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Abstract

Extracting and utilizing high-level semantic information from im-
ages is one of the important goals of computer vision. The ulti-
mate objective of image analysis is to be able to understand each
pixel of an image with regard to high-level semantics, e.g. the
objects, the stuff, and their spatial, functional and semantic rela-
tions. In recent years, thanks to large labeled datasets and deep
learning, great progress has been made to solve image analysis
problems, such as image classification, object detection, and ob-
ject pose estimation. In this work, we explore several aspects of
semantic-aware image analysis. First, we explore semantic seg-
mentation of man-made scenes using fully connected conditional
random fields which can model long-range connections within the
image of man-made scenes and make use of contextual information
of scene structures. Second, we introduce a semantic smoothing
method by exploiting the semantic information to accomplish se-
mantic structure-preserving image smoothing. Semantic segmenta-
tion has achieved significant progress recently and has been widely
used in many computer vision tasks. We observe that high-level se-
mantic image labeling information can provide a meaningful struc-
ture prior to image smoothing naturally. Third, we present a deep
object co-segmentation approach for segmenting common objects
of the same class within a pair of images. To address this task, we
propose a CNN-based Siamese encoder-decoder architecture. The
encoder extracts high-level semantic features of the foreground ob-
jects, a mutual correlation layer detects the common objects, and

finally, the decoder generates the output foreground masks for each



image. Finally, we propose an approach to localize common ob-
jects from novel object categories in a set of images. We solve this
problem using a new common component activation map in which
we treat the class-specific activation maps as components to dis-
cover the common components in the image set. We show that our
approach can generalize on novel object categories in our experi-

ments.



Zusammenfassung

Die Extraktion und Nutzung von semantischen Informationen aus
Bildern gehort zu den wichtigsten Computer-Vision-Anwendungen.
Allumfassendes Ziel von Bildanalyse ist das semantische Verstdndnis
auf Pixelebene. Dazu gehort unter anderem die Zuordnung von
Pixeln zu Objekten und Flichen, sowie ihre ortlichen, funktionalen
und semantischen Zusammenhinge. In den letzten Jahren kon-
nte auf dem Feld der Bildanalyse, insbesondere bei Klassifikation,
Objekterkennung und Posenschitzung, groBer Fortschritt durch an-
notierte Datensédtze und Deep Learning erzielt werden. Diese Ar-
beit untersucht verschiedenste Aspekte der semantischen Bildanal-
yse. Erstens betrachten wir die Semantische Segmentierung ur-
baner Szenen mittels Dense CRFs. Dense CRFs modellieren glob-
ale Zusammenhinge in Bildern unter Nutzung des Kontextes der
Struktur einer Szene. Zweitens fiihren wir eine Methode zur se-
mantischen strukturerhaltenden Bildglidttung, unter Nutzung von
Kontextinformation, ein. Semantische Segmentierung konnte seit
kurzem grofle Fortschritte erzielen und wird in vielen Computer-
Vision-Anwendungen genutzt. Wir beobachten, dass Semantik als
niitzliche A-Priori-Information fiir natiirlich wirkende Bildgléttung
verwendet werden kann. Drittens pridsentieren wir eine Methode
zur Kosegmentierung von Objekten der selben Klasse in einem Paar
von Bildern unter Nutzung einer Siamese Encoder-Decoder CNN-
Architektur. Der Encoder extrahiert semantische Deskriptoren der
Objekte im Vordergrund, ein Mutual Correlation Layer detektiert
Objekte derselben Klasse. Abschlie3end generiert der Decoder eine
Vordergrundmaske fiir jedes Objekt. Viertens stellen wir eine Meth-

ode zur Lokalisierung hiufiger Objekte eines Bilddatensatzes aus



unbekannten Klassen vor. Zur Losung dieses Problems fiithren wir
eine Common Component Activation Map ein, in welcher klassen-
spezifische Activation Maps zur Erkennung hiufiger Komponenten
im Datensatz genutzt werden. Wir zeigen in Experimenten, dass

dieser Ansatz auf neue Objektkategorien generalisiert.
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Chapter 1

Introduction

The objective of this thesis is to deal with the problem of semantic-aware image
analysis. Extracting and utilizing high-level semantic information from images
is one important goal of computer vision. In recent years, large progress has
been made in solving image analysis problems, such as image classification
[70, 118, 121, 47], object detection [41, 40, 101, 88], and object pose esti-
mation [11, 71, 12, 93]. In particular, thanks to large labeled datasets and deep
learning, pixel-level semantic segmentation has become more and more popular
[89, 17, 4, 95, 144]. In this thesis, we explore four works related to semantic-
aware image analysis: we first use fully-connected conditional random fields to
segment man-made scenes, second we smooth image using semantic labeling
as structure prior, third we co-segment the shared object from a pair of images
for both seen and unseen objects, finally, we localize common objects using

common component activation map.

1.1 Motivation

Image analysis has been a central research area in computer vision. The ultimate
objective is to be able to label each pixel of an image with regard to high-level
semantics, e.g. the things, the stuff, and their spatial, functional and semantic
relations. The image analysis includes multiple tasks, such as classification
(identifying the classes of the objects), detection (localizing the objects in the

image), and segmentation (assigning every pixel a semantic label).



Image classification aims to indicate which objects appear in the image from
a set of known object categories, as shown in Fig. 1.1. Since spatial informa-
tion is not required, image classification methods are trained using large scale
training image datasets with corresponding image-level annotations that indi-
cate the object categories present in the images. Image classification performs
image-level image analysis. Recently, the deep learning based method [46] has

surpassed the human-level performance on the ImageNet challenge [26].
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Figure 1.1: Image classification examples for images from ImageNet [26]

Object detection is the task of recognizing objects in an image and drawing
bounding boxes around them (see Fig. 1.2). Detecting objects present in an
image is a further step compared with classifying images for image analysis.
Recently, most of object detection methods are region or proposal based, such
as R-CNN [41], Fast R-CNN [40], and Faster R-CNN [101]. We can treat object

detection as a region-level image analysis task.

Figure 1.2: Object Detection examples for images from Pascal VOC [33].



Semantic segmentation aims to label pixels in an image from a set of prede-
fined semantic categories, such as person, grass, tree, sea, boat, and train, as
shown in Fig. 1.3. This task provides high-level semantic information about
the whole image. Semantic segmentation can be formulated as two subtasks:
recognition and reorganization. We can treat semantic segmentation as pixel-

level image analysis.

Figure 1.3: Semantic segmentation examples for images from COCO Stuff [14].

Recently, [64] propose a new image analysis task, panoptic segmentation, as
shown in Fig. 1.4. The goal is to unify the tasks of semantic segmentation
and instance segmentation. In this task, each pixel of an image is assigned a
semantic label and an instance ID. All pixels with the same semantic label and
ID belong to the same things, i.e. countable objects such as animals and tools.
For stuff classes, the instance ID is ignored, where stuff includes amorphous

regions with similar texture or material, such as grass, sky, and road.

Figure 1.4: Panoptic Segmentation examples for images from [63].



1.2 Challenges

In this thesis, we focus on semantic-aware image analysis. The high-level se-
mantic information can be used for robotics, self-driving car, healthcare, image
editing, and fashion applications. However, image analysis involves many chal-

lenges when bringing semantic reasoning to real-world applications.

Irregular Structure: Semantic segmentation of man-made scenes is one of
the fundamental problems in photogrammetry and computer vision. Man-made
scenes, e.g. a street scene, as shown in Fig. 1.5, may be one of the most common
scenes in daily life. These scenes exhibit strong contextual and structural infor-
mation in the form of spatial interactions among components, which include
buildings, doors, pavements, roads, windows or vegetation. The eTRIMS [67]
is one popular image dataset for semantic segmentation of man-made scenes,

which have irregular facades and do not follow strong architectural principles.

Figure 1.5: Semantic segmentation example of man-made scenes, The images
are from eTRIMS dataset [67].

High-for-Low: Structure-preserving image smoothing is one of the fundamen-
tal problems in image processing and computational photography. The purpose
of image smoothing is to reduce unimportant image texture or noise while pre-
serving image structures simultaneously, as shown in Fig. 1.6. The main chal-
lenge of image smoothing is how to obtain and exploit the structural or the edge
prior information to distinguish semantically pointless texture or noise from

meaningful image structure.



Figure 1.6: Image smoothing examples for the input image from MSRC [117].

Segmenting Common Objects: It is a challenging task to segment common
objects from the same class with large variability in terms of scale, appear-
ance, pose, viewpoint and background, see Fig. 1.7. While image segmentation
has received great attention with the recent rise of deep learning, the related
task of object co-segmentation remains largely unexplored by newly developed
deep learning techniques. Most of the recently proposed object co-segmentation

methods still rely on models without feature learning.

Figure 1.7: Object co-segmentation examples.



Localizing Common Objects: Object co-localization is the task of simultane-
ously localizing objects of the same class across a group of distinct images, see
Fig. 1.8. In a real-world setting, the input images are typically characterized by
large scales of intra-class variation, inter-class diversity, and annotation noise.

How to effectively use CNN features for this task is still not clear.

’

Figure 1.8: Object co-localization examples.

1.3 Contributions

The main contributions of this thesis are:

e We explore the semantic segmentation of man-made scenes using fully
connected conditional random fields (CRFs). Images of man-made scenes
display strong contextual dependencies in the spatial structures. Fully
connected CRFs can model long-range connections within the image of
man-made scenes and make use of contextual information of scene struc-
tures. The pairwise edge potentials of fully connected CRF models are
defined by a linear combination of Gaussian kernels. Using the filter-
based mean field algorithm, the inference is very efficient. Our experi-
mental results demonstrate that fully connected CRF performs better than

previous approaches on the eTRIMS and LabelMeFacade dataset.
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e We introduce a new semantic-aware image smoothing method. Structure-
preserving image smoothing aims to extract image structure from textures
and noises. Recently, semantic segmentation has achieved significant
progress and has been widely used in many computer vision tasks. We
present an interesting observation, i.e. high-level semantic image label-
ing information can provide a meaningful structure prior naturally. Based
on this observation, we propose a simple yet effective method, which we
term semantic smoothing, by exploiting the semantic information to ac-
complish semantic structure-preserving image smoothing. We show that
our approach outperforms the state-of-the-art approaches in texture re-

moval by considering the semantic information for structure preservation.

e We present a deep object co-segmentation (DOCS) approach for segment-
ing common objects of the same class within a pair of images. This means
that the method learns to ignore common, or uncommon, background stuff
and focuses on common objects. If multiple object classes are presented
in the image pair, they are jointly extracted as the foreground. To address
this task, we propose a CNN-based Siamese encoder-decoder architec-
ture. The encoder extracts high-level semantic features of foreground
objects, a mutual correlation layer detects the common objects, and fi-
nally, the decoder generates the output foreground masks for each image.
To train our model, we compile a large object co-segmentation dataset
consisting of image pairs from the PASCAL dataset with common ob-
jects masks. We evaluate our approach on commonly used datasets for
co-segmentation tasks and observe that our approach consistently outper-

forms competing methods, for both seen and unseen object classes.

e We propose an approach to localize common objects from novel object
categories in a set of images. We solve this problem using a new common
component activation map (CCAM) in which we treat the class-specific
activation maps (CAM) as components to discover the common compo-
nents in the image set. We show that our approach can generalize on novel

object categories in our experiments.



1.4 Publications

The main chapters of the thesis are based on the following publications.

o Efficient Semantic Segmentation of Man-Made Scenes using Fully
Connected Conditional Random Field. Weihao Li, Michael Ying Yang.
International Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences (ISPRS), 2016. [85]

e Semantic-Aware Image Smoothing. Weihao Li, Omid Hosseini Jafari,
Carsten Rother. International Symposium on Vision, Modeling, and Vi-
sualization (VMYV), 2017. [84]

e Deep Object Co-Segmentation. Weihao Li*, Omid Hosseini Jafari*,
Carsten Rother. Asian Conference on Computer Vision (ACCV), 2018.
(*equal contribution) [82]

Declaration: In this work, I proposed the original idea. The experimental
setup, and corresponding implementations, were designed in joint discus-
sions of me and Omid. We conducted the experiments jointly, and also

wrote the paper together.

e Localizing Common Objects Using Common Component Activation
Map. Weihao Li, Omid Hosseini Jafari, Carsten Rother. CVPR Work-
shop on Explainable Al, 2019. [83]

During the work on this thesis, we have also contributed to the following papers.

e Graph Convolutional Networks Meet Markov Random Fields: Semi-
Supervised Community Detection in Attribute Networks. Di Jin, Ziyang
Liu, Weihao Li, Dongxiao He, Weixiong Zhang. AAAI Conference on
Artificial Intelligence, 2019. (oral presentation) [56]

e Incorporating Network Embedding into Markov Random Field for
Better Community Detection. Di Jin, Xinxin You, Weihao Li, Dongxiao
He, Peng Cui, Francoise Fogelman-Souli€, Tanmoy Chakraborty. AAAI
Conference on Artificial Intelligence, 2019. (oral presentation) [57]



1.5 Outline

The remaining part of this thesis is structured as follows: In Chapter 2, we ex-
plore the topic of semantic segmentation for man-made scenes using fully con-
nected conditional random fields. In Chapter 3, we introduce an image smooth-
ing method by exploiting the semantic information to accomplish structure-
preserving image smoothing. In Chapter 4, we present a novel deep object
co-segmentation approach for segmenting common objects of the same class
within a pair of images. In Chapter 5, we propose an approach to localize com-
mon objects from novel object categories in a set of images. We discuss the

conclusions of this thesis in Chapter 6.
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Chapter 2

Semantic Segmentation of
Man-made Scenes

In this chapter, we explore the topic of semantic segmentation for man-made
scenes using fully connected Conditional Random Fields (CRFs). Images of
man-made scenes display strong contextual dependencies in the spatial struc-
tures. Fully connected CRFs can model long-range connections within the im-
age of man-made scenes and make use of contextual information of scene struc-
tures. The pairwise edge potentials of fully connected CRF models are defined
by a linear combination of Gaussian kernels. Using the filter-based mean field
algorithm, the inference is very efficient. Our experimental results demonstrate
that the fully connected CRFs perform better than previous approaches on the
eTRIMS dataset.

2.1 Introduction

Semantic segmentation of man-made scenes is one of the fundamental problems
in photogrammetry and computer vision. Man-made scenes, e.g. street scene,
(as shown in Fig. 1.5), may be the most familiar scenes in daily life. Applica-
tions of man-made scene interpretation include 3D city modeling, vision-based
outdoor navigation, and intelligent parking. Man-made scenes exhibit strong
contextual and structural information in the form of spatial interactions among
components, which may include buildings, cars, doors, pavements, roads, win-
dows or vegetation. The eTRIMS [67] and LabelMeFacade [37, 13] are two

11



popular image dataset for man-made scene semantic segmentation, which have
irregular facades and do not follow strong architectural principles. In this chap-
ter, we will explore semantic segmentation of this kind of man-made scenes
using fully connected conditional random fields.

Conditional random field (CRF) [77, 103, 117] is a popular method for mod-
eling the spatial structure of images in semantic segmentation problem. The key
idea of the semantic segmentation is to combine the low-level pixel object clas-
sifiers information and spatial contextual information within a CRF model, then
running a maximum a posteriori (MAP) or maximum posterior marginal (MPM)
inference method to obtain the segmentation results. However, low-connected
standard ( e.g. 4-connected or 8-connected) CRF works on a local level and can-
not model the long-range dependencies of the images, so the object boundaries
of these results are excessive smoothing.

CRFs with higher-order potentials, such as P" Potts model [65] and hier-
archical CRF [75, 141], have been proposed to improve semantic segmentation
accuracy by enforcing label consistency in image segments (or superpixels).
Both P" Potts model and hierarchical CRF are based on unsupervised image
segmentation, which is used to compute the segments or superpixels, e.g. nor-
malized cuts [116], mean shift [22] and SLIC [1]. However, accurate unsuper-
vised image segmentation is still an unsolvable problem. Segment-based P"
Potts model and hierarchical CRF model are limited by the accuracy of these
unsupervised image segmentation. Mistakes in the initial unsupervised image
segmentation cannot be recovered in the inference step if regions cross multiple
object classes.

Recently, the fully connected CRF [69] gains popularity in the semantic
segmentation problems. Fully connected CRF establishes pairwise potentials
on all pairs of pixels in the image and has the ability to model long-range con-
nections and capture fine edge details within the image. In contrast with local-
range CRFs [103, 117], which are solved by an expensive discrete optimization
problem [60], mean field approximation inference for the fully connected CRF
is much more efficient [69]. In this chapter, we propose to use fully connected
CRFs to model semantic segmentation of man-made scene problem and demon-

strate it leads to state-of-the-art results.

12



Figure 2.1: The pipeline of semantic segmentation of man-made scenes.

The whole pipeline of our system consists of two parts, as shown in Fig. 2.1:
first, we train the Textonboost [117] as the unary classifier for each pixel; sec-
ond, we run mean-field inference [69] for fully connected CRF to obtain maxi-
mum posterior marginal (MPM) results. Surprisingly, we find that the exper-
imental results based fully connected CRF are better or more efficient than
all previous approaches which are based on low connected CRFs on eTRIMS
dataset [67].

2.2 Related Work

Man-made scene semantic segmentation approaches can be generally classified
into two categories. One class methods are based on multi-class classifiers,
e.g. randomized decision forest and boosting, for pixel or superpixels, then use
CRFs or unsupervised segmentation methods to refine the classification results.
These methods often are called as the bottom-up method, such as [141, 92, 52].

Another class of facade labeling method is shape grammar [124, 91], which
is called as the top-down approach, The shape grammar methods represent the
facede using a parse tree and compute a grammar by a set of production rules.
However these methods are not pixel-wise labeling and not suitable for irregular
man-made scene images, such as, eTRIMS [67] and LabelMeFacade [37, 13]
datasets.

In [142, 141], a hierarchical CRF model is proposed to solve man-made
scene images semantic segmentation problem. In this hierarchical CRF model,
multi-scale mean shift algorithm [22] is used to segment the images into multi-

scale superpixels. The unary potentials are the probability results of a random-
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ized decision forest classifier, and then the spatial and hierarchical structures of
the superpixels are connected as pairwise potentials. However, the superpixel-
based hierarchical CRF model is limited by the accuracy of unsupervised image
segmentation. Mistakes in the initial unsupervised segmentation cannot be re-
covered in the inference step if superpixels cross multiple object classes.

[92] presents a three-layered approach for semantic segmentation of build-
ing facades and man-made scenes. In the first layer, they train a recursive neu-
ral network [119] to get label probabilities of superpixels, which are got by
over-segmenting the input image using mean shift algorithm [22], as the unary
potentials. In the second layer, using a grid CRF model to merge initial label-
ing and specialized object detectors [28]. In the third layer, weak architectural
principles are used as a post-processing step. However, the accuracy of the
three-layered method is also restricted by the precision of unsupervised image
segmentation, similar as [141].

The system of [52] uses a sequence of boosted decision trees, which are
stacked using Auto-context features [126] and trained using the stacked gener-
alization. They construct a CRF which is a pairwise 8-connected Potts model
and unary classifiers are obtained directly from the image, detection, and auto-
context features. Their inference method is alpha expansion [9], which costs
about 24 seconds for an image on average. In contrast, the filter-based mean
field approximation inference of fully-connected CRF only costs about 1 sec-
ond per image of eTRIMS dataset. Therefore, fully connected CRF is much
more efficient.

[37] presented a man-made scene image labeling method, which is using
a random decision forest classifier and local features. Their method uses an
unsupervised segmentation, e.g. mean shift, to refine the classification results.

Convolutional patch networks, which is a kind of convolutional neural net-
works (CNNGs), is presented by [13]. Since both the eTRIMS [67] and LabelMe-
Facade [37, 13] image databases are relatively small, this limit the classification

and labeling ability of the convolutional patch networks.
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Figure 2.2: Fully-connected CRFs establish pairwise potentials on all pairs of
pixels in the image and has the ability to model long-range connections. From
left to right: Four-Connected CRF, Eight-Connected CRF, and Fully-Connected
CRFE.

2.3 Method

Conditional random field (CRF) [77, 103, 117] is a popular method for mod-
eling the spatial structure of images in semantic segmentation problem. The
CRFs model can combine the low-level pixel object classifiers information and
spatial contextual information. Fully connected CRF [69] establishes pairwise
potentials on all pairs of pixels in the image and has the ability to model long-
range connections, as shown in Fig. 2.2, and capture fine edge details within the
image. Each pairwise term of fully connected CRF is defined as a linear combi-
nation of Gaussian kernels. In contrast with local-range CRFs [103, 117], which
are solved by an expensive discrete optimization problem [60], mean field ap-
proximation inference for the fully-connected CRF is much more efficient [69].
The whole pipeline of our system consists of two parts, as shown in Fig. 2.1:
first, we train the Textonboost [117] as the unary classifier for each pixel inde-
pendently; second, we run filter-based mean-field approximation inference [69]

for fully connected CRF to obtain maximum posterior marginal (MPM) results.

2.3.1 Fully-Connected CRF

We define a random field X over a set of variables { X1, ..., Xy} which is con-
ditioned on pixels {/1,..., [y} of a man-made scene image I. Each random
variable X takes a label value from the label sets £ = {l;, ..., 1}, i.e. X is the
label of pixel /;. The conditional random field is defined as a Gibbs distribution

15



P(X = x[T) = ﬁ exp(—E(x|T)) @.1)

where E(x) is the corresponding energy of the labeling x € £V conditioned on
I. Z(I) is the partition function. For convenience, we drop the conditioning on
I in the notation. In the fully connected pairwise CRF model, the corresponding

energy function is given by

E(x) = Z ¢i(w;) + Z ij(zi, ;) (2.2)
i i<j
where i and j range from 1 to N. The unary potential ¢;(z;) is the cost com-
puted for pixel 7 taking the label x; by a classifier given image features, and the
pairwise energy potential ¢;;(x;, ;) encourage coherence in pixels z; and x;

when they have similar features, such as, the colour values and positions.

2.3.2 Unary Potentials

The image features used in our work include 17-dimensional filter bank re-
sponses [117], RGB color, histogram of oriented gradient (HOG) [25], SIFT [90]
and pixel location information. Given these image features, we compute the
unary potential ¢;(x;) for each pixel ¢ by a multi-class classifier that produces a
probability distribution over the labeling z; independently. The form of unary
potential ¢;(x;) is the negative log likelihood, i.e. corresponding probability
distribution P of the labeling assigned to pixel ,

The unary potentials incorporate shape, texture, location, and color descriptors,
which are derived from TextonBoost [117, 75]. We use the extended Texton-
Boost framework, which boosts classifiers defined on above-mentioned features
together. The implementation used here is the Automatic Labelling Environ-
ment (ALE) [75]. The result of unary classifiers is usually noisy, as shown in

the middle image of Fig. 2.1.
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2.3.3 Pairwise Potentials

The pairwise potentials in fully connected CRFs model have the form

=

i3, 7) = (s, ) Y w™E(E; £) (2.4)
m=1
where k(™) is a Gaussian kernel, w(™ is weight of the kernel, p is label compat-
ibility function, and f;, f; are feature vectors for pixel ¢ and j, which are color
values and pixel positions as [69].
In this chapter, we use Potts model, and y(z;, z;) = [z; # =;]. For man-
made scene semantic segmentation we use contrast-sensitive two-kernel poten-

tials,

|2
K6, £) = wl? eXp(_%)v
7 (2.5)

2 2
@) /e £\ — .2 _|pi_pj| _\Ii_[j\

k2 (£, 1) = w' exp( 262 202 ).

where I; and I; are the color vectors and p; and p; are positions. The first

part kM (f;, f;) is the smoothness kernel, which helps to remove small isolated

regions, and the second part k() (f;, f;) is the appearance kernel, which encour-

ages nearby pixels to have the same labels when they have similar color. The

degrees of similarity are controlled by parameters 0, 63 and 6,.

2.3.4 Inference

Following [69], we use a mean field method for approximate Maximum Pos-
terior Marginal (MPM) inference. The mean field approximation computes an
alternative distribution Q)(X) over the random variables X, instead of comput-
ing the posterior distribution P(X) directly. Distributions Q(X) is a product
of independent marginals, i.e. Q(X) = [[. Q:(X;). The mean field approxi-
mation minimizes the KL-divergence D(Q||P) between distribution () and the

exact distribution P. The mean field inference performs the following message
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passing iterative update until convergence:

1

Qi(r; =1) = Z exp{—¢u(z;)

_ZZQJ _l 925%](%733])}

Vel j#i

1 (2.6)

= 7 exp{—¢u(z;)

—ZZuu Y R £)Q5(1)

l'eL m=1 jF#i

where Z; is the marginal partition function of pixel ¢ used to normalize the
marginal. Updating the message passing iteration in sequence across pixels,
KL-divergence will be convergence [66]. Directly computing this message
passing iterative is intractable, because for each pixel, evaluating the sum of
all of the other pixels is required. This is the computational bottleneck of the
message passing iterative. To make this update tractable and efficient, a high

dimensional Gaussian filter can be used [2, 69]. The transformation is:

2 KM )Q0) = 3K E )20 - Qi)
P (2.7)

=[G m®Q()K i) — Q;(0),

where G, is the corresponding Gaussian kernel of k(™ and ® is the convolu-
tion filtering. Using the permutohedral lattice [2], which is a highly efficient
convolution data structure, the approximate message passing can be updated in
time O(Nd) [69]. Of cause, other filtering methods also can be used for the
approximate message passing, e.g. domain transform filtering [39, 131].

The first smoothness kernel is a Gaussian blur. And the second appearance
kernel actually is the joint or cross bilateral filtering [125, 99, 32], in which Q(1)
is the input image and [ is the reference (or guidance) image. After running the
update step in a fixed number, in this chapter, we update 10 times iteration, then

we get the MPM result from the final iteration,

x; € arg max Qi(x; =1). (2.8)
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2.3.5 Learning

For training unary potentials, we set the parameters of the low-level feature
descriptors, such as HOG, Texton, and SIFT, using the setting of Automatic
Labelling Environment (ALE). For the parameters of the CRFs, we use 5 folders
cross-validation to learning the weights of the unary responses and Gaussian

kernels.

2.4 Experiments

We evaluate the fully-connected CRFs on all two irregular man-made scene
images benchmark datasets: eTRIMS dataset and LabelMeFacade Dataset. For
eTRIMS dataset, we perform a 5-fold cross-validation as in [141] mentioned by
dividing 40 images into a training set and 20 images into a test set randomly.
For LabelMeFacade dataset, we use the pre-separated training and testing as the

same as [37, 13] mentioned. We compare our results with against [52] and [13].

2.4.1 Datasets

eTRIMS dataset [67] includes 60 man-made scene images, which are labeled
with 8 classes: building, car, door, pavement, road, sky, vegetation and win-
dow. And each image have an accurate pixel-wise annotation. For evaluation,
we perform a 5-fold cross-validation as in [141] by dividing 40 images into a
training set and 20 images into a test set randomly. Then we run the experiment

five times and report the average accuracy.

LabelMeFacade Dataset is presented by [37], which are also labeled with 8
classes: building, car, door, pavement, road, sky, vegetation and window. The
images of LabelMeFacade dataset are taken from LabelMe dataset [109]. There
are 945 images in the dataset, which are split as two sets, 100 images for train-
ing and 845 images for testing. Similar with the eTRIMS dataset, facades in
LabelMeFacade dataset are highly irregular.
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2.4.2 Results

We compare our approach with the state-of-the-art man-made scenes image seg-
mentation methods on eTRIMS dataset and LabelMeFacade dataset, i.e. facade
segmentation using Auto-Context [52] and Convolutional Patch Networks [13].
We choose the average, overall and intersection over union (IoU) score as the
evaluation measures. Overall is the pixel-wise labeling accuracy, which is com-
puted over the whole image pixels for all classes. Average is the pixel-wise
labeling accuracy computed for all classes and the averaged over these classes.
IoU is defined as TP/(TP + FP + FN). TP represents the true positive, F'P

means false positive and ' N indicates the false negative.

Class ‘ Textonboost CRF AC [52] Ours
Building 74.38 80.38 92.50 84.14
Car 81.58 85.88 76.60 87.06
Door 77.40 80.24 65.30 79.80
Pavement 59.02 62.22 48.80 60.46
Road 80.02 81.36 82.10 81.16
Sky 97.16 98.42 98.90 99.32
Vegetation 89.70 90.22 92.90 91.74
Window 77.66 75.94 68.20 71.10
Average 79.62 81.83 78.14 81.85
Overall 80.12 83.31 87.29 84.72
IoU 59.44 63.52 63.54 64.81

Table 2.1: The quantitative results on the eTRIMS dataset. Textonboost is
trained using Automatic Labelling Environment. The CRF is a 4-connected
CRE. AC is the Auto-context method. Our method is the fully connected CRF.

We show the quantitative experimental results of the eTRIMS dataset in
Table 2.1. Our method outperforms the previous state-of-the-art approaches
[52] on the eTRIMS dataset. We get the Average 81.85% and IoU 64.81%.
Our Average and IoU are highest, and we get five classes out of eight higher
than the Auto-Context method [52], which is the benchmark on the eTRIMS
dataset before. Note that the Auto-Context method [52] uses detection as a pre-
processing step. We do not use any detection information, and our approach

is efficient, which only need about one second in the inference step. Fig. 2.3
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Figure 2.3: The qualitative results of the eTRIMS dataset. First column are
examples of the testing images and 2nd-column are the corresponding ground
truth. (3rd-column to Sth-column) man-made scene semantic segmentation re-
sults using the Textonboost classifier, the CRF model and the fully connected
CRF model, respectively. The fully connected CRF model obtain more accurate
and detailed results than the low connected CRF.
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shows qualitative segmentation results of our method. Our method obtains more

accurate and detailed results than the low connected CREF.

Class \ Textonboost CRF AC [52] CPN [13] Ours
Average 61.39 60.95 49.04 58.98 59.53
Overall 75.47 77.40 75.23 74.33 79.27
IoU 46.85 48.07 39.57 - 48.48

Table 2.2: The quantitative results on the LabelMeFacade dataset. Textonboost
is trained using Automatic Labelling Environment. The CRF is a 4-connected
CRF. AC is the Auto-context method. CPN is the Convolutional Patch Networks
method. Our method is the fully connected CRF.

We show the quantitative experimental results of LabelMeFacade dataset
in Table 2.2.0ur method outperforms the previous state-of-the-art approaches
[52] and [13] on LabelMeFacade dataset. Since [13] only provide Average and
Overall result, we just compare [13] with these two measures. In contrast with
[52], they regard the ’various’ as a class, we do not consider ’various’ as a class.
So the LabelMeFacade dataset has eight classes as the eTRIMS dataset. We get
the Overall accuracy 79.27% and IoU accuracy 48.48%. Our Average and IoU
are highest, and we get five classes out of eight higher than the Convolutional
Patch Networks method [13], which is the benchmark on the eTRIMS dataset
before. Fig. 2.4 shows qualitative segmentation results of our method. Our

method obtains more accurate and detailed results than the low connected CRF.

2.5 Conclusion

In this chapter, we explore man-made scene semantic segmentation using fully
connected conditional random fields model, which is very efficient and only
need about one second in the inference step. The method outperforms the previ-
ous state-of-the-art approaches on the eTRIMS dataset and the LabelMeFacade

dataset, which obtains more accurate and detailed results.
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Figure 2.4: The qualitative results of the LabelMeFacade dataset. The first col-
umn is examples of the testing images and 2nd-column are the corresponding
ground truth. (3rd-column to 5th-column) man-made scene semantic segmen-
tation results using the Textonboost classifier, the CRF model and the fully con-
nected CRF model, respectively. The fully connected CRF model obtain more
accurate and detailed results than the low connected CRF.
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Chapter 3

Semantic-Aware Image Smoothing

Structure-preserving image smoothing aims to extract semantically meaning-
ful image structure from texture, which is one of the fundamental problems in
computer vision and graphics. However, it is still not clear how to define this
concept. On the other hand, semantic image labeling has achieved significant
progress recently and has been widely used in many computer vision tasks. In
this paper, we present an interesting observation, i.e. high-level semantic image
labeling information can provide a meaningful structure prior naturally. Based
on this observation, we propose a simple and yet effective method, which we
term semantic smoothing, by exploiting the semantic information to accomplish
semantically structure-preserving image smoothing. We show that our approach
outperforms the state-of-the-art approaches in texture removal by considering
the semantic information for structure preservation. Also, we apply our ap-
proach to three applications: detail enhancement, edge detection, and image
segmentation, and we demonstrate the effectiveness of our semantic smoothing

method on these problems.

3.1 Introduction

Structure/edge-preserving image smoothing [138, 61, 137] is one of the fun-
damental problems in image processing, computational photography, and com-
puter vision. The purpose of image smoothing is to reduce unimportant im-

age texture or noise while preserving semantically meaningful image structures

25



(a) Inpt | (b) DT

(C) LO : (d) RGF

(e) RG (f) RTV

(9) SF (h) Ours

Figure 3.1: Semantic Smoothing on MSRC-21 dataset. In this example, im-
age(a) contains a textured bench in a grassland. As a result, it is difficult for the
state-of-the-art structure-preserving and edge-preserving smoothing methods to
obtain smoothing results with accurate structure (b)-(g). (b) Domain Transform
(DT) [39], (¢) Ly Smoothing [136] (A = 0.04), (d) Rolling Guidance Filter
(RGF) [147], (e) Region Covariances (RG) [61] (k = 5, 0 = 0.2, Model 1),
(f) Relative Total Variation (RTV) [138] (A = 0.005, ¢ = 3) and (g) Semantic
Filtering (SF) [143]. Our method effectively preserves semantically meaningful
structure and smooth out detail and texture. Best viewed in color.
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simultaneously [138, 143]. It has achieved widespread use in various appli-
cations, including texture removal, edge extraction, image abstraction, seam
carving, and tone mapping.

The main challenge of image smoothing is how to obtain and exploit the
structural or the edge prior information to distinguish semantically pointless
texture or noise from meaningful image structure [138, 147, 143]. The majority
of edge-preserving image filters apply low-level feature, i.e. image gradients,
as edge prior information, such as bilateral filtering [125] and guided filter [45].
For structure-preserving image smoothing, relative total variation [138], dif-
fusion maps [35], and region covariances [61] measures are used to separate
texture from the image structure. Recently, Yang [143] use an edge detector for
iterative edge-preserving texture filtering to exploit mid-level vision feature, i.e.
structured edges. Although these methods work well for some tasks, it is not
clear how to define the meaningful image structure. For example in Fig. 3.1 (b-
g), it is difficult for previous approaches to preserve the bench structure when
they only consider low-level and mid-level vision features of an image.

In this chapter, we present an observation, i.e. high-level semantic infor-
mation can provide a meaningful structure prior to image smoothing naturally.
Recently, semantic labeling has been heavily studied in computer vision com-
munity [117, 151, 89, 50]. Semantic information provides an object-level se-
mantically meaningful structure prior, such as object boundaries, which help to
reduce the negative effect of sharp edges inside of objects. Based on this obser-
vation, in this chapter, we present a simple and yet effective method which ex-
ploits semantic labeling information to accomplish texture removal and mean-
ingful structure preservation. We call this new concept semantic smoothing.
Besides utilizing high-level semantic information, our method also can combine
low-level vision features, i.e. image appearance, and mid-level vision informa-
tion, i.e. image edges.

Our method has two unique properties: meaningful structure preservation
and interior detail removal. As shown in Fig. 3.1, input image Fig. 3.1 (a)
contains a textured bench in the foreground and a grassland in the background.
Current state-of-the-art image smoothing methods cannot successfully separate

bench from its texture and preserve its structure as shown in Fig. 3.1 (b)-(g). Our
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proposed semantic smoothing technique outperforms other approaches by pre-
serving the bench structure effectively as illustrated in Fig. 3.1 (h). To the best
of our knowledge, it is the first structure-preserving image smoothing method
which exploits high-level semantic segmentation information.

The following sections are organized as follows. The related works are dis-
cussed in Section 3.2. In Section 3.3 our semantic-aware image smoothing
method is described. In Section 3.4 experimental results and applications are

presented.

3.2 Related Work

We categorize the related work into two aspects: image smoothing and seman-
tic segmentation. First, we discuss edge-preserving and structure-preserving
image smoothing methods. Second, we briefly review development progress of

semantic segmentation and semantic information in other vision problems.

3.2.1 Image Smoothing

The image smoothing methods can be separated into two classes: edge-preserving
and structure-preserving smoothing. The bilateral filter [125] is one of the most
popular edge-preserving filtering methods which replaces the intensity value of
each pixel in the image with a weighted average of intensity values of its neigh-
boring pixels. In joint bilateral filters [99, 32], the range filter is applied to a
guidance image from another domain. As edge-preserving image smoothing
or filtering methods, we can also mention anisotropic diffusion [98], weighted
least square [36], local Laplacian pyramid [97], domain transform [39], and se-
mantic filtering [143]. However, it is hard to separate high-contrast textured
regions or patterns from the meaningful structures of an image by using these
edge-preserving techniques. The structure-preserving image smoothing tech-
niques aim to separate the image structure and texture. One of the most pop-
ular structure-preserving image smoothing methods is Xu et al. [138], which
uses the relative total variation (RTV) measure to decompose structures from

textures. They first model a regularization term based on the RTV measure,
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then solve a global optimization to extract the main structures and to obtain the
smoothed image. Zhang et al. [146] first segment the input image into superpix-
els then they build a minimum spanning tree for each superpixel to accelerate
image filtering. Shen et al. [115] proposes a mutual-structure joint filtering
towards preserving common structures of an input and a guidance image. As
other structure-preserving image smoothing techniques we can mention total
variation [107], local extrema [120], structure adaptive[74], rolling guidance
filter [147], and geodesic [23].

Recently, several learning-based methods have also been proposed for im-
age filtering [137, 6]. In contrast, we exploit the semantic segmentation in-
formation as a meaningful structure prior to the semantic structure-preserving

image smoothing.

3.2.2 Semantic Segmentation

Semantic segmentation is one of the key problems in image understanding. The
goal of semantic segmentation is to label each pixel of the image with the class
of its enclosing object. A common pipeline of semantic segmentation is first
to train pixel-based classifiers, such as Textonboost [117] or fully convolutional
networks (FCN) [89], then using a probabilistic graphical model, such as CRF
[117, 17, 152, 78], to improve the performance by modeling structured de-
pendencies. With the development of semantic segmentation techniques, other
computer vision problems exploit high-level semantic information, such as op-
tical flow [113, 5], depth prediction [50, 135], depth upsampling [49, 110],
object attributes [130, 151], intrinsic image estimation [130], 3D reconsecra-
tion [42, 73, 76].

However, smoothing image using semantic segmentation information has
not been exploited before. In this chapter, we propose a novel semantic-aware
approach which exploits the semantic information for structure preserving im-

age smoothing.
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3.3 Semantic Smoothing

In this section, we introduce our semantic image smoothing method, which
exploits high-level semantic information to achieve semantically meaningful
structure preserving smoothing.
Given an input image t and its semantic labeling s, our goal is to compute
a new smoothed image x, which is as similar as possible to the input image t
while preserving the semantically meaningful image structure and reducing the
texture or noise. We model our semantic smoothing as an energy minimization
problem. Formally, we define the energy function as a weighted sum of two
energy terms
E(x) = Eq4(x;t) + E.(x;t,8), (3.1)

where E, is the data term and £, is the regularization term.

3.3.1 Data Term

The purpose of the data term is to minimize the distance between the input
image t and the smoothed image x. Without this data term, there will be a
trivial solution where all of the pixels will be assigned to the same color value.
We define the data term E,; as

By(x;t) = (2 — 1)’ (3.2)
where 7 is the pixel index. With this term, smoothed image x will be limited

within a range around the input image t.

3.3.2 Regularization Term

The regularization term £, strive to achieve smoothness by jointly consider-
ing the low-level appearance, the mid-level edge, and the high-level semantic

information. The regularization term £, is defined as

B (xit,s)=> > Wil — ;)% (3.3)

i JeEN(i)
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where N/ (i) is a set of neighboring (four or eight) pixels around the pixel ¢ and
the weight IV; ; represents the similarity between the pixel 7 and the pixel j.
Our W; ; consists of three potential functions and is defined as

Z7j ’

where the first factor wj; is the appearance potential which is used to control the
low-level information. The second factor wy ; is based on the edge detection and
is used to control the mid-level information. The last factor w; ; is the semantic
potential which exploits the high-level semantic information. The weights \,,
Ae, and A, are used to control the effect of the low-level, the mid-level and the
high-level information on the final smoothed output, respectively. These three

parts are explained in detail below.

3.3.2.1 Appearance potential
The appearance potential w;; of the pixel 7 and the pixel j is defined as

16 — £11”

Oq

wy; = exp(—

), (3.5)

where f; and f; are three-dimensional vectors representing the Lab color values
of the pixel ¢ and the pixel j and o, is a range parameter.

We use the appearance potential to measure the difference of the low-level
vision feature, i.e. color, between the pixel 7 and the pixel j. In this setting,
neighboring pixels of the input image with similar colors are assigned to larger
weights and neighboring pixels with different colors are assigned to smaller

weights.

3.3.2.2 Edge potential

The edge potential wy ; between the pixel ¢ and the pixel j is defined as

2
we, = exp(—ﬁ =AY (3.6)

2,
g
e

where f3; ; € [0, 1] is the boundary strength measure between the pixel ¢ and the

pixel j and o, is a range parameter.
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Recently, Yang [143] uses an edge detector [29] for edge-preserving image
filtering. In contrast, we utilize image edges as the mid-level vision cue to help
the appearance potential and the semantic potential. In this work, we use the

structured edge detector [29] to calculate boundary strength measure [3; ;.

3.3.2.3 Semantic potential

The semantic potential is the key part of our semantic smoothing. Based on the
semantic labeling s, the semantic potential between the pixel 7 and the pixel j

can be written as

high 1f S = 85
Wi = {zloz Otherwisje, -7
where s; and s; present semantic labeling of the pixel 7 and the pixel j. Vpign
and 7,0, are weight parameters and V4ign > Viow- When neighboring pixels ¢
and j have the same semantic labeling, we assign a larger weight to encourage
these two pixels to have close color values in the output smoothed image. In
contrast, when neighboring pixels ¢ and j have different semantic labeling, they
are assigned a smaller weight. For each class label, it is possible to set differ-
ent Vg, values to control the different smoothing strength. In this work, for
simplicity, we set Vg, to 1.0 for all semantic classes and we set 7, tO zero.
Semantic information help to reduce the adverse effect of the object’s interior

sharp edges and texture.

3.3.3 Optimization

The objective function in Equation 3.1 is strictly convex and can be written in a

matrix and vector form as
E(x)=(x—t)T(x—t) +x'Ax (3.8)
where matrix A is a Laplacian matrix which is defined as

A=D-W, (3.9)
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where W is an adjacency matrix {W; ;||j € N (i)} and D is a degree matrix
which is defined as

0 i 5.

By setting the gradient of F'(x) defined as in Equation 3.8 to zero, the final

D, - {Zjew) Wi =17 (3.10)

smoothing result x is obtained by solving the linear system based on a large
sparse matrix:
I+A)x=t (3.11)

where I is an identity matrix.

3.4 Experimental Results and Applications

Our semantic smoothing method can benefit several image editing and manipu-
lation applications due to its special properties, i.e. meaningful structure preser-
vation and interior detail removal. In this section, first, we introduce the datasets
which we used in our experiments. Second, we visually compare the texture re-
moval results of our proposed semantic smoothing approach with the state-of-
the-art methods. Finally, to show the effect of our approach, we apply it to three

applications: detail enhancement, edge detection, and image segmentation.

3.4.1 Datasets

MSRC-21 dataset [117] consists of 591 color images with the following 21
object classes, such as grass, tree, cow, sheep, water and so forth. Cimpoi [20]
also use MSRC-21 dataset for texture recognition and segmentation task. In
order to ensure proportional contributions from each class approximately, the
dataset is split into 45% training, 10% validation and 45% test images. We
use the standard split of the dataset from [117] to train the textonboost [117],
which incorporates shape, texture, location, and color descriptors. Then, we
use the trained textonboost to obtain the semantic segmentation. Lastly, we
apply the dense CRF [69] to refine the semantic segmentation results and we use
this refined version as high-level semantic information input to our smoothing

approach. The run-time for each image is roughly 2.0 seconds.
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PASCAL VOC dataset [33] consists of one background class and 20 fore-
ground object classes including person, bird, cat, cow, dog and so forth. There
are 1464 images for training, 1449 for validating and 1456 for testing, respec-
tively. Recently, the fully convolutional network (FCN) [89] is mainly utilized
for estimating the semantic segmentation on PASCAL VOC dataset. Also in
this work, we employ the publicly available pre-trained FCN [89] for obtaining
the semantic labeling for PASCAL VOC. Then, we use the dense CRF [69] to
refine the FCN results for using it as the input to our semantic smoothing. The
run-time for each image is roughly 2.8 seconds.

3.4.2 Texture Removal

Texture removal, which is also called as texture smoothing, aim to separate
the meaningful structures from textures. We compare our semantic smoothing
results with the state-of-the-art image smoothing techniques, such as Relative
Total Variation (RTV) [138] and Semantic Filtering (SF) [143]. We use the au-
thors’ publicly available implementations. It is difficult to quantitatively evalu-
ate image smoothing methods, therefore similar to most of the state-of-the-art
methods [143, 138], we present the visual comparison evaluation in Fig. 3.2,
Fig. 3.3 and Fig. 3.4. We visually compare our proposed semantic smoothing
technique with [138, 143] on MSRC-21 dataset (see Fig. 3.2 and Fig. 3.3)
and PASCAL VOC dataset (see Fig. 3.4). As illustrated in these figures, our
semantic-aware image smoothing performs better in terms of preserving mean-
ingful structures and reducing object interior textures. For instance, if we look
at the black cow in the first row of Fig. 3.2, there are strong edges inside of the
cow’s body in other approaches’ results, while our approach is able to remove

these semantically meaningless edges.

3.4.3 Applications
3.4.3.1 Detail Enhancement

Detail enhancement aims to increase the visual appearance of images, which is

widely used in image editing. Thanks to the property of structure-preserving
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(a) Images

(b) SF

-

(c) RTV

-

(d) Ours

Figure 3.2: Visual comparison of texture removal results on MSRC dataset. (a)
input images, (b) Semantic Filtering (SF) [143], (c) Relative Total Variation
(RTV) [138] and (d) Our semantic smoothing results. Best viewed in color.
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(d) Ours

Figure 3.3: Visual comparison of texture removal results on MSRC dataset. (a)
input images, (b) Semantic Filtering (SF) [143], (c) Relative Total Variation
(RTV) [138] and (d) Our semantic smoothing results. Best viewed in color.
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(a) Images

(b) SF

(c) RTV

(d) Ours

Figure 3.4: Visual comparison of texture removal results on PASCAL VOC
dataset (a) input images, (b) Semantic Filtering (SF) [143], (c) Relative Total
Variation (RTV) [138] and (d) Our semantic smoothing results. Best viewed in
color. 37



image smoothing, i.e. structure-texture decomposition, we can apply our se-
mantic smoothing method to enhance the underlying details or textures of an
image. First, we use our semantic smoothing method to decompose the input
image into structures and details. Then we add the details back to the input
image. That means we augment the contrast in detail components of the input
image.

Fig. 3.5 shows two examples. Given two input images Fig. 3.5 (a) and (e)
and their semantic smoothing results Fig. 3.5 (b) and (f), we can decompose the
texture information Fig. 3.5 (c) and (g) and obtain the detail enhancement re-
sults Fig. 3.5 (d) and (h). Since our smoothing method can effectively preserve
the object-level structure and remove object interior edges, it can effectively en-
hance the underlying detail, particularly inferior texture and edges of objects,
without blurring the main structure of objects.

3.4.3.2 Edge Detection

Edge detection is one of the challenging tasks in computer vision for a long
time. The purpose of edge detection is to extract visually salient edges or ob-
ject boundaries from the input image. Boundary and edge can be used in a
broad range of computer vision or graphics tasks, such as semantic segmen-
tation, object recognition, image editing, and tone mapping. Our method can
be applied to object-level edge extraction thanks to its ability to preserve se-
mantically meaningful structures and remove many unimportant details, such
as interior edges of the object especially.

Fig. 3.6 (a) shows an input image in grass texture with a salient foreground,
i.e. a cow. Since the texture has high contrast, applying the Canny edge de-
tector [15] cannot produce reasonable results directly from the input image, see
Fig. 3.6 (c). Structured edge detection [29] is a popular edge detection method
based on random forests, which can detect salient edges. It achieves better
results as demonstrated in Fig. 3.6 (e) and thinned edges Fig. 3.6 (g), which
is obtained by standard non-maximal suppression technique. We can see that
some of the detected edges come from the textures. In contrast, our method first
produces an object-level structure-preserving smoothed image, which removes

insignificant details as Fig. 3.6 (b). We can improve the result of these edge
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Figure 3.5: Detail Enhancement. (a) and (e) are the input images. (b) and (f)
are our semantic image smoothing results. (c) and (g) are decomposed texture
information outputs. (d) and (h) are the detail enhancement results. Best viewed
in color. 39



detection approaches by applying them to our smoothed images Fig. 3.6 (b).
Fig. 3.6 (d), (f), and (h) illustrate the refined edge detection results of Fig. 3.6
(c), (e), and (g) correspondingly.

3.4.3.3 Semantic Segmentation

In this section, we show that the smoothed image also can help semantic seg-
mentation. Fully connected conditional random field [69], which is also called
as dense conditional random field (Dense-CRF), is a very popular tool to refine
semantic image segmentation results. We propose to use a modified version of
Dense-CRF, which we call Dense-CRF+, where the smoothed images are used
to model appearance kernel of Gaussian edge pairwise term instead of the typ-
ical RGB color vectors. For the sake of comparison with original Dense-CRF,
we use the MSRC-21 dataset, the same data splits and unary potentials as the
one used by [69].

Class \ Unary Dense-CRF Dense-CRF+
Average 76.39 79.37 79.55
Overall 83.18 87.78 88.01

Table 3.1: The quantitative semantic segmentation results on the MSRC-21
dataset.

We choose two standard measures of multi-class segmentation accuracy as
[69] used, i.e. Overall and Average. Overall is the pixel-wise labeling accu-
racy, which is computed over the whole image pixels for all classes. Average
is the pixel-wise labeling accuracy computed for all classes and the averaged
over these classes. The original ground truth labelings of the MSRC-21 dataset
are relatively imprecise. There are some regions around objects boundaries left
unlabeled. This makes it difficult to evaluate the quantitative performance of
semantic segmentation results. Therefore, we evaluated our results on the 94
accurate ground truth labelings provided by [69], which is fully annotated at the
pixel-level, with accurate labeling around complex boundaries. Table 3.1 shows
the quantitative experimental results. We get the Average accuracy 79.55 and
Overall accuracy 88.01. Our method outperforms the original Dense-CRF ap-
proach [69] on the MSRC-21 dataset. Fig. 3.7 shows some qualitative semantic
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Figure 3.6: Edge Detection. (a) Input image, (c) Canny edge detection [15]
applied to (a), (e) Structure edge detection [29] applied to (a), (g) Non-maximal
suppression applied to (e). (b) Our semantic smoothing result, (d) Canny edge
detection [15] applied to (b), (f) Structure edge detection [29] applied to (b), (h)
Non-maximal suppression applied to (f).
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segmentation results on the MSRC-21 dataset. Our Dense-CRF+ obtains more
accurate results than the Dense-CRF, which produces many spatially disjoint
object segments. As a future work, it is possible to jointly inference semantic

smoothing and segmentation.

3.5 Conclusion

In this chapter, we propose a semantic-aware image smoothing method. Un-
like previous image smoothing techniques which use the low-level vision fea-
tures, such as appearance and gradient, or the mid-level vision features, such
as edge or boundary detection, our proposed technique is developed based on
the high-level semantic information of the image. Besides exploiting the high-
level semantic information, our method also combines the low-level and the
mid-level features. Effectiveness of our approach is demonstrated in different
applications, including texture removal, detail enhancement, edge detection,
and semantic segmentation. The limitation of the semantic smoothing is that
it depends on the quality of the semantic segmentation. But with the devel-
opment of semantic segmentation techniques, particularly using deep learning,
we will have enough confidence to believe that using semantic information will
be advantageous for image smoothing. In future work, we would like to ex-
tend our method by exploiting diverse levels of semantic information, such as
instance segmentation [24], object part segmentation [134], and material seg-

mentation [8].
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(a) Impur image (b) Dense-CRF

{€) Ours smoothing (d) Dense-CRF+

(e) Input image (f) Dense-CRF

i

(g) Ours smoothing (h) Dense-CRF+

Figure 3.7: Semantic segmentation. (a) and (e) are input images. (b) and (f)
are Dense-CRF segmentation results. (c) and (g) are our semantic smoothing
results. (d) and (h) are Dense-CRF+ segmentation results. Our method predicts
segmentations which are localized around object boundaries and are spatially

smooth. Best viewed in color.
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Chapter 4

Common Object Segmentation

In this chapter, we present a deep object co-segmentation (DOCS) approach for
segmenting common objects of the same class within a pair of images. This
means that the method learns to ignore common, or uncommon, background
stuff and focuses on common objects. If multiple object classes are presented
in the image pair, they are jointly extracted as foreground. To address this task,
we propose a CNN-based Siamese encoder-decoder architecture. The encoder
extracts high-level semantic features of the foreground objects, a mutual cor-
relation layer detects the common objects, and finally, the decoder generates
the output foreground masks for each image. To train our model, we compile
a large object co-segmentation dataset consisting of image pairs from the PAS-
CAL dataset with common objects masks. We evaluate our approach on com-
monly used datasets for co-segmentation tasks and observe that our approach
consistently outperforms competing methods, for both seen and unseen object

classes.

4.1 Introduction

Object co-segmentation is the task of segmenting the common objects from a
set of images. It is applied in various computer vision applications and beyond,
such as browsing in photo collections [104], 3D reconstruction [68], semantic
segmentation [114], object-based image retrieval [129], video object tracking

[104], and interactive image segmentation [104].
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There are different challenges for object co-segmentation with varying level
of difficulty: (1) Rother et al. [104] first proposed the term of co-segmentation
as the task of segmenting the common parts of an image pair simultaneously.
They showed that segmenting two images jointly achieves better accuracy in
contrast to segmenting them independently. They assume that the common
parts have a similar appearance. However, the background in both images are
significantly different, see Fig. 4.1 (a). (2) Another challenge is to segment the
same object instance or similar objects of the same class with low intra-class
variation, even with similar background [7, 129], see Fig. 4.1 (b). (3) A more
challenging task is to segment common objects from the same class with large
variability in terms of scale, appearance, pose, viewpoint and background [105],
see Fig. 4.1 (¢).

All of the mentioned challenges assume that the image set contains only one
common object and the common object should be salient within each image. In
this work, we address a more general problem of co-segmentation without this
assumption, i.e. multiple object classes can be presented within the images, see
Fig. 4.1 (d). As it is shown, the co-segmentation result for one specific image
including multiple objects can be different when we pair it with different im-
ages.Additionally, we are interested in co-segmenting objects, i.e. things rather
than stuff. The idea of object co-segmentation was introduced by Vicente et
al. [129] to emphasize the resulting segmentation to be a thing such as a ‘cat’
or a ‘monitor’, which excludes common, or uncommon, stuff classes like ‘sky’
or ‘sea’.

Segmenting objects in an image is one of the fundamental tasks in computer
vision. While image segmentation has received great attention during the re-
cent rise of deep learning [89, 102, 152, 140, 100], the related task of object
co-segmentation remains largely unexplored by newly developed deep learning
techniques. Most of the recently proposed object co-segmentation methods still
rely on models without feature learning. This includes methods utilizing super-
pixels, or proposal segments [129, 123] to extract a set of object candidates, or
methods which use a complex CRF model [80, 100] with hand-crafted features
[100] to find the segments with the highest similarity.
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(d) our object co-segmentation

Figure 4.1: Different co-segmentation challenges: (a) segmenting common
parts, in terms of small appearance deviation, with varying background [104],
(b) segmenting common objects from the same class with low intra-class varia-
tion but similar background [7, 128], (¢) segmenting common objects from the
same class with large variability in terms of scale, appearance, pose, viewpoint
and background [105]. (d) segmenting common objects in images including
more than one object from multiple classes. Second row shows our predicted
co-segmentation of these challenging images.

In this chapter, we propose a simple yet powerful method for segmenting ob-
jects of a common semantic class from a pair of images using a convolutional
encoder-decoder neural network. Our method uses a pair of Siamese encoder
networks to extract semantic features for each image. The mutual correlation
layer at the network’s bottleneck computes localized correlations between the
semantic features of the two images to highlight the heat-maps of common ob-
jects. Finally, the Siamese decoder networks combine the semantic features
from each image with the correlation features to produce detailed segmentation
masks through a series of deconvolutional layers. Our approach is trainable in
an end-to-end manner and does not require any, potentially long runtime, CRF
optimization procedure at evaluation time. We perform an extensive evalua-
tion of our deep object co-segmentation and show that our model can achieve

state-of-the-art performance on multiple common co-segmentation datasets.
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In summary, our main contributions are as follows:

e We propose a simple yet effective convolutional neural network (CNN)
architecture for object co-segmentation that can be trained end-to-end. To
the best of our knowledge, this is the first pure CNN framework for object

co-segmentation, which does not depend on any hand-crafted features.

e We achieve state-of-the-art results on multiple object co-segmentation
datasets, and introduce a challenging object co-segmentation dataset by
adapting Pascal dataset for training and testing object co-segmentation

models.

4.2 Related Work

We start by discussing object co-segmentation by roughly categorizing them
into three branches: co-segmentation without explicit learning, co-segmentation
with learning, and interactive co-segmentation. After that, we briefly discuss

various image segmentation tasks and corresponding approaches based on CNNss.

4.2.1 Co-Segmentation without Explicit Learning

Rother et al. [104] proposed the problem of image co-segmentation for image
pairs. They minimize an energy function that combines an MRF smoothness
prior term with a histogram matching term. This forces the histogram statistic
of common foreground regions to be similar. In a follow-up work, Mukher-
jee et al. [94] replace the [; norm in the cost function by an /s norm. In [48],
Hochbaum and Singh used a reward model, in contrast to the penalty strategy of
[104].In [128], Vicente et al. studied various models and showed that a simple
model based on Boykov-Jolly [10] works the best. Joulin ef al. [58] formulated
the co-segmentation problem in terms of a discriminative clustering task. Rubio
et al. [106] proposed to match regions, which results from an over-segmentation
algorithm, to establish correspondences between the common objects. Rubin-
stein et al. [105] combined a visual saliency and dense correspondences, using

SIFT flow, to capture the sparsity and visual variability of the common object
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in a group of images. Fu et al. [38] formulated object co-segmentation for
RGB-D input images as a fully-connected graph structure, together with mu-
tex constraints. In contrast to these works, our method is a pure learning based

approach.

4.2.2 Co-Segmentation with Learning

In [129], Vicente et al. generated a pool of object-like proposal-segmentations
using constrained parametric min-cut [16]. Then they trained a random forest
classifier to score the similarity of a pair of segmentation proposals. Yuan e? al.
[145] introduced a deep dense conditional random field framework for object
co-segmentation by inferring co-occurrence maps. These co-occurrence maps
measure the objectness scores, as well as, similarity evidence for object propos-
als, which are generated using selective search [127]. Similar to the constrained
parametric min-cut, selective search also uses hand-crafted SIFT and HOG fea-
tures to generate object proposals. Therefore, the model of [145] cannot be
trained end-to-end. In addition, [145] assume that there is a single common
object in a given image set, which limits application in real-world scenarios.
Recently, Quan et al. [100] proposed a manifold ranking algorithm for object
co-segmentation by combining low-level appearance features and high-level se-
mantic features. However, their semantic features are pre-trained on the Ima-
geNet dataset. In contrast, our method is based on a pure CNN architecture,
which is free of any hand-crafted features and object proposals and does not

depend on any assumption about the existence of common objects.

4.2.3 Interactive Co-Segmentation

Batra et al. [7] firstly presented an algorithm for interactive co-segmentation of
a foreground object from a group of related images. They use users’ scribbles
to indicate the foreground. Collins ef al. [21] used a random walker model to
add consistency constraints between foreground regions within the interactive
co-segmentation framework. However, their co-segmentation results are sen-

sitive to the size and positions of users’ scribbles. Dong et al. [30] proposed
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an interactive co-segmentation method which uses global and local energy op-
timization, whereby the energy function is based on scribbles, inter-image con-
sistency, and a standard local smoothness prior. In contrast, our work is not a

user-interactive co-segmentation approach.

4.2.4 CNNs for Image Segmentation

In the last few years, CNNs have achieved great success for the tasks of image
segmentation, such as semantic segmentation [89, 95, 144, 87, 140, 150], inter-
active segmentation [140, 139], and salient object segmentation [81, 133, 51].

Semantic segmentation aims at assigning semantic labels to each pixel in an
image. Fully convolutional networks (FCN) [89] became one of the first popular
architectures for semantic segmentation. Nor et al. [95] proposed a deep de-
convolutional network to learn the upsampling of low-resolution features. Both
U-Net [102] and SegNet [4] proposed an encoder-decoder architecture, in which
the decoder network consists of a hierarchy of decoders, each corresponding to
an encoder. Yu et al. [144] and Chen et al. [17] proposed dilated convolutions
to aggregate multi-scale contextual information, by considering larger receptive
fields. Salient object segmentation aims at detecting and segmenting the salient
objects in a given image. Recently, deep learning architectures have become
popular for salient object segmentation [81, 133, 51]. Li and Yu [81] addressed
salient object segmentation using a deep network which consists of a pixel-level
multi-scale FCN and a segment scale spatial pooling stream. Wang et al. [133]
proposed recurrent FCN to incorporate saliency prior knowledge for improved
inference, utilizing a pre-training strategy based on semantic segmentation data.
Jain et al. [51] proposed to train an FCN to produce pixel-level masks of all
“object-like” regions given a single input image.

Although CNNs play a central role in image segmentation tasks, there has
been no prior work with a pure CNN architecture for object co-segmentation.
To the best of our knowledge, our deep CNN architecture is the first of its kind

for object co-segmentation.
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Figure 4.2: Deep Object Co-Segmentation. Our network includes three parts:
(i) passing input images /4 and /g through a Siamese encoder to extract fea-
ture maps f4 and fpg, (ii) using a mutual correlation network to perform feature
matching to obtain correspondence maps C'yp and Cp 4, (iii) passing concate-
nation of squeezed feature maps and correspondence maps through a Siamese
decoder to get the common objects masks M 4 and Mp.
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4.3 Method

In this section, we introduce a new CNN architecture for segmenting the com-
mon objects from two input images. The architecture is end-to-end trainable
for the object co-segmentation task. Fig. 4.2 illustrates the overall structure of
our architecture. Our network consists of three main parts: (1) Given two input
images [ 4 and [, we use a Siamese encoder to extract high-level semantic fea-
ture maps f4 and fp. (2) Then, we propose a mutual correlation layer to obtain
correspondence maps C'4p and Cg4 by matching feature maps f4 and fp at
pixel-level. (3) Finally, given the concatenation of the feature maps f4 and fp
and correspondence maps C 45 and Cp4, a Siamese decoder is used to obtain
and refine the common object masks M4 and Mp.

In the following, we first describe each of the three parts of our architecture

in detail. Then in Sec 4.3.4, the loss function is introduced. Finally, in Sec 4.3.5,
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we explain how to extend our approach to handle co-segmentation of a group

of images, i.e. going beyond two images.

4.3.1 Siamese Encoder

The first part of our architecture is a Siamese encoder which consists of two
identical feature extraction CNNs with shared parameters. We pass the input
image pair /4 and I3 through the Siamese encoder network pair to extract fea-
ture maps fa and fg. More specifically, our encoder is based on the VGG16
network [118]. We keep the first 13 convolutional layers and replace fc6 and
fc7 with two 3 x 3 convolutional layers conv6-1 and conv6-2 to produce feature
maps which contain more spatial information. In total, our encoder network
has 15 convolutional layers and 5 pooling layers to create a set of high-level se-
mantic features f4 and fp. The input to the Siamese encoder is two 512 x 512
images and the output of the encoder is two 1024-channel feature maps with a

spatial size of 16 x 16.

4.3.2 Mutual Correlation

The second part of our architecture is a mutual correlation layer. The outputs of
encoders f4 and fp represent the high-level semantic content of the input im-
ages. When the two images contain objects that belong to a common class, they
should contain similar features at the locations of the shared objects. Therefore,
we propose a mutual correlation layer to compute the correlation between each
pair of locations on the feature maps. The idea of utilizing the correlation layer
is inspired by Flownet [31], in which the correlation layer is used to match fea-
ture points between frames for optical flow estimation. Our motivation of using
the correlation layer is to filter the heat-maps (high-level features), which are
generated separately for each input image, to highlight the heat-maps on the
common objects (see Fig. 4.3).

In detail, the mutual correlation layer performs a pixel-wise comparison be-
tween two feature maps f4 and fz. Given a point (i, 7) and a point (m,n)

inside a patch around (3, j), the correlation between feature vectors f4(¢, j) and
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Figure 4.3: The visualization of the heat-maps. Given a pair of input images
I, and Ip, after passing them through the Siamese encoder, we extract feature
maps f4 and fg. We use the mutual correlation layer to perform feature match-
ing to obtain correspondence maps C'4p and Cg4. Then, using our Siamese
decoder we predict the common objects masks M4 and Mpg. As shown before
correlation layer, the heat-maps are covering all the objects inside the images.
After applying the correlation layer, the heat-maps on uncommon objects are
filtered out. Therefore, we utilize the output of the correlation layer to guide the
network for segmenting the common objects.

fe(m,n) is defined as

Cag(i,j, k) = ( fa(i,j), fe(m,n)) 4.1)

where k = (n — j)D + (m — i) and D x D is patch size. Since the common
objects can locate at any place on the two input images, we set the patch size to
D =2+ max(w — 1,h — 1) + 1, where w and h are the width and height of
the feature maps f4 and f5. The output of the correlation layer is a feature map
Cap of size w x h x D?. We use the same method to compute the correlation

map Cp4 between fp and f4.

4.3.3 Siamese Decoder

The Siamese decoder is the third part of our architecture, which predicts two
foreground masks of the common objects. We squeeze the feature maps f and
fB and concatenate them with their correspondence maps C' 45 and C4 as the
input to the Siamese decoder (Fig. 4.2). The same as the Siamese encoder, the
decoder is also arranged in a Siamese structure with shared parameters. There
are five blocks in our decoder, whereby each block has one deconvolutional

layer and two convolutional layers. All the convolutional and deconvolutional
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layers in our Siamese decoder are followed by a ReLLU activation function. By
applying a Softmax function, the decoder produces two probability maps pa
and pp. Each probability map has two channels, background and foreground,

with the same size as the input images.

4.3.4 Loss Function

We define our object co-segmentation as a binary image labeling problem and
use the standard cross entropy loss function to train our network. The full loss

score L 45 is then estimated by
Lip=La+ Lp, 4.2)

where the £ 4 and the L are cross-entropy loss functions for the image A and
the image B, respectively.
4.3.5 Group Co-Segmentation

Although our architecture is trained for image pairs, our method can handle a
group of images. Given a set of N images Z = {[1, ..., Iy}, we pair each image
with K < N — 1 other images from Z. Then, we use our DOCS network to
predict the probability maps for the pairs, P = { pr 1<n<N1<k<K },
where pF is the predicted probability map for the kth pair of image I,,. Finally,
we compute the final mask M, for image [, as

M, (z,y) = median{p* (z,y)} > 0. 4.3)

where o is the acceptance threshold. In this work, we set o = 0.5. We use the

median to make our approach more robust to groups with outliers.

4.4 Experiments

4.4.1 Datasets

Training a CNN requires a lot of data. However, existing co-segmentation

datasets are either too small or have a limited number of object classes. The
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MSRC dataset [117] was first introduced for supervised semantic segmentation,
then a subset was used for object co-segmentation [129]. This subset of MSRC
only has 7 groups of images and each group has 10 images. The iCoseg dataset,
introduced in [7], consists of several groups of images and is widely used to
evaluate co-segmentation methods. However, each group contains images of
the same object instance or very similar objects from the same class. The Inter-
net dataset [105] contains thousands of images obtained from the Internet using
image retrieval techniques. However, it only has three object classes: car, horse
and airplane, where images of each class are mixed with other noise objects. In
[34], Faktor and Irani use PASCAL dataset for object co-segmentation. They
separate the images into 20 groups according to the object classes and assume
that each group only has one object. However, this assumption is not common
for natural images.

Inspired by [34], we create an object co-segmentation dataset by adapting
the PASCAL dataset labeled by [43]. The original dataset consists of 20 fore-
ground object classes and one background class. It contains 8,498 training
and 2,857 validation pixel-level labeled images. From the training images,
we sampled 161,229 pairs of images, which have common objects, as a new
co-segmentation training set. We used PASCAL validation images to sample
42,831 validation pairs and 40, 303 test pairs. Since our goal is to segment the
common objects from the pair of images, we discard the object class labels and
instead we label the common objects as foreground. Fig. 4.1(d) shows some ex-
amples of image pairs of our object co-segmentation dataset. In contrast to [34],

our dataset consists of image pairs of one or more arbitrary common classes.

4.4.2 Implementation Details and Runtime

We use the Caffe framework [55] to design and train our network. We use
our co-segmentation dataset for training. We did not use any images from the
MSRC, Internet or iCoseg datasets to fine tune our model. The convI-conv5
layers of our Siamese encoder (VGG-16 net [118]) are initialized with weights
trained on the Imagenet dataset [26]. We train our network on one GPU for

100K iterations using Adam solver [62]. We use small mini-batches of 10 image
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pairs, a momentum of 0.9, a learning rate of le — 5, and a weight decay of
0.0005.

Our method can handle a large set of images in linear time complexity
O(N). As mentioned in Sec. 4.3.5 in order to co-segment an image, we pair
it with K (K < N — 1) other images. In our experiments, we used all possible
pairs to make the evaluations comparable to other approaches. Although in this
case our time complexity is quadratic O(N?), our method is significantly faster

than others.

Number of images Others time Our time

2 8 minutes [58] 0.1 seconds

30 4 to 9 hours [58] 43.5 seconds

30 22.5 minutes [132] 43.5 seconds

418 (14 classes, ~ 30 images per class) 29.2 hours [34] | 10.15 minutes
418 (14 classes, ~ 30 images per class) 8.5 hours [54] | 10.15 minutes

Table 4.1: The computation time comparison between the different methods.

To show the influence of number of pairs K, we validate our method on the
Internet dataset w.r.z. K (as shown in Table 4.2). Each image is paired with K
random images from the set. As shown, we achieve state-of-the-art performance
even with K = 10. Therefore, the complexity of our approach is O(KN) =
O(N) which is linear with respect to the group size.

Internet K=10 K=20 K=99(all)
(N=100) | Precision Jaccard | Precision Jaccard | Precision Jaccard
Car 93.93 82.89 93.91 82.85 93.90 82.81
Horse 92.31 69.12 92.35 69.17 92.45 69.44
Airplane 94.10 65.37 94.12 65.45 94.11 65.43
Average 93.45 72.46 93.46 72.49 93.49 72.56

Table 4.2: Influence of number of pairs K.

4.4.3 Results

We report the performance of our approach on MSRC [117, 128], Internet [105],

and 1Coseg [7] datasets, as well as our own co-segmentation dataset.
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4.4.3.1 Metrics.

For evaluating the co-segmentation performance, there are two common met-
rics. The first one is Precision, which is the percentage of correctly segmented
pixels of both foreground and background masks. The second one is Jac-
card, which is the intersection over union of the co-segmentation result and

the ground truth foreground segmentation.

4.4.3.2 PASCAL Co-Segmentation.

As we mentioned in Sec 4.4.1, our object co-segmentation dataset consists of
40,303 test image pairs. We evaluate the performance of our method on our
co-segmentation test data. We also tried to obtain the common objects of same
classes using a deep semantic segmentation model, here FCNS8s [89]. First, we
train FCN8s with the PASCAL dataset. Then, we obtain the common objects
from two images by predicting the semantic labels using FCN8s and keeping
the segments with common classes as foreground. Our co-segmentation method
(94.2% for Precision and 64.5% for Jaccard) outperforms FCN8s (93.2% for
Precision and 55.2% for Jaccard), which uses the same VGG encoder, and
trained with the same training images. The improvement is probably due to
the fact that our DOCS architecture is specifically designed for the object co-
segmentation task, which FCNS8s is designed for the semantic labeling problem.
Another potential reason is that generating image pairs is a form of data aug-
mentation. We would like to exploit these ideas in the future work. Fig. 4.4
shows the qualitative results of our approach on the PASCAL co-segmentation
dataset. We can see that our method successfully extracts different foreground

objects for the left image when paired with a different image to the right.

4.4.3.3 MSRC.

The MSRC subset has been used to evaluate the object co-segmentation per-
formance by many previous methods [128, 105, 34, 132]. For the fair com-
parison, we use the same subset as [128]. We use our group co-segmentation
method to extract the foreground masks for each group. In Table. 4.3, we show

the quantitative results of our method as well as four state-of-the-art methods
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Figure 4.4: Our qualitative results on PASCAL Co-segmentation dataset. (odd
rows) the input images, (even rows) the corresponding objec co-segmentation
results.
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MSRC \ [129] [105] [132] [34] Ours
Precision 90.2 92.2 92.2 92.0 954
Jaccard 70.6 74.7 - 77.0 82.9

Table 4.3: Quantitative results on the MSRC dataset (seen classes). Quanti-
tative comparison results of our DOCS approach with four state-of-the-art co-
segmentation methods on the co-segmentation subset of the MSRC dataset.

[129, 105, 34, 132]. Our Precision and Jaccard show a significant improvement
compared to previous methods. It is important to note that [129] and [132] are
supervised methods, i.e. both use images of the MSRC dataset to train their
models. We obtain the new state-of-the-art results on this dataset even without
training or fine-tuning on any images from the MSRC dataset. Visual exam-
ples of object co-segmentation results on the subset of the MSRC dataset can
be found in Fig. 4.5.

Figure 4.5: Our qualitative results on the MSRC dataset (seen classes). (odd
rows) the input images, (even rows) the corresponding object co-segmentation
results.

4.4.3.4 Internet.

In our experiment, for the fair comparison, we followed [105, 18, 100, 145] to
use the subset of the Internet dataset to evaluate our method. In this subset, there

are 100 images in each category. We compare our method with five previous
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Figure 4.6: Our qualitative results on the Internet dataset (seen classes). (odd
rows) the input images, (even rows) the corresponding object co-segmentation

results.
Internet [58] [105] [18] [100] [145] Ours
Car P | 58.7 85.3 87.6 88.5 90.4 93.9
J 37.1 64.4 64.9 66.8 72.0 82.8
Horse P | 63.8 82.8 86.2 89.3 90.2 924
J 30.1 51.6 334 58.1 65.0 69.4
Airplane | P | 49.2 88.0 90.3 92.6 91.0 94.1
J 15.3 55.8 40.3 56.3 66.0 65.4
Average P | 572 85.4 88.0 89.6 91.1 93.5
J 27.5 57.3 46.2 60.4 67.7 72.6

Table 4.4: Quantitative results on the Internet dataset (seen classes). Quan-
titative comparison of our DOCS approach with several state-of-the-art co-
segmentation methods on the co-segmentation subset of the Internet dataset.

‘P’ is the Precision, and ‘J’ is the Jaccard.



Figure 4.7: Our qualitative results on iCoseg dataset (unseen classes). Some
results of our object co-segmentation method, with input image pairs in the odd
rows and the corresponding object co-segmentation results in the even rows. For
this dataset, the object classes were not known during training of our method
(i.e. unseen).

approaches [58, 18, 105, 100, 145]. Table 4.4 shows the quantitative results
of each object category with respect to Precision and Jaccard. We outperform
most of the previous methods [58, 18, 105, 100, 145] in terms of Precision and
Jaccard. Note that [145] is a supervised co-segmentation method, [18] trained
a discriminative Latent-SVM detector and [100] used a CNN trained on the
ImageNet to extract semantic features. Fig. 4.6 shows some quantitative results
of our method. It can be seen that even for the ‘noise’ images in each group,
our method can successfully recognize them. We show the ‘noise’ images in

the last column.

4.4.3.5 iCoseg

To show that our method can generalize on unseen classes, i.e. classes which are
not part of the training data, we need to evaluate our method on unseen classes.
Batra et al. [7] introduced the iCoseg dataset for the interactive co-segmentation
task. In contrast to the MSRC and Internet datasets, there are multiple object
classes in the iCoseg dataset which do not appear in PASCAL VOC dataset.

Therefore, it is possible to use the iCoseg dataset to evaluate the generalization
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1Coseg [105] [53] [34] [54] Ours

bear?2 65.3 70.1 72.0 67.5 88.7
brownbear 73.6 66.2 92.0 72.5 91.5
cheetah 69.7 75.4 67.0 78.0 71.5
elephant 68.8 73.5 67.0 79.9 85.1

helicopter 80.3 76.6 82.0 80.0 73.1
hotballoon 65.7 76.3 88.0 80.2 91.1

pandal 75.9 80.6 70.0 72.2 87.5
panda2 62.5 71.8 55.0 61.4 84.7
average 70.2 73.8 78.2 74.0 84.2

Table 4.5: Quantitative results on the iCoseg dataset (unseen classes). Quan-
titative comparison of our DOCS approach with four state-of-the-art co-
segmentation methods on some object classes of the iCoseg dataset, in terms
of Jaccard. For this dataset, these object classes were not known during training
of our method (i.e. unseen).

of our method on unseen object classes. We choose eight groups of images from
the iCoseg dataset as our unseen object classes, which are bear2, brown_bear,
cheetah, elephant, helicopter, hotballoon, pandal and panda2. There are two
reasons for this choice: firstly, these object classes are not included in the PAS-
CAL VOC dataset. Secondly, in order to focus on objects, in contrast to stuff,
we ignore groups like pyramid, stonehenge and taj-mahal. We compare our
method with four state-of-the-art approaches [53, 105, 34, 54] on unseen ob-
jects of the iCoseg dataset. Table 4.5 shows the comparison results of each
unseen object groups in terms of Jaccard. The results show that for 5 out of
8 object groups our method performs best, and it is also superior on average.
Note that the results of [53, 105, 34, 54] are taken from Table X in [54]. Fig.
4.7 shows some qualitative results of our method. It can be seen that our object
co-segmentation method can detect and segment the common objects of these
unseen classes accurately.

Furthermore to show the effect of number of PASCAL classes on the perfor-
mance of our approach on unseen classes, we train our network on partial ran-
domly picked PASCAL classes, i.e. {5,10,15}, and evaluate it on the iCoseg

unseen classes. As it is shown in Table 4.6, our approach can generalize to
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unseen classes even when it is trained with only 10 classes from PASCAL.

iCoseg | P(5) P(10) P(I15) P(Q0)
average | 755 839 837 = 842

Table 4.6: Analyzing the effect of number of training classes on unseen classes.

4.4.4 Ablation Study

To show the impact of the mutual correlation layer in our network architecture,
we design a baseline network DOCS-Concat without using mutual correlation
layers. In detail, we removed the correlation layer and we concatenate f4 and
fB (instead of C'4 ) for image I, and concatenate fgp and f4 (instead of C'z4)
for image /5. In Table 4.7, we compare the performance of different network
designs on multiple datasets. As shown, the mutual correlation layer in DOCS-

Corr improved the performance significantly.

DOCS-Concat DOCS-Corr
Precision Jaccard Precision Jaccard
Pascal VOC 92.6 49.9 94.2 64.5
MSRC 92.6 72.0 95.4 82.9
Internet 91.8 62.7 93.5 72.6
1Coseg(unseen) 93.6 78.9 95.1 84.2

Table 4.7: Impact of mutual correlation layer.

4.5 Conclusions

In this chapter, we present a new and efficient CNN-based method for solving
the problem of object class co-segmentation, which consists of jointly detecting
and segmenting objects belonging to a common semantic class from a pair of
images. Based on a simple encoder-decoder architecture, combined with the
mutual correlation layer for matching semantic features, we achieve state-of-
the-art performance on various datasets, and demonstrate good generalization

performance on segmenting objects of new semantic classes, unseen during
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training. To train our model, we compile a large object co-segmentation dataset

consisting of image pairs from PASCAL dataset with shared objects masks.
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Chapter 5

Common Object Localization

We propose an approach to localize common objects from novel object cate-
gories in a set of images. We solve this problem using a new common com-
ponent activation map in which we treat the class-specific activation maps as
components to discover the common components in the image set. We show

that our approach can generalize on novel object categories in our experiments.

5.1 Introduction

Learning to classify and localize visual objects is a fundamental problem in
visual recognition. The task of object localization aims to recognize the cate-
gory of the main object presents in the image and locate it with an axis-aligned
bounding box [108]. Recently, most of the state-of-the-art object detection
or localization methods [112, 101] are trained with a strong supervised man-
ner, which requires a large amount of human labeled bounding box annota-
tions. However, these annotations are expensive, particularly for the large-scale
datasets, such as ImageNet [108].

Currently, there have been a lot of works solving object localization task us-
ing weakly supervised setting [96, 153, 148, 149], which learn object locations
in a given image only using image-level category labels. Weakly supervised ob-
ject localization is getting more attention since it does not need massive bonding
box annotations for training. Zhou et al. [153] proposed Class Activation Maps

(CAM) to generate class-specific localization maps using classification-trained
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CCAM

Figure 5.1: Common Object Localization. Given a set of images containing ob-
jects from novel classes (unseen during training), CCAM localizes the common
objects in these images. Best viewed in colour

Convolutional Neural Networks (CNNs) with global average pooling. For a
particular category, the class activation map shows the discriminative important
image regions used by a CNN to recognize that category. However, these CAM
related class-specific object localization methods [153, 111, 72, 148, 149] can
only generate the localization maps of predefined object categories, which are
not suitable for localizing the image regions for the unseen or unknown object
classes.

Common object localization, also known as object co-localization, is the
problem of localizing common objects of the same class across a set of distinct
images [122, 59, 19, 86, 79, 82]. In contrast to weakly supervised object local-
ization methods, the co-localization problem is not limited to predefined object
categories.

In this chapter, we consider both weakly supervised object localization and
object co-localization to propose a simple yet effective common object local-
ization method for unseen object categories. Unlike previous works [122, 59,
19, 86], our approach is proposal-free, which does not need any object propos-
als to perform object localization and only requires a CNN model with similar
architecture as [153], pre-trained on a classification task. We regard the output

of the last fully-connected layer as a component vector for an input object, in-
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stead of the categorical output for probability map. For a group of images, we
first compute the average of the component vectors to find the group common
vector. Then, we pick £ largest entries from the group common vector. Finally,
for each image, we compute a weighted sum of feature maps of the last convo-
lutional layer to get the common component activation map according to the top
k components. We test our method on six unseen ImageNet classes [86], which
are not included in the 1000 categories used for training the CNN classification

model. We show the effectiveness of our method in the result section.

5.2 Method

For making the paper self-contained, we first briefly review the class activation
map (CAM) for the class-specific heatmap generation, then we show how to
generalize the CAM to common component activation map (CCAM) to localize

the common objects.

5.2.1 Class Activation Map

For a specific object category, the CAM indicates the discriminative image re-
gions used by a CNN to identify the importance of that category. Given an
input image [, we first pass it through a classification network [153], which
uses global average pooling on the last convolutional layer and use those as fea-
tures for a fully-connected layer to produce the object categorical output. Let
I represent the feature maps of the last fully convolutional layer. The size of
Fis Hx W x C, where H x W is the spatial size and C' is the number of
feature channels. We denote the weight matrix of the fully-connected layer as
W, in which W7 is the weight corresponding to class s for the channel ¢ and
indicates the importance of the channel c for the specific class s. Then, the class

activation map for the class s is defined as

M (h,w) =Y WEF,(h,w). (5.1)

For the specific class s, M (x,y) can directly show up the importance of the
activation at the spatial grid (h, w). Fig. 5.2 illustrates the procedure for gener-

ating these maps.
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Figure 5.2: Class Activation Mapping. The figure is borrowed from [153].
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5.2.2 Common Component Activation Map

For a given image with known categories, the CAM can identify the image
regions which are most relevant to these particular categories. However, this
method is incapable to find the important regions for the unseen object classes,
which are not included in the training dataset. In order to generate the activation
map for the unseen object, we treat the output of the fully connected layer as a
component vector for the input image, instead of categorical probability maps.
For a given group of N images Z = {Ii, ..., Iy} containing objects from an
unseen category, let the vectors V = {V}, ..., Vy } be the outputs of the softmax
function. Then we obtain the common component of the group by computing

the average of output vectors V as
1
=y 2V

Given the vector G, we represent K (G) as a set of indices of the K largest
entries. For each image [;, we compute a weighted sum of feature maps of the

last convolutional layer to get the CCAM according to the top A components.

Mi(hw) = > GkZW’“ (5.2)

keK(G)
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To perform localization, we can generate a bounding box (see section 5.3.1)
given the CCAM for the image ;.

Using CCAM, we can decompose the neural activations of the common
novel object into semantically interpretable components which are pre-trained
with known object categories. In Fig. 5.3, the percentage of the contribution
of each component and its corresponding known object class-specific CAM is

shown.

5.3 Experiments

For a fair compassion with other approaches [86, 79], we evaluate the effect of
our method using AlexNet [70], which is pre-trained by [153] using ILSVRC
with 1000 image categories [108]. In the AlexNet, the penultimate fully-connected
layer is replaced with a global average pooling layer. Our method can handle a

set of images in linear time complexity O(NV).

5.3.1 Generating Boxes

To produce a bounding box from CCAM, we use a similar threshold method as
[153] to segment the heatmap. In particular, we segment the regions of which
the value is above a fixed threshold. In contrast to [153], we only take a single
box which covers the largest connected component in the segmentation map and
includes the max value of the CCAM. In our experiment, we set the threshold
to 25% of the max value of the CCAM. We take top K = 200 components for
computing the CCAM.

5.3.2 Evaluation Metric

Following [27, 122], we use CorLoc as the evaluation metric, which is defined
as the percentage of images in which a method correctly localizes the common
objects. If there is one ground-truth box of the common object having more than
0.5 intersection-over-union with the predicted box, then we count this image as

a correctly localized one.
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‘ chipmunk rhino stoat raccoon rake wheelchair ‘ mean

Li et al. [86] 44.0 81.8 673 418 145 39.3 48.1
Le et al. [79] 44.9 864 567 66.0 103 324 49.5
Ours 48.2 779 557 573 464 48.6 55.7

Table 5.1: Object co-localization on subset of ImaegeNet.

5.3.3 Dataset

In order to evaluate our method for unseen object categories, we follow [86] and
test our method on the six subsets of the ImageNet, which are not included in
the ILSVRC. These unseen objects are chipmunk, rhino, stoat, raccoon, rake,

and wheelchair.

5.3.4 Results

In Table. 5.1, we show the quantitative results of our method as well as the state-
of-the-art approaches [86] and [79]. Clearly, our approach outperforms [86, 79]
by a large margin. It is important to note that [86] use object proposal method
and [79] use the over-segmentation method. Our method is proposal-free and
superpixel-free. Visual examples of common object localization on the subset
of the ImageNet can be found in Fig. 5.3. The ground-truth boxes are in red and

the predicted boxes are in green.

5.4 Conclusion

In this chapter, we propose an approach to localize common objects from novel
object categories in a set of images. We solve this problem by using CAMs
as components instead of class-specific activation maps. As we show in the

experiment section, our approach can localize novel object categories.
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Figure 5.3: Viusal examples of common object localization on the subset of
the ImageNet. Red boxes are ground-truth and green boxes are our predictions.
Best viewed in colour.
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Chapter 6

Conclusions

6.1 Overview

Semantic-aware image analysis is an important problem in computer vision with
many applications. In this thesis, we explored four different aspects of image

analysis:

e We explored the topic of semantic segmentation for the man-made scene

using fully connected conditional random fields model.

e We proposed a semantic-aware image smoothing method by combining

low-level, mid-level, and high-level vision features.

e We presented a new and efficient convolutional neural networks based

method for solving the problem of object co-segmentation.

e We proposed an approach to localize common objects from novel object
categories in a set of images using the common component activation

map.

6.2 OQOutlook

While we did some progress in several aspects of image analysis, which in-
cluded semantic segmentation, image smoothing, object co-segmentation, and
object localization, there are still some limitations, further improvement, and

open questions left to be addressed.
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Man-Made Scenes Segmentation. In Chapter 2, since both the eTRIMS and
LabelMeFacade image databases are relatively small, we train the Textonboost
rather than CNNss as the unary classifier for each pixel. Recently, the success of
CNNs in semantic segmentation is based on the availability of large annotated
datasets. Generating synthetic man-made scenes data or combining the real and

synthetic data [3] is a very promising direction for future work.

Semantic Smoothing. In Chapter 3, we used semantic segmentation as the
high-level information structure prior for image smoothing. Extending our
method by exploiting diverse levels of semantic information, such as instance
segmentation, object part segmentation, and panoptic segmentation, is an inter-
esting direction for future work. To get semantic information, we directly apply
the off-the-shelf semantic segmentation methods. Another potential future work

is jointly training a model for semantic segmentation and image smoothing.

Object Co-Segmentation. In Chapter 4, we proposed a simple and efficient
CNN-based method for solving the problem of object co-segmentation. There
are still two potential ways to further improve and generalize this task. First,
in our work, we correlate the high-level features to detect the common objects.
One promising future research is to employ multi-level features for hierarchical
correction. Second, our object co-segmentation method tries to segment all of
the common objects as foreground without any instance information. The co-
segmentation can be extended to instance-level co-segmentation by resorting

the region-based instance segmentation method, such as Mask R-CNN [44].

Object Co-Localization. In Chapter 5, we proposed a new CAM method to
localize common objects in a set of images. The proposed method utilizes the
attention of existing objects to approximate the attention of an unknown ob-
ject, which is related to zero-shot learning. One very promising future research

direction is zero-shot object localization.
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