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Zusammenfassung

Die Wechselwirkung mit elektromagnetischer Strahlung oder freien Elektronen kann in

Atomen und Molekülen zu mannigfaltigen Umformungsprozessen führen. Solche Streu-

prozesse können elastischer Natur sein oder aber inelastisch. In diesem Fall können ver-

schiedene Produkte gebildet werden, die sich durch ihre jeweiligen Quantenzustände un-

terscheiden. Die Produktverteilung ist dabei abhängig von der Art der Wechselwirkung

und der beteiligten Teilchen sowie von der dabei übertragenen Energie.

Zu den beobachtbaren Prozessen gehören elektronische Anregungen, Photoionisations-

prozesse sowie die Bildung elektronischer Resonanzzustände. Letztere können aus unter-

schiedlichen Anregungsprozessen hervorgehen oder durch Absorption langsamer Elektro-

nen gebildet werden und sind metastabil bezüglich elektronischer Zerfallsreaktionen. In

dieser Dissertation wird die Weiterentwicklung und Implementierung quantenchemischer

Propagator-Methoden und deren Anwendung in Studien einer Auswahl der oben genann-

ten Prozesse beschrieben.

Insbesondere werden verschiedene störungstheoretische Ansätze auf Basis des algebra-

isch-diagrammatischen Konstruktionsverfahrens (ADC) für den Elektronen- und Polarisa-

tions-Propagator verwendet. Im Rahmen dieser Methoden sind elektronische Einteilchen-

Eigenschaften über die sogenannte intermediate state representation (ISR) zugänglich,

mithilfe derer sich ADC-Wellenfunktionen explizit darstellen lassen. Die ADC-Schemata

dritter Ordnung [ADC(3)] können dabei dadurch verbessert werden, dass der in den

zugehörigen Gleichungen auftretende energieunabhängige Teil der sogenannten Selbst-

energie dritter Ordnung Σ(3) durch eine entsprechende Größe vierter Ordnung ersetzt

wird, die zusätzlich Terme höherer Ordnung berücksichtigt und durch das selbstkonsis-

tente Σ(4+)-Iterationsverfahren berechnet werden kann. Im Rahmen dieser Arbeit wurde

diese Methodik mit ADC für Ionisierungspotentiale (IP-ADC), ADC für Elektronenaffi-

nitäten (EA-ADC), sowie zum ersten Mal auch mit ADC für elektronische Anregungen

(PP-ADC) kombiniert.

Im ersten Teil dieser Dissertation werden Photoionisationsprozesse untersucht, deren

theoretische Beschreibung durch IP-ADC möglich ist. Im Rahmen dieser Arbeit wurde

die Implementierung der IP-ADC(3)-Methode im quantenchemischen Programm Q-Chem
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durch die Möglichkeit erweitert, Photoelektronen-Intensitäten zu berechnen, wodurch die

Simulation von Photoelektronen-Spektren mit IP-ADC(3) nun möglich ist. Andere neue

Funktionalitäten unterstützen die Interpretation von Ionisierungsprozessen durch Visu-

alisierung von Dyson-Orbitalen und weiterer Größen wie beispielsweise Detachment- und

Attachment-Dichten, die sich von der Einteilchen-Dichtematrix ableiten und mithilfe der

ISR berechnet werden können.

In einer Benchmark-Studie wurde die Genauigkeit der IP-ADC(3)/ISR(2)-Methode zur

Berechnung von Ionisierungspotentialen und Einteilchen-Eigenschaften untersucht, indem

die für 44 elektronische Zustände kleiner Moleküle berechneten Werte mit hochgenauen

Ergebnissen der Konfigurations-Wechselwirkungs-Methode verglichen wurden. Dabei wur-

de für Ionisierungspotentiale ein mittlerer absoluter Fehler von |∆| ≈ 0.2 eV gefunden.

Der entsprechende relative Fehler für Dipolmomente beträgt |∆| = 19 %. Der Nutzen der

Dichtematrix-basierten Visualisierung von Photoionisationsprozessen wird in einer zweiten

IP-ADC(3)-Studie anhand des Beispiels des freien Radikals Galvinoxyl aufgezeigt.

Der zweite Teil dieser Arbeit beschäftigt sich mit elektronischen Resonanzzuständen.

Aufgrund der ungebundenen Natur solcher Zustände stellt deren theoretische Beschrei-

bung eine große Herausforderung dar. Zwei der bisher zur Behandlung solcher Zustände

im Rahmen der Standard-Methoden der Quantenchemie entwickelten Ansätze werden im

Rahmen dieser Dissertation eingehender betrachtet.

Zunächst wird die effiziente Implementierung der Fano-Stieltjes-ADC-Methode im quan-

tenchemischen Programmpaket Q-Chem beschrieben. Zum ersten Mal wurden dabei

das dritte-Ordnungs-Schema PP-ADC(3) sowie die unrestricted -Varianten der PP-ADC-

Schemata mit dem Fano-Stieltjes-Ansatz kombiniert. Die Anwendbarkeit der neuartigen

Implementierung auf die Berechnung elektronischer Resonanzzustände in mittelgroßen or-

ganischem Molekülen wird anhand des Beispiels von Naphthalin aufgezeigt.

Als zweite Möglichkeit zur Beschreibung elektronischer Resonanzzustände wurde eine

Kombination der komplexen Absorptions-Potential-Methode (CAP) mit PP-ADC(3) und

EA-ADC(3) in Betracht gezogen und weiter untersucht. Die mit der Q-Chem-Imple-

mentierung der neuartigen CAP-EA-ADC- und CAP-PP-ADC-Methoden berechneten

Ergebnisse zeigen eine hervorragende Übereinstimmung mit experimentellen Daten und

hochgenauen theoretischen Berechnungen. Die untersuchten Resonanzzustände umfassen

den 2Πg-Zustand des Distickstoff-Anions und die niedrigsten π∗-Resonanzzustände der

Anionen der nicht-konjugierten organischen Diene Norbornadien und 1,4-Cyclohexadien.

Die neuen CAP-EA-ADC(3)-Ergebnisse bestätigen bisherige Studien, die einen starken

through-bond -Wechselwirkungs-Mechanismus für die Umkehrung der natürlichen energeti-

schen Reihenfolge der π∗-Molekülorbitale von 1,4-Cyclohexadien verantwortlich machen.
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Abstract

Interactions of atoms or molecules with electromagnetic radiation or free electrons can

induce a variety of transformations. Apart from elastic scattering processes, in which the

quantum states of the involved particles are preserved, inelastic scattering may occur.

The distribution of product states depends on the kind of the interacting particles and the

energy transferred in the scattering process.

Among the possible transformations are electronic excitation, photoionization and the

formation of electronic resonances, i.e., metastable electronic states which undergo subse-

quent decay by emission of an electron. The latter states can evolve in electronic excitation

processes or as a result of electron attachment. In this dissertation, the implementation

and application of quantum chemical propagator methods for the description of the above-

mentioned processes are presented.

More specifically, a number of perturbation theoretical methods based on the algebraic

diagrammatic construction (ADC) schemes for the electron propagator and the polariza-

tion propagator are considered. In the framework of these methods, one-electron properties

are available via the intermediate state representation (ISR) approach, which enables the

computation of the explicit form of the respective wave functions. The third-order static

self-energy Σ(3) appearing in the third-order ADC(3) equations can thereby be replaced

by an improved fourth-order quantity resulting from the so-called Σ(4+)-procedure, and

this option has been explored in the context of ADC for ionization potentials (IP-ADC),

electron affinities (EA-ADC) and, for the first time, excitation energies (PP-ADC).

In the first part of this dissertation, photoionization processes are considered, whose

theoretical treatment is possible using IP-ADC(3). In the course of this work, the existing

implementation of IP-ADC(3) in the Q-Chem quantum chemical program package has

been extended by the possibility to compute photoelectron intensities, and therefore, to

simulate photoelectron spectra. Other newly implemented features enable the interpreta-

tion of ionization transitions by means of visualization of Dyson orbitals and one-particle

density matrix-based quantities as, e.g., detachment and attachment densities, which are

available via the second-order ISR(2) approach.

The accuracy of the IP-ADC(3)/ISR(2) methodology with respect to ionization po-

III



tentials and one-particle properties of electron-detached states has been evaluated in a

subsequent benchmark study. Therein, the results obtained for 44 electronic states of

small molecules are compared to high-level configuration interaction results. For this set

of transitions, ionization potentials exhibit a mean absolute error of |∆| ≈ 0.2 eV. For

dipole moments, a relative error of |∆| = 19 % is found. In a second IP-ADC(3) study,

the applicability of the newly implemented density matrix-based analyses for the interpre-

tation of photoelectron spectra is demonstrated using the example of the galvinoxyl free

radical.

In the second part of this dissertation, electronic resonances are addressed. Due to the

unbound nature of the involved electronic states, their theoretical treatment is challenging.

Different theoretical approaches for their description within the framework of standard

quantum chemical methods have been devised, two of which are considered in this work.

First, the efficient implementation of the Fano-Stieltjes-ADC method in the Q-Chem

program is presented. For the first time, the third-order PP-ADC(3) scheme as well

as various unrestricted PP-ADC schemes have been combined with the Fano-Stieltjes

formalism. The applicability of the implementation for the description of resonances in

medium-sized organic molecules is demonstrated in a study of a Feshbach resonance in

the naphthalene molecule.

As a second option for the theoretical treatment of electronic resonances, the combi-

nation of the subspace-projected complex absorbing potential (CAP) method with PP-

ADC(3) and EA-ADC(3) is considered. Results obtained using the novel CAP-EA-ADC

and CAP-PP-ADC methods as implemented in the Q-Chem quantum chemical program

package show an excellent agreement with theoretical best estimates and experimental data

in studies of π∗ shape resonances in unsaturated molecules. Among the studied resonance

states are the 2Πg resonance of the dinitrogen anion as well as the lowest π∗ resonances

of the anions of the non-conjugated organic dienes norbornadiene and 1,4-cyclohexadiene.

CAP-EA-ADC(3) calculations are in line with previous findings and show that a strong

through-bond interaction mechanism reverses the natural ordering of the π∗ molecular

orbitals in 1,4-cyclohexadiene.
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Chapter I

Introduction

Atoms and molecules can undergo a large variety of transformations. Among the possible

processes are interactions with electromagnetic radiation as well as with free electrons.

Many of these transformations have been studied experimentally, and considerable knowl-

edge about the electronic structure of matter has been gathered. The interpretation of

experimental results can thereby be facilitated by accompanying theoretical investigations.

In fact, physical modelling of the respective processes often makes an understanding pos-

sible at all.

In the course of this work, a number of theoretical methods have been developed and

implemented, each of them designated for a specific electronic structure problem. This

chapter provides a brief introduction to these methods and the processes which can be

studied by their means.

One class of processes, which is considered in this thesis, is constituted by different

ionization processes of atoms and molecules. These can proceed via different pathways,

each of which starts with the interaction of the respective particle with a second particle

or with electromagnetic radiation. During the interaction process, energy is transferred

onto the atom or molecule to be ionized. In the case of interaction with electromagnetic

radiation or, adopting the picture of a projectile hitting a target, with a photon, the energy

transferred corresponds to the energy of this absorbed photon, and the description of the

Parts of this chapter have already been published in

• A. L. Dempwolff, M. Schneider, M. Hodecker, A. Dreuw, “Efficient Implementation of the Non-
Dyson Third-Order Algebraic Diagrammatic Construction Approximation for the Electron Propa-
gator for Closed- and Open-Shell Molecules”, J. Chem. Phys. 2019, 150, 064108.

• A. L. Dempwolff, A. C. Paul, A. M. Belogolova, A. B. Trofimov, A. Dreuw, “Intermediate State
Representation Approach to Physical Properties of Molecular Electron-Detached States: I. Theory
and Implementation”, J. Chem. Phys. 2020, 152, 024113.
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2 I. Introduction

underlying mechanism falls into the regime of photochemistry.

Besides the case of elastic scattering, the system may experience inelastic scattering,

yielding a manifold of different reaction products. The product distribution is determined

by the nature of the absorption process and the transferred energy. Among the observ-

able processes are resonant electronic excitations as well as non-resonant photoionization

processes leading to cationic species, the latter being one of the objectives of this disserta-

tion. A more detailed discussion of the theoretical methods implemented in this work and

subsequently used for the description of photoionization transitions is given in Section I.1.

In the case of resonant electronic excitation, a special case may occur if the generated

ionized or excited species ends up in an electronic state characterized by an energy higher

than the particle’s ionization potential. Such systems are usually not stable and relax by

subsequent emission of a free electron into the continuum. The respective processes are

commonly summarized under the term autoionization. Closely related by means of their

unbound nature are metastable anions with or without bound ground states, which can be

formed under certain circumstances when a free electron is absorbed by a neutral particle.

A common feature of all mentioned states in the energetic continuum region is their finite

lifetime. They are examples for electronic resonances, which are the second objective of

this dissertation. A more detailed introduction to this topic is given in Section I.2.

I.1. Direct Photoionization

The ionization potential (IP) is a fundamental molecular property defined as the energy

required to remove one electron from the system, thus corresponding to the energy differ-

ence between the final ionized state and the initial neutral state. From this perspective,

IPs are one-electron properties and can often be interpreted with reasonable accuracy in

the single-particle picture of molecular orbitals (MOs) and their corresponding orbital en-

ergies. However, the single-particle picture breaks down for higher ionization potentials

as well as in strongly correlated systems.[1]

Ionization potentials are physical observables which can be measured in the gas phase for

example via photoelectron or photoemission spectroscopy (PES).[2] In these experiments,

the molecules are ionized by X-ray or UV radiation of photon energy Eph, and the kinetic

energy Ekin of the emitted electron is recorded, yielding the photoelectron spectrum. The

spectrum is directly related to ionization potentials via the equation IP = Eph − Ekin,

reflecting Einstein’s explanation of the photoelectric effect.[2] More recently, time-resolved

PES was successfully used to investigate reaction intermediates.[3, 4] Furthermore, the IP

is also of general interest to chemical and material science since it is directly related to
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oxidation potentials and can thus serve as a molecular “ruler” for hole transport materials

in organic semi-conductors.[5, 6]

The simplest and most straightforward way for a theoretical estimation of IPs is to rely

on Koopmans’ or Janak’s theorems in Hartree–Fock (HF) or density functional theory

(DFT), respectively, which are valid in the single-particle picture and state that the neg-

ative energy of an occupied orbital is equal to the ionization potential.[7, 8] Koopmans’

theorem (KT) is usually a fairly accurate first approximation, since two effects are ne-

glected, i.e., orbital relaxation upon ionization, and electron correlation (in the HF case),

which counteract one another. The typical error, however, is still of the order of 1–2 eV.

A possible way to improve upon Koopmans’ theorem is to perform two separate self-

consistent field (SCF) HF calculations for the neutral N -electron and the ionized (N −1)-

electron species and to take the difference of the two absolute energies. This approach is

referred to as ∆SCF method which, however, usually underestimates IPs since the cationic

species is stabilized due to the inclusion of orbital relaxation while electron correlation is

still neglected. The latter can be accounted for by using, e.g., second-order Møller-Plesset

(MP) perturbation theory or coupled-cluster methods,[9, 10] yielding so-called ∆MP2 or

∆CC values. Furthermore, all of these “∆-methods” suffer from the disadvantages that

two separate calculations have to be carried out, which do not necessarily converge to the

desired state, and that the intrinsic errors of the two calculations accumulate.

Thus, it is generally desirable to obtain IPs directly in one calculation. To this end,

several quantum chemical methods have been devised. In particular, various Green’s

function or propagator[11, 12] based computational schemes have been developed, which

nowadays belong to standard tools of quantum chemistry.[13–17] They allow for a direct

evaluation of vertical transition energies and amplitudes of single-electron detachment and

attachment processes and are widely used in studies of molecules, clusters and ions.[1, 18–29]

Viable electron propagator methods were obtained using the algebraic-diagrammatic con-

struction (ADC) approach.[30, 31] The latter represents a general procedure for deriving

higher-order approximation schemes,[13, 32–36] referred to as ADC(n) schemes.

All ADC schemes share a number of useful properties which make them highly compet-

itive in practical applications.[13] ADC computational schemes are Hermitian eigenvalue

problems with ADC matrix elements given by regular perturbation-theoretical (PT) ex-

pansions of Møller-Plesset type. The explicit ADC configuration spaces are distinctly

smaller than those required within configuration interaction (CI) at similar PT accu-

racy, which is known as the compactness of ADC approximations.[37, 38] As a result, ADC

schemes feature the best ratio of PT accuracy and computational effort among comparable

quantum-chemical methods.[39, 40] Another property of ADC schemes is size consistency,
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which guarantees size-intensive results for transition energies and amplitudes.[41]

In the case of the electron propagator G(ω), the ADC procedure can be applied either

to the self-energy Σ(ω) of the Dyson equation[11, 12] or to the propagator itself. This

yields two families of approximations, referred to as Dyson ADC[30] and non-Dyson ADC

(nD-ADC)[31] schemes, respectively.

Dyson ADC schemes were derived up to the ADC(4) level of theory.[30] These methods

were frequently used, usually in combination with a fourth-order treatment of the static

self-energy Σ(∞) within the framework of the Dyson-expansion method (DEM),[21, 42] im-

proving the overall accuracy of ADC results. In particular, various implementations of the

ADC(3) scheme[21, 43, 44] were successfully employed in studies of valence-shell ionization

processes (see, e.g., Refs. [1, 21, 45–58]).

Examples of Dyson propagator methods not related to the ADC approximation in-

clude earlier superoperator,[59–61] equation-of-motion (EOM)[62, 63] and two-particle-one-

hole Tamm-Dancoff (2ph-TDA)[21] approaches, as well as the more recent renormalized

third-order method (3+)[22] and nondiagonal renormalized second-order method (NR2)[64].

Simpler schemes are the outer-valence Green’s function (OVGF),[21, 22, 65–67] partial third-

order (P3)[68, 69] and renormalized partial third-order (P3+)[70] diagonal self-energy meth-

ods. The performance of many contemporary Dyson electron propagator methods was

investigated in a series of recent comprehensive benchmark studies.[71–73]

A notable disadvantage of the Dyson approaches is that the G− and G+ parts of the

propagator are coupled by means of the Dyson equation, and the ensuing computational

schemes are formulated with respect to both (N −1)- and (N +1)-electron configurations.

This leads to difficult numerical procedures and increased computational costs, since only

one type of solution (for the electron detachment or electron attachment problem) is

typically sought at a time. This is achieved in the nD-ADC approach in which decoupling

of the (N−1)- and (N+1)-electron spaces leads to IP-ADC (ADC for ionization potentials)

and EA-ADC (ADC for electron affinities), depending on whether the ADC procedure is

applied to the G− or G+ propagators.[31] Using these methods, valence-shell electronic

processes become easily tractable since the desired eigenvalues, i.e., electron detachment

and electron attachment energies, are located at the low energy edge of the spectrum,

rather than in the middle as in the Dyson approaches.

A first pilot implementation of IP-ADC(3)[74] was used to perform calculations for a

series of prototype molecules, and various IP-ADC schemes were compared. IP-ADC(3)

and Dyson-ADC(3) were found to have virtually the same accuracy when similar approx-

imations to the static self-energy are employed.

The first efficient implementation of IP-ADC(3) for closed- and open-shell molecules
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was recently realized within the Q-Chem software.[75–77] In the course of this disserta-

tion, this implementation was extended by a number of features, including the possibility

to compute spectral intensities of ionization transitions, making the simulation of pho-

toelectron spectra possible and allowing for the visualization of ionization processes by

means of Dyson orbitals. In addition, the existing code was extended by an improved

fourth-order treatment of the static self-energy using the Σ(4+) scheme,[74] which was

subsequently also integrated into the EA-ADC and PP-ADC (ADC for the polarization

propagator) implementations in Q-Chem, enabling the treatment of electron attachment

and electronic excitation processes on an improved third-order level.

The key advantage of nD-ADC approaches over Dyson methods is the existence of the

basis of explicit correlated states, the so-called intermediate states (IS),[37, 38, 78, 79] in

which the nD-ADC equations are formulated. IP-ADC schemes are thus similar to the

equation-of-motion ionization potential coupled-cluster (CC) methods (EOM-IP-CC),[79–88]

which are obtained by representing Ĥ−E0 in a basis of biorthogonal CC correlated excited

states.[37, 79] The availability of explicit expressions for the intermediate state basis opens

a new dimension for IP-ADC applications, since wavefunctions of electron-detached states

become accessible, and various one-electron properties can thus be calculated.[74]

In the course of this dissertation, the scope of the Q-Chem implementation of the

second-order intermediate state representation (ISR) expressions for the one-particle (tran-

sition) density[89] was extended to allow for the inclusion of one-electron potentials in the

Hamiltonian as well as density-based analyses. These techniques have been used in a num-

ber of computational studies,[90–98] however, only closed-shell systems could be treated.

The new implementation also enables the investigation of electron detachment processes

in open-shell molecules, and a related study is presented in Chapter V. Moreover, the

IP-ADC/ISR methodology was benchmarked with respect to full configuration interac-

tion (FCI) data, covering an comprehensive range of closed- and open-shell systems. The

results of this benchmark study are presented in Chapter IV.

I.2. Electronic Resonances

Electronic resonances can be described as discrete states embedded in a continuum.[23, 99]

Due to their interaction with the continuum they possess a finite lifetime τ , which is

connected to the decay width Γ by the inverse relation

τ =
ℏ
Γ
. (1.1)
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Figure I.1. Schematic illustration of an anion shape resonance. The anionic species (AB−, orange
potential curve) possesses a higher energy than its own continuum (AB + e−, blue potential curve),
but is trapped behind a potential barrier. Adapted from Ref. [101].

Consequently, the energy of an electronic resonance Eres is a discrete quantity, which,

as a matter of fact, is complex. It is commonly referred to as Siegert energy,[100] and the

characteristic parameters of the resonance, i.e., the resonance position Er and width Γ are

accessible as its real and imaginary part, i.e.,

Eres = Er − i
Γ

2
. (1.2)

Resonance states can be distinguished by different means, the most commonly used

classification being the distinction between shape and Feshbach resonances. In general,

the latter can only relax via two-electron processes, while the decay mechanism of shape

resonances only involves one-particle transitions. In the following, an overview of the

characteristics of different resonance types is given.

I.2.1. Shape Resonances

Electronic shape resonances are metastable states possessing electronic energies above their

own continua.[101] This means that an electron may be ejected by means of a one-electron

process, the released energy being transferred to this electron as kinetic energy. For this

reason, shape resonances are often also referred to as open-channel resonances. Due to the

one-particle nature of the decay mechanism, shape resonances are usually short-lived with

typical lifetimes in the range of τ ∼ 1 fs, corresponding to decay widths of Γ ∼ 0.1 . . . 1 eV.

Figure I.1 schematically displays the situation encountered for a typical shape resonance

at the example of a diatomic molecule AB. If an electron with a suitable kinetic energy
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close to the vertical attachment energy (VAE) enters the system, it may be absorbed in

a vertical electron attachment process. Depending on the energetics, the anionic system

can relax to its minimum geometry by internal conversion. At this point, emission of the

electron in a vertical detachment process is characterized by a positive vertical detach-

ment energy (VDE), making the process unfeasible. However, the AB potential surface is

accessible by tunneling through the potential barrier at a slightly distorted geometry.

Figure I.1 also demonstrates another common observation in the context of anion reso-

nances, i.e., that the ground state of an anionic species can be a resonance state. In fact,

such situations are very common, and shape resonances thus occur in a large variety of

molecular systems. Experimentally, they have been detected in many unsaturated[102–104]

as well as saturated[104, 105] organic compounds using, e.g., electron energy loss (EEL) or

electron transmission spectroscopy (ETS). Besides temporary anions, shape resonances

can also be encountered in highly excited or core-ionized electronic systems.[99, 101]

I.2.2. Feshbach Resonances

The second class of electronic resonances considered in this dissertation are Feshbach

resonances, which are resonance states energetically lying below their own continua. In

that sense, they are also called closed-channel resonances, meaning that a decay to the

ground state of the electron-detached species is only possible via two-electron processes.[101]

The lifetimes of electronic Feshbach resonances are consequently considerably higher than

those of shape resonances, and are typically found to be in the range of τ ∼ 10 fs . . . 1 ps.

Because of the two-electron nature of the decay mechanism of this type of resonances,

a large variety of possible relaxation pathways exists, some of which include energy and

even electron transfer from or to neighboring atoms or molecules. Feshbach resonances are

electronically exited states which can be prepared by means of various kinds of transitions,

including electronic excitation, ionization as well as electron attachment.

In order to classify different Feshbach-type autoionization processes with respect to the

number of particles involved in the overall process, the type of the initial excitation or

ionization (the initial, bound or decaying state) as well as the nature of the state the

system relaxes to (the final or continuum state), a variety of naming conventions has been

introduced. A non-exhaustive collection of named processes is shown in Figure I.2.

In the following, some of the processes indicated in Figure I.2 will be discussed in more

detail. A first classification of Feshbach resonances can be accomplished by considering

the kind of transition leading to the initial state, which can be a resonant or non-resonant

process.
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Figure I.2. Logical diagram illustrating naming conventions for different flavors of Feshbach
autoionization. Each dashed box represents a named process, classified by means of the properties
apparent from the intersection of the colored property boxes it covers.

Non-Resonant Processes

In non-resonant autoionization processes, the decaying state is usually formed by pho-

toionization of a neutral particle, leading to a cationic species. If the vacancy created

in this ionization process is located in the inner valence shell or the electronic core, the

system ends up in an electronically excited state. Subsequent relaxation to the ground

state can lead to autoionization if the released energy is transferred onto a valence electron

which then leaves the system. Its kinetic energy is thereby determined by the energy of the

decaying state and its ionization potential as well as the type of the electronic relaxation.

The most prominent example for non-resonant autoionization processes is the Auger

decay [106, 107] which is sketched in Figure I.3. It occurs when core-ionizing an atom or

molecule and the core-vacancy (indicated in the center of Figure I.3) is subsequently filled

by an electron from a higher shell. The system can then relax by emission of a second

(usually outer shell) electron. The special case in which the initial vacancy is filled by an

electron from a higher subshell of the same shell is also called Coster-Kronig transition.

When going from isolated atoms or molecules to clusters consisting of two or more

weakly bound particles, another mechanism of electronic decay becomes available, which
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Figure I.3. Schematic illustration of the Auger decay as a special case of autoionization of a
core-ionized state.

has been named interatomic or intermolecular coulombic decay (ICD). The effect has first

been predicted theoretically[108] and was later confirmed experimentally.[109] The respec-

tive process can be pictured as follows: A particle can undergo photoionization by emitting

an electron originating from the inner valence or an inner shell to the continuum. The

resulting ionized species subsequently relaxes by filling the vacancy with an electron from

the outer valence shell. If now an Auger-like process is not possible because the parti-

cle’s second IP is too high to be overcome by the amount of energy released during the

relaxation, an electronic decay can still happen if a second particle in the vicinity has a

sufficiently low IP. In this case a doubly ionized system with one positive charge resid-

ing at each particle can be formed by energy transfer to the second particle by Coulomb

interaction and subsequent electronic decay.

Closely related to ICD are processes in which the initial vacancy is filled by an elec-

tron originating from a neighboring particle. The corresponding processes thus involve

charge redistribution or electron transfer between different particles and have been termed

electron-transfer mediated decay (ETMD).[110, 111] If the second ionization takes place on

the particle from which the electron was transferred, two particles are involved and the

process is called ETMD(2). As another option, ionization may occur at a third particle,

in which case one speaks of ETMD(3).

Resonant Processes

In contrast to non-resonant decay mechanisms, autoionizing states can also evolve from

resonant electronic excitation. Compared to non-resonant processes, the probability of

generating an autoionizing species is highly increased. In addition, decaying states pro-

duced by resonant photon absorption can generally relax via different pathways, which can

be distinguished by means of the electronic configuration of the final ionized species. If the

initial vacancy is filled by the initially excited electron, the final state is characterized by a

singly-excited configuration and the process is termed participant. By contrast, processes
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Figure I.4. Schematic illustration of possible autoionization processes of electronically excited systems.
An excited state (middle) may relax by emission of an electron into the continuum a) via the
participant pathway, leading to a single hole-particle (1h1p) final state, or b) via the spectator
pathway, leading to a double hole-particle (2h2p) final state.

where the vacancy is filled by a second electron are called spectator decays, in which case

the final state is overall doubly-excited with respect to the electronic ground state. The

different decay pathways are illustrated at the example of resonant Auger decay in Figure

I.4.

As a matter of fact, many non-resonant decay processes also have a resonant counterpart,

as for example resonant Auger decay[112] and resonant ICD (RICD).[113] An additional

flavor of ICD-like processes, which exists only in the context of resonant decay mechanisms,

is the so-called excitation transfer ionization (ETI).[114] In this case, the initial species is

an outer valence-excited state which cannot decay by means of a resonant Auger decay.

The excitation energy may, however, be sufficient to ionize a neighboring particle, in

which case an ICD-like process becomes possible. In this context, the enhancement of the

autoionization efficiency has been compared with a radio setup consisting of an antenna

coupling the system to a radiation field, a receiver consuming the harvested energy and a

route to transfer the energy between them.[115] In this picture, the particle in which the

initial excitation occurs would be the antenna and the finally ionized particle the receiver.

The energy transfer route would be constituted by Coulombic interaction.

I.2.3. Electronic Resonances in Biological Systems

During the past few years it has been recognized that electronic resonances play a fun-

damental role in biological systems. This is especially true for ICD processes, since these
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have been identified as a source of slow electrons[116] which are known to be active in

radiation damage.[117, 118] Recently, it has been shown that slow electrons can evolve in

a complicated chain of ultrafast ICD and ETMD processes following Auger decay in a

solvated metal ion, as found in the active site of many biomolecules.[119]

Another process in which low-energy electrons created in an ICD process have been

found to play a vital role is the light-driven DNA repair by (6-4) photolyases.[120–122] In

the respective process, an initial excitation by UV radiation occurs in an antenna pigment.

Electronic relaxation triggers an ICD in a neighboring reduced flavin adenine dinucleotide

(FADH−) molecule. The ICD electron originating from this process is subsequently trans-

ferred to the DNA lesion, triggering its repair.

I.2.4. Theoretical Approaches to the Problem of Electronic Resonances

The need for a theoretical description of autoionization processes, in particular the calcu-

lation of lifetimes and decay widths Γ, was recognized very early. A first treatment of the

problem was reported as early as 1927 by Wentzel.[123]

One of the main difficulties encountered in this context arises from the fact that the

involved scattering wavefunctions are not square-integrable and consequently cannot be

treated directly within the framework of standard quantum chemical methods relying on

L2 basis set representations. To overcome this issue, different theoretical approaches have

been devised, two of which are considered in this work. In this section, a short overview

of these methods is given.

Complex Absorbing Potentials

One possibility to deal with electronic resonances in the framework of L2-integrable quan-

tum chemical methods is the complex absorbing potential (CAP) method. It is motivated

by the fact that resonance states are characterized by discrete complex Siegert energies. It

is thus straightforward to analytically continue the Hamiltonian into the complex energy

plane,[124] which can in principle be done using different approaches.

In the CAP method, the Hamiltonian is augmented by a complex one-particle potential,

thereby making all its eigenfunctions L2.[99, 125] It has been combined with a number

of electronic structure methods, among them Dyson-ADC,[23, 126, 127] different EOM-CC

schemes,[99, 128, 129] extended multi-configurational quasi-degenerate perturbation theory

of second order (XMCQDPT2),[130] symmetry-adapted cluster-configuration interaction

(SAC-CI),[131] and IP-ADC.[90] It has been noted that, due to the one-particle nature

of the added potential, CAP methods have mostly been applied in the context of shape
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resonances.[128] However, there have been also studies of Feshbach resonances which yielded

satisfactory results.[130]

The CAP can be added to the Hamiltonian at different stages. For the use in wave

function-based methods, it can already be considered during the Hartree-Fock calculation,

and this approach has been followed in the context of EOM-CC methods.[99, 128]. Another

possibility is to include it at the post-Hartree-Fock stage. In ADC or CC methods, for

example, a suitable basis set representation of the CAP may be added to the respective

Hamiltonian before diagonalization.[99]

In a computationally more feasible approach, the CAP is applied a posteriori, i.e., ex-

panded into a subspace of electronic states computed using a standard electronic structure

method. This formalism has first been used in the context of SAC-CI[131] and later also

in conjunction with XMCQDPT2.[130]

In the course of this dissertation, the subspace projection approach has been used for

the realization of the CAP-PP-ADC and CAP-EA-ADC methods. For this purpose, the

intermediate state representation for EA-ADC[74] had to be implemented. In addition,

the EA-ADC implementation in Q-Chem was extended to allow for the computation and

visualization of Dyson orbitals. In Chapter VIII, conceptual and computational aspects

of the new method are addressed, and a study of anionic shape resonances in unsaturated

organic molecules is presented.

Fano-Stieltjes-ADC

Another methodology devised to deal with electronic resonances in the framework of stan-

dard quantum chemical methods is the Fano formalism. It relies on the projection method

introduced by Feshbach.[132, 133] Within configuration interaction-like schemes, the Hamil-

tonian is projected onto different subspaces built up from a selection of configurations

suitable to describe the resonance state and the decay channels, respectively. This formal-

ism was first proposed by Fano[134] and later further developed by Hazi[135] and, in the

context of atomic Auger decay, by Howat and coworkers.[136–138]

More recently, the method was successfully applied in conjunction with IP- and PP-ADC

for the description of various autoionization processes as, e.g., atomic Auger decay,[139]

resonant Auger decay of atoms and molecules,[140, 141] ICD, ETI or ETMD[124, 139] as well

as for the calculation of total photoionization cross-sections.[142]

The resonance state as well as the final states are obtained by diagonalization of suitably

projected Hamiltonian matrix representations. The decay width can then be determined

by evaluating the coupling matrix elements between a resonance state and all accessible

final states. In order to correct for wrongly discretized final state wavefunctions, postpro-
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cessing using the so-called Stieltjes imaging technique is usually required.[143]

In this dissertation, an efficient implementation of the Fano-Stieltjes-ADC method for

resonantly excited resonance states as introduced in, e.g., Refs. [140] and [141] is presented.

For the first time, the third-order PP-ADC as well as unrestricted PP-ADC schemes were

combined with the Fano-Stieltjes approach. In Chapter VII, results obtained using the

novel implementation in the Q-Chem quantum chemical program package are presented,

including the investigation of some conceptual aspects as well as the application to elec-

tronic resonances in medium-sized organic molecules.





Chapter II

Theoretical Methodology

The aim of this chapter is to give an overview of the theoretical methods which have

been implemented in the course of this dissertation and were subsequently employed for

the description of various ionization processes and properties of the resulting electron-

detached states.

The basic concepts of the ADC approximation are introduced in Section II.1 using the

example of IP-ADC, which can be employed to describe, e.g., direct photoionization from

bound molecular ground states. The presented ADC derivation via the intermediate state

representation formalism is, however, completely general and can in principle be applied

to other propagators as well, reflected in a different set of excitation operators acting on

the N -electron ground state.

In particular, electron-number preserving electronic excitation may be addressed by

ADC for the polarization propagator. This option has been used in this work in conjunc-

tion with the Fano-Stieltjes method for the description of autoionization processes starting

from metastable electronic states, which is covered in Section II.2.

Another method which can be employed to compute resonance energies and lifetimes

of metastable electronic states is the complex absorbing potential method, in which the

molecular Hamiltonian is augmented by a complex potential, thereby making all its eigen-

functions purely L2. The methodology introduced in Section II.3 is particularly suited for

the description of low-lying shape resonances as usually found in temporary anions. It is

therefore a natural choice to combine it with EA-ADC, which offers the possibility to com-

Parts of this chapter have already been published in

• A. L. Dempwolff, A. C. Paul, A. M. Belogolova, A. B. Trofimov, A. Dreuw, “Intermediate State
Representation Approach to Physical Properties of Molecular Electron-Detached States: I. Theory
and Implementation”, J. Chem. Phys. 2020, 152, 024113.

15
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pute electron-attached states based on an N -electron reference state. It can, however, also

be combined successfully with PP-ADC, when a (possibly metastable) (N − 1)-electron

reference state is employed.

II.1. Algebraic Diagrammatic Construction for Ionization

Potentials

II.1.1. Electron Propagator

The physical content of the electron propagator, also known as one-particle Green’s func-

tion, is most explicit in its so-called spectral representation[13]

Gpq(ω) =
∑︂

n ∈ {N+1}

⟨︁
ΨN

0

⃓⃓
cp
⃓⃓
ΨN+1

n

⟩︁⟨︁
ΨN+1

n

⃓⃓
c†q
⃓⃓
ΨN

0

⟩︁
ω + EN

0 − EN+1
n + iη

+
∑︂

n ∈ {N−1}

⟨︁
ΨN

0

⃓⃓
c†q
⃓⃓
ΨN−1

n

⟩︁⟨︁
ΨN−1

n

⃓⃓
cp
⃓⃓
ΨN

0

⟩︁
ω + EN−1

n − EN
0 − iη

.

(2.1)

Here
⃓⃓
ΨN

0

⟩︁
denotes the exact (nondegenerate) N -electron ground state of energy EN

0 , and

c†p and cp denote creation and destruction operators of second quantization, respectively,

associated with the HF orbital |φp⟩. The summations are performed over exact (N ± 1)-

electron states
⃓⃓
ΨN±1

n

⟩︁
with energies EN±1

n , and iη is a positive infinitesimal.

As follows from Eq. (2.1), the negative poles of G(ω) can be identified as electron

detachment energies In = EN−1
n −EN

0 (ionization potentials, IP) and electron attachment

energies An = EN
0 −EN+1

n (electron affinities, EA). The corresponding residues correspond

to the spectroscopic factors

x(n)p = ⟨ΨN−1
n |cp|ΨN

0 ⟩, n ∈ {N − 1} (2.2)

x(n)p = ⟨ΨN
0 |cp|ΨN+1

n ⟩, n ∈ {N + 1} (2.3)

which define the probabilities of the ionization and electron attachment events. More

specifically, the partial photoelectron cross-section σn is, to a good approximation, pro-

portional to the pole strength Pn which is defined with respect to x
(n)
p according to

σn ∝ Pn =
⃓⃓⃓∑︂

p

x(n)p

⃓⃓⃓2
. (2.4)

Simplified definitions of the pole strength can also be found in the literature, such as

Pn ≈
∑︁

p

⃓⃓
x
(n)
p

⃓⃓2[74] and Pn ≈
⃓⃓
x
(n)
p

⃓⃓2
.[21] In the latter case only the dominant term related

to orbital p is taken into account.
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The structure of Eq. (2.1) shows the electron propagator to consist of the (N + 1)- and

(N − 1)-electron parts G+(ω) and G−(ω),

G(ω) = G+(ω) + G−(ω), (2.5)

which can in principle be treated independently. This strategy is pursued in the non-

Dyson approach to the electron propagator,[31] contrasting methods based on the Dyson

equation.

II.1.2. Non-Dyson Approach to the Electron Propagator

In an independent treatment of the (N +1)- and (N −1)-parts of the electron propagator,

distinct computational schemes for IPs and EAs are obtained.[31]

Using matrix notation, the spectral representation of G−(ω) (given by the second term

of the right-hand side of Eq. (2.1)) can be rewritten as

G̃(ω) = x†(ω −Ω)−1x (2.6)

where G̃(ω) = G−(ω)t with the infinitesimal iη being dropped, and Ω and x are matrices

with elements Ωnm = −(EN−1
n −EN

0 )δmn and x
(n)
p , respectively, the latter defined accord-

ing to Eq. (2.2). In the IP-ADC approach, the spectral representation (2.6) is substituted

by a more general ADC representation,

G̃(ω) = f †(ω −M)−1f , (2.7)

where the matrix of “effective interaction” M is a nondiagonal analogue of the diago-

nal matrix Ω, and the matrix of “effective transition amplitudes” f is the corresponding

generalization of the matrix of the spectroscopic amplitudes x.

The Equations (2.6) and (2.7) are related by unitary transformation Y,

f †YY†(ω −M)−1YY†f = x†(ω −Ω)−1x, (2.8)

which connects the basis of exact (N − 1)-electron states
⃓⃓
ΨN−1

n

⟩︁
with the basis of the so-

called intermediate states (IS)
⃓⃓
Ψ̃

N−1
J

⟩︁
, in which the ADC equations are formulated:[37, 78]

⃓⃓
ΨN−1

n

⟩︁
=

∑︂
J

YJn
⃓⃓
Ψ̃

N−1
J

⟩︁
, YJn =

⟨︁
Ψ̃

N−1
J

⃓⃓
ΨN−1

n

⟩︁
. (2.9)

As can be seen from Eq. (2.8), the ionization potentials can be extracted from the ADC
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representation (2.7) of G−(ω) by solving the Hermitian eigenvalue problem

MY = YΩ, Y†Y = 1. (2.10)

This computational step yields the ionization energies given by the eigenvalues Ωn ≡ Ωnn

and information on the electronic structure of the final states
⃓⃓
ΨN−1

n

⟩︁
contained in the

corresponding eigenvectors Yn. The spectroscopic amplitudes can then be found according

to Eq. (2.8) as

x = Y†f . (2.11)

The matrix of effective interaction M can be viewed as (N − 1)-electron representation

of the shifted Hamiltonian Ĥ − EN
0 in the IS basis:

MIJ =
⟨︁
Ψ̃

N−1
I

⃓⃓
Ĥ − EN

0

⃓⃓
Ψ̃

N−1
J

⟩︁
. (2.12)

Accordingly, the effective transition amplitudes f are given by matrix elements

fIp =
⟨︁
Ψ̃

N−1
I

⃓⃓
cp
⃓⃓
ΨN

0

⟩︁
. (2.13)

II.1.3. Intermediate State Representation

Once the intermediate states are known at some level of approximation, M and f can be

evaluated. The construction of the (N − 1)-electron IS proceeds in two steps.[37, 38, 78, 79]

In the first step, the so-called (N − 1)-electron “correlated excited states”
⃓⃓
Ψ#N−1

J

⟩︁
are

obtained by acting with (N − 1)-excitation operators ĈJ on the N -electron ground state⃓⃓
ΨN

0

⟩︁
: ⃓⃓

Ψ#N−1
J

⟩︁
= ĈJ

⃓⃓
ΨN

0

⟩︁
. (2.14)

Here J is a compound index enumerating classes of (N−1)-electron configurations such as

one-hole (1h), two-hole-one-particle (2h-1p), . . . , and ĈJ denotes operators which generate

the respective classes of configurations when acting on the HF ground state,

{ĈJ} ≡ {ci, c†acicj , c†aĉ
†
bcicjck, . . . }, a < b < . . . , i < j < k < . . . . (2.15)

Here and in the following, the subscripts a, b, . . . and i, j, . . . refer to unoccupied (virtual)

and occupied orbitals relative to the HF ground state, respectively, and p, q, r, . . . label

general orbitals.

In the second step, the intermediate states
⃓⃓
Ψ̃

N−1
J

⟩︁
are generated by Gram-Schmidt (GS)

orthogonalization of the (N − 1)-electron correlated excited states
⃓⃓
Ψ#N−1

J

⟩︁
belonging to
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different ionization classes,

{︁⃓⃓
Ψ#N−1

J

⟩︁}︁ GS−→
{︁⃓⃓

Ψ̃
N−1
J

⟩︁}︁
, (2.16)

accompanied by symmetric orthogonalization of the states within each class.

In the ADC approach, the M and f matrices are assumed to have their own perturbative

expansions in the residual electronic interaction,[74]

M = M(0) + M(1) + M(2) + . . . (2.17)

f = f (0) + f (1) + f (2) + . . . . (2.18)

The explicit expressions for M and f can be derived using Eqs. (2.12) and (2.13) by

constructing intermediate states
⃓⃓
Ψ̃

N−1
J

⟩︁
and employing perturbative representations of the

N -electron ground state
⃓⃓
ΨN

0

⟩︁
and the ground state energy EN

0 ,[31, 78] assuming Møller-

Plesset partitioning of the Hamiltonian.[9]

Identical equations are derived using a diagrammatic perturbation expansion of G−(ω).[31]

However, for computing one-electron properties of electron-detached states one has to re-

sort to the ISR, since the explicit form of the respective (N − 1)-electron wave functions

needs to be known for this purpose.

II.1.4. One-Particle Properties of Ionized Species

The intermediate states can be constructed explicitly and used for the representation of a

general one-particle operator D̂ according to

˜︁DIJ =
⟨︁
Ψ̃

N−1
I

⃓⃓
D̂
⃓⃓
Ψ̃

N−1
J

⟩︁
. (2.19)

In second-quantization, D̂ is given as

D̂ =
∑︂
pq

dpqc
†
pcq, (2.20)

where dpq = ⟨φp|d̂|φq⟩ denote the one-particle matrix elements associated with D̂, and the

matrix element (2.19) can be rewritten as

˜︁DIJ =
∑︂
pq

dpq
⟨︁
Ψ̃

N−1
I

⃓⃓
c†pcq

⃓⃓
Ψ̃

N−1
J

⟩︁
. (2.21)

Once ˜︁D is known, the transition matrix elements Tnm between the electron-detached
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states
⃓⃓
ΨN−1

n

⟩︁
and

⃓⃓
ΨN−1

m

⟩︁
can be found,

Tnm(D̂) ≡
⟨︁
ΨN−1

n

⃓⃓
D̂
⃓⃓
ΨN−1

m

⟩︁
= Y†

n
˜︁DYm, (2.22)

where Yn and Ym are eigenvectors of the ADC secular equation (2.10) for the states⃓⃓
ΨN−1

n

⟩︁
and

⃓⃓
ΨN−1

m

⟩︁
, respectively.

A computationally slightly different route to the desired one-particle properties is im-

plied by Eq. (2.21). With its help, the transition matrix element (2.22) can be recast

as

Tnm(D̂) =
∑︂
pq

dpq
∑︂
IJ

Y †
In

⟨︁
Ψ̃

N−1
I

⃓⃓
c†pcq

⃓⃓
Ψ̃

N−1
J

⟩︁
YJm, (2.23)

or, using matrix notation, as

Tnm(D̂) =
∑︂
pq

dpqY
†
nρ̃pqYm = Tr(dρnm). (2.24)

Therein, d is the matrix representation of the operator D̂ with elements dpq, and ρ̃ and ρ

are the one-particle transition density matrices defined with respect to the intermediate

states and the final electron-detached states, respectively, with the matrix elements being

ρ̃IJ,pq =
⟨︁
Ψ̃

N−1
I

⃓⃓
c†pĉq

⃓⃓
Ψ̃

N−1
J

⟩︁
and ρnm,pq =

⟨︁
ΨN−1

n

⃓⃓
c†pĉq

⃓⃓
ΨN−1

m

⟩︁
.

The one-particle density matrix ρn ≡ ρnn for a particular electron-detached state⃓⃓
ΨN−1

n

⟩︁
can obviously be represented as a sum of the N -electron ground state density

matrix ρ0 and the difference density matrix ∆n,

ρn = ρ0 + ∆n, (2.25)

where the difference density matrix ∆n is defined as

∆n = ρn − ρ0. (2.26)

Accordingly, the expectation value of D̂ for the state
⃓⃓
ΨN−1

n

⟩︁
can be written as

Tnn = Tr(dρn) = D0 + Tr(d∆n) , (2.27)

where D0 denotes the N -electron ground state expectation value of D̂, defined as D0 =

Tr(dρ0).

In a similar way, the whole one-particle transition density matrix ρ defined with respect
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M(µ)
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M(λ)
22M(ν)

21

M(ν)
12

1h

1h

2h-1p

2h
-1
p

f(κ)1,h

f(γ)2,p0

f(η)1,p

h p

ρ̃
(µ)
11

ρ̃
(λ)
22ρ̃

(ν)
21

ρ̃
(ν)
12

1h 2h-1p

M/ρ̃ f
Scheme

µ ν λ κ η γ

IP-ADC(3) 0,2,3 1,2 0,1 0,2,3 2,3 1,2

IP-ADC(2) 0,2 1 0 0,2 2 1
ISR(2) 0,1,2 0,1 0
ISR(0) 0 0 0

Figure II.1. Block structure of the M and f matrices in the IP-ADC schemes and the ρ̃ matrix in the
ISR schemes along with the order of the perturbative expansions for matrix elements from different
blocks. The subscripts 1 and 2 are used to label 1h and 2h-1p entries, respectively, and h and p label
hole (occupied) and particle (virtual) HF orbital indices, respectively.

to the final electron-detached states can be partitioned. It can be constructed as a matrix

comprising the electron-detached state density matrices ρn and transition density matrices

ρnm as diagonal and off-diagonal blocks, respectively,

ρ = 1⊗ ρ0 + ρ′, (2.28)

where the quantity ρ′ can be considered as generalized difference density matrix, with

blocks equal to ∆n in the case of the diagonal elements and identical with ρnm otherwise,

ρ′
nm =

⎧⎨⎩∆n, n = m

ρnm, n ̸= m.
(2.29)

The knowledge of ρ′ together with ρ0 allows any expectation value and transition prop-

erty with respect to the final electron-detached states to be evaluated using Eqs. (2.24)

and (2.27).

In the intermediate state basis, the one-particle operator ˜︁D and the transition density

matrix ρ̃ are, similar to the ADC quantities M and f , subject to perturbative expansion,

˜︁D = ˜︁D(0) + ˜︁D(1) + ˜︁D(2) + . . . (2.30)

ρ̃ = ρ̃(0) + ρ̃(1) + ρ̃(2) + . . . , (2.31)
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reflected in their block structure as depicted in Figure II.1. Throughout this work, the

approximation level employed for ˜︁D or ρ̃ is denoted as ISR(n). The ISR(n) approximation

scheme allows for a consistent n-th order description of the transition matrix elements

Tnm for the final electron-detached states
⃓⃓
ΨN−1

n

⟩︁
and

⃓⃓
ΨN−1

m

⟩︁
derived from the lowest

ionization class, i.e., dominated by one-hole configurations.

The ISR(n) treatment can be combined with eigenvectors Y from various IP-ADC(m)

schemes. This leads to a family of IP-ADC(m)/ISR(n) approximations consistent through

order l = min(n,m).

II.1.5. Ground State One-Particle Density Matrix and Static

Self-Energy

In the present formulation of the IP-ADC/ISR equations, the ground state density matrix

ρ0 contribution represents a separate term, suggesting suitable treatments of ρ0 to be

employed. In the ISR(2) scheme, the ground state density should be treated at least

through second order of PT for consistent second-order results. In the IP-ADC(3) scheme

a third-order ρ0 is available through the equation[31]

ρ0 = f †f , (2.32)

where a consistent third-order treatment of the effective transition amplitudes f is assumed.

However, contributions up to 6th order are generated because of the PT expansion of f as

given by Eq. (2.18).

For reasons of consistency, supported also by computational tests, a “perturbative” eval-

uation of Eq. (2.32), in which higher-order terms are dropped, is preferable. Considering

the block structure of the effective transition moments matrix f as depicted in Figure II.1,

the third-order perturbation expansions of the diagonal blocks of ρ0 are given by

ρ0,hh = f
(0)
1,h + 2 f

(2)
1,h +

(︁
f
(3)
1,h + f

(3)†
1,h

)︁
+ O(4) (2.33)

ρ0,pp = f
(1)†
2,p f

(1)
2,p + f

(1)†
2,p f

(2)
2,p + f

(2)†
2,p f

(1)
2,p + O(4), (2.34)

where it has been used that f
(2)
1,h is Hermitian and that f

(0)
1,h = ρ

(0)
0,hh = δij .

For the off-diagonal blocks of the one-particle ground state density matrix ρ0,hp (and

ρ0,ph) the reverse relation to Eq. (2.32),

f1,p = ρ
− 1

2
0,hh ρ0,hp, (2.35)
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can be evaluated. Considering that ρ0,hp = O(2) and ρ0,hh = δij + O(2), one obtains an

expression consistent through third order of perturbation theory,

ρ0,hp = f
(2)
1,p + f

(3)
1,p + O(4). (2.36)

Higher-order contributions to ρ0 can be introduced in the form of infinite partial summa-

tions, when an improved fourth-order treatment of the static self-energy Σ(∞) is employed

in the evaluation of f . The static self-energy Σ(∞) contributes to the matrix elements

f
(3)
i,a ,[31, 74]

f
(3)
i,a =

1

εi − εa

(︁
Σ
(3)
ai (∞) + M

(3)+
ai (εi) + M

(3)−
ai (εa)

)︁
, (2.37)

where M
(3)±
ak are the third-order dynamic self-energy contributions given in Section III.3.1,[21]

and εp denote HF orbital energies. A strict third-order treatment of Σ(∞) is not sufficient

for systematically accurate results.[42, 74, 144] A general procedure referred to as Dyson-

expansion method or Σ(DEM) was developed and used as a part of the Dyson ADC(3)

scheme.[42] In a procedure more appropriate for the non-Dyson IP-ADC approach, referred

to as Σ(4+) method,[31] one sets out from the expression for the matrix elements of the

static self-energy,[13]

Σpq(∞) =
∑︂
r,s

⟨pr||qs⟩ ρcsr , (2.38)

where

ρcsr =
⟨︁
Ψ0

⃓⃓
c†r ĉs

⃓⃓
Ψ0

⟩︁
−
⟨︁
Φ0

⃓⃓
c†rcs

⃓⃓
Φ0

⟩︁
(2.39)

is the matrix element of the difference density ρc = ρ0 − ρ
(0)
0 , with ρ

(0)
0 being the HF

density matrix and ⟨pr||qs⟩ anti-symmetrized two-electron Coulomb integrals in Physicist’s

notation. A fourth-order approximation to Σ(∞) can then be obtained by substituting

a third-order ρ0 in Eq. (2.38). Since according to Eq. (2.37), the f (3) again depends on

Σ(∞), Eqs. (2.36) through (2.38) can be considered as a set of equations for finding Σ(∞),

which can be solved iteratively.

It should, however, be noted that the Σ(4+) procedure is not equivalent to the Σ(DEM)

scheme, where a more complete partial summation of terms beyond fourth order is achieved.

In the present IP-ADC(3) implementation the Σ(4+) treatment is adopted as standard,

and the corresponding improved third-order ρ0 is used in the ISR(2) implementation.
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II.1.6. Density Analysis of Electron-Detached States

For the interpretation and understanding of detachment and attachment processes, anal-

ysis of the changes in the electronic structure is highly desirable. Therefore, approaches

based on difference density functions and Dyson orbitals are useful. Both approaches are

easily implemented in the context of the density-based formulation of the IP-ADC/ISR

method.

The difference density function ∆n(r) for state
⃓⃓
ΨN−1

n

⟩︁
is defined as

∆n(r) = ρn(r) − ρ0(r) (2.40)

where ρn(r) and ρ0(r) are the density functions associated with the electron-detached state⃓⃓
ΨN−1

n

⟩︁
and the ground state

⃓⃓
ΨN

0

⟩︁
, respectively.[145] The difference density function and

matrix of Eq. (2.26) are related via the typical equation

∆n(r) =
∑︂
pq

(∆n)pqφ
∗
p(r)φq(r) , (2.41)

where φp(r) and φq(r) are HF orbitals.

The difference density can be decomposed into attachment and detachment parts corre-

sponding to the addition and removal of electron density, respectively.[146] In the context

of ionization, the α- and β-spin parts of the considered quantities are treated separately.

The Dyson orbitals ϕn are defined as overlaps of the ground state wavefunction
⃓⃓
ΨN

0

⟩︁
with the electron-detached wavefunctions

⃓⃓
ΨN−1

n

⟩︁
.[13] The straightforward evaluation of

this quantity yields the following expression:

|ϕn⟩ =
∑︂
p

|φp⟩
⟨︁
ΨN−1

n

⃓⃓
ĉp
⃓⃓
ΨN

0

⟩︁
=

∑︂
p

x(n)p |φp⟩ , (2.42)

where |φp⟩ again denote HF orbitals, and x
(n)
p are the spectroscopic amplitudes which are

obtained in the IP-ADC calculations according to Eq. (2.2).

Dyson orbitals are linear combinations of the HF orbitals and allow the domain which

has been occupied by the detached electron to be visualized. Since low-energy electron-

detached states rarely demonstrate strong mixing of one-hole configurations, only one

dominant term is present in Eq. (2.42), and Dyson orbitals are usually largely equivalent

to HF orbitals. A limitation of Dyson orbitals is that they can be employed only for

studies of single-electron processes because the expansion coefficients decrease as the 2h-

1p-character of
⃓⃓
ΨN−1

n

⟩︁
increases and may even nearly vanish when the one-electron picture
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Figure II.2. Coordinates of a particle x relative to center of nuclear charges (CNC) and center of mass
(COM).

of ionization breaks down.[1] In contrast to Dyson orbitals, the difference density approach

is not affected by these limitations, and correlated wave functions of arbitrary complexity

can be analyzed.

II.1.7. Dipole Moments of Charged States

Treating all particles in a molecular system as point charges, the dipole moment relative

to the center of nuclear charges (CNC) is given as

µCNC =
∑︂
i

(−1) rCNC
i +

∑︂
k

ZkR
CNC
k (2.43)

=
∑︂
i

(−1) rCNC
i (2.44)

where the nuclear contribution has been dropped since, by definition of the center of

nuclear charges, ∑︂
k

ZkR
CNC
k = 0. (2.45)

In the expressions above, RCNC
k and rCNC

i are nuclear and electronic coordinates with

respect to the center of nuclear charges.

Using the corresponding coordinates relative to the center of mass (COM) rCOM
i and

RCOM
k (Figure II.2),

rCOM
i = rCNC

i − rshift (2.46)

RCOM
k = RCNC

k − rshift (2.47)



26 II. Theoretical Methodology

the dipole moment as seen from the center of mass is given as

µCOM =
∑︂
i

(−1) rCOM
i +

∑︂
k

ZkR
COM
k (2.48)

=
∑︂
i

(−1)
(︁
rCNC
i − rshift

)︁
+
∑︂
k

Zk

(︁
RCNC

k − rshift
)︁

(2.49)

= µCNC −Q · rshift. (2.50)

In the latter expression, Q denotes the net charge of the molecular system,

Q =
∑︂
i

(−1) +
∑︂
k

Zk . (2.51)

For neutral systems, Q = 0, meaning that in this case the dipole moment does not

depend on the gauge origin. In contrast, the dipole moment of charged molecular systems

is gauge dependent. For final states resulting from ionization from a neutral system

(Q = 1) or electron attachment to a neutral system (Q = −1), Eq. (2.50) yields

µCOM =

⎧⎨⎩µCNC − rshift ionization

µCNC + rshift electron attachment.
(2.52)

II.2. Fano-Stieltjes-ADC

For the description of metastable autoionizing wave functions using L2-integrable methods,

different approaches have been developed, one of which is the Fano formalism. A brief

outline of this method and its combination with ADC for the polarization propagator and

the Stieltjes imaging technique is given in this section.

II.2.1. The Fano Formalism

The basic postulate within the Fano formalism is that the exact wavefunction of a system

in the vicinity of an autoionizing state, i.e., at an energy E close to the resonance energy

Er, can be partitioned into a discrete bound-like component ϕ and a part of continuum-like

states χβ,ϵβ
[136, 140]

Ψα,E = aα(E)ϕ +

Nc∑︂
β

∫︂
bβ,α(E, ϵβ)χ+

β,ϵβ
dϵβ. (2.53)

Therein, ϕ is chosen to correspond to the decaying N -electron state of the system having
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the energy

Eϕ = ⟨ϕ|Ĥ|ϕ⟩. (2.54)

As continuum-like states χ+
β,ϵβ

all Nc energetically accessible decay channels are selected,

i.e., the final continuum states representing the ionized system together with an ejected

electron possessing the asymptotic kinetic energy

ϵβ = E − Eβ > 0, β = 1, . . . , Nc. (2.55)

There are two important features of the method in this context. First, the χ+
β,ϵβ

are

assumed to diagonalize the Hamiltonian of the system to a good approximation

⟨︁
χ+
β′,ϵ′β

⃓⃓
Ĥ − E

⃓⃓
χ+
β,ϵβ

⟩︁
≈ δβ′,β δ(Eβ′ + ϵ′β − Eβ − ϵβ) (Eβ + ϵβ − E). (2.56)

Second, no orthogonality between the bound-like and continuum-like components is

required.[133, 136] As will be discussed in Section II.2.2, the latter fact reasonably facilitates

the construction of the involved electronic states.

In order to obtain an expression for the decay width Γ, one proceeds as follows. The

wavefunction ansatz (2.53) is substituted into the time-independent Schrödinger equation

(Ĥ − E) ΨE = 0. (2.57)

Doing so and using relation (2.56), one obtains a system of equations coupling the ampli-

tudes of the bound-like and continuum-like components

(Eϕ − E) aα(E) +

Nc∑︂
β

∫︂
Mβ(E, ϵβ) bβ,α(E, ϵβ) dϵβ = 0

aα(E)M∗
β(E, ϵβ) + (Eβ + ϵβ − E) bβ,α(E, ϵβ) = 0,

(2.58)

where the bound-continuum coupling matrix elements

Mβ(E, ϵβ) =
⟨︁
ϕ
⃓⃓
Ĥ − E

⃓⃓
χ+
β,ϵβ

⟩︁
(2.59)

have been introduced.

The solution of equations (2.58) is discussed in detail in Refs. [136] and [138]. As a

result, the amplitude of the bound-like component aα(E) can be stated as

aα(E) =
Mα(E, ϵα)

E − Er − iπ
∑︁Nc

β |Mβ(E, ϵβ)|2
. (2.60)
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Defining the quantities Γ and γβ, respectively, by

Γ(E) =

Nc∑︂
β

γβ(E) = 2π

Nc∑︂
β

|Mβ(E, ϵβ)|2 (2.61)

and substituting them into Eq. (2.60) finally yields a Lorentzian expression for the squared

amplitude of the bound-like component:

|aα(E)|2 =
1
2γα/π

(E − Er)2 + Γ2/4
. (2.62)

It is visible from Eq. (2.62) that Γ has the meaning of a width of the bound amplitude.

The decay width of a given resonant state can thus be calculated by evaluating Eq. (2.61)

at the resonance energy E = Er, which is given as[135, 136, 138]

Er = Eϕ +

Nc∑︂
β

P
∫︂ |Mβ(E, ϵβ)|2

E − Eβ − ϵβ
dϵβ, (2.63)

where P denotes that the Cauchy principal value of the integral is to be taken. The second

term in Eq. (2.63) constitutes an energy shift due to the bound-continuum interaction.

Since its contribution to Er can be assumed to be smaller than the error in an ab initio

computation, it may be discarded, thereby approximating the resonance energy by the

expectation value of the Hamiltonian in the state ϕ, Er ≈ Eϕ.[138–140]

Given that the continuum-like components {χ+
β,ϵβ

} of the wavefunction of the autoion-

izing system are good approximations to the real final continuum states, the quantity γβ

can be identified as a partial decay width belonging to a specific open decay channel β.[137]

It is noteworthy that any other choice of the continuum wave functions {χβ,ϵβ} related to

the real continuum wave functions {χ+
β,ϵβ

} by a unitary transformation leads to the same

value for the total decay width Γ.[138, 139] This is easily seen if one substitutes Eq. (2.59)

into Eq. (2.61). Doing so, one obtains

Γ(E) = 2π

Nc∑︂
β

⟨︁
ϕ
⃓⃓
Ĥ − E

⃓⃓
χ+
β,ϵβ

⟩︁⟨︁
χ+
β,ϵβ

⃓⃓
Ĥ − E

⃓⃓
ϕ
⟩︁
, (2.64)

wherein the resolution of the identity can be replaced according to

Nc∑︂
β

⃓⃓
χ+
β,ϵβ

⟩︁⟨︁
χ+
β,ϵβ

⃓⃓
=

Nc∑︂
β

⃓⃓
χβ,ϵβ

⟩︁⟨︁
χβ,ϵβ

⃓⃓
. (2.65)
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Hence, Eq. (2.64) can be rewritten as

Γ(E) = 2π

Nc∑︂
β

⟨︁
ϕ
⃓⃓
Ĥ − E

⃓⃓
χβ,ϵβ

⟩︁⟨︁
χβ,ϵβ

⃓⃓
Ĥ − E

⃓⃓
ϕ
⟩︁
. (2.66)

II.2.2. Construction of Bound and Continuum States Within Fano-ADC

So far, the bound and continuum state wave functions ϕ and χβ,ϵβ have not been defined.

This can in general be done using the projection method by Feshbach.[132, 133] Within CI-

like formalisms, two projection operators P̂ and Q̂ are chosen such that they project on

configuration subspaces belonging to the final continuum states and the bound resonance

state, respectively.[134, 138]

The bound state projector Q̂ is constructed in such a way that it does not include any

components contributing to the open decay channels β, i.e., according to Eq. (2.55), states

lower in energy than the resonance state in question. More specifically, within the PP-

ADC scheme, intermediate states which constitute reasonable contributions to the states

representing open decay channels have to be excluded from Q̂. This leads to difficulties,

since knowledge of the P̂ ĤP̂ and Q̂ĤQ̂ spectra is required for the construction of P̂ and

Q̂, respectively.[140]

The problem can, however, be circumvented when treating the problem in zeroth order

of perturbation theory, viz taking orbital energy differences as a selection criterion. The

corresponding procedure can best be demonstrated by the application to a specific problem

as for example the 2s−13p transition in the neon atom.[140, 141]

Because of energy conservation, no singly-excited configurations having a hole in the 2s

orbital or in a deeper shell can contribute to the continuum states. Thus, all intermedi-

ate states constructed from the corresponding configurations are added to Q̂. Similarly,

no doubly-excited configurations with one hole at the 2s orbital or a deeper shell can

contribute to the continuum states, allowing the corresponding intermediate states to be

added to Q̂ as well. Mathematically, this selection scheme can be formulated by introduc-

ing additional constraints for the excitation operator employed in the ISR derivation of

the PP-ADC equations,

{︁
ĈJ

}︁
=

{︁
c†aci, εi ≤ ε2s; c

†
bc

†
ccjck, b < c, j < k, εj + εk ≤ ε2s

}︁
. (2.67)

For the selection of configurations for the construction of the P̂ projector, a similar

strategy can be applied. First, it is noticed that any singly-excited configuration with a

hole in one of the 2p orbitals represents an open decay channel and can thus be added
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Figure II.3. Schematic view of the selection scheme for Ne autoionization as used in Ref. [140].
Occupied orbitals considered for the construction of the bound and continuum state projection
operators Q̂ and P̂ are depicted in blue, virtual orbitals in green.

to P̂ . In order to account for electronic correlation, doubly-excited configurations having

two holes in the 2p shell are added to P̂ as well.

A schematic depiction of the selection scheme for the Ne autoionization process as ap-

plied in Ref. [141] can be found in Figure II.3. In addition to the selection discussed

above, the energetically low-lying 1s orbital has been excluded from the occupied orbital

space from which the configurations are generated, accounting for the fact that terms

emerging from its inclusion would not constitute a substantial contribution to the descrip-

tion of the regarded process. Note, that in the specific case of Ne 2s−1np autoionization,

doubly-excited configurations having two holes in the 2p shell may also be used for the

construction of Q̂ because they are not among the accessible final states due to symmetry

related reasons.[140]

Computation of Bound-Continuum Matrix Elements

Once the projection operators Q̂ and P̂ have been set up, the corresponding states are

obtained by diagonalization of Q̂ĤQ̂ and P̂ ĤP̂ , respectively.

When applying an appropriate selection scheme, the resonance state in question will usu-

ally be one of the lowest eigenstates of the Hamiltonian projected onto the Q subspace.

Hence, it is sufficient to compute only a few states at the lower bound of the Q̂ĤQ̂ spec-

trum, which can be done using an iterative solver like, e.g., the Davidson algorithm,[147]

and then to select the appropriate PP-ADC vector Y.

As will be discussed in Section II.2.3, the full P̂ ĤP̂ spectrum is generally needed in

order to find the desired decay width, making the method prohibitively computationally

demanding even for moderate-sized systems. It has, however, been demonstrated that the

demand for a full diagonalization of the Hamiltonian projected onto the P subspace can

be lifted by applying the iterative block-Lanczos diagonalization algorithm,[124, 141, 142, 148]

yielding continuum-state PP-ADC eigenvectors Xβ.

Using the PP-ADC vectors Y and Xβ, the bound-continuum coupling matrix elements
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Mβ(E, ϵβ) can be computed according to Eq. (2.59). The explicit expression is given by

Mβ(Er, ϵβ) = X†
βMY − Er

(︁
X†

βY
)︁
. (2.68)

wherein M is the PP-ADC secular matrix. The second term in Eq. (2.68) is thereby the

resonance energy multiplied by the overlap between the two states χβ,ϵβ and ϕ and may

be regarded as a correction term accounting for the fact that no orthogonality has been

enforced between the bound and continuum states.

II.2.3. Stieltjes Imaging

Having an explicit expression for the bound-continuum matrix elements at hand, the decay

width could in principle be calculated following Eq. (2.61). Since the continuum wave

functions have been constructed using the wrong boundary conditions, i.e., L2 boundary

conditions, the resulting states are unit normalized, whereas the real continuum states are

energy normalized. In addition, the L2 boundary conditions cause the continuum states

to form a discrete spectrum rather than a continuous one.[149] Hence, no physical meaning

can in general be ascribed to the continuum states.

Using the Stieltjes imaging technique, these shortcomings can be overcome and a mean-

ingful value for the decay width Γ can be extracted using the bound-continuum coupling

matrix elements calculated using the wrongly normalized discrete quasi-continuum states.

The idea is the following: The artificially discretized quasi-continuum states only fail to

approximate the real continuum state wave functions in the region where the bound state

wave function is effectively zero, i.e., in a region far from the nuclei. Hence, no contri-

bution from this region is included in the bound-continuum matrix elements according to

Eq. (2.59), meaning that the description of the bound-continuum interaction does, apart

from the wrong normalization, not suffer from the approximation introduced by imposing

the wrong boundary conditions.

The method was originally developed for the application to the calculation of total

photoionization cross-sections[143, 150] and was first applied to the problem of decay widths

by Hazi and coworkers.[135, 151] A brief outline of the basic concepts following Refs. [135]

and [141] is given in this section.

Consider the so-called cumulative function F (E) defined according to

F (E) =

E∫︂
dE′ Γ(E′) (2.69)
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or

Γ(E) =
dF

dE
. (2.70)

This function can be approximated by a histogram function

F̃ (E) = 0 0 ≤ E ≤ ϵ1 (2.71)

F̃ (E) =
k∑︂

β=1

γβ ϵk < E < ϵk+1, (2.72)

where the pairs {γβ, ϵβ} correspond to the width matrix elements calculated according to

Eq. (2.61) using the quasi-continuum states χβ,ϵβ and the respective energies ϵβ.

At the rise points, E = ϵk, the cumulative function F (E) is approximated by the mean

of the two neighboring levels

F̃ (ϵk) =
1

2

(︁
F̃ (ϵk − 0) + F̃ (ϵk + 0)

)︁
=

k−1∑︂
β=1

γβ +
1

2
γk. (2.73)

The Stieltjes derivative calculated according to Eq. (2.70) at the half-way points Eβ =
1
2(ϵβ + ϵβ+1) is then given as

Γ̃(Eβ) =
1

2

γβ + γβ+1

ϵβ+1 − ϵβ
. (2.74)

Inspecting the resulting expression reveals that the normalization constants associated

with the discrete states χβ,ϵβ are determined by the density of eigenvalues of the quasi-

continuum spectrum.

Eq. (2.74) could in principle be used as a histogram approximation to the decay width

Γ(E). The numerical values obtained from a corresponding calculation are, however, not

satisfying and tend to converge badly with improvement of the basis set used for the

calculation of the required states.[141] Therefore, the {γβ, ϵβ;β = 1, . . . , Nc} pairs are not

employed directly but first ‘smoothed’ using a moment theoretical approach. The concept

behind this is discussed in the remaining part of this section.

If the exact discrete and continuum functions φ and χ+
β,ϵβ

of the final states were known,

the spectral moments associated with the decay width Γ(E) could be stated as

Mn =
∑︂
i

En
i

⃓⃓⟨︁
ϕ|Ĥ − E|φi

⟩︁⃓⃓2
+

∞∫︂
Et

En
⃓⃓⟨︁
ϕ
⃓⃓
Ĥ − E

⃓⃓
χ+
β,ϵβ

⟩︁⃓⃓2
dE. (2.75)
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Therein, Et is the ionization threshold. Ei and E are the energies of the discrete and

continuum functions of the final states.

One can now replace the exact resolution of the identity in Eq. (2.75) with the one

constructed using the quasi-continuum functions χβ,ϵβ . Doing so, one obtains

Mn =
1

2π

∑︂
β

ϵnβ γβ. (2.76)

The summation over all quasi-continuum states β in this expression is the reason for the

general requirement for a full P̂ ĤP̂ diagonalization, as was already mentioned in Section

II.2.2.

Using a numerically efficient technique discussed in detail in Ref. [149], the first 2M

approximate inverse-power moments are used to obtain the ‘smoothed’ spectrum of value

pairs {︁
γ̄
(M)
β , ϵ̄

(M)
β , β = 1, . . . ,M ≤ N

}︁
. (2.77)

Repeating this procedure for increasing orders M , and substituting the resulting value

pairs (2.77) into Eq. (2.74), a series of histogram approximations for the decay width

Γ(E) can be created. The desired value for E = Er can finally be computed for increasing

orders M using an interpolation technique until the obtained Γ(Er) converges to a mutually

consistent value.

II.3. Complex Absorbing Potential ADC

Another method devised for the description of electronic resonances beyond the ionization

threshold is constituted by the complex absorbing potential method. In this section, a

basic overview of the methodology and its combination with EA-ADC is given.

II.3.1. The Complex Absorbing Potential Method

Augmenting the molecular Hamiltonian with a complex one-particle potential −iηŴ =

−iηW leads to a complex symmetric effective Hamiltonian

Ĥ(η) = Ĥ − iηŴ (2.78)

with a purely discrete spectrum and L2-integrable eigenfunctions.[125] Therein, the param-

eter η is used to control the strength of the CAP. The potential function Ŵ is required to
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have a non-negative real part,

Re{W (r)} ≥ 0 and Re{W (r)} → ∞ for r → ∞. (2.79)

In addition, the potential can be complex, in which case it has to hold that there exist

positive real numbers c0 and c1 such that[125]

|Im{W (r)}| ≤ c0 + c1 ·Re{W (r)}. (2.80)

In order to rationalize how a CAP works, one may consider its effect in the time-dependent

picture, where the real part of the Ŵ potential acts in a way that the outgoing electron is

absorbed.[23] If the imaginary part of Ŵ is non-zero, it can be interpreted as an additional

potential accelerating or slowing down the outgoing electron.

In the complete basis set limit, the exact Siegert energy Er of a resonance is recovered

as E(η) in the limit η → 0+. In practical applications with finite basis sets, one has to

resort to a larger potential strength in order to allow for a non-zero interaction of the CAP

with the resonance wave function in question. Using larger η values, however, leads to a

perturbation of the resonance wave function in the bound region of the electronic system

because a part of the outgoing electron is reflected by the potential. Therefore one has to

estimate the resonance energy from the spectrum of Ĥ(η) for large η values such that the

perturbation caused by the potential is minimized.

This can be accomplished when considering an expansion of the trajectory E(η) about

η̃, a CAP strength for which the error introduced by the spatial basis set deficit is

irrelevant,[23, 125]

E(η) = E(η̃) +
∞∑︂
n=1

1

n!

dnE(η)

dηn

⃓⃓⃓⃓
η=η̃

(η − η̃)n. (2.81)

Evaluation of this expansion at η = 0,

E(0) = E(η̃) − η̃
dE(η)

dη

⃓⃓⃓⃓
η=η̃

+
1

2
η̃2

d2E(η)

dη2

⃓⃓⃓⃓
η=η̃

+ · · · , (2.82)

leads to a measure for the error caused by the perturbation of the resonance wave function

by the CAP. Considering the uncorrected trajectory E(η), this error is given by

|E(η) − E(0)| =

⃓⃓⃓⃓
η

dE(η)

dη

⃓⃓⃓⃓
+ O(η2) (2.83)

=

⃓⃓⃓⃓
dE(η)

d ln η

⃓⃓⃓⃓
+ O(η2), (2.84)
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meaning that the best possible approximation to the exact Siegert energy is found for the

value of η which minimizes the linear term in the expansion (2.82) or, in other words, at

the minimum of the logarithmic velocity of E(η) in the complex energy plane.

Consequently, an even better approximation to the exact Siegert energy may be obtained

by considering the corrected trajectory

U(η) = E(η) − η
dE(η)

dη
, (2.85)

in which case the error to be minimized can be stated as

|U(η) − E(0)| =
1

2

⃓⃓⃓⃓
η2

d2E(η)

dη2

⃓⃓⃓⃓
+ O(η)3 (2.86)

=
1

2

⃓⃓⃓⃓
η

dU(η)

dη

⃓⃓⃓⃓
+ O(η3) (2.87)

=
1

2

⃓⃓⃓⃓
dU(η)

d ln η

⃓⃓⃓⃓
+ O(η3), (2.88)

meaning that in this case the best approximation to the exact Siegert energy E(0) is found

at the minimum of the logarithmic velocity of U(η).

The minima of the logarithmic velocity of the corrected trajectory E(η) and the uncor-

rected trajectory U(η) (Eqs. (2.84) and (2.88)) can be located by means of finite differ-

ences between eigenvalues of the effective Hamiltonian Ĥ(η) computed for different CAP

strengths η.

One may be tempted to proceed in the same manner and consider even higher-order

terms for the trajectory. It has, however, been pointed out that such a strategy does

not guarantee more accurate results, since the basis set error gets more pronounced with

increasing order in the expansion (2.82).[125] In practical applications, the first-order cor-

rected trajectory (2.85) has proven to yield satisfactory results. It should be noted that

results from this formalism are in principle only trustworthy in cases where the uncorrected

and corrected treatments yield rather similar results.

II.3.2. Shape of the Potential

Apart from the conditions (2.79) and (2.80), the mathematical form of the absorbing

potential has not yet been defined, and indeed a large class of potentials satisfies these

conditions. In practical applications, quadratic potentials have been successfully employed,

and this class of potentials was also used throughout this work.

In this section the most popular choices of quadratic potentials shall be briefly outlined.
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Figure II.4. Isosurface plot of a box CAP wrapped around a phenanthrene molecule drawn at values of
2.0 (purple) and 8.0 (light gray).

In general, the potential is designed such that it is zero in the inner region of the molecular

potential, i.e., in the bound region. The simplest potential is a shifted quadratic spherical

potential according to

W (r) = (r − c)2 (2.89)

with r =
√︁
x2 + y2 + z2 being the radial distance from the molecular center. The param-

eter c defines the onset of the potential.

Obviously, the angular shape of this potential type is a good choice to deal with atoms

and spherical molecular electronic systems. In addition, the point group symmetry of the

molecular Hamiltonian is always preserved upon addition of the CAP. For molecules with

a less isotropic spatial extent, however, different angular potential shapes are desirable.

One of the most widely used potentials is the so-called box CAP,[152] which has been

successfully employed for a variety of metastable states.[130, 153, 154] The angular shape is

determined by three cutoff parameters c = (cx, cy, cz)T defining a rectangular box around

the molecule inside which the CAP is zero. The box CAP then takes the form

W (r; c) =
∑︂
i

Wi(ri; ci), i = x, y, z (2.90)

Wi(ri; ci) =

⎧⎪⎪⎨⎪⎪⎩
(ri + ci)

2 ri < −ci

0 − ci ≤ ri ≤ ci

(ri − ci)
2 ci < ri.

(2.91)

As is visible from Figure II.4, such a choice fits the shape of a planar organic molecule

considerably better than a simple spherical CAP.
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Figure II.5. Shape of different complex absorbing potentials. Left: box CAP; right: “smoothed
Voronoi” CAP. Isosurfaces are drawn at potential values of 2.0 (purple) and 8.0 (light gray).

The downside of rectangular box CAPs is that the molecular point group may not be

preserved. In addition, molecular clusters with relatively large distances between individ-

ual fragments cannot be treated in a satisfactory way, when a non-zero CAP is needed

between the fragments. A depiction of such a situation is given in Figure II.5 with an

artificial example of a cluster of two water molecules, where the box CAP shown on the

left panel ignores the internal structure.

A more suitable way of defining the CAP is given by the so-called “smoothed Voronoi”

CAP (right panel of Figure II.5).[155] In this approach, the angular shape of the CAP is

determined by a single cutoff parameter rcut which defines the minimum distance from an

atom within the molecule at which the CAP can take non-zero values. At a point r in

space, the potential is then simply given as

W (r) =

⎧⎨⎩0 rWA ≤ rcut

(rWA − rcut)
2 rWA > rcut,

(2.92)

with rWA being a weighted-average distance according to

rWA(r) =

√︄∑︁
αwαr2α∑︁
αwα

. (2.93)

Therein, rα = ∥rα∥ = ∥r−Rα∥ is the distance between r and the coordinates Rα of atom

α, and the summations are carried out over all atoms α. The weight parameter wα is

given as

wα =
1(︁

r2α − r2nearest + (1 a.u.)2
)︁2 , (2.94)

with rnearest = ∥rnearest∥ = ∥r − Rnearest∥ being the distance between r and the atom
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closest to this point in space. Weights are large for atoms α which are close to r, i.e.,

which have similar distances as the nearest one, and small for atoms far away. As a result,

only a few atoms gain considerable weight in the summations performed in Eq. (2.94).

Using the weighted-average distance rather than employing rnearest directly in Eq. (2.92)

guarantees a smooth behavior of the potential at Voronoi cell edges.

II.3.3. Combining Complex Absorbing Potentials with ADC

In principle, the complex absorbing potential approach is applicable to any electronic

structure method allowing for the description of the considered electronic resonance. De-

pending on the method, there are, however, different routes to the CAP inclusion. More

specifically, within ADC schemes the effective CAP-augmented Hamiltonian can be formed

at different stages.

In a first implementation, the CAP was introduced during the diagrammatic derivation

of the Dyson-ADC equations.[23] Closely related is an approach followed in the context

of EOM-CC[153] where the CAP is introduced already at the stage of the Hartree-Fock

calculation, which is possible because the CAP is a one-particle potential. The resulting

orbital energies and electron repulsion integrals are complex and can directly be employed

in the ADC working equations. However, equations which have been optimized for com-

putational efficiency under the assumption that real basis functions are used would have

to be reformulated.

CAP Introduction via Intermediate State Representation

A more convenient way in conjunction with ADC schemes for which the intermediate

state representation is available is to form a CAP-augmented effective ADC Hamiltonian

by addition of the complex absorbing potential ˜︂W, expanded into the IS basis according to

Eq. (2.21), to the ADC effective interaction matrix (2.12). The Hermitian diagonalization

problem (2.10) is such transferred into a complex symmetric diagonalization problem

(︁
M− iη˜︂W)︁

Yc = YcΩc (2.95)

with Yc now being the matrix of complex (column) eigenvectors Yc
n of the CAP-augmented

ADC secular matrix and Ωc the diagonal matrix of complex ADC eigenvalues Ωc
n.

The beauty of this approach lies in its easy implementation, since no complex algebra

is needed for its computational evaluation when matrix-free diagonalization procedures

such as, e.g., the Davidson algorithm[147] are employed. This is easily established when

treating the real and imaginary parts Y
(R)
n and Y

(I)
n of a complex ADC eigenvector Yc

n =
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Y
(R)
n + iY

(I)
n separately. In case of purely imaginary CAPs, i.e., real CAP strengths η,

the matrix vector product

Rc
n =

(︁
M− iη˜︂W)︁

Yc
n (2.96)

is cast into a sum of four matrix vector products according to

Rc
n =

(︁
MY(R)

n + η˜︂WY(I)
n

)︁
+ i

(︁
MY(I)

n − η˜︂WY(R)
n

)︁
(2.97)

= R(R)
n + iR(I)

n . (2.98)

For complex potential strengths η = |η| (cosϑ + i sinϑ), still only four matrix vector

products have to be computed. Eq. (2.96) then evaluates to

Rc
n =

(︁
(M + |η| sinϑ ˜︂W)Y(R)

n + |η| cosϑ ˜︂WY(I)
n

)︁
+ i

(︁
(M + |η| sinϑ ˜︂W)Y(I)

n − |η| cosϑ ˜︂WY(R)
n

)︁
. (2.99)

All CAP-ADC approaches discussed so far require the diagonalization procedure of the

full ADC matrix to be carried out multiple times with different CAP strengths η, since

a trajectory Ωc
n(η) is required in order to determine the stabilization point by means of

minimizing the expressions (2.84) or (2.88).

Subspace Projection Approach

Rather than expanding the absorbing potential into the IS basis and augmenting the ADC

Hamiltonian (2.12), one can also add the CAP at the stage of converged ADC states using

Eq. (2.24). One then has to solve the eigenvalue problem

(︁
Ω− iηT(Ŵ )

)︁
C = CΩc (2.100)

where Ω is the diagonal matrix of (real) eigenvalues of the non-CAP-augmented ADC

secular matrix, T(Ŵ ) is the transition moment matrix of the absorbing potential Ŵ

according to Eq. (2.24), and C is the matrix of complex (column) vectors Cn = C
(R)
n +iC

(I)
n

which can be viewed as expansion coefficients of the CAP-ADC eigenvectors Yc
n into the

eigenvector basis Y of the non-CAP-augmented ADC secular matrix. That is, the ISR of

a CAP-ADC state can be computed according to

Yc
n = YCn =

∑︂
m

CmnYm. (2.101)

The motivation for this reformulation is that in the limit η → 0+, eigenvectors of
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the non-CAP-augmented ADC Hamiltonian M give a description of resonance states or

wrongly discretized continuum states possibly serving as decay channels. In particular, in

the limit η → 0+, the non-CAP-augmented ADC eigenvalues are recovered,

lim
η→0+

Ωc
n(η) = Ωn. (2.102)

Thus, it can be sufficient to project the diagonalization problem (2.100) onto an ADC

eigenstate subspace P spanned by i) the resonance state in question and ii) all relevant

decay channels, i.e., those accessible starting from the resonance state. Given the corre-

sponding projection matrix P, the full diagonalization problem (2.100) reduces to

P
(︁
Ω− iηT(Ŵ )

)︁
PC̄ = C̄Ω̄

c
. (2.103)

where the overbar indicates subspace projection, i.e., C̄ and Ω̄
c

are the subspace-projected

counterparts of the full-space quantities C and Ωc, respectively.

This means that an η-trajectory can be computed basically at the expense of a single

(full-IS space) ADC calculation if the dimensionality of the subspace P is sufficiently small.

In practice, the projector is chosen by means of an energy criterion, owing to the fact that

continuum states which are too high in energy are unlikely to serve as decay channels.

II.3.4. Dyson Orbitals Within CAP-EA-ADC

In the context of CAP-based description of resonance states using electronic structure

methods giving access to electron-attached states, Dyson orbitals have proven to be a

valuable tool for the visualization and interpretation of autoionization processes.[156] It

has been shown[156] that the real part of a Dyson orbital of a resonance state is linked

to its bound part, whereas the imaginary part gives a description of the decay channels

involved, i.e., represents the wave function of the ejected electron.

Within the projected CAP-EA-ADC approach, Dyson orbitals can be computed by

means of Eq. (2.42). The needed spectroscopic amplitudes are computed via Eq. (2.11)

by inserting the ISR of CAP-EA-ADC states (2.101). Thereby, the imaginary (decay) and

real (resonance) parts of the CAP-EA-ADC vector directly yield the desired spectroscopic

amplitudes xdec describing the decay channels and xres describing the bound part of the
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resonance state,

x(n)
res = Y(R)†

n f = C̄
(R)†
n Y†f =

∑︂
m

C̄
(R)
mnYmf (2.104)

x
(n)
dec = Y(I)†

n f = C̄
(I)†
n Y†f =

∑︂
m

C̄
(I)
mnYmf . (2.105)

The right-hand side of Eqs. (2.104) and (2.105) thereby implies that the desired quantities

are indeed just linear combinations of the spectroscopic amplitude vectors resulting from

the underlying (non-CAP) EA-ADC calculation. Consequently, also Dyson orbitals of

CAP-EA-ADC states can be computed as linear combinations of Dyson orbitals computed

for the underlying EA-ADC states, using the real and imaginary parts of the subspace

expansion vectors C̄n as coefficients.





Chapter III

Implementation

This chapter provides an overview of the implementation of theoretical methods considered

in this dissertation. All of them are directly related to ADC and were implemented within

the adcman suite of ADC methods for electronically excited states,[157] which is available

as part of the Q-Chem quantum chemical program package.[75] A general overview of

the code structure of adcman is given in Section III.1, followed by some general remarks

(Section III.2).

Section III.3 covers the implementation aspects directly related to ADC methods. In

particular, the implementation of the ISR as well as effective transition moments and

Dyson orbitals for IP-ADC and EA-ADC is presented. In addition, the extension of the

existing third-order PP-ADC, IP-ADC and EA-ADC codes by the improved fourth-order

static self-energy scheme according to the Σ(4+) procedure is described.

Selected aspects of the Fano-Stieltjes-ADC and CAP-ADC implementations are consid-

ered in the subsequent Sections III.4 and III.5, respectively. A summary of the imple-

mented features is provided in Section III.6.

III.1. Code Structure

Figure III.1 displays the general structure of the ADC stack within the Q-Chem quantum

chemical program package. The role of the individual modules and libraries is explained

in this section.

After the initial RHF or UHF calculation, the host program hands over control to the

respective submodule, which acts as a driver for the post-HF calculation. In case of Fano-

Stieltjes-ADC calculations, the fanoman module is invoked, which is described in Section

III.4.

For all other ADC calculations, the adcman module is directly invoked and controls all

43
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Figure III.1. Code structure related to ADC methods within the framework of the Q-Chem quantum
chemical program package.

further tasks. In particular, it imports the SCF results of the initial HF calculation and

triggers the computation and transformation of electron repulsion integrals (ERIs) through

the liblegacy library, which provides the interface to all Q-Chem routines not directly

related to ADC methods. A second library on which adcman depends is libmo, which

handles the setup of symmetry-adapted orbital space definitions as well as transformations

between different orbital representations. The libadc library provides the implementation

of all explicit ADC equations.

Through the libadc library, the adcman module uses the numerical libraries, in par-

ticular the libtensor block tensor library,[158] which performs most of the numerical

operations. As suggested by its name, libsolve implements numerical solver procedures

as for example the Davidson[147] and DIIS[159] algorithms.

At the lowest level there are supporting libraries, among them libvmm, which accounts

for virtual memory management, and libctx, which provides the infrastructure for storing

and accessing data through context objects in a key-value-like fashion.

Since the block structure of tensors as provided by the libtensor library is important

for parts of this dissertation, it is discussed in some detail in the following section.

III.1.1. Some Remarks on libtensor

libtensor is an open source numerical library which provides an efficient infrastructure

for general block tensor operations.[158] In particular, it was designed to exploit various

kinds of symmetry as illustrated in Figure III.2.

In this way it is possible to reduce the storage requirements of tensor objects and the

computational costs of algebraic operations performed on it. The idea is that for each
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(a) Permutational
symmetry.

(b) Spin symmetry. (c) Point group symmetry.

Figure III.2. Different symmetry element types which can be handled by the libtensor library.
Symmetry-related blocks are stored only once. These so-called canonical blocks are indicated in
orange, whereas all other blocks are depicted using gray color. Blocks shown in white are not
explicitly stored since they contain only zeros.

pair of blocks which are related by symmetry, only one needs to be stored. The other

one can be deduced from this canonical block using a transformation, which consists of an

index permutation and a scaling factor. Blocks which only contain zeros are not stored

explicitly.

Three kinds of symmetry can be exploited. The first one is permutational symmetry

as schematically depicted in Figure III.2a. It is used whenever two blocks can be mapped

onto each other by permutation of two indices, which is, e.g., the case for anti-symmetrized

ERIs. Another use case exploited in adcman is the antisymmetric behavior of the doubles

part of a PP-ADC vector with respect to the permutation of two occupied or virtual

indices according to

Y ab
ij = −Y ab

ji = −Y ba
ij = Y ba

ji . (3.1)

In the original formulation, these permutations do not occur because double excitations

are restricted to i < j and a < b. Lifting these index restrictions, however, makes an

efficient evaluation by means of block tensor operations possible at all. The antisymmetry

thereby guarantees that the unphysical i = j and a = b vector elements remain zero.

A second type of symmetry is constituted by spin symmetry, which can be employed

in restricted calculations. In this case, superblocks are introduced as a second level of

block structure by equally partitioning the block tensor along each coordinate. The two-

dimensional block tensor depicted in Figure III.2b, for example, may represent the singles

part of a state vector in a restricted ADC calculation. In this case, all amplitudes of

singly-excited configurations connecting an occupied α and a virtual β spin orbital and

vice versa can be forced to be zero, avoiding the threefold computation of triplet states.



46 III. Implementation

As another consequence, singlet and triplet states can easily be treated separately from

each other by requesting appropriate mappings between the αα and ββ parts of the singles

vector.

The third type of symmetry implemented in the libtensor library is point group sym-

metry, enabling the separate treatment of excitations belonging to different irreducible

representations of the molecular point symmetry group. A resulting tensor may have a

structure as shown in Figure III.2c.

Apart from reduced storage requirements, the block structure implied by the means of

symmetry can be used to efficiently distribute the computational costs associated with

particular algebraic operations among multiple computational processes. A contraction of

two two-dimensional block tensors A and B, for example, can be split up into pairwise

contractions of blocks according to

Cij =
∑︂
k

Aik Bkj , (3.2)

where the index k denotes all inner tensor indices. In addition, only contractions between

non-zero canonical blocks need to be considered. All other contractions will again yield

zero blocks and do not need to be performed explicitly. Similarly, blocks resulting from

contractions of at least one non-canonical block can be deduced from the result of the

contraction of the two associated canonical blocks by applying an appropriate transfor-

mation.

III.2. General Remarks

In this section, a brief overview of the conventions, intermediates and formula symbols

used in the remaining part of this chapter are given.

For notational brevity, the amplitudes

tijab =
⟨ij||ab⟩

(εa + εb − εi − εj)
(3.3)

and

tai = −
∑︁

jkb tjkab⟨jk||ib⟩ +
∑︁

jbc tijba⟨ja||bc⟩
2(εa − εi)

(3.4)

are defined, where εp is the HF orbital energy associated with the HF orbital |φp⟩. As in

Chapter II, the subscripts a, b, . . . refer to unoccupied (virtual) orbitals, whereas i, j, . . .
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denote occupied orbital indices, and the subscripts p, q, . . . may denote either of them. For

an efficient evaluation, parts of the implemented equations have been optimized assuming

real-valued anti-symmetrized ERIs, given in Physicist’s notation as

⟨pq||rs⟩ = ⟨rs||pq⟩∗ = ⟨rs||pq⟩. (3.5)

A number of contractions between ERIs and tijab amplitudes formally scaling with n6

have been replaced by the intermediate quantities

Z
(1)
ijka =

∑︂
bc

tijbc ⟨ka||bc⟩ (3.6)

Z
(2)
ijka =

∑︂
lb

tilab ⟨lk||jb⟩ (3.7)

Z
(3)
ijab =

∑︂
kl

tklab ⟨ij||kl⟩ (3.8)

Z
(4)
ijab =

∑︂
kc

tjkac ⟨kb||ic⟩ (3.9)

Z
(5)
ijab =

∑︂
cd

tijcd ⟨ab||cd⟩ (3.10)

Z
(6)
iabc =

∑︂
jk

tjkbc ⟨jk||ia⟩ (3.11)

Z
(7)
iabc =

∑︂
jd

tijbd ⟨jc||ad⟩. (3.12)

In addition, the compound intermediates Z
(A)
ijka and Z

(B)
iabc have been defined according to

Z
(A)
ijka =

(︁
1 − P̂ ij

)︁
Z

(2)
ijka +

1

2
Z

(1)
ijka (3.13)

Z
(B)
iabc =

(︁
1 − P̂ bc

)︁
Z

(7)
iabc −

1

2
Z

(6)
iabc, (3.14)

where the permutation operator P̂ pq has been used which, when applied to some expres-

sion, permutes the indices p and q therein.

III.3. Implemented ADC Features

As already indicated in Chapter I, a number of new features which considerably extend

the scope of the existing ADC implementation have been added to adcman and libadc.
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III.3.1. IP-ADC Effective Transition Amplitudes

In order to enable the computation of pole strengths, needed for the simulation of pho-

toelectron spectra, the IP-ADC implementation was extended by the effective transition

amplitudes as given in Ref. [31]. The same quantity was further used for the computation

of Dyson orbitals according to Eq. (2.42).

For an efficient evaluation, the equations have been optimized to exploit permutational

symmetry, thereby assuming real basis functions. The matrix of effective transition mo-

ments f has the shape as indicated in Figure II.1.

The explicit equations for the f1,h block up to second order are given as

f
(0)
i,j = δij (3.15)

f
(1)
i,j = 0 (3.16)

f
(2)
i,j = −1

4

∑︂
abk

tikab tjkab. (3.17)

The third-order contribution to this block contains four different terms,

f
(3)
i,j =

1

4

∑︂
abk

tjkab

∑︁
cd tikcd ⟨ab||cd⟩

(εa + εb − εi − εk)
−
∑︂
abk

tjkab

∑︁
lc tilac ⟨lb||kc⟩

(εa + εb − εi − εk)

− 1

4

∑︂
abk

tjkab

∑︁
lm tmlab ⟨ml||ki⟩

(εa + εb − εi − εk)
+
∑︂
abk

tjkab

∑︁
lc tklac ⟨lb||ic⟩

(εa + εb − εi − εk)
. (3.18)

Using Eqs. (3.8) through (3.10), Eq. (3.18) can be written in a more concise form, i.e.,

f
(3)
i,j =

∑︂
abk

tjkab

1
4

(︁
Z

(5)
ikab + Z

(3)
ikab

)︁
+
(︁
1 − P̂ ik

)︁
Z

(4)
ikab

(εa + εb − εi − εk)
. (3.19)

The contributions to the 1h-p block of the effective transition moments matrix f1,p up

to second order are given by

f
(0)
i,a = 0 (3.20)

f
(1)
i,a = 0 (3.21)

f
(2)
i,a =

1

εi − εa

(︃
1

2

∑︂
bcj

⟨ja||bc⟩ tijbc +
1

2

∑︂
bjk

⟨jk||ib⟩ tjkab
)︃

(3.22)
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The third-order contribution to this block as given in Eq. (2.37),

f
(3)
i,a =

1

εi − εa

(︁
Σ
(3)
ai (∞) + M

(3)+
ai (εi) + M

(3)−
ai (εa)

)︁
, (3.23)

consists of three terms of which the first one is the static self-energy as given in Eq. (2.38).

The second and third term are the (N ± 1)-parts of the dynamic self-energy M (3)±, which

have been given in matrix notation in, e.g., Ref. [21]. Evaluation of the matrix elements

yields

M
(3)+
ai (εi) =

1

2

∑︂
jbc

tijbc Z
(B)
jabc −

∑︂
jbc

⟨ja||bc⟩
1
4

(︁
Z

(3)
ijbc + Z

(5)
ijbc

)︁
+
(︁
1 − P̂ ij

)︁
Z

(4)
ijbc

(εb + εc − εi − εj)
(3.24)

and

M
(3)−
ai (εa) = −1

2

∑︂
jkb

tjkab Z
(A)
jkib −

∑︂
jkb

⟨jk||ib⟩
1
4

(︁
Z

(3)
jkab + Z

(5)
jkab

)︁
+
(︁
1 − P̂ ab

)︁
Z

(4)
jkab

(εa + εb − εj − εk)
, (3.25)

where the intermediate quantities specified in Eqs. (3.6) through (3.12) have been used.

Finally, the contributions to the 2h1p-p block of the matrix of effective transition am-

plitudes f2,p are given as

f
(0)
ija,b = 0 (3.26)

f
(1)
ija,b = − 1√

2
tijab (3.27)

f
(2)
ija,b =

1√
2

(︃
1

2

∑︂
kl

tklab ⟨kl||ij⟩ +
1

2

∑︂
cd

tijcd ⟨ab||cd⟩

+
(︁
1 − P̂ ij

)︁∑︂
lc

tljbc ⟨la||ic⟩ +
(︁
1 − P̂ ij

)︁∑︂
lc

tliac ⟨lb||jc⟩
)︃

(3.28)

=

1
2

(︁
Z

(3)
ijab + Z

(5)
ijab

)︁
+

(︁
1 − P̂ ij

)︁(︂(︁
1 − P̂ ab

)︁
Z

(4)
ijab

)︂
√

2 (εa + εb − εi − εj)
, (3.29)

where in the last expression the intermediate quantities from Eqs. (3.8) through (3.10)

have again been used. Note that a prefactor of 1/
√

2 has been used in the latter equations

in order to account for the lifting of the i < j index restriction in the IP-ADC matrix

equations.
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III.3.2. Iterative Scheme for an Improved Fourth-Order Static

Self-Energy

As outlined in Section II.1.5, using the effective transition amplitudes of IP-ADC(3), a

third-order ground state density can be computed by means of Eqs. (2.33) through (2.36).

This ground state density can further be used for the computation of an improved third-

order ground state density and the connected improved fourth-order static self-energy

Σ(∞) according to the so-called Σ(4+) procedure as sketched in Section II.1.5.

This static self-energy scheme was implemented in adcman. The self-consistent iterative

procedure was realized by means of the DIIS algorithm[159] as implemented in the libsolve

library. It was combined with all available third-order ADC methods, i.e., PP-ADC(3),

IP-ADC(3) and EA-ADC(3), using the scheme termed “full” in Ref. [39]. In this scheme,

the second-order ground state density is replaced by the respective improved third-order

quantity in all M matrix terms where it appears rather than only in terms related to the

static self-energy. In addition, if the (improved) third-order treatment of the ground state

density is used the same replacement procedure is also applied to the ISR one-particle

(transition) density equations which are discussed in the following section.

III.3.3. IP-ADC ISR for the One-Particle (Transition) Density

The implementation of the ISR of the one-particle (transition) density for IP-ADC[74, 89]

was further optimized for computational efficiency. The explicit expressions as imple-

mented in Q-Chem 5.2 are given in this section.

As is visible from Figure II.1, IP-ADC(2) and IP-ADC(3) state vectors are specified

in terms of a 1h-part consisting of elements Yi and a 2h-1p-part consisting of elements

Y a
ij . For a concise notation of the following equations, IP-ADC state vectors X ≡ Yn and

Y ≡ Ym referring to the (N − 1)-electron states
⃓⃓
ΨN−1

n

⟩︁
and

⃓⃓
ΨN−1

m

⟩︁
, respectively, are

used.

The zeroth-order contributions to the generalized difference density matrix as defined

by Eq. (2.29) are given as follows:

ρ
′(0),1
nm,ij = −XjYi (3.30)

ρ
′(0),2
nm,ij = 2

∑︂
ka

Xa
kjY

a
ik (3.31)

ρ
′(0),2
nm,ab =

∑︂
ij

Xa
ijY

b
ij (3.32)
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ρ
′(0)
nm,ia =

√
2
∑︂
j

XjY
a
ij (3.33)

ρ
′(0)
nm,ai =

√
2
∑︂
j

Xa
ijYj . (3.34)

Using these expressions, the elements of the IP-ADC ISR of the generalized difference

density matrix consistent through second order can be specified as

ρ
′(2)
nm,ij = ρ

′(0),1
nm,ij + ρ

′(0),2
nm,ij +

1

2

∑︂
ab

(︃∑︂
k

Xk tkiab

)︃(︃∑︂
l

Yl tljab

)︃
− 1

2
Yi

∑︂
k

Xk ρ
(2)
0,jk −

1

2
Xj

∑︂
k

Yk ρ
(2)
0,ki (3.35)

ρ
′(2)
nm,ab = ρ

′(0),2
nm,ab −

∑︂
kc

(︃∑︂
i

Xi tkicb

)︃(︃∑︂
j

Yj tkjca

)︃
(3.36)

ρ
′(2)
nm,ia = ρ

′(0)
nm,ia +

1√
2
Yi

∑︂
klb

Xb
kl tklba +

√
2
∑︂
kb

(︃∑︂
l

Xb
kl Yl

)︃
tikba − Yi

∑︂
k

Xk ρ
(2)
0,ka (3.37)

ρ
′(2)
nm,ai = ρ

′(0)
nm,ai +

1√
2
Xi

∑︂
klb

Y b
kl tklba +

√
2
∑︂
lb

(︃∑︂
k

Xk Y
b
kl

)︃
tliba −Xi

∑︂
k

Yk ρ
(2)
0,ka. (3.38)

Therein, ρ
(2)
0,pq are elements of the second-order correction to the N -electron ground state

one-particle density matrix given by the expressions

ρ
(2)
0,ij = −1

2

∑︂
abk

tikab tjkab (3.39)

ρ
(2)
0,ia = tai . (3.40)

In the context of the computation of state densities, two different approaches are in

principle possible: i) a combination of the difference density matrix with the second- or

higher-order ground state density matrix as suggested by Eq. (2.25) and ii) the inclusion

of the ground state density matrix according to the strict derivation of the IP-ADC ISR

equations as given in Ref. [74], where the second- and possibly higher-order contributions

to the ground state density are weighted according to the 1h-character of the respective

state, i.e., scaled with the norm of the 1h-part of the corresponding state vector.
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III.3.4. EA-ADC Effective Transition Amplitudes

In order to enable the computation of spectral amplitudes, the connected pole strengths

and Dyson orbitals for the electron attachment case as well, the EA-ADC implementation

was extended by the effective transition amplitudes as given in Ref. [31]. The explicit

equations as implemented in libadc are given in the following.

The matrix of effective transition moments of EA-ADC is closely related to that of IP-

ADC. In particular, the respective blocks have the same perturbation theoretical expansion

as indicated in Figure II.1.

The explicit equations for the fp,1 block up to second order are given as

f
(0)
a,b = δab (3.41)

f
(1)
a,b = 0 (3.42)

f
(2)
a,b = −1

4

∑︂
ijc

tijbc tijac. (3.43)

As in the case of IP-ADC, the four terms appearing in the third-order contribution to this

block can be combined for a more concise notation:

f
(3)
a,b =

∑︂
ijc

tijac

1
4

(︁
Z

(5)
ijbc + Z

(3)
ijbc

)︁
+
(︁
1 − P̂ ij

)︁
Z

(4)
ijbc

(εb + εc − εi − εj)
. (3.44)

The contributions to the h-1p block of the effective transition moments matrix fh,1 up

to second order are given by

f
(0)
i,a = 0 (3.45)

f
(1)
i,a = 0 (3.46)

f
(2)
i,a =

1

εa − εi

(︃
1

2

∑︂
bcj

⟨ja||bc⟩ tijbc +
1

2

∑︂
bjk

⟨jk||ib⟩ tjkab
)︃

(3.47)

The third-order contribution to this block can be computed according to

f
(3)
i,a =

1

εa − εi

(︁
Σ
(3)
ai (∞) + M

(3)+
ai (εi) + M

(3)−
ai (εa)

)︁
, (3.48)

and consists of three terms of which the first one is the static self-energy as given in Eq.

(2.38). The second and third term are the (N±1)-parts of the dynamic self-energy M (3)±,
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which are explicitly stated in Eqs. (3.24) and (3.25).

Finally, the contributions to the h-1h2p block of the matrix of effective transition mo-

ments fh,2 are given as

f
(0)
j,iab = 0 (3.49)

f
(1)
j,iab =

1√
2
tijab (3.50)

f
(2)
j,iab =

1
2

(︁
Z

(3)
ijab + Z

(5)
ijab

)︁
+
(︁
1 − P̂ ij

)︁(︂(︁
1 − P̂ ab

)︁
Z

(4)
ijab

)︂
√

2 (εa + εb − εi − εj)
, (3.51)

where in the last expression the intermediate quantities from Eqs. (3.8) through (3.10) have

again been used. Note that the prefactor of 1/
√

2 has been used in the latter equations

in order to account for the lifting of the a < b index restriction in the EA-ADC matrix

equations.

III.3.5. EA-ADC ISR for the One-Particle (Transition) Density

The ISR of the one-particle (transition) density for EA-ADC has been implemented in

development version of Q-Chem based on version 5.2.

EA-ADC(2) and EA-ADC(3) state vectors are specified in terms of a 1p-part consisting

of elements Y a and a 1h-2p-part consisting of elements Y ab
i . For a concise notation of

the following equations, EA-ADC state vectors X ≡ Yn and Y ≡ Ym referring to the

(N + 1)-electron states
⃓⃓
ΨN+1

n

⟩︁
and

⃓⃓
ΨN+1

m

⟩︁
, respectively, are used.

First, the zeroth-order contributions to the generalized difference density matrix corre-

sponding to that of IP-ADC (cf. Eq. (2.29)) are given:

ρ
′(0),2
nm,ij = −

∑︂
ab

Xab
j Y ab

i (3.52)

ρ
′(0),1
nm,ab = XaY b (3.53)

ρ
′(0),2
nm,ab = 2

∑︂
ic

Xac
i Y bc

i (3.54)

ρ
′(0)
nm,ia =

√
2
∑︂
b

XbY ba
i (3.55)

ρ
′(0)
nm,ai =

√
2
∑︂
b

Xba
i Y b. (3.56)

Using these expressions, the elements of the EA-ADC ISR of the generalized difference
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density matrix consistent through second order can be specified as

ρ
′(2)
nm,ij = ρ

′(0),2
nm,ij +

∑︂
kc

(︃∑︂
a

Xatikac

)︃(︃∑︂
b

Y btjkbc

)︃
(3.57)

ρ
′(2)
nm,ab = ρ

′(0),1
nm,ab + ρ

′(0),2
nm,ab +

1

2

∑︂
ij

(︃∑︂
c

Xc tijcb

)︃(︃∑︂
d

Y dtijad

)︃
− 1

2
Y b

∑︂
c

Xcρ
(2)
0,ac −

1

2
Xa

∑︂
c

Y cρ
(2)
0,bc (3.58)

ρ
′(2)
nm,ia = ρ

′(0)
nm,ia +

1√
2
Y a

∑︂
jbc

Xbc
j tijbc +

√
2
∑︂
jc

(︃∑︂
b

Xcb
j Y b

)︃
tijac − Y a

∑︂
b

Xbρ
(2)
0,ib (3.59)

ρ
′(2)
nm,ai = ρ

′(0)
nm,ai +

1√
2
Xa

∑︂
jbc

Y bc
j tijbc +

√
2
∑︂
jc

(︃∑︂
b

XbY cb
j

)︃
tijac −Xa

∑︂
b

Y bρ
(2)
0,ib. (3.60)

Therein, ρ
(2)
0,pq are elements of the second-order correction to the N -electron ground state

one-particle density matrix. The matrix elements of the occupied-virtual block have been

stated in Eq. (3.40). The virtual-virtual block matrix elements are given as

ρ
(2)
0,ab =

1

2

∑︂
ijc

tijac tijbc. (3.61)

As for IP-ADC, two different approaches for the computation of electron-attached state

densities were implemented: i) a scheme in which the complete N -electron ground state

density matrix is added to the state difference density matrix and ii) the evaluation accord-

ing to the strict derivation of the ISR equations, in which all contributions of second and

possibly higher order to the ground state density matrix are scaled with the 1p-character

of the respective state, i.e., with the Euclidean norm of the 1p-part of the corresponding

state vector.

III.4. Implementation of Fano-Stieltjes-ADC

The Fano-Stieltjes-ADC method has been integrated into a development version of Q-

Chem based on version 5.0.[75] The respective code was mainly implemented by means of

a new module called fanoman. For the ADC calculations, fanoman was interfaced to the

adcman module[157] which had to be extended in order to allow for IS subspace-projected

ADC matrix diagonalizations, block-Lanczos matrix diagonalization, and to share the

ADC results with the fanoman module.

In principle, three tasks have to be processed by an implementation of the Fano-Stieltjes-
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ADC method. These can be stated as

1. performing ADC calculations of the bound and continuum states,

2. computation of the coupling matrix elements between these, and

3. calculation of the decay width using the Stieltjes imaging procedure.

In this section, the implementation of these tasks in the new fanoman module is presented.

III.4.1. General Structure of the fanoman Module

The objective for the implementation of the Fano-Stieltjes-ADC method was to keep the

code modularized, since an efficient implementation of ADC is already available through

the adcman module.[157] For this reason, the method was implemented as a new module

rather than adding the code to the adcman module. For the implementation, the C++

programming language was used.

Reference Data Import

The first operation to be performed is the import of reference data, i.e., HF and MO data

as well as anti-symmetrized ERIs within the full configuration space. This data is needed

later by different parts of the module. For the import process, the existing infrastructure

in adcman/liblegacy is used.

Program Control and Input Parsing

Within a Q-Chem instance, the fanoman module is invoked by setting the METHOD key-

word in the $rem section of the Q-Chem input file to FANO. The desired ADC methods for

the bound and continuum state ADC calculations as well as further parameters required

to control the two different adcman invocations thus need to be set separately for each

calculation.

For this reason, the input file syntax was extended by the two new input sections

$fano bound and $fano continuum, and an input parser was implemented in fanoman

in order to handle these new input sections. Using this input parser, parameters are

read from the respective input section and set up before an adcman instance is started.

After the ADC calculation, the parameters affected by the parser instance are restored

to their initial values. Global input parameters other than the METHOD keyword can

still be specified in the $rem input section, but are overridden during the respective ADC

calculation when encountering the same parameter in one of the fanoman-specific input

sections.
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$molecule

0 1

Ne

$end

$rem

JOBTYPE SP

METHOD FANO

FANO_PRINT 3

BASIS aug-cc-pCVTZ

$end

$fano_bound

METHOD ADC(2)-x

FANO_MODE 1

FANO_CONFIGS_SINGLE 2

FANO_CONFIGS_DOUBLE 2-5;2-5

EE_SINGLETS [0,0,0,0,0,3,0,0]

! Largest Abelian subgroup is D2h

$end

$fano_continuum

METHOD ADC(2)-x

FANO_MODE 1

FANO_CONFIGS_SINGLE 3-5

FANO_CONFIGS_DOUBLE 3-5;3-5

ADC_NGUESS_SINGLES 100

ADC_DO_BLOCK_LANCZOS TRUE

EE_SINGLETS [0,0,0,0,0,600,0,0]

$end

Listing III.1. Typical Q-Chem input file for a fanoman job showing the main input needed to
calculate decay widths for the 2s−1np series of Feshbach resonances in the neon atom.

The structure of a typical fanoman input file is given in Listing III.1. Therein, some

additional parameters appear, i.e., the FANO CONFIGS SINGLE , FANO CONFIGS DOUBLE and

FANO MODE keywords. These parameters are used to control the bound and continuum

IS subspace projection schemes and the ADC variants to be used, and will be described

further in Sections III.4.2 and III.4.3.

Handling of ADC Calculations

Once the parameters needed for an ADC calculation have been set up, the adcman module

is invoked.

At the beginning of a normal ADC calculation, adcman sets up a virtual memory man-

ager, which releases all allocated memory after termination of the ADC calculation. Be-

cause in the present context adcman and fanoman need to share data before and after the

invocation of the adcman module, two changes had to be made in adcman.
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First, memory and a persistent libctx::context object are set up right after the invo-

cation of the fanoman module, and an appropriately named subtree of the context object is

passed to each of the two subsequently created adcman instances. Using this mechanism,

it is also possible to supply additional data needed by the IS subspace-projected ADC

method, which was implemented in order to enable appropriate configuration selection

schemes (cf. Section III.4.3). Second, the adcman module was modified in a way that it

does not release memory at its shutdown if invocation by fanoman is detected. Instead, the

memory consumed by the data accessible via the context object is released when shutting

down the fanoman module.

Further Data Processing

After termination of the second adcman instance, the ADC results stored in the context

object are further processed. In particular, coupling and overlap matrix elements as well

as partial decay widths and energy differences between all possible pairs of bound and con-

tinuum states within a specific irreducible representation of the molecular point symmetry

group are computed and stored in the context.

Finally, the Stieltjes imaging procedure is applied for the calculation of the desired decay

width. The implementation concerning these steps is discussed in more detail in Sections

III.4.4 and III.4.6.

III.4.2. ADC Methods

Inspecting the IS subspace projection scheme displayed in Figure II.3, the need for a

specialized ADC method becomes obvious. Some cases, however, may still be treated using

ADC methods already implemented within the adcman module. The available options can

be requested by setting the FANO MODE keyword in the respective input sections and are

briefly outlined below.

Setting FANO MODE=0 triggers a generic ADC calculation. In this case, occupied or-

bitals may be restricted using the CC REST OCC keyword in order to achieve configuration

selection schemes as for example used for the bound state calculation in the context of

the neon 2s−1np series of resonances. Core-valence separated (CVS) ADC calculations[160]

can be requested by setting FANO MODE=2 . In addition, FANO MODE=1 may be specified.

This will cause adcman to perform an ADC calculation using a newly implemented ADC

variant, the implementation of which is discussed in some detail in the following section.
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III.4.3. Implementation of an ADC Variant Allowing for Arbitrary IS

Subspace Projection Schemes

In order to overcome the restrictions imposed by the available methods, a new ADC variant

allowing for arbitrary IS subspace projections of the ADC matrix was implemented in the

adcman module.

The projection formalism was implemented in a straightforward way. Since adcman ex-

clusively uses matrix-free diagonalization algorithms, the projection matrix is not applied

to the ADC matrix itself but instead to ADC state vectors. In this respect, only element-

wise multiplications with the diagonal of the projection matrix have to be performed.

For the specification of the desired configuration selection, two new input parameters

were implemented, i.e., the FANO CONFIGS SINGLE and FANO CONFIGS DOUBLE keywords.

By their means, specification of the occupied molecular orbitals allowed in the subspace

configurations is possible. A list of orbitals may be given in terms of a comma-separated

list of orbital numbers as yielded from the Q-Chem SCF calculation. In addition, ranges

may be specified using a dash. Doubly-excited configurations are given by connecting two

orbital index lists using a semicolon.

The diagonal of the projection matrix is set up by fanoman for each irreducible repre-

sentation of the molecular point symmetry group and supplied to adcman via the passed

libctx::context object. To this end, it is of utmost importance to correctly handle

all kinds of symmetry supported by libtensor, since otherwise the state vector symme-

try may be destroyed, leading to a considerably worse convergence behavior during the

diagonalization procedure and increased computational cost.

III.4.4. Computation of the Coupling Matrix Elements

Using the ADC vectors of the bound and continuum states computed by the respective

adcman instances and stored in the corresponding context subtrees, computation of the

coupling matrix elements is straightforward. The numerical value for each state pair is

readily obtained by substituting the ADC vectors and corresponding energies into Eq.

(2.68).

Special care has to be taken if the bound and continuum ADC calculations have been

performed using different vector sizes, i.e., when using the CVS approximation or when

restricting the IS subspace using the CC REST OCC keyword. In this case, the corresponding

ADC vectors have to be transformed to the full IS space.

To this end, a transformation mechanism with several tasks was implemented. First, a

mapping between input (reduced space) and output (full space) indices is created using
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the information accessible via the context object associated to the bound or continuum

calculation and that created by the reference data import, respectively. Second, the sin-

gle and double parts of the ADC vector are rewritten using this orbital index map. If

permutational symmetry in the doubles part of the ADC vector with respect to the occu-

pied orbital space was turned off during the ADC calculation, i.e., in the case of a CVS

calculation, it is created in this step. In this case, the resulting ADC vector has to be

renormalized.

For the task of rewriting the ADC vector, element-wise read and write access on

libtensor::btensor block tensor objects is required. For write access dealing with the

tensor’s inherent symmetry, the libtensor::btod set elem class as provided by the

libtensor library was employed.

Element-Wise Read Access to libtensor Block Tensor Objects

For read access, a separate mechanism was implemented as a C++ class template. The

constructor of this class takes a libtensor block tensor object as an argument. For access

to a specific value stored in this tensor, the access operator[] method was overloaded,

taking a libtensor::index object holding the absolute index of the requested value as

argument. The procedure to fetch a value stored at a specific absolute index within a

block tensor can be summarized as follows:

1. Translate the absolute index to the corresponding block index and index within this

block (in-block index).

2. Translate the block index to the block index of the corresponding canonical block

and look up the transformation between these two blocks, consisting of an index

permutation and a scalar.

3. Permute the in-block index according to the permutation.

4. Fetch the value stored in the canonical block at the permuted in-block index.

5. Scale this value by the scalar and return it.

III.4.5. Block-Lanczos Diagonalization

As outlined above, the computation of continuum states usually requires an approximated

spectrum yielded from the block-Lanczos iterative diagonalization procedure.[141, 142, 148]

In the course of this dissertation, this solver algorithm was implemented in the libsolve

library following Ref. [161].
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Orthogonalization within the Krylov subspace turned out to be an indispensable prereq-

uisite, and the modified Gram-Schmidt (MGS) procedure[162] was found to yield particu-

larly satisfactory results. Here, it has to be noted that not all orthogonalization procedures

can easily be implemented in the libtensor/libsolve setup due to a relatively restricted

set of possible algebraic operations.

For the purpose of continuum state subspace-projected ADC calculations, i.e., to com-

pute a satisfactory spectral envelope, no additional features are needed. It shall, however,

be noted that an extension of the new block-Lanczos implementation by means of, e.g.,

implicit restarting and convergence checks is straightforward.

All PP-ADC methods available through adcman were subsequently interfaced to the

block-Lanczos implementation, and its invocation can be requested by setting the keyword

ADC DO BLOCK LANCZOS=TRUE in the respective input section of the Q-Chem input file.

In addition, the maximum number of iterations to be performed can be indicated by

setting ADC BLOCK LANCZOS MAXITER to the desired value.

III.4.6. Stieltjes Imaging Program

The Stieltjes imaging procedure was implemented according to the detailed tutorial given

in Ref. [149] and following a previous implementation used in Ref. [139], which is available

on the internet as a modified version through Ref. [163]. In addition to the implementation

as part of the fanoman module, a standalone version of the program was developed.

As input, the partial decay widths

γβ = 2π |Mβ(Eϕ, ϵβ)|2 (3.62)

calculated using the previously determined bound-continuum coupling matrix elements

along with the corresponding energies

ϵβ = Eβ − Er ≈ Eβ − Eϕ (3.63)

are directly employed. Note that the approximation Er ≈ Eϕ (cf. Section II.2.3) is used

at this point.

As introduced in Section II.2.3, the technique relies on the calculation of negative spec-

tral moments. According to Eq. (2.76), high negative powers of the energy differences

between the continuum and the bound state have to be evaluated. As has been pointed

out in Ref. [149], this is a source of round-off errors which can accumulate to a considerable

overall error. The issue can, however, be circumvented when using more precise floating
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point types for the calculation.

To this end, quadruple precision has been used previously.[149] In C++, floating point

types with arbitrary precision are available through the Boost library.[164] In order to

take benefit from this, the procedure was implemented in a templated manner, taking the

desired floating point type as a template parameter.

The use of arbitrary precision floating point types within the Stieltjes procedure requires

a suitable implementation of the QR algorithm for the diagonalization of tridiagonal ma-

trices. As has been pointed out at the end of Section II.2.3, there is also a need for

an interpolation algorithm working with arbitrary floating point types. Hence, both al-

gorithms were implemented using C++ class templates taking the floating point type as

template parameter. The QR algorithm was implemented following Ref. [165]. As in-

terpolation algorithm, a monotonicity-preserving cubic Hermite spline[166, 167] using the

Fritsch-Carlson method[168] for the determination of approximate derivatives was chosen.

III.5. Implementation of CAP-ADC Methods

In contrast to Fano-Stieltjes-ADC, the implementation of CAP-based methods requires

considerably less effort. This is especially the case for the subspace-projected CAP ap-

proach, since standard quantum chemical methods can be directly employed for this pur-

pose. The only requirement which has to be fulfilled by the employed method is the

possibility to compute the CAP, or more generally, a one-particle operator representation

within a subspace of eigenstates of the respective Hamiltonian.

For ADC methods, this infrastructure is provided by the ISR, which gives access to

the explicit form of the respective wave functions, and the CAP representation can be

computed, e.g., via a one-particle density matrix-driven approach as implied by Eq. (2.24).

III.5.1. Basis Set Representation of the Complex Absorbing Potential

In order to evaluate the transition matrix elements of the potential operator, the one-

particle basis representation of the potential has to be computed first. For this task, the

infrastructure already available in the Q-Chem program was used.[128, 129, 156] Therein,

the basis set representation of a shifted quadratic potential as discussed in Section II.3.2

is computed by numerical quadrature on a standard grid as used in DFT calculations.

The grid size can thereby be controlled using the XC GRID input parameter.

A number of different angular CAP shapes is available. In particular, all potentials

discussed in Section II.3.2 can be used. By setting CAP TYPE=0 a spherical CAP is

computed, whereas CAP TYPE=2 requests the calculation of a smoothed Voronoi CAP. In
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both cases, the onset of the CAP is controlled by the CAP X keyword, in the spherical case

being interpreted as distance from the molecular center. In the context of the smoothed

Voronoi CAP, CAP X is directly interpreted as onset parameter rcut as defined in Section

II.3.2. Finally, CAP TYPE=1 triggers the computation of a box CAP, in which case the

three needed onset parameters are specified using the CAP X , CAP Y and CAP Z keywords.

III.5.2. Computation of CAP Onset Series

In the subspace-projected CAP approach, the evaluation of transition matrix elements

of the CAP is associated with negligible computational costs once the one-particle (tran-

sition) density matrices within the considered eigenstate subspace have been computed.

For this reason, a series of CAPs with different onset parameters may be evaluated in

a single electronic structure calculation, which is particularly simple in the case of the

smoothed Voronoi CAP which is fully determined by a single onset parameter. The idea

has been followed in this work, allowing for more flexibility in the subsequent analysis of

CAP trajectories. The lowest desired onset value can thus be specified using the usual

CAP X keyword. In order to enable the definition of a series of onsets, the new keywords

CAP X END and CAP X STEP, defining the maximum CAP onset and the step size in the

range of onset values, respectively, have been introduced.

III.5.3. CAP-ADC Methods

Since the only prerequisite of a combination of the subspace-projected CAP approach with

ADC methods is the availability of the ISR for a general one-particle operator, in principle

all variants of CAP-PP-ADC, CAP-IP-ADC and CAP-EA-ADC are possible candidates.

In the course of this dissertation, this option has been realized for PP-ADC and EA-ADC.

The extension to IP-ADC, however, is also straightforward.

The evaluation of a CAP is triggered by setting the Q-Chem input keyword CAP ETA

to non-zero values. Since the objective is only a single CAP evaluation per onset, it is

sensible to set this option to CAP ETA=10000 , which corresponds to a potential strength

of η = 1. The computation and evaluation of η-trajectories has been implemented as a

separate program which will be briefly presented in the following Section III.5.4.

A typical input file for a CAP-EA-ADC(3) calculation of the 2Πg resonance in the

dinitrogen anion is given in Listing III.2. Therein, D2h point group symmetry is as-

sumed, being the largest Abelian subgroup of D∞h. Consequently, the computation of

50 CAP-EA-ADC states of B2g symmetry and the subsequent computation of the CAP

representation within the subspace of converged EA-ADC(3) eigenstates are requested.
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$molecule

0 1

N

N 1 1.0975135

$end

$rem

JOBTYPE SP

METHOD EA-ADC(3)

BASIS aug-cc-pVQZ

! Setting CAP_ETA triggers the CAP calculation and should

! be set to 10000, corresponding to a CAP strength of 1

CAP_ETA 10000

CAP_TYPE 2

XC_GRID 000250000974

CAP_X 2000

CAP_X_STEP 500

CAP_X_END 4000

! Largest Abelian subgroup is D2h

EA_STATES [0,0,50,0,0,0,0,0]

$end

Listing III.2. Q-Chem input file for a typical CAP-EA-ADC(3) calculation aiming at the 2Πg shape
resonance in the dinitrogen anion. A series of smoothed Voronoi CAPs with onsets of 2.0, 2.5, 3.0,
3.5 and 4.0 rBohr is computed.

The CAP representation is eventually written to the Q-Chem output file for each re-

quested CAP onset and can be further processed by means of a standalone program for

the evaluation of η-trajectories.

III.5.4. Evaluation of CAP Trajectories

For the task of the evaluation of η-trajectories, a standalone program was implemented in

Python. The possibility of integrating postprocessing routines directly into Q-Chem was

not pursued further, since a number of parameters have to be chosen, which partly depend

on the electronic structure calculation and can thus not be determined beforehand.

The standalone program for the evaluation of η-trajectories was written in Python.

Complex matrix diagonalization and evaluation of the η-trajectories were realized using

NumPy,[169] further data processing makes use of SciPy signal processing routines.[170]

Among the implemented features are the evaluation of corrected and uncorrected tra-

jectories as discussed in Section II.3.1. Real as well as complex potential strengths can be

used, allowing for a very flexible determination of stabilization points, as it has been shown

in Ref. [130] and will be demonstrated in Chapter VIII at the example of a CAP-EA-ADC

application.
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III.6. Overview of Implemented Features

The features implemented in the Q-Chem program in the course of this dissertation are

summarized in this section.

ISR for IP-ADC and EA-ADC

• The implementation of the ISR(2) for IP-ADC has been optimized and extended. It
is available in Q-Chem 5.2.

• The ISR(2) for EA-ADC has been implemented in a development version of Q-Chem
based version 5.2.

• Electron-detached and electron-attached state dipole moments and ⟨r̂⟩2 expectation
values are computed when setting ADC PROP ES=TRUE .

• Transition dipole moments among all computed electron-detached or electron-attached
states are evaluated when setting ADC PROP ES2ES=TRUE .

• One-particle density matrix-based quantities for electron-detachment and electron-
attachment processes as, for example, detachment and attachment densities can be
plotted by specifying STATE ANALYSIS=TRUE and providing a suitable $plot input
section in the Q-Chem input file.

• The strict ground state density treatment, i.e., scaling of second- and higher-order
contributions to the ground state density matrix with the norm of the 1h-part (IP-
ADC) or 1p-part (EA-ADC) of the respective state vector, can be requested by
setting ADC STRICT ISR=TRUE .

Effective Transition Amplitudes and Dyson Orbitals for IP-ADC and

EA-ADC

• Pole strengths are automatically computed in IP-ADC and EA-ADC calculations.

In the case of ADC(3) calculations, second-order effective transition amplitudes are

computed by default since only small variations are seen with respect to the third-

order ones.

• Setting ADC DO DYSON=TRUE in conjunction with STATE ANALYSIS=TRUE triggers

plotting of Dyson orbitals for IP-ADC and EA-ADC. In this case, also a suitable

$plot input section has to be provided.

• Exploiting the intermediates needed for the computation of IP-ADC(3) effective

transition amplitudes, the prefactor in the computational scaling of PP-ADC(3)

matrix-vector product evaluations could be reduced by ∼70 %. The trade-off is an

increase in memory usage by ∼10 %. The slower but more memory-efficient behavior

can be restored by setting ADC DIRECT=TRUE .
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Improved Fourth-Order Static Self-Energy

• For all implemented ADC(3) methods, i.e., PP-ADC(3), IP-ADC(3) and EA-ADC(3),

schemes in which the fourth-order or improved fourth-order static self-energy Σ(4)

and Σ(4+) is used throughout have been implemented in Q-Chem 5.2 (PP-ADC(3)

and IP-ADC(3)) or a development version of Q-Chem based on this version (EA-

ADC(3)).

• The self-consistent iterative procedure for the computation of Σ(4+) uses Pulay’s

DIIS algorithm as implemented in the libsolve library. Convergence is determined

by means of the Euclidean norm of the difference density matrix computed between

the ground state density matrices of two subsequent solver iterations. The max-

imum of solver iterations and the convergence criterion can be influenced via the

ADC DENSITY MAXITER and ADC DENSITY CONV keywords.

• The Σ(4) scheme is requested by setting ADC DENSITY ORDER=3 . In this case, third-

order pole strengths and Dyson orbitals are computed for IP-ADC and EA-ADC, and

the third-order ground state density is also used in the respective ISR calculations.

• The self-consistent Σ(4+) scheme is requested by setting ADC DENSITY ORDER=4 .

In this case, improved third-order pole strengths and Dyson orbitals are computed

for IP-ADC and EA-ADC, and the improved third-order ground state density is also

used in the respective ISR calculations.

Fano-Stieltjes-ADC

• A new module named fanoman was added to a development version of Q-Chem

based on version 5.0, providing an implementation of the Fano-Stieltjes-ADC method.

Therein, the restricted and unrestricted variants of all PP-ADC schemes up to third

order can be used.

• The module is invoked by setting METHOD=FANO in the $rem section of the Q-Chem

input file. Its verbosity level can be controlled via the FANO PRINT option.

• In order to control two distinct invocations of the adcman module, two new input

sections, $fano bound and $fano continuum, were added. Options related to the

adcman module can thus be set for each of the two required ADC calculations.

• Different PP-ADC variants can be invoked for the state calculations, setting the

FANO MODE option to an appropriate value. The supported methods comprise

generic ADC (FANO MODE=0) as well as CVS-ADC (FANO MODE=2).
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• In addition, a new variant of PP-ADC up to third order was implemented in adcman,

which allows for arbitrary IS subspace projection of the ADC matrix. This variant

is invoked by setting FANO MODE=1 .

• The new keywords FANO CONFIGS SINGLE and FANO CONFIGS DOUBLE have been added

to enable the definition of subspace projection schemes.

• For the computation of continuum state-projected ADC spectra, the block-Lanczos

iterative matrix diagonalization algorithm was implemented in the libsolve library.

It is invoked by setting ADC DO BLOCK LANCZOS=TRUE . The maximum number of

iterations to be carried out can be controlled via the ADC BLOCK LANCZOS MAXITER

keyword.

• The Stieltjes imaging procedure needed for the decay width evaluation was imple-

mented as part of the new module and, in addition, as a standalone program. Taking

benefit from C++ templates and the Boost library, floating point types of arbitrary

precision can be used.

CAP-ADC

• The new CAP-EA-ADC and CAP-PP-ADC methods have been implemented in a

development version of Q-Chem based on version 5.2 using a subspace projection

approach. The unrestricted and restricted versions of all ADC schemes up to third

order can be employed.

• The new methods are invoked by setting CAP ETA=10000 , corresponding to a poten-

tial strength of η = 1.

• Smoothed Voronoi (CAP TYPE=2) CAP series with different onsets can be specified.

For this purpose, the already existing CAP X keyword is used to define the lower

bound of the range of onsets to consider. The upper bound and step size can then

be specified using the new keywords CAP X END and CAP X STEP, respectively.

• The evaluation of η-trajectories was implemented in a separate Python program.
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Benchmarking the IP-ADC/ISR Method

In this chapter, the IP-ADC/ISR approach to one-electron properties of electron-detached

states is studied. In Section IV.2 the basis set dependence of electron-detached state dipole

moments is investigated. A systematic benchmark study comparing electron-detachment

energies and dipole moments computed using various IP-ADC/ISR schemes with FCI data

is presented in Section IV.3.

IV.1. Computational Details

All IP-(U)ADC/ISR calculations presented in this chapter were carried out using Q-Chem

5.2 or a development version based on this version.[75] In the computation of electron-

detached state dipole moments, second- and higher-order contributions to the N -electron

ground state dipole moment were included scaled with the 1h-character of the respective

states according to the original definition in Ref. [74]. Dipole moments of charged states

are given with respect to the center of mass.

For the results of the FCI benchmark study presented in Section IV.3, two schemes dif-

fering in the treatment of constant diagrams were employed in the case of IP-(U)ADC(3):

(i) a scheme with iterative fourth-order treatment of the static self-energy according to

the so-called Σ(4+) procedure,[74] also referred to as “standard” IP-ADC(3) scheme (in

Parts of this chapter have already been published in

• A. L. Dempwolff, A. C. Paul, A. M. Belogolova, A. B. Trofimov, A. Dreuw, “Intermediate State
Representation Approach to Physical Properties of Molecular Electron-Detached States: I. Theory
and Implementation”, J. Chem. Phys. 2020, 152, 024113.

• A. L. Dempwolff, A. C. Paul, A. M. Belogolova, A. B. Trofimov, A. Dreuw, “Intermediate State
Representation Approach to Physical Properties of Molecular Electron-Detached States: II. Bench-
marking”, J. Chem. Phys. 2020, 152, 024125.
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subsequent tables denoted as “3(4+)”), and (ii) a scheme with strict third-order treatment

of constant diagrams, also referred to as “strict” IP-ADC(3) scheme (in subsequent tables

denoted as “3(3)”). In addition, also the results of the strict IP-ADC(2) scheme (in subse-

quent tables denoted as “2”) are shown. The results shown in Section IV.2 were computed

using the standard IP-(U)ADC(3)/ISR(2) scheme employing the improved fourth-order

static self-energy.

The FCI and CISDTQ results were provided by Prof. Alexander Trofimov. The FCI

calculations for the initial and electron-detached states were performed using the deter-

minant configuration interaction (CI) method[171, 172] as implemented in the Gamess-US

program.[173, 174] For CO, HCN and NO−
2 as well as HCN•− and NO•

2, FCI calculations

were not computationally feasible, and the truncated CI method accounting for singly-,

doubly-, triply- and quadruply-excited determinants (CISDTQ) was employed instead.

The CISDTQ calculations were carried out using the occupation restricted multiple active

space (ORMAS) CI[171, 172] code, also available in the Gamess-US program. In all FCI

and CISDTQ calculations 1s orbitals of second-row atoms were kept frozen.

IV.1.1. Geometrical Parameters

The geometrical parameters used for the open-shell molecules NH•
2, OH•, CN• and NO•

2

and the corresponding closed-shell anions NH−
2 , OH−, CN− and NO−

2 were: RNH =

1.0245 Å, ∠HNH = 103.34◦;[175] ROH = 0.96966 Å;[176] RCN = 1.1718 Å;[176] RNO =

1.1934 Å, ∠NON = 134.1◦.[177]

For the closed-shell molecules CO, LiH, NH3, H2O, HF and HCN as well as the corre-

sponding radical anions LiH•−, NH•−
3 , H2O

•−, HF•− and HCN•− the following geometrical

parameters were used: RCO = 2.132 rBohr;
[176] RLiH = 1.5957 Å;[176] RNH = 1.0124 Å,

∠HNH = 106.67◦;[177] ROH = 0.957 Å, ∠HOH = 104.5◦;[178] RHF = 0.917 Å;[176] RHC =

1.064 Å, RCN = 1.156 Å.[177]

IV.1.2. Basis Sets

In all calculations presented in this chapter, the Cartesian representation of d-functions

was used.

For the basis set dependence study presented in Section IV.2, basis sets of improving

quality ranging from cc-pVDZ to cc-pVQZ[179] and aug-cc-pVDZ to aug-cc-pVQZ[180] were

employed.

The basis sets used in the FCI and IP-(U)ADC/ISR calculations presented in Section

IV.3 are listed in the following:
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• For H2O, NH3 and HF and their corresponding radical anions H2O
•−, NH•−

3 and

HF•−, the 6-31++G* basis set[181–184] was employed.

• For CN− and NO−
2 as well as NO•

2, the smaller 6-31+G and 6-31G basis sets[181–184]

were used, respectively.

• The correlation-consistent polarized-valence basis set cc-pVDZ[179] was used for CO,

HCN and OH− and the radical anion HCN•−.

• In the case of LiH and LiH•−, calculations were performed using the aug-cc-pVDZ ba-

sis set[179, 180, 185] where for Li an earlier parametrization of polarization and diffuse

functions as available through the basis set exchange database[186, 187] was employed

(i.e., 0.00864 (s), 0.00579 (p), 0.1239 (d), 0.0725 (d)).

• Finally, the calculations of NH−
2 and NH•

2 were performed using a modified aug-cc-

pVDZ basis set[179, 180] without polarization diffuse functions on N and H atoms.

IV.2. Basis Set Dependence of Dipole Moments

As a first test of the IP-(U)ADC/ISR method, the ground state dipole moments of sev-

eral neutral closed- and open-shell molecules have been computed. To this end, electron

detachment from the corresponding anions was considered. In the same way, electron

affinities (EA) of the neutral systems are accessible as electron-detachment energies of

the anionic systems. The basis set dependence of the respective quantities is studied by

considering a number of systematically improving basis sets.

IV.2.1. Closed-Shell Initial State

The IP-ADC/ISR approach can be useful in studies of neutral radicals (N•) in their

ground and excited states. Such states can be accessed by applying the IP-ADC/ISR to

the corresponding closed-shell negative ions (A−) according to the scheme

A− − e− → N•.

In this section this option is explored on the example of the NH•
2, OH•, CN•, and

NO•
2 radicals, for which experimental electron affinities (EA) and dipole moments are

available.[176, 188–193] In Table IV.1 the results of standard IP-ADC(3)/ISR(2) calculations

for the corresponding anions are presented.
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Table IV.1. Vertical electron affinities (EA, eV) and absolute ground state dipole moments (µ0, D) of
NH•

2, OH•, CN•, and NO•
2 computed using the closed-shell IP-ADC(3)/ISR(2) method setting out

from the corresponding anions.a The results for systematically improving basis sets in the range
cc-pVDZ to cc-pVQZ and aug-cc-pVDZ to aug-cc-pVQZ are shown in comparison with experimental
data.

NH•
2 (2B1) OH• (2Π) CN• (2Σ+) NO•

2 (2A1)Basis set
EA µ0 EA µ0 EA µ0 EA µ0

cc-pVDZ −1.17 1.58 −0.42 1.48 2.90 1.40 −0.08 0.42
cc-pVTZ −0.06 1.61 0.95 1.47 3.68 1.55 0.88 0.41
cc-pVQZ 0.40 1.61 1.56 1.46 3.93 1.62 1.27 0.43

aug-cc-pVDZ 0.71 1.62 2.05 1.43 3.87 1.65 1.38 0.48
aug-cc-pVTZ 0.84 1.59 2.16 1.41 4.02 1.64 1.54 0.48
aug-cc-pVQZ 0.88 1.60 2.21 1.42 4.07 1.66 1.61 0.48

Expt.b 0.77d 1.82f 1.83d 1.66h 3.86d 1.45i 2.27d 0.32j

Expt.c 0.78e 1.82g 3.82g

a The theoretical EAs were obtained as the vertical ionization energies of the closed-
shell anions at the equilibrium geometries of the neutral radicals.

b Experimental adiabatic EAs of the neutral radicals.
c Experimental EAs estimated as ionization energies of the corresponding negative ions.
d Ref. [188]
e Ref. [189]
f Ref. [190]
g Ref. [176]
h Ref. [191]
i Ref. [192]
j Ref. [193]

As can be seen, the computed ground state dipole moments (µ0) show a good agreement

with experimental data which does not depend very much on the basis set employed.

Even at the cc-pVDZ level, the IP-ADC/ISR values are quite satisfactory, and nearly no

improvement upon extension of the basis set or its augmentation by diffuse functions can

be observed. The results obtained using the most extended aug-cc-pVQZ basis set are

within 12–14% off the experimental values for NH•
2, OH• and CN•. For NO•

2, however, the

relative error of about 50% may not be an appropriate characteristic in view of the small

experimental value of 0.32 D.[193] The absolute deviation of the computed value (0.48 D)

in this case is only 0.16 D.

The weak basis set dependence of µ0 can be explained by the fact that it refers to the

ground state of the neutral radical which is reasonably well described already at cc-pVDZ

level.

By contrast, EAs are strongly underestimated when non-augmented basis sets are used,

while addition of diffuse basis functions dramatically improves the results. This observa-

tion can easily be attributed to the diffuse nature of the involved anionic ground states

which can not be captured by standard basis sets. Hence, diffuse basis functions have
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Table IV.2. Vertical electron affinities (EA, eV) and absolute ground state dipole moments (µ0, D) of
LiH, NH3, H2O, HF, and HCN computed using the open-shell IP-UADC(3)/ISR(2) method setting
out from the corresponding radical anions.a The results for systematically improving basis sets in the
range cc-pVDZ to cc-pVQZ and aug-cc-pVDZ to aug-cc-pVQZ are shown in comparison with
experimental data.

LiH (1Σ+) NH3 (1A) H2O (1A1) HF (1Σ+) HCN (1Σ+)
Basis set

EA µ0 EA µ0 EA µ0 EA µ0 EA µ0

cc-pVDZ 0.05 5.75 −4.45 1.60 −4.52 1.93 −4.67 1.83 −4.36 3.11
cc-pVTZ 0.14 5.85 −3.03 1.58 −3.10 1.93 −3.25 1.85 −3.20 3.23
cc-pVQZ 0.23 5.88 −2.36 1.56 −2.39 1.91 −2.52 1.85 −2.57 3.23

aug-cc-pVDZ 0.29 5.97 −0.79 1.55 −0.78 1.89 −0.84 1.83 −0.70 3.10
aug-cc-pVTZ 0.28 5.91 −0.64 1.56 −0.65 1.89 −0.69 1.84 −0.53 3.11
aug-cc-pVQZ 0.29 5.91 −0.57 1.57 −0.57 1.90 −0.60 1.85 −0.44 3.12

Expt. 0.34b 5.88c 1.47d 1.85e 1.82f 2.98g

a The theoretical EAs were obtained as the vertical ionization energies of the open-shell radical
anions at the equilibrium geometries of the neutral molecules.

b Ref. [188].
c Ref. [194].
d Ref. [195].
e Ref. [176].
f Ref. [196].
g Ref. [197].

to be included for a reasonable description, leading to considerable stabilization of the

anionic ground states and thus to larger electron detachment energies. The same trend,

albeit less pronounced, has also been found for ionization energies of neutral molecules.[76]

The EA values computed at the IP-ADC(3)/aug-cc-pVQZ level are in good agreement

with experimental data, demonstrating an error of about 0.1–0.4 eV for NH•
2, OH•, and

CN•. In the case of NO•
2, a larger deviation from experimental data of 0.66 eV is obtained.

Here it has however to be noted that the theoretical vertical EA value is compared with the

experimental value from Ref. [188], which refers to adiabatic EA. The present deviation

from experiment might therefore reflect the large difference between the adiabatic and

vertical EA values for NO•
2.

IV.2.2. Open-Shell Initial State

In the case of radical anions A•−, the energetically lowest electron-detached states are the

electronic ground states of the corresponding neutral closed-shell molecules (N) according

to the scheme

A•− − e− → N.

Since the ground state dipole moments of neutral molecules are well known, these are

convenient test systems for the capabilities of the new open-shell methodology. In this first
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test, the LiH, NH3, H2O, HF, and HCN molecules are considered. Among these systems,

however, experimental EA data is only available for LiH[188] since only for this system

a stable anionic ground state exists. In Table IV.2, results obtained using the standard

IP-UADC(3)/ISR(2) scheme are presented.

As for the neutral radicals the ground state dipole moments µ0 demonstrate only a rather

weak basis set dependence. A larger change in the calculated values can be seen when

going from cc-pVDZ to cc-pVTZ and from non-augmented to augmented basis sets, which

is especially pronounced in the case of LiH and HCN. Beyond the level of the aug-cc-pVTZ

basis set the dipole moments seem to be consistently well converged for all molecules. The

IP-UADC(3)/aug-cc-pVQZ results are in excellent agreement with experimental values,

the mean error being only ∼3%.

The electron affinities, as for the neutral radicals, demonstrate a much stronger basis set

dependence. A regular convergence pattern can be seen only within the augmented series

of basis sets, providing a better description of the unoccupied orbitals crucial for binding

of the excess electron. The EA of LiH calculated at the IP-UADC(3)/aug-cc-pVQZ level

(0.29 eV) is in very good agreement with the experimental value of 0.34 eV.[188]

IV.3. Benchmarking Against Full Configuration Interaction

The accuracy of IP-(U)ADC(3) electron detachment energies has previously been investi-

gated in various methodological and applied studies[74, 76, 77, 198] and by comparison to the

even better studied Dyson-ADC(3) scheme.[21, 71–73] However, its accuracy has not been

calibrated against full configuration interaction (FCI) results so far.

In this section, the performance of the IP-(U)ADC(3)/ISR(2) scheme for the compu-

tation of electron detachment energies and electron-detached state dipole moments with

respect to FCI is evaluated. In this systematic test various electronic states of closed-

and open-shell systems are considered. As closed-shell examples, LiH, NH3, H2O, HF, CO

and HCN as well as NH−
2 , OH−, CN− and NO−

2 were chosen (Section IV.3.1). In Section

IV.3.2, the open-shell methodology is applied to NH•
2 and NO•

2 as well as to LiH•−, NH•−
3 ,

H2O
•−, HF•− and HCN•−. In addition, the IP-UADC(3)/ISR(2) method is employed for

the treatment of triplet-excited reference states of LiH, NH3 and H2O, demonstrating how

a different set of electron-detached states than accessible by means of electron detachment

from closed-shell references can be obtained.
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Table IV.3. Comparison between FCI and IP-ADC/ISR results for vertical ionization energies of LiH,
NH3, H2O, HF, CO, and HCN (IP, eV) and dipole moments of electron-detached states (µN−1

n , D).a

The IP-ADC(n)/ISR(m) schemes are denoted by the short-hand notations n/m. For the IP-ADC(3)
schemes the order of the constant diagrams treatment is shown in parentheses (see text for details).
The last lines give the mean error (∆̄) and its standard deviation (σ(∆)) as well as the mean
absolute error (|∆|) and maximum absolute error (|∆|max) relative to FCI (in eV for IPs and in
percent for µN−1

n ). The relative photoelectron intensity (or pole strength, P ) is also shown.

Initial molecule and IP µN−1
n P

final statee FCI 3(4+)/2b 3(3)/2 2/2 FCI 3(4+)/2b 3(3)/2 2/2 3(4+)/2b

LiH 1Σ+

1 2Σ+ 2σ−1 7.94 7.77 7.81 7.93 −0.49 −0.50 −0.49 −0.38 0.891
1 2Π 2σ−2π 19.71 18.81 18.81 3.27 3.28 3.28 0.003
2 2Σ+ 2σ−2σ 19.88 19.02 19.02 7.40 7.40 7.40 0.049

NH3
c 1A1

1 2A 3a−1 10.46 10.61 10.57 9.80 1.41 1.34 1.34 1.42 0.924
1 2E 1e−1 16.40 16.53 16.50 15.79 2.54 2.50 2.51 2.63 0.931
2 2A 3a−2a 23.54 26.22 26.22 0.47 1.12 1.11 0.023
2 2E 3a−2e 25.49 27.08 27.08 2.44 1.94 1.94 0.001

H2O
1A1

1 2B1 1b−1
1 12.30 12.56 12.72 11.07 −2.55 −2.44 −2.44 −2.57 0.928

1 2A1 3a−1
1 14.63 14.89 15.04 13.43 −2.12 −2.04 −2.03 −2.09 0.929

1 2B2 1b−1
2 18.97 19.15 19.30 17.99 −3.09 −3.05 −3.05 −3.15 0.937

2 2B1 3a−1
1 1b−1

1 a1 26.88 31.17 31.17 0.55 0.96 0.96 < 0.001
2 2A1 1b−2

1 a1 26.99 30.50 30.52 0.15 0.66 0.69 0.078
HF 1Σ+

1 2Π 1π−1 15.93 16.28 16.68 14.24 2.35 2.24 2.21 2.33 0.935
1 2Σ+ 3σ−1 19.98 20.23 20.58 18.58 2.44 2.41 2.40 2.37 0.940
1 2Σ− 1π−2σ 32.25 37.72 37.72 −1.92 −2.42 −2.42 < 0.001
1 2∆ 1π−2σ 34.50 38.88 38.88 −1.77 −2.20 −2.20 < 0.001

CO 1Σ+

1 2Σ+ 5σ−1 13.56 13.67 13.38 13.72 2.60 2.88 2.67 2.21 0.903
1 2Π 1π−1 16.68 16.68 16.88 16.20 0.27 0.08 −0.19 −0.07 0.911
2 2Σ+ 4σ−1 19.39 19.90 20.23 18.21 −0.74 −1.22 −1.41 −1.14 0.800
2 2Π 5σ−2π 22.96 22.88 22.88 2.27 2.60 2.60 0.004
1 2Σ− 1π−15σ−1π 23.16 21.70 21.70 2.08 2.01 2.01 < 0.001

HCN 1Σ+

1 2Π 1π−1 13.45 13.41 13.26 13.46 −3.38 −3.35 −3.31 −3.48 0.922
1 2Σ+ 5σ−1 13.59 14.01 13.90 12.69 −1.67 −1.00 −0.97 −1.48 0.888
2 2Σ+ 4σ−1 20.14 20.35 20.22 20.08 −5.87 −6.22 −6.20 −6.07 0.849
2 2Π 1π−2π 21.35 19.97 19.97 −2.72 −2.17 −2.17 0.002

∆̄d 0.19 0.26 −0.73 −4 −10 −8

σ(∆)d 0.18 0.33 0.59 29 54 38

|∆|d 0.22 0.33 0.76 15 24 18

|∆|max
d 0.51 0.84 1.69 70 170 126

a For CO and HCN results of CISDTQ calculations are shown.
b Iterative fourth-order treatment of constant diagrams according to the so-called Σ(4+) procedure,[74]

also referred to as “standard” IP-ADC(3) scheme.
c The modulus of the dipole moment is shown because of degenerate 2E states.
d Only transitions with dominant 1h-character are taken into account.
e Final-state (N − 1)-electron configuration relative to the RHF reference.
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Table IV.4. Comparison between FCI and IP-ADC/ISR results for vertical electron detachment
energies of NH−

2 , OH−, CN−, and NO−
2 (IP, eV) and dipole moments of electron-detached states

(µN−1
n , D).a The IP-ADC(n)/ISR(m) schemes are denoted by the short-hand notations n/m. For the

IP-ADC(3) schemes the order of the constant diagrams treatment is shown in parentheses (see text
for details). The last lines give the mean error (∆̄) and its standard deviation (σ(∆)) as well as the
mean absolute error (|∆|) and maximum absolute error (|∆|max) relative to FCI (in eV for IPs and in
percent for µN−1

n ). The relative photoelectron intensity (or pole strength, P ) is also shown.

Initial anion and IP µN−1
n P

final stated FCI 3(4+)/2b 3(3)/2 2/2 FCI 3(4+)/2b 3(3)/2 2/2 3(4+)/2b

NH−
2

1A1

1 2B1 1b−1
1 0.31 0.54 0.70 −0.70 2.00 1.90 1.88 2.06 0.897

1 2A1 3a−1
1 2.49 2.93 3.09 1.23 1.34 1.26 1.25 1.31 0.898

1 2B2 1b−1
2 7.02 7.43 7.63 5.87 2.76 2.76 2.74 2.96 0.900

2 2A1 1b−2
1 a1 7.84 10.25 10.26 −1.67 −2.44 −2.45 0.005

2 2B1 3a−1
1 1b−1

1 a1 7.84 11.63 11.63 −2.04 −0.40 −0.41 0.011
OH− 1Σ+

1 2Π 1π−1 −0.62 −0.42 −0.47 −1.43 1.80 1.48 1.50 1.66 0.935
1 2Σ+ 3σ−1 3.74 3.82 3.80 3.16 1.68 1.75 1.75 1.75 0.943
1 2Σ− 1π−2σ 8.00 11.96 11.96 −2.80 −3.55 −3.55 < 0.001
1 2∆ 1π−2σ 9.68 12.79 12.79 −2.73 −3.36 −3.36 < 0.001

CN− 1Σ+

1 2Σ+ 5σ−1 3.26 3.52 3.22 2.84 −1.56 −1.89 −1.83 −0.55 0.890
1 2Π 1π−1 5.11 5.21 5.02 4.78 0.10 0.17 0.36 0.33 0.902
2 2Σ+ 4σ−1 6.46 7.02 7.01 5.57 1.31 2.02 2.33 0.99 0.828
2 2Π 5σ−2π 11.11 11.82 11.82 −0.42 −0.76 −0.76 0.001
1 2∆ 1π−15σ−1π 12.44 11.90 11.90 −1.20 −2.61 −2.61 < 0.001

NO−
2

1A1

1 2A1 6a−1
1 −0.17 0.17 −0.08 −0.75 0.23 0.36 0.35 −0.04 0.929

1 2B1 6a−2
1 b1 2.66 2.87 2.87 0.35 0.65 0.65 0.001

1 2B2 4b−1
2 3.32 3.93 3.91 2.30 −0.64 −0.68 −0.76 −0.68 0.841

1 2A2 1a−1
2 3.58 3.61 3.61 3.16 −0.87 −0.88 −0.97 −1.02 0.911

2 2B2 1a−1
2 6a−1

1 b1 5.80 5.30 5.30 −0.25 0.04 0.04 0.066

∆̄c 0.30 0.27 −0.77 17 37 5
σ(∆)c 0.19 0.28 0.32 30 79 85

|∆|c 0.30 0.29 0.77 22 43 44
|∆|max

c 0.61 0.61 1.26 70 260 230

a For NO−
2 results of CISDTQ calculations are shown.

b Iterative fourth-order treatment of constant diagrams according to the so-called Σ(4+) procedure,[74]

also referred to as “standard” IP-ADC(3) scheme.
c Only transitions with dominant 1h-character are taken into account.
d Final-state (N − 1)-electron configuration relative to the RHF reference.

IV.3.1. Closed-Shell Initial State

The FCI and IP-ADC/ISR results for ionization energies and dipole moments of the en-

ergetically lowest electron-detached states in the series of closed-shell neutrals (LiH, NH3,

H2O, HF, CO, and HCN) and anions (NH−
2 , OH−, CN−, and NO−

2 ) are listed in Tables

IV.3 and IV.4, respectively. 1h-type ionization transitions corresponding to ionization of
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outer-valence orbitals are shown, followed by one or two lowest photoelectron satellites

associated with doublet (S = 1/2) ionization transitions of 2h-1p-type.

Ionization Energies

In agreement with previous findings, the mean error of the different IP-ADC(3) variants

computed for the set of 25 1h-type ionization transitions in neutral molecules and anions

is 0.2–0.3 eV, with a maximum error of 0.6–0.8 eV. The scheme with iterative fourth-order

treatment of the static self-energy appears to be overall slightly more accurate than the

strict third order scheme (the mean signed error and its standard deviation ∆̄ ± σ(∆) is

0.24 ± 0.19 and 0.26 ± 0.30 eV, respectively) and more reliable (the maximum absolute

error |∆|max is 0.61 and 0.84 eV, respectively). In addition, IP-ADC(3) performs equally

well for neutral and anionic closed-shell systems.

The second-order IP-ADC scheme exhibits much larger overall ∆̄ and |∆|max values of

−0.75 ± 0.48 and 1.69 eV, respectively. Hence it is not sufficient if quantitative results

are desired. Moreover, since IP-ADC(2) treats 2h-1p-states only through zeroth order, it

cannot be expected to yield even a qualitatively correct representation of the ionization

spectrum beyond the outer-valence energy domain.

In IP-ADC(3), 2h-1p-states are treated through first order, providing a level of accuracy

characterized by |∆| and |∆|max values of 2.2 and 5.5 eV, respectively, as computed from

the set of 19 transitions of 2h-1p-type in the neutral molecules and anions presented in

Tables IV.3 and IV.4. Although such a level of accuracy is insufficient for an accurate

description of photoelectron satellites, it allows the principle features of the physical situ-

ation concerning main lines and satellites to be reproduced, which is crucial for studies of

photoelectron spectra beyond the outer-valence energy regime in which the one-electron

picture of ionization is known to break down.[1] Interestingly, the overall performance of

IP-ADC(3) with respect to 2h-1p-ionization energies is better for anions than for neutral

molecules. The standard IP-ADC(3) scheme exhibits a mean absolute error for anions

and neutrals of |∆| = 1.90 eV and |∆| = 2.42 eV and a maximum absolute error of

|∆|max = 3.96 eV and |∆|max = 5.47 eV, respectively.

Dipole Moments

The dipole moments of 1h-states in neutral molecules (Table IV.3) computed at the IP-

ADC(3)/ISR(2) level of theory are in excellent agreement with FCI data. For this set of

states, IP-ADC(2)/ISR(2) is only slightly less accurate. The situation however is different

for CO and HCN with a more complex electronic structure. The agreement with FCI
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becomes less uniform, and differences between various IP-ADC/ISR schemes get more

pronounced.

From a theoretical perspective, both IP-ADC(3)/ISR(2) and IP-ADC(2)/ISR(2) for-

mally provide the same second-order treatment of dipole moments of 1h-states. However,

in the context of electron number-preserving electronic excitations it has been observed

that third-order contributions introduced by IP-ADC(3) eigenvectors generally improve

the results.[199] This is also observed here, especially for anions as well as neutral CO and

HCN (Tables IV.3 and IV.4). Whereas the mean absolute error in neutral molecules is 15–

25 %, it increases up to 25–50 % in the case of anions. The overall accuracy decreases in the

order of standard IP-ADC(3)/ISR(2) > IP-ADC(2)/ISR(2) > strict IP-ADC(3)/ISR(2),

with mean absolute errors |∆| of 18, 29, and 32 % and maximum errors |∆|max of 70, 230,

and 260 %, respectively. This somewhat unexpected trend indicates that the ground state

contribution to the evaluated property matters in a significant way. It should, however, also

be noted that the large maximum absolute errors found for the strict IP-ADC(3)/ISR(2)

and IP-ADC(2)/ISR(2) schemes arise in cases of ionized states with small absolute dipole

moments, i.e., for the 1 2Π states of CO•+ and CN•.

The above trend in accuracy is in line with the observation from ionization energy

calculations, i.e, the results improve when constant diagrams in the IP-ADC(3) scheme

are treated beyond third order.

The accuracy of IP-ADC(3)/ISR(2) with respect to the dipole moments of primarily

2h-1p-states is not very high, since these are treated only through first order. For such

states, the mean absolute error |∆| is 60 and 72 % in the case of neutral molecules and

anions, respectively. The overall |∆| and |∆|max errors of the whole set of 19 2h-1p-states

shown in Tables IV.3 and IV.4 is ∼65 and ∼340 %, respectively. The above estimates

obviously refer only to the IP-ADC(3)-based schemes and are the virtually same for all

variants of these schemes, since all such schemes treat the 2h-1p-states only through first

order.

IV.3.2. Open-Shell Initial State

In this section the performance of the IP-UADC/ISR schemes for open-shell systems is

studied systematically. For a better coverage of situations met in practice, several types

of open-shell initial states are considered: (i) neutral radicals with doublet ground state,

(ii) triplet ground states of neutral molecules and (iii) radical anions with doublet ground

state. All these types of open-shell states can be represented by a single-determinant UHF

reference (if the ground state is not degenerate for point-group symmetry reasons), and
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Figure IV.1. Schematic overview of different final electronic configurations accessible by 1h-type
electron detachment from an open-shell doublet UHF reference state. For the MS = 0 open-shell

singlet and triplet states, linear combination with 2h-1p-configurations is required to form correct Ŝ
2

eigenfunctions.

thus can be treated using the present implementation of the IP-UADC/ISR method.

State Assignment for Electron-Detachment from Open-Shell Reference States

In the case of doublet UHF references (Tables IV.5 and IV.8) with one “unpaired” electron

in the singly occupied molecular orbital (SOMO), special care has to be taken when

classifying the resulting IP-UADC states with respect to spin multiplicity. In principle,

such an assignment is only possible if the reference state exhibits a correct Ŝ
2

eigenvalue

of 0.75 and if all occupied orbitals except the SOMO can be grouped in pairs with similar

spatial part. For the following discussion, a MS = 1/2 UHF reference with α-SOMO is

assumed. An overview of the character of possible electron-detached states is given in

Figure IV.1.

Final states resulting from β-detachment can easily be identified as MS = 1 triplet

components (case B in Figure IV.1). For α-detachment processes, leading to states char-

acterized by MS = 0, the situation is more involved. Apart from the trivial case of de-

tachment from SOMO which yields a closed-shell singlet state (case A in Figure IV.1), Ŝ
2

eigenfunctions cannot result from pure 1h-processes since the opposite-spin configurations
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required for the construction of such states are missing at first glance. However, they are in

fact present in the configurational space, being generated by appropriate 2h-1p-excitation

operators (case C and D in Figure IV.1).

Consequently, the IP-UADC description of such states is formally unbalanced, since 1h-

and 2h-1p-configurations are treated in different orders of perturbation theory (PT), and

the corresponding state energies are correct only through the lowest PT order involved.

Especially for IP-UADC(2), in which 2h-1p-configurations are treated in zeroth order,

reliable results can not be expected, and such states are thus not considered in this context.

In the case of IP-UADC(3) the respective energies are correct through first order, and

one can usually identify singlet/triplet state pairs. In such cases, the state with lower

energy is assigned as the MS = 0 triplet component. The quality of this approximation

may be judged by comparing the energy of the latter state to that of the respective MS = 1

triplet component formed by β-detachment (case B in Figure IV.1). Since in this case only

1h-transitions are involved, the energy is correct through third order. For this reason, the

values stated in Tables IV.5 and IV.8 refer to computed MS = 1 triplet components. As

numerical example, the respective values computed for the lowest triplet ionized state of

NH•
2 may be considered (1 3B1, Table IV.5). Using the standard IP-UADC(3) scheme, state

energies of 11.75 and 11.94 eV were computed for the MS = 1 and MS = 0 component,

respectively. However, larger deviations can be observed for other states or systems.

For IP-UADC calculations based on MS = 1 triplet UHF reference states (Tables IV.6

and IV.7), the possible final states resulting from α- and β-detachment are characterized

by MS = 1/2 and MS = 3/2, respectively, the latter clearly being quartet states. For

α-detachment, similar considerations as in the case of doublet UHF references have to be

made, since here doublet or quartet final states may be formed. All MS = 1/2 states

considered in Table IV.6 can, however, be characterized by leading configurations with

only one unpaired electron, and can thus be safely assigned as doublets.

Neutral Radicals with Doublet Ground States

Stable neutral radicals with spatially non-degenerate doublet ground states form a large

class of chemically relevant molecules with well-established spectroscopy.[200] Among the

systems considered in the present work, only NH•
2 (2B1) and NO•

2 (2A1) can be treated

using the UHF approach, yielding reference states with S2 values of 0.76 and 0.77, respec-

tively (Table IV.5). The OH radical drops out for its spatially-degenerate 2Π ground state,

and in the case of CN• (2Σ+) UHF calculations yield a strongly spin-contaminated ground-

state solution (characterized by an S2 value of 1.26), which leads at the IP-UADC(3) level
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Table IV.5. Comparison between FCI and IP-UADC/ISR results for vertical ionization energies of
NH•

2 and NO•
2 (IP, eV) and dipole moments of electron-detached states (µN−1

n , D).a,b The
IP-UADC(n)/ISR(m) schemes are denoted by the short-hand notations n/m. For the IP-UADC(3)
schemes the order of the constant diagrams treatment is shown in parentheses (see text for details).
The last lines give the mean error (∆̄) and its standard deviation (σ(∆)) as well as the mean
absolute error (|∆|) and maximum absolute error (|∆|max) relative to FCI (in eV for IPs and in
percent for µN−1

n ). The relative photoelectron intensity (or pole strength, P ) is also shown.

Neutral radical and IP µN−1
n P

final stated FCI 3(4+)/2c 3(3)/2 2/2 FCI 3(4+)/2c 3(3)/2 2/2 3(4+)/2c

NH•
2

2B1

1 3B1 3a−1
1 11.68 11.75 11.75 11.06 1.53 1.47 1.47 1.51 0.924

1 1A1 1b−1
1 12.20 12.27 12.34 11.83 2.22 2.12 2.14 2.32 0.893

1 1B1 3a−1
1 13.96 14.22 14.23 1.78 1.49 1.50 0.383

NO•
2
b 2A1

1 1A1 6a−1
1 10.84 11.28 10.78 9.81 0.34 0.50 0.37 −0.03 0.906

1 3B2 4b−1
2 13.19 12.64 12.56 11.96 0.10 0.10 −0.21 −0.06 0.918

1 1B2 4b−1
2 14.72 14.71 14.68 0.64 0.60 0.43 0.583

∆̄e 0.01 −0.12 −0.81 10 −77 −66
σ(∆)e 0.41 0.45 0.39 25 155 81

|∆|e 0.28 0.23 0.81 14 82 69
|∆|max

e 0.55 0.63 1.23 47 310 160

a IP-UADC/ISR calculations based on UHF references.
b For NO•

2 results of CISDTQ calculations are shown.
c Iterative fourth-order treatment of constant diagrams, according to the so-called Σ(4+) procedure,[74]

also referred to as “standard” IP-UADC(3) scheme.
d Final-state (N − 1)-electron configuration relative to the UHF reference.
e Only transitions which can be represented by a single 1h-configuration are taken into account. See
Section IV.3.2 for details.

of theory to a physically incorrect spectrum of electron-detached states.

The results obtained for ionization from the SOMO and the lowest doubly occupied

orbital (cf. Figure IV.1) are presented in Table IV.5. Standard and strict IP-UADC(3)

exhibit mean absolute errors for vertical ionization energies of 0.28 and 0.23 eV and maxi-

mum absolute errors of 0.55 and 0.63 eV, respectively. They are thus in the same range as

in the case of closed-shell IP-ADC(3) (cf. Table IV.9). The same accuracy level as in the

closed-shell IP-ADC(2) case is also found for IP-UADC(2), the respective error measures

in this case being |∆| = 0.81 eV and |∆|max = 1.23 eV.

As mentioned above, ionization from doublet ground states can result in singlet and

triplet final states. Both types of transitions are allowed by the monopole selection rules

for spin (∆S =±1/2) and can appear in the photoelectron spectra. The corresponding

relative photoelectron intensities P predicted by IP-UADC(3) calculations are shown in

Table IV.5. As expected, all ionization transitions of 1h-type are characterized by large

P values close to unity, regardless of the spin multiplicity of the final states.

The dipole moments of the electron-detached states computed using the standard IP-
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UADC(3)/ISR(2) approach with fourth-order treatment of the static self-energy agree well

with FCI results. The observed ∆̄ and ∆max values are well below the corresponding error

estimates found for the closed-shell systems (Table IV.4). By contrast, the results obtained

for the dipole moments using the strict IP-UADC(3)/ISR(2) scheme do not reach this level

of accuracy, which indicates that the initial-state electron correlation effects accounted for

by the static self-energy terms play an important role in these systems. The results of

the strict second-order treatment, IP-UADC(2)/ISR(2), are also less accurate than in the

closed-shell case. In particular, for the NO•
2 radical, an incorrect orientation of the dipole

moment is systematically predicted.

Triplet-Excited States of Neutral Molecules

The lowest triplet-excited state (T1) of neutral molecules is an interesting case of initial-

state open-shell systems which is important, e.g., as model for biradicals and in the context

of time-resolved photoelectron spectroscopy (TRPES). Only spatially non-degenerate T1

states can generally be treated by the single-determinant UHF approach. This is the case

for the LiH molecule in the 3Σ+(2σ → 3σ) state, the NH3 molecule in the 3A(3a → 4a)

state, and the H2O molecule in the 3B1(1b1 → 4a1) state (Table IV.5). The S2 values

computed for these UHF reference states are 2.00 for LiH and 2.01 for NH3 and H2O.

The present test is particularly insightful, since the electron-detached states are the

same as in the corresponding closed-shell case (Section IV.3.1, Table IV.3). However,

the use of the reference configuration (vacuum state) with two singly occupied MOs yields

another set of cationic configurations compared to the case of the closed-shell vacuum. The

differences are demonstrated in Table IV.7 where configurations obtained by applying Ĉ1h

and Ĉ2h-1p ionization operators to the open-shell vacuum state |T1⟩ ≡ |o2O1V 1v0⟩ are

classified in terms of the familiar 1h-, 2h-1p- and 3h-2p-nomenclature with respect to the

closed-shell vacuum state |S0⟩ ≡ |o2O2V 0v0⟩ (here O and V denote HOMO and LUMO,

respectively, o denotes any occupied MO except HOMO and v denotes any unoccupied

MO except LUMO).

As can be seen, Ĉ1h operators produce 2h-1p-states, unless the electron is detached

from the singly-occupied HOMO. The other 1h-states are produced by suitably chosen

Ĉ2h-1p operators. Depending on the Ĉ2p-1h operator, also 2h-1p- and 3h-2p-states can be

obtained. This implies that at the IP-UADC(3) level of theory, in contrast to the closed-

shell case, all 1h-states except HOMO−1 are treated only through first order. On the

other hand, the 2h-1p-states characterized by the orbital occupation pattern of the types:

HOMO−1-LUMO1 and HOMO−2-LUMO1 are treated through third order. Remarkably,
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also certain types of the 3h-2p-states, for closed-shell singlet references first considered at

the IP-(U)ADC(4) level of theory, become accessible and are treated through first order.

The agreement of ionization energies computed using the IP-UADC(3) and IP-UADC(2)

schemes based on the triplet-excited UHF reference with FCI results is very convincing

(Table IV.6). The errors for transitions with dominant 1h-character with respect to the

triplet vacuum state is smaller than that found in the closed-shell calculations. The good

agreement with FCI results extends also to transitions of 2h-1p-type. Interestingly, the

error of the IP-UADC(3) schemes for these transitions exhibits nearly the same magnitude

as for the transitions of 1h-type.

Table IV.6. Comparison between FCI and IP-UADC/ISR results for vertical ionization energies of
triplet-excited LiH∗, NH∗

3, and H2O
∗ molecules (IP, eV) and dipole moments of electron-detached

states (µN−1
n , D).a,b The IP-UADC(n)/ISR(m) schemes are denoted by the short-hand notations

n/m. For the IP-UADC(3) schemes the order of the constant diagrams treatment is shown in
parentheses (see text for details). The last lines give the mean error (∆̄) and its standard deviation
(σ(∆)) as well as the mean absolute error (|∆|) and maximum absolute error (|∆|max) relative to FCI
(in eV for IPs and in percent for µN−1

n ). The relative photoelectron intensity (or pole strength, P ) is
also shown.

Initial triplet-excited IP µN−1
n P

molecule and final statec FCI 3(4+)/2b 3(3)/2 2/2 FCI 3(4+)/2b 3(3)/2 2/2 3(4+)/2b

LiH∗ 3Σ+ (2σ → 3σ)
1 2Σ+ 3σ−1 4.76 4.75 4.75 4.76 −0.49 −0.48 −0.49 −0.56 0.997

1 2Πf 2σ−13σ−1π 16.53 16.50 16.50 3.27 3.27 3.27 < 0.001

2 2Σ+f 2σ−1 16.69 16.68 16.69 17.03 7.40 7.39 7.41 9.60 0.850

NH∗
3
d 3A (3a → 4a)

1 2A 4a−1 4.46 4.43 4.43 4.40 1.41 1.42 1.43 1.46 0.990
1 2E 1e−14a−13a 10.40 10.78 10.78 2.54 3.00 3.00 < 0.001

2 2Af 3a−1 17.54 17.81 17.94 17.82 0.47 0.78 0.89 0.93 0.832

2 2Ef 3a−14a−1e 19.50 20.33 20.34 2.44 2.27 2.28 0.048
H2O

∗ 3B1 (1b1 → 4a1)
1 2B1 4a−1

1 5.30 5.27 5.28 5.22 −2.55 −2.55 −2.56 −2.59 0.989
1 2A1 3a−1

1 4a−1
1 1b1 7.63 7.58 7.58 −2.12 −2.15 −2.15 < 0.001

1 2B2 1b−1
2 4a−1

1 1b1 11.97 12.17 12.17 −3.09 −3.49 −3.49 < 0.001

1 4B1
f 3a−1

1 18.68 18.85 19.02 18.49 0.56 0.67 0.78 1.00 0.790

2 2A1
f 1b−1

1 19.99 20.40 20.61 20.04 0.15 0.40 0.51 0.61 0.810

∆̄e 0.11 0.19 0.05 36 53 76
σ(∆)e 0.18 0.26 0.19 63 89 108

|∆|e 0.13 0.20 0.14 36 53 76
|∆|max

e 0.41 0.62 0.34 167 240 307

a IP-UADC/ISR calculations performed based on UHF references.
b Iterative fourth-order treatment of constant diagrams, according to the so-called Σ(4+) procedure,[74]

also referred to as “standard” IP-UADC(3) scheme.
c Final-state (N − 1)-electron configuration relative to the UHF reference.
d The modulus of the dipole moment is shown because of degenerate 2E states.
e Only transitions with dominant 1h-character (with respect to the triplet-excited vacuum state) are
taken into account.

f Transitions having 2h-1p-character with respect to the closed-shell reference state.
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Table IV.7. Electron configurations obtained by applying Ĉ1h and Ĉ2h-1p excitation operators to the
open-shell reference state |T1⟩ ≡ |o2O1V 1v0⟩ and their character with respect to the closed-shell
configuration |S0⟩ ≡ |o2O2V 0v0⟩. O and V denote HOMO and LUMO, respectively, o denotes any
occupied MO except HOMO and v denotes any unoccupied MO except LUMO.

Ĉ1h |T1⟩ Character
w.r.t. |S0⟩

Ĉ2h-1p |T1⟩ Character
w.r.t. |S0⟩

|o2O1V 0v0⟩ 1h |o1O2V 0v0⟩ 1h
|o2O0V 1v0⟩ 2h-1p |o2O0V 0v1⟩ 2h-1p
|o1O1V 1v0⟩ 2h-1p |o1O1V 0v1⟩ 2h-1p

|o0O2V 1v0⟩ 2h-1p
|o1O0V 1v1⟩ 3h-2p
|o1O0V 2v0⟩ 3h-2p
|o0O1V 2v0⟩ 3h-2p
|o0O1V 1v1⟩ 3h-2p

By comparison with the data provided in Table IV.3, it can readily be established that

the 1 2Π and 2 2Σ states of LiH, the 2 2A and 2 2E states of NH3 and the 2 2B1 and 2 2A1

states of H2O are transitions of 2h-1p-type with respect to the closed-shell reference. For

these transitions a very good agreement with FCI is found when the triplet reference

is employed, which contrasts the results obtained using the closed-shell reference where,

especially for NH3 and H2O, larger errors are found (Table IV.3). This indicates that

triplet references can be used in computations of neutral molecules to improve the IP-

UADC(3) results specifically for 2h-1p satellite states.

Another important aspect in the context of electron detachment from triplet-excited

molecules is that in this situation quartet electron-detached states can acquire photoelec-

tron intensities, according to the monopole selection rules for spin (∆S =±1/2). The

S = 3/2 states can be obtained first for the spin coupling of three electrons in three dif-

ferent orbitals, that is in the case of 2h-1p satellites. In Table IV.6 this possibility is

illustrated by the lowest 1 4B1 (3a−1
1 ) state of H2O with the “absolute” electron configura-

tion 3a11 1b1
1 4 a11. As can be seen from the pole strengths (P ) computed at the IP-UADC(3)

level of theory and shown in the last column of Table IV.6, the 3a−1
1 (1 4B1) transition

indeed, on par with the doublet 1h-transitions, obtains a considerable photoelectron in-

tensity of 0.79. This example in particular demonstrates that quartet cationic states can

be studied both theoretically and spectroscopically when ionization from the lowest triplet

(T1) state of the neutral molecule is considered, e.g., in two-photon TRPES experiments.

The dipole moments of the cationic states computed using a triplet reference are in

many cases very accurate, especially at the IP-UADC(3)/ISR(2) level of theory. As ex-

pected, lower errors are found for states accessible by 1h-ionization with respect to the

triplet vacuum state than for states resulting from 2h-1p-type transitions. As seen in
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the previous sections, the quality of computed dipole moments increases in the order

IP-UADC(2)/ISR(2) < strict IP-UADC(3)/ISR(2) < standard IP-UADC(3)/ISR(2).

Radical Anions with Doublet Ground States

Radical anions with doublet ground states can be prepared for example by electron at-

tachment to neutral closed-shell molecules. A number of such species is known, playing an

important role in chemistry.[188] However, most radical anions are unstable with respect

to electron loss and cannot be treated within the standard quantum chemical framework

building upon square-integrable basis set representations. In this section, the results for

electron detachment from the lowest spatially non-degenerate electronic states of LiH•−,

NH•−
3 , H2O

•−, HF•− and HCN•− are presented (Table IV.8). For these systems, the S2

values computed for the respective UHF wavefunctions are 0.75, 0.76, 0.76, 0.75 and 0.78.

With the exception of LiH•−, these systems are unstable anions and in the context of the

present study only considered as model systems.

A problematic case is HCN•−, where large deviations from high-level CI results are

observed for the 1 1,3Π states. This can be explained by the fact that the 2Σ+ reference

employed in the IP-UADC calculations is in UHF an excited state lying 0.12 eV above the
2Π state. By contrast, CISDTQ predicts a 2Σ+ ground state, 2Π being the lowest excited

state with a vertical excitation energy of 0.27 eV. Strictly speaking, the UHF reference

wavefunction cannot be employed in this case, and the results computed for HCN•− are

excluded from the statistical error analysis.

For all other considered systems, IP-UADC(3) yields reliable electron detachment ener-

gies (Table IV.8). We find mean signed errors of ∆̄ = 0.13 ± 0.26 eV and ∆̄ = 0.21 ± 0.37

eV for the standard and strict IP-UADC(3) schemes, respectively. The corresponding

mean and maximum absolute errors with respect to FCI results are |∆| = 0.19 eV and

|∆|max = 0.53 eV for the standard and |∆| = 0.25 eV and |∆|max = 0.91 eV for the strict

IP-UADC(3) scheme. For these systems, IP-UADC(2) is only slightly less accurate with

∆̄ = −0.17 ± 0.45 eV, |∆| = 0.32 eV and |∆|max = 0.87 eV.

Again, as for the neutral radicals considered above, both singlet and triplet final states

can be obtained as a result of electron detachment. The corresponding transitions acquire

photoelectron intensities and should be seen in the spectrum. This also follows from the

respective calculations predicting significant pole strengths for transitions to singlet and

triplet states (Table IV.8).

The IP-UADC/ISR dipole moments for the electronic states obtained by electron de-

tachment from radical anions are in very good agreement with FCI data. The errors for all
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Table IV.8. Comparison between FCI and IP-UADC/ISR results for vertical electron detachment
energies of LiH•−, NH•−

3 , H2O
•−, HF•−, and HCN•− (IP, eV) and dipole moments of

electron-detached states (µN−1
n , D).a,b The IP-UADC(n)/ISR(m) schemes are denoted by the

short-hand notations n/m. For the IP-UADC(3) schemes the order of the constant diagrams
treatment is shown in parentheses (see text for details). The last lines give the mean error (∆̄) and
its standard deviation (σ(∆)) as well as the mean absolute error (|∆|) and maximum absolute error
(∆max) relative to FCI (in eV for IPs and in percent for µN−1

n ). The relative photoelectron intensity
(or pole strength, P ) is also shown.

Initial radical anion IP µN−1
n P

and final statee FCI 3(4+)/2c 3(3)/2 2/2 FCI 3(4+)/2c 3(3)/2 2/2 3(4+)/2c

LiH•− 2Σ+

1 1Σ+ 3σ−1 0.30 0.29 0.29 0.29 −5.90 −5.97 −5.98 −6.22 0.991
1 3Σ+ 2σ−1 3.49 3.34 3.41 4.10 4.40 3.94 4.04 8.40 0.590
2 1Σ+ 2σ−1 3.85 3.93 3.96 5.13 5.95 6.10 0.335

NH•−
3

d 2A
1 1A 4a−1 −0.95 −0.99 −0.98 −1.01 1.90 1.93 1.93 1.96 0.993
1 3A 3a−1 5.04 5.34 5.34 4.78 1.05 1.30 1.33 1.42 0.826
2 1A 3a−1 5.33 6.13 6.13 0.91 1.18 1.19 0.061

H2O
•− 2A2

1 1A1 4a−1
1 −0.94 −0.97 −0.96 −1.00 −2.28 −2.30 −2.29 −2.32 0.994

1 3B1 1b−1
1 6.06 6.50 6.70 5.42 0.99 1.31 1.35 1.49 0.791

1 1B1 1b−1
1 6.44 7.33 7.37 1.22 1.51 1.55 0.099

HF•− 2Σ+

1 1Σ+ 4σ−1 −0.99 −1.02 −1.00 −1.04 2.02 2.04 2.01 2.04 0.996
1 3Π 1π−1 9.00 9.53 9.91 8.13 −2.50 −2.86 −2.89 −3.38 0.750
1 1Π 1π−1 9.39 10.35 10.45 −2.72 −2.98 −3.08 0.113

HCN•−f 2Σ+

1 1Σ+ 6σ−1 −4.41 −4.36 −4.42 −4.25 −2.77 −3.11 −2.90 −2.83 0.967
1 3Π 1π−1 4.05 6.01 6.29 6.59 −0.39 3.50 3.98 5.00 0.861
1 1Π 1π−1 5.39 6.86 6.71 −0.93 4.71 4.56 0.567

∆̄h 0.13 0.21 −0.17 8 9 28

σ(∆)h 0.26 0.37 0.45 14 15 32

|∆|h 0.19 0.25 0.32 11 11 28

|∆|max
h 0.53 0.91 0.87 32 36 91

a IP-UADC/ISR calculations based on UHF references.
b For HCN•− results of CISDTQ calculations are shown.
c Iterative fourth-order treatment of constant diagrams, according to the so-called Σ(4+) procedure,[74]

also referred to as “standard” IP-UADC(3) scheme.
d The modulus of the dipole moment is shown because of degenerate 2E states.
e Final-state (N − 1)-electron configuration relative to the UHF reference.
f The 2Σ+ reference employed in the IP-UADC calculations is not the UHF ground state. See text for
details.

g Exempting results for HCN•− (see footnote f).
h Only transitions which can be represented by a single 1h-configuration are taken into account. See
Section IV.3.2 for details.

three IP-UADC/ISR schemes compared in Table IV.8 are of the same order of magnitude

as for the closed-shell systems (Table IV.3).
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Table IV.9. The mean (∆̄) absolute error and its standard deviation (σ(∆)) as well as the maximum
absolute error (∆max) of the IP-(U)ADC/ISR schemes relative to FCI with respect to 1h-type
electron detachment processes in open- and closed-shell systems. The values are given in units of eV
for vertical electron detachment energies (IP) and percent for dipole moments of electron-detached
states (µN−1

n ). The closed-shell systems comprise neutral molecules (N, Table IV.3) and anions (A,
Table IV.4); the open-shell systems comprise neutral radicals (NR, Table IV.5), molecules in lowest
triplet excited states (T1, Table IV.7) and radical anions (RA, Table IV.8). The number of states
considered in each case is denoted by k. The IP-(U)ADC(n)/ISR(m) schemes are denoted by the
short-hand notations n/m. For the IP-(U)ADC(3) schemes the order of the static self-energy
treatment is shown in parentheses (see text for details).

IP µN−1
nInitial system Error

3(4+)/2a 3(3)/2 2/2 3(4+)/2a 3(3)/2 2/2
k

Closed-shell

∆̄± σ(∆) 0.19± 0.18 0.26± 0.33 −0.73± 0.59 −4± 29 −10± 54 −8± 38

N |∆| 0.22 0.33 0.76 15 24 18 14
|∆|max 0.51 0.84 1.69 70 170 126

∆̄± σ(∆) 0.30± 0.19 0.27± 0.28 −0.77± 0.32 17± 30 37± 79 5± 85

A |∆| 0.30 0.29 0.77 22 43 44 11
|∆|max 0.61 0.61 1.26 70 260 230

∆̄± σ(∆) 0.24± 0.19 0.26± 0.30 −0.75± 0.48 5± 30 11± 69 −2± 62
Overall |∆| 0.25 0.31 0.76 18 32 29 25

closed-shell |∆|max 0.61 0.84 1.69 70 260 230

Open-shell

∆̄± σ(∆) 0.01± 0.41 −0.12± 0.35 −0.81± 0.39 10± 25 −77± 155 −66± 81

NR |∆| 0.28 0.23 0.81 14 82 69 4
|∆|max 0.55 0.63 1.23 47 310 160

∆̄± σ(∆) 0.11± 0.18 0.19± 0.26 0.05± 0.19 36± 63 53± 89 76± 108

T1 |∆| 0.13 0.20 0.14 36 53 76 7
|∆|max 0.41 0.62 0.34 167 240 307

∆̄± σ(∆) 0.13± 0.26 0.21± 0.37 −0.17± 0.45 8± 14 9± 15 28± 32

RA |∆| 0.19 0.25 0.32 11 11 28 8
|∆|max 0.53 0.91 0.87 32 36 91

∆̄± σ(∆) 0.10± 0.26 0.13± 0.34 −0.22± 0.47 19± 41 7± 96 26± 91
Overall |∆| 0.19 0.23 0.36 21 41 54 19

open-shell |∆|max 0.55 0.91 1.23 167 310 307

∆̄± σ(∆) 0.17± 0.23 0.21± 0.32 −0.52± 0.54 11± 35 9± 80 10± 76

Overall |∆| 0.22 0.28 0.59 19 36 40 44
|∆|max 0.61 0.91 1.69 167 310 307

a Iterative fourth-order treatment of the static self-energy according to the so-called Σ(4+)

procedure,[74] also referred to as “standard” IP-(U)ADC(3) scheme.

IV.3.3. Overall Error Metrics

The combined error statistics computed for the total set of 44 1h-type transitions are sum-

marized in Table IV.9, accompanied by the individual error statistics for each considered

case.
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The standard IP-(U)ADC(3)/ISR(2) methods with iterative fourth-order treatment of

the static self-energy yield very convincing results for both electron-detachment energies

and electron-detached state dipole moments, exhibiting an equally good performance for

closed- and open-shell systems. The overall mean signed and mean absolute errors of

electron detachment energies computed for the total set of 44 states are ∆̄ ± σ(∆) =

0.17 ± 0.23 eV and |∆| = 0.22 eV, the maximum absolute error being |∆|max = 0.61 eV.

For dipole moments, a similarly good accuracy is found, the respective error measures

being ∆̄ ± σ(∆) = 11 ± 35 %, |∆| = 19 % and |∆|max = 167 %.

For the calculation of electron-detachment energies, the strict IP-(U)ADC(3)/ISR(2)

methods employing the perturbative second-order ground state density perform similarly

well. The overall error measures computed for this approximation scheme are ∆̄±σ(∆) =

0.21 ± 0.32 eV, |∆| = 0.28 eV and |∆|max = 0.91 eV. The larger maximum error and

standard deviation of the error encountered in this case, however, render the method less

trustworthy than standard IP-(U)ADC(3)/ISR(2). For dipole moments, the same trend

is observed in a considerably more pronounced manner.

As found previously, the pure second-order IP-(U)ADC(2)/ISR(2) schemes cannot be

employed if quantitative results are desired. For electron-detachment energies, a mean

error of ∆̄ ± σ(∆) = −0.52 ± 0.54 eV is found, the mean and maximum absolute errors

being |∆| = 0.59 eV and |∆|max = 1.69 eV. The same unreliable behavior is seen for dipole

moments with mean and maximum absolute errors of 40 % and 307 %, respectively.



Chapter V

IP-UADC Case Study: The Galvinoxyl

Free Radical

As an example how IP-UADC can be used in practical electronic structure studies of

open-shell systems, the photoelectron spectrum (PES) of the galvinoxyl free radical (GFR)

C29H41O2 (Figure V.1) has been investigated. It is one of the most stable organic free

radicals, and is widely employed in organic synthesis as radical scavenger to suppress

undesired radical side reactions.[201, 202] GFR is also used as a mechanistic probe in the

investigation of reaction pathways involving radical intermediates.[203]

Figure V.1. Molecular structure of the galvinoxyl free radical.

Parts of this chapter have already been published in

• A. L. Dempwolff, M. Schneider, M. Hodecker, A. Dreuw, “Efficient Implementation of the Non-
Dyson Third-Order Algebraic Diagrammatic Construction Approximation for the Electron Propa-
gator for Closed- and Open-Shell Molecules”, J. Chem. Phys. 2019, 150, 064108.

• A. L. Dempwolff, A. C. Paul, A. M. Belogolova, A. B. Trofimov, A. Dreuw, “Intermediate State
Representation Approach to Physical Properties of Molecular Electron-Detached States: I. Theory
and Implementation”, J. Chem. Phys. 2020, 152, 024113.
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V.1. Computational Details

The vertical ionization spectrum and one-electron properties of the final cationic states

of GFR were computed at the strict IP-UADC(3)/cc-pVDZ[179] level. The ionized state

dipole moments are given with respect to the center of mass (COM). The molecular

geometry of C2 point-group symmetry as computed in Ref. [204] at the DFT (M06-2X)/6-

31+G(d,p) level of theory was used. The UHF reference state employed for the IP-UADC

calculations was assumed to be of 2A symmetry characterized by MS = 1/2, i.e., with an

excess α-electron.

The theoretical spectrum shown in Figure V.2 was simulated by convoluting the IP-

UADC(3)/cc-pVDZ stick spectrum with Lorentzians of 0.5 eV FWHM (full width at half

maximum). Orbital and density visualizations were computed using version 1.9.4a27 of

the VMD software.[205] Dyson orbital isosurfaces were plotted at function values of ±0.03.

For attachment and detachment density plots, isovalues of ±0.0025 were chosen.

V.2. Simulation of the Photoelectron Spectrum and State

Assignment

Figure V.2. The simulated and experimental photoelectron spectra of GFR. The simulated spectrum
was obtained by convoluting the vertical IP-ADC(3)/cc-pVDZ spectrum with Lorentzians of 0.5 eV
FWHM (full width at half maximum). Experimental data for different photon energies Eph was
digitized from Ref. [204].

Recently, the experimental gas phase photoelectron spectrum of GFR has been reported,
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Table V.1. Lowest vertical IPs (eV), pole strength (P ) and cationic-state dipole moments (µN−1
n , D) of

GFR computed using the IP-UADC(3)/ISR(2) method employing the cc-pVDZ basis set, along with
the available experimental data.

State Transition Type IP P µN−1
n Expt.a Band

1 α-59a−1 π 7.35 0.87 2.72 7.42 1

2 β-57b−1 π 8.07 0.87 4.07 8.01 2

3 α-56b−1 π 8.71 0.85 3.00 8.61 3
4 β-55b−1 σ 8.83 0.85 1.65
5 α-57b−1 π 8.86 0.87 2.00
6 α-58a−1 π 8.90 0.87 2.40
7 β-57a−1 σ 8.91 0.84 1.31
8 β-56b−1 π 9.02 0.86 2.18
9 β-58a−1 π 9.03 0.86 2.74
10 α-55b−1 σ 9.15 0.82 1.35
11 α-57a−1 σ 9.18 0.81 1.36
12 α-55b−1 2h-1p 10.53 0.01 2.69

a Experimental data from Ref. [204]. The stated values refer to band maxima.

and assignments of the first three bands in the low-energy range between 6.5 and 9.5 eV

were made based on a Koopmans-like interpretation of Kohn-Sham (KS) density functional

theory (DFT) orbitals.[204]

According to these results, the first band was assigned to an ionization from the π-type

singly occupied molecular orbital (SOMO), which was found to be delocalized over the

whole molecule. The second and third bands were assigned to ionizations from SOMO−1,

mainly localized at the methine bridge, and SOMO−2 with large contributions from the

in-plane lone pairs at the oxygen sites, respectively.

The experimental spectrum as digitized from Ref. [204] is shown in Figure V.2 along

with the simulated IP-UADC spectrum. The spectral structure with three distinct bands

is thereby correctly reproduced by the IP-UADC(3) calculation.

The calculated energies and pole strengths for the vertical ionization transitions of GFR

along with the dipole moments of the corresponding final electron-detached states are listed

in Table V.1.

According to IP-UADC(3), the lowest experimental band with a maximum at 7.42 eV

mainly results from ionization from the π-type SOMO (α-59a). The calculated vertical

ionization energy of this transition leading to the cationic ground state is 7.35 eV which is

in excellent agreement with experiment. The corresponding Dyson orbital and α-part of

the detachment density are shown in Figure V.3. As noted before, the shape of the Dyson

orbital resembles the respective part of the detachment density, as the corresponding

ionization process can be well described by a single 1h-configuration.
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Figure V.3. Dyson orbital (left) and α-part of the detachment density (right) associated with the
lowest IP in GFR (state 1 in Table V.1).

Figure V.4. Detachment densities for the SOMO−1 ionization transitions in GFR. Left panel: β-part
of the detachment density associated with the first excited state of the GFR cation (state 2 in Table
V.1), being responsible for the second PES band; Right panel: α-part of the detachment density
associated with the second excited state of the GFR cation (state 3 in Table V.1), contributing to the
third PES band.

The second photoelectron band is also due to a single transition, i.e, electron detachment

from β-57b (SOMO−1). The computed vertical ionization energy of 8.07 eV again agrees

very well with the observed band maximum at 8.01 eV. The β-part of the detachment

density associated with this ionization process is depicted in the left panel of Figure

V.4, reflecting the π-type of the associated spin-orbital with a large density contribution

residing at the methine bridge.

The third PES band, however, turns out to have a more complex underlying structure,

as one can identify nine transitions contributing to this spectral feature. The lowest of

these corresponds to detachment from a π-type orbital (α-56b, state 3 in Table V.1, left

panel of Figure V.5), having a similar spatial structure as that responsible for the second

PES band.

The remaining eight transitions can further be categorized into two groups of four

with respect to their σ- or π-character, each including α- and β-detachment of A and B
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Figure V.5. Detachment densities for higher-lying ionization transitions in GFR contributing to the
third PES band. Left panel: β-part of the detachment density associated with the third excited state
of the GFR cation (state 4 in Table V.1); Right panel: α-part of the detachment density associated
with the fourth excited state of the GFR cation (state 5 in Table V.1).

symmetry. The first group comprises states 4, 7, 10 and 11 of Table V.1, all describing

σ-type detachment from the oxygen in-plane lone pairs. As representative example, the

β-part of the detachment density of state 4 is shown in the left panel of Figure V.5.

The remaining four states 5, 6, 8 and 9 of Table V.1 result from higher-energy ionizations

from the π-system, which can be visualized in terms of detachment densities as that of

state 5 exemplarily depicted in the right panel of Figure V.5.

It is thus obvious that a simple Koopmans-like approach based on KS-DFT calculations

provides only limited insight into electron detachment processes, and conclusions drawn

based on such simple approaches need to be considered carefully. Moreover, the difficulties

of the single-electron approximation related to the appearance of photoelectron satellites

predicted above 10.5 eV have to be kept in mind.

In order to emphasize the different meanings of detachment densities and Dyson orbitals,

the 12th transition (Table V.1) with a vertical ionization energy of 10.53 eV and a pole

strength of P = 0.01 can be considered.

According to IP-UADC(3), this state results from a 2h-1p-satellite transition which gains

its photoelectron intensity from the α-55b−1 main state. The corresponding Dyson orbital

shown in Figure V.6 indicates that the ejected electron wavefunction is predominantly

described by a σ-type function.

The associated detachment and attachment densities are depicted in Figure V.7. Focus-

ing first on the β-part shown in the right column, one can identify an n → π∗ excitation

accompanying the α-detachment. In contrast, the α-part (Figure V.7, left column) par-

tially compensates the density loss in the σ-system by pulling density from the π-system,

in which the largest part of the hole resides in the final state.
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Figure V.6. Dyson orbital associated with the 11th excited state in the GFR cation.

Figure V.7. Detachment (upper row) and attachment densities (lower row) associated with the 11th
excited state in the GFR cation. The α-contributions are shown on the left side, the β-contributions
on the right.



Chapter VI

Benchmarking Third-Order ADC

Schemes for the Polarization Propagator

In this chapter, the accuracy of different third-order ADC schemes for the polarization

propagator (PP-ADC) with respect to the treatment of the static self-energy Σ(∞) is evalu-

ated using the implementation presented in Section III.3.2. Apart from the well-established

strict third-order scheme employing the third-order static self-energy, ADC(3(3)), the

corresponding schemes employing the fourth-order and improved fourth-order static self-

energy, ADC(3(4)) and ADC(3(4+)), are considered.

VI.1. Computational Details

All calculations presented in this chapter were performed using Q-Chem 5.2.[75]

For the comparison with Σ(DEM) (Section VI.2, Table VI.1), all parameters were chosen

as in the original literature, i.e., Ref. [39] and Refs. [206–208].

For the neon atom, slightly different parameters were used for the calculation of singlet

and triplet excited states. For singlet states, the cc-pVDZ basis set[179] was employed,

additionally augmented with diffuse functions with exponents 0.04 (s) and 0.03 (p), and

no orbitals were frozen. In the corresponding triplet state calculations, the aug-cc-pVDZ

basis set[180] was used. In this case the 1s orbital was kept frozen.

The geometry used for the computation of singlet and triplet excited states of the water

molecule was O(0, 0, 0), H(0, ±1.429 937 284 rBohr, −1.107 175 113 rBohr). In both cases,

the cc-pVDZ basis set[179] was employed, additionally augmented with diffuse functions

with the same exponents as in the aug-cc-pVDZ basis set,[180] i.e., 0.07896 (s), 0.06856 (p)

on O and 0.02974 (s) on H. In the respective calculations, the 1s orbital on O was kept

frozen.

93



94 VI. Benchmarking Third-Order ADC Schemes for the Polarization Propagator

In the case of the dinitrogen molecule, the internuclear distance was chosen as RNN =

2.068 rBohr, and the cc-pVDZ basis set[179] was used. The 1s orbitals on the nitrogen

atoms were kept frozen.

For the hydrogen fluoride molecule, an internuclear distance of RHF = 1.732 879 5 rBohr

was used. For both triplet and singlet state calculations, the aug-cc-pVDZ basis set[180]

was employed. In this case, the frozen-core approximation was also applied.

For the extended benchmark study presented in Section VI.3, all parameters were chosen

as in the respective reference literature.

For the computation of excited states from the Thiel benchmark set[209] (Table VI.2) the

def-TZVP basis set[210] was employed. The geometries used were the same as previously

used in Ref. [211], being the same as in the original literature[209] or re-optimized at the

MP2/6-31G* level in cases where the molecular point group symmetry was not correct.

In a few cases a different state assignment as in Ref. [211] was done in order to achieve

a better agreement of the single-excitation character of the respective states with the

literature value. For the statistical error evaluation, only states for which theoretical

best estimates (TBE) are available were considered, and the mean signed error (∆̄) and

its standard deviation (σ(∆)) as well as the mean absolute error (|∆|) and maximum

absolute error (|∆|max) were computed with respect to these values.

In the case of the Jacquemin benchmark set[212] (Table VI.3), the CC3/aug-cc-pVTZ

geometries available through Ref. [212] were used, and the aug-cc-pVTZ basis set[180] was

employed for excited state calculations. As for the Thiel benchmark set, all error measures

were computed with respect to TBE values.

VI.2. Comparison with the Dyson Expansion Method

The improved fourth-order static self-energy obtained using the Σ(4+) method as out-

lined in Section II.1.5 has previously been shown to be a good approximation to that

one available through the Dyson expansion method, Σ(DEM), by comparing the diago-

nal contributions Σkk(∞) among the different schemes.[74] In the same study, ionization

potentials were computed using the corresponding IP-ADC(3) schemes and compared to

experimental data. In this respect, only minor deviations between IP-ADC(3(4+)) and

IP-ADC(3(DEM)) were observed, suggesting that the Σ(4+) scheme can indeed be used as

a replacement for the computationally more demanding Dyson expansion method. Consid-

ering the performance of different IP-ADC(3) schemes with respect to experimental data,

IP-ADC(3(4+)) was observed to exhibit a higher accuracy than the strict third-order

IP-ADC(3(3)) scheme, IP-ADC(3(4)) being only slightly less accurate.
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In a second study focusing on PP-ADC, ADC(3(DEM)) was found to perform signif-

icantly better with respect to full configuration interaction than the strict third-order

ADC(3(3)) scheme.[39] Neither the fourth-order Σ(4) nor the improved fourth-order static

self-energy according to the Σ(4+) scheme have, however, been employed in this context

so far.

In order to test the applicability of the Σ(4) and Σ(4+) schemes for PP-ADC, the

excitation energies of the neon atom, hydrogen fluoride, water and dinitrogen have been

computed and are compared to ADC(3(DEM)) and FCI results available through Ref. [39]

and Refs. [206–208], respectively (Table VI.1).

Table VI.1. Comparison of different third-order ADC(3) schemes with ADC(3(DEM)) and FCI results
from Ref. [39].

Compound State FCI ADC(3(3)) ADC(3(4)) ADC(3(4+)) ADC(3(DEM))a

Neon atomb

1 1P 16.40 16.78 16.46 16.56 16.57
1 1D 18.21 18.61 18.29 18.39 18.39
2 1P 18.26 18.65 18.33 18.43 18.44
2 1S 18.48 18.98 18.64 18.74 18.75
3 1S 44.05 44.63 44.30 44.40 44.40
1 3P 18.70 19.16 18.68 18.84 18.83
1 3S 19.96 20.35 19.90 20.05 20.06
1 3D 20.62 21.07 20.59 20.75 20.75
2 3P 20.97 21.43 20.95 21.11 21.10
2 3S 45.43 46.15 45.68 45.83 45.83

∆̄± σ(∆) 0.47± 0.11 0.07± 0.11 0.20± 0.10 0.20± 0.10

|∆| 0.47 0.10 0.20 0.20
|∆|max 0.72 0.25 0.40 0.40

Hydrogen fluoridec

1 1Π 10.44 10.96 10.43 10.63 10.62
2 1Π 14.21 14.74 14.21 14.41 14.40
2 1Σ+ 14.58 15.00 14.53 14.70 14.68
1 1∆ 15.20 15.65 15.13 15.32 15.32
1 1Σ− 15.28 15.71 15.20 15.39 15.40
3 1Π 15.77 16.35 15.79 16.00 16.00
3 1Σ+ 16.43 17.12 16.54 16.75 16.80
1 3Π 10.04 10.50 10.00 10.19 10.18
1 3Σ+ 13.54 13.80 13.42 13.56 13.59
2 3Π 14.01 14.53 14.01 14.20 14.20
2 3Σ+ 14.46 14.83 14.34 14.52 14.53
1 3∆ 14.93 15.33 14.83 15.02 15.03
1 3Σ− 15.25 15.68 15.17 15.36 15.37
3 3Π 15.57 16.13 15.59 15.79 15.79

∆̄± σ(∆) 0.47± 0.11 −0.04± 0.07 0.15± 0.08 0.16± 0.08

|∆| 0.47 0.06 0.15 0.16
|∆|max 0.69 0.12 0.32 0.37
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Table VI.1. (continued)

Compound State FCI ADC(3(3)) ADC(3(4)) ADC(3(4+)) ADC(3(DEM))a

Waterd

2 1A1 9.87 10.15 9.98 10.04 10.01
1 1B1 7.45 7.72 7.55 7.61 7.58
1 1B2 11.61 11.91 11.74 11.80 11.79
1 1A2 9.21 9.50 9.33 9.39 9.38
1 3B1 7.06 7.27 7.11 7.17 7.15
1 3A2 9.04 9.30 9.14 9.20 9.18
1 3A1 9.44 9.64 9.49 9.55 9.54
2 3A1 10.83 10.95 10.79 10.85 10.84
2 3B1 11.05 11.27 11.10 11.17 11.16
1 3B2 11.32 11.54 11.39 11.44 11.45

∆̄± σ(∆) 0.24± 0.06 0.07± 0.05 0.13± 0.05 0.12± 0.05

|∆| 0.24 0.08 0.13 0.12
|∆|max 0.30 0.13 0.19 0.18

Dinitrogend

1 1Πg 9.58 9.45 9.48 9.48 9.41
1 1Σ−

u 10.33 9.85 9.84 9.84 10.00
1 1∆u 10.72 10.24 10.24 10.24 10.35
1 1Πu 13.61 13.44 13.46 13.46 13.38
1 3Σ+

u 7.90 7.52 7.50 7.49 7.71
1 3Πg 8.16 7.94 7.97 7.96 7.87
1 3∆u 9.19 8.76 8.75 8.74 8.92
1 3Σ−

u 10.00 9.57 9.56 9.56 9.71
1 3Πu 11.44 11.29 11.31 11.31 11.25

∆̄± σ(∆) −0.32± 0.15 −0.31± 0.16 −0.32± 0.17 −0.26± 0.07

|∆| 0.32 0.31 0.32 0.26
|∆|max 0.48 0.49 0.49 0.37

Overall
∆̄± σ(∆) 0.25± 0.33 −0.04± 0.18 0.06± 0.22 0.07± 0.19

|∆| 0.39 0.13 0.19 0.18
|∆|max 0.72 0.49 0.49 0.40

a ADC(3(DEM)) values from Ref. [39].
b FCI values for singlet states from Ref. [206]; FCI values for triplet states from Ref. [208].
c FCI values for singlet and triplet states from Ref. [208].
d FCI values for singlet states from Ref. [207]; FCI values for triplet states from Ref. [208].

An inspection of Table VI.1 shows that the ADC(3(4+)) method indeed reproduces the

ADC(3(DEM)) results for the first three systems considered, i.e., the neon atom, hydrogen

fluoride and the water molecule. Compared to the strict ADC(3(3)) method, the mean

and maximum absolute errors computed for the respective sets of states are found to be

considerably smaller for these three systems. As an example the water molecule may be

considered, where the mean absolute error computed for ADC(3(3)) and ADC(3(4+)) is

0.24 ± 0.06 eV and 0.13 ± 0.05 eV, respectively, the corresponding maximum absolute

errors being 0.30 eV and 0.19 eV. For these systems, ADC(3(4)) interestingly yields even

more accurate results, and this scheme is consequently also evaluated in the extended
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benchmark study presented in the following section.

In the remaining case of the dinitrogen molecule with a more complicated electronic

structure, however, a completely different behavior is observed. For this system, ADC(3(3)),

ADC(3(4)) and ADC(3(4+)) yield virtually identical results, and no systematic improve-

ment with respect to FCI data is found. By contrast, the ADC(3(DEM)) scheme employing

the iterated ground state density available through the Dyson expansion method performs

better, although the improvement upon ADC(3(3)) is not as pronounced as observed for

the first three examples.

The above findings indicate that the general applicability of the improved third-order

ground state density connected to the Σ(4+) scheme as a replacement for that one related

to the Σ(DEM) scheme is not as clear as observed in the context of IP-ADC.[74] Never-

theless, the overall error measures computed for the total set of 43 states considered in

Table VI.1 imply that ADC(3(4+)) has the potential to improve the accuracy of ADC(3)

results for excitation energies.

VI.3. Extended Benchmarking

The accuracy of the three ADC(3) schemes differing by the static self-energy treatment

was further investigated in an extended benchmark study. Therein, two different sets

of molecules were considered, the first of which is the well-established benchmark set by

Thiel and co-workers,[209] which comprises 28 small and medium-sized organic molecules.

The second benchmark set was published recently by Jacquemin and co-workers[212] and

covers 18 small inorganic and organic molecules.

VI.3.1. Thiel Benchmark Set

In Table VI.2, the errors with respect to theoretical best estimates computed for each

individual molecule are summarized, accompanied by the overall statistical error measures

for 104 singlet and 63 triplet states as well as the total set of 167 states. The results for

the individual excited singlet and triplet states are given in Appendix A.1 in Tables A.1

and A.2, respectively.

The performance of ADC(3(3)) has previously been evaluated using the same benchmark

set in Ref. [211]. As noted above, in the present work states were assigned differing from the

previous study in a few cases, which is reflected in slightly different overall error measures.

For singlet and triplet excited states, a mean signed error of ∆̄ ± σ(∆) = 0.11 ± 0.31 eV

and ∆̄ ± σ(∆) = −0.19 ± 0.17 eV is computed, respectively. The respective maximum

absolute errors for singlet and triplet states are found to be 0.92 eV and 0.50 eV. For the
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Table VI.2. Error measures for the individual molecules in the Thiel benchmark set in units of eV.
Only states for which theoretical best estimates are available were included in the statistical error
evaluation. The number of states considered in each case is denoted as k.

ADC(3(3)) ADC(3(4)) ADC(3(4+))
Compound k

∆̄± σ(∆) |∆| |∆|max ∆̄± σ(∆) |∆| |∆|max ∆̄± σ(∆) |∆| |∆|max

Ethylene 0.04± 0.43 0.30 0.34 0.09± 0.42 0.30 0.39 0.07± 0.42 0.30 0.37 2
Butadiene −0.24± 0.40 0.33 0.78 −0.22± 0.40 0.31 0.78 −0.22± 0.40 0.32 0.78 4
Hexatriene −0.18± 0.37 0.31 0.56 −0.17± 0.36 0.29 0.57 −0.17± 0.36 0.30 0.57 4
Octatetraene −0.28± 0.48 0.40 0.92 −0.28± 0.48 0.39 0.93 −0.28± 0.48 0.39 0.93 4
Cyclopropene −0.15± 0.10 0.15 0.26 −0.12± 0.10 0.13 0.23 −0.13± 0.10 0.13 0.24 4
Cyclopentadiene −0.27± 0.19 0.27 0.50 −0.24± 0.20 0.24 0.50 −0.25± 0.20 0.25 0.50 4
Norbornadiene −0.00± 0.30 0.25 0.34 0.02± 0.30 0.25 0.36 0.01± 0.30 0.25 0.36 4
Benzene −0.04± 0.19 0.17 0.27 −0.00± 0.22 0.19 0.30 −0.01± 0.21 0.18 0.27 8
Naphthalene −0.16± 0.20 0.24 0.50 −0.15± 0.21 0.24 0.49 −0.16± 0.21 0.24 0.50 18
Furan −0.10± 0.19 0.17 0.33 −0.07± 0.20 0.16 0.25 −0.08± 0.19 0.17 0.29 5
Pyrrole −0.11± 0.14 0.12 0.27 −0.08± 0.14 0.11 0.23 −0.09± 0.14 0.10 0.25 5
Imidazole −0.13± 0.23 0.23 0.35 −0.11± 0.23 0.23 0.34 −0.12± 0.23 0.23 0.33 7
Pyridine 0.21± 0.26 0.27 0.69 0.19± 0.24 0.25 0.60 0.20± 0.26 0.26 0.67 12
Pyrazine 0.13± 0.34 0.29 0.74 0.12± 0.33 0.27 0.75 0.12± 0.34 0.28 0.75 14
Pyrimidine 0.01± 0.21 0.16 0.44 −0.03± 0.18 0.14 0.36 −0.02± 0.21 0.16 0.42 10
Pyridazine 0.06± 0.21 0.16 0.44 0.04± 0.18 0.14 0.36 0.04± 0.20 0.15 0.42 10
Triazine 0.10± 0.22 0.18 0.44 0.05± 0.19 0.14 0.36 0.07± 0.22 0.17 0.45 10
Tetrazine −0.09± 0.37 0.30 0.73 −0.10± 0.38 0.31 0.75 −0.10± 0.38 0.31 0.74 15
Formaldehyde −0.15± 0.17 0.15 0.41 −0.43± 0.11 0.43 0.61 −0.31± 0.16 0.31 0.58 5
Acetone 0.04± 0.32 0.20 0.56 −0.31± 0.38 0.44 0.64 −0.15± 0.40 0.35 0.56 5
Benzoquinone −0.04± 0.20 0.16 0.36 −0.25± 0.23 0.31 0.49 −0.14± 0.18 0.19 0.44 10
Formamide −0.03± 0.13 0.08 0.23 −0.43± 0.14 0.43 0.52 −0.26± 0.15 0.26 0.45 4
Acetamide 0.04± 0.21 0.14 0.32 −0.39± 0.29 0.41 0.58 −0.21± 0.27 0.30 0.43 4
Propanamide 0.08± 0.23 0.17 0.38 −0.35± 0.30 0.40 0.53 −0.17± 0.28 0.29 0.43 4
Cytosine 0.27± 0.39 0.33 0.90 −0.10± 0.36 0.29 0.53 0.04± 0.36 0.27 0.52 6
Thymine 0.20± 0.21 0.25 0.42 −0.16± 0.28 0.23 0.53 0.01± 0.26 0.21 0.43 7
Uracil 0.20± 0.23 0.24 0.58 −0.13± 0.30 0.25 0.53 0.01± 0.24 0.18 0.43 8
Adenine 0.11± 0.24 0.19 0.44 −0.10± 0.36 0.29 0.53 −0.02± 0.31 0.25 0.43 6

Overall

Singlets 0.11± 0.31 0.25 0.92 0.00± 0.32 0.25 0.93 0.05± 0.30 0.23 0.93 104
Triplets −0.19± 0.17 0.22 0.50 −0.25± 0.19 0.28 0.64 −0.23± 0.17 0.26 0.58 63
Singl. and tripl. 0.00± 0.24 0.24 0.92 −0.09± 0.30 0.26 0.93 −0.05± 0.29 0.24 0.93 167

whole set of 167 singlet and triplet excited states, an error of ∆̄ ± σ(∆) = 0.00 ± 0.24 eV

is found.

When taking into account third-order ground state density contributions as used through-

out the Σ(4) scheme, only small changes can be observed with respect to the strict third-

order treatment. The most pronounced effect is seen in the case of singlet excited states

where the mean signed error reduces to ∆̄ ± σ(∆) = 0.00 ± 0.32 eV. For triplet excited

states, no significant change with respect to ADC(3(3)) is found. Considering the com-

bined set of singlet and triplet excited states, however, a larger standard deviation of the

error of σ(∆) = 0.30 eV is found, rendering the ADC(3(4)) scheme less trustworthy as the

strict third-order scheme.

For singlet excited states, the ADC(3(4+)) scheme yields slightly more favorable results

than ADC(3(3)), reflected in the smaller mean absolute error of |∆| = 0.23 eV. By contrast,
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Table VI.3. Error measures for the individual molecules in the Jacquemin benchmark set in units of
eV. Only compounds with more than one computed transition are listed. The number of states
considered in each case is denoted as k.

ADC(3(3)) ADC(3(4)) ADC(3(4+))
Compound k

∆̄± σ(∆) |∆| |∆|max ∆̄± σ(∆) |∆| |∆|max ∆̄± σ(∆) |∆| |∆|max

Acetaldehyde −0.05± 0.04 0.05 0.08 −0.41± 0.03 0.41 0.43 −0.25± 0.04 0.25 0.28 2
Acetylene −0.35± 0.04 0.35 0.38 −0.30± 0.03 0.30 0.32 −0.32± 0.03 0.32 0.34 5
Ammonia 0.04± 0.02 0.04 0.05 0.15± 0.02 0.15 0.16 0.09± 0.02 0.09 0.10 5
CO −0.22± 0.05 0.22 0.32 −0.26± 0.49 0.45 0.80 −0.23± 0.31 0.31 0.58 11
Cyclopropene −0.22± 0.07 0.22 0.30 −0.19± 0.07 0.19 0.27 −0.20± 0.07 0.20 0.29 4
Diazomethane −0.37± 0.07 0.37 0.47 −0.34± 0.17 0.34 0.49 −0.38± 0.15 0.38 0.54 7
Dinitrogen −0.29± 0.23 0.29 0.56 −0.22± 0.32 0.33 0.55 −0.24± 0.30 0.32 0.56 11
Ethylene −0.22± 0.04 0.22 0.26 −0.11± 0.07 0.11 0.21 −0.14± 0.06 0.14 0.23 6
Formaldehyde 0.11± 0.30 0.28 0.39 −0.15± 0.29 0.26 0.59 −0.01± 0.33 0.30 0.52 13
Formamide 0.21± 0.28 0.28 0.50 −0.15± 0.31 0.28 0.45 0.01± 0.31 0.28 0.38 6
H2S −0.10± 0.04 0.10 0.14 −0.11± 0.03 0.11 0.14 −0.11± 0.03 0.11 0.14 4
Ketene −0.15± 0.06 0.15 0.23 −0.04± 0.19 0.16 0.26 −0.06± 0.14 0.12 0.24 7
Methanimine −0.21± 0.02 0.21 0.22 −0.24± 0.02 0.24 0.26 −0.24± 0.02 0.24 0.25 2
Nitrosomethane −0.26± 0.27 0.30 0.56 −0.38± 0.39 0.46 0.77 −0.31± 0.37 0.40 0.72 4
Streptocyan.-C1 −0.06± 0.13 0.09 0.15 −0.18± 0.13 0.18 0.27 −0.16± 0.16 0.16 0.27 2
H2CS −0.18± 0.18 0.19 0.40 −0.31± 0.16 0.31 0.45 −0.25± 0.18 0.25 0.42 6
Water 0.20± 0.03 0.20 0.23 0.12± 0.02 0.12 0.15 0.14± 0.02 0.14 0.16 6

Overall

Singlets −0.11± 0.28 0.23 0.79 −0.16± 0.30 0.27 0.79 −0.12± 0.28 0.25 0.81 61
Triplets −0.18± 0.22 0.25 0.56 −0.25± 0.27 0.30 0.80 −0.22± 0.25 0.28 0.72 47
Singl. and tripl. −0.14± 0.25 0.24 0.79 −0.20± 0.29 0.29 0.80 −0.17± 0.27 0.26 0.81 108

the results computed for triplet states are less accurate.

Overall, the accuracy decreases in the order ADC(3(3)) > ADC(3(4+)) > ADC(3(4)).

However, no systematic improvement can be seen for the individual molecules in this

benchmark set when comparing the results of two methods, and no clear recommendation

may be given based on these results.

VI.3.2. Jacquemin Benchmark Set

In Table VI.3, the errors with respect to theoretical best estimates computed for each

individual molecule in Jacquemin’s benchmark set are summarized, accompanied by the

overall statistical error measures for singlet and triplet states as well as the total set of

108 states. The results for the individual excited singlet and triplet states are given in

Appendix A.2 in Tables A.3 and A.4, respectively.

For this set of electronically excited states, no clear trend in accuracy can be observed.

The overall error estimates are similar to those obtained for Thiel’s benchmark set. An

exception are singlet excitation energies which are overall underestimated here and, by

contrast, overestimated in the case of Thiel’s benchmark set.

The same trend as seen in the case of the Thiel benchmark set is also found in this
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Table VI.4. Statistical error analysis for the combined Thiel and Jacquemin benchmark sets. All error
measures are given in units of eV. The number of states considered is denoted as k.

ADC(3(3)) ADC(3(4)) ADC(3(4+))
k

∆̄± σ(∆) |∆| |∆|max ∆̄± σ(∆) |∆| |∆|max ∆̄± σ(∆) |∆| |∆|max

Singlets 0.03± 0.31 0.24 0.92 −0.06± 0.32 0.26 0.93 −0.01± 0.30 0.24 0.93 165
Triplets −0.18± 0.19 0.23 0.56 −0.25± 0.23 0.29 0.80 −0.23± 0.20 0.27 0.72 110
Singl. and tripl. −0.06± 0.29 0.24 0.92 −0.14± 0.30 0.27 0.93 −0.10± 0.29 0.25 0.93 275

case. For the whole set of 108 singlet and triplet excited states, the overall accuracy

decreases in the order ADC(3(3)) > ADC(3(4+)) > ADC(3(4)), the mean signed error

and its standard deviation ∆̄ ± σ(∆) being −0.14 ± 0.25, −0.17 ± 0.27 and −0.20 ± 0.29,

respectively. Considering the results computed for the individual molecules, again no

systematic improvement can be seen when going from one method to another.

VI.3.3. Combined Benchmark Sets

Combining the two benchmark sets considered above, a statistical error analysis was con-

ducted for 165 singlet and 110 triplet excited states and the total set of 275 electronically

excited states. The results are summarized in Table VI.4.

Inspecting the computed error measures, it is readily seen that the three considered

methods yield virtually identical results. Based on these values, a slight preference for

ADC(3(3)) over ADC(3(4+)) may be seen, ADC(3(4)) being the least accurate of the

three schemes.

In this respect, the findings of Section VI.2 can be reconsidered. Indeed, the accuracy

behavior observed in the extended benchmark study presented in this section is comparable

to that found for the dinitrogen molecule (last entry in Table VI.1). The other three

systems considered in Section VI.2, i.e., the neon atom, hydrogen fluoride and the water

molecule should therefore be regarded as special cases.



Chapter VII

Computational and Conceptual Aspects

of Fano-Stieltjes-ADC

In order to evaluate the applicability of the different components of the Fano-Stieltjes-

ADC implementation introduced in Section III.4 a number of computational tests have

been carried out. The results are presented in this chapter.

In Section VII.2, the applicability of the implemented block-Lanczos diagonalization

procedure is evaluated by consideration of the cumulative decay width function computed

using increasing sizes of the block-Lanczos vector subspace describing the continuum-state

pseudo-spectrum. Section VII.3 covers different aspects of the Stieltjes imaging procedure,

especially the choice of different input parameters. Finally, in Section VII.4 numerical

results obtained using the novel implementation are presented. In particular, the behavior

of the Fano-Stieltjes-ADC method upon scaling to larger molecular systems is discussed

at the example of Feshbach resonances in the benzene (C6H6) and naphthalene (C10H8)

molecules.

VII.1. Computational Details

The subspace-projected ADC diagonalizations and computations of bound-continuum cou-

pling matrix elements were carried out using the Fano-ADC implementation in a devel-

opment version of the Q-Chem quantum chemical program package based on version

5.0 as outlined in Section III.4. For bound-state ADC diagonalizations, the Davidson

algorithm[147] was used. Continuum-state ADC diagonalizations were performed using

the block-Lanczos implementation as described in Section III.4.5.

Stieltjes imaging calculations were performed using the standalone Stieltjes imaging

program presented in Section III.4.6, employing quadruple or higher-precision floating

101



102 VII. Computational and Conceptual Aspects of Fano-Stieltjes-ADC

Figure VII.1. Schematic depiction of the subspace selection scheme used in the context of the
3e2g

−13pe1u resonance in benzene. Occupied orbitals considered for the construction of the bound
and continuum state projection operators Q̂ and P̂ are depicted in blue, virtual orbitals in green.

point arithmetic. All Fano-Stieltjes-ADC decay widths presented in this chapter were

obtained by numerical derivation of the cumulative width function by means of Stieltjes

derivatives according to Eq. (2.73) at the Stieltjes order indicated in each individual case.

For the computation of the decay width of the 2s−13p resonance in the neon atom, the

subspace projection scheme as used in Ref. [140] was employed (cf. Figure II.3). That is,

the 1s orbital was kept frozen, and all 1h1p-configurations with a hole in the 2s orbital

as well as all possible 2h2p-configurations were included in the bound-state subspace. For

the continuum-state subspace, all configurations with holes in the 2p orbitals were consid-

ered. As in Ref. [140], the cc-pCVTZ basis set,[179, 213] additionally augmented with 15s9d

continuum- and 6p Rydberg-like Gaussian basis functions[214] was employed. The addi-

tional exponents were: 0.2456452, 0.0984957, 0.0527254, 0.0327748, 0.0223274, 0.0161822,

0.0122645, 0.0096146, 0.0077393, 0.0063635, 0.0053244, 0.0045206, 0.0038859, 0.0033761,

0.0029604 (s); 0.6225575, 0.2421608, 0.1278396, 0.0788350, 0.0534281, 0.0385827,

0.0291633, 0.0228152, 0.0183349 (d); 0.2242059, 0.1510640, 0.1054753, 0.0758656,

0.0559584, 0.0421752 (p). If not stated otherwise, the extended second-order ADC scheme

(ADC(2)-x) was employed. During Stieltjes imaging calculations, energies E − Er were

shifted such that the lowest energy was 0.2 Hartree in order to avoid numerical problems

in the vicinity of E − Er = 0.

In case of the benzene molecule, the geometrical parameters were optimized at the

MP2/cc-pVDZ[179] level of theory using Q-Chem 4.4.[75] The Fano-Stieltjes-ADC(2) cal-

culations of the 3e2g
−13pe1u resonance were carried out using the aug-cc-pVDZ basis

set[179, 180] and employing the subspace selection scheme as used in Ref. [141] (Figure

VII.1). Here, the energetic shift applied in the Stieltjes imaging procedure was chosen

such that the lowest input energy E − Er was 1.0 Hartree.
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Figure VII.2. Schematic depiction of the subspace selection scheme used in the context of the
9ag

−18b2u resonance in naphthalene. Virtual orbitals considered for the construction of the bound
and continuum state projection operators Q̂ and P̂ are depicted in green, occupied orbitals in blue.

Finally, the geometrical parameters of the naphthalene molecule were optimized using

Q-Chem 5.0[75] at the MP2/aug-cc-pVDZ[179, 180] level of theory. The same aug-cc-pVDZ

basis set as used for the geometry optimization was also employed in the Fano-Stieltjes-

ADC(2) calculations of the 9ag
−18b2u resonance in naphthalene. If not stated otherwise,

the bound- and continuum-state subspaces were constructed following a similar procedure

as in the benzene case and are shown in Figure VII.2. As for benzene, the energetic shift

applied to the energies entering the Stieltjes imaging procedure were chosen such that the

lowest input energy E − Er was 1.0 Hartree.

VII.2. Convergence of Block-Lanczos Pseudo-Spectra

The convergence of block-Lanczos pseudo-spectra with respect to full diagonalization is

a prerequisite for the application of the Fano-Stieltjes-ADC method to larger molecu-

lar systems, since full diagonalization of the connected continuum-state projected ADC

eigenvalue problems is usually computationally not feasible in practical cases. The ap-

plicability of the block-Lanczos diagonalization procedure is justified by the fact that it

preserves the spectral moments.[148] It has been applied in a number of Fano-Stieltjes-ADC

studies,[124, 141, 142] which suggested a fast convergence of computed decay widths Γ(Er)

with the number of block-Lanczos iterations or subspace vectors. However, apart from the
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Figure VII.3. Convergence of the block-Lanczos pseudo-spectrum with respect to full diagonalization
shown at the example of the cumulative decay width F (E − Er) computed for the Ne 2s−13p
resonance and different numbers of block-Lanczos subspace vectors.

final computed decay widths, no data has been available to illustrate this behavior.

For this reason, the convergence of block-Lanczos pseudo-spectra with respect to full

diagonalization has been investigated at the example of the cumulative decay width

F (E − Er) computed for the 2s−13p resonance in the neon atom. Figure VII.3 shows

the cumulative decay width F (E − Er) in the spectral region of interest, i.e., close to

the resonance energy E = Er, for different numbers of block-Lanczos subspace vectors,

employing an initial block of 100 guess vectors covering all 62 single excitations of the

same symmetry as the initial state as well as 38 double excitations corresponding to the

lowest diagonal elements of the subspace-projected ADC(2)-x matrix.

It is easily seen that the spectrum is nearly converged to that obtained by full diagonal-

ization after 6 block-Lanczos iterations (i.e., after computation of 600 subspace vectors),

and can hardly be distinguished from the fully diagonalized one after 10 iterations have

been carried out. In fact, even after as few as 3 iterations, the cumulative decay width

seems to be quite satisfactorily described and might serve as a reasonable approximation.

These findings are also supported by the convergence of the decay width, which will be

discussed in more detail in Section VII.4.1.

Figure VII.3 also indicates that full diagonalization is not needed in order to judge

the convergence behavior, which makes a related study also possible for larger molecular

systems. Here, this option is explored on the example of the 9ag
−18b2u resonance in

naphthalene. In this case, the initial block entering the block-Lanczos procedure consisted

of all 81 possible single excitation vectors of B2u symmetry within the given subspace

projection scheme as visualized in Figure VII.2. Figure VII.4 displays the cumulative

decay width evaluated after 1, 2, 4, 8 and 11 block-Lanczos iterations corresponding to
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Figure VII.4. Convergence of the block-Lanczos pseudo-spectrum shown at the example of the
cumulative decay width F (E − Er) computed for the 9ag

−18b2u resonance in the naphthalene
molecule using different numbers of block-Lanczos subspace vectors.

81, 162, 324, 648 and 972 subspace vectors, respectively.

In the spectral region of interest, i.e., in the vicinity of E − Er = 0, the spectrum

obtained after 4 iterations (324 subspace vectors) is already sufficiently well converged

with respect to that computed with 972 subspace vectors. Compared to the case of the

neon resonance discussed above, the convergence behavior is even faster, giving strong

support for the application of this methodology.

VII.3. Stieltjes Imaging Technique

As discussed in Section II.2.3, the Stieltjes imaging technique allows for replacement of the

real continuum spectrum employed in the Fano ansatz by a discretized spectrum obtained

within the framework of L2-integrable quantum chemical methods. Thereby, it has been

pointed out that only a small number of spectral moments, i.e., the first few negative

moments, should be used in the Stieltjes imaging procedure, since only these supply reliable

physical information.[149] By using only these low Stieltjes orders to compute the spectrum

of bound-continuum coupling elements or partial decay widths the spectrum is effectively

smoothed.

This can readily be understood when inspecting Figure VII.5. Increasing the Stieltjes

order leads to a better approximation of the raw spectrum, i.e., that one yielded from

the ADC calculation without application of further postprocessing. Consequently, also all

spectral features resulting from wrongly discretized pseudo-continuum states are resolved,

which is not desired. As a consequence, the spectral distribution of the desired quantity,

the decay width Γ(E), becomes less smooth, which is visualized in Figure VII.6.
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Figure VII.5. Cumulative width functions F (E − Er) connected to the 2s−13p resonance in the neon
atom computed for different Stieltjes orders, compared to the “raw” spectrum as yielded from the
respective ADC calculation. Plots were generated employing the fully diagonalized continuum-state
spectrum.
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Figure VII.6. Decay width Γ(E) connected to the neon 2s−13p resonance evaluated for different
Stieltjes orders. A better approximation to the “raw” input spectrum is reflected in a less smooth
distribution. Plots were generated employing the fully diagonalized continuum-state spectrum.

In the particular case of the neon 2s−13p resonance, Stieltjes orders as large as 30 still

give satisfactory results, since the distribution Γ(E) is sufficiently smooth in the region of

the resonance energy. Another picture may be found for different systems, as is evident

from Figure VII.7, which displays a similar plot for the naphthalene 9ag
−18b2u resonance.

Therein, convergence is observed between Stieltjes orders 8 and 12, and the width function

becomes less smooth when going to higher orders as low as 15.

This effect can best be visualized by means of a graphical visualization of the decay

width computed for increasing Stieltjes orders. Figure VII.8 shows the corresponding plot

of the interpolated decay width Γ(Er) of the naphthalene 9ag
−18b2u resonance for Stieltjes
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different Stieltjes orders. Plots were generated using the continuum-state pseudo-spectrum obtained
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Figure VII.8. Interpolated values of the decay width Γ(Er) of the naphthalene 9ag
−18b2u resonance for

a series of Stieltjes orders between 5 and 50. As continuum-state spectrum, the pseudo-spectrum
with 972 subspace vectors obtained after 11 block-Lanczos iterations was used.

orders 5 through 50.

At low Stieltjes orders, the decay width Γ(Er) quite quickly stabilizes at a plateau

starting at Stieltjes order 8. For higher Stieltjes orders above 13, the imaging technique

delivers less stable decay widths, and a massive decrease is seen, before the width stabilizes

again at a value of Γ(Er) ≈ 0.5 meV. The latter stabilization ows to the fact that the raw

spectrum in the spectral region close to the resonance energy has already been restored

completely for these “high” Stieltjes orders. Because only a smooth width function can be

expected to yield physically meaningful information, proper autoionization widths should

consequently rather be extracted from low Stieltjes orders, i.e., between orders 8 and 13.
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VII.4. Applications of the Fano-Stieltjes-ADC Method

In order to verify the implementation and to evaluate the applicability of the methodology

to larger molecular systems, a number of calculations have been conducted, whose results

are presented in this section and, if possible, compared to experimental data or previous

theoretical studies.

VII.4.1. Neon 2s−13p Resonance

The 2s−13p resonance in the neon atom is an autoionizing Feshbach resonance, the energy

of which has been experimentally determined to be Er = 45.5 meV.[215, 216] The line width

of this transition has been reported as Γ(Er) = 16 ± 2 meV and Γ(Er) = 13 ± 2 meV in

Refs. [215] and [216], respectively.

A number of theoretical studies on this resonance state have been conducted.[140, 141, 216]

Most notably, the same Fano-Stieltjes-ADC(2) and -ADC(2)-x methodology in conjunction

with the same basis set as in this study has been used in Ref. [140]. The decay width

computed using the new implementation can thus directly be compared to the previously

determined theoretical values.

Table VII.1. Resonance parameters of the 2s−13p Feshbach resonance in the neon atom computed
using the Fano-Stieltjes approach and employing bound and continuum state spectra obtained using
different ADC(n) schemes. Decay widths Γ of the present study were obtained as the mean of the
widths computed for Stieltjes orders 14 through 16.

Ref. [140] This study
ADC scheme

Er [eV] Γ [meV] Er [eV] Γ [meV]

ADC(1) — 30.48 49.64 32.44
ADC(2) — 8.93 44.77 10.67
ADC(2)-x — 11.46 44.50 13.11
ADC(3) — — 46.23 20.38

The results obtained using fully diagonalized continuum state spectra are compiled in

Table VII.1. It is notable that all ADC schemes except ADC(1) yield resonance en-

ergies differing by a maximum of ±1 eV from the experimentally determined value of

Er = 45.5 eV. A similar situation is found for the decay width Γ(Er). The value com-

puted at the ADC(2)-x level of 13.11 meV is in perfect agreement with the more recently

determined experimental value of 13± 2 meV.[216] Using ADC(2), a somewhat lower value

of 10.67 meV is found. The ADC(3) value of Γ(Er) = 20.38 meV, however, is slightly too

large, even if compared to the experimental value of Γ(Er) = 16 ± 2 meV given in Ref.

[215]. Turning to the ADC(1) results, one notes that for this neon resonance state, quali-

tatively correct results can be obtained even at this rather low level of theory. For systems
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with a more complex electronic structure, however, a similarly satisfactory performance

of Fano-Stieltjes-ADC(1) cannot be expected.

It is noteworthy that the decay widths computed in this study are slightly higher than

those given in Ref. [140]. The differences encountered may most likely result from differ-

ences in the Stieltjes procedure such as, e.g., energetic shift, Stieltjes order or the particular

cubic Hermite spline used for interpolation of the numerical derivatives of the cumulative

width function.

Table VII.2. Resonance width Γ(Er) of the 2s−13p Feshbach resonance in the neon atom computed
using Fano-Stieltjes-ADC(2)-x with different numbers of block-Lanczos subspace vectors representing
the continuum-state spectrum. The stated values were obtained as the mean of the widths computed
for Stieltjes orders 14 through 16.

ADC(2)-x ADC(3)Block-Lanczos subspace size
Γ(Er) [meV] Γ(Er) [meV]

100 16.72 24.47
200 13.98 21.52
300 13.73 21.20
400 13.44 20.84
500 13.01 20.27
600 13.01 20.21
700 13.04 20.24
800 12.98 20.19
900 12.97 20.17
1000 12.99 20.20

6294 (full diag.) 13.11 20.38

In Table VII.2, the ADC(2)-x and ADC(3) decay widths computed using different num-

bers of block-Lanczos subspace vectors are summarized. A similar ADC(2)-x study of the

same resonance, but employing a different basis set, has been presented in Ref. [141]. In

the latter study, the dimension of the continuum-state diagonalization problem was 5500,

and satisfactory widths were obtained with 500 to 600 block-Lanczos subspace vectors.

Here, a similar convergence behavior is observed: The computed value drops with the

number of block-Lanczos subspace vectors until it becomes nearly stationary. The width

computed using 500 block-Lanczos vectors is already close to the value obtained by full

diagonalization, and no large variations are found when increasing the continuum-state

subspace size further.

VII.4.2. Benzene 3e2g
−13pe1u Resonance

To further verify the presented Fano-Stieltjes-ADC implementation, the decay width of

the 3e2g
−13pe1u resonance in benzene was computed. In a previous study,[141] this reso-

nance state had been targeted using the same methodology, i.e., Fano-Stieltjes-ADC(2)
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Figure VII.9. Decay width Γ(Er) of the 3e2g
−13pe1u resonance in benzene computed for different

Stieltjes orders. The continuum-state spectrum was computed by 50 block-Lanczos iterations,
employing a starting block covering all 26 singly-excited configurations in the respective subspace.

in conjunction with block-Lanczos diagonalization of the continuum-state projected ADC

matrix.

Unfortunately, no further information on the parameters used in the Stieltjes imaging

procedure was provided, such that a reasonable choice of the Stieltjes order to use had to

be determined first. For this purpose, it is helpful to inspect Figure VII.9, which displays

the interpolated decay width Γ(Er) computed for different Stieltjes orders. As discussed

above, the most trustworthy region is the first plateau, which in this case is encountered

above Stieltjes order 10. Above order 16, a stabilization sets in and, although very similar

to the values encountered between orders 10 and 16, this higher region is likely not usable.

In the further investigation, the decay width is therefore taken as the mean of the values

computed for Stieltjes orders 14 through 16.

Experimentally, the resonance position has been determined as Er ≈ 9.3 eV,[217] but no

experimental measurement of the decay width is available. The ADC(2) resonance energy

computed employing the bound-state subspace projection scheme displayed in Figure VII.1

was given in Ref. [141] as Er = 9.52 eV. In the present study, the same ADC(2)/aug-cc-

pVDZ method yielded a value of Er = 9.51 eV, but the source of this discrepancy could

not be determined.

Table VII.3 shows a comparison of the decay widths available through Ref. [141] and

computed in the present work. It is easily noticed that there are considerable differences

between the two series of computed decay widths. In particular, the convergence is con-

siderably faster in the present study, where the final result is recovered after only 10

block-Lanczos iterations, i.e., after 260 subspace vectors have been computed. The reason
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Table VII.3. Resonance width Γ(Er) of the 3e2g
−13pe1u Feshbach resonance of the benzene molecule

using Fano-Stieltjes-ADC(2) with different numbers of block-Lanczos subspace vectors representing
the continuum-state spectrum. The stated values were obtained as the mean of the widths computed
for Stieltjes orders 14 through 16.

Ref. [141] This studyBlock-Lanczos subspace size
Γ(Er) [meV] Γ(Er) [meV]

26 6.1 0.00972
130 12.9 12.22
260 13.6 12.09
780 14.9 12.09
1300 15.0 12.09
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Figure VII.10. Cumulative width F (E − Er) of the 3e2g
−13pe1u resonance of the benzene molecule

computed for continuum-state pseudo-spectra generated from different numbers of block-Lanczos
subspace vectors.

for this is that in this case the block-Lanczos procedure converges extremely fast, as is

visible from Figure VII.10.

In the vicinity of E−Er = 0, a reasonable approximation for the cumulative width com-

puted from the continuum-state pseudo-spectrum constructed from 1300 block-Lanczos

vectors is already achieved with 130 subspace vectors. Figure VII.10 also reveals the rea-

son for the failure in case of only 26 subspace vectors: The cumulative width is neither with

respect to structure nor to state energies (rise points) satisfactorily well described. The

latter observation is, however, not unexpected since block-Lanczos diagonalization using a

starting block of all single excitations is equivalent to diagonalization of the singles-singles

block of the ADC matrix, treated separately from the doubles-doubles and coupling blocks.

Contributions from doubly-excited configurations, usually needed to describe electronic

correlation, are thus completely neglected.

Another observation is that the block-Lanczos spectrum obtained after 50 iterations, i.e.,



112 VII. Computational and Conceptual Aspects of Fano-Stieltjes-ADC

that computed from 1300 subspace vectors, is converged with respect to full diagonalization

within the lowest 18 eV, the largest residual vector norm in this range being below 10−6.

It is therefore clear that further enlargement of the block-Lanczos subspace will not have

any impact on the final result for the decay width.

Taking together these findings, it cannot be stated what the source of the differences with

respect to Ref. [141] is. The convergence behavior of the block-Lanczos pseudo-spectra

computed using the presented implementation is, however, fully consistent with the ob-

served convergence of the decay widths. It was therefore concluded that the methodology

can be safely applied to larger molecular systems.

VII.4.3. Application to Larger Molecules: Naphthalene

The Fano-Stieltjes-ADC methodology was subsequently applied for the study of a Feshbach

resonance in naphthalene. In this case, no experimental data is available. However, by

comparison of threshold and He I photoelectron spectra it has been concluded that a

considerable share of the full photoelectron yield above the lowest ionization potential

of 8.14 eV is in fact a result of autoionization processes.[218] Especially in the region just

below the second ionization potential of 8.91 eV, i.e., between 8.6 eV and 8.9 eV an intense

background photoelectron yield was recorded.[218]

In this region, an ADC(2)/aug-cc-pVDZ calculation in the full configuration space pre-

dicts a strong transition of B2u symmetry at 8.81 eV with an oscillator strength of 0.114,

the leading configuration with respect to the ground state being 9ag
−18b2u. This transition

was further investigated using the Fano-Stieltjes-ADC methodology.

First, a suitable scheme for the bound-state subspace projection was determined. For

this purpose, different ranges of occupied orbitals were allowed for forming singly-excited

configurations. The occupied orbital ordering is schematically depicted in Figure VII.2,

which also displays the continuum-state subspace projection scheme employed through-

out this section. In the respective calculations, a continuum-state block-Lanczos pseudo-

spectrum computed from 324 subspace vectors was employed.

The interpolated decay widths computed for different bound-state subspace projection

schemes are displayed in Figure VII.11. As a first observation, there are no large dif-

ferences between different projection schemes. In addition, a clustering can be seen at

approximately 3.8 meV. Table VII.4 summarizes the computed resonance parameters.

The variation of the state energies computed using the different considered projection

schemes lies within a range of ∼1 %. The variations in the computed decay widths are

somewhat larger, but still well below the uncertainty caused by the Stieltjes imaging
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Figure VII.11. Interpolated width function obtained at Stieltjes order 12 using different bound-state
subspace projection schemes. The full valence configuration space was used for doubly-excited
configurations, while single excitations were restricted to those having a hole in the occupied orbital
range stated for each individual case.

Table VII.4. Resonance parameters computed for various bound-state subspace projection schemes.
Holes of singly-excited configurations were allowed only in the range of occupied orbitals specified in
each case. The whole valence space was used for the doubles part. The given widths were taken as
the mean of the widths computed for Stieltjes orders 10 through 12 using a continuum-state
pseudo-spectrum obtained from 324 block-Lanczos vectors.

Singles hole conf. space Er [eV] Γ(Er) [meV] osc. strength

9ag 8.81 3.39 0.112
6b1g–9ag 8.86 3.74 0.100
7b3u–9ag 8.87 4.04 0.095
1b1u–9ag 8.88 3.93 0.095
6b3u–9ag 8.88 4.54 0.072
8ag–9ag 8.90 4.30 0.080
4ag–9ag 8.91 3.88 0.095

procedure. It seems thus reasonable to follow a similar approach as in the case of benzene,

i.e., to allow the hole of singly-excited configurations to be in the 6b1g and 9ag orbitals

only, and this bound-state subspace projection scheme was used throughout the remaining

part of this section.

As already discussed in Section VII.2, a fast convergence of the computed width with

respect to the block-Lanczos subspace size can be expected. This assumption is confirmed

by the results summarized in Table VII.5. Nearly perfect convergence to the final value of

Γ(Er) = 3.75 meV is already seen after four block-Lanczos iterations, resulting in a matrix

size of 324. This observation is thus in line with the prediction based on the inspection

of Figure VII.4, i.e., that the cumulative width is satisfactorily well described once it has

converged to a mutually consistent global shape.



114 VII. Computational and Conceptual Aspects of Fano-Stieltjes-ADC

Table VII.5. Resonance width Γ(Er) of the 9ag
−18b2u Feshbach resonance of the naphthalene molecule

computed using Fano-Stieltjes-ADC(2) with different numbers of block-Lanczos subspace vectors
representing the continuum-state spectrum. The stated values were obtained as the mean of the
widths computed for Stieltjes orders 10 through 12.

Block-Lanczos subspace size Γ(Er) [meV]

81 0.21
162 4.06
324 3.74
486 3.74
648 3.75
810 3.75
972 3.75

The results presented in this section show that the Fano-Stieltjes-ADC methodology

can be applied to medium-sized organic molecules. One of the necessary properties is that

the energy and character of the resonance state in question change only marginally when

modifying the subspace projection scheme. In contrast to previous findings,[141] ADC

schemes fulfill this prerequisite, as can be followed from the results presented in Table

VII.4. A second prerequisite is the replacement of the fully diagonalized continuum-state

spectrum by a computationally feasible alternative as provided by block-Lanczos pseudo-

spectra. The very fast convergence found for benzene and naphthalene (Tables VII.3

and VII.5), suggests that the application of the Fano-Stieltjes-ADC methodology for the

description of resonances in even larger molecular systems is possible.



Chapter VIII

Methodological Aspects and Pilot

Applications of CAP-EA-ADC

The implementation of the novel CAP-EA-ADC approach as described in Section III.5

was subsequently applied for the computational description of a number of π∗ resonance

states. As a first test, different methodological aspects were investigated at the example

of the well-studied 2Πg resonance state of the dinitrogen anion N−
2 (Section VIII.2). The

applicability of the method was further evaluated in a study of π∗ resonances in unsatu-

rated organic hydrocarbons, namely ethylene (Section VIII.3.1) as well as norbornadiene

and 1,4-cyclohexadiene (Section VIII.3.2). The diene molecules are of particular interest

because the properties of π∗ resonance states can directly be interpreted by means of the

concept of through-bond and through-space interactions, which has been an active field

of research for a long time.[219, 220]

VIII.1. Computational Details

All results presented in this chapter were computed using a development version of the

Q-Chem software[75] based on version 5.2.

For the dinitrogen molecule, an internuclear distance of 2.074 rBohr was assumed. In the

remaining cases, molecular geometries obtained for the neutral molecules at the MP2/cc-

pVTZ[179] level of theory were employed throughout, being of D2h symmetry in the case

of ethylene and cyclohexadiene and C2v symmetry in the case of norbornadiene.

In the case of dinitrogen, the aug-cc-pVQZ basis set[179, 180] was employed on the nitro-

gen atoms, and additional 3s3p3d diffuse functions were added on the molecular center.

The exponents of the additional functions were: 0.0273200, 0.0136600, 0.0068300 (s);

0.0220100, 0.0110050, 0.0055025 (p); 0.0555000, 0.0277500, 0.0138750 (d). For ethylene,

115
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cyclohexadiene and norbornadiene, two different basis set combinations were used: i)

cc-pVDZ[179] on hydrogen atoms and aug-cc-pVDZ[179, 180] on carbon atoms, with addi-

tional 4p1d diffuse functions centered at the carbon atoms, the exponents being 0.0269400,

0.0179600, 0.0119733, 0.0079822 (p) and 0.0755000 (d), denoted “DZ” throughout the re-

maining part of this chapter; ii) cc-pVTZ[179] on hydrogen atoms and aug-cc-pVTZ[179, 180]

on carbon atoms, with additional 4p1d diffuse functions centered at the carbon atoms, the

exponents being 0.0237933, 0.0158622, 0.0105748, 0.0070499 (p) and 0.0400000 (d), de-

noted “TZ” throughout the remaining part of this chapter.

In the case of third-order EA-ADC calculations, two schemes differing by the static self-

energy treatment were used: i) a scheme in which the third-order static self-energy and

corresponding ground state density was used throughout (denoted as “strict” EA-ADC(3)

scheme), and ii) a scheme employing the improved fourth-order static self-energy and

corresponding ground state density computed according to the Σ(4+) procedure (denoted

as “standard” EA-ADC(3) scheme).

CAP-EA-ADC calculations were performed using the implementation presented in Sec-

tion III.5 based on the subspace projection approach discussed in Section II.3.3. A

smoothed Voronoi CAP with an onset of rcut = 3.5 rBohr was employed throughout, whose

basis set representation was computed by numerical quadrature on a grid consisting of 974

Lebedev angular and 250 Euler-MacLaurin radial points as implemented in Q-Chem 5.2

(i.e., by setting XC GRID=000250000974).

The number of EA-ADC vectors with lowest eigenvalues included within the CAP cal-

culations were: 30 (ethylene anion B2g resonance), 30 (cyclohexadiene anion Au and B2g

resonances), 50 (norbornadiene anion A2 resonance) and 30 (norbornadiene anion B2 res-

onance). If not stated otherwise, in the case of the dinitrogen anion 2Πg resonance the

number of subspace vectors included was 49 (strict and standard EA-ADC(3)) or 37 (EA-

ADC(2)).

If not explicitly specified otherwise, trajectories were computed for real potential strengths

η, and resonance parameters were extracted from the corrected trajectories according to

Eq. (2.85) at the minimum of the respective logarithmic velocity (2.88).

Finally, Dyson orbital plots were generated using version 1.9.4a27 of the VMD software,[205]

employing input data obtained by linear combination of Dyson orbitals computed for EA-

ADC(2)/TZ eigenstates of the respective non-CAP-augmented EA-ADC Hamiltonians as

outlined in Section II.3.4. Isosurfaces were drawn at function values of 0.0175 (cyclohexa-

diene anion Au and B2g resonances), 0.02 (norbornadiene anion A2 resonance) and 0.0175

(norbornadiene anion B2 resonance).
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Figure VIII.1. Corrected (blue) and uncorrected (orange) complex energy trajectories for the 2Πg

resonance of the dinitrogen anion computed using the standard EA-ADC(3) scheme. The resonance
positions are marked with arrows.

VIII.2. A First Test: 2Πg Resonance of the Dinitrogen

Anion

As a first test of CAP-EA-ADC, the new method was applied for the calculation of the

position and width of the 2Πg resonance of the dinitrogen anion N−
2 , which has been

subject of extensive studies in the past decades. A compilation of resonance positions and

widths computed using a variety of theoretical approaches can be found in Ref. [153].

The most accurate theoretical value so far was obtained using a Feshbach projection

formalism based on experimental data.[221] In the respective study, a resonance position

of Er = 2.32 eV and a width of Γ = 0.41 eV was found, and these values have been used

as a reference since then.

The corrected and uncorrected trajectories computed using standard CAP-EA-ADC(3)

are depicted in Figure VIII.1. At the minimum of the logarithmic velocity, a resonance

position of Er = 2.33 eV and a decay width of Γ = 0.31 eV were obtained from the

uncorrected trajectory. Using the corrected trajectory, similar resonance parameters were

found, the resonance energy and width being Er = 2.28 eV and Γ = 0.24 eV, respectively.

In this case, the results extracted from the uncorrected trajectory show thus smaller

deviations from the reference values, and this observation is particularly pronounced for

the resonance width. For the resonance position, however, both treatments yield excellent

values, the deviation of the corrected value from the reference being as small as 0.05 eV.

The decay widths, on the other hand, lie well within the usual range of variation, as shows

a comparison with values obtained using different theoretical approaches. As an example,
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Figure VIII.2. Representation of a smoothed Voronoi potential (rcut = 3.5 rBohr, η = 1) in the subspace
of the 49 lowest converged standard EA-ADC(3) states of the dinitrogen molecule, ordered by their
respective energies. Different cutoff values have been used for the representation, such that all matrix
elements with absolute values larger than the cutoff value are displayed in black. Left panel: states
with bright diagonal elements are compact and thus likely to represent resonance states; the 2Πg

resonance is best approximated by the second-lowest state. Right panel: Dark off-diagonal elements
represent reasonable couplings; the second-lowest state couples virtually only within the subspace of
the few lowest states.

one can consider a corresponding CAP-EOM-EA-CCSD study for comparison, in which

the same trend has been observed for the decay width.[153] Employing the same basis set

as in the present study, the uncorrected and corrected treatments yielded decay widths of

Γ = 0.364 eV and Γ = 0.286 eV, respectively.

VIII.2.1. Choice of the Subspace

After this first encouraging result, the problem of the choice of the subspace of EA-

ADC states used for the representation of the CAP was addressed. In this respect, it is

helpful to recall that an exact description of a resonance state and its complex Siegert

energy is achieved in the limit of vanishing potential strengths, η → 0+,[125] provided that

a complete basis set is employed. Hence, an electronic structure calculation employing a

truncated basis set of reasonable spatial extension can be expected to yield an approximate

description of a resonance state too, even the potential strength is zero. Compared to

diffuse continuum-like states, the interaction of resonance states with the CAP should be

considerably smaller due to their bound nature.

This behavior can be observed in Figure VIII.2, in which the representation of a

smoothed Voronoi potential with an onset parameter of rcut = 3.5 rBohr within the sub-

space of the 49 lowest standard EA-ADC(3) states of the dinitrogen molecule is visualized.
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Figure VIII.3. Corrected and uncorrected resonance energy trajectories of the dinitrogen anion 2Πg

resonance. Different numbers of (standard) EA-ADC(3) states were considered for the CAP subspace
representation.

Focusing on the left panel, the diagonal values give a metric how strong the direct inter-

action of a particular state with the potential is. Within this subspace, the state with the

weakest interaction (brightest diagonal element) is the second-lowest one, and indeed this

state approximates the 2Πg resonance of N−
2 .

One can now estimate which states will have the strongest effect on the resonance upon

addition of the CAP by considering the direct couplings, i.e., the off-diagonal elements

belonging to the second-lowest state. Inspection of these elements in the left panel of Figure

VIII.2 shows that strong direct couplings only exist among the four lowest states. There

is actually also a physical reasoning behind this finding: Only continuum states which are

energetically accessible, i.e., those close in energy to the resonance state, may substantially

contribute as decay channels. In this specific case, there are only four additional states

within the range of Er ± 5 eV.

However, some additional states may be involved by means of indirect or weaker direct

coupling. The right panel of Figure VIII.2 displays the same representation of the potential

with a different color scheme favoring small matrix elements. From this it is evident that

also states 5 and 28 might have reasonable contributions to the resonance.

In order to investigate the effect of the subspace choice further, trajectories were com-

puted for different numbers of EA-ADC eigenstates. Since the 2Πg resonance is located

close to the lower boundary of the spectrum, continuous subspaces at the low end of the

spectrum were chosen. Figure VIII.3 displays the corrected and uncorrected trajectories

computed using different EA-ADC eigenstate subspace sizes.

For small potential strengths, resulting in computed widths Γ close to zero, barely any
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difference can be observed between the trajectories computed using different subspace

sizes. The variations get more pronounced for stronger potentials, i.e., at the right edge

of the plot displayed in Figure VIII.3. In this system, larger deviations are seen just

beyond the stabilization point. The resonance parameters extracted from the corrected

and uncorrected trajectories are summarized in Table VIII.1.

Table VIII.1. Resonance parameters of the N−
2

2Πg resonance extracted from the uncorrected and
corrected trajectories for different numbers of standard EA-ADC(3) vectors considered for the CAP
subspace projection.

Uncorrected Correctedsubspace size
Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt

5 2.325 0.303 0.0276 2.286 0.218 0.0563
15 2.326 0.304 0.0275 2.285 0.223 0.0533
25 2.326 0.305 0.0273 2.284 0.229 0.0529
35 2.327 0.306 0.0272 2.285 0.239 0.0504
45 2.327 0.306 0.0272 2.285 0.238 0.0531
49 2.327 0.306 0.0272 2.285 0.238 0.0516

As already implied by Figure VIII.3, nearly no differences are observed between the

smallest and largest subspace considered in case of the uncorrected treatment. For the

corrected treatment, slightly larger changes towards larger decay widths are observed when

increasing the subspace size used for the CAP representation. The resonance position, on

the other hand, is still nearly unaffected.

The results presented in this section give thus strong support for the applicability of the

subspace projection approach. The choice of the subspace, however, has to be considered

carefully for each system and resonance state. As a rule of thumb, an energy criterion may

be used to decide which EA-ADC states to consider for the CAP subspace projection: in

the investigated case of the 2Πg resonance of the dinitrogen anion, a subspace composed

of all states within the range of Er ± 5 eV is sufficient to achieve satisfactory results.

VIII.2.2. The Effect of Different EA-ADC Approximation Schemes

So far only the standard EA-ADC(3) scheme has been considered. In this section, a brief

comparison of the performance of different EA-ADC schemes is given.

Figure VIII.4 displays the corrected (dashed) and uncorrected (solid) trajectories com-

puted using standard and strict EA-ADC(3) as well as EA-ADC(2). The resonance pa-

rameters extracted from the respective trajectories are summarized in Table VIII.2.

In comparison with standard EA-ADC(3), the strict EA-ADC(3) scheme yields width

values closer to the reference value of Γ = 0.41 eV.[221] At the same time, larger errors

of 0.10 eV and 0.15 eV are found for the corrected and uncorrected resonance positions,
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Figure VIII.4. Corrected (dashed) and uncorrected (solid) resonance energy trajectories of the
dinitrogen anion 2Πg resonance computed using different EA-ADC schemes.

Table VIII.2. Resonance parameters of the N−
2

2Πg resonance extracted from the uncorrected and
corrected trajectories computed using different EA-ADC schemes.

Uncorrected Corrected
EA-ADC scheme

Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt
EA-ADC(2) 2.354 0.302 0.0283 2.310 0.260 0.0494
strict EA-ADC(3) 2.471 0.348 0.0276 2.421 0.279 0.0533
standard EA-ADC(3) 2.327 0.306 0.0272 2.285 0.238 0.0516

respectively. Most notably, the level of accuracy found for EA-ADC(2) is comparable

to that of standard EA-ADC(3). Especially the resonance position obtained from the

corrected trajectory is in excellent agreement with the reference value of Er = 2.32 eV,

showing an error of only 0.01 eV.

VIII.2.3. Extension to Complex Potential Strengths

Within the subspace-projected CAP approach, it is straightforward to extend the method-

ology to complex potential strengths η = |η| (cosϑ+i sinϑ), since only minor modifications

of the η-trajectory generating code are required. Here, an approach similar to that intro-

duced in the context of CAP-XMCQDPT2[130] has been followed and is presented in this

section.

As discussed in Section II.3.1, the logarithmic velocity of the complex energy of a res-

onance state with respect to the potential strength parameter can be considered a metric

for the quality of the approximation (cf. Eq. (2.84)). Figure VIII.5 displays a plot of this

quantity for a section of the two-dimensional {|η| , ϑ} parameter space.

Therein, minima correspond to the best approximations of the complex energy E(η)
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Figure VIII.5. Logarithmic velocity of the uncorrected trajectory |E(η)− E(0)| (cf. Eq. (2.84))
evaluated for complex potential strengths η = |η| (cosϑ+ i sinϑ).

with respect to the exact Siegert energy E(0). The global minimum in this section of the

parameter space is located at (|η|opt , ϑopt) = (0.0270,−16.0 ◦), for which the resonance

parameters are Er = 2.328 eV and Γ = 0.317 eV. Compared to the case of purely real po-

tential strengths discussed above, a small improvement in the resonance width is observed,

while the resonance position is virtually unchanged.

One also easily notices that the stabilization point computed for different angles ϑ ≲ 5 ◦

is found at very similar potential strengths |η|, reflected in a nearly perfectly vertical

“valley” in Figure VIII.5 at |η| ≈ 0.027.

Combining these findings, additional accuracy may be gained by going to complex po-

tential strengths. However, the treatment using real potential strengths (and thus, a purely

imaginary CAP) yields similarly accurate results, and this methodology will consequently

be used throughout the remaining part of this chapter.

VIII.3. π∗ Resonances in Unsaturated Hydrocarbons

Temporary anion π∗ resonances have been commonly observed in many unsaturated or-

ganic molecules.[102, 104] Because knowledge about different aspects of the electronic struc-

ture of π-conjugated molecules can be gained from related studies, a lot of experimental

as well as theoretical work has been devoted to this topic.

VIII.3.1. Ethylene

The prototype of this molecular class is ethylene, for which a π∗ shape resonance of

B2g symmetry has been experimentally identified.[102, 222] In these studies, the resonance
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energy was determined as Er = 1.78 eV by electron transmission spectroscopy (ETS)[102]

and later as Er ≈ 1.8 eV in elastic electron scattering (ES) experiments.[222] In the latter

work, this resonance state was found to have a width of Γ = 0.7 eV.

A compilation of the various available theoretical resonance parameters is given in Ref.

[153]. Most notably, CAP-EOM-EA-CCSD calculations yielded a resonance energy of

Er = 2.091 eV using the corrected trajectory, while the corresponding decay width was

stated as Γ = 0.430 eV.[153]

Table VIII.3. Resonance parameters of the ethylene 2B2g resonance as extracted from the corrected
trajectory computed using different EA-ADC schemes and employing double-zeta (DZ) and
triple-zeta (TZ) basis sets as specified in Section VIII.1.

DZ TZ
EA-ADC scheme

Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt
EA-ADC(2) 2.029 0.435 0.0424 1.802 0.353 0.0294
strict EA-ADC(3) 2.155 0.537 0.0435 2.048 0.547 0.0297
standard EA-ADC(3) 2.098 0.492 0.0435 1.971 0.478 0.0298

Table VIII.3 summarizes the results obtained using CAP-EA-ADC. As it has already

been observed for the 2Πg resonance of the dinitrogen anion, EA-ADC(2) performs ex-

traordinarily well with respect to the resonance position. The value obtained using the

triple-zeta basis set is perfectly in line with the experimental value of Er = 1.80 eV. The

resonance width, on the other hand, seems to be better reproduced by the EA-ADC(3)

treatment, where the differences between strict and standard EA-ADC(3) are generally

not as pronounced as in the case of N−
2 .

VIII.3.2. Dienes: 1,4-Cyclohexadiene and Norbornadiene

In the past decades, there has been a long-standing discussion among physical organic and

theoretical chemists, if the interaction of different π-type orbitals in cyclic diene molecules

may lead to a “reversal” of the energetic ordering of the molecular orbitals constructed

from them. In this context, the concept of through-space and through-bond interactions

was introduced.[220]

In systems where a mostly independent treatment of the electronic π-system is possible,

i.e., in which no additional orbitals of appropriate symmetry exist, molecular orbitals

can simply be constructed by linear combination of all available ethylenic π orbitals, in

which case the interaction is called through-space, causing a natural ordering of the π-type

molecular orbitals. This situation is given for the norbornadiene molecule, where two

unoccupied π∗ molecular orbitals can be constructed from the two ethylenic π∗ orbitals.

The symmetric “+”-combination π∗
+, i.e., the combination minimizing the number of nodal
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Figure VIII.6. Electron transmission spectra recorded for norbornadiene (NBD, blue) and
1,4-cyclohexadiene (CHD, orange). Experimentally determined resonance energies are indicated by
vertical lines. Data digitized from Ref. [223].

planes, should consequently have a lower orbital energy than the antisymmetric “−”-

combination π∗
−.

By contrast, in the case of 1,4-cyclohexadiene, additional orbitals of compatible sym-

metry can be constructed by linear combination of the four C-H σ orbitals located at the

methylene moieties. In particular, an interaction with the π∗
+ orbital can lead to an upshift

of the latter such that its orbital energy becomes larger than that of the π∗
− molecular

orbital.

Direct experimental observation of molecular orbitals is, however, not possible because

they are not physical observables but rather a mathematical concept. As has been dis-

cussed in Section II.1.6, Dyson orbitals connected to electron-detachment and attachment

processes are mostly determined by a single occupied and unoccupied molecular orbital,

respectively, if the considered process is dominated by a single one-electron transition.

Similarly, orbital energies can be recovered as electron-attachment or detachment ener-

gies.

In case of unoccupied π∗ molecular orbitals of norbornadiene and 1,4-cyclohexadiene,

the electron-attached states to be investigated are actually resonance states, which were ex-

perimentally identified by electron transmission spectroscopy,[223] and eventually assigned

using, e.g., high-energy electron impact measurements,[224] also supported by compara-

tive ETS studies of 1,4-dioxane and similar molecular systems.[225] The recorded electron

transmission spectra of both diene molecules are displayed in Figure VIII.6.

According to these studies, the 2B2g resonance in 1,4-cyclohexadiene (π∗
+ combination)

is indeed found at a higher energy of Er = 2.67 eV than the 2Au state (π∗
− combination)
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Figure VIII.7. Real (left) and imaginary (right) parts of the Dyson orbital connected to the 2A2 shape
resonance in norbornadiene computed at the EA-ADC(2)/TZ level of theory.

Figure VIII.8. Real (left) and imaginary (right) parts of the Dyson orbital connected to the 2B2 shape
resonance in norbornadiene computed at the EA-ADC(2)/TZ level of theory.

with a resonance energy of Er = 1.75 eV. On the contrary, in norbornadiene the normal

ordering is preserved, meaning that the 2B2 resonance (π∗
+ combination) is observed at

a lower energy of Er = 1.04 eV than the 2A2 resonance (π∗
− combination), for which

the resonance energy was determined as Er = 2.56 eV. However, the lack of vibrational

resolution in the electron transmission spectra forbids the determination of resonance

widths for all considered resonance states.

On the theoretical side, a number of studies have been conducted, most notably using

the stabilization technique,[226, 227] confirming the reversal of the energetic ordering of

the π∗ orbitals in 1,4-cyclohexadiene. Here, the π∗ resonance states are studied using

CAP-EA-ADC.

The real and imaginary parts of the Dyson orbitals of the 2A2 and 2B2 resonance states

of norbornadiene as calculated on the CAP-EA-ADC(2)/TZ level of theory are displayed

in Figures VIII.7 and VIII.8, respectively. Indeed, in the case of the π∗
+ combination (2B2,

Figure VIII.8), there is also a through-bond contribution arising from orbitals not located

at the double bonds but at the bridging methylene moiety. However, at the bottom side

of the molecule, a direct through-space interaction not mediated by additional bonds is

possible, reflected in the absence of a vertical nodal plane parallel to the double bonds.

The resonance positions and decay widths computed for norbornadiene are summarized
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Figure VIII.9. Real (left) and imaginary (right) parts of the Dyson orbital connected to the 2B2g shape
resonance in 1,4-cyclohexadiene computed at the EA-ADC(2)/TZ level of theory.

Figure VIII.10. Real (left) and imaginary (right) parts of the Dyson orbital connected to the 2Au

shape resonance in 1,4-cyclohexadiene computed at the EA-ADC(2)/TZ level of theory.

in Table VIII.4.

The computed resonance parameters indicate that the π∗ resonance states of the nor-

bornadiene anion indeed follow a natural energetic ordering: The resonance position of

the π∗
+ (2B2) state predicted by CAP-EA-ADC(2)/TZ is Er = 0.955 eV, being only ap-

proximately 0.08 eV lower than the experimental value of Er = 1.04 eV.[223] The energy

Table VIII.4. Resonance parameters of the 2B2 and 2A2 anionic shape resonances of norbornadiene as
extracted from the corrected trajectories computed using different EA-ADC schemes and employing
double-zeta (DZ) and triple-zeta (TZ) basis sets as specified in Section VIII.1. The experimentally
determined resonance positions are Er(

2B2) = 1.04 eV and Er(
2A2) = 2.56 eV.[223]

DZ TZ
State EA-ADC scheme

Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt
2B2 EA-ADC(2) 1.185 0.216 0.0243 0.955 0.189 0.0066

strict EA-ADC(3) 1.577 0.379 0.0152 1.564 0.410 0.0108
standard EA-ADC(3) 1.563 0.362 0.0151 1.495 0.351 0.0106

2A2 EA-ADC(2) 2.822 0.738 0.0186 2.591 0.670 0.0074
strict EA-ADC(3) 3.647 1.192 0.108 3.322 1.067 0.0385
standard EA-ADC(3) 3.626 1.186 0.106 3.270 0.974 0.0401
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Table VIII.5. Resonance parameters of the 2B2g and 2Au anionic shape resonances of
1,4-cyclohexadiene as extracted from the corrected trajectories computed using different EA-ADC
schemes and employing double-zeta (DZ) and triple-zeta (TZ) basis sets as specified in Section
VIII.1. The experimentally determined resonance positions are Er(

2B2g) = 2.67 eV and
Er(

2Au) = 1.75 eV.[223]

DZ TZ
State EA-ADC scheme

Er [eV] Γ [eV] ηopt Er [eV] Γ [eV] ηopt
2B2g EA-ADC(2) 2.922 0.096 0.0196 2.651 0.078 0.0137

strict EA-ADC(3) 3.253 0.162 0.0199 3.185 0.228 0.0162
standard EA-ADC(3) 3.203 0.148 0.0200 3.090 0.175 0.0151

2Au EA-ADC(2) 1.974 0.178 0.0124 1.735 0.127 0.0086
strict EA-ADC(3) 2.359 0.233 0.0480 2.289 0.240 0.0336
standard EA-ADC(3) 2.311 0.215 0.0477 2.203 0.205 0.0335

computed for the π∗
− (2A2) state, on the other hand, is Er = 2.591 eV (experimental value:

Er = 2.56 eV), and thus considerably higher than that of the π∗
+ state. Concerning the

resonance widths, the CAP-EA-ADC calculations yield higher values for the 2A2 state

than for the 2B2 state. Although no definite experimental data is available in this case,

this trend is consistent with the shape of the recorded electron transmission spectrum,[223]

where a broader peak is observed for the higher-lying spectral feature (see Figure VIII.6).

Turning to 1,4-cyclohexadiene, a different situation is found, which is consistent with

experimental findings. The real and imaginary parts of the Dyson orbitals of the 2B2g

and 2Au resonance states of 1,4-cyclohexadiene as calculated at the CAP-EA-ADC(2)/TZ

level of theory are displayed in Figures VIII.9 and VIII.10, respectively.

Here, the π∗
+ (2B2g) state is strongly affected by through-bond interactions, and addi-

tional nodal planes appear due to interactions with π-shaped contributions at the methy-

lene moieties. By contrast, the antisymmetric π∗
− combination (2Au) is mainly determined

by the two ethylenic π∗ orbitals. The computed resonance positions and decay widths are

summarized in Table VIII.5.

At the CAP-EA-ADC(2)/TZ level, a resonance energy of Er = 2.651 eV is found for

the 2B2g (π∗
+) state, being in perfect agreement with the experimentally determined value

of 2.67 eV.[223] Thus it lies higher in energy than the 2Au (π∗
−) state, for which the cor-

responding CAP-EA-ADC(2)/TZ calculation yields Er = 1.735 eV. Again, the computed

value matches the experimental one, which has been given as 1.75 eV.[223] As in the case of

norbornadiene, vibrational bands were not resolved in the ETS experiment, and a direct

comparison with computed data is thus not possible. However, the recorded spectrum re-

veals considerably narrower bands than seen in the norbornadiene spectrum, as is visible

from Figure VIII.6. The same trend is also observed for the calculated CAP-EA-ADC

widths.





Chapter IX

Conclusions and Future Prospects

In this thesis I have presented the implementation and pilot applications of a number of

propagator methods. The implementation of various ADC approaches has been extended

by a number of different features, considerably broadening the spectrum of possible ap-

plications in studies of electronically stable molecules. The new aspects presented in

this work include the combination of an improved fourth-order static self-energy scheme,

the so-called Σ(4+) scheme, with PP-ADC(3) as well as one-particle density matrix-based

analyses of electron-attached and electron-detached states in the framework of EA-ADC(3)

and IP-ADC(3).

In addition, the ADC methodology has been combined with two different approaches

for the description of electronic resonances, which are metastable electronic states prone

to electronic decay. The first one is constituted by the Fano-Stieltjes-ADC methodology,

which has been combined with the third-order PP-ADC(3) scheme for the first time.

Particularly well-suited for the description of low-lying anion π∗ shape resonances is the

second of the two considered methodologies, which is the combination of the CAP and

ADC methods. The novel CAP-PP-ADC as well as CAP-EA-ADC approaches have been

implemented using a subspace projection approach.

The first systematic benchmark study of the IP-ADC(3)/ISR(2) method with respect

to high-level CI results for the calculation of vertical IPs and dipole moments has been

presented in Chapter IV. In this study of 44 1h-type transitions in closed- and open-shell

molecules, two third-order IP-ADC schemes differing by the employed static self-energy

treatment have been evaluated. For the standard IP-ADC(3)/ISR(2) scheme in which

the improved fourth-order static self-energy and the corresponding ground state density

computed according to the Σ(4+) procedure are employed throughout, a mean absolute

error of calculated IPs in the range of |∆| ≈ 0.2 eV is found, accompanied by a maximum

deviation of |∆|max ≈ 0.6 eV. The strict IP-ADC(3)/ISR(2) scheme, employing the second-

129
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order ground state density and the corresponding third-order static self-energy, performs

slightly worse, the corresponding error measures in this case being |∆| ≈ 0.3 eV and

|∆|max ≈ 0.9 eV. For the computed dipole moments, a similar trend has been found, the

relative mean absolute errors of the standard and strict IP-ADC(3)/ISR(2) schemes being

|∆| = 19 % and |∆| = 36 %, respectively. Also, the observed maximum deviation from the

FCI reference is considerably larger for the strict scheme (|∆|max = 310 %) than for the

standard scheme (|∆|max = 167 %) and thus renders the latter scheme more trustworthy.

Another interesting aspect which has been discussed in the context of the application

of the IP-ADC/ISR methodology to open-shell reference states arises from the fact that

the description of different ionization classes, i.e., 1h-type and 2h1p-type transitions, is

correct to different orders of perturbation theory. As a consequence, special care has

to be taken when interpreting the results obtained for electron-detachment processes in

molecules with doublet ground states. In this case, singlet and triplet states can be

formed in the respective processes, which may not be described in a satisfactory manner

by a single 1h-configuration. As a consequence, the corresponding transition properties

and, in particular, the associated IPs as computed using IP-ADC(3) are only correct to

first order of perturbation theory.

On the other hand, the open-shell methodology can also be applied to the lowest triplet

states of molecules with singlet ground states. In this case, another set of final states

is accessible by means of 1h-transitions, and even particular 3h2p-type transitions with

respect to the singlet ground state can be treated by IP-ADC(3), although only in first

order of perturbation theory, which are otherwise first considered at the IP-ADC(4) level.

The usefulness of density matrix-based analyses in the context of electron-detachment

processes has been discussed in Chapter V at the example of the photoelectron spectrum

of the galvinoxyl free radical. Especially the interpretation of 2h1p-satellite states is

considerably simplified using these techniques, whereas the inspection of Dyson orbitals is

usually sufficient if 1h-type transitions are concerned.

The effective transition amplitudes, which are needed for the computation of the relative

spectroscopic intensities of electron-detachment transitions, were further exploited for the

computation of the third-order ground state density and, in a self-consistent procedure,

an improved third-order density containing also higher-order contributions, from which an

improved fourth-order static self-energy can be computed by means of the so-called Σ(4+)

procedure. The latter quantity can be employed in different ADC(3) schemes, and for IP-

ADC, this approach had previously been shown to be superior to the strict third-order

IP-ADC(3) scheme.

In Chapter VI, the effect of the Σ(4+) static self-energy on the accuracy of PP-ADC(3)
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was investigated in an extended benchmark study covering a total of 275 electronically

excited states. Therein, virtually the same accuracy as for the strict PP-ADC(3) scheme

was found, and no clear recommendation can be given based on these results. In this

respect, the implementation of more complete infinite partial summation schemes for the

static self-energy, as available through the Σ(DEM) approximation, should be considered.

Turning to the description of unstable electronic states or, more precisely, electronic

resonances, the PP-ADC methods as implemented in Q-Chem were combined with the

Fano-Stieltjes-ADC methodology. For this purpose, the block-Lanczos iterative matrix

diagonalization algorithm as well as a new ADC variant allowing for arbitrary intermediate

state subspace projections were integrated in Q-Chem. In Chapter VII, the applicability

of the novel implementation for medium-sized organic molecules was demonstrated using

the example of a Feshbach resonance in the naphthalene molecule.

As a second method for the description of electronic resonances, the CAP methodol-

ogy was combined with PP-ADC and EA-ADC up to third order of perturbation the-

ory. For this purpose, a subspace projection approach was pursued, which is superior to

other CAP approaches in the sense that it allows for the computation of decay widths

at the expense of a single electronic structure calculation. Methodological aspects of the

subspace-projected CAP-EA-ADC approach were studied in Chapter VIII at the example

of the well-investigated 2Πg shape resonance of the dinitrogen anion, for which a very good

agreement with theoretical best estimates and experimental values for the decay width and

resonance position was found.

As a pilot application of the new CAP-EA-ADC methodology, the π∗ shape resonances

in unsaturated organic compounds were investigated. In particular, the two lowest reso-

nance states in 1,4-cyclohexadiene and norbornadiene were considered, which have been

extensively studied in the past due to their role as model systems for the interaction of

non-conjugated ethylenic π orbitals. As an interesting result of this study it was found that

the resonance positions computed on the CAP-EA-ADC(2) level of theory were in excel-

lent agreement with experimental values obtained by electron transmission spectroscopy.

The third-order EA-ADC schemes yielded less accurate, but still satisfactory results.

In the future, further assessment of the accuracy of the two implemented methodologies,

i.e., Fano-Stieltjes-ADC and CAP-ADC, should be conducted. In particular, the limits

of the two methodologies should be investigated in comparative studies. In addition, the

availability of the unrestricted variant of Fano-Stieltjes-PP-ADC enables the application to

open-shell systems, and respective studies of π∗ shape resonances in organic molecules are

thus now also possible. In addition, it is straightforward to extend the subspace-projected

CAP methodology also to IP-ADC, and this option should be pursued in the future.
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[16] J. Linderberg, Y. Öhrn, Propagators in Quantum Chemistry, 2nd ed., John Wiley

& Sons, Inc., Hoboken, New Jersey, 2004.

[17] P. Jørgensen, J. Simons, Second Quantization-Based Methods in Quantum Chem-

istry, 1st ed., Academic Press, Inc., London, 1981.

[18] L. S. Cederbaum, W. Domcke, “Theoretical Aspects of Ionization Potentials and

Photoelectron Spectroscopy: A Green’s Function Approach”, Adv. Chem. Phys.

1977, 36, 205–344.
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[112] B. G. Armen, H. Aksela, T. Åberg, S. Aksela, “The resonant Auger effect”, J. Phys.

B 2000, 33, R49–R92.

[113] K. Gokhberg, V. Averbukh, L. S. Cederbaum, “Interatomic decay of inner-valence-

excited states in clusters”, J. Chem. Phys. 2006, 124, 144315.

[114] K. Gokhberg, A. B. Trofimov, T. Sommerfeld, L. S. Cederbaum, “Ionization of

metal atoms following valence-excitation of neighbouring molecules”, Europhys.

Lett. 2005, 72, 228.



Bibliography 143

[115] F. Trinter, J. B. Williams, M. Weller, M. Waitz, M. Pitzer, J. Voigtsberger, C.

Schober, G. Kastirke, C. Müller, C. Goihl, P. Burzynski, F. Wiegandt, R. Wallauer,

A. Kalinin, L. P. H. Schmidt, M. S. Schöffler, Y.-C. Chiang, K. Gokhberg, T.
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[116] K. Gokhberg, P. Kolorenč, A. I. Kuleff, L. S. Cederbaum, “Site- and energy-selective

slow-electron production through intermolecular Coulombic decay”, Nature 2014,

505, 661–663.

[117] U. Hergenhahn, “Production of low kinetic energy electrons and energetic ion pairs

by Intermolecular Coulombic Decay”, Int. J. Radiat. Biol. 2012, 88, 871–883.

[118] X. Luo, Y. Zheng, L. Sanche, “DNA strand breaks and crosslinks induced by tran-

sient anions in the range 2-20 eV”, J. Chem. Phys. 2014, 140, 155101.

[119] V. Stumpf, K. Gokhberg, L. S. Cederbaum, “The role of metal ions in X-ray-induced

photochemistry”, Nature Chem. 2016, 8, 237–241.

[120] S. Faraji, L. Wirz, A. Dreuw, “Quantum Chemical Study of the Enzymatic Repair of

T(6-4)C/C(6-4)T UV-Photolesions by DNA Photolyases”, ChemPhysChem 2013,

14, 2817–2824.

[121] P. H. P. Harbach, M. Schneider, S. Faraji, A. Dreuw, “Intermolecular Coulombic

Decay in Biology: The Initial Electron Detachment from FADH− in DNA Pho-

tolyases”, J. Phys. Chem. Lett. 2013, 4, 943–949.

[122] S. Faraji, A. Dreuw, “Physicochemical Mechanism of Light-Driven DNA Repair by

(6-4) Photolyases”, Annu. Rev. Phys. Chem. 2014, 65, 275–292.

[123] G. Wentzel, “Über strahlungslose Quantensprünge”, Z. Phys. 1927, 43, 524–530.

[124] S. Kopelke, K. Gokhberg, V. Averbukh, F. Tarantelli, L. S. Cederbaum, “Ab initio

interatomic decay widths of excited states by applying Stieltjes imaging to Lanczos

pseudospectra”, J. Chem. Phys. 2011, 134, 094107.

[125] U. V. Riss, H.-D. Meyer, “Calculation of resonance energies and widths using the

complex absorbing potential method”, J. Phys. B 1993, 26, 4503.

[126] R. Santra, L. S. Cederbaum, “Complex absorbing potentials in the framework of

electron propagator theory. I. General formalism”, J. Chem. Phys. 2002, 117, 5511–

5521.



144 Bibliography

[127] S. Feuerbacher, T. Sommerfeld, R. Santra, L. S. Cederbaum, “Complex absorb-

ing potentials in the framework of electron propagator theory. II. Application to

temporary anions”, J. Chem. Phys. 2003, 118, 6188–6199.

[128] T.-C. Jagau, A. I. Krylov, “Complex Absorbing Potential Equation-of-Motion Cou-

pled-Cluster Method Yields Smooth and Internally Consistent Potential Energy

Surfaces and Lifetimes for Molecular Resonances”, J. Phys. Chem. Lett. 2014, 5,

3078–3085.

[129] T.-C. Jagau, D. Zuev, K. B. Bravaya, E. Epifanovsky, A. I. Krylov, “A Fresh Look at

Resonances and Complex Absorbing Potentials: Density Matrix-Based Approach”,

J. Phys. Chem. Lett. 2014, 5, 310–315.

[130] A. A. Kunitsa, A. A. Granovsky, K. B. Bravaya, “CAP-XMCQDPT2 method for

molecular electronic resonances”, J. Chem. Phys. 2017, 146, 184107.

[131] M. Ehara, T. Sommerfeld, “CAP/SAC-CI method for calculating resonance states

of metastable anions”, Chem. Phys. Lett. 2012, 537, 107–112.

[132] H. Feshbach, “Unified theory of nuclear reactions”, Ann. Phys. (N.Y.) 1958, 5,

357–390.

[133] H. Feshbach, “A unified theory of nuclear reactions. II”, Ann. Phys. (N.Y.) 1962,

19, 287–313.

[134] U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts”,

Phys. Rev. 1961, 128, 1866–1878.

[135] A. U. Hazi, “A purely L2 method for calculating resonance widths”, J. Phys. B

1978, 11, L259–L264.
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[162] Å. Björk, Numerical Methods in Matrix Computations, 1st ed., Springer, Heidel-

berg, 2015.

[163] E. Fasshauer, stieltjes, 2013, https://gitlab.com/stieltjes/stieltjes/ (vis-

ited on 02/20/2020).

https://gitlab.com/stieltjes/stieltjes/


Bibliography 147

[164] Boost C++ libraries, version 1.62.0, 2016, http://www.boost.org/ (visited on

02/20/2020).

[165] H. Bowdler, R. S. Martin, C. Reinsch, J. H. Wilkinson, “The QR and QL algorithms

for symmetric matrices”, Num. Math. 1968, 11, 293–306.

[166] J. M. Hyman, “Accurate Monotonicity Preserving Cubic Interpolation”, SIAM J.

Sci. Stat. Comput. 1983, 4, 645–654.

[167] R. L. Dougherty, A. Edelman, J. M. Hyman, “Nonnegativity-, Monotonicity-, or

Convexity-Preserving Cubic and Quintic Hermite Interpolation”, Math. Comp.

1989, 52, 471–494.

[168] F. N. Fritsch, R. E. Carlson, “Monotone Piecewise Cubic Interpolation”, SIAM J.

Numer. Anal. 1980, 17, 238–246.

[169] T. E. Oliphant, A guide to NumPy, USA: Trelgol Publishing, 2006.

[170] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Courna-

peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M.

Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R.

Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D.

Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.

Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, Scipy 1.0 Contributors,

“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”, Nature

Methods 2020.

[171] J. Ivanic, K. Ruedenberg, “Identification of deadwood in configuration spaces

through general direct configuration interaction”, Theor. Chem. Acc. 2001, 106,

339–351.

[172] J. Ivanic, “Direct configuration interaction and multiconfigurational self-consistent-

field method for multiple active spaces with variable occupations. I. Method”, J.

Chem. Phys. 2003, 119, 9364–9376.

[173] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H.

Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis,

J. A. Montgomery Jr, “General atomic and molecular electronic structure system”,

J. Comp. Chem. 1993, 14, 1347–1363.

[174] M. S. Gordon, M. W. Schmidt in Theory and Applications of Computational Chem-

istry, (Eds.: C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria), Elsevier,

Amsterdam, 2005, Chapter 41, pp. 1167–1189.

http://www.boost.org/


148 Bibliography

[175] I. Morino, K. Kawaguchi, “Fourier Transform Far-Infrared Spectroscopy of the

NH2, NHD, and ND2 Radicals”, J. Mol. Spectrosc. 1997, 182, 428–438.

[176] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Con-

stants of Diatomic Molecules, Vol. 716, Van Nostrand Reinhold Company, New

York, 1979.

[177] G. Herzberg, Molecular spectra and molecular structure. Vol. 3: Electronic spectra

and electronic structure of polyatomic molecules, Van Nostrand, Reinhold, New

York, 1966.
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Appendix A

Benchmark Results for PP-ADC(3)

Schemes

A.1. Thiel Benchmark Set

Table A.1. Benchmark results for singlet states from the Thiel benchmark set.

Compound State TBEa CC3a ADC(2) ADC(3(3)) ADC(3(4)) ADC(3(4+))

Ethylene
1 1B1u 7.80 8.37 8.36 8.14 8.19 8.17

Butadiene
1 1Bu 6.18 6.58 6.43 6.36 6.37 6.37
2 1Ag 6.55 6.77 7.68 5.77 5.77 5.77

Hexatriene
1 1Bu 5.10 5.58 5.35 5.35 5.35 5.35
2 1Ag 5.09 5.72 6.72 4.53 4.52 4.52

Octatetraene
1 1Bu 4.47 4.97 4.66 4.70 4.69 4.69
2 1Ag 4.66 4.94 5.93 3.74 3.73 3.73

Cyclopropene
1 1B1 6.76 6.90 6.97 6.75 6.77 6.76
1 1B2 7.06 7.10 7.14 6.91 6.92 6.91

Cyclopentadiene
1 1B2 5.55 5.73 5.66 5.52 5.55 5.54
2 1A1 6.31 6.61 7.08 5.81 5.81 5.81
3 1A1 6.69 8.85 8.58 8.61 8.60

Norbornadiene
1 1A2 5.34 5.64 5.57 5.48 5.52 5.51
1 1B2 6.11 6.49 6.39 6.45 6.47 6.47
2 1B2 7.64 7.63 7.54 7.58 7.57
2 1A2 7.71 7.67 7.63 7.66 7.65

Benzene
1 1B2u 5.08 5.07 5.27 4.99 5.01 5.00
1 1B1u 6.54 6.68 6.64 6.47 6.49 6.49
1 1E1u 7.13 7.45 7.43 7.35 7.39 7.38
2 1E2g 8.41 8.43 9.06 8.58 8.60 8.59
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156 A. Benchmark Results for PP-ADC(3) Schemes

Table A.1. (continued)

Compound State TBEa CC3a ADC(2) ADC(3(3)) ADC(3(4)) ADC(3(4+))

Naphthalene
1 1B3u 4.24 4.27 4.45 4.14 4.15 4.14
1 1B2u 4.77 5.03 4.93 4.90 4.91 4.91
2 1Ag 5.90 5.98 6.22 5.54 5.55 5.55
1 1B1g 6.00 6.07 6.23 6.06 6.07 6.07
2 1B3u 6.07 6.33 6.23 6.26 6.28 6.28
2 1B2u 6.33 6.57 6.55 6.47 6.49 6.49
2 1B1g 6.48 6.79 6.80 6.63 6.66 6.65
3 1Ag 6.71 6.90 7.38 6.41 6.42 6.42

Furan
1 1B2 6.32 6.60 6.76 6.39 6.54 6.49
2 1A1 6.57 6.62 6.85 6.48 6.48 6.48
3 1A1 8.13 8.53 8.73 8.23 8.14 8.18

Pyrrole
2 1A1 6.37 6.40 6.60 6.38 6.39 6.38
1 1B2 6.57 6.71 6.89 6.53 6.60 6.58
3 1A1 7.91 8.17 8.43 7.92 7.94 7.93

Imidazole
2 1A′ 6.19 6.58 6.73 6.49 6.53 6.52
1 1A′′ 6.81 6.82 6.74 6.46 6.64 6.59
3 1A′ 6.93 7.10 7.26 6.98 7.00 6.99
2 1A′′ 7.93 7.80 7.72 7.83 7.79
4 1A′ 8.45 8.60 8.67 8.72 8.72

Pyridine
1 1B1 4.59 5.05 5.10 5.05 4.96 4.98
1 1B2 4.85 5.15 5.32 5.06 5.08 5.07
2 1A2 5.11 5.50 5.37 5.80 5.71 5.78
2 1A1 6.26 6.85 6.83 6.58 6.60 6.59
3 1A1 7.18 7.70 7.70 7.59 7.61 7.61
2 1B2 7.27 7.59 7.59 7.46 7.49 7.49
4 1A1 8.68 7.99 8.73 8.75 8.75
3 1B2 8.77 8.84 9.59 9.64 9.66

Pyrazine
1 1B3u 4.95 4.24 4.29 4.21 4.20 4.20
1 1B2u 4.64 5.02 5.16 4.88 4.92 4.90
1 1Au 4.81 5.05 4.97 5.28 5.25 5.26
1 1B2g 5.56 5.74 5.93 5.65 5.62 5.63
1 1B1u 6.58 7.07 7.06 6.85 6.88 6.87
1 1B1g 6.60 6.75 6.70 7.18 7.12 7.14
2 1B2u 7.60 8.05 8.06 8.02 8.02 8.03
2 1B1u 7.72 8.06 8.11 7.95 7.96 7.96
1 1B3g 8.77 9.39 8.75 8.75 8.75
2 1Ag 8.69 8.11 8.59 8.64 8.63

Pyrimidine
1 1B1 4.55 4.50 4.45 4.57 4.47 4.50
1 1A2 4.91 4.93 4.80 5.10 5.02 5.07
1 1B2 5.44 5.36 5.49 5.30 5.30 5.30
2 1A1 6.95 7.06 7.03 6.66 6.67 6.64
2 1B2 8.01 7.89 7.90 7.89 7.90
3 1A1 7.74 7.70 7.53 7.54 7.55

Pyridazine
1 1B1 3.78 3.92 3.91 3.92 3.89 3.91
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Table A.1. (continued)

Compound State TBEa CC3a ADC(2) ADC(3(3)) ADC(3(4)) ADC(3(4+))

1 1A2 4.32 4.49 4.41 4.68 4.64 4.66
2 1A1 5.18 5.22 5.37 5.10 5.11 5.11
2 1A2 5.77 5.74 5.83 5.70 5.67 5.68
2 1B1 6.41 6.40 6.64 6.60 6.61
1 1B2 6.93 6.97 6.73 6.75 6.74
2 1B2 7.55 7.33 7.43 7.47 7.47
3 1A1 7.82 7.89 7.64 7.67 7.67

Triazine
1 1A′′

1 4.60 4.78 4.62 5.03 4.96 5.05
1 1A′′

2 4.66 4.76 4.73 4.79 4.69 4.69
1 1E′′ 4.71 4.81 4.70 4.95 4.85 4.90
1 1A′

2 5.79 5.76 5.76 5.71 5.67 5.68
1 1A′

1 7.41 7.34 6.86 6.81 6.78
2 1E′′ 7.80 7.96 8.05 7.95 7.99
1 1E′ 8.04 7.92 7.86 7.85 7.87
2 1E′ 9.44 8.64 9.31 9.34 9.40

Tetrazine
1 1B3u 2.24 2.53 2.52 2.48 2.47 2.48
1 1Au 3.48 3.79 3.72 3.96 4.00 3.99
1 1B1g 5.73 5.97 5.13 5.00 4.98 4.99
1 1B2u 4.91 5.12 5.20 4.98 4.97 4.97
1 1B2g 5.18 5.34 5.57 4.95 4.94 4.94
2 1Au 5.47 5.46 5.54 5.39 5.37 5.38
1 1B3g 5.79 7.84 6.48 6.48 6.48
2 1B2g 6.23 6.34 6.56 6.57 6.57
2 1B1g 6.87 6.93 7.13 7.16 7.14
2 1B3u 6.67 6.73 6.82 6.83 6.83
3 1B1g 7.08 7.71 6.57 6.58 6.58
1 1B1u 7.45 7.54 7.18 7.18 7.18
2 1B1u 7.79 7.76 7.66 7.69 7.69
2 1B3g 8.47 8.85 8.25 8.27 8.27
2 1B2u 8.51 8.59 8.48 8.51 8.50

Formaldehyde
1 1A2 3.88 3.95 3.91 3.85 3.51 3.66
1 1B1 9.10 9.18 9.17 9.10 8.78 8.93
2 1A1 9.30 10.45 9.37 9.09 8.87 9.00

Acetone
1 1A2 4.40 4.40 4.30 4.38 3.94 4.15
1 1B1 9.10 9.17 9.12 9.14 8.80 8.97
2 1A1 9.40 9.65 9.44 9.96 9.74 9.90

Benzoquinone
1 1B1g 2.78 2.75 2.67 2.83 2.43 2.66
1 1Au 2.80 2.85 2.75 2.98 2.49 2.75
1 1B3g 4.25 4.59 4.80 4.29 4.57 4.45
1 1B1u 5.29 5.62 5.41 5.43 5.20 5.33
1 1B3u 5.60 5.82 5.62 5.33 5.25 5.30
2 1B3g 6.98 7.27 7.24 6.94 6.66 6.79

Formamide
1 1A′′ 5.63 5.65 5.46 5.69 5.16 5.40
2 1A′ 7.44 8.27 7.13 7.48 7.22 7.36
3 1A′ 10.93 7.82 8.83 8.48 8.68

Acetamide
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Table A.1. (continued)

Compound State TBEa CC3a ADC(2) ADC(3(3)) ADC(3(4)) ADC(3(4+))

1 1A′′ 5.80 5.69 5.48 5.78 5.22 5.48
2 1A′ 7.27 7.67 6.77 7.59 7.31 7.46
3 1A′ 10.50 7.47 8.09 7.76 7.95

Propanamide
1 1A′′ 5.72 5.72 5.49 5.81 5.25 5.50
2 1A′ 7.20 7.62 6.77 7.58 7.29 7.43
3 1A′ 10.06 7.39 8.09 7.76 7.96

Cytosine
2 1A′ 4.66 4.60 4.83 4.56 4.67
1 1A′′ 4.87 4.81 5.41 5.19 5.26
2 1A′′ 5.26 5.24 6.16 5.51 5.78
3 1A′ 5.62 5.56 5.76 5.58 5.63

Thymine
1 1A′′ 4.82 4.67 5.23 4.55 4.87
2 1A′ 5.20 5.30 5.36 5.25 5.30
2 1A′′ 6.10 6.09 6.52 6.03 6.37
3 1A′ 6.27 6.29 6.57 6.24 6.37
4 1A′ 6.53 6.72 6.80 6.72 6.76

Uracil
1 1A′′ 4.80 4.64 5.19 4.51 4.83
2 1A′ 5.35 5.41 5.44 5.31 5.37
2 1A′′ 6.10 6.01 6.68 5.96 6.30
3 1A′ 6.26 6.26 6.53 6.22 6.34
3 1A′′ 6.56 6.96 6.71 6.90 6.82
4 1A′ 6.70 6.89 6.94 6.85 6.89

Adenine
1 1A′′ 5.12 5.19 5.56 5.43 5.48
2 1A′ 5.25 5.20 5.19 5.12 5.13
3 1A′ 5.25 5.33 5.30 5.26 5.26
2 1A′′ 5.75 5.84 6.12 5.99 6.04

a Ref. [209].

Table A.2. Benchmark results for triplet states from the Thiel benchmark set.

Compound State TBEa CC3a ADC(2) ADC(3(3)) ADC(3(4)) ADC(3(4+))

Ethylene
1 3B1u 4.50 4.48 4.52 4.23 4.29 4.27

Butadiene
1 3Bu 3.20 3.32 3.40 3.03 3.06 3.05
1 3Ag 5.08 5.17 5.23 4.89 4.94 4.93

Hexatriene
1 3Bu 2.40 2.69 2.79 2.38 2.40 2.39
1 3Ag 4.38 4.15 4.38 4.00 4.03 4.02

Octatetraene
1 3Bu 2.20 2.30 2.41 1.97 1.99 1.98
1 3Ag 3.55 3.67 3.74 3.34 3.36 3.35

Cyclopropene
1 3B2 4.34 4.34 4.43 4.08 4.11 4.10
1 3B1 6.62 6.62 6.66 6.45 6.48 6.47

Cyclopentadiene
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Table A.2. (continued)

Compound State TBEa CC3a ADC(2) ADC(3(3)) ADC(3(4)) ADC(3(4+))

1 3B2 3.25 3.25 3.35 2.97 3.00 2.99
1 3A1 5.09 5.09 5.19 4.83 4.86 4.85

Norbornadiene
1 3A2 3.72 3.72 3.74 3.46 3.49 3.48
1 3B2 4.16 4.16 4.24 3.91 3.94 3.92

Benzene
1 3B1u 4.15 4.12 4.30 3.88 3.89 3.88
1 3E1u 4.86 4.90 5.13 4.62 4.63 4.62
1 3B2u 5.88 6.04 6.05 5.73 5.74 5.74
1 3E2g 7.51 7.49 7.90 7.66 7.81 7.77

Naphthalene
1 3B2u 3.11 3.11 3.26 2.85 2.85 2.84
1 3B3u 4.18 4.18 4.36 3.90 3.90 3.90
1 3B1g 4.47 4.47 4.63 4.21 4.21 4.20
2 3B2u 4.64 4.64 4.86 4.37 4.37 4.36
2 3B3u 5.08 5.11 5.08 4.82 4.82 4.82
1 3Ag 5.74 5.52 5.74 5.24 5.25 5.24
2 3B1g 6.48 6.48 6.45 6.27 6.27 6.27
2 3Ag 6.47 6.47 6.82 6.16 6.17 6.17
3 3B1g 6.76 6.76 7.24 6.49 6.51 6.51
3 3Ag 6.79 6.79 6.94 6.59 6.60 6.59

Furan
1 3B2 4.17 4.17 4.35 3.84 3.93 3.88
1 3A1 5.48 5.48 5.59 5.22 5.23 5.24

Pyrrole
1 3B2 4.48 4.48 4.66 4.21 4.25 4.23
1 3A1 5.51 5.51 5.67 5.26 5.28 5.28

Imidazole
1 1A′ 4.69 4.69 4.86 4.40 4.42 4.40
2 1A′ 5.79 5.79 5.98 5.52 5.54 5.55
1 1A′′ 6.37 6.37 6.38 6.26 6.18 6.20
3 1A′ 6.55 6.55 6.71 6.29 6.26 6.25
4 1A′ 7.42 7.60 7.20 7.16 7.15
2 1A′′ 7.51 7.61 7.50 7.60 7.57

Pyridine
1 3A1 4.06 4.25 4.45 3.98 3.97 3.95
1 3B1 4.25 4.50 4.52 4.43 4.34 4.35
1 3B2 4.64 4.86 5.06 4.55 4.56 4.54
2 3A1 4.91 5.05 5.30 4.74 4.74 4.74
1 3A2 5.28 5.46 5.34 5.72 5.64 5.70
2 3B2 6.08 6.40 6.47 6.08 6.08 6.08
3 3B2 7.83 8.38 7.40 7.40 7.40
3 3A1 7.66 8.17 7.23 7.23 7.22

Tetrazine
1 3B3u 1.89 1.89 1.89 1.75 1.74 1.74
1 3Au 3.52 3.52 3.47 3.58 3.61 3.60
1 3B1g 4.21 4.21 4.29 4.03 4.00 4.01
1 3B1u 4.33 4.33 4.60 3.92 3.89 3.88
1 3B2u 4.54 4.54 4.79 4.05 4.02 4.02
1 3B2g 4.93 4.93 5.04 4.70 4.68 4.68
2 3Au 5.03 5.03 5.08 4.98 4.96 4.97
2 3B1u 5.38 5.38 5.64 5.00 4.99 4.98
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Table A.2. (continued)

Compound State TBEa CC3a ADC(2) ADC(3(3)) ADC(3(4)) ADC(3(4+))

2 3B2g 6.04 6.09 6.12 6.12 6.12
2 3B1g 6.60 6.75 6.95 6.97 6.96
2 3B3u 6.53 6.54 6.64 6.65 6.65
2 3B2u 7.36 7.59 6.95 6.96 6.95

Formaldehyde
1 3A2 3.50 3.55 3.41 3.43 3.11 3.24
1 3A1 5.87 5.83 5.96 5.46 5.26 5.29

Acetone
1 3A2 4.05 4.05 3.88 4.00 3.58 3.76
1 3A1 6.03 6.03 6.12 5.71 5.39 5.47

Benzoquinone
1 3B1g 2.51 2.51 2.35 2.57 2.16 2.37
1 3Au 2.62 2.62 2.44 2.72 2.22 2.47
1 3B1u 2.96 2.96 3.07 2.63 2.47 2.52
1 3B3g 3.41 3.41 3.52 3.05 3.25 3.18

Formamide
1 3A′′ 5.36 5.36 5.13 5.36 4.85 5.07
1 3A′ 5.74 5.74 5.81 5.51 5.22 5.29

Acetamide
1 3A′′ 5.42 5.42 5.16 5.46 4.92 5.15
1 3A′ 5.88 5.88 5.92 5.70 5.35 5.45

Propanamide
1 3A′′ 5.45 5.45 5.18 5.49 4.95 5.18
1 3A′ 5.90 5.90 5.92 5.72 5.37 5.47

a Ref. [209].

A.2. Jacquemin Benchmark Set

Table A.3. Benchmark results for singlet states from the Jacquemin benchmark set.

Compound State TBEa CC3a ADC(2)a ADC(3(3)) ADC(3(4)) ADC(3(4+))

Acetaldehyde
1 1A′′ 4.31 4.31 4.23 4.28 3.92 4.09

Acetylene
1 1Σ−

u 7.10 7.09 7.24 6.72 6.78 6.76
1 1∆u 7.44 7.42 7.57 7.06 7.12 7.10
1 1Au[F] 3.64 3.64 3.78 2.85 2.85 2.83
1 1A2[F] 3.85 3.84 3.99 3.08 3.10 3.08

Ammonia
1 1A2 6.59 6.57 6.42 6.63 6.74 6.68
1 1E 8.16 8.15 7.88 8.21 8.32 8.26
1 1A1 9.33 9.32 9.06 9.38 9.49 9.43
2 1A2 9.96 9.95 9.69 10.01 10.12 10.06

Carbon monoxide
1 1Π 8.49 8.49 8.68 8.23 8.45 8.39
1 1Σ− 9.92 9.99 10.01 9.72 9.18 9.41
1 1∆ 10.06 10.12 10.30 9.82 9.27 9.51
2 1Σ+ 10.95 10.94 11.33 10.80 11.25 11.10
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Table A.3. (continued)

Compound State TBEa CC3a ADC(2)a ADC(3(3)) ADC(3(4)) ADC(3(4+))

3 1Σ+ 11.52 11.49 11.84 11.34 11.78 11.62
2 1Π 11.72 11.69 12.04 11.56 11.96 11.83

Cyclopropene
1 1B1 6.68 6.68 6.75 6.55 6.58 6.57
1 1B2 6.79 6.73 6.77 6.56 6.58 6.57

Diazomethane
1 1A2 3.14 3.07 3.34 2.74 2.69 2.69
1 1B1 5.54 5.45 5.64 5.24 5.43 5.33
2 1A1 5.90 5.84 5.97 5.48 5.51 5.48
1 1A′′[F] 0.71 0.68 0.81 0.24 0.17 0.16

Dinitrogen
1 1Πg 9.34 9.34 9.47 9.16 9.22 9.21
1 1Σ−

u 9.88 9.88 10.25 9.32 9.33 9.32
1 1∆u 10.29 10.29 10.79 9.74 9.75 9.74
2 1Σ+

g 12.98 13.01 13.01 12.97 13.01 13.01
1 1Πu 13.03 13.22 13.34 13.02 13.32 13.25
2 1Σ−

u 13.09 13.12 13.08 12.97 13.01 13.01
2 1Πu 13.46 13.49 13.95 13.40 13.70 13.63

Ethylene
1 1B3u 7.39 7.35 7.35 7.17 7.32 7.27
1 1B1u 7.93 7.91 7.92 7.69 7.76 7.73
1 1B1g 8.08 8.03 8.00 7.84 7.98 7.94

Formaldehyde
1 1A2 3.98 3.97 3.92 3.90 3.59 3.73
1 1B2 7.23 7.18 6.51 7.62 7.35 7.52
2 1B2 8.13 8.07 7.54 8.45 8.21 8.37
2 1A1 8.23 8.18 7.48 8.61 8.34 8.51
2 1A2 8.67 8.64 8.00 9.02 8.76 8.93
1 1B1 9.22 9.19 9.16 9.16 8.85 8.99
3 1A1 9.43 9.48 9.47 9.05 8.84 8.95
1 1A′′[F] 2.80 2.84 2.71 2.77 2.22 2.48

Formamide
1 1A′′ 5.65 5.66 5.44 5.74 5.25 5.46
2 1A′ 6.77 6.74 6.27 7.20 6.91 7.06
3 1A′ 7.38 7.40 6.84 7.80 7.49 7.64
4 1A′ 7.63 7.62 7.32 8.13 7.76 7.96

HCl
1 1Π 7.84 7.84 7.95 7.79 7.77 7.78

H2S
1 1A2 6.18 6.19 6.35 6.04 6.04 6.04
1 1B1 6.24 6.24 6.31 6.17 6.16 6.16

Ketene
1 1A2 3.86 3.88 4.11 3.66 3.64 3.67
1 1B1 6.01 5.96 6.04 5.88 6.08 6.03
2 1A2 7.18 7.16 7.20 7.07 7.31 7.24

Methanimine
1 1A′′ 5.23 5.20 5.28 5.04 5.00 5.01

Nitrosomethane
1 1A′′ 1.96 1.96 1.87 1.72 1.52 1.63
2 1A′ 6.40 6.31 5.87 6.49 6.56 6.58
1 1A′′[F] 1.67 1.69 1.55 1.40 1.18 1.31

Streptocyanine-C1
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Table A.3. (continued)

Compound State TBEa CC3a ADC(2)a ADC(3(3)) ADC(3(4)) ADC(3(4+))

1 1B2 7.13 7.13 7.00 7.16 7.05 7.08
Thioformaldehyde

1 1A2 2.22 2.23 2.21 2.05 1.83 1.91
1 1B2 5.96 5.91 5.78 5.96 5.83 5.92
2 1A1 6.38 6.48 5.56 5.98 5.93 5.96
1 1A2[F] 1.95 1.97 1.92 1.80 1.47 1.60

Water
1 1B1 7.62 7.65 7.19 7.84 7.76 7.78
1 1A2 9.41 9.40 8.85 9.63 9.55 9.57
2 1A1 9.99 10.00 9.53 10.22 10.14 10.15

a Ref. [212].

Table A.4. Benchmark results for triplet states from the Jacquemin benchmark set.

Compound State TBEa CC3a ADC(2)a ADC(3(3)) ADC(3(4)) ADC(3(4+))

Acetaldehyde
3 1A′′ 3.97 3.95 3.82 3.89 3.54 3.69

Acetylene
1 3Σ+

u 5.53 5.50 5.74 5.24 5.28 5.26
1 3∆u 6.40 6.40 6.57 6.06 6.11 6.09
1 3Σ−

u 7.08 7.07 7.27 6.71 6.77 6.75
Ammonia

1 3A2 6.31 6.29 6.17 6.31 6.42 6.36
Carbon monoxide

1 3Π 6.28 6.30 6.45 5.96 6.21 6.12
1 3Σ+ 8.45 8.45 8.53 8.21 7.73 7.93
1 3∆ 9.27 9.30 9.33 9.02 8.51 8.73
1 3Σ− 9.80 9.82 10.00 9.52 9.00 9.22
2 3Σ+ 10.47 10.45 10.85 10.30 10.71 10.57

Cyclopropene
1 3B2 4.38 4.34 4.45 4.08 4.11 4.09
1 3B1 6.45 6.40 6.45 6.25 6.28 6.27

Diazomethane
1 3A2 2.79 2.83 3.00 2.44 2.40 2.41
1 3A1 4.05 4.03 4.19 3.64 3.56 3.54
1 3B1 5.35 5.31 5.52 5.09 5.28 5.19
2 3A1 6.82 6.80 7.08 6.35 6.33 6.28

Dinitrogen
1 3Σ+

u 7.70 7.68 8.14 7.24 7.22 7.21
1 3Πg 8.01 8.04 8.20 7.76 7.81 7.80
1 3∆u 8.87 8.87 9.25 8.36 8.34 8.34
1 3Σ−

u 9.66 9.68 10.23 9.15 9.15 9.14
Ethylene

1 3B1u 4.54 4.53 4.59 4.28 4.33 4.31
1 3B3u 7.23 7.24 7.25 7.06 7.20 7.16
1 3B1g 7.98 7.98 7.96 7.80 7.91 7.88

Formaldehyde
1 3A2 3.58 3.57 3.45 3.47 3.18 3.30
1 3A1 6.06 6.05 6.19 5.70 5.51 5.54
1 3B2 7.06 7.03 6.40 7.45 7.19 7.35
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Table A.4. (continued)

Compound State TBEa CC3a ADC(2)a ADC(3(3)) ADC(3(4)) ADC(3(4+))

2 3B2 7.94 7.92 7.42 8.24 8.01 8.16
2 3A1 8.10 8.08 7.40 8.47 8.21 8.37
1 3B1 8.42 8.41 8.38 8.31 8.02 8.14

Formamide
1 3A′′ 5.38 5.38 5.14 5.41 4.94 5.14
1 3A′ 5.81 5.82 5.88 5.62 5.36 5.43

H2S
1 3A2 5.81 5.82 5.90 5.67 5.68 5.68
1 3B1 5.88 5.88 5.95 5.81 5.80 5.80

Ketene
1 3A2 3.77 3.78 3.92 3.56 3.53 3.56
1 3A1 5.61 5.61 5.66 5.38 5.35 5.37
1 3B1 5.79 5.76 5.87 5.68 5.87 5.83
2 3A2 7.12 7.12 7.17 7.03 7.26 7.20

Methanimine
1 3A′′ 4.65 4.61 4.60 4.43 4.39 4.40

Nitrosomethane
1 3A′′ 1.16 1.14 1.02 0.84 0.69 0.77
1 3A′ 5.60 5.51 5.74 5.04 4.83 4.88

Streptocyanine-C1
1 3B2 5.47 5.48 5.54 5.32 5.20 5.20

Thioformaldehyde
1 3A2 1.94 1.94 1.84 1.77 1.56 1.62
1 3A1 3.43 3.38 3.44 3.06 3.03 3.02
1 3B2 5.72 5.72 5.60 5.75 5.63 5.71

Water
1 3B1 7.25 7.28 6.87 7.42 7.35 7.36
1 3A2 9.24 9.26 8.74 9.43 9.36 9.37
1 3A1 9.54 9.56 9.16 9.70 9.63 9.64

a Ref. [212].
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hat. Ebenso gilt mein Dank Prof. Dr. Günter Helmchen für die Unterstützung während
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Marvin, Tim und Manu, sowie allen derzeitigen (Dirk, Max, Sebi, Ben, Rogo, Marvin,

Manu, Reena, Maximilien, Jie, Mikael und Thomas) und ehemaligen Gruppenmitgliedern

(Daniel, Max K., Daria, Stefan, Katie, Jan, Duygu, Mary, Chong, Tobi und Michael)
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Ich möchte mich weiterhin bei allen Freunden bedanken, die auf die eine oder andere

Weise am Gelingen dieser Arbeit beteiligt waren. Besonders erwähnen möchte ich an
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Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung vorgelegt.

4. Die Richtigkeit der vorstehenden Erklärungen bestätige ich.
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und nichts verschwiegen habe.

Ort und Datum Unterschrift

167


	Zusammenfassung
	Abstract
	Abbreviations
	I Introduction
	I.1 Direct Photoionization
	I.2 Electronic Resonances
	I.2.1 Shape Resonances
	I.2.2 Feshbach Resonances
	I.2.3 Electronic Resonances in Biological Systems
	I.2.4 Theoretical Approaches to the Problem of Electronic Resonances


	II Theoretical Methodology
	II.1 Algebraic Diagrammatic Construction for Ionization Potentials
	II.1.1 Electron Propagator
	II.1.2 Non-Dyson Approach to the Electron Propagator
	II.1.3 Intermediate State Representation
	II.1.4 One-Particle Properties of Ionized Species
	II.1.5 Ground State One-Particle Density Matrix and Static Self-Energy
	II.1.6 Density Analysis of Electron-Detached States
	II.1.7 Dipole Moments of Charged States

	II.2 Fano-Stieltjes-ADC
	II.2.1 The Fano Formalism
	II.2.2 Construction of Bound and Continuum States Within Fano-ADC
	II.2.3 Stieltjes Imaging

	II.3 Complex Absorbing Potential ADC
	II.3.1 The Complex Absorbing Potential Method
	II.3.2 Shape of the Potential
	II.3.3 Combining Complex Absorbing Potentials with ADC
	II.3.4 Dyson Orbitals Within CAP-EA-ADC


	III Implementation
	III.1 Code Structure
	III.1.1 Some Remarks on libtensor

	III.2 General Remarks
	III.3 Implemented ADC Features
	III.3.1 IP-ADC Effective Transition Amplitudes
	III.3.2 Iterative Scheme for an Improved Fourth-Order Static Self-Energy
	III.3.3 IP-ADC ISR for the One-Particle (Transition) Density
	III.3.4 EA-ADC Effective Transition Amplitudes
	III.3.5 EA-ADC ISR for the One-Particle (Transition) Density

	III.4 Implementation of Fano-Stieltjes-ADC
	III.4.1 General Structure of the fanoman Module
	III.4.2 ADC Methods
	III.4.3 Implementation of an ADC Variant Allowing for Arbitrary IS Subspace Projection Schemes
	III.4.4 Computation of the Coupling Matrix Elements
	III.4.5 Block-Lanczos Diagonalization
	III.4.6 Stieltjes Imaging Program

	III.5 Implementation of CAP-ADC Methods
	III.5.1 Basis Set Representation of the Complex Absorbing Potential
	III.5.2 Computation of CAP Onset Series
	III.5.3 CAP-ADC Methods
	III.5.4 Evaluation of CAP Trajectories

	III.6 Overview of Implemented Features

	IV Benchmarking the IP-ADC/ISR Method
	IV.1 Computational Details
	IV.1.1 Geometrical Parameters
	IV.1.2 Basis Sets

	IV.2 Basis Set Dependence of Dipole Moments
	IV.2.1 Closed-Shell Initial State
	IV.2.2 Open-Shell Initial State

	IV.3 Benchmarking Against Full Configuration Interaction
	IV.3.1 Closed-Shell Initial State
	IV.3.2 Open-Shell Initial State
	IV.3.3 Overall Error Metrics


	V IP-UADC Case Study: The Galvinoxyl Free Radical
	V.1 Computational Details
	V.2 Simulation of the Photoelectron Spectrum and State Assignment

	VI Benchmarking Third-Order ADC Schemes for the Polarization Propagator
	VI.1 Computational Details
	VI.2 Comparison with the Dyson Expansion Method
	VI.3 Extended Benchmarking
	VI.3.1 Thiel Benchmark Set
	VI.3.2 Jacquemin Benchmark Set
	VI.3.3 Combined Benchmark Sets


	VII Computational and Conceptual Aspects of Fano-Stieltjes-ADC
	VII.1 Computational Details
	VII.2 Convergence of Block-Lanczos Pseudo-Spectra
	VII.3 Stieltjes Imaging Technique
	VII.4 Applications of the Fano-Stieltjes-ADC Method
	VII.4.1 Neon 2s-13p Resonance
	VII.4.2 Benzene 3e2g-13pe1u Resonance
	VII.4.3 Application to Larger Molecules: Naphthalene


	VIII Methodological Aspects and Pilot Applications of CAP-EA-ADC
	VIII.1 Computational Details
	VIII.2 A First Test: 2Πg Resonance of the Dinitrogen Anion
	VIII.2.1 Choice of the Subspace
	VIII.2.2 The Effect of Different EA-ADC Approximation Schemes
	VIII.2.3 Extension to Complex Potential Strengths

	VIII.3 π∗ Resonances in Unsaturated Hydrocarbons
	VIII.3.1 Ethylene
	VIII.3.2 Dienes: 1,4-Cyclohexadiene and Norbornadiene


	IX Conclusions and Future Prospects
	Bibliography
	Publication List
	A Benchmark Results for PP-ADC(3) Schemes
	A.1 Thiel Benchmark Set
	A.2 Jacquemin Benchmark Set

	Danksagung
	Eidesstattliche Versicherung

