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Chapter 1

Abstract

1.1 Summary

Investigation of the structure and function of biological matter provides one of the most

fascinating aspects of nature: how life with all its complex processes evolves from simple

wiggling and jiggling of atoms. Structural Biology is especially interesting, as it involves

all three major fields of the natural sciences: the physics of atoms and the scattering

of incident radiation, the chemistry of bonding, reactions and interactions and finally

the biological interpretation of the chemical structures. However, tools from statistical

decision theory are still rare in structural biology compared to their applications in e.g.

”omics”-technologies. Especially when it comes to the interpretation of 3D maps of single

particles, more rigorous approaches would be highly desired.

In this thesis I developed new methodology for the statistical inference of three-dimensional

molecular maps generated with cryogenic electron microscopy (cryo-EM), which is be-

coming the method of choice for high-resolution structure determination. The aspects I

focused on are very basic topics of the method and were not properly solved so far.

The first part of the dissertation deals with the problem of assigning molecules and molec-

ular parts in noisy 3D densities. Based on multiple hypothesis testing and false discovery

rate control, the cryo-EM map is transformed in a map containing detection probabilities,

termed confidence map. Confidence maps allow the assignment of map features by means

of statistical significance and avoid rather arbitrary thresholds, as they have to be used

for the analysis of cryo-EM maps.

Another important quantity that has to be inferred from cryo-EM maps is their resolu-

tion. It is probably the most important number regarding the quality of the map and

describes up to which spatial frequency we can faithfully interpret the data. However,

despite its importance and implications for map processing, resolution estimation remains

a highly controversial issue. I describe how the resolution estimation problem can be re-

formulated into multiple hypothesis testing of Fourier shell correlation coefficients and

how this results in a unified threshold criterion applicable to global, local, directional and

map-model resolution estimation.

1



The last chapter provides a high-resolution study of tobacco mosaic virus (TMV). Al-

though structural studies of tobacco mosaic virus by Rosalind Franklin marked one of

the birth events of structural biology, the most important biological aspect of controlled

release of the viral genome remained a mystery for more than 50 years. Two cryo-EM

structures at 1.9 and 2 Å resolution together with the developed confidence maps allowed

us to elucidate the structural mechanism of the disassembly switch of TMV. Moreover,

it may also serve as a general case study how careful interpretation with state-of-the art

methods can be used to deal with densities that are notoriously difficult to model.
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1.2 Zusammenfassung

Untersuchungen der Struktur und Funktion belebter Materie stellen einen der faszinierend-

sten Aspekte des Universums dar: wie sich das Leben mit seiner ungemeinen Vielfalt an

orchestrierten Prozessen aus dem einfachen ”wackeln” der Atome entwickelt. Insbeson-

dere die Strukturbiologie ist hierbei interessant, da sie alle drei großen Felder der Natur-

wissenschaften vereint: die Atomphysik und die Streuung von Strahlung, die Chemie

der Bindungen, Reaktionen und Interaktionen sowie letztlich die biologische Interpreta-

tion der chemischen Strukturen. Trotz der großen Bedeutung der Strukturbiologie sind

Verfahren der statistischen Entscheidungstheorie, insbesondere im Vergleich mit deren

Anwendungen in den ”Omics”-Technologien, immer noch relativ selten in ihr anzutreffen,

insbesondere wenn es zur Interpretation der 3D Karten einzelner Partikel kommt.

In dieser Dissertation habe ich neue Verfahren der statistischen Inferenz von dreidimen-

sionalen molekularen Karten, welche mit kryogener Elektronenmikroskopie (Kryo-EM)

aufgenommen werden können, entwickelt. Kryo-EM ist mittlerweile die Methode der

Wahl wenn es um hoch-aufgelöste Strukturbestimmung geht. Bei den Aspekten, an de-

nen ich mich zu arbeiten entschied, handelt es sich um grundlegende Dinge der Methode,

welche ungenügend gelöst waren.

Der erste Teil dieser Dissertation behandelt das Problem in verrauschten 3D Kryo-EM

Karten Moleküle und Teile davon zu annotieren. Basierend auf multiplem Testen statis-

tischer Hypothesen und Kontrolle der falsch-positiv Rate wird die Kryo-EM Karte in eine

Karte von Detektionswahrscheinlichkeiten transformiert, welche wir als Konfidenzkarten

bezeichnen. Diese Konfidenzkarten erlauben die Annotierung von Teilen basierend auf

statistischer Signifikanz und umgehen die Wahl beliebieger Niveaus, welche bei der Ana-

lyse von einfachen Kryo-EM Karten verwendet werden müssen.

Eine weitere wichtige Kennzahl, die von Kryo-EM Karten geschätzt werden muss, ist

deren Auflösung. In Bezug auf die Qualität der Karte handelt es sich hierbei wohl

um die wichtigste Größe; sie beschreibt bis zu welcher räumlichen Frequenz wir die

Daten sicher interpretieren können. Trotz ihrer Bedeutung und Verwendung in der

weiteren Prozessierung der Karten, ist die Schätzung der Auflösung immer noch ein

kontrovers diskutierter Prozess. Ich beschreibe ich einen neuen Ansatz, wie das Prob-

lem in eines des multiplen Hypothesetestens von Fourier-Hüllen Korrelationskoeffizien-

ten umformuliert werden kann und wie selbes zu einem einheitlichen Kriterium für die

Auflösungsbestimmung führt.

Zuletzt beschreibe ich noch eine hoch-aufgelöste Studie von Tabak-Mosaik Virus (TMV).

Obwohl Rosalind Franklins Studien zur Struktur von TMV zusammen mit dem Beginn

des gesamten Gebiets der Strukturbiologie fielen, blieb der biologisch wichtigste Aspekt,

nämlich die kontrollierte Freigabe des viralen Genoms, für mehr als 50 Jahre ein Rätsel, da

die beteiligten Reste sehr flexibel sind und darüber hinaus anfällig für Strahlungschäden.

Zwei Kryo-EM Strukturen mit Auflösungen von 1.9 und 2 Å, zusammen mit den entwick-

elten Konfidenzkarten erlaubten uns den Mechanismus im Detail aufzuklären. Darüber
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hinaus liefert diese Studie auch ein allgemeines Beispiel, wie sorgfältige Interpretation

mit modernen Methoden benutzt werden kann um schwierige Teile von Molekülen zu

modellieren.
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6.4.2 Structures at Lower Radius . . . . . . . . . . . . . . . . . . . . . . 106

6



6.4.3 Interactions in the Metastable Switch . . . . . . . . . . . . . . . . . 110

6.4.4 Charge Build-Up at Carboxylates Destabilizes the Ca2+ Site . . . . 111

7 Summary and Conclusions 115

8 Acknowledgements 117

Appendices 133

A A Non-Parametric Permutation Approach for Adaptive Thresholding of

Fourier Shell Correlation Curves 135

B Elucidation of the Viral Disassembly Switch of Tobacco Mosaic Virus 141

7



List of Abbreviations

ADP Atomic displacement parameters

CCPEM Collaborative computational project for cryo-EM

CDF Cumulative distribution function

CP Coat protein

cryo-EM cryogenic electron microscopy

CTF Contrast transfer function

ECDF Empirical cumulative distribution function

EM Electron microscopy

EMBL European molecular biology laboratory

EMDB Electron microscopy data bank

ER Endoplasmatic Reticulum

FSC Fourier shell correlation

FDR False discovery rate

FFT Fast Fourier transform

FWER Family wise error rate

GUI Graphical user interface

HA Hemagglutinin

HDA High density amorphous ice

IFT Inverse Fourier tranform

kV kilovolt

KS Kolmogorow-Smirnow

LDA Low density amorphous ice

MAP Maximum-a-posteriori

MCMC Markov Chain Monte Carlo

8



ML Maximum likelihood

MSE Mean squared error

NMR Nuclear magnetic resonance

PC Phosphatidylcholin

PDB Protein data bank

PETG Phenylethyl beta-D-thiogalactopyranoside

pFDR Positive false discovery rate

PPV Positive predictive value

RMSD Root mean square deviation

SNR Signal-to-noise ratio

SPA Single particle analysis

SPoC Statistical processing of cryo-EM maps

SSNR Spectral signal-to-noise ratio

STA Sub-tomogram averaging

TMV Tobacco mosaic virus

TRP1 Transient receptor potential cation channel subfamily V member 1

9



10



Chapter 2

Publications Covered in This Thesis

Maximilian Beckers, Colin Palmer and Carsten Sachse. Confidence Maps - Statistical

inference of cryo-EM maps. Acta Cryst. Sect. D (submitted)

Felix Weis*, Maximilian Beckers*, Iris von der Hocht and Carsten Sachse. Elucidation of

the viral disassembly switch of tobacco mosaic virus. EMBO Reports (2019) 20:e48451

*equal contribution

Maximilian Beckers, Arjen Jakobi and Carsten Sachse. Thresholding of cryo-EM maps

by false discovery rate control. IUCrJ (2019) 6, 18-33

11



12



Chapter 3

Introduction

3.1 Electron Microscopy of Biological Specimens

The three dimensional structure of a protein is the main determinant for its function.

With the advent of X-ray crystallography, structural studies of biological molecules be-

came a major discipline in order to understand how these diverse complexes carry out

all the basic functions in a living cell. Electron microscopy (EM) was used from quite

early on for biological studies [43, 42]. However, compared to X-ray crystallography or

NMR, it failed to yield high-resolution information in the beginning, which is a prereq-

uisite for confident three dimensional assignment of individual atom positions. Although

limitations of both crystallographic and NMR methods in dealing with big and more flex-

ible macromolecular complexes became obvious, electron microscopy remained a minor

technique. Three big topics had to be optimized to make high-resolution studies with

EM possible: efficient reconstruction of a 3D map from 2D projections, preserving the

biological structures including hydration of the molecules in an electron microscope and

improved electron detection at low dose rates.

Although powerful reconstruction algorithms and vitrification protocols of biological spec-

imens were developed quite early, it was until the introduction of direct electron detectors

in 2013, which allowed the acquisition of dose fractioned movies, that we faced several

near-atomic resolutions structures, not only for highly symmetrical viruses but also for

smaller and less symmetric particles. Now commonly known as the ”resolution revolu-

tion” [78], this marked the point where cryogenic electron micrscopy (cryo-EM) became

one of the methods of choice for biological structure determination.

Since then, high-resolution cryo-EM has been used to visualize the 3D structures of

long-hunted structures like diverse RNA-polymerase complexes [115, 63], ribosomes [72],

spliceosomes [105], membrane proteins [155] and neurodegenerative filaments [41]. Fi-

nally in 2017, these developments culminated in the Nobel prize in Chemistry for Richard

Henderson, Joachim Frank and Jaques Dubochet for their studies in the development

of cryo-EM. At the Electron Microscopy Data Bank (EMDB) this resolution boost is ex-

pressed through an exponentially growing number of deposited cryo-EM maps with steady
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improving resolutions [1]. In 2019, ca. 10000 cryo-EM maps have been submitted to the

EMDB with a resolution record of 1.54 Å [1], which highlights the importance cryo-EM

gained in the field of structural biology.

3.1.1 Image Formation in an Electron Microscope

The actual image formation in an electron microscope is the result of incident electrons

interacting with the sample of interest as well as with the microscope itself. Interactions

of the electrons with the specimen can be distinguished in elastic and inelastic. Elastic

scattering involves no transfer of energy to the specimen, i.e. the kinetic energy of the in-

coming electron is conserved, while inelastic scattering involves energy transfer [51]. While

elastic scattering is the result of interactions with the electrostatic potential of the atom

nuclei screened by the outer electrons in the atom, inelastic scattering is a less localized

process due to plasmon and interband excitations [119]. Roughly spoken, elastic interac-

tions are mainly the cause of interactions with the nucleus, which has a much higher mass

than the electrons (99.9% of the mass is concentrated in the atom nucleus) and, in concor-

dance with the Born-Oppenheimer approximation [17], can be roughly treated invariant

from the electrons. Elastic scattering is then the result of conservation of momentum. In

contrast, interactions with other electrons involve interplay between particles of similar

mass, which will exchange energy.

Compared to elastic scattering, inelastic scattering is a much less localized process. Thus,

the main source of structural information content in the images is delivered from elastic

scattering. However, as the inelastically scattered electrons consequently mainly con-

tribute noise, it can be advantageous to filter them out by means of energy filtering [163].

The Lambert-Beer law [11] provides us a simple theoretical framework for electron-

specimen interactions, similar to the case of light. Based on this, the probability density

function p(x) for a inelastic (elastic) scattering event after travelling a distance x through

the specimen is given as a exponential distribution

p(x) =
1

λ
exp(−x

λ
), (3.1)

where λ is the so called mean free path for inelastic (elastic) scattering. Given a specimen

thickness d, the probability F (d) of inelastic (elastic) scattering for an electron travelling

through this specimen is then given as

F (d) =

∫ d

0

p(x)dx = 1− exp(−λ
d

). (3.2)
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Calculating the expectation value of this distribution, it can be seen that the mean free

paths for elastic and inelastic scattering indeed characterize the expected travelling dis-

tance between two consecutive scattering events in the specimen. Therefore, they provide

a simple measure for the strength of the electron-specimen interaction. An important

feature of the mean free paths is their dependence on the acceleration voltage, which thus

forms the main rational behind the specific choice of the used voltages [119].

Amplitude and Phase Contrast

Related to the interactions with the specimen, two main sources of contrast are typically

distinguished: amplitude and phase contrast. Amplitude contrast results from attenu-

ation of the intensity of the incoming electron beam, i.e. absorption of electrons in the

specimen, scattering outside the objective aperture or as the result of an energy filter

[120]. Phase contrast is a more complex process and is a result of the interference of the

unscattered with the scattered electrons [163].

Phase contrast itself is a rather old and established concept, originally developed in light

microscopy in the first half of the 20th century by Frits Zernike [164]. In cryo-EM of vit-

rified specimens it represents the main source of contrast in the images, while amplitude

contrast usually only plays a minor role.

However, phase contrast needs to be generated, and, in an aberration free microscope in

focus, nothing would be visible besides noise. The common way to generate phase contrast

is to use a defocus, which was investigated in detail by Otto Scherzer. More sophisticated

approaches were developed with Zernike [32] and Volta phase plates [31, 30, 33]. Espe-

cially Volta phase plates result in dramatically improved contrast, which was shown to

be beneficial for the analysis of small particles [73] and thicker specimens like tomograms

[91]. However, for general single particle analysis they do not seem to lead to improved

resolutions of the resulting maps.

A very interesting approach termed laser phase plate was developed very recently, where

the phases of the electrons are shifted by means of a high-intensity laser beam [130, 99].

This allows direct tuning of the phase shifts and avoids issues of the Volta phase like

electrostatic charging and adverse scattering. While this seems to be a very promising

direction, it requires a modified microscope architecture with a high-intensity laser in-

cluding mirrors incorporated in the electron microscope. Thus, wide acceptance might

still lay ahead a few years.

A Mathematical Description of Image Formation

Mathematically, the image formation process is usually stated in a wavefunction descrip-

tion [74, 151]. The wavefunction Ψexit of the incident electron waveform Ψin after passing

through a thin specimen is given in the phase-grating approximation [74] as
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Ψexit(x, y) = exp(iσv(x, y))Ψin, (3.3)

where i is the imaginary unit. The phase shift σv(x, y) at point x, y in the projection

is then given as a line integral of the electrostatic potential V (x, y, z) along the beam

multiplied by σ = 2πmeλ/h2, where m is the relativistic mass, e is the magnitude of the

charge on an electron, λ the wavelength of the electron and h Planck’s constant. For a

beam parallel to the z-axis this becomes

v(x, y) =

∫ ∞
−∞

V (x, y, z)dz. (3.4)

Amplitude contrast is usually modelled as the imaginary part of the electrostatic potential

V (x, y, z). However, biological specimens usually exhibit almost no amplitude contrast

and inelastically scattered electrons are filtered out with an energy filter [163], which

makes the phase contrast the dominant source of contrast in EM images.

In addition to modulation by the specimen, the exit wavefunction is further modulated

by the aberration function of the microscope. The aberration function is easiest to stater

in Fourier space, and is in Fourier space as a function of the spatial frequency k given as

χ(k) = πλk2(0.5CS3λ
2k2 −∆f), (3.5)

with λ the electron wavelength, ∆f the defocus and CS3 the third-order spherical aber-

ration. The aberration function χ quantifies the phase shift of each spatial frequency due

to the microscope. Application of the phase shifts to each pixel in the Fourier transform

corresponds to multiplication with

CTF(k) = exp(−iχ(k)), (3.6)

where CTF is the so called contrast transfer function. The CTF describes how each pixel

in the Fourier transform of the image is modified from the microscope. It has to be noted,

that, for the sake of simplicity, astigmatism has been ignored in the given description. A

depiction of a simulated CTF is shown in Fig. 3.1, where high resolutions are attenuated

with a realistic B-factor of 50 Å2.
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Figure 3.1: Power spectrum of the contrast transfer function. 2D (left) and 3D (right) views of the power spectrum of the

CTF with a third-order spherical aberration of 2.7 mm and a defocus of 500 nm at 300 kV. High resolutions are attenuated

with a realistic B-factor falloff of 50 Å2

With this, the final wavefunction Ψfinal is given as

Ψfinal(x, y) = Ψexit(x, y)⊗ IFT[exp(−iχ(k))], (3.7)

where ⊗ denotes convolution and IFT the inverse Fourier transform. The probability

density function of the image intensities I0(x, y) is then given by

I0(x, y) = |Ψfinal(x, y)|2. (3.8)

It has to be noted that the presented image formation model is rather simplistic and

ignores aspects like defocus spread, which would further complicate the situation. More-

over, electrons accelerated at 300 kV travel at 77% of the speed of light, which makes

it necessary to include relativistic effects. Fortunately, a full relativistic treatment based

on the Dirac equation gives similar results as the Schroedinger equation with relativistic

corrections [79], which is the framework from which the phase grating approximation can

be derived from [152]. However, the presented framework captures the most important

aspects and was chosen for the sake of readability. It should be mentioned here as well,

that the phase-grating approximation, which is also known as the phase-object or pro-

jection assumption, should not be confused with the weak-phase object assumption. The

weak-phase object assumption is rather unimportant conceptually, but can be used to

simplify the equations I presented.

3.1.2 Cryo-Electron Microscopy of Vitrified Aqueous Specimens

Due to small amplitude contrast and weak phase contrast of biological macromolecules

in an electron beam, imaging of biological specimens has for a long time been limited
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to negatively stained samples. However, biological specimens in their native state are

in an aqueous environment, but the visualization of aqueous samples in an electron mi-

croscope posed several big challenges: at room temperature the water evaporates in the

vacuum needed for imaging with electrons. Moreover, at lower temperatures the sample

starts freezing and makes crystalline ice, thereby destroying the native structure of the

embedded macromolecules. A workaround was found in 1981 at EMBL Heidelberg, where

Alisdair McDowall and Jaques Dubochet managed to vitrify pure water [36], i.e. to freeze

water in a non-crystalline state without any long-range order. This opened the way for

electron microscopic investigations of vitrified specimens.

The vitrification of water can for example be achieved by plunge freezing a thin layer of

aqueous solution in liquid ethane [36]. Due to the rapid plunging process, the freezing

happens so fast that no ice crystals can form. Two forms of vitreous ice have been re-

ported: high-density amorphous ice (HDA) and low-density amorphous ice (LDA). While

HDA was first obtained by compressing normal ice at liquid nitrogen temperature [97],

LDA seems to be the form of ice observed during plunge freezing. Moreover, HDA can

be transformed to LDA and reverse [98]. However, the exact nature of the different forms

of amorphous ice is not clear. Recent results suggest that HDA is a kinetically arrested

state [144], something which might also hold for LDA, i.e. HDA and LDA are not clearly

defined states but snapshots of frozen water on its way to some crystalline form of ice.

Once vitrified, the sample can be imaged in a cryo-capable electron microscope. However,

vitrification of thicker samples is still problematic. The thicker the sample, the harder

complete vitrification becomes and the following build-up of crystalline ice makes the re-

spective regions useless. Moreover, the vitrification process is still not always reproducible

and requires further automation in the future.

Vitreous Ice in an Electron Beam

The complete interaction processes of the incident electrons with vitreous water and how

it reacts is still not fully understood. Radiation damage of water molecules will gener-

ate reactive species that likely react with each other and might form water again [51].

Moreover, this will lead to continuous rearrangement of water molecules. This hypothesis

could be supported by means of an analysis of the power spectra from amorphous ice [96]

and explains the missing Thon rings at resolutions around the water ring (3-4 Å). Based

on this, it can be estimated that water is moved by a mean squared distance of ca. 1 Å

for every electron at an acceleration voltage of 300 kV.

However, not only the water molecules show beam-induced motion, but also the complete

ice layer including the embedded biological macromolecules. With the advent of direct

electron detectors and the possibility to acquire dose-fractionated movies, it became fea-

sible to correct for this movement, with highly improved resolutions of the resulting re-

constructions [19, 23, 82, 167, 170]. While specimen doming seems to be a major source
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of the particle movement [19, 167], additional mechanisms like charging effects and beam

deflection are likely to contribute as well [51]. However, the actual source of the specimen

doming is still investigated. It is believed that contraction of the grid holes deforms the

ice layer [19], which can be supported with the observation that gold grids show sub-

stantially less movement compared to carbon [124]. However, expansion of the ice layer

due to radiolysis and increased internal pressure [52] as well as relieve of stress, which is

accumulated during the rapid freezing process, seem to play a role as well [132]

Towards the perfect Acceleration Voltage

High-end image acquisition is today typically done at acceleration voltages of 300 kV

where the mean free path for inelastic scattering of vitreous ice is ≈ 400 nm [163, 120],

while the mean free path for elastic scattering is ≈ 900 nm. Inelastic scattering con-

sequently happens more often than elastic scattering. It can also be observed that for

realistic ice-thickness of ≈ 30 nm, a big fraction (ca. 85%) of the electrons does not

interact with the specimen at all. Recent attempts also showed that lower acceleration

voltages of 200kV [61][60] and 100 kV [103] can be used for high-resolution imaging, with

possible advantages for smaller particles due to improved contrast and also improved in-

formation per unit damage [110]. Additionally, 100 kV and 200 kV microscopes are more

cost efficient. However, at higher voltages the scattering cross sections for both elastic

and inelastic scattering decrease, which allows to use a larger electron exposure and pre-

vents plural scattering [51]. For thicker samples, where multiple scattering events become

limiting factors, 300 kV microscopes still offer important advantages compared to lower

acceleration voltages.

3.1.3 3D Reconstruction of cryo-EM Maps

High-resolution structural studies of biological macromolecules by electron microscopy

poses the problem of calculating a 3D reconstruction from 2D EM images. Two commonly

used approaches can be distinguished: single-particle analysis (SPA) and sub-tomogram

averaging (STA). However, before going into more detail of SPA and STA, I will briefly

introduce the Fourier slice theorem at this point.

The Fourier Slice Theorem

The Fourier slice theorem, sometimes also referred to as central or projection slice theorem,

is a central mathematical theorem that relates the projections from a ray-transform to

the Fourier transformation of the projected object and was originally derived by Ronald

Bracewell [18]. In the context of cryo-EM, it states that the Fourier transform of a 2D

projection (in our case with a simple phase object the projection is a ray-transform) is
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equal to a 2D slice of the 3D Fourier that stands orthogonal to the projection direction

and goes through the origin.

Denoting the 3D and 2D Fourier transforms with F3 and F2, respectively, the projection

operator with P and the slice operator with S, the theorem can be mathematically stated

as

F2P = SF3. (3.9)

A graphical illustration with a simple duck map can be found in Fig. 3.2. Algorithmically,

the theorem provides an easy way to generate the Fourier transformation of projections

without ever generating a projection. Moreover, it also provides a powerful theoretical

construct that allows a simple understanding of the effects of preferred orientations and

other artefacts that come from incomplete sampling like the missing wedge.
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Figure 3.2: Illustration of the Fourier slice theorem with a 3D duck density.
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Single Particle Analysis and Sub-Tomogram Averaging

SPA aims to estimate the 3D map from a set of random 2D projections. In addition to

statistical estimation of the 3D reconstruction, orientation parameters of the individual

projections need to be estimated as well. The basic work flow works by iterating two

steps: first comparing projections of the current estimate of the 3D map to the exper-

imental images in order to get estimates of their orientation and second calculating a

new 3D map from the newly determined orientations of the images. Some milestones

with this respect, only to mention a few, were the introduction of Projection Matching

[111], Maximum Likelihood as a target function [133] and simple-to-use software protocols

[128, 55, 117, 54].

Figure 3.3: Basic work flow of single particle analysis. Particles are picked from the micrographs and extracted as small

images for each particle. Multiple rounds of 2D and 3D classification are usually carried out in order to clean the dataset

before the high-resolution 3D reconstruction is performed.

While in SPA the final 3D map is directly reconstructed from 2D projections, in STA a

tomogram of the sample is first reconstructed. Tilting the sample in the microscope leads

to known orientations of the 2D projections that can then be used for reconstruction of

the tomogram. Individual particles are subsequently picked in the tomogram and aver-

22



aged in order to obtain the final 3D map [153].

SPA is the method of choice to obtain high-resolution structures of purified particles. Al-

though high resolutions are in principle possible with STA [145], STA does not yet achieve

this goal routinely. However, cryo-electron tomography in combination with focussed ion

beam milling and STA offers the possibility to visualize individual macromolecules in situ

[102, 91]. This is a powerful approach, as it allows the analysis of the organisation and

interactions with other structures inside the cell. It is obvious that both SPA and STA

methods can be used complementary: rough architectures can be determined with STA

in situ while high-resolution structures can be determined of sub-complexes by SPA or

other methods.

3.1.4 Analysis and Interpretation of cryo-EM Maps

The final result of the 3D reconstruction process for both SPA and STA is a 3D map which

contains a description of the Coulomb potential of the structure of interest. However, the

ultimate goal is the description of the 3D map by an atomic model with which we want

to understand biochemical mechanisms, but deriving meaningful atomic coordinates from

the map is a daunting task, especially as model building from cryo-EM maps was impeded

by limited resolutions for a long time. In the following, an introduction to processes of

resolution estimation, post-processing of the maps and atomic model refinement will be

given.

Resolution Estimation

One of the first steps in the analysis work flow is estimation of the resolution. The res-

olution describes the degree of detail that we are able to see in the reconstruction. This

is an important quantity, as it provides a target for sample, data acquisition and recon-

struction optimization, it makes different maps comparable and also guides the different

post-processing steps, which are necessary to get the most out of the 3D maps.

Resolution estimation is usually done by means of Fourier shell correlation (FSC) curves,

which was introduced by van Heel in 1986 [57]. The FSC analysis starts on the recon-

struction level by splitting the image data in two halves and reconstructing two maps, so

called halfmaps. Although the ”gold-standard” approach is often referred to calculating

two completely independent reconstructions, diverging orientations of the two halfmaps

are usually prevented by keeping low-resolution the same in both maps, which makes

them not completely independent [129]. The FSC curve is then calculated by Fourier

transforming both halfmaps and correlating each resolution shell R by

FSC(R) =

∑
r∈R F1(r)F2(r)∗√∑
r∈R |F1(r)|2|F2(r)|2

, (3.10)
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where F1 and F2 are the Fourier transforms of halfmap 1 and 2 and ∗ denotes the complex

conjugation. The FSC values are then plotted against the resolution, giving the so called

FSC curve, which should show high correlations at lower resolutions until they drop and

finally fluctuate around 0 at higher resolutions. A typical FSC curve shown in Figure 3.4.

Figure 3.4: Typical FSC curve. The FSC curve has high correlations at lower resolutions and drops until it starts to show

statistical fluctuations around 0.

While the basic procedure of calculating FSC curves became standard in cryo-EM and

also in super-resolution microscopy, the actual process of reading a resolution from such

curves remains a controversial and unresolved problem. The basic idea is to use the res-

olution at which the FSC drops for the first time below a specified threshold. Several

thresholds have been proposed, e.g. 0.143 FSC [123], 0.5 FSC, 3σ [107] and the half-bit

criterion [147], but 0.143 FSC is the most widely used. However, it has to be noted that

fixed FSC value thresholds like 0.5 and 0.143 ignore important aspects of the FSC and are

highly sensitive to masking, which makes them less reproducible. A reproducible thresh-

old criterion has to take into account the size of the respective resolution shell, as this is

directly related to the uncertainty of the respective FSC value. Moreover, symmetry and

masking introduce dependencies in real space and thus also in Fourier space, which leads

to reduced effective sample sizes. Fixed threshold criteria are unable to take these effects

into account.

While the 3σ criterion aims to find a point at which the FSC is for the first time indis-

tinguishable from noise and has as such the best theoretical foundation, it tends to give

inflated resolution estimates. A unified framework as a possible solution to the problem

(correction of the multiple testing problem and no parametric assumptions) is developed

in this thesis.

Although a global resolution estimate is an important measure of the data quality, cryo-

EM maps usually exhibit local resolution anisotropies. Some parts are more flexible than
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others and will thus be less well defined. With this respect, quantification of local res-

olutions has become an important target, especially as this information can be used for

local processing of the maps. The simplest, but still most exact, approach uses local FSC

calculations by sliding small windows over both halfmaps and in this way calculates a

local resolution for each voxel [25]. However, due to small window sizes, usage of rig-

orous statistical FSC threshold criteria becomes highly important. Although different

algorithms, which are not based on FSC calculations, have been proposed, e.g. ResMap

[77] and MonoRes [149], the former tends to give unrealistic high resolutions while the

latter assigns usually too low resolutions.

3.1.5 Post-Processing of cryo-EM Maps

Cryo-EM maps, as they result from the 3D reconstruction process, usually do not show

the map features which would be expected at the estimated resolution. Work from Peter

Rosenthal and Richard Henderson in the early 2000s [123] started to quantify this contrast

loss at high resolutions. As a result from sample heterogeneity, alignment inaccuracies and

the under-determined 3D reconstruction process, the high-resolution information in the

final 3D reconstructions, which is stored in the high-frequency amplitudes of the Fourier

transform, is under-represented compared to low-resolution information.

They proposed a simple sharpening approach in order to increase the intensities of higher

resolutions compared to lower resolutions based on B-factor sharpening. With this respect,

each voxel in the Fourier transform is multiplied with a frequency dependent factor given

as

exp
(
− Brestore

4d2

)
, (3.11)

where d is the spatial frequency and Brestore is the B-factor. This B-factor is dependent

on the map at hand and can be reliably estimated from Guinier-plots for structures with

resolutions better than 10 Å [123]. In a Guinier plot, the natural logarithm of the am-

plitudes is plotted against the squared spatial frequency. It is known from the so-called

Wilson statistics [159], which describe the amplitude profile of randomly placed atoms,

that the amplitudes at resolutions better than 10 Å can be assumed to be constant. How-

ever, inspection of cryo-EM maps reveals that this is not the case for experimental maps,

where amplitudes show a clear falloff (Fig. 3.5, blue line). Fitting a simple linear function

from 10 Å until the resolution limit provides an estimate of this falloff, where the slope

corresponds to the B-factor (Fig. 3.5, red line).
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Figure 3.5: Guinier plot and B-factor estimation. The Guinier plot for a γ-secretase map (blue, EMD30161)[4] together

with the fitted linear fall-off (red) is shown.

A problem with sharpening is that it also increases background noise. Filtering of the

maps based on the estimated resolution reduces the noise levels by suppressing high fre-

quency information beyond the resolution limit of the data. Moreover, a weighting of the

Fourier transform of the cryo-EM map by the FSC curve [123] has been proposed and

takes account the shape of the FSC. However, the actual shape of the FSC curve is highly

dependent on the used mask, the relative box size with respect to the particle and also

influenced from noise, which hampers a rigorous justification of the weighting process.

More recent approaches have been developed to take into account local anisotropies of

map quality in the post-processing work flow. Filtering of the map at an average reso-

lution estimate leads suppression of features at higher resolutions than the average while

lower resolution features remain too noisy. A local filtering approach has been proposed

by [25] and shows improved overall representation of the cryo-EM map.

In a similar fashion, sharpening can be done on a local level, taking into account local

anisotropies of high-resolution contrast loss. However, local B-factor estimation has been

shown to be imprecise [69]. The first approach towards local sharpening was proposed

by Jakobi et al. [69] and is based on local amplitude scaling using simulated maps from

refined atomic models as a reference. However, the need of a refined model still leaves

the problem of refining the intial atomic model against the non-locally sharpened map.

Different approaches for local sharpening were proposed subsequently [142].

A big problem that remains, especially at initial stages of the atomic modelling, is the

assignment of actual molecular map density from background noise. Due to the sharp-
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ening process, cryo-EM maps contain excessive amounts of background noise. Moreover,

visualization of cryo-EM maps requires the choice of a map threshold, which is especially

difficult as different parts show different density levels, e.g. a bound ligand might be

represented with much weaker density due to occupancy of binding. Although in x-ray

crystallography thresholding of maps by multiples of the standard deviation σ is common,

this still ignores the multiple testing problem (see below) and is problematic for cryo-EM

maps, as local resolutions lead to substantial amounts of density variation over the map.

Moreover, normalization is commonly done by estimating mean and variance over the

complete map, thereby ignoring the fact that this also includes the signal component,

which will lead to biased background noise estimates.

Many modelling ambiguities have been attributed to wrong choices of thresholds in both

cryo-EM as well x-ray crystallography [8], a problem which is sometimes referred to as

the ”thresholding problem” [90]. With this respect, a statistical framework based on

false discovery rate control has been developed in this thesis, that allows interpretation

of cryo-EM maps based on detection errors with respect to background noise.
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3.2 Statistical Inference

3.2.1 Statistical Inference

The main objective of statistical inference is to estimate or to make probabilistic state-

ments about parameters of the distribution of a random variable based on observed real-

izations of it. Thus, the goal is to get information about the generative model based on

the data. Statistical inference can be seen as the step of upward-reasoning from the data

towards the data generating process. Typical questions that arise are: What is the mean

effect of a treatment? Or given a specified error, is there any significant effect beyond

0? As such, statistical inference is different from purely descriptive statistics, which aims

for visualization and summary of possibly complex and high-dimensional data. In the

following, we will give a short introduction to the two main aims of statistical inference:

parameter estimation and hypothesis testing. The focus will be on demonstrating the

essential concepts and on readability instead of complete mathematical rigour.

Parameter Estimation

Estimating the parameters of a probabilistic model is of pivotal importance and occurs in

many different settings. For example, machine learning with deep neural networks works

by estimating parameters of the network, during the cryo-EM reconstruction process

the 3D reconstruction as well as orientation parameters of the particle images need to

be estimated or for many hypothesis tests we need estimates of variances and location

parameters. Estimation theory is a big part of mathematical statistics and deals with the

behaviour as well as the optimality of different types of estimators.

An estimator for a parameter ϕ can be understood as a function ϕ̂(X1, ..., Xn) which

maps the data (X1, ..., Xn) to an estimate of ϕ. Mathematization of estimation theory then

requires the definition of desirable properties that these functions should have. Intuitively,

a desirable property would be that the expected output of the estimator is the true

value of the parameter, something which is called unbiasedness. Moreover, the estimate

should become better when adding more data, a property that is commonly referred to

as consistency.

Mathematically, an estimator ϕ̂ for ϕ is called unbiased if the expected value of the

respective estimator is the true value of the parameter, i.e.

E(ϕ̂) = ϕ (3.12)

where E denotes the expectation value. As stated above, an other important feature

of interest is weak (or strong) consistency, which means convergence in probability (or

almost surely) of the estimator to the true value of the parameter for increasing sample

sizes, i.e.
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ϕ̂(X1, ..., Xn)
p (a.s.)−−−−→ ϕ, n −→∞. (3.13)

However, while unbiasedness and consistency are important properties, it has to be noted

that an estimator is a function of random variables and as such a random variable itself.

This means the estimator also has a defined variance (if finite), which is an important

additional quantity to be considered. For example, if we have two unbiased estimators

at hand, the one with lower variance will tend to give parameter estimates closer to

the true value. The Cramer-Rao lower bound gives a lower limit for the variance of an

unbiased estimator for a specific parameter and can be used to find optimal estimators

[118]. However, the situation can be complicated further, because an estimator with

slight bias but reduced variance can yield estimates closer to the true value than its

biased counterpart.

A quality measure that takes into account the variance of an estimator is the mean squared

error MSE. It is defined as the expected squared difference between the estimate and

the true value, i.e.

MSE(ϕ̂) = E[(ϕ̂− ϕ)2]. (3.14)

A well known example is the James-Stein estimator [70], an adjusted estimator for the

mean of normally distributed random vectors, which can be shown to yield a lower MSE

compared the unbiased least-squares estimates in more than two dimensions. In the con-

text of construction of estimators, the Rao-Blackwell theorem provides a general frame-

work to improve an arbitrary estimator with respect to the MSE.

Several statistical frameworks for the construction of estimators have been proposed, and

the most widely used are moment estimators, Maximum-Likelihood (ML) estimators as

well as Bayesian Maximum-A-posteriori (MAP) estimators. Especially ML estimators

are mathematically well characterized. Under weak conditions, ML estimators have both

weak and strong consistency. Moreover, they are asymptotically normal distributed and

reach the Cramer-Rao lower bound asymptotically. However, in complex settings the ac-

tual ML estimate is not analytically available and needs to be found numerically, which is

difficult for non-convex likelihood functions and tends to get stuck in local optima [15, 49].

While Maximum likelihood and moment estimators only assume a parametric model of

the data generating process, Bayesian estimators allow incorporation of prior knowledge

in order to get more precise estimates, but with the danger of additional bias through the

prior distribution. Moreover, in a Bayesian setting the parameters are actually modelled

as random variables, and assigning a single estimate to a random variable, as done in

MAP estimation, is hardly logically. As such, proper Bayesian treatment requires sam-

pling from the posterior distribution via Markov chain Monte Carlo (MCMC) sampling

[9, 39, 20]. In the case of an uniform prior distribution, a MAP estimator becomes a
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simple ML estimator. Taken together, the construction of ideal estimators is a complex

topic and needs heavy adjustment to the specific situation, for example the development

of cryo-EM reconstruction algorithms is still a field of active research.[128, 117]

As already mentioned, one of the biggest problems arising for parameter estimates is the

inherent uncertainty. The estimate can be far off from the actual value of the parameter,

depending on the uncertainty. In order to quantify the uncertainty, confidence intervals,

or credible intervals in a Bayesian setting [9], can be constructed. Naively spoken, confi-

dence intervals are regions of the parameter space that contain the parameter of interest

with a certain probability and provide a more detailed description of the actual param-

eter estimation process compared to single parameter estimates. Moreover, confidence

intervals can be used to make probabilistic statements about statistical hypotheses, as we

will see in the next sections.

The Concept of Falsification

Falsification builds the basis of our modern theory of science. First thoroughly character-

ized in ”Die Logik der Forschung” by Karl Popper [116] in the 1930s as part of the critical

rationalism, the main statement is that a scientific theory can never be proven to be true.

A scientific theory and the conclusions we deduce from it will always be incomplete. But

what do we mean when talking about scientific facts? What marks the difference between

empirical research and religion/ideology and what are the limitations of science? A very

simple, but highly powerful requirement of any scientific statement is that it has to be

falsifiable. This is a much stronger property than a simple statement in its linguistic

sense, which is a sentence that is true or false. For example ”God exists.” is a sentence

that is true or false, with the answer dependent on the person we ask, but it is impossible

to be falsified, and thus not scientific. However, despite its rather philosophical character,

falsification also lays the foundation for scientific evaluation by statistical significance.

Statistical significance testing provides the methodological framework for falsification

based on empirical data. Given the uncertainty inherent to the data, can we reject a

specified hypothesis? Although quantification of the uncertainty can be rather difficult,

p-values and Bayes factors are standard measures when it comes to judgement of the

validity of given hypotheses and are ubiquitous in the scientific literature. In the next

section, I will give an introduction to statistical hypothesis testing.

Statistical Hypothesis Testing

Statistical hypothesis testing under the Neyman-Pearson paradigm deals with the sit-

uation of testing a hypothesis against an alternative hypothesis based on experimental

data with finite sample sizes and the inherent uncertainty [121]. Especially consideration

of the uncertainty is important when we have to make sure that the error of having a

false-positive decision is limited. For example, when comparing the treatment effect of
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a drug between a placebo and a treatment group, we have to make sure that there is a

significant effect beyond simple statistical fluctuations.

According to Neyman-Pearson, statistical hypothesis testing works by specifying a null

hypothesis H0 and an alternative hypothesis H1. H0 contains the events from which we

want to find deviations, e.g. for finding a treatment effect ρ different from 0, we would

have the hypothesis system H0 : ρ = 0 and H1 : ρ 6= 0. A statistical test is then a

mathematical function φ which maps the data (X1, ..., Xn) to 0 if we cannot reject H0, or

1 if we reject H0, i.e.

φ(X1, ..., Xn) =

0 T (X1, ..., Xn) ∈ H(α)

1 T (X1, ..., Xn) ∈ K(α),
(3.15)

where H is the non-rejection area, K(α) = Θ\H(α) is the rejection area, i.e. the complete

parameter space Θ excluding H(α), and T () the respective test statistic used.

Construction of the non-rejection area K is done by specifying a region of all possible

values of T which contains realizations of T with a specified probability P , considering the

distribution of T under the null hypothesis H0. While the actual specification of the non-

rejection area is often not unique, it is usually chosen as the smallest area containing the

specified probability mass, which guarantees the biggest rejection area under a specified

significance level. The probability mass P of the non-rejection region is then directly

related to the significance level α by

α = 1− P. (3.16)

α is also referred to as the Type I error and makes a statement about the probability of

a erroneous rejection of the null hypothesis, e.g. α = 0.01 means that there is a chance of

1% of rejecting H0 even if the null hypothesis is actually true. Clearly, the rejection and

non-rejection regions are dependent on the specific significance level α, which explains

our notion of H(α) and K(α).

However, it is not always possible to provide a test that controls the significance level α

exactly. For example, if the null hypothesis is of composite structure, as in the one sided

test scenario H0 : µ ≤ 0, then the distribution of the test statistic under H0 is not clearly

defined. Using the distribution of T , as it would occur for µ = 0 in this scenario, will

give exact control of the significance level only if µ = 0, but more conservative if µ < 0 .

This motivates the definition, that a test is defined to have level α if it rejects H0 with a

probability less or equal than α under the null hypothesis, i.e.

P(φ = 1|H0) ≤ α. (3.17)
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Related to the Type I error is the Type II or β error, which is the probability of not-

rejecting H0 when H0 is actually wrong, i.e. the probability of a false negative decision.

Unfortunately, Type I and Type II errors can usually not be controlled simultaneously

when the sample size is fixed. Although the Type II error is important as well, control of

Type I errors is considered as more important. Interpretation of not-rejecting H0 should

therefore be regarded as a failure of rejecting H0 at the specified significance level and

does not necessarily demonstrate the correctness of H0.

However, when comparing two tests at the same significance level for the same hypotheses

system, the test that will reject H0 more often obviously has a lower Type II error and

will be more powerful, something which is reflected in the definition of statistical power

as 1− β. Moreover, both Type I and Type II errors influence each other: The smaller α

is set, the higher β will be.

Another widely used quantity used in hypothesis testing is the p-value. The p-value is

defined as the probability under the null hypothesis of having a more extreme event than

the observed one. As such the actual mathematical definition is dependent on the specific

test scenario and can be quite complicated.

In an abstract notion and assuming nested rejection regions K(α), the p-value is given as

p = inf{α : T (x1, ..., xn) ∈ K(α)} (3.18)

where T (x1, ..., xn) denotes the value of the test statistic for the observed data x1, ..., xn.

One of the most useful features of p-values is their direct relation to the significance level.

If the p-value is smaller than α, we can reject the null hypothesis at a significance level α.

Moreover, the p-value shows how small α could in principle be chosen in order to reject

H0 and reporting p-values instead of binary test results has become scientific practice by

now.

Although most of statistical test theory is already quite old, the fundamental Neyman-

Pearson lemma dates back to 1933 [104], it is still an active field of research. Emergence

of modern non-parametric procedures [21], often based on heavy computations via resam-

pling, as well as high-dimensional inference problems provide new fields of application and

new challenges, one of them being large scale simultaneous testing of millions of hypothe-

ses [81]. Moreover, hypothesis testing in a Bayesian framework based on Bayes-factors,

their relation to p-values [59] and the Bayesian calibration of p-values provides new in-

sights into statistical significance.

t-Test

In order to illustrate the rather abstract mathematics behind statistical hypothesis test-

ing, an example of the famous t-test will be given now. Assume we acquired a dataset

(x1, ..., xn) with sample size n, which follows normal distribution and we are interested if
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the mean µ is significantly deviating from 0. This gives the hypothesis system

H0 : µ = 0 and H1 : µ 6= 0. (3.19)

Taking the test statistic

T (X1, ..., Xn) =
√
n
Xn − µ
σ̂

, (3.20)

where Xn is the sample mean and σ̂ the estimator of the standard deviation of the

sample, it can be shown that under the null hypothesis T (X1, ..., Xn) follows a student-t

distribution with n− 1 degrees of freedom.

If T ′ denotes the observed value of the test-statistic T from the respective sample, the

p-value in this case can be calculated as

p = 2 ∗min{F (T ′), 1− F (T ′)}, (3.21)

where F is the cumulative distribution function of the student-t distribution with n − 1

degrees of freedom. A graphical depiction of the t-test is given in Fig. 3.6. The distribution

of the test statistic T with a sample size of 31 is shown. Given a value of ∼1.9 for the test

statistic observed with the data, the p-value would then be the area of the region framed

with red.

Figure 3.6: Illustration of the t-test. The probability density of a t-distribution with 30 degrees of freedom is shown,

which corresponds to a t-test with a sample size of 31. In the two sided test setting, as described in the example, the p-value

for the observed value of the test statistic ∼1.9 would then be the area of the region which is framed with red lines.
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3.2.2 Multiple Hypothesis Testing

Testing multiple hypotheses simultaneously results in a multiple testing problem. The

main problem emerging is the multiplicity: Not just every single hypothesis test can lead

to a false positive decision, but also multiple tests can have false positive results simul-

taneously. Moreover, multiple false positive hits can occur in any combination of single

tests, leading to a combinatorial explosion and subsequently to a loss of error control,

which is often referred to as the α-error inflation [81].

The basic problem can be easily illustrated for the case of a simultaneous inference of

n independent hypothesis tests with significance level α. The probability p of having at

least one false positive result can then be calculated as the result of a binomial event by

p = 1 − fBin(n,α)(x), where fBin is the density function of the binomial distribution. For

n = 100 tests and α = 0.01 this gives already a probability of more than 99% for at least

one false positive, which shows the problem we need to correct for.

Family Wise Error Rate

Dealing with multiple hypothesis tests requires the use of specific error criteria that allow

the interpretation of multiple inferences simultaneously. The oldest and most widely used

criterion is the family wise error rate (FWER). The FWER is defined as the probability

of having at least one false positive, i.e.

FWER := P(V > 1), (3.22)

where we denote with V the number of false positive hypotheses. In order to control the

FWER for n simultaneous statistical tests, the significance level α for each test needs

to be adjusted accordingly. We say that the FWER is controlled at level α if the true

probability of any false positives is smaller than α, i.e.

P(V > 1) ≤ α. (3.23)

The simplest approach for FWER control is the Bonferroni procedure, where the adjusted

significance level for each test is set to αadj = α
n

[81]. Therefore, in order to control the

FWER at level α, each of the n tests is conducted at level α
n
. Although, the Bonferroni

procedure is quite simple and works under arbitrary dependencies between the individual

tests, it is a rather conservative procedure, i.e. the actual error is well below α. Especially

for a large number of tests it becomes very restrictive and more powerful procedures have

been developed.

Most FWER controlling approaches result from the construction of a so called closed

testing procedure, which was proposed by Marcus, Peritz and Gabriel in 1976 [92], and
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provides a general mathematical framework for the control of FWER. The probably

most widely used procedure nowadays is Bonferroni-Holm [64], which has the advantage

that it controls the FWER under arbitrary test dependencies similar to the Bonferroni

approach. Even more powerful are the Hochberg [62], Simes [134] and the Hommel [65]

procedures. However, these approaches make assumptions about the dependency struc-

ture, e.g. the Hochberg procedure assumes non-negative dependencies, and are therefore

restricted in applicability.

A big problem for FWER control is the limited statistical power, especially for large

number of tests. However, a very recent approach using harmonic mean p-values in a

multilevel test procedure demonstrated that FWER control [160] can still be improved

substantially, but further validation and mathematical characterization of the proposed

framework is required. It has to be noted at this place that the multiple testing correction

usually works on the level of p-values and not on the individual significance levels as I

showed it for the Bonferroni example, i.e. after calculation of the p-value for all tests the

p-values are adjusted. This has the advantage that we do not have to repeat the whole

inference when changing the significance level.

False Discovery Rate

While the FWER is a useful criterion for small or medium sized number of hypothesis

tests, it becomes very conservative for large scale inference in the order of several millions

of hypotheses, as they occur in images or genomic studies [50][86]. Instead of controlling

the error of having any false positives at all, it makes sense in many settings to tolerate

a few false positives in order to reduce the amount of false negatives. Such a screening

approach has been developed with the false discovery rate (FDR), which specifies the

expected ratio of false positives in the set of rejected hypotheses [12]. Mathematically,

the FDR is defined as

FDR :=

E( V
V+R

) V +R 6= 0

0 V +R = 0,
(3.24)

where V is the number of false positives and R the amount true positives. We say that

the FDR is controlled at level α, if the true FDR is smaller than α, i.e.

FDR ≤ α. (3.25)

The first approach to control the FDR has been proposed by Benjamini and Hochberg

in 1995 [12] and assumes a condition termed ”positive dependency” between the p-values.

In 2001 Benjamini and Yekutieli provided a modified version of their initial approach [13],

which allows control of the FDR under arbitrary dependencies. However, compared to
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Benjamini-Hochberg the Benjamini-Yekutieli approach is more conservative. Due to the

importance of the Benjamini-Yekutieli procedure for this thesis, we will give an overview

of the algorithm at this point.

As input the Benjamini-Yekutieli approach takes the p-values pi, i = 1, ...,m of m simul-

taneous statistical tests. The first step is sorting of the p-values from small to large which

leads to the sorted p-values p(i), i = 1, ...,m. The FDR-adjusted p-values, often referred

to as q-values, are then calculated from the p-values by

q(i) = min
i≤k≤m

p(k)
m

k
γ, (3.26)

where m is the number of hypotheses, k is a running index and γ =
∑m

l=1
1
l
. The q-values

are then sorted back to the original order and assigned to each hypothesis. It should be

mentioned at this stage that for γ = 1 the Benjamini-Yekutieli approach becomes the

Benjamini-Hochberg procedure.

While both the Benjamini-Hochberg and the Benjamini-Yekutieli procedures are classical

frequentist approaches, the concept of false discovery rates was also developed further

in a Bayesian setting. Storey introduced in the early 2000s the positive false discovery

rate (pFDR) and showed how it can be derived from a Bayesian point of view [137, 138].

Moreover, Bradley Efron developed the concept of local false discovery rates, which gives

for each hypothesis and estimate of the probability of being a false positive in an empirical

Bayesian framework [38, 139], and beyond that methods have been developed recently to

incorporate additional information for the hypotheses [166, 68].

Although false discovery rate control became an accepted concept, it has to be mentioned

that it only has a screening character and does not provide a stringent error rate like

FWER. Depending on the number of hypotheses or the amount of positive hits, 1%

FDR can mean different things. For example, addition of tests which that likely reject

H0 will allow more significant findings at 1% FDR. A possibility for manipulation that

needs to be treated with caution.
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Chapter 4

Confidence Maps - Thresholding of

cryo-EM Maps by False Discovery

Rate Control

The first part of this chapter is based on the published article Beckers et al. in IUCrJ [10]

and some of the figures from the publication, which I use in this chapter, are reproduced

with permission of the International Union of Crystallography. All figures adapted from

the publication are marked as such. The project was conceptualized based on ideas from

a lecture on multiple testing theory that I attended at Ulm University and was a good

fit to recent efforts in the lab to infer more information from the cryo-EM maps. I per-

formed all analyses, programming and preparation of all the figures and the paper was

written together with Carsten Sachse. The article was highlighted by Peter Rosenthal

[122] and selected for oral presentations at several international conferences, including

the Gordon Research Conference on 3D electron microscopy and the CCPEM Spring

Symposium. My talk at the CPPEM Spring symposium is also available on YouTube

at www.youtube.com/watch?v=xOX-5EzmjwI. Some of the recent extensions and the im-

plementation in the CCPEM software package, which are presented at the end of this

chapter, were submitted as a research article to Acta Crystallographica Section D as part

of the proceedings of the CCPEM Spring Symposium.

4.1 Abstract

The interpretation of cryo-EM maps by atomic models is the ultimate goal of the struc-

ture determination process with cryo-electron microscopy. However, the actual results of

the 3D reconstruction process are subject to several problems: Contrast loss at high reso-

lutions, high levels of background noise, radiation damage and local resolution variations

make extensive post-processing of the maps necessary.

Annotation of density at initial steps of the atomic model building process is done by

visualizing the map at isosurfaces, which requires the choice of appropriate thresholds.
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Especially corruption of the signal with noise makes the assignment of weak densities close

to background noise a difficult task. However, many interesting features are expected to

be very weak, for example due to flexibility of a mechanistic switch or because a ligand

might not be bound to all particles.

In order to facilitate this process, I developed a new type of map, termed confidence map,

which contains for each voxel a probabilistic quantity for deviations from background

noise. Confidence maps can be thresholded by specifying the upper bound for the ex-

pected false discovery rate in the visible volume and allow rigorous density interpretation

by means of statistical significance. Confidence maps avoid the choice of arbitrary and

subjective thresholds and show drastically reduced intensity variations that aids in the

map interpretation work flow.

4.2 Methods

In order to introduce statistical significance as an additional measure for validation and

interpretation in the cryo-EM data processing workflow, I applied multiple hypothesis

testing using false discovery rate (FDR) control to cryo-EM maps. A rough outline of

the developed statistical procedure is as follows: The distribution from the background

fluctuations is estimated from a sharpened cryo-EM map, subsequent statistical hypoth-

esis testing is applied for each voxel and finally the resulting multiple testing problem

is accounted for by controlling the FDR (Fig. 4.1 a). Additionally, I developed and

investigated methodology to improve the signal detection by incorporating additional in-

formation like local resolutions. In the first section of this chapter I will provide a detailed

mathematical description of the developed algorithms.

4.2.1 Mathematical Framework

For each voxel in the cryo-EM map, which will be indexed with i, j, k, the corresponding

map values Xi,j,k are modelled as the random variable

Xi,j,k = µi,j,k + εi,j,k, (4.1)

with εi,j,k a real-valued random variable representing the background noise with mean

µ0,i,j,k and variance σ2
i,j,k and with µi,j,k the true map value without background noise.

Analysis of the maps is usually done under a positive density assumption, i.e. the object

of interest are positive map values that deviate form the background noise, which gives

the following hypothesis system to be inferred:
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H0 : µi,j,k ≤ 0 (4.2)

H1 : µi,j,k > 0. (4.3)

In order to test this hypothesis system, background noise is estimated outside the particle

(Fig. 4.1 b), giving its mean µ̃ and variance σ̃2. Subsequently, p-values are calculated by

pi,j,k =

P(Xi,j,k ≥ xi,j,k|H0) = 1− F (xi,j,k) xi,j,k ≥ µ̃

1 xi,j,k < µ̃
, (4.4)

where Xi,j,k denotes the random variable of the map intensities as above, xi,j,k the respec-

tive realizations observed in the map and F () the cumulative distribution function of the

background noise. The background noise distribution can either be approximated with

a normal distribution, leading to a standard normal distribution after subtraction of µ̃

and division by σ̃, or by replacing the cumulative distribution function (CDF) with the

empirical CDF F̂ (), given as

F̂ (t) =
number of elements in the sample ≤ t

total number of elements in the sample
, t ∈ R. (4.5)

The p-values are then subsequently corrected for the multiple testing by controlling the

false discovery rate, as described already in the introduction. In a last step, the FDR-

adjusted p-values, qi,j,k, are then inverted by

q′i,j,k = 1− qi,j,k, (4.6)

in order to allow visualization with standard software tools. The confidence map is then

composed of the inverted and FDR-adjusted p-values q′i,j,k for each voxel and can thresh-

olded by specifying a FDR, i.e. a threshold of 0.99 means an expected FDR of less than

1%.

In order to account for the complex dependencies apparent after sharpening and filtering

of cryo-EM maps, the Benjamini-Yekutieli procedure has been chosen as the default. How-

ever, Benjamini-Hochberg FDR-control, Bonferroni-Holm FWER-control and localFDR

have been implemented as well. If not stated differently, all following analyses have been

done with Benjamini-Yekutieli FDR-control.
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Figure 4.1: False discovery rate (FDR) control of cryo-EM maps. a) Left: flowchart of confidence map generation. The

cryo-EM map is converted to p-values and finally FDR-controlled. Right: slice views through a cryo-EM map of 20S

proteasome (EMD-6287 [24]) depicted at the respective stages of the algorithm (blue boxes) on the left. Note the strong

increase in contrast when the sharpened map is converted to the confidence map. b) Left: estimation of the background noise

from windows (red) outside the particle. Right: histograms (top, probability on a linear scale; bottom, probability on a log

scale) of the background window together with the probability density function of the estimated Gaussian distribution. c)

Evaluation of the algorithm on a simulated two-dimensional density grid. The upper right quadrant of images in real space

(left column) together with the corresponding power spectrum in the Fourier domain (right column) are displayed. Addition

of noise leads to a loss of contrast at high resolution. Confidence maps recapitulate these high-resolution features (arrows),

showing that high-resolution signal is detected with high sensitivity. FDR thresholding at 1% recovers a similar binary grid

in comparison with 3σ thresholding while controlling noise contributions and minimizing detected noise (enlarged insets).

This figure is taken from [10] and was prepared by myself.

In the following proposition I show mathematically that replacing voxel-wise background

noise estimates with upper bounds for mean and variance will only lead to more conserva-

tive FDR estimates, i.e. the FDR is still controlled in these cases. This is an important

statement, as from the map itself we can only estimate the background outside the parti-

cle, which is assumed to have higher background noise levels than the particle itself due

to relative ice thickness.

Proposition 1. Consider Gaussian-distributed random variables representing the back-

ground noise at all voxels i, j, k in the three-dimensional map with true mean µ0,i,j,k ∈ R
and variance σ2

i,j,k ∈ R>0. Moreover, let µ̃ ≥ µ0,i,j,k and σ̃2 ≥ σ2
i,j,k, µ̃ ∈ R, σ̃2 ∈ R>0 for

all i,j,k the overestimated background noise parameters. Then

q̃i,j,k ≥ qi,j,k, (4.7)
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where q̃i,j,k corresponds to the q-value as defined above and calculated with the overesti-

mated background noise parameters and qi,j,k corresponds to the q-value as obtained with

true parameters µ0,i,j,k and σ2
i,j,k.

Proof. In order to prove the statement, I will now recapitulate the algorithm and prove

the inequality at all necessary steps. I start showing that the true p-value at voxel i, j, k,

pi,j,k, is smaller when compared with the p-value p̃i,j,k, as calculated from the overesti-

mated background noise parameters. In other words, we want to show that pi,j,k ≤ p̃i,j,k

or, equivalent to this, p̃i,j,k − pi,j,k ≥ 0.

If xi,j,k < µ̃, then the statement is trivial, because p̃i,j,k = 1 and pi,j,k ≤ 1, which is a

general property of p-values.

For xi,j,k ≥ µ̃, it follows that

p̃i,j,k − pi,j,k = 1− 0.5
[
1 + erf

(xi,j,k − µ̃√
2σ̃

)]
− 1 + 0.5

[
1 + erf

(xi,j,k − µ0,i,j,k√
2σi,j,k

)]
(4.8)

= −0.5erf
(xi,j,k − µ̃√

2σ̃

)
+ 0.5erf

(xi,j,k − µ0,i,j,k√
2σi,j,k

)
(4.9)

As the error function erf() is monotonically increasing, it is sufficient to show that

xi,j,k − µ0,i,j,k√
2σi,j,k

≥ xi,j,k − µ̃√
2σ̃

. (4.10)

Because xi,j,k − µ̃ ≥ 0 and thus also xi,j,k − µ0,i,j,k ≥ 0, as well as σ̃ ≥ σi,j,k, we have

xi,j,k − µ0,i,j,k√
2σi,j,k

− xi,j,k − µ̃√
2σ̃

(4.11)

=
(xi,j,k − µ0,i,j,k)σ̃ − (xi,j,k − µ̃)σi,j,k√

(2)σ̃σi,j,k
(4.12)

≥ (xi,j,k − µ0,i,j,k)σi,j,k − (xi,j,k − µ̃)σi,j,k√
(2)σ̃σi,j,k

(4.13)

=
(−µ0,i,j,k + µ̃)σi,j,k√

2σ̃σi,j,k
≥ 0, (4.14)

where in the last equation I used that µ̃ ≥ µ0,i,j,k and σ̃ ≥ σi,j,k > 0. This gives

p̃i,j,k ≥ pi,j,k.

Recapitulating the calculation of q-values together with the conversion of the three-

dimensional volume to a one-dimensional sequence, it follows that

q(a) = min
a≤k≤m

[
p(k)

m

k
γ
]
≤ min

a≤k≤m

[
p̃k
m

k
γ
]
, a = 1, ...,m, (4.15)

where m is the number of hypotheses, k is a running index and γ =
∑m

l=1
1
l
. This proves

the statement.
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4.2.2 Incorporation of Local Filtering and Local Sharpening

Local sharpening and local filtering have become powerful techniques in order to deal

with local resolution variation. Consideration of local spatial information allows to filter

out additional noise and to adjust the sharpening accordingly and thus leads to improved

local signal-to-noise ratios (SNR). It is beneficial in terms of statistical power to incorpo-

rate this additional information also in the calculation of confidence maps.

Conceptually, local filtering and local sharpening are straightforward to incorporate. For

each local processing step, the same operation (filtering or sharpening) needs to be applied

to the box of background noise as well. For example in local filtering the complete map

is filtered for each local resolution, which allows the estimation of the background outside

the particle similar to the simple setting above. The respective local background noise lev-

els are then saved to their corresponding locations in the 3D map. Subsequently, p-values

are calculated as above, with the only difference that for each voxel the corresponding

local estimates of the background noise distribution have to be used. All following steps

of the algorithm remain the same.

4.2.3 Simulation of Density Grids

To test the proposed framework under controlled conditions, I prepared simulations of

two-dimensional images of a density grid that resembles the behaviour of cryo-EM density

maps with both strong and very weak features. The simulated images were generated with

a size of 400 x 400 pixels. The scaled grid was generated by adding two orthogonal two-

dimensional cosine waves with a period of five pixels, where all values <0 were set to

0, and multiplying the sum by a factor of 0.5 in order to set the maximum to 1. The

scaled grid had a size of 200 x 200 pixels and was embedded in the center of the 400 x

400 image. Gaussian-distributed noise with mean 0 and a variance of 0.01 (Fig. 4.1) was

added to the grid image. The mean and variance for the multiple testing procedure were

estimated outside the scaled grid and the FDR procedure was carried out as described.

This simulation was implemented in MATLAB (MathWorks).

4.2.4 Implementation

The confidence map tools are all implemented in Python3 based on mrcfile, NumPy

and Matplotlib libraries. The software termed FDRthresholding is available on gitlab at

git.embl.de/mbeckers/FDRthresholding/.

4.2.5 Figure Preparation

FSC and ADP graphics were visualized with ggplot2 in R [141] [158]. Chimera [114] was

used for the figure preparation of the molecular maps and atomic models.
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4.3 Results

4.3.1 False Discovery Rate Control of a Simulated Density Grid

Application to a simulated two-dimensional density grid, which I prepared as a linear

combination of two orthogonal cosine waves in the two-dimensional plane (Fig. 4.1 c),

shows that the generation of a confidence map itself already improves the detectability

of weak features compared to the noisy grid, as visible in the presence of high-resolution

peaks in the Fourier transform. Moreover, thresholding based on FDR-control allows

to control the expected maximal amount of detected false positive signal, which is not

possible by simple thresholding of the grid.

One dimensional snippets of the grids show that, beyond statistical control of false pos-

itives, also the peak detection is improved in the confidence maps and that the signal is

flattened during the transformation to false discovery rates (Fig. 4.2), i.e. variations of

the peak heights, which are only due to statistical fluctuations in this case, disappear to a

large extent. This is especially useful as it avoids the over-interpretation of artificial and

only statistical fluctuations. (Fig. 4.2).

Figure 4.2: Effect of σ and FDR thresholding on 1D density profiles. One-dimensional stacked plots of grid density with

noise-free original (top), at signal-to-noise ratio of 1.2 (center) and confidence map (bottom). The noisy density grid is

thresholded at 3σ and the confidence map is thresholded at 1% FDR. Conventional 3σ-thresholding yields higher rates of

false positives and some imprecise peak positions (arrows). This figure is taken from [10] and was prepared by myself.
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4.3.2 Statistical Properties of cryo-EM Maps

Cryo-EM maps are subject to several sources of noise. Background noise is mainly the

result from shot noise, i.e. electron counting statistics, as well as interactions with the

amorphous ice. While the first can be assumed uniform over the images, the latter will

be higher outside the particle, due to lower relative ice thickness in the region of the ice

embedded particles.

Beyond background, additional sources of inaccuracy influence the map values: mainly

flexibility, stoichiometry of binding, radiation damage and computational inaccuracies.

Although these additional sources of noise add additional variation to the signal, they

are irrelevant for the task of detecting significant deviations from the background noise.

To calculate false discovery rates of deviations from background noise, we only need to

be able to get estimates of the background noise distribution. In this section I provide

an analysis which investigates the basic statistical properties of cryo-EM maps: the dis-

tribution of background noise and the expected behaviour of the signal of the embedded

particles.

Distribution of Background Noise

In order to analyse the distributions of background noise in cryo-EM map, I analysed 32

deposited cryo-EM maps in a resolution range from 2 to 8 Å and compared the empirical

cumulative density functions (ECDF) with the estimated Gaussian CDFs (Fig. 4.3 a).

Clearly all of the analysed maps follow the ideal Gaussian CDF closely. Moreover, for

each map normality has been assessed by Anderson–Darling testing [3] and showed that

75% and 87.5% of the maps do not significantly deviate from normality when thresholds

corresponding to 1% and 0.1% family-wise error rates (FWER) are chosen (Fig. 4.3 b).

An explanation for deviations from a Gaussian distribution is given by the three-dimensional

reconstruction procedure. When correctly aligned images containing white Gaussian noise

are combined by linear inversion, the obtained three-dimensional volume will also have a

Gaussian distribution. However, when the images need to be aligned, alignment of noise

might result in heavy-tailed distributions. Moreover, three-dimensional reconstructions

will always contain local correlations. In order to investigate the resulting noise of three-

dimensional reconstructions in more detail, I generated from pure noise images with even

angular sampling. Inspection of the resulting amplitude spectrum reveals that it differs

from pure white noise as it shows correlations between adjacent pixels (Fig. 4.3 c left).

Moreover, the estimated variances for each voxel from 900 reconstructions show that they

can be approximated uniform over the central sphere (Fig. 4.3 c right).

To further investigate the effects of non-normality I calculated confidence maps of the map

EMD-6287, which shows a significant deviation from normality according to the Ander-

son–Darling test, using both Gaussian and empirical CDF. Inspection of the confidence
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maps (Fig. 4.3 d) showed that the visual agreement between the two maps is remarkably

high and a difference map between the two confidence maps shows no systematic devia-

tions.

All in all, background noise in cryo-EM maps can be approximated sufficiently well by

a normal distribution. However, deviations from normality are monitored during confi-

dence map calculation by Anderson-Darling testing as well as comparison of the empirical

CDF with the Gaussian CDF. If the assumption of Gaussian noise is violated, the non-

parametric approach should be used in these cases.
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Figure 4.3: Analysis of normality of cryo-EM densities. a) Left. Overlay of 32 cumulative density functions (CDF)

derived from the above EMDB entries with ideal Gaussian CDF in black. Right. Zoomed inset to better highlight small

differences. b) 32 map entries are assessed with respect to normality according to the Anderson-Darling test, significance

thresholds are displayed 1.0 and 0.1% FWER respectively. c) Left. Rotational power spectrum of a 3D reconstruction of

white noise images in comparison with pure white noise spectrum. Right. Slice through 3D volume of variances estimated

from 900 independent reconstructions from Gaussian white noise images with similar uniform orientations together with a

histogram of the estimated variances, showing that background noise can be assumed uniform over the central sphere in the

reconstructed volume. d) Cross-sectional view of confidence maps generated of EMD-6287 using Gaussian and empirical

CDF. Difference map between 1% FDR binarized confidence maps in the respective image slice. This figure is taken from

[10] and was prepared by myself.
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Positivity of Signal in cryo-EM Maps

Analysis of cryo-EM maps in standard visualization software is inherently based on the

assumption that protein gives rise to positive map values. In the statistical framework this

is incorporated via testing for positive values beyond background (see Methods). How-

ever, recent results also suggested the presence of some negative signal [66] in cryo-EM

maps.

The statistical framework of confidence maps can be easily adjusted to negative values

by only inverting the sign of the input maps, which results in testing for negative values

beyond background. Visualization of confidence maps from negative densities indeed re-

veals significant signal. It mainly occurs in regions between positive protein density, often

in a spatially complementary way (Fig. 4.4 a, left). To test if the significant negative

densities coincide with atomic coordinates, I compared the overlap with negative den-

sities using the independently determined X-ray structure of the 20S proteasome (PDB

entry 1pma; [88]). However, the significant negative density has only a very small 2.5%

overlap with atoms, which is close to the used false discovery rate of 1% (Fig. 4.4 b).

Using positive density, the same analysis gives 60% of the atomic coordinates in the 1%

FDR-contoured confidence map and that 10% of this volume is occupied by modelled

atoms. Taken together, there is significant negative signal beyond background noise in

cryo-EM maps, but only a small fraction of it is occupied by atoms. Biggest amounts

of negative density can be found embedded between strands of positive density, most

likely owing to the fact that the molecular density there is lower compared to the sur-

rounding solvent area, which will lead to reduced scattering and thus to weaker intensities.
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Figure 4.4: Analysis of positive and negative densities using confidence maps. a) Overlay of 1% FDR positive (blue) and

negative (red) confidence maps from original and inverted densities of EMD-3061 (top) and EMD-6287 (bottom) respectively.

b) Comparison of detected signal with corresponding atomic models by determining the fraction of overlap of atoms with

volume and fraction of volume with atoms as a function of threshold for negative (left), positive (center) confidence maps

and cryo-EM maps (right), respectively. This figure is taken from [10] and was prepared by myself.
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4.3.3 False Discovery Rate Control of cryo-EM Maps

Basic properties of confidence maps can be illustrated with the 3.3 Å cryo-EM map of

Tobacco Mosaic virus (TMV, EMD-2842). Analysis of a slice through the cryo-EM map

of TMV and comparison of the confidence map with the cryo-EM density (Figs. 4.5 a

and b) reveals backbone traces that contain values close to 1 in confidence maps, while

the cryo-EM maps exhibits a continuum of map values. Confidence maps show strong

contrast with respect to background noise, which is suppressed towards values of 0. The

histograms of the confidence map revealed a obvious peak beyond 0.99 PPV (1% FDR),

thresholding 5.7% of all voxels within the density. In the case of the deposited cryo-EM

map, the recommended 1.2σ threshold also yielded a recognizable outline of helical pitch

contours. However, only detecting 3.7% of voxels from the map. Similar to isosurface-

rendered cryo-EM densities, the confidence map exhibits recognizable details, such as the

helical pitch and many side chains of the central helices (Fig. 4.5 c). When going to a very

low FDR of 0.01%, some density becomes discontinuous and smaller features disappear.

At higher FDR thresholds such as 10%, obvious noise starts to appear. At a 1% FDR

threshold, the appearance of noise is minimal in the confidence maps. For reasonable

FDR thresholds around 1% the features are robust towards the actual choice of FDR

threshold. This is in contrast to cryo-EM maps, where the appearance of noise is very

sensitive to small changes in the threshold level, especially close to background noise levels.

Figure 4.5: Confidence maps separate signal from noise for molecular-density interpretation. a) Left: confidence map

with a longitudinal section through the TMV coat protein displayed, indicating the α-helical pitch of the LR helix. The

lower half shows the chosen contour at 1% FDR in blue with 5.7% of voxels detected. Right, the corresponding histogram

of the confidence map with signal separated above 0.99 PPV (1% FDR). b) Left: the same section as in a) from cryo-EM

density and the recommended threshold contoured at 1.2σ in gray with 3.7% of voxels detected. Right: the corresponding

histogram of the cryo-EM density with thresholded values displayed in gray. c) Isosurface-rendered thresholded confidence

maps at 0.01%, 1% and 10% FDR (left, center left and center right, respectively) shown in blue and sharpened cryo-EM

density with a 1.2σ threshold (right) in gray from TMV (EMD-2842 [46]). Shown are helix Ala86–Asp77 (top), a quarter

cross-section (bottom left) and a side view (bottom right) of the TMV map. This figure is taken from [10] and was prepared

by myself.
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Additionally, I also examined generated confidence maps from EMDB model challenge

targets, which were determined at near-atomic resolution: 20S proteasome [24] and γ-

secretase [4] (Figs. 4.8 a and b). They confirm the previous observation that at rather

low FDR levels of 1% they provide structural details at near-atomic resolution while

effectively controlling background noise.

To evaluate high-resolution molecular details of the confidence map, I inspected more

ambiguous density features of the TMV map. Peripheral density at lower and higher

radii of the virus was very difficult to interpret in previous work [46, 125, 101]. For these

regions, we found that well defined features are present in the 1% FDR confidence maps.

The densities of the coat protein for the loops Gln97–Thr103 located at the inner radius

and Thr153–Gly155 at the outer radius are not present in the respective EM map, but

can be clearly traced in the 1% FDR confidence map (Fig. 4.6, center). In addition, side-

chain density for Lys53 facing the adjacent subunit was found to be clearly significant,

while being discontinuous in the original map (Fig. 4.6, bottom left). Based on confidence

maps, the readjustment of side-chain rotamers was possible, as illustrated for example by

significant density for Arg61, which suggests a realignment of Arg61 to form stabilizing

interactions with the aromatic residue Trp152 (Fig. 4.6, bottom right). The presented

examples of TMV show that confidence maps represent a fundamentally new way for

density visualization and interpretation. Although adjustments of thresholds of cryo-EM

maps can also help model interpretation in ambiguous regions and enhance weak density

features, they also amplify noise and increase the risk of noise interpretation. Validation

by means of statistical significance is essential in such cases.

Figure 4.6: Confidence maps facilitate the detection of weak density features. Detailed comparison of TMV density and

the corresponding confidence map. A slice view through the TMV rod with enlarged insets for inner and outer radii density

(top). Lys53 side-chain density (left) and the molecular environment of Arg61 side chains (right) are shown at 0.7σ and

1.2σ thresholds and in a 1% FDR confidence map. This figure is taken from [10] and was prepared by myself.
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4.3.4 Robustness of FDR-controlled Density Transformation

To test the influence of the actual box sizes used for background noise estimation on the

resulting noise statistics, I compared the background noise variances for box sizes from

5 to 30 voxels. Results show that the variances are rather robust towards the specific

box size (Fig. 4.7). Moreover, in order to test the effect of inaccurate background noise

estimates on the resulting confidence maps, I calculated confidence maps by using half

or three quarters of the determined variance of the 20S proteasome densities (Fig. 4.8 c).

The resulting confidence maps displayed at 1%FDR revealed declaration of background

as signal, which poses a principal risk of over-interpretation. As the variance is underes-

timated, p-values will be underestimated as well and as such also the FDR. This risk,

however, is less relevant when the variance measurements outside the particle proposed

here are used, as we tend to overestimate noise as a consequence of the specific imaging

process (see section Statistical properties of cryo-EM maps).

Figure 4.7: Effect of window size on estimated variance. Estimated variance is stable with increasing window size from 5

to 30 voxels for a series of EMDB entries. This figure is taken from [10] and was prepared by myself.

Therefore, I tested the effect of overestimation of the variance by 1.25-fold, 2-fold and

8-fold and calculated the respective confidence maps. We know from Propositon 1 that

this will lead to a more conservative procedure, i.e. less voxels will be declared as signal.

However, obvious map features at 1% FDR only start to disappear when the variance

is heavily overestimated by a factor of 8; for smaller errors in the estimates the effect is

hardly visible in the appearance of the map.

The post-processing of the cryo-EM map is another important noise-related aspect before

the FDR-control, namely the degree of sharpening and filtering. Application of a series
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of B factors from 0 to 250 Å to the 20S proteasome map and subsequent calculation of

confidence maps showed that with increasingly negative B factors the corresponding con-

fidence maps at 1% FDR declare less signal as significant. Compared to cryo-EM maps,

which become severely oversharpened and the density features are dominated by noise

(Fig. 4.8 d), the increase in background noise will be taken into account in the confidence

maps. As such, confidence maps inherently avoid the enhancement of noise features that

could be mistakenly interpreted as signal and can be used to optimize the sharpening

level.

Using undersharpened maps for the calculation of confidence maps, the resulting confi-

dence maps will contain only low-resolution features lacking high-resolution detail at the

respective significance level, in analogy to cryo-EM densities. A vice-versa behaviour is

apparent for low-pass filtering: filtering at lower resolutions will lead to suppression of

high-resolution features. On the other hand, filtering at too high resolutions leads to

higher noise levels.
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Figure 4.8: Confidence maps and effect of incorrect noise estimation. a) 20S proteasome map (EMD-6287) comparison

of 1% FDR density (left) and 3σ-thresholded map (right). Shown are molecular details from I173 – R180 (top), slice view

(bottom left) and side view (bottom right) of density. b) γ-secretase map (EMD-3061) comparison of 1% FDR confidence

map and 5σ-thresholded map. c) Six confidence maps of 20S proteasome (EMD-6287) including magnified inset based

on incorrect variance estimation: 1st and 2nd left noise is underestimated by 0.5 and 0.75 times the variance (σ2). In

comparison with the correctly estimated noise (3rd), they show excessive noise features declared as signal at 1% FDR.

When noise is overestimated, which is more likely for cryo-EM maps, confidence maps are quite insensitive to changes in

map appearance. For multiples like 1.25σ2 and 2σ2 no apparent density changes become visible (4th and 5th) unless strong

overestimation like 8σ2 (6th) leads to disappearance of map features at a 1% FDR threshold. d) When applying a series of

B-factors to the 3D reconstruction of the 20S proteasome map, we see that with higher B-factors, sharpened EM densities

become dominated by noise whereas corresponding confidence maps displayed at 1% FDR show disappearance of significant

features thereby avoids over-interpretation of noise features. This figure is taken from [10] and was prepared by myself.
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4.3.5 Confidence Maps from Subtomogram Averages

In addition to high-resolution structures, the interpretation of lower resolution maps also

clearly benefits from confidence maps. with this in mind, I analysed a subtomogram av-

erage of the HeLa nuclear pore complex reconstructed from eight pore particles at 90 Å

resolution [91], which were determined in-situ. Continuous densities for the cytoplasmic

and inner rings can be clearly found in the deposited map. However, the map is noisy

when visualized at a threshold of 2.0σ (Fig. 4.9 a). The confidence map at 1% FDR

shows continuous features for the ring structure with controlled background noise and

allows unambiguous interpretation.

Figure 4.9: Confidence maps from subtomogram averages. a) Nuclear pore structure at 90 Å(EMD-8055) from eight pore

particles: cryo-EM map at 2.0σ threshold (left, gray) and confidence map at 1% FDR threshold (right, blue). Note that the

confidence map minimizes the appearance of noise. b) ER-associated ribosome structure at 35 Å resolution (EMD-8056)

in two side views at a 0.8σ threshold (left) and 1% FDR confidence map (right). Note that in confidence maps weaker

densities assigned to the peripheral protein complexes TRAP and OST (arrows) can easily be visualized in the absence of

noise. This figure is taken from [10] and was prepared by myself.

From the same tomograms a subtomogram average of ER-associated ribosomes could

be produced as well. The map could be reconstructed at a resolution of 35 Å at the

membrane, with weak density below the membrane that was interpreted as a translocon-

associated protein complex and an oligosaccharyltransferase. However, the corresponding

densities can only be visualized at lower thresholds corresponding to 0.8σ, which increases

the amount of background noise and prevents faithful molecular interpretation (Fig. 4.9

b). The 1% FDR confidence maps are able to display the additional protein complexes

under controlled noise levels. However, in order to calculate a confidence map from a

subtomogram average, care must be taken to identify areas of noise without any signal in

order to estimate the noise variance reliably (Fig. 4.10 a,b, and c), which usually requires
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manual specification of the noise boxes.

Moreover, I analysed the deposited maps of the 23 Å resolution nuclear pore structure and

the corresponding confidence maps, again determined by subtomogram averaging ([150];

Fig. 4.10 d). Focusing on the ambiguous density assignment of the linker region of Nup133,

the presence of density in the 1% FDR confidence maps confirms the interpretation of

the authors of placing the Nup133 linker region connecting the N-terminal-propeller and

C-terminal-helical domain (Fig. 4.10 d, top right). Additional densities in the connecting

regions between the inner and nuclear ring as well as between the inner and the cytoplas-

mic ring can be found in the confidence maps (Fig. 4.10 d, bottom). Both densities are

not found at the recommended threshold of 2.1σ, but significant at 1% FDR.

It should be mentioned here, that in contrast to clearly defined features in high-resolution

protein structures (like secondary structure and side chains), we generally do not know

how the expected density features of lower resolution structures should look like, which

further complicates manual thresholding as well as the validation of additional densities.

In conclusion we can say that also for lower resolution maps as subtomogram averages,

confidence maps facilitate density interpretation and help in the assignment of ambiguous

map features.

Figure 4.10: Noise estimation in subtomogram averages. Gray-scale density slices with red windows for the voxel region

used for variance estimation: a) EMD-8055: nuclear pore from HeLa cells by FIB-SEM, b) EMD-8056: ER-associated

ribosomes, c) EMD-3103: 23 Å resolution nuclear pore subtomogram average. d) Nuclear pore structure at 23 Å resolution

(EMD-3103) comparing cryo-EM map at 2.1σ threshold (left) and 1% FDR confidence map (right). Comparison of map

pairs for Nup133 linker density (top right), densities located between inner and nuclear ring (bottom left) and inner

and cytoplasmic ring (bottom right). In contrast to sharpened cryo-EM maps at 2.1σ threshold, confidence maps show

consistently densities at the connections between the inner and outer rings at 1% FDR threshold (arrows). This figure is

taken from [10] and was prepared by myself.
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4.3.6 Incorporation of Prior Information

As described in the methods section, additional information based on local resolutions

can be incorporated via local filtering and sharpening to increase local signal-to-noise lev-

els. Incorporation of these post-processing steps and consideration of the resulting local

background noise levels will lead to improved detection of low-resolution features due to

improved signal-to-noise ratios in the map.

Figure 4.11: Confidence maps benefit from prior information based on local resolutions. a) Locally filtered β-galactosidase

(EMD-2984) cryo-EM map (gray) displayed at a 4.5σ threshold (left) and b) confidence map (blue) including prior informa-

tion based on local resolution at a 1% FDR threshold (right) in side view and cross-section. High-resolution features such

as Glu304–Glu398 and holes in the aromatic rings of Trp585 in the 3.5/4.5σ - thresholded cryo-EM map (a) in comparison

with the 1% FDR confidence map b). c) Comparison of density features from peripheral loop regions not covered by

density in the locally filtered cryo-EM map (left) compared with the 1% FDR confidence map that shows densities for the

respective loops. This figure is taken from [10] and was prepared by myself.

Analysis of the very high-resolution map (2.2 Å resolution) of β-galactosidase (EMD-2984;

[8]) showed that the applied sharpening levels, which were necessary to reveal the high-

resolution details in the center of the map, resulted in heavily oversharpened peripheral

parts of the protein, mainly due to resolution ranges from <2 Å in the center to 3.8 Å

in the periphery. Calculating a confidence map from the deposited map confirmed this

observation, with almost no significant signal at 1% FDR in the periphery of the protein

complex (Fig. 4.13). However, incorporation of local resolutions followed by FDR control

resulted in a evenly distributed 1% FDR confidence map including the β-gal periphery

(Figs. 4.11 a and b, top). Moreover, side-chain details such as holes in aromatic rings

can be resolved at the same significance level, as shown for Trp585 (Figs. 4.11 a and b,
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bottom). Inspection of the cryo-EM map shows that density for the peripheral loops of

the β-gal complex can not be found at a 4.5σ threshold, but obvious significant continuous

loop density at a FDR of 1% in the resolution-compensated confidence map (Fig. 4.11 c,

left and right).

Figure 4.12: Confidence maps facilitate the overall interpretation cryo-EM maps. a) Locally filtered cryo-EM map

(EMD9333) of a Bacterial ATP synthase (left) with the corresponding confidence map (right) and magnified views. The

arrow shows the density that likely correspond to a His-tag. b) Cryo-EM map of a eukaryotic ribosome (EMD0194, left)

together with the corresponding confidence map (right) and magnified views.

Beyond the β-gal example, local resolution variations occur for many maps, and often

also in a much more extreme way. As many maps contain disordered protein parts when

compared to the rest of the complex. For example, comparison of the map of a bacterial

ATP synthase (EMD9333)[56], which I locally filtered in this case, to the corresponding

confidence map clearly shows that even in the locally filtered map, low resolution parts

like the stalk domain are still missing at rather low thresholds at which high-resolution
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parts already become noisy. In contrast, the confidence maps allows interpretation of the

complete complex at a rather low FDR of 0.01%, even with significant low-resolution

density that likely corresponds to a 10x His-tag (Fig. 4.12 a). Eukaryotic ribosomes have

parts like the expansion segments and the ribosomal stalks, which are usually much worse

resolved due to flexibility (Fig. 4.12 b) (EMD0194) [71]. In the deposited cryo-EM map,

the respective parts are heavily oversharpened and appear noise-like. Calculating the

confidence map with local resolution information clearly depicts the respective domains,

with both high and low-resolution features visible at a single threshold of 0.01% FDR.

Taken together, the statistical power of the procedure can be improved, i.e. the power

with which we can detect signal, while still controlling the FDR by the incorporation

of local resolution information. Moreover, similar improvements can be observed with

local-sharpening and combination of both local-resolution filtering and sharpening, as

illustrated in Figure 4.13. However, for the the peripheral loops of the β-gal complex,

which were already examined above, we can see that the incorporation of local resolution

via local filtering has a stronger impact. While local sharpening via LocScale definitely

leads to improvements in the confidence maps, the loops are not as well defined in the

confidence maps as they are when local filtering is incorporated. The reason is that for

the task of signal detection we are only interested in good signal-to-noise ratios, which is

optimized by local resolution filtering. In contrast, local sharpening aims to scale the am-

plitude profile in Fourier space, which has itself a less strong effect on the signal-to-noise

ratio. However, both local resolution filtering and local sharpening can be combined, but

only with minor improvements on the confidence maps compared to simple incorporation

of local filtering.
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Figure 4.13: Effect of local variance adjustments on confidence maps. β-galactosidase (EMD-2984) cryo-EM map at 3.0σ

threshold (left, gray) and 1% FDR confidence map based on different post-processing methods (right, blue). Global sharp-

ening with uniform filtering, local filtering based on local resolution measurements, local sharpening and the combination

of local sharpening with local filtering were compared. Confidence maps were generated with local noise estimate based on

local resolution measurement, locally scaled window from a model reference structure and the combination of both, which

in this case shows the best preservation of molecular density with respect to confidence. This figure is taken from [10] and

was prepared by myself.
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4.3.7 Confidence Maps for the Annotation of Bound Molecules

Most cryo-EM maps have resolutions between 3 and 4.5 Å. In these resolution regimes

most main-chain and large side-chain densities can usually be modelled. However, for

residues with smaller side chains and non-protein components such as water molecules

and ions, maps at near-atomic resolutions pose the risk of modelling atoms into noise. In

order to investigate whether confidence maps can help to mitigate this problem I inspected

a putative Mg2+ site coordinated by Glu416, Glu461, His418 and three additional H2O

molecules. I performed a rigid body docking of the Mg2+ ion together with coordinated

water molecules based on a 1.6 Å resolution X-ray crystal structure ([157]; PDB entry

4ttg) into the deposited cryo-EM density map and looked at the overlay. The map at the

lower 3.5σ threshold shows convincing density for only two water molecules (Fig. 4.14 a,

top left), while the confidence map reveals distinct densities for all three proposed water

molecules at 1% FDR (Fig. 4.14 a, top right).

Moreover, the β-galactosidase structure has been acquired in the presence of the small-

molecule drug PETG. Finding ligands and modelling their conformation is challenging,

as both the ligands as well as the ligand binging sites usually exhibit flexibility and the

binding might not occur for all particles used in the 3D reconstruction (Fig. 4.14 a, bot-

tom left), which will lead to worse resolutions and weaker map densities. Looking at the

confidence map and comparing the densities with the cryo-EM maps, ligand placement is

clearly facilitated using confidence maps, with density being well resolved for the complete

inhibitor (Fig. 4.14 a, bottom right).

To investigate whether the detection of smaller ions can be facilitated by confidence maps

as well, I took the TRPV1 ion channel [83] and inspected the density in the selectivity

filter of the ion channel, which is mainly made of Gly643. In the deposited map a clear

density peak can be found in the symmetry center that is compatible with a small ion. In

support, the confidence map also shows a density peak at the same position, supporting

the presence of an ion at a significance level of 1% FDR (Fig. 4.14 b, bottom right).

By inspection of the γ-secretase complex, density for membrane-embedded phosphatidyl-

choline (PC) lipid molecules can be found. However, the deposited EM map requires

thresholding at different σ-levels between 4 and 5 in order to visualize the two PC acyl

chains, (Fig. 4.14 c). In contrast, the corresponding confidence map at 1% FDR contains

most of the density of the two acyl chains without any additional threshold adjustments.
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Figure 4.14: Confidence maps confirm the localization of nonprotein components. a) β-Galactosidase (EMD-2984) with

3.5/4.5σ-thresholded cryo-EM maps (left and center, gray) and a 1% FDR-thresholded confidence map (right, blue). Top:

the Mg2+ ion is coordinated by Glu461, Glu416, His418 and three H2O molecules. Bottom: density of bound PETG

ligand in 3.5/4.5σ-thresholded cryo-EM maps and the 1% FDR confidence map. b) TRPV1 channel (EMD-5778) with

a 5σ-thresholded cryo-EM map (left) and a 1% FDR-thresholded confidence map (right): the selectivity filter formed by

the carbonyls of symmetry-related Gly643 residues. The presence of a putative ion is supported by the confidence map.

c) γ-Secretase (EMD-3061) with 4σ- and 5σ-thresholded cryo-EM maps (left) and a 1% FDR-thresholded confidence map

(right). The confidence map reveals density for both acyl chains of phosphatidylcholine at a single threshold. This figure is

taken from [10] and was prepared by myself.
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4.4 Further Developments

Beyond the published work, the concept of statistical signal detection in cryo-EM maps

has subsequently been extended towards other error measures (FWER and localFDR)

and other FDR-controlling procedures in addition to basic Benjamini-Yekutieli FDR.

The Benjamini-Hochberg procedure has shown to be more powerful than the Benjamini-

Yekutieli procedure. However, it makes assumptions about the dependency structure of

the p-values. A similar situation applies to the Hochberg and Bonferroni-Holm proce-

dures, with the former more powerful but also more restrictive in dependency structure.

The question arises whether cryo-EM maps fulfil assumptions about certain dependency

structures. Moreover the application of the framework to single tomograms has been

explored, which will be discussed in this chapter as well.

4.4.1 Beyond FDR - Comparison to FWER and localFDR

Multiple testing is a major field of research in statistical inference [160, 166, 68] and, in

addition to false discovery rate control, several other error rates have been proposed to

account for the multiple testing problem. The Family-wise-error rate (FWER) as well as

localFDR have been implemented in the FDRthresholding-software and can be chosen as

additional options. Moreover, several approaches for controlling FDR and FWER exist,

where in both cases more powerful procedures can be obtained when making rather weak

assumptions about the dependency between p-values.

LocalFDR can be seen as a local pendant to the FDR and, as such, quantifies the

probability for each voxel to be a false positive. This gives error rates which are readily

interpretable in contrast to FDR-adjusted p-values, which only give a global measure over

all tested hypotheses. However, it does not deliver information about the global amount

of false positives and is more difficult to calculate, as it is a Bayesian posterior probability

and requires estimation of the probability densities of both the background noise and the

signal distribution. Most useful application of localFDR is therefore in conjunction with

basic FDR in order to judge the individual local false discovery rates for signal detected

at a specified global FDR.

FWER specifies the probability of having false positives after all. In contrast to FDR

and localFDR, FWER is a rather strict and more conservative error criterion, but in the

context of cryo-EM map interpretation FWER is able to deliver important additional

information. Especially modelling of water molecules and small ions requires interpreta-

tion of single voxels, which can be easily confused with noise features. Thus, the cost

of false-positives can be severe. Although controlling the FDR already drastically facil-

itates this process, we still expect false positives, namely up to as many as is specified

by the FDR threshold. Considering 100000 significant voxels, 1% FDR corresponds to

a expected maximum of 1000 false positives. Controlling the FWER instead of FDR

would as such be desirable. However, the biggest problem of FWER control of cryo-EM
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maps remains the low statistical power, i.e. a high false-negative rate, which is basically

the result of the vast amount of hypotheses that need to be tested in a complete 3D map.

In order to analyse the behaviour of FWER, FDR and localFDR applied to cryo-EM

maps, confidence maps have been calculated from the 20S proteasome map (EMD-6287,

[24]) for all three error criteria. Both FDR and localFDR show remarkably similar re-

sults (Fig. 4.15 middle and right), with localFDR having a bit more signal. In contrast,

FWER clearly annotates less significant signal compared to FDR and localFDR. While

several noise peaks might be correctly assigned as not significant signal (Fig. 4.15 middle

row), also possibly true signal from the protein seems to be missed. For a more quantita-

tive assessment I refer to the next section, when I will also provide a detailed comparison

between the different error controlling procedures.

Figure 4.15: Comparison of different error rates for confidence map calculation. Confidence maps for the 20S proteasome

(EMD-6287) are shown for FWER (left column), FDR (middle column) and localFDR (right column) in presence of the

corresponding atomic model (pdb entry 6bdf). Slices through the maps (top row) as well as two zoomed views (middle and

bottom row) are presented.
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Choice of the Error Controlling Procedure

Generic black-box methods for the control of FWER and FDR are given by the Bonferroni-

Holm and the Benjamini-Yekutieli approach. It can be shown that both procedures control

the respective error rates under arbitrary dependencies between the p-values. However,

with the Hochberg procedure for FWER control, and Benjamini-Hochberg for FDR con-

trol, respectively, alternatives exist that have been shown to posses lower Type II errors,

under the restriction of certain allowed dependencies. The Benjamini-Hochberg procedure

assumes a so called ”positive regression dependency”, which is further specified in their

paper [12]. The Hochberg FWER procedure is based on the Simes inequality [134], and

also assumes positively dependent distributions. Under negatively dependent distribu-

tions, both methods fail to control the error level [16].

Cryo-EM maps undergo extensive post-processing with both sharpening and low-pass

filtering of the Fourier transform. Low-pass filtering will lead to positive dependencies,

sharpening will lead to negative dependencies. As such, the actual dependency pattern

between voxels can be assumed to be very complex. While voxels close to each other will

be highly positively dependent due to the low-pass filter cut-off, at longer distances the

sharpening might lead to negative dependencies. However, if no or very careful sharpen-

ing is applied, positive dependency might be a good approximation.

In order to investigate the difference of the multiple testing approaches in the context of

cryo-EM maps, we compared the respective approaches to each other at hand a 3.4 Å

cryo-EM map (EMD3061) of γ-secretase [4]. As expected, at 1% FWER less density is

declared significant compared to 1% FDR, no matter what approach is used (Fig. 4.16).

While several noise peaks might be correctly assigned as not significant signal, also likely

true signal from the complex seems to be missed, for example for the head of the embed-

ded lipid (Fig. 4.16 right column) appears smaller at 1% FWER.

In order to quantify the performance of the different error rates, I applied them to a

simulated noisy map of 4194 water molecules (taken from pdb 6cvm [6]). I compared

the detected false positive map peaks that cannot be attributed to water molecules and

also the amounts of missed water molecules for the different procedures at 1% FDR

or FWER, respectively. The simulated map was generated with the Chimera molmap

function and we added Gaussian white noise with a standard deviation of 0.5, which re-

sults in a SNR of 1.75 for the density peaks. While at 1 % FWER we do not have any

false positives, at 1% FDR we have, as expected, some false positives hits that could

be mistakenly interpreted as water (Tab. 4.1), with the Benjamini-Hochberg procedure

having more false positives that almost reaches the controlled FDR of 1 %. However, the

decreased amount of false positives in the case of FWER control comes for the price of

some missed water molecules.

Moreover, the Hochberg FWER seems not make a obvious difference compared to Holm

FWER, but the Benjamini-Hochberg FDR-control declares more significant signal com-

pared to Benjamini-Yekutieli. However, as described above, the actual dependency pat-
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tern between voxels can assumed to be very complex in a cryo-EM map, and the Benjamini-

Yekutieli for FDR and Holm for FWER might be the safer approaches.

All in all, additional error rates like FWER and localFDR can be useful to use beyond

basic FDR-controlled confidence maps. Both have their own limitations (low statistical

power for FWER and missing global information for localFDR), which need to be con-

sidered and do not make any of them clearly superior to FDR control. However, with

respect to the analysis of cryo-EM maps FWER provides the error criterion that would

be the most useful for the interpretation of weak and isolated signal, as it occurs especially

for water molecules and bound ligands and is only hampered due to low statistical power.

Table 4.1: Comparison of detected false positive voxels and false negative water molecules for a simulated map of 4194

water molecules (taken from pdb 6cvm). The number of false negative water molecules and false positive voxels together

with the true FDR this corresponds to.

Controlling procedure False positive voxels False negative water molecules

Holm FWER 1% 0 / FDR: 0.00% 18 of 4194

Hochberg FWER 1% 0 / FDR: 0.00% 18 of 4194

Benjamini-Yekutieli FDR 1% 7 / FDR: 0.05% 0 of 4194

Benjamini-Hochberg FDR 1% 147 / FDR: 0.88% 0 of 4194
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Figure 4.16: Comparison of different FWER and FDR controlling procedures. Confidence maps based on Holm

FWER, Hochberg FWER, Benjamini-Yekutieli FDR and Benjamini-Hochberg FDR are compared with a γ-secretase

map (EMD3061). Respective zooms in the inner of the transmembrane domain are sown in the right column.
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4.4.2 Application to Tomograms

Cryo-electron tomography is an emerging technique for the analysis of biological samples

in situ. While the analysis of subtomogram maps by means of multiple statistical hypoth-

esis testing is quite similar to high-resolution maps obtained by single-particle analysis,

raw tomograms have a much lower signal-to-noise ratios compared to averaged cryo-EM

maps. In principle, the calculation of confidence maps from raw tomograms is possible

as well. Electron counting noise will be uniform over the tomogram; however, noise from

interactions with the amorphous ice will be different over the tomogram, depending on

the sample thickness in the respective regions (an effect that can be ignored when looking

at picked particles). If the tomogram has uniform ice thickness, background noise will

be roughly uniform as well (with the exception that embedded particles will have lower

background from ice due to relative ice thickness as is the case for averaged maps, see

above).

Application to a tomogram of the Chlamydomonas reinhardtii Golgi apparatus (EMD-

3977, [22]) shows that cellular details can be clearly recognized in the statistically signifi-

cant signal (Fig. 4.17) with clear separation of the Golgi cisternae. However, application

of the statistical framework to tomograms is of limited use, as the signal in tomograms

is usually not interpreted itself, but rather used for particle picking with subsequent av-

eraging or rough morphological analyses. In both cases, approaches based on supervised

learning will be more appropriate, as they can incorporate additional semantic information

about the expected specific shapes.

Figure 4.17: Confidence tomograms. A confidence map of a tomogram from the Golgi apparatus of Chlamydomonas

reinhardtii (EMD-3977). Zoomed views focusing on a vesicle and on the Golgi cisternae shown on the right.
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4.5 How to Interpret a Confidence Map

Confidence maps are based on multiple hypothesis testing, and, as such, similar interpre-

tation of the results applies. No significant signal at a given FDR does not imply that

there is no signal at the respective voxels. It means that the uncertainty is too high to

make a decision against the background noise hypothesis at the specified significance level.

Controlling a global error rate in a multiple testing setting is a difficult task, as complex

dependencies between the individual tests have to be taken into account. Thus, control

of the error rates can only be done rather conservative, which means that a confidence

map at a FDR of 1% will have a true FDR below 1%. However, we described above how

local resolutions can be incorporated in order to increase the statistical power, i.e. how

we can reduce the amount of false negative voxels.

When choosing an appropriate threshold of the confidence maps, the FDR provides an

error criterion that is directly interpretable: e.g. choosing a FDR of 1% means that up

to 1% of the visible density can be actually background noise. Choice of the FDR is also

related to the properties of the interpreted features. While for continuous density, as they

appear for low-resolution structures, the occurrence of single false positive voxels is less

problematic, the cost of false positive hits can be substantially higher when interpreting

water and ion densities in high-resolution maps. In these cases, usually more restrictive

thresholds are necessary. Alternatively, FWER instead of FDR control can be chosen in

such situations. In conclusion, the lower the error level can be chosen, the more confident

statements can be made about the respective densities.

Although the threshold of a confidence map still allows adjustment, it has to be noted that

it differs substantially from the threshold of cryo-EM maps. The FDR-threshold provides

an error criterion that is directly interpretable and gives feedback about the validity of

the visible density in a probabilistic way. For cryo-EM maps, however, the threshold is

difficult to interpret in detail and the specific choice remains arbitrary due to plenty of

different reasons that can in principle influence the actual map values, as described.

Moreover, as soon as density can be clearly distinguished from background noise, they

will have values very close to 1 in a confidence map. This means that lots of variations of

the map values are flattened in confidence maps. This effect becomes obvious for example

in membrane proteins, where the detergent micelle of course also contributes true signal.

In order to interpret the transmembrane domain in confidence map, it needs to be sliced.

In a cryo-EM map simply the threshold can be increased until the detergent is not visible

any more. This is possible, as the the detergent micelle usually has lower map values

compared to the protein parts. But such a threshold adjustment is problematic, as of

course also density will be ignored that is real: not only the detergent disappears, but

also other weaker density like ligands.

When visualizing confidence maps, for example in Chimera [114], they look different from

common cryo-EM maps. Confidence maps appear very sharp and have obvious edges,

which is the result of the strong contrast between signal and background voxels, with val-

68



ues close to 1, or 0, respectively. However, this visualization problem can be easily solved

by oversampling and smoothing the surface with the respective visualization program, in

order to make them look more EM like (Fig. 4.18).

Figure 4.18: Confidence maps have very high contrast, which results in sharp edges (top), as shown for the map EMD3061.

For example in Chimera, additional surface smoothing can be used to make the appearance smoother and look more like a

normal cryo-EM map (middle, bottom).

Confidence maps aim to detect signal from background noise. If significant signal is

detected, it means that, up to the specified confidence level, it is neither background from

the amorphous ice nor detection noise. As such, signal can be everything that contains

contributions beyond background noise. However, situations can be imagined, where this

might result in uninterpretable confidence maps, even if the background estimation was
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performed correct. For example, substantial amounts of misaligned particles will of course

contribute true signal, but without any clear structural meaning. Similar effects will occur

with highly preferred orientations and overfitting of noise. As confidence maps are able

to detect very weak signal, especially when local resolutions are provided, such unwanted

signal will be more prominent in confidence maps compared to normal cryo-EM maps.

Although this can be seen as a conceptual problem of the signal detection approach, it is

also indicative of problems in the reconstructions.

4.6 Implementation of Confidence Maps in the CCPEM

Software Suite

Together with Colin Palmer from CCPEM, the confidence map tools have been inte-

grated into the CCPEM software suite v1.4 with an easy-to-use graphical user interface

(Fig. 4.19). Upon clicking the ”Check noise box” button, a pop-up window appears,

which shows three slice-views through the map together with the locations of the used

noise boxes. In this way, noise boxes can be easily inspected and adjusted accordingly.

Moreover, additional error rates and additional input of a local resolutions can be selected

as extended options.

Figure 4.19: Confidence map implementation in CCPEM v1.4. Overview of the graphical user interface in CCPEM. A

simple ”Check noise box” button allows direct visualization of the noise boxes.
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4.7 Limitations and Future Perspectives

A major limitation of the approach at this stage is the background noise estimation

process. Estimation in the solvent area outside the particle and subsequent usage of this

estimates for the complete map assumes that we can get information from the solvent

background about the background affecting the particle itself. If the background noise is

homogeneous over the whole map, then this will result in accurate background estimates

for all voxels in the map.

This is of course an approximation to reality. From the image formation process with lower

relative ice-thickness in the region of the particles compared to the solvent surrounding

them, one might argue that background noise is higher in the solvent area outside the

particle. However, we showed in a mathematical proof that the FDR is still controlled

with overestimated background noise levels, although more conservative. Moreover, it

seems to be rather robust towards small inaccuracies of the background estimates. We

argue that the presented approach is robust, especially if we recapitulate that the major

problem is the correction of the multiplicity from the multiple testing, which can only

be done conservatively. Improved background estimation approaches that could deliver

voxel-wise parameter estimates, however, would of course be beneficial to the approach in

order to increase the statistical power. Another limiting point is the choice of the boxes

used for background noise estimation, which adds a level of subjectivity, especially for

the case of sub-tomogram averages. Although guidelines can be given on how to choose

the parameters (as big as possible and as small as necessary), this should become a fully

automated process in the future in order to get a fully unsupervised procedure.

In addition to cryo-EM maps, a similar thresholding problem also applies to maps from x-

ray crystallography. However, it remains an open question if the concept is transferable,

as the estimation of background noise might be more complicated due to the phasing

process. But the data is in general interpretable, and, as such, there must at least be

rough hints about the expected uncertainty in the maps.

To generalize the concept even further, thresholding is also inherent to other imaging

techniques that deal with high amounts of background noise and where one has to make

a decision if something is still background or already a significant hit. While a simple

inference on individual pixels ignores the multiple testing problem, it is essential to correct

for it, especially for large images. Multiple testing issues are often overlooked and lead to

inflated amounts of positive hits. However, they can be corrected quite powerful. While

tools from high-dimensional statistical inference like multiple testing are widely used in

all kinds of omics technologies, they have not found their way to image analysis and

processing in the life sciences, especially as visibility to statisticians has been low. The

presented work shows that statistical inference can be a valid and highly useful tool for the

analysis and inference of imaging data, and that similar approaches might be influential

tools beyond cryo-EM.
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Chapter 5

A Non-Parametric Permutation

Approach for Adaptive Thresholding

of Fourier Shell Correlation Curves

The work presented in this chapter is based on the observation that thresholding of Fourier

shell correlation (FSC) curves poses a multiple testing problem as well. Together with

a novel non-parametric permutation algorithm to learn the null distribution from the

data itself, I could apply similar methodology as used for the confidence map approach.

Chronologically, this was the last work done for this thesis and remains unpublished so

far. However, work on the paper is ongoing. I prepared all figures and the programming

was done by myself.

5.1 Abstract

Fourier shell correlation (FSC) curves have become the standard quantity used for reso-

lution estimation in both cryo-EM and super-resolution microscopy. However, the actual

resolution determination process requires the selection of a specific threshold as well as

processing of the maps beforehand (masking), which remains a controversial and subjec-

tive issue [148]. In this chapter I describe a novel statistical framework based on modern

non-parametric permutation sampling and multiple testing correction which allows fully

automated and mask-free resolution determination based on thresholding of Fourier shell

correlation curves. I demonstrate applicability for global, local, directional and map-

model resolution estimation and show that the developed criterion termed FDR− FSC
gives accurate resolution estimates without any user intervention. The algorithms are

implemented in a user-friendly GUI based software termed SPoC.
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5.2 Resolution Estimation

In the last decades, novel imaging approaches greatly improved our understanding of bio-

logical matter. With the advent of cryo-EM and super-resolution microscopy, to mention

but a few, microscopy with both electrons and photons has undergone major improve-

ments, allowing to see complex biological mechanisms at high detail. At the core of all

these developments are improvements in the resolutions that can be achieved. The reso-

lution is a highly important number, as it makes different methods comparable and, more

importantly, gives insights up to which level of detail we can faithfully interpret our data.

FSC curves are nowadays the standard tool for resolution estimation. FSCs were origi-

nally introduced to the field of cryo-electron microscopy [57] and gradually proliferated

into super-resolution microscopy [106, 5, 34, 76]. The FSC measures the correlation

between Fourier coefficients in the respective resolution shells and typically shows high

correlations at low resolutions and starts to drop until it oscillates around zero at higher

resolutions where only noise is present. In order to get a resolution number from FSC

curves, a threshold value needs to be chosen. The most widely used value is the 0.143

cutoff [123] for resolutions better than 10 Å. For lower resolutions and for local FSCs,

as used for local resolution estimation [25], a 0.5 cutoff is typically used. However, fixed

value thresholds ignore the uncertainty inherent to FSCs, which are dependent on the

effective number of Fourier coefficients in the respective resolution shell. This effect be-

comes especially important at lower resolutions and for small sample sizes, as they occur

for local resolution estimation [25] and directional FSCs [168]. Other criteria like the 2σ

and 3σ [127, 107] as well as the half-bit criterion [147] have been proposed that take into

account this effects.

The FSC is directly related to the spectral-signal-to-noise ratio (SSNR) [146] and thresh-

olds like the 0.143/0.5 or half-bit criterion choose the cutoff to have a least information

content present in the highest resolution shell. However, in order to get correct estimates

of the SSNR of the molecular density, noise needs to be masked out of the volume, as big

parts of the volume are only noise and thus highly bias the SSNR towards lower values.

Masking however poses the danger of introducing artificial correlations, an effect which

needs to be further corrected by heuristics [27]. Typically, several masks are tried and

the user decides about a reasonable resolution based on reproducibility as well as justifi-

cation by molecular features. Although approaches exist for the calculation of corrected

FSC curves considering the molecular mass [135], this still requires a particular threshold

criterion. In summary, it remains a highly subjective task.

The σ-thresholds were developed in order to give cut-offs when the FSC exceeds the ran-

dom correlations of pure noise. Compared to the above-mentioned criteria, testing for

signal in the resolution shells has the advantage that the resolution shells that contain

signal also contain signal in presence of noise, i.e. the quantity we are interested in is un-

biased by the noise. Only the detectability is influenced, which makes it necessary to use

powerful statistical methods with high specificity. Additionally, inference of statistically
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significant signal in the resolution shells only requires knowledge of the random correla-

tions of pure noise and avoids the consideration of complicated correlations between signal

and noise. However, statistics based on simple σ-thresholds suffer from several drawbacks.

Connecting the σ-levels to probabilities requires strict assumptions about the underlying

probability distribution, which is usually unknown. Furthermore, statistical inference on

all resolution shells poses an inherent multiple testing problem. Both problems have not

been considered in the context of resolution estimation so far and neglecting them could

lead to erroneous resolution estimates.
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5.3 Methods

In order to circumvent these problems, I developed a new probabilistic procedure for

thresholding of FSC curves based on non-parametric permutation sampling and multiple

comparisons correction. Permutation tests, or sometimes also referred to as exact tests,

are powerful statistical procedures for learning the null-distribution from the data itself

and thus do not require any assumptions about the underlying distributions [81]. These

methods are still subject of active research [109, 35]. The idea for permutation testing

of correlation coefficients is straightforward: under the null-hypothesis the two resolution

shells are independent and we can generate new samples by permutation of one of them.

This allows to sample the null distribution of the FSC coefficients of each resolution shell

and subsequently calculation of p-values (Fig. 5.1). In order to account for the multiple

testing problem, p-values are then corrected by means of false discovery rate (FDR) [12]

control, similar to the case of cryo-EM map thresholding [10]. Effects of specific symmetry

and windowing functions on the effective sample sizes are incorporated by subsampling

before permutation of the Fourier coefficients. In the following section, I will give a

detailed outline of the mathematical framework.

Figure 5.1: Samples FSC0 under the null hypothesis are generated by permutations of the paired Fourier coefficients,

leading to new paired Fourier coefficients.

76



5.3.1 A Permutation Test for Fourier sell Correlation Coeffi-

cients

Let Xri and Yri complex random variables, with which we denote the Fourier coefficients

at the specific location ri, i = 1, ..., N in resolution shell r of halfmap 1 and 2, where

N ∈ N is the number of Fourier coefficients in the respective shell. Due to the Friedel

symmetry inherent to real Fourier transforms, we restrict ourselves now to one half of all

locations ri, which contains one partner of each symmetry pair. The other is than simply

given as the complex conjugate. We denote the Friedel symmetry corrected sample size

with n. In the case of two independent reconstructions, dependence between Xri and Yri

is introduced through an effect of the signal at position ri, which we denote with S(ri) ∈ C
and which is the same in both volumes. Thus, Fourier coefficients are usually modelled

as

Xri = S(ri) +NX(ri) and Yri = S(ri) +NY (ri), (5.1)

where NX(ri) and NY (ri) are complex valued noise variables [147]. We do not impose

any assumptions about the specific distribution of the noise in resolution shell r. Further-

more, we denote with XR = (Xr1 , ..., Xrn) and similarly YR = (Yr1 , ..., Yrn) the complete

resolution shells.

We are interested if the Fourier coefficients in the respective resolution shell are dependent

with respect to the location ri, i.e. that groupings (Xri , Yri) show statistical dependencies.

In statistical terms, the null hypothesis H0 is that Xri and Yri are independent of each

other, and the alternative H1 is that there are dependencies.

In order to test such a hypothesis system, correlation coefficients can be used [81]. As a

test-statistic we use the Fourier shell correlation. Using the Friedel symmetry inherent to

Fourier transforms of real valued data and denoting complex conjugation with ∗, we can

write the FSC as

FSC(XR, YR) =

∑n
i=1XriY

∗
ri

+ YriX
∗
ri√∑n

i=1 2|Xri |2
∑n

i=1 2|Yri |2
, (5.2)

where it becomes clear that FSC(XR, YR) is a real valued random variable. Statistically,

FSC(XR, YR) is the estimator for the true value of the Fourier shell correlation, which

we denote from now on with FSC. Thus, the values that we calculate with FSC(XR, YR)

are only noisy estimates for the truth.

It is important to note here that we are testing for dependencies by using a correlation

coefficient; the null hypothesis is not FSC= 0. The FSC can be zero and there can still

be dependencies. Independence is a stronger property than correlation, i.e. correlation
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implies dependence while the reverse is in general not true.

In order to test H0 we calculate a p-value as follows. With fsc we denote the estimated

FSC value for resolution shell r. Moreover, with FSC we denote the random variable

describing the FSC as above. The p-value p of this observation is then given as the

probability that FSC is bigger than fsc under the null hypothesis, i.e.

p = P(FSC > fsc|H0), (5.3)

where P is the true probability measure under the null hypothesis. In case for correlation

coefficients, the true probability measure P is rather complicated and usually unknown.

Although analysis can be done based on Fisher’s z-transformation [112], this assumes a

normal distribution of the underlying sample. However, non-parametric statistical meth-

ods based on resampling got attractive in the recent years due to increased computational

power and correlation coefficients like the Fourier shell correlations can be easily resam-

pled by permutation.

A permutation test is built as follows. Under H0 we have that the Fourier coefficients

Xri and Yri are independent for i = 1, ..., n. New paired samples of Fourier coefficients

can thus be generated by permutation of YR. This is where the null hypothesis of inde-

pendence becomes important, because under the null hypothesis of no correlations there

could still be dependencies and simple permutations would not be allowed. Thus, the

sampled null distribution is the distribution of FSC from independent half maps. For a

detailed discussion regarding this topic we refer to [35]. From each generated sample, we

then calculate the Fourier shell correlation, which results in a sample of FSC under the

null hypothesis. Denoting with Sn the set of all permutations π of 1, ..., n, which is known

in abstract algebra as the symmetric group, we can calculate the p-value p by

p =
1

n!

∑
π∈Sn

I(FSC(XR, Yπ(R)) ≥ fsc), (5.4)

where I denotes the indicator function. As the number of possible permutations grows

very rapidly with the sample size, technically often just a random subset of H ⊂ Sn of

all n! possible permutations are used. Thus, p is replaced by its Monte-Carlo estimator

p̂MC , given as

p̂MC =
1

|H|
∑
π∈H

I(FSC(XR, Yπ(R)) ≥ fsc), (5.5)

where |H| is the cardinality of the set H, i.e. the number of permutations selected for the

Monte-Carlo estimate.

It is important to note, that the null distribution of the FSC estimated by the permutation

approach is not necessarily the distribution of the FSC in absence of any signal. As we are
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permuting in presence of possible signal, which adds additional variation, the permutation

distribution of the FSC will have bigger tail probabilities than the distribution of the

FSC without any signal. This could give rise to more conservative resolution estimates.

However, simulations in presence of signal at high and low signal-to-noise ratios showed

that this effect seems to have less practical relevance (Fig. 5.2 a). Moreover, the amount

of signal in the most important resolution shells close to the actual resolution is rather low

and will thus have limited influence on the actual distribution. As a compromise between

computational efficiency and statistical accuracy, we restrict the number of permutations

to a maximum of 1000. Moreover, permutations are only done for resolution shells with

an effective sample size >10, which allows for more than 1000 permutations. Even in the

case of high symmetries this usually only excludes the first two resolution shells. A 0.9

threshold is used in these cases.

5.3.2 Multiple Testing Correction

Testing of all resolution shells results in a multiple testing problem. In order to correct

for the α-error inflation due to the multiple testing problem, estimated p-values are subse-

quently adjusted for the false discovery rate (FDR) of detected resolution shells, i.e. the

amount of false positive resolution shells. To account for arbitrary dependencies between

the p-values, the Benjamini-Yekutieli [13] procedure has been selected for FDR control.

5.3.3 Effective Sample Size Corrections

Correction of the sample size has been found to be an important factor in presence of

symmetry and masking [147], as this leads to dependencies between Fourier coefficients.

Simple heuristics have been proposed in order to get estimates the effective sample size

neff . The effect of imposed symmetry during reconstruction can be conservatively cor-

rected by

neff =
n

nas
, (5.6)

where n is the number of Fourier coefficients in the respective resolution shell and nas is

the number of asymmetric units under the respective symmetry. Effective sample sizes

are incorporated in the permutation framework by sub-sampling of Fourier coefficients.
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Figure 5.2: a) Comparison of right-sided 10%, 5%, 1% and 0.15% percentiles, as estimated by permutation sampling (red

lines) from two simulated half maps of β-galactosidase (pdb 5a1a) at SNRs of 1.5 (left) or 3 (right), with the true FSC

distribution (blue lines), as it can be obtained with 5000 simulations of the respective half maps. The y-axis corresponding to

the FSC values is shown in a logarithmic scale. b) Again, comparison of the respective percentiles between the permutation

approach and simulation of the true FSC distribution, but in this case both halfmaps were noise volumes and symmetrized

with D4 (top) and D7 (bottom) symmetries. Plots on the left side show that the presence of symmetry reduces the effective

sample size, which leads to underestimated tail probabilities, and can be conservatively corrected (right).
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Effects of masking on the effective sample size are more complicated and depend on the

specific shape and volume of the mask. We propose a novel procedure for the estimation

of the effective sample size neff = α ∗ n by finding the factor α ∈ [0, 1] which minimizes

the mean Kolmogorov-Smirnov distance Dα over the resolution shells.

The two-sample Kolmogorov-Smirnov statistic [93] is a measure of similarity of two em-

pirical cumulative distribution functions (ECDF) and is defined as

Dα = sup
x∈[−1,1]

|F1,α(x)− F2,sim(x)|, (5.7)

where in our setting F1,α(x) denotes the ECDF of the permutation approach, which is

estimated with an effective sample size neff = α ∗ n, and F2,sim(x) can be obtained by

repetitive simulation of two masked noise maps and subsequent FSC calculation.

Dα is then calculated as the mean of the Kolmogorow-Smirnov statistics Dα,r over all

resolution shells r, i.e.

Dα =
1

m

m∑
r=1

Dα,r, (5.8)

where m is the number of resolution shells. An estimate α̂ for α is then given by

α̂ = argminα∈(0,1]Dα. (5.9)

In the presented algorithm, we apply a soft circular mask for global resolution estimation

by default, which effects can be corrected with an effective sample size of neff ≈ 0.7n,

i.e. Dα is minimized for α ≈ 0.7 (Fig. 5.3a), which allows accurate calculation of tail

probabilities for various box sizes (Fig. 5.4).

Application of windowing functions, as used for local resolution estimation (see below),

also lead to reduced effective sample sizes. In a similar way as for the soft circular mask,

we found that a Hann-window leads to an effective sample size neff ≈ 0.2n (Fig. 5.3b,

5.5).
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Figure 5.3: Sample size correction factor plotted against the mean Kolmogorov-Smirnov statistic of the resolution shells.

a) A soft circular mask leads to an optimal value for α of ≈ 0.7 . b) A Hann window leads to an optimal value for α of

≈ 0.23.
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Figure 5.4: Effective sample size after circular masking. Comparison of right-sided 10%, 5%, 1% and 0.15% percentiles,

as estimated by permutation sampling (red lines), with the true FSC distribution (blue lines), as estimated from 5000

simulations of the respective noise half maps, which were masked with a soft circular mask. Without correction for the

masking effect, tail probabilities are underestimated (top left), but this can be efficiently corrected with an effective sample

of 0.7 for different box sizes. The y-axis corresponding to the FSC values is shown in a logarithmic scale.
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Figure 5.5: Effective sample size after application of a Hann window. Comparison of right-sided 10%, 5%, 1% and 0.15%

percentiles, as estimated by permutation (red lines), with the true FSC distribution (blue lines), as obtained from 5000

simulations of the respective noise half maps, which were masked with a Hann window. Without correction for the masking

effect, tail probabilities are underestimated (top left), but this can be efficiently corrected with an effective sample of 0.23

for different box sizes. The y-axis corresponding to the FSC values is shown in a logarithmic scale.
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5.3.4 Local Resolution Estimation

Local resolutions are estimated by sliding a window over both half maps and subsequent

calculation of local FSC thresholds [25]. The described permutation procedure with sub-

sequent multiple testing correction can be straightforward applied to local FSC curves as

well. In order to account for high-resolution artefacts introduced through spectral leak-

age, a Hann-window is used as a windowing function [25]. The masking effects, which

are introduced from the Hann-window, are corrected as described above with a correction

factor α = 0.23. Moreover, effects of symmetry do not have any influence on the effective

sample sizes if the size of the sliding windows is smaller than the size of the asymmetric

units in the map, as it is commonly the case.

In order to speed-up the calculations, a step-size option is implemented which allows

movement of the sliding-window of more than a single voxel. Moreover, in order to avoid

repeating permutations on the same map, the permutations are only done on 10 random

locations of the sliding window. The resulting samples of the null-distribution are then

merged and subsequently used for p-value calculation at all locations.

The size of the sliding window needs to be chosen as a compromise between locality and

resolution in Fourier space (Fig. A.1, A.2). Too small box sizes tend to give overesti-

mated resolutions due to coarse sampling of low resolutions. Too large windows loose

locality and thus tend to converge to the global resolution measurement, which will result

in overestimated local resolutions for low resolution parts, while for high-resolution parts

still high-resolution signal will be detected. The characteristic peak shape of the me-

dian resolution plots (Fig. A.1) is a consequence of the locality: if the box becomes large

enough to contain both high and low-resolution features, the FSC will show significant

correlations up to high frequencies. That’s why the median resolution curve is expected

to fall with increasing box sizes. In order to estimate low-resolution features accurately,

we need reasonably big boxes, which thus explains the increase of the median resolution

curves at the beginning. The peak thus marks the box size that gives the best separation

of local resolutions and can be used to identify a optimal box size. An advantage of the

FDR − FSC criterion compared to 0.5 FSC is the clearer maximum.Box sizes around

20-30 pixel present a reasonable compromise between locality and resolution in Fourier

space for most cases. All experiments were done with a box size of 25.

5.3.5 Directional Resolution Estimation

The implementation of the directional resolution estimation was done in analogy to

Lyumkis and colleagues [168]. For each direction, the FSC is calculated by taking all

voxels from each halfmap that deviate in direction no more than a specified angle from

the desired direction. This results in rotating an inverse cone over one half of the 3D

Fourier transforms, thereby accounting for the Friedel symmetry, and calculating the

FSC only from samples inside the inverse cone. Similar to [168], an angle of 20◦ was used
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for all experiments, which gives a good compromise between the number of Fourier coef-

ficients per shell and the preservation of local directionality. Sample size corrections need

to be done as well for directional resolutions. Similar to global resolution estimation, this

results in a correction factor for soft spherical masking. Moreover, as for local resolutions,

locality of the directional resolution makes the correction of symmetry effects unnecessary

and, again similar to local resolution estimation, it is possible to accelerate the algorithm

by calculating the resolutions only for a few directions and interpolating the results in

order to avoid repetitive FSC calculations of overlapping cones.

5.3.6 Model-Map Resolution Estimation

Estimation of global and local model-map resolutions requires similar effective sample

size corrections as described above for global halfmap-halmap resolutions and their local

counterparts. Although the simulated map does not contain any noise, it has to be noted

that this does not generate any artificial similarities between the experimental and the

model map and thus also no artificial correlations (Fig. 5.12 a). It only reduces the

noise levels of the FSC, which is implicitly considered with the permutation sampling.

Moreover, the effective sample size will be reduced due to symmetry if present. This

needs to be corrected for the calculation of global map-model resolutions, as described

already above for the halfmap-halfmap resolution estimation.

5.3.7 Figure preparation

Plots were visualized with ggplot2 in R [141] [158]. Chimera [114] was used for the figure

preparation of the molecular maps and atomic models.
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5.4 Results and Discussion

5.4.1 Global Resolution Estimation with the FDR−FSC Crite-

rion

In order to illustrate the accuracy of the permutation approach, we compared right-sided

10%, 5%, 1% and 0.15% percentiles of the FSC distribution, as it is sampled using our

permutation approach, with the true percentiles, which can be estimated by iterative sim-

ulation of random noise half maps with subsequent FSC calculation (Fig. 5.6 a). We focus

on the tail probabilities here, as they are most important for the accurate calculation of

small p-values. The lines follow each other closely for all tested quantiles, emphasizing the

accuracy of the permutation approach. Under a normal distribution, thresholding at 3σ

corresponds to a 0.15% percentile. Direct comparisons of the simple 3σ curve [107] shows

that it gives higher estimates of the percentiles. A modified version [147], marked with

modified 3σ, gives rise to more accurate percentiles, in this case though with an unrealistic

effective sample size higher than the number of Fourier coefficients in the resolution shell.

Comparison of the empirical cumulative distribution functions (ECDFs) of the sampled

FSC distributions for a single resolution shell confirm the observation, that the per-

mutation approach is able to accurately represent the FSC distribution under the null

hypothesis and outperforms the modified 3σ and the 3σ criteria (Fig. 5.6 b). While the

ECDFs for the simulation and the permutation approach are highly similar, it can be

seen that the distributions which result from the σ criterion tend to overestimate the tail

probabilities. All in all, σ-curves suffer from substantial inaccuracies.

Based on our approach, resolution is assigned as the highest spatial frequency which con-

tains significant signal at 1% FDR before the first non-significant resolution shell occurs.

Although a 1% FDR threshold is somewhat arbitrary, the method is robust towards rea-

sonable error thresholds between 0.1 and 10% (Fig. 5.6 c).

Comparison with uncorrected voxel-wise p-value thresholds for a γ-secretase map [4] shows

that the multiple testing correction can be necessary to avoid overestimated resolutions

(Fig. 5.7 a left). To test the sensitivity in the presence of noise, we reduced the box size

of the volume of the same γ-secretase map in steps of 20 voxels, only cutting away noise.

While the 0.143 FSC threshold falls from 4.1 Å to 3.7 Å (Fig. 5.7 a middle, right), the

1% FDR threshold only fluctuates at the second decimal place (Fig. 5.7 a right), which

shows that the 1% FDR threshold, from now on referred to as 1% FDR−FSC, is robust

towards masking out of noise, as only detectability is influenced. Moreover, the actual

shape of the FSC is also highly dependent on the actual map volume or the specific mask

(Fig. 5.7 a middle), making it difficult to read any reproducible information from the shape

of the FSC curve. To further the validate the robustness towards different noise levels, we

simulated a map of β-galactosidase (pdb 5a1a [8]) at 2.5 Å resolution and added different

amounts of white Gaussian noise. Similar to above we find that the 1% FDR − FSC

threshold is highly robust towards the actual noise levels while the resolutions at 0.143
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FSC are highly biased from noise (Fig. A.3 left).

A benchmark of our algorithm to the reported resolutions of 77 maps from the EMDB

achieves a median deviation of only -0.02 Å for maps better than 5 Å with a median

absolute deviation of 0.15, which presents the accuracy of 0.1 Å to which resolutions are

reported (Fig. 5.7 b left, middle, Table A.1). Comparison with the 0.143 FSC threshold

without masking, which has a clear bias towards lower resolutions with a median deviation

of 0.53 Å (Fig. 5.7 b left, right), shows that, especially at lower resolutions, the 1% FDR−
FSC resolution is highly accurate without any masking (Fig. 5.7 b middle). Moreover,

the consideration of the number of Fourier coefficients in each resolution shell avoids the

need to switch to a more conservative 0.5 FSC threshold at lower resolutions. However,

deposited halfmaps are rare for low-resolution structures and resolutions are harder to

judge based on the visible features, which makes a detailed low-resolution benchmark

difficult. Results on a few low-resolution examples are shown in Table A.2.

Figure 5.7: a) left: Example of a FSC curve for EMDB entry 3061. Resolutions shells with significant correlations beyond

random fluctuations at 1% FDR−FSC are marked with red crosses. Significant resolution shells at a 1% p-value threshold

without multiple testing correction are marked with blue crosses. Respective resolutions are depicted above the arrows,

showing that neglecting the multiple testing problem is necessary for accurate resolution estimation. Middle: Effect of

noise on FSC curve shape for decreasing box sizes in steps of 20 voxels, which only excludes noise. Right: Effect of noise

on resolution estimates at 0.143 FSC (blue) compared to 1% FDR − FSC (red). b) left: Histograms of deviations from

the reported resolutions for the 1% FDR − FSC criterion (red) and unmasked 0.143 FSC criterion. middle: Reported

resolutions against 1% FDR − FSC. right: Reported resolutions against unmasked 0.143 FSC. Fitted linear models are

shown as blue lines together with the fitted function, diagonals shown in black.
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Figure 5.6: a) Right-sided 10%, 5%, 1% and 0.15% percentiles for the permutation approach (red), for 5000 simulated

FSCs from random noise maps (blue) and both the original as well as the modified 3σ curves (green), marked with original

and modified, respectively. The y-axis corresponding to the FSC values is shown in a logarithmic scale. b) Comparison of

the empirical cumulative distribution functions (ECDFs) of the FSC for a single resolution shell (left) with zoomed view

(right). The simulated (blue) and the permutation based distributions (red) follow each other closely, especially for the tail

probabilities (right). Moreover, it can be seen that the distribution from the modified 3σ criterion is more accurate than

the original 3σ c) Resolutions at different FDR thresholds for 8 maps between 2.2 Å and 4.6 Å resolution show that the

FDR threshold is stable towards the specific significance level for reasonable errors levels between 0.1 and 10%.
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5.4.2 Application to Local Resolution Estimation

EM maps usually exhibit local variations of resolutions and estimating these local reso-

lutions has become an important task in recent years [25, 77, 149]. Based on local FSC

curves resolutions are usually estimated with a 0.5 FSC threshold in order to account

for small samples sizes in the resolution shells of the sliding windows. However, the 0.5

FSC threshold tends to underestimate resolution in higher resolution shells and might

be too optimistic in lower resolution parts. Adaptive thresholds should provide superior

estimates in these situations. Extension of our approach to local FSC curves is straight-

forward and we tested it on challenging test cases with large resolution variations.

In order to test the approach on simulated data, we generated a map of β-galactosidase

(pdb 5a1a [8]) an filtered the subunits at different resolutions of 2,3,4 and 5 Å and added

white Gaussian noise. Based on local 1% FDR−FSC thresholding, local resolutions can

be accurately determined (Fig. A.3).

Figure 5.8: a) Comparison of local resolutions estimated for the γ-secretase map EMD3061 for 1% FDR−FSC, 0.5 FSC,

ResMap and MonoRes (top) together with resolution histograms. b) Local resolutions at 1% FDR for the high-resolution

β-galactosidase EMD2984 map compared to ResMap. c) Local resolutions at 1% FDR−FSC of a 3.9 Å map of a bacterial

ATP synthase (EMD9333) compared to 0.5 FSC. d) Local resolutions at 1% FDR − FSC of a 3.8 Å map of a eukaryotic

ribosome (EMD0194) compared to MonoRes.
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Application to a 3.4 Å γ-secretase map [4](EMD3061) shows that the 1% FDR − FSC
criterion assigns higher resolutions to the resolved protein parts compared to 0.5 FSC,

while at the same time, slightly lower resolutions around 10-15 Å to the detergent and

gycosylations (Fig. 5.8 a). ResMap [77] assigns resolutions around the Nyquist frequency

to the protein parts and 5 Å to the disordered parts, while MonoRes [149] gives estimates

even more conservative than the 0.5 FSC criterion. Analysis of a 2.2 Å β-galactosidase

[8](EMD2984) and 3.9 Å ATP synthase [56] (EMD9333) map show that the 1% FDR −
FSC criterion assigns higher resolutions to high-resolution parts compared to 0.5 FSC

and, at the same time, avoids overestimation of low-resolution parts (Fig. 5.8 b and c).

Comparison of the 1% FDR−FSC criterion with MonoRes on a eukaryotic ribosome map

[71](EMD0194) shows similar results as for the γ-secretase map: low resolution features

like the L1-stalk domain are assigned lower resolutions >7 Å for both methods while

the higher resolutions seem to be underestimated in MonoRes (4-5 Å) compared to 1%

FDR − FSC (3-4 Å), as side-chain density is clearly visible for the complete α-helical

segment (Fig. 5.8 d).

One of the main applications of local resolutions is local resolution filtering, which requires

accurate local resolution estimates. Underestimation of resolutions will directly lead to

disappearance of high-resolution features while overestimation will leave the map too

noisy. Comparison of local filtering with our method to 0.5 FSC, ResMap and MonoRes

shows again that the 1% FDR−FSC criterion avoids too conservative as well as inflated

resolution estimates and outperforms the other approaches (Fig. 5.9). Both 0.5 FSC as

well as MonoRes lead to smeared densities for a critical region close to the detergent

micelle in the 3.4 Å γ-secretase map around residues F74 and L82, which indicates too

heavy low-pass filtering in this region. Both ResMap and 1% FDR − FSC give rise to

higher resolution features, with 1% FDR−FSC the only method to resolve residue F74.
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Figure 5.9: Effect of different local resolution estimates on resolvable map features after local filtering. Shown is a α-helix

next to the detergent micelle, which poses a big local resolution gradient. A 0.5 FSC threshold (top right) and MonoRes

(bottom right) tend to underestimate local resolutions for the well resolved parts, which leads to disappearance of high-

resolution features. Local resolutions estimated at a 1% FDR− FSC threshold (top left) and with ResMap (bottom left)

give rise to similar higher resolution features. However, ResMap tends to overestimate resolutions (c.f. Fig. 5.8). All maps

are contoured at a map threshold of 1% FDR.

5.4.3 Application to Directional Resolution Estimation

Complementary to local resolutions, directional resolutions have been developed recently

in order to assess the effect of preferred particle orientations in the ice layer on the re-

sulting 3D maps [168]. This can be realized by calculating the FSC curve from a subset

of the 3D Fourier transform, where the subset is built from all voxels that deviate from

the respective direction up to a specified angle, i.e. inside a cone with specified opening.

Due to the limited size of Fourier coefficients inside the cone, directional FSCs, like local

FSCs, suffer from substantial statistical uncertainties and the FDR − FSC approach

should provide similar benefits.

I tested the approach in more detail with three different cases: a map of the soluble portion

of the small influenza hemagglutinin (HA) trimer, which exhibits highly preferred orienta-

tions (EMD8731, Fig. 5.10 a top) [168], a highly symmetric apo-ferritin map (EMD0144,

Fig. 5.10 a middle) [169] and an asymmetric map of γ-secretase (EMD3061, Fig. 5.10 a

bottom) [4].

First of all, Inspection of the directional resolution plots reveals that the 0.143 FSC-

threshold tends to give lower resolution estimates than the 1% FDR − FSC and again

would require tight masking. Moreover, the 1% FDR − FSC criterion gives resolution

ranges much closer to the reported resolutions.
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A more detailed analysis of the HA structure shows obvious directional resolution differ-

ences, with lower resolutions up to 8 Å in the vertical direction and higher resolutions up

to 4.2 Å in the horizontal direction (Fig. 5.10a top and b). Due to highly preferred orien-

tations, such a result is expected in this case [168]. On the other hand, the high-resolution

map of apo-ferritin at 1.6 Å resolution does not exhibit such clear directional resolution

differences (Fig. 5.10 a middle), due to high-degree of symmetry and more homogenous

particle orientations. Similarly, the asymmetric map of γ-secretase seems not to exhibit

strong directional resolutions (Fig. 5.10 a bottom).

Figure 5.10: a) Comparison of directional resolution plots of EMDB entries 8731, 0144 and 3061 for 0.143 FSC (left)

and 1% FDR − FSC thresholds (right). Resolutions are shown in colors for the respective directions as characterized by

azimuth and elevation. b) Directional resolutions mapped on the surface of EMDB entry 8731. The resolution at each voxel

specifies the resolution in the direction given by the vector from the center to the respective voxel (c.f. yellow arrows).

Clear directional resolution differences are visible with lower resolutions in the vertical direction.
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5.4.4 Application to Model-Map Resolution Estimation

Fourier shell correlations also became important in assessment of overfitting of the atomic

model to the EM map. However, although global model-map resolutions can provide use-

ful hints about overfitting, they also suffer from substantial disadvantages. The averaged

EM map has lower noise levels compared to the two half maps used for averaging. More-

over, many maps contain low-resolution parts which cannot be modelled and will thus be

missed in the map-model FSC. As a result, the map-model resolution is generally expected

to be better than the halfmap-halfmap resolution. Although masking and threshold ad-

justments can in principle be used adjust for these factors, these is again highly subjective.

The 1% FDR−FSC criterion extends to the case of model-map FSCs as well (Fig. 5.12

a) and has the advantage (as shown above) that it is very robust to the noise levels.

Although it will still be biased from unmodelled features, overfitting can thus be assessed

by comparing the model-map resolution to the model-halfmap resolutions, which should

be the same if no overfitting occurs. As the atomic models are usually refined against the

averaged maps, overfitting will be visible as a better map-model resolution compared to

the model-halfmap resolutions.

Application to a map of β-galactosidase (EMD2984) shows that the model–map resolu-

tion of 2.0 Å is substantially better than the model-halfmap resolutions, which also differ

for the two halfmaps (Fig. 5.12 b). Such an obvious difference to the model-halfmap reso-

lutions indicates that the model was refined against information that is different between

the two halfmaps, which is likely noise. In contrast, the 20S proteasome map EMD6287

and the γ-secretase map EMD3061 with their corresponding atomic models give similar

results for the two halfmaps and the averaged map. In all cases, however, is the model-

map resolution better than the halfmap-halfmap resolution, showing the bias explained

above.

More useful information can in principle be obtained with local model-map resolutions

and these can be used to identify problematic regions in the models. However, this is

difficult with existing threshold criteria, as global model-map resolutions already require

a 0.5 FSC threshold and going to smaller local windows would make an even more con-

servative threshold necessary. The 1% FDR − FSC provides a simple solution to this

problem, as it is implicitly taking into account the statistical uncertainties from smaller

windows. Local model-map resolutions can be used together with local map resolutions

to assess their local differences and, with this, local over and underfitting (Fig. 5.12 c and

d). For example, for the β-galactosidase map we find that most parts of the model are

not affected by overfitting, but some overfitting can be identified, for example at residue

E136 (Fig. 5.12 c top). Vice versa, calculating local model-map resolutions for the same

map against the atomic model from lower resolution data at 3.2 Å (pdb 3j7h) [7], un-

derfitting can be identified and less overfitting (Fig. 5.12 c bottom). Investigation of the

map features around the respective residues validated the findings: E980 and R961 from

pdb 3j7h do not properly fit the map compared to pdb 5a1a (Fig. 5.11 top). Moreover,
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the carboxylate group of E136 in pdb 5a1a is fitted in two map peaks that only appear

at a very low threshold (Fig. 5.11 bottom left), which are likely noise.

Figure 5.11: FDR − FSC applied to model-map Fourier shell correlations. Cryo-EM maps are shown for the residues

that were identified by local map-model resolutions. It can be seen that residues R961 and E980 from the pdb 3j7h do

not correspond to the maps (top right) and were thus identified as underfitted, while pdb 5a1a shows nice fits (top left).

However, residue E136 from pdb 5a1a was identified as overfitted, which can be confirmed with the map. The two oxygen

atoms from the carboxylate group seem to be fitted into two noise peaks (bottom left), which only appear at low thresholds.

In comparison, E136 from pdb 3j7h cannot be related to any noise peak.

A similar analysis for the γ-secretase map shows that overfitting can be found at the glyco-

sylation sites and at residues interacting with the membrane (Fig. 5.12 d left). Moreover,

comparison to local model-map resolutions obtained with an atomic model determined

from a different map (pdb 6idf) [162] reveals again substantial underfitting, but also dis-

appearance of overfitting (Fig. 5.12).
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Figure 5.12: a) Right-sided 10%, 5%, 1% and 0.15% percentiles from the permutation approach (red) and from 5000

simulated FSCs from random noise maps against a model map simulated from the β-galactosidase structure pdb 5a1a

(blue). b) Model-map resolutions at 1% FDR− FSC for EMD2984 and EMD6287. Resolutions for both halfmaps as well

as the averaged maps are shown. c) Differences between local model-map resolutions and local map resolutions mapped on

the atomic models of β-galactosidase. EMD2984 was used as cryo-EM map and atomic models were pdb 5a1a (top) and

pdb 3j7h (bottom). Overfitting is shown in blue and underfitting in red. d) Similar to c), but for γ-secretase. EMD3061

was used as cryo-EM map and atomic models were pdb 5a63 (left) and pdb 6idf (right).
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5.5 Implementation

All algorithms for the analysis of cryo-EM maps that I developed in this thesis have been

implemented in an easy-to-use and GUI based software termed SPoC (Statistical process-

ing of cryo-EM maps). Besides of all FSC-based tools, SPoC includes confidence maps

as well as sharpening tools and can thus be used a stand-alone software for the complete

analysis of cryo-EM maps, starting only with the two halfmaps, as they commonly result

from any reconstruction software. The incorporated confidence map tools also contain an

interactive noise estimation button similar to the CCPEM implementation.The GUI is

implemented with PyQt5 and the whole software is available as a pre-compiled executable

file.

Figure 5.13: GUI of SPoC. SPoC is a stand-alone software that allows complete processing and analysis of cryo-EM maps

starting with the two halfmaps form the 3D reconstruction.
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5.6 Summary

Taken together, the presented results show that thresholding of FSC curves by multiple

hypothesis testing and false discovery rate control allows completely automated resolution

determination. The approach does not have any free parameters, only the symmetry used

for reconstruction needs to be provided. Moreover, it allows objective resolution estima-

tion without masking and thus avoids the specific choice of the mask. Although it can

be argued that FSC curves from masked half maps are still necessary for FSC-weighting

of maps, FSC-weighting does not correct for local effects and is thus inferior to local

resolution filtering, which is independent of the specific shape of the FSC. Morevoer, the

presented algorithm is computationally fast: a few seconds for small maps (<200 pixels

box size) and a few minutes for big maps (>400 pixels box size).

Application to local resolution estimation showed that the adaptive 1% FDR − FSC

threshold corrects for the known underestimation of high-resolution features of fixed FSC

thresholds while avoiding too optimistic estimates. Moreover, our criterion can be used

with model-map FSC curves as well and we applied it to local model-map resolutions

in order to assess local over and underfitting, which allows identification of problem-

atic residues. Complementary to local resolutions, directional FSCs can be analyzed by

FDR − FSC as well and resulted in resolutions ranges closer to the reported overall

resolutions of the maps.
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Chapter 6

Elucidation of the Viral Disassembly

Switch of Tobacco Mosaic Virus

The last chapter of this thesis is a direct application of the methods I developed, applied

to two high-resolution maps from tobacco mosaic virus (TMV). This work was a collabo-

ration with Felix Weis and was published as shared first-authors in EMBO Reports [156].

Some figures from the paper are reproduced here as permitted under the Creative Com-

mons Attribution 4.0 Unported Licence (CC BY). Data acquisition and reconstructions of

the 3D maps were done by Felix Weis. I processed and analyzed the cryo-EM maps, built

and interpreted the atomic models and proposed the biochemical mechanism. Moreover, I

wrote the initial version of the paper and prepared all the figures, which were then refined

with constant feedback from Felix Weis and Carsten Sachse. Infection experiments were

done by Iris von der Hocht.

6.1 Abstract

Capsids of RNA viruses protect the viral RNA from degradation in the extracellular en-

vironment. However, when the virus enters the cell in an enveloped state, the virion has

to be disassembled in order to allow access of the viral genome. This requires a molecular

mechanism that is capable of sensing the environmental differences that occur upon viral

entry and modulate disassembly. Biochemically, this process has been extensively studied

with tobacco mosaic virus (TMV) and carboxylate interactions have been proposed to

play a major role. However, due to lacking high-resolution information, a detailed struc-

tural mechanism remains elusive. Here I describe two cryo-EM structures of the helical

TMV assembly at 1.9 and 2.0 Å resolution in conditions mimicking the intracellular and

extracellular environment. At the time of writing this thesis, these structures represent

the best resolved helical reconstructions obtained with cryo-EM so far. Confidence maps

and local post-processing of cryo-EM maps allowed the assignment and interpretation of

the flexible inner loop region, which was found to contain the residues of the disassembly

switch. Based on the atomic models, I was able identify the conformational details of the
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switch mechanism: in high Ca2+/acidic pH environment the virion is stabilized between

neighbouring subunits through carboxyl groups E95 and E97 in close proximity to a Ca2+

binding site that is shared between two monomers. When the pH increases and the Ca2+

concentration drops, mutual repulsion of E95 and E97 and Ca2+ removal destabilize the

network of interactions between neighbouring monomers and release the switch for disas-

sembly.

6.2 The Disassembly of TMV

RNA viruses require a capsid structure that ensures the protection of the viral RNA from

degradation in the extracellular environment. Especially the capsid of tobacco mosaic

virus is highly thermostable in ambient temperatures and resistant to degradation across

a wide range around neutral pH [80]. The TMV capsid is composed of a 17kDa coat

protein (CP) that forms a helical filament and encloses the viral RNA between the CPs

[45, 44, 101, 100]. During infection, TMV enters the plant cell via mechanical lesions

that allow passing of the outer membrane [84]. Inside the host cell, the capsid undergoes

a controlled destabilization which then allows co-translational virion disassembly by the

replisome [85]. However, such a controlled destabilization requires a molecular mechanism

that is able to sense the differences between the distinct environments, and then initiates

the destabilization of the virion and further further facilitates the following replication

inside the host cell. Ca2+ and pH dependent disassembly processes [37] have been found

for a series of plant viruses, which exploit the lower Ca2+ and H+ concentrations inside

the plant cell compared with the extracellular environment [101, 101, 37].

Biochemically, the disassembly behaviour of TMV has been extensively studied, where it

was found from titration experiments that TMV contains groups that titrate with pKa

values between 7 and 8 [26]. This motivated Don Caspar to postulate the hypothesis

that a carboxylate cluster in the TMV capsid may bind protons with high affinity. The

respective residues, which were subsequently referred to as “Caspar-Carboxylates” [154],

are assumed to drive the disassembly process through mutual repulsion upon entering the

intracellular environment, as the lower proton concentration will lead to deprotonation of

the carboxylates and the resulting negative charges repel each other. Additionally, it has

been shown that TMV binds Ca2+ [87, 47].

The TMV capsid protein is arranged in a four-helix bundle, which is conventionally distin-

guished between three regions corresponding to the distance from the helical axis [125]:

lower radius 20 – 40 Å, middle radius 40 – 60 Å and higher radius 60 – 90 Å. Stud-

ies of site-directed mutagenesis of the CP allowed identification the important residues

[29, 89] involved in the disassembly process: Glu50 and Asp77 at middle radius have been

hypothesized to be involved in axial carboxylate interactions, whereas Glu95, Glu97 and

Glu106 at lower radius contribute lateral carboxylate and possible Ca2+ interactions [101].

100



Furthermore, experiments by single molecule force spectroscopy demonstrated that upon

decrease of Ca2+ concentrations the 5’ end of the capsid becomes exposed and RNA-coat

protein interactions are weakened at the remainder of TMV [85], which likely helps to

advance cotranslational disassembly by the replication machinery.

However, despite the plethora of experimental data at hand, a thorough structural un-

derstanding of the exact conformational switch sensing the environmental changes is still

lacking. Although TMV was the subject of pioneering structural studies and also shaped

the whole field of structural biology [45, 44, 101, 100, 125, 46, 75, 140], resolution of the

helical rod was limited to 2.9 Å when determined by X-ray fiber diffraction [100] and to

3.3 Å by electron cryo-microscopy (cryo-EM) [125, 46]. More recently a resolution up to

2.3 Å could be achieved[136]. In these resolution regimes, the maps were sufficiently clear

for the annotation of the architecture of the CP and assignment of bulky side-chains,

whereas specific information about individual conformations for smaller and more flexible

side-chains is lacking. To make things worse, the proposed Caspar carboxylate residues

Glu95, Glu97, Glu106 and the calcium binding site are found in a rather flexible part

of the capsid protein at lower radius with high B-factors, as it is expected for such a

metastable switch. Within the disk assembly of TMV in absence of RNA, the respective

residues were not detectable in high resolution maps and thought to be disordered [14].

Moreover, negatively charged amino acid residues suffer from fast radiation damage when

visualized with an electron beam [46][53], which results in weak and more ambiguous

density features and makes it hard to assign their exact conformations. Taken together,

the exact structural mechanism of the viral disassembly switch of TMV remains to be

discovered.

In order to investigate this open question of virus disassembly, we exploited latest devel-

opments of high-resolution imaging by cryo-EM, data processing and map interpretation

methods and determined two structures of TMV at ≤2 Å resolution. Based on these maps

and and the corresponding atomic models we find that the metastable switch relies on

a Ca2+ sensitive network of carboxylate and iminocarboxylate residues at lower radius,

which becomes destabilized by Ca2+ release and carboxylate repulsion at higher pHs. The

maps captured the virion at different conformational states of the interaction network and

allow direct visualization the structural rearrangements that drive the viral disassembly

switch.
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6.3 Methods

This section is taken from the corresponding publication [156] and was written by all

authors.

6.3.1 Sample Preparation

TMV sample was isolated as described in [125] and stored in 0.1 M Tris-HCl pH 7.0, 0.02%

NaN3 (w/v) at a concentration of ca. 33 mg/ml at 4 ◦C. A total of 50 µl of virus stock

solution was dialyzed for 1 hour at room temperature against 50 ml of 0.1 M NaOAc pH

5.2, 20 mM CaCl2 and 50 ml of MilliQ H2O, respectively. Before plunge-freezing sample

concentration was adjusted to 22 mg/ml and 1.1 mg/ml for the Ca2+/acidic pH and the

water condition, respectively. A total of 3.6 µl were applied on holey carbon grids (C-

flat 300 mesh R2/2, Protochips) that had been glow discharged in an EasyGlow (Pelco)

device. Grids were plunge-frozen in liquid ethane using a Vitrobot Mark IV (Thermo

Fisher Scientific) with a blotting time of 2 s at 10◦C and 100% humidity.

6.3.2 Electron Microscopy

Data acquisition was performed on a Titan Krios microscope (Thermo Fisher Scientific)

operated at 300 kV, through a Gatan Quantum 967 LS energy filter using a 20 eV slit

width in zero-loss mode. The dataset was recorded on a Gatan K2-Summit direct elec-

tron detector operated in super-resolution mode, at a calibrated magnification of 215,000

(resulting in a super-resolution pixel size of 0.319 Å on the object scale) with a defocus

range of 0.15 – 0.35 µm. For the TMV in water, a total of 20 frames were recorded in

movies of 5 s exposure at a dose rate of ca. 2.6 e−/physical pix/s, accumulating a total

dose of 30.8 e−/Å2 at the sample level. For the TMV in Ca2+/acidic pH conditions, a

total of 40 frames were recorded in movies of 4 s exposure with a dose rate of ca. 3.7

e−/physical pix/s, accumulating a total dose of 41.3 e−/Å2 at the sample level. For both

samples, data collection was performed on a single grid using SerialEM [94].

6.3.3 Image Processing

After inspection of the micrographs, 62 images for the TMV in water, and 197 images for

the TMV in Ca2+/acidic pH conditions, were selected and both datasets were processed

in the same way. Movie frames were aligned and dose-compensated with MotionCor2

[167] using patch-based alignment (5 x 5) followed by 1/2 cropping in the Fourier do-

main, resulting in 2x lower pixel sampling and a pixel size of 0.638 Å. Contrast transfer

function parameters for the micrographs were estimated using Gctf [165]. Helix coordi-

nates were determined automatically using MicHelixTrace [67], resulting in ca. 20,000

segments for each sample. Complete 2D and 3D classifications and refinements were per-

formed using RELION implementation of single-particle based helical reconstruction [58],
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including per-particle refinement of CTF parameters, correction of estimated beam tilt

and “Bayesian polishing” [170]. Helical symmetry parameters were refined to a helical

rise/rotation of 1.405 Å/22.036◦ and 1.406 Å/22.038◦ for the Ca2+/acidic and the water

structure, respectively. The reported overall resolutions for TMV of 2.0 Å in Ca2+/acidic

pH and 1.9 Å in water conditions, were calculated using the Fourier shell correlation

(FSC) 0.143 criterion. The final maps were corrected for the modulation transfer func-

tion of the detector and sharpened by applying a negative B factor that was estimated

using automated procedures[32] (-41 Å2 for the TMV in water and -42 Å2 for the TMV

in Ca2+/acidic pH conditions). Local resolution maps were calculated with BlocRes [25]

at a 0.5 FSC cutoff and the maps were subsequently local resolution filtered. To annotate

significant molecular map features in the 3D reconstruction and to control false positive

voxels, confidence maps using local resolution information were generated [10].

6.3.4 Atomic Model Building and Refinement

Atomic models were built and refined as 9-mers in order to account for inter-subunit

interactions. PDB 4udv [46] was used as starting model and rigid body fitted into the

processed maps using Chimera [114]. Additional H2O and Mg2+/Ca2+ ions were placed in

the maps where biochemically appropriate and confirmed using the 1% FDR thresholded

confidence maps. Mg2+ was placed in proximity of the RNA and justified by the known

tendency of RNA to be stabilized by Mg2+ ions. The Ca2+ ion was identified by the

combination of high map intensities, octahedral coordination and lower B-factors in the

respective region, which distinguishes it clearly from water molecules. The Ca2+ ion was

only found in the cryo-EM structure with high Ca2+ concentrations. Several rounds of

real-space refinement with phenix.real space refine [2] using electron scattering factors and

manual rebuilding with Coot [40] were done to obtain the presented models. Refinement

was performed using rotamer, Ramachandran and C-β restraints in addition to standard

restraints of bond-lengths, angles, etc. Real-space refinement was carried out with global

minimization and local grid search options activated. Atomic coordinates and B-factors

were refined against the sharpened and locally filtered maps. Residues 154 – 158 were not

modelled as the corresponding map features were not sufficiently well resolved. An addi-

tional significant map feature at 1% FDR at the N-terminus was modelled as a N-terminal

acetylation, as reported in [143]. Grouped atomic displacement factors (ADP) were refined

with phenix.real space refine. Validation scores were calculated with phenix.molprobity

[28] and DipCheck [113]. To assess overfitting of the refinement, we introduced random

coordinate shifts into the final models using the program phenix.pdbtools with the shake

option and a mean error of 0.5 Å, followed by refinement against the first unfiltered

halfmap (halfmap 1) with the same parameters as above. Comparisons of FSC curves of

the randomized model refined against halfmap1 versus halfmap 1 and the FSC curve of

the same model map versus halfmap 2 do not indicate overfitting.
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6.3.5 Infection of Nicotiana tabacum with TMV

The Bel B and Bel W3 variants of Nicotiana tabacum were chosen for infection exper-

iments as they are known to be sensitive to TMV. Seeds distributed on a soil surface

were watered and placed in a greenhouse for germination and cultivation at the following

growth conditions: length of day: 14h, day: 28 ◦C/ night: 22 ◦C, relative humidity: 70%.

Seedlings were piqued after 16 days, repotted after 31 days for the first time and repotted

after 58 days for the second time. Before infection, the plants reached a height of 65 –

85 cm. On Day 60, one plant of both variants was infected with the TMV whereas the

second plant was cultivated free of virus as a control. They were grown under ambient

room temperature conditions and 16 hours of neon light. For infection, 25 µl of tobacco

mosaic virus stock (33 mg/ml) was diluted into 10 ml PBS pH 7.5 and mixed with 105 mg

Silicon carbide (SiC, 200-450 mesh, Sigma-Aldrich) in a porcelain mortar. SiC was used

as an abrasive to cause small wounds and lesions supporting virus entry [108] [131]. The

pestle was dipped into the virus/SiC suspension and rubbed gently onto the top surface

of each plant leaf [126] [95]. Ten days after the infection event, first symptoms of TMV

replication were visible. The variety Bel B developed deformed leaves, yellowish spots

and new leaves were unusually light green and showed stunted growth. The variety Bel

W3 showed lesions, necrotic spots on the leaves and stunted growth. After 35 days of

infection, the plants possessed heights of 100 cm and 124 cm of Bel B and of Bel W3,

respectively whereas the corresponding non-infected control plants were of 168 cm and

167 cm heights.

6.3.6 Figure Preparation

FSC and ADP graphics were visualized with ggplot2 in R [141] [158]. Chimera [114] was

used for the figure preparation of the molecular maps and atomic models.
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6.4 Results and Discussion

6.4.1 Cryo-EM Maps of TMV at 1.9 and 2.0 Å Resolution

In order to obtain different structural states of the virion, TMV has been prepared in two

different conditions: in presence of 20 mM CaCl2 at a pH of 5.2 (from now on referred

to as Ca2+/acidic pH) and the second sample was prepared in pure water in the absence

of any ions. Both samples were plunge-frozen and imaged using a 300 kV electron micro-

scope equipped with a GIF Quantum K2 camera (Fig. 6.1), and resulted in 2.0 and 1.9

Å resolution structures of TMV in a Ca2+/acidic pH condition and in pure water (FSC

curves are shown in Fig. B.1).

Figure 6.1: High-resolution cryo-EM structures of tobacco mosaic virus in conditions of Ca2+/acidic pH (grey, left) and

water (green, right). a) Characteristic micrographs for both data sets, respectively (left and right). b) Local resolutions

mapped on the respective 3D reconstructions. The center of the coat protein is resolved up to ca. 1.8 Å with some features

of approx. 5 Å resolution at the C-terminus. c) Both maps show well-resolved protein features including water molecules

(left, right). (d) Side-chain features of Tyr70, Ile121, Arg46 and Phe35 residues at Ca2+/acidic pH.(e) Snapshot of RNA

map features with Mg2+ ions in water conditions. This figure is taken from [156] and was prepared by myself. Experimental

data was acquired by Felix Weis.

Local resolutions for the best resolved parts of the CP reach 1.8 Å and ca. 5 Å for the

disordered C-terminal tail (Fig. 6.1 b, Fig. B.2 a and c). Map details such as defined

carbonyl oxygens of the protein backbone and holes in aromatic rings are clearly visible,

as it is expected for parts with resolutions better than 2 Å. Moreover, a total of 92 water

molecules for TMV in water and 71 water molecules under Ca2+/acidic pH have been
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modelled. Donor-acceptor hydrogen bond lengths fall in the expected range between 2

and 5 Å and have a peak at ca. 2.8 Å (Fig. B.2 d). In addition, 4 Mg2+-ions bound to

RNA as well as well-defined side-chain conformers per CP in both conditions (Fig. 6.1 c,

d, e) have been found. A single Ca2+ ion could be located in the Ca2+/acidic pH structure

in the inner loop at lower radius. However, no Ca2+ binding could be identified for TMV

in water. Moreover, the proposed Ca2+ site at the RNA [100][48] was found to contain

no Ca2+ in both maps (Fig. B.3 a).

Biological activity of the used virus batch was shown in infection experiments in tobacco

plants. Infected plants exhibited typical symptoms of a TMV infection (stunted growth

and necrotic lesions 35 days after infection (Fig. 6.2)).

Figure 6.2: Symptoms of TMV infection on tobacco plants. a) Four tobacco plants from left to right: variant Bel W3

infected, Bel W3 not infected, variant Bel B infected, Bel B not infected. Infected plants are significantly reduced in height

in comparison with the non-infected control plants. b) Leaf of variant Bel W3 with necrotic lesions (arrows). c) Leaf of

variant Bel B with light green spots (arrow) and bulges. This figure is taken from [156] and was prepared by myself. The

photos were taken by Iris von der Hocht, who also performed the infection experiments.

6.4.2 Structures at Lower Radius

Based on the statistical framework of confidence maps for the annotation of cryo-EM

densities [10], that I developed and allows statistical control of the amount false positive

signal in the interpreted volumes (see Chapter 4), I was able to interpret the complete

maps from the Ca2+/acidic pH and water samples including the lower radius region (Fig.

6.3 a). Although for most parts of the CP no obvious differences are apparent, the anal-

ysis also revealed that the lower radius regions shows significant differences at 1% FDR

(Fig. 6.3 a right).

Comparison with a recently determined cryo-EM map (EMD2842) [46](Fig. B.2 b) re-

vealed that this part of the protein was only poorly resolved. The main difficulties arising

for the interpretation of this region is flexibility and radiation damage. Although previous
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studies on the layer aggregate of TMV assumed this region to be disordered [14], it was

possible to locate statistically significant signal in the confidence maps and subsequently

to compare the respective parts between the two confidence maps. Detailed comparison

of the lower radius regions revealed that the protein backbone follows a different path in

the Ca2+/acidic pH and water structure (Fig. 6.3 b top): the Ca2+/acidic pH structure

adopts a more densely folded conformation.

For Ca2+/acidic pH map I could built a single atomic model explaining the complete den-

sity (Fig. 6.3 b left). However, for the water structure 3 co-existing models in the residue

range 97 – 100 at lower radius were necessary to describe the significant density, e.g. the

map of the water structure is consistent with multiple conformations of E97 (Fig. 6.3 b

right). It should be noted that the cryo-EM density for these three models is probably

not discrete but compatible with a continuous ensemble of models.

Figure 6.3: Confidence maps thresholded at 1% FDR from cryo-EM maps of Ca2+/acidic pH and water structure. a)

Low-pass filtered monomer map features of Ca2+/acidic pH (grey) and water structure (green) with differences at lower

radius (left). Zoomed inset (right) with maps displayed at a false discovery rate (FDR) threshold of 1% showing significant

differences. b) Detailed map comparison at lower-radius region of Ca2+/acidic pH (grey, left column) with the water

condition (green, right column). A total of 3 atomic models (model 1: cyan, model 2: pink, model 3: green) describe the

map of TMV in water whereas the Ca2+/acidic pH map could be modelled with a single atomic model (center). Located

Ca2+ ion in the Ca2+/acidic pH map with different conformations in the water structure (bottom). This figure is taken

from [156] and was prepared by myself.
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In order to quantify the structural differences, I calculated RMSDs between the models for

the different regions. As anticipated from visual inspection of the models, the differences

between the Ca2+/acidic pH and water structures in the region outside the 90 – 110 region

are very low with RMSDs <0.5 Å, whereas substantially higher with RMSDs between 2.4

and 2.8 Å inside the lower radius region. The different models placed for the water

structure in the lower radius region show less strong deviations with RMSDs around 1.0

Å (Tab. 6.1).

Table 6.1: RMSD values for model comparisons. Combined main and side chain RMSD values for residues 90-110 and

∆(90 – 110) are shown in Tables a) and b). The respective side-chain only RMSD values are shown in c) and d).

a) Main and side-chain RMSD between models of TMV (90 – 110).

Model 1 Model 2 Model 3

Ca2+/acidic pH 2.80 Å 2.53 Å 2.38 Å

Model 1 - 0.94 Å 1.28 Å

Model 2 - - 0.75 Å

b) Main and side-chain RMSD between models of TMV ∆(90 – 110).

Model 1 Model 2 Model 3

Ca2+/acidic pH 0.33 Å 0.40 Å 0.40 Å

Model 1 - 0.24 Å 0.24 Å

Model 2 - - 0.01 Å

c) Main-chain RMSD between models of TMV (90 – 110).

Model 1 Model 2 Model 3

Ca2+/acidic pH 2.21 Å 1.93 Å 1.92 Å

Model 1 - 0.43 Å 0.46 Å

Model 2 - - 0.24 Å

c) Main-chain RMSD between models of TMV ∆(90 – 110).

Model 1 Model 2 Model 3

Ca2+/acidic pH 0.09 Å 0.09 Å 0.09 Å

Model 1 - 0.01 Å 0.01 Å

Model 2 - - 0.01 Å

Comparison of the two maps at the lower radius interface between neighbouring subunits

uncovers additional differences: in the Ca2+/acidic pH structure, densities for a bound ion

are present. The map suggests coordination by Glu106, Asn101, Asn98 and a backbone
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carbonyl oxygen. In the water structure such a complete coordination is not present

and asparagines Asn101 and Asn98 are facing away from the central density. In order

to confirm the observed differences on the level of the cryo-EM maps, I compared the

respective loop regions by calculating the difference of the two maps, a so called difference

map (Fig. 6.4 a and b). The difference map clearly shows the rearrangement of the α-

helical segment including the presence and coordination of the Ca2+ ion (Fig. 6.4 b). The

specific assignment of the density by a Ca2+ ion is based on the strong density at the

respective site and obvious octahedral coordination (Fig. 6.4 c). Local resolutions plots of

the cryo-EM maps justify the placement of side chains and highlight again the stabilizing

effect of the Ca2+/acidic pH condition (Fig. 6.4 d), which leads to improved resolutions

of the respective loop. This being said, it can be concluded that under Ca2+/acidic pH

conditions this subunit interface is stabilized by Ca2+ interactions, whereas in pure water

the respective site is interacting with water molecules.

Figure 6.4: Visualization of structural differences between Ca2+/acidic pH and water cryo-EM maps of determined states.

a) TMV at lower radius in the cryo-EM maps under Ca2+/ acidic pH condition (left) and of TMV in water (right). b)

The corresponding view of the water cryo-EM structure (green) together with the difference map (red). Map features

corresponding to the Ca2+ ion as well as for the coordinating residues and the rearranged helical segment are visible in

the difference map. c) Detailed depiction of the Ca2+ ion including coordination distances with neighbouring residues. d)

Local resolution plots of the lower radius region for the Ca2+/ acidic pH map (left) and for TMV in water (right). This

figure is taken from [156] and was prepared by myself.

109



6.4.3 Interactions in the Metastable Switch

For further in-depth analysis of the interactions within the two structures, I inspected the

atomic coordinates which were refined by a common real-space optimization approach

[2]. Comparison of the refined atomic models shows an extended helix of the short α-

helical segment in the Ca2+/acidic pH model by residue N98 at lower radius (Fig. 6.6 a).

Moreover, visualizing the refined atomic B-factors clearly shows a drop from 42 to 25 Å2

in the lower radius region for the Ca2+/acidic pH condition. This confirms the finding

that Ca2+ stabilizes the assembly structure once more (Fig. 6.5).

Figure 6.5: Plot of Cα B-factors with corresponding residue number. Plot of 4 determined models from this study are

shown. The peak for residues 90 to 110 at the lower radius region (highlighted with an arrow) shows lower B-factors in the

Ca2+/acidic pH condition. For the remaining residues, the overall profile is very similar. This figure is taken from [156]

and was prepared by myself.

I further analysed the carboxylate residues that were previously found to be important

in the disassembly process (Glu50, Asp77, Glu95, Glu97 and Glu106). Glu50 and Glu77

contribute to tight axial carboxylate contacts at medium radius with a distance of 3.0 Å.

These residues did not exhibit any differences between the two conditions. Moreover, glu-

tamates Glu97 and Glu95 make up tight inter-subunit interactions at lower radius in the

Ca2+/acidic pH structure with a distance between the carboxylate groups of ∼2.5 Å (Fig.

6.6 b left, top). Glu106 is not found to participate in carboxylate interactions. However,

it contributes to the coordination of the Ca2+ ion in the respective Ca2+ site, which is

shared between the neighbouring subunits. The ion itself is coordinated by Glu106 and

Asn98 from one CP monomer and Asn101 as well as the backbone carbonyl oxygen of

Pro102 from the adjacent monomer (Fig. 6.6 b left, bottom). These close inter-subunit

interactions between neighbouring coat proteins stabilize the virion.

In contrast to the Ca2+/acidic pH map, the water structure is lacking these close inter-

subunit carboxylate contacts. Glu97 assumes two different conformations in the water

110



structures, one towards Glu106 (model 1) and one towards Glu95 (model 2), both with

longer distances of 3.9 Å and 5.4 Å to the closest carboxylate residues (Fig. 6.6 b right,

top). Asn101 and Asn98 exhibit different orientations in the water structures as well(Fig.

6.6 b right, bottom), but contribute in the coordination of Ca2+ in the Ca2+/acidic pH

condition. Based on the atomic models, I proposed the following mechanism of the viral

disassembly switch: Due to the loss of Ca2+ coordination as well as the build-up of car-

boxylate repulsion at higher pH, the residue network in proximity of Glu106, Asn101 and

Asn98 is destabilized and changes its conformation (Fig. 6.7).

Figure 6.6: Model comparison of Ca2+/acidic pH and water structural states. a) Superposition of the monomer structures

with the lower radius region highlighted in the red box. The Ca2+/acidic pH state (grey) shows an additional α-helical

segment when compared with the water models (green). b) Comparison of the Glu95-Glu97 interaction (top row) and of

the Ca2+ binding site in the Ca2+/acidic pH model (bottom row). Close proximity of Glu95 and Glu97 in the Ca2+/acidic

pH state whereas in water Glu97 flips towards Glu106 and is rather flexible. No Ca2+ ion and corresponding coordination is

evident in the water model. Residues that change conformation are marked in red. Adjacent subunit models are displayed

in lighter shade of the main color. Model 3 is not shown due to high structural similarity with model 2 in the displayed

region. This figure is taken from [156] and was prepared by myself.

6.4.4 Charge Build-Up at Carboxylates Destabilizes the Ca2+

Site

Two high-resolution cryo-EM structures of TMV with and without Ca2+ allowed us to

reconstruct the structural details of the viral disassembly switch. At acidic pH and in

presence of high levels of Ca2+, inter-subunit interactions mediated by Ca2+ coordination

and attractive carboxylate interactions between Glu95 and Glu97 stabilize the virion.

Under these conditions, carboxyl groups can bind protons with high affinity and are able

interact via hydrogen bonding between the carboxyl groups. Proton binding also neu-

tralizes their negative charges, which attenuates the repulsive force between Glu95 and

Glu97 (Fig. 6.7).

Entering the cell leads to an increase of the pH and carboxyl groups tend become deproto-
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nated, which will result in the mentioned repulsive forces between them. The subsequent

tendency of Glu97 to move away from Glu95, together with the correlated motion of

Asn98 and Asn101, destabilize the ion binding site and further promote Ca2+ removal,

especially in a low Ca2+ environment. All these concerted conformational transitions at-

tenuate the inter-subunit interactions which originally stabilize the helical assembly and

thus release the switch to disassemble the virus. Moreover, the participation of further

residues such as Asn101 and Asn98 in the coordination of the Ca2+ ion suggests a more

complex conformational network responsible for rearrangements beyond the previously

postulated mechanism based on simple carboxylate repulsion. This observation is in con-

cordance with results from a series of mutation studies [89], where additional residues like

Ans98 were shown to be important.

Figure 6.7: Towards a disassembly mechanism based on the Ca2+/acidic pH and water states. a) The close proximity of the

E95-E97 interaction and tight coordination of Ca2+ in the Ca2+/acidic pH state site suggests a mechanism in which, upon

pH change and Ca2+ removal, repulsive forces between charged carboxylates destabilize the network of interactions at lower

radius releasing the switch for viral disassembly. b) Schematic presentation of coat protein with neighbouring subunits

including main residues of TMV in the Ca2+/acidic pH state (left) and in water (right) responsible for the metastable

disassembly switch. This figure is taken from [156] and was prepared by myself.

An additional Ca2+ site that interacts with the RNA backbone has been suggested pre-

viously [100] [48], which could, however, not be located in the two structures presented

here (Fig. B.3 a). More precisely, the conformations around the RNA in all the struc-

tures of this study correspond to what has been referred to as the low Ca2+ state [48],

with Glu116, Arg92 and Arg90 involved in RNA binding [125] and a direct interaction of

Arg92 with Asp116. Taking this observation into account, the proposed second Ca2+ site

and the altered conformation around the RNA [100] [48] may not be necessary for TMV
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stabilization. Moreover, Glu109 was neither found to assume different conformations in

the two structures, nor to form interactions with one of the before mentioned residues

(Fig. B.3 b), although it was thought to be important for the disassembly process.

How far these observed differences in the maps reflect distinct sample preparations or

experimental uncertainties of previous datasets is not easy to resolve. In order to make

sure that the used batch of TMV is a biologically active virus, we showed in infection

experiments that the used sample is capable of infecting tobacco plants (Fig. 6.2) and

although the local resolutions at lower radius of the structures of this work drop to ∼2.5

Å, the maps are sufficiently clear to locate all the mentioned side chains with high confi-

dence (Fig. 6.3).

It has to be noted that the structural destabilization mechanism provides the opportu-

nity for a a cooperative disassembly switch between the subunits: removal of a Ca2+ from

the coordination site at lower radius is going to result in an instantaneous effect on the

neighbouring Ca2+ sites, which are located in close distance of only 10 Å to each other

and share residues. This has important implications especially on the 5’ and 3’ ends of

the virion, as the end subunits can only have weak interactions at the shared Ca2+ co-

ordination site in the Ca2+/acidic pH condition, because they lack one of the stabilizing

neighbouring subunits. When the Ca2+ concentration decreases, the ends will be even

further destabilized. This makes the ends more easily accessible to the pulling replisome

machinery.

To sum up, the shared Ca2+ site gives a direct explanation for the preferential capsid

opening at the virion ends and cooperative weakening of RNA-coat protein interactions,

thereby facilitating co-translational virion disassembly by the replisome [85]. I want to

mention again, that, although the lower radius region of the virion is destabilized under

low Ca2+ and high pH conditions, most parts of the CP are not affected by these changes

of the environmental conditions. This is a highly important aspect of the CP: only a

subtle destabilization of the metastable switch is necessary to trigger cotranslational dis-

assembly [161]. At the same time, the virion is still stable enough to allow spontaneous

reassembly of the CP in the helical assembly after viral replication [85].
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Chapter 7

Summary and Conclusions

Statistical method development can be referred to as a classical field of research and dates

back to the beginning of scientific activities. It illustrates our persistent challenge as scien-

tists to draw objective conclusions from noisy observations and, despite this age, it didn’t

forfeit importance. Continuous development of new experimental techniques requires new

statistical tools for validation, exploration and discovery based on the acquired data. One

such technique is cryogenic electron microscopy, or simply cryo-EM, which has become

the method of choice for high-resolution imaging of biological macromolecular complexes

in recent years.

Throughout this thesis, I presented new methodology for the analysis of three dimensional

maps determined with cryo-EM. The problems I focused on are at the very basis of cryo-

EM map interpretation and were not properly dealt with so far. A major challenge with

this respect was not only providing appropriate solutions, but rather giving a rigorous

formulation of what the problem actually is and how we can quantify it.

The thresholding problem for cryo-EM map visualization, as well as the resolution esti-

mation by means of Fourier shell correlation curves, could both be phrased as a signal

detection problem and were addressed in a high-dimensional statistical inference frame-

work based on multiple hypothesis testing and non-parametric statistical learning via

permutation sampling. While the third big part of the thesis was a rather biological case

study of the developed methodology applied to a high-resolution map of tobacco mosaic

virus (TMV), TMV can also be seen as one of the reference samples of cryo-EM method

development and structural biology in general. Given this, I hope that the thesis at hand

could provide some new insights into the respective problems.
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Appendix A

A Non-Parametric Permutation

Approach for Adaptive Thresholding

of Fourier Shell Correlation Curves

Table A.1: 1% FDR-FSC results on maps from the EMDB with reported resolutions better than 5 Å

Map Symmetry reported resolution [Å] 0.143 unmasked [Å] 1% FDR-FSC [Å]

EMD2677 C1 4.5 6.48 4.75

EMD3061 C1 3.4 4.06 3.41

EMD2984 D2 2.2 2.74 2.51

EMD5778 C4 3.3 3.99 3.5

EMD6422 D7 4.1 4.51 4.28

EMD6287 D7 2.8 3.07 2.83

EMD5623 D7 3.3 3.31 3.05

EMD6000 I 3.8 4.12 4.04

EMD2847 C1 2.9 3.3 2.96

EMD0144 O 1.65 1.89 1.7

EMD0408 C2 3.2 3.33 2.92

EMD6479 C1 3.5 3.57 3.23

EMD2764 C1 3.75 4.9 3.59

EMD0468 C1 3.9 6.17 4.52

EMD0480 C1 3.54 4.31 4.13

EMD9384 C2 2.96 3.49 3.36

EMD0043 C1 3.7 3.86 3.6

EMD0501 C1 3.5 4.17 3.47

EMD0500 C1 3.4 4.03 3.38

EMD0489 C4 4.3 5.03 4.25

EMD0487 C4 4.0 4.25 3.89

EMD9333 C1 3.0 3.43 2.98
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EMD0488 C4 3.4 3.74 3.46

EMD0415 C1 3.1 3.84 3.02

EMD0416 C1 3.6 3.96 3.59

EMD0417 C1 3.7 4.13 3.73

EMD0418 C1 3.8 4.52 3.96

EMD0419 C1 3.3 4.18 3.2

EMD0420 C1 3.4 4.32 3.23

EMD0425 C1 3.5 6.31 3.42

EMD4587 C2 3.8 4.26 3.86

EMD4588 C2 3.6 3.98 3.59

EMD4589 C2 3.7 4.12 3.68

EMD4592 C2 3.6 4.12 3.63

EMD4593 C2 3.7 4.26 3.52

EMD4594 C2 3.6 4.19 3.74

EMD4611 C2 3.2 3.53 3.18

EMD4612 C2 3.8 3.91 3.43

EMD4613 C2 3.5 3.75 3.36

EMD4614 C2 3.3 3.53 2.93

EMD9599 O 1.62 1.77 1.68

EMD9012 I 1.86 1.92 1.83

EMD0153 D2 1.89 2.29 1.91

EMD9203 D3 2.1 2.33 2.04

EMD7541 D2 2.4 3 2.77

EMD8908 D2 2.2 2.57 2.26

EMD4129 C1 3.06 3.75 2.95

EMD0194 C1 3.8 4.33 3.45

EMD0407 C2 2.8 3.66 3.25

EMD0452 C1 3.7 4.27 3.59

EMD0587 C1 4.1 4.83 3.98

EMD0588 C1 4.3 6.01 4.27

EMD0589 C1 3.9 4.46 3.68

EMD0590 C2 3.13 3.63 3.19

EMD0591 C2 3.37 3.98 3.4

EMD0592 C2 3.15 3.77 3.19

EMD9241 C1 3.8 4.47 3.6

EMD0182 I 3.36 3.51 3.3

EMD0596 C1 3.08 3.69 2.75

EMD0183 I 3.18 3.47 3.26

EMD7335 C1 3.5 4.17 3.51

EMD7334 C1 3.9 4.4 3.9
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EMD7337 C1 4.6 5.99 4.47

EMD7770 D2 1.9 2.13 1.84

EMD0264 C5 4.6 6.46 4.46

EMD9013 C1 3.4 4.04 3.61

EMD9014 C1 3.3 3.49 3.11

EMD8731 C3 4.2 5.41 4.3

EMD0341 C2 3.6 4.75 3.96

EMD0342 C2 4.2 6.17 4.28

EMD9696 C1 3.76 4.17 3.72

EMD9695 C1 3.64 4.07 3.54

EMD0498 C6 2.7 2.85 2.45

EMD0499 C6 2.7 2.81 2.56

EMD20074 C3 4.1 4.46 4.08

EMD20101 C1 4.36 4.81 3.93

EMD20100 C1 3.28 3.67 3.17

Table A.2: 1% FDR-FSC results on maps from the EMDB with reported resolutions worse than 5 Å

Map Symmetry reported resolution [Å] 0.143 unmasked [Å] 1% FDR-FSC [Å]

EMD9625 C1 6.78 7.71 6.48

EMD9306 C1 7.5 9.39 8.05

EMD9779 C1 16 16.87 11.03

EMD4748 C2 5.14 6.07 5.0

EMD0074 C1 18 31.44 21.68

EMD0075 C1 21 31.44 21.68

EMD0086 C1 14 20.96 13.1

EMD0087 C1 16 32.25 23.29
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Figure A.1: Influence of the box size on local resolution estimates. The box size of the sliding window is plotted against

the respective median local resolutions over the complete map for both the 0.5 FSC (blue) and 1% FDR-FSC (red).
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Figure A.2: Influence of the box size on local resolutions for the cryo-EM map EMD3061. The local resolutions are

mapped on the surface in the respective colours for both 0.5 FSC thresholding and 1% FDR-FSC.
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Figure A.3: (left) Resolution estimates of both 0.143 FSC and 1% FDR-FSC thresholds for a simulated map of β-

galactosidase (pdb 5a1a) at 2.5 Å resolutions and with different levels of background noise. (right) Local resolution estimates

of the 1% FDR-FSC threshold for a simulated map of β-galactosidase (pdb 5a1a). The 4 subunits were filtered to different

resolutions of 2,3,4 and 5 Å, respectively.
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Appendix B

Elucidation of the Viral Disassembly

Switch of Tobacco Mosaic Virus

Figure B.1: Resolution assessment using Fourier shell correlation (FSC). (a) Comparison of FSC curves between two half-

maps for the Ca2+/acidic pH (left) and water structure (right). (b) FSC curves between map and model (black), between

half map 1 and a perturbed model refined against half map 1 (red) as well as between half map 2 and a perturbed model

refined against half map 1 (blue) for the 4 determined atomic models. This figure is taken from [156] and was prepared by

myself.
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Figure B.2: Local resolution assessment of Ca2+/acidic pH and water structure. (a) Overlay of local resolution histograms

computed with BlocRes in the Ca2+/acidic pH (orange) and water condition (blue). Resolution of the water map is slightly

higher. (b) Map comparison from previous study (left) [16] with this study in water (right) including overlaid current

atomic model thresholded at a FDR of 1%. The here determined structure shows additional significant and defined map

features for the lower radius region. This figure is taken from [156] and was prepared by myself.
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Figure B.3: Structural details of Ca2+/acidic pH and water states. (a) Atomic models shown with the respective maps

of TMV in Ca2+/acidic pH (left) and water condition (right) at the previously proposed location of a second Ca2+ site in

proximity to the RNA. No compatible Ca2+ ion map features could be detected. (b) Residue Asp109 and its environment:

no obvious interaction with other carboxylates is evident in our structures (left). The same view is shown with corresponding

map at 1% FDR (right). This figure is taken from [156] and was prepared by myself.
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Table B.1: Model validation statistics. Model statistics for the Ca2+/acidic pH atomic model and the 3 different models

from TMV in water.

Model quantity Ca2+/acidic pH Model 1 Model 2 Model 3

Ramachandran outliers 0.00% 0.00% 0.00% 0.00%

Ramachandran favored 97.35% 97.35% 96.69% 96.69%

Rotamer outliers 0.00% 0.00% 0.00% 0.00%

Clashscore 1.6 3.6 4.4 4.4

RMS(bonds) 0.0037 0.0051 0.0056 0.0052

RMS(angles) 0.63 0.76 0.82 0.82

C-beta deviations 0 0 0 1

MolProbity score 1.03 1.28 1.43 1.43

DipCheck Chi-score -0.59 -0.61 -0.99 -0.67

RSCC(mask) 0.86 0.86 0.86 0.86
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