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Abstract 

Increasing awareness is dedicated to environmental impacts of mining activities around the world. In 

this context, Environmental Hazard Potential (EHP) is considered to be an appropriate way to assess all 

environmental impacts related to mining activities. A holistic EHP requires detailed knowledge about the 

spatial extent of the mining area. Even though several studies have already been conducted in the domain 

of mine detection and mapping, no comparative study has yet been carried out that investigates several 

remote sensing analyses, which are transferable to other geographic regions. The aim of this study is thus 

to compare remote sensing analyses that can be applied in order to determine the area that is subject to 

open-pit mining in different geographic regions. Therefore, this study examines strengths and weaknesses 

of remote sensing analyses, among them index-based, pixel-based and object-based multi-spectral 

classifications on single- and multi-source level, as well as crowdsourcing. Data sets comprise freely 

available Sentinel-2 optical imagery, Aster GDEM V2 elevation model and Sentinel-1 synthetic aperture 

radar imagery. Four copper or iron ore open-pit mines in Indonesia (Grasberg-Ertsberg Gold Copper 

Mine), Australia (Hamersley Iron Ore Mines), Canada (Highland Valley Copper Mine) and Brazil 

(Mariana Iron Ore Complex) constitute the study sites. Index-based, pixel-based and object-based 

classifications are applied on the datasets for each study site, whereby index-based classifications are 

conducted on single-source level, pixel-based and object-based classifications on multi-source level. 

Simultaneously, a crowdsourcing project is launched, where volunteers are asked to digitize the 

delineation of the four open-pit mines. First, classifications and crowdsourcing are investigated 

individually by visual interpretation, accuracy assessment and area computation. Secondly, both methods 

are compared by Intersection over Union (IoU), by area values, accuracy values and visual interpretation. 

Acquired new findings regarding the implementation of the methods and the achieved results support the 

final derivation of strengths and weaknesses of classifications and crowdsourcing.  

Classifications and crowdsourcing can both be applied in order to detect, classify and digitize open-

pit mines in different geographic regions with an overall accuracy ≥ 77.41 % and to compute their spatial 

extent. Overall accuracy ranges for all methods from 77.41 % up to 97.73 %. The comparison of these 

methods reveals that classification and crowdsourcing results are not congruent, indicated by a mean IoU 

of 0.49 for all conducted comparisons. Classifications and crowdsourcing results differ among their 

respective area values, accuracy values and visual impression. Regarding area and accuracy values, 

crowdsourcing results have an intermediate position between the three considered classifications. Final 

derivation of strengths and weaknesses, as well as opportunities and threats shows that classifications and 

crowdsourcing differ further regarding effort, transferability, completeness, implementation, quality and 

credibility as well as their potential for automatization and further development. This study strongly 

supports decision making regarding method selection by providing strengths and weaknesses of remote 

sensing analyses for mine area computation. It contributes thus to the development of a holistic EHP of 

open-pit mines in different geographic regions. Future research recommendations are primarily related to 

the detection of unknown mines with classification approaches, to the development of a crowdsourcing 

project for global mine mapping and to the investigation of the potential of a combined application of 

classifications and crowdsourcing. 
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1 Introduction 

The most recent dam failure, known as the Brumadinho dam disaster, occurred in 2019 on January 

25
th
 in Minas Gerais, a state in the southeast of Brazil. A tailing dam collapsed and a total of 13 million m

3
 

of tailings were released. More than 200 people were killed, agricultural areas and subsequently local 

markets were destroyed and aquatic ecosystems were contaminated by heavy metals, exceeding accepted 

heavy metal thresholds by factor 21 (Cionek et al. 2019). In the last years, a number of similar dam 

failures occurred, such as the Mount Polley dam failure of 2014 in Canada or the Mariana dam failure of 

2015 in Brazil (Santamarina et al. 2019). However, dam failures constitute only one potential consequence 

of mining activities. Other environmental consequences range from local land degradation and subsequent 

impacts on ecosystems, the water balance and soil conditions to emissions impacting the environment and 

climate on a global scale (Manhart et al. 2017). 

Global mining activities will further increase, as the current world population of 7.6 billion will 

increase to 8.6 billion by the year 2030 (United Nations, Department of Economic and Social Affairs, 

Population Division 2017). This global population growth manifests itself in a growing demand for 

consumer goods, which is related to an increasing depletion of resources. Additionally, the permanent 

process of global industrialization requires large amounts of raw materials. Germany in particular, 

focusses heavily on the resource intensive production and export of non-agriculture products, with motor 

cars being the top exported product (World Trade Organization 2017). In this context, abiotic raw 

materials, especially metals, among them iron ore, copper ore and bauxite, are of particular interest for 

industrialized countries, as they are most frequently used for industrial purposes (Neukirchen and Ries 

2014).  

Due to its importance for the economy and the involved environmental risks, the mining sector has 

come into the focus of political discussions. In order to mitigate environmental impacts of mining 

activities in countries exporting abiotic raw materials, the German Federal Environment Agency carries 

out a resource efficiency program for the sustainable use and conservation of natural resources since 2012 

(Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) 2016). Within this 

context, the Federal Environment Agency (UBA) investigates the Environmental Hazard Potential (EHP) 

of mining, thereby considering all environmental impacts related to the mining of iron ore, copper ore and 

bauxite in different geographic regions (Manhart et al. 2017). The above mentioned raw materials are 

primarily extracted by open-pit mining. An open-pit mine is defined as an area that is subject to the 

extraction of raw materials at the earth’s surface (Neukirchen and Ries 2014).  

For the purpose of a comprehensive assessment of the EHP of open-pit mining, a sound knowledge 

of the spatial extent of each mining area and a thorough understanding of its correlation with 

environmental impacts is required. However, the possibility of such a comprehensive assessment remains 

limited, given the fact that information about the spatial extent is still unknown for a significant number of 

open-pit mines, and mapping approaches in this domain remain sporadic (Lobo et al. 2018).  
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In the case of spatial analysis of mining areas, remote sensing is considered to provide the required 

data. According to Lillesand et al. (2008), remote sensing is the science of generating information about a 

research object by analyzing data that have been obtained contactless, thereby sensing the object remotely. 

Given the fact that different objects reflect electromagnetic radiation differently, remote sensing analyses 

use the investigation of different spectral signals in order to acquire information about the research object. 

Different sensors and sensing methods, which constantly emerge, result in a large variety of remote 

sensing data. They comprise aerial photographs, multispectral, thermal and hyperspectral satellite 

imagery, which are referred to imagery from passive sensing methods, as well as Synthetic Aperture 

Radar (SAR) imagery and Light Detection and Ranging (LIDAR) point clouds from active sensing 

methods. Remote sensing data exhibit a wide range of spectral, spatial and temporal characteristics. For 

the spatial analysis of mining areas, remote sensing constitutes a suitable way to acquire data, given the 

fact that access to open-pit mines is frequently limited (Paull et al. 2006). Besides this, the wide spectral 

range, the high temporal and spatial resolution as well as the partially free availability of remote sensing 

data makes it a suitable data source (Basommi et al. 2015; Charou et al. 2010; Garai and Narayana, 2018; 

LaJeunesse Connette et al. 2016).  

Remote sensing analyses which can be applied for area calculation range from pixel-based to object-

based multi-spectral classifications and index-based feature detection. Classifications based on the 

multiple spectral characteristics of the investigated features and accordingly of the different bands, are 

referred to multi-spectral classifications. For pixel-based classification, the remote sensing imagery is 

classified according to the spectral information of each individual pixel. On the contrary, object-based 

classification considers spectral as well as spatial information by first segmenting the entire image into 

homogeneous objects and secondly classifying these objects separately. For the segmentation, 

characteristics such as shape, color and texture of each pixel are considered in order to group them to a 

homogeneous segment. In the case of multi-spectral band availability, spectral indices can be derived from 

mathematical band combinations, such as the Normalized Difference Vegetation Index (NDVI) for the 

detection of vegetated areas (Albertz 2009; Lillesand et al. 2008). Contrary to pixel-based and object-

based classifications, feature detection based on spectral indices (Ma et al. 2018a) requires only a small 

amount of spectral bands from one sensor and demands no training, which makes them a fast classification 

method. On the other hand, pixel-based classification requires more bands for the classification, but it has 

the advantage of generating reliable results when only considering spectral information of individual 

pixels of a only single source, thus constituting a low-time expenditure classification method as well 

(Lobo et al. 2018). Object-based classification convinces through the integration of spatial, texture and 

contextual parameters in addition to spectral information, as well as the possibility to integrate ancillary 

datasets (multi-source) and the absence of the salt & pepper effect (Prudente et al. 2017; Qian et al. 2018). 

In addition, crowdsourcing provides a further approach of spatially analyzing data by a crowd of 

volunteers on the basis of remote sensing data (Heipke 2010). For such geospatial analyses, volunteers can 

participate either in digitization, classification or conflation tasks (Albuquerque et al. 2016). Albuquerque 

et al. (2016) demonstrated that crowdsourcing classifications constitutes a successful method for deriving 

geospatial information, thus crowdsourcing can be considered as an additional remote sensing analysis for 

mine area computation. Current applications of these methods in the domain of mining are presented in 

the following chapter.  
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The motivation to conduct this study is based on the general lack of information about the spatial 

extents of mining areas, while a wide variety of suitable remote sensing analyses and data sets are 

technically available. Therefore, the objective of this study is to compare different remote sensing 

analyses with regard to their suitability to compute the spatial extent of mining areas. According to the 

state of the art, this research objective will experience further precision within the following chapter. 

By providing strengths and weaknesses of potential remote sensing analyses that can be applied to 

determine the missing parameter “mine area at earth surface”, this study supports decision-making 

regarding the selection of appropriate methods and thereby contributes to a comprehensive EHP of open-

pit mines in different geographic regions. 

The content of this document is organized as follows: Chapter 2 gives an overview on the state of the 

art regarding the dimension of open-pit mines, remote sensing, classifications and crowdsourcing. After 

mapping the current research field, the research gap as well as the derived research question is presented. 

Subsequently, the choice of the study sites and datasets is described in chapter 3, including the required 

pre-processing of the datasets and information about the reference data and mine indicators. In order to 

give an overview of the methodology, the research design is presented first in chapter 4, followed by an in 

detail description of each single method. The obtained results for each method are presented in chapter 5. 

A discussion of these results follows in chapter 6. Thereby, main findings concerning the results and the 

methodology are identified and related to previous studies and conclusively strengths and weaknesses of 

each method are determined in order to answer the research question. Finally, chapter 7 gives a conclusion 

and outlines future research recommendations. 
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2 Related works 

As mentioned in the introduction, the framework of this study is composed out of three dimensions. 

The object of research, the open-pit mine, constitutes the first dimension. Remote sensing represents the 

second dimension, meaning the data source, whereas remote sensing analyses, such as classifications and 

crowdsourcing, are considered as the third dimension. In the following, current studies related to these 

three dimensions are presented chronologically. First, an outline on current research about open-pit mines 

is presented. Secondly, the state of the art of remote sensing and remote sensing applications in the 

domain of mining is presented. Following, current studies on classifications and crowdsourcing are 

outlined as well as their application in the mining context. A sound knowledge about the current research 

in these three dimensions is crucial in order to recognize the research gap in this field and to fully 

understand the thereby derived research question. 

 

2.1 Open-pit mines 

In the literature on open-pit mines, two distinct research objectives were found. The first main 

research objective is related to mining optimization, whereas the second main research objective is the 

analysis of consequences of mining activities.  

During the last years, several studies about short- and long term production scheduling (Blom et al. 

2018; Ramazan and Dimitrakopoulos 2018), mining schedule optimization (Menabde et al. 2018) and 

cutoff grade optimization (Ahmadi and Bazzazi 2019; Ahmadi and Shahabi 2018) were conducted. The 

main focus of these studies was to optimize mining activity by strategic planning of the mining process 

(Navarra et al. 2018). In the same context, optimized methods for the extraction and processing of raw 

materials have been proposed by Abbaspour et al. (2019) and Froyland et al. (2018). Xu et al. (2018) 

investigated production scheduling optimization as well, but contrary to studies mentioned before they 

additionally conducted ecological cost considerations integrating costs from carbon emissions, costs 

related to damaged land, and lost value of direct and indirect ecological services. Accordingly, Xu et al. 

(2018) investigated the optimization of mining as well as mining consequences. 

A wide range of studies have been conducted in order to assess the consequences related to mining 

activities. In this context, consequences associated with human health issues, such as genetic damage have 

also been investigated (Espitia-Pérez et al. 2018a; 2018b). The impact of current mining activity on 

vegetation has been thoroughly studied by Stachiw et al. (2019), who analyzed trace elements in berries in 

the proximity of the mine. Additionally, the development of ecological reclamation and ecological 

restauration areas has been investigated by vegetation and soil analysis (Domínguez-Haydar et al. 2019; 

Hou et al. 2019). A novel approach of ecological restoration evaluation by a non-scientific crowd has been 

conducted by Carabassa et al. (2019), who developed a methodology for self-evaluation of a quarry 

restoration by a heterogeneous crowd. 



Related works   Master Thesis Silvana Bürck 

5 

   

A part from consequences of mining activity on the natural or human environment, mining hazards 

and accidents, such as dam bursts have been investigated. Carmo et al. (2017) and Hatje et al. (2017) 

analyzed the dam burst of the Mariana mine in 2015, a dam collapse, which is considered to be one of the 

largest tailing dam failures worldwide. Whereas Carmo et al. (2017) analyzed the consequences of the 

hazard of this dam burst in a global context, Hatje et al. (2017) carried out an environmental impact 

assessment of the dam failure by studying toxic metals in water and sediments. 

In order to mitigate such hazards, a variety of investigations have been dedicated to ground 

deformation analysis (Widzyk-Capehart et al. 2019), slope instability (Jiang et al. 2018; Morales et al. 

2019; Ortega et al. 2018), rockslides (Li et al. 2019) and rock mass disturbance (Rose et al. 2018) of open-

pit mines. Especially slope instability has been intensively investigated, given the fact that slope instability 

can be accompanied by rock slides (Ma et al. 2018b) or infrastructure damage, such as dam breaking.  

First general screenings of mining activities in order to assess the EHP have been carried out by 

Manhart et al. (2017) and Castelo Branco et al. (2019). Whereas the latter reviewed risks by keyword 

search in specific databases and found out that risk was primarily related to the environment and geology, 

Manhart et al. (2017) developed a model for the evaluation of raw materials on the one hand and mining 

areas on the other hand. 

 

2.2 Remote sensing 

With the permanent enhancement of existing and the development of new sensors (Hossam 2015), a 

wide range of datasets with different potentials became available. This situation manifests itself in a 

constant development of fusion methods on the one hand and in a broad field of applications on the other 

hand. 

In order to benefit from the large amount of different available sensors and their specific spectral and 

spatial characteristics, data fusion methods have been developed for multi-source applications (Chen et al. 

2017; Dong et al. 2009; Ghassemian 2016; Pohl and Van Genderen 1998). Frequently, synthetic aperture 

radar (SAR) and optical sensor imagery have been fused for spectral and spatial optimization (Kuchma 

2016). For example Whyte et al. (2018) applied Sentinel-1 and Sentinel-2 data for wetland mapping. In 

this context, Abdikan et al. (2014) presented a model for quality assessment of multi-sensor fusion 

methods for SAR and optical imagery, thereby revealing that the Ehlers fusion performs best regarding 

accuracy. In addition to multi-source fusion, multi-temporal fusion has been investigated for pan-

sharpening fusion by Ehlers et al. (2010). An overview of spatiotemporal fusion techniques has been given 

by Xiaolin Zhu et al. (2018). 

Besides the large number of data fusion methods, the field of remote sensing applications has 

widened. Current applications range from volcanic deposit monitoring (Ganci et al. 2018), mangrove 

monitoring (Duncan et al. 2018), archeology investigations (Borie et al. 2019), crop type classification 

(Cai et al. 2018) to water resource management (Sheffield et al. 2018). Even for distribution analysis of 

particulate matter concentrations (Chen et al. 2018a; Lin et al. 2018) or aerosol investigations (Eck et al. 



Related works   Master Thesis Silvana Bürck 

6 

   

Figure 2-1: Schematic cross-section through a porphyry copper deposit with 

related mineral zones (left) and ore zones (right); Source: Pour and Hashim 

(2012). 

2018), remote sensing data has been applied. Additionally, ecosystem functions (Pettorelli et al. 2018), as 

well as ecosystem risks (Murray et al. 2018) have recently been monitored by the application of remote 

sensing data. Further, local ecosystem modelling has been conducted by Pasetto et al. (2018). In the same 

context, Gray et al. (2018) investigated estuarine environments, but contrary to previous studies that were 

primarily based on single-source data, a multi-source approach has been chosen for this study 

implementing drone and satellite imagery. 

In the context of mining, the previously observed tendencies of data fusion and broad application of 

remote sensing were found as well. Applications range from resource exploration to mine feature 

extraction up to the monitoring of re-cultivated mining sites by implementing single-source or multi-

source remote sensing datasets. 

At the turn of the millennium, Sabins (1999) already presented applications of remote sensing for 

mineral exploration by having a closer look at hydrothermally altered rocks, which are recognizable in 

remote sensing data. That investigations in this domain are still of interest has been confirmed by Pour and 

Hashim (2012), who investigated epithermal gold deposits and porphyry copper deposits (Figure 2-1) 

using Aster imagery. Therefore, minerals that belong to a porphyry-copper deposit have first been 

analyzed by spectroscopy regarding their spectral reflectance characteristics, and then spectral signals 

have been resampled to Aster bands (Figure 2-2). Multi-source approaches for the exploration of porphyry 

copper and for the exploration and monitoring of mines have been conducted by Safari et al. (2018), who 

integrated two optical sensors in their investigation and Kirsch et 

al. (2018), who performed terrestrial and airborne hyperspectral 

analysis and photogrammetry. In the domain of exploration, a 

particular focus was on lithium exploration, as this raw material is 

of significant importance for future energy storages, applied e.g. in 

electric vehicles (Cardoso-Fernandes et al. 2019). Even though the 

majority of studies were based on the availability of optical sensor 

imagery, some studies have applied terrestrial laser scanning 

(TLS) in the exploratory phase when it comes to volume 

Figure 2-2: Spectral signals of minerals 

associated with porphyry copper deposits 

that have been resampled to Aster bands; 

Source: Pour and Hashim (2012). 
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computation (Xu et al. 2019). Besides pure exploration for raw material depletion, mineral detection has 

proven to support the analysis of toxic substances in wastes, which are considered a primary by-product of 

mining activities (Lozano-Cotrina et al. 2018). While earlier studies that had a clear focus on mineral 

detection for future exploration, several other studies have been conducted in order to map and monitor 

mines under operation. Yu et al. (2018) applied multi-source datasets for monitoring significant surface 

mining belts. In order to map existing mines and analyze their expansion, Vassena and Clerici (2018) 

conducted 3D open-pit mapping, while LaJeunesse Connette et al. (2016) developed indicators to identify 

potential mines, which have been considered when building up a Landsat based raster layer of potential 

mines. Subsequently, the latter has supported a guided digitization process to detect open-pit mines on a 

national scale in Myanmar. Within this novel model, mine expansion has been detected by albedo and 

brightness change between two points in time. This study provided a nationwide database of mining areas. 

In order to cover the entire range of applications from exploration, active mine monitoring and depleted 

mine detection, Raval (2018) proposed a review on advances in sensing systems.  

Recent studies in the domain of remote sensing and mining have demonstrated that remote sensing 

analyses are not only restricted to the exploration of new resources, but they have also been applied for the 

assessment of potential and occurred consequences of mining activities. In the context of potential and 

occurred impacts, slope instability (Carlà et al. 2018; Sengupta et al. 2018), topographic modelling and 

monitoring (Beretta et al. 2018; Wasowski et al. 2018; Xiang et al. 2018) have been investigated closely to 

mitigate impacts as effectively as possible. Regarding land disturbance of tropical rainforests, Asner et al. 

(2013) detected gold mining sites in the Amazon by remote sensing, thereby emphasizing the importance 

of high resolution imagery for such objectives. Particular interest in monitoring mine waste dump sites 

and dams and dikes is demonstrated in the studies of Wei et al. (2018) and Mura et al. (2018). Given the 

fact that dam breaks have already happened several times, their monitoring is crucial in order to avoid the 

reoccurrence of such events. Further monitoring of acid mine drainage was carried out by Jackisch et al. 

(2018). An entire ecological risk assessment of a mining area based on remote sensing was proposed by Li 

et al. (2018a), who introduce an ecological risk index. An overview of potential remote sensing analyses 

for the assessment of social and environmental impacts of mining activities can be found in the studies of 

Banks et al. (2005) and Paull et al. (2006). Besides the impacts of current mining on the environment, 

several studies have recently been conducted in order to assess the recovery in the post-mining phase. 

Yang et al. (2018b) integrate the LandTrendr algorithm, which is based on NDVI computation, for the 

detection of vegetation disturbance on the one hand, but also in order to assess vegetation recovery in 

former mines. In a similar way, Wu et al. (2018) detect vegetation and landscape changes in mines by 

implementing the BFAST1-module, a time series analysis algorithm. While previous studies used 

primarily satellite remote sensing imagery, Johansen et al. (2019) investigated the rehabilitation 

performance of vegetation in former mines using unmanned aerial vehicles (UAV). Similarly, Beretta et 

al. (2018) compared the implementation of UAV and subsequent photogrammetry to laser scanning for the 

topographic modelling of mining sites. 

 



Related works   Master Thesis Silvana Bürck 

8 

   

2.3 Classifications and crowdsourcing 

2.3.1 Classifications 

In the domain of classifications, two main objectives of current research were observed. A large 

number of studies have a clear focus upon machine learning for classification purposes (Cheng et al. 2018; 

Han et al. 2018; Maxwell et al. 2018). Thereby, a mathematical algorithm is trained for prediction and 

decision-making. A clear dominance of the application of machine learning based classifications in the 

domain of cropland analysis has been observed, as demonstrated in the study of Ji et al. (2018), who 

applied 3D convolutional neural networks for the classification of crop types.  

The second main focus of current research in the domain of classifications is a methodological 

comparison between pixel-based and object-based classifications. Given the fact that applications of these 

two types of classifications increase strongly, many studies have been conducted in order to compare the 

potential of object-based to pixel-based classifications. Similar to machine learning approaches, 

comparisons between pixel-based and object-based classifications are primarily conducted to analyze 

cropland features (Belgiu and Csillik 2018; Roy et al. 2018; Xiong et al. 2017). Remote sensing data 

ranges thereby from single-source (Belgiu and Csillik 2018) up to multi-source approaches (Xiong et al. 

2017). In addition to these tendencies, methodological comparisons have been conducted in the domain of 

mangrove mapping (Wang et al. 2018a), coal fire classification (Yan et al. 2006), landslide detection 

(Keyport et al. 2018) and invasive species mapping (Sampedro and Mena 2018). The outcome of the 

majority of these studies was that object-based classification is mostly favored over pixel-based 

classifications, given the absence of the salt & pepper effect, the higher accuracy of soil and vegetation 

classification and in general better performance regarding accuracy. A detailed comparison has been 

conducted by Prudente et al. (2017), who outlined strengths of object-based classifications as well as 

potential limitations. Given the advantages of object-based classifications, many current studies 

investigated only object-based classifications and their optimizations for various application fields such as 

urban applications (Georganos et al. 2018) and land cover and grass land mapping (Li and Shao 2014; Ma 

et al. 2017a; Melville et al. 2018), thereby performing on single-source and multi-source level. A closer 

look upon segmentation and training has been observed in the study of Costa et al. (2017), who 

investigated the suitability of mixed objects for object-based classifications. An overview about emerging 

trends and future applications regarding Geographic Object-based Image Analysis (GEOBIA) has been 

given by Chen et al. (2018b). 

Besides these two main focusses of current research, some studies on the implementation of spectral 

indices for classification and mapping have recently been conducted. Contrary to multi-source 

investigations, these approaches are considered to be single-source, by applying several bands of the same 

sensor for the computation of spectral indices. Frequently, the NDVI has been investigated, as it has been 

the case in Sonobe et al. (2018), who classified crops by deriving vegetation indices from Sentinel-2 

imagery or Valderrama-Landeros et al. (2018), who conducted a NDVI-based classification of mangrove 

areas. Other than previous studies investigating or classifying only for a given timestamp, Palchowdhuri et 

al. (2018) classified crop types by spectral indices on a multi-temporal scale. In order to face the difficulty 

of threshold setting, Zhang et al. (2018) developed an automated dynamic model for threshold extraction 
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for the classification of water bodies. A detailed discussion about NDVI applications, as well as an 

introduction to further spectral indices for Aster data, such as mineral indices, has been presented by 

Ninomiya (2003). By analyzing and comparing reflectance spectra of minerals in the laboratory, they 

derived spectral indices, among them the calcite index, the OH-bearing altered minerals index, the 

kaolinite index and the alunite index. In a case study, these mineral indices were applied using Aster data 

and confirmed the presence of cuprite at the study site. 

The current trends in the domain of classifications have been partly observed in the context of mining 

as well. Especially spectral indices, pixel-based and object-based classifications have recently been used 

in order to map and monitor mines, to analyze change detection or to conduct impact assessment. 

Regarding spectral indices, NDVI has frequently been applied for analyzing vegetation dynamics in 

mining regions (Prakash and Gupta 1998; Jia et al. 2018) for land use mapping and change detection in 

coal fields (Prakash and Gupta 1998), or for mapping mine extent, as demonstrated by Pericak et al. 

(2018), who developed an open source model for NDVI-based mine mapping. Mine detection has been 

investigated by Castellanos-Quiroz et al. (2017) using data fusion and spectral indices classification. 

Besides NDVI, they included the Ferrous Mineral Index (FM), the Clay Mineral Index (CM) and the Iron 

Oxide Index (IO) for the subsequent extraction of mine features by specified thresholds. Mineral indices 

have further been applied in the spectroscopic detection of heavy metal substances in mine soils (Sawut et 

al. 2018). A novel index, the Ultra-Low-grade Iron-related Objects Index (ULIOI) has been developed by 

Ma et al. (2018a) for extracting tailing features from remote sensing imagery. This index is based on 

different spectral characteristics of mine objects (Figure 2-3). Mukherjee et al. (2019) did not only focus 

on tailings, but developed a novel mine detection index for Landsat imagery by computing the ratio 

between Short Wavelength Infrared (SWIR-I) (1.566-1.651 μm) and SWIR-II (2.107-2.294 μm) bands of 

Landsat 8.  

Figure 2-3: Spectral signatures of different features of open-pit mines and their surroundings within 

Landsat bands (OLI2-7); Source: Ma et al. (2018). 
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For the purpose of mine mapping, pixel-based classification approaches have been applied as 

demonstrated within the study of Lobo et al. (2018), who mapped mines in the Brazilian Amazon by 

conducting supervised classification. With a stronger focus on land change detection of mining areas, 

Garai and Narayana (2018) performed an unsupervised classification on pixel-level. Further land use and 

land cover change detection of mining areas has been investigated by implementing pixel-based 

classifications as shown in Basommi et al. (2015) and Karan and Samadder (2018a). The latter classified 

by applying a pixel-based Support Vector Machine (SVM) algorithm. Basommi et al. (2015) developed a 

pixel-based classification and complemented the land use and land cover change assessment of mining 

areas by NDVI analysis. Similar to Garai and Narayana (2018), Charou et al. (2010) conducted an 

unsupervised classification in order to assess the impact of mining upon land and water resources. 

In the same context of impact assessment, object-based classification has been applied by Qian et al. 

(2018), who analyzed the impact of mining activity upon surrounding land and ecosystems services. It has 

been demonstrated by Bona et al. (2018) and Zhang et al. (2017) that object-based classification is also 

suitable for the classification of mining sites and change detection in mine areas. Bona et al. (2018) 

conducted a multi-source object-based classification of mining sites by the integration of Spot and 

Sentinel-1 imagery. For information extraction of a Nickel mine, Chen et al. (2018c) conducted object-

based classification with hierarchical multi-scale segmentation. 

As far as machine-learning based classifications in the domain of mining are concerned, Karan and 

Samadder (2018a), developed a model composed of a two wavelet-based image enhancement and 

subsequent SVM classification for accurate long-term change assessment of a coal mining area. 

Additionally, Karan and Samadder (2018b) performed dual-tree complex wavelet transform-based image 

enhancement first and applied then neural net supervised classification for the classification of a coal 

mine.  

 

2.3.2 Crowdsourcing 

As a recent development, crowdsourcing has been considered an additional option to generate 

geospatial data from remote sensing imagery. An overview of developments in crowdsourcing geospatial 

data has been given by Heipke (2010). A topology of tasks for deriving geographic information from 

crowdsourcing has been developed by Albuquerque et al. (2016). Different types of crowdsourcing tasks, 

such as classification, digitization and conflation have been discussed. By presenting a case study about a 

crowdsourced classification in the domain of humanitarian aid, Albuquerque et al. (2016) demonstrated 

that a high level of quality could have been achieved and thereby confirmed that crowdsourcing 

classification is a promising method for deriving spatial information on human settlements. Current 

crowdsourcing implementations are divers and range from novel GEO-reCAPTCHA developments, where 

the security reCAPTCHA prompts users to perform a digitization (Hillen and Höfle 2015), to global 

estimations about agricultural field size (Lesiv et al. 2019) up to 3D micro mapping, involving the crowd 

in 3D point cloud analysis (Herfort et al. 2018). Panteras and Cervone (2018) and Wang et al. (2018b) 

integrated crowdsourcing for flood extent computation and urban flood monitoring. Volunteers are either 
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asked to perform a specific task on the screen, in the field or passively by carrying sensors. Most of the 

previously mentioned studies focus on task performance on the screen. An example in this context has 

been the study of Johnson et al. (2017), where volunteers contributed to the creation of an Open-Street 

Map (OSM) by digitization. Subsequently, this OSM data is applied as training data in a multi-source 

classification of land cover change. Concerning in-situ measurements, (Fritz et al. 2012) developed a 

crowdsourcing tool in order to enhance in-situ land cover data, which can be used in order to assess land 

cover products and in order to generated a hybrid global map. 

The distribution of sensors among volunteers, passively generating geographic data, is considered as 

human sensing. In this case, Yang et al. (2018a) investigated the extraction of road boundaries by 

providing volunteers vehicles with GPS instruments and analyzing their registered trajectories. As already 

mentioned in regard to the study of Johnson et al. (2017), crowdsourcing can support classification by 

providing training data. Such potential support for classification by crowdsourcing has further been 

discussed by Li et al. (2018b). Besides the support during the classification process, Saralioglu and 

Gungor (2019) proposed that crowdsourcing can be implemented in the post-classification phase by 

collecting control points for accuracy assessments. 

In the domain of mining, no studies have been found involving crowdsourcing as a method. 

Digitization tasks, performed by groups have been conducted within the study of Paull et al. (2006), who 

performed environmental impact monitoring of an open-pit mine, but this task has not been outsourced to 

a crowd. The only study in the domain of mining being slightly related to crowdsourcing is the study of 

Carabassa et al. (2019), who developed a methodology for self-evaluation of ecological restauration of a 

quarry by a non-scientific group. 

 

2.4 Research gap and research question 

To summarize the presented overview of current studies related to open-pit mining, remote sensing 

and classifications and crowdsourcing, the conclusion can be drawn that open-pit mines have been closely 

investigated in their production optimization and impact assessment. Regarding current developments in 

remote sensing, a clear focus on data fusion and multiple applicability has been determined, the latter 

being observed in the domain of mining as well. For classifications, a strong tendency towards machine 

learning approaches and comparatives studies between pixel-based and object-based classifications has 

been observed. In the domain of mining, primary pixel-based or object-based classifications have been 

applied. Even though index-based feature extraction has not been applied frequently with respect to 

mining, its importance is increasing. Crowdsourcing as a method – to my current knowledge – has not yet 

been applied within the context of open-pit mining. 

As the overall motivation of this study is to provide spatial information for EHP analysis, this study 

fits in the current research regarding open-pit mines, which focuses, among others, on impact assessment. 

The objective of the study, which is the comparison of remote sensing analyses that can be applied for the 

computation of the spatial extent of mining areas, is closely related to several studies in the domain of 
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classifications, as one main focus of current research is the comparison between pixel-based and object-

based classifications. Thus, this study fits into the current state of the art.  

Especially the study conducted by LaJeunesse Connette et al. (2016), who proposed a remote sensing 

methodology for the identification of mining areas in Myanmar, is thematically closely related to the 

objective of this study, as the issue of mining area detection is addressed. But methodologically 

considered, LaJeunesse Connette et al. (2016) conducted no comparative study for the assessment of 

strengths and weaknesses of different remote sensing analyses that can be applied for the area computation 

of different open-pit mines. In addition, the study from LaJeunesse Connette et al. (2016) has a clear focus 

on Myanmar, other than the objective of this study. Another investigation that is closely linked to the 

objective of this study is Castellanos-Quiroz et al. (2017), who detected mines in Colombia by data fusion 

and the integration of spectral indices. This study proposed one potential methodology, but did not 

compare further remote sensing analyses for area computation of different open-pit mines. That means 

thematically considered, some studies already focused on mine detection, but methodologically 

considered, no comparative study that assesses strengths and weaknesses of different remote sensing 

analyses in the context of mine area computation, has been conducted to this date. Furthermore, no such 

comparative study has been undertaken for the investigation of open-pit mines in different geographic 

regions.  

This study will thus present a comparison that investigates pixel-based and object-based 

classification for the computation of mining area due to their initially presented advantages (chapter 1) and 

due to the fact that their suitability for the analysis of various mine features has currently been confirmed 

by Charou et al. (2010), Lobo et al. (2018) and Qian et al. (2018). Besides, index-based approaches will be 

compared, given the fact that a wide range of spectral indices has recently proven to be appropriate for 

mine feature detection (Castellanos-Quiroz et al. 2017). Furthermore, crowdsourcing that has not yet been 

applied in the domain of mining by purpose, appears to be a suitable remote sensing analysis for providing 

geographical information (Albuquerque et al. 2016). Therefore, it will be included in order to compute the 

spatial extent of open-pit mines. The broad range of available remote sensing data (Lillesand et al. 2008) 

will be integrated by performing classifications on single-source and multi-source level as well. Regarding 

the research object, the open-pit mine, this study will consider the features indicating a potential mine 

from LaJeunesse Connette et al. (2016) as key elements in the definition of an open-pit mine. The initial 

objective presented in the introduction will thus be refined to a clear research question as follows:  

What are the strengths and weaknesses of remote sensing analyses, among them index-based, pixel-

based and object-based classifications on single- and multi-source level, and crowdsourcing that can be 

applied in order to determine the delineation of the area that is subject to open-pit mining at earth surface 

in different geographic regions? 

The answer to this question will close the previously mentioned research gap by providing a 

comparison of remote sensing analyses that can be applied in order to compute the spatial extent of open-

pit mines in different geographic regions. Thereby, this study makes a clear contribution towards EHP 

analysis of open-pit mines by providing strengths and weaknesses of potential remote sensing methods 
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that can be applied for the determination of the missing parameter “mine area at earth surface”. The study 

is thus aiming to support decision-making in terms of selecting appropriate remote sensing analyses. 

 

3 Study sites and materials 

This chapter outlines the selection of the study sites and characterizes each study site according to its 

geographic location, its climatic and vegetation pattern as well as its geological context. Embedding the 

study into the climatic context is significant, as this correlates with the vegetation pattern of the study 

sites, respectively. For this reason it is crucial to consider the surroundings of mines when classifying or 

digitizing mines. The integration in geological dimensions is considered essential, as this is the origin of 

today’s mining activities. Materials of this study comprise the remote sensing data for analyses, the 

reference data and mine indicators. In the following, the selection of remote sensing datasets and relevant 

pre-processing of the data is described. Furthermore, information about the reference data and the mine 

indicators will be provided at the end of this chapter. 

3.1 Study site 

When aiming for sustainable use and conservation of natural resources, as it is intended by the 

resource efficiency strategy (Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit 

(BMUB) 2016), iron ore, copper ore and bauxite need to be considered, since these three raw materials are 

primary used for industrial purposes (Neukirchen and Ries 2014). Considering the appearance of open-pit 

mines of these three raw materials at earth surface, bauxite open-pit mines differ due to their extensive 

dispersion from copper and iron ore open-pit mines. The reason for this difference of appearance at earth 

surface is related to different deposit styles of iron ore, copper ore and bauxite (Neukirchen and Ries 

2014). For this study, iron and copper ore open-pit mines will be considered, because bauxite mines differ 

too strongly from copper and iron ore mining regarding their visual appearance at earth surface. Bauxite 

mines thus, need further detailed investigations.  

The Federal Environment Agency (UBA) will investigate 100 globally distributed open-pit mines of 

iron ore, copper ore and bauxite. Out of this frame, a randomly chosen amount of 50 iron-ore and open-pit 

mines has been revised for this study. First, open-pit mines have been clustered into ecozones according to 

Schultz’s ecozones (Schultz 2016). For the ecozones Tropical and Subtropical Dry Areas, Summer Humid 

Tropics, Wet Tropics, Winter Humid Subtropics and Dry Mid Latitudes, mines have been determined. 

Natural surroundings of these mines range from dense forest, sparse vegetation to sparse alpine vegetation 

and up to bare area. One mine of each ecozone has been chosen for this study. As soon as natural 

surroundings of two mines from different ecozones were considered to be similar, only one out of these 

two was chosen.  
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For further analysis the following four open-pit mines, among them two copper ore and two iron ore 

mines, have been selected as study sites: 

a. Grasberg/Ertsberg Copper/Gold Mine (Indonesia) 

b. Hamersley Iron Ore Mines (Australia)  

c. Highland Valley Copper Mine (Canada) 

d. Mariana Iron Ore Complex (Brazil)  

Figure 3-1 shows that they cover different geographic regions as they are located in Canada, Brazil, 

Australia and Indonesia. For simplification in the further course of this thesis, the entire names of the 

mines will be abbreviated to Grasberg mine, Hamersley mine, Highland mine and Mariana mine. 

 

 

Figure 3-1: Location of the four open-pit mines of this study on small and large scale. 
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a. Grasberg mine  

Grasberg-Ertsberg Copper-Gold Mine (Figure 3-2) is located in Indonesia within Papua province at 

4°3'21.48"S and 137°6'35.61"E, which is 60 km northeast of the city of Timika. At an altitude of 3799 m 

above sea level, the mine is situated within the alpine zone.  

For Timika, the city which is closest to the study site, the average annual air temperature is 26.1 °C; 

annual precipitation value averages around 3366 mm. According to Köppen and Geiger’s climate zones, 

this study site is thus considered to be an Af climate, which refers to tropical climate with monthly mean 

air temperatures of 18 °C and continuous precipitation (Figure 3-3) (Glawion 2012). Concerning Schultz’s 

ecozones, this study site belongs therefore to the Wet Tropics, where acid soils, leaching and evergreen 

deciduous forest is dominant (Schultz 2016). Image inspections of Google Earth Pro confirm that dense 

vegetation cover extents south of the mine. Nevertheless, as the open-pit mine is located in high altitude, 

direct surroundings are primary dominated by rocky bare area within a steep relief (Figure 3-2). Thus, this 

study sites appears to be a homogeneous study site with the mine embedded in rocky surroundings. 

The mine belongs to the Grasberg Igneous Complex (GIC), which is characterized by sedimentary 

rocks such as shale, siltstone, sandstone, limestone and dolomite from Trias-Miocene. Several phases of 

intrusion, among them the Dalam Diatreme and the Main Grasberg Intrusion (MGI) have induced 

porphyry ore bodies. This Cu-Au deposit has been mined since 1989 and is primarily owned by Freeport 

McMoran Copper & Gold Inc. and some further shareholders. Mining is operated in an open-pit mine and 

underground. The open-pit mine forms a mile-wide crater at the surface, which is recognizable in satellite 

imagery. The Grasberg mine is considered to be one of the most extraordinary mineral systems 

worldwide, as it provides 6 % of the world supply of copper ore and holds large quantities of gold. It is the 

largest gold and the second largest copper ore mine worldwide. Annual ore extraction of the open-pit is 

approximately 67 million tons. Nevertheless the mine is expected to be exploited in less than 50 years 

(Bensaman et al. 2015). Environmental issues regarding Grasberg mine are already present, as reported by 

Kumah (2006), who explains that 

tailings have been deposed into the 

Ajkwa River, exposing environment 

and community to serious health risks.  

Figure 3-3: Climate chart of Timika, the closest city to the study site; 

Source: Climate-data. 

Figure 3-2: View in the pit of Grasberg mine. 

© iStock.com/joster69. 
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b. Hamersley mine 

Hamersley Iron Ore Mines (Figure 3-4) are located in Australia, in the northwest of the state Western 

Australia. More precisely, Hamersley Iron Ore Mines comprise a total of 10 single open-pit mines, the 

mine investigated within this study is located 10 km southwest of the city Tom Price at 22°45'50.43"S and 

117°47'4.65"E on an altitude of 772 m above sea level.  

The Köppen-Geiger climate of Tom Price is BSh, which refers to a dry-hot steppe climate with 

annual air temperature above 18 °C (Glawion 2012). The climate chart in Figure 3-5 demonstrates that 

monthly air temperatures have only in June, July and August mean air temperatures below 18 °C, whereas 

during the other months mean air temperatures exceed 20 °C. Precipitation is about 38 mm a year, with 

higher precipitation values from December to March and very low precipitation values < 20 mm from July 

to November. Given its location and climatic characteristics, Hamersley mine belongs to the Tropical and 

Subtropical Dry Areas with subtropical deserts and semi-deserts according to Schultz’s ecozones (Schultz 

2016). This ecozone comprises dry deserts, where precipitation occurs, but only sufficient enough for 

sparse desert vegetation on leached soils. Satellite imagery confirms that the surroundings of Hamersley 

mine appear to be very bare, which makes it therefore difficult to distinguish the mine from its 

surroundings. Therefore, this study site is also considered to be homogeneous. 

Hamersley Iron Ore Mines are Banded Iron Formations (BIF), belonging to the Mount Bruce 

Megasequence Set, which are Precambrian sedimentary and volcanic rocks overlying the Pilbara Craton 

(Barley et al. 1999). The mine investigated in this study is located close to Mount Tom Price, therefore 

sometimes called Tom Price mine. Mount Tom Price belongs to the Brockman Iron Formation, which is 

subject to open-pit mining at Hamersley mine (Thorne et al. 2004) with an annual volume of 

28 million tons of iron ore. The mine is owned by Rio Tinto. Hamersley Iron Ore Mines are considered to 

hold one of the largest iron ore mine deposits of the world. According to Vogel (2014), environmental risk 

of these mines is primarily related to 

mine-pit lakes, because they might 

contaminate nearby ground water 

and ecosystems.  

 

Figure 3-5: Climate chart of Tom Price, the city being closest to Hamersley 

mine; Source: Climate-data.  

 

Figure 3-4: View on mining facilities of 

Hamersley mine. © 169169 / Adobe Stock. 
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c. Highland mine  

The Highland Valley copper mine is situated in the province of British Columbia of Canada. Located 

at 50°32'6.25"N and 121°4'18.62"W, the mine is 50 km southwest of the city of Kamloops at 1221 

m above sea level (Figure 3-6). 

Considering the climate, Kamloops belongs to the BSk climate type, a dry cold steppe climate with 

annual air temperatures < 18 °C (Glawion 2012). Figure 3-7 confirms that the monthly mean air 

temperature exceeds the 18 °C limit only in month June, July and August. Precipitations are generally low 

with an annual amount of 305 mm. Given its low amount of precipitation and its strong difference 

between winter and summer air temperatures, this study site belongs to the Dry Mid-Latitudes by 

Schultz’s ecozones (Schultz 2016). This zone constitutes the transition of forest steppe to desert with 

corresponding soils such as Chernozems, Kastanozems and Phaeozems. Imagery inspection reveals 

moderate vegetation cover with sparse and dense vegetation around the open-pit mine. 

Geologically considered, this open-pit mine belongs to the calc-alkaline composite Guichon Creek 

batholith, an intrusion from Triassic age. According to Olade (1977) and Olade and Fletcher (1976), the 

composition of this intrusion ranges from diorite to quartz monzonite, with porphyry copper deposits in 

the center of the intrusion. The mine is owned by Tech Resources Ltd. and operated through two pits with 

an annual volume of 116,300 tons of copper ore and 10 million pounds of molybdenum. Rehabilitation 

projects have been realized after impacts upon the environment, especially lakes, have been noticed 

(McAllister et al. 2014). On a global scale, this mine is considered to be among the largest open-pit mines 

worldwide. 

 

 

 

 

 

Figure 3-7: Climate chart of Kamloops, the closest city to Highland mine; 

Source: Climate-data.  
Figure 3-6: Tailings pond of Highland mine. 

© hpbfotos / Adobe Stock. 
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d. Mariana mine  

The open-pit mine of Mariana Iron Ore Complex is located in Brazil, in the state of Minas Gerais. At 

60 km southeast of Belo Horizonte, the mine is situated at 20°10'59.13"S and 43°29'48.45"W at an 

approximate altitude of 990 m above sea level. 

According to Köppen and Geiger’s climate zones, this study site is considered to belong to the Cwa 

climate. This climate zone represents a warm temperate climate with drought in the winter of the southern 

hemisphere and a minimum of one month exceeding 22 °C air temperature (Glawion 2012). These 

characteristics are confirmed by Figure 3-9 that shows the annual mean air temperature of 20.5 °C. 

Precipitation reaches about 1430 mm with a maximum in the summer of the southern hemisphere, 

respectively. Considering its ecozone, this study site belongs to the Humid Savannah of the Summer 

Humid Tropics (Schultz 2016). Vegetation cover ranges from deciduous forest up to dense savannah, 

accordingly. Even though soils, such as Lixisoils, are prone to high levels of leaching, biodiversity is 

considered to be high and increases further with humidity. 

Mariana mine belongs to the Quadrilátero Ferrífero (QM), an extensive iron ore deposit from 

Precambrian age covering an area of 7,000 km
2
 (Selmi et al. 2009). Two iron formations that are quarzitic 

and dolomitic itabirite are dominant within QM. Mariana mine, which is owned by Vale S.A., is operated 

within three pits. The dam failure at Mariana of 2015 has raised awareness recently (Figure 3-8). This 

hazard was considered a humanitarian crisis, due to the fact that cities were flooded and aquatic systems 

such as the rio Doce and parts of the Atlantic ocean were polluted (Fernandes et al. 2016). 

 

 

 

Figure 3-9: Climate chart of Belo Horizonte (closest city to the study site); 

Source: Climate-data.  

Figure 3-8: Mud flow after the dam burst in Minas 

Gerais. © Christyam / Adobe Stock. 
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3.2 Materials 

This chapter presents the three types of datasets used within the study and relevant pre-processing. 

First optical satellite imagery will be outlined, followed by Digital Elevation Models (DEMs) and 

subsequently radar imagery. 

3.2.1 Datasets and Acquisition 

The objective of the study is to compare remote sensing analyses, among them classifications such as 

index-based, pixel-based and object-based classifications on single- and multi-source level and 

crowdsourcing that can be applied for the computation of the spatial extent of mining areas. Mines are 

expected to be distinguished by two factors, namely their spectral signal and their elevation. When 

distinguishing mines from their surroundings, their spectral signal will be considered because mines 

reflect solar radiation in a different wavelength than vegetation, soil, water or other surroundings (Figure 

2-3) (Ma et al. 2018a). Information about the elevation will serve as additional information, due to the fact 

that mines are likely to differ from their surroundings as the pit itself has lower elevation values. For 

Grasberg mine as an example, the deepest explored part of the open-pit is around 2.5 km below the pre-

mining surface (Bensaman et al. 2015). This implies that in this study multi-spectral imagery as well as 

DEMs will be used. Taking into account that some of the study sites are located within the Subtropics or 

Tropics, the occurrence of cloud issues is expected. Radar imagery is supposed to meet this difficulty due 

to the fact that this is an active sensor, thereby being able to penetrate clouds (Lillesand et al. 2008). Thus, 

three types of materials will be required for this study and applied within the classifications and 

crowdsourcing. 

In the last years, many satellite missions such as Landsat, SPOT, Sentinel-2, Digital Globe and others 

have been carried out. They are either launched by public or commercial operators and vary among their 

purpose and by their instruments on the platform. For this study three dataset criteria had to be considered 

when choosing the appropriate optical sensor: 

Dataset criterion: 

a. Spatial and temporal availability of imagery for the study sites  

b. Sufficient spatial resolution < 30 m  

c. Free access to imagery 

All three criteria are considered to be of equivalent importance. The first criterion is referring to the 

fact that imagery must be available for the exact location of the four selected open-pit mines. In addition, 

imagery has to be up-to date, which means that data acquisition has taken place during the year 2018. This 

is especially important when considering that mining often comes along with land use change. For this 

reason, mines might vary in extent when comparing current imagery to imagery from the last decade. As 

far as temporal availability is concerned, the factor season needs to be considered as well. When mines are 

located in high latitudes, imagery of winter time is not suitable for analyses as large parts of the mine 

might be covered by snow.  
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Sufficient spatial resolution < 30 m is a crucial criterion for the detection of mine features. The 

higher the spatial resolution, the better small objects can be detected. Especially roads, buildings and small 

tailings require a high resolution as they might in some cases cover an area < 90 m
2
.  

The last criterion is related to the open access to imagery. As previously mentioned, satellite missions 

originate either from public or from the commercial sector. Commercial satellite products do sometimes 

provide imagery with highest spatial accuracy, nevertheless free imagery with sufficient spatial resolution 

< 30 m is also available by a large number of operators.  

All three criteria are fulfilled by Sentinel-2 products from the European Space Agency (ESA), given 

the fact that Sentinel-2 imagery is available for all four study sites that spatial resolution is between 10 and 

60 m, that temporal resolution is 5 days and that all imagery is freely accessible. Data is hold in three 

different levels of data pre-processing that is Level-1A, Level-1C and Level-2A. Level-1C data are 

atmospheric reflectance values within a cartographic geometry, thus being radiometric and geometric 

corrected. Data has been accessed through the online platform from ESA Copernicus Open Access Hub 

(ESA 2014). For each study site a imagery has been downloaded that covers the open-pit mine, that has 

been acquisitioned within the vegetation period from 2018 and that has a cloud cover index < 10 % (Table 

3-1). These three criteria are selection criteria for the imagery itself. The acquisition within the vegetation 

period is crucial, since this will facilitate the distinction between vegetation and the open-pit mine. Cloud 

cover is also highly important as the presence of clouds limits the visibility of the mine.  

Regarding Digital Elevation Models (DEMs), there is a large variety of data sets such as SRTM, 

Aster, ALOS and others available. They are generated by stereoscopic pairing methods such as 

interferometric SAR or digital image correlation. Similar to optical sensors, when choosing the 

appropriate DEM, the previously mentioned criteria a., b. and c. need to be considered. Detailed 

information about the three criteria has been given in the previous section. Among the large variety of 

DEMs, ASTER Global DEM (GDEM) fulfills the determined criteria. All study sites are covered within 

the latest version of Aster’s DEM at a spatial resolution of 30 m. Data is provided by the National 

Aeronautics and Space Administration (NASA) and freely available on their online platform Earth data 

(NASA 2019). For each study site a DEM of the second generation, i.e. version 2, was downloaded (Table 

3-1). 

As far as SAR imagery is concerned, data of Sentinel-1, ENVISAT, PALSAR and others are 

available. In this context, the previously mentioned criteria are also of high importance. Sentinel-1 data, 

provided by the ESA, is considered suitable because of the fact that imagery is available for all four study 

sites at a spatial resolution of 5 x 20 m and a temporal resolution of 12 days. Through the same platform 

as for Sentinel-2 imagery, data was freely downloaded (ESA 2014). Thereby, data acquisitioned during 

vegetation period had to be considered, in line with Sentinel-2 imagery selection criteria. Available data 

products are Level-0, Level-1 Single Look Complex (SLC), Level-1 Ground Range Detected (GRD) and 

Level-2 L2 Ocean Product (OCN). As Level-1 GRD data is focused SAR data that has been detected, 

multi-looked and projected to ground range using an earth ellipsoid model, Level-1 GRD from 

Interferometric Wide Swath Mode (IW) with Vertical Polarization (VV) and Vertical Horizontal 

Polarization (VH) has been downloaded.  
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Table 3-1: Overview of the three datasets of each study site. 

 Grasberg mine Hamersley mine Highland mine Mariana mine 

Sentinel-

2 
Scene Identifier S2A_MSIL1C_20180

514T011731_N0206_

R088_T53MQR_201

80514T025012 

S2B_MSIL1C_20180

805T021339_N0206_

R060_T50KNV_2018

0805T062858 

S2A_MSIL1C_20180

617T185921_N0206_

R013_T10UFA_2018

0617T224132; 
S2A_MSIL1C_20180

617T185921_N0206_

R013_T10UFB_2018

0617T224132 

S2A_MSIL1C_20180

623T130251_N0206_

R095_T23KPT_2018

0623T162223 

Sensor type Optical Optical Optical Optical 
Acquisition date 2018/05/14 2018/08/05 2018/06/17 2018/06/23 
Band info 13 multi-spectral 

bands 
13 multi-spectral 

bands 
13 multi-spectral 

bands 
13 multi-spectral 

bands 
Resolution (m) 10-20 10-20 10-20 10-20 
Cloud Cover (%) 17.13 0.25 2.0; 

3.64 
0.97 

Aster 

GDEM 
Scene Identifier ASTGTM2_S05E137 ASTGTM2_S23E117 ASTGTM2_N50W12

1; 
ASTGTM2_N50W12

2 

ASTGTM2_S21W04

4 

Sensor type Optical Optical Optical Optical 
Release date 2011 2011 2011 2011 
Band info DEM DEM DEM DEM 
Resolution (m) 30 30 30 30 
Cloud Cover (%) - - - - 

Sentinel-

1 
Scene Identifier S1A_IW_GRDH_1S

DV_20180918T0912

17_20180918T09124

2_023750_02970B_D

677 

S1B_IW_GRDH_1S

DV_20180814T2131

52_20180814T21321

7_012264_016993_49

46 

S1B_IW_GRDH_1S

DV_20180715T0154

04_20180715T01542

9_011815_015BE0_A

7B0 

S1B_IW_GRDH_1S

DV_20180522T0821

04_20180522T08212

9_011031_014365_F

A04 
Sensor type C-Band Radar C-Band Radar C-Band Radar C-Band Radar 
Acquisition date 2018/09/18 2018/08/14 2018/07/15 2018/05/22 
Band info VV & VH VV & VH VV & VH VV & VH 
Resolution (m) 5 x 20 5 x 20 5 x 20 5 x 20 
Cloud Cover (%) - - - - 
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3.2.2 Pre-processing 

Each of the downloaded datasets that are shown in Table 3-1 need to be pre-processed in order to 

generate data ready-to-use for the subsequent classification and crowdsourcing. 

The entire process of pre-processing for all three types of datasets is shown in Figure 3-10. 

Pre-processing of Sentinel-2 imagery has been performed within the Geographic Information System 

(GIS) software QGIS Desktop 3.4.5 (QGIS Development Team 2019), by means of the Semi-Automatic-

Classification Plugin (SCP) (Congedo 2018). Given the fact that all images are already provided in the 

correct projected coordinate system, i.e. Universal Transverse Mercator (UTM), no further re-projection 

needs to be undertaken. Nevertheless, verification of the correct projection is crucial for all types of 

remote sensing imagery pre-processing, therefore being mentioned. 

The following EPSG codes contain the projection corresponding to the study site: 

a. Grasberg mine: 32753 

b. Hamersley mine: 32750 

c. Highland mine: 32610 

d. Mariana mine: 32723 

Figure 3-10: Pre-processing steps for Sentinel-2, Aster GDEM and Sentinel- 1 data and corresponding software. 
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All multi-spectral bands except for band 1, 9 and 10 have been stacked together to a band set. The 

three bands mentioned are excluded from analysis, as they are dedicated to aerosol, water vapor and cirrus 

cloud detection, which is not in line with the objective of this study. Subsequently, a subset has been 

created in order to clip the entire imagery to the Area of Interest (AOI) that contains the open-pit mine. 

The following UTM extents of Upper-Left (UL) and Lower-Right (LR) coordinates have been chosen: 

a. Grasberg mine extent:  

UL: 728234.9999999982537702, 9544045.0000000000000000 

LR: 741224.9999999982537702, 9556285.0000000000000000 

b. Hammersley mine extent:  

UL: 559332.4840105901239440, 7474585.2672052076086402 

LR: 591774.0723712206818163, 7497593.0664593977853656 

c. Mariana mine extent: 

UL: 649354.6810842915438116, 7753633.9922552965581417 

LR: 678563.1302923100301996, 7782902.4793856339529157 

d. Highland mine extent: 

UL: 622089.8850756828906015, 5586652.3008707538247108 

LR: 652422.4318524983245879, 5611726.5938905468210578 

Taking into account that Level-1C data are atmospheric reflectance values, data needs to be 

radiometric corrected in order to obtain surface reflectance values, as for this study the solar radiation 

reflected at earth surface is of interest. Surface reflectance values can be derived by applying DOS1 

atmospheric correction within the SCP plugin to all clipped bands. Required metadata for this conversion 

is obtained from the MTD file that comes together with the imagery. 

Aster Pre-processing has been performed within the QGIS environment as well. As this data is not 

projected into the same coordinate system like Sentinel-2 imagery, all images need to be re-projected by 

means of the previously mentioned EPSG Codes. Re-projected images further need to be clipped to the 

AOI by setting the UTM coordinate values presented previously. For visual impression, raster symbology 

can be adjusted. For classification this is, however, not required. 

Pre-processing of Sentinel-1 imagery has been performed with the Sentinel Application Platform 

(SNAP) (SNAP 2019). First, the orbit file had to be applied to enable further pre-processing. Further 

radiometric calibration is required in order to obtain calibrated backscatter coefficient values. Subsequent 

radiometric correction removes the sometimes misleading influence of topography upon backscatter 

values of the imagery. Therefore, radiometric terrain flattening is performed. A SRTM 1sec HGT 
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elevation model is automatically downloaded within the execution of terrain flattening and is required in 

order to remove the influence of the terrain. Due to spatial distortions within the data, which were induced 

by the fact that data has not been acquired from a nadir position, additional geometric terrain correction 

was performed. During acquisition time, imagery has been captured from two different perspectives, 

which is a horizontal and a vertical perspective. Imagery of both polarizations is available and has been 

used within this study. One image of each perspective has been exported into QGIS Desktop for further 

pre-processing. Each image has been re-projected into the same coordinate system as the Sentinel-2 

imagery and the Aster GDEM by means of the previously presented EPSG. With the previous mentioned 

UTM coordinate values, a spatial subset of each imagery has been created. Similar to the Aster GDEM, 

symbology modifications are recommended, but only required for visual impression. 

 

3.2.3 Reference data 

For all four study sites no reference data such as in-situ GPS measurements exists. Nevertheless, reference 

is crucial in order to conduct an accuracy assessment of the classifications. Therefore, reference datasets 

have been created upon expert knowledge. For each study site, two reference datasets have been created 

upon pre-processed Sentinel-2 Red Green Blue (RGB) imagery within ENVI 5.5 (Harris Geospatial 

2019a). Hence, a total of 50 samples for each class have been collected. Because index-based 

classification and crowdsourcing digitizations will contain two classes − that is the class mine and non-

mine − a binary reference dataset has been created for these two methods. Given the fact that for pixel-

based and object-based classifications several land-use classes will be trained, a reference dataset with 6 

land use classes including the class mine has been created for these two classification methods. Thus, a 

total of 8 reference datasets has been created. Table 3-2 and Table 3-3 give an overview of the two 

reference datasets for each study site.  

 

Table 3-2: Overview of the reference datasets for index-based classifications. For each study site one NDVI reference dataset has 

been created. 

 Reference datasets for index-based classifications 

  Grasberg mine Hamersley mine Highland mine Mariana mine 

Amount of pixels 15084 17008 23991 19599 

Area [km
2
] 1.50 1.70 2.40 1.96 

Area relative to entire study site 

[%] 0.99 0.41 0.37 0.26 
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Table 3-3: Overview of the reference datasets for pixel-based and object-based classification. For each study site one reference 

dataset has been created. 

 Reference datasets for pixel-based and object-based classifications 

  Grasberg mine Hamersley mine Highland mine Mariana mine 

Amount of pixels 11031 12298 23674 33006 

Area [km
2
] 1.10 1.23 2.37 3.30 

Area relative to entire study site 

[%] 0.99 0.30 0.37 0.44 
 

 

3.2.4 Mine indicators 

LaJeunesse Connette et al. (2016) developed a methodology in order to assess the extent and 

expansion of open-pit mines in Myanmar. For the identification of current mining sites they created a list 

of features indicating a potential mine (Table 3-4). This study will directly incorporate these indicators, 

while defining that for classifications and crowdsourcing, the class mine needs to contain the features 

indicating a potential mine from LaJeunesse Connette et al. (2016).  

Table 3-4: Features indicating potential mining areas from LaJeunesse Connette et al. (2016). Source: 

LaJeunesse Connette et al. (2016), modified; contains modified Copernicus Sentinel data (2018). 

Features indicating a potential mine  

Bare ground (particularly irregular shaped patches) 
 

Piles of rock or soil 
 

Pools of water with unusual or varying colors (Changes in river color) 
 

Ruts or pits in the earth 
 

Roads 
 

Industrial buildings, processing facilities or large equipment 
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4 Methodology 

The objective of this study is to compare different remote sensing analyses that can be applied to 

compute the spatial extent of open-pit mines in different geographic regions. Remote sensing analyses 

comprise classifications, including index-based, pixel-based and object-based classification, as well as 

crowdsourcing. This chapter explains in detail the classifications and crowdsourcing process. The 

methodological concept of this study will be presented first in order to give a general overview of the 

procedure. A detailed explanation of each method will be given subsequently. In order to compare both 

methods, the application of a comparison metric will be further introduced. When no specific information 

about parameter choice has been given, the default settings were accepted.  

4.1 Research design 

The entire study is composed of three parts, the data acquisition & pre-processing, the analyses and 

the comparison. A simplified overview of the entire procedure is given in Figure 4-1. All three steps of the 

initial part data acquisition & pre-processing, which are related to the choice of the study sites and 

datasets, the dataset acquisition and pre-processing, have been explained previously in chapter 3.  

The analyses are subdivided into two parts, the classifications and the crowdsourcing. First, different 

classifications will be performed. Index-based, pixel-based and object-based classifications will be applied 

to the datasets of each study site. Thereby, index-based and pixel-based classifications will be performed 

on single-source-multi-band level, whereas object-based classifications will be conducted on multi-source-

multi-band level. Subsequently, the classifications will be post-processed. Area values will be derived by 

calculating class statistics. In a final step, an accuracy assessment will be conducted in order to evaluate 

the classifications. 

Crowdsourcing constitutes the second part of the analyses. Therefore, a crowdsourcing project was 

launched, where volunteers were invited to digitize the delineation of the four study sites based on 

Sentinel-2 RBG imagery. Subsequent post-processing of the received digitizations included the 

conversion of the digitization from a vector model to a raster model. Following, the smallest (Min 

polygon) and largest polygon (Max polygon) will be chosen. Additionally, a frequency distribution raster 

layer will be generated that demonstrates the frequency of selection of each pixel. Further, a majority 

polygon, which represents the mine according to the majority, will be derived. Computing area values by 

class statistics and computing a confusion matrix of the majority polygon, will constitute the final step of 

this method.  

In order to compare both methods, a comparison metric, which is the Intersection over Union (IoU), 

will be applied. This requires the calculation of the area of spatial intersection and the area of spatial union 

for each combination of classifications and majority polygons. Comparison between the two methods will 

then be conducted by comparing them by IoU, area and accuracy values as well as their visual 

interpretation. Taking the main findings regarding the results and the implementation of the two methods 

into account, strengths and weaknesses of each method will be determined. 
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4.2 Classifications 

The following section is dedicated to detailed explanations of the classes, as well as the 

classifications. All three types of classifications are multi-spectral classifications. For simplification in the 

further course of this thesis, the name multi-spectral classifications will be abbreviated to classifications. 

4.2.1 Classes 

All classifications contain the class mine, which is defined as the class containing all features 

indicating a potential mine from LaJeunesse Connette et al. (2016). Therefore, this class contains the 

Figure 4-1: Overview of the methodology. The abbreviations IND, PIX and OBIA refer to the index-based, pixel-based and 

object-based classifications. 
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open-pit, piles of rock, bare ground, buildings and roads dedicated to mining activity as well as pools of 

water. Detailed information about these features has been given in the previous chapter 3.2.4.  

The amount of further classes being considered within the classifications varies among classification 

methods. For index-based classifications, only two classes, which are the mine and the class non-mine, 

were created. The class non-mine represents the surroundings of the mine. 

For pixel-based and object-based classifications, 

additional land use classes were integrated, as this might 

provide further information of spectral similarities and 

discrepancy between the mine and its surroundings. Besides 

the class mine, the class bare area, sparse vegetation, dense 

vegetation, shadows and clouds will be part of the 

classifications (Table 4-1). The distinction between sparse 

vegetation and dense vegetation was achieved by defining that 

dense vegetation is referred to a closed canopy such as forest, 

whereas sparse vegetation is related to grassland. The class 

bare area represents areas without vegetation, such as rocky 

areas. The class shadows comprise shadows of clouds as well 

as shadows from mountains or other relief that – according to 

the illumination conditions – is either exposed to sunlight or 

shadow. Only for Hamersley mine a further land use class 

called humid areas has been assigned, as it is not clear if these 

areas constitute sparse vegetation areas or ephemeral water 

run-offs.  

 

4.2.2 Index-based classification 

Index-based classifications (IND) are based on single-source-multi-band level. Sentinel-2 constitutes 

the single source, Sentinel-2 bands 4, 8A, 11, 12 represent the multi-spectral bands. Ratio images will be 

calculated for subsequent mine extraction. Thereby, each pixel value of one band is divided by the pixel 

value of another band. Given the fact that ratio images or index bands show the spectral characteristics of 

investigates features irrespective of distinct illumination, ratio images are effective in highlighting spectral 

differences in a given scene. In a single band, these features are frequently less recognizable than in a ratio 

band. The following three indices were considered to be of interest for the index-based classification: 

1. Normalized Difference Vegetation Index (NDVI) 

2. Ferrous Mineral Index (FMI) 

3. Clay Mineral Index (CMI) 

Table 4-1: Overview of the land use classes 

for pixel-based and object-based 

classifications. 

Land use classes for pixel-based and 

object-based classifications 
Mine 

Bare area 

Sparse vegetation 

Dense vegetation 

Clouds 

Shadow 

Humid areas 
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NDVI is applied for vegetation detection as it is an indicator for the vitality of vegetation. The 

background of this index is that vegetation absorbs solar radiation within the red wavelengths (RED) of 

the electromagnetic spectrum (0.6-0.7 µm), whereas it reflects radiation in the Near Infrared (NIR) 

wavelengths of the electromagnetic spectrum (0.7-1.3 µm) (Albertz 2009). The absorption in the visible 

part of the electromagnetic spectrum is due to the presence of chlorophyll that strongly absorbs energy in 

the electromagnetic spectrum ≤ 0.7 µm. The increase in reflection in the NIR part is due to cell structures 

in the leaves that reflect solar radiation ≥ 0.7 µm. An increase in vitality of vegetation is thus accompanied 

by an increase in reflection within the NIR of the electromagnetic spectrum (Lillesand et al. 2008). 

Consequently, the index can serve in detecting vital vegetation, but also to discriminate between 

vegetation and non-vegetation, which is the reason for its application within the study. The NDVI is 

computed by applying the following formula I). The derived ratio band is composed of coded color values 

for each pixel that indicate vegetation vitality. Given the normalization, NDVI values range from -1 to 1, 

whereas higher values indicate a dominance of vegetation. 

I) 
REDNIR

REDNIR
NDVI

+

 -
≡  

The FMI is an indicator for iron-bearing minerals (Castellanos-Quiroz et al. 2017; Drury 1993). As 

iron-ore open-pits will be investigated within this study, this index has been applied in order to 

discriminate between the mine, - where iron-bearing minerals might by more dominant - , and its 

surroundings. This index is a ratio between the Short Wavelength Infrared (SWIR1) (1.55-1.75 µm) and 

the NIR of the electromagnetic spectrum (0.706-0.9 µm) and is computed by the following formula II). 

Similar to the NDVI, high values correlate with a high amount of iron-bearing minerals. 

II) 
NIR

1SWIR
FMI  ≡  

The CMI indicates hydrothermally altered rocks containing clay and alunite (Castellanos-Quiroz et 

al. 2017; Drury 1993). Taking into account that open-pit mining in tropical regions might result in an 

accumulation of hydrothermally altered rocks, this index is expected to indicate areas of current mining, 

thus being suitable for this study. The ratio is derived by dividing the Short Wavelength Infrared (SWIR1) 

(1.55-1.75 µm) by the Short Wavelength Infrared (SWIR2) (2.08-2.35 µm), shown in formula III). Similar 

to previous indices, the higher the value, the more clay bearing material is present. 

III) 
2SWIR

1SWIR
CMI ≡  

Index-based classifications have first been conducted script-based with the software Python 3.7 

(Python Software Foundation 2019). Based on pre-processed multi-spectral bands of Sentinel-2, NDVI, 

FMI and CMI were calculated for each study site and constitute thus the integral part of index-based 

classifications (Figure 4-2). Given the fact that the red band is represented by band 4 and the NIR band by 

band 8A among Sentinel-2 multi-spectral bands, NDVI has been calculated in a first script with the 

following formula I.I):  
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I.I) 
4BandA8Band

4BandA8Band
NDVI

+

-
≡  

For Sentinel-2, SWIR1 corresponds to Band 11 and NIR to Band 8A. The following formula II.I) 

was applied in a second script in order to compute FMI:  

II.I) 
A8Band

11Band
FMI ≡  

In a third script, CMI was computed by the following formula III.I): 

III.I)
12Band

11Band
CMI ≡ , 

Where Band 11 and Band 12 represent SWIR1 and SWIR2, respectively. 

In an iterative process, the index-range covering all features of a potential mine from LaJeunesse 

Connette et al. (2016) was set manually by defining an upper and lower threshold of NDVI values. This 

second step was performed script-based as well. Subsequently, all pixels within this range were extracted 

and stored in a separate raster layer. This step of setting the mine thresholds was repeated for all three 

indices and for all study sites. A corresponding table with spectral ranges (Table 8-1) and exemplary 

figures of the NDVI, the FMI and the CMI calculation for Grasberg mine are attached in the appendix 

(Figure 8-1). Contrary to the FMI and the CMI, only for the NDVI a clear range covering the mine 

features could be found, the index-based classification is thus based upon the NDVI only.  

Table 4-2 includes the NDVI ranges for each study site. As the study sites differ in vegetation type, 

the NDVI range had to be determined individually for each mine. 

 

Table 4-2: NDVI range for each study site that defines the mine within the NDVI imagery. 

  Grasberg mine Hamersley mine Highland mine Mariana mine 

NDVI range -0.85-0.08 -1-0.1 -0.795-0.14 -0.651-0.2 

 

Taking into account that the NDVI range of mines includes the NDVI range of clouds, further cloud 

masking has been required, which was performed in QGIS Desktop 3.4. The implemented SCP Plugin 

provides cloud masking. The cloud mask (MSK_Clouds) that comes together with the downloaded multi-

spectral files was first converted to a shapefile and then rasterized in order to enable its application upon 

the raster images. Value 1 has been selected as the pixel value representing clouds when rasterizing. Given 

the fact that this raster cloud mask does not contain all clouds of the multi-spectral bands of Sentinel-2, the 

cloud mask was edited by integrating further clouds into the cloud mask through cloud digitization. 

Finally, cloud masking was performed on the NDVI raster image, resulting in a new raster layer 

representing the NDVI values of the mine only.  
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Subsequent calculation of class statistics and accuracy assessment was carried out in ENVI 5.3. Class 

statistics were derived by counting the pixels of each class. In this case, two classes were determined, 

namely the mine (being represented by the set NDVI range) and non-mine (referring to the surroundings 

of the mine). The amount of pixels of the class mine was multiplied by the spatial resolution of Sentinel-2 

imagery, which is 10 m, to obtain area values in m
2 
and km

2
.  

In order to evaluate the classifications, a classification error matrix was derived for each 

classification. Thereby, the reference data was compared to the corresponding classification, in this case to 

the index-based classification. The matrix is composed of columns representing the amount of pixels of 

each class within the reference versus rows, which represent the amount of pixels of each class within the 

classification. Calculated accuracy metrics that were derived from the confusion matrix comprise overall 

accuracy, the Kappa coefficient value, producer’s and user’s accuracy and the omission and commission 

error. Overall accuracy represents the total amount of correctly classified pixels divided by the total 

amount of all reference pixels. The higher the value, the more accurate the classification. The Kappa 

coefficient value is a further accuracy metric that includes the factor chance agreement, in order to avoid 

that accuracy is only due to chance. According to Lillesand et al. (2008), the Kappa coefficient value k is 

defined as the difference of observed agreement between the reference dataset and the classification and 

the chance agreement between both datasets. In order to compute the Kappa coefficient, the following 

formula IV) from Lillesand et al. (2008) is applied within the accuracy assessment: 

 

IV)  k = 
N∑ xii-∑ (xi+* x+i)

r
i=1

r
i=1

N2- ∑ (xi+* x+i)
r
i=1

 

 

Where 

r = number of rows in the error matrix 

xii = number of observations in row i and column i (major diagonal) 

xi+ = total amount of observations in row i 

x+i = total of observations in column i 

N = total number of observations included in matrix 

Kappa coefficient values range from 0 to 1, whereas 0 represents chance agreement and 1 observed 

agreement. 

The producer’s accuracy was obtained by dividing the amount of correctly classified pixels of each 

class by the amount of all reference pixels of the same class and indicates how well the reference is 

classified. The user’s accuracy is a metric of reliability and indicates the probability that a classified pixel 

represents this class in reality. It is calculated by dividing the amount of correctly classified pixels of each 

class by the amount of all classified pixels of the same class. Besides these accuracy metrics, omission and 

commission errors can be derived from the confusion matrix. The omission error represents the false 
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negatives that means the amount of pixels that were excluded from a class, even though they would 

belong to this class. The commission error is a metric of the amount of false positives, which refers to 

pixels being falsely included in a class. Producer’s and user’s accuracy, as well as omission and 

commission errors range from 0 to 100 %.  

Figure 4-2 shows the entire process of index-based classifications. 

 

4.2.3 Pixel-based classification 

Pixel-based classification (PIX) is considered to be a single-source-multi-band classification. Similar 

to the index-based classification, Sentinel-2 constitutes the single source, Sentinel-2 bands 2, 3, 4, 5, 6, 7, 

8, 8A, 11, 12 represent the multi-spectral bands. Different bands can partially contain the same 

information, which means that multi-spectral analysis faces sometimes the problem of inter-band 

correlation. In order to reduce redundancy within the data and to improve computation performance 

(Lillesand et al. 2008), preliminary Principal Component Analysis (PCA) has been performed within 

QGIS Desktop 3.4. As the PCA calculation requires stacked multi-spectral bands, a raster stack of the 

bands was created at first. PCA, with 10 principal components was carried out with the raster stack. All 

components are hold in one band as a PCA stack. The PCA analysis reveals that the first three components 

cover already > 96 % of the entire variance among 10 multi-spectral bands. Therefore, the three 

components are extracted from the PCA stack and stored in separate raster layers for further analysis. 

Subsequent classification was performed within ENVI 5.3. For the pixel-based classifications, the 

first three principal components as well as the three ratio bands (NDVI, CMI, FMI) were included in the 

classification process (Figure 4-4). Preliminary, these 6 raster images were stacked together. Semi-

Figure 4-2: Overview of all steps in the index-based classification. Input and Output are shown in rounded cells. IND refers to the 

index-based classification output. 
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automatic classification requires training samples. Within the ENVI environment, training is performed by 

creating Regions of Interest (ROI), which represent a training set composed of polygons assigned to a 

specific class. At first, polygon geometries were collected that represent the ROIs. For all 6 land use 

classes, which refer to 6 ROIs, a minimum of 20 training samples were created. Detailed information 

about the training samples can be found in the appendix (Table 8-4). Increased training was performed for 

land use classes, which were considered to be more dominant within the imagery. For Hamersley mine, 

only 5 land use classes could be detected within the satellite imagery. Specific band combinations were set 

in order to support the training process by displaying either the principal components or the ratio images. 

The machine-learning algorithm Support 

Vector Machine (SVM), which outperforms 

other algorithms, appears to be suitable for a 

large variety of application fields and 

sensors and requires only a small amount of 

training samples (Whyte et al. 2018). 

Therefore, the SVM algorithm was chosen 

as classifier. The base of this algorithm is a 

particular training dataset, in this case the 

ROIs that contain all the training polygons, 

which were assigned to the corresponding 

classes. Training samples are separated by 

fitting a hyperplane between the training 

samples in a way that the samples are 

separate most accurately that means the 

margin in between the samples is largest 

(Figure 4-3). The samples being closest to 

the hyperplane are considered to be the support vectors. Classification that means deciding to which class 

pixels belong, depends thus on the side of the hyperplane where pixels are located (Ma et al. 2017b).  

Training and subsequent supervised classification was carried out for all four study sites. Subsequent 

post-processing was conducted by sieving and majority analysis. Sieving was performed on the classified 

image in order to face the problem of isolated pixels. Thereby, isolated pixels are integrated to the class 

unclassified as soon as the surrounding pixels all have the same class. The amount of surrounding pixels 

being considered in this sieving process can be either 4 or 8. For this study, a consideration of 8 

surrounding pixels has been chosen. In this case, the central pixel is assigned to the class unclassified as 

soon as the 8 surrounding pixels belong to the same class. 

Subsequently, a majority analysis was performed for the class unclassified in order to assign these 

unclassified pixels to the majority class of the pixels given in a specific kernel. For this study, majority 

analysis was conducted with a 3 x 3 kernel size window. 

In order to compute the area of each mine in m
2
 and km

2
, class statistics were calculated by deriving 

the pixel amount of each class. Multiplied by the spatial resolution of the classification image, which is 

10 m, the area of each class and thus the area of the mine in m
2
 and km

2
 were computed. 

Figure 4-3: Concept of Support Vector Machine algorithm. x1 and x2 are 

referred to training samples of class A and class B respectively. H1 and 

H2 represent the marginal hyperplanes delimiting class A and B. The 

margin in between H1 and H2 is defined as 
2

𝐼𝐼𝑤𝐼𝐼
 , where w represents the 

weight vector. The optimal hyperplane in between H1 and H2 is defined 

as w*x+b=0, where b is referred to the bias; source: García-Gonzalo 

(2016). 
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For evaluation, a confusion matrix was generated in the same way as explained before in chapter 

4.2.3. Thereby, the classification is compared to the reference dataset for pixel-based and object-based 

classifications that was presented in chapter 3.2.3.  

 

4.2.4 Object-based classification 

Object-based classifications (OBIA) are considered to be the multi-source-multi-band classifications 

within this study, as several datasets from different sources and accordingly several bands are used within 

this classification. 

Similar to pixel-based classifications, the analysis of object-based classifications was performed 

within the software ENVI 5.3. First of all, a layer stack of the bands the classification shall be performed 

on is required. The three principal components that are already stacked together were loaded as input 

image. Example-based feature extraction in ENVI enables the integration of additional datasets that 

support segmentation, training and classification. In order to make use of this potential, the three ratio 

images (NDVI, FMI, and CMI), the pre-processed Aster GDEM and the preprocessed two SAR images 

from Sentinel-1 were loaded as ancillary data (Figure 4-5). Contrary to pixel-based classification, where 

Figure 4-4: Overview of all steps of pixel-based classifications. Input and Output are shown in rounded cells. PCA refers to 

principal component analysis, SVM refers to support vector machine algorithm and PIX refers to the pixel-based classification 

output. 
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classification is based on pixel-level only, object-based classification derives segments first and then 

classifies the segments (Lillesand et al. 2008). Segmentation is the first step in the example-based feature 

extraction workflow. Segmentation partitions the input image into segments, which ideally represent real 

world objects. By grouping neighboring pixels that have the same spectral, textural and spatial attributes, 

pixels were aggregated to segments. A detailed list of the attributes is given in the appendix (Table 8-6; 

Table 8-7; Table 8-8). Segmentation is performed on the three principal component bands with the edge 

algorithm and a scale factor of 10. The scale parameter is a decisive factor within segmentation, because it 

defines the amount of segments being created. The higher the scale factor, the more segments are created, 

resulting thus in smaller segments. As for this case mine features might vary in extent and might even 

contain small features, a scale factor of 10 was chosen. Contrary to the intensity algorithm, the edge 

algorithm is suitable for segmenting objects that have sharp edges instead of gradual transitions, as it is the 

case for example for elevation. As mines are expected to have rather sharp edges than gradual transitions, 

the edge algorithm was selected for this study. Subsequent merging was performed with the full Lambda 

Schedule algorithm on a merge level of 60 in order to merge adjacent segments together that contain the 

same spectral characteristics. Full lambda schedule is a merge algorithm, merging small segments within 

over-segmented areas, such as clouds, together. The high scale factor has been chosen in order to 

aggregate segments in over segmented areas, such as vegetated areas, clouds, shadow etc. Texture 

attributes are calculated within a kernel, which is a moving window. This window of specific size moves 

all over the image thereby computing the texture attributes such as texture range, texture mean, texture 

variance and texture entropy. A detailed list of all texture attributes is given in the appendix (Table 8-7). 

For this study, the texture kernel size was set to 3, because a small moving window size is required for the 

segmentation of small areas with higher variance, such as mine areas. A moving box of 3 x 3 pixels is 

centered over each pixel, computes the texture attributes and moves further over the image.  

Once segmentation was performed, training data was collected as for the pixel-based classification. 

Similar to the previous classification method, a minimum amount of 20 training sets for each class was 

collected by creating polygons and assigning them to the corresponding land use classes. Detailed 

information about the training samples is given in the appendix (Table 8-5). The option of previewing the 

temporary classification was considered helpful in order to find out if the amount of training samples for 

each class is sufficient. Band combinations were used in order to recognize the mine features in a better 

way, e.g. by displaying only the ratio images or the elevation model. Subsequently, attributes being 

considered in the classification process and the bands they should be derived from were chosen. The three 

principal components as well as all additional data, which are the ratio images, the elevation model and 

the SAR images, were chosen as selected bands from which all attributes are derived from. A total of 4 

spectral attributes, 4 texture attributes and 14 spatial attributes are the attributes the classification is based 

on. Detailed information about these attributes can be found in the appendix (Table 8-6; Table 8-7; Table 

8-8). As for the pixel-based classification, the SVM algorithm is chosen for the classification of the input 

image with all default settings. 

As for the other classification methods, post-processing was conducted by sieving and majority 

analysis, whereas all parameter settings of the pixel-based classification post-processing were adopted. In 
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order to derive area values, class statistics were computed. The amount of pixels of each class was 

multiplied by the spatial size of the dataset, which is 10 m, for obtaining area values in m
2
 and km

2
.  

For evaluation, classifications were cross-checked with the reference dataset for pixel-based and 

object-based classifications (chapter 3.2.3) in a confusion matrix. Accuracy metrics were computed in the 

same way as in chapter 4.2.3. 

 

4.3 Crowdsourcing 

A crowdsourcing project was launched, where volunteers were asked to digitize the delineation of the 

four open-pit mines manually. For the crowdsourcing project, a heterogeneous group of people was 

included with different professional backgrounds, such as environmental scientists, geo-information 

scientists and volunteers not familiar with environmental research or geo-informatics. Volunteers received 

detailed instructions (Figure 8-2; Figure 8-3), including information about this study, the scope of 

digitization, features indicating a potential mine from LaJeunesse Connette et al. (2016) which should be 

included into the digitization and a precise explanation of the digitization process. Together with the 

instructions, volunteers received a Sentinel-2 RGB and an empty Shapefile of each study site, ready for 

digitization. Digitization was performed within QGIS software. Volunteers had to start an edit session and 

Figure 4-5: All steps of object-based classifications. Input and Output (OBIA represents the object-based classification output) 

are shown in rounded cells. PCA refers to principal component analysis, SVM refers to support vector machine algorithm. 
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draw a polygon, which represents the delineation of the open-pit mine. Thereby, volunteers were asked to 

create only one polygon for each open-pit mine and assign the value 1 as id when saving. Finally, 

volunteers were asked to upload their final product, which is the digitized feature, upon a platform. The 

project was run for 10 days.  

A total of 18 volunteers digitized the four mines, thus resulting in a total of 72 delineations. 

Subsequent post-processing was required. All following steps were performed within QGIS Desktop 3.4. 

At first, data integrity was verified in order to guarantee that all delineations were saved correctly, that the 

amount of digitized polygons was uniform and that polygons were assigned the similar id. This step was 

essential for the further analysis.  

All post-processed polygons of each study site were overlaid. With the field calculator, a new area 

field was added to the attribute table of each polygon. The field calculator holds a function $area, which 

was subsequently applied to calculate the area in m
2
 of the polygon and to store this value within the new 

column. This enabled the selection of the smallest (Min polygon) and the largest polygon (Max polygon). 

Following, all delineations which are hold in a vector model, had to be converted into a raster model 

for subsequent comparison (Figure 4-6). Rasterization was conducted by converting the vectorized 

polygon into a rasterized polygon based on the id. All pixels being covered by the previous vectorized 

polygons were assigned the value 1, as this is the id representing mine for all digitized polygons. For the 

rasterization process, georeferenced units were chosen as output raster size units, a horizontal and vertical 

resolution of 10 m and the extent values of each study site, presented in chapter 3.2. The obtained raster 

layers were used for subsequent analyses. 

Further raster computations required that no no-data values are contained in the data. Therefore, the 

function r.null of Grass GIS was applied in order to assign the value 0 to all pixels that have a no-data 

value. This step resulted in a raster layer containing the mine, which is represented by pixels holding the 

value 1, and the surroundings of the mine, which are represented by pixels holding the value 0. 

With the raster calculator, a frequency distribution was calculated by adding up all raster layers. The 

frequency distribution raster layer represents thus the frequency count, which is the amount of pixels 

being included into the digitization by volunteers. This means a pixel value of 8 indicates that 8 volunteers 

included this pixel into their mine digitization. 

For further comparison with the classifications, the pixels being assigned to the mine by the majority 

of the volunteers were extracted. All pixels that were selected by ≥ 9 volunteers are referred to represent 

the majority. Pixels were extracted by saving all pixels of the frequency distribution layer that have a 

value ≥ 9 into a new raster layer. This new polygon dataset is considered to be the majority polygon 

(MAJ)  

The area of the majority polygon was derived by computing class statistics within ENVI as 

previously described. Similar to the classifications, the amount of pixels of each class was calculated. In 

this case there are two classes, the mine, represented by class 1 and the surroundings represented by class 

0. 
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For evaluation, an accuracy assessment was conducted whereby the majority polygon of each study 

site was compared to the reference dataset. Similar to previous accuracy assessments carried out within 

this study, accuracy metrics were derived such as overall accuracy, Kappa coefficient, and producer’s and 

user’s accuracy and omission and commission errors. 

 

4.4 Comparison metric 

In order to compare the classifications to crowdsourcing, the comparison metric Intersection over 

Union (IoU) was chosen. IoU is a ratio describing how similar two objects, in this case two mine polygons 

are. This comparison metric is suitable for this study, as it provides information about similarities and 

discrepancies between classifications and crowdsourcing. It is calculated by dividing the area of spatial 

intersection/overlap by the area of spatial union of the two polygons being compared (Figure 4-7) 

(Everingham and Winn 2012; Everingham et al. 2010; Jaccard 1901). IoU ranges from 0 to 1. The higher 

the value, the more similar the two objects are to one other.  

For this study, the polygon of the class mine of each classification was compared to the 

corresponding majority polygon, which was generated by crowdsourcing. As classification results 

comprise all classes in a raster image, but only the class mine is required for IoU computation, all pixels 

being classified as mine needed to be extracted and stored in a separate raster layer. This extraction was 

done within QGIS. An overview of the 12 conducted comparisons is given in Table 4-3. 

As previously mentioned, IoU requires the area of spatial intersection and the area of spatial union of 

the two polygons being compared. The area of spatial intersection was calculated by extracting all pixels 

that have the value 1 in the classification and the majority polygon, and storing them in a new raster layer. 

The area, which has been assigned to a mine by the classification and the majority polygon, is therefore 

represented by the intersection layer. For the area of spatial union, all pixels that have the value 1 in the 

classification or the majority polygon were extracted and stored in a new raster layer. Contrary to the 

Figure 4-6: Overview of the crowdsourcing process. MAJ refers here to the majority polygon. 
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intersection layer, the union layer is thus a representation of the area which has been assigned to a mine by 

the classification or the majority polygon. 

For each of the 12 comparisons, the area of spatial intersection and the area of spatial union were 

computed.  

In order to get the amount of intersection and union pixels of the intersection and union layers, the 

amount of pixels that were assigned the value 1 was derived. This amount was multiplied by the spatial 

resolution of the imagery, which is 10 m, in order to get spatial area values in m
2
 and km

2
.  

IoU for each of the 12 comparisons (Table 4-3) was computed by the following formula V):  

V) 
)(km union spatial ofArea 

)(km onintersecti spatial ofArea 
over Union onIntersecti

2

2   ≡  

 

 

Figure 4-7: Concept of Intersection over Union (IoU). For calculating IoU, the area of 

spatial intersection and union between MAJ (majority polygon) and IND (Index-based 

classification), PIX (Pixel-based classification and OBIA (Object-based classification) has 

been computed. 
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  Table 4-3: Classification-Majority polygon comparison. For each study 

site, each classification is compared to the majority polygon. 

 Conducted Comparisons 

Grasberg mine 

Index-based classification & majority polygon 

Pixel-based classification & majority polygon 

Object-based classification & majority polygon 

Hamersley mine 

Index-based classification & majority polygon 

Pixel-based classification & majority polygon 

Object-based classification & majority polygon 

Highland mine 

Index-based classification & majority polygon 

Pixel-based classification & majority polygon 

Object-based classification & majority polygon 

Mariana mine 

Index-based classification & majority polygon 

Pixel-based classification & majority polygon 

Object-based classification & majority polygon 
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5 Results  

In this study, the area being subject to open-pit mining was derived using three different 

classification methods and by digitizing within a crowdsourcing project. In the following, results of the 

different classification approaches and the crowdsourcing project are presented individually (chapters 5.1 

and 5.2). In chapter 5.3, results of each method are compared to one another in terms of visual 

interpretation, area calculation and accuracy. 

 

5.1 Classifications 

The following figures (Figure 5-1; Figure 5-2; Figure 5-3 and Figure 5-4) show the results of all 

classifications of each study site, which will be explained subsequently. 
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Figure 5-1: Sentinel-2 RGB and index-based (IND), pixel-based (PIX) and object-based (OBIA) classification of 

Grasberg mine. Visual interpretation reveals that the class mine covers the same area within all three 

classifications; contains modified Copernicus Sentinel data (2018) and modified Aster GDEM v2 (2011). 
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Figure 5-2: Sentinel-2 RGB and index-based (IND), pixel-based (PIX) and object-based (OBIA) classification of 

Hamersley mine. In the pixel-based classification, a clear dominance of the class sparse vegetation compared to 

the other classifications is visible; contains modified Copernicus Sentinel data (2018) and modified Aster GDEM 

v2 (2011). 
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Figure 5-3: Sentinel-2 RGB and index-based (IND), pixel-based (PIX) and object-based (OBIA) classification of 

Highland mine. In the object-based classification, a clear dominance of the class shadow compared to the other 

classifications is visible; contains modified Copernicus Sentinel data (2018) and modified Aster GDEM v2 

(2011). 
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Figure 5-4: Sentinel-2 RGB and index-based (IND), pixel-based (PIX) and object-based (OBIA) classification of 

Mariana mine. In the pixel-based classification, bare area is more abundant than in the other classifications; 

contains modified Copernicus Sentinel data (2018) and modified Aster GDEM v2 (2011). 
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5.1.1 Visual interpretation 

Figure 5-1 to Figure 5-4 show the results of the three classification methods – index-based, pixel-

based an object-based – for each study site. When visually comparing all three classifications of each 

study site, the classifications of Grasberg mine appear to be very similar (Figure 5-1), whereas for the 

other study sites differences between the pixel-based and the object-based classifications occur. For 

Hamersley mine (Figure 5-3), a dominance of sparse vegetation within the pixel-based classification and 

an abundance of shadow in the object-based classification are observable. Regarding Highland mine, for 

the object-based classification (Figure 5-2), a dominance of shadow and for Mariana mine (Figure 5-4), a 

dominance of bare area for the pixel-based classification was identified. This first visual impression 

includes the consideration of all classes. 

Focusing only on the class mine itself, a similar impression among all classifications of each study 

site was found. Meaning, when comparing the classifications among each other, which is referred to the 

intra-mine comparison, mine appears to cover the same area within each classification. This phenomenon 

of same spatial extent of the class mine can be observed in Figure 5-1, where mine is represented similarly 

within each classification. This second visual impression is especially true for Grasberg mine and 

Highland mine. For Hamersley mine (Figure 5-3), a slight extension of the class mine in the northern part 

of the AOI is visible in the pixel-based and object-based classification. Regarding Mariana mine, an 

extension of the class mine within the object-based classification was detected, as shown in Figure 5-4, 

where mine extents further north, east and south in the object-based classification.  

With respect to an inter-mine comparison, which means comparing study sites between each other, 

the largest variations among classifications were observed for Hamersley mine. For this study site, the 

class mine, as well as other land use classes, vary stronger in extent among the three classifications.  

Furthermore, it has been observed that in accordance with LaJeunesse Connette et al. (2016), all 

features indicating a potential mine such as bare ground, artificial pools, piles of rock, roads, buildings and 

pits are comprised within the class mine. In the RGB of Grasberg mine (Figure 5-5) numbers from 1 to 6 

exemplify the features indicating a potential mine from LaJeunesse Connette et al. (2016). The same 

features are all covered by the class mine within the pixel-based classification. This observation is valid 

for all classification methods.  
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Thus, the class mine comprises a wide range of mine features, but some roads, buildings and some 

water bodies were included in the class mine even though they do not belong to this class. For Highland 

mine, some lakes west and east of the mine were classified as a mine, even though their irregular shape 

indicates that these water bodies represent natural lakes instead of artificial pools (Figure 5-6). The same 

difficulty regarding the assignment of lakes to the class mine occurs within Mariana mine. 

Another visual difference between the three classifications of each study site is that when having a 

closer look into the index-based and pixel-based classifications the so-called salt & pepper effect becomes 

visible (Figure 5-7). Isolated pixels all over the AOI were classified as mine. On the contrary, when 

zooming into the object-based classification, more homogeneous entities and thus less isolated classified 

pixels are visible.  

 

  

1

2

3
6

4

5

1

2

3
6

4

5

Figure 5-5: Features indicating a potential mine within the RGB (left) and pixel-based classification (right) of Grasberg mine. 

[1]-Bare Area; [2]-Artificial Pools; [3]-Piles of rock; [4]-Roads; [5] Buildings; [6]-Pit; contains modified Copernicus Sentinel 

data (2018). 
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Figure 5-6: False color image (4-5-6) and object-based classification of Highland mine. Numbers from 1-3 indicate water bodies 

that represent natural lakes, but have been classified as mine; contains modified Copernicus Sentinel data (2018) and modified 

Aster GDEM v2 (2011). 
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5.1.2 Area calculation 

When computing class statistics for all classifications, the amount of pixels of each class can be derived. 

The pixel amount was multiplied with the pixel size (10 x 10 m) in order to derive area values in m
2 

and 

subsequently divided by the factor 100,000 in order to obtain area values in km
2
. Contrary to the 

previously presented visual impression, strong differences in area values between the classifications were 

found. Figure 5-8 (left) shows that the index-based classifications result in the smallest area being 

classified as mine, whereas in most cases object-based classification results in the largest mine area. With 

8.59 km
2
, the index-based classification of Grasberg mine has a smaller extent of the class mine than the 

object-based classification with 22.78 km
2
 (Table 5-1). Especially for Mariana mine there are strong 

differences between the index-based classification with 29.33 km
2
 and the object-based classification with 

82.01 km
2
. The same pattern is also true when comparing differences between classifications and study 

sites in terms of the relative area (Figure 5-8, right). Differences between the study sites were determined 

when comparing the mean area values of each study site (Table 5-1). Highland valley mine represents the 

largest mine with 65.97 km
2
, followed by Mariana mine with 54.08 km

2
 and Hamersley mine with 

43.15 km
2
. Grasberg mine is the smallest mine covering a mean area of 14.92 km

2
. 

Table 5-1: Overview of the area of the mine polygon of each classification and the mean area of each study site. 

  Grasberg mine Hamersley mine Highland mine Mariana mine 

 
IND PIX OBIA IND PIX OBIA IND PIX OBIA IND PIX OBIA 

Area of mine 

[km
2
] 8.59 13.39 22.78 19.4 54.78 55.25 51.17 78.57 68.17 29.33 50.88 82.01 

Area of mine 

relative to the 

entire study site 

[%] 
5.67 8.84 15.04 4.72 13.34 13.47 7.93 12.18 10.58 3.93 6.82 11.00 

Mean area of 

mine of each 

study site [km
2
] 

14.92 
  

43.15 
  

65.97 
  

54.08 
  

Figure 5-7: Evidence of salt & pepper effect within the index-based and pixel-based classifications as indicated by grey isolated 

mine pixels; contains modified Copernicus Sentinel data (2018) and modified Aster GDEM v2 (2011). 
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5.1.3 Accuracy Assessment  

Comparing classification results of the class mine 

on an intra-mine level with the reference dataset in a 

confusion matrix, an overall accuracy of ≥ 77.41 % 

was achieved for all classifications. Regardless of the 

classification results of Hamersley_pix (with the 

lowest accuracy), classification accuracy was overall 

high with ≥ 85.05 %. Overall accuracy ranges from 

77.41 % (Hamersley_pix) up to 97.89 % 

(Mariana_obia), with slightly higher overall accuracy 

values for index-based classifications (Table 5-2). 

When comparing inter-mine accuracy, Hamersley 

mine achieved the lowest and Mariana mine the highest overall accuracy values (Figure 5-9).  

Similarly, a high Kappa coefficient of ≥ 0.54 for all classifications and a Kappa coefficient value 

≥ 0.8 for all classifications except for Grasberg_ind (0.56), Hamersley_ind (0.54) and Hamersley_pix 

(0.68) demonstrates high observed agreement between classifications and reference (Table 5-2). 

According to the explanations of the Kappa coefficient value in chapter 4.2.2, this means that most 

classifications are 80 % better than random pixel assignment, given the fact that a Kappa coefficient value 

of 0.8 refers to 80 % accuracy. Highest Kappa coefficient values were found for Mariana_pix (0.96) and 

Mariana_obia (0.97). A correlation between Kappa values and classification methods was not observed. 

When comparing on an inter-mine level, Hamersley mine has, similar to the consideration of overall 

accuracy, the lowest Kappa coefficient values. 

The producer’s accuracy demonstrates how well the reference is classified, in other words which 

percentage of the reference has been covered by the classification. For all classifications, producer’s 

accuracy ≥ 44.12 % (Figure 5-10, left) was calculated. Similar to previous results, a low producer’s 

accuracy of 47.89 % for Grasberg_ind and 44.12 % for Hamersley_ind was determined, which means that 

for these classifications < 50 % of the mine in the reference dataset was classified as mine. Contrary to all 

other classifications, > 70 % of the class mine in the reference dataset was classified as mine within the 
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Figure 5-8: Total area calculation for all classifications (left) and relative area calculation for all classifications (right). 

Classifications of each mine are represented in a specific color. 
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Figure 5-9: Overall accuracy of all classifications. 
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classifications. Regarding intra-mine comparison, the lowest producer’s accuracy values occur within 

index-based classifications. On an inter-mine level, especially Highland and Mariana mine achieve very 

high producer’s accuracies of > 90 %, whereas producer’s accuracy is lowest for Hamersley 

classifications.  

The user’s accuracy is a metric of reliability for the user and demonstrates how confident a user can 

be that a classified area represents this specific land use and land cover type in reality. For all 

classifications, user’s accuracy is ≥ 77.47 % (Figure 5-10, right). The user can thus be sure that > 70 % of 

the classified mine represents mine in reality. As shown in Table 5-2, Grasberg _ind has the lowest user’s 

accuracy values with 77.47 %. Regarding intra-mine comparison, no correlation between classification 

methods and user’s accuracy can be detected, but on an inter-mine level Hamersley mine, Highland mine 

and Mariana mine have highest user’s accuracies, contrary to Grasberg mine.  

Further accuracy metrics are the omission and commission errors, also referred to as the type 1 error 

and type 2 error, respectively. The omission error represents the percentage of excluded mine pixels, the 

false negatives. For all classifications, the omission error is ≤ 55.88 %. Considering the intra-mine level, 

the index-based classifications appear to have the highest amount of missing mine pixels among the 

classifications as shown in Figure 5-11 (left) and Table 5-2, where Grasberg_ind and Hamersley_ind have 

a type 1 error of 52.11 % and 55.88 %, respectively. On an inter-mine level, Highland mine and Mariana 

mine have the lowest omission error for all classifications, contrary to Grasberg and Hamersley mine 

(Figure 5-11, left). Further analysis of the confusion matrix of pixel-based and object-based classifications 

show into which class the false negatives were included as well as the percentage of these excluded pixels. 

Primarily, pixels of the class bare area should have been included into the class mine. Detailed 

information about this further investigation of false negatives is given in the appendix (Table 8-2). Using 

the classification Hamerley_pix as an example, another 22.12 % of the classified bare area should have 

been included into the class mine. Figure 5-12 shows evidence of this type 1 error because here classified 

bare area (left) represents mine in reality.  
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Figure 5-10: Producer’s (left) and user’s (right) accuracy for each classification. 
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For all classifications, the commission error is ≤ 22.53 %. Similar to the omission error, the 

commission error of the classifications is highest for the index-based classifications, when comparing on 

an intra-mine level. That means the amount of false positives, in other words the amount of pixels being 

falsely included into the class mine, is highest for index-based classifications (Figure 5-11, right). 

Grasberg_ind and Highland_ind have a type 2 error of 22.53 % and 11.04 %, respectively. Among study 

sites, Grasberg mine is the mine with the highest amount of falsely integrated pixels. Further investigation 

of the confusion matrix reveals that for Grasberg mine, in most cases pixels that belong to the class bare 

area were falsely included into the class mine. For Hamersley mine, pixels of the class bare area and 

sparse vegetation have been falsely included. Evidence is given in Figure 5-13. The sparse vegetation 

along humid areas (left) was classified as mine (right), as indicated by grey color in the classification 

(right). Similar to the error of omission, detailed information about the percentage of commission error is 

given in the appendix (Table 8-3). 

  

Figure 5-12: Classified bare area (right) of the object-based classification of Mariana mine represents mine in reality (left); 

contains modified Copernicus Sentinel data (2018). 
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Figure 5-11: False negatives (left) and false positives (right) of the class mine within all classifications. 
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With respect to correctly classified mine pixels, − the so-called true positives −, there are strong 

deviations between classifications (Figure 5-14). That means the amount of the correctly classified mine 

pixels is dependent on the classification method. For all mines, the index-based classifications have the 

lowest amount of true positives and object-based classification the highest. Grasberg_ind accounts for 

636 true positives, whereas Grasberg_obia contains 2139 correctly classified mine pixels. When 

comparing the true positives to all pixels that have been classified as mine, − the so called totals −, within 

the area of the reference dataset, the same pattern becomes visible. The difference reveals that there is no 

tendency recognizable between all classified and correctly classified mine pixels. For some study sites, the 

strongest difference was detected within index-based classification, sometimes within the other 

classifications. Especially for Grasberg mine, differences between true positives and totals are significant 

for all classifications. When comparing on an inter-mine level, Highland mine seems to have the highest 

amount of correctly classified and total mine pixels, which leads to the assumption that this mine is the 

largest mine, contrary to Grasberg mine, which is referred to be the smallest mine. 
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Figure 5-14: True positives of all classifications. 
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Figure 5-13: Sparse vegetation in the northern part of Hamersley mine (left) is classified as mine (right) within the pixel-based 

classification; contains modified Copernicus Sentinel data (2018). 
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Table 5-2: Overview of accuracy metrics for the three classifications (IND refers to index-based classifications, PIX refers to 

pixel-based classifications and OBIA represents object-based classifications) of each study site.  

  
Grasberg mine Hamersley mine Highland mine Mariana mine 

 IND PIX OBIA IND PIX OBIA IND PIX OBIA IND PIX OBIA 
Overall accuracy 

[%] 94.18 93.80 90.31 85.95 77.41 85.05 97.41 92.80 88.37 92.17 97.73 97.01 

Kappa Coefficient 0.56 0.92 0.88 0.54 0.68 0.80 0.92 0.90 0.83 0.84 0.88 0.96 
Producer’s 

accuracy [%] 47.89 84.51 90.29 44.12 71.53 74.40 98.52 99.03 97.22 83.01 80.89 91.22 
User’s accuracy 

[%] 77.47 92.07 81.21 99.63 90.94 98.28 97.41 92.80 88.37 99.81 97.73 97.01 

Omission Error [%] 52.11 15.49 9.71 55.88 28.47 25.60 1.48 0.97 2.78 19.11 8.78 4.07 
Commission Error 

[%] 22.53 7.93 18.79 0.37 9.06 1.72 11.04 1.13 0.41 0.11 1.30 2.13 
True positives 

[pixels] 636 1904 2139 1881 4046 4562 4457 10707 11700 1875 4770 6532 

Totals [pixels] 821 2068 2634 1888 4449 4642 5010 10829 11748 1877 4833 6674 
Difference between 

totals and true 

positives 
185 164 495 7 403 80 553 122 48 2 63 142 
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Figure 5-15: All classified mine pixels within the area of the 

reference dataset. 
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Figure 5-16: Difference between all classified mine pixels 

and true positives. 
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5.2 Crowdsourcing 

5.2.1 Visual interpretation 

All 18 delineations of each mine were 

compared to each other and visually 

interpreted. The first impression is that all 

digitized polygons are in very close 

proximity to the mine and not in other parts 

of the satellite imagery. Nevertheless, 

differences regarding the extent of polygons 

occur, shown in Figure 5-17.  

Comparing the smallest (Min polygon) 

and the largest (Max polygon) polygon of all 

study sites to each other, very strong differences were found for Grasberg mine and Hamersley mine. 

Evidence is given in Figure 5-18 and Figure 5-19, where a strong difference in extent between the Min 

polygon and the Max polygon was observed. For all study sites (Figure 5-18; Figure 5-19; Figure 5-20; 

Figure 5-21), the Min polygon always refers to the pit itself, whereas the Max polygon contains several 

mine features and is thus larger in extent.  

In the following, the results of the crowdsourcing analyses including among others the Max and Min 

polygons, will be presented in Figure 5-18, Figure 5-19, Figure 5-20 and Figure 5-21. 

 

 

  

Figure 5-17: Overview of all digitizations of Grasberg mine. Digitized 

polygons are not entirely congruent; contains modified Copernicus 

Sentinel data (2018). 
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Figure 5-18: Sentinel-2 RGB, Maximum and Minimum polygon, frequency of selection and majority polygon for 

Grasberg mine; contains modified Copernicus Sentinel data (2018). 
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Figure 5-19: Sentinel-2 RGB, Maximum and Minimum polygon, frequency of selection and majority polygon for 

Hamersley mine; contains modified Copernicus Sentinel data (2018). 
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Figure 5-20: Sentinel-2 RGB, Maximum and Minimum polygon, frequency of selection and majority polygon for 

Highland mine; contains modified Copernicus Sentinel data (2018). 
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Figure 5-21: Sentinel-2 RGB, Maximum and Minimum polygon, frequency of selection and majority polygon for 

Mariana mine; contains modified Copernicus Sentinel data (2018). 
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The frequency distribution within Figure 5-18 to Figure 5-21 shows how often a pixel was 

considered to represent mine by the volunteers. Red color indicates pixels that were included in the 

digitized polygon only by a few volunteers, whereas blue color represents a high frequency of selection. 

Blue color always reflects the pit itself, indicating that for all study sites 18 people included the pit within 

their digitization. Regarding the red color and thus the low agreement, only < 4 volunteers digitized the 

mine in a progressive way. Comparing the frequency distributions on an inter-mine level, a dominance of 

red color for Grasberg mine (Figure 5-18) and Hamersley mine (Figure 5-19) is visible, in contrast to the 

other study sites. The red color indicates that only a few volunteers assigned this area to the mine, but the 

wide extent shows that these volunteers included a large area into the digitized polygon. For Highland 

mine (Figure 5-20) and Mariana mine (Figure 5-21), red color, indicating a low frequency of selection was 

recognized, but less dominant than for Grasberg mine and Hamersley mine, which indicates that 

agreement among volunteers was higher. Furthermore, regarding Mariana’s frequency distribution, 

artefacts were observed, as indicated in Figure 5-22.  

For accuracy assessment and further comparison of classifications, the majority polygon (Figure 5-18 

to Figure 5-21) was derived. It includes all pixels that were assigned to the mine by the majority of the 

crowd that means by ≥ 9 volunteers. For all study sites, the majority polygon is a multi-polygon as it is 

composed of several polygons. The area in between the polygons does thus not belong to the mine. The 

majority polygon represents the pit itself, but not in a conservative way as the Min polygon, because it 

contains further mine features.  

1

Figure 5-22: Artefact within the digitization of Mariana mine, indicated by [1]; 

contains modified Copernicus Sentinel data (2018). 
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With respect to the features indicating a potential mine from LaJeunesse Connette et al. (2016), all 

features such as bare ground, artificial pools, piles of rock, roads, buildings and pits are comprised within 

the majority polygon as Figure 5-23 demonstrates. Nevertheless, not all features indicating a potential 

mine within the entire imagery are covered by the majority polygon (Figure 5-24). 

 

5.2.2 Area calculation 

After computing class statistics for the majority polygons, the entire amount of pixels within the 

majority polygons was derived. This amount of pixels was further multiplied by the pixel size in order to 

obtain area values of the majority polygons. Area values of the class statistics represent the entire area of 
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Figure 5-23: Features indicating a potential mine within the RGB (left) and majority polygon (right) of Grasberg mine. [1]-Bare 

Area; [2]-Artificial Pools; [3]-Piles of rock; [4]-Roads; [5] Buildings; [6]-Pit; contains modified Copernicus Sentinel data 

(2018). 
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Figure 5-24: Sentinel-2 RGB (left) and majority polygon (right) of Highland mine. Numbers from 1-2 indicate roads. [1] points to 

a road that is covered by the majority polygon, whereas [2] indicates a road that has not been covered by the majority polygon; 

contains modified Copernicus Sentinel data (2018). 
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the majority polygons. Figure 5-25 (left) and Table 5-3 clearly show that Grasberg mine is the smallest 

mine covering an area of 17.34 km
2
, followed by Hamersley mine with 37.67 km

2
 and Mariana mine with 

a spatial extent of 56.4 km
2
. Highland mine is the largest mine with 82.27 km

2
. Figure 5-25 (right) shows 

further the percentage of mine relative to the entire study site, according to crowdsourcing. Grasberg mine 

and Highland mine appear to cover larger parts of the study site than it is the case for Hamersley mine and 

Mariana mine. 

Table 5-3: Area values for all majority polygons. 

  
Grasberg mine Hamersley mine Highland mine Mariana mine 

 MAJ MAJ MAJ MAJ 

Area of mine [km
2
] 17.34 37.67 82.27 56.42 

Area of mine relative to the entire study 

site [%] 11.45 9.17 12.75 7.56 

 

 

5.2.3 Accuracy assessment 

Overall accuracy was computed when comparing 

the majority polygon of each study site with the 

reference dataset within a confusion matrix. For all 

majority polygons an overall accuracy of ≥ 92.17 % 

has been achieved, as shown in Figure 5-26. The 

majority polygon of Grasberg mine has the highest 

overall accuracy with 97.29 % (Table 5-4). Lowest 

overall accuracy was achieved for Highland mine with 

92.17 %. 
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Figure 5-26: Overall accuracy for all majority polygons of 

each study site. Concerning the column labelling, the word 

delineation is abbreviated to Del, the following letters 

indicate the study site and 50 % majority refers to the 

majority polygon. 
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Figure 5-25: Area calculation of all majority polygon (left) and area value of each mine relative to the entire study site (right). 

Concerning the column labelling, the word delineation is abbreviated to Del, the following letters indicate the study site and 50 % 

majority refers to the majority polygon. 
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Similar to high overall accuracy, high Kappa coefficient values of ≥ 0.83 for all majority polygons 

indicate observed high agreement between the reference dataset and the majority polygons. Kappa 

coefficient values range from 0.83 for the majority polygon of Mariana mine up to 0.91 for Grasberg 

mine’s majority polygon, which means that again Grasberg mine achieved highest accuracy values.  

As for the different classifications, producer’s and user’s accuracy was calculated. All majority 

polygons have a producer’s accuracy ≥ 74.56 %, which means that ≥ 74.56 % of the mine within the 

reference dataset is covered by the majority polygons (Figure 5-27, left). As for the previous accuracy 

metrics, the majority polygon of Grasberg mine achieved the highest producer’s accuracy with 86.73 %, 

whereas Mariana mine had the lowest producer’s accuracy with 74.56 % (Table 5-4). 

Regarding reliability of the majority polygons, a user’s accuracy ≥ 98.89 % was achieved for all 

majority polygons as shown in Figure 5-27 (right). Grasberg mine’s majority polygon has the highest 

user’s accuracy with 100 %, confirming that a user can be sure that the entire area being covered by the 

majority polygon represents mine in reality. Slightly lower values were obtained for the other study sites, 

with Hamersley mine having the lowest user’s accuracy of 98.89 %. 

The omission error, representing false negatives, is ≤ 25.44 % (Figure 5-28, left) for all majority 

polygons. This type 1 error indicates that less than 25.44 % of the area being not covered by the majority 

polygon belongs to the majority polygon. Omission error values range from 13.27 % for Grasberg mine up 

to 25.44 % for Mariana mine, presented in Table 5-4. 

False positives range from 0.00 % for Grasberg mine up to 1.11 % for Hamersley mine’s majority 

polygon. The commission error is thus ≤ 1.11 % for all study sites indicating that ≤ 1.11 % of the majority 

polygon should not have been included into the majority polygon Figure 5-28 (right).  
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Figure 5-27: Producer’s (left) and user’s (right) accuracy for all majority polygons. Concerning the column labelling, the 

word delineation is abbreviated to Del, the following letters indicate the study site and 50 % majority refers to the 

majority polygon. 
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Given the fact that for the confusion matrix only two classes were available, namely the majority 

polygon itself and the surroundings, no further investigations could be carried out in order to get 

information about the type and percentage of land use and land cover not being included into the majority 

polygon. The same applies for the commission error. Due to its binary character, no further analysis of the 

land use and land cover type and the percentage that was falsely included into the majority polygon, could 

have been deduced.  

With respect to true positives that means correctly classified pixels, the pixel amount varies from 

1954 pixels for the majority polygon of Grasberg mine to up to 8975 pixels for Highland mine, according 

to the study site. When comparing the amount of true positives to the amount of all pixels of the majority 

polygon, differences in pixel amount vary from 0 to 54 pixels (Table 5-4). That means for Hamersley 

mine, there is a difference of 54 pixels between the amounts of correctly included and all included pixels 

of the majority polygon. Regarding Grasberg mine, all pixels belonging to the majority polygon within the 

extent of the reference dataset represent true positives at the same time (Figure 5-29).  
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Figure 5-29: True positives of all classifications. 

Concerning the column labelling, the word delineation is 

abbreviated to Del, the following letters indicate the study 

site and 50 % majority refers to the majority polygon. 
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Figure 5-28: False negatives (left) and false positives (right) for all majority polygons. Concerning the column labelling, 

the word delineation is abbreviated to Del, the following letters indicate the study site and 50 % majority refers to the 

majority polygon. 
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Table 5-4: Overview of all accuracy metrics for the majority polygons (MAJ) derived within the confusion matrix. 

  
Grasberg mine Hamersley mine Highland mine Mariana mine 

 MAJ MAJ MAJ MAJ 

Overall accuracy [%] 97.29 92.84 92.17 95.88 

Kappa Coefficient 0.91 0.85 0.84 0.83 

Producer’s accuracy [%] 86.73 85.4 83.01 74.56 

User’s accuracy [%] 100 98.89 99.81 99.29 

Omission Error [%] 13.27 14.60 16.99 25.44 

Commission Error [%] 0 1.11 0.19 0.71 

True positives [pixels] 1954 4830 8975 3899 

Totals [pixels] 1954 4884 8992 3927 
Difference between totals and true 

positives 0 54 17 28 
  

Figure 5-30: All classified mine pixels covering the 

reference dataset. Concerning the column labelling, the 

word delineation is abbreviated to Del, the following letters 

indicate the study site and 50 % majority refers to the 

majority polygon. 
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Figure 5-31: Difference between all classified and true 

positives. Concerning the column labelling, the word 

delineation is abbreviated to Del, the following letters 

indicate the study site and 50 % majority refers to the 

majority polygon. 
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5.3 Comparison between classifications and crowdsourcing 

5.3.1 Comparison by visual interpretation 

Classifications and majority polygons were first compared visually. This means, all three 

classifications for each mine were compared to the corresponding majority polygon by overlaying these 

two layers. Figure 5-32 shows that when overlaying the index-based classification of Grasberg mine with 

the corresponding majority polygon, classification and majority polygon overlap only partly. Number 2, 

indicates grey colored pixels that represent areas that have been covered by the index-based classification 

and the majority polygon, demonstrating that this area was assigned to the mine class by both methods. 

Number 1 on the contrary, points out areas that were only covered by the index-based classification, 

whereas number 3 indicates pixels only being considered mine by the majority polygon. As a first visual 

impression, it was observed that regarding these two methods, the majority polygon represents a 

homogeneous polygon (number 3), whereas the index-based classification is composed of several 

polygons, sometimes distributed all over the AOI, as number 1 indicates. The area covered by both 

methods (number 2) contains almost the entire index-based classification but not the entire majority 

polygon. Thus, the majority polygon constitutes a larger polygon than the index-based classification.  

Figure 5-32: Overlay of index-based classification upon the majority polygon for the study site Mariana mine. Numbers exemplify 

areas covered only by the classification [1], by the majority polygon [3] or by both methods [2]; contains modified Copernicus 

Sentinel data (2018). 
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When comparing the pixel-based classification to the majority polygon, similar observations were 

made, presented in Figure 5-33. Contrary to the majority polygon that is considered to be homogeneous, 

the pixel-based classification does not represent a uniform shape and is composed of several small 

polygons spread all over the AOI. As for the index-based classification, this salt & pepper effect is visible 

in number 1 and is more dominant within the pixel-based classification than in the index-based 

classification. The area covered by both methods, similarly indicated by number 2, is slightly larger than 

for the comparison between the index-based classification and the majority polygon, whereby the pixel-

based classification is almost entirely embedded within the majority polygon.  

 

Regarding the comparison between the object-based classification and the majority polygon, the 

largest spatial overlap between the two layers compared to the previous comparison was detected as 

indicated by number 2 within Figure 5-34. As for the other classifications, the object-based classification 

is composed of several polygons, but they are larger in extent than in the other classifications. Especially 

in the eastern part of Figure 5-34, the object-based classification is more dominant, indicated by an 

Figure 5-33: Overlay of pixel-based classification upon the majority polygon for the study site Mariana mine. Numbers exemplify 

areas covered only by the classification [1], by the majority polygon [3] or by both methods [2]; contains modified Copernicus 

Sentinel data (2018) and modified Aster GDEM v2 (2011). 
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Figure 5-35: IoU values for all 12 comparisons. 

accumulation of large polygons. These characteristics of each comparison were observed for all four study 

sites. 

 

5.3.2 Comparison by Intersection over Union  

As an overview, IoU values for all comparisons 

are shown in Figure 5-35 and Table 5-5. On an intra-

mine level, lowest IoU values were mostly achieved 

for the comparison of majority polygons & index-

based classifications, higher agreement for the 

comparisons of majority polygons & pixel-based and 

object-based classifications. As an example, lowest 

IoU of 0.35 was achieved by comparing index-based 

classification & majority polygon of Grasberg mine, 

whereas the highest IoU of 0.60 was achieved for the 

comparisons pixel-based classification & majority polygon and object-based classification & majority 

polygon of Highland mine. Considering IoU on an inter-mine level, for Highland valley mine, mean IoU 

Figure 5-34: Overlay of object-based classification upon the majority polygon for the study site Mariana mine. Numbers 

exemplify areas covered only by the classification [1], by the majority polygon [3] or by both methods [2] contains modified 

Copernicus Sentinel data (2018). 



Results   Master Thesis Silvana Bürck 

68 

   

value is highest (0.58), indicating that the majority polygon and the classifications are more similar than it 

is the case for the other study sites. Lower agreement among classifications and majority polygon was 

obtained for Hamersley mine, where all IoU values are ≤ 0.48. The mean IoU for all comparisons of 

Hamersley mine is 0.49. For all conducted comparisons the mean IoU is 0.49, indicating that 

classifications and crowdsourcing are different from each other.  

Regarding the IoU of Grasberg mine, almost similar IoU values of 0.57 and 0.53 were obtained for 

the comparison of the pixel-based classification & majority polygon and for the object-based classification 

& majority polygon, respectively. Given the fact that according to Everingham et al. (2010), the IoU > 0.5 

represents similarity, the pixel-based and object-based classifications are considered to be similar to the 

majority polygon. When comparing the index-based classification & majority polygon, an IoU of 0.35 

indicates that the index-based classification and the majority polygon are less similar. The mean IoU of all 

comparisons regarding Grasberg mine is 0.48, representing low agreement between classifications and 

crowdsourcing. 

For Hamersley mine, the IoU varies between 0.42 for the comparison of majority polygon & pixel-

based classification, 0.48 for the comparison with the object-based classification and 0.44 for the 

comparison with the index-based classification, respectively. The mean IoU value of 0.44 for this study 

site indicates that classifications and majority polygon are significantly different from each other. 

Concerning Highland mine, the mean IoU value is 0.58, indicating higher agreement between the 

classifications and the majority polygon for this study site. Lowest IoU values were obtained when 

comparing the majority polygon & index-based classification, highest IoU values when comparing to the 

pixel-based classification (0.6). The comparison of the object-based classification & majority polygon 

resulted in an IoU of 0.59. 

The mean IoU value for Mariana mine is 0.46, thereby 0.44 for the comparison index-based 

classification & majority polygon and 0.47 for the comparisons of the majority polygon to the pixel-based 

and object-based classifications. Table 5-5 summarizes the comparative results presented. 
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Table 5-5: Overview of the area of spatial intersection, area of spatial union and intersection over union for all conducted 

comparisons. 

  Conducted Comparisons 
Area of spatial 

intersection 

[km
2
] 

Area of spatial 

union [km
2
] 

Intersection 

over Union 

Grasberg mine 

Index-based classification & majority polygon 67.09 192.234 0.35 

Pixel-based classification & majority polygon 121.22 212.806 0.57 

Object-based classification & majority polygon 139.087 262.096 0.53 

Hamersley 

mine 

Index-based classification & majority polygon 174.751 395.987 0.44 

Pixel-based classification & majority polygon 273.908 650.622 0.42 

Object-based classification & majority polygon 301.741 627.505 0.48 

Highland mine 

Index-based classification & majority polygon 479.332 855.094 0.56 

Pixel-based classification & majority polygon 603.109 1005.325 0.6 

Object-based classification & majority polygon 561.593 942.894 0.6 

Mariana mine 

Index-based classification & majority polygon 260.494 597.067 0.44 

Pixel-based classification & majority polygon 342.882 730.175 0.47 

Object-based classification & majority polygon 445.484 938.884 0.47 
 

5.3.3 Comparison by area values 

Regarding the spatial area of mines derived by index-based, pixel-based, object-based classifications 

and the crowdsourcing-based majority polygons, the area of the majority polygon is for most comparisons 

in between the smallest and the largest area (Table 5-6). Index-based classification represents always the 

smallest polygon, contrary to the object-based classification. The area of the majority polygon is thus 

either in between the area of the index-based classification and the pixel-based classification or in between 

the area of the pixel-based and object-based classification. For Grasberg mine, the area of the majority 

polygon with 17.34 km
2
 is in between the area of the pixel-based classification (13.39 km

2
) and the object-

based classifications (22.78 km
2
). For Hamersley mine, the majority polygon (37.67 km

2
) is in between 

the index-based classification (19.4 km
2
) and pixel-based classification (54.78 km

2
). Only for Highland 

mine, the area of the majority polygon is largest with 82.27 km
2
, contrary to the classifications that cover 

an area of ≤ 78.57 km
2
. For Mariana mine, the area of the majority polygon (56.42 km

2
) is close to the 

area of the pixel-based classification (50.88 km
2
), whereas the index-based classification represents the 

smallest area with 29.33 km
2
 and the object-based classification thus the largest area (82.01 km

2
). 
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5.3.4 Comparison by accuracy values 

For most accuracy metrics, crowdsourcing results achieve either accuracy values in between the 

classifications or slightly higher accuracy values (Table 5-6). Regarding the overall accuracy, the majority 

polygon has the highest accuracy values for Grasberg mine (97.29 %) and Hamersley mine (92.84 %). 

Overall accuracy of the majority polygon of Highland (92.17 %) and Mariana mine (95.88 %) is still in 

between the minimum (88.37 % for Highland mine; 92.17 % for Mariana mine) and maximum (97.41 % 

for Highland mine; 97.73 % for Mariana mine) of the classifications. The same is true for the Kappa 

coefficient, where the coefficient values of the majority polygons are either in between the classification 

or highest. Only for Mariana mine, the Kappa coefficient value is slightly lower for the majority polygon 

(0.83) compared to the other classifications that have a Kappa coefficient value ≥ 0.84. For producer’s 

accuracy, the majority polygon has either highest accuracy values as it is the case for Hamersley mine 

(85.40 %), is in between the accuracy values of the three classifications, in the case for Grasberg mine 

(86.73 %) or producer’s accuracy is lowest, as it is the case for Highland and Mariana mine. User’s 

accuracy values of the majority polygon are always in between the classifications (Hamersley mine, 

Mariana mine) or higher (Grasberg mine, Highland mine). Regarding the omission error, the majority 

polygon has highest values for Highland and Mariana mine, in contrast to Grasberg mine, where the 

omission error of the majority polygon is in between the classifications and Hamersley mine, where the 

omission error is lowest. On the contrary, the commission error of the majority polygon is lowest 

(Grasberg mine, Highland mine) or in between the classifications for all study sites (Hamersley mine, 

Mariana mine). On an intra-mine level, for Grasberg and Hamersley mine, most accuracy values of the 

majority polygon are either highest or in between the classifications. For the Highland mine the position of 

accuracy values of the majority polygon range from lowest accuracy values, medium up to highest 

accuracy values compared to the classifications. Especially for Mariana mine, accuracy values are either 

in between the classifications or lowest. Table 5-6 gives an overview of all area and accuracy values. 

 

 

 

. 
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Table 5-6: Overview of area and accuracy values for index-based (IND), pixel-

based (PIX) and object-based (OBIA) classifications and majority polygons 

(MAJ). Grey shaded columns refer to crowdsourcing results derived from the 

majority polygon. 
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6 Discussion 

This section is dedicated to discuss results of the application of each method, the methodology of this 

study and to determine related strengths and weaknesses. In the first part, main findings regarding the 

previously presented results as well as their relation to current studies will be discussed. Secondly, main 

findings regarding the methodology of this study will be outlined. Upon the base of these new findings, 

strengths and weaknesses of classifications and crowdsourcing will be derived and described in detail in 

order to give an answer upon the initial research question. 

 

6.1 Main findings regarding the results of classifications, crowdsourcing and 

the comparison 

The following section will aggregate previously presented results in order to derive main findings, 

discuss them and relate them to current research. 

6.1.1 Classifications 

Regarding classifications, the presented results have shown that the classification of mines is not 

strongly dependent on the classification method and on the amount of datasets integrated into the 

classification process. Evidence therefore has been given by visually interpreting that with all 

classification methods the mines have been detected and that the class mine occurs almost similar in 

extent among classifications, regardless of the amount of datasets included. Overall accuracy ≥ 77.41 % 

for all classifications and Kappa coefficient values ≥ 0.8 for all classifications, except of Grasberg_ind, 

Hamersley_ind and Hamersley_pix, show that regarding visual interpretation, overall accuracy and Kappa 

coefficient values, the classification result is not dependent on the classification method and the amount of 

datasets included, respectively. This main finding cannot be confirmed or denied by current literature, as 

no such comparative study in the domain of mining has been conducted yet. Concerning comparisons of 

pixel-based and object-based classifications within other domains, Prudente et al. (2017) achieved almost 

similar results for pixel-based and object-based classifications as well, thereby confirming classification 

method independency. Most current studies dedicated to pixel-based and object-based comparison (Belgiu 

and Csillik 2018; Keyport et al. 2018; Roy et al. 2018; Wang et al. 2018a) found that object-based 

classification performs slightly better than pixel-based classification regarding accuracy, something that 

could not be confirmed within this study. Nevertheless, all studies did not integrate index-based 

classifications either. The current study thus extents the state of the art in this context by comparing three 

classification methods. Instead of focusing on the comparison of classification methods, some current 

studies investigated the combination of pixel-based and object-based classifications (Chen et al. 2018d; 

Xiong et al. 2017). This has not been the scope of this study, but might be of interest for future 

considerations. 

Nevertheless, when taking omission and commission error into account, it has been found that index-

based classification is considered to be the classification method performing slightly weaker than pixel-
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based and object-based classification. For omission and commission error, index-based classifications 

achieve frequently higher error values, indicating thereby that for this type of classifications a large 

amount of pixels had been falsely assigned to the classes by excluding or including pixels. Pericak et al. 

(2018) did not compare index-based classifications to other classification methods, but within their study, 

they found that an NDVI-based classification for mine area computation achieves high accuracy values, 

thereby demonstrating high performance of index-based classifications. Their index-based classification 

differed slightly in their methodology to the index-based classification of this study that was based on 

NDVI as well. It remains thus to be tested if – when adopting Pericak’s methodology for the investigation 

of Grasberg, Hamersley, Highland and Mariana mine – higher accuracy will be achieved. Similar to this 

study, Pericak et al. (2018) focused on the implementation of NDVI only. But the observation that other 

spectral indices such as FMI and CMI have been considered to be not informative enough for an index-

based classification, as demonstrated in chapter 4, has been confirmed by Castellanos-Quiroz et al. (2017).  

The fact that mines in four different geographic regions could be classified and even achieved high 

accuracy results, demonstrates possible transferability. Charou et al. 2010 classified different mines as 

well, thereby further confirming transferability of mine classification. But Charou et al. 2010 included 

study sites within one country, thereby not demonstrating transferability to different geographic regions, 

as it has been proven within this study. Regarding their methodology, classification variety has been 

limited to pixel-based classification. This present study thus extents the investigations of Charou et al. 

2010, as a methodological comparison has been conducted and as study sites in different geographic 

regions have been investigated. 

In addition to these findings, visual interpretation has shown that all features indicating a potential 

mine from LaJeunesse Connette et al. (2016) have been comprised into the class mine. This has been 

proven by all classifications, which means that all classifications are considered to be able to detect mine 

features. High user’s accuracy ≥ 77.47 % confirmed that classifications containing the mine features from 

LaJeunesse Connette et al. (2016) are close to reality. Hence, this finding supports the study of LaJeunesse 

Connette et al. (2016) with respect to their proposed mine features. Nevertheless some features, such as 

water bodies, have been wrongly categorized to the class mine even though they do not belong to the class 

mine. The classification algorithms of this study do not have contextual and local knowledge, whereby 

neighborhood relations are not considered.  

In order to deal with class belonging, a progressive approach has been chosen for this study as the 

class mine comprises all features indicating a potential mine from LaJeunesse Connette et al. (2016). As 

these mine features include even buildings, all buildings within the study site have been classified as mine. 

Subsequently, the classification result represents an overestimation due to the fact that sometimes 

buildings, roads or water bodies are not likely to belong to the mine. However, this progressive approach 

is supported by the assumption that the mines of the four study sites are located in remote areas and thus 

artificial features such as buildings or roads are primary dedicated to mining activity. As soon as the area 

of interest is larger, this argument becomes invalid. Regarding the class water, this progressive approach 

remains challenging, because not all water bodies found within the AOI are of artificial origin. Therefore, 

I propose that for future work, shape and color of water bodies need to be further investigated as 

additional indicators. Furthermore, the motivation of the study needs to be taken into account when 
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discussing class belonging. For the motivation of this study − which is the EHP analysis −, a progressive 

approach is preferred to a conservative, given the fact that environmental consequences are expected to be 

larger in extent. For a precise assignment of all features, contextual and local knowledge would be 

required. In this context I propose a rule-based object oriented classification or conditional random field, 

as these methods can include the factor spatial proximity. Current studies that are related to rule-based 

classifications or spatial proximity, such as the study from Chen et al. (2018d) and Ma et al. (2017a) might 

constitute a suitable support regarding this issue. Alam et al. (2019) addressed this challenge by 

developing a combined methodology of convolutional neural networks and conditional random fields, 

whereby the latter is expected to provide contextual information. With less effort, but more subjectiveness, 

reclassification can also be performed in order to add or remove features from the mine, which have not 

been added or removed by the algorithm itself. Classification of mines is thus dependent on the post- 

processing. This finding has been further supported by Roy et al. (2018), who achieved higher accuracy 

values after post-processing.  

Furthermore, I found out that the classification of mines depends on the study site. Mines embedded 

within homogeneous surroundings, such as rocky or sandy, perform generally weaker in accuracy 

assessment. Regarding overall accuracy, Kappa coefficient values, producer’s and user’s accuracy as well 

as omission and commission error, Hamersley mine and partially Grasberg mine achieved lower accuracy. 

Even visual interpretation has revealed that when focusing on all land use and land cover classes, most 

differences among classifications occur within Hamersley mine, the mine which is located in the desert. 

Results have demonstrated that regarding omission and commission error, miss-classifications occurred 

mostly between the class bare area and mine. Inspections of the spectral signal of these two classes reveal 

that the spectral signal of bare area and mine is very similar (Figure 6-1). Even though the spectral range 

of mine is wider than the one of bare area, the spectral signal of bare area is almost entirely covered by the 

spectral signal of the mine. Both land use and land cover classes have a reflectance peak in band 8 with 

0.17 and 0.15 for bare area and mine, respectively. Within the other bands, reflectance values of both 

classes are moderate. Spectral similarities between classes are thus accompanied by a weaker performance 

regarding accuracy metrics. Consequently, the classification of homogeneous study sites is considered to 

be more difficult. This has been confirmed by Lobo et al. (2018), who – on the contrary –, classified a 

total of 13 mining sites in the Brazilian Amazon and achieved satisfactory accuracy values thereby. Their 

study sites are considered to represent heterogeneous study sites, given the fact that these study sites are 

composed of dense forest on the one hand and mining sites on the other hand. Lobo et al. (2018) confirm 

indirectly that the classification of mines in homogeneous study sites is considered to be more difficult. 

Even though Charou et al. (2010) investigated mines in different geographic locations within Greece, no 

correlation between classification results and study site types has been mentioned. 
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Contrary to visual interpretation, when considering the entire area of the class mine, differences in 

area among classifications occur. Index-based classifications always represents the smallest mine, whereas 

object-based classifications represent the largest mine. The reason for this difference between qualitative 

and quantitative results is that especially for index-based and pixel-based classification the salt & pepper 

effect is present, thus resulting in a large amount of isolated pixels which have been classified as mine. 

Wang et al. (2018a) faced the same issue regarding salt & pepper effect for pixel-based classification 

(Wang et al. 2018a). Visually this can only be recognized when zooming into the classifications, as shown 

within the results (Figure 5-7). Quantitative area results thus constitute reliable results, as they include 

isolated pixels in their area value. This means that when considering the mine area, differences among 

classifications occur. Nevertheless, previously it has been mentioned that high overall accuracy, Kappa 

coefficient values, producer’s and user’s accuracy for all classifications demonstrated that the 

classification of mines is not dependent on the classification method. This contradiction can be explained 

by having a closer look upon the reference dataset, which is compared with the classifications for 

obtaining accuracy metrics such as overall accuracy, Kappa coefficient values, producer’s and user’s 

accuracy. The reference dataset for each study site has been created by expert knowledge. Thereby, a 

certain amount of training polygons, which are distributed all over the AOI have been classified by an 

expert. The total amount of pixels that are covered by the reference dataset for the index-based 

classification of Grasberg mine is 15084, the total amount of pixels of the entire classification is 1515110. 

Hence, the reference dataset represents only 0.99 % of the entire study site. Subsequently, when 

interpreting accuracy results, it needs to be taken into account that all accuracy statements about the 

classifications account only for the area that has been covered by the reference dataset. Nevertheless, the 

criteria of Lillesand et al. (2008), who propose a total of 50 training samples for each class for accuracy 

assessment, has been met. In addition, no further reference dataset or in-situ measurements were available. 

To sum up, differences among classifications are less visible within the qualitative results, which can be 

explained by salt & pepper effect, which is not recognizable at first view. The fact that accuracy metrics 

Figure 6-1: Spectral signatures of bare area and mine of Hamersley mine. The spectral signature of bare 

area is almost entirely embedded into the spectral signature of the mine. 
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reveal similarity among classifications represents a tendency, given the fact that reference data does not 

portray the entire study site. Area computation only reveals differences among classifications. 

 

6.1.2 Crowdsourcing 

For crowdsourcing, a main finding derived from the presented results is that a heterogeneous group 

can recognize open-pit mines in satellite imagery, digitize the delineation of the mine and achieve thereby 

high accuracy values ≥ 92.17 %. This fact that digitization constitutes a potential method in order to 

generate geographic information by the crowd, has been further explained by Albuquerque et al. (2016), 

who define different tasks of crowdsourcing-based geospatial information generation. This main finding is 

supported by qualitative visual interpretation, where it has been recognized that all volunteers did solely 

focus on the mine and did not digitize any other part within the satellite imagery, which does not belong to 

the mine. In addition, all features indicating a potential mine from LaJeunesse Connette et al. (2016) are 

comprised within the majority polygon, demonstrating that volunteers are able to detect mine features and 

digitize them. Further evidence is given by high Kappa coefficient values ≥ 0.8, high producer’s and 

user’s accuracy, low commission error and minor differences between totals and true positives for all 

majority polygons.  

Taking into consideration that mines in different geographic regions have been digitized and thus 

high accuracy values have been obtained, transferability has been demonstrated. I assume that 

transferability to other geographic regions will be given as well, as the four study sites already differ 

strongly among each other because of their location within different ecozones. Transferability of 

crowdsourcing tasks has been confirmed by Lesiv et al. (2019) who launched a crowdsourcing campaign 

for the establishment of a global crop field estimation. 

Nevertheless, digitization is a subjective process, in which no entire agreement among volunteers 

exists. Differences in digitizations, as recognized by visual interpretation of all digitizations and the 

existence of differences in spatial extent between Min and Max polygons, show that volunteers do not 

digitize in the same way. This is further supported by the frequency distribution figures, which 

demonstrate, that for all study sites the amount of how often a pixel has been considered to represent mine 

varies. Within this context, further observations regarding quality issues related to crowdsourcing, such as 

credibility, can be found in Heipke (2010) and Fritz et al. (2012). 

Another main finding is that the majority polygon is a good approximation to reality. Evidence 

therefore has been given by very high accuracy metrics such as overall accuracy, Kappa coefficient 

values, producer’s and user’s accuracy and very low commission errors for all four majority polygons. 

The application of the majority for detailed analysis has been found in current studies (Herfort et al. 2018) 

as well. 

Furthermore, it has been found that additional information about features indicating potential mines 

and the digitization procedure are required. This further finding is confirmed by the fact that even if all 

features indicating a potential mine from LaJeunesse Connette et al. (2016) are included within the 
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majority polygon, not all such features within the entire satellite imagery were recognized. Regarding the 

Min and Max polygon, it has been observed that the Min polygon represents always the pit itself, whereas 

the Max polygon includes several additional mine features. The lack of information about features 

indicating potential mines and the digitization task explains why some volunteers accounted only the pit 

itself as the mine, whereas some other volunteers included further features. Lesiv et al. (2019) prevented 

this information lack by making volunteers familiar with the topic and the digitization in a workshop. 

However, in this study visual interpretation of the frequency distribution reveals that only a small amount 

of volunteers (< 4) digitized in this progressive way, whereas the majority (≥ 9) agreed on the digitization 

of the mine.  

Besides, it has been shown that digitization of open-pit mines within homogeneous study sites is 

more difficult than within heterogeneous study sites. This finding has been supported by visual 

interpretation of the difference between Min and Max polygons among all study sites. For Grasberg mine 

and Hamersley mine, the spatial difference between the Min and Max polygon was largest, indicating 

difficulties in digitizing these mines. Furthermore, when comparing the frequency distribution figures of 

all study sites, a higher level of agreement for Highland mine and Mariana mine, demonstrates that the 

digitization of these two mines has been easier than for Grasberg mine and Hamersley mine. The fact that 

the majority polygon of Hamersley mine has lowest user’s accuracy values, highest commission error 

values and highest difference between true positives and totals, provides further evidence of difficulties in 

digitizing mines within homogeneous surroundings. To face this difficulty regarding homogeneous study 

sites, an initial training workshop of the volunteers, such as proposed by Lesiv et al. (2019), could be 

implemented. Additionally, one could make use of the strength of crowdsourcing − being mentioned by 

Heipke (2010) − that volunteers have local knowledge. Digitization tasks of mines can thus be distributed 

among volunteers according to their localization and thus according to their local knowledge.  

Surprisingly, Grasberg mine, being located within rocky surroundings and thus also representing a 

homogeneous study site, performs best regarding accuracy metrics such as overall accuracy, Kappa 

coefficient values, producer’s and user’s accuracy, omission and commission error values. Hence, it can 

be assumed that digitization results depend further on the order of digitization. Within the instructions for 

digitization, the procedure has been exemplary explained regarding Grasberg mine. Additionally, 

Grasberg mine digitization has been the first digitization task. These two facts support the assumption that 

the digitization result of the first digitization task is better in terms of accuracy metrics than the results of 

the following digitization tasks. Besides, differentiate task difficulty might also explain why Grasberg 

mine digitization achieved higher accuracy performance than the other study sites. The fact that task 

difficulty correlates with geometry complexity and interpretation difficulty (Albuquerque et al. 2016) is of 

particular interest regarding this issue, as Hamersley mine and Mariana mine are considered to reveal 

more complex geometries than Grasberg mine and are thus more difficult to interpret. This constitutes a 

further explanation of better accuracy performance of Grasberg mine. 

A further finding has been that the digitization task requires optimization as far as the task it-self is 

concerned. Visual interpretation of the frequency distribution of Mariana mine has shown that the 

digitization led to artefacts, when the requirement of the task − that only one polygon shall be created −, 

will be fulfilled. The digitization task thus needs to be refined to a micro-task, in the same way than 



Discussion   Master Thesis Silvana Bürck 

78 

   

Herfort et al. (2018), who developed micro-tasks out of the complex 3D information extraction. This 

accounts especially for the digitization of roads. Some volunteers did not fulfill this task requirement and 

created several polygons. Then additional post-processing is required in order to merge the polygons for 

further analysis. 

 

6.1.3 Comparison between classifications and crowdsourcing 

Visually it has been observed that the majority polygon always is referred to have the lowest amount 

of mine polygons, contrary to the classifications which contain a large amount of polygons. This has been 

found out when visually comparing the overlap of classifications and majority polygon in the results. The 

large amount of polygons of classifications is primary due to salt & pepper effect, which has been 

observed by Wang et al. (2018a) as well. Nevertheless, when other parameters, such as the perimeter will 

be computed, the amount of polygons is crucial. In the case of classifications, all polygons need then to be 

merged to a multi-polygon. This procedure is not required when only one polygon is available, as it is 

mostly the case for the majority polygons. Focusing on the overall motivation of the study, which is the 

supply of the parameter “mine area at earth surface”, a uniform polygon is considered to be more fitting, 

as the mining areas constitute entire areas instead of fragmentary dispersed areas.  

A major finding is that the agreement between classifications and crowdsourcing is generally low. 

This means that the area detected as mine by the classifications differs from the area considered to 

represent a mine by the crowd. A low mean IoU of 0.49 for all comparisons has confirmed this finding. 

Contrary to this finding, Albuquerque et al. (2016) compared their crowdsourced classification to 

automated approaches in the case of building detection and considered both results to be comparable. 

Nevertheless, differences in the automated classification of small objects have been observed by 

Albuquerque et al. (2016), whereas crowdsourcing classifications were able to detect even small features. 

In the case of this study, it remains thus to be investigated if small objects, such as tailing dams, can be 

detected by both methods or if one method is preferred for this specific task. 

Generally, when similarity by a high IoU is proven, both compared methods can be considered to be 

representative and thus a potential user can choose between the two methods. As soon as discrepancy is 

confirmed, a potential user needs to find out which method achieves better results. Given the fact that the 

mean IoU of 0.49 indicates discrepancy between classifications and crowdsourcing, I propose the 

application of the following decision tree, illustrated in Figure 6-2. Provided that IoU has been calculated, 

in case of the IoU is ≥ 0.5, the comparison is considered to represent similarity, according to Everingham 

et al. (2010) and thus method 1 or method 2 can be chosen. If IoU is < 0.5, discrepancy is confirmed. In 

this case the two methods have to be revised regarding their accuracy performance. The method 

performing better in accuracy metrics such as overall accuracy, producer’s and user’s accuracy, 

commission and omission error is than recommended to be chosen. The other method thus will be 

rejected. When applying the decision tree for this study, the following choice of methods can be 

recommended. For Grasberg mine the mean IoU is < 0.5. This means results are different and thereby the 

method with the best accuracy performance will be chosen. Regarding all accuracy metrics, 
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crowdsourcing performs better than classifications. This means that for Grasberg mine, the majority 

polygon will be considered to be representative for the mine and thereby crowdsourcing is preferred to 

classifications. The same accounts for Hamersley mine, where IoU is also < 0.5. When taking all accuracy 

metrics into account, the majority polygon will be considered to be a more accurate representation of the 

mine and thus the method crowdsourcing will be recommended as well. Highland mine comparison, with 

an IoU ≥ 0.5 demonstrates similarity, whereby the classifications and the majority polygon can be 

considered to be representative, thus both methods can be chosen. Discrepancy is achieved for the 

comparison of classifications and crowdsourcing regarding Mariana mine. Because classifications perform 

better in terms of accuracy, one of the three classification methods is recommended to be chosen instead 

of the method crowdsourcing. The conclusion can thus be drawn that the choice of the appropriate method 

in order to determine the mine area, is dependent on the study site. But taking into account that following 

this decision tree, crowdsourcing has been preferred to classifications, a general recommendation for the 

application of crowdsourcing within studies focusing on the computation of mine extent can be made. As 

this remains a recommendation based on IoU and accuracy values only, a further consideration of 

strengths and weaknesses of each method is required.  

As previously demonstrated, similarity between classifications and majority polygon depends on the 

study site. When comparing the IoU on an inter-mine level, Hamersley mine comparisons achieved lower 

mean IoU values than the other mines, whereas Highland mine comparisons reached highest mean IoU 

values. For the study site Hamersley mine, which is located in the desert, the IoU was lowest. This 

indicated discrepancies between classifications and crowdsourcing. Additionally, accuracy values of the 

majority polygon and the classifications were lowest. These facts support the finding that classification 

and digitization of mines in homogeneous study sites is considered more difficult. Higher agreement 

Figure 6-2: Proposed decision tree for supporting method selection. 
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between classifications and crowdsourcing being observed for heterogeneous study sites such as Highland 

mine are in line with this finding. Besides the fact that classification and digitization of mines depends on 

the study site only, the geometry of the objects needs to be considered, as this might influence the task 

difficulty as well (Albuquerque et al. 2016).  

Furthermore, when comparing the area values between classifications and crowdsourcing, the 

presented results have shown that the area being digitized by the majority of the crowd is in between the 

area of the index-based classifications and the pixel-based or object-based classification, except of 

Highland mine. That means the majority polygon is at an intermediate position between the conservative 

and progressive area calculation. In view of this, the majority polygon can be considered to represent a 

robust mediocrity. Evidence has been given when comparing the area of all classifications and majority 

polygons to each other. In current research, crowdsourcing results have been compared to one automated 

classifications method (Albuquerque et al. 2016). This study compares crowdsourcing to three types of 

classification methods, therefore being able to estimate the position of crowdsourcing among different 

classification methods. With respect to the finding that crowdsourcing results are at an intermediate 

position between classifications, this study extents the current state of the art. 

The same has been observed for most accuracy metrics, where crowdsourcing results achieved either 

accuracy values in between the classifications or slightly higher accuracy values. This accounts 

particularly for overall accuracy, Kappa coefficient values, producer’s and user’s accuracy, and for 

commission error. Similar to the previous main findings, the crowdsourcing results occur to represent a 

mediocrity between the classifications. Nevertheless, for some accuracy metrics, such as omission error, 

crowdsourcing achieved the highest values for Highland and Mariana mine. This observation is probably 

related to the previously described main finding that the order of task presentation influences accuracy 

metrics or that geometry complexity plays a significant role (Albuquerque et al. 2016). 

  



Discussion   Master Thesis Silvana Bürck 

81 

   

6.2 Main findings regarding the methodology of this study 

This chapter addresses primary technical issues related to the methodology, which have been met 

during performance of the methodology. When possible, propositions about how to face these issues have 

been made. 

The classification process of pixel-based and object-based classifications has shown that the 

classification result is very dependent on the training. Intense training of a class leads to an overestimation 

of the class, whereas moderate training results in an underestimation. The entire training process is thereby 

strongly subjective. A fixed amount of training samples for each class also reveals in an imbalance 

between over- and underestimation because within the study site some land use and land cover classes are 

more dominant than others. When all classes experience the same intensity of training, classes that in 

reality only cover a small part of the study site will become overestimated in the classification and classes 

being dominant in the study site will probably be underestimated. In order to mitigate this subjectiveness 

in future analyses, I propose to conduct previously an unsupervised classification, as it has been the case 

within Charou et al. (2010) and then an estimation of the percentage of each land use class being 

represented in the study site. Subsequently, the intensity of the training, in other words the amount of 

training samples, can be determined relative to the percentage of each land use class. 

Besides the training procedure itself, the reference dataset is considered to be subjective as it is based 

on expert knowledge only. For an exact accuracy assessment, one needs to get in-situ GPS measurements 

of the extent of the mine. As no such in-situ measurements exists and a fieldtrip to acquire such 

measurements would be beyond the scope of this study, expert knowledge has been considered to be the 

reference for this study. LaJeunesse Connette et al. (2016) pronounce that remote sensing analyses 

constitute the only way to get spatial information about mining areas which are sometimes located in 

remote areas or armed conflict zones, thereby challenging the acquisition of in-situ measurement.  

Another issue that has been met during the application of the methods is related to the presence of 

clouds in tropical or subtropical geographic regions. The same issue has been confirmed by Paull et al. 

(2006). For pixel-based and object-based classifications, the clouds and their corresponding shadows have 

been classified within this study, but especially for index-based classifications, the cloud issue has been 

more important. The reason therefore is that the NDVI range of clouds is embedded into the NDVI range 

of mines (Figure 6-3). The NDVI of clouds ranges from 0.007-0.076, the NDVI of the mine from -0.147-

0.204. In order to address this issue, cloud masking has been performed. A common procedure against this 

issue is the removing of all clouds and the filling-up of the empty spaces with further cloud-free satellite 

imagery. Time series can be applied in this context so as to remove clouds (Julien and Sobrino 2019). This 

issue becomes more important when parts of the mine are covered by clouds. For all four study sites, 

mines have not been covered by clouds, replacing clouds by other imagery has thus not been required. 
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Other constraints have been met by software availability regarding object-based analysis. For many 

small scale institutions, NGO’s and other organizations, the access to commercial software which enables 

object-based classification is limited. Therefore, efforts have been made in order to perform all analyses 

on the base of open-source software. Only for object-based classification this condition could not have 

been fulfilled as open-source software is still too limited or too experimental for object-based 

classification. Nevertheless, the emergence of novel sensors and remote sensing analyses (Ghassemian 

2016) is accompanied by a constant extension of open-source software in the GIS and remote sensing 

domain. 

Due to its advantages being mentioned within chapter 4, SVM algorithm has been chosen for the 

pixel-based and object-based classifications of this study. Taking into account that a large amount of 

current studies in the domain of remote sensing are related to machine learning, further machine learning 

algorithms, such as random forest (Whyte et al. 2018) remain to be tested. The scope of this study was not 

to compare classification algorithms, but the comparison of different classification algorithms might be of 

interest for future investigations as well.  

With respect to the applied methods, the different level of effort in terms of complexity and the 

computation requirements beyond each method need to be considered. Index-based classification is the 

least effort-intense method, because on a single-source level only the NDVI threshold needs to be set, 

whereby this classification method is the fastest one. The fact that spectral index analyses provide a 

method which reduces time and expenditure has been confirmed by Sawut et al. (2018), who investigate 

heavy metal contents in an open pit mine by spectroscopy and spectral indices. Pixel-based classification 

NDVI Mine: 

- 0.147 - 0.204 

NDVI Cloud:

+ 0.007 - 0.076 

Figure 6-3: Analysis of NDVI values of clouds and the mine. The NDVI range of clouds is within the NDVI range of the mine; 

contains modified Copernicus Sentinel data (2018). 
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needs intensive training and object-based classification requires high computation performance, in 

addition to an intense training. Contrary to the findings of this study, Lobo et al. 2018 demonstrated that a 

small training sample with 10 small size polygons of 5 x 5 pixels per class constitutes an appropriate 

training set for pixel-based classification, thus demonstrating that pixel-based classification can be 

considered a quick and efficient method as well, while providing accuracy and reduced image processing 

time. Regarding the finding that object-based classification is considered to be the most effort intense 

method, Prudente et al. (2017) pronounced that less processing time has been required by applying the 

Maxver, the so called Maximum Likelihood algorithm. 

Within this study, a different amount of datasets has been included into the classifications, thereby 

performing classifications on single-source or multi-source level. As previously explained, the 

classification results were not strongly dependent on the amount of datasets being integrated. Instead of 

this differentiation in source-levels, data fusion might be of potential interest, given the fact that a wide 

range of data fusion methods, such as the Ehlers fusion (Abdikan et al. 2014), have currently been 

developed. By increasing spectral and spatial resolution, the classification results can be improved.  

As far as crowdsourcing is concerned, technically it needs to be mentioned, that instructions for 

digitizations need to be revised according to the finding that additional information about features 

indicating potential mines and the digitization task is required. Therefore, I propose the development of a 

catalogue of features indicating potential mines with detailed information and exemplary imagery. When 

launching a crowdsourcing event, precise information about mine features can be given in a workshop, as 

it has been the case for Lesiv et al. (2019). Within the same context, digitization instructions need to 

become more precise in order to avoid that volunteers choose wrong saving parameters or file designation, 

which then requires further post-processing. Further optimization and simplification of the digitization 

task is needed regarding the fact that participation in the crowdsourcing project is very time consuming for 

volunteers. 

A serious issue regarding crowdsourcing is the participation rate. Difficulties have been met in 

finding sufficient volunteers for the crowdsourcing project. In order to face this issue, I propose that 

benefits for the volunteers need to be presented with more detail. Another possibility to cope with this 

limitation is the launching of a crowdsourcing campaign, where social aspects play a significant role as 

well. For future crowdsourcing projects, small expense allowances for volunteers or other incentives can 

also be taken into account. As far as large scale projects are concerned, one could further think of 

crowdsourcing platforms such as Amazon’s Mechanical Turk, where an integrated participant 

compensation system for volunteers has been established (Buhrmester et al. 2011). 

As far as metadata of the volunteers are concerned, no such background information about the 

volunteers is available. Information about the prior knowledge of volunteers regarding contextual 

information about mining or technical information about GIS and digitization is considered to be 

important for a holistic evaluation of the crowdsourcing results. This would be further helpful in order to 

identify types of target groups for crowdsourcing. For future projects, a questionary about the socio-

economic background and experience of volunteers needs to be included to the crowdsourcing project. 
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Similar to Hillen and Höfle (2015), who demanded volunteers to give basic information before digitizing, 

background information is recommended to be requested within future crowdsourcing projects.  

For the comparison between classifications and crowdsourcing, IoU has been useful in order to 

compare the two methods among each other. IoU gives information about how similar or different the 

results of the methods are. Nevertheless this comparison metric does not consider the similarity of shape 

for example. Even tough metrics such as the level of agreement, sensitivity, precision, and F1 score have 

been applied in order to assess the performance of the crowdsourcing results (Albuquerque et al. 2016),  

they might be of interest for method comparison as well.  

Given the fact that for IoU no exact threshold indicating clearly similarity or dissimilarity exists, only 

relative statements can be made. A proposed threshold has been found within the study of Everingham et 

al. (2010) that has been adopted for the proposed decision tree. In order to support comparison and to 

built-up a decision tree, the threshold of 0.5 has been accepted and chosen for this study. 

This proposed decision tree is expected to support the choice of the appropriate method for the 

computation of the mine area of the four study sites. However, when – according to the decision tree – 

classifications are preferred, a potential user still needs to find out which classification method is 

considered to be the most suitable one. Therefore, IoU should be computed for the comparisons of the 

classification methods among each other as well. 

Limited significance of IoU has been observed when a potential user needs to decide which method 

to apply because the IoU presupposes that both methods have already been applied. The IoU is thus no 

metric supporting decision making of potential methods that have not been applied yet. Nevertheless, it 

can be applied within this study in order to indicate similarity and discrepancy among the tested methods. 

The findings of the comparison between classifications and crowdsourcing from this study can be 

transferred to other studies. Besides focusing on comparing the methods in order to choose between them, 

both methods can also is applied together instead of separately, thereby profiting from valuable synergies. 

Classifications could be trained or validated by the crowd. This has been exemplified by Johnson et al. 

(2017), who integrate crowdsourcing-based training data in automated classifications. That means instead 

of contrasting the machine to the crowd, they can be combined, according to Johnson et al. 2017. The 

perspective of Johnson et al. (2017) thus expands the view of this current study, which is dedicated to 

method comparison only.  
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6.3 Strengths and Weaknesses 

The initial research question was to examine strengths and weaknesses of classifications, among 

them index-based, pixel-based and object-based classifications on single-source and multisource level, and 

crowdsourcing that can be applied in order to determine the delineation of the area that is subject to open-

pit mining at earth surface in different geographic regions. At first, the qualitative visual interpretation and 

quantitative comparison by IoU revealed that classifications and crowdsourcing achieve different results. 

Classifications and crowdsourcing vary among area values and accuracy assessment. By applying the 

methods and analyzing results, new findings regarding effort, transferability, completeness, 

implementation, quality and credibility as well as their potential for automatization and further 

development have been generated. These findings have partially been discussed and related to current 

studies in the previous chapter. Upon the base of this, strengths and weaknesses, as well as potential 

opportunities and threats, will subsequently be derived. 

 

6.3.1 Classifications 

Regarding classifications, a major strength is related to the fact that all investigated classifications 

methods are able to classify mines, recognize all features indicating a potential mine, and achieve 

satisfactory results regarding visual interpretation and accuracy assessment. Thus, mine area computation 

can be performed with classifications. Classification methods range thereby from low effort up to high 

effort and from single-source up to multi-source. A further strength is that already with low effort 

classifications and with a single data source, mines can be classified and achieve satisfactory results. 

Furthermore, transferability of all classification methods is considered to be a strength. Homogeneous 

study sites are in fact more difficult to classify, but moderate accuracy is also obtained when classifying 

homogeneous study sites. 

A major weakness of classifications is that classification algorithms − as they have been applied 

within this study −, have no contextual and local knowledge. They do not include features entirely 

correctly in the classification result and demonstrate thereby incompleteness. This issue can be faced by 

rule-based object-based classification, conditional random field or intense post-processing, as thereby 

neighborhood constellations will be considered. Another weakness of classifications is their subjective 

character, as the training process regarding pixel-based and object-based classifications is considered to be 

subjective and strongly influences the classification as well as its credibility. Subjectiveness in the training 

phase can be reduced by performing training relative to the proportion of the trained land use class, as 

previously mentioned. A further weakness is that object-based classification is very effort intense. When 

low effort constitutes a condition, index-based classification or pixel-based classification can be 

performed. Regarding transferability, for each new study site a new training set for pixel-based and object-

based and a newly defined NDVI range is required. This weakness can be mitigated by developing one 

training set and one NDVI range per ecozone, as mines are likely to resemble within a given ecozone. 

Besides, cloud issues are challenging, especially for tropical study sites and for index-based 

classifications, thus effort is required in order to face this issue. Time series of satellite imagery are likely 
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to provide partial cloud-free imagery. In addition, spectral similarities between the mine and the 

surroundings can result in miss-classifications, requiring effort intense spectral signature separation. 

Therefore, other characteristics of mines, such as elevation, can be considered with more detail. 

Furthermore, classifications provide different area values, thus questioning credibility. Pixel-based 

classification appears to constitute an intermediate position between index-based classifications that tend 

to an underestimation and object-based classifications, which appear to overestimate the mine area. 

Regarding index-based and pixel-based classification, the salt & pepper effect is dominant, which requires 

further intense post-processing when further analysis, such as perimeter computation, will be conducted. 

Salt & pepper effect can be limited when choosing object-based classification or when post-processing 

index-based and pixel-based classification more intensely.  

Opportunities are related to a potential automatization of classifications, when one characteristic 

training set or NDVI range set per ecozone is created and subsequently classification of mines within new 

satellite imagery is performed. Thereby, transferability to other geographic regions is demonstrated. This 

approach could be extended further in terms of the development of an automatic mine detection model, 

related to the propositions of Pericak et al. (2018). For this study, the classified mines have been known to 

be existent. By means of the characteristic training set or NDVI range set, new satellite imagery, where 

mine existence is not yet guaranteed, can be classified. Instead of classifying existent mines, this might 

support mine detection and thus provide the required information for a potential global mine database. 

This can further support the Corine land cover project by providing detailed information about mine extent 

(Castellanos-Quiroz et al. 2017). Furthermore, the fact that pixel-based and object-based classifications 

contain other land use classes represents another potential development, as these land use classes are of 

particular interest regarding monitoring and change detection. Additional opportunities are related to the 

wide range of classification algorithms, which can be further investigated and the availability of methods 

that can be applied in order to integrate neighborhood constellations into the classification, such as rule-

based object-based classification, conditional random field or intensified post-processing. Thereby, the 

issues related to incompleteness can be faced. 

Risks that might prevent the implementation of classifications and thus their realization are primary 

related to access limitations, if free availability of software and satellite imagery is prevented. In this case, 

the establishment of an archive of satellite imagery is recommended in the unlikely case that all satellite 

imagery becomes commercial. Additionally, risk is related to restricted aces to open-source software. 

Nevertheless, the emergence and constant development of open-source software might lead to the 

assumption that tools and software, also open-source, for all classifications will be provided in the near 

future. A further limitation arises when no cloud-free imagery is available, which means that 

classifications cannot be realized. Then active sensors, such as Sentinel-1 need to be further investigated, 

as they penetrate clouds. A major risk is always related to the absence of reference data, which makes 

quality control very difficult. As demonstrated within this study, a dataset created upon expert knowledge 

is considered to constitute a sufficient reference, when no in-situ measurements are available. 

An overview of strengths and weaknesses, as well as opportunities and threats of classifications is 

given in Figure 6-4. 
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6.3.2 Crowdsourcing 

A major strength of crowdsourcing (Figure 6-5) is that volunteers can recognize the mines within a 

given AOI, digitize the delineation of the area which is subject to open-pit mining and achieve thereby 

high accuracy values. Hence, area computation can be performed with crowdsourcing. Especially the 

derivation of the polygon that has been assigned to be a mine by the majority represents a good 

approximation to the real mine, because it contains all features indicating a potential mine. Besides these 

advantages, the fact that volunteers have contextual knowledge is a major strength. Volunteers consider 

the factor proximity, their digitizations thus demonstrate completeness. Another strength of this method is 

its transferability to other geographic regions, proven by the availability of different study sites within this 

crowdsourcing project. Digitization of mines in homogeneous study sites is in fact more difficult, but 

nevertheless satisfactory results can be achieved. Additionally, the low amount of polygons is easy to 

handle and less effort intense regarding further analysis, such as perimeter computation. 

Weaknesses of this method are related to the contradiction between precise information provision for 

volunteers and the fact that participation is already very time consuming. This conflict makes it difficult to 

realize crowdsourcing projects. By minimizing the crowdsourcing task at maximum, precision in the 

information and low time consumption of the volunteers can be both realized. Furthermore, digitization by 

volunteers is highly subjective, thereby questioning credibility. Therefore, the implementation of a 

questionary is recommended, so as to investigate prior knowledge for an accurate evaluation of the 

crowdsourcing results. Moreover, the digitization result is dependent on the order of task presentation. 

When realizing a crowdsourcing project, this needs thus to be considered. Switching the order of task 

presentation might remedy this issue. 

Figure 6-4: Matrix of strengths & weaknesses and opportunities & threats of classifications. 
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In order to increase participation rate, a future opportunity constitutes the launching of a 

crowdsourcing event, where the social factor of crowdsourcing will be included. Another opportunity to 

encourage more people in participation is to connect to crowdsourcing communities, to distribute the 

invitation for the crowdsourcing project among a larger target group and to keep the project open for a 

longer period. Especially a crowdsourcing campaign is considered to be a suitable tool in order to achieve 

a wide range of volunteers that can support the potential development of a global mine database by 

digitizing mines on global scale. These opportunities might support the realization of a crowdsourcing 

project. Regarding the analysis of the generated data, potential automatization is related to script-based 

analysis of the data and polygon post-processing. A novel opportunity and further potential development 

is related to the dual character of crowdsourcing. The contribution of volunteers by fulfilling a 

crowdsourced task has so far been considered to be the central objective of this study. Besides data 

generation, a sensitization of the crowd for environmental issues, such as mining and its footprint within 

the environment, has taken place. This duality needs to be further investigated, as high potential is seen in 

raising awareness towards environmental issues by generating geographic data. Crowdsourcing is thus 

considered to have an additional environmental teaching effect. Furthermore, information about the 

background of volunteers which can be retrieved by a questionary, is useful in investigating the target 

group. Acquired knowledge about target groups can then be transferred to other crowdsourcing tasks and 

support their realization. 

Threats are primary related to the quality of the digitized data. Seriousness of the volunteers in the 

digitization cannot be proven, but is essential for the quality of the data. This could be mitigated by 

pronouncing the importance of the generated data and its potential implications. A major risk related to 

crowdsourcing is that participation rate will be too low. Therefore, several opportunities have previously 

been proposed such as the launching of a crowdsourcing event or the connection to other groups. 

Figure 6-5: Matrix of strengths & weaknesses and opportunities & threats of crowdsourcing. 
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7 Conclusion 

This section summarizes previous findings and derives the main conclusion with respect to the 

research objective of this study. Besides, the contribution of this study towards the initial motivation as 

well as directions for future research will be outlined. 

The objective of this study was to compare remote sensing analyses that can be applied for the 

computation of the spatial extent of mining areas. For this comparative study, index-based, pixel-based 

and object-based multi-spectral classifications on single-source and multi-source level, as well as 

crowdsourcing have been applied in order to compute the spatial extent of open-pit mines in different 

geographic regions. It has been demonstrated that remote sensing analyses, among them classifications 

and crowdsourcing, can be used in order to detect known open-pit mines in different geographic regions, 

classify or respectively digitize them with an overall accuracy ≥ 77.41 % and derive the spatial extent. 

However, the comparison by Intersection over Union (IoU) revealed that results of both methods are 

different, given a low IoU ≤ 0.49. Classification and crowdsourcing results vary in their area and accuracy 

value, as well as their visual impression. With respect to area and accuracy values, the majority polygon, 

which is referred to the polygon being assigned to the mine by the majority of the crowd, is mostly at an 

intermediate position between the classifications. Taking findings related to the results and the 

implementation of the methods into account, strengths and weaknesses, as well as opportunities and 

threats of each method have been derived. Each method has its own strengths and weaknesses, as well as 

opportunities and threats with respect to effort, transferability, completeness, implementation, quality and 

credibility as well as their potential for automatization and further development. Classifications convince 

through their required effort, as already with low-expenditure methods satisfactory results could have been 

achieved, whereas they are considered challenging regarding transferability, as each time new training 

need to be performed. In addition, spectral similarities between classes challenge the distinction between 

features and the absence of contextual knowledge questions completeness. Regarding crowdsourcing, 

contextual knowledge of volunteers results in the inclusion of correct mine features in digitizations. 

Difficulties related to this method are primarily related to the contradiction between very precise 

instructions on the one hand and least expenditure of time for volunteers. The consideration of these 

strengths and weaknesses is essential in order to choose the appropriate method for mine area 

computation. Opportunities and threats are expected to guide future research. 

Up to now, information about the spatial extent of mining areas has not been available yet for all 

open-pit mines on global scale, whereby the EHP analysis of open-pit mines remained limited. By 

providing strengths and weaknesses of methods that can be applied within this context, this study 

significantly contributes towards an entire EHP analysis of globally distributed open-pit mines.  

Nevertheless, some investigations of both methods as well as their combination remain to be 

pursued. Regarding classifications, it needs to be investigated if the integration of other classification 

algorithms and classification methods that consider the factor proximity, such as rule-based object-based 

analysis or conditional random fields face the issue of absence of contextual knowledge within 

classifications. Given the large variety of classification methods, IoU remains to be applied for the 
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comparisons among classifications, so as to distinguish not only between classifications and 

crowdsourcing, but also to differentiate between classifications. With respect to further potentials, it needs 

to be investigated if – by means of a characteristic training or NDVI range set per ecozone – unknown 

mines can be detected within new satellite imagery. This might set the path towards an automated mine 

detection model. 

As far as crowdsourcing is concerned, the potential of a global mine mapping event needs to be 

investigated on a short-term in order to confirm global transferability and to establish a global mine 

database in the long term. Concerning the volunteers, a thorough understanding of the background of 

volunteers is required so as to evaluate crowdsourcing results entirely and to determine the appropriate 

target group for the crowdsourcing-based analysis of the open-pit mine extent in different geographic 

regions. These aspects might support further development of crowdsourcing in the domain of mine area 

computation. 

Concerning the comparison of both methods, further research should assess if both methods could 

complement each other in an integrated classification-crowdsourcing model, instead of choosing between 

classifications and crowdsourcing. Rather than opposing machine-based results to human-based results, 

one could develop a methodology, which fuses the strengths and opportunities of both methods, in order 

to generate a powerful tool. Within this context, it needs to be assessed in detail in which stage of the 

analysis the methods could complement each other. For example it is assumed that crowdsourcing could 

support classifications by providing training, by providing geospatial information when classifications are 

not accurate enough or by performing the evaluation of the classification results. Synergetic effects of 

classifications and crowdsourcing in the domain of mine area computation thus constitutes a novel 

research objective which extends this present study. 
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8 Appendix  

Table 8-1: Spectral mine range of the three calculated indices NDVI, FMI and CMI for each study site. 

  Grasberg mine Hamersley mine Highland mine Mariana mine 

NDVI range - 0.85 - 0.08 - 1 - 0.1 - 0.795 - 0.14 - 0.651 - 0.2 

FMI range 0.96 - 1.20 1.4 - 1.9 0.9 - 1.26 1.12 - 1.8 

CMI range 1.02 - 1.20 1 - 1.2 0.94 - 1.3 1.05 - 1.2 

 

  

Figure 8-1: Overview of the three calculated indices NDVI, CMI and FMI exemplary for Grasberg mine. All three indices do not 

cover the same mine area; contains modified Copernicus Sentinel data (2018). 



Appendix   Master Thesis Silvana Bürck 

92 

   

Table 8-2: Omission error of the class mine. This table shows the amount of pixels of other land use classes (in %), which should 

have been integrated into the class mine. Bold entries refer to Figure 5-14. 

Grasberg mine Hamersley mine Highland mine Mariana mine 

IND PIX OBIA IND PIX OBIA IND PIX OBIA IND PIX OBIA 

Non-

mine 
52.11 

% 

Bare 

area 
1.60 % 

Dense 

vegetation 
0.55 % 

Non-

mine 
55.88 

% 

Sparse 

vegetation 
1.96 % 

Shadow 
1.42 % 

Non-

mine 
1.48 

% 

Clouds 
0.06 % 

Bare area 
0.68 % 

Non-

mine 
19.11 

% 

Clouds 
0.99 % 

Shadow/ 
Clouds 
0.56 % 

- Clouds 
2.44 % 

Sparse 

vegetation 
0.55 % 

- 
Humid 

areas 
3.34 % 

Bare 

area 
7.03 % 

 - Shadow 
0.31 % 

Dense 

vegetation 
0.96 % 

- Shadow 
1.34 % 

Bare area 
1.06 % 

- 
Shadow 
11.05 

% 
Shadow 
8.19 % - Bare area 

22.12 % 

Humid 

areas 
16.94 

% 
 - 

Bare 

area 
0.43 % 

Shadow 
0.99 % - 

Bare 

area 
5.68 % 

Sparse 

vegetation 
1.88 % 

 

Table 8-3: Commission error of the class mine. This table shows the amount of pixels (in %), which have been included into the 

class mine but belong to the other classes. Bold entries are related to Figure 5-15. 

Grasberg mine Hamersley mine Highland mine Mariana mine 

IND PIX OBIA IND PIX OBIA IND PIX OBIA IND PIX OBIA 

Non-

mine 
1.34 

% 

Shadow 
2.20 % 

Bare 

area 
  4.31 % 

Non-

mine 
99.95 

% 

Bare area 
3.20 % 

Sparse 

vegetation 
0.73 % 

Non-

mine 
2.84 

% 

Sparse 

vegetation 
0.06 % 

Sparse 

vegetation 
0.04 % 

Non-

mine 
0.01 

% 

Bare 

area 
1.47 

% 

Bare 

area 
2.73 

% 

  Clouds 
2.58 % 

Shadow 
  5.16 % - Shadow 

8.16 % 
Humid 

areas 
0.83 % 

  Bare area 
4.22 % 

Bare area 
0.75 % - - - 

  
Bare 

area 
3.27 % 

Clouds 
8.70 % - 

Sparse 

vegetation 
9.13 % 

Bare area 
2.01 %   

Clouds 
6.57 % 

   
Clouds 
2.21 % - - - 
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Table 8-4: Overview of training samples for pixel-based classifications. 

 Training samples for pixel-based classification 

  Grasberg mine Hamersley mine Highland mine Mariana mine 

Shadow [pixels] 4917 2263 6031 21419 

Clouds [pixels] 13015 0 2420 9059 

Bare Area  [pixels] 4454 26239 6658 48888 

Sparse Vegetation [pixels] 753 6154 11291 17994 

Dense Vegetation [pixels] 3047 0 27328 41300 

Mine [pixels] 9338 47732 44630 31587 

Humid Areas [pixels] 0 2527 0 0 

Total amount of pixels 35524 84915 98358 170247 

Area [km
2
] 3.55 8.49 9.83 17.02 

Area relative to entire study site 

[%] 2.34 2.07 1.52 2.28 
 

Table 8-5: Overview of training samples for object-based classifications. 

 Training samples for object-based classification 

 Grasberg mine Hamersley mine Highland mine Mariana mine 

Shadow [pixels] 699 1263 6031 21419 

Clouds [pixels] 578 0 2420 9059 

Bare Area  [pixels] 144 26239 6658 48888 

Sparse Vegetation [pixels] 556 6154 11291 17994 

Dense Vegetation [pixels] 996 0 2732 41300 

Mine [pixels] 970 42267 30290 29542 

Humid Areas [pixels] 0 2527 0 0 

Total amount of pixels 3943 78450 59422 168202 

Area [km
2
] 0.39 7.84 5.94 16.82 

Area  relative to entire study site 

[%] 0.26 1.91 0.92 2.25 
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Table 8-6: Spectral attributes that have been included in the object-based 

classifications; source: Harris Geospatial (2019b), modified. 

  Attribute Description 

Spectral 

attribute 

Spectral_Mean  
Mean value of the pixels 

comprising the region in 

band x 

Spectral_Max  
Maximum value of the 

pixels comprising the 

region in band x 

Spectral_Min  
Minimum value of the 

pixels comprising the 

region in band x 

Spectral_STD  
Standard deviation value 

of the pixels comprising 

the region in band x 
 

Table 8-7: Texture attributes that have been included in the object-based 

classifications; source: Harris Geospatial (2019b), modified. 

  Attribute Description 

Texture 

attribute 

Texture_Range  

Average data range of the 

pixels comprising the 

region inside the kernel 

(whose size you specify 

with the Texture Kernel 

Size parameter in 

segmentation) 

Texture_Mean  
Average value of the pixels 

comprising the region 

inside the kernel 

Texture_Variance  
Average variance of the 

pixels comprising the 

region inside the kernel 

Texture_Entropy  
Average entropy value of 

the pixels comprising the 

region inside the kernel 
 



Appendix   Master Thesis Silvana Bürck 

95 

   

Table 8-8: Spatial attributes that have been included in the object-based classifications; source: Harris Geospatial (2019b), 

modified. 

  
Attribute Description 

Spatial attribute 

Area  

Total area of the polygon, minus the area of the holes.  
If the input image is pixel-based, the area is the number of pixels 

in the segmented object. For a segmented object with 20 x 20 

pixels the area is 400 pixels. 
If the input image is georeferenced, the area is in the map units 

of the input image. For a segmented object with 20 x 20 pixels, 

where the input image pixel resolution is 2 meters, the total area 

is 1600 square meters (400 pixels x 2 meters x 2 meters). 

Length  

The combined length of all boundaries of the polygon, including 

the boundaries of the holes. This is different than the 

Major_Length attribute.  
If the input image is pixel-based, the length is the number of 

pixels. For a segmented object with 20 x 20 pixels, the length is 

80 pixels. 
If the input image is georeferenced, the length is in the map units 

of the input image. For a segmented object with 20 x 20 pixels, 

where the input image pixel resolution is 2 meters, the length is 

160 meters (80 pixels x 2 meters). 

Compactness  
A shape measure that indicates the compactness of the polygon. 

A circle is the most compact shape with a value of 1 / pi. The 

compactness value of a square is 1 / 2(sqrt(pi)). 
Compactness = Sqrt (4 * Area / pi) / outer contour length 

Convexity  
Polygons are either convex or concave. This attribute measures 

the convexity of the polygon. The convexity value for a convex 

polygon with no holes is 1.0, while the value for a concave 

polygon is less than 1.0.  
Convexity = length of convex hull / Length 

Solidity  
A shape measure that compares the area of the polygon to the 

area of a convex hull surrounding the polygon. The solidity 

value for a convex polygon with no holes is 1.0, and the value 

for a concave polygon is less than 1.0.  
Solidity = Area / area of convex hull  

Roundness  

A shape measure that compares the area of the polygon to the 

square of the maximum diameter of the polygon. The "maximum 

diameter" is the length of the major axis of an oriented bounding 

box enclosing the polygon. The roundness value for a circle is 1, 

and the value for a square is 4 / pi.  
Roundness = 4 * (Area) / (pi * Major_Length

2
)  

Form_Factor  
A shape measure that compares the area of the polygon to the 

square of the total perimeter. The form factor value of a circle is 

1, and the value of a square is pi / 4.  
Form_Factor = 4 * pi * (Area) / (total perimeter)

2
  

Elongation  

A shape measure that indicates the ratio of the major axis of the 

polygon to the minor axis of the polygon. The major and minor 

axes are derived from an oriented bounding box containing the 

polygon. The elongation value for a square is 1.0, and the value 

for a rectangle is greater than 1.0.  
Elongation = Major_Length / Minor_Length 

Rectangular_Fit  
A shape measure that indicates how well the shape is described by a 
rectangle. This attribute compares the area of the polygon to the 
area of the oriented bounding box enclosing the polygon. The 
rectangular fit value for a rectangle is 1.0, and the value for a non-
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rectangular shape is less than 1.0.  
Rectangular_Fit = Area / (Major_Length * Minor_Length)  

Main_Direction  
The angle subtended by the major axis of the polygon and the x-axis 
in degrees. The main direction value ranges from 0 to 180 degrees. 
90 degrees is North/South, and 0 to 180 degrees is East/West. 

Major_Length  
The length of the major axis of an oriented bounding box enclosing 
the polygon. Values are map units of the pixel size. If the image is not 
georeferenced, then pixel units are reported. 

Minor_Length  
The length of the minor axis of an oriented bounding box enclosing 
the polygon. Values are map units of the pixel size. If the image is not 
georeferenced, then pixel units are reported. 

Number_of_Holes  The number of holes in the polygon. Integer value.  

Hole_Area/Solid_Area  
The ratio of the total area of the polygon to the area of the outer 
contour of the polygon. The hole solid ratio value for a polygon with 
no holes is 1.0.  
Hole_Area/Solid_Area = Area / outer contour area  
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Figure 8-2: Instructions for digitization I. This document presented the base of the crowdsourcing project. 
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Figure 8-3: Instructions for digitization II. This document presented the base of the crowdsourcing project. 
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