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Abstract

Astrophysical jets appear as linear collimated objects of high speed that are typically found
in young stellar objects, X-Ray binaries, gamma-ray bursts, or active galactic nuclei. The
physical procedures that lead to the development of these jets have been studied extensively
in the past years. We believe that the launching of highly relativistic jets requires the
existence of an accretion disk threaded by a strong magnetic field that rotates around a
black hole. We perform general relativistic magnetohydrodynamic simulations of outflow
launching from thin accretion disks. As in the nonrelativistic case, resistivity is essential
for the mass loading of the disk wind. We implemented resistivity in the ideal GRMHD
code HARM3D, which allows us to run simulations with larger physical grids, higher spatial
resolution, and longer simulation time. We present the numerical details of the code and
we show numerical test in the resistive regime that prove the robustness of the code. As
a reference simulation, we consider an initially thin, resistive disk orbiting the black hole,
threaded by a large-scale magnetic flux. As the system evolves, outflows are launched from
the black hole magnetosphere and the disk surface. We mainly focus on disk outflows,
investigating their MHD structure and energy output in comparison with the Poynting-
dominated black hole jet. The disk wind encloses two components — a fast component
dominated by the toroidal magnetic field and a slower component dominated by the poloidal
field. The disk wind transitions from sub- to super-Alfvénic speed, reaching velocities ~ 0.1c.
We provide parameter studies varying spin parameter and resistivity level and measure the
respective mass and energy fluxes. A higher spin strengthens the Bg-dominated disk wind
along the inner jet. We disentangle a critical resistivity level that leads to a maximum matter
and energy output for both, resulting from the interplay between reconnection and diffusion,
which in combination govern the magnetic flux and the mass loading. For counterrotating
black holes the outflow structure shows a magnetic field reversal. We also show the structure
and direction of the electric field and its connection with the velocity and magnetic field
vectors. Finally, we present the first fully dynamical simulation of dynamo generated poloidal
magnetic field in a GRMHD environment. We simulate cases of both accretion tori and disks
and we find induced magnetic field with both dipolar and quadrupolar structure. We follow
the evolution of the field structure and strength and we show the launching of outflows from
the torus/disk surface and the black hole magnetosphere.
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Zusammenfassung

Kosmische Jets sind kollimierte Materiestrome mit hohen Geschwindigkeiten, die typis-
cherweise in jungen stellaren Objekten, X-Ray binaries, Gamma-ray bursts oder Aktiven
Galaktischen Kernen vorkommen. Die physikalischen Prozesse, die zu der Entstehung dieser
Jets fiithren, sind Gegenstand extensiver Forschung der letzten Jahre. Wir vermuten, dass
die Entstehung relativistischer Jets die Priasenz einer Akkretionsscheibe erfordert, die von
einem starken Magnetfeld durchdrungen wird und um ein zentrales schwarzes Loch rotiert.
Wir fiihren allgemein-relativistische magnetohydrodynamische (GRMHD) Simulationen von
“Ausfliisse” (outflows) durch, die von diinnen Akkretionsscheiben ausgehen. Wie im nichtrel-
ativistischen Fall ist Resistivitdt notwendig, um ein Massengewinn des Scheibenwinds zu er-
moglichen. Wir implementieren eine Resistivitit in den HARM3D Code der idealen GRMHD,
welcher uns erlaubt, Simulationen mit grofleren physikalischen Rastern, hoherer raumlicher
Auflésung und léngerer Simulationszeit durchzufiihren. Wir prasentieren numerische De-
tails des Codes und zeigen numerische Tests im Fall der Resistivitéit, welche die Robustheit
des Codes bestétigen. Als Referenzsimulation betrachten wir eine anfangs diinne, resistive
Scheibe um ein schwarzes Loch, die von einem grofiskaligen magnetischen Fluss durchdrun-
gen wird. Wéhrend deren Entwicklung entstehen Ausfliisse, die von der Magnetosphéare
des schwarzen Lochs und der Scheibenoberfliche ausgehen. Wir betrachten im Genaueren
Ausfliisse der Scheibe und untersuchen deren magnetohydrodynamische Strukturen sowie
Energieoutputs im Vergleich zu Poynting-dominierten Jets schwarzer Locher. Der Scheiben-
wind besteht aus zwei Komponenten — eine schnelle Komponente, die durch das toroidale
Magnetfeld beherrscht wird, und eine langsame Komponente, welche durch das poloide Mag-
netfeld dominiert wird. Der Scheibenwind zeigt einen Ubergang von sub-Alfvén- zu super-
Alfvén-Geschwindigkeiten und erreicht absolute Geschwindigkeiten von bis zu ~ 0.1c. Wir
prasentieren des Weiteren Parameterstudien, bei welchen wir den Spinparameter und die Re-
sistivitat variieren, und messen die entsprechenden Massen und Energiefliissse. Ein hoherer
Spin verstérkt den Bg-dominierten Scheibenwind entlang des inneren Jets. Wir leiten daraus
eine kritischen Resistivitatlevel ab, welcher zu einem Maximum des Masse- und Energie-
outputs aufgrund des Zusammenspiels zwischen Rekonnektion und Diffusion fithrt. Dieses
Zusamenspiel bestimmt den magnetischen Fluss sowie den Massengewinn. Im Falle gegen-
laufig rotierender schwarzer Locher zeigt die Ausfliisse Struktur eine Umkehrung des Magnet-
felds. Wir zeigen zudem die Struktur und Richtung des elektrischen Feldes in Verbindung mit
Geschwindigkeits- und Magnetfeldvektoren. Zuletzt présentieren wir die erste volldynamis-
che Simulation eines dynamo-generierten poloiden Magnetfelds in einer GRMHD Umgebung.
Wir simulieren sowohl Akkretionstori als auch -scheiben und finden induzierte Magnetfelder
mit dipolarer als auch quadrupolarer Struktur. Wir verfolgen die Entwicklung der Feld-
struktur und -stérke und zeigen Ausfliisse, die von der Torus-/Scheibenoberflache sowie der
Magnetosphare des schwarzen Lochs ausgehen.
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Chapter 1

Introduction

In this chapter we will highlight the rich bibliography around astrophysical jets with a focus
on jets from Active Galactic Nuclei. We refer to observation of jets including a reference in
the structure of the jets and the different types of sources that are considered as hosts. We
continue with simulations of jets in general relativistic environment.

1.1 Introduction to Astrophysical Jets

Astrophysical jets appear as linearly collimated structures of high speed that are typically
found in young stellar objects (YSOs), X-Ray binaries, gamma-ray bursts, or active galactic
nuclei (AGN). The physical mechanisms that produce these jets (jet launching) have been
studied extensively, leading to a consensus that the launching of relativistic jets requires
the existence of an accretion disk around a central, gravitationally dominating object and a
strong magnetic field. In the following sections, we briefly describe the three environments
that show astrophysical jets: jets from young stellar objects, gamma-ray bursts and extra-
galactic jets.

1.1.1 Jets from Young Stellar Objects

In the case of YSOs, the role of the central object is played by a star in the first stages of its
life with a mass in the range of tens of solar masses. The first astrophysical jet from a YSO
was (accidentally) observed by Burnham ((1890) who described it as an elongated star in the
middle of a nebula with a varying magnitude. He was referring to the original 7' Tauri star
discovered by John Russell Hind in 1852 (Hind, |1852). Today we know, that the variations
is the nebula Burnham was observing were the result of the wind, launched by the newly
formed star, interacting with the surrounding nebula.

In the 1940’s George Herbig and Guillermo Haro were interested in the early stages of
star formation. Working independently, they performed observations on a variety of T Tauri
stars, including Burnham’s varying nebula-star. Some of the strange characteristics of these
stars were strong emission lines of hydrogen, oxygen and sulfur along with low visibility in
the infrared spectrum (Herbig, 1951; Haro, [1952). Nowadays, these stars (which carry the
name of Herbig and Haro, HH stars) are a special phase in the process of star formation
characterized by an accretion disk rotating around the star and strong outflows in the form
of a jet (see Figure[L.1]). Their jets/outflows can reach distances that vary between 100 and
10°AU while their velocities can go up to 500 km/s. The first jet that was observed from a
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FIGURE 1.1: The dynamic HH 30 disk and jet complex. Images of the HH30 disk and jets in a
period of five years. The newly born star is surrounded by an edge-on disk of dust whose top and
bottom surfaces are illuminated by the star. The jet is launched from the inner region of the disk
and possibly from the star itself. We notice the changes in the jet structure and orientation that
are mainly caused by the knotty shape of the ejection. Guilloteau et al. (2008) showed that the
host star is in fact a binary complex in short eccentricity.
(Image credit: Hubble Space Telescope, NASA /ESA)

YSO was in the HH 46/47 complex observed by Dopita, Schwartz, and Evans (1982)) using
high resolution spectra in the region of [OI] and Ha.

1.1.2 Jets in Gamma-Ray Bursts

Another category closely related to jets on small scales are Gamma-Ray Bursts (GRB). GRBs
release an energy of up to 10°4ergs/s in a narrow jet funnel, in a time period that ranges from
less than a second to several hours. They are among the brightest electromagnetic events the
Universe and they are observed in distant galaxies. GRBs were first detected accidentally by
spying satellites in 1967 (at the peak of the Cold War) as published in Klebesadel, Strong,
and Olson (1973). In the following years many models were proposed that tried to explain
the physical processes that lead to GRBs.

The large variety in the light curves of GRB events makes them difficult to classify. The
duration of the events is being used to distinguish between them. GRBs with duration of less
than 2 seconds are classified as short GRBs. The initial idea that short GRBs are the result
of the collision and merging of binary neutron stars and black holes was confirmed when
Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational wave
event on 17 August 2017. 1.7 seconds later, the Fermi Gamma-ray Burst Monitor detected
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a short GRB from the same location (Goldstein et al., 2017). The analysis showed that the
gravitational wave event was the result of a binary neutron star inspiral that merged and
exploded, resulting in the gravitational and electromagnetic events (Abbott et al., 2017b)
(see Figure . Long GRBs constitute the majority of the GRBs and are easier to observer
due to the long afterglows they have. The majority of them has been connected with galaxies
with high star formation rates and even with core-collapse supernova events (Woosley and

Bloom, 2006)).

1.1.3 Jets from Active Galactic Nuclei

The first observation of a jet being launched from a galaxy was by Curtis (1918]). He observed
the galaxy M87 and noticed, apart from the absence of spiral structure, the existence of a
“curious straight ray that lies in the gap of the nebulosity connected with the nucleus by a
thin line of matter. The ray also is brightest at its inner end.” Nine years before that, Fath
(1909) had showed the first photo of an AGN. Also, radio astronomy which started with
Jansky (1933) would provide in the future an enormous amount of information for AGN jets
and their sources.

Based on their observations of the broad emission lines originating from high velocity
gas, Seyfert (1943) proposed that there must exist a gravitational potential well should exist
in the center of AGN. Jennison and Das Gupta (1953) managed to resolve the two different
lobes in the radio source Cygnus A, while Shklovskii (1955) showed that the synchrotron
mechanism was responsible for the radio emission which required large amounts of energy. In
1963, Hazard, Mackey, and Shimmins (1963]) and Schmidt (1963) discovered the first quasar,
3C273. It shows very large luminosity with a compact, flat radio spectrum core. In contrast
with the spectrum of Cygnus A which is characterized by its narrow emission lines , 3C273
displays broad compact lines, a distinguishing feature between radio-loud quasars and radio
galaxies. 3C273 also shows variations in the optical and radio luminosity that go up to days
or even years (Smith and Hoffleit, [1963; Dent, 1965).

Many observations of extra-galactic jets and their host galaxies followed up. They were
mostly detected in galaxies with unusual spectra, an indication that the source of the light
was not coming just from stars. Observation of blazars (AGN with its jet directed towards
the Earth) in different parts of the spectrum showed that variations in the luminosity can be
as short as minutes (Schmidt, |1963; Hughes, 1965; Bignami et al.,|[1981; Schreier, Gorenstein,
and Feigelson, 1982; Punch et al., |[1992). Moreover, radio-quiet quasars were found to be 10
times more numerous than the radio-loud ones (Sandage, 1965). Our own Milky Way galaxy
was confirmed as the host of a nucleus (SgrA*), with a luminosity of L ~ 1026.J (Balick and
Brown, 1974), even though not active enough to be branded as an AGN (Keel, 1983).

Soon the term AGN was used to describe these sources. It became an umbrella term in-
cluding other categories of astrophysical objects such as the quasars and the Seyfert galaxies.
In 1964 Salpeter and Zel’dovich independently proposed that the source of energy output
of quasars was the accretion of gas into a supermassive black hole (SMBH) (Salpeter, [1964;
Zel’dovich, [1964)) and five years later Lynden-Bell (1969) and Bardeen (1970) introduced the
idea that black holes exist in the center of most of galaxies as a result of collapsed quasars
surrounded by accretion disks. Rees (1971)) showed that double-lobe radio sources can be
powered by a jet launched from the center of the galaxy, with their rapid variability to be
attributed to relativistic motion (Rees, 1966).
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Over the years, many theories were developed regarding the formation of astrophysical
jets. A consensus has now been reached that the interaction between a massive central object
and a magnetized accretion disk are the fundamental requirements for the jet launching. In
the case of the AGN jets, this central object is a SMBH. In 1977, Roger Blandford and
Roman Znajek proposed the idea that a strong magnetic field threading the black hole
magnetosphere would be able to extract some of its rotational energy and thereby power
ejecta similar to what we observe in the cores of AGN jets (BZ mechanism) (Blandford and
Znajek, |1977)). Five years later, Blandford and Payne (1982)) established another mechanism
of jet launching, this time from the surface of an accretion disk rotating around the central
object. The magnetic field lines can work as pathways for material that is centrifugally
accelerated along them by the rotating disk. Also, Lynden-Bell (1996)) described another
mechanism that creates (or enhances) disk launched jets, in which the toroidal magnetic
field generated by the rotation of the disk results in an increased magnetic pressure which
launches and collimates material above the disk. In following chapters we will refer to these
mechanisms extensively and we will also provide a more detailed description of their effects.

A hundred and one years after Curtis’ original observation, the Event Horizon Telescope
Collaboration (EHTC), using Very Long Baseline Interferometry (VLBI) with a cooperating
network of telescopes from all around the world, was able to penetrate the layers of M87, look
straight into its nucleus and present the first picture of the shadow of a super-massive black
hole (SMBH) (Event Horizon Telescope Collaboration et al., 2019) (see Figure[L.3). Observ-
ing M87’s SMBH is not only important because it confirms the existence of this astrophysical
object, but also because it confirms the ideas of Salpeter Zel’dovich and Lynden-Bell for the
nuclei of galaxies. The light we see in the right panel of Figure is the first light emitted
from the black hole’s photon surface and after it’s orbit was disturbed by the strong gravita-
tional field and the black hole’s rotation. Unfortunately resolution was not high enough to
establish the angular momentum of the black hole. Dokuchaev and Nazarova (2019) com-
pared simulations of thin accretion disk with the actual image and claimed that the Kerr
parameter of the black hole is @ = 0.75 4+ 0.15.

1.2 Observations of AGN Jets

AGN jets are being observed in different scales, ranging from less than 1AU to Mpc. One
of the most popular observational methods is the use of VLBI where arrays of many radio
telescopes are used in order to increase the resolution. As a result, more than 12000 AGN
have been observed until nowadays with VLBI. According to Blandford, Meier, and Readhead
(2019) AGN jets may be separated in three categories:

i) The galaxy jets, where the dynamics are governed by the gravitation field of the combined
stellar and dark matter with the interstellar medium (ISM),

ii) the black hole jets, where the gravitational potential of the central SMBH far exceeds the
one from the galaxy and the jet is a result of the material the accretes towards the black
hole forming an accretion disk, and the outflows from the disk’s surface, and

iii) the lobe jets are further extensions of the galaxy jets and the environment is controlled
mainly by the material at the end of the jet and the surrounding intergalactic medium.
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FIGURE 1.3: Left: M87 galaxy and its prominent jet. The jet has length of 1.5 kiloparsecs with
the material in it reaching apparent velocities up to six times the speed of light. The energy
of the electrons that produce the synchrotron radiation is estimated at 10°0ergs. Right: The
SMBH in the centre of M87. The high luminosity area around the black hole shows the brightness
temperature which is of the order of 10°K.
(Image credit: Hubble Space Telescope, NASA /ESA; European Southern Observatory.)

1.2.1 Details of the Jet Structure

Since the development of Very Large Array (VLA) and VLBI in the 1980s a large number
of extragalactic radio sources have been observed. Over the years there was an attempt to
qualitatively classify these objects, based mainly on their structural features. However, it is
well known that each one of them is a result of unique set of conditions and circumstances,
and as a result of that, any classification attempt would risk loss of information in order to
fit an object in a specific category. In this section we give a small general description of the
different parts of the extragalactic jet, using the Cygnus A jet as an example and keeping in
mind that it can only be used as a rough guide to the description of the jets.

For each extra-galactic jet we can identify the following set of structural features based
on radio observations.

e Cores, the stationary part of the jet and the source of the outflow. Recent 3 mm VLBI
observations has shown that it is possible to zoom into the central core, where then
base of the jet exists and where the outflow is being launched, either from the disk in
the form of disk wind and/or from the black hole magnetosphere.

e Jets, the linear structure connecting the core with the outer part.
e Lobes, the regions at the end of the jet which show high radio emission.

e Hotspots, the very bright components at the outer part of the lobes. They are believed
to be the area where the the beam of the jet meats the ambient medium. As a result,
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FIGURE 1.4: Cygnus A radio galaxy and its jet in three different wavelengths. X-rays (blue) are
tracing the old, cold cocoon around the galaxy, while the radio emission (red) probes the newly
ejected jet and its lobes. Optical data from the Hubble Space Telescope (HST) show the galaxy
in the core of the jet. All the four major components of jets can be seen here. In the center lies
the core galaxy. The two radio bright lines form the jet and the counter jet that extend out to
two radio bright lobes, which also features radio and X-ray bright hotspots.
Image credit: X-ray,NASA/CXC/SAO; Optical, NASA/STScl; Radio,NSF/NRAO/AUI/VLA
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a shock surface is developed which helps accelerating medium’s particles to relativistic
velocities.

We highlight these four structures using the example of Cygnus A in Figure (1.4

1.2.2 Galactic Scale Jets

On galactic scale, the dynamics of the jet are dictated by the gravitational potential of the
host galaxy and the interstellar medium. When the VLBI started being used to observe
jets some basic structural characteristics became apparent. Wilkinson et al. (1977) found
that the majority of the jet are one-sided, while Readhead et al. (1978) found the compact
flat-spectrum core. Furthermore, parts of the jet are expanding or moving along the jet in
superluminal speedsﬂ (Gubbay et al., [1969).

The Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array (VLBA)
Experiments (MOJAVE) group, which studied blazars using the VLBI for more than 20
years, found that almost all of them have the same one-sided core-jet structure and show
relativistic motions with apparent velocities ranging from 0.03¢ to 40c (Lister et al., 2016;
Lister, [2016). This kind of superluminal motion is very common in flat-Spectrum Radio
Quasars, BL Lac Objects and Seyfert I galaxies. Mertens et al. (2016|) performed 43-GHz
VLBI observations of the jet in M87 and found that the jet has two different components
when it comes to velocity: a mildly relativistic component along the sheath (v ~ 0.5¢) and
a faster component along the spine (v ~ 0.92¢). Kim et al. (2018) was able to penetrate
the M87 down to approximately 7R, and found further evidence of a spine-sheath structure,
which is also an indication that the jet is being launched by the inner part of an accretion
disk.

Pushkarev et al. (2017) used 484 sources from the MOJAVE program to study the linear
polarization of synchrotron radiation. They found that the fractional polarization increases
with distance from the radio core as well as towards the edges. Also, BL Lacs show a higher
degree of polarization and exhibit more stable and better aligned electric vector position
angles (EVPAs) with the local jet direction, compared to quasars. Homan et al. (2018)
showed multi-epoch results for 278 objects from 2002 to 2009. They found that the circular
polarization reaches its maximum value in the core component with the majority of the
sources, including 3C279, showing a preferred sign. Zavala and Taylor (2004) studied the
Faraday rotation measures and found that in the case of BL Lac objects and quasars the
rotation measures are very similar in both the jets and the cores. In the case of radio
galaxies, the cores do not show significant polarization while the jets show rotation measures
that range up to 10* rad/mrad/m?.

1.2.3 Jets from the Black Hole Magnetosphere

On the black hole scale, the gravitational potential of the black hole and its magnetosphere
as well as the accreted material from the disk are defining the environment of the jet. The
jet in the M87 galaxy is the most well studied case of an AGN jet. Walker et al. (2018) used

ISuperluminal motion is the apparent motion of material with velocity that surpasses the light speed. It
is common in extragalactic radio sources that usually host a black hole capable of accelerating particles in
high Lorentz factors.
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core data from VLBA and EHT. HST-1 is located around 5 x 10°rg where the apparent velocity of
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Image credit: Nakamura and Asada (2013)
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intense monitoring observations in combination with annual observation of M87 of the last
17 years made with VLBI at 43 GHz. Their work revealed many details in the structure of
the jet including an asymmetric jet and counter-jet, both showing edge brightening. The
geometry of each jet started with a rapid expansion and widening followed by a contraction
and second widening. Around the second widening the counter-jet becomes invisible while
the jet starts showing signs of collimation. Nakamura and Asada (2013) showed that the jet
starts with an initial acceleration in a parabolic shape over a deprojected radius of ~ 300 pc,
at which point, a quasi-stationary shock, HST-1, forms and becomes a source of superluminal
ejections (Cheung, Harris, and Stawarz, 2007; Nakamura, Garofalo, and Meier, 2010)) with
apparent velocities up to 6¢ (Biretta, Sparks, and Macchetto, 1999; Giroletti et al., 2012).
Beyond HST-1, Asada and Nakamura (2012) found evidence for a helical magnetic field
structure and Nakamura and Asada (2013) studied the transition from parabolic to conical
structure (see Figure [L.5).

The recent imaging of the shadow of the SMBH in the center of M87 (Event Horizon
Telescope Collaboration et al., 2019) revealed a ring of diameter ~ 12R, for a black hole
of mass 6.5 x 10°My. The ring has prominent asymmetric brightness due to relativistic
beaming from the rotating plasma with velocities close to the speed of light. This image
confirms the hypothesis that (at least part of) the M87 jet in formed in close proximity to
the black hole.

Nakamura and Asada (2013) found that the M87 jet keeps a fixed conical shape down-
stream from the HST-1 shock which confirms the theoretical work of Blandford and Konigl
(1979), whereas upstream the HST-1 keeps a semi-parabolical shape down to r ~ 6 Ry
(Doeleman et al., 2012). Asada et al. (2014)) found that the material in the jet moves with
an almost constant acceleration from an apparent velocity of v ~ 0.01c at r ~ 400 Ry to
v ~ 6c at the HST-1. After HST-1, it starts decelerating down to v ~ 0.4c at r ~ 2 x 107 Ry.

1.2.4 Observing the Jet Lobes

On their largest scale, astrophysical jets provide information about the latest stages of their
development and the conditions under which they expire into the intergalactic medium. A
general characteristic shared among the majority of lobe jets is the hot spots in their lobes
and the compact cores in their nuclei. Hargrave and Ryle (1974) showed that the energy
flows from the cores of the jet into the lobes.

Fanaroff and Riley (1974)) proposed the classification of radio galaxies we use extensively
today that uses “the ratio of the distance between the regions of highest surface brightness
on opposite sides of the central galaxy or quasar, to the total extent of the source up to the
lowest brightness contour in the map.” This practically means that the FR-I objects become
fainter as we approach the outer part of the lobes, while FR-II objects show high-luminosity
hotspots in the outer part of their lobes. FR-II objects are also usually hosted by a brighter
central galaxy in absolute magnitude but relative to the hotspots in the lobes they are much
fainter than the FR-I objects.

Laing and Bridle (2014) showed that FR-I objects undergo a faster-than-linear expansion
in the first 30 kpc of their jet after which they switch to linear acceleration. Along with the
change in the expansion, the magnetic field also switches from axial to toroidal. In contrast,
FR-II objects show asymmetry in the lobes with the brighter lobe approaching us, resulting in
low traces of Faraday rotation (Garrington et al.,[1988). A special subcategory of very young
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FR-II objects are the Compact Symmetric Objects (CSOs) (Wilkinson et al., [1994; Readhead
et al., [1996)), which have ages between 20 and 2000 years (Gugliucci et al., [2005)). Tremblay
et al. (2016) studied a large uniform sample of CSOs and concluded that even though they
show elements that belong in both the FR-I and FR-II categories, their morphology depends
on their luminosity.

1.3 GRMHD Simulations of AGN

The history of numerical simulations of AGN started almost 50 years ago. The first simula-
tions involving a black hole were performed by Wilson (1972), who solved the hydrodynamic
equations in a Kerr spacetime in the simple case of gas falling towards the black hole. The
evolution of the technological equipment and the development of new computational methods
would gradually lead to a number of codes being developed that also include more physical
mechanisms such as Newtonian or general relativistic gravity, magnetic fields, dissipative
processes (fluid viscosity, magnetic resistivity), radiative transfer. We will focus mostly on
the case where the physical scenario that is simulated involves some kind of accretion disk
around a central object, mostly a black hole, with the addition of some form of magnetic
field.

Hawley, Smarr, and Wilson (1984a) and Hawley, Smarr, and Wilson (1984b) created
a 2D axisymmetric, general relativistic hydrodynamic code in order to study the accretion
flow in the gravitational field of Kerr spacetime. They present a thorough derivation of the
equations, a discussion of the numerical techniques and a number of test including radial
accretion flow (Bondi accretion), spiral infall and the formation and evolution of a pressure
supported torus.

1.3.1 Studying Accretion

It was not until 15 years after the work of Hawley, Smarr, and Wilson (1984b) when the
next code would be developed. Koide, Shibata, and Kudoh (1999) and Koide et al. (2000)
were one of the first to develop a code that solved the equations of general relativistic
magnetohydrodynamics (GRMHD). They simulated an accretion disk initially threaded by
a uniform poloidal magnetic field. The differential rotation of the disk twists the magnetic
field resulting in the development of a relativistic jet. At the same time, the pressure of
the fluid launches a hydrodynamic jet which accompanies the magnetic one. They also
investigated the case of a counterrotating black hole-disk system reporting the development
of an even stronger magnetically driven jet.

De Villiers and Hawley (2003a) extended the code of Hawley, Smarr, and Wilson (1984a))
using a new constrained transport method (CT) for the evolution of the magnetic fields. They
presented a series of test simulations including a two-dimensional magnetized torus subject
to the magnetorotational instability (MRI). (De Villiers and Hawley, 2003b)) investigated the
difference in the accretion mechanisms in the case of a prograde, retrograde, and nonrotating
black hole. The evolution is driven by the MRI and the accretion rate is determined by the
rate at which the disk feeds the black hole innermost stable circular orbit (ISCO). The
model with the counterrotating black hole (and the largest ISCO) shows the least variability
in accretion rate.
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FIGURE 1.6: Simulation of an accretion disk around a rapidly spinning black hole (a = 0.99).
The top and bottom rows show the logarithm of the rest mass density in the fluid frame in the
equatorial and meridional planes. The black lines are the magnetic field lines and the black area
is the black hole horizon. The top time series plot shows the evolution of the rest mass accretion
rate. The middle time series plot shows the evolution of the magnetic flux that threads the black
hole horizon. The bottom times series plot shows the energy outflow efficiency which on average
is greater than 100% (dashed line).
Image credit: Tchekhovskoy, Narayan, and McKinney
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Next, De Villiers, Hawley, and Krolik (2003 considered the cases of different black hole
rotation. In a series of simulations with a Kerr parameter up to a = 0.998, they identified
different parts of the global structure of the simulation and a reduction in the accretion
rate with increased black hole spin. Finally, Krolik, Hawley, and Hirose (2005)) focus on
the dynamics of the inner part of the torus. They find that the decrease in the accretion
rate with increasing Kerr parameter detected by De Villiers, Hawley, and Krolik (2003) is
due to electromagnetic flux that propagates outwards from the black hole, while angular
momentum transfer is also depressed. At the same time, the black hole loses energy due to
the Poynting flux that is fed in the axial funnel.

Gammie, McKinney, and T6th (2003) published their code named HARM in 2003. It
featured a second order accurate conservative scheme for solving the equation of GRMHD
where a set of primitive variables is used to calculate the fluxes and then an inversion scheme
to go back to the primitive variables. HARM ended up being one of the most used GRMHD
codes. The code was updated by Noble et al. (2006) with a new set of solvers for the inverse
scheme of the code.

Gammie, Shapiro, and McKinney (2004) used their newly developed code in studying the
change in the black hole spin by different mechanisms including disk accretion. They found
that for a ~ 0.9 an spin equilibrium is reached which is much less than expected a = 0.998
from the purely hydrodynamical derivation of Thorne (1974). This might imply maximum
rotation is not possible for black hole that grow from accretion. McKinney and Gammie
(2004) investigated the energetics of the black hole magnetosphere in the presence of an
accretion disk. Depending on the initial condition used, they found an outward Poynting flux
in the black hole horizon accompanied by an outward angular momentum flux. McKinney
(2006a)) included into the HARM code the limit of force-free GRMHD which then tested in
Minkowski and rotating black hole spacetimes.

Tchekhovskoy, McKinney, and Narayan (2007) introduced their version of GRMHD code
WHAM based on the weighted essentially non-oscillatory (WENO) method which was effectively
incorporated in the previous version of the HARM code. Shafee et al. (2008) simulated thin
accretion disk around a Schwarzschild black hole and studied the magnetic coupling in the
area of the ISCO finding it relatively unimportant. Penna et al. (2010) carried out a study
of the Novikov and Thorne (1973)) this disk model by simulating the disks with varying
thickness in the environment of GRMHD. They concluded that the Novikov and Thorne
(1973) model is a good description especially in the cases of accretion rate well below the
Eddington limit and in the case of very thin disks.

1.3.2 Studying Jet Launching

GRMHD codes do not apply in the case of a vacuum, there must always exist a set of artificial
low level fluid density and pressure values, called floor values, below which the respective
quantities cannot drop. Depending on the code and the way in which the magnetic field
is implemented, these floor values, may affect the jet launching especially in the jet funnel
we see ejected from the black hole magnetosphere in many simulations. In the case of high
floor density the acceleration introduced by the jet is hindered because of the high inertia
the floor density possess. Lower floor density values can enable faster jets but impede the
convergence of the implemented numerical scheme.
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Hirose et al. (2004) continued with the analysis of the effect of the black hole spin on the
magnetic field. They found an increase in the magnetic field with the Kerr parameters in
small radii and they detected a dominant toroidal field in the main disk body and inner torus,
whereas in the axial jet the field resembles more of a split monopole. Also, they measure
high current in the inner torus and the plunging region, which might be an indication of
some magnetic energy dissipation. De Villiers et al. (2005) focus on the outflows of the
simulations. The axial funnel is dominated by a poloidal magnetic field with a hot and fast
outflow and a colder and slower one along the funnel wall. The strength of the outflow
increases with the black hole spin resulting in a Poynting flux-dominated outflow, while for
low values of the Kerr parameter the outflow is dominated by the kinetic energy.

McKinney (2006b) evolved the HARM code even further simulating the evolution of the
funnel jet up to 10000 R, and for longer times. With these addition McKinney (2006b))
was able to detect current-driven instabilities in the jet beyond the Alfvén surface, which
reduce the effect of acceleration and collimation. The jet is Poynting dominated and carries
a magnetic pressure high enough to balance the ambient hydrodynamic pressure of the
environment. At larger distances, the jet has a Gaussian angular structure in an angle of
~ 5° for the main component that increases to ~ 27° for the extended component.

McKinney and Narayan (2007a)) investigate the conditions which lead to the creation
of a Poynting dominated jet by showing the existence of an angular-integrated toroidal
current density distribution. They find that the main collimating factor for the jet is the
surrounding corona. They also investigate the case of force-free GRMHD (McKinney and
Narayan, 2007b), by replacing the accretion disk with an infinitely thin rotating equatorial
current sheet. They find that rotation contributes as a small decollimating factor in the
jet. Afterwards, they embed the force-free field in an accretion disk which is then evolved
in full GRMHD. The magnetic field in large radii in the corona is continuously pushed
outward leaving behind only the disordered field. In the equatorial plane the turbulent field
is advected and subsequently accreted toward the black hole. McKinney and Blandford
(2009) studied the stability of relativistic jets produced by 3D GRMHD simulations using
both dipolar and quadrupolar magnetic fields, concluding that a relativistic jet needs the
dipolar structure to remain stable and achieve high Lorentz factors (I' ~ 10). Broderick and
McKinney (2010) calculated the Faraday rotation measures from a GRMHD simulation.
They found that the AGN jets are dominated by electromagnetic energy with only 2% of
being being due to energy from non-thermal particles.

Tchekhovskoy, Narayan, and McKinney (2011) showed that it is possible to have a jet
which transfers more energy out of the black hole magnetosphere than the energy that is
transferred via accretion. Advected magnetic flux is trapped in the black hole magnetosphere
by a magnetically arrested disk (MAD) (Igumenshchev, Narayan, and Abramowicz, 2003)
and it is transferred to the jet via the Penrose or BZ mechanism (Penrose, 1969; Blandford
and Znajek, 1977). This was one of the first simulations that demonstrated such a high
efficiency by the accretion system in generating outflowing energy in the jet and partially
confirmed the aforementrioned jet production mechanisms. They measured the efficiency
of the jet outflow and they found that for the case of a highly rotating black hole with
a = 0.99 it was at 140% (see Figure [L.6). Following that, Tchekhovskoy and McKinney
(2012) simulated cases of prograde and retrograde accretion disks around black holes and
compared the efficiency of the launched jets. They found out that the prograde ones have
higher efficiency, which increases with the disk thickness. McKinney, Tchekhovskoy, and
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Blandford (2012) undertook a large parameter study for magnetically chocked accretion flows
(MCAF) where the magnetic flux acts as a barrier that hinders, but does not completely halt
accretion, and enhances the magnetization in the horizon. In the case of an initial toroidal
field, they observe the development of patches of poloidal field that thread the black hole
and initiate jet launching. For the initial condition of the poloidal field, the MCAF disk
is formed which provides the conditions for BZ jet launching. McKinney, Tchekhovskoy,
and Blandford (2013)) showed the existence of a “magneto-spin alignment” mechanism which
is responsible for the alignment of the accretion disks and their jets with the rotation of
the black hole. Recently, Nakamura et al. (2018)) compared the jet funnel seen in GRMHD
and force-free electrodynamic simulations with VLBI data of M87, finding good agreement
concerning a parabolic jet shape.

1.3.3 Using Radiative Transfer

Taking into account radiative transfer is of major importance in astrophysical hydrodynam-
ical simulations. Since the thin disk model of Novikov and Thorne (1973)) the measured
luminosity has been linked to the accretion rate of the disk, especially in the case of black
hole accretion where a high radiative efficiency is expected (McClintock et al., 2006), with
strong coupling between radiation and the fluid (Collin et al., 2002)). Recent works, have
been using a cooling function to artificially cool down the accretion disk and keep it geo-
metrically thin. As a first approximation, this method have led to important breakthroughs
when it comes to understanding the evolution of the disk.

Noble, Krolik, and Hawley (2009) introduced a new 3-dimensional version of the HARM
code, HARM3D. It was used to study the connection between the accretion and radiation
with the inclusion of a cooling function to calculate the radiative cooling that is associated
with the accreting process. They find that the standard Novikov and Thorne (1973) model
underpredicts the dissipation of energy inside the ISCO. The accretion of electromagnetic
stress for Schwarzschild black holes was studied by Noble, Krolik, and Hawley (2010). They
found that it is independent of the disk thickness and the topology of the poloidal magnetic
field. The magnetic stress also shows significant values in the plunging region. Because of
that, Noble et al. (2011) focused on geometrically thin disk and found that the radiative
efficiency is 6% higher than the one predicted by the Novikov and Thorne (1973) model.
However, the spectrum resembles the prediction for a black hole with Kerr parameter a ~
0.2 —0.3. A convergence study was performed by Shiokawa et al. (2012)) comparing quantities
such as the plasma-#3, which decrease steadily with the resolution but remains in convergence
and synthetic spectra using the GR Monte Carlo ray tracing code Dolence et al. (2009), which
are almost completely unaffected by the resolution. Fluid properties such as density, internal
energy and temperature also decrease with resolution.

Anninos, Fragile, and Salmonson (2005) and Fragile et al. (2009)) developed the Cosmos++
GRMHD code which supported adaptive mesh refinement techniques and utilized a dual
energy /flux-conserving formulation. A study in misaligned accretion disks with respect to
the rotation axis of the black hole was performed by Fragile et al. (2007). The find that the
disk fluid is accreted mainly from a plunging region that is in higher latitude and from larger
radii than in the non-tilted cases. The simulation lasts for approximately 10 orbital periods
during which the disk keeps its initial titled form, however the torque from the misaligned
gravitation field imposes a precession of the body of the disk (see Figure .
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FIGURE 1.7: Simulation of a tilted accretion torus around a rotating black hole. The colored
contours show the logarithm of the density at ¢ = 0, 1, 2,4, 7, 10 orbital periods. The rotation axis
of the black hole is oriented vertically in each frame, with the initial condition being tilted by 15°
clockwise.
Image credit: Fragile et al. (2007))
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The exact treatment of the radiation is important for the black holes whose accretion
rate approaches the Eddington limit (Remillard and McClintock, 2006 showed that this
happens when they reach the peak of their outburst. Also, the inclusion of radiation allows
the direct measurement of the luminosity and its efficiency connected with the accreting disk
and the variability it shows.

McKinney et al. (2014) modified HARM into HARMRAD to also include radiation closure.
Among the tests they run, they simulate the evolution of an equilibrium torus (Abramowicz,
Jaroszynski, and Sikora, [1978) where they find a similar polar radiation jet in parallel with
the electromagnetic one. Additionally, the radiation efficiency remain relatively low at ~ 1%
while the spin-down rate of the black hole is comparable with older non-radiative simulation
and can be used to explain the mass growth of the black hole in the timescale of the age
of the universe. McKinney, Dai, and Avara (2015) continued studying the radiative and
electromagnetic efficiency of MADs finding that the radiation reduces the efficiency of the
BZ jet which drop by ~ 35% from the black hole magnetosphere to a distance of 400R,.
Avara, McKinney, and Reynolds (2016]) used thin accretion disks and they found radiative
efficiency at ~ 15% which shows higher deviation from the standard Novikov and Thorne
(1973) than previous works.

Sadowski et al. (2014 presented their new ideal GRMHD code, KORAL that also in-
clude radiative transfer (GRRMHD). The simulations they show are dynamically similar
to the ones in previous works, however, they exhibit large differences—compared with pre-
vious studies—in their radiative efficiency where the only reach values of 0.1%. Moreover,
they find that large amount of the radiative luminosity comes from the jet funnel where the
radiative flux is well above the Eddington limit. Sadowski et al. (2017) included electrons
and ions as sub-components of the gas in their GRRMHD code KORAL, resulting in different
thermodynamical evolutions. The effects of Coulomb interactions, synchrotron radiation |,
Bremsstrahlung and Compton scattering are also included. From the simulated models, the
ones with low accretion rate seems unaffected by the radiation, while with larger accretion
rate the accretion is much cooler and geometrically thinner. Marshall, Avara, and McKin-
ney (2018)) studied the effect of the Rayleigh-Taylor instability on the MADs where they
encountered the creation of a magnetic Rayleigh-Taylor bubble around the black hole. The
magnetic flux is pushed out from the black hole into the disk, halting accretion for some
time. A similar effect is described in our simulations as well in Chapter [4]

Fragile et al. (2018) also implement the M1 radiative transfer closure in their Cosmos++
code and performed GRRMHD simulation of thin accretion disks in Schwarzschild spacetime.
They found evidence of thermal instabilities in radiation-pressure-dominated disks, with
radiative efficiency of ~ 6%.

1.3.4 Simulation in a Resistive Environment

The implementation of magnetic fields in simulations has shown that magnetic fields play a
major role in the launching, acceleration and collimation of astrophysical jets. Many theoret-
ical models try to explain how the jets are created, with two having been studied extensively.
The Blandford-Znajek and Blandford-Payne (BP mechanism) mechanisms proposed two dif-
ferent methods for jet launching, one from the magnetosphere of the black hole and the other
from the disk surface itself (see Section [2.4)).
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FIGURE 1.8: Time evolution of the binary black hole system with its circumbinary disk and

the individual mini disk around each of the black holes in a frame corotating with the binary.

The colored contours show the logarithm of the density. Spatial units are of the order of binary

separation. Time is in units of the orbital period of the binary system. The two small black circles

denote the binary black hole while the central black region is the boundary of the simulation in

the center of mass of the system. The overdensity lump in the circumbinary can be seen in as a
large spiral arm spanning over 180° in azimuth.

Image credit: Bowen et al. (2018)



1.3. GRMHD Simulations of AGN 19

The BZ mechanism has been observed in many ideal GRMHD simulation including McK-
inney, Tchekhovskoy, and Blandford (2012) (see reference in Section m, however, the
BP mechanism has only been observed in simulation that use (pseudo)-Newtonian gravity
(Ouyed and Pudritz, [1997; Porth and Fendt, 2010; Porth et al., 2011; Porth, 2013). Mag-
netic resistivity in the accretion disk has also been used in Newtonian simulations (Casse
and Keppens, 2002; Zanni et al., 2007; Sheikhnezami et al., [2012; Stepanovs and Fendt,
2014; Stepanovs and Fendt, 2016). In ideal MHD, when the disk wind is launched by a
strong poloidal magnetic field that threads the accretion disk, it takes with it a large portion
of the material that resides in the surface of the disk. The freezing of the magnetic field
lines that accompanies the ideal MHD assumption does not allow for for replenishment of
mass via the outer part of the disk since the fluid cannot cross the magnetic field lines. The
introduction of magnetic resistivity will allow for more material to flow through the magnetic
field lines resulting in an increase in the mass loading of the outflow that is generated by the
BP mechanism. However, there is a lack of such works in the field of GRMHD.

The existence of magnetic resistivity also induces effects such as magnetic dissipation
and reconnection which also need to be investigated in order to identify how much they
enhance or hinder jet launching. In ideal (GR)MHD simulations, magnetic reconnection is
observed, but it is associated with the existence of numerical diffusion due to the discrete
nature of the simulation grid. The implementation of a physical model for resistivity would
allow control over magnetic reconnection and its study. Komissarov (2007) and Palenzuela
et al. (2009)) developed the first schemes that solved the equations of resistive GRMHD and
they were used as a jumping point by future works. In Qian, Fendt, and Vourellis (2018)) we
used our resistive code simulating thin accretion disks in a resistive environment and showed
that the launching of disk outflows is definitely possible, however without identifying a clear
involvement of the BP process.

Giacomazzo and Rezzolla (2007) upgraded the hydrodynamics GR code WHISKY (Baiotti
et al., 2005)) into including MHD and focused in the simulation of neutron stars and their
mergers. The code was updated into its resistive GRMHD version by Dionysopoulou et al.
(2013) and was applied in simulations of merging neutron stars by Dionysopoulou, Alic,
and Rezzolla (2015). They detect a less efficient magnetic braking mechanism which they
attribute to the reduction of outwards angular momentum transport due to the diffusive
coupling of matter and magnetic field. They also simulated the system of the black hole and
accretion disk that gets formed after the merging which shows significant outflows.

Del Zanna et al. (2007) presented their new GRMHD code (ECHO) as an extension of
their old classical MHD one. They used a finite-difference conservative scheme with high-
order reconstruction methods and constraint transport. Bucciantini and Del Zanna (2011)
updated the code to include the option for dynamical spacetimes, while Bucciantini and Del
Zanna (2013) provided the first fully covariant dynamo closure scheme in general relativistic
environment and implemented it into their code. Bugli, Del Zanna, and Bucciantini (2014))
applied it in the study of the toroidal field in accretion tori generated by a kinematic dynamo.

Porth et al. (2017) created the Black Hole Accretion Code (BHAC), a GRMHD module
for the MPI-AMRVAC framework, which includes arbitrary spacetimes and adaptive mesh
refinement. Ripperda et al. (2019)) extended BHAC into the resistive MHD regime.

Qian et al. (2017) and Qian, Fendt, and Vourellis (2018) used the scheme developed
by Bucciantini and Del Zanna (2013)) to extend the HARM code into the resistive GRMHD
regime. Their work was continued by Vourellis et al. (2019) by using the same extension in
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the HARM3D code. More about their work can be found in the next chapters.

1.3.5 Simulating Accretion in Black Hole Binaries

Noble et al. (2012) adapts the HARM3D code to simulate the evolution of an accretion disk
around a binary system of black holes. They studied the simple case of two equally massive,
non-spinning, black holes that are inspiraling due to gravitational radiation. The structure
of the circumbinary disk forms a gap of approximately two binary separation radii and
accumulates in the outer edge of it. As the binary inspirals, the inner edge of the disk
follows the black holes in a slower rate. The torque from the binary decelerates the accretion
rate, however, when the separation of the binary is ~ 10 — 20, the radiation from the disk
is large enough to make the system very luminous. Bowen et al. (2017) studied the mini
disks that are formed around an system of two comparable-mass and non-spinning black
holes using 2D GRMHD simulations. They found a constant exchange of material between
the two disks that increases with time as the binary separation decreases and the mini disks
themselves move toward the L1 point. Bowen et al. (2018) and Bowen et al. (2019)) continued
the work including a circumbinary disk that feeds the two mini disks. They detect a pair
of accretion streams that transferred material from the circumbinary disk to the individual
mini disks. They also find the existence of a overdense “lump” in the circumbinary disk
that feeds with higher accretion the closest disk before it alternates to the other one as the
circumbinary disk rotates. As a result, they find large fluctuations in the mass of the mini
disks as they are constantly in disequilibrium because of the approaching black holes. The
dynamics of the binary system break the symmetry of the circumbinary disk, resulting in the
modulation of the mass and accretion rates of the mini disks and subsequently in possible
fluctuations in the electromagnetic emission (see Figure .

1.3.6 More on GRMHD Codes

The field of GRMHD simulations was greatly developed in the last 15 years with many
scientific groups from all over the world developing their own code and targeting specific
physical phenomena that they wanted to study. Most of them were mentioned extensively
previously, so here we will briefly mention some of them. Duez et al. (2005) developed a
GRMHD code that also can work with dynamical spacetimes. Mizuno et al. (2006) created
the RAISHIN GRMHD code that used a variety of reconstruction and slope-limiter methods.
Etienne et al. (2015) released an open-source version of their GRMHD code, I11inoisGRMHD,
in order to make more accessible to the scientific community. Meliani et al. (2016]) created
the GR-AMRVAC hydrodynamics code in order to treat strong gravity problems in the area of
exotic cases such as the boson stars. For that they implemented the use of numerical space-
times. White, Stone, and Gammie (2016) incorporated GRMHD in their already existing
Athena++ framework resulting with the options for general relativistic, special relativistic
and Newtonian MHD in one code.

Liska et al. (2018) used the original HARM code as a jumping point for their designing of the
H-AMR code a GRMHD code with GPU paralellization featuring adaptive mesh refinement.
Shiokawa et al. (2015) used the HARM3D code to simulate an interesting phenomenon, the
evolution of the debris of a tidal disruption event of star by a SMBH using relativistic
hydrodynamics. Stellar material get bound to the black hole eventually forming an accretion
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Figure 1.9: Comparison of the accretion disk and jet area from different GRMHD
codes. The disk contours (left) are plotted for values of the normalized density p/pmax =
(0.0078125,0.125,0.5) (dashed, solid, dotted). The jet surfaces are plotted for four increasing po-
lar angular resolutions Ny = (96,128,192,1056) (right top). A zoomed version with 6 € [0°,45°]
is shown (right bottom). The black and dotted-black lines show the flux surfaces of the approxi-
mate force-free solutions for z oc R? (thin solid black line) and z oc RM® (thin dotted black line).

The codes seem to agree in the high-resolution case.

Image credit: Porth et al. (2019)
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disk. The mass accumulation is slow with the accretion rate showing a jump during the
disruption an then decaying approximately as a power law with its maximum being 10 times
lower than expected from theory. One of the reason for that is the shocks that develop and
keep material from falling towards the black hole. They studied titled accreted disks and
found jets being launched along the rotational axis of the disk.

As part of the EHTC, Porth et al. (2019) made an extensive study of some of the afore-
mentioned GRMHD codes in order to compare their ability to simulate the observations of
the shadow of the SMBH that were recently released. The codes reached very good agree-
ment in the accretion rate of the saturated turbulent state when the reach high enough

resolution (see Figure [L.9).

1.4 Introduction to Dynamo Theory

The investigation of astrophysical processes involving magnetic fields has always been plagued
by one fundamental question. Where does the magnetic field come from? Astrophysicists
tried to answer this question for years. In 1919 Sir Joseph Larmor, motivated by observations
showing the sunspots as areas of strong magnetic field, proposed that the magnetic field in
the Sun is created by a combination of Faraday’s and Ampere’s laws. We can assume that
small magnetic fields exist between the particles of a conductive plasma. The variation of
the field as the conductive plasma moves creates electric currents while at the same time the
motion of the material through the magnetic field also results in electric current generation.
These electric current also produce magnetic field which, if their direction is favorable, can
in their turn amplify the existing seed magnetic field. The mechanism is then repeated re-
sulting in an exponential magnetic field amplification. (Deguen and Lasbleis, |2019; Larmor,
1919).

However, this whole idea, as simple as it sounds, was not easy to implement. In the
following years a set of anti-dynamo theorems emerged which were restricting the working
range of the dynamo theory. In 1933 Thomas Cowling in his seminal work The magnetic
field of sunspots (Cowling, 1933) developed reasoning that deemed Larmor’s idea completely
invalid. Cowling’s anti-dynamo theorem states that an axisymmetric magnetic field cannot
be maintained by a dynamo.

There are ways to get around the anti-dynamo theorems. Ponomarenko (1973) developed
a simple solution of a magnetic field being amplified in the limit of large magnetic Reynolds
number. The most prominent of these dynamo theories is the mean-field dynamo. Started
by Parker (1955) and further developed by Steenbeck and Krause (1966]), Steenbeck and
Krause (1969a), Steenbeck and Krause (1969b), and Krause and Raedler (1980), it is based
on the idea that the magnetic and velocity fields can be expressed as variations around mean
values (see, [2.1.3)).

On cosmological scales, dynamo theory has been used to investigate how the magnetic
field was originated and developed during inflation (Marklund and Clarkson, 2005). The
most plausible and generally accepted scenario for the creation of initial primordial magnetic
fields is based on the idea of a cosmic battery and was proposed by Ludwig Biermann in
1950 (Biermann, 1950). Xu et al. (2008) included Biermann’s battery in simulations of
Population II star formation where low strength magnetic fields were generated. In Kulsrud
and Zweibel (2008)) the authors debated the different proposed theories for the development
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of the primordial magnetic field to the scale observed today in galaxies and galactic clusters.
Pudritz and Silk (1989) proposed the idea that the magnetic field could be generated during
the formation of a galaxy.

In accretion disk and jet theory, the dynamo has been used as the main theory for
generating magnetic fields the lead to jet launching. Pudritz (1981b)) and Pudritz (1981a))
applied the dynamo theory in the case of thin accretion disks and showed the development
of a magnetic field due to the differential rotation of the disk («Q) dynamo). Brandenburg et
al. (1995)) simulated magnetized shear flows and showed that a dynamo generated magnetic
field can result in amplification of turbulence in the flow, which in turn is amplifying the
magnetic field via the dynamo mechanism. Pariev, Colgate, and Finn (2007) showed a
possible origin of the dynamo mechanism in the case of AGN accretion flows, where a passing
star can heat and perturb the magnetic field inside the Keplerian accretion disk resulting
in the rotation of toroidal flux into poloidal flux. Stepanovs and Fendt (2016)) simulated a
Keplerian accretion disk and explored the structure of the magnetic field as it was being
generated by the dynamo. Their work was continued by Fendt and Gafimann (2018) who
experimented with the dynamo by switching it on and off periodically. They found that for
strong dynamo values oscillating dynamo modes may occur resulting in pulsating ejection
in the jet. Sadowski et al. (2015) simulated the effect of a mean field dynamo in the ideal
GRMHD regime and studied the evolution of thick disks in different accretion rates. The
first fully covariant implementation of dynamo closure in a general relativistic environment
was done by Bucciantini and Del Zanna (2013)) following the 3+1 formalism. They applied
it in the ECHO code (Del Zanna et al., 2007; Bucciantini and Del Zanna, [2011)) where Bugli,
Del Zanna, and Bucciantini (2014) used it to simulate kinematic dynamo and investigate
the growth of toroidal field.
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1.5 QOutline of the Thesis

In this thesis, we investigate the launching of jets from accretion disks in a resistive GRMHD
environment as well as the generation of magnetic fields from mean-field dynamo.

Chapter 2

is a review of the rich theoretical background necessary for understanding the work pre-
sented in this thesis. We review the theory of MHD with the introduction of mean-field
resistivity and dynamo, the basics of the theory of General Relativity and its application on
the environment of the black holes. Combining the two theories we show the basic equation
of GRMHD and we conclude with the most important theories for jet launching.

Chapter 3

is dedicated into the numerical aspects of the work and the implementation of the various
physical quantities in the code. We describe the transition from the ideal to the resistive
version of the code, the numerical grid that we use, the boundary and initial conditions,
the diffusivity and floor value models and concludes with a set of test simulations for the
resistive version of the code. Large part of this chapter is based on the published work of
Vourellis et al. (2019)).

Chapter 4

shows the reference simulation we performed with our code. It describes the evolution of
the disk, the development of the jet, the measurement of the mass and Poynting flux and
the different types of disk wind identified. This chapter is based on the published work of
Vourellis et al. (2019)).

Chapter 5

performs a comparison study between simulation with different levels of black hole spin and
magnetic diffusivity. It also includes an interesting finding for the case of counterrotating
black hole-accretion disk system and an analysis of the direction of the electric field. Large
part of this chapter is based on the published work of Vourellis et al. (2019).

Chapter 6

is dedicated in the development of magnetic field by mean-field dynamo. It tests the cases
of accreting tori and disks for different values of the dynamo parameter and different types
of initial seed field.

Chapter 7

presents a discussion and a summary the main results of this thesis and the plans for future
work.
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Chapter 2

Theoretical Background

This chapter is a continuation of the introduction to simulations of jets that focuses on
the theoretical background that encompasses the GRMHD simulations. We start with an
introduction to the classical and the mean-field MHD theory and we continue with the theory
of general relativity and its application to the black holes. Combining these theories we refer
to the basic equations of GRMHD. Finally, we introduce some of the physical processes that
result in the generation of jets including a physical description of the accretion disk model.

2.1 Introduction to Magnetohydrodynamics

Maxwell’s theory of electromagnetism (Maxwell, [1865) was established in the middle of 19

century. It provided a theoretical framework for the explanation and prediction of most
magnetic and electric effects. In this chapter we will describe the basic principles of the
theory of magnetohydrodynamics (MHD).

MHD began as a theory when Hannes Alfvén (Alfvén, 1942al) published a small article
in Nature where he introduced the existence of magnetic waves (what we today call Alfvén
waves) using Maxwell’s equations. Alfvén’s idea about magnetic waves was eventually com-
bined with hydrodynamics in order to explain the macroscopic behavior of highly conductive
fluids. The Sun’s magnetic field was one of the first astrophysical applications of the newly
formed theory.

However, like any other physical theory, MHD is premised on certain assumptions.

e The “fluid approximation”, where the macroscopic variations of the fluid’s thermody-
namical properties are considered slow in comparison with the microscopic processes.

e There is a relation between the electric field in the fluid and the electric current density
(Ohm’s law).

e The fluid is considered electrically neutral.

All three together can be combined in the “MHD approximation”.

Within the limits of the “MHD approximation” we can combine the equations of hy-
drodynamics with Maxwell’s equations into a new set of equations that will describe the
evolution of magnetized fluids.
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Maxwell’s equation can be written in cgs units in the form

V-E =4nq (2.1a)
V-B=0 (2.1b)
10B

E=--"" 2.1

V x - (2.1c)
A7 1 0E

B=—j+-— 2.1d

V x pr (2.1d)

where E and B are the electric field and the magnetic induction (hereafter referred to as
magnetic field), ¢ and j are the charge and current densities, and ¢ is the speed of light.

At the same time Ohm’s Law dictates a relation between the electric field and the current
density

E = oj, (2.2)

where o is the electric conductivity. The motion of the fluid with velocity v generates another
component of the electric field which enters Ohm’s Law as

0<E+VXB>:j (2.3)

C

Combining Equations (2.1)) and (2.3)) we get the induction equation
0B

— = Vx(vxB)- nV?B, (2.4)
which determines the evolution of the magnetic field, and where we used
2
c
= 2.5
n= (2.5)

as the magnetic resistivity. The last term V X %—]f in the the induction equation is in-
tentionally omitted under the assumption that we are in a non-relativistic, slow velocity
environment with v << ¢. The same applies for the displacement current in Ampere’s law
(Equation (2.1d])). However, it is used in the case of Special and General Relativity. In the
case where the plasma is not moving (v = 0) the induction equation reduces to

?%—::nsz. (2.6)

If we take the characteristic time and length scales we get B/t ~ nB/[?, which means that
n is responsible for the decay of the magnetic field on a time scale of t ~ 12 /7, justifying the
name magnetic diffusivity.
The hydrodynamical part of MHD enters with the continuity equation for the conserva-
tion of mass
dp

E—i—V- (pv) =0, (2.7)

and Euler’s equation of motion
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ov

P ot

where p is the fluid density, P is the gas pressure and Fgy, Fgray are electromagnetic and

gravitational forces (if they exist), and where we have made the assumption that the fluid
is non-viscous and there is no cooling term.

The hydrodynamical set of equations closes with the energy equation that connects the
gas density and pressure and the fluid’s internal energy. This equation strongly depends
on the type of problem we study. In the literature one can find a variety of general energy
equations and equations of state, however we will remain in the context of astrophysical
applications where a polytropic equation of state is used to describe the majority of astro-
physical fluids. In general

+p(V'V)VZ_VP+FEM+FgraV7 (2.8)

r P
P=Kp, U= (2.9)
where u is the internal energy of the fluid and I' is the polytropic index. The set of the last
four equations, accompanied by the divergence-free law for the magnetic field, describe a
complete set of magnetohydrodynamical equations.
The induction equation describes how the magnetic field responds to the motion
of the fluid. This reaction is accompanied by forces which are applied on the fluid by the
magnetic field. The general form of Lorentz force is

jxB
Fp =222 (2.10)
c
and if we use Faraday’s law we get
F —1(V><B)><B—1(B V)B L yp2 (2.11)
L= C 4n 8T ’ '

where the Lorentz force is clearly spit into two parts. The first term expresses the magnetic
tension created by the curving of the field lines. It acts as a restoring force that tries to move
the fluid in order to straighten the magnetic field lines. The second term is the gradient of
magnetic pressure
B2
Pmagn = 87 (212)

which expresses the magnetic energy density. In cases where the magnetic tension is balanced
by the gradient of the magnetic pressure, the Lorentz force disappears and the electric current
becomes parallel to the magnetic field (j x B = 0). This type of magnetic field is called force-
free.

The most common external force that appears in astrophysical applications of MHD
is gravity. Due to the conservative nature of gravity, in a Newtonian environment, the
gravitational force can be described by a scalar potential ®; with

Fyray = —VPg. (2.13)

With the inclusion of the two forces, the equation of motion is written as
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ov 1 1 9
- . =-VP+—(B- B—-—VB—Vdg. 2.14
pat—i—p(v V)v \% +47T( V) 87rv Vs (2.14)

2.1.1 The Approximation of Ideal Magnetohydrody-

namics

In the limit of ideal MHD, in which we assume the fluid to be a perfect conductor, if we also
assume non-relativistic velocities, the induction equation (2.4)) reduces to

0B vxB
9B _y ( ) , 2.15
ot % c (2.15)
while Ohm’s law (12.3)) becomes
B
E+ Y22 . (2.16)
c

In this case the electric and magnetic field are perpendicular (E-B = 0). Taking the
divergence of ([2.15) we get the evolution of the zero-divergence condition of the magnetic
field
oB 0

=2 (V-B)=0 2.17
which means that the magnetic field must remain divergence free while moving with the
fluid. Taking the divergence of Ampere’s law ( (2.1d])) we get

dq

s = 2.1

which expresses the conservation of charge and in the non-relativistic limit reduces to

V-j=0, (2.19)

The magnetic flux through a surface can be expressed as the “number” of magnetic field
lines that penetrate the surface. According to Gauss’s theorem, the change in the flux of a
magnetic field that enters and exits a closed surface is equal to the volume integral of the
divergence of the field within that surface, which from Equation is zero. We can then
define magnetic fluxz tubes of constant flux as they are seen in Figure .

This also implies that the magnetic flux does not depend either on the shape or the area
of the surfaces. The single requirement is that the number of field lines be the same. If we
start decreasing the area of the surfaces S; and So we will eventually reach a point where
the flux tube can barely fit a single field line. As a result the flux tubes are considered an
extended version of the field lines.

At the foundation of ideal MHD sits Alfvén’s theorem (see Figure also Alfvén
(1942b)), which states that in a magnetized fluid with infinite conductivity, the magnetic
flux is conserved with the fluid’s motion, or in other words the magnetic field lines remain
“frozen” within the fluid and they have to move with it. This can be expressed as

0P 0
E—&/CBCZS—O. (2.20)
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FIGURE 2.2: A magnetic flux tube. The surfaces S; and Sy need not be the same. As long as
they are both penetrated by the same numbers of field lines.
Image credit: Goedbloed and Poedts (2004)

2.1.2 The Resistive MHD

In Equation (2.2) we introduced the quantity of electric conductivity o as a measurement
of the resistance of the fluid in the electric currents. In literature, its inverse n = 1/0 is the
magnetic resistivity, while 7j = n/ ug is defined as magnetic diffusivity in order to absorb the
1o factor. In the following we will use the diffusivity n in the equations.

The main difference between resistive and ideal MHD is that the introduction of resis-
tivity /diffusivity nullifies Alfvén’s theorem and allows the magnetic field lines to move with
respect to the fluid. As a result, the magnetic flux cannot be conserved, at least not in the
same way as it does in ideal MHD. In a resistive magnetic flow, part of the electromagnetic
energy is transformed into heat, increasing the internal energy of the fluid with a rate of

de 1 ,

-2
= . 2.21
i o J 1) ( )

This process is commonly referred to as Ohmic heating.
More information on how we implement resistivity in our work you can be found in

Chapter

2.1.3 Mean — Field Dynamo Theory

In this section we will present the basic assumptions, descriptions and results of the mean —
field dynamo theory. For a more detailed analysis on the foundation of mean — field dynamo
theory we recommend Moffatt (1978).

For this section only, we will use V to describe the fluid velocity and v for the fluctuating
velocity.

The dynamo theory proposes a mechanism to generate and maintain a magnetic field from
the kinetic energy of a fluid. Turbulence is the main physical property which is theorized as
the generator of the field and it has been studied in a stohastic level by Brandenburg and
Subramanian (2005) and Brandenburg, Sokoloff, and Subramanian (2012)). Parker (1955)
was the first to include the idea of a dynamo — based magnetic field generation in his seminal
work and Krause and Raedler (1980) developed it into a complete theory. Their idea is based
on the assumption that the physical properties of the magnetized fluid can be split into a
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mean and a varying part. Pudritz (1981b) and Pudritz (1981a)) applied the dynamo theory
in the case of thin accretion disks and showed the development of a magnetic field due to
the differential rotation of the disk () dynamo).

We consider the case of a homogeneous conducting fluid with velocity V, threaded by a
magnetic field B, with an electric field E and a current density j. In general, these quantities
show variations in time and space, so it is useful to assume that the large scale behaviour
is described by a mean—field (eg. Vo = (V)) while the small scale turbulent behaviour is
described by velocity deviations v.

Following Maxwell’s equations we can produce the induction equation for the general
values of V, B, E and j.

nWVB+Vx(VxB)-9B=0 V-B=0, (2.22)

We will express the physical quantities in the form of mean—field and fluctuating values.
The splitting is written as

V=V
0tV (2.23)
B =Bg + b,
resulting in an induction equation for the averaged values
0B
aTO =V x (Vo x Bg) + V x € +nV?By, (2.24)
and for the fluctuating parts
db 9
a:Vx(V0><b)—|-V><(v><B0)—|—V><G—|-77Vb, (2.25)
where 7 is the magnetic diffusivity.
E=(vxb), G=vxb—(vxb) (2.26)

with € being the mean electromotive force.

In order to solve the equation we must find a way to express € in terms of the mean
fields. The theory suggests that the mean electromotive force is linearly related to the mean
magnetic field, meaning that we can develop £ as a convergent series in the form

9% By; i
ox 0$
where the coefficients «;;, 3;; are pseudoftensors connected with the a— dynamo and diffu-

sivity respectively. Also, provided that the series is rapidly converging, the high order terms
are negligible in comparison with the first two terms.

330
& = al]BOJ + Bzyk / + Yijkl a7 (2'27)

2.1.3.1 The a—Dynamo

If we isolate the first term, we get the leading component of the electromotive force

éa(o) = OzijBoj, (2.28)

7
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and if we split cy;; into a symmetric and anti-symmetric parts the electromotive force becomes

£” = a™By + (a x By) (2.29)

The anti-symmetric part of a;; contributes th the effective mean velocity and acts on the
mean magnetic field. The contribution of the symmetric part is revealed more easily if we
assume that the velocity field of the fluctuations is isotropic and homogeneous. In this case
a;; must be isotropic as well, meaning

Q5 — aéij, (230)

while the anti-symmetric part vanishes (a = 0). Combining with Equations ([2.28]) and (2.3))
we get

i = 6£0) — 5aBy, (2.31)

where sigma is the magnetic resistivity. The appearance of a electric current parallel to
the mean magnetic field seems strange since we are used to the induced electric current
and magnetic field being perpendicular. The electromotive force that appeared because of
the o parameter was named by Steenbeck and Krause (1966) as "the a— effect" and is the
protagonist of the mean field dynamo theory. The contribution of the o dynamo helps to close
up the circle of magnetic field generation. The existence of a poloidal magnetic field Bp in a
rotating fluid (eg. differentially rotating accretion disk threaded by poloidal magnetic field),
induces a toroidal component Bg. In the case of mean fields, Equation (2.31]) generates a
toroidal electric current which induces in a poloidal magnetic field.

If the velocity field is not isotropic as we assumed earlier, then the a@ dynamo param-
eter can be expressed with values in the three primary spatial dimensions (Ruediger and
Kichatinov, [1993)) appearing as

a0 0
0 0 B

resulting in a electromotive force in the form of

g0 _ (a(l)Bm 1+ a® By + &(3)303) (2.33)

2.1.3.2 The p—Diffusivity

If we consider the second term in the right hand side of Equation (2.27]), we get
aB()j

8xk '

Similar to the «, in the case of isotropic and homogeneous velocity field, the § parameter
becomes

W = B (2.34)

Bijk = B €ijk, (2.35)
with [ being a scalar parameter. From (2.34)) we get
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EW) = BV x By = BuoJo, (2.36)

where Jg is the mean current. Also

vV x €M = gv?B, (2.37)

Equation shows that the g parameter has units of magnetic diffusivity resulting
in a total diffusivity of n + . [ diffusivity is associated with the notion of a turbulent
diffusivity. The random motion induced by the fluctuations of the velocity field results in
the mixing of the fluid particles which is expressed as turbulent diffusion.
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2.2 Introduction to Black Holes and General
Relativity

This chapter presents a small introduction to the theory of General Relativity. It is meant
to be nothing but a reminder of the basic principles of the theory and the first developments
and applications. Since the topic requires a strong mathematical background the author
stresses that this introduction is not meant to replace any specialized book in the subject.
However, considering that the black hole physics are an integral part of this work, the
existence of such an introduction seems more than justified. All the following is based on
the authors knowledge acquired throughout the years as well as information from the holy
bible of General Relativity-Misner, Thorne, and Wheeler (1973) and the works of Wald
(1984), Weinberg (1972), Lawden (1982), Schutz (1985), and D’Inverno (1992]).

2.2.1 Elements of Tensor Calculus

2.2.1.1 The Metric Tensor

General relativity, as a geometric theory of gravity, makes extensive use of mathematical tools
developed mainly in the second half of 19" century. Georg Friedrich Bernhard Riemann’s
contribution to the field of differential geometry laid the foundations for the mathematical
development of Einstein’s ideas. In the following section we will present a short introduction
to the basic elements of differential geometry through the looking glass of general relativity.

Measuring distances is the basic element of any space. For any two points in space we
can assign a scalar quantity that expresses the distance between them. As an example, in a
Euclidean 3-D space we have two points A(x, y, 2) and B(x + dz, y + dy, z + dz). Their
distance is given as

ds® = da? 4 dy* + d=?, (2.38)

and similarly in the Minkowski space of special relativity we have

ds? = —dt* + da® + dy? + d2*, (2.39)

where we used the signature (—, +, 4, +). The above equations can be written in the general
form of the linear element

n
ds® = ggpda®da® = > Japdzda?®, (2.40)
a,b=1

where the Einstein summation is used for indices a and b. g, is the metric tensor and it can
be written as an n X n symmetric matrix in an n-dimensional space. It expresses the shape
of the spacetime continuum which can be altered by the presence of any type of massive
object. When the metric tensor can be expressed as function of the coordinates of the space

then the space is called Riemann space.
The metric tensor belongs in a general category of mathematical objects called tensors.
They can be seen as a generalization of scalar and vector objects. In an n-dimensional space,
a scalar object has n’ = 1 components and is consider a 0th order or rank tensor, a vector
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has n' = n components and is considered a 1st order tensor while a second order tensor
has n? components. The rank of a tensor is determined by the sum of the upper and lower
indices. The metric tensor’s rank is 2.

2.2.1.2 Tensor Transformation and Differentiation

If we want to transform a tensor from an initial coordinate system {z®} to another one {z'“}
we must follow the rules of coordinate transformation whicht for an (m, k) tensor T/5% in

an n-dimensional space are

Ox® oxt ax'c\ (o'
red... DS...
Top.” = (aya) (ax/b> T <8mp> (31’5 > o ‘Tef...' (2-41)

where a,b,c,d, e, f,p,s... =1,2,...,n. The main properties of tensors that result from the
above transformation law are

e [f a tensor is zero in one coordinate system, then it is zero in all coordinate systems.
e If two tensors are equal in a coordinate system, they are equal in all systems
e The form of a tensor equation does not change between coordinate systems.

The last one is a key property in the general theory of relativity.
An important characteristic of tensor objects is that the results of differentiation must
also be a tensor. In the case of scalar object f the derivative as we know it satisfies Equa-

tion (2.41)), so

b b
gf= 2L _0f 07 O, (2.42)
oz'e  9xbdx'a Oz’
It becomes clear that the derivative of a scalar object is a 1st order tensor (vector). Prob-
lems arise when we try to differentiate vectors and higher order tensors. In this case the
transformation does not work (in general) which means that we need to find another way to
express the derivatives of tensors. We define the covariant derivative of a covariant vector

Vg as

Viva = Opvq — L0, (2.43)

where I'}. is the affine connection, a non-tensor quantity. As a result, the covariant derivative
of a vector is a 2nd order tensor. In Riemann spaces the affine connection can be written as
a function of the metric tensor of the space and its components, called Christoffel symbols

1
be = igad (Ocgab + OvGdc — Oage) (2.44)

and because of the symmetry of the metric tensor they satisty I, = I'Y. The covariant
derivative can help us define the concept of parallel transport of a vector along a curve. If
t® = dx®/d\ is the tangent along a curve C' with A its affine parameter, the vector v® is said
to be parallel transported if

Vit = 0. (2.45)
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2.2.1.3 Geodesic Equation
Using Equation ([2.43]) we get

dv®
d\

A geodesic curve is the straightest possible line one can follow in a curved geometry. So the
geodesic curve will have a tangent vector which is parallel propagated along itself. In other
words

+ ¢ ¢ = 0 (2.46)

'Vt = 0. (2.47)
From Equation and the definition t* = dz®/d\ we get

2,.a b g..c
@t ’chdidi =0 (2.48)

d\2 dX\ d\
which is the equation of geodesic curve. Among all the curves we can draw between two points
in a Riemann space, the geodesic curve will always follow the shortest path. The geodesic
curves are very important in general relativity because in gravitationally curved spacetime,
they define the paths objects follow. From physical mechanisms like gravitational lensing we
know that the light does not always follow what we perceive as the path of a straight line,
but its route can be curved by gravitationally strong objects. This path, however, is always

described by the geodesic equation (if there are no other forces affecting it), which in the
general case is not a straight line.

2.2.1.4 Riemann Tensor

The introduction of Christoffel symbols leads to the definition of the curvature tensor or
Riemann tensor

Rgcd == —3dfgc ‘|’ &Igd - — gc gd + ngfaec. (249)

Using the metric tensor we can write Riemann tensor in its full covariant form

Rapea = gaeRgcd- (250)

In any Riemann space, in a local geodesic frame where I'f, = 0, because of the above relation
the Riemann tensor can be written as

1
Roped = 5 (Ov0cYad + 0a0agbe — Ob0dgac — 0uOcGbd) - (2.51)

with the symmetry properties

Rabcd - Rcdaby Rabcd - _Rbacd - _Rabda and Ra[bcd] = 0. (2'52)

Furthermore, the Riemann tensor satisfies two important identities.

QV[GV,,]UC = Rabcdvd (2.53)
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are the Ricci identities that define the curvature of the spacetime and its connection with
the gravitational field, and

VeRabcd + VdRabec + VcRabde =0 (254)

is the Biachi identity.
By contracting the Riemann tensor we get the Ricci tensor

Ry = Ry, = QCdeacb' (2.55)

By contracting the Ricci tensor we end up with the Ricci scalar object which expresses the
“average” curvature of the spacetime.

2.2.1.5 Connecting to General Relativity

All that we mentioned until now is nothing but a small drop in the sea of differential geometry
and curved spaces. These ideas predated Einstein’s work as mathematical theories. In 1916
Einstein published the general form of the field equations (Einstein,|1916). His main idea was
that the curvature of the spacetime is directly connected with the energy-momentum that is
contained in the spacetime itself. For the simple case of an ideal fluid the energy-momentum
tensor can be written as

Tap = (p + u+ P)uquy + Pgap. (2.56)

where here p expresses the total mass density, u is the internal energy, P is the pressure of
the fluid and u®* = dz®/ds is the 4-velocity. All he needed then was a quantity to express
the curvature of the spacetime. He knew that since T, is a 2nd order symmetric tensor,
the curvature needed something similar. It turns out that the ideal candidate for that is a
combination of the Ricci tensor and the scalar Ricci quantity

1
Gab = Rab + §Rgab~ (257)

what we call today the Einstein tensor. With that the Einstein field equations can be written
as

1 8¢
Gab = Rab + §Rgab = CTTab (258)

Because of Equation ([2.54))

VPG = 0. (2.59)

The Einstein tensor is used in the field equation of General Relativity and it expresses the
curvature of the spacetime which is attributed to the existence of matter/energy in the area.
Furthermore, Equation (2.59) ends up as an expression of the conservation of energy and
momentum.

One of the applications of General Relativity is in Cosmology. The Einstein equations
can be used to created models concerning the universe itself. In the early days of General
Relativity, the notion that the universe is static was well established in the cosmological
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scientific community. Einstein (1917) in his calculations used a extra term in the Einstein
tensor in order to balance the effects of gravity and achieve the expected static universe.

1 87G
Gab = Rab + §Rgab + Agab = c74Tab (260>

After Hubble’s discovery (Hubble, [1929)) of the expanded universe, he abandoned that idea
and the cosmological constant A was taken as zero for the next decades. In 1998 however,
Perlmutter et al. (1999) and Riess et al. (1998) discovered that the universe’s expansion is

accelerating and the cosmological constant was one of the modifications used to “fix” the
theoretical models to match the observations.

2.2.2 The Black Hole

Here we will show some of the basic characteristics of the black hole. For more information
we refer the reader to the works of Misner, Thorne, and Wheeler (1973, Frolov and Novikov
(1998), Raine and Thomas (2005), and Romero and Vila (2014).

2.2.2.1 The Schwarzschild Solution

The first solution of Einstein’s equations came from Karl Schwarzschild in 1916. He solved
the equations and provided the form of the metric tensor describing the geometry of the
spacetime outside a point mass object (Schwarzschild, 1916). The line element for the
Schwarzschild space time is

2GM 2G M\ !

ds? = (1= 2550 ) et = (1= =50 ) dr = o (d6? +sin? 0u?) (2.61)
rc rc

where, M is the mass of the central object, G is the gravitational constant and (¢,7,6,¢)

are the in Boyer-Lindquist spherical coordinates.

From now on we will adopt the geometric unit system of general relativity where
the speed of light in vacuum ¢ and the gravitational constant G are set equal to
unity, ¢ = G = 1. Furthermore, a different length is defined that is equal to

R, = GM/ ¢ and corresponds to a time unit of te =GM/ 3. In this system the
Schwarzschild metric is written as

2 2\ !
ds? — (1 - r) 2di? — (1 - r) dr? — 12 (d6? + sin? 0 (2.62)

This solution describes the spacetime outside a spherically symmetric massive object.

In the case of the point mass object the metric shows two singularities, one at r = 0
and one at r = QCC;2M = 2R,. However, only the first one is has a physical meaning. The
second one defines the Schwarzschild radius, which will reside in the interior of any “normal”
astrophysical object. It appears as a singularity in the metric because of the Boyer-Lindquist
coordinate system. With proper transformations we can have coordinate systems where the
Schwarzschild radius is not a singularity. As an example, the Schwarzschild radius for the Sun

is at approximately 3 km and for the Earth is at 9mm. In these cases, since the Schwarzschild
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metric describes the spacetime outside the object, the singularity at the Schwarzschild radius
does not create any problems in the calculations.

There is however an astrophysical object where the Schwarzschild radius is outside the
surface. The black hole is an area of spacetime where the gravitational field is so strong
that nothing can escape it. For a non-rotating black hole the Schwarzschild metric is used
to describe the surrounding spacetime. The boundary of the black hole is the Schwarzschild
radius and it is called the event horizon. The photon radius is the surface where the light
starts traveling in circles around the black hole. The innermost stable circular orbit (ISCO)
is the closest radius outside a black hole where a particle can have a stable orbit.

Outside of the ISCO particles will follow different orbits depending on their initial condi-
tions. The equations of motion can be derived from the conservation of energy and angular
momentum and they result in motions in a constant plane. For the Schwarzschild black hole
we can write the equation of motion for such particles as an equation for an 1-dimensional
motion of particles in an effective potential V. The equation of motion is

2
d
B2 = (di) +VE (2.63)

where FE is the energy of the particle, 7 is the proper time and

2
Vo = \/(1 +12) (1 - r) (2.64)
r
with L being the angular momentum of the particle in units of mc and r, = GM / ¢? being

the gravitational radius. By taking the extrema of the effective potential we get

L2 1 o

The energy of the particle defines whether the orbit will be bound (£ < 0) or unbound
(E > 0). For L? < 12R, there are no extrema in the effective potential, which means that
the particles with negative energy end up in the black hole while particles with positive
energy can escape to infinity (Figure , top panel, red line).

For L? > 12R, the effective potential has two extrema— V_}; (minimum corresponding
to r4) and Vg (maximum corresponding to r_)-that, depending on the particle’s energy,
define regions with different orbits for the particles (Figure top panel, brown, cyan and
magenta lines).

e I/ > V. The particle does not have enough angular momentum to stay in a closed
orbit and it will inevitably fall inside the black hole

o Vg > FE > 0. The particle’s angular momentum is low enough to be trapped by the
gravitational potential but its energy is positive and it gets scattered away by the black
hole.

° V:f} < E < 0. The particle is trapped in open elliptical orbits between two radii. In
Newtonian gravity this would be a closed elliptical orbit.

o £ = Veg or /' = V_z. The particle is in circular orbit around the black hole. The
E = V;& orbits is stable while the ' = V_5 is unstable.
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FiGure 2.3: Effective potential of the particle motion around a Schwarzschild black hole. In
the top panel we show the effective potential for different values of the particle’s specific angular
momentum. The circles show the position of the unstable circular orbit (r_, V) and the squares
show the position of the stable one (ry, V). For the case of L = /12 the two coincide in the
ISCO. In the bottom panel we show an example of the possible orbits of particles with different
energy but the same specific angular momentum L = 4.5. From top to bottom the dotted lines

show the cases of &' > Vg, Vg > E >0, V;g <E<0Oand F = Vlerf respectively.
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These cases can be seen in the bottom panel of Figure [2.3]
For L? = 12R, the effective potential has no local extrema and the equation gives one
double root which corresponds to the ISCO rgco = 6rg (Figure top panel, blue line).
Repeating the same calculation for the photons we get an effective potential

L? 2
Vo = —5° (1 - ) (2.66)

r2 r
and the equation of motion is given from (2.63). By taking the radial derivative of the
photon effective potential we get that

dVpn

=0 = 3R, (2.67)

2
which coincides with the photon sphere radius we mentioned before. Because d d:/é’h <0
T:3Rg
the circular photon orbits are unstable. The photon effective potential has its maximum value
at the photon radius V™ = L?/ 27R,. If the energy of the photon is greater than the Von™
then the photon will be captured by the black hole. If Ey, < p%ax we can have photons

that are scattered by the black hole, changing their straight path.

2.2.2.2 The Kerr Spacetime

Schwarzschild’s solution describes perfectly the spacetime outside a static spherical object.
The natural next step is to find a description for a rotating object. In the end, this was
much harder than it initially seemed. It took 47 years for such a solution to appear and
it was Roy Kerr in 1963 who announced it in the First Texas Symposium on Relativistic
Astrophysics (Kerr, 1963). Outside of the small community of theoretical astrophysicists
and mathematicians who were working for years on such a solution, the announcement was
met with little interest. It took about a decade for the people to realize that Kerr’s solution
was integral to the explanation of “hot” astronomical topics such as the recently discovered
quasars.

The Kerr line element is slightly more complicated than the Schwarzschild one and de-
scribes the spacetime around a rotating massive object. In Boyer-Lindquist coordinates it
can be written as

2
ds® = gudt* + 2g,4dtde — gssdd® — Ker — 2d6? (2.68a)
2GM
gt = ¢ — 5 : (2.68b)
2G Mar sin® 0
G0 =" a2y (2.68¢)
2
(7“2 + a2/02) — Aa®sin?6/c? )
9o¢ = > sin” 0 (2.68d)
Y =12+ a®cos’ 0/ (2.68e)

A=7r?—2GMr/c* +a*/c?, (2.68f)
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where a = J/M is the Kerr spin parameter connected with the angular momentum of the
star J. This metric reduces to the Schwarzschild one for the case of a = 0. The Kerr solution
is also the unique stationary axisymmetric vacuum solution on par with the Schwarzschild
solution.

The event horizon, the point of no return for the black holes, in the case of rotating black

hole is determined by g, — o0
rhn=1+4/12 — a2 (2.69)

It becomes clear that the rotating black hole has two surfaces that carry the properties of
the event horizon. The outer horizon 7“;[ reduces to the Schwarzschild horizon for a = 0
and is well defined only for a <= 1. In the case of a« = 1 we have a maximally rotating
black hole. For a > 1 neither of the horizons is defined resulting in a naked singularity in the
spacetime. Such a solution is at the moment considered to be unphysical (Cosmic Censorship
Principle). The inner horizon r; defines a surface which hides the central singularity even
from observers that have crossed the outer horizon.

A particle falling radially towards a rotating black hole has zero angular momentum.
However, the particle does have an angular motion as well with angular velocity

do <2GM / 02) ar

At (r24a2/2)* —a2/AAsin2 6’
in the direction of the rotation of the black hole with the particle’s angular momentum
remaining zero, since it is conserved. This oxymoron is based on the fact the the ¢'®
component of the metric is non-zero in the Kerr solution. We know that u® = ¢*®u, =
dPus + g %u, + ¢%%up + g¢¢u¢. In Schwarzschild black hole all components except g?? are
zero and if initially ug = 0 then u® = 0 as well. In the Kerr black hole ¢*¢ is also non-zero
resulting in the azimuthal dragging of not only the particle, but of the local inertial frames
of reference themselves. At the same time the angular momentum L, = ug which is zero
initially and remains so because of the conservation of angular momentum.

Another consequence of the inertial frame dragging is the need to define a new type of
observer who will follow the frame dragging by rotating with an angular velocity ) while at
the same time they retain a zero angular momentum. The zero angular momentum observers
(ZAMOs) hold their radial and polar coordinates constant and their velocity is

(2.70)

—9s9 \'/*
a = 1,0,0,0 2.71
(") zanto <A sin? 9) ( ) ( )
The strength of the frame dragging becomes stronger the closer a particle approaches to
the rotating black hole. There is a surface close to the black hole beyond which it becomes
impossible to resist the dragging force and any massive particle (not photon) will have to
rotate. This surface is the static limit of the black hole and is defined by g4 = 0. The radius
of the static limit is

2 2 1/2
ret = GM + [(GM) - Z—cos2 «9] ) (2.72)
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FIGURE 2.4: The radius of the innermost marginally stable orbit, marginally bound orbit, photon
sphere and outer horizon as functions of the Kerr parameter a. The solid lines show the orbits for
a prograde system of black hole-particle (a > 0), while the dashed lines for a retrograde system

(a < 0). The shaded area marks the radius of the ergosphere in the equatorial plane.
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This means there are two static limits, with the outer/positive one being outside the horizon
with the exception of the poles where the two surfaces meet, since the static limit surface
depends also on the polar angle. In the Schwarzschild case the static limit surface and the
event horizon coincide completely.

The radiation emitted by a body at rest close to the black hole will be gravitationally
redshifted according to

Aco

where z is the gravitational redshift and A\, and Ay are the wavelengths of the radiation as
emitted by the body and as measured by an observer at infinity. Since the metric relates the
time of the observer at infinity ¢ with the local time of the body 7, the ratio of wavelengths
is proportional to the ratio of the period of the wave and as a result to the time intervals of
the two frames. The surface where the wavelength of the radiation is redshifted to infinity
is

Ao dt

this means that the static limit works also as the infinite redshift surface.

The equations of motion for a particle show some special cases of circular orbits in the
equatorial plane of a rotating black hole. The first one is the innermost (marginally) stable
orbit rys which in the case of Schwarzschild black hole reduces to the ISCO. Bardeen, Press,
and Teukolsky (1972)) showed that the ryg is given by

GM
Fims = 2 [3‘1‘22:!:\/(3—21)(3—{—214-222)}, (2.75a)

with  Z1=1+{1-a?(VT+a+V1-a), (2.75b)
Zo = \/3a%2 + Z3, (2.75¢)

where again we have two orbits satisfying the equations, with the outer orbit 7 using the
(—) symbol and expressing the co-rotating particle. With the (+) sign we have the r,, for
the counter-rotating particle. In this orbit the orbital period of the particle is

3/2
T =27 (m1/2 + a) ) (2.76)
As an example, in the case of the supermassive black hole in the centre of the M87 galaxy
with mass 6.5 x 10° M and an assumed Kerr parameter of a = 0.5 the period of a particle
in the rpg = 4.233 is approximately 21.5 days.

The marginally parabolic orbit in which a particle coming from infinity goes around the
black hole and then it is scattered away is called the marginally bound orbit. The orbit is
given by

re =2Fa+2V1Fa (2.77)
For a Schwarzschild black hole the marginally bound orbit is at ry, = 4.
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Finally, the photon sphere radius is a Kerr spacetime is defined as

2
Tr%h =2 [1 + cos (3 arccos ($a)>} : (2.78)

and for the Schwarzschild case it yields rpn = 3. In Figure we plot the radius of these
orbits as a function of the Kerr parameter for prograde and retrograde systems.

2.3 General Relativistic Mangetohydrodynam-
ics

For the following, we adopt the signature of Misner, Thorne, and Wheeler (1973) for the
metric (—, 4+, +,+) and use geometrized units where G = ¢ = 1. Greek letters run for
0,1,2,3 (t,r,0, ¢ )while Latin letters run for 1,2,3 (r, 0, ¢). Radii are expressed in units of the
gravitational radius, Ry = GM/ ¢?, while time is in units of light-travel time te = GM/ 3.
Vector quantities are denoted with bold letters, while the vector and tensor components are
indicated with their respective indices.

We use the "3+1" decomposition of the GRMHD equations, where the time component
is separated from the spatial components which are expressed as 3-dimensional manifolds. A
detailed analysis of the 341 decomposition and the derivation of the GR-(M)HD equations
can be found in many published works including Misner, Thorne, and Wheeler (1973), Anile
(1989), Baumgarte and Shapiro (2003)), Font (2008)), Gourgoulhon (2012), and Rezzolla and
Zanotti (2013)

The space-time is described by the metric g, in Kerr-Schilds coordinates with g =
det(guy). A zero angular momentum observer frame (ZAMO) frame exists in the space-like

manifolds moving only in time with velocity n, = (—«,0,0,0) where a = 1/1/—g" is the
lapse function. The gravitational shift is 5° = a?¢".

In order to achieve the splitting of the spacetime all tensor and vector quantities must
me projected into the spatial manifolds via the metric

Vv = Guv + NpNy (279)

In Equation (2.56)) we introduced the stress-energy tensor in the case of an astrophysical
fluid. If this fluid is magnetized then the stress-energy tensor obtain a second electromagnetic
part. In total the tensor is written as

T = Thiia + Toar (2.80)
with .
Thi = FIEY — igw/FWstg, (2.81)

being the electromagnetic part while the fluid part is given by Equation (2.56). F b i the
anti-symmetric Faraday tensor associated with the electromagnetic field and *F? its dual
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(Maxwell tensor). The Maxwell equations shown in ([2.1]) are simplified in covariant form as
Vi, FH =0, (2.82a)
V,Ft = TH, (2.82b)
where I* = (qu*,J) is the electric 4-current. Choosing a reference frame that is co-moving

the fluid we can write the Faraday and Maxwell tensors as

FM = e’ — elu’ 4+ e Puybg, (2.83a)

P = b 4 b 4 e Pugeg, (2.83h)

where the electric and magnetic field in the comoving system are measured as
et = Fu,, (2.84a)
bt =" FMu,, (2.84b)

and the anti-symmetric Levi-Civita symbol is used

€aBys — \/__g[a675]7 (2.85&)
P = —\/1__9[04575]. (2.85b)

The magnetic and electric field as measured by the normal observer are defined as

B = n, 1 = o FU, (2.86a)
&' =n, F" = —aF". (2.86b)
Then the electromagnetic part of the energy-momentum tensor becomes

Nz

TH = (b2 + e?) (u“u’/ + g2> — Y — ele” — ugegh, (uuevaﬁv + uveﬂa57) . (2.87)

and if we combine both components we get the total energy-momentum tensor
T = (p+u+p+b”+e?)u'u”
+ (504 en) g
— MDY —ele” —uqepby (u”e”am + u”e“am) : (2.88)

In the case of ideal MHD the electric field vanishes from the equation because we can
always compute it through Ohm’s law as it is written in Equation (2.16)). In the more general
case of non-ideal MHD Ohm’s law is given by Equation ([2.3)). Here we also show its form in
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the case of a resistive environment and a mean-field dynamo (see Section [2.1.3). Blackman
and Field (2002) connected magnetic helicity and turbulent electromotive force with the
dynamo and the amplification of the magnetic field, while Kulsrud (2005) provides a deeper
analysis in the turbulent nature of diffusivity and dynamo.

In our case, we adopt the formulation of Bucciantini and Del Zanna (2013) where the
a-dynamo term is replace by & = —a in order to avoid confusion with the gravitational
lapse. Thus, in covariant form in the fluid frame Ohm’s law is written as

el = njt — &b, (2.89)

where j# is the electric current density components. In the new generalized environment, the
electric field can no longer be calculated by the cross product of fluid velocity and magnetic
field and new equations need to be formulated. By setting & = 0 we get the resistive version
of Ohm’s law and also by setting n = 0 we get back into the ideal case e/ = 0. For more
details on Ohm’s law and its solution see Chapter [3.1] and Appendix [A]

Along with Maxwell’s equations and Ohm’s law for the electric and magnetic field we
have the hydrodynamic equations. The conservation of particle numbers is

V(o) =0, (2.90)
where pg is the rest mass density and the conservation of energy

vV, T =0, (2.91)

Adopting the equation of state from ([2.9) we have a system of equation that describe the
motion of a magnetized fluid in a general-relativistic environment.
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FIGURE 2.5: Schematic depiction of the original Penrose process. The particle falls into the
ergosphere and then decays into two particles, one with negative that collapses in the black hole
and one with positive energy that escapes outside the ergosphere.

Image credit: Leiderschneider and Piran (2016)

2.4 Jet Launching Mechanisms

In this section we will briefly discuss some of the most common theoretical ideas that have
been proposed in the part years as possible jet launching mechanisms.

2.4.1 The Ergosphere and the Blandford-Znajek Mech-
anism

Inside the region defined by the static limit (Equation (2.72])) and the outer event horizon it is
possible for a particle to have negative energy relative to an observer at infinity. This region
is called the ergosphere and apart from the inescapable rotation from the frame dragging,
Penrose (1969)) and Penrose (2002)) suggested that it can be used in order to extract energy
from the black hole. Piran, Shaham, and Katz (1975), Schnittman (2014)), and Berti, Brito,
and Cardoso (2015) also suggested similar methods of energy extraction based on Penrose’s
original idea.

For this process, a particle needs to be in a retrograde orbit despite the inescapable
frame dragging of the rotating black hole. Assume that for some reason this particle decays
into two different particles, one with negative energy and angular momentum that orbits
in a retrograde manner and that subsequently falls in the black hole and a second particle
with positive energy and angular momentum that manages to escape outside the static limit
surface. Since the capture particle had negative energy and angular momentum, it will
reduce the energy of the black hole while the surviving particle will exit with more energy
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that the initial particle had. As seen by an observer at infinity, this process extracts energy
and angular momentum from the black hole. With this mechanism, the black hole can be
(hypothetically) used as an energy reservoir.

Besides the obvious mechanical difficulties of applying such an idea in actual black holes,
there are also physical ones. To create the Penrose process the decaying particles must split
into two fragments, one of which must be rotating counter to the black hole and thus having
negative energy. If we do the necessary calculations, we get that a particle right in the
marginally stable orbit of an extreme Kerr black hole with a = 1 requires a velocity jump
of ¢/2 just to reduce its energy to zero. To go to actual negative energy trajectories the
required velocity jump must be even larger, thus rendering this process implausible within
any astrophysical context.

There is however, a similar mechanism that results in energy extraction from the black
hole but it involves the existence of magnetic fields that threads the ergosphere. In this case,
rotational energy can be transferred to the magnetic field and then escape in the form of
Poynting flux. Blandford and Znajek (1977) created a theory that described a force-free,
axisymmetric magnetosphere in equilibrium around a rotating black hole. The magnetic
field is created by currents the flow along the rotation of the accretion disk. Solving the
Maxwell equations in a relativistic environment (see Chapter , ignoring the inertia of the
fluid, they found that the toroidal vector potential Ay is a possible choice. For that, they
used a boundary condition in the event horizon for which the electromagnetic field remains
finite as seen by an observer crossing the horizon in free fall. They calculated the total radial
energy flow as it is observed at infinity as

2 2
M a \2 B
L ~ 10%ergs™! ( ) . 2.92
e (1061\4@) e/ \ 107G (2.92)

This is in the order of magnitude of the energy emitted by AGN (1042 — 1045).

Thorne, Price, and MacDonald (1986]) in their book The Membrane Paradigm, present
the idea that the event horizon is replaced by a rotating conductor of finite resistivity and
other well defined properties. Based on that, they were able to study the physics of black
holes using just classical physics. Punsly and Coroniti [1990b; Punsly and Coroniti [1990a
expressed a criticism over the BZ mechanism based on the idea of the Membrane Paradigm.
According to their work, the solution derived describes two different flows, one outflow and
one inflow towards the black hole. For the ingoing solution the wind passes through all
the MHD characteristic surfaces before it reaches the event horizon which means that it is
causally disconnected from the outflowing jet.

Komissarov (2001) and Komissarov (2004) studied the BZ mechanism using GRMHD in
the force-free regime in order to study the validity of the BZ mechanism. For the case of
an initial split-monopole magnetic field and low values of Kerr parameter, the system ends
up in a stable state the resembles the one described in Blandford and Znajek (1977) which
was derived as a perturbed solution on the Schwarzschild black hole. The simulations also
show that the magnetic field lines that thread the ergosphere are being forced into rotating
with the black hole because of frame dragging, while in the Membrane Paradigm, only the
ones that cross the horizon are rotating. In this regard, the BZ mechanism is much closer to
the Penrose process since they both make use of the ergosphere and its unavoidable frame
dragging.
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2.4.2 Can the Blandford-Znajek Mechanism Explain
All Jets?

The “radio loud/radio quiet dichotomy” in AGN is one of the phenomena wherein the black
hole spin plays a strong role. The ratio of the luminosity in the radio and the optical
bands is 103 — 10* times larger in the radio-loud source than in the radio-quiet ones when
compared at constant optical luminosity (Sikora, Stawarz, and Lasota, 2007). A possible
explanation for this would be that the jet is driven by some mechanism similar to the BZ
mechanism, if we assume that the jets from the radio loud AGN host black holes with large
Kerr parameter values. Unfortunately, the quadratic dependence of the BZ luminosity from
the spin parameter (see Equation ) is not enough to explain the disparity in Lyadio/ Lopt-
Hoever, the BZ mechanism is just a first order approximation. Tchekhovskoy, Narayan, and
McKinney (2010) did a wide survey of simulation with different spin parameters and found
that the dependence of the luminosity on black hole spin steepens as the Kerr parameter
reaches its limit at ¢ = 1. In more detail,

(5r7) +o o) +9(557)

where @y is the total poloidal magnetic flux in the jet, k is a constant that depends on
the geometry of the magnetic field and 7y is the radius of the event horizon. With these
additional terms, the variation of the Kerr parameter is enough to explain the difference in
the luminosity of the radio loud and quiet AGN.

There is also a discussion on whether the configuration of the magnetosphere around
the black hole can affect the energy output of the jet. In a closed magnetosphere, the field
lines that thread the black hole bend towards the disk while in an open magnetosphere
they connect at infinity. A closed magnetosphere can turn into an open one when there is
enough shear developed in the rotating system of black hole and accretion disk. Naturally,
the highest amount of shear is expected in the case fast spinning black hole in a retrograde
system where the black hole and the accretion disk are rotating in opposite directions. This
means that retrograde systems should be more likely to launch jets with the BZ mechanism
(Garofalo, [2009; Garofalo, Evans, and Sambruna, 2010). This is based on the idea that the
magnetic flux can be trapped by the black hole after it crosses its [SCO as it is advected from
the accretion disk (Reynolds, Garofalo, and Begelman, [2006). The result is the formation of
a “gap”, which is more prominent in the retrograde system because their ISCO is in larger
radius. Tchekhovskoy and McKinney (2012)) simulated black hole-accretion disk systems
with spin parameters of £0.9 and they found that the energy extracted from the prograde
system is more efficient than that from the retrograde one. They also estimated that ~ 80%
of the total energy outflow is coming from the BZ-powered jet and they found no evidence
of the magnetic flux-free gap reported in previous works.

L~ k@2, : (2.93)
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black hole

FIGURE 2.6: left: Two cases of accretion disk and the effect of magnetorotational instability.
left: Accretion of gas towards a black hole from a companion star that fills exactly its Roche lobe
resulting in accretion through the Lagrange point L1 (upper) and from a companion whose size is
much smaller that its Roche lobe (lower). right: The effect of the MRI on the poloidal magnetic
field lines (upper) and on the angular momentum.
Image credit: Shakura and Sunyaev (1973)) and Hawley and Balbus (1991)

2.4.3 The Accretion Disk Model

In order to further investigate the launching of jets we need to address the accretion disk
first. The idea of the formation of accretion disks started from the study of binary systems
and the flow of gas from one star to the other. During the decades of 1960 and 1970 a
model started forming that included the creation of an accretion disk with a collapsed star
as central object (Gorbatskii, |1965; Prendergast and Burbidge, |1968; Pringle and Rees, [1972;
Shakura, 1973)).

In a binary system composed of a black hole and a companion star, if the companion
starts ejecting material outwards, part of it will be captured in the strong gravitational field
of the black hole. In the rare case where the material flows radially towards the black hole, it
will end up crossing the horizon into the black hole without forming any other structures. In
the most common case though that the material has some angular momentum, it will start
losing it following a spiral trajectory around the black hole. If at some point the centrifugal
force starts balancing the gravitational pull, the material will begin rotating in circular orbits
forming an accretion disk around the black hole.

Because of the conservation of angular momentum the disk that is formed is dynamically
stable, with the material staying in its circular orbits. Unless, there is a way to transfer
angular momentum from the inner layers of the disk to the outer ones. In Shakura and
Sunyaev (1973), the authors present a full theory for the structure of an accretion disk
where the angular momentum transport depends on the values of an o parameter that
characterizes the viscosity of the disk. They parameterized the molecular viscosity with «
resulting in
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v = aHcs, (2.94)

where v is the kinematic viscosity, H is the scale high of the disk and c¢s is the sound
speed. Even though the exact nature of the o parameter is even nowadays not completely
understood, Shakura and Sunyaev (1973 realized that this was not necessary to describe
the structure of the disk. However, they suggested that the stress between different layers
of a magnetized disk along with the generated turbulence are enough to transfer angular
momentum outwards.

In 1991, Balbus and Hawley (1991)) published a well constructed theory regarding the
existence of a shear instability in accretion disks which was already under investigation
but was not yet established as an important process in astrophysics (Chandrasekhar, 1960;
Acheson and Hide, 1973). The basic idea was that in a differential rotating accretion disk
that is threaded by a magnetic field with a poloidal component, if a volume element is moving
outwards the field is trying to enforce rigid rotation on it resulting in the element rotating
faster than it would do in its new radial position. The faster rotation is accompanied by
stronger centrifugal force that drives the element even more outwards further developing the
instability.

The nature of the instability resulted in the name magnetorotational instability (MRI).
A non-linear increase of the instability can result in the development of turbulent viscosity
(Hawley and Balbus, [1991). The characteristic length of turbulent viscosity is the scale of
the turbulent eddies which in general is larger than the particle mean free path which is the
characteristic scale of molecular viscosity. This means that the turbulent viscosity resulting
from the MRI is a much better candidate for the a viscosity of Shakura and Sunyaev (1973).

2.4.4 The Blandford-Payne Mechanism

In 1982, Blandford and Payne (1982)) proposed an idea for the launching of outflows from
the surface of accretion disks. In their seminal work, they theorized that a wind/jet can
be launched from the surface of an rotating accretion disk that is threaded by a magnetic
field with the help of the centrifugal force. Alfvén’s theorem dictates that in the regime of
ideal MHD the fluid elements and the magnetic field lines will be coupled, meaning that any
motion of the fluid with drag along the magnetic field as well, and vice versa.

If we consider the case of a thin accretion disk rotating around a central massive object
(not necessarily a black hole) that is threaded by a magnetic field with strong poloidal
components, as the disk evolves, the magnetic field lines will start rotating rigidly with the
disk. A mechanical analog of this is the rotation of an inclined wire loaded with beads. As
the wire (or in our case the magnetic field line) rotates, the beads (or fluid elements) rotate
along with it at the same angular velocity of the disk that depends on the distance from
the central object and source of gravitational forces. The centrifugal force which appears
will push the beads that have large distance from the central object (and as a result are less
affected by gravity) along the wire accelerating them until they fly outwards.

We consider a point inside the disk with distance Ry from the central object (at (0,0)
in cylindrical coordinates (R, z)). We can express the above description mathematically by
simply comparing the gravitational potential with a “potential” from the centrifugal force.
This results in the total potential of a volume element at (Rp, 2)
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FIGURE 2.7: Isopotential surfaces of potential ® for the detrimental case of G = M = Ry = 1 for

the “bead on a wire” model that is rotating with Keplerian angular velocity and is released from

the (Rp,z) = (1,0) point (cylindrical coordinates). The thick solid line marks the marginally

stable potential, while the area above it includes the values of the potential where the volume

element at in staying in the disk surface. The stable region also has higher potential values. The

dotted line at R = /3 is the asymptotic limit of the marginally stable potential. The angle
between its right part and the disk surface at the equatorial plane is 60°.
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FIGURE 2.8: left: Schematic representation of the magnetic tower jet. right: Evolved state of
magnetic tower simulation. The thick red lines indicate magnetic field lines anchored to the inner
part of the disk, while thin white lines indicate the ones anchored in the outer part. The green
lines indicate streamlines of the velocity vector. The colorbar shows the total velocity.
Image credit: Kato, Mineshige, and Shibata
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2
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2 RO (R2 + 2’2)1/2

The force that acts on the volume element when it gets launched from the disk surface
is given by the gradient of the potential along the direction of the field line. If &g
is the unity vector along the field line, the total force is Fiot = —0®/0&q. The force
perpendicular to this direction is always zero since we work under the assumption that the
the field line follows a rigid rotation. In Figure [2.7] we plot the surfaces of constant potential
O for G = M = Ry = 1. If the unity vector points toward one of the two “unstable”
regions, the volume element will either get accreted towards the central object at (0,0) (left
hand side unstable region) or get launched from the disk and continue as part of the outflow
(right hand side unstable region). The central stable region is where volume element is still
bound to the disk surface. The angle between the disk and the right part of the marginally
stable surface is 60°, which means that if the magnetic field lines have an angle with the disk
surface of less than 60° inclined toward the outer part of the disk, the fluid elements from
the disk surface can become unstable and be launched in the form of an outflow.

2.4.5 Magnetic Towers

The idea of the “magnetic tower” jet was introduced first by Lynden-Bell and Boily (1994)
and was followed up by Lynden-Bell (1996)), Lynden-Bell (2003)), and Lynden-Bell (2006))
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In its most basic formulation, it includes an accretion disk that is threaded by a poloidal
field whose field lines are forming loops with two footpoints anchored to the surface of
the disk at different radii. The disk is surrounded by a corona in the force-free state.
The differential rotation of the disk induces a twist in the field lines that depends on the
difference in the angular velocity between the footpoints. This results in the development of
a toroidal magnetic component. As the disk rotates, the magnetic pressure from the toroidal
field increases, pushing the poloidal field lines outwards. This continues until there is an
equilibrium between the magnetic pressure inside the loops and the external pressure. After
that point the lateral expansion of the field lines stops and they expand only vertically in
the form of a tower (see Figure ; left). The height of the magnetic tower increases as the
disk rotates at an almost constant rate.

Kato, Hayashi, and Matsumoto (2004) performed axisymmetric resistive MHD simula-
tions of a magnetically threaded accretion disk rotating around a neutron star. They find
the same magnetic loops that eventually collimate around the central axis when the pressure
equilibrium is reached. The velocity of the expansion of the tower is up to 0.1c. They con-
tinued their investigation of magnetic towers in Kato, Mineshige, and Shibata (2004) where
they moved to 3D simulations and they studied the effect of the ambient pressure in the
development of the jet. If the pressure becomes too large then the whole effect is suppressed
and even if the jet gets launched, its ordered structure collapses into a quasi-steady state
with a complex nature (see Figure 2.8} right).
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Chapter 3

Numerical Details and Test
Simulations

For our investigation of the jet launching mechanisms we will use the 3D GRMHD code
HARM3D (Gammie, McKinney, and Téth, 2003; Noble et al., 2006; Noble, Krolik, and Hawley,
2009). The code was developed by Scott C. Noble and was based on the original HARM
code (Gammie, McKinney, and T6th, 2003 Noble et al., [2006). In this chapter I will briefly
describe the numerical methods used by HARM3D and rHARM3D and then I will show the special
grid we used for the simulations, the boundary and initial conditions, floor values as well as
the implementation of diffusivity itself. The chapter ends with some numerical tests that
show the effect of diffusivity and confirm its correct implementation. 1

3.1 Numerical Details of HARM3D and rHARM3D

HARM3D uses a conservative scheme to solve the equation of ideal GRMHD), with the option
to switch off the magnetic field for pure hydrodynamic simulations. There is also a large
variation of extra physical mechanisms that can be included in simulations including the use
of kinematic viscosity, radiative transfer (Noble et al., [2011)) and even dynamical spacetime
for simulating systems of binary black holes (Bowen et al., [2017; Bowen et al., 2018; Bowen
et al.; 2019)). In HARM3D the equations are written following the general form

oU(P)  OF'(P)
T T oy + S(P). (3.1)

The primitive variables P consist of the fluid density and energy density, the three compo-
nents of the velocity and the three components of the magnetic, in a set of 8 variables that
are defined in the initial condition of the simulation. The fluxes F* (P), the set of conserved
variables U (P) and their source terms S (P) are calculated from the primitive variables and
then evolved following Equation (3.1) which describes the Godunov conservative scheme
(Komissarov, [1999). To complete the evolution we need to return from the conserved vari-
able to the primitive ones. This is not as easy as the forward transformation. Noble et al.
(2006)) constructed several inversion schemes for the original HARM code which they also exist
in HARM3D. Del Zanna, Bucciantini, and Londrillo (2003)) developed similar schemers for their
special relativistic MHD code. With these schemes the conserved variables are transformed

IThe contents of this chapter are adapted from Vourellis et al. (2019). The paper is published in the
Astrophysical Journal. The author of the thesis run the simulations, analyzed the result and wrote the text
for both the published paper and this chapter.
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and manipulated in the more numerically stable form of algebraic equations. In the end a
Newton-Raphson method is called to solve the equations and return the primitive variables.

We introduced new physics in the code extending it from the ideal into the resistive MHD
regime by implementing magnetic diffusivity. Because of the non-zero diffusivity, the electric
field is not vanishing anymore (Equation requiring a new formulation of the equations.
During this, we had to increase the number of primitive (and conservative) variables from 8
to 11 to include the three components of the electric field.

In Section we presented the basic equation of (resistive) GRMHD. For implementing
them into the code they become

1

\/_—gaﬂ (vV=gpu") =0, (3.2a)
O (V=9T;) + 0 (V=9T,,) = V=TT ). (3.2b)

expressing the conservation of mass and energy-momentum respectively. The above equa-
tions do not include the electric field and magnetic field. In the case of ideal GRMHD the
electric field can be calculated as the cross product of the velocity and the magnetic field
(Ohm’s law).

To calculate the evolution of the magnetic and electric field we start by taking the
temporal and spatial projections separately in Equation . This results in the derivation
of the divergence condition (([2.1b])) and the time evolution for the magnetic field

y7120, (/?B) + V x (aE + B x B) =0, (3.3)

along with Gauss’ law for the electric field ((2.1a])) and the time evolution of the electric
field

7120, (v/?E) =V x (aB = B x E) = — (aJ — ¢B) (3.4)

where v is the determinant of the spatial metric as it is defined in Equation , a and 8

are the scalar lapse and shift vector and J, E and B are the spatial vectors of the electric

current, electric and magnetic field as they are measured by the normal observer respectively.
From Ohm’s law as it is shown in Equation (2.89)) we can get

Ftu, = nIt 4+ 9 (IMuy,) u* + EF**u,,. (3.5)

Blackman and Field (1993) derived this equation for resistive fluid only but the addition
of the dynamo term is straightforward. The source term IYu, = qq is the electric charge
density as measured in the fluid frame (Komissarov, 2007)). Solving for time and spatial
components separately and using Equation to replace the electric current we get

Y20, (yV/2E) = V x (aB ~ B x E) + (av — B) g
:—a]—'[E—FvXB—(E‘U)v]/n—'_ (3'6)
+éal [B-vx E—(B-v)v] /1.



3.1. Numerical Details of HARM3D and rHARM3D 59

We discretize the time evolution of the electric field and after some “minor” algebraic calcu-
lations we get

. r2—1) ’ ;0 (QFy)
E' 4T 2( - ZJk~‘B ~ i
itl+e 77+F] Rl i
S AT
I'B" — B
+¢ l Tt 1 ( Uk)]
¢ fie*5;Qp, + (T? — 1) B — (#7 B;) o' (3.7)
'+
B QFEijkﬁjBk
I'+1
+ e {rﬁQkﬁk + kaT)k}
T+ )T+ |’
where
Q' =E'+ At [— (avi — 51) q+ eijkaj (Osz — eklmﬁlEmﬂ , (3.8a)
g =~"""20 (/2 EF), (3.8b)
o
= (3.8¢)

For a extensive derivation of Equation please refer to Appendix .

Unfortunately, the electric field evolution equation shows signs of stiffness, meaning that
for certain intervals the solution becomes unstable resulting in unphysically high numbers.
The non-stiff part of the electric field, that does not include any diffusive terms, is calculated
separately as Q°. In Equation the electric field E' represent the total electric field
as it was calculated in the previous time step. For the stiff part we implemented the same
solver as the one in Qian et al. (2017), where an additional fixed-point iteration method
is used inside the Newton-Raphson method that solves the final algebraic equations. The
fixed-point iteration continues until the values of the electric field have converged with the
desired accuracy.

The parallelization of the code gave us a very big advantage in comparison with our
previous works (Qian et al., [2017; Qian, Fendt, and Vourellis, 2018)) where our simulations
where restricted to serial runs. The additional calculations from the introduction of resistiv-
ity and especially the extra loop for the calculation of the electric field, encumber the speed
of the code. Using the parallel capabilities of rHARM3D we were able to run the simulations
within the time frame of a week (depending on the lifetime of the simulation). The sim-
ulations shown in the following chapters were performed using the MPI (Message Passing
Interface)-parallel version of the code mainly in MPIA’s ISAAC cluster but also in the MPG’s
COBRA and DRACO clusters.

3.1.1 Numerical Grid

Depending on our problem setup, we apply a different numerical grid. The original grid of
HARM applying modified Kerr-Schild coordinates is used for our test simulations of diffusivity
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and for the dynamo simulations in Chapter [6]

For our resistive GRMHD simulations we decided to construct a stretched grid in order
to shift the outer boundary condition as far out as possible. This grid is an extension of the
original HARM grid and is based on the hyper-logarithmic grid of Tchekhovskoy, McKinney,
and Narayan (2009). With that we may concentrate cells close to the black hole in the
radial direction and concentrate cells close to the equatorial plane or the polar axis in the
polar direction, allowing us to resolve the turbulent disk and the polar jet at the same time.
Furthermore, with such a scheme the outer boundary is causally disconnected from the inner
simulated area of interest close to the black hole or the disk.

In the hyper-logarithmic grid the radial coordinate is split into two parts. The first part
follows a logarithmic scaling as in the original HARM code (Gammie, McKinney, and Téth,
2003). Beyond a transition radius Ry, the grid becomes substantially more scarce, up to the
outer radius Royt.

Physical and numerical radial coordinates translate as

1
r(z1) = exp 571+ 4H (21— 71, ), (3.9)

where 71 is the uniformly spaced numerical radial coordinate and z1,, is the transition radius
(corresponding to Ryy). The function H = H(x; — x1,,) is a step function that is equal to
unity for x1 > x1,, and vanishes otherwise. In Figure we show the relation between the
numerical and the physical radial coordinates.

The physical and numerical polar coordinates are connected by

0(332) - Hstart + m291ength - hslope sin(47rx2), (310)

where 6 and x9 are the physical and numerical polar coordinates, respectively, while Ogart
denotes the starting angle and Gengtn = ™ — 205¢ar¢ the angular length of the coordinate in
radians. The factor hgope governs how many grid cells are focused toward the equatorial
plane and toward the symmetry axis. We note that these coordinates are slightly different
from the original HARM code, where the choice of focusing coordinates and the increase of
resolution for the polar coordinate are only possible toward the equatorial plane.

Our typical maximum resolution in the polar coordinate is Af = 0.00625 along the polar
axis and in the equatorial plane, while the minimum resolution is Af = 0.025 at 45°. The
radial coordinate is best resolved close to the horizon, where Ar,—o = 0.02, and is radially
decreasing with Ar,—19 = 0.1, Ar,—50 = 0.5, and Ar,—190 = 1.

3.1.2 Boundary Conditions

For our simulations we use outflow boundary conditions in the inner and outer radial bound-
ary. The values of the primitive variables are copied from the boundary cells to the ghost
cells. At the same time we make sure that there is no inflow from the boundaries by checking
that the velocity is pointing outward at each boundary cell. As an extra measure in the inner
boundary, we make sure we have 10 cells of our grid inside the black hole event horizon in
order to prevent numerical effects from propagating outside of it.

Furthermore, one of the reasons we modified our numerical grid into the hyper-logarithmic
version we described before is because we wanted to have the outer boundary as far away



3.1. Numerical Details of HARM3D and rHARM3D 61

104 4
—— r=exp(x])

—— r=exp(x+(x— xt,ﬁ)4)

]033

102 5

Physical radial coordinate (r)
S
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Numerical radial coordinate (x;)

FIGURE 3.1: Interrelation between the numerical and physical radial coordinates for the stretched
grid. Up to a transition radius (z, Rer), we use a simple logarithmic grid (blue), beyond which
the grid transits into a hyper-logarithmic scaling (red).

from the disk as possible. Before adopting the hyper-logarithmic grid, we had noticed a
collimation effect in the magnetic field lines that we had deemed as artificial (see Appendix
B in Qian, Fendt, and Vourellis (2018))). By selecting an outer radius of Ryy = 10000, we
make sure that the outer boundary stays causally disconnected from the disk. In the axial
boundary we impose axisymmetric boundary conditions where the vector values are being
reflected along the small cutout in both axes.

3.1.3 Initial Conditions

The initial disk density distribution is described by a nonrelativistic vertical equilibrium
profile, such as applied in Sheikhnezami et al. (2012)),

1/(T—1)
p(r,0) = [1" <sm9+e T 1)] : (3.11)

r €2

slightly modified to fit into our code. Here 1y, is the initial inner disk and ¢ = H/r is
the initial disk aspect ratio as is defined by the vertical equilibrium of a disk with a local
pressure scale height H(r). The pressure and internal energy are given by the polytropic
equation of state p = Kp!' and Equation , where K is the polytropic constant. For the
polytropic exponent we will use different values for different simulations as specified in the
sections below.
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Around the disk we prescribe an initial corona. For the choice of a polytropic index
of I' = 4/3, the disk has a finite outer radius much smaller than the outer radius of the
stretched grid. Furthermore, the upper and lower disk surfaces do not follow lines of constant
polar angle as implied by Eq. . The initial coronal density and pressure are given by

Pcor X Tl/(l—F)7 Pcor = corpgor- (3'12)
The coronal temperature is chosen to be much higher than the disk temperature, Kqor >> K.
This implies a density jump between disk and corona but a pressure equilibrium along the
disk surface. More specifically, for our simulation we chose K = 0.001 for the disk initial
condition and K = 1 for the initial corona. The corona collapses instantly the moment the
simulation starts, and part of it is also expelled by the initial ejections from the disk, meaning
that the values are quickly replaced by the floor values of the simulation (see Sect. .
However, the polytropic equation P = K p' is not enforced in any step of the code except
the initial condition. The code uses Equation to connect pressure and internal energy,
which means that entropy and temperature are free to change.

The disk is given an initial orbital velocity following Paczynsky and Wiita (1980)),

10 = 32— — ) 3.13
" " (T—RPW ’ ( )

where Rpyw is a constant of choice, here equal to the gravitational radius R. This approxi-
mation is applied in the ¢-component of the fluid velocity u?.

In the resistive GRMHD simulations the disk is initially threaded by a large-scale poloidal
magnetic field, implemented via the magnetic vector potential Ay following B = V x Ag.
In most cases we use the inclined field profile suggested by Zanni et al., 2007,

m5/4

Ag(r,0) o< (rsing)3/4

(m2 + tan 2 9)5/8‘ 1)

The parameter m determines the initial inclination of the field, which plays an important
role for the magnetocentrifugal launching of disk winds (Blandford and Payne, 1982). The
magnetic field strength is then normalized by choice of the plasma-3 = pgas/Pmagn-

3.1.4 The Magnetic Diffusivity

The simulations presented in this work apply a scalar function for the magnetic diffusivity
that is constant in time. The diffusivity is assumed to be of turbulent nature, thus much
larger than the microscopic resistivity, and thought to be generated by the magnetorotational
instability (MRI; Balbus and Hawley |1991). In general, the magnetic diffusivity distribution
is chosen such that it resembles a magnetized diffusive disk within an ideal-MHD wind and
jet area.

We apply a magnetic diffusivity profile, as it is typically used in jet-launching simulations
(see, e.g. Zanni et al. [2007; Sheikhnezami et al. [2012; Qian, Fendt, and Vourellis 2018), i.e.
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FI1GURE 3.3: Distribution of the magnetic diffusivity. Along the equatorial plane, the diffusivity
saturates to a constant value 79, while in the polar angular direction it follows a Gaussian profile.
For r < 3, the profile drops smoothly until it meets the event horizon.

a Gaussian profile along the polar angle with a maximum at the initial disk midplane,

n(r,0) = mnoexp [—2 <a>2] : (3.15)

Qn

where 1) is the level of diffusivity along the equatorial plane, & = /2 — 6 is the angle toward
the disk midplane and o, = arctan(y x €) is the angle that measures the scale height of the
diffusivity profile. The parameter y compares the scale height of the diffusivity profile with
the disk pressure scale height. This profile — as artificial as it might seem — focuses the high
diffusivity values in the equatorial plane, allowing for a highly resistive material and for a
lowly resistive to asymptotically ideal-MHD disk wind and jet. Since we take resistivity as a
result of turbulence, we expect higher diffusivity in the highly turbulent areas of the interior
of the disk.

Initially, we also considered an anisotropic resistivity profile with different values of 7
affecting the poloidal and toroidal components of the magnetic field. According to Ferreira
(1997) such a profile would help stabilize the disk evolution reaching a stationary state.
In contrast to Zanni et al. 2007; Murphy, Ferreira, and Zanni 2010, and Sheikhnezami et
al. (2012)), who applied an anisotropic diffusivity in their simulations, in our case the disk
loses its mass rather quickly, mainly due to the disk wind. This rapid mass loss is actually
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minimizing the stabilization effect by an anisotropic magnetic diffusivity. Furthermore, the
initial ejections created by the absence of equilibrium between the disk and the black hole
delay the reach of a stationary condition even more. Based on that, we decided that the
introduction of anisotropic diffusivity would not contribute much in the stability of the the
disk.

When testing the performance of our code, we found that the simulations become more
stable when we apply a low background diffusivity (1000 times lower than in the disk)
along the rotational axis. We thus apply an exponentially decreasing profile along the axial
boundary within six grid cells. As this axial diffusivity is confined within an opening angle
of < 3.5°, it does not affect the physics of the jet launching. We also apply an exponential
decrease in the radial diffusivity profile from radius » = 3 toward the horizon, resulting in a
smooth transition from the high disk diffusivity to the ideal-MHD black hole environment.
Figure [3.3] shows the 2D distribution, as well as the radial and angular profiles of 7.

For the magnitude of the magnetic diffusivity nyg we apply a range of values, ng =
10710, ..1072 (in code units). These values correspond to some kind of standard param-
eters applied in the literature in diffusive MHD simulation in GR (Bucciantini and Del
Zanna, 2013; Bugli, Del Zanna, and Bucciantini, 2014; Qian et al., [2017; Qian, Fendt, and
Vourellis, 2018)), in nonrelativistic simulations (Casse and Keppens, [2002; Zanni et al., 2007}
Sheikhnezami et al., [2012; Stepanovs and Fendt, 2014), but have been modeled concerning
strength and spatial distribution also by direct simulations, e.g. by Gressel (2010).

Magnetic diffusivity also affects the time step of the simulations. Since the code is solving
the GRMHD equations using an explicit scheme, the time step is limited by the characteristic
velocit of the magnetized fluid. In the additional case of resistive MHD, the diffusive time
scale must be taken into consideration. For a grid size Az the diffusive time step At, must
be

(Az)*

P
This means that the level of magnetic diffusion we add in the simulation will also affect its
computational cost.

Here we emphasize another important impact of physical resistivity: It suppresses the
MRI (Fleming, Stone, and Hawley, 2000; Longaretti and Lesur, 2010)). Overall, we do not
expect to detect any MRI being resolved in our disk structure. As discussed in Qian et al.
(2017), the diffusion rate will be of order k5 (Fleming, Stone, and Hawley, 2000), with the
wavenumber k. From Balbus and Hawley (1991) we know that the MRI grows only in a
certain range of wavenumbers k € [0, kpax], in the linear MRI regime — depending on whether
the numerical grid may resolve certain wavelengths and whether certain wavelengths will fit
into the the disk pressure scale height. Furthermore, there exists a wavenumber kymry for
which the MRI growth rate reaches a maximum (see Hawley and Balbus 1992 for the case
of a Keplerian disk). A certain number of MRI modes can therefore be damped out when
kl%/[RIn is comparable to the maximum growth rate of MRI. Moreover, for a large enough 7,
it is even possible to damp out most of the MRI modes in the linear evolution of MRI.

In Qian et al. (2017) a thorough investigation of resistive effects on the accretion rate of
an initial Fishbone & Moncrief (Fishbone and Moncrief, [1976)) torus was presented. They
could show that for this setup for n < 1073 the MRI seemed to be completely damped, while
for lower 1 the onset of the MRI and thus of massive accretion was substantially delayed.

Aty <

(3.16)
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This result was claimed to be consistent with Longaretti and Lesur (2010), demonstrating
that the growth rate of the MRI substantially decreases with 1/7n beyond a critical diffusivity.

In addition to the point that we do not expect the MRI to play a role in our simulations
owing to the disk resistivity, we also note that we consider a thin disk that is thread by a
strong magnetic field. Thus, angular momentum transport is dominated by the torque of
the magnetic lever arm.

Other consequences of considering a magnetic diffusivity are physical reconnection of the
magnetic field and also physical ohmic heating. Both effects are present in our simulations,
and we will discuss their impact on the accretion-ejection system accordingly.

3.1.5 The Density Floor Model

As typical for any MHD code, rHARM3D cannot work in vacuum. This is a problem also for
relativistic MHD codes, in particular for their inversion schemes, so usually a floor model is
applied to circumvent numerical problems when the initial disk corona collapses.

Depending on the model setup, we apply a different floor model for the density and
pressure. Note that in particular in our approach that applies a large-scale initial disk
magnetic flux, we potentially deal with a high magnetization o B2/p and / or low plasma-
beta oc P/B? at large radii. Thus, for simulations on a large grid, we choose a floor profile
following a broken power law. For the density we apply

ey o () ()], 317

To 7o

while the internal energy follows

e () o l(r)rl/(lrl) n <T>FQ/(1E)] , (3.18)

To To

with I'y = 4/3 and I'y = 2, and where rg marks the transition radius between the two power
laws with typically 79 = 10 Ry (see Figure . With that we implement higher floor values
for large radii in order to avoid a too high magnetization. Close to the black hole we apply
the same floor profile as in the original HARM code.

3.1.6 Characteristic Quantities of the Simulations

Here we define a number of physical quantities, that will later be used to characterize the
evolution in different simulations. The mass contained in a disk-shaped area between radii
r1 and 73 and between surfaces of constant angle #; and 6 is calculated as

My = 27r/ 2/ J—g(r,0) dodr, (3.19)

where \/—g is the square root of the determinant of the metric. The mass flux through a
sphere of radius R between angles (61, 6s) is

VI(R) = 2n / " (R.0)u (R.0) \/—g(R.0) do. (3.20)

01



3.1. Numerical Details of HARM3D and rHARM3D

67

1073 3

Density profile

PAir
_______ (r/l"())_l/(r' -1

(r/ro)—l/(n— 1)

10° 5
10_1-5

1072 3

10_4-5

Internal energy profile

1073 3

10_6-5

1077

Ufr
S (r/ro)—l"l/(ﬂ -1

............. (r/ro)—(rz)/(rz -1

0.0

25 5.0 75 10.0 12,5 15.0 17.5 20.0
Radius

FIGURE 3.4: Floor model used in the science simulations. The radial density (top) and internal

energy (bottom) distributions are calculated as broken power laws.

Similarly, we calculate the mass flux in 6-direction considering the u’ component and the

area element

\/—9(R,0) dédr. This is in particular used to calculate the disk wind mass

flux from the disk surface, considering two surfaces with a constant opening angle ® that is
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chosen to be similar to the initial disk density distribution. We thus obtain

M(®) = 2r /

1

T2

p(r,®)u’(r,®) \/—g(r,®) dr. (3.21)
The Poynting flux per solid angle is defined as
Fem(r,0) = =17
S {(b2 + €2> <urut + ;g{f) —b'by —e"ey (3.22)

—uge,bs (urefw + uterﬁw) } :
By integration along the polar angle we obtain the flux through a sphere of radius R,

, ™
Erm(R) = 27r/0 /—g(R.0) Frani(R, 0) do. (3.23)
The corresponding electromagnetic flux is
Fam(r,0) = —T7
= — {(b2 +e?) (uew + ;Qf) — b — ey (3.24)
—ugebs (ueetﬁw + ut€9ﬁv5) } .
By integration along the radius, we obtain the flux through a surface of constant angle ©,

Epn(©) = 27 / :2 J—g(r.©) Foni(r, ®) dr. (3.25)

1/2
The poloidal Alfvén Mach number is My , = [hpu%Bf) 2} / (see also Qian, Fendt, and

Vourellis 2018), where h =T /(T —1)(P/p) + 1 is the specific enthalpy of the fluid. Alfvénic
Mach numbers My , < 1 imply that the magnetic energy is dominating the kinetic energy of
the fluid and that the dynamics of the outflow is most likely governed by the strong magnetic
field in that area.

3.2 Test Simulations Considering Magnetic
Diffusivity

In order to verify the implementation of magnetic diffusivity into HARM3D, we have performed
two test simulations. Our tests are similar to those applied by Qian et al. (2017). In the
first test we follow the diffusion of a parallel magnetic field in a rectangular box through
for different strength of the magnetic diffusivity and compare it with the time-dependent
analytic solution to the diffusion equation. The second test problem is a classic shock tube
that allows us also to check how magnetic diffusivity affects the shock-capturing abilities of
the code.
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FiGure 3.5: Diffusive decay of a vertical magnetic field. Evolution of the #-component of the

magnetic field for simulation runs applying four values for the magnetic diffusivity, n = 10712

(top left), n = 10™* (top right), n = 10~3 (bottom left), and box2 with = 10~2 (bottom right).

Each color represents a different time step ¢ in the simulation. Solid lines show simulation results,
while dashed lines show the analytical solution.

3.2.1 Diffusive Decay of a Vertical Field

The setup for the simulations treating the diffusive decay of a vertical field considers a hy-
drostatic gas distribution located in an almost rectangular box that is threaded by a weak
magnetic field. A uniform magnetic diffusivity is applied for the whole box and is the only
parameter affecting the magnetic field evolution. Applying different levels of magnetic diffu-
sivity, we compare the simulated evolution of the magnetic field with the analytic solution.
As in Qian et al. (2017), we find an almost perfect match.

3.2.1.1 Numerical Setup

The box simulations are performed in a 2562 grid in a small sector of our domain space,
along the equatorial plane, extending by Ar in radius and A# in latitude. By choosing
a large-enough radius rg to place the box (Ar << rg), we establish that its shape is as
close as possible to a perfect square, with a side length r € [rg — Ar/2,rg + Ar/2], and
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a latitude A@ that corresponds to a z-direction side Az, where z = rsin(n/2 —6) and
§en/2—N00/2,m/2+ A/2].

A relativistic gas is applied in the area of the box with a polytropic index of v = 4/3.
The gas is in hydrostatic equilibrium with radial profiles of density p(r) = C' r® and pressure
p(r) =8 p?6, where « = 1/(1 —~vqg), 8 =1/(1 —«) and C denotes a proper normalization
constant. This profile balances the gravitational force at large distances from the black
hole (where GR effects are negligible). The magnetic field is uniform in #-direction. In the
r-direction it follows a (time-dependant) Gaussian profile

1 _(T—T0)2
Bg(r,f)—\/?exp( ~ > (3.26)

dnt

We apply a very high plasma-3, g = 108 in order to establish a weak magnetic field that
does not initiate any advection of magnetic flux. The time variable £ = ty + ¢ is connected
with the code running time ¢ with the parameter ¢o which basically normalizes the Gaussian
profile. Finally, we are using outflow boundary conditions in all four boundaries of the box.

3.2.1.2 Simulation Runs

We have placed the simulation box far from the black hole at a radius rg = 300.5 with a
side length of Ar = 1 &~ Az. At this distance the shape of our box is quite close to square
as Ar << rg. We follow the magnetic field evolution as given initially by Equation [3.26]
along the equatorial plane. We run a series of simulations for different strengths of magnetic
diffusivity. In Figure we compare the simulation results (solid lines) with the analytic
solution (dashed lines).

For simulation boz12 with n = 10712 there is barely any change in the magnetic field
distribution and the simulation perfectly matches the ideal-MHD limit. Note that for the
very high resolution applied in these simulations, also the numerical diffusivity is 1OWEI.
As we increase the magnetic diffusivity (box4, boxz3, box2) to the values of n = 1072, the
magnetic field decays - faster for higher diffusivity. Overall, the initial field distribution
decays following exactly the analytical solution.

However, for high levels of the magnetic diffusivity, n > 0.1, the code fails. In this case
the magnetic field has completely lost its initial Gaussian distribution, which poses a limit
in the values of diffusivity we are allowed to use in our simulation.

3.2.2 Diffusive Shock Tube Test

Following Qian et al. (2017) we perform a series of tests with our resistive code based on
the classical 1D shock tube test that demonstrates the shock-capturing capability of the
code. We employ a computational domain that extends for z € [298.75,302.25] in the limit
of Minkowski space-time using Cartesian coordinates with 4000 cells to reduce the effect
of numerical diffusion. The initial condition of the test follows the setup of Dumbser and
Zanotti (2009)) and Bucciantini and Del Zanna (2013]). We implement a discontinuity in the
density of the gas, in the gas velocities, and in the magnetic field; thus,

2See Qian et al. (2017) for an assessment of the numerical diffusivity of HARM-2D
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FIGURE 3.6: Time evolution of the classic 1D shock tube test. Shown are gas density (left) and
horizontal velocity (right) for different levels of magnetic diffusivity, n = 1072, 107! (from top
to bottom). The initial conditions for py and V, are denoted by black lines, while colored lines

denote the evolution for five consecutive times steps.
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(p7p7 Um? Uy? ,UZ7 Bx’ By? BZ) -

(3.27)
(1.08,0.49,0.4,0.3,0.2,2.0,0.3,0.3)

for x < 300.5 and

(p’p’ /Ua:’ /Uy7 Uz? Bm? By? Bz) -

(3.28)
(1.0,1.0, —0.45, —0.2,0.2, 2.0, —0.7,0.5)

for z > 300.5, The initial electric field is set to the ideal-MHD value. The boundary condition
at the ends of the tube is fixed to the initial values (Dirichlet boundary conditions). For the
equation of state we choose a polytropic index v = 5/3.

In Figure [3.6] we show the evolution of the discontinuity in gas density and horizontal
velocity for different values of magnetic diffusivity. We note that in all cases we see the
distinct features that result from the breaking of the initial discontinuity and the velocity
values describe accurately the behavior of the gas density. The left-going rarefaction wave
has a negative velocity and moves faster than the compound wave that follows it. The contact
discontinuity propagates with the same speed as the compound wave, which also appears in
the density distribution, while the discontinuity moves slowly away from it’s initial position
at © = 0. The discontinuity is followed by a slowly moving shock front and a fast-moving
rarefaction wave, both with positive velocities.

In Figure 3.7 we compare the distribution of gas density and vertical magnetic field for
different levels of magnetic diffusivity. We see that for < 107% there is little difference
between the simulations.

3.3 Summary

In this chapter, we have extended the newly developed resistive GRMHD code rHARM (Qian
et al., |2017)) to a parallel version by implementing magnetic resistivity in HARM3D. This will
allow us to apply our models of jet launching from thin accretion disks to longer time scales
and larger spatial scales, also considering a higher numerical resolution.

First, we refer to the numerical solution of the resistive GRMHD equations and we
explain the transition from the ideal HARM3D to the resistive rHARM3D We also show the
analytic derivation of the electric field evolution equation used in the inversion scheme.

We presented a detailed description of the new numerical grid which allows us to ex-
tend the outer boundary the very large radii with little extra computational cost. We also
described the initial conditions used for many of the thin disk simulations that follow in
the next chapters as well as the boundary conditions used in the code. Next we describe
the numerical model and distribution used for the magnetic resistivity. The prescription
allows for maximum diffusion of the magnetic field on the equatotial plane and close to it
as well us for smooth transition to lower values as we leave the disk surface and approach
the black hole. The density and pressure floor model is described next, whose importance is
also indicated as they important for a large part the outflows we observe.

We proceed by presenting two test for the model of diffusivity. A series of magnetic field
decay test where we simulate the evolution of magnetic field and the effect of diffusivity on
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it. We compare the simulation results with the analytical solution and we find very good
agreement in as well as an upper limit of diffusivity above which the code fails to converge.
We also run the resistive version of the classical 1D shock tube simulations where we test
the limits of the code in treating shocks. The results are in agreement with similar tests in
the literature and the also confirm the aforementioned upper limit in diffusivity.
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FIGURE 3.7: Diffusive shock tube test. Shock longitudinal structure in density (top) and per-

pendicular magnetic field (bottom) at time ¢ = 0.5 for different levels of magnetic diffusivity,

n = 10712 (black line, ideal MHD), = 107% (cyan), n = 10~* (yellow), n = 10~ (magenta),
n = 1072 (green), and = 10~! (blue). Note that for n < 10~ the lines are overlapping.
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Chapter 4

Investigating the Outflows of Thin
Accretion Disks

In this chapter we will perform a detailed analysis of our reference simulation. We will
study both the disk accretion and the outflows with a focus on the outflows ejected from the
accretion disk and the region of the black hole. We will analyze the accretion and ejection
mass flux and the electromagnetic energy output of the jet. E]

4.1 A Reference Simulation

In the following we will first describe the details of our reference simulation that will be used
to compare our parameter runs for characteristic properties of the source. The reference
simulation runs for 9000 ¢, corresponding to approximately 67 disk orbits at the initial inner
disk radius. In Figure we show the evolution of the density distribution, the poloidal
magnetic field lines, and the poloidal velocity field up to time ¢t = 8000.

4.1.1 Initial Conditions

The distributions for the initial density, pressure, angular velocity, and magnetic vector
potential are given by Equations , , , and . For the disk rotation
(3.13) we impose a factor of 0.95 in order to treat a sub-Keplerian disk. For the disk gas law
we apply I' = 4/3 and K = 0.001. For a Kerr parameter of a = 0.9, the horizon is located
at 7 = 1.4358 and the innermost stable circular orbit (ISCO) at r = 2.32088.

For the numerical grid we choose a transition radius Rt = 200 and an outer grid radius
Rout = 10%. The initial inner disk radius r, = 7 is outside the ISCO in order to avoid
possible initial ejections of gas, as the initial disk is not in force equilibrium within GR. At
this radius the initial angular velocity of the disk is (), ~ 0.047, thus slightly lower than
the Keplerian value Qg ~ 0.052, and corresponding to an orbital period of T}, ~ 135.

The initial corona is given by Eq. with Keor = 1, resulting in a higher coronal
entropy. The initial magnetic field structure follows Eq. with m = 0.6. The magnetic
field strength is fixed by the choice of the plasma-3 = 10 at the initial inner disk radius. The
magnetic diffusivity profile is given by Eq. with y = 3 and 79 = 0.001 (see Figure .

IThe contents of this chapter are adapted from Vourellis et al. (2019). The paper is published in the
Astrophysical Journal. The author of the thesis run the simulations, analyzed the result and wrote the text
for both the published paper and this chapter.
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FIGURE 4.1: Snapshots of our reference simulation (cont.)
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FIGURE 4.2: Evolution of the disk mass in our reference simulation measured in a reference area
as described in the text. The mass is normalized to the initial disk mass.
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4.1.2 Evolution of Disk Mass and Disk Accretion

As the disk evolves, accretion sets in and the inner disk radius changes to lower values,
extending down to r & 3 right outside of the ISCO after having completed more than
200 rotations at this radius. Since the shape of the disk changes constantly, it is difficult to
measure the total disk mass. One option is to measure the mass within a disk area defined by
the inner surface located at » = 3, an outer surface at » = 100, and the surfaces of constant
opening angle of § ~ 80° and 6 ~ 100°. The disk mass is then obtained by integrating the
mass density in the disk area as specified above [

The evolution of the disk mass is shown in Figure [£.2] Since the disk is not in equilib-
rium, there is a rapid change in the innermost part of the disk that causes a small initial
increase. We understand that the extra mass for the disk arises from the initial corona,
which immediately starts to collapse, and by that squeezes and relaxes the inner disk until
a quasi-equilibrium is reached at ¢ ~ 300. After that, the disk mass decreases steadily until
t ~ 5500, when the slope of the disk mass evolution changes. This is mainly due to changes
in the disk outflow. Note that by the end of the simulation the disk has lost more than 80%
of its initial mass.

Figure 4.3 shows the normalized accretion rates measured through three different radii,
r = 2, 4 and 13, and integrated over the disk scale height. Close to the horizon, measured
at radius r = 2, the accretion rate is first negligible, mainly because of the absence of disk
material in that radius. After ¢ = 3000, accretion rate increases. Note that by now the inner
disk radius, located initially at » = 7, has moved closer to the black hole, populating that
area with dense disk material. The enhanced accretion level is accompanied by substantial
accretion spikes. However, the underlying base accretion rate seems to decrease as the disk
loses mass. The accretion mass flux in the inner area is of the order of 1074

After ¢ = 6000 and until the end of the simulation, the innermost area around r =
2 becomes almost empty again, with the exception of a thin stream of material that is
connecting the disk with the black hole. It looks like that at this point in time all material
close to the black hole has fallen into it, but has not been replenished by disk material from
larger radii. As a result, accretion at r = 2 is halted completelyﬁ for a substantial period
of time, until it is temporarily restarted by disk material that has newly arrived (accreted)
from larger radii. This relaunch of accretion is indicated by the spikes in the accretion rate
at late times.

Similar to » = 2, at radius r = 4 accretion is not significant until ¢ = 1500, while
it gradually increases afterward until ¢ = 3000. In the following strong accretion phase
(t € [3000,6000]), there is also a significant amount of material moving outward. In the inner
part of the disk, just outside the ISCO, the gas is actually moving in both directions, radially
inward and outward, thus indicating the turbulent character of the motion. The highly
turbulent nature of the inner accretion flow is shown in Figure The figure demonstrates
the rapid change in density and velocity within short time. Note the strong gradient in
velocity at the ergosphere (yellow line; dark blue indicates high infall speed).

Since the average accretion rate at radius r = 4 is similar to that measured at r = 2, we
conclude that the accretion mass flux is conserved and, thus, no outflow is ejected from this

2The disk mass and mass flux are normalized by the mass of the initial disk material included in the disk
area as specified above
3with the exception of the floor density accretion
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FIGURE 4.3: Accretion rate measured in three different radii (r = 2, 4, 13, top to bottom) for
the duration of the simulation. The mass flux was integrated between 80° and 100° using the
negative values of radial velocity.

area close to the black hole. Even farther out, at radius » = 13, the accretion process looks
quite different. The accretion rate is again of an order of magnitude similar to smaller radii.
The accretion spikes that are seen at lower radii now are replaced with much broader time
periods of high mass accretion, indicating a slower change to the accretion rate.

However, we still detect a few accretion spikes during the third phase of evolution. In
fact, the accretion spikes that are observed at r = 13 are subsequently followed by spikes
at r = 4 and r = 2. We measure a time delay between the spikes at r = 13 and r = 4
varying between At = 75 and At = 40. The time delay between the spikes at » = 4 and
r = 21is At ~ 10. E| An approximate average accretion velocity can be defined by dividing
the distance traveled by the fluid by the time delay of the spikes. For the three major spikes
appearing at radius r = 2 at ¢ = [5630, 6070, 7920] we measure a similar velocity from radius
r = 4 to radius » = 2 of 0.2 for all three spikes. For the pattern speed of the spikes from
r = 13 to r = 4 we measure velocities of 0.12, 0.225, and 0.16, respectively. These values
derived for the pattern speed agree well with the radial velocity that we observe in this area
of the disk.

At late stages of the simulation (between ¢ = 6000 and 9000) we notice a decline in
the accretion rate at all three radii. This is accompanied by the opening of a larger gap
between the horizon and the inner disk, meaning that the inner disk radius moves out. At
this time, the disk has already lost 70% of its mass. During this period, the disk accretion
becomes disconnected from the black hole. We interpret this as follows. Due to the decrease
of density and pressure (following accretion and ejection of disk material), this area becomes
magnetically dominated. The strong magnetization leads to the structure of a magnetically

4This is also the time sequence for our data dumps, so we cannot provide a higher time resolution for the
pattern speed of the spikes.
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FIGURE 4.4: Turbulent dynamic structure of the inner disk. Shown is the radial velocity distri-
bution at a short time interval, at ¢ = 3800 (left) and at ¢t = 3850 (right). Positive and negative
velocities indicate the turbulent nature of the inner disk area. The red semicircle marks the
horizon, the yellow line marks the ergosphere, and the green line indicates the radius of the ISCO.
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FIGURE 4.6: Integrated mass flux through the outer disk at » = 100 (blue), through the inner
disk radius at 7 = 3 (red), and through the disk surfaces (green).

arrested disk (MAD; see Igumenshchev, Narayan, and Abramowicz ) When the mag-
netic flux is advected to the black hole respectively to the rotational axis, the magnetization
in this area decreases again, and accretion restarts (see Fig.

Finally, in Figure [4.6] we display the mass fluxes vertical to the surfaces of constant
opening angles (6 = 80°,100°) that approximate the surfaces of the initial disk density
distribution. We see that the mass fluxes of accretion and radial outflow along the disk are
comparable. However, both are dominated by the vertical mass loss from the disk surface.
The low accretion rate is comparable to an MAD structure (Tchekhovskoy, Narayan, and
McKinney, and due to the strong disk magnetic field, a strong outflow is launched,
but at the same time the accretion rate decreases. Obviously, also the strength of magnetic
diffusivity plays a role (see our comparison study below). We may conclude that most of the
mass that the disk is losing is due to the strong disk wind that is launched.

We note that since a substantial disk wind is present during the whole simulation, the
wind mass-loss rate is changing. The wind mass flux increases until about ¢ = 3000 and
then decreases again until £ = 6000. In the late stages of the simulation the wind mass
flux is highly variable. These two different phases of wind ejection seem to correspond to
similar phases in the disk accretion, visible in Figure (middle panel), which shows large
variations in the mass accretion rate, or in Figure which indicates a change in the disk
mass evolution at ¢ = 3000.

In order to double-check our mass flux integration, we have measured the total mass
loss of the disk with two different methods. First, we integrate all mass flux, leaving the
surfaces of the disk area as specified previously. Second, we calculate the mass loss from the
mass evolution of the disk (see Figure . Figure @ compares the time evolution of the
two measurements. Essentially, both show excellent agreement, confirming our methods to
determine the evolution of the disk.
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FI1GURE 4.7: Comparison of the disk mass loss as calculated directly from the disk mass evolution
(red) and from the outflow mass flux (blue). Both curves coincide, demonstrating the robustness
of our integration tools.

The mass loss remains negative for the majority of the simulation, with small exceptions
of momentary mass increase especially in the later stages. On average, we have a mass-
loss rate of the order of 1073/ tg. The rate of mass loss, however, changes a lot, following
a repeating pattern similar to the one appearing in the vertical mass flux from the disk
surface, demonstrating that the large mass loss is due to the disk wind. Based on Figure
[.6] if we integrate over time, we find that out of a total of 85% of the disk mass lost during
the simulation, approximately 73% is from the disk wind, 10% is from accretion to the black
hole, and 2% is across the outer disk radius.

4.1.3 Outflow from the Black Hole Magnetosphere

The most prominent feature of our reference simulation (as visible in Figure is the
outflow that develops from the area around the black hole. It starts around ¢ = 1000 with
the advection of magnetic flux toward the black hole. The field lines that enter the ergosphere
are being twisted and turned along the toroidal direction, creating eventually a jet toward
the polar direction, according to the BZ mechanism (Blandford and Znajek, [1977). Up to
t = 3000, this jet has been fully developed, and it enters a quasi-steady state until the end
of the simulation (¢ = 9000), even though its strength still depends on the advection of the
magnetic flux and, through that, on the accretion rate of the disk. The jet is identified by a
parabolic-shaped funnel of high-velocity fluid that originates from the area around the black
hole and moves almost parallel (in the later stages) to the symmetry axis toward the outer
parts of our domain.
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FI1GURE 4.9: Magnetohydrodynamic accretion-ejection structure close to the black hole, r < 15

at t = 4000. Shown is the Lorentz factor (left), the poloidal Alfvén Mach number (log scale;

second from left), the plasma-3 (log scale; second from right), and the magnetization p/B? (log

scale; right). The high Alfvén Mach number indicates flows that are dominated by kinetic energy,

regardless of the highly magnetized area. The red semicircle marks the horizon, the yellow line
marks the ergosphere, and the green line indicates the radius of the ISCO.
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The jet funnel can be seen clearly in Figure 4.8 where we plot the z-component of the
fluid frame velocity and the Lorentz factor at time ¢ = 4000. The jet seems to consist of
fast-moving inner parts with v ~ 1.8, a moderately fast moving envelope with v ~ 1.5, and
the outer part where the Lorentz factor values stay below v = 1.3. The fast-moving inner
parts seem discontinuous, and we can clearly distinguish 2-3 knots of high velocity in larger
radii (r > 50), while closer to the black hole the high values of Lorentz factor seem to have
a more continuous distribution (see Figure [4.9).

We select four radii, r ~ 4, 12, 52, and 75, where high-velocity knots appear. In
Figure we see how the radial velocity, the mass flux, and the electromagnetic energy
flux (Poynting flux) per solid angle are distributed along the polar angle in these radii. In
general, the Poynting flux distribution follows the high-velocity areas, proving that the jet
funnel has a strong electromagnetic component. The mass flux in the funnel area does not
show a significant increase in comparison with the disk wind area and the disk, where the
mass density is considerably higher, since the accelerated material consists primarily of floor
density values.

Figure 4.9 shows the Lorentz factor, the poloidal Alfvén Mach number, the plasma-£ and
the magnetization over an area of 15 R, at time ¢t = 4000. The highly magnetized funnel
coincides with the high-velocity area of the jet. It starts as a sub-Alfvénic flow right outside
of the ISCO; however, even though in the area of the funnel is highly magnetized (plasma-
B~ 1, B%/p =~ 1), the flow is accelerated quickly to super-Alfvénic speed, indicating that
it is dominated by kinetic energy.

4.1.4 Evolution of the Poynting Flux

We now examine the electromagnetic energy fluxes (Poynting flux) of our reference sim-
ulation. In Figure we show the evolution of the integrated Poynting flux through a
surface at radius » = 100. We further split our integration domain into the following three
areas. The first region is between 0° < # < 25° and mainly covers the funnel region host-
ing the relativistic jet from the black hole magnetosphere. The disk wind area (covering
larger polar angles) is split into two more regions (see also our Sect. . This is a region
between 25° < 6 < 65°, where the By-dominated disk wind evolves and a region between
65° < 0 < 80°, where the poloidal magnetic field dominates. E] The chosen separation does
not exactly follow the direction of the funnel, as the geometry of the funnel flow changes with
time. However, it is a good approximation for the average location of the funnel, especially
in higher radii. Note that even though the majority of the (bent) funnel jet is inside the
opening angle we have just defined, at » &~ 2 — 4 it is rooted closer to the equatorial plane,
resulting in very low values of Poynting flux measured for the launching region and higher
values for the disk wind regions (see also Figure [4.10).

The three phases of the disk evolution can also be seen in the evolution of the Poynting
flux of the jet funnel. In the beginning, the flux remains almost constant, but after ¢ = 3000
it drastically increases, indicating the development of a strong jet. This is mainly due to the
advection of magnetic field and energy toward the black hole, along with the mass accretion
from the disk. Beyond t = 6000 — due to the high disk mass loss — the variability in the
accretion rate triggers the Poynting flux, leading to strong variations in the funnel and in
most of the disk wind.

5Section discuss the different types of disk wind extensively.
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FIGURE 4.10: Comparison of the angular distribution of mass flux (red), Poynting flux per solid

angle (green), and Lorentz factor (blue) for the reference simulation at ¢ = 4000 at four radii,

r =4,12,52 and 75. Negative mass flux indicates accretion toward the black hole. The BZ-driven

jet funnel is clearly distinguished by the peaks in Lorentz factor and electromagnetic energy flux.

For increasing radii, the mass flux increases, demonstrating the matter-dominated disk wind. In

low radii, between the rotational axis # = 0,180 and the jet funnel floor density material falls
toward the black hole.
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FIGURE 4.11: Evolution of the total Poynting flux for our reference simulation at radius » = 100.

We split our domain into three regions. The first is between 0° < 6 < 25°, expressing the Poynting

flux from the relativistic jet funnel (red). The second is between 25° < 6 < 65°, which includes

the By-dominated disk wind (green). The third is between 65° < 6 < 80°, which includes the
Bp-dominated disk wind (blue).

For the disk wind, at small radii the associated Poynting flux shows a steady increase
with time. However, this is again an artifact due to integration area that cannot follow
the bent geometry of the funnel flow. Also, the base of the funnel flow is partly extending
beyond the chosen integration domain (limited to 25°). It is thus not accounting, for the
initial funnel Poynting flux, but contributing to the Poynting flux we measure for the wind.
This is indicated clearly in Figure At larger distances, the Poynting flux remains at
low levels, now following the true geometry of the disk wind. For the Bp-dominated disk
wind the Poynting flux has very low but still positive values in the outer radii.

Table[5.T|shows the time-averaged Poynting flux measured at radius » = 100 for the three
previously mentioned angular regions. As probably expected, the higher values of Poynting
flux are detected in the jet funnel, about two times larger than the corresponding flux in the
disk wind. The By-dominated disk wind also drives a Poynting flux about six times larger
than the flux in the Bp-dominated disk wind. In total, the electromagnetic energy output
of the disk is led mainly by the Poynting-dominated jet from the black hole. where we also
detect the highest velocities.

This seems to contradict earlier results (Qian, Fendt, and Vourellis, indicating a
disk wind substantially contributing to the total electromagnetic flux. We think that the
reason for this difference is mainly the shorter live time of the simulation in Qian, Fendt, and
Vourellis , in particular for the simulation with high spin. This is visible in Figure m
where we see that for early times ¢ ~ 500 the Poynting flux of the Bg-dominated wind (green
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curve) dominates the inner jet.

4.1.5 The Accretion Disk Wind

The origin of accretion disk winds has been studied in the context of both AGNs and YSOs.
Numerous works have investigated the launching mechanisms, especially in the nonrelativis-
tic regime (Casse and Keppens, 2002; Zanni et al., [2007; Sheikhnezami et al., [2012; Stepanovs
and Fendt, |2014)). It has become clear since the seminal work of Ferreira (1997)) that the
magnetic resistivity is a key parameter for the investigation of the disk wind since it allows
the gas to penetrate the magnetic field lines and thus allows for both (i) advection toward
the black hole and (ii) mass loading the disk wind.

In a strong disk magnetic field, magnetocentrifugally accelerated outflows can be driven
once the material is lifted from the disk plane into the launching surface, usually located
around the magnetosonic surface. Qian et al. (2017) and Qian, Fendt, and Vourellis (2018)
have extended the study of disk winds to the general relativistic regime. However, they have
found that - in contrary to nonrelativistic disks - it is mainly the pressure gradient of the
toroidal magnetic field that launches of disk winds, while the energy output by the disk wind
can indeed be comparable to the BZ outflow launched by the BH. In addition (or rather as
a consequence), disk winds from relativistic disks are quite turbulent and do not evolve in
the smooth outflow structures that are known from nonrelativistic cases. In this section we
continue the analysis of the disk outflows, extending their study to (physically) larger grids
of higher resolution.

4.1.5.1 General Overview

In Figures and we present the velocity structure, the Alfvén Mach number, and
the plasma-f for different areas of the disk wind. In order to emphasize the dynamic range
of the disk wind, we restrict the velocity plots to v, < 0.1c.

The plots of radial velocity (Figure left, and Figure top) nicely demonstrate the
wind launching surface where the radial velocity changes sign, thus indicating the transition
from accretion to ejection. The total poloidal velocity vectors start from inside the disk,
where accretion dominates, and then continue across zero-velocity surface into the disk
wind. The radial disk wind velocity increases as the wind leaves the disk surface, reaching
up to u” = 0.1¢ and following the magnetic field lines. Our vectors clearly demonstrate the
connection between disk accretion and wind ejection.

In Figure we show the poloidal Alfvén Mach number My ,. The Alfvén surface is
located slightly above the disk surface (which we defined by " = 0), implying that the fluid
leaves the disk surface with sub-Alfvénic speed, My , < 1. However, it quickly accelerates
to super-Alfvénic velocity. This is a major difference from the nonrelativistic launching
simulations we have cited above, where the extension of the sub-Alfvénic regime is more
comparable to the self-similar solution described by Blandford and Payne (1982), in which
the flow in the area close to the disk is magnetically dominant, with matter accelerated
along the field lines by the magnetic stress (or so-called magnetocentrifugally). The flow
then consecutively passes the Alfvén and the fast-magnetosonic surface, before it becomes
collimated by magnetic tension.
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That mechanism may work as well for relativistic jets has been suggested by numerical
simulations by Porth and Fendt (2010)), however without considering the launching process
out of the accretion disk. In our reference simulation, the picture is quite different, with
an Alfvén surface much closer to the disk surface. The flow reaches super-Alfvénic speed
of My, > 5 already in the altitude of z < 10 from the disk midplane. Thus, we conclude
that we do not find evidence for a large BP-driven region of the disk wind, and the outflow
is most probably driven by the magnetic pressure gradient of the toroidal field, thus as a
so-called magnetic tower (Lynden-Bell, [1996).

We also need to compare the magnetic pressure to the gas pressure. This is done in
Figure where we present the distribution of plasma-/ in the area of the disk. Inside the
disk, we find plasma-f > 100 (as prescribed by our initial condition), but as we move away
from the disk surface, the plasma-3 quickly starts decreasing to values between 10 and 1 or
even lower. This finding supports the idea of a magnetic-pressure-driven disk wind.

Interestingly, we find that the disk wind separates into two components considering the
plasma-f3. There is an inner component of the disk wind that develops from the innermost
part of the accretion disk (r < 10). This wind component has a rather high gas density
and pressure, resulting in high poloidal plasma-3 and low magnetization, B2/p ~ 0.0001.
The second wind component originates from larger radii, and it is dominated by the poloidal
magnetic field. We will first describe the inner wind component.

4.1.5.2 B¢-d0minated Disk Wind

Considering the strength of the magnetic field components, we see that the toroidal field
dominates the poloidal magnetic field. This is shown in Figure where we plot the ratio
|By/ Bp|. In particular, the wind from the inner disk carries a toroidal field 10 times larger
than the poloidal component. We believe that this results from the fact that at this time
the innermost part of the disk has completed a larger number of orbits: at time t = 4000
and at r = 5 we have almost 50 orbits, compared to about 18 at » = 10 and only 10 at
r = 15. Hence, simply the twist of the originally poloidal magnetic field may induce such a
strong toroidal field component. If the simulation would evolve further, we expect this area
of a toroidaly dominated magnetic field to grow along the disk.

We find that the radial velocity of the disk wind is not homogeneously distributed but
contains patches of negative speed. These patches coincide with areas of strong toroidal
velocity, which usually accompanies the toroidal magnetic field in the super-Alfvénic flow
regime (Figure bottom right panel).

The turbulent nature of the wind seems to damp down as the wind moves farther away
from its source. Unsteady, super-Alfvénic outflows are well known from nonrelativistic sim-
ulations. For example, Sheikhnezami et al. (2012)) observe a similar structure for the overall
disk wind in high plasma-f£ simulations. These outflows are dominated by the toroidal
magnetic field component, also known as tower jets (see below), and are accelerated by the
vertical toroidal magnetic field pressure gradient. However, in our simulations we notice that
this turbulent outflow layer has a certain, rather narrow opening angle. If we assume that
the extent of this layer defines a characteristic length, we may also assume that the extension
of this structure in the ¢-direction may be similar, possibly hinting to a series of outflow
tubes around the disk. Interestingly, Britzen et al. (2017) have recently suggested that such
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FIGURE 4.12: Reference simulation sim(. Shown are the radial velocity (left), with superimposed
contours of the vector potential (black lines), and the Alfvén Mach number (right), both at time
t = 4000.
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FIGURE 4.13: Snapshots of the disk area for different physical variables for simulation sim0 at

time ¢ = 4000. We show the radial velocity (colors) with poloidal velocity (black arrows), the

vertical velocity (colors) with magnetic field lines (black lines), the poloidal Alfvén Mach number

superimposed with the Alfvén surface (black lines), the plasma-f, the ratio between the toroidal

and poloidal magnetic field components |B,/Bp| (log scale) and the ratio between toroidal and

poloidal velocity |ug/up| (log scale). The white line defines the area where u" changes sign,
u" = 0.
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FIGURE 4.13: Snapshots of the disk area for different physical variables for simulation sim0 at
time ¢ = 4000 (cont).
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turbulent loading of jet channels may happen in M87, leading to large-scale episodic wiggling
of the overall jet structure.

In Figure [4.13|(top right) we show the z-component of the velocity, where we can distin-
guish a number of "branches" with values higher than in the adjacent area. These branches
are actually part of the By-dominated disk wind. They seem to stay connected to the sur-
face of the disk from where they are originally launched and then continue through the B-
dominated wind following the poloidal magnetic field lines. The footpoint of the branches
coincides with highly magnetized disk areas. This might explain the acceleration within
the branches - on the other hand, when this material enters the By-dominated wind, the
plasma-f increases without weakening the acceleration. We note that the strong V, compo-
nent pushes the disk wind material toward the boundaries of the funnel outflow. As for an
alternative scenario, we may think of a magnetic-pressure-driven radial outflow that drags
the poloidal field with it, thus stretching it into a radially aligned poloidal field distribution.

4.1.5.3 Bp-dominated Disk Wind

We now discuss the second wind component that originates in the outer, main body of the
disk. Here, for radii » 2 10, the |B,/Bp| ratio decreases with radius and the poloidal
field starts to dominate. This outer wind becomes launched almost parallel to the magnetic
field lines (see velocity streamlines and poloidal field lines in Figure , and it retains
that direction as well for larger distances. The vertical velocity component is substantially
lower compared to the inner disk wind, implying a weaker acceleration despite the higher
magnetization. When comparing the local escape speed with the local poloidal velocity of
the disk wind, we find that the disk wind is launched with sub-escape velocity. However,
the wind becomes further accelerated to up > uese and becomes eventually fast enough to
escape the gravity of the black hole.

In Figure [4.13] (first panel), we notice that in the area where the disk wind develops
the wind tends to follow the radial direction in general. However, in Section above
we quantified the launching of the disk wind as mass flux escaping the disk surface in the
polar direction (6-component of the velocity). Thus, after being launched vertically from
the disk surface, the wind further develops into a kind of radial outflow. This overall picture
connecting between the launching in polar direction and the radial outflow can be verified
by calculating the mass fluxes through the respective boundaries.

4.1.5.4 Connecting the Vertical and Radial Disk Wind

Following the considerations of the disk wind toward the end of Section [4.1.2] we show in
Figure the disk wind mass fluxes, only in this case we are interested in the situation
at smaller radii, where the disk outflow is stronger. We calculate the mass fluxes vertical to
surfaces of constant opening angle of # = 80°,100° that approximate the opening angle of
the initial disk density distribution. We integrate the mass fluxes in the range r = [4, 100]
where we also separate between infall (motion toward the disk surface) and outflow (motion
away from the disk surface), thus providing the net vertical fluxes. We find that the disk
wind seems to increase for 0 < ¢t < 3000 while it decreases for 3000 < t < 6000; overall we
measure an average mass flux of (M) = 9.72 x 107° My gisk- The variations in the mass flux
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during the second phase are much stronger; this is consistent with a similar behavior in the
accretion rate (see Section and Figure [£.3).

A similar behavior is observed in the radial mass fluxes. These increase or decrease with
radius, depending on the phase during the simulation. Simultaneously, this is visible as an
increase or decrease, respectively, in the mass load of the disk wind. Note that the latter
we can also observe by measuring the difference in the two mass fluxes. The overall time-
averaged mass flux is <M ) = 4.56 x 10_5M(),disk across a spherical surface at » = 100. The
difference in the two mass fluxes is deposed as mass in the area of the disk wind increasing its
density. Taking into account this mass sink, as well as all mass fluxes through the surfaces of
the integration area, we find a good agreement between the radial and the disk wind fluxes
for small time intervals. The remaining difference is due to the jet funnel that is constantly
loaded by the floor model for the density and that naturally contributes to the radial mass
fluxes and also increases the mass load in the radial wind.

Our detection of a By-dominated disk wind confirms the results of Qian, Fendt, and
Vourellis (2018), who interpreted their results in terms of a tower jet (Ustyugova et al.,
1995; Lynden-Bell, 1996). However, the whole disk wind in Qian, Fendt, and Vourellis
(2018) is entirely dominated by the By, while in our simulation it is restricted to the disk
wind from the inner disk only. As our new simulations have a higher resolution, Qian,
Fendt, and Vourellis (2018) may have not been able to resolve the inner part of the disk
wind properly.

4.1.5.5 Magnetic Reconnection and Ohmic Heating

Since the disk evolves in a resistive environment, we expect the generation of ohmic heating,
which will affect the internal and magnetic energy in the disk. As we do not use radia-
tive transfer, we cannot directly compare the energetics of ohmic heating with the emitted
radiation.

However, we can attempt an estimation of the generated heating. For the reference
simulation, we calculated an approximation of ohmic heating as nﬁ and compared it with
the internal and magnetic energy of the fluid. We separated the area into two parts — the
first one is from r» = 5 to r = 20, and the second one is from r = 20 to » = 50. Since
the resistivity is concentrated to the accretion disk (and thus the ohmic heating), we also
constrain the area between 5° above and below the equatorial plane. The ohmic heating is
mostly generated from the inner part of the disk, as the magnetic field gradients (j o« B)
are largest over there.

We find that up to time ¢ = 5000 ohmic heating generates a total energy of 1.5 x 10™* (in
code units). This is somewhat higher than the total magnetic energy in this disk area but
substantially lower than the internal energy of the disk. At larger radii, from 20 < r < 50
the ohmic heating rate is even lower, making it overall negligible in comparison with the
magnetic and internal energy.

Another physical mechanism that contributes to the heating of our fluid is magnetic
reconnection. It has been shown (de Gouveia dal Pino and Lazarian, [2005; de Gouveia
Dal Pino, Piovezan, and Kadowaki, |2010)) that in AGNs the magnetic reconnection episodes
that occur mostly in the inner disk and the black hole magnetosphere can heat up the disk
material and at the same time accelerate the ejected disk wind.
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4.2 Summary

As a reference simulation we applied the code for a setup considering a black hole with Kerr
parameter a = 0.9 together with a disk magnetic diffusivity profile that follows a Gaussian
distribution over the polar angle. We have investigated the physics of the accretion-ejection
mechanism between the disk and the launched wind while focusing somewhat on the nature
of the outflows and the development of the disk wind.

We provide a detailed study of the MHD characteristics of the disk-wind structure. A
thin disk exists until accretion and disk wind have depleted the initial mass reservoir of the
disk. We resolve the disk surface were accretion of material is turned into ejection. The
Alfvén surface of the disk wind is close to the disk surface - the disk wind is thus launched
with sub-Alfvénic speed, but quickly accelerated to super-Alfvénic velocities. The counter-
rotating disk seems to develop a different accretion mode with layered accretion in the upper
disk levels.

Two different types of disk winds were identified. The first one arises from the inner
part of the disk » < 10 and is dominated by the toroidal magnetic field component, while
carrying a large part of the mass flux. This type of disk wind has many similarities with the
wind investigated by Qian, Fendt, and Vourellis where it was identified as a tower jet
(Lynden-Bell, . In contrast to Qian, Fendt, and Vourellis (2018) we observe a second
type of disk wind. This feature is launched from the larger radii, and is dominated by the
poloidal magnetic field. So far we believe that this is mainly due to the fact that the outer
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disk is less evolved in comparison with the inner part. The Bg-dominated disk wind shows
higher radial mass flux even though it is not as highly magnetized.
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Chapter 5

Dependence of Disk Outflows on
Black Hole Spin and Diffusivity

In this chapter, will now compare our reference run sim0 with a number of simulations that
apply different black hole spin and magnetic diffusivity (see Table . Black hole rotation
is an important part of the BZ mechanism and in the following we will study its effect in
the outflowing electromagnetic energy. Resistivity has a strong effect the the diffusion of the
magnetic field as well as in the accretion of disk material. We expect high diffusivity to allow
material from the outer part of the disk to be accreted easier and then feed the outflows][l]

5.1 Accretion-Ejection and Black Hole Rota-
tion

We now discuss how the dynamical evolution of accretion-ejection interrelates with the black
hole rotation, i.e. the Kerr parameter a. We first concentrate on the disk accretion. Fig-
ure shows the disk accretion rates at r ~ 2 for the simulation runs simi1, sim2 and sim0,
each normalized with the mass of the respective initial disks.

While for sim0 the accretion rate in the first stages of the evolution (¢ € [0,3000]) is
constant and very low, for slower-rotating black holes the accretion rate shows a noticeable
increase. Also, this first stage, which looks different from the later evolution, lasts longer
in the case of @ = 0.9. We think that this is due to the fact that the horizon (r = 2), and
the ISCO (r = 6) are located closer to the initial disk radius. Therefore, it take less time
to bring disk material to the ISCO, from which it falls to the horizon. At later stages, all
simulations show a similar behavior, with only the accretion spikes in sim0 being slightly
stronger.

On average, for the duration of the simulation, the normalized accretion rate at r = 2
for the Schwarzschild black hole is slightly higher, (M) = —1.59 x 1075M0,disk7 while for the
case of a = 0.9 we find (M) = —7.49 x 10’6M07disk. Specifically, the three systems accrete
18.4%, 17.3%, and 11% of their initial disk mass into the black hole for the duration of the
simulations.

!The contents of this chapter are adapted from Vourellis et al. (2019). The paper is published in the
Astrophysical Journal. The author of the thesis run the simulations, analyzed the result and wrote the text
for both the published paper and this chapter.
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TABLE 5.1: Mass and energy fluxes for simulations applying different black hole spin a and diffusivity 79. The average mass fluxes in units
of 1075 are measured over the whole simulation period and are normalized by the initial disk mass. The average Poynting fluxes are in code
units of 1073, The average vertical wind mass flux is integrated along the radius vector along 80° or 100° up to r» = 100. The average radial
wind flux is integrated along a spherical surface at » = 100. Note that simulations sim3, sim5, sim6 end before ¢ = 6000. The columns
show from left to right the simulation run ID; the spin parameter a; the maximum diffusivity 7g; the average accretion rate at r = 2, AN&@SVW
the average vertical mass flux (Mp); the average total radial mass flux (M,) (0, < @ < 80°); the average mass flux in the jet funnel (M, )y
(0° < @ < 25°); the average mass flux in the By-dominated disk wind (M, )p , (25° < 6 < 65°); the average mass flux in the B,-dominated
disk wind (M,)p, (65° < 6 < 80°); the electromagnetic energy flux in the funnel (Egp)mn (0° < 6 < 25°); the electromagnetic energy
flux in the By-dominated disk wind (Egm)p, (25° < 6 < 65°); the electromagnetic energy flux in the Bj,-dominated disk wind (Egwm) By
(65° < 6 < 80°); Values in parentheses show the percentage of each individual radial mass flux over the total radial mass flux.

Run «a 70 (Mace)  (Mg) (M) (M )gun Q&Lmﬂ (My)Bp  (EEM)fun Ammzvm@ (ErM) Bp
sm0 0.9 0001 -075 972 415 1.02(25) 2.40 (58) 0.73 (16)  4.89 2.38 0.38
siml 0 0.001 -1.59 620 1.83 0.26(14) 1.02(56) 0.55(30) 0.4 0.55 0.23
sim2 0.5 0.001 -1.57 7.51 2.88 0.67 Awwv 1.57 AWRC 0.64 Amwv 2.87 1.29 0.32
sim3 -0.9 0.001 -127 577 488 0.96(20) 348 (71) 0.44 (9)  3.00 4.52 0.21
sim4 0.9 0.01 -0.53 561 3.17 0.79 Awmv 1.94 AQC 0.44 GNC 1.82 1.93 0.19
sim5 0.9 0.0001 -124 128 370 1.43(39) 1.81 (49) 046 (12)  4.11 1.93 0.24
sim6 0.9 10710 124 116 3.04 1.37 (45) 1.33 (44) 0.33 (10)  4.17 1.72 0.25
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In Figure [5.2] we compare the disk wind that is launched from the disk surface. The disk
mass flux is in general positive with few exceptionsﬂ meaning that there is a substantial
mass injection from the disk into the outflow.

Following the same method as described toward the end of Section we measure a
normalized mass flux for the disk wind of (M) = 6.2 x 10*5M0,Disk for the case of a = 0,
a flux of (M) = 7.41 x 107> My pisk for the case of @ = 0.5, and a flux of (M) = 9.72 x
10_5M0,Disk for the case of a = 0.9. This implies that the three accretion-ejection systems
accumulate a mass loss of 49%, 62.3%, and 80.7% of their initial disk mass by the disk wind.
The cases a = 0 and a = 0.9 differ by almost 30% in the disk wind mass flux. For the radial
fluxes there is a similar increase by 178% between the simulations applying a = 0 and the
a = 0.9 (see Table p.1). Thus, as an overall trend we find that the disk wind mass flux
increases for higher black hole spin.

We understand that this is due to the ejection of mass that is launched from the innermost
radii of disk accretion for high a (see Figure , middle panel). These ejections, and thus
positive radial mass fluxes inside the disk, do not appear for the cases of low spin a =
0 and a = 0.5, for which accretion dominates, and which result in an overall lower disk wind
ejection rate (see in Figure . There is also the interplay between the evolution of the
disk structure in respect to the distribution of magnetic diffusivity. As the ISCO radius is
affected by the Kerr parameter, the disk is located completely inside the high diffusivity area
for a = 0, while part of the inner radii has lower diffusivity for the case of a = 0.9.

Note that the radius » = 3 is just outside the ISCO for simulation sim0, but inside the
ISCO for sim1 and sim2, which we think explains why no ejection is visible in the case of
the latter two simulations. In order to check this hypothesis, we also measured the mass flux
at 1Ry and 2R, outside of the ISCO for each of our simulations. Only in simulation sim0
does a positive mass flux from this radius appear, subsequently contributing to the increased
mass flux we measure in the disk corona.

We further investigate the radial mass fluxes through a surface of radius r = 100. We
find that the increase in the mass flux is much higher than in the vertical fluxes. We have
also analyzed the radial mass flux of the disk wind by comparing the fluxes in three domains
of the outflow (see Table for numerical values). The innermost flow area is from 0° to
25°, and it indicates the mass flux in the Poynting-dominated jet. The adjoined area from
25° to 65° covers the By-dominated wind launched in the innermost disk. The third domain
from 65° to 80° contains the mass flux from the Bp-dominated disk wind. Obviously, we
also include the fluxes from the lower hemisphere.

We recognize that our choice for the limits in the polar angle will not always coincide
perfectly with the physical part of the flow we want to study. This holds especially in the
earlier and later times of the simulations when both the jet and the disk wind are strongly
evolving, either further being developed (early) or are dying off because of the disk mass loss
(late). For the Poynting-dominated jet, the floor density model that dominates this area
obviously determines most of the mass flux .

Comparing the simulations, we find that the relative contribution of the By-dominated
disk wind to the overall mass flux is similar for simulations siml1, sim2 and sim0 - even
though in absolute values the wind mass flux increases with black hole spin. The relative
contribution of the By and the Bp-dominated disk winds, however, depends on on the black
hole spin. In the case of a Schwarzschild black hole the By-dominated disk wind contributes

2Most of the negative flux occurrences appear in the late stages of sim1
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FIGURE 5.2: Ejection rate and black hole spin. Comparison of the vertical mass fluxes associated

with the disk wind for simulation runs applying a Kerr parameter a = 0 (red), a = 0.5 (green),

and a = 0.9 (blue), and a = —0.9 (magenta), integrated along the surfaces of constant angle at
80° and 100°.
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Ficure 5.3: Poynting flux and black hole spin. Comparison of the radial Poynting fluxes at

r = 100 for simulation runs applying a Kerr parameter a = 0 (sim1, red), a = 0.5 (sim2, green),

a = 0.9 (sim0, blue), and a = —0.9 (sim3, magenta). Note that simulation sim1 is scaled 10 times
lower than the others.

65% to the total disk wind mass flux, while for the case of @ = 0.9 the contribution is at
77%. For the counterrotating black hole the contribution increases to 89% while it shows the
strongest wind also in absolute values. We conclude that the black hole rotation increases,
not only the disk outflow mass flux in general but also contributes substantially in the
Bg-dominated disk wind as it is generated from the inner part of the disk.

Finally, we compare the Poynting flux in our simulations. Figure [5.3| shows the time
evolution of the Poynting flux through a surface at » = 100 in the area of the funnel flow
for the four different cases of black hole spin. There is a clear trend that the Poynting flux
from the jet funnel increases with spin parameter. The highest Poynting flux appears in the
reference simulation with a = 0.9. For simulation sim! the flux is substantially (factor 10)
lower than for the simulation with a rotating black hole. Also, in sim1 the absence of black
hole rotation results in a relatively higher flux from the disk wind. A question arises on
what drives the Poynting flux from a nonspinning black hole. We believe that this Poynting
flux is driven by the rapidly rotating (infalling) material that is just outside the horizon in
a fashion similar to the BZ mechanism. The magnetic field lines are twisted by the rotating
disk, creating a jet with smaller electromagnetic energy flux.

5.1.1 A Counterrotating Black Hole

We now investigate how a counterrotating black hole affects the overall jet launching. It has
been suggested that the efficiency of the BZ process in prograde systems is slightly higher
compared to retrograde black hole-torus systems (Tchekhovskoy and McKinney, |2012). Here
we extend this analysis for resistive GRMHD and for thin accretion disks. We have set up
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simulation run sim& with a negative Kerr parameter a = —0.9, but otherwise identical to
our reference simulation.

A first comparison shows the accretion rate at radius r = 2 (see Figure|5.1]) and the disk
wind mass flux (see Figure for both simulations. For a = —0.9 the ISCO is located at
r ~ 8.7. As a result, since the inner radius of the initial disk is located farther in at r = 7,
accretion toward the black hole starts immediately with a sudden infall of the disk area
inside ISCO. Furthermore, the disk immediately looses a substantial fraction of mass, about
30% until ¢ = 300t,. Afterward, the disk structure adjusts such that its inner radius remains
outside the ISCO and the normal — slow — accretion begins as soon as angular momentum
is removed from the disk material.

All simulations start with an initial setup with By = 0. However, by the rotation of the
footpoints of the field lines (accretion disk or space time) a toroidal field is induced. In the
prograde simulations, the By in the disk wind and the black hole magnetosphere have the
same sign since both the disk and the black hole have rotate in the same direction. At the
equatorial plane By changes sign (see Figure left panel), since the magnetic field lines
are anchored at infinity.

In contrast, for the case of retrograde black hole rotation, simulation sim3, the By in
the black hole magnetosphere and in the outflow launched from there is induced with the
opposite sign compared to the disk wind (see Figure right panel), resulting in another
boundary layer with B, = 0 appearing between the jet funnel and the disk wind.
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While we expect (and find) the black hole-driven outflow to have a different sign for
negative Kerr parameter, we would expect the disk wind to have By with the same sign
for positive and negative Kerr parameter, again with By, = 0 and a change of sign at the
equatorial plane. However, to our surprise, we find that in the disk area close to the inner
disk radius the By changes sign three times (instead of only once; see Figure . In fact,
the By in the wind above the disk surface is directed opposite to the By below the disk
surfaceﬂ. Along the disk surface By = 0.

This also affects the poloidal component of the magnetic field (mainly the radial compo-
nent), as it is visible purely from the shape of the field lines. The change of sign in By close
to the equatorial plane is intrinsically connected to the type of accretion: Figure [5.5| shows
the radial velocity for simulation sim3 and clearly indicates that inside the disk some mate-
rial is moving outward, while accretion happens along the surface layers of the disk. For the
case of prograde rotation, accretion is mainly along the equatorial plane. This unexpected
behavior, however, does not affect the overall accretion rate.

For simulation sim3 with a = —0.9 we find — similar to the prograde case — an outgoing
Poynting flux, which is indicative of Blandford-Znajek launching. The Poynting flux in the
funnel area increases with time, with a time average value of (Egy) = 3 x 1073 at radius
r = 100. For comparison, the Poynting flux at » = 100 for the prograde simulation sim0
is (Ery) = 4.89 x 1073, Furthermore, the Poynting flux from the disk wind appears to be
stronger than the one from the funnel having a time average of (Fmy) = 4.52 x 1073 at
r = 100. We do not find significant differences in the electromagnetic energy emitted within
the funnel flow between the prograde and retrograde simulations.

It would have been interesting to follow the retrograde setup for a longer time, but the
simulation stopped at ¢t ~ 5500, most probably due to the high mass loss and also the
complex magnetic field and velocity structure.

Although we find for the retrograde black hole rotation a few remarkable and also un-
expected features that can be astrophysically interesting, we do not want to overinterpret,
as we think that the retrograde case is not likely realized in nature. Retrograde black hole
rotation may be realized by galaxy mergers with accompanied binary black hole mergers,
but not from pure disk accretion. Similarly, counterrotating black hole-disk systems may be
expected from specific initial conditions for neutron star mergers and thus may affect the
subsequent gamma ray burst activity.

5.2 Impact of Magnetic Diffusivity

MRI is thought to be the main driver of turbulence in accretion disks (Balbus and Haw-
ley, (1991; Balbus and Hawley, [1998). The feasibility of the MRI has been demonstrated
also in GRMHD simulations (Penna et al., 2010; McKinney, Tchekhovskoy, and Blandford,
2012). Overall, turbulence results in a dissipative effect for the magnetic field, which we ex-
press through a mean magnetic diffusivity, in analogy to the a-effect for turbulent viscosity
(Shakura and Sunyaev, [1973).

In contrast with ideal MHD, the disk material is now able to move across the magnetic
field (lines) while accreting toward the black hole. The advection of magnetic flux is reduced
owing to the weaker coupling between magnetic field and mass. It is thus worth investigating

30f course similar for the upper and lower hemisphere respectively
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FIGURE 5.6: Accretion rate and resistivity. Comparison of the accretion rates measured at r = 2
for the simulation runs with 79 = 1072 (sim4, red), no = 1073 (sim0, green), o = 10~* (sim5,
blue), and 19 = 10719 (sim6, magenta).

the effect of diffusivity on the accretion-ejection mechanism and the launching of outflows
and jets. As described above, we have implemented a background diffusivity fixed in time
and space that mainly follows the disk structure (see Sect. [3.1.4)).

In the following we focus on varying the strength of the disk magnetic diffusivity. Further
studies considering the scale height or the radial profile need to be done, as it has been
worked out for nonrelativistic studies of jet-launching simulations (see, e.g. Sheikhnezami
et al. (2012) and Stepanovs and Fendt (2014)).

We have run three further simulations, that are identical to our reference simulation but
consider n9 = 1072 (sim4), 10~* (sim5), and 10710 (sim6), respectively (see Table .
We observed that a higher magnetic diffusivity stabilizes the simulation run, and simulation
sim4 runs until £ = 15000. Simulations with lower diffusivity levels were terminating earlier,
however still providing enough information for a comparison.

In Figure[5.6| we compare the accretion rate at radius r = 2 for different levels of magnetic
diffusivity. For simulation sim4 with the highest level of diffusivity we notice an almost
constant (in comparison with the other simulations) accretion rate without any spikes. Still
some spikes start appearing after ¢ = 9000 when we plot the long-term accretion evolution
of sim/ even though the background accretion does not change much. Overall, for this
simulation we cannot identify the three phases of accretion rate we found in the reference
simulation, even with the longer simulation time.

For lower levels of diffusivity the evolution of the accretion rate has more similarities to
simulation sim(@. We identify similar phase changes to those we detected in our reference
simulation; however, unfortunately the simulations stop before they reach a time scale that
is comparable to that of the reference simulation. Even in this case, though, for simd the
second phase starts at ¢t ~ 1600, while for sim6 it starts at t &~ 1100; however it is not as
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FIGURE 5.7: Ejection rate and resistivity. Comparison of the mass flux associated with the disk

wind for the simulation runs with ny = 1072 (sim4, red), no = 1073 (sim0, green), ng = 1074

(sim&, blue), and ng = 10719 (sim6, magenta), integrated along the surfaces of constant angle at
80° and 100°.

clear as in the reference simulation.

For the vertical flux of the disk wind we observe a similar behavior — a larger disk
wind mass flux resulting for lower levels of diffusivity (see Figure . It therefore seems
that high diffusivity reduces the efficiency for the magnetic field to a launch disk wind.
This is straightforward to understand and has been observed in nonrelativistic simulations
(Sheikhnezami et al.,[2012)): for a magnetic driving of outflows (Blandford-Payne or magnetic
pressure driven) a strong coupling between magnetic field and matter is essential.

For the radial mass flux we detect a different behavior. A high radial mass flux appears
for the reference simulation with 79 = 0.001, while for both higher and lower diffusivity
levels the mass flux decreases to approximately similar levels. The area where we find the
Bg-dominated wind has a lower diffusivity level than the equatorial plane, but for simulation
sim4 it is still significant enough to weaken the wind. The area of the By-dominated wind
increases with the increase of diffusivity.

Finally, we investigate the Poynting fluxes for the different levels of diffusivity. Figure|5.8
shows the Poynting flux through the jet funnel at radius » = 100 for various n. The flux
increases in time for all cases; however, comparing simulation sim4 (largest n) with the
reference simulation, the increase is much slower. Simulations simd and sim6 show again
very similar behavior following the trend we observed in the accreting and vertical mass
fluxes. Also, in the case of sim/ the flux from the disk wind is slightly stronger than the flux
from the jet funnel.

The previous findings hint at preferred levels of diffusivity (or a preferred level of tur-
bulence) that supports the launching of a disk wind. For higher diffusivity, the coupling
between matter and field may not be efficient enough for launching, while for lower levels of
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FIGURE 5.8: Poynting flux and resistivity. Comparison of the radial Poynting fluxes at » = 100
in the jet funnel for simulation runs applying diffusivity 1o = 1072 (sim4, red), no = 103 (sim0,
green), 7o = 1074 (sim5, blue), and 1y = 10710 (sim6, magenta).

diffusivity the mass loading becomes inefficient.

What is the mechanism behind these findings of a threshold value for the magnetic
diffusivity of n = 1073...1072 where the flow becomes smooth and never MAD-like? We
believe that is is the interplay between magnetic reconnection, magnetic diffusion, and ohmic
heating that governs the disk structure at these scales. Magnetic reconnection destroys
magnetic flux that is needed to launch strong outflows. It also generates turbulence to the
flow. We would thus expect a high resistivity to weaken the outflow launching. On the
other hand, a higher resistivity enables a more efficient mass loading of the outflow. Thus, a
smaller resistivity would decrease the mass load of the outflow but potentially may produce
outflows with higher speed (for the same magnetic flux available). Ohmic heating of the
launching area would, in contrast, increase the mass loading (in classic MHD steady-state
theory the mass load is determined by the sound speed at the launching radius).

Overall, our simulations seem to follow these trends. For low resistivity, resistive mass
loading becomes less efficient, assisted by low ohmic heating. For high resistivity, reconnec-
tion weakens the outflow. For a critical resistivity in between, outflow launching becomes
most efficient.

5.3 The Direction of Electric Field

In ideal MHD the electric field is always directly calculated from Ohm’s law and for that
reason it is often omitted even though it is the main contributor in the acceleration of
charged particles along the magnetic field lines. We mentioned before that the introduction of
resistivity creates the necessity to evolve the electric field with the other physical quantities.
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5.3. The Direction of Electric Field 111

In this section we will take a look in the structure of the often ignored electric field and the
information it provides us with.

The poloidal electric field can be written as a combination of the poloidal and azimuthal
components of the magnetic field, fluid velocity and electric current

E, = B, xvy+ By x vy, +nJ,, (5.1)

where J, = J, + Jy (for an analytical derivation please refer to Appendix . There are
three components in the above equation affecting the value and direction of the poloidal
electric field differently. In case the values of those three components vary greatly, the
values and, more importantly, the direction of the poloidal electric field will be determined
mainly by the dominant components.

In Figurel|5.9|we see these three components plotted over the same scale for comparison for
the reference simulation sim0 at t = 4000. The cross products can be approximated by simple
value multiplication since the poloidal and azimuthal vectors are always perpendicular. In
the same figure we also plot the poloidal vector for the fluid velocity, electric and magnetic
field. We see that the values of the B), x v, is in general lower that the value of the
B, x v, component, mainly in the jet funnel and the developed disk wind. However, inside
the disk and in the just launched disk wind the By x vy is dominating. As a result, the
electric field seems to follow the direction perpendicular to either the poloidal velocity or
the poloidal magnetic field (and of course any intermediate case) depending on the values
of those components. The toroidal velocity and magnetic field become comparatively strong
only close to the black hole. The nJ, term is not strong enough to affect the direction of
electric field even for higher values of diffusivity.

From simulations of steady state solutions we know that the poloidal electric field must
be perpendicular to the poloidal magnetic field and can be expressed by

F
E="YBn-"Bn (5.2)

C Ty,

where QF is the angular velocity of the field lines, r;, = ¢/QF is the light cylinder radius
(the radius where the angular velocity of the field lines surpasses the speed of light) and
n = B,/ B, x &, is the direction of the poloidal electric field (Porth and Fendt, 2010).

In Figure [5.9] we also compare the direction of the three poloidal vectors for velocity
(pink arrows), magnetic (white arrows) and electric field (brown arrows). In the outflow
that is launched from the surface of the disk the poloidal velocity is mostly radial and since
it is the major contributor in the value of the dominating component by x vp the vector
of the poloidal electric field is perpendicular to it (see arrows of Figure , middle panel).
The same applies in the case of the axial jet funnel as well. The direction of the poloidal
magnetic field is much more variable than the velocity. In the disk wind it does not follow
any particular direction and the expected perpendicularity with the poloidal electric field
does not apply.

Exception to this is the axial jet funnel where the two vectors are almost perfectly
perpendicular (see arrows of Figure , right panel). This also means that the poloidal
velocity and magnetic field vectors should be (anti)parallel in the axial jet funnel of the
(south)north hemisphere (see arrows of Figure [5.9] left panel). This means that the steady
state condition we described before can only apply in the axial jet funnel, while in the disk
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wind field and fluid do not follow a smooth evolution probably die to the different types of
disk wind we described in Chapter [4]

In the jet funnel, since the poloidal velocity and magnetic field are parallel we can ap-
proximate that

v, = kB, (5.3)

with x having positive and negative values depending on the hemisphere. In general, the
values of poloidal velocity are a few orders of magnitude larger than the values of the poloidal
magnetic field, which means that x ~ 103 — 10°. From Equation (5.1]) we get

E,=By,Xvy+ By xv,+ndy
= B, xvy+ By x kB, +nJ, (5.4)
= By x (vy = kBg) + 11,
which satisfies the steady state condition of E, 1 B,,.

5.4 Summary

We compare the accretion rates for different black hole spin parameters. For the same level
of magnetic diffusivity (9 = 0.001), we find for increasing spin the accretion rate decreases
close to the horizon. At the same time, the accretion rate increases, and with it the mass
flux of the launched disk wind in both the polar direction (launching) and radial direction
(acceleration) increase as well. This result comes in contrast with previous works (Qian,
Fendt, and Vourellis, 2018|) where the connection between accretion and disk wind was
much stronger.

We compare the accretion rates for different levels of magnetic diffusivity. For the same
black hole spin we find that increasing diffusivity lowers the accretion rate, and results in
a decrease in the mass flux of the disk wind launched from the disk surface. The radial
mass fluxes show only small differences that do not allow us to say beyond any doubt if they
are affected by the changes in diffusivity. Definitely, a weaker coupling between matter and
magnetic field, induced by the increase in magnetic diffusivity, affects both accretion rate
and mass loading of the wind in a similar way.

The electromagnetic energy flux that is carried by different parts of the outflow is domi-
nated by the flux of the jet funnel. This flux in the jet funnel is highly affected by the black
hole rotation as this part of the outflow driven by the BZ mechanism. We find that the
disk and the Poynting-dominated outflows are strongly connected as the level of magnetic
diffusivity does affect the electromagnetic flux in the jet as well — in spite of the fact that
the diffusivity close to the horizon is negligible. Similar to the peak in the mass fluxes for
the disk wind, the Poynting flux reaches a peak value for g = 1073. We believe that this
critical level for the resistivity is a result of the interplay between re-connection decreasing
the magnetic flux launching the outflow and magnetic diffusion and ohmic heating, both
increasing the mass flux.

The simulation of a counter-rotating black hole revealed an interesting feature. The ret-
rograde rotation induces additional field reversals in the toroidal component of the magnetic
field in the inner disk area. In this case, the accretion is supported mainly from the surface
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material of the inner disk area (where By = 0), though without significantly affecting the
accretion rate itself.

Finally, we take a look in the direction of the poloidal electric field vector in comparison
the the poloidal velocity and the poloidal magnetic field vectors. We find that the velocity
is the major contributor in the value and the direction of the electric field. In the jet funnel
where velocity and magnetic field are parallel we find the electric field perpendicular to both,
whereas in the disk wind the electric field stay perpendicular mostly to the poloidal velocity.
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Chapter 6

Magnetic Dynamo in Accretion Disks
and Tori

In the previous chapters we studied the launching of jets and in the simulations we per-
formed we always used a poloidal magnetic field that threaded the disk as part of the initial
conditions. The origins of such magnetic fields are generally unknown, however there are
theoretical models that show the magnetic field can be generated from the turbulence in
the fluid (see Chapter In this chapter we will attempt to show simulations of fully
dynamical development and evolution of a magnetic field generated by a mean—field dynamo
in a general relativistic environment. We follow the closure discovered by Bucciantini and
Del Zanna (2013) which we implemented into HARM3D. First, we introduce our method and
the initial conditions for the simulation and then we apply them in the case of accretion tori
and thin disks.

6.1 Dynamo Action

In Section we showed on a theoretical level how the mean-field dynamo theory can
lead to the generation of magnetic fields. In order to apply this idea in a simulation we need
to put in an astrophysical context. Turbulence is the main candidate for the generation of
the magnetic field. The MRI (Balbus and Hawley, [1991)) is one of the potential candidates
for the turbulent dynamo (Brandenburg et al., |1995)). Pudritz (1981b), Pudritz (1981a)),
and Stepinski and Levy (1988]) showed generation of magnetic field from dynamo in accre-
tion disks. Campbell, Papaloizou, and Agapitou (1998)) studied the advection of dynamo
generated magnetic field and the bending of the field lines due to advection, while Camp-
bell (1999) showed that the 60° angle required for the launching of disk winds according to
Blandford and Payne (1982) is reduced to 20° in the case of a magnetic field with curved
field lines and a finite thin disk.

The extension of our resistive code used in the simulations of the previous chapters
to include dynamo is relatively straightforward. The forward and inverse scheme for the
primitive and conserved variables is the same as the one described in Chapter while we
use the full Equation in order to include the term depending on the ¢ parameter.

The ratio between the a or ¢ value and the diffusivity defines the dynamo number. In
the case of the Newtonian simulations utilizing a thin accretion disk (Bardou et al., 2001;
von Rekowski et al., 2003; Stepanovs and Fendt, [2016) the dynamo number is defined as
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aH SH?

U]
where the two fractions represent the Reynold’s numbers from the « effect and the differential
rotation respectively. H is a measure of the scale height of the disk and S is a measure of
the shear due to the differential rotation.

In the case of tori in general relativistic environment, Bugli, Del Zanna, and Bucciantini
(2014) are using the point of highest density in the “centre” of the torus as a measure of the
scale height and the difference in the angular velocity between the inner torus radius and
the point of maximum density as a measure of the shear. This translates to

Do = |RoR,,| = (6.1)

AQR?
Pmax Pmax ( 6 ) 2 )

n n

From the Newtonian simulations we know that in order to develop a poloidal magnetic
field in the form of a dipole, the prescribed dynamo distribution must change sign in the
equatorial plane. Specifically, (Rekowski, Rudiger, and Elstner, 2000) mention that the «
parameter must be negative in the upper hemisphere. However, in our code, this does not
happen immediately. We noticed that if we prescribe either an initial toroidal field that
changes sign in the equator or has any change in their value in the 6 direction, and/or a &
dynamo distribution that changes sign in the equatorial plane as well, the poloidal field that
is created in the first steps of the simulation is quadrupolar. The only means by which a
purely dipolar poloidal field can be created is by prescribing an initial toroidal field and a &
distribution that keeps the same sign in both hemispheres.

As mentioned before, our code was based on the mean-field dynamo closure discovered
by Bucciantini and Del Zanna (2013)). Between the test simulations they provide and the
application by Bugli, Del Zanna, and Bucciantini (2014) they only show the poloidal field
in the neutron star dynamo test in Section 5.2.4 of Bucciantini and Del Zanna (2013). In
this case the & dynamo is constant and has the same sign in the whole grid and the initial
toroidal field has the same sign inside the neutron star, resulting in a dipolar poloidal field.
After trying many different combinations, we can verify that the only one that results in the
generation of a dipolar poloidal field is

R

D¢ = | ReR.,| =¢

e when the initial toroidal field keeps the same sign in both hemispheres and

e when the £ distribution has a constant value in the 6 direction and keeps the same sign
in both hemispheres.

In the classical MHD regime the induction equation of a system that includes n diffusivity
and a dynamo can be written as

B =Vx(vxB)+Vx(aB)+VxVx(nB). (6.3)

In general, 7 and « are tensors. Only in the case where they are constant they can be moved
outside of the derivatives. The closure derived by Bucciantini and Del Zanna (2013)) and used
in our work assumes only isotropy in diffusivity and dynamo without requiring the values to
be constant. This however does not fully work since we can see clear indications that any
dependence of the on the values of dynamo affects the polarity of the generated poloidal
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condition used is a toroidal field with the same sign in both hemispheres.
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magnetic field. In Figure we show an example of the dynamo distribution affecting the
polarity of the magnetic field.

6.1.1 The Quenching Prescription

If the dynamo is left to act unchecked its non-linear nature will result in the exponential
increase of the magnetic field strength. A very strong magnetic field can suppress physical
processes such as the MRI which are considered sources of the turbulence in the disk. With
the repression of turbulence the dynamo will also be suppressed resulting in a weakened
generated field. In the absence of a turbulence model, the dynamo quenching must be done
artificially by enforcing lower £ values when certain criteria apply (e.g. low plasma-f3).

As an example, Bardou et al. (2001) implement a back-reaction on the o dynamo from
the magnetic field by making a depend on the values of B. Fendt and Gafimann (2018)) used
a diffusivity model where the dynamo was quenched by increasing the magnetic diffusivity,
which also provides for a more physical approach. However, the rate in which diffusivity and
dynamo affect the magnetic field are very different. Depending on the dynamo number, &
can show an exponential increase while 7 can dampen the magnetic field with a rate close
to linear. Thus, if the dynamo number is too large, the change in diffusivity might not
be enough and an artificial quenching must be used. Furthermore, increasing diffusivity
decreases the timestep resulting in an increase in the computational cost for the simulation.

In our models, we implement a quenching mechanism that calculates the magnetization
of the fluid and when the magnetization becomes too large, the quenching is applied by
reducing the value of the £ parameter. The quenching prescription follows Bardou et al.

(2001) with
1

L+ Beq/ B’

where &, is the quenched dynamo and 4 is the equipartition plasma-£3.

However, we encountered an issue with the MPI parallelization of the code. Initially
we wanted to take average values of magnetization over a region of cells and the apply the
quenching in them, however, this meant that either all these cells should belong in the same
process/core or we should find a way to communicate the values between the processes. The
second option would require heavy work with the parallel aspect of the code with which
we were not very familiar, so we choose the first option which also had a downside. It
was restricting us into using small number of cores for the simulations in order to have a
large area of the disk in one core. We compromised in running the simulation with parallel
splitting only in the radial direction. In this way, each process was a set of “semicircles” with
256 cells in the 6 direction and only 4 or 5 in the radial direction. Still, this arrangement
resulted in more time consuming simulations.

The values of diffusivity, dynamo and Kerr parameter for each simulation can be seen in
Table [6.11

§g=¢ (6.4)
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6.2 A Dynamo-Generated Poloidal Field in
an Accretion Torus

For our simulations we choose to simulate the evolution of the magnetic field as it is de-
veloped inside a toroidal disk. This choice is motivated by the fact that we want to avoid
the initial collapse we often see when simulating thin disks. For that we choose the equi-
librium solution introduced by Abramowicz, Jaroszynski, and Sikora (1978) and Fishbone
and Moncrief (1976)). Since the torus is an equilibrium solution of the spacetime, some of
its characteristics depend on the rotation of the black hole. For the case of a Schwarzschild
black hole a = 0, we choose an inner radius for the torus at rj; = 6 and a point of maximum
density at rpax = 15. The simulation grid extends from just inside the event horizon of the
black hole to a radius of » = 80. The torus is surrounded by an artificial atmosphere, namely
a set of floor values in the density and pressure. We use the distribution described in Sec-
tion [3.1.5] The torus is surrounded by a corona of low density and pressure and is prescribed
with a poloidal or toroidal magnetic field. The toroidal field is located inside the torus,
following it density distribution and its is normalized based on the choice of plasma-3. Since
we are interested in the generation of magnetic field we choose a very high plasma-3 ~ 10°
for our seed toroidal field.

For the simulations that appear in this chapter we go back to the original numerical
grid of the code, without the hyper-logarithmic component we implemented. The purpose
of the hyper-logarithmic grid was to solve boundary issues with the applied poloidal field.
However, in the dynamo simulations, the poloidal field is generated from the torus and does
not cross the boundary. The grid size used in all following simulations is 256 x 256. The
simulations are taking place in a resistive environment. Magnetic diffusivity will act against
the dynamo and will dampen the generated field. We also expect diffusivity to be higher in
the areas with higher turbulence. The profile we choose follows the density distribution of
the torus with constant value outside of it.

For the dynamo, we choose a distribution where the dynamo works inside the torus but
in a smaller area. With this choice we make sure that there is no dynamo outside of the
torus or in its outer layers where diffusivity is low, which would result in very high dynamo
numbers.

6.2.1 Using a Constant Dynamo Distribution

In Figure we show the initial distributions of density, By, n and £. For the definition of
the total dynamo number we will use Equation (6.2]), where both the ¢ and the w dynamo
numbers are defined for every cell separately but only inside the initial torus distribution.
The reason is that the magnetic diffusivity drops to ~ 10719 outside of the torus resulting
in very large w dynamo number.

When the simulations starts, the poloidal magnetic field appears immediately inside the
torus in the area where By and dynamo coexist. As the simulation runs, the field starts
increasing in value due to the dynamo while advecting towards the black hole following
partially the accretion of the torus. Simultaneously, diffusivity is trying to dampen the
magnetic field. In the end, the D¢ determines where the field is amplified or dampened.
Since § is constant, the profile of diffusivity decides the value of R¢. As an example of their
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FI1GURE 6.3: Generation of dipolar poloidal field. The color gradient shows the density distribu-
tion in log scale and the white lines show the poloidal magnetic field. The initial condition starts
with a toroidal field with high plasma-S ~ 10°. The poloidal field appears immediately in the
area where dynamo exists (¢ = 1, upper left) and it evolves through ¢ = 1000,2000 and 3500.
This corresponds in approximately 10 rotations of the point of maximum density at R, . = 15.
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TABLE 6.1: Details of the dynamo simulations. The first column shows the type of simulation (dip
and quad are torus simulations with a dynamo the generates an initial dipolar and quadrupolar
structure respectively and thin are thin disk simulations). The initial field column refers to the
type of seed magnetic field used in the simulations (Br for toroidal field and Bp for poloidal).
The + or — sign shows the sign of the field in the two hemispheres. [y is the plasma-3 value of
the seed field. a, ng and &y are the Kerr parameter, maximum diffusivity and maximum dynamo
parameter respectively, while the dynamo distribution is described in the next column. The final
column shows whether the simulation used dynamo quenching or not.

Run Initial field [y «a 10 &o ¢ distribution Quenching
dip0 Br (+) 10 0o 1073 1073 positive, constant no
dipl By (+) 10 o 103 1073 positive, constant yes
quadl Br (+) 106 0o 1073 1073 positive, 6—dependence no
quad?2 Br (+) 106 o 1073 1073 positive/negative, §-dependence no
quad3 Br (+) 10 0.9 1073 1073 positive, 6—dependence no
quad4 Br (+) 10 0 1073 2x1073 positive, 6—dependence no
quad4.1 By (+) 10 0 107* 2x1073 positive, 6—dependence yes
thinl Br (+) 105 0o 1072 1073 positive, constant no
thin2 Br (+) 10 0 1073 2x1073 positive, constant no
thin3 Bp (£) 10 0o 103 1073 positive, constant no
thin4 Bp (£) 105 0 1073 4x1073 positive, constant no
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FIGURE 6.4: Minimum value of the plasma-3 for the toroidal and poloidal components of the
magnetic field in the area where dynamo works during the evolution of the simulation. At ¢ = 3900
there is a sudden drop in the plasma-f (increase in the magnetic field) which marks the failure of

the code.
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values, in the center of the torus the numbers are R¢ ~ 15 while its maximum values reaches
R¢ ~ 150 in the boundaries of the dynamo distribution.

In Figure [6.3] we see the snapshots of the evolution of the poloidal magnetic field. As
mentioned before, in the beginning, the field lines are restricted in the area where & # 0.
However, they are eventually dragged along with the material that is accreted towards the
black hole. At time ¢t = 2000, as the dynamo has been working for approximately 6 rotations
of the torus center, we see a low strength outflow being launched from the inner part of the
torus. The magnetic field lines follow the low density fluid showing the first indications
of the development of a jet. The launching point of the outflow is barely inside of the
ISCO and can be attributed to the presence of the strong toroidal magnetic field we see in
the close atmosphere of the inner part of the torus. This strong toroidal field, which has
been amplified by the w effect of the dynamo, can increase the magnetic pressure and push
material and poloidal field outwards (Lynden-Bell, 1996). The material accelerated by the
outflow consists mainly of the floor values used by the code as background environment.
At this point the plasma-£ of the magnetic field is approximately 1 inside the ISCO and
between 10 and 100 in the area of the outflow.

The poloidal field continues to grow up to ¢ ~ 3800, but then the field becomes too
strong, resulting in a failure of convergence for the code. At that time, both the toroidal
and the poloidal components of the field have spread into the greatest part of the grid while
the plasma-f has reached values between 0.01 — 0.1 inside the ISCO and around 1 in the
outflow. In Figure 6.4 we see the evolution of the minimum value of plasma-$ inside the
torus. In the area where the outflow is launched from, the plasma-/ is approximately 10
times lower.

6.2.1.1 The Structure of the Magnetic Field

The initial condition of the toroidal component of the magnetic field follows the density
profile while keeping a positive sign in both hemispheres. We know that such a field is very
difficult to exist in astrophysical disks however, as we mentioned before, it is necessary to
produce a dipolar poloidal field. However, a toroidal field is also produced by the w effect
when the newly created poloidal field starts rotating, inducing an extra toroidal component
on top of the initial one. The induced toroidal field changes sign in the equatorial plane
keeping the positive values in the upper hemisphere (where the poloidal field is negative).
This results in a gradual change in the toroidal field inside the torus, where the initial
condition is replaced by the newly generated field. At time ¢ = 1000, the change in sign
has already appeared in the border of the area with non-zero dynamo values (and poloidal
field) and it keeps spreading, gradually changing the sign of the toroidal field in the lower
hemisphere. At time ¢t = 2000 this transformation has mostly finished with a toroidal field
that changes sign in the equatorial plane.

The generated poloidal field is dominated by its radial component, which decides the
direction of the field lines. One of the problems of the generated field is that even though
initially it emerges as a perfect dipole, with negative values in the upper hemisphere and
positive ones in the lower hemisphere, eventually it changes into a form of alternating po-
sistive and negative stripes each other resulting in the creation of closed loops of field lines.
This layering effect of the radial magnetic field component affects the toroidal field, as a
similar behavior is seen in later stages. The layered behavior of the generated field starts
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at around ¢t = 500 — 800 where the dipole that was initially produced starts to change as
positive B, values appear in the upper hemisphere, which was initially only negative. This
occurs in similar ways in all components of both the magnetic and the electric field. At
around ¢ = 1000, a new layer appears in the B, with negative values that alternate the
previously produced positive values in the upper hemisphere. This procedure continues for
the whole duration of the simulation and eventually results in a completely layered magnetic
field. These layers always appear in the inner part of the torus where the £ dynamo number
is also higher and always inside of the previously appeared layer. The reason for this is, at
the moment of writing this thesis, unknown.

6.2.2 Simulation with Dynamo Quenching

To test the effect of our dynamo quenching scheme we run simulation dip1, which is similar
to dip0 with the exception of the dynamo distribution that extends into the whole initial
torus distribution. In order to compensate for larger dynamo area we applied a dynamo
quenching mechanism according to Equation . The simulation shared many similarities
with dip0including the growth of the magnetic field, which for simulation dip1 happens quite
earlier.

For the quenching we chose an equipartition plasma-3., = 1000 in order to start the
quenching before the magnetic field becomes to strong and crash the simulation. However,
we were not able to avoid that even with the early quenching we used. In Figure [6.5]
we see the plasma-f and the dynamo parameter £ as it is being quenched in the inner
part. Even though the values of plasma-5 ~ 0.1 around the black hole, the quenching is
happening only in the inner part of the disk, which is probably the main reason it was not
very effective. A quenching mechanism that will use information from the whole torus/disk
via the implemented parallelization would be able to quench the dynamo more effectively
and extend the “lifetime” of the simulation.

6.2.3 Using f6—depended Dynamo Distribution

As we mentioned previously, any dependence of the dynamo distribution from the polar
angle will create an quadrupolar poloidal field. We will present two simulations where we
try to reproduce outflows from a dynamo generated by a quadrupolar field. In simulation
quadl, we use a dynamo distribution that keeps the same sign in the two hemispheres but
with the aforementioned polar angular dependence. Since the dynamo is supposed to vanish
in the equatorial plane we choose to use a prescription similar to the one used by Stepanovs
and Fendt (2016) imposing a sinusoidal function over the polar angle  resulting in increasing
values as we divert from the equatorial plane (see Figure .

As the simulation evolves, the magnetization in the surface of the torus, where the dy-
namo number is higher, increases, resulting in the appearance of low velocity outflows. The
newly generated field is advented towards the black hole increasing its magnetic pressure
and energy. The plasma-f3 plot in Figure shows the strength of the poloidal magnetic
pressure in comparison with the fluid pressure. From inside the ISCO, poloidal field lines are
extended outwards creating a path for accelerating material. High velocities are observed
only in the lower hemisphere jet (counter-jet) where the Lorentz factor values are around 2
while the upper hemisphere jet (jet) is restricted to lower velocities ~ 0.2c.
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FIGURE 6.5: Plasma-beta and & dynamo at time ¢t = 2400 for simulation dip!. Even though the
ejection from the inner part of the system is with strong magnetization, the quenching in only
happening in the inner part of the dynamo sitribution.

Similar to the case of the constant dynamo, the generated field appears in layers of
different signs inside the torus which increase the complexity of its initial quadrupolar nature.
In the jet area, however, a dipolar component appears. The structure still has some of the
layers but the dipolar nature is quite prominent. The dipole nature magnetic field allows
the field line to open outwards aiding the development of a jet.

The structure of the jet and counter jet is similar when it comes to their shape, length
and collimation. When they were initially developed, they also had similar velocities. As
evolution continues, the counter-jet starts developing higher velocities that its counterpart.
A possible explanation can be found in the electric field structure. In Figure we also
see the values of the radial electric field component E,.. There is a clear difference in the
structure of the electric field between the two hemispheres. In the upper hemisphere, the
structure appears chaotic with positive and negative values of the field appearing next to
each other. There is a region that is dominated by a positive electric field but the values
are not very strong in comparison with the lower hemisphere. Here, there is a clear region
where strong negative values of electric field dominate and this region coincides with the
high-velocity outflow region.

6.2.4 Other Torus Simulations

In simulation quad2 we add another feature in the dynamo prescription. We demand the
positive values to be restricted in the upper hemisphere and the lower hemisphere to have
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a cell inside the torus (R ~ 17,6 = 90°) for simulation quad2. Bottom: Snapshots of the radial
component of the magnetic field B, at three different times ¢ = 2000, 3700, 5500. The changes

in the sign of B, inside the torus are clearly visible.
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negative values of . In the equatorial plane the dynamo vanishes and the angular dependence
remains as in simulation quad1.

The evolved torus looks much different than that in simulation quadi. The sign-alternating
layers appear again inside the torus in later times and in general the changes in the simula-
tion appear to happen at lower rate. However, this has nothing to do with the time scale of
the simulation. The quadrupolar structure of the generated poloidal field is much stronger
and persists for much longer times. Outflows develop in the surface of the torus and from
the black hole but they are weaker than the ones we saw in simulation quadi.

An important feature observed in simulation quad?2 is how the radial magnetic field
component B, changes sign inside the torus. In Figure 6.7 we show the values of B, and Ejy
at radius r ~ 17 in the equatorial plane along with 3 snapshots of B,, where the change in
the sign is seen clearly for a large region inside the torus. This effect does not appear for
the other two simulations with different dynamo distributions. Simulation quadl has some
variations in the signs of B, and Ey but does not show the clear periodical variation that
simulation quad?2 does. Simulation dip0 shows absolutely no change in the signs of B, and
Ey.

Simulation quad3 is the same as quadl but with a Kerr parameter of a = 0.9. The
rotating spacetime accelerated the evolution of the outflow resulting in the generation of
a relativistic jet at time ¢t ~ 1900. In the same time, simulation quadl with a = 0 had
barely started showing any signs of outflow (see Figure . The rotating space time also
accelerated the growth of the generated magnetic field. By the time the simulation crashed
(t ~ 2000), the poloidal plasma-f in the accretion nozzle outside the marginally stable orbit
was [ ~ 10 which is within the limits of magnetization the code can handle. However, it
dropped to much lower values very fast resulting in crashing the simulation.

Simulation quad is also based on quadl but with slightly increased base values for the
dynamo (£ = 0.002). From its early stages of evolution the difference in the strength of
the generated magnetic field was significant. At time ¢ = 1500, a jet-like outflow had been
developed with branches that extended outwards and fluid velocities up to ~ 0.2c. The
simulation crashed much sooner than its parent (¢ ~ 2200) and by that time the outflows
had extended into the largest part of the grid with velocities up to ~ 0.6¢.

Simulation quad4.1 combines simulation quad4 with the quenching mechanism we also
prescribed in simulation dip1 (see Equation (6.4))). The simulation quady. I lasted for slightly
longer than its parent simulation due to the quenching, which however, was again not enough
to stop the simulation from crashing.

6.3 A Dynamo-Generated Poloidal Field in
a Thin Disk

6.3.1 From a Toroidal Seed Field

As a next application we will use thin disks with the same hydrodynamical initial conditions
(density, velocity, etc.) used in the previous chapters (see Chapter[3.1.3)). The simulation grid
is also the same as the one used in the previous dynamo simulations (256 x 256, logarithmic
in 7). Inside the disk we utilize either a toroidal or a poloidal magnetic field. The toroidal
field is similar to the one we used in the torus simulations, with positive values in both
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FIGURE 6.9: Initial conditions and evolution of simulation thini. Top left: Distribution of mag-

netic diffusivity. The value is constant inside the disk and the drops steeply in the disk surface.

Top right: Initial condition for the toroidal magnetic field component. Bottom left: Radial com-

ponent of the magnetic field B,. Bottom right: Fluid density in logarithmic scale with the poloidal
magnetic field lines.
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hemispheres (see Figure . The poloidal field has a purely radial component with positive
and negative values in the upper and lower hemispheres and is completely confined inside
the initial disk distribution. The inner radius of the disk is set to r = 10, quite outside
the ISCO of the Schwarzschild black hole. For diffusivity we use a new profile that gives
a constant value of n = 0.001 inside the disk with a steep drop to low values in the disk
surface (see Figure[6.9). Our goal is to develop a dipolar poloidal field, thus for the dynamo
we use a constant value of & = 0.001 inside the disk and zero in the surrounding corona.

In the bottom panels of Figure we also see the values of the radial magnetic field
component and the logarithm of the fluid density with poloidal magnetic field lines at time
t = 2500. The magnetic field structure looks similar to that from the torus simulations
even though the values are significantly lower. The distribution of diffusivity is partially
responsible for this since it is constant inside the disk and contributes against the generation
of a strong magnetic field. When the field is generated inside the disk, it is advected towards
the black hole, while keeping its dipolar structure. Inside the disk, layers with different signs
appear eventually resulting in the chaotic structure of field lines.

In Figure we see the evolution of the minimum values of plasma-# inside the disk
for the toroidal and poloidal components. In the beginning, both field components grow due
to the aw effect, however, after time ¢ ~ 2000 the poloidal field stops increasing (with the
exception of some variations) and keeps an average value of ~ 10° for the minimum plasma-
f. A similar behavior appears in the torus simulations (see Figure , with the plasma-£
maintaining its gradual decrease albeit with a much flatter slope. Both simulations do not
use any quenching mechanism so such a behavior is quite peculiar.

For simulation thini, the poloidal plasma-f starts increasing around time ¢ ~ 2000. At
the same time, the accretion rate, which until that point was quite strong starts decreasing.
If we take a look at the poloidal magnetic field inside the disk and along the equatorial plane
we can see that until £ ~ 2000 the profile is quite flat up to radius r ~ 30. The flatness
of the poloidal field results in the increase of the magnetic diffusion because the magnetic
resistivity, which in turn changes the slope of the poloidal field profile, as we can see in the
bottom panel of Figure The dynamo that operates in the disk is not strong enough to
counter the diffusive effect resulting in the continuous increase and decrease in the values of
plasma-f3.

On Table we see the different simulation we run with the thin disk prescription. In
simulation thin3 we used a poloidal field as an initial condition keeping however the low
magnetization of the disk in the same levels as with simulation thini.

6.3.2 From a Poloidal Seed Field

A low-magnetization poloidal magnetic field as a seed in dynamo simulation has been used
previously in Newtonian /special relativistic simulations (Stepanovs, Fendt, and Sheikhnezami,
2014} Fendt and Gafimann, 2018). In our case, since the the thin disk is not in equilibrium
with the black hole, from the beginning of the simulation the disk will try to adjust in the
gravitational environment of the black hole. This causes deviation of the seed field from the
perfectly radial structure. These deviations, however, are minimal and significantly smaller
that the magnetic field that is generated by the dynamo.

Simulations thin3 and thinj are using the poloidal seed field and the only difference
between them is the value of the dynamo parameter, which for simulation thin4 is 4 times
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larger. The evolution of the simulations are very different. Simulation thin3 the poloidal
magnetic field appears underdeveloped probably because the dynamo is not strong enough
to counter the diffusive effects of 1. On the other side, for simulation thinj, the magnetic
field is much stronger (at least 4 orders of magnitude). In Figure we compare the radial
magnetic field at time t = 6000 for simulations thin3 and thin/, and we show the density
distribution, magnetic field lines and radial velocity for simulation thinj.

On a first glance, simulation thin4 looks similar to our reference simulation from Chapter [4]
it is in our immediate plans to analyze it further in order to compare the outflows we observe.

6.4 Summary

In this chapter we presented a fully dynamical generation of magnetic field by a mean—field
dynamo and the subsequent evolution of accretion disks and tori around a black hole in a
GRMHD environment using rHARM3D.

We discussed the implementation of mean—field dynamo in the code and the differences
we encountered when testing the structure of the generated field, main the case of a dynamo
distribution that changes sign in the equatorial plane and has some kind of dependence from
the polar angle. According to our results, the poloidal field that is generated by such a
dynamo has a strong quadrupolar structure, contrary to the results of Rekowski, Ridiger,
and Elstner (2000) in Newtonian simulations. After running several simulation we saw that
this initial quadrupolar field inside the torus is quickly replace by a structure of many layers
of different sign alternating with each other. However, outside of the torus, if the simulation
runs long enough, a dipolar component of magnetic field develops and becomes a conduit
for the generation of a jet (e.g. quad2). In the same simulation we also detected a slow
change of sign in the torus interior which might be connected with the dynamo prescription
we used.

Both with the the torus and the disk simulation we tried to show that the induced
magnetic field is capable of launching jets. We detected relativistic velocities coming either
from the surface of the disk/torus or from the inner, almost axial jet. Unfortunately, we did
not succeed into producing long running simulations with a rotating black hole, however,
simulation quad3 with a = 0.9 show a quickly developed jet coming from the black hole
magnetosphere with a significant component of electromagnetic energy flux.

For specific simulations we also prescribed a dynamo quenching mechanism to control
the growth of magnetic field. The quenching is happening based on the magnetization of
the fluid in each cell which is then compare with a preset equipartition value. We encoun-
tered problems with the implementation into the code, which were partially solved on the
expense of slower running simulations. The mechanism works and succeeds into extending
the “lifetime” of the simulations, however, only temporarily.
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Appendix A

Solving the Dynamo Equations

A.1 Convection Term

For historical reference Ohm’s law for a relativistic plasma is derived by Blackman and Field
(1993) where the also introduce a convection term j™U U

F*™U, = nj* 4 j7U-UM. (A1)

We will start our calculation with the same equation in its more “modern” form as it appears
in Palenzuela et al. (2009) and Bucciantini and Del Zanna (2013) in contravariant form

IF + (I"uy) u* = o F* 'y, (A.2)

where
M = gnt + J* (A.3)
is the 4-current as seen by the normal observer.
In this frame, where the observer has a 4-velocity n#, we have
Et = F'n,, (A.da)
Bt = F*n,, (A.4Db)

as the electric and magnetic field. This frame is chosen so that EY = B? = J% = 0. The
convection term I*u, can be written as

IMuy, = Pug + Tu;, (A.5)
with the following components
Iozqnﬂ—i—Jozql = g, (A.6a)
a o«
ﬂ:mthaﬂ;+ﬁ, (A.6Db)
up = T'(no + o) = I'(—a+ ), (A.6c)

u; = T(n; +v;) = Ty, since n, = (—«,0). (A.6d)
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Combining them all together we get

quﬂ = IOUO + [iu,-
_r4 B e
=TI~ (—a+wv)+ (¢ + J)Tvi
« «
= Tq+TLyy—TLg0; + T,
(6] (6]

= T(—q+ J0;) + TLug —TLa2glly;,  since B = a2g" (A.7)
[0 [0

— —T(q— J'v;) + T Ly — Tgan®
o

=-T(q— Jivi) + ngo,
o

= —q0

In Komissarov (2007) and Bucciantini and Del Zanna (2013)) is mentioned that I*u, = —qo
as the electric charge density in the fluid frame. Only Bucciantini and Del Zanna (2013)
calculate the go in the normal observer frame and they mention it as g9 = I'(q¢ — J'v;),
however we can see that is not the case. It is probably just a typo on their side.

A.2 Ampere’s Equation

The Faraday and Maxwell tensors in the normal observer frame are written as

FM = ntEY — EFnY 4 2 Byn,., (A.8a)
F* = ptBY — Bfn? — "R Eyp,. (A.8Db)

and the Maxwell equations are

VP = =17, (A.9a)
Vo F*H = 0. (A.9b)
with

" = gnt + J*, (A.10a)
(A.10Db)

Forv=0=t
P [nﬂEO — BP0+ ENWBAW] =—1° (A.11a)
Vi {—E"no + EMOAOB)\nO} = —gn® - J°, (A.11Db)
V, —E“no} = —qn°, (A.1lc)
V,.EF =q. (A.11d)
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For v =1 = (r,0,9)

Vu nME— EFnl 4 em)""B,\nK] =TI, (A.12a)
I . i . . -
Vu |n'E" + E“ﬁf + 6’“’\03)\710] = —qn' —J', (A.12Dh)
a
I . i . i .
V, |n'E + E“ﬁ— - e‘“AOB)\a] = qﬁ— —J" (A.12¢)
a a

In the left hand side, for p =0 =t we get

Vo [n’E'] =V, <E> , (A.13)

(67

and for p = j we get

7 anEZ + Eﬂi + eJMOB)\a] =V, [—Ei + Eﬂi + eOJMB)\a] . (A.14)
Putting them back to Equation (A.12¢)) we get
Vi () +V; (—EZ + Eﬂﬁ— + eoﬂ)‘BAoz> = qﬁ— - J', (A.15)
a a o' a

g~1/? [c% <91/2> —0; <91/2E1B ) +0; (gl/QEJﬁ ) +0; (91/29—1/2[032)\]&@)] — qi —J

(0% (0%

(6
(A.16)
g2 {&t (71/2Ei) —0; (71/2Ei6]’) + 0 (,yl/ZEsz‘) + 0 ([OjiA]B,\a)} _ qB ;Q/J(i, |
A17

O (V/2EN) + 05 (/2B BT — 2B 87) + 0; ([05ik] Byka) = g/ maa, (A.18)

o (Y'2E") + 05 (vV/2(EI B - E'3)) + 05 ([jik] Bra) =2 (¢8" — '), (A19)

0 (V2 + 0, (v (B 5 — E'3)) - j[ijk) (Bya) = /2 (¢ —ad?).  (A.20)
Using Kronecker’s 0

O (V1 2E") + 05 (712 (8,0,, — 015 E™5") = 05ijk)(Brar) = 412 (g5 — aT').
(A.21)
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We know that the Levi-Civita symbol is connected with Kronecker’s § with

[kmn][kji] = 67,60 — & 67 (A.22)
O (Y'/2E") + 0; (v 2[kmnl [kji| E™B") — 0;[ijk](Bra) = 72 (¢8' — aJ'),  (A.23)

y20, (VRET) + 472 igk)0y (v 2 [knm] EMB") — 47 2[ijk)0;(Bra) = (g8 — o)

(A.24)
Y20, (V2 EY) + €950 (epum E™B") — €950;(Bra) = (48" — ) | (A.25)
7120, (VV2EY) + €750, (epnm E™B" — Bra) = (g8 — aJ") . (A.26)

Turning them into vectors we get
v 120, (/2 E) + V(B x E—aB) = ¢8 — o, (A.27)

which is Equation 20 from Bucciantini and Del Zanna (2013).

A.3 Deriving the Time Evolution of the Elec-
tric Field in the Mean—Field Dynamo
Closure

We start from Ohm’s law, the definition of the electric current density, the 4-current, electric
and magnetic field in the frame co-moving with the fluid.

oel = j* + £, (A.28a)
GH = I (1P, )b, (A.28b)
et = Fu,, (A.28¢)
b= FHy,, (A.284)
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A.3.1 Temporal Projection
We take the case of = 0 =t for the electric field
0 — FOVUV _ (noEu _ OV + GOV)\HB)\TLH) wy

= n"EYu, + e()”)""B)\uyn,.ﬂ

1
= —E"u, + "By u,ng
Q
EY 1 A2
=2 - —TE"(ny, +v,) (A.29)
« Q
1 0 i
=T (E (no + UQ) + F (nz + Uz)>
«
1
= —FE’vi,
a
for the magnetic field
P — F*Oyuy _ (noBy _ By _ EOV)\mE)\nK) uy
= n'BYu, — eO”)"‘EAuyn,{
1
= aB”uy — "B ung
B"u BY A.30
= L= "T(n, +uv) ( )
Q@ «
1 0 i
=T (B (no +vo) + B*(n; + Uz))
o
1.
= *I-‘BZU,',
a
and for the electric current density
7V =aqn® + J° + (I"u )
=44 (", )u®
Q@
A.31
= g + (1w, )T (n° + ) ( )
q v, \F
=24 (1Yu,)=
! + (M )a
because EO = BY = J% = 0, the only non-zero component of n, is ng = —a, n¥ =
(1/a,—p"/a) and €®** = 0. Combining them all together in Ohm’s law we get
1. I 1 :
ol —E'v; = g4 (I"uy)— + =T B, (A.32a
a a a a
ol E'v; = q+ T (I"u,) + T B'o;, (A.32b

oTE'v; = q — Tqo + ET By, (A.32¢
TEv; = n(q—Tqo) + T B, (A.32d

~— — ~—  ~—
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which can be written as Equation 30 from Bucciantini and Del Zanna (2013)

A.3.2 Spatial Projection

We take the case of p =i = (r,0,¢) for the electric field

el = Fy, = (niE’/ — E'n¥ + eiy)‘“B,\n,i) Uy

i . .

= 2 BV, — E'nPuy, 4+ € Byngu,
Q
i ijk
: €

= —B—Ekuk — Bluyut —
a

/]: . . ..
= —B—FEk(nk + ) — E(nogu® 4+ njut) + €98 BT (n; + v;)
o

i . ..
= —EFEkvk + Elou? + elijBkvj
a

B _ .
o K ( a)“a

(A.33)

= —B—TEkvk + E'al(n® +v°) + ¢7*T By,
o
Bk L

= ——TE"y, + E'al' — + €’"T By,
o e
X . g

= ——I‘Ekvk +TE+ EZJkFBkUj
o

for the magnetic field

b — F*iyuy _ (niBy _ Bing¥ _ eil/)\ch)\nK) Uy
i
_—7BV _B’L v o iV)\OE
=-——B"u n‘u, — € AUy
i ijk
; €
= —B—Bkuk — B'uyut +
[0

Z‘ . . ..
_ P T B*(ng +v1,) — B (nou® + nju') — €98 By T (n; + vj)

(0%

7: . ..
= —ETBkvk + Blau? — elijEkvj
a

E _ .
o R ( 0‘)“]

(A.34)

7: . ..
= —iI’Bkvk + Blal(n® + %) — €9 T By,
Bk it ik
= ——I'B%y, + B'al'— — €7" T Eyv;
a !
— P Bl 4 TB — T By
i~ v + —€ kVj
and for the electric current density

G =T+ (I"uy)u' = qn' + J" + (I"u, )T (n® +v%)
=7 =Ty (e -2

(0%

(A.35)
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because B0 = B? = J9 = ¢0 = 0 only the spatial components of EYu,, survive, n“u, =
n’ guut = uyut. Also for the Levi-Civita pseudo-tensor

(VA0 g_l/Q[il/)\O] _ g—1/2(_[0iy)\]) — —g_l/Q[Oijk] — —g_l/Q[ijk] = _(QQ,Y)—I/Q[ijk‘] =

1 - 1 eijk Eijk
= ——plikl = - =
ayl/ ayl/2  ~-1/ a
(A.36)
Combining Equations (A.33) (A.34) and (A.35) in Ohm’s law we get
Bk iy ijk o i B v i B
_EFE v +TE + /" T Byoj =n |J' — et (I"uy)T(v" — E)
: (A.37)
+& [—BFB’%;C +TB — effkrEkvj]
a
using Equation (A.32b|) the equation evolves into
EA— iy ijk i s’ v 3o (i s’
—=TE", + TE' + /" T Byo; = nJ' —=n—q+ [TE u, — g — FBIv;| (v — =)
@ @ “(A3R)

+¢ [—irB%k +TIB — (—:”kFEkUj] ,

7: . .. . Z . . . .
%—l— e+ eZJkTBkvj =nJ' —}%—i— EYu,v* —ngv' — B v
) 5 e
~rpal “7\%*@{ (4.39)
/i . ..
%Jr TB' — €69 T Eyvj,

where we used EYu, = E*uy, = E¥(nj, +v;) = TEFuy, for the magnetic field respectively
and used mute indexes interchangeably. As a result the equation simplifies into

TE' + T By, = nJ" — nqv’ + T(E*vp)v’ — €T (BPup)o' 4+ €T B — €%y, By, (A.40)

T [E' 4 €%0;By, — (E*v )| = (J' = qv') + &1 [B' = (BRup)o' — %, B |, (A1)
which leads us to Equation 31 from Bucciantini and Del Zanna (2013)

I'E—(E-v)v+vxB]=n(J—qu)+&B-—vxE—(B-v)v], (A.42)
Continuing from Equation (A.41]) we change 1 to o and multiply by «

aol’ {El + eijkvak - (Ekvk)vi} = aJ' — aqv® + aotT {Bi — (B*uy,)v' — eijkvjEk} ,
(A.43)
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aol’ {EZ + €7k, By, — (Ekvk)vi} — aoéT [Bi — (B*u)0? — eijkvjEk} + aqu’ = aJ',
. (A.44)
and we subtract ¢B* in order to form the right hand side of Equation

aol’ [E’ + ¢, By, — (Ekvk)vi] — actT [Bi — (Bup)v' — €iijjEk} +aq' —¢f =l —qp,
(A.45)
resulting in
_7—1/2@(71/257@') . Eijkaj (eknmE™B" — Byat) = aoT [Ez + eiijjBk — (Ekvk)vi]
— aoT [Bi — (BFup)o? — eijkvjEk}

+ g’ = B),
(A.46)

7_1/281;(71/2Ei) + eijk(?j (eknmE™ 8" — Bra) = —aoT {Ez + eijkvak - (Ekvk)vz}
+ao€T [B' — (Brup)o' — % By (AAT)
—q(av’ — ).
Turning them into vectors and exchanging n for o we get
F29,(y'2E) +V x (BXx E—aB)+q(av—B8) = —al [E+v x B— (E-v)v] /7
+alT[B— (B-v)v—v x E|/n,

(A.48)
which is Equation 32 from Bucciantini and Del Zanna (2013).

A.3.3 Solving the Equation

We absorb the spatial metric in the electric and magnetic field 4'/2E! = &%, /2B = 2.
As a result, the evolution of electric field becomes
Y208 + €80) (™ B" — Bra) = —y 00T |67+ kv, By — (68 )]
+ 47 200¢T {%Z — (B*vp)vt — eijkvj@@k}

—q(an’ — "),
(A.49)

at(éaz) +’7_1/26i‘jk8j (Eknmgmﬁn . @ka) +’Y_1/2(](Oévi . B’L) —

: . . : . g A.50
= —aol {@m + €7k, By, — (@@kvk)vl} + acéT {%’ — (B0t — Emkvjéak} : ( )

We set _ B | |
&y ==y 200 (e E™ BT — Brar) — T Pq(av’ — BY), (A.51)
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which includes all the non-stiff terms of the electric field. The evolution of electric field
becomes

06" = &} — a0l |6+ M0, By, — (EFvp)v'| + aolT [ B — (B — éFv;6]

(A.52)
. % 3 (1 (0 .
We discretize the time derivative of electric field 0;&* = Aﬁ = %, where &Y is the

current value we want to calculate and &%) the value from the previous time step. All the
other terms of Equation (|A.52|) were calculated in the current time step with the exception of

& = (53%20). For that reason we will write down the full indexed equation once for reference
and then we will drop the time step indices.

i) _ i) P |
T =TT £il0) _ (1) () [(g%(l) et g ( gku)vl(cl))vz(n}

At " (A.53)

+ a0 e [@i(l) _ eijkv;l)éa]gl) _ (ﬂk(l)vél))vi(l)} 7

&' = &0 4 A&l — AtaoT |6 + €950, — (6Fvy,)v|
" Y | (A.54)
+ Ataocél [%’Z - e”kvjé"k - (%kvk)vl} .
We set Q° = 0) ¢ Atéang ) with all its values calculated from the previous step. We also
absorb in the 3 Velomty the Lorentz factor with ¢ = I'v* and 9; = I'y;

= Q' — Atao [r@m‘ + kg, 2, — (g’f@k)@"'/r} As5)
.55

+ Moot [TB' — 75,6, — (B"5,)0/T] .

In order to solve over the electric field we need to calculate the two terms is which it is
involved &%, and e”kv]éak For that, we start by multiplying Equation (A.55)) with ;.

5i17i = Qif}i — Atao [l"éaim + Eijkﬁj%kﬁi — (éak@k)ﬂlﬁl/ﬂ

: iy ‘ (A.56)

+ Atact [r%zﬁi — €9k, 8,0, — (BF0,) 00, /F] .

. . . iy 0
&' = Q'v; — Atao [I“é“ﬂi + Ewk~] 1 U; — ( vk)v Uz/r]

0 (A.57)

+ Ataoé [F%iﬁi — kT, — (@kﬁk)ﬁi@i/r] ,

because if we develop the combination of the cross products they all cancel out.
& = Q' — MaoTEF; + Atao (40,50, /T

? (670) 7T/ (A.58)

+ AtactTBb; — Atact (B 6;,)0'0; /T
We change all k indices to i since they are all mute

E0; + MaoT &' — Mao(E5;)5'0; /T = Q'0; + AMactT B b; — Atact(B'v;)5'6; /T,
(A.59)
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E'5; |1+ AtaoT — Ataod'5i /T| = Q"% + B'T; |AtaotT— Ataosd's; /T (A.60)
E'5; [T + AtaoT? — Ataot's;] /T = Q' + B'; [Atactl?—Ataott's| /T, (A.61)

E'5; [T + MaoT? — Atao(I? — 1)] /T = Q'5; + B'5i |AtaoT?—Atact(T? — 1)] /T,

(A.62)
&9 [T + Atao] /T = Q'%; + B'o;Atacé /T, (A.63)
&% = TQ'0;/ [T + Atao] + B'o;Atace/ [T + Atao], (A.64)

We go back and take the covariant version of Equation (A.55) and form the cross product
k. &
710k

. iy > . . vXv =0
kaﬁjgk = EZ]k’T}ij — Atao [Fe”kﬂjé’k + kaﬁjﬁkmnﬂm%n — (éokﬁk)g%ﬁv/l—}x

(A4
+ Ataot [reiﬂf@j,%’k — e T E" — (%kﬁkﬁ%ﬁfﬂﬂxa o
and since €% ey, = —[67'07 — 6767"]
k5,8, = €9%5;Qp — Atao [l“eijk@j(o@k — [07"0;" — 5?52m]ﬁjﬁm'%n} (A.66)
+ Ataocé [Féijkﬁjf%)k + [0 — 5?5?1]@167715”} ’ |
55,6, 1+ AtaoT] = €7%5,Q;, + Atao[66; — 676" ]0,5™ A" (A.67)
+ Ataoé [Teijkﬁjggk + [07"03" — 5?5?%]@@”15’”} ' |
eIr5;65, [1 4 MtaoT| = €775,Qp + Mtao|[(8/5;) B’ — (v ;)] (A.68)
+ Atacé {Feijkﬁjggk +[(079)) 6" - (5‘76}])62” ’ |
€706 = €7'0;Qu/ [1 + AtaoT] + Atac [(875;) ' — (17 %;)7'] / [1 + AtaoT] (A.69)

+ Mtaot [Tei%o; 2, + [(075;)6" — (076)5)] / [1 + AtaoT].

We follow from Equation (|A.55)
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&' = Q' — AtaoT&" — Atace?*5; B, + Atao (65,5 /T

/ ik ks \ i (A.70)
+ AtaolT B — Atac&eV 1;8), — Atacg (B 0y, )" /T.
Combining with Equations (A.64]) and (A.69) we obtain
&= QZ — AtaoT & — Atozaeijkﬁj%’k
Ataot
+{TQ* 5/ (T + Atao) + B tMtact/ (T + Atao) } oliav
+ AtaotT A
— Atacé 50;Qy | Atao[(0/5;) A — (07 %;)V'] (A.71)
1+ AtaoT 1+ AtaoT
Teibo; By, + [(079;) 6 — (07 65) ')
+Atact 1+ Ataocl
— Ataoct (B 0,0 /T,
&'+ AtaoTE = Q' — Ataoe "5, By, + MtaoE [1“,%" - (%k@k)@i/r}
Atact (Q%5y,)  (Atac)? &51(BFw;,) /T
I' + Atao I + Atao
g, 510;) B — (09 B, A.72
 Ataoe ] 0@k Alao|(071;) 7" — (5;)11] (A.72)
1+ Ataol 1+ AtaoT
Te9%5; %y + [(070;) 6" — (07 65)0]
+Atact 1+ Ataocl ’
&'+ MaoT&" = Q' — Maoe ™ ;5 + Atact [TH' — (B5,)5/T|
Ataot (QFy)  (Atao)? €0°(BFy) /T
I + Atao I + Atao
kg, 510,) B — (09 B;) A3
~ Ataced € 0;Qk + Atac [(075;) A" — (07 %) V'] (A.73)
14+ AtaoT
Tk s, By, + [(095,) 6 — (19&;) ']
(A 2 J %k J J
(Atact) { 1+ Ataocl’ ’
&'+ MaoT&" = Q' — Maoc ™ ;% + Atact [TH' — (B5,)5/T|
Ataot (QFy)  (Atac)? €0°(BFy) /T
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&' + AaoT & + (Atace)? (@1;)6" _ Q' — Atace*5; By + Ataot [r,@l — (A5 /r]

14+ AtaoT
Ataot (QFy)  (Atac)? €0¢ (%) /T
I+ Atao I' + Atao
_ Ataot €IR5;Qp + Ntao[(075;) B — (07 B;) D]
14+ AtaoT

2 Feijk@j%k
1+ Ataol
(9765)0"
14+ AtaoT”

— (Ataoc)

+ (Atacg)?
(A.75)

The last term contains another &/ &; which we will replace with Equation (A.64])
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We multiply by 7
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We replace the last ¢/ ¥; we kept until now for symmetry with rz—1
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Canceling out the 4172 terms inside the electric and magnetic field we go back to the “normal”
symbols and with a little more algebra we get
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which is Equation 35 from Bucciantini and Del Zanna (2013) with the exceptions of the

fraction in the second term in the right hand side and the sign in the second to last term.
It is probably a typo on their side.
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Appendix B

The Direction of the Poloidal Electric
Field

In a coordinate system that uses spherical coordinates (7,6, ¢) the three components are
always perpendicular to each other and their respective unit vectors are connected via

e, = eg X e4. (B.1)

In the case of ideal classical MHD, the electric field vector E is given by Ohm’s law which
we will repeat here

e €y e

E=-vxB=Bxv=|B, By B, (B.2)
Up Vo Vg
= (Bgvg — v9By) ey — (Brvy — vrBg) eg + (Brvg — v Bp) ey (B.3)

The electric field can also be written as the sum of its projections in the three coordinate
axes

EFE=F, + Eg —+ E¢. (B4)

For the following we will use the radial component as an example with the same procedure
being applicable in the polar component as well.

ET = (Bgv¢ — ’U@B¢,) €,
= (Bgv¢ — UgB¢) (89 X 6¢)
= B@U¢ (eg X e¢) — U@B¢ (69 X e¢)

B.5
= (3969 X U¢€¢) — (’Ugeg X B¢e¢) ( )
:BQXU¢—UQXB¢
= By x vy + By x vy.
Similarly, for the polar component we get
Ey= B¢ X v, + B, X Vo (B6)

We define the poloidal unit vector as the one that result from the addition of the radial
and angular components, namely
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E,=E, + E,. (B.7)

The poloidal vector lies on the same plane as the E, and FE}j.;, but does not have a constant
direction as it depends on the values of the other two (if E, >> Ej then the poloidal vector
will be almost parallel to the radial one). The total poloidal component of the electric field
becomes

E,=FE,+ Ej
:BQX’U¢—|—B¢X’09+B¢,XUT+B7~X’U¢
= (B, + By) x vy + By x (v, + vg)
=B, xvs+ By xv,

(B.8)

On a first sight the equation seems strange since we derive the E,, as a cross product that
includes B, and vy, however, as we mentioned before, the poloidal vectors do not have the
same direction and the cross product of a poloidal vector with the toroidal gives always a
vector in the poloidal plane but with different directions, making the above equation possible.

In the case of resistive MHD, we get the extra term of diffusivity and electric current and
the radial and polar component of electric field becomes

E, = By ><v¢,—i—B¢ X vy +nd,, (B9a)
Ey = B¢ X v, + B, ><’U¢—|—77J9, (B.Qb)
from which it is detrimental to show that

E, = B, xvy+ By x v, +nJ,, (B.10)
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