
INAUGURAL – DISSERTATION

submitted

to the

Combined Faculty for the Natural Sciences and Mathematics

of

Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Put forward by

M.Sc. Paul Hübner

Born in Kulmbach

Oral examination: .

Interaction-Based Creation and
Maintenance of Continuously Usable

Trace Links

Supervisor: Prof. Dr. Barbara Paech (Heidelberg University)
Advisor: Prof. Dr. Patrick Mäder (JP) (Technical University of Ilmenau)

© 2019 Paul Hübner
This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to
Creative Commons, PO Box 1866, San Francisco, California, 94105, USA, or info@creativecommons.org.
This thesis and document has proudly been created using open source software. Thanks to Linux,
TEXLive, python, Git, Mylyn, Inkscape and many others!
Typeset: PDF-LATEX 2𝜀

https://creativecommons.org/licenses/by/4.0/
mailto:info@creativecommons.org

Abstract

Traceability is a major concern for all Software Engineering (SE) artefacts. The core
of traceability are trace links between the artefacts. Out of the links between all
kinds of artefacts, trace links between requirements and source code are fundamental,
since they enable the connection between the user point of view of a requirement
and its actual implementation. Trace links are important for many SE tasks such
as maintenance, program comprehension, verification, etc. Furthermore, the direct
availability of trace links during a project improves the performance of developers.

The manual creation of trace links is too time-consuming to be practical. Thus,
traceability research has a strong focus on automatic trace link creation. The most
common automatic trace link creation methods use Information Retrieval (IR) tech-
niques to measure the textual similarity between artefacts. The results of the textual
similarity measurement is then used to judge the creation of links between artefacts.
The application of such IR techniques results in a lot of wrong link candidates and
requires further expert knowledge to make the automatically created links usable,
insomuch as it is necessary to manually vet the link candidates. This fact prevents
the usage of IR techniques to create trace links continuously and directly provide
them to developers during a project.

Thus, this thesis addresses the problem of continuously providing trace links of
a good quality to developers during a project and to maintain these links along
with changing artefacts. To achieve this, a novel automatic trace link creation
approach called Interaction Log Recording-based Trace Link Creation (ILog) has been
designed and evaluated. ILog utilizes the interactions of developers with source code
while implementing requirements. In addition, ILog uses the common development
convention to provide issues’ identifiers in a commit message, to assign recorded
interactions to requirements. Thus ILog avoids additional manual efforts from the
developers for link creation.

ILog has been implemented in a set of tools. The tools enable the recording
of interactions in different Integrated Development Environments (IDEs) and the
subsequent creation of trace links. Trace link are created between source code files
which have been touched by interactions and the current requirement which is be-
ing worked on. The trace links which are initially created in this way are further
improved by utilizing interaction data such as interaction duration, frequency, type,
etc. and Source Code Structure (SCS), i.e. source code references between source
code files involved in trace links. ILog’s link improvement removes potentially wrong
links and subsequently adds further correct links.

ILog was evaluated in three empirical studies using gold standards created by
experts. One of the studies used data from an open source project. In the two other
studies, student projects involving a real world customer were used. The results of
the studies showed that ILog can create trace links with perfect precision and good

v

recall, which enables the direct usage of the links. The studies also showed that
the ILog approach has better precision and recall than other automatic trace link
creation approaches, such as IR.

To identify Trace Link Maintenance (TM) capabilities suitable for the integra-
tion in ILog, a Systematic Literature Review (SLR) about TM was performed. In the
SLR the TM approaches which were found are discussed on the basis of a standard-
ized TM process. Furthermore, the extension of ILog with suitable TM capabilities
from the approaches found is illustrated.

vi

Zusammenfassung

Rückverfolgbarkeit ist für alle Artefakte im Software Engineering (SE) wichtig,
Verbindungen zwischen Artefakten bilden hierfür die Grundlage. Besonders wichtig
sind Verbindungen zwischen Anforderungen und Quellcode, da diese die Verbindung
zwischen der Nutzersicht in den Anforderungen und deren Implementierung dar-
stellen. Diese Verbindungen sind für viele Aufgaben im SE , wie z.B. Wartung,
Programmverständnis, Verifikation, etc. wichtig. Stehen solche Verbindungen di-
rekt während der Softwareentwicklung zur Verfügung, wirkt sich dies positiv auf die
Produktivität aus, da Aufgaben effizienter bearbeitet werden können.

Manuelles Erstellen von Artefakt-Verbindungen ist jedoch u.a. wegen des dafür
notwendigen Zeitaufwands nicht praktikabel. Daher widmet sich die Rückverfolgbar-
keits-Forschung intensiv Methoden zur automatischen Verbindungserstellung. Hier-
bei verwenden die meisten Ansätze Information Retrieval (IR) Techniken, um durch
textuelle Ähnlichkeit von Artefakten zusammengehörige Artefakte zu ermitteln und
zu verbinden. Das Verwenden von IR Techniken zur Verbindungserstellung führt
zum Erstellen vieler falscher Verbindungen und erfordert deren nachträgliche manu-
elle Überprüfung durch Experten, um die Verbindungen nutzen zu können. Dies
führt dazu, dass es nicht möglich ist IR Techniken zur fortlaufenden Verbindungs-
erstellung und zur direkten Nutzung der erstellten Verbindungen einzusetzen.

Die vorliegende Arbeit erforscht daher das fortlaufende Erstellen von Verbindun-
gen zwischen Artefakten, mit dem Ziel Verbindungen mit so guter Qualität zu
erstellen, dass diese direkt genutzt werden können. Außerdem wird das mit sich
ändernden Artefakten einhergehende Warten der Verbindungen erforscht. Dafür
wurde die neue automatische Interaktionsdaten-aufzeichnungsbasierte-Verbindungs-
erstellung (ILog) entwickelt und evaluiert. ILog nutzt die Interaktionen von Entwick-
lern mit Quellcodedateien während diese Anforderungen implementieren. Zusätzlich
nutzt ILog die Konvention, dass in Übertragungsnachrichten von Versionskontroll-
systemen Aufgabenkennungen angegeben werden. Mittels der Aufgabenkennungen
können aufgezeichnete Interaktionen direkt Anforderungen zugeordnet werden, dies
vermeidet zusätzlichen manuellen Aufwand für die Verbindungserstellung.

ILog wurde in mehreren Werkzeuge implementiert, diese ermöglichen das Aufze-
ichnen von Interaktionen in unterschiedlichen Entwicklungsumgebungen und die an-
schließende Erstellung von Verbindungen. Hierbei werden Verbindungen zwischen
Dateien, mit denen interagiert wurde, und der Anforderung, an welcher während-
dessen gearbeitet wurde, erstellt. Die initial so erstellten Verbindungen werden
anschließend optimiert. Für die Optimierung werden sowohl interaktionsspezifische
Daten, d.h. Dauer, Häufigkeit, Typ etc., als auch die Quellcodestruktur, d.h. Quell-
codereferenzen zwischen Quellcodedateien, die über Artefakt-Verbindungen bereits
mit Anforderungen verbunden sind, verwendet. Die Optimierung entfernt potentiell
falsche Verbindungen und erstellt weitere bisher nicht gefundene Verbindungen.

vii

ILog wurde in drei empirischen Studien mit von Experten erstellten Goldstan-
dards evaluiert. In einer der Studien wurden Daten eines Open Source Projektes
genutzt. In den beiden anderen Studien wurden Projekte mit Studierenden als
Entwicklern und einem externen Kunden verwendet. Die Ergebnisse der Studien
zeigen, dass ILog Verbindungen mit sehr hoher Genauigkeit und hoher Trefferquote
erzeugen kann und so das direkte Nutzen der Verbindungen ermöglicht. Die Studien
zeigen auch, dass ILog eine höhere Genauigkeit und Trefferquote als andere Ansätze
zur Verbindungserstellung bietet (bspw. Ansätze, die IR Techniken verwenden).

Zur Integration der Wartung von Verbindungen in ILog wurde zunächst eine
systematische Literaturrecherche zu Ansätzen für die Wartung von Verbindungen
durchgeführt. In den Ergebnissen der Recherche werden gefundene Ansätze zur
Wartung von Verbindungen mit einem dafür entwickelten standardisierten Prozess
beschrieben und diskutiert. Darüber hinaus wird die Erweiterung von ILog mit
Fähigkeiten zur Wartung von Verbindungen aus den gefundenen Ansätzen aufgezeigt.

viii

Acknowledgements

For seven years I’ve proudly worked as a researcher with ups and downs to finally
come to the point to write these acknowledgements!

First and foremost, I would like to thank Prof. Dr. Barbara Paech for her super-
vision over the last years. She always supported me during my thesis, was eager to
discuss and give valuable feedback, and, in a way which in retrospect still surprises
me, no matter what, was always patient with me! I am very grateful for the oppor-
tunity to work and be a software engineering researcher in her Software Engineering
Group at the Faculty of Mathematics and Computer Science of Heidelberg Univer-
sity. Furthermore, I would like to thank my advisor Prof. Dr. Patrick Mäder for
his helpful suggestions and his time for evaluating my thesis. I still remember back
in 2015 when I met with Patrick in person for the first time at a conference, and
the first thing he said to me was to ask him any questions I had about traceability
research at any time! During the last few years, we met several times at different
conferences and Patrick was always a great discussant when present at my talks.

Of course many more people have been involved in the working process around
this thesis. To begin with, these are my fellows at the software engineering research
group. In no particular, but in some way a chronological, order I’d like to mention
Alexander, who introduced me into the world of university teaching. Tom, who
was my first and all-time best office mate, the most clever and polite guy I’ve ever
met. Gabi, who performed my first software engineering field studies and exchanged
students with me, while being laid-back in any situation. Rumi, who passed her
office table including two screens to me and randomly appeared all of a sudden for
long-lasting fundamental and profound discussions. Thorsten, my loyal co-author,
who introduced me to how to really do empirical research, including its drawbacks
and complete changes in direction. Thomas, who showed me how to write research
papers in a good way and kinda helped me to find my own research path. Marcus,
who always backed me up as well, and always, in an ad hoc manner whenever it
was necessary, to support me to get the job done. Christian, who never stopped
discussing and answered my questions before I could express them. Anja, who
showed me how to use software and inspired my research. Astrid, who took over
students’ teaching with amazing speed. Willi, who took me as his Padawan student
during all these years, and Doris, who organized my researching and teaching life
and enriched my being far beyond that. It’s been such a pleasure to be the colleagues
of one and all of you!

Moreover, I’d also like to mention the students with whom I worked during my
time at Heidelberg University. Arthur, Thorsten, Carsten, Philipp and Viktor, you
have all at least taught me how to program, and all of you, as well as those of you
not mentioned by name here, have contributed to this thesis.

ix

There were several further people who have inspired me for doing software engi-
neering research, some of whom I want to mention now. First, Dan Berry, who was
present at all my conference talks (and paper reviews) and who gave me important
insights as to how to defend my point of view, starting from my very first doctoral
symposium speech. Long before that, during my undergraduate student life, there
was Hans-Jörg Happel, for whom I worked as a student assistant and who supervised
my first software engineering research thesis. With his fascinating research attitude
to come up with new ideas and to apply them in research, he was and still is my
ideal inspiration to become a software engineering researcher. Furthermore, there
have been several fellow students and friends of mine who encouraged me to get into
and during my computer science studies. However, the list is too long to mention
everyone by name, but you’ll know who I mean anyway!

And lastly, I’d like to mention my family and close relatives! You have all sup-
ported me during and before the years of this thesis, no questions asked, whatever
unconventional directions I’d choose, with at least all the support I needed to follow
my path. It was the affinity for innovation and technology of my Dad who brought
me to my first computer almost 30 years ago, and thus finally led me into taking
on this thesis. My Mum inspired me with her attitude to never hesitate even if the
upcoming is a big unknown. My siblings, Eva, Christoph and Thomas, my sister-in-
law Damaris and my nephew Amos, were all never too tired to discuss my research
during the past years with me, and somehow it even seems they understood what
it is all about. Thank you for your support and attention! That’s all for now from
my side, don’t forget to read the thesis and ask me questions.

Bye for now!

x

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

Contents xi

List of Figures xv

List of Tables xvii

List of Abbreviations xix

I Preliminaries 1

1 Introduction 3
1.1 Motivation . 3
1.2 Problem Statement . 5
1.3 Contributions . 6
1.4 Research Methodology . 7
1.5 Structure of the Thesis . 8
1.6 Previous Publications . 10

2 Fundamentals 11
2.1 Data Sources . 11

2.1.1 Issue Tracking Systems . 11
2.1.2 Version Control Systems . 12
2.1.3 Source Code Structure . 14
2.1.4 Interaction Data . 15

2.1.4.1 Interactions of Developers 15
2.1.4.2 Usage of Interaction Data 16

2.2 Traceability . 19
2.2.1 Automatic Trace Link Creation 20
2.2.2 Information Retrieval . 20

2.2.2.1 Preprocessing . 21

xi

CONTENTS

2.2.2.2 Indexing . 21
2.2.2.3 Trace link Creation Techniques 22
2.2.2.4 Link Candidate Processing 24

2.2.3 Commit-based and Further Trace Link Creation Techniques . 24
2.3 Measurement Fundamentals . 25

2.3.1 Gold Standard . 25
2.3.2 Evaluation Measures . 26

II Problem Investigation 29

3 Quality of Trace Link Creation: State of the Art 31
3.1 Method . 31

3.1.1 Review Method . 32
3.1.2 Research Questions . 32
3.1.3 Overview of Literature Selection 33

3.2 Results . 33
3.2.1 Overview of Trace Link Creation Approaches and Answers to

the Research Questions . 33
3.2.2 Summary and Discussion . 38

4 Trace Link Maintenance: State of the Art 39
4.1 Method . 39

4.1.1 Review Method . 39
4.1.2 Research Questions . 41

4.2 Publication Search . 41
4.3 Results . 43

4.3.1 Overview of Trace Link Maintenance Approaches and Answers
to the Research Questions . 44

4.3.2 Summary and Discussion . 51

III Treatment Design 53

5 Interaction Log Recording-based Trace Link Creation 55
5.1 Overview . 55
5.2 Details . 56

5.2.1 Interaction Event Capturing 56
5.2.1.1 Manual Assignment 57
5.2.1.2 Commit Based Assignment 58

5.2.2 Trace Link Creation . 59
5.2.3 Trace Link Improvement . 61

5.2.3.1 Precision . 62
5.2.3.2 Recall . 66
5.2.3.3 Combined . 67

6 Integration of Trace Link Maintenance 69
6.1 Approach Selection . 69
6.2 Integration of Trace Link Maintenance Capabilities 70

xii

CONTENTS

IV Treatment Validation 73

7 Overview of Evaluation Studies 75
7.1 Evaluation Projects . 75

7.1.1 Mylyn . 75
7.1.2 Student Internship 2017 – Healthcare 76
7.1.3 Student Internship 2018 – Indoor Navigation 78

7.2 Data Processing . 79
7.2.1 General Alignment of Interactions and Source Code 79
7.2.2 Mylyn . 80
7.2.3 Student Internship 2017 . 82
7.2.4 Student Internship 2018 . 82

7.3 Gold Standard Creation . 83
7.4 Evaluation Tool Support . 85
7.5 Trace Link Creation Techniques . 86
7.6 Proceeding of Evaluation Studies and their Characteristics 87

8 Using Interaction Logs for Trace Link Creation 91
8.1 Experiment Design . 91

8.1.1 Research Questions . 92
8.1.2 Trace Link Creation . 93
8.1.3 Data Evaluation . 93

8.2 Results . 94
8.2.1 Evaluation of IL and IR based Trace Link Creation 94
8.2.2 Source Code Structure based Recall Improvement 95

8.3 Conclusion . 97

9 Improvement Techniques for Interaction Log Trace Links 99
9.1 Experiment Design . 100

9.1.1 Research Questions . 100
9.1.2 Part 1: Initial Trace Link Creation 101
9.1.3 Part 2: Precision Improvement Techniques 101

9.2 Results . 102
9.2.1 Part 1: Precision and Recall for the Initial Evaluation 102
9.2.2 Part 2: Precision and Recall Using Improvement Techniques 103
9.2.3 Discussion . 106

9.3 Conclusion . 107

10 Using Commits and Interactions for Trace Link Creation 109
10.1 Retrospective Study . 110
10.2 Experiment Design . 111

10.2.1 Research Questions . 112
10.2.2 Trace Link Creation . 112

10.3 Results . 113
10.3.1 Commit-based Interaction Assignment – ILCom 113
10.3.2 Comparison of ILCom and ComL 114
10.3.3 Comparison of ILCom and IR 114
10.3.4 Discussion . 115

10.4 Conclusion . 116

xiii

CONTENTS

11 Discussion 117
11.1 Threats to Validity . 117
11.2 Evaluation Studies Summary . 119

V Conclusion 121

12 Summary 123

13 Future Work 125

VI Appendix 129

A Supplementary Material for Trace Link Maintenance SLR 131
A.1 Publication Search . 131

A.1.1 Keyword Pre-Search . 131
A.1.2 Scientific Database Specific Query Adaption 132
A.1.3 Distinct Approach Filtering 134

A.2 Results . 135
A.2.1 Detailed Description of Trace Link Maintenance Approaches 135

Bibliography 155

xiv

List of Figures

1.1 Design Cycle of the Thesis . 8

2.1 Typical Issue Data Elements Relevant for Traceability 12
2.2 Version Control System Data Elements Relevant for Traceability . . 13
2.3 Example Source Code Structure between Classes 14

4.1 Systematic Literature Review Method Approach 39
4.2 Publication Search and Trace Link Maintenance Approach Identification 41
4.3 Trace Link Maintenance Process . 43
4.4 Trace Link Maintenance Process with TM Approach Data 51

5.1 Overview of the Three ILog Approach Steps 56
5.2 ILog Approach Step 1: Interaction Capturing 57
5.3 ILog Approach Step 2: Trace Link Creation by Interaction Aggregation 60
5.4 ILog Approach Step 3: Trace Link Improvement 61
5.5 ILog Approach Step 3: Source Code Structure Precision Improvement 64

7.1 Issue in the Mylyn Bugzilla Issue Tracker System per Year 80
7.2 ILog Evaluation Tool Suite Data Processing Pipeline 85
7.3 ILog Evaluation Studies Overview, Proceeding and Dataset Usage . 87

8.1 1. Study Experimental Design: Overview of Activities Performed . . 92

9.1 2. Study Experimental Design: Overview of Activities Performed . . 100
9.2 Code Files which had Interactions in 3 or more User Stories 104

10.1 Retrospective Study Design: Overview of Activities Performed . . . 110
10.2 3. Study Experimental Design: Overview of Activities Performed . . 111

xv

LIST OF FIGURES

xvi

List of Tables

1.1 Structure of the Thesis . 9
1.2 Publications in the Context of the Thesis 10

3.1 Trace Link Creation Review Research Questions and Attributes . . . 32
3.2 Primary Publications for the Identified Trace Link Creation Approaches 34
3.3 Sources of Trace Link Creation Approaches 35
3.4 Properties of Trace Link Creation Approaches 35

4.1 Trace Link Maintenance SLR Research Questions and Attributes . . 40
4.2 Exclusion (En) and Inclusion (In) Criteria for TM Publications . . . 42
4.3 Primary Publications for Identified TM Approaches 44
4.4 Trace Link Source and Target Artefacts 45
4.5 Trace Link Maintenance Process . 45
4.6 Performed Evaluations for Trace Link Maintenance Approaches . . . 50

6.1 Selection Criteria and Trace Link Maintenance Approach Rating for
Integration of Maintenance Capabilities in ILog 69

7.1 Overview of the used Mylyn Project Study Datasets 82
7.2 Gold Standard Link Candidate Vetting for S2017 and S2018 84
7.3 ILog Evaluation Studies Characteristics and Dataset Usage 88

8.1 Thresholds and Number of Candidate Links for IR Techniques . . . 93
8.2 Comparison of IR and IL Trace Link Creation 94
8.3 Trace Links for different Code Traversal Levels 95
8.4 IR and IL Trace Links Considering Source Code Structure 96

9.1 Precision and Recall for IL and IR 103
9.2 Duration-based IL Improvement . 103
9.3 Frequency-based IL Improvement . 104
9.4 Developer-Specific Differences . 104
9.5 Source Code-based Improvements . 105
9.6 Combination of Improvements . 105

10.1 S2017 Project Retrospective Study: Precision and Recall 110
10.2 Results for ILCom and ILCom_i with Different Settings 113
10.3 Results for ComL, ComLi and Comparison with ILCom and ILCom_i 114

xvii

LIST OF TABLES

10.4 Results for IR, IRi and Comparison with ILCom and ILCom_i 114

11.1 Results for IL, ILCom, ComL and IR in all Studies 119

A.1 Trace Link Maintenance Approaches with Multiple Publications . . . 135

xviii

List of Abbreviations

API Application Programming Interface
ComL Version Control System (VCS) Commit-based Trace Link Creation
FN False Negative
FP False Positive
GS Gold Standard
IDE Integrated Development Environment
IL ILog with manual performed interaction assignment
ILCom ILog with VCS Commit-based interaction assignment
ILog Interaction Log Recording-based Trace Link Creation
IR Information Retrieval
ITS Issue Tracking System
LSI Latent Semantic Indexing
NLP Natural Language Processing
POS Part of Speech Tagging
RE Requirements Engineering
RQ Research Question
SCS Source Code Structure
SDK Software Development Kit
SE Software Engineering
SLR Systematic Literature Review
TM Trace Link Maintenance
TP True Positive
UML Unified Modelling Language
VCS Version Control System
VSM Vector Space Model

xix

LIST OF ABBREVIATIONS

xx

Part I

Preliminaries

1

Chapter 1
Introduction

This chapter begins in Section 1.1 with an introduction and explanation of the
motivation as to why, for continuous trace link creation, maintenance and direct
link usage, quality improvements of automatically generated trace links are essential.
In Section 1.2 the problems which will be solved in this thesis are defined by two
research goals. In Section 1.3 the contributions which address the research goals are
listed. In Section 1.4 the design science research methodology which was used in
this thesis is introduced, including a description of the design cycle performed in this
thesis. In Section 1.5 the structure of the thesis is outlined. Section 1.6 concludes
the chapter with a list of the publications regarding the thesis which have already
been published as scientific work.

1.1 Motivation

Traceability in Software Engineering (SE) enables the tracing of artefacts by means
of trace links between the artefacts [Gotel et al., 2012a]. Trace links are used between
all kinds of SE artefacts such as requirements, source code, design artefacts and test
cases, etc. [Cleland-Huang et al., 2014]. Out of the links between all these artefacts,
trace links between requirements and source code are especially fundamental, since
they enable the connection between the user point of view of a requirement and its
actual implementation [Gotel et al., 2012b]. Furthermore, these kind of links also
enable the tracing of requirements’ evolution history which is an essential concern
for Requirements Engineering (RE) [Gotel et al., 2012a].

In general, traceability between source code and requirements is important for
many SE and RE tasks, such as maintenance, program comprehension, verification,
etc. [De Lucia et al., 2010, Mäder and Egyed, 2011, Bavota et al., 2012, Bouillon
et al., 2013, Rempel et al., 2014, Mäder and Egyed, 2015]. It is also a major concern
of SE and RE research [Gotel et al., 2012b, Borg et al., 2014, Cleland-Huang et al.,
2014, Panichella et al., 2015].

3

CHAPTER 1. INTRODUCTION

The manual creation of trace links is cumbersome and time-consuming and is
not performed at all in real world projects [Gotel et al., 2012a]. Automatic trace
link recovery and creation methods try to countervail the problem of the additional
effort which is consumed in manual trace link creation.

Information Retrieval (IR)-based trace link creation is the most commonly used
technique to automatically discover and create links between artefacts [Borg et al.,
2014]. IR is used to create links between artefacts with a textual similarity. Thus,
IR-based trace link creation is limited with respect to the similarity measure and
the IR technique used [McMillan et al., 2009]. Further IR-based trace link creation
focuses on a ’once-at-a-time’ batch-oriented creation of links using structural require-
ments, such as use cases and to use the resulting links for verification purposes [De
Lucia et al., 2008, Cleland-Huang et al., 2014]. Thus, research concerning IR-based
trace link creation methods focuses on finding all existing links, for the purposes of
recall optimization. The burden of wrong links and the efforts to filter out wrong
links from a list of link candidates is accepted, since the list of link candidates is
only created and processed once in a while [Briand et al., 2014, Niu et al., 2014].

However, in many companies, requirements are managed in Issue Tracking Sys-
tem (ITS) [Maalej et al., 2014a]. For open source projects, Issue Tracking Systems
(ITSs) are even the de facto standard for all RE activities [Ernst and Murphy, 2012,
Merten et al., 2016a]. In ITS the requirement’s text is unstructured, since ITSs are
used for many purposes, e.g. development task and bug tracking in addition to
Requirements Engineering (RE). The mostly unstructured form of requirements in
ITSs and the usage of ITSs for different purposes impair the results of IR-based trace
link creation approaches in such environments [Merten et al., 2016b]. Furthermore,
direct availability and usage of trace links during projects improves the performance
of developers [Mäder and Egyed, 2015]. For ongoing creation and direct usage of
links, wrong links and manual filtering of link candidate lists is not practical.

Once links have been created, they have to be maintained along with the chang-
ing of linked artefacts during the progression of a project [Wohlrab et al., 2016,
Maro et al., 2016]. Trace Link Maintenance (TM) is a crucial part of the complete
trace link management process. Without keeping trace links up to date, along with
changes in the linked artefacts, trace links become obsolete and useless [Gotel et al.,
2012a, Cleland-Huang et al., 2014]. A simple approach to TM would be to remove
all existing links and simply to regenerate the links in the same way as in the initial
generation.

However, this simple TM approach is often not practical due to the resources
required for a complete regeneration of links. On the one hand, such resources are the
required computing power, and, on the other hand, one has to account for the time
spent and knowledge required for manually vetting links. For continuous creation
and usage of links, the complete regeneration of links is even more impractical.
Therefore, it is important to enhance trace link approaches with maintenance.

4

1.2. PROBLEM STATEMENT

Thus, this thesis proposes a new automatic trace link creation approach for
continuous link creation and the maintenance of links along with changing artefacts,
which enables the direct usage of the created links.

1.2 Problem Statement

The problem of established trace link creation techniques for continuous link creation
and usage is their insufficient quality regarding precision and recall [Cleland-Huang
et al., 2014]. According to Gotel et al. [2012b], there is a trade-off between precision
and recall: if IR-based methods have a good recall (up to 90%), the generated
candidate links include a lot of False Positives (FPs), in which precision is between
10% to 20% [Gotel et al., 2012b]. Even with recall values of 90%, important links
might be missing.

The reason why a 100% recall with IR is almost impossible is that related arte-
facts do not always share the same terms and thus link recovery is not possible. In
the context of unstructured requirements in an ITS , the term mismatch problem
is even more relevant than in a traditionally structured requirement context with
restricted language. The primary reason for bad precision of IR-based trace link
creation techniques is the dependency between precision and recall when using IR-
based recovery techniques. To obtain high recall values, the threshold which defines
that two artefacts are linked has to be low [Niu et al., 2014]. This often results in a
bad precision, since many unrelated artefacts are included.

The maintenance of created links along with the changing of linked artefacts dur-
ing the progress of a project is most often not considered at all in existing automatic
trace link creation approaches. If maintenance is discussed in many cases, these
approaches favour the removing of all existing links and completely regenerating the
links.

In summary, existing IR-based trace link creation approaches have particular
problems with unstructured requirements and with precision improvements that do
not affect the recall. This results in impracticality concerning such approaches for
continuous link creation, usage and maintenance. On the one hand, created link
candidates require a manual assessment in order to be usable, and on the other
hand link maintenance is only performed by a complete regeneration of links. Thus,
this thesis targets two primary research goals related to the continuous creation,
maintenance and usage of links:

G1 Design and evaluate an approach to improve the quality of automatically gen-
erated trace links, between unstructured requirements and source code, in
comparison to existing approaches. The focus is to achieve a perfect precision
for automatically and continuously generated links, which are directly usable
during development, but which still keep the recall acceptable.

5

CHAPTER 1. INTRODUCTION

G2 Discover capabilities to maintain existing trace links along with the changes
on linked artefacts to keep good link quality and extend the approach of G1
with the capabilities discovered.

1.3 Contributions

To achieve these two research goals, this thesis presents the Interaction Log Recording-
based Trace Link Creation (ILog) approach, which uses interaction logs and existing
links as data sources for trace link creation and maintenance. The abbreviation
ILog refers to the data source utilized Interaction Log Recording-based Trace Link
Creation. Interaction log recordings are the recordings of a developer’s interactions
from the artefacts’ a developer has touched in an Integrated Development Environ-
ment (IDE). The usage of ILog targets a development set-up in which an ITS is
used to manage requirements in the form of unstructured issues.

A core motivation to use interactions instead of the contents of linked arte-
facts was to avoid the problems concerning the bad precision of other link creation
approaches, which rely on the contents of linked artefacts [Borg et al., 2014]. Gen-
erally speaking, the benefit of using developers’ interactions instead of the contents
of linked artefact is that developers are intelligent in comparison to an IR-based or
other approach. It is likely that developers know what to do, i.e. they know which
source code files are required when they work on a requirement, and that this results
in a fewer number of wrong links compared to IR and other approaches.

The usage of interaction data in ILog was further motivated by different SE and
RE research fields, in which interactions turned out to be a valuable data source to
discover previously hidden knowledge.

Two such examples for interaction usage by others are the approach of Fritz
et al. [2014], in which interactions are used to model the knowledge of developers
and the approach of Konôpka and Bieliková [2015], in which implicit source code
dependencies are discovered by analysing the interaction logs of developers. In both
cases interactions were used to create new relations between previously unrelated
entities, which basically represents the same problem which automatic trace link
creation also tries to solve. Interactions and existing links as data sources can
improve recall, since they are likely to yield new links compared to IR [Konôpka
and Bieliková, 2015] and precision, since FP links are more unlikely for interaction
logs and existing links than they are for IR [Soh et al., 2018].

In the context of the ILog approach, this thesis provides three contributions to
improve the automatic creation (G1) and maintenance (G2) of trace links between
requirements and source code.

The first contribution is the ILog approach itself, which is based on the usage
of interactions on source code files, as captured within an IDE , while a developer
is working on the implementation of a requirement. Furthermore, ILog also avoids

6

1.4. RESEARCH METHODOLOGY

additional efforts for developers by using developers’ work habits to assign recorder
interactions to requirements. For the actual trace links creation, interactions are
aggregated in a configurable manner by using the data recorded in the interactions.
Finally, ILog enables the further improvement of the initially created links by uti-
lizing existing links and aggregated interaction data.

The second contribution are three evaluation studies which have been conducted
along with the development of the ILog approach. The result of these studies show
that ILog can create trace links with precision to enable the direct usage of links,
and that ILog is superior to other trace link creation approaches.

The third contribution is a Systematic Literature Review (SLR) which provides
an overview of the state of the art of Trace Link Maintenance (TM). The TM
approaches identified in the SLR are described by means of a standardized TM
process and were assets with regard to their integration in ILog. Finally, based on
the assessment, a TM process for ILog is sketched using the previously identified
TM capabilities.

1.4 Research Methodology

The research conducted for this thesis follows the principles of the design science
methodology as described by Wieringa [2014]. Design science is performed in design
science projects [Wieringa and Moralı, 2012]. A design science project consists of
two general consecutive activities. First, an artefact to improve something for a
stakeholder is created. Second, the created artefact is empirically evaluated in a
given context. To start a design science research project, it is necessary to specify a
research goal. Since a design science project iterates over designing and evaluating,
its research goals can be refined into design and knowledge goals.

Transferring these design science principles to the investigated research goal of
this thesis, G1 is a design goal and G2 comprises aspects of a knowledge (the SLR
about TM) and a design goal (integration of TM capabilities in ILog).

According to Wieringa [2014], the general design task of a design science project
consists of three more specific tasks, namely (1) problem investigation, (2) treat-
ment design and (3) treatment validation. These three tasks are called the design
cycle, since they can be iterated multiple times in a research project. The goal of
the problem investigation (PI) task is to establish the phenomena which must be
improved, including a rationale as to why the improvement is necessary. In the
treatment design (TD) task, artefacts are designed which could treat the problem.
The TD task is followed by the treatment validation task (TV). In the TV task,
the designed artefacts are evaluated to validate whether the problems of the PI task
could be solved with the designed artefacts. Thus, all studies presented in this thesis
are called evaluation studies.

7

CHAPTER 1. INTRODUCTION

Interaction log based
trace link creation
approach (ILog)

TD

Empirical evaluation
of ILog quality

TV

Design Cycle:
Continuously Provide and Maintain

Directly Usable Trace Links

TD

PI

TV

Design Cycle Tasks:

Treatment Design
Treatment Validation

Problem Investigation

Existing trace link
mainteance approaches

PI Integration of trace
link maintenance

capabilities in ILog

TD

Quality of existing
automatic trace link
creation approaches

PI

Figure 1.1. Design Cycle of the Thesis

Figure 1.1 shows the design cycle to investigate the continuous creation, mainte-
nance and usage of automatically generated trace links performed in this thesis. In
the following, the PI, TD and TV tasks performed throughout the design cycle are
introduced in more detail. In the design cycle a PI, TD and TV tasks for continuous
link creation (G1) and PI and TD task for link maintenance (G2) were performed.

For G1 the design cycle starts with the first and general PI task in which existing
automatic trace link creation approaches are reviewed with regard to their link cre-
ation techniques and quality. For G2 the PI task is to investigate and assess existing
TM approaches. Here, the focus is to identify TM approaches which maintain links
along with changing artefacts during a project.

In the TD task for G1 the ILog approach is introduced. For G2 in the TD task
maintenance capabilities of the previously investigated existing TM approaches have
been assessed and a TM process with selected TM capabilities for ILog is presented.

In the TV task for G1 the ILog approach has been evaluated in three empirical
studies. For G2 no TV task was performed. However, potential evaluations for ILog
with TM capabilities are discussed in the concluding part of the thesis.

1.5 Structure of the Thesis

Table 1.1 shows an overview of the structure of the thesis and the performed design
cycle. For the introduction and conclusion parts, the chapters and links to the
chapters are shown. For the parts comprising a task of the design cycle, the table
shows the investigated Research Questions (RQs), which address the previously
stated research goals G1 and G2, the result and links to the respective chapters.

Part I presents the preliminaries which includes this introduction and the fun-
damentals required for the rest of the thesis. Part II presents the PI tasks for G1,
which consists of a review of existing trace link creation approaches and G2, which
presents a SLR for TM approaches. Part III presents the TD tasks for G1, the ILog
approach, and for G2, a sketch of how to integrated selected found TM capabilities
in ILog. Part IV presents the TV task for G1, which consists of three evaluation

8

1.5. STRUCTURE OF THE THESIS

studies for the ILog approach, including an initial introduction of the used projects,
data and tools and a final discussion of the overall results. Part V presents the
conclusion of the thesis, including a summary and an outlook of future work.

Table 1.1. Structure of the Thesis

Preliminaries Chapter
Introduction 1Part I
Fundamentals 2

Problem Investigation
Quality of existing automatic trace link creation
approaches
RQ: Which automatic trace link creation approaches
exist and what is the quality of the resulting links?
Result: Structured description of existing automatic
trace link creation approaches and their quality

3

Maintenance of existing trace links
RQ: Which approaches exist for Trace Link Mainte-
nance (TM)?

Part II

Result: Structured description and assessment of TM
approaches

4

Treatment Design
Interaction Log Recording-based Trace Link
Creation (ILog) approach
Result: ILog approach, consisting of:
(1) Interaction log recording with:

• manual assignment
• commit-based assignment

(2) Trace link creation by interaction aggregation
(3) Trace link optimization techniques
• precision optimization (wrong link detections by

using interaction data and Source Code Structure
(SCS))

• recall optimization (by SCS)

5

Integration of trace link maintenance in ILog
RQ: To what extent can existing TM approaches be
transferred to ILog?

Part III

Result: Extension of ILog with capabilities from exist-
ing TM approaches

6

Treatment Validation
Evaluation of ILog quality
RQ: What is the quality of trace links generated with
ILog?

D
es

ig
n

C
yc

le

Part IV Results: Three empirical evaluation studies which show
and discuss the good quality of links created with ILog

7, 8,
9, 10,
11

Conclusion
Part V Summary and Outlook 12, 13

9

CHAPTER 1. INTRODUCTION

1.6 Previous Publications

Parts of this thesis have already been published as scientific work. Table 1.2 provides
an overview of these publications in chronological order, including a reference to the
corresponding chapters of the thesis.

Table 1.2. Publications in the Context of the Thesis

No. Publication Chapter

[IL1] Paul Hübner. Quality Improvements for Trace Links between Source Code and
Requirements. In Proceedings of the REFSQ Workshops, Doctoral Symposium,
Research Method Track, and Poster Track, volume 1564, Gothenburg, Sweden,
2016. CEUR-WS

1, 5

[IL2] Paul Hübner and Barbara Paech. Using Interaction Data for Continuous Cre-
ation of Trace Links Between Source Code and Requirements in Issue Tracking
Systems. In Proceedings of the 23rd International Working Conference - Re-
quirements Engineering: Foundation for Software Quality (REFSQ), volume
10153 of Lecture Notes in Computer Science (LNCS), pages 291–307, Essen,
Germany, 2017. Springer

5, 7,
8, 11

[IL3] Paul Hübner and Barbara Paech. Evaluation of Techniques to Detect Wrong
Interaction Based Trace Links. In Proceedings of the 24th International Work-
ing Conference - Requirements Engineering: Foundation for Software Quality
(REFSQ), volume 10753 of Lecture Notes in Computer Science (LNCS), pages
75–91, Utrecht, The Netherlands, 2018. Springer

5, 7,
9, 11

[IL4] Paul Hübner and Barbara Paech. Increasing Precision of Automatically Gener-
ated Trace Links. In Proceedings of the 25th International Working Conference
- Requirements Engineering: Foundation for Software Quality (REFSQ), vol-
ume 11412 of Lecture Notes in Computer Science (LNCS), pages 73–89, Essen,
Germany, 2019. Springer

5, 7,
10, 11

[IL5] Paul Hübner and Barbara Paech. Interaction-based Creation and Maintenance
of Continuously Usable Trace Links. Empirical Software Engineering, 2020
status: submitted

4, 5, 6,
10, 11

10

Chapter 2
Fundamentals

This chapter introduces the fundamentals for this thesis. In Section 2.1 the data
sources which are used for trace link creation and which are relevant in the context
of this thesis are introduced. This includes Issue Tracking Systems (ITSs), Version
Control Systems (VCSs), Source Code Structure (SCS) and interaction data. In
Section 2.2 the fundamentals of traceability, i.e. the automatic creation of trace
links, IR and other techniques which utilize the previously introduced data source
for trace link creation are introduced. In Section 2.3 the measurement fundamentals
to evaluate and rate the quality of a trace link creation approach are introduced.
This includes the concept of a gold standard and the definitions for precision, recall
and further quality-rating measures for created links.

2.1 Data Sources

This section introduces the data sources used for trace link creation in this thesis.

2.1.1 Issue Tracking Systems

Nowadays, many software companies use Issue Tracking System (ITS) to specify
their requirements [Maalej et al., 2014a]. For open source projects, the usage of
an ITS is a crucial point and a de facto standard [Merten et al., 2016a]. In ITS ,
the requirements text is unstructured and requirement issues are mixed with other
issues for e.g. bug tracking, task and test management [Merten et al., 2016a].

The unstructured requirements specification such as those which are used in ITS
is contrary to the structured requirements specification, in which the requirements
follow a more strictly predefined template. A sample for a stricter kind of format is a
use case. In a use case a requirement is described in a sequence of actions performed
by different actors, including data transferred between the actions. Further such
structure formats often restrict the language used. Textual content-based trace
link creation methods such as IR can use structure information, e.g. for specific

11

CHAPTER 2. FUNDAMENTALS

preprocessing, and benefit from a restricted language in more significance for the
similarity measures [Hayes et al., 2006].

Issue

Summary

Description

Comment

Issue Type

Linked
Issues

External
LinksAssignee

Reporter

Status

Created

Issue ID

...

Data
Elements

Figure 2.1. Typical Issue Data Elements Relevant for Traceability

Figure 2.1 shows the typical data elements of issues which are managed in an ITS .
The issue type is used to indicate the purpose of an issue, e.g. Bug for bug tracking,
task or sub task for a task to be performed, story, feature or epic for requirement
specification, test case for testing, etc. A unique issue ID is used to reference an
issue. This can take place in the ITS typically by other issues. For example, when
a requirement issue is linked to an task issue and to a test case issue, the task
issue specifies how to implement the requirement and the test case issue specifies
how to perform the testing for the requirement. External links target the elements
in other systems, e.g. pages in a Wiki or commits in a VCS (cf. the following
Sections 2.1.2 and 2.2.3), etc. The summary and description are unstructured text
which summarize and describe the details of the issue. Comments enable users to
discuss an issue and are also often used to clarify concerns and add more details.
For content-based trace link creation methods such as IR, the summary, description
and comment data elements are most often used [Merten et al., 2016a]. Further
typical data elements are an assignee, i.e. the user who is assigned to process the
issues, a reporter, i.e. the user who initially created the issue, the processing status
of the issue, a creation date, etc. In the context of this thesis, the content elements
of the issue (summary, description and comments) are relevant for IR-based trace
link creation and the usage of issue IDs in VCS commit messages is relevant for
commit-based trace link creation and ILog.

2.1.2 Version Control Systems

A Version Control System (VCS) is used in software development to manage the
changes made to artefacts during a project. VCS are designed to handle changes
between textual artefacts and thus are mainly used in projects for implementation
artefacts such as source code files. In the following the VCS-specific data and mech-
anisms that are used for trace link creation in this thesis are introduced.

Figure 2.2 shows an overview of data elements and presents how they are created
in an VCS . Artefacts such as source code files are managed in a repository. In a

12

2.1. DATA SOURCES

Repository

Developer performs Commit
Commit <ID>

Commit Message

Source
Code
File

Changed Artefacts

Issue ID
Version <ID>

Commit <ID>
Version <ID>

Commit <ID>
Version <ID>

Commit <ID>

Tags
Tag: Version 23.0VCS

references

Branches
Branch: Feature A

1..* 1

contains

comprises
creates

Performed Action
Composite Data ElementData Element Repository
Membership Relation Reference Relation

Figure 2.2. Version Control System Data Elements Relevant for Traceability

centralized VCS there is only one repository. In a decentralized VCS there can be
multiple repositories, in this case typically one local repository for every developer
and a centralized repository to synchronize all changes are used.

After the artefacts have been changed by a developer, the developer performs
a commit to the repository. The commit includes all artefacts changed since the
last commit. Further to each commit a developer has to provide a commit message.
A common convention and a de facto standard for such a commit message is to
provide the issue identifier (ID), or even multiple issue IDs, from the ITS which the
commit refers to and a short textual description of the performed changes. For each
performed commit, the VCS creates a new version of the artefacts in the repository.

As shown in Figure 2.2, a repository comprises branches. Branches are created
by developers to work independently of each other. Thus, a branch is used in order
to disconnect a series of commits (versions) from other changes, e.g. to implement a
completely new feature. Typically the changes performed in one branch are merged
back to other branches after a while, e.g. if the implementation of a new feature is
finished. A main branch is used to mark the current stable state of artefacts in the
repository which is created from merging individual branches to this main branch.
A tag is a text label-marking of a certain version created by a commit, in order to
make the version easily able to be referenced. Tags are stored in the repository.
Tagging is often used during a release to mark the version of artefacts used in the
release.

Listing 2.1. Example VCS Commit Message�
commit 92 a8f249e6b6eda2cb497156fc4927b6b86b1859
Author : dev1 <dev1@uni−h e i d e l b e r g . d e >
Date : Thu Feb 16 1 5 : 4 0 : 1 1 2017 +0100

ISE2016 −224 t o o l t i p s l i d e r added
� �
Listing 2.1 shows an example of a typical commit message which refers to the ITS
issue with issue ID ISE2016-224. In addition, the listing shows above the commit
message that the commit has a unique ID, an author, and a date time stamp.

13

CHAPTER 2. FUNDAMENTALS

Common VCS , such as Git1 provide much more functionality than that which is
described here. A complete overview of Git’s functionality can be found in [Chacon
and Straub, 2014].

2.1.3 Source Code Structure

Source Code Structure (SCS) are the different kinds of relations between source
code files. In the context of this thesis SCS denotes the call and data dependencies
between code files and classes [Kuang et al., 2015]. Using the code structure to
improve trace link creation is part of traceability research.

Kuang et al. [2017] created a distance measure between different code files which
are based on the SCS between the code files, and they used this distance measure
to improve trace links which were initially created with IR. Ghabi and Egyed [2012]
created a set of patterns based on SCS not only to judge existing trace links to
requirements about their correctness but also to detect missing links. Rahimi et al.
[2016] used the SCS to detect certain refactorings and then used a set of refactoring-
specific rules to create and maintain links to requirements. SCS is also used in the
ILog approach of this thesis to improve initially created links.

C1
C3 C4

Source Code Structure Reference
Sub-Graph of Connected Classes

C2 C6

C7

Controller

Manager
C5

Figure 2.3. Example Source Code Structure between Classes

Figure 2.3 shows an example SCS of the classes Controller, Manager and C1
to C7. In the following this example is used to illustrate the different relevant SCS
concepts and relations. Based on the references between the classes, the classes
can be separated into two sub-graphs, in which the classes are the nodes and the
references are the edges of the graph. The first smaller sub-graph consists of the
two classes C3 and C4. The second larger sub-graph consists of the other classes
C1, C2, C5, C6, C7, Controller and Manager.

In the following code listings, with code excerpts from the second sub-graph,
classes are used to illustrate how different relation types between classes are used
to create the SCS , as shown in Figure 2.3. The code listings are presented in a
Java-oriented syntax with parts which are relevant for relations, and thus SCS ,
highlighted.

1https://git-scm.com/, Git VCS website

14

https://git-scm.com/

2.1. DATA SOURCES

Listing 2.2. SCS Example Class Controller�
1 p u b l i c c l a s s C o n t r o l l e r {
2 Manager manager = <i n i t Manager>;
3 p u b l i c void c o n t r o l (C1 c1) {
4 c 1 . i n i t () ;
5 manager.manage() ;
6 c1.c lose () ;
7 . . .
� �

Listing 2.2 shows the code excerpt of the Controller class. In line 2 a reference to
the class Manager is created by creating and initializing a new Manager instance.
In line 3 a reference to C1 is created by using an instance of C1 as input parameter
of the method control(). In lines 4 to 6 further references are created by method
calls.

Listing 2.3. SCS Example Class Manager�
1 p u b l i c c l a s s Manager implements C5 {
2 p u b l i c void manage () {
3 . . .
� �

Listing 2.3 shows the code excerpt of the class Manager. In line 1 a reference to the
class C5 is created by implementing the interface defined in C5.

Listing 2.4. SCS Example Class C1�
1 p u b l i c c l a s s C1 extends C2 {
2 . . .
� �

Listing 2.4 shows the code excerpt of the class C1. In line 2 a reference to the class
C2 s created by extending C1 by inheritance of the implementation of C2.

To summarize the relations when a class references other classes in its attributes
or by method calls, a class implements an interface or a class extends another class
are used to created the SCS . In addition a set of classes connected by SCS is denoted
as a sub-graph.

2.1.4 Interaction Data

In this section the basics of interaction data as required for the ILog approach are
introduced. After this, an overview of interaction data usage by others is given.

2.1.4.1 Interactions of Developers

In the context of this thesis and the ILog approach, all interactions of developers with
artefacts during the usage of an IDE are considered. The intention of the usage of
an IDE by a developer is to perform a task. Such a task can be the implementation
of a requirement or bug fixing etc. Most of the artefacts which are interacted with
during such a task are source code files. Since the goal of this thesis is to create
links between source code and requirements, references to interactions during the

15

CHAPTER 2. FUNDAMENTALS

thesis always refer to the context of a developer who is working with an IDE on
a requirement-related implementation task and who is interacting with source code
files during this task. Interactions recorded during a period of time and stored in a
place, such as in the workspace of the IDE , are called interaction log recordings.

Common IDEs such as Eclipse2 provide the functionality to record developer’s
interactions [Murphy et al., 2006]. A interaction of a developer which is performed
in an IDE creates a interaction event. A single recorded interaction event comprises
multiple data attributes. Common attributes are a time stamp of the interaction
occurrence, the source code file which has been interacted with, the type of inter-
action (e.g. select, edit, etc. as well as more fine-grained types such as keystroke,
menu selection, etc.) and future information, such as the part of the IDE in which
the interaction occurred (e.g. navigator, editor, main menu, etc.), developer-specific
information such as a user name, etc.

Based on the interaction data described, an interaction, when it is recorded in an
interaction event, and when it touches the implementation artefact, i.e. source code
file, I while working on requirement R, can be used to create a trace link between I
and R.

2.1.4.2 Usage of Interaction Data

This section reports on the use of the interaction data of developers by other re-
searchers. The focus for the selected approaches is the usage of interaction data to
create relations (i.e. links) between artefacts. The intention was to identify princi-
ples and techniques which can be transferred to the ILog approach developed in this
thesis. The approaches were identified by an initial exploratory search, a review of
the Mining Software Repositories3 conference proceedings4 from 2004 to 2016, and
by searching for related work when performing the evaluation studies of ILog.

Maalej et al. [2014b] describe how to use interaction data, based on examples
of existing recommendation systems, in order to trigger recommendations about
the source code artefacts used. Furthermore, they describe different methods to
aggregate this data to sessions, tasks, and activities, and show how to filter such
data for productive use.

Maalej and Ellmann [2015] conducted a study on the similarity of development
tasks using the context of the tasks. In their study they used Mylyn5 for the col-
lection of task data. Thus, for the definition of the task context, they also used
the Mylyn’s degree of interest (DOI) model. In summary the DOI model is based

2http://www.eclipse.org, Eclipse IDE website
3http://www.msrconf.org/, International Conference on Mining Software Repositories Website
4https://dblp.uni-trier.de/db/conf/msr/, conference proceedings
5Mylyn is a plug-in for the Eclipse IDE which records interactions in order to support the imple-

mentation tasks of developers. Mylyn-recorded interactions have also been used in this thesis. With
this in mind, Mylyn is introduced in further detail in Chapter 7 of the evaluation part evaluation
part of the thesis.

16

http://www.eclipse.org
http://www.msrconf.org/
https://dblp.uni-trier.de/db/conf/msr/

2.1. DATA SOURCES

on the number of interactions with files and the type of interactions (edit, select,
etc.) and a rating which is calculated on the basis of those two values. The results
of their study showed that their file interaction-based task context model achieves
similar results as when using IR and the textual similarity of task descriptions for
finding similar development tasks. However, their approach has the advantage of
not requiring a textual task description which is often miss.

Cleland-Huang et al. [2012] present a study in which they implemented and
evaluated an approach to recommend trace links between the system model (specified
in Unified Modelling Language (UML)) and requirements during model changes.
They use edit interactions to trigger recommendations of trace links. However, for
the creation of trace links, IR is used in their approach.

Omoronyia et al. [2009] published an approach in which interactions between
source code and structured requirements which were specified as use cases are cap-
tured and used to visualize and navigate trace links. Their tool support focuses
on visualizing the trace links after a task has been performed and not on the di-
rect availability and usage of trace links. In a follow-up paper [Omoronyia et al.,
2011] by the same authors, they also use interactions for trace link creation. In it
they consider developer collaboration and rank interaction events. Their approach
achieves a precision of 77% in the best case.

The use of interaction data to find software artefact relations is also applied
in the domain of software architecture. Konôpka and Navrat [2015] find relations
between source code artefacts and tasks based on interaction data recorded in an
IDE . The recorded interaction data is used for grouping code, but not for trace link
creation. [Konôpka and Bieliková, 2015] is another paper by the same authors. In
this they also use interaction logs not only for grouping but also in order to detect
implicit relations between code files.

Soh et al. [2018] showed through an observation study, along with interactions
recorded using Mylyn, that observed interaction durations do not always correspond
to recorded interaction durations. More precisely, they show that the assumptions
that the time which is recorded for an interaction is the time spent on a task,
and that an edit event which is recorded by Mylyn corresponds to modification in
the code, are not true. They were able to detect these differences by comparing
the interactions and video-capturing of developer behavior in a quasi-experiment.
These differences are not due to any misbehavior of the developers, but only due to
Mylyn’s recording algorithm. For example, searching and scrolling is not counted in
the time spent and the idle time is not treated correctly.

El-Ramly and Stroulia [2004] define a process that supports the detection of
interaction patterns during the usage of a computer program by a user interface.
The interaction patterns can be used to detect spurious events within a task which
is performed by a user. As a result of this, the user interface can be optimized to
avoid the spurious events.

17

CHAPTER 2. FUNDAMENTALS

Schneider et al. [2004] discuss the analysis of local interaction histories of a VCS .
Their core idea is that the local interaction histories comprise valuable information
which is not present in a shared VCS repository. Among other applications, they
suggest using the file search and browsing patterns of developers to identify relations
to files and to identify performed refactorings.

Parnin et al. [2006] suggest augmenting the revision history of a VCS with the
interaction history of programmers. In particular, they suggest adding program
viewing and editing history with all historical artefacts within a VCS . They per-
formed an evaluation in which a IDE plug-in was used to record click, navigation,
move, and edit interactions of ten developers while they were working on different
projects. After that, the recorded interactions were analysed. A key finding was that
interaction data contains previously unavailable data and that applications such as
recommender systems and developer behaviour analyses can benefit from this data.

Rastkar and Murphy [2009] compared the change-sets of commits to recorded
interactions for describing software evolution tasks. In contrast to interactions, a
change-set only covers the final result, i.e. the changes in artefacts, of such a task.
In the performed evaluation study Rastkar and Murphy analysed change-sets and
recorded interactions to find similar bug reports. They found that the two methods
produce very different connections, but neither is clearly superior to the other. They
conclude that both methods cover different aspects.

Robbes and Rothlisberger [2013] used interaction data which was recorded in the
Mylyn project to create metrics in order to rate the expertise of developers. Such
an expertise metric can be used to assign tasks to developers efficiently. Interaction
data was used for a task-specific required time spend and a number of interactions
performed metric. The assumption for expertise rating stated that a developer
who is familiar with the relevant code entities will require less time and slightly
fewer interactions to complete a task. However, the achieved evaluation results were
uneven and the authors suggest that further investigation is necessary.

Zanjani et al. [2014] used interaction data to improve the impact analyses for
change request. In contrast to using a snapshot of the entire source code or the com-
mits associated with the relevant change request for impact analysis, the presented
approach uses all revision of source code which has been committed or interacted
with while performing a change request. Then, Natural Language Processing (NLP)
and IR are used to find similarities for new change request in the history of per-
formed change requests. This approach showed an increase in accuracy compared
to previous approaches.

As a follow-up work to [Zanjani et al., 2014], Zanjani et al. [2015] describe an
approach to find the most suitable developer to perform a change request. First,
the textual similarities of a change request with source code files are used to identify
source code files which are relevant for the change request. Then, the interactions of
developers with source code files, which are recorded with Mylyn while performing

18

2.2. TRACEABILITY

other change requests, are used to identify suitable developers. The number of
interactions with a source code file and the relative time which is taken in working
on this source code file compared to others determined the developer’s expertise,
resulting in a ranked list of developers for each incoming change request.

In summary the presented usage of interaction data, it can be seen that different
tasks such as recommending artefacts, grouping artefact and also creating relations
between artefacts, are supported. The interaction data-based support in these tasks
is used to discover previously hidden or only implicit information, e.g. groups of
artefacts, knowledge of a software developer about artefacts, etc. Further the usage
of a VCS in conjunction with interactions is prominent in these approaches.

The approaches of Omoronyia et al. [2011] and Konôpka and Bieliková [2015]
explicitly use interactions for trace link creation. However, instead of links between
requirements and source code files, Konôpka and Bieliková only created links be-
tween different source code files, whereas Omoronyia et al., do not directly provide
the resulting links for usage, but create a list of link candidates that requires further
vetting of these links.

2.2 Traceability

The term traceability in software engineering is used to express the fact that arte-
facts which are created through different software engineering life cycle phases are
traceable. Thus, traceability enables the tracing of an artefact’s evolution history.
That is to say, traceability makes links between artefacts from the same and different
Software Engineering (SE) life cycle phases explicit, e.g. by linking requirements
with other requirements or by linking requirements with the source code implement-
ing the requirement, etc. [Gotel et al., 2012b]. Links between artefacts from the
same software engineering life cycle phase, i.e. which are on the same abstraction
level, are also considered as horizontal traceability, whereas links between artefacts
from different software engineering life cycle phases, i.e. which are on different ab-
straction levels, are considered as vertical traceability [Cleland-Huang et al., 2014].

In the ILog approach developed in this thesis, vertical traceability by the auto-
matic creation of trace links between source code and requirements is considered.
Linking between requirements and source code is crucial, since it presents the con-
nection from the customer’s point of view of the requirements to their actual im-
plementation, i.e. the source code [Cleland-Huang et al., 2014]. Manual trace link
creation is cumbersome, error prone due to a lack of overall expert knowledge, and
rarely performed at all. Thus, the automatic creation of trace links is an established
SE and RE research field [De Lucia et al., 2011a].

The following section 2.2.1 introduces the concept of automatic trace links cre-
ation. Section 2.2.2 introduces Information Retrieval (IR) techniques, which are
the most common techniques for automatic trace link creation. Thus, in the con-

19

CHAPTER 2. FUNDAMENTALS

text of this thesis IR-based trace link creation approaches serve as the reference for
comparison and rating of the ILog approach. Further Section 2.2.3 outlines other
techniques used for automatic trace link creation. These other techniques can be
summarized as rule-based techniques [Cleland-Huang et al., 2014].

2.2.1 Automatic Trace Link Creation

Most automatic trace link creation techniques utilize the contents of linkable arte-
facts [Borg et al., 2014]. Commonly these techniques are called Information Retrieval
(IR)-based techniques. As Borg et al. report in their review of IR-based trace link
creation approaches, the term Natural Language Processing (NLP) is used for IR-
based trace link creation techniques as well, even if they refer to IR techniques.
Thus, this thesis follows the suggestion of Borg et al. [2014] to use only the term IR
when referring to automatic trace link creation techniques which utilize the textual
contents of linkable artefacts. Other techniques for automatic trace link creation can
be summarized as rule-based [Rahimi and Cleland-Huang, 2018]. This also includes
approaches which apply machine learning techniques [Rath et al., 2018].

2.2.2 Information Retrieval

In this section the basic concept of IR, as required for IR-based trace link creation,
is introduced. Information Retrieval (IR) is a machine or computer-based search
for information within a set of artefacts [Baeza-Yates and Ribeiro, 2011]. The core
assumption for IR-based trace link creation is that artefacts which are textually sim-
ilar are related with each other and should be linked. Studies have shown that even
different kinds of software engineering artefacts, such as documentation, require-
ments, source code, etc. use a similar terminology [Antoniol et al., 2002, Dekhtyar
et al., 2004]. In IR-based trace link creation, IR techniques are used to measure the
textual similarity of two artefacts. The textual similarity of two artefacts is then
used to establish a link between the two artefacts if the measured textual similarity
is above a certain threshold. De Lucia et al. [2011a] state that the process of trace
link recovery consists of four key steps:

1. document parsing, extraction, and preprocessing

2. corpus indexing with an IR technique

3. ranked list generation

4. analysis of candidate links

In the following the further principles for IR-based trace link creation are introduced
with respect to these four steps.

20

2.2. TRACEABILITY

2.2.2.1 Preprocessing

To make the application of IR techniques as reasonable as possible, first it is nec-
essary to preprocess the textual contents of artefacts. The preprocessing of textual
artefacts is essential for the later application of the IR techniques. Typically, pre-
processing consists of several steps, i.e. the successive application of different pre-
processing techniques. Some of them are fundamental and some are specific to the
artefacts and data sources used.

Stop word removal, punctuation character removal and stemming are common
preprocessing steps which are also often used in IR-based trace link creation [Man-
ning et al., 2008, Baeza-Yates and Ribeiro, 2011, Borg et al., 2014]. Stop word
removal removes common words which have no impact on the similarity of artefacts.
Stop words can be articles and prepositions such as the, a, of etc. as well as typical
key words of programming languages such aspublic, void, etc. Punctuation character
removal is self-explanatory, i.e. the removal of characters such as ;!?, etc. Stemming
is the process of reducing words to their stem or root form, e.g. driving becomes
drive. The de facto standard for the stemming of English language is the Porter
Stemmer algorithm [Baeza-Yates and Ribeiro, 2011]. It is used in most IR-based
trace link creation approaches and in all evaluations comprising IR-based trace link
creation as performed in this thesis.

A source code specific preprocessing step is identifier splitting. In source code
multiple words are often combined to a single identifier, e.g. BugzillaTaskService-
Manager, whereas in requirements separate words are used [De Lucia et al., 2011b,
Ali et al., 2011]. Thus performing identifier splitting in source code files can signifi-
cantly improve the similarity of source code and requirements artefacts. Camel case
identifier splitting is a specific kind of identifier splitting e.g. BugzillaTask becomes
Bugzilla Task. Camel case notation is especially common in Java source code but
also in source code which uses other programming languages. Since the source code
files used in the evaluation studies of this thesis are either in Java or JavaScript,
camel case identifier splitting has been applied in all performed evaluation studies.
This preprocessing proceeding in the performed evaluations is also consistent with
the suggestions of Borg et al. [2014]. This is because Borg et al. recommend that the
application of text preprocessing techniques should always be artefact type-specific
and that the application of different preprocessing techniques and their combinations
should be evaluated for the best results of generated trace links.

2.2.2.2 Indexing

After the preprocessing of textual artefacts, the next step of an IR technique is to
index the terms of the preprocessed textual artefacts. The goal of indexing is to
represent the artefacts in an document space by extracting information about the
occurrence of terms within the artefacts. The occurrence information of a term

21

CHAPTER 2. FUNDAMENTALS

is then used to define similarity measures between the artefacts. Finally, a set of
source artefacts is compared to a set of target artefacts and the similarity measures
are used to rank all possible pairs (of artefacts) by their similarities. These pairs of
artefacts represent the trace link candidate list. Commonly this list requires further
manual vetting of the link candidates by an expert [De Lucia et al., 2011a].

Terms extracted from documents (artefacts) are stored in a so-called term-by-
document matrix. In this 𝑚 × 𝑛 matrix, 𝑚 is the number of all unique terms that
occur within the documents (artefacts) and 𝑛 is the number of documents. An
entry 𝑤𝑖𝑗 in this matrix is a measure of weight or relevance of the 𝑖𝑡ℎ term in the 𝑗𝑡ℎ

document [Baeza-Yates and Ribeiro, 2011]. The three core measurements for the
term weight formulation as used in IR-based trace link creation techniques are:

1. Term Frequency (tf(𝑡, 𝑑)): terms (𝑡) that are repeated multiple times in a
document (𝑑) are considered as prominent.

2. Document Frequency (df(𝑡)): terms that appear in many documents are con-
sidered as common and not very indicative. The inverse document frequency
(idf(𝑡) = log

(︁
𝑛

df(𝑡)

)︁
, in which 𝑛 is the number of all documents) weighting

method, is based on the document frequency 𝑑𝑓 .

3. Document Length: to avoid side-effects of longer documents scoring higher,
normalization is performed.

Term frequency-inverse document frequency (tf-idf) is the most common weight-
ing and normalization function used for term frequency, document frequency and
document length. It is used to weight a term, based on the document length and
the frequency of a term, and thus it weights a term for a single document and all
documents. It is defined as:

tf-idf(𝑡, 𝑑) = tf(𝑡, 𝑑) · idf(𝑡)

= tf(𝑡, 𝑑) · log
(︂

𝑛

df(𝑡)

)︂
Further possible improvements to tf-idf could also be to normalize tf within tf-idf,
so that the effect of multiple occurrence of a term in a document is limited as well
[Baeza-Yates and Ribeiro, 2011].

2.2.2.3 Trace link Creation Techniques

With the term-by-document matrix representation, different IR techniques can be
used to rank pairs of source and target artefacts based on their similarities. That
is to say, IR techniques are used to execute search queries which aim to retrieve
all relevant artefacts while minimizing the non-relevant artefacts [Baeza-Yates and
Ribeiro, 2011]. When using IR techniques for trace link creation, the query concerns

22

2.2. TRACEABILITY

the textual similarity between two artefacts. The most common IR techniques for
trace link creation6 are probabilistic models and vector space-based models [De Lucia
et al., 2011a]. In a probabilistic model, a source artefact is ranked according to the
probability of its being relevant to a particular target artificial. In vector space-based
models, artefacts are represented as vectors of terms from the artefacts. In these
source artefacts are ranked against target artefacts by computing a distance function
between the vectors of the artefacts [De Lucia et al., 2011a]. Vector space-based
models are the most used and most well-established trace link creation techniques
[Borg et al., 2014]. The usage of probabilistic models is rare in current IR-based
trace link creation approaches, since it is known that they perform worse on average
in comparison to vector space-based models [Borg et al., 2014]. Probabilistic models
are more common in other IR applications such as full text search engines [Baeza-
Yates and Ribeiro, 2011]. Thus, in this thesis only vector space-based models are
introduced and used for the comparison with the ILog approach. In the following the
two most common vector space-based models Vector Space Model (VSM) and Latent
Semantic Indexing (LSI) are introduced [Borg et al., 2014, Gotel et al., 2012b].

Vector Space Model (VSM)

In the most common vector space-based model, the cosine similarity between two
term vectors (documents) is used as a measure for the textual similarity. The cosine
similarity measures the similarity between the two term vectors which represent the
artefacts, and which is based on the cosine of the angle between the term vectors.
This technique is commonly referred to as Vector Space Model (VSM) [De Lucia
et al., 2011a]. The numerical value of the cosine similarity is between 0 and 1 [Borg
et al., 2014]. 0 indicates no similarity between two artefacts and 1 indicates that
two artefacts are identical. In order to define whether two artefacts are related
with each other and should be linked, a threshold value for the cosine similarity is
used Cleland-Huang et al. [2007]. Thus, varying this threshold value also varies the
number of created trace link candidates. An alternative to the cosine similarity, and
thus a different vector space-based model, would be to use the inner product of the
two terms vectors instead of the cosine [De Lucia et al., 2011a].

Latent Semantic Indexing (LSI)

Latent Semantic Indexing (LSI) is also a vector space-based model. The difference
between Vector Space Model (VSM) and LSI lies in the way in which the term
comparison is performed. Whereas VSM measures the similarity based on terms
which are directly extracted from the documents, LSI measures the similarity based
on concepts. Concepts are high level abstractions of the terms used and can been

6Sometimes trace link creation is also denoted as trace link recovery by authors, yet both refer
to the same concept of initially creating links using linkable artefacts

23

CHAPTER 2. FUNDAMENTALS

seen as the topics of the artefacts [Deerwester et al., 1990, Baeza-Yates and Ribeiro,
2011]. Concepts cluster related terms with respect to documents and related docu-
ments with respect to terms [De Lucia et al., 2011a]. Thus, LSI enables similarity
matches between artefacts which do not contain exactly the same terms and thus
overcomes the polysemy and synonymy problems of VSM ; e.g in VSM the terms
bicycle and road bike are handled as different terms, whereas in LSI these two terms
would match to the same concept.

2.2.2.4 Link Candidate Processing

In the final two steps of the trace link recovery process of De Lucia et al. [2011a],
the resulting link candidates are first ranked according their textual similarity. As
previously introduced, the cosine similarity is used as a textual similarity measure
of two artefacts representing a link candidate. Furthermore, the link candidate list
is then processed, most often manually, to remove False Positives (FP). Since it
is known that IR methods produce a lot of FP links, the processing of IR-created
link candidates lists is even a research subject of its own [Hayes et al., 2006, Niu
and Mahmoud, 2012, Falessi et al., 2017]. Simple strategies for processing the link
candidates list are constant cut point and variable cut point. In the constant cut
point strategy, link candidates are only considered if their textual similarity is above
a certain threshold. In the variable cut point strategy, the list is processed until a
certain percentage of the candidate links have been considered, since it is known
that links later in the list (with lower similarity) are more likely to be wrong.

2.2.3 Commit-based and Further Trace Link Creation Techniques

Gotel et al. [2012b] summarize the other trace link creation techniques as rule-based.
Rule-based techniques often utilize properties of artefacts in combination with IR,
e.g. by creating links between all requirements and the activities of an activity dia-
gram whose name is textually similar to it. The rule-based techniques also comprise
machine learning-based techniques. Machine learning techniques are the core tech-
niques for data mining which is in turn the principle of discovering new knowledge
from existing data [Witten et al., 2016]. Basically machine learning uses a training
data set, which contains correctly classified data, e.g. linked artefacts and trace
links between the artefacts, in order to train a classifier. Later the trained classifier
is then used to classify new data, e.g. to create trace links between new artefacts.
Furthermore, there is a differentiation between supervised and unsupervised learn-
ing. In supervised learning there is a teacher signal and the results created by a
classifier can be compared to the teacher and handled accordingly, i.e. they can be
accepted or rejected. In unsupervised learning no teacher exists and the results of a
classifier can only be assessed manually or with further other techniques.

24

2.3. MEASUREMENT FUNDAMENTALS

Commit-based trace link creation is a common rule-based trace link creation
technique. It uses issue identifiers (IDs) which are provided by developers in VCS
commit messages to link all files affected by a commit to the issue which is specified
by the issue ID (cf. Section 2.1.2). The usage of issue identifiers (IDs) to link
commits to requirements and bug reports is a common convention in open source
projects [Bird et al., 2009, Merten et al., 2016a, Rath et al., 2018]. Developers often
use this principle to create trace links themselves [Rath et al., 2017].

Rath et al. [2017] report a dataset Ilm7 which they created from seven open
source projects for the purpose of evaluating traceability research. They used
commit-based trace link creation, i.e. the issue IDs in commit messages, in or-
der to link issues to code files. They report that only 60% of the commits contain
an issue ID.

In their follow-up work [Rath et al., 2018], they use the Ilm7 dataset to train
different machine learning classifiers to countervail the problem of commits without
issue IDs. To train their classifiers, they not only used the files and issue IDs from
commits, but also the textual similarity (IR) between different artefacts (i.e. the
commit message text, the issue text, the source code text) and further data such
as developer-specific information. In their final experiment, they used the trained
machine learning classifiers to identify the matching issues for commits without
issues and achieved an average recall of 91.6% and precision of 17.3%. A direct
comparison with IR-based link creation is missing. However, since these results are
quite similar to what others have achieved by relying on IR and ITS data alone
[Merten et al., 2016b], it seems that the usage of IR to train machine learning
classifiers results in the same low precision values as when relying on IR alone.

2.3 Measurement Fundamentals

To rate the quality of trace link creation approaches objectively, a link set of the
real trace links and measures in order to rate the link candidates created by an
approach are necessary. Thus, in the following Section 2.3.1 the term gold standard,
which refers to the set of real trace links used in trace link approach evaluations,
is introduced. In Section 2.3.2, the evaluation measures used to rate the quality
of trace link creation approaches by comparing created link candidates with links
from an gold standard are introduced. This also includes typical categories for the
achieved quality of an trace link creation approach.

2.3.1 Gold Standard

To evaluate the quality of trace link creation approaches, a gold standard which
consists of the set of all correct trace links for a given set of artefacts is important
[Borg et al., 2014, Gotel et al., 2012b]. To create such a gold standard, it is necessary
to manually check whether trace links exist for each pair of artefacts.

25

CHAPTER 2. FUNDAMENTALS

The creation of such a gold standard is labor-intensive, especially for large re-
alistic real world datasets. Moreover, experts with knowledge about all involved
artefacts are required for the creation of a gold standard. The lack of experts with
that knowledge, i.e. a person who has the required knowledge, can also be a reason
why the creation of a complete gold standard in large projects is simply not possible
[Borg et al., 2014].

Therefore many trace link creation approaches use datasets which are specifically
created for the purpose of evaluation, e.g. within a student project [De Lucia et al.,
2007]. This is also one of the reasons why two of the performed evaluation studies
of this thesis used student projects. Thus it was possible to create the gold standard
in parallel to the projects.

2.3.2 Evaluation Measures

Trace links which are initially created by a trace link creation approach are often
called trace link candidates, and only after the trace link candidates have been
vetted by a human analyst they are called trace links. Also, some trace link creation
approaches consist of multiple steps for the creation of trace links, e.g. when in a
first step IR is used to create an initial set of link candidates and in a second step
further information such as SCS is used to improve the initial set of link candidates
to the final set of trace links.

This also applies to the ILog approach of this thesis. ILog consists of multiple
steps and the links resulting from the intermediate steps are called trace link can-
didates, while the links from the final step are called trace links. Furthermore, in
studies which evaluate trace link creation approaches, by comparing links created
by an approach to links of a gold standard, the links from the approach are called
link candidates and the links from the gold standard links [Borg et al., 2014].

Based on the link set from a gold standard and the link candidate set which is
created by a trace link creation approach, the evaluation measures introduced in the
following are used to rate the quality of a trace link creation approach, i.e. the final
created trace links. Precision (P) is the amount of correct links, i.e. True Positive
(TP), within all links found by an approach. The latter (i.e all links found by an
approach) is the sum of TP and incorrect links, i.e. False Positive (FP). Recall (R)
is the amount of TP links found by an approach within all existing correct links.
The latter (i.e. all existing correct links) is the sum of TP and False Negative (FN),
i.e. not found, links:

𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝐹𝛽 = (1 + 𝛽2) · 𝑃 · 𝑅

(𝛽2 · 𝑃) + 𝑅

𝐹𝛽-scores combine the results for P and R in a single measurement to judge the
accuracy of a trace link creation approach. As shown in the equation for 𝐹𝛽 above,

26

2.3. MEASUREMENT FUNDAMENTALS

𝛽 can be used to weight P in favor of R and vice versa. Because the research goal
of this thesis is to directly provide automatically created trace links to developers,
the focus for ILog’s evaluation is to emphasize P, but still consider R. Therefore,
the evaluation studies of this thesis use 𝐹0.5 which weights P twice as much as R.
In addition, in the evaluation studies 𝐹1-scores are also calculated to compare the
results with those of others.

Relative recall is used if it is not possible to obtain all correct values for a dataset
due to the size of the dataset [Frické, 1998]. It is a well-established standard measure
in the domain of web search engine performance and quality measuring where the
missing of a complete gold standard is common [Kumar and Prakash, 2009]. Relative
recall uses all correct links available as a comparison measure to calculate the recall
of a single approach. The calculation of relative recall is defined as:

𝑅𝑟
𝑛 = 𝑇𝑃𝑛

𝑖∑︀
𝑖=1

𝑇𝑃𝑖

𝑅𝑟
𝐼𝑅 = 𝑇𝑃𝐼𝑅

𝑇𝑃𝐼𝑅 + 𝑇𝑃𝐼𝐿𝑜𝑔
𝑅𝑟

𝐼𝐿𝑜𝑔 = 𝑇𝑃𝐼𝐿𝑜𝑔

𝑇𝑃𝐼𝐿𝑜𝑔 + 𝑇𝑃𝐼𝑅

The first equation shows the general case in which the relative recall 𝑅𝑟
𝑛 for the

approach 𝑛 is calculated on the basis of the fraction of all correct links (𝑇𝑃𝑛) of the
approach 𝑛 and the sum of all correct links from all approaches which have been
used for link creation (

∑︀𝑖
𝑖=1 𝑇𝑃𝑖). The further equations show the cases in which IR

and ILog have been used for link creation and the respective relative recall 𝑅𝑟
𝐼𝑅 for

IR and 𝑅𝑟
𝐼𝐿 for ILog. The 𝐹𝛽-score calculation with relative recall is identical to real

recall as it was previously introduced. In this thesis, relative recall has been used in
one evaluation study (cf. Chapter 8) in which interaction data from an open source
project was used. Due to the project’s size according to involved requirements and
the source code files, it was not possible to create a complete gold standard.

According to Hayes et al. [2006], the values for P and R of IR-based trace link cre-
ation approaches for structured requirements can be categorized according to three
quality levels. Acceptable values for R are between 60 and 69% and for P between 20
and 29%. Good values for R are between 70 and 79% and for P between 30 and 49%
and excellent values for R are between 80 and 100% and for P between 50 and 100%.
Merten et al. [2016b] reported varying results for using IR on unstructured require-
ments data from ITS , in which they tried to achieve 100% for R with different IR
techniques and different preprocessing steps. According to their study their best val-
ues for P were up to 11%. In considering other approaches for link creation between
code and requirements using open source projects as data sources, Ali et al. [2013]
used VSM for trace link creation and achieved similar but also very project-specific
results for P (between 15% and 77%). De Lucia et al. [2007] report values of 90%
for R and 25% for P for link creation between structured requirements and source
code by using LSI in combination with categorization. The reported categorize and
values for P and R are used to rate the results of the performed evaluation studies.

27

CHAPTER 2. FUNDAMENTALS

28

Part II

Problem Investigation

29

Chapter 3
Quality of Trace Link Creation: State
of the Art

This chapter presents a review of existing IR-based trace link creation approaches.
In the design cycle of the thesis, the review is the core part of the task of problem
investigation. It answers the general research question: Which automatic trace link
creation approaches exist and what is the quality of the resulting links? The results of
the review show the insufficiency of current automatic trace link creation approaches
to create trace links for continuous and direct usage. That is to say, the precision
of these approaches is insufficient and the link candidates which result from them
need further manual assessment.

Section 3.1 introduces the method concerning how the trace link creation ap-
proach review has been performed, including the detailed research questions and
the rationale for them. Section 3.2 presents the results by answering the previ-
ously stated research question, and includes a concluding discussion which further
motivates the creation of the ILog Approach.

3.1 Method

Instead of performing a SLR, this trace link creation approach review is based on
three existing reviews about trace link creation. However, expect for the part con-
cerning publication identification, the review follows the steps of a SLR, as suggested
in the SLR guidelines of Kitchenham and Charters [2007]. Section 3.1.1 introduces
the method of the review. Section 3.1.2 states the research questions and attributes
that are necessary to answer these research questions. Section 3.1.3 introduces the
three literature review publications about trace link creation approaches which were
used and presents the way that the trace link creation approaches reviewed in this
chapter have been selected.

31

CHAPTER 3. QUALITY OF TRACE LINK CREATION: STATE OF THE ART

3.1.1 Review Method

According to the SLR guidelines of Kitchenham and Charters, after defining the
research questions and setting up a search strategy, it is necessary to define the
exclusion and inclusion criteria for the literature which has been reviewed, and to
create a classification schema which allows for a systematic answer of the stated
research questions.

By using the existing literature reviews, basic exclusion criteria to ensure the
quality of the reviewed approaches have already been applied, e.g. English language,
peer reviewed, etc. The primary inclusion criterion was that a publication must
describe a trace link creation approach in which trace links between source code and
other artefacts are created. The trace link creation approaches have been limited
to include the source code as source/ target for trace links, since the ILog approach
is intended for link creation between requirements and source code. The secondary
inclusion criterion was that an evaluation of the approach was performed and is
described in the publication with results that enable a quality rating of the approach
regarding continuous and direct link usage.

The approach classification schema used in this review is defined by the attributes
which have been used for answering the research questions.

3.1.2 Research Questions

Table 3.1. Trace Link Creation Review Research Questions and Attributes

Research Question Attributes
RQ1 What are the characteristics of automatic

trace link creation approaches?
Standardized description of the automatic trace
link creation approach

RQ1.1 Which automatic trace link creation ap-
proaches exist?

Publication describing the automatic trace link
creation approach

RQ1.2 Which artefacts are linked with each other? Source and target artefacts of trace links
RQ1.3 What is the intended link creation time and

frequency?
Link creation time (retrospective, during
project) and frequency (continuous, manually
triggered)

RQ1.4 What are the means of link creation used? The link creation method used (IR-technique,
initial (from scratch) creation of links, use of
trace link improvement techniques)

RQ1.5 What is the quality of the created trace links? Trace link quality (precision, recall)

Table 3.1 shows a refinement of the general research question: Which automatic
trace link creation approaches exist and what is the quality of the resulting links?
The table also includes the attributes necessary to answer the research questions.

RQ1 asks for the characteristics of trace link creation approaches. In RQ1.1
(existing approaches) the publication for each trace link creation approach is iden-
tified. The subsequent RQs – from RQ1.2 to RQ1.5 – collect the data required a
standardized description of the approaches. RQ1.2 shows which artefacts are linked
with source code files. RQ1.3 shows the intended link creation time, which makes

32

3.2. RESULTS

it possible to judge if an approach is suitable for continuous link creation. RQ1.4
shows the details about the IR-technique used and states whether and what kind
of link improvement techniques have been applied. RQ1.5 shows the resulting link
quality of an approach, which makes it possible to judge if the resulting links of an
approach are suitable for direct use.

3.1.3 Overview of Literature Selection

For the review of automatic trace link creation approaches, three existing literature
reviews in the field of traceability research were selected1. The selection criterion
for the reviews was to address the current state of the art in traceability research of
automatic trace link creation. In the following, the key characteristics of the three
reviews are summarized.

In TR1, Gotel et al. [2012b] align the traceability approaches presented with the
grand challenges in traceability research [Cleland-Huang et al., 2014]. In TR2, Borg
et al. [2014] focus on approaches using IR-based traceability methods. In TR3,
Cleland-Huang et al. [2014] present an updated report of the grand challenges in
traceability research, including ongoing trends.

Those traceability approaches which were discussed in these three review studies,
and which satisfy the inclusion criteria to create trace links between requirements
and source code (I1) and to be assessable according to continuous link creation and
direct link usage (I2), were selected.

3.2 Results

In Section 3.2.1 the research questions are answered by presenting the publications
for the trace link creation approaches that were found and a standard description of
the approaches, using the attributes of the research questions. In Section 3.2.2 the
results are summarized and discussed regarding the research goals of the thesis and
implications for the design of the ILog approach.

3.2.1 Overview of Trace Link Creation Approaches and Answers to
the Research Questions

RQ1.1: Which Automatic Trace Link Creation Approaches Exist

Table 3.2 answers RQ1.1 (which approaches exist) by presenting the overview of the
12 identified trace link creation approaches and the publication for each approach.

1Initially the review study from Nair et al. [2013], which concerns traceability approaches pre-
sented at the International Requirements Engineering Conference, was also selected to identify
automatic trace link creation approaches. However, after the consolidation of all selected trace
link creation approaches from all review studies, it turned out that only older publications for ap-
proaches, which were already identified in the other review studies, were present in [Nair et al.,
2013]. Thus only the most current publications as found in the other review studies were used.

33

CHAPTER 3. QUALITY OF TRACE LINK CREATION: STATE OF THE ART

Table 3.2. Primary Publications for the Identified Trace Link Creation Approaches

ID Trace Link Creation Approach Publication

T01 Yoëlle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An Information Retrieval Approach For Automatically
Constructing Software Libraries. IEEE Transactions on Software Engineering (TSE), 17(8):800–813, 1991

T02 Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore Merlo. Recovering trace-
ability links between code and documentation. IEEE Transactions on Software Engineering (TSE), 28(10):
970–983, 2002

T03 Andrian Marcus and Jonathan I. Maletic. Recovering Documentation-to-Source-Code Traceability Links using
Latent Semantic Indexing. In Proceedings of the 25th International Conference on Software Engineering (ICSE),
pages 125–135, Portland, OR, USA, 2003. ACM/IEEE

T04 Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Enhancing an Artefact Management
System with Traceability Recovery Features. In Proceedings of the 20th IEEE International Conference on
Software Maintenance (ICSM), pages 306–315, Chicago, IL, USA, 2004. IEEE

T05 Jane Cleland-Huang, Raffaella Settimi, Oussama BenKhadra, Eugenia Berezhanskaya, and Selvia Christina.
Goal-centric Traceability for Managing Non-functional Requirements. In Proceedings of the 27th International
Conference on Software Engineering (ICSE), pages 362–371, St. Louis, MO, USA, 2005. ACM/IEEE

T06 Leonardo Gresta Paulino Murta, André van der Hoek, and Cláudia Maria Lima Werner. ArchTrace: Policy-
Based Support for Managing Evolving Architecture-to-Implementation Traceability Links. In Proceedings of the
21st IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 135–144, Tokyo,
Japan, 2006. IEEE

T07 Xuchang Zou, Raffaella Settimi, and Jane Cleland-Huang. Phrasing in Dynamic Requirements Trace Retrieval.
In Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC),
volume 1, pages 265–272, Chicago, IL, USA, 2006. IEEE

T08 Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recovering Traceability Links in
Software Artifact Management Systems using Information Retrieval Methods. ACM Transactions on Software
Engineering and Methodology (TOSEM), 16(4):1–50, 2007

T09 Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. On Integrating Orthogonal Infor-
mation Retrieval Methods to Improve Traceability Recovery. In Proceedings of the 27th IEEE International
Conference on Software Maintenance (ICSM), pages 133–142, Williamsburg, VA, USA, 2011. IEEE

T10 Achraf Ghabi and Alexander Egyed. Code Patterns for Automatically Validating Requirements-to-Code Traces.
In Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 200–209, Essen, Germany, 2012. ACM

T11 Alexander Delater and Barbara Paech. Analyzing the Tracing of Requirements and Source Code during Soft-
ware Development. In Proceedings of the 19th International Working Conference - Requirements Engineering:
Foundation for Software Quality (REFSQ), volume 7830 of Lecture Notes in Computer Science (LNCS), pages
308–314, Essen, Germany, 2013. Springer

T12 Bogdan Dit, Meghan Revelle, and Denys Poshyvanyk. Integrating information retrieval, execution and link
analysis algorithms to improve feature location in software. Empirical Software Engineering, 18(2):277–309,
2013

Table 3.3 shows in which of the three review studies the approaches were found.
Three of the approaches were include in two review studies. Review study TR1
contains five, TR2 contains three and TR3 contains seven approaches, respectively.

In the following, each of the 12 trace link creation approaches is summarized
based on the characteristics shown in Table 3.4.

In T01, Maarek et al. [1991] describe an automatic trace link creation approach
that creates links between requirements and source code. The link creation is in-
tended for a retrospective application, and uses the IR technique of lexical affinities2

for an initial automatic link creation. The best achieved precision is 52% and the
best achieved recall is 90%.

In T02, Antoniol et al. [2002] describe an automatic trace link creation ap-
proach that creates links between requirements and source code. The link creation

2A lecial affinities is pair of co-occurring terms with a certain statistical relevance. In the trace
link creation of the described approach lexical affinities are used to judge if artefacts should be
linked with each other.

34

3.2. RESULTS

Table 3.3. Sources of Trace Link Creation Approaches

Review T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12
∑︀

TR1 ✓ ✓ ✓ ✓ ✓ 5
TR2 ✓ ✓ ✓ 3
TR3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Table 3.4. Properties of Trace Link Creation Approaches

Approach properties T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12
∑︀

Links
Code
with

Functional Requirements ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9
Use Cases ✓ ✓ 2
Features ✓ 1

Non-functional req. ✓ 1
Design models ✓ ✓ ✓ 3
Architecture models ✓ 1
Test cases ✓ ✓ 2

Time Retrospective ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11
During dev. ✓ 1

Initial ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
Improvement ✓ ✓ ✓ ✓ ✓ 5Inten-

tion Manual effort ✓ ✓ 2

IR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
Lexical affinities ✓ 1
VSM ✓ ✓ 2
LSI ✓ ✓ ✓ ✓ ✓ ✓ 6
Probab. model ✓ ✓ 2

NLP ✓ ✓ ✓ 3
(POS) Phrasing ✓ 1
Topic modelling ✓ 1

Rules ✓ ✓ ✓ 3
SCS ✓ 1

Link
Creat-
ion

Tech-
nique

(Com.) Revision ✓ 1

Precision 52 17 43 14 51 95 39 25 38 95 88 -Link
Quality Recall 90 100 71 100 87 89 90 90 - 96 93 -

is intended for a retrospective application, and uses IR with VSM for an initial
automatic link creation. The best achieved precision is 17% and the best achieved
recall is 100%.

In T03, Marcus and Maletic [2003] describe an automatic trace link creation
approach that creates links between requirements, design models and source code.
The link creation is intended for a retrospective application, and uses IR with LSI
for an initial automatic link creation. The best achieved precision is 43% and the
best achieved recall is 71%.

In T04, Lucia et al. [2004] describe an automatic trace link creation approach
that creates links between the requirements specified as use cases, test cases and
source code. The link creation is intended for a retrospective application, and uses
IR with LSI for an initial automatic link creation. The best achieved precision is
14% and the best achieved recall is 100%.

In T05, Cleland-Huang et al. [2005] describe an automatic trace link creation
approach that creates links between non-functional requirements and source code.

35

CHAPTER 3. QUALITY OF TRACE LINK CREATION: STATE OF THE ART

The link creation is intended for a retrospective application, and it uses IR with
LSI and a probabilistic model for automatic trace link creation. The probabilistic
model used is intended to improve the resulting links in comparison to using only
LSI . However, it also requires a manual vetting of the link candidates. The best
achieved precision is 51% and the best achieved recall is 87%.

In T06, Murta et al. [2006] describe an automatic trace link creation approach
that improves existing links between architecture models and source code. The
link improvement is intended for a retrospective application, and uses NLP-based
rules for the semi-automatic (i.e. it also requires manual effort) improvement of the
previously created links. The best achieved precision is 95% and the best achieved
recall is 89%.

In T07, Zou et al. [2006] describe an automatic trace link creation approach that
creates links between requirements and source code. The link creation is intended for
a retrospective application, and it improves upon the T05 probabilistic model-based
approach by additionally using the NLP technique of Part of Speech Tagging (POS)
and phrasing. The best achieved precision is 63% and the best achieved recall is
90%.

In T08, De Lucia et al. [2007] describe an automatic trace link creation approach
that creates links between requirements in the form of use cases, test cases, design
models and source code. The link creation is intended for a retrospective application,
and uses IR with LSI for initial automatic creation of trace links. Furthermore, the
approach improves links by applying categorisation, i.e. by using the type of linked
artefacts as an additional measure for link creation. The best achieved precision is
33% and the best achieved recall is 95%.

In T09, Gethers et al. [2011] describe an automatic trace link creation approach
that creates links between design models and source code. The link creation is
intended for a retrospective application, and it uses the NLP technique topic mod-
elling for initial automatic link creation. The best achieved precision is 38% but
achieved recall values are not reported.

In T10, Ghabi and Egyed [2012] describe an automatic trace link creation ap-
proach that improves links between requirements and source code. The link creation
is intended for a retrospective application, and uses rules based on SCS for the auto-
matic improvement of previously created links. The best achieved precision is 95%
and the best achieved recall is 96%.

In T11, Delater and Paech [2013] describe a semi-automatic trace link creation
approach that creates links between requirements and source code. The link cre-
ation is intended for application during the development, and it uses rules based
on recorded interactions during the implementation of requirements and manually
created relations between commits and issues for an initial automatic link creation.
The best achieved precision is 88% and the best achieved recall is 93%.

36

3.2. RESULTS

In T12, Dit et al. [2013] describe an automatic trace link creation approach that
creates links between requirements which are specified as features and source code.
The link creation is intended for a retrospective application, and uses IR with VSM
and LSI for an initial automatic link creation. Instead of precision and recall, the
performed study evaluated the effectiveness improvements of the approach presented
(combination of multiple IR techniques) in comparison to standard approaches (sin-
gle IR technique). The approach achieved an effectiveness improvement of 87%.

RQ1.2: Linked Artefacts and RQ1.3: Link Creation Time

The first rows of Table 3.4 show which artefacts are linked with source code files in
the approaches. Most of the approaches link with requirements (9 functional, 1 non-
functional). Other artefacts which are often linked are model elements from design
(3) or architectural (1) models. Three approaches created links from the source code
to two different kind of artefacts. For three approaches linking to requirements, the
requirement format is explicitly defined as the use cases T04 and T08 or as feature
T12.

For all but one (11) of the approaches, the intended link creation time is retro-
spectively and manually triggered. Only the approach T11 is designed for continuous
link creation during a project but requires manual assignment of issues to commits
for link creation.

RQ1.4: Means of Link Creation

The rows in the Link Creation segment of Table 3.4 characterise the means of link
creation used in the approaches. 10 of the approaches are intended for the initial
creation of links which utilize the contents of linked artefacts. Five of the approaches
apply some kind of improvement technique, out of which three do this in conjunction
with the initial link creation, e.g. by not only using the results of an IR technique
but also by considering different data, such as the artefact types. The other two
approaches which apply improvement techniques do not directly specify how the
initial link creation is performed. In addition, two of the approaches which also
apply improvement techniques require a manual processing of the resulting link
candidates in order to achieve the reported precision and recall values.

Eight of the approaches use the IR techniques, lexical affinities (1), VSM (2),
LSI (6), or probabilistic models (2). The two approaches which use probabilistic
models use these models as an improvement for only applying LSI .

Three of the approaches use NLP, of which one is for improving IR-based link
creation, while the other two are used as a primary link creation technique. The
NLP techniques used are phrasing together with POS and topic modelling.

Three of the approaches use rules for link creation. One of them does so together
with NLP, one with SCS , and one with revisions in a VCS created by commits.

37

CHAPTER 3. QUALITY OF TRACE LINK CREATION: STATE OF THE ART

RQ1.5: Link Quality
The rows in the Link Quality segment at the bottom of Table 3.4 summarize the
findings regarding link creation quality in terms of their respective precision and
recall. The performance of the investigated approaches is uneven. Whereas retro-
spective approaches for initial link creation reach a precision between 14% and 52%,
approaches with link improvement and the prospective approach T11 achieve a pre-
cision between 33% and 95%, respectively. The achieved recall values are between
71% and 100%. However, the two approaches which achieve 100% recall also have
the lowest precision values of 17% and 13%, respectively.

3.2.2 Summary and Discussion

Almost all approaches create links retrospectively by analysing the contents of arte-
facts. First, retrospective approaches aim at creating an initial set of trace links be-
tween source code files and the target artefacts by applying an IR or NLP technique
or a rule-based link inference mechanisms. Second, they focus on further improving
precision and recall by extending the initial creation techniques with other further
techniques, or by applying further techniques after the initial creation and by ask-
ing developers to select the appropriate links. Only T11 supports a semi-automatic
creation of trace links during implementation by tracking which requirements de-
velopers view while writing code. Overall, beside the approach T11, none of the
other approaches directly provides the links after their creation. The link quality
of retrospective approaches which create an initial set of trace links is insufficient
for direct use, due to their low precision. High precision and recall can only be
achieved together based on manual improvement activities or interaction tracking
of developers.

None of the reviewed approaches fully accomplishes the research goal of this
thesis, which is to continuously provide directly usable trace links during a project
without requiring additional manual effort from developers. Either the link quality of
the approaches is insufficient, or manual effort is required to achieve good precision,
or approaches assume that links already exist and only an improvement of existing
links is performed. However, some of the aspects of the reviewed approaches are
considered for the design of the ILog approach. These aspects include the usage of
interaction tracking and recording for link creation, the use of data from commits to
a VCS , the principle of using a further technique to improve links after their initial
creation, and the utilization of SCS as an improvement technique.

38

Chapter 4
Trace Link Maintenance: State of the
Art

As a second problem which is investigated in the thesis, this chapter provides a Sys-
tematic Literature Review (SLR) concerning the maintenance of trace links (TM).
Links have to be maintained along with the changes of linked artefacts during the
progress of a project [Wohlrab et al., 2016, Maro et al., 2016]. They can become ob-
solete due to changes in the linked artefacts and, when they do, they become useless.
TM is a crucial part of the complete trace link management process [Cleland-Huang
et al., 2014]. Therefore, this SLR collects the state of the art of TM .

Another reason to create this overview is to identify approaches suitable for
the maintenance extension of the ILog approach which is developed in this thesis.
The following Section 4.1 describes the research method. Section 4.2 describes the
process of publication search and selection, and Section 4.3 provides the results.

4.1 Method

The SLR follows the guidelines of Kitchenham and Charters [2007]. Section 4.1.1
first introduces the review method which is used. Section 4.1.2 states the research
questions and the rationale for them.

4.1.1 Review Method

RQ
definition

Search
strategy

Inclusion-/ exclusion
criteria definition

Classification
scheme

1 2 3 4

Figure 4.1. Systematic Literature Review Method Approach

The SLR follows the approach of Kitchenham and Charters [2007]. As shown in
Figure 4.1, the first step is to define the research questions. The second step is to set

39

CHAPTER 4. TRACE LINK MAINTENANCE: STATE OF THE ART

up a search strategy. Kitchenham and Charters suggests to use online databases to
initially identify relevant publications. To query an online database, a search string
consisting of search terms which reflect the research questions and the attributes
that are required to answer the research questions is necessary. Due to the different
search interfaces of the online databases (i.e. use of logical expressions, restrictions to
certain files and meta data attributes, etc.), an online database-specific adaptation
of the search query and the usage of search interface-specific filtering options are
necessary. The searching of online databases can be supplemented with manual
target search.

Furthermore, inclusion and exclusion criteria for publications which are to be
found by the keyword search have to be defined. Kitchenham and Charters define
the general criteria for this as the following: a publication has to be available in
English full text, it has to be peer reviewed, and there should be empirical results
in the publication.

These general criteria are then supplemented by criteria which are specific to
the research questions and the attributes that are required to answer the research
questions. For this SLR, the research question-specific inclusion criteria are that the
publications need to describe a TM approach.

Finally, a classification scheme for the identified publications is needed. This
is necessary to compare the different approaches. In addition, it is also helpful to
extract general publication data and meta-data, such as the names of the authors,
year, title, venue.

Table 4.1. Trace Link Maintenance SLR Research Questions and Attributes

Research Question Attributes
RQ1 What are the characteristics of TM ap-

proaches?
Standardized description of the TM approach

RQ1.1 Which TM approaches exist? Publication describing trace link maintenance
approach

RQ1.2 Which artefacts are linked with each
other?

Source and target artefacts of trace links

RQ1.3 Which other data sources/ artefacts are
used for TM?

Used data sources/ artefacts

RQ1.4 How is TM performed and how are the
artefacts and the trace links used for that?

Description of TM approach by a generic 4 step
process

RQ1.5 To what extent and how are TM ap-
proaches automated?

Which part is automated? (detection, execu-
tion)
Degree of automation (automatic, semi-
automatic, manual, indicated by manual/
monitoring for the detection steps and tool-
based/ manual in the determination & execution
steps)

RQ1.6 How are the approaches evaluated and
what are the evaluation results?

Type of Evaluation (qualitative, quantitative)
Evaluation results (precision, recall and f-
measures if a quantitative evaluation has been
performed)

40

4.2. PUBLICATION SEARCH

4.1.2 Research Questions

The general research questions of this SLR is: What are the characteristics of TM
approaches? Table 4.1 shows a refinement of the general research question and the
attributes of the approaches that are necessary to answer the research questions.

RQ1 enquires into the characteristics of TM approaches. In RQ1.1 (existing
approaches) the primary publication for each TM approach is identified. The sub-
sequent RQs – from RQ1.2 to RQ1.5 – collect the data required for a standardized
description of a TM approach. RQ1.2 (linked artefacts) helps to distinguish the
range of use for a TM approach. With the answers from RQ1.3 (data) and RQ1.4
(techniques, algorithms, etc.) it is possible to determine what is necessary for ap-
plying a TM approach. RQ1.5 helps to understand which parts of a TM approach
are automated. This is also interesting in connection with the integration of TM
in the ILog approach, since one of the research goals for ILog is to add as little
additional manual effort as possible. Finally, RQ1.6 helps to rate the maturity of a
TM approach, which is also important when considering the integration in ILog.

4.2 Publication Search

Keyword Search &
Exclusion Criteria

f = 65
u = 31

IEEE

Springer

f = 34
u = 2

f = 3
u = 1

Science
Direct

Scopus
f = 6
u = 0

ACM
f = 64
u = 33

Σu = 67

search order

Inclusion Criteria

Σu = 26

1. Title & Abstract
relevant = 15
potentially relevant = 14
not relevant = 38

2. Potential relevance
relevant = 11
not relevant = 3

Snowballing

1. Foward
more current = 2

Σu = 28

2. Backward
relevant = 0

Approach Selection

ΣTM = 16
Approaches

Link Maintenance
Study = 2

Approach
Identification

Figure 4.2. Publication Search and Trace Link Maintenance Approach Identification

Figure 4.2 shows the overview of the publication search and the selection of TM
approaches from the identified publications. The steps of the publication search and
the identification of TM approaches are described in the following section.

41

CHAPTER 4. TRACE LINK MAINTENANCE: STATE OF THE ART

Listing 4.1. Keyword Search Query�
" t r a c e a b i l i t y maintenance " OR " t r a c e l i n k maintenance "� �

Listing 4.1 shows the keyword query used for the publication search. The query was
tested with a pre-search by using Google Scholar1. Due to the amount and type of
publications found in the pre-search, the search terms have been retained.

As shown in Figure 4.2, five scientific online databases have been used to search
for publications with the keywords from above in the order shown. For some of
the databases used, the keyword query of Listing 4.1 was adapted due to technical
concerns about the database’s search engines; for example, for some of the databases
it was necessary to explicitly select the attributes of publications (such as title,
abstract, content, etc.) to be used when searching.2 The numbers for each database
refer to the publications found (f) and used (u). If publications were found in
multiple databases, only their first occurrence is counted. This resulted in 67 distinct
publications obtained from all scientific online databases.

Table 4.2. Exclusion (En) and Inclusion (In) Criteria for TM Publications

Criteria Description

E1 publication is published before 2000
E2 publication is not written in English
E3 publication is not peer reviewed

I1 publication describes a trace link maintenance approach or a
trace link creation approach which includes trace link main-
tenance

To filter the identified publications, the exclusion and inclusion criteria shown
in Table 4.2 have been applied. The exclusion criteria E1 to E3, which aimed to
ensure quality and timeliness, have been applied within the filtering functionality of
the databases’ search interfaces. Thus, the number of publications used which are
shown in the first step of Figure 4.2 already comprise the application of E1 to E3.

The inclusion criterion I1 was applied in a second step after the overall number of
67 publications was obtained. This criterion was first only applied to the publication
title and abstract. 15 publications were identified as relevant, 14 publications as
potentially relevant, and 38 as not relevant. After this, for the 14 potentially relevant
publications the complete publication text was used to decide on the question of their
inclusion. This resulted in a further 11 relevant and 3 not relevant publications.
Thus, finally 26 relevant publications were identified after the application of the
inclusion criterion.

1https://scholar.google.com/, Google Scholar publication search
2More details about the TM SLR can be found in the supplementary material Section A of the

thesis’s appendix. Within this, details about the performed online databases specific query adoption
are to be found in Section A.1.2

42

https://scholar.google.com/

4.3. RESULTS

To ensure that all relevant publications and the latest publication for a TM
approach were both obtained, forward and backward snowballing was performed.
By forward snowballing, two more current publications for two of the identified
approaches were found, but no publications were found about approaches which have
now already been covered. Backward snowballing did not bring any new insights.
This resulted finally in 28 relevant publications after snowballing.

The 28 relevant publications contained 16 distinct TM approaches, of which
four of the 16 approaches were described in multiple publications. Two publications
described studies about TM , but did not contain their own TM approach. For
the 16 TM approaches, one primary publication was chosen due to the novelty of
the publication, the comprehensiveness of the TM approach description, and the
evaluation performed.3

4.3 Results

This section presents the results of the SLR. First, a generic trace link maintenance
process is introduced, which is used in Section 4.3.1 to answer the research questions
and in Section 4.3.2 to discuss the results.

Detection
of Change

Detection of
Impacted Links

Determination of
Necessary Link Change

Execution
 of Change

Detection
Output

1 2 3 4

Impact Detection Change Execution

Figure 4.3. Trace Link Maintenance Process

As shown in Figure 4.3, the TM approaches are characterized on the basis of a
generic process. This process consists of four steps that are separated in an impact
detection and execution part summarized in the following:

Impact Detection consists of the detection of a change in linked artefacts and
the subsequent detection of impacted links. The resulting output contains the
impacted artefacts and links and potential further data.

Change Execution consists of the determination of necessary link changes based
on the previously generated output and the execution of those changes.

In this SLR it is assumed that trace links are maintained along with the maintenance
of all other artefacts in the progress of a project. Thus, an artefact change triggers
the maintenance of trace links. However, there are TM approaches which only
analyse the current state of the project artefacts and then both rate existing links

3Details about selection of a different publication for approaches with multiple publications can
be found in Section A.1.3 of the appendix.

43

CHAPTER 4. TRACE LINK MAINTENANCE: STATE OF THE ART

and find missing links. In these cases, the authors do not propose the application of
their approaches for every project change. This kind of approaches are threatened
as TM approach by adding a manual change detection step.

4.3.1 Overview of Trace Link Maintenance Approaches and An-
swers to the Research Questions

Table 4.3. Primary Publications for Identified TM Approaches

ID TM Approach Primary Publication

P01 Ove Armbrust, Alexis Ocampo, Jurgen Munch, Masafumi Katahira, Yumi Koishi, and Yuko Miyamoto. Es-
tablishing and Maintaining Traceability Between Large Aerospace Process Standards. In Proceedings of the
ICSE Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE@ICSE), pages 36–40,
Vancouver, BC, Canada, 2009. IEEE

P02 Dominique Blouin, Matthias Barkowski, Melanie Schneider, Holger Giese, Johannes Dyck, Etienne Borde,
Dalila Tamzalit, and Joost Noppen. A Semi-Automated Approach for the Co-Refinement of Requirements
and Architecture Models. In Proceedings of the 25th IEEE International Requirements Engineering Conference
Workshops (REW), pages 36–45, Lisbon, Portugal, 2017. IEEE

P03 Jane Cleland-Huang, Carl K. Chang, and Mark Christensen. Event-based traceability for managing evolutionary
change. IEEE Transactions on Software Engineering (TSE), 29(9):796–810, 2003

P04 Jane Cleland-Huang, Patrick Mäder, Mehdi Mirakhorli, and Sorawit Amornborvornwong. Breaking the Big-
Bang Practice of Traceability: Pushing Timely Trace Recommendations to Project Stakeholders. In Proceedings
of the 20th IEEE International Requirements Engineering Conference (RE), pages 231–240, Chicago, IL, USA,
2012. IEEE

P05 Nikolaos Drivalos-Matragkas, Dimitrios S. Kolovos, Richard F. Paige, and Kiran J. Fernandes. A State-based
Approach to Traceability Maintenance. In Proceedings of the 6th ECMFA Traceability Workshop (ECMFA-
TW), ECMFA-TW ’10, pages 23–30, Paris, France, 2010. ACM

P06 Markus Fockel, Jörg Holtmann, and Jan Meyer. Semi-automatic Establishment and Maintenance of Valid
Traceability in Automotive Development Processes. In Proceedings of the 2nd International Workshop Software
Engineering for Embedded Systems (SEES), pages 37–43, Zurich, Switzerland, 2012. IEEE

P07 Vincenzo Gervasi and Didar Zowghi. Supporting Traceability Through Affinity Mining. In Proceedings of
the 22nd IEEE International Requirements Engineering Conference (RE), pages 143–152, Karlskrona, Sweden,
2014. IEEE

P08 Achraf Ghabi and Alexander Egyed. Code Patterns for Automatically Validating Requirements-to-Code Traces.
In Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 200–209, Essen, Germany, 2012. ACM

P09 Markus Kleffmann, Matthias Book, and Volker Gruhn. Towards Recovering and Maintaining Trace Links for
Model Sketches Across Interactive Displays. In Proceedings of the 7th International Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE@ICSE), pages 23–29, San Francisco, CA, USA, 2013.
IEEE

P10 Patrick Mäder and Orlena Gotel. Towards Automated Traceability Maintenance. Journal of Systems and
Software, 85(10):2205–2227, 2012a

P11 Salome Maro and Jan-Philipp Steghöfer. Capra: A Configurable and Extendable Traceability Management
Tool. In Proceedings of the 24th IEEE International Requirements Engineering Conference (RE), pages 407–
408, Beijing, China, 2016. IEEE

P12 Richard F. Paige, Nikolaos Drivalos, Dimitrios S. Kolovos, Kiran J. Fernandes, Christopher Power, Goran K.
Olsen, and Steffen Zschaler. Rigorous identification and encoding of trace-links in model-driven engineering.
Software and Systems Modeling, 10(4):469, 2011

P13 Mona Rahimi, William Goss, and Jane Cleland-Huang. Evolving Requirements-to-Code Trace Links across
Versions of a Software System. In Proceedings of the 2016 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 99–109, Raleigh, NC, USA, 2016. IEEE

P14 Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-based traceability: a comprehensive approach.
Software and Systems Modeling, 9(4):473–492, 2010

P15 Andreas Seibel, Regina Hebig, and Holger Giese. Traceability in Model-Driven Engineering: Efficient and
Scalable Traceability Maintenance. In Software and Systems Traceability, pages 215–240. Springer, 2012

P16 Pan Ying, Tang Yong, and Ye Xiaoping. Software Artifacts Management Based on Dataspace. In Proceedings
of the WASE International Conference on Information Engineering, volume 2 of ICIE ’09, pages 214–217,
Taiyuan, Chanxi, China, 2009. IEEE

44

4.3. RESULTS

RQ1.1: Which TM Approaches Exist?

Table 4.3 answers RQ1.1 (which TM approaches exist?) by presenting the overview
of the 16 identified TM approaches and the primary publication for each approach.

Table 4.4. Trace Link Source and Target Artefacts

Linked Artefacts P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16
∑︀

Software artefacts ✓ ✓ ✓ 3
Development standard ✓ 1
Source code ✓ ✓ ✓ ✓ ✓ 5
Requirements ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
(UML) Model element ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9
Sketch ✓ 1

Table 4.5. Trace Link Maintenance Process

Action P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16
∑︀

Manual Indication of changed artefacts ✓ ✓ ✓ ✓ ✓ 5S1 Monitoring of changes in artefacts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 13

Manual indication of impacted links ✓ 1
Monitoring of impacted links ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15

Impact detection rules ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12
Model element type ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
Model element hierarchy (parent/child) ✓ ✓ 2
Term pairs from linked artefacts ✓ 1
Source code structure ✓ ✓ 2
Interaction type & sequences ✓ 1
2 artefact versions ✓ 1

S2

D
at

a

Software artefact type ✓ ✓ 2

O Change type (for affected links, flag/score) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12

Tool based execution of (change type spe-
cific) rules ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9

Model element type ✓ ✓ ✓ ✓ 4
Model element hierarchy (parent/child) ✓ ✓ 2
Linked artefacts score threshold ✓ ✓ 2D

at
a

Software artefact type ✓ ✓ 2
S3

Manual use of output ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Manual change of links ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12S4 Tool based link change ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9
* S1: Detection of change; S2: Detection of impacted links; O: Output of detection (as input for execution); S3: Determination

of necessary link change; S4: Execution of change
* S2 Data: for impact detection rules other than linked artefacts; S3 Data: other than linked artefacts, impact detection data &

change type

In the following, each of the 16 TM approaches is summarized on the basis of
the characteristics shown in Tables 4.4 (linked artefacts) and 4.5 (TM process).4

In P01, Armbrust et al. [2009] describe a manual trace link maintenance ap-
proach. In the approach, authors who perform changes in sections of specification
documents additionally have to assign link flags in all linked document sections,
indicating the type of change in the original sections. Link flags in a section can
then be processed by another author (i.e. an expert to decide about the required
link change).

4A more detailed description of the TM approaches which was the source for the approach
descriptions provided in this chapter can be found in the Section A.2.1 of the appendix.

45

CHAPTER 4. TRACE LINK MAINTENANCE: STATE OF THE ART

In P02, Blouin et al. [2017] describe an approach in which the affected link
impact detection for linked requirements and architectural models is automated.
Impact detection rules are based on the linked model elements’ hierarchy and the
model element types to detect architectural refinements. Impact detection rules are
triggered by monitoring changes on the linked artefacts. In the execution of link
changes, architectural refinement-specific rules are used to maintain links automat-
ically.

In P03, Cleland-Huang et al. [2003] describe an approach in which links between
requirements and source code are maintained manually. The only automated part
is in the impact detection part of the approach: by monitoring whenever a linked
artefact is changed, a notification is generated and sent to the original author of the
artefact. Based on this notification, the original author then has to maintain the
affected links manually.

In P04, the same authors extend the approach P03. The only difference is that
the notification in this approach contains hints about how to perform the necessary
link change (change type).

In P05, Drivalos-Matragkas et al. [2010] describe an approach in which links
between different kinds of model elements are maintained automatically using model
element type-specific impact detection rules. Impact detection rules triggered by
monitoring changes on linked artefacts can detect certain link change types. For a
set of defined change types, there exist further rules which are then used to execute
the link change automatically. For other change types, a notification is generated
and the change has to be performed manually.

In P06, Fockel et al. [2012] describe an approach in which links between different
kinds of model elements and textual requirements are maintained semi-automatical-
ly. To detect the impacted links, the approach uses rules which utilize the model
element type and outputs a change type which is passed to the link change, which
is in turn manually performed. The constraint validation rules are triggered by
monitoring changes on the linked artefacts.

In P07, Gervasi and Zowghi [2014] describe an approach in which links between
textual requirements are maintained automatically. For impact link detection, the
approach uses rules that utilize term pairs in linked artefacts. This approach is
triggered by monitoring changes on linked artefacts. Link impact detection outputs
a score for artefact pairs that is based on the linked term pairs. For link change
execution, rules are used along with the score to remove and add links automatically.

In P08, Ghabi and Egyed [2012] describe an approach in which links between
source code and requirements are maintained automatically. The approach is trig-
gered manually. For impact detection the approach uses a set of rules based on
source code structure and existing links to calculate a numerical value which in-
dicates a change type. For link change execution, a threshold and the previously
calculated numerical value are used to remove and add links automatically.

46

4.3. RESULTS

In P09, Kleffmann et al. [2013] describe an approach in which links between
sketches (of software systems) on interactive displays are maintained manually. This
approach supports link maintenance in the impact detection part: whenever a user
changes a linked sketch, all the affected links and linked other sketches are high-
lighted. Potential change to links is then performed manually by the user.

In P10, Mäder and Gotel [2012a] describe an approach in which links between
UML model elements and textual requirements are maintained semi-automatical-
ly. Rules based on interaction sequences are used to detect certain change types.
The change type detection rules are triggered by monitoring changes on the linked
artefacts. Change type-specific rules are used to perform link changes automatically.
If there are no link change rules for a detected change type, a user notification is
generated and the link change is performed manually.

In P11, Maro and Steghöfer [2016] describe an approach in which links between
different model elements defined in an extendable meta-model are maintained man-
ually. Similarly to P03, the only automated part is the initial impact detection.
Whenever a linked artefact is changed, a notification is generated. The execution of
the link change then has to be performed manually by a user.

In P12, Paige et al. [2011] describe an approach in which links between model
elements defined in different meta-models are maintained semi-automatically. Simi-
larly to P05, model element type-specific impacted detection rules are used. Impact
detection rules triggered by monitoring then changes on the linked artefacts. The
output of the link impact detection is a model element-specific change type. This
change type is used to manually change the links of the respective model element.

In P13, Rahimi et al. [2016] describe an approach in which links between source
code and requirements are maintained automatically. This approach uses rules,
two versions of the source code or requirements, a source code structure, and the
artefact type to detect refactorings. Refactoring-specific rules are used to change
links automatically. The rules for refactoring detection can be triggered manually
or by monitoring changes on the linked artefacts.

In P14, Schwarz et al. [2010] describe an approach in which links between differ-
ent model elements are maintained semi-automatically. For impacted link detection,
model element type-specific rules are used. The rules for impact detection are trig-
gered by monitoring changes in target models, followed by subsequent changes in the
source models on the same model element. Link changes originating in the source
models are performed automatically by rules, whereas link changes originating in
target models have to be performed manually.

In P15, Seibel et al. [2012] describe an approach in which links between different
model elements are maintained automatically. Impacted link detection rules use
hierarchy relations between different kinds of model elements in order to determine
the affected linked model elements. For each linked model element, a change type is
generated. The change type is used together with model element type-specific rules

47

CHAPTER 4. TRACE LINK MAINTENANCE: STATE OF THE ART

and (again) hierarchy information between model elements in order to maintain links
for each model element automatically. The rules for impacted link detection can be
triggered manually or by monitoring changes on the linked artefacts.

In P16, Ying et al. [2009] describe an approach in which links between source
code and other software artefacts which are defined in an extendable ontology are
maintained semi-automatically. Rules using artefact type data gained from an on-
tology are used to create change types for existing links by monitoring changes on
linked artefacts. A further set of artefact type-specific rules is used to perform the
link change automatically. The approach includes a set of predefined artefact type-
specific link change rules. If no link change rules are defined for a certain artefact
type, a user notification is created and the link change has to be performed manually.

RQ1.2: Linked Artefacts

Table 4.4 shows the linked artefacts of the TM approaches. These artefacts can
be software artefacts in general, development standards, source code, requirements
specifications in a textual format, (UML) model elements, and/or sketches which
are hand-drawn graphically, as well as textual descriptions of software system parts.

The most frequently used artefacts in the approaches are model elements (9) and
requirements (8). Almost all approaches link at least two different artefacts. The
combination of model element and requirement (4) and requirement and source code
(3) are the two most common combinations.

RQ1.3 Other Data Sources Used, RQ1.4 Performance of TM and RQ1.5
Approach Automation

Table 4.5 shows the characteristics of the TM process for the approaches, as in-
troduced in Section 4.3.1. It distinguishes the performed actions within the steps
along with the used data. The numbers of actions or data shown in the right sum
column do not always add up to 16. The reason for this is that some approaches
support multiple actions in the steps, e.g. in approach P13, step S1 can be triggered
manually and by monitoring changes in artefacts as well. For the data used in step
S2 and S3, only some of the approaches use additional data to the linked artefacts.

In the following, the characteristics of the 16 TM approaches are summarized
within the four generic TM process steps. This comprises the answer to research
questions RQ1.3 on the artefacts used, RQ1.4 on how trace link maintenance is
performed, and RQ1.5 on the automation degree of the TM approaches.

Step 1: Detection of change

13 of the 16 approaches monitor the changes on the linked artefacts. Two of these
13 approaches can be triggered manually as well. For the other three approaches,
only a manual indication of changes on linked artefacts is performed.

48

4.3. RESULTS

Step 2: Detection of impacted links

15 approaches automatically detect the links involved. In one approach this de-
tection is performed manually. 12 of these 15 approaches use rules for the impact
detection. Regarding the data sources, most (8) of the impact detection rules are
based on model element type-specific linkage, whereas two approaches additionally
use artefact hierarchy and one of these two further uses the interaction type. Other
approaches use term pairs from already linked artefacts, two versions of artefacts,
and the software artefact type. For the other 3 approaches without impact detection
rules, a notification with the impacted artefacts and links is generated and sent to
the user to trigger the link change determination.

Data: Output of detection (as input for execution)

All approaches output the affected artefacts and links. In addition, 12 of the 16
approaches assign a change type to the affected links. This change type can in-
dicate how the link should be maintained, e.g. with a change type such as delete
link, or it can indicate what kind of check is to be performed on a linked artefact,
e.g. check for changes on all description texts of linked artefacts, or it can be a
numerical value which can be used later to perform the link maintenance. The four
approaches without a change type generate a user notification with the impacted
artefacts and links, and link maintenance is performed manually by a user. Three
of these four approaches are without impact detection rules, while one has impact
detection rules and generates additional instructions on how a user should maintain
the links manually in its notification.

Step: 3: Determination of necessary link change

Nine of the 16 approaches determine the necessary link change automatically by a
tool-based rule execution. In seven approaches the detection output is used manu-
ally.

Out of the nine approaches with rules, most (4) use model element type-specific
linkage for link change determination, whereas one of them also uses hierarchy in-
formation of different artefacts. Other approaches use the software artefact type
(2) or a threshold to assess an affinity score for the links calculated in the impact
detection step.

Step 4: Execution of change

Four of the 16 approaches perform the link change in a completely automated way,
without any required user interaction, by using detected change types for links.
Five of the 16 approaches perform the link change only in cases in which a known
change type has been detected. They inform the user about cases which cannot be

49

CHAPTER 4. TRACE LINK MAINTENANCE: STATE OF THE ART

handled automatically by showing affected artefacts and links. In the other seven
approaches, the execution of link change is performed manually by the user. In two
of these seven approaches, a change type is included in the user notification, but has
to be processed manually.

Regarding the techniques for impact detection and change execution rules, the
approach descriptions in the publications are often presented on a conceptual level.
The mentioned techniques are summarized in the following paragraph. For impact
detection based on model element type and rules, constraint checks are used. Pattern
recognition is used with SCS . Approaches which are based on the textual contents
of artefacts use IR and NLP to determine textual similarity. Some of the model-
based approaches store the impact detection rules in specific meta-model element
attributes. Other model-based approaches transfer the model elements to a graph
representation and then use graph merging and other graph-based techniques in their
rules. One approach uses an ontology and reasoning to manage different software
artefact types and for the purposes of implementing the impact detection rules.

RQ1.6 Performed Evaluations

Table 4.6. Performed Evaluations for Trace Link Maintenance Approaches

Evaluation Properties P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16
∑︀

Qualitative ✓ ✓ ✓ ✓ ✓ 5
– Feasibility ✓ ✓ ✓ ✓ ✓ 2

Quantitative1 ✓ ✓ ✓ ✓ ✓ ✓ 6
– Scalability/ Performance ✓ 1
– Precision 72 85 95 96 86 5

Rese-
arch
Pro-
cess

– Recall 22 64 96 79 88 5

Experiment with Developers ✓ ✓ ✓ 3
Application with Developers ✓ 1
Questionare/ Interview ✓ ✓ 2

Data
Col-
lect-
ion Simulation of the approach ✓ ✓ ✓ ✓ 4

1 For precision and recall, the best achieved values are shown; these values could be achieved in different runs with
different settings

Table 4.6 shows whether an evaluation has been performed for an approach
and the properties of the evaluation. Basic properties are the research process
(qualitative/quantitative) and the data collection method used. For all approaches
which were not evaluated except P16, the authors provided an running example.

For nine of the 16 approaches an evaluation was performed. The evaluations
were either purely quantitative (4), purely qualitative (3) or mixed (2). The quali-
tative evaluations always consider the feasibility of each approach. The quantitative
evaluations mostly concerned precision and recall and once only scalability and per-
formance. Data was often collected in an experiment with developers (3) or within
a simulation of the approach (4). On two occasions an interview was used and only
once was the approach used in real world application with developers. For simulation
and real world application, both precision and recall have been determined.

50

4.3. RESULTS

4.3.2 Summary and Discussion

Detection
of Change

Detection of
Impacted Links

Determination of
Necessary Link Change

Execution
 of Change

Detection
Output

*Manual indication
*Monitoring of artefact changes

* Manual indication
* Monitoring with impact detection rules

* Change type

* Change type-specific rule execution
* Manual use of output

* Manual change of links
* Tool-based link change

1 2 3 4

Impact Detection Change Execution

Rule Data
* Model element type
* Model element hierarchy
* Linked artefact score threshold
* Software artefact type

Rule Data
* Model element type
* Model element hierarchy
* Term Pairs
* Source code structure

* Interaction type & sequence
* 2 artefact versions
* Software artefact type

Figure 4.4. Trace Link Maintenance Process with TM Approach Data

Figure 4.4 summarizes the key facts of all 16 evaluated TM approaches within
the generic TM process. Monitoring of changes and monitoring of impacted links is
quite prevalent. However, the data used and the techniques differ quite considerably.
Also, the output of a change type is very common. Tool-based change determination
is still prevalent, but it is less common than monitoring. Again different data is
being used. Interestingly, only a few approaches perform changes which are purely
automated. In most approaches manual change is necessary, at least for some cases.
This might also be the reason why only one approach was applied in industry.
The approaches are quite different. The generic TM process presented is the first
to provide a unifying view. This can be used to integrate the ideas of different
approaches. In Chapter 6, such an integration for the ILog approach developed in
this thesis will be discussed in detail.

51

CHAPTER 4. TRACE LINK MAINTENANCE: STATE OF THE ART

52

Part III

Treatment Design

53

Chapter 5
Interaction Log Recording-based Trace
Link Creation

In this chapter the details of the Interaction Log Recording-based Trace Link Creation
(ILog) approach are introduced. In the design cycle of this thesis, the ILog approach
is the treatment design artefact used to solve the previously investigated problem
of trace link quality for continuous trace link creation and direct usage. With this
in mind the ILog approach is designed to primarily address the research goal G1 of
this thesis, namely to continuously create trace links with a good quality so that the
created links can be directly used by developers. This also includes the goal that
developers should not be interrupted during their work when ILog is applied and no
additional efforts are necessary.

Good quality refers to the precision and recall of the links created by ILog. The
goal of the resulting link quality of the ILog approach is to have perfect precision, i.e.
that ILog does not create any wrong links, while still keeping up good recall. The
core idea of ILog is to countervail the bad precision of existing trace link creation
approaches by not directly using the contents of linked artefacts. Instead, ILog uses
interactions of developers with source code files while they work on a requirement.

In the following, Section 5.1 gives an overview of the three steps which altogether
comprise the ILog approach. Section 5.2 then introduces the detailed design for each
step, including the technologies used and the respective rationale for them.

5.1 Overview

Figure 5.1 shows the overview of the three steps of the ILog approach, including the
data used in the steps and the data output created by the steps. In the following
these three steps are outlined:

55

CHAPTER 5. INTERACTION LOG RECORDING-BASED TRACE LINK CREATION

(1) Interaction Capturing
Capture of Interactions

Implementation
in IDE during Requirement

(2) Trace Link Creation

Interaction Log Aggregation

F D E
(3) Trace Link Improvement

Improvements
* Precision
* Recall

F D ESCS

Source Code Structure
Generation

Impl. Artefacts
from VCS

Requirements
from ITS

Set-
tings

Data usage

Sequence Flow(n) Approach Step

Data Processing

Data Element

Frequency

Event Type

Duration

Trace
Links

(Initial)

Inter-
action
Log

Trace
Links
(Final)

Figure 5.1. Overview of the Three ILog Approach Steps

(1) Interaction Capturing. In this step interactions on source code files are captured,
within an IDE while a developer is working on a requirement, as interaction log.
The recorded interaction logs are then assigned to requirements. Section 5.2.1
describes this step in detail.

(2) Trace Link Creation. In this step the recorded interaction logs are aggregated to
initially created trace links, from requirements to the source code files which have
been touched by interactions. The aggregated interaction log data (frequency,
duration, event type, etc.) for each trace link is attached as attributes to the
trace links. Section 5.2.2 describes this step in detail.

(3) Trace link Improvement. In this step the precision of trace links is improved
using the interaction log data from the links and Source Code Structure (SCS)
along with existing links. Recall is improved using existing links and SCS . All
improvements can be configured. Section 5.2.3 describes this step in detail.

5.2 Details

This section introduces the details for the three steps of the ILog approach. In each
step data is process and passed over to the next step. In the first step, interactions
of developers are captures while they work in an IDE and they are assigned to a
requirement as interaction log. In the second step, the requirement specific interac-
tion log is aggregated to an initial set of trace links (link candidates). In the third
step, the quality of the initial set of trace links is improved using the aggregated
interaction data, existing links and the SCS .

5.2.1 Interaction Event Capturing

Figure 5.2 shows the operation principle of ILog’s interaction capturing. A devel-
oper interacts with source code files while working in the IDE . The interaction events
which are created in this way are recorded in an interaction log and finally assigned
to a requirement. The most essential part of the interaction capturing step is the
matter of how the interaction log assignment to a requirement is actually performed.

56

5.2. DETAILS

IDEIDE PartEvent TypeTime Stamp Source Code File

Developer Interacts
with Source Code Files

while working in the IDE

Interaction Log

Requ-
irement

assignment:

2) commit based
1) manual

Source
Code
File

Inter-
action
Event

ActionArtefact/ Data Element Storage RelationAction Impact

Figure 5.2. ILog Approach Step 1: Interaction Capturing

The interaction log assignment is crucial since in the following trace link the cre-
ation between requirements and source code is only possible if there is a connection
between the recorded interaction logs and a requirement.

The ILog approach implements two options with which to assign interaction logs
to requirements. The first option is the manual assignment by a developer. The
second option is a commit-based assignment. Both of these interaction capturing
options have been implemented.

5.2.1.1 Manual Assignment

The manual assignment option is inspired by the Mylyn Eclipse Plugin [Kersten and
Murphy, 2006] (cf. Section 7.1.1). A developer manually indicates when starting to
work on a issue and also when stopping the work. Stop indication can be performed
by explicitly stopping the issue or by staring to work on another issue. Every
time a stop indication is detected the interaction events recorded since the last
stop indication are assigned to the indicated requirement. This simple interaction
assignment principle has achieved good results regarding the interaction quality
in the Mylyn Project [Soh et al., 2018]. The manual indication mode has been
implemented in the IntelliJ IDE1 with two IntellJ Plug-ins:

1. To log interactions the IntelliJ Activity Tracker2 plug-in is used in a modified
version. For ILog the plug-in has been extended with the ability to track the
interactions with requirements. To actually use the plug-in and record interac-
tions with it, it has to be activated once. After this, all interactions within the
IDE of the developer are recorded, comprising a time stamp, the part of the
IDE , and the type of interactions performed (cf. Section 2.1.4.1). The most
important parts of an IDE regarding trace link creation from requirements to
source code files are parts in which it is possible to interaction with files and
parts to detect certain high-level actions of a developer. These IDE parts are
the editor for the source code, the navigator which displays a structural tree

1https://www.jetbrains.com/idea/, IntellJ IDE website
2https://plugins.jetbrains.com/plugin/8126-activity-tracker, project documentation of

the original Activity Tracker plug-in

57

https://www.jetbrains.com/idea/
https://plugins.jetbrains.com/plugin/8126-activity-tracker

CHAPTER 5. INTERACTION LOG RECORDING-BASED TRACE LINK CREATION

of all resources managed by the IDE , and dialogues which are often involved
in high level actions, such as committing to the Git VCS and performing
issue-related actions. The interaction types can also be low-level interactions,
such as editor keystrokes, as well as high-level interactions (selected from the
context menu), such as performing a refactoring, or committing changes to a
VCS , such as Git.

2. To associate interactions with requirements the Task & Context IntellJ func-
tionality is used. In the optional initial setup of the plug-in developers can
connect the plug-in to an ITS , such as Jira3 and then select a project from the
connected ITS . If a connection to an ITS project has already been configured,
a developer can selected the specific issue with the Task & Context functional-
ity when working on a requirement. When committing code changes to a VCS
repository such as Git, the Task & Context plug-in supports the finishing of
the respective issue. That is, after the commit has been performed, a notifi-
cation message to switch to another issue if applicable is shown in the IDE’s
notification bar. As a result, the interaction log contains activation and deacti-
vation events for requirement issues. These activation and deactivation events
are used to allocate all interactions between the activation and deactivation
events for a specific requirement to this specific requirement.

The following listing 5.1 shows two abridged log entries which were both created by
the modified version of the Activity Tracker Plug-in.

Listing 5.1. Activity Tracker Log Entries�
1 2016−10−04T10 : 1 4 : 5 0 .910 ; dev2 ; Action ; E d i t o r S p l i t L i n e ; i s e ; Editor ;

/ g i t / C o n t r o l l e r . j s ;
2 2016−10−13T13 : 2 8 : 2 6 .414 ; dev2 ; Task Act ivat ion ; ISE2016 −46: Enter Arrays ;

i s e ;
� �
The first log entry is a typical edit interaction starting with a time stamp (2016-10-
04T10:14:50.910), the developer’s user name (dev2), the kind of performed action
(Action), the performed activity (EditorSplitLine, which is entering a new line), the
name of the used Git VCS project (ise), the IDE part (editor) involved in which the
interaction occurred, and the source code file (/git/Controller.js). The second log
entry shows an interaction with a story issue from the Jira ITS including its issue
ID and name (ISE2016-46:Enter Arrays). The interaction type Task Activation
indicates that the developer dev2 indicated to start working on the issue ISE2016-46.

5.2.1.2 Commit Based Assignment

Since the previously described manual assignment option is inapplicable with the
principle design goal of ILog to create no additional effort for developers, there is a

3Jira is a popular ITS used in many open source and commercial projects. More information
can be found at the Jira overview website: https://www.atlassian.com/software/jira

58

https://www.atlassian.com/software/jira

5.2. DETAILS

second commit-based assignment option for interaction logs. This option builds on
the common software development convention to use a VCS and to use an issue ID
in commit messages when committing changes to the VCS [Rath et al., 2017] (cf.
Section 2.1.2). Similarly to the manual assignment, every time that a commit with
an issue ID is detected, ILog uses the issue ID from the commit message which is
provided by the developer to assign the interaction events which have been recorded
since the last commit with an issue ID.

If multiple issue IDs are contained in the commit message, the recorded interac-
tions are assigned to all issue IDs. If no issue ID is contained in the commit message,
interaction recording continues until there is a commit with a commit message con-
taining an issue ID. Clearly, this can impact precision and recall, as the commits
without ID might be associated with another issue [Herzig and Zeller, 2013, Kirinuki
et al., 2014].

ILog’s commit based interaction capturing was implemented as a plug-in for
the Eclipse IDE4 and is capable of uploading recorded interactions to assigned Jira
issues. Whenever a commit with an issue ID is performed, the interaction capturing
tool bundles all the recorded interactions together and uploads them to the Jira issue
which was specified by the Jira issue ID in the commit message. Since the tool builds
on an existing Application Programming Interface (API) other ITS are also directly
supported. The interaction events recorded by the tool comprise a time stamp, the
type of interaction (select or edit), the part of the IDE in which the interaction
occurred (e.g. editor, navigator, etc.), the file involved in the interaction, and a
degree of interest (DOI) metric for the file. The DOI is a numerical value calculated
for a file on the basis of the number of interactions (frequency) and the type of
interactions with the file. That is, edit interactions are rated more highly than select
interactions [Kersten and Murphy, 2006]. Expect the more coarse interaction type
and the DOI value, the interaction attributes are identical in the commit based and
in the manual recording tools. The interaction logs assigned to issues (requirements)
are the data output created by the first ILog step. This data is passed and then
further processed by the second ILog step which is described in the following.

5.2.2 Trace Link Creation

In the second ILog step Trace Link Creation, all interaction events captured for
a requirement by the previous step are used to generate trace links between the
requirement and the source code files which are touched by the interactions.

Initially a check is performed to examine whether the issue ID used in the inter-
action log actually refers to a requirement. If this is not the case and the issue ID
refers to another issue type such as a work item, the linkage of the work item issue
in the ITS is used to identify the requirement which the work item and thus the

4https://www.eclipse.org, Elipse IDE website

59

https://www.eclipse.org

CHAPTER 5. INTERACTION LOG RECORDING-BASED TRACE LINK CREATION

recorded interaction log belongs to. After this initial check all recorded interactions
are assigned to real requirements.

To avoid the involvement of interactions, which are probably not relevant for
trace link creation, three different filter options can be applied before the trace links
are actually created. Firstly, it is possible to exclude interactions with files of certain
types. Secondly, the files from the interactions can be aligned with files in a VCS .
And thirdly, interaction with certain interaction types can be removed.

By excluding interactions with files of certain types such as build configurations,
project descriptions, readme files, meta-data descriptions, binaries etc. as well as
files from third parties such as libraries, it is possible to focus the resulting links
on the code created by the developers. Aligning interaction with files in the VCS
results in removing links to temporary files and files which are only kept locally by a
developer. Naturally such local and temporary files would not be accessible by other
developers when following a trace link to such a file. Furthermore, for such files it is
unlikely that they contribute to a requirement, which is to say that a link to such a
file has a high probability of being wrong. Removing interactions of certain types is
necessary since there are interactions which do not contain a source code file: e.g. if
a developer performs a change in the IDE configuration, which took place in a part
of the IDE that was not relevant for trace link creation; or involving the console of
the IDE , or generated interactions which are not directly triggered by a developer;
or if a build file of a project is changed, then this can cause the IDE to rebuild the
project. In this case the recorded rebuild interaction is not relevant for trace link
creation.

Interaction Log

Trace
Links

File
Aggregation

Inter-
action
Event

IDE Part
Aggregation

Interaction Type
Aggregation

File Aggregated IDE Part + File Aggregated
Interaction Log Interaction Log

+ Interaction Type Requ-
irement

Issue
ID

Aggregated

IDE Part + File

10:14:50.910;Edit;Editor;/git/Controller.js;
10:14:49.100;Edit;Editor;/git/Controller.js;
10:14:48.910;Select;Navigator;/git/Manager.js;
10:14:47.910;Edit;Editor;/git/Manager.js;
10:14:46.100;Edit;Editor;/git/Manager.js;
10:14:45.910;Select;Editor;/git/Manager.js;
10:14:44.100;Select;Navigator;/git/Controller.js;
10:14:43.100;Edit;Editor;/git/Controller.js;
10:14:42.100;Select;Navigator;/git/Controller.js;
...
10:08:26.414;Task Activation;ISE2016-46;

10:14:50.910;Edit;Editor;/git/Controller.js;
10:14:49.100;Edit;Editor;/git/Controller.js;
10:14:44.100;Select;Navigator;/git/Controller.js;
10:14:43.100;Edit;Editor;/git/Controller.js;
10:14:42.100;Select;Navigator;/git/Controller.js;

10:14:48.910;Select;Navigator;/git/Manager.js;
10:14:47.910;Edit;Editor;/git/Manager.js;
10:14:46.100;Edit;Editor;/git/Manager.js;
10:14:45.910;Select;Editor;/git/Manager.js;
...

Controller.js

Manager.js

10:14:50.910;Edit;Editor;/git/Controller.js;
10:14:49.100;Edit;Editor;/git/Controller.js;
10:14:43.100;Edit;Editor;/git/Controller.js;

10:14:44.100;Select;Navigator;/git/Controller.js;
10:14:42.100;Select;Navigator;/git/Controller.js;

10:14:47.910;Edit;Editor;/git/Manager.js;
10:14:46.100;Edit;Editor;/git/Manager.js;
10:14:45.910;Select;Editor;/git/Manager.js;

10:14:48.910;Select;Navigator;/git/Manager.js;
...

Navigator + Manager.js

Editor + Manager.js

Navigator + Controller.js

Editor + Controller.js

10:14:50.910;Edit;Editor;/git/Controller.js;
10:14:49.100;Edit;Editor;/git/Controller.js;
10:14:43.100;Edit;Editor;/git/Controller.js;

10:14:44.100;Select;Navigator;/git/Controller.js;
10:14:42.100;Select;Navigator;/git/Controller.js;

Select + Navigator + Controller.js

Edit + Editor + Controller.js
10:14:47.910;Edit;Editor;/git/Manager.js;
10:14:46.100;Edit;Editor;/git/Manager.js;

10:14:45.910;Select;Editor;/git/Manager.js;

10:14:48.910;Select;Navigator;/git/Manager.js;
...

Select + Navigator + Manager.js

Edit + Editor + Manager.js

Select + Editor + Manager.js

ISE2016-46;/git/Manager.js;1.000;1;Select;Navigator;

ISE2016-46;/git/Controller.js;1.190,2;Select;Navigator;

ISE2016-46;/git/Controller.js;3.000;3;Edit;Editor;

ISE2016-46;/git/Manager.js;2.000;2;Edit;Editor;

ISE2016-46;/git/Manager.js;1.810;1;Select;Editor;

Aggregation Data SourceArtefact/ Data Element Processing Step

Trace Links

Interaction Log

Figure 5.3. ILog Approach Step 2: Trace Link Creation by Interaction Aggregation

60

5.2. DETAILS

After this step, the initial filtering of interactions trace links are generated by
aggregating the interaction events. Figure 5.3 shows the process of ILog’s interaction
aggregation along with exemplary data which is used for the following explanation.
Basically it is also possible to configure the interaction aggregating. As shown in
the sample interaction log excerpt on the left side of Figure 5.3, interaction events
in the interaction log are present in descending chronological order (latest on top).

Firstly, all interactions to the same file are aggregated. Secondly, the interactions
for the same file are aggregated by the IDE part, and thirdly by the interaction type.
Along with the three aggregations the frequency and duration values are calculated.
The frequency is calculated by counting the number of interactions involved after the
third aggregation step. The duration is calculated as the sum of all differences from
the interactions involved after the third aggregation step to the previous interaction
from the original interaction log. The final result of this second step is a list of trace
links including the data aggregated from the interactions for each link, which is used
as an input for the third ILog step Trace Link Improvement.

The second ILog step has been implemented in two ways. First it was imple-
mented in a Python NLTK 5 (Natural Language Toolkit)-based tool, which was used
in the performed evaluation studies. Second it was implemented as a plug-in for the
Jira ITS , which directly enables one to provide ILog generated links to developers.
In addition to the described aggregation process, its configuration options and the
link creation, the implementations are also capable of reading the interaction data
from both interaction capturing tools.

5.2.3 Trace Link Improvement

VCS

Source
Code
File

SCS

Init.
Trace
Link

P. im.
Trace
Link

Final
Trace
Link

Precision improved
Trace Links

Duration Event Type IDE Part

Source Code FileIssue ID

Frequency

Precision
Improvement

Source Code Structure
Generation

Recall
Improvement

Action

Artefact/ Data Element

Storage

Relation
Data Processing

Data Usage/ Creation
Action Transition

Figure 5.4. ILog Approach Step 3: Trace Link Improvement

Figure 5.4 shows the overview of ILog’s trace link improvement step and the
data sources used. Precision is improved by removing potential wrong links using
the interaction-specific data attributes frequency, duration, event type and IDE part
from the previous link creation step. For all attributes different settings are possible.
Precision is also improved by using the previously generated SCS , i.e. the references

5https://www.nltk.org/, NLTK documentation website

61

https://www.nltk.org/

CHAPTER 5. INTERACTION LOG RECORDING-BASED TRACE LINK CREATION

from one source code file to other source code files. SCS is used to remove links
from requirements to source code files which are not connected to the other source
code files that are linked to the same requirement.

Finally SCS is also used to improve the recall of ILog. In this case, the SCS of
source code files which are already linked to a requirement is utilized. New trace
links are added by following the relations of the SCS to other source code files up
to a certain level. In the following the single improvement techniques are described
in detail along with an example. After this the combination of the improvement
techniques is described.

5.2.3.1 Precision

In order to improve the trace links created in the previous trace link creation step,
it is necessary to first apply precision improvements to remove potentially wrong
links. To avoid negative impacts on the precision, recall improvement is only rea-
sonable after precision improvements are finished. The reason for this is that recall
improvements use existing links as input and if these existing links are incorrect, the
precision would be impaired.

Interaction Log

Listing 5.2. Initial Trace links Created in ILog’s Trace Link Creation Step�
1 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; S e l e c t ; 23 .710 ; 1 2 ; Editor ;
2 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; Edit ;421 .590 ; 3 1 ; Editor ;
3 ISE2016 −46; /g i t/Manager . j s ; S e l e c t ; 9 .370 ; 2 7 ; Navigator ;
� �

The Listing 5.2 shows an example of three trace links as created by ILog’s previous
trace link creation step. The format of the link’s attributes is:

<Requirement ID; Soruce Code File; Interaction Type; Duration; IDE Part;>

Requirement ID and Soruce Code File denote the source and target of the trace
links. The other attributes are the aggregated interaction specific data. Thus the
link in line 1 is a link from the requirement with issue ID ISE2016-46 to the source
code file /git/Controller.js. The link was created based on an interaction of the type
Select with an duration of 23.710 seconds and the Editor part of the IDE .

Listing 5.3. Trace Links With Applied Duration Precision Improvement�
1 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; S e l e c t ; 23 .710 ; 1 2 ; Editor ;
2 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; Edit ;421 .590 ; 3 1 ; Editor ;
3 ISE2016−46;/git/Manager.js ; Se lect ; 9.370 ;27; Navigator ;
� �

For ILog’s duration-based precision improvement, links with a duration below a
certain threshold are removed. The idea behind this is that links resulting from

62

5.2. DETAILS

short durations are more likely to be wrong, e.g. if a developer started to implement
something in the wrong source code file but changed to the correct file after a short
time period. In the example shown in Listing 5.3 the duration threshold is set to
>=10.000 sec. and thus the link in line 3 is removed, since its duration is only 9.370
sec.

Listing 5.4. Trace Links With Applied Frequency Precision Improvement�
1 ISE2016−46; /g i t/Contro l l er . j s ; Se lect ;23 .710 ; 12 ; Editor ;
2 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; Edit ;421 .590 ; 3 1 ; Editor ;
3 ISE2016 −46; /g i t/Manager . j s ; S e l e c t ; 9 .370 ; 2 7 ; Navigator ;
� �

Also for ILog’s frequency-based precision improvement, links with a frequency below
a certain threshold are removed. The idea behind this is that links resulting from
a low frequency are more likely to be wrong, e.g. if a developer selects a file by
accident. In the example shown in Listing 5.4 the frequency threshold is set to
>=15 and thus the link in line 1 is removed, since its frequency is only 12.

Listing 5.5. Trace Links With Applied Event Type Precision Improvement�
1 ISE2016−46; /g i t/Contro l l er . j s ; Se lect ;23 .710 ;27; Editor ;
2 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; Edit ;421 .590 ; 3 1 ; Editor ;
3 ISE2016−46;/git/Manager.js ; Se lect ;9 .370 ;27; Navigator ;
� �

For ILog’s event type-based precision improvement, links with certain event types
are removed. The idea behind this is that links resulting from certain event types are
not relevant; for example, if a developer browses code and selects multiple source
code files in doing so, it is unlikely that all browsed files should be linked with
the actual implemented requirement. Excluding links of the event type Select would
prevent the link creation to all files browsed by the developer. In the example shown
in Listing 5.5 links of the event type Select are excluded and thus the links in line 1
and 3 are removed.

Listing 5.6. Trace Links With Applied IDE Part Precision Improvement�
1 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; S e l e c t ; 23 .710 ; 2 7 ; Editor ;
2 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; Edit ;421 .590 ; 3 1 ; Editor ;
3 ISE2016−46;/git/Manager.js ; Se lect ;9 .370 ;27; Navigator ;
� �

ILogs’s IDE part-based precision improvement is similar to the event type-based
improvement, links with a certain IDE part are removed. The idea behind this is
that links resulting from certain IDE parts are not relevant, e.g. if a developer
browses code by selecting multiple files in a row in the navigator part of the IDE ,
it is unlikely that all files browsed through the navigator should be linked with the
actual implemented requirement. Excluding links with IDE part Navigator would
prevent the link creation to all files browsed by the developer through the navigator.
In the example shown in Listing 5.6 links with the IDE part Navigator are excluded
and thus the link in line 3 is removed.

63

CHAPTER 5. INTERACTION LOG RECORDING-BASED TRACE LINK CREATION

Source Code Structure

C1

C3

C4

C2
C6 C5

C7
Controller.js

Manager.js
ISE2016-46

C4
C6

Controller.js

Manager.js
ISE2016-46

C3
C5

C7
Controller.js

Manager.js
ISE2016-46

Trace Link Source Code Structure Reference

Trace Links after ILog Step 2 Source Code Structure Graphs Improved Trace Links

C5
C3

C1

Sub-Graph of Connected Classes

C7

C2

Figure 5.5. ILog Approach Step 3: Source Code Structure Precision Improvement

ILog’s Source Code Structure (SCS)-based precision improvement utilizes the
references between source code files involved in the trace links of one requirement.
Details of SCS and usage of SCS in traceability were introduced in Section 2.1.3. The
right side of Figure 5.5 shows the trace links between the requirement ISE2016-46
and the classes Controller.js, Manager.js and Cn and the SCS (i.e. the references)
between the classes.

Listing 5.7. Trace Links Before Source Code Structure Based Precision Improvement�
1 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; Edit ;421 .590 ; 3 1 ; Editor ;
2 ISE2016 −46; /g i t/Manager . j s ; S e l e c t ; 9 .370 ; 2 7 ; Navigator ;
3 ISE2016 −46; / g i t / C 1 . j s ; Edit ;421 .590 ; 3 1 ; Editor ;
4 ISE2016 −46; / g i t / C 2 . j s ; S e l e c t ; 33 .940 ; 3 ; Editor ;
5 ISE2016 −46; / g i t / C 3 . j s ; Edit ; 1 .500 ; 1 7 ; Editor ;
6 ISE2016 −46; / g i t / C 4 . j s ; Edit ; 91 .300 ; 2 3 1 ; Navigator ;
7 ISE2016 −46; / g i t / C 5 . j s ; Edit ; 17 .340 ; 3 ; Editor ;
8 ISE2016 −46; / g i t / C 6 . j s ; S e l e c t ; 21 .120 ; 9 1 ; Console ;
9 ISE2016 −46; / g i t / C 7 . j s ; Edit ; 42 .230 ; 1 ; Editor ;
� �

Listing 5.7 shows the trace links for the situation as shown on the right side of Figure
5.5 after their initial creation in ILog’s second step, before the application of the
SCS-based precision improvement. As shown in Figure 5.5, the classes Controller.js,
Manager.js, C3, C5 and C7 and the classes C1 and C2 are connected by SCS . In
the middle of Figure 5.5 the SCS sub graphs created by both groups of classes are
highlighted. As shown on the right side of Figure 5.5 the SCS precision improvement
then removes all links to classes which are not part of the largest SCS sub graph.

Algorithm 1 shows the SCS precision improvement algorithm of ILog, which
performs the sub graph creation and the removal of all links to classes that are not
part of the largest sub graph. It uses a requirement with its trace links and the SCS
graph of all source code files (classes) as input. The algorithm consists of two parts.

First (cf. line 2 to 16 of Algorithm 1), the largest requirement specific SCS
sub graph is created by iterating through all classes linked by trace links to the
requirement. For each trace link of the requirement the trace link specific SCS
graph reachable for each linked class is generated. The trace link specific SCS
graphs are compared so that only the largest (i.e. the one which contains the most
classes) of the graphs is kept.

64

5.2. DETAILS

Algorithm 1: ILogs’s Source Code Structure based Precision Improvement
input : SCS: Source code structure graph consisting of a list of classes C

Req: Requirement with trace links Req.tls
output: Req: Requirement with improved trace links Req.tls

1 function SCSprecisionImprovement(Req, SCS) :
2 // create the largest 𝑆𝐶𝑆 sub graph lSCS for Req
3 list lSCS
4 foreach C of tl in Req.tls do // iterate linked classes
5 list tSCS
6 while hasReferences(C) do // iterate referenced classes
7 // append referenced classes to the 𝑆𝐶𝑆 tSCS of tl
8 refC = nextReference(SCS,C)
9 if refC not in tSCS then

10 tSCS append refC
11 end
12 C = refC
13 end
14 if tSCS > lSCS then
15 lSCS = tSCS
16 end
17 end
18 // remove links tl from Req that link to classes not in lSCS
19 foreach tl in Req.tls do
20 if C of tl not in lSCS then
21 Req.tls remove tl
22 end
23 end
24 return Req
25 end

Second (cf. line 18 to 22 of Algorithm 1), all trace links of the requirement that
link to classes which are not contained in the largest requirement specific SCS sub
graph are removed and the updated requirement is returned.

For the example shown in Figure 5.5 and in Listing 5.7 the SCS based precision
improvement removes the links to the classes C1, C2, C4 and C6 as shown in Listing
5.8 (removed links are highlighted) and on the right side of Figure 5.5.

Listing 5.8. Trace Links After Source Code Structure Based Precision Improvement�
1 ISE2016 −46; / g i t / C o n t r o l l e r . j s ; Edit ;421 .590 ; 3 1 ; Editor ;
2 ISE2016 −46; /g i t/Manager . j s ; S e l e c t ; 9 .370 ; 2 7 ; Navigator ;
3 ISE2016−46; /git/C1.js ; Edit ;421 .590 ;31; Editor ;
4 ISE2016−46; /git/C2.js ; Se lect ;33 .940 ; 3 ; Editor ;
5 ISE2016 −46; / g i t / C 3 . j s ; Edit ; 1 .500 ; 1 7 ; Editor ;
6 ISE2016−46; /git/C4.js ; Edit ;91 .300 ;231; Navigator ;
7 ISE2016 −46; / g i t / C 5 . j s ; Edit ; 17 .340 ; 3 ; Editor ;
8 ISE2016−46; /git/C6.js ; Se lect ;21 .120 ;91; Console ;
9 ISE2016 −46; / g i t / C 7 . j s ; Edit ; 42 .230 ; 1 ; Editor ;
� �

Further source code specific precision improvements are possible with ILog. The
prominent code files in requirement improvement only uses files which are used in

65

CHAPTER 5. INTERACTION LOG RECORDING-BASED TRACE LINK CREATION

multiple requirements. The source code type improvement limits the used source
code files to a list of specific source code file types such as Java, JavaScript, XML
etc. However these further improvements did not have a positive effect on the
precision of ILog’s trace links in the evaluation studies (cf. Chapter 9) and thus are
discussed in detail there.

The SCS based precision improvement has been implemented with the Esprima6

JavaScript source code parser for JavaScript source code files and with Eclipse JDT 7

for Java source code files in the Python-based implementation of ILog.

5.2.3.2 Recall

ILog’s recall improvement capabilities add further links from requirements to source
code files by using existing links. To avoid a negative effect on the precision of ILog’s
links as far as possible, the recall improvement is always applied after all precision
improvements.

Source Code Structure

Algorithm 2: ILogs’s Source Code Structure based Recall Improvement
input : SCS: Source code structure graph consisting of a list of classes C

Reqs: Requirements list with requirement Req links Req.tls
Limit: Limit for the SCS graph traversal level

output: Reqs: Requirements with improved requirement Req links Req.tls
1 function SCSrecallImprovement(Reqs, SCS, Limit) :
2 foreach Req of Reqs do // iterate requirements
3 foreach C of tl in Req.tls do // iterate linked classes
4 Level = 1
5 while hasReferences(C) do // iterate referenced classes
6 // create new trace link from Req of refC
7 refC = nextReference(SCS,C)
8 if [Req, refC] not in Req.tls then
9 Req.tls append [Req, refC] // add new trace link

10 end
11 if Level ≥ Limit then
12 break // stop if limit is reached
13 end
14 C = refC
15 increment Level
16 end
17 end
18 end
19 return Reqs
20 end

6https://esprima.org/, Esprima documentation
7https://www.eclipse.org/jdt/, Eclipse Java development tools (JDT) documentation

66

https://esprima.org/
https://www.eclipse.org/jdt/

5.2. DETAILS

In addition to precision improvement, SCS is used together with existing links for
recall improvement as well. Algorithm 2 shows ILog’s recall improvement algorithm.
It uses the SCS , the list with all requirements, and a limit for the SCS graph traversal
level as input. The algorithm iterates through all classes (source code files) linked to
requirements. For each class the SCS graph is traversed and the referenced classes
are visited (cf. line 5 to 15 in Algorithm 2). If there are no trace links between the
referenced classes and the requirement, new trace links from the requirement to the
referenced classes are added until the specified traversal level limit is reached. After
the processing of all links of all requirements, the algorithm returns the list with
requirements with updated, i.e. newly added, links.

The implementation of the SCS-based recall improvement reuses the implemen-
tation of the SCS-based precision improvement (cf. Section 5.2.3.1) for source code
file parsing and SCS graph generation.

5.2.3.3 Combined

When ILog is used for trace link creation in a project the different improvement
techniques are applied in combination. The only fixed setting in ILog’s implemen-
tation is to apply all precision improvements before improving recall (cf. Figure
5.4 for the sequence for improvement application). The order and settings for the
different precision improvement techniques are freely configurable. In the ILog eval-
uation studies (cf. Chapter 9 and 10) performed, the setting combinations to achieve
the overall best precision improvements have been determined empirically and are
discussed in more detail there.

67

CHAPTER 5. INTERACTION LOG RECORDING-BASED TRACE LINK CREATION

68

Chapter 6
Integration of Trace Link Maintenance

This chapter contains the second part of the treatment design task of this thesis and
primarily addresses research goal G2. In this chapter the results of the SLR about
Trace Link Maintenance (TM), from the previous Chapter 4, are used to discuss
the integration of TM capabilities into the ILog approach (cf. Chapter 5).

In Section 6.1 the selection criteria for suitable TM approaches are introduced
and applied to select the two TM approaches P08 and P13. In Section 6.2, the
integration of the selected TM capabilities into ILog is discussed.

6.1 Approach Selection

Table 6.1. Selection Criteria and Trace Link Maintenance Approach Rating for
Integration of Maintenance Capabilities in ILog

Criteria Description Approach Rating

P03 P08 P13

C1 Linked
artefatcs

Linked artefacts have to be the same as in ILog
(requirements, source code) ✓ ✓ ✓

C2
Additionally
used data
sources

Additionally used data sources or techniques to maintain
links have to be available in ILog
(interaction logs, source code structure)

✓ ✓ ✓

C3 Automation Impact on the overall automation of ILog
(Impact detection and link change should be fully automated) ✓ ✓

Table 6.1 shows the overview of the selection criteria, their description and the
rating of TM approaches for the criteria.

The first selection criterion (C1) for the transferability of a TM approach to
ILog is the match of the source and target artefacts used for links. The second selec-
tion criterion (C2) is the availability of the additional data sources and techniques.
The third selection criterion (C3) is the degree of automation provided by an TM
approach and the influence on ILog’s automation. These criteria enable a smooth
integration of TM capabilities into ILog. Only the three TM approaches P03, P08

69

CHAPTER 6. INTEGRATION OF TRACE LINK MAINTENANCE

and P13 shown in Table 6.1 satisfy the criteria C1 (match of linked artefacts). Thus,
the right sided column of Table 6.1 only shows the rating of the selection criteria for
these three TM approaches.

Out of these only the approaches P08 and P13 satisfy all selection criteria. In
P03, the determination of impacted links and the execution of link changes are
manual. Therefore, C3 is not satisfied. The change detection in P08 is manual, but
the other steps are automated. As the change detection can easily be automated in
the ILog approach, C3 can be considered satisfied. P13 is fully automated and thus
satisfies C3.

The approach P08 uses SCS in their rules for impacted link detection and thus
satisfies C2. The approach P13 requires a second version of source code files or
requirements in addition to linked artefacts. Due to the usage of an ITS and a VCS
along with ILog when using commit-based interaction assignment, a second version
of source code files and requirements is directly available. Thus, the approach P13
also satisfies C2.

Therefore, in the following it is discussed how the techniques used in P08 and
P13 can be integrated into ILog.

6.2 Integration of Trace Link Maintenance Capabilities

In this section a TM process, using the generic TM process of the TM SLR (cf.
Section 4.3), for ILog when using commit-based interaction assignment is defined,
based on the data and techniques used in P08 and P13.

S1: Detection of change

After each commit there is an automated check of the interactions whether an arte-
fact was changed. A change is indicated by an edit interaction. This corresponds to
the manual change detection of P08 and P13.

S2: Detection of impacted links

The detection of impacted links is performed by the rules from P08 and P13. As
discussed for criterion C2, the data sources are available. In addition to using two
artefact versions for the detection of refactorings, as in P13, in ILog it is possible to
use the recorded interactions from S1. IDEs provide capabilities to perform certain
refactorings, such as the refactoring extract method to class. Such refactorings can be
directly detected in the interactions. Furthermore, one could define patterns of low
level interactions which comprise the interaction sequence of a certain refactoring.
These patterns could also be detected automatically in the interactions.

70

6.2. INTEGRATION OF TRACE LINK MAINTENANCE CAPABILITIES

Data: Output of detection:

The rules used in S2 output a change type.

S3: Determination of necessary link change and S4: Execution of change:

The determination of link changes and the execution of the changes is fully auto-
mated for P08 and P13. Therefore these steps are performed in a fully automated
way.

The link changes derived from the affinity scores used in P08 are similar to the
link changes in the improvement techniques of ILog. The ILog SCS-based precision
improvement removes existing links to the source code which is not connected with
other linked source code (cf. Section 5.2.3.1). Similarly, P08 removes links if the
affinity score of a method drops below a threshold because it is not connected by
SCS to other linked methods. The ILog SCS-based recall improvement adds links
by following the call relation to other source code files from source code files already
linked to requirements. Similarly, P08 adds links if the affinity score of a method
rises above a threshold because it is connected by SCS to other methods which are
already linked.

Altogether, TM can be performed in a fully automated way in ILog. However,
neither P08 and P13 provide an implementation. Thus, considerable effort is nec-
essary to implement the process described above. Therefore, the implementation is
not part of this thesis.

71

CHAPTER 6. INTEGRATION OF TRACE LINK MAINTENANCE

72

Part IV

Treatment Validation

73

Chapter 7
Overview of Evaluation Studies

In this chapter the data acquisition for the evaluation of the ILog approach is de-
scribed and an overview of the evaluation studies which were performed is presented.
To this end Section 7.1 introduces the projects which have been used to collect the
data. Section 7.2 describes how the data collected in the projects was processed in
order to create the datasets used in the evaluation studies. Section 7.3 introduces
the creation process and the resultant gold standards used in the evaluation studies.
Section 7.4 introduces the evaluation toolset which was used to create and compare
trace links with the different trace link creation techniques and settings of the stud-
ies. Section 7.5 summarises all trace link creation techniques used in the evaluation
studies which were performed. Finally, Section 7.6 presents an overview of the three
evaluation studies which were performed, shows how the created datasets were used
within the studies, and summarizes the studies’ different characteristics.

7.1 Evaluation Projects

The ILog approach has been evaluated with data collected from three projects, which
are introduced in the following paragraphs. Section 7.1.1 introduces the Mylyn1 open
source project. Section 7.1.2 and Section 7.1.3 introduce the 2017 and 2018 student
internship projects, respectively.

7.1.1 Mylyn

Mylyn is a plug-in (i.e. an extension) of the Eclipse2 IDE which enables the man-
agement of development tasks directly in the IDE . The open source development of
Mylyn began in 2005, after it was initially developed as a research prototype [Ker-
sten and Murphy, 2006]. Mylyn records the interactions of developers with artefacts,
assigns them to tasks and then is able to limit the views in the IDE to contain only

1https://www.eclipse.org/mylyn/, Mylyn project website
2http://www.eclipse.org, Eclipse IDE website

75

https://www.eclipse.org/mylyn/
http://www.eclipse.org

CHAPTER 7. OVERVIEW OF EVALUATION STUDIES

artefacts for which interactions have been recorded. The goal of Mylyn is to reduce
the information overload in large development projects. The Mylyn developers call
this principle a task-focused UI.

The tasks managed by Mylyn can be associated with issues from an ITS by
connecting the IDE to an ITS , such as Bugzilla3, Jira, etc. When the interaction
recording of Mylyn is activated, Mylyn logs edit-, select- and other events after a
developer has selected an issue from an associated ITS . Interactions concerning an
issue are recorded until the developer finishes working on the issue, e.g. by closing
the issue, by switching to another issue, or by explicitly stopping the recording of
interactions.

For the development of Mylyn the developers use Mylyn together with the ITS
Bugzilla4, which is also used for requirements capture. The Mylyn developers are
encouraged to trigger recording when they work on the implementation of a require-
ment. These interaction logs are accessible as attachments of the issues in the Mylyn
Bugzilla ITS . Since Mylyn is an Eclipse plug-in, its source code is mainly written in
Java. In the project, the developers use Git as VCS to manage the source code. The
Mylyn Git repository5, and thus all Mylyn source code files, are publically available.

The Mylyn projects provides all data which is required to evaluate the ILog ap-
proach, including interaction logs, requirements and source code. For the evaluation
of ILog, two datasets using excerpts of the Mylyn project data from 2007 and 2012
were used. The creation of these two datasets, which are called M2007 and M2012

respectively, is described in Section 7.2.2.
As already introduced in Section 2.1.4.2, the interaction log data of the Mylyn

project has also been used by other researchers for different research purposes, in
order to judge the correctness of recorded interaction data [Soh et al., 2018], to find
hidden relations between source code files [Konôpka and Navrat, 2015] and to find
tasks which are similar to each other [Maalej and Ellmann, 2015].

7.1.2 Student Internship 2017 – Healthcare

In the following paragraphs, the first of the two student projects which were used for
the evaluation of ILog is described. Due to the labour intensity of creating a trace
link gold standard, student projects are often used for trace link evaluations [De
Lucia et al., 2007]. The project lasted from October 2016 to March 2017 and was
performed Scrum oriented [Schwaber and Beedle, 2001]. Therefore, it was separated
into seven sprints with the goal of obtaining a working product increment in each
sprint. Since the project finished in 2017, the dataset from this project which was

3Bugzilla is an ITS developed as open source software. More information can be found at the
Bugzilla website: https://www.bugzilla.org/.

4https://bugs.eclipse.org/bugs/describecomponents.cgi?product=Mylyn, The Bugzilla
ITS of the Mylyn project

5https://git.eclipse.org/c/mylyn/, Mylyn Git VCS repository

76

https://www.bugzilla.org/
https://bugs.eclipse.org/bugs/describecomponents.cgi?product=Mylyn
https://git.eclipse.org/c/mylyn/

7.1. EVALUATION PROJECTS

used for the evaluation of ILog is called S2017. The project’s aim was to develop
a so-called master patient index for an open ID-oriented organization of healthcare
patient data. A typical kind of use case for the resulting product would be to store
and manage all healthcare reports for a patient in a single database. The project
involved the IT department of the University Hospital as a real-world customer.
Further roles which were involved were the student developers and a research group
member who had the role of a product owner. Seven developers participated in the
project in total. In each of the sprints one of the developers acted as a scrum master.

All requirement-related activities were documented in a Scrum project of the Jira
ITS used. This included the specification of requirements in the form of user stories
and the functional grouping of the requirements as epics. For instance, the epic
Patient Data Management comprised user stories such as View Patients and Search
Patient Data. Complex stories in turn comprised sub-tasks which documented more
and often technical details and the partial work to implement a user story. For
instance, the Search Patient Data user story comprised the sub-tasks Provide Search
Interface and Create Rest Endpoint. The project started with an initial vision of
the final product from the customer and was then broken down by the developers,
using the scrum backlog functionality of Jira to a set of initial stories which evolved
during the sprints.

For the project’s implementation JavaScript was used, a choice which was re-
quested by the customer. Furthermore, the MongoDB6 NoSQL database and the
React7 UI framework were used. The developers used the Webstorm8 version of the
IntelliJ IDE along with Git as VCS . Within the Jira project and the JavaScript
source code, the feature management approach of Seiler and Paech [2017] was also
applied. A feature in this project corresponded to an epic. The feature management
approach ensures that all artefacts are tagged with the name of the feature that they
belong to. The purpose of this is that a user story is tagged with the epic it corre-
sponds to, but also that the sub-tasks of the user stories and the code implementing
the user story are tagged. The usage of this feature management approach is rele-
vant in the context of ILogs’s evaluation since the feature tags were used to created
the developer-specific questionnaire for the gold standard creation (cf. Section 7.3).

The developers installed and configured the IntelliJ interaction-capturing tool of
ILog (cf. Section 5.2.1.1), which was used for interaction recording and the devel-
opers were supported whenever needed. They received a short introduction about
interaction recording and how requirements and source code files are associated with
each other by that. The interaction-capturing tool recorded all interactions in the
IDE in locally stored CSV and XML files. The developers were asked to send us
their interaction log files by email after each sprint on a voluntary basis, so that

6https://www.mongodb.com/, MongoDB website
7https://reactjs.org/, React website
8https://www.jetbrains.com/webstorm/, Webstorm IDE website

77

https://www.mongodb.com/
https://reactjs.org/
https://www.jetbrains.com/webstorm/

CHAPTER 7. OVERVIEW OF EVALUATION STUDIES

it was possible to check the plausibility of the recorded interactions. In the first
sprints some of the developers had problems with activating the interaction record-
ing and using the desired IntelliJ functionality to interact with requirements. After
detecting such problems, further assistance and instructions were provided to the
developers and they were asked to solve these problems for the processing of the
next sprint. However, some of the developers only sent their interaction logs once or
twice in the final project phase. Therefore, four of the seven log files received were
not usable for ILog’s evaluation. One was almost empty due to technical problems,
whereas in the other three only a very low number of requirements was logged. The
corresponding developers stopped recording changes to requirements at a certain
point in time and thus all the subsequent interactions were associated with the last
activated requirement. Thus, only the three correctly recorded interaction logs have
been used to apply and evaluate the ILog approach.

7.1.3 Student Internship 2018 – Indoor Navigation

In the following paragraphs the second of the two student projects used for the eval-
uation of ILog is described. The basic characteristics of the second student project
are quite similar to the first one. The project took part as a student internship,
was organized as Scrum-oriented working with a real-world customer in sprints, and
took place between October 2017 and March 2018. Since the project was finished in
2018, the data set from this project is called S2018.

The aim of the S2018 project was to develop an Android-based indoor navigation
app for students in University buildings. Typical use cases for such an app are to
navigate to the room of a certain lecture or to find any other point of interest effi-
ciently. The customer was a mobile development company. As in the first student
project, a research group member was involved as an adviser. Six students partic-
ipated in the project. The project was again split into a corresponding number of
sprints. In each of these sprints, one of the students acted as Scrum master and thus
was responsible for all organizational concerns, such as planning the development
during the sprint and communicating with the customer.

For all requirement management-related activities, a Scrum Jira Project was
used. This included the specification of requirements in the form of user stories and
the bundling of the user stories in epics. An example of a user story in the navigation
app project is Show point to point route, in which case the corresponding epic of this
user story is routing. To assign the implementation of user stories to developers,
sub-task issues were used. A sub-task comprises partial work to implement a user
story, e.g. Show route info box. For the implementation, the developers used Git as
VCS and the Eclipse IDE with the Android Software Development Kit (SDK). For
the recording and assignment of interactions, the students used the ILog commit-
based assignment tool implemented as a plug-in for the Eclipse IDE (cf. Section

78

7.2. DATA PROCESSING

5.2.1.2). For the usage of Git, there was an explicit guideline to use a Jira Issue ID
in any commit message in order to indicate the Jira Issue associated with it.

In the project the customer provided a proprietary Java SDK of their own for the
general use case to develop Android mobile navigation apps. The developers needed
two sprints to understand the complexity of the SDK and to set up everything in
such a way that they could work efficiently on the implementation of requirements.
The programming language for the logic and data management part was Java and
the UI was implemented in Android’s own XML-based language. As in the first
student project, in the second student project the developers were also supported
with the installation and initial configuration of the interaction log recording tool at
the beginning of the first sprint. The student developers received a short introduc-
tion about the implemented interaction-recording mechanism and how to use the
tool during the project. Since the tool also uploaded the recorded interaction logs
automatically to the respective Jira Issue, contrary to the first S2017 student project,
interaction recording from all six developers in the S2018 project could be used for the
evaluation of ILog. Further regular inspections of the resultant links were performed
to observe whether the students applied the approach in a disciplined way.

7.2 Data Processing

In this section the processing of data collected from the previously described projects
for the purposes of performing the ILog approach evaluation studies is described. It
consists of general data processing steps as performed for all three projects and of
project-specific data processing steps.

7.2.1 General Alignment of Interactions and Source Code

All three projects used a VCS for source code management and an ITS for re-
quirement specification, and all recorded developer’s interactions while they were
implementing requirements in an IDE .

To limit the recorded interactions and for the creation of a gold standard for
created trace links, an alignment step was performed. All recorded interactions
were filtered to contain only interactions with files which were also present in the
project’s VCS . This step removes interactions to files which were only present locally
for a developer. The reason for this was that files which are not committed to the
VCS are most likely not relevant for the implementation of a requirement. The
recorded interactions were further filtered to refer only to files from the version of
source code files created with the final commit of a project. The reason for this
was that files which are not present in the final version of the implementation also
do not contribute to the final version of requirements. The source code files of the
final version in the VCSs of the projects were also filtered to contain only those files

79

CHAPTER 7. OVERVIEW OF EVALUATION STUDIES

which were directly created by the developers of the projects. This file filtering was
important for the gold standard creation, inasmuch as developers can only vet links
to such source code files in a reasonable way and IR can only create links to such
textual artefacts in a reasonable way and make the comparison between IR and ILog
possible.

7.2.2 Mylyn

For the creation of the two datasets M2007 and M2012, excerpts of the Mylyn project
data were used. Both datasets used for the initial evaluation of the ILog approach
consist of data from the Bugzilla ITS for requirements and interaction logs and
from the Git VCS for implementation artefacts taken from the Mylyn open source
project (cf. Section 7.1.1). For trace link creation with the ILog approach, all three
data sources (requirements, implementation artefacts, interaction logs) were used,
whereas for IR-based trace link creation, only requirements and implementation
artefacts were used. Issues in the Mylyn project have been created from early 2005,
yet the open source development of Mylyn really began at the beginning of 2007
when its source code was first made publicly available. The development activity
of Mylyn has decreased in the last few years but is still ongoing. One reason for
this is that the major features are already implemented and development efforts are
mostly concerned with bug fixing.

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

500

1000

1500

2000

413

654

583

244

750

266
148

66
38

17

1319

845

1281

433

1202 1084 1045

514 378 210

#
Is
su

es

without interactions

with interactions

Figure 7.1. Issue in the Mylyn Bugzilla Issue Tracker System per Year

Figure 7.1 shows the number of issues with and without interactions per year
until mid of June 2016 when the data was fetched. Till then there were a total of
11490 issues from which 3179 (27.7%) have interaction logs attached and therefore
are suitable for the evaluation of the ILog approach. In total the 3179 issues have
over 3 million recorded interaction events attached. Based on these general data
characteristics it has been decided to evaluate only a subset of the existing interaction
logs by selecting a suitable subset of requirements issues. The following criteria have
been used for the requirements selection:

80

7.2. DATA PROCESSING

C1: There should be two distinct data sets from different project phases, namely
from early phase and from later phase. The reason for this is to check
whether ILog trace link creation is applicable for different project circum-
stances.

C2: The number of interactions in the two sets should be as similar as possible
to ensure the comparability of the two datasets. Due to the data charac-
teristics, this criterion could only be fulfilled to a certain extent, since the
number of interactions by issue also decreases during the years.

These criteria resulted in the creation of two datasets. The first dataset M2007

consists of the first 50 requirements issues in 2007 (together with the correspond-
ing interaction log and code) and the second dataset M2012 consists of the first 50
requirements issues in 2012 (together with the corresponding interaction logs and
code). The first requirements of the years have been used, since the Mylyn project
employs an annual release cycle with a major release every June. Therefore, new
requirements are mostly created at the beginning of a year, whereas around the
release date more bugs are created. Requirements are described as natural language
text, using the Bugzilla issue format, in which there is a title, a description text and
technical meta-data such as the affected components and the assignee (cf. Section
2.1.1). For each dataset requirement issues, including the comments and interaction
logs, have been downloaded from Bugzilla using the evaluation tool (cf. Section
7.4). Comments have been included, since they often contain information relevant
for the requirements, e.g. relating to changes to the functionality as it was initially
stated in the description. Since there is no explicit classification of the issues either
as requirement or as bug, this classification of the issues has been performed by
the researchers of the study. First an overview list with all issue titles has been
collected and then the classification of the issues has been performed manually by
reading their title. If classification was not possible by only using the title, the
issue’s description has been considered as well. The two sets of requirements have
slightly different characteristics. In the first phase of the Mylyn project, more com-
plex requirements concerning the basic functionality have been implemented, and
in the later phase of the project more requirements concerning small and advanced
functionality, respectively.

To identify the code related to the requirements, a specific VCS version tag
has been used (cf. Section 2.1.2). For each dataset all interaction log entries (i.e.
recorded interaction events) have been sorted in chronological order, and then the
first version tag after the last interaction log entry has been used. The assumption
for this selection procedure is that the VCS version which was selected in this way
comprises the implementation of the 50 requirements. From these implementation
artefacts all artefacts which are not textual and cannot be processed with IR, such
as pictures or binaries, have been removed (cf. Section 7.2.1).

81

CHAPTER 7. OVERVIEW OF EVALUATION STUDIES

Table 7.1. Overview of the used Mylyn Project Study Datasets

Data-
set

#Requ-
irement

#Int. Log
Entries

VCS
Version Tag

#Impl. Artifacts

All Textual Touched by Int.

M2007 50 7687 R_2_0_RC1 1103 756 585
M2012 50 1660 R_3_8_3 3451 2119 172

Table 7.1 shows the overview of both datasets. As expected, there are much more
implementation artefacts in the second (later) M2012 dataset than in the first M2007

dataset. In contrast, the amount of interaction log entries, both overall and also
for each requirement, is lower in the second dataset M2012 than in the first M2007

dataset. Therefore, only a minor part of all implementation artefacts is directly
touched by interactions.

7.2.3 Student Internship 2017

In the following paragraphs the processing of the data to create the S2017 data is
described, on the basis of the selection of usable requirements, the corresponding
recorded interactions, and finally the used source code files.

First out of the overall 42 user stories in the project, 21 user stories assigned to the
3 developers for whom usable interaction recording existed were selected. Overall,
the interaction logs of these three developers contained more than two million log
entries. The developers recorded these interactions while working on the 21 distinct
user stories and the corresponding 98 sub-tasks and touching 312 distinct source
code files.

Furthermore, two of the 21 user stories and the corresponding interaction record-
ing were excluded. For one user story one developer did not stop the interaction
recording, and thus links to almost all source code files in the Git VCS repository
were created. The other user story was the first in the interaction logs of a developer
and no activation event was recorded for that user story. After also applying the
general interaction and source code alignment steps (cf. Section 7.2.1) the S2017

dataset contains 19 stories and 98 sub tasks as requirements, 91 JavaScript source
code files and 1.171.290 interactions.

7.2.4 Student Internship 2018

In the following paragraphs the processing of the data from the three different data
sources to create the S2018 data is described.

Source Code in the Git Version Control System

The Git VCS repository of the project comprises 406 commits, of which 226 commits
(55.67% of all commits) contained a Jira issue ID, which is a similar proportion to
that which is reported by others [Rath et al., 2017].

82

7.3. GOLD STANDARD CREATION

The first 395 commits in the Git repository were used for link creation. The 395th
commit is the commit for the completion of the project’s last sprint. Commits after
the 395th commit did not contain issue IDs and were performed to refactor the
source code to the customer’s needs after the final project presentation. The Git
repository for the 395th commit contained 40 Java and 26 XML files.

Requirements as Issues in Jira

After the project was completed, there were 23 story issues in the Jira project.
However, three of the story issues did not specify requirements, but instead testing
and project organization. Therefore, these three user stories were removed from the
evaluation. Furthermore, the processing status of three story issues was unresolved
at the end of the project, and in addition all sub-tasks of these three unresolved
stories were unresolved as well. Therefore, these three stories and their interaction
recordings were also removed from the evaluation. Finally, the 17 remaining user
stories and their 74 sub-tasks along with their interaction recordings were used.

In the project the requirements were specified in German, but the source code
files were in English. Thus, the requirements were automatically translated using
the Googletrans9 Python library within the evaluation tool (cf. Section 7.4) before
preprocessing and IR-based link creation. Furthermore, the automatically translated
text was also checked randomly for plausibility.

Interaction Recordings

The interaction recordings for the 17 stories and 74 sub-tasks comprise 6471 inter-
action events separated into 205 commits. After removing interaction events whose
files were out of scope (cf. Section 7.2.1), 4012 interaction events were left in the
interaction recordings and used for link creation.

Finally, the S2018 dataset contains 17 stories and 74 sub tasks as requirements,
66 source code files (40 Java and 26 XML files) and 4012 interactions.

7.3 Gold Standard Creation

Because of the large amount of requirements and source code files in the Mylyn
project data sets M2007 and M2012, the gold standard creation was based on the
correct links created by ILog and IR. All links for all approaches which were vetted
as correct by the study researchers were used as a partial gold standard, and thus
only relative recall measures were calculated. For the precision calculation this is
not relevant, since only the incorrect links created by an approach influence the
precision (cf. Section 2.3.2).

9https://pypi.org/project/googletrans/, Googletrans documentation website

83

https://pypi.org/project/googletrans/

CHAPTER 7. OVERVIEW OF EVALUATION STUDIES

Table 7.2. Gold Standard Link Candidate Vetting for S2017 and S2018

#Stories #Src
Files

#Link
Cand.

#Vetted

Project Correct Wrong Unknown

Dev117 3 63 139 37 90 2
Dev217 11 91 374 128 241 5
Dev317 5 91 189 52 123 14S2017 ∑︀3

𝑖=1 𝐷𝑒𝑣𝑖17 19 91 692 217 454 21

Dev118 5 66 330 137 193 0
Dev218 7 66 462 87 375 0
Dev318 1 66 66 19 47 0
Dev418 6 66 396 74 322 0
Dev518 4 66 264 69 169 26
Dev618 3 66 198 35 163 0

S2018

∑︀6
𝑖=1 𝐷𝑒𝑣𝑖18 17 66 1716 309 923 26

For the S2017 and S2018 projects, a complete gold standard was created by the
developers in a similar manner. For the S2017 project, the gold standard creation
was performed in March and April 2017 by the three developers of the project, for
whom the interaction log recording was usable for the study, after the project was
completed. The upper part of Table 7.2 shows the overview of the link candidate
vetting and the resulting gold standard for the S2017 project. For the gold standard
creation, 19 stories of the total number of 42 stories in the Jira project were selected,
since these 19 stories were assigned directly to the three developers and described
requirements (cf. Section 7.2.3). This limitation ensured that the developers knew
the requirements very well.

To limit the link candidates being rated by the developers to a reasonable
amount, all possible link candidates between stories and code files tagged with the
same feature were considered. For the remaining 19 user stories, all code files from
the Git VCS repository with the same feature tag (cf. Section 7.1.2) were selected.
This excluded particular files which had a format which was different from JavaScript
and JSON. Examples of such files are HTML files and build scripts. After this stage,
91 code files, as shown in Table 7.2 remained. As a next step all possible link candi-
dates between stories and code files with the same tag were created. This resulted
in 692 link candidates.

For the actual link vetting process a interactive questionnaire spreadsheet with
link candidates for each of the three developers was provided. The developers la-
belled the links as correct (217), wrong (454) or unknown (21), respectively. The
latter means that they did not have the competence to judge. The developers also
confirmed that all feature labels were correct. The three developers worked on their
personalized questionnaire in individual sessions lasting between two to three hours
in a separate office room in the research group’s department, and there they had the
opportunity to ask questions if something was unclear. Thus initially all links of the
gold standard were only rated by one developer. During the evaluation study the

84

7.4. EVALUATION TOOL SUPPORT

link ratings of the developers were checked for plausibility, by inspecting the source
code files and requirements involved in each link. In doing so, 113 wrong created
links were checked and confirmed by the study researchers.

The gold standard creation for the S2018 project was performed in March 2018
by the six developers of the project between the completion of the last sprint and the
final presentation to the customer. The lower part of Table 7.2 shows the overview
of the link candidate vetting and the resulting gold standard for the S2018 project.
The developers vetted link candidates between requirements and the source code
files in the then actual version in the project’s Git VCS repository.

The developers vetted the links based on their involvement in the sub-tasks of
stories. If there were two developers with an equal number of sub-tasks, both vetted
the links and only the links which were vetted as correct by both parties were used in
the gold standard. For each developer, a developer-specific interactive questionnaire
spreadsheet with all link candidates to vet was generated. This contained all possible
link candidates for each user story to all 66 source code files. The vetting resulted in
309 gold standard trace links, where each requirement and each code file was linked
at least once.

7.4 Evaluation Tool Support

File
System

(1) Data Fetching
& Preprocessing

NLTK

GitPython

Impl. Artefact

Requirement
Inter-
action
Logs

Set-
tings

VCS (Git)ITS
(Jira, Bugzilla)

Commit

Gold
Standard

Developer Specific
GS Questionnaire Creation GS Questionnaire (4) Trace Link Set

Comparison
(2) Trace Link Creation

Improvement Application

Precision Recall

IR (VSM, LSI)

VCS Commit

IL, ILCom

Trace
Link
Set (3) Trace Link Set

Combination
Combination Opt.

Data usage

Sequence Flow Data Processing

Data Element

Data Source

Python Library

F D ESCS

Source Code Structure
Generation

googletrans

NLTK

Scikit-learn

Evaluation
Results

bugzilla

jira

Figure 7.2. ILog Evaluation Tool Suite Data Processing Pipeline

To perform the ILog evaluation studies, an evaluation tool suite has been de-
signed and implemented. As shown in Figure 7.2 the evaluation tool suite is im-
plemented as a data processing pipeline. The pipeline comprises steps for different
trace link creation methods including improvement techniques, the option to com-
bine multiple set of trace links in different manners (union, intersection, etc.) and
the possibility to compare two set of trace links with each other, including the cal-
culation of different evaluation measures (cf. Section 2.3.2). As shown in Figure
7.2 the different trace link creation methods use different data sources, in which IR-
based techniques use the textual content of artefacts, commit-based link creation
uses commit data from an VCS repository, and ILog uses interaction logs.

85

CHAPTER 7. OVERVIEW OF EVALUATION STUDIES

The evaluation tool suite is implemented in Python using the NLTK (Natural
Language Toolkit) and Scikit-learn10 as core libraries. NLTK is used to implement
various preprocessing techniques for textual artefacts, such as requirements and
source code. For the S2018 project, the functionality to automatically translate re-
quirements specified in German into English was implemented using the Googletrans
Python library. This was necessary since IR techniques only work in one language
and naturally the source code files of the S2018 project were in English. Thus, the
tool suite also comprises a preprocessing option for automatically translating text
from German into English.

Scikit-learn is used to implement the two IR vector space model-based trace link
creation techniques, VSM and LSI (cf. Section 2.2.2.3). Furthermore, the commit-
based trace link creation (cf. Section 2.2.3) has been implemented for the Git VCS
with the GitPython11 library. The IR- and commit-based link creation support
different setting options. For IR-based trace link creation, this is the similarity
threshold, and for commit-based link creation there are options as how to handle
commits without an issue ID (ignore or assign to next commit with issue ID). In
addition, the tool suite also supports the developer-specific automatic creation of
questionnaire spreadsheets in order to vet link candidates for gold standard creation.

7.5 Trace Link Creation Techniques

In the following, the notations for the different link creation methods ILog, IR, and
VCS Commit-based Trace Link Creation (ComL) (cf. Section 2.2.3) used in the
ILog evaluation studies are introduced. In this, a specific instance of a link creation
method is called a link creation technique. SCS-based improvement techniques for
precision and recall which have been developed for ILog (cf. Section 5.2.3) can be
applied for IR and ComL as well, since they only require source code files for their
application. Thus, the application of improvement techniques for any link creation
method is indicated by a subscript ’i’. The following listing provides the complete
overview of the link creation techniques used:

IL denotes the ILog approach with manual interaction log assignment (cf. Sec-
tion 5.2.1.1) and using recorded interactions for link creation. ILi denotes
that interaction data-specific and SCS-based improvement techniques have
also been applied (cf. Section 5.2.3).

ILCom denotes the ILog approach with commit-based interaction log assignment
(cf. Section 5.2.1.2) for link creation by using the recorded interactions
and the issue IDs from VCS commit messages. ILCom_i denotes that
interaction data-specific and SCS-based improvement techniques have also
been applied (cf. Section 5.2.3).

10https://scikit-learn.org/, Scikit-learn documentation website
11https://gitpython.readthedocs.io/, GitPython documentation website

86

https://scikit-learn.org/
https://gitpython.readthedocs.io/

7.6. PROCEEDING OF EVALUATION STUDIES AND THEIR CHARACTERISTICS

IR denotes IR-based link creation by applying the VSM or LSI IR technique,
while IRi denotes that SCS-based improvement techniques have also been
applied (cf. Section 5.2.3). Furthermore, the specific IR technique (VSM or
LSI) which was used is denoted as: <IR technique(similarity threshold)>
with the similarity threshold (cf. Section 2.2.2) used, e.g. VSM(0.2) for
usage of VSM with similarity threshold of 0.2.

ComL denotes commit-based link creation by using the issue IDs from VCS com-
mit messages and the files contained in the commits. ComLi denotes that
SCS-based improvement techniques have also been applied (cf. Section
5.2.3).

7.6 Proceeding of Evaluation Studies and their Charac-
teristics

1. Evaluation Study
IL and ILi Evaluation:

* Comparison with IR
* Aproval of Interaction Usage

* SCS Recall Improvement

2. Evaluation Study
IL and ILi Evaluation:

* Comparison with IR
* Real Recall Calculation

* Precision Improvement Techniques

3. Evaluation Study
ILCom and ILCom_i Evaluation:

assignment
* VCS Commit-based Interaction

* Comparision with ComL and IR

M2007 M2012 S2017 S2018
Only Relative
Recall Calculated

Manual Interaction Assignment
Affected Precision Negative

Data Set Study Limitation

Figure 7.3. ILog Evaluation Studies Overview, Proceeding and Dataset Usage

Figure 7.3 shows the overview of the proceeding for the three performed ILog
evaluation studies, along with the datasets used and the limitations of the studies
that lead to the final version of ILog. The intention of the first evaluation study
was to approve that interaction log recordings are a reasonable data source for trace
link creation, and thus confirm the basic idea of the ILog approach. The previously
introduced M2007 and M2012 datasets from the Mylyn project were used in the study,
while the ILog links were generated by the ILog with manual performed interaction
assignment (IL) technique and compared to IR created links. Furthermore, SCS-
based recall improvement was applied for both link creation techniques. However,
due to the size of the M2007 and M2012 datasets, and specifically due to the huge
overall number of possible links and the resulting huge effort to create a complete
gold standard for the datasets, only relative recall was calculated, which initially
motivated the second study.

In the second study the S2017 data set was used. Initially trace links were created,
as in the first study. However, since the precision of links created with IL was not
satisfying for directly using the links, wrong link detection techniques to improve the

87

CHAPTER 7. OVERVIEW OF EVALUATION STUDIES

precision were developed (cf. Section 5.2.3.1). Applying the precision improvement
techniques, through the use of ILi instead of IL, improved the created links but the
links were still not good enough to be directly usable.

After further analysis of the S2017 dataset, it turned out that the manual assign-
ment of interaction recordings was not used as had been intended by the student
developers of the project. This led to the development of ILog with VCS Commit-
based interaction assignment (ILCom) (cf. Section 5.2.1.2), initially using the S2017

dataset and simulating the assignment of interaction recordings by using issue IDs
from commit messages instead of a manual assignment.

The positive results of the simulated ILCom application with the S2017 dataset,
motivated the evaluation of ILCom, in a project directly using commit-based interac-
tion assignment in the third evaluation study. Thus, the S2018 dataset was created
by directly applying ILCom during the project. In addition to the former studies’
application of improvement techniques and their comparison with other link creation
techniques, trace links were also created by only using commit data, in the form of
ComL (cf. Section 2.2.3).

Table 7.3. ILog Evaluation Studies Characteristics and Dataset Usage

1. Eval. Study 2. Eval. Study 3. Eval. Study

Characteristic M2007 M2012 S2017 S2018

Study & Eval. intent initial ILog improvement tech. ILCom commit assig.
Project chpt. Chapter 8 Chapter 9 Chapter 10
Basics Organisation Open Source Scrum Scrum

developers 19 (3) 20 (3) 7 (3) 6

Require- ITS Bugzilla Jira Jira
ments Format Feature Story (Sub task) Story (Sub task)

50 50 19 (98) 17 (74)

Source VCS Git/ SVN Git Git
Code # commits n/a 761 406

files 756 2119 91 66
Format Java, XML JavaScript Java, XML

Interaction IDE Eclipse IntelliJ/ Webstorm Eclipse/ ADT
Recording Asg- tool Mylyn ILog Activity Tracker ILog Eclipse Client

mt. type manual manual commit
7687 1660 1171290 4012

Trace Link IR VSM , LSI VSM , LSI VSM , LSI
Creation ComL n/a Commit + issue id Commit + issue id

ILog IL IL, ILCom ILCom

Imp- data SCS SCS , inter. data SCS , inter. data
rove. type R P, R P, R
Eval. meas. 𝑃, 𝑅𝑟; 𝑓1, 𝑓0.5 𝑃, 𝑅; 𝑓1, 𝑓0.5 𝑃, 𝑅; 𝑓1, 𝑓0.5

88

7.6. PROCEEDING OF EVALUATION STUDIES AND THEIR CHARACTERISTICS

Table 7.3 shows more detailed characteristics of the three evaluation studies
along with the datasets used. In the first initial evaluation study, with the M2007

and M2012 datasets, IL has been evaluated regarding precision and relative recall of
the resulting trace links. For comparison, trace links are also created with the two
IR techniques VSM and LSI . In addition to precision and relative recall 𝑓0.5 and
𝑓1, measures are calculated for the overall rating of the evaluation results.

In the second evaluation study with the S2017 dataset the different precision
and recall improvement techniques using SCS and interaction data were evaluated
(cf. Section 5.2.3). Despite the different requirements and source code formats,
the biggest difference to the M2007 and M2012 datasets is the number of recorded
interactions. Over one million interactions were recorded for the S2017 dataset. The
reason for this large number is the different interaction recording tool and IDE . In
IntelliJ the IDE’s APIs used by the Activity Tracker-based interaction recording
tool creates very detailed interaction events for all interactions performed, such as
for every key stroke an interaction event is generated. In the Eclipse IDE and Mylyn
the interaction events which are generated and used are on a higher level and focused
on source code-related interactions, such as adding a new method to a class, which
would only result in two recorded interaction events. A further difference to the first
study is the calculation of real recall instead of relative recall, which was possible
since the student developers created a complete gold standard for the links.

In the third evaluation study with the S2018 dataset, ILCom with a commit-
based assignment of recorded interactions to requirements was evaluated (cf. Section
5.2.1.2). This marks the biggest difference compared to the other two studies, in
which IL with its manual interaction assignment was used instead. Furthermore,
ComL, i.e. trace link creation which only relies on commit data (cf. Section 2.2.3),
is added as another link creation technique for comparison. Before performing the
study with the S2018 dataset, the S2017 dataset has been used to retrospectively
simulate the application of ILCom and also to create links with ComL. This was
possible since the students followed the convention of providing issue IDs in the
commit messages in the S2017 project as well. The positive results of the retrospective
application of ILCom with the S2017 dataset was the initial motivation to conduct
the third study with the S2018 dataset.

Since the user stories of both student projects S2017 and S2018 contained only
short texts, the threshold values used for IR (cf. Section 2.2.2) had to be set low.
Furthermore, SCS-based precision and recall improvements (cf. Section 5.2.3.2)
have also been applied to the links created with IR and ComL in both projects.

89

CHAPTER 7. OVERVIEW OF EVALUATION STUDIES

90

Chapter 8
Using Interaction Logs for Trace Link
Creation

In this chapter the initial evaluation study for the ILog approach is described. After
in the previously conducted problem investigation, it was shown that existing trace
link creation techniques are insufficient for the continuous creation of directly usable
links. The ILog approach has been designed and introduced to treat this problem.
Thus, this first evaluation study is the start of the treatment validation task in
the design cycle of the thesis. The goal of this initial evaluation study is to show
that the usage of interaction log data for trace link creation is reasonable. This
goal is achieved by answering the following general research questions: What is the
precision and recall of ILog’s link creation technique IL?, and How do precision and
recall values of IL compare to IR for the same dataset?

Section 8.1 introduces the experimental design of the study and consists of the
detailed research questions, an overview of the experimental activities performed,
how trace links have been created with the different trace link creation techniques
using the previously introduced M2007 and M2012 datasets, and how the trace links
resulting from the different creation techniques have been evaluated. Section 8.2
presents the results by answering the previously stated research questions. Section
8.3 summarizes and discusses the results of the study, which showed that the IL
technique of the ILog approach achieves very good precision and good recall with the
interaction log recording data from the Mylyn open source project, and outperforms
different IR-based link creation techniques.

8.1 Experiment Design

In this section the details of the study’s experimental design, as shown in Figure
8.1, are described, in particular wrt. usage of the M2007 and M2012 Mylyn project
datasets and the application of IL.

91

CHAPTER 8. USING INTERACTION LOGS FOR TRACE LINK CREATION

Link Creation

IL and IR Trace Link Creation
3.

Source Code Structur
based Recall Improvement

4.

Evaluation

Manual Evaluation of IL
created Links

5.

Manual Evaluation of IR

IL Link Evaluation
created Links using Results of
6.

Preparation

Defintion of Research
Questions

1.

Selection of Data Sets
2.

Figure 8.1. 1. Study Experimental Design: Overview of Activities Performed

8.1.1 Research Questions

The study’s overall research question – Is there a difference between the application
of IL and IR based trace link creation regarding precision and relative recall? – is
divided into three sub-questions:

RQ1: What is the precision of IL and IR-created trace links? The hypothesis was
that the precision of IL is better than IR, since IL link creation is based
on developers’ expert knowledge.

RQ2: What is the relative recall of IL and IR-created trace links? The hypothesis
was that the relative recall of IL is at least as good as the relative recall
of IR. On the one hand, IL can find links between artefacts which are not
textually similar. On the other hand, artefacts found by IR are most likely
also covered by interactions.

RQ3: What is the impact of using Source Code Structure (SCS)? The hypothesis
was that using the SCS in addition to IL and IR improves the relative
recall of the created trace links.

As shown in Figure 8.1, the experimental design of the study is separated into three
parts in order to answer these research questions:
Preparation The experimental design is guided by the previously stated detailed

research questions. In the experiment the two datasets M2007 and M2012, both
of which are taken from the Mylyn project (cf. Section 7.1.1) are used. For
each of the two datasets the experimental steps are:

Link Creation Creation of trace links with ILog’s IL technique and the two IR
techniques VSM and LSI (cf. Section 8.1.2), and application of SCS recall
improvement (cf. Section 5.2.3.2) for links created with all techniques.

Evaluation Manual evaluation of the trace links created with IL followed by manual
evaluation of the trace links created with VSM and LSI . In the evaluation of
VSM created trace links, the links which are already verified in the manual
evaluation of IL trace links were used, and in the manual evaluation of LSI
created trace links the links which were already verified from IL and VSM
were used.

92

8.1. EXPERIMENT DESIGN

8.1.2 Trace Link Creation

IL links have been created using the interaction log recordings of the M2007 and
M2012 datasets. For IR-based trace link creation, both IR techniques VSM and LSI
have been applied to the two datasets M2007 and M2012. The preprocessing steps
as described in Section 2.2.2.1 have been applied upfront to all the artefacts used.
Furthermore, the trace link candidate generation has been restricted to links from
requirements to implementation artefacts (source code files), which is to say that no
trace links between the same artefact types were created.

Table 8.1. Thresholds and Number of Candidate Links for IR Techniques

Thresholds* 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M2007
VSM 0 50 596 2347 6419 13798 24040
LSI 0 3 8 40 142 354 1058

M2012
VSM 185 2268 6431 12333 22397 39434 64284
LSI 1 14 86 297 920 2424 6014

* Selected values are highlighted

To determine a reasonable threshold for the IR techniques with the initially
approved threshold values of 0.7 for VSM [Lucia et al., 2004] and 0.3 for LSI [De
Lucia et al., 2007] have been used. While this worked well for M2007, a different
thresholds for M2012 had to be chosen. As can be seen from Table 8.1, which shows
the number of link candidates for different IR techniques and thresholds, the number
of generated links for the second M2012 dataset increases very quickly in lowering
the threshold. To limit the effort required for the verification of the link candidates,
thresholds which resulted in less than 1000 links have been used. Clearly, the results
for M2012 can only be seen as a first indication and they might yet be improved in
future with lower thresholds.

8.1.3 Data Evaluation

To evaluate the trace links created with the IL technique, the created links from
both datasets M2007 and M2012 have been compared with links created by VSM
and LSI . Two settings for trace link creation have been used: one with SCS recall
improvement, and one without. The following steps to determine True Positive
(TP) (correct) and False Positive (FP) (wrong) links for these link sets have been
performed. Initially, the links created by IL have been verified manually for the
M2007 and M2012 dataset. Subsequently, these verified links have been removed
from the VSM and LSI trace link candidate sets. This resulted in sets of link
candidates which were found only by the two IR techniques. These links have also
been manually verified. Finally, the verified VSM and LSI links and the verified IL
links have been used to determine the set of links which were found only by IL.

93

CHAPTER 8. USING INTERACTION LOGS FOR TRACE LINK CREATION

8.2 Results

In the following subsections, the research questions of this study are answered and
the results are discussed. In Section 8.2.1 RQ1 and RQ2 concerning precision and
relative recall of IL and IR created trace links is answered. This is followed by the
answer to RQ3 concerning the SCS based recall improvements in Section 8.2.2.

8.2.1 Evaluation of IL and IR based Trace Link Creation

Table 8.2. Comparison of IR and IL Trace Link Creation

M2007 M2012

IL IR VSM (0.7) IR LSI (0.3) IL IR VSM (0.9) IR LSI (0.5)

#Link Cand. (LC) 1148 596 1058 240 185 920
#Impl. ArtefactLC 585 203 384 172 171 444
#RequirementsLC 50 23 46 37 4 34
#True Positive (TP) 1148 204 328 240 25 274
Trace Links (118𝐼𝐿 + 17𝐿𝑆𝐼 + 69) (184𝐼𝐿 + 37𝑉 𝑆𝑀 + 107) (6𝐼𝐿 + 24𝐿𝑆𝐼 + 1) (41𝐼𝐿 + 24𝑉 𝑆𝑀 + 250)
#Impl. ArtifactTP 585 126 200 240 24 169
#RequirementsTP 50 19 41 172 3 28
#TP Trace Links of 1324 491
all Approaches (1148𝐼𝐿 + 69𝑉 𝑆𝑀 + 107𝐿𝑆𝐼) (240𝐼𝐿 + 1𝑉 𝑆𝑀 250𝐿𝑆𝐼)
Precision 1 0.341 0.310 1 0.135 0.298
Relative Recall 0.867 0.154 0.247 0.418 0.051 0.534

Table 8.2 provides an overview of the number of created trace link candidates,
implementation artefacts used, requirements used, correct (TP) trace links, imple-
mentation artefacts involved in correct (TP) trace links, requirements involved in
correct (TP) trace links, sum of correct trace links created by all approaches to-
gether, and the precision and relative recall for both datasets. Thus, the research
questions can be answered as follows.

RQ1: What is the precision of IL and IR-created trace links? For both datasets
all links created with IL were correct (100% precision). For IR precision values
vary between 13% and 34% with little difference between VSM and LSI for the
standard thresholds in the first M2007 dataset and a big difference for the higher
thresholds in the second M2012 dataset. Thus, IL clearly outperforms IR. Moreover,
IL is independent of setting a threshold and finds more correct links than IR for the
M2007 dataset. Nevertheless, there are also links which are only discovered by IR in
this dataset.

For the M2012 dataset the situation is different due to the smaller number of IL
created trace links and due to the much larger amount of implementation artefacts
used for IR. Beyond that, not all requirements are involved in interaction links in
this set. This is due to the fact that some interactions concerned code which lay
outside of the VCS tag (e.g. the framework used). LSI finds in total more correct
trace links for the second dataset than IL. This can be explained by the amount
of considered requirements and implementation artefacts, since IL considered 37
requirements and 172 implementation artefacts, whereas LSI considered 34 and
444. In comparison with the values achieved by trace link creation approaches and

94

8.2. RESULTS

techniques, as discussed in Section 3.2 of Chapter 3, it can be stated that the 100%
precision of IL in a real-world setup is unique. The precision of IR is acceptable for
the first M2007 and good for the second M2012 dataset. The values for precision are
in the range reported by De Lucia et al. [2007] (LSI), Ali et al. [2013] (VSM) and
Merten et al. [2016b] (LSI , VSM and ITS as data source).

RQ2: What is the relative recall of IL and IR-created trace links? The setting
used in the experiment resulted in relative recall values between 86% and almost
42% for IL (cf. Table 8.2) and relative recall values of 5% and 53% for IR. As was
expected and reported by others Cleland-Huang et al. [2007], Gotel et al. [2012b],
IR creates a lot of False Positive (FP) trace links even with the moderate threshold
setting as was used for the second M2012 dataset in the experiment. The difference in
relative recall rates between the M2007 and M2012 datasets in IL can be explained by
the characteristics of the datasets which resulted in a lower number of interactions for
the second M2012 dataset (cf. Section 7.2.2, Table 7.1: M2007 has 7687 interactions
on 756 used implementation artefacts, M2012 has 1660 interactions on 2119 used
implementation artefacts).

8.2.2 Source Code Structure based Recall Improvement

During the study it turned out that the recall of IL was bad for specific require-
ment issues compared to IR. This was based on the fact that only a small amount
of interactions existed, since the developer implementing the specific requirement
seemed to have very detailed knowledge about the code. As a result, implementa-
tion artefacts which were indirectly related and which were also important for the
requirements implementation were not touched. To countervail this, the SCS-based
recall improvement was developed (cf. Section 5.2.3.2).

Table 8.3. Trace Links for different Code Traversal Levels

Tra-
versal
Level

M2007IL M2007IR

#Link
Cand.

#TP
Links

Preci-
sion

#Link Cand. #TP Links* Precision
VSM (0.7) LSI (0.3) VSM (0.7) LSI (0.3) VSM (0.7) LSI (0.3)

0 1148 1148 1.000 596 1058 120 184 0.201 0.174
1 1446 1446 1.000 858 1718 234 338 0.273 0.197
2 1831 1831 1.000 1108 2181 363 562 0.328 0.258
3 2204 2204 1.000 1382 2706 499 805 0.361 0.297
4 2565 2565 1.000 1624 3214 639 1083 0.393 0.337
5 3027 2854 0.943 1915 3927 781 1349 0.408 0.344
6 3531 3202 0.907 2253 4510 947 1612 0.420 0.357
10 5805 3639 0.627 3374 5488 1258 1779 0.373 0.324

* Compared to IL

As introduced in Section 5.2.3.2, the setting of an appropriate traversal level is
important to apply the SCS based recall improvement without negative effects on
the precision. Table 8.3 shows the differences according to the number of created
links and their precision for considering SCS with different traversal levels for the
M2007 datasets. M2007IL refers to links generated by IL and M2007IR refers to links

95

CHAPTER 8. USING INTERACTION LOGS FOR TRACE LINK CREATION

generated by IR. Since precision for IL drops when considering a traversal level of
code relations greater than four, this traversal level was used for the answer of RQ3 .
It can also be seen that precision of IR only drops for traversal level ten. As the
focus was to maximize the precision of ILog, level four was chosen. Clearly, the
results for IR could be improved with a higher traversal level. This analysis was
also performed for the second M2012 dataset. Since the results were quite similar,
their detailed reports are skipped.

Table 8.4. IR and IL Trace Links Considering Source Code Structure

M2007 M2012

ILi IRi VSM (0.7) IRi LSI (0.3) ILi IRi VSM (0.9) IRi LSI (0.5)

#Link Cand. (LC) 2565 1624 3143 1126 458 2766
#Impl. ArtifactLC 627 333 516 363 343 702
#RequirementsLC 50 23 46 37 4 34
#True Positive (TP) 2565 698 1214 1126 108 784
Trace Links (581𝐼𝐿 + 63𝐿𝑆𝐼 + 54) (1010𝐼𝐿 + 62𝑉 𝑆𝑀 + 142) (91𝐼𝐿 + 17𝐿𝑆𝐼 + 0) (491𝐼𝐿 + 11𝑉 𝑆𝑀 + 282)
#Impl. ArtifactTP 627 229 308 363 73 354
#Requirements (TP) 50 22 41 37 4 35
#Trace LinksTP of 2761 1408
all Approaches (2565𝐼𝐿 + 54𝑉 𝑆𝑀 + 142𝐿𝑆𝐼) (1126𝐼𝐿 + 0𝑉 𝑆𝑀 + 282𝐿𝑆𝐼)
Precision 1 0.425 0.386 1 0.236 0.283
Relative Recall 0.929 0.253 0.440 0.800 0.077 0.557

RQ3: What is the impact of using Source Code Structure (SCS)? As shown
in Table 8.4 for both datasets, all links created with IL were also correct (100%
precision) when considering SCS . Furthermore, relative recall increased considerably
for the second M2012 dataset. Comparing the numbers in Table 8.2 and 8.4 it can
be seen that the SCS-based recall improvement for IL results in five times more
trace links for the second M2012 dataset and twice as many links for the first M2007

dataset. This can be explained by the more complex SCS due to the maturity of the
project in the second dataset and by the larger amount of links which are already
created by the larger amount of interactions.

Both IL and IR considered about 1/3 more implementation artefacts when using
SCS . For VSM and LSI in the M2007 dataset, this resulted in an increase of precision
and relative recall. This is also true for the M2012 dataset, except for the precision
value of LSI , which drops slightly.

In the experiments with different code traversal levels, the number of links only
found by IR could be reduced to almost zero by increasing the traversal levels of
code relations. However, this also resulted in false positive links for IL, which is
contrary to the research goal G1, namely to create trace links with 100% precision
in order to make them directly usable. Altogether, it can be seen that by using SCS
to improve recall, the research goal of 100% precision and excellent relative recall
was achieved and that IL outperforms IR for both Mylyn project datasets.

96

8.3. CONCLUSION

8.3 Conclusion

The results for ILog’s IL technique of this first study are encouraging. IL created
trace links with 100% precision for two different datasets. Also, the calculated
relative recall values are excellent, since they are almost 96% for the first M2007

dataset and 80% for the second M2012 dataset. Thus, the study shows that, with
ILog’s IL technique, trace link creation in practice can be supported with little extra
effort for the developers. Clearly, the comparison with IR is only preliminary in this
study, since specific thresholds for the second dataset were used and only relative
recall was computed.

97

CHAPTER 8. USING INTERACTION LOGS FOR TRACE LINK CREATION

98

Chapter 9
Improvement Techniques for Interaction
Log Trace Links

In this chapter the second evaluation study of the ILog approach is presented. In
contrast with the first study, this study is based on interaction log data, requirements
and source code from the student project S2017 (cf. Section 7.1.2). A student project
was used in order to be able to create a complete gold standard, with the help of the
student developers. Also in contrast with the first evaluation study, the complete
gold standard enabled the calculation of real recall instead of only relative recall.

The study consists of two parts. In the first part precision and real recall values
for the ILog’s IL technique were calculated. The first results of the study showed
that IL only had around 50% precision when applying it in the same manner as in
the first previous study. It turned out that the bad precision and thus wrong links
were caused by developers not triggering the interaction recording for requirements
correctly. Since IL was used in the study, the interactions captured were assigned
manually to requirements by a manually performed indication within the IDE of
the developers. However, the developers worked on different requirements without
changing the requirement in the IDE . Thus, all trace links were created for one
requirement.

As a result of this, in the second part of the study the precision improvement
techniques for detection of potentially wrong links (cf. Section 5.2.3.1) were devel-
oped and evaluated. With these techniques, the precision is improved by identifying
relevant trace link candidates, such as a focus on links created by edit interactions
or thresholds for the frequency and duration of interactions. Furthermore, different
techniques to identify irrelevant source code, such as the developer who created the
source code, or source code which does not refer to other source code in interaction
created trace links, were both evaluated. In the best cases this improved the pre-
cision up to almost 70% with still reasonable recall above 45%. Thus, in addition
to the general research questions of the previous study concerning the link creation

99

CHAPTER 9. IMPROVEMENT TECHNIQUES FOR INTERACTION LOG TRACE LINKS

quality of ILog’s IL technique, this study answers the general research question: To
what extent can improvement techniques countervail wrong and missing ILog links?

The chapter is structured similarly to the previous study chapter. Section 9.1
introduces the experimental design of the study, and consists of the detailed research
questions, an overview of the experimental activities performed, how trace links have
been created initially with the different trace link creation techniques using the pre-
viously introduced S2017 dataset, how the resulting trace links from the different
creation techniques have been evaluated and how the trace link improvement tech-
niques have been applied to the trace links which were initially created from the
different techniques. Section 9.2 presents the results by answering the previously
stated research questions together with a discussion. Section 9.3 summarizes the
results of the study, which have shown that the improvement techniques which were
evaluated are suitable to remove wrong links and thus improve the precision of IL
created links.

9.1 Experiment Design

In this section the details of the study’s experimental design, as shown in Figure
9.1, are described, in particular wrt. usage of the S2017 student project dataset and
the development and application of ILog’s precision improvement techniques (cf.
Section 5.2.3.1).

St
ud

y
Pa

rt
 2 Selection of

Improvement
Different

Technique

Extension of IL to ILi

Improvement Techniques
with Trace Link

6. Evaluation of Different

Improvement Techniques
Trace Link

7.
Definition of Research

Question RQ3

5.

St
ud

y
Pa

rt
 1

Initial Application
of IL and IR

4.
Defintion of Research

Questions RQ1 & RQ2

1. 3. Gold

Creation
Standard

2. Interaction

Collection
Data

Extension of RQs

Figure 9.1. 2. Study Experimental Design: Overview of Activities Performed

9.1.1 Research Questions

The research questions answered in the two parts of this study are:

RQ1: What is the precision and recall of IL created trace links? The hypothesis
was that IL has very good precision and good recall.

RQ2: What is the precision and recall of IR created trace links? The hypothesis
was that IR has bad precision and good recall.

100

9.1. EXPERIMENT DESIGN

RQ3: What is the precision and recall of ILi when precision improvement tech-
niques for the detection of wrong trace links are applied? The hypoth-
esis was that improvement techniques utilizing details of the interaction
log, such as the frequency, and improvement techniques which consider the
source code, such as by using the SCS , should enhance precision consider-
ably and still keep reasonable recall.

As shown in Figure 9.1, RQ1 and RQ2 were defined for the first part of the study
and targeted the calculation of real recall values instead of relative recall, as in the
previous study for IL (RQ1) and additionally for comparison with IR (RQ2). After
the initial application of IL, it turned out that the precision of IL was not sufficient
for direct usage of the trace links with the S2017 student project dataset. Thus, in
the second part of the study precision, improvement techniques were investigated in
RQ3 .

9.1.2 Part 1: Initial Trace Link Creation

Initially trace links were created with ILog’s IL technique and with the VSM and
LSI IR techniques. All link creation techniques were applied to the 19 stories,
together with their 98 sub-tasks and to the 91 source code files which were also used
for the gold standard creation of the S2017 dataset (cf. Section 7.6 and the S2017

characteristics in Table 7.3).
For IL the interactions of a story were combined with the interactions of the

corresponding sub-task for further evaluations, as the sub-tasks describe details for
implementing the story (cf. Section 5.2.2). From the resulting link candidates all
links to code files which were not included in the 91 code files of the gold standard
were removed. IR was applied to the texts of stories and corresponding sub-tasks
and to the 91 code files used for the gold standard. In addition, the common IR
preprocessing steps, i.e. stop word removal, punctuation character removal and
stemming, were performed [Baeza-Yates and Ribeiro, 2011, Borg et al., 2014]. Be-
sides this, the camel case identifier splitting (e.g. as when PatientForm becomes
Patient Form), was performed since camel case notation has been used in the source
code (cf. Section 2.2.2.1). Since the stories contained only very short texts, the
threshold values used for the IR techniques had to be set very low.

9.1.3 Part 2: Precision Improvement Techniques

Since ILog’s IL technique had worse precision values than expected, it was decided to
investigate how IL can be extended by improvement techniques for the detection of
wrong trace links. To this end, the initial study was extended by means of a second
part in which RQ3 (cf. Section 9.1.1), which concerns the evaluation of improve-
ment techniques to detect wrong links, is answered. Therefore, the improvement

101

CHAPTER 9. IMPROVEMENT TECHNIQUES FOR INTERACTION LOG TRACE LINKS

techniques (cf. Section 5.2.3) with different settings for each improvement technique
and the most promising combination of improvement techniques were evaluated, as
will be described in the following.

For interaction-specific data (a) the type of interaction, i.e. whether an inter-
action is a select or an edit, (b) the duration of interactions based on the logged
time stamp, and (c) the frequency with which an interaction with a source code file
occurred for a user story, were evaluated. The rationale for this was that (a) edit
events are more likely than select events to identify code which is necessary for a
user story and that (b, c) a longer duration of the interaction or a higher frequency
signify that the developer made a more comprehensive change and not only a short
edit, e.g. by correcting a typo which was noticed when looking at a file.

For source code (a) the ownership that is the developer who created the inter-
action, since one developer might have worked in a less disciplined way than others;
(b) the frequency of interactions with the same source code files for different user
stories, as files used for different user stories might be base files which had not been
considered relevant for the gold standard by the developers; (c) filtering is performed
with only JavaScript source code files, as other formats might not be so relevant for
a user story; and (d) the SCS for the source code files which are involved in one
story to detect files which had no relation in the SCS to other files, as the unrelated
code files might signify a different purpose from the story. As a consequence of this,
the most promising techniques were combined.

Altogether, the improvement techniques to detect wrong links were applied in
such a way that links were removed when their logged interaction data values fell
below a certain threshold, different with respect to a certain type, or when the source
code file did not match the aforementioned criteria. Finally, the thresholds, the type
and the combination of thresholds and source code filter criteria used to optimize
the precision of the links created by IL and to minimize the effect on the recall, were
chosen.

9.2 Results

This section reports the results of the performed evaluations and answers the research
questions RQ1 and RQ2 in Section 9.2.1 and RQ3 in Section 9.2.2. In addition
Section 9.2.3 discusses the results.

9.2.1 Part 1: Precision and Recall for the Initial Evaluation

Table 9.1 presents an overview of the evaluations performed, as described in section
9.1.2. ILogs’s IL technique created 372 link candidates, of which 212 were wrong. 57
correct links were not found. Thus RQ1 can be answered as follows: the precision
for the IL technique is 43.0% and recall is 73.7%.

102

9.2. RESULTS

Table 9.1. Precision and Recall for IL and IR

Approach GS
Links

Link
Cand.

Correct
Links

Wrong
Links

Not
Found Precision Recall 𝐹0.5 𝐹1

IL 217 372 160 212 57 0.430 0.737 0.469 0.543
IRVSM(0.3) 217 191 38 153 179 0.199 0.175 0.194 0.186
IRVSM(0.2) 217 642 104 538 113 0.162 0.480 0.187 0.242
IRLSI (0.1) 217 102 35 67 182 0.343 0.161 0.280 0.219
IRLSI (0.05) 217 363 77 286 140 0.212 0.355 0.231 0.266

RQ2 can be answered by looking at different IR techniques with different thresh-
olds: the best achievable precision with very low thresholds is 34.3% (LSI (0.1)) and
the best achievable recall is 48.0% (VSM (0.2)). These results are not good at all
compared to IL and they are bad compared to typical IR-results on structured data
[Hayes et al., 2006] (cf. Section 2.3.2).

As IL’s precision was much lower than expected, it was investigated whether
there was a problem with the gold standard (cf. Section 7.3). In this connection,
113 wrong links which resulted from edit interactions were checked manually. The
performed check confirmed that these links are really wrong. This led to the con-
clusion that the developers had not used the interaction logging properly and that
they had worked on code which was not relevant for the activated user story. This
happened typically for smaller code changes on the fly besides the implementation
of the activated story. So for example, developers updated a file from which they
had copied some code, but they did not activate the requirement that the change
should have been associated with.

9.2.2 Part 2: Precision and Recall Using Improvement Techniques

Table 9.2. Duration-based IL Improvement

Dur.
(sec)

GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
𝐹0.5 𝐹1

All Edit All Edit All Edit All Edit All Edit

1 217 372 220 160 107 212 113 57 0.430 0.486 0.737 0.493 0.488 0.490
10 217 317 199 144 104 173 95 73 0.454 0.523 0.664 0.479 0.513 0.500
60 217 231 167 113 90 118 77 104 0.489 0.539 0.521 0.415 0.508 0.469
180 217 183 142 93 78 90 64 124 0.508 0.549 0.429 0.359 0.497 0.435
300 217 154 122 81 70 73 52 136 0.526 0.574 0.373 0.323 0.496 0.413

This section reports the answers to RQ3 . Table 9.2 shows the results which focus
on links created by edit interactions and which possess a different minimal duration.
The first row corresponds to IL without any restrictions. It shows that, by focusing
on edit interactions, the precision slightly improves from 43.0% to 48.6%. As the
focus on edit always improved the precision a little, only the F-measures for IL
which were focused on edits are reported and only these numbers are described in
the following text. When increasing the minimum duration for an interaction, the
precision can be improved up to 57.4%. This of course impairs the recall. However,

103

CHAPTER 9. IMPROVEMENT TECHNIQUES FOR INTERACTION LOG TRACE LINKS

as reported at the end of this section IL’s SCS-based recall improvement (cf. Section
5.2.3.2) can balance the negative effect on recall up to a certain extent.

Table 9.3. Frequency-based IL Improvement

Fre-
quency

GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
𝐹0.5 𝐹1

All Edit All Edit All Edit All Edit All Edit

1 217 372 220 160 107 212 113 57 0.430 0.486 0.737 0.493 0.488 0.490
2 217 314 220 142 107 172 113 75 0.452 0.486 0.654 0.493 0.488 0.490
5 217 220 191 113 98 107 93 104 0.514 0.513 0.521 0.452 0.499 0.480
10 217 181 169 99 93 82 76 118 0.547 0.550 0.456 0.429 0.521 0.482
20 217 158 151 90 87 68 64 127 0.570 0.576 0.415 0.401 0.530 0.473
100 217 86 86 59 59 27 27 158 0.686 0.686 0.272 0.272 0.526 0.389

Table 9.3 shows the results of different minimal frequencies for trace links within
interaction log recording for one story. Again, row one gives the numbers for the
original IL application. Here, the improvement is greater in leading to a precision of
68.6% for a frequency of 100. In particular, by this restriction, all select interactions
are removed. However, recall is even more impaired.

Table 9.4. Developer-Specific Differences

Dev-
eloper

GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
𝐹0.5 𝐹1

All Edit All Edit All Edit All Edit All Edit

Dev1 37 41 17 19 6 22 11 18 0.463 0.353 0.514 0.162 0.286 0.222
Dev2 128 252 155 110 79 142 76 18 0.437 0.510 0.859 0.617 0.528 0.558
Dev3 52 77 46 30 21 47 25 22 0.390 0.457 0.577 0.404 0.445 0.429

Table 9.4 shows the distribution for the three developers of the evaluation. One
can see that the developer Dev2 was the most active and that Dev3 contributed more
than Dev1. However, for all three developers, the interactions led to more wrong
than correct links. So the precision between them all does not differ much.

/i
se
/c
on

fi
g.
js
on

/i
se
/c
on

fi
g.
lo
ca
l.
js
on

/i
se
/d

at
a/
p
er
so
n
a/
p
ra
ct
it
io
n
er
/0
1.
js
on

.j
s

/i
se
/l
ib
/a
u
th
/o
au

th
m
o
d
el
.j
s

/i
se
/l
ib
/c
on
tr
ol
le
r/
or
ga
n
iz
at
io
n
/c
re
at
eO

rg
an

iz
at
io
n
.j
s

/i
se
/l
ib
/c
on
tr
ol
le
r/
p
at
ie
n
t.
js

/i
se
/l
ib
/c
on
tr
ol
le
r/
p
at
ie
n
t/
cr
ea
te
P
at
ie
n
t.
js

/i
se
/l
ib
/c
on
tr
ol
le
r/
p
at
ie
n
t/
d
el
et
eP

at
ie
n
tB

y
P
at
ie
n
tI
D
.j
s

/i
se
/l
ib
/c
on
tr
ol
le
r/
p
at
ie
n
t/
ge
tP
at
ie
n
tB

y
K
ey
S
ea
rc
h
.j
s

/i
se
/l
ib
/c
on
tr
ol
le
r/
p
at
ie
n
t/
u
p
d
at
eP

at
ie
n
t.
js

/i
se
/l
ib
/c
on
tr
ol
le
r/
p
ra
ct
it
io
n
er
.j
s

/i
se
/l
ib
/c
on
tr
ol
le
r/
u
se
r.
js

/i
se
/l
ib
/m

id
d
le
w
ar
e/
ac
l
m
id
d
le
w
ar
e.
js

/i
se
/l
ib
/r
ou

te
s.
js

/i
se
/l
ib
/s
ch
em

a/
d
at
at
y
p
es

h
l7
.j
s

/i
se
/l
ib
/s
ch
em

a/
p
at
ie
n
t
h
l7
.j
s

/i
se
/p

ac
ka
ge
.j
so
n

/i
se
/p

u
b
li
c/
fu
n
ct
io
n
s.
js

/i
se
/p

u
b
li
c/
v
ie
w
s/
A
tt
ri
b
u
te
.j
s

/i
se
/p

u
b
li
c/
v
ie
w
s/
F
or
m
B
u
il
d
er
.j
s

/i
se
/p

u
b
li
c/
v
ie
w
s/
p
at
ie
n
t/
P
at
ie
n
tE

d
it
.j
s

/i
se
/p

u
b
li
c/
v
ie
w
s/
p
at
ie
n
t/
P
at
ie
n
tL
is
t.
js

/i
se
/p

u
b
li
c/
v
ie
w
s/
p
ra
ct
it
io
n
er
/S

ea
rc
h
P
ra
ct
it
io
n
er
.j
s

/i
se
/p

u
b
li
c/
v
ie
w
s/
R
es
u
lt
s.
js

/i
se
/p

u
b
li
c/
v
ie
w
s/
S
ea
rc
h
G
eo
lo
ca
ti
on

.j
s

/i
se
/p

u
b
li
c/
v
ie
w
s/
u
se
r/
In
se
rt
U
se
r.
js

/i
se
/p

u
b
li
c/
v
ie
w
s/
u
se
r/
M
an

ag
eA

C
L
.j
s

/i
se
/t
es
t/
p
at
ie
n
t
co
n
tr
ol
le
r
te
st
.j
s0

2

4

6

8

10

12

14
Correct Links Edit
Correct Links Select

Devleoper Dev1 Wrong Links Edit

Devleoper Dev2 Wrong Links Select

Devleoper Dev3 Not Found Links

Figure 9.2. Code Files which had Interactions in 3 or more User Stories

Figure 9.2 shows the 28 code files which have been touched in interactions for
three or more user stories. Furthermore, it shows how often each developer touched
these files. The developer distribution shows that some of the files have been touched

104

9.2. RESULTS

by different stories from one developer and some have been touched from several
developers. One can see that only three out of 28 files have wrong link candidates
only. Also, files which have many link candidates sometimes have many correct link
candidates and sometimes they do not. So, there is no clear pattern that these files
are the reason for the greater number of wrong link candidates.

Table 9.5. Source Code-based Improvements

Code
Res.

GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
𝐹0.5 𝐹1

All Edit All Edit All Edit All Edit All Edit

none 217 372 220 160 107 212 113 57 0.430 0.486 0.737 0.493 0.488 0.490
>3 US 217 208 92 83 43 125 49 134 0.399 0.467 0.382 0.198 0.368 0.278
Only js 186 327 203 129 99 198 104 57 0.394 0.488 0.694 0.532 0.496 0.509
Con. 217 274 169 147 99 127 70 70 0.536 0.586 0.677 0.456 0.554 0.513

This is confirmed in Table 9.5 which shows the results for the different source
code restrictions, with the first row showing the numbers without restrictions. The
second row shows the precision for code which was touched by interactions in three
or more user stories. Here, the precision increased slightly to 46.7%. The third row
shows a precision of 48.8% when looking only at JavaScript files. The best precision
of 58.6% could be achieved when removing code files which were not connected by
SCS relations to other code files of the same user story (cf. Section 5.2.3.1).

When looking at the individual improvement techniques for detecting wrong
links, RQ3 can be answered as follows. The best precision of 68.6% can be achieved
with a minimum frequency of 100. This leads to a recall of 27.2%. The second-best
precision of 58.2% can be achieved by removing files which are not connected by
SCS . This leads to a recall of 45.6%.

Table 9.6. Combination of Improvements

Code
Con. Freq. Code

Struct
GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
𝐹0.5 𝐹1

All Edit All Edit All Edit All Edit All Edit

True 20 0 217 124 123 82 82 42 41 135 0.661 0.667 0.378 0.378 0.578 0.482
True 20 4 217 151 148 101 101 50 47 116 0.669 0.682 0.465 0.465 0.624 0.553
True 100 0 217 71 71 47 47 24 24 170 0.662 0.662 0.217 0.217 0.469 0.326
True 100 4 217 87 87 58 58 29 29 159 0.667 0.667 0.267 0.267 0.513 0.382

After the evaluation of the single improvement techniques, the combination of the
two techniques with the best results was also investigated. First, the code files which
were not connected by SCS within a story were removed, and then the remaining
interaction links were filter wrt. frequency. Table 9.6 shows the resultant precision
of 66.7% for frequency 20 (𝐹0.5 is 0.578) and 66.2% for frequency 100 (𝐹0.5 is 0.469).
So for frequency 100, the precision decreased when one looked at SCS connected
files. For frequency 20, the best 𝐹0.5-measure of all evaluations is achieved. As a
result of this, IL’s SCS-based recall improvement (cf. Section 5.2.3.2) was applied
to both settings. Again frequency 20 yielded the best results.

105

CHAPTER 9. IMPROVEMENT TECHNIQUES FOR INTERACTION LOG TRACE LINKS

Altogether RQ3 can be answered as follows: with the improvement techniques
for detecting wrong links, the precision was improved from 43.0% to 68.2% (increase
of 25.2%). On the other hand, the recall decreased from 73.7% without improvement
techniques to 46.5%. This yields the best 𝐹0.5-measure of 0.624.

9.2.3 Discussion

In the following all hypotheses wrt. IL and the rationale for the improvement tech-
niques are discussed. The bad level of precision compared to the previous study (cf.
Chapter 8) for IL clearly indicates that the developers did not use the recording
in a disciplined way. The detailed evaluations for the developers did not show big
differences, so this finding was true for all three developers.

Several improvement techniques to detect wrong links were tried: a focus on edit
interactions, duration, source code owner, source code type and removing of files with
many links did not yield considerable precision improvement. Only frequency and
removal of links to files which were not connected by SCS within a story improved the
precision considerably by up to almost 70%, with recall above 45%. For the purposes
of direct usage, the resulting links of this evaluation study are not sufficient, as the
best achieved precision for ILi still means that thirty percent of the created links
would be incorrect and would hence mislead developers during link usage.

Thus, three further directions of research can be identified. (a) Come up with
further improvement techniques to detect wrong links, which yield a precision close
to 100%. (b) Try to support the developers in applying interaction recording in a
more disciplined way. The results of the previous study on the Mylyn project (cf.
Chapter 8) showed that it is possible for developers to use interaction recording in
a disciplined way. It could be that students are particularly bad with this disci-
pline. (c) Instead of automatic link creation support, ILog could generate links as
recommendations to the developers.

In the approach of Delater and Paech [2013], more coarse-grained VCS change
logs were used to create links and the developers were given different means to create
links based on the logs during a sprint or at the end of a project. In relation to
this, the ILog approach could be used to give recommendations to the developers at
different points in the sprint or project for links to create, based on their interactions.
Then, developers would have to detect the wrong links themselves. However, this
would countervail avoiding any additional overhead by trace link creation for the
developers as much as possible.

106

9.3. CONCLUSION

9.3 Conclusion

In this study the precision and recall of the ILog’s IL technique for trace link creation
in the S2017 student project were investigated. Contrary to the previous study (cf.
Chapter 8 and Section 8.3), the original IL technique only achieved a precision of
about 50%. Therefore, several improvement techniques for the detection of wrong
links were implemented: a focus on edit interactions, duration, source code owner,
source code type and removing of files with many links did not yield considerable
precision improvement. Only frequency and removal of links to files which were
not connected by SCS within a story improved the precision considerably by up to
almost 70% with above 45% recall. As discussed in the previous Section 9.2.3, this
is not sufficient for the purposes of direct link usage and for the research goal G1 of
the thesis.

107

CHAPTER 9. IMPROVEMENT TECHNIQUES FOR INTERACTION LOG TRACE LINKS

108

Chapter 10
Using Commits and Interaction Logs
for Trace Link Creation

In this chapter the third evaluation study of the ILog approach is presented. Due
to the insufficient results of ILog’s manual interaction assignment technique IL for
continuous link creation and direct link usage, even when applying improvement
techniques, in the previous study (cf. Chapter 9) the commit-based interaction log
assignment ILCom was developed (cf. Section 5.2.1.2). ILCom uses issue IDs which
are provided in commit messages to assign interactions to requirements and removes
the manual additional effort for developers, as was required in the previous study.
All code files touched in the interactions before a commit are associated with the
requirement which is identified through the issue ID. The common convention in
software development project to provide issue IDs in commit messages (cf. Section
2.2.3) motivated the development of ILCom. Thus, this study answers the general
research question: To what extent can the combination of commit and interaction
data improve ILog?

This chapter is divided into two parts. The first part in Section 10.1 provides
a report of a retrospective study in which the application of ILCom was simulated
with the S2017 dataset from the previous project.

The second part is structured similarly to the previous study chapters. Section
10.2 introduces the experimental design of the study and consists of the detailed
research questions, an overview of the experimental activities performed, how trace
links have been created with the different trace link creation techniques using the
previously introduced S2018 dataset, and how the resulting trace links from the
different creation techniques have been evaluated. Section 10.3 presents the results
by answering the previously stated research questions together with a discussion.
Section 10.4 summarizes the results of the study which showed that ILCom achieves
very good precision and recall and that it is much better in both precision and recall
than other trace link creation techniques.

109

CHAPTER 10. USING COMMITS AND INTERACTIONS FOR TRACE LINK CREATION

10.1 Retrospective Study

S2017 Retrospective Study

3. Retrospective Simulation

Interaction Log Recording
of ILCom with Extended S2017

4. Comparison with

Previous S2017 Study
Results from

1. Extension of IL Approach

Interaction Log Assignment
to ILCom with Commit-based

2. Extension of S2017

with Commit Data
Interaction Recording

Figure 10.1. Retrospective Study Design: Overview of Activities Performed

Figure 10.1 shows the four activities of the retrospective study in which ILCom,
i.e. ILogs’s commit-based interaction assignment technique, was developed and ini-
tially evaluated. The initial motivation to use the developer’s commits for interaction
assignment came from the common practice to specify issue IDs in commit messages
[Rath et al., 2017].

The S2017 project dataset was used to simulate the application of ILCom retro-
spectively. This was possible since the student developers of the S2017 project also
used issue IDs in their commit messages.

The retrospective simulated application of ILCom with the S2017 project data set
directly improved the precision from 43.0% to 56.6% without affecting the recall.
The further details of the retrospective study are described in the following.

First the S2017 project data was analyzed regarding issue IDs in commit mes-
sages. It turned out that there were a significantly greater number of commits with
issue IDs (per developer) than there were activation and deactivation events for re-
quirements in the recorded interaction logs. For one developer, the processing of
18 requirements was recorded in the interaction logs, but there were 71 commits
with requirement issue IDs for the same developer in the Git VCS repository. This
does not directly indicate that the interaction log recording is wrong, since it is
possible that a developer performed multiple commits for one requirement succes-
sively. However, after a random check of the time span of interaction recording for
two requirements, it turned out that there were commits with different issue IDs
in this time span. This encouraged the further data analysis and the retrospective
simulation of the application of ILCom.

Table 10.1. S2017 Project Retrospective Study: Precision and Recall

Tech-
nique

Pre-
cision

Re-
call 𝐹0.5 𝐹1.0

#Links #Sto-
ries

#Sub-
tasks

Src Files

CE TP FP GS FN Used GS

IL 0.430 0.737 0.469 0.543 372 160 212 217 57 19 98 89 91
ILi 0.669 0.465 0.615 0.549 151 101 50 217 116 13 72 63 91
ComL 0.620 0.465 0.581 0.532 163 101 62 217 116 19 98 78 91
ComLi 0.659 0.401 0.584 0.499 132 87 45 217 130 11 66 59 91
ILCom 0.566 0.733 0.593 0.639 281 159 122 217 58 19 98 86 91
ILCom_i 0.736 0.539 0.686 0.622 159 117 42 217 100 13 72 63 91

Table 10.1 presents the results of the retrospective study together with the data
from the S2017 dataset. Trace links were created by the different techniques as de-

110

10.2. EXPERIMENT DESIGN

scribed in the following. For ComL, links for all commits with requirement issue
IDs in the commit message, from the requirement referenced by the ID to all source
code files of the commit, were created. To simulate the application of ILCom ret-
rospectively, the interactions recorded for IL and the commits with issue IDs were
used. The Git VCS commits with requirement issue IDs and the interaction log
recording were ordered by time. All interaction log recordings between two commits
with issue IDs were assigned to the issue from the second commit. Since there were
also commits without issue ID, which were ignored in this evaluation, this type of
interaction log recordings for commit assignment is not perfect. If a developer sim-
ply forgot to add an issue ID in a commit, the interactions are assigned incorrectly
and precision is impaired.

The subscript i in the Technique column of Table 10.1 indicates the usage of
improvement techniques (cf. Section 5.2.3). For IL and ILCom, wrong link detection
techniques based on interaction data and on SCS were used. For ComL, only SCS-
based wrong link detection techniques were used, since there is no interaction data
in this link creation technique (cf. Section 7.5). Table 10.1 always shows the best
achieved 𝑓0.5-measure within all performed settings for any single given technique.
Moreover, the overall best values for precision and 𝑓0.5-measure are highlighted.
ILCom_i has a precision of 73.6%, a recall of 53.9% and a 𝑓0.5-measure of 0.686,
which outperforms the precision and recall of all other approaches. This confirmed
the idea that IL can be combined with the use of issue IDs from commit messages
to assign recorded interactions to requirements.

10.2 Experiment Design

In this section the details of the studies experimental design, as shown in Figure
10.2, are described, in particular wrt. usage of the S2018 student project dataset
and the application of ILCom (cf. Section 5.2.1.2). Due to the positive results of
ILCom in the retrospective study, a new study in which ILCom with commit-based
interaction assignment was directly applied by the student developers was set up
within the S2018 project.

4. Application of

Link Creation
ILCom, ComL and IR

3. Gold

Creation
Standard

2. Interaction

Collection
Data

5. Result

and Evaluation
Comparison

1. Definition

Questions
of Research

S2018 Study

Figure 10.2. 3. Study Experimental Design: Overview of Activities Performed

111

CHAPTER 10. USING COMMITS AND INTERACTIONS FOR TRACE LINK CREATION

10.2.1 Research Questions

The overall research question To what extent can the combination of commit and
interaction data improve ILog?, which is answered in this study, is divided into the
following three sub-questions:

RQ1: What is the precision and recall of ILCom- and ILCom_i-created trace links?
The hypothesis was that the initial precision of ILCom improves, compared
to the previous S2017 study (cf. Section 9.3), since there is no additional
effort for requirement selection by developers. For ILCom_i, when compared
to ILCom, a further precision improvement was expected.

RQ2: What is the precision and recall of ComL- and ComLi-created trace links?
The hypothesis was that precision and recall are worse than the precision
of ILCom- and ILCom_i-created links, respectively, as the latter uses more
information, in the form of the interactions.

RQ3: What is the precision and recall of IR- and IRi-created trace links? The
hypothesis was that IR has a significantly worse precision and a similar
recall in comparison to ILCom.

The overall goal of this study is to evaluate whether the interaction and commit-
based link creation by ILCom improves the precision compared to the only interaction-
based link creation by IL (RQ1). Moreover, it is investigated whether recording
and using interactions outperforms link creation, which relies on commit data only
(RQ2). Finally, the results of ILCom-created links are also compared with IR, since
IR serves as a baseline for automated link creation and for the purposes of compar-
ison with the previous studies (RQ3).

10.2.2 Trace Link Creation

Before the creation of trace links with the different trace link creation techniques,
interactions were recorded with the commit-based interaction assignment tool (cf.
Section 5.2.1.2) during the S2018 project. Moreover, before the project was com-
pleted, the developers created a gold standard for the trace links (cf. Section 7.3).

After the interaction recording and gold standard creation, trace link were cre-
ated for the S2018 project with ILCom, ComL and IR, further improvement tech-
niques were applied to all three link creation techniques. For ILCom the interaction
recordings were assigned by 205 commits to the 17 stories, and for ILCom_i the fi-
nal version of the source code files from the Git repository were also used for link
creation. For ComL the 395 commits of the Git repository and for ComLi the final
version of the source code files from the Git repository were used for link creation.
For IR link creation the text of the 17 stories, 74 sub-tasks, and the final version of
the source code files from the Git repository were used. As in the previous studies

112

10.3. RESULTS

IR link creation was performed with both IR techniques VSM and LSI including
preprocessing (cf. Section 2.2.2.1). In addition to the initial IR-based link creation,
the final version of the source code files from the Git repository was also used for
IRi. Finally, the trace links of all trace link creation techniques were evaluated with
the previously created gold standard.

10.3 Results

This section reports the results of the evaluations performed and answers the research
questions.

10.3.1 Commit-based Interaction Assignment – ILCom

Table 10.2. Results for ILCom and ILCom_i with Different Settings

Tech-
nique

Set-
ting*

Pre-
cision

Re-
call 𝐹0.5 𝐹1.0

#Links Src Files

CE TP FP GS FN Used GS

ILCom none 0.849 0.673 0.807 0.751 245 208 37 309 101 58 66
ILCom_i T:e 0.904 0.460 0.758 0.609 157 142 15 309 167 58 66
ILCom_i T:s 0.829 0.282 0.597 0.420 105 87 18 309 222 37 66
ILCom_i D10 0.885 0.521 0.776 0.656 182 161 21 309 148 52 66
ILCom_i D60 0.901 0.411 0.727 0.564 141 127 14 309 182 50 66
ILCom_i F2 0.813 0.463 0.706 0.590 176 143 33 309 166 54 66
ILCom_i F10 0.850 0.311 0.631 0.455 113 96 17 309 213 40 66
ILCom_i Sis 0.904 0.485 0.771 0.632 166 150 16 309 159 40 66

ILCom_i
T:e,s;
Sis;CS 0.900 0.790 0.876 0.841 271 244 27 309 65 62 66

* Notation for the used improvement techniques settings: T:𝑒|𝑠 = Type:𝑒𝑑𝑖𝑡|𝑠𝑒𝑙𝑒𝑐𝑡, 𝐷10|𝐷60 = duration
>= 10|60 sec., 𝐹2|10 = frequency >= 2|10, Sis = SCS in story, CS = SCS recall improvement

Table 10.2 presents the results for ILCom and for the different improvement tech-
nique settings used for ILCom_i (cf. Section 5.2.3). ILCom has a precision of 84.9%
and a recall of 67.3% and thus a 𝑓0.5-measure of 0.807. Similarly to the previous
study with the S2017 dataset (cf. Section 9.2.2), different settings for the improve-
ment techniques were evaluated, as denoted in the Setting column of Table 10.2. Ini-
tially, the different improvement techniques were investigated in isolation, and then
different techniques were combined to achieve the overall best precision improve-
ment. On this best precision result, SCS-based recall improvement was applied as
well. The last row of Table 10.2 shows this best case of ILCom_i. For this case, the
setting was to use the interaction types select and edit (T:e,s), to restrict the source
code files to be connected with each other by SCS in the story (Sis) and to use the
SCS to improve recall (CS). In this best case, ILCom_i has a precision of 90.0% and a
recall of 79.0%, and thus a 𝑓0.5-measure of 0.876. Thus, ILCom_i improves precision
by 5.1%, recall by 22.7% and 𝑓0.5-measure by 0.069 compared to ILCom.

113

CHAPTER 10. USING COMMITS AND INTERACTIONS FOR TRACE LINK CREATION

10.3.2 Comparison of ILCom and ComL

Table 10.3. Results for ComL, ComLi and Comparison with ILCom and ILCom_i

Tech-
nique*

Pre-
cision

Re-
call 𝐹0.5 𝐹1.0

#Links Src Files

CE TP FP GS FN Used GS

ILCom 0.849 0.673 0.807 0.751 245 208 37 309 101 58 66
ILCom_i 0.900 0.790 0.876 0.841 271 244 27 309 65 62 66
ComL 0.668 0.417 0.597 0.514 193 129 64 309 180 59 66
ComLi 0.675 0.443 0.611 0.535 203 137 66 309 172 61 66
* For the application of improvement techniques the best case is shown

Table 10.3 presents the results for ComL and ComLi. For the sake of comparison,
the previously reported results of ILCom and ILCom_i are also presented. ComL has
a precision of 66.8% and a recall of 41.7% and thus a 𝑓0.5-measure of 0.597. For
ComLi, the SCS in story precision improvement was first applied followed by SCS
recall improvement. ComLi has a precision of 67.5% and a recall of 44.3% and thus
a 𝑓0.5-measure of 0.611. In comparison to ILCom and ILCom_i, precision, recall, and
𝑓0.5-measure are all worse, respectively.

10.3.3 Comparison of ILCom and IR

Table 10.4. Results for IR, IRi and Comparison with ILCom and ILCom_i

Tech-
nique*

Pre-
cision

Re-
call 𝐹0.5 𝐹1.0

#Links #Sto-
ries

Src Files

CE TP FP GS FN Used GS

ILCom 0.849 0.673 0.807 0.751 245 208 37 309 101 17 58 66
ILCom_i 0.900 0.790 0.876 0.841 271 244 27 309 65 17 62 66
IR 0.335 0.492 0.358 0.398 454 152 302 309 157 16 60 66
IRi 0.369 0.557 0.396 0.444 466 172 294 309 137 16 64 66
* Used IR settings denoted as <IR-technique(similarity threshold)>: VSM(0.2)

Table 10.4 prsents the results for IR and IRi. For the sake of comparison the
previously reported results of ILCom and ILCom_i are also presented. As IR technique
VSM with a similarity threshold of 0.2 was used. IR has a precision of 33.5% and a
recall of 49.2% and thus a 𝑓0.5-measure of 0.358. For IRi, the SCS in story precision
improvement was first applied followed by SCS recall improvement. IRi improves
precision by 3.4%, recall by 6.5% and 𝑓0.5-measure by 0.038, when compared to
IR. In comparison to ILCom and ILCom_i, precision, recall, and 𝑓0.5-measure are all
worse, respectively.

114

10.3. RESULTS

10.3.4 Discussion

Precision and recall of ILCom are better than IL for both the S2017 and S2018 datasets.
When looking at all three evaluation studies, it can be seen that ILog’s IL and ILCom

technique outperform all other link creation techniques, i.e. IR- and commit-based
link creation ComL (cf. Section 11.2). The fact that IR link creation between
unstructured requirements in ITS and source code is worse than in structured re-
quirement cases is a finding which has also been reported by others [Hayes et al.,
2006, Borg et al., 2014, Merten et al., 2016b]. This is also confirmed by the three
studies and was one of the initial motivations for the development of ILog.

There are several possible reasons for the worse behaviour of ComL in compar-
ison to ILCom. It is interesting that the precision of ComL is roughly 60% in the
retrospective study with the S2017 dataset and in this study with the S2018 dataset.
This result means that the issue IDs given by the developers are only partly correct.
This observation is similar to research within developers’ commits behavior and the
contents of commits [Herzig and Zeller, 2013, Kirinuki et al., 2014]. These studies
have reported on tangled changes, in which a commit often comprises multiple un-
related issues. Also, it was observed that developers manually excluded files in one
commit, which were correct in the gold standard, and then included these files in a
follow-up commit. One reason for this behavior could be a change of the requirement
during the project time. Thus, the exclusion behavior was correct when the commit
was performed, but was incorrect for the final state of the requirement. The reason
for the worse recall of ComL in comparison to ILCom could be select interactions.
Select interactions are not detected by commits. The files missed based on select
interactions also affect the application of SCS-based recall improvement.

The ILog improvement techniques initially developed in the previous studies also
proved to be reasonable in this study. Moreover, the improvement techniques also
performed well for links created with IR and ComL. By applying the improvement
techniques to detect wrong links, the precision is improved, independent of how
the links were created. As improvement techniques impair recall, SCS-based recall
improvement was applied. The improvement of recall by using the SCS worked
reasonably well for ILog’s IL technique in the last two studies, and it is outperformed
by ILCom in this study. The application of recall improvement in this study resulted
in the best overall recall for the complete studies.

Altogether, this study shows that the creation of links with interaction and
commit data by ILCom_i achieves very good precision and recall. This confirms the
assumption that the additional effort of manually selecting the requirement to work
on caused the bad precision of IL in the previous S2017 study (cf. Section 9.3). It
is very likely that precision and recall can be even better, if developers directly use
the created links during the projects, as in the Mylyn project. The use will likely
motivate developers to use interaction logging and commit IDs carefully.

115

CHAPTER 10. USING COMMITS AND INTERACTIONS FOR TRACE LINK CREATION

10.4 Conclusion

This study investigated the precision and recall of ILog’s ILCom technique. In con-
trast to the previous studies, instead of manual interaction log assignment a commit-
based interaction log assignment was used. Through the usage of commit-based in-
teraction log assignment, the additional effort for developers to assign interaction log
recordings to requirements was reduced and the need for interaction log recording
awareness was removed.

ILCom builds on the common practice of specifying issue IDs in commit messages.
It uses these issue IDs from commit messages to assign interaction log recording to
requirements. ILCom has a precision of 90.0% and recall of 79.0%, which outperforms
the results of the previous S2017 study (precision of 68.2% and recall of 46.5%, cf.
Section 9.3). Thus, precision is not perfect, but it is likely that this is a very good
basis for continuous link creation and usage, as defined in research goal G1. Fur-
thermore, ILCom is also applicable where developers are not particularly interested
in interaction recording. The study showed that ILCom outperforms IR and purely
commit-based linking and is superior to current machine learning-based approaches
as well [Rath et al., 2018]. Clearly, it is interesting to confirm this with further
studies and to study whether this also holds for more structured requirements in
which IR is typically used.

116

Chapter 11
Discussion

This chapter discusses the overall results of all performed ILog evaluation studies.
In Section 11.1 the study’s threats to validity are discussed. In Section 11.2 the
overall results of all three studies are summarized and discussed in connection with
the thesis’ research goals as a whole.

11.1 Threats to Validity

The limits of empirical research regarding its internal and external validity are a well
known and considered to be of an acceptable constraint. Although known threats
were considered in the evaluation studies of this thesis, general and perfect validity
is not possible. Thus, this Section introduces the threats to the validity of empirical
studies as were proposed by Runeson and Höst [2008], Wohlin et al. [2012] and Yin
[2018], followed by a discussion of the threats to validity of the ILog evaluation
studies. Runeson and Höst suggest a scheme for discussing treats to validity which
distinguishes between four aspects of the validity, and which is summarized in the
following:

Construct Validity discusses whether the measures used, e.g. precision, recall
etc., reflect what is being investigated in the research questions of the study.

Internal Validity discusses whether different assumptions have been made for the
participants of the studies, e.g. for rating link candidates during gold standard
creation.

External Validity discusses to what extent the results are generalizable, e.g. whe-
ther, if the experiment of an ILog evaluation study is replicated by others in
a different context, the results should be similar.

Reliability discusses whether the study can be replicated in a reliable way, e.g.
whether, when using the same set-up and data, the results should be the same
if performed by others.

117

CHAPTER 11. DISCUSSION

The internal validity of the first ILog evaluation study with the Mylyn project
(cf. Chapter 8) is threatened since the manual validation of trace links was only
performed by the author of this thesis. However, the author is very familiar with
the Mylyn project in general, its source code, the development infrastructure used,
and has of over ten years of Mylyn-specific development experience. The internal
validity of the two evaluation studies with the S2017 (cf. Chapter 9) and the S2018

(cf. Chapter 10) student projects is threatened since the manual validation of trace
links in the gold standard was performed by the students working as developers in
a project context of the research group of the thesis author. However, this ensured
that the experts created the gold standard. Also, the evaluation of the links was
performed at the end of the projects so that there was no conflict of interest for the
students to influence their grading.

When comparing the results achieved with the ILog approach to IR, the set-up
of the IR techniques is a crucial factor. With respect to preprocessing, all com-
mon steps have been performed including identifier splitting, which is specific to the
datasets used. However, the low threshold values impair the results for the precision
of IR. Therefore, further comparison of ILog and IR, in which higher threshold val-
ues are possible (e.g. in a context with more structured requirements descriptions),
is necessary. Applying SCS-based recall improvement on IR created links which
already have had bad precision further impairs the results of IR. However, apply-
ing SCS-based precision improvement before SCS-based recall improvement also
resulted in better precision for IR-created links and showed the general applicability
of SCS-based improvement for trace links.

The external validity depends on the availability of interaction logs and the re-
spective tooling and usage of the tooling by developers. By ILog’s commit-based in-
teraction log assignment ILCom, there is no additional burden for developers despite
the initial set-up and ideal motivations. The generalizability of the results based on
three projects is limited. However, ILog worked well in two different project types:
firstly in the loosely organized and structured open source project Mylyn, and sec-
ondly in two student projects following the Scrum project paradigm. Thus, it can be
expected that ILog will achieve even better results when applied in a more strictly
organized and structured industry project.

In the Mylyn open source project, the developers used their own implemented
interaction logging approach and thus worked in this in a very disciplined way. It is
very likely that the student developers of the S2017 project with manual interaction
log assignment did not apply the interaction logging in an as disciplined way as the
Mylyn developers, since they had no awareness of it. This assumption is verified to
a certain extent by the S2018 project. Although explicitly requested, not all commits
in the S2018 project contained a Jira issue ID in the commit messages. This affects
the resulting assignment of recorded interaction logs to requirement issues and thus
the created trace links. However, the percentage of commits with issue IDs is similar

118

11.2. EVALUATION STUDIES SUMMARY

to that which has been reported for other projects [Rath et al., 2017]. This indicates
that the results of ILog’s evaluation might also apply for industry projects.

11.2 Evaluation Studies Summary

Table 11.1. Results for IL, ILCom, ComL and IR in all Studies

Tech-
nique1

Data
Set

Pre-
cision

Re-
call 𝐹0.5 𝐹1.0

#Links2 #Sto-
ries

Src Files

CE TP FP GS FN Used GS

M2007 1.000 0.929 0.985 0.963 2565 2565 0 2761 196 50 627 627
M2012 1.000 0.800 0.952 0.889 1126 1126 0 1408 282 50 363 702ILi
S2017 0.682 0.465 0.624 0.553 148 101 47 217 116 13 63 91
S2017 0.736 0.539 0.686 0.622 159 117 42 217 100 13 63 91ILCom_i S2018 0.900 0.790 0.876 0.841 271 244 27 309 65 17 62 66
S2017 0.659 0.401 0.584 0.499 132 87 45 217 130 11 59 91ComLi S2018 0.675 0.443 0.611 0.535 203 137 66 309 172 17 61 66
M2007 0.386 0.440 0.396 0.411 3143 1214 1929 2761 1547 41 308 627
M2012 0.283 0.557 0.314 0.376 2766 784 1982 1408 624 35 354 702
S2017 0.351 0.217 0.312 0.268 134 47 87 217 170 9 21 91IRi

S2018 0.369 0.557 0.396 0.444 466 172 294 309 137 16 64 66
1 IR settings for the data sets are denoted as <IR-technique(similarity threshold) >: M2007 LSI (0.3),

M2012 LSI (0.5), S2017 LSI (0.1), S2018 LSI (0.2)
2 created (CE), True Positive (TP) ̂︀= correct, False Positive (FP) ̂︀= wrong, Gold Standard (GS), False

Negative (FN) ̂︀= not found

In three evaluation studies (cf. Chapters 8, 9 and 10), different techniques of
the ILog approach were evaluated. Table 11.1 presents an overview of the achieved
study results of the ILog techniques IL and ILCom and the other evaluated trace link
creation techniques ComL and IR-based trace link creation. The numbers shown
are always the best achieved results, which include the application of improvement
techniques (cf. Section 5.2.3).

The datasets M2007 and M2012 were used in the first evaluation study (cf. Chapter
8), in which the interaction data recorded in the Mylyn Open Source project was
used and the general practicality of ILog was evaluated.

The dataset S2017 was used in the second evaluation study (cf. Chapter 9). This
dataset was created in an student project using the manual interaction assignment
technique IL of ILog. Due to the initially unsatisfying precision of IL-created links
in the second evaluation study, improvement techniques to detect wrong links were
developed and evaluated as well. The interaction data-based improvement tech-
niques worked well together with IL and ILCom with the S2017 and S2018 datasets,
inasmuch as precision was noticeably improved with limited effects on recall. SCS-
based improvement techniques worked well for all trace link creation techniques in
all the studies performed and the datasets used. Thus the studies also showed the
general applicability of the developed improvement techniques.

The dataset S2018 was used in the third evaluation study (cf. Chapter 10).
The S2018 dataset was created in another student project, using the commit-based

119

CHAPTER 11. DISCUSSION

interaction assignment technique ILCom. Before the actual application of ILCom in
the S2018 student project, the S2017 dataset from the previous second study was
used to simulate the application of ILCom. The results achieved in the simulated
application of ILCom were better than the original results achieved with IL. As can be
seen for the IL and ILCom S2017 results, which are shown in Table 11.1, IL achieved
a precision of 68.2%, a recall of 46.5% and a 𝑓0.5-measure of 0.624 in the shown
best case, whereas the simulation of ILCom achieved a precision of 73.6%, a recall of
53.9% and a 𝑓0.5-measure of 0.686. The achieved improvement of simulated ILCom

application in comparison to IL also motivated the third evaluation study.
When comparing the precision, recall and 𝑓0.5-measures of IL and ILCom with

the other link creation techniques IR and ComL, the two ILog techniques clearly
outperform the other link creation techniques in all studies and datasets. When
considering the fulfilment of the thesis’ research goal G1, which was to continuously
create trace links for direct usage, the precision values of ILog’s IL technique achieved
with the M2007 and the M2012 datasets and the values of ILog’s ILCom technique
achieved with the S2018 dataset are the only values which are acceptable for this
goal. Even in the best case of other approaches, such as ComL in the S2018 project
with its precision of 67.5%, still about one third of the created links are wrong.

The unsatisfying results for IL in the second study with the S2017 dataset could
be balanced to some extent by the developed improvement techniques, which use the
interaction data-specific attributes of the created trace links and SCS . However, even
with applied improvement techniques the achieved IL precision for the S2017 dataset
of 68.2% is still not practical for directly using the links. However, by replicating
the context of the second study, i.e. a Scrum project with student developers, in
the third study, and by using ILCom with commit-based instead of IL with manual
interaction assignment, the results were much better. Thus, comparing the results
for IL and ILCom with the S2017 and S2018 datasets also confirmed that manual
interaction assignment had a strong negative impact on the results for IL with the
S2017 dataset.

For IR-based link creation the two most common IR techniques, VSM and LSI ,
were used [De Lucia et al., 2007, Borg et al., 2014, Cleland-Huang et al., 2014].
Moreover, common and dataset-specific preprocessing techniques were applied and
different similarity threshold values were used to achieve the best possible results.
As it can be seen in Table 11.1, the IR results are quite similar in the different
datasets and they are also similar to other studies in the context of unstructured
requirements in ITS [Merten et al., 2016b]. However, even with the best precision
value of 38.6% in the M2007 dataset, almost two thirds of all created links are wrong.
Thus, as expected, IR is not capable of continuously creating and providing links
for direct use, as it was targeted by research goal G1. Clearly, it is interesting
to confirm this with further studies and to study whether this also holds for more
structured requirements in cases where IR is typically used.

120

Part V

Conclusion

121

Chapter 12
Summary

This thesis contributes to the body of knowledge in SE and RE with respect to
automatic trace link creation and maintenance. For the research goal G1, which
was to continuously create trace links with perfect precision and to make the created
links directly usable, the review of existing trace link creation approaches which was
presented in Chapter 3 showed that all reviewed approaches are not fully capable for
this purpose. Often the usage scenario of approaches is only vaguely defined, and if
the usage of links is discussed, the authors most often refer to the standard scenarios
of trace link usage, such as verification purposes and the therefore manual triggered
link creation. More important for the research goal G1 is the insufficient precision
and recall of created links in the existing approaches. Most of the approaches are
optimized towards recall, which is to say that they try to create as many correct
links as possible, and they sacrifice the precision of the resulting links. As a result,
the further assessment of resulting link candidates is necessary before their actual
usage in the approaches.

For the research goal G2, which was to maintain created links along with changes
in linked artefacts in Chapter 4, a SLR of existing TM approaches showed that
the maintenance of existing links along with artefact changes is often performed
semi-automatically. Only a view of the reviewed TM approaches are completely
automated. The approaches found were described with a standardized TM process,
which consists of an impacted link detection and an execution of link change part.
In the TM approaches reviewed, automation is implemented by rules which often
utilize the artefact type but which also require manual user interactions in order to
perform the necessary link changes.

Based on these findings and in order to comply the research goals G1 and G2, the
Interaction Log Recording-based Trace Link Creation (ILog) approach was designed
and evaluated as the main contribution of this thesis. Chapter 5 introduced the
details of the ILog approach and Chapter 6 discussed the extension of ILog with
TM capabilities. In three evaluation studies (cf. Chapters 8, 9 and 10), the different

123

CHAPTER 12. SUMMARY

techniques and different aspects of the ILog approach were evaluated. The results
of the studies showed that ILog is capable of creating trace links with very good
precision and good recall in different project contexts, and that it can be applied
continuously during a project without requiring any manual effort from developers.

ILog uses developers’ interactions recorded in an IDE with source code files
while they work on a requirement for trace link creation. ILog consists of three
general steps: (1) interaction recording and assignment, (2) trace link creation,
and (3) trace link improvement. In the finally evaluated ILCom technique of ILog,
interactions are assigned to requirements using issue IDs which are provided in VCS
commit messages. Thus no additional effort is required for trace link creation. Trace
link creation is performed by aggregating the recorded interactions using interaction
data. For trace link improvement, first precision is improved using the interaction
data of trace links and SCS , and second recall is also improved using SCS .

ILog’s usage of developers interactions instead of artefact contents counteracts
the quality problems regarding precision and recall of existing IR-based and other
trace link creation approaches. This is achieved by decoupling ILog’s link creation
from the artefacts’ contents and by using the expert knowledge of developers, which
is covered by their interactions, instead.

To support the maintenance of links along with changes in linked artefacts in
ILog, the results of the TM SLR of Chapter 4 were used. The standardized TM
process was utilized to describe TM in ILog, by integrating TM capabilities from
two of the reviewed approaches. Since the TM capabilities integrated are fully auto-
mated and all necessary data sources required are provided by ILog, this facilitates a
seamless integrated and fully automated TM , along with changing artefacts in ILog.

Altogether, this thesis shows that the ILog approach developed is capable of
continuous trace link creation for directly usable trace links. The ILCom technique
is also applicable in situations where developers are not particularly interested in
interaction recording. In all the studies performed, all other trace link creation
techniques were outperformed by ILog. Furthermore, by integrating TM capabilities
which were found in the performed TM SLR, and by using the developed generic TM
process, the general applicability of ILog for TM along with the changing artefacts
is shown.

124

Chapter 13
Future Work

Based on the evaluation results and state of the ILog approach as presented in
this thesis, there are several directions for future work. These directions can be
separated into work which is focussed on continuing the development of the ILog
approach and more general research directions in the context of traceability and the
usage of interactions.

In order to continue the development of the ILog approach, there are obvious
next steps arising from the evaluation study results and the ILog implementation.
In summary these next steps comprise the implementation and evaluation of link
maintenance in ILog, as discussed in Chapter 6, the implementation and evaluation
of link usage, e.g. as discussed in Section 10.4 of the third ILog evaluation study,
and an evaluation and comparison of IR and ILog in a project context with more
structured requirements, e.g. as discussed in Section 8.3 of the first and Section 10.4
of the third ILog evaluation study. In the following these future directions will be
illustrated in more detail.

Implementation and Evaluation of Maintenance

As outlined in Chapter 6, the TM capabilities of the approaches P08 of Ghabi and
Egyed [2012] and P13 of Rahimi et al. [2016] are well suited for the integration in
ILog. P08 uses SCS and P13 refactoring specific rules in order to perform TM .
The challenge for the implementation of these rules in ILog is that there is no
implementation available, and thus for the practicability of the implementation,
one’s own implementation in ILog is necessary.

For the integration of P08 in ILog, two scenarios are reasonable. In the first inte-
gration scenario, the TM rules of P08 would replace ILogs’s SCS-based improvement
techniques (cf. Section 5.2.3). The effect of this scenario can be evaluated with all
datasets from the ILog evaluation studies. For the second integration scenario, the
P08 approach would be used to supplement ILog’s SCS-based improvement tech-
niques. Also for this second integration scenario, an evaluation with existing ILog

125

CHAPTER 13. FUTURE WORK

study data is possible. Since the algorithm to determine whether TM is necessary
is based on a set of rules in the P08 approach, it would also be possible to perform
a more fine-grained evaluation, i.e. to use only a sub-set of the rules in ILog.

Also for the integration of P13 in ILog, two options are reasonable. In the first
option, the approach would be applied as intended by using two versions of source
code files or requirements in order to detect a certain refactoring and then to execute
the respective TM rules. In the second option, the refactorings could be detected by
using interaction data either by directly detecting and evaluating refactoring events
or by defining sequences of basic events which correspond to certain refactorings. An
evaluation of the effects when integrating the P13 approach in ILog is also possible
with the existing evaluation study data. For this, it would be necessary to create
a second-to-last version of links with ILog, e.g. by using only the second-to-last
commit with an issue ID for link creation. As a next step, it would be possible to
maintain the ILog links created for the second-to-last commit and to compare the
resulting maintained links with the gold standard and with ILog links created for the
last commit. Clearly the maintenance evaluation options which are here described
are only a simulation of link maintenance with ILog. However, the evaluation of
the different options would help to discover a suitable setting for TM in ILog. This
setting could then be used in a new study in which TM is performed during the
study.

Implementation and Evaluation of Link Usage

In all three ILog studies the links were only created after the projects were com-
pleted and used for the evaluation of ILog. After improving the ILog approach with
improvement techniques and commit-based interaction assignment throughout the
studies which were already performed, to the final ILCom version of ILog, a next step
would be to provide the created links to the developers during a further evaluation
project.

There are two reasonable ways for providing ILog-created links during a project
to the developers. The first is within the project’s ITS and the second is within the
IDE . In order to provide ILog-created links in an ITS , a Jira-specific implementation
already exists. This Jira plug-in uses interaction data which is attached to issues,
previously uploaded by the Eclipse interaction capturing plug-in, in order to perform
ILog-based link creation, and it provides the resulting links in an additional panel
shown in the issue’s detailed view. For both IDEs (Eclipse and IntelliJ) used in
the evaluation projects, the implementation of plug-ins which provide links to the
developers is also possible with manageable effort. For this, the interaction-capturing
plug-ins (cf. Section 5.2.1) which were already implemented can be extended with
functionality in order to directly show created links to developers. In addition, both
IDEs have capabilities for creating connections to various ITS such as Jira, so that

126

providing links which are created due to the interactions by one developer to another
is relatively simple to implement. The Eclipse IDE interaction-capturing plug-in,
which was used in the third ILog study to evaluate the commit-based interaction
assignment technique ILCom, already uses the ITS connection capabilities of Eclipse
in order to upload recorded interactions to Jira issues (cf. Section 5.2.1.2).

In order to evaluate how directly providing ILog links to developers affects the
performance of ILog, different experimental set-ups are possible. The options to
provide the links in the IDE or in the ITS can be evaluated both in combination
and in isolation. Furthermore, it is also possible to group developers who participate
in the usage evaluation, between one group who use the links and another group
which does not. Within such a link usage study, it would also be possible to evaluate
the assumed positive impact on ILogs’s link quality, since if developers discover the
positive effects of link usage, the quality of ILog links will increase further.

Evaluation and Comparison with IR in a Structured Requirement Context

The three performed ILog evaluation studies were all performed with in projects
using unstructured requirements. That is to say, the requirements were specified as
text in issues which were managed in an ITS . Even though projects based around an
ITS that use unstructured requirements are the intended usage context for ILog, it
would also be interesting to evaluate ILog in comparison with IR in a more structure
requirements context. Typically, IR is used for trace link creation in more struc-
tured project contexts as in the automotive or the aeronautic industry, where the
requirements are managed with a distinct requirements tool. However, these more
structured projects also come with strict guidelines how developers have to perform
implementation tasks for the specified requirements. Thus, it can also be assumed
that the quality of ILog links will not decline in such a structured context.

Traceability and Interaction Data Usage

Apart from the future directions which have just been presented for the continuation
of ILog development and research, there are also more general possible research
directions for traceability and interaction research. These will be outlined in the
following paragraphs.

In general, ILog opens up new possibilities for automatic trace link creation dur-
ing software development projects and challenges existing artefact content-based ap-
proaches. Even though the problems of using an artefact’s textual contents for trace
link creation are well known, traceability research relies on these textual content-
based techniques as the core of automatic link creation. Non-content-based tech-
niques are often only used to improve links which were initially created or which
were created along with the textual content of artefacts. Clearly the results of this
thesis have shown that stepping away from this paradigm can result in trace links

127

CHAPTER 13. FUTURE WORK

which possess a very good precision and recall, which is indeed as good as for existing
techniques. For further research in the usage of interactions for trace link creation,
it is possible to include ILog-based trace link creation without much additional effort
in trace link-related studies. After an initial set-up no further effort is required to
deploy ILog in a project. This enables the gathering of further data for ILog and
the use of the ILog results as a measure of comparison.

ILog and its evaluations have also shown the practicability of using interaction
data which was created by developers and which is also compliant to, as it has been
reported by others (cf. Section 2.1.4.2). As was particularly present in the second
study, the concern of dealing with noise, i.e. interactions which are wrong in a given
context, is an important aspect when using interaction data. However, in all three
studies the noise could be cleared either completely or at least to a reasonable extent,
initially by basic filtering, such as by the limitation of interactions to more mature
files, in which case files are also contained in a VCS . These ILog noise detection
principles could also be adopted by other domains and tasks which are different
from trace link creation but also use interaction data, such as recommendation
system, impact analyses, classification, etc. Furthermore, sophisticated interaction
noise principles could be researched for the adoption in ILog from those domains
and tasks as well.

Overall, the results achieved with the usage of interaction data in ILog are
promising and have enabled for the continuously creation of trace links and for
direct use during a project. Furthermore, the ILog approach shows that automatic
TM , along with changing artefacts, can be implemented.

128

Part VI

Appendix

129

Appendix A
Supplementary Material for Trace Link
Maintenance SLR

This appendix provides additional details for the Systematic Literature Review (SLR)
about Trace Link Maintenance (TM) described in Chapter 4. Section A.1 provides
more details about how the search for publications was performed. Section A.2 pro-
vides more detailed textual descriptions of the reviewed TM approaches, structured
wrt. the standardized TM process (cf. Section 4.3).

A.1 Publication Search

This section provides additional details about the publication search. Section A.1.1
presents details about the performed keyword pre-search. Section A.1.2 presents
details about the scientific database specific query adoptions, which were necessary
due to technical concerns of the search interfaces. Section A.1.3 describes how the
resulting publications were filtered to determine a primary publication for the TM
approaches described in multiple publications.

A.1.1 Keyword Pre-Search

The idea of performing an initial pre-search is on the one hand to identify the
potential amount of publications for a research subject and and on the other hand
to check and optimize search terms. To create an initial overview of articles Google
Scholar has been used with the search term based query shown in Listing A.1.

Listing A.1. Keyword Pre-Search Search Query�
" t r a c e a b i l i t y maintenance " OR " t r a c e l i n k maintenance "� �

The language for the results has been restricted to English. This resulted in a
list of 316 publications. This list was filter based on the following exclusion criteria:

131

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

• wrong field/ out of scope, this remove articles from other fields like biology

• to old, articles before the year 2000 have been removed

• not peer reviewed, articles like technical reports and thesis have been removed

In consequence the articles have been evaluated as relevant or not based on their
title, i.e. the title had to state about traceability and the maintenance of trace links.
If a judgement by only reading the title was not possible, the abstract of the article
has been considered as well. Finally this resulted in 51 relevant articles.

A.1.2 Scientific Database Specific Query Adaption

In the following the database specific adoptions of the search query due to technical
concerns (i.e. search interface options) is described. This also includes the expla-
nation how the final number of publications found and used publications from each
scientific database were achieved.

ACM Digital Library

For the ACM Digital Library1 it is necessary to specify the attributes of articles
considered by the key word query. The reason for this is that by default ACM
Digital Library search only considers meta-data, like the titles articles, the journal
or conference etc., and not the content of the articles. Thus the following Listing
A.2 shows the used keyword query for ACM Digital Library.

Listing A.2. ACM Digital Library Key-Word Query�
((acmdlTit le :(+ t r a c e a b i l i t y +maintenance) OR acmdlTit le :(+ t r a c e

+l i n k +maintenance))
OR
(recordAbstract :(+ t r a c e a b i l i t y +maintenance) OR recordAbstract

:(+ t r a c e +l i n k +maintenance))
OR
(keywords.author .keyword :(+ t r a c e +l i n k +maintenance) OR

keywords.author .keyword :(+ t r a c e a b i l i t y +maintenance)))
AND
(c o n t e n t . f t s e c :(+ t r a c e a b i l i t y +maintenance) OR c o n t e n t . f t s e c :(+

t r a c e +l i n k +maintenance))� �
The query consists of two basic parts connected by conjunction. The first part

searches for the key word combinations of the base query (cf. query in Listing
A.1) in the meta-data attributes title ("acmdlTitel"), abstract ("recordAbstract")
and keywords (keywords.author.keyword). In addition it ensures that only results
containing at least all key words from one of the parts of the basic query are returned
(by the (+ < 𝑡𝑒𝑟𝑚1 > + < 𝑡𝑒𝑟𝑚𝑛 >) query syntax) , e.g. only articles which contain

1https://dl.acm.org/advsearch.cfm

132

https://dl.acm.org/advsearch.cfm

A.1. PUBLICATION SEARCH

the terms "traceability" and "maintenance" are returned, articles only containing
either one these terms are not returned.

The second part of the query does the same thing as the first but for the content of
the article ("content.ftsec") instead of meta-data attributes. Together this results in
publications which contain the terms of the basic query in one of the specified meta-
data attributes and in the content. This initially resulted in 64 publications received
from the ACM Digital Library. After evaluating the articles title and conference or
journal series finally 33 results of the ACM Digital Library have been kept.

IEEE Xplore Digital Library

For IEEE Xplore Digital Library2 the command search interface with the setting Full
Text & Metadata has been used. This was necessary since using the IEEE Xplore
Digital Library standard search would restrict the search only to articles meta-data.
In addition the used query consists of two basic parts connected by conjunction to
ensure that the keyword terms are contained in the meta-data and in the content
of the articles. The following Listing A.3 shows the used keyword query for IEEE
Xplore Digital Library.

Listing A.3. IEEE Xplore Digital Library Key-Word Query�
(((" Document T i t l e " : t r a c e a b i l i t y maintenance) OR (" Document

T i t l e " : t r a c e l i n k maintenance))
OR
((" Abstract " : t r a c e a b i l i t y maintenance) OR (" Abstract " : t r a c e l i n k

maintenance))
OR
((" Author Keywords " : t r a c e a b i l i t y maintenance) OR (" Author

Keywords " : t r a c e l i n k maintenance)))
AND
((t r a c e a b i l i t y maintenance) OR (t r a c e l i n k maintenance))� �

In addition to the query execution two filters haven been applied. First articles
haven been filter by Publication Type Filter so that only Conferences, Journals &
Magazines and Early Access Articles are included (exclude Standards). Second the
articles have been filter by date to only include articles with publication dates from
the year 2000 and later. This initially resulted in 196 articles received from the
IEEE Xplore Digital Library. Evaluating the articles title and conference or journal
series limited the results to 65 articles. From these 65 articles 34 articles were also
included in the articles received by the ACM Digital Library. Thus 31 new articles
have been kept from IEEE Xplore Digital Library.

2https://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder

133

https://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

Springer Link

For Springer Link3 the modification of the basic query was not necessary, since the
search considers meta-data and article content by default. Thus the key word query
of Listing A.1 has been used. In addition to the query execution the articles have
been filter by date to only include articles with publication dates from the year
2000 and later. This initially resulted in 34 articles received from Springer Link.
Evaluating the articles title and conference or journal series limited the results to
21 articles. From these 21 articles 19 articles were already included in the articles
previously received by the ACM Digital Library and IEEE Xplore Digital Library.
Thus 2 new articles have been kept from Springer Link.

ScienceDirect (Elsevier Journals)

For ScienceDirect4 the advanced search functionality has been used. The base key
word query of Listing A.1 has been used along with the term search field. In addi-
tion the results were restricted to be from year 2000 or later. This resulted in 43
publication. Further the refinement functionality with the Article type (Review ar-
ticles, Research articles and Book Chapters) and Publication title (only Computer
Science specific publications, i.e. Journal of Systems and Software (6), Informa-
tion and Software Technology (2)) refinement have been applied. This resulted in 7
publications. Further evaluation of the publications titles finally resulted in 3 rel-
evant publications. However, only one of these three publications was not already
included by the results of the other search engines and the new one found is not a
TM approach but a set of guidelines on how to set up traceability maintenance in
an cooperate environment.

Scopus (Elsevier)

For Scopus5 the search functionality has been used with the key word query from
Listing A.1 and a limitation of the search to the title, abstract, keywords and doc-
ument text. In addition the date range filter has been used to only include publica-
tions from and after the year 2000 and the subject area has been limited to computer
science and engineering. This results in 52 publications. Further evaluation of the
publications titles finally resulted in 6 relevant publications but they were all already
included by the results of the other search engines.

A.1.3 Distinct Approach Filtering

Before the result evaluation the found publications haven been composed so that
there is only one primary publication for one TM approach. The 26 relevant pub-

3https://link.springer.com/advanced-search
4https://www.sciencedirect.com/search/advanced
5https://www.scopus.com/

134

https://link.springer.com/advanced-search
https://www.sciencedirect.com/search/advanced
https://www.scopus.com/

A.2. RESULTS

Table A.1. Trace Link Maintenance Approaches with Multiple Publications

Selected
Pub.

Other Publications about the same TM Approach Publications Source and
Selection Rationale

P10, Mäder
and Gotel
[2012a]

• [Mäder et al., 2008a], traceMaintainer tool initial Paper
(technical description),

• [Mäder et al., 2008b], traceMaintainer tool 2nd Paper,
• [Mäder et al., 2008c], traceMaintainer evaluation Paper,
• [Mäder et al., 2009], traceMaintainer tool components and

architecture description,
• [Mäder et al., 2009], traceMaintainer technical details of

update process Paper
• [Mäder and Gotel, 2012b], book chapter about goal ori-

ented trace link maintenance which uses traceMaintainer
as sample tool),

all publications were found by the
key-word search, the most actual
publications with the most exten-
sive evaluation has been selected

P13, Rahimi
et al. [2016]

• [Rahimi, 2016], initial publication
• [Rahimi and Cleland-Huang, 2018], journal paper

all publications were found by the
key-word search, the publication
with the most extensive evaluation
has been selected

P14, Schwarz
et al. [2010]

• Schwarz [2009], initial publication more recent publication found by
forward snowballing

P15, Seibel
et al. [2012]

• Seibel et al. [2010], initial publication more recent publication found by
forward snowballing

lications contained 16 distinct approaches. As shown in Table A.1, 4 of the 16
approaches where described in multiple publications. The right column of Table
A.1 shows the rationales why the 4 primary publication haven been selected. In
summary the reasons are the novelty of the publication, the comprehensiveness of
the actual TM approach description and performed evaluations.

A.2 Results

In the following section more detailed descriptions of the reviewed TM approaches
are provided.

A.2.1 Detailed Description of Trace Link Maintenance Approaches

In this section the 16 TM approaches are described with a standardized template
comprising an overview of the approach and the linked artefacts, the four steps
of the TM process and a description of a potentially performed evaluation. This
standardized approach descriptions were used to create the evaluation tables and
the short approach descriptions in the TM SLR result Section 4.3 of Chapter 4.

P01: Establishing and Maintaining Traceability Between Large Aerospace
Process Standards – Armbrust et al. [2009]

Linked Artefacts and Approach Overview

The link maintenance approach of Armbrust et al. is completely manual and sup-
ports authors to maintain links between sections of different specification documents

135

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

during the change of the document sections. The approach uses a table with infor-
mation about links directly in the sections of the specification documents. The table
with link information consists of a list of all linked sections and the change status of
the linked section. The change status is indicated by a flag (Tailored (T): modify,
Tailored Out (TO): remove, Unchanged (U): copy paste action of exiting unchanged
content).

Trace Link Maintenance Process

The manual maintenance of links is performed by a two different authors.

Step 1: Detection of Change

The first author changes a section and after that follows all links to other sections
listed in the link information table of the section.

Step 2: Detection of impacted Links and Further Output

In the linked sections the first author adds flags to the link information tables of
these linked sections to indicate the performed change. The flag added to each link
is the output of detection.

Step 3: Determination of Necessary Link Change

A second author has to change one of the sections, which have a flag indicating a
change in one of their linked sections set by the first author. Based on the flag the
second author decides whether the link is still relevant or not.

Step 4: Execution of Change

In consequence the second author removes the flag and potentially the link in both
link information tables, i.e. the link information table in the section actually edited
and in the link information table of the linked section.

Evaluation

Armbrust et al. evaluated their approach qualitatively in experiment with developers
consisting of three parts. First a general explanation of the approach was given to
the developers. Second the developers used the approach in a previously created
application scenario. Third the developers were interviewed about the applicability
and usability of the approach. In the paper Armbrust et al. report about the overall
positive statements of the interviewed developers about the approach.

136

A.2. RESULTS

P02: A Semi-Automated Approach for the Co-Refinement of Require-
ments and Architecture Models – Blouin et al. [2017]

Linked Artefacts and Approach Overview

In the approach of Blouin et al. links are maintained between requirements and ar-
chitectural models. Therefore the approach builds on the concept of co-refinement,
i.e. if architecture model elements change linked requirements elements have to
change as well and vice versa. For the approach an existing architecture mod-
elling language has been extended to also be capable of modelling requirements.
The prototype implementing the approach uses this architecture- and requirements
modelling language with an existing modelling tool called story driven modelling
tool (SDM). The modelling language in the tool is used to define a co-refinement
scheme consisting of architectural refinement rules and rules to maintain links. The
architectural refinement rules are used to detect certain architectural refinements.
The link maintenance rules are used for automatically performing link changes.

Trace Link Maintenance Process

Step 1: Detection of Change
In the approach links are maintained ongoing. The tool implementing the approach
monitors changes in linked artefacts by tracking interactions of users that change
the artefacts content.

Step 2: Detection of impacted Links and Further Output
The architectural refinement rules use the model elements (types, attributes) affected
by a change and parent- and child relation of model elements to detect certain types
of architectural refinements. These detected types of architectural refinement are
the output of impact detection.

Step 3: Determination of Necessary Link Change
For the maintenance of links the maintenance rules also contained in the co-refine-
ment scheme are used. These link maintenance rules use the previously detected
type of architectural refinement and involved links and artefacts to determine the
necessary link change.

Step 4: Execution of Change
If a certain architectural refinement has been detected and there are rules to main-
tain links for this architectural refinement, links are maintained automatically by
executing the link maintenance rules. Since the link maintenance- and architectural
refinement rules only cover a limited set of cases, a user notification with the affected
artefacts and links is generated, if automatic link maintenance is not possible (i.e.
not covered by the rules). In that case the user has to perform the link maintenance
manually.

137

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

Evaluation

Blouin et al. did not perform a real evaluation. Instead they showed in a proof of
concept example, that the approach can be implemented by using story diagrams
and the SDM tool for story diagram creation and execution.

P03: Event-based traceability for managing evolutionary change – Cleland-
Huang et al. [2003]

Linked Artefacts and Approach Overview

The approach of Cleland-Huang et al. supports the maintenance of links between
requirements and source code by providing information on changed artefacts and
their links to the original developer. The approach does not use any rules.

Trace Link Maintenance Process

Step 1: Detection of Change

In the approach a tool monitors artefact change events performed by software de-
velopers on linked artefacts for ongoing maintenance of the links.

Step 2: Detection of impacted Links and Further Output

If the tool detects a change on a linked artefact, it sends a notification to the owner,
i.e. original author, of the artefact. The notification informs the owner that a linked
artefact was changed and includes a list of all potentially affected links. All links
from the changed artefact to other artefacts are considered as potentially affected.

Step 3: Determination of Necessary Link Change

Based on the received notification the artefact owner decides if link maintenance is
necessary.

Step 4: Execution of Change

The artefact owner manually changes links according to the manually determined
link change.

Evaluation

No evaluation has been performed. In Section 5 of the paper the authors explain their
prototypical approach implementation and demonstrate its feasibility for providing
information about changes on linked artefacts to artefact owners.

138

A.2. RESULTS

P04: Breaking the Big-Bang Practice of Traceability: Pushing Timely
Trace Recommendations to Project Stakeholders – Cleland-Huang et al.
[2012]

Linked Artefacts and Approach Overview

In the approach of Cleland-Huang et al. links between UML model elements and
requirements are maintained.

The approach uses so called trace obligations which are a set of source and
target artefact specific rules. The rules comprised by a trace obligation state whether
traceability goals for an artefact are fulfilled, i.e. all required links exist. An example
for such a traceability goal is: a requirement must be linked with at least one class
in a class diagram.

These rules are implemented in a tool and are executed when a user changes or
creates a traceable artefact. The tool then presents a list of artefacts and their links
not fulfilling their traceability goals. This list with links and artefacts is called trace
recommendations by the authors.

Trace Link Maintenance Process

Step 1: Detection of Change

In the approach changes on artefacts are monitored.

Step 2: Detection of impacted Links and Further Output

Based on the rules of the trace obligations the tool presents trace recommendations.
The links and artefacts of the trace recommendation determined by trace obligations
are the output of impacted detection.

Step 3: Determination of Necessary Link Change

The developer uses the trace recommendations to manually determine the necessary
link change.

Step 4: Execution of Change

The developer performs changes on the recommended artefacts and links manually.

Evaluation

The approach has been evaluated quantitatively by a simulation in the TraceLab
simulation environment tool. A gold standard for trace links has been created man-
ually by the authors. Precision and recall values for trace links recommended by
the approach have been calculated. In the best cases the precision was 72.00% and
a recall was 22.28%.

139

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

P05: A State-based Approach to Traceability Maintenance – Drivalos-
Matragkas et al. [2010]

Linked Artefacts and Approach Overview

The approach of Drivalos-Matragkas et al. builds on the concept of model driven
software engineering in which all used artefacts and trace links between the artefacts
are defined in meta-models.

Maintenance specific data attributes of model elements defined in the meta-
models and rules associated with these attributes capture whether link maintenance
is necessary when certain attributes are changed by a user. An example for such
a maintenance attribute is the model element name and an example for a rule
associated with the name attribute is if the name of a model element changes, links
and linked other model elements have to be checked.

Trace Link Maintenance Process

Step 1: Detection of Change

Changes on traced artefacts are monitored by the approach.

Step 2: Detection of impacted Links and Further Output

If a change to a model element occurs, queries to access the model elements main-
tenance data attributes are executed. The resulting list with model elements and
maintenance attributes is passed to the determination of necessary link change step.

Step 3: Determination of Necessary Link Change

The rules of the maintenance attributes for all model elements received from the
detection are executed.

Step 4: Execution of Change

For links with unique maintenance options determined by execution of the mainte-
nance attribute specific rules, maintenance is performed automatically. If multiple
maintenance options exist, a notification with the link and linked artefacts to be
checked manually by a user is generated.

Evaluation

No evaluation has been performed. In the paper the authors demonstrate their
approach with an example along with their EMF-based prototypical implementation.

140

A.2. RESULTS

P06: Semi-automatic Establishment and Maintenance of Valid Traceabil-
ity in Automotive Development Processes – Fockel et al. [2012]

Linked Artefacts and Approach Overview

In the approach of Fockel et al. textual requirements, formulated with a standardized
controlled natural language, are linked to model elements. In the approach different
model abstraction levels exist.

The approach uses so called triple graph grammars (TGG) for the creation of
model elements from the requirements texts. TGGs are a formalism to specify rela-
tions between different models. In the approach TGGs are used to define declarative
rules using the model element types of linked source and target artefacts.During the
creation of model elements from requirements texts these declarative rules are ap-
plied and elements of different model levels are linked with each other. To check the
validity of created links the approach uses object constrained language (OCL) to
define traceability related constrains. An example for such a constrained is To each
requirement defining a logical component at least one function has to be linked. If
linked elements are changed, the constraint check evaluation for links is performed.

Trace Link Maintenance Process

Step 1: Detection of Change

In the approach changes on requirements artefacts are monitored.

Step 2: Detection of impacted Links and Further Output

If a change to an existing requirement or the creation of a new requirement is
detected by the approach, constraints to validate the correctness of existing trace
links and the missing of trace links are executed. The result of the constraints
validation is a list with requirements and model elements that violate the constraints.

Step 3: Determination of Necessary Link Change

The necessary link change is determined manually by a user with the help of the
constraint violation list from the impact detection. For this the approach generates
a specific notification like requirement X is missing a link to a logical component for
each constraint violation of a model element or requirement.

Step 4: Execution of Change

A user has to manually update the trace links.

Evaluation

The approach has been evaluated qualitatively by interviewing developers after pre-
senting them the approach. The interviewed developers stated that the presented
techniques reduce the manual work.

141

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

P07: Supporting Traceability Through Affinity Mining – Gervasi and
Zowghi [2014]

Linked Artefacts and Approach Overview

In the approach of Gervasi and Zowghi links are maintained within a requirement
specification between high- and low-level requirements.

To detect links to maintain the approach calculates an affinity score for pairs of
terms based on the occurrence frequency of pairs of terms in already linked high and
low-level requirement documents. The stemmed form of nouns, adjectives, adverbs
and verbs are considered as terms. A pair of term consists of one term from a high
level document and one term from a low level document. For every occurrence of a
pair of terms in already linked high- and low-level documents the affinity score for
the pair of terms is increased by one.

In an initial learning phase of the approach the affinity scores for all pair of terms
in already linked documents are calculated. The calculated affinity scores are then
used together with a configurable threshold by the approach to judge about linking
of new documents and changed documents. If the affinity score of two documents is
above the specified threshold and no links exist a new link is created. If the affinity
score of two documents is below the specified threshold and a link exists the link is
removed. The approach can be applied once to validate the linking of an existing
project or for the ongoing maintenance of existing links while artefacts are changed
by a user.

Trace Link Maintenance Process

Step 1: Detection of Change
Changes on artefacts are monitored by the approach.

Step 2: Detection of impacted Links and Further Output
After a requirement document has been changed, affinity scores for all documents
are recalculated. The recalculated affinity scores for the requirements documents
are passed to the determination of necessary change step.

Step 3: Determination of Necessary Link Change
To determine if link changes are necessary the approach checks, if the recalculated
affinity score for two requirement documents is above or below the specified thresh-
old.

Step 4: Execution of Change
If the recalculated affinity score for linking two requirement documents drops below
the specified threshold, an existing link is removed. If the recalculated affinity score
for linking two requirement documents rises above the specified threshold a new link
is created.

142

A.2. RESULTS

Evaluation

The approach has been evaluated qualitatively by simulating the application of the
approach with a prototypical tool and a known set of links (gold standard). In the
best case a precision of 85.3% and a recall of 64.4% for maintained links could be
achieved.

P08: Code Patterns for Automatically Validating Requirements-to-Code
Traces – Ghabi and Egyed [2012]

Linked Artefacts and Approach Overview

In the approach of Ghabi and Egyed links between requirements and source code
are maintained automatically. Links to source code can exist on class (complete file)
and method (part of a file) level. The approach requires an executable system like
a compiled version of the systems source code, the corresponding requirements, and
the requirements to code trace links.

The approach uses call relations in source code to determine whether existing
links from source code to requirements are valid or whether links are missing. The
call relations are determined in the approach by executing the system. The call rela-
tions are used investigating the known existing trace links of neighbouring methods,
i.e. calling and called methods. The approach assumes that a given method is likely
implementing a given requirement if it is called or calls other methods that also
implement the given requirement.

Based on this assumption existing links and call relations between source code
files, are used by patterns defined in the approach to assign a score (trace expec-
tation) to the methods in the source code. An example for such a pattern is the
surrounding pattern. The surrounding pattern defines that if a method A is called
by a method B and calls a method C and both methods B and C are connected to
the same requirement R by a trace link, the method A should also be connected to
that requirement R by a trace link. The overall score of a method is calculated in
the approach by executing all patterns for the method. The score for a method is
then used to judge the existing links and to determine missing links of this method.

Trace Link Maintenance Process

Step 1: Detection of Change

Artefact change is indicated manually by a user. Therefore the user manually trig-
gers the approach with the required input data, i.e. compiled source code, require-
ments, requirements to code trace links.

143

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

Step 2: Detection of impacted Links and Further Output

The approach evaluates patterns which use the call relations and existing links to
assign a numerical score to methods in the code. The score is the output.

Step 3: Determination of Necessary Link Change

The score for the methods in the code is used to judge the existing links and to
determine missing links.

Step 4: Execution of Change

If the score for a method is below a certain value, links are removed from the method.
If the score fore a method to be linked to a requirement is above a certain value and
no link exist, a new links is added.

Evaluation

The approach has been evaluated qualitatively by simulating the application of the
approach with a prototypical tool and a known set of links (gold standard) for four
projects. First the gold standard links were used and supplemented with wrong links
in different manners (randomly, by a user). Then the tool has been used to detect
the introduced wrong links. In the best case for precision a precision of 94.1% with
a recall of 84.3% and in the best case for recall a recall of 96.1% with a precision of
92.8% could be achieved.

P09: Towards Recovering and Maintaining Trace Links for Model Sketches
Across Interactive Displays – Kleffmann et al. [2013]

Linked Artefacts and Approach Overview

In the approach of Kleffmann et al. links between sketches and diagrams on inter-
active displays are maintained. The approach does not use any rules.

Trace Link Maintenance Process

Step 1: Detection of Change

In the approach a tool observes user interactions with sketches and diagrams on
interactive displays.

Step 2: Detection of impacted Links and Further Output

If a linked artefact is changed, the tool highlights the links and the linked artefacts
and prompts the user to manually check the linking.

Step 3: Determination of Necessary Link Change

Based on the highlighting of links and artefact affected by an artefact change, the
user determines necessary link change manually

144

A.2. RESULTS

Step 4: Execution of Change

The user performs necessary link change manually.

Evaluation

No evaluation has been performed. In the conclusion the authors report about a
planned future evaluation.

P12: Rigorous identification and encoding of trace-links in model-driven
engineering – Paige et al. [2011]

This approach is related to the approach P05 (cf. Section A.2.1). It uses the same
principle of connection model elements defined in different meta-models and extends
this principle with a separate meta-model for traceability.

Linked Artefacts and Approach Overview

The approach of Paige et al. enables the creation of links between model elements
defined in different meta-models. The approach uses the Traceability Meta- mod-
elling Language (TML) to define a meta-model for typed trace links between model
elements from the different meta-models. In addition constrains for the trace links
are defined by using Epsilon Validation Language (EVL). The constraints cover def-
initions to ensure that trace links are valid, e.g. a certain model element from one
meta-model is only allowed to be linked with a certain model element from an-
other meta-model, and that all model elements requiring linkage are linked, e.g. all
Class instances from an ObjectOrienetedMetamodel have to be linked to one Actor
instance from the IstarMetamodel.

Trace Link Maintenance Process

Step 1: Detection of Change

Artefact change is indicated manually by a user.

Step 2: Detection of impacted Links and Further Output

The constraints to validate the correctness of existing trace links and the missing
of trace links are executed. The result of the constraints validation is a list with
requirements and model elements that violate the constraints.

Step 3: Determination of Necessary Link Change

The necessary link change is determined manually by a user with the help of the
constraint violation list from the impact detection.

145

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

Step 4: Execution of Change

Link maintenance is performed manually by a user using the results of the con-
straints.

Evaluation

No evaluation has been performed. However, the authors illustrated the usage of
their approach within two projects.

P10: Towards Automated Traceability Maintenance – Mäder and Gotel
[2012a]

Linked Artefacts and Approach Overview

In the approach of Mäder and Gotel trace links between requirements and analysis
and design models expressed in UML diagrams are maintained. Link maintenance
is performed in a tool (traceMaintainer) that analyzes change events that have been
captured while working within a third-party UML modeling tool. In the trace-
Maintainer tool certain sequences of captured events are comprised as development
activities. The development activities are matched with predefined rules that direct
the update of impacted trace links. An example for such a development activity
is convert class into component, which comprises the events remove class, add new
component and rename component. The rules use the type of UML model element,
the changed attribute and existing links. The rules state if a link requires mainte-
nance and which kind of maintenance is required (delete, move, etc.).

Trace Link Maintenance Process

Step 1: Detection of Change

The traceMaintainer tool monitors changes of a user performed in a third-party
UML modelling tool in UML diagrams and requirements.

Step 2: Detection of impacted Links and Further Output

All development activities detected by the traceMaintainer tool are passed as output
to the next step for further processing.

Step 3: Determination of Necessary Link Change

Based on a previously detected development activity rules are executed by the trace-
Maintainer tool to determine the necessary link change. For the example of the
convert class into component development activity the link maintenance rules are all
links previously using the removed class as source or target now have to use the new
created component as source or target.

146

A.2. RESULTS

Step 4: Execution of Change

If a development activity has been detected and there are rules how to maintain links
for the detected development activity, link maintenance is performed automatically
by execution of the rules within the tool. If no development activity has been
detected or there are no link maintenance rules for a detected development activity,
the involved artefacts are shown to the user to manually maintain the affected links.

Evaluation

The approach has been evaluated qualitatively and quantitatively together with an
industrial partner. Within this evaluation the approach has been applied over one
year in two projects. Qualitative feedback has been collect by interviewing devel-
opers using the tool and then using the feedback to improve the tool. For the
quantitative evaluation the potential reduction in manual effort and the quality of
resulting trace links was evaluated. The authors state that the overall reduction of
manual effort was 71% compared to a complete manual maintenance of links, i.e.
only 29% of trace links had to be maintained manually when using the traceMain-
tainer tool. For the quality of resulting trace links the authors report a precision of
86% and a recall of 88%.

P11: Capra: A Configurable and Extendable Traceability Management
Tool – Maro and Steghöfer [2016]

Linked Artefacts and Approach Overview

The approach of Maro and Steghöfer is implemented in a tool called Capra. Capra is
an open source traceability management tool implemented as Eclipse plug-in using
the Eclipse Modelling Framework (EMF). The tool enables a user to link artefacts
managed within the Eclipse IDE (e.g. Java Source code) with EMF model elements.
For maintenance of existing links the approach comprises a notification mechanism
which informs a user to maintain existing links whenever linked artefacts change.

Trace Link Maintenance Process

Step 1: Detection of Change

The Capra tool monitors changes of artefacts.

Step 2: Detection of impacted Links and Further Output

If a changed artefact is linked to another artefact, the tool considers the involved
links as potentially impacted. After a user saves a performed change to an artefact,
the tool notifies the user to manually maintain involved links. In the notification
the tool presents the affected links and artefacts.

147

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

Step 3: Determination of Necessary Link Change

Link change is determine manually be a user, using the links and artefacts presented
in the notification.

Step 4: Execution of Change

A user performs the changes to links manually.

Evaluation

No evaluation has been performed. In the paper the authors illustrated the usage
of their tool along with a running example.

P13: Evolving Requirements-to-Code Trace Links across Versions of a
Software System – Rahimi et al. [2016]

Linked Artefacts and Approach Overview

The Trace Link Evolver (TLE) is an approach of Rahimi et al. that is capable
to maintain trace links between source code (classes or methods) and requirements
based on the detection of refactorings between two successive versions of source code.

The TLE approach can be applied retrospectively if two version of source code
files exist,t or it can be applied ongoing every time a developer creates a new version
of source code files, i.e. the developers performs a commit to a Version Control Sys-
tem (VCS). TLE defines 24 change scenarios organized into the six high level change
categories: add class, delete class, add method, delete method, modify method, and
basic. Each of the 24 change scenarios captures a typical refactoring action com-
prised of several changes to source code performed by a developer.

To define the scenarios heuristic are used. The heuristics are built from 49 rules.
These rules check for add, delete and modification of methods and classes, whether
links are involved between classes and classes and classes and requirements, for
methods in classes, for association between classes and for the existence of classes,
methods and requirements. For each scenario there is also a so called link evolution
heuristic. This link evolution heuristic is a rule which defines how to maintain trace
links involved in a scenario.

The TLE approach is implemented in a tool. For 18 of the 24 scenarios the
call graph of the source code and textual similarity calculations, based on Vector
Space Model (VSM), between requirements and source code are used. For the VSM -
based textual similarity calculation preprocessing techniques stop word removal and
stemming have been applied. A threshold score for the calculated cosine similarity
was established as half of the highest similarity score between artefacts. Pairs of
artefacts (i.e. a source code file and a requirement) with scores above the threshold
were considered to be similar and thus linked with each other.

148

A.2. RESULTS

For the other 6 of the 24 scenarios a tool called Refactoring Crawler, which
directly detects a certain refactoring based on two versions of source code files, is
used. For the refactoring detection the tool only requires these two versions of source
code files as input. In consequence the detected refactoring, the requirements, the
two versions of source code files and existing links for the first version of source code
files are used to create the actual links between the second version of source code
files and the requirements. An example for a refactoring detected by the Refactoring
Crawler tool is Renamed Class. If the rename class refactoring has been detected,
existing trace links can become invalid.

Trace Link Maintenance Process

Step 1: Detection of Change

Detection of changes can be performed retrospectively by using two versions of
artefacts in a version control system or by monitoring changes of a user. In both
cases the difference between two versions of source code files and requirements are
used.

Step 2: Detection of impacted Links and Further Output

Impacted links are detected by identifying one of the 24 change scenarios. The
detected change scenario is passed as output to the determination of necessary link
change step.

Step 3: Determination of Necessary Link Change

The combination of results from the rules of an identified change scenario state if
links require maintenance. The necessary link change is determined by the change
scenario specific link evolution heuristics.

Step 4: Execution of Change

The Link evolution actions of a change scenario specific link evolution heuristic are
executed by the TLE tool.

Evaluation

The approach has been evaluated quantitatively in two setups. In the first initial
evaluation setup 13 versions of two small Java programs have been used. The differ-
ent versions have been generated by developers in controlled 90 minutes modification
sessions and the gold standard links have been created by the authors themselves.
In the first evaluation a precision of 92.4% and a recall of 96.4% was achieved (com-
pared to a recall of 66,9% and precision of 35.2% when using VSM). In the second
evaluation setup the authors used the larger apache Casandra open source data base
project. Features (requirements) have been taken from the projects issue tracker sys-
tem. 11 source code version haven been taken from the projects Version Control

149

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

System (VCS). Trace links haven been created by the authors using the data from
the requirements, e.g. if a class was mentioned in a feature a trace link has been
created. The trace links created by the authors have also been supplemented and
verified by also creating links with VSM . In the second evaluation a precision of
91.9% and a recall of 94.5% was achieved (compared to a recall of 5% or 13% and
precision of 10% or 5% when using VSM or LSI respectively).

P14: Graph-based traceability: a comprehensive approach – Schwarz
et al. [2010]

Linked Artefacts and Approach Overview

The approach of Schwarz et al. enables the creation of trace links between model
elements. The approach uses grUML which is a graph technology extension to UML.
It enables the representation of any UML model element and arbitrary extensions
of the UML meta-model as graph. In addition grUML provides a querying language
for such a graph. In the approach of Schwarz et al. grUML is used to provide
a basic traceability meta-model (traceability information model) for linked entities
(UML model elements, and model elements based on own extensions of the UML
meta-model), (typed) trace links and rules. The rules are represented as attributes
of linked entities and are used to keep and make trace links consistent. Link main-
tenance in the approach is implemented within model transformation from source
to target models.

Trace Link Maintenance Process

Step 1: Detection of Change

Detection of change is performed by tool based monitoring of change events for
model elements.

Step 2: Detection of impacted Links and Further Output

Impacted links are detected by monitoring changes in target models, followed by
subsequent changes in source models on the same model element. The detected
change type is based on where it was detected (target or source model) and on which
kind of element (link element or element). The detected change type is passed to
the next processing step as output.

Step 3: Determination of Necessary Link Change

Necessary link change is determined in two ways using the previously detected change
type. If a change has been detected in a source model link or linked element it can
be transferred automatically to the target model. If a change has been detected in
a target model link or linked element or in a target model link or linked element

150

A.2. RESULTS

and source model link or linked element the elements are presented to the user for
manual processing.

Step 4: Execution of Change

Changes in target model links and linked elements are automatically processed by
the approach other changes are presented in a notification to the user for manual
processing.

Evaluation

No evaluation has been performed. The authors report about a planned future
evaluation within the research project in which the approach has been developed.
Within the paper the authors present their approach along with an running example.

P15: Traceability in Model-Driven Engineering: Efficient and Scalable
Traceability Maintenance – Seibel et al. [2012]

Linked Artefacts and Approach Overview

In the approach of Seibel et al. all model elements defined in a meta-model can be
linked with each other. The approach uses a meta-model capable of traceability for
model elements on different model abstraction levels. The approach defines two kind
of trace links fact- and obligation links. Fact links are normal links which show that
model elements are connected with each other. In addition to fact links, obligation
links contain a check mechanism to use information from linked model elements,
e.g. such a check could be name of source model element should be the same as the
name of the target model element of the link.

The maintenance of these two kinds of links is separated into two processes
(steps). First fact links are maintained in the so called localization process and
second obligation links in the execution process. For the localization process the
approach defines rules based on model element attributes and the connection of
links and linked model elements on different abstraction levels. The rules enable the
automatic maintenance of links on one abstraction level, if links or linked elements
change on another abstraction level. For the execution step tasks are used to main-
tain obligation links. These tasks consider the data flow between model elements to
maintain obligation links.

Link maintenance like creation of missing links and deletion of wrong links can
be performed in two ways with the tool. The first way is the batch mode manually
triggered by a user (e.g. for the initial application), the second way is the incremental
mode which triggers the approach after a change of artefacts.

151

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

Trace Link Maintenance Process

Step 1: Detection of Change

In batch mode the link maintenance process of the approach is manually triggered
by a user. In incremental mode the approach monitors changes on linked model
elements.

Step 2: Detection of impacted Links and Further Output

The creation- and deletion rules of the localization process are executed. Impacted
fact links are detected and maintained by the rules. The execution process is exe-
cuted to maintain obligation links. The result of the execution process is a list with
change tasks. Each change tasks specifies how to maintain the obligation links of
one model element.

Step 3: Determination of Necessary Link Change

Determination of necessary link change is covered by previous step description.

Step 4: Execution of Change

Fact links are maintained automatically by executing the localization process and
by executing the update tasks previously created by the execution process.

Evaluation

The approach has been evaluated quantitatively for its scalability and performance.
Both modes of the approach, batch and incremental mode haven been evaluated with
projects of different sizes. The used evaluation projects where generated automati-
cally. In batch mode the required performance increased linear with linear growth
of project size (number of mode elements). In incremental model the same linear
increasing project sizes of the batch mode have been used. In addition a different
number of changes (5, 60, 120, 200) to linked model elements has been performed.
The result for this evaluation was that the number of model elements has no effect
and the number of changes has a small effect on the performance, i.e. more changes
resulted in slower execution.

P16: Software Artifacts Management Based on Dataspace – Ying et al.
[2009]

Linked Artefacts and Approach Overview

The approach of Ying et al. uses the concept of dataspaces to maintain artefacts
stored in software repositories and links between those artefacts. A dataspace con-
sists of participants which are users with a specific role and relationships and models
relations between data repositories and the artefacts in these repositories. A datas-
pace is used to manage the life cycle of software artefacts and holds all information

152

A.2. RESULTS

relevant for a specific concern, i.e. a task performed by a user. To perform automatic
or semi-automatic recovery and maintenance of links data space discovery with an
ontology also describing traceability between artefacts is used.

First Natural Language Processing (NLP) and source code analysis are used to
extract relevant information from software artefacts. The result of this extraction is
a single graph representation of software artefacts and the trace links between the
artefacts. Second relations between ontologies used in the approach and the graph
representation of software artefacts are created by graph merging, i.e. relations
between the nodes in the ontology and the nodes (artefacts) in the software artefact
graph are created. Third reasoning is used to infer implicitly trace links among the
software artefacts. Implicitly trace links are trace link not already created in the
extraction step. The approach can be applied initially if no trace links exist or it
can be applied along the changes of artefacts.

Trace Link Maintenance Process

Step 1: Detection of Change
The approach monitors changes in artefacts.

Step 2: Detection of impacted Links and Further Output
In the data extraction step and reasoning step the approach creates links based on
information extracted from artefacts and an ontology. Rules based on the results of
reasoning with an ontology and data extracted from linked artefacts state if links
require maintenance. The output of detection is a list with links including a change
type for the link. The change type can indicate to create a new link, to delete or
potentially delete a link.

Step 3: Determination of Necessary Link Change
Necessary change is determined by the type of link change for each link from the
list of links created as output of the detection step.

Step 4: Execution of Change
New links are created automatically, links to be deleted are deleted automatically
and links to potentially be deleted are shown to the user.

Evaluation

No evaluation has been performed.

153

APPENDIX A. SUPPLEMENTARY MATERIAL FOR TRACE LINK MAINTENANCE SLR

154

Bibliography

Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman, Alexander
Egyed, Paul Grünbacher, Alex Dekhtyar, Giuliano Antoniol, Jonathan Maletic,
and Patrick Mäder. Traceability Fundamentals. In Software and Systems Trace-
ability, pages 3–22. Springer, 2012a. (cit. on pp. 3, 4).

Jane Cleland-Huang, Orlena Gotel, Jane Huffman Hayes, Patrick Mäder, and An-
drea Zisman. Software traceability: trends and future directions. In Proceedings
of the on Future of Software Engineering (FOSE), pages 55–69, Hyderabad, India,
2014. ACM. (cit. on pp. 3, 4, 5, 19, 20, 33, 34, 35, 39, 120).

Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman, Alexander
Egyed, Paul Grünbacher, and Giuliano Antoniol. The Quest for Ubiquity: A
Roadmap For Software and Systems Traceability Research. In Proceedings of the
20th IEEE International Requirements Engineering Conference (RE), pages 71–
80, Chicago, IL, USA, 2012b. IEEE. (cit. on pp. 3, 5, 19, 23, 24, 25, 33, 34, 35,
95).

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Fine-
grained management of software artefacts: the ADAMS system. Software: Prac-
tice and Experience, 40(11):1007–1034, 2010. (cit. on p. 3).

Patrick Mäder and Alexander Egyed. Do Software Engineers Benefit from Source
Code Navigation with Traceability? - An Experiment in Software Change Man-
agement. In Proceedings of the 26th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 444–447, Lawrence, KS, USA, 2011.
IEEE. (cit. on p. 3).

Gabriele Bavota, Luigi Colangelo, Andrea De Lucia, Sabato Fusco, Rocco Oliveto,
and Annibale Panichella. TraceME: Traceability Management in Eclipse. In
Proceedings of the 28th IEEE International Conference on Software Maintenance
(ICSM), pages 642–645. IEEE, 2012. (cit. on p. 3).

Elke Bouillon, Patrick Mäder, and Ilka Philippow. A Survey on Usage Scenarios for
Requirements Traceability in Practice. In Proceedings of the 19th International

155

BIBLIOGRAPHY

Working Conference - Requirements Engineering: Foundation for Software Qual-
ity (REFSQ), volume 7830 of Lecture Notes in Computer Science (LNCS), pages
158–173, Essen, Germany, 2013. Springer. (cit. on p. 3).

Patrick Rempel, Patrick Mäder, Tobias Kuschke, and Jane Cleland-Huang. Mind the
gap: assessing the conformance of software traceability to relevant guidelines. In
Proceedings of the 36th International Conference on Software Engineering (ICSE),
pages 943–954, New York, NY, USA, 2014. ACM/IEEE. (cit. on p. 3).

Patrick Mäder and Alexander Egyed. Do developers benefit from requirements trace-
ability when evolving and maintaining a software system? Empirical Software
Engineering, 20(2):413–441, 2015. (cit. on pp. 3, 4).

Markus Borg, Per Runeson, and Anders Ardö. Recovering from a decade: a system-
atic mapping of information retrieval approaches to software traceability. Empir-
ical Software Engineering, 19(6):1565–1616, 2014. (cit. on pp. 3, 4, 6, 20, 21, 23,
25, 26, 33, 34, 35, 101, 115, 120).

Annibale Panichella, Andrea De Lucia, and Andy Zaidman. Adaptive User Feedback
for IR-Based Traceability Recovery. In Proceedings of the 8th IEEE/ACM Inter-
national Symposium on Software and Systems Traceability (SST@ICSE), pages
15–21, Florence, Italy, 2015. IEEE. (cit. on p. 3).

Collin McMillan, Denys Poshyvanyk, and Meghan Revelle. Combining Textual and
Structural Analysis of Software Artifacts for Traceability Link Recovery. In Pro-
ceedings of the ICSE Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE@ICSE), pages 41–48, Vancouver, BC, Canada, 2009. IEEE.
(cit. on p. 4).

Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. IR-Based Traceability
Recovery Processes: An Empirical Comparison of "One-Shot" and Incremental
Processes. In Proceedings of the 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 39–48, L’Aquila, Italy, 2008. IEEE.
(cit. on p. 4).

Lionel Briand, Davide Falessi, Shiva Nejati, Mehrdad Sabetzadeh, and Tao Yue.
Traceability and SysML Design Slices to Support Safety Inspections. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 23(1):1–43, 2014.
(cit. on p. 4).

Nan Niu, Tanmay Bhowmik, Hui Liu, and Zhendong Niu. Traceability-Enabled
Refactoring for Managing Just-In-Time Requirements. In Proceedings of the 22nd
IEEE International Requirements Engineering Conference (RE), pages 133–142,
Karlskrona, Sweden, 2014. IEEE. (cit. on pp. 4, 5).

156

BIBLIOGRAPHY

Walid Maalej, Zijad Kurtanovic, and Alexander Felfernig. What Stakeholders Need
to Know About Requirements. In Proceedings of the 4th IEEE International Work-
shop on Empirical Requirements Engineering (EmpiRE), pages 64–71, Karlskrona,
Sweden, 2014a. IEEE. (cit. on pp. 4, 11).

Neil A. Ernst and Gail C. Murphy. Case studies in just-in-time requirements anal-
ysis. In Proceedings of the 2nd IEEE International Workshop on Empirical Re-
quirements Engineering (EmpiRE), pages 25–32, Chicago, IL, USA, 2012. IEEE.
(cit. on p. 4).

Thorsten Merten, Matúš Falisy, Paul Hübner, Thomas Quirchmayr, Simone Bürsner,
and Barbara Paech. Software Feature Request Detection in Issue Tracking Sys-
tems. In Proceedings of the 24th IEEE International Requirements Engineering
Conference (RE), pages 166–175, Beijing, China, 2016a. IEEE. (cit. on pp. 4, 11,
12, 25).

Thorsten Merten, Daniel Krämer, Bastian Mager, Paul Schell, Simone Bürsner, and
Barbara Paech. Do Information Retrieval Algorithms for Automated Traceability
Perform Effectively on Issue Tracking System Data? In Proceedings of the 22nd
International Working Conference - Requirements Engineering: Foundation for
Software Quality (REFSQ), volume 9619 of Lecture Notes in Computer Science
(LNCS), pages 45–62, Gothenburg, Sweden, 2016b. Springer. (cit. on pp. 4, 25,
27, 95, 115, 120).

Rebekka Wohlrab, Jan-Philipp Steghöfer, Eric Knauss, Salome Maro, and Anthony
Anjorin. Collaborative Traceability Management: Challenges and Opportunities.
In Proceedings of the 24th IEEE International Requirements Engineering Confer-
ence (RE), pages 216–225, Beijing, China, 2016. IEEE. (cit. on pp. 4, 39).

Salome Maro, Anthony Anjorin, Rebekka Wohlrab, and Jan-Philipp Steghöfer.
Traceability maintenance: Factors and guidelines. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 414–425, Singapore, 2016. ACM. (cit. on pp. 4, 39).

Thomas Fritz, Gail C. Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily Hill.
Degree-of-Knowledge: Modeling a Developer’s Knowledge of Code. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 23(2):1–42, 2014.
(cit. on p. 6).

Martin Konôpka and Mária Bieliková. Software Developer Activity as a Source for
Identifying Hidden Source Code Dependencies. In Proceedings of SOFSEM: The-
ory and Practice of Computer Science - 41st International Conference on Current
Trends in Theory and Practice of Computer Science, volume 8939 of Lecture Notes

157

BIBLIOGRAPHY

in Computer Science (LNCS), pages 449–462. Springer, Pec pod Sněžkou, Czech
Republic, 2015. (cit. on pp. 6, 17, 19).

Zéphyrin Soh, Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Noise
in Mylyn interaction traces and its impact on developers and recommendation
systems. Empirical Software Engineering, 23(2):645–692, 2018. (cit. on pp. 6, 17,
57, 76).

Roel J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer, Berlin, Heidelberg, 2014. (cit. on p. 7).

Roel J. Wieringa and Ayşe Moralı. Technical Action Research as a Validation
Method in Information Systems Design Science. In Design Science Research in
Information Systems. Advances in Theory and Practice, pages 220–238. Springer,
Berlin, Heidelberg, 2012. (cit. on p. 7).

Paul Hübner. Quality Improvements for Trace Links between Source Code and
Requirements. In Proceedings of the REFSQ Workshops, Doctoral Symposium,
Research Method Track, and Poster Track, volume 1564, Gothenburg, Sweden,
2016. CEUR-WS. (cit. on p. 10).

Paul Hübner and Barbara Paech. Using Interaction Data for Continuous Creation
of Trace Links Between Source Code and Requirements in Issue Tracking Sys-
tems. In Proceedings of the 23rd International Working Conference - Require-
ments Engineering: Foundation for Software Quality (REFSQ), volume 10153
of Lecture Notes in Computer Science (LNCS), pages 291–307, Essen, Germany,
2017. Springer. (cit. on p. 10).

Paul Hübner and Barbara Paech. Evaluation of Techniques to Detect Wrong Interac-
tion Based Trace Links. In Proceedings of the 24th International Working Confer-
ence - Requirements Engineering: Foundation for Software Quality (REFSQ), vol-
ume 10753 of Lecture Notes in Computer Science (LNCS), pages 75–91, Utrecht,
The Netherlands, 2018. Springer. (cit. on p. 10).

Paul Hübner and Barbara Paech. Increasing Precision of Automatically Gener-
ated Trace Links. In Proceedings of the 25th International Working Conference
- Requirements Engineering: Foundation for Software Quality (REFSQ), volume
11412 of Lecture Notes in Computer Science (LNCS), pages 73–89, Essen, Ger-
many, 2019. Springer. (cit. on p. 10).

Paul Hübner and Barbara Paech. Interaction-based Creation and Maintenance of
Continuously Usable Trace Links. Empirical Software Engineering, 2020. (cit. on
p. 10).

158

BIBLIOGRAPHY

Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram. Advancing
candidate link generation for requirements tracing: The study of methods. IEEE
Transactions on Software Engineering (TSE), 32(1):4–19, 2006. (cit. on pp. 12,
24, 27, 103, 115).

Scott Chacon and Ben Straub. Pro Git. Apress L.P., Berkeley, CA, USA, second
edition, 2014. (cit. on p. 14).

Hongyu Kuang, Patrick Mäder, Hao Hu, Achraf Ghabi, LiGuo Huang, Jian Lü, and
Alexander Egyed. Can method data dependencies support the assessment of trace-
ability between requirements and source code? Journal of Software: Evolution
and Process, 27(11):838–866, 2015. (cit. on p. 14).

Hongyu Kuang, Jia Nie, Hao Hu, Patrick Rempel, Jian Lu, Alexander Egyed, and
Patrick Mäder. Analyzing closeness of code dependencies for improving IR-based
Traceability Recovery. In Proceedings of the 24th IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), pages 68–78,
Klagenfurt, Austria, 2017. IEEE. (cit. on p. 14).

Achraf Ghabi and Alexander Egyed. Code Patterns for Automatically Validating
Requirements-to-Code Traces. In Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 200–209, Es-
sen, Germany, 2012. ACM. (cit. on pp. 14, 34, 35, 36, 44, 45, 46, 50, 69, 70, 71,
125, 126, 143).

Mona Rahimi, William Goss, and Jane Cleland-Huang. Evolving Requirements-
to-Code Trace Links across Versions of a Software System. In Proceedings of
the 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 99–109, Raleigh, NC, USA, 2016. IEEE. (cit. on pp. 14, 44, 45,
47, 48, 50, 69, 70, 71, 125, 126, 135, 148).

Gail C. Murphy, Mik Kersten, and Leah Findlater. How are Java Software De-
velopers Using the Elipse IDE? IEEE Software, 23(4):76–83, 2006. (cit. on p.
16).

Walid Maalej, Thomas Fritz, and Romain Robbes. Collecting and Processing In-
teraction Data for Recommendation Systems. In Recommendation Systems in
Software Engineering, pages 173–197. Springer Berlin, Heidelberg, 2014b. (cit. on
p. 16).

Walid Maalej and Mathias Ellmann. On the Similarity of Task Contexts. In Pro-
ceedings of the 2nd IEEE/ACM International Workshop on Context for Software
Development (CSD), pages 8–12, Florence, Italy, 2015. IEEE. (cit. on pp. 16, 76).

159

BIBLIOGRAPHY

Jane Cleland-Huang, Patrick Mäder, Mehdi Mirakhorli, and Sorawit Amornborvorn-
wong. Breaking the Big-Bang Practice of Traceability: Pushing Timely Trace
Recommendations to Project Stakeholders. In Proceedings of the 20th IEEE In-
ternational Requirements Engineering Conference (RE), pages 231–240, Chicago,
IL, USA, 2012. IEEE. (cit. on pp. 17, 44, 45, 46, 50, 139).

Inah Omoronyia, Guttorm Sindre, Marc Roper, John Ferguson, and Murray Wood.
Use Case to Source Code Traceability: The Developer Navigation View Point. In
Proceedings of the 17th IEEE International Requirements Engineering Conference
(RE), pages 237–242, Atlanta, GA, USA, 2009. IEEE. (cit. on p. 17).

Inah Omoronyia, Guttorm Sindre, and Tor Stålhane. Exploring a Bayesian and lin-
ear approach to requirements traceability. Information and Software Technology,
53(8):851–871, 2011. (cit. on pp. 17, 19).

Martin Konôpka and Pavol Navrat. Untangling Development Tasks with Software
Developer’s Activity. In Proceedings of the 2nd IEEE/ACM International Work-
shop on Context for Software Development (CSD), pages 13–14, Florence, Italy,
2015. IEEE. (cit. on pp. 17, 76).

Mohammad El-Ramly and Eleni Stroulia. Mining Software Usage Data. In Pro-
ceedings of the 1st International Workshop on Mining Software Repositories
(MSR@ICSE), pages 64–68, Edinburgh, Scotland, UK, 2004. ACM/IEEE. (cit.
on p. 17).

Kevin Schneider, Carl Gutwin, Reagan Penner, and David Paquette. Mining a
software developer's local interaction history. In Proceedings of the 1st Interna-
tional Workshop on Mining Software Repositories (MSR@ICSE), pages 106–110,
Edinburgh, Scotland, UK, 2004. ACM/IEEE. (cit. on p. 17).

Chris Parnin, Carsten Görg, and Spencer Rugaber. Enriching Revision History with
Interactions. In Proceedings of the 3rd International Workshop on Mining Software
Repositories (MSR@ICSE), pages 155–158, Shanghai, China, 2006. ACM/IEEE.
(cit. on p. 18).

Sarah Rastkar and Gail C. Murphy. On what basis to recommend: Changesets
or interactions? In Proceedings of the 6th International Working Conference
on Mining Software Repositories (MSR@ICSE), pages 155–158, Vancouver, BC,
Canada, 2009. ACM/IEEE. (cit. on p. 18).

Romain Robbes and David Rothlisberger. Using developer interaction data to com-
pare expertise metrics. In Proceedings of the 10th International Working Confer-
ence on Mining Software Repositories (MSR@ICSE), pages 297–300, San Fran-
cisco, CA, USA, 2013. ACM/IEEE. (cit. on p. 18).

160

BIBLIOGRAPHY

Motahareh Bahrami Zanjani, George Swartzendruber, and Huzefa Kagdi. Impact
analysis of change requests on source code based on interaction and commit his-
tories. In Proceedings of the 11th International Working Conference on Min-
ing Software Repositories (MSR@ICSE), pages 162–171, Hyderabad, India, 2014.
ACM/IEEE. (cit. on p. 18).

Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. Using Developer-
Interaction Trails to Triage Change Requests. In Proceedings of the 12th Interna-
tional Working Conference on Mining Software Repositories (MSR@ICSE), pages
88–98, Florence, Italy, 2015. ACM/IEEE. (cit. on p. 18).

Andrea De Lucia, Andrian Marcus, Rocco Oliveto, and Denys Poshyvanyk. Infor-
mation Retrieval Methods for Automated Traceability Recovery. In Software and
Systems Traceability, pages 71–98. Springer, London, 2011a. (cit. on pp. 19, 20,
22, 23, 24).

Mona Rahimi and Jane Cleland-Huang. Evolving software trace links between re-
quirements and source code. Empirical Software Engineering, 23(4):2198–2231,
2018. (cit. on pp. 20, 135).

Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and Patrick
Mäder. Traceability in the Wild: Automatically Augmenting Incomplete Trace
Links. In Proceedings of the 40th International Conference on Software Engineer-
ing (ICSE), pages 834–845, Gothenburg, Sweden, 2018. ACM/IEEE. (cit. on pp.
20, 25, 116).

Ricardo Baeza-Yates and Berthier de Araújo Neto Ribeiro. Modern Information
Retrieval - the concepts and technology behind search. Pearson Addison-Wesley,
Harlow, England, second edition, 2011. (cit. on pp. 20, 21, 22, 23, 24, 101).

Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore
Merlo. Recovering traceability links between code and documentation. IEEE
Transactions on Software Engineering (TSE), 28(10):970–983, 2002. (cit. on pp.
20, 34, 35).

Alexander Dekhtyar, Jane Huffman Hayes, and Tim Menzies. Text is Software Too.
In Proceedings of the 1st International Workshop on Mining Software Repositories
(MSR@ICSE), pages 22–26, Edinburgh, Scotland, UK, 2004. ACM/IEEE. (cit.
on p. 20).

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, Cambridge UK, first edition,
2008. (cit. on p. 21).

161

BIBLIOGRAPHY

Andrea De Lucia, Massimiliano Di Penta, and Rocco Oliveto. Improving Source
Code Lexicon via Traceability and Information Retrieval. IEEE Transactions on
Software Engineering (TSE), 37(2):205–227, 2011b. (cit. on p. 21).

Nasir Ali, Yann-Gaël Gueheneuc, and Giuliano Antoniol. Requirements Traceabil-
ity for Object Oriented Systems by Partitioning Source Code. In Proceedings
of the 18th Working Conference on Reverse Engineering (WCRE), pages 45–54,
Limerick, Ireland, 2011. IEEE. (cit. on p. 21).

Jane Cleland-Huang, Brian Berenbach, Stephen Clark, Raffaella Settimi, and Eli
Romanova. Best Practices for Automated Traceability. IEEE Computer, 40(6):
27–35, 2007. (cit. on pp. 23, 95).

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6):391–407, 1990. (cit. on p. 24).

Nan Niu and Anas Mahmoud. Enhancing Candidate Link Generation for Require-
ments Tracing: The Cluster Hypothesis Revisited. In Proceedings of the 20th IEEE
International Requirements Engineering Conference (RE), pages 81–90, Chicago,
IL, USA, 2012. IEEE. (cit. on p. 24).

Davide Falessi, Massimiliano Di Penta, Gerardo Canfora, and Giovanni Cantone.
Estimating the number of remaining links in traceability recovery. Empirical
Software Engineering, 22(3):996–1027, 2017. (cit. on p. 24).

Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data Mining:
Practical Machine Learning Tools and Techniques. Elsevier, fourth edition, 2016.
(cit. on p. 24).

Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. Germán,
and Premkumar T. Devanbu. The promises and perils of mining git. In Proceedings
of the 6th International Working Conference on Mining Software Repositories
(MSR@ICSE), pages 1–10, Vancouver, BC, Canada, 2009. ACM/IEEE. (cit. on
p. 25).

Michael Rath, Patrick Rempel, and Patrick Mäder. The IlmSeven Dataset. In
Proceedings of the 25th IEEE International Requirements Engineering Conference
(RE), pages 516–519, Lisbon, Portugal, 2017. IEEE. (cit. on pp. 25, 59, 82, 110,
119).

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recovering
Traceability Links in Software Artifact Management Systems using Information
Retrieval Methods. ACM Transactions on Software Engineering and Methodology
(TOSEM), 16(4):1–50, 2007. (cit. on pp. 26, 27, 34, 35, 36, 37, 76, 93, 95, 120).

162

BIBLIOGRAPHY

Martin Frické. Measuring recall. Journal of Information Science, 24(6):409–417,
1998. (cit. on p. 27).

B.T. Sampath Kumar and Jyoti Prakash. Precision and Relative Recall of Search
Engines: A comparative study of Google and Yahoo. Singapore Journal of Library
and Information Management, 38(1):124–137, 2009. (cit. on p. 27).

Nasir Ali, Yann-Gael Gueheneuc, and Giuliano Antoniol. Trustrace: Mining Soft-
ware Repositories to Improve the Accuracy of Requirement Traceability Links.
IEEE Transactions on Software Engineering (TSE), 39(5):725–741, 2013. (cit. on
pp. 27, 95).

Barbara A. Kitchenham and Stuart Charters. Guidelines for performing System-
atic Literature Reviews in Software Engineering. Technical Report Version 2.3,
EBSE-2007-01, Software Engineering Group, School of Computer Science and
Mathematics, Keele University, Keele, Staffs, ST5 5BG, UK and Department of
Computer Science, University of Durham, Durham, UK, 2007. (cit. on pp. 31, 32,
39, 40).

Sunil Nair, Jose Luis De La Vara, and Sagar Sen. A Review of Traceability Research
at the Requirements Engineering ConferenceRE@21. In Proceedings of the 21st
IEEE International Requirements Engineering Conference (RE), pages 222–229,
Rio de Janeiro, RJ, Brazil, 2013. IEEE. (cit. on p. 33).

Yoëlle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An Information Retrieval
Approach For Automatically Constructing Software Libraries. IEEE Transactions
on Software Engineering (TSE), 17(8):800–813, 1991. (cit. on pp. 34, 35).

Andrian Marcus and Jonathan I. Maletic. Recovering Documentation-to-Source-
Code Traceability Links using Latent Semantic Indexing. In Proceedings of the
25th International Conference on Software Engineering (ICSE), pages 125–135,
Portland, OR, USA, 2003. ACM/IEEE. (cit. on pp. 34, 35).

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Enhanc-
ing an Artefact Management System with Traceability Recovery Features. In
Proceedings of the 20th IEEE International Conference on Software Maintenance
(ICSM), pages 306–315, Chicago, IL, USA, 2004. IEEE. (cit. on pp. 34, 35, 37,
93).

Jane Cleland-Huang, Raffaella Settimi, Oussama BenKhadra, Eugenia Berezhan-
skaya, and Selvia Christina. Goal-centric Traceability for Managing Non-
functional Requirements. In Proceedings of the 27th International Conference
on Software Engineering (ICSE), pages 362–371, St. Louis, MO, USA, 2005.
ACM/IEEE. (cit. on pp. 34, 35, 36).

163

BIBLIOGRAPHY

Leonardo Gresta Paulino Murta, André van der Hoek, and Cláudia Maria Lima
Werner. ArchTrace: Policy-Based Support for Managing Evolving Architecture-
to-Implementation Traceability Links. In Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 135–
144, Tokyo, Japan, 2006. IEEE. (cit. on pp. 34, 35, 36).

Xuchang Zou, Raffaella Settimi, and Jane Cleland-Huang. Phrasing in Dynamic
Requirements Trace Retrieval. In Proceedings of the 30th Annual International
Computer Software and Applications Conference (COMPSAC), volume 1, pages
265–272, Chicago, IL, USA, 2006. IEEE. (cit. on pp. 34, 35, 36).

Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. On
Integrating Orthogonal Information Retrieval Methods to Improve Traceability
Recovery. In Proceedings of the 27th IEEE International Conference on Software
Maintenance (ICSM), pages 133–142, Williamsburg, VA, USA, 2011. IEEE. (cit.
on pp. 34, 35, 36).

Alexander Delater and Barbara Paech. Analyzing the Tracing of Requirements and
Source Code during Software Development. In Proceedings of the 19th Interna-
tional Working Conference - Requirements Engineering: Foundation for Software
Quality (REFSQ), volume 7830 of Lecture Notes in Computer Science (LNCS),
pages 308–314, Essen, Germany, 2013. Springer. (cit. on pp. 34, 35, 36, 37, 38,
106).

Bogdan Dit, Meghan Revelle, and Denys Poshyvanyk. Integrating information re-
trieval, execution and link analysis algorithms to improve feature location in soft-
ware. Empirical Software Engineering, 18(2):277–309, 2013. (cit. on pp. 34, 35,
37).

Ove Armbrust, Alexis Ocampo, Jurgen Munch, Masafumi Katahira, Yumi Koishi,
and Yuko Miyamoto. Establishing and Maintaining Traceability Between Large
Aerospace Process Standards. In Proceedings of the ICSE Workshop on Traceabil-
ity in Emerging Forms of Software Engineering (TEFSE@ICSE), pages 36–40,
Vancouver, BC, Canada, 2009. IEEE. (cit. on pp. 44, 45, 50, 135, 136).

Dominique Blouin, Matthias Barkowski, Melanie Schneider, Holger Giese, Johannes
Dyck, Etienne Borde, Dalila Tamzalit, and Joost Noppen. A Semi-Automated
Approach for the Co-Refinement of Requirements and Architecture Models. In
Proceedings of the 25th IEEE International Requirements Engineering Conference
Workshops (REW), pages 36–45, Lisbon, Portugal, 2017. IEEE. (cit. on pp. 44,
45, 46, 50, 137, 138).

Jane Cleland-Huang, Carl K. Chang, and Mark Christensen. Event-based trace-
ability for managing evolutionary change. IEEE Transactions on Software En-

164

BIBLIOGRAPHY

gineering (TSE), 29(9):796–810, 2003. (cit. on pp. 44, 45, 46, 47, 50, 69, 70,
138).

Nikolaos Drivalos-Matragkas, Dimitrios S. Kolovos, Richard F. Paige, and Kiran J.
Fernandes. A State-based Approach to Traceability Maintenance. In Proceedings
of the 6th ECMFA Traceability Workshop (ECMFA-TW), ECMFA-TW ’10, pages
23–30, Paris, France, 2010. ACM. (cit. on pp. 44, 45, 46, 47, 50, 140, 145).

Markus Fockel, Jörg Holtmann, and Jan Meyer. Semi-automatic Establishment
and Maintenance of Valid Traceability in Automotive Development Processes. In
Proceedings of the 2nd International Workshop Software Engineering for Embedded
Systems (SEES), pages 37–43, Zurich, Switzerland, 2012. IEEE. (cit. on pp. 44,
45, 46, 50, 141).

Vincenzo Gervasi and Didar Zowghi. Supporting Traceability Through Affinity Min-
ing. In Proceedings of the 22nd IEEE International Requirements Engineering
Conference (RE), pages 143–152, Karlskrona, Sweden, 2014. IEEE. (cit. on pp.
44, 45, 46, 50, 142).

Markus Kleffmann, Matthias Book, and Volker Gruhn. Towards Recovering and
Maintaining Trace Links for Model Sketches Across Interactive Displays. In Pro-
ceedings of the 7th International Workshop on Traceability in Emerging Forms
of Software Engineering (TEFSE@ICSE), pages 23–29, San Francisco, CA, USA,
2013. IEEE. (cit. on pp. 44, 45, 47, 50, 144).

Patrick Mäder and Orlena Gotel. Towards Automated Traceability Maintenance.
Journal of Systems and Software, 85(10):2205–2227, 2012a. (cit. on pp. 44, 45,
47, 50, 135, 146).

Salome Maro and Jan-Philipp Steghöfer. Capra: A Configurable and Extendable
Traceability Management Tool. In Proceedings of the 24th IEEE International
Requirements Engineering Conference (RE), pages 407–408, Beijing, China, 2016.
IEEE. (cit. on pp. 44, 45, 47, 50, 147).

Richard F. Paige, Nikolaos Drivalos, Dimitrios S. Kolovos, Kiran J. Fernandes,
Christopher Power, Goran K. Olsen, and Steffen Zschaler. Rigorous identification
and encoding of trace-links in model-driven engineering. Software and Systems
Modeling, 10(4):469, 2011. (cit. on pp. 44, 45, 47, 50, 145).

Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-based traceability: a
comprehensive approach. Software and Systems Modeling, 9(4):473–492, 2010.
(cit. on pp. 44, 45, 47, 50, 135, 150).

Andreas Seibel, Regina Hebig, and Holger Giese. Traceability in Model-Driven
Engineering: Efficient and Scalable Traceability Maintenance. In Software and

165

BIBLIOGRAPHY

Systems Traceability, pages 215–240. Springer, 2012. (cit. on pp. 44, 45, 47, 50,
135, 151).

Pan Ying, Tang Yong, and Ye Xiaoping. Software Artifacts Management Based on
Dataspace. In Proceedings of the WASE International Conference on Information
Engineering, volume 2 of ICIE ’09, pages 214–217, Taiyuan, Chanxi, China, 2009.
IEEE. (cit. on pp. 44, 45, 48, 50, 152).

Mik Kersten and Gail C. Murphy. Using Task Context to Improve Programmer
Productivity. In Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), volume 14, pages 1–11, Portland,
OR, USA, 2006. ACM. (cit. on pp. 57, 59, 75).

Kim Herzig and Andreas Zeller. The Impact of Tangled Code Changes. In Proceed-
ings of the 10th International Working Conference on Mining Software Reposito-
ries (MSR@ICSE), pages 121–130, San Francisco, CA, USA, 2013. ACM/IEEE.
(cit. on pp. 59, 115).

Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. Hey! Are
You Committing Tangled Changes? In Proceedings of the 22nd International
Conference on Program Comprehension (ICPC), pages 262–265, Hyderabad, In-
dia, 2014. ACM. (cit. on pp. 59, 115).

Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Prentice
Hall, Upper Saddle River, NJ, USA, first edition, 2001. (cit. on p. 76).

Marcus Seiler and Barbara Paech. Using Tags to Support Feature Management
Across Issue Tracking Systems and Version Control Systems. In Proceedings of
the 23rd International Working Conference - Requirements Engineering: Founda-
tion for Software Quality (REFSQ), volume 10153 of Lecture Notes in Computer
Science (LNCS), pages 174–180, Essen, Germany, 2017. Springer. (cit. on p. 77).

Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164,
2008. (cit. on p. 117).

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. Springer, Berlin,
Heidelberg, first edition, 2012. (cit. on p. 117).

Robert K. Yin. Case Study Research and Applications: Design and Methods. Sage
Publications Ltd., sixth edition, 2018. (cit. on p. 117).

Patrick Mäder, Orlena Gotel, and Ilka Philippow. Enabling Automated Traceability
Maintenance by Recognizing Development Activities Applied to Models. In Pro-

166

BIBLIOGRAPHY

ceedings of the 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 49–58, L’Aquila, Italy, 2008a. IEEE. (cit. on p. 135).

Patrick Mäder, Orlena Gotel, Tobias Kuschke, and Ilka Philippow. traceMaintainer
– Automated Traceability Maintenance. In Proceedings of the 16th IEEE Inter-
national Requirements Engineering Conference (RE), pages 329–330, Barcelona,
CT, Spain, 2008b. IEEE. (cit. on p. 135).

Patrick Mäder, Orlena Gotel, and Ilka Philippow. Rule-Based Maintenance of Post-
Requirements Traceability Relations. In Proceedings of the 16th IEEE Interna-
tional Requirements Engineering Conference (RE), pages 23–32, Barcelona, CT,
Spain, 2008c. IEEE. (cit. on p. 135).

Patrick Mäder, Orlena Gotel, and Ilka Philippow. Semi-automated Traceability
Maintenance: An Architectural Overview of traceMaintainer. In Proceedings of
the 31st International Conference on Software Engineering, Companion Volume
(ICSE-C), pages 425–426, Vancouver, Canada, 2009. IEEE. (cit. on p. 135).

Patrick Mäder, Orlena Gotel, and Ilka Philippow. Getting Back to Basics: Pro-
moting the use of a Traceability Information Model in Practice. In Proceedings
of the 5th International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE@ICSE), pages 21–25, Vancouver, BC, Canada, 2009. IEEE.
(cit. on p. 135).

Patrick Mäder and Orlena Gotel. Ready-to-Use Traceability on Evolving Projects.
In Software and Systems Traceability, pages 173–194. Springer, 2012b. (cit. on p.
135).

Mona Rahimi. Trace Link Evolution across Multiple Software Versions in Safety-
Critical Systems. In Proceedings of the 38th International Conference on Software
Engineering, Companion Volume (ICSE-C), pages 871–874, Austin, TX, USA,
2016. ACM. (cit. on p. 135).

Hannes Schwarz. Towards a Comprehensive Traceability Approach in the Context of
Software Maintenance. In Proceedings of the 13th European Conference on Soft-
ware Maintenance and Reengineering (CSMR), Architecture-Centric Maintenance
of Large-SCale Software Systems, pages 339–342, Kaiserslautern, Germany, 2009.
IEEE. (cit. on p. 135).

Andreas Seibel, Stefan Neumann, and Holger Giese. Dynamic hierarchical mega
models: comprehensive traceability and its efficient maintenance. Software and
Systems Modeling, 9(4):493, 2010. (cit. on p. 135).

167

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	I Preliminaries
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions
	1.4 Research Methodology
	1.5 Structure of the Thesis
	1.6 Previous Publications

	2 Fundamentals
	2.1 Data Sources
	2.1.1 Issue Tracking Systems
	2.1.2 Version Control Systems
	2.1.3 Source Code Structure
	2.1.4 Interaction Data
	2.1.4.1 Interactions of Developers
	2.1.4.2 Usage of Interaction Data

	2.2 Traceability
	2.2.1 Automatic Trace Link Creation
	2.2.2 Information Retrieval
	2.2.2.1 Preprocessing
	2.2.2.2 Indexing
	2.2.2.3 Trace link Creation Techniques
	2.2.2.4 Link Candidate Processing

	2.2.3 Commit-based and Further Trace Link Creation Techniques

	2.3 Measurement Fundamentals
	2.3.1 Gold Standard
	2.3.2 Evaluation Measures

	II Problem Investigation
	3 Quality of Trace Link Creation: State of the Art
	3.1 Method
	3.1.1 Review Method
	3.1.2 Research Questions
	3.1.3 Overview of Literature Selection

	3.2 Results
	3.2.1 Overview of Trace Link Creation Approaches and Answers to the Research Questions
	3.2.2 Summary and Discussion

	4 Trace Link Maintenance: State of the Art
	4.1 Method
	4.1.1 Review Method
	4.1.2 Research Questions

	4.2 Publication Search
	4.3 Results
	4.3.1 Overview of Trace Link Maintenance Approaches and Answers to the Research Questions
	4.3.2 Summary and Discussion

	III Treatment Design
	5 Interaction Log Recording-based Trace Link Creation
	5.1 Overview
	5.2 Details
	5.2.1 Interaction Event Capturing
	5.2.1.1 Manual Assignment
	5.2.1.2 Commit Based Assignment

	5.2.2 Trace Link Creation
	5.2.3 Trace Link Improvement
	5.2.3.1 Precision
	5.2.3.2 Recall
	5.2.3.3 Combined

	6 Integration of Trace Link Maintenance
	6.1 Approach Selection
	6.2 Integration of Trace Link Maintenance Capabilities

	IV Treatment Validation
	7 Overview of Evaluation Studies
	7.1 Evaluation Projects
	7.1.1 Mylyn
	7.1.2 Student Internship 2017 – Healthcare
	7.1.3 Student Internship 2018 – Indoor Navigation

	7.2 Data Processing
	7.2.1 General Alignment of Interactions and Source Code
	7.2.2 Mylyn
	7.2.3 Student Internship 2017
	7.2.4 Student Internship 2018

	7.3 Gold Standard Creation
	7.4 Evaluation Tool Support
	7.5 Trace Link Creation Techniques
	7.6 Proceeding of Evaluation Studies and their Characteristics

	8 Using Interaction Logs for Trace Link Creation
	8.1 Experiment Design
	8.1.1 Research Questions
	8.1.2 Trace Link Creation
	8.1.3 Data Evaluation

	8.2 Results
	8.2.1 Evaluation of IL and IR based Trace Link Creation
	8.2.2 Source Code Structure based Recall Improvement

	8.3 Conclusion

	9 Improvement Techniques for Interaction Log Trace Links
	9.1 Experiment Design
	9.1.1 Research Questions
	9.1.2 Part 1: Initial Trace Link Creation
	9.1.3 Part 2: Precision Improvement Techniques

	9.2 Results
	9.2.1 Part 1: Precision and Recall for the Initial Evaluation
	9.2.2 Part 2: Precision and Recall Using Improvement Techniques
	9.2.3 Discussion

	9.3 Conclusion

	10 Using Commits and Interactions for Trace Link Creation
	10.1 Retrospective Study
	10.2 Experiment Design
	10.2.1 Research Questions
	10.2.2 Trace Link Creation

	10.3 Results
	10.3.1 Commit-based Interaction Assignment – ILCom
	10.3.2 Comparison of ILCom and ComL
	10.3.3 Comparison of ILCom and IR
	10.3.4 Discussion

	10.4 Conclusion

	11 Discussion
	11.1 Threats to Validity
	11.2 Evaluation Studies Summary

	V Conclusion
	12 Summary
	13 Future Work

	VI Appendix
	A Supplementary Material for Trace Link Maintenance SLR
	A.1 Publication Search
	A.1.1 Keyword Pre-Search
	A.1.2 Scientific Database Specific Query Adaption
	A.1.3 Distinct Approach Filtering

	A.2 Results
	A.2.1 Detailed Description of Trace Link Maintenance Approaches

	Bibliography

