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I 
 

Fluid flow is governed by primary and secondary porosity of rocks but also by their 

permeability. Often the values of primary porosities and permeabilities are not 

sufficient to allow fluids to flow from potential geothermal or hydrocarbon reservoirs. 

To ensure an efficient productivity, fractured reservoirs come into focus as they might 

provide an economically viable fluid flow. Subsurface fractured reservoirs are difficult 

to investigate, outcrop analogues like the one investigated help in a better 

understanding. The studied outcrop represents a Lower Triassic braided river 

succession within an arid alluvial plain, affected by the main fault of the western Rhine 

Graben (southwestern Germany). 

The research thesis was carried out with the help of terrestrial laser scanning (TLS) to 

generate a digital outcrop model (DOM), used to digitize data and serve as basis for the 

subsequent modeling in two steps. These are (i) the volumetric modeling of the 

investigated fault zone within the Triassic Lower Buntsandstein, and (ii) subsequent 

modeling of the discrete fracture network (DFN). 

Volumetric modeling comprises three main points: (i) the application of a fault zone 

facies concept, (ii) stair-stepped fault gridding, and (iii) splitting the fault zone into two 

geobodies, well established in structural terminology, the damage zone ‘DZ’ and the 

fault core ‘FC’. For the subsequent DFN calculations a thorough fracture data 

parametrization was carried out providing six defined fracture sets, the fracture shape, 

the log-normal aperture distribution, the log-normal length distribution, the P32 

intensity, and fracture truncation percentages at bed boundaries (DZ only). DFN 

upscaling was then conducted with the “Oda” and “Oda Corrected” methods for the 

fracture permeability calculations. 

The resulting volumetric model comprises 13 fault zone facies types. Their distribution 

within the DZ follows the encountered beds’ morphology. Within the FC three facies 

distribution cases were modeled. Seven different DFN configurations were calculated, 

consisting of 162 fracture sets in total. Fracture permeability amounts between 190 and 

720 D within the DZ and 14,130 to 55,189 D within the FC, while the fracture porosity 

shows values of about 0.4 % for the DZ and 2.38 % for the FC. 

The study shows that volumetric fault zone modeling requires a simultaneous fault 

facies analysis and grid construction. Because stair-stepped fault grids facilitate a high 

complexity but lack cell size flexibility, a thoroughly considered choice of the cell size, 

dependent on the smallest geological objects present, is crucial. Characterization and 
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processing of fracture aperture constitutes the most important part of the 

parametrization, as different methods can lead to distinct differences in the modeled 

final fracture permeabilities, spanning multiple orders of magnitude, even for exactly 

the same values of mechanical aperture. Inclusion of fracture connectivity lowers the 

resultant horizontal fracture permeability by 26 to 38 %, while truncation of fractures 

on bed boundaries can overestimate permeability values. Although the FC shows a 

significantly higher fracture permeability than the DZ it is affected by extreme fracture 

permeability cutoffs due to the fault cores’ specific architecture, resulting in a conduit-

barrier system. Fracture porosities are more insensitive to parameter changes, because 

of its dependence on the mechanical aperture only. 

The presented multi-approach thesis highlights the challenges, limitations, and great 

possibilities of fault zone models, to help in a better understanding of the impact fault 

zones might have on geothermal and hydrocarbon reservoirs, and thereby support 

exploration.  



III 
 

Fließraten im Gestein werden sowohl von der primären und/oder sekundären 

Porosität, als auch von der Permeabilität bestimmt. Die Werte der primären Porosität 

und Permeabilität reichen oftmals nicht aus, um die benötigten Fließraten innerhalb 

eines potenziellen geothermischen Reservoirs oder einer potentiellen 

Kohlenwasserstofflagerstätte zu liefern. Um eine effiziente Produktivität 

sicherzustellen, rücken geklüftete Reservoire in den Fokus, da sie häufig wirtschaftlich 

verwertbare Fließraten gewährleisten. Da sich jedoch die Untersuchungen der 

Verhältnisse im Untergrund schwierig gestalten, können Aufschlussanaloga (wie in 

dieser Studie) zum besseren Verständnis beitragen. Der untersuchte Aufschluss 

repräsentiert die untertriassische Abfolge eines verflochtenen Flusses innerhalb einer 

ariden alluvialen Schwemmebene, welche von der westlichen Hauptrandstörung des 

Rheingrabens (Südwestdeutschland) geschnitten wird. 

Im Rahmen der präsentierten Arbeit wurde terrestrisches Laserscanning (TLS) 

eingesetzt um ein digitales Aufschlussanalogmodell zu erstellen. Dieses diente zur 

Digitalisierung der Daten und wurde darüber hinaus als Basis für die nachfolgenden 

Modellierungsschritte verwendet. Diese beinhalten: (i) die volumetrische Modellierung 

der untersuchten Störungszone im Unteren Buntsandstein der germanischen Trias und 

(ii) eine anschließende diskrete Kluftnetzwerkmodellierung. 

Die volumetrische Modellierung umfasst drei Hauptpunkte: (i) die Ausarbeitung und 

Zuordnung einer Störungszonenfazies, (ii) ein „stair-stepped gridding“ der 

Störungszone, und (iii) die Aufteilung der Störungszone in zwei geologische Körper, 

welche in der Strukturgeologie als Bruchzone (damage zone, ‘DZ‘) und Störungskern 

(fault core, ‘FC‘) beschrieben werden. Für die nachfolgenden Berechnungen des 

Kluftnetzwerks wurde eine umfangreiche Parametrisierung der Kluftdaten 

durchgeführt. Diese liefert sechs definierte Kluftscharen, die Kluftform, die lognormale 

Verteilung der Apertur sowie der Kluftlänge, die P32 Intensität, und die prozentualen 

Anteile der Kluftterminationen an Schichtgrenzen (nur DZ). Um die Kluftpermeabilität 

zu berechnen, wurde die Hochskalierung der Kluftnetzwerke mit Hilfe der „Oda“ und 

„Oda Corrected“ Methoden durchgeführt. 

Das resultierende volumetrische Störungszonenmodell umfasst 13 Faziestypen 

innerhalb der Störungszone. Ihre Verteilung innerhalb der DZ folgt der angetroffenen 

Schichtmorphologie. Im Falle des FC wurden drei verschiedene Fälle der Verteilung der 

Faziestypen modelliert. Es wurden sieben unterschiedliche Konfigurationen von 



IV   
 

Kluftnetzwerken berechnet, welche insgesamt aus 162 Kluftscharen bestehen. 

Innerhalb der DZ beträgt die Kluftpermeabilität zwischen 190 und 720 D und 14.130 

bis 55.189 D im FC. Die Kluftporosität beträgt etwa 0,4 % in der DZ und 2,38 % im FC. 

Die Arbeit zeigt, dass im Falle einer volumetrischen Modellierung einer Störungszone 

die Analyse der Störungsfazies und die Konstruktion des „grids“ simultan ablaufen 

müssen. „Stair-stepped grids“ weisen eine hohe Komplexität auf, sind jedoch unflexibel 

bei der Zellengröße. Deshalb ist vor der Erstellung des „grids“ eine gründliche 

Überlegung im Hinblick auf die gewählte Zellengröße notwendig. Die Größe hängt vom 

kleinsten zu modellierenden geologischen Objekt ab. 

Die Charakterisierung und Weiterverarbeitung der Apertur stellt den wichtigsten Teil 

einer Kluftparametrisierung dar. Verschiedene Methoden führen zu großen 

Unterschieden bei der final modellierten Kluftpermeabilität. Auch wenn exakt gleiche 

Werte der mechanischen Apertur verwendet wurden, kann die Kluftpermeabilität 

Unterschiede von mehreren Größenordnungen aufweisen. Berücksichtigt man die 

Kluftkonnektivität, so verringert sich die horizontale Kluftpermeabilität um 26 bis 38 

%, während eine Klufttermination an Schichtgrenzen zu einer Überbewertung der 

Kluftpermeabilität führen kann. Obwohl der FC, im Vergleich zur DZ, eine signifikant 

höhere Kluftpermeabilität aufweist, ist er von extremen Schwankungen der 

Permeabilität betroffen. Diese sind auf die spezifische Architektur des FC 

zurückzuführen, weshalb dieser Bereich ein kombiniertes System aus Fließwegen, als 

auch von Barrieren darstellt. Die Kluftporosität ist im Vergleich zur Kluftpermeabilität 

relativ unempfindlich gegenüber Parameteränderungen, da sie lediglich von der 

mechanischen Apertur abhängt. 

Die präsentierte Arbeit verwendet einen vielschichtigen Ansatz und zeigt die 

auftretenden Herausforderungen, Grenzen und großen Möglichkeiten der Modellierung 

von Störungszonen auf. Derartige Modelle tragen dazu bei, den potentiellen Einfluss von 

Störungszonen auf die geothermische Produktion und Kohlenwasserstofflagerstätten 

besser abschätzen zu können und damit die Explorationsarbeiten zu unterstützen. 
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α   Angular radius of a confidence cone 

Ak   Area of fracture k 

b   Distance between two plates / aperture 

α95   Angular radius of a confidence cone for 95 % confidence 

δij   Kroenecker delta 

e   Euler number 

Fij   Fracture tensor 

fk   Percolation factor for fracture k 

Fkk   Trace of the fracture tensor matrix 

g   Gravitational acceleration 

∇h   Hydraulic gradient 

Hf   Fracture height 

𝜅   Concentration parameter (Fisher distribution) 

𝜅INT   Intermediate concentration parameter (Bingham distribution) 

𝜅MIN   Minimum concentration parameter (Bingham distribution) 

k   Fracture 

kij   Permeability tensor 

km   Matrix permeability 

kP   Fracture permeability 

L   Length of matrix block 

Lf   Fracture length 

Lx   Distance between fractures in x direction 

Ly   Distance between fractures in y direction 

Lz   Distance between fractures in z direction 

µ   Fluid viscosity 

N    Total number of fractures in a grid cell 

n   Number of normal sets 

nik   i-component of a unit normal to fracture k 

njk   j-component of a unit normal to fracture k 

nv    Number of vectors/orientations 

Pf   Fracture pressure 

Pm   Matrix pressure 

Φ   Fracture porosity 
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Q   Flow between two plates 

q   Matrix-fracture flow rate per unit bulk volume 

R   Length of resultant vector 

ơ   Sigma factor 

Tk   Transmissivity of fracture k 

ρ   Fluid density 

V    Grid cell volume 

 

AOI   Area of interest 

Ar   Realized accommodation 

B1-4   Minor cycles of the Grés Vosgien Formation 

CB   Carbonate breccia 

CG   Clay gouge 

CI   Connectivity index 

DBC   Deformation band cluster 

DFN   Discrete fracture network 

DOM   Digital Outcrop Model 

DZ   Damage zone 

eCii   Extended connectivity index along the i axis 

eCij   Extended connectivity index along the j axis 

eCik   Extended connectivity index along the k axis 

EPM   Equivalent porous media 

ER   Enhanced range 

FC   Fault core 

FCFB   Fault core facies body 

FCFT   Fault core facies type 

FN   Fracture network 

G1-2   Genetic unit cycles of the Trifelsschichten 

Gc    Gouge, clay unconsolidated 

Gs   Gouge, silt unconsolidated 

GU   Geological unit 

H   Height 

HCE   Hydrocarbon exploration 

IFN   Implicit fracture network 

JRC   Joint roughness coefficient 
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ki   Fracture permeability in i direction 

kj   Fracture permeability in j direction 

kk   Fracture permeability in k direction 

L   Length 

LGR   Local grid refinement 

Li   Length ratio of fractures present in a cell projected on the i axis 

LiDAR   Light detection and ranging 

Lj   Length ratio of fractures present in a cell projected on the j axis 

Lk   Length ratio of fractures present in a cell projected on the k axis 

MP   Megapixel 

No.   Number 

OdaC   Oda corrected 

P1   Profile 1 

Pij   Fracture intensity classification system 

P10   Number of fractures per unit length 

P11   Length of fractures per unit length 

P20   Number of fractures per unit area 

P21   Length of fractures per unit area 

P22   Area of fractures per area 

P30   Number of fractures per unit volume 

P32   Area of fractures per unit volume 

P33   Volume of fractures per unit volume 

PPMV-pair  Pair of porosity and permeability matrix values 

PRF   Pulse repetition frequency 

Sc   Sandstone consolidated 

SCa   Secondary calcite vein 

SCaCB   Cemented breccia 

SCB   Shale supported carbonate breccia 

Sec   Second 

SGS   Sequential Gaussian Simulation 

SIS   Sequential Indicator Simulation 

Ss   Sandstone spreading 

SS   Shale smear 

Su   Sandstone unconsolidated 

SZ   Slip zone 
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T1   Trace 1 

TGS   Truncated Gaussian Simulation 

TLS   Terrestrial laser scanning 

URG   Upper Rhine Graben 

VBM   Volume Based Modeling 

W   Width 
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The Upper Rhine Graben (URG) has a long exploration history. The oil springs of 

“Baechel Brunn” were first mentioned in 1498 by the historian Jacob Wimpfeling, 

making them the first reported oil field in Europe. Originating from the exploitation of 

these oil seeps near Pechelbronn the hydrocarbon exploration started in 1627 and 

increased strongly during the 19th and 20th century with a total of 29 oil and gas fields 

exploited, and under exploration to this day (Mauthe et al., 1993; Reinhold et al., 2016). 

In contrast to Paleo- and Neogene successions, the Triassic Buntsandstein did not get 

much attention as a reservoir rock. However, the price-increase and especially the 

discovery of oil within the Buntsandstein near Speyer in 2003, during exploration for 

geothermal waters, moved it into focus. 

The deep geothermal energy history within the URG, on the other hand, is much younger 

with currently (March, 2020) five producing geothermal power plants (two on the 

French and three on the German side). In Soultz-sous-Forêt (France) the development 

of deep geothermal energy is driven forward since 1987. Its power plant started 

production in 2008. In Rittershoffen a second power plant in Alsace produces energy 

since 2016. On the German side power plants are located in Landau, Bruchsal, and 

Insheim (start of production in 2007, 2009, and 2012, respectively). Induced seismicity 

during production in Soultz-sous-Forêt and Landau, and an induced earthquake in 2006 

through fracking of a geothermal well in the Basel area lead to increased resistance 

against such projects and a temporary stop of production in Landau. As a further 

consequence, also a promising project within the URG in Brühl was stopped due to 

strong political and public resistance. 

Because high production rates are necessary for deep geothermal reservoirs to be 

profitable, fractured reservoirs are in the main focus of interest. More particularly fault 

zones bear a high geothermal potential as their damage zone shows an increase in 

fracture density. The fault core itself, however, can act either as a fluid barrier or a 

conduit. Caine et al. (1996) describes a fault zone as a lithologically heterogeneous and 

structurally anisotropic discontinuity in the rock, which points out the complexity as 

such. To understand geothermal reservoir rocks in the subsurface better, the 

multidisciplinary research project ‘AuGE’ (Outcrop Analogue Studies in Geothermal 

Exploration) was started in 2011. The project was funded by the German Federal 

Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, and 

subsequently by the German Federal Ministry for Economic Affairs and Energy 
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(reference number 0325302D). Main aim of AuGE was the investigation of outcrop 

analogues of potential reservoirs in the subsurface of the URG, and more specifically the 

detailed analysis, classification and modeling of fault zones to better understand 

reservoir relevant processes, and to predict potential issues during geothermal 

exploration. The research groups involved come from the GeoZentrum Nordbayern, the 

University of Göttingen, and the Heidelberg University. Two industrial partners, 

GeoThermal Engineering GmbH, Karlsruhe, and GeoEnergy GmbH, Karlsruhe, provided 

further support. 

 

 

The primary aim of the part of the project presented here was to investigate the 

properties of fractured reservoirs in outcrop to assess their geothermal potential within 

the subsurface of the URG applying a multi-method approach on outcrop analogues.  

The thesis deals with the volumetric modeling of a specific outcropping fault zone 

within the Triassic Lower Buntsandstein. A fault facies concept was applied with 

subsequent discrete fracture network (DFN) modeling to provide a better 

understanding of fault zones in general and to present implications on production from 

potential geothermal and hydrocarbon reservoirs. As the research relied on data and 

results provided by the project partners, the presented thesis could only be finished 

with a strong temporal delay. 

Its first main objective was to construct a digital outcrop model (DOM) to gather, 

visualize and georeference the data acquired by the project partners and the author. 

This included terrestrial laser scanning (TLS) and profile mapping synchronized with 

data by the project partners. The aim of the elaborated DOM was to serve as a basis for 

the own subsequent volumetric modeling. 

The second main objective comprises the construction of a volumetric fault zone model 

with the application of a fault facies concept. Therefore the fault zone was split into two 

geobodies, well established in structural geology, the damage zone and the fault core, 

which were treated separately in terms of facies distribution and petrophysical 

properties. The aim was to: (i) provide a detailed fault zone facies model offering many 

exciting options for subsequent DFN modeling, (ii) point out the challenges and 

possibilities of volumetric fault zone modeling, and (iii) evaluate the implication of fault 

facies on fractured reservoirs with the help of the own facies distribution results. 

The third main objective was to enhance the volumetric fault zone model with a DFN 

model, again calculated separately within the two geobodies. For this purpose the 
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author conducted a thorough fracture data parametrization. The aim of the upscaled 

DFN model is to: (i) conduct and compare diverse fracture properties, (ii) examine the 

impact of parametrization and different modeling techniques, and (iii), examine the 

implication on fractured reservoirs. 

 

 

 

 

Project AuGE was focused on the rift basin of the Upper Rhine Graben (URG), which 

spans parts of Germany, France and Switzerland. With the highest geothermal gradient 

in Germany of partly over 50 °C/km (Sauer et al., 1982; Prinz and Strauß, 2018) it bears 

a high potential for geothermal energy production.  

Natural outcrops in the URG are often not very good. Artificial outcrops (quarries) were 

mostly placed in areas distant from fault zones, faults within quarries are quite rare due 

to economic reasons. This study is focused on a key area, an active quarry at the western 

graben shoulder of the URG near Cleebourg (Alsace, France). An outcrop of a fault zone 
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within the quarry Cleebourg was the reason to choose this locality for research. It is 

located about 3 km south of the French-German border at the coordinates 49°0’48.92”N 

/ 7°53’24.54”E (Figure 1) and has a dimension of about 150 x 200 m. 

 

 

 

The main structural trends of the URG 

area were already established during the 

Variscan orogeny in Palaeozoic times, in 

particular during the Permo-

Carboniferous phase of wrench tectonics 

(Ziegler, 1990; Edel and Weber, 1995). 

Most distinctive is a NE to ENE striking 

trend with three major dislocation zones 

(Edel and Fluck, 1989; Schumacher, 

2002): (i) the Hunsrück-Taunus border 

fault (Anderle, 1987), (ii) the Lalaye-

Lubine-Baden-Baden fault (Wickert and 

Eisbacher, 1988), and (iii) the 

Badenweiler-Lenzkirch (Todtnau fault) 

zone (Krohe and Eisbacher, 1988) which 

subdivided the Variscan Internides and 

led to the formation of Permo-

Carboniferous troughs and highs (Figure 

2).  

Another important Variscan trend is 

marked by NNE oriented sinistral fault 

zones that are associated with Lower 

Carboniferous to Permian intrusive 

bodies and dyke swarms of the Vosges, 

Black Forest and Odenwald Mountains. 

The latter faults are seen as precursors of 

the Cenozoic URG (Cloos, 1939; Illies, 

1962; Schwarz and Henk, 2005; Ziegler  
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and Dèzes, 2006). After the end of the Variscan Orogeny and at the beginning of the 

breakup of the Pangean supercontinent the epicontinental Germanic Basin (also called 

Central European Basin) started to develop and persisted until the Late Jurassic 

(Ziegler, 1990; Golonka and Ford, 2000; Reinhardt and Ricken, 2000; Scheck-

Wenderoth et al., 2008). It extended over 1500 km from the British Isles in the west to 

Poland in the east and from the North Sea in the north to Switzerland in the south 

(Ziegler, 1990; Beutler and Szulc, 1999; Feist-Burkhardt et al., 2008). Variscan massifs 

served as source for clastic sedimentation and the interplay of subsidence, sediment 

supply, and sea-level fluctuation lead to the formation of different facies types of 

Triassic to Late Jurassic sediments (Bachmann et al., 1999; Feist-Burkhardt et al., 2008). 

These Mesozoic successions cover the partly peneplained Variscan basement and rest 

discordantly on the Permo-Carboniferous series (Schumacher, 2002). Triassic and 

Jurassic intraplate tectonics hardly had any influence on the prerift structure of the URG, 

though minor Mesozoic reactivation of late Palaeozoic fault systems is documented 

(Wetzel and Allia, 2000). Cretaceous sediments do not occur within the URG, because 

they were either not deposited or subsequently eroded (Ziegler, 1990; Reicherter et al., 

2008). Rifting in the South Atlantic and the Pyrenean Orogeny during the Late 

Cretaceous led to an inversion of the Germanic Basin, which in southern Germany 

caused the partial erosion of Mesozoic strata (Reicherter et al., 2008).  

During the late Eocene the formation of the URG was initiated (Illies, 1965; Illies, 1974; 

Pflug, 1982; Tobien, 1987; Hüttner, 1991; Ziegler, 1992; Schwarz, 1997; Schumacher, 

2002; Dèzes et al., 2004; Schwarz and Henk, 2005; Reicherter et al., 2008). The N-S to 

NNE-SSW compressional stress field led to the reactivation of Variscan and Permo-

Carboniferous ENE-WSW and NNE-SSW oriented dislocation zones in a transtensional 

strike-slip mode (Figure 3; Berger, 2002) and the individual late Palaeozoic troughs 

coalesced into the NNE trending graben in the late Priabonian (Schumacher, 2002; 

Schwarz and Henk, 2005). The following NW-SE to WNW-ESE extension initiated the 

rifting of the URG (Larroque and Laurent, 1988). Its main phase ended in the early 

Oligocene, but in the northern parts of the URG lasted until the late Oligocene (Illies and 

Greiner, 1979; Ziegler, 1992; Ziegler and Dèzes, 2006). 

In the early Miocene the stress field of the URG started to rotate from a NW-SE oriented 

extension to a NE-SW oriented extension (Bergerat, 1985), which led to contraction, 

local inversion, and sinistral and dextral oblique displacements of the major graben-

forming faults (Illies, 1975; Illies and Greiner, 1979; Bauer, 2018). Subsidence and 

sedimentation took place in the northern part of the URG (Doebl, 1967, 1970). In 
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contrast, the central and southern segments experienced uplift and partial erosion due 

to (i) reactivation of the central graben segment around Karlsruhe, and (ii) northern 

migration of the Alpine forebulge (Illies and Greiner, 1979; Laubscher, 1992; Rotstein 

et al., 2005; Rotstein and Schaming, 2011).  
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In Quaternary times subsidence resumed in the southern segments of the URG while the 

rift shoulders were uplifted (Bartz, 1974; Demoulin et al., 1998). Being still a subject of 

many studies, the recent tectonic stress field of the URG is characterized by (i) a uniform 

NW-SE to NNW-SSE oriented maximum horizontal stress with local variations of 130° 

to 135° in northern parts, and (ii) 145° to 160° in southern parts of the URG (Delouis et 

al., 1993; Plenefisch and Bonjer, 1997; Meixner et al., 2016; Heidbach et al., 2018). 

Today the URG forms the central segment of the European Cenozoic rift system (Ziegler, 

1994; Prodehl et al., 2006) and extends about 300 km from the Basel area in the south 

to the Frankfurt area in the north with an average width of 30-40 km (Figure 4). It is 

characterized by a half-graben structure with variable syn-sedimentary thicknesses. 

The thickest succession occurs in the northern segment close to the eastern main border 
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fault near Heidelberg and in the southern segment close to the western main boundary 

fault (Doebl and Teichmüller, 1979; Wenzel and Brun, 1991; Brun and Gutscher, 1992). 

In the study area, sediments are up to 3400 m thick close to the eastern margin of the 

Heidelberg Basin and decrease at the western margin of the URG to about 300 m 

thickness (Buness et al., 2008). 

 

 

 

The Buntsandstein Group of the Germanic Triassic is classified into the Lower, Middle 

and Upper Buntsandstein, further divided by lithostratigraphic formations, which show 

distinct lateral variabilities (see Lepper et al., 2006). The stratigraphic subdivision was 

initially based on solely lithological criteria (von Alberti, 1834), whereas Boigk (1959) 
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introduced a modern Buntsandstein lithostratigraphy based on geological mapping and 

wireline logs (Szurlies, 2007). Furthermore the Buntsandstein is characterized by a 

prominent cyclicity, which is subdivided into 10 to 30 m thick fining upward cycles 

(Dachroth, 1985; Paul and Klarr, 1988; Geluk and Röhling, 1997; Szurlies, 2001; Roman, 

2004). The correlation of this cycles over the Germanic Basin allows for a high-

resolution cyclostratigraphic framework, proven by magneto- and biostratigraphic 

methods, as well as wireline logs (Szurlies et al., 2003; Szurlies and Kozur, 2004; 

Hagdorn et al., 2009; Soyk, 2015). In addition widely traceable unconformities (Krämer 

and Kunz, 1969; Ortlam, 1974; Beutler, 1991; Aigner and Bachmann, 1992; Evans et al., 

1993; Rettig, 1995; Geluk and Röhling, 1997; Nawrocki, 1997; Radies et al., 2005; 

Filomena and Stollhofen, 2011) were used to propose a sequence stratigraphic 

framework (Aigner and Bachmann, 1992; Geluk and Röhling, 1997).  

However, in the southern marginal area of the Germanic Basin the above-mentioned 

cycles cannot be traced and the lithostratigraphic correlation is often uncertain.  

Reasons are a drastic decrease in sediment thickness, missing or stacked 

unconformities and an incomplete stratigraphic record. It is therefore very difficult to 

distinguish the different formations present farther to the north. The differences are 

due to proximity to the source areas, which caused the eroded material to often bypass 

the investigated area to basin center in the north, resulting in increased grain sizes and 

noncontinuous sedimentation in the area of the URG (Figure 5; Backhaus, 1974; Paul, 

1982; Dachroth, 1985; Ziegler, 1990; Lepper et al., 2006). 
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This stratigraphic uncertainty led to a controversy about the subdivision of the 

Buntsandstein strata in especially the western part of the URG, resulting in various 

classifications for this marginal area and different local names (Andreae et al., 1892; 

Perriaux, 1961; Hollinger, 1969; Konrad, 1971; Backhaus, 1974; Richter-Bernburg, 

1974; Ménillet et al., 1989; Bourquin et al., 2006; German Stratigraphic Commission, 

2016). Furthermore the location of the studied outcrop close to the German-French 

border caused geologists to use either the French or the German stratigraphy, which 

differ. An overview of the most common classifications for the outcrop area is given in 

Figure 6, while this thesis applies the most recent stratigraphic subdivision after the 

German Stratigraphic Commission (2016). 

 

 

 

The southern marginal area of the Germanic Basin comprises three major sedimentary 

cycles (see Figure 6): Two progradational fluvial cycles (“Eck-Zyklus” and 

“Hauptkonglomerat-Zyklus”) followed by a third retrogradational fluvial cycle (“Röt-

Zyklus”; Eisbacher and Fielitz, 2010). 

Andreae et al. (1892) classified the studied outcrop as “Lower Grès Vosgien”, Ménillet 

et al. (1989) as “Grès Vosgien, undifferentiated” while Eisbacher and Fielitz (2010) 

allocated the outcrop to the “Trifelsschichten”. Despite these differences in 

nomenclature all authors refer to the same succession (see Figure 6). By applying the 
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stratigraphic subdivision of the German Stratigraphic Commission (2016) the studied 

outcrop will be referred to the “Trifelsschichten” of the Lower Buntsandstein (Figure 

7), which is located in the first progradational fluvial cycle called “Eck-Zyklus” by 

Eisbacher and Fielitz (2010) that started already in the Permian. 

During the Early Buntsandstein times the Germanic Basin largely resembled the 

geometry of the previous Zechstein Basin, but overstepped its former margins. Clastic 

sediments from the northern and southern basin margins were transported towards 

the central Germanic Basin, where a playa-lake to shallow marine environment 

developed (Figure 5; Wolburg, 1961; Trusheim, 1963; Wolburg, 1968; Ziegler, 1990; 

Feist-Burkhardt et al., 2008; Soyk, 2015). Along the basin margins fluvial, alluvial, 

lacustrine and minor aeolian sediments were deposited while the transition from 

predominantly sandy fluvial to mainly shaly playa successions took place just to the 

north of the Rhenish Massif (Füchtbauer, 1967; Backhaus, 1974; Dachroth, 1985). The 

thickness of the Lower Buntsandstein reaches 400 to 450 m in the central part of the 

Germanic basin and 280 to 340 m in the more southward Rhön and Fulda area 

(Backhaus and Reul, 1971; Ziegler, 1990; Feist-Burkhardt et al., 2008), while for the 

southern marginal basin area, where the studied outcrop is located, a maximum 

thickness of 250 m is reported for the Buntsandstein Group (Eisbacher and Fielitz, 

2010). This thickness information comprises not only the Lower Buntsandstein, but 

also the “Karlstalschichten” of the Middle 

Buntsandstein, indicating an even 

smaller thickness for the Lower 

Buntsandstein on its own. 

In the southwest of Wissembourg 

(Figure 8) the Germanic Basin is split 

into several mainly southeastward tilted 

blocks within the 10 km wide Saverne 

fracture field, which is confined by the 

Vosgian Fault in the west and the Rhine 

Graben main border fault in the east 

(Eisbacher and Fielitz, 2010). These 

blocks comprehend normal conjugate to 

left-lateral shear fault systems, forming 

small horsts and grabens (Bossennec et 

al., 2018). 
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The studied outcrop is located in the northeast of the Saverne fracture field on the edge 

of the 2 km wide Hochwald Horst (Figure 8), which is part of a flexure zone with layers 

dipping up to 40° in south-eastern direction (Eisbacher and Fielitz, 2010). A large fault 

can be observed within the studied outcrop, which is probably the Rhine Graben main 

fault with a displacement of 900 to 1200 m (Doebl, 1967; Doebl and Olbrecht, 1974; 

Eisbacher and Fielitz, 2010). This will be discussed in chapter 5.2. 

The whole outcrop represents a foot wall (Figure 9). The fault core crops out with a 

minimum thickness of 14 m (Bauer et al., 2015), and a 50 to 60 m thick damage zone, 

its external limits not visible. Both parts of the outcrop are clearly differentiated by a 

slip surface. The fault core is characterized by consolidated to unconsolidated material 

composed of sand, silt and clay and structural elements of mostly slip surfaces and 

deformation bands (Bauer et al., 2015). The damage zone shows mainly fine to medium 

grained sandstones with a relatively good sorting (Bossennec et al., 2018). These 

sandstones are yellowish-light to brownish bleached and represent the “Haardtrand 

Fazies”, mixed with bright-white bleached and red sandstones (Soyk, 2015). 
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The main part of this study regards the numerical modeling of the fault zone. To provide 

the framework for the modeling classical geological fieldwork, as well as terrestrial 

laser scanning (TLS) and subsequent development of a digital outcrop model (DOM) 

was carried out. In addition data provided by project partners were processed and 

integrated in this thesis. 

 

 

 

To cover the whole succession of the Buntsandstein outcrop near Cleebourg four 

geological profiles were mapped considering lithology, layer thickness, sedimentary 

structure, sorting, grain-size, and erosion of bases. Geological compass measurements 

provided information regarding the layer orientation. Through additional layer tracing 

the lateral thinning or thickening were examined. Based on this information the 

succession was subdivided into geological units. 

 

 

Laser scanning, also known as LiDAR (Light Detection And Ranging), is a technique that 

came into the focus of surveying around the millennium turn (Kraus and Pfeifer, 1998; 

Evans et al., 2001; Persson et al., 2002; Reutebuch et al., 2005). TLS, as a more specific 

section of laser scanning, was applied more widely in the early twenty-first century as 

the equipment became smaller and more robust. Along with new software being 

developed, which was able to deal with more complex data, the method obtained 

practical use for fieldwork in different parts of applied science with a very high potential 

for geology (Fröhlich and Mettenleiter, 2004; Slob and Hack, 2004; Buckley et al., 2008; 

Vosselman and Maas, 2010; Schumann et al., 2011). In this study TLS was accomplished 

with the scanner ILRIS HD-ER from Optech operated by a laptop (Figure 10), employing 

proprietary software (see chapter 3.2). This system offers a laser pulse repetition rate 

of 10 kHz at measurement ranges from 3 to 1800 m at 80 % reflectivity within a 40° x 

40° field of view (Optech, 2014). The full parameter list is shown in Table 1. For each 

scan a 3D point cloud with spatial information was generated and a corresponding high-

resolution digital image was taken for subsequent photo projection. Additional GPS and 

compass measurements allowed the determination of the spatial orientation. 
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The interest to develop digital techniques for outcrop analysis was driven mostly from 

the petroleum sector, where quantitative spatial information on geological 

heterogeneity and elements are necessary to improve the accuracy of numerical 

geocellular and petrophysical models of subsurface reservoirs (Alexander, 1993; Bryant 

and Flint, 1993; Tinker, 1996; Bryant et al., 2000; Rarity et al., 2014). With the above 

mentioned advances in TLS surveying technology during the early twenty-first century 

it became possible to efficiently collect 3D digital datasets from outcrops allowing 

reliable measurements and interpretations of geological features combined with its 

spatial information (Bellian et al., 2005; McCaffrey et al., 2005; Pringle et al., 2006; 

Thurmond et al., 2007; Verwer et al., 2007; Fabuel-Perez et al., 2009; van Lanen et al., 

2009; Fabuel-Perez et al., 2010; Tomás et al., 2010; Benson et al., 2012; Hodgetts, 2013; 

Rarity et al., 2014). The digital outcrop modeling in this study was conducted with the 

help of the software Parser (Optech, 2011) and JRC Reconstructor 2 (Gexcel, 2012) and 

is described in detail in chapter 3.2.1. 

 

 

A fault zone can be described as a zone of focused deformation that can be subdivided 

into two subdomains, termed “core” and “damage zone”. In the fault core most 

displacement is accommodated, whereas the latter is mechanically related to the 

growth of the fault zone (Sibson, 1977; Chester and Logan, 1987; Davison and Wang, 

1988; Forster and Evans, 1991; Byerlee, 1993; Scholz and Anders, 1994; Caine et al., 

1996; Bastesen and Braathen, 2010; Bense et al., 2013). One of the biggest challenges is 

to represent and parameterize the complex structure of a fault zone, in particular the 

fault core, into a geological model (Garven et al., 1999; Lunn et al., 2008; Faulkner et al., 
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2010; Bense et al., 2013). For this purpose the lithological properties of both 

subdomains (damage zone and fault core) are treated separately in this thesis. 

The classification of the lithofacies types of the damage zone was carried out after Miall 

(1977, 1978), whereas in the more complex fault core a “fault core facies model” was 

established inspired by the “fault facies model” after Fredman et al. (2008), Braathen et 

al. (2009), Bastesen and Braathen (2010), and Fachri et al. (2011). For a detailed 

description the reader is referred to chapter 3.1.2. 

 

 

The numerical modeling was performed with the reservoir modeling software Petrel 

version 2016.3 (Schlumberger, 2016), which provides the user with a vast amount of 

modeling and visualization techniques. This software was used to construct an outcrop 

analogue reservoir model of a fault zone with a volumetric fault core, which was 

subsequently enhanced with a discrete fracture network (DFN) model. 

 

 

Outcrop-analogue based models of geobodies were progressively developed since the 

1990s, especially within the hydrocarbon industry. Main motor of this development was 

the great uncertainty about the values of structural and sedimentological parameters of 

2D and 3D seismic data, relevant for the interpretation of reservoirs and other 

geobodies of interest (Alexander, 1993; Bryant and Flint, 1993; Strobl et al., 1997; 

Bryant et al., 2000; Vennin et al., 2003; Pringle et al., 2004; Enge et al., 2007). Outcrop 

analogue reservoir modeling represents the approach of bridging large-scale low 

density seismic data and small-scale high density well data. For the construction of the 

fault zone model in this study a series of basic outcrop analogue data was needed, which 

was georeferenced and provided with the help of the DOM (chapter 0). Further steps 

comprise the surface modeling, structural modeling, and property modeling. Structural 

modeling includes the substeps fault framework modeling, horizon modeling, and 

structural gridding, while the property modeling encompasses the substeps 

petrophysical and facies modeling. The procedure is described in detail in chapter 3.3. 
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The characterization of fractured rocks may be one of the most challenging problems 

for geologists. Fracture networks represent the main pathways for fluid flow and 

transport in low-permeable rocks and are therefore of utmost economic interest for 

petroleum geology, geothermal exploration, and the generation of ore deposits 

(Faybishenko et al., 2000; Berkowitz, 2002; Neuman, 2005; Adler et al., 2012; Karra et 

al., 2018). Hence, multiple modeling approaches have been developed over the past 

decades to capture the features of fracture networks and allow fairly accurate 

predictions. The discrete fracture network (DFN) method is one of this approaches. Its 

strength is the ability to consider the volume, size, and geometric properties like length, 

orientation, and aperture of fracture networks to characterize the spatial distribution 

of fractures (Liu et al., 2018). DFN was therefore the modeling approach of choice for 

many different studies in the last decade (Karimi-Fard et al., 2004; Jambayev, 2007; Li 

and Lee, 2008; Chesnaux et al., 2009; Wilson et al., 2011; Dreuzy et al., 2012; Hoffman 

and Narr, 2012; Zeeb, 2013; Bisdom et al., 2014; Lei et al., 2014; Malinouskaya et al., 

2014; Agar and Geiger, 2015; Liu et al., 2016; Karra et al., 2018; Wenli et al., 2019), 

including this thesis. The conducted DFN parameterization, modeling and subsequent 

upscaling will be addressed in detail in chapter 3.4 and 3.5. 
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This chapter describes in detail the methodology to build a volumetric fault zone model 

subsequently combined with a DFN model. An overview of the steps taken is given in 

Figure 11. Johanna Bauer, Silke Meier and Sonja Philipp (Department of Structural 

Geology, University of Göttingen) provided the raw fracture data for the Cleebourg 

quarry, which were processed and adapted to the needs of the applied methodology. 

Maria Filomena and Harald Stollhofen (workgroup for petrophysics, GeoZentrum 

Nordbayern) provided petrophysical data and additional geological profiles for the 

studied outcrop. Data given by the project partners is only presented in its processed 

form. For the raw data the reader has to contact the original owner. 
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The classification of the lithofacies types of the damage zone (DZ) applies the 

terminology of Miall (1977, 1978) with minor modifications, based on data taken during 

profile mapping. These comprise the lithology, layer thickness, sedimentary structure, 

grain size, sorting, and the lateral thinning or thickening character of the specific layer. 

A lithofacies type has been assigned to every geological unit defined. 

 

 

Porosity and permeability values were assigned to the geological units according to the 

petrophysical data provided by the project partners from the workgroup for 

petrophysics. In the rare case of absent data for a geological unit the petrophysical 

values of a comparable unit, belonging to the same lithofacies type, were applied. 

 

 

 

 

To apply a heterogeneous porosity and permeability distribution to the fault core (FC) 

it was divided into sections of preferably homogeneous properties. For this purpose the 

author established a “fault core facies model” inspired by the “fault facies model” after 
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Fredman et al. (2008), Braathen et al. (2009), Bastesen and Braathen (2010), and Fachri 

et al. (2011). The FC facies model is based on the elaborated FC architecture and 

lithological description provided by the project partner Johanna Bauer (Bauer et al., 

2015, Figure 12). The authors describe different lithological and structural elements. 

Table 2 provides an overview of the fault core elements incorporated or not in the fault 

core facies model. Several elements had their terminology modified, or were subdivided 

for a more detailed handling. 

 


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
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It is crucial to comprehend, that the cell size of the Petrel grid is 0.5 x 0.5 x 0.2 m (XYZ, 

see chapter 3.3.3.3). A fault core facies body needs therefore more than 50 % of these 

values to be considered as dominant part of a cell. If the values are below, they do not 

appear. Furthermore a grid cell is limited to one porosity and one permeability matrix 

value, which had to be considered in the FC division and FC facies type definition. In 
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contrast to frequent problems in the horizontal dimension, the minimum vertical extent 

of 0.2 m of a fault core facies body did not imply crucial limitations. For the sake of 

simplicity the term “pair of porosity and permeability matrix values” will be referred 

hereinafter to as “PPMV-pair”, the term “fault core facies body” to “FCFB”, and the term 

“fault core facies type” to “FCFT”. 

Prior to the FC division into representable FCFB and the assignment of FCFTs it was 

inevitable to decide which FC elements could be represented in relation to its 

description and the technical limitations given and subsequently define them as FCFTs. 

All five lithological elements were implemented as FCFTs. However, the elements “silt 

unconsolidated, soft” and “clay unconsolidated, soft” were interpreted as fault gouge 

and will hereinafter be referred to as “gouge, silt unconsolidated” and “gouge, clay 

unconsolidated”.  

Five structural elements presented by Bauer et al. (2015) were largely descriptive, of 

unknown importance, or of too low dimension to be incorporated in the model. These 

are: (i) fabric, (ii) debris, (iii) Fe/Mn concretions, (iv) host rock lenses, and (v) 

sandstone pebbles. Regarding “fabric” Bauer et al. (2015) gave no further information 

on petrophysical properties of this structural element. “Debris” is no structural element, 

it represents dumped earth and rocks covering other elements. “Host rock lenses” were 

usually too small in their extent to be represented as separate FCFBs. However, an 

exception for slightly bigger single rock lenses may be possible, which is discussed in 

chapter 5.3.2. “Fe/Mn concretions” and “sandstone pebbles” were too small in size to be 

represented as a dominant part of cells. If they should be incorporated, a possible 

solution is discussed in chapter 5.3.2. The structural element “fracture” represents a 

special case, as fractures were treated separately in the DFN (see chapter 3.4) and 

therefore do not belong in the FC facies model. 

The remaining two structural elements “deformation band” and “slip surface” are of 

importance. Five structural sub-elements are defined here depending on their 

aggregation and extension: (i) single deformation band, (ii) deformation band cluster, 

(iii) single slip surface, (iv) slip zone, and (v) deformation band cluster along with a slip 

zone. According to the original description all the deformation bands incorporated in 

the sub-elements are cataclastic (Aydin, 1978; Aydin and Johnson, 1978; Davis, 1999), 

although Bauer et al. (2015) did not specifically term the type of the deformation bands 

found. 

Not all structural sub-elements can be represented in the FC facies model regarding the 

technical limitations of the model. Single deformation bands cannot be incorporated in 
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the model: they occur less frequently in FCs compared to deformation band clusters and 

show a width of only 1 cm (rarely 2 cm, Fossen et al., 2007). Also single slip surfaces are 

too small in their horizontal extent to be included. However, most single slip surfaces 

confine the lithological elements “gouge, silt unconsolidated” and “gouge, clay 

unconsolidated” and were therefore treated as a part of these FCFTs.  

One broader section of the FC is dominated by structural elements showing a 

deformation band cluster along with a slip zone (seen in Figure 13 as the right two-

thirds of the green SZ). It has a sufficient extent to be treated as a FCFB but bears the 

complication of two coexisting structural elements. Since this element is dominated by 

slip surfaces it is treated as a slip zone (Foxford et al., 1996), which also holds a higher 

sealing capacity compared to deformation bands (Torabi et al., 2013). Hence, two 

structural elements present were incorporated into the FC facies model as FCFTs, which 

are “deformation band cluster” and “slip zone”.  

With the mentioned limitations seven FCFTs were established, five of lithological and 

two of structural origin (Figure 13): (i) sandstone consolidated (Sc), (ii) sandstone 

spreading (Ss), (iii) sandstone unconsolidated (Su), (iv) gouge, silt unconsolidated (Gs), 

(v) gouge, clay unconsolidated (Gc), (vi) deformation band cluster (DBC), and (vii) slip 

zone (SZ). 

 

 

The FC architecture shows a combination of lithological and structural elements and 

transitions in between (Figure 12), typical for a FC (Toy et al., 2015; Gabrielsen et al., 

2017; Skar et al., 2017). Thus a FCFB commonly does not consist of a single FCFT, may 

it be of structural or lithological origin. However, considering the technical limitations 

of the model, a FCFB had to be narrowed down to one PPMV-pair. An additional 

challenge was, that no petrophysical data were available for the FC from the other 

working groups. PPMV-pairs for the FCFTs were therefore derived from petrophysical 

data of the DZ and literature. It soon proved to be problematic to deduce PPMV-pair 

values for FCFBs, which consist of multiple FCFTs. The FCFBs had therefore to be 

restricted to one single FCFT based on the extent, frequency of occurrence, and 

significance of the different FCFTs encountered. 

The PPMV-pair information of the FC is imported into Petrel via petrophysical logs of a 

constructed artificial well based on a scanline traversing the FC (see also chapter 

3.3.4.2). For this purpose the author divided the FC into 2D segments of the FCFBs along  
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the scanline, considering the previously mentioned restrictions. The established FCFTs 

were subsequently assigned to the FCFBs with the result of a FC facies log (Figure 13). 

As mentioned above the estimation of the PPMV-pairs of the FCFTs had to be derived 

from the petrophysical data available and literature. For the lithological FCFT 

“sandstone consolidated (Sc)” mean values were calculated and used for porosity and 

permeability based on the unpublished petrophysical data from the project partners 

available for consolidated sandstone. For the lithological FCFTs “sandstone 

unconsolidated (Su)”, “gouge, silt unconsolidated (Gs)” and “gouge, clay unconsolidated 

(Gc)” literature values were used after Manger (1963) for porosity and Bear (1972) for 

permeability. For the FCFT “sandstone spreading (Ss)” no values could be found in 

literature, an intermediate value was estimated considering the values used for the 

FCFTs “Sc” and “Su”. 

The PPMV-pairs of the two structural FCFTs “deformation band cluster (DBC)” and “slip 

zone (SZ)” were estimated according to data from Chilingarian (1964), Fossen et al. 

(2007), and Torabi et al. (2013). The latter author analyzed the porosity, permeability 

and capillary pressure of deformed sandstones in FCs (including cataclastic 

deformation band clusters and FC slip zones) and described the relationship between 

its porosity and permeability by power-law regressions. Chilingarian (1964) described 

the relationship between porosity and permeability of sandstones of different grain 
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sizes while Fossen et al. (2007) gave a review on porosity and permeability values of 

cataclastic deformation bands with regard to the petrophysical properties of their host 

rocks. Although deformation bands were examined, these studies did not explicitly 

distinguish between DZ and FC. It is assumed, however, that the mechanical and 

petrophysical requirements to form these bands have to be at least similar and are 

therefore applied to the FC deformation band clusters encountered. 

To derive the petrophysical values for deformed rocks in fault zones, the values of 

undeformed original rocks were needed. Therefore the previously calculated 

petrophysical matrix values of consolidated sandstone were chosen as the PPMV-pair 

for the undeformed protolith. Many different studies (Pittman, 1981; Jamison and 

Stearns, 1982; Harper and Moftah, 1985; Knott, 1993; Antonellini and Aydin, 1994; 

Gibson, 1994; Knipe et al., 1997; Crawford, 1998; Gibson, 1998; Antonellini et al., 1999; 

Fisher and Knipe, 2001; Jourde et al., 2002; Shipton et al., 2002; Fossen et al., 2007) 

show, that the porosity of cataclastic deformation bands is reduced by up to an order of 

magnitude, compared with the undeformed host rock. Permeability even decreases by 

two to three (locally as much as six) orders of magnitude. Laboratory measurements 

conducted by Torabi et al. (2013) show a smaller reduction: porosity values were 

reduced by half, permeability by one to two orders of magnitude. Based on these 

information and the PPMV-pair of the host rock a PPMV-pair for single deformation 

bands was derived. In order to estimate the PPMV-pairs of the two structural FCFTs a 

figure by Torabi et al. (2013) was used as an visual aid (Figure 14). It summarizes 

power-law regressions describing the relationship between porosity and permeability 

and includes results by Chilingarian (1964), which describe the relationship between 

the porosity and permeability of sandstones of different grain sizes. The here presented 

data show, that for the same porosity the host rock’s permeability (marked as blue star 

in Figure 14) is a magnitude higher than the permeability of the host rock’s power-law 

regression. Unfortunately the density of the own data is not sufficient to calculate 

power-law regressions. However, the data by Torabi et al. (2013) show a spread of 

permeability compared to the same porosity of host rocks by one to two orders of 

magnitude. In the area of work fine-grained sandstones are present. As also seen in 

Figure 14, the host rock values of this study match the data for fine-grained sandstone 

by Chilingarian (1964). Hence, both sources strengthen the chosen host rock’s PPMV-

pair. 

The final estimation of the structural FCFTs DBC (marked as red star in Figure 14) and 

SZ (marked as green star in Figure 14) was carried out under the consideration of (i) 
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the specific host rock’s PPMV-pair, (ii) the derived PPMV-pair for single deformation 

bands (marked as yellow star in Figure 14), (iii) the overall trend and relative relation 

of the power-law regressions, and (ii) two conclusions by Torabi et al. (2013), which 

state that: (a) for a given porosity, permeability is higher in undeformed host rock 

samples than in deformed ones and will decrease with the degree of deformation, and 

(b) the sealing capacity of a FC slip zone is higher than that of single deformation bands 

and clusters of bands. 

 

 



26   
 

 

 

In this study the raw ILRIS-HD-ER 

point cloud data were first 

preprocessed with the software 

Parser from Optech (2011), which 

generates spatially oriented point 

clouds with an 8-bit reflectance 

information formatted for export 

into other programs. All 

subsequent steps in the digital 

outcrop modeling process were 

carried out with the software JRC 

Reconstructor 2 from Gexcel 

(2012). After the import of the 

preprocessed point clouds the 

following steps were performed 

(Figure 15):  

1. Cutting of the point clouds to 

remove vegetation for better 

sight and to crop information 

from outside the area of 

interest to reduce data size. 

2. Second processing of the point 

clouds, which comprises three 

sub-steps:  

a) Computation of normals: Calculation of a tangent plane for every point 

considering their 3D neighborhood. Necessary for the “inclination” color 

mapping of the point clouds in subsequent steps. 

b) Computation of confidence: A confidence value is calculated for every point 

representing reliability of the range measurement. Its accuracy depends mainly 

on the angle between the laser beam and the targets tangent plane, the distance 

to the target, the material of the object and the intensity of the reflected signal. 

The confidence value itself is calculated as a weighted sum of the surface normal, 
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the range value and the reflectance value (Gexcel, 2010a) and is necessary for 

the “confidence” color mapping of the point clouds in following steps. 

c) Edge detection: Extracts two types of geometrically significant edges from the 

point cloud. “Jump edges” (or depth discontinuities), which occur when the laser 

beams passes an edge and hits an object in the background and “crease edges” 

(or orientation discontinuities), which are characterized by an abrupt change in 

the surface orientation (Gexcel, 2010a). 

These steps derive and add extra information to the point cloud raw grid, which is 

useful in further processing steps (Gexcel, 2010a). 

3. Alignment of the point clouds including two sub-steps: 

a) Manual alignment (pre-registration) of the point clouds through picking of 

corresponding points along overlapping parts. This is performed with the help 

of reflectance, inclination, and confidence color mapping types of the point cloud 

raw grid (Figure 16). A minimum of three picked point pairs is necessary to align 

the two point clouds; however, with an increasing amount of point pairs picked 

the error of the alignment can be significantly further reduced. To guarantee a 

correct spatial orientation of the final DOM the best-situated point cloud was 

georeferenced and chosen to serve as basis of alignment.  

b) Automatic fine alignment (fine registration) based on the previous manual 

alignment for further reduction of the error (Gexcel, 2010b). 

4. Meshing of the point clouds with the implementation of the previously gained edge 

detection information, which leads to a more complex mesh around edges and thus 

a higher mesh quality (Gexcel, 2010c). A confidence color mapping was chosen for 

the generated meshes. 

5. For the image projection the high-resolution digital images taken during the 

fieldwork (TLS phase, chapter 2.1.2) were graphically optimized and subsequently 

calibrated by manual picking of corresponding points on the image and its matching 

point cloud (Figure 17). For the calculation of the image projection a minimum of 11 

picked pairs of points is necessary, while additional point pairs contribute to a 

smaller error and thus a more precise projection on its matching point cloud (Gexcel, 

2010d). 

6. The texture mapping process represents the last step towards a DOM. It utilizes the 

generated meshes (step 4) and calculated projections (steps 5) and merges both to 

a texture map, which represents a high-resolution image on a 3D body. 
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The final DOM was used to gather, visualize, and georeference data acquired by project 

partners and the author, which includes profiles, sampling locations and scanlines. By 

combining the georeferenced 1D and 2D information and the DOM it was possible to 

expand and interpret data in 3D. Geological unit boundaries, bed tops, and the FC 

boundary were picked (Figure 18) and exported including their spatial information for 

subsequent import into Petrel (Schlumberger, 2016). 
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In order to establish a volumetric fault zone model combined with a DFN model in Petrel 

(Schlumberger, 2016) a series of basic data was needed, which was georeferenced and 

provided with the help of the DOM (chapter 3.2.2). This data was imported into Petrel 

and comprises: (i) a point cloud of the outcrop, (ii) geological profiles, (iii) tops of the 

geological units, (iv) scanlines, (v) a FC boundary plane, and (vi) FC logs (Figure 19). 

(i) The merged point cloud of the outcrop was limited to the area of interest (AOI) and 

sub-sampled by a factor of 10 to assure a smooth presentability within the modeling 

software.  

(ii) Geological profiles were imported as wells comprising the ones acquired during own 

fieldwork and additional profiles provided by project partners from the GeoZentrum 

Nordbayern. 

(iii) The tops of the geological units were imported into Petrel as well tops with spatial 

orientation data (dip angle and azimuth) and points with spatial orientation data. This 

information was gathered through the interpretation of the available profiles, tracing of 

unit boundaries, picking of unit boundaries in the DOM, and compass measurements. 

Furthermore, some horizon tops, which were clearly assignable to tops of geological 

units but lacked geological compass measurements were cut out of the DOM as small 

point clouds and imported into Petrel. These small point clouds were then converted 

into surfaces, which in turn gave the opportunity to compute its mean spatial 

orientation. Additional points with a spatial orientation could be generated by this 

method to increase the data density. 
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(iv) Scanlines provided by project partners from the University of Göttingen were 

imported as wells containing fracture data. 

(v) In order to be able to split the DZ from the FC it was necessary to construct a FC 

boundary plane: the exposed FC boundary in the DOM was picked and combined with 

the average spatial orientation of the main fault zone slip surface to position this 

boundary plane. 

(vi) The petrophysical FC logs derived from the FC facies log were imported into Petrel 

via a constructed well along a scanline traversing the FC. They hold the same position 

like the FC facies log generated in chapter 3.1.2 (Figure 13). 
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Modeling of the top-surfaces of the geological units of the DZ was based on two different 

data types with a spatial orientation (dip angle and azimuth), well tops and additional 

points. Multiple algorithms were tested for the surface calculation, two of these proved 

useful, the “convergent interpolation” and the “conformal gridding” algorithms. In both 

cases a grid increment of 0.5 m was chosen. 

The convergent interpolation algorithm is control-point oriented and suited for a 

wide range of data types and densities. With each iteration the algorithm converges 

upon the solution (calculated top-surface), adding more resolution, reaching a high 

performance without data searching or sorting. Each iteration of the convergent 

interpolation algorithm consists of three sequential steps: (i) refining, increase of the 

grid resolution, (ii) snapping, re-gridding of the data, and (iii) smoothing, minimizing 

the grid curvature (Gunnarsson, 2011; Sbrana et al., 2018). This process is data-driven, 

requires minimal parameter control, and offers a stable extrapolation even at large 

distances from the data. An advantage is, that this algorithm allows to incorporate the 

dip angle and azimuth information of the well tops and of additional points to calculate 

the top-surfaces of geological units. The convergent interpolation algorithm was used 

in cases of large exposed geological units (no. 7, 9, 10, 11, and 12), which offered a high 

amount of control-points. The previously conducted FC boundary plane calculation 

applied also this algorithm with a grid increment of 0.5 m. 

The conformal gridding algorithm uses the z-values of well tops and additional points 

and allows to conform the calculated surface to one or two horizons above and/or 

below that surfaces. This algorithm was used for the top-surface calculation of 

geological units that had a minor exposure and thus a smaller amount of control points 

(no. 1, 2, 3, 4, 5, 6, 8, and the base-surface). 

In order to make the subsequent horizon modeling process (see chapter 3.3.3.2) less 

error-prone the calculated surfaces of the DZ were cut close to the FC boundary plane. 

The surfaces did therefore not extend into the FC. In case of the FC two surfaces were 

necessary for the subsequent horizon modeling process, a FC top and a FC base surface. 

In this case the extended part of the surface of unit 12 was used as FC top and the 

extended part of the base-surface was used as the FC base. 

 

 

The structural model was built with the help of the Petrel structural framework, which 

represents the overall geometry of the model and is the backbone for designing the 3D 
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grid, which contains the geological and petrophysical information and the subsequently 

generated reservoir properties (Naji et al., 2010). The three main processes of the 

structural framework modeling within this study are the fault framework, the horizon 

modeling, and the structural gridding processes. 

 

 

The fault framework process was used to separate the DZ from the FC along the FC 

boundary, which allows to treat both parts independently. For this purpose a fault 

surface with a grid interval of 5 was generated based on the previously calculated FC 

boundary plane. This generated fault surface serves solely as a construction aid for the 

structural framework and has no further geological purpose. 

 

 

The horizon modeling process creates horizons individually by honoring the fault 

surface and subsequently applying the horizon truncation information. It was 

performed with the help of the Volume Based Modeling (VBM) technique (Souche et al., 

2013), which revolves around the concept of implicit modeling. It relies on the 

representation of surfaces as iso-values of a volume attribute and is usually referred to 

as “implicit function”. This function corresponds to the stratigraphic age of the rock 

units and is embedded and interpolated in an unstructured tetrahedral mesh, normally 

associated with the construction of multi-z geobody surfaces (Frank et al., 2007; Souche 

et al., 2013). The VBM technique consists of three main steps: (i) the construction of a 

tetrahedral mesh for carrying and interpolating the implicit function, (ii) interpolating 

the values of the implicit function on the nodes of the tetrahedral mesh, and (iii) 

generating the surfaces representing every implicitly modeled horizon. 

The VBM method gives the opportunity to generate a consistent zone model (see 

chapter 3.3.3.3) with multiple advantages. It is practically insensitive to the complexity 

of the fault model. Conformable horizons, which belong to the same sequence are 

modeled simultaneously and cannot cross each other (Lepage and Souche, 2016). Every 

conformable horizon constrains the geometry of all other conformable horizons of the 

same sequence and is also constrained by their geometry. This provides the geometry 

of a horizon and the volume attribute, representing the stratigraphic age of the rock 

unit. For more detailed information about the VBM technique see Souche et al. (2013) 

and Lepage and Souche (2016). 
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In this study “conformable” and “base” horizon types were applied and a “normal” 

complexity of the model was chosen. The input data comprised the calculated top-

surfaces of the geological units and the base-surface of the DZ, the FC top and FC base 

surfaces (chapter 3.3.2), as well as the fault surface (chapter 3.3.3.1). 

 

 

With the structural gridding process a fully stair-stepped corner point grid is created in 

a single process directly from the structural framework. The lateral dimension of the 

cells was set to 0.5 x 0.5 m (X and Y) with a minimum cell thickness of 0.2 m (Y). The 

zone layering was set to “follow base” causing the layers to be cut at the top. 

 

 

The property modeling process allows to populate the model grid with a multitude of 

various properties, e.g. porosity and permeability information, distributed either 

directly in the case of the DZ, or through a stochastic algorithm in the case of the FC. 

Furthermore the process was used to populate the DZ and FC geobodies with the P32 

intensity, which will be addressed in chapter 3.4.7. 

 

 

The PPMV-pairs of the DZ were assigned directly to the zones created during the 

structural gridding process in chapter 3.3.3.3. The zones correspond to the geological 

units, whose PPMV-pairs were previously specified in chapter 3.1.1.2. 

 

 

To populate the FCFBs with the PPMV-pairs of their corresponding FCFTs (chapter 

3.1.2.2) an artificial well was constructed based on a scanline traversing the FC (Figure 

13). Its exact location was determined and georeferenced within the DOM (chapter 

3.2.2), assisted by the project partner Johanna Bauer. 

From the constructed FC facies log (chapter 3.1.2.2) a matrix porosity and a matrix 

permeability log were derived and assigned to the artificial well. To upscale the logs on 

the grid cells traversed by the artificial well, different averaging methods for the cell 

values were tested. For this study the “arithmetic” average method was chosen. For the 

sample selection both logs were treated “as lines” and the “simple” sample selection 

method was chosen to ensure that every cell along the well trajectory receives a value. 
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The entire model grid was then populated with porosity and permeability information 

through the upscaled logs. Multiple algorithms were tested and the Sequential Gaussian 

Simulation (SGS) algorithm, which is already implemented into Petrel, was chosen as 

best suited for this process. 

The SGS algorithm is a stochastic Geostatistical Software Library (GSLIB) interpolation 

algorithm. It is based on kriging and is widely used because it works fast and 

straightforward (Deutsch and Journel, 1998; Delbari et al., 2009). Honoring trends, 

variograms, input data, and input distributions the algorithm generates local highs and 

lows between the input data locations. A random seed number supplied by the software 

or the user initiates the procedure. In the process all grid nodes are visited through a 

randomly established path. For every grid node the data is kriged to estimate the grid 

nodes variance. Then a value is chosen from the input distribution to match the variance 

at the grid node. For the kriging of the subsequently visited cells not only the input data 

is used but also the values defined just before. This leads to a high constraint of the 

previously defined cells on the last cells visited, which makes a random order important. 

For detailed information about the SGS algorithm the reader is referred to Deutsch and 

Journel (1998), Asghari et al. (2009), Delbari et al. (2009), and Gunnarsson (2011). 

Prior to the distribution of the petrophysical properties by applying the SGS algorithm 

some considerations are required. Since the FCFBs normally do not spread uniformly 

but rather tend to be elongated parallel to the main slip surface (Caine et al., 1996; 

Shipton et al., 2005; Færseth, 2006; Manzocchi et al., 2010; Meier et al., 2015; Fachri et 

al., 2016) an anisotropy factor was introduced to represent this elongation. As no 

information on the elongation value was available for the investigated case, three cases 

were tested with different elongation values (A, B and C) for the FCFBs: 10-25 m for case 

A, 25-50 m for case B, and >50 m for case C. 

To receive a more realistic spatial orientation of the elongated FCFBs the spatial 

orientation of the FC slip surface was also taken into account. For the sake of 

comprehension it has to be mentioned that a FCFB corresponds to a FCFT (chapter 

3.1.2.1) that in turn corresponds to a PPMV-pair, which was derived from the FC facies 

log (see Figure 13). 

In the following the SGS algorithm was first applied to populate the grid with the matrix 

permeability. It was taken from the matrix permeability log derived from the previously 

established FC facies log. Subsequently, the matrix porosity was modeled, based on the 

matrix porosity log and the already distributed matrix permeability. The matrix 

permeability and matrix porosity are always connected through their common FCFT 
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(PPMV-pair), the same seed number was therefore used for both distributions. In 

addition, the calculated porosity was linked to the previously calculated permeability. 

These provisions guaranteed that a permeability value always suits its correspondent 

porosity value as defined in the FCFT. 

To gain an understanding of the uncertainty of the algorithm it was recommended to 

perform multiple runs. For each elongation case (A, B, and C, see above) approximately 

10 runs of the SGS algorithm with different seed numbers were performed and the 

geologically most reasonable result was chosen for further modeling steps. This is case 

B, which seems not only to be best suited but also corresponds to Fachri et al. (2011). 

 

 

A facies model was established based on the lithofacies classification of the DZ (chapter 

3.1.1.1), the FC facies model (chapter 3.1.2.1), and the resulting petrophysical 

distribution patterns of the FC (chapter 3.3.4.2). 

 

 

The lithofacies types of the DZ, which were classified in chapter 3.1.1.1, were assigned 

directly to the corresponding grid zones, which in turn correspond to the geological 

units. 

 

 

The FCFTs were assigned directly to the cells holding the corresponding petrophysical 

properties, which were distributed over the grid model as discussed in chapter 3.3.4.2. 

For every of the three cases of property distributions (A, B and C) an analogous FCFT 

distribution was assigned. 
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Every DFN model is defined by its fracture network characteristics, which makes its 

parametrization crucial. Since this concerns heterogeneous sub-seismic-scale 

parameters, outcrop analogues are very important and often used to acquire fracture 

data (Bonnet et al., 2001; Agosta et al., 2010; Guerriero et al., 2010; Hooker et al., 2013, 

2014). For this study the raw fracture data was gathered in the outcrop of Cleebourg by 

the project partners from the University of Göttingen. This data was processed and 

reworked accordingly to the needs of this thesis, bringing to issue: (i) the subdivision 

into fracture sets, (ii) fracture set orientation distribution, (iii) fracture shape, (iv) 

fracture set aperture distribution, (v) fracture set length distribution, (vi) fracture set 

length truncation, and (vii) fracture set intensity distribution.  

 

 

From the raw data a total of 408 fracture measurements were visualized in Stereonet 

10 (Allmendinger et al., 2011; Cardozo and Allmendinger, 2013) and subdivided into 

three fracture sets in the DZ (DZ Set 1, 2, and 3) and three sets in the FC (FC Set 1, 2, and 

3). 

 

 

The orientation and distribution of the previously defined fracture sets was analyzed 

and described with the help of the distributions described by Fisher et al. (1987) and 

Bingham (1964, 1974) within the stereographic projection software Stereonet 10 

(Allmendinger et al., 2011; Cardozo and Allmendinger, 2013). 

The Fisher distribution is of rotational symmetry. It is appropriate for cases, where 

the orientations of the dataset cluster symmetrically about a central axis, showing a 

circular confidence cone (Figure 20a). It can be seen as the three-dimensional 

equivalent of a Normal distribution wrapped over the surface of the sphere (Borradaile, 

2013). It represents the standard mean vector calculation within Stereonet 10 

(Allmendinger, 2018). From the several values reported, the mean orientation (mean 

dip angle and mean azimuth) as well as the concentration-parameter kappa (𝜅) are of 

importance for this study. Within the Stereonet 10 calculation the direction cosines of 

all of the individual unit vectors are added up. The reported mean length constitutes the 

length R of the resultant vector divided by the number of orientations (nv) summed. The 

mean dip angle and mean azimuth are derived from the resultant vector normalized to 
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a unit vector. The concentration-parameter 𝜅 is a shape parameter of the Fisher 

distribution and represents a measure of the degree of preferred orientation within the 

rotational symmetric population of orientations. 𝜅=0 represents a uniform distribution, 

while 𝜅 increases without limits when the clustering of orientations grows. Dependent 

on the number of orientations two different approximations are used by Stereonet 10, 

where 

 

 𝜅 =
𝑛v − 1

𝑛v − 𝑅
 3.1 

 

is used for nv>16 (Fisher, 1953; Mardia, 1972), and 

 

 𝜅 = (
𝑛v

𝑛v − 𝑅
)(1 − (

1

𝑛v
))

2

 3.2 

 

is used for nv<16 (Best and Fisher, 1981; Fisher et al., 1987). In addition to the above 

cited publications the reader is referred to Priest (1993), Davis (2002), Mardia and Jupp 

(2009), Borradaile (2013), and Drews et al. (2018) for further information. 
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The Bingham distribution (Bingham, 1964, 1974) describes populations of points on 

a sphere that may range from clusters with circular symmetry, through partial girdles 

to full girdles with axial symmetry (Borradaile, 2013, Figure 20b). In contrast to a Fisher 

distribution with a circular confidence cone, the confidence cone of the Bingham 

distribution will generally show an elliptical form. While a single concentration-

parameter (𝜅) is sufficient to describe the circular concentration of the Fisher 

distribution, the Bingham distribution is described by two concentration-parameters 

(𝜅INT and 𝜅MIN). These are oriented perpendicular to the peak concentration, where 𝜅INT 

represents the concentration of points in the direction of intermediate and 𝜅MIN in 

direction of minimum density. The principle directions, as well as the orientation-

concentrations are characterized by the use of an orientation-distribution matrix, which 

was introduced into geology by Scheidegger (1965) and Woodcock (1977). The 

Bingham calculation within Stereonet 10 can be performed for datasets with more than 

25 points and provides the mean dip angle and mean azimuth of the principle direction, 

as well as the two concentration-parameters 𝜅INT and 𝜅MIN. Additional information 

regarding the Bingham distribution can be found in Bingham (1964, 1974), Onstott 

(1980), Priest (1993), Mardia and Jupp (2009), and Borradaile (2013). 

In the case of a bimodal distribution of a dataset which is obviously following a Fisher 

distribution, the mean dip angle and mean azimuth were first calculated with the help 

of the Bingham calculation, because the Fisher calculation could not handle a bimodal 

distribution. Subsequently the dataset was rotated until it was near-centralized in the 

stereographic projection to calculate the concentration parameter 𝜅 of the Fisher 

distribution. 

 

 

Fractures are seen conceptually as ellipses (Zhang et al., 2002) with an elongation ratio 

(horizontal length to vertical length) > 1 (Petit et al., 1994). As computing capacity is a 

greatly limiting factor it is generally necessary to simplify the elliptical form of fractures 

for DFN modeling. A 16-sided elliptical form with an elongation ratio of 1:2 was chosen. 

 

 

Fracture aperture size is one of the main factors controlling flow in fractures, as it 

defines the fracture porosity and permeability (National Research Council, 1996; 

Guerriero et al., 2013; Bisdom et al., 2016) with a much greater capability of fluid 

transport than the matrix (Hoffman and Narr, 2012). Its size shows a wide range across 
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multiple orders of magnitude following a non-linear distribution (Marrett et al., 1999). 

Many studies show that the aperture distribution can be described by different equation 

types. Most common are (i) the normal (Hakami, 1995; Hooker et al., 2013), (ii) log-

normal (Gale, 1987; Pyrack-Nolte et al., 1987; Johns et al., 1993; Hakami, 1995; 

Renshaw, 1995; Keller, 1996; Keller et al., 1999; de Dreuzy et al., 2001b; Gillespie et al., 

2001; Philipp, 2008; Larsen et al., 2010; Hooker et al., 2012; Hooker et al., 2013), (iii) 

power-law (Gudmundsson, 1987a; Wong et al., 1989; Marrett and Allmendinger, 1992; 

Sanderson et al., 1994; Clark et al., 1995; McCaffrey and Johnston, 1996; Marrett, 1997; 

Bohnenstiehl and Kleinrock, 1999; Marrett et al., 1999; Ortega et al., 2006; Guerriero et 

al., 2010; Hooker et al., 2011; Le Garzic et al., 2011; Hooker et al., 2012; Hooker et al., 

2013, 2014; Bisdom et al., 2016), and (iv) exponential distributions (Nur, 1982; 

Deschamps et al., 2007). 

For every individual fracture set the aperture distribution pattern was examined and a 

log-normal aperture distribution was chosen as best fitting for this study. Thus for every 

fracture set an individual mean and standard deviation aperture value was calculated 

and used as input in Petrel. 

 

 

Another crucial parameter for the fracture network characterization is the fracture 

length, which is one of the main factors controlling the fracture network connectivity. It 

is also one of the most challenging properties to quantify accurately as it would 

normally require to completely dismantle the examined rock mass to measure the 

length (Priest, 1993; Tonon and Chen, 2007; Wenli et al., 2019). The range of the length 

can vary within a set across several orders of magnitude with a characteristically non-

linear distribution with many small and a diminishing number of large fractures 

(Gillespie et al., 1993; Marrett, 1997; Odling et al., 1999; Gillespie et al., 2001; Hooker et 

al., 2013). The most common length distributions found in literature are the (i) log-

normal (Baecher et al., 1977; Baecher, 1983; Long and Witherspoon, 1985; Rouleau and 

Gale, 1985; Villaescusa and Brown, 1992; Kulatilake et al., 1993; Aler et al., 1996; Odling, 

1997; de Dreuzy et al., 2001a; Leung and Zimmerman, 2012; Liu et al., 2018), (ii) power-

law (Segall and Pollard, 1983; Gudmundsson, 1987b; Heffer and Bevan, 1990; Hatton et 

al., 1994; Belfield and Sovich, 1995; Clark et al., 1995; Marrett, 1997; Odling, 1997; 

Renshaw, 1999; de Dreuzy et al., 2001a, b; Harris et al., 2003), or (iii) exponential 

distributions (Call et al., 1976; Cruden, 1977; Priest and Hudson, 1981; Kulatilake et al., 

1993; Aler et al., 1996; Olson et al., 2001; Özkaya, 2003). 
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For this study a log-normal distribution was chosen as it fits the data best. Once again a 

mean and a standard deviation of the length values was calculated for the fracture sets 

“DZ Set 1, 2, and 3” and “FC Set 1 and 2” to characterize these in Petrel. For the fracture 

set “FC Set 3” no length data was available, which posed the challenge of deriving data 

for its likely distribution from the available information. 

Since several studies report a linear relationship between fracture length and aperture 

(Pollard and Segall, 1987; Vermilye and Scholz, 1995; Özkaya, 2003), the mean length 

for FC Set 3 was derived from its mean aperture with the help of a length-aperture-

factor valid for the FC. This factor was calculated by dividing the mean length by the 

mean aperture for FC Set 1 and FC Set 2 and subsequently averaging both. The length-

aperture-factor was afterwards multiplied with the mean aperture of FC Set 3 resulting 

in the desired mean length value. To be capable to calculate a log-normal distribution 

for FC Set 3, an additional standard deviation value was necessary, which was derived 

with the help of the mean and standard deviation length values from FC Set 1, FC Set 2 

and the calculated mean length value of FC Set 3 (see above). To accomplish this a mean-

standard deviation-factor was calculated by dividing the mean length value by the 

standard deviation value for FC Set 1 and FC Set 2 and averaging both. The mean length 

value of FC Set 3 was subsequently divided by the mean-standard deviation-factor, 

which gave a standard deviation value for FC Set 3. 

 

 

As previously mentioned the fracture length is the most problematic property to 

measure directly. In addition fractures often terminate on layer boundaries or other 

fractures, which affects the fracture network connectivity as well. Since the constructed 

fault zone model was implemented with a division of the DZ into 12 subzones 

(geological units) the possibility to incorporate a fracture truncation at the top and base 

of each zone (inherently representing a layer boundary) was given. The modeling 

software Petrel allows to define a percentage of truncated fractures separately for the 

top and base of each zone by steps of 10. For each fracture set the amount of truncated 

fractures at the top and base was calculated considering information about its 

termination. Since only percentage values in steps of 10 could be prompted the 

calculated truncation values were rounded. 
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One has to be aware that in the different zones the calculated fractures (chapter 3.5.1) 

partly also extend into multiple overlying and underlying zones (besides the directly 

adjacent ones) due to the high vertical model resolution and therefore low thicknesses 

(Figure 21). It became apparent during modeling that no further truncation was 

performed at the second over- and underlying tops and bases of the adjacent zones, 

which seemed highly improbable. For this reason a correction for a geologically more 

realistic truncation of the fracture sets was added, separately for the top and base, 

dependent on the number of additional zones reached by the fractures. For every 

additionally reached zone a truncation percentage of 10 was added to the originally 

calculated percentage value regarding two framework conditions. First, the top 

correction of the three uppermost zones (geological units 10, 11, and 12) and the base 

correction of the three lowest zones (geological units 1, 2, and 3) were performed 

through a mean correction value as they were too close to the top and base boundaries 

of the model. The correction value was computed through calculation and subsequent 

rounding of the mean number of additionally reached zones based on the remaining 

zones. And secondly the maximum truncation value cannot exceed 90 %. The 

calculation of the corrected truncation can be found in Appendix 3. 

 

 

To describe the amount of fracturing in a rock mass, several terms are generally used 

including fracture density, intensity and porosity (Mauldon and Dershowitz, 2000). 

Older terminology is partly ambiguous. To provide a framework to move between 

different scales and dimensions a fracture intensity classification scheme, called the Pij 

system, has been developed (Dershowitz, 1998; Table 3). The input for fracture 
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intensity comes typically from boreholes or field measurements in form of linear P10 or 

areal P21 fracture intensities. However the preferred measure of fracture intensity 

within DFN modeling is the volumetric P32 intensity, which represents the fracture area 

per unit volume incorporating a frequency measure and a fracture size component 

(Dershowitz and Herda, 1992). Unlike the P10 and P21 values it represents a non-

directional measure of fracture intensity, which cannot be measured directly, but has to 

be obtained from P10 or P21 measurements by conversion factors (Esmaieli et al., 2015; 

Rogers et al., 2015). 

In this thesis the P10 density was acquired through the scanlines provided by the project 

partners, which were imported as wells and subsequently converted through an 

internal Petrel calculation into the desired P32 intensity. For each of the previously 

defined fracture sets a separate P32 intensity was calculated. Subsequently the 

calculated P32 values were upscaled onto the corresponding DZ and FC geobodies by 

applying the previously mentioned SGS algorithm within the property modeling process 

(see also chapter 3.3.4 and 3.3.4.2). 

 

 

 

 

By modeling fractures, simulation properties are created, which allow to predict the 

behavior of reservoirs or geobodies. Most importantly, fracture modeling shows and 

honors the spatial relationships between the properties of adjacent cells. DFN modeling 
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is therefore the approach chosen for this study because it bears the ability to 

incorporate the volume, size, shape, orientation, and aperture of fractures to 

characterize the fracture networks spatial distribution. As shown in the preceding 

chapters, many steps are necessary before DFN modeling can be carried out. 

 

 

To calculate a fracture network it is necessary to characterize five main properties of 

the fractures: (i) distribution, (ii) geometry, (iii) orientation, (iv) aperture, and (v) 

permeability. The structural framework for the calculation is given by the developed 

fault zone model (chapter 3.3), while the input parameters have been elaborated in 

chapter 3.4. 

The distribution defines the intensity, truncation, and physical domain in which the 

fracture sets are being populated. The calculated P32 intensity was chosen as input. 

Through splitting of the fault model into the geobodies DZ and FC and the additional 

subdivision of the DZ into 12 subzones (geological units) various combinations of 

fracture networks were possible, giving the opportunity to compare their impact on 

fracture network properties. A total of seven differently distributed fracture networks 

were calculated. 

Through the geometry options of Petrel a 16-sided elliptical fracture shape with an 

elongation ratio of 2 and a log-normal fracture set length distribution was selected. For 

every discrete fracture a maximum length of 20 m was specified, while a maximum 

length of 0.2 m was chosen for implicit fractures, also representing the minimum length 

of the discrete fractures. This means that every fracture below a length of 0.2 m is being 

modeled implicitly, while all fractures with a length between 0.2 and 20 m are modeled 

discretely. No smaller maximum length of implicit fractures was chosen due to expected 

memory problems of the computer. The lower the maximum length of the implicit 

fractures is, the more probable are computational problems depending on the models 

scale, resolution, fracture density, and available computing power. 

The orientation of the fracture sets was defined either by a Fisher distribution or a 

Bingham distribution with their specific parameters calculated accordingly to chapter 

3.4.2. 

Within the aperture options the log-normal fracture set aperture distribution was 

supplied and the maximum and minimum fracture aperture was defined. For every 

fracture set a maximum aperture of 10 mm and a minimum aperture of 0.01 mm was 
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specified, with an exception for the fracture set of “FC set 1”, where the maximum 

aperture was set to 20 mm. 

The fracture permeability is calculated 

by correlation to the aperture. Fluid flow 

in fractures is usually modeled with the 

assumption of laminar flow between 

parallel plates (Huitt, 1956; Snow, 1965; 

Klimczak et al., 2010) and the parallel-

plate solution for the Navier-Stokes 

equations (Temam, 2001) leads to the 

commonly used “cubic law” (Snow, 

1965; Witherspoon et al., 1979; Tsang 

and Witherspoon, 1981; Lee and Farmer, 

1993; Oron and Berkowitz, 1998; Wang 

et al., 2015). It is described by: 

 

 𝑄 =
−𝜌𝑔𝑏³∇ℎ

12𝜇
 3.3 

 

Q is the flow between the two plates, ρ the fluid density, g the gravitational acceleration, 

b the distance between the two plates (also referred to as aperture), ∇h the hydraulic 

gradient, and µ the fluid viscosity. The total flow between parallel plates of the height Hf 

(Figure 22) results from Equation 3.3 and is described by: 

  

 𝑄 =
−𝜌𝑔𝑏³∇ℎ𝐻f

12𝜇
 3.4 

 

With the simplification of parallel planar plates to represent the fracture surfaces it is 

shown (Polubarinova-Kochina, 1962; Louis, 1969; Witherspoon et al., 1979; Lee and 

Farmer, 1993; Sarkar et al., 2004) that through a derivation of Equation 3.3 the 

hydraulic conductivity kf of a fracture is given by: 

 

 𝑘𝑓 =
(2𝑏)²𝜌𝑔

12𝜇
 3.5 
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A fractures permeability kP can be described after Sarkar et al. (2004) through the 

combination of Equation 3.5 and Darcy’s law by neglecting the fluid properties resulting 

in: 

 

 𝑘P =
𝑏²

12
 3.6 

 

Equation 3.6 is the one used within the DFN process for the fracture permeability 

calculation, dependent on the fractures aperture. 

 

 

Through the upscaling process the calculated fracture network properties are 

distributed over the models grid and converted into properties that are essential for 

dual porosity and dual permeability modeling including the fracture porosity, fracture 

permeability and the sigma factor. Dual porosity and dual permeability models are 

characterized through a separate calculation of porosity and permeability for the two 

domains of the models: the matrix and the fractures. In the following three possibilities 

of upscaling fracture permeability are described, as well as calculation of the sigma 

factor. The fracture porosity Φ is defined as the percentage share of a grid cell and does 

not require a detailed depiction. 

 

 

To upscale the fracture network permeability the user can choose between the (i) Oda, 

(ii) Oda corrected, and (iii) flow-based method. 

The Oda method (Oda, 1985, 1986; Oda et al., 1987) is over 30 years old, has been 

rederived with variations many times and is used to deduce a permeability tensor in 

every of the three grid directions. Its advantage is that it can obtain equivalent porous 

media (EPM) grid cell properties for grid cells based directly on the fracture’s geometry 

within those cells (Dershowitz et al., 2004; Rong et al., 2013; Ghahfarokhi, 2017). The 

method starts by generating the full 3D DFN. It overlays thereafter an EPM grid on the 

fractures and subsequently derives the EPM properties for each cell based on the cells 

DFN. With the information about the fracture areas, and transmissivities, obtained from 

the DFN, an empirical fracture tensor for a specific grid cell can be calculated by adding 

individual fractures weighted by their area and transmissivity described by: 
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 𝐹𝑖𝑗 =
1

𝑉
∑𝑓𝑘𝐴𝑘𝑇𝑘𝑛𝑖𝑘𝑛𝑗𝑘

𝑁

𝑘=1

 3.7 

 

Fij is the fracture tensor, V the grid cell volume, N the total number of fractures in a grid 

cell, fk the percolation factor for fracture k, Ak the area of fracture k, Tk the transmissivity 

of fracture k, and nik and njk the components of a unit normal to the fracture k. By the 

assumption that Fij expresses the fracture flow as a vector along the fracture’s unit, the 

normal Oda’s permeability tensor is derived from Fij. Assuming that fractures are 

impermeable in a direction parallel to their unit normal, Fij must be rotated into the 

planes of permeability (Dershowitz et al., 2004) by: 

 

 𝑘𝑖𝑗 =
1

12
(𝐹𝑘𝑘𝛿𝑖𝑗 − 𝐹𝑖𝑗) 3.8 

 

In Equation 3.8 kij is the permeability tensor, Fij the fracture tensor, δij the Kroenecker 

delta, and Fkk the trace of the fracture tensor matrix. In this way the Oda approximation 

derives an equivalent permeability tensor for every grid cell. While DFN flow-based 

modeling is limited to about 105 fractures the Oda method is capable of handling up to 

107 fractures and is the most used and fast algorithm technique in commercial modeling 

software. However, this advantage is at the expense of the fractures’ connectivity as it 

assumes that all fractures are connected. The Oda method overestimates permeability 

(Dershowitz et al., 2000; Gupta et al., 2001; Dershowitz et al., 2004; Will et al., 2005; 

Ghahfarokhi, 2017), therefore the Oda corrected method was introduced. 

The Oda corrected method is designed to take the connectivity of the fracture network 

better into account, being as close as possible to the flow based method while still 

remaining fast in terms of processing time. Therefore an additional connectivity 

analysis is computed, used for a connectivity correction. While the Oda method 

computes the fracture permeability in the three grid directions (ki, kj, and kk) the 

connectivity analysis computes seven additional properties which are: (i) the 

connectivity index “CI”, (ii) the extended connectivity indices “eCii”, “eCij”, “eCik” along 

the i, j and k axes, and (iii) the length ratios of fractures present in a cell “Li”, “Lj”, and 

“Lk” projected on the i, j, and k axes. In the following the connectivity index CI will be 

used representative for the fracture connectivity by quantifying the average number of 

fracture intersections per fracture within a given cell. 
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The flow-based method creates a finite element grid for every grid cell. Subsequently 

it simulates flow under a pressure gradient to calculate the permeability for every of the 

three directions (i, j, and k). It is much slower than either of the two Oda methods, but 

more precise by taking into account the full geometry of the system. The results depend, 

however, strongly on the defined boundary conditions (Ahmed-Elfeel and Geiger, 

2012). The flow-based method was initially applied within this study, however the 

calculation process was aborted after one week of computational time. After an 

estimation by Ahmed-Elfeel et al. (2010) and Cottereau et al. (2010) a single flow-based 

permeability calculation for the number of cells in this study would require about 80 

days. 

Additionally it should be mentioned that not every permeability upscaling method can 

handle the IFN (implicit fracture network) part of the whole fracture network. The 

program developers expanded the Oda method, implemented in Petrel. An additional 

algorithm was introduced, which allowed upscaling of the whole network (IFN and 

DFN). In contrast, the Oda corrected and flow-based methods can only be applied to the 

DFN. 

 

 

To describe the fluid flow in any model used for simulation of fractured domains the 

fluid exchange from matrix to fracture is of crucial importance. Its determination is not 

simple, however, due to the potentially complex interactions between fractures and 

variously shaped rocks. Barenblatt et al. (1960) originally proposed the concept of dual 

continuum models, which was chosen up by Warren and Root (1963) who introduced 

the dual porosity model (Lim and Aziz, 1995; Moinfar, 2013). In both studies the 

transfer per bulk volume unit between the matrix and the fracture was assumed to take 

place under pseudo-steady state conditions, which is represented by: 

 

 𝑞 =
𝜎𝑘m
𝜇

(𝑃m − 𝑃f) 3.9 

 

In this formula, q denotes the matrix-fracture flow rate per unit bulk volume, km the 

matrix permeability, µ the fluid viscosity, Pm the matrix pressure, and Pf the fracture 

pressure. The characteristics of the fractured rock are represented by the parameter ơ, 

which has the dimension of reciprocal area and is known as “sigma factor” (also referred 

to as “shape factor”). Warren and Root (1963) then obtained the expression: 
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 𝜎 =
4𝑛(𝑛 + 2)

𝐿²
 3.10 

 

Here n is the number of normal sets of fractures and L the characteristic length of the 

matrix blocks. Kazemi et al. (1976) introduced the application of the sigma factor in 

numerical simulations. Using a finite-difference formulation for the flow between the 

matrix and the fracture they showed for a three-dimensional case that: 

 

 𝜎 = 4(
1

𝐿𝑥
2
+

1

𝐿𝑦
2
+

1

𝐿𝑧
2
) 3.11 

 

Lx, Ly, and Lz represent the distance between fractures in the x, y, and z directions. The sigma 

factor proposed by Kazemi et al. (1976) is used in various commercially available reservoir 

simulators (Firoozabadi and Thomas, 1990) including the one used in the presented study. 

For every version of upscaled fracture networks a sigma factor was calculated. 
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The DZ of the Lower Buntsandstein succession was covered by four profiles and five 

layer traces (Figure 24) and divided into 14 geological units, of which 12 were 

incorporated in the fault zone model. Unit 2a and 11a were too small in their spatial 

extent to be captured in the fault zone model. Five lithofacies types after Miall (1978) 

were recognized within the succession, of which the type “St” was further divided into 

“St1”, “St2” and “St3” dependent on the geological unit’s grain size, sorting, thickness 

and trough crossbed size, resulting in a total of seven lithofacies types (Table 4). Each 

geological unit corresponds to a lithofacies type (Table 5).  
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The succession consists of fine- to medium-grained sandstones with intercalations of 

mud- to siltstones with a moderate to very well sorting. Sandstone bodies show 

thicknesses of decimeters to meters and consist primarily of crossbeds with 

occasionally intercalated sandstone pebbles and mud clasts, mainly found at the base. 

Thinner successions of up to several decimeters thickness are characterized by 

lamination. Amalgamation is common within cross-bedded sand bodies. Lateral extent 

of the beds correlates with its thickness and grain-size. The lateral extents of beds with 

a thickness of several decimeters to meters cannot be observed because their 

elongations exceed the outcrop scale. Beds of up to a few decimeters thickness usually 

thin out after several meters. Thicker beds tend to have larger grain sizes (fine to coarse 
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sandstone) while thinner beds show small grain-sizes (clay to fine sandstone). 

Bleaching could be observed in the whole succession, mostly along bedding planes and 

around fractures, leading to red, yellow and white sandstones (Figure 23). For 

discussion of the bleaching phenomenon see Soyk (2015). 

Specific observations for each geological unit (GU) gathered during profile mapping and 

layer tracing are described in the following. Figure 24 shows an overview of the 

locations of profiles P1-P4 and traces T1-T5. 

GU1:  Planar cross-bedded, fine- to medium-grained sandstone of 80 cm thickness with 

fine white laminar bleaching (mm-cm) along bedding planes. Represents the lowest 

fully recognizable GU in the outcrop. See P1 (Figure 25) and T1 (Figure 27). 

GU2: Planar cross-bedded, fine- (to medium)-grained sandstone of 75-80 cm thickness 

with an erosive basis. Shows white laminar bleaching (mm-cm) along bedding planes 

and small bleached spots of mainly several mm diameter. See P1 (Figure 25), T1 (Figure 

27), and T2 (Figure 28). 

GU2a: Up to 10 cm thick, fine-laminated, mud- to siltstone showing fining upward. This 

bed thins out horizontally after several m. It has a too low spatial extent to be 

incorporated as a GU in the fault zone model. See P1 (Figure 25), T1 (Figure 27), and T2 

(Figure 28). 

GU3: Low angle cross-bedded, (fine to) medium-grained sandstone with a thickness of 

up to 125 cm. Shows wide areal yellow bleaching (dm-m), as well as white-red banding 

in multiple places caused by laminar white bleaching (cm). See P1, P2 (Figure 25), T1 

(Figure 27), and T2 (Figure 28). 

GU4: Horizontal laminated, fine- to medium-grained sandstone with a thickness of up 

to 40 cm, thinning out in northern direction. White-red banding (cm-dm) is common, 

caused by bleaching along bedding planes. See P1, P2 (Figure 25), T1 (Figure 27), and 

T2 (Figure 28). 

GU5: About 2.5 m thick, medium- to coarse-grained sandstone with large-size trough 

cross-beds. Consists of yellow and white amalgamated sand bodies with poor to 

moderate sorting at the basal part, elsewhere moderate to well sorting is observed. Mud 

clasts of several cm length can be found at the erosive base. See P1, P2 (Figure 25), P3 

(Figure 26), T1, T2 (Figure 28), T3 (Figure 27), and T4 (Figure 29). 

GU6: Planar cross-bedded silt- to fine-grained sandstone of up to 20 cm thickness, 

mostly white bleached. Thins out several meters westward to P3. See P3 (Figure 26), T3 

(Figure 27), and T4 (Figure 29). 

U7: 80-120 cm thick, medium-grained sandstone with medium-size trough cross-beds. 
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Shows white and yellow bleaching along bedding planes (cm-dm) with isolated pebbles 

of several cm length. Its thickness decreases westwards of P3. See P3 (Figure 26), T3 

(Figure 27), and T4 (Figure 29). 

GU8: Fine-grained, small-size trough cross-bedded sandstone with a thickness of up to 

35 cm and an erosive base. Is completely white bleached and thins out about 15 m 

eastwards of P3. See P3 (Figure 26), T3 (Figure 27), and T4 (Figure 29). 

GU9: Low-angle cross-bedded, fine- to medium-grained sandstone of 80 cm thickness 

with an erosive base. The western extent of the layer is characterized by a distinct red 

color with places of fine red-white banding (mm-cm) caused by white laminar 

bleaching. Bleaching intensifies towards the east leading to a thicker cm-dm banding. 

See P3, P4 (Figure 26), T3 (Figure 27), and T4 (Figure 29). 

GU10: Up to 40 cm thick, planar cross-bedded, medium-grained. Is completely white 

bleached and thins out towards the west. See P4 (Figure 26), T3 (Figure 27), and T4 

(Figure 29). 

GU11: Medium-grained, amalgamated sandstones with a thickness of 135 cm, further 

characterized by large-scale trough cross-beds. The erosive basal part contains large  

mud clasts and pebbles (cm-dm) and shows a poor to moderate sorting, which improves 

to well sorting in the central part of the sand body. Mostly white bleached with rarely 

yellow spots. See P4 (Figure 26), T3 (Figure 27), and T4 (Figure 29). 

GU11a: Up to 25 cm thick, laminated siltstone to fine-grained sandstone with a 

horizontal extent of about 8 m. Mostly red colored with laminar white bleaching in some 

spots. This GU is too small in its spatial extent to be incorporated in the fault zone model. 

See P4 (Figure 26), T3 (Figure 27), and T4 (Figure 29). 

GU12: 3.0-3.5 m thick, amalgamated, medium-grained sandstone with large-size trough 

cross-beds. The erosive basal part shows large mud clasts and pebbles (cm-dm) with a 

moderate sorting. The upper part of the sand body is well sorted. See P4 (Figure 26), T3 

(Figure 27), and T4 (Figure 29). 
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Figure 26: Profiles P3 (2.1 m) and P4 (4.17 m) covering GU5 to 12 of the middle to 

upper succession of the outcrop.



55 
 

 



56   
 

  

 



57 
 

  

 



58   
 

 

The FC facies model established was inspired by Fredman et al. (2008), Braathen et al. 

(2009), and Fachri et al. (2011). The model constitutes, together with the FC facies log, 

the FC lithology results (Figure 30). The determination of the FCFTs is described in 

detail in chapter 3.1.2.1. It is based on the FC architecture illustration and description 

of the lithological and structural FC elements by Bauer et al. (2015). 

For the FC facies model a total of seven different FCFTs were established, five of 

lithological and two of structural origin: (i) sandstone consolidated (Sc), (ii) sandstone 

spreading (Ss), (iii) sandstone unconsolidated (Su), (iv) gouge, silt unconsolidated (Gs), 

(v) gouge, clay unconsolidated (Gc), (vi) deformation band cluster (DBC), and (vii) slip 

zone (SZ). The resulting FC facies log has a length of 11 m and comprises 15 sections, 

each with a horizontal extent of 27-237 cm and a corresponding FCFT. 
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For each geological unit of the DZ a PPMV-pair was determined based on the 

petrophysical data provided by project partners. Within the FC a total of 7 PPMV-pairs 

were determined, one for every FCFT defined. Table 6 provides an overview of every 

PPMV-pair used in the subsequent modeling steps. As mentioned earlier, lithofacies 

type “Fl” is not listed, because the spatial extent of its corresponding geological units 

(2a and 11a) is too small to be incorporated in the model. For detailed description of 

the PPMV-pair determination within the FCFTs the reader is referred to chapter 3.1. 
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The construction of the DOM was preceded by TLS (see chapter 2.1.2). During the TLS 

fieldwork phase the outcrop was scanned and photographed from 9 different positions 

resulting in 50 point clouds (Figure 31) and 370 photographs covering the succession. 

The point clouds were scanned from ranges between 6 and 74 m with a mean of 25 m. 
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Their point density amounts to a mean of 22 mm, with a more widely-spaced minimum 

of 39 and a maximum of 10 mm. The original 22.2 million points were reduced in 

number by cutting off vegetation and areas of no interest. Thereafter the DOM 

comprises a total of 18.5 million points, the 50 point clouds consist of 114,460 to 2.4 

million points with a mean point count of 444,348.  

The final DOM has an extent of about 120 x 120 m and consists of 33 colored texture 

maps and several point clouds filling in gaps (Figure 32).  A detailed view of the central 

part of the outcrop is shown in Figure 33. In consultation with the project partners 37 

sampling locations, 14 scanlines and 9 profiles were brought together and 

georeferenced in the DOM. Outcrop edges were digitized to enhance the visibility of its 

structure. Exposed tops of the geological units within the DZ were picked according to 

the geological profiles and traces, as well as the fault core boundary plane, resulting in 

hundreds of picked points. These picked points are not explicitly shown, as their amount 

is too high, but their location corresponds to the traces in chapter 4.1.1. 
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The data gathered and preprocessed during field work and digital outcrop modeling 

were imported into Petrel and used to calculate 12 surfaces representing the tops of the 

geological units as well as a base-surface confining the models base and a FC boundary 

plane (Figure 34a). The FC boundary plane was used within the fault framework process 

to calculate a fault surface, which in turn was used to separate the DZ from the FC. Figure 

34b and c show the result of the subsequent horizon modeling considering truncation 

information and geobody separation. 
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Based on the results from the precedent chapter a total of 13 zones were calculated 

comprising 12 geological units in the DZ and one in the FC zone (Figure 35). The created 

structural grid (Figure 35b) consists of 8.88 million cells (57.2 % DZ and 42.8 % FC) and 

has an extent of 100 x 100 x 10-17 m (XYZ). Each cell has a dimension of 0.5 x 0.5 x 0.2 

m (XYZ). 

 

 

Figure 36 shows the result of the petrophysical property distribution in the DZ. The 

values were assigned directly to their corresponding geological unit (Figure 36). The 

results of the porosity and permeability distribution of the FC are shown in Figure 37.  

Both properties were calculated with the help of the SGS algorithm based on a porosity 

and permeability log derived from the FC facies log (see chapter 3.1.1.2). Three cases 

(A, B, and C) of different elongation values for the FCFBs were calculated: 10-25 m for 

case A, 25-50 m for case B, and >50 m for case C. Case B was chosen for subsequent 

modeling steps because it represents the geologically most reasonable result and 

corresponds best to the FCFB elongation results of Fachri et al. (2011). Furthermore, 

the FCFT percentage fractions of case B are closest to the percentage fractions of the FC 

facies log, which is shown in chapter 4.4.4. Figure 38 shows the porosity and 

permeability distribution of the DZ and the FC (case B) combined in one fault zone 

model. 

 

 

Lithofacies types of the DZ were assigned directly to the corresponding geological units, 

while the FCFTs were assigned to the cells holding the corresponding petrophysical 

properties. Figure 39 shows the final fault zone facies model, which combines the DZ 

and the FC (case B) and comprises a total of 13 facies types (6 within the DZ and 7 within 

the FC). Table 7 presents an overview of the percental facies type fractions of the DZ, 

the FC log, and the three FC distribution cases. Case B is used in subsequent modeling 

steps because its result corresponds best to the percental facies fractions of the FC facies 

log, which constitutes the origin for the distribution pattern. A detailed illustration of 

the distribution pattern of each FCFT for case B is shown in Figure 40. Illustrations of 

the FCFT distributions for FC case A and C can be found in Appendix 2. 
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A total of 408 fracture measurements were visualized in Stereonet 10, of which 276 are 

located in the DZ and 132 in the FC. For each of these two geobodies (DZ and FC) the 

fracture data were divided into three sets (Figure 41) resulting in six fracture sets. 

Dependent on their distribution pattern a Fisher or Bingham analysis was performed 

for each of these sets. Fracture set “FC Set 3” had to be analyzed with the nv<16 Fisher 

method (Equation 3.2) because the necessary minimum number of orientations for a 

Bingham analysis has not been reached, although the observed pattern tends towards a 

Bingham distribution. Table 8 summarizes the fracture set orientation results. 

 

 

𝜅 𝜅 𝜅

𝜅 𝜅 𝜅
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The result of the aperture and length distribution of the defined fracture sets is 

illustrated in Figure 42 (DZ) and Figure 43 (FC). A log-normal distribution was chosen 

as best fitting for both data sets. In contrast to Set 1 the FC data shows a lower data 

scatter for FC Set 2 and 3, which is caused by problems for proper measurements due 

to the outcrop geometry and spatial extent of the sets. Because no length data was 

available for the FC Set 3 the values were derived from its aperture data, which is 

described in detail in chapter 3.4.5. Table 9 shows the results of the calculated mean 

and standard deviation for each fracture set, as well as the limits used for the aperture 

and length distribution of the DFN. 

 

For each of the three DZ fracture sets an average fracture length truncation percentage 

was calculated (Table 10) based on the raw data. Table 11 presents the results of the 

corrected truncation values of the 12 geological units. A detailed description of the 

calculation is found in chapter 3.4.6 and Appendix 3.  
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4.5.4  

The preferred measure of fracture intensity within DFN modeling is the volumetric P32 

intensity, calculated by the Petrel software. The calculation is based on the P10 density, 

which in turn was acquired through the scanlines. For each fracture set a corresponding 

P32 intensity was calculated resulting in a total of six P32 intensities, three for the DZ 

(Figure 44) and three for the FC (Figure 45). Intensity gaps in the FC geobody arise from 

the geologically-based decision to not distribute fractures in the DFN modeling process 

within the FCFTs “Sandstone unconsolidated (Su)”, “Gouge, silt unconsolidated (Gs)”, 

and “Gouge, clay unconsolidated (Gc)”. Table 12 shows the result of the calculated mean 

and standard deviation of the P32 intensity for each fracture set, as well as their 

minimum and maximum values. Figure 46 shows exemplarily the P32 intensities 

specifically for geological units 2 and 12. For the specific P32 intensities of all geological 

units of the DZ the reader is referred to Appendix 4.  
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Seven different fracture networks were generated, which comprise an IFN (implicite 

fracture network) part and a DFN (discrete fracture network) part, the latter comprises 

by far the largest share. Each of the calculated fracture networks consists of 3 to 39 

separately calculated fracture sets (Table 13) resulting in a total of 162 fracture sets. 

The fracture networks “G”, “T”, and “Tc” comprise only the DZ geobody. Within the 

fracture network “G” the fracture sets were populated over the entire grid of the DZ 

without an additional vertical subdivision. Within the fracture networks “T” and “Tc” 

each of the 12 geological units was populated separately by the corresponding fracture 

sets with an additionally performed truncation (T: original truncation values, Tc: 

corrected truncation values). The fracture network “FC” comprises only the FC geobody, 

while the fracture networks “G+FC”, “T+FC”, and “Tc+FC” cover both, the DZ and the FC. 

As a result of the chosen constraints during fracture network calculation (see chapter 

3.5.1) our attention is drawn in the following on the DFNs. The IFN part represents in 

contrast a negligible share of the whole fracture network, which also mirrors its impact 

on the final fracture network properties (see chapter 4.6.2). It will therefore not be 

discussed here but in chapter 5.4.2. 

Altogether a total of over 2.8 million discrete fracture patches were modeled, divided 

amongst the seven fracture networks (Table 13 and Figure 47). Results of the fracture 

aperture and length distribution (based on Table 8) of the DFNs are listed in the 

Appendix 5. As an example for the DZ the DFN “G” is shown in Figure 48, and for the FC 
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in Figure 49 (DFN “FC”). To improve the comparability with the aperture and length 

distributions of the defined fracture sets (chapter 4.5.2) the x-axis of the charts has been 

limited. Figure 50 illustrates the complete DFNs “G+FC”, “T+FC” (comprising the DZ and 

FC), and “T” (DZ only), while Figure 51 provides a better presentability of the resulting 

individual fracture sets for the DFNs “G” and “FC”. Exemplary representatives of 

individual fracture sets of specific geological units are shown in Figure 52 (geological 

unit 2 and 7 of fracture network “T”). Results of the complete DFN “Tc+FC”, the 

remaining individual fracture sets for fracture network “T”, as well the results for 

fracture network “Tc” can also be found in Appendix 6. 
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For each of the seven modeled fracture networks three different variants were chosen 

to convert the fracture network attributes to properties: (i) Upscaling of the whole 

fracture network (DFN and IFN) with the Oda method, (ii) DFN upscaling with the Oda 

method, and (ii) DFN upscaling with the Oda corrected method. Every property 

calculation variant provides the fracture permeabilities ki, kj, and kk in the three grid 

directions, as well as the fracture porosity Φ, and the sigma factor ơ. For the Oda 

corrected method the connectivity index CI is additionally calculated and incorporated 

in the upscaling process of fracture permeability. Table 14 provides an abbreviated list 

of the results showing the mean values of the calculated fracture network properties. 

The full list can be seen in Appendix 7. 

The fracture permeability of the DZ amounts between 0 and 400,000 D. Its mean 

values are 371 to 533 D for permeability ki, 190 to 345 D for kj, and 622 to 720 D for kk. 

The FC fracture permeability reaches significantly higher values with a minimum of 0 

and a maximum of 2,000,000 D. The mean values of the FC vary between 14,130 to 

22,944 D for ki, 29,572 to 44,313 D for kj, and 51,749 to 55,186 D for kk. Within the 

fracture networks covering both geobodies the mean fracture permeability shows 

values of 2,515 to 4,000 D for ki, 4,733 to 7,147 D for kj, and 8,537 to 9,106 D for kk. The 

fracture porosity reaches values of 3.22e-8 to 5.92 % within the DZ with a mean of 

0.38 to 0.41 %. In the FC the fracture porosity has a spread of 0 to 20.46 % with a mean 

of 2.38 %, while the combined fracture networks show mean values of 0.7 to 0.71 %. 

The connectivity index, being the average number of fracture intersections per 

fracture in a given cell, amounts in the DZ from 0 to 18.28 with a mean of 1.21 to 1.31. 

In the FC a minimum of 0 and a maximum of 17.06 is observed, with a mean value of 

2.94. The combined fracture networks show a mean CI of 1.51 to 1.56. The results for 

the sigma factor amount values of 1.2e-11 to 12,271 per m² in the DZ with a mean of 

150 to 166 per m². Within the FC the values spread between 0 and 9,255 per m² showing 

a mean of 471 to 527 per m². The mean values of the combined fracture networks range 

from 207 to 223 per m². 

The fracture network property results for the complete DFN “T+FC” upscaled with the 

Oda corrected method are illustrated in detail. Figure 53 shows the modeling result of 

the fracture permeability ki, Figure 54 of kj, and Figure 55 of kk. The result of the 

modeled fracture porosity is illustrated in Figure 56, while the connectivity index CI is 

displayed in Figure 57, and the sigma factor ơ in Figure 58. For the whole fracture 

network property results the reader is referred to Appendix 8.  
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Seven lithofacies types were recognized based on the lithofacies classification after 

Miall (1978) with minor refinements and additions: i) Small-size trough cross-bedded 

fine- to coarse-grained sandstone (St1), (ii) medium-size trough cross-bedded fine- to 

very coarse-grained sandstone with few pebbles (St2), (iii) large-size trough cross-

bedded medium- to very coarse-grained sandstone with few pebbles and mud 

intraclasts (St3), (iv) planar cross-bedded  fine- to medium-grained sandstone (Sp), (v) 

low-angle cross-bedded very fine- to medium-grained sandstone (Sl), (vi) horizontally 

laminated very fine- to medium-grained sandstone (Sh), and (vii) fine laminated mud- 

to fine-grained sandstone (Fl). 

The encountered marginal basin facies association of the Trifelsschichten is interpreted 

as a braided river deposit within an alluvial plain with possible minor intercalations of 

aeolian deposits. The braided river sediments evolve laterally into ephemeral playa 

lakes or aeolian deposits towards the basin center. This setting is widely accepted 

(Backhaus, 1974; Richter-Bernburg, 1974; Clemmensen and Tirsgaard, 1990; 

Clemmensen, 1991; Röhling, 1991; Aigner and Bachmann, 1992; Van der Zwan and 

Spaak, 1992; Geluk, 2005; Bourquin et al., 2009; Soyk, 2015). Paleocurrent directions 

during the Lower Buntsandstein were not investigated in detail. These are assumed to 

be oriented mainly towards the N or NE with a primary sediment source area located in 

the Armorican Massif in the WSW, according to Durand (1978), Bourquin et al. (2009), 

Péron et al. (2005), and Ziegler (1990). The paleogeographic reconstruction by Durand 

(1978) suggests a distance of about 150 km of the studied outcrop to the sediment 

source. The recognized facies association and absence of vegetation indicates an arid 

environment during deposition. Repeated occurrence of aeolian deposits and presence 

of many pebble- and cobble-sized ventifacts within the European basins during the 

Olenekian corroborates this assumption (Durand, 2006; Bourquin et al., 2007; Cassinis 

et al., 2007; Bourquin et al., 2009). Paleoclimate simulations (Péron et al., 2005; 

Bourquin et al., 2006) even suggest very arid conditions for this period. Figure 59 shows 

a standardized profile of the studied succession and an interpretation regarding flow 

velocity, which is discussed in detail below. 
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Through cross-bedded fine- to coarse-grained sandstones (St1-St3) are interpreted as 

subaqueous sinuous-crested to linguoid 3D dunes (Miall, 1977, 1985; Bourquin et al., 

2009; Nichols, 2009) representing channel-fill successions. The different vertical 

thicknesses of the trough cross-bedded dune deposits were caused by varying flow 

velocities, being relatively low within the “St1” beds, slightly higher in the “St2” beds 

and even higher in the “St3” beds (Nichols, 2009). Overall these sediments represent 

the upper part of the lower flow regime (Miall, 1977) with its aforementioned inner 

differentiation. Although there is a considerable amount of scatter in the data (Nichols, 

2009), the height of the dunes can generally be used to estimate water depths during 

their deposition, which is estimated to amount from several to 10 m (Allen, 1982; 

Leeder, 1999). The “St1” lithofacies type represents the lowest and the “St3” type the 

highest water depths. Pebbles and mud intraclasts are typically observed at the 

erosional base of the “St3” beds. This erosional scours can be interpreted as an 

additional lithofacies type “Se” (Miall, 1977), which indicates stage fluctuations (Harms 

and Fahnestock, 1965; McGowen and Garner, 1970; Buck, 1983; Plint, 1983; Tyler and 

Ethridge, 1983; Miall, 1985). For modeling reasons because of its very low spatial extent 

this scour lithofacies type was incorporated within the “St” lithofacies type. Mud 

intraclasts are interpreted as reworked muddy bank material, which was carried by the 

river flow and typically deposited together with sand in deeper parts of the channels. If 

preserved, these represent the basal part of the channel-fill successions (Nichols, 2009). 

This supports the above given interpretation of the “St3” type as being deposited during 

higher water depths and flow velocities, compared to the “St1” and “St2” beds. This 

interpretation is corroborated by the only isolated occurrence of pebbles and lacking 

mud-intraclasts in the “St2” beds, whereas both are absent in the “St1” beds. 

Planar cross-bedded fine- to medium-grained sandstone successions (Sp) are 

interpreted as straight-crested transverse bars dipping downstream and representing 

the middle part of the lower flow regime, characterizing shallower areas of the channel 

(Cant and Walker, 1976; Miall, 1977; Levey, 1978; Miall, 1978; Smith, 1978; Blodgett 

and Stanley, 1980; Church and Jones, 1982; Smith, 1983; Bourquin et al., 2009). 

The low-angle cross-bedded, very fine- to medium-grained sandstones (Sl) are difficult 

to explain. Miall (1978, 1985) interpreted such deposits as scour-fills, antidunes, or 

crevasse splays. However, the thickness of the “Sl” beds (80-125 cm) is interpreted as 

too high for a crevasse splay floodplain deposit considering the spatial extent of the 

remaining beds (in particular the “Fl” lithofacies type). No grading, a lenticular shape, 

or other characteristics of a crevasse splay (Nichols, 2009) could be observed. Also 
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crevasse splays are expected to occur less likely within an arid environment braided 

river deposit but rather in meandering river environments. More probable are scour-

fills (associated with an erosive base) or antidunes. The latter are rarely preserved and 

depend on very high rates of sedimentation (Schmincke et al., 1973; Nichols, 2009). 

Independent of the type of the “Sl” deposits, this low-angle cross-beds are interpreted 

as an upper flow regime structure in agreement with Miall (1978), Alexander et al. 

(2001), Fielding (2006), and Lang et al. (2017). More specifically, Fielding (2006) and 

Fielding and Webb (1996) describe such sedimentary bedforms as record of a transition 

from dune to the stability field of upper plane beds. This fits well considering the facies 

association of the “Sl” beds. These are therefore interpreted as channel-fill successions 

deposited from the uppermost part of the lower flow regime to the lower part of the 

upper flow regime. 

Only one “Sh” lithofacies type bed was encountered in the studied outcrop, which is 

characterized by horizontally laminated very fine- to medium-grained sandstone. This 

sedimentary structure is mainly associated with (i) aeolian sand-sheets, (ii) fluvial 

plane bed deposits, or (iii) a very sandy floodplain deposit within a channel-fill 

succession (Hunter, 1977; Miall, 1978; Clemmensen and Abrahamsen, 1983; Bourquin 

et al., 2009; Nichols, 2009).  

(i) An aeolian sand-sheet deposit is feasible, given that aeolian intercalations are known 

to occur within the studied succession and considering the deposits’ grain-size and well 

to very well sorting. However, no other aeolian characteristics like adhesion structures 

(Kocurek and Fielder, 1982; Brookfield, 1992) or wind-ripple laminations at the top of 

the structure (Hunter, 1977) were observed, but this might be due to erosion of the 

topmost part. 

(ii) Fluvial plane bed deposits occur within lower and upper flow regimes (Boguchwal 

and Southard, 1990; Nichols, 2009). Fielding (2006) states that most preserved 

examples of flat and planar bedding in sands and sandstones are thought to reflect the 

upper plane bed regime. This is particularly the case in very fine to medium-grained 

sands, which are encountered in the discussed bed.  

(iii) A third possibility, according to Bourquin et al. (2009), is the interpretation as thin 

and very sandy floodplain deposits associated with channel-fill deposits, which would 

fit within a floodplain facies association as described by Langford and Chan (1989). 

Considering the over- and underlying beds and their depositional environment, the “Sh” 

lithofacies type is interpreted either as a fluvial plane bed deposit of the upper flow 

regime or a very sandy floodplain deposit within a channel-fill succession. 
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Fine laminated mud- to fine-grained sandstone deposits (Fl) are generally associated 

with overbank or waning flood deposits of a lower-flow regime or a deposition from 

suspension (Allen, 1964; Miall, 1977, 1996; Bourquin et al., 2009; Nichols, 2009). 

Bourquin et al. (2009) also describe such facies types as discontinuous deposits within 

topographic depressions with thicknesses of up to 15 cm, formed during periods of 

either low water levels or aridity from suspension. The exceptionally small horizontal 

extent of the “Fl” beds, their maximum thicknesses of 10 and 25 cm and the generally 

arid depositional environment contribute strongly to the above given interpretation. 

Overbank and flood deposits should have a clearly larger lateral extent. 

In an early publication, Miall (1978) described six vertical profile types (or models) for 

braided river depositional environments, of which the “South Saskatchewan type” 

corresponds best to the studied outcrop regarding its facies assemblage and the 

dominating “St” facies type. The facies types of the “South Saskatchewan type” are 

arranged in thinning- and fining-upward cyclic sequences of several to about 7 m 

thickness (Miall, 1978). However, the lack of paleosols and extensive floodplain 

deposits, the high degree of erosion and channel amalgamation, as well as the spatial 

extent of the studied succession make it difficult to define distinct cyclic sequences 

based on the aforementioned criteria within the studied succession, which was formed 

in an arid environment. The recent Canadian rivers investigated by Miall (1978) as a 

template for many braided river successions were formed in a humid and seasonally 

cold environment. Miall (1985) came therefore to the conclusion that it is no longer 

useful to talk about facies assemblages or even a “South Saskatchewan type fluvial facies 

assemblage” because meanwhile a vast amount of case-studies revealed a tremendous 

variability in fluvial styles. Braided river deposits should therefore be described by eight 

architectural elements, of which the element “channel” describes the encountered 

succession best. For more details on the characterization of fluvial deposit the reader is 

referred to Miall (1985). 

More recently, Bourquin et al. (2009) applied the sequence stratigraphic concept of 

“genetic units”, which constitute the smallest stratigraphic cycles that can be correlated 

at a regional scale (Mitchum and Van Wagoner, 1991; Homewood et al., 1992; Cross et 

al., 1993). Sequence stratigraphy of continental settings is based on the interplay of 

accommodation space and sediment supply resulting in stratigraphic base-level 

fluctuations (Wheeler, 1964; Galloway and Williams, 1991; Cross et al., 1993; Muto and 

Steel, 2002). Genetic units based on sedimentological data represent “realized 

accommodation” (Ar) equal to the volume of sediment actually accumulated. They 
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reflect varied preservation in fluvial environments (Currie, 1997; Bourquin et al., 1998; 

Eschard et al., 1998; Muto and Steel, 2000), described either by a period of stratigraphic 

base-level fall (decrease in Ar) or base-level rise (increase in Ar, Figure 60). Within this 

system the studied succession is interpreted to be deposited during a period of 

transition from decreasing to increasing Ar. This assumption is underpinned by the 

aforementioned lack of paleosols and extensive floodplain deposits, as well as a high 

degree of erosion and channel amalgamation, which also reflects the minimum 

preservation potential represented at this point of transition. More precisely, Bourquin 

et al. (2009) identified three variations of genetic units within arid continental 
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environments of the Lower Triassic, of which one is described as “genetic unit from 

braided rivers within an arid alluvial plain” (Figure 61). This type of genetic unit 

represents periods of stacking autocyclic sequences of 2 to 5 m thickness, recorded 

mostly during an increase in Ar. It is characterized by fluvial sandstones or 

conglomerates interbedded with clay and siltstone layers, more rarely with aeolian 

dunes to overbank or waning flood deposits, but also floodplain or pond deposits 

(Bourquin et al., 2009). Furthermore it differs from the classical fluvial environments 

(Figure 60) investigated by e.g. Miall (1978) by the aridity of the alluvial plain and lack 

of paleosols. The investigated succession is interpreted as a fluvial genetic unit with few 

overbank and floodplain deposits sensu Bourquin et al. (2009). According to these 

authors the thickness of this type of genetic units within the lower Grés Vosgien 

Formation amounts to 10 to 25 m. This stratigraphic interval corresponds to the 

Trifelsschichten (see below and chapter 1.3.2), of which the studied succession holds an 

average thickness of about 12 to 13 m and consequently constitutes a genetic unit or, 

more likely, is only part of one or two. The challenge to define a genetic unit within the 

studied succession lies within the nature of its deposition being characterized by 

channel amalgamation and a high degree of erosion and reworking, which makes it 

difficult to clearly identify stratigraphic surfaces (for example a maximum flooding 

surface). In addition, the outcrop in the investigated quarry is laterally not very 

extensive, no bounding surface of a genetic unit could be identified. Regarding the 

lithofacies type assemblage and its thickness, the studied succession it is interpreted to 

represent the lower to middle part of a genetic unit from a braided river within an arid 

alluvial plain, as described by Bourquin et al. (2009). It is characterized by a very small 

period of Ar decrease merging into a large period of Ar increase (Figure 61). This 

interpretation is in good agreement with the previously made assumption of deposition 

during a period of transition from decreasing to increasing Ar (Figure 60). The duration 

of such genetic units is estimated by Bourquin et al. (2009) as tens to hundreds of 

thousands of years. At such a time scale the deposits are more likely controlled by 

climatic factors rather than regional tectonics. 

Bourquin et al. (2006) investigated the sequence stratigraphic cycles of the Lower 

Triassic in the Vosges and subdivided the Scythian major cycle covering the Grés 

Vosgiens Formation into the four minor cycles B1, B2, B3, and B4. Subsequently, 

Bourquin et al. (2009) subdivided these cycles further into genetic units and recognized 

two such units in the B1 cycle (Figure 62) within the Soultz-sous-Forêt well, based on 

sedimentological observations combined with gamma-ray analysis. The B1 cycle within 
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this well, located 9.4 km south of the studied outcrop, corresponds to the 

Trifelsschichten in Germany. Within this cycle the studied succession is assumed to be 

located in the lower to middle part of the second genetic unit. This interpretation is 

somewhat uncertain, as it lacks gamma-ray data for comparison and is solely based on 

stratigraphic information, lithofacies assemblage, thickness, and the placement of the 

lithofacies assemblage and thickness within a genetic unit. In addition the Soultz-sous-

Forêt well lies within the Upper Rhine Graben (URG) with the Trifelsschichten analogs 

located at depths of about 1318 to 1350 m, which underwent stronger compaction than 

the investigated succession. Nonetheless this own interpretation is supported by the 

studies of Bourquin et al. (2006) and Bourquin et al. (2009). 
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By comparing own observations with geological maps and literature (Andreae et al., 

1892; Stapf, 1988; Ménillet et al., 1989; Stapf, 1996; Eisbacher and Fielitz, 2010) the 

exhibited fault zone in the studied outcrop is interpreted as the western Rhine Graben 

main fault within the Hochwald Horst of the Saverne fracture field. In Alsace it is also 

called “Faille rhénane”, in Germany “Haardtrandstörung” (GeORG-Projektteam, 2013). 

Based on the existence of fracture fields and small-scale antithetic flexure zones, Meier 

and Eisbacher (1991) and Wenzel and Brun (1991) assumed the border faults to be 

planar within the middle and northern part of the URG (Schwarz, 2005). The 

predominant NW-SE orientation of σ1 since the Miocene (Bergerat, 1985; Heidbach et 

al., 2010) implies a sinistral transtensive shear for graben parallel NNE-SSW oriented 

faults (Illies, 1975; Bergerat, 1987; Schumacher, 2002; GeORG-Projektteam, 2013). The 

encountered fault is interpreted therefore to constitute a planar oblique-slip fault of 

which only its foot wall and FC can be observed within the studied outcrop. This 

assumption is corroborated by results of Bauer et al. (2015) who examined fractures 

and deformation bands within the studied outcrop in terms of fault slip direction. 

The displacement of a fault zone can be positively correlated to its trace length, as well 

as to its DZ and FC thickness (Scholz, 1987; Knott, 1994; Dawers and Anders, 1995; 

Fossen and Hesthammer, 2000; Shipton and Cowie, 2001; Childs et al., 2009; Faulkner 

et al., 2011; Bastesen et al., 2013), though a scatter of the relationships over several 

orders of magnitude is possible (Hull, 1988; Shipton et al., 2006; Childs et al., 2009; 

Faulkner et al., 2010; Choi et al., 2016). In the studied outcrop, however, the trace length 

could not be measured, the DZ and FC are not outcropping in its entirety. Despite the 

known scatter a displacement assumption after Choi et al. (2016) is reasonable by 

taking a DZ thickness of 50-60 m into account, which results in an assumed 

displacement of several hundred m. Doebl (1967), Doebl and Olbrecht (1974), and 

Eisbacher and Fielitz (2010) on the other hand reported a displacement of the Rhine 

Graben main fault of 900 to 1200 m. Considering that the entire DZ is most likely wider 

and the DZ width against displacement plots by Choi et al. (2016) show a log-log 

distribution, it is expected that the true displacement of the encountered fault zone lies 

within the reported values by Doebl (1967), Doebl and Olbrecht (1974), and Eisbacher 

and Fielitz (2010). This further supports the previous interpretation, that the 

encountered fault zone represents the Rhine Graben main fault. This is additionally 

underpinned by Bauer et al. (2015) who also assume a high displacement fault for a 14 

m thick core zone. 
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To obtain a profound volumetric model of a fault zone, the fault properties have to be 

described as volumetric entities composed of distinct elements with distinct physical 

properties within a defined spatial distribution (Braathen et al., 2009). The concept of 

facies (Teichert, 1958; Middleton, 1978; Reading, 1986; Tikoff and Fossen, 1999) 

comprises all the necessities and is therefore applied not only to sedimentary units but 

also to fault zones (Braathen et al., 2009; Bastesen and Braathen, 2010) to describe their 

3D geometry and internal architecture (Medina-Cascales et al., 2019). In addition, the 

facies concept serves also for the characterization of seismic fault zones (Botter et al., 

2017; Cunningham et al., 2019), or, like in the own study, facilitates volumetric fault 

zone modeling (Flodin et al., 2001; Al-Busafi et al., 2005; Berg and Øian, 2007; Fredman 

et al., 2008; Fachri et al., 2011; Fachri et al., 2013; Qu et al., 2015; Fachri et al., 2016; Qu 

et al., 2017). 

 

 

Prior to modeling facies it was necessary to provide a frame to support all volumetric 

entities. The morphology of the studied outcrop suggests a subdivision into two 

geobodies, a DZ and a FC. A balance between the preservation of accurate geometries 

and an applicable amount of grid cells, which could be handled in a reasonable time by 

the modeling software, had to be found. This was accomplished with regard to: (i) the 

amount of geological units in the DZ, (ii) their thickness, (iii) the complexity of the FC 

architecture, and (iv) the outcrop size. The author decided to choose a minimum global 

grid cell size of 0.5 x 0.5 x 0.2 m (XYZ), which represents a rather high resolution 

comprising 8.88 million cells over a 100 x 100 x 10-17 m (XYZ) survey. It should be 

mentioned, that the “global grid” is defined as the initially created grid, which comprises 

the whole survey. It stands in contrast to the “local grid”, which is a refined part of the 

global grid, and usually covers a smaller volume. Similar studies concerning volumetric 

fault zone models comprise surveys mostly with a dimension of an order of magnitude 

higher (Table 15, see citations there). However, these studies exported the fault zone 

part of the grid (called “fault zone grid” or “fault envelope grid”) and subsequently 

applied a local grid refinement (LGR) and petrophysical modeling to it. The refined fault 

zone grid was afterwards merged with the coarser global grid for further analysis. 

In addition, the mentioned studies used grids with pillar faults, which facilitates the 

possibility to export, refine, and re-merge the fault zone grid; this does not work with 
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stair-stepped faults (Qu et al., 2015). Within the own study stair-stepped faults are used 

to construct and separate the grid into two geobodies (DZ and FC). The model does 

therefore not have the possibility to export parts of the global grid for separate 

subsequent LGR and petrophysical modeling. As a result, the presented approach has a 

disadvantage in cell size flexibility, tending to either possess an unnecessary high cell 

amount in homogeneous parts of the model leading to higher computational time, or, to 

a too coarse grid cell size in very heterogeneous parts containing many small geological 

elements, which will then not be portrayed adequately. On the other side, the great 

advantage of the used VBM method is, that it is practically insensitive to the complexity 

of the fault model (Souche et al., 2013); even more sophisticated fault models should be 

possible with increasing computational power. In case of the own study the mentioned 

negative aspect of no cell size flexibility within different geobodies is interpreted to not 

have a strong impact because the area of the chosen survey is relatively small and shows 

a high heterogeneity in the DZ and the FC. Additional tests with LGR, which are not 

explicitly presented here, showed that it is possible to apply a LGR to selected parts of 

the global grid. The resulting refined grids, however, cannot be populated with refined 

petrophysical properties as stated by Qu et al. (2015), but will keep the coarser 

resolution of the global grid. 
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Figure 63 (modified after Qu et al., 2015) shows a schematic workflow of the fault zone 

grid export approach in contrast to the fault zone grid of the own research, depicting 

the difference in dimension and the scale of comparability (see also Table 8). The 

dimension and cell size of the refined fault zone grids of the studies listed in Table 8 is 

comparable to the cell size and survey dimension of the study presented here, although 

the cell resolution in the own study in remains generally higher. Fachri et al. (2016) 

present a special case as their method comprises a multilevel LGR with subsequent 

upscaling from fine to coarse fault zone grids. To the already refined fault zone grid of 

the “lens object” scale (as listed in Table 15, see also Figure 67c) Fachri et al. (2016) 

additionally carried out a non-proportional refinement to generate 1 mm thick cells 

enveloping the “lens object” grid cells. Within Fachri et al. (2016), “lens objects” are 
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associated to a specific scale of higher grid resolution. For more details see the 

publication of these authors. It should be mentioned that the proportions of the fault 

grid cells of the other studies (Table 15) are rather elongated in a vertical direction, 

while the cells of the here presented study are elongated in horizontal direction. The 

mentioned studies did not additionally split the fault zone grid in two geobodies but 

defined it as one LGR geobody, which makes an elongation parallel to the main slip 

surface preferable regarding the tendency of fault elements to be elongated parallel to 

it (Caine et al., 1996; Shipton et al., 2005; Færseth, 2006; Manzocchi et al., 2010; Meier 

et al., 2015). In the case of the own study, however, the fault zone is split into geobodies; 

the DZ represents the greater share and bears horizontally elongated geological units. 

In addition, the gridding was carried out with the purpose of the subsequent DFN 

modeling. A horizontal cell elongation implies a higher vertical grid resolution, which is 

preferable for the examination of fracture truncation (chapter 5.4), because fracture 

planes rather show a vertical than a horizontal trend. 

In summary, the applied grid resolution and cell elongation constitutes a good balance 

between a manageable amount of cells and the preservation of geological geometries, 

also with regard to the subsequent DFN modeling. The combination of the LGR approach 

of pillar gridded fault models with the complexity of VBM based stair-step fault models 

would be desirable for future models. An additional LGR in the FC geobody would have 

provided a further increase of detail by capturing smaller geometries comparable to the 

exceptionally detailed slip zone modeling of Fachri et al. (2016). The presented fault 

zone model does not comprise a hanging wall, because the outcrop it is based on does 

not provide this part. However, with regard to further analysis, it may be beneficial in 

such cases to enhance the fault zone grid by mirroring the DZ of the foot wall to the 

hanging wall, constructing a partly synthetic fault zone model with its synthetic part 

based directly on the prevalent geological conditions (Figure 64). 
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The two geobodies (DZ and FC) were treated separately for fault facies determination 

and distribution. The exposed DZ of the fault zone could be treated in a classical way of 

bed and lithofacies analysis leading to a straightforward determination and distribution 

of lithofacies types according to the corresponding beds’ spatial extent. Only the 

lithofacies type “Fl” could not be incorporated because its maximum vertical extent 

narrowly exceeded the minimum vertical cell size at only one location of the outcrop. In 

addition, the “Fl” type is encountered only rarely in the outcrop with a low horizontal 

extent of a maximum of up to 8 m. Furthermore, its petrophysical values are within the 

range of other fine-grained lithofacies types of the outcrop. The non-incorporation of 

the “Fl” type has therefore no substantial impact on the behavior of the facies model. 

In the case of the FC the author established a FC facies model based on the FC 

architecture and lithological description provided by Bauer et al. (2015) under 

consideration of the volumetric restrictions (see previous chapter). Seven FCFTs were 

established, five of lithological and two of structural origin (Figure 66). Braathen et al. 

(2009) and Bastesen and Braathen (2010) characterized FC elements and applied the 

facies concept to faults in order to make them applicable for volumetric modeling to 

forecast structural reservoir heterogeneities. Both studies analyzed faults to recognize 

comprehensive FC elements in carbonate (Bastesen and Braathen, 2010) and clastic 

rocks (Braathen et al., 2009). As the focus of their studies was set on fault facies analysis 

no subsequent volumetric fault zone modeling was performed. Bastesen and Braathen 

(2010) analyzed 103 faults and recognized six “FC lithologies” (equivalent to the FCFTs 

of the own study) applicable to all faults: (i) carbonate breccia (CB), (ii) shale supported 

carbonate breccia (SCB), (iii) cemented breccia (SCaCB), (iv) shale smear (SS), (v) clay 

gouge (CG), and (vi) secondary calcite vein (SCa). Even though these FC lithologies are 

revealed from a different lithological host rock and are not elaborated in the respect of 

volumetric restrictions, many similarities to the FCFTs of the own research study exist. 

As the dimension of investigation is comparable, Bastesen and Braathen (2010) 

recognized a similar amount of different FC lithologies (six) as in the study presented 

here (seven). The breccia type FC lithologies “CB”, “SCB”, and “SCaCB” are interpreted 

as the carbonate equivalent of the sandstone FCFTs “Sc”,“Ss”, and “Su” described here, 

as they are assumed to make up the major share in FCs with high displacements. Gouges 

are also incorporated as a FC element in both studies (“CG” in Bastesen and Braathen, 

2010, and “Gs” and “Gc” in the own research). Figure 65 shows an overview of different 

FC compositions of all faults and faults with a high displacement according to Bastesen 
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and Braathen (2010). As the FC of the study presented here comprises seven different 

FCFTs, it represents a “composite fault core”. Unfortunately, no further information is 

given on the percentage of the FC lithology of the composite FCs for a detailed 

comparison. 

 

 

 

Braathen et al. (2009) on the other hand analyzed 26 faults in porous sandstone and 

divided the data sets into three main element categories (Table 16): (i) discrete 

structures, (ii) membranes, and (iii) lenses. They further analyzed the different 

elements of each category in detail leading to a fine subdivision, which results in 50 

different fault facies types and additional 34 facies shape types. This kind of 

extraordinary detailed subdivision is not applicable in the own research study by 

reason of volumetric restrictions and given detail on FC information. However, by 

contemplating the basic elements of the three main categories presented by Braathen 

et al. (2009) without the fine subdivision given by these authors, the main categories 

become comparable to the FCFTs elaborated within the study presented here. “Discrete 

structures” described by Braathen et al. (2009) comprise the elements “slip surfaces”, 

“deformation bands” and “fractures” in various forms. The facies types “DBC” 

(deformation band cluster) and “SZ” (slip zone), classified as structural FCFTs in the 

own research, would be classified after Braathen et al. (2009) as discrete structures and 
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therefore also as individual fault facies types, likewise fractures. Fractures, however, 

are treated separately through a DFN in the own study (see chapter 5.4) and are not 

incorporated as a FCFT. The category “membranes” described by Braathen et al. (2009) 

constitutes the elements “cataclasites”, “breccias”, “gouge”, and “smears” and are said to 

often occur along slip surfaces. The FCFTs “gouge, silt unconsolidated (Gs)” and “gouge, 

clay unconsolidated (Gc)” listed in the own study are mostly confined by slip surfaces 

(see chapter 3.1.2.1) and are plain descriptions of membranes after Braathen et al. 

(2009). The sandstone FCFTs “sandstone consolidated (Sc)”, “sandstone spreading 

(Ss)”, and “sandstone unconsolidated (Su)” also fit best within the membrane category, 

of which the latter is similar in its occurrence to the two gauge types with only a 

different grain-size. “Lenses” described by Braathen et al. (2009) are bound on all sides 

by slip surfaces or membranes, while the lenses in the FC of the outcrop described here 

are enclosed by the sandstone FCFTs. This further corroborates the interpretation of 

the sandstone FCFTs as membranes. The above mentioned lenses within the FC 

correspond to the third main category “lenses” after Braathen et al. (2009), but they are 

not incorporated in the FCFTs (see discussion in the next section). Under these 
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considerations, the “lithological types” and “structural types” of the own research study 

(Figure 66) correspond to the main element categories “membranes” and “discrete 

structures” described by Braathen et al. (2009), which corroborates the comparability 

and the validity of the performed subdivision (Table 16). 

Unfortunately, not every initial FC element of the studied outcrop could be incorporated 

in the FC facies model. The spatial extent of “host rock lenses” is too small, with the 

exception for one single lens, which would provide the necessary minimum extent to fit 

a grid cell. 

The reason of the non-incorporation lies within the method of using a single FC facies 

log intersecting the FC, which only marginally cuts the big lens at its upper section. To 

use a stacked set of FC facies logs would give a denser sampling rate and cover a larger 

area of the FC architecture (Figure 66) but would be too time consuming compared to 

the benefits, because it is assumed that the overall impact on the FC facies model of the 

own research study would be small. In case of “Fe/Mn concretions” and “sandstone 

pebbles” it should be possible to examine their eventual influence on the petrophysical 

values of the FCFT they are imbedded into. If this influence would be substantial, the 

addition of these types would either define separate FCFTs, or their influence could be 

scaled up. However, in case of the own study, their influence on the facies model is 

assumed to be most likely negligible. 
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Fredman et al. (2008), Fachri et al. (2011), Fachri et al. (2016), and Qu et al. (2017) 

presented volumetric fault zone models in combination with the above mentioned fault 

facies concept (Figure 67). However, these studies used synthetic models (Fredman et 

al., 2008; Fachri et al., 2011; Qu et al., 2017) or synthetic fault envelopes within a case 

study (Fachri et al., 2016), while in the own research study a fault zone grid was 

constructed after a real outcrop. The fault facies distribution described here is related 

to a natural bed distribution in the case of the DZ. Regarding FC, a FC facies log (Figure 

66) derived from a natural FC architectural sketch was upscaled and subsequently 

distributed with the help of the Sequential Gaussian Simulation (SGS) algorithm. The 

previously mentioned studies distribute their fault facies through the application of a 

Truncated Gaussian Simulation (TGS) method (Qu et al., 2017), a displacement function 

(Fachri et al., 2011; Fachri et al., 2016), or a product distribution factor (Fredman et al., 

2008) conditioning the fault envelope, with subsequent application of the Sequential 

Indicator Simulation (SIS) technique (Fredman et al., 2008; Fachri et al., 2011) and 

object-based modeling (Fredman et al., 2008; Fachri et al., 2016). The synthetic 

approaches therefore define their fault facies types somewhat different to the 

classification given in Braathen et al. (2009) and Bastesen and Braathen (2010) by 

putting more emphasis on strain and intensity related differentiation. Fredman et al. 

(2008) included nine facies types in their model (Figure 67a): one undefined, two for 

the host rock, and six for the fault zone, which was not separated into DZ and FC. The 

fault facies types include: (i) high-strained sandstone, (ii) low-strained sandstone, (iii) 

high-strained mudstone, (iv) low-strained mudstone, (v) sandstone lenses, and (vi) lens 

membranes. Fachri et al. (2011), on the other hand, divided the fault zone into a DZ and 

a FC defining four fault facies types in the FC and six in the DZ (Figure 67b). The FC facies 

types are: (i) low-strained sandstone lenses, (ii) low-strained mudstone lenses, (iii) 

high-strained sandstone lenses, and (iv) high-strained mudstone lenses. The DZ facies 

types were subdivided based on deformation-band frequency and constitute: (i) 

unstrained sandstone, (ii) unstrained mudstone, (iii) low-strained sandstone, (iv) low-

strained mudstone, (v) high-strained sandstone, and (vi) high-strained mudstone. 

Fachri et al. (2016) again did not distinguish between DZ and FC, but defined the fault 

envelope as a FC, which is imbedded in a channelized reservoir environment 

characterized by sedimentary crevasse, channel and background facies (Figure 67c). 

Only two FC facies types were defined: (i) lenses, and (ii) slip zones. However, in this 

case, the same facies types do not necessarily bear the same petrophysical properties. 

This facilitates a fault facies heterogeneity comparable to the other studies. Qu et al. 
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(2017) also did not distinguish between DZ and FC and defined the fault envelope as a 

DZ with four fault facies types (Figure 67d). These are based on deformation band 

networks and are categorized by their deformation band density: (i) high deformation 

band density, (ii) medium deformation band density, (iii) low deformation band 

density, and (iv) undeformed rock. Furthermore, the TSG method used by Qu et al. 

(2017) to populate the fault facies within the fault zone grid is closest to the SGS 

algorithm used for FCFT distribution in the own study. In addition Qu et al. (2017) 

generated five different fault facies elongation scenarios similar to the three FC 

elongation cases of the own research (A, B and C, see chapter 4.4.4) to investigate the 

sensitivity of the reservoir to the different settings, which is further discussed in chapter 

5.5. Qu et al. (2017) faced the same struggle as during the own work of obtaining good 

field-data, especially in fault-parallel direction, to quantify the elongation ranges of the 

fault facies types. Thus, this issue should be targeted for upcoming studies to enhance 

the realism of volumetric fault zone models. 

In comparison to the mentioned volumetric fault zone modeling studies applying fault 

zone facies, the own research stands out because of the uniquely detailed fault facies 

classification of a non-synthetic, specific fault zone comprising 13 fault facies types, split 

into two geobodies (DZ and FC). The restriction by a minimum cell size and the 

simultaneous preservation of as much detail as possible resting on the fault facies 

classification schemes after Braathen et al. (2009) and Bastesen and Braathen (2010) 

constituted a particular challenge. The accomplished detail is possible because the own 

study concentrates on a much smaller survey volume compared to the models of 

Fredman et al. (2008), Fachri et al. (2011), Fachri et al. (2016), and Qu et al. (2017). To 

further enhance the detail of the FC facies model a higher FC grid resolution would be 

necessary, as discussed in the previous chapter. 

 

 

Matrix PPMV-pairs are distributed according to their corresponding facies type, which 

is discussed in the previous chapter. In case of the lithofacies types of the DZ the 

determination of the PPMV-pairs is based directly on petrophysical data provided by 

project partners. The PPMV-pair determination of the FCFTs, on the other hand, 

presented a challenge as the author intended to present the most probable 

petrophysical values, even when no data was available for the FC. The detailed PPMV-

pair determination can be seen in chapter 3.1.2.2. The PPMV-pair of the lithological 

FCFT “Sc” was directly derived from petrophysical data of the DZ. Values for the FCFTs 
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“Su”, “Gs”, and “Gc” could be found in literature (Manger, 1963; Bear, 1972). Although 

no direct outcrop values could be applied for the “Su”, “Gs”, and “Gc” FCFTs, the derived 

values are interpreted to be highly reasonable as extensive work was performed on 

these lithologies by Manger (1963) and Bear (1972). Only for the lithological FCFT “Ss” 

an assumption had to be made as no values in literature were available, which makes 

the petrophysical values used for this FCFT more prone to error. However, due to its 

origin the most probable values could be narrowed down based on the PPMV-pair 

values of the “Sc” and “Su” FCFTs. The PPMV-pair determination of the two structural 

FCFTs “DBC” and “SZ” constituted a greater challenge. To establish a connection with 

the available petrophysical outcrop data of the DZ the author defined the values of the 

consolidated sandstone “Sc” as host rock values. This, in combination with some 

previously made assumptions, and applying results by Chilingarian (1964), Fossen et al. 

(2007), and Torabi et al. (2013), allowed to derive PPMV-pairs for the structural FCFTs 

“DBC” and “SZ”. Multiple other studies had to be considered as well (Pittman, 1981; 

Jamison and Stearns, 1982; Harper and Moftah, 1985; Knott, 1993; Antonellini and 

Aydin, 1994; Gibson, 1994; Knipe et al., 1997; Crawford, 1998; Gibson, 1998; Antonellini 

et al., 1999; Fisher and Knipe, 2001; Jourde et al., 2002; Shipton et al., 2002). Although 

not fully satisfying, this method still constitutes the best option available to derive the 

PPMV-pairs of the two FCFTs from the outcrop data. 

To improve the reliability of petrophysical values of distributed FCFTs within 

volumetric fault zone models based on real outcrops, two additional steps should be 

undertaken: (i) a fault zone facies study, preferably applying the fault facies 

classifications schemes after Braathen et al. (2009) for clastic and Bastesen and 

Braathen (2010) for carbonate rocks, and (ii) a petrophysical analysis of the 

encountered elements, because FC materials show a range of variation of approximately 

10 orders of magnitude (Caine et al., 1996). Although this would be very time 

consuming, it is inevitable to elaborate a model as close to nature as possible. 

Furthermore, it would ensure the comparability of the elaborated models, and might 

lead to a common data base for fault zone models. 
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DFN models are widely applied as they bring along the advantage, in contrast to 

continuum models, to not underestimate the tendency for flow channeling and provide 

the opportunity to analyze precisely the effect of different fracture patterns (Li et al., 

2016; Bauer et al., 2017). More specific, 3D DFN models (e.g. Chesnaux et al., 2009; 

Agada et al., 2014; Bisdom et al., 2014; Bisdom et al., 2016; Laux, 2017; Panza et al., 

2018; Giuffrida et al., 2019) provide better results than 2D DFN models in terms of 

fracture permeability estimation (Lang et al., 2014; Huang et al., 2016; Liu et al., 2018), 

but are restricted to 10s to few 100s of meters (Bense et al., 2013) if an outcrop scale 

detail is targeted. As a DFN model requires a detailed understanding of fracture network 

characteristics (Bisdom et al., 2014) a thorough parametrization was conducted 

(chapter 5.4.1). In the following the results of the presented thesis are compared with 

studies of similar DFN dimensions, though DFN studies within sandstones are rather an 

exception and the vast majority was conducted within carbonate rocks. This is 

attributable to the fact that carbonates constitute lower values of median and maximum 

porosity for a given burial depth in comparison to sandstones (Ehrenberg and Nadeau, 

2005). The relative lack of fractured low-porosity siliciclastic reservoirs compared to 

carbonates reflects the more common development of fractures in the latter. Fractures 

are therefore more relevant for economic flow rates within carbonate reservoirs 

(Ehrenberg and Nadeau, 2005), and more DFN models deal with carbonate rocks 

therefore. However, in terms of sheer DFN modeling, this has no significance as matrix 

PPMV-pairs do not have an impact on the elaborated DFN properties (chapter 5.4.2). 

Only the applied fracture parameters are decisive, which makes DFN models of 

carbonate and siliciclastic rocks comparable. 

 

 

A detailed parametrization of fracture sets is the backbone to reflect an as close to 

nature as possible DFN model. Studies in the past mostly used at least one constant 

parameter (usually aperture, length, or intensity) for the DFN modeling process (e.g. 

Chesnaux et al., 2009; Wilson et al., 2011; Agada et al., 2014; Laux, 2017; Liu et al., 2018). 

Often more parameters were chosen as constant, reasoned in the lack of field data, 

growing computational time, or simply not having a focus on the DFN. More recent 

studies revealed the importance of a detailed parametrization of the fracture network 
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characteristics (e.g. Panza et al., 2018; Giuffrida et al., 2019; Parrino et al., 2019; Volatili 

et al., 2019), including the own study. 

Fracture set division and orientation calculation was performed separately for the 

DZ and FC, resulting in three fracture sets each. Although, no distinct sets could be 

identified due to the wide azimuthal scatter of the data, this does not represent a real 

problem. Calculating the orientation with the Fisher and Bingham analysis (Bingham, 

1964, 1974; Fisher et al., 1987) bears the possibility to reflect datasets of both, circular- 

and orthorhombic-symmetrical clusters (see chapter 3.4.2), as well as their 

concentration. Therefore the datasets had to be divided accordingly by the user, as is 

the case within the presented study: the resulting DFN fracture orientation distribution 

reflects the original outcrop data. 

As fracture shape the author chose a 16-sided elliptical form with an elongation ratio 

of 1:2. Although some studies used elongation ratios of 1:1 (Chesnaux et al., 2009; Boro 

et al., 2014) it became more common to apply fracture elongation ratios > 1. Agada et 

al. (2014) and Bisdom et al. (2014) used relatively wide ratios of 1:5 and 1:8, 

respectively. More recent studies decided to either combine two elongation ratios of 1:4 

and 1:2 (Panza et al., 2018; Giuffrida et al., 2019), or used a 1:2 ratio only (Volatili et al., 

2019). The choice of a 16-sided elliptical form for the computed DFNs as in the 

presented study is rather uncommon, because it has a negative effect on computational 

time. Rounded fracture patches were observed in Bisdom et al. (2014), however a 4-

sided shape remains the standard choice for DFN models (e.g. Chesnaux et al., 2009; 

Laux, 2017; Panza et al., 2018; Giuffrida et al., 2019; Volatili et al., 2019). Therefore, the 

1:2 aspect ratio is considered as an adequate choice, while the 16-sided elliptical shape 

is a special feature, which might provide a more realistic DFN model. The effect of the 

chosen shapes on DFN properties was not further investigated within this thesis and 

might be tested in the future. 

Bisdom et al. (2016) and Kluge et al. (2017) state that most fracture models consider a 

constant fracture aperture. As it is one of the main controlling factors in flow defining 

the fracture porosity and permeability (National Research Council, 1996; Guerriero et 

al., 2013) it is desirable to characterize the aperture as accurately as possible by 

defining it through an equation instead of a constant value. For this reason the author 

plotted the fracture aperture against the frequency for each fracture set. A log-normal 

distribution was chosen, which, along with the power-law distribution, is one of the 

most used equation types for fracture aperture definition (see chapter 3.4.4). 
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As an example, Figure 68 shows for the DZ a comparison of the aperture distribution of 

the field data with the corresponding calculated aperture distribution of the DFN “G”. 

For the FC a comparison is shown in Figure 69. In both figures the plotted frequency of 

the field data and DFN differs. This can easily be explained by the fact that not all 

aperture size classes were measured during field work, while all classes are served in 

the calculated DFN. The important aspect is the comparable aperture class size, which 

is 0.1 mm in the DZ (Figure 68) and 0.15 mm in the FC (Figure 69). In consideration of 

the revealing trend of the field data a log-normal distribution was considered as 

appropriate. While the aperture distribution of all three DZ sets and FC Set 1 seem to 

constitute a good fit, FC Sets 2 and 3 obviously suffer from shortage of FC aperture 

measurements. This is due to: (i) the relatively small exposed part of the FC compared 

to the DZ and the therefore decreased possibilities of measurement, and (ii) the 

orientation of FC Sets 2 and 3 showing a more perpendicular orientation to the main 

slip surface, which further decreases the opportunity of measurement with regard to 

the already small exposed FC area. To gather a satisfying amount of fracture data in a 

FC is therefore strongly dependent on the orientation and area of exposure. 

Alternatively, the user could divide the initial FC fracture data in fewer sets, which 

would enhance the database for each set. However, this would also increase the 

inaccuracy of the fracture set orientation analysis. Hence, the author decided to divide 

the FC into three sets and apply a log-normal distribution based on the available data. 

Proceeding this way a more realistic model could be expected in contrast to the usage 

of a uniform aperture. This procedure is strengthened by results of Lei et al. (2014) who 

compared the influence of uniform, log-normal and power-law distributions of 

apertures on fracture permeability. Result was a permeability difference by a factor of 

2 to 2.5 between a uniform distribution and the distributions by equations. 

It is important to note that different types of fracture apertures are distinguished for 

subsequent fracture porosity and permeability calculation. The mechanical aperture, as 

used in the presented study, constitutes the physically measured aperture and is the 

one used for the fracture porosity calculation (Lyons et al., 2016). As fractures are 

usually rough-walled, which is expected to have an impact on fluid flow (Ran et al., 

2014), many studies (e.g. Panza et al., 2018; Giuffrida et al., 2019; Parrino et al., 2019; 

Volatili et al., 2019) use the hydraulic aperture for the fracture permeability calculation. 

It is attained by applying a Joint Roughness Coefficient (JRC) to the mechanical aperture, 

for which a variety of correlations exist. For more information about the JRC the reader 

is referred to Olsson and Barton (2001), Ran et al. (2014), and Lyons et al. (2016). This 
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leads to a usually larger mechanical than hydraulic aperture. However, the effects of the 

reduced hydraulic apertures in complex fracture systems are still subject of 

investigations (Zhao, 2017); for reasons of simplicity some studies assume therefore 

still an identical hydraulic and mechanical aperture in DFN models (Zhao, 2017). As no 

information of fracture wall roughness exist for the investigated outcrop, no JRC could 

be applied to the mechanical aperture. The resultant mean mechanical aperture values 

of the FC (0.78-2.3 mm) are higher compared to the DZ aperture values (0.63-0.7 mm), 

which is plausible considering the origin and the dimension of the studied fault zone. 

Also Panza et al. (2018) reported similar mechanical aperture values for their fault zone 

DFN model (0.2-1.5 mm). 

The fracture length is one of the main factors controlling the fracture network 

connectivity. Typically there are many small and a diminishing number of large 

fractures in a set (Gillespie et al., 1993; Marrett, 1997; Odling et al., 1999; Gillespie et al., 

2001; Hooker et al., 2013). The length of a set can be described (analogous to the 

aperture) by different distributions, of which the log-normal, power-law, and 

exponential ones are mostly used (see chapter 3.4.5). Based on the field data the author 

decided to apply a log-normal distribution. For the DZ Figure 70 shows a comparison of 

the field data with its corresponding calculated DFN “G”. A comparison for the FC can be 

seen in Figure 71. Considering the differing frequencies of the graphs (except for the DZ 

Set 3) the log-normal distribution is a good choice to mirror the field data. The FC data 

again reflects the difficulties of gathering a satisfying amount of field measurements, as 

already discussed before for the aperture data. In case of FC Set 3 no length data was 

available. A plausible length distribution was derived from the aperture values under 

consideration of length-aperture relationships (see chapter 3.4.5). The resulting mean 

length values for the DZ are 1.4-2.2 m and 0.5-1.5 m for the FC. The chosen minimum 

length is 0.2 m, while the maximum length amounts for 20 m for the DZ and 10 m for 

the FC. These values are comparable with length parameters for a DZ of other studies, 

e.g. Giuffrida et al. (2019), who reported minimum and maximum length values of 0.02 

and 14 m, respectively. The smaller length values for the FC in comparison to the DZ are 

understandable as the FC shows a higher facies heterogeneity. Incorporated gouges and 

unconsolidated material leads to an increase of fracture truncation. 
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The P32 fracture intensity was calculated based on the scanline information provided 

by the project partners. The reasonability of the resultant mean values of 1.7-2.5 m2/m3 

for the DZ and  4.4-10.3 m2/m3 for the FC are corroborated by Volatili et al. (2019) and 

Parrino et al. (2019), who reported from other areas P32 values of 2.08–11.84 m2/m3 

and 0.81-10.90 m2/m3, respectively. The higher P32 values in the FC result from the 

nature of its environment. A FC constitutes the zone of most displacement (Caine et al., 

1996) and a thick core zone shows parts with higher fracture intensity values. Different 

from other studies is the method to not distribute the P32 fracture intensity over the 

whole FC geobody, but to omit it in FCFTs considered as non-fracture bearing. This is 

the case for “Sandstone unconsolidated (Su)”, “Gouge, silt unconsolidated (Gs)”, and 

“Gouge, clay unconsolidated (Gc)”. 

The aperture and intensity constitute the most important parameters regarding 

upscaled fracture properties and subsequent fluid flow simulations, followed by the 

fracture length (Ghosh et al., 2018; Liu et al., 2018). It is of utmost importance to lay 

special emphasis on these parameters. The encountered challenge during the 

parametrization of the DZ and FC fracture sets within this thesis demonstrates the 

importance of thorough preceding field work in order to facilitate DFN models as close 

to nature as possible. Although more data, especially from the FC, would have been 

desirable, the extensive parametrization carried out in the present study gives a 

profound base for modeling. 

 

 

In this subchapter the DFN properties are discussed in detail. The IFN part of the 

fracture network upscaled with the Oda method has nearly no impact on fracture 

porosity in the DZ (3.22*10-8 % difference to the minimum value) and no measurable 

impact on the FC values. Its impact on the fracture permeability is also negligible with a 

difference of 0-1 D in the DZ and 2-3 D in the FC, equal to a variation of 0.14-0.19 % and 

0.005-0.009 %, respectively. This is interpreted to be due to the small share of the IFN 

in contrast to the DFN, reasoned by the chosen minimum discrete fracture length (see 

chapter 3.5.1). Only the sigma factor within the FC shows a higher IFN impact, which 

will be discussed in the corresponding section. By discussing the different DFNs of the 

two geobodies DZ and FC, no additional explicit comparison of the complete DFNs 

“G+FC”, “T+FC”, and “Tc+FC” is necessary, as they simply represent a combination of the 

other DFNs. 
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The fracture permeability tensors computed through the Oda and OdaC methods are 

most difficult to compare, because they are affected by a variety of fracture parameters 

(see 3.5.2.1). Every study treats these parameters at a different scale of detail, and uses 

all too often constant values for parameters like the fracture aperture (Bisdom et al., 

2016; Kluge et al., 2017). The different parametrization of the fracture aperture is by far 

the main reason for problems in the comparability of fracture permeability tensor 

results, as it constitutes the most important parameter for its calculation (Laux, 2017; 

Panza et al., 2018). This complication starts with the decision if a JRC should be applied 

to the mechanical aperture or not, as discussed in the previous chapter. The differences 

in permeability between mechanical and hydraulic aperture are of one to four orders of 

magnitude (e.g. Panza et al., 2018; Giuffrida et al., 2019) depending on the chosen JRC 

value and correlation type. This decision has therefore severe impacts on the final 

fracture permeability tensor results. The subsequently calculated intrinsic fracture 

permeability, which is conducted by the cubic law (see chapter 3.5.1), is governed by a 

power term on the aperture. This can lead to very large intrinsic fracture permeability 

values of tens of thousands or even millions of D (Lyons et al., 2016). For more 

information about fracture permeability the reader is referred to van Golf-Racht (1982), 
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Ran et al. (2014), Lyons et al. (2016), and Shojaei and Shao (2017). Rong et al. (2013) 

examined the impact of different fracture parameters on permeability tensors. They 

observed a fracture aperture change of one magnitude to result in a change of three 

orders of magnitude on the principal permeability. In addition, Laux (2017) analyzed 

the impact of fracture aperture by calculating two Oda permeability models with 

aperture sizes of 0.01 and 1 mm. The resultant permeability values were between 0.042 

and 0.162 D and 410 and 1600 D, respectively, confirming the proportional behavior of 

permeability to the apertures square. To demonstrate the validity of the fracture 

permeability results of the own study (Table 17) and to support its comparability with 

other studies considering the applied aperture size, the author decided to conduct a 

supplementary fracture permeability calculation. Its aim was to examine: (i) the impact 

of aperture size change on fracture permeability, and (ii) the difference between log-

normal and constant aperture size distribution in terms of fracture permeability. Table 

18 lists the results of the mentioned supplementary calculation, which corroborate the 

statements of Rong et al. (2013) and Laux (2017). It also reveals the important finding, 

that the application of a log-normal fracture aperture distribution, in contrast to 

constant apertures values, results in fracture permeabilities larger by a factor of 4.47 to 

6.44. The DZ fracture permeability results of the own study between 190 and 720 D are 

therefore corroborated by the aperture related permeability tests of Laux (2017). In 

addition, Volatili et al. (2019) conducted Oda fracture permeability calculations by 

applying apertures size values for a different DZ of 0.039 to 0.079 mm, comparable to 

the own mean aperture size values of the DZ within the presented study, although being 

one order of magnitude lower. The permeability tensor results of Volatili et al. (2019) 

are therefore comparable to the DZ results of the presented study if multiplied by 1000. 
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Applying this factor, the results of Volatili et al. (2019) show fracture permeabilities 

between 73 and 1133 D, corroborating the validity of the calculated fracture 

permeability values of the own study. As seen in Table 17, the mean permeability values 

of the FC (14,130 to 55,189 D) are of two orders of magnitude higher compared to the 

DZ values. The difference can be explained by the slightly higher mean aperture size of 

FC Set 3 and the significantly higher mean apertures of the FC Sets 1 and 2 compared to 

the mean aperture sizes of the DZ. Furthermore, the intensity values of the FC are about 

2.5 to 6 times higher than in the DZ, and as stated by Laux (2017), the calculated Oda 

permeability is proportional to the intensity values. Taking into account the higher 

fracture aperture and intensity parameters the resulting FC fracture permeability is 

entirely comprehensible. Unfortunately, no comparable studies could be found that 

calculated fracture permeability tensors specifically in FC facies bodies, making the own 

results unique. Future studies providing this kind of information are desirable. 
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Comparing the horizontal fracture permeability results one observes that within the DZ 

the permeability in i-direction is about 54 to 95 % higher than in j-direction. 

Considering the nature of fault zones one expects the highest permeability to be parallel 

to the main slip surface. This is probably also the case within the studied outcrop, but 

the presented models’ main slip surface does not follow exactly the i- or j-direction, 

meaning that the theoretical highest permeability tensor is split in both directions. The 

higher values in i-direction are explained by the pattern of the calculated discrete 

fractures, which favors the connectivity in i-direction (Figure 72). This is probably 

caused by the distribution of the DZ Set 2, which strikes about 101° and bears the 

highest mean fracture length. Within the FC the permeability values in j-direction are 

about double as high as in i-direction. This is simply due to the fact that the FC Set 1, 

which strikes parallel to the main slip surface, contributes most in j-direction, while 

showing the highest fracture intensity, aperture and length values of the three FC sets. 

All permeability results in vertical k-direction show 2 to 3 times higher values compared 

to its horizontal share. This is considered obvious as it combines the permeability of all 

fracture sets. 

Another important fact is the impact of the fracture networks’ connectivity on its 

permeability. This was investigated by comparing the results of the Oda method, which 

assumes all fractures to be connected, with the results of the OdaC method, which takes 

the connectivity of the fracture network into account. Applying the latter method, the 

permeability within the DZ is decreased by about 26 % in i-direction and 35 % in j-

direction. Within the FC, the values in i-direction are reduced by 38 %, and in the j-

direction by 33 %. For the DZ and FC the permeability in k-direction is equally reduced 

by 6 %. In fracture networks of poor interconnectivity it is therefore especially 

important to incorporate the fractures’ connectivity. The higher the connectivity of the 

fractures network, the lower is the difference between computed Oda and OdaC 

permeabilities. This is confirmed by Laux (2017) who examined the impact of fracture 

connectivity on permeability. In the own research, the permeability values in k-

direction (with the highest connectivity) is reduced only by 6 %, whereas the values of 

the DZ for the the worst interconnected j-direction show a difference of 35 %, and in i-

direction of 26 %. This additionally confirms the previously made observation of the i-

direction of the DZ being better interconnected than the j-direction (Figure 72). 

The incorporation of fracture truncation on top and basis of geological units increases 

the fracture permeability with increased truncation percentages throughout all 

permeability tensors. Compared to the DFN “G” in both upscaling methods, the 
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truncated DFN “T” shows a mean permeability increase of 8 to 9 %. The DFN “Tc” with 

increased truncation values in turn shows an increase in fracture permeability of 2 % 

on the “T” values. This is contrary to the presumed decrease of fracture permeability 

values, because a (higher) truncation of fractures is assumed to reduce the connectivity. 

The author supposes that this effect is related to the defined P32 intensity. For 

explanation it is to remember that the modeling software generates fracture patches 

based on multiple parameters, of which the P32 intensity defines the area of fractures 

per unit volume (m²/m³). By truncating and cutting fractures, smaller fracture patches 

are generated. However, the present P32 values have to be reached during modeling, 

which leads to more patches being generated per unit volume, which in turn leads to a 

higher connectivity resulting in a higher fracture permeability. This modeling effect is 

assumed to be the greater the smaller the thickness of geological units is. In addition, 

this is corroborated by the connectivity index, which increases with higher truncation 

percentages. Figure 73 shows an extreme example, geological unit 10 of DZ Set 1, which 

has an extraordinarily low thickness and spatial extent because it is strongly truncated 

by the over- and underlying beds. In case of the DFN “T” 455 fracture patches were 

generated. By applying higher truncation values (e.g. DFN “Tc”) the amount of generated 

patches is increased to 696. This effect shows that the truncation of fractures has to be 

applied with high caution, as it may lead to a distortion of fracture permeability. In order 

to make a precise statement whether an additional fracture truncation is reasonable or 
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not, or more specifically from which thicknesses of beds to apply, an additional 

thorough series of tests would be necessary. 

The fracture porosity is governed by the mechanical aperture and therefore facilitates 

an uncomplicated comparison. The mean fracture porosity of the presented data 

amounts to 2.38 % in the FC and lies between 0.38 and 0.41 % within the DZ.  Other 

studies report fracture porosity values within DZs and their surrounding rock of 0.45 to 

0.47 % (Panza et al., 2018), 0.5 to 0.85 % (Giuffrida et al., 2019), 0.11 to 0.23 % (Volatili 

et al., 2019), and 0.6 to 1.16 % (Parrino et al., 2019). The noticeably increased porosity 

values of the FC are due to higher mean aperture values as compared to the DZ, 

however, no comparable studies with explicit FC fracture porosity values could be 

found. The slightly increased fracture porosity with increased fracture truncation 

percentages underpins the previously discussed observations, that more fracture 

patches are generated with more fractures truncated. 

The connectivity index quantifies the average number of fracture intersections per 

fracture within a given cell and shows values between 1.21 to 1.31 in the DZ and 2.94 in 

the FC. The 2.5 to 6 times higher P32 intensity values of the FC probably caused these 

higher values in the FC. The increase of the connectivity index with increasing fracture 

truncation percentages is, as already discussed before, linked to the P32 intensity: more 

fractures patches are generated the higher the truncation values are (also see Figure 

73). 

The sigma factor is used to describe the fluid exchange between matrix and fracture 

and is important for subsequent fluid flow simulations (see 3.5.2.2). The calculated 

values of this thesis are 150 to 166 per m² in the DZ and 471 to 527 per m² in the FC. It 

is noticeable that the sigma factor shows no variability within the DZ, no matter which 

network arrangement is considered (DFN or DFN+IFN). However, within the FC the 

network type “DFN+IFN” shows a sigma factor value of about 11 % less than in the 

“DFN” network types. Reason might be that in the model no fractures were distributed 

within three FCFTs, and therefore those grid cells were not populated with P32 

intensities, while the modeling software carries out two independent upscaling 

processes for each FN type (DFN and IFN) and merges the results. However, the sigma 

factor is of importance for potential subsequent simulations, which are not part of the 

presented work. The effect was not further investigated, but should be mentioned as an 

observation to be considered for future work. Calculations of the sigma factor by Laux 

(2017) showed values of 144 and 259 per m² in his final model, corroborating the 

results of the presented study. 
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The quality of a fractured reservoirs is dependent on the petrophysical matrix and 

fracture properties, and their interplay. These properties and their relations differ 

within the two separately modeled geobodies and thus have a different impact on the 

reservoir quality. The DZ shows matrix porosity values between 10.19 and 20.75 % and 

permeability values of 9.62 to 959.53 mD. This would represent a medium to high 

quality reservoir in terms of matrix, although low permeable beds occur within the 

studied outcrop. The high degree of bed amalgamation und truncation within the 

succession makes the presence of low permeability beds less important. Soyk (2015), 

who incorporated the studied outcrop in his thesis, also stated a considerable potential 

for a high-quality matrix reservoir of the Lower and Middle Buntsandstein present near 

the western flank of the URG. Haffen et al. (2015) and Böcker et al. (2016) considered 

the studied succession as a good reservoir for its high porosity. In addition, the 

accidently discovered Römerberg oil field within the Buntsandstein near Speyer in 2003 

strongly underlines its significance as a hydrocarbon reservoir. This oil field is being 

successfully exploited since 2008 and produced nearly 1.4 million tons of oil until 2019 

(LBEG, 2019), encouraging new research within the Buntsandstein (Böcker et al., 2016). 

Within the FC the matrix porosity and permeability values (9 to 55 % and 0.01 to 1000 

mD) show a wide scatter, it could therefore form a barrier or a pathway for flow. Which 

setting is present strongly depends on the FC architecture and FCFT distribution. While 

keeping the matrix potential in mind, one should be aware that the main flow pathways 

in a fractured reservoir are usually given by fractures, provided that they are open. The 

effect of mineralization on the fracture network properties cannot be incorporated in 

the DFN modeling. Mineralization is taken into account in subsequent simulation steps, 

which are not part of the presented thesis. However, in case of the studied outcrop, 

Bauer et al. (2015) reported most fractures to remain open, which was additionally 

confirmed by Soyk (2015) who found most observed fractures non- or hardly 

mineralized. In case of the DZ the succession bears a high potential for geothermal 

production, as also assumed by Soyk (2015). Fluid pathways within the FC, on the other 

hand, depend strongly on the FC architecture and FCFT distribution, as not every FCFT 

comprises fractures in its matrix. Figure 74 shows the three modeled FCFT distribution 

cases, underlining the severe impact of this modeling decision. The facies bodies of case 

A have elongation values of 10-25 m parallel to the main slip surface, while the case B 

shows elongation values of 25-50 m and case C >50 m. It is obvious that the probability 

of the FC to act as a fluid barrier perpendicular to the main slip surface rises significantly 



132   
 

with increased elongation values of the facies bodies. A validation of this assumption 

would require a subsequent simulation of fluid pathways through the FC, which is not 

part of the presented study. However, Qu et al. (2017) constructed models with 

different fault facies distributions comparable to the ones in Figure 74 to investigate 

exactly this problem. According to these authors cases with higher elongation values 

parallel to the main slip surface (like case C) show much lower oil recovery and lower 

water cut than cases with smaller elongations (like case A), corroborating the 

previously made assumptions by this author. Case B has been used within the own work 

for further modeling steps. It is assumed to constitute a compound of fluid barriers and 

flow paths. This assumption is in accordance with Bauer et al. (2015) who tried to 

classify the studied outcrop after schemes of Caine et al. (1996) and Rawling et al. 

(2001). Their conclusion was, that both of these fault zone models are not applicable 

and the FC itself represents a combined conduit-barrier system, which corresponds to 

the most likely setting after the own modeling. 
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The presented work constitutes the first multi-approach modeling study of a real fault 

zone combining: (i) terrestrial laser scanning, (ii) fault facies modeling, (iii) volumetric 

fault zone modeling, and (iv) discrete fracture network modeling. The results highlight 

(i) the currently existing challenges and limitations, but (ii) show also exciting 

possibilities for modeling real fault zones, and (iii) last not least reveal the specific 

importance of fault zones on strategies for geothermal or hydrocarbon exploration. 

The studied outcrop represents a braided river succession consisting predominantly of 

fine- to medium-grained sandstones deposited in an arid to very arid environment with 

a distance of about 150 km to the primary source area of the clastic sediment, the 

Armorican Massif in the WSW. The depositional area was characterized by a high degree 

of erosion and channel amalgamation. The sandstones formed primarily under flow 

velocities belonging to the upper part of the lower flow regime and the transition to the 

upper flow regime with water depths of several to 10 m. Deposition took place during a 

transitional period from decreasing to increasing realized accommodation (after the 

sequence stratigraphic concept of genetic units). The sedimentary area belonged to the 

lower part of a genetic unit from braided rivers within an arid alluvial plain (Bourquin 

et al., 2009), deposited according to the latter authors during a time interval from tens 

to hundreds of thousands of years. It is located at the main fault of the western Rhine 

Graben within the Hochwald Horst of the Saverne fracture field. The fault is planar 

oblique-slip with a displacement of about 1000 m (Doebl, 1967; Doebl and Olbrecht, 

1974; Eisbacher and Fielitz, 2010). 

To develop a volumetric fault zone model it is inevitable to apply a fault zone facies 

concept. The scope of this concept depends strongly on the dimension of the studied 

fault zone, its morphology, and the geobodies considered (protolith, damage zone, fault 

core). The elaboration of this fault zone facies model has to take place simultaneously 

to, and under consideration of the construction of the applied grid. Grids with pillar 

faults bear the possibility to export locally refined grids, handle them separately, and 

import them thereafter, but lack the possibility of high complexity. Grids with stair-step 

faults are practically insensitive to complexity but cannot include separately modeled 

locally refined grids leading to a reduced cell size flexibility. For small scale surveys 

stair-stepped fault grids are recommended, but have to be accompanied by a thoroughly 

considered choice of the cell size, dependent on the smallest geological objects within 

the fault zone geobodies taken into account, but also on the computational resources. It 
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is essential for future models to allow the combination of complex stair-stepped fault 

grids with locally refined grids. Lithological and petrophysical fault core data have to be 

collected under generally accepted procedures and schemes. This is necessary to ensure 

the comparability of the generated different fault zone models. In the end this might 

lead to a common fault zone model database. 

The characterization of the fracture aperture and its processing is the most important 

part of the parametrization. Although the exactly same values for mechanical aperture 

are used, different subsequent methods can lead to distinct differences in the modeled 

final fracture permeabilities, spanning multiple orders of magnitude. The decision to 

define the aperture through an equation instead of a constant mean value increases the 

fracture permeability tensor by a factor of 5 to 6. In the presented study the influence 

of the IFN part of the fracture network is negligible. Fracture permeabilities in vertical 

direction are two to three times higher as in horizontal direction. In the latter, in the 

damage zone the values vary by 54 to 95 % dependent on the connectivity, which in 

turn is governed by the fracture length. Fracture permeabilities in the fault core are per 

se two orders of magnitude higher than in the damage zone, but are much more affected 

by facies bodies representing conduit barriers. The presence of such hindrances is 

strongly dependent on the fault core architecture and the elongation of facies bodies 

parallel to the main slip surface. Fracture porosity in the fault core is six times higher 

than in the damage zone. A significant difference in the permeability tensor results was 

observed by comparing the Oda and OdaC upscaling methods. Horizontal permeability 

values of the OdaC computations were decreased by 26 to 38 % compared to the Oda 

results, in vertical direction by 6 %. This reflects the impact of the fracture network 

connectivity considered in OdaC. The smaller the connectivity, the greater is the 

difference between the results regarding the permeability tensors of the Oda and OdaC 

methods. Within the damage zone, the implementation of fractures truncated at the 

geological units’ tops and bases increased the fracture network permeabilities if higher 

truncation percentages were introduced. The increase of the truncated DFNs in 

comparison to the untruncated ones amounts to about 10 % on average. This effect is 

the greater the smaller the thickness of geological units is, as reasoned by the P32 

intensity parameter. It is advised to utilize the possibility of truncation with caution as 

it may be counterproductive within models with low bed thicknesses. If fracture 

porosities are compared with fracture permeabilities, the former are more insensitive 

to parameter changes, because of the dependence on the width of the mechanical 

aperture. 
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