for simulating physically realistic data-
sets fall within the scope of computer graphic domains. The
virtual scene creation, outlined in Section 2.2, is concerned with
the creation of virtual geometry, animations, and material tex-
tures. The rendering process simulates the propagation of light
and is presented in Section 2.3. Material models are the link
between the two domains and the central topic of this thesis.
Section 2.4 details the material models of opaque surfaces and
the process of capturing the material textures. In Section 2.5, I
present the theoretical background on optical properties of wet
materials and an efficient, physically based wetness model.

The structure and depth of the chapter were chosen to give
an overall picture and better understanding of simulations in
the context of synthetic optical flow datasets. For more detail,
I refer to standard literature.

2.1. Optical Flow

Optical flow describes a class of computer vision algorithms con-
cerned with the dense, i.e., pixel-wise, estimation of motion in
images of an image sequence. In the strict, original usage of
the term, optical flow is understood to be the apparent motion
of pixels between subsequent images. Today, however, the term
is used more frequently as a synonym for Motion Estimation,

5



CHAPTER 2. BACKGROUND

which is a class of methods that estimate the actual motion of
pixels [133]. While the apparent and actual motions of objects
are the same for objects with Lambertian surfaces, they can be
very different for reflective surfaces where the apparent move-
ment is that of the reflections whereas the actual movement is
that of the reflective object itself.

The applications of optical flow and motion estimation are
plentyful; From 3D reconstructions using structure from motion
techniques [8] over object tracking [83] to video compression[78]
and frame interpolation [158]. For video compression and frame
interpolation, the estimation of apparent motion is desired as
the goal is to fool human perception. For 3D reconstruction and
tracking, in most cases, the actual motion is the one required
as this actual motion can be used together with triangulation
techniques to reason about the 3D world.

The class of methods that my work impact the most are those
in Photogrammetry and 3D reconstruction. Therefore, I follow
the convention of using optical flow as a synonym for 2D Motion
estimation in this work.

The majority of model-based methods to compute optical flow
have a brightness constancy assumption. That is:

I(x, y, t) = I(x+ u(x, y), y + v(x, y), t+ ∆t) (2.1)

The intensity/color I of an pixel at (x, y) that moves to (x +
u(x, y), y + v(x, y)) between time t and t + ∆t ts is the same.
This leads to an optimization problem of finding u(x, y) and
v(x, y) such, that |I(x, y, t) − I(x + u(x, y), y + v(x, y), t + ∆t)|
Solving this for every pixel independently leads to the aperture
problem of optical flow. Consider a moving white wall observed
through a small aperture. We can not tell in which direction the
wall is moving. Given a broader context (perhaps the corners
of the wall) we can suddenly discern the movements. To cir-
cumvent this problem, two classes of optical flow methods have
evolved that utilize brightness constancy in some way or the
other: Feature based methods estimated sparse optical flow
for image features, i.e., salient points where the image neigh-
borhood is easily distinguishable. Here image features are ex-
tracted and tracked between two consecutive frames. An affine
transformation model is then fitted to the feature tracks. Pop-
ular feature-based methods are the Lucas-Kanade method [86],
which estimates optical flow of feature points and its local neigh-
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2.1. OPTICAL FLOW

borhoods, and the Buxton and Buxton method [17], estimating
the optical flow of edges. While feature-based methods are fast
and most robust to image noise [7], they only estimate sparse
flow fields and do not work for uniform image regions.

Pixel based methods estimate dense optical flow fields, de-
fined for each pixel of an image. Instead of using a rigid image
neighborhood around a feature point that is correlated with the
second image, these methods minimize a term consisting of the
original brightness constancy term above and an additional regu-
larizer, that ensures that neighboring pixels have similar values:

u, v = argmin
u,v

∫
x,y

Φ(I(x,y, t)

− I(x+ u(x, y), y + v(x, y), t+ ∆t)) + γR(u, v) (2.2)

where the Φ is the data term, usually a L1 or L2 norm, γ is a
scaling factor and R is a regularizer that ensures a smooth flow
field. For example:

R(u, v) =
∫
x,y
∇u(x, y) +

∫
x,y
∇v(x, y) (2.3)

Different choice of data term and regularizer lead to different ob-
jective functions with different optimization strategies [62][166].
I refer to [6] for further information on dense methods.

A final class of methods exists, that is increasingly popu-
lar, consists of learning based methods. If the actual motion
is of interest, brightness constancy can be violated for all non-
Lambertian surfaces, and a plethora of research is done in mak-
ing optical flow methods robust towards violations of this as-
sumption. Learning approaches [157], [64] aim to overcome this
issue by learning the actual motion model. While the specifics
of each learned model are different, they all have in common
that a large dataset of reference data consisting of image pairs
and reference motion fields is used as training data to a learning
algorithm. The trained model can then predict motions fields on
previously unseen image pairs. Apart from designing the learn-
ing system itself, the biggest challenge is to obtain the amount of
reference data required for training to succeed. Synthetic data
is one viable option for generating such large amounts of data
required [142], [16] Like any other dataset, it needs to be ensured
that the synthetic data covers all aspect of the application do-
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CHAPTER 2. BACKGROUND

main, where the flow method is to be utilized, e.g., specularities,
reflections.

2.2. Creating Virtual Scenes

This section describes the basic computer graphics techniques,
that can be used to create virtual scenes. Such virtual scenes
can, in turn, can be used by rendering systems to synthesize
images. The Modeling and Animation processes define the
shapes and temporal descriptions of a scene. The Texturing
process is concerned with providing inputs for the material mod-
els of the target rendering systems.

2.2.1. Modeling

Modeling is the computer graphics discipline, concerned with
creating descriptions of object shapes [33]. These descriptions
are also called geometric models or 3D-models. They can con-
sist of curved surfaces, voxels, or vertices that are connected
to polygonal meshes. Polygonal meshes are the most prevalent
geometry representation, as GPUs can efficiently process them.
They can be created in different ways.

Artistic modeling is the process of assembling primitives,
e.g., cubes or planes, to complex three-dimensional shapes. A
3D modeling software tool, such as Blender [11], is used in this
process (cf. Figure).

Procedural modeling can be used to create three-dimensional
shapes from a set of rules [28]. Typical rule sets use L-Systems
[127], generative modeling [80] and fractral noise. It is best
suited for structured or organic shapes, terrain, or buildings.

Scan based modeling Laser scanners, structured light scan-
ners or cameras in conjunction with structure from motion [162,
70] methods, can be used to scan the geometry of real-world ob-
jects. These methods produce point clouds, that can be trans-
formed into polygonal meshes [69, 140]. However, reconstructed
meshes often exhibit artifacts. Scanning noise can create disrup-
tive patterns on the surface. More importantly, concave objects
posses ambiguities, when local neighborhoods of points are esti-
mated. As a result, scanned meshes usually have to be cleaned
up after reconstruction.
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(a) Diffuse Color (b) Roughness (c) Normal Map

Figure 2.1.: Exemplary leather
input textures for the physically
based material model of Dis-
ney [15]. The diffuse color
or albedo (a) defines the view-
independent diffuse appearance of
the model in sRGB colors. The
roughness texture (b) defines the
distribution of the view-dependent
specular term, where black cor-
responds to mirror-like reflectivity
and white corresponds to a diffused
reflectivity. The normal map (c)
defines the mesoscopic surface ge-
ometry on the pixel scale. A light
blue (0.5, 0.5, 1.0) corresponds to
an upright surface normal, a red
color of (1.0, 0.5, 0.5) marks a nor-
mal pointing along the x-direction,
and a green color of (0.0, 1.0, 0.5)
marks a normal pointing along the
y-direction.

2.2.2. Texturing

Texturing is the process of creating inputs for material models,
that can be applied to geometric models via UV-mapping [33].
A UV-map defines the location of each vertex on the texture
set. The UV-map may be defined by hand or automatically
by projection. Typically, texture sets at least include a texture
for the diffuse term and one or more textures for the specular
term. An example texture subset for a leather sample and the
physically based material model of Disney [15] is depicted in
Figure2.1. It should be noted, that while a BRDF model does
only describe the microscopic properties of the surface, often a
normal map is included to model the mesoscopic geometric detail
on a pixel scale. This mesoscopic geometric detail increases the
perceived geometric detail of the otherwise coarse 3D geometry.

Artistic texturing is the process of manually painting the
texture inputs. To this end, texturing tools can be used to paint
the textures on the meshes directly. The process is error-prone,
as physically implausible texture sets can quickly violate physical
principles.

Procedural texturing is the process of sampling textures
from mathematical descriptions. This can include but is not lim-
ited to sampling fractal noise, cellular textures, and predefined
texture patterns [28]. Defining the mathematical description
is, in most cases, more time consuming than artistic texturing.
However, it is simple to create variations of texture sets, and
physically plausibility can be ensured more easily.

Scan based texturing is the process of creating textures
from measurements. Photometric stereo can estimate the sur-
face normals and diffuse Lambertian reflectance from images
taken under varying lighting conditions [90]. More sophisticated
approaches use multiple lighting as well as viewing directions
to estimate full sets of material textures. For a detailed assess-
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ment of accurate measurement techniques and devices, I refer to
section 2.4. Recently, methods have been proposed, that approx-
imate a full texture set from a small set of images by means of
deep learning [24, 2, 82]. It should be noted, that even though
they are capable of producing plausible texture sets, they can
severely diverge from accurate measurements for arbitrary view-
ing and lighting directions.

2.2.3. Animation

Animation is not a core issue of the work presented in this thesis.
I will, therefore, only briefly cover the concepts used throughout
my work. For more detail, I refer to [33].

Animation is the process of defining motion and temporal
descriptions of scene objects. The objects may include three-
dimensional shapes, cameras, lights, and textures. In most cases,
keyframing is used to define the object or texture state at dis-
crete timestamps. Intermediate timestamps are then interpo-
lated linearly or with splines. The keyframed states can be de-
fined via artistic animation or by capturing and tracking the
motion of real-world objects [164, 165] and cameras [72].

2.3. Rendering

Rendering is the process of synthesizing a discrete, digital raster
image for a virtual sensor placed in a virtual scene. The output
of the rendering process is also called render or rendered image.

Rendering has many applications. This includes visual effects,
video games, design and visualization, and simulations. Depend-
ing on the application, the rendering process has to meet dif-
ferent requirements. Naturally, for real-time applications, e.g.,
video games, the rendering speed is the decisive factor. The ren-
dering quality can only be increased to the extent that current
consumer GPUs are still able to ensure 30Hz or higher fram-
erates. To this end, real-time rendering systems use harsh ap-
proximations, such as rasterization and precomputed lighting.
Other rendering applications, e.g., design and visualization or
visual effects, have lower time constraints. Here, offline render-
ing systems that allow the accurate simulation of light-matter
interaction are most prevalent. These type of physically accurate
rendering systems are also useful for optical flow simulations to
ensure that no rendering bias affects the simulation quality.
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The rendering equation is the theoretical background of creat-
ing physically accurate renderings. It formulates the process of
rendering of a digital raster image as a light transport problem.
For a more detailed description, see section 2.3.1.

A rendering system computationally solves the light transport
problem. It consists of four major components that correspond
to components of the rendering equation. The three components
are:

1. The light transport algorithm which integrates the col-
lection of light paths.

2. The lighting model which models how light is emitted
from light sources.

3. The BSDF model which models how light interacts with
surfaces and volumes.

4. The camera model which models how light interacts with
the optical system and the sensor.

The quality of the light transport algorithm is determined
by the bias, or error, with which the light transport integral is
approximated. While there are no analytical solutions for the
integral, Monte-Carlo methods can sample the integral without
bias. Unbiased and biased light transport algorithms shall be
discussed in more detail in 2.3.2.

The quality of the lighting model is determined by the ac-
curacy with which radiation characteristic of real-world light
sources can be described. This can include using radiometric
light units, accurate directionality of light, e.g., from IES pro-
files, and accurate daylight systems, e.g., the Hosek et al. sun
and sky model [63]. While physically realistic lighting models
are certainly an interesting topic and linked to general simula-
tion quality, they fall out of the scope of this work and shall not
be discussed in more detail.

The quality of the BSDF model is determined by the ability
to describe physically plausible light-matter interactions. Ac-
cording to the geometric optics abstraction, BSDF models should
cover absorption, reflection, scattering, and transmission of light
within a surface or volume. However, BSDF models can also
support some wave effects of light, such as the polarization of
light through Fresnel reflection and iridescence [10]. This shall
be discussed in more detail in 2.3.3. For opaque materials, the
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BSDF can be trimmed by its transmission term and simplified
to the BRDF. Since reflectance modeling of opaque materials is
at the core of this work, BRDF models and their mathematical
background are discussed more thoroughly in section 2.4.

The quality of the camera model is determined by the ability
to match the optical imaging properties of real-world optics and
sensors. Real world cameras boast various aberrations which
are caused by optical systems and sensors. The optical aberra-
tions manifest themselves as image blur and image distortion.
The blur can be modeled by a spectral Point Spread Function
(PSF), describing how the spectral radiance of a virtual point
light source is spread over the virtual sensor plane. The optical
distortion can be modeled with a polynomial distortion model or
a distortion map. Both models describe how the exit direction
of camera rays diverge from a perfect pinhole camera. Sensor
aberrations include sensor noise and shutter artifacts, such as
motion blur and the rolling shutter effect. In contrast to sensor
noise, which can be efficiently applied in a postprocessing step,
shutter effects have to be handled during the rendering process
due to the dependency on spatiotemporal events. The applicable
camera models in computer graphics are the pinhole and thin-
lens model. Compound lenses are technically possible but, to my
knowledge, rarely used. Real-time rendering systems can only
render pinhole cameras inherently due to technical constraints of
rasterization. Camera specific effects can only be approximated
and applied in a post-processing step. On the contrary, physical
light transport simulation with a thin lens camera model allows
the simulation of some camera effects during the rendering pro-
cess. More precisely, depth-of-field and distortion caused by the
lens setup and aperture of the optical system and the shutter ef-
fects from the sensor. However, the wave related portion of the
PSF is missing, due to the lack of interference simulation in the
geometric optics light transport. Just like the lighting model,
computer graphic camera models are not directly linked to the
core topic of this work and not discussed in more detail.

In the past, rendering systems have often been developed with-
out separation of lighting and materials, due to computational
constraints, lack of knowledge, or to provide artistic freedom.
The drawbacks of such rendering systems are that textures and
lighting do not have physical meaning, have to be handcrafted to
match the rendering system, and cannot be transferred to other
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systems. While such empirical rendering system can create the
human perception of photorealism, it is not possible to create
physically realistic simulations for arbitrary lighting and scene
setups.

Physically based rendering (PBR) is a concept for building
rendering systems and aims to remove this deficiency [118]. It
combines physically accurate light transport algorithms, mate-
rial models, and lighting models with measurements and physical
rules that guide the creation of textures and lighting of virtual
scenes. Physically based rendering has been a recent trend for
offline rendering as well as real-time engines and is the basis
for my work on augmenting physically based wet surfaces. For
details about this concept, see section 2.3.4.

2.3.1. Light transport

Like any electromagnetic wave, light and its behavior are stud-
ied in the physical domain of electromagnetism. At its core,
light generation and interaction can be described by the Maxwell
Equations. More precisely, the Maxwell equations model the
interaction between electromagnetic waves as well as the inter-
action of electromagnetic waves with conductive and dielectric
materials. While it is possible to solve the Maxwell Equations
computationally, it is computationally expensive and only feasi-
ble for small scale problems.

The geometric optics approximation models light transport
as a propagation of rays [44]. It is accurate when the observed
structures are magnitudes larger than the wavelength of light.
Ray propagation is computationally manageable, even for large
and complex scenes. Therefore, the geometric optics approxi-
mation is the best practice for simulating light-matter interac-
tions in computer graphics. When needed, the geometric optics
approximation can even be extended to partially support some
wave optics properties, such as iridescence [10] and polariza-
tion [159].

Each pixel in a rendering depicts the appearance of volumes
and surfaces observed through the aperture angle of the sensor
pixel. In radiometric terms, this corresponds to the total amount
of irradiance, measured in W

m2 , that is incident per solid angle of
the sensor. This is equivalent to the average amount of radiance,
measured in W

m2sr , that all 3D points in space seen through the
pixel reflect or transmit towards it. The rendering equation [67]
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describes the radiance L(X,ωo) of a 3D point in space X, which
is reflected or transmitted towards an observing direction:

𝜃𝑖

𝜔𝑜𝑑𝜔𝑖

𝑓𝑠(𝑋, 𝜔𝑖 , 𝜔𝑜)

𝑛

Figure 2.2.: The Rendering Equa-
tion formulates rendering as a light
transport problem. Light is trans-
ported from light sources, past ma-
terials, and towards a viewer. The
incident irradiance on a surface
point X depends on the radiant
flux, the observed solid angle dωi

from X and the elevation angle Θi

of the light source. A material-
specific BSDF function models the
interaction of light with the surface
point. It relates the outgoing radi-
ance in viewing direction ωo to the
incident irradiance.

L(X,ωo) = Le(X,ωo)+
∫

Ω
fr(X,ωi, ωo)L(X,ωi) cos Θidωi (2.4)

where

• ωi, ωo are the incoming and outgoing light directions

• Ω is the unit hemisphere around the point X

• Le(X,ωo) is the emitted radiance towards ωo

• L(X,ωi) is the radiance received by the point X from ωi

• cos Θi is the factor of the visible surface area from ωi

• fs(X,ωo, ωi) is the bidirectional scattering distribution func-
tion (BSDF) that relates the outgoing radiance to the in-
cident irradiance. It describes what ratio of incoming light
is reflected or transmitted towards the observer ωo

In practice, the rendering equation usually models spectral
radiance by adding a dependency on the wavelength. For clarity,
this dependency has been omitted.

The rendering equation formulates the problem of rendering
a digital raster image as a light transport problem consisting of
many light paths. A visual example of such a light transport
path for an opaque material is depicted in 2.2. A light source
emits radiant flux into its environment. An opaque surface point
receives a certain amount of irradiance from the light source,
proportional to the solid angle and the visibility factor of the
surface. The solid angle depends on the size of the light source
and its distance. Less light is received from the surface when
it is not parallel to the light ray, and the unit projected-area is
decreased. The visibility factor models this phenomenon, and
depends on the unit projected-area of the light and thus the ele-
vation of the light source. The light is then absorbed, scattered,
and reflected by the surface material. The fraction of light re-
flected towards the viewer is determined by the material specific
BSDF and the solid angle of the viewer.

Light transport algorithms can be used to approximate or
sample the integral for a given scene. Several available algo-
rithms and their impact on the simulation accuracy are discussed
in the next section 2.3.2.
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2.3.2. Light Transport Algorithms

Light transport algorithms are the central algorithms for synthe-
sizing images with a rendering system. They are responsible for
simulating the received radiance for each pixel of a virtual cam-
era placed in a virtual scene. Thereby, they take into account
the composition of light sources, geometry, materials as well the
virtual camera properties. The rendering equation 2.4 formu-
lates the rendering process as a light transport problem. Its
light transport integral cannot be solved analytically since the
incident irradiance of each point in space depends on an infinite
amount of light paths. Therefore, light transport algorithms ei-
ther solve a simplified light transport problem or estimate the
light transport integral by sampling light paths.

Rasterization (with programmable shading) projects the ver-
tices of the scene geometry into the raster of a virtual pinhole
camera. The depth of the vertices is used to perform a visibil-
ity check on the geometry. The pixels of the image are then
shaded based on the light sources of the scene and the positions,
material textures, and shading normals of the underlying pro-
jected vertices. Vertices do not possess information about other
vertices in the scene. Therefore, global light transport, such as
reflections or indirect light, cannot be computed. Rasterization
with programmable shading essentially solves a simplified light
transport problem, that only considers direct diffuse light paths.
It can be efficiently implemented and parallelized on GPUs and
is, therefore, the standard real-time light transport algorithm.
For the sake of completeness, it should be noted that modern
real-time rendering systems posses advanced shading techniques
to approximate global light paths in screen-space. However,
more than a single bounce of light cannot be approximated with
screen-space techniques.

Ray Tracing is a simulation tool to compute the path for waves
and particles. Typical applications in other research fields are
geometric optics simulations, such as optical design or, radio sig-
nal simulations and acoustical simulations. Ray tracing can also
be used to render images. Rays are shot through pixels of the
virtual camera and then propagated, or traced, through the vir-
tual scene. When rays hit a surface of an object, a shading event
is triggered: The BSDF of the surface is evaluated, and new rays
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are spawned towards light sources or into the scene. Fundamen-
tally, ray tracing is a method to sample light paths of the light
transport integral in reverse. The backward traversal is valid,
due to the Helmholtz Reciprocity of light propagation. When
trying to estimate the full light transport problem accurately, ray
tracing can quickly become computationally expensive. Theo-
retically, an unlimited amount of light rays would have to be
spawned at every surface interaction, each being traced with
an unlimited tracing depth. In practice, this problem is solved
by limiting the tracing depth, the amount of spawned rays per
surface interaction, and the possible light paths. Ray tracing
approaches that can sample all light paths of the light transport
problem use Monte-Carlo sampling.

Monte-Carlo Ray Tracing Monte-Carlo sampling can be ap-
plied to ray tracing to limit the number of active light paths
when estimating the full light transport problem. The basic
Monte-Carlo method for sampling light paths is path trac-
ing [67]. It utilizes Monte-Carlo sampling for two stages of
light-matter interactions:

1. Sampling the BSDF: A random BSDF event is chosen at
every interaction. The choices include absorption, reflec-
tion, transmission, and scattering. An absorption even ter-
minates the light path. The reflection, transmission, and
scattering events spawn new rays along with their corre-
sponding directions.

2. Sampling the ray direction: A random ray direction is sam-
pled along the hemisphere of the surface or sphere of the
volume. Importance sampling can be used to ensure that
the ray directions are sampled according to the distribu-
tions of the BSDF components.

Path tracing is theoretically capable of simulation all light
paths. It can, therefore, estimate the full light transport prob-
lem. However, the probability of sampling light paths with a
significant contribution to the light transport integral can be
low. This creates noisy renderings for complex scenes with small
light sources or highly specular materials. Several methods can
be used to combat rendering noise. They include next event
estimation [135], bidirectional path tracing [149], photon map-
ping [66], metropolis light transport [148] and path guiding [102,
151].
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Render Bias The render bias is the systematic error of the
estimated solution of the light transport problem. A light trans-
port algorithm is unbiased if for any sample count the estimated
solution of the light transport problem is without render bias.
In other words, when averaging an infinite amount of estimated
renderings of the same virtual scene, an unbiased light transport
algorithm produces the correct result. Biased light transport al-
gorithms are consistent when the render bias converges against
zero in the limit of the rendering process. In other words, when
rendering an image of a virtual scene for an infinite duration, a
consistent light transport algorithm produces the correct result.
Unbiased light transport algorithms are always physically accu-
rate on a geometric optics level. Consistent algorithms can be
physically accurate, but require an error measure to ensure that
the bias is sufficiently low.

Even though rasterization with programmable shading does
not technically sample the light transport integral, it can be
considered biased, as the rejection of light paths introduces a
systematic error in the renderings. It should be noted, that
recent advances in GPU design allow ray tracing specific light
paths during the rendering [50]. This reduces the bias of the
rendering process, but cannot reduce it to zero.

In practice, ray tracing introduces render bias by limiting
the length of light paths, the amount of spawned rays per light-
matter interaction, and by light path rejection. It is also incon-
sistent, as infinite sampling cannot guarantee that all light paths
are covered.

Path tracing and most of its variants are unbiased methods
since all light paths can be sampled. Photon mapping intro-
duces bias by gathering photons in a finite radius. However, it
can be made consistent by extending it to stochastic progres-
sive photon mapping [48], which can ultimately be combined
with bidirectional path tracing [40] [73]. The remaining render
bias can then be assessed by the gathering radius of the final
sampling.

2.3.3. Light Matter Interaction

Light, that is not propagated in a vacuum, interacts with its sur-
rounding matter. Light can propagate within dielectric materials
at the speed of light, that is inverse proportional to the index
of refraction (IOR) of the dielectric material. When encounter-
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ing particles of the dielectric material, light either gets absorbed
or scattered by the particle. Conductive materials are usually
dense enough, so that light cannot travel considerable distances
within the material. The energy of the light is absorbed and
reemitted by the particles in a material specific spectrum.

When light hits an interface between two different media, two
things can happen:

1. The light is reflected along the perfect mirror direction
into the backward half space. Light reflection, on a geo-
metric optics level, occurs for every physical material. The
portion of reflected light depends on the IOR difference of
the material interface and the incident angle of the light.
It increases towards grazing angles and can be computed
with the Fresnel Equations. Dielectrics usually reflect only
a small portion of the light at normal incidence. The re-
maining portion is refracted inside the material. Metals
reflect most of the light at normal incidence and absorb
the remaining portion.

2. The light gets refracted into the forward half space and
the direction is changed, due to a modulated speed of light.
Snell’s law describes this behavior. Refraction only hap-
pens for dielectric materials.

Incident
Light Specular

Reflection

Diffuse 
Scatter

Specular
Transmission

Scattered
Transmission

Figure 2.3.: The BSDF is a scat-
tering function that can be used
to describe light matter interac-
tion on a geometric optics level.
It consists of a scattering reflec-
tion term (BRDF) and a scattering
transmission term (BTDF). The
BRDF models reflection paths (yel-
low) and scattering paths into the
backward half space (purple). The
BTDF models refracted transmis-
sion paths (orange) and scattering
paths into the forward half space
(green).

All light-matter interaction is modeled by the Bidirectional
Scattering Distribution Function (BSDF). It is a material-specific
function, that describes light reflection, absorption, and scatter-
ing properties on a geometric optics level, see figure 2.3. It cov-
ers translucent dielectric materials, such as water, mostly opaque
materials, such as wood or stone, and conductive materials, such
as metals. The BSDF can be split into two components. The
Bidirectional Reflectance Distribution Function (BRDF) and
the Bidirectional Transmittance Distribution function (BTDF).
The BRDF models reflections and diffuse scattering towards the
backward half space. The BTDF models refraction and scatter-
ing towards the forward half space. While the BTDF can tech-
nically also account for absorption, the light attenuation of this
phenomenon is typically covered by an absorption coefficient.

The BRDF is the central model of opaque material reflectance.
It shall therefore be discussed further in section 2.4, including
mathematical background.
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2.3.4. Physically Based Rendering

The output medium of computer graphics is usually a screen,
which cannot display the full dynamic range of the real world,
and later consumed by a human observer. Therefore, traditional
rendering concepts focus on perceptional realism towards the hu-
man observer on a low dynamic range screen and not physical
realism of the virtual camera output. By coupling the render-
ing to human perception, non-physical light units, low dynamic
range imaging, as well as empirical lighting and material models,
are often used. As a result, material textures in traditional ren-
dering concepts often include lighting information and disobey
physical laws.

Rendering research has mostly focused on the light transport
problem itself [67] as well as the material models [20]. Monte-
Carlo methods can be used to get an unbiased solution of the
light transport problem (cf. Section 2.3.2). Physically accurate
microfacet BSDF models can be used for light matter interaction
(cf. Section 2.3.3 and 2.4). However, a physically realistic
image can only be simulated when the scene description itself is
physically plausible. This includes material models and textures,
light sources, and cameras.

Physically based rendering (PBR) is a concept that was intro-
duced in 2004 by Matt Pharr, Greg Humphreys, and Pat Han-
rahan and implemented in their scientific renderer PBRT [118].
They propose to strictly separate lighting and material models,
to only use models that follow physical rules, and to correlate
the model parameters with measurements and high fidelity sim-
ulations. More precisely, this includes using radiometric light
units and high dynamic range imaging, spectral color represen-
tations, Monte-Carlo light transport algorithms, and material
models that follow energy conservation, Helmholtz reciprocity,
and the Fresnel law. By decoupling the rendering from human
perception, the accuracy of the renderings is increased for arbi-
trary lighting, material, and scene compositions. Scene creation
is also simplified, by reducing the degree of freedom of the mod-
els and textures through referenced parameters.

The concept was initially implemented 2004 with the PBRT
scientific renderer [118], and the Mitsuba Render [65], which I
used for my work in Chapter 4 and Chapter 5. Offline production
rendering systems have also adopted PBR concepts, e.g., for
visual effects or design and visualization, and more recently by
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real-time rendering systems alike.
A principled PBR shading model was introduced by Burley

et al. in 2012 [15]. They propose an artist-friendly BSDF model
that is based on microfacet theory 2.4. It can be used in conjunc-
tion with high dynamic range imaging, physically correct light
transport algorithms, and PBR lighting to create high-quality
renderings. Due to its simplicity and physically accurate result,
this model has elicited a recent trend of the computer graphics
industry to move towards PBR rendering approaches. Starting
in 2013 [97], the progress in this area has been well documented
in the popular workshop series Physically Based Shading in The-
ory and Practice at the computer graphics conference Siggraph.

Nowadays, almost all offline rendering tools, e.g., Blender
[11], and real-time engines, e.g., the Unreal [68] and Frostbite
Engines [77], feature some aspects of PBR.

Due to the emergence of physically based rendering systems,
state-of-the-art texturing tools and texture assets have lately
been designed for physically based material workflows, e.g., us-
ing Substance Designer1 or Quixel Studio 2.

2.4. Opaque Material Reflectance

Opaque materials are mostly impenetrable to electromagnetic
waves. Conductive materials, such as metals, are always impen-
etrable to electromagnetic waves and, therefore, always opaque.
For dielectric materials, the penetration depth of electromag-
netic waves depends on material properties and the wavelength,
i.e., a material that appears to be opaque to light waves can be
translucent to larger wavelengths.

There is no clear definition or threshold of the attenuation
coefficient for when a material can be considered mostly im-
penetrable. However, for the context of optical simulations in
computer graphics, I define opaque materials as all materials,
whose average light wave penetration depth is smaller than the
spatial resolution of the material models. Materials which get
penetrated by light waves further than the spatial resolution,
but are not yet translucent, I define as opaque materials with a
significant amount of subsurface scattering.

The BSDF models the reflection, scattering, and transmission
properties of arbitrary materials, c.f ., Section 2.3.1. It consists

1www.substance3d.com
2www.quixel.com
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of a Bidirectional Reflectance Distribution Function(BRDF)
a Bidirectional Transmittance Distribution Function(BTDF).
Opaque materials can be modeled with a BRDF only. Opaque
materials with subsurface scattering can be modeled with a mod-
ified BRDF (c.f ., Figures 2.4 and 2.5), the Bidirectional Subsur-
face Scattering Reflectance Distribution Function (BSSRDF)
(c.f ., Figure 2.6). In the following section, I detail the func-
tions and their physical properties.

BRDF (Dielectric)

Figure 2.4.: Light, that is not re-
flected at the top layer of the sur-
face, can penetrate opaque dielec-
tric materials. Once inside the ma-
terial, the light is scattered back
outside the surface or absorbed.
The BRDF models the reflection
and scattering of light. It is a ma-
terial specific reflectance function,
that depends on the incident direc-
tion of the light, the viewing direc-
tion, and the wavelength of light.

BRDF (Conductor)

Figure 2.5.: Light cannot penetrate
metallic surfaces. A large portion
is reflected at the top layer. The
rest is directly absorbed. As for
opaque dielectric materials, the re-
flectance properties of metals are
modeled with the BRDF.

BSSRDF

Figure 2.6.: Some mostly opaque
dielectric materials possess notable
subsurface scattering. Light can
penetrate the material deeply, get-
ting scattered far away from the
entry point. This phenomenon
can be modeled with the BSSRDF,
where the reflectance of the surface
depends on the incident and view-
ing directions as well as the corre-
sponding surface positions.

2.4.1. BRDF

The BRDF is a material specific function and at the very core of
modeling optical properties of opaque surfaces, along with the
surface normal. It was introduced by Fred Nicodemus in [112]
and describes how a surface reflects and scatters incident light,
by means of a reflectance distribution:

fr(ωi, ωo) = dLo(ωo)
dEi(ωi)

= dLo(ωo)
Li(ωi)cos(Θi)dωi

(2.5)

where Lo(ωo) is the radiance reflected towards the outgoing
direction ωo as in equation 2.4 and Ei(ωi) the incident irradiance
along the incoming direction ωi.

Some principles have to be ensured to make BRDFs physi-
cally plausible. Followingly, the mathematical requirements of
the principles shall be listed, and their implications for light
transport simulations shall be assessed. The BRDF is required
to be positive:

fr(ωi, ωo) ≥ 0 (2.6)

This implies that an opaque surface cannot reflect or scatter
negative radiance.

In addition, a BRDF has to follow the principle of Helmholtz
reciprocity:

fr(ωi, ωo) = fr(ωo, ωi) (2.7)

It means that the light path can be reversed without changing
the flux of light. It is a central requirement for physical light
transport simulation, as most light transport algorithms trace
light in reverse for optimal performance. However, this principle
is often violated by rendering systems, that bake precomputed
lighting information into material textures.
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Furthermore, a BRDF is required to be energy conserving:

∫
Ω
fr(ωi, ωo)(ωin)dωo ≤ 1 (2.8)

which means that no additional radiance is created when light
is reflected or scattered. It should be noted, that the BRDF
accounts for light absorption. Hence,

∫
Ω fr < 1 is physically

plausible. Energy conservation is a principle that is violated by
some BRDF models, such as the empirical Phong model [119].

SVBRDF In practice the 7-dimensional spatially varying spec-
tral BRDF (SVBRDF) forms the basis for most material models
in computer graphics:

fr(ωi, ωo, x, γ) = dLo(ωo, x, γ)
dEi(ωi, x, γ) (2.9)

where the reflectance distribution of the material depends on
the surface position x and the wavelength γ. For clarity, I refrain
from using the terms SVBRDF or spectral SVBRDF whenever
possible, as most computer graphics research use the term BRDF
as a synonym for the spectral SVBRDF. Unless stated otherwise,
the term BRDF will henceforth always refer to the 7-dimensional
spectral SVBRDF.

BSSRDF Some dielectric materials are subject to subsurface
scattering, where incident light is penetrating the surface more
deeply and scattered away from the entry point of the light. Or-
ganic materials, e.g., skin and vegetation, often exhibit notable
subsurface scattering. The 9-dimensional BSSRDF was intro-
duced in [138] and models this behavior:

fr(ωi, xi, ωo, xo, γ) = dLo(ωo, xo, γ)
dEi(ωi, xi, γ) (2.10)

where radiance that is reflected towards ωo at the point xo is
related to the incident irradiance from ωi at the point xi.

Explicit functions for BRDFs and its higher dimensional vari-
ants do not exist. BRDFs can either be sampled with measure-
ment setups, e.g., gonio-reflectometers [34] and BTF-Domes [131],
or they can be approximated with analytical functions. Both
methods will be highlighted in more detail in sections 2.4.2 and
2.4.4.
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2.4.2. Analytical BRDF Models

Typically, analytical BRDF models are used by rendering sys-
tems to model the optical material properties. In contrast to
sampled measurements, analytical BRDF models require signif-
icantly less data storage, can be used for real-time GPU render-
ing and produce significantly less noise with Monte-Carlo light
transport algorithms due to importance sampling.

Analytical BRDF models can be split into two categories:
One, classical empirical models. Second, microfacet models that
are physically accurate on a geometric optics level.

Before I describe the models, I list the mathematical quanti-
ties, that are used throughout this section:

• kd: The diffuse reflectivity

• ks: The specular reflectivity

• ωi: The normalized light direction

• ωo: The normalized view direction

• h = ωi+ωo
||ωi+ωo|| : The half vector or normalized bisector of

view and light direction

• m: The normal of the microfacet

• n: The macroscopic surface normal

Empirical BRDF model

The Blinn-Phong model was introduced by Jim Blinn in [13]
as a computationally efficient improvement of the original Phong
model [119]. It models specular reflection as a cosine lobe and
diffuse scattering as a constant lambertian term:

fp(ωi, ωo) = kd
1
π

+ ks
n+ 2

2π cosp Θh (2.11)

where p ∈ [0,∞] is the specular phong exponent and Θh the
angle between the half vector h and the surface normal n. The
model is not physically plausible as it disobeys energy conserva-
tion 2.8 at grazing angles, i.e., light reflected below the surface is
lost. The specular term can only model isotropic reflectance and
does not increase reflectivity towards grazing angles according
to the Fresnel equations. Additionally, the specular exponent is
a somewhat arbitrary quantity and lacks physical meaning. The
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Blinn-Phong model has been a popular choice in the past, due
to its low computational complexity and reasonable quality for
real-time applications.

The anisotropic Ward model was introduced in [153]. It
models specular reflection as an anisotropic Gaussian lobe and
diffuse scattering as a constant Lambertian term. The original
model was later improved with energy conservation at grazing
angles by Geisler et al. [39]. This improved model was used
throughout the thesis and reads:

fw(ωi, ωo) = kd
1
π

+ ks
1

παxαy

exp(− tan2 δ( cos2 Φ
α2

x
+ sin2 Φ

α2
y

)
4(ωi · h)2(n · h)4

(2.12)
where δ,Φ are the elevation and azimuth angle of the half

vector and αx, αy ∈ [0, 1] the roughness parameters in tangent
and bitangent direction of the half vector. The main bene-
fits opposed to the Blinn-Phong model are energy conservation
and anisotropic specular reflectivity, i.e., the reflectivity changes
with the azimuth angle of the half vector. The roughness param-
eters are inspired by physical based roughness according to the
microfacet theory (c.f ., the next Section 2.4.2). However, they
lack a direct physical correlation due to the empirical nature of
the model. The model does not handle fresnel reflectivity that
increases towards grazing angles.

The Ward model is a computationally inexpensive anisotropic
model. However, Fresnel reflectivity is deemed more relevant
than anisotropy in most computer graphics applications. Hence,
the Ward model has been mostly discarded in favor of physically
based microfacet models. When required, anisotropic microfacet
models can be used to cover all specular effects, but are com-
putationally expensive. Subsequently, I assess the microfacet
theory and its corresponding models in more detail.

Microfacet Theory and Models

Microfacet models are a class of analytical BRDF and BSDF
models that are based on microfacet theory. The theory is accu-
rate on a geometric optics scale. It models the reflection, scatter-
ing, and transmission behavior of materials with a distribution
of microfacets, that are larger than the wavelength of light but
not yet visible to the human eye. Microfacet theory is the core
theory for material models of physically based rendering [118],
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see section2.3.4.
The original microfacet BRDF model is the Cook-Torrance

model. The basic model, alongside principles of microfacet the-
ory, was introduced in [20]. Different modifications of the model
have since been proposed. They are mostly focusing on the dis-
tribution functions of the microfacet. A generalization of the
theory to BSDF models for arbitrary materials and an assess-
ment of different distribution functions was published by Wal-
ter et al. [152]. In the following, I describe the basic Cook-
Torrance BRDF model and its components. Then I outline dif-
ferent choices for each component of the model.

According to microfacet theory, a macro surface BRDF can
be modeled as a collection of microfacets. Each microfacet re-
flects and refracts light into the perfect mirror and refraction
directions, following the Fresnel equations. The Cook-Torrance
BRDF models the reflection and scattering properties of the
macro surface by means of statistical distributions. It is a com-
pound BRDF, consisting of three terms, that each model differ-
ent physical behavior:

fm(ωi, ωo, α) = kd
1
π

+ ks
F (ωi, h)D(h, α)G(ωi, ωo, h, α)

4|ωi · n||ωo · n|
(2.13)

where

• α ∈ [0, 1]: Is the roughness of the material. It models the
variations of the microsurface. α = 1 corresponds to a ran-
dom orientation of microfacets and thus to a very rough
microsurface. α = 0 corresponds to perfectly smooth mi-
croscopic surface.

• F (ωi, h): Is the fresnel factor for incident light from ωi and
the half vector h.

• D(h, α): Is the microfacet distribution function that mod-
els the probability that microfacets are aligned along the
half vector h

• G(ωi, ωo, h, α): Is the shadowing-masking function that
models the probability that a microfacet along the half
vector h is visible in both directions of the light.

The choice of the distribution functions may vary, depending
on the desired properties of the resulting BRDF model. How-
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Figure 2.7.: The detailed micro-
surface m is replaced by a macro-
surface n and a microfacet distri-
bution function, which models the
probability for light to be reflected
towards the halfvector h.

ever, they have to follow certain principles to be physically ac-
curate. I detail the properties of the distributions and the un-
derlying principles in the following paragraphs.

Microfacet Distribution Function The statistical distribution
of micro surface normals m is described by the microfacet normal
distribution function D(m), a density function with the unit 1

sr .
A plausible distribution of microsurfaces has to obey certain
principles [152]:

• The density function is positive: 0 ≤ D(m) ≤ ∞

• The micro surface area is not smaller than the macro sur-
face area: 1 ≤

∫
D(m)dωmD

• The visible area of the micro surface is equal to the visible
area of the macro surface: ωo · n =

∫
D(m)(v ·m)dωm

D(h, α) models the probability that the normals of the mi-
cro surface, that belong to of macro-surface with a roughness α,
point towards the half vector h, see Figure 2.7. The distribution
function for the macro surface BRDF D(h, α) can be derived by
integrating the projected micro surfaces towards the view direc-
tion ωo. This derivation can only be formulated in conjunction
with the corresponding shadowing-masking term G(ωi, ωo, h, α).
For extensive mathematical coverage, I refer to Walter et al. [152]

Shadowing-Masking Function The Shadowing-Masking func-
tion G(ωi, ωo,m) models the fraction of the micro surface with
the micro normal m, that is visible by both the light source ωi
and the viewer ωo (See Figure 2.8). Some properties are required
to make it physically plausible [152]:

• The visible area cannot be negative or larger than the total
area: 0 ≤ G(ωi, ωo,m) ≤ 1
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𝑛
MaskingShadowing

Macrosurface

Microsurface

Figure 2.8.: The Shadowing-
Masking function describes the ra-
tio of the surface area that is vis-
ible in both the incident direc-
tion (yellow) and outgoing direc-
tion (green). In this example, a
portion of the light is blocked in
either direction and the shadow-
masking terms are smaller than
one.

• It is Helmholtz reciprog: G(ωi, ωo,m) = G(ωo, ωi,m)

• The backside of the microsurface is never visible from any
direction:
G(ωi, ωo,m) = 0 for (ωi·n)(ωi·m) = 0, or (ωo·n)(ωo·m) = 0

Shadowing-masking is mostly relevant for very rough surfaces
and near grazing angles and needed for energy conservation.
The exact formulation is rarely possible, but shadowing-masking
of a macro surface can be approximated in conjunction with
the selected microfacet distribution D(h, α). For a mathemati-
cal derivation and a detailed assessment of existing shadowing-
masking functions, I refer to [152].

Choosing Microfacet Model Terms The Fresnel Equations
formulate the exact solution of the Fresnel term based on a
complex index of refraction. The Schlick Approximation [129]
was developed to approximate the Fresnel term for dielectric ma-
terials efficiently. It omits the polarization of light, and therefore
a real-valued index of refraction is used. Metals can be approx-
imated with substantial errors, by substituting the index of re-
fraction with the specular color at normal incidence. The Schlick
Approximation is almost exclusively used in modern computer
graphics. The exact, computationally expensive fresnel term is
mostly applied in scientific rendering systems [118].

The chosen microfacet distribution function of the origi-
nal paper by Cook and Torrance [20] is the Beckmann distribu-
tion [9]. It assumes a Gaussian distribution of the microsurface
normals and is a popular choice in optics. A popular choice in
computer graphics is the Phong-microfacet distribution [13], due
to its computational efficiency. The Phong distribution can be
modified to cover anisotropic microfacet distribution [5]. More
recently, the GGX distribution has been established [152]. It
was shown to best match measured data, due to its long tail.
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The shadowing-masking function has to be derived for
the selected microfacet distribution as a closed form solution.
The v-cavity surface model was suggested in the original pa-
per to guarantee energy conservation for an arbitrary micro-
facet distribution [20]. However, it contains discontinuities in
the first derivative and should therefore not be used [152]. The
Smith shadowing-masking approximation [137] was derived for
Gaussian surfaces and is used almost exclusively in today’s com-
puter graphics. However, Smith integrals do not have a closed-
form solution for the Phong distribution. Therefore, a new
shadowing-masking function for the Phong distribution was in-
troduced along with the Ashikhmin and Shirley model [5].

2.4.3. Bidirectional Texture Function

When approximating an object with a coarse geometry, the out-
going radiance for any illumination direction can be modeled
as an 8D reflectance field [23]. Subsequently, I refer to the 9D
spectral reflectance field for the sake of consistency. For light
sources and observers outside of the object, novel view and light
directions can then be reconstructed from existing samples, e.g.,
from measurements, as a linear combination. When using the
actual object geometry, it is equivalent to the 9D BSSRDF, yet
significantly easier to sample and reconstruct.

Under the assumption of a distant light source, the reflectance
field can be reduced in dimensionality to the 7D Bidirectional
Texture Function(BTF) [22]. This assumption is, in most cases,
reasonable as mesoscopic geometric details on the pixel scale
are typically magnitudes smaller than the distance to the light
source. In contrast to the SVBRDF of the same dimensionality,
the BTF accounts for non-local light transport, i.e., subsurface
scattering and specular interreflections, and can be considered to
be equivalent to the BSSRDF in terms of captured reflectance.
However, as it models these non-local scattering events, the func-
tion no longer obeys physical principles, e.g., Helmholtz reci-
procity 2.7, and is therefore nearly impossible to synthesize in
plausible ways.

Typically, the BTF is used to sample the reflectance field of
objects in discrete steps, which are acquired from measurements,
c.f ., Section 2.4.4. As proposed by Dana et al. [22], it can be
stored in a set of textures that vary by discretized light and
camera directions ωi, ωo:
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BTF (x, y, ωi, ωo) = {T (x, y)ωi,ωo} (2.14)

where T is a texture with the texture coordinates x, y ∈ I ′ ⊂
N2 which are resampled from the set of the originally captured
images I, and ωi, ωo ∈ M ′ with M ′ are the light and camera
directions that are resampled from the set of original camera
and light directions M .

Resampling of the original captured image data I is typically
performed to consolidate each captured image into a single re-
projected and discretized texture space [106]. Resampling of the
original camera and light directions in M is performed because
of two reasons: First, the BTF texture dimension can differ from
the physical set of cameras and light sources [131]. Second, the
corresponding camera and light directions are different for each
point on the material sample [106].

An alternative notation of the BTF is that of a set of spatially
varying apparent BRDF (ABRDF), which was introduced by
Wong et al. [160]:

BTF (x, y, ωi, ωo) = {A(ωi, ωo)x,y} (2.15)

where A is the ABRDF that varies for the texture points x, y
and depends on the light and camera directions ωi, ωo. Typi-
cally, it contains the factor ωi · n with n the coarsely scanned
surface normal, as the measured reflectance data depends on the
incident irradiance, which is attenuated by the angle of the light.
The ABRDF for a surface point x, y can be normalized with the
incident irradiance on its captured surface normal n:

Â(ωi, ωo)x,y = A(ωi, ωo)x,y
ωi · n

(2.16)

in this format, the ABRDF is equivalent to a discretized sam-
pling of the continuous BRDF with the additional inclusion of
non-local scattering effects.

2.4.4. Capturing opaque material reflectance

While there are a lot of analytical reflectance models available,
only a few publications are concerned with measurements of re-
flectance parameters for opaque surfaces. Measuring and storing
highly dimensional reflectance data is a complex task. Usually,
some compromises in terms of spatial, spectral, or angular ac-
curacy have to be made to facilitate a feasible acquisition pro-
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cess and data storage. Standard approaches that can measure
BRDF and in some cases SVBRDF include setups with moveable
sensors and light sources and in some cases mirrors to increase
the number of measurement samples taken at a time. Nowa-
days, some setups even allow capturing approximations of the
reflectance fields, which are an equivalent to a full 9D BSSRDF.

BRDF and SVBRDF Acquisition

The first measurement setups for SVBRDF and BRDF data were
gonio-reflectometers, such as the one described in [34]. They
consist of a movable light source, a detector, and usually a pla-
nar material sample. The detector is in most cases a spectro-
radiometer, allowing a very dense sampling of the light spectrum.
The drawback of such setups is, that even though the spectral
resolution is high, it is not a feasible approach for the capturing
reflectance data with high spatial or angular resolutions since
only one sample is acquired at a time.

This process was sped up significantly by the introduction of
the imaging gonio-reflectometer setup of Ward[153]. Here the
spectro-radiometer is replaced by a CCD camera with a fish-
eye lens and a hemispherical mirror. This allows multiple mea-
surements at a time and thus an increased angular and spatial
accuracy as well as anisotropic reflectance within a reasonable
timeframe. The drawback of having an RGB-binned spectrum
does not weight too high, as most computer graphics applica-
tions apply RGB-binning aswell.

Another approach was introduced by by [89] and later refined
by [93]. Here, instead of using a mirror, a spherical material
sample is used that allows the acquisition of dense BRDF sam-
ples. A fixed camera is used with a moveable light source. Mea-
surement noise is filtered by having multiple measurements for
identical light-normal-view setups. Thus, the system is very fast
and not very error prone. The approach by Matusik [93] later
increased the sampling density of the BRDF(4M samples per
material). However, it is limited to acquiring isotropic BRDF
data without spatial variations. The acquired reflectance data
was published in the MERL BRDF database, which is commonly
used in computer graphics.
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Reflectance Field Acquisition

When neglecting phosphorescence and fluorescence, the scatter-
ing of light on a surface can be described by the 9-dimensional
BSSRDF[138]. If instead of the actual surface an approxima-
tion, e.g., a coarser polygon model, is used, the reflectance field
[23] describes precisely the same appearance and can be used as
a substitute.

Acquiring full reflectance fields is time-consuming and expen-
sive. Storing the data takes up a lot of disk space. Consequently,
to the best of our knowledge, only fractions of the function’s 9D
parameter space have been sampled extensively or simplifying
models have been employed to reduce the dimensionality. The
spectral accuracy, the spatial accuracy, and the angular accuracy
all have to be taken into consideration.

One especially powerful simplification that, in practice, yields
high-quality results is the Bidirectional Texture Function (BTF).
In contrast to the full reflectance field, the BTF makes the sim-
plifying assumption that the incoming illumination comes from
distant light sources. This eliminates the dependency on the
position the light enters the surface. Hence, the dimensional-
ity is reduced to 7D, allowing an efficient and sufficiently dense
sampling. Although the far-field illumination assumption is in
reality not exactly fulfilled, the distances to light sources are
usually several orders of magnitude larger than the tiny struc-
tures that make up the appearance of the surface. At least for
small, localized patches on the surface, distant illumination is,
therefore, a valid approximation. Hence, the BTF performs very
well for the reproduction of materials that are opaque or do ex-
hibit localized sub-surface scattering [105]. For these cases, the
relaxation to far-field illumination is a much lower restriction
than the model assumptions that are found in the also prevalent
7D SVBRDF representation.

Nowadays, mostly camera array-based approaches are used
to measure BTFs. One powerful measurement setup with 151
light sources and cameras and a structured light scanner is the
DOME II setup of the University of Bonn [131]. It combines
the acquisition of BTF data, which is stored in an assembly
of RGB textures, with the acquisition of the surface geometry,
which is stored in a mesh. Other setups for measuring BTFs
without geometry are gonio-reflectometers such as the setup of
the original BTF paper [22] and mirror based setups [53].
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2.5. Wet Surfaces

In this section, I outline the theoretical backgrounds of the re-
flectance properties of wet surfaces. I identify two physical phe-
nomena that cause a change in the appearance of wet surfaces:
First, water saturation of pores within the material. Second, a
water layer on top of the material surface. In the next part of
this section, I detail a physically based wet surface model that
can be applied to an image-based augmentation setup, e.g., the
work in Chapter 6.

2.5.1. Observation and theory

When comparing wet and dry surfaces, the primary visual dif-
ferences that one can retain is that wet surfaces look darker and
more reflective.

The extent of both phenomena differs by material type. It is
very apparent for: i) Powdered materials, e.g., sand and soil. ii)
Porous compound materials, e.g., concrete, asphalt, stone, and
wood. iii) Absorbent materials, e.g., fabrics and paper. By con-
trast, there are only very subtle appearance changes for smooth
surfaces, e.g., glass, metal, and smooth coated materials. In
general, rough surfaces seem to be more heavily affected than
smooth surfaces. According to extensive studies about the wet-
ting process and its effect on optical material properties [145,
111], this is explained by two physical causes: First, most rough
materials have small pores and air gaps within the material.
Once the pores fill up with water, the optical material proper-
ties change. Second, a thin layer of water accumulates on the
material surface, causing additional changes in the optical prop-
erties.

When the water cannot be drained or seep through the ground
surface, e.g., because it is already saturated, the initially thin
layer of water, which sticks to the ground surface, starts to ac-
cumulate and flow to height minima of the ground surface.

Dielectric porous materials are profoundly affected by the wa-
ter saturation of pores and the layer of water alike. Smooth
dielectric, with less and smaller pores, and metal are mostly
only affected by the layer of water. In the following, I detail op-
tical effects from a water saturation of pores and a layer of water
concerning the formation and the influence on optical material
properties.
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Water Saturation of Porous Dielectrics

The findings of this section mostly refer to the work presented in
[145, 111]. In other cases, I refer to the corresponding papers.

However, first, I clarify what porous materials are to un-
derstand its interaction with water better. Surface roughness
refers to micro-geometric features on a scale that is larger than
the wavelength of light, yet not directly visible by the human
eye. 2.4.2. Those micro-geometric features directly influence
light-matter interaction, thus changing how light is refracted
and reflected. Almost all natural and human-made materials
are rough to some extent. Porosity is often involved in natu-
ral materials, e.g., sand, stone, clay, and almost always involved
in industrially produced materials, that are based on powders,
e.g., asphalt, concrete. It is different from roughness in the way
that it refers to holes, pores, and air cracks that exist within the
material.

When interacting with dielectric materials, light is either re-
flected or refracted into the material surface. Within the mate-
rial, a portion of the light is absorbed, and the remaining portion
is either transmitted or scattered. The light that is scattered
back to the surface is what the observer perceives as Lamber-
tian reflectance. Within porous materials, air-material interfaces
exist at each of the pores. At these pore-interfaces, light is re-
fracted and reflected according to Snell’s law.

The pore-interfaces change when the air, with a refractive in-
dex (IOR) of 1.0, is replaced by water, with an IOR of 1.33. Due
to a decrease in the difference of IORs, less light is reflected at
the pores, and the light is refracted to a lesser extent. The travel
of light is more forward and, thus, it needs to travel longer before
it can make its way back to the surface. Due to the longer light
paths within the materials, the likelihood that the light is ab-
sorbed increases and the diffusely scattered appearance becomes
darker.

The water saturation of the pores causes an additional re-
flectance effect. The reflectivity of the material is increased even
when no water is covering the surface. This can be explained.
When the pores fill with water, a large portion of the reflected
light comes from the water instead of the material. As water is
almost perfectly smooth, the specular reflectance of the mate-
rial becomes more focused and sharp. This behavior is similar
to that of a material coating, e.g., from a polished wooden floor.
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However, another factor comes into play. At each pore-interface,
a portion of the light is reflected backward. The most signifi-
cant portion of such reflected light comes deep layers, is subse-
quently scattered, and therefore forms a broad specular distribu-
tion. When the air is replaced by water, less light is reflected by
the pore interfaces due to the change of IORs and, consequently,
less broadly distributed specular light paths contribute to over-
all specular reflectivity. Essentially, this means when a porous
material becomes water saturated, overall less light is specularly
reflected but more of it along the perfect mirror direction.

According to [79, 85], the darkening of wet surfaces is accom-
panied by a notable change in hue and saturation.

Layer of Water

At air-water interfaces, some light is reflected, and the rest is
transmitted and refracted. The reflected portion is 2% at nor-
mal incidence and increases to 100% towards low grazing an-
gles. The directions of the reflection and refraction depend on
the thickness of the layer. For thin layers of water, they fol-
low the underlying surface geometry, whereas, for thick layers of
water, the directions are smoothly aligned. As a result, puddle
reflections appear sharp and thin layer reflections appear more
scattered and diffused-

The refracted portion of the light is transmitted towards the
underlying surface. While traveling inside the water, the light
may be scattered or absorbed. At the underlying surface, it
can be reflected and, subsequently, travels back to the water-
air interface (this time in reverse). However, depending on the
exit angle on the interface, total internal reflection may occur.
Subsequently, the light can travel back and forth between the
surface and the interface, being subjected to additional rounds
of absorption.

The absorption of light depends on the absorption coefficient
α and the traveled distance. Integrated over the entire visi-
ble spectrum the absorption coefficent is α ≈ 0.12m−1 [121].
However, in reality, it is most abundant near the red spectrum
and almost zero at the blue (hence the blue taint of large water
bodies). For a thin layer of water, the absorption can always
be neglected, as the traveled distances are magnitudes smaller
than one meter. For a thick layer of water, the absorption in-
creases but remains barely notable for reasonable accumulation
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levels of water puddles. By contrast, the absorption increases
for total internal reflections. Assuming a perfectly smooth un-
derlying surface, a darkening can be observed below the critical
angle. However, for a rough underlying surface, light is diffused
towards all directions, and some darkening from a layer of water
can be observed in all directions.

The scattering of light traveling within the water causes light
paths to exit the surface in arbitrary directions and distant lo-
cations. As a result, the appearance of the underlying surface is
diffused, an effect that increases with the thickness of the water
layer.

2.5.2. Physically Based Wet Surfaces

The effects from a layer of water can be modeled with layer
BRDF models, e.g., the Weidlich and Wilkie layered BRDF
model [154]. Here, the Fresnel terms are evaluated at both
layers, and the light paths attenuated from water absorption.
However, this double layer BRDF models is computationally ex-
pensive, cannot be evaluated for image-based lighting, and is
therefore not applicable to the problem in Chapter 6. Addi-
tionally, the model does not model the water saturation of pores
and is, thus, not suited to simulate the entirety of ground surface
wetness effects.

Lagarde presents an alternative approach in an online sur-
vey [76]. The author analyzed existing models for wet porous
material by Merillou [104] and Hnat et al. et al. [59]. He refer-
enced the models with measured data of wet ground surfaces and
encoded all reflectance effects in a single layer physically based
wet surface model based on the BRDF format of Disney [15].
This allows the dynamic interpolation of dry and water satu-
rated states of porous dielectric materials. The accumulated
water layer is modeled by a surface normal and BRDF interpo-
lation with a smooth water material. This approach is limited
to scattering events inside the wet porous material and from
its top layer. Total internal reflection and absorption from the
water layer cannot be modeled (c.f ., Section 2.5.1

However, according to the study by Weidlich and Wilkie[155],
both effects are negligible when the layer of the water is thin,
and the difference in IOR is minimal. Typically, total internal
reflections amount to an overall attenuation factor of 0.95 −
1.0 and absorption to an attenuation factor of 0.98 − 1.0 for
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accumulated water layers at urban ground surfaces.

Subsequently, I present Lagarde’s [76] derivation of the phys-
ically based wetness model based on dry and wet ground surface
measurements.

Two studies based on measurements aimed to find a func-
tion for the darkening of wet surfaces are [79] and [145]. They
show that the wet albedo is a non-linear function of the index
of refraction of the surface and water as well as the dry albedo
color. Medium albedos (between 0.2 and 0.5) are reduced more
by wetting than higher and lower albedos. They explain that
for lower albedos, more light is absorbed on initial contact with
the surface. For higher albedos, more light is directly reflected.
In both cases, less light is reflected internally, where the darken-
ing occurs. It should be noted, that there are some differences
between the two models. The wet albedo function of Lekner et
al. [79] exhibits less darkening for lower albedo values than the
wet albedo function of Twomey et al. [145]. The functions are
fitted to different measurements. Consequently, [79] seems to
work better for rough solid surfaces such as asphalt and con-
crete and [145] is best applied to finely divided materials, such
as sand.

Lagarde [76] criticizes that the function is only dependent
on IOR and albedo values, completely neglecting the impact
of roughness and porosity properties. However, roughness and
porosity are a major factor, c.f ., Section 2.5.1.

The study from [167] highlights that the Lekner and Twomey
models should be taken into account in addition to microscopic
roughness and a ratio for translucent particles, which is a concept
similar to that of porosity. They state that the concentration
of translucent particles causes the difference between dry and
wet reflectance. Additionally, rough surfaces scatter light more
diffusely even when a thin layer of water is present.

Two studies conducted BRDF measurements of dry and wet
rough dielectric materials [139], [45]. A Cook-Torrance micro-
facet BRDF was fitted to the measurements, which gives us a
diffuse color, a specular color and a roughness term for each
surface type and both states. The resulting models are thus de-
pendent on dry albedo, roughness, and material type. Unfortu-
nately, porosity is not considered. A spatially constant porosity
factor is implicitly included from the measurements, but no gen-
eralization for other materials or a spatially varying porosity can
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be derived.
The proposed model for physically based wet surfaces by La-

garde [76] utilizes the measurement and models [139], [45] and
generalizes the model parameters for rough, porous dielectric
materials. The author proposes to extend the model with an
attenuation factor ρ based on the effective porosity similar to
Hnat et al. [59] and Merillou et al. [104]:

ρ = lerp(0.2, 1.0, p) (2.17)

where lerp() is the linear interpolation function with the third
parameter as the blending weight, and p is the porosity attenua-
tion factor. The lower bound ρ = 0.2 based on the ranges found
in [45] and the empirical values in [108]. The effective porosity
can be controlled by artists as a porosity texture or derived as
a constant value from literature [59] [104]. In either case, the
author suggests porosity values of α ≈ 0.5 − 0.7 for concrete
and asphalt to match measurements from [139], [45]. Using this
attenuation factor, the final model of the physically based wet
surfaces can be formulated:

fwet = lerp(kd, ρ ∗ kd, w)fd + ksfs(lerp(α, α ∗ ρ, 0.5 ∗w)) (2.18)

where lerp() is the linear interpolation function with the third
parameter as the blending weight, w is the water saturation of
wetness level, fd, fs are the diffuse and specular terms of the
physically based Disney model [15], and α is the roughness
parameter of the specular BRDF term.
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3
Related Work

Synthetic datasets frequently come to operation for devel-
oping and testing computer vision algorithm and modules.

They are mostly used for computer vision performance analysis
due to the availability of accurate ground truth. However, sys-
tematic differences exist between the performance of computer
vision algorithm on real and synthetic data. As a result, per-
formance assertions based on synthetic datasets alone often do
not translate well to real-world datasets. With the recent emer-
gence of Deep Neural Networks (DNNs) for many computer vi-
sion tasks, large amounts of data are needed for training and
testing. Computer graphics can be used to generate synthetic
training data quickly. However, DNNs solely training on syn-
thetic data, often perform poorly on real datasets. Better net-
work performance can be achieved by mixing synthetic datasets
with real-world datasets during training. An alternative train-
ing approach that often leads to excellent network performance
is the augmentation of real-world datasets.

In the following sections, I outline the published work of the
topics above regarding low-level vision, high-level vision, sys-
tematic differences to real-world data, and augmentation of real-
world data. More specifically, Section 3.1 is concerned with syn-
thetic datasets for low-level vision tasks, such as optical flow and
disparity estimation. Synthetic datasets are essential for this
class of algorithms, as accurate real-world reference and train-
ing data is costly, hard to acquire, and inherently inaccurate.
Section 3.2 outlines recent progress in using synthetic datasets
for high-level vision tasks, such as segmentation and object de-
tection. Synthetic datasets are a promising tool for these tasks,
as state-of-the-art algorithms are neural network based with a
substantial need for training data. Only a few studies have been
published, that specifically addresses the systematic differences
between real-world and synthetic datasets. They are presented
in Section 3.3. Section 3.4 outlines the work on two augmen-
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tation approaches. This includes data augmentation methods,
i.e., methods that manipulate the original data by applying phe-
nomenological models, and scene augmentation methods, i.e.,
methods that perform a context-aware manipulation of the scene
in 3D world space.

3.1. Synthetic Datasets for Low Level Vision

To my best knowledge, the first published synthetic dataset for
computer vision tasks is the Yosemite sequence [55]. It was
initially created to evaluate a newly proposed optical flow algo-
rithm. The rendering system performs basic rasterization with
simplistic Lambertian materials. Therefore, the realism of the
sequences is minimal.

The well-known Middlebury dataset [6] for optical flow and
stereo estimation consist of two sequence types: First, labora-
tory sequences of rigid objects captured with stop motion tech-
niques. Second, multiple synthetic sequences of a virtual urban
and grove scene. Similar to the Yosemite sequence, the synthetic
images are rendered with low realism via rasterization and sim-
ple Lambertian materials.

McCane et al. [98] published a benchmark suite for optical
flow algorithms. The suite includes real-world and synthetic se-
quences. The real-world sequences are created from laboratory
scenes, where the ground truth is measured by projecting the
planar surfaces of the objects. The synthetic images consist of
rigid objects in front of a textured background, where the vir-
tual camera and objects are moved with varying patterns. The
images, as well as the flow ground truth, are rendered with ray-
casting, a ray-tracing technique where only the primary camera
ray is cast into the scene. The pixel is then shaded with Lamber-
tian reflectance. In contrast to rasterization techniques, where
the ground truth is computed per vertex, the ray-casting ground
truth is pixel accurate. However, the realism of the images is
identical to the previously mentioned datasets.

Entire frameworks for creating synthetic test data with ground
truth also exist. They include the framework of the UCL Ground
Truth Optical Flow Dataset by Aodha et al. [4], as well as the
frameworks by Haltakov et al. [51] and Onkarappa and Sappa
[113], which both create automotive sequences with depth, flow,
and segmentation ground truth. Using these frameworks, the
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user can rapidly create large amounts of image and ground truth
data. The synthetic data generation approach of the UCL frame-
work is described in their previous paper [87]. They use ray-
tracing combined with a Lambertian BRDF, allowing an ac-
curate simulation of shadows and global illumination but only
diffuse reflectance effects. The framework by Onkrappa et al. fol-
lows the same synthesis approach. The Haltakov framework tar-
gets real-time testing and, therefore, simple rasterization render-
ing and Lambertian BRDF models are utilized. Consequently,
neither shadows nor reflectance effects are simulated accurately.
All three frameworks use simplistic 3D assets and textures, and
the overall realism of the simulations is low.

A work supplying a purely synthetic dataset, aimed at ad-
vanced learning-based algorithms, is the ”naturalistic” Sintel
dataset [16]. It consists of a large amount of training and test
images along with optical flow, stereo, segmentation, and camera
pose ground truth. The dataset improves upon previously men-
tioned datasets in terms of realism by adding thin-lens camera
effects, i.e., motion blur and defocus blur, and specular high-
lights. However, the BRDF textures remain artistically driven,
lack high-frequency details, and the specular term of the BRDF
model physically implausible. As a result, the specular high-
lights lack spatial variations as well as increased Fresnel reflec-
tivity at grazing angles. Nevertheless, the study shows that,
compared to previous datasets, the statistics of the synthetic
flow fields better match real-world flow fields. These results in-
dicate that modeling of specular reflectance effects is essential
in the context of optical flow training and testing. Further im-
provements to the reflectance models and textures can, therefore,
increase the confidence of the synthetic data.

A synthetic stereo dataset, focusing on improved realism, was
published by Matrull[92]. It is a synthetic replica of the well-
known Head and Lamp stereo dataset [109]. The images are ren-
dered with ray-tracing and a presumably simple Phong BRDF
with diffuse textures derived from the real-world photographs
and artistic modeling of the specular term. The dataset includes
1800 stereo image pairs under varying lighting conditions and
comes with disparity ground truth and occlusion masks. The
realism of the dataset appears to be high, but no comparison to
real-world datasets is conducted.

More recently, the Flying Chair dataset, consisting of more
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than 20000 image pairs, was supplied for training and testing
optical DNNs by Dosovitskiy et al. [26]. They augmented real-
world backgrounds with pre-rendered synthetic images of chairs.
The background image, chair models and transformations, as
well as the affine motions of the camera and chairs, are all
sampled in a randomized fashion. Their FlowNet optical flow
estimation network was trained on the Flying Chairs dataset
and performed similar compared to state-of-the-art classical op-
tical flow algorithms and networks trained on the more realistic
MPI Sintel dataset [16]. The study claims that a realistic scene
composition is not relevant for training and that data variety
and data augmentation are more relevant for the performance
of optical networks trained on synthetic images. In a follow-
up study by Ilg et al. [64], it became apparent that networks
trained on the Flying Chairs dataset perform unreasonable un-
der real-world conditions, i.e., when small motions are present.
Therefore, they propose to expand the Flying Chairs dataset
with the ChairsSDHom dataset, consisting of image-pairs with
smaller motions. The Flow-Net 2.0, which was trained on Flying
Chairs as well as ChairsSDHom, improves the performance un-
der realistic conditions and when small motions are present. Due
to the lack of 3D-motion and lighting interaction between objects
and backgrounds, both datasets are not able to simulate critical
reflectance effects, i.e., reflections and specular highlights. As a
result, the trained networks are volatile under those real-world
conditions.

A similar dataset, called Flying Things, was introduced by
Mayer et al. [94]. It expands on the idea of creating randomized
scenes for optical flow, disparity, and scene flow training data.
In contrast to the Flying Chairs dataset, it features structured
backgrounds and true 3D-motion of objects and cameras. The
static background is composed of randomly aligned simple geo-
metric shapes, to which a texture is applied. The camera and
the more complex foreground objects follow linear paths in 3D
space. As a result, networks trained on this dataset perform bet-
ter for more complex motions, i.e., 3D rotations and translation
along the z-axis of the camera. The dataset was path traced,
creating realistic lighting, but only simple material models and
textures are used. Critical reflectance effects are, therefore, not
simulated and tested in this study.

A visually more realistic dataset for disparity estimation un-
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der difficult lighting conditions is the UnrealStereo dataset [168].
They utilize the state-of-the-art Unreal Game Engine and publi-
cally available assets. The assets use a physically based material
model that allows accurate specular and transparency effects.
The Unreal Engine approximates light transport through ras-
terization and sophisticated screen-space global lighting tech-
niques. By varying the severity of the reflectance effects, they
could identify that specular and transparency effects are critical
to the robustness of disparity estimation methods, and therefore
needed in a discriminating stereo dataset. The confidence of the
dataset could be further increased by using accurate, unbiased
light transport algorithms in addition to measured material tex-
tures to better simulate those critical effects. This approach was
chosen for my conducted studies on reflectance model accuracy
in Chapters 4, and Chapters 5.

3.2. Synthetic Datasets for High Level Vision

A virtual replica of five urban scenes of the commonly used
KITTI-dataset [38] was introduced as Virtual KITTI [35]. An-
other synthetic dataset for the autonomous driving domain is
the SYNTHIA dataset [126]. It contains a collection of urban
sequences with pixel level segmentation and class annotations.
Both Virtual KITTI and SYNTHIA are rendered with the Unity
Engine for real-time applications. The engine uses rasterization
techniques and screen-space approximations of global light paths
to simulate light transport within the scenes. A physically based
material model is used to model reflectance and translucency ef-
fects. The Virtual Kitti paper utilizes publicly available assets
and textures, created by artists. Unfortunately, the SYNTHIA
paper does not state the creation process of the material textures
and assets. However, based on observation, I assume that similar
artistic assets and textures are used. Both Virtual KITTI and
SYNTHIA claim to be photo-realistic. However, photo-realism
is not well-defined and in the eye of the beholder. With the used
rendering system and material textures, physical realism cannot
be achieved.

The open-source CARLA simulator, with a similar degree of
realism, was released by Dosovitskiy et al. [27]. The simulator fa-
cilitates synthetic images and ground truth data for training and
testing segmentation, disparity, and object detection networks.
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Further, it can even be used for planning and driving policy
tasks in a closed-loop simulation environment. The simulator is
implemented with the Unreal Engine, which uses rasterization
and screen-space global lighting techniques. The textures for the
physically based material model are low weight textures and ar-
tistically driven. As a result, the rendered images are unrealistic
and exhibit periodic texture patterns, which can be problematic
for correspondence algorithms.

Shotton et al. made a case for purely synthetic data in the
field of pose estimation [136]. They used motion capture data
to create a large synthetic dataset for the training of human
pose estimators. Their approach enabled them to create count-
less texture and color variations, e.g., for human clothing and
appearance.

Renderings of synthetic objects in front of real-world back-
grounds are frequently used to train networks for high-level vi-
sion tasks. Pishchulin et al. were the first to utilize this ap-
proach [120]. To train pedestrian detectors, they used syntheti-
cally rendered humans and animations from motion capture data
and placed them in front of urban background images. The do-
main randomization approach by Tremblay et al. [143] further
extends this idea. They randomly place cars with arbitrary, but
accurate physically based materials in front of real-world back-
grounds. They show that object detectors trained on such im-
ages, perform better than those, trained on the structured, but
less realistically rendered scenes of Virtual KITTI [35]. This
finding is relevant for the context of this thesis, as it indicates
that for neural network training, accurate material models and
realistic rendering are more relevant than a semantically plausi-
ble scene composition.

Prakash et al. adapt the idea of domain randomization with
structured scene conditions et al. [123]. The scenes are randomly
composed according to realistic and structured automotive con-
ditions, e.g., cars are placed on road lanes and pedestrians on
sidewalks. Additionally, the physically based scene materials
are textured semantically correct, e.g., cars are painted with
car paints and roads with tarmac materials. The images are
then rendered with the Unreal Engine, using rasterization and
screen-space global light approximations. They can show, that
high fidelity material models combined with semantically real-
istic textures produce synthetic datasets with the highest confi-
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dence.
Tsirikoglou et al. published an advanced method for creat-

ing high-fidelity synthetic training and testing data [144]. They
present a procedural approach to render still images of realistic
urban environments with ground truth for semantic segmenta-
tion. For each image, a unique virtual world is randomly created,
consisting of procedural buildings, road networks, and vegeta-
tion as well as a fixed set of weather conditions, people, and cars.
In contrast to single world approaches of most other datasets,
a virtually infinite amount of image variations can be created.
They utilize unbiased path-tracing, physically based procedu-
ral materials, and physically accurate lighting models. The
approach enables high-quality renderings without the need for
manual fine-tuning of light sources and materials, which could
not be applied in a procedural approach. They could show, that
their high-fidelity data vastly improves semantic segmentation
network performance in comparison to the low-fidelity data of
SYNTHIA [126], which uses artistically created textures and bi-
ased rasterization techniques.

In the follow-up paper, this approach is used to create the Syn-
scapes dataset with semantic segmentation and object detection
ground truth in the Cityscapes and KITTI formats [161]. The
fidelity of the rendered images is further enhanced by modeling
camera stray light and glare effects by means of a Point-Spread-
Function. They could show, that compared to training on the
real-world KITTI data, almost identical performance levels can
be reached with an object detector trained on Synscapes. Sim-
ilar but slightly worse results can be achieved for semantic seg-
mentation compared to the Cityscapes dataset. In both cases, a
mixed training surpasses the performance of training with real-
world alone.

3.3. Systematic Differences between
Real-World and Synthetic Datasets

Vaudrey et al. [147] studied the difference between engineered se-
quences, i.e., synthetic and laboratory sequences, and real-world
sequences for low-level vision algorithms in the context of driver
assistance systems. They showed that optical flow algorithms
are typically more accurate on synthetic image data compared to
real-world applications. They explain that in real-world data ob-
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ject and texture boundaries are much less distinguished, and the
brightness constancy assumption is violated more often. Both
factors have a significant influence on the resulting flow fields,
but most synthetic performance benchmarks do not emphasize
these aspects well enough.

A similar comparison between real and realistically rendered
data was carried out by Meister et al. [101]. The authors care-
fully created a real-world scene consisting of a rotating wooden
block as well as a virtual replica in Blender. They used the
ground truth generated by Blender to compare optical flow re-
sults between both sequences. By varying the rendering realism,
they could show that illumination and material differences cause
the most significant differences between flow fields from real and
synthetic images.

Haeusler et al. [49] argue that simplistic scenes are best suited
to isolate individual effects such as brightness changes and depth
boundaries. They approach the problem by asking whether we
can already draw essential conclusions about algorithm perfor-
mance from extremely simple test images. The advantage of this
approach is that vast amounts of data can be created rapidly and
cost-effectively to study isolated effects to great detail.

A study regarding rendering realism and its effect on training
deep neural networks for automotive object detection was carried
out by Movshovitz-Attias et al. [103]. They show that synthet-
ically rendered cars can generally be used to train deep neural
networks for car detection. They further show that the degree
of realism of the lighting conditions and the material properties
directly affects the performance of the network. It is, therefore,
optimal to use material models and textures that most closely
match the appearance of the real-world materials.

An in-depth study regarding the quality of synthetic datasets
for dense correspondence problems, i.e., optical flow and stereo,
was carried out by Mayer et al. [95]. They identify four relevant
rendering aspects for the quality of synthetic datasets: Camera
models, textures, lighting and shape. They state that a valid
camera model should include two aspects: First, radial blur,
which results from rectification of wide lens distortion. Second,
artifacts that result from demosaicing Bayer patterns. Inter-
estingly enough, more noticeable blur effects from the camera
model, i.e., optical aberrations and motion blur, are not stud-
ied. They further show that realistic textures with large variety
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are essential for training data quality and network performance.
However, they do not state which material model was fed with
the textures so that a simple Lambertian model can be assumed.
For the lighting of the scene, which in their cases also includes
the reflectance models, they show that the training data has to
match the testing data for optimal performance. Consequently,
training data created with measured textures as well as physi-
cally accurate material models and lighting should facilitate the
best performance under real-world conditions. However, they
conclude that more realistic lighting and reflectance models are
not needed for training, based on the test performance achieved
on the synthetic Sintel MPI Dataset [16]. A statement which, to
my perception, contradicts the presented results and can only
hold true for achieving optimal test performance on synthetic
datasets alone.

3.4. Augmentation of Real-World Datasets

Data augmentation is commonly applied to training schedules
and transforms the original data in 2D image space to improve
network robustness and generalization [42]. The transformed
images complement the original training set, assuming that the
network perceives the transformed data as new. The type and
severity of the augmentations have to chosen with great care
as they directly influence the network performance with respect
to critical appearance effects and application domains. Phe-
nomenological augmentation models, including spatial transfor-
mations, chromatic transformations, noise and blur models, are
often used due to computationally efficiency and the ability to
increase robustness towards critical appearance effects. They are
suited to increase the performance for classification and object
detection tasks [141, 56, 146] and dense correspondences prob-
lems [94, 95]. Spatial image transformations apply cropping,
flipping, and 2D affine transformations on the original image
data. They are an effective way of ensuring that networks never
see two identical images and, when applicable, beneficial to re-
duce over-fitting and increase generalization capabilities. Arti-
ficial noise and blur models, e.g., Gaussian noise and blur, can
be injected into the training data to mimic challenging camera
aberrations such as severe sensor noise and lens or motion blur.
The models typically lack physical realism, i.e., they are applied
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in a post-process on the tone-mapped intensity data and often
ignore color reconstruction as well as scene context, but can
still lead to improved performance and robustness for noisy and
blurry testing data. Chromatic image transformations change
the brightness, colors, and contrast of the image data and aim
to mimic changes in the sensor setup and lighting. Just as the
noise and blur models, the transformations are simple, applied
in the image color space, and therefore physically implausible.
Nevertheless, the augmentations are useful to increase robust-
ness towards challenging lighting scenarios, e.g., low contrast
night and foggy scenes or saturated image regions, and invari-
ance to imager color responses and reconstruction. The study in
[56] extends the chromatic transformations with phenomenolog-
ical models for snow, fog and a frosted camera lens for testing
image classification networks. The models are simple overlays
on the original image data that lack awareness of scene context.
Therefore, the authors propose to not use the models for train-
ing but to assess robustness towards obstructions during network
testing.

By contrast, more sophisticated augmentation techniques do
not only rely on the image data, but also consider scene con-
text. Alhaija et al. [1] present a method that can be used to
augment real-world images taken from KITTI [38] with synthet-
ically rendered cars. The cars are rendered with a ray-tracer and
placed on top of the real-world images using reflection informa-
tion from the supplied environment maps. In a post-processing
step, the lighting of the real images is adjusted adjacent to the
cars creating shadowing effects. This data can then be used to
train neural networks for object detection of cars. They show
that object detection networks perform better on real-world test
data when they are trained on the augmented images opposed to
the purely synthetic data of Virtual KITTI [35], The approach
is extended in a follow-up paper [3]. AbuAlhaija2018 Here, real-
world images are again augmented with synthetically rendered
cars. Only this time, a DNN was used for rendering, exploiting
semantic and geometric scene information. The baseline ren-
dering quality of the DNN almost matches a physically based
renderer. However, in comparison to the previous augmentation
method, the synthetic cars better blend into the environment,
as the approach can estimating realistic lighting interactions be-
tween the cars and real-world background. As a result, the test
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performance of the trained object detector can be further im-
proved by a small margin.

3.5. Summary

In this chapter, I presented various existing datasets for train-
ing, testing, and performance analysis of low-level correspon-
dence problems and high-level vision tasks. I mainly assessed
the rendering realism, i.e., the light transport simulation and
the material models and textures. To summarize my findings:

Initial low-level vision datasets are limited to simulating purely
diffuse appearance through biased rasterization and Lambertian
materials. Lately, there has been a shift towards using more so-
phisticated ray tracing to simulate specular and global lighting
effects. However, only the MPI Sintel [16] and Flying Things[94]
datasets are rendered with unbiased algorithms. The presented
datasets utilize simplified material models and in no cases, mea-
sured reflectance. Instead, the textures are either artistically
driven or created from a single photo. Consequently, the real-
ism of each presented dataset is limited in one way or the other:
Non-diffuse reflectance effects can either not be simulated at all,
are simulated with physically implausible severity, or simulated
with unrealistic spatial distributions that do not correspond to
real-world materials.

High-level vision datasets focus on creating volume data, as
most algorithms are neural network based. Consequently, biased
real-time rendering systems with rasterization and screen-space
global lighting approximations are most prevalent. While an ac-
curate physically based material model is often used, the input
textures for models are, again, artistically driven or derived from
single photographs. One exception is the fully procedural high-
fidelity dataset presented in [144, 161]. The images are rendered
with unbiased path tracing, physically based material models,
and material textures derived from photogrammetric measure-
ments. Compared to rasterized datasets with lower realism, the
training and testing performance can be vastly increased and
almost matches real-world dataset performance.

I further presented studies on the differences between real and
synthetic datasets in the context of computer vision testing,
training, and performance analysis. For performance analysis
and testing, the studies showed that even with realistic mate-
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rial models and ray tracing systematic differences to real-world
datasets remain [101]. Concerning training data generation,
Mayer et al. [95] found that ideally, the rendering and mate-
rial models of the training data should closely match the testing
data. Additionally, they identified material textures as a de-
cisive factor for training data quality. These findings indicate
that for best performance in real-world applications, the render-
ing system should be accurate and the material textures of high
realism.

My work in Chapter 4 addresses the systematic differences to
real-world data. I show that BTF reflectance data from accurate
and dense measurements can be used to create synthetic datasets
with high perceptional realism and closely matching optical flow
performance.

In Chapter 5, I present a method to fit BRDF models to such
measured BTF data. I further study various material samples
and assess the most critical reflectance effects for optical flow
algorithms. I show that for all material types, an efficient fitted
BRDF model can be used as a substitute for BTFs with virtually
identical performance.

My work of Chapter 6, addresses training data augmentation
to increase network robustness. Existing approaches mostly use
phenomenological models to augment the original data in image
space. The studies of Abu Alhaija et al. [1, 3] show that by
considering scene context, real-world datasets can be realistically
augmented with new synthetic elements. My presented method
is closely related to those studies. However, it differs in the
way that no new rigid objects are inserted, but the real-world
appearance is modified with physically plausible precipitation
effects.
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4
Reflectance Field Renderings

For Synthetic Optical Flow
Datasets

This chapter is based on my work previously published in [47]

4.1. Motivation

Can we render surfaces accurately enough such that optical
flow algorithms cannot tell the difference to real-world sur-

faces? Are existing synthetic datasets accurate enough? These
are the driving questions that motivated this work. Based on
the findings of Vaudrey et al. [147] and Meister et al. [101], the
answer is no. They state that synthetic data generally lacks crit-
ical effects, that affect the outcome of optical flow algorithms.
Synthetic data is less discriminating for optical flow estimation
and, consequently, the resulting flow fields are smoother. There-
fore, they conclude that synthetic data cannot be applied with
high confidence in testing for real-world tasks, as the lighting
and material models generally lack physical realism.

Nevertheless, synthetic data has been successfully applied in
training Deep Neural Network networks for optical flow estima-
tion [26, 64]. Recently, material textures, as well as lighting
and material models, have been identified as relevant factors for
training data quality [95]. They show that realistic textures with
large variety are essential for training data quality and that the
lighting and material models of the training data have to match
the testing data for optimal performance. Consequently, physi-
cal realism of the textures and physically accurate lighting and
reflectance models should improve performance on real-world
flow estimation. Unfortunately, they conclude that more real-
istic lighting and reflectance models are not necessarily needed
for training, based on the test performance achieved on the syn-
thetic Sintel MPI Dataset [16].
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However, the current approaches that are commonly used for
training and testing optical flow display several shortcomings for
texturing and modeling surface reflectance and the light trans-
port simulation. Most datasets are created with biased rendering
techniques, i.e., mostly rasterization, and simple material mod-
els, i.e., purely Lambertian BRDFs or simple Phong BRDFs.
The reflectance textures are artistically driven and do not in-
clude spatially varying specular terms (c.f ., Chapter 3). As
a result, the textures are often physically implausible and too
crisp, the specular highlights are faint and lack spatial varia-
tions, Fresnel reflections are missing and complex light paths,
e.g., specular interreflections and caustics, cannot be simulated.

On the other hand, computer graphics provide the means for
more accurate simulations. Physically based light transport al-
gorithms can be used to remove bias from the datasets (c.f .,
Section 2.3). Sophisticated measurement devices can accurately
capture surface reflectance as an equivalent of the 9-dimensional
BSSRDF function (c.f ., Section 2.4).

In the following sections, I present my findings of exploring the
upper limits of computer graphics, i.e., state-of-the-art texturing
methods and reflectance models with unbiased light transport,
in the context of optical flow performance analysis. The work
presented here is solely my contribution unless explicitly stated
otherwise and included for the sake of readability.

4.2. Contributions

This work explores the usability of high-fidelity synthetic data
for optical flow performance analysis. I analyze the limits of syn-
thetic data that is rendered with the bidirectional texture func-
tion (BTF) reflectance data, which was acquired with a state-
of-art surface reflectance measurement device by the Christoph
Schwartz of the University of Bonn.

The state-of-the-art measurement devices [131] for surface re-
flectance utilized a set of more than 50000 high dynamic range
images to capture the reflectance fields of objects. The sampled
reflectance fields are then stored in a BTF employing spatial
and angular resampling and SVD compression. On first sight,
unbiased path-traced renderings of the BTF are almost indistin-
guishable from real sequences. Only minor differences can be ob-
served for highly reflective surfaces with high-frequency spatial
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(b) Real-World Flow(a) Real-World Image (c) SSIM Index

(e) Synthetic Flow(d) Synthetic Image (f) Difference Flow Error

Figure 4.1.: A sophisticated dome
setup [131] was used to capture
the reflectance fields of two objects,
a highly reflective donkey statue,
and a mostly diffuse pyramid. Four
stop motion sequences were shot
and synthetically replicated, cre-
ating real-world images (a) and
supposedly identically looking syn-
thetic images (d). The struc-
tural differences between the im-
ages were assessed with the SSIM
Index [169] (c), locating perceptu-
ally different structures (marked as
white). The images sequences then
served as input for a given opti-
cal flow algorithm. The computed
flow fields of the real sequences (b)
and the computed flow fields of
the rendered sequence (e) are then
compared, resulting in a difference
flow error image (f). The lower
the difference, the more appropri-
ate the rendering method is for op-
tical flow evaluation. The high-
est differences occur around deli-
cate structures with high specular
reflectivity and moving highlights,
such as the donkey’s ear tip.

variations in specular detail. But how do optical flow algorithms
perform on such renderings? How do the simple renderings of
most existing datasets compare? To answer these questions we
followed the workflow depicted in Figure 4.1. I compare the BTF
reflectance model to a simple Lambertian BRDF texture (TEX),
a model that is representative for many existing optical flow
datasets and least discriminating to optical flow algorithm in
terms of simulated reflectance effects. I conduct both a percep-
tual analysis of the structural similarities between the synthetic
and real-world sequences as well as an analysis of differences in
computed flow fields.

Four real-world sequences of two objects with varying degree
of complexity were created and synthetically replicated with
both reflectance models. An unbiased physically based renderer
was used to ensure that no additional bias from the renderer is
limiting the synthetic data quality, possibly creating differences
in the computed flow fields. Unbiased rendering algorithms are,
to my knowledge, not used in any published dataset.

I then assessed the perceptual quality of the sequences in a
quantative manner using the Structural Similarity Index (SSIM)
[169]. The SSIM measures the structural similarity between two
supposedly identical images. Structural similarity is a relevant
aspect for optical flow simulation quality, as the motion of struc-
tures induces motion in the flow fields. Other standard metrics,
such as the mean square error and the peak signal-to-noise ra-
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tion, primarily assess differences on the pixel and global level,
i.e., noise and global lighting changes. Optical flow algorithms
are, however, robust to such image perturbations.

The perceptual analysis reveals: BTF rendering simulate op-
tical flow corner cases accurately, including specular highlights,
subsurface scattering, and delicate geometric details. However,
the accuracy is limited by the sampling density of the capturing
devices. Increased geometric, angular and spatial resolutions, as
well as less aggressive SVD compression and BTF resampling,
can lead to increased visual quality. At this moment, the angular
sampling rate is the most limiting factor for the most complex
objects with mirror-like reflections and delicate geometric de-
tails. A high geometric resolution is beneficial for objects with
small geometric detail, such as cavities.

The then conducted optical flow experiments confirm this as-
sessment, utilizing a difference flow error metric (DFE) to assess
the magnitudes of the differences in the flow fields. BTF ren-
derings are, in general, a sufficiently accurate reflectance model
for optical flow performance analysis. They can handle mate-
rials with subsurface scattering and medium to strong specular
highlights. The errors in the flow fields are significantly reduced
compared to simple TEX renderings and most often well within
the sub-pixel accuracy of the used algorithms. More substantial
errors remain when mirror-like reflections and small geometric
details are combined. However, the errors are significantly re-
duced in comparison to simple renderings. The BTF results lead
to the presumption that the error could be removed entirely with
an increased sampling rate for arbitrary opaque material types.

When limiting oneself to less challenging materials without
mirror-like reflections and small geometric detail, the reflectance
field renderings are indistinguishable to real-world images for op-
tical flow algorithms. Simple renderings, on the other hand, are
not sufficiently discriminating for optical flow algorithms and, in
general, only sufficient for Lambertian surfaces without subsur-
face scattering and small geometric details.

4.3. Method

In this section, I describe the general setup of our experiments,
the generation of the test sequences and setup for the optical flow
performance analysis. The planning of the test sequences was
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conducted jointly with the University of Bonn. Measurements
have been solely carried out by the University of Bonn with an
existing measurement setup [131]. The acquisition and creation
of test scenes are described in detail to provide the necessary
context. I frequently refer to the corresponding publications for
the measurement procedure and setup. I conducted the subse-
quent optical flow experiments and the following evaluations.

4.3.1. Acquisition of Geometry and Surface
Reflectance

Figure 4.2.: The Dome II BTF ac-
quisition device at the University
of Bonn. The setup, which is com-
prised of a hemispherical structure,
is slid open to give view on the
components on the inside.

We used the Dome II BTF acquisition setup [131] of the Uni-
versity of Bonn, depicted in Figure 4.2. It captures the 3-
dimensional geometry and 9-dimensional reflectance fields of ob-
jects, that are placed in the center of the dome. The overall
object digitization procedure follows the approach proposed by
Schwartz et al. [130]. First, structured light from the digital
projectors is used to triangulate the object in different rotation
stage poses. The resulting point clouds are then registered, and
the surface is reconstructed to form a single 3D mesh. The object
is rotated on the turntable in 15◦ steps, to capture anisotropic
the reflectance. For each rotation, the 198 light sources are lit
sequentially, and the resulting appearance is captured with 11
cameras. The cameras use multiple exposures to capture the lin-
ear reflectance in high dynamic range accurately. Finally, the re-
sulting images are projected onto the object surface parametriza-
tion, the directions are resampled into local coordinate frames,
and the data is compressed using SVD based dimensionality re-
duction. Details on this procedure can be found in the referenced
literature [130] and [131].

The objects in our test scenes have been separately digitized.
The 3D geometry is stored as a triangle mesh. We chose the
number and distribution of triangles to sufficiently preserve the
small geometric details. In the extreme case of the blackened
plates, which was completely flat, this resulted in a single quadri-
lateral. The captured BTF reflectance is given as tabulated val-
ues at 151× 151 discrete view and light directions, both equally
distributed on the hemisphere, and a number of spatial posi-
tions on the surface, densely covering the whole object. See Ta-
ble 4.1 for additional details. The resulting geometry and BTF
reflectance data was then used as an input for the state-of-the-
art, open source, physically based renderer “Mitsuba” by Jakob
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Object Geometry BTF
# ∆ avg. edge # dir’s # texels

Donkey 3k 71k 0.94 mm 1512 3072× 3072
Donkey 2k 71k 0.94 mm 1512 2048× 2048
Pyramid 75k 0.66 mm 1512 1600× 1600
Plate 1 2 275 mm 1512 512× 512
Plate 2 2 203 mm 1512 512× 512

Table 4.1.: Attributes of the cap-
tured objects. The column “# tex-
els” denotes the number of data
points on the object’s surface for
which the bi-directional reflectance
is stored. To evaluate the influence
of the spatial resolution, we created
two different BTFs from the don-
key data.

Wenzel1.

4.3.2. Generation of Test Scenes

To evaluate optical flow performance, two separate test scenes
have been constructed, c.f ., Figure 4.3. The first scene consists
of a brass donkey statue positioned on a rotating blackened plate,
the second one of a clay pyramid on a slightly smaller plate. The
surface of the metallic donkey statue boasts significant specular-
ity. The surface of the dielectric clay pyramid contains only
minimal specularities and some more notable subsurface scat-
tering.

For both test scenes, two real-world sequences with distinct
camera angles have been shot under controlled illumination con-
ditions. Here we used the Dome II measurement device as well,
which allowed us to have accurate geometric calibration data and
known radiometric camera and light characteristics. The exact
calibration procedure is described in [131] and yields average re-
projection errors of 0.16 pixels for the cameras and an error of
about 0.08◦ for the light directions. Each sequence consists of 11
frames recorded in stop-motion with the plate rotating one de-
gree between each frame. To achieve the impression of ambient
illumination, we activated all 198 LED light sources simultane-
ously.

Rendering with reflectance from BTF data was implemented
as a new material plug-in to Mitsuba. Because of the BTF’s
far-field assumption, the appearance does not depend on the
position that light enters the surface. Hence, reflectance can
be considered a local phenomenon and a standard path tracing
integrator can be used. During rendering, our plug-in uses linear
interpolation between the discretized data points to compute the
radiance for a given sample (position and incoming and outgoing
direction). The data points are reconstructed on-the-fly from the

1http://www.mitsuba-renderer.org/
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compressed SVD representation.

Figure 4.3.: Real photographs of
the two scenes used in our experi-
ments. In the synthetic renderings
only the object and the blackened
ground plate are considered.

For rendering with 2D textures, the diffuse material plug-in
that ships with Mitsuba has been employed. All settings have
been chosen similar to the BTF rendering. The textures for the
objects have been generated from the BTF measurement data.
Here, we loosely followed best practices for texturing 3D models
from photographs: For each texel, we computed the radiance for
the view-direction perpendicular to the surface under homoge-
neous ambient lighting conditions.

Virtual camera parameters, light source positions, and light
source intensities were chosen to match those of the real test
sequences, for which the accurate Dome II calibration data was
available. Note that the illumination and the turntable rotations
used in the test sequences were not part of the input data to gen-
erate the BTFs but are novel conditions. Furthermore, as the
objects have been captured separately, the indirect lighting be-
tween the blackened ground plate and the donkey or pyramid in
the synthetic scene was also not part of the captured reflectance
but was simulated by the path tracer as well.

In both cases, we used 128 samples per pixel to avoid render-
ing noise. The images were then super-sampled with twice the
resolution in both directions, effectively leading to 512 samples
per pixel for the final input images of the optical flow algorithms
Otherwise, the flickering appearance between consecutive frames
might have influenced the results of the optical flow.

4.3.3. Experimental Setup

The method above describes the acquisition and generation of
test sequences that were planned with and provided by the Uni-
versity of Bonn. Once provided, I performed a perceptual anal-
ysis and optical flow experiments on the sequences.

The goal of the quantative perceptual analysis was the as-
sessment of the visual appearance and the structural similarities
between the synthetic and real-world sequences. With this as-
sessment, I could better identify the critical reflectance effects for
optical flow performance analysis and the limitations of the used
reflectance models. The visual differences can be assessed with
the mean square error metric or the peak signal-to-noise ratio,
but they mostly focus on image noise and global lighting dif-
ferences. Optical flow, however, is most sensitive to the motion
of image structures. Hence, I utilized the structural similarity
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index as a performance metric.
For the optical flow experiments, I computed the optical flow

on each image pair of the sequences using three different meth-
ods: A multi-scale, nonlinear version of the Horn&Schunk method
[62] similar to the one described in [100]. Secondly, the method
of Papenberg et al. [116] was used with Charbonnier-penalizers
both applied to the regularizer and the intensity-only data term.
Both methods were implemented with the open source Charon
Framework [43] using five pyramid levels and a downsampling
factor of two. As a third method the publicly available MDP-
Flow2 Algorithm by Xu et al. [163] was used. It is one of the
best-performing methods on the Middlebury website and comes
with a freely available implementation. Parameters for all meth-
ods were chosen to produce flow fields as correct as possible. The
differences between the synthetic and real-world flow fields were
then analyzed through our own difference flow error metric. This
metric was used to assess the flow differences both globally and
locally on the areas with critical reflectance effects.

Structural Similarity Index

In the context of assessing the image quality of our simulations,
we are specifically interested in the differences between the real
and synthetic images. The mean square error and peak signal-
to-noise ratio can be used to assess the absolute differences be-
tween images. Both are purely intensity based measures and
well suited to asses global intensity changes and image noise.
Optical flow performance, however, mostly depends on distinct
structures and to a much lesser extent on noise or global inten-
sity changes. Structures are necessary to find correspondences
between image pairs. In uniform regions, optical flow algorithms
rarely perform well. Changes in the structural appearance, such
as specular highlights or blurred edges, can therefore negatively
affect the performance of optical flow algorithms. Therefore,
those effects have to be simulated accurately in a discriminating
synthetic dataset. Noise, on the other hand, can negatively in-
fluence the performance of optical flow algorithms but is mostly
compensated by regularization of advanced algorithms. Global
lighting changes cause an offset in the data term of the flow
problem, which can generally be handled by the least square
optimization.

The structural similarities can be assessed with the structural
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similarity index (SSIM) [169]. It is a well-established measure
that compares the contrast, luminance, and structures of two
supposedly identical images. A SSIM = 1.0 means the images
are identical and a SSIM = 0.0 means that the images do not
resemble each other in any way. An SSIM index map can be
visualized, where each pixel is encoded with its corresponding
SSIM contribution. I used an inverse color coding for the visu-
alization, to provide easier comprehension of the printed figures.
An SSIM index map should therefore be white for an image with
SSIM = 0.0 and black for an image with SSIM = 1.0, respec-
tively.

It should be noted, that while an SSIM of close to one should
be the goal of accurate simulations, it is in practice not achiev-
able with our experimental setup. There are several parameters
of our virtual scenes, beyond the choice of the reflectance model,
that affect the simulation quality of the sequences. The virtual
scenes are carefully designed replicas of the real-world condi-
tions and parameterized with calibrated dome data. However,
the calibration data is inherently afflicted with measurements
errors, which translate to errors in the virtual scenes. In the fol-
lowing I list the most relevant aspects and their corresponding
errors induced in the synthetic images:

• Geometric light calibration accuracy: The light sources are
positioned on the hemisphere of the dome setup and then
carefully calibrated. Schwartz et al. [132] claim an accu-
racy of 0.08◦ for the measured light source positions, which
corresponds to a reprojection error of roughly 0.4px. The
virtual light sources are placed at the calibrated positions,
and the reprojection error is induced in the synthetic se-
quences.

• Radiometric light calibration accuracy: Two factors cause
different power distributions for each light source: i) The
LED bulbs have a production tolerance for the spectral
power distribution of the light and thus different bright-
ness levels. ii) The light is focused with a manually aligned
lens-optic onto the material sample. The radiometric cal-
ibration corrects both factors. However, the radiometric
calibration assumes a flat material sample and is therefore
erroneous for protruding objects [132]. Unfortunately, the
resulting error is unknown. The radiometric calibration
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was applied to the virtual light sources, which are conse-
quently affected by this unknown error.

• Geometric camera calibration accuracy: The cameras are
fixed at 11 distinct positions in the used dome setup. How-
ever, the measured object is rotated with limited accuracy.
According to Schwartz et al. [132], the errors of the cam-
era calibration are a spatial error of 11µm and an angular
error of 0.001◦, corresponding to a reprojection error of
roughly 0.16px. The virtual camera extrinsics are chosen
to accord to the calibrated extrinsics, and the reprojection
error is induced in the synthetic sequences.

• The camera noise: The cameras used in our experiments
are the VS Vistek SVCam CF 4022COGE, which is an in-
dustrial grade camera with an average signal-to-noise ra-
tio of 32dB [132]. The noise corresponds to approximately
0.16 pixel intensities in tone-mapped 8-bit color space and
is not simulated in our synthetic sequences.

In addition to the errors induced by the reconstruction of the
virtual scenes, the path tracing integrator afflicts the synthetic
images with rendering noise of an unknown magnitude. In the
worst case, this error is 0.5 pixel intensities in tone-mapped 8-bit
images, but in reality, it should be notably smaller as all light
sources are directly sampled on each light surface interaction.

While all mentioned errors certainly affect the synthetic im-
ages in a way, only the geometric light calibration accuracy and
geometric camera calibration accuracy should affect the struc-
tural similarities of the images in a meaningful way. The ren-
dering noise and camera noise are small and the radiometric
light calibration accuracy induces small frequency lighting er-
rors, which hardly affect the structural similarities.

Difference Flow Error Metric

In the context of synthetic datasets for optical flow performance
analysis, we are specifically interested in differences between the
flow fields computed on the real and synthetic images. Following
the definition of the endpoint error [114], which is commonly
used in optical flow evaluation, the difference flow error (DFE)
can be defined as the magnitude of the difference between the
flow fields computed on the synthetic and the real-world data:
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DFE =
√

(ureal − usynth)2 + (vreal − vsynth)2 (4.1)

The DFE was analyzed for all flow fields computed on syn-
thetic sequences. It was evaluated only where the actual content
is visible, while the mostly black background did not contribute
to the error.

It should be noted, that while a DFE of close to zero is the
goal of synthetic sequences, it is in practice hardly achievable
in this experimental setup. While reflectance models certainly
account for the most substantial systematical errors in the flow
fields, as shown throughout this analysis, some remaining differ-
ences between the flow fields of synthetic and real-world datasets
have to be expected. Two aspects limit the DFE: i) The virtual
scene accuracy that leads to differences in the visual appear-
ance, i.e., errors induced by the extrinsic calibration of the light
and camera positions, the intrinsic camera noise, the radiomet-
ric calibration of the light sources and the noise of the rendering
method. For a detailed explanation, I refer to the previous sec-
tion 4.4.1. ii) The accuracy of the optical flow algorithm that
is inherently limited. Advanced flow algorithms have an accu-
racy of less than 0.2px for carefully engineered scenes of diffuse
objects with small object and camera motion (c.f ., Middlebury
dataset benchmark results as of the publication of this thesis.2

Those kinds of scenes are the least discriminating to optical flow
algorithms and their underlying diffuse world assumption and
thus constitute optimal flow conditions and best possible perfor-
mance.

In the following, the flow results and the DFE are analyzed
with respect to the hypothesis that synthetic datasets can achieve
suitable realism for optical flow. To this end, the DFE is divided
into magnitude-related categories:

• DFE ≤ 0.05px : The DFE indicates that the pixels belong
to regions that are virtually identical in synthetic and real-
world flow fields.

• DFE ∈ [0.05, 0.2]px : The DFE indicates that the pixels
belong to regions whose accuracy falls within the accuracy
of the optical flow algorithm. The regions are faithfully

2http://vision.middlebury.edu/flow/eval/results/results-e1.php
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replicated, and errors from the reflectance model can be
mostly precluded.

• DFE ∈ [0.2, 0.5]px : The DFE indicates that the pixels
belong to regions whose accuracy falls within the accuracy
of the optical flow algorithm and the virtual scene accuracy.
The regions are still faithfully replicated, but smaller errors
of the reflectance model cannot be precluded.

• DFE ∈ [0.5, 1.0]px : The DFE indicates that the pixels
belong to regions where medium errors are likely elicited
from the reflectance model. The regions are not repli-
cated faithfully, which could be caused by errors of the
reflectance model in addition to the errors induced by the
virtual scene reconstruction.

• DFE ≥ 1.0px : The DFE indicates that the pixels belong
to regions where large errors are likely elicited from the re-
flectance model. The regions are not replicated faithfully,
and the errors cannot be explained by reconstruction errors
alone, leading most certainly to errors from the reflectance
model.

It should be noted, that those DFE ranges are empirical and
not meant as absolute thresholds. They act as a guideline to
better understand and assess the DFE results in the following
analysis.

The first range of [0.05, 0.2] was roughly correlated to pub-
licly available benchmark endpoint error results for the real-
world sequences of the Middlebury dataset [6]. The other
ranges were derived from the least challenging sequence, the top
view sequence of the mostly diffuse pyramid. The [0.2, 0.5] error
range roughly correlates to the DFE values observed in the non-
damaged regions of this sequence. Those regions display perfect
conditions for optical flow algorithms. They are structured but
almost perfectly diffuse with hardly any motion dependent ap-
pearance. The [0.5, 1.0] error range roughly correlates to the
DFE values observed in the more challenging parts of this se-
quence, the fissures. In those regions the appearance of the
surface is slightly motion dependent, inducing small additional
errors in the flow fields.
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(c) (d) (e)(b)(a)

(h) (i) (j)(g)(f)

Real TEX SSIM (TEX)BTFSSIM (BTF)
Figure 4.4.: The images depict
close-up images of the pyramid se-
quences and the SSIM error maps.
The real-world images (c) and (h)
exhibit mostly diffuse reflectance
and some minor shadowing and
subsurface scattering at the fissures
in (c) and (h) and the chipped
of parts in (h). The correspond-
ing TEX renderings (d) and (i)
are overall brighter than the real-
world images. Global lighting dif-
ferences are, however, unproblem-
atic for optical flow algorithms.
Medium structural differences can
be observed at fissures and at the
bottom area in (i), which faces
away from the acquisition setup,
i.e., light and cameras. This is vi-
sualized in the inverse SSIM maps
in (e) and (j). The BTF render-
ings in (b) and (g) do not exhibit
such a global lighting change and
can almost perfectly simulate the
reflectance effects of the real-world
images. This is reflected in the
SSIM maps (a) and (f) by low error
values. The largest remaining dif-
ferences are located at the chipped
off bottom area in (f), which is
facing away from the acquisition
setup.

4.4. Results

In this section, I describe the experiments conducted on the
provided image sequences. I start with the perceptual analysis
that was conducted to get the first indication of possible BTF
and TEX model inaccuracies. Then I continue to the optical
flow experiments performed on the image sequences. I show,
to what extent the small inaccuracies in the BTF renderings
and the large inaccuracies of the TEX renderings translate to a
diverging optical flow performance.

4.4.1. Perceptual Analysis

In this section, I present the results of the perceptual analy-
sis performed on the real-world images and the renderings with
two types of reflectance models, i.e., the sampled reflectance
fields (BTF) and the Lambertian BRDF Textures (TEX), for
two mostly diffuse pyramid sequences and two more challenging
donkey sequences. I focus on the structural differences between
the synthetic and real-world images of the pyramid and donkey
sequences, utilizing the SSIM metric. I then continue to general
observations on limitations of the BTF reflectance model and
potential improvements.

Pyramid Sequences The clay surface material of the pyramid
is dielectric and can be considered almost Lambertian with min-
imal specular reflectivity. It boasts some shadowing and subsur-
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face scattering, most notable in the damaged regions and fissures
on the surface. Example close-up images of the pyramid top and
frontal view sequences and the corresponding renderings with
their structural similarities compared to the real-world images
are depicted in Figure 4.4.

Overall, the renderings of the TEX reflectance are roughly
matching the appearance of the real-world images, with struc-
tural similarities of 0.825 in the top view crop and 0.77 in the
bottom view crop. However, the renderings are slightly brighter
than the real-world images. Likely, this is because the diffuse
texture taken from the top view and camera positions includes
specular lighting information of the pyramid. This is not neces-
sarily problematic for optical flow algorithms, as they are mostly
invariant to global brightness changes. The shadowing and sub-
surface scattering at the fissures cannot be replicated correctly
by the TEX model. This translates to notable errors in the
SSIM index map. The most substantial errors are visible at the
bottom of the pyramid. At this area, the surface is facing away
from the structured light scanners as well as all cameras and
light sources. As a result, the geometry and the diffuse texture
could not be reconstructed accurately.

The renderings of the BTF reflectance model are more closely
matching the appearance of the real-world images, with struc-
tural similarities of 0.887 in the top view crop and 0.869 in the
bottom view crop. In contrast to the TEX model, no global
brightness increase can be observed. The shadowing and sub-
surface scattering at the fissures is replicated correctly, and only
minor errors are visible in the SSIM index map. The errors for
the critical bottom area are significantly lower using the BTF
model compared to the TEX model. The BTF reflectance model
is capable of mostly compensating the inaccuracies of the geom-
etry scan in this area, due to the reflectance field assumption.
The remaining differences occur due to an inaccurate silhouette
and the generally low sample count of light sources and cameras
in this area.

Donkey Sequences The brass donkey statue exhibits medium
to strong specular reflectivity combined with smooth areas at
the torso and delicate geometric detail around the head area.
Example images of the donkey head and torso areas and the
corresponding renderings with their structural similarities com-
pared to the real-world images are depicted in Figure 4.5. Spec-
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(c) (d) (e)(b)(a)

(h) (i) (j)(g)(f)

Real TEX SSIM (TEX)BTFSSIM (BTF)
Figure 4.5.: The images depict
donkey close-up images and their
SSIM error maps. inter-reflections.
The real-world image in (c) con-
tains specular highlights of low in-
tensity at the bottom flat torso
area and of medium intensity at
the geometric structures at the
top. The image in (h) depicts the
head area with mirror-like reflec-
tions and delicate geometric de-
tail. Both real-world images have
blurred cavities due to specular
inter-reflections and Fresnel reflec-
tivity. As expected, specular ef-
fects missing in the TEX render-
ings in (d) and (i) and contours are
significantly more pronounced, fa-
vorable conditions for optical flow.
The SSIM errors are large in those
areas in (e) and most notably in
(j). The BTF renderings in (b)
and (g) are significantly more ac-
curate, simulating both highlights
and blurred cavities. However,
minor errors remain at the con-
tours, which is visualized in the
SSIM map of (a). I attribute
this to the low sampling rate at
low grazing angles, where the Fres-
nel reflectivity increases rapidly.
Slightly larger errors occur around
the highly reflective head area de-
picted in (f). The angular sam-
pling limits the accuracy for areas
with mirror-like reflections and del-
icate geometric details and there-
fore. However, the simulation has
significantly improved compared to
the TEX model.

ular highlights can be observed in the real-world images where
the surface normal points in a way that most light is reflected
towards the viewer. Strong highlights are visible at the top area
of the torso close-up and the polished area of the head close-up.
Notice, that there are small spatial variations in the specular
highlights. The cavities on the object’s surface appear blurry
due to Fresnel reflectivity and light inter-reflections, i.e., light
bounces multiple times within the cavities before it gets reflected
towards the viewer. Both effects are critical for optical flow ap-
plications: Algorithms can falsely detect motion from highlights
that are moving along with the light source and algorithms can
lose correspondences when structures are blurred. As expected,
the TEX model cannot recreate those effects, and the structural
similarity is low, i.e., an SSIM of 0.850 for the torso rendering
and 0.672 for the more complex head rendering. The specular
highlights are naturally missing, and the appearance is homo-
geneous in the flat surface areas. Cavities are clearly visible
and significantly more pronounced than in the real-world ref-
erence. Those are easy conditions for optical flow algorithms.
Critical specular effects do not induce false motion, and clear
pronounced structures simplify the correspondence estimation.
The BTF reflectance model is better suited to replicate such a
specular object. The structural similarities are higher with an
SSIM of 0.923 for the torso rendering and 0.859 for the more
complex head rendering. The smooth areas with medium reflec-
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tivity of the torso are rendered without any noticeable visual
differences. In comparison to the TEX model, the simulation
of the cavity blurring has significantly improved. However, it
is not simulated to the full extent, and small differences remain
at the top area of the torso rendering and the entire head area.
Likely, this is because the BTF sampling does not include low
grazing angles, causing Fresnel reflectivity to be inherently less
accurate. In contrast to the TEX model, specular highlights
can, in general, be simulated. However, considerable differences
remain. The spatial variations of the highlights are missing in
the top torso area, and mirror-like highlights of the head area
are fainter.

General Observations Highly reflective areas with small del-
icate structures appear to be the main challenges for BTF re-
flectance field renderings. This can be explained:

Matusik et al. [93] observe that an angular resolution of ap-
proximately 1◦ is required to capture mirror-like reflections. The
angular resolution of the dome setup is significantly lower with
7.6◦ for viewing and 9◦ for lighting directions. This sampling
rate was chosen to best to fulfill the Nyquist criterion of com-
mon cultural heritage objects while limiting measurement time
and data storage at the same time [132]. For flat homogeneous
areas with similar surface normals, this can be compensated from
neighboring pixels. More precisely, the likelihood that all pixels
of the area miss the specular highlight on all view and light direc-
tions is low. The captured reflectance fields are resampled to the
BTF format before rendering. The final BTFs are constructed
for 151 × 151 view and lighting directions and a resolution be-
tween 1600× 1600 and 3072× 3072 (cf. table 4.1). This results
in an angular resolution of 9.4◦ in viewing and lighting direc-
tions and a spatial resolution of 190DPI. By this resampling,
small reflectance details, such as variations in the specular high-
lights, can get blurred. This blurring is further amplified by the
compression of the sampled BTF data to an SVD representa-
tion. The inaccuracies of the geometric sampling with respect
to the surface reflectance are intercepted by the reflectance field
approximation and therefore negligible [23]. However, coarse ge-
ometric sampling can affect the silhouettes of the object shape.
Therefore, small geometric details below the average edge length
of 0.94mm, such as the observed cavities, are inherently defec-
tive.

66



4.4. RESULTS

Overall, the quality of the BTF reflectance model seems to
be limited by the sampling density of the acquisition process.
An increased angular resolution is beneficial for highly reflec-
tive materials. A denser spatial sampling of the reflectance field
can decrease the likelihood that small specular highlights are
missed. Forfeiting the resampling and SVD compression can be
beneficial for spatial variations of the reflectivity. An increased
geometric sampling can decrease the errors at cavities. How-
ever, all those measures further increase the data storage and
the already demanding acquisition and rendering times.

4.4.2. Optical Flow Analysis

In this section I present the optical flow results on real-world im-
ages and renderings with two types of reflectance models, i.e.,
the sampled reflectance fields (BTF) and the Lambertian BRDF
Textures (TEX), for two mostly diffuse pyramid sequences and
two more challenging donkey sequences. The flow fields were
computed with three optical flow algorithms: The basic multi-
scale nonlinear Horn&Schunk (H&S) algorithm and two more
sophisticated methods with the Papenberg (PPB) and the MDP-
Flow2 (MDP) algorithms (c.f ., Section 4.3). I focus on the dif-
ferences between the flow fields of the synthetic and real-world
images of the pyramid and donkey sequences, utilizing the pre-
sented DFE metric.

Pyramid Sequences

The pyramid sequences depict a rotating clay pyramid with
mostly diffuse reflectance, observed from a Top View and frontal
view. Specular effects are minimal, and there is little geomet-
ric detail apart from a few chipped off areas and fissures. They
were chosen as exemplary sequences for many real-world mate-
rials and can be considered a relatively easy task for optical flow
algorithms with their underlying diffuse world assumption.

Only minor differences in the appearance of the pyramid could
be identified via the perceptual analysis of the renderings for the
BTF and TEX models (c.f ., 4.4). Most structural differences
occur at the damaged regions at the bottom and the fissures
on the surface. The probable causes are shadowing and subsur-
face scattering effects that cannot be modeled by the Lamber-
tian BRDF model. The TEX model exhibits a slightly brighter
appearance overall, which is expected to be unproblematic for
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Method PPB H&S MDP
Pyramid BTF 0.153 ± 0.133 0.124±0.070 0.164±0.104
Top View TEX 0.136±0.114 0.128 ± 0.071 0.166 ± 0.105
Pyramid BTF 0.158±0.118 0.145±0.105 0.194±0.143

Frontal View TEX 0.181 ± 0.139 0.151 ± 0.101 0.197 ± 0.142

Table 4.2.: Mean difference flow
errors and standard deviation for
the donkey sequences with all op-
tical flow algorithms and rendering
techniques. The best rendering is
marked in bold. The means are
reduced with BTF model, except
for the PPB algorithm of the Top
View. However, the overall differ-
ences between the models are min-
imal and no significant outliers ex-
ist in any case, reflected by the low
standard deviations.

optical flow algorithms In general, all synthetic sequences closely
match the structural appearance of the corresponding real-world
images.

This directly translates to computed flow fields. Table 4.2 de-
picts the mean DFE for the Top View and frontal view pyramid
sequences and all combinations of synthetic sequences and op-
tical flow algorithms. The displayed values were computed over
all image pairs contained in each sequence. In the following, I
present a detailed assessment of both pyramid sequences.

Top View: All three flow algorithms perform almost identical
for the renderings of both reflectance models. The means and
standard deviations of the DFE are slightly smaller using the
BTF model for the H&S and MDP algorithms (c.f ., Table 4.2)
and slightly larger for the PPB algorithm. Overall, the mean dif-
ference flow errors for this sequence are minimal and fall within
the accuracy of the optical flow algorithms. The histogram in
Figure 4.6 depicts the DFE distribution for the MDP algorithm.
It shows that more than 70% of the pixels have a DFE below
0.2px and are well within the accuracy of the algorithm. Less
than 1% of the pixels have a DFE larger 1.0px and can be con-
sidered outliers.

Figure 4.6.: Histogram of the dif-
ference flow error in the Top View
Pyramid Sequence using the MDP-
Flow2 algorithm. BTF and the
TEX reflectance model yield al-
most identical flow fields, also re-
flected error distributions. Fewer
than 1% of the pixel have a
DFE larger than 1.0px while more
than 70% of the pixels have very
low sub-pixel error that fall well
within the accuracy of the algo-
rithm (DFE ≤ 0.2px).

Frontal View: Compared to the Top View the means and stan-
dard deviations of the flow fields are slightly increased (c.f ., Ta-
ble 4.2), but the results are fundamentally similar. In contrast
to the Top View, the BTF reflectance model performs best for all
three flow algorithms, and the margin between the reflectance
models is generally more pronounced. In the DFE histogram
of the MDP algorithm, we can observe that a few more large
errors of 0.5px− 1.0px are now present in the flow fields. A vi-
sualization of the DFE for an exemplary image pair is depicted
in Figure 4.8. The areas with the most prominent errors are the
left surface, which faces away from the camera, and the larger
damaged parts in the front. When using the BTF model these
areas are smaller in size at the front surface and not as many
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(a) TEX (b) BTF

Figure 4.8.: Visualization of
the difference flow error using
the MDP-Flow2 algorithm on the
pyramid Frontal View. Higher er-
rors for the TEX model (a) occur
around the fissures and chipped off
areas on the front and the surface
to the left, which is facing away
from the camera. The underly-
ing shadowing effects are not sim-
ulated. The BTF errors (b) are
smaller in the front and fewer on
the left surface, as shadowing ef-
fects are better simulated.

on the left surface, but not removed entirely. I attribute this
error to the high-frequency shadowing and scattering occurring
at the fissures. The artifacts at the fissures are similar for the
PPB and H&S methods but less pronounced. The PPB method
exhibits a few more large errors towards the object boundaries
and the H&S method larger errors overall.

Figure 4.7.: Histogram of the dif-
ference flow error in the Frontal
View Pyramid Sequence using the
MDP-Flow2 algorithm. Compared
to the Top View there are slightly
more errors in the [0.5, 1.0] range
where the reflectance model might
induce some flow errors. The BTF
model performs slightly better in
this range, but is similar overall.

In both pyramid sequences, the errors are overall small for
renderings with both reflectance models. Only a few medium
outliers exist around fissures and at the damaged parts of the
pyramid. This is where fine geometric detail creates shadowing
and subsurface scattering effects. This indicates that a simple
Lambertian BRDF model is a valid approach for synthetic op-
tical flow datasets, as long as surfaces are smooth and almost
perfectly diffuse. For mostly diffuse dielectric materials with
fine geometric details, the BTF model can be used with almost
perfect accuracy.

Donkey Sequences

The second set of sequences shows a brass donkey statue on a
rotating plate, observed from two distinct viewing positions, a
Top View and a frontal view. The donkey contains regions with
medium to mirror-like reflections and medium to high curvature.
We have fine geometric detail and cavities around the head area
of the donkey statue. This creates medium to large spatiotempo-
ral changes of the appearance and a blurring of fine structures,
a challenging task for optical flow algorithms. While the most
challenging parts on the head of the statue are only partially in-
cluded in the Top View sequence, all the mirror-like reflections,
and small geometric details become apparent in the frontal view
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Method PPB H&S MDP

Donkey
BTF2K 0.166 ± 0.135 0.090±0.075 0.177±0.195

Top View
BTF3K 0.165±0.125 0.102 ± 0.077 0.208 ± 0.212
TEX2K 0.355 ± 0.390 0.178 ± 0.159 0.182 ± 0.196
TEX3K 0.345 ± 0.397 0.169 ± 0.145 0.187 ± 0.194

Donkey
BTF2K 0.249 ± 0.350 0.239 ± 0.317 0.378 ± 0.573

Frontal View
BTF3K 0.204±0.294 0.223±0.311 0.356±0.467
TEX2K 0.364 ± 0.439 0.451 ± 0.689 0.411 ± 0.729
TEX3K 0.341 ± 0.440 0.457 ± 0.705 0.406 ± 0.759

Table 4.3.: Mean difference flow
error and standard deviation for
the donkey sequences with all op-
tical flow algorithms and render-
ing techniques. The best rendering
is marked in bold. BTF render-
ings clearly outperform TEX ren-
derings except for the MDP algo-
rithm, where no HDR images could
be used and the specular highlights
are saturated. For the Top View
sequence the BTF results can be
considered almost as good as for
the lambertian pyramid and fall
well within the accuracy of the
flow algorithms. In the more com-
plex Frontal View the mean error
is higher and the increased stan-
dard deviation indicates outliers.
The TEX model performs poorly
for both donkey sequences.

sequence.
Both effects can be simulated better with the BTF reflectance

model (See Figure 4.5). However, the accuracy of the simulation
is limited by the geometric, angular and spatial resolutions of the
BTF. To better asses the limits of the BTF, two variants of the
BTF model were created. A BTF model with a 2048 × 2048
texture (BTF2k) and a BTF model with a 3072× 3072 texture
(BTF3k). The angular and geometric resolutions are the more
limiting factors in theory but are fixed in the used dome setup.
Respectively, two variants of the TEX model were created with a
2048×2048 texture (TEX2k) and a 3072×3072 texture (TEX3k).

The specular effects of the statue can be better resolved in
the 16-bit high dynamic range images provided by the Univer-
sity of Bonn. In the 8 bit images, the highlights often formu-
late larger regions with saturated uniform intensities, which is
problematic for optical flow. Therefore, I conducted the don-
key experiments on the original 16-bit data, whenever possible.
The available implementation of the MDP algorithm can only
handle 8-bit data. Consequently, the MDP algorithm performs
poorly in those regions. The PPB results are more accurate and,
therefore, presented in the detailed analysis.

In the following paragraphs I analyze how the observed visual
differences translate to differences in the flow fields of the Top
View and frontal view donkey sequences

Top View: The mean and standard deviations of the DFE for
both reflectance models, both texture resolutions and all three
optical flow algorithms are depicted in Table 4.3. The improve-
ments of the BTF models contribute to a significant reduction of
the mean DFE from 0.355px to 0.166px for the PPB algorithm
and from 0.178px to 0.090px for the H&S algorithm. A notice-
able error reduction cannot be observed with the MDP algo-
rithm. As mentioned above, the 8-bit input images of the MDP
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algorithm exhibit uniformly saturated regions, where specular
highlights are present. Optical flow generally does not perform
well on uniform regions, and the results are thus not represen-
tative.

Increasing the texture resolution, i.e., using the 3K reflectance
model variants does not noticeably reduce the errors for any
combination of reflectance model and flow algorithm. As most
visible parts of the statue exhibit only medium level specular
reflectivity and little geometric detail, a vast improvement was
not observed in the perceptual analysis and can therefore not be
expected for the computed flow fields.

The large standard deviations for the TEX models and the
PPB algorithm are striking. They indicate that some regions
have significant DFE outliers. This cannot be observed for the
BTF models, indicating that similar outliers are not present.
Strikingly, large DFE standard deviations are not present for
the H&S algorithm, and the DFE are overall smaller. This can
be explained: The regularization of the H&S algorithm has to
be generally stronger than for the PPB algorithm to perform
adequately under arbitrary conditions. Consequently, the H&S
flow fields are smoother than the PPB counterparts for both the
synthetic and real-world sequences. Small details and structures
are however missed. Therefore, the basic H&S algorithm is much
less discriminating to simulation quality than the more sophisti-
cated and accurate PPB. I chose the PPB algorithm for a more
detailed assessment of the error distributions.

Figure 4.9.: The DFE histogram
of the Donkey Top View Sequence
using the PPB algorithm. Both
variants of the TEX model per-
form poorly, with many outliers in
the higher error ranges. The BTF
models significantly reduce errors.
Only a few errors remain in the
0.5, 1.0 range, indicating errors in-
duced from the reflectance model.
The high-resolution BTFK3K vari-
ant performs slightly better than
the BTF2K. Overall, the BTF dis-
tributions can be considered al-
most as good as in the pyramid se-
quences.

Figure 4.9 depicts the error distributions for the PPB algo-
rithm on the Top View donkey sequence. For the TEX models,
more than 20% of the DFE values are larger than 0.5px indi-
cating that the reflectance model induces medium errors. Less
than 50% of the DFE fall within the accuracy of the optical flow
algorithms for the TEX2K model, i.e., DFE ∈ [0.05, 0.2], and
roughly 51% for the higher-resolution TEX3K model. The rest
of the DFE fall in the [0.2, 0.5] range, where some small errors
from the reflectance model cannot be precluded. The TEX3K
has overall smaller errors, but the same amount of outliers. This
indicates that substantial errors are tied to the reflectance model
and cannot be offset by an increased spatial resolution.

The DFE can be significantly decreased using the BTF re-
flectance model. Less than 1% of the pixels have DFE values
higher than 1px and only 3% of the pixels DFE in the [0.5, 1.0]
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(a) TEX (b) BTF

Figure 4.10.: DFE Visualization of
the Donkey Top View sequence us-
ing the Papenberg algorithm. High
DFEs occur around the head re-
gion in the TEX Rendering(b) due
to insufficient simulation of spec-
ular effects. The BTF Render-
ing(a) reduced the DFE signifi-
cantly. Medium errors remain
where specular reflectivity is com-
bined with delicate geometric de-
tail, such as the approximately 1px
errors at the ear tip to the right.

range. This totals to 4% of pixels that likely have flow field
errors induced by the reflectance model. For both BTF mod-
els more than 70% of the pixels have low subpixel errors of less
than 0.2px that fall within the accuracy of the flow algorithm
and can, therefore, be considered perfectly accurate for optical
flow performance analysis. The remaining 25% of the DFE fall
in the [0.2, 0.5] range, where some small errors could be induced
from the reflectance model. Both BTF models perform simi-
larly in terms of the mean DFE. However, the higher-resolution
BTF3K model exhibits a generally narrower distribution with
fewer outliers, indicating that critical parts are simulated a bit
more accurately.

In Figure 4.10 you can see a Jet-Visualization of the DFE for
an exemplary image pair of the donkey Top View sequence for
the BTF3K and TEX3K models. This visualization helps to
localize the improvements of the BTF model and the remaining
differences. In the results of the TEX renderings, we observe
high errors of up to 3px around the highly specular head region,
errors of around 1px in back region and errors of around 1−1.5px
at the ear of the statue. The largest errors in the head region
and the errors in the back region could be resolved with the BTF
model. The errors of around the ear remain. The perceptual
analysis of the synthetic images concluded that renderings of
the BTF models exhibit notable structural differences in areas
of high specularity and delicate geometric detail. This translates
to the DFE values around the donkey ear, where both aspects
are present.

Overall, the BTF results on the donkey Top View can be
considered almost as good as in the Lambertian pyramid case.
There are only minor increases in the mean and median DFE
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values and only a few more errors in the [0.2, 0.5] range, where
the reflectance model could cause differences in the flow fields.
Very few large errors around 1.0px remain in areas of high spec-
ularity and delicate geometric detail. The donkey Frontal View
focuses on precisely those problematic areas. The analysis of this
sequence in the following paragraph gives a better understanding
of the limitations of the BTF model.

Figure 4.11.: The DFE histogram
of our most complex sequence, the
Donkey Frontal View, using the
PPB algorithm. The TEX mod-
els perform similarly poorly as in
the Top View. With the excep-
tion that the TEX3K model per-
forms slightly better than TEX2K
in this sequence. The BTF models
significantly reduce errors. How-
ever, some larger errors remain for
both variants. This indicates that
the inaccurate simulation of the
mirror-like highlights is affecting
the flow performance. The BTF3K
variant performs notably better
than the lower resolution variant,
especially in terms of larger out-
liers.

Frontal View: In this sequence, the donkey is observed from
the front with a stronger emphasize on mirror-like reflections
and the delicate structures of the head.

The mean and standard deviations of the DFE for both re-
flectance models, both texture resolutions and all three optical
flow algorithms are depicted in Table 4.3. Compared to the Top
View sequence the mean DFE is larger in all cases. A slight re-
duction of the DFE from 0.411px to 0.378px can be achieved for
the MDP algorithm. However, the flow fields of the MDP algo-
rithm are once again erroneous, due to the saturated highlights
in the 8-bit images (see above for a detailed explanation). There-
fore, I refrain from assessing the results further. The BTF re-
flectance model reduces the mean DFE from 0.364px to 0.249px
for the PPB algorithm and from 0.451px to 0.239px for the H&S
algorithm. In contrast to the Top View, the BTF3K model im-
proves upon the BTF2K model with an additional reduction of
the mean DFE from 0.249px to 0.204px for the PPB algorithm
and from 0.239px to 0.223px for the H&S algorithm. For the
TEX model, a similar improvement cannot be observed.

The large standard deviations in all combinations of reflectance
models, texture resolution and flow methods indicate that sig-
nificant outliers exist in all cases. Therefore, no model seems to
simulate this sequence with close to perfect accuracy.

The outliers can be better assessed by the DFE distributions
depicted in Figure 4.11. For the TEX2K model the distribu-
tion is very similar to the Top View distributions. It is how-
ever slightly broader with few more errors below 0.05px and a
few more errors above 1.5px. In contrast to the Top View, the
increased texture resolution of the TEX3K reduces the errors
slightly. There are notable less DFE in the [0.2, 0.5] range, but
the large outliers are essentially the same. However, more than
45% of the pixels have DFE above 0.2px and most certainly
include some errors induced from the reflectance model.

The DFE can be significantly decreased using the BTF re-
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(a) Real (b) BTF 3k (c) BTF 2K (d) TEX 3K (e) TEX 2K

(f) BTF 3k (g) BTF 2K (h) TEX 3K (i) TEX 2K

Figure 4.12.: Flow fields of the
specular frontal sequence com-
puted with the Papenberg Method.
Strong specular effects are present
at grazing angles of the object, i.e.,
the object boundaries. The opti-
cal flow algorithm cannot resolve
enough detail and the flow fields
of the real-world images (c) are
blurred across the object bound-
aries. This can be replicated with
the BTF models (a) and (b) but
not with the TEX models (d) and
(e). Discontinuities of the real-
world flow fields (c) occur around
the forehead, where mirror-like re-
flections are combined with deli-
cate geometric detail. The discon-
tinuities cannot be replicated with
either method. The corresponding
difference flow errors are visualized
in (f)-(i). The errors in (h) and
(i) at the object boundaries are re-
duced to almost zero with the BTF
models in (f) and (g). They are de-
creased at the forehead but remain
abundant. This matches the ob-
servation of the perceptual analy-
sis, that the angular resolution lim-
its the BTF model accuracy in ex-
treme cases of mirror-like reflectiv-
ity with delicate geometric details.
The higher-resolution variants can
reduce the error overall, but not
the most critical errors around the
forehead.

flectance model. However, in contrast to the Top View sequence
some more substantial errors remain. For the BTF2K model,
roughly 14% of the pixels have DFE values higher than 0.5px,
indicating that the reflectance model causes flow field errors.
Out of those more than 5% are larger than 1px most certainly
suggesting significant errors from the reflectance models. With
the BTF3K model, the pixels with DFE values higher than 0.5px
amount to roughly 11% of the total pixels and the pixels with
errors larger than 1px are reduced to 3%. This is a significant
reduction of outliers from the higher-resolution BTF.

Most pixels, i.e., almost 70% for BTF2K and more than 75%
for BTF3K, have low subpixel errors of less than 0.2px that fall
within the accuracy of the flow algorithm. Only a few pixels
fall in the [0.2, 0.5] range where only minor errors are possible
invoked by the reflectance model. This indicates that most pixels
are simulated with close to perfect accuracy and that some large
errors are responsible for flow differences in only a few regions.

Figure 4.12 visualizes the differences in the computed flow
fields. The donkey boundary (bottom left of the images) is
blurred, due to specular grazing effects and inter-reflections.
This translates to errors in the real-world flow fields. The edges
are not distinguishable enough for the PPB algorithm Thus the
flow field is blurred across the object boundary. The TEX2K
and TEX3K model produce more pronounced object boundaries
and cannot model the strong specular effects at grazing angles.
As a result, the optical flow algorithm can resolve the object
boundary. The DFE for the TEX2K and TEX3K model is high
in this area, forming a large region with DFE values of 2− 3px.
BTF2K and BTF3K models can replicate this effect and do not
exhibit large DFE values in this area.
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The donkey head is highly reflective forming medium specular
highlights at the nose (bottom of the image) and a strong spa-
tially varying highlights at the delicate structures of the donkey
forehead (top of the image). An additional medium specular
highlight is visible at the donkey torso (bottom right of the im-
age) The strong highlight at the forehead causes discontinuities
in the real-world flow fields.

The TEX model fails at recreating this critical effect and
therefore produces flow fields that are smooth in all areas of
the depicted donkey statue. Consequently, the DFE values are
plentiful in this area, forming a region with errors of 2− 3px.

Both medium specular highlights can be replicated with the
BTF2K, and BTF3K models and the DFE are significantly re-
duced in the corresponding areas. The highlights at the forehead
are fainter, and the spatial variations are smoothed out by the
BTF models. Consequently, the DFE values are large in this
area, forming a region with errors of 2− 3px similar to the TEX
models. This matches the previous hypothesizes, that the BTF
reflectance model is generally capable of simulating the critical
reflectance effects, but is limited by its angular and geometric
sampling when mirror-like reflections are combined with delicate
geometric details. The increased spatial sampling of the BTF3K
model can reduce the overall differences in the flow fields, but
does also fail to simulate this most challenging case to the full
extent.

4.5. Summary and Outlook

The work presented in this chapter analyzes the reflectance model
quality in the context of optical flow performance analysis. To
this end, two high-quality reflectance fields were captured using
a sophisticated dome setup: One for a mostly diffuse clay pyra-
mid with small geometric details and some subsurface scattering
and one for a brass donkey statue with varying degree of spec-
ular reflectivity and delicate geometric details. Four real-world
sequences were captured and synthetically replicated with two
reflectance models: i) The sampled reflectance field, which is
stored in a bidirectional texture function. ii) The simple Lam-
bertian BRDF, which is often used for synthetic optical flow
datasets and acts as a reference. Three well-known optical flow
algorithms were applied to the real sequences and their synthetic
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counterparts.

I assessed the quantative perceptual differences using the struc-
tural similarity metric [169]. In contrast to the PSNR and MSE,
this metric is better suited for an image quality assessments of
optical flow datasets, as it focuses on the image structures which
in turn affect optical flow performance. The renderings of the
Lambertian BRDF cannot replicate critical reflectance effects
for optical flow performance analysis, such as the specular high-
lights of the donkey statue and the shadowing and subsurface
scattering of the pyramid fissures. By contrast, the reflectance
field renderings are indistinguishable from the real scenes, to the
human eye. Close-up views, however, reveal small differences be-
tween the reflectance field renderings and real-world sequences.
While in general all critical reflectance effects can be replicated,
the reflectance field renderings lack small spatial variations of
specular details, where mirror-like reflectivity is combined with
delicate geometry. These differences can be attributed to the
angular and spatial sampling of the reflectance fields, the re-
sampling and SVD compression of the BTF format and the ge-
ometric sampling of the object shape.

Therefore, increased sampling rates and less aggressive BTF
compression can further increase the reflectance model quality,
to the point where even the most challenging highlights could
be simulated to the full extent. In the used dome setup, all
sampling rates are fixed except for the spatial resolution of the
reflectance field, which yielded slight improvements of the per-
ceptual quality.

I quantified the impact of the reflectance model quality by us-
ing a difference flow error metric. It measures how close two flow
fields are for presumably identical (real and synthetic) scenes,
similar to the establish endpoint error. The findings show that
for smooth and diffuse surfaces, accurate reflectance field ren-
derings are not needed and simple material models are good
enough. The average difference flow errors between real and
synthetic flow fields are low and fall well within the accuracy
of the optical flow algorithms for both reflectance model types.
When mostly diffuse materials boast small geometric details and
subsurface scattering, the reflectance field renderings hold a no-
table advantage over the Lambertian BRDF model renderings
and perform with close to perfect accuracy.

For more challenging metallic surfaces the Lambertian BRDF
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model performs poorly. Significant difference flow errors occur
even for faint specular highlights and mostly flat geometry. By
contrast, reflectance field renderings are clearly better: The dif-
ference flow errors can be significantly reduced in areas featur-
ing medium to high specular highlights, at grazing angles and for
medium geometric details. However, the observed visual discrep-
ancies for mirror-like reflections at delicate geometric structures
translate to differences in the flow fields. The real-world flow
fields boast discontinuities under these conditions, which is not
replicated to the full extent in the reflectance field flow fields.
On the other hand, the impact on the optical flow results is so
small, that in all cases more than 95% of all evaluated pixel
locations are less than 0.5 pixels different in flow magnitude.

We can thus conclude that reflectance field renderings are gen-
erally a valid tool for performance analysis of optical flow and
provide a significant improvement over commonly used material
models. The visual differences and errors in the flow fields start
to increase for highly specular objects with lots of fine geometric
detail on the mesoscopic pixel scale. In those cases, a denser an-
gular sampling of the reflectance fields and finer reconstruction
of the object’s shape, should be considered.
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5
Acquisition and Benchmarking

of BRDF Models For Synthetic
Optical Flow Datasets

This chapter is based on my work previously published in [46]

5.1. Motivation

Reflectance fields are an accurate representation of the real-
world reflectance of surfaces and objects. They can be sam-
pled with sophisticated measurement devices resulting in a large
amount of reflectance data, i.e., 50GB for a small 4×4cm patch.
Typically, they are then resampled and compressed with linear
basis decomposition methods into a bidirectional texture func-
tion (BTF). The study in chapter 4 showed that measured BTFs
rendered with unbiased path tracing facilitate accurate synthetic
datasets, which in most cases, optical flow algorithms cannot
distinguish from real-world datasets.

However, there are some limitations: BTFs sample the actual
reflectance of surfaces in discrete steps. The reflectance values
for intermediate angles are then linearly interpolated. As de-
picted in Figure 5.1, this can lead to an inaccurate and fainter
modeling of very sharp mirror-like reflections and increased Fres-
nel reflectivity towards grazing angles. By contrast, BRDFs can
overcome this limitation by performing model-based interpola-
tion on the measured samples and can more accurately represent
the real-world reflectance. Besides, BTFs have other limitations
concerning rendering and virtual scene creation.

Modern rendering systems are typically built on analytical
BRDF models with a clear separation of diffuse and specular
reflectance, i.e., a separation that conforms to how light inter-
actions occur in the real world. This separation is useful for
importance sampling and the efficiency of the simulation. On
the contrary, BTFs do not follow that separation and are, there-
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fore, often not supported. For the few systems that can handle
BTFs, the compressed BTF has to be decomposed for each light
surface interaction of the simulation. Compared to analytical
BRDF models, the shading costs are substantially increased, and
the BTF cannot be importance sampled with the same efficiency.
For large complex scenes, which consist of many different mate-
rials, the BTF data size is also a limiting factor. Consequently,
the quality and diversity of reflectance textures have to be re-
duced to fit on the GPU memory.

BTF Samples

𝑛𝐵𝑇𝐹
𝑛𝑡𝑟𝑢𝑒

Figure 5.1.: BTFs (blue) discretely
sample the real-world reflectance
(green) of surfaces. They are in
general accurate enough for opti-
cal flow performance analysis with
some limitations. As they per-
form linear interpolation of sam-
ples, they can miss strong specular
reflectance peaks and Fresnel re-
flections. In addition to being bet-
ter supported and more efficient,
BRDF models can better simu-
late these effects, due to model-
based interpolation. Thus, they
are promising candidates for opti-
cal flow performance analysis.

While capturing the surface reflectance of scene objects can
lead to high confidence datasets, it is in reality hardly feasible
for a large number of complex scenes. Example based texture
synthesis and interpolation methods are promising methods to
create high confidence datasets from a few measured materials.
While both synthesis and interpolation are possible [128], the
higher dimensionality of the BTF data leads to additional diffi-
culties and limitations compared to analytical BRDF models.

The work highlighted in this section aims to answer the fol-
lowing questions: One, can we derive more convenient analytical
BRDF models from reflectance field data, which are as good as
the BTF representation? Second, how accurately do we have to
model surfaces and surface reflectance for synthetic optical flow
datasets, depending on surface type? In contrast to the work
in chapter 4, the study is based on synthetic images alone. A
purely synthetic approach has the advantage of facilitating ac-
curate ground truth and the ability to create randomized scenes
with a diverse set of reflectance effects, which can hardly be
achieved in a lab. This approach is valid, as the BTF refer-
ence data is proven to be adequate in the context of optical flow
algorithms when using materials without mirror-like reflections.

The contents of this chapter are based on the findings of the
previous Chapter 4. The work presented here is solely my con-
tribution unless stated otherwise and included for the sake of
readability.

5.2. Contributions

The contributions of the work presented in this chapter are three-
fold: First, I propose a method that can create highly accurate,
spatially consistent BRDF model fits from BTF data, preserv-
ing even small geometric details on the mesoscopic texel scale.
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Second, I present new insights on five reflectance effects in the
context of optical flow performance analysis: specular highlights,
anisotropic reflectance, large scale shadow-masking with subsur-
face scattering, fine geometric structures and Fresnel reflectivity.
Third, I set the model requirements for discriminating synthetic
optical flow datasets: I show that for all five effects an efficient
BRDF model can substitute the BTF, creating synthetic images
with virtually identical optical flow behavior. The best per-
formance can be achieved with a physically based anisotropic
Cook-Torrance model and a novel normal estimation.

Fitting analytical BRDFs to BTF data is complex: First, the
reflectance is only sparsely sampled in the angular domain. Sec-
ond, only a coarse geometry is provided, and the remaining
geometric details are encoded within the reflectance informa-
tion. When fitting BRDF models without physical constraints,
the textures are spatially inconsistent and fine structures are
blurred, due to parallax artifacts and violations of the normal
incidence assumption of BRDF models. To facilitate spatially
consistent BRDF fits, a constraint fitting process is proposed.
This process can be extended with a normal estimation pre-
process to preserve the mesoscopic geometric details of the BTF.

I show that by utilizing the proposed methods, the appear-
ance of the BTF reference can be closely matched in most cases.
High-frequency highlights and shadow-masking effects around
fine geometric structures are preserved. Minor differences occur
for sharp specular highlights, where the BRDF model reflections
more intense, due to a superior model based interpolation of the
measured samples. More notable differences remain for surfaces
large scale shadowing-masking and subsurface scattering effects,
which cannot be simulated with either BRDF model.

The conducted optical flow experiments reveal insights on the
required BRDF model accuracy for the five reflectance effects:

i) Large scale shadowing-masking and subsurface scattering ef-
fects do not present a challenge for optical flow algorithms, as
they are mostly diffused and motion-invariant. As a result, dif-
ferences between the computed flow fields are minimal, and all
BRDF model fits can be used with high accuracy.

ii) As expected, specular highlights affect optical flow algo-
rithms the most, due to the highly motion-variant nature. All
BRDF models with normal estimation applied produce flow field
errors that are virtually identical to the BTF model flow field
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errors.
iii) Surfaces with anisotropic reflectance, e.g., fabrics and cloth,

are not generally more challenging for optical flow algorithms
than isotropic surfaces. However, anisotropic BRDF model fits
are required, since isotropic models tend to encode the anisotropic
reflectance in the diffuse term, resulting in significantly smaller
flow errors.

iv) Surfaces with fine geometric structures are challenging to
optical flow algorithms, due to high-frequency shadow-masking
and highlights. BRDF models with normal estimation are needed
to match the BTF reference flow fields. When combined with
anisotropic reflectance or increased Fresnel reflectivity, only a
physically based Cook-Torrance model with normal estimation
performs with almost perfect accuracy.

v) Coated surfaces with intense Fresnel reflectivity are only
challenging when combined with other effects, e.g., the fine geo-
metric structures of leather. In that case, additional normal es-
timation is required to match the BTF reference flow fields. For
all coated materials, a physically based Cook-Torrance model
performs notably better than the empirical Ward and Phong
models.

5.3. Creating BRDF Reflectance Data For
Optical Flow

Sophisticated dome setups can be used to accurately measure
the reflectance fields of surface and objects [132]. The recorded
reflectance data often exceeds several hundred GB and is there-
fore not suited for storage and rendering. Typically, linear basis
decomposition is applied to the reflectance field data to reduce
the data size of the BTF and speed up the rendering process
(c.f ., section 2.4.3. They are data efficient and can achieve al-
most lossless quality.

In this section, I first present the chosen reference data, con-
sisting of material samples with a large variety of reflectance
effects. Then I show how the BRDF model fits are formulated
as a non-linear least square fit of the ABRDF representation of
the BTF data. I present the encountered problems of an uncon-
straint fit, due to the sampling properties of the underlying BTF
data. Finally, I propose a constraint fit with normal estimation,
that can better deal with the BTF sampling.
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5.3.1. Reflectance Field Reference Data

To study the required reflectance model accuracy, in the context
of synthetic optical flow datasets, a reference dataset with suf-
ficiently accurate reflectance field data is needed. The dataset
should include a wide range of reasonably large material sam-
ples and sufficiently accurate sampling of the geometry and the
reflectance in the spatial and angular domains. Ideally, it would
facilitate uncompressed reflectance fields for optimal BRDF fit-
ting as well as compressed BTF data. Unfortunately, no such
dataset exist and the compressed BTF data has to be used for
BRDF model fits. Consequently, the BRDF models always in-
clude artifacts induced from the BTF format and the format
with the least aggressive compression creates the best results.

The BTF database Bonn meets the requirements except for
the availability of an uncompressed reflectance field format [156].
It contains reflectance field measurements for 84 planar mate-
rial samples for seven semantic classes, i.e., 12 samples each for
carpets, fabrics, felts, leathers, stones, wallpapers, and woods.
The reflectance field data of the material samples are captured
with the Dome1 setup of the University of Bonn. For a de-
tailed description of the measurement process, I refer to the
work by Schwartz et al. [132]. It is encoded in a bidirectional
texture function (BTF) for 151× 151 distinct view and light di-
rections, which are evenly distributed on the hemisphere above
the samples. The BTF data comes in two formats: i) A Decorre-
lated Full-Matrix-Factorization (DFMF), directly sampling the
reflectance field measurements. ii) A Full-Matrix-Factorization
(FMF) resampled with respect to the measured height map. The
FMF format has the advantage of including accurate silhouettes
of the surface geometry and increased detail for structured sur-
faces that deviate from normal incidence. The quality of the
FMF format closely resembles the quality of the BTF format
used in Chapter 4. It has a slightly more aggressive compression
in the spatial domain and a more accurate compression in the
angular domain. As the angular sampling is the most limiting
factor in terms of perceptual and optical flow simulation quality,
it is a suitable format for this study. The chosen BTF dataset
has proven applicability in the computer vision domain, as it
was captured for and successfully applied to synthesize training
images for a material classification network [156].

From the available materials samples I chose a subset of seven,
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covering each material class of the dataset and a large vari-
ety of reflectance properties: felt05, wood07, fabric07, leather01,
stone06, wall02 and carpet02. For clarity, I omit using the num-
bered suffix in the following sections. Since all seven classes are
dielectrics, I additionally used an aluminum and a copper BTF,
which was measured with the same dome setup, to include metal-
lic reflectance properties. This set of materials covers a broad
spectrum of material reflectance properties: almost perfectly dif-
fuse reflectance with subsurface scattering (felt, carpet), metal-
lic specular reflectance (aluminum, copper), anisotropic specular
reflectance (fabric, leather, wood), smooth coatings and strong
Fresnel reflectivity (stone, leather, wood) and surfaces with pro-
nounced geometric details (leather, carpet, felt, wall). Using
these samples, I can create various critical reflectance effects for
optical flow algorithms and assess the required reflectance model
quality for synthetic optical flow datasets.

isotropic

material

specular 

reflection

grazing 

angle

anisotropic

material

surface
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Figure 5.2.: Real-world reflectance
is partly diffused in all directions
and partly distributed around the
specular reflection direction and
the grazing angles, i.e., low view-
ing angles. The specular distribu-
tion can be isotropic or anisotropic,
i.e., the reflectivity depends on the
azimuth angle of the reflection di-
rection. All BRDF models con-
sist of a view independent Lam-
bertian diffuse term and a view-
dependent model specific specu-
lar term. The empirical Phong
model can only model isotropic
reflections without Fresnel reflec-
tivity at grazing angles. The
empirical Ward model can addi-
tionally model anisotropic reflec-
tions. The physically based Cook-
Torrance can model anisotropic re-
flections and Fresnel reflectivity at
grazing angles.

5.3.2. Fitting BRDFs to BTF Data

BRDF models are efficient analytical representations of reflectance
properties of surfaces and objects 2.4.2. As such, they are tied to
BTF compression methods, which are concerned with reducing
the vast amounts of data from reflectance field measurements.

The Lafortune lobe model [75] is an empirical, analytical BRDF
model, which consists of a finite sum of arbitrarily aligned co-
sine lobes and was specially designed for fitting reflectance data.
The model was applied to BTF compression by McAllister et
al. [96]. However, the compression is limited in quality for
non-homogeneous surfaces compared to linear basis decompo-
sition methods, which are typically used for BTF compression.
Additionally, compared to other analytical BRDF models, the
model is computationally inefficient, lacks physical plausibility,
and most importantly, lacks support in modern rendering and
texturing systems. It is therefore hardly used for BTF compres-
sion and not further addressed in this study.

On the contrary, other analytical BRDF models are better
suited for rendering tasks and de facto standard opaque mate-
rial models in computer graphics. In this study, three commonly
used BRDF models were fitted to the BTF data and analyzed
with respect to optical flow performance analysis: a physically
plausible modified Phong model [74], a Ward model with the
Duer normalization fix for specular lobes and grazing angles [39]
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and a modified Cook-Torrance model [20] with an anisotropic
microfacet distribution from Ashikhmin and Shirley [5]. The
different properties of the BRDF models are outlined in Fig-
ure 5.2. All models consist of a lambertian diffuse term and a
model specific specular lobe:

M(ωi, ωo, d, s, α) = d/π +K(s, ωi, ωo, α) (5.1)

where ωi, ωo are the incident and outgoing light directions, d
is the diffuse color, π is the Lambertian normalization factor, K
is the specular reflectance term, s is the specular color, and n

are the model specific roughness or glossiness parameters. For
the Phong model α corresponds to the one-dimensional Phong
exponent of the isotropic cosine lobe, for the Ward model α
corresponds to the two roughness parameters along the tangent
and bitangent directions, and for the Cook-Torrance model α
corresponds to the two specular exponents along the tangent
and bitangent directions. For the exact analytical form of each
specular BRDF term, I refer to Section 2.4.2 and the original
papers.

To create spatially varying BRDF textures from BTF data, in
the least squares sense, the BTF data has to be converted into a
format that is compatible with the BRDF. This format is the ap-
parent BRDF (ABRDF) which encodes the reflectance of a BTF
texel for a fixed amount of distinct view and light directions, c.f .,
Section 2.4.3. Typically, those directions are evenly distributed
on the hemisphere above the texel. In the used BTF data, the
ABRDFs are of size 151× 151 and correspond to an average an-
gular resolution of 9.4◦ in both view and light directions [132].
In the normalized format, i.e., the ABRDF is normalized to the
irradiance incident on the captured surface geometry (c.f ., equa-
tion 2.16), the ABRDF is essentially a sampling of the BRDF.
However, it additionally models mesoscopic geometry variations
and does not follow Helmholtz Reciprocity (c.f ., section 2.4.1),
e.g., a texel can include subsurface scattering light paths from
other parts of the surface.

For each BTF Texel I constructed the minimzation problem
as a least square fit of the BRDF model paramaters p = (d, s, α):

p = argmin
p

1
N

∑
i,o

(cos θi cos θo(Âx(ωi, ωo)−Mx(ωi, ωo, p)))2

(5.2)
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where x is the BTF texel, Â is the normalized ABRDF of
the texel consisting of the measurements for ωi, ωo the incident
and outgoing light directions, θi, θo are the corresponding el-
evation angles and Mx(ωi, ωo, p) is the reflectance value of the
texels BRDF model for the incident and outgoing directions as
in equation 5.1.

With a decreased camera elevation, a smaller portion of the
surface texel is visible from the camera. This portion is propor-
tional to the cosine of the elevation angle cos θo. Respectively,
the incident irradiance of the light source on the surface texel is
proportional to the cosine of its elevation angle cos θi. Therefore,
the uncertainty of the ABRDF measurements is inverse propor-
tional to the elevation of both the camera and the light, and the
1/(cos θi cos θo) factor of the objective function is mathemati-
cally motivated.

5.3.3. Encountered Challenges of Unconstraint Fits

Fitting analytical BRDF models to measured reflectance data
has been successfully applied before, e.g., in the work of Ngan
et al. [110] and Matusik et al. [93]. They densely captured the
reflectance data of spherical homogeneous material samples from
a camera and a moveable light source. For a detailed description
of the measurement setup, I refer to the previous section 2.4.4.

The captured data consists of more than 4M samples, which
results in an angular resolution below 1◦ around the perfect mir-
ror direction. Due to this high angular sampling density and the
perfect underlying surface normals, it can be used for direct visu-
alization or BRDF models can be fitted to the data with relative
ease, using non-linear squares optimization methods. However,
the data is limited to the reflectance of a single surface point, by
design. Therefore, it can only be used to model homogeneous
flat material reflectance, e.g., smooth metals and paints. The
BTF bypasses this limitation by sampling the entire reflectance
field and storing it in a texture. It includes spatially varying
reflectance and mesoscopic detail, i.e., geometric details on the
texel scale, and is suited to model the reflectance properties of
more complex heterogeneous materials, which are relevant for
synthetic optical flow datasets. However, the specific sampling
properties of the BTF model increase the difficulty of the BRDF
fits in comparison to the methods described by Ngan et al. [110]
and Matusik et al. [93]. In the following I describe the encoun-
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tered challenges of this process:

Sparse Angular Sampling The MERL BRDF data includes
roughly 4M reflectance samples, an equivalent to a sub 1◦ angu-
lar resolution. By contrast, the angular sampling density of the
BTF data is significantly lower with 22801 reflectance samples
corresponding to an angular resolution of 9.4◦. The BTF render-
ing performs a linear interpolation between the reflectance sam-
ples. Therefore, mirror-like reflectivity might be insufficiently
sampled, e.g., for smooth metals, and some specular details
might be missed (c.f ., chapter 4. An analytical BRDF fit can po-
tentially better model mirror-like reflectivity, as a BRDF model
interpolation can be considered superior to a simple linear in-
terpolation. However, the coarse angular sampling can result
in spatially inconsistent specular terms using unconstraint non-
linear least squares optimization, i.e., some texels might include
severe specular reflectivity, and other potentially neighboring
texels might have fainter specular reflectivity. For almost diffuse
materials, a similar problem can occur. The coarse angular sam-
pling can create ambiguities of BRDF terms, i.e., there might
not be a precise distinction between a rough specular reflectance
and a diffuse Lambertian reflectance. As a result, one can ob-
serve spatial inconsistency for very diffuse materials, where some
texels might have a stronger rough specular term and a weaker
diffuse Lambertian term or the other way around. The spatial
inconsistencies in both cases can be amplified when high fidelity
mesoscopic detail is present, a BRDF fitting challenge that I
explain subsequently.

Mesoscopic Detail The reflectance data of the MERL BRDF
database is sampled for a single surface point with a perfect sur-
face normal, i.e., a surface that points upwards along the normal
incidence. Hence, the data is well suited for BRDF model fits,
that assume a normal along normal incidence. By contrast, the
BTF material samples are 4cm × 4cm surface areas with de-
tailed geometry and surface normals that deviate from normal
incidence. A structured light scanner coarsely scans the sur-
face geometry, and the BTF data is resampled with respect to
that geometry. However, the coarse geometry does often not
match the real-world geometry on the mesoscopic texel scale,
c.f ., Section 2.2.2. These mesoscopic geometry details are en-
coded within the BTF reflectance data. Later results show that
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for many material samples, the real-world normals often devi-
ate from the measured geometry normals by up to 30◦. BRDF
models do, however, assume normal incidence, causing inaccu-
racies for unconstraint non-linear least squares fits of the BTF
data. The mesoscopic details are blurred out in the fitted tex-
tures and structures are lost. Parallaxing artifacts are caused
at low viewing angles, where the real-world reflection direction
points below the coarse geometry. The spatial inconsistencies
caused by sparse angular sampling are further amplified for ma-
terial samples with lots of mesoscopic details, such as the leather,
fabric and carpet samples.

Impact on Optical Flow Unconstraint least square fits of the
BRDF models can result in a spatially inconsistent appearance,
that is detrimental to optical flow performance analysis. New
structures are induced from the BRDF models, affecting the
pixel correspondences of the optical flow algorithms. The loss of
mesoscopic details in the BRDF fits could affect the performance
of optical flow algorithms, which often rely on such mesoscopic
structures.

Therefore, additional optimization steps and constraints are
needed to ensure that the BRDF model fits are creating a more
consistent and detailed visual appearance and are thus better
suited for optical flow performance analysis.

5.3.4. Improved BRDF Fit to BTF Data

In this section, I detail my proposed method to create visually
pleasing and consistent results when fitting efficient BRDF mod-
els to BTF reflectance data. This method accommodates for the
challenges due to the sparse angular and geometric sampling of
the reflectance fields and captures the encoded mesoscopic ge-
ometric details of the BTF data. It is applicable to arbitrary,
mostly opaque material samples with varying reflectance prop-
erties, e.g., the chosen material samples from the BTF database
Bonn for the following experiments.

General Setup In all BRDF model fits two specular lobes were
used. While a second specular lobe is not physically correct in all
cases, i.e., only coated materials have two physical interfaces and
thus two specular terms, it can improve the quality of the fits for
two reasons: i) Real-world materials often have broad specular
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distributions, i.e., long tail off-specular reflections. Most spec-
ular distributions do not sufficiently model off specular reflec-
tions and a broad second specular lobe was suggested by Ngan
et al. [110] and Cook and Torrance [20] to improve the qual-
ity of the fits. ii) For structured material with high-frequency
mesoscopic detail encoded in the BTF, a second specular lobe
can help to capture this detail better. A log(1 + s

4) Cauchy loss
function was used for the least-square optimization of the BRDF
models. The negative impact of outliers, present near grazing
angles and due to the mesoscopic geometric details in the BTF,
is therefore reduced.

Consistent Fitting Process

A two-step fitting process was used applying knowledge about
physical reflectance properties and limitations of the underlying
BTF data. This process helps to stabilize the BRDF fits in the
spatial domain and make them visually consistent.
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Figure 5.3.: The proposed fitting
approach utilizes two independent
specular lobes. The first specular
lobe with roughness value between
0.1(blue) and 0.5(green) is used
to model the main specular reflec-
tions, which is mostly distributed
for half angles θh close to the sur-
face normal. The second specu-
lar lobe uses roughness values be-
tween 0.5(green) and 0.95(red) and
mostly models the off-specular re-
flections and increased Fresnel re-
flectivity for flat half angles. The
lobes are fitted in a two-step pro-
cess, which ensures that the diffuse
term is spatially consistent.

Initial Diffuse Estimate In the first step, an initial estimate
of the diffuse reflectance parameters d0 is computed from the
view and light directions around normal incidence, using a sin-
gle narrow specular term for the main specular reflection compo-
nent. More precisely, equation 5.2 is solved with p = (d0, s0, α0)
for elevation angles θi, θo < 45◦ and a single specular term
with constraint parameter bounds for the roughness parame-
ter α0 ∈ [0.1, 0.5]. The maximum elevation angles of the view
and light directions are chosen to ensure that the increased Fres-
nel reflectivity at low grazing angles does not influence the dif-
fuse reflectance estimate. The roughness parameter bounds were
chosen for the Ward and Cook-Torrance models and are equiva-
lent to a Phong glossiness exponent parameter range of [6, 202].
The corresponding specular distributions for the Cook-Torrance
model are depicted in Figure 5.3. It visualizes the specular re-
flectance for the minimum and maximum roughness value with
respect to the angle between the half vector and the surface nor-
mal. The minimum roughness of 0.1 is chosen to ensure that
the sharpest specular highlights can still be sufficiently sam-
pled with the 9.4◦ angular resolution of the BTF Data. The
maximum roughness value of 0.5 ensures that the mostly diffuse
reflectance properties are modeled with the Lambertian diffuse
term of the model and not the main specular lobe.
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Full Estimate In the second step a larger portion of the view
and light directions is utilized, and the specular lobe of the pre-
vious step is replaced by two independent specular lobes, one
for the main specular reflections and one for off-specular reflec-
tions. At the same time, the diffuse estimate d0 from the pre-
vious step serves as parameter bound for the finale diffuse re-
flectance estimate d. More precisely, equation 5.2 is solved with
p = (d, smain, soff , αmain, αoff ) for elevation angles θi, θo < 60◦

with the diffuse reflectance parameter d ∈ [k · d0, d0], the main
specular lobe with αmain ∈ [0.1, 0.5] and the off specular lobe
with αmain ∈ [0.5, 0.95]. By utilizing more view and light direc-
tions, the increased Fresnel reflectivity can be better modeled.
However, the ABRDF are increasingly inaccurate for low angles,
and thus it was beneficial not to use the full direction set with
elevation angles up to 75◦. The upper bound for the diffuse
reflectance corresponds to the initial estimate. It ensures that
the increased Fresnel reflectivity near grazing angles does not
affect the final diffuse estimate, and is instead correctly modeled
by the specular terms. The downscaled lower bound is used to
clear space for the off-specular lobe. I empirically chose k = 2/3
for visually pleasing results. The parameter bounds for the main
specular lobe were chosen as in the previous step. The parameter
bounds for the off-specular lobe were chosen to cover specular
reflectance effects in between the main specular lobe and the
diffuse reflectance term.

Normal Estimation

The surface geometry of the material samples is only coarsely
sampled in the BTF data. The remaining geometric details
on the mesoscopic texel scale are encoded within the BTF re-
flectance. The previously proposed BRDF fitting process is
spatially consistent, but cannot model these mesoscopic details.
Therefore, I propose a normal estimation preprocessing step that
can accurately model the present geometric details. It can be as-
sumed that the highest reflectance occurs along the perfect mir-
ror direction, which is directly dependent on the surface normal.
Extending ideas from Shape from Shading [122] and Photomet-
ric Stereo [41] the normal can be estimated. However, instead of
assuming diffuse reflectance, the density of the BTF data allows
the incorporation of a specular term for more accurate surface
normal estimation. The optimization function from equation 5.2
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is solved for a normal estimation model with an anisotropic co-
sine lobe around the perfect mirror direction:

Mx(ωi, ωo, φ, n, d, s, nu, nv) =

ωi · n
cosθi

(
d

π
+ s

√
(nu + 2)(nv + 2)

2π (n · h)nu cos2 φ+nv sin2 φ

)
(5.3)
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Figure 5.4.: Schematic figure of
mesoscopic detail loss with BRDF
model fits. The BTF (blue) en-
codes the surface geometry and
surfaces normal (grey) in a coarse
mesh. The true surface and its
normal (black) can often deviate
for surfaces with fine structures.
This mesoscopic geometric detail
is typically encoded in the BTF
samples. BRDF model fits(ref) to
the BTF data, which utilize the
BTF normals, are thus more dif-
fused and exhibit broader specular
highlights. This results in a loss
of structure and fine geometric de-
tails. An estimation of the true
normal can help overcome this is-
sue.

where h = ||ωi + ωo|| is the half vector between the view di-
rection ωo and light direction ωi, n is the surface normal and nu
and nv are the cosine exponents along tangent φ and its corre-
sponding bitangent direction. The factor 1

cos θi
corresponds to

a ABRDF without normalization to incident irradiance on the
scanned coarse geometry. Instead, the BRDF model is attenu-
ated with the incident irradiance of the estimated normal, mod-
eled with the factor ωi ·n. The diffuse term d/π is a regular Lam-
bertian diffuse term and conforms to the terms of Shape from
Shading [122] and Photometric Stereo [41]. The specular lobe is
equivalent to an anisotropic Phong Model with a parametrized
normal. A standard isotropic Phong model was tested but de-
viated for anisotropic material samples. The objective function
was minimized for θi, θo <= 60◦. The resulting surface nor-
mal correction term can then be used as the input normal for
previously presented two-step BRDF estimation. The resulting
BRDF models are then both spatially consistent and include
mesoscopic geometric details.

5.4. Experimental Setup

The methods described in the previous section 5.3 were used to
fit three analytical BRDF models to the BTF data: a physically
plausible modified Phong model [74], a Ward-Duer model with
a normalization fix for specular lobes and grazing angles [39]
and a modified Cook-Torrance model [20] with an anisotropic
microfacet distribution from Ashikhmin and Shirley [5]. Two
variants each were created: First, a variant created with the
proposed consistent fitting process. Second, a variant with ad-
ditional normal correction applied. The methods were imple-
mented with the open-source Ceres Solver 1 and applied to each
material sample. This resulted in a total amount of 54 BRDF

1ceres-solver.org
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model fits, which are distributed to the nine material samples,
three BRDF models, and two BRDF model variants.

To assess the accuracy of the BRDF model fits in the context
of optical flow performance analysis, randomized test scenes were
created. The sampling of the geometry, camera parameters, and
light parameters were chosen to create a large variety of camera
and light motions as well as motion-variant reflectance effects
that challenge optical flow algorithms, e.g., specular highlights
with varying size and motion. The BTF and BRDF materi-
als were applied to each test scene and rendered using unbiased
path tracing. The resulting synthetic images were then used
as input for two optical flow algorithms: The MDP-Flow2 Al-
gorithm by Xu et al. [163], it achieves high performance levels
on the Middlebury dataset and comes with a published imple-
mentation, and a multi-scale, non-linear version of the classical
Horn&Schunck algorithm [62], which was implemented with the
open source Charon framework [43]. Parameters for both meth-
ods were chosen to produce flow fields as accurate as possible
for arbitrary scenes. Finally, the flow fields were analyzed con-
cerning Endpoint Error (EPE) and Reflectance Aware Endpoint
Error distributions. The latter analysis takes into account the
EPE distributions with respect to normals, camera positions,
and light positions, enabling the assessment of motion-variant
reflectance effects, i.e., specular highlights and grazing effects.

5.4.1. Generation of Randomized Test Sequences

The scanned mostly planar surface geometries of the BTF ref-
erence data are encoded in height maps. By using the height
maps directly, all synthetic renderings exhibit reflectance effects
with similar spatial distributions, e.g., structures and specular
highlights are of similar size in each rendering of a material sam-
ple. This is unrealistic and unrepresentative for real-world con-
ditions, i.e., real-world surfaces often belong to more complex
non-planar shapes. To better asses a large variety of reflectance
effects, the height maps were displaced by 1/f4 gradient Perlin
noise [54], creating naturalistic deformations of the surface geom-
etry. The noise focuses on low-frequency displacements with the
size of the material textures, i.e., noise with the size of 4× 4cm,
and decreases by a factor of 4 with each subsequent octave. Sim-
ilar noise functions are often used to procedurally create natu-
ralistic geometry for materials such as cloth, terrain, tarmac and
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stone materials.
A pinhole camera was used with a field of view of 50◦ and

a quadratic sensor size of 512 × 512px. The camera position
was uniformly sampled around the center position of the ma-
terial surface, with an elevation angle θ ∈ [0, π/4], an azimuth
angle φ ∈ [0, 2π] and a distance towards the center of the ma-
terial sample in the range [0.4, 0.5]m. The target-vector of the
pinhole camera was chosen to point at a random point of the
surface geometry, and the up-vector was uniformly sampled in
perpendicular directions. The camera was moved on a linear
path in 3D space, with a camera distance between image pairs,
that was uniformly sampled in the range of [0.0, 0.01]m. The
camera rotation between the image pairs was sampled with a
normal distribution and σ = 0.1◦, favoring small rotations.

As a light source, a sphere with a diameter of 5mm and a
white light emission with a radiance of 200W/(sr ·m2 ·Hz) was
used, imitating a white LED bulb. A small amount of ambient
light was added, i.e., an ambient radiance of 0.3W/(sr ·m2 ·Hz),
to ensure that some light was always visible by the surface. The
light extrinsics were sampled in the same fashion as the camera
extrinsics. However, the distance to the material sample and the
traveled distance between image pairs was increased by 50% to
ensure that the light source was not visible by the camera.

A total of 39 test scenes were sampled and then rendered
with BTF reference data as well as the BRDF fits of each mate-
rial sample. To this end, I used the open source, physics-based
renderer “Mitsuba”2 with an unbiased path tracing rendering
algorithm and a sample count of 1024 samples per pixel. The
BTF rendering was performed with a plugin supplied by the cre-
ators of the BTF database Bonn [156]. For the Cook-Torrance
fits a new Mitsuba plugin was implemented. For the Phong and
Ward fits, I used the original plugin from Mitsuba. The ground
truth flow was ray traced with the method of McCane et al. [98].
Overall the random sampling of the virtual scene and camera
extrinsics resulted in average ground truth flow magnitude of
7.4px.

5.4.2. Reflectance Aware Endpoint Error

The quality of the BRDF fits, and the visual appearance of
the synthesized images can give the first indication of system-

2www.mitsuba-renderer.org
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atic differences between the reflectance models, which can lead
to differences in the computed flow fields. However, the main
goal of this study is the assessment of the BRDF models con-
cerning different material types and the simulation of critical
reflectance effects for optical flow performance analysis. Opti-
cal flow is sensitive to local brightness changes over time, i.e.,
motion-variant reflectance effects such as moving specular high-
lights. However, it is robust towards brightness differences that
are motion-invariant, e.g., differences in the diffuse reflectance.
Consequently, the errors around motion-variant reflectance ef-
fects are of primary interest.

The Endpoint Error (EPE) computes the average magnitudes
of the differences between the ground truth flow fields and the
computed flow fields [114]. It is an established measure to as-
sess the general performance of optical flow algorithms, assuming
ground truth flow is provided. However, the EPE cannot dis-
tinguish between critical errors and errors in less critical parts
of the scene. In the context of stereo disparity estimation, ge-
ometry aware stereo metrics have been established to accurately
measure the performance of algorithms for critical parts of the
scenes, i.e., fine structures, depth discontinuities and planar sur-
faces [61].

This approach can be adapted. Fine structures, depth discon-
tinuities, and planar surfaces are not as relevant for measuring
the BRDF model quality for optical flow datasets. However,
the geometric properties of the surface, the position of the light
source, and the position of the camera are essential aspects for
the generation of motion-variant reflectance effects. Therefore, I
use a reflectance-aware analysis of the EPE distributions. More
precisely, the flow vectors are partitioned into intervals accord-
ing to the angular distance between the perfect light reflection
direction ωr and the view direction of the camera ωo. I then an-
alyze the simulation quality of specular effects by evaluating the
EPE statistics with respect to the reflectance-aware intervals.
Accordingly, the angle between the local surface normal n and
the view vector ωo help investigate increased Fresnel reflectivity
close to grazing angles.

94



5.5. RESULTS

5.5. Results

In this section, I present the results of the conducted experi-
ments. I used a BTF reference dataset (BTF) consisting of nine
material samples: carpet, copper, alu, fabric, felt, leather, stone,
wall and wood. For each material sample I created six analytical
BRDF model fits: A Ward model, a Cook Torrance(CT) model
and a Phong model as well as the corresponding BRDF model
with normal estimation WardN, CTN and PhongN. I ran-
domly sampled 39 test scenes with the presented workflow from
section 5.4. The test scenes were rendered for the nine material
samples and the seven reflectance models each, resulting in a
total of 2457 synthetic test sequences. Finally, the optical flow
was computed using two flow methods, a basic Horn&Schunck
(H&S) and the more sophisticated MDP-Flow2 (MDP) algo-
rithm.

The following analysis is concerned with the BRDF model sim-
ulation quality of critical optical flow reflectance effects for dif-
ferent material types. I analyze the quality of the BRDF model
fits for the remaining cost of the optimization and the percep-
tual differences of the synthesized images. Then I briefly report
general insights regarding material simulation quality from an-
alyzing the EPE distributions of 750 million flow vectors. Sub-
sequently, I present a detailed analysis of the reflectance aware
EPE distributions for critical motion-variant effects: The spec-
ular reflections on the copper and aluminum samples and the
mesoscopic detailed surface geometry on the leather and fabric
samples.

5.5.1. BRDF Model Fit Quality

The per texel cost of the objective function (c.f ., equation 5.2)
for each BRDF model fit averaged out over all material sam-
ples is depicted in Table 5.1. As expected, the BRDF models
rank in the order of the physical model accuracy, where the
physically based anisotropic CT model is best, followed by the
data-driven anisotropic Ward model and the empirical isotropic
Phong model. Differences between CT and Ward are however
marginal. The proposed normal estimation pre-process can re-
duce the cost of the BRDF model fits by ∼ 25% on average, with
up to ∼ 50% cost reduction for specular and mesoscopic detailed
material samples, i.e., aluminum, copper, and leather, as well as
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CTN CT WardN Ward PhongN Phong
cost 6.74 10.43 7.39 11.02 14.84 17.50
σ2
rel 2.9% 4.6% 3.3% 4.9% 6.5% 7.7%

Table 5.1.: Table depicts the av-
erage per texel cost of the BRDF
model fits over all material sam-
ples and the corresponding relative
error for each BTF measurement.
BRDF rank in order of CT, Ward,
Phong. Normal estimation im-
proves the BRDF fits by roughly
25%.

a minimum of ∼ 10% cost reduction for almost diffuse material
samples, i.e., felt and carpet. The cost values correspond to a
relative variance σ2

rel for each measured reflectance value in the
range of 2.9% for the most accurate CTN model and 7.7% for
the least accurate Phong model without normal estimation.

5.5.2. Perceptual Comparison

Close-ups of synthesized images for exemplary test scenes of
three material samples are depicted in Figure 5.5. The cop-
per sample features high specular reflectivity and low-frequency
mesoscopic details. In the depicted image, a pronounced spec-
ular highlight is visible. A high-intensity highlight along the
main specular reflection direction can be seen in the center and
a low-intensity off-specular reflection towards the border of the
close-up. All three BRDF models can replicate the main high-
light with almost identical appearance and closely match the ap-
pearance of the BTF reference. However, the highlight intensity
is slightly increased for all BRDF models, likely due to the in-
accurate linear interpolation of specular reflections for the BTF
reference. For the BRDF models without normal estimation, the
highlight is slightly shifted to the top, due to a systematic offset
of the scanned surface normal by ≈ 3◦. The normal estimation
can correct this offset and better replicate the main specular
highlight. The off specular reflections, i.e., reflected light paths
further away from the perfect mirror directions, are better sim-
ulated with the more accurate CT and Ward models compared
to Phong model, which appears to be slightly too dark in said
areas.

For the leather material sample with high-frequency meso-
scopic detail and medium specular reflectivity, the fine structures
of the surface fissures are significantly blurred for all BRDF mod-
els without normal estimation compared to the BTF reference.
This can be corrected with normal estimation for all BRDF mod-
els, which can retain all the fine geometric details of the BTF.
The CTN appearance closely matches the appearance of the
BTF model in all areas. The WardN model to a low extent
and PhongN to a much higher extend models appear darker
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around grazing angles, i.e., at the left side of the close-up, where
the angle between the view and surface normal is large. This can
be explained by the inability to simulate Fresnel reflections ade-
quately. The fissure structures for the PhongN model are more
pronounced compared to the BTF, CTN and WardN models.
As the underlying surface normals are identical, this can only be
caused by the inability to model anisotropic reflectance, which
is in turn encoded into the diffuse term.

The felt material sample is a composite layered material, with
almost diffuse specular reflectance, high and low-frequency meso-
scopic details and strong subsurface-scattering and shadowing-
masking effects. Compared to the BTF reference, the appear-
ance of all BRDF models is more blurry and lacks large scale
shadowing and scattering effects. Some of the small mesoscopic
details can be corrected with the normal estimation, but sub-
stantial differences in the low-frequency details remain. This can
be explained: The BTF reference can model large scale shadow-
ing effects as well as the light that travels within the material
before it is reflected towards the viewer. The BRDF models can-
not replicate these effects, as the light entrance and exit position
always fall in the same texels. However, due to the diffused na-
ture, these effects are typically mostly motion-invariant and do
not pose challenges to most optical flow algorithms.

5.5.3. General Optical Flow Analysis

Flow fields for image pairs that are not bit-accurate identical
always differ in some way, due to the algorithms dependency on
the statistical distribution of image intensities. However, syn-
thetic renderings can still be considered useful for optical flow
performance analysis, when they exhibit closely matching EPE
distributions, i.e., the probabilities to create specific error ranges
is identical. In the following paragraphs, I briefly report the anal-
ysis on the EPE distribution for both flow methods and all nine
materials and then detail the most salient material specific EPE
distributions. While EPE distributions are not suited to local-
ize the circumstances that lead to systematical differences in the
flow fields, they can give us the first indication if and how the
BRDF model flow fields differ from the BTF model reference.

MDP EPE Distributions Figure 5.6 depicts boxplots of EPE
distributions for the MDP flow algorithm for all reflectance mod-
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Copper Leather Felt

BTF

CTN

Phong

FCT

WardN

PhongN

Ward

Figure 5.5.: Close-up images of
exemplary synthesized images for
three material samples and all re-
flectance models. In the BTF ref-
erence image of the copper sam-
ple (left), a large highlight is visible
with high intensity main specular
reflections in the center and lower
intensity off-specular reflections to
the sides. The CTN, WardN and
PhongN models can replicate the
highlight. However, the main spec-
ular reflections are more intense,
due to the improved model-based
interpolation of the BTF samples.
The off-specular reflections are de-
creased for the PhongN model.
The CT, Ward and Phong model
highlight is slightly shifted to the
top, due to a systematic normal
offset of ≈ 3◦ in the scanned ge-
ometry. In the BTF reference im-
age of the leather sample (mid-
dle) high-frequency specular high-
lights are visible to the right and
high-frequency shadow-masking ef-
fects on the entire surface. These
mesoscopic details can be accu-
rately replicated with CTN and
WardN models. The PhongN
preserves the mesoscopic details as
well, but the details too more pro-
nounced and partially baked into
the diffuse term. Additionally, the
appearance is darker towards the
grazing angles in the left side, as
it cannot model Fresnel reflectiv-
ity. The mesoscopic details for
the CT, Ward and Phong mod-
els are significantly blurred, which
can be problematic for finding pixel
correspondences with optical flow.
In the BTF reference image of
the felt sample (right) we can
see mostly diffused reflectance with
large scale shadowing-masking and
subsurface scattering effects. The
effects cannot be replicated with ei-
ther model, and the appearance is
overall less structured. However,
the CTN, WardN and PhongN
models can preserved the higher
frequency details.
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Figure 5.6.: Endpoint Error distri-
butions of MDP Flow Algorithm
combined for all 9 material sam-
ples and 39 image pairs. The
BRDF models with normal esti-
mation have similar median er-
rors, yet slightly larger outliers.
This indicates that the simulation
quality, in general, matches the
BTF model, but that some criti-
cal reflectance effects are more pro-
nounced. BRDFs without normal
estimation exhibit significantly in-
creased median errors as well as
outliers. Likely, the blurred geo-
metric details cause the overall in-
creased errors as optical flow algo-
rithms depend on clearly defined
structures. Differences between
the BRDF models cannot be ex-
tracted and need to be assessed in
a more detailed analysis.

els, combined for all nine materials and test sequences. For the
MDP algorithm the median EPE is low and below 0.1px, which
corresponds to a relative flow error of slightly more than 1.3%.
However, the distribution is heavy-tailed with mean and third
quantile EPEs of ≈ 0.2px, indicating that some reflectance ef-
fects are responsible for outliers in the flow fields. The distribu-
tions of the CTN, WardN and PhongN models are of similar
shape compared to the BTF model and almost identical in di-
rect comparison. The median EPE of the BRDF models is only
slightly increased, but the mean and third quantile EPE are more
abundant with ≈ 0.25px, indicating that some simulated effects
are more challenging for the MDP algorithm. By contrast, the
CT, Ward and Phong models exibit larger differences in the
EPE distributions. The median errors are increased by 50% to
≈ 0.15px and third quantile and mean errors are almost dou-
bled. This indicates that the loss of high-frequency geometric
details is critical to the MDP algorithm performance, as it re-
lies on structures to find accurate pixel correspondences between
frames.

H&S EPE Distributions For the H&S algorithm, the BTF er-
rors are significantly more abundant in general. Compared to
the MDP algorithm, the median errors are more than twice as
large, and more importantly, the outlier errors are increased al-
most 10-fold. In fact, the outlier EPEs are almost as large as
the average length of the ground truth flow vectors, indicating
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H&S Flow AlgorithmFigure 5.7.: Endpoint Error dis-
tributions of H&S Flow Algorithm
combined for all 9 material sam-
ples and 39 image pairs. The
EPE is significantly increased com-
pared to the MDP algorithm. Out-
liers are in the range of the av-
erage length of the ground truth
flow vectors. This indicates that
some simulated effects pose a great
challenge to the algorithm. As
the overall performance of the flow
method is poor, all EPE distribu-
tions are similar, and differences
are not very pronounced. The
BRDF models with normal esti-
mation have almost identical me-
dian errors, compared to the BTF
reference. However, outliers are
slightly decreased. The median er-
rors of the models without nor-
mal estimation are increased by
≈ 25%. This indicates that the
blurred structures also affect H&S
algorithm in its ability to find
correspondences under seemingly
unchallenging conditions. Again,
there are hardly any differences be-
tween the BRDF models for the
general flow performance.

that the algorithm can generally not deal with the displayed
reflectance effects. The BRDF models with normal estimation
have almost identical median and mean errors, but slightly de-
creased outliers compared to the BTF reference. This indicates
that, in general, there are some minor differences in BRDF im-
ages for the reflectance effects that are most critical for the H&S
method.

The models without normal estimation have overall larger er-
rors, with a ≈ 25% increased median error. The increased me-
dian errors are likely caused by the loss of high-frequency details
in the models. The overall more substantial errors of the models
without normal estimation, offset the slightly decreased outlier
EPE of the models with normal estimation back to the level of
the BTF reference. However, as the performance of the H&S
algorithm is rather poor, the differences between the reflectance
models are, in general, not very pronounced. Compared to the
MDP algorithm, the H&S algorithm seems to be more concerned
with an overall plausible estimation of flow fields and less con-
cerned with high-frequency mesoscopic details and structures.

Material Specific EPE Analysis The material specific EPE
distributions can give a better indication of the most critical
reflectance effects for optical flow performance analysis.

The almost diffuse carpet, wall and felt materials exhibit lit-
tle mean and median errors below 0.1px for the MDP method
and well below 0.2px for the H&S method. The third quantile
EPE is also small, and outliers are small. As expected, the ma-
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terials provide no challenge for flow algorithms, and all BRDF
models perform virtually identical to the BTF method. This is
an exciting finding, as differences in the appearance occur due
to the lack of simulation of subsurface scattering effects (c.f .,
Figure 5.5), which are seemingly are not critical to both used
flow algorithms.

Stone and wood exhibit increased Fresnel reflectivity at low
grazing angles, but are otherwise not very challenging. However,
the stone and wood samples have only low to medium EPE val-
ues, with a median and mean EPE of ≈ 0.1px for the MDP
method and ≈ 0.2px for the H&S method. In comparison to
the diffuse material samples, the outliers are not significantly
increased. By analyzing pixels at low grazing angles, I could
identify no apparent increase in the EPE values. This shows
that simulation of the Fresnel reflectivity is not critical to opti-
cal flow performance analysis for otherwise simple materials.

By contrast, the structured leather material sample with Fres-
nel reflectivity has slightly higher EPE values, with a median
of ≈ 0.15px for the MDP method and ≈ 0.25px for the H&S
method. The errors are virtually identical for the WardN and
CTN models, but are lowered for Ward and CT and the MDP
method and increased for the H&S method. The PhongN and
Phong models exhibit the same behavior but have overall de-
creased error values. This matches the observation in Figure
5.5, that grazing effects are not simulated and the appearance
is overall more defined. The leather results show that the dif-
ferences in the geometric details lead to differences in the flow
fields. Increased Fresnel reflectivity and anisotropic reflections
seem to amplify the differences. The fabric material sample has
overall smaller errors in the range of 0.1px, like the other diffuse
material samples. However, it exhibits similar saliences con-
cerning the normal estimation and the BRDF model choice, as
the leather sample. The only difference is that the Phong and
PhongN errors are even more decreased and almost cut in half,
likely due to the lack of anisotropic reflectance modeling.

As expected, the copper, aluminum samples have the high-
est errors and the substantial outliers in the BTF reference flow
fields. The median EPE values are close to 0.2px for the MDP
method and larger than 5px for the H&S method. This shows
that specular highlights are the most critical to optical flow al-
gorithms. In the case of the H&S method, the effects are so
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problematic that unreasonable performance levels are achieved.
Likely, the method almost always detects the motion of the mov-
ing highlights. For the H&S method, all BRDF models with
and without normal estimation perform similarly poor. For the
MDP method, the three BRDF models with normal estimation
have a similar distribution, but overall slightly increased errors,
indicating that the highlights are even more pronounced. The
BRDF models without normal estimation have notably lower
median errors of ≈ 0.15px, but significantly increased outliers.
This might be caused by slightly mislocated highlights and a
lack of textures, as observed in Figure 5.5.

In the following sections, I will more thoroughly analyze the
most prominent observations from the EPE distribution analy-
sis, namely the highly specular metal samples and the structured
leather and fabric samples with increased Fresnel reflectivity and
anisotropic reflectance.

5.5.4. Reflectance Aware Specular Material Analysis

To study the effect of specular reflections in more detail, I an-
alyzed the aluminum and copper results. Specular effects oc-
cur at small angles between the view vector(ωo) and reflection
vector(ωr). I thus analyzed the specular material samples with
respect to the reflectance aware EPE distributions around the
perfect reflection direction (c.f ., Section 5.3).

Figure 5.8 depicts the reflectance aware EPE in the form of
heatmaps. The heatmaps break down how the error sizes are dis-
tributed among the angle intervals, normalized per column by
the total number of pixels which fall into the respective interval.
In total, each heatmap shows the resulting errors of ∼ 15M pix-
els. The differences between the heatmaps of the BRDF models
and the BTF model tell us how closely the models simulate crit-
ical specular effects for the flow algorithms.

For the MDP method of the BTF reference, one can observe
that most errors fall into the interval (0.06, 0.12]. The abso-
lute errors increase slightly for larger angles. The algorithm is
mostly unaffected by the main specular highlights, possibly due
to strong adaptive regularization. In fact, the largest errors oc-
cur for off-specular reflections, likely due to more substantial
induced motion from the moving specular highlight and a loss
of texture in the darker areas.

The CTN, WardN and PhongN distributions are almost
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identical to BTF. However, the errors are overall slightly larger,
most notably for angles above 12◦. As observed in Figure 5.5
the highlight intensities of the BRDF model fits is higher due to
the model based interpolation of the BTF samples. This likely
causes the increased errors main specular direction for the MDP
flow algorithm. The errors around off-specular reflections are
possibly increased, due to the slightly darker appearance.

The CT, Ward and Phong have significantly larger errors
for all angles and most prominently for angles above 6◦. Likely
this is caused by the 3◦ offset from the surface normals, which
results in a 6◦ offset for the reflection direction.

For the H&S method, the BTF errors are overall more abun-
dant. In contrast to the MDP method, one can observe higher
errors for smaller angles. However, there appears to be no ex-
plicit dependency on the reflection vector as the algorithm per-
forms poorly for all angles close to the main reflection. The H&S
method seems to be in general, not capable of handling challeng-
ing highly reflective materials and gives no distinction between
the reflectance model quality for optical flow performance anal-
ysis. Only minor differences lie in the off-specular reflections for
angles ≥ 15◦. Here, the errors for the CT, Ward and Phong
model are increased compared to the BTF reference. The CTN,
WardN and PhongN model match the EPE distribution bet-
ter. Likely the loss of structures causes the differences for the
models without normal estimation.

I conclude that all models with normal estimation are well-
suited for optical flow evaluation on specular materials and needed
to preserve the rankings of the flow algorithms. There are some
minor increases in the error values compared to the BTF model.
However, as the BTF is not perfect for such highly reflective
materials due to linear interpolation, this is a strong indication
that BRDFs are more accurate for this material class. Using no
normal estimation does change the distribution of errors. As a
result, the models are less accurate for optical flow performance
analysis of highly specular materials.

5.5.5. Reflectance Aware Structured Material Analysis

To study materials with fine geometric structures and anisotropic
reflectance, I analyzed the fabric and leather samples. Similar
to before I look at the reflectance aware EPE distributions with
respect to the mirror direction. The specular highlights are less
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Figure 5.8.: Heatmaps show histograms of the reflectance aware EPE distributions for the specular aluminum and
copper samples with respect to the angle between view and mirror direction. Color encodes relative occurrences.
The MDP algorithm seems to be rather robust towards specular highlights, due to effective regularization. The
highest errors do not occur around the main specular reflection, but for the off-specular reflections far from the
perfect mirror direction. In those areas, the appearance of the images is darker and less structured, and the induced
motion from the moving specular highlights is larger, overall harder conditions for flow algorithms. CTN, WardN
and PhongN perform virtually identical. However, the errors are slightly larger for all angles, as the intensity of
the highlights is increased due to a more accurate model-based interpolation of the BTF samples. The distributions
of CT, Ward and Phong do however deviate due to the tilted reflection direction. The H&S method performs
almost equally poor for all models, with most errors around the length of the ground truth flow vectors. It seems
to be incapable of handling specular highlights regardless of the angle to the reflection direction. Small differences
lie in the largest angle interval. Here, the errors for the models without normal estimation are larger due to a loss
of mesoscopic structure. The models with normal estimation match the EPE distribution of the BTF model.
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Figure 5.9.: Heatmaps of the fabric and leather samples as in Figure 5.8. Both flow algorithms perform reasonably
well for the contemplated materials. The errors of the BTF reference are largest around the reflection direction
and decrease for off-specular reflections. This can be replicated with the CTN and WardN models and both flow
algorithms. The flow performance with the Ward and CT models are ambiguous. For the MDP method, the errors
are decreased towards the reflection direction and increased for larger angles. This is reversed for the H&S algorithm.
The blurred mesoscopic details are the likeliest cause and seemingly affect the algorithms differently. Therefore,
normal estimation is needed to closely match the BTF reference and to preserve the rankings of the algorithms.
The Phong and PhongN models perform poorly, with overall decreased errors for all angles. As the model cannot
capture anisotropic reflectance, it is baked into the diffuse reflectance texture and thus motion-invariant. Those are
non-discriminating conditions for both flow algorithms.
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intense and broader. Thus I binned the errors to larger angle
intervals in the error heatmaps from Figure 5.9.

In contrast to the specular materials, the H&S method per-
forms reasonably well for the leather and fabric samples. For the
BTF Reference and the MDP algorithm most errors fall into the
(0.04, 0.08] and (0.08, 0.16] intervals for all angles close to the
mirror direction. For the H&S method the errors are overall ≈
50% increased and mostly fall in the (0.06, 0.12] and (0.12, 0.24]
intervals. However, the EPE distributions are broader and dis-
tributed with a higher variance. In contrast to the specular
materials, the EPE are slightly decreased for angles above 20◦.
For those angles, the variations of the diffuse reflectance and the
structured geometry lead to easier pixel correspondences for the
flow algorithms.

CTN and WardN exhibit almost identical distributions as
BTF for both algorithms. However, the errors are slightly smaller
close to the reflection direction and slightly larger for off-specular
directions. This is possibly caused by sharper main highlights
and a slight loss of structure towards the off-specular directions.
For the CT and Ward models without normal estimation this
effect is severly amplified for the MDP algorithm. The errors
close to the reflection direction are significantly reduced, and
the errors in off-specular direction are severely increased, likely
caused by the blurred mesoscopic details. By contrast, the effect
is reversed for the H&S algorithms. The errors are increased for
small angles and barely changed for far angles. Likely, the al-
gorithm is more affected by the loss of structure for model fits
without normal estimation.

The PhongN and Phong models perform poorly. The errors
are significantly reduced overall, likely due to the non-existent
anisotropic reflectance modeling. As a result, most of the re-
flectance is encoded in the motion independent diffuse term,
creating easy conditions for the flow algorithms.

I conclude that the Phong model is insufficient for complex
and anisotropic materials regardless of normal estimation. The
CT and Ward models simulate the BTF model closely over all
angles. Normal estimation further improves the simulation and
is needed not to affect the ranking of the algorithms.

105
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SYNTHETIC OPTICAL FLOW DATASETS

5.6. Summary and Outlook

In this chapter, three analytical BRDF model were studied in the
context of optical flow dataset generation: A computationally in-
expensive Blinn-Phong model, an anisotropic Ward model, and
an anisotropic physically based Cook-Torrance model. In con-
trast to the proven bidirectional texture functions, they are more
efficient, easier to process, supported by conventional rendering
systems and can better model sharp specular reflections. How-
ever, they lack the capability to model subsurface scattering and
large scale shadowing and masking effects.

The models were fitted to various material samples of the
BTF database Bonn[156], using novel approaches for spatially
consistent BRDF model fits and a normal estimation method to
counter parallax artifacts and the inaccuracies of the coarse BTF
geometry on the mesoscopic texel scale. The normal estimation
could increase the accuracy of the fits by 25% on average and
more than 50% for structured materials with high-frequency ge-
ometric details. For all materials, a Cook-Torrance fit was the
most accurate with a small margin to the Ward model and sig-
nificant a margin to the Phong model.

Finally, optical flow experiments were conducted on unbiased
renderings of randomized scenes with the reflectance models ap-
plied. To assess the most critical optical flow effects and the
BRDF simulation accuracy, I analyzed the perceptual appear-
ance of the synthetic images and the computed flow fields with
a reflectance aware Endpoint Error distribution.

I showed that subsurface scattering and large scale shadowing
and masking effects are mostly irrelevant to optical flow per-
formance analysis. The effects create perceptual differences be-
tween the BTF and BRDF model renderings. However, as the
differences are diffused and mostly motion-invariant, they do not
affect the computed flow fields.

For mostly diffuse and isotropic materials, the choice of the
BRDF model hardly matters for optical flow algorithms. Even
the simplest model, a Blinn-Phong fit, is as good as the com-
putationally expensive reflectance field rendering. This changes
when the reflectance of the materials is anisotropic. The spec-
ular Phong term cannot model the anisotropic effects and are
baked into the diffuse term. As a result, the reflectance is struc-
tured and motion-invariant, which are unchallenging conditions
for optical flow algorithms. An anisotropic Ward or Cook Tor-
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rance model can, in this case, be used to match the results of
the BTF model closely.

For structured materials with fine geometric details, the BRDF
models without normal estimation perform poorly. The struc-
tures are diffused, and small highlights are missed. As a result,
the optical flow algorithms perform vastly different than for the
BTF reference data. The normal estimation can then be used
to create BRDF models with almost perfect accuracy. How-
ever, the Phong model with normal estimation is a worse choice
than the more sophisticated Cook-Torrance and Ward models,
as structures are too pronounced and specular details are lost.

As expected, metallic materials with highly motion-invariant
specular highlights are the biggest challenge for optical flow al-
gorithms. BRDF model fits with normal estimation can be used
with high accuracy, that can even exceed the quality of the BTF
model, which is limited for mirror-like reflections. The choice
of the BRDF model does hardly affect the algorithms. Only for
off-specular reflections far from the highlights the Cook-Torrance
and Ward models are slightly superior to the Phong model.

We now better understand which BRDF model fulfills the re-
quirements for optical flow performance analysis and different
material types. BTFs created from reflectance field measure-
ments are highly accurate and only limited for mirror-like re-
flections. The best performing BRDF model, a Cook-Torrance
model with normal estimation, performs virtually identical for
optical flow performance analysis and arbitrary material types.
For the most challenging highly reflective surfaces, the model
has even the potential to outperform the BTFs.

By reprojecting, the raw reflectance field data to the coarsely
scanned surface geometry information is lost. This can be com-
pensated with normal estimation for delicate mesoscopic, but
not for macroscopic geometric details. By skipping the reprojec-
tion and estimating the geometry directly from the reflectance
field data, the perceptual differences between the synthesized
images can be further minimized even for large scale shadow-
masking effects. By resampling and compressing the reflectance
field data into it into the BTF format, angular and spatial re-
flectance information is lost, which cannot always be restored by
the BRDF models. Therefore, it would be beneficial to skip the
intermediate BTF representation, overcoming the limitations for
highly reflective materials.
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A further improvement could be the adoption of the GGX
distribution, which is used by the widely adopted Disney PBR
model [15]. This distribution is heavy-tailed, has been shown
to match measured data better [152], and could therefore poten-
tially create satisfying result with even a single specular lobe.
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6
Augmentation of Physically

Plausible Precipitation Effects

6.1. Motivation

Deep neural networks (DNNs) are trained on a limited amount
of training data to generalize to arbitrary testing conditions, i.e.,
the network should perform adequately and robust under unseen
conditions. The straight forward approach to improve network
generalization is to utilize an increased amount of training data
displaying a large variety of scene conditions. However, this ap-
proach is inherently expensive and limited, as it is hard to ensure
that the training set sufficiently covers all critical conditions.

As an alternative, data augmentation can be used to expand
the training dataset and increase the robustness of the networks
towards critical and unseen conditions, c.f ., Section3.4. Spatial
transformations are incorporated in most training schedules to
ensure that the training data is not overfitted. Other effects
that can be modeled phenomenologically, e.g., noise, blur, are
also often applied for various computer vision tasks to increase
network robustness [141, 56, 146, 95]. However, data augmen-
tation can only mimic effects in image space and effects that
originate from the scene, e.g., reflections, cannot be modeled.

One example are precipitation effects. They are challenging
for many automotive computer vision tasks, due to reflections
from puddles and road surfaces, blurring from droplets on the
windshield, and lowered contrast from water spray and mists.
However, they heavily rely on scene context, e.g., the appearance
of wet surfaces depends on the camera position, scene lighting,
material properties, and most importantly, the surface geometry.

On the other hand, many datasets include accurate scene ge-
ometry and camera poses, screen-space techniques can trace re-
flections of a 2D image with depth information [99], and the liter-
ature provides reflectance and scattering models for wet surfaces
and water particles (c.f ., Section 2.5.2). This led to the idea of
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(a) Original Image (b) Low Wetness

(c) Medium Wetness (d) Full Model

Figure 6.1.: I present a tech-
nique for augmenting precipitation
effects in automotive datasets. The
method was implemented for the
HD1K Benchmark Suite1 dataset.
(a) depicts an example image of
that dataset. The original image
data is augmented with physically
based ground surface wetting, in-
cluding the water saturation of the
surface and the accumulation of
puddles. In (b) the original image
is augmented with a low amount of
ground surface wetness, where wa-
ter has not yet accumulated. In
(c) the wetness level is increased,
and puddles start to form. In (d)
the full precipitation augmentation
model is applied. This includes the
maximum ground surface wetting,
water particles from water spray
and mists, as well as droplets on
the windshield.

combining these data and models to create a novel technique for
physically plausible precipitation augmentation.

The method, presented in the following chapter, was imple-
mented for the HCI Benchmark automotive dataset, due to avail-
ability of accurate scene geometry and camera poses [72, 71].

6.2. Contributions

In the following, I present a method for the augmentation of
automotive computer vision datasets with precipitation effects.
Figure 6.1 depicts examples of the produced images. The method
utilizes physically based models for wet surfaces and light scat-
tering and creates consistent and plausible results by working
in 3D world space. The main contributions, presented in this
chapter, shall be subsequently summarized.

A consistent virtual scene can be extracted from a computer
vision automotive dataset with point cloud and camera pose
data. I present parametrized models of ground surface water
levels, water spray and mists, and droplets on the windshield to
enrich the scene with precipitation effects. The procedural water
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level distribution respects height and ground material types. As
a result, water plausibly accumulates at local minima of the
surface, e.g., next to curbs and in ditches, and for surfaces where
water seeps slowly, e.g., the road. The droplets blend, merge
and stick to the windshield and the spray and mist distribution
respect ground level distance.

This consistent virtual scene description then serves as the
baseline for the proposed augmentation. The original images
from the clean dataset are UV-mapped onto the virtual scene, by
perspective projection from the provided camera poses. Subse-
quently, I approximate material properties, i.e., surface normals,
surface roughness, and surface porosity, by extracting spatial
variations from the original image data and referencing the ma-
terials to measurements of urban ground surfaces. I then show,
how this information can be used to separate diffuse and specu-
lar image intensities by performing a screen-space specular light
transport approximation. The same method can be used to com-
pute novel specular and scattering light transport for augmented
scene elements. Finally, this enables a plausible augmentation of
various precipitation effects; 1) The diffuse darkening and specu-
lar boost of water penetrated ground surfaces. 2) The reflections
of accumulated water in drenched regions and puddles. 3) The
scattering and absorption of water spray and mists. 4) The scat-
tering and blurring from water droplets on the windshield.

6.3. Creating Virtual Scenes

A virtual 3D scene representation of the original automotive
sequence is needed for the augmentation of precipitation effects.
The ground truth depth map could be used as scene geometry,
but a consistent and structured scene representation is better
suited to ensure spatiotemporal stability of the augmentation.
I commence with the reconstruction of structured meshes from
the measured point clouds of the static environment. Next, I
show how the geometry of dynamic objects can be approximated
with cardboards. I then detail my method for creating plausible
water level distributions that respect ground surface height and
material properties. Finally, I present my proposed models for
water droplets on the windshield and water spray and mists.

The method was implemented for the HCI automotive dataset
[72, 71] which was published as the HD1K Benchmark Suite-
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for optical flow. The dataset is well suited to create a consis-
tent virtual 3D scene representation, due to the availability of a
high-fidelity point cloud of the static environment and accurate
camera poses. However, the method is dataset independent and
could be applied to any dataset that features point cloud data,
camera poses, and dynamic object or segmentation masks.

Figure 6.2.: The background en-
vironment is reconstructed with a
coarse mesh. Artifacts occur for
non-convex objects, such as the
vegetation. However, the back-
ground environment is only aug-
menting the original image via re-
flections and, therefore, inaccura-
cies can be tolerated.

Figure 6.3.: The ground surface
mesh is reconstructed with a finer
mesh (5M triangles). Since the
surface is mostly flat, it can be
reconstructed with high accuracy.
Curbs, road ditches, sewer lids, and
even small cracks and variations in
the road surface are faithfully re-
constructed. Such high-fidelity de-
tail is beneficial to my method, as
the wetness model directly modifies
the ground surface.

6.3.1. Mesh Reconstruction of the Static World

The flow and depth ground truth of the underlying HCI auto-
motive dataset was assembled with point cloud measurements
from a survey grade RIEGL VMX-250-CS6 laser scanner sys-
tem [72]. The point clouds are dense and capture static scene
geometry with an accuracy of ≈ 1cm. However, such unstruc-
tured point cloud data cannot be directly used for the proposed
method. The light transport simulation, the height aware water
levels, and the material reflectance model all require continu-
ous surface normals and a structured mesh representation of the
scene.

To create suitable meshes from the facilitated point data, the
open-source mesh processing tool ”Meshlab” was used [18]. Sur-
face reconstruction from unstructured point clouds rarely leads
to good results for non-convex objects. The point relations are
often ambiguous, and points are connected based on proxim-
ity even though they have no link in the real-world, e.g., con-
sider a tree where the point data of neighboring branches should
not be connected. Typically, only the background environment,
i.e., buildings and vegetation, contain such problematic areas.
However, the appearance of the environment is not augmented
and only visible via reflections. Small geometric inaccuracies
are therefore acceptable and can still lead to plausible results.
By contrast, the ground surfaces are the ones being augmented.
However, they are mostly flat and, thus, more easily meshed. To
ensure the best possible quality of the ground mesh reconstruc-
tion, I separated the ground level point set from the remaining
point cloud data and meshed both point sets separately.

To this end, a screened Poisson surface reconstruction was
applied, which produces excellent results for unstructured point
sets [69]. As the method requires accurate normals for each data
point, they were estimated with the computeNormalsForPointSet

function for 20 point neighbors and w.r.t. a view direction along
the positive z-axis, ensuring that normals are not pointing down-
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wards. I then meshed the point sets with an octree depth of 13
for the ground plane and an octree depth of 12 for the environ-
ment. This resulted structured meshes with roughly 5M and 2M
triangles, respectively (c.f ., Figure 6.2 and 6.3) .

6.3.2. Cardboard Meshes of Dynamic Objects

To simulate plausible reflections of the dynamic elements, e.g.,
cars and pedestrians, some form of dynamic geometry is needed.
However, the utilized dataset only includes point cloud data for
the static environment and lacks geometry measurements for the
dynamic objects of the scenes. To approximate the geometry
of dynamic objects, Honauer proposes to place 2D cardboards
in the virtual world by projecting the dynamic object masks
with the ground truth depth of the lowest mask point in image
space [60]. These cardboards are always aligned perpendicular
to the view direction and work reasonably well for pedestrians
in typical walking poses and at least one foot on the ground. For
vehicles, I adjusted the previous approach by fitting a 2D card-
board through two local minima of the dynamic masks, which,
in most cases, correspond to the two lowest wheel positions on
the ground. The resulting vehicle cardboards can, therefore, be
rotated in arbitrary directions around the z-axis in world space.
While these cardboards are certainly not an exact representa-
tion of the vehicle geometry, they are an improvement over the
conventional cardboard approach and better suited to deliver
plausible reflections.

6.3.3. Masked and Height-Correlated Procedural
Water Distribution

This section is concerned with the process of creating plausible
water level distributions for a given global wetness parameter
of the augmentation model. As described in Section 2.5, the
wetting process of porous dielectric materials, i.e., the type of
materials that make up urban ground surfaces, is divided into
two phenomena: First, the saturation and water penetration of
the pores, which causes a diffuse darkening and slight increase in
specular reflectivity. Second, the accumulation of water, which
can no longer penetrate the pores and instead forms drenched
regions and puddles.

We are, therefore, looking for a plausible water level distribu-
tion W for each point on the ground surface and a given global
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Wetness Mask Height-Factor Map Moisture Map Puddles Map

𝑤 = 0.25 𝑤 = 0.5 𝑤 = 0.75 𝑤 = 1.0

𝑤 = 0.25 𝑤 = 0.5 𝑤 = 0.75 𝑤 = 1.0

Sa
tu

ra
ti

o
n

A
cc

u
m

u
la

ti
o

n
In

p
u

t 
M

ap
sFigure 6.4.: Four texture maps are

combined with the proposed wa-
ter distribution model. The man-
ually created wetness mask acts a
multiplier of the model. Surfaces
where water can fully accumulate,
e.g., the road, are marked in white,
surfaces which should not be af-
fected, e.g., vegetation, are marked
in darker colors. The height-factor
map was retrieved from local min-
ima of the ground surface height
map. White marks regions where
water likely accumulates due to
gravity, e.g., the ditches on the
roadsides. The moisture map is
a high-frequency procedural tex-
ture function for mimicking wet-
ness variations due to material
properties and ground surface dry-
ing. The puddles map is a low-
frequency procedural texture func-
tion for mimicking puddles and
drenched regions. The middle row
images depict the ground surface
water saturation for various global
wetness levels w of the augmenta-
tion model. The bottom row de-
picts the corresponding water ac-
cumulation.

wetness parameter:

W (u, v, w) ∈ [0, 1] (6.1)

where u, v are the ground plane UV-map texture coordinates
which are orthographically projected from the top view with
the unit m, and w is the global wetness parameter of the aug-
mentation model. Subsequently, a water level W (u, v, w) = 0.5
refers to full saturation of the ground surface, and a water level
W (u, v, w) = 1.0 refers to an accumulation of water that is large
enough to cover the ground surface fully.

Precise modeling of W requires knowledge about physical ma-
terial properties, e.g., the porosity and internal seepage, as well
as scene context, e.g., the local height profiles and drains. Out
of those, only the local height information can be extracted from
the dataset. Nevertheless, perceptional plausible distributions of
water saturation and accumulation can be created. To this end, I
propose to combine a manually created wetness mask, extracted
height information from the dataset, and two procedural texture
maps for wetting: First, a procedural moisture map with high-
frequency details, which are typically present due to variations of
porosity and internal seepage. Second, a procedural puddle map
with low-frequency details for the accumulation of puddles. The
maps and visualizations of how they form the water distribution
models of saturation and accumulation for different wetness lev-
els w are depicted in Figure 6.4. Subsequently, I describe the
synthesis approach of each map and how they are combined to
formulate the proposed model f W .
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Wetness Mask

Not all ground surface are equally affected by wetness and, there-
fore, some surfaces are more likely to form drenched regions and
puddles than others. To accommodate for material properties,
I manually drew a wetness mask M(u, v) on the ground mesh,
acting as a multiplier for water accumulation. Three classes of
ground surfaces are masked: First, ground surfaces which are
hardly affected by wetness, e.g., vegetation. To this class, I
applied M(u, v) = 0.25 so that water penetration of the sur-
face cannot fully apply. Second, ground surfaces where water
seeps rapidly and can hardly accumulate, e.g., soil and drains.
I chose M(u, v) = 0.5 for this class so that the total wetness
can never exceed full penetration levels. Third, ground surfaces
where water seeps slowly and can quickly accumulate, e.g., road
and sidewalks. For this class the wetness mask is not attenuated
with M(u, v) = 1.0 and water levels can reach full accumulation.
Subsequently, the mask was blurred to avoid sharp and unreal-
istic transitions. While the process of drawing a material mask
is rather tedious, it quickly provides good results for a small
scale dataset, e.g., the HD1K dataset used in this study. For a
large scale dataset, manually masking is not feasible. However,
a reasonable wetness mask could be derived from segmentation
ground truth.

Height-Factor Map

Water gathers around local minima of the ground level, due to
gravity. With increasing wetness, the extent of the accumula-
tion grows, and ground level minima at larger scales become
relevant. To model the influence of the ground level, I extracted
the local minima of the ground surface height map with differ-
ence of Gaussians filtering. The size of the Gaussian kernels is
thereby correlated with the wetness level to model local minima
on different scales:

F (u, v, w, k) = 1 + k ∗ (G(u, v, σw) ~H(u, v)−H(u, v)) (6.2)

where H(u, v) is the ground surface height map, G(u, v, σw) is
a Gaussian Kernel with standard deviation σw = w/2, and k is a
weighting factor which parameterizes the influence of the height
differences. The height map H, and the standard deviation σw
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have the unit m. The weighting factor k has the unit m−1 and
is chosen empirically for each procedural wetness map. I chose
a factor of kacc = 100m−1 for the water accumulation map, i.e.,
the accumulation is doubled for a height difference of 0.01m. I
further chose a factor of ksat = 2m−1 for the water saturation
map, i.e., the ground surface water saturation is doubled for a
height difference of 0.5m.

Procedural Wetness Map

The wetness mask models the influence of material properties on
the water distributions at a large scale, the height factor map
models the influence of the ground surface height on medium
to large scales. The resulting water distribution from those two
maps alone are rather homogeneous. However, realistic water
distributions are typically varied on smaller scales, e.g., from
spatial variations of material properties or dynamic forces. I
propose to model the remaining factor with procedural maps
to create perceptional plausible variations of the water distribu-
tions.

Ground surface water saturation depends on high-frequency
details, e.g., from variations of the internal seepage or the progress
of the drying process. I created a water saturation map with the
procedural moisture pattern from the procedural texture mod-
eling tool Substance Designer 2. I used the maximum moisture
pattern scale of eight with a resolution of 8192 × 8192 texels,
which is subsequently mapped to repeating areas of 40m×40m.
The procedural pattern is then combined with the height factor
to form the water saturation model:

S(u, v, w) = lerp(S0(u, v), 0.5, 0.75 ∗ w) ∗ F (u, v, w, ksat) (6.3)

where lerp() is the linear interpolation function with the third
parameter as the blending weight, S0(u, v) is the moisture pat-
tern, and F (u, v, w, ksat) is the height factor as in Equation 6.2
with the weight factor ksat = 2m−1. The linearly blending of the
pattern with 0.5 reduces the contrast of for higher wetness lev-
els and is motivated by the observation that for higher wetness
levels the water saturation becomes more homogeneous.

2www.substance3d.com
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Puddles and drenched regions are typically formed at small
to medium scales. I created a water accumulation map with
procedural 1/f4 Perlin noise [54], were the pattern size of the
largest scale was set to two meters. The noise pattern was sub-
sequently contrast enhanced with a factor of four. Additionally,
I applied a brightness offset of −0.25 intensity levels, to model a
maximum puddle coverage of around 1/3 of the ground surface
area. The procedural Perlin noise is then combined with the
height factor to form the water accumulation model:

A(u, v, w) = lerp(A0(u, v), 0.5, 0.5 ∗ w) ∗ F (u, v, w, kacc) (6.4)

where lerp() is the linear interpolation function with the third
parameter as the blending weight, A0(u, v) is the contrast en-
hanced Perlin noise, and F (u, v, w, kacc) is the height factor as in
equation 6.2 with the weight factor kacc = 100m−1. Again, the
linearly blending of the noise function with 0.5 is chosen to cre-
ate a more homogeneous water distribution for higher wetness
levels.

Proposed Composite Distribution Model

The proposed model for a perceptionally plausible water dis-
tribution is a composition of the previously presented texture
maps, which depends on the global wetness level:

W (u, v, w) = w ∗M(u, v) ∗ lerp(S(u, v, w), A(u, v, w), 0.5 ∗ w)
(6.5)

where lerp() is the linear interpolation function with the third
parameter as the blending weight, M(u, v) is the manually drawn
wetness mask as in Section 6.3.3, S(u, v, w) is the water satu-
ration model as in equation 6.3, and A(u, v, w) is the water
accumulation model as in equation 6.4. The linear blending of
the water distribution models is motivated by the observation
that initially the ground surface is penetrated by water before it
can accumulate to drenched regions and puddles.

6.3.4. Water Spray Distribution Model

In rainy scenarios, water spray and mist, i.e., a suspension of
small water particles and dirt, are often present in the air close
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to the ground level Typically, the water spray is swirled up by
dynamic motions, such as from vehicles tires and to a smaller
extent from wind forces. Mists are substantially similar in terms
of appearance but caused by the rapid cooling of water saturated
air. Precise physical modeling of both effects requires measure-
ments of environmental parameters, e.g., vehicle geometry, ve-
hicles dynamics, temperature, and wind. These parameters are
not available. Instead, I propose to model the distributions of
the mist and water spray phenomenologically. Ignoring exter-
nal forces, the density of fog and mist decreases exponentially
with the distance from the ground plane [57]. This can be mod-
eled with a height based exponential gradient volume. For in-
creased realism, I propose to further model external forces and
environmental factors, which influence the density of the fog,
employing the 1/f3 Perlin volume noise function with a base
scale of 0.5m [54]. Both models are then multiplied to form the
proposed density distribution model for water spray and mist
augmentation:

M(x, y, z,m) = m

50 ∗ P (x, y, z) ∗ exp(−d) (6.6)

where m is the global water spray and mists parameter from
the augmentation model, P (x, y, z) is the volumetric Perlin noise
function, and d is the minimum distance between x, y, z and the
ground surface plane. The distribution model is scaled with the
factor 1

50 to provide an average view distance of 50m at ground
surface height for m = 1. This corresponds to an average view
distance of around ≈ 150m at realistic automotive camera height
levels.

6.3.5. Droplets on the Windshield
Figure 6.5.: A virtual windshield is
placed in front of the virtual cam-
era in a distance of 0.2m and an
inclination angle of 45◦. Metballs
are then randomly distributed on
the windshield’s surface to simu-
late water droplets. These meta-
balls merge, blend, and stick to
the windshield just like in the real-
world.

Water droplets on the windshield can obscure the vision of the
camera. To simulate this effect, I placed a virtual windshield
0.2m in front of the camera with an inclination angle of 45◦.
While automotive cameras are in reality placed closer to the
windshield, i.e., the distance to the camera lens is typically only
a few millimeters, this setup more closely resembles the testing
setup of the original HD1k dataset. The optical properties of
the real-world windshield are already included in the original
dataset. Hence, I applied a transparent material to the wind-
shield, not using it to augment the image directly. However, it
acts as a geometric proxy for the water droplets, which are mod-
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eled as blender metaballs and randomly placed on the windshield
geometry. Metaballs are an implicit and procedural description
of geometry, which was tailored explicitly for fluids [12]. The ge-
ometry is explicitly formed based on proximity of the metaballs
and thresholds for cohesion and adhesion forces. As a result, the
water droplets stick to the virtual windshield, and they merge
and blend (c.f ., Figure 6.5).

6.4. Augmentation of Real-World Appearance

In this section, I present the augmentation of physically based
wet ground surfaces, droplets on the windshield, and water spray
and mists for real-world automotive datasets. In Summary, the
augmentation consists of six steps:

• The input image data is projected onto the virtual scene of
Section 6.3 and a virtual sky sphere for the background.

• Generic emission values are applied to scene surfaces and
objects, which are either occluded or outside of the camera
frustrum. The emission value of each object class is chosen
as the mean object intensity of the original dataset. For the
background sky sphere, the generic emission is set to 0.0
at ground level, and linearly increases to 1.0 for elevation
angles above 15◦.

• Specular BRDF parameters for the ground plane pixels are
approximated from the input image data and projected
onto the ground plane mesh.

• The diffuse and specular ground plane appearance is sep-
arated, utilizing the approximated BRDF parameters and
a specular light transport approximation in screen-space.

• The previously separated appearances of the ground plane
surfaces are augmented, utilizing the water level distribu-
tion model of Section 6.3.3 and a physically based wetness
model which is closely related to model in Section 2.5.2.

• The scene is augmented with water particles, utilizing with
the distribution models from Sections 6.3.4, 6.3.5 and a
physically based BSDF model [15].

The method was implemented with open-source modeling tool
Blender [11] and uses its path tracing engine Cycles for render-
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ing. In the following, I detail each step of the augmentation
method.

6.4.1. Projection of Real-World Appearance

To plausibly augment the image intensities in 3D space they
need to be initially applied to the virtual scene from Section
6.3, i.e., the static world mesh, the dynamic object cardboards.

To this end, I used a Blender thin-lens camera as a virtual
camera representation of the original HD1K Benchmark Suite
dataset. The thin-lens model is a reasonable approximation of
the real-world camera, as the distortion of images is rectified,
and the remaining intrinsic camera parameters are known. I set
the camera pose, focal length, sensor resolution, and sensor-shift
of the virtual camera model to accord to the real-world camera
setup. In most cases, I used an aperture of 0.0m as the original
image data is already affected by the aperture of the real-world
optics. However, a different aperture can be set to simulate
additional depth-of-field effects in 3D space realistically, e.g.,
the depth-of-field blurring of water droplets on the windshield.

Subsequently, I mapped the original 2D image data with the
Blender function bpy.ops.uv.project_from_view. The func-
tion performs a perspective camera projection, respecting the
extrinsic and intrinsic virtual camera parameters. Additionally,
I set flag clip_to_bounds=True to ensure that the image is not
repeated outside of camera frustrum. I applied this procedure
to all objects in the scene, including a virtual sky sphere back-
ground for distant objects and the sky lighting. Subsequently,
I set up each object to emit the mapped intensity of the orig-
inal image data. Tracing the virtual camera then results in a
rendered image that is virtually identical to the original image
data.

6.4.2. Modeling of Ground Plane BRDF Parameters

The proposed method uses the principled shading model from
Disney [15] to augment physically based wetness effects on the
ground plane surfaces. Specular BRDF parameter, i.e., the in-
dex of refraction (IOR), the specular roughness, and shading
normals, are needed for two subsequent stages: First, for the sep-
aration of the diffuse and specular ground surface appearance.
Second, as the specular base parametrization for the ground sur-
face wetness model.
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Reference IOR and roughness values, extracted from litera-
ture and previous measurements, can be applied as spatially
constant BRDF parameters. The reconstructed geometry nor-
mal can be used for shading. However, this leads to a smooth
and homogeneous appearance of the ground plane surface. By
contrast, real-world surfaces exhibit high-frequency variations of
roughness and shading normals, c.f ., Chapter 5. The IOR value,
on the other hand, is a material specific property and typically
hardly varies in space.

Calibrated illumination and camera setups, capturing the ap-
pearance for a vast amount of view and lighting directions, are
needed to measure BRDF parameters accurately (c.f ., Section
2.4.4 and Chapter 5). By contrast, the captured images of au-
tomotive dataset sequences do not meet the requirements for an
accurate BRDF estimation: 1) The extrinsic parameters and ra-
diometric intensities of the scene lighting are unknown. 2) The
camera poses are not perfectly calibrated and often too simi-
lar. 3) The appearance of the surfaces is inconsistent, due to
dynamic changes in scene lighting and potentially automated
exposure control. Additionally, fitting BRDF models to a large
amount of measured data is time-consuming and naturally con-
tradicts the computational requirements of image augmentation
for massive training datasets.

Consequently, I ruled out a full BRDF estimation from multi-
ple captures. Instead, I modeled high-frequency variations of the
BRDF parameters with filter-based approximations from the sin-
gle input images. Subsequently, I modified reference values from
literature and previous measurements. Similar approaches are
often used for texturing materials in real-time computer graph-
ics when only a single photograph is available. In the following,
I outline the proposed approximations for three specular BRDF
parameters.

Index of Refraction In many applications, especially for real-
time rendering, the IOR is assumed constant and approximated
with n = 1.5 for dielectric surfaces [15]. This IOR approxima-
tion is accurate for medium to high roughness values, even when
the true IOR deviates. Applying a wetness model to the ground
plane surfaces does, however, cause very low roughness values
and sharp specular reflections. As a result, the n = 1.5 approx-
imation becomes inaccurate for urban ground materials, which
typically have higher IOR values. I propose to utilize n = 1.63,
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the IOR of tarmac, as the base IOR of the dry ground plane
surface.

Figure 6.6.: Top: Original image
for reference. Bottom: Same im-
age where the appearance of the
ground surface has been replaced
with the estimated roughness pa-
rameter. Black depicts mirror-
like specular reflectivity, white de-
picts diffused specular reflectiv-
ity. The roughness is estimated by
difference Gaussians filtering and
mapping the results to reasonable
parameter bounds from measure-
ments.

Roughness The specular roughness determines the overall strength
of specular highlights. Assuming a mostly diffuse illumination,
it creates high- to medium-frequency variations of the image in-
tensities. Existing software tools for creating material textures
from a single photograph, e.g., the commercial Bitmap2Material
3 software toolkit, approximate surface roughness from high- to
medium-frequency image features. I propose to extend this idea
by additionally mapping the image features to physically plau-
sible parameter ranges of urban ground materials.

I extracted the variations of the image intensities using differ-
ence of Gaussians filtering. To ensure, that dynamic foreground
objects are not affecting the image features for the ground sur-
face, I applied a masked filtering with the dynamic objects masks:

Γα,σ0,σ1(x, y) = (G(x, y, σ1) ~ I(x, y))− (G(x, y, σ0) ~ I(x, y))
(6.7)

where I(x, y) is the original image data andG(x, y, σ1), G(x, y, σ0)
are masked Gaussian Kernels. For the ground surface roughness,
standard deviations of σ1 = 8.0, σ0 = 1.0 led to good percep-
tional results. I then mapped the normalized feature map to
realistic parameter ranges of urban materials, creating the final
approximation of the ground surface roughness:

R(x, y) = lerp(αmin, αmax, Γ̄α,σ0,σ1(x, y)) (6.8)

where lerp() is the linear interpolation function with the third
parameter as the blending weight, Γ̄σ0,σ1(x, y) is the difference
of Gaussians image as in equation 6.7, which was normalized
to the [0, 1] intervall, and αmin, αmax are the lowest and high-
est roughness values. For the urban ground surface a choice of
αmin = 0.5, αmax = 1.0 leads to visually plausible results.

Shading Normals The surface normals determine the main re-
flection direction of the incident light. Assuming mostly dif-
fuse illumination, they create high-frequency variations in the
image intensity, due shadowing-masking effects as well as high-
frequency specular reflections, c.f ., Chapter 4 and Chapter 5.

3www.substance3d.com
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Similar to surface roughness, the surface normals are extracted
from highest-frequency image features by commercial software
tools for single shot material texturing. Again, I propose to
extend this idea by mapping the image features to physically
plausible height variations of urban ground surfaces.

As for the surface roughness, I model the height variations
with masked difference of Gaussians filtering:

Γn,σ1,σ0(x, y) = (G(x, y, σ0) ~ I(x, y))− (G(x, y, σ1) ~ I(x, y))
(6.9)

Figure 6.7.: Top: Original image
for reference. Bottom: Same im-
age where the appearance of the
ground surface has been replaced
with the estimated shading nor-
mal. Light blue (0.5, 0.5, 1.0) de-
picts an upright normal, red colors
are tilted towards the x-direction,
and green colors are tilted towards
the y-direction. Like the rough-
ness parameter, the height varia-
tions are derived from difference
of Gaussians filtering of the in-
put image, but include higher fre-
quencies. Subsequently, they ap-
plied to the ground surface with
a bumptonormal function. Note,
that the intensity of the bump map
has been amplified for demonstra-
tive purposes.

where I(x, y) and G(x, y, σ) are defined as in Equation 6.7.
Note that the standard deviations of the Gaussian Kernels are
swapped, as the roughness is inversely correlated to the image
intensity features. The fine Gaussian Kernel with σ0 = 0.1 is
chosen to extinguish sensor noise. The coarse Gaussian Kernel
with σ1 = 0.5 is chosen in accordance to fine Gaussian Kernel in
6.7. This ensures that image features on all scales equally affect
the augmentation.

Subsequently, I normalized the height variation model to the
[0, 1] interval and used it as input for the Blender bump_to_normal

shader node. The maximum strength of the bump map was set
to 0.003m, a seemingly realistic variation of urban ground sur-
faces, which led to visually pleasing results.

6.4.3. Separation of Diffuse and Specular Appearance

To augment the ground plane pixels with physically based wet-
ness effects, a separation of the diffuse and specular image in-
tensities needs to be performed. As described in Section 2.3.2,
the observed pixel intensity is the result of many light transport
paths and can be formulated by the Rendering Equation in 2.4.
Under the assumption that the ground plane is non-emissive,
the Rendering Equation of the ground plane pixels can be split
into two parts: First, all light transport paths that are diffusely
reflected by the ground plane pixel. Second, all light transport
paths that are reflected specularly by the ground plane pixel.

The specular pixel intensity can be estimated by tracing all
specular light transport paths with the estimated specular BRDF
parameters of the ground plane:
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L̂s(X,ωo) =
∫

Ω
f̂s(X,ωi, ωo)L(X,ωi) cos Θidωi (6.10)

where L̂s(X,ωo) is the estimated specular pixel intensity,
f̂s(X,ωi, ωo) is the estimated specular BRDF model, and all
other parameters are chosen as in Equation 2.4.

Subsequently, the diffuse pixel intensity can be estimated by
subtracting the estimated specular pixel intensities from the
original observed pixel intensities:

Figure 6.8.: Top: Original image
for reference. Center: Specular
appearance of the image, which is
approximated by path tracing the
image data in screen-space with the
previously estimated BRDF pa-
rameters. Bottom: Same image
brightness enhanced. The spec-
ular appearance mostly contains
the local intensity maxima, due
to the increased roughness, e.g.,
the bright spot of the sewer lid.
However, specular intensity also in-
creases with the increasing visibil-
ity of the bright skylight, e.g., note
the dark spot in front of the roller-
skate that originates from the oc-
cluded skylight.

L̂d(X,ωo) = L(X,ωo)− L̂s(X,ωo) (6.11)

where L̂d(X,ωo) is the estimated diffuse pixel intensity, L(X,ωo)
is the original pixel intensity, and L̂s(X,ωo) is the previously es-
timated specular pixel intensity as in Equation 6.10.

It is apparent that the quality of both estimates depends on
the quality of the specular BRDF model and the quality of the
specular light transport simulation. The approximation of the
specular BRDF parameters is described in Section 6.4.2. In the
following, I detail my proposed method to approximate the spec-
ular light transport paths in screen-space.

Specular Screen-Space Approximation

Ray tracing and path tracing simulate global lighting, e.g., spec-
ular light paths, by following camera light transport path in
world-space, c.f ., Section 2.3.2. To this end, lighting and re-
flectance information needs to be available for all scene objects.
However, for the proposed augmentation method, lighting and
reflectance information is only available within the camera frus-
trum.

Nevertheless, specular light paths can be approximated in
screen-space, a technique that was previously applied for im-
proving the depth estimation of stereo algorithms [107]. In
the computer graphics domain, this approximation is known as
Screen-Space-Reflections and commonly used to approximation
reflections for real-time computer graphics [99]. Here, the input
image is projected onto the depth map, and the reflections are
ray traced within the camera frustrum.

For the approximation of the specular light transport path,
I propose to extend the Screen-Space-Reflections technique, by
utilizing the projected input image as in Section 6.4.1 with
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the structured and consistent scene representation from Section
6.3. Furthermore, I propose to replace the sparse ray tracing
with a dense path tracing, implemented with the Blender Cycles
Engine. In contrast to a conventional Screen-Space-Reflection
technique, the proposed method better simulates surfaces and
objects that are occluded or outside of the camera frustrum.
Additionally, the path tracing allows the simulation of multiple
light bounces and complex light transport paths.

Figure 6.9.: Top: Original im-
age for reference. Bottom: The
diffuse appearance estimate is ob-
tained by subtracting the specu-
lar appearance estimate (c.f ., Fig-
ure 6.8) from the original image.
Note how the overall intensity is
decreased compared to the origi-
nal image and high-frequency de-
tails are reduced, just like for real-
world surfaces.

6.4.4. Augmentation of the Ground Plane Wetness

For the wetness augmentation of the ground plane I utilize the
water-level distribution from Section 6.3.3 and apply it to an
adapted variant of the physically based wet surface model by
Lagard [76], c.f ., Equation 2.5.2.

The water-level distribution W (u, v, w) contains values in the
range of [0, 1], where 0.5 corresponds to full water saturation and
1.0 to full water accumulation on the surface. To augment the
ground surface with BRDF models for both saturation and accu-
mulation, W (u, v, w) is mapped to the corresponding parameter
ranges. More precisely, Wsat(u, v, w) = clamp(2 ∗ W (u, v, w))
and Wsat(u, v, w) = clamp(2 ∗W (u, v, w)− 1), where clamp() is
the clamp function for the range [0, 1]. Subsequently, I refer to
wsat and wacc as saturation and accumulation for a single pixel
location and an arbitrary global wetness parameter.

Ground Plane Saturation Appearance The wet surface model
by Lagarde [76] assumes an IOR of n = 1.5 as it targets real-time
applications, where this approximation is often applied with rea-
sonable quality. However, this results in unrealistically intense
reflections for very wet surfaces and unrealistically faint reflec-
tions for almost dry surfaces. In addition to modifying the sur-
face roughness, I propose to modify the IOR values also, as the
limitations of the real-time engines do not apply to the Blender
Cycles Engine. Adapting Equation 2.18, the proposed model
for the water saturated ground pixel intensity Lsat reads:

Lsat = lerp(L̂d, ρ ∗ L̂d, wsat) + L̂s,sat(lerp(θ0, ρ ∗ θ0, 0.5 ∗ wsat))
(6.12)

where lerp() is the linear interpolation function with the third
parameter as the blending weight, ρ is the porosity attenuation
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factor as in Equation 2.17, L̂d is the diffuse pixel intensity es-
timate as in Equation 6.11, θ0 are the approximated ground
pixel roughness and IOR, and L̂s,sat is the newly path traced
specular pixel intensity approximation as in Equation 6.10 for
the modified BRDF parameters.

Ground Plane Accumulation Appearance Lagarde [76] further
proposes to use linear interpolation of the roughness and surface
normals to simulate water accumulation, c.f ., Section 2.5.2.
Following the water saturation case, I propose to extend this
interpolation to the IOR parameter and the proposed model for
the ground pixel accumulated intensity Lacc then reads:

Lacc = L̂d,sat + L̂s,sat(lerp(θsat, θwater, 0.95 ∗ wacc)) (6.13)

where lerp() is the linear interpolation function with the third
parameter as the blending weight, Ld,sat is the diffuse term of
the water saturated pixel intensity as in Equation 6.12, θsat are
the water saturated BRDF parameters which this time include
the shading normal, θwater are the corresponding parameters
of smooth water, and Ls,acc is the newly path traced specular
pixel intensity approximation as in Equation 6.10 for the mod-
ified BRDF parameters. The empirical scaling factor of 0.95 for
the blending weight was chosen to limit the specular boost and
smoothness of the puddles.

6.4.5. Augmentation of the Water Particles

I modeled the optical scattering properties of the water particle
distributions from Section 6.3.4 and 6.3.5, i.e., the droplets on
the windshield and water spray and mists, with the principled
BSDF shader by Disney [15]. To this end, I used the provided
shader implementation by Blender. I assigned the efficient Prin-
cipled BSDF surface shader to the water droplets, as volume
scattering effects within the droplets can be mostly ignored. For
the water spray and mists, I used the Principled BSDF volume
shader, which is computationally more expensive but can model
volume scattering and absorption accurately.

During rendering with the Blender Cycles Engine, the water
particle distributions are path traced from the camera, simulat-
ing scattering, absorption, and reflection effects accurately. For
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the rendering of the water droplets, I adjusted the thin-lens cam-
era model with an aperture of 0.003m and a focus distance of
100m. With this camera setup, I could simulate depth-of-field
blurring of the water droplets in 3D-space. However, this ef-
fect also applies to the remaining more in-focus scene elements,
introducing minimal additional blurring.

6.5. Experiments and Results

The virtual scene setup, described in Section 6.3, is modeled
as a Blender [11] scene file. However, the cardboard meshes are
newly constructed for each camera pose and take around 4s to
compute on an Intel Core i7 3770k CPU.

The augmentation method, described in Section 6.4, is imple-
mented in python and can access the scene file via the Blender
python interface for parametrizing and rendering a camera pose
within the virtual scene. The initial projection of the UV-maps
is implemented on the CPU and takes a total of ≈ 1 minute to
compute for all scene objects. The subsequent rendering is done
with the GPU Cycles Engine with 512 samples per pixel to mini-
mize render noise. Each image without volume effects, i.e., only
augmenting ground surface wetness, is computed in ≈ 40− 50s
on an NVidia GeForce 1070 GTX graphics card. Augmenting all
effects simultaneously increases the render times to ≈ 7minutes
per frame, due to the computational requirements of the volume
scatter effects. With these computation times, the presented
method is not suited for on-the-fly augmentation of the training
data. Instead, it has to be precomputed and stored on the disc.

The method was applied to three sequences of the HD1K
Benchmarking suite. However, I was not able to test the method
for network training, as the finalized data and its ground truth
were published 01.02.2018, after studies. For an impression
about the augmentation of each precipitation effect, I refer to
the Appendix A. Subsequently, I analyze the perceptional short-
comings and limitations that I could identify.

6.5.1. Limitations from Dynamic Geometry

The ground surface wetness augmentation creates reflections for
the water saturated ground material and more vividly the pud-
dles. The static environment, i.e., buildings, vegetation and
background, are all reflected with high perceptional quality, c.f .,
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(a) Inconsistent Lighting (b) Geometry Artifacts

Figure 6.10.: Artifacts and in-
consistencies may occur due to the
cardboard approximation of dy-
namic objects. (a) Light can leak
through a real-world solid object
such as the depicted car, as the
cardboards are not occluding the
skylight. (b) Some images exihibt
reflection artifacts. When the dy-
namic object masks is inaccurately
labled, the cardboard approxima-
tion may not be able to extract a
reasonable depth value. As a re-
sult, the cardboards are unreason-
able placed and reflected.

Appendix A.
However, for the reflections and lighting of the dynamic ob-

jects, artifacts can be observed, c.f ., Figure 6.10. This can
be explained. The point clouds of the underlying datasets only
include the static world. Consequently, the geometry of the dy-
namic objects had to be approximated. A cardboard approach
was used, where 2D planes are fitted through the object masks,
c.f ., Section 6.3.2. While, in most cases, the reflections of the
dynamic objects are plausible, the cardboard reflections depend
on the accuracy of the labeled masks. When the accuracy of
the labeled masks is low, reflection artifacts can occur due to
unreasonable cardboard positions. The lighting and shadowing
are also affected by the cardboard approximation. Areas be-
low large objects, e.g., cars, are occluded from the skylight and
thus shaded. However, due to the cardboard approximation, the
light may still be reflected in those areas, creating an unrealistic
brightening of the shadows.

6.6. Summary and Outlook

6.6.1. Summary

In this chapter, I presented an augmentation method of pre-
cipitation effects for automotive computer vision datasets. The
method includes a plausible simulation of ground surface wa-
ter penetration, reflections from puddles and drenched regions,
as well as light scattering from water spray, mists, and water
droplets on the windshield. I commenced by describing the pro-
cess of creating a structured and consistent virtual scene rep-
resentation from given masks and 3D point clouds of an auto-
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motive dataset. I then showed how this scene can be enriched
with physically plausible distributions for water accumulation
and water particles in 3D space. Finally, I proposed to modify
the original image data, utilizing screen-space ray path tracing, a
physically based wetness model of ground surfaces, image-based
estimates of the material parameters, and the previously created
distribution models of water accumulation and particles.

The method was applied to the HD1K dataset due to the
availability of high-fidelity point clouds but could be adapted for
other datasets as well. The images, produced with the proposed
method, show that each precipitation effect is simulated with
high perceptional realism, c.f ., Appendix A.

6.6.2. Outlook

In the future, an application to neural network training of au-
tomotive computer vision tasks is of particular interest. The
method has the potential to increase network robustness towards
real-world precipitation effects, which are challenging edge cases.
Further, the method could be beneficial to increase robustness
towards reflections and low contrast situations in general.

I identified two limitations caused by the cardboard approxi-
mation of the geometry: First, artifacts in the reflections when
the dynamic object masks are inaccurate and the cardboards
placed in unreasonable positions. Second, inconsistent lighting
in otherwise occluded areas, e.g., below cars. The limitation
could be averted by applying a model-based fit to the dynamic
object masks or by utilizing datasets with point cloud informa-
tion of the dynamic objects.
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7
Conclusion

Following the presentation of my work in the previous chapters, I
have yet to conclude this thesis with a review of my work and an
outlook on what I believe remains to be adressed in the context
of synthetic reference data generation.

7.1. Summary

One observation was the starting point of my presented work:
When using state-of-the-art synthetic datasets to test, train, and
validate computer vision algorithms there are systematic differ-
ences in comparison to using real-world datasets. The discrep-
ancies can be explained by a low realism of the simulation and
inaccuracies of several image formation aspects, e.g., the light
transport simulation, the material models, and the texture pa-
rameterizations of the materials. Materials are the link between
the light sources and sensors and the core element for achieving
the goal of synthesizing images that computer vision algorithms
cannot distinguish from real-world data.

In Chapter 4, I presented my commencing work of explor-
ing the upper limits of computer graphics and material acqui-
sition [47]. I showed that the realism of the simulation can be
sufficiently increased, by combining unbiased light transport al-
gorithms with high-fidelity BTF reflectance data from state-of-
the-art measurement devices. The proposed method can, in gen-
eral, synthesize images that are virtually identical to real-world
datasets, both perceptional and in terms of optical flow perfor-
mance. Only the most reflective materials with high-frequency
geometric details require reflectance data, that is captured with
a higher sampling density.

However, BTF reflectance data have limitations in terms of
rendering performance and suitability for massive datasets. In
Chapter 5, I presented my follow-up work on overcoming these
limitations [47]. I showed that efficient BRDF models can be
fitted to the BTF reflectance data of various material types with
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sufficient quality. Perceptional differences to the BTF reference
only occur for semi-translucent materials with subsurface scat-
tering and macroscopic shadowing effects. However, these effects
pose no challenge to optical flow algorithms and, consequently,
the BRDF models match the performance of the BTF reference.
On the other hand, reflective material, e.g., metals, and mate-
rials with high-frequency surface normals, e.g., coated leather
and fabrics, are much more challenging for optical flow. But
even those can be replicated with closely matching or even im-
proved accuracy, i.e., for highly reflective materials where the
BTF accuracy is limited. In all cases, a physically based Cook-
Torrance model, fitted with my proposed technique for surface
normal estimation, is best suited for rendering synthetic datasets
efficiently.

Not for all tasks and domains, a purely synthetic approach
to reference data generation is feasible and cost-effective. One
example is the training of neural networks for the automotive
domain. Here, the scale and variety of the encountered scenes
is massive and can hardly be replicated in entirety by a virtual
setup. In Chapter 6, I presented an alternative solution. By
applying prior knowledge about physical and optical material
properties, I proposed an augmentation method of real-world au-
tomotive datasets with precipitation effects. The method simu-
lates wet ground surfaces, water droplets on the windshield, and
particles from water spray and mists, by tracing light paths in 3D
space. On a perceptional level, the synthesizes images recreate
the simulated effects accurately. This opens up the opportunity
to utilize the method for increasing network robustness towards
the simulated effects as well as reflections and low contrast sit-
uations in general.

7.2. Outlook

One major questions regarding reflectance modeling for syn-
thetic datasets is yet to be answered. Many application do-
mains of computer vision algorithms are of massive scale, where
it is not feasible to measure the reflectance of the entire scene
to create synthetic datasets. Nevertheless, even partial measure-
ments for each material class could increase the confidence of the
datasets. To this end, several methods can be used to synthe-
size larger textures from measurements. One method is to stitch
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measured patches to a large tileable texture [29, 30]. However,
this approach is only applicable to purely high-frequency materi-
als without macroscopic reflectance features. More sophisticated
methods analyze the entire frequency spectrum of the measured
textures and synthesize new textures with similar frequency dis-
tributions [52]. A more recent approach is to synthesize vari-
ations of the measured textures by applying them to baseline
textures via style transfer from neural networks [37, 36]. In a
future work, it would be interesting to study all three approaches
in conjunction with measured reflectance data. A study of re-
sulting periodic patterns and visible seams would be of particular
interest, as optical flow and other vision algorithms are sensitive
to such artifacts. While style transfer approach seemingly pro-
duces excellent results, it additionally needs to be ensured that
the resulting textures sufficiently resemble measured data.

Optical Flow was used throughout this thesis as a judge of
reflectance data quality. It was chosen, because I deemed it
most sensitive to modeling inaccuracies due to its dependency
on the statistical distributions of image intensities. However, it
would be interesting to see my result applied to other computer
vision tasks, e.g., semantic segmentation or object detection.
These methods rely more on macroscopic image features and,
therefore, potentially have different simulation requirements.

Unfortunately, the HD1K dataset ground truth data was not
finalized within the time frame of my studies. Consequently,
my presented augmentation method remains to be evaluated in
the context of neural network training. Several computer vision
tasks are potential candidates, with optical flow and stereo esti-
mation being the most natural candidates, due to the availablity
of ground truth data in the underlying dataset. If positively eval-
uated, the method can complement existing data augmentation
techniques for improving the robustness of the neural networks.
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(a) Original Image

(b) w = 1/3

(c) w = 2/3

(d) w = 1

Figure A.1.: Images exemplary
augmentations of ground surface
wetness as in Chapter 6.
a) Original image without ground
surface wetness augmentation im-
age for reference.
(b) Augmented image with a low
global wetness level of w = 1/3.
Ground surface is partially satu-
rated with water and puddles start
to form.
(c) Augmented image with a
medium global wetness level of w =
2/3. Ground surface is almost fully
saturated with water and small
puddles have accumulated.
(d) Augmented image with maxi-
mum global wetness level w = 1.0.
Ground surface is fully saturated
with water and large puddles have
accumulated.
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(a) Original Image

(b) w = 1/3

(c) w = 2/3

(d) w = 1

Figure A.2.: Images exemplary
augmentations of ground surface
wetness as in Chapter 6.
a) Original image without ground
surface wetness augmentation im-
age for reference.
(b) Augmented image with a low
global wetness level of w = 1/3.
Ground surface is partially satu-
rated with water and puddles start
to form.
(c) Augmented image with a
medium global wetness level of w =
2/3. Ground surface is almost fully
saturated with water and small
puddles have accumulated.
(d) Augmented image with maxi-
mum global wetness level w = 1.0.
Ground surface is fully saturated
with water and large puddles have
accumulated.
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(a) Original Image

(b) w = 1/3

(c) w = 2/3

(d) w = 1

Figure A.3.: Images exemplary
augmentations of ground surface
wetness as in Chapter 6.
a) Original image without ground
surface wetness augmentation im-
age for reference.
(b) Augmented image with a low
global wetness level of w = 1/3.
Ground surface is partially satu-
rated with water and puddles start
to form.
(c) Augmented image with a
medium global wetness level of w =
2/3. Ground surface is almost fully
saturated with water and small
puddles have accumulated.
(d) Augmented image with maxi-
mum global wetness level w = 1.0.
Ground surface is fully saturated
with water and large puddles have
accumulated.
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(b) m = 0

(b) m = 1/3

(c) m = 2/3

(d) m = 1

Figure A.4.: Images depict exem-
plary augmentations of water spray
and mists from Chapter 6.
a) An image augmented with a
maximum global wetness level w =
1.0, but no water spray and mists
are added.
(b) The same image with a low
amount of water spray and mists
particles added m = 1/3. The
average view distance at camera
height level is around 450m.
(c) The same image with a
medium amount of water spray and
mists particles added m = 2/3.
The average view distance at cam-
era height level is around 300m.
(d) The same image with a high
amount of water spray and mists
particles added m = 1.0. The aver-
age view distance at camera height
level is around 150m.
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Figure A.5.: Images depict ex-
emplary augmentations of water
droplets on the windshield from
Chapter 6. In all cases the max-
imum ground surface wetting was
also applied.
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[46] Güssefeld, B., Honauer, K., and Kondermann, D. “Creating Feasible Reflectance Data for
Synthetic Optical Flow Datasets”. In: Advances in Visual Computing. Ed. by Bebis, G.,
Boyle, R., Parvin, B., Koracin, D., Porikli, F., Skaff, S., Entezari, A., Min, J., Iwai, D.,
Sadagic, A., Scheidegger, C., and Isenberg, T. Cham: Springer International Publishing,
2016, pp. 77–90. isbn: 978-3-319-50835-1.
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