
D I S S E R T A T I O N

submitted

to the

Combined Faculty for the Natural Sciences and Mathematics

of

Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

put forward by

Diplom–Mathematiker

Manuel Kudruss

born in Eberbach in Baden–Württemberg

Date of the oral examination

January 28, 2020

Nonlinear Model Predictive Control for

Motion Generation of Humanoids

Referees

Professor Dr. Katja Mombaur

Professor Dr. Christian Kirches

Zusammenfassung

Das Ziel dieser Arbeit ist die Untersuchung und Entwicklung numerischer Methoden zur Be-
wegungserzeugung von humanoiden Robotern basierend auf nichtlinearer modell-prädikativer
Regelung. Ausgehend von der Modellierung der Humanoiden als komplexe Mehrkörpermodelle,
die sowohl durch unilaterale Kontaktbedingungen beschränkt als auch durch die Formulierung
unteraktuiert sind, wird die Bewegungserzeugung als Optimalsteuerungsproblem formuliert.

In dieser Arbeit werden numerische Erweiterungen basierend auf den Prinzipien der Automatisch-
en Differentiation für rekursive Algorithmen, die eine effiziente Auswertung der dynamischen
Größen der oben genannten Mehrkörperformulierung erlauben, hergeleitet, sodass sowohl die
nominellen Größen als auch deren ersten Ableitungen effizient ausgewertet werden können.
Basierend auf diesen Ideen werden Erweiterungen für die Auswertung der Kontaktdynamik und
der Berechnung des Kontaktimpulses vorgeschlagen.

Die Echtzeitfähigkeit der Berechnung von Regelantworten hängt stark von der Komplexität der
für die Bewegungerzeugung gewählten Mehrkörperformulierung und der zur Verfügung stehen-
den Rechenleistung ab. Um einen optimalen Trade-Off zu ermöglichen, untersucht diese Arbeit
einerseits die mögliche Reduktion der Mehrkörperdynamik und andererseits werden maßgeschnei-
derte numerische Methoden entwickelt, um die Echtzeitfähigkeit der Regelung zu realisieren.

Im Rahmen dieser Arbeit werden hierfür zwei reduzierte Modelle hergeleitet: eine nichtli-
neare Erweiterung des linearen inversen Pendelmodells sowie eine reduzierte Modellvariante
basierend auf der centroidalen Mehrkörperdynamik. Ferner wird ein Regelaufbau zur Ganzkörper-
Bewegungserzeugung vorgestellt, deren Hauptbestandteil jeweils aus einem speziell diskretisierten
Problem der nichtlinearen modell-prädikativen Regelung sowie einer maßgeschneiderter Opti-
mierungsmethode besteht. Die Echtzeitfähigkeit des Ansatzes wird durch Experimente mit den
Robotern HRP-2 und HeiCub verifiziert.

Diese Arbeit schlägt eine Methode der nichtlinear modell-prädikativen Regelung vor, die trotz
der Komplexität der vollen Mehrkörperformulierung eine Berechnung der Regelungsantwort in
Echtzeit ermöglicht. Dies wird durch die geschickte Kombination von linearer und nichtlinearer
modell-prädikativer Regelung auf der aktuellen beziehungsweise der letzten Linearisierung des
Problems in einer parallelen Regelstrategie realisiert. Experimente mit dem humanoiden Roboter
Leo zeigen, dass, im Vergleich zur nominellen Strategie, erst durch den Einsatz dieser Methode
eine Bewegungserzeugung auf dem Roboter möglich ist.

Neben Methoden der modell-basierten Optimalsteuerung werden auch modell-freie Methoden
des verstärkenden Lernens (Reinforcement Learning) für die Bewegungserzeugung untersucht, mit
dem Fokus auf den schwierig zu modellierenden Modellunsicherheiten der Roboter.

Im Rahmen dieser Arbeit werden eine allgemeine vergleichende Studie sowie Leistungskenn-
zahlen entwickelt, die es erlauben, modell-basierte und -freie Methoden quantitativ bezüglich ihres
Lösungsverhaltens zu vergleichen. Die Anwendung der Studie auf ein akademisches Beispiel zeigt
Unterschiede und Kompromisse sowie Break-Even-Punkte zwischen den Problemformulierungen.

Diese Arbeit schlägt basierend auf dieser Grundlage zwei mögliche Kombinationen vor, deren
Eigenschaften bewiesen und in Simulation untersucht werden. Außerdem wird die besser ab-
schneidende Variante auf dem humanoiden Roboter Leo implementiert und mit einem nominellen
modell-basierten Regler verglichen.

v

Abstract

The aims of this thesis are the investigation and development of numerical methods for the
whole-body motion generation of humanoid robots based on nonlinear model predictive control.
Proceeding from modeling the humanoids as complex multi-body systems subject to kinematic
constraints that are underactuated through their mathematical formulation, we formulate the
general motion generation task by means of an optimal control problem.

Within the scope of this thesis, we propose the numerical extension in the sense of automatic
differentiation for the recursive algorithms commonly applied for the evaluation of dynamic
quantities of above mentioned multi-body formulation, such that they efficiently evaluate both the
nominal quantity as well as the first-order forward derivative. Based on these ideas, we further
propose extensions to the linear algebra required for the evaluation of the contact dynamics and
impulses.

The real-time feasibility of the computation of the feedback response is strongly dependent on
the chosen multi-body formulation and the available on-board computing power of the humanoid
robot. In order to allow an optimal trade-off, in this thesis, we derive reduced models of the
multi-body dynamics on the one hand and, on the other hand, develop tailored algorithms to
guarantee real-time feasibility.

In the context of this thesis, we propose two reduced models: one nonlinear extension to the
linear inverted pendulum model and a reduced version based on the centroidal dynamics of
the multi-body system. Based on this, we propose a control framework for whole-body motion
generation, whose main part is build up by a specially discretized NMPC problem together with a
tailored optimization method. The real-time feasibility of this approach is verified by experiments
with the humanoid robots HRP-2 and HeiCub.

In this thesis, we propose a method of nonlinear model predictive control that can compute
feedback controls in real-time despite the complexity introduced by the full multi-body model.
This is achieved by a combination of linear and nonlinear model predictive control in a parallel
control strategy, which utilizes the last linearization for fast feedback while the parallel thread is
still busy computing the current linearization according to the last feedback time. Experiments on
the humanoid robot show that motion generation on the robot, compared to a nominal controller,
can only be enabled by this strategy.

Alongside model-based methods of optimal control we also investigate model-free methods
of machine learning in the form of reinforcement learning as well as their fruitful combination,
especially for the treatment of model uncertainties of robots that are difficult to model.

This thesis carries out a general comparative study as well as proposes key performance indi-
cators in order to quantitatively compare model-based and model-free methods with respect to
their solution performance. The application of this study on an benchmark example reveals the
differences, trade-offs and break-even points between the chosen methods.

In this thesis, we propose based on this knowledge two possible combinations, whose properties
are proven and investigated in simulation. The superior method is then implemented on the robot
Leo and compared to a nominal model-based controller.

vii

Danksagung

An dieser Stelle möchte ich gerne allen Verantwortlichen, Unterstützern, Freunden und
meiner Famile danken, die mich alle in meinem Dissertationsvorhaben begleitet haben.

Meinen Lehrern und Mentoren, Christian Kirches, Katja Mombaur, Hans Georg Bock und
Johannes Schlöder, gilt mein aufrichtiger Dank für ihre hervorragende Unterstützung und
Betreuung dieser Arbeit. Die offene akademische Atmosphäre am interdisziplinären Zen-
trum für wissenschaftliches Rechnen und an der Fakultät für Mathematik und Informatik
der Ruprecht-Karls-Universität Heidelberg half enorm beim Gelingen und Fertigstellen
meiner Dissertation und machte die letzten Jahre zu einem fruchtbaren Vergnügen.

Ferner haben zahlreiche Mitglieder der Arbeitsgruppen Optimization of Uncertain Sys-
tems, Optimization, Robotics & Biomechanics, Simulation und Optimierung und der BASF
Juniorgruppe – Optimum Experimental Design ihren Beitrag zum Erfolg dieser Arbeit durch
fachliche Diskussionen, Gedanktenaustausch oder einfach nur nette Gespräche auf dem
Flur geleistet. Großer Dank gebührt deshalb meinen Kollegen Christoph Weiler und Felix
Lenders, Kai Henning Koch, Alexander Schubert, Eike Fokken und Benjamin Reh. Matthew
Millard rückte stets meine Realität zurecht und Paul Manns spornte mich bis zuletzt an.

Meinen KoroiBot-Kollegen Yue Hu, Malin Kopitzsch und Debora Clever bin ich dankbar
für die gemeinsame Zeit in einem anspruchsvollen und erfolgreichen EU-Projekt. Außer-
dem möchte ich meinen internationalen Projektpartnern Maximilien Naveau, Nicolas
Mansard, Olivier Stasse und Phillipe Souères am CNRS-LAAS, Toulouse, Frankreich, und
in besonderer Weise meinen Kollegen Ivan Koryakovskiy, Heike Vallery, Wouter Caarls
sowie Robert Babuška, der Technischen Universität Delft, Delft, Niederlande, für die tolle
interdisziplinäre und internationale Zusammenarbeit im KoroiBot-Projekt danken.

Besonderer Dank gilt zudem meinen beiden Mentoren der HGS MathComp, Sebastian
Walter und Martin Felis, die mir stets bei meinen Problemen helfen konnten und mir
ansonsten auch über die Wissenschaft hinaus als Freunde mit Rat und Tat zur Seite stehen.

Für die finanzielle Unterstützung dieser Arbeit gebührt mein Dank der Ruprecht-Karls-
Universität Heidelberg, der Technischen Universität Carolo-Wilhelmina zu Braunschweig, der
Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences
sowie im Besonderen dem 7. Forschungsrahmenprogramm der Europäische Union unter
Grant Agreement No. 611909 im Rahmen des Projektes KoroiBot.

Während der Arbeit an dieser Dissertation hatte ich zudem das Glück, herausragende
Studenten zu betreuen. Felix Jost, Jan Lammel, Kevin Stein, Raphael Michel und Gaurav
Gupta gehört mein Dank für die gemeinsame Zeit und die von ihnen geleistete Arbeit, die
einen wertvollen Beitrag zu dieser Arbeit darstellt.

Zuletzt möchte ich meiner Familie und meinen Freunden danken, die mich stets darin
bestärkt haben, meinen eigenen Weg zu gehen und diesen erfolgreich zu meistern. Der
größte Anteil gebührt dabei meiner Frau Ivonne, die in dieser Zeit oft für uns beide stark
war und es immer wieder geschafft hat, auch an schlechten Tagen für mich die Sonne
scheinen zu lassen. Zu guter Letzt noch vielen Dank an meine Tochter Luisa für die
Motivation beim Endspurt. Du hast das Rennen dann schließlich doch noch gewonnen.

ix

Contents

0 Introduction 1

1 From Robots to Rigid Body Mechanics and Optimal Control 17
1.1 Bipedal Walking of Humanoids . 17
1.2 Considered Humanoid Robot Hardware Platforms 19
1.3 Humanoids as Rigid-body Models . 22
1.4 Bipedal Locomotion as Optimal Control Problem 25
1.5 The Direct Multiple Shooting Method for Optimal Control 29
1.6 Summary . 32

2 Efficient Derivative Evaluation for Rigid Body Dynamics 33
2.1 Evaluation of Derivatives . 34
2.2 Evaluation of Rigid-Body Dynamics using Recursive Algorithms 39
2.3 Evaluation of Rigid-Body Dynamics . 45
2.4 Results . 52
2.5 Summary . 55

3 Motion Generation Based on Center of Mass Dynamics 59
3.1 Derivation of the Reduced Dynamic Model 61
3.2 Walking Pattern Generator based on Nonlinear Model Predictive Control 66
3.3 Walking Pattern Generator based on Mixed-integer Programming 76
3.4 Realization of the Motion on the Robot 89
3.5 Results . 93
3.6 Summary . 106

4 Motion Generation based on Centroidal Dynamics 107
4.1 Derivation of the Reduced Dynamic Model 109
4.2 Problem Formulation . 112
4.3 Realization of the Motion on the Robot 115
4.4 Results . 117
4.5 Summary . 120

5 Nonlinear Model Predictive Control for Humanoid Motion Generation 121
5.1 Whole-body Dynamic Model . 123
5.2 Multi-level Real-time Iterations of Nonlinear Model Predictive Control 124
5.3 Combining Multi-Level Real-time Iterations 126
5.4 Problem Formulation . 129
5.5 Results . 130
5.6 Summary . 137

xi

6 Towards a Combination of Model-free and Model-based Optimal Control 139
6.1 Reinforcement Learning . 140
6.2 Benchmarking Model-free and Model-based Optimal Control 142
6.3 Combining Model-free and Model-based Optimal Control 145
6.4 Results . 148
6.5 Summary . 165

7 Conclusion and Outlook 167

Figures, Tables, Algorithms, Acronyms 169

xii

0 Introduction

Preface

Nature’s ability to optimize design, behavior as well as locomotion of living beings, for
example, humans, animals, and plants, is omnipresent. Human mankind has a burning
desire to analyze and derive the principles behind this optimality and finally realize the
underlying principles in technical form [131]. One example for this approach can be seen
in the research field of humanoid robotics, which nowadays is a truly interdisciplinary
research field in which different expertise in engineering, mathematics, biomechanics as
well cognitive sciences are combined in order to understand what human likeness means in
locomotion, behavior, and intelligence. Following the ambitious goal to enable humanoid
robots to work with or even replace humans for certain tasks, for example in households,
hospitals, factories, at disaster sites or even space missions, different research questions
arise. Within this thesis, the focus is on the locomotion aspect of humanoids, i.e., bipedal
locomotion in the form of walking in different situations and environments.

From the viewpoint of an applied mathematician, methods of model-based dynamic
optimization or optimal control emerge quite naturally as the tools of choice to analyze,
synthesize or reverse-engineer motions of humans and humanoids alike. Following the
idea of optimal control, the process of interest, here a human or humanoid robot, is
analyzed and a mathematical dynamic model of the process is derived, usually from first
principles, with the ability to describe the timely evolution of the system, most commonly
in the form of ordinary differential equations (ODEs) or differential algebraic equations
(DAEs). When a reasonable dynamic model is available and is validated in simulation, the
wish to find an optimal behavior of the model under consideration naturally arises next.
This directly leads to the formulation of optimal control problems (OCPs) and the search
for suitable methods of optimization to discretize and numerically solve them.

In the recent decades, the robotics community showed a growing interest in using
methods of optimal control for behavior and motion generation as well as control as recent
publications and workshops show. Following the assessment of the IEEE Robotics and
Automation Society technical committee of Model-based Optimization for Robotics, c.f. [124],
a consortium of experts who try to promote the application of model-based optimization
in robotics, that “in a wide range the methods currently applied are behind the current state
of the art within the optimization community and therefore only very simple optimization
problems can be solved. While some articles present advanced optimization approaches for
even complex robotic systems as well as tasks, which covers impacts, varying constraints as
well as interaction with the environment, a major challenge is still the actual realization of
these approaches robustly on the real robotic platform. In this way, full exploitation of the
optimization potential of existing robot platforms is not possible.”

In the spirit of the KoroiBot1 project, the way to fully utilize and/or additionally extend
the humanoid robot’s ability to dynamically walk, best possibly in human-like quality,
lies in the development of novel motion generation and control methods for existing

1 Visit the project’s web page at http://orb.iwr.uni-heidelberg.de/koroibot/.

1

http://orb.iwr.uni-heidelberg.de/koroibot/

CHAPTER 0
∣∣∣ INTRODUCTION

hardware. The human gait is at the same time efficient, robust, and versatile. In contrast
to the human, the gait presented by today’s bipedal robots are at best good in one of these
criteria. In addition, they lack the ease and elegance of their human counterpart. While
this problem is on the one hand linked to the current hardware, on the other hand it results
from the applied control principles and the used software in an even larger extent. There
are several reasons why the realization of bipedal locomotion on the actual hardware
is still an open research questions, including redundancy, underactuation, stability of
locomotion, hierarchy of tasks, predictability, perception and cognition to name only a
few.

This doctoral thesis in applied mathematics is to be understood as one new step towards
the actual realization of real-time optimal feedback control or nonlinear model predictive
control (NMPC) for whole-body motion generation in both simulation as well as on the
robotic hardware itself.

Related Work

The broad scope of this thesis requires to state the references of the state of the art in their
respective context. Therefore, we embed the contributions of this thesis in the respective
field by giving a brief overview of the state of the art in the following sections.

Efficient Derivative Evaluation for Rigid Body Dynamics

The application of the above mentioned rigid-body dynamics (RBD) of complex multi-
body system (MBS), the mathematical representation of the humanoids, as dynamic model
in the context of NMPC demands algorithms to efficiently evaluate the kinematics and
dynamics quantities. State-of-the-art algorithms that enable these evaluations are based
on efficient recursive algorithms that are tailored for the kinematic tree topology of the
humanoids’ MBS , c.f. [48]. There are several open- and closed-source codes available
that implement a fast evaluation of RBD of MBS with tree topology, e.g., Simbody2, drake3,
Metapod4, and RBDL5. However, the application of RBD in the context of direct optimal
control, as in the scope of this thesis, requires not only the efficient evaluation of the
nominal dynamic quantities but also requires the evaluation of at least first order deriva-
tive information. While numerical differentiation (FD) can always be applied on those
algorithms by treating them as black boxes the application of algorithmic differentiation
(AD) requires the algorithms to be available as source code that is then augmented to
also compute derivative information. However, the investigation of the mathematical
properties and the underlying mathematical basis of the algorithms allows to derive
tailored code for fast and efficient evaluation of the derivatives of RBD of MBS.

Literature presents approaches heading into the direction of full support of the deriva-
tive information of the basic quantities of RBD. One of the first approaches investigating
derivative evaluation employs a Lie group formulation for rigid-body dynamics as well
as the evaluation of the dynamics with respect to a scalar parameter. This approach is
implemented in the C++ library GEAR6, which is based on the technical report [94]. In
[57] a derivation based on Lagrangian formulation of the derivatives of common RBD
quantities is presented without numerical results. While drake is the only library already

2 https://github.com/simbody/simbody 3 https://github.com/RobotLocomotion/drake
4 https://github.com/laas/metapod 5 https://rbdl.bitbucket.org 6 https://github.com/junggon/gear

2

https://github.com/simbody/simbody
https://github.com/RobotLocomotion/drake
https://github.com/laas/metapod
https://rbdl.bitbucket.org
https://github.com/junggon/gear

INTRODUCTION
∣∣∣ CHAPTER 0

offering an AD interface using template programming, the others do not yet enable an
efficient derivative evaluation besides FD.

Recent approaches on the evaluation of derivatives for rigid-body dynamics are pre-
sented in [23, 58, 134, 184]. Regarding [184], the respective implementation is realized in
the C++ library MBSlib7, which uses an off-the-shelf AD tool ADOL-C8 based on operator
overloading to evaluate derivatives of the dynamic computations. Following the same
idea of applying AD to the RBD evaluation code, [58, 134] applies methods of source code
transformation to the code generated from their RBD dynamic control toolbox ct9.

In this way, code for the nominal as well as the derivative evaluation is generated, which
is superior compared to its FD counterpart. [23] presents efficient derivative computations
by differentiating the recursive algorithms within the RBD framework Pinnochio10 [25] and
using insights in the structure of the derivative arising for rigid-body systems to obtain an
implementation of the recursive Newton-Euler algorithm (RNEA), computing the inverse
dynamics, that is able to efficiently evaluate derivative information. The derivatives of the
forward dynamics are evaluated by means of the implicit function theorem.

None of the above mentioned approaches proposes and implements the evaluation of
derivatives of the contact dynamics or contact impulses occurring from the RBD of MBS
subject to unilateral constraints and collisions, which requires tailored linear algebra to
solve the respective descriptor form of the equation of motion for the evaluation of the
dynamics of the system.

Nonlinear Model Predictive Control for Whole-body Motion Generation

The state of the art for whole-body motion generation based on optimal control or NMPC
employs different reduced models to achieve motion generation in real-time. In Figure 0.1
an overview of the most frequently used versions is schematically depicted.

The most used variant of model reduction is the projection of the dynamics of the
humanoid to its center of mass (CoM) or, more precisely, to reduce its dynamics to the
motion of an inverted pendulum with its mass located at the CoM and the pivot located at
the zero-moment point (ZMP). Subject to strong simplifications, this model is known to
fulfill the real-time constraints dictated by the on-board computational power of today’s
robots.

Recent approaches use the centroidal dynamics of the humanoid, i.e., the projection
of the whole-body dynamics onto the CoM such that the contact forces determine the
motion of the CoM as well as the total change of momentum. While including all degrees
of freedom (DoFs) of the dynamic model, the inherent sparsity of the resulting dynamics
allows to derive real-time feasible control strategies.

Employing the whole-body dynamics of the humanoid including the selection of possi-
ble contact points for motion generation is a demanding task and it is not yet possible to
solve the resulting problem in real-time.

Center of Mass Dynamics

The idea of interpreting the motion of a humanoid by means of an inverted pendulum is
related to the fact that this is a good approximation of the CoM movement of a humanoid
during the swing phase, where the body rolls over the support leg for the next step. The

7 https://github.com/SIM-TU-Darmstadt/mbslib 8 https://projects.coin-or.org/ADOL-C
9 https://bitbucket.org/adrlab/ct 10 https://stack-of-tasks.github.io/pinocchio

3

https://github.com/SIM-TU-Darmstadt/mbslib
https://projects.coin-or.org/ADOL-C
https://bitbucket.org/adrlab/ct
https://stack-of-tasks.github.io/pinocchio

CHAPTER 0
∣∣∣ INTRODUCTION

C
om

p
le
xi
ty

Real-Time

Linear Inverted
Pendulum Dynamics

Centroidal
Dynamics

Whole-body
Dynamics

Figure 0.1: Schematic overview of common reduced model variants as well as whole-body dynam-
ics for motion generation and their computational complexity. The scheme shows the
two common reduced model variants commonly employed for motion generation and
their hierarchy in terms of computational complexity. The least demanding reduced
models are based on the motion of an inverted pendulum. A more demanding alterna-
tive are models based on the centroidal dynamics of the humanoid. Most demanding
is the application of the whole-body dynamics of the humanoid. While pendulum and
centroidal dynamics are known to perform in real-time (dashed line), employing the
whole-body dynamics for motion generation is still open research.

4

INTRODUCTION
∣∣∣ CHAPTER 0

nonlinearity of the dynamics of the inverted pendulum still imposes problems on the
formulation of an online motion generation algorithm.

In [83] Kajita proposed a further reduction of the dynamics by limiting the evolution
of the CoM motion to a plane in parallel to the ground and named it linear inverted
pendulum model (LIPM). Furthermore a scheme is presented to generate a CoM motion
from a given reference ZMP trajectory. This CoM trajectory can then be applied to
generate a stable whole-body motion of the humanoid. When a chosen model allows an
analytical solution, the motion planning can be carried out quickly [69, 129]. However,
these formulation are based on specific assumptions that render their extension to other
walking tasks difficult and tedious.

The issue with proper ZMP reference generation was solved by Herdt et al. in [71] by
additionally including the foot step placement into the convex optimization and solving
for both the CoM as well as the ZMP trajectory using the LIPM. In this way, the range
of possible tasks could be extended. This approach could then be applied to implement
visual servoing in [39, 40]. The extensions proposed in [137] can handle steep slopes of up
to 10◦ and demonstrate the humanoid robot HRP-2 can recover from obstacle collisions.

Another approach that employs the extensive simplifications based on the LIPM but with
extensions improving the robustness of the resulting motion, e.g. step timing optimization
and divergent component of motion offset, can be found in [92].

In [78], Ibanez proposes based on the same reduction principles a mixed-integer formu-
lation of the problem that, for the first time, does not prescribe the support foot sequence.
In this way, the flexibility and reactivity of the formulation could be improved by sacrific-
ing the real-time feasibility due to the integrality constraints. A pure planning approach
based on mixed-integer quadratic programming is presented by Deits in [33], who employs
a template model to plan foot steps on cluttered terrain.

First, above mentioned approaches employing the LIPM enable robots to walk in differ-
ent scenarios, freely optimize the foot steps and avoid obstacles. However, none of them
combines the advantages of all approaches, i.e., combining the optimization of position
and orientation in a single problem formulation that also enables collision avoidance, and
provide a dedicated solver that allows its solution in real-time on the robotic platform.

Second, the above mentioned approach employing mixed-integer optimization allow
the planning of whole body motions but are either limited to that (second approach) due
to not considering the dynamics of the humanoid or restrict the range of motions due to a
lack of generalization (first approach). To this end, no approach combines both aspects
in order to have the simultaneous planning while guaranteeing a dynamically feasible
motion based on the LIPM.

Centroidal Dynamics

In their survey [72], Herr and Popovic investigate the behavior of the angular momentum
during human gait and show that active generation of angular momentum is a key strategy
for bipedal maneuverability and stability. Furthermore, they discuss the limitations of
inverted pendulum models, for example the LIPM used in the previous chapter, and
conclude that while certain assumptions hold, i.e., that “a realistic prediction of the dynamics
is only possible by including further effects like the mechanical behavior of the legs and their
interaction with the respective contact surfaces”.

While their analysis of the angular momentum showed an important effect on the
walking capabilities, for motion generation these effects are mostly neglected to simplify

5

CHAPTER 0
∣∣∣ INTRODUCTION

the resulting models and speed up the computations. However, more recent approaches
try to include these effects into the dynamics used for the motion generation.

In literature, dynamic models that include effects of angular momentum on the motion
of the CoM of a MBS are named centroidal dynamics, see [140] for a comprehensive article.
This usually involves considering the ground reaction forces and moments as well as their
effect on the CoM movement. In [140], the authors derive efficient algorithms for the
computation for centroidal quantities by means of spatial algebra. From this, they derive a
balancing controller able to keep a humanoid subject to external perturbations balancing
on a narrow beam.

One of the first approaches considering the centroidal dynamics can be found in
Hirukawa et al. [74]. Here, the authors consider a set of contact points, the velocity of the
feet, the hands, the free-flyer, an initial guess on the CoM, and a heuristic to distribute the
amount of forces on the contact points. From this knowledge, they proposed a pattern
generator that satisfies the friction cones using so-called resolved momentum control
in order to track reference CoM accelerations and its angular momentum to compute a
dynamically feasible motion for the CoM. In [141], a stabilization process based on the
work of Cheng [77] is proposed, which assumes a quasi-static motion, i.e., accelerations are
set to zero. However, this condition imposes strong restrictions on the possible motions.

The generation of whole-body motions utilizing multiple contacts between the robot and
its environment extends the form of bipedal locomotion with a potential high impact on the
functional range of humanoid robots. It enables a robot to climb ladders, perform crawling,
evolve in cluttered environments and, less impressive, but yet very useful, to climb stairs.
In [6], a multi-contact control scheme is presented that relies on a simplification of the
centroidal dynamics and uses a pre-computed set of contacts. In contrast to this, in [31] an
approach is presented that considers the full centroidal dynamics for motion generation
together with both pre-computed contact configurations as well as a trial to resolve the
force-contact complementarity in the optimization.

A similar approach is presented in [145], where the authors propose an approximation
of the nonlinear constraints due to the centroidal dynamics. This is based on their previous
work [73, 144] that applies a mixed-integer formulation related to [33] to plan contact
stances together with contact forces based on an approximation of the centroidal dynamics
in the form of a convex formulation.

Thus far, none of the approaches addresses a simplification to the core of the centroidal
dynamics for planning of CoM trajectories and force distributions that, together with
whole-body stabilizing control, enables the whole-body motion generation close to real-
time on the embedded hardware on the robot. Furthermore, the verification of the
approach on the robotic platform is mostly missing.

Whole-body Dynamics

Approaches that use the whole-body dynamics in order to generate motions for humanoids
online and are validated on the respective hardware are not yet found in literature.
However, some approaches that come close to this goal are mentioned below.

The locomotion problems described in [128], that include multiple contacts and consider
the whole robot model over a time horizon, are not yet solvable in real-time and strongly
depend on the models used to represent the physics. As presented in [127], a realization of
the results required then tailored methods of model-robust optimization, as the nominal
solution could not be applied otherwise.

6

INTRODUCTION
∣∣∣ CHAPTER 0

As already mentioned above, the group of Todorov presented examples of optimal
control applied to full-scale models of humanoids for example [167, 168]. This work is
based on differential dynamic programming (DDP) techniques and a dedicated physics
simulation [171]. In [42], they present a system that is supposed to achieve real-time
model predictive control for humanoid robots, but their claim is not validated directly on
the robotic hardware but in simulation only.

The principle approach was then ported to the humanoid robot HRP-2 in [168], where
the methodology of DDP was extended to include box constraints on the controls. While
the proposed control architecture is now closer to real-time feasibility, as it was recently
applied to HRP-2 [101], it still requires powerful multi-core CPUs, which limits its in-
tegration on humanoid robots due to heat and power consumption. Despite numerous
efforts to address this large scale nonlinear problem with roughly ten thousand variables
[31, 101], no solution yet exists to generate physically consistent controls in real-time
using humanoid robot embedded computers.

In [27], Chrétien presents a motion planning approach leveraging massive parallelization
on graphic cards to make the resulting optimal control problem tractable in terms of
computational time. They employ an inverse dynamics formulation together with a
collocation approach to formulate a motion as nonlinear program (NLP) that is solved
using an off-the-shelf solver. In this way, for motions in a fixed contact configuration
on a horizon of up to 5s, the evaluation time of nominal and derivative information of
the dynamics required for a single iteration of the solver could be lowered below 1s in
simulation.

While the above approaches show the state of the art in whole-body motion generation
using methods of NMPC, none of them allows yet an execution of dynamic whole-body
motions on the robot in real-time.

Combining Nonlinear Model Predictive Control & Reinforcement Learning

In principle, with the goal to solve optimal control problems to synthesize humanoid
motions online, there exist two common approaches to control nonlinear dynamic sys-
tems while coping with uncertainties in the form of model-plant mismatch, NMPC and
reinforcement learning (RL). RL has been proven suitable as a real-time closed-loop
control concept in robotics [97], while NMPC already starts to become the standard in
industry [147]. As mentioned above, NMPC in robotic applications, especially humanoid
robotics and bipedal walking, is still an open research field.

In robotics, the model-plant mismatch is of special interest, because the realization of
a task by applying motions to the robot in open-loop requires special care in the form
of robustification [127], self-stabilizing motions [125] or very explicit knowledge of the
mechanical and control architecture of the robot [100]. While there are examples of the
application of NMPC as well as RL for walking tasks, an analysis of the strength and
weaknesses or an investigation of a possible combination for systems subject to structural
uncertainties has rarely been done, especially not in a systematic and quantitative way.

A study of the influence of the RL reward function on steady-state error was performed
in [41]. It was shown that direct translation of a quadratic objective function used in
standard linear-quadratic regulator (LQR) resulted in a consistent, though not acceptable
steady-state error. In contrast, using the absolute-value reward function yielded a response
with negligible error.

A comparative study for ideal systems, i.e., not subject to any uncertainties, can be
found in [43]. The authors highlight similarities of NMPC and RL, including optimality

7

CHAPTER 0
∣∣∣ INTRODUCTION

of methods, truncation of a time horizon, and continuous vs. discrete actions. They show
that, for an electrical power oscillations damping problem, NMPC slightly outperforms
RL, yet both policies were essentially similar. Furthermore, the authors propose the idea
of combining RL and NMPC. In an on-line, (local) optimal mode, NMPC could start
optimization from the initial guess of the optimal trajectory pre-computed by RL in an
off-line, possibly globally optimal mode.

A distinction of both NMPC and RL was observed and successfully realized in a hybrid
approach, a variant of the Guided Policy Search algorithm [112]. The approach was able
to learn obstacle avoidance policies for a quadrotor [186]. It adopted a collection of
model predictive control roll-outs obtained under full state observation and trained a
deep control policy that required only the on-board sensors of the vehicle.

A combination of RL and NMPC in one framework has the benefit of allowing RL
to gather the required experience without damaging a many-degree-of-freedom system,
where NMPC acts as a safe-guard. The experience is used by RL to compensate the
difference between the internal model of the system and the real one. While any model-
based nominal controller is suitable for acting as a safeguard, the complexity of humanoid
robots motivates to use advanced methods of NMPC for this role.

This can be compared to adaptive internal model control (IMC) [32] from a control
theoretic viewpoint. The implementation requires an explicit model of the plant to be
used as part of the controller. However, in adaptive IMC, the structure of the unknown
system is determined offline, while its parameters can be inferred by online parameter
estimation [107]. A particular shortcoming is that the structure needs to be identified
precisely, otherwise a model-plant mismatch remains.

In principle, any model-free RL algorithm such as [87, 156–158] can be used. However,
lack of safety measures, i.e., the prevention of actions that cause damage to the system,
for example, not falling in bipedal locomotion, and sample complexity of the algorithms
limits their application to real systems.

Learning the forward model of the system demonstrates the lowest number of interac-
tions with it [63, 88]. Learning the inverse model [28, 91] assumes that the model can
connect successive states prescribed by the nominal controller.

When the approximate model of the system is available, it is possible to pre-train the
initial policy, which can speed up learning. In [46] a two-step sequential approach is
proposed. First, an iterative linear-quadratic-Gaussian algorithm is used to design an
initial policy. Then, the policy is refined using the PI2 algorithm on the real system.
Another approach is to iteratively learn the difference model of the measured state and the
state obtained on the approximate model and adopt this difference model for improving
the policy [66, 153]. Finally, the authors in [148] use an ensemble of slightly perturbed
model parameters to learn a robust policy.

Learning involving offline planning or human-expert demonstrations [1, 112, 143, 155]
constrains the problem space, thus reducing hardware damage. This option requires
either a hand-coded suboptimal policy or a skilled human operator.

For a bipedal robot where any failure can be catastrophic, the above methods are not
suited even given a good starting policy, because it is likely that RL will result in at
least several failures during subsequent policy improvement episodes. It is possible to
guarantee safe learning when one can either predict repercussions of bad actions [123] or
has a backup policy to lead the system back to safe states [54, 67].

Up to the present and in contrast to this thesis, the comparative analysis and bench-
marking of both model-based and model-free methods of optimal control are not present

8

INTRODUCTION
∣∣∣ CHAPTER 0

in the current literature. Furthermore, the investigation of a beneficial and constructive
combination of both approaches to optimal control for more than simple examples or,
needless to say, even the implementation on the respective robotic platform in real-time
as proposed in this thesis.

9

CHAPTER 0
∣∣∣ INTRODUCTION

Rigid-body dynamics Motion generation and closed-loop control

Reinforcement learning
and nonlinear

model predictive control

Rigid-body dynamics

E
ffi

ci
en

t
d

er
iv

at
iv

e
ev

al
u

at
io

n
fo

r
ri

gi
d

-b
od

y
d

yn
am

ic
s

Motion generation and
closed-loop control

based on CoM dynamics

Pa
tt

er
n

ge
ne

ra
to

r
ba

se
d

on
N

M
P

C
Im

p
ro

vi
ng

th
e

w
al

ki
ng

ca
p

ab
il

it
ie

s
of

H
ei
C
ub C

om
bi

ni
ng

p
at

h
p

la
nn

in
g

an
d

m
ot

io
n

ge
ne

ra
ti

on
u

si
ng

M
IQ

P

Motion generation based
on centroidal dynamics

W
ho

le
-b

od
y

m
ot

io
n

ge
ne

ra
ti

on
u

si
ng

ce
nt

ro
id

al
d

yn
am

ic
s

fo
r

p
re

d
efi

ne
d

co
nt

ac
t

co
nfi

gu
ra

ti
on

s

Motion generation and
closed-loop control based
on whole-body dynamics

C
om

bi
ni

ng
M

L
R

T
I

of
N

M
P

C
fo

r
w

ho
le

-b
od

y
m

ot
io

n
ge

ne
ra

ti
on

Combining reinforcement
learning with NMPC

B
en

ch
m

ar
ki

ng
m

od
el

-f
re

e
an

d
m

od
el

-b
as

ed
op

ti
m

al
co

nt
ro

l

C
om

bi
ni

ng
m

od
el

-f
re

e
an

d
m

od
el

-b
as

ed
op

ti
m

al
co

nt
ro

l

Figure 0.2: Overview of the contributions of the thesis to different subjects of nonlinear model
predictive control for whole-body motion generation of humanoids.

Aims and Contributions of this Thesis

The aim of this thesis is to to make one new step towards real-time feasible NMPC for
the optimal closed-loop motion generation of humanoids modeled as multi-body systems
(MBSs) being realizable on today’s humanoid robots. To this end, this thesis presents
novel results and advances over previously established techniques in a number of areas.

The author of this thesis contributed to several publications during the process of
creation of this work. In the remainder of this section, we give a brief overview of the
respective contributions, refer to the publications in which they appeared, describe their
content, and clarify the contribution of the author of this thesis.

Rigid Body Dynamics

Within the scope of this thesis, we contributed to the efficient handling of rigid-body
dynamics (RBD) in the context of optimal control. We propose novel methods for the
efficient evaluation of derivatives of the required RBD quantities for the solution of optimal
control problems for motion generation of humanoids. We describe this contribution and
its advances over related work in the following paragraph.

Efficient Derivative Evaluation for Rigid Body Dynamics

The state of the art in today’s robotics applications for the evaluation of common RBD
quantities are recursive algorithms exploiting the kinematic tree topology of the robot
modeled as MBS, c.f. [48]. While this is enough for simulation purposes, derivative-
based optimization, as, for example, in direct optimal control, requires at least first-order
derivative information.

The approaches for the evaluation of derivative information presented in the literature
proof that a significant speed up in the evaluation of derivative information can be gained
for the well-know recursive algorithms in contrast to performing numerical differentiation
(FD). This speed up is possible due analyzing the internals of the recursive RBD algo-
rithms and implementing dedicated code for the derivative evaluation by either manually

10

INTRODUCTION
∣∣∣ CHAPTER 0

derivation or automatically by applying algorithmic differentiation (AD). However, to this
end, MBS subject to kinematic constraints and collisions that require matrix factorization
techniques to evaluate the RBD have not been addressed before.

In this thesis, we propose novel algorithmic augmentation of state-of-the-art recursive
algorithms in order to additionally evaluate the first-order forward derivatives. By follow-
ing the principles AD and extending the theory to vector-valued elementary operations,
we propose to treat the recursive algorithms as concatenation of elementary operations.
In this way, the efficient analytic derivative of each elementary operations can then be
successively propagated by means of the chain rule. This yields the correct derivatives of
some of the well-known algorithms, e.g. the recursive Newton-Euler algorithm (RNEA) or
the composite rigid-body algorithm (CRBA). Furthermore, we propose an extension of the
approach to the linear algebra of contact dynamics, which involves matrix factorization
to solve both the respective descriptor form and the conservation of angular momentum
equation on collisions of the considered MBS.

The proposed algorithmic augmentations are implemented in the freely-available open
source library Rigid Body Dynamics Library (RBDL) [49, 50], which realizes the state-of-
the-art algorithms in an efficient template-based C++ code. The proposed approach is
thoroughly tested against its FD counterpart on benchmark examples. The applicability
of the developed derivative evaluation for direct optimal control is shown for a lifting
motion of a human model. Furthermore, we demonstrate the benefit of appropriate
sparsity exploitation.

We based parts of our journal article [105] on the respective chapter 2 of this thesis.
In this article, we present how an state-of-the-art code for the evaluation of RBD can be
augmented following the principle of AD to also evaluate the derivatives. My contribution
is the derivation of the theoretical part of the code transformation relying on the principle
of AD as well as major parts of the technical implementation. I set up all the benchmark
problems as well as the optimal control applications. My technical implementation is
available as a fork11 of the well-known RBDL of Felis, c.f. [50]. I was responsible for major
parts of the article, the theoretical background, the efficient implementation of AD code
of the core RBD algorithms and the comparison of the results in numerical benchmark
examples as well as their applications in the optimal control context. Chapter 2 contains
further mathematical clarification and the mandatory theorems to proof the correctness
of the technical implementation.

Motion Generation based on Reduced and Whole-body Dynamic Models

In the context of this thesis, the evaluation of different model reduction approaches of
MBS were performed. This led to the development of motion generation algorithms based
on these model reductions, which are suitable for an actual realization on the robotic
platform in real-time. We describe each contribution and its advances over related work
in the following paragraphs.

Center of Mass Dynamics

In this thesis, we propose a framework for the generation of whole-body motions and
closed-loop control of humanoids based on walking pattern generators (WPGs). We
propose a reformulation of the state-of-the-art WPGs, which separate the optimization
of positional and rotational degrees of freedom (DoFs) of the linear inverted pendulum

11 https://bitbucket.org/mkudruss/rbdl/src/dev/

11

https://bitbucket.org/mkudruss/rbdl/src/dev/

CHAPTER 0
∣∣∣ INTRODUCTION

model (LIPM) and the foot placement. In contrast to this two-step approaches to WPG, our
combined but nonlinear reformulation is able to find simultaneously foot-step positions
and orientations. Additionally, the proposed formulation allows to directly include
obstacle avoidance into the formulation by the special nonlinear constraints.

While the treatment of nonlinearities in WPG is seen to hinder their execution in real-
time, we propose a tailored solver of the nonlinear problem based on NMPC real-time
iterations that provide fast feedback computation for a practical realization. In this way,
we show that the whole motion generation chain including our WPG formulation runs
in real time on the embedded hardware of the humanoid robot HRP-2 of Laboratory
for Analysis and Architecture of Systems, Toulouse, France. Furthermore, we propose an
adaption of the algorithm to run in real time on the external computing hardware of the
humanoid robot HeiCub of Heidelberg University, Heidelberg, Germany.

Parts of the work of this thesis were published in our journal article [133]. We present an
extension of the state of the art in linear model predictive control (LMPC)-based motion
generation. By combining linear and rotational DoF of the simplified model a nonlinear
least-squares problem is derived. Following this, we propose a tailored algorithm based
on NMPC principles, efficiently implemented and evaluated on the robotic platform of
HRP-2. My contribution is the derivation of the NMPC algorithm, the adaption of a
suitable solver and the efficient implementation in Python. The experiments presented in
the article were conducted by the co-authors of Laboratory for Analysis and Architecture of
Systems, Toulouse, France.

Other parts of this work were published in our conference article [163]. In this article,
we present the improvement of the walking capabilities of HeiCub by employing a closed-
loop control concept based on the above mentioned pattern generator based on NMPC
presented in our journal paper [133]. The improvements are documented by comparing
key performance indicators of the novel control scheme against the state of the art, and
show a significant superiority of the novel scheme. I contributed to this article by adapting
the pattern generator for closed-loop control concept and the implementation on the
robot platform HRP-2 to the humanoid robot HeiCub. Furthermore, I contributed to the
experiments jointly conducted with the co-authors of Heidelberg University, Heidelberg,
Germany.

Additionally, this thesis presents a novel mixed-integer formulation for a pattern gen-
erator based on the same principles as the previously mentioned contributions. While
our previous work required the hard-coding of contact sequences and support phases, the
formulation presented within this work implements fully automatic foot step placement
based on a simplified complementarity formulation together with an automatic contact
surface selection for cluttered environments as well as an improved obstacle avoidance
strategy.

Centroidal Dynamics

In this thesis, we propose a framework for the generation of whole-body motions of
humanoids for predefined multi-contact supports based on the centroidal dynamics of
the humanoid. We formulate a reduced version of the multi-contact centroidal dynamics
of a humanoid by means of an ellipsoid model. In this way, we are able to separate the
effects of actuated and non-actuated DoFs on the change of total momentum at center of
mass (CoM) level, which reduces the dimension of state space drastically.

The reduced model incorporates only the DoFs of the floating-base as states, hence

12

INTRODUCTION
∣∣∣ CHAPTER 0

reducing the overall computational complexity of the approach and qualifying for being
real-time feasible. The derived reduced model includes the major effects on the under-
actuated part and generalizes in the number of contacts. Following this, we extend the
range of tasks, e.g. level ground walking, walking non-flat floor, multi-contact like using
the handrail during stair climbing.

We apply the approach in order to generate a whole-body motion for the humanoid robot
platform HRP-2, where we realize a stair climbing task with additional handrail support.
In this way, for the first time, we made HRP-2 climb stairs of 15 cm height repeatedly.
We show, that by leveraging handrail support the overall motor power consumption is
reduced by 25%.

Parts of this work were published in our proceedings article [106]. In this article,
we propose an approach to whole-body multi-contact motion generation based on the
centroidal dynamics of a humanoid. We achieved real-time feasibility by further reducing
the complexity of the centroidal dynamics by separating terms that depend on the joint
motions. In this way, optimal CoM trajectories as well as contact forces are computed
by means of optimal control (OC). I was responsible for deriving the reduced centroidal
dynamics model, formulating the respective optimal control problem (OCP) for walking
and stair climbing as well as fine-tuning the motion for execution on the robot HRP-2.
The experimental results were conducted by the co-authors at Laboratory for Analysis and
Architecture of Systems, Toulouse, France.

Nonlinear Model Predictive Control for Motion Generation of Humanoids

The vast complexity of the OCPs based on the whole-body dynamics of the respective
humanoid still hinders the application of these formulations in a online closed-loop
control context. While it is possible to apply reduced versions of the dynamic model in
combination with other strategies, the application of whole-body dynamics for NMPC
have not yet been realized on the robotic platform or at least not yet in real-time.

In this thesis, we propose the combination of advanced methods of multi-level real-time
iteration (MLRTI) for NMPC to realize fast feedback control for whole-body motion gener-
ation. From the analysis of the computational time of a task, we show that the feedback
phase of NMPC can be performed many times faster than the rather slow preparation
phase that computes the evolution of the respective dynamic system. From this knowl-
edge, we present a thread-based implementation that separates both phases such that
fast feedback using the last linearization can be queried while the preparation phase is
evolving the dynamic system.

In this way, we are able to implement real-time whole-body motion generation for
the humanoid robot Leo of Delft University of Technology, Delft, the Netherlands. The
contribution of this thesis is the derivation, the efficient implementation of the NMPC
strategy as well as the realization on the robot itself. The experiments on the humanoid
robot Leo were jointly conducted with Koryakovskiy at Delft University of Technology.

Combining Nonlinear Model Predictive Control & Reinforcement Learning

Within the scope of this thesis, we propose to benchmark model-based and model-free
methods of optimal control for motion generation with respect to model-plant mismatch,
deriving a hybrid control strategy and evaluating it on the actual hardware platform. In
contrast to the state of the art, our conclusions go beyond the validation of similarity of
solutions or computational benefits for ideal models. We provide numerical evidence

13

CHAPTER 0
∣∣∣ INTRODUCTION

that under uncertainties, situations may arise in which one or the other method can be
favorable for performance. We describe each contribution and its advances over related
work in the following paragraphs.

Benchmarking Nonlinear Model Predictive Control and Reinforcement Learning

A major contribution of the thesis is the investigation of a beneficial combination of model-
free reinforcement learning (RL) and model-based NMPC for the control humanoid robots.
In this thesis, we propose a quantitative comparison of reinforcement learning and nonlin-
ear model predictive control subject to model uncertainties. Using a guiding benchmark
example of a cart-pendulum swing-up and balance task, we show differences, trade-offs
and pitfalls of the specific problem formulations. In this way, we quantitatively determine
break-even points at which the superiority of one method over the other changes.

Parts of this work were published in our journal article [103]. In this article, we conduct
a comprehensive comparison of the performance model-free RL and model-based NMPC
on an exemplary benchmark example. The presented comparison quantifies the perfor-
mance of the methods subject to parametric and structural uncertainties in terms of two
different criteria, namely the similarity of trajectories and the resulting rewards. For the
comparison, a standard benchmark problem was chosen: a cart-pendulum swing-up and
balance task. Here, it is demonstrated that NMPC has advantages over RL if uncertainties
can be eliminated through identification of the system parameters. Otherwise, there
exists a break-even point after which model-free RL performs better than NMPC with an
inaccurate model. We find that a combination of both RL and NMPC can be beneficial for
real systems being subject to uncertainties.

Koryakovskiy and I equally contributed to this publication. While Koryakovskiy imple-
mented the RL problems, my contribution is the implementation of the NMPC problems.
The benchmarking was jointly realized by Koryakovskiy and Kudruss, where all NMPC-
related parts were done by me. The discussion of a common problem formulation in
order to solve the same problems in the framework of both RL and NMPC as well as the
definition of the quantities of interest in the form of key performance indicators (KPIs)
were derived in joint work.

Combining Nonlinear Model Predictive Control and Reinforcement Learning

In this thesis, we propose to combine reinforcement learning and nonlinear model pre-
dictive control to compensate model uncertainties following our findings from accessing
methods of reinforcement learning and nonlinear model predictive control. Therefore,
we propose two combination schemes in order to compensate model-plant mismatch
induced by uncertainties, which preserve the Markov property. The first scheme learns a
compensatory control on top of NMPC, while the second scheme learns a compensatory
signal from the difference between model-predicted and actual transition. Each of the
proposed schemes leverages a model-based controller, here NMPC. We shed light on the
mathematical properties of the proposed schemes and establish the theoretical founda-
tion of the approaches by means of two theorems. The same RL framework in which
the benchmarking was realized is applied to verify the benefits of combination of both
model-free and model-based methods of optimal control. The superior scheme is found
from numerical experiments, which we then realized on the robot Leo for validation of the
approach. Parts of this work were published in our journal article [104].

14

INTRODUCTION
∣∣∣ CHAPTER 0

Thesis Overview

This thesis is structured in three major parts according to the overview of its contributions
depicted in Figure 0.2, covering the contributions to rigid-body dynamics (RBD), whole-
body motion generation of humanoids, and the combination of nonlinear model predictive
control (NMPC) and reinforcement learning (RL).

In chapter 1, we give an introduction to the underlying methods of this thesis. We
first introduce the considered robotic hardware throughout in the remainder of this work.
Following this, we present how according to the state of the art a dynamic model of
the robots can be derived by means of RBD. Locomotion as multi-stage optimal control
problem (OCP) as well as the formulation of an NMPC problem considered in this thesis.
We present the direct optimal control approach based on multiple shooting as presented
by Bock in detail. The numerical solution of the proposed OCPs in the form of structured
nonlinear programming employing sequential quadratic programming (SQP) methods is
presented. From this, we introduce the state-of-the-art methods of NMPC. We explain
how we consider the ordinary differential equations (ODEs) of the multi-body system
(MBS) of the humanoids in the formulation of the OCP, and conclude with pointers to the
succeeding content of this thesis

The work related to RBD is presented in chapter 2. In chapter 2, we present the efficient
evaluation of first-order forward derivative information for recursive algorithms for RBD
of MBS with tree-topology by leveraging methods of algorithmic differentiation (AD).

The work concerning whole-body motion generation for humanoids with either reduced
models or the whole-body dynamics of a humanoid to RBD are presented in chapters 3, 4
and 5.

In chapter 3, we present the work on motion generation based on center of mass (CoM)
dynamics. This includes the derivation of the linear inverted pendulum model (LIPM)
from the RBD of MBS, the formulation of a reactive pattern generator based on NMPC as
well as its application for motion generation of HRP-2 and HeiCub, and the formulation of a
pattern generator based on a mixed-integer quadratic program (MIQP) and its application
for motion generation of HeiCub.

In chapter 4, we present our reduced formulation of the centroidal dynamics together
with a framework that enables the generation of whole-body motions for the humanoid
robot HRP-2.

In chapter 5, we present our novel approach to whole-body motion generation based on
a thread-based scheduling of multi-level real-time iteration (MLRTI) of NMPC. Following
this, we show results obtained from experiments with the robot Leo of Delft University of
Technology.

In chapter 6, we first give a brief introduction into the methodology of RL. Afterwards,
we present our efforts on benchmarking model-based and model-free methods of optimal
control by introducing a quantitative and comprehensive comparison of their performance
for systems subject to model-plant mismatch in the form of a protocol of a computational
study that is performed on a benchmark example. From the knowledge of the conducted
computational study, we additionally propose different schemes on the combination of
both RL and NMPC in order to address the cooping with model-plant mismatch. This is
followed by an evaluation of the schemes in simulation and a validation on the robot Leo.

15

16

1 From Robots to Rigid Body Mechanics and
Optimal Control

In the following chapter, we give an introduction to the concepts on which this thesis
is based. We strive to encode the bipedal locomotion of humanoids in the form of an
optimal control problem (OCP). The basis of this approach is the description of the
humanoid as multi-body system (MBS) subject to impacts and kinematic constraints such
that the respective rigid-body dynamics (RBD) result in a discontinuous hybrid dynamic
system. By taking into account the specific properties of the human gait, we can formulate
bipedal locomotion as multi-stage OCP subject to ordinary differential equations (ODEs),
which encode the RBD of the humanoid, and special switching conditions linking the
model stages, which encode the discontinuities due to impacts. From this fundamental
formulation, we are able to derive different approaches that enables us to solve the problem
online on the respective hardware. By hardware, we mean the humanoid robots that are
supplied by partners for this thesis and act as target platforms on which the algorithms
are executed for testing and demonstration. The derived feedback control concepts are
based on nonlinear model predictive control (NMPC), a closed-loop control strategy that
solves an open-loop OCP over a finite horizon on-line in order to compute a feedback
control from the current system state online in real time.

We introduce the basic concepts of the human gait that are required for this thesis in
Section 1.1. Following this, in Section 1.2, we give an overview of the robotic hardware
considered in this thesis. We introduce the state of the art of modeling humanoid robots as
MBSs in the form of a discontinuous hybrid dynamic system in Section 1.3. Following this,
we present how the bipedal gait of humanoids can be formulated as an OCP considering
the discontinuous hybrid dynamics of the respective RBD in Section 1.4. Furthermore,
we introduce the direct approach of optimal control in the form of multiple shooting in
order to discretize the resulting OCPs and briefly discuss how to solve the highly struc-
tured nonlinear programs (NLPs) by means of structure exploting sequential quadratic
programming (SQP) methods. Finally, we present the fundamentals of advanced methods
of NMPC based on the real-time iterations of SQP. Next, we revisit this methodology
for system and parameter estimation in the form of moving horizon estimation (MHE)
techniques. We conclude this chapter by recapping the presented ideas.

1.1 Bipedal Walking of Humanoids

In Figure 1.1, the human gait is schematically visualized, where we refer to [142] for
a detailed overview of human gait characteristics. According to Vukobratović in [177],
regardless of the structure or the number degrees of freedom (DoFs) of the system under
consideration bipedal legged locomotion is characterized by the possibility of rotation
of the overall system about one of the foot edges, equivalent to an unpowered (passive)
DoF, symmetry of gait or periodicity, both related to regular gait only, and an alternating
appearance of single- and double-support phases.

17

CHAPTER 1
∣∣∣ RIGID BODY MECHANICS AND OPTIMAL CONTROL

Figure 1.1: The gait cycle of a human represented by a single step of a full stride together with
the respective phases, events and contact configuration. From an initial configuration,
the single support phase with the right foot fully in contact with the ground (RF) is
followed by a change in contact configuration when the right foot rolls over from heel
to toe (RF). After the instantaneous touchdown event of the left heel (TD: LH), the
double support phase is established with two legs and two contact points on the ground
(RT LH) until in another event the left toe establishes contact as well (TD: LT). The
step is finalized in double support phase with two contacts (RT LF).

Revisiting Figure 1.1, a gait consists of two different contact configurations. The stati-
cally unstable single-support phase comprising the phases (RF, RT), during which one feet
is in contact with the ground and the other is swung from the back to the front position.
The legs define an open kinematic loop during the single-support or swing phase. This is
followed by the statically stable double-support phase, i.e., both feet are in contact with
the ground. Here, the legs define a closed kinematic chain. The contact configuration is
essential for the system in order to realize locomotion with respect to its environment. As
only through contact, an interaction with the environment is possible.

While Figure 1.1 shows only free walking on flat ground with absence of obstacles,
human bipedal locomotion is much more versatile than this simple task presents. Humans
can freely walk while evading obstacles and coping with different ground conditions,
e.g. slippery floor, ice, gravel or sand. Bipedal locomotion of humans is successful also
in constrained environments, e.g. utilizing footholds, balancing on bars, or traversing
uneven or cluttered terrain. Bipedal locomotion also includes walking with additional
hand contacts, such as additional hand support on tables, walls or handrails. The most
important task however is to preserve the dynamic balance (or stability) of the considered
system during the gait, i.e., not to fall.

The human gait, as realization of an efficient and robust locomotion strategy and a
distinctive feature of humanity, represents an ongoing source of stimulation for various
fields of research. This involves theoretical studies, motion analysis, simulation as well as
practically realized systems from simple planar mechanisms to today’s humanoid robots,
examples of the most advanced robotic realizations of bipedal locomotion. While the
human gait is very robust and humans can withstand pushes as well as large perturbation
without falling during walking, this level of confidence is yet to be implemented on the
respective hardware platforms of today’s humanoid robots.

18

RIGID BODY MECHANICS AND OPTIMAL CONTROL
∣∣∣ CHAPTER 1

1.2 Considered Humanoid Robot Hardware Platforms

The ability to perform bipedal walking in an autonomous way is a crucial characteristic
of humanoid robots. Following the goal of becoming assistants or helpers for humans or
addressing other challenges, e.g. in disaster response scenarios, bipedal humanoid robots
are better suited than wheeled robots to move in a human environment, including walking
over stairs, navigating rougher terrain and moving over small obstacles. Additionally,
robots with a fully anthropomorphic form are also much more likely be to be socially
accepted as a companion than other robotic realizations.

In order to consider robotic control algorithms to be successful, an ideal in-silico eva-
luation in simulation is not enough, such that their realization on the actual hardware
to validate their performance is mandatory. Therefore, one of the goals of this thesis is
that the developed algorithms do not only consider practical knowledge of expert robotic
practitioners but, with their help, could be executed on the target platform whenever
possible. The interested reader is referred to [160] for an overview of the history as well
as the state of the art of robotics. In the remainder of this thesis, three actual robotic
hardware platforms will appear, i.e., HRP-2, HeiCub and Leo. We give a brief introduction
to each of the humanoid robots in the following section respectively.

1.2.1 The Humanoid Robot HRP-2 No4

Figure 1.2: HRP-2 robot of Laboratory for Analysis and Architecture of Systems during a stair climbing
task from our conference article [106].

Within this thesis, one of the humanoid robotic platform, in the focus of this thesis, is
HRP-2 No 14 located at Laboratory for Analysis and Architecture of Systems (CNRS-LAAS)
in Toulouse, c.f. [85, 89]. HRP-2 is a medium human-sized robot of 1.58 m with 30 DoFs.
METI Japan developed this robot within the Humanoid Robotics project, c.f. [75]. We refer
the reader to [89] for a detailed technical description of the robot.

The mechanical structure of HRP-2 can be assumed to be perfectly rigid as presented by
[75, 89]. The joints of HRP-2 are equipped with brushed DC motors. Gearboxes with high
reduction ratios are employed on each joint. In this way, higher order dynamic coupling
effects to a pure rotational inertia augmentation of the given joint can be neglected, c.f. [93].

19

CHAPTER 1
∣∣∣ RIGID BODY MECHANICS AND OPTIMAL CONTROL

The low-level control at joint level of HRP-2 is realized via high-gain position control in
order to achieve tracking of given trajectory profiles. An important part of the control
concept of the robot is the passive elasticity in the ankle joint. The ankle-foot mechanism
represents a passive spring-damper system according to [132]. During the execution of
motions, this ankle-foot mechanism can act as additional stabilizer, c.f. [185].

The robot HRP-2 acts as an example for the application of our developed motion
generation approaches. The developed motion generation approaches based on center of
mass (CoM) and centroidal dynamics are realized on HRP-2 for validation in Chapter 3
and 4 respectively.

1.2.2 The Humanoid Robot HeiCub

Figure 1.3: HeiCub robot of Heidelberg University during a walking task.

The Robotics Lab of Heidelberg University has a reduced version of the iCub humanoid
robot, called HeiCub. The robot was manufactured at the Fondazione Istituto Italiano di
Tecnologia (IIT) in the context of the KoroiBot project. HeiCub is a research platform
specially designed for walking experiments and is derived from the platform iCub [120]
IIT.

In contrast to the full iCub, HeiCub is smaller, i.e., 0.97m in height. The robot has a
total weight of 26.4kg. The reduced version HeiCub consists only of the torso, the pelvis
and the legs of iCub. While the full platform has 53 DoFs, HeiCub only has a total of 15
DoFs. Six DoFs are located in each leg and the remaining three are located in the torso.

The legs have been redesigned to be more powerful. In this way, their functionality
is extended to enable advanced motions of the robot, e.g. squatting or walking. They
have a length of 0.51 m. The feet are 0.2m long and 0.1m wide. Furthermore, both iCub
and HeiiCub can be equipped with deformable and pressure sensitive soft soles that can
compensate for uneven ground surfaces. These soles can also be used to measure ground
reaction forces to locate the center of pressure (CoP) for closed-loop control.

The robot is equipped with various sensors for perception and proprioception. The
robot carries two cameras for stereo vision in the upper torso. In contrast to the full iCub
that wears the inertial measurement units in its head, HeiCub has them installed in the
torso. Six-axis force torque sensors as well as optical encoders are installed in each joint

20

RIGID BODY MECHANICS AND OPTIMAL CONTROL
∣∣∣ CHAPTER 1

of the respective robot leg. HeiCub’s legs have a tactile skin allowing that allows to sense
applied external forces.

In order to control the robot a PC-104 equipped with an Intel CPU is mounted in
the torso of HeiCub. The operating system is Linux, where the firmware implements
custom Ethernet or CAN protocol in order to communicate low-level joint control or the
sensors. The robot relies on external computational power based on network connection.
The middle ware Yet Another Robot Platform, c.f. [55], is used to enable transparent
communication between robot, simulation and external hardware.

The humanoid robot is used to validate the motion generation approaches based on
CoM dynamics presented in Chapter 3.

1.2.3 The Humanoid Robot Leo

Figure 1.4: Leo robot of Delft University of Technology during a walking task.

In Figure 1.4, the robot Leo of TU Delft is depicted. Leo was originally built to perform
reinforcement learning experiments directly on the hardware, c.f. [155].

For walking experiments and to enforce a 2D motion around a center platform, robot
Leo is attached to a boom. Leo is small humanoid robot with a height of 50 cm. Its total
mass is 1.7 kg. In order to prevent damage from falls of the robot in a wide range of
configurations, foam bumpers are installed on each side of the top of the torso as well as
between the motors located at the hip. Leo has seven DoFs in total, three in each leg at
ankle, knee and hip as well as one motor in the shoulder joint. Each of the DoFs is actuated
and the actuation is realized by XM430 servo motors from Dynamixel with a maximum
torque 3 Nm. A reduction of the wear of the in-build motor gearboxes is realized by
additional elastic couplings.

Leo is equipped with an VIA Eden on-board embedded computer with 1.2 GHz CPU
and 1 GB RAM. The operating system on-board of the robot implements a fixed sampling
time of 30 ms. The communication between on-board computer and motors is realized
via RS-485 serial ports. The motors are used in voltage control mode. They report their
position by encoder values for closed-loop control and their temperature for compensation.
Joint velocities are retrieved from the position signal by means of numerical differentiation.
In order to reduce the noise, the results are filtered by a second-order Butterworth filter.

21

CHAPTER 1
∣∣∣ RIGID BODY MECHANICS AND OPTIMAL CONTROL

0.0

ttouchdown tlif tof f

Moving Phase Support Phase Moving PhaseTouchdown Liftoff

Λ

time [s]

co
nt
ac
t
d
is
ta
nc

e
[m

]

co
nt
ac
t
fo
rc
e
[N

]

c(q(t))
λ(t)

Figure 1.5: Visualization of the impulsive hybrid dynamics of multi-body system with unilateral
constraints. In a moving phase, as long as the contact is not established, i.e., the distance
to the contact surface (solid line) is larger than zero (c > 0), no contact force (dashed
line), can be applied (λ ≡ 0). A touchdown takes place as soon as a contact is established
at ttouchdown (c(ttouchdown) = 0), then an impulsive force Λ enforces a non-penetration
of the contact surface and stops the respective motion (ċ(t+touchdown) = 0). During the
support phase, a non-zero contact force λ > 0 is applied, while the contact distance
remains zero (c ≡ 0). As soon as the contact force vanishes at tlif tof f (λ(tlif tof f) = 0)
the contact can be released and can leave the contact surface (c 6 0) again. During the
moving phase the force stays zero, while the contact can freely move.

The 2D robot Leo is used as benchmark platform for the motion generation using
advanced methods of NMPC as presented in Chapter 5. Furthermore, we validate the
hybrid control strategies combining methods of NMPC and RL on robot Leo, c.f. chapter 6.

1.3 Humanoids as Rigid-body Models

Revisiting Figure 1.1 of the introduction of bipedal locomotion in Section 1.1, it is clear that
the interaction of the humanoid with its environment plays a crucial role for its locomotion
abilities. Assuming the mechanical structures of the above mentioned humanoid robots
to be perfectly rigid, the state of the art models them as MBS and the respective dynamic
models can be derived by means of RBD. We refer to [19, 48] for the technical details and
follow our introduction of the required definitions from [105] in the remainder of this
section.

In Figure 1.5, the hybrid discontinuous nature of the RBD of MBS subject to unilateral
contacts is depicted. The figure shows two model stages, Moving Phase and Support Phase,
each representing different contact configurations of an MBS. The model stages differ in
the dynamics of the MBS resulting from the different contact configurations representing
the hybrid nature of the MBS dynamics. We describe the dynamics of a MBS in contact
with its environment by means of kinematic constraints in the following sections. The
model stages are connected by two infinitesimal events, Touchdown and Liftoff, indicating
the transition from one contact configuration of the MBS to another one. In contrast to
the Liftoff event, before the Touchdown event the system’s contact motion perpendicular
to the contact surface is immediately stopped such that a jerk is transmitted through the
structure of the robot. This discontinuity on velocity level represents the impulsive nature
of the dynamics of an MBS subject to unilateral constraints, which we introduce in detail
in a later . Afterwards, the contact’s perpendicular motion with respect to the contact
surface is fixed such that it does not move during the support phase except the contact is

22

RIGID BODY MECHANICS AND OPTIMAL CONTROL
∣∣∣ CHAPTER 1

released or the contact begins to slip due to lack of friction. The behavior of the system
in Figure 1.5, i.e., that either a force is applied or the contact can move, represents the
complementarity between force and contact described later in more detail.

Multi-Body Systems and Contact Dynamics

In the case of humanoid robots, we model them as underactuated MBS using a free-floating
base to model the position and orientation of the robot with respect to its environment.
Furthermore, we assume the MBS to consist of nB connected rigid bodies. Each connection
consists of two bodies and the connecting joint which defines their relative motion, e.g.
prismatic, rotational joints or their combination to multi-DoFs, where we assume each
joint to be actuated, i.e., can generate a generalized τ along or around the motion axis. We
exclude kinematic loops, except due to contacts with the environment, and presume a root
body that can be identified as the torso of the robot. The position and orientation of the
root body with respect to a global coordinate system is modeled as the above mentioned
free-floating base with additional six non-actuated DoFs. The total nDoF DoFs of the
MBS is the sum of the six non-actuated DoFs of the free-floating base and the actuated
nAct DoFs defined via joints. In this way, the humanoid can be described as MBS with a
kinematic tree topology by enumerating each body from the root up to nB consecutively
and applying the same numeration for the DoFs.

Furthermore, the MBS under consideration is subject to a number of rigid contacts
that model the interaction with the environment. The contact configuration of the MBS
may change over time for, e.g., a walking humanoid robot. In particular, we consider
scleronomous holonomic constraints of the form gi(q(t)) > 0, 1 6 i 6 nG, with gi : Rn

DoF →
R and generalized coordinates q : R→R

nDoF
describing the configuration of the MBS of

the humanoid. The contact functions gi model the distance between contact points and
the environment, or, in the case of auto-collision, the MBS itself. For brevity of exposition,
we omit dependencies on time t wherever this is obvious.

A contact becomes active when this distance function becomes zero. For a given time
instant, we define the index set I of active constraints

I := {i | gi(q) = 0, 1 6 i 6 nG}.

We denote by nI := |I| the size of the set I, by gI the vector-valued function (gi)i∈I, and by
JI(q) := dgI

dq ∈RnI×nDoF
its Jacobian with respect to q.

The dynamics of a constrained MBS for a fixed constraint set I are then described by

H (q)q̈+ c(q, q̇) = ST τ + JI(q)TλI, (1.1a)

gI(q) = 0, (1.1b)

with generalized velocities and accelerations q̇, q̈ : R→R
nDoF

, generalized forces τ : R→
R
nAct

, a symmetric positive definite joint space inertia matrix or mass matrix H : Rn
DoF →

R
nDoF×nDoF

, c : Rn
DoF ×RnDoF →R

nDoF
the vector of nonlinear effects, e.g. Coriolis, centrifugal,

and gravity terms, and a selection matrix S ∈RnAct×nDoF
mapping the joint torques τ to the

actuated DoFs of the system. Active contacts gI result in an external force λI : R→ R
nG

acting on the system by means of the transposed contact Jacobian JI.

Assumption We assume that the contact Jacobian JI(q) has full row rank for any constraint set I,

23

CHAPTER 1
∣∣∣ RIGID BODY MECHANICS AND OPTIMAL CONTROL

i.e.,

rank(JI(q)) = nI. (1.2)

4

Remark Rank deficiency of the contact Jacobian indicates redundant constraints. In this case, it is
always possible to replace the current constraint set by a subset that satisfies Assumption 1.1.

It is well known that equation (1.1) is a differential algebraic equation (DAE) of index three
that can be reduced to index one under smoothness assumptions. Applied to the equation
of motion (1.1), this yields a second-order index 1 DAE system with γI(q, q̇) = dJI(q)

dt q̇ in
the form of

H (q)q̈+ c(q, q̇) = ST τ + JI(q)TλI (1.3a)

JI(q)q̈+γI(q, q̇) = 0 (1.3b)

which can be equivalently written in the so-called descriptor form, i.e.,[
H (q) JI(q)T

JI(q) 0

][
q̈
−λI

]
=

[
ST τ − c(q, q̇)
−γI(q, q̇)

]
, (1.4)

where additionally the invariants of the kinematic constraints due to (1.1b) have to be
fulfilled, i.e.,

gI(q) = 0, (1.5a)

JI(q)q̇ = 0. (1.5b)

While mathematically equivalent to (1.1), in the case of numerical integration equation
(1.3a) is not fully respected and might result in an accumulation of errors. Therefore,
especially when dealing large step sizes and/or long simulation durations, the application
of Baumgarte stabilization according to Ascher et al. [5] can counteract these effects.

However, this is only required for the simulation of MBS on long horizons, which is
not the case for the OCP formulation we strive for due to its discretization based on
multiple shooting. In this case, the horizon is separated into smaller sub-intervals, where
we enforce the invariants (1.5) as constraints on the initial value. In this way, the errors
can not accumulate along the total horizon and a drift causing the kinematic constraints
to be violated is not observable. The details for this are derived in Section 1.5.1.

Force-Contact Complementarity

In the case of unilateral constraints, i.e., g(q) > 0, the complementarity between contact
and the respective contact force has to be respected. This means that on top of the equation
of motion of either index 3 (1.1) or index 1 (1.4) the following complementarity condition
has to hold

λTI gI(q) = 0 (1.6a)

λI,gI(q) > 0, (1.6b)

where we refer again to [19] for details concerning the simulation of these systems.

24

RIGID BODY MECHANICS AND OPTIMAL CONTROL
∣∣∣ CHAPTER 1

Modeling of Contact Events

System (1.1) governs the MBS as long as all constraints I remain active, and all constraints
in the complement remain inactive. Changes in the contact set I during the motion of the
MBS give rise to implicit switches between different equation of dynamics that have to be
addressed properly.

Advanced impact models, e.g. [173, 174], consider friction, simultaneous impacts
of multiple rigid-bodies as well as physical more meaningful impacts as fully inelastic
collisions in the form of separate compression and expansion phases during collision.

Here, we propose to treat each contact configuration of the MBS represented by a fixed
set I of active constraints as separate model stage combined by a contact event infinitesimal
in time accounting for the impact. Then, on each model stage, the dynamics of the MBS
with a fixed constraint set can be treated according to (1.1) or (1.3). The detection and
confirmation of switches, i.e., changes of the constraint set, is achieved by monitoring the
invariants on position and velocity level as well as the applied contact force λ.

The infinitesimal contact event accounts for the instantaneous state change upon contact.
Whenever a new contact event occurs for any t, i.e., gi(q(t)) = 0 and ġi(q(t)) 6 0 for some
i < I, we add the contact index i to the set I and solve for conservation of momentum for
the new constraint set Ĩ = I∪ {i}, of rigid MBS [48], i.e.,[

H (q) JĨ(q)T

JĨ(q) 0

][
q̇+

ΛĨ

]
=

[
H (q)q̇−

v−̃
I

]
, (1.7)

where ΛĨ ∈Rn
G

is the instantaneous force impulse, q̇− ∈RnDoF
and q̇+ ∈RnDoF

are the joint
velocities before and after the collision. The normal velocities of the contact before and
after impact are v−̃

I
, v+

Ĩ
∈RnI ; the latter will be zero in this work.

Note that the relation of linear and angular momentum

H (q̈+ − q̈−) = − lim
∆t→0

∫ t+∆t

t
J (s)Tλ(s)ds (1.8)

from [179], as well as the collision hypothesis, respectively, becomes (1.7) because we
treat the collision as if it happened instantaneously on a transition stage of infinitesimal
duration.

1.4 Bipedal Locomotion as Optimal Control Problem

In the previous sections, we derived the principle characteristics of bipedal locomotion of
of humanoid. We described humanoid robots as MBS and introduced the mathematics
of releasing and establishing contacts with the environment as well as the consequences
for the equation of motion. Revisiting the contact sequence as shown in Figure 1.1 a
straight-forward way to encode optimal walking of a humanoid into an optimization
problem is to formulate a multi-stage OCP with state-dependent discontinuities at the
respective stage borders subject to periodicity constraints.

Definition (Multi-stage Optimal Control Problem) Let T =
⋃

06j<nm
Tj ⊂ R be a finite time horizon

partitioned into nm ∈N different model stages on Tj = [tj , tj+1]: The respective multi-stage optimal

25

CHAPTER 1
∣∣∣ RIGID BODY MECHANICS AND OPTIMAL CONTROL

control problem is formulated as

min
x(·),u(·),
p,{ti,j }

∑
06j<nm

tj+1∫
tj

lj (x(t),u(t),p) dt +mj (x(tj+1),p) (1.9a)

s.t. ẋ(t) = fj (x(t),u(t),p), ∀t ∈ Tj , 0 6 j < nm, (1.9b)

x(tj) = ∆j−1(x(tj−1),p), 1 6 j < nm, (1.9c)

0 6 gj (x(t),u(t),p), ∀t ∈ Tj , 0 6 j < nm, (1.9d)

0 5
∑
ti,j

hi,j (x(ti,j),p), {ti,j } ⊂ Tj , 0 6 j < nm. (1.9e)

Here, we strive to find a control trajectory u : T →R
nu

such that an objective function composed of
stage-wise Lagrange terms lj : Rn

x ×Rnu ×Rnp →R, 0 6 j < nm and Mayer termsmj : Rn
x ×Rnp →R.

The state trajectory x : T →R
nx

of the dynamic system is defined by stage-wise systems of ODE
with right hand sides fj : Rn

x ×Rnu ×Rnp →R
nx

, 0 6 j < nm that may depend on the global model
parameters p ∈ Rnp

of the system. Discontinuities at the model stage borders tj ∈ R, 1 6 j < nm

are defined by transition functions ∆j : Rn
x ×Rnu ×Rnp → R

nx
, 0 6 j < nm. In addition, mixed

state-control constraints gj : Rn
x ×Rnu ×Rnp →R

nc
, 0 6 j < nm on the horizon and contributions

hi,j : Rn
x ×Rnp →R

nr,i,j
, 0 6 j < nm to coupled (in-)equality point constraints on a finite number of

Nj + 1 time points {ti,j } ⊂ Tj , 0 6 i 6Nj , are imposed on model stages 0 6 j < nm of the problem. 4

In Definition 1.3, the evolution of the MBS is described by a system of ODEs (1.9b). This
dynamic process is affected by an input in the form of control function u(t) at any time
t ∈ T . In general, the control input can be assumed to be at least measurable. However,
to not complicate the formulation and avoid detailed function space considerations, we
restrict the control inputs to be piecewise polynomial, i.e., the set of all control inputs is
given by u ∈ U =

{
u : T →R

nu |∀t ∈ T ∃ I ⊂ Tj ⊆ T ,0 < j 6 nm : u
∣∣∣I≡ v ∈R[t]

}
, where R[t]

denotes the polynomial ring over R in t. While we restricted the assumptions on the OCP
to improve readability, we refer the reader to [29] for a rigorous discourse of OCP based
on functional analysis.

In order to guarantee existence and uniqueness of x, we assume the right-hand side
of the ODEs to be piecewise Lipschitz continuous. Following this, the evolution of the
system state is described by means of x(t) at any t ∈ T and we define the set of all state
trajectories by X = {x : T →R

nx}.
The admissible sets for the state and control functions are restricted by the constraint

functions in (1.9d) and (1.9e), where the first comprises, for example, mixed path and
control constraints, restrict the set of initial values x(t0), and contain boundary conditions
for the trajectories, and the latter comprises, for example, periodicity constraints, and
decoupled constraints such as initial values and terminal values.

Multi-body Systems in the Optimal Control Problem Formulation In order to treat
bipedal locomotion of humanoids , as described in Section 1.1, in the context of optimal
control, we describe how the impulsive hybrid dynamics of MBS subject to unilateral
kinematic constraints, as described in Section 1.3, can be embedded in the OCP (1.9).

For each contact configuration given by a fixed constraint set Ij , 0 6 j < nm, we embed
the respective equation of motion in the form of (1.4) as ODE into the OCP (1.9b). By

introducing both joint positions and velocities as differential states x :=
[
qT , q̇T

]T
and

formulating the second-order differential equation given by (1.4) as an ODE by order

26

RIGID BODY MECHANICS AND OPTIMAL CONTROL
∣∣∣ CHAPTER 1

reduction, which integrates the acceleration q̈ to the actual joint positions, given by

ẋ(t) =
[
q̇(t)
v̇(t)

]
=

[
v(t)

a(t) = FD(q(t),v(t),τ(u(t)); Ij)

]
= f (x(t),u(t),p),t ∈ Tj , 0 6 j < nm,

(1.10a)

where, for correctness of notation, we renamed the generalized velocities and accelerations
by v = q̇ and a = q̈. The accelerations are retrieved by means of an forward dynamics
(FD) solution operator FD : Rn

DoF ×RnDoF ×RnAct →R
nDoF ×RnG

, which maps joint positions,
velocities and torques onto joint accelerations and contact reaction forces given the current
contact situation I, that is defined by

(q̈,λ) = FD(q, q̇,τ; I). (1.11)

The operator FD is the solution operator of the linear system given by the index-1 for-
mulation (1.4). The resulting joint accelerations q̈ are then twice integrated to get joint
positions q and velocities q̇.

There exist two principal direct techniques for solving the linear system (1.4) and we
refer the reader for a detailed overview on solution techniques of range- and null-space
approaches to [10, 48].

Following the fixed contact sequence, every stage except the final one is followed by
an infinitesimal transition stage. In particular, such state jumps ∆j (1.9c) are caused by
impacts resulting from inelastic collisions modeled via (1.7).

The detection and confirmation of switches, i.e., changes of the constraint set, is achieved
by formulating a suitable end-point constraint (1.9e) per stage, given by the contact
invariants of (1.5) and/or by constraints on the contact force λ. While we assumed that the
order of model stages is known and fixed, the respective switching times tj , i.e., the time
instants in which the contact events occur, may be subject to optimization. Furthermore,
friction cones are directly treated into the OCP by (1.9d) instead of handling them in the
ODE (1.9b).

1.4.1 Nonlinear Model Predictive Control

NMPC is a closed-loop control strategy in which the feedback control is computed from
the current system state by solving an open-loop optimal control problem over a single
finite prediction horizon on-line, therefore also denoted as receding horizon control. In
contrast to the OCP problem (1.9) and for brevity of exposition, we focus on a single stage
time horizon T = [0,T] for the NMPC problem and limit the problem class to tracking
NMPC problems.

Definition (Nonlinear Model Predictive Control Problem) Given estimates of the current state
x̂ ∈Rnx

and model parameters p̂ ∈Rnp
of the dynamic system, the NMPC problem under consider-

27

CHAPTER 1
∣∣∣ RIGID BODY MECHANICS AND OPTIMAL CONTROL

ation is of the form of

min
x(·),u(·),p

∫ T

0
‖`(x(t),u(t),p)− ¯̀(t,p)‖2W dt (1.12a)

+ ‖e(x(T),p)− ē(p)‖2
W̃

(1.12b)

s.t. ẋ(t) = f (x(t),u(t),p), t ∈ T , (1.12c)

0 = x(0)− x̂0, (1.12d)

0 = p− p̂, (1.12e)

0 6 g(x(t),u(t),p), t ∈ T , (1.12f)

0 5
∑
ti

hi(x(ti),p), {ti} ⊂ T . (1.12g)

In this problem, the deviation of a non-linear objective ` : Rn
x ×Rnu ×Rnp → R

nl
from a given

setpoint ¯̀, as well as a penalty for an end-point e : Rn
x ×Rnp →R

ne
deviation from a given setpoint

ē is to be minimized with respect to a weighted L2-norm with positive definite weighting matrices
W ∈ Rnl×nl

and W̃ ∈ Rne×ne
. The remaining quantities are the same as for the OCP formulation

given in Definition 1.3. 4

For the NMPC problem, the initial value and parameter embedding constraints (1.12d,
1.12e) are of special interest as they enter the problem linearly and can be exploited to
solve NMPC problems in real-time.

1.4.2 Moving-Horizon Estimation

Model validations, both online and offline, are possible through state and parameter
estimation techniques based on time discrete nonlinear least-squares problems. In the
NMPC context, MHE methods, c.f. [107], are employed to provide state and parameter
estimates for x̂0 ∈Rnx

, p̂ ∈Rnp
in (1.12). We apply the same specialization of the problem

formulation as for the NMPC problem (1.12) for better readability, i.e., we define it for a
single stage time horizon T = [−T ,0] and focus on ODEs only.

The MHE problem minimizes the error between the model response y : Rn
x×Rnu×Rnp →

R
nh

and N measurements η = y(x(t),u(t),p?) + ε(t), from the real system defined by the
true but unknown parameters p? , subject to an additive measurement error ε(t) ∼N (0,Ξ),
with zero-mean and covariance matrix Ξ = diag(ξ0, . . . ,ξnh). The quantities of interest here
are the state and parameter estimates for x̂0 and p̂ in (1.12), which are required for (1.12d)
and (1.12e).

Definition (Moving-Horizon Estimation Problem) The MHE problem under consideration is
given by

min
x(·),p

0∑
k=−N

‖y(x(tk),u(tk),p)−ηk‖2Ξk +

∥∥∥∥∥∥
[
x(−T)− x̄−T

p− p̄
]∥∥∥∥∥∥2

P

(1.13a)

s.t. ẋ(t) = f (x(t),u(t),p), t ∈ T , (1.13b)

0 6 g(x(t),u(t),p), t ∈ T , (1.13c)

where the controls u are fixed to the values that have already been applied to the system in the past
on [−T ,0]. The initial values x̄−T , p̄ in (1.13a) weighted by the covariance matrix P ∈R(nx+np)×(nx+np)

are used to incorporate a-priori information into the problem. The remaining quantities are the
same as for the OCP formulation given in Definition 1.3. 4

28

RIGID BODY MECHANICS AND OPTIMAL CONTROL
∣∣∣ CHAPTER 1

1.5 The Direct Multiple Shooting Method for Optimal Control

In order to solve the infinite-dimensional OCP as well as the NMPC and MHE problems,
we follow a direct and simultaneous approach to optimal control. Therefore, we derive
in the following section the direct multiple shooting method. This method is then used
to discretize, parameterize, and finally solve the optimal control problem (1.9) or its
NMPC/MHE counterpart (1.12) in practice.

1.5.1 The Direct Approach to Optimal Control

The principle of direct approach to optimal control is to first discretize the infinite di-
mensional controls, then optimize the resulting structured finite optimization problem.
Following this, we commence by first discretizing the control u(·) on a prescribed time
grid 0 = t0 < t1 < . . . < tN = nm comprised of N intervals. The end point tN is chosen such
that each model stage is mapped onto a unit interval, and the grid points are assumed to
comprise the integers, which correspond to model stage boundary points. This grid also
partitions the physical time horizon T = [0,T] = [0,0 +

∑nm−1
k=0 hk] into N intervals, where

the hi := ti+1 − ti denote the physical durations of each model stage. Defining ι to be the
index of the stage containing t, i.e., ι = btc the time transformation is given by

t(t) := t0 +
ι−1∑
k=0

hk + hι(t− ι), t ∈ [0,nm] ⊂R.

The control uj(·) is discretized by means of base functions bj , which themselves are
parametrized by nq,j control parameters qi,j,ι ∈R, which yields

uj(t)
∣∣∣∣
[ti ,ti+1)

:= bj(t,qi,j,1, . . . ,qi,j,nq,j) ∈R (1.14)

on time intervals [ti ,ti+1) for 0 6 i 6N and for controls 1 6 j 6 nu. The typical choices for
the base functions are piecewise constant controls with nq,j = 1

bj(t,qi,j) = qi,j , t ∈ [ti ,ti + 1), (1.15)

or piecewise linear controls with nq,j = 2

bj(t,qi,j) =
(t− ti) qi,j,2 + (ti+1 − t) qi,j,1

(ti+1 − ti)
, t ∈ [ti ,ti + 1). (1.16)

Moreover, one can impose continuity conditions in the grid points ti on the control
functions in the case of nq,j > 2 by

uj
∣∣∣∣
[ti ,ti+1)

(ti+1) = bj(ti+1,qi,j)
!= bj(ti+1,qi+1,j) = uj

∣∣∣∣
[ti+1,ti+2)

(ti+1), 0 6 i < N − 1.

1.5.2 The Direct Multiple Shooting Method

In this thesis, we recap the direct multiple shooting method for optimal control as pre-
sented in [13]. Further, the idea is to parametrize the state trajectory x(·) as well. This is
achieved by introducing N + 1 state variables si ∈Rnx

on the time grid points ti , and by

29

CHAPTER 1
∣∣∣ RIGID BODY MECHANICS AND OPTIMAL CONTROL

solving initial value problems (IVPs) separately on each time interval:

dx(t)
dt = hιf (x(t),b(t,qi),p), t = t(t), t ∈ [ti ,ti+1], (1.17a)

0 = x(t(ti))− si . (1.17b)

As stated above, we denote by hι again the duration of the model stage to which the time
interval [ti ,ti+1] belongs. We denote the differential evolutions (or solutions) of the IVPs
by x(ti+1;ti ,si ,qi ,p,hι), where by ; we denote an implicit dependence on the quantities
after the semicolon that come into play when we derive the required derivatives later on.

Analogously to the discretization scheme of the controls, the continuity of the differen-
tial state trajectory in the solution of the discretized problem is guaranteed by imposing
additional matching conditions at the nodes of the time grid ti by

0 = si+1 − x(ti+1;ti ,si ,qi ,p,hι), ∀0 6 i < N with ti+1 <N, (1.18a)

that also covers the model stage transitions (1.9c) in grid points ti+1 coinciding with model
stage boundaries,

0 = si+1 −∆ι(x(ti+1;ti ,si ,qi ,p,hι),p), ∀0 6 i < N with ti+1 ∈N. (1.18b)

Again, by index ι we denote the index of the model stage ending in ti+1. The doubting
reader has to recap that the discretization points ti

1.5.3 Structured Nonlinear Programming

After the full discretization and parametrization of all infinite-dimensional quantities in
the OCP (1.9) or the NMPC counterpart, a large but structured NLP is derived. It is of the
form of

min
s,q,p,h

N−1∑
i=0

l̃i(si ,qi ,p,hι) + m̃(sN ,p,hN) (1.19a)

s.t. 0 = s(ti+1;ti ,si ,qi ,p,hι)− si+1, 0 6 i < N, (1.19b)

0 6 g̃(ti ,si ,qi ,p,hι), 0 6 i 6N, (1.19c)

0 5 h̃j(ti ,si ,qi ,p,hι), 0 6 i 6N. (1.19d)

For the brevity of exposition, we define discretized counterparts l̃i , m̃, g̃, and h̃j of the
respective functions in (1.9) that also account for the control discretization (1.14) and
possibly control continuity conditions. The continuity conditions of the differential state
trajectory (1.19b) require the solution of the IVPs (1.18a), which shooting approaches
achieve by adaptively discretizing the IVPs in time by making use of state-of-the-art ODE
solvers, for example [2].

Depending on the chosen discretization scheme the NLP (1.19) can be solved efficiently
by exploiting this structure by dedicated SQP methods. The structure arises mainly
due to the local support of the control function discretization and in particular for the
multiple shooting approach due to the equality constraints (1.19b). The latter can be
even eliminated by applying a partial null-space approach, referred to as condensing and
partial reduction, c.f. [13, 109] for the details.

First and possibly second-order derivatives, which required by the SQP method, then
involve the computation of sensitivities of the solution of the dynamics with respect to all

30

RIGID BODY MECHANICS AND OPTIMAL CONTROL
∣∣∣ CHAPTER 1

dependencies according to the principle of internal numerical differentiation, cf. [2, 12].
By eliminating the redundant variables of the differential states sk1, . . . ,s

k
N by means of

the above mentioned partial reduction or condensing, we summarize the remaining DoFs
in an iterate wk in the kth iteration of an SQP method, which concatenates the sub-vectors
wk = (pk ,hk ,sk0,q

k) . SQP methods then employs a second-order model of the NLP (1.19)
in the form of a quadratic program (QP) in each iteration to compute an increment ∆w.
For the kth iteration the QP is of the form of

min
∆w

1
2∆w

TB(wk)∆w+∆wT b(wk) (1.20a)

s.t. 0 = c(wk) +C(wk)∆w, (1.20b)

0 6 d(wk) +D(wk)∆w, (1.20c)

where by B(wk) we denote the Hessian of the Lagrangian of (1.19) in wk and b(wk) denotes
the gradient of the objective(1.19a). Typically, SQP methods do not compute the numeri-
cally costly Hessian information directly, but employ a symmetric and usually positive
definite approximation, c.f. [138] for details. The constraints of the NLP (1.19b,1.19d)
and (1.19c,1.19d) are summarized into equality- and inequality constraints and by (1.20b)
and (1.20c) we denote their local linearizations, respectively.

In general, the resulting QP will be small and dense. Therefore, state-of-the-art active-
set QP solvers can be used for their solution, e.g. QPSOL [60], QPOPT [59], qpOASES [51,
52], or QORE [154]. In the remainder of this, we use the QP solver QPOPT if not stated
otherwise.

The solution of the respective second-order approximation ∆wk = (∆pk ,∆hk ,∆sk0,∆q
k)

is used as a search direction to find the next SQP iterate wk+1. In order to guarantee the
finding of local minimum from any initial guess, globalization of the convergence of the
SQP method can be achieved by either trust-region or line-search methods, c.f. [138].

1.5.4 Real-Time Iterations for NMPC and MHE

State-of-the-art NLP-based NMPC methods rely on the so-called real-time iteration scheme
due to [36, 37]. The idea is to use the local contractivity properties of Newton’s method
and only apply one SQP iteration, which requires the solution of a single QP, to provide
feedback in real-time. This is achieved by careful initialization of the SQP method. The
SQP iteration can be separated into three distinct phases, i.e. preparation, feedback and
transition.

1. Preparation: In the preparation phase the evaluation of states and derivatives as
well as the structure exploitation takes place. This way a QP is set up except for
the values for the current initial system state ŷ0 ∈Rny

and of the model parameters
p̂ ∈Rnp

, which enter the NMPC problem (1.12) linearly.
In particular, the data B(wk), b(wk), C(wk), d(wk) and D(wk) of the QP (1.20) is
evaluated as well as the parts of c(wk) that do not correspond to discretizations of x̂0
and p̂.

2. Feedback: As soon as the missing estimates for x̂0 and p̂ are available the feedback
control is computed in the feedback phase by solving the QP.

3. Transition: After the control is fed back to the system the structure exploitation is
rolled back, the horizon is shifted and the Lagrange multipliers are updated.

Every feedback phase is then again followed by a preparation phase of the next time step.
In NMPC, there are two characteristically times that have to be taken into account: sam-

31

CHAPTER 1
∣∣∣ RIGID BODY MECHANICS AND OPTIMAL CONTROL

pling time and feedback delay. The feedback delay is the time between the availability of
the measurements of system state x̂0 and parameters p̂ until the subsequent computation
of the feedback control while the sampling time determines the cycle length between
subsequent measurements. It is important to ensure that feedback times are short so that
the system state and parameters do not deviate too much from the measurements that
are used to determine to feedback control. The feedback time in this real-time iteration
scheme is essentially comprised by cost to solve one quadratic program, while the compu-
tational heavy parts constituting of evaluation of QP data already have been performed in
the preparation phase before the measurements are known. The sampling time in this
scheme is the sum of the times of the preparation, feedback and transition phase.

This way computational expensive parts can be separated from time-critical ones and
the computational delay of the feedback is reduced to only the time required to solve a
single QP. Approaches similar to those used to achieve real-time feedback control for
NMPC can be used to solve the MHE problem.

1.6 Summary

In this chapter, we introduced the characteristics of bipedal locomotion of humanoids and
gave an explanation why the locomotion capabilities of a biological system are considered
to be optimal. We gave an overview of the considered robotic hardware platforms and
present how a dynamic model can be derived by treating the robotic systems as a rigid
bodies attached to a floating base that describes the position and orientation of the system
in space. We introduced an optimal control problem formulation used to analyze and
synthesize optimal walking motions. Furthermore, we stated formulations for the online
and closed-loop control counterparts of the optimal control problem in the form of non-
linear model predictive control (NMPC) and moving horizon estimation (MHE) problem
formulations. The state of the art in solving the optimal control problem formulations as
well as advanced methods of NMPC were revisited.

32

2 Efficient Derivative Evaluation for Rigid
Body Dynamics

Simulation, optimization and control of robotic and bio-mechanical systems depend on a
mathematical model description, typically a rigid-body system connected by joints with
tree topology. For these kind of models efficient algorithms exist to compute their rigid-
body dynamics (RBD) , e.g. computing forward or inverse dynamics of the model. The
methods of choice for the evaluation of common RBD quantities are recursive algorithms
acting on the kinematic tree topology of the considered robot, c.f. [48]. Furthermore, these
models are subject to both kinematic and loop constraints. Both employ tailored linear
algebra to solve the respective descriptor form of the equation of motion, which allows
the evaluation of the dynamics of the constrained system.

While the efficient evaluation of RBD is sufficient for simulation purposes, methods of
model-based optimal control, e.g. whole-body control as well as stability estimation and
correction, or machine learning, another emerging trend, rely on the efficient derivative
evaluation for RBD of complex multi-body systems (MBSs) subject to constraints and
collisions. The required derivative information is often approximated by numerical
differentiation (FD). However, they greatly benefit from accurate gradients, which promote
faster convergence, smaller iteration counts, and improved handling of nonlinearities
or ill-conditioning of the problem formulations, which are particularly observed when
kinematic constraints are involved.

In this chapter, we propose the algorithmic augmentation of state-of-the-art recursive
algorithms in order to evaluate the first-order forward derivatives, which are required for
derivative-based optimization as for example in the direct approach of optimal control.
Major parts of our journal paper [105] are based on the contents of this chapter.

We follow the principles algorithmic differentiation (AD) and treat the recursive algo-
rithms as concatenation of elementary operations, where for each elementary operation
an analytic derivative can be derived. Following this, the underlying computational
graph of the former nominal function evaluation can be transformed into a computational
graph that additionally evaluates the derivatives by propagating directional derivatives
successively by means of the chain rule, as shown on an example in Figure 2.1. The
efficiency is further improved by sparsity exploitation. We validate and benchmark the
implementation against its FD counterpart for a lifting motion of a human model.

Furthermore, we propose the extension of the approach to the linear algebra of contact
dynamics, which involves matrix factorization to solve both the respective descriptor form
and the conservation of angular momentum equation on collisions of the MBS.

The augmentations are implemented in the freely available open source library Rigid
Body Dynamics Library (RBDL) [49, 50], which realizes the state-of-the-art algorithms in an
efficient template-based C++ code. The proposed approach is thoroughly tested against
its FD counterpart on benchmark examples. The applicability of the developed derivative
evaluation for direct optimal control is shown on a lifting motion of a human model.

33

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

y = f (x)

ẏ = ∂f (x; ẋ)

y0 y1

x0 x1

/

sin

exp

−

+

·

v−1 = x0

v̇−1 = ẋ0

v1 =
v−1

v0

v̇1 =
v̇−1 · v0 − v−1 · v̇0

v0 · v0

v2 = sin(v1)

v̇2 = cos(v1) · v̇1

v5 = v2 + v4

v̇5 = v̇2 + v̇4

v0 = x1

v̇0 = ẋ1

v3 = exp(v0)

v̇3 = exp(v0) · v̇0

v4 = v1 − v3

v̇4 = v̇1 − v̇3

v6 = v5 · v4

v̇6 = v̇5 · v4 + v5 · v̇4

y0 = v5

ẏ0 = v̇5

y1 = v6

ẏ1 = v̇6

Ind
ep

end
ent

V
ariables

C
om

p
u

tationalG
rap

h
&

Interm
ed

iate
V

ariables
D

ep
end

ent
V

ariables
Fo

rw
ar

d
P

ro
p

ag
at

io
n

of
D

er
iv

at
iv

e
V

al
u

es

Figure 2.1: Schematic of forward mode of algorithmic differentiation (AD) for a multivariate func-
tion y = f (x) that computes independent values y ∈ R

m from dependent variables
x ∈ Rn. The derived computational graph represents the nominal evaluation of the
explicit expression y0 = sin(x0

x1
) + x0

x1
− exp(x1) and y1 = y0 ·

(
x0
x1
− exp(x1)

)
, with inde-

pendent values y =
[
y0
y1

]
and dependent variables x =

[
x0
x1

]
. By propagating directions

ẋ0, ẋ1 ∈ R from the dependent variables (bottom) through the computational graph
up to the independent variables (top) the first order forward (directional) derivative
ẏ = ∂f (x; ẋ) (magenta) can be efficiently computed.

2.1 Evaluation of Derivatives

In this section, we introduce the relevant background and notational details to give the
necessary context of the work.

Definition (Differentiability) Let f : U ⊆R
n→R

m, U open and x ∈ U . f is (Fréchet) differentiable
at x, if a linear map Df (x) : Rn→R

m exists s.t.

f (x+ v) = f (x) + Df (x)v + r(x;v)

for all v s.t. x+ v ∈ U and r(x;v)
||v|| →v→0

0. 4

Definition (Derivative) Let f : U ⊆R
n→R

m, U open subset of Rn and x ∈ U . Then the uniquely

34

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

defined operator Df (x) is denoted by

Df : U →Lis(Rn,Rm)

x 7→Df (x)(·)

and is called the (first-order) derivative of f at x, where the function space of linear isomorphisms
between two real-valued vector spaces is denoted by Lis(·, ·). One can use equivalently

Df (x)(v) =
∂f (x)
∂x

v = Df (x)v. 4

Definition (Directional Derivative) Let f : U ⊆ R
n→ R

m and x ∈ U , U open subset of Rn, and
v ∈ Rn \ 0. There exists a sufficiently small h > 0 s.t. x + hv ∈ U . If the function h→ f (x + hv) is
differentiable at h = 0, then the derivative

∂f (x;v) = lim
h→0

f (x+ hv)− f (x)
h

is called the (first-order) directional derivative of f at x along the direction v. 4

Remark For any vector- or matrix-valued function f note that its directional derivative ∂f (x;d)
at x along an arbitrary direction v , 0 is of the same dimension as the nominal function evaluation.
However, special properties of the range space can be lost on the derivative itself.

For example, a rotational matrix E ∈ SO(3) parametrized by means of a scalar p ∈ R is given
by the matrix-valued function E : R → R

3×3, p 7→ E(p), c.f. (2.16). The respective directional
derivative ∂E(p;d) is again a (3× 3) matrix, but no longer an element of SO(3).

Proposition (Chain Rule) Let f : U ⊆R
n→R

m, x 7→ y = f (x) and g : V ⊆R
m→R

l , y 7→ z = g(y)
be differentiable and f (U) ⊆ V . Then g ◦ f : U ⊆R

n→R
l is differentiable in x ∈ U . The derivative

is given as

∂(g ◦ f)(x) = ∂g(f (x)) ◦∂f (x). 4

Proof A proof can be found in any textbook covering multivariate analysis, e.g. [4].

2.1.1 Symbolic Derivatives

The idea of computing symbolic derivatives both by hand or by computer algebra packages,
e.g. Mathematica4, Maple5 [26] or SymPy6, arises from the circumstance that one is used
to look and work with mathematical formulas and expressions given in symbolic form.
On the one hand, deriving and implementing derivatives manually is always possible.
However, it is both error prone and tedious, and therefore not recommended.

On the other hand, even though good computer algebra tools exist for these cases, there
are two known drawbacks from which symbolic computations suffer. First, it can be easily
observed, that symbolic expressions often grow exponentially fast, especially when there
are recursion or loops involved in their evaluation, c.f. the Speelpenning’s problem in [61]
or the ray tracing example in [180]. Second, when using symbolic differentiation naively,
e.g. for computing the gradient of a function evaluation, we require a single symbolic
expression for each partial derivative which is hardly memory efficient. On top of it, these
expression will most likely share common sub-expressions or intermediate values which
are then re-evaluated for every partial derivative leading also to an inefficient evaluation
of the derivative information.
4 https://www.wolfram.com/mathematica/ 5 https://www.maplesoft.com/products/Maple/
6 http://www.sympy.org

35

https://www.wolfram.com/mathematica/
https://www.maplesoft.com/products/Maple/
http://www.sympy.org

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

While this view on symbolic differentiation is more focused on the pitfalls and draw-
backs of the approach, there exist examples that apply these techniques successfully. For
example, methods for improving the efficiency of symbolic derivative can be found in [64].
In [50], a comparison of two RBD libraries is shown. The software package RBDL relies on
the efficient evaluation of RBD based on spatial algebra while the library DYNAMOD [99]
uses the same formulation and leverages the symbolic expression handling of Maple to
extract optimized C code. The comparison shows that the optimized symbolic expressions
are able to outperform the numerical evaluation in special cases. Another example is Drake
[169], which uses the capabilities of Simulink and Matlab to handle complex expressions
and code generation.

2.1.2 Numerical Derivatives

The most common and straightforward way to approximate derivative information of a
function f : U ⊆R

n→R
m can be achieved by means of the Taylor series expansion of f in

x ∈ U along d ∈ U , i.e.,

f (x+ hd) = f (x) + h∂f (x;d) +O
(
h2

)
,

such that x+ hd ∈ U for sufficiently large h > 0. Following this, the directional derivative
of function f in x along the direction d can be approximated by means of a one-sided
(forward) finite difference scheme

∂+hf (x;d) =
f (x+ hd)− f (x)

h
+O (h) .

Analogously, one can derive an improved central finite difference scheme by

∂±hf (x;d) =
f (x+ hd)− f (x − hd)

2h
+O

(
h2

)
.

The effort to evaluate the approximation of the directional derivative ∂f (x;d) ∈ Rm
along a single direction d is 2 times the effort required for the nominal function evaluation
for both finite differencing scheme. In order to compute the full Jacobian matrix Df (x) ∈
R
m×n, the one-sided differences requires 1 +n times and the central difference scheme 2n

times the effort of the nominal evaluation of the function f .

While FD can easily be implemented on top of the evaluation of the nominal evaluation,
the clear drawback of the approach is the loss of precision of the approximation due to
truncation errors as the precision critically depends on the magnitude h ||d||. For a small
choice of h the dominant error is due to cancellation, while for a large h the truncation of
higher terms is responsible for the loss of significant digits. In this way, even though the
recommended perturbations of h ||d|| = √eps for the one-sided and h ||d|| = 3√eps for the
central scheme are used, where eps denotes the actual machine precision7, the accuracy of
the derivative information that can be achieved is half of the significant digits of f (x) for
the one-sided and two thirds for central difference scheme at the maximum.

7 The machine precision eps is defined as the smallest positive floating–point number representable by the
actual machine such that 1 + eps , 1 holds. For double precision arithmetic the resulting machine precision is
eps = 2−53 ≈ 1.11 · 10−16 and eps = 2−23 ≈ 1.19 · 10−7 for single precision arithmetic.

36

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

2.1.3 Automatic Differentiation

In contrast to FD, AD does not treat the evaluation procedure of a function f at point x as
a black box, but relies on an actual implementation of the evaluation procedure in terms
of a computer program or computational graph. AD exploits the fact that every computer
program executes a sequence of elementary arithmetic operations such as additions or
elementary functions, e.g. exp, cos or

√
. By mechanically applying the chain rule of

derivative calculus repeatedly to these operations, the original evaluation procedure is
augmented such that derivatives are evaluated simultaneously with the evaluation of
the nominal function f . In this way, derivatives of arbitrary order can be computed
automatically, and accurate to working precision.

The decomposition of function f as a concatenation of elemental functions can be
interpreted by means of the following Definition.

Definition (Factorable Function) Let L be a finite set of real-valued elemental functions ϕi :
R
n→R, x 7→ ϕ(x). A function f : Rn→R

m, x 7→ f (x) is called a factorable function iff there exists
a finite sequence {ϕ1−n, . . . ,ϕk}, k >m, such that it holds:

1. For 1 6 i 6 n the function ϕi−n = πni is the projection on the i-th component of the evaluation
point x ∈Rn,

2. For 1 6 i 6 m the function ϕk−m+i = πmi is the projection on the i-th component of the
evaluation result y = f (x) ∈Rm,

3. For 1 6 i 6 k −m the function ϕi is constant or a concatenation of one or more functions ϕj
with 1−n 6 j 6 i − 1, i.e., of functions preceding ϕi in the concatenation sequence. 4

In general, the elemental functions ϕi can be vector-valued functions as well, however
this requires then to include linear algebra operations on vectors or matrices as elemental
operations. For simplicity, we assume scalar valued elementary functions in this section.

Following the above definition, a factorable function f can be represented by a sequence
{ϕ1−n, . . . ,ϕk} of elemental functions. In this way, an evaluation procedure or a compu-
tational graph of the function f given inputs x can be evaluated by algorithm 2.1. The
algorithm uses the notation of a slice operator, e.g., x[1 : n], and the dependence relation
≺, e.g., vi = ϕi(vj≺i), specified by the following definitions.

Definition (Slice operator and indexing, i : j : k) The slice operator generalizes the indexing of
an vector, s.t. several segments or elements can be extracted at once. The operator is denoted by
i : j : k, where i ∈N is the lower (inclusive) bound , j ∈N the upper (inclusive) bound and k ∈N
the optional step. A slice of a vector x is defined as follows:

x[i:j:k] = [xi ,xi+k ,xi+2k , . . . ,xi+lk] , (2.1)

where l ∈N is the largest integer s.t. i + lk 6 j. For x ∈Rn the indices i, j,k are optional in the slice
of a vector x[i : j : k] and by omitting them it is equivalent to setting i = 1, j = n+ 1, k = 1, e.g.
x = x[:]. Alternatively, when used as an operator, for example for Ȧ, Ḃ, Ċ ∈Rp×m×m and A,B ∈Rm×m
slicing is used as an implicit loop over the dimension p s.t.

Ċ[:] = Ȧ[:]B +BĊ[:]⇔ Ċi = ȦiB +BĊi , i = 1, . . . ,p. (2.2)

4

Definition (Precedence Relation ≺) The precedence relation j ≺ i indicates that the intermediate
quantity vi depends directly on the intermediates vj for indices j < i, i.e., at least one element of
the tuple vi = ϕj(vk≺j) is an argument of the function ϕi . Following this, each instruction ϕi can
be interpreted by a node in a directed acyclic graph, the computational graph. There is an edge
from ϕi to ϕj iff j ≺ i. 4

37

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

Algorithm 2.1: Zero-order forward
sweep of automatic differentiation.

input :ϕ1−n, . . . ,ϕk , x
output :y = f (x)

1 v[1−n:0] = x[1:n]

2 for i = 1 : k do
3 vi = ϕi(vj≺i)

4 end
5 y[1:m] = v[k−m+1:k]

Algorithm 2.2: First-order forward
sweep of automatic differentiation.

input :ϕ1−n, . . . ,ϕk , x, ẋ
output :y = f (x), ẏ = ∂f (x; ẋ)

1 v[1−n:0] = x[1:n]

2 v̇[1−n:0] = ẋ[1:n]

3 for i = 1 : k do
4 vi = ϕi(vj≺i)
5 v̇i =

∑
j≺i

∂ϕi
∂vj

(vj≺i) v̇j
6 end
7 y[1:m] = v[k−m+1:k]

8 ẏ[1:m] = v̇[k−m+1:k]

2.1.4 Forward Mode of Automatic Differentiation

The forward mode of automatic differentiation is used to augment the evaluation proce-
dure of f (x) implemented in algorithm 2.1 in order to additionally compute a directional
derivative ẏ = ∂f

∂x (x)ẋ ≡ ∂f (x; ẋ).

The idea is to propagate tangential information by means of mechanically applying the
chain rule to every intermediate evaluation in the form of

v̇i =
∑
j≺i

∂ϕi
∂vj

(vj≺i) v̇j ≡
∑
j≺i

∂vjϕi(vj≺i ; v̇j).

Here, for each elementary operation ϕi it is assumed that there exists the respective
elemental tangent operation given by ∂ϕi

∂vj
(vj≺i)v̇j . In contrast to symbolic differentiation,

the intermediate partials vi = ∂ϕi
∂vj

(ui)u̇i are not accumulated as expression of growing

complexity and then evaluated but first evaluated as floating point numbers inplace and
then accumulated. The resulting evaluation procedure is presented in algorithm 2.1.
Algorithm 2.2 can be extended to compute multiple directional derivatives in one sweep.

Remark (Order of Evaluation) In algorithm 2.2, each operation of the nominal evaluation proce-
dure is followed by the respective tangent propagation. Mathematically speaking, the order of
evaluation of nominal and first-order propagation does not influence the result. However, in code,
problems can occur due to overwriting of variables in memory. For example, in the evaluation of a
simple multiplication like y = x · y, the respective first-order forward sweep yields the procedure

y = x · y,
ẏ = ẋ · y + x · ẏ.

Here, we observe that the value of y is already overwritten in the first line and then applied in the
second line, which will render the resulting derivative to be wrong systematically.

Changing the order of nominal and derivative evaluation in the code is one way to prevent
this. However, this can lead to the case where expensive computations required for the nominal
operations has to be executed twice, e.g. in the evaluation of y =

√
x. For this example, the

38

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

Table 2.1: Computational effort and quality of derivatives ∂f (x;d) for a single direction d ∈ Rn
or p ∈N directions D ∈Rn×p measured in nominal evaluations of f (x), i.e., #eval(f (x)),
and the expected accuracy measured in significant digits of the nominal accuracy of the
actual machine precision7 eps.

Effort [#eval(f (x))] Precision in

Type d ∈R· D ∈Rn×p machine prec. eps

∂+hf (x; ·) 2 1 + p &
√
eps

∂±hf (x; ·) 2 1 + 2p & 3
√
eps2

∂adf (x; ·) 6 5
2 6 1 + 3

2p & eps

first-order forward sweep then yields two possible procedures

ẏ =
ẋ

2
√
x
,

y =
√
x

vs.
y =
√
x

ẏ =
ẋ

2y

Herein, we will always evaluate the nominal operations first in the presentation of algorithms. In
code, we will first compute the derivative then evaluate the nominal value when no drawback is
expected on the efficiency.

In contrast to the approximation error occuring of FD, the derivatives computed via AD
are exact within machine precision, which is supported by rule 4 of the textbook [61] by
Griewank:

The Jacobian-vector (and Jacobian transposed vector) products calculated in the
forward (and reverse) mode, respectively, correspond to the exact values for an
evaluation procedure whose elementals are perturbed at the level of the machine
precision.

According to [61], the theory of AD suggests that the effort to compute the directional
derivative ∂f (x;d) ∈Rm along a single direction d ∈Rn is bounded by 5

2 times the effort
required for the nominal function evaluation f (x). The evaluation of the full Jacobian
matrix Df (x) ∈Rm×n or more generally the effort of propagating a number of p directions
D ∈ Rn×p in order to compute ∂f (x;D) ∈ Rm×p the effort is bounded by 1 + 3

2p times the
effort of the nominal evaluation of the function f , i.e., it scales linearly in number of
directions p. Therefore, in the worst case, theory suggests that they are slightly more
expensive than finite difference approximations. Practical applications show that this is
most often not the case. We conclude this section with a summary of the time complexity
and accuracy observations in Table 2.1.

2.2 Evaluation of Rigid-Body Dynamics using Recursive
Algorithms

In Chapter 1, we introduced the descriptor form of the equation of motion of a MBS
in contact with its environment, see equation (1.4). Revisiting the appearing quantities,
e.g. H (q), c(q, q̇), J (q) and γ(q, q̇), where q, q̇ denote the generalized joint positions and
velocities, each of these vector-valued quantities has to be evaluated considering the
kinematic tree topology of the respective MBS. In order to solve the actual equation of

39

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

λi Parent body index for joint i connecting body i with body λi .
Si Motion space matrix for joint i
vi Spatial velocity of body i
ci Velocity dependent acceleration term of body i
ai Spatial acceleration of body i
f i Spatial force of body i acting on parent body λi via joint i
iXλi Spatial transformation from the parent of body i to body i
XTi Spatial transformation from the parent of body i to the frame of joint i
Ii Spatial inertia of body i
Ici Composite body inertia of body i

Table 2.2: Variable definitions of a loop-free rigid multi-body model.

motion, its descriptor form has to be solved by using linear algebra routines including
matrix decomposition. In the following, we give a brief overview of the relevant parts of the
theory of spatial algebra for rigid-body dynamics required for our work. Afterwards, we
present the main recursive algorithms based on spatial algebra to compute the quantities
of interest of the equation of motion. Finally, we recap the appropriate linear algebra in
order to solve the descriptor form and then introduce our approach to efficiently compute
the derivative of the solution with respect to its inputs.

2.2.1 Primer on Spatial Algebra for Rigid-Body Dynamics

In the following sections, we lean on the notation presented in [50] by Felis. Therefore,
we follow [50] considering mathematical notation and presentation and will refer to this
publication concerning the details that are omitted for the sake of brevity. The textbook
of Featherstone [48] gives an in depth introduction of these concepts.

In order to support the understanding of the following sections, we revisit the overview
of variable definitions from [50] in Table 2.2 and give a more detailed explanation on the
quantities that play an important role in the remainder of this chapter.

We assume a MBS consisting of a set of nB ∈N rigid bodies that are interconnected by
joints, where each joint defines the relative motion between two bodies. Furthermore, we
restrict the MBS to be of a kinematic tree topology, i.e., there exists no kinematic loops
(except of possible loops due to contacts with its environment) and there exists a root
body from which all branches are pure kinematic chains (no loops, always two bodies
connected by a single joint).

Considering this configuration of the MBS, we enumerate each body from the root (i = 0)
up to nB consecutively. In order to mathematically access the above defined topology, we
define the following index λi that denotes the parent body for joint i for all i = 1, . . . ,nB,
where λi .

There are two fundamental elements of spatial algebra, spatial motions v̂ ∈ M6 and
spatial forces f̂ ∈ F6. Motion vectors, for example, describe spatial velocities of bodies, i.e.,
spatial velocity v̂ ∈M6 is able to describe both the linear as well as the angular velocity of
a rigid body given by

v̂ =
[
ω
vO

]
=

[
ωx,ωy ,ωz,vOx,vOy ,vOz,

]T
, (2.3)

40

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

where O ∈ R3 denotes an arbitrary reference point, while ω ∈ R3 describes the angular
velocity of the body about an axis that passes through O and vO ∈R3 describes the linear
velocity of a body point that currently coincides with reference point O. In contrast to
this, spatial forces force components acting on the rigid body, e.g. f̂ ∈ F6 describes both
linear and angular forces given by

f̂ =
[
nO
f

]
=

[
nOx,nOy ,nOz, fx, fy , fz,

]T
, (2.4)

where nO ∈ R3 describes the total moment about a body point that currently coincides
with reference point O and f ∈ R3 the linear force along an axis passing through O. A
mapping DO : R6→M6 and EO : R6→ F6 can be defined by using Plücker bases DO,EO,
c.f. [47].

The motion quantities vi , ci , ai of spatial velocity, velocity dependent acceleration and
spatial acceleration of body i are quantities of the spatial motion space M6. The force f i of
body i acting on the parent body λi is a quantity of spatial force space F6.

Spatial algebra defines a cross product for motion vectors by × and another for forces
by ×∗. For v̂ ∈M6 , they read

v̂× =
[
ω× 0
vO× ω×

]
, (2.5a)

v̂×∗ =
[
ω× vO×
0 ω×

]
. (2.5b)

Please note, that the adjoint cross product is not skew symmetric in contrast to its nominal
counterpart.

As mentioned above, the joints define the relative motion of one body with respect to
the other. Furthermore, each joint i defines the respective motion degrees of freedom
(DoFs) by its motion space matrix Si . Here, we restrict ourselves to single-DoF joints for
convenience, but multi-DoF joints can easily derived by looking up the details in [48].
Following this, the motions subspace matrices are given by

SRx =

1
0
0
0
0
0

, SRy =

0
1
0
0
0
0

, SRz =

0
0
1
0
0
0

, (2.6a)

ST x =

0
0
0
1
0
0

, ST y =

0
0
0
0
1
0

, ST z =

0
0
0
0
0
1

. (2.6b)

Given the motion subspace matrices as above, we can express the velocities and accelera-

41

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

tions of the ith joint as

vJi = Si q̇i (2.7)

aJi = Ṡi q̇i +Si q̈i (2.8)

=
(

dSi
dt

+ vi ×Si
)
q̇i +Si q̈i , (2.9)

where the cross product term arises from the effect of the motion of the respective frame
of body i on the change motion subspace. A formal definition of the time derivative
with respect to a moving frame is given in Definition 2.13. However, this value is always
zero for single degree of freedom joints as investigated in this thesis. The cross term is
sometimes referred to as velocity dependent spatial acceleration term and denoted by cJi in
the remainder of this chapter.

Another quantity of interest is spatial inertia which itself defines a mapping between
motion and force spaces Î : M6→ F6. The spatial inertia term of body i Ii and the i−th
composite body inertia term Ici play a minor role in the following sections as they are
constant with respect to the quantities we evaluate the derivatives at. However, we give a
formal definition for completeness.

Definition (Spatial Inertia Î) The spatial inertia Î can be expressed as a 6× 6 matrix:

Î =
[
IC +mc× c×T mc×

mc×T m1

]
, (2.10)

where IC is the inertia of the body at its center of mass, c is the 3-D coordinate vector of the center
of mass, and m is the mass of the body.

For a body with spatial velocity v̂ and spatial inertia Î we can compute the spatial momentum
as ĥ = Îv̂. One should note that ĥ ∈ F6. 4

Definition (Spatial Inertia Projections) We define the following projections Î
∣∣∣
IC

, Î
∣∣∣
mc

and Î
∣∣∣
m

of a spatial inertia term to be projections on the respective blocks given by

Î
∣∣∣
IC

= P TIC ÎPIC = IC , (2.11)

Î
∣∣∣
mc

= ×−1(P Tmc×ÎPmc×) = mc, (2.12)

Î
∣∣∣
m

= P Tm ÎPm = m, (2.13)

and ×−1(·) retrieves the vector quantity from an × operator according to ×−1(c×) = c. 4

The critical quantities in terms of derivative evaluations are the spatial or Plücker
transformations denoted by X, e.g. iXλi , XTi ∈R6×6 the different spatial transformations
from parent to the body or the joint, which describe the transformation between the
Cartesian coordinate frames located at each body describing their position and orientation
with respect to to their parent frame.

Definition (Spatial Transformation) LetA and B be two coordinate frames, where B is translated
by r ∈ R3 and rotated by the orthonormal matrix E ∈ SO(3) relatively to A, then the respective
spatial transformation X(E,r) is given by

BXA(E,r) =
[
E 0
0 E

][
1 0
−r× 1

]
=

[
E 0
−Er× E

]
. (2.14)

42

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

Here, SO(3) denotes the special orthogonal group of rotational matrices and by r× we denote the
skew symmetric matrix of the translational vector r given by

x
y
z

× =

0 −z y
z 0 −x
−y x 0

 . (2.15)

4

In our case, E is either 1 or one of the matrices ERx, ERy , ERz, where the index indicates a
rotational matrix around the respective axis parametrized by a scalar q, e.g.

ERx(q) =

1 0 0
0 cos(q) sin(q)
0 −sin(q) cos(q)

 . (2.16)

Spatial transformations of the form of (2.14) are used to transform elements of motion
space M6. For elements of spatial force space F6 the adjoint operator BX ∗A has to be applied,
which is given by

BX ∗A =
[
E −Er×
0 E

]
. (2.17)

The special structure of the spatial transformations enables to implement structure ex-
ploiting linear algebra techniques to efficiently evaluate the respective operations like
matrix-matrix or matrix-vector products, c.f. [48].

2.2.2 Derivatives of Spatial Transformations

First, we need to introduce the problem arising from differentiation in moving coordinates.
For constant basis vectors are constants, the component-wise derivative of the coordinate
vector is the solution. Otherwise, the motion of the basis vectors needs to be taken into
account as presented by the following definition.

Definition Let A be the Plücker coordinate system associated with a Cartesian frame. The frame
is moving with a spatial velocity of vA. Given spatial vectors m ∈ M6 and f ∈ F6 then Am and
Af denote their respective coordinate vector representation in A. The coordinate vectors that
represent ṁ and ḟ in the coordinates of A are given respectively by

A

(
dm
dt

)
=

dAm
dt

+A vA × Am, (2.18)

A

(
df
dt

)
=

dAf
dt

+A vA ×∗ Af , (2.19)

where, for the sake of brevity, we further define for any coordinate vector Av representing v in
coordinates of A

Av̇BA
(

dv
dt

)
, (2.20)

A ◦vB
dAv
dt

. (2.21)

4

Now, we introduce manipulations of spatial transformations as elementary operations in
the AD sense. Spatial transformations are products of two matrices in special form, which
leads to Proposition 2.14.

43

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

Proposition (Spatial Transformation Derivative) Let A and B be frames with spatial velocities
vA,vB ∈ M6, for any motion vector m ∈ M6 or force vector f ∈ F6, the derivative of the spatial
transforms are given by

∂t(
BXA)Am=B(vA − vB)× BXAAm, (2.22a)

∂t(
AX ∗B)Bf=B(vB − vA)×∗AX ∗BBf . (2.22b)

IfA andB are connected by a single-DoF joint defined by motion matrix S, i.e., the X is parametrized
by q(t), this yields

∂t(
BXA(q(t)); q̇)m = [(BXAm)×]Sq̇, (2.23a)

∂t(
AX ∗B(q(t)); q̇)f = AX ∗B[×∗f]Sq̇, (2.23b)

where we define [×∗f] as the matrix encoding the operation · ×∗ f because ×∗ is not skew symmetric,
see (2.5). 4

Proof A proof is given in [48] for the first case, the second follows analogously, i.e., by applying
Definition 2.13, we receive the following equations

Aḟ = AX ∗B
Bḟ , (2.24)

A ◦f =
(

d
dt

AX ∗B

)
Bf + AX ∗B

B ◦f , (2.25)

Bḟ =B
◦
f +B vB × Bf , (2.26)

Aḟ =A
◦
f +A vA × Af . (2.27)

Following this, the derivative is then derived via(
d
dt

AX ∗B

)
Bḟ =A

◦
f − AX ∗B B

◦
f (2.28)

=A
◦
f −A vA × Af − AX ∗B

(
Bḟ +B vB × Bf

)
(2.29)

= Aḟ − AX ∗B Bḟ︸ ︷︷ ︸
=0

+AX ∗B
BvB × Bf −A vA × AX ∗B Bf (2.30)

=
(
AX ∗B

BvB × −AvA × AX ∗B
)
Bf . (2.31)

As spatial coordinate vector Bf is arbitrary, this yields the result

d
dt

(
AX ∗B

)
=B (vA − vB)× AX ∗B. (2.32)

Assuming the spatial transform to be parametrized by means of a motion subspace matrix ac-
cording to (2.6) and replacing the relative velocity by the joint velocity of (2.7), then the result
becomes

d
dt

(
AXB(q(t))∗; q̇

)
Bf = AX ∗B

(
Sq̇ ×∗ Bf

)
. (2.33)

For the nominal spatial transform the same result can be easily shown but is left out here. The
claim follows from replacing the cross product by a matrix operation in order to reformulate the
expression as efficient matrix-vector product according to (2.23a), (2.23b). �

Remark Note that the derivative of a spatial transform from Proposition 2.14 is no longer a spatial
transform, X ≡ X(E,r), because the identity ET E = 1 does not hold for ∂E in general, i.e.,

∂(BXA)(E,r;∂E,∂r) , X(∂E,∂Er+E∂r). (2.34)

44

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

The property of the codomain is lost because the directional derivative ∂E(p;d) ∈R3×3 of E : Rp→
R

3×3 mapping to SO(3) is not necessarily an element of SO(3) anymore.

Proposition (Derivative of Spatial Inertia Transformation) Let A and B be frames with spatial
velocities vA,vB ∈M6 and I the spatial inertia of a body in A, the derivative of the transformation
AI = AX ∗B

BI BXA of I from B to A is given by

∂t(
AI) = [A(vB − vA)×∗]BI−B I[A(vB − vA)×].

Proof Claim follows from [48] and using Proposition 2.14. Assuming the spatial transform to be
parametrized by means of a motion subspace matrix according to (2.6) and replacing the relative
velocity by the joint velocity of (2.7), the result is derived analogously as in Proposition 2.14. �

Re-using the structure of the nominal spatial transforms allows the derivative informa-
tion to be efficiently stored and computed in motion and force space efficiently. Because
the associated derivatives are straightforward consequences of the results just derived,
they serve as elementary operations in the AD methodology.

2.3 Evaluation of Rigid-Body Dynamics

In this section, we briefly recap the well-known descriptor form of the equation of motion
of a MBS subject to external contacts expressed via kinematic constraints as presented in
detail in Section 1.3, which is given by[

H (q) J (q)T

J (q) 0

][
q̈
−λ

]
=

[
ST τ − c(q, q̇)
−γ(q, q̇)

]
(2.35)

with generalized positions, velocities, accelerations and forces q, q̇, q̈,τ : R→R
nDoF

, sym-
metric positive definite joint space inertia H : Rn

DoF → R
nDoF×nDoF

, the nonlinear effects
vector c : Rn

DoF ×RnDoF →R
nDoF

, e.g. Coriolis, centrifugal, and gravity terms, and a selection
matrix S ∈ R

nDoF×nDoF
mapping the joint torques τ to the actuated DoFs. We focus on

scleronomous holonomic constraints of the form g(q(t)) = 0 with g : Rn
DoF →R

nG
, where a

contact force λ : R→R
nG

acts on the system by means of the transposed contact Jacobian
J . The term γ(q, q̇) = ∂ġ(q)

∂t q̇ is called the contact Hessian. Loop constraints can be modeled
by the same means and yielding the same equation as above, see [48] for more details.

The same holds for infinitesimal contact events in the form of equation[
H (q) J (q)T

J (q) 0

][
q̇+

Λ

]
=

[
H (q)q̇−

v−

]
, (2.36)

where Λ ∈ RnG
is the instantaneous force impulse, the normal velocities of the contact

before is v− ∈RnG
, and superscripts ± denote time instants before and after the event. We

refer to Section 1.3 for the details on the contact event.
Each of the involved vector- or matrix-valued quantities, e.g. H (q), c(q, q̇), J (q) and

γ(q, q̇) has to be evaluated considering the kinematic topology of the respective MBS
and the descriptor form of the equation of motions has to be solved by using linear
algebra routines employing matrix decomposition techniques. We refer to [10] for general
approaches to solve saddle point problems like (2.35), i.e., null or range (Schur) space
approaches. The latter are especially appealing as structure exploiting algorithms exist to
compute the inverse of the joint space inertia matrix H , c.f. [48].

45

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

2.3.1 Recursive Newton–Euler Algorithm

Algorithm 2.3: Recursive Newton–Euler Algorithm (RNEA)
input :q, q̇, q̈
output :λ = RNEA(q, q̇, q̈)

1 v0 = 0
2 a0 = −ag
3 for i = 1, . . . ,nB do
4

[
XJi ,Si ,vJi ,cJi

]
= jcalc(jtype(i),qi , q̇i)

5 iXλi = XJiXTi

6 vi = iXλivλi + vJi
7 ci = cJi + vi × vJi

8 ai = iXλiaλi + ci +Si q̈i
9 hi = Iivi

10 f i = Iiai + vi ×∗ hi − fxi
11 end
12 for i = nB, . . . ,1 do
13 τi = STi f i
14 if λi , 0 then
15 fλi = fλi + λiX ∗i f i
16 end
17 end

The equation of motion in (2.35) requires that the nonlinear effects term c(q, q̇), which
summarizes the effects of Coriolis, centrifugal, and gravity terms, is efficiently computed.
For each involved quantities an efficient recursive algorithm is available, for the nonlinear
effects one can use an adaption of the recursive Newton-Euler algorithm (RNEA).

RNEA computes the inverse dynamics (ID) of a MBS with tree topology in O(nB). For
the setup of (2.35), we apply the RNEA to compute the c(q, q̇) by setting q̈ = 0. RNEA
comprises three steps:

1. compute position, velocity and acceleration of each single body,
2. compute the net force causing the acceleration of the body, and
3. back propagation of the force that is applied in each joint.

Algorithm 2.3 gives a pseudo code version of RNEA. Here, jcalc refers to a function
that computes all joint specific quantities, the ith spatial transform XJi , motion subspace
matrix Si according to (2.6), and the velocity cross term from (2.8), while jtype denotes
the respective single-DoF joint as defined in (2.8). The consideration of external forces
fxi which are assumed to be already expressed in the respective joint frame, is possible in
general. However, we assume them to be constant for the algorithm for the sake of brevity.
We apply the principle of AD and obtain the resulting pseudo code in Algorithm 2.4. The
correctness of the derivative is captured in Theorem 2.17.

Theorem 2.17 (Derivative of RNEA) Let q, q̇, q̈ ∈ RnB
define the configuration, velocity and ac-

celeration of a MBS of tree topology and ∂q,∂q̇,∂q̈ ∈ R
nB×D the respective directions. When

the respective general joint forces τ ∈ R
nB

are computed by means of inverse dynamics, i.e.,
τ = RNEA(q, q̇, q̈), where recursive Newton-Euler algorithm (RNEA) refers to the application of
Algorithm 2.3, then respective directional derivative of the inverse dynamics with respect to above

46

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

Algorithm 2.4: RNEA Derivative
input :q, ∂q, q̇, ∂q̇, q̈, ∂q̈
output :τ,∂τ = ∂RNEA(q,∂q, q̇,∂q̇, q̈,∂q̈)

1 v0 = 0 // Nominal
2 ∂v0[:] = 0

3 a0 = −ag // Nominal
4 ∂a0[:] = 0

5 for i = 1, . . . ,nB do
6

[
XJi ,Si ,vJi ,cJi

]
= jcalc(jtype(i),qi , q̇i) // Nominal, ED reuses quantities

7 iXλi = XJiXTi // Nominal, ED reuses quantities

8 vi = iXλivλi // Nominal
9 ∂vi = vi ×Si∂qi + iXλi∂vλi +Si∂q̇

10 vi = vi + vJi // Nominal code continued

11 ci = cJi + vi × vJi // Nominal
12 ∂ci = vi ×Si∂q̇i − vJi ×∂vi
13 ai = iXλiaλi + ci +Si q̈i // Nominal
14 ∂ai = ∂ai ×Si∂qi + iXλi∂aλi +∂ci +Si∂q̈i
15 ai = ci +Si q̈i // Nominal code continued

16 hi = Iivi // Nominal
17 f i = Iiai + vi ×∗ hi − fxi // Nominal
18 ∂f i = Ii∂ai +∂vi ×∗ Iivi + vihi ×∗ ∂vi
19 end
20 for i = nB, . . . ,1 do
21 τi = STi f i // Nominal
22 ∂τi = STi ∂f i
23 if λi , 0 then
24 fλi = fλi + λiX ∗i f i // Nominal

25 ∂fλi = ∂fλi + λiX ∗i
[
×∗f i

]
Si∂qi +∂f i

26 end
27 end

47

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

directions, that is

∂τ = ∂RNEA(q, q̇, q̈;∂q,∂q̇,∂q̈), (2.37)

with derivative ∂τ ∈RnB×D, is given by Algorithm 2.4. 4
Proof Proposition 2.14 suggests how to compute the derivative of the algorithm by propagating
∂q, ∂q̇, and ∂q̈ by means of derivative calculus respectively. In line 6 of the algorithm, we do not
need to compute the derivative of the spatial transform in advance. We are then able to apply
Proposition 2.14 by multiplying with the directions as matrix-vector products efficiently, e.g., in
line 9, 14, and 25. The correctness then follows from applying derivative calculus and exploiting
the linearity of the cross product. �

Remark Naively applying AD will lead to the same correct results but leads to an implementation
that relies heavily on loops instead of the application of efficient matrix-vector products. For
example, line 6 in Algorithm 2.3 yields naively

vi[:] = ∂iXλi [:]vλi + iXλi∂vλi [:] +∂vJi[:].

In order to distinguish the two correct implementations, we refer to the naive implementation by
AD and the efficient evaluation scheme by efficient algorithmic differentiation (ED).

2.3.2 Composite Rigid-Body Algorithm

Algorithm 2.5: Composite Rigid-Body Algorithm
input :q,
output :H = CRBA(q)

1 H = 0
2 for i = 1, . . . ,nB do
3

[
XJi ,Si

]
= jcalc(jtype(i),qi , q̇i)

4 iXλi = XJiXTi
5 Ici = Ii
6 end
7 for i = nB, . . . ,1 do
8 if λi , 0 then
9 Icλi = Icλi + λiX ∗i I

c
i
iXλi

10 end
11 F = IciSi
12 Hii = STi F
13 j = i
14 while λj , 0 do
15 F = λiX ∗jF
16 j = λj
17 Hij = FT Sj
18 Hji = HT

ij

19 end
20 end

The joint space inertia matrix H (q) can be efficiently computed by means of the com-
posite rigid-body algorithm. It computes the non-zero entries by recursively assembling

48

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

the required composite rigid-body inertia Ic backwards up to the root body. Algorithm
2.5 gives a pseudo code version of CRBA. In Algorithm 2.6, we present the derivative of
CRBA as pseudo code by applying the principle of AD. The correctness of the derivative is
captured in Theorem 2.19.

Algorithm 2.6: Composite Rigid-Body Algorithm Forward Sweep.
input :q, ∂q
output :H ,∂H = ∂CRBA(q;∂q)

1 H = 0 // Nominal
2 ∂H[:] = 0
3 for i = 1, . . . ,nB do
4

[
XJi ,Si

]
= jcalc(jtype(i),qi , q̇i) // Nominal

5 iXλi = XJiXTi // Nominal, ED reuses quantities
6 Ici = Ii // Nominal
7 ∂Ici [:] = 0
8 end
9 for i = nB, . . . ,1 do

10 if λi , 0 then
11 Ic = λiX ∗i I

c
i
iXλi // Nominal

12 Icλi = Icλi + Ic // Nominal

13 ∂Icλi [:] = ∂Icλi [:] + [iSi∂q[:]×∗]Ic − Ic[iSi∂q[:]×] + λiX ∗i ∂I
c
i [:]

iXλi
14 end
15 F = IciSi // Nominal
16 ∂F[:] = ∂Ici [:]Si // ∂Si = 0 for 1-DoF joints
17 Hii = STi F // Nominal
18 ∂Hii[:] = STi ∂F[:] // ∂Si = 0 for 1-DoF joints
19 j = i
20 while λi , 0 do
21 F = λiX ∗jF // Nominal

22 ∂F = λiX ∗j (∂F− [×∗F]Sj∂q) // Matrix-vector product

23 j = λi // Nominal
24 Hij = FT Sj // Nominal
25 Hji = HT

ij // Nominal

26 ∂Hij [:] = ∂FT [:]Sj // ∂Si = 0 for 1-DoF joints
27 ∂Hji[:] = ∂HT

ij [:]

28 end
29 end

Theorem 2.19 (Derivative of CRBA) Let q ∈RnB
define the configuration of a MBS of tree topol-

ogy and ∂q ∈ RnB×D the respective directions. When the joint space inertia matrix H ∈ RnB×nB

is computed using composite rigid-body algorithm (CRBA) given by Algorithm 2.5, i.e., H =
RNEA(q, q̇, q̈), then respective directional derivative with respect to above directions, given by

∂H = ∂CRBA(q;∂q), (2.38)

with derivative ∂H ∈RD×nB×nB
, is given by Algorithm 2.6. 4

49

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

Proof The correctness of above claim follows Proposition 2.14, 2.16 and derivative calculus by
propagating ∂q respectively. In this way, the derivative of line 11, 12 is given by line 13 according
to Proposition 2.16. Line 22 is then a direct application of Proposition 2.14. The rest follows from
derivative calculus. �

Remark Due to the fact that the derivative of the joint space inertia matrix itself becomes a tensor,
even for ED we require to perform implicit loops in order to compute the respective derivative.
However, even though the implementation looks like the naive application of AD principle, the
results still show superiority of ED.

2.3.3 Derivatives of Contact Dynamics

Algorithm 2.7: Solution of Descriptor Form Derivative.
input :q, ∂q, q̇, ∂q̇, τ, ∂τ, I
output : q̈, ∂q̈, λ, ∂λ = ∂FD(q,∂q, q̇,∂q̇,τ,∂τ, I)

1 H ,∂H = ∂CRBA(q,∂q)
2 c,∂c = ∂RNEA(q,∂q, q̇,∂q̇,0,0)

3 K =
[
H JT

J 0

]
,∂K =

[
∂H ∂JT

∂J 0

]
,

4 b =
[
STλ− c
−γ

]
,∂b =

[
ST ∂λ−∂c
−∂γ

]
,

5 x = (q̈T ,λT)T = solve(K,b),
6 (∂q̈T ,∂λT)T = solve(K,∂b−∂Kx),

In the following section, we derive the derivative of the solution of linear system
with respect to its inputs. Recapping equations (2.35) and (2.36), these insights become
important for the computation of constrained forward dynamics as the required dynamic
quantities are computed by solving the respective linear system. In this way, the evaluation
of the derivative of the solution of linear system can be accelerated considerably. This will
be demonstrated computationally in Section 2.4.2.

Definition (Solution of a Linear System) Consider A ∈ R
N×N , B ∈ R

N×M and X ∈ R
N×M that

solves the linear equation A X = B, where we denote the solution operator X = A−1 B by

X = solve(A,B). (2.39)

4

Proposition (Derivative of a Linear System) The derivative of the solution of the setting of
Def. 2.21 with respective directions ∂A, ∂X and ∂B is 0 = ∂AX +A∂X −∂B. Recapping (2.39), the
derivative is given by

∂X = solve(A,∂B −∂AX). (2.40)

4

Proof Taylor-expansion of each input quantity up to order one and coefficient-wise comparison
yield the claim. �

Remark (2.40) is sometimes stated as ∂X = A−1(∂B − ∂AA−1B), which may be misleading and
often yields inefficient implementations.

50

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

While the dynamic quantities in the form of joint space inertia matrix H and nonlinear
effect c were already described in previous sections, the kinematic quantities in equations
(2.35) and (2.36) will be briefly explained in the following paragraph. The rows of contact
Jacobian J for contact frame A of body j is computed by transforming the joint motion
space matrices to the coordinate frame A by

AĴ (q) = AX0

∑
i∈κ(j)

0Xi(qi)Si . (2.41)

The contact Hessian γ(q, q̇), as the time derivative of contact Jacobian J follows (2.41)
in its computation. The computation of the respective derivatives follows again from
Proposition 2.14 and derivative calculus.

For the solution of the descriptor form (2.35) to compute the resulting generalized joint
accelerations q̈ and contact forces λ, common linear algebra techniques for the solution of
saddle-point systems [10] or special tailored structure-exploiting methods for MBS [48]
can be employed. The solution methods readily at hand can be separated into three
approaches, direct, range-space and null-space. They are subject to different trade-offs,
where especially the model topology as well as number of constraints and constrained
bodies can impact the performance and the choice of matrix decomposition techniques
affects the numerical conditions. Therefore the performance and the numerical stability
may vary depending on these factors. We refer again to [10] for common linear algebra
techniques for the solution of saddle-point systems or to [48] for structure-exploiting
methods of linear algebra tailored for MBS respectively.

Consider, for example, direct to solve (2.35). It solves the full Karush-Kuhn-Tucker system
by means of a suitable decomposition of the composed left hand side and simultaneously
computes q̈ and λ. While this may be slow for large systems, as it does not exploit
the structure from the lower right block of zeros, we will only present this approach as
the derivative can be derived analogously for the other approaches. Proposition 2.22
allows to reuse the matrix decomposition in the operation solve from Definition 2.21, see
again Algorithm 2.7. Following this, we apply the principle of AD in order to define
Algorithm 2.7. The correctness of the derivative is captured in Theorem 2.24.

Theorem 2.24 (Derivative of the Solution of Constrained Dynamics) Let q, q̇ ∈ RnB
define the

configuration and velocity of a MBS of tree topology, while ∂q,∂q̇Rn
B×D are the respective direc-

tions. Furthermore, let τ ∈RnB
be the currently applied generalized joint forces with respective

directions ∂τ ∈RnB×D, and let the index set I ⊂N define the currently active kinematic constraints
of the MBS. The forward dynamics of a constrained system are computed by the solution of the
linear system Kx = b where the solution is given by the solution operator (2.39), i.e., x = solveK,b.
We define x = (q̈T ,−λT)T that collects joint accelerations q̈ ∈ RnB

and contact forces λ ∈ RnG
the

matrix K ∈R(nB+nG)×(nB+nG) representing the left-hand side of the equation of motion (2.35), and
vector b ∈RnB+nG

representing the right-hand side of equation (2.35), i.e.,

K =
[
H (q) JT (q)
J (q) 0

]
, b =

[
ST τ − c(q, q̇)
−γ(q, q̇)

]
(2.42)

with joint space inertia matrix H = CRBA(q) evaluated via CRBA and contact Jacobian J (q),
selection matrix S ∈ RnB×nAct

, the nonlinear effects term c = RNEA(q, q̇,0) evaluated via RNEA
and contact Hessian γ(q, q̇). The directional derivative of the constrained forward dynamics with
respect to the respective directions is then given by Algorithm 2.7. 4

51

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

x
y

z

+

rail

cM

h

w

cm

l

τcart
x

(qcart, q̇cart, q̈cart)

(qpend, q̇pend, q̈pend)

w

Figure 2.2: An inverted pendulum on a movable cart.

Proof The correctness of the directional derivative follows from Theorem 2.19 that verifies line 1
of Algorithm 2.7 and Theorem 2.17 verifies line 2. The rest of the argumentation is then given by
Proposition 2.21 for the solution of the linear system in lines 3-6. This yields the result then. �

2.4 Results

In the following section, we present the results obtained from implementing and bench-
marking the derivative evaluation of recursive algorithms for RBD based on FD, AD and
ED. First, we tested the quality of the resulting derivative information against analytically
derived derivatives of the RBD of two cart-pendulum models, one in minimal coordinates
and one defined via a bilateral kinematic constraint. Second, we benchmarked the com-
putational times required to evaluate derivatives using AD and FD on a set of different
MBS. Finally, we show results from the application in an optimal control setting solving a
bending and lifting task of a bio-mechanical model and compare solution performance
using FD and AD.

2.4.1 Evaluation of Derivative Quality

In order to quantify the differences between derivative information computed via FD, AD,
and ED against analytic derivatives, we consider a cart-pendulum benchmark model in
two versions: one with kinematic constraints and one without kinematic constraints in
minimal coordinates. It is depicted in Figure 2.2.

The contact model is defined as a free-floating box with three DoFs, x,y position and
orientation around y-axis, and one DoF for the rotational motion of the pendulum relative
to the cart, where the kinematic constraint restricts the motion of the root box in z direction
as well as prevents a rotation around the y axis. The contact can be resolved directly into a
minimal coordinate formulation with two DoFs representing then our contact-free model.

We evaluated 10000 uniform random samples of the inputs q, q̇, q̈,τ ∈ [−π,π]n
DoF

and
the respective directions D ∈RnDoF×3nDoF

for both models and each algorithm, i.e., CRBA,

52

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

Ta
bl

e
2.

3:
D

er
iv

at
iv

e
qu

al
it

y
of

nu
m

er
ic

al
(F

D
∂

+
h
,F

D
C
∂
±h

)a
nd

au
to

m
at

ed
(A

D
,E

D
)a

ga
in

st
an

al
yt

ic
d

er
iv

at
iv

es
(A

N
).

C
ar

t-
Pe

nd
u

lu
m

in
M

in
im

al
C

oo
rd

in
at

es
,E

rr
or

ag
ai

ns
t

A
N

C
R

BA
R

N
E

A
N

E
FF

E
C

T
S

A
BA

m
in

m
ax

m
in

m
ax

m
in

m
ax

m
in

m
ax

FD
3.

03
·1

0−
9

2.
75
·1

0−
8

8.
81
·1

0−
8

1.
15
·1

0−
6

5.
62
·1

0−
8

3.
42
·1

0−
7

1.
33
·1

0−
7

1.
49
·1

0−
6

FD
C

1.
15
·1

0−
12

9.
71
·1

0−
11

2.
16
·1

0−
10

1.
42
·1

0−
9

8.
76
·1

0−
11

1.
19
·1

0−
9

3.
29
·1

0−
10

6.
56
·1

0−
9

E
D

2.
22
·1

0−
16

2.
22
·1

0−
16

1.
78
·1

0−
15

1.
95
·1

0−
14

6.
66
·1

0−
16

1.
15
·1

0−
14

1.
78
·1

0−
15

4.
26
·1

0−
14

A
D

2.
22
·1

0−
16

2.
22
·1

0−
16

1.
78
·1

0−
15

1.
33
·1

0−
14

5.
00
·1

0−
16

8.
88
·1

0−
15

1.
78
·1

0−
15

4.
26
·1

0−
14

C
ar

t-
Pe

nd
u

lu
m

w
it

h
C

on
ta

ct
s,

E
rr

or
ag

ai
ns

t
A

N
C

R
BA

R
N

E
A

N
E

FF
E

C
T

S
A

BA
FD

C
O

N
TA

C
T

S
m

in
m

ax
m

in
m

ax
m

in
m

ax
m

in
m

ax
m

in
m

ax

FD
2.

74
·1

0−
8

1.
04
·1

0−
7

1.
54
·1

0−
6

7.
78
·1

0−
6

1.
62
·1

0−
6

8.
04
·1

0−
6

3.
99
·1

0−
7

9.
11
·1

0−
6

1.
19
·1

0−
6

6.
57
·1

0−
6

FD
C

7.
10
·1

0−
11

7.
21
·1

0−
10

2.
37
·1

0−
9

1.
54
·1

0−
8

2.
25
·1

0−
9

1.
61
·1

0−
8

4.
87
·1

0−
10

1.
01
·1

0−
8

1.
41
·1

0−
9

7.
94
·1

0−
8

E
D

2.
22
·1

0−
16

1.
22
·1

0−
15

3.
11
·1

0−
14

2.
17
·1

0−
13

3.
73
·1

0−
14

1.
79
·1

0−
13

1.
42
·1

0−
14

4.
98
·1

0−
13

7.
33
·1

0−
15

1.
71
·1

0−
13

A
D

2.
22
·1

0−
16

1.
33
·1

0−
15

2.
13
·1

0−
14

1.
58
·1

0−
13

2.
13
·1

0−
14

1.
72
·1

0−
13

1.
42
·1

0−
14

4.
98
·1

0−
13

8.
88
·1

0−
15

1.
28
·1

0−
13

53

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

RNEA, NEFFECTS, ABA and FDCONTACTS. The latter is not run for the minimal
coordinate model. In the case of kinematic constraints, one has to avoid singular contact
Jacobians J , which would induce huge errors in the nominal as well as the derivative
information. Thus, we limit the rotation of the cart-pendulum model around its y-axis to
the interval [−1,1].

The dynamics were evaluated in double precision. Therefore, the expected accuracies

are
√
ε ≈ 1.054 · 10−8 for FD and

3√
ε2 ≈ 2.310 · 10−11 for FDC, see Tab. 2.1. In contrast, we

expect the AD and ED derivatives to be around ε.
Figures 2.3a shows the resulting errors for the cart-pendulum model in minimal co-

ordinates, while Figure 2.3b shows those for the cart-pendulum model with kinematic
constraints.

The approximation errors cluster for all algorithms. For both models, CRBA showed
the best accuracy, while ABA showed the worst. Both AD and ED show an accuracy of
≈ 1 · 10−14. FD and FDC behave similar: mean accuracies of ≈ 5 · 10−6 and ≈ 1 · 10−8 are
achieved in the worst case for the contact model. We note that error propagation can easily
account for a loss of 2-3 orders of magnitude in precision, c.f. similar observations in [180],
and occurs for all modes of derivative evaluation. The results confirm that AD improves
the derivative accuracy substantially, in our setup by up to 5 orders of magnitude.

2.4.2 Benchmarking the Derivative Evaluation Runtime Performance

We have evaluated the runtimes of AD, ED as well as FD, FDC using a 10 DoF multi-
pendulum model, similar to the one from [50], for an increasing number of propagated
directions n for the algorithms FDCONTACTS, NEFFECTS, CRBA and the solution of
(2.35). FDC evaluates slowest, in line with the expectation 1 + 2n. FD performs a little
worse than the expectation of 1 +n. The AD implementation performs similar to FD for
FDCONTACTS, and between FD and FDC for NEFFECTS and CRBA. In the latter case, it
exceeds the theoretical expectation of 1 + 1.5n. For these three algorithms, the structure
exploitation implemented in ED pays off and ED outperforms AD and FD. The biggest
benefit of AD and ED over a black-box FD evaluation is obtained in the solution of (2.35).
The reuse of the factorization significantly decreases the runtime. AD and ED take less
than a quarter of the time of FD. The results are shown in Figure 2.4.

2.4.3 Application to Optimal Control of a Bio-mechanical Model

We have used our AD implementation to optimally control a two-phase bending and
lifting motion for an 8 DoF human model in the sagittal plane, see [115], and with
varying weights attached to the hand during lifting. We followed a direct and all-at-once
approach and solved the resulting NLP using an SQP method. Figure 2.5 (a) – (c) show its
convergence from the same initialization for different masses to lift in the second phase.
The SQP method consistently required fewer iterations using AD compared to FD in all
cases (up to 10 % for (b)). Entry into the rapid full step local convergence phase happened
earlier in all cases, yielding a faster descent.

2.5 Summary

In this Chapter, we proposed a new AD approach to evaluate derivative information
of recursive algorithms for rigid-body dynamics (RBD). The proposed approach was

54

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

implemented and we demonstrated its applicability for optimal control by numerical ex-
amples. Furthermore, we presented the theoretical expectations of the efficiency from the
literature and benchmarked our performance against common numerical differentiation
(FD) approximations of the derivatives.

Each of the investigated derivative evaluation modes followed the theoretical expec-
tations when tested against analytic derivatives concerning the quality of the derivative
information. Following the theoretical boundaries, the implementations algorithmic dif-
ferentiation (AD) and efficient algorithmic differentiation (ED) both exhibited an expected
performance up to machine precision.

Benchmarking the speed of the respective derivative evaluations, we showed that the
naive implementation of AD, which is based on mechanical application of the chain rule,
performs between FD and finite central differences in most of the considered cases and
then slightly better than the theoretical expectation. Furthermore, we observe that ED,
which utilizes the structure of the RBD algorithms to avoid unnecessary computations,
outperforms the FD computation in terms of speed in all of the considered cases. We
highlight that employing Proposition 2.22 in the linear system solution speeds up AD and
ED considerably.

In contrast to the presented literature that focuses on recursive Newton-Euler algorithm
(RNEA), we augmented the algorithms composite rigid-body algorithm (CRBA) as well as
Articulated Body Algorithm (ABA). The latter being considered as complex in [23] due
to the occurring tensor-valued quantities. Additionally, none of the existing publications
treats the contact case in multi-body system (MBS) that represents the core finding of this
Chapter.

55

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

FD FDC AD ED

CRBA RNEA NEFFECTS ABA

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

√
ε

3√
ε2

ε

er
ro

r
[l

og
(·)

]

(a) Cart-pendulum model in minimal coordinates.
FD FDC AD ED

CRBA RNEA NEFFECTS ABA CONTACT

10−4

10−8

10−12

10−16

√
ε

3√
ε2

ε

er
ro

r
[l

og
(·)

]

(b) Cart-pendulum model with constraints.

Figure 2.3: Errors against analytic derivatives of FD, FDC, AD and ED for different algorithms and
both cart-pendulum models.

56

DERIVATIVE EVALUATION
∣∣∣ CHAPTER 2

FD FDC AD ED theo

0 10 20 30 40 50
0

50

100 2n
3
2n

1n

(a) Forward dynamics

0 10 20 30 40 50
0

50

100 2n
3
2n

1n

(b) Nonlinear effects

0 10 20 30 40 50
0

50

100 2n
3
2n

1n

(c) CRBA

0 10 20 30 40 50
0

50

100 2n
3
2n

1n

(d) Solve of (2.35)

Figure 2.4: Effort [n× eval(f (x))] against number of propagated directions [n] of FD, FDC, AD and
ED for a multi-pendulum model.

57

CHAPTER 2
∣∣∣ DERIVATIVE EVALUATION

0 20 40 60 80 100 120 140 160 180

100

101

102

FD
AD

(a) 3 kg

0 50 100 150 200 250 300 350

100

101

102

FD
AD

(b) 6 kg

0 50 100 150 200 250

10−1

100

101

102

FD
AD

(c) 9 kg

Figure 2.5: Self-convergence plots of SQP performance using AD and FD for different masses for
the biomechanical OCP. The vertical axis depicts distance of current iterate xn to
final iterate x? [‖xn − x?‖2] versus iteration counter [n]. Vertical lines indicate that the
algorithms enter the full step local convergence phase.

58

3 Motion Generation Based on Center of
Mass Dynamics

W
x

y

z

C

x

y

z

(a) HRP-2 avoiding obstacles in the scene.

W
x

y
z

Cx

y

z

(b) HeiCub walking with closed-loop control.

Figure 3.1: The algorithms derived within this thesis were applied to improve the walking capabi-
lities of the humanoid robots HRP-2 as well as HeiCub.

The following chapter presents methods and algorithms for motion generation using
simplified models based solely on the center of mass (CoM) and the zero-moment point
(ZMP) motion, which were developed during the work on this thesis. They are applied
to improve the walking capabilities of the two humanoid robots HRP-2 of Laboratory
for Analysis and Architecture of Systems (CNRS-LAAS) as well as HeiCub of Heidelberg
University (UHEI).

The contents of the following chapter are based on our journal article [133] and our
conference article [163] as well as unpublished work on an extension concerning the
combination of motion planning and generation based on a mixed-integer formulation.

The goal of motion generation for humanoids is to realize human-like task performance
on the robot while considering the real-time constraints dictated by the robotic platform.
Therefore, state-of-the-art methods achieving real-time motion generation on today’s
robotic hardware apply a reduced view on the whole-body dynamics of a humanoid by
only considering the motion of the CoM and of the ZMP or center of pressure (CoP)1. The
use of a reduced model is a practical solution on platforms with limited computational
capabilities for example HRP-2. However, the drawback of employing models reduced to
the CoM and ZMP motion is that effects related to the inertia of the whole-body motion
are ignored or simplified. This leads to a systematic error hindering the execution of the
computed motion on the robot. However, this mismatch can be drastically reduced by
applying a dynamic filter (DF). Another important topic is collision avoidance during
walking. While stable walking on clear level ground can already be achieved by robots

1 In the case of a dynamic stable motion, the computed point quantities of both concepts, zero-moment point
(ZMP) as well as center of pressure (CoP), are identical and coincide, cf. [177]. Here, we prefer to use ZMP
over CoP as this is a more common term in motion generation, while CoP is more common in motion analysis.

59

CHAPTER 3
∣∣∣ COM DYNAMICS

nowadays, including obstacle avoidance into the motion generation formulation can
drastically improve the range of movement tasks a robot can undertake.

Two walking pattern generators (WPGs) were developed during this thesis to include
them into the motion generation framework. The approaches derived in the remainder
of this chapter were all tested on the robotic hardware platforms HRP-2 and HeiCub and
were proven to run in real-time.

The following contributions were made in this thesis:
• We propose a combined but nonlinear reformulation of a two-step walking WPG.
• Our formulation is able to find simultaneously foot-step positions and orientations.
• The formulation can directly introduce nonlinear constraints, e.g. used for obstacle

avoidance.
• The nonlinear problem is solved using nonlinear model predictive control (NMPC)

real-time iterations for fast feedback computation.
• The model-plant mismatch resulting from model reduction is compensated by a DF.
• The whole algorithm runs in real time on the embedded hardware of the humanoid

robot HRP-2.
• The algorithm runs in real time on the external computing hardware of the hu-

manoid robot HeiCub.
• We propose a mixed-integer formulation realizing a combination of motion planning

and generation.
• This allows to include any obstacles, which projection on the ground can be ap-

proximated by convex polygons, as well as step stones, i.e., restriction of the foot
placement by regions described by convex polygons.

• The mixed-integer formulation was tested in simulation for a HeiCub model.
In Figure 3.2, we visualize the general work flow for motion generation using WPGs

based on CoM dynamics. The core of the approach is the WPG that computes CoM,
feet and ZMP trajectories based on a reduced model in the form of the linear inverted
pendulum model (LIPM) as it will be derived in Section 3.1. The inputs from the control
perspective are user inputs for example a reference linear and angular velocity at CoM
level for tracking. Additionally, sensory information can be included in order to integrate
collision avoidance for example as presented in Section 3.2.3 and 3.3.2. For proper setup,
the WPG may include additional robot specific details and/or a kinematic model of the
robot to be able to formulate constraints guaranteeing dynamic balance and proper foot
step placement.

In the first step, the WPG computes discrete CoM jerk values c̈ and foot steps f (, if
not prescribed,) on a finite time horizon from the given user inputs by solving a linear-
quadratic regulator (LQR) problem as [84], a convex optimization problem in the form
of a quadratic program (QP) as [71] or even a nonlinear optimization problem in the
form of a nonlinear program (NLP) as it will be presented in Section 3.2 or a mixed-
integer optimization problem as in [78] as well as the work presented in Section 3.3. The
application of an Euler integration scheme enables then to compute CoM trajectories c
from the CoM jerks and interpolation of the foot steps f from the foot step planning on
the horizon allows to define 3D trajectories by means of fifth-order polynomials.

The resulting CoM trajectories computed have to filtered to retrieve c̃ using a DF as
presented in Section 3.4.1 in order to compensate the error introduced from using the
LIPM as dynamic model instead of the whole-body dynamics of the humanoid. The filtered
CoM trajectories altogether with the foot trajectories are then input to a (generalized)
inverse kinematics algorithm. In this way, reference joint trajectories q, q̇ are computed

60

COM DYNAMICS
∣∣∣ CHAPTER 3

Walking
Pattern

Generator

Dynamic
Filter

(Generalized)
Inverse

Kinematics

Robot
Simulation /

Hardware

c,f c̃,f

q, q̇

offline Motion Generation

online Feedback Control

Robot
Specific
Details

User
Input

Sensory
Information

Kinematic/
Dynamic

Robot Model

Figure 3.2: Visualization of the general control scheme of the walking pattern generator (WPG)
framework derived in this thesis. From robot specific details, a kinematic description
of the robot and input from the user a WPG computes center of mass (CoM) and feet
trajectories c, f represented by polynomials. The CoM trajectories have to be adapted
by a so-called dynamic filter in order to compensate the error introduced by the reduced
model used inside the WPG. From these trajectories an inverse kinematics framework
computes joint angles to be realized by the low-level control on the robot. For offline
motion generation the filtered CoM trajectories are fed back to the WPG and for online
motion generation the respective sensory information of the robot is used to close the
loop.

that can be applied directly to the low-level joint control of the robot in order to realize a
dynamically feasible walking trajectory.

In open-loop control, the WPG is then reinitialized with the current reference velocity
input and the corrected initial states retrieved from the dynamic filter c̃ as done in [71,
133]. In closed-loop control, an estimate of the actual CoM position is retrieved from the
robot and fed back to the WPG as presented in [149, 163].

In the following sections we will explain all relevant building blocks of the scheme
depicted in Figure 3.2. First, the reduced model is derived in detail in Section 3.1. Second,
the WPGs derived in this thesis are then explained in more detail in separate sections
3.2 and 3.3. This is followed by an explanation of the remaining building blocks in
Section 3.4. Finally, we show the respective results of the different approaches followed
by the conclusion of this chapter in the form of a summary.

3.1 Derivation of the Reduced Dynamic Model

In this Section, a reduced model of the whole-body dynamics of a humanoid is derived as
first presented by Kajita in [83]. The idea of limiting the dynamic model to the motion of
the CoM and the ZMP is motivated by the schematic drawing of Figure 3.3, which shows
the pendulum like movement of the CoM with respect to the ZMP as well as the limitation
of the evolution of the CoM inside a plane parallel to the ground. The application of the
model requires the following assumptions to be made.

Assumption (linear inverted pendulum model Assumptions) We assume in order to approxi-
mate the whole-body dynamics of a multi-body system by means of the linear inverted pendulum
model (LIPM):

61

CHAPTER 3
∣∣∣ COM DYNAMICS

Figure 3.3: Visualization of pendulum model derived from human motion during gait. The motion
of the center of mass (CoM) is very characteristic for a humanoid and has attracted
much attention in motion analysis. For a human, the CoM motion in the sagittal plane
can roughly be described by that of cycloid due to the pendulum-like motion during
swing phase where the zero-moment point (ZMP) or center of pressure acts as its pivot
on the ground. The linear inverted pendulum model limits the evolution of the CoM
motion to a plane in parallel to the ground and in addition links CoM and ZMP by a
friction-less prismatic joint.

• The angular momentum due to the motion of all robot parts is supposed to be zero.
• The CoM of the humanoid evolves on a horizontal plane parallel to the ground.
• The normal vectors of each contact point/surface have to be collinear.
• The sum of all contact forces can be re-expressed as a single unique force at the ZMP. 4

As a consequence, it is possible to restrict the number of all degrees of freedom (DoFs)
of the humanoid to three DoFs, which are the projection of the robot CoM (x,y)-position
on the ground plane and its root frame orientation θ around the vertical z-axis2. The
justification of this is presented in detail by Wieber in [181]. We briefly summarize the
derivation in the remainder of this section. However, we follow the notional convention
for the MBS dynamics introduced in Section 1 for convenience.

The equation of motion for a MBS in contact with its environment can be found in
Chapter 1. Revisiting the equation, the part defining the motion of the robot incorporating
also external forces is given by

H (q)q̈+ c(q, q̇) = ST τ + JTλ, (3.1)

where q, q̇, q̈ : R→R
nDoF

denote the generalized positions, velocities, accelerations, τ : R→
R
nAct

denotes the generalized forces of the MBS while the selection matrix S ∈RnDoF×nAct

maps the generalized forces on the actuated DoFs. The external force λ ∈RnG
acts on the

system by means of the kinematic Jacobian J B ∂qg(q) of a kinematic constraint g(q) = 0.

The joint space inertia or mass matrix is denoted by H ∈ RnDoF×nDoF
and the nonlinear

effects are given by c ∈RnDoF
. We refer the reader to Chapter 1 or [48] for the details.

Under the assumption that the dynamic model of humanoid always considers the root
body, e.g. the pelvis or trunk, to be modeled as a free-flyer or floating base, we assume a
coordinate frame, i.e., a right-handed Cartesian coordinate system, explicitly describing

2 Here, we use the coordinate convention such that the Cartesian frame attached to the root body of the robot
(pelvis for HRP-2, upper torso HeiCub) points its x-axis towards the front of the robot and the z-axis upwards,
c.f. Figure 3.1a and 3.1b.

62

COM DYNAMICS
∣∣∣ CHAPTER 3

the position and orientation of the root body to the world coordinate system in terms of
non-joint related DoFs, i.e.,

q =

x0

θ0

q̂

 , (3.2)

where the position of the coordinate system is denoted by x0 ∈ R3 and the orientation
is described by a rotational matrix E ∈ SO(3) from the set of ortho-normal matrices
parametrized by means of θ0 (, θ0 ∈R3 for example using Euler angles,), while q̂ ∈RnDoF

are the respective minimal joint coordinates of the humanoid. This situation is already
considered in Equation (3.1) by the selection matrix S mapping the actual joint torques
to the actuated degrees of freedom leaving the free-flyer or floating base free from any
actuation as in (3.1).

Following this, the equation of motion of a MBS in contact from Equation (3.1) can be
split into two equations

H0(q)q̈+ c0(q, q̇) = JT0 λ, (3.3a)

H1(q)q̈+ c1(q, q̇) = τ + JT1 λ, (3.3b)

where the first describes the non-actuated dynamics and the latter the actuated part.
For the next step, we formally introduce the two concepts of CoM and ZMP as well as

the respective static and dynamic balance criteria.

Definition (Center of Mass (CoM), c ∈R3) The CoM for any system at any given time is the
unique point of the average position of the mass of the system, where the weighted relative
position of the distributed mass sums to zero.

In the case of a MBS consisting of nB ∈N rigid bodies, the center of mass c of the respective
MBS in a given configuration can be expressed as by means of the composite rigid-body inertia
0Itot =

∑nB

i=1
0X?i Ii

iX0 such that the CoM is given by

c =
0Itot

∣∣∣
mc

0Itot
∣∣∣
m

, (3.4)

where Ii is the spatial inertia of the ith body and I|(·) is the projection onto the respective quantity
according to Definition 2.11. 0Xi denotes the spatial transform mapping the spatial information in
the ith body frame to a given reference frame according to Definition 2.12. 4

Remark (Center of Gravity (CoG)) For a uniform gravitational field, an alternative view on the
CoM as the point where the resultant torque due to gravity vanishes, which is sometimes also
referred to as Center of Gravity (CoG). In this thesis, the two concepts are to be seen as identical
and therefore we always refer to CoM by convention.

Definition (Support Polygon w.r.t. a Set of Contact Points I, SI) Let I ⊂R
3 be a set of co-planar

contact points such that all contact points lie within a contact surface defined by normal vector
n ∈R3. The support polygon SI ⊂R

3 is then defined as the respective convex hull containing all
contact points, i.e.,

SI B conv(I) =

|I|∑
i=1

αixi

∣∣∣∣∣∣∣∀i : αi ≥ 0∧
|I|∑
i=1

αi = 1∧ xi ∈ I

 . (3.5)

4

63

CHAPTER 3
∣∣∣ COM DYNAMICS

(a) Support polygon of single support phase. (b) Support polygon of double support phase.

Figure 3.4: Visualization of the support polygon (gray area) for different phases of the human gait,
where the support foot is indicated by solid black lines and the swing foot by dashed
black lines.

Remark For a humanoid, the polygon of support is the contact area of the current support foot
during single support phase, c.f. Figure 3.4a. In the case of two feet on level ground, the polygon of
support is the ground area covered by both feet as well as the area in between them, c.f. Figure 3.4a.

Definition (Static Stability) Given any multi-body system that is in contact with its environment
by means of the set of contact points I ⊂ R

3 such that all contact points lie within a contact
surface defined by normal vector n ∈R3. The multi-body system is then considered to be statically
stable if and only if the projection along the gravity of its center of mass, defined according to
Definition 3.2, lies within the respective projection of the polygon of support SI ⊂ R

3 defined
according to Definition 3.4. 4

The technical concept of ZMP was first introduced in 1968 by Vukobratović, see [175].
However, the name ZMP itself was presented first in [176]. Since then the ZMP has
become an essential quantity for evaluating the stability or dynamic balance for both
motion analysis as well as motion generation. For the latter in such a way that ZMP-based
gait synthesis has been the only approach for a long time. The idea of the ZMP is to define
an single indicator for the dynamic balance of the robot. Following this, we look for the
unique point in which all forces and moments acting on the robot can be replaced by one
single force and moment.

Definition (Total Change of Momentum, ḣtot) Given a multi-body system consisting of nB bo-
dies, then the total change of angular momentum ḣtot with respect to the world frame indicated
by index 0 is given by

0ḣtot =
nB∑
i=1

0X?∗i (Iiai + v×∗ Iivi), (3.6)

where Ii is the spatial inertia of the ith body according to Definition 2.10 and 0Xi denotes the
spatial transform mapping the spatial information in the ith body frame to a given reference frame
according to Definition 2.12. vi , ai denote the spatial velocity and acceleration of the ith body
with respect to the local reference frame. 4

Definition (Zero-Moment Point (ZMP)) Let S ⊂R
3 be a convex set on a planar contact surface

given by its normal vector n ∈ R3 such that the contact friction is sufficiently high in order to
prevent the contact from slipping. The ZMP is then defined, according to [177], as that point on

64

COM DYNAMICS
∣∣∣ CHAPTER 3

the contact surface at which the net moment of the inertial forces and the gravity forces has no
component along the horizontal axes with respect to the contact surface.

Choosing the reference frame to be located at the CoM, see Definition 3.2, of the respective MBS,
the resulting external force acting at the CoM is then given by

CoM f̂ ext =CoM ḣtot −mCoM
tot g,

where the spatial force vector CoM f̂ ext ∈ F6 denotes the respective external forces acting at the CoM,
mtot ∈R is the total mass of the MBS, CoMg ∈ F6 denotes the gravitational force acting on the CoM,
and the superscript indicates the respective reference frame of the quantity (if required).

From the projection of these external forces onto the contact surface S f̂ ext = SXCoMCoM f̂ ext with
S f̂ ext = [nT0 fT], where n0, f ∈ R3 denote the total moment about the point that coincides with O
and the linear force along an axis passing through O, the ZMP is then computed by

zSI =
n ×n0

n · f . (3.7)

4

Definition (Sufficient Criterion for Dynamic Stability (based on ZMP)) Given any multi-body
system that is in contact with its environment by means of the set of contact points I ⊂ R

3 such
that all contact points lie within a contact surface defined by normal vector n ∈R3 and such that
the contact friction is sufficiently high (in order to prevent the contacts from slipping). If the
projection along gravity of the ZMP of the MBS is within the interior of the projected support
polygon SI, i.e.,

zSI ∈ S̊I, (3.8)

then the current motion is dynamically stable. 4

Remark (On other Stability Criteria) The ZMP criterion is not a necessary condition for dynamic
stability While there is not yet a criterion known that can describe the stability of the motion
of humans and is both necessary and sufficient, other stability criteria are commonly applied to
generate stable motions or analyze motion data. Examples are the Capture Point of Pratt presented
in [146], the foot placement estimator from Wight presented in [182] or criteria based on Lyapunov
stability as presented by Mombaur in [125]. Recent work uses centroidal dynamics from [139] to
define dynamic stable configurations, for example [31]. The latter will be explained in more detail
in Chapter 4 presenting the work of the author of this thesis on this topic.

The projection of the dynamics to the CoM of the underlying MBS can be found in
detail in [181]. Following this, we end up with the Newton-Euler equations for the CoM,
i.e.,

mtot (c̈+ g) =
∑
i∈I
λi , (3.9a)

mtot c× (c̈+ g) + l̇ =
∑
i∈I
pi ×λi , (3.9b)

where mtot denotes the total mass of the humanoid, g ∈R3 is the gravitational force acting
on the system, c ∈R3 denotes the coordinate vector of the CoM, l ∈R3 denotes the angular
momentum of the system and pi ∈ R3, λi ∈ R3 denote the respective lever arms with
respect to the contact points and contact forces given by the contact set I ⊂N.

Equation (3.9) can be further simplified by neglecting the change of angular momentum
term l̇ ≡ 0 and re-expressing the sum of contact forces as single unique force λ =

∑
i
λi at

65

CHAPTER 3
∣∣∣ COM DYNAMICS

the ZMP according to Assumption 3.1, i.e.,

mtot (c̈+ g) = λi , (3.10a)

mtot c× (c̈+ g) =
∑
i

p×λ. (3.10b)

By expressing p =
[
px py pz

]T
and dividing by the total mass mtot the equation can be

simplified to the two well-known equations (the third is omitted due to linear dependence)
relating the ZMP motion to the CoM motion given by

px = cx − cz
c̈z + g

c̈x (3.11a)

py = cy − cz
c̈z + g

c̈y . (3.11b)

For a CoM motion evolving on a plane parallel to the ground, i.e., cz ≡ const. =⇒ c̈z ≡ 0,
the equation is further reduced to the ZMP equations

px = cx − czg c̈x (3.12a)

py = cy − czg c̈y . (3.12b)

Finally, the ZMP equations (3.12) or the so-called cart-table model according to [84] serves
as the reduced model in the WPG context.

3.2 Walking Pattern Generator based on Nonlinear Model
Predictive Control

The work presented in this section is based on our journal article [133]. We propose a
WPG based on NMPC together with a tailored implementation, and its application for
motion generation of the robotic platforms HRP-2 and HeiCub. This work pursues the
work on walking without thinking presented in [71] and it extends it in several ways. In
contrast to former articles, the WPG presented here is able to compute feasible foot step
positions and orientations simultaneously while locally avoiding collisions with obstacles.

The general workflow of the implementation of a WPG presented herein is schemati-
cally depicted in Figure 3.2. The core of the proposed scheme is the WPG itself, which
implements a tailored solver based on advanced methods of NMPC described in Chapter 1.

In the following sections, first, we discuss the discretization of the CoM dynamics in
Section 3.2.1. Second, we introduce the formulation of the automatic foot step placement
in Section 3.2.2. Finally, we formulate the NMPC problem in Section 3.2.3 and the
respective solution algorithm in Section 3.2.4.

3.2.1 Discretization of Center-of-Mass Dynamics

WPGs use not only a common reduced model as derived in Section 3.1 but they also
share a common discretization scheme for the CoM motion derived as presented in the
remainder of this section. We follow [71] for the formulation of the discretized CoM
dynamics and embed it in mathematical formulation and notational style of this thesis.

66

COM DYNAMICS
∣∣∣ CHAPTER 3

As presented in Section 3.1, we restrict the whole-body dynamics of the humanoid to that
of the LIPM and can therefore restrict the CoM motion to its motion in the x,y-plane.

In accordance with the optimal control problem (OCP) (1.9) formulation presented
in Chapter 1, we formulate the evolution of the position of the CoM cν , where we use
ν ∈ {x,y} to simplify the notation, in the world frame as ordinary differential equation
(ODE) on a given finite preview horizon T B [0,T] in the form of

d
dt

cν(t)
ċν(t)
c̈ν(t)

 =

0 1 0
0 0 1
0 0 0

cν(t)
ċν(t)
c̈ν(t)

+

0
0
1

 ...cν(t), t ∈ T , (3.13)

where we strive for finding optimal controls in the form of input jerk ...cν . We subdivide
the given horizon T equidistantly by means of a constant sampling period h into n ∈N
subintervals Tk = [kh, (k + 1)h], k = 0,1, . . . ,n − 1, such that nh = T is the length of the
preview horizon.

In order to formulate a finite dimensional optimization problem and to obtain smooth
trajectories, such that the accelerations are at least continuous, we discretize the CoM jerk
...
cν by means of a piecewise constant control on each interval, i.e.,

...
cν(t) ≡ const., t ∈ Tj , j = 0,1, . . . ,n− 1. (3.14)

Following this, a time-stepping scheme, which maps the current state of the frame cνk to the
future states, can be derived by manually performing the integration on the subintervals,
it reads

cνk+j = Aj cνk +
j−1∑
i=0

Ai B
...
cνk+i , j = 0,1, . . . ,n, (3.15)

cνk =

cνk
ċνk
c̈νk

 , A =

1 h h2

/2
0 1 h
0 0 1

 , B =

h3
/6

h2
/2
h

 . (3.16)

The evolution of the CoM over the preview horizon as well as the respective derivatives
are then described by means of the initial state cνk and the CoM jerk

...
Cνk+1 by

Cνk+1 = Ppsc
ν
k + Ppu

...
Cνk , (3.17)

Ċνk+1 = Pvsc
ν
k + Pvu

...
Cνk , (3.18)

C̈νk+1 = Pasc
ν
k + Pau

...
Cνk , (3.19)

where Cνk+1, Ċνk+1, C̈νk+1 and
...
Cνk+1 ∈Rn are given by

Cνk+1 =
[
cνk+1, . . . cνk+n

]T
,

Ċνk+1 =
[
ċνk+1 . . . ċνk+n

]T
,

C̈νk+1 =
[
c̈νk+1 . . . c̈νk+n

]T
,

...
Cνk+1 =

[...
cνk+1 . . .

...
cνk+n

]T
,

67

CHAPTER 3
∣∣∣ COM DYNAMICS

where we exceptionally use matrix notation for the compound vectors due to a notational
clash. The respective matrices in the expression, Pps, Pvs, Pas ∈Rn×3 and Pau , Ppu , Pvu ∈Rn×n,
are given by

Pps =

1 h h2

/2
...

...
...

1 nh n2h2
/2

 , Ppu =

h3
/6 · · · 0
...

. . .
...

(1+3n+3n2)h3
/6 · · · h3

/6

 ,

Pvs =

0 1 h
...

...
...

0 1 nh

 , Pvu =

h2
/2 · · · 0
...

. . .
...

(1+2n)h2
/2 · · · h2

/2

Pas =

0 0 1
...

...
...

0 0 1

 , Pau =

h · · · 0
...
. . .

...
h · · · h

 .
An equivalent scheme can be formulated for ZMP evolution using the LIPM as derived

in Section 3.1 from (3.12), it reads

zνk+j =
[
1 0 −cz/g

]
cνk+j , j = 0,1 . . .n,

where cz denotes the constant CoM height between the ground and the CoM, and g
denotes the norm of the gravity vector g. The expression for the evolution of the ZMP
with respect to the initial CoM states and the CoM jerk on the finite horizon is then given
by

Z νk+1 = Pzsc
ν
k + Pzu

...
Cνk , (3.20)

where Pzs ∈Rn×3 Pzu ∈Rn×n are defined by

Pzs =

1 h h2

/2 − cz/g
...

...
...

1 nh n2h2
/2 − cz/g

 , Pzu =

h3
/6 − hcz/g · · · 0
...

. . .
...

(1+3n+3n2)h3
/6 − hcz/g · · · h3

/6 − hcz/g

 .
3.2.2 Automatic Foot Step Placement

In contrast to former approaches, which only track a precomputed and feasible ZMP refer-
ence trajectory zref , advanced WPGs derived from [71] implement adaptive placement of
the feet in order to ensure the balance of the robot even under external perturbations. To
this end, consider a frame F attached to the support foot center, with its current position
and orientation on the ground given by f νk with ν ∈ {x,y,θ}, where by θ we denote the
orientation of the foot frame with respect to the world frame.

While the usage of a single point mass as model prohibits the definition of an orientation,
in [71] a frame attached to the CoM in accordance with the floating base of the robot is
defined and the orientation of this frame and the feet directions are optimized. Here, we
only optimize the foot step orientations from which the orientation of the robot free-flyer,
denoted by cθ, is computed as described in the remainder of this section. Let cθ(t), f θ,L(t)
and f θ,R(t) be respectively the orientation of the free-flyer, the left foot and the right foot
at any time t ∈ T . Hence cθ(t) is by convention the average orientation of both feet at any

68

COM DYNAMICS
∣∣∣ CHAPTER 3

time given by
cθ(t)
ċθ(t)
c̈θ(t)

 =

1
2 (f θ,L(t) + f θ,R(t))
1
2 (ḟ θ,L(t) + ḟ θ,R(t))
1
2 (f̈ θ,L(t) + f̈ θ,R(t))

 , t ∈ T .

We describe the future steps as free variable of the optimization problem and denote
them by

F νk+1 =
[
f νk+1 f νk+2 . . . f νk+n

]T
, (3.21)

for which we can derive a similar mapping relating the initial support foot position f νk
and the actual free foot step positions F νk ∈Rnf to the support foot position at each time
step F νk+1 ∈Rn by

F νk+1 = vk+1f
ν
k +Vk+1F

ν
k , (3.22)

where the vector vk+1 ∈ Rn and matrix Vk+1 ∈ Rn×nf +1 indicate which step falls in the
sampling interval Tk and are given by

vk+1 =

1
...
1
0
...
0
0
...
0
0
...
0

, Vk+1 =

0 0 0 0
...

...
...

...
0 0 0 0
1 0 0 0
...

...
...

...
1 0 0 0
0 1 0 0
...

...
. . .

...
...

0 0 1 0
0 0 0 1
...

...
...

...
0 0 0 1

, (3.23)

where sampling times correspond to rows and steps to columns, and by nf we denote the
maximum number of double support phases in the preview.

3.2.3 Nonlinear Model Predictive Control Problem Formulation

In this section, we formulate the NMPC problem that enables to simultaneously optimize
both the position and the orientation by means of the respective free variables presented
in the previous sections.

In [71], the orientation problem is solved separately from the position problem in order
to circumvent the nonlinear case. However, solving the orientation separately and then
injecting the solution into the position problem amounts to solve a different problem than
the nonlinear combination of both.

This problem is especially important when dealing with a cluttered environment, where
obstacles have to be avoided, as it is considered within this work, because then the
orientation cannot be computed separately from the position anymore. Following this, we

69

CHAPTER 3
∣∣∣ COM DYNAMICS

derive, analyze the nonlinear problem formulation and propose an appropriate approach
for its solution.

In order to derive the problem formulation in the form of an NLP, we first will give
a description of the objective function and the necessary constraints for the ZMP, foot
position constraints as well as the collision avoidance. From the composition of the
problem, we then derive a tailored solver for the problem in Section 3.2.4 and finally talk
about its implementation.

The Objective Function

The objective function for the NLP used to formulate the discretized NMPC problem is
given by a linear combination of four distinct terms in the form of

min
Uk

ω1

2
j1(Uk) +

ω2

2
j2(Uk) +

ω3

2
j3(Uk) +

ω4

2
j4(Uk), (3.24)

where ωi > 0 for i = 1,2,3,4 denote the weights of the respective terms of the objective
function and Uk denote the free variables of the problem given as

U
x,y
k =

...
Cxk
F xk...
C
y
k
F
y
k

 , U θ
k = F θk , Uk =

[
U
x,y
k
U θ
k

]
. (3.25)

j1(Uk) is the cost function term related to linear velocity tracking

j1(Uk) = ‖Ċxk+1 − v
x,ref
k+1 ‖22 + ‖Ċyk+1 − v

y,ref
k+1 ‖22.

j2(Uk) is the cost function term related to angular velocity tracking

j2(Uk) = ‖F θk+1 −
∫
v
θ,ref
k+1 dt‖22.

j3(Uk) is the cost function term related to minimizing the distance between the ZMP
and the projection of the ankle onto the sole

j3(Uk) = ‖F xk+1 −Z xk+1‖22 + ‖F yk+1 −Z
y
k+1‖22. (3.26)

j4(Uk) is the cost function term related to minimizing the applied CoM jerk

j4(Uk) = ‖ ...Cxk+1‖22 + ‖ ...Cyk+1‖22.

70

COM DYNAMICS
∣∣∣ CHAPTER 3

The above minimization problem can then be expressed in the canonical form of

min
Uk

1
2
U T
k QkUk +pTk Uk (3.27a)

with Qk =
[
Q
x,y
k 0
0 Qθ

k

]
, (3.27b)

Qθ
k =ω2Inf , (3.27c)

pk =
[
p
x,y
k
pθk

]
, (3.27d)

pθk =ω2

[
1 . . . nf

]
Tstep v

θ,ref
k+1 +

1
...
1

F θk
 (3.27e)

The reader is kindly referred to [71] for the defintion of Qx,y and px,y . The matrix Qθ
k

and pθk are derived because we use a slightly different approach than [71] to deal with the
orientation.

The Constraints

In order to guarantee applicability of the planned motion, we have to enforce different
constraints on it. First, the balance of the robot has to be ensured by defining proper
constraints onto the ZMP trajectories. Second, because we implement automatic foot step
placement, we have to guarantee kinematic feasibility of the foot steps in order to realize
on the robot. Additionally, we implement obstacle avoidance by introducing nonlinear
constraints to the problem. The following exposition is based on [71].

x

y

pz1pz2

pz3 pz4

θ

Figure 3.5: Shape of the foot with the position vector pzi describing the support polygon and θ
representing its orientation from our article [133].

Balance Constraints In order to guarantee a dynamic stable motion according to Def-
inition 3.9, the ZMP has to remain strictly inside the support polygon, c.f. [181]. The
respective polygon for the humanoid robot HRP-2 is depicted in Figure 3.5. Only a single
foot has to be modeled as a support polygon, because

• HRP-2 has symmetrical feet and
• the sampling period of the problem is designed in a way that no double support

phase occurs at any sampling time.

71

CHAPTER 3
∣∣∣ COM DYNAMICS

We denote the set of linear inequalities representing the convex polygon by means of
the matrix AZMP ∈R5n×2(n+nf) and vector bZMP ∈R5n. The ZMP at instant k, denoted by
zk = [zxk z

y
k]T , (c.f. Section 3.1) lies inside the support polygon if and only if the following

linear inequalities hold

AZMPR(f θk) (zk − fk) 6 bZMP , (3.28)

where the support foot position at time instant k is given by fk = [f xk f
y
k]T , the 2D rotation

matrix R(f θk) is defined as

R(f θk) =
[

cos(f θk) sin(f θk)
−sin(f θk) cos(f θk)

]
. (3.29)

We further separate the matrix product AZMPR(f θk) into sub-matrices depending on the
respective optimization variables by

AZMPR(f θk) =
[
Ax,θcop,k A

y,θ
cop,k

]
. (3.30)

Using Equation (3.22), the constraint for each time step of the horizon is defined by

Dk+1(U θ
k)

[
Z xk+1 − vk+1f

x
k −Vk+1F

x
k

Z
y
k+1 − vk+1f

y
k −Vk+1F

y
k

]
6 bZMP k+1, (3.31)

with

bZMP ,k+1 =
[
bTZMP . . . bTZMP

]T
(3.32)

and

Dk+1(U θ
k) =

Ax,θcop,k+1 0 A

y,θ
cop,k+1 0

. . .
. . .

0 Ax,θcop,k+n 0 A
y,θ
cop,k+n

 . (3.33)

From Equation (3.31), the canonical form of the constraint is

Acop,k(U
θ
k) U x,y

k 6 Ucop,k , (3.34)

where Acop,k(U
θ
k) is a matrix depending on U θ

k which makes this constraint nonlinear
and by Ucop,k we define the upper bound of the linear inequality. The last steps of the
derivation are detailed in [71].

Foot Step Feasibility Constraints In order to guarantee a feasible foot step placement,
we require a description of the kinematic and dynamic capabilities of the robot under
consideration in form of a convex hull. As presented in [71], this can be achieved by
kinematically sampling the task space of the feet and checking if the performed step
would make the robot fall. In this way, a convex hull representing feasible foot placement
for HRP-2 can be derived as it is shown in Figure 3.6. The set of linear inequalities
representing this convex polygon is defined by means of the matrix Af oot and bf oot.
Instead of distinguishing between the left and the right support foot by means of indices r

72

COM DYNAMICS
∣∣∣ CHAPTER 3

x

y

Ar ,Br

Al ,Bl

Support Foot

θ

pl1

pl2

pl3

pl4

pl5

Figure 3.6: Shape of the selected convex polygon boundary of the foot placement from the article
[133].

or l, we use the lower index f oot because the problem is symmetrical. The linear inequality
formulating proper foot step placement by means of the convex hull in Figure 3.6 is given
as

Af ootR(θ)(fk+1 − fk) 6 bf oot . (3.35)

In the exact manner as in Equation (3.34), the vector and matrices derived in Equa-
tion (3.34) are used to express this constraint for each previewed foot step according to
[71]. The canonical form of the constraint is then given by

Af oot,k(U
θ
k) U x,y

k 6 Uf oot,k , (3.36)

where Af oot,k(U
θ
k) depends on U θ

k like the ZMP constraint matrix Acop,k(U
θ
k), which again

renders this constraint to be nonlinear while Uf oot,k denotes an upper bound.

Foot Orientation Constraint One additional constraint considers the maximum and
minimum angle between both feet

−θthresh 6 F θk+1 − F θk 6 θthresh, (3.37)

which can be stated in canonical form of

Uθ,k 6 AθU
θ
k 6 Uθ,k (3.38)

(3.39)

73

CHAPTER 3
∣∣∣ COM DYNAMICS

where the matrix Aθ ∈R× and the vectors Uθ,k , Uθ,k ∈R are given by

Aθ =

1 0 0 0

−1 1
. . .

...

0
. . .

. . . 0
. . . 0 −1 1

,

Uθ,k =
[
θthresh + f θk θthresh . . . θthresh

]T
,

Uθ,k =
[
−θthresh + f θk −θthresh . . . −θthresh

]T
.

In practice the bound θthresh = 0.05rad is used, which takes the hardware limits into
account. At this stage, the optimization problem allows the robot to place its feet anywhere
inside the convex hull at any moment. In [71], the velocity of the foot is limited by
bounding the feasible foot step area that corresponds to a maximum velocity. We chose
to use the same idea extended to all the foot steps degrees of freedom. This significantly
decreases the variation of accelerations before foot landing.

Local Obstacle Avoidance Constraints To this end, we only consider obstacles, whose
projections on the ground can be approximated as convex polygon. We choose to further
approximate a given obstacle by means of a circle given by C = {p ∈ R

2, (px − x0)2 +
(py − y0)2 = R2}, where p = [px py]T . This choice simplifies the derivation, allows to
easily introduce additional security margins for collisions avoidance, and the resulting
constraint does not depend on the orientation of the foot steps this way. Here, x0 and y0
are coordinates of the center of the obstacle with respect to the world frame and R is the
radius of the circular approximation. A collision free walking pattern for the given time
horizon is given if and only if all previewed foot steps are not within any of the circular
approximations. For the jth previewed step, at iteration k + j the constraint is expressed
by

R2 + m2 6 =
(
f xk+j − x0

)2
+
(
f
y
k+j − y0

)2
, (3.40)

where m is a security margin taking into account the swept volume of the robot. This
constraint can be formulated in canonical form in the form of

Uobs,j 6 U
T
k Hobs,jUk +Aobs,jUk (3.41)

with a selection matrix Hobs,j ∈R× and a vector Aobs,j depending on x0 and y0.

3.2.4 The Solver

In order to solve the problem with quadratic objective function but nonlinear constraints,
this section is dedicated to derive a tailored optimization algorithm for the given problem
class. The nonlinearity of the constraint and the still quadratic objective classifies the
former QP as a general NLP with a certain structure that can efficiently be exploited.
While former variants of WPG could leverage LQR solvers to solve the optimization
problem as presented in [83] or convex optimization for the separated solution of the
position and orientation problem as used in [71], we have to solve a nonlinear least squares

74

COM DYNAMICS
∣∣∣ CHAPTER 3

optimization problem here. The least-squares problem can be state in general form of

min
Uk

1
2
‖`(Uk)‖22 (3.42a)

s.t. d 6 d(Uk) 6 d. (3.42b)

In general, derivative-based methods of optimization are the methods of choice for NLPs
as presented in Chapter 1.5.3. Here, the least squares structure can be exploited to
solve Equation (3.42) more efficiently using a generalized Gauß-Newton method. Starting
with an initial guess U0 the method iterates Uk+1 = Uk +∆Uk, where the increment ∆Uk
is obtained from the solution of the following quadratic approximation of the former
nonlinear problem (3.42), which reads

min
∆Uk

1
2
‖`k−1 +∇`Tk ∆Uk‖22 (3.43a)

s.t. d −dk 6 ∇dTk ∆Uk 6 d −dk , (3.43b)

with `k B `(Uk), dk B d(Uk), and ∇`Tk B d`
dU (Uk) the transposed gradient with respect to

Uk, which coincides with the respective Jacobian. Reformulating Equation (3.43) into
canonical form reads

min
∆Uk

1
2
∆U T

k Q̃k∆Uk + p̃Tk ∆Uk (3.44a)

s.t. Ũk 6 Ãk∆Uk 6 Ũk , (3.44b)

with the Hessian matrix Q̃k and the gradient vector p̃k given by

Q̃k =Qk , p̃k =
[1

2 (U x,y
k−1)TQx,y

k +px,yk
1
2 (U θ

k−1)TQθ
k +pθk

]
,

as well as the linear inequalities given by

Ãk =

Acop,k(U

θ
k−1) ∇T

U θ
k

Acop,k |U θ
k−1
U
x,y
k−1)

Af oot,k(U
θ
k−1) ∇T

U θ
k

Af oot,k |U θ
k−1
U
x,y
k−1)

0 Aθ
Hobs,jUk−1 +Aobs,j 0

 ,

Ũk =

−∞
−∞
Uθ,k
Uobs,j

−hk−1, Ũk =

Ucop,k
Uf oot,k
Uθ,k
+∞

−hk−1,

hk−1 =

Acop,k(U

θ
k−1) U x,y

k−1
Af oot,k(U

θ
k−1) U x,y

k−1
Aθ U

θ
k−1

U T
k−1Hobs,jUk−1 +Aobs,jUk−1

 ,
∀j ∈ 1, . . . ,nf .

In principle, at each time instant of the control loop the resolution of the nonlinear
problem requires the use of the above sequential quadratic programming (SQP) method

75

CHAPTER 3
∣∣∣ COM DYNAMICS

to be solved until a given as convergence criterion is reached, c.f. [138]. However, in this
work, we apply the idea of the NMPC real-time iterations due to [15, 35] as they were
presented in Chapter 1.5.4. By carefully initializing the applied SQP method and by
preserving the state from the last iteration, the computational effort can be reduced to
solving a single QP (one iteration of the respective SQP method) at each time instant of
the control loop. Furthermore, the computational process is separated into three phases,
two of which can be completed in advance without knowledge of the actual process state.
In this way, the feedback delay can be drastically reduced. Therefore, instead of solving
Equation (3.42), we recalculate its linearization once at each iteration of the control loop
and solve only the QP (3.44) once in each iteration.

For the solution itself, off-the-shelf QP solver for the respective QP derived in (3.44) can
be applied. Here, we employ qpOases for a solution in real-time as this solver implements
an online active set strategy. We refer to [53] for the respective details. The achieved
results with this implementation are then shown in Section 3.5.

3.3 Walking Pattern Generator based on Mixed-integer
Programming

In the following sections, we propose a reformulation of a mixed-integer approach pre-
sented in [78]. In contrast to this work, our formulation can be generalized in terms of
number of contacts and implements the simplified contact complementarity proposed in
our article [106] as mixed-integer complementarity constraints. Furthermore, we improve
the “reactivity” of the approach presented in [133] by developing an evasion strategy
based on the alteration of the reference velocities according to a potential field induced by
obstacles in the environment. The key feature of this novel approach is the implemen-
tation of an automatic contact surface selection for the foot steps, which combines the
planning of foot steps from [33] together with the simplified motion generation, which is
based on the LIPM used in pattern generation in general.

Revisiting the mixed-integer approach presented in [78], the key features are
1. automatic foot step placement,
2. no prescription of gait phase and order, and
3. no prescription of step timing necessary.

However, we could also identify three major flaws in the approach, i.e.
1. it is based on virtual/non-physical variables from which walking emerges,
2. it does not generalize in terms of contacts, which prevents extension to more versatile

application of the approach, and
3. it did not implement auto collision avoidance.

Therefore, a major reformulation is required to improve the existing features, while
addressing the above mentioned flaws.

Our approach strives to formulate the walking and obstacle avoidance problem as
mixed-integer quadratic program (MIQP). The difference to a canonical QP as presented
in (1.20) of Chapter 1 or (3.43) in Section 3.2.4 is that a subset of the free optimization
variables are discrete variables.

In order to do so, we first describe the respective constraints that enables a walking
motion to evolve from the formulation as well as constraints that guarantee stability and
kinematic feasibility of the resulting motion. Second, we introduce the collision avoidance
strategy of finding obstacle-free areas (OFAs) and our reference velocity deflection algo-
rithm. Third, because some of the constraints require the augmentation of the objective

76

COM DYNAMICS
∣∣∣ CHAPTER 3

function by additional terms and the introduction of additional variables, we talk about
the objective function. Key concept of the formulation is the collision avoidance that is
realized as planning the motion in the OFAs in the scene and reference velocity deflection
on the obstacles to provide guidance for evasion. Finally, we derive a MIQP that enable
our formulation to be efficiently solved by the off-the-shelf solver gurobi [65].

3.3.1 Constraint Formulation

In this section, we recap the essential constraints for the MIQP formulation we roughly
described above. While we refer to Section 3.2.3, when possible, here we describe the
key constraints that are different from other approaches, which are mostly the proper
definition of the feasible set of the integer variables as well as the complementarity
constraint that enable the evolution of a gait pattern.

Force-Contact Complementarity as Mixed-Integer Constraints

Here, we apply the LIPM as presented in Section 3.1 as dynamic model and follow the
same discretization of CoM and ZMP trajectories as presented in Section 3.2.1.

Following the definition of a MBSs in unilateral contact with its environment that
was already presented in Chapter 1, an essential aspect of the contact dynamics is the
force-contact complementarity of Section 1.3. The force-contact complementarity models
a mutual exclusivity of contact force and mode of the contact (active or inactive), given by
Equation (1.6).

Revisiting the formulation presented in [106], using the reduced model given by (3.10)
the force-torque complementarity can be reduced to a simplified version, i.e.,

‖λi(t)‖ · ‖ṗi(t)‖ = 0, ∀i ∈ I, t ∈ T , (3.45a)

where λi denotes the contact force at contact point pi and ṗi the respective velocity of the
contact point.

In order to define a mixed-integer problem and because the contact forces are not part
of the LIPM formulation, we can replace the contact forces by a binary contact indicator
αi ∈ {0,1} and Equation (3.45) becomes

αi(t)‖ṗi(t)‖ = 0, ∀i ∈ I, t ∈ T . (3.46a)

The contact indicator itself is defined by

αi(t) =

1, if ith contact is established

0, else
. (3.47)

In accordance with the discretization of the CoM dynamics, we discretize the contact
position pi(t) ∈R2 on the contact surface along the tangential axes ν ∈ {x,y} on the horizon
T ∈N by means of piecewise constant controls defined on n intervals Tj , j = 0, . . . ,n− 1,
such that

pνi (t) ≡ const., t ∈ Tj , j ∈ 0,1, . . . ,n− 1, i ∈ I, (3.48)

where we define for the ith contact point the position along axis ν the discretized trajectory

77

CHAPTER 3
∣∣∣ COM DYNAMICS

over the complete time horizon T by

P νi,k =
(
pνi,k+1,p

ν
i,k+2, . . . ,p

ν
i,k+n

)
, (3.49)

and the current position of this contact point is given by pνi,k . In this way, the contact point

velocity is not explicitly defined but given by a finite difference scheme, i.e., ṗνi,k B
pνi,k−pνi,k−1
tk−tk−1

.
Analogously, we discretize the binary contact indicator αi on the horizon T by piecewise

constant controls and define for contact point i

Ai,k =
(
αi,k+1,αi,k+2, . . . ,αi,k+n

)
, (3.50)

where the current contact configuration is then given by αi,k .
By limiting the contact set to only two foot contacts F = {L,R} for the left and right

foot center fL, fR respectively, as described in Section 3.2.2, the walking motion can then
emerge from enforcing at least one foot contact to be established by

1 6
∑
i∈F

αi,k 6 2, k = 1, . . . ,n, i ∈ F . (3.51)

A proper definition of the walking task for the above chosen discretization requires
additional constraints to be defined. First, if the contact indicator αi is active in two
consecutive time intervals, then the respective contact position is not allowed to change,
i.e.,

αi,k−1 +αi,k = 2⇒ f νi,k−1 = f νi,k , i ∈ {L,R}, ν ∈ {x,y}, k = 1, . . . ,n− 1. (3.52)

Additionally, always one foot has to be fixed to the ground, this is given by

αL,k +αR,k ≥ 1, k = 0,1, . . . ,n− 1. (3.53)

In order to prevent an immediate change of the current support foot, we define

αi,k = 0⇒ αj,k+1 = 1, i, j ∈ {L,R}, i , j. (3.54)

Zero-Moment Point Constraints

According to the stability criterion given in Definition 3.9, we define ZMP constraints
such that the ZMP stays in the respective support polygon as visualized in Figure 3.7.

For the single support phase, c.f. Figure 3.7a, we formulate the corresponding polygon
of support for foot pνj , ν ∈ {x,y} and j ∈ {L,R} by

(PzuU
ν
k)i − 1

2
f νj,k+i ≤

1
2

f− (Pzsc
ν
k)i , (3.55a)

−(PzuU
ν
k)i +

1
2
f νj,k+i ≤

1
2

f + (Pzsc
ν
k)i , (3.55b)

where f is the foot length for ν = x or the foot width for ν = y respectively. The constraints
of (3.55) are then only active, when the respective foot is also support foot, i.e., αL = 1 or
αR = 1.

While it is straightforward to define the polygon of support for the single support
phase, for the double support phase, c.f. Figure 3.7b, this would result in nonlinear

78

COM DYNAMICS
∣∣∣ CHAPTER 3

fL

fR

(a) Single support phase

fL

fR

(b) Double support phase

fL

fL

(c) Support over estimation

Figure 3.7: Different support situations for a walking humanoid robot with feet center positions as
crosses for left and right foot fL, fR ∈R2. Feet placed on the ground are indicated by
black boxes filled in gray, while feet not in contact with the ground are indicated by
dashed black lines. The support polygon for the current configuration is indicated by
lines in magenta.

constraints. Following this, we chose to use an over estimation of the support polygon as
depicted in Figure 3.7c. In order to do so, we introduce the distance between both foot
positions dνLR = ‖f νL − f νR ‖1 in L1-norm. To be able to formulate a MIQP problem later on,
we relax L1-norm by introducing additional variables dLR,x for the double support phase
(αL = αR = 1). We discretize dνLR on the horizon T by a piecewise constant function and
define their evolution on the horizon by

Dν
LR,k =

(
dνLR,k+1,d

ν
LR,k+2, . . . ,d

ν
LR,k+n,

)
. (3.56)

We then formulate the following constraints for ν ∈ {x,y}

dνLR,k+i ≥+ (f νL − f νR) (3.57a)

dνLR,k+i ≥− (f νL − f νR). (3.57b)

The relaxation is complete when we additionally augment the objective such that dlr,x and
dlr,y are minimized which is achieved by adding the term

j6 = (Dx
LR,k+1)TDx

LR + (Dy
LR,k+1)TDy

LR. (3.58)

The absolute value of the distance between both feet enables us to define the ZMP
constraints for ν ∈ {x,y} by

zνk+1 ≤
1
2

(f νL + f νR) +
1
2
dlr,ν +

1
2

f, (3.59a)

zνk+1 ≥
1
2

(f νL + f νR)− 1
2
dlr,ν − 1

2
f, (3.59b)

where zνk+i = (Pzsc
ν
k + PzuU

ν
k)i (3.59) and by (·)i we denote the ith column of the respective

vector quantity.

79

CHAPTER 3
∣∣∣ COM DYNAMICS

Maximum Swing Foot Velocity

In order to guarantee the physical consistency of the velocity of the swing foot, we in-
troduce constraints such that the foot motion is limited per time step. Analogously to
Section 3.3.1, we introduce additional variables dνL , ν ∈ {x,y} that model the traveled
distance of a foot by

dνL = ‖f νL,k − f νL,k+1‖1. (3.60)

The respective vector quantities are denoted by Dν
i for ν ∈ {x,y} and i ∈ {L,R} and mini-

mized in the objective function in the form of

j7 = (Dx
L,k+1)TDx

L + (Dy
L,k+1)TDy

L + (Dx
R,k+1)TDx

R + (Dy
R,k+1)TDy

R. (3.61)

This formulation then yields the following linear constraints

dνL,k ≥ +(f xL,k − f νL,k+1), (3.62)

dνL,k ≥ −(f xL,k − f νL,k+1). (3.63)

Now we can simply use these substituted absolute differences dl,x to limit the step length
per time interval by√

(dxL,k)
2 + dyL,k)

2 6 dxL,k + dyL,k ≤ Lstep = vmax ·∆t, (3.64)

where vmax denotes the maximum swing foot velocity, ∆t the time interval and Lstep the
resulting maximum step length per time interval. We can then define the constraints in
linear form by

dxL,k + dyL,k ≤ Lstep, (3.65)

dxR,k + dyR,k ≤ Lstep. (3.66)

Here, we use vmax = 0.5ms−1 or Lstep = 0.05m.

Foot Step Feasibility Constraints

The foot position constraints can be equivalently formulated as presented in Section 3.2.3.
In this way, we want the foot center positions pL, pR to lie within the foot position feasible
area, which can be given by Figure 3.6 for example, such that Equation 3.35 has to hold.
However, we have to take care that the respective constraint is only enforced on the current
swing foot motion. This is achieved by defining a vanishing constraint using the respective
support foot indicator αj for j ∈ {L,R} i.e.,

0 6 (1−αj) · (Af ootj (fj,k+1 − fj,k)−bf ootj). (3.67)

Here, we drop the dependence on the orientation of the feet, because we do not consider
the foot orientations in this formulation.

80

COM DYNAMICS
∣∣∣ CHAPTER 3

3.3.2 Obstacle Avoidance

In contrast to our approach presented in Section 3.2, where we define convex regions that
shall not be entered by the robot, here, we chose to plan the motion directly in the obstacle
free space of a scene cluttered by obstacles. This can efficiently be done by finding a
covering set of convex regions of the corresponding scene. The WPG formulation then
only plans footsteps in these convex regions, by formulating them together with indicator
variables as vanishing constraints in the MIQP formulation. Furthermore, the approach
enables not only the avoiding of obstacles in the path of the robot but also to include foot
holds into the planning. Additionally, we enhance the reactivity of the collision avoidance
strategy by deflecting the reference velocity on the obstacle to find a guiding path through
cluttered terrain.

First, we recall our assumptions on the scene description, i.e., how we assume that
obstacles are recognized and describe the format that is required for the actual avoidance
algorithms. Second, we present the IRIS algorithm that is heavily used by our strategy to
find obstacle free areas in a scene. Third, we introduce our algorithm of Obstacle Free Area
Generation in detail. Finally, we conclude the section with a detailed description of the
reference velocity deflection algorithm.

Scene and Obstacle Description Here, we assume the robot to be part of a cluttered
environment such that obstacles hinder the robot to find a suitable path towards a goal. In
order to identify these obstacles, we can apply stereo vision [45, 82] , from a depth sensor
[20] or LIDAR technology [108] to receive a point cloud or depth map from the current
scene.

From a given depth map, we assume that obstacles surrounding the robot in the current
scene can be identified and sufficiently approximated by means of a set of polytopes O,
i.e., all convex regions that are not accessible by the robot and are to be avoided, given by

O =
⋃
i∈O
Oi , (3.68a)

Oi =
{
x ∈R2|Aix 6 bi

}
, i ∈ O, (3.68b)

where we are only interested in the projection of the shapes onto level ground, i.e., the
x,y-plane. We refer to O as both an index set as well a an description of the actual convex
shapes.

IRIS Algorithm From a given set of polytopes describing obstacles in a scene, the
goal of our obstacle avoidance strategy is to identify large convex OFAs. In [34], Deits
presents the IRIS algorithm, an abbreviation for Iterative Regional Inflation by Semi-
Definite Programming (SDP). The algorithm is able to find iteratively polytopic obstacle
free areas in both 2D and 3D. Given a number of obstacles O and a seed point s ∈
R

2, the method IRIS.Inf lateRegion(s,O) successively performs two steps: 1) finding
separating hyperplanes by solving a convex optimization problem and 2) finding an
inscribed ellipsoid by means of semi-definite programming. The hyperplanes separate
the interior of the convex region, in which the seed point lies, from all adjacent obstacles.
In this way, two mathematical descriptions of the obstacle free area are returned in the
form of the polytope, where the respective set of hyperplanes is returned as a matrix and
a vector, as well as the inscribed ellipsoid described by the respective positive definite and
symmetric matrix and an offset vector.

81

CHAPTER 3
∣∣∣ COM DYNAMICS

c

pl

pr

vref

Bounding Box B

v
y
,m
ax

v
y
,m
in

vx,min vx,max

O2s2,0S2,0

s2,1

S2,1

s2,2

S2,1

Figure 3.8: A visualization of the OFA search algorithm. From the current CoM position c a box
B is defined from the maximal reachable space given by maximum and minimum
velocities vmin,vmax. Only the obstacles O inside the bounding box are considered. For
each obstacle Oi ∈ O, from the seed points of the obstacle, denoted by si,· and visualized
as black asterisks, the largest obstacle-free convex region is computed by applying the
IRIS algorithm. The obstacle-free convex areas Si,· are then returned for the planning.

An implementation of the IRIS algorithm can be found here 3. The convex optimization
problems are solved by CVXGEN4, c.f. [119]. The semi-definite optimization problem is
solved using the MOSEK optimization software, c.f. [170].

Searching for Obstacle-Free Areas The idea of searching for OFAs is depicted in Fig-
ure 3.8. We assume that a description of all obstacles in a scene is given by the setO. Given
the current CoM position c, we can limit the consideration of obstacles to the maximal
reachable space of the robot B, which is defined by its maximum and minimum possible
velocities vmin,vmax ∈R2. Here, vν,max,vν,max for ν ∈ {x,y} can be computed from the time
discretization together with the maximum swing foot velocity vswing,max, given by

vswing = ∆t ·n · vswing,max, (3.69)

vν,max = max
j
{vνj }+ vswing , (3.70)

vν,min = min
j
{vνj }+ vswing , (3.71)

where vj are the nodes of the valid foot position polygon. The bounding box B is then
defined relative to the CoM position c as depicted in Figure 3.8, i.e., for ν ∈ {x,y}

max
ν

(B) = cν + vν,max, (3.72)

min
ν

(B) = cν + vν,min, (3.73)

3 https://github.com/rdeits/iris-distro 4 https://cvxgen.com/docs/index.html

82

COM DYNAMICS
∣∣∣ CHAPTER 3

Algorithm 3.1: Obstacle-Free Area Search

input :c ∈R2, vmin,vmax ∈R2, O, B
output :S

1 H = 0
2 B = ComputeBoundingBox(c,vmin,vmax)
3 Õ = O∩B
4 for i = 1, . . . , |Õ| do
5 for j = 1, . . . ,EdgesOf (Oi) do
6 Si,j = IRIS.Inf lateRegion(si,j ,B,O)

7 S = S ∪
{
Si,j

}
8 end
9 end

where the minimum velocity vν,min can also be negative, except the robot is not able
to walk backwards. We then consider only the obstacles Õ = O ∩B that lie inside the
bounding box B.

In order to find all OFAs inside the bounding box, for each obstacle Oi ∈ Õ and for each
of the seed points si,j of the ith obstacle, we compute the largest obstacle-free convex
region by applying the IRIS algorithm presented above. The seed points are located at the
center of each edge of the ith obstacle as depicted in Figure 3.8. The resulting obstacle-free
convex areas Si,j are then returned for the planning in the form of Ai,j ,bi,j according to
their mathematical description (3.68b).

Introducing binary variables θol,k+i ∈ {0,1} that indicates whether the respective foot fl
is in obstacle-free are Si at timestep k + i. We denote all OFAs on the whole prediction
horizon by S and for each time interval by S i for k = 0, . . . ,n− 1. The respective variables
θol,k+i per time step i and foot l are accumulated in the vectors Tl,i for all o in S i .

Furthermore, to ensure that a support foot (i.e. respecting α = 1) is always in exactly a
single OFA, we introduce the constraint∑

o∈S i
θol,k+i + (1−αlk+i) = 1, (3.74)

together with the constraint for each time step i = 0, . . . ,n− 1, each support foot l ∈ L,R
and for all OFAs o ∈ S i at the current time step, that is given by

0 6 (1−θol,k+i) · (Aofl,k+i −bo). (3.75)

Algorithm 3.1 presents a version of the respective algorithm that enables the identification
of obstacle free areas in a scene in pseudo code.

Modifying the Reference Velocity In addition to the guaranteed collision-free motion
that arises from planning in the above presented obstacle-free space of the current scene,
we found that the WPG requires additional guidance around obstacle to avoid getting
stuck at unluckily placed obstacles. Therefore, the basic idea is to augment the tracking
of the original reference velocity vref by an additional term vU , which is tangential to a
radial potential U around the obstacle O as depicted in Figure 3.9.

83

CHAPTER 3
∣∣∣ COM DYNAMICS

c

fL

fR

vref

O1

U

vU

dc,O

ṽref

Figure 3.9: A visualization of the reference velocity deflection at obstacles. Instead of tracking
the original reference velocity vref , we augment the respective reference velocity by
an additional term vU that is tangential to a radial potential U around the obstacle O.
The new reference velocity ṽref is then a linear combination of vref and vU dependent
on the distance between CoM and the obstacle. This implements guidance around
obstacle for the robot depicted as foot steps fL, fR and its center of mass c.

In order to derive the deflection, we briefly recap our assumptions. The deflection shall
be based on the distance of the CoM to the obstacle O, given by

dist(c,O) = ‖dc,O‖22, (3.76)

dc,O ≈ o− c, (3.77)

where we are satisfied with an approximation of the actual distance to the obstacle by the
distance to its center o ∈R2, which is slightly larger but negligible.

In order to define a velocity term vU , which is tangential to the contour lines of the
radial potential field U , it must hold

vU ⊥ dc,O , (3.78)

such that we can derive from (3.78)

vU = %d⊥, (3.79)

d⊥ =

 d
y
c,O

−dxc,O

 , (3.80)

where % is a scaling factor equalizing the length of vU , such that vU = vref , i.e.,

|%| = ‖v
ref ‖2
‖dc,O‖2

. (3.81)

Here, the sign of % additionally depends on the sign of the angle between dc,O and vref ,

84

COM DYNAMICS
∣∣∣ CHAPTER 3

which is to be chosen such that](vref ,vU) < π
2 with

](vref ,vU) = arccos
(vref)T vU

‖vref ‖ ‖vU ‖ . (3.82)

This is achieved by the heuristic

sign(%) =

 1, if (vref)T d⊥ > 0,

−1, else.
(3.83)

The computational costs for this sign switching are negligible such that the efficiency does
not suffer from guessing.

In order to compute an augmented reference velocity ṽref , we chose to blend the original
reference velocity by means of a linear combination in the form of

ṽref = (1−κ)vref +κvU , (3.84)

where κ ∈ [0,1] measures the distance between the CoM c and the obstacle O in the form
of exponential decay, i.e.,

κ = exp(−‖dc,O‖
p
2

sc,O
), (3.85)

where p ∈N controls the slope of the radial potential U and sc,O > 0 denotes a user-set
safety margin that is given for d > 0 and k ∈ [0,1] by

sc,O = − d
ln(k)

, (3.86)

where for example one receives for a security margin of d = 0.1m and a decay rate of
k = 0.1 a value of sc,O = 0.043m for the abstract security margin.

Remark (Properties of the Reference Velocity Augmentation) An important property of the com-
putation above is that the norm of the augmented reference velocity ṽref does never exceed the
norm of the original term vref , i.e.,

‖ṽref ‖ = ‖(1−κ)vref +κvU ‖
≤ (1−κ)‖vref ‖+κ‖vU ‖
= (1−κ)‖vref ‖+κ‖vref ‖
= ‖vref ‖.

This has the advantage that in the worst case the robot gets slower close to the obstacle.

Remark (Fixing the Avoidance Direction) In the case that the robot walks directly towards the
center of the obstacle, the above formulation leads to an oscillating of the avoidance direction.
Following this, the robot will not avoid the obstacle at all and gets slower till he stops.

In order to prevent this, we fix the direction of avoidance from the above formulation if the
respective center of the obstacle o is in a certain area Ξ of the walking direction vref , given by

(ṽref⊥)T o ≤ (ṽref⊥)T (p+ ξṽref⊥), (3.87a)

−(ṽref⊥)T o ≤ −(ṽref⊥)T (p− ξṽref⊥), (3.87b)

85

CHAPTER 3
∣∣∣ COM DYNAMICS

where ṽref⊥ are the normalized orthogonal vectors of ṽref . o and p are the respective center of the
obstacle or the feet and ξ is a parameter to adjust the size of Ξ.

In the case that Equation (3.87) is satisfied, the robot will pass the obstacle on the right side per
default. This strategy can be easily extended by considering either the velocity of an obstacle to
efficiently evade it or the position of other obstacles in the current scene.

3.3.3 The Objective Function

The objective function for the MIQP as given by Definition 3.13 is defined as a weighted
linear combination in the form of

min
Uk

ω1j1(Uk)+ω2j2(Uk)+ω3j3(Uk)+ω4j4(Uk)+ω5j5(Uk)+ω6,7j6(Uk)+ω6,7j7(Uk), (3.88)

where ωi > 0 for i = 1,2,3,4 denote the weights of the respective terms of the objective
function. The free variables are denoted by Uk and are given in the form of

U
x,y
k =

U
x,y
k
U d
k

U Sk

 (3.89)

with

U
x,y
k =

...
Cxk
F xk...
C
y
k
F
y
k

AL,k

AR,k

, U d

k =

Dx
LR,k

D
y
LR,k
Dx

L,k
D
y
L,k

Dx
R,k

D
y
R,k

, U Sk =

TL,1
...

TL,n

TR,1
...

TR,n

, (3.90)

where U x,y
k denote the DoFs related to the CoM motion and the foot placement, where U d

k

consists of the variables used to compute l1 approximation of certain quantities, and U Sk
denote the DoFs related to the OFAs from the collision avoidance strategy presented in
Section 3.3.2.

The different objective terms are defined in the following. j1(Uk) is the cost function
term related to linear velocity tracking

j1(Uk) = ‖Ċxk+1 − v
x,ref
k+1 ‖22 + ‖Ċyk+1 − v

y,ref
k+1 ‖22,

where in this case the given reference velocity vrefk+1 is altered according to the deflection
strategy presented in Section 3.3.2
j2(Uk) is the cost function term related to minimizing the distance between the ZMP

and the projection of the ankle onto the sole

j2(Uk) = ‖F xk+1 −Z xk+1‖22 + ‖F yk+1 −Z
y
k+1‖22. (3.91)

j3(Uk) denotes the cost function term that centers the CoM to lie close between the foot
position centers

j3(Uk) = ‖1
2 (F xL,k+1 + F yL,k+1)−Cxk+1‖22. (3.92)

86

COM DYNAMICS
∣∣∣ CHAPTER 3

j4(Uk) is the cost function term related to minimizing the applied CoM jerk

j4(Uk) = ‖ ...Cxk+1‖22 + ‖ ...Cyk+1‖22.

j5(Uk) is the cost function term responsible for favor the single support phase over the
double support phase with growing reference velocity vref given by

j5(Uk) = ‖AL,k‖22 + ‖AR,k‖22,

where the weight ω5 is divided by the norm of the reference velocity vref as long as∣∣∣∣∣∣vref ∣∣∣∣∣∣ > ε and else is chosen to be zero. In this way, single support phase is dominant
when the norm of the reference velocity is positive, but when it is close to zero the
algorithm favors to stay in double support phase.

In order to formulate the ZMP constraints by means of the disctance between both foot
centers fL, fR, we added additional terms (3.58), (3.61) to the objective function that are
weighted by a single weight ω6,7. Here, we implemented the respective objective functions
j6(Uk), j7(Uk) in the form of

j6(Uk) = ‖Dx
LR,k‖22 + ‖Dy

LR,k‖22, (3.93)

j7(Uk) = ‖Dx
L,k‖22 + ‖Dy

L,k‖22 + ‖Dx
R,k‖22 + ‖Dy

R,k‖22. (3.94)

3.3.4 Mixed-integer Quadratic Programming Formulation

We strive to formulate the walking and obstacle avoidance problem as MIQP. A formal
description is given by the following Definition.

Definition (Mixed–Integer Quadratic Program) A mixed-integer quadratic program is a con-
strained finite–dimensional optimization problem of the form

min
w∈Rn

1
2w

TBw+wT b (3.95a)

s. t. 0 = Cw − c, (3.95b)

0 6 w, (3.95c)

wi ∈Z, i ∈ I , |I | 6 n, (3.95d)

where B ∈Rn×n is a positive definite, symmetric matrix with b ∈Rn, constraint matrix C ∈Rm×n

with c ∈Rm and the I indicates a subset of the free optimization variables w ∈Rn. 4

In order to do so, we introduced binary variables in the form of the DoFs AL,k, AR,k,
TL,1, . . . , TL,n, TR,1, . . . , TR,n. These variables encode decisions on the foot placement and
represent free variables for the optimizer. Depending on the state of these variables, i.e.,
being either 1 or 0, they can enable a constraint or disable it for the MIQP formulation.
These special constraints are so-called complementarity and vanishing constraints and
can be reformulated as linear constraints for the MIQP formulation of Definition 3.13 by
using the big-M method. We briefly introduce this procedure before stating the problem
formulation finally.

Big-M Formulation

The big-M method is a technique that can be used to reformulate a special form of
complementarity and vanishing constraints into linear inequalities in the mixed-integer

87

CHAPTER 3
∣∣∣ COM DYNAMICS

programming context. Here, we are interested in a special linear version

0 = α ·w, (3.96a)

α ∈ {0,1}, (3.96b)

0 6 w, (3.96c)

w = Av −b, (3.96d)

where α is a binary variable indicating a mode of the system and the linear constraint
given by matrix A ∈Rm×n with full row rank and vectors x ∈Rn, w,b ∈Rm.

In this special case, we apply the big-M method to reformulate the complementarity
constraints (3.96) into linear constraints by chosing as sufficiently large M > 0 and by
reformulating (3.96a) into two constraints, i.e.,

0 6 w+ (1−α) ·M, (3.97a)

0 6 (1−α) ·M−w. (3.97b)

In this way, for α = 0, the big-M formulation basically renders the linear constraint, given
by w, to be always fulfilled. In contrast to this, for α = 1, the big-M formulation renders
the linear constraint to be an equality constraint again.

For vanishing constraints of the form

0 6 α ·w, (3.98a)

α ∈ {0,1}, (3.98b)

w = Av −b, (3.98c)

the constraint (3.98a) can be reformulated by means of the big-M method by a single
constraint given by

0 6 w+ (1−α) ·M. (3.99)

Remark The tightness of the relaxation strongly depends on the choice of M. Even if one applies
the strongest possible choice, it can still be quite weak. The big advantage of the method is its ease
of use and the possibility to linearly relax nonlinear constraints in this case without increasing the
problem much.

In this way, we receive the following problem formulation.

min
Uk

1
2
‖`(Uk)‖22 (3.100a)

s.t. d 6 d(Uk) 6 d. (3.100b)

Problem Formulation

In Section 3.3.3, the binary variables are already introduced and distinguished from the
real-valued counterparts such that the integrality according to (3.95d) is clear and the free
optimization variables are given.

Following Definition 3.13, the objective function has to be of quadratic form. As
presented in Section 3.3.3, all objectives are already given as quadratic terms. In order
to formulate them in canonical form, the quantities like Ck+1(Uk) have to be resolved by

88

COM DYNAMICS
∣∣∣ CHAPTER 3

0.0

0.2

x
[m

]
ZMP whole-body
ZMP with inverse dynamics
ZMP with contact forces

0 2 4 6 8 10 12
t [s]

0.05

0.00

0.05

y
[m

]

Figure 3.10: Trajectories of different zero-moment point approximations. The whole-body ZMP in
solid blue according to Definition 3.8, the approximation of the ZMP using inverse
dynamics in dashed red, and the ZMP approximation using forward dynamics with
contact forces from [121].

means of the matrix quantities Pps, Ppu and the initial value ck. The objective terms are
mostly already derived in this form in [71] or in Section 3.2.3 or already in the respective
form, such that we skip the in detail derivation but refer the reader to the respective
sections or references for details.

Considering the linear (3.95b) and box constraints (3.95c), we see that most of the
constraints are already given in the correct form, i.e., (3.51), (3.52), (3.53), (3.54), (3.65),
(3.75). Whereas some of them, i.e., (3.46), (3.55), (3.59), (3.67), (3.74) , require a refor-
mulation according to the big-M method. Following this, the setup of each MIQP is
straightforward.

3.4 Realization of the Motion on the Robot

In Figure 3.2, we visualize the work flow for motion generation using WPGs based on
CoM dynamics. Here, we describe the last two building blocks required in order to realize
the motions computed by the WPGs. This involves, on the one hand, the compensation of
model-plant mismatch between the simplified model of the LIPM and the whole-body
dynamics of the full robot in the form of a DF. On the other hand, WPGs compute feet
and CoM trajectories only and therefore have to be post-processed to be realized on the
robot. This can be either realized by pure inverse kinematics or a generalized inverse
kinematics framework allowing for additional stabilizing control on the robot.

89

CHAPTER 3
∣∣∣ COM DYNAMICS

0.0

0.2

x
[m

]

ZMP unfiltered
ZMP reference
ZMP filtered

0 2 4 6 8 10 12
t [s]

0.05

0.00

0.05

y
[m

]

Figure 3.11: Results of the dynamic filter on the zero-moment point trajectories of HeiCub. The
unfiltered whole-body ZMP trajectory in dotted teal, the ZMP reference in dashed
magenta, and the resulting filtered ZMP in solid black.

8.0 8.5 9.0 9.5
time in seconds

−0.10

−0.05

0.00

0.05

0.10

di
st

an
ce

in
m

et
er

s

CoP ref y
CoPmb corr y
CoPmb y

Figure 3.12: Results of the dynamic filter applied on the zero-moment point trajectories of HRP-2
from our article [133]. In solid blue, the reference ZMP computed by the solver.
In dash-dot-dot red, the ZMP multi-body. In dashed green, the ZMP multi-body
recomputed after correction.

90

COM DYNAMICS
∣∣∣ CHAPTER 3

Algorithm 3.2: Dynamic Filter

input :c, ċ, c̈,f , ḟ , f̈ ,z
output : c̃

1 q, q̇, q̈ = InverseKinematicsWithDerivatives(c, ċ, c̈,f , ḟ , f̈)
2 z? = ComputeZeroMomentPoint(q, q̇, q̈)
3 ∆z = z? − z
4 ∆c̃ = PreviewControl(∆z,f)
5 c̃ = c+∆c̃

3.4.1 Dynamic Filter

The reduction of the dynamics to a simple model like the LIPM in the WPG makes the com-
puted ZMP trajectories to be different from ones reconstructed from the joint trajectories
finally realized on the robot, which can be either computed from a whole-body dynamic
model or the resulting ZMP trajectories acquired from sensory information. Therefore,
the implementation of the algorithm from [71] that was successfully implemented on the
HRP-2 in the Japan Robotic Laboratory (JRL), turned out to be unstable for its first test
on another HRP-2 robot located at CNRS-LAAS. An approach in order to cope with this
difficulty was first introduced by Kajita [83] and referred to as the dynamic filter.

This filter aims to compensate this error on the ZMP level by adapting the computed
CoM motion in order to minimize the error. The problem can be stated as minimization
problem in the form of

min
c

1
2
‖∆z(c)‖22, (3.101)

where the error ∆z = z? − z is the difference between the real ZMP based on a dynamic
model of the robot and the ZMP planned by the WPG. The filter as presented in [83]
reuses the WPG presented in the same article in order to do so. The WPG is based on
a LQR formulation that computes a CoM trajectory from a given ZMP trajectory. The
linearity of the LQR formulation allows to apply the same computation of the error ∆z
resulting in a correcting increment ∆c. Algorithm 3.2 shows an implementation of the
algorithm in pseudo code form. An alternative formulation is presented in [162] by Stasse,
where the DF is described as Newton’s methods applied to the equality ∆z(c) = 0.

In general, this method does not guarantee the convergence, and might suffer from
numerical instability. However, it has proven its efficiency for the specific problem of
bipedal locomotion, c.f. [136]. Indeed in practice one iteration of the DF is sufficient to
reduce considerably the error on the ZMP, as shown in Figure 3.12.

Remark (Zero-Moment Point Approximation using Inverse Dynamics) For robots, which ful-
fill the assumption that the inertial effects of legs and arms can be neglected, as for example HRP-2,
an approximation of the ZMP can be easily computed by means of unconstrained inverse dynamics,
such that line 2 reads

z̃ = RNEA(q, q̇, q̈),

and the respective increments are then computed with z̃ instead of z? . However, for robots not
fulfilling this property, as for example HeiCub, this approximation leads to a critical error, such
that the resulting trajectories cannot be applied for execution on the robot itself, c.f. Figure 3.10.

91

CHAPTER 3
∣∣∣ COM DYNAMICS

In [121], an alternative approximation of the whole-body ZMP is proposed. The author uses
the inverse dynamics to compute an approximation of the joint torques τ that are then used to
compute FD with a defined contact configuration determined from the WPG to approximate the
ZMP from the resulting contact forces. However, the resulting ZMP trajectories are still only an
approximation to the real ZMP trajectory from the whole-body dynamics of the humanoid, c.f.
Figure 3.10.

3.4.2 Generalized Inverse Kinematics

In order to realize a stable whole-body motion on the actual robot from the computed
CoM, feet trajectories and ZMP trajectories, we need to compute the required reference
inputs on joint level. For HRP-2, whose joint actuation is realized via position controlled
DC motors, we have to compute reference joint angles and velocities q, q̇. While these
trajectories can be easily computed by means of inverse kinematics [9, 164] and then
applied to the real robot as in our work [163], a better and more stable performance on
the robot can be achieved by using a generalized inverse kinematics framework that adds
some low-level stabilizing control on the robot. The generalized inverse kinematics used
in this thesis implements the work presented in [116, 150, 152]. An alternative approach
based on the same idea of hierarchical convex optimization is presented in [113].

Pure Inverse Kinematics The above mentioned pure inverse kinematics approach im-
plemented in [163] implements two numeric algorithms to solve the inverse kinematics
problem. Following the approach of Sugihara presented in [164], for a set of N given
end-effector poses, i.e., specified positions and orientations, a residual can be defined by

ei(q) =

dpi −pi(q)

RTi (q) a(dRiR
T
i (q))

, i = 1, . . . ,N , (3.102)

where, for the ith end-effector and given generalized joint positions q∈RnDoF
, we define

the desired and current positions by vectors dpi ,pi ∈ R3 and represent the desired and
current orientation by rotational matrices dRi ,Ri ∈ SO(3). The function a(·) computes the
angular velocity from a rotational matrix, where the result might have to be transformed
back into world coordinates depending on the adopted convention. From a given initial
configuration of the robot q0 the joint angles required to realize the given desired end-
effector poses can be computed by solving a NLP minimization problem of the form

min
q

1
2
‖e(q)‖22 (3.103a)

s. t. q 6 q 6 q, (3.103b)

where e = (eT0 , . . . ,e
T
N)T are the stacked residuals of all end-effector poses and q and q are

the joint limits of the robot to be respected during optimization. While the original work
[164] Sugihara applies a tailored Levenberg-Marquardt method to solve the unconstrained
version of the inverse kinematics problem of Equation (3.103), the constrained problem
requires state-of-the-art NLP solvers to be solved, e.g. the interior point optimizer IPOPT
[178] as in [163].

92

COM DYNAMICS
∣∣∣ CHAPTER 3

Generalized Inverse Kinematics The generalized inverse kinematics or more precisely
the operational-space inverse dynamics approaches try to find joint accelerations q̈, joint
torques τ as well as contact forces λ in order to fulfill a hierarchy of N task functions ei(q),
i = 1, . . . ,N , e.g. desired end-effector poses according to Equation (3.102), on acceleration
level such that ëi −d ëi = 0, where by d ë we denote a certain goal and ë is the second order
derivative given by means of the task function Jacobian Ji , i.e.,

ëi = Ji q̈+ J̇i q̇. (3.104)

For a single task the operational-space inverse dynamics problem can be formulated in
the form of a canonical QP, which reads

min
q̈,τ,λ

1
2
‖ë−d ë‖22 (3.105a)

s. t. H (q)q̈+ c(q, q̇) = ST τ + JTλ, (3.105b)

J q̈+ J̇ q̇ = 0, (3.105c)

q 6 q 6 q. (3.105d)

In [151] this concept is generalized and a hierarchy of different tasks and equality as well
as inequality constraints is then formulated by means of strict hierarchies denoted by ≺,
such that the change of a lower priority task does not effect a higher one. This is achieved
by solving series of subsequent QPs, minimizing a system of slack variables, such that each
of the QPs is operating in the Null-space of the constraints of the lower priority. Highest
priority is always given to the dynamic feasibility constraint (3.105b) and the contact
constraints (3.105c) followed by the motion tasks. In this way, it is not only possible to
track end-effector poses but also guarantees a dynamic feasible whole-body motion, such
that the generalized inverse kinematics framework can act as instantaneous stabilizing
control on the robot.

3.5 Results

In the following section, we first present the results of the NMPC-based WPG of Section 3.2
applied to the robot HRP-2 of CNRS-LAAS as presented in [133]. Second, we show how
the WPG could be adapted to the robot HeiCub of UHEI and present results obtained from
running the WPG in closed-loop control on the robot as presented in [163]. Finally, we
present results for the WPG based on the MIQP formulation of Section 3.3 in simulation.

3.5.1 Results of the Walking Pattern Generator based on NMPC on HRP-2

Figure 3.13: Experiment on the HRP2 robot using the setup B from our article [133].

In this Section, we present two experiments performed on the humanoid robot HRP-

93

CHAPTER 3
∣∣∣ COM DYNAMICS

2. The scenarios of the two experiments are chosen in order to create local situations
where a foot-step planner using a discrete set of foot-step transitions may fail. Here, we
only consider a given reference velocity that controls the overall motion of the robot. In
the first experiment, the reference velocity drives the robot towards an obstacle which
can be avoided to the collision avoidance strategy integrated in the WPG formulation
of Section 3.2. In the second experiment the same strategy is employed to guarantee a
collision free circular trajectory in cluttered terrain. Additionally, we present an evaluation
of the WPG against external perturbations and present a run-time analysis of the approach
on the computational hardware of HRP-2.

Experimental Setup

The cost function gains are ω1,ω2 = 2.5, ω3 = 103 and ω4 = 10−5, where experiments have
shown that a different weight between linear and angular velocities, i.e., ω1,ω2, was not
necessary at this stage. As specified in Section 3.2.3, ω1,ω2 are the reference tracking
weight, ω3 is a weight maintaining the ZMP close to the center of the foot, and ω4 is the
weight of the regularization term. They were chosen according to their experimental
performance.

We define the duration of a single full step to be 0.8s, including the single support
time of 0.7s and double support time of 0.1s. The sampling time is chosen according to
the double support time, i.e., h = 0.1s. The preview horizon of the NMPC formulation is
chosen such that it contains two full steps. The dynamic filter is applied to a sub-interval
of the horizon containing only a single full step. In this way, we can achieve real-time
feasibility of the composed approach on the internal hardware of HRP-2.

Motion Experiments with Obstacles

In Figure 3.14, the results in the form of the planned foot steps of the two experiments
are depicted. The situation A is depicted in Figure 3.14a, where the output of the WPG
is shown, while Figure 3.1a shows the robot HRP-2 performing the task at CNRS-LAAS.
Here, the reference velocity is set to vrefk+1 = [0.2,0,0] and the obstacle to avoid is the
red box, c.f. Figure 3.1a. The red box is represented by the inner red circle while the
security margin is represented by the outer green circle in Figure 3.14a. According to
the formulation of the collision avoidance constraints in Section 3.2.3, the robot is not
allowed to step into the interior of the green. The security margin is chosen such that the
upper body cannot collide with the obstacle.

The situation B is depicted in Figure 3.14b, where again the output of the WPG is shown,
while the snapshot series of Figure 3.13 shows the real experiment of the robot. Here, a
constant reference velocity is given by vrefk+1 = [0.2,0,0.2] including a rotation around the
vertical axis of the root body frame of the robot. Following this, the motion of the robot
can be described by a circle. However, his path is blocked by the obstacle in his front and
the robots gets stuck in front of it.

The constraints are linearized locally and the reference velocity is pointing towards the
constraint, therefore the robot is blocked in translation. Thus, the robot stops moving
forward, while the angular reference velocity results, which is not conflicting with the
constraints, causes the robot to turn on spot. As soon as the robot has passed the obstacle,
it can continue the forward motion and walk again freely.

94

COM DYNAMICS
∣∣∣ CHAPTER 3

0.0 0.5 1.0 1.5 2.0

x [m]

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

y
[m

]

Aerial View

cxk
fxk
zxk

Cx
k+1

F x
k

Zx
k+1

(a) Setup A

(b) Setup B

Figure 3.14: Center of mass (red) and zero-moment point (blue) trajectories for obstacle avoidance
and foot-step (gray boxes) orientation using our walking pattern generator based on
nonlinear model predictive control from our article [133]. Setup A: Constant forward
velocity. Setup B: Constant forward and angular velocity.

Robustness to External Perturbations

Here, the robustness of the WPG against external perturbations is evaluated in simulation.
The external disturbance is a force applied to the CoM and we introduce it as acceleration
increment to the actual initial value in the WPG formulation. The force is applied for a
sampling period, i.e., h = 0.1s. We consider two kind of perturbations, i.e., on the sagittal
plane (both directions) and on the coronal plane (both directions). The robustness is
evaluated in the walking situations, i.e., walking forward and on the spot.

The maximum lateral force on the coronal plane, that can be handled is 90N, which is
equivalent to −0.63J, and −45N or 0.675J. The asymmetry comes from different walking
situations during the push, i.e., the push may occur when the robot can perform a step
without collision, or when it cannot. In the latter case, the magnitude of the force that can
be rejected is smaller. We found roughly the same values for the two walking situations.

When walking on spot, the maximum forward and backward perturbation is ±115N,
equivalent to ±0.86J, as the problem is symmetrical. When walking forward, the maxi-
mum disturbance is smaller in the forward direction. The interval found is [−160,70]N,
equivalent to [−1.12,1.54]J.

Computational Time

The presented framework for motion generation runs online on the HRP2 CPU board
(Intel(R)Core2(TM)DuoE7500, one core used, 2.8GHz, 3MB of cache size, on Ubuntu
10.04 LTS). The time measurement has been performed on the complete control archi-
tecture as depicted in Figure 3.2. The internal sampling time of the robot HRP-2 is 5ms.

95

CHAPTER 3
∣∣∣ COM DYNAMICS

Table 3.1: Measured run-time of the motion generation framework using the walking pattern
generator based on nonlinear model predictive control from the article [133]. The time
is measured in terms of CPU time on the internal computational hardware of the robot.

Measured run-time [ms] Setup A Setup B

Average 3.95 4.00
Standard deviation 0.14 0.18

Minimum 3.34 3.09
Maximum 4.34 5.19

Based on the timing statistics, there was only a single iteration violating the 5ms real-time
constraint, such that we can claim an overall real-time feasibility on the robotic hardware.
This outlier was due to the stabilizer, which is expensive in terms of CPU time when the
robot is in a configuration close to a kinematic singularity.

3.5.2 Results of the Walking Pattern Generator based on NMPC on HeiCub

In the following Section, we present experimental results from realizing different walking
scenarios with the WPG from Section 3.2 on the humanoid robot HeiCub. The goal of
the experiments was to achieve stable walking with the maximum possible velocity for
the different scenarios. First, we run the WPG for experiments without feedback. The
reference velocity and support times were set to the values previously achieved in [76] and
then further increased and decreased, respectively, until the hardware could not perform
the walking motion in a stable manner. In this way, forward walking speed was increased
significantly and sideways, backwards and curved walking added to the capabilities of
HeiCub.

Key Performance Indicators Definition

In order to assess the walking capabilities of the robot, we use the key performance
indicators (KPIs) defined within the KoroiBot project [102]. Here, we focus on the group
of technical KPIs measured in [76] for HeiCub. The measured quantities act as references
to quantify the improvement of our WPG as well as installation of closed-loop feedback.
The respective KPIs are given in the following listing.

• Cost of Transport

ECT =

∑M
m=1

∫ tf
t0
Im(t)Vm(t)dt

mrobotg · d
, (3.106)

where M is the total number of motors, Im and Vm are the current and voltage
measurements of the motor m, mrobot is the mass of the robot and d is the traveled
distance. The Cost of Transport is unitless.

• Froude Number

Fr =
vmax√
g · h, for h = lleg , (3.107)

96

COM DYNAMICS
∣∣∣ CHAPTER 3

Figure 3.15: Snapshots taken from the video attached: Different walking sequences for straight
walking and different angular velocities from top, side and front of HeiCub, from the
article [163].

97

CHAPTER 3
∣∣∣ COM DYNAMICS

where lleg is the robot’s leg length. A given Froude number can be assigned to a
certain walking style.

• Precision of Task Execution
The root mean square error is computed by summing the squared difference between
the measurement and the desired position over all points of the whole trajectory.

Feedback Elaboration and Evaluation

With active feedback the CoM position is provided as initial state to the optimization
problem while otherwise the result of the last iteration is used. In order to compute the
CoM position, the joint positions of the robot are measured using the WholeBodyInterface
[30] of iCub. From the joint positions the CoM position in the local frame is computed from
a unified robot description format model using Rigid Body Dynamics Library (RBDL) [49,
50]. The floating base is then required to transform the local CoM into the world frame.

There exists an online floating base estimation based on odometry in [30]. This was
tested, but found to be currently too inaccurate for feedback purposes. Therefore the result
of the inverse kinematics is added to the local CoM position to find its global position.
This is published on a YARP port from which it is read by the WPG.

The stability of the walking motion is assessed by computing the actual global ZMP
position z from the six-axis Force-Torque (F/T) sensor readings. From the torques τ =
[τx, τy , τz] and forces f = [fx, fy , fz] the local ZMP position can be derived according to
Kajita [86] by

zx =
(−τRy − fRxh) + (−τLy − fLxh)

fRz + fLz
(3.108)

zy =
(τRx − fRyh) + (τLx − fLyh)

fRz + fLz
,

where R and L indicate the sensor of the right or left leg and h is the distance of the sensor
to the ground.

Experimental Setup

The gain parameters of the WPG had to be adapted to the new robot platform, once. All
motions without feedback were performed using the set of parameters

ω1,2 = 0.02 ω3 = 1.0 ω4 = 10−5 (3.109)

For motions using the CoM position feedback, the gain parameters were adjusted
according to the behavior of the robot. It was mainly found, that for high values of
the ZMP reference tracking gain ω3, the WPG would overcompensate the ZMP error, by
introducing sudden CoM movements. This leads to a diverging CoM position computation
after a few iterations of the control loop. Therefore, ω3 was reduced when observing this
behavior.

For active feedback, the gain parameters were systematically changed in the range of
ω1,2 ∈ [0.005,0.1] andω3 ∈ [0.01,1]. Values that lead to unfeasible trajectories and motions
that turned out to be unstable on the robot were discarded. Nonetheless, it was found that
a high range of possible parameters leads to a stable motion.

98

COM DYNAMICS
∣∣∣ CHAPTER 3

The best results were observed for

ω1,2 = 0.015 ω3 = 0.2 ω4 = 10−5. (3.110)

Additionally, straight walking on the soft soles of HeiCub, was achieved for the first time.
Due to the required safety margin, the ZMP is maintained close enough to the center of
the foot, such that only little deformation is occurring.

Forward Walking Experiments

Table 3.2: Key performance indicators (KPI) measured for forward walking comparing the cart-
table WPG and the NMPC WPG with and without feedback from the article [163].
Measurements were taken for the fastest achievable velocity and minimal support times.

Parameters and KPI cart-table NMPC NMPC + Feedback
vmax [m/s] 0.037 0.065 0.065
tss/tds [s] 1.5 / 1.0 0.7 / 0.7 0.6 / 0.6

step period [s] 2.5 1.4 1.2
Cost of Transport 4.27 2.83 2.99
Froude Number 0.017 0.029 0.029
Joint Error [deg] 1.45 1.22 1.21
CoM Error [cm] 0.61 0.50 0.44
ZMP Error [cm] 5.69 6.01 3.02

In Table 3.2, we show the obtained measurements for the maximum achieved forward
walking velocity and the minimal step period that could be realized. The values obtained
using the WPG based on the cart-table model is listed as reference. However, since for
the original measurement, presented in [76], a floating base estimation was included in
the error calculations, the local CoM and ZMP errors were recomputed from the original
measurement data according to the definition in Section 3.5.2.

From the results in Table 3.2, a clear improvement from the cart-table to the NMPC
WPG can be seen from the velocity of the robot which improved by 75 % from 0.037 ms−1

to 0.065 ms−1. With the feedback control the step period could be reduced by 50 %.
Overall, the cost of transport decreased by 30 %, mainly due to the fact that a larger
distance is covered in the same time. The tracking precision of the CoM is improved by
30 % and that of the ZMP by 50 %.

3.5.3 Feedback Analysis

In Table 3.2, we showed that it was possible to further decrease the support times while
using feedback control. Figure 3.16 depicts the measurement for the parameters

tss = 0.6s tds = 0.6s vmax = 0.065ms−1 (3.111)

with and without feedback.
Without feedback, the configuration is not stable, as it can be seen from the ZMP

trajectory, which is far from the reference in the upper plot in Figure 3.16. With feedback,
the robot follows the desired ZMP reference and the motion is stable. The ZMP tracking
shows a reduction of the root mean square error by 60% from 6.99 cm to 3.02 cm.

99

CHAPTER 3
∣∣∣ COM DYNAMICS

(a) Without Feedback

(b) With Feedback

Figure 3.16: Comparison of an unstable motion that could be stabilized by the use of center of
mass (CoM) position feedback from our article [163]. The measured zero-moment
point (ZMP) reference tracking improved with activated feedback. Data was lowpass
filtered for the ease of visualization.

Looking at the ZMP measurements in Figure 3.16 from the F/T sensors it can be seen
that there are spikes in the measurement due to higher impact velocities and forces in the
unstable motion without feedback. The CoM position feedback is able to compensate and
smoothen the robots behavior. The measurement shows less spikes.

Additional Walking Scenarios

Table 3.3: Key performance indicator (KPI) measurements for sideways, backwards and curved
walking from our article [163].

KPI Backward Sideways Curved Soft Soles
vmax [m/s] 0.065 0.02 0.06 0.06
vϕ [rad/s] 0 0 0.08 0

Cost of Transport 3.22 11.56 3.54 3.41
Froude Number 0.029 0.009 0.027 0.027
Joint Error [deg] 1.15 1.00 1.76 1.25
CoM Error [cm] 0.42 0.40 0.86 0.49
ZMP Error [cm] 7.90 6.63 7.34 6.58

No KPIs for HeiCub were yet available for sideways and curved walking, as well as for
walking on soft soles as these motions were not achievable with the previous WPG. The
measurements for the maximum achievable linear and in the case of curved walking, the
angular velocity, and tss = 0.7s and tds = 0.7s are shown in Table 3.3.

100

COM DYNAMICS
∣∣∣ CHAPTER 3

Sideways walking was only performed at a low velocity, since no alternating steps can
be taken, as legs cannot be crossed. The stepping area is very narrow in this direction
and no steps bigger then 4cm can be performed. Hence, the cost of transport is high,
compared to other walking motions. The same is true for human walking, and therefore
humans only walk sideways to very close goals where walking forward would result in a
significantly longer path [126]. Curved walking is shown to be a more challenging motion,
as every KPI has a less favorable value when comparing it to straight walking. This is also
the case for human walking. Walking with the soft soles attached was achieved for the
first time on an iCub. The KPIs have similar values as for forward walking without the
soles. The ZMP error is higher as the soles get deformed as soon as the ZMP is not at the
center of the foot.

Adapting Walking Directions

With the new WPG we are now able to adapt the walking direction online by modifying
the reference velocity. During the measurement the velocity was changed from forward,
to sideways and to curved walking. The transition between the different directions was
performed during the double support phase. The reference velocity was set to zero at
the beginning of double support and then changed to the new direction at the end of the
double support. Figure 3.17 and 3.18 show a demonstration of this new feature on HeiCub
in the lab and in simulation. It was found that in simulation the robot is more stable and
higher velocities can be achieved.

3.5.4 Results of the Walking Pattern Generator based on MIQP on HeiCub in
Simulation

In this section, we show the results obtained from applying the WPG based on MIQP,
as presented in Section 3.3, on a model of the humanoid robot HeiCub for two walking
scenarios in simulation. In the first experiment, we apply the WPG for a level-ground
walking task in a scene with obstacles, which have to be avoided by the robot. The second
scenario shows the ability of the WPG not only to avoid obstacle but also to plan a path in
a space defined by non-connected step stones instead of a complete plane, such that the
algorithm has to decide which step stones to use for actual steps.

Experimental Setup

For both scenarios, we use the following weights for the different terms in the objective
function

ω1,2 = 100.0, ω3 = 0.01, ω4 = 10−5, (3.112)

which control the reference velocity tracking, the distance of the ZMP to the center of
the support foot and a regularization term on the CoM jerks. Additionally, the MIQP
formulation of the WPG as presented in Section 3.3, requires additional weights in the
form of

ω5 = 1.0, ω6 = 1.0, ω7 = 20.0, ω8 = 250.0, (3.113)

where according to Section 3.3.3 ω5 controls the penalty on the double support phase,
ω6 defines switch costs between support foot changes, ω7 is the gain of centering the

101

CHAPTER 3
∣∣∣ COM DYNAMICS

(a) With Feedback in Lab

(b) With Feedback in Simulation

Figure 3.17: Sample trajectory of forward, sideways and curved walking from the article [163].
The measurement are taken with feedback for HeiCub (top) in the lab and HeiCub in
simulation (bottom).

CoM between the support feet, and ω8 is the weight for the `1-norm approximation of the
support polygon according to (3.58). Here, the terms were chosen by experience of the
experimenter according to their experimental performance.

In contrast to the WPG based on NMPC, the MIQP formulation does not require a
distinction between single and double support time. This is due to the automatic foot
placement formulation, which also handles double and single support phases respectively.
However, we still have to define a sampling time, here, h = 0.1s, as well as a horizon
length. According to the choice of the NMPC-based WPG, we use a horizon length such
that two consecutive steps are possible, i.e., n = 10.

102

COM DYNAMICS
∣∣∣ CHAPTER 3

Figure 3.18: Snapshots of HeiCub walking in different directions in the lab and in simulation from
the article [163].

0.0 0.5 1.0 1.5 2.0

x [m]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

y
[m

]

Aerial View

Figure 3.19: Resulting trajectories of the center of mass (CoM) (red) and the zero-moment point
(ZMP) (blue) as well as the foot steps (gray boxes), where there centers are highlighted
by gray × symbols, for the obstacle avoidance scenario. The obstacles are shown as
brown boxes with the security margin required for a collision free foot placement
in light brown.The path is collision free, when no foot step collides with one of the
obstacles.

Table 3.4: Measured run-time of the preparation and solution phases of the walking pattern
generator based on mixed-integer quadratic program for the obstacle avoidance scenario.

Phase Iterations Obstacles Preparation Solution
mean ± std (max) [s] mean ± std (max) [s]

1 [0, 24] 1 0.032± 0.036 (0.203) 0.447± 0.125 (0.731)
2 [25, 46] 2 0.041± 0.074 (0.374) 1.044± 0.224 (1.625)
3 [47, 67] 3 0.058± 0.148 (0.702) 0.985± 0.223 (1.416)
4 [68, 71] 2 0.108± 0.164 (0.355) 1.093± 0.199 (1.287)
5 [72, 94] 3 0.048± 0.104 (0.527) 1.063± 0.132 (1.328)
6 [95, 121] 2 0.037± 0.062 (0.345) 1.006± 0.217 (1.534)
7 [122, 122] 1 0.185± (0.185) 0.904± (0.904)

Obstacle Avoidance for Level-ground Walking

The first scenario is a level-ground walking task, i.e., following a reference velocity along
the x-axis of vx,ref = 0.3ms−1. We placed four obstacles into the direct path of the robot,

103

CHAPTER 3
∣∣∣ COM DYNAMICS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x [m]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

y
[m

]

Aerial View

(a) Local prediction of the WPG on iteration 24 of the obstacle avoidance scenario.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x [m]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

y
[m

]

Aerial View

(b) Local prediction of the WPG on iteration 25 of the obstacle avoidance scenario.

Figure 3.20: Visualization of the treatment of obstacle-free areas (OFAs) for collision avoidance
for the walking pattern generator (WPG) based on mixed-integer quadratic program
(MIQP). Showing the prediction of center of mass (CoM) (red, dashed), zero-moment
point (ZMP) (blue, dashed) and foot placement (gray boxes) as well as actual con-
sidered OFAs (green areas) during two consecutive steps of the algorithm. A path is
collision free when all planned foot steps are within the OFAs.

such that a straight path following the reference velocity is not possible without collision,
as depicted by the brown boxes in Figure 3.19. The shape of the obstacles are poles with
a quadratic ground projection with a width and height of 4cm respectively. The actual
positions of the poles are given by

O1 =
[
0.45
0.15

]
, O2 =

[
0.9
−0.25

]
, O3 =

[
1.3

0.25

]
, O4 =

[
1.7
−0.2

]
.

The light brown boxes around the obstacle include an offset depending on the foot shape.
In this way, the path of the robot is collision free, when there is no foot center in one of
the light brown boxes or the gray boxes do not overlap with the obstacles.

The robot starts in double support phase, i.e., αL = αR = 1, with the initial CoM position
of c = 0, and zero initial velocity and acceleration ċ = c̈ = 0, and the left foot placed 7.5cm
above and the right foot below the CoM. We run the simulation for 12.0s, then zero the
reference velocity and stop the simulation as soon as a stable double support phase is
reached.

Figure 3.19 shows the results obtained from simulation. The CoM trajectories are shown
in red and the ZMP trajectories in blue. The CoM shows a slight sway motion such that it

104

COM DYNAMICS
∣∣∣ CHAPTER 3

approaches the current support foot before lift-off. Due to proper discretization the result
is still sufficiently smooth. The ZMP being only linear interpolated jumps between the
interior of the support polygons according to their definition.

The actual foot placement is indicated by gray boxes, where the foot center is described
by a gray ×. In Figure 3.19, one can see no overlap between obstacle boxes (brown) and
foot steps, such that the overall path of the robot is collision free. Additionally, one can see
the evasion motion undertaken due to the reference velocity deflection at the respective
obstacles.

In Figure 3.20 , we show two consecutive iterations of the algorithm in order to show
the collision avoidance based on OFAs as described in Section 3.3.2. In Figure 3.20a, we
show iteration 24. Here, the bounding box of the OFAs search considers only O1, which is
indicated by the four green boxes surrounding the obstacle in the upper left of the scene.
The planned motion is shown by dashed lines, where the CoM is shown in red and the
ZMP in blue. The foot placement is shown as gray boxes. The algorithm then considers
the foot placement in the OFAs only to generate a collision-free path.

In Figure 3.20b, we show iteration 25. The main difference is that now both O1 as well
as O2 are considered in order to find OFAs. O2 is the lower left box in the scene. The
overlap of green boxes between O1 and O2 shows that there exists a feasible collision-free
path around the obstacles.

In Table 3.4, we give an overview of the timing statistics of the preparation phase and
the solution phase of the WPG. We grouped the results according to the different phases
occurred during run-time, where each phase considers a different number of objects in
the scene.

For the preparation phase, the mean run-time is much lower compared to the actual
solution time by a factor of ≈ 10. However, at the maximum, the preparation time can be
in the same order of magnitude as the solution phase.

The run-time seems to depend on the number of considered obstacles, however, a clear
rule cannot be established. At first, the run-time is more than doubled for the phase 2
with two considered obstacles compared to phase 1. Additional obstacles do not seem to
increase the run-time much. Considering the dependence on the considered obstacles,
phase 7 is not representative as there is only a single iteration considered.

In contrast to the preparation and the solution phase, the computational time of the
post-processing step is negligible with 0.922 ms at maximum and therefore not shown in
the table explicitly.

The figures show that the algorithm properly works for this scenario, such that it
generates a feasible and collision-free path through the scene for the robot. The OFAs are
well identified such that a collision-free path can be found. The velocity deflection on the
obstacles allows the robot to properly evade them during the motion, where fine-tuning
the deflection strategy will avoid an over-emphasized evasive motion around the first
obstacle in the future.

The CoM trajectories are smooth and show the required sway along the x-axis of the
motion. However, the amplitude of the sway is quite small, which can be a result of the
high stepping frequency as well as the small step size. The ZMP lies in the interior of the
support polygon in both single as well as double support phase.

An issue that is very prominent in the motion, are the tiny steps proposed for the robot.
Even though the kinematic capabilities of HeiCub are limited, larger steps are possible.
While special care has taken to penalize the cost of changing the support foot and increases
the minimum step size, the non-physical model and the configuration limits prevent a

105

CHAPTER 3
∣∣∣ COM DYNAMICS

lower step frequency as well as a higher step-size.
All in all, the run-time statistics shown in Table 3.4 indicate that the presented MIQP for-

mulation, while offering a solution to the path-planning and motion generation problem,
is not real-time feasible at the moment.

3.6 Summary

In this Chapter, we have presented how the walking capabilities of two state-of-the-
art humanoid robots could expanded by a dedicated walking control algorithm in the
form of a walking pattern generator (WPG) based either on nonlinear model predictive
control (NMPC) or mixed-integer programming within a whole-body motion generation
framework as shown in Figure 3.2.

In this Chapter, we presented a real-time embedded nonlinear walking WPG. Non-
linear inequalities enabled us to choose the foot step automatically while considering
orientation and local avoidance of convex obstacles. Its performance was demonstrated in
two different experiments using the humanoid robot HRP2. The computational cost of the
walking WPG is 2ms on the robot such that the overall framework qualifies as real-time
feasible on the robot. The proposed approach significantly enhanced the walking capa-
bilities as shown by our partners from Laboratory for Analysis and Architecture of Systems
(CNRS-LAAS) by investigating human-inspired power law trajectories, by letting HRP-2
pull a fire hose or inside an adaptive motion synthesis framework [90, 130, 149].

Additionally, the online walking control framework was implemented on the robot
HeiCub, where we additionally implemented feedback on the center of mass (CoM) po-
sition. The performance of the humanoid robot HeiCub has been analyzed and clear
improvements due to the NMPC-based WPG and the CoM feedback were shown.

Finally, we showed an alternative formulation of the WPG based on a mixed-integer
quadratic program (MIQP) formulation. Rather than avoiding obstacles, in this formula-
tion we try to assess the free space in the direction of walking to find directly a walking
pattern within this obstacle free area. We proposed an efficient algorithm to assess this
free space and proposed a problem formulation in the form of a MIQP that lets a feasible
walking motion of the robot emerge from the solution.

106

4 Motion Generation based on Centroidal
Dynamics

W
x

y

z

C

x

y

z

Figure 4.1: HRP-2 climbing stairs with the support of a handrail from our article [106]. The overlay
shows the employed reduced model. This includes the center of mass (CoM, black) at
the waist, a CoM frame C (magenta), the current inertia ellipsoid, the current contact
points (cyan dots) and contact forces (cyan arrows) as well as the world coordinate sys-
temW (blue). From optimizing the motion of the template model based on centroidal
dynamics a whole-body motion for HRP-2 is realized.

In this work, we propose an approach for motion generation of humanoids using
centroidal dynamics. The centroidal dynamics extend the approaches based on CoM
movement only as presented in Chapter 3 by not only considering the linear movement of
the CoM but also considering the total angular momentum of the humanoid. Following
this, reduced models based on centroidal dynamics allow to overcome the limitations
resulting from simplified CoM dynamics such as the inverted pendulum models. Further-
more, centroidal dynamics enable the generation of whole-body multi-contact motions for
humanoid robots as presented in the remainder of this chapter. We apply the approach to
enable multi-contact motion generation for the humanoid robot HRP-2 of the Laboratory
for Analysis and Architecture of Systems (CNRS-LAAS). In contrast to the state of the art
our approach for stair climbing is more robust and more efficient.

The contents of the following sections are based on our article [106].
The goal of motion generation for humanoids is to realize human-like tasks on the robot

while considering the real-time constraints dictated by the robotic platform. Considering
multiple contacts of the robot with its environment during motion generation generalizes
bipedal locomotion and thus expands the functional range of humanoid robots. This
enables a robot to climb ladders, perform crawling, evolve in cluttered environment and

107

CHAPTER 4
∣∣∣ CENTROIDAL DYNAMICS

less impressively, but yet very useful, to climb stairs.
Here, we propose a complete solution to compute a fully-dynamic multi-contact mo-

tion of a humanoid robot. The actual motion generation is done via computation of
dynamically-consistent CoM trajectories of the robot by employing a simplified dynamic
model of the humanoid. From the whole-body centroidal dynamics of a humanoid we
propose a model reduction in terms of an inertia ellipsoid model. This simplification is
derived by decomposing the change of angular momentum into two parts, one depending
on the non-actuated and the other depending on the actuated joint degrees of freedom
(DoFs). Similar to the centroidal dynamics approach, we strive to find optimal contact
forces as well as a kinematic feasible CoM trajectory from a predefined series of contacts
in order to realize a given task. From this, realizing the whole-body motion is achieved
by employing the instantaneous control framework of the robot to track the CoM and
end-effector trajectories while keeping balance. We demonstrate the capabilities of the
approach by making the humanoid robot platform HRP-2 climb stairs with the use of a
handrail.

The following contributions are made in this chapter:
• We propose a framework for the generation of whole-body motions of humanoids

for predefined multi-contact supports based on a template model.
• We propose a mathematical formulation of reduced multi-contact centroidal dy-

namics of a humanoid by means of an ellipsoid model by separating the effects of
actuated and non-actuated DoFs on the change of total momentum at CoM level.

• The reduced model incorporates only the DoFs of the floating-base as states, hence
reducing the overall computational complexity of the approach and qualifying for
being real-time feasible.

• The derived reduced model includes the major effects on the underactuated part and
generalizes in the number of contacts such that the range of tasks is extended, e.g.
level ground walking, walking non-flat floor, multi-contact like using the handrail
during stair climbing.

• The approach is used to generate a whole-body motion for the humanoid robot
platform HRP-2 realizing the climbing of stairs with additional support of a handrail.

• For the first time, HRP-2 realizes stair climbing with a height of 15 cm repeatedly
without failure due to motor shutdown.

• The experimental study shows that handrail support reduces the overall motor
power consumption by 25%.

In Figure 4.2 the general idea of whole-body motion generation based on centroidal dy-
namics is visualized. First, a set of contact points has to be defined. For this task a possible
way is to apply a contact planner as presented in [17, 24, 44] or the contact sequence can be
hard-coded for a specific task. Second, the trajectories for the CoM are computed by means
of solving an OCP by employing a reduced version of the full centroidal dynamics of the
humanoid considering friction cone constraints as well as kinematic limits. Third, from
the CoM trajectories and the specified end-effector trajectories, which are interpolated
using B-splines to retrieve smooth trajectories from the discrete contact sequence, the
actuated joint trajectories are computed by employing a generalized inverse kinematics
approach. Finally, the processed set of joint trajectories q is provided to the low-level joint
controls of the robot or into simulation.

The resulting trajectories can be directly provided as reference values to the position-
controlled joints of the humanoid, e.g. the robot HRP-2. The computed trajectories are
dynamically consistent and the contacts are realized according to the predefined schedule.

108

CENTROIDAL DYNAMICS
∣∣∣ CHAPTER 4

Contact
Planner

Optimal
Control
Problem

(Generalized)
Inverse

Kinematics

Robot
Simulation /

Hardware

p p(t),λ(t)

c(t),σ (t)

q(t), q̇(t)

Feedback Control

Robot
Specific
Details

Sensory
Information

User
Input

Kinematic/
Dynamic

Robot Model

Figure 4.2: Visualization of the general framework based on reduced centroidal dynamics derived
in this thesis. From robot specific details, sensory information and external user input a
contact sequence p is defined either manually or automatically using a contact planner.
The contact sequence enters an optimal control problem formulation that computes an
optimal center of mass trajectory, end-effector trajectories p(t), contact forces λ(t) and
the necessary change of angular momentum due to limb motions σ , where discrete
quantities are interpolated to achieve smooth trajectories. In order to realize a motion
on the actual robot or in simulation the required joint trajectories are computed from
the CoM and end-effector trajectories by means of generalized inverse kinematics.
Feedback can be established on the current configuration of the robot.

The change of angular momentum term depending on the limb motion σ introducing
a stabilizing effect on the motion, can be realized by methods of resolved momentum
control using the free limbs during the execution of the motion.

In the following sections, we will go through the relevant building blocks of the scheme
depicted in Figure 4.2 and explain their details. First, the reduced version of the centroidal
dynamics is derived as well as a simplified force-contact complementarity is introduced
in Section 4.1. Second, in Section 4.2 the OCP formulation is derived including the task-
specific optimization criteria as well as the required constraints guaranteeing dynamic
and kinematic consistency of the resulting CoM trajectories. Afterwards, the particular
numerical scheme used to solve this problem is briefly discussed. In Section 4.3, we
explain how to process the CoM and end-effector trajectories to create a feasible motion
for the humanoid. Finally, we will show the results obtained from experiments on the
robot HRP-2 performing a stair climbing motion with handrail support in section 4.4.

4.1 Derivation of the Reduced Dynamic Model

In this Section, a reduced model of the whole-body dynamics of a humanoid is derived
based on the idea of centroidal dynamics as introduced by Orin in [140] or used by other
authors for motion generation [31, 137].

In contrast to the linear inverted pendulum model (LIPM) or other pendulum-like
models, the idea of centroidal dynamics is to additionally include the total angular
momentum at the CoM into the motion generation and therefore allowing to broaden the
range of possible tasks. The application of centroidal dynamics for motion generation
requires the following assumptions to be made.

109

CHAPTER 4
∣∣∣ CENTROIDAL DYNAMICS

Figure 4.3: Visualization of centroidal dynamics derived from human motion during gait. The
motion of the center of mass (CoM) is very characteristic for a humanoid and has
attracted much attention in motion analysis. Beyond static postures, in order to judge
the balance of the humanoid during motion researcher are interested in the forces
(arrows) and moments (triple arrows in circle shape) introduced due to contacts because
they determine the total linear and angular momentum at the CoM, i.e., the centroidal
dynamics. Here, the actual torques applied at joint level are not explicitly considered.

Assumption (Centroidal Dynamics Assumptions) In order to approximate the whole-body dy-
namics of a multi-body system by means of its centroidal dynamics, we assume that the allowed
joint actuation is sufficiently high, i.e., the respective joint limits τ 6 τ 6 τ are never violated, such
that the required contact forces can be realized. 4

Revisiting the derivation of the reduced model for the LIPM of Chapter 3, the projection
of the whole-body dynamics of the underlying MBS in contact with its environment as
given by Equation (3.1) or (1.4) on its CoM due to [181] yields the Newton-Euler equations
for the CoM motion given by

mtot (c̈+ g) =
∑
i∈I
Qiλi , (4.1a)

mtot c× (c̈+ g) + l̇(q, q̇, q̈) =
∑
i∈I
pi ×Qiλi , (4.1b)

where mtot denotes the total mass of the humanoid, g ∈R3 is the gravitational force acting
on the system, c ∈R3 denotes the coordinate vector of the CoM, l ∈R3 denotes the angular
momentum of the system, pi ∈ R3 denote the respective lever arms with respect to the
contact points and contact forces λi ∈R3 given by the contact set I ⊂N, and Qi ∈ SO(3)
denote the rotational matrix mapping the contact forces defined in the contact frame into
the world frame. In this way, the dynamics of the projected dynamics generalizes with
the number of considered contact points |I|. The contact force applied at pi is given in a
local coordinate system, with the z-axis normal to the contact surface at the contact point
pi with respect to the CoM. The component λzi is the normal force applied at the contact
point and (λxi ,λ

y
i) denote the tangential components of the force. In order to motivate the

idea of motion generation based on centroidal dynamics, we first introduce the underlying
stability criterion and the required definitions for it, before the actual reduced model is
derived.

Definition (Static Friction Cone,Kµ) For contact point p ∈R3 on a contact surface given by its

110

CENTROIDAL DYNAMICS
∣∣∣ CHAPTER 4

normal vector n ∈R3 and a static friction parameter µ > 0, the respective friction cone for a local
contact force λ ∈R3, where x, y denote the tangential component and z the normal component of
the contact force, is given by

Kµ = {λ ∈R3|(λx)2 + (λy)2 6 (µλz)2,λz > 0}. 4

Definition (Sufficient Criterion for Dynamic Stability (based on Centroidal Dynamics))
Given a multi-body system that is in contact with its environment by means of a set of contact
points I ⊂R

3. If the total change of momentum ḣtot according to Definition 3.7 is compensated by
the current contact forces λi , i ∈ I, i.e.,

ḣ0
tot(q, q̇, q̈)−

∑
i∈I

0X?i λi = 0, (4.2)

where the momentum h =
[
l
k

]
consists of a linear part k ∈ R3 and angular part l ∈ R3 and 0X?i

denotes the adjoint spatial transform that maps a force vector of the ith contact frame to the world
frame indicated by index 0, and the contact forces lie within the interior of their respective friction
cones Kµii , i ∈ I according to Definition 4.2, i.e.,

λi ∈ K̊µii , i ∈ I, (4.3)

and Assumption 4.1 holds, then the motion is dynamically stable. 4

Revisiting Equation (3.2) from Chapter 3, we decompose the DoFs q into linear and
angular motion of the free-flyer x, θ0 and the actual joints of the robot denoted by q̂ given
by

q =

x0

θ0

q̂

 . (4.4)

Following this, we propose to separate the change of angular momentum l̇ into two terms

l̇(q, q̇, q̈) =Hc(q̂) ω̇ −σ (q̂, ˙̂q, ¨̂q), (4.5)

where the first term describes the change of angular momentum due to angular accel-
eration of the whole robot body at the CoM ω̇ = θ̈ described by the inertia matrix Hc of
the whole humanoid considered as a single rigid body computed for the current robot
configuration q̂, and the second term describes the change of angular momentum due to
movements of the robot limbs such that σ is a function of the whole-body configuration,
velocity and acceleration [140] that does not depend on θ or x0. In this way, we can
reformulate Equation 4.1 into

M(c)
[
c̈
ω̇

]
=

∑
i∈I
Xiλi + Sσ − v(c), (4.6)

111

CHAPTER 4
∣∣∣ CENTROIDAL DYNAMICS

with

M(c) =
[
mtot13 03×3

mtotc× Hc

]
, (4.7)

Xi =
[
Qi

pi ×Qi

]
, (4.8)

S =
[
03

13

]
, (4.9)

v(c) =
[

mtot g
mtot c× g

]
, (4.10)

where c× ∈R3×3 is the skew symmetric matrix associated with vector c or pi respectively.
The dynamic equilibrium constraints (4.6) are rewritten according to [18] as nonlinear

first-order differential equation in the form of

d
dt

c
ω̇
ċ
ω

 =

ċ
ω̇

(M(c))−1 (
∑
i∈IXiλi + Sσ − v(c))

 , (4.11)

representing the ordinary differential equation (ODE) of the OCP as presented in Chapter 1
in Equation (1.9).

4.1.1 Simplified Force-Contact Complementarity

Revisiting the force-contact complementarity (1.6) of a MBS in contact with its environ-
ment described by kinematic constraints represents the fact that for unilateral constraints
contact forces λ can only be applied when a contact is established. Transferring this to the
simplified model, the complementarity can be reduced by implementing the contact part
in terms of the motion of the contact described by ‖ṗi‖2 > 0. We refer to this simplified
contact complementarity to indicate if the end-effector is in contact or not given by

‖ṗi‖2 · ‖λi‖2 = 0. (4.12)

4.2 Problem Formulation

We strive to formulate an OCP in a reduced form compared to Equation (1.9) of Chapter 1.
We search for the best CoM trajectory respecting the dynamics derived in Section 4.1 and
subject to constraints in terms of a combination of different optimization criteria. In the
remainder of the section, we describe the cost function terms and the constraints and then
state the motion generation of the CoM trajectories as an OCP.

4.2.1 Objective Function

Before giving the complete formulation of the OCP, we first define the cost terms used to
formulate the objective function of the OCP. Therefore, we have to introduce the set of

112

CENTROIDAL DYNAMICS
∣∣∣ CHAPTER 4

Table 4.1: Objective weights for the optimal control problem based on centroidal dynamics.

i 0 1 2 3 4 5 6

ωi 0.05 0.0005 1.0 1.0 1.0 0.1 1.0

contact points I used for the stair climbing task, i.e.,

I = {LH,RH,LF,RF} , (4.13)

where I specifies the respective robot end-effectors, i.e., LH,RH denote the left and right
hand and LF,RF denote the left and right foot. The objective function is then given by a
weighted sum of different terms,

l =
6∑
i=0

ωi li , (4.14)

with weights 0 < ωi 6 1 given in Table 4.1 and each term li described in detail in the
remainder of this section.

The first term l0 keeps the projection of the CoM onto the ground close to the respective
support foot contacts

l0 = ‖λLF‖22 ‖cx,y −px,yLF ‖22 + ‖λRF‖22 ‖cx,y −px,yRF‖22. (4.15)

The second term l1 uses the complementarity (4.12) to track a reference height c̄z

depending on the current foot contact height,

l1 = ‖(λzLF +λzRF)(cz − c̄z)−λzLF p
z
LF −λzRF p

z
RF‖22. (4.16)

The four next terms l2, l3, l4 are used to penalize a swaying motion of c in z direction.

l2 = ‖ċz‖22 (4.17)

and stabilize the rotational DoFs by penalizing larges values through

l3 = ‖ωx‖22, l4 = ‖ωy‖22, l5 = ‖ωz‖22. (4.18)

The last term l6 acts as another regularization term, i.e.,

l6 = ‖c̈‖22 + ‖ω̇‖22. (4.19)

4.2.2 Friction Cone Constraints

According to the stability criteria given by Definition 4.3 the friction cones play an
important role for the stability of the resulting motion. Following this, the applied local
contact forces λ have to satisfy friction cone constraints, which are given for each contact
point by

‖(λxi ,λ
y
i)‖2 =

√
(λxi)

2 + (λyi)2 6 (µi − εi)λzi , i ∈ I, (4.20)

113

CHAPTER 4
∣∣∣ CENTROIDAL DYNAMICS

where µi > 0 denotes the static friction coefficient at the contact point pi and εi > 0 denotes
a security margin. In this way, the resulting contact forces are guaranteed to stay strictly
inside the respective friction cone Kµii according to Definition 4.2 that reads

λi ∈ K̊µii , i ∈ I, (4.21)

such that the contacts will not break during realization.

4.2.3 Kinematic Constraints

In order to render the resulting CoM motion to be kinematically feasible for a later
execution on the robot, kinematic constraints have to be added to the OCP formulation.
This is realized by defining simple bound constraints on the limb lengths relative to the
CoM position c in global coordinates, defined by

p
i
6 ‖c−pi‖2 6 pi , i ∈ I. (4.22)

We define the leg lengths for pLF,pRF using p
LF/RF

= 0.64m and pLF/RF = 0.8m for the stair
climbing motion, such that the robot does not bend the legs to far and also does not fully
stretch its legs in order to stay away from kinematic singularities.

4.2.4 Path Constraints

In Section 4.1.1, we introduced the simplified force-contact complementarity. However,
the complementarity is not directly resolved but manually formulated by means of appro-
priate bounds on the contact forces. The applied contact model treats both the contacts at
the feet as well as at the hands as unilateral. This is achieved by defining bounds for the
contact forces in the form of

λLF/RF 6 λLF/RF 6 λLF/RF,

λRH 6 λRH 6 λRH,
(4.23)

where the exact values of the bounds are chosen according to the experience of the
experimenters from CNRS-LAAS, i.e.,

λLF/RF =

−600
−600

0

 , λLF/RF =

600
600
600

 , (4.24)

λRH =

−150
−150

0

 , λRH =

150
150
150

 , (4.25)

σ =

−600
−600
−600

 , σ =

600
600
600

 , (4.26)

where the bounds on the forces are given in N, the bounds on the term σ are given in
Nms−1.

114

CENTROIDAL DYNAMICS
∣∣∣ CHAPTER 4

4.2.5 Optimal Control Problem Formulation

The previously defined constraints and the dynamics of the reduced model allows us
to formulate the whole-body motion generation problem for the humanoid given a pre-
defined contact set as an OCP. The variables of interest are the states and the controls
defined on the time horizon. The states x : R→ R

nx
are composed of the CoM position

and velocity as well as the orientation and the angular velocity and acceleration of root
frame of the robot, i.e.,

x =

c
ċ
θ
ω

 . (4.27)

The controls u : R→R
nu

are composed of the contact forces of the active contacts at time
t and the internal change of angular momentum, i.e.,

u =

λ1

λ2
...
λ|I|
σ

. (4.28)

In contrast to the multi-stage OCP presented in Chapter 1, we present here a reduced
version of this OCP. We minimize an objective function of Lagrange type on a finite time
horizon t ∈ T = [0,T] given by

min
x(·),u(·)

∫ T
0 l(x(t),u(t))dt (4.29a)

s.t. ẋ(t) = f (x(t),u(t)), t ∈ T , (4.29b)

x(0) = x0, (4.29c)

0 6 g(x(t),u(t)), t ∈ T , (4.29d)

where the objective function l(x,u) is defined as presented in Section 4.2.1, f : Rn
x ×Rnu →

R
nx

is representing the dynamics of the system defined in (4.11), x0 is the initial (mea-
sured) state of the system, and g(x,u) : Rn

x ×Rnu →R
nc

are the mixed state-control path
constraints defined by concatenating the friction cone constraints (4.20), the kinematic
constraints (4.22) as well as the complementarity constraints (4.12), where the latter is
defined via the contact sequence. In order to solve the OCP (4.29), we follow a direct
multiple shooting approach. For the details, we refer the reader to Chapter 1.

4.3 Realization of the Motion on the Robot

In Figure 4.2, we visualize the work flow for motion generation using centroidal dynamics.
So far, we have only discussed the OCP formulation in the scheme. We explain in the
remainder of this section the last two building blocks, the contact planner and generalized
inverse kinematics.

115

CHAPTER 4
∣∣∣ CENTROIDAL DYNAMICS

4.3.1 Contact Planner

For the formulation of the OCP the contact sequence has to be specified. This includes
the definition of the contact state, active or not, for each contact on every time interval
on the horizon. Additionally, it is required to specify which body is in contact including
the position of the contact p, the local friction coefficient µ, and the contact normal vector
n, which we describe via the respective transformation Q. The contact sequence is then
the set of all such contact specifications. Typically, the contact sequence is realized by
employing a dedicated contact planner as presented in [6, 172]. Here, the contact sequence
is predefined, but an extension to additionally optimizing the position of the contacts on
a set of planar contact surfaces is possible.

4.3.2 Generalized Inverse Kinematics

The final whole-body motion is generated by applying the stack of tasks scheme imple-
menting generalized inverse kinematics (GIK) as presented in [117]. Following this, the
end-effector trajectories, i.e., the hand and the feet, as well as the CoM trajectories are
retrieved from the results of the OCP by means of piecewise and continuous B-splines.
Given the interpolated CoM, the root orientation and end-effector trajectories the SoT
framework computes joint trajectories q, q̇ for all the DoFs of the system. This is done by
specifying distinct tasks for the SoT framework as already presented in Section 3.4.2.

The tasks are defined as a simple PD controller tracking a corresponding reference
trajectory. Here, we define a task TCoM tracking the CoM trajectory along the x, y, z axes,
a task TRH,LH,RF,LF for each end-effector position and orientation specification, a task TW
controlling the orientation of the waist, and a task Tq0

regulating the posture of the robot
around a nominal posture.

A hierarchy between the different tasks defined by means of the lexicographic order

TCoM ≺ TRH,LH,RF,LF ≺ TW ≺ Tq0
.

The dynamical consistency of the solution with respect to the robot model and the contact
forces is implicitly given by the properties of the CoM trajectory computed by the OCP.

The corresponding contact forces and joint torques are then reconstructed in simulation
employing a whole-body model of the humanoid under consideration. For each time
step, the contact forces λ are computed as the minimal forces corresponding to the joint
trajectory q, q̇, q̈ and respecting the contact model by

min
λ1,...,λ|I|

‖RNEA(q, q̇, q̈)−
∑
i∈I
JTi λi‖2,

where Ji denotes the kinematic Jacobian mapping the contact force into the dynamics
of the robot, such that λi ∈ Kµii , i ∈ I, where RNEA denotes the recursive Newton-Euler
algorithm [114], which is presented in detail in Section 2.3.1. The motion can be checked
to be dynamically consistent if the residual is zero for all time instants of the movement.
For robots with a different weight distribution than HRP-2, the application of RNEA yields
only an approximation of the change of total momentum, c.f. Remark 3.15 in Section 3.4.1.

116

CENTROIDAL DYNAMICS
∣∣∣ CHAPTER 4

Figure 4.4: Set of contact stances realized by the humanoid robot HRP-2 using the proposed
method. The experiment has been realized five times in a row without any failure. The
companion video of our article [106], shows the realization of the experiment.

4.4 Results

The approach described above enabled multi-contact stair climbing of the humanoid robot
HRP-2. We realized a stair climbing task on stairs of a height of 15cm with additional
support of a handrail. So far, the focus of research only considered small step sizes, e.g.
[74], or single overstepping motions, e.g. [111] shows a single step of 15cm height and
[100] an overstepping motion of a large obstacle. However, this is not comparable to stair
climbing with repetitive steps in terms of stress on the hardware.

Trying to achieve the same stair climbing task of 15cm height with state-of-the-art
methods from [129], prior to this work, was problematic and could only be executed with
fully charged batteries to compensate current peaks in the joint actuation. This leads to
random shutdown of the robot during execution and prohibited multiple executions in a
row.

The proposed method of this chapter easily succeeded in the stair climbing task fives
times in a row without additional help of fully charged batteries as the current peaks could
be compensated by additional handrail support and additionally making the resulting
much more efficient in terms of overall power consumption.

4.4.1 Experimental Setup

We consider the experimental setup depicted in Figure 4.1 as proof of concept. The task is
to make the humanoid robot HRP-2 climb a set of stair treads with a handrail as additional
support. The height, the depth, and the width of the steps are respectively 15cm, 30cm,
and 1m. The handrail is a cylinder with a diameter of 3cm.

Starting and ending in a half-sitting configuration of the robot, the motion is divided
into three phases that are executed twice:

P1 the right hand establishes contact with the handrail
P2 the right foot is set on top of the stair in front
P3 the left foot is lifted and placed next to the right one on the stair .

The robot is in double support phase during the movement of an end-effector, i.e., his
hand or foot, and shortly in triple support phase during the CoM transition phase. We
denote by CoM transition phase, the phase between phase P2 and P3 in which the CoM is
transitioned from on stable configuration to the next. See Figure 4.4 for a snapshot series
of the humanoid robot HRP-2 performing the task.

The timing of the phase durations is crucial for the robot because they implicitly define
the velocity of each limb. In comparison to ground-level walking, where the period of
single support and double support are usually around 0.7s and 0.1s respectively, we
adapted the timing schedule in this example, because the robot has to go through a larger

117

CHAPTER 4
∣∣∣ CENTROIDAL DYNAMICS

-200

0

200

400

600

800

6 8 10 12 14 16 18

fo
rc
e
λ
[N

]

time t [s]

Measured Forces along x-axis

RF
LF
RH

-200

0

200

400

600

800

6 8 10 12 14 16 18

fo
rc
e
λ
[N

]

time t [s]

Measured Forces along y-axis

RF
LF
RH

-200

0

200

400

600

800

6 8 10 12 14 16 18

fo
rc
e
λ
[N

]

time t [s]

Measured Forces along z-axis

RF
LF
RH

Figure 4.5: Measured contact forces during the motion of HRP-2 during stair climbing with
handrail support, as depicted in Figure 4.4. Forces along local x-axis in solid blue,
along y-axis in dashed red, and along z-axis in dotted green.

distance at each phase. Keeping the same schedule as in ground-level walking makes the
robot reaching its actuators limits in speed and current more likely. Here, the robot moves
an end-effector in 1.4s and moves its CoM position in 0.1s during a transition phase.

The change of angular momentum term depending on the limb motion σ , c.f. Section 4.1,
was of small effect for the stair climbing motion and was therefore neglected during motion
generation. While possible in principle, we did not define a tracking task for σ in the
hierarchy of the generalized inverse kinematics as presented in Section 4.3.2.

In the control chain, only the OCP part is not yet run in real time. In fact, the computa-
tion time for the motion in the video attachment is ∼ 30min in order to solve the OCP
until convergence. The large computational foot print is due to

• calculating the motion all-at-once on the whole preview-window of 18.4s,
• an over parametrization of the problem (3003 DoFs),
• performing several sequential quadratic programming (SQP) iterations until conver-

gence of the solution,
• and not exploiting the intrinsic sparsity resulting from the template model.

An analysis of the computational time suggests that the application of multi-level real-
time iteration of nonlinear model predictive control (NMPC) as introduced together with
a reduction of the planning horizon can easily lower the computational time to 50ms
considered as real-time feasible control on the robot, c.f. [24, 101]. Future work will
include a tailored implementation of the algorithm considering these bottlenecks and
allow a real-time execution on the robot. Despite this, the inverse dynamics run in 1ms
on the on-board CPU of HRP-2 (Intel(R) Core2™ Duo E7500, frequency 2.8GHz, 1 core,
3MB of cache) under Ubuntu 10.04 LTS.

Forces During Contact Transition

Figure 4.5 shows the forces measured during one experiment, while Figure 4.6 shows a
comparison between measured and planned forces. Almost no torque is applied at the
level of the feet, therefore we do not show the respective plots. The propulsion of the robot
is more visible in the tangential forces along the x- and y-axis. A comparison between
the subfigures of Figure 4.5 shows that almost all the forces are acting along the z-axis.
Therefore, we focusing the analysis on the z-axis components shown in Figure 4.6.

At the beginning of the motion the robot is stable on its feet and no other contact with
its environment is established. This initial phase of 5s is not shown in the graph. After the
robot starts to move, the hand comes into contact with the handrail causing perturbations
in the feet force distribution at 6s. The next transition appears just before 8s. The robot
shifts its CoM to the left foot and puts the right foot on the first step. Then the robot has

118

CENTROIDAL DYNAMICS
∣∣∣ CHAPTER 4

−200

0

200

400

600

800

6 7 8 9 10 11 12 13 14 15

fo
rc
e
λ
[N

]

time t [s]

Forces applied on the z-axis (Right Foot)

OCP
Measured

−200

0

200

400

600

800

6 7 8 9 10 11 12 13 14 15

fo
rc
e
λ
[N

]

time t [s]

Forces applied on the z-axis (Left Foot)

OCP
Measured

−200

−100

0

100

200

300

6 7 8 9 10 11 12 13 14 15

fo
rc
e
λ
[N

]

time t [s]

Forces applied on the z-axis (Right Hand)

OCP
Measured

Figure 4.6: Comparison between the planned contact forces of optimal control problem solution
(blue solid) and the measured contact forces (red dashed) during the motion of HRP-2
depicted in Figure 4.4.

-40

-20

0

20

40

60

0 2 4 6 8 10 12 14 16

cu
rr
en

t
[A

]

time t [s]

Measured Motor Current (Right Knee)

Feet Only
Multi-Contact

Figure 4.7: Comparison of applied current between motions employing feet only (blue dashed) and
multiple contacts using feet and one hand (red solid) for climbing a 15 cm staircase.

three contacts with its environment and starts to utilize the hand contact. It pushes with
the right leg and pulls with the hand to climb the stair. This particular motion excites a
flexible part located under the ankle of HRP-2.

Between 10s and 12s the flexibility perturbs the system but the forces on the hand
compensate for it. The hand contact stabilizes the robot to be able to move the hand
towards the next grasping position at 12s, where the robot is back to a stable state again.
During the hand movement, the robot’s CoM is effected by the flexibility exertion but not
enough to fall down due the stabilizing influence of the grasping contact before and after
the double support phase.

The motion is repeated once. The only difference is that the hand does not release
contact with the handrail at the end of the motion. This helps the robot to stabilize and go
back to an equilibrium state.

The right hand has an important role as it can realize forces up to 200N and more
remarkably also exerts negative forces at 9s and 14s, i.e., the robot also pulls itself
utilizing the grip on the handrail.

4.4.2 Current Consumption

A severe limitation in climbing stairs with foot contacts only for human-sized humanoid
robot is the current consumption. After performing a large number of experiments on a
15cm staircase using a different algorithm from [129], it appears that the rate of success
was highly dependent on the battery charge level. Based on this observation, and using
a model of the robot actuator, the maximum amplitude of the current was detected to
be 40A on the right knee as depicted in Figure 4.7. We show the right knee current only,
because this is the leg that bears the most stress during the motion. It is mostly due to the
fact that the weight shifting is performed by one support leg. Using several contact points

119

CHAPTER 4
∣∣∣ CENTROIDAL DYNAMICS

during weight shifting allows to distribute the load across several actuators. Therefore,
the current asked for the right knee for the same motion using multiple contacts does not
exceed 30A. This allows performing the motion depicted in Figure 4.4 five times in a row
even with low battery charge level.

4.5 Summary

In this Chapter, we have presented an approach to multi-contact motion generation for
humanoids using our centroidal dynamics template model. The approach was successfully
implemented on the humanoid robot HRP-2 enabling a stair climbing task. For this case,
we derived a reduced model based on the centroidal dynamics of the humanoid that
generalizes in the number of contacts. This model qualifies the proposed approach for
being real-time feasible, because it reduces the number of states to a minimum compared
to other approaches considering all the degrees of freedom of the humanoid model. In
order to generate whole-body motions fully leveraging the reduced model, a complete
framework of motion generation was presented. Following this, from a pre-defined contact
sequence of the end-effectors in contact with the environment an optimal centroidal
motion, contact forces and end-effector trajectories are computed by solving a dedicated
optimal control problem formulation.

The resulting trajectories are post-processed by a generalized inverse kinematics that
defines a hierarchy of distinct tracking tasks for the optimal reference trajectories such
that the resulting joint trajectories can be directly applied in simulation or the actual
robot.

The feasibility of our approach was demonstrated by experiments of HRP-2 climbing
stairs. The generated motion was performed five times in a row on the robot, which
was not possible before using the state of the art of motion generation prior to this work.
Additionally, by utilizing multiple-contacts for motion generation the overall power
consumption can be reduced and the distribution onto the whole-body makes the motion
more efficient and robust.

120

5 Nonlinear Model Predictive Control for
Humanoid Motion Generation

The following chapter proposes a novel nonlinear model predictive control (NMPC)
strategy that combines different multi-level real-time iterations (MLRTIs) in order to
provide fast feedback with minimal delay while improving the overall control rate even
for complex multi-body system (MBS) models of humanoids. By using the whole-body
dynamics of the humanoid our method enables a direct interaction with the low-level
control of the robot without the need of intermediate step in contrast to reduced or
template models. Additionally, the whole-body dynamics enable direct access to the
quantities of interest as for example the respective contact forces and joint torques. This
allows to easily model tasks as well as gain a better understanding of the actual motion of
the robot. For the purpose of a proof of the concept, the approach was implemented on the
robot Leo realizing a squatting task for the first time using NMPC running in real-time.

The goal of motion generation for humanoids is to realize human-like task performance
on the robot while considering the real-time constraints dictated by the robotic platform.
Today’s humanoid robots are complex mechanical systems with many degrees of freedom
(DoFs) that are built to achieve locomotion skills comparable to humans. In order to
synthesize whole-body motions, real-time capable direct methods of optimal control are a
subject of contemporary research. To this end, NMPC is the method of choice to realize
motions on the physical robot using model-based optimal control, because a model based
on rigid-body dynamics (RBD) comes closest to a first-principles model considering the
mechanics of the structure of a humanoid as well as the principles affecting its motion. A
representation of the humanoid as MBS and resolving its RBD includes all the relevant
quantities like joint torques as well as contact forces that are also known from motion
analysis. However, the complexity of the problem results in a high computational time that
falls short of the expectations of robotic experimenters and control engineers. Therefore,
while NMPC for motion generation is an active field of research in both engineering as
well as computer animation, only few realizations on the actual robotic platform have
been presented so far, for example [101].

An analysis of the different phases of state-of-the-art NMPC iterations reveals that the
bottleneck of computation is the preparation phase, i.e., the forward simulation of the
multi-body dynamics and the evaluation of derivative information, while the feedback
is reasonably fast. Therefore, in this chapter, we propose a control strategy based on
switching two controllers based on different MLRTI of NMPC. One controller provides
feedback based on linear model predictive control for the last known linearization of
the nonlinear control problem. The other controller is given actual initial values and
computes a new linearization of the problem. When the problem is successfully linearized,
a control feedback based on NMPC is provided and the linearization is communicated to
the linear MPC controller. Subsequently, feedback is provided again using linear model
predictive control (LMPC) based on this new linearization while the other controller is
busy relinearizing the problem. The contribution of this thesis is this new and beneficial
combination and parallelization of both linear and nonlinear methods for feedback control.

121

CHAPTER 5
∣∣∣ NMPC FOR MOTION GENERATION

x y

z

+
x y

z

+
x y

z

+

Figure 5.1: Leo robot of Delft University of Technology performing a squatting motion with annota-
tions. Annotation shows the world frame (magenta) as well as the root frame origin
(circle with black and white sectors).

The proposed strategy is a key to running NMPC on the robotic platform in real time
and the performance of the proposed control strategy is evaluated on the 2D robot Leo
of Delft University of Technology, c.f. [155]. The performed task, squatting of the robotic
platform, is realized via tracking of switching setpoints of the NMPC controller.

The following contributions were made in this thesis:
• Development of a nonlinear model predictive control framework combining diff-

erent levels multi-level real-time iteration in a thread-based parallelization of two
controllers.

• By efficiently reusing control problem linearizations of the last iteration one con-
troller provides fast feedback, while the other controller prepares the next nonlinear
step.

• In this way, the control rate as well as the overall performance could be drastically
improved.

• For the first time, the NMPC scheme enables a realization of a squatting task on the
actual 2D-robot Leo of Delft University of Technology, which was not possible using a
conventional nonlinear model predictive control scheme.

• During the experiment, an improvement of the control rate by a factor of 10–16 up
to 190 Hz was achieved.

In Figure 5.2, the general idea of NMPC for whole-body motion generation of humanoids
is depicted. The NMPC framework requires the formulation of an OCP that includes
a dynamic model of the considered humanoid, robot specific details, e.g. joint limits,
limits on the joint actuation, possible contact points, as well as task-specific user input,
for example setpoints to be tracked by the controller.

The dynamic model allows to predict the behavior of the robot on a time horizon given
measurements of the current state of the robot q̂, ˆ̇q. The NMPC scheme then computes
optimal joint angles, velocities and torques to realize the given in task in the best possible
way considering the real-time constraints dictated by the sampling rate of the low-level
control of the robot. The computed trajectories can then be directly passed to this low-
level control as reference values for either position controlled, torque controlled motors

122

NMPC FOR MOTION GENERATION
∣∣∣ CHAPTER 5

Nonlinear
Model-Predictive

Control

Robot
Simulation /

Hardware

q(t), q̇(t)
τ(t)

Feedback Control

q̂, ˆ̇q

Robot
Specific
Details

User
Input

Sensory
Information

Kinematic/
Dynamic

Robot Model

Figure 5.2: Visualization of the general approach of nonlinear model predictive control for motion
generation as applied in this thesis. From robot specific details, external user input and
a dynamic model of the humanoid an OCPs for a nonlinear model predictive controller
is formulated. The output of NMPC, in the form of optimal joint angles, velocities and
torques q, q̇, τ trajectories, can directly applied to the low-level control of the humanoid
as reference quantities. Feedback is then established on the measured configuration of
the robot q̂, ˆ̇q as well as additional external or internal sensory information directly.

of the robot or a simulation environment. The loop is then closed by providing the
actual configuration q̂, ˆ̇q as well as additional sensory information, for examples sensors
estimating the position and orientation of the humanoid with respect to its environment,
to the NMPC scheme for the next iteration.

In the remainder of this chapter, we will revisit the relevant building blocks of the
scheme depicted in Figure 5.2. Therefore, we will briefly revisit the whole-body dynamic
model for motion generation. Afterwards, we focus on advanced methods of NMPC in the
form of different multi-level real-time iteration that are applied in our control strategy.
Following this, we propose a novel approach combining two multi-level real-time iteration
in a concurrent way, such that the NMPC scheme is always responsive and able to provide
feedback even while computing the next linearization of the internal optimal control
problem. This is followed by the numerical and experimental results obtained from
implementing a squatting task on the humanoid robot Leo. The chapter is concluded with
a summary.

5.1 Whole-body Dynamic Model

In this section, we briefly revisit the whole-body dynamics of a humanoid based on the
RBD of the respective MBS representation of the humanoid. As introduced in Chapter 1,
the state of the art describes both humans and humanoid robots as MBS. The respective
dynamics of the resulting MBS are then derived by RBD calculus as presented in Chapter 2.
In principle, the application of the standard RBD approach for solving the dynamics of
the MBS is equivalent to solving the equation of motion in descriptor form given by[

H (q) J (q)T

J (q) 0

][
q̈
−λ

]
=

[
ST τ − c(q, q̇)
−γ(q, q̇)

]
. (5.1)

123

CHAPTER 5
∣∣∣ NMPC FOR MOTION GENERATION

Figure 5.3: Visualization of a humanoid represented as multi-body system that considers each
limb modeled as rigid body connected via joints. Contacts with the environment are
modeled via contact points. The whole-body dynamics then examine the interplay
between the locally applied torques at joint level with the resulting contact forces and
moments in the contact points as well as the resulting whole-body motion.

Additionally, the force-contact complementarity, c.f. Equation (1.6), has to be respected
as well as the discontinuities on establishment of a contact due to inellastic collision of
a rigid body with its environment, c.f. Equation (1.7). We refer the reader to Chapter 1
for the details concerning the definitions, the implementation as well as embedding the
dynamics in the NMPC or OCP formulation.

5.2 Multi-level Real-time Iterations of Nonlinear Model
Predictive Control

In Section 1.5 of Chapter 1, we have already introduced a direct approach to optimal
control, the concept of NMPC and the idea of real-time iterations. For more details, the
reader is kindly referred to the respective sections of this thesis.

Here, we briefly revisit the most important aspects and extend the explanation to multi-
level real-time iteration of NMPC that are required to derive the novel control strategy
developed in this work. NMPC is a closed-loop control strategy in which the control action
at the current sampling instant is computed by solving an open-loop OCP over a finite
prediction horizon T B [0,T] online. The respective OCP formulation that we focus on in
the remainder of this chapter is given by Equation (1.12) of Definition 1.4.

The differential states of the OCP are denoted by x(·) ∈Rnx , and are implicitly defined
by the chosen model dynamics in the form of an ordinary differential equation (ODE) as
formulated in (1.12c). In order to find an optimal solution of the OCP, we strive to find
the optimal inputs in the form of controls u(·) ∈Rnu and free parameters p ∈Rnp .

In order to solve the infinite dimensional OCP, a direct and all-at-once approach
subdivides the time horizon T into N subintervals [ti , ti+1],0 6 i 6 N , and discretizes
the control trajectory by means of constant control parameters q ∈RNnu on the time grid
as presented in Section 1.5.1. According to [13], the direct multiple shooting approach
further parametrizes the state trajectory by means of the solution of separate local initial
value problems defined on the same time grid as the control discretization by introducing
additional variables s ∈R(N+1)nx as described in Section 1.5.2. Continuity of the trajectories
in the solution is established by matching conditions enforcing equality across the time

124

NMPC FOR MOTION GENERATION
∣∣∣ CHAPTER 5

nodes of the grid.
From this discretization and parametrization, a large but structured nonlinear program-

ming problem is obtained that can be solved efficiently with tailored structure-exploiting
sequential quadratic programming (SQP) methods, which was discussed in Section 1.5.3.
Observing that the underlying OCP of the NMPC problem is linearly dependent on x̂0,
p̂ due to (1.12d),(1.12e), we choose to write the nonlinear program (NLP) in parametric
form, in contrast to the formulation in Equation (1.19), as

min
w

ϕ(w) (5.2a)

s.t. 0 = c(w) + P (x̂0, p̂), (5.2b)

0 6 d(w), (5.2c)

with a collection of the free variables from the discretized and parametrized state and
control trajectories sB [s0, . . . ,sN ,sN+1], qB [q0, . . . ,qN] as well as free parameters in the
form of the iterate wB [s,q,p]. The projector P aligns the initial values and parameter
with the rest of the equality constraints c. Additional information on the exact formulation
is given in Section 1.5.3.

In the following paragraph, we revisit the necessary details on the solution of NLP (5.2)
by means of SQP method. A full-step SQP method employs, in every iteration k, a
quadratic approximation of the NLP in the form of a quadratic program (QP) and, starting
with an initial guess (w0,λ0,µ0) of the primal and dual variables of the NLP, performs a
step wk+1 = wk +∆wk ,λk+1 = λQP ,µk+1 = µQP by using the solution (∆w0,λQP ,µQP) of the
QP given by

min
∆w

1
2∆w

TB(wk)∆w+∆wT b(wk) (5.3a)

s.t. 0 = c(wk) +C(wk)∆w+ P (x̂0, p̂), (5.3b)

0 6 d(wk) +D(wk)∆w, (5.3c)

where we denote the Jacobians of the inequality and equality constraints by C = dc
dw (w),

D = dd
dw (w), respectively. The Hessian of the Lagrangian of the NLP is B(w), and the vector

b(w) is the gradient of the objective.
State-of-the-art NMPC methods based on nonlinear programming rely on the real-time

iteration scheme according to [35] to compute feedback in real-time. Subsequent problems
only differ in the values of x̂0, p̂ and this dependency is only linear in the QP (5.3). Due
to the linearity, by means of the so-called initial value embedding methodology, i.e., a
difference in s0 , x̂0 and p , p̂ due to initializing the problem with the state and control
information of the last solution can be satisfied after a single full Newton step. The next
iterate then represents a first-order tangential predictor of the solution, c.f. [38].

In this way, computationally expensive parts can be separated from time-critical ones
and the computational delay of the feedback is reduced to the time required to solve a
single QP, such that by careful initialization a separation into three phases of the SQP
step is possible as follows:

• Preparation: Setup of QP (5.3), i.e., computation of B, b, C, c, D and d from last
iterate w.

• Feedback: Triggered by x̂0, p̂, compute feedback control u?(t; x̂0, p̂), t ∈ [t0, t1] by
solving QP (5.3).

• Transition: perform Newton step, i.e., compute new iterate wk+1 = wk +∆wk .

125

CHAPTER 5
∣∣∣ NMPC FOR MOTION GENERATION

5.2.1 Multi-level Real-time Iterations

In the remainder of this section, the focus is on advanced multi-level real-time iterations,
which further the above ideas by dividing the real-time iteration (Preparation, Feedback
and Transition) into sub steps that can provide feedback even faster by evaluating only
parts of the required Jacobian information, c.f. [3, 14, 56, 96]. Here, we revisit the levels
proposed in [14] that are required for our implementation. In order to provide feedback
even faster, the idea of the four different levels is to only update selected parts of the
linearization during the preparation phase. This can be understood as updating the
respective quantities in the QP (5.3), i.e., the evaluation of all, parts or none of B, b, C, c,
D and d . We focus on the two extremes of updating the full information and leaving out
the preparation phase, i.e., the levels “D” and “A”.

Level D

Multi-level real-time iterations of level D realize the preparation phase of a full SQP
step, i.e., we evaluate the gradient of the objective b(wk), the constraint residuals c(wk),
d(wk) as well as the respective Jacobians C(wk), D(wk) and computing a new Hessian
(approximation) B(wk) using the latest iterate (wk ,λk ,µk). In this way, a full, new quadratic
approximation of the NLP at the last iterate is computed, i.e., a new QP (5.3) is built from
this information. After the solution of the QP is available, the feedback control is sent to
the process and the SQP iteration is finalized.

Level A

Multi-level real-time iterations of level A realize LMPC using the most recent linearization
provided by a completed D iteration. That is, the most recent set of matrices and vectors
B̂, b̂, the constraints Ĉ, ĉ, D̂, d̂ are kept fixed in the QP (5.3). From this, and given new
estimates of the initial states x̂0 as well as parameters p̂, a feedback control is computed
by solving the QP. Level A iterations can be performed without any evaluation of the
nominal or derivative information and consist of only a solution of the already prepared
QP.

5.3 Combining Multi-Level Real-time Iterations

The application of NMPC for whole-body motion generation for humanoids includes the
evaluation of the RBD of the MBS model of the humanoid as well as the evaluation of the
respective sensitivities in every level D iteration. The complexity of the considered model
representation of the humanoid as well as the inherent numerical ill-conditioning of RBD
in general renders this part to be the bottleneck compared to the actual solution of the
QP in the feedback phase of each SQP iteration. The feedback phase can be accelerated
by common structure exploiting methods, c.f. [13, 56, 110]. However, this will increase
the time required for the preparation phase. This ratio of computational time is already
present in the case of small humanoids as presented later in Section 5.5.3 for robot Leo.

In sum, this means that feedback control, i.e., the solution of (5.3), can be computed
fast and cheap while the re-computation of the quantities of the QP, i.e., b(wk), c(wk),
d(wk) as well as C(wk), D(wk) and B(wk) form the latest available iterate (wk ,λk ,µk),
is computationally expensive and known to be the reason for violating the real-time
constraints dictated by the respective hardware.

126

NMPC FOR MOTION GENERATION
∣∣∣ CHAPTER 5

NMPCLMPC

t 0
in
it
p
h
a
se

ti
m
e
t
[s
]

R
ob

o
t

A

A

A

A

A

B

B

B

B

B

A

x̂0, p̂

u0

Preparation

x̂0, p̂

u0

x̂0, p̂

u0

x̂0, p̂

u0

x̂0, p̂

u0

x̂0, p̂

Preparation

x̂0, p̂

Preparation

· · ·

Figure 5.4: Schematic of the control approach based on multi-level real-time iteration as derived in
this thesis. In an init(ialization) phase, both controllers (A,B) are prepared by estimates
(x̂0, p̂) from the robot. The concurrent controllers provide feedback u0 either with
linear model predictive control (LMPC) or re-linearize and provide nonlinear feedback
once, i.e., nonlinear model predictive control (NMPC). LMPC feedback is queried as
long as NMPC thread is in preparation. As soon as the NMPC thread is ready again,
roles are switched and the scheme is continued, which is indicated by a cropped scheme
at the bottom.

127

CHAPTER 5
∣∣∣ NMPC FOR MOTION GENERATION

Following the ideas proposed in [56], a huge benefit of the separation of feedback and
preparation phase is that these phases can be implemented as independent processes with
separate memory. In this way, it is possible to repeatably provide intermediate feedback
using MLRTI of level A by reusing the latest linearization in the form of a solution of
QP (5.3), while a new linearization is computed in the preparation phase of a level D
iteration. In contrast to the theoretical scheme proposed by [56], we actually realize this
idea by two concurrent threads either using level A or level D real-time iterations. The
contribution of this work is an implementation of this control scheme as depicted in
Figure 5.4.

First, both controllers are prepared in separate threads and receive initial states x̂0
and parameters p̂ in a common initialization phase. While the threads run concurrently,
each of the controllers has a distinct role in providing feedback u0 either using level A
iterations and reusing the latest linearization (LMPC), or in using level D iterations with a
full preparation phase (NMPC).

The level D iterations are subject to a non-negligible computational delay such that
linear feedback can be provided multiple time using the latest linearization. Following
this, as soon as the relinearization has been triggered by initial values, we provide linear
feedback through queries to the level A iterations thread.

As soon as the level D thread is ready, i.e., several level A queries were served, we
immediately switch roles of the two threads and provide full NMPC feedback by querying
the level D thread. In the meantime, the former LMPC thread is queried again but this
time the re-linearization at the current iterate is initiated. The level A thread then takes
care of providing the feedback until the next level D iteration is ready. This scheme is
then continued until the process is stopped. The proposed approach is implemented on
top of OCP solver MUSCOD-II, c.f. [109, 110], and validated on the robotic platform Leo.

Our approach generalizes the application of LMPC and a relinearization of the current
problem online. It is possible to exploit a task known beforehand, e.g. for squatting it is
possible to linearize the optimal control problem at the setpoints and compose to level A
controllers that can then be used to implement LMPC for the problem by switching both
the setpoints and the controller. However, this will limit the proposed control approach to
the considered task only and will therefore not be transferable to other tasks. In contrast to
this, our approach is not subject to this problem and might also be used for more complex
tasks such as walking.

5.4 Problem Formulation

The state of the art models a robot as a MBS and its RBD then define the respective
mathematical model of the robot, as presented in Section 1.3. Here, we consider the robot
Leo of TU Delft. The required dynamic properties of the links, i.e., masses, inertias and
centers of mass (CoMs), were taken from [155]. We use the software library Rigid Body
Dynamics Library (RBDL) [49, 50] to implement the model and to efficiently evaluate
the forward dynamics of the model as required by the OCP formulation presented in
Section 1.4.

In Figure 5.1, the world frame is depicted, where the x-axis exists along the 2D walking
motion pointing forward, the z-axis point upward and, in order to have a Cartesian frame,
the y-axis is pointing into the figure such that a positive rotation around the y-axis results
in a counter-clock-wise motion.

The kinematic structure of the robot can be modeled in different ways. Here, we employ

128

NMPC FOR MOTION GENERATION
∣∣∣ CHAPTER 5

a fixed-base model that describes the kinematic chain from foot over ankle, knee and hip
to the root and the arm of the robot. Furthermore, it is possible to exploit the symmetry
for the task as in order to achieve squatting the legs and feet have to be aligned in parallel.

5.4.1 States and Controls

The dynamic model is implemented as ODE in the OCP (1.12c) of the NMPC prob-
lem (1.12) by order reduction, i.e., implemented on acceleration level by evaluating the
forward dynamics (FD), q̈ = FD(q, q̇,τ), and integrated twice to obtain joint positions and
velocities q, q̇.

Following the formulation of the NMPC problem (1.12), the differential states x are in
this case the joint positions q and velocities q̇, i.e.,

x(t) =
[
q(t)
q̇(t)

]
, ∀t ∈ T .

The controllable variables of the system u are the input voltages of the servo motors v,
i.e.,

u(t) = v(t), ∀t ∈ T .

Control functions u are approximated as piecewise constant functions. The voltages v are
setpoints provided to the motor internal controller. In order to receive joint torques from
the motor input voltage v for the model, we apply a mapping depending on the angular
velocity q̇, i.e., τ ≡ τ(v, q̇). We refer to [155] for further details.

5.4.2 Objective Function

For the NMPC problem given by Definition 1.4 in Chapter 1, we employ an objective of
Lagrange type, which minimizes the weighted norm ‖`− ¯̀‖2W , where ‖v‖2W = vTWv.

As mentioned above, the squatting task is realized by means of the objective function

`(x,u,p) =

rz(q)
cx(q)
pose(q)
q̇

 , ¯̀(t,p) =

p
c̄x

0.30
0

 , (5.4)

where we denote the forward kinematic evaluations of the root frame as r(q) and the x
position of the center of mass (CoM) as cx(q). The term pose(q) B qankle + qknee + qhip
denotes the evaluation of the torso angle with respect to the world frame computed from
the angles of ankle, knee and hip, and the joint velocities q̇ are used as regularization
terms improving the stability of the robot. The setpoint for the CoM term is the center of
the support polygon denoted by c̄x and given by the position of the tip and heel of the
support foot. The height to track by the robot is provided via the model parameter p and
the squatting is then realized by its modulation over time. We weight the different terms
by the weighting matrix

W = diag {50.0,100.0,50.0,3.0, . . . ,3.0} ,

with a focus on stability, a trade-off between tracking and correct upright pose and a small

129

CHAPTER 5
∣∣∣ NMPC FOR MOTION GENERATION

weight on the joint velocity penalty.

5.4.3 Constraints

In order to guarantee stability of the robot, we additionally formulate static stability
according to Definition 3.6 as constraint, which reads

g(x,u) =
[
xt − cx(q)
cx(q)− xh

]
> 0, (5.5)

where xt, xh denote the position of the tips and the heels of the robot feet. We exploit
the symmetry and therefore one foot is enough to describe the polygon of support. The
optimization is subject to the constraints

−1.57
−2.53
−0.61
−3.00

 6 q 6

1.45
−0.02

2.53
0.36

 (5.6)

given in rad and box constraints to limit the motor voltages by −5V 6 vi 6 5V, i ∈
{ankle,knee,hip,arm}.

5.5 Results

In order to validate the proposed approach on combining different MLRTI of NMPC, we
implement the approach on the robotic hardware Leo of TU Delft. The robot is depicted
in Figure 5.1, where we indicate the used world coordinate frame by magenta and show
the root frame origin by a circle with black and white sectors. In Section 1.2.3, we give an
introduction to the robot and present its specifications.

In the remainder of this section, we first discuss the experimental setup, where we
explain the chosen task as well as the friction compensation applied in order to realize the
task on the actual robot. Second, we revisit the results obtained from a run in simulation,
where the timing statistics are of special interest. Third, we show the results for the five
separate runs of the NMPC control scheme on the robot. Additionally, we show the results
of an experiment considering external perturbations.

5.5.1 Experimental Setup

For the experiments in this chapter, we focus on squatting, i.e., a posture or motion where
the weight of the body is located above the feet but the knees and hips are bent such that
the upper body is lowered. The realization of this task required to take the robot off the
boom, which is used for walking experiments, and fix it to a ground plate below its feet in
order to ready it for a squatting task. We performed two sets of experiments: a squatting
task and an experiment evaluating the performance against external perturbations.

The experimental setup of the squatting task is shown in Figure 5.5. In order to bring
the robot into a well-defined initial configuration, two phases precede each trial: a PID
phase and a NMPC init(ialization) phase. In the PID phase a configuration is tracked by a
low gain PID controller and in the following init phase the NMPC software is initialized.
The actual trial starts as soon as NMPC is ready, which we indicate by t0 = 0.0s and ends

130

NMPC FOR MOTION GENERATION
∣∣∣ CHAPTER 5

P
ID

p
h

as
e

t0 = 0.0

N
M

P
C

in
it

p
h

as
e

t1

P
ID

p
h

as
e

tf = 25.0

N
M

P
C

fi
n

al
p

h
as

e

tn−1time [s]

h
ei

gh
t

[m
]

0.35

0.28

Figure 5.5: Scheme explaining the squatting task for the experiments with Leo. Before and after
the experiment (white background, from t0 to tf), a setup and tear down phase (light
gray background) brings the robot into a initial configuration. During the experiment
the setpoint (dark gray bars) tracked by the root center (circle with black and white
sectors, c.f. Figure 5.1) is switched at time points ti ,0 < i < f .

after tf = 25.0s. The actual task is implemented as a tracking of a setpoint at the center of
the torso of the robot by NMPC run on an external computer.

The squatting motion is achieved by tracking two distinct setpoints, a lower plo = 0.28m
and pup = 0.35m one, such that the robot has to move its root by 7 cm (relative to the root
height) from a crouching to almost fully stretched legs. These are repeatedly switched
for the controller after periods of 1.5 s, such that 8 full squats have to be performed in
total. After the experiment the robot is brought back into its initial configuration by a
non-recorded NMPC phase followed by a final PID phase, during which the NMPC policy
is teared down and finalized.

The setup to evaluate the performance against external perturbations follows that of
the squatting task. Here, we track an intermediate setpoint pim = 0.32m, while the robot
experiences external perturbations.

For the purpose of evaluation the following criteria are considered in the validation of
each experiment:

• The value of the objective as indicator of performance.
• The trajectories of states, control and tracking task.
• The timing statistics of the respective NMPC policy.

Friction Compensation for Dynamixel Motors

The actuation of the robot is realized by Dynamixel XM430 servo motors as described
in Section 1.2.3. Here, we use voltage control mode of the motors, as proposed in [155].
The motors are subject to Coulomb as well as viscous frictions, and gearbox inefficiency.
Without a compensation of the friction a realization of NMPC was not possible on the
hardware. Therefore, we implemented an affine transformation of an input control signal.
The actual applied voltage vi = 0.75 · vnmpci + vcompi (p) is composed of the control signal
from NMPC multiplied by the gearbox efficiency of 75 % and a compensatory term for the

131

CHAPTER 5
∣∣∣ NMPC FOR MOTION GENERATION

friction vcompi , given by

v
comp
i (p) =

 1.0µC , if p = pup

−1.5µC , if p = plo,

where the Coulomb friction term was tuned to be µC = 0.86V for i ∈ {ankle,knee,hip} and
0V for arm.

5.5.2 Numerical Results

Initially, we performed experiments in simulation to evaluate the timing statistics of a
nominal NMPC run as depicted in Figure 5.6. From this, an analysis of the computational
time of the different NMPC phases is visualized in Figure 5.6a by box plots and the timings
of the feedback phase only of single NMPC run is shown in Figure 5.6b. The results show
a relatively slow preparation phase of 71.61 ms, while transition (7.39 ms) and feedback
(5.37 ms) phases are much faster in comparison. Following this, nominal NMPC with a
total iteration time of 80.31 ms would end up with a minimum control rate of only ∼ 12Hz
, while a control rate of ∼ 186Hz would be possible by leveraging the fast feedback time.
This would improve control rate by a factor of 15. We only compared the maximum
recorded run time data here and in the mean higher values are possible.

From this, we can conclude two things. On the one hand, using the novel strategy will
enable us to run NMPC in real-time on the actual hardware because the actual feedback
time is only a fifth of the fixed sampling time of the robot. On the other hand, the
application of nominal NMPC to control the robot will be problematic at a control rate of
∼ 12Hz, which was then verified during the experimental evaluation.

132

NMPC FOR MOTION GENERATION
∣∣∣ CHAPTER 5

Transition Feedback Preparation
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

computational time of NMPC phases

Simulation

(a) Timing of different NMPC phases.

0 100 200 300 400 500 600 700

number of iterations

0

2

4

6

8

10

12

14

fe
ed

b
a
ck

ti
m

e
[m
s]

NMPC feedback time simu

(b) Timing of feedback phase of nominal NMPC.

Figure 5.6: Run-time analysis of a squatting experiment under ideal conditions in simulation.

Figure 5.7: Snapshot series of Leo squatting during an experiment.

5.5.3 Experimental Results

Squatting Experiment In Figure 5.7, a scene from a squatting experiment shows Leo
performing a single squat. The whole experiment was repeated five times in a row with
breaks in between. The single runs are denoted by ts1, ts2, ts3, ts4 and ts5. Each trial
was successful and no problems occurred. The recorded data from the experiments is
visualized in Figures 5.8, 5.9. Due to the fact that the arm is not moving much and also
has little effect due to its low weight, we have dropped the joint angles and the motor
input voltages of the arm.

In Figure 5.8a, the actual height tracking is depicted as presented in Figure 5.5. The
setpoints pup,plo (dark and light gray horizontal bars) attract the root origin correctly,
which then slightly overshoots before the setpoint is switched again. During tracking of
the lower setpoint the overshoot is stronger. We use the same colors as for the setpoints
pup,plo (dark and light gray) to highlight ascending and descending phases in the other
plots.

In Figure 5.8b, the reward, i.e., the instantaneous negative objective function value (5.4),
is plotted against time. Here, optimal performance would show zero values. While this
value is never reached exactly, it comes close to the optimal value at the end of reaching
the lower setpoint. However during each ascending phase the value of the reward is
significantly lower than during the respective get-down phase of a squat.

Figures 5.9 (a,c,e) show the angles of hip, knee and ankle joint. All three joints show
both a high quantitative similarity of the different trials, with the only visible deviations
near the extrema of the trajectories. Looking at the markers, slight deviations in the
time profile are visible. While the trajectories are similar, the paths are not perfectly

133

CHAPTER 5
∣∣∣ NMPC FOR MOTION GENERATION

0 5 10 15 20 25

time [s]

0.24

0.26

0.28

0.30

0.32

0.34

ro
o
t

h
ei

g
h
t

[m
]

Leo height tracking

(a)

0 5 10 15 20 25

time [s]

−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

re
w

a
rd

[
]

Rewards of the trial

(b)
plo pup ts1 ts2 ts3 ts4 ts5

Figure 5.8: Recorded and processed data of the squatting experiment: height tracking (a) and
instantaneous reward (b).

synchronized in time.
Figures 5.9 (b,d,f) show the motor input voltages at hip, knee, and ankle. While they

show the same qualitative behavior, one can see the control effort due to the deviations
during the tracking of the lower setpoint. Even though the joint angles show satisfactory
behavior. The variability in control can be seen near the end of the experiment when, in
the final phase, the lower setpoint is tracked. During ascending the knee voltage saturates
to the limit of 5V in the very beginning of the motion.

The timing statistics derived from the experiments are shown in Figure 5.10. Fig-
ure 5.10a reveals similar results for the timing statistics as the numerical experiments.
Comparing the maximum values of each phase, we see again a dominant preparation
phase of 132.04 ms, which stands out in comparison to the fast feedback and transition
phases of 13.32 ms (and 15.15 ms). This shows again the benefit of the proposed multi-
level approach as with this a speedup of the feedback time by a factor of 10–16 is easily
possible and one would end up with a minimum control rate of ∼ 75Hz and up to ∼ 190Hz
(mean). In contrast to this, a nominal scheme relying on the same timing statistics would
result in a minimum control of not even 10Hz.

In Figure 5.10b, the feedback times for the currently active LMPC thread are shown.
While most of the feedback times are below 5ms, outliers still show feedback times well
beyond 10ms.

Push Experiment In Figure 5.11, Leo recovers from the external push performed by
an experimenter. The experiment was conducted once. Note that the trajectories of
this experiment are not shown due to page limitations. The reader is referred to the
supplementary video. The feedback was crisp and the robot directly reacted to the external
perturbations by counteracting the force. However, due to the friction compensation the
robot started to stretch his legs after some hard perturbations.

5.5.4 Discussion

In contrast to nominal NMPC, which was not applicable at all, the proposed multi-level
NMPC scheme enabled real-time control on the robot. While the friction compensation
made the scheme actually work on the hardware, the results reveal the erratic behavior
due to model-plant mismatch resulting from our friction compensation, e.g. overshoot and

134

NMPC FOR MOTION GENERATION
∣∣∣ CHAPTER 5

0 5 10 15 20 25

time [s]

1.0

1.2

1.4

1.6

1.8

jo
in

t
a
n

g
le

[r
a
d
]

Leo joint angle hip

(a)

0 5 10 15 20 25

time [s]

−3

−2

−1

0

1

2

m
ot

o
r

in
p

u
t

vo
lt

ag
e

[V
]

Leo motor input hip

(b)

0 5 10 15 20 25

time [s]

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

jo
in

t
an

gl
e

[r
a
d
]

Leo joint angle knee

(c)

0 5 10 15 20 25

time [s]

−1

0

1

2

3

4

5

m
ot

or
in

p
u

t
vo

lt
ag

e
[V

]

Leo motor input knee

(d)

0 5 10 15 20 25

time [s]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

jo
in

t
an

gl
e

[r
a
d
]

Leo joint angle ankle

(e)

0 5 10 15 20 25

time [s]

−2

−1

0

1

2

m
ot

o
r

in
p

u
t

vo
lt

ag
e

[V
]

Leo motor input ankle

(f)
plo pup ts1 ts2 ts3 ts4 ts5

Figure 5.9: Recorded and processed data of the squatting experiment: joint angle trajectories (a, c,
e) and motor input voltages (b, d, f).

135

CHAPTER 5
∣∣∣ NMPC FOR MOTION GENERATION

Transition Feedback Preparation
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

computational time of NMPC phases

Experiment

(a) Timing of NMPC phases.

0 100 200 300 400 500 600 700

number of iterations

0

2

4

6

8

10

12

14

fe
ed

b
a
ck

ti
m

e
[m
s]

NMPC feedback time ts1

A

B

(b) Feedback times of threads A, B (dark, light
gray).

Figure 5.10: Run-time analysis of the squatting experiment of Leo robot.

Figure 5.11: Snapshot series of external perturbation during an experiment.

136

NMPC FOR MOTION GENERATION
∣∣∣ CHAPTER 5

voltage saturation during squatting and leg stretching in the push recovery experiment. We
believe that this is not a problem for future research, as there are avenues to compensating
for this either by improving the model using parameter identification methods, or by
learning by means of reinforcement learning (RL), c.f. [103].

During the descending phase while squatting, or in the push experiment, we noticed
a little jittering in the control. We offer two explanations for this. First, the friction
compensation alters the control signal computed from the model. Especially during
the down-phase or when the robot moves very slowly, we could see the importance of
adjusting the compensatory term. Further improving it might help reducing the mismatch
or compensating it on motor level will result in smoother motions also in regimes with slow
speed. Second, switching the controller also means switching the current linearization
point of the model, followed by up to four consecutive feedback phases using it. A change
of the linearization has significant impact on the feedback, especially when the latest
linearization is not up to date. By further improving the speed of the computations,
especially during the preparation phase, both the feedback time as well as the ratio of A
and D iterations can be improved.

Alternatively, the sampling time of the robot low-level control should be increased or
changed to an event-driven approach to better cope with the NMPC framework which
requires a more flexible timing scheme to provide fast feedback. Additionally, the prepa-
ration time can be reduced by parallelizing the integration steps on the shooting intervals
using more than two threads or implementing less demanding levels of MLRTIs.

5.6 Summary

In this chapter, we presented a control approach of NMPC for feedback control employing
a combination and parallelization of both linear and nonlinear methods that is based
on two different levels of real-time iterations, named levels A and D. Furthermore, this
chapter presented the first step on evaluating the combination of different multi-level
real-time iteration of NMPC on the actual robotic hardware. This combination enabled
us to achieve real-time execution of NMPC on the physical robotic hardware of Leo.
Additionally, we proposed a problem specific model for compensation of the static friction
hindering the robot to perform the task. We successfully performed experiments on the
robot in different scenarios followed by the detailed analysis of the recorded results. In
contrast to the nominal control scheme, only the new control scheme was able to realize
closed-loop control on the actual hardware. In this way, the performance of the proposed
approach is superior to nominal NMPC.

137

138

6 Towards a Combination of Model-free and
Model-based Optimal Control

In robotics, one cannot expect to work with ideal models of the considered systems or their
environments. Rather, we have to face unforeseen situations and unknown conditions,
and aim for reactions that are feasible and, ideally, optimal with respect to given task
performance criteria. A typical task is bipedal locomotion, where a robot needs to maintain
stability and pace on an uneven floor with uncertain roughness and slope [155]. Robots
are capable of executing a set of commands to achieve a task, however these commands
are mostly encoded or tuned by hand.

Two common approaches to control dynamic systems are nonlinear model predictive
control (NMPC) and reinforcement learning (RL). Both approaches can cope with uncer-
tainties in the form of model-plant mismatch. Reinforcement learning has been proven
suitable as a real-time closed-loop control concept in robotics [97]. NMPC is a closed-loop
control concept already established in industrial practice [147]. However, the use of
NMPC in robotic applications, especially humanoid robotics and bipedal walking, is still
an open research field [42, 70, 108].

The following chapter presents our work on benchmarking and combining methods of
model-based and model-free optimal control in the form of NMPC and RL. The contents
of the following sections are based on our journal articles [103] and [104].

Usually, the dynamics of physical systems are known or can be modeled using first-
principle models, but various uncertainties cannot be addressed so easily. Moving horizon
estimation (MHE) techniques [107] can be employed for the identification of parametric
uncertainties, however, for structural uncertainties, such as backlash, Coulomb friction or
wear and tear, this is not easily possible. In these situations, methods of RL are capable
of finding an optimal sequence of commands even without any prior assumption about
the world. However, the applicability of learning to real systems is very limited due to
intrinsically damaging exploratory policies. For example, when learning from scratch the
robot Leo depicted in Figure 1.4 can withstand only five minutes of operation due to large
and rapidly changing motor torques and frequent falls [155].

In model-based control, it is possible to enforce constraints such that the static stability
is guaranteed for the evolution of the system on a short horizon, thus these constraints help
preventing falls. In RL, it is possible to consider angle and velocity constraints by means
of negative rewards. However, to learn avoiding such constraints, they need to be violated
multiple times in different robot configurations. Random exploration exacerbates the
problem and can lead to a very large number of falls. Therefore, we propose to combine
RL and NMPC in one framework that allows RL to gather the required experience without
damaging a many-degree-of-freedom system.

The crucial step to derive a beneficial combination of different methods is a proper
analysis of strengths and weakness as well as determining the situation in which one
method is superior to the other. We achieve this by proposing a computational study
that benchmarks model-based against model-free methods of optimal control subject to
structural uncertainties in [103]. The idea of the computational study is explained along a

139

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

benchmark example.
Based on the knowledge of the performed computational study, we can propose schemes

combining both methods. In [104], we propose two schemes addressing the compensation
of model-plant mismatch due to structural uncertainties. An extensive comparison of the
respective schemes in simulation is conducted. The simulation employs a model of Leo
robot, the goal robotic platform, to perform a squatting task. Based on the analysis of the
results, the superior combination scheme is chosen for validation on the robot. Therefore,
the scheme is implemented to perform a squatting task on the actual hardware.

The following contributions are made in this chapter:
• A quantitative comparison of RL and NMPC subject to uncertainties is presented.
• The computational study is executed on a benchmark example of a cart-pendulum

swing-up and balance task.
• Differences, trade-offs and pitfalls of the specific problem formulations are shown.
• The change of superiority of one method over the other at break-even points is

shown.
• Two schemes are proposed to compensate model-plant mismatch induced by uncer-

tainties, preserving the Markov property.
• Each scheme leverages a model-based controller, here NMPC.
• The combination schemes are compared in simulation on a squatting task using a

model of Leo.
• The superior combination scheme is realized on the robot Leo.

In the following sections, we will first talk about the methods of model-free optimal
control in the form of RL, while we refer the reader to Section 1.4 for the details on methods
of model-based optimal control, nonlinear model predictive control and online parameter
and system identification. In Section 6.2, we introduce our computational study allowing
to benchmark model-based and model-free methods of optimal control in the presence
of structural uncertainties as presented in [103]. In Section 6.3, we present our work on
combining methods of model-based and model-free optimal control. This is followed
by the results of the computational study in Section 6.4.1 for a cart-pendulum swing-up
motion benchmarking NMPC and RL. Additionally, we present the results on applying
the hybrid control strategies developed in Section 6.4.2 to a squatting task of robot Leo
of Delft University of Technology in both numerical as well as hardware experiments. The
chapter is concluded with a summary on the subject.

6.1 Reinforcement Learning

Reinforcement learning is an active research area in the field of artificial intelligence and
machine learning with applications in control. The most important feature of RL is its
ability to learn without prior knowledge about the system. The goal of the learning task
is supplied externally in the form of a reward function. RL is a trial-and-error method,
which generally takes many iterations before it finds an optimal solution. To reduce
the number of interactions with the system, model-learning methods such as Dyna [21],
learning from demonstration [1, 161], or optimized control policy parameterizations [98]
can be applied. Because RL does not require an explicitly given model, it can naturally
adapt to uncertainties of the real system. In this sense, RL can be viewed as a model-free
adaptive optimal control approach [165], such that RL can naturally adapt to uncertainties
in the real system [166].

A common approach in RL is to model the task as a Markov decision process (MDP).

140

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

The process is defined as a quadruple 〈X ,U ,P ,R〉, where X ⊂ R
nx is a set of possible

states, U ⊂ R
nu is a set of possible control actions, P : X ×U ×X → [0,1] is a transition

function that defines the probability of ending up in state xk+1 ∈ X after executing action
uk ∈ U in state xk ∈ X . The reward function R : X ×U ×X →R gives a real-valued reward
rk+1 = R(xk ,uk ,xk+1) for the particular transition between states. A MDP satisfies the
Markov property, which assumes that the next state xk+1 depends only on the current state
xk and action uk , but not on previous states or actions [166].

A deterministic control policy π : X → U defines an action uk taken in a state xk.
Assuming the system to be stochastic, the goal of the learning process is to find an optimal
control policy π∗ that maximizes the discounted return

R
γ
k = E

 ∞∑
i=0

γ ir(xk+i ,uk+i ,xk+i+1)

 ,
where the discount rate γ ∈ [0,1) exponentially decays rewards the further they lie in the
future and is required for the integrability of the infinite sum. The immediate rewards r
are defined as

r(xk ,uk ,xk+1) =

−l(xk+1,uk) if g(xk+1,uk)>0,

R a otherwise.
(6.1)

Here r(xk ,uk ,xk+1) is the scalar reward given for a transition from xk to xk+1 caused by
the control signal uk = π(xk) +n,n ∼N chosen from some policy π.

Constraints are established as soft constraints by means of the large negative reward R a.
Subsequently, the episode is terminated, and the system is restarted in state x0. Usually,
RL requires at many repetitions to estimate the return (6.1) correctly. These repetitions
are obtained by adding exploration noiseN to control signals uk at every time step. The
outcome of repetitions is not known in advance and therefore may be damaging to the
system.

The value function V π(x) denotes the expected return assuming that the system starts
in the state x and then follows a prescribed control policy π. The optimal control policy
π∗ maximizes the value for each state. Therefore, an optimization of the control policy is
tightly coupled with the maximization of the value function in RL.

For real-world systems, continuous control is preferred. This requires a parametriza-
tion of the policy π(x), e.g. using a set of basis functions and their associated weights.
The weights are usually optimized by gradient-descent methods [11, 62], or by global
gradient-free methods [16, 68]. In this case, we use a standard gradient-descent method
because the latter methods require a substantial number of interactions with the system
under consideration, which can be problematic for interaction with real systems. Since
the estimation of policy gradients often results in a high variance, the policy update is
usually coupled with an explicit estimation of a parametrized value function V π(x). This
combination is known as the actor-critic method, where the policy is referred to as the
actor, and the value function is referred to as the critic.

The method we use is the standard model-free temporal-difference-based method
described in [62]. Since RL is a trial-and-error learning method, the quality of the policy
as well as the learning speed depend on the exploration method. Exploration is commonly
achieved either by perturbation of the so far optimal action, by optimistic initialization,
or by both. Optimistic initialization is a method of initializing the value function with

141

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

a value equal to or greater than the maximum possible value of a state. This causes
the visited states to become less attractive than the states that have not been visited
yet [118]. Optimistic initialization can speed up the learning in the absence of negative
rewards. For the parametrization of the policy and value-function we use a tile coding
approximator [166] that is linear in parameters. In [104], we solve the problem (6.1)
using a deterministic policy gradient (DPG) with linear function approximation and
compatible features, chosen for its ability to optimize continuous control policies and fast
convergence.

6.2 Benchmarking Model-free and Model-based Optimal
Control

In this section, we propose a computational study as well as an evaluation scheme to
quantitatively assess control approaches of both model-based nonlinear model predictive
control as well as model-free reinforcement learning. First, we present the general idea of
the study and introduce the required notation. Second, we discuss the evaluation protocol
and define the measures required for the key performance indicator. The computational
study is applied to a benchmark problem in the form of a swing-up and balancing problem
for a cart-pendulum system [7, 95]. The respective results are presented in Section 6.4.1.

6.2.1 Computational Study

In Figure 6.1, the proposed computational study is depicted. It is set up as follows. In
the first step (I), we establish optimal control (“OC”) solutions for the ideal benchmark
problem. Then we consider the NMPC formulation and derive the corresponding RL
formulation from it. We highlight the changes introduced in both formulations and
discuss their effects.

Subsequently, we address the strengths and weaknesses of NMPC and RL in terms of
their ability to adapt to structural and parametric uncertainties.

In the second step (II), we investigate NMPC and RL methods that are explicitly unable
to adapt to uncertainties. We introduce the term frozen to refer to this inability.

In the third step (III), the effect of uncertainties and the ability to adapt to them is
analyzed for NMPC methods that have explicitly been equipped with knowledge about the
uncertainties and for RL that is allowed to interact with the real system for an additional
5 % of the learning time. We introduce the term adaptive to distinguish these from the
frozen methods.

We use a single RL method denoted as “RL”, and two NMPC versions denoted as
“iNMPC” and “NMPC”. “iNMPC” is an ideal NMPC controller that neglects computa-
tional time and returns an optimal control signal immediately. In turn, “NMPC” repre-
sents an actual NMPC implementation tuned for real-time feasible control.

6.2.2 Evaluation protocol

In order to guarantee comparability of the results of the computational study proposed
above, we additionally propose a standardized evaluation scheme. Therefore, we first
define some notations and introduce some methodology required for the evaluation.
Second, we define the quantities of interest, derive a detailed workflow on how to apply
the computational study.

142

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

I
Optimal
reference
solutions

(no uncertainties)

II
Frozen

methods
(structural

uncertainties)

III
Adaptive
methods

(parametric
uncertainties)

MHE

Ideal
system

An ideal
system with

known
parameters

A system
with

unknown
parameters

NMPC
(iNMPC)

Baseline
(OC) RL

+5% of online
learning

NMPC
(iNMPC)

Baseline
(OC) RL

NMPC-
adapt

(iNMPC-
adapt)

Baseline
(OC) RL

An ideal
system with

known
parameters

RL-adapt

A system
with

unknown
parameters

Figure 6.1: Overview of the computational study to assess the performance of NMPC and RL in the
presence of structural uncertainty from our article [103]. Step I corresponds to a verifi-
cation of state and control trajectories when problem formulations are equivalent for
optimal control (OC), nonlinear model predictive control (NMPC) and reinforcement
learning (RL). In steps II and III uncertainties of a varied magnitude are introduced.
In the former case “NMPC”, “iNMPC” and “RL” are not equipped with an adaptation
mechanism while in the latter case they are. In “NMPC-adapt” and “iNMPC-adapt”
adaptation is accomplished by means of moving horizon estimation (MHE), and for
“RL-adapt” we allow 5 % of additional interaction with the real system.

Notations and methodology

As summarized in Figure 6.1, we use the “OC” notation to denote the optimal solution
obtained by offline optimal control. The cost of this solution serves as a baseline for all
subsequent methods. As structural uncertainties, we consider uncertainties that originate
from the lack of knowledge about the true physics of the underlying dynamic system.
Examples in walking robots might include model-plant mismatch due to uneven floor,
friction in joints, softness of the ground, etc. Being unaware of possible uncertainties in a
system, the following three frozen methods are not explicitly equipped with an ability to
adapt to the system:

143

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

• “iNMPC” denotes an ideal NMPC controller that neglects computational time con-
straints and returns an optimal control signal immediately.

• “NMPC” denotes an NMPC controller tuned to real-time performance for the spe-
cific task.

• “RL” denotes an RL controller that plays the optimal policy π∗ after having learned
on an ideal system.

Neither “iNMPC” nor “NMPC” apply MHE for state and parameter estimation.
As parametric uncertainties, we consider parameters which are included in the dynamic

model of the system and whose values are not known a priori, but can be inferred from
interactions with the real system, i.e., the parameters are observable. Accordingly, by
the term adaptive we denote methods that have (in the case of NMPC) been explicitly
equipped with knowledge about the uncertainties and an algorithm to adapt to them, or
that are (in the case of RL) given additional time to interact with the system:

• “iNMPC-adapt” denotes a controller of a combination of both MHE and NMPC. The
controller is able to estimate a specified unknown parameter of a model and adjust
its control signal accordingly.

• “NMPC-adapt” denotes a combination of both MHE and NMPC tuned to real-time
performance for the specific task.

• “RL-adapt” denotes the RL controller that is initialized using the optimal policy π∗
learned by “RL” on the ideal system. To cope with uncertainties in the system, we
allow “RL-adapt” to learn for an additional small number of episodes, c.f. Table 6.1.

Note that the NMPC approach requires explicit specification of the parameters to be
estimated in the model, while RL can cope with them without explicit consideration.

Description of experiment and measures

For the benchmark problem, we provide a comprehensive comparison of the described
methods for an ideal system, and for a system with structural and parametric uncertainties.

First, we investigate whether the three frozen methods produce similar trajectories on
our benchmark system. For that we employ the coefficient of determination, R2, as a
similarity measure of trajectories. The measure quantifies the deviation of the trajecto-
ries obtained by “RL”, “iNMPC”, and “NMPC” from an optimal trajectory. Denoting a
trajectory ζ as a sequence of states and controls, ζ = {ζk}, 0 6 k 6 K and ζk = [xTk ,u

T
k]T , we

measure similarity between corresponding components by means of R2. Formally, the R2

measure is defined as

R2 = 1−
∑K
i (ζ‡i − ζOC

i)2∑K
i (ζ‡i − ζ̄)2

, ζ̄ =
1
K

K∑
i

ζ
‡
i ,

where ‡ is a wildcard for one of {“RL”, “RL-adapt”, “iNMPC”, “iNMPC-adapt”, “NMPC”,
“NMPC-adapt”}. For the “RL” method, which exhibits variability in trajectories, we com-
pute both the R2 measure of the mean trajectory, and the mean of R2 values obtained
across individual trajectories.

Second, after the similarity of the methods is verified, we employ regret as a measure to
evaluate the performance of the methods against uncertainty ∆Θ. This measure is com-
monly used in evaluation of online machine learning and optimization methods [81, 159].
Regret quantifies the amount of additional cost which is incurred due to suboptimal
actions taken by a controller with respect to the optimal control actions. Lower values of
regret indicate a controller, whose behavior is closer to the optimal one. Since the optimal

144

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

controller has zero regret, it becomes convenient to plot regrets of the methods instead of
the direct costs.

We compute the regret R‡(ζ;∆Θ), defined as the difference between C‡(ζ), the total cost
of the method denoted by the wildcard ‡, and the baseline COC(ζ;∆Θ), i.e.,

R‡(ζ;∆Θ) = C‡(ζ)−COC(ζ;∆Θ),

where we use the NMPC cost (1.12a) for all methods directly,

C(ζ) =
K∑
i=0

γ i l(xi ,ui)∆ti . (6.2)

By means of ∆ti , we take into account the different sampling periods of the methods. Note
that all of the tested methods are unaware of the true extent of the uncertainty introduced.
Here, we pursue a generic comparison across methods and benchmarks. Therefore, we do
not include specific stability measures, but rather stick to a general notion of the cost of
trajectories.

Due to the stochastic nature of RL, we plot a mean value of the regret averaged over 50
runs. If a run for a given uncertainty ∆Θ is prematurely terminated due to the violation
of constraints, then the corresponding value is not drawn.

6.3 Combining Model-free and Model-based Optimal Control

In this section, we present our efforts on combining RL and NMPC in one framework as
shown in [104]. This combination enables RL to gather the required experience while
using a model-based controller as support to avoid situations. Here, we apply NMPC as
model-based nominal controller because of the complexity of the robot. The gathered
experience is used by RL to compensate for the difference between the internal model of
the system and the real one. For this, we have to introduce a different problem formulation
that incorporates this uncertainty.

6.3.1 Problem Formulation

In contrast to the ordinary differential equation (ODE) introduced in Section 1, here, we
consider the nonlinear time-invariant system in the form of

ẋ(t) = f (x(t),u(t),%), (6.3)

where x(t) ∈Rnx is the system state at time t, u(t) ∈Rnu is the control vector of joint motor
voltages applied to the system at time t, and % is an unknown structural uncertainty. The
presence of uncertainty causes the model-plant mismatch e which is formulated as the
difference between the real system state x and the simulated state of the model x̂, see
Figure 6.2b. We do not make any assumption on how the uncertainty enters the equations.
Thus, it represents the general concept of model-plant mismatch.

6.3.2 Proposed Combination Schemes

In Figure 6.2, the two derived approaches are shown. The first approach learns a com-
pensatory control action as depicted in Figure 6.2a, similar to [8]. We call this approach

145

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

RL

NMPC System

x̄

xû

uRL

u+
+

(a) Compensatory action learning (CAL)

RL

NMPC System

Model

x̄

x

x̂

û

uRL

e

u+
+

+
−

(b) Model-plant mismatch learning (MPML)

Figure 6.2: Visualization of two possible combination schemes of reinforcement learning (RL) and
nonlinear model predictive control (NMPC) from our article [104].

compensatory action learning (CAL). Instead of a proportional-derivative (PD) controller,
we use NMPC, which introduces an additional optimization problem into the scheme.
Since both NMPC and RL optimize similar performance measures, the obtained policy is
optimal with respect to the real system.

The second approach learns a compensatory signal from the difference of transitions
predicted by the internal model and the actual transition, as depicted in Figure 6.2b.
In this case, RL uses a different optimization goal, which does not divert NMPC from
reaching its objective. As a result, the model-plant mismatch is eliminated by forcing
the real system to behave as if it has no uncertainties. This approach is denoted by
model-plant mismatch learning (MPML).

Compensatory Action Learning

In the proposed combination schemes shown in Figures 6.2a and 6.2b, we use û notation
for the output of the NMPC controller and uRL notation for the output of the RL controller.

The CAL approach presented in Figure 6.2a learns a compensatory control action added
to the control input computed by nominal NMPC. For learning, we use the NMPC-inspired
reward (6.1), which establishes similar optimization goals for both controllers. Due to
small differences in the formulation and function approximations in RL, the obtained
policy might be suboptimal compared to NMPC.

Model-plant Mismatch Learning

The MPML approach is presented in Figure 6.2b. The real system is actuated by the RL
compensatory signal uRL which is added to the nominal controller signal. RL maximizes
return (6.1) where the reward is given by

r(xk ,uk ,xk+1) = −‖ek+1‖2 = −‖xk+1 − x̂k+1‖2. (6.4)

146

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

In the following, we prove two theorems. The first one explains the behavior of the
system when the model-plant mismatch is minimized by RL. The subsequent corollary
considers the case when the cumulative return (γ > 0) is useful for discovering a better
control policy. The second theorem specifies conditions under which the system retains
the Markov property. If the property is preserved, then RL will not diverge, and the
mismatch can be minimized. In this case, the performance depends on the RL learning
capability.

Theorem 6.1 The outcome of the control policy approaches the outcome of the optimal policy
with respect to the idealized model iff the model-plant mismatch ek → 0 when k→∞. 4

Proof Writing the mismatch as ek = xk − x̂k → 0 results in xk → x̂k . Assuming the nominal
controller can reach the setpoint on the model, x̂k → x̄k , implies that the system state will also
approach the setpoint, xk → x̄k . Since the mismatch ek is minimized in every point of the reference
trajectory x̄k , we arrive at the proof of the theorem. The same logic holds for the reverse. �

Corollary If there is a time step k such that ek , 0 ∀uk , then minπγ=0 ` >minπγ>0 `, where πγ is
the policy optimal with respect to Rγ . Strict equality holds when the mismatch is eliminated along
the reference trajectory. 4

The corollary is based on the RL result that larger γ improves the quality of the policy [80].
However, if there exists a control action which achieves zero mismatch, then maximizing
immediate rewards (γ = 0) is desirable because the problem becomes computationally
easier.

In the following theorem, we assume that the system (6.3) can be discretized as xk+1 =
f (xk ,uk ,%) and the setpoint x̄ can be included into the state x for simplicity.

Theorem 6.3 The system controlled by the nominal controller is Markov with respect to RL if
(a) the system itself is Markov w.r.t. RL, xk+1 = f (xk ,uk ,%);
(b) the internal model is Markov w.r.t. the nominal controller, x̂k+1 = f (xk , ûk ,0); and
(c) the nominal controller response ûk ≡ û(xk) +m, m ∼M is stochastic with some stationary

distributionM. 4

Proof First, by looking at Figure 6.2b we write the condition (a) and show that the distribution of
states xk+1 is defined by the current state xk

xk+1 = f (xk , ûk +uRL
k ,%)

= f (xk , û(xk) +π(xk) +m+n,%).
(6.5)

Next, we show that the reward is also defined by xk .

r(xk ,uk ,xk+1) = −‖xk+1 − x̂k+1‖2
= −‖xk+1 − f (xk , û(xk) +m,0)‖2

. (6.6)

The expected return averages the sum of discounted rewards over the distribution of states and
controls. Since both the dynamics and the return are predictable from the current state xk , we
conclude that the system controlled by the nominal controller is Markov with respect to RL. �

Note that the real system does not have to be Markov with respect to NMPC, which means
that any uncertainty % can be compensated. We use this observation in the real example
where % depends on motor temperature which does not enter the model, but is used in RL
as an extra state variable.

147

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

mM

mm

CM

Cm

x

y

0

l

s

φ

Fs

Figure 6.3: The inverted pendulum on a movable cart from our article [103].

In the special case of an affine system (6.3) with respect to controls, xk+1 = f x(xk ,%) +
f u(xk ,%)uk , a perfectly learned RL control, i.e., e = 0, is explicitly given by

uRL
k =

(
f u(xk ,%)>f u(xk ,%)

)−1
f u(xk ,%)>[f x(xk ,0)

− f x(xk ,%) + (f u(xk ,0)− f u(xk ,%)) ûk],
(6.7)

where f x(xk ,%) ∈Rnx×1 and f u(xk ,%) ∈Rnu×nx are terms independent of uk. As expected,
the control uRL captures the model-plant mismatch caused by %.

6.4 Results

In the following sections, we show the results obtained from the investigation of the
comparability of RL and NMPC in the form of benchmarking scenarios as well as their
beneficial combination. In Section 6.4.1, we present the results obtained from bench-
marking methods of NMPC and RL as presented in [103]. Here, the computational study
proposed in Section 6.2 is applied on a benchmark example in the form of swing-up and
balance task for a cart-pendulum.

In Section 6.4.2, we present the results of our work on combining methods of RL and
NMPC. Here, we investigate the effect of the two proposed schemes of Section 6.3 on a
squatting task of the robot Leo in simulation. Following this, the superior combination
scheme is then additionally evaluated on the robotic platform.

6.4.1 Benchmarking Results on the Cart-pendulum Model

In the following section, we present the results obtained in our journal article [103]. We
follow the proposed computational study and apply it to a common benchmark problem
in the form of a swing-up and balancing problem for a cart-pendulum system [7, 95].
Our choice of this benchmark problem is motivated by the fact that main features of
passive dynamic walking can be modeled by an inverted pendulum [183]. The same
equivalence holds for the upper body of a more detailed model of a bipedal walker. The
study presented in this sections highlights the differences in performance of NMPC and
RL under structural and parametric uncertainties for this benchmark problem.

Cart-pendulum Model

The two-dimensional benchmark example studied in this article is a pendulum attached
to a cart [7, 95], which is shown in Figure 6.3. The system consists of a cart with mass mM

148

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

and a pendulum that is attached to the cart’s center of mass CM.
The pendulum is a point mass mm attached at the end of a massless rod of length l.

The system has two degrees of freedom, namely the linear motion of the cart along the
x-axis, described here by the coordinate s ∈ R, and the rotary motion of the pendulum
with respect to the cart, described by the angle ϕ ∈R. The only actuation is realized by a
horizontal force fs ∈R acting on the cart body.

The system’s state is given as x = [s,ϕ, ṡ, ϕ̇,]T ∈R4. Here, s, ṡ ∈R denote the cart position
and velocity, and ϕ,ϕ̇ ∈R denote the pendulum’s angle and angular velocity, respectively.
The control u = fs is the force acting on the cart body.

In an ideal scenario, both the cart and the pendulum can move without friction along
their respective degrees of freedom. For our second and third experiment, we employ
uncertainty in the form of viscous friction at the rotary joint, i.e., in the pendulum joint
bearing. This produces an internal torque τϕ = −κµϕ̇ applied to the pendulum, where
κ is a coefficient that depends on the configuration of the rotary joint, and µ is a viscous
friction coefficient. Depending on whether or not this friction is included in the model,
uncertainty in friction can be considered as a parametric or as a structural uncertainty.

By summarizing the positions, velocities and accelerations in q = [s,ϕ]T , q̇ = [ṡ, ϕ̇]T and
q̈ = [s̈, ϕ̈]T , the forward dynamics are given by q̈ = (H (q))−1 (τ − c(q, q̇)), where H ∈R2×2 is
the system’s mass matrix and c contain Coriolis, centrifugal, and gravitational terms and

τ =
[
fs, τϕ

]T ∈ R2 denotes the actual actuation consisting of the one for the cart and for
the pendulum.

We use the Rigid Body Dynamics Library [49, 50] for the efficient evaluation of the
system’s forward dynamics using the Articulated Body Algorithm (ABA) from [48]. The
respective dynamic system in the form of an ordinary differential equation (1.12c) and
initial values (1.12d) is then retrieved from the forward dynamics.

For simulations, we use the following parameters:

mM = 10.0kg; mm = 1kg; l = 0.5m; 0s 6 t 6 5s.

The cart and the pendulum are subject to simple constraints that enforce limits on the
cart position and applicable force

−2.4m 6 s(t) 6 2.4m, −150N 6 fs(t) 6 150N.

In the experiment with unknown viscous friction coefficient, the internal torque in the
rotary joint of the pendulum is τϕ = −κµϕ̇. We choose κ = 1m3, and vary µ in the range

0.0Nsm−2 6 µ 6 0.2Nsm−2.

Problem Formulation

In this section, we provide formulations of the objective function used in the OC, NMPC
and RL problems.

We investigate control scenarios for swing-up motions of the cart-pendulum system from
the given initial state x(0) = [s(0),ϕ(0), ṡ(0), ϕ̇(0)]T = [0,π,0,0]T , which implies the system
starts from rest, with the cart in the origin of the coordinate system and the pendulum
pointing downwards. The goal of the task is to swing the pendulum up and to drive the cart
back to the origin, i.e., to reach the final state x(T) = [s(T),ϕ(T), ṡ(T), ϕ̇(T)]T = [0,0,0,0]T .
This is realized for both the OC and the NMPC problem by the Lagrange term in the

149

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

objective function

l(x(t),u(t)) = ‖x(t)− x̄(t)‖2W + ‖u(t)‖2V , (6.9)

as defined in (1.12a), where the weights W = diag(1,0.5,2,0.2) and V = diag(0.0005)
were chosen to scale the state elements to approximately the same range. Setpoint
x̄ ≡ [0,0,0,0]T is set according to the definition of the task. The benchmark constraints
defined in Section 6.4.1 can be directly formulated as path constraints (1.12f) on both
states and controls, while the prediction horizon of the NMPC controller is a subinterval
of the problem horizon.

The discount rate γ , which is necessary for solving a continuing task in RL, affects
the obtained RL solution. Therefore, to make the NMPC and RL results comparable,
we include the same discount rate value into the objective function of OC and NMPC.
The effect of the discount on the NMPC formulation is that it increases the focus on the
beginning of the horizon by providing a weighting over time, i.e., the further the event
lies in the future of the horizon, the less it will be considered for the computation of the
optimal behavior.

To allow solving the control problem in real-time using NMPC alone and together
with MHE, the problem formulation has to be adapted for the current algorithmic setup
in the optimal control software package MUSCOD-II [109, 110]. Due to the nonlinear
behavior of the cart-pendulum system, a control rate of at least 40Hz has to be chosen to
generate sufficient contraction in the real-time iteration scheme and to enable the standard
structure exploitation for the sequential quadratic programming method. However, this
increases the number of shooting nodes and the computational time. A sweet spot in
performance is obtained by using a horizon of 3s.

In RL, we construct the reward from the same Lagrange term (6.9), but we additionally
add a negative reward and a shaping function S(xk ,xk+1):

r(xk ,xk+1) =
{ −1000 if xk+1 ∈ Xa,
−l(xk+1,uk) + S(xk ,xk+1) otherwise,

(6.10)

where Xa is a set of absorbing states that lie outside of the cart’s position constraints
defined in Section 6.4.1.

The shaping function denoted by S(xk ,xk+1) leaves the target objective unchanged
but allows to reduce steady-state error. Due to the quadratic terms in the definition of
l(xk+1,uk), rewards become small for balancing states where all elements of the state are
close to zero, except possibly the cart position sk . This effect has previously been described
in [41], where authors noticed that the quadratic reward, the L2-norm, penalized large
velocities much more than small steady-state errors. They solved the issue by showing that
the absolute value reward, the L1-norm, yielded a response with negligible errors. This
solution is not directly applicable here, because our aim is to obtain results as similar to OC
as possible, which uses a quadratic cost function. Instead, inspired by [41], we introduce a
potential-based shaping function [135] encoded as S(xk ,xk+1) = γΨ (xk+1)−Ψ (xk), where
Ψ (xk) = ψ‖Wxk‖1 is the sum of absolute values of weighted state elements multiplied
by a shaping weight ψ. The purpose of this shaping function is to provide a stronger
guidance towards x = [0,0,0,0]T in the region of the state space where the quadratic
reward function fails to do so.

150

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

0.069 0.075 0.079 0.063 0.058 0.065 0.066 0.055 0.065 0.054 0.054

19.88 19.85 19.80
*

19.77
*

19.76
*

19.88 19.80
*

19.99 20.04 20.28

*

20.59

*

ψ

ψ

|s
|(

m
)

C
(ζ

)
∆

t

0

0
0

0.05

0.10

21

5

5

10

10

15

15

20

20

20

25

25

30

30

35

35

40

40

45

45

50

50

Figure 6.4: Influence of the shaping function on the results of the “RL” method from our article
[103]. Top: absolute error in the cart position at the end of an episode depending on
the weight ψ of the shaping function. Bottom: total cost of the trajectory. Shaping
is not used for ψ = 0. Numbers inside of the bars show the mean value of the error
averaged over 50 independent runs, while the error bars show the upper and lower
95% confidence limits. Statistically significant result, for which the p-value is less than
0.05, are marked with ? above the bars.

Effect of shaping in Reinforcement Learning The results of the effect of the shaping
weight ψ on the cost are presented in Figure 6.4. According to the graph, for a shaping
weight of up to 20, the total cost reduces, and then starts increasing again. Note that the
total cost is calculated using (6.2), which does not include the shaping weight ψ. The error
in position is more volatile, but one may notice that it gets smaller for higher shaping
weights. We selected ψ = 20, because our primary goal was to reduce the total cost and
accept a moderate steady-state error.

It is possible to include hard constraints directly into the OC formulation by (1.12f).
However, in the RL formulation, they have to be reformulated as soft constraints, which is
done by including them directly in the reward function in the form of a negative reward
as described in (6.10). This essentially changes the original optimization problem by
introducing a trade-off between receiving positive rewards and avoiding negative ones.
For example, once a very large negative reward is received, it will force the system to never
violate this constraint again, even at a price of obtaining lower positive rewards. On the
contrary, a small negative reward will allow infrequent violation of the constraint, which
will slow down learning and may even damage a real-world system. In this benchmark
example, the trade-off has a mild effect, because the cart position constraints are rather
loose. While constraints are violated a few times in the process of learning, the final result
is free of constraint violations.

For the cart-pendulum benchmark, the optimal combination of parameters can be
found in Table 6.1. For NMPC, the tolerances were chosen according to best practices,
the horizon length as well as the sampling period were chosen such that “iNMPC” uses
the same formulation as “OC” and that “NMPC” computes feedback in less than 5 ms.
The discount rate γ was chosen according to the RL formulation. For RL, we found the
parameters using an exhaustive grid search. It generated tuples of candidate parameters by
selecting them from a set of predefined parameter values commonly used in the actor-critic
literature, c.f. [62].

For the RL policy and value function approximation, we used tile coding with 16
tilings, each of size [2.5,0.1π,2.5,0.5π]T . However, pendulum states close to the state
x = [0,0,0,0]T ∈ Rnx require a finer resolution of the function approximator. Therefore,

151

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

Table 6.1: Parameters of OC, NMPC and RL formulations for the cart-pendulum problem from
our article [103]. The first group of parameters is relevant to OC and NMPC, where
the value in brackets is given for real-time NMPC. The second group of parameters is
relevant only to RL.

Parameter Value

OC/NMPC:
Horizon length T 5s (3s)

Discount rate γ 0.99

Sampling period T OC/NMPC
s 0.05 s

KKT-Tolerance 10−7

Integration accuracy 10−6

RL:
Episode length T 5 s

Discount rate γ 0.99

Sampling period T RL
s 0.05 s

Number of learning episodes 2.0 · 105

Additional learning episodes 5%

Eligibility discount rate 0.65

Exploration variance Σu 0.004u2
max

Critic learning rate αc 0.10

Actor learning rate αa 0.01

before projecting a state on the tiles, we rescale each state element to the interval [−1,1],
and then apply a squashing function with the parameter % = 5:

Ω(xj ,%) =
(1 + %)xj

1 + %|xj | , ∀j ∈ {1, . . . , nx} ,

where xj denotes a scaled element. This effectively controls resolution by a multiplier that
varies continuously, from (1 + %)−1 in the downward position of the pendulum, to 1 + % in
the balancing state x = [0,0,0,0]T .

Results on the Cart-Pendulum

In order to assess the similarity of the frozen methods, we analyze their performance for
the cart-pendulum system without uncertainties. The resulting trajectories and the R2

measure results are shown in Figure 6.5 and Table 6.2, respectively. All three methods
show a qualitatively similar behavior and are successful in swinging the pendulum up and
balancing it there. An overall similarity between “RL” and “iNMPC” of more than 90.3%
was achieved in terms of the R2-measure. Comparing the R2 values of a mean trajectory
with the mean of R2 values of the individual trajectories of “RL”, we observe that the mean
trajectory is closer to “iNMPC”, while the individual trajectories exhibit some variability
around their mean. The control trajectories fs of “iNMPC” and “RL” differ in a small

152

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

“RL” “iNMPC”/“OC”“NMPC”

t (s)

t (s)

t (s)

t (s)

t (s)

φ
(r

a
d
)

φ̇
(

ra
d

s−
1
)

s
(m

)
ṡ
(

m
s−

1
)

F
s
(N

)

0.0

0.0

1.5

200

−200

5

5

5

5

5

4

4

4

4

4

4

4

3

3

3

3

3

2

2

2

2

2

2

1

1

1

1

1

0

0

0

0

0

0

0

0

−2

−4

−0.8

−1.5

−3.0

−8

Figure 6.5: State and control trajectories obtained by the frozen methods for the cart-pendulum
system without uncertainties from our article [103]. For “RL” the mean and standard
deviation of 50 trajectories is shown. Y -axes variables s, ṡ denote the cart position and
velocity and ϕ,ϕ̇ are the respective quantities of the pendulum. fs is the force acting
on the cart body.

153

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

Viscous friction coefficient ∆Θ = µ
(
N s m−2

)

R
eg

re
tR
‡ (

∆
Θ

)

0 0.05 0.10 0.15 0.20
10−4

10−3

10−2

10−1

100

101

“RL”
“RL-adapt”
“NMPC”
“NMPC-adapt”
“iNMPC”
“iNMPC-adapt”

Figure 6.6: The graph of regrets, from our article [103], for the cart-pendulum system comparing
performance of described methods against the optimal solution. The means with the
upper and lower 95% confidence limits are shown for controllers with a stochastic
component (50 samples per viscous friction coefficient were used). To indicate the
scale of the plot, we employ three filled markers at µ = 0Nsm−2 that correspond to the
trajectories. A further reference for interpretation of the scale: If the cart stood still
and the pendulum hung down, then the regret of the solution would be equal to 11.73.

154

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

Table 6.2: Similarity of the cart-pendulum trajectories in terms of the coefficient of determination
(R2) from our article [103]. For RL we first report similarity of the mean trajectory, and
second we report the mean of R2 values.

Methods s ϕ ṡ ϕ̇ fs

“RL”- “OC”, R2 mean
trajectory

(%) 98.1 99.8 96.4 98.4 92.9

“RL”- “OC”, mean R2 (%) 93.9 99.8 95.3 98.2 90.3

“NMPC”- “OC” (%) 56.6 98.6 66.7 86.9 48.2

“iNMPC”- “OC” (%) 100.0 100.0 100.0 100.0 100.0

time delay and are otherwise comparable. However, after approximately 1.0 s, we find
that “RL” demonstrates variability between control trajectories compared to “iNMPC”.
Due to differences in control actions, the state trajectories start to differ slightly after
approximately 0.5 s and recover from that after approximately 2.0 s; only the “RL” cart
position s remains to show small steady-state errors. “NMPC” results deviate more from
“iNMPC”, and an overall similarity of approximately 48.2% was achieved in terms of the
R2-measure.

Next, we show the behavior of both frozen and adaptive methods under the effect
of uncertainties. Simulation results against variations of the friction parameter µ are
shown in Figure 6.6. In the absence of friction, “iNMPC” does not reach zero regret
due to numerical approximations. All of “RL”, “iNMPC” and “NMPC” show a similar
asymptotic behavior in reaction to the variation of the friction coefficient. “iNMPC” shows
the lowest regret for low values of viscosity and “NMPC” regret is the largest. Larger
values increase the regret, and for the value of µ = 0.09Nsm−2, “RL” yields a lower regret
than “iNMPC”. All three frozen methods violate the position constraints of the cart. For
“RL”, this happens at µ = 0.12Nsm−2 and for “iNMPC” and “NMPC” at µ = 0.18Nsm−2

and µ = 0.19Nsm−2, respectively.

The adaptive methods, “RL-adapt”, “iNMPC-adapt”, and “NMPC-adapt”, show a dif-
ferent reaction to the variation of the friction coefficient. Both “iNMPC-adapt” and
“NMPC-adapt” show a constant performance under the effect of the variation of friction.
Note the logarithmic scale in Figure 6.6; the variances in performance of “iNMPC-adapt”
and “NMPC-adapt” are similar, but appear differently due to the logarithmic scale.
“RL-adapt” performs better than “NMPC-adapt” for smaller uncertainties of a value of
up to 0.07Nsm−2 and is then outperformed by NMPC. “RL-adapt” regret is an order of
magnitude higher than the regret of “iNMPC-adapt”, and the RL performance deteriorates
with higher friction. For friction coefficients larger than 0.09Nsm−2, “RL-adapt” shows a
much higher variance in regret than for lower friction.

Comparing “RL-adapt” with the frozen method “iNMPC”, the graphs show that “iNMPC”
cannot compete with RL after the break-even point at 0.04Nsm−2. This viscous fric-
tion coefficient value corresponds to 6.1% of the difference in energy consumed by the
ideal (0.00Nsm−2) and disturbed (0.04Nsm−2) system. Compared to all three frozen
methods, “RL-adapt” performs much better after the break-even point, and the gap grows
with larger uncertainties.

A summary of the main results of comparison is presented in Table 6.3.

155

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

Discussion

Our results demonstrate that, with a proper formulation of the optimal control task, it
is possible to obtain similar results for the three frozen methods on an ideal system.
For the cart-pendulum benchmark example, a good similarity between “RL”, “OC” and
“iNMPC” was achieved. However, for “NMPC”, the expected deviation from the optimal
solution due to the tuning towards a real-time feasible controller is shown in Figure 6.6.
This is a consequence of the implementation and not of the approach. A speed-up
of the implementation by using a multi-level real-time iteration scheme [14, 96], by
using a state-of-the-art sequential quadratic programming method tailored for multiple
shooting [79] and replacing the quadratic program solver [154] could address the current
time limitations. With a speed-up of the computations, a theoretical coverage of the area
between the curves of “iNMPC” and “NMPC” is therefore possible. This will however
not influence the already found break-even points, because the asymptotic behavior of
the frozen NMPC methods is determined through “iNMPC” as the best possible outcome.
Considering this, only an improvement for smaller variations of the friction coefficient is
to be expected.

The adaptive methods successfully avoid constraint violations and substantially reduce
regret compared to their frozen counterparts over the whole range of viscous friction
coefficients. Interestingly, when the coefficient is not present in the system or has low
values, “iNMPC-adapt” results in a higher regret than “iNMPC”, and the same holds for
the fast versions of NMPC. The reason for this is that the combination of NMPC and
MHE in the form of “iNMPC-adapt” and “NMPC-adapt” starts with an initial guess of
the parameter that is adapted during the actual run of the system. Any mismatch between
measurements and values predicted by the model will lead to adaption of the parameters
in MHE. This is a crucial difference to RL, which adapts to the uncertainty through
multiple trials prior to an assessment run, while NMPC is unaware of the mismatch at
first. The cart-pendulum task is very sensitive to changes during movement initiation.
Therefore, a wrongly identified parameter in the beginning can already cause substantial
differences in terms of regret, which is seen in Figure 6.6. This effect is amplified for
“NMPC-adapt” through the mentioned performance loss due to the real-time feasibility
tuning.

In the absence of uncertainties, “iNMPC-adapt” performs superior to both “RL” and
“RL-adapt”. This does not come as a surprise, as NMPC methods were running offline,
they were using the model of the correct system and, moreover, the uncertain parameter
was defined explicitly. However, “iNMPC” outperforms RL methods only for small values
of uncertainties. In case of medium and large uncertainties, there exist break-even points
after which “RL” and “RL-adapt” obtain lower regret. We remark that the estimation of
the difference between ideal and uncertain systems in terms of energy is ad-hoc, and more
generic measures for model uncertainties should be used in the future.

In the non-ideal setting, the performance of NMPC becomes comparable to RL. Nonethe-
less, one cannot directly report similarity of “NMPC-adapt” and “RL-adapt”; while regret
of “NMPC-adapt” is almost constant for the whole range of uncertainties, the regret of
“RL-adapt” significantly increases. The explanation for this effect is twofold. First, for any
value of uncertainty, “RL-adapt” was learning for a fixed additional 5 % of time. The larger
the value of uncertainty, the more time “RL-adapt” requires to adapt to a new parameter
value. This can be supported by the fact of an increasing variance of RL regret, which
indicates that the actor-critic algorithm simply did not have enough time to converge
in areas of high uncertainties. Second, for large uncertainties, it might be necessary to

156

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

Table 6.3: Summary of results of the comparison of RL and NMPC from our article [103].

Category Findings

Achieved similarity of “iNMPC” and “RL” methods on
the ideal system

more than 90.3%

Break-even point: the difference in energy consumed
by ideal and noisy systems after which “RL-adapt”
performance becomes better then “iNMPC”

6.1%

Best performing algorithm under parametric
uncertainties

“iNMPC-adapt”

Best performing algorithm under structural
uncertainties

“iNMPC” before the
break-even point and
“RL-adapt” after the
break-even point

significantly change the control strategy, i.e., to learn a new policy rather than adapt an
ideal one. This will probably require more learning efforts, to first unlearn the initial
policy, and then to learn a realistic one.

Several issues were encountered while formulating the benchmark problem with the
aim of obtaining identical results. These issues are known to OC and RL communities,
but, to the best of our knowledge, they were never explained in the same context before.

Issues related to Optimal Control
1. In contrast to RL, derivative-based methods of optimization to solve the discretized

OC problem require a continuously differentiable formulation of the problem.
2. The performance of the ideal NMPC-MHE combination (“iNMPC-adapt”), for which

computational time was neglected, is one order of magnitude better in terms of
regret than the corresponding real-time version, mainly caused by a shortened
prediction horizon used in the latter.

Issues related to Reinforcement Learning
1. In this work, we use a model-free RL method, which means that the transition model

of a system is unknown a priori.
2. Learning a solution with a quality comparable to OC takes many episodes.
3. Constraints in the original OC problem are included into the RL formulation by

means of negative rewards received for violating the constraints.
4. For the benchmark example, the OC objective function has been modified. Formu-

lating a reward function by simply negating the OC objective results in a) a very
slow learning in cases when no negative reward is used, b) an inability to learn or
even a divergence of the value function if γ = 1.

5. For symmetrical problems, RL can use state space reduction techniques. For example,
for the cart-pendulum example it is possible to wrap the pendulum angle to the
[−π,π) interval, which results in two equally possible optimal trajectories under our
objective function. OC generally does not allow implementation of such techniques
if they violate the smoothness assumptions.

6. When learning with a quadratic objective function, which is often used in OC, it is

157

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

useful to implement learning techniques that are able to reduce steady-state error
while leaving the objective function unchanged, for example reward shaping.

The presented quantitative comparison is particularly important for our future plans
of combining RL and NMPC to control a more complex system with a high number of
degrees of freedom. One possible combination could be that RL learns a real model for
NMPC, while NMPC provides a backup of a RL exploratory policy. Another scheme could
be that RL receives a control signal from NMPC as a suggestion. Initially RL passes this
suggestion to the actuators, but at a later stage it takes over in state space areas where it is
confident. Independently of the chosen combination strategy, for value function-based
RL it is important to retain the Markov property, which may impose restrictions on the
NMPC controller as well. For example, such RL methods usually avoid time as a state,
hence, the trajectory-tracking NMPC should not be used in the suggestion-based scheme.

6.4.2 Results on Model-plant Mismatch Learning

In the following Section, we present the results obtained in [104]. First, an in-depth
comparison of the proposed combination schemes of RL and NMPC as presented in
Section 6.3 is performed. Here, a dynamic model of Leo robot is employed to validate
the hybrid control strategies to a squatting task in simulation. The simulation results are
complemented with an experiment on the real robot demonstrating the advantage of our
proposal in the presence of temperature- and torque-dependent Coulomb friction.

Experimental Setup

The robot under consideration is the robot Leo of TU Delft. We refer to Section 1.2.3 for
the details concerning the robot. We only recall the fact that the gearboxes in the motors
are subject to Coulomb friction dependent on motor temperature and torque. This friction
represents the dominating factor causing model-plant mismatch.

The task of reaching upper and lower setpoints which together realize a squatting
motion is the same as presented in Section 5.5.3. Therefore, we recapitulate the most
important aspects.

The robot state x = (ϕ , ϕ̇ ,p, τknee)> is defined as a vector of all but the shoulder joint
angles ϕ , corresponding angular velocities ϕ̇ , setpoint height p ∈ {0.28m,0.35m} and
mean temperature of knee motors τknee.

Exploiting the symmetry of Leo, we apply the same control voltages to both legs. The
shoulder is actuated using a PD controller. The setpoints are switched over when the
robot root point appears to be within ±0.01m away from it. In the simulated experiment,
we add shoulder angle and velocity to the state and the shoulder voltage is learned. The
robot is initialized in a setpoint chosen randomly at the beginning of every episode. The
idealized model is made such that no friction in joints is present. For the realistic model,
we add Coulomb friction ufr = −0.2tanh(2000ϕ̇) in all joints.

The control delay of 13.0± 1.7ms comprises measurement, computation and actuation
delays. A sampling period of 33.3ms is chosen to be larger than the control delay.

Objective Function and Constraints Here, the NMPC objective function (1.12a) is

l(x,u) = 0.05(h(ϕ)−p)2 + 0.10(c(ϕ)− x̄c)2

+ 0.05(pose(ϕ)− 0.3)2 + 0.003 ϕ̇>ϕ̇ ,
(6.11)

158

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

where the first term accounts for the vertical distance h(ϕ) to a setpoint p, the second term
maintains the horizontal position of the center of mass c(ϕ) close to predefined value x̄c,
the third term containing pose(ϕ) = ϕankle +ϕknee +ϕhip is used as a regularization term
improving the stability of the robot, and the last term favors small velocities.

The cost of some discretized trajectory x0,u0,x1,u1, ... obtained using policy uk = π(xk)
is denoted as ` =

∑
k l(xk ,uk).

We formulate static stability as a constraint g(x,u) = (xt − c(ϕ), c(ϕ)− xh)>, where xt, xh
denote the position of the tip and the heel of robot feet. Additionally, robot angles and
controls are subject to constraints

−1.57
−2.53
−0.61

 6 ϕi 6

1.45
−0.02
2.53.

{|ui |, |ûi |, |uRL

i |} 6 10.0V

i ∈ {ankle,knee,hip}

For the MPML approach the reward (6.4) is calculated based on the joint angles
r(xk ,uk ,xk+1) = −‖ϕk+1 − ϕ̂k+1‖2.

Parameters The time horizon T for NMPC optimization is selected to be 1s. One
learning or testing episode lasts for 15s. Advantage, critic and actor learning rates are
chosen to be 0.01, 0.10 and 0.01, respectively. Additional parameters include discount
rate γ = 0.97, and an eligibility trace decay rate of 0.65. We rely on NMPC to avoid falls of
the robot, therefore negative reward R a is not used.

Exploration is achieved by Ornstein-Uhlenbeck noise model ∆uk+1 = 0.5∆uk +N (0,σ)
with σ = 0.005. For the real experiment, we select a higher advantage learning rate and
increased exploration.

Evaluation

For quantitative assessment, we evaluate objective (6.11) separately for reaching upper
and lower setpoints `{u,l} =

∑
l(x,u). Second, we evaluate the minimization of model-plant

mismatch (6.4) by computing the negative value of undiscounted return E{u,l} = −R1,{u,l} =∑‖e‖2 for reaching both setpoints separately. Third, we calculate root mean squared
error (RMSE) between transitions obtained by both approaches and NMPC executed on
the idealized model. Finally, to experimentally demonstrate safety barriers imposed by
NMPC, we calculate the cumulative number of falls and violation of NMPC constraints at
multiple levels of exploration noise σ for two proposed approaches and DPG.

For qualitative assessment, we calculate the number of squats the robot performs
during the testing episode. This measure should be accounted only as a learning progress
indicator since it is not included in the optimization objective.

Results in Simulation

At first, we show the performance of standalone NMPC on the idealized and realistic
models. Results, shown in Figure 6.7 and Table 6.4, demonstrate a significant difference.
On the idealized model, NMPC realizes three squats. On the realistic model, NMPC can
reach neither upper nor lower switching points, which results in the inability to squat and
high costs `. This result motivates the need for an adaptive component in the controller.
Next, we study the performance of the proposed approaches compared to the baseline
performance of NMPC. Learning was performed for 106 time steps, which was enough

159

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

0.5

1.0
NMPC

`u

CAL MPML CAL

γ = 0.97 γ = 0.97 γ = 0.99

0 5 10
0

3

6

Sq
u

at
s

0 5 10

Time (h)

0 5 10 0 5 10

0.4

0.6

0.8

`l

Figure 6.7: Learning to reach upper (top row) and lower setpoints (middle row) in simulation from
our article [104]. Number of squats is given in the bottom row. Dotted and solid lines
show learning on the idealized and realistic models, respectively. Means with upper
and lower 95% confidence limits are shown for 10 runs.

for CAL and MPML to converge, while DPG required about hundred times more steps.
Therefore, its results were excluded from the comparison.

We notice that on the idealized model the performance of both approaches becomes
slightly worse than the baseline performance of NMPC. For CALγ = 0.97, we observe
deviation from the optimal policy which is seen in the increase of ` cost. Yet, the approach
is able to keep the number of squats close to the baseline value. For MPML, costs `
do not change, however the number of squats increases by 0.5 which indicates that the
approach reaches the upper setpoint right before the episode ended. Deviation of the
learned trajectory from the idealized one is captured by RMSE which is nonzero for both
approaches. For the CAL and MPML approaches the mean RMSE is 68.6% and 91.7%
below the reference of 20.4 ± 0.2 which is RMSE of NMPC trajectory obtained on the
realistic model.

Results on the realistic model experiment show that both approaches improve the per-
formance of NMPC. The decrease of the ` cost is at least 35.2% and 41.9% for CALγ = 0.97

and MPML approaches, respectively. Looking at the number of squats, we notice that
both approaches overshoot the NMPC baseline of 3 squats and then continuously reduce
the number towards the baseline. RMSE increases comparing to the idealized model
experiment, but still remains significantly below the reference value.

To find the reason of CALγ = 0.97 performance decrease on the idealized model, we test
the approach with a discount rate of γ = 0.99. Increasing γ leads to a longer planning
horizon which makes RL return (6.1) more similar to NMPC objective (6.11). It turns
out that CALγ = 0.99 obtains lower ` costs not only comparing to CALγ = 0.97 but also
comparing to the baseline NMPC. We believe the reason of this is due to the early
switching of setpoints described above. While CALγ = 0.99 can learn this fact, NMPC is not
aware of it.

In Figure 6.8, we plot the number of falls and NMPC constraint violations accumulated

160

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

Table 6.4: Final performance of proposed combination approaches for RL and NMPC from our
article [104]. Significant width of the confidence interval is shown in brackets.

Method
`u

×10
`l

×10
Number
of squats

RMSE
×104

Idealized model
NMPC 5.2 4.0 3.0 0.0
CALγ = 0.97 5.4 4.4 3.0(0.1) 6.4(1.5)
MPML 5.2 4.0 3.5 1.7(0.1)
CALγ = 0.99 5.1 4.0 3.5 11.8(4.0)

Realistic model
NMPC 9.3 7.1 0 20.1
CALγ = 0.97 5.6 4.6 2.5 10.4(0.5)
MPML 5.4 4.1 3.2(0.1) 4.3(1.2)
CALγ = 0.99 5.4 4.1 3.9(0.2) 13.2(1.2)

Real robot
NMPC 38◦C 22.0(2.1) − 0
MPML 7.9(2.9) 4.4(1.8) 3.3(1.1) 94.9(26.5)

over 106 time steps. Here, we prematurely stopped DPG for the sake of results compara-
bility. The proposed approaches are almost identical. Both approaches prevent the robot
from falling, while constraints get violated at σ > 0.1. A different picture is seen in DPG
results. The smallest number of falls and constraint violations is achieved for the value of
σ = 0.02. Smaller σ reduces the learning pace, while larger values increase chances of fall.

MPML learns almost twice as fast as CAL and does not exhibit deviating behavior, which
are the main reasons for testing the approach on the real robot.

Results on the Real Robot

Results of standalone NMPC on Leo are shown in Figure 6.9. While on the idealized model
NMPC successfully reaches switching points, on the real robot the controller is not able
to do so. The reason is due to Coulomb friction in gearboxes, which depends on motor
temperature and the applied torque. Modeling these effects is possible but requires a
precise identification of the underlying physical processes.

To circumvent this problem, we apply the proposed MPML approach. In Figure 6.9,
results of three independent runs are shown.

We observe that the approach successfully realizes squatting by learning the compensa-
tion signal. However, the variation of motor temperature leads to noticeable differences in
the root point trajectories. The trajectory obtained in the 3rd run is noticeably less noisy
and squatting itself is faster than the one achieved in 1st and 2nd runs. In particular, the
gradient of the downwards motion in the 3rd run is very similar to NMPC executed on
the idealized model. However, the slow approach of the 3rd run towards the setpoints
diminishes compared to the idealized NMPC run.

Variation of motor temperature also leads to differences in the learning progress, see
Figure 6.10. 1st and 2nd runs require substantially longer time before the squatting cycle
is observed. This is due to the increase of motor temperature above 40.0◦C which requires

161

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

0.0

2.5

Fa
ll

s ×1
04

DPG CAL MPML

0.00 0.05 0.10 0.15 0.20 0.25
Noise σ

0.0

5.0

V
io

la
ti

on
s

×1
05

Figure 6.8: The number of falls (top) and NMPC constraint violations (bottom) as functions of σ
from our article [104]. Means with upper and lower 95% confidence limits are shown
for 10 runs.

0 5 10 15Time (s)

0.29

0.34

H
ei

gh
t

(m
)

NMPC (idealized model)

NMPC (robot) @ 38◦C
1st 2nd 3rd MPML run (robot)

Figure 6.9: Robot root point trajectories obtained after learning from our article [104].

additional exploration of the state space. Nevertheless, all runs successfully attain a stable
squatting cycle after 7.25h.

Model-plant mismatch Eu and E l is minimized to about 0.5 and 0.8 for reaching upper
and lower setpoints, respectively. As it was expected, minimization of model-plant
mismatch leads to minimization of the nominal controller objective (1.12a) shown by
plots `u and `l. The smallest final costs are incurred by the 3rd run because it was stuck
the least due to temperature fluctuations, while the largest costs are incurred by the 1st

run which was stuck the most.

RMSE after learning is calculated in Table 6.4. RMSE of MPML trajectories is much
higher than for the realistic model, and it also exhibits more variability. Unfortunately, it
is not possible to obtain the reference RMSE value of the real robot.

Figure 6.11 shows the MPML knee control signal and the RL compensation component
of it. For reference, NMPC control on the idealized model is also shown. MPML controls
are very oscillatory comparing to NMPC. Nonetheless, the robot neither fell down, nor
were its motors damaged, which is a significant result, c.f. [155]. As is expected with
Coulomb friction compensation, RL learned to apply positive and negative controls for the
upward and downward motions, respectively.

162

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

0

2

4

Eu
1st

2nd

3rd run

(robot)

0

2

4

6

El

0

2

4

6

`u

0

2

4

6

`l

0

2

4

Sq
u

at
s

0 2 4 6 8
Time (h)

20

30

40

50

τ k
ne

e
(◦

C
)

1.0
1.5

0.50
0.75

Figure 6.10: Model-plant mismatch (upper two), nominal controller objective (middle two), number
of squats and the mean temperature of knee motors obtained during three real
learning experiments from our article [104]. Measurements of E l and `l in second and
third plot are not depicted when upper switching point is not reached.

Discussion

Even though the final CAL policy is optimal with respect to the real system, the policy is
suboptimal with respect to the objective of the nominal controller (1.12a). This result can
be explained by the fact that RL and NMPC objectives are not exactly the same. While
NMPC optimizes the undiscounted cost up to horizon T , RL optimizes γ-discounted
reward on the infinite horizon. All in all, RL views the system and the nominal controller
as a hybrid entity and the obtained policy becomes optimal with respect to the RL objective.
This observation also explains the inability of CALγ = 0.97 to reach the optimal performance
on the realistic model, even though it can significantly improve the performance of the

163

CHAPTER 6
∣∣∣ COMBINING NMPC AND RL

2

4

6

8

u
(V

)

NMPC (idealized model)
MPML (robot)

0 5 10 15
Time (s)

−2

0

2

u
R

L
(V

) RL compensation signal (robot)

Figure 6.11: Knee control signal of NMPC applied to the idealized model and of MPML applied to
the real robot after learning (top) from our article [104]. Compensation signal learned
by MPML (bottom).

nominal controller. The longer prediction horizon used by CALγ = 0.99 attains a better
performance.

Another problem of CAL is the slow convergence which is caused by the fact that
the reward constructed from the quadratic objective function of the nominal controller
results in small gradients [103]. This hypothesis is supported by the fact that DPG with
a quadratic cost function learns the task extremely slowly. To mitigate this, the RL cost
function can be modified. The downside of this can be the difficulty of predicting the
outcome of such modification, e.g. robot velocity may change drastically.

The MPML approach is free from these complications. However, it should be empha-
sized that MPML optimizes policy with respect to the internal model, that is RL forces
the system to behave like the idealized model. In principle, a large mismatch may pose a
problem because the obtained policy will be less optimal with respect to the real system
and control constraints may prevent the necessary compensation to be applied. However,
in our experiments, this is not a problem. Minimization of the model-plant mismatch
E closely follows minimization of the nominal controller cost `. MPML successfully
learns to compensate the unknown Coulomb friction as well as its dependency on motor
temperature and torque.

The MPML approach obtains the lowest RMSE. This does not come as a surprise, as
MPML directly minimizes the mismatch by the specifically constructed reward function.
CAL also minimizes RMSE, even though its primary goal is not defined in terms of such
minimization. Arguably, in order for NMPC to successfully complete the task, the realistic
model should resemble the idealized one which is achieved by learning with RL in both
approaches.

For both proposed approaches, a little deviation caused by RL exploration leads to an
immediate setback reaction from NMPC. Our simulated experiment reveals a wide range
of admissible exploration noise σ for which the number of NMPC constraint violations
and robot falls is zero. This result demonstrates the role of NMPC which provides safety
barriers to constrain RL exploratory actions near dangerous state space regions. However,
there are disadvantages. First, the formulated task demands deliberate control learning
which is difficult in the presence of Coulomb friction. If the robot starts moving after a
slight overshoot caused by RL exploration, this immediately causes the decrease of friction

164

COMBINING NMPC AND RL
∣∣∣ CHAPTER 6

(Stribeck effect), and at the next sampling moment, the system displacement appears to be
too large. NMPC counteracts, so that resulting trajectories appear to be oscillatory. The
other reason of oscillations is due to the large control delay. Given our results, it is hard to
assess the role of NMPC counter-reaction in the oscillatory trajectories, but we expect that
reduction of sampling time and control delay will reduce oscillations.

Second, NMPC can drive the ideal system very close to constraint boundaries. While
for some systems violation of constraints can be very critical, such that exploration on top
can cause damage. However, this was not true in our case.

We note that the success of model-plant mismatch compensation depends on the learn-
ing capabilities of RL on the hybrid system mentioned above. Whether there is a decrease
or increase of computational complexity of that system against the original system remains
an open problem.

It is a common practice to compensate for a steady-state error in a task completion by
adding an integral term to the objective that is tuned by experimental data. However,
learning the actual model-plant mismatch with MPML goes far beyond cost tuning for
a certain task. It allows to predict the outcome of executed actions since the learned
trajectory is expected to be optimal with respect to the idealized model.

6.5 Summary

In this chapter, we provided an extensive comparison of model-free RL and model-based
NMPC methods. We began with presenting a proper formulation of NMPC and RL
problems tackling the same task of a swing-up and balancing motion of a cart-pendulum
system. The benchmark is standard and well-known in literature. To facilitate follow-up
research, we provide the freely available source code of the benchmark online [22].

We showed that both methods were capable of solving the benchmark problem and
that the resulting trajectories for states and controls and quantitatively assessed the the
similarity of the results in terms of the coefficient of determination and regret.

In our experiments considering uncertainties, we showed that ideal NMPC with MHE is
superior to RL for the whole range of uncertainties, but the realistic NMPC with MHE is
comparable to RL. The major achievement is a quantification of a break-even point after
which learning in a model-free setting becomes more beneficial than nonlinear model
predictive control with an inaccurate model.

Furthermore, we proposed two learning approaches to compensate model-plant mis-
match. These approaches realize a combination of methods of NMPC and RL in a hybrid
control scheme. Our simulation results demonstrated the feasibility of both approaches.
We implemented the superior one on a real robot affected by torque and temperature
dependent friction. In the experimental setup the robot autonomously learned a squatting
task. Trying to achieve a similar performance with the standalone nominal controller
would require tedious identification of the law of such a dependency. The robot has not
fallen during learning, and no motor has been damaged.

165

166

7 Conclusion and Outlook

In this thesis, we contributed to numerical methods of real-time feasible nonlinear model
predictive control (NMPC) for the optimal closed-loop motion generation of humanoids
modeled as multi-body systems (MBSs) realizable on today’s humanoid robots.

The contributions to the field of rigid-body dynamics (RBD) based on recursive algo-
rithms for MBS of tree topology subject to unilateral kinematic constraints and collisions
concerns the efficient evaluation of first-order derivative information. The application of
RBD in the context of direct optimal control requires not only the efficient evaluation of
the nominal dynamic quantities but also requires the evaluation of their derivatives. Re-
spective optimization methods greatly benefit from accurate gradients such that methods
of numerical differentiation are neither sufficient in quality nor computation time despite
their straight-forward implementation. In chapter 2, we showed that by applying the
principle of algorithmic differentiation (AD) together with mathematical insights into the
derivatives of spatial transformations in RBD, recursive algorithms can be augmented to
outperform their numerical differentiation counterpart in both quality and computational
time, which is thoroughly testing using benchmark examples. We found that our approach
leads to faster convergence and smaller iteration counts in the optimal control context.

The contributions to whole-body motion generation and closed-loop control based
on NMPC for humanoids consist of four distinct approaches and their realization on
the respective robotic hardware. First, we proposed a generic framework for motion
generation and closed-loop control combining high-level motion planning using reduced
model variants together with online stabilizing control realizing the planned motion.
Particularly, we proposed a real-time feasible, nonlinear control strategy to compute
center of mass (CoM) trajectories as well as foot positions and orientations realizing a
dynamically stable walking motion relying on linear inverted pendulum model dynamics
as well as incorporating collision avoidance. We implemented this approach together
with a tailored solver that enables real-time performance on the robotic hardware. Key
performance indicators derived from benchmarks showed the improvement through our
novel approach.

Second, we proposed a novel walking pattern generator formulated as mixed-integer
optimization problem achieving collision-free motion planning with guaranteed dynamic
feasibility of the planned motions while extending the range of operational scenarios.

Third, we proposed an adapted framework for whole-body motion generation relying
on a high-level planner based on centroidal dynamics. In order to achieve real-time
feasibility, we derived a further reduction in the form of an ellipsoid model. In this way,
we’ve extended the range of possibilities by enabling multi-contact motions. The approach
is implemented on the robotic hardware platform realizing a stair climbing motion.

Finally, we demonstrated real-time feasible NMPC using a whole-body dynamic model
by implementing a thread-based controller separating the linearization, i.e., timely evolv-
ing the whole model, for the current time step from the fast feedback using the last
linearization. In this way, we realized a practical implementation of the approach on the
robotic hardware and show that a nominal NMPC controller cannot control the robot.

167

CHAPTER 7
∣∣∣ CONCLUSION

This thesis also contributed to the overlap of the fields of methods of model-based
and model-free optimal control in two ways. First, we proposed a comprehensive perfor-
mance comparison of model-free (RL) and model-based (NMPC) optimal control on a
benchmark example that quantifies the performance of the methods subject to parametric
and structural uncertainties in terms of different criteria. We demonstrated that NMPC
has advantages over reinforcement learning if uncertainties can be eliminated through
identification of the system parameters. Otherwise, there exists a break-even point after
which RL performs better than NMPC.

Second, we found that a combination of both RL and NMPC can be beneficial for real
systems being subject to uncertainties and therefore proposed two possible combinations
to compensate model-plant mismatch. We proved the mathematical properties of the
proposed schemes. After numerically benchmarking their performance, the superior
scheme was then realized on the robot Leo for validation of the approach.

The research conducted in this thesis can be extended in several directions. The major
challenge of motion generation using NMPC is the handling of the possible contacts of
the system and how to chose/treat them correctly inside the problem formulation. This
thesis already presented an approach that considers different feasible surfaces for motion
generation in the form of a mixed-integer quadratic program as shown in Chapter 3.
While the approach itself is feasible, the problem complexity resulted in an insufficient
numerical performance and dictates that future research investigates dedicated solvers
for such a problem formulation. Following this, and based on the different variants of
model reduction, the goal would be to find a way to combine the high-level strategy based
on the mixed-integer formulation, a reduced model variant, e.g. centroidal dynamics, and
a suitable motion generation algorithm achieving real-time performance.

Minor challenges lie in improving the established concepts of this thesis in either
functionality or further in performance. While, we could achieve the goal of reaching
real-time feasible NMPC on the actual robotic hardware platform, the currently treatable
models are still far from realizing every aspect of humanoid motions. In order to extend
the models to being more realistic, the efficient derivative evaluation of Chapter 2 needs
to be extended to support custom and multi-degree-of-freedom joints as well as torque-
based muscle approximation models, e.g. from [122]. In the case that the current savings
from our efficient algorithmic differentiation (ED) approach are not sufficient, further
investigation of the sparsity exploitation or the evaluation of kinematic quantities to
become even faster.

In both ways, further research on whole-body motion generation and closed-loop con-
trol will broaden the successful applications of the results of this thesis while further
closing the gap to full exploitation of existing robot platforms and, in general, moving
further towards the higher goal of achieving human likeness in locomotion, behavior, and
intelligence of humanoid robots.

168

Bibliography

[1] P. Abbeel, A. Coates, and A. Y. Ng. “Autonomous Helicopter Aerobatics Through Appren-
ticeship Learning.” In: International Journal of Robotics Research 29.13 (2010), pp. 1608–
1639.

[2] J. Albersmeyer. “Adjoint based algorithms and numerical methods for sensitivity genera-
tion and optimization of large scale dynamic systems.” PhD Thesis. Heidelberg University,
2010.

[3] J. Albersmeyer, D. Beigel, C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schlöder. “Fast
Nonlinear Model Predictive Control with an Application in Automotive Engineering.”
In: Nonlinear Model Predictive Control. Ed. by L. Magni, D. Raimondo, and F. Allgöwer.
Vol. 384. Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg,
2009, pp. 471–480.

[4] H. Amann and J. Escher. Analysis II. Grundstudium Mathematik. Birkhäuser Basel, 2008.
[5] U. M. Ascher, H. Chin, L. R. Petzold, and S. Reich. “Stabilization of Constrained Mechanical

Systems with DAEs and Invariant Manifolds.” In: Mechanics of Structures and Machines 23.2
(1995), pp. 135–157.

[6] H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, and E. Yoshida. “Model preview
control in multi-contact motion-application to a humanoid robot.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014, pp. 4030–4035.

[7] A. G. Barto, R. S. Sutton, and C. W. Anderson. “Neuronlike Adaptive Elements That Can
Solve Difficult Learning Control Problems.” In: IEEE Transactions on Systems, Man, and
Cybernetics SMC-13.5 (1983), pp. 834–846.

[8] Y. E. Bayiz and R. Babuska. “Nonlinear disturbance compensation and reference tracking
via reinforcement learning with fuzzy approximators.” In: IFAC Proceedings Volumes 47.3
(2014), pp. 5393–5398.

[9] P. Beeson and B. Ames. “TRAC-IK: An Open-Source Library for Improved Solving of
Generic Inverse Kinematics.” In: Proceedings of the IEEE-RAS International Conference on
Humanoid Robots. 2015, pp. 928–935.

[10] M. Benzi, G. H. Golub, and J. Liesen. “Numerical solution of saddle point problems.” In:
Acta Numerica (2005), pp. 1–137.

[11] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural Actor-Critic Algorithms.
TR09-10. Canada: University of Alberta, 2009.

[12] H. G. Bock. “Numerical treatment of inverse problems in chemical reaction kinetics.” In:
Modelling of Chemical Reaction Systems. Ed. by K. H. Ebert, P. Deuflhard, and W. Jäger.
Vol. 18. Springer Series in Chemical Physics. Heidelberg: Springer, 1981, pp. 102–125.

[13] H. G. Bock and K. J. Plitt. “A Multiple Shooting algorithm for direct solution of optimal
control problems.” In: Proceedings of the IFAC World Congress. Budapest: Pergamon Press,
1984, pp. 242–247.

[14] H. G. Bock, M. Diehl, E. A. Kostina, and J. P. Schlöder. “Constrained Optimal Feedback
Control of Systems Governed by Large Differential Algebraic Equations.” In: Real-Time
PDE-Constrained Optimization. Ed. by L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes,
and B. van Bloemen Waanders. SIAM, 2007. Chap. 1, pp. 3–24.

[15] H. G. Bock, M. Diehl, P. Kühl, E. Kostina, J. Schlöder, and L. Wirsching. “Numerical
Methods for Efficient and Fast Nonlinear Model Predictive Control.” In: Assessment and
Future Directions of Nonlinear Model Predictive Control. Ed. by R. Findeisen, F. Allgöwer, and
L. Biegler. Vol. 358. Lecture Notes in Control and Information Sciences. 2007, pp. 163–179.

[16] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer. The Cross-Entropy Method for
Optimization. Vol. 31. Elsevier, 2013, pp. 35–59.

169

Bibliography

[17] K. Bouyarmane and A. Kheddar. “Humanoid Robot Locomotion and Manipulation Step
Planning.” In: Advanced Robotics 26.10 (2012), pp. 1099–1126.

[18] S.-P. Boyd and B. Wegbreit. “Fast Computation of Optimal Contact Forces.” In: IEEE
Transactions on Robotics 23.6 (2007), pp. 1117–1132.

[19] B. Brogliato, A. A. ten Dam, L. Paoli, F. Genot, and M. Abadie. Numerical simulation of
finite dimensional multibody nonsmooth mechanical systems. Tech. rep. Nationaal Lucht- en
Ruimtevaartlaboratorium, 2001.

[20] S. Brossette, J. Vaillant, F. Keith, A. Escande, and A. Kheddar. “Point-cloud multi-contact
planning for humanoids: Preliminary results.” In: Procceedings of the IEEE Conference on
Robotics, Automation and Mechatronics. 2013, pp. 19–24.

[21] W. Caarls and E. Schuitema. “Parallel Online Temporal Difference Learning for Motor
Control.” In: IEEE Transactions on Neural Networks and Learning Systems 27.7 (2016),
pp. 1457–1468.

[22] W. Caarls. Generic Reinforcement Learning Library. url: https://github.com/wcaarls/grl.
[23] J. Carpentier and N. Mansard. “Analytical Derivatives of Rigid Body Dynamics Algo-

rithms.” In: Proceedings of the International Conference on Robotics Science and Systems.
2018.

[24] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard. “A versatile and effi-
cient pattern generator for generalized legged locomotion.” In: Proceedings of the IEEE
International Conference on Robotics and Automation. 2016, pp. 3555–3561.

[25] J. Carpentier, F. Valenza, N. Mansard, et al. Pinocchio: fast forward and inverse dynamics for
poly-articulated systems. 2015–2019. url: https://stack-of-tasks.github.io/pinocchio.

[26] B. W. Char, K. O. Geddes, W. M. Gentleman, and G. H. Gonnet. “The design of Maple: A
compact, portable, and powerful computer algebra system.” In: Computer Algebra. Ed. by
J. A. van Hulzen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 101–115.

[27] B. Chrétien, A. Escande, and A. Kheddar. “GPU Robot Motion Planning Using Semi-
Infinite Nonlinear Programming.” In: IEEE Transactions on Parallel and Distributed Systems
27.10 (2016), pp. 2926–2939.

[28] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P. Abbeel, and W.
Zaremba. “Transfer from simulation to real world through learning deep inverse dynamics
model.” In: CoRR abs/1610.03518 (2016).

[29] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in
Mathematics. Springer London, 2013.

[30] CoDyCo Modules - Whole-body Compliant Dynamical Contacts in Cognitive Humanoids. url:
https://github.com/robotology/codyco-modules.

[31] H. Dai, A. Valenzuela, and R. Tedrake. “Whole-body motion planning with centroidal
dynamics and full kinematics.” In: Proceedings of the IEEE-RAS International Conference on
Humanoid Robots. IEEE, 2014, pp. 295–302.

[32] A. Datta and L. Xing. “The theory and design of adaptive internal model control schemes.”
In: Proceedings of the American Control Conference. Vol. 6. 1998, pp. 3677–3684.

[33] R. Deits and R. Tedrake. “Footstep planning on uneven terrain with mixed-integer convex
optimization.” In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots.
2014, pp. 279–286.

[34] R. Deits and R. Tedrake. “Computing large convex regions of obstacle-free space through
semidefinite programming.” In: Algorithmic Foundations of Robotics XI. Springer, 2015,
pp. 109–124.

[35] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. Vol. 920. Fortschritt-
Berichte VDI Reihe 8, Meß-, Steuerungs- und Regelungstechnik. 2002.

[36] M. Diehl. “Real-Time Optimization for Large Scale Nonlinear Processes.” PhD Thesis.
Heidelberg University, 2001.

[37] M. Diehl, H. G. Bock, and J. P. Schlöder. “A real-time iteration scheme for nonlinear
optimization in optimal feedback control.” In: SIAM Journal on Control and Optimization
43.5 (2005), pp. 1714–1736.

170

https://github.com/wcaarls/grl
https://stack-of-tasks.github.io/pinocchio
https://github.com/robotology/codyco-modules

Bibliography

[38] M. Diehl, H. J. Ferreau, and N. Haverbeke. “Efficient numerical methods for nonlinear
MPC and moving horizon estimation.” In: Nonlinear model predictive control. Springer,
2009, pp. 391–417.

[39] C. Dune, A. Herdt, E. Marchand, O. Stasse, P.-B. Wieber, and E. Yoshida. “Vision based
control for Humanoid Robots.” In: Proceedings of the IEEE/RAS International Conference on
Intelligent Robot and Systems, Workshop on Visual Control of Mobile Robots (ViCoMor). 2011.

[40] C. Dune, A. Herdt, O. Stasse, P.-B. Wieber, and K. Yokoi. “Visual Servoing of Dynamic
Walking Motion by Ignoring the Sway Motion.” In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2010, pp. 3175–3180.

[41] J.-M. Engel and R. Babuska. “On-line Reinforcement Learning for Nonlinear Motion
Control: Quadratic and Non-Quadratic Reward Functions.” In: Proceedings of the IFAC
World Congress. Vol. 19. Cape Town, South Africa, 2014, pp. 7043–7048.

[42] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov. “An integrated system for
real-time model predictive control of humanoid robots.” In: Proceedings of the IEEE-RAS
International Conference on Humanoid Robots. 2013, pp. 292–299.

[43] D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel. “Reinforcement Learning Versus
Model Predictive Control: A Comparison on a Power System Problem.” In: IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics 39.2 (2009), pp. 517–529.

[44] A. Escande, A. Kheddar, and S. Miossec. “Planning contact points for humanoid robots.”
In: Robotics and Autonomous Systems 61.5 (2013), pp. 428–442.

[45] M. F. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald, and R. Tedrake.
“Continuous humanoid locomotion over uneven terrain using stereo fusion.” In: Proceedings
of the IEEE-RAS International Conference on Humanoid Robots. 2015, pp. 881–888.

[46] F. Farshidian, M. Neunert, and J. Buchli. “Learning of closed-loop motion control.” In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014,
pp. 1441–1446.

[47] R. Featherstone. “Plucker Basis Vectors.” In: Proceedings of the IEEE International Conference
on Robotics and Automation. 2006, pp. 1892–1897.

[48] R. Featherstone. Rigid Body Dynamics Algorithms. New York: Springer, 2008.
[49] M. Felis. Rigid Body Dynamics Library (RBDL). 2012–2019. url: https://bitbucket.org/

MartinFelis/rbdl.
[50] M. L. Felis. “RBDL: an Efficient Rigid-Body Dynamics Library using Recursive Algo-

rithms.” In: Autonomous Robots 41.2 (2017), pp. 495–511.
[51] H. J. Ferreau. “Model Predictive Control Algorithms for Applications with Millisecond

Timescales.” PhD Thesis. K.U. Leuven, 2011.
[52] H. J. Ferreau. “qpOASES user’s manual.” In: Optimization in Engineering Center (OPTEC)

and Department of Electrical Engineering, KU Leuven (2011).
[53] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl. “qpOASES: A para-

metric active-set algorithm for quadratic programming.” In: Mathematical Programming
Computation (2014).

[54] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. H. Gillula, and C. J. Tomlin.
“A General Safety Framework for Learning-Based Control in Uncertain Robotic Systems.”
In: CoRR abs/1705.01292 (2017). url: http://arxiv.org/abs/1705.01292.

[55] P. Fitzpatrick, G. Metta, and L. Natale. “Towards Long- Lived Robot Genes.” In: Robotics
and Autonomous Systems, Elsevier 56.1 (2008), pp. 29–45.

[56] J. V. Frasch, L. Wirsching, S. Sager, and H. G. Bock. “Mixed–Level Iteration Schemes for
Nonlinear Model Predictive Control.” In: IFAC Proceedings Volumes 45.17 (2012), pp. 138–
144.

[57] G. Garofalo, C. Ott, and A. Albu-Schäffer. “On the closed form computation of the dynamic
matrices and their differentiations.” In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2013, pp. 2364–2359.

[58] M. Giftthaler, M. Neunert, M. Stäuble, M. Frigerio, C. Semini, and J. Buchli. “Automatic
Differentiation of Rigid Body Dynamics for Optimal Control and Estimation.” In: Advanced
Robotics 31.22 (2017), pp. 1225–1237.

171

https://bitbucket.org/MartinFelis/rbdl
https://bitbucket.org/MartinFelis/rbdl
http://arxiv.org/abs/1705.01292

Bibliography

[59] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for QPOPT 1.0: a FORTRAN package
for quadratic programming. Tech. rep. SOL 95-4. Department of Operations Research,
Stanford University, 1995.

[60] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User’s Guide for SOL/QPSOL: A
Fortran Package for Quadratic Programming. Tech. rep. Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1982.

[61] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic
differentiation. Vol. 105. Society for Industrial and Applied Mathematics, 2008.

[62] I. Grondman, M. Vaandrager, L. Busoniu, R. Babuska, and E. Schuitema. “Efficient Model
Learning Methods for Actor-Critic Control.” In: IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42.3 (2012), pp. 591–602.

[63] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. “Continuous deep Q-learning with model-
based acceleration.” In: Proceedings of the International Conference on Machine Learning.
2016, pp. 2829–2838.

[64] B. Guenter. “Efficient Symbolic Differentiation for Graphics Applications.” In: ACM
Transactions on Graphics 26.3 (2007).

[65] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. 2018. url: http://www.
gurobi.com.

[66] S. Ha and K. Yamane. “Reducing hardware experiments for model learning and policy op-
timization.” In: Proceedings of the IEEE International Conference on Robotics and Automation.
2015, pp. 2620–2626.

[67] A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft. “Safe exploration for reinforcement
learning.” In: European Symposium on Artificial Neural Networks. 2008, pp. 143–148.

[68] N. Hansen and A. Ostermeier. “Completely derandomized self-adaptation in evolution
strategies.” In: Evolutionary Computation 9.2 (2001), pp. 159–195.

[69] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa. “An Analytical Method for Real-Time
Gait Planning for Humanoid Robots.” In: International Journal of Humanoid Robotics 3.1
(2006), pp. 1–19.

[70] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl. “Online
Walking Motion Generation with Automatic Foot Step Placement.” In: Special Issue: Section
Focused on Cutting Edge of Robotics in Japan 2010 5–6 (2010), pp. 719–737.

[71] A. Herdt, N. Perrin, and P. Wieber. “Walking without thinking about it.” In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010, pp. 190–195.

[72] H. Herr and M. Popovic. “Angular momentum in human walking.” In: Journal of Experi-
mental Biology 211.4 (2008), pp. 467–481.

[73] A. Herzog, N. Rotella, S. Schaal, and L. Righetti. “Trajectory generation for multi-contact
momentum control.” In: Proceedings of the IEEE-RAS International Conference on Humanoid
Robots. 2015, pp. 874–880.

[74] H. Hirukawa, S. Hattori, S. Kajita, K. Harada, K. Kaneko, F. Kanehiro, M. Morisawa, and
S. Nakaoka. “A Pattern Generator of Humanoid Robots Walking on a Rough Terrain.”
In: Proceedings of the IEEE International Conference on Robotics and Automation. 2007,
pp. 2181–2187.

[75] H. Hirukawa et al. “Humanoid Robotics Platforms developed in HRP.” In: Robotics and
Autonomous Systems 48 (2003), pp. 165–175.

[76] Y. Hu, J. Eljaik, K. Stein, F. Nori, and K. Mombaur. “Walking of the iCub humanoid robot
in different scenarios: implementation and performance analysis.” In: Proceedings of the
IEEE-RAS International Conference on Humanoid Robots (2016), pp. 690–696.

[77] S. Hyon, J. G. Hale, and G. Cheng. “Full-Body Compliant Human-Humanoid Interaction:
Balancing in the Presence of Unknown External Forces.” In: 23.5 (2007), pp. 884–898.

[78] A. Ibanez, P. Bidaud, and V. Padois. “Automatic Optimal Biped Walking as a Mixed-Integer
Quadratic Program.” In: Advances in Robot Kinematics. Springer, 2014, pp. 505–516.

[79] D. Janka, C. Kirches, S. Sager, and A. Wächter. “An SR1/BFGS SQP algorithm for noncon-
vex nonlinear programs with block-diagonal Hessian matrix.” In: Mathematical Program-
ming Computation 8.4 (2016), pp. 435–459.

172

http://www.gurobi.com
http://www.gurobi.com

Bibliography

[80] N. Jiang, A. Kulesza, S. Singh, and R. Lewis. “The Dependence of Effective Planning
Horizon on Model Accuracy.” In: Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems. Istanbul, Turkey: International Foundation for Autonomous
Agents and Multiagent Systems, 2015, pp. 1181–1189.

[81] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement Learning: A Survey.” In:
Journal of Artificial Intelligence Research 4.1 (1996), pp. 237–285.

[82] P. Kaiser, D. Kanoulas, M. Grotz, L. Muratore, A. Rocchi, E. M. Hoffman, N. G. Tsagarakis,
and T. Asfour. “An affordance-based pilot interface for high-level control of humanoid
robots in supervised autonomy.” In: Proceedings of the IEEE-RAS International Conference
on Humanoid Robots. 2016, pp. 621–628.

[83] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa.
“Biped Walking pattern Generation by using Preview Control of Zero-Moment Point.” In:
Proceedings of the IEEE International Conference on Robotics and Automation. Vol. 2. 2003,
pp. 1620–1626.

[84] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. “The 3D linear inverted
pendulum mode: a simple modeling for a biped walking pattern generation.” In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 1. 2001,
pp. 239–246.

[85] S. Kajita, K. Yokoi, M. Saigo, and K. Tanie. “Balancing a Humanoid Robot Using Backdrive
Concerned Torque Control and Direct Angular Momentum Feedback.” In: Proceedings of
the IEEE International Conference on Robotics and Automation. Vol. 4. 2001, pp. 3376–3382.

[86] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi. Introduction to Humanoid Robotics. Ed. by
B. Siciliano and O. Khatib. Vol. 101. Springer Tracts in Advanced Robotics. Springer, 2014.

[87] S. M. Kakade. “A Natural Policy Gradient.” In: Advances in Neural Information Processing
Systems. Ed. by T. G. Dietterich, S. Becker, and Z. Ghahramani. MIT Press, 2002, pp. 1531–
1538.

[88] S. Kamthe and M. P. Deisenroth. “Data-Efficient Reinforcement Learning with Probabilistic
Model Predictive Control.” In: CoRR abs/1706.06491 (2017). url: http://arxiv.org/abs/
1706.06491.

[89] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, and
T. Isozumi. “Humanoid robot HRP-2.” In: Proceedings of the IEEE International Conference
on Robotics and Automation. Vol. 2. 2004, pp. 1083–1090.

[90] M. Karklinsky, M. Naveau, A. Mukovskiy, O. Stasse, T. Flash, and P. Soueres. “Robust
human-inspired power law trajectories for humanoid HRP-2 robot.” In: Proceedings of the
IEEE International Conference on Biomedical Robotics and Biomechatronics. 2016, pp. 106–
113.

[91] M. Kawato. “Feedback-error-learning neural network for supervised motor learning.” In:
Advanced neural computers 6.3 (1990), pp. 365–372.

[92] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti. “A robust walking controller
based on online step location and duration optimization for bipedal locomotion.” In: CoRR
abs/1704.01271 (2017). url: http://arxiv.org/abs/1704.01271.

[93] W. Khalil and E. Dombre. Modeling, Identification & Control of Robots. Kogan Page Sience,
2002.

[94] J. Kim. Lie Group Formulation of Articulated Rigid Body Dynamics. Tech. rep. 2012.
[95] H. Kimura and S. Kobayashi. “Stochastic real-valued reinforcement learning to solve a

nonlinear control problem.” In: Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics. Vol. 5. 1999, pp. 510–515.

[96] C. Kirches, L. Wirsching, H. G. Bock, and J. Schlöder. “Efficient Direct Multiple Shooting
for Nonlinear Model Predictive Control on Long Horizons.” In: Journal of Process Control
22.3 (2012), pp. 540–550.

[97] J. Kober, J. A. Bagnell, and J. Peters. “Reinforcement Learning in Robotics: A Survey.” In:
International Journal of Robotics Research 32.11 (2013), pp. 1238–1274.

[98] J. Kober and J. Peters. “Policy search for motor primitives in robotics.” In: Machine Learning
84.1-2 (2011), pp. 171–203.

173

http://arxiv.org/abs/1706.06491
http://arxiv.org/abs/1706.06491
http://arxiv.org/abs/1704.01271

Bibliography

[99] K. H. Koch. “Using Model-based Optimal Control for Conceptional Motion Generation for
the Humanoid Robot HRP-2 14 and Design Investigations for Exo-Skeletons.” PhD Thesis.
Heidelberg University, 2015.

[100] K. H. Koch, K. Mombaur, P. Souères, and O. Stasse. “Optimization based exploitation
of the ankle elasticity of HRP-2 for overstepping large obstacles.” In: Procceedings of the
IEEE/RAS International Conference on Humanoid Robots. 2014, pp. 733–740.

[101] J. Koenemann, A. D. Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, and N. Mansard.
“Whole-body model-predictive control applied to the HRP-2 humanoid.” In: Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2015, pp. 3346–
3351.

[102] KoroiBot - Improving humanoid walking capabilities by human-inspired mathematical models,
optimization and learning. url: http://orb.iwr.uni-heidelberg.de/koroibot/.

[103] I. Koryakovskiy, M. Kudruss, R. Babuška, W. Caarls, C. Kirches, K. Mombaur, J. P. Schlöder,
and H. Vallery. “Benchmarking model-free and model-based optimal control.” In: Robotics
and Autonomous Systems 92 (2017), pp. 81–90.

[104] I. Koryakovskiy, M. Kudruss, H. Vallery, R. Babuška, and W. Caarls. “Model-plant Mis-
match Compensation Using Reinforcement Learning.” In: IEEE Robotics and Automation
Letters 3.3 (2018), pp. 2471–2477.

[105] M. Kudruss, P. Manns, and C. Kirches. “Efficient Derivative Evaluation for Rigid-Body
Dynamics Based on Recursive Algorithms Subject to Kinematic and Loop Constraints.” In:
IEEE Control Systems Letters 3 (2019), pp. 619–624.

[106] M. Kudruss, M. Naveau, O. Stasse, N. Mansard, C. Kirches, P. Souères, and K. Mombaur.
“Optimal Control for Whole-body Motion Generation using Center-of-mass Dynamics
for Predefined Multi-contact Configurations.” In: Proceedings of IEEE/RAS International
Conference on Humanoid Robots. 2015, pp. 684–689.

[107] P. Kühl, M. Diehl, T. Kraus, J. P. Schlöder, and H. G. Bock. “A real-time algorithm for
moving horizon state and parameter estimation.” In: Computers & Chemical Engineering
35.1 (2011), pp. 71–83.

[108] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion,
and R. Tedrake. “Optimization-based locomotion planning, estimation, and control design
for the Atlas humanoid robot.” In: Autonomous Robots 40.3 (2016), pp. 429–455.

[109] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder. “An efficient multiple shoot-
ing based reduced SQP strategy for large-scale dynamic process optimization. Part 1:
Theoretical aspects.” In: Computers & Chemical Engineering 27.2 (2003), pp. 157–166.

[110] D. B. Leineweber, A. Schäfer, H. G. Bock, and J. P. Schlöder. “An efficient multiple shooting
based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software
aspects and applications.” In: Computers & chemical engineering 27.2 (2003), pp. 167–174.

[111] S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar. “Generation of whole-body optimal
dynamic multi-contact motions.” In: The International Journal of Robotics Research 32.9-10
(2013), pp. 1104–1119.

[112] S. Levine and V. Koltun. “Guided Policy Search.” In: Proceedings of the International
Conference on Machine Learning. 2013, pp. 1–9.

[113] M. Liu, Y. Tan, and V. Padois. “Generalized hierarchical control.” In: Autonomous Robots
40.1 (2016), pp. 17–31.

[114] J. Y. Luh, M. W. Walker, and R. P. Paul. “On-line computational scheme for mechanical
manipulators.” In: Journal of Dynamic Systems, Measurement, and Control 102.2 (1980),
pp. 69–76.

[115] P. Manns and K. Mombaur. “Towards Discrete Mechanics and Optimal Control for Complex
Models.” In: IFAC-PapersOnLine 50.1 (2017), pp. 4812–4818.

[116] N. Mansard. “A Dedicated Solver for Fast Operational-Space Inverse Dynamics.” In:
Proceedings of the IEEE International Conference on Robotics and Automation. 2012, pp. 4943–
4949.

174

http://orb.iwr.uni-heidelberg.de/koroibot/

Bibliography

[117] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar. “A Versatile Generalized Inverted
Kinematics Implementation for Collaborative Working Humanoid Robots: The Stack of
Tasks.” In: Proceedings of the International Conference on Advanced Robotics. 2009, pp. 1–6.

[118] L. Matignon, G. Laurent, and N. Le Fort-Piat. “Reward Function and Initial Values: Better
Choices for Accelerated Goal-Directed Reinforcement Learning.” In: Artificial Neural
Networks – ICANN 2006. Ed. by S. Kollias, A. Stafylopatis, W. Duch, and E. Oja. Vol. 4131.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 840–849.

[119] J. Mattingley and S. Boyd. “CVXGEN: A Code Generator for Embedded Convex Optimiza-
tion.” In: Optimization and Engineering 12.1 (2012), pp. 1–27.

[120] G. Metta, L. Natale, F. Nori, et al. “The iCub humanoid robot: An open-systems platform
for research in cognitive development.” In: Neural Networks 23.8 (2010), pp. 1125–1134.

[121] R. Michel. “Dynamic filter for walking motion corrections.” Bachelor Thesis. Interdisci-
plinary Center for Scientific Computing, Department of Physics and Astronomy, Heidelberg
University, 2017.

[122] M. Millard, A. L. Emonds, M. Harant, et al. “A reduced muscle model and planar muscu-
loskeletal model fit for the simulation of whole-body movements.” In: Journal of Biome-
chanics 89 (2019), pp. 11–20.

[123] T. M. Moldovan and P. Abbeel. “Safe Exploration in Markov Decision Processes.” In: CoRR
abs/1205.4810 (2012).

[124] K. Mombaur, A. Kheddar, K. Harada, T. Buschmann, and C. Atkeson. “Model-based
Optimization for Robotics [TC Spotlight].” In: IEEE Robotics Automation Magazine 21.3
(2014), pp. 24–161.

[125] K. Mombaur. “Stability Optimization of Open-loop Controlled Walking Robots.” PhD
Thesis. Heidelberg University, 2001.

[126] K. Mombaur, A. Truong, and J.-P. Laumond. “From human to humanoid locomotion—an
inverse optimal control approach.” In: Autonomous Robots 28.3 (2010), pp. 369–383.

[127] I. Mordatch, K. Lowrey, and E. Todorov. “Ensemble-CIO: Full-body dynamic motion
planning that transfers to physical humanoids.” In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2015, pp. 5307–5314.

[128] I. Mordatch, E. Todorov, and Z. Popović. “Discovery of complex behaviors through contact-
invariant optimization.” In: ACM Transactions on Graphics 31.4 (2012), p. 43.

[129] M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kanehiro, K. Kaneko, and H.
Hirukawa. “Experimentation of Humanoid Walking Allowing Immediate Modification of
Foot Place Based on Analytical Solution.” In: Proceedings of the IEEE International Conference
on Robotics and Automation. 2007, pp. 3989–3994.

[130] A. Mukovskiy, C. Vassallo, M. Naveau, O. Stasse, P. Soueres, and M. A. Giese. “Adaptive
synthesis of dynamically feasible full-body movements for the humanoid robot HRP-
2 by flexible combination of learned dynamic movement primitives.” In: Robotics and
Autonomous Systems 91 (2017), pp. 270–283.

[131] W. Nachtigall. Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler
(German Edition). Springer, 2002.

[132] S. Nakaoka, S. Hattori, F. Kanehiro, S. Kajita, and H. Hirukawa. “Constraint-based dynam-
ics simulator for humanoid robots with shock absorbing mechanisms.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007, pp. 3641–3647.

[133] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and P. Souères. “A Reactive
Walking Pattern Generator Based on Nonlinear Model Predictive Control.” In: IEEE Robotics
and Automation Letters 2.1 (2017), pp. 10–27.

[134] M. Neunert, M. Giftthaler, M. Frigerio, C. Semini, and J. Buchli. “Fast derivatives of
rigid body dynamics for control, optimization and estimation.” In: Proceedings of the IEEE
International Conference on Simulation, Modeling, and Programming for Autonomous Robots.
2016, pp. 91–97.

[135] A. Y. Ng, D. Harada, and S. J. Russell. “Policy Invariance Under Reward Transformations:
Theory and Application to Reward Shaping.” In: Proceedings of the International Conference

175

Bibliography

on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999,
pp. 278–287.

[136] K. Nishiwaki and S. Kagami. “Walking control on uneven terrain with short cycle pattern
generation.” In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots.
2007, pp. 447–453.

[137] K. Nishiwaki, J. E. Chestnutt, and S. Kagami. “Autonomous navigation of a humanoid
robot over unknown rough terrain using a laser range sensor.” In: International Journal of
Robotics Research 31.11 (2012), pp. 1251–1262.

[138] J. Nocedal and S. Wright. Numerical Optimization. Second. Berlin Heidelberg New York:
Springer Verlag, 2006.

[139] D. E. Orin and A. Goswami. “Centroidal Momentum Matrix of a humanoid robot: Structure
and properties.” In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2008, pp. 653–659.

[140] D. E. Orin, A. Goswami, and S.-H. Lee. “Centroidal dynamics of a humanoid robot.” In:
Autonomous Robots 35.2-3 (2013), pp. 161–176.

[141] C. Ott, M. A. Roa, and G. Herzinger. “Posture and Balance Control for Biped Robots based
on Contact Force Optimization.” In: Proceedings of the IEEE-RAS International Conference
on Humanoid Robotics. 2011, pp. 26–33.

[142] J. Perry. Gait Analysis: Normal and Pathological Function. SLACK, 1992.
[143] J. Peters, K. Mülling, and Y. Altun. “Relative entropy policy search.” In: Proceedings of the

AAAI Conference on Artificial Intelligence. 2010, pp. 1607–1612.
[144] B. Ponton, A. Herzog, S. Schaal, and L. Righetti. “A convex model of humanoid mo-

mentum dynamics for multi-contact motion generation.” In: Proceedings of the IEEE-RAS
International Conference on Humanoid Robots. 2016, pp. 842–849.

[145] B. Ponton, A. Herzog, S. Schaal, and L. Righetti. “On Time Optimisation of Centroidal
Momentum Dynamics.” In: CoRR abs/1709.09265 (2017). url: http://arxiv.org/abs/1709.
09265.

[146] J. Pratt, J. Carff, S. Drakunov, and A. Goswami. “Capture Point: A Step toward Humanoid
Push Recovery.” In: Proceedings of the IEEE-RAS International Conference on Humanoid
Robots. 2006, pp. 200–207.

[147] S. J. Qin and T. A. Badgwell. “A survey of industrial model predictive control technology.”
In: Control Engineering Practice 11.7 (2003), pp. 733–764.

[148] A. Rajeswaran, S. Ghotra, S. Levine, and B. Ravindran. “EPOpt: Learning Robust Neural
Network Policies Using Model Ensembles.” In: CoRR abs/1610.01283 (2016). url: http:
//arxiv.org/abs/1610.01283.

[149] I. G. Ramirez-Alpizar, M. Naveau, C. Benazeth, O. Stasse, J.-P. Laumond, K. Harada, and E.
Yoshida. “Motion generation for pulling a fire hose by a humanoid robot.” In: Proceedings
of the IEEE-RAS International Conference on Humanoid Robots. 2016, pp. 1016–1021.

[150] O. E. Ramos, L. Saab, S. Hak, and N. Mansard. “Dynamic motion capture and edition using
a stack of tasks.” In: Proceedings of the IEEE-RAS International Conference on Humanoid
Robots. 2011, pp. 224–230.

[151] L. Saab, N. Mansard, F. Keith, J. Y. Fourquet, and P. Soueres. “Generation of dynamic motion
for anthropomorphic systems under prioritized equality and inequality constraints.” In:
Proceedings of the IEEE International Conference on Robotics and Automation. 2011, pp. 1091–
1096.

[152] L. Saab, O. Ramos, N. Mansard, P. Souères, and J. Y. Fourquet. “Generic dynamic motion
generation with multiple unilateral constraints.” In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 2011, pp. 4127–4133.

[153] M. Saveriano, Y. Yin, P. Falco, and D. Lee. “Data-efficient control policy search using
residual dynamics learning.” In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2017, pp. 4709–4715.

[154] L. Schork. “A parametric active set method for general quadratic programming.” Master
Thesis. Heidelberg University, 2015.

176

http://arxiv.org/abs/1709.09265
http://arxiv.org/abs/1709.09265
http://arxiv.org/abs/1610.01283
http://arxiv.org/abs/1610.01283

Bibliography

[155] E. Schuitema. “Reinforcement Learning on autonomous humanoid robots.” PhD Thesis.
Netherlands: Delft University of Technology, 2012.

[156] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy
Optimization.” In: CoRR abs/1502.05477 (2015).

[157] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. “High-Dimensional Continu-
ous Control Using Generalized Advantage Estimation.” In: CoRR abs/1506.02438 (2015).
url: http://arxiv.org/abs/1506.02438.

[158] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimiza-
tion Algorithms.” In: CoRR abs/1707.06347 (2017). url: http://arxiv.org/abs/1707.06347.

[159] S. Shalev-Shwartz. “Online Learning and Online Convex Optimization.” In: Foundations
and Trends in Machine Learning 4.2 (2012), pp. 107–194.

[160] B. Siciliano and O. Khatib, eds. Springer Handbook of Robotics. Berlin, Heidelberg: Springer,
2008.

[161] W. D. Smart and L. P. Kaelbling. “Practical Reinforcement Learning in Continuous Spaces.”
In: Proceedings of the International Conference on Machine Learning. ICML ’00. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 903–910.

[162] O. Stasse. “Vision based motion generation for humanoid robots.” Habilitation à diriger
des recherches. Université Paul Sabatier - Toulouse III, 2013.

[163] K. Stein, Y. Hu, M. Kudruss, M. Naveau, and K. Mombaur. “Closed loop control of walking
motions with adaptive choice of directions for the iCub humanoid robot.” In: Proceedings
of the IEEE/RAS International Conference on Humanoid Robots. Birmingham, 2017.

[164] T. Sugihara. “Solvability-unconcerned Inverse Kinematics based on Levenberg-Marquardt
method with Robust Damping.” In: Proceedings of the IEEE-RAS International Conference on
Humanoid Robots. Vol. 27. 5. 2009, pp. 984–991.

[165] R. S. Sutton, A. G. Barto, and R. J. Williams. “Reinforcement learning is direct adaptive
optimal control.” In: Control Systems, IEEE 12.2 (1992), pp. 19–22.

[166] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
[167] Y. Tassa, T. Erez, and E. Todorov. “Synthesis and stabilization of complex behaviors through

online trajectory optimization.” In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 4906–4913.

[168] Y. Tassa, N. Mansard, and E. Todorov. “Control-limited differential dynamic program-
ming.” In: Proceedings of the IEEE International Conference on Robotics and Automation. 2014,
pp. 1168–1175.

[169] R. Tedrake and the Drake Development Team. Drake: A planning, control, and analysis
toolbox for nonlinear dynamical systems. 2016. url: http://drake.mit.edu.

[170] The MOSEK optimization software. http://www.mosek.com/. url: http://www.mosek.
com/.

[171] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics engine for model-based control.” In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
2012, pp. 5026–5033.

[172] S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, and J. Pettré. “A Reachability-
Based Planner for Sequences of Acyclic Contacts in Cluttered Environments.” In: Robotics
Research: Volume 2. Ed. by A. Bicchi and W. Burgard. Cham: Springer International
Publishing, 2018, pp. 287–303.

[173] T. K. Uchida, M. A. Sherman, and S. L. Delp. “Making a meaningful impact: modelling
simultaneous frictional collisions in spatial multibody systems.” In: Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 471.2177 (2015).

[174] E. Vouga, B. Smith, D. M. Kaufman, R. Tamstorf, and E. Grinspun. “All’s Well That Ends
Well: Guaranteed Resolution of Simultaneous Rigid Body Impact.” In: ACM Transactions
on Graphics 36.4 (2017), 151:1–151:19.

[175] M. Vukobratović and D. Juricic. “Contribution to the Synthesis of Biped Gait.” In: IEEE
Transactions on Biomedical Engineering BME-16.1 (1969), pp. 1–6.

[176] M. Vukobratovic and J. Stephanenko. “On the stability of anthropomorphic systems.” In:
Mathematical Biosciences 15.1 (1972), pp. 1–37.

177

http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://drake.mit.edu
http://www.mosek.com/
http://www.mosek.com/

Bibliography

[177] M. Vukobratović and B. Borovac. “Zero-Moment Point - Thirty Five Years of its Life.” In:
Proceedings of the International Journal of Humanoid Robotics 1.1 (2005), pp. 157–173.

[178] A. Wächter and L. T. Biegler. “On the Implementation of a Primal-Dual Interior Point
Filter Line Search Algorithm for Large-Scale Nonlinear Programming.” In: Mathematical
Programming 106.1 (2006), pp. 25–27.

[179] I. D. Walker. “The use of kinematic redundancy in reducing impact and contact effects
in manipulation.” In: Proceedings of the IEEE International Conference on Robotics and
Automation. Vol. 1. 1990, pp. 434–439.

[180] S. Walter. “Structured higher-order algorithmic differentiation in the forward and re-
verse mode with application in optimum experimental design.” PhD Thesis. Humboldt-
Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012.

[181] P.-B. Wieber. “On the stability of walking systems.” In: Proceedings of the International
Workshop on Humanoid and Human Friendly Robotics. 2002.

[182] D. L. Wight, E. G. Kubica, and D. W. Wang. “Introduction of the Foot Placement Estimator:
A Dynamic Measure of Balance for Bipedal Robotics.” In: Journal of Computational and
Nonlinear Dynamics 3.1 (2007), pp. 011009–011009–10.

[183] M. Wisse. “Essentials of dynamic walking: Analysis and design of two-legged robots.” PhD
Thesis. Netherlands: Delft University of Technology, 2004.

[184] J. Wojtusch, J. Kunz, and O. v. Stryk. “MBSlib – An Efficient Multibody Systems Library for
Kinematics and Dynamics Simulation, Optimization and Sensitivity Analysis.” In: IEEE
Robotics and Automation Letters 1.2 (2016), pp. 954–960.

[185] K. Yokoi, F. Kanehiro, K. Kaneko, K. Fujiwara, S. Kajita, and H. Hirukawa. “A Honda Hu-
manoid Robot Controlled by AIST Software.” In: Proceedings of the IEEE-RAS International
Conference on Humanoid Robots. 2001, pp. 259–264.

[186] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. “Learning Deep Control Policies for Au-
tonomous Aerial Vehicles with MPC-Guided Policy Search.” In: CoRR abs/1509.06791
(2015).

178

List of Figures

0.1 Schematic overview of common reduced model variants as well as whole-
body dynamics for motion generation and their computational complexity. 4

0.2 Overview of the contributions of the thesis to different subjects of nonlinear
model predictive control for whole-body motion generation of humanoids. 10

1.1 The gait cycle of a human represented by a single step of a full stride
together with the respective phases, events and contact configuration. . . . 18

1.2 HRP-2 robot of Laboratory for Analysis and Architecture of Systems during a
stair climbing task. 19

1.3 HeiCub robot of Heidelberg University during a walking task. 20
1.4 Leo robot of Delft University of Technology during a walking task. 21
1.5 Visualization of the impulsive hybrid dynamics of multi-body system with

unilateral constraints. 22

2.1 Schematic of forward mode of algorithmic differentiation (AD) for a multi-
variate function y = f (x) that computes independent values y ∈ Rm from
dependent variables x ∈Rn. 34

2.2 An inverted pendulum on a movable cart. 54
2.3 Errors against analytic derivatives of FD, FDC, AD and efficient algorith-

mic differentiation (ED) for different algorithms and both cart-pendulum
models. 56

2.4 Effort [n× eval(f (x))] against number of propagated directions [n] of FD,
FDC, AD and ED for a multi-pendulum model. 57

2.5 Self-convergence plots of sequential quadratic programming (SQP) perfor-
mance using AD and numerical differentiation (FD) for different masses for
the biomechanical optimal control problem (OCP). 58

3.1 The algorithms derived within this thesis were applied to improve the
walking capabilities of the humanoid robots HRP-2 as well as HeiCub. . . . 59

3.2 Visualization of the general control scheme of the walking pattern generator
(WPG) framework derived in this thesis. 61

3.3 Visualization of pendulum model derived from human motion during gait. 62
3.4 Visualization of the support polygon for different phases of the human gait. 64
3.5 Shape of the foot with the position vector pzi describing the support polygon

and θ representing its orientation from our article [133]. 71
3.6 Shape of the selected convex polygon boundary of the foot placement from

the article [133]. 73
3.7 Different support situations for a walking humanoid robot. 79
3.8 A visualization of the obstacle-free area (OFA) search algorithm. 82
3.9 A visualization of the reference velocity deflection at obstacles. 84

179

LIST OF FIGURES

3.10 Trajectories of different zero-moment point approximations. 90
3.11 Results of the dynamic filter on the zero-moment point trajectories of

HeiCub. 90
3.12 Results of the dynamic filter applied on the zero-moment point trajectories

of HRP-2. 91
3.13 Experiment on the HRP2 robot using the setup B. 93
3.14 Center of mass and zero-moment point trajectories for obstacle avoidance

and foot-step orientation using our walking pattern generator based on
nonlinear model predictive control. 95

3.15 Snapshots showing different walking sequences for straight walking and
different angular velocities from top, side and front of HeiCub. 97

3.16 Comparison of an unstable motion that could be stabilized by the use of
center of mass (CoM) position feedback. 100

3.17 Sample trajectory of forward, sideways and curved walking for HeiCub. . . 102
3.18 Snapshots of HeiCub walking in different directions in the lab and in simu-

lation. 103
3.19 Resulting trajectories of the center of mass (CoM) and the zero-moment

point (ZMP) as well as the foot steps for the obstacle avoidance scenario. . 103
3.20 Visualization of the treatment of obstacle-free areas (OFAs) for collision

avoidance for the walking pattern generator (WPG) based on mixed-integer
quadratic program (MIQP). 104

4.1 HRP-2 climbing stairs with the support of a handrail with annotations. . . 107
4.2 Visualization of the general framework based on reduced centroidal dy-

namics derived in this thesis. 109
4.3 Visualization of centroidal dynamics derived from human motion during

gait. 110
4.4 Set of contact stances realized by the humanoid robot HRP-2 using the

proposed method. 117
4.5 Measured contact forces during the motion of HRP-2 during stair climbing

with handrail support. 118
4.6 Comparison between the planned contact forces of optimal control problem

solution (blue solid) and the measured contact forces (red dashed) during
the motion of HRP-2 depicted in Figure 4.4. 119

4.7 Comparison of applied current between motions employing feet only (blue
dashed) and multiple contacts using feet and one hand (red solid) for climb-
ing a 15 cm staircase. 119

5.1 Leo robot of Delft University of Technology performing a squatting motion
with annotations. 122

5.2 Visualization of the general approach of nonlinear model predictive control
for motion generation as applied in this thesis. 123

5.3 Visualization of a humanoid represented as multi-body system that consid-
ers each limb modeled as rigid body connected via joints. 124

5.4 Schematic of the control approach based on multi-level real-time iteration
as derived in this thesis. 127

5.5 Scheme explaining the squatting task for the experiments with Leo. 131
5.6 Run-time analysis of a squatting experiment under ideal conditions in

simulation. 133

180

LIST OF FIGURES

5.7 Snapshot series of Leo squatting during an experiment. 133
5.8 Recorded and processed data of the squatting experiment: height tracking

(a) and instantaneous reward (b). 134
5.9 Recorded and processed data of the squatting experiment: joint angle

trajectories (a, c, e) and motor input voltages (b, d, f). 135
5.10 Run-time analysis of the squatting experiment of Leo robot. 136
5.11 Snapshot series of external perturbation during an experiment. 136

6.1 Overview of the computational study to assess the performance of NMPC
and reinforcement learning (RL) in the presence of structural uncertainty. . 143

6.2 Visualization of two possible combination schemes of reinforcement learn-
ing (RL) and nonlinear model predictive control (NMPC). 146

6.3 The inverted pendulum on a movable cart from our article [103]. 149
6.4 Influence of the shaping function on the results of the “RL” method. 151
6.5 State and control trajectories obtained by the frozen methods for the cart-

pendulum system without uncertainties. 153
6.6 The graph of regrets for the cart-pendulum system comparing performance

of described methods against the optimal solution. 154
6.7 Learning to reach upper and lower setpoints in simulation. 160
6.8 The number of falls and NMPC constraint violations as functions of σ 162
6.9 Robot root point trajectories obtained after learning. 162
6.10 Model-plant mismatch, nominal controller objective, number of squats and

the mean temperature of knee motors obtained during three real learning
experiments. 163

6.11 Knee control signal of NMPC applied to the idealized model and of model-
plant mismatch learning (MPML) applied to the real robot after learning
and the compensation signal learned by MPML. 164

181

List of Tables

2.1 Computational effort and quality of derivatives ∂f (x;d) for a single direc-
tion d ∈Rn or p ∈N directions D ∈Rn×p. 39

2.2 Variable definitions of a loop-free rigid multi-body model. 40
2.3 Derivative quality of numerical (FD ∂+h, FDC ∂±h) and automated (AD, ED)

against analytic derivatives (AN). 53

3.1 Measured run-time of the motion generation framework using the walking
pattern generator based on nonlinear model predictive control. 96

3.2 Key performance indicators (KPI) measured for forward walking comparing
the cart-table WPG and the NMPC WPG with and without feedback. . . . 99

3.3 Key performance indicator (KPI) measurements for sideways, backwards
and curved walking. 101

3.4 Measured run-time of the preparation and solution phases of the walk-
ing pattern generator based on mixed-integer quadratic program for the
obstacle avoidance scenario. 104

4.1 Objective weights for the optimal control problem based on centroidal
dynamics. 113

6.1 Parameters of optimal control (OC), NMPC and RL for the cart-pendulum
problem. 155

6.2 Similarity of the cart-pendulum trajectories in terms of the coefficient of
determination (R2). 156

6.3 Summary of results of the comparison of RL and NMPC. 157
6.4 Final performance of proposed combination approaches for RL and NMPC. 161

182

List of Acronyms

ABA Articulated Body Algorithm
AD algorithmic differentiation
CNRS-LAAS Laboratory for Analysis and Architecture of Systems
CoM center of mass
CoP center of pressure
CRBA composite rigid-body algorithm
DAE differential algebraic equation
DDP differential dynamic programming
DF dynamic filter
DoF degree of freedom
DPG deterministic policy gradient
ED efficient algorithmic differentiation
FD forward dynamics
FDCONTACTS Forward Dynamics Constraints Direct
GIK generalized inverse kinematics
ID inverse dynamics
IMC internal model control
IVP initial value problem
KPI key performance indicator
Leo Leo
LIPM linear inverted pendulum model
LMPC linear model predictive control
LQR linear-quadratic regulator
MBS multi-body system
MDP Markov decision process
MHE moving horizon estimation
MIQP mixed-integer quadratic program
MLRTI multi-level real-time iteration
MPML model-plant mismatch learning
FD numerical differentiation
NEFFECTS Nonlinear Effects based on recursive Newton-Euler algorithm (RNEA)
NLP nonlinear program
NMPC nonlinear model predictive control
OC optimal control
OCP optimal control problem
ODE ordinary differential equation
OFA obstacle-free area
PD proportional-derivative
PID proportional-integral-derivative
QP quadratic program
RBD rigid-body dynamics

183

LIST OF TABLES

RBDL Rigid Body Dynamics Library
RL reinforcement learning
RMSE root mean squared error
RNEA recursive Newton-Euler algorithm
SoT stack of tasks
SQP sequential quadratic programming
TU Delft Delft University of Technology
UHEI Heidelberg University
WPG walking pattern generator
ZMP zero-moment point

184

	Zusammenfassung
	Abstract
	Danksagung
	Contents
	0 Introduction
	1 From Robots to Rigid Body Mechanics and Optimal Control
	1.1 Bipedal Walking of Humanoids
	1.2 Considered Humanoid Robot Hardware Platforms
	1.3 Humanoids as Rigid-body Models
	1.4 Bipedal Locomotion as Optimal Control Problem
	1.5 The Direct Multiple Shooting Method for Optimal Control
	1.6 Summary

	2 Efficient Derivative Evaluation for Rigid Body Dynamics
	2.1 Evaluation of Derivatives
	2.2 Evaluation of Rigid-Body Dynamics using Recursive Algorithms
	2.3 Evaluation of Rigid-Body Dynamics
	2.4 Results
	2.5 Summary

	3 Motion Generation Based on Center of Mass Dynamics
	3.1 Derivation of the Reduced Dynamic Model
	3.2 Walking Pattern Generator based on Nonlinear Model Predictive Control
	3.3 Walking Pattern Generator based on Mixed-integer Programming
	3.4 Realization of the Motion on the Robot
	3.5 Results
	3.6 Summary

	4 Motion Generation based on Centroidal Dynamics
	4.1 Derivation of the Reduced Dynamic Model
	4.2 Problem Formulation
	4.3 Realization of the Motion on the Robot
	4.4 Results
	4.5 Summary

	5 Nonlinear Model Predictive Control for Humanoid Motion Generation
	5.1 Whole-body Dynamic Model
	5.2 Multi-level Real-time Iterations of Nonlinear Model Predictive Control
	5.3 Combining Multi-Level Real-time Iterations
	5.4 Problem Formulation
	5.5 Results
	5.6 Summary

	6 Towards a Combination of Model-free and Model-based Optimal Control
	6.1 Reinforcement Learning
	6.2 Benchmarking Model-free and Model-based Optimal Control
	6.3 Combining Model-free and Model-based Optimal Control
	6.4 Results
	6.5 Summary

	7 Conclusion and Outlook
	Figures, Tables, Algorithms, Acronyms

