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Abstract

Recent advances in the fields of genome editing, whole-genome sequencing, single-cell RNA
sequencing, and in situ spatial transcriptomics have enabled the cost-efficient production of
high-throughput big data. However, the lack of dedicated bioinformatics algorithms to analyze
such data has been a big hurdle. In this thesis, several novel bioinformatics tools applicable to
each field are presented.

First, a series of web-based tools for genome editing are presented: Cpf1-Database, Cas-
Analyzer, web-based Digenome-seq software, BE-Designer/Analyzer. These tools have been
developed to guide researchers to easily use genome editing systems, using Cas9 or Cpf1, by
providing an easily accessible web-based interface.

Second, the development of two bioinformatics pipelines are described: a small variant
calling pipeline to process tumor genome sequencing data without a matched control, and a
pipeline to pre-process single-cell RNA sequencing data.

Third, a novel segmentation-free algorithm to call cell-types from in situ transcriptomics
data, namely Spot-based Spatial cell-type Analysis by Multidimensional mRNA density esti-
mation (SSAM) is presented. Recent advances of in situ spatial transcriptomics techniques,
such as multiplexed fluorescence in situ hybridization or in situ/intact tissue sequencing have
enabled the discovery of spatial heterogeneity of cell types at the tissue level. However, cell
type calling methods are often limited by cell segmentation algorithms due to various imaging
problems. SSAM circumvents these problems by estimating spatial gene expressions as a den-
sity estimation of the mRNA in a spatial context and identifying de novo cell-types and their
spatial organization without the need to segment cells. Optionally, SSAM can be guided by
external sources of cell-type information, integrating them in a spatial context. In this thesis,
SSAM is demonstrated with three different mouse brain tissues imaged by different imaging
techniques: the somatosensory cortex (SSp) imaged by osmFISH; the hypothalamic preoptic
region (POA) by MERFISH; and the visual cortex (VISp) by multiplexed smFISH. SSAM can
produce similar results compared to segmentation-based methods and outperforms them when
cell segmentation is the limiting factor.

In summary, the bioinformatics tools presented in this thesis overcome major obstacles that
would normally hinder effective analysis: the web-based tools for genome editing have a wide
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user base due to their easy-to-use web-based interfaces; omics data analysis pipeline that enables
fast analysis of omics data utilizing a compute cluster and facilitate hypothesis generation when
lacking control tissue; and SSAM that enables the analysis of in situ spatial transcriptomics data
without being limited by cell segmentation. All of the tools and pipelines described in this thesis
are open-sourced and freely accessible for non-profit, research-purpose use.



Zusammenfassung

Die jüngsten Fortschritte auf den Gebieten der Genomeditierung, der Gesamtgenomsequen-
zierung, der Einzelzell-RNA-Sequenzierung und der räumlichen in-situ-Transkriptomik haben
die kosteneffiziente Produktion von großen Datenmengen - der sogenannten “big data” - mit
hohem Durchsatz ermöglicht. Das Fehlen dedizierter Bioinformatik-Algorithmen zur Analyse
solcher Daten war jedoch eine große Hürde. In dieser Arbeit werden verschiedene neuartige
Bioinformatik-Tools vorgestellt, welche in jedem dieser Bereiche anwendbar sind.

Zunächst wird eine Reihe von webbasierten Werkzeugen zur Bearbeitung des Genoms
vorgestellt: eine Cpf1-Database, Cas-Analyzer, webbasierte Digenome-seq-Software und BE-
Designer/Analyzer. Diese Tools wurden entwickelt, um Forschern die einfache Anwendung von
Genomeditiersystemen mithilfe von Cas9 oder Cpf1 zu erleichtern, indem eine leicht
zugängliche, webbasierte Oberfläche bereitgestellt wird.

Zweitens wird die Entwicklung von zwei Bioinformatik-Pipelines beschrieben: zum einen
eine Pipeline zur Identifikation kleiner Varianten in Tumorgenom-Sequenzierungsdaten ohne
passender Kontrolle, zum anderen eine Pipeline zur Vorverarbeitung von Einzelzell-RNA-
Sequenzierungsdaten.

Drittens wird ein neuartiger segmentierungsfreier Algorithmus namens ”Spot-based Spatial
cell-type Analysis by Multidimensional mRNA density estimation (SSAM)” vorgestellt, mit
dem Zelltypen aus in situ-Transkriptomikdaten bestimmt werden können. Jüngste Fortschritte
bei in-situ-Techniken zur räumlichen Transkriptomik, wie zum Beispiel Multiplex-Fluoreszenz-
in-situ-Hybridisierung oder in-situ-Verfahren für die Sequenzierung intakter Gewebe, haben
die Entdeckung räumlicher Heterogenität von Zelltypen auf Gewebeebene ermöglicht. Allerd-
ings sind die Verfahren zur Bestimmung der verschiedenen Zelltypen in den auf Segmentierung
beruhenden Algorithmen häufig aufgrund verschiedener Probleme bei der Bildaufnahme lim-
itiert. SSAM umgeht diese Probleme, indem räumliche Genexpression als Dichteschätzung
der mRNA in einem räumlichen Kontext geschätzt und de-novo-Zelltypen und ihre räumlichen
Organisationen identifiziert werden, ohne dass Zellen segmentiert werden müssen. SSAM
beinhaltet einen optionalen überwachten Lernalgorithmus der zelltypezogene Information in
einem räumlichen Kontext integriert. In dieser Arbeit wird die Anwendung von SSAM anhand
drei verschiedener Maushirngewebe demonstriert, die mit verschiedenen Bildaufnahmetech-
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niken abgebildet wurden: dem somatosensorischen Kortex (SSp), der mit osmFISH abgebildet
wurde; die hypothalamische preoptische Region (POA) von MERFISH; und der visuelle Kortex
(VISp), welcher durch multiplexiertes smFISH abgebildet wurde. SSAM kann im Vergleich zu
den Ergebnissen der segmentierungsbasierten Methoden ähnliche Ergebnisse erzielen und diese
übertreffen, wenn die Einschränkung durch die Zellensegmentierung der limitierende Faktor ist.

Zusammenfassend lässt sich sagen, dass die in dieser Arbeit vorgestellten Bioinformatik-
Tools wichtige Hindernisse überwinden, die normalerweise eine effektive Analyse beeinträchti-
gen würden. Die webbasierten Tools für die Genombearbeitung haben aufgrund ihrer benutzer-
freundlichen webbasierten Schnittstellen eine breite Anwenderbasis. Die Omics-Datenanalyse-
Pipelines ermöglichen eine schnelle Analyse von Omics-Daten mithilfe eines Rechenclusters
und erleichtern die Erstellung von Hypothesen, wenn kein Kontrollgewebe vorhanden ist.
SSAM ermöglicht die Analyse von in-situ räumlichen Transkriptomikdaten, ohne durch Zellseg-
mentierung eingeschränkt zu sein. Alle in dieser Arbeit beschriebenen Tools und Pipelines sind
Open-Source-Tools und für gemeinnützige Zwecke zu Forschungszwecken frei zugänglich.
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Chapter 1

Assessment of genome editing results

1.1 Introduction

1.1.1 Genome editing via CRISPR-Cas derived RGENs

Short history of CRISPR-Cas genome editing

The CRISPR-Cas system is an immune system found in some archaea and bacteria, to protect
themselves from the invasive foreign genetic elements [1, 2]. The system comprises of two
parts, the CRISPR loci, and Cas (CRISPR associated) proteins. The CRISPR loci serve as
acquired immune memory by containing short fragments of the invasive sequences, e.g. from
phages, as spacers between specific repeat sequences. The crRNA (CRISPR RNA), which is
the transcript of the spacer, is used as a template sequence that guides Cas proteins to bind to
the target invasive sequence. After that, the invasive sequence is cleaved by the Cas protein
guided by crRNA, so that the sequence cannot be used for the production of viral proteins.

Since the Cas proteins rely on crRNA-DNA hybridization for cleavage, it was suggested
that the system can be used for genome editing by loading a desired RNA sequence to the Cas
proteins to target any DNA sequence [3,4]. There are two classes of the CRISPR systems (class
1 and 2), among them the class 2 CRISPR system was first identified to have the potential to be
used in genome editing because of the simplicity of the system. The class 2 CRISPR system only
requires a single endonuclease rather than having to form a complex of several different Cas
proteins, which is the case for the class 1 CRISPR system. The first CRISPR-Cas component
discovered was the Cas9 endonuclease of Streptococcus Pyogenes (SpCas9). The endogenous
SpCas9 dependent system requires 3 components - two short RNAs (crRNA and tracrRNA)
and the SpCas9 endonuclease, but it was reported that the crRNA and tracrRNA RNAs can be
fused to a single-chain guide RNA (sgRNA), which made the system much easier to use [3]. In
January 2013, several different groups independently reported successful genome editing of a
living organism using SpCas9 for the first time [5–10].
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2 1.1. Introduction

Type Abbreviation Organism 5’-PAM-3’ References

Cas9

SpCas9 Streptococcus pyogenes NGG or NRG [3]
StCas9 Streptococcus thermophilus NNAGAAW [11]

NmCas9 Neisseria meningitidis NNNNGMTT [12]
SaCas9 Staphylococcus aureus NNGRRT or NNNRRT [13]
CjCas9 Campylobacter jejuni NNNVRYAC or NNNNRYAC [14]

SpaCas9 Streptococcus pasteurianus NNGTGA [13]
Nme2Cas9 Neisseria meningitidis NNNNCC [15]

Engineered Cas9
VRER SpCas9

Streptococcus pyogenes
NGCG

[16]
VQR SpCas9 NGA

Xcas9 3.7 NGT or NG [17]
Engineered Cas12b BhCas12b v4 Bacillus hisashii ATTN or DTTN [18]

Cpf1
AsCpf1 Acidaminococcus

TTTN or TTTV [19]
LbCpf1 Lachnospiraceae
FnCpf1 Francisella TTN or KYTV [20]

Engineered Cpf1
RR AsCpf1

Acidaminococcus
TYCV

[21]
RVR AsCpf1 TATV

Table 1.1. Various types of RGENs. The list of reported RGENs with various different PAM
sequences. This is not a full list of all RGENs currently available.

RNA-guided endonucleases (RGENs)

To date, many Cas9 variants [11–17], and also other RNA-guided endonucleases, such as Cpf1
(Cas12a) [19] or Cas12b [18], have been discovered (Table 1.1). Since such endonucleases can
be programmed by guide RNAs, it was proposed to use the term ‘RNA-guided endonucleases’
(RGENs) instead of using the term ‘CRISPR’, to avoid confusion with the CRISPR-Cas immune
system [22].

Although many of these endonucleases can be used for genome editing, SpCas9 (whose
associated PAM sequence is 5’-NGG-3’) is currently the most widely used thanks to the re-
quirement of a short PAM sequence length, which naturally allows for a lot of target sites.
However, although SpCas9 has many potential target sites in the whole genome of various or-
ganisms, there will be genes that cannot be targeted by SpCas9 due to the lack of the required
PAM sequence in the genomic vicinity of these genes. Therefore, RGENs other than SpCas9,
or engineered SpCas9 which recognize different PAM sequences, are additionally being used
to target such genes.

Figure 1.1 shows the basic scheme of a typical RGEN (depicted here Cas9) and sgRNA
complex. The sgRNA has a ‘spacer’ sequence, which is complementary to a so-called “proto-
spacer’ sequence of the target DNA (Figure 1.1A). After the sgRNA is loaded into the RGEN
(Figure 1.1B), the complex first recognizes the PAM sequence in the target DNA (the PAM
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Guide sequence
(spacer)

A

Cas9

Protospacer PAM

C

B D

Figure 1.1. The scheme of RGEN.
Basic scheme of RGEN and sgRNA complex. This figure is based on the structure of Cas9
of S. Pyogenes, but other RGENs also have a similar structure. (A) Structure of single-chain
guide RNA (sgRNA); (B) Cas9 and sgRNA complex; (C) Target DNA sequence; (D) Cas9 and
sgRNA complex attached to target DNA. The cleavage positions by Cas9 are indicated with
blue arrows.



4 1.1. Introduction

sequence is a 2-6 base pair DNA motif used by Cas9 to bind to the target site (Figure 1.1C)).
After the PAM sequence is recognized, the spacer sequence is hybridized to the protospacer
sequence and the target DNA is cleaved, resulting in blunt-ended DNA (Figure 1.1D). If the
protospacer and spacer are poorly hybridized, the RGENs cannot cleave the site.

Although Figure 1.1 is based on the structure of Cas9, other endonucleases, such as Cpf1
[19] and Cas12b [18], have a similar structure. The major difference is that 1) the PAM sequence
of Cpf1 is located on the 5’ side of the guide RNA, and 2) both Cpf1 and Cas12b make sticky
ends instead of blunt ends after cleavage.

In addition to the capability of RGENs to make a double-strand break (DSB) at target sites,
it was reported that it is possible to modify the Cas9 nuclease by introducing point mutations to
the nuclease domain of Cas9. This has been done to make Cas9 nickase (shortly nCas9) which
introduces a nick to DNA instead of DSB, or dead Cas9 (shortly dCas9) which do not have any
cleavage activity but only binds to the target site. It is known that both nCas9 and dCas9 show
the same specificity as unmodified Cas9 [4].

Genome editing with RGENs

Once RGENs have introduced DSBs at the target sites, genes can be knocked out via the en-
dogenous non-homologous end joining (NHEJ) pathway which results in insertions or deletions
(indels) near the DSB location during the repairing mechanism. For a successful gene knock-
out, frameshift mutations are preferred since non-frameshift mutations can still result in the
production of a functional protein. If there is a microhomology near the DSB site, DSBs can
be repaired by an alternative NHEJ pathway, called the microhomology-mediated end joining
(MMEJ) pathway. By using this, it is reported that non-frameshift mutations can be avoided by
predicting mutation patterns based on microhomology which increases the efficiency of targeted
gene knock-out [23].

Besides the removal of specific sequences, additional sequences can be inserted into the
genome by taking advantage of the homology-directed repair (HDR) mechanism. This method
works by transfecting the cells with an additional donor plasmid or short DNA fragment that
contains the desired sequence as a template, called single-stranded donor oligodeoxynucleotide
(ssODN), together with RGENs. Both ends of the ssODN have homology to the DNA sequences
nearby the DSB site so that the ssODN can be used as a template sequence during HDR, which
will eventually lead to the insertion of the desired sequence at the target site of the genome.

However, such genome editing approaches rely on DSBs that can lead to unwanted muta-
tions, e.g. megabase-scale large indels [24] or mutations at off-target sites, which can lead to
unwanted results. Therefore, new techniques that do not rely on DSBs have been developed, in-
cluding CRISPR base editing. The CRISPR base editing uses a cytidine or a guanine deaminase,
such as APOBEC1 (apolipoprotein B editing complex 1) or AID (activation-induced deaminase)
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linked to dCas9 [25–28]. As mentioned, dCas9 preserves the original Cas9 specificity but does
not cleave the DNA. Therefore, it can be used to deliver the deaminase to the targeted region,
which results in a highly specific DNA base substitutions near the target site.

1.1.2 Off-target effect of RGENs

As shown in Figure 1.1, the two requirements for RGENs to cleave the target site are 1) the
existence of a PAM sequence, 2) the hybridization of guide RNA (spacer) and DNA (proto-
spacer) sequences. However, it is reported that RGENs can cleave DNA even with a small
number of mismatches between guide RNA and DNA sequences [29–31]. This means that
RGENs can also bind and cleave ‘off-target’ sites which have protospacer sequences that differ
from the guide RNA in several nucleotides, resulting in undesired mutations or chromosomal
rearrangements. Therefore, in order to design a good guide RNA that does not have many po-
tential off-targets, it is crucial to predict all such potential off-target sites in the whole genome
of the organism to be edited. Many in silico approaches that were developed to design guide
RNA of RGENs [32–40], including our fast GPU-powered algorithms – Cas-OFFinder [34] and
Cas-Designer [35], thus incorporate the prediction of all potential off-targets in whole genomes
allowing for several mismatches.

In addition to the in silico prediction of the off-targets, several experiment-based approaches
have been suggested to avoid the off-target effect. One clever approach is using two Cas9
nickases (nCas9) to target two different sites in close genomic vicinity to each other [41, 42].
Introducing two nicks in the opposite strands of the targeted DNA region results in a sticky-
ended double-strand break at the on-target site, whereas off-target sites will have only a single
nick. Since a single nick on DNA has a much lower possibility to result in unwanted mutations
than DSBs, such unwanted mutations can be avoided at the off-target sites. Another similar
approach is using two dCas9 proteins fused with a FokI nuclease, which targets two very close
sites in the genome. Since FokI only cleaves DNA when it forms a dimer with another FokI, the
on-target site will result in cleavage by FokI dimer at the center of the two sites, but no cleavage
at all at the off-target sites. Also, recently it has been reported that the specificity of Cas9 can
be increased by engineering the Cas9 protein itself [16, 43].

1.1.3 Assessment of genome editing outcome by RGENs

Although several methods to increase the specificity of RGENs exists, it is still important to
assess the outcome of genome editing.

Firstly, it is important to check the possible mutations at off-target sites. This can be achieved
by several tools which have been developed so far, including our previous approach Digenome-
seq [45–50]. Digenome-seq can detect insertions or deletions with the mutation rate below
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Figure 1.2. An example “special pattern” at a cleavage site of the Digenome-seq data.
(Note: This figure was jointly produced with Dr. Sangsu Bae, later published as a part of
Park et al. [44].)
This figure shows an example special pattern of the same 5’ reads starting at the same genomic
location. At the 1 bp left and the right side of the cleavage site, the ratio of the number of
reads starting at the position to the number of the sequencing depth is calculated and used to
automatically identify the cleavage locations.
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0.1 %, near the detection limit of targeted deep sequencing, and is, therefore, a sensitive and
unbiased in vitro approach to profile genome-wide mutations at the off-target sites. The ap-
proach relies on in vitro cleavage of RGEN-transfected cells. The whole genomes of the RGEN-
transfected cells are extracted and digested again with RGEN in vitro before library preparation,
and then sequenced. Finally, the reads are mapped to the reference genome and visualized with
a genomic viewer software (e.g. IGV). At an RGEN cleavage site, the in vitro cleavage made
by RGEN results in special patterns of straight alignments (i.e., sets of 5’ end of reads starts at
the same genomic location) (Figure 1.2). These patterns can be also automatically detected by
a computer program.

Secondly, it is also important to validate the editing result at each searched site in cells. This
can be achieved by targeted deep sequencing near the searched site, which is known to be the
most sensitive method due to its high precision. For DSB mediated gene knock-out and -in
experiments, the insertion and deletion (indel) rate of different lengths caused by the DSB can
be calculated. In addition, the knock-in rate can be calculated by screening for the presence
of HDR template sequences near the DSB site. Moreover, it is also possible to identify the
mutation rate of the base editing result with targeted deep sequencing data.

1.1.4 Overview of the results

In this chapter, I present several new computational tools for designing good guide RNAs to
avoid off-target effects and assessment of the genome editing outcomes. Importantly, each tool
is developed with an easy-to-use web interface, increasing its accessibility. First I introduce
Cpf1-Database, a database of Cpf1 target sites in various organisms to help researchers to design
good guide RNAs [51]. Second, Cas-Analyzer, a tool for assessment of mutation rates at the on-
target site based on the next-generation sequencing data [52]. Third, a new Digenome-seq data
assessment tool, a fast algorithm to detect off-target mutations [44]. Fourth, BE-Designer and
BE-Analyzer, tools to design guide RNAs and assess on-target mutation rates of base editors
[53]. In addition, I briefly discuss the recent claim about lots of unexpected mutations occurred
by RGENs [54], which has never been observed using the tools mentioned in this chapter.

1.2 Results

1.2.1 Web-based database of Cpf1 target sites

For a high efficacy of genome editing, it is recommended to several criteria, including the num-
ber of potential off-target sites allowing several mismatches (to minimize off-target effect), the
number of transcript variants simultaneously covered by the target (to completely knock-out
the gene), the microhomology-associated out-of-frame score (to avoid in-frame mutations), the
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relative position in the coding sequence (CDS) (for a complete gene disruption), excluding 4
thymidine nucleotides in tandem (often recognized as a terminal signal by RNA Pol III). Since
it is time-consuming to calculate these metrics every time when designing a new guide RNA, it
is much more efficient to have a database of pre-calculated values with all of the possible targets
in various organisms, so that good guide RNAs can be designed quickly. In addition to the pre-
vious database of SpCas9 target sites [55], I made a new database called Cpf1-Database, which
is a database of Cpf1 target sites in various organisms and is accessible through an easy-to-use
web interface.

Target selection for AsCpf1/LbCpf1 endonucleases

Whole genomes of 12 different organisms, including Homo sapiens (GRCh38), Rattus norvegi-
cus (Rnor 6.0), Mus musculus (GRCm38), Danio rerio (GRCz10), Sus scrofa (Ensembl v10.2),
Arabidopsis thaliana (TAIR10),Musa acuminata (Banana),Vitis vinifera (IGGP 12X), Solanum
lycopersicum (SL 2.5),Glycinemax (JGI v1.0),Drosophilamelanogaster (BDGP6) andCaenorhab-
ditis elegans (WBcel235), were automatically downloaded from the Ensembl database (version
86) [56] via a custom Python script using the BioMart API. Next, all targets which have the
PAM sequence of AsCpf1/LbCpf1 (5’-TTTN-3’), and have a cleavage position within any CDS
region of the genomes, were identified. In this step, the additional information of the targets;
1) the GC content, 2) relative cleavage position in CDS, 3) the number of exons covered by the
target, and 4) the microhomology-associated out-of-frame score, was also collected.

Searching for potential off-target sites

Using Cas-OFFinder [34], our previous OpenCL-based potential off-target searching algorithm,
the potential off-target sites of all selected target sites were identified in the whole genome of
each organism. Our defined potential off-target sites contained the PAM sequence 5’-TTTN-3’
close to a sequence with high sequence similarity to any of the target sites, allowing mismatches
up to 2 nucleotides. From the Cas-OFFinder result, the counts of potential off-targets allowing
mismatches 0, 1, and 2 were calculated. This step was done in parallel using cluster computer
Chundoong (http://chundoong.snu.ac.kr). The cleavage locations of potential off-targets were
identified and classified into CDS (coding sequence), UTR (untranslated region), intron, or
intergenic regions. All information obtained in this step was stored in a SQL database server.

Web interface

The main page of the Cpf1-Database shows the list of all genes of a selected organism (Figure
1.3), with functionality to search genes with keywords, by the gene name, Ensembl ID, or gene
description, so that the desired genes can be easily selected.
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Figure 1.3. The main page of the Cpf1-Database.
The main page shows the list of genes. By clicking the ‘Add to Collection’ button to put a
certain gene to the ‘Collection’ at the bottom of the page, and later guide RNAs of the selected
genes can be designed in a batch. The possible target sites of a certain gene can be previewed
with ’Quick info’ button (see also Figure 1.4).
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Figure 1.4. The quick info dialog.
The quick info dialog shows the overview of possible targets of a gene. The list of targets can
be filtered based on several useful criteria using ‘Filter’ panel on top of the page.
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Figure 1.5. The result page of Cpf1-Database.
The result page shows the designed guide RNAs for the selected genes in the ‘shopping cart’.
The indicator icon (in green, yellow, or red) on the left side of the gene name shows whether the
specified number of guide RNAs are selected for the gene, where the green indicator means all
guide RNAs, red means no guide RNAs, yellow means more than one but not all guide RNAs
were selected. At the bottom of the page, it is possible to download the guide RNAs of the
genes with green indicator and then remove them from the page, so that the guide RNAs of the
remaining genes can be further designed with less strict filtering criteria.
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Every gene has a ‘Quick Info’ button which opens a window that contains a short description
of the gene, followed by a list of all target sites within the gene CDS (Figure 1.4). The window
has a panel that contains several criteria that can be used to filter the targets – GC content,
relative position in the CDS, the number of transcripts covered by the target, and the number of
potential off-targets per mismatched nucleotides.

Alternatively, the Cpf1-Database offers a way to design guide RNAs of multiple genes at
once. By clicking the ‘Add to Collection’ button of each gene, the gene is collected in the bottom
panel of the main page, similar to the ‘shopping cart’ functionality of shopping websites. After
collecting the desired genes, by clicking the ‘Select optimal gRNAs’ button, the result page is
shown with up to 3 (default) optimal guide RNAs per each selected gene (Figure 1.5), where
the number of optimal guide RNAs can be adjusted in the result page. The result page also
has a functionality to filter guide RNAs based on the same criteria in the ‘quick info’ window,
which can be used to filter guide RNAs of all selected genes at once. Each gene has an indicator
colored in red, yellow, and green, which stands for no guide RNAs, more than 0, and all optimal
guide RNAs are designed, respectively. Finally, the result page has the functionality to remove
the genes with green indicator – so that the less optimal guide RNAs of the remaining genes can
be selected again with lowering the filtering criteria. By repeating this step, the optimal guide
RNAs of the selected genes can be easily designed with only a few clicks.

In addition to the interactive web interface, the Cpf1-Database also offers a programmati-
cal way to retrieve information via a web application programming interface (web API). The
specification of the web API can be found at ‘http://www.rgenome.net/static/cpf1-database-
help/web_api.pdf’.

1.2.2 Web-based assessment of genome editing sequencing results

After editing the genome of target cells with the selected optimal guide RNAs, the result of
genome editing can be assessed by targeted deep sequencing near the on-target site. But anal-
ysis of such sequencing data usually requires multiple command-line software tools, not easily
accessible to many researchers who are not familiar with the command-line interface. There-
fore, I developed an easy-to-use web-based assessment tool, Cas-Analyzer. The main strength
of Cas-Analyzer is that its core algorithm is purely implemented in JavaScript, therefore the
data do not have to be uploaded to the remote server – which can avoid long data upload times
and data security/privacy issues.

Web interface of Cas-Analyzer

Cas-Analyzer accepts input data and parameters via a web form. Cas-Analyzer requires paired-
end or single-end deep sequencing data (Figure 1.6A), with the original reference sequence and
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Figure 1.6. Cas-Analyzer overview.
(A) The input of Cas-Analyzer, which is a single or paired deep sequencing FASTQ files (com-
pressed or decompressed); (B) The parameters for the Cas-Analyzer, the reference sequence,
RGEN information, and optionally ssODN information for the gene knock-in rate analysis; (C)
A schematic diagram shows how the parameters R and r works. R is used to define indicator
sequences to filter valid sequences, and r is used to determine WT sequence; (D) The summary
table, which shows the number of sequences in each category (insertion, deletion, and WT); (E)
The interactive plot, which shows the location of indels and their size histograms; (F) the list
of sequences, aligned to the reference sequence for an easy comparison.
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the RGEN information (the type of RGEN and the target sequence) to identify the cleavage
locations (Figure 1.6B). Optionally, the template HDR sequence can also be given such that it
can be used to calculate the expected knock-in rate. The input sequencing data can be either
raw FASTQ or gzip (or blocked gzip) compressed. In the case of compressed input data, a
JavaScript library pako (http://nodeca.github.io/pako/) is used to decompress the input file be-
fore analysis (here, pako was slightly modified to be compatible to the blocked gzip files). For
the paired-end data, Fastq-join, a part of ea-utils (https://code.google.com/archive/p/ea-utils/),
was reimplemented in JavaScript and used by Cas-Analyzer.

Data analysis

Cas-Analyzer works in 3 steps to calculate mutation frequencies. First, Cas-Analyzer identifies
the location of cleavage based on the input RGEN information and the reference sequence. The
indicator sequences, i.e. R nucleotides on both sides, including the 12 nt left and right indi-
cator sequences at both outer sides, are used to select valid sequenced reads, by selecting the
reads with both indicator sequences allowing up to 1 mismatch in the sequencing data (Figure
1.6C). Second, the unique sequenced reads among all reads are selected and their frequencies
are counted, and the reads with a frequency below n are excluded from the analysis. Third, the
unique reads are classified into the following three groups: ‘insertion’, ‘deletion’, and ‘WT or
substitution’, and each frequency is reported as a table (Figure 1.6D). Here, the parameter r
defines “WT marker” sequence, defined as a short sequence in the reference sequence at the
cleavage location (Figure 1.6C). Cas-Analyzer firstly finds the WT marker in the unique se-
quences, and classifies into ‘WT or substitution’ group if the sequences contain the WT marker;
otherwise, it is classified into ‘insertion’ if longer than, or ‘deletion’ if shorter than the reference
sequence. Optionally, if the HDR template sequence is given, the Cas-Analyzer defines the dif-
ference of the template sequence and the reference sequence as an HDR indicator and then uses
this HDR indicator to classify the unique sequences into an additional ‘HDR’ category.

After the completion of the data analysis, the unique sequences are aligned to the reference
sequence. For this, the EMBOSS Needle was reimplemented in JavaScript. The aligned unique
sequences are presented in the result page with the classification, sorted by their frequency in
descending order (Figure 1.6F). For user convenience, the result is also presented as interactive
graphs on the result page (Figure 1.6E).

1.2.3 Web-based assessment of off-target effects

Although Digenome-seq can be used to detect off-target cleavages with high sensitivity [50],
the analysis pipeline presented together with the Digenome-seq publication requires extensive
command-line interactions and produces several large intermediate files, resulting in large space
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requirements and a long-running time. Here, I present a redesigned web-based analysis tool for
Digenome-seq data that solely runs on web browsers, capable of running instant analysis and
presenting interactive result representation.

Implementation

The core algorithm of the web-based Digenome-seq data analysis tool was implemented in
C++. HTSlib, which is a de facto standard library to process huge sequencing data, is used to
read BAM files [57]. The reads with a mapping quality of 0 are excluded from the analysis by
default. After retrieving the sequences, the algorithm detects DSB sites by finding a series of
forward/reverse reads starting at the same position. By default, the tool requires a minimum
value of 5 reads having a start/end at the same position. Also, it calculates the sequencing depth
at the position and divides the number of reads having the same 5’ position by the sequencing
depth, to get the ratio of the reads at each position. By default, the threshold for filtering is
set as 10% and 20 % for the sequencing depth and the ratio, respectively. The 5’ sticky ends
are shown as overlapping reads because the 5’ sticky ends are filled with bases during the
sequencing process. On the other hand, 3’ sticky ends are removed by exonuclease activity
before sequencing and result in a gap. Based on this, the cleavage score at the position i (Si)
is computed using the following formula, which is a generalized version of the one that was
suggested before [58].

Si =
5∑

a=1

Fi − 1

Di

× Ri−4+G+a − 1

Di−4+G+a

× (Fi +Ri−4+G+a − 2)

+
5∑

a=1

Ri−1+G − 1

Di−1+G

× Fi−3+a − 1

Di−3+a

× (Ri−1+G + Fi−3+a − 2)

(1.1)

where:

Fi : Number of forward sequence reads starting at position i
Ri : Number of reverse sequence reads starting at position i
Di : Sequencing depth at position i
G : Size of sticky end overhang (positive/negative value for 5’/3’ overhang)

To build a web tool, HTSlib was firstly ported to work with the compiler Emscripten
(http://emscripten.org/), which generates asm.js (a pre-optimized subset of JavaScript,
http://asmjs.org/) or WebAssembly (https://webassembly.org/) with the C/C++/Rust written
code, and used as a library in the core C++ code to read BAM files. The core C++ code,
alongside the ported HTSlib, was compiled to asm.js with Emscripten. Therefore, all code for
analysis conforms to the JavaScript standard, so it works well in any modern web browser, so
analysis can be easily performed using a web browser without installing any local tools. The
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content of the BAM files is not uploaded to any server, but streamed on the client-side, to cope
with the memory limitation of web browsers and additionally achieve high performance. Since
the data are not uploaded to the server, it can be analyzed immediately without preparation
time, and the analysis via this tool is free from data security issues. The core algorithm was
optimized by the Emscripten compiler, which allows for fast analysis in modern web browsers.
In the benchmark, a full analysis of a 100GB BAM file took three hours to do a full analysis
using the Intel i5 3570k central processing unit (CPU) on a single thread.

In addition to the web version of the analysis tool, the command-line version of the tool was
also generated by compiling the same C++ code with the GNU C Compiler (GCC). The use of
the command-line version of the tool allows users to run the analysis with even faster speed, or
integrate the tool with their pipeline.

Web interface

As input, the tool takes a position-sorted BAM file containing the aligned sequences from a
nuclease-treated sample, and optionally a control BAM file for comparison. The user has to
specify a minimal set of required parameters, which include the cleavage type (blunt or sticky
ended), minimum mapping quality, minimum number of reads with same 3’ and 5’ ends, mini-
mum sequencing depth, minimum ratio of reads starting at the same location to the sequencing
depth, and the minimum cleavage score described in equation 1.1 (Figure 1.7). Optionally, if
the user supplies target protospacer sequences for the nucleases, the tool retrieves flanking se-
quences nearby the target site from Ensembl via its REST API (https://rest.ensembl.org/ and
https://rest.ensemblgenomes.org/). The protospacer sequence is then semi-globally aligned to
the retrieved flanking sequence, using a custom-made alignment algorithm written in JavaScript
(here, Dr. Liam Childs implemented the JavaScript semi-global alignment algorithm) (Figure
1.8). The result page shows the list of cleavage positions, together with interactive summary
plots of the cleavage score versus the position in Manhattan/Circos plots, and optionally the
alignment results. The interactive plots are generated by using D3.js (http://d3js.org/). The
web tool is freely available at http://www.rgenome.net/digenome-js.

1.2.4 Web-based design and assessment of CRISPR base editing

Building on the previously described tool Cas-Designer, I made a dedicated guide RNA de-
signing tool for CRISPR base editors, BE-Designer. Besides, I co-supervised a student (Mr.
Gue-Ho Hwang) with Prof. Sangsu Bae at Hanyang University, Korea, to create a dedicated
assessment tool for CRISPR base editors based on Cas-Analyzer, called BE-Analyzer.
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Figure 1.7. The main page of the web-based Digenome-seq data anaylsis tool.
This figure shows the input of the web-based digenome-seq analysis tool, a nuclease-treated
BAM file, and an optional control BAM file, reference genome, cleavage information, optional
RGEN guide RNA sequences, and the filtering options.
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Figure 1.8. The result page of an example Digenome-seq data analysis result.
This figure shows an example output of the digenome-seq web tool. The summary table shows
the number of cleavage sites in each chromosome, and also presented as an interactive plot
(manhattan or circos plot). The location of the cleavage sites are listed in bottom.
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Figure 1.9. The main page of BE-Designer.
This figure shows the input parameters of the BE-Designer, the type of PAM, the target genome,
the target sequence where the guide RNAs will be found within, and the type of base editor.
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BE-Designer

The web interface of BE-Designer is essentially the same as Cas-Designer [35], based on the
Bootstrap library and Django web framework (Figure 1.9). The result page shows all of the
information that Cas-Designer provides – e.g. the relative location of the target, GC content,
and potential off-target sites. Additionally, BE-Designer shows the possible base edits within
the target window near the target site with the information.

BE-Designer currently supports 4 different CRISPR base editors [25–28], based on the inac-
tive form of one of the following RGENs: SpCas9 (5’-NGG-3’) [as well as its variants: SpCas9-
VQR (5’-NGAN-3’), SpCas9-EQR (5’-NGAG-3’), SpCas9-VRER (5’-NGCG-3’), xCas9 3.7
(TLIKDIV SpCas9; 5’-NGR-3’ and 5’-NG-3’)], StCas9 from Streptococcus thermophilus (5’-
NNAGAAW-3’), CjCas9 from Campylobaccter jejuni (5’-NNNVRYAC-3’), SaCas9 from Staphy-
lococcus aureus (5’-NNGRRT-3’) and its engineered variant, SaCas9-KKH (5’-NNNRRT-’3),
AsCpf1 from Acidaminococcus or LbCpf1 from Lachnospiraceae (5’-TTTV-3’ or 5’-TTTN-
3’), Spy-macCas9 from Streptococcus pyogenes and Streptococcus macacae (5’-NAAN-3’),
and Nme2Cas9 from Neisseria meningitidis (5’-NNNNCC-3’).

BE-designer accepts the type of base editor, type of RGEN, and the desired DNA sequence
in IUPAC nucleotide codes (with mixed bases) to be edited (as a raw text in the web form or
a FASTA file), and the whole genome for potential off-target identification in the main page
(Figure). After submitting the inputs, BE-Designer shows all possible target sites of the given
RGEN in the DNA sequences as a list in the result page. In addition to the basic information,
e.g. the relative location in the DNA sequence and the GC contents, both the nucleotides which
can be edited by the selected base editor and the edited result (nucleotides and amino acids)
are shown. Next, Cas-OFFinder is used to find the potential off-targets of the identified targets
allowing up to 2 mismatches in the given whole-genome and shows the possible base edited
results at the potential off-target sites (Figure 1.10).

The result page of BE-Designer is based on AJAX (Asynchronous JavaScript and Extensible
Markup Language), so that the result is updated in real-time without the need of refreshing the
whole result page. Based on this, BE-Designer has the functionality to instantly filter the results
according to the GC content and the number of off-targets allowing up to 2 mismatches. For
every off-target, a link to the Ensembl genome browser which shows the sequences, transcripts,
and genes near the location of the off-target is provided, so that the more detailed information
of the off-target can be easily accessed.

BE-Analyzer

(Note: BE-Analyzer was mainly developed by Mr. Gue-Ho Hwang. I only supervised his work,
here I briefly introduce the rationale of the tool.)
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Figure 1.10. The result page of BE-Designer.
In the result page, a list of the designed guide RNAs are shown. The list also shows possible
base editing results, both nucleotide and amino acid changes.
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BE-Analyzer is a web-based assessment tool for CRISPR base editing results. The tool is
largely based on Cas-Analyzer; The tool accepts the targeted deep sequencing data of a base
editing result with several required parameters and produces an assessment result with almost
the same interface and functionality as Cas-Analyzer. The main difference of the tool is that the
tool mainly reports the mutation rate of the base changes, and additionally shows the according
to amino acid changes. BE-Analyzer was published together with BE-Designer as a single
article. Both tools are available at http://rgenome.net/.

1.2.5 Analysis on the claim “unexpected mutations occurred by Cas9”

In 2017, Schaefer et al. [54] reported that 1,397 unexpected single-nucleotide variants (SNVs)
and 117 small insertions and deletions (indels) were found in two gene-edited mice by Cas9
(namely F03, F05) when it is compared to a wild-type control mouse (FVB) or a mouse genomic
variation database.

However, most of the reported variation sites did not show sequence homology between
the on-target site, nor protospacer-adjacent motif (PAM) sequence, which did not match with
the previous reports: (1) It have been reported that Cas9 do not show detectable off-target
effects when there are just two or three mismatches between the protospacer and guide RNA
sequences [5, 29]; (2) Digenome-seq experiment did not find any unusual off-target sites in
edited human genome [50, 58]. Moreover, there have been reports based on WGS data, which
showed that it is rare for Cas9 to induce off-target indels in clonal cells or a genome-edited
animal, which also contradicts to the result of Schaefer et al. [54] Also, the top 50 most likely
potential off-target sites with 3 or 4 mismatches did not have any off-target mutations in the
data, although the indel sites reported by Schaefer et al. [54] had mismatches with more than
10 nucleotides. Also, Schaefer et al. [54] reported that so many SNVs (1,397 SNVs over 117
indels), which is quite unlikely since the mutations induced by Cas9 is by NHEJ pathway after
cleavage at the target site. Although it is known that SNVs can be made by the process, by
removal of 1 bp and insertion of 1 bp, such event is very rare – at the rate of 1 % even at the
on-target site, even less at the off-target sites. Overall, it is more likely that the SNVs and indels
were not made by cleavages induced by Cas9.

Instead, one possible hypothesis is that the two gene-edited mice are genetically closer to
each other when they are compared with the control mouse. In other words, the SNVs found in
the two gene-edited mice were inherited by parents of the two mice, not induced by Cas9. This
was discussed in the following two aspects.

First, Strelka [60] and Mutect [61], which were also used by Shaefer et al. [54], were used
to call SNVs to test this hypothesis. The pairwise comparison of common SNVs between three
mice revealed that the number of sample-specific SNVs of both F03 and F05 mice when it is
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Figure 1.11. The result of comparative analysis of mutations in FVB, F03, and F05 mice.
(Note: This figure has been published as a part of Kim et al. [59]. The figure was originally
produced by myself.)
(a) pairwise comparison of the number of SNVs, by Strelka and Mutect; (b) The number of
homozygous variants depicted in Venn diagram, the number of SNVs is denoted in blue color,
and that of indels is in red color; (c) The number of heterozygous variants depicted in Venn
diagram, as like panel (b).
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compared to each other is considerably lower than the number of sample-specific SNVs of FVB
mouse compared to F03 or F05 (Figure 1.11a).

Second, Platypus [62], a multi-sample variant caller, was used to call the SNVs and indels
of the three mice altogether, to rule out a calling bias by the different sequencing depth of the
three mice (Figure 1.11b,c). The analysis revealed two observations: 1) the number of unique
homozygous variants in FVB mouse was much higher than that of unique variants in F03 and
F05 mice, and 2) the number of shared homozygous variants between F03 and F05 mice was
much higher than that of homozygous variants shared between F03 and FVB, or F05 and FVB
mice. Whereas the number of unique heterozygous variants in all three mice was much smaller
than that of shared heterozygous variants between all three mice, and the number of unique
heterozygous variants was comparable to each other. Since mutagenic processes have higher
chances to induce heterozygous variants and unlikely to make such homozygous variants, the
comparable number of unique heterozygous variants in all three mice suggests that the variants
are not mainly induced by unexpected mutagenic processes by Cas9. Instead, it makes more
sense to conclude that the excess number of variants found in FVB mouse was mainly due to
the close genetic distance between F03 and F05 mice, which was confirmed by the high number
of shared homozygous variants between F03 and F05 mice.

1.3 Discussion

For a successful genome editing, it is important to design good guide RNAs by considering
the number of off-targets, including those with several mismatches, as a badly designed RGEN
can result in detrimental off-target effects. In addition to this, it is also important to assess
on-target mutation rates, and also the off-target effects incurred by RGENs after the genome
editing. In this thesis, I presented a series of computational tools to aid users to easily perform
such tasks with a user-friendly web interface, minimizing required background knowledge of
bioinformatics.

Cpf1-Database enables users to design thousands of guide RNAs of an organism with only a
few clicks through an easy-to-use web interface, making the tool especially useful for genome-
wide screening experiments using Cpf1. Cas-Analyzer and web-based Digenome-seq analysis
tools can be used to easily assess genome editing outcomes. Cas-Analyzer is a useful tool to per-
form a high-resolution assessment of on-target mutation rates. The web-based Digenome-seq
analysis tool provides an easy-to-use interface for the analysis of Digenome-seq data. Thanks
to the totally redesigned, fully optimized algorithm of the tool, Digenome-seq data can be eas-
ily and quickly analyzed on web browsers, compared to the old pipeline which was published
earlier. Both BE-Designer and BE-Analyzer are useful for CRISPR base editor experiments.
BE-Designer is designed to aid users to select good guide RNAs with less potential off-targets
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with taking care of the potential base changes, and BE-Analyzer enables analysis of the base
changes and possible other mutations at the on-target position.

The efforts to provide a set of in silico tools are to establish a framework to minimize off-
target mutations by RGENs. In that regard, I additionally discussed the recent claim about
lots of unexpected mutation caused by RGENs [54], mainly why it is illogical, and about the
investigations of possible mistakes that the authors made [59]. It was turned out that it is unlikely
Cas9 caused the unexpected mutations in both F03 and F05 mice, but these are much better
explained by the genetic background of the three mice. Therefore, it is difficult to conclude that
Cas9 can cause “unexpected mutations” which cannot be avoided by any of the computational
tools described in this chapter.

Overall, I presented a set of computational tools that can be used to design good guide RNAs
to avoid off-target effects and assess the outcome of genome editing. Thanks to the easy-to-use
web-based interface of the tools, anyone who is not familiar with the complicated command-
line interface can instantly run analysis without a bioinformatics background. All of the tools
are publicly available at http://rgenome.net.
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Chapter 2

Omics data analysis pipeline development

2.1 Introduction

2.1.1 Big omics data analysis using bioinformatics pipelines

Recent technological advances of omics techniques in the past decade, especially next-generation
sequencing [63] or single-cell omics methods [64], allowed researchers to generate big data in
a cost-efficient manner. As a result, the bioinformatics data size is getting larger and larger,
and the scale of such data is easily going “beyond petabytes (PB) or even exabytes (EB)” [65].
Although there are some general-purpose programs, e.g. spreadsheet programs or statistical
analysis packages, that can be used to process some of such data, it is challenging to address
sophisticated problems without dedicated computational tools.

The computational tools are usually developed to be highly optimized to do a specific
task [66]. For example, there are tools dedicated to aligning short DNA reads from the se-
quencing machine to the reference genome (sequence aligners) [67], or calling the variants of
an individual sample against the reference genome (variant callers) [68]. Here, by simply con-
necting the output and input of the two different tools - the sequence aligner and the variant
caller - one can make a workflow to call variants from the raw data from the sequencing ma-
chine. By doing that, one does not have to run the two tools separately, but the final result can
be easily produced by just running the workflow with the raw data. Also by integrating some
parameters which do not need to be changed so often as default parameters within the workflow,
it is possible to avoid setting the complex set of parameters for different tools every time, which
can reduce human error when analyzing many samples. Overall, making such workflows can
reduce the time and effort spent on repetitive bioinformatics analyses, and, as many interme-
diate steps are handled programmatically and are thus less prone to human error, making them
more reproducible. Such workflows are called bioinformatics pipelines.

In the real world, things are usually more complex. For the example of the simple variant
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calling pipeline described in the above paragraph, there are several different aligners and variant
callers, claiming that they are the best among the available tools out there. It is also important to
select the tools that meet one’s requirements, for example, certain output formats or hardware
requirements. Therefore, it is needed to do benchmark the available tools and select the ones
most suitable for one’s situation. Moreover, the selection of the tools is not the only problem –
there is also a variety of the reference data available. For example, there are several different
versions of reference sequences out there, and it is needed to select the one based on the type of
organisms. There also might be some exceptional cases that one should consider, e.g. sample
contamination, swap, bad quality, etc. Therefore, the pipeline should have a quality control step
to identify such cases. In the end, the pipeline has to be more complex to be flexible enough to
account for many situations and needs.

In addition, it is as much as important to optimize the pipelines to harnesses the full capacity
of accessible hardware, to perform analysis in a reasonable time frame. Thanks to the recent ad-
vances in technologies, the cost to produce bioinformatics data is getting lower, and as a result,
the data size is getting bigger, leaving challenges in terms of optimization. Currently, many
research institutes nowadays have a dedicated cluster system capable to run a lot of analyses
in parallel [69], also big companies like Amazon or Google even offer cloud-based cluster sys-
tems, which can be used for bioinformatics analysis in a relatively cheap prices [70,71]. Despite
the availability of such systems, each system has its own set of parameters and requirements,
therefore there is no bioinformatics tool that can work with every type of such system. Instead,
the bioinformatics pipeline can be configured to properly use such a system, for example sub-
mitting certain tasks in parallel in different cluster nodes, to finish analysis in a short time. In
short, having good flexible pipelines comprised of the right tools for the research is crucial for
successful bioinformatics analyses [72].

Although it is important to have workflows for the specific system requirements of each
institute, it would be so hard to collaborate between institutes if the input/output file format of
such workflows is completely different from each other. Therefore, several standard file formats
have been suggested for the bioinformatics data, especially for the next-generation sequencing
data [57, 73, 74], frequently being used for pipeline development. Not only for the data but
also there have been several efforts to achieve portability of the pipeline itself, by developing
portable workflow management system [75–78] or even defining a standard language to write
pipelines [75, 78, 79]. Based on them, many pipelines have been available in public [80, 81].

In this chapter, I describe the development of two new bioinformatics pipelines based on the
existing pipelines at the DKFZ: 1) small somatic-like variant calling pipelines without matched
control (in short, no-control small variant calling pipelines), and 2) single-cell RNA sequencing
data preprocessing pipeline. Thanks to the workflow management system Roddy (https://roddy-
documentation.readthedocs.io/), both pipelines are optimized to quickly process big sequencing



2.1. Introduction 29

data (e.g. whole genome sequencing data in a petabytes scale cohorts, or single-cell transcrip-
tome data from millions of single cells) by using the dedicated cluster system at the DKFZ, to
finish analysis in several days.

2.1.2 Small variant calling without matched controls

Variant calling refers to a process in which genetic variants are identified based on sequenc-
ing data. Here, “variants” refers to the difference between the sequencing data to a reference
genome, where the reference genome can be either the “standard” genome of an organism based
on the consensus of the sequencing data, or a genome assembled from sequencing data obtained
from a different, non-malignant sample from the same individual. Among them, the differ-
ences between the standard genome and the non-malignant sample are called germline variants,
whereas the difference between the non-malignant sample to the malignant sample is called
somatic variants. The type of genetic variants can be largely classified by 3 different categories
based on the size of the variant; 1) single nucleotide variants (SNVs) (the size is 1 nucleotide)
or multiple nucleotide variants (MNVs) (two or more SNVs in succession), 2) small insertions
and deletions (indels) (the size is several nucleotides), 3) structural variants (SVs) or copy num-
ber variants (CNVs) (the size is more than several nucleotides). Here I define both SNVs and
indels as “small” variants since they are as small as several nucleotides and can easily be called
by existing variant calling software.

When it comes to cancer research, it is important to identify genetic variants in cancer tis-
sue compared to the non-malignant tissue of the same individual (i.e. matched control), which
are supposed to be the set of mutations where some of them drive carcinogenesis. Therefore,
somatic variant calling pipelines are incorporated to call the cancer-specific somatic variants.
However, not every cancer sample always has matched control. For example, the tumor/control
sample was swapped, or the tumor was sequenced twice instead of sequencing control. More-
over, although the price of sequencing is getting lower and lower by the time, still whole-genome
sequencing is expensive for the ones who have a limited budget – if one does not have to se-
quence matched controls, it would be possible to include twice as many cancer patients with
the same budget.

Here I describe a “no control” small variant calling pipelines that simulate somatic SNV
and indel calling without requiring a matched control, by subtracting common variants (in
some publicly available common variants databases) from a germline variant calling result.
The pipelines are developed as an extension of the existing in-house somatic variant calling
pipeline at the DKFZ, so that it can be easily integrated with our in house workflow man-
agement systems, Roddy (https://roddy-documentation.readthedocs.io/en/latest/) and the One
Touch Pipeline (OTP) [82].
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2.1.3 Single cell RNA sequencing data analysis

Thanks to the recent advance of microfluidics techniques, several different methods have been
developed which are capable of isolating single cells and analyze individual cells [83,84]. With
the development of the techniques, the single-cell transcriptomics shed light to identify the het-
erogeneity of the individual cell types in tissue, which could not be revealed by the conventional
bulk RNA sequencing methods [85].

Despite the difference of such single-cell isolation techniques, these methods commonly
use small molecular barcode in the first read of paired-end sequencing (R1) to identify the
individual single cell. To analyze such single-cell RNA sequencing (scRNA-seq) data, it is
firstly needed to identify single cells using this barcode, and do quantification. Although there
have been several attempts to develop a pipeline to do downstream analysis based on the “count
matrix” (i.e. the matrix of the quantified mRNAs per single cell) [86, 87], but so far still the
limited number of pipelines have been developed to generate such count matrix from the raw
sequencing data. Many single-cell isolation techniques are being developed by commercial
companies and sometimes accompanied by a dedicated pipeline for this [88], but such pipelines
are not designed for analysis of sequencing data produced by different machines. Thus, one has
to learn how to use various software when they want to use a different technique.

Therefore, I developed a highly flexible single-cell RNA sequencing data analysis pipeline,
that produces a gene expression matrix from single-cell RNA sequencing data with any library
design. The pipeline was initially developed to easily analyze data obtained by Fluidigm C1 and
Wafergen machines but later extended to process single-cell RNA sequencing data from other
machines. Since data processing of single-cell RNA sequencing data is quite similar to that of
bulk RNA sequencing data, the pipeline was developed as an extension of the existing DKFZ
RNA sequencing pipeline, so that the pipeline can be harmonized with our in house workflow
management systems, Roddy (https://roddy-documentation.readthedocs.io/en/latest/) and the
One Touch Pipeline (OTP) [82].

2.2 Results

2.2.1 No control variant calling pipeline

Both no control SNV and indel pipelines accept an aligned sequencing data as a BAM (binary
sequence map) file as an input. After the initial germline variant calling, both pipelines use three
public databases, dbSNP [89], ExAC [90], and EVS (http://evs.gs.washington.edu/EVS/), and
an in-house control dataset (containing 280 controls), to subtract common variants from the
identified germline variants. Finally, the remaining variants are reported as a variant calling
format (VCF) file.
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By default, both pipelines subtracts the common variants defined in dbSNP with ‘COM-
MON=1’ tag, which refers to the MAF (minor allele frequency, the fraction of population who
have the variants among the whole population) value is more than 0.01 in at least one of the
5 major populations in 1000 genome project as following: African, Ad Mixed American, East
Asian, European, and South Asian. Additionally, the variants found in the ExAC database with
more than 0.1 %, in the EVS database with more than 1 %, and in the in-house control dataset
with more than 2 % were removed. Among the removed variants, the ones in the OMIM [91]
record are not removed (“rescued”) since they could be clinically important although they are
common in the population. Such criteria can be adjusted as parameters of the pipeline.

This strategy was tested with 4 malignant lymphoma cancer samples from ICGC-MMML-
Seq project [92] (https://icgc.org/icgc/cgp/64/345/53049). After the subtraction of the common
variants, the SNVs found in coding regions (functional SNVs) were 200 - 250, which is com-
parable to 100 - 150 SNVs found with a matched control. Also, the number of functional SNVs
that could not be identified by no-control workflow was 16, 11, 17, and 48, respectively. The
number of functional indels was 20 - 30, which is also comparable to 5 - 10 indels found with
control. The number of functional indels could not be identified by no-control workflow was
4, 1, 2, and 1, respectively.

2.2.2 Use case: No control variant calling for the ovarian cancer samples

The development of no control pipelines was started to call somatic-like variants from 10 dif-
ferent ovarian cancer samples without matched controls, which were cultured in two different
environments: in 2D and 3D. Dr. Julia Jabs, who performed the wet-lab experiments in this
project, found that the drug response was different in the two cell-culturing environments by
DeathPro, an automated microscopy-based assay which can resolve cell death and prolifera-
tion inhibition in both 2D and 3D [93]. One of the main questions of the project was to know
which environment would reflect the expected phenotype by the mutations profile discovered
by whole-genome sequencing analysis. Our analysis revealed that the TP53 gene, which is one
of the most commonly mutated genes in many cancers, was mutated in 9 of 10 samples that we
have, but overall few SNVs or indels were detected in other genes. Instead, we found that a
numerous copy number variations (CNVs) were detected in all cancer samples using other no
control pipelines, Sophia [95] and ACEseq [96] (Figure 2.1). Based on the result, we found that
the homologous recombination deficiency (HRD) score (i.e. the number of loss of heterozy-
gosity (LOH) regions >15 Mbp) [97] showed high correlation with Paclitaxel response in the
cultured organoids.
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Figure 2.1. Ovarian cancer (OC) samples having numerous copy number variations
(CNVs) but few small somatic variations.
(Note: This figure was jointly produced with Dr. Julia Jabs, and later published as a part
of Jabs et al. (2017), in Figure 5 [93].)
(A) OC samples contain lots of CNVs compared to a normal ovarian sample (HOSEpiC); (B)
The sets of frequently mutated genes (selected from COSMIC [94] and ICGC databases) in OC
samples also majorly harbor CNVs, compared to the few small variations except TP53.
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Figure 2.2. Overview of single-cell RNA sequencing data preprocessing workflow.
Input FASTQ file (blue box) contains all of the reads in one file. The reads are demultiplexed
using the cell barcodes and then quantified to produce the count matrix. In the figure, each
colored gene correspond to each colored mRNA in the cells.
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2.2.3 Single cell RNA-seq data preprocessing pipeline

The development of the pipeline was begun to process raw data generated by the Wafergen
machine, where the experiments were done by Dr. Stephan Tirier. The goal of the preprocessing
workflow is to process Fastq files from the sequencing machine and then finally create a matrix
which contains gene expression values of each cell (Figure 2.2). The workflow is designed
to be fully scalable so that it can even process Fastq files containing millions of cells. The
processing steps can be classified into 3 steps: demultiplexing, alignment/quantification, and
quality control.

In demultiplexing step, cell barcode and UMI in Read 1 (Figure) are processed. In addition,
poly N tails and remaining fragments of PCR adapter in Read 2 are trimmed, and after that Read
2 is filtered by quality. Finally, the trimmed reads are demultiplexed.

The alignment/quantification step was implemented by DKFZ HIPO team (led by Dr. Naveed
Ishaque) for bulk RNA sequencing data. The read alignment is powered by STAR, and the
parameters for STAR have been fine-tuned to provide accurate alignment results. Since the
single-cell RNA sequencing workflow was developed as an extended pipeline of the bulk RNA
sequencing workflow, it uses the same parameter set for the alignment. After that quantification
is performed, and finally the expression matrix is generated. Afterward, a quality control script
is executed and generates QC plots for users (Figure). Since we still want to adjust QC parame-
ters manually for each sample, the tool only shows QC plots but does not actually perform any
filtering based on it.

2.2.4 Use case: Pheno-seq project

With Dr. Stephan Tirier, I have worked on sequencing data analysis of dissected microtissue
(miti), named as Pheno-seq [98]. The idea of Pheno-seq is to dissect microtissue cultured in
3D [99–101], by using the same microfluidics-based apparatus and the sequencing machine as
for single-cell RNA sequencing (scRNA-seq). Since the morphological difference determined
by imaging microtissues infers important information on the cell heterogeneity, we would like to
combine this information together with the sequencing data. In addition, since each microtissue
is comprised of multiple cells, we can capture more reads in Pheno-seq than scRNA-seq, and
thus Pheno-seq provides an even more robust result than scRNA-seq.

In this project, we tested Pheno-seq with a breast cancer cell line (MCF10CA) and then tried
to apply this approach to patient-derived colon cancer samples. Additionally, we also performed
scRNA-seq of the same samples and compared the results.

Firstly Pheno-seq was tested using MCF10CA cell lines. Here, the transition of the epithelial
cells, which is known to occur in the initiation of metastasis [102], can be observed by imaging
microtissue (Figure 2.5A). This phenotype difference was also reflected in the sequencing data
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Figure 2.3. NextSeq sequencing library structure of Wafergen data.
NextSeq sequencing library structure of Wafergen data. Read1 contains unique molecular iden-
tifier (UMI) and well barcode (WBC), and Read2 contains cDNA.
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Figure 2.4. Quality control plots from one example sample provided by the preprocessing
workflow.
Plot for total reads, number of coding genes (expression > 0), reads aligned to rRNA, reads
aligned to mitochondria, and reads cannot be mapped to a gene (from top to bottom).
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Figure 2.5. Pheno-seq analysis of MCF10CA cell line.
(Note: Panel A was drawn by Dr. Stephan Tirier, and panel B was jointly produced with
Dr. Stephan Tirier. This figure was presented as a part of the poster presentation at the
winter PhD poster presentation at the DKFZ by Dr. Stephan Tirier.)
(A) Brightfield images of aberrant (invasive) and round microtissues of breast cancer cell line
MCF10CA. Scale bar is 50 µm; (B) 2D t-SNE embedding of the microtissues, colored by each
imaging features (circularity, size, and skewness). The microtissues were clustered into two
clusters with k-means clustering, and the distribution of imaging features within each cluster
was shown as violin plots.
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Figure 2.6. Pheno-seq result of colorectal sample.
(Note: This figurewas produced jointly withDr. StephanTirier. This figurewas presented
as a part of poster presentation at the winter PhD poster presentation at the DKFZ by Dr.
Stephan Tirier.)
(Left) 2D t-SNE embedding of the microtissues from colorectal sample; (Right) Distribution of
the size of the microtissues within the 2 clusters identified by k-means clustering.
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and appeared, as two distinct clusters in the t-SNE plot. We also compared the two clusters
with several imaging features that can be used to discriminate aberrant and round cells: circu-
larity related to acinar development, size related to proliferation, and skewness related to cell
size/density of the microtissues. The image features were nicely matched into the two clus-
ters the t-SNE plot, which shows a good agreement with the clusters determined by Pheno-seq
(Figure 2.5B). The Pheno-seq system was also applied to a colon cancer patient sample. From
the sample, tumor-initiating cell (TIC), transient amplifying cell (TAC), and postmitotic cell
were dissociated and cultured individually to form two different types of microtissues and then
sequenced. The data showed two distinctive clusters and the image feature (size) matches well
with the clusters that we found, which makes a good agreement with expectation (Figure 2.6).

2.3 Discussion

Overall, the no control somatic small variant calling pipelines are tremendously helpful when
the matched germline control is not sequenced or not available due to several reasons. After the
subtraction of millions of common variants from public variant databases, most of the germline
variants were successfully filtered, resulting in the number of private, rare and somatic-like
variants to be reasonably small. It was validated that the no control pipelines can identify most
of the somatic variants found by somatic variant calling with a matched control. Since the re-
maining variants can still contain some germline variants, the no control workflow is especially
useful for a cohort level settings, to find frequent driver mutations in a cohort. After successful
implementation of the pipeline in the ovarian cancer cohort, it was also used for several other
projects as following: Juvenile myelomonocytic leukemia (JMML) [103], Squamous-cell skin
cancer (cSCC) [104], and Burkitt lymphoma projects [105].

The single-cell analysis pipeline was developed to quantify the mRNAs in every single
cell. The pipeline as successfully used to analyze not only single-cell RNA sequencing data but
also Pheno-seq data which is sequencing organoids instead of single cells. The pipeline was
also used for the following two different projects: Glioblastoma project [106], and the human
colorectal cancer project.
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Chapter 3

Segmentation-free inference of cell types
from in situ transcriptomics data

3.1 Introduction

Thanks to the recent advances of the single-cell RNA sequencing techniques [107], the profound
heterogeneity of different types of single cells in tissues has been successfully revealed and has
led to the birth of international consortia such as Human Cell Atlas (HCA) [108]. Linking such
single-cell heterogeneity found by single-cell sequencing experiments in the spatial context at
tissue level enabled to unravel the transcriptional heterogeneity of invasive cancer tissues [109],
or the localization of different neuronal subtypes in the brain cortex or hypothalamus [110,111].

The recent effort to measure the gene expressions in spatial context has been established
via multiplexed fluorescence in situ hybridization (FISH) [110,112,113] or in situ/intact tissue
sequencing [114–119] methods, which enabled simultaneous measurement of the localization
of different mRNAs in a spatial context, which given rise to the international consortia like the
SpaceTx consortium [120].

The current methods to find cell types in spatial context rely on cell segmentation algorithms,
by quantifying the mRNAs in each cell segment and use this as the gene expression of the
cells, and process the resulting count matrix as like processing single-cell sequencing data.
The cell segmentation algorithms currently used usually rely on additional materials, such as
landmarks of stained nuclei [121], cell membrane [122–124], or total mRNAs [110,111]. Even
with such additional materials, the segmentation algorithms are still limited by various imaging
problems, due to the unclear cell borders, overlapping cells, signal intensity variation, and tiling
artifacts [125], which leads to loss of cells in the end. The current segmentation-based cell-type
calling algorithms also inherit such problems, which can affect the cell type calling efficiency.

In this chapter, I present a novel computational framework named Spot-based Spatial cell-
type Analysis by Multidimensional mRNA density estimation (SSAM), which does not rely on
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segmentation algorithms but only requires the location of mRNAs as an input. The accuracy of
the segmentation-free cell type calling result, and the improvements of the resulting cell type
map is discussed using two publicly available datasets, the osmFISH [110] and MERFISH [111]
datasets. In addition, I show that the identification of a new cell type that has never been reported
using the multiplexed smFISH dataset.

3.2 Results

3.2.1 The SSAM computational framework

The SSAM framework is comprised of 4 following steps: 1) Estimation of gene expression in
space by Kernel Density Estimation (KDE), selection of representative locations, and normal-
ization, 2) clustering analysis to find cell types, and 3) cell type map generation and 4) spatial
domain analysis.

In the first step, SSAM estimates the gene expression at every lattice point on a periodic
square lattice using Kernel Density Estimation (KDE) [126, 127] (Figure 3.1A). Here the 2D
or 3D Gaussian kernel was used for the KDE, for mRNAs in 2D or 3D space, respectively.
Since the spacing between the lattice points is the same for all axes, the lattice is analogous
to an image – and each lattice point can be interpreted as a pixel (2D) or voxel (3D) in the
image. After the estimation, SSAM stacks the estimated gene expression images, so that it
becomes a stacked image with every pixel or voxel contains a signature of every gene instead
of a single expression value. Since every pixel contains gene expression signature, which is a
1-dimensional vector, therefore the image is a field with gene expression vectors – therefore
this can be called a vector field. Since the number of vectors in the vector field is often more
than several million (for example, osmFISH dataset contains more than 7 million vectors in
the vector field), SSAM selects ‘representative vectors’ that is a downsampled set of vectors
in the vector field. For a downsampling strategy of vectors, SSAM focuses on the nature of
estimated total gene expression signals after KDE. If the total gene expression is large in a
pixel, this is more likely to be a cell, rather than the area between the cells. Moreover, the
nature of KDE propagates the information to the nearby area, and the local maxima of the total
gene expression within the neighboring pixels would be the locations of the pixels highly likely
to be inside of cells. Since it most makes sense to select vectors originated from cells (Figure
3.2C), therefore, SSAM selects the local maxima of neighboring gene expressions as a default
strategy to downsample vectors. The downsampled vectors are then further thresholded with
the total gene expression to remove artifacts, and additionally can be restricted with an optional
”input mask” within the region of interest (see Method detail section for further details). After
that, the downsampled vectors and the whole vector field are normalized (also see Method detail
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Figure 3.1. Schematic diagram of the SSAM computational workflow for cell type and
tissue domain definition based on gene expression data.

(A) In step 1, the expression of each gene is calculated by estimating a spatial mRNA density by
KDE. The calculated gene expressions are then stacked to form a gene expression vector field;
(B) In step 2, the vectors in the vector field is downsampled to a fewer number of vectors to
achieve computational feasibility. By default, the local maxima of the total gene expression are
selected as the representative vectors. The selected vectors are then clustered, and the centroid
of each cluster is considered to be the cell-type signature; (C) In step 3, the cell-type map is
generated by calculating correlation between the cell-type signatures to the vector field, and
then merging them by assigning the index of the cell-type with the maximum correlation to
each pixel (see also Figure 3.3A); (D) In step 4, the domain map is constructed by sweeping a
sliding circular/sphere window on the cell type map, and clustering the composition of the cell
types in each window (see also Figure 3.4B).
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Figure 3.2. Identification of intracellular regions via mRNA density estimation.

(A) The effect of different bandwidth of Gaussian kernel on the estimation of gene expression,
and the final cell-type map. Smaller bandwidth (1 µm) fails to fully reconstruct continuous
gene expressions within the cell-like area, results loss of details in the cell-type map. Whereas
larger bandwidth (5 µm) makes the gene expressions too much smoothed, which increases the
chance to produce false gene expressions outside genes, resulting in larger blobs in the cell-
type map. Still, the cell-type map shows not so much big difference in terms of the bandwidth
difference in this range (1 µm and 5 µm), but extremely low or high bandwidths can produce
an unreasonable result; (B) The strategy to exclude lowly correlated vectors from a cluster.
Since Louvain clustering only divides the whole population but not excludes bad ones, it is
needed to remove them manually; (C) The location of local maxima vectors highly overlaps
with the regions with the Poly-A signal, proves the validity of local maxima selection strategy
as a downsampling method for further downstream analyses.
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section for further details). Since the whole vector field contains a lot of pixels outside of cells,
therefore the parameters determined by the normalization of the downsampled vectors were
used to normalize the vector field.

Next, SSAM can work in either guided mode or de novo mode, where the guided mode
refers to the mode using predetermined cell-type signatures for further analysis, whereas the de
novo mode uses a clustering algorithm to infer the cell types in the dataset. For guided mode,
the following second step can be skipped.

In the second step (for de novo analysis), SSAM finds the cell types by clustering the down-
sampled vectors (Figure 3.1B). Here clusters are detected as the communities found by the
Louvain community detection algorithm on the shared nearest neighbor (SNN) network based
on the vectors, which is the same clustering method implemented in Seurat [86] (see Method
detail section for further details). Although the downsampling in the second step removed the
majority of vectors outside of cells, still it is possible that the local maxima can be selected out-
side of the cell area due to the noises. Therefore, after clustering the vectors that are not close to
the cluster medoid are excluded from the clusters (Figure 3.2B). After that, the centroids of each
cluster are calculated (i.e. the unweighted mean of the gene expression of the vectors in each
cluster) and regarded as the representative signatures of each cell type. Here in case, some clus-
ters which are mapped to artifacts in the image can be manually removed, and also the clusters
have a very similar gene expression signature that can be manually merged based on the bio-
logical background knowledge. To make this easier, SSAM supports the creation of ‘diagnostic
plots’ which shows useful information (see Method detail section for further details).

In the third step, each cluster centroid is mapped to spatial context by calculating Pearson’s
correlation coefficient between the centroid to every pixel in the vector field (Figure 3.1C). Here
each pixel is labeled as the label of the centroid with the highest correlation coefficient, in other
words, the labeled images (i.e. cell-type map of each cell type) shows the spatial organization
of each cell type, and these images are merged into a single image which is called cell-type map
(Figure 3.3A). In the case of the generation of a cell-type map, it is possible to correlate foreign
cell-type signatures, such as the ones found by the segmentation-based analysis or single-cell
RNA sequencing signatures to the vector field to create a cell-type map. This procedure is
called ‘guided mode’ SSAM, and the clustering analysis is called ‘de novo mode’ SSAM.

In the fourth step, SSAM shows the domain structure of the tissue using the cell type map,
based on the cell type map found in the third step (Figure 3.1D). For this, a circular (or spherical)
window with radius comparably larger than the average size of the cells is swept in the image,
and then the proportion of the pixels of each cell type is clustered by agglomerative clustering
to find the area that has the same proportion of cell types on tissue (Figure 3.3B).

SSAM is firstly demonstrated with two publicly available datasets, the somatosensory cor-
tex (SSp) imaged by osmFISH and the hippocampal preoptic area (POA) imaged by MERFISH,
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Figure 3.3. Generation of the cell-type map and the domain map.

(A) After clustering, the centroids (i.e., the unweighted mean of gene expressions of the vectors
in the cluster) are calculated and regarded as the cell-type signatures. Each cell-type signature
is then mapped to the vector field, by calculating Pearson’s correlation (by default, a different
correlation measure can also be used instead) between the cell-type signature to every vector in
the vector field. For each pixel, the cell-type which has the maximum correlation is assigned.
Finally, the final cell-type map is generated by merging the assigned pixels per cell-type; (B)
On the cell-type map, a circular (or spherical) sliding window larger than the average cell size
is swept, and the composition of cell types (as a composition of the number of pixels assigned
to each cell type) of each window is clustered to generate a tissue domain map. In this chapter,
Agglomerative clustering was used for all three datasets.
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and then applied to newly generated adult mouse visual cortex (VISp) imaged by multiplexed
smFISH.

3.2.2 Analysis of mouse somatosensory cortex (SSp) imaged by osmFISH

The robustness of SSAM was tested using the publicly available mouse brain somatosensory
cortex dataset (SSp), imaged by osmFISH [110] (Figure 3.4, 3.5, 3.6, 3.7). The dataset contains
33 genes in 2D plane (x and y coordinates of mRNAs), each gene was sequentially measured
individually at each image.

From the location of mRNAs, the expression images of 33 individual genes were generated
by KDE. From the stacked expression images (i.e. the vector field), the representative vectors
were selected at the local maxima in neighborhood size 3x3 px squared box. And then the
selected vectors were thresholded based on their gene expressions (Figure 3.5A,B). To further
remove spurious vectors outside of the tissue region, the vectors were filtered with KNN density
(Figure 3.5C). And the whole vector field are normalized with sctransform [128].

For de novo analysis, the selected vectors were clustered (Figure 3.4A,B), and the bad clus-
ters which mapped to artifacts were removed, and then the similar clusters were merged (Figure
3.6A). There were 30 remaining clusters, and the centroids of the clusters were regarded as sig-
natures of the identified cell types. The de novo cell-type signatures determined by SSAM de
novo mode were consistent with those previously found by segmentation-based analysis and
the single-cell RNA sequencing (Figure 3.6C,D) [110]. The signatures were then mapped to
the vector field to generate a cell-type map of the de novo signatures (Figure 3.4C).

For guided mode analysis, the cell-type signatures from the segmentation-based analysis
[110] and the single-cell RNA sequencing data analysis [129] in the previous publication were
also mapped to the vector field to generate cell-type maps. Here, for both data, the raw count
matrix was normalized with sctransform [128], and then the centroids were calculated based on
the annotated cell-type information available with the dataset, and the centroids were regarded
as the cell-type signature of each data. The resulting cell-type maps were visually similar to
each other (Figure 3.6E). Although the resulting cell-type map does not have the information
on the number of cells in the image, all three cell-type maps showed more dense cell-like blobs
in the image, compared to that of the previous publication. Two clear differences were identified
in the resulting cell type maps in terms of the number of these blobs, 1) a lot more Astrocytes
expressing Mfge8 in the SSAM cell-type maps, 2) clearer tissue structures especially in the
ventricle area.

Firstly, the abundance of Astrocytes was validated using the marker gene expression, Mfge8
(Figure 3.4E). The reconstructed KDE image of Mfge8 shows that the highly expressed regions
in the image match well with the regions determined as ‘Astrocyte Mfge8’ in the de novo cell-
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Figure 3.4. SSAM improves astrocyte and ventricle detection in the mouse SSp region.

(A) Gene expression heatmap of the downsampled vectors showing cell-type specific marker
gene expression of the vectors within each cluster. The values are z-scored, normalized gene
expression. The clustering result is shown on top of the heatmap; (B) A t-SNE map of the
downsampled vectors, which shows distinct clusters embedded in 2D space; (C) The de novo
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cell-type map, showing the spatial organization of cell-types in a spatial context. The zoom
panel shows the complex spatial organization of cell types; (D) Validation of the reconstruction
ventricle structure by SSAM, DAPI confirms the existence of cells, and each marker gene of two
cell types, ependymal (yellow) and choroid plexus (teal), validates the result of SSAM cell-type
map; (E) The existence of large population of Mfge8 expressing astrocytes detected by SSAM
was validated with DAPI, PolyA, and the Mfge8 expression. Both DAPI and Mfge8 expression
confirms the existence of astrocytes. The low PolyA signal, i.e. low total mRNA contents
of astrocytes, implies the failure of detection of a lot of astrocytes in the segmentation-based
analysis.
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Figure 3.5. Local maxima selection and filtering criteria in the mouse SSp osmFISH
dataset.

(A) The gene expression threshold was defined by the location of an observable drop in the
gene expression histogram. Here 10 randomly selected genes are presented; (B) The total gene
expression threshold was defined based on the total gene expression histogram; (C) Histogram
of the local KNN density calculated at all locations of vectors. The threshold of the density was
defined based on the histogram to remove the spurious vectors outside of the tissue region.
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Figure 3.6. Cell-type signature identification and mapping in the mouse SSp osmFISH
dataset.
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(Note: The analysis described in panel B of this figure was done by Mr. Sebastian Ties-
meyer. The panel B of this figure was also originally produced by Mr. Sebastian Ties-
meyer.)
(A) A 2D t-SNE embedding of clustering local maxima vectors, excluding the ones do not have
high correlation to each cluster’s medoid (top, see also Figure 3.2B). The merged clusters and
the removed clusters are visualized in the same t-SNE map (bottom); (B) Total cell-wise mRNA
counts of different cell-type classes in the mouse brain. The violin plot shows UMI counts of
500,000 single mouse brain cells profiled using single-cell RNA sequencing [130], grouped by
cell class and ordered by increasing median of UMI counts. Half of the recorded cells from both
‘Astrocyte’ and ‘Immune’ classes exhibiting a lower UMI count than the lowest quantile of any
other cell class; (C) Comparison of the de novo cell-type signatures to the segmentation-based
cell-type signatures from Codeluppi et al. [110]; (D) Comparison of the de novo cell-type signa-
tures to the single-cell RNA sequencing derived cell-type signatures from Marques et al. [131]
and Zeisel et al. [129]; (E) Comparison of cell-type maps generated using SSAM guided and
de novo mode, (left to right) guided by the cell-type signatures from segmentation-based analy-
sis [110], single-cell RNA sequencing [129,131], SSAM de novo cell-type map, and the original
figure from Codeluppi et al. [110]. The colors of the cell types correspond to the cell-type leg-
end in Figure 3.4.
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Figure 3.7. SSAM identifies cortical layer tissue domains in the mouse SSp cortex.

(A) Tissue domain map generated by SSAM. Tissue domain signatures were identified from
clustering local cell-type composition over sliding 100 µm circular windows, and projected back
onto the cell-type map. The reconstruction shows the various cortical layers (see also Figure
3.3B); (B) Cell-type composition within each tissue domain. The plots show that each domain
consists of 7-14% Astrocyte Mfge8 cell types apart from the ventricle, which instead shows a
majority of choroid plexus and ependymal cell types. The colors in the pie charts correspond
to the cell-type legend in Figure 3.4.
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type map. Next, the regions are compared with the DAPI (i.e. the image of stained nuclei) and
Poly-A (image of all mRNAs) images. Interestingly, the regions contained at least one nucleus
which strongly supports the existence of the cells, whereas the Poly-A signal was weak and
not easily distinguished from the background. To explain this discrepancy, it was hypothesized
that the total mRNA expression of Astrocytes is lower than the other cell types, which results
in low level of signals in the Poly-A image, and therefore leads to the failure of the segmen-
tation algorithm to detect many Astrocytes. This was validated by Mr. Sebastian Tiesmeyer,
by comparing the average amount of mRNA counts in the single cells from a single-cell RNA
sequencing data [130] (Figure 3.6B, the subfigure was also drawn by Mr. Sebastian Tiesmeyer).

Secondly, the ventricle area was validated with the two marker gene expressions (Foxj1 and
Ttr) of two cell types which mainly forms the structure of the ventricle, the ependymal and the
choroid plexus cells (Figure 3.4D). The area of high gene expression area in KDE reconstructed
image of Foxj1 and Ttr matched well with the Ependymal and choroid plexus cells, respectively.
On the other hand, in case of the previous publication, the segmentation algorithm majorly failed
to separate single cells within the ventricle region since the cells are very small and tightly
packed, as seen in the DAPI and Poly-A images, but instead only identified large segments
much bigger than each single cells, which had to be filtered out in the end. Since SSAM does not
rely on segmentation algorithms, SSAM reconstructed a much clearer structure of the ventricle
compared to the previous result.

Except for the two obvious differences, the resulting cell-type maps were visually similar to
the previous result. The visual similarity was validated using a ‘matching score’ (see Method
detail section for further details), the ratio of the number of segments matched with the same
cell types in the SSAM cell-type map, to the number of the total segments. In other words, the
match score is a measure of how well SSAM identified the cells found by the segmentation-
based analysis.

By calculating the matching score with SSAM cell-type map guided by the signatures iden-
tified in the segmentation-based analysis, most cell types showed a high matching score overall
(>0.6, Table 3.1). The matching score was also calculated with the SSAM cell-type map guided
by the signatures identified from single-cell RNA sequencing, and the de novo SSAM cell-type
map. Since no ground truth of cell types can be found in tissue, the de novo signatures identified
by SSAM and single-cell RNA sequencing signatures which have a high correlation (>0.8) to
the segmentation-based signatures were selected for the comparison. Again the overall match-
ing score was very high (>0.7, Table 3.2, 3.3). Although there were also several lowly matched
cell types (<0.3), the marker gene expression showed better agreement with the cell-type map
of the unmatched cell types, compared to the segments in the previous publication (Figure 3.8-
3.14). Overall, it was concluded that the cell-type map generated by SSAM is more accurately
finds the location of the cell types in spatial context with the osmFISH dataset.
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osmFISH cell type Matched Segments Total Segments Matching score
Oligodendrocyte COP 119 171 0.70
Inhibitory CP 66 170 0.39
Pyramidal L5 118 171 0.69
Oligodendrocyte Mature 403 450 0.90
Endothelial 149 252 0.59
pyramidal L4 394 526 0.75
Pyramidal Cpne5 73 97 0.75
Pericytes 22 106 0.21
Vascular Smooth Muscle 4 37 0.11
Inhibitory Crhbp 111 134 0.83
Pyramidal L3-4 117 158 0.74
Oligodendrocyte MF 110 121 0.91
Pyramidal L2-3 L5 302 318 0.95
Pyramidal Kcnip2 16 29 0.55
Astrocyte Mfge8 114 131 0.87
Pyramidal L2-3 195 206 0.95
Inhibitory Cnr1 29 46 0.63
Inhibitory Vip 38 142 0.27
Inhibitory IC 72 91 0.79
Pyramidal L6 410 439 0.93
Hippocampus 93 148 0.63
Ependymal 99 112 0.88
Microglia 52 55 0.95
Oligodendrocyte Precursor cells 117 128 0.91
Inhibitory Kcnip2 49 92 0.53
Oligodendrocyte NF 64 87 0.74
Inhibitory Pthlh 2 104 0.02
Astrocyte Gfap 76 87 0.87
Perivascular Macrophages 1 72 0.01
C. Plexus 8 54 0.15
Endothelial 1 4 105 0.04

Table 3.1. The matching score between the osmFISH PolyA segmented cells vs. SSAM cell-
type map guided by the segmentation-based cell-type signatures of osmFISH data.
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osmFISH cell
type

scRNA-seq
cell type

Pearson’ s
r

Matched
Segments

Total Seg-
ments

Matching
score

Oligodendrocyte
COP

COP 0.83 128 171 0.75

Endothelial Vend2 0.8 150 252 0.6

pyramidal L4 S1PyrL5a 0.87 299 526 0.57

Pericytes Peric 0.83 12 106 0.11
Vascular
Smooth Mus-
cle

Vsmc 0.82 4 37 0.11

Inhibitory
Crhbp

Int2 0.91 94 134 0.7

Pyramidal L2-
3 L5

S1PyrL23 0.89 314 318 0.99

Astrocyte
Mfge8

Astro2 0.82 111 131 0.85

Inhibitory
Cnr1

Int7 0.83 1 46 0.02

Inhibitory Vip Int10 0.88 12 142 0.08

Inhibitory IC Int16 0.94 5 91 0.05

Microglia Mgl1 0.85 49 55 0.89
Oligodendrocyte
Precursor cells

OPC 0.81 118 128 0.92

Oligodendrocyte
NF

NFOL1 0.86 58 87 0.67

Perivascular
Macrophages

Pvm2 0.91 1 72 0.01

Table 3.2. The matching score between the osmFISH PolyA segmented cells vs. SSAM cell-
type map guided by the scRNA-seq cluster centroids for selected cell types based on high gene
expression correlation.
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osmFISH cell
type

de novo cell
type

Pearson’ s
r

Matched
Segments

Total Seg-
ments

Matching
score

Oligodendrocyte
COP

Oligodendrocyte
COP

0.82 119 171 0.70

Inhibitory CP
Inhibitory Kc-
nip2

0.96 96 170 0.56

Oligodendrocyte
Mature

Oligodendrocyte
Mature

0.97 397 450 0.88

Endothelial Endothelial 0.95 126 252 0.50

pyramidal L4 pyramidal L4 0.80 380 526 0.72
Pyramidal
Cpne5

Pyramidal
Cpne5

0.95 52 97 0.54

Pericytes Pericytes 0.97 22 106 0.21
Vascular
Smooth Mus-
cle

Vascular
Smooth Mus-
cle

0.98 4 37 0.11

Inhibitory
Crhbp

Inhibitory
Crhbp

0.95 108 134 0.81

Pyramidal L3-
4

Pyramidal L3-
4

0.97 108 158 0.68

Oligodendrocyte
MF

Oligodendrocyte
MF

0.96 108 121 0.89

Pyramidal L2-
3 L5

Pyramidal L2-
3 L5

0.93 305 318 0.96

Astrocyte
Mfge8

Astrocyte
Mfge8

0.96 113 131 0.86

Pyramidal L2-
3

Pyramidal L2-
3

0.94 161 206 0.78

Inhibitory
Cnr1

Inhibitory
Cnr1

0.98 29 46 0.63

Inhibitory IC Inhibitory Rest 0.98 67 91 0.74

Pyramidal L6 Pyramidal L6 0.97 397 439 0.90

Hippocampus Hippocampus 0.98 94 148 0.64

Ependymal Ependymal 0.97 95 112 0.85

Microglia Microglia 0.93 50 55 0.91
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Oligodendrocyte
Precursor cells

Oligodendrocyte
Precursor cells

0.98 116 128 0.91

Inhibitory Kc-
nip2

Inhibitory
Pthlh

0.84 26 92 0.28

Oligodendrocyte
NF

Oligodendrocyte
NF

0.96 63 87 0.72

Astrocyte
Gfap

Astrocyte
Gfap

0.93 71 87 0.82

Table 3.3. The matching score between the osmFISH PolyA segmented cells vs. SSAM cell-
type map guided by the scRNA-seq cluster centroids for selected cell types based on high gene
expression correlation.
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Caption for figures 3.8-3.14. There were several cell types were found to have a low matching
score between the SSAM de novo and the original cell-based segmentation cell-type map. (Left
panel) red indicates the regions labelled with the cell type in the SSAM cell-type map, blue
indicates the cells labelled with this cell type in the cell-based segmentation cell-type map, and
white indicates their overlap. (Right panel) the marker gene expression of the corresponding
cell type. For all cell types, the marker gene expression better supports the SSAM cell-type
calls compared to the segmentation-based cell-type calls.
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Figure 3.8. Comparison of the cell type (Pericyte) and the corresponding marker gene
expression (Vtn) of osmFISH data.
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Figure 3.9. Comparison of the cell type (Vascular Smooth Muscle) and the corresponding
marker gene expression (Acta2) of osmFISH data.
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Figure 3.10. Comparison of the cell type (Inhibitory Vip) and the corresponding marker
gene expression (Vip) of osmFISH data.
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Figure 3.11. Comparison of the cell type (Inhibitory Pthlh) and the corresponding marker
gene expression (Pthlh) of osmFISH data.
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Figure 3.12. Comparison of the cell type (PerivascularMacrophages) and the correspond-
ing marker gene expression (Mrc1) of osmFISH data.
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Figure 3.13. Comparison of the cell type (C. Plexus) and the corresponding marker gene
expression (Ttr) of osmFISH data.
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Figure 3.14. Comparison of the cell type (Endothelial 1) and the corresponding marker
gene expression (Apln) of osmFISH data.
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Based on the high accuracy of the SSAM cell-type maps, the previously known tissue do-
mains in the mouse brain cortex were determined based on the local composition of the cell
types in the cell-type map (Figure 3.7). For this, on periodic sparse locations on the cell type
map, a circular window was swept and the composition of the pixels cell-types per window was
obtained. This results in an image smaller than the cell-type map, with each pixel correspond-
ing to the signatures of the composition of cell types in each window. Then the pixels were
clustered using the agglomerative clustering method to annotate the area with similar cell-type
compositions. Here the areas which have very similar compositions were manually merged and
the ones in the background were removed. Finally, the resulting image was upscaled to the size
of the original cell-type map, which represents the area of the tissue domains. The obtained
image of the tissue domains was visually similar to that reported in the previous publication,
and also matches well with the histological findings on the cortex.

3.2.3 Analysis of mouse hypothalamic preoptic area (POA) imaged by
MERFISH

Next, the performance of SSAM was also benchmarked done with the adult mouse hypothala-
mus preoptic area (POA) data, imaged by MERFISH (Figure 3.15,3.16,3.17) [111]. The data
contains the locations of mRNAs of 135 genes obtained in 3D space, from a single layer which
consists of 7 sections of the POA region.

Since the location of mRNAs is in 3D space, the analysis was also performed in 3D space,
simply extending the dimension of KDE calculation, using a 3D Gaussian kernel. The estimated
gene expression values by KDE were obtained at the lattice points of periodic cube 3D lattice,
which can be interpreted as a 3D image. Then a 3D vector field was created by combining all of
the 3D KDE results of each gene. In other words, each voxel in the 3D lattice carries information
of 100 gene expressions at the location. Based on a 3D image of total gene expressions, which
was obtained by summing up the gene expression at each voxel, the local maxima of the total
gene expression 3D image was selected as the representative vectors. The selected vectors
were then thresholded with their gene expressions and the total expressions to further remove
spurious vectors (Figure 3.16A,B). Both the resulting selected vectors (Figure 3.16D) and the
whole 3D vector field were normalized with sctransform [128].

For de novo analysis, the selected vectors were then clustered using the same Louvain clus-
tering strategy, as explained in the osmFISH data analysis section (Figure 3.15A,B). Then the
clusters which have very similar gene expression signatures were merged, and the bad clusters
which were mapped to artifacts were removed using the diagnostic plot (Figure 3.16C). Here,
the centroids of the clusters showed a high correlation to those of both the segmentation-based
and the single-cell RNA sequencing clusters (figure 3.16E,F). The clusters were then regarded
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Figure 3.15. SSAM 3D cell-type map confirms rich diversity of heterogeneous cells in the
posterior hypothalamic POA.

(A) Gene expression heatmap of the downsampled vectors showing cell-type specific marker
gene expression of the vectors within each cluster. The values are z-scored, normalized gene
expression. The clustering result (cell type, lower bar) and their cell class (upper bar) are shown
on top of the heatmap; (B) A t-SNE map of the downsampled vectors, which shows distinct
clusters embedded in 2D space; (C) The de novo 3D cell-type map, showing spatial organization
of cell-types in spatial context. The zoom panels show the complex spatial organization of cell
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types in the ventricle region, and the spatial cluster of oligodendrocytes; (D) spatial localization
of various inhibitory cell-type signatures. We found a number of inhibitory cell types which
both matched expression signature and tissue localization described by Moffitt et al. [111]; (E)
As panel D, but for excitatory cell types.
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Figure 3.16. Local maxima selection, cell-type signature identification, and mapping in
the mouse POA MERFISH dataset.
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(A) The gene expression threshold (red vertical line) was defined by the location of an observ-
able drop in the gene expression histogram. Here 6 randomly selected genes are presented; (B)
The total gene expression (red vertical line) threshold was defined based on the total gene ex-
pression histogram; (C) A 2D t-SNE embedding of clustering local maxima vectors, excluding
the ones do not have high correlation to each cluster’s medoid (top, see also Figure 3.2B). The
merged clusters and the removed clusters are visualized in the same t-SNE map (bottom); (D)
Selected local maxima on the vector field.; (E) Comparison of the SSAM de novo cell-type sig-
natures to the segmentation-based cell-type signatures from Moffitt et al. [111]; (F) Comparison
of the SSAM de novo cell-type signatures to the scRNA-seq derived cell-type signatures from
Moffitt et al. [111]; (G) Comparison of cell-type maps generated using SSAM guided and de
novo mode, (left to right) guided by the cell-type signatures from segmentation-based analysis
and single-cell RNA sequencing [111], SSAM de novo cell-type map, and the original figure
from Moffit et al. [111]. The colors of the cell classes correspond to the cell-class legend in
Figure 3.15.
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Figure 3.17. SSAM identifies enriched inhibitory and excitatory tissue domains in the
posterior hypothalamic POA.

(A) Tissue domain map generated by SSAM. Tissue domain signatures were identified from
clustering local cell-type composition over sliding 100 µm circular windows and projected back
onto the cell-type map. The reconstruction shows the various cortical layers (see also Figure
3.3B); (B) Cell-type composition within each tissue domain. The plots show the composition
ratio of approximately 5:1 of inhibitory to excitatory cell types in the inhibitory tissue domain
and vice versa. The colors in the pie charts correspond to the cell-class legend in Figure 3.15B.
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as the cell-type signatures in the tissue, each mapped to the vector field, and merged into the
final 3D de novo cell-type map. For guided analysis, the cell-type signatures obtained from
the previous publication [111], from the segmentation-based analysis and the single-cell RNA
sequencing, were mapped to the vector field to create guided cell-type maps.

To visualize the resulting 3D cell-type map, two different strategies were used. First, simply
the slice the image in the middle of the z-axis. With this strategy, three movies were generated by
sweeping z-axis by 1 µm, which shows the 3D structure of all cell-types, the neuronal cell-types,
and the astrocytes (the movies can be found bioRxiv online, doi:10.1101/800748). Secondly,
the 3D cell-type map was volumetrically rendered in 3D space, by determining the surface
boundaries between the continuous blobs in the cell-type map. For example, the resulting 3D
rendered de novo cell-type map is shown in Figure 3.15C (see Method detail section for further
details).

The resulting cell-type maps were visually similar to the one in the previous publication
(Figure 3.16G) [111]. This visual similarity between the cell-type maps was validated using
the matching score. The matching score was calculated between the SSAM cell-type maps
(two guided, and one de novo) and the cell-type annotated segments in the previous publication
(Table 3.4, 3.5, 3.6), using the segmentation-based signatures, and both the single-cell RNA
sequencing based signatures and the SSAM de novo signatures having high correlation to the
segmentation-based signatures. The matching score was overall high (>0.8), which validates
the visual similarity between the SSAM cell-type maps and the cell-type map from the previous
segmentation-based analysis.

For further comparison to validate the accuracy of de novo cell-type map, the neuronal de
novo clusters which show a high correlation to the segmentation-based clusters were selected
and compared with the previous finding [111]. The 7 inhibitory and 4 excitatory neuronal cell
types showed similar spatial patterns as previously discovered (Figure 3.15D,E, 3.18).

Despite the similarity between the cell-type maps, there was also one big difference, which is
the abundance of astrocytes. In de novo cell-type map, SSAM detected many blobs of astrocytes
that were not identified as astrocytes in previous publication [111], and some of them even
couldn’t be identified as any cell in the original cell-type map. Such astrocytes were validated
with the marker gene expression (Aldh1l1), which shows the existence of the astrocyte cells,
also shows the potential accuracy of the SSAM cell-type map in terms of finding the spatial
organization of the cell types (Figure 3.19).

Based on the SSAM cell-type maps, the tissue domains were identified by sweeping a 3D
spherical window in the 3D cell-type map (Figure 3.17). The resulting 3D domain map was vi-
sualized at the center of the z-axis (4 µm), which shows the tissue structure of the hypothalamus
preoptic region.
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MERFISH cell type Matched segments Total segments Matching score
Astrocyte 720 744 0.97
Endothelial 1 282 301 0.94
Endothelial 2 17 19 0.89
Endothelial 3 110 117 0.94
Ependymal 219 219 1
Microglia 97 106 0.92
OD Immature 1 217 223 0.97
OD Immature 2 2 7 0.29
OD Mature 1 24 49 0.49
OD Mature 2 213 241 0.88
OD Mature 3 6 6 1
OD Mature 4 6 10 0.6
Pericytes 60 62 0.97
I-1 0 352 0
I-2 74 120 0.62
I-3 17 47 0.36
I-4 13 17 0.76
I-5 4 5 0.8
I-6 3 13 0.23
I-7 126 245 0.51
I-8 26 31 0.84
I-9 29 50 0.58
I-10 14 27 0.52
I-11 61 107 0.57
I-12 90 139 0.65
I-13 191 316 0.6
I-14 70 89 0.79
I-15 168 174 0.97
I-16 70 99 0.71
I-18 107 135 0.79
I-19 4 11 0.36
I-20 9 10 0.9
I-21 3 24 0.12
I-22 7 10 0.7
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I-23 65 75 0.87
I-24 11 15 0.73
I-25 24 44 0.55
I-26 1 1 1
I-27 12 12 1
I-29 5 10 0.5
I-30 4 6 0.67
I-31 19 23 0.83
I-33 2 3 0.67
I-34 5 5 1
I-37 1 1 1
H-1 1 1 1
E-1 14 15 0.93
E-2 3 6 0.5
E-3 14 18 0.78
E-4 24 35 0.69
E-5 1 1 1
E-6 9 24 0.38
E-7 35 79 0.44
E-8 12 18 0.67
E-9 19 19 1
E-10 6 14 0.43
E-11 7 20 0.35
E-12 5 35 0.14
E-13 90 117 0.77
E-14 239 298 0.8
E-15 42 56 0.75
E-16 123 145 0.85
E-17 24 29 0.83
E-18 64 123 0.52
E-19 48 50 0.96
E-20 6 8 0.75
E-21 5 6 0.83
E-22 0 5 0
E-23 23 27 0.85
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E-24 26 41 0.63
E-25 1 3 0.33
E-26 1 1 1
E-28 19 19 1
E-29 1 1 1
E-30 1 1 1
E-31 2 2 1

Table 3.4. The matching score between the MERFISH segmented cells vs. SSAM cell-type
map guided by the segmentation-based cell-type signature of MERFISH data.
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MERFISH
cell type

scRNA-seq
cell type

Pearson’ s
r

Matched
segments

Total seg-
ments

Matching
score

Astrocyte Astrocytes 2 0.91 516 744 0.69

OD Immature
1

Immature
oligodendro-
cyte 1

0.91 220 223 0.99

Microglia Microglia 2 0.9 101 106 0.95

Endothelial 3 Mural 2 0.86 75 117 0.64

E-5
Excitatory
(e8:Cck/Ebf3)

0.9 1 1 1

Table 3.5. The matching score between the MERFISH segmented cells vs. SSAM cell-type
map guided by scRNA-seq cluster centroids for selected cell types based on high gene expres-
sion correlation.
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MERFISH
cell type

de novo cell
type

Pearson’ s
r

Matched
segments

Total seg-
ments

Matching
score

Astrocyte
Astrocyte 1 0.94

739 744 0.99
Astrocyte 2 0.89

Microglia Microglia 0.98 101 106 0.95

Ependymal Ependymal 0.91 219 219 1

Endothelial 1
Endothelial 1 0.93

295 301 0.98
Endothelial 2 0.87

Endothelial 3 Endothelial 3 0.97 112 117 0.95

Pericytes Mural 0.95 60 62 0.96
OD Immature
1

Immature OD 0.92 223 223 1

OD Mature 2 Mature OD 2 0.97 241 241 1

I-7
Inhibitory
Amigo2

0.84 127 245 0.51

I-15
Inhibitory Irs4 0.87

166 174 0.95Inhibitory
Mixed Irs4

0.80

I-18
Inhibitory
Col25a1

0.88 69 135 0.51

I-19
Inhibitory
Gpr165

0.80 6 11 0.54

I-27
Inhibitory
Gad1

0.92 9 12 0.75

I-31
Inhibitory
Amigo2,Sema3c

0.91 23 23 1

E-5
Excitatory
Ebf3

0.86 1 1 1

E-9
Excitatory
Necab1,Gda

0.92 17 19 0.89

E-14
Excitatory
Syt4

0.87 169 298 0.56

E-19
Excitatory
Cbln1,Cbln2

0.84 48 50 0.96
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Table 3.6. The matching score between the MERFISH segmented cells vs. SSAM cell-type
map guided by scRNA-seq cluster centroids for selected cell types based on high gene expres-
sion correlation.
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Figure 3.18. Side-by-side comparison of Astrocytes identified by SSAM guided mode vs
gene expression of Aldh1l1, in MERFISH dataset.

A number of inhibitory (top row) and excitatory (bottom row) cell types were found to have
similar tissue localization patterns between the SSAM de novo cell-type map (left column) and
the segmentation-based cell-type map (right column). The cell-class legend can be found in
Figure 3.15B.
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Figure 3.19. Side-by-side comparison of Astrocytes identified by SSAM guided mode vs
gene expression of Aldh1l1, in MERFISH dataset.

(Left) SSAM guided-mode cell type is colored in red, the segments of all cell types by Moffit
et al. are colored in blue, and the overlap is colored in white. (Middle) The same as the left
panel, but without the segments assigned to other than Astrocytes. (Right) Gene expression
of Aldh1l1. Although Aldh1l1 is not a specific marker for Astrocytes, it is one of the genes
highly expressed in Astrocytes, which confirms the existence of Astrocytes uniquely identified
by SSAM (highlighted in yellow).
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Figure 3.20. SSAM identifies a new cell type in L4 and confirms rare Sst Chodl cell type
in the mouse VISp region.

(A) Gene expression heatmap of the downsampled vectors showing cell-type specific marker
gene expression of the vectors within each cluster. The values are z-scored, normalized gene
expression. The clustering result is shown on top of the heatmap, coloring based on the highest
correlating single-cell RNA sequencing based cell-type signature [132]; (B) A t-SNE map of
the downsampled vectors, which shows district clusters embedded in 2D space; (C) The de novo
cell-type map, showing spatial organization of cell-types in spatial context. Lower images zoom
in on the highlighted tissue regions of the new cell type found in the L4 superficial region (boxed
in white) and rare Sst Chodl cell type. The colors of the cell types correspond to the cell-type
legend in panel B.
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Figure 3.21. Local maxima selection and cell-type signature identification in the mouse
VISp smFISH dataset.

(A) The gene expression threshold (red vertical line) was defined by the location of an observ-
able drop in the gene expression histogram. Here 6 randomly selected genes are presented; (B)
The total gene expression (red vertical line) threshold was defined based on the total gene ex-
pression histogram; (C) A 2D t-SNE embedding of clustering local maxima vectors, excluding
the ones do not have high correlation to each cluster’s medoid (top, see also Figure 3.2B). The
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merged clusters and the removed clusters are visualized in the same t-SNE map (bottom); (D)
Selected local maxima on the vector field. The VISp region is supplied as in input mask, repre-
sented as a polygon on the image so that SSAM only selects local maxima in the VISp region;
(E) Comparison of the SSAM de novo cell-type signatures to the single-cell RNA sequencing
derived cell-type signatures from Tasic et al (2018) [132].



3.2. Results 87

Figure 3.22. Rescuing rare Sst Chodl cell types, and identifying new sub-layering in the
L4 cortical layer in the mouse VISp smFISH dataset.

(A) Distribution ofChodl gene expression in the local maxima vectors. There are two distinctive
vectors (marked by arrow), which highly express Chodl gene; (B) The location of the two
high Chodl expressing vectors. The locations of the local maxima vectors (light blue dots) are
overlaid on the KDE signal of Chodl gene expression. There are 2 dark spots indicating high
Chodl expression, one inside the selected VISp region (boxed in red), and one outside. Both
Chodl expressing vectors originate from the same dark spot in the selected tissue region (inset);
(C) Localization of the two L4 IT cell types indicates L4 sub-layering. The heterogeneity of
L4 IT cell types is related with their localizations in layer 4 of the VISp, with cell type L4 IT1
localizing to the deep portion, and L4 IT2 localizing superficial; (D) Comparison of SSAM
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guided mode and de novo mode results. The two results are visually similar apart from the
L2/3 region (boxed in red), which shows wrongly mapped cell types in the guided mode result,
indicating that the guided mode does not always guarantee the best results. Instead, the de novo
mode can be used to find the accurate mapping of cell types on tissue when guided mode fails to
reconstruct cell-type maps correctly. However, SSAM was able to find the rare Sst Chodl cell
type in guided mode (boxed in yellow), which resulted in the manual rescue of the Sst Chodl
local maxima vectors for cell-type classification in the de novo mode.
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Figure 3.23. Rare Sst Chodl cell type localizes to the L5b cortical layer of the mouse VISp
region.

(A) Tissue domain map generated by SSAM. Tissue domain signatures were identified from
clustering local cell-type composition over sliding 100 µm circular windows and projected back
onto the cell-type map. The reconstruction shows the various cortical layers within the adult
mouse VISp, with very clear separation of the pia layer, and separation of layer 5 into 2 layers,
5a and 5b. The inset zooms into the location of the rare Sst Chodl cell type found in layer 5b;
(B) Cell-type composition within each tissue domain. The colors in the pie charts correspond
to the cell-type legend in Figure 3.20B.
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3.2.4 Analysis of mouse visual cortex (VISp) imaged by multiplexed sm-
FISH

Based on the validation of the accuracy and the robustness of SSAM analysis with two publicly
available datasets, SSAM was applied to a newly generated data, a mouse brain visual cortex
(VISp) imaged by multiplexed smFISH at Allen brain institute, as a part of SpaceTx consortium
under the umbrella of Human Cell Atlas project (Figure 3.20, 3.21, 3.22, 3.23). The dataset
contains the locations of mRNAs of 22 genes imaged in 2D space (further details can be found
in the Methods details section).

Based on the location of mRNAs, KDE was performed to estimate the expression of each
gene at the lattice point, resulting in 22 images of the 22 genes. The images were then stacked to
form a vector field, and then the representative vectors were selected at the local maxima of the
total expression of each vector in the vector field. The vectors were then thresholded with their
gene expressions and the total expressions (Figure 3.21A,B). The thresholded vectors were then
restricted within the VISp region on the tissue (Figure 3.21D) using a manually defined input
mask. The resulting vectors and the whole vector field were normalized with sctransform [128].

For de novo analysis, the representative vectors were clustered using the Louvain clustering
algorithm described in the above sections (Figure 3.20A,B). Based on the diagnostic plots,
similar clusters were merged and the clusters mapped to the artifacts were removed (Figure
3.21C). The centroids of the remaining clusters showed a high correlation to that of the clusters
from the single-cell RNA sequencing data (Figure 3.21E). The centroids were then mapped to
the vector field and merged into the final cell-type map (Figure 3.20C). For guided analysis,
the signatures obtained from a single-cell RNA sequencing experiment [132] were mapped to
the vector field to form a guided cell-type map.

Despite the high visual similarity between the guided and the de novo cell-type maps, there
were two major differences (Figure 3.20C). (1) The first difference was the existence of Sst
Chodl cell type in tissue. This cell type is known for its rareness among the whole population
of cells found by the single-cell RNA sequencing data [133–135], and there is a curiosity of its
spatial organization in the tissue. In the resulting cell-type map, the Sst Chodl cell type was
found in the cell-type map in the guided mode, whereas it was not able to be found in the de
novo cell-type map in the first attempt. To find the reason why de novo mode could not find this
cluster, firstly the representative vectors were reviewed whether it contains the vectors origi-
nating from Sst Chodl cell type. Indeed, there were 2 vectors that highly express gene Chodl,
which is the marker gene for Sst Chodl cell type (Figure 3.22A,B). However, it was revealed
that the Louvain clustering algorithm did not identify the two vectors as an independent clus-
ter, even though the difference of the gene expression of the two vectors were clearly different
from other vectors. Since it is known that the Louvain community detection algorithm is not
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performing well detecting small communities in a network [136], it was concluded that this is a
general problem of the Louvain clustering algorithm itself, not a problem of SSAM framework.
Still, the Louvain clustering algorithm is the most widely used and provides reasonable results
in terms of clustering single-cell RNA sequencing data, alternative clustering algorithm was
not considered for this dataset. Instead, the two vectors were simply manually rescued as an
individual cluster, and the cell-type map was regenerated based on it (Figure 3.20C). (2) The
other difference was the difference in cell types in L2 layer. In the SSAM guided mode, the
majority of cell types in L2 layer were mapped to the VLMC type, which makes more sense
rather be mapped to a neuronal cell type (Figure 3.22D). This was mainly due to the lack of
other neuronal marker genes among the limited number of genes imaged by the experiment,
therefore the cluster was mapped to the VLMC cell type which also highly expresses a gene
Alcam. This was corrected in the de novo mode, assigning this cell type to L2 neurons.

Interestingly, there were two different cell-types observed in the L4 layer in the de novo cell-
type map, which have a similar marker gene expression to each other (Figure 3.20C, 3.22C).
Despite the similar gene expression signature, it was clearly observed that one is closer to the
superficial layer, and the other one was located below it. However, for both cell types, the closest
cell type in the single-cell RNA sequencing data was only one, L4 IT. Instead, it was previously
reported that the L4 IT cell type showed high heterogeneity within the tissue [132]. Therefore,
it was concluded that there are actually two different L4 IT cell types, but the difference can
only be clearly identified in the spatial context, but hard to be distinguished in the previous
analysis with the single-cell RNA sequencing data. Here the one closer to the superficial layer
was named to L4 IT Superficial in our analysis.

Finally, the tissue domains were found by sweeping the circular window with diameter
100 µm on the de novo cell-type map (Figure 3.23). The local composition of cell types was
clustered using an agglomerative clustering algorithm to find the tissue domains. The resulting
domain map revealed the layered structure of the cortex, which matches well with the previous
histological findings.

3.3 Discussion

In this chapter I presented SSAM, a novel computational framework to infer cell types without
requiring segmentation. The robustness of SSAM was tested using two publicly available data
imaged by osmFISH and MERFISH, and one newly generated data, multiplexed smFISH.

Importantly, the cell-type map generated by SSAM with the two publicly available data
showed not only the similarity to the previously reported results but also clear improvements
in terms of finding the spatial organization of cell types. Especially with MERFISH data, it
was shown that SSAM can be easily extended to 3D space to generate a 3D cell-type map,
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which can be used to investigate the organization of cell types in 3D. When SSAM was applied
to the multiplexed FISH data, SSAM was able to unravel the previously unknown source of
heterogeneity of the L4 IT cell type, which led to a discovery of a new cell type that was able
to be clearly distinguished in the spatial context.

In the osmFISH data, we found one interesting Astrocyte cell type as a result of the de
novo analysis. The cell type highly expresses the gene Aldoc but not so much of other marker
genes of astrocytes, like Mfge8 or Gfap. The cluster was not able to be merged with other
astrocyte clusters, which only weakens the correlation between the vector field and the cluster
centroid. Therefore, the cluster was named as Astrocyte Aldoc. However, morphologically the
resulting Astrocyte Aldoc seemed to be a part of Astrocyte Mfge8. Therefore, it was assumed
that the Astrocyte Aldoc could be a part of Astrocyte Mfge8 instead of being a new cell type,
due to an unknown subcellular internal organization of cells. Since it has been reported that
such organizations can be observed using imaging methods [137], SSAM has the potential to
discover them by comparing the cell-type map with the previous findings to uncover the mystery
of subcellular organizations, or possibly further post-transcriptional regulations associated with
them [138].

3.3.1 KDE bandwidth and lattice spacing

One possible concern of SSAM is finding the most appropriate bandwidth of KDE and the
lattice spacing to estimate spatial gene expressions on the lattice points. Here the bandwidth
determines the width of the Gaussian kernel, therefore it determines the amount of ‘smoothness’
after the estimation, and the lattice spacing determines the resolution of the final cell-type map
(Figures 3.24-3.27). Therefore the lattice spacing does not play a critical role, but the band-
width does – for example, too high bandwidth makes the signal too much smoothed, which can
interfere the gene expression signature of the nearby cells, whereas too low bandwidth makes
harder to reconstruct the shape of cells in the resulting cell-type map. For the three datasets
described in this chapter, the bandwidth was set to 2.5 µm which makes the full width tenth
maximum (FWTM) of Gaussian kernel to be similar to 10 µm, under the assumption that the
average cell diameter is around 10 µm for the three examples. With this value, the signal inter-
ference was not a big problem to infer the cell types. Furthermore, the robustness of SSAM de
novo cell-type calling procedure was tested with the different bandwidths except 2.5 µm (0.5, 1,
5, 10 µm, Figure 3.28). Even with extreme cases like 0.5 or 10 µm of bandwidth, the resulting
clusters still preserved high correlation to the de novo clusters found with bandwidth 2.5 µm,
which means that the same number of clusters could be still found with different bandwidths
after a proper merging step (except 10 µm, which lost 2 clusters) – this confirms that the band-
width does not play a big role in terms of the cell-type calling. The only remaining problem is
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Figures 3.24-3.27. Effect of KDE bandwidth and lattice spacing in 4 different regions.
The figures show the cell-type map of 4 different regions (highlighted in white boxes), generated
with 5 different KDE bandwidth (0.5, 1, 2.5, 5, 10 µm) and 3 different lattice spacing (0.5, 1, 2.5
µm) in guided-mode SSAM (guided by segmentation-based signatures) using osmFISH dataset.
The figure shows that only the bandwidth is related to the size of detected blobs cell-type map,
and the lattice spacing is only related to its pixel size. For all cases, even including very extreme
cases with bandwidths 0.5 and 10 µm, the pixels in the cell-type map correlates well with the
corresponding cell-type signatures and colored correctly. In other words, the signals estimated
by KDE preserves most of the cell-type signatures even with extreme change of bandwidth,
which implies that the cell-type identification will not be largely affected by a small change of
bandwidth near 2.5 µm.
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Figure 3.24. Effect of KDE bandwidth and lattice spacing in the first region.
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Figure 3.25. Effect of KDE bandwidth and lattice spacing in the second region.
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Figure 3.26. Effect of KDE bandwidth and lattice spacing in the third region.
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Figure 3.27. Effect of KDE bandwidth and lattice spacing in the fourth region.
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Figure 3.28. Correlations between the de novo clusters with bandwidth 2.5 and the un-
merged clusters with different bandwidths.

(All panels) Pearson’s correlation between the clusters with bandwidth 2.5 and the unmerged
clusters identified with different bandwidths, 0.5, 1, 5, and 10. The representative vectors were
selected at the same locations identified in the original de novo analysis. The highest correlated
clusters for each cluster identified in the original de novo analysis are marked with red boxes;
(A) Among the unmerged 76 clusters with bandwidth 0.5, all the de novo clusters were highest
correlated with at least one of them. The highest correlated values in red boxes were with max
0.997, min 0.607, and median 0.961; (B) Among the unmerged 67 clusters with bandwidth 1,
all the de novo clusters were highest correlated with at least one of them. The highest corre-
lated values in red boxes were with max 0.998, min 0.861, and median 0.990; (C) Among the
unmerged 63 clusters with bandwidth 5, all the de novo clusters were highest correlated with at
least one of them. The highest correlated values in red boxes were with max 0.998, min 0.690,
and median 0.993; (D) Among the unmerged 66 clusters with bandwidth 10, except 2 clusters,
all the other de novo clusters were highest correlated with at least one of them. The highest
correlated values in red boxes were with max 0.993, min 0.658, and median 0.968.
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that too large bandwidth makes the blobs very large in the resulting cell-type map. Based on the
assumption that the average diameter of the cells will be 10 µm for the many tissues, therefore
the default bandwidth of SSAM was set to be 2.5 µm. Thus, it is strongly encouraged that the
users test different bandwidths if the average cell size is significantly different from 10 µm to
generate a better cell-type map.

3.3.2 Possible extension of SSAM for in situ sequencing methods

In this chapter, only the multiplexed FISH datasets with up to tens or hundreds of genes per
experiment were discussed, but recent advances on the techniques dramatically increased the
number of genes which can be imaged, up to the order of tens of thousands. Therefore, it is
not a dream to replace such techniques to single-cell RNA sequencing to reveal the spatial het-
erogeneity of the single cells in a tissue. Moreover, there are several techniques developed to
sequence mRNAs in situ, theoretically, an unlimited number of genes can be imaged per exper-
iment, although shows a lower sensitivity of capturing mRNAs than FISH methods. Despite
the low sensitivity, some preliminary SSAM analysis showed that SSAM also works with such
in situ sequencing [139] (by Mr. Sebastian Tiesmeyer) and STARmap data [119] (Figure 3.29,
successfully reconstructing cell-type map based on the datasets.

SSAM is mainly written in Python, and some core functions are written in C to acceler-
ate the computation speed. All SSAM functions are accessible as a Python module, and us-
age of SSAM is available as Jupyter notebook so that one can follow the analysis steps eas-
ily. The source code of SSAM and the example Jupyter notebooks are available on Github
(https://github.com/eilslabs/ssam and https://github.com/eilslabs/ssam_example).

In summary, I present SSAM which is a segmentation-free method to infer cell types, and
further determine spatial organizations of the inferred cell types in the spatial context via a cell-
type map. SSAM can be used to quickly determine the spatial location of certain cell types
found by foreign analysis via guided mode, but also can be used to identify new cell types in
de novo mode. SSAM is planned to be integrated into the Starfish pipeline, which is being
developed as a suggested standard processing pipeline to process spatial data in the SpaceTx
consortium under the umbrella of the Human Cell Atlas project.

3.3.3 Method details

Using Kernel Density Estimation to generate the gene expression vector field

We used the n-dimensional KDE algorithm to estimate the density of mRNAs in 2D and 3D.
To compute Gaussian KDE, we used our own implementation of the KDE algorithm for rapid
computation. Spatial distribution of the probability of mRNA presence is estimated using the
kernel density estimation;
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Figure 3.29. The preliminary cell-type map with mPFC imaged by STARmap.

(A) This subfigure was taken from the publication of STARmap [119], Figure 4C. This shows
the previously published spatial organization of the cell types in mPFC region; (B) SSAM
guided mode cell-type map, guided by the signatures determined in Wang et al based on the
segmentation algorithm. The resultant cell-type map shows high visual similiarity to the one
that was previously published.



3.3. Discussion 101

p̂(x) =
1

N

N∑
i=1

κh(x− xi)

where:

κh : kernel function
h : bandwidth
N : number of mRNAs of the same gene

And here we use the Gaussian kernel:

κh(x) =
1

(2πh2)d/2
e−∥x∥/2h2

where:

d : dimension

Note that each data point x lies within the respective image, hence the dimension d is either two
or three. Ideally, the probability density at each lattice point must be evaluated by integration
over the unit area. The lattice size is considered sufficiently fine-grained to capture all relevant
information on the continuous Gaussian curve. To create a proper probability density, the lattice
points are scaled to a sum of 1. Finally, the gene expression is estimated by multiplying each
density by its total number of mRNA molecules.

Normalization of local maxima vectors and the vector field

Since the gene expression profiles of local maxima vectors are representative of the transcrip-
tomes of cells, we considered them to be analogous to the gene expression count matrix obtained
from single-cell RNA sequencing (scRNA-seq) using unique molecular identifiers (UMI). There-
fore, we normalized the local maxima vectors of the vector field (which would be representative
of single cells) using sctransform [128], a normalization and regularization algorithm for UMI
count data. After that, each vector of the vector field is normalized using sctransform, with the
same parameters previously used to normalize the local maxima.

Clustering of representative gene expression vectors

The clustering algorithm implemented in SSAM is based on the source code of the R package
Seurat [86]. Here, we used the same algorithm reimplemented in Python. In short, an SNN
network with a correlation metric is built using a python package NetworkX [140]. The weight
of the network is calculated by a Jaccard similarity coefficient. A weight smaller than 1/15
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was set to zero. Clustering was done by detecting communities in the network using a Lou-
vain community detection algorithm implemented in Python (python-louvain, https://python-
louvain.readthedocs.io/). The resolution of the Louvain algorithm is set to 0.15.

SSAM diagnostic plots

To provide support to the user on whether to merge or remove clusters, SSAM generates a
cluster-wise ‘diagnostic plot’, which consists of the following four panels: 1) location of the
vectors originating from the cluster, 2) a map of the centroid embedded into the vector field, 3)
the centroid of the cluster, 4) the location of the cluster in t-SNE or UMAP embedding. In the
three applications in this chapter, the clusters to be merged or removed often showed a mismatch
between the location of vectors (panel 1) and the map of the centroid (panel 2). For sub-cell
types, the map typically does not clearly show the full shape of the cells but only fragments
but simultaneously having clear marker gene expression (panel 3). This usually indicates that
there is another centroid that has a higher correlation to the expression profile of the entire
cell body. In such cases, such centroids are merged to the centroid with a higher correlation.
For dubious clusters, it is observed that vectors are usually located outside the tissue region or
represent image artifacts (panel 1), the map clearly shows that the centroid is mapped to the
artifacts (panel 2), or that the gene expression does not show any clear expression of marker
genes (panel 3). Such clusters are removed thereafter. The remaining clusters are then identified
by comparing cluster marker genes to known cell-type markers. Note that in many cases, the
identity of clusters can be easily assigned by comparing the centroids of the clusters to the known
cell-type signatures, e.g., from single-cell RNA sequencing. Therefore, if such signatures are
given, SSAM additionally shows the closest cell-type signature among the given signature in the
diagnostic plot to help users easily assign classes to clusters. The diagnostic plots for osmFISH,
MERFISH, and multiplexed smFISH data are available online in the Jupyter notebook uploaded
to Zenodo (http://doi.org/10.5281/zenodo.3478502).

Quantification of mRNA abundance in astrocytes and other brain cell types for osmFISH
data interpretation

(Note: This workwas done byMr. Sebastian Tiesmeyer, and this subsection was originally
written by him.)

The “L5_All.loom” loom object containing scRNA-seq expression data of half a million
cells from the mouse nervous system [130] was downloaded. Using Python, the total mRNA
molecules per cell were extracted and aggregated by their level 2 class labels (astrocytes, im-
mune, vascular, ependymal, neuronal, peripheral glia and oligodendrocyte cells). The total
mRNA counts per class were log-normalized and subsequently followed a normal distribution
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(tested using the Shapiro-Wilk test for normality, all p-values < 1 x 10e-4 for each class), there-
fore a Student’s t-test was applicable. For each of the two classes of interest (‘Astrocytes’, ’

Immune’), we performed independent log-space t-tests for unequal sample sizes and unequal
variance against each of the other classes. Both astrocyte and immune cell classes have signif-
icantly lower mRNA molecule counts compared to other cell types (all p-values < 1 x 10e-12).
While the distribution of mRNA counts in log space followed a normal distribution, the use
of a Student’s t-test for large numbers may not be appropriate. Hence, we also describe the
difference in their distributions. For both astrocyte and immune cell classes, more than half of
the cells of each class exhibited a lower UMI count than the lowest quartile of any other cell
class.

3D modeling of MERFISH cell-type maps

Firstly, the connected components in 3D were determined using a python package ‘connected-
components-3d’ (https://github.com/seung-lab/connected-components-3d). Components com-
prising fewer than 100 voxels were removed. After this, the voxels filling connected compo-
nents were removed, and only the contours were used for the vertex of the 3D models. For
each vertex the vertex normal was calculated by simple physics simulation, assuming that
the direction of vertex normal vector is the same as the force vector when there are pushing
forces between all of the contour voxels. The surface of the objects is reconstructed using a
screened Poisson reconstruction algorithm [141, 142] using default parameters. The number
of vertices was reduced to 5 % of the total number of vertices using ‘vtkQuadricDecimation’

function [143, 144] of VTK library [145]. Finally, the objects are merged into one file. Each
scene of the rotating movie was created using Meshlab [146].

VISP multiplexed smFISH data generation

(Note: This subsection was originally written by the data provider, the team at Allen Brain
Institute.)

Multiplexed smFISH data of mouse primary visual cortex (VISp) was generated as part of
the SpaceTx consortium. Tissue processing was carried out as previously described [147], with
some modifications.

Silanization of coverslips (#1.5, Thorlabs CG15KH) was performed by plasma cleaning for
30 min in a Plasma-Prep III (SPI 11050-AB), followed by vapor deposition of 3-aminopropylt-
riethoxysilane (APES, Sigma A3648) in a vacuum for 10 minutes. Coverslips were then washed
in 100 % methanol for 2 x 5 minutes, allowed to dry, and stored in a dust-free environment until
use. s Fresh-frozen mouse brain tissue was sectioned at 10 μm onto silanized coverslips, let
dry for 20 min at -20°C, then fixed for 15 min at 4 °C in 4 % PFA in PBS. Sections were
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washed 3 × 10 min in PBS, then permeabilized and dehydrated with chilled 100 % methanol
at -20 °C for 10 min and allowed to dry. Sections were stored at −80 °C until use. Frozen
sections were rehydrated in 2X SSC (Sigma 20XSSC, 15557036) for 5 min, then treated 10
min with 8 % SDS (Sigma 724255) in PBS at room temperature. Sections were washed 5 times
in 2X SSC. Sections were then incubated in hybridization buffer (10 % Formamide (v/v, Sigma
4650), 10 % dextran sulfate (w/v, Sigma D8906), 200 µg/mL BSA (ThermoFisher AM2616), 2
mM ribonucleoside vanadyl complex (New England Biolabs S1402S), 1 mg/ml tRNA (Sigma
10109541001) in 2X SSC) for 5 min at 37°C. Probes were diluted in hybridization buffer at a
concentration of 250 nM and hybridized at 37°C for 2 h. Following hybridization, sections were
washed 2 × 10 min at 37°C in wash buffer (2X SSC, 20 % Formamide), and 1 × 10 min in wash
buffer with 5 μg/ml DAPI (Sigma 32670), then washed 3 times with 2X SSC. Sections were then
imaged in Imaging buffer (20 mM Tris-HCl pH 8, 50 mM NaCl, 0.8 % glucose (Sigma G8270),
30 U/ml pyranose oxidase (Sigma P4234), 50 µg/ml catalase (Abcam ab219092). Following
imaging, sections were incubated 3 × 10 min in stripping buffer (65 % formamide, 2X SSC) at
30°C to remove hybridization probes from the first round. Sections were then washed in 2X
SSC for 3 × 5 min at room temperature before repeating the hybridization procedure.

The multiplexed smFISH image data was collected and processed using methods previously
described [147], except that images from different rounds of hybridization were registered in
(x,y) based on the DAPI signal. The spot locations and raw data are available on request.

Plotting

The python packages Matplotlib 3.1.0 [148] and Seaborn 0.9.0 [149] were used to draw 2D
images, plots, and heatmaps. In SSAM, helper functions are included to easily generate plots.

Movies

Movies were generated by using Virtualdub (1.10.4-AMD64, http://www.virtualdub.org/). The
H.264 codec was used to compress videos.

Software

Python version 3.7.0 was used throughout. The following python packages were used: numpy,
scipy, pandas, matplotlib, seaborn, scikit-learn, umap-learn, python-louvain, sparse, scikit-
image. R package sctransform was used for normalization and variance stabilization of the
data.
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3.4 Contributed publications

• Jeongbin Park*, Wonyl Choi*, Sebastian Tiesmeyer, Brian Long, Lars E Borm, Emma
Garren, Thuc Nghi Nguyen, Simone Codeluppi, Matthias Schlesner, Bosiljka Tasic, Roland
Eils, and Naveed Ishaque. Segmentation-free inference of cell types from in situ tran-
scriptomics data. Under review.

– Accepted as an official Human Cell Atlas publication.

– Preprint available at BioRxiv, https://doi.org/10.1101/800748

*: Shared first authors.
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