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born in: Paços de Ferreira, Portugal

Oral examination: May 13th, 2020





Assessing deviations to the ΛCDM model:

the importance of model-independent approaches

Referees: Prof. Dr. Luca Amendola
Prof. Dr. Matthias Bartelmann



Beurteilung von Abweichungen zum ΛCDM Modell:
Die Wichtigkeit von modellunabhängigen Ansätzen

Die bemerkenswerte Verbesserung der Genauigkeit von kosmologischen Daten in den let-
zten Jahren hat zu strikten Einschränkungen an die Parameter des ΛCDM-Modells geführt.
Zum Beispiel haben die Gravitationswellenereignisse bestätigt, dass die Gravitations-
geschwindigkeit sehr nahe an der Lichtgeschwindigkeit ist. Dieses Ergebnis hat einige
modifizierte Gravitationsmodelle ausgeschlossen. Die verbleibenden, zugelässigen Modelle
sind im Datenvergleich fast ununterscheidbar von dem standardmäßigen ΛCDM-Modell.
Eine Herangehensweise, um die Modelle zu unterscheiden, ist die Benutzung von dafür
gebauten Schätzfunktionen, wie zum Beispiel eine modellunabhängige Bestimmung des
anisotropischen Spannungsparameters. Von dieser Schätzfunktion kann man bestimmen,
ob die Näherung der idealen Flüssigkeit in der allgemeinen Relativitätstheorie gültig ist,
was jede Theorie testet, die diese Näherung beinhaltet. In dieser Dissertation benutzen
wir die neuesten verfügbaren Daten von einigen kosmologischen Beobachtungen und drei
verschiedene Methoden, um den anisotropischen Spannungsparameter zu rekonstruieren.
Unsere Schlussfolgerungen hängen leicht von der Datenrekonstruktionsmethode ab, stim-
men aber auf dem 2σ Level überein. Der resultierende, anisotropische Spannungsparame-
ter könnte Standardgravitation auf 1-2σ ausschließen, abhängig von der Methode und der
Rotverschiebung.

Eine wichtige Frage ist, wie die Informationsmenge in Daten bestimmt werden kann. Ide-
alerweise möchten wir den Überzeugtheitsgrad in ΛCDM quantifizieren. In dieser Disser-
tation versuchen wir diese Fragen mit Informationstheorie zu beantworten. Wir berechnen
die Entropie von Modellparametern für spezifische, kosmologische Beobachtungen. Wir
vergleichen diesen Zugang mit der weitverbreiteten Fisher-Matrix, die typischerweise für
Prognosen von zukünftigen, großräumigen Strukturbeobachtungen berechnet wird. Die
Unsicherheiten von jedem Parameter werden erhalten und dadurch ist die Qualität der
Daten üblicherweise mit den Eigenschaften der Fisher-Matrix verbunden. Information-
sentropie kann auch messen, wie unterschiedliche Kombinationen von kosmologischen
Beobachtungen die Modellparameter einschränken. Die gleiche Prozedur wird auf die
jüngsten Datenungereimtheiten angewendet und es kann im Falle von Modellvergleichen
benutzt werden. Wegen seiner analytischen Ausdrücke kann Informationsentropie äußerst
nützlich sein, falls eine Gauß-Verteilung angenommen wird. Eine Verallgemeinerung zu
allgemeinen Distributionen ist möglich.

Die Hauptbotschaft dieser Dissertation ist, dass neue Wege zum Testen von Grav-
itation nötig sind, insbesondere mit der abnehmenden Unsicherheit in kosmologischen
Datensätzen und dem Auftauchen von Ungereimtheiten zwischen jenen Datensätzen. Wir
müssen besser zwischen konkurrierenden Theorien unterscheiden können. Dies kann mit
Schätzfunktionen erreicht werden, die sich nicht auf ein spezifisches Szenario verlassen.
Eine andere Möglichkeit ist eine andere Perspektive auf den statischen Rückschluss zu
finden, was insbesondere nützlich ist, um die Annahmen in der Datenreduktion neu zu
bewerten.



Assessing deviations to the ΛCDM model:
the importance of model-independent approaches

The remarkable improvement of the accuracy of cosmological data in the last years has pro-
vided tight constraints on the parameters of the ΛCDM model. For example, gravitational-
wave events have confirmed that the speed of gravity is very close to the speed of light.
This result has ruled out several modified gravity models. The remaining allowed models
are nearly indistinguishable from the standard ΛCDM in data comparison. One approach
to discriminate models is to use estimators built for that purpose, as, for example, a model-
independent determination of the anisotropic-stress parameter. From this estimator, one
can infer if the perfect fluid approximation done in General Relativity is valid, testing
any theory that includes this approximation. In this dissertation, we use the latest avail-
able data from several cosmological probes and three different methods to reconstruct the
anisotropic stress parameter in a model-independent way. Our conclusions depend mildly
on the data reconstruction method but agree at the 2σ level. The resulting anisotropic
stress may rule out standard gravity within a 1-2σ level depending on the method or
redshift.

An important question is how the amount of information in the data can be measured.
Ideally, we would like to quantify the degree of belief in ΛCDM. In this dissertation, we
tackle these questions by using information theory. We compute the entropy of model pa-
rameters for specific cosmological probes. We compare this approach with the widely-used
Fisher matrix, typically computed when forecasting future large-scale structure surveys.
The uncertainties on each parameter are obtained and thus the quality of the data is
usually associated with certain properties of the Fisher matrix. Information entropies can
also measure how different combinations of cosmological probes constrain the parameters
of a model. The same procedure is applied to the recently found data tensions, and it can
be used in case of model comparison. Information entropies can be extremely useful due
to its analytical expressions if a Gaussian distribution is assumed but a generalization to
any distribution is possible.

The main message of this dissertation is that new ways of testing gravity are needed,
specifically with the decreasing uncertainty in cosmological datasets and the appearance
of discrepancies between datasets. We need to better discriminate competing theories.
This can be done through estimators that should not rely on a specific scenario. Another
possibility is to find a different perspective on statistical inference, which is particularly
useful in order to re-evaluate the assumptions done in data reduction.





The eye sees only what the mind is prepared to comprehend.
(Robertson Davies)





Contents

1. Introduction 17

2. Understanding the Universe 21
2.1. Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1. General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2. Dynamics of the Universe . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3. The standard ΛCDM model . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4. Beyond the standard ΛCDM model . . . . . . . . . . . . . . . . . . 25

2.1.5. Modify gravity parametrizations . . . . . . . . . . . . . . . . . . . . 27

2.1.6. Structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2. Cosmological observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1. Cosmic microwave background . . . . . . . . . . . . . . . . . . . . . 32

2.2.2. Weak gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3. Galaxy clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4. Hubble expansion rate H(z) and Hubble parameter H0 . . . . . . . 38

2.2.5. Tensions between different datasets . . . . . . . . . . . . . . . . . . . 41

3. Reconstruction of η 45
3.1. Model-independent observables . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1. Hubble parameter data . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2. EG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3. fσ8 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3. Data reconstruction methods . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1. Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2. Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3. Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. Review of the EG statistics 65
4.1. Theoretical definition of EG . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2. Towards a general definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3. Computational details and results . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5. Measuring the information flow 73
5.1. Statistics and information theory . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2. Large scale structure probes . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1. Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . . 81

5.2.2. Large scale structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents

5.3. Uncertainty measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4. Relative entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5. Entropy increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1. Hubble parameter H0 from Cepheids and the CMB . . . . . . . . . . 89
5.5.2. (Ωm, σ8)-plane from the CMB and weak lensing . . . . . . . . . . . . 89
5.5.3. wCDM and lensing with intrinsic alignments . . . . . . . . . . . . . 89

5.6. Evidences and entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6. Summary and outlook 93

A. Details of the Polynomial Regression Method for the reconstruction of ηobs 97

Acknowledgements 99

Bibliography 102

10



List of Figures

2.1. CMB temperature anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2. Time evolution of different H0 measurement methods . . . . . . . . . . . . . 41
2.3. Comparison of recent methods and measurements of H0 . . . . . . . . . . . 42

3.1. H(z), EG(z), and fσ8(z) data plots . . . . . . . . . . . . . . . . . . . . . . . 52
3.2. Comparison of three data reconstruction methods . . . . . . . . . . . . . . . 57
3.3. Comparison of best-fit parameters of Gaussian Process for ln(fσ8(z)) . . . . 60
3.4. Reconstructed ηobs(z) with three methods . . . . . . . . . . . . . . . . . . . 62

4.1. Scale-dependent bias in EG statistics . . . . . . . . . . . . . . . . . . . . . . 70
4.2. EG preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1. Absolute Shannon entropies and Fisher matrix properties, ΛCDM case . . . 85
5.2. Absolute Shannon entropies and Fisher matrix properties, wCDM case . . . 86
5.3. Relative entropies for probe combination, ΛCDM case . . . . . . . . . . . . 87
5.4. Relative entropies for probe combination, wCDM case . . . . . . . . . . . . 88





List of Tables

3.1. Fiducial cosmological parameter values . . . . . . . . . . . . . . . . . . . . . 48
3.2. H(z) measurements compilation . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3. E(z) measurements from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4. Covariance matrix for the H(z) data from [2]. . . . . . . . . . . . . . . . . . 51
3.5. Covariance matrix for the H(z) data from [3]. . . . . . . . . . . . . . . . . . 51
3.6. EG(z) measurement compilation . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7. fσ8(z) measurement compilation . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8. The reconstructed η(z) using different values of H0 to normalize the H(z)

data at three different redshifts z = (0.294, 0.58, 0.86) with its respective
1σ errors, for each of the reconstruction methods. . . . . . . . . . . . . . . . 61

3.9. Reconstructed model-independent variables E,E′, P2, P3, η(z) . . . . . . . . 61

5.1. Absolute Shannon and Bhattacharyya entropies, ΛCDM case . . . . . . . . 84
5.2. Absolute Shannon and Bhattacharyya entropies, wCDM case . . . . . . . . 84





List of abbreviations and acronyms

ΛCDM Λ Cold Dark Matter

BBN Big Bang Nucleosynthesis

BOSS Baryon Oscillations Spectroscopic Survey

CMB Cosmic Microwave Background
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1. Introduction

Throughout the past century, our understanding of the Universe has evolved significantly.
Einstein formulated the theory of General Relativity in 1915. It brought a revolutionary
new perspective of gravity with space and time as one single concept. As stated by
J. A. Wheeler, spacetime tells matter how to move and matter tells spacetime how to
curve. Shortly after, Slipher, Lemâıtre, and Hubble found evidence for an expanding
universe. This was the starting point of Cosmology as we know today: a modern physics
field with advanced astronomical observations. Later on, strong evidence for a “missing
mass” problem suggested the need for a new species of matter, dubbed dark matter, to
explain the rotation curves of galaxies. The discovery of the accelerated expansion of the
Universe carried a new big challenge. It suggests the existence of dark energy component,
a fluid with negative pressure that drives this accelerated phase of the Universe. Currently,
observations point out that the Universe is quite well described by the ΛCDM model or
the concordance model of Cosmology. Based on Einstein’s General Relativity, this model
is composed of three main contributions: a cosmological constant, Λ, associated with dark
energy, a cold dark matter component, and ordinary matter, in a homogenous, isotropic,
and flat spacetime.

The ΛCDM model has successfully explained several cosmological observations. The
anisotropic temperature fluctuations from the Cosmic Microwave Background (CMB) ra-
diation are exceptionally well fitted by this six parameter model. The accelerated expan-
sion is usually obtained through the light curves of Supernova type Ia. These “standard
candles” are well fitted by a ΛCDM cosmology. The existence of a “standard ruler” such as
the Baryonic Acoustic Oscillations is a successful prediction from ΛCDM. Alongside with
these observations, there are further checks done by the observed abundances of the first
elements, the distribution of galaxy clusters (GC), and weak lensing (WL) that contribute
to the robustness of this model.

Despite all these observational sucess of ΛCDM, there are also quite a few unsolved
problems, one of them being the famous cosmological constant problem. One possible
explanation for the cosmological constant Λ is to associate it with the vacuum energy.
This intuitive solution implies that the fraction of dark energy observed at large scales
matches the zero-point energy at the quantum level. Within reasonable assumptions,
although a quantum gravity theory does not exist, these energy fractions differ by far too
many orders of magnitude. This demands a careful choice of the cosmological constant,
or in other words, to fine-tune it. Besides that, the nature of the cosmological constant is
likewise lacking justification.

These issues have opened a whole new field of possible theories of gravity. In a simple
way, one can formulate another theory by using a scalar field as dark energy instead of
a cosmological constant. On the other hand, one can question the geometry of gravity
and modify it. Although these alternative theories are not as sucessful as ΛCDM when
compared with data, most of the current datasets do not fully rule out these other theories.
This leads to a plethora of possibilities to explain the history and expansion of the Universe
within the current precision of data. We are indeed in the precision era of cosmology but
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not yet precise enough to confirm or rule out ΛCDM.

A few years ago, a statistical difference of 2σ was found between the cosmological
parameters obtained by probing the CMB and the ones found by WL. More recently,
the measured value for the Hubble expansion today given by the Supernova type Ia and
Cepheid variable stars is about 4σ away from the value obtained through the last CMB
survey. This particular tension carries not just the possibility of an unaccounted hidden
systematical uncertainties, but also the idea of new physics as this discrepancy happens at
the two extremes of the cosmic history. Although it is certainly important to explore new
physics solutions for this data tension, there is another aspect that needs to be considered.
Unlike to the standard candles and rules, most of these observables rely on a ΛCDM type
of expansion and, therefore, the resulting data are model-dependent. Since ΛCDM is
rather accepted to explain the current data, this may not sound like an issue or a wild
guess. However, this could be a key point towards deepening our understanding of gravity.
A completely unbiased and non-parametric approach to raw cosmological data is nearly
impossible. Further data is inevitably needed but also new perspectives on this puzzle.

Here is where it becomes important to find ways of testing gravity, especially, in a
model-independent way. Although it is a challenging task, to measure the properties of
spacetime using the least amount of assumptions possible is a crucial step. This is the
main motivation for the work presented throughout this dissertation. Instead of tackling
the unanswered theoretical questions, the approach is to use the current knowledge and
look for answers within both data and statistical frame. The two main subjects of this
dissertation are estimators built to find deviations of the standard gravity scenario and an
information-driven approach to current and future (forecasted) cosmological data.

The structure of this dissertation is described in more detail next. Chapter 2 describes
specifically the state-of-the-art of cosmology. We give an overview of the standard model
of ΛCDM which entails Einstein’s general relativity theory, a cosmological constant Λ and
a cold dark matter component. Although this theory has been generally quite successful
when compared to observational data, its fine-tuning problems led to the formulation of
alternative theories. We present a common generalization, the Horndeski theory, that
encompasses several other models including quintessence and the Brans-Dicke theory. At
the moment, several cosmological observables probe particular time frames and aspects
of the universe. We characterize the technicalities of the Hubble parameter H(z) and
Hubble constant H0, CMB, WL, and GC. Surprisingly, as already mentioned, the Hubble
constant H0, which expresses the expansion of the Universe, has currently different probes
disagreeing on its value with high statistical significance. Additionally, there is a tension
between CMB and weak lensing, visible on the (Ωm, σ8) plane. In order to solve these
discrepancies, it is important to know the assumptions done during the data analysis.

In Chapter 3, we estimate the anisotropic stress parameter η in a model-independent
way. To measure this parameter with the latest available data constitutes a test to the
perfect fluid assumption done in general relativity. Consequently, it serves as a test to
assess deviations to the ΛCDM scenario as it includes GR as a key component. We use
data from the aforementioned probes and three data reconstruction methods with different
assumptions for this work. In general, we find agreement with the standard model at a 2σ
level. However, the methods can disagree at the 1σ level and even be in tension with the
expected value for the ΛCDM model. Since the methods do not fully agree and tensions
are known for these datasets, the presented work provides, for now, a promising framework
to be applied to future better data.

18
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While working on the aforementioned estimation, we noticed the theoretical and ob-
servational definitions of the EG statistics. Chapter 4 outlines these definitions and the
validity of its correspondence. The literature supports that these definitions are equiva-
lent to the case of a flat ΛCDM Universe. This means that the EG quantity is not a test
of general relativity per se as this equivalence may not hold. We have derived the full
expression and compared to the literature, although it is still work in progress.

In Chapter 5, we introduce the tools of Information Theory which can be useful in
data analysis. The Fisher matrix formalism is very common to use when forecasting for
future experiments. We make an analogy between these two approaches for the case of
a Gaussian likelihood. Taking all the cross-correlations between the main cosmological
probes - CMB and CMB lensing, WL and GC - we compute the common measures of
statistical uncertainties as well as information entropy. Probe combination reduces the
statistical errors likewise reduces the information entropy. We analyze the several data
tensions and the role of Bayesian evidence in this comparison.

Finally, in Chapter 6 we make a general summary and outlook.

19
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2. Understanding the Universe:
Theory and Observations

The theoretical foundation of our understanding of the Universe is General Relativity.
More than a hundred years ago, Albert Einstein formulated General Relativity (GR) as
an answer to the behaviour of gravity in a relativistic framework. This theory has been
constantly tested ever since. After explaning the perihelion shift of Mercury, GR has
passed solar system tests [9], pulsar timing tests [10], among others. The recent detection
of gravitational waves from the LIGO/VIRGO collaboration [11] is another successful
prediction. GR has proven to be a stable and sucessful theory but on its own it does not
explain the accelerated expansion of the Universe. The evidence for a late-time acceleration
[12, 13] has suggested a missing ingridient in the cosmic recipe. A cosmological constant,
labeled Λ, added to the field equations of Einstein is one possible solution. Besides a
component that drives the cosmic expansion, evidence was found for a missing mass in
galaxies to explain their Keplerian rotation curves [14–16]. Currently, the concordance
model of Cosmology has in its composition: gravity explained by GR, a cosmological
constant and a dark matter component. This famous ΛCDM model explains most of the
available cosmological data but it has a few theoretical unsolved issues. For that reason,
several alternative theories have been formulated. Part of those alternative theories target
the nature of dark energy and dark matter, others modify how gravity works.

2.1. Theoretical description of the Universe

In this chapter, we describe the principles of GR and the details of ΛCDM, the standard
model of cosmology. We briefly discuss a few of the extensions of ΛCDM. The precision
era of cosmology has begun, and it is possible to constrain cosmological parameters with
unprecedented accuracy. We characterize a few cosmological probes such as the cosmic
microwave background, weak lensing, galaxy clustering and the Hubble expansion. These
probes attempt to estimate different properties of gravity at various time stamps in the
cosmic history. We use the convention that Greek letters as indexes running from 0 to 3
and Latin letters as indexes running from 1 to 3. Here the speed of light c is going to be
set to 1.

2.1.1. General Relativity

Albert Einstein first proposed General Relativity in 1915 [17]. However, its application
to cosmology as the description of the Universe came two years later [18], also with the
contribution of Willem de Sitter [19]. The field equations of Einstein connect the geometry
of space and time with the matter present in it. To obtain the equations of motion, one
must vary the Einstein-Hilbert action defined as

S =
1

16πG

∫
d4x
√−g(R− 2Λ) + Sm , (2.1)
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with respect to the metric field gµν . In this expression, G is the gravitational constant
and Λ is the cosmological constant. The volume element is d4x

√−g where g corresponds
to the determinant of the metric. R is the Ricci scalar obtained from the contraction of
the Riemann tensor Rαβµν which are both functions of the metric. The matter action is
represented by Sm. The field equations are given by

Gµν + gµνΛ = 8πGTµν , (2.2)

where Gµν ≡ Rµν − 1
2gµνR is the Einstein tensor, and the energy-momentum tensor Tµν

corresponds to

Tµν = − 2√−g
δSm
δgµν

. (2.3)

These field equations state that matter affects the structure of the spacetime and space-
time defines how matter moves. They are coupled non-linear differential equations of the
metric. One uses symmetry assumptions on the spacetime to solve Eq. (2.2). Focusing
on the cosmological solution to these equations, the starting point of modern cosmology
is the cosmological principle. It states that at sufficiently large scales, the Universe is ho-
mogenous and isotropic. These are important assumptions that have been partially tested
but they are very difficult to verify or falsify. The solution that fulfills these assumptions
while solving Einstein’s field equations in Eq. (2.2), is the Friedmann-Lemâıtre-Robertson-
Walker (FLRW) metric,

ds2 = gµνdxµdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 dφ2)

]
, (2.4)

where a is the scale factor and t the cosmic time coordinate. The spatial component has
a radial coordinate, r, with the polar angle, θ, and the azimuthal angle, φ. K denotes
the curvature, where the Universe is flat if K = 0, closed if K = 1, and open if K = −1.
The metric gµν is an important object as it defines the size of spacetime intervals ds2 =
gµνdxµdxν . It is also invariant under diffeomorphisms. Since any particle and field is
coupled universally to the metric g, the equations of motion do not depend on the choice
of coordinates.

2.1.2. Dynamics of the Universe

The dynamics of the Universe is described as a perfect fluid. Resembeling the cosmological
principle idea, the perfect fluid assumption is justified by the fact that no viscous or
dissipative forces should exist in the background at very large scales. This assumption
allows to rewrite the energy-momentum tensor as

Tµν = (ρ+ p)uµuν + pgµν , (2.5)

with the pressure p = p(t) and the density ρ = ρ(t), which due to homogeneity, are both
only functions of the cosmic time t. Also, these functions are the sum of all matter and
radiation components of the Universe. The background dynamics obeys the Friedmann
equations. These are obtained by taking the (00) and (ii) components of the field equations
in Eq. (2.2), with an FLRW metric, meaning,(

ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− K

a2
, (2.6)
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ä

a
= −4πG

3
(ρ+ p) +

Λ

3
, (2.7)

where the dot denotes the derivative with respect to the cosmic time t. The Friedmann
equations Eq. (2.7) can be reduced to one if an equation of state

P = wρ , (2.8)

is provided. The proportionality constant depends on the species. It corresponds to
wm = 0 for non-relativistic matter, wr = 1

3 for relativistic matter, and w0 = −1 for
the cosmological constant. In order to express each species density in a dimensionless
quantity, we introduce the critical density ρcrit = 3H2

0/(8πG) for a flat Universe. The
density parameters are thus defined as

Ωi(t) ≡
ρi(t)

ρcrit
, (2.9)

where ρi(t) is the density function for each species that evolve differently with the scale
factor. These density parameters obey the closure relation

∑
i Ωi = 1. The different

dependences with the scale factor hint at the different epochs in cosmic history where
a specific species dominated the expansion and evolution of the Universe. With these
definitions, the expansion of the Universe is described by the Hubble function,

H(t) ≡ ȧ(t)

a(t)
. (2.10)

The Hubble function is an important concept that plays a role in the definition of cosmo-
logical distances. The comoving distance is defined as

χ(z) = −
∫ z

0

dz′

H(z′)
, (2.11)

This relates the redshift measured today to the distance of a source with redshift measured
on a spatial hypersurface. Assuming a flat Universe, one can write,

DA(z) = (1 + z)χ(z) , DL(z) =
DA(z)

(1 + z)2
, (2.12)

where DA(z) is angular diameter distance and DL(z) is the luminosity distance. Since
these distances are directly related to the cosmological parameters, it is possible to probe
the content of the Universe. One example is the use of Supernova type Ia to measure
such distances, as used when finding the accelerated expansion of the Universe [12, 13].
The Supernova type Ia are standardizable candles, which we describe in more detail in
Sec. 2.2.4 and other ways of measuring the expansion of the Universe in Sec. 2.2.4.

2.1.3. The standard ΛCDM model

In the last decades, the outstanding improvement of precision in several cosmological
probes led to the formulation of the concordance model. The ΛCDM model relies on
the fact that the laws of physics are the same at any point in the Universe. GR is the
description of gravity and the cosmological principle is assumed. It further assumes that
the expansion of the Universe occurs from an early hot dense state and five key components.
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These components are a dark energy that drives the current accelerated expansion of the
Universe. This is further described by a cosmological constant that is associated with a
vaccum energy. Besides dark energy, there is a dark matter component that is pressureless
and interacts only gravitationally with normal matter. Normal atomic matter, photons and
nearly massless neutrinos are also part of the composition. The curvature of the Universe
is taken to be flat or very small. Finally, density fluctuations are neraly scale-invariant,
adiabatic and Gaussian. Given this composition, the background evolution described by
the Hubble function H(z) can be written explicitly as

H2(z) = H0

[
Ωc(1 + z)3 + Ωb(1 + z)3 + Ωr(1 + z)4 + ΩDE exp

(∫ z

0
dz′

3(1 + wDE(z′))

1 + z′

)]
,

(2.13)
with the redshift defined as z ≡= 1

a−1. The equation of state wDE denotes a general dark
energy componentto allow for other definitions.

This discription has been successful in explaining accurately the cosmic microwave back-
ground radiation which we discuss in Sec. 2.2.1. The many cosmological probes such as
weak lensing or galaxy clustering are also well suited with a ΛCDM-like Universe. How-
ever, there are a few problems yet to solve. The use of a cosmological constant as the
driving mechanism of the late-time expansion is not fully justified, despite the fact that
it explains well most observations. The main motivation for this choice is the idea of
associating Λ with the vaccum energy. Given the composition of the Universe, we can
estimate the density of dark energy as roughtly,

ρΛ =
Λ

8πG
≈ 10−47GeV4 . (2.14)

Let us now assume that the vaccum energy stems from a zero point energy of fields of
mass m, and momentum k. Its energy reads E = 1

2

√
k2 +m2 and the energy density is

the sum of all momenta up to some cut-off scale. If this cut-off scale is roughly the Planck
mass mPl, then we arrive to

〈ρvac〉 ' 1074GeV4 . (2.15)

These estimates differ by 121 orders of magnitude. This energy comparison is the famous
cosmological constant problem and the reason why one needs to carefully choose the cos-
mological constant, or in order words, to fine-tune it. Such a calculation is based on a
very rough estimation from quantum field theory. For example, one can use a different
regularization scheme resulting in 〈ρvac〉 ≈ 1010GeV4, which lowers the difference signif-
icantly [20]. However, to make a correct estimation of this vaccum energy, one needs to
have a quantum gravity theory, which unfortunately does not yet exist [21, 22].

There is another interesting question left to answer. The density parameter today for a
cosmological constant ΩΛ and the one of matter Ωm,0 are surprisingly of the same order
of magnitude. The proximity of these values raises the suspicion that we live in a special
time of cosmic history, which seems unlikely. In other words, the redshift where the two
densities coincide can be computed by

zc =

(
ΩΛ

1− ΩΛ

) 1
3

− 1
for ΩΛ=0.7≈ 0.3 . (2.16)

This means that very recently dark energy started dominating over matter and if that
would have happened much longer ago, we would not see the current accelerated expansion.
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Such problems have led to the formulation of alternative theories. To solve the cosmo-
logical constant problem, usually the question changes towards the nature of dark energy.
Either by introducing a scalar field, whose dynamics drives the accelerated expansion, or
modifying gravity, the problem remains unsolved but a plenthora of alternative theories
have been formulated. We name a few of those next. The coincidence and cosmological
problems are somewhat solved independently. In other words, the coincidence problem
is still present in many theories that address the cosmological constant problem as dark
energy explanation. Regarding the coincidence problem, one example solution are the
tracker models, where the behaviour of the evolution of each density is similar but with
an offset independent of initial conditions. This does not fully solve the problem but it
mitigates the problem while building another framework [23]. Another example is the use
of the anthropic principle. This principle stems from the idea that the existence of life on
Earth is a needed consideration in physical theories. In more physical terms, it can be
rephrased as the physical constants must have the values compatible with our existence as
observers [24]. This explanation can be applied to both problems but it is not generally
accepted.

2.1.4. Beyond the standard ΛCDM model

So far we have described the GR framework and the ΛCDM model while describing a few
problems that need to be addressed. We now deal with some of the alternative theories
to the ΛCDM model. These are summarized to two main categories: dark energy and
modified gravity. A good criteria to make this distinction is proposed in [25] (see also see
[26] for a more extensive review).

The dark energy solutions often involve the addition of a scalar field that adds an extra
dynamical degree of freedom. This scalar field can be universally coupled to all matter
species or to only one specifically, giving rise to the subcategories of universally-coupled
theories and non-universally coupled theories. Examples of universally coupled theories
are Quintessence[27–31], Horndeski theories [32–34], and effective field theories [35, 36].
The non-universal coupled theories usually let baryons remain uncoupled due to local
tests. From these theories, some examples are the coupled dark energy model [37, 38] and
growing neutrino quintessence [39, 40].

Modified gravity theories are associated with general modifications of GR, although
any new form of matter such as the dark energy models aforementioned influences the
geometry. These modifications can take the form of extra dimensions [41] or violate the
Lorentz invariance [42]. Also, one can include two metrics instead of one [43], make the
graviton massive [44], or both [45]. In this dissertation we would like to discuss briefly the
Horndeski theory as one example of an alternative theory to the ΛCDM model.

Horndeski theory

The Horndeski theory [32] is the most general theory of a scalar field coupled to a met-
ric with second-order equations of motion without ghost instabilities. First formulated in
1974, it only became more popular about 30 years later [34]. What started as a mathemat-
ical exercise turned out to be extremly useful to set a general structure that encapsulates
many other theories, following an effective field theory approach. There is an unique action
that only adds one extra dynamical scalar field while respecting homogeneity, isotropy and
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the Weak Equivalence Principle. We define this action in the Jordan frame as

S =

∫
dx4√−g

[M2
Pl

2
[1 + Ω(τ)]R+ Λ(τ)− a2c(τ)δg00 +

M4
2 (τ)

2
(a2δg00)2

− M̄13(τ)2a2δKµµδg00 − M̄22(τ)

2
(δKµµ)2 − M̄32(τ)

2
δKνµδKν

µ + a2 M̂
2(τ)

2
δg00δR(3)

+m2
2(τ)(gµν + nµnν)∂µ(a2g00)∂ν(a2g00) + Lm(gµν,Ψm)

]
, (2.17)

written in terms of the conformal time τ . Spacetime has been foliated for this action,
where nµ ≡ ∂µφ√

−(∂φ)2
is the preferred direction of time. Without going into deep details,

we would like to point out that this action is a function of nine free functions of time. Once
definining these free functions of time, we can recover the Horndeski theory or theories
that go beyond that [46].

For a ΛCDM background and fixed Ω(τ), the functions Λ(τ) and c(τ) are also fixed [47].
Then, to remove theories with third-order spatial derivatives, one can also set M̄2

2 (τ) =
−M̄2

3 (τ) and m2
2(τ) = 0. This leaves five free functions and H(τ) related to the background

cosmology. A commonly-used simplification of five free functions is the mapping done by
the αi(τ) functions defined in [48]. These functions are

M2
∗ (τ) = MPlΩ(τ) + M̄2

2 (τ) ,

M2
∗ (τ)H(τ)αM (τ) = MPlΩ̇(τ) + ˙̄M2

2 (τ) ,

M2
∗ (τ)H2(τ)αK(τ) = 2c(τ) +M4

2 (τ) ,

M2
∗ (τ)H(τ)αB(τ) = MPlΩ̇(τ)− M̄3

1 (τ) ,

M2
∗ (τ)αT (τ) = −M̄2

2 (τ) ,

M2
∗ (τ)αH(τ) = 2M̂2(τ)− M̄2

2 (τ) , (2.18)

with MPl as the reduced Planck mass and M2
∗ as the effective Planck mass. These αi(τ)

functions further provide an insight into the physics. αM stems from mass run rate as
the effective Planck mass changes and there is anisotropic stress. Also, αK is labeled due
to kineticity, present in quintessence or k-essence theories. αB is associated to braiding
causing clustering dark energy. The function αT translates the tensor speed excess which
produces deviations of the speed of gravitational waves with respect to the speed of light.
Finally, the αH accounts for the beyond Horndeski theories. These equations have been
implemented in the hi-CLASS code [49] which is the Horndeski extension of the popular
Boltzmann code called CLASS [50]. The hi-CLASS code is the foundation of the Fisher
matrix code we use later in Chapter 5.

Recently, gravitational waves from a neutron star merger (GW170817) and its elec-
tromagnetic counterpart (GRB170817) were detected by the LIGO/VIRGO collaboration
and many other telescopes [51–55]. One of the main results is that the difference between
the speed of gravity cT and the speed of light c is of about 10−15 [51]. Among other
consequences of this measurement [56, 57], it strongly constraints a few of the above αi(τ)
functions [58–61], in particular the αT function, and thus rules out several models. How-
ever, to rule out these parts of the Horndeski theory, one needs to assume no extreme
fine-tuning, the absence of attractors as expressed by [62], and an universal coupling be-
tween matter and the scalar field.
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2.1.5. Modified gravity parametrizations

We do not address perturbation theory in great details but we briefly discuss another take
on the metric that has that motivation. Typically to go beyond the background evolution,
one starts by perturbing the metric and split it between a background contribution ḡµν
and a perturbation contribution hµν . From the perturbed metric, one can identify scalar,
vector and tensor terms from which the scalar are the relevant ones for structure formation.
According to linear perturbation theory, if we chose the conformal Newtonian gauge, the
line-element can be writen as

ds2 = −(1 + 2Ψ)dt2 + a2(1− 2Φ)dx2 , (2.19)

where Ψ and Φ are the Bardeen potentials that are gauge-invariant (see [63] for a peda-
gogical introduction).

In many dark energy or modified gravity theories, the standard linear perturbation
equations are not valid, and thus the Bardeen potentials provide different values than the
ones from GR [24, 64]. For this reason it is common to parametrize the modifications of
gravity. We focus on the particularly useful definitions that set the ground for the work
presented in Chapter 3. The gravitational slip η(z, k) is defined as

η(z, k) ≡ −Φ(z, k)

Ψ(z, k)
, (2.20)

which is effective observable [65] that we later explore in Chapter 3. This definition
is associated with modifications of GR but it can be applied to many different models
[25, 29, 66].

We introduce also introduce a new function, µ(z, k), as a modification of the Poison
equation in Fourier space,

− k2Ψ ≡ 4πGH(z)−2µ(k, z)ρm(z)δm(z, k) , (2.21)

where k is the scale in terms of the cosmological horizon, k = kχ(1 + z)/H(z). ρm corre-
sponds to the background average matter density and δm is the matter density contrast.
Relativistic particles and radiation are neglected here since they are negligible at late
times. The gradient of Ψ accelerates non-relativistic particles resulting in deviations of
gravitational clustering. These deviations are encoded in the µ(z, k) function.

Regarding weak lensing observables, one also introduces the function Σ(z, k) to account
for deviations in the lensing potential Φ + Ψ. This turns the respective Poisson equation
into

− k2(Ψ− Φ) ≡ 4πGH(z)−2Σ(k, z)ρm(z)δm(z, k) . (2.22)

If now we take the ratio between the Eq. (2.21) and Eq. (2.22) and a little bit of algebra,
we can find a relation between all these definitions by

Σ(z, k) = µ(z, k)(1 + η(z, k)) (2.23)

These definitions have a correspondence in GR where η = 1, µ = 1, and Σ = 2.
In Chapter 3, we describe how to estimate Eq. (2.20) in a model-independent way

[65], without assuming initial conditions of the Universe, neither on the primordial power
spectrum, nor on the nature of dark matter or the details of galaxy bias. Unlike this
estimation, one cannot estimate the matter background density or the matter overdensity
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in a model independent way. For this reason, the same approach does not apply to a
quantity like µ(k, z). In general, η 6= 1 hints at a deviation from standard gravity or a
form of dark energy that cannot be approximated by a perfect fluid. However, in the limit
of large (but still sub-horizon) scales and provided that the theory does contain at least
one mass scale besides the Planck mass [67], one obtains η = 1.

2.1.6. Structure formation

The existence of structures in the Universe such as galaxy clusters, galaxies or the solar
system would not be possible if the Universe was perfectly homogeneous. Such structures
formed from small density inhomogeneities that grow through gravitational interaction.
The question now is where do these fluctuations arise from and the most accepted an-
swer is inflation [68] (see [69] for a review). In this period, quantum fluctuations of the
inflaton field are the seeds of the primordial density fluctuations in a exponentially expand-
ing Universe. This mechanism further solves two problems that the Cosmic Microwave
Background observations suggest: the flatness problem and the horizon problem.

The flatness problem states that if there is any curvature deviation from a flat geometry
in the early Universe, that deviation would evolve to be a large curvature today, seen
through the curvature density parameter, Ωk. Since observationally Ωk ≈ 0 today, it
is required that Ωk ∼ 10−27 at early times to satisfy the closure relation of the density
parameters. This early-time accelerated expansion of the Universe naturally drives Ωk to
zero due to the decrease of the comoving Hubble radius.

The horizon problem arises from the pattern present in the temperature maps of the
cosmic microwave background. As we discuss in more detail in Sec. 2.2.1, the cosmic
microwave background is a perfect black body radiation that was in thermal equilibrium
before recombination. To justify the causal disconnected patches seen in the CMB, these
patches must have been in contact before. Assuming it lasts long enough, an early-time
accelerated expansion could thus drive the comoving horizon to be smaller and thus match
the horizon size at recombination which is of the order of a few degrees on the sky.

Focusing now on how structures form, let us consider a scalar random field, as for
instance the density contrast,

δ(~x, t) ≡ ρ(~x, t)− ρ̄(t)

ρ(~x, t)
, (2.24)

where ρ(~x, t) is the density perturbation and ρ̄(t) is the mean cosmic background density.
The density contrast δ(~x, t) is called statistically homogenous if all its moments are invari-
ant under spatial translations. Also, it is called statistically isotropic if all its moments are
invariant under spatial rotations. The density fluctuations δ are very small, δ � 1. They
have mean 〈δ〉 = 0 and we now define their variance. But first, we define the two-point
correlation ξ(~r) between two fluctuations at ~x and ~y separated, which is written as

ξ(~r) ≡ 〈δ(~r)δ(~y − ~r)〉 , (2.25)

where ~r = ~y − ~x and the brakets denote an ensamble average. This correlation function
only depends on the norm r due to the statistical homogeneity and isotropy that we defined
before. ξ(~r) contains the information about how likely it is to find another point within
a distance r from the starting position. This quantity is very useful for the statistical
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description of these small fluctuations. We now introduce the Fourier transform of the
density field δ(~k) in n dimensions defined as

δ(~x) =

∫
dnk

(2π)n
δ(~k) exp(i~k · ~x) , δ(~k) =

∫
dnx δ(~x) exp(−i~k · ~x) , (2.26)

and define the variance of the fluctuations between two k-modes as

〈δ(~k1)δ(~k2)〉 =

∫
dx dy 〈δ(~x)δ(~y)〉 exp(−i~k1 · ~x+ i~k2 · ~y) . (2.27)

From the correlation function definition ξ(~r), we introduce the power spectrum as

P (k) =

∫
drξ(~r) exp(−i~k · ~r) , (2.28)

which means that the variance of the fluctuations is the Fourier transform of the correlation
function,

(2π)3P (k)δD(~k − ~k′) ≡ 〈δ(~k)δ∗(~k′)〉 , (2.29)

where δD is the Dirac delta function. The higher moments of the power spectrum are
defined as

σ2
j ≡

∫ ∞
0

dk

2π2
k2j+2P (k) (2.30)

where σ2
0 is the variance. It is often used a smoothing function to select a certain scale R

when searching for objects with a specific size. This can be included in the power spectrum
via a multiplication in Fourier space,

σ2
R =

∫ ∞
0

dk
k2

2π2
P (k)W 2

R(k) , (2.31)

where WR(k) is the normalized weight function. Typical choices of this function have
a Gaussian shape or a top-hat filter. The two-point correlation can be generalized to a
n-point correlation function.

To describe how dark matter perturbations rise and evolve, we need to introduce the
Poisson equation

∆Φ = 4πGρ , (2.32)

where Φ is the Newtonian potential, G is the gravitational constant and ρ is the density.
The cosmic fluid follows the energy-conservation equation,

∂tρ+∇(ρ~v) = 0 , (2.33)

and the Euler equation that describes conservation of the momentum,

∂t~v + (~v · ∇)~v = −∇p
ρ
−∇Φ . (2.34)

Each quantity is dependent on the comoving coordinates, ~x = ~r/a and time t which were
omited from the above expressions. Recovering the density contrast δ(~x, t) from before,
we perturb the above equations through δΦ, δ~v, and δp with respect to their background
values ρ0, ~v0, p0, and Φ0. It reads

∆δΦ = 4πGρ0a
2δ , (2.35)
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δ̇ +∇ · δ~v = 0 , (2.36)

δ~̇v +Hδ~v = −∇δp
a2ρ0

+
∇δΦ
a2

, (2.37)

as the linear perturbation equations in comoving coordinates. This set of equations is
closed with the equation of state for density perturbations,

δp = c2
sρ0δ , (2.38)

where cs is the speed of sound. If we combine the divergence of the Euler equation with
the time derivative of the continuity equation and substitute in the Poisson equation, this
gives a differential equation for the density contrast for pressureless dark matter, cs = 0,
in Fourier space,

δ̈(k, t) + 2H(t)δ̇(k, t) +

(
c2
sk

2

a2
− 4πGρm

)
δ(k, t) = 0 . (2.39)

Using the Friedmann Eq. (2.7) and the explicit Hubble function at Eq. (2.13), we can
rewrite the above relation into

δ′′(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′(a)− 3

2

Ωm(a)

a2
δ(a) = 0 . (2.40)

There is a decaying D−(a) and a growing D+(a) solution of this equation. This leads to
the definition the linear growth factor D+(a) as,

δ(a) = D+(a)δ0 , (2.41)

normalized to be today, D+(a0 = 1) = 1. For cs 6= 0, structures grow above the Jeans
length, defined as λJ ≡ cs

√
π/(Gρ). Finally, the growth rate is defined as

f(a) =
dD+(a)

da
, (2.42)

which is often approximated by f(a) ≈ Ωγ
m(a) with γ = 0.55.

Inflation predicts an initial power spectrum to be a power-law with a spectral index as
an exponent ns, Pinitial(k) ∝ kns . The spectral index may be a running spectral index
and depend on k. Most inflationary models predict a constant, nearly scale-free initial
power spectrum. When inflation ends, the comoving Hubble radius increases again. The
initial perturbations that were once super-horizon size enter the horizon. From these, the
modes entering the horizon before the matter-radiation equality oscillate as expected from
Eq. (2.39). On the other hand, the modes entering after the matter-radiation equality
continue to grow as δ ∝ a2. In general all modes grow as δ ∝ a after matter-radiation
equality, which supresses of the small scale modes. The initial power spectrum has an
asymptotic,

P (k) =

{
kns if k ≤ keq ,

kns−4 if k > keq ,
(2.43)

where keq is the comoving wavenumber of the horizon at matter-radiation equality. A
transfer function, T (k, a), does transition between the two branches in a Boltzmann code
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such as CAMB [70] or CLASS [50]. A Boltzmann code then produces the evolved linear power
spectrum

Plin(k, a) = D2
+(a)T 2(k, a)P (k) . (2.44)

The above description is only valid for a small density contrast, δ � 1. As the Universe
expands, the linear perturbation theory breaks down and one needs to go to higher order
in perturbation theory. From a simple expansion, the result has terms that couple different
Fourier modes of the density field. A review on standard pertubation theory can be found
in [71].
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2.2. Cosmological observables

The precison era of Cosmology stems from technological advances that enabled highly
accurate measurements of many probes. This section discusses these probes and the
datasets used throughout this dissertation. The details of each method for different probes
are essential, given the data tensions briefly aforementioned, to shed light on the hidden
assumptions and other key features. We will describe the following observables: the cosmic
microwave background, the weak gravitational lensing, the galaxy clustering probes and
the Hubble expansion rate H(z).

2.2.1. Cosmic microwave background

As the Universe expands and cools down from a hot dense plasma state, the conditions
change such that light elements can form. This process is called primordial nucleosynthesis
and happened when temperature of the Universe was around 0.1 MeV. The production of
nuclei remains in thermal equilibrium until the interaction rate, τ , becomes larger than the
expansion rate of the Universe. At this time, the environment is very hot and dense where
photons are constantly scattered by electrons through Compton scattering. Once these
collisions are not energetic enough to create new photons, the decoupling happens (also
known as particle freeze-out). This means that as the density of free electrons decreases,
it also reduces the probability of electron-photon interactions. The opacity eventually
decreases since no more photons are created.

Given the large amount of photons with respect to baryons, the recombination process
is delayed as the environment is ionized. When the temperature reaches around 0.3 eV,
shortly after matter-radiation equality, electrons and protons combine to form hydrogen
and helium. This yields the last scattering of photons before they travel freely into the
Universe, unchanged by the baryon temperature. The corresponding hypersurface of this
moment is known as the last-scattering surface and it is approximately determined by the
Saha equation. Thus, these free photons are the remnant of these processes, currently
with a frequency in the microwave part of the radio spectrum. This radiation is coming
from all directions in the sky, independent of any other formed structure such as galaxies
or stars, hence the name cosmic microwave background.

Already in 1948, Gamow [72] estimated the temperature of the CMB today, starting
from the formation of deuterium. It was only later in 1965 that Penzias and Wilson [73]
measured an unexpected constant signal corresponding to 3.5 K in their radio antenna.
The CMB is well described by a thermal black body radiation spectrum with a temperature
of T0 = 2.7255± 0.0006 K [74]. The properties of the CMB have been thereafter observed
by several missions: first by the Cosmic Background Explorer (COBE) sattelite [75, 76],
followed by the Wilkinson Microwave Anisotropy Probe (WMAP) collaboration [77], and
recently the Planck collaboration [78].

In Sec. 2.1.6 discuss a few useful definitions that we now use. The relation between the
temperature fluctuations and its power spectrum is

〈a`ma`′,m′〉 = δ``′δmm′C` (2.45)

for a homogenous and isotropic field. Given its angular dependence, it is convenient to
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express the CMB temperature in spherical harmonics, through

T (θ, φ) =

∞∑
`=0

∑̀
m=−`

a`,mY`,m(θ, φ) with a`,m =

∫ 2π

0
dφ

∫ π

0
dθ sin θ Y ∗`,m(θ, φ)T (θ, φ) .

(2.46)
From this, the temperature-temperature power spectrum is estimated as

CTT` =
1

2`+ 1

∑̀
m=−`

|a`,m|2 = 〈|a`,m|2〉 , (2.47)

where the quantity usually plotted is DTT` = `(`+1)
2π CTT` ≈ k3P (k)

2π2 , as depicted in Fig. 2.1.
The improved observational resolution allowed to detect small temperature anisotropies

at the level of 10−5. These come from mainly three phenomena: the Sachs-Wolfe effect,
the Baryon Acoustic Oscillations, and the Silk damping. Following the assumption that
large-scale structures stem from early density fluctuations present when the CMB was
formed, these should be related to fluctuations in the Newtonian potential, through the
Poison equation. The Sachs-Wolfe effect [79] is the change in energy of a photon that
went through a fluctuation of the gravitational potential. This means that the photon
gains energy if the gravitational potential fluctuation is positive and, thus, there is a
correspondence of cold spots with over-dense regions. This effect is visible on the large
scales, specifically, it corresponds to the flat region at low multipole, `, limited by the
dashed line in Fig. 2.1.

Secondly, there are density fluctuations of dark matter that gravitationally interact
with the baryon-photon plasma. The gravitational attraction of an overdensity is then
counterbalanced by the pressure from the plasma. The successive push and pull produces
sound waves, a signal called Baryon Acoustic Oscillations [80]. Since the pressure is
dominated by the photons, the equation of state is p = 1

3ρ. From this one can quantify

the sound speed to be cs ≈
√

p
ρ . This sets a limit to the largest length traveled by these

sound waves, which defines the sound horizon rs. These oscillations are visible on scales
below the sound horizon, namely, the three highest peaks in Fig. 2.1.

Finally, while the recombination takes place, the number of photon collisions decreases,
and so does the mean-free path of the photons increases. The Thomson scattering relates
the mean-free path λC with the cross-section σT for given an electron number density ne
via λC ≈ 1

neσT
. The diffusion of the photons after N scatterings is the mean free path

becomes λD ≈
√
Nλ. This leads to a diffusion scale that depends on the baryon-photon

ratio and the matter-radiation ratio. Such effect is known as the Silk damping [81] that
is visible on small scales. It can be seen for instance in Fig. 2.1 by a decreasing amplitude
at large `.

If the electrons receive radiation with a spatial quadrupole, then through Thomson
scattering, the CMB photons will be linearly polarized. This effect is much smaller, at
the 10% level regarding the main CMB signal, but its detection [82] associated with
the BAO peaks can provide constraints on models of inflation. The combination of the
polarization-polarization power spectrum CEE` , the temperature-polarization cross power

spectrum CTE` , and the lensing power spectrum Cφφ` composes the final constraints of this
probe.

Fig. 2.1 shows the temperature anisotropies measured by the Planck collaboration [83],
which are extremely well explained by the six-parameter ΛCDM model. Using a flat
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Figure 2.1.: Temperature anisotropies from the Planck collaboration [83]. The red dots
with respective error bar correspond to the measurements and are plotted
with the blue line representing the ΛCDM model at the best-fit cosmological
paramaters found to fit this dataset. It is remarkable how well ΛCDM model
can reproduce the CMB.

universe with a cold dark matter component and a cosmological constant, the blue solid
line of Fig. 2.1 is a fitting curve with six parameters: the density of cold dark matter,
Ωch

2; the density of baryons, Ωbh
2, that incorporate hydrogen and helium as set by BBN;

the angular scale of the acoustic oscillations, θ∗, which is written in terms of 100θMC ; the
optical depth of Thomson scattering from reionization, τ ; the amplitude As, reported by
ln(1010As) and the spectral index ns of a power-law spectrum of adiabatic perturbations.
Furthermore, radiation is assumed to be made up of photons and low mass neutrinos.
The remaining assumptions are the ones provided by the ΛCDM model as described in
Sec. 2.1.3.

Although ΛCDM is an excellent fit, at several points in the CMB data reduction the
ΛCDM model is assumed. Despite the model-dependency of the CMB, it is one of the
cornerstones providing tight constraints on most of the cosmological parameters. Due to
its accuracy, these became the reference values of cosmological parameters when testing
the viability of any model. The results of the Planck collaboration [78] agree with simple
single-field models of inflation. They find no evidence for primordial non-Gaussianity,
isocurvature perturbations or cosmic defects.

2.2.2. Weak gravitational lensing

When looking to a galaxy very far away, it is likely that its image arrives at us distorted.
Because light is deflected by matter inhomogeneities, this effect is called gravitational
lensing. A comprehensive review on this subject is [84]. For a given source at distance
Ds and a single lens at distance D`, the lens equation expresses the relation between the
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observed position vector β and the true position of the source vector θ, given by

β = θ − α(θ) , (2.48)

where α is the scaled deflection angle vector. There are two different categories of this
phenomenon: strong and weak gravitational lensing. The strong gravitational lensing
generates large arcs and multiple images, as shown by the multiple solutions possible for
Eq. (2.48). However, the weak lensing is a much smaller and frequent effect that can reveal
properties of gravity as we shall explain.

Gravitational lensing can be represented by a distortion tensor with components of
convergence κ and shear γ. The convergence κ is associated with the magnification effect
and the shear γ expresses the stretching in the tangent direction. Specifically, one can
rewrite the deflection angle α in terms of the lensing potential, Ψ, such as α = ∇Ψ. If the
angular scale of the lens is much larger than the source, the lens mapping can be locally
linearized as

A(θ) ≡ ∂β

∂θ
=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (2.49)

where γ ≡ γ1 + iγ2 is the complex shear. The complex shear and the convergence are
defined as

γ1 =
1

2
(∂11ψ − ∂22ψ) , γ2 = ∂12ψ , 2κ = ∆ψ . (2.50)

To measure the shear, the fundamental quantity is the geometric ellipticity ε of the galax-
ies. This can obtained by the reduced shear, g ≡ γ/(1 − κ), where in the weak lensing
regime κ � 1, one recovers ε = g ≈ γ. However, the galaxies measured are intrinsically
elliptical, not circular, leading to the approximation of intrinsic ellipticity εs and lensed
caused ellipticity g, ε ≈ g + εs. It is fundamental that for large samples the intrinsic
ellipticity averages out, 〈εs〉 ≈ 0. This is not a problem since the sky is full of distant faint
galaxies and, typically, the angular scales are smaller than the variation of convergence
and the shear of the lens. The measurements of ellipticities can be done by measuring the
surface brightness using a forward modeling approach. Ellipticities can also be obtained
in a model-independent way from quadrupole moments of the surface brightness.

To predict lensing effects produced by large-scale structures in a line-of-sight is not
possible without the knowledge of the underlying matter distribution. To quantify this, the
shear power spectrum Pγγ is obtained when measuring the galaxy ellipticities. Using linear
theory, one can derive a relation of proportionality between the shear power spectrum Pγγ
and the convergence power spectrum Pκκ [24, 85]. These spectra are also related to the
matter power spectrum and cosmological parameters. Therefore, to measure of shapes of
galaxies is another way to investigate the dynamics of the Universe.

Individual galaxy shapes do not provide enough information since the cosmic shear effect
is small, plus galaxies are intrinsically elliptical. However, one can take the correlation
function of these galaxies and its neighboring images in order to get a consistent distortion.
The power spectrum of the convergence field, in the linear regime, can be written as

Cκij(`) =
9

4

∫ ∞
0

dz
Wi(z)Wj(z)H

3(z)Ω2
m(z)

(1 + z)4
P

(
`

r(z)

)
, (2.51)

where i, j are indexes refering to a tomographic approach with nbin redshift bins. The
conversion k = `

r(z) is known as the Limber approximation [86], where r(z) is the comoving
distance. This approximation is valid for small angular separations and it simplifies the
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calculations by avoiding Bessel functions to be integrated. It relies on the slowly-varying
property of the applied function. Eq. (2.51) uses the window function W (z) which is given
by

W (z) =

∫ ∞
z

dz′
(

1− r(z)

r(z′)

)
n(z′) , (2.52)

with n(z) being the normalized source distribution function that is specific for each
survey. The convergence power spectrum has additionally a shape noise contribution,

σ2
SN = nbinσ

2
ε

n̄ δij , where σ2
ε corresponds to the intrinsic ellipticity dispersion and n̄ the

mean number of sources in a steradian. There is the additional assumption that the same
number of galaxies is contained in each bin.

Weak gravitational lensing can help us investigate the matter distribution. This can later
be addressed in terms of the gravitational field, independently of the nature of the matter
or its physical state. The geometric derivation of weak lensing also enables to understand
the geometry of the Universe. These factors turn this probe into a vital contribution in
cosmology, being connected to many studies about dark matter.

In addition, the CMB photons also suffer a small lensing effect. Previously we discussed
how the CMB photons travel since the recombination epoch to us today and through that
time also pass by matter inhomogeneities in large-scale structures [87–89]. The scattering
of the deflection angle correlates with the typical size of the potential well, leading to a
correlation length close to one of the acoustic peaks. This means that the BAO signal
might be reduced due to the overall lensing of the CMB photons. For further details, a
good review of this topic is found in [90].

2.2.3. Galaxy clustering

Another way to probe the Universe is by counting galaxies through the density contrast
δ in terms of the density of galaxies δg. Galaxy clusters are the largest gravitationally
bounded objects and their properties entail a lot of the cosmic history. Although, the
estimators used in real data can be much more complicate the idea of galaxy clustering is
simple: the galaxy number-density δg is obtained through the number count compared to
the average number of objects in that cluster, which explicitly means

δg ≡
ng(k, z)− 〈ng〉

〈ng〉
. (2.53)

The formation of galaxies is a complex and not well understood process that relies on
the environment of the galaxy number-density δg, that generally relates to the underlying
matter distribution via

δg(k, z) = b(k, z)δ(k, z) . (2.54)

where b(k, z) is the galaxy bias function that includes the uncertainties in our knowldge
on galaxy formation. This relation is usually simplified to be scale independent in the
linear regime at large scales. At small scales, more complicated models are required to
match the matter power spectrum to the observed power spectrum. The endpoint of this
probe is to obtain the matter power spectrum and decompose it in spherical harmonics in
radial shells, in a similar approach as previously discussed for weak lensing [91–95]. The
projected tomographic power spectrum is

Cgij(`) =

∫ χH

0

dχ

χ2
W g
i (χ)W g

j (χ)P

(
`

χ
, χ

)
, (2.55)
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where a window function is used per tomographic bin W g
i , specific for each survey speci-

ficities.
Galaxy clustering is, in principle, a straightforward probe for cosmology from the above

description. In reality, large scale surveys need to be very careful in considering a few
effects present in the matter power spectrum. From the theory, the power spectrum P (k)
depends on the cosmological parameters of, for instance, the ΛCDM model. This is later
modified by several other effects as we shall describe next. The matter power spectrum
is by definition the Fourier transform of the two-point correlation function of Eq. (2.54).
In a forecast analysis, a model with a fixed set of parameters is the reference frame called
the fiducial model. For such analysis, the full expression for the observed power spectrum
is [96, 97]

Pobs(k, µ, z) =
D2
A,ref(z)H(z)

D2
A(z)Href(z)

b2(z)(1 + β(z)µ2)2 exp
[
− k2µ2(σ2

z/H(z) + σ2
v(z))

]
. (2.56)

In this expression, the fraction that includes the angular distance D2
A and the Hubble

function H(z) is linked to the geometrical change caused by the BAO. Different cosmo-
logical models produce distinct geometric changes in the BAO peak proportional to this
fraction [98]. b(z) is the galaxy bias function previously defined in Eq. (2.54). Typically,
b(z) is assumed to be a linear function of redshift but that assumption breaks down at
very small and very large scales [99]. The redshift space distortions is associated with the
function β(z) = f(z)/b(z) with b(z) being the galaxy bias and f(z) the logarithmic growth
rate of perturbations f(z) = d lnD+(z)/d ln a. This is known as the Kaiser formula [100]
and it expresses how distortions are created by the peculiar velocity divergences in redshift
space. Furthermore, the Alcock-Paczyński test [101] is also included in Eq. (2.56), through
the dependence on the angle µ and the scale k. If the cosmological parameters change,
then µ and k are adjusted by a geometrical distance factor. This geometric test aims to
detect the presence of a cosmological constant, which can be distinguished from the RSD
if the dataset is accurate and large enough [102]. Finally, the observed power spectrum
of Eq. (2.56) is damped by the spectroscopic errors σz and the non-linear peculiar veloc-
ity dispersion σv(z). This dispersion σv(z) is known as the Fingers of God effect and it
corresponds to the first-order correction to the aforementioned Kaiser formula. At small
scales, the Fingers of God effect suppress the power spectrum leading to a much higher
uncertainty when attempting to reproduce the underlying theoretical function.

Baryon Acoustic Oscillations

As explained previously, before recombination, baryons and photons were tightly coupled.
As the temperature drops and opacity decreases, these baryon perturbations are released
as pressure waves. These leave an imprint at a specific scale on late-time matter clustering
at the radius of the sound horizon,

rs =

∫ ∞
zd

cs(z)

H(z)
dz , (2.57)

where zd is the redshift at drag epoch, right before recombination when photons and
baryons decouple. This signature of the Baryon Acoustic Oscillations (BAO) appears as a
precise peak in the galaxy correlation function [80]. These oscillations show up as wiggles
in the matter power spectrum, at roughly 100h−1Mpc, making it a “standard ruler”. This
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feature can be measured through the line-of-sight and transverse directions constrain H(z)
and dA(z) separately. The sound horizon rs relies on the speed of sound of the baryon-
photon plasma and on time scales of the early universe and is thus not directly measured.
Instead, the following ratios are estimated

∆θ =
rs

(1 + z)dA(z)
, ∆z =

rsH(z)

c
. (2.58)

These ratios amount for an increase in the number of galaxy pairs for a specific angular
separation ∆θ in the line-of-sight and also an enhanced number of galaxy pairs with a
redshift separation ∆z in the radial direction. This method works as an inverse distance
ladder approach where the distance calibration is done through the sound horizon rs that
can be measured by the CMB.

Redshift-Space Distortions

Another way to obtain these quantities is by the Alcock-Paczyński test, applied to the
two-point statistics if redshift-space distortions (RSD) are well modeled. These appear as
constraints on the product of two quantities, f(z)σ8(z). The first is the growth function
f(z) and the second is the normalization of the linear matter power spectrum for spheres
of 8h−1Mpc, σ8(z). These quantities are defined as

f(z) ≡ d lnG(a)

d ln a
σ8(z) = 4π

∫
k2dk

(2π)3
P (k, z) , (2.59)

with the scale factor a defined as a = 1/(1+z) and the P (k, z) is the matter power spectrum
as in Eq. (2.56). This is independent of any “standard ruler” and it can determine the
ratio ∆z/∆θ ≈ (1 + z)dA(z)H(z)/c. The combination of the peaks of BAO and the
Alcock-Paczyński test is the approach used by the WiggleZ Dark Energy Survey [3]. They
use measurements of the averaged galaxy correlation function and the two-dimensional
power spectrum in tangential and radial Fourier bins. Similarly, [2] uses data from the
Baryon Oscillation Spectroscopic Survey (BOSS) and Sloan Digital Sky Survey (SDSS) to
obtain measurements of H(z). The data from these last two references will be used later
on and they correspond to the method 2 label on Tab. 3.2. Furthermore, the same BOSS
survey also includes measures from the Lyman α forest [103, 104], also used in our work
and labeled as method 3 in Tab. 3.2.

2.2.4. Hubble expansion rate H(z) and Hubble parameter H0

The discovery of the expansion of the Universe was coined by Edwin Hubble, in 1929,
who found a relation between the distance and the radial velocity of nebulae [105]. This
relation is known as the Hubble law,

vr = H0d , (2.60)

where the constant of proportionality H0 corresponds to the current expansion rate, valid
for small distances. The expansion of the Universe is usually directly linked to its different
matter components. Thus, at any point in cosmic history, the expansion of the universe
is given by

H(z) = H0

√
ΩΛ + Ωk0(1 + z)2 + Ωm0(1 + z)3 + Ωr0(1 + z)4 , (2.61)
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for a general non-flat ΛCDM model, where Ωm0 is the matter density parameter today, Ωr0

is the radiation density parameter today, ΩΛ is the dark energy density parameter, and Ωk0

the curvature density parameter today. The curvature is taken as flat in ΛCDM, and gener-
ally, radiation is neglected. Since

∑
i Ωi0 = 1, these considerations reduce the above equa-

tion to be dependent only on H0 and Ωm0, and thus, H(z) = H0

√
Ωm0(1 + z)3 + 1− Ωm0.

Measuring the expansion rate of the Universe constitutes one of the crucial observational
tests in Cosmology. Currently, there are several techniques to measure this and the main
ones are outlined next.

Supernovae type Ia and Cepheid variable stars

The late-time accelerated expansion of the Universe was found independently by two
teams, the High-Z Supernova Search Team [13] and the Supernova Cosmology Project
[12]. This acceleration was measured through the light curves of supernova Type Ia (SNIa).
This subtype of supernova is identified by having an absorption line of singly ionized silicon
and the lack of a hydrogen line. Typically it stems from a binary system where one of
the stars is a white dwarf. If this white dwarf is rotating slowing and accreting matter
from its companion, the stability of this accretion is set by the Chandrasekhar limit that
is 1.44 solar masses. Above this limit, the white dwarf no longer balances its own gravity
with the electron degeneracy pressure, leading to an extremely bright supernova explosion.
The absolute luminosity of these supernovae is roughly constant at the peak of highest
apparent luminosity, making them known as “standard candles”. What is measured is the
apparent flux F , the amount of light from a specific stellar object. This can be expressed
as function of its luminosity L and its distance dL, such as F = L/4πd2

L. We can later
relate the apparent magnitude m, which is the measured brightness, with M the absolute
magnitude, defined by being at a fixed distance of 10 pc, through

µ ≡ m−M = 5 log10

(
dL

10pc

)
, (2.62)

where µ is the relative magnitude and color corrections might need to be added here for
an accurate relation. This luminosity distance dL is then associated to the content of a
flat Universe through

dL(z) = c(1 + z)

∫ z

0

dz′

H(z′)
≈

for z�1

cz

H0
, (2.63)

with the Hubble function H(z) is given by Eq. (2.61). Thus, assuming a specific content of
the Universe, one can infer H0 for a very close SNIa or, in general, H(z), since the redshift
z is obtained by measuring the wavelength λ of the observed light through z ≡ λ0

λ − 1.
Clearly, from Eq. (2.62) it is required to know exactly the absolute magnitude M which
cannot be disentangled from the apparent magnitude m within the same dataset. For
this reason, the light curves need to be calibrated and there are several methods to do so
[106–110]. In simple terms, one can add an extra parameter at the data analysis stage, to
take the degeneracy of M with H0 as well as other possible effects into account, but this
naturally decreases the amount of information available leading to a higher uncertainty
on this distance measurement.

Another way of calibrating the distance to the SNIa is to use the cosmic distance ladder.
In [1, 111], the process is to use Cepheid variable stars in which brightness varies with a
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well-defined period. This calibration process starts by measuring the distance to Cepheids
that belong to the Milky Way through their parallax. After the brightness of the Cepheids
is calibrated through comparison to other stars, these can be used as a reference to larger
distances, and reaching thus the distances at which supernova exists in other galaxies.
This allows for the calibration of the supernovae brightness. And, once going further to
more distant galaxies that host both Cepheid variable stars and SNIa, the expansion of the
Universe can then be measured. Comparing the distance of SNIa with its redshift, which
is converted into its recession velocity, this cosmic ladder allows us to obtain the Hubble
parameter today H0 in a cosmological model-independent way. This calibration method
used in [1, 111] is further supported by using Cepheids and detached eclipsing binaries
at the Large Magellanic Cloud [112], and the distance to the galaxy NGC 4258 using its
water masers at the nucleus [113]. These improvements led to the recent 1% accuracy of
the H0 determination [111], namely the last estimate, H0 = 74.03 ± 1.42 km s−1Mpc−1.
A further discussion on the present discrepancies between the different methods can be
found at Sec. 2.2.5.

Cosmic Chronometers

The cosmic chronometers method is a differential dating technique [114], which relies
directly on the definition of the Hubble parameter writen as

H(z) =
ȧ

a
= − 1

(1 + z)

dz

dt
, (2.64)

where a is the scale factor and the dot refers to the derivative with respect to z. This spec-
troscopic technique relies on the age difference between two passively-evolving galaxies, ∆t,
that were formed at the same time but have a different redshift, ∆z. This ratio of ∆z/∆t
allows to infer the above derivative dz/dt. Passively-evolving galaxies are galaxies that
have a low star formation rate and an old stellar population. A careful selection of these
galaxies provides a rather homogenous sample of galaxies with similar metallicity and low
star formation rates. This measurement is independent of the metric or any cosmological
model. Furthermore, to use this method for further distances, the passive evolution of
these galaxies must be much slower than the age difference. Typically, this means that
the best candidates are massive early-type galaxies which have most of their stellar mass
formed very rapidly. Later on, an easy way to identify them was found, namely, through
the spectral break at 4000 Å of wavelength λ in the galaxy light spectrum. This dis-
continuity arises from metal absorption lines that have their amplitude linearly related
to the age and metal abundance of the stellar population. The valuable advantage of
this technique is its differential nature that clears out systematical uncertainties or other
effects from galaxy evolution. The majority of the measurements of H(z) that we use
are done through this method [115–120], presented with label 2 in Tab. 3.2. From these
measurements, one can infer H0 choosing a specific interpolation scheme and then read
out the value at z = 0. This inference can be somehow biased if a value of H0 is chosen
and it is also dependent on the interpolation scheme and its underlying assumptions [121].
Interestingly, the cosmic chronometers dataset can support both a higher and a smaller
value of H0 given the choice of a star formation model as it is one of the key features of
this technique [122].
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Figure 2.2.: Cepheids (blue), Tip of the Red Giant Branch (red) and Cosmic Microwave
Background (black) are three examples of methods used to obtain H0. Their
uncertainty has decreased with time (year of publication) but a discrepancy
between Cepheids and CMB measurements became clear. This figure is taken
from [125].

Tip of the Red Giant branch

When the red giant stars stop the fusion of hydrogen and start fusing helium at their
core, the star reaches a specific peak of brightness, usually known as the Helium flash.
This produces a particular feature in the luminosity function of these very bright and red
stars and they can be seen in galaxies that host SNIa within distances up to ∼ 20 Mpc by
the Hubble Space Telescope (HST). Among other benefits from this method such as little
reddening effects or its isolated locations, these older stars are present in any type of galaxy,
an advantage regarding Cepheids that are only present in late-type star-forming galaxies.
Therefore, they can be used as an independent method taking the role of the Cepheids
in the SNIa calibration. The estimated values of H0 also reach a few percent accuracy,
specifically, H0 = 69.6± 1.9 km s−1Mpc−1 [123] and H0 = 72.4± 2.0 km s−1Mpc−1 [124].
This offset comes from different estimations on the color corrections due to the dust of the
Large Magellanic Cloud and calibration between ground-based photometry and the HST.
In Sec. 2.2.5, we discuss the ongoing discrepancies between the different methods.

2.2.5. Tensions between different datasets

In the past decade, the amount of independent methods to measure H0 has increased
and, most importantly, the accuracy of these measurements has remarkably improved
[126]. Better control over systematical uncertainties led to an error reduction from 10% to
nearly 1% on the estimation of H0, as seen in Fig.2.2. Also, the fact that different methods
were giving distinct values is not new, but the prevailing discrepancy is at the moment
about 5σ of statistical significance. The H0 tension is usually atributed to the disparity
between the value measured by the CMB probe with the Planck mission [83], namely H0 =
67.4 ± 0.5 km s−1Mpc−1 and the local measurement from the Cepheids distances by the
HST SH0ES [111], H0 = 74.03± 1.42 km s−1Mpc−1. However, recently a clear distinction
between late-time and early-time probes appeared, as depicted in Fig.2.3. This means that
local measurements from Cepheid variable stars and strong lensing are on one side with
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Figure 2.3.: Several recent different probes are not agreeing on the value of H0. The
DES+BAO+BBN and the Planck bounds correspond to probes of the early
Universe. The remaining probes give information on the late Universe. Since
there is evidence for both small and large values of H0 from probes other than
CMB and Cepheids, this might hint a possible crisis in cosmology. This figure
is taken from [123].

larger values of H0 and smaller values are given by CMB (both Planck and the previous
WMAP mission), BAO and Big Bang Nucleosynthesis (BBN) on the other side. The
TRGB value [123] is here in the middle of the tension with H0 = 69.6±1.9 km s−1Mpc−1.
However, this last value was updated from [125], namely H0 = 69.8 ± 1.9 km s−1Mpc−1,
as [124] claimed that the extinction of the Large Magellanic Cloud was over estimated,
finding then H0 = 72.4± 2.0 km s−1Mpc−1. This is one of the many examples of how the
estimation of H0 and its error have often been updated and scrutinized in the past three
years, but unfortunately, its origin is still unknown. The two main explanations focus on
unaccounted systematical errors or new physical models.

Ref. [123] states that the two main questions that need to be solved are the weak lensing
effects on SNIa measurements and the local bubble possibility. The local bubble [127, 128]
relies on the idea that our neighborhood is an underdense region which would then change
the local uncertainty values. Through N -body simulations, they find that such an effect
is too small to explain the tension, or any other local structures [129]. Regarding the
weak lensing affecting SNIa, the effect is again almost negligible [130]. Assuming that
the problem is not in the local measurements, the question remains about what are the
alternatives if this tension persists. The six parameter ΛCDM model has not a very firm
foundation on the nature of dark energy or dark matter. The possibilities of a new neutrino
species [131], or even, an evolving dark energy equation of state, among other possibilities
(see [132, 133] and references therein) are not yet enough to justify the present discrepancy
and might even lead to further discordance with the other probes: BAO, WL, and BBN.
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At low redshift, the predicted value for f(z)σ8 from the ΛCDM model differs from
the ones measured by a few weak lensing surveys, as shown later in Fig. 3.1. Usually
this tension is easily identified on the (Ωm, σ8) parameter plane and for that reason,
the values quoted are the quantity S8 ≡ σ8

√
Ωm/0.3. This discrepancy started a few

years ago, between the CFTLenS [134] and Planck 2013 data release [135] of around
2 − 3σ level of statistical significance. Throughout the last years, the accuracy of both
weak lensing and CMB surveys improved, including the new large weak lensing surveys
such as the Kilo-Degree Survey (KiDS) [136–138] and the Dark Energy Survey (DES)
[139]. Initially, these two surveys had also a difference between them which was solved by
the addition of further data. Each survey shows about 2σ discrepancy with the Planck
2015 data release [140]. In the latest combination of both of these surveys, KiDS and
DES [141], the tension with Planck 2018 [83] is at the 2.5σ level. This corresponds to
S8 = 0.762+0.025

−0.024 for the weak lensing surveys against the S8 = 0.832 ± 0.013 from the
CMB probe (TT,TE,EE+lowE+lensing). The origin of this discrepancy also remains
unclear.
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3. Model independent reconstruction of the
anisotropic stress parameter η

In August 2017, the LIGO/VIRGO collaboration observed gravitational waves from a
neutron star merger (GW170817) with its electromagnetic counterpart (GRB170817) de-
tected by many other telescopes [51–55]. One of the most important consequences from
this particular event is the constraint [51] on the difference between the speed of gravity
cT and the speed of light c to be

− 3× 10−15 ≤ cT − c
c
≤ +7× 10−16 . (3.1)

From the several consequences of such measurement [56, 57], this constraint has a direct
impact [58–61] on the four free frunctions in the Horndeski Lagrangian [65, 142, 143].

This restriction on the possible alternative theories to the ΛCDM model poses the
question of how can one further constrain these theories. As introduced in Sec. 2.1.5,
the anisotropic stress parameter η Eq. (2.20) describes deviations to GR. In the general
Horndeski theory, and also in bimetric gravity [144], the anisotropic stress parameter
corresponds to

η = h2
1 + h4k

2

1 + h5k2
, (3.2)

in Fourier space where hi are time functions that depend on the four free functions in the
Horndeski Lagrangian [65, 142, 143]. The grativational-wave event constraints h2 equal to
1 since h2 = 1/c2

T [65], but leaves all the other functions free. It is worth to note that also
one obtains η = 1 in the limit of large sub-horizon scales and provided that the theory
does contain at least one mass scale beside the Planck mass [67], . The general idea is
that η 6= 1 indicates a deviation from standard gravity by a form of dark energy that does
not behave as a perfect fluid.

Considering model-independent observables and linear structure formation, and assum-
ing gravity remains universally coupled also when modified, one can build an estimate of
η formed by three directly observable functions of redshift (see [145]). Given the current
available data, it is interesting to revisit this estimator and analyze a possible deviation
from the perfect fluid approach as a way to probe gravity.

These observables correspond to specific measured quantities like the dimensionless
Hubble function E(z), the growth rate of matter density perturbations times the nor-
malization of the power spectrum fσ8(z), and the EG statistics which relates the lensing
potential and the growth rate of structure formation. The ratios of these observables are
the key concepts for this work and they are described later in Sec. 3.1. Nonetheless, it
is worth to mention that they incapsulate information from different cosmological probes
such as galaxy clustering and weak lensing, as well as measurements of the Hubble func-
tion. We reconstruct these parameters as a function of redshift by using the most recent
data available from several collaborations, presented in Sec. 3.2.



3. Reconstruction of η 3.1. Model-independent observables

To reconstruct an unknown function and its derivative from sparse and noisy data
is not trivial. Therefore, we use three different approaches to estimate these functions
from the data. One of the methods is the binning scheme which is commonly used to
group data in intervals. We also used the Gaussian Process method, a generalization of a
Gaussian distribution, where instead of random variables, one has a distribution of random
functions, connected by a specific correlation function. And lastly, we use a polynomial
regression in which one assumes a linear model for the underlying function. Each of these
methods has their advantages and caveats that are described in Sec. 3.3.

3.1. Model-independent observables

Previously, in Sec. 2.1.3, we presented the definition of the anisotropic stress paramter η,
Eq. (2.20), as the ratio of the gravitational potentials. Also, we mentioned how matter
background density and matter overdensity cannot be determined in a model-independent
way. However, one can define model-independent observable quantities that do not depend
on the assumptions of the initial conditions of the Universe, neither on the primordial
power spectrum nor on nature of dark matter or the details of galaxy bias.

Following [145], these quantities are called A, R, L, and E, respectively denoting am-
plitude, redshift-space distortions, lensing, and the dimensionless Hubble function. They
are defined as

A = bδm , R = fδm,

L = Ωm0Σδm , E = H/H0 .
(3.3)

where b is the galaxy-matter linear bias, f = δ′m/δm is the growth rate where the prime
is a derivative with respect to ln a, and Ωm0 is today’s matter fractional density. Both
f and b can be functions of redshift and scale. In the following, we assume that scale
dependence can be ignored as it is not provided by the available data. Thus, also η is
assumed to be independent of scale in the observed range. From Eq. (3.2), it is possible
to see that scale-independence sets in either at small scales k � 1 or at large scales k � 1
(but in this case η → 1). The scale independence is present at all scales if h4 = h5 or if
the theory does not contain a mass scale.

With these definitions from Eq. (3.3), it was shown in [65, 145] that one can obtain
model-independent quantities where the effects of the shape of the primordial power spec-
trum and the galaxy bias are canceled out, namely

P1 ≡
R

A
=
f

b
, (3.4)

P2 ≡
L

R
=

Ωm0Σ

f
, (3.5)

P3 ≡
R′

R
= f +

1

f

df

da
=

(fσ8(z))′

fσ8(z)
, (3.6)

with the prime We have defined fσ8(z) as

fσ8(z) = σ8G(z)f(z) , (3.7)

where σ8 is the amplitude of the linear power spectrum defined in a spherical shell of
radius 8 Mpc at redshift z = 0 and G(z) is the growth function normalized to unity today,
δ(z) = δm,0G(z).
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The continuity equation and the Euler equation together, relate the divergence θ of the
peculiar velocities of galaxies propagating on geodesics to the gravitational potential Ψ

(a2θ)′ = a2k2HΨ , (3.8)

in the linear structure formation regime. This allows us to write down the lensing and
Poisson equations in Fourier space, respectively, with the definitions from Eq. (3.3), in the
following way

−k2(Ψ− Φ) =
3(1 + z)3L

2E2
, (3.9)

−k2Ψ = R′ +R

(
2 +

E′

E

)
. (3.10)

The last equation is usually known as the equation of linear growth of matter perturba-
tions. Dividing the lensing equation Eq. (3.9) by the equation for the growth of structure
Eq. (3.10), we obtain the ratio of the gravitational potentials and the gravitational slip as
a function of model-independent observables

ηobs ≡
3P2(1 + z)3

2E2
(
P3 + 2 + E′

E

) − 1 . (3.11)

We label this expression as ηobs to separate the theoretical prediction with this observa-
tionally motivated expression although ηobs = η.

We reconstruct Eq. (3.11) using present data in a model-independent way. This is an
interesting exercise since ηobs is constructed in a way that it is free from an initial power
spectrum, galaxy bias, the density of matter or any assumptions about cosmic expansion.
Not requiring a ΛCDM background or any other is an important asset in order to find
deviations from the theoretical expectations.

The P2 parameter can be related to the EG statistics, defined in the cosmological lit-
erature (see [146] and references therein) as the expectation value of the ratio of lensing
and galaxy clustering observables at a scale k

EG =

〈
a∇2(Ψ− Φ)

3H2
0fδ

〉
k

. (3.12)

This relation simplifies to be EG = ΩmΣ/f for a flat ΛCDM cosmology. Since Σ = 2 for
standard gravity, taking the Poisson equation as Eq. (2.22) and the definitions of the A,
R, L, E variables as Eq. (3.3), the relation with P2 is given by

P2 = 2EG . (3.13)

The EG statistics has been used several times as a test of modified gravity [146–148], but
it is not a model-independent test per se. We will further explain the importance of this
statement in Chapter 4 where we go a bit deeper into the definition of the EG statistics.

3.2. Data

We reconstruct ηobs using E(z), P2(z), and P3(z) that correspond to the data listed in
Tab. 3.2, Tab. 3.4, Tab. 3.5, Tab. 3.3, Tab. 3.6, and Tab. 3.7. These datasets are also
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Table 3.1.: Fiducial parameter values for our reference ΛCDM case, using Planck 2018
data from TT+TE+EE+lowE+lensing [83], except for H0, where we use the
local value from the HST collaboration [149] as explained in the main text.

Ωm0 ΩDE Ωb ns σ8 H0[km/s/Mpc]

0.3153 0.6847 0.0493 0.9649 0.8111 73.45

shown in Fig. 3.1. We use the Hubble parameter H(z) data to obtain E(z) and E′(z).
For P2(z) we rescale the EG(z) data, while P3(z) is reconstructed from fσ8(z) and its
derivative with respect to ln a. Tab. 3.1 shows the cosmological parameters from the
TT+TE+EE+lowE+lensing Planck 2018 best-fits [83], that we use to plot the ΛCDM
curves for the different cosmological functions in Fig. 3.1. The details of the sources of the
data are explained below.

In the present work, we only use the H0 value to normalize the H(z) measurements into
the dimensionless quantity E(z). Notice that H0 is an observable quantity that can be
estimated from local kinematics in a way that it is independent of cosmology and modified
gravity. Therefore, for the normalization of the E(z) measurements we need to choose a
value of H0, for instance from the latest results of the Planck collaboration [83] or the
value obtained by the HST collaboration [149].

We choose to use the local value of H0 determined by the HST collaboration in our
calculations, which amounts to HHST

0 = 73.45±1.66 [km/s/Mpc], because it is cosmology-
independent as discussed previously. In Sec. 3.4 we compare and discuss the results using
the Planck value. Thus, by construction, we have an extra data point at z = 0, namely,
E(z = 0) = 1. The uncertainty on H0 propagates to all E(z) values, and we take this into
account as detailed in the next section.

3.2.1. Hubble parameter data

Regarding the Hubble parameter measurements, we used the compilation of H(z) data
from [121] (see Tab. 3.2) which includes measurements from [115, 116, 118, 119], Baryon
Oscillation Spectroscopic Survey (BOSS) [103, 104, 117] and the Sloan Digital Sky Survey
(SDSS) [2, 120]. The several methods are described in more detail in Sec. 2.2.4.

In this compilation, the majority of the measurements were obtained using the cosmic
chronometric technique, labeled as method 1 in Tab.3.2. This method infers the expansion
rate dz/dt by taking the difference in redshift of a pair of passively-evolving galaxies.
The remaining measurements were obtained through the position of the Baryon Acoustic
Oscillation (BAO) peaks in the power spectrum of a galaxy distribution for a given redshift.
This is labeled as method 2 in Tab. 3.2.

Additionally, we use the recent results from [1] where a compilation of Supernovae
Type Ia from CANDELS and the CLASH Multi-cycle treasury program was analyzed,
providing six measurements of the expansion rate E(z), with considerably smaller error
bars, compared to the other above mentioned techniques. These are listed in Tab. 3.3. In
the original reference [1], the errors are not symmetric, therefore we recalculated symmetric
errors, as the quadrature of the 1σ bounds on the left and right side of the central value.

The measurements from [103] and [104] are obtained using the BAO signal in the Lyman-
α forest distribution alone or cross-correlated with Quasi-Stellar Objects (QSO) (for the
details of the observational methods, we refer the reader to the original references). Ref-
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erence [2] provides the covariance matrix of its three H(z) measurements obtained from
the radial BAO galaxy distribution. We display the covariance matrix in Tab.3.4. To this
compilation, we have added the results from the WiggleZ Dark Energy Survey [3] whose
covariance matrix can be found in Tab. 3.5.

The cosmic chronometric technique provides measurements of H0 that are independent
of large-scale cosmology. Recent work [150] has shown that these data prefer a lower value
for the H0 value taking different data reconstruction methods. However, an upper value
can also be found if a different model of stellar population synthesis is chosen when using
the data from [117]. For our fiducial results, we fix our choice of the Hubble parameter to
the HST measurement.

As previously mentioned, the data points of the Hubble parameter H(z) have to be con-
verted into the dimensionless expansion rate E(z). This means that for each measurement
Hi = H(zi), we compute

Ei =
Hi

H0
, (3.14)

so that the corresponding uncertainty is converted as well through

δEi =
δHi

H0
−Hi

δH0

H2
0

. (3.15)

The covariance of this random matrix is the expected value of the product of δEi and δEi,
which is

〈δEiδEj〉 =

〈
δHi

H0

δHj

H0

〉
+HiHj

〈
δH0

H2
0

δH0

H2
0

〉

=
C

(H)
ij

H2
0

+ EiEj
σ2
H0

H2
0

, (3.16)

where we have used the fact that errors onH0 andHi are uncorrelated, therefore 〈δH0δHi〉 =

0. C
(H)
ij is the covariance matrix of our data on the Hubble function H(z) and σH0 is the

error on H0. Eq. (3.16) amounts to adding an extra covariance matrix to our data covari-
ance matrix.

3.2.2. EG data

We use the EG data compiled in Tab.3.6. These measurements are obtained using redshift-
space distortions and galaxy-galaxy lensing as described in Sec. 2.2.2 and Sec. 2.2.3. Our
compilation includes the measurements of the Red Cluster Sequence Lensing Survey (RC-
SLenS) [151] where the analysis combines the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS), the WiggleZ Dark Energy Survey and the Baryon Oscillation Spec-
troscopic Survey (BOSS). We also use the results of the VIMOS Public Extragalactic
Redshift Survey (VIPERS) [147]. And the remaining measurements available are the
results from the joint analysis of KiDS+2dFLenS+GAMA [138].

These sources provide measurements in real space within the scales 3 < Rp < 60h−1Mpc
and in the linear regime, which is the one we are interested in. They have been obtained
over a relatively narrow range of scales λ meaning that we can consider them relative to
the k = 2π/λ-th Fourier component, as a first approximation. In any case, the discussion
about the k-dependence of η is beyond the scope of this work, so the final result can
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3. Reconstruction of η 3.2. Data

be seen as an average over the range of scales effectively employed in the observations.
Moreover, in the estimate of EG, based on [146], one assumes that the redshift of the lens
galaxies can be approximated by a single value. With these approximations, indeed EG is
equivalent to P2/2, otherwise, EG represents some sort of average value along the line of
sight. We caution that these approximations can have a systematic effect both on the
measurement of EG and on our derivation of η. In the next chapter, we quantify the level
of bias possibly introduced by these approximations in our estimate. For further details
and discussion, see references [147, 151] as well as Chapter 4.

In Fig. 3.1, a large discrepancy between ΛCDM and the data points is visible, which
was also noted in [138]. In fact, they further notice that if one allows the cosmological
parameters to vary, the data prefer a larger value for Ωm. Since the data is correlated
with fσ8 data, one can see this as another perspective on the ‘fσ8 tension.

3.2.3. fσ8 data

The variable P3 is recovered through the reconstruction fσ8(z) and its derivative as a
function of redshift. A compilation of the available data for fσ8(z) can be found in Tab.3.7.
This quantity is obtained through measurements of the redshift-space distortions (RSD)
in the two point-correlation function of a galaxy survey, described in Sec. 2.2.3.

Our compilation includes measurements from the 6dF Galaxy Survey [152], the Subaru
FMOS galaxy redshift survey (FastSound) [153], WiggleZ Dark Energy Survey [3], VIMOS-
VLT Deep Survey (VVDS) [154], VIMOS Public Extragalactic Redshift Survey (VIPERS)
[147, 155–157] and the Sloan Digital Sky Survey (SDSS) [2, 158–164]. Other works in
the literature which perform RSD measurements only report fσ8(z) values indirectly, i.e.
report f/b and bσ8 values. Since we would have to assume something on the bias or
the σ8 relation, these works are not considered here, e.g. [165] and [166]. Furthermore,
for numerical reasons, before applying any reconstruction method, we use the natural
logarithm of the data, i.e. ln fσ8(z), which allows us to compute the P3 observable as a
simple derivative with respect to ln a.

Table 3.2.: H(z) measurements compiled by [121] with the respective original references.

z H(z) σH(z) Reference Method

(km/s/Mpc) (km/s/Mpc)

0.07 69 19.6 [120] 1
0.09 69 12 [119] 1
0.12 68.6 26.2 [120] 1
0.17 83 8 [119] 1
0.179 75 4 [115] 1
0.199 75 5 [115] 1
0.2 72.9 29.6 [120] 1
0.27 77 14 [119] 1
0.28 88.8 36.6 [120] 1
0.352 83 14 [115] 1
0.38 81.5 1.9 [2] 2

0.3802 83 13.5 [117] 1
0.4 95 17 [119] 1

0.4004 77 10.2 [117] 1
0.4247 87.1 11.2 [117] 1
0.44 82.6 7.8 [3] 2

0.4497 92.8 12.9 [117] 1
0.4783 80.9 9 [117] 1
0.480 97 62 [118] 1

z H(z) σH(z) Reference Method

(km/s/Mpc) (km/s/Mpc)

0.510 90.4 1.9 [2] 2
0.593 104 13 [115] 1
0.600 87.9 6.1 [3] 2
0.610 97.3 2.1 [2] 1
0.680 92 8 [115] 1
0.730 97.3 7 [3] 2
0.781 105 12 [115] 1
0.875 125 17 [115] 1
0.880 90 40 [118] 1
0.900 117 23 [119] 1
1.037 154 20 [115] 1
1.300 168 17 [119] 1
1.363 160 33.6 [116] 1
1.430 177 18 [119] 1
1.530 140 14 [119] 1
1.750 202 40 [119] 1
1.965 186.5 50.4 [116] 1
2.340 222 7 [103] 3
2.360 226 8 [104] 3
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Table 3.3.: E(z) measurements from [1]. The error of the last measurement is not sym-
metric, therefore, it was recalculated as the quadrature of the 1σ bounds on
the left and right side of the central value.

z E(z) σE(z)

0.07 0.997 0.023
0.2 1.111 0.020
0.35 1.128 0.037
0.55 1.364 0.063
0.9 1.52 0.12
1.5 2.67 0.675

Table 3.4.: Covariance matrix for the
H(z) data from [2].

z Covariance matrix

0.38 3.65 1.78 0.93
0.51 1.78 3.65 2.20
0.61 0.93 2.20 4.45

Table 3.5.: Covariance matrix for the
H(z) data from [3].

z Covariance matrix

0.44 0.0064 0.0025704 0
0.60 0.0025704 0.003969 0.00254016
0.73 0 0.00254016 0.005184

Table 3.6.: EG(z) data set. First column: redshift, second column: the EG value and third
column is the corresponding error. The fourth column shows the considered
interval in real space that was used to obtain each data point and the last
column points to the reference in the literature.

z EG(z) σEG(z) Scale (h−1Mpc) Reference

0.267 0.43 0.13 5 < Rp < 40 [138]
0.305 0.27 0.08 5 < Rp < 60 [138]
0.32 0.40 0.09 Rp > 3 [151]
0.32 0.48 0.10 Rp > 10 [151]
0.554 0.26 0.07 5 < Rp < 60 [138]
0.57 0.31 0.06 Rp > 3 [151]
0.57 0.30 0.07 Rp > 10 [151]
0.60 0.16 0.09 3 < Rp < 20 [147]
0.86 0.09 0.07 3 < Rp < 20 [147]

Table 3.7.: fσ8(z) data with the corresponding redshift and error. The fourth column
points to the reference in literature.

z fσ8(z) σfσ8(z) Reference

0.067 0.423 0.055 [152]
0.15 0.49 0.15 [158]
0.17 0.51 0.06 [154]
0.25 0.3512 0.0583 [159]
0.30 0.366 0.067 [160]
0.35 0.445 0.097 [161]
0.37 0.4602 0.0378 [159]
0.38 0.497 0.045 [2]
0.40 0.394 0.068 [162]

z fσ8(z) σfσ8(z) Reference

0.44 0.416 0.080 [3]
0.51 0.458 0.038 [2]
0.55 0.444 0.038 [162]
0.57 0.488 0.060 [163], [164]
0.60 0.390 0.063 [3]
0.60 0.441 0.071 [160]
0.60 0.48 0.11 [147]
0.60 0.48 0.12 [147]
0.61 0.436 0.034 [2]

z fσ8(z) σfσ8(z) Reference

0.727 0.296 0.077 [155]
0.73 0.437 0.072 [3]
0.80 0.47 0.08 [156]
0.85 0.45 0.11 [157]
0.86 0.46 0.09 [147]
0.86 0.48 0.10 [147]
1.36 0.482 0.116 [153]
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Figure 3.1.: The aforementioned data sets (black dots) displayed with the resepctive
ΛCDM prediction as a function of redshift (dashed red line), using Planck
2018 values for the cosmological parameters as on Tab.3.1. Top panel: E(z)
data from [121] where part of the data was rescaled using the H0 from HST
collaboration. Middle panel: Plot of the natural logarithm of the fσ8 data
points from Tab.3.7. Bottom panel: Data set for P2, obtained using EG data
from Tab. 3.6.
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3.3. Data reconstruction methods

The need for data reconstruction of each observable stems from different data sets having
different redshift values. In addition, we need to take derivatives for the case of E(z)
and fσ8(z). Therefore, we require to have a reliable method that allows us to access the
underlying function of redshift. There is no easy answer to this problem since different
methods include more or less model assumptions, require few or many parameters and
these can severely impact the final reconstructed function as well as the final errors. For
this reason, we consider and compare three methods to obtain ηobs: binning, Gaussian
Process, and generalized polynomial regression.

3.3.1. Binning

One way to reorganize the data in order to see its underlying behavior is to assemble the
data into bins. This method consists of dividing the data into particular intervals (bins),
which in this case are intervals of redshift. Then for each of these intervals, the average of
the data contained in that bin is calculated. Denoting sk ≡ s(zk) as a generic data value,
with dependent variable s, located at the point zk with error σsk, the binning procedure is
done by applying the following formula

s̄i =

∑Ni
k sk

(
σsk
)−2∑Ni

k

(
σsk
)−2 , σs̄i =

1√∑Ni
k

(
σsk
)−2

, (3.17)

where Ni is the number of data points inside the bin i, s̄i is the new value of the dependent
variable at the center of the bin zi. The bin zi is simply zi = (zk+1− zk)/2, the arithmetic
mean between the upper and lower borders of the bin. At this point, the error is updated to
be σs̄i . This means that we are converting the information of the subset of data contained
in a specific bin into one unique data point by taking the weighted average for the data
values and the data errors over all points contained in that interval. The square of the
new error at the center of the bin, (σs̄i )

2, is the mean of the errors squared from all the Ni

points contained in the bin with index i.

For our final result ηobs, we also need to compute the derivatives of the data for the
functions E(z) and ln(fσ8(z)), at the exact same redshifts as for the other functions.
Therefore, we need to bin the original data in different bins centered at new points zj ,
such that by using finite differences we can compute the derivative of the dependent
variable and its associated error at the zi in the following form

s̄′i = −(1 + zi)
s̄(zj+1)− s̄(zj)

∆zj
, σs̄

′
i = (1 + zi)

1

∆zj

√
(σs̄j+1)2 + (σs̄j )

2 , (3.18)

where ∆zj = zj+1 − zj . Note that a prime denotes a derivative with respect to ln a.

Our observable ηobs is estimated as in Eq. (3.11) through E(z), P2, P3, and E′(z), which
we denote generally by y(1), y(2), y(3) and y(4), respectively. Consequently, to calculate
the final error on ηobs, we use standard error propagation, assuming no correlation among
the y(i) variables, so that the error σηobs

i at the redshift zi is specifically

(σηobs
i )2 =

4∑
α=1

(
σy

(α)

i

∂ηobs(zi)

∂y(α)

)2

, (3.19)
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where we also assume that the bins are large enough, such that the correlation among the
bins is negligible. In this way, Eq. (3.11) and its estimated error can be evaluated at the
centers of the bins zi. However, the maximum number of final bins Ni is constrained by
the number of data points available for the smallest data set among the y(α) functions,
which might be a disadvantage when working with datasets of a few measurements as it
is the case of the EG measurements. Also, the accuracy of this method is very sensitive to
the bin size and thus it does not capture high-frequency modes in the data. We present
results on the binning method with more detail in Sec. 3.4.

3.3.2. Gaussian Process

Another way of reconstructing a continuous function from a dataset is using the method
of Gaussian Process (see [167] for a comprehensive description). A Gaussian Process
(GP) can be regarded as the generalization of Gaussian distributions to the space of
functions since it provides a probability distribution over continuous functions instead of
a distribution over a random variable.

This method has been used several times in cosmology, especially for the determination
of the equation of state of dark energy w and the Hubble function H(z) (see, for example,
[121, 150, 168–170]). It became recently a popular method for data reconstruction as
it does not assume a concrete parametrization for the data itself. Instead, one assumes
Gaussian distributed data and errors as well as a kernel function.

Considering a dataset D = {(xi, yi)|i = 1, ...n} of n observables where xi are determin-
istic variables and yi random variables, the goal is to obtain a continuous function f(x)
that best describes the dataset. A function f evaluated at a point x is a Gaussian random
variable with mean µ and variance Var(f). The f(x) values depend on the function value
evaluated at another point x′. The relation between the value of the function at these
two points is given by a covariance function cov(f(x), f(x′)) = k(x, x′), which evaluated
at x = x′ gives the variance Var(f(x)) = k(x, x). Thus, the distribution of functions at
the point x is characterized by (for more details, see [168])

µ(f(x)) = 〈f(x)〉 , k(x, x′) = 〈(f(x)− µ(x))(f(x′)− µ(x′))〉 , (3.20)

where the brakets correspond to the expected value.

The covariance function k(x, x′) is in principle arbitrary. Since we are interested in
reconstructing the derivative of the data, we need to choose a differentiable function. In
this work we choose a Gaussian covariance function

k(x, x′) = σ2
f exp

[
− (x− x′)2

2`2f

]
, (3.21)

is the covariance function that we choose in this work, as it is the most common and it
has the least number of parameters. In Sec. 3.4, we discuss how this assumption does not
change considerably our results. This function depends on the hyperparameters σf and
`f , which adjusts the shape of the covariance function and acts as a form of prior on the
set of possible functions that we can obtain with the GP method. The hyperparameter `f
can be considered as the typical correlation length scale of the independent variable, while
the signal variance σf can be thought of as the typical variation scale of the dependent
variable.
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3. Reconstruction of η 3.3. Data reconstruction methods

In a Gaussian Process using real data (xi, yi) where yi = f(xi)+εi, the errors are assumed
to be Gaussian and the observations to be scattered around the underlying function. The
noise εi is Gaussian with a covariance matrix C, which needs to be taken into account
for the joint likelihood function. This means that the reconstruction itself depends on the
number and quality of the available data.

Following a Bayesian approach, one can compute the joint likelihood function for the
data and the reconstructed function. Thus, for a Gaussian prior for both the data and
the random functions, one can marginalize over the space of functions f and obtain the
logarithm of the marginal likelihood as (see [168])

lnL =− 1

2

N∑
i,j=1

{[
yi − µ(xi)

]
[k(xi, xj) + C(xi, xj)]

−1
[
yj − µ(xj)

]}

− 1

2
ln
∣∣∣k(xi, xj) + C(xi, xj)

∣∣∣− N

2
ln 2π .

(3.22)

Maximizing the logarithm of the marginal likelihood gives then the optimal hyperpa-
rameters σf and `f . In a full Bayesian approach, one should marginalize over the hyper-
parameters, using Monte Carlo Markov chain (MCMC) algorithms, to obtain the fully
marginalized posterior distribution on the reconstructed function. As suggested in [168],
we assume that the probability distribution of the hyperparameters is sharply peaked,
which allows us to take them out of the integration and effectively fix them to their opti-
mal values.

The Gaussian Process algorithm is implemented in a publicly available python code,
named GaPP [168]. The GaPP code computes the continuous function of a given dataset
and its derivatives up to third order, for a multi-dimensional dataset. It also takes into
account correlated errors in the data and allows one to choose among different covariance
functions, also known as kernel functions. For the case of the Gaussian kernel function as
described above, the σf and `f parameters are optimized by the GaPP code through the
maximization of the logarithm of the marginal likelihood function in Eq. (3.22).

Also, for the case of reconstructing the derivative of the data, there is a covariance be-
tween the reconstruction of f and f ′, which should also be determined by a Monte Carlo
sampling. GaPP takes a first-order approximation and uses statistical error propagation
which is valid for small errors. These approximations may have an impact on the final con-
straints of this work, particularly as underestimated errors on the reconstructed function
as discussed in the original reference [168].

For each of the data sets, we use the GaPP code to reconstruct the underlying function
and its derivative where we did not specify any prior on the hyperparameters or the mean
function of the Gaussian Process to remain agnostic towards these choices. The details
of our approach using this code concerning the chosen hyperparameters and covariance
functions are further discussed in Sec. 3.4.

3.3.3. Polynomial regression

As a third reconstruction method, we use a generalized polynomial regression, a widely
used method to obtain model parameters from data. Since we want to do this as model-
independently as possible, we do not impose a priori any polynomial order for the re-
construction, but we let the data decide which is the maximum possible order. In the
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following, we describe the standard method of polynomial regression. Nevertheless, sev-
eral details need to be correctly accounted for when differentiating data with correlated
errors. Thus we discuss the method in detail in Appendix A.

We start by assuming that we have N data points yi, one for each value of the indepen-
dent variable xi (which are not random variables) and that

yi = fi + ei , (3.23)

where ei are errors (random variables), which are assumed to be distributed as Gaussian
variables. Here fi are theoretical functions that depend linearly on parameters Aα

fi =
∑
α

Āαgiα , (3.24)

where giα(xi) are functions of the variable xi. This is the definition of a linear model.
Defining the matrix of basis functions as G and the data vector as D in the following way
(always summing over repeated Latin indexes)

Gαβ ≡ gβiC
−1
ij gαj , (3.25)

Dα ≡ yiC
−1
ij gαj , (3.26)

where Cij is the data covariance matrix. We see that the linear model can be written as

GA = D . (3.27)

We are interested in finding the coefficients A = {A0, A1, ...} of the model. For that, we
invert the above equation and solve for A,

Ā = G−1D , (3.28)

which is also known as the normal equation.
If the prior is uniform in an infinite range (improper prior), the parameters in the linear

problem have a Gaussian posterior with mean Ā and correlation matrix given by the
inverse of its Fisher matrix. Since in the linear problem the data covariance matrix does
not depend on the parameters, we have the Fisher matrix

Fαβ ≡ C−1
ij

∂fi
∂Āα

∂fj
∂Āβ

= C−1
ij gαigβj = Gαβ . (3.29)

Once the coefficients are known, we can obtain the data values on any point xA, even
if not present in the data. For that, we use Eq. (3.24) and evaluate it at xA, namely
fA =

∑
α ĀαgAα, where gAα means the function gα evaluated at xA, with an error σ2

A =
F−1
αβ gAαgAβ. We can select a number of arbitrary points xA,B,C and obtain the error

matrix for the reconstructed function at these points as

CAB = F−1
αβ gAαgBβ . (3.30)

In our particular case, we have three datasets (y(0), y(1), y(2)) = (ln(fs8(z)), E(z), EG(z))
and we wish to estimate the error on a function ηobs(y

(1), y(2), y(3), y(4)), where y(4) =
y(1)′and y(3) = y(0)′ where a prime denotes, as already mentioned, a derivative with
respect to ln a. The remaining details are in Appendix A with the exception of the choice
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of the order of the polynomial. In principle, the order is arbitrary, up to the number of
data points for each data set. However, it is clear that with too many free parameters
the resulting χ2 will be very close to zero, which is statistically unlikely. Also, too many
parameters render a numerical Fisher matrix computationally unstable (producing, e.g.,
a non-positive definite matrix) and the polynomial function is wildly oscillating. On the
other hand, too few parameters restrict the allowed family of functions. Therefore, we
select the order of the polynomial function by choosing the polynomial degree for which
the reduced chi-squared χ2

red = χ2/(N−P ), is closest to 1 and such that the Fisher matrix
is positive definite. Since our datasets contain data points from different experiments, there
are some data points located at the same redshift or very close to each other, with different
values of the dependent variable. In the case of a perfect fit, the polynomial would go
through all points leading to spurious oscillations. For this reason, we take the weighted
average of data points that are closer than ∆z = 0.01 in redshift, before using them as an
input into the polynomial regression algorithm.
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Figure 3.2.: Comparison of the three reconstruction methods for each of the model-
independent variables. The binning method in blue squares with error bars,
Gaussian Process as a green dotted line with green bands, polynomial regres-
sion as a solid yellow line with yellow bands. All of them depicting the 1σ
uncertainty. Left panel: Plot of the reconstructed E(z) function on the top
and its derivative E′(z) on the bottom. Right panel: Plot of the recon-
structed P2(z) function on the top and the reconstructed P3(z) function on
the bottom. For each case, we show the theoretical prediction of our reference
ΛCDM model as a red dashed line.
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3.4. Results

We now discuss the results of the final observable ηobs for each of these methods. In
comparison, the binning method contains the least number of assumptions compared to the
polynomial regression or the Gaussian Process method. It is essentially a weighted average
over the data points and its error bars at each redshift bin. To calculate P3 and E′ implies
that we take derivatives using the finite difference method. The caveat of this approach is
that it introduces correlations among the errors of the function and its derivatives that we
cannot take into account with this simple binning method. Furthermore, for the binning
method, we do not take into account possible non-diagonal covariance matrices for the
data, which we do for polynomial regression and the Gaussian Process reconstruction.

Fig. 3.2 shows the reconstructed functions obtained by the binning method, the Gaus-
sian Process, and polynomial regression, alongside with the theoretical prediction of the
standard ΛCDM model. In all cases, the error bars or the bands represent the 1σ uncer-
tainty.

In the binning method, the number of bins is limited by the maximum number of existing
data redshifts from the smallest data set corresponding to one of our model-independent
observables. In this case, this is the quantity EG, for which we have effectively only three
redshift bins. Looking at Tab. 3.6 and comparing with Fig. 3.1, we can see that there
are nine EG data points, but they are very close to each other in redshift, due to being
measured by different collaborations or at different scales in real space for the same z.
As explained in the data section above, we regard this data as an average over different
scales, assuming that non-linear corrections have been correctly taken into account by the
respective experimental collaboration. Thus, this leaves us with three possible redshift
bins, centered at z1 = 0.294, z2 = 0.580 and z3 = 0.860, all of them with an approximate
bin width of ∆z ≈ 0.29. At these redshifts, we obtain ηobs(z1) = 0.48 ± 0.45, ηobs(z2) =
−0.03±0.34 and ηobs(z3) = −2.78±6.84. These values and the estimate of the intermediate
model-independent quantities are shown in Tab. 3.9.

Regarding the Gaussian Process method, we have computed the dimensionless Hubble
function and its derivative, E(z) and E′(z), with the dgp module of the GaPP code. Using
the data of Tab. 3.3 and its correlation matrix, we reconstructed E(z) and E′(z) for the
correspondent redshift interval using the Gaussian function as the covariance function and
initial values of the hyperparameters θ = [σf = 0.5, `f = 0.5] that later are estimated by
the code. The same procedure was done for the P2(z) data, obtained by Eq. (3.13) using
Tab.3.6. We obtain for E(z) and E′(z) the hyperparameters σf = 2.12 and `f = 2.06 and
for the P2 function, σf = 0.58 and `f = 0.67.

For the P3(z) observable, the hyperparameters obtained by the GaPP code led to a
very flat and unrealistic reconstruction, that suggested us to take another approach for
obtaining the optimal hyperparameters. Therefore, we have performed further tests of the
GaPP code with the E(z) data, fσ8, and ln(fσ8(z)). This approach consists in sampling
the logarithm of the marginal likelihood of a grid of chosen hyperparameters and find the
values that maximize it, instead of letting the code determine the best-fit hyperparameters.
We chose a grid of the hyperparameters σf , `f with 300 logarithmically spaced values, from
0.01 to 2 for σf and from 0.01 to the maximum redshift of the dataset for `f . Remember
that the hyperparameter `f constrains the typical scale on the independent variable z. For
this reason, we impose that `f needs to be smaller than the redshift range of the data as
an additional prior, which was not guaranteed by the default GaPP code. Then we chose
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the pair of hyperparameters corresponding to the maximum of the log-marginal likelihood
Eq. (3.22).

For the E(z) data, we find that there is no significant change between the reconstructions
given by the default GaPP optimization routine and our grid approach. However, for the
fσ8(z) and ln(fσ8(z)) data visibly different reconstructions arise. In our work, we used
the ln(fσ8(z)) data and thus we show in Fig. 3.3 the reconstructed functions with its
uncertainty band in green for the different hyperparameter choices plotted together with
the data used as black error bars and the theoretical expectation from the ΛCDM model
for comparison. On the left side, we see that GaPP estimates a best-fit correlation length
of `f = 288, which yields a very flat reconstruction of ln(fσ8(z)). On the right side of
Fig. 3.3, we see that by setting a prior on the correlation length, that is from 0.01 to 1.36,
we recover a function that follows much better the general data trend with `f = 1.36 than
the hyperparameters set by the GaPP optimization routine.

Therefore, for the ln(fσ8(z)) data using our grid approach, we obtain σf = 0.549 and
`f = 1.361. Its reconstructed derivative P3 is in the lower right panel of Fig. 3.2. The
function remains relatively flat, compared to the one given by other methods, but this
approach gives more reasonable results than the ones given by the default GaPP code.
We acknowledge that the grid approach also has its limitations and that the ideal scenario
would be to run a specially designed Monte Carlo Markov chain algorithm, not only for
this specific dataset but for all of them as well as for the choice of the kernel function.

Regarding the choice of the kernel function, several functions were compared, each of
them with a different number of parameters to see the impact on the output. We tested
the Gaussian kernel with two parameters, (σf , `f ); the rational quadratic kernel with three
parameters and the double Gaussian kernel with four parameters (see the original refer-
ence for the explicit implemented formula [168]). We performed tests using the H(z) data
obtained with the cosmic chronometer technique and the fσ8(z) data. Our tests show
that the different choices shift the reconstructed function up to 6% on its central value
compared to the Gaussian kernel function. This happens for H(z) while the effect is neg-
ligible for fσ8(z). Taking into account the above choices and procedure, we report that
with the Gaussian Process method we obtain ηobs(z1) = 0.38±0.23, ηobs(z2) = 0.91±0.36
and ηobs(z3) = 0.58± 0.93.

For the polynomial regression method, we find ηobs(z1) = 0.57± 1.05, ηobs(z2) = 0.48±
0.96 and ηobs(z3) = −0.11±3.21. Note that we applied the criteria of a χ2

red closest to one
and a positive definite Fisher matrix to chose the order of the polynomial for each of the
datasets. These criteria led to a choice of a polynomial of order 3 for the E(z) and EG(z)
data and order 6 for the ln(fσ8(z)) data. These polynomials illustrated in Fig.3.2 as solid
yellow lines, plotted with the corresponding 1σ uncertainty bands. The higher order of the
polynomial of ln(fσ8(z)) explains the ”bumpiness” of the reconstruction of P3, leading to
larger errors on this observable in comparison to the GP method. This “bumpiness” also
makes the reconstruction generally more conservative. Although we expect a smoother
reconstruction for this quantity, this actually captures the behavior of the dataset. This
means that, in comparison with Fig. 3.1, the reconstruction of the underlying function is
very dependent on the assumption of the shape of the function of redshift or a specific
model like ΛCDM. This expectation of a smooth function can sometimes be misleading
when one aims for understanding the meaning of the data.

Fig. 3.4 shows the reconstructed ηobs as a function of redshift with the three different

59



3. Reconstruction of η 3.4. Results

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

1.4

1.2

1.0

0.8

0.6

0.4

ln
f

8 (
z)

[ f = 0.80, f = 288]
 CDM

lnf 8 (z) data

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

1.4

1.2

1.0

0.8

0.6

0.4

ln
f

8 (
z)

[ f = 0.55, f = 1.36]
 CDM

lnf 8 (z) data

Figure 3.3.: Reconstrunction of the ln(fσ8(z)) data by the Gaussian Process method using
the best-fit hyperparameters by the GaPP code (left panel) and using a grid
in hyperparameter space with a prior on `f (right panel).

methods, again with GP in green dashed line, polynomial regression in a yellow solid line
and the binning method in blue squares with error bars. We conclude that, in general, the
methods are consistent with each other within their 1σ uncertainties with the exception
of the second bin between the binning and the GP methods. Also, in most bins the results
are consistent with the standard gravity scenario with the exception of the first bin for the
binning and the Gaussian processes methods. These exceptions may come exactly from
the different nature of these two methods. On one side, the binning method gives priority
to the weighted average of the quantity as well as its correspondent weighted average error.
This process is also very biased by the number of bins, which in our case are just 3, meaning
one cannot infer anything else besides a generic trend. On the other side, the Gaussian
shape assumed in the GP leads to a coherent and consistent smooth behavior throughout
the range in question. As pointed out before, the polynomial regression is sensitive to
the “bumpiness” of the data, ending up gathering both the behaviors from the other
two methods. Nevertheless, this figure shows clearly how different data reconstruction
methods can lead to different conclusions about the reconstructed function as well as the
consistency of the analyzed data set.

We find that the error bars of the Gaussian Process reconstruction are generally smaller
than the other methods, such that at the lowest redshift, GP is not compatible with
ηobs = 1 at nearly 2σ, while in the case of the binning method at the intermediate redshift,
z = 0.58, the tension is nearly 3σ. These mild tensions can come from the already known
data tensions of these datasets but also may be method dependent, which does not allow
for strong statements on deviations of General Relativity.

As previously mentioned in Sec. 3.2.1, we need to choose the H0 value in order to
obtain the dimensionless Hubble function E(z). Our model-independent estimate for η
requires the dimensionless Hubble function, therefore, part of our data set needs to be
converted from H(z) into E(z). However, as already described in Sec. 2.2.5, there is a
statistically significant tension between the values measured by different probes, namely
the value from the 2018 results of the Planck collaboration [83], which is HPlanck

0 = 67.36±
0.54 [km/s/Mpc], and the value from HST collaboration [149], which is HHST

0 = 73.45 ±
1.66 [km/s/Mpc]. The estimate of η shifts with the choice of H0 as shown in Tab. 3.8.
There is no significant change on the mean value and uncertainty. However, for the last
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bin of the binning case, the uncertainty increases by a factor of 10. While this result is
compatible with the other bins, it shows how sensitive the binning method is. Since our
aim is to have a model-independent estimate of η, we chose the HST collaboration H0

value due to being independent of a cosmological model.

Table 3.8.: The reconstructed η(z) using different values of H0 to normalize the H(z) data
at three different redshifts z = (0.294, 0.58, 0.86) with its respective 1σ errors,
for each of the reconstruction methods.

Method Choice of H0 η(z)
z1 = 0.294 z2 = 0.58 z3 = 0.86

Binning H0 HST 0.48± 0.45 −0.03± 0.34 −2.78± 6.84
H0 Planck 2018 0.56± 0.54 −0.14± 0.32 −6.75± 75.64

GaPP H0 HST 0.49± 0.25 0.94± 0.33 0.27± 0.67
H0 Planck 2018 0.31± 0.22 0.72± 0.33 0.36± 0.79

Linear Regression H0 HST 0.57± 1.05 0.48± 0.96 −0.11± 3.21
H0 Planck 2018 0.51± 1.07 0.37± 0.93 −0.18± 3.11

Table 3.9.: The reconstructed model-independent variables E,E′, P2, P3, η(z) with their
1σ errors, at three different redshifts z = (0.294, 0.58, 0.86), for each of the
reconstruction methods. The polynomial regression method is compatible with
the ΛCDM scenario while the other two methods show some tension at lower
redshift.

Method Parameter Redshift bins Weighted mean
z1 = 0.294 z2 = 0.58 z3 = 0.86

E(z) 1.12± 0.01 1.27± 0.02 1.51± 0.02
E′(z) −0.56± 0.07 −0.60± 0.36 −1.75± 0.66

Binning P2(z) 0.75± 0.10 0.54± 0.07 0.18± 0.14
P3(z) −0.17± 0.35 0.53± 0.61 −1.27± 1.52
ηobs(z) 0.48± 0.45 −0.03± 0.34 −2.78± 6.84 0.15± 0.27

E(z) 1.10± 0.01 1.30± 0.02 1.55± 0.03
E′(z) −0.73± 0.05 −1.30± 0.10 −1.89± 0.16

Gaussian Process P2(z) 0.74± 0.09 0.53± 0.06 0.23± 0.11
P3(z) −0.10± 0.20 −0.03± 0.21 −0.21± 0.30
ηobs(z) 0.38± 0.23 0.91± 0.36 0.58± 0.93 0.53± 0.19

E(z) 1.12± 0.01 1.29± 0.02 1.50± 0.02
E′(z) −0.73± 0.04 −1.06± 0.04 −1.45± 0.04

Polynomial Regression P2(z) 0.76± 0.15 0.55± 0.15 0.18± 0.14
P3(z) −0.09± 0.80 0.14± 0.78 −0.17± 3.02
ηobs(z) 0.57± 1.05 0.48± 0.96 −0.11± 3.21 0.49± 0.69

Finally, we combine the estimates at three redshifts of Tab. 3.9 into a single value.
Assuming a constant ηobs in the entire observed range and performing a simple weighted
average, we find ηobs = 0.15 ± 0.27 (binning), ηobs = 0.53 ± 0.19 (Gaussian Process) and
ηobs = 0.49± 0.69 (polynomial regression).

In conclusion, the Gaussian Process method yields the smallest error. It is sometimes
presented as model-independent which is not fully the case. The Gaussian assumption
can have a big impact on the reconstruction if the data is not exactly Gaussian. Also,
the kernel function depends on a small number of parameters, which can be complicated
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to constrain and deeper understanding of the implications of the choice of this function is
needed. Both GP and the binning method, taken at face value, would rule out standard
gravity. However, not taking into account the correlation induced by the finite differences
may lead to a smaller overall error. Overall, we think the polynomial regression method
provides a good compromise between the least number of assumptions and correcting
accounts for correlations on the data and its derivative. Therefore, it is considered our
main result.
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Figure 3.4.: Plot of the reconstructed ηobs as a function of redshift, using the binning
method (blue squares), Gaussian Process (green dotted line) and polynomial
regression (yellow solid line). The corresponding error bands (error bars for
the binning method), represent the 1σ estimated error on the reconstruction.
As a reference, the dashed shows red line the value in standard gravity.

3.5. Summary

The gravitational-wave event gave more evidence for standard gravity and constrained, or
even ruled out, a few modified gravity theories. Despite that, further consistency checks
and tests of deviations of General Relativity are needed. Given the current available data,
the model-independent expression of the anisotropic stress η becomes an interesting task
to carry out. In this work, we estimated η as proposed in [65]. If a strong deviation would
be detected, that would imply the perfect fluid approach does not hold, giving rise to the
need to modified gravity or other assumptions usually done in ΛCDM.

We used various datasets ranging from cosmic chronometers data as well as some Su-
pernovae Ia measurements for the Hubble parameter H(z), alongside weak lensing and
redshift space distortions for fσ8(z) and EG(z) to estimate the anisotropic stress ηobs. No
assumptions of background cosmology, galaxy bias, initial conditions, and matter abun-
dance were made. A model-independent estimation is a tough task since there is no unique
way of performing it [171–173]. We obtained this estimate using three distinct data re-
construction methods: binning, Gaussian Process and polynomial regression. Each makes
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different assumptions which led to distinctive results for the value of ηobs. We took into
account these assumptions when analyzing our results as there is no unique and univer-
sal method for data reconstruction. The polynomial regression method reveals to be the
most conservative in a good compromise with a small number of assumptions. We find
ηobs = 0.44± 0.92 at z = 0.294, ηobs = 0.42± 0.89 at z = 0.58, and ηobs = −0.14± 3.01 at
z = 0.86.

Generally, the reconstruction methods agree with each other. All results are compatible
for the first bin but with a trend for a lower value. In the second bin, the binning method
is 1.5σ away from the GP. For the last and farthest bin, the errors are much larger as
the data scatter strongly from the standard scenario. In some cases, the standard gravity
value η = 1 is two or even three sigma away from our result, but it is in every bin
compatible for at least two of the three methods. These results are not statistically strong
to claim deviations of GR. The deviations found can result from the assumptions of the
reconstruction methods or from the data tensions present between CMB data and low
redshift data.
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4. Review of the EG statistics

Testing gravity in a model-independent way is of utter importance to find a theory that
describes the Universe, among several theories. But it is a highly challenging task since
most of the observables rely on simple ingredients such as, for instance, the distance to
a galaxy, which at cosmological scales depending on the considered model. In the last
chapter, we explain how the estimate ηobs is a good example to test the perfect fluid
assumption in General Relativity. This chapter is about the EG statistics, an estimator
build to be a discriminating probe of gravity. As such, several times the EG statistics was
used or measured as a test of modified gravity [146–148, 174]. The EG statistics tries to
capture a modified gravity signature through a ratio of information from galaxy clustering
and weak lensing obeservables that are sensitive to particular features of a theory of gravity
but it is not a model-independent test. A smoking gun for gravity should be independent
of details from the most accepeted model in order to correctly evaluate the properties of
gravity. Moreover, the theoretical definition of EG is only equivalent to the observational
definition under a flat ΛCDM cosmology scenario. In this chapter, we will explore the
definition of the EG statistics and its assumptions. Our goal is to check if the equivalence
between definitions holds for possible modified gravity models and if a scale dependence
exists.

The EG statistics was first proposed in 2007 by Zhang et al. [148]. The idea behind
this statistics is the following. Given the perturbed Friedman-Lemâıtre-Robertson-Walker
metric of Eq. (2.19), lensing is sensitive to the term ∇2(Φ − Ψ) along the line of sight.
In the case of General Relativity and given that there are no anisotropic stresses, we get
Φ = −Ψ and lensing sensitive to ∇2Φ. This is proportional to the fractional overdensity δ
through the Poisson equation, making lensing directly related to δ. Testing this prediction
allows distinguishing between models of gravity as it does not hold for all modified gravity
scenarios. In general, to discriminate models is not easy since modified gravity usually
tries to mimic the expansion history of the universe H(z) from ΛCDM. It can be possible
to differentiate models with gravitational slip because that lead to a different growth of
structure and effects from gravitational lensing. This is the reason why this EG quantity
can be a good test for finding the model that describes the dynamics of the universe.

4.1. Theoretical definition of EG

The EG statistics links the gravitational potentials related to the gravitational lensing with
the matter overdensity. Consequently, if the same population of galaxies is being used,
the galaxy bias cancels out and there is no dependence on initial matter fluctuations. The
EG statistics is defined by

EG =

〈
a∇2(Ψ− Φ)

3H2
0fδ

〉
k

. (4.1)

For the ΛCDM model, the expected value simplifies to EG = Ωm0/f .
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However, it is not a model-independent test because Ωm0 and f are not observable
quantities. First, Ωm0 can be obtained through Supernovae Type Ia by first measuring
H(z). Then, one needs to assume a flat space and an equation of state for matter and
dark energy. These assumptions may not hold for modified gravity models. Furthermore,
the “dark degeneracy” discussed, for instance, in [175], shows that the separation between
a matter component and dark energy component is unavoidably model dependent.

Second, the growth rate f is estimated by solving the differential equation of the per-
turbation growth for matter. This requires initial conditions, that are normally taken to
be cold dark matter at high redshift. Again, this assumption is not necessarily true in
modified gravity, for example, in the original Brans-Dicke model.

Consequently, any discrepancy between the theoretical value of EG to its observed value
does not necessarily mean the detection of modified gravity or deviation from ΛCDM.
This contrast can be due to a different Ωm0 or different initial conditions. It can also be
due to a genuine signature of a non-standard modified gravity parameter Σ. Therefore,
EG can be applied to investigate specific models by comparing each particular prediction
with observations, for instance, ΛCDM model, but not to directly probe gravity. This
is a contrasting scenario with respect to ηobs Eq. (3.11) that is model-independent by
estimating directly η without assuming a value of Ωm0 nor for f . Thus, if one finds
ηobs 6=1 with data, then ΛCDM and any model of standard gravity where dark matter is
a perfect fluid are ruled out.

Finally, we would like to point out the cautionary remark done in [138], namely that
their results about EG should not be employed until the tension between Ωm0 in different
observational datasets is resolved. This problem does not arise at the estimation of the
anisotropic stress parameter ηobs, on the Chapter 3.

On the initial proposal [148], the authors assumed LAMOST, SKA and LSST specifica-
tions with WMAP best-fit parameters and compared ΛCDM, flat DGP and f(R) gravity
models. They claim that the differences are substantial and, therefore, future measure-
ments of EG would be able to detect a deviation from General Relativity. Nevertheless,
they note that the accuracy of the measurements of the distance D and H can produce
shifts in EG. These shifts are negligible if D is measured with a 1% accuracy but the
same accuracy in H translates in an up to 3% fractional error in EG. Later on, the cosmic
variance errors dominate at small scales and this estimate also depends on the survey pa-
rameters of the fraction of the sky coverage and the redshift of the lensing sources. These
assumptions in sum may undermine the overall accuracy of this quantity to indeed be a
test for gravity.

The first measurement of EG came in 2010 [176] and the second measurement in 2015
[151]. These measurements follow a slightly different definition of EG, whereas β = f/b. At
linear scales and if the bias b is constant, the definition of Eq. (4.1) is recovered. However,
these assumptions and other parameters led to further exploration of the difference between
definitions by [146]. They found that these definitions are indeed equivalent in the case
of a flat ΛCDM cosmology, being often the reference for more recent EG measurements.
However, they notice four potential sources of theoretical uncertainty. These sources are
the distribution of source galaxies Ps, the projection length δ`, the cut-off scale R0, and
the bias b, from which only Ps does not affect EG. The equivalence between these two
definitions appears to be dependent on specific conditions such as the previous functions
which may invalidate the EG measurements and the conclusions drawn from them. In other
words, since we don’t have any knowledge about the bias function and the EG definitions
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are only equivalent for flat ΛCDM, then EG might not be the correct way to distinguish
models. For this reason, we aim to compute EG and understand better what it is as well
as the assumptions behind it.

4.2. Towards an observationally motivated general definition

Our goal in this section is to revisit the EG defintions and see under which conditions one
can extract

EG0 ≡
Ωm0Σ

2f
=
P2

2
. (4.2)

We define the lensing modified gravity parameter Σ = Y (1 + η) which is 2 in standard
gravity.

Let us assume that we have a population of lenses in a redshift range ∆z` and a popula-
tion of sources at a higher redshift range ∆zs. Following the approach of [146], we assume
that the lenses are at a known z` and the sources are confined in a small range zs. The
definition of [146] is

EG =
bYgm(R)

fYgg(R)
, (4.3)

where b is the bias function and f the growth rate function that are evaluated at the
average lens redshift z`. We use 8πG = 1. The galaxy-lens correlation function in the
numerator is integrated over a ring on the sky with radius from R0 (the cut-off scale) to
R,

Ygm(R) =
ρc0Ωm0

4

∫ ∞

0

dz

H(z)
r(z`)r(z)(1 + z`)(1 + z)

∫ ∞

z

dz′

H(z′)
Ws(z

′)
[r(z′)− r(z)][r(z′)− r(z`)]

r(z′)2

×
∫ R

R0

dR′K(R,R′)ξgm(R′, z`, z) , (4.4)

where ρc0 is the critical density today, r(z) is the comoving distance and R is a projected
distance on the sky. Taking a realistic normalized redshift distribution of sources Ps(z, z0),
namely,

Ps(z, z0) =
zα

N0
e
−
(
z
z0

)β
H(z)

c
, (4.5)

where we set α = 2, β = 1.5, z0 = 0.9/1.412, and N0 is the normalization factor as∫
(dz/H(z))Ps(z) = 1. We also use c = 1. The window function Ws is then defined as

Ws(z) =


Ps(z)∫∞

z`

dzs
H(zs)

Ps(zs)
[
r`(r(zs)−r`)(1+z`)

r(zs)

]2 , z ≥ z`,

0, z < z`,
(4.6)

Note that we use a slightly different notation then [146]. We also need the kernel function
K(R,R′) described by

K(R,R′) =
2

R2
R′ − δD(R′ −R) +

(
R0

R

)2

δD(R′ −R0). (4.7)

The denominator of Eq. (4.3) is the galaxy-galaxy lensing that is expressed by

Ygg(R) = ρc0

∫ z`+∆`

z`−∆`

dz

H(z)

∫ R

R0

dR′K(R,R′)ξgg(R
′, z`, z) , (4.8)
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where ∆` is some interval around z` beyond which we can neglect the clustering effect.
For this, we use the Fourier transform of the power spectrum P (k), which is the matter
correlation function ξmm that depends on the distance d =

√
R2 + [r(z)− r(z`)]2. We can

rewrite as

ξmm(r) =
1

2π2

∫ ∞
0

k2e−k
2
P (k)

sin(kr)

kr
dk, (4.9)

and if the kernel function is taken into account, then we get

ξ̂mm =
1

2π2

∫ ∞
0

dkk2e−k
2
P (k)Ĵ0(k,R, z, z`). (4.10)

With this definition, the integral can be done analytically,

Ĵ0(k,R, z, z`) ≡
∫ R

R0

dR′K(R,R′)J0(k,R′, z, z`) (4.11)

= 2
R2

∫ R
R0

dR′R′J0(k,R′, z, z`)− J0(k,R, z, z`) +
(
R0
R

)2
J0(k,R0, z, z`)

= 2
R2

[
cos(k
√
R2

0+[r(z)−r(z`)]2)

k2 − cos(k
√
R2+[r(z)−r(z`)]2

k2

]
− J0(k,R, z, z`) +

(
R0
R

)2
J0(k,R0, z, z`)

where

J0(k,R, z, z`) =

sin

(
k
√
R2 + [r(z)− r(z`)]2

)
k
√
R2 + [r(z)− r(z`)]2

. (4.12)

Typically, b, G, and Σ are k-independent functions but that is not necessarily true.
Gathering the previous expressions, the general expression for EG(R) considering that
b, G can be scale dependent, and including Σ, is

EG =
Ωm0

∫∞
0

dz
H(z) ξ̂gm(R, z`, z)r(z`)r(z)(1 + z`)(1 + z)

∫∞
z

dz′

H(z′)Ws(z
′) [r(z′)−r(z)][r(z′)−r(z`)]

r(z′)2

2f(z`)
∫ z`+∆`

z`−∆`

dz
H(z) ξ̂gg(R, z`, z)

,

(4.13)
or, rewriting as α(R) ≡ EG

EG0
, we seek to obtain α = 1 in our calculations through the

formula

α(R) =

∫∞
0

dz
H(z) ξ̂gm(R, z`, z)r(z`)r(z)(1 + z`)(1 + z)

∫∞
z

dz′

H(z′)Ws(z
′) [r(z′)−r(z)][r(z′)−r(z`)]

r(z′)2

Σ(z`)
∫ z`+∆`

z`−∆`

dz
H(z) ξ̂gg(R, z`, z)

,

(4.14)
where

ξ̂gm(R, z`, z) =
1

2π2

∫ ∞
0

dkG(z, k)G(z`, k)b(z, k)Σ(z, k)k2e−k
2
P (k)Ĵ0(k,R, z, z`) , (4.15)

ξ̂gg(R, z`, z) =
1

2π2

∫ ∞
0

dkG(z, k)G(z`, k)b(z, k)b(z`, k)k2e−k
2
P (k)Ĵ0(k,R, z, z`) . (4.16)

These functions can be approximated in order to become computationally more stable and
efficient. We use

ξ̂gm(R, z`, z) = b0(z`)f(R,∆, 0) + b1(z`)f(R,∆, n) , (4.17)

ξ̂gg(R, z`, z) = b0(z)b0(z`)f(R,∆, 0) + b0(z)b1(z`)f(R,∆, n) + b0(z`)b1(z)f(R,∆, n) + b1(z)b1(z`)f(R,∆, 2n) ,
(4.18)
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where

f(R,∆, q) =
1

2π2

∫ ∞
0

dkk2+qe−k
2
P (k)Ĵ0(k,R,∆) , (4.19)

is evaluated for q = 0, n, 2n.

4.3. Computational details and results

The goal is to find the parameter region where α(R) ≈ 1. Our procedure in order to
compare EG0 with Eq. (4.2) and Eq. (4.13) is the following:

• Use the cosmological functions given by ΛCDM: growth function G(z), Hubble func-
tion H(z), distance r(z) =

∫
dz
H(z) , assuming H0 = 1. Here we assume an universe

with matter and dark energy, with Ωm = 0.3 and a common approximation for the
growth function f(z) = Ωm(z)γ where γ = 0.55 for ΛCDM;

• Take the source distribution function Ps of Eq. (4.5) and chose the bias function
b(z, k) and lensing function Σ(z). Alternatively, a simulated power spectrum from a
Boltzman code can be a good choice for Ps(z);

• Evaluate the correlation function that takes into account the growth function, bias
function and kernel function ξ̂gm and ξ̂gg using Eq. (4.17) and Eq. (4.18);

• Compute Eq. (4.14), which should be around 1.

We identify the relevant parameter space given by

R0, z`,∆`, (4.20)

plus any parameter that enters in P (k) if not those defined in Eq. (4.5) (see [146] which
compare 3 different source distribution functions). Also, it depends on the cosmological
parameters through H(z) and the distance definition as well as in the growth function G(z)
if an approximation is used or not. Finally, the definition of Σ(z), b(z, k) may introduce
extra parameters too. In order to directly compare with Fig.4.1 from Leonard et al. [146],

we chose z` = 0.5, R0 = 1.5 Mpc/h and ∆` such that r =
∫ z`+∆`

z`
dz
H = 500 Mpc/h, or

simply ∆` ≈ H(z`)500. We also chose to have a z, k-dependent bias function such as

b(z, k) = b0(z) + b1(z)kn (4.21)

with n = 1.28 and b0, b1 values from [177].

The results of this computation are currently work in progress. Nevertheless, the last
results are depicted in Fig.4.2 with the α(R) function from Eq. (4.14). There is an overall
factor missing, moving the results for about a factor of 2. It is important to notice the
growing effect at smaller distances which overlaps with the yellow area that represents the
distances to which EG was measured as in Tab. 3.6.
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Figure 4.1.: Graphics from Leonard et al. [146] that shows EG(R) with a scale-dependent
bias function. The left side panel and right side panel correspond to different
specifications of next-generation instruments. For the left side panel, it corre-
sponds to the DESI instrument for the galaxy-galaxy and lens-galaxy cross-
correlations and source galaxies from a DETF4 type survey, with z` = 0.8.
On the right side panel, these cross-correlations come from stage 2 of SKA
and source galaxies from LSST, with z` = 1.0.

Several numerical technicalities can interfere with the final result. For instance, the
integral in Eq. (4.9) is a highly oscillating function. For this reason, we redefined the
expression such that the integral can be performed analytically. We use the last line of
Eq. (4.11). After this upgrade and given that we would like to take into account possible
scale dependence, we further need the approximation done with Eq. (4.17) and Eq. (4.18).
Finally, the window function at Eq. (4.6) is also rewritten in a way it is faster to integrate
and compute. All of these approximations, in particular, each integral involved, can also
have further optimization options that led to very different final results in the code written
in Mathematica.

In the literature, the sources of the EG measurements [138, 147, 151] chose different
values of R0, that is, 2.0, 1.0, 1.5h−1Mpc respectively. Each of these surveys checked the
dependence of their results on the choice of this cut-off scale R0 between 1.0 < R0 <
3.0h−1Mpc but did not find any significant difference within this range of values. Their
analysis is tomographic in real space where the narrow lens approach is assumed. Thus,
the reported redshift is the average of the redshift bin the measurement is done and
corresponds to z`. As previously noted, these considerations may have an impact on the
final estimate of EG.

4.4. Summary

In this chapter we explored the motivation and the definitions of the EG statistics. This
estimator gathers the sensitivity of the weak lensing and galaxy clustering with the aim
of distinguish models of modified gravity. We described both the theoretical and the
observational definitions of this estimator. It depends on a redshift distribuition of sources
Ps(z), which can be taken from a more realistic measurement scenario such as SKA or
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Figure 4.2.: Left side: Preliminary results of Eq. (4.14) as a function of the distance R,
where we set z` = 0.8 and δ` = 500Mpc/h, represented by the solid line.
The expected value for this quantity is one, as the dashed line represents.
The yellow region corresponds to the region of the measurements compiled in
Tab. 3.6. Right side: EG(R) as given by Eq. (4.13) as the solid line and the
expected ΛCDM value from Eq. (4.2) as the dashed-line.

DESI instruments. The cutoff-scale R0 is the scale below which information is discarted
and the projection length δ` at the galaxy-galaxy cross-correlation. It also depends on
the bias function b(z, k) which is usually taken as linear but in reality its behaviour is
unknown.

This estimator has a simple expression in a ΛCDM scenario but it is not straightforward
to obtain it observationally. The geometry of the sources and lensed galaxies need to be
carefully accounted as well as an extension to alternative theories of gravity. We identified
the relevant parameter space and proceeded to implement these equations numerically,
although it is still work in progress. For now, we can recover the increasing slope for lower
distances but there is an overall factor of 2 missing, in case of comparison with the work
by Leonard et al. [146]. These would be the details missing also if this expression holds
for all distances as it is meant for but as it is our aim to test.

We would like to point that a correct calculation of this estimator with a comparison
for different theories could indeed help assess properties of gravity. It should not be
labeled as model-independent as, for the case of ΛCDM, the respective expression does not
involve direct observables and the expected values vary for distinct theories. As previously
mentioned in Chapter 3, the current available measurements prefer a lower value of matter
density than the one obtained by the Planck collaboration. The discrepancy seen for
instance in the KiDS data [138] can be another perspective on the fσ8 tension as both
quantities rely on the same datasets but also hint of new physics. We conclude it might
help understanding gravity when future missions such as Euclid [178] measure it with high
accuracy.
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Alongside with the idea of testing gravity in a model-independent way is the question of
how observations are interpreted. Cosmology mainly relies on Bayesian statistics in data
analysis since most of the data requires a lot of time and expensive experimental setups.
The Bayesian statistics allows easy computations of probability distributions using pre-
vious information, and also model comparison tools which are very important to narrow
down the number of possible models. A possible alternative approach is to use information
theory to assess the amount of information available from probabity distributions either
from forecasts or from datasets. It is possible to follow a Bayesian approach within this
framework and to compare different uncertainty measurements is the aim of this chap-
ter. Furthermore, current cosmological data such as the CMB, supernovae type Ia, weak
lensing, and galaxy clustering data enable the study of the properties of gravity with high
precision, even with the growing complexity of systematical effects and data analysis. As
a consequence from the particular parameter sensitivities of cosmological probes, the com-
bination of these datasets has become essential to narrow down the allowed cosmological
parameter space. We explore the combination of these cosmological probes taking into
account all possible cross-correlations, which at the moment is only possible in a forecast
setup. If the probes are consistent, any deviation or discrepancy between the best-fit pa-
rameters is a hint for hidden systematics or possible new physics. Thus, it is important to
understand not just the possible assumptions done in statistical inference but also to find
a good way to measure uncertainties and relate them with parameter degeneracies or the
significance of tension in the data.

In a statistical inference problem, the information about how good does a model rep-
resent the data is encapsulated in the likelihood function. This probability distribution
has typically a Gaussian shape for relatively simple models which is a fair assumption
when well-constrained by data [179, 180]. Nonlinearities in the model can be approxi-
mated by linear relationships leading to an ideal scenario of a Gaussian distribution and
to the possibility of using the Fisher-matrix formalism [181–184], which is ubiquitous in
modern cosmology [185–188]. This Gaussian assumption yields a way to estimate the
expected parameter covariance from the second derivatives of the logarithmic likelihood.
The Fisher-matrix formalism is a crucial tool for forecasting applications assuming that
the true model is known and it is usually referred to as the fiducial cosmology. Inference
from cosmological data is often not limited by statistics but rather by systematics. For
this reason, extensions to the Fisher formalism have been proposed that allow the fore-
casting of systematical errors, i.e. the shift of the best-fit point of a Gaussian likelihood if
an unknown systematic is not removed or properly modelled [189–194].

There is no obvious way to quantify the total statistical error of a cosmological probe
or the significance of tensions between likelihood obtained with different cosmological
probes, even in the case of Gaussian likelihoods. Such a measure of total error would be
convenient in quantifying the information content of a particular cosmological probe, or
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its parameter degeneracy breaking power, or in applications of experimental design, where
one optimises a survey to yield the smallest possible errors [195, 196]. In a larger context,
Bayesian evidences [197–199] used in model selection are measures of the consistency
between likelihood and prior [200], and are only on possible choice among many others,
for instance the Akaike information or the Bayes-information, for preferring a particular
model, incorporating a tradeoff between the goodness-of-fit and model complexity [201–
204].

In this chapter, we apply the information theory to cosmology, in a similar way to pre-
vious work [205, 206]. We compute the absolute entropy through the likelihoods of cosmo-
logical probes and relative entropy for the case of different probe combination. These are
compared with traditional uncertaity measurements, which are typically simple properties
of the Fisher matrix with respect to a specific probe and model. This comparison intends
to provide an interpretation for the cosmological likelihoods, suggesting how the infor-
mation theory can be useful. A possible useful aplication is writting the biases between
likelihoods as relative entropies, which can later be used as a sort of scale. This is the
case for the dark energy figure of merit that was designed to evaluate the performance
of cosmological probes to measure deviations from the ΛCDM model, which is actually a
measure of information entropy. We focus on Gaussian distributions where all calculations
have analytical solutions. The concept of information entropy is generally applicable to
asymmetric or even multimodal distributions. This concept has the advantadge of pro-
viding natural generalisations to quantities that are intuitive for Gaussian distributions.
This applies in particular to Bayesian evidences or evidence ratios, which can in fact be
related to information entropy differences. In the case of information entropy differences,
these are interpretable directly without resorting to the rather arbitrarily defined Jeffreys
scale and are likewise quantified in units of nats.

Unless otherwise specified, we focus on spatially flat ΛCDM and wCDM cosmologies
with adiabatic initial conditions. The fiducial parameter choices are the values of the
[83] (TT , TE, EE, lowz + lensing), meaning Ωm = 0.3153, σ8 = 0.8111, h = 0.6736,
ns = 0.9649 and Ωb = 0.0493. The recombination redshift is chosen as zre = 11.357 and
galaxy bias as b = 0.68 [207]. The dark energy fluid is described by an equation of state
parameter with a linear variation in time, commonly known as the CPL parameterisation
[208, 209],

w(a) = w0 + (1− a)wa, (5.1)

where w0 = −1 and wa = 0 recovers the case of a cosmological constant Λ. In this analysis,
we assume the characterics of the Euclid survey [210] for the large-scale structure and of
Planck for the CMB and CMB-lensing. Sec. 5.1 describes the fundamental concepts of
Bayesian statistics, including the Fisher matrix formalism, and how these are related to the
essential notions of information theory. Then, we compare absolute entropies to properties
of the Fisher matrix in Sec.5.3 and how probe combination increases the relative entropies
in Sec. 5.4. In Sec. 5.2 we summarize the important details of the large scale structure
probes that are considered in our analysis. Furthermore, we delve into the famous data
tensions: on the H0 value, the S8 value and the importance of intrinsic alignments in weak
lensing data in a wCDM scenario in Sec. 5.5.
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5.1. Relation between statistics and information theory

The likelihood L(xµ|M,D) of a model M for the data D is embedded into Bayes’ theorem.
This expresses the state of knowledge after carrying out an experiment, the posterior
p(xµ|M,D), as proportional to the likelihood provided by the experiment times the prior
distribution π(xµ|M),

p(xµ|M,D) =
L(D|xµ,M) π(xµ|M)

p(D|M)
, (5.2)

where p(D|M) is the evidence defined by

p(D|M) =

∫
dnx L(D|xµ,M) π(xµ|M). (5.3)

The assumption of Gaussian probability distributions is very common in cosmology and it
can be easily expressed in terms of the covariance matrix. The model parameters are well
constrained when the likelihoods are peaked and the full parameter covariances are small.
This study of the statistical errors of cosmological parameters frequently serves to check if
future data can help validating new models for dark energy or structure formation. When
it comes to distinguish between models, the Occam’s razor is the guiding principle at it
prefers the simpler models with fewer parameters. For this purpose, the evidence can be
useful to quantify the complexity of the model, namely, via the Bayes ratio. The Bayes
factor was designed to select the most likely model, independently of the choice or number
of parameters. Motivated by the Neyman-Pearson lemma, one compares competing models
by constructing their evidence ratio as one would do when comparing likelihoods,

Bij =
p(D|Mi)

p(D|Mj)
(5.4)

such that positive values of Bij prefer the model Mi over Mj and vice versa. The Jeffrey’s
scale is used to assess the strength of evidence for preferring one model over another [211].
Further criteria have been developed and used such as the Akaike, or Bayesian information
criteria which additionally account for the number of parameters in the model, each in a
different way [201–204].

Information theory has entropy as its main quantity, inspired by the thermodynamics
definition. It quantifies the amount of randomness in a distribution. The Shannon entropy
S [212] is defined as

S = −
∫

dnx p(xµ) ln p(xµ), (5.5)

where p(xµ) can be, for instance, the likelihood function. In that case, the Shannon entropy
takes small values for a peaked likelihood, as it follows from S = ln[2πσ2 exp(1)]/2 for a
Gaussian distribution. The most general definition of entropy is the Rényi entropy Sα
[213, 214], parameterised by α > 0 and α 6= 1,

Sα = − 1

α− 1
ln

∫
dnx p(xµ)pα−1(xµ), (5.6)

where the Shannon-entropy is recovered in the limit α→ 1 by application of de l’Hôpital’s
rule. The Rényi-entropies also increase with the variance for positive values of α as
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Sα = ln(2πσ2α
1

α−1 )/2. This implies that entropies provide a way of quantifying how
constraining data is as they quantify the size of the allowed parameter space.

Interestingly, the Gaussian distribution is very peculiar within the Shannon entropy.
The reason is that the Gaussian distribution maximises the Shannon entropy, among all
distributions with a fixed variance. This statement can be illustrated using a Gram-
Charlier-parameterised distribution p(x)dx with weak non-Gaussianities [215] described
by the cumulants κ3 and κ4, both of which are much smaller than one,

p(x) =
1√

2πσ2
exp

(
− x2

2σ2

)[
1 +

κ3

3!σ3
H3

(x
σ

)
+

κ4

4!σ4
H4

(x
σ

)]
, (5.7)

with the Hermite-polynomials Hn(x) of order n. Substituting this series into the definition
in Eq. (5.5) and approximating ln(1 + ε) ' ε for |ε| � 1, one obtains at second order the
result

S =
1

2
ln
[
2πσ2 exp(1)

]
− 1

3!

κ2
3

σ6
− 1

4!

κ2
4

σ8
, (5.8)

by using the orthogonality relation of the Hermite-polynomials,∫
dx

1√
2πσ2

exp

(
− x2

2σ2

)
Hm

(x
σ

)
Hn

(x
σ

)
= n!δmn. (5.9)

Eq. (5.8) shows that the entropy of the Gaussian distribution is always diminished by
non-Gaussianities, because κ2

3 and κ2
4 are as squares necessarily positive. Because of this

result, we would like to point out that the information entropies that we compute are
upper bounds, and that realistic non-Gaussian likelihoods would have lower values for
their information entropies than their Gaussian counterparts. It is remarkable that the
orthogonality relation in Eq. (5.9) cancels the influence of non-Gaussianities on S to first
order, which can be shown by substituting 1 = H0(x) and x2 = H2(x) + H0(x). Sadly,
there is no analogous result to Eq. (5.9) for the Rényi-entropy, but Eq. (5.9) can be
generalised in principle to hold for non-Gaussianities of arbitrary order κn. A multivariate
generalisation of Eq. (5.8) can serve as a way to estimate the Shannon-entropy from
MCMC-samples of the likelihood without the need of a density estimate as a way to
compute ln p(x). Instead, one would estimate multivariate cumulants from the samples
directly and correct the Gaussian result for the information entropy. It can be expected
that a similar relationship exists for DALI-approximated likelihoods [216, 217].

The basis of the Fisher matrix formalism is to approximate likelihoods with a mul-
tivariate Gaussian distribution. This allows the correspondent covariance matrix to be
computed from the averaged gradients of the logarithmic likelihood. Fixing the fiducial
model, the Fisher-matrix Fµν [185] is defined as

Fµν = −
〈
∂2 lnL
∂xµ∂xν

〉
, (5.10)

yielding for a measurement of multipole moments A`m and B`m of Gaussian random fields
A(θ, ϕ) and B(θ, ϕ) that are described by angular spectra CAA(`), CBB(`) and CAB(`) as

Fµν =
∑
`

2`+ 1

2
tr

(
∂

∂xµ
lnC

∂

∂xν
lnC

)
, (5.11)

where the spectra are combined into a common data covariance C.
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Quoting the logarithmic curvature Fµν of the likelihood surface in parameter space,
the second moments Cµν = 〈xµxν〉 or confidence intervals is equivalent for a Gaussian
distribution. Since the Fisher matrix can correspond to the inverse parameter covariance
C = F−1, one can write down a multivariate Gaussian distribution as

p(xµ) =

√
det(F )

(2π)n
exp

(
−1

2
xµFµνxν

)
, (5.12)

using coordinates relative to the best-fit point. Measures of total uncertainty can be de-
rived from the Fisher-matrix in a straightforward way as, for instance, the invariant trace
tr(F ), the Frobenius-norm tr(F 2) or the determinant det(F ) of which we will take the log-
arithm ln det(F ) to make the connection to information entropies clearer. Generalisations
to the trace and the Forbenius norm of the type tr(F p) with p > 2 would be restricted in
the values that they can assume by the Hölder inequality,

1

n
tr (F ) ≤

[
1

n
tr(F p)

] 1
p

(5.13)

for arbitrary powers p of Fisher matrices in n dimensions, where the traces can be gener-
alised to arbitrary real valued powers p by using tr(F p) = tr exp[p ln(F )].

On the other side, the generalised inequality of the arithmetic and geometric mean
implies

1

n
tr(F ) ≥ det(F )

1
n , (5.14)

such that the information entropies are bounded by traces of the Fisher matrix, as shown
in the next paragraph. Specifically, while tr(F ) =

∑
µ σ
−2
µ is a measure of the total

uncertainty of the likelihood, it does not differentiate between correlated and uncorrelated
distributions. This is taken care of by tr(F 2), as the expression contains information from
the off-diagonal elements in addition to performing a different weighting of the errors.
While all trace relations for arbitrary p are measures of total error, only the determinant
provides a geometric interpretation as the volume of parameter space. The dark energy
figure of merit is defined as the volume of the w0-wa subspace of parameter space bounded
by the 1σ-contour. Of all these measures, however, only tr(F ) is additive for statistically
independent measurements. Given the inequalities in Eq. (5.13) and Eq. (5.14), we state
all results in a scaled way, i.e. [tr(F p)/n]1/p and det(F )1/n. The usage of these scaled
traces is motivated by the fact that for a diagonal Fisher-matrix with identical entries
1/σ2, they all return the same value of 1/σ2 irrespective of n or p.

Analytical expressions for the entropies S and Sα can be derived for a multivariate
Gaussian in terms of the determinant of the covariance matrix Cµν as the inverse Fisher-
matrix. Specifically, integration by substitution yields directly

S =
1

2
ln
[
(2π)n det(C) exp(n)

]
, (5.15)

for the Shannon-entropy, and

Sα =
1

2
ln
[
(2π)n det(C)α

n
α−1

]
, (5.16)

for the Rényi-entropy, such that the univariate case is recovered for n = 1 and det(C) = σ2.

The two definitions are consistent as in the limit α→ 1, the expression α
n
α−1 converges to
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exp(n). The difference between Shannon and Rényi entropies for Gaussian distributions
with identical covariances is given by an additive term,

∆n(α) = Sα − S =
1

2

[
ln
(
α

n
α−1

)
− n

]
. (5.17)

Considering in particular the case of Bhattacharyya entropies [218] defined as Sα with
α = 1/2, this figure shows that since α = 1/2 < 1, it will always be larger than Shannon
entropies. This trend becomes stronger with increasing number of random variables n.
Typical numbers in cosmology with a ΛCDM or wCDM model with 7 or 8 parameters
would then be ∆7(1/2) ' 1.35 and ∆8(1/2) ' 1.54.

Remarkably enough, both entropies are measures of the logarithmic volume of the pa-
rameter space bounded by the 1σ contour, implying that the dark energy figure of merit is
in fact an inverse information entropy. Interestingly, the entropies are defined as det(C),
which is always strictly positive for the covariance matrix Cµν = 〈xµxν〉. This comes as
a consequence of Gram’s inequality, while det(xµxν) without averaging would be exactly
zero. By the choice of the natural logarithm, the unit of entropy is nat.

The information entropies S and Sα are inversely proportional to ln det(F ) and thus,
one should expect similar relations with the measures tr(F ) = Fµµ and tr(F 2) = FµνFµν
too. As explained before, the Hölder-inequality on Eq. (5.13) and the inequality of the
geometric and arithmetic mean on Eq. (5.14) provide bounds on the information entropy S
for both the Shannon and Rényi definition in terms of trace invariants of the Fisher matrix.
Additivity in the case of statistical independence is a defining property of information
entropies that makes them useful for describing the information content. They share
this property with Fisher matrices for the case of statistically independent probes, i.e.

Fµν = F
(1)
µν + F

(2)
µν implies Sα = S

(1)
α + S

(2)
α as a consequence of p(xµ) = p(1)(xµ) p(2)(xµ).

For the case with statistical non-independence, additivity of the entropies does not hold
and therefore, one defines relative entropies between two distributions, also referred to as
divergences. For the Shannon entropy, this corresponds to the Kullback-Leibler divergence
∆S [219],

∆S = DKL =

∫
dnx p(xµ) ln

p(xµ)

q(xµ)
, (5.18)

and a more general class of α-divergences ∆Sα for Rényi entropies,

∆Sα =
1

α− 1
ln

∫
dnx p(xµ)

(
p(xµ)

q(xµ)

)α−1

, (5.19)

between two multivariate distributions p(xµ) and q(xµ).
Relative entropies would be invariant under transformation of the random variables,

whereas absolute entropies would not. In fact, they do depend on the choice of parame-
terisation and even on the choice of units for the parameters, which in particular is less
relevant in cosmology as almost all parameters are defined in a dimensionless way, with
H0 or χH = c/H0 being notable exceptions. Under an invertible reparameterisation with
a nonzero Jacobian determinant det(∂yν/∂xµ), both the Shannon entropy S and, sur-
prisingly, the Rényi entropy Sα too acquire the identical additive term ln det(∂yν/∂xµ).
This is valid if the transformation is affine, yν = Aµνxµ + bν with a constant Aµν and bν
corresponding to a change in units and a shift of the mean.

In this application, we would like to compute the entropy difference between the poste-
rior p(xµ) = p(xµ|M,D) ∝ L(D|xµ,M)π(xµ|M) which includes the information provided
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by measurement and the prior q(xµ) = π(xµ|M), which reflects the state of knowledge be-
fore the data has been taken. We would like to point out that the entropy divergences ∆S
and ∆Sα are not symmetric in interchanging prior and posterior. Also, the definition of rel-
ative entropy does not admit transitivity when combining multiple independent data sets
D1, . . . , Dn, i.e. in cases where p(xµ|M,D) = L(D1|xµ,M) · · · L(Dn|xµ,M)π(xµ|M). As
an example, if ∆S(1) is the entropy divergence between the posterior L(D1|xµ,M)π(xµ|M) =
L1π and the prior π(xµ|M),

∆S(1) =

∫
dnx L1π ln

L1π

π
=

∫
dnx L1π lnL1 (5.20)

and S(2) the corresponding difference between L1L2π and π,

∆S(2) =

∫
dnx L1L2π ln

L1L2π

π
=

∫
dnx L1L2π lnL1L2 (5.21)

one can define the entropy decrease ∆S(12) gained by including the data set D2 and
adding the likelihood L2 to the state of knowledge L1π obtained from the data set D1,

∆S(12) =

∫
dnx L1L2π ln

L1L2π

L1π
=

∫
dnx L1L2π lnL2. (5.22)

With these definitions, one sees that ∆S(2) 6= ∆S(1) + ∆S(12). Because of this and due
to statistical non-independence of cosmological probes, we compute all entropies from the
effective Fisher-matrix combining all probes into a single Gaussian likelihood. The same
issue appears in the case of Rényi entropies ∆Sα in an identical way.

If now we inverse, i.e. setting p(xµ) = π(xµ|M) and q(xµ) ∝ L(D|xµ,M)π(xµ|M), i.e.
computing the entropy divergence of the prior relative to the posterior yields an interesting
result. The entropy divergence quantifies by how much the entropy will decrease by
acquiring new data, i.e. by how much the entropy of the posterior will be different relative
to that of the prior. At first sight, one might think that entropies are then additive for
statistically independent likelihoods, L =

∏
i Li,

∆S =

∫
dnx π ln

π

Lπ = −
∫

dnx π lnL = −
∑
i

∫
dnx π lnLi, (5.23)

but the evidence-term
∫

dnx L(xµ)π(xµ) needed for a correctly normalised posterior in
fact breaks additivity, as

∆S(1) = −
∫

dnx π lnL1 + ln

∫
dnx L1π (5.24)

with the renormalised posterior,

q(xµ) =
L(xµ)π(xµ)∫

dnx L(xµ)π(xµ)
(5.25)

is not contained in the expression

∆S(2) = −
∫

dnx π lnL1 −
∫

dnx π lnL2 + ln

∫
dnx L1L2π. (5.26)
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If there are no tensions between the likelihoods and if they are of Gaussian shape, there
are analytic relations for the relative Shannon entropy ∆S,

∆S =
1

2

[
ln

det(F )

det(G)
− n+ F−1

µν Gµν

]
(5.27)

now expressed in terms of the Fisher matrices Fµν and Gµν of the posterior and the prior,
respectively, as well as for the relative Rényi entropy ∆Sα,

∆Sα =
1

2

1

α− 1
ln

[
detα(F )

detα−1(G) det(A)

]
. (5.28)

Both relationships yield ∆S = ∆Sα = 0 if Fµν = Gµν . It is quite illustrative to substitute
ln det(F ) = ln tr(F ), yielding

∆S =
1

2

[ (
ln(F )µµ − F−1

µν Fµν
)
−
(
ln(G)µµ − F−1

µν Gµν
) ]

(5.29)

such that ∆S becomes 〈∆χ2〉/2 for Gaussian likelihoods as L ∝ exp(−χ2/2), where we
substituted F−1

µν Fµν = n for symmetry. The analogous relation for the relative Rényi
entropy ∆Sα is

∆Sα =
1

2

1

α− 1
[α ln(F )µµ + (1− α) ln(G)µµ − ln(A)µµ] (5.30)

with
Aµν = αFµν + (1− α)Gµν , (5.31)

where one recovers the convexity condition for the matrix-valued logarithm. Again, appli-
cation of de l’Hôpital’s rule for evaluating the limit α→ 1 recovers ∆S from ∆Sα. It is not
straightforward to find general interpretations of Eq. (5.30) for arbitrary α. In the Shan-
non case, one finds for S the ratio between the logarithmic volumes of the two likelihoods
and the asymmetry of the relative entropy is ensured by the fact that F−1

µν Gµν 6= FµνG
−1
µν .

One would find a symmetric expression for the Rényi-entropy ∆Sα if α = 1/2, namely,
the Bhattacharyya-entropy, assuming in this particular case,

∆Sα = 2 ln

∫
dnx

√
p(xµ)q(xµ) . (5.32)

This is then symmetric, with equal prefactors for Fµν , Gµν and Aµν = (Fµν + Gµν)/2.
We will come back to this in Sec. 5.6, when discussing the relationship between Bayesian
evidence and information entropy.

5.2. Large scale structure probes

As discussed previously, we will assume the data to be given as a collection of spherical
harmonic modes. Under the assumption of Gaussian fields, their power spectra entirely
determine the statistical properties. In this section, we will briefly describe the probes
considered already presented in Sec. 2.2 and how the corresponding spectra are evaluated.
we refer to [220] for further details, where is demonstrated the construction of Fisher ma-
trices Fµν from the cosmological probes including all non-vanishing cross-correlations that
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would arise [221–223]. This section particularly serves to emphasize that cross-correlations
have a dual influence on the inference process by making the data statistically dependent
which would decrease the constraining power. On the contrary, they introduce unique
handles on investigating structure formation, for instance, through the sensitivity of the
integrate Sachs-Wolfe effect the CMB-LSS-correlations to dark energy. We approximate
the covariance through a Gaussian with additional power on small scales due to the mod-
elling of nonlinear structure formation [224–226]. Due to the assumption of a true fiducial
model, we do not need to worry about covariance matrix variations [227–229]. Further,
by the Gaussian assumption, there are no complications arising in relation to covariance
matrix estimation [230–233].

5.2.1. Cosmic Microwave Background

The spectra of cleaned, full-sky CMB maps are given by a

〈aP∗`maP
′

`′m′〉 ≡ ĈPP
′
(`) =

(
CPP

′
(`) +NP (`)

)
δ``′δmm′ , (5.33)

where P = T,E,B stands for temperature or the two polarization modes respectively,
while CTB(`) = CEB(`) = 0. The noise covariance is given by [234]

NP (`) ≡ 〈nP∗`mnP
′

`m〉 = θ2
beamσ

2
P exp

(
`(`+ 1)

θ2
beam

8ln2

)
δPP ′ . (5.34)

with root mean square σ2
P and a Gaussian beam with width θbeam. Stage IV CMB exper-

iments [235] will have a very small instrumental noise allowing for measurements up to
` ∼ 5000, especially for the polarisation maps. The spectra of the different components
are calculated using the hi-CLASS code [49].

5.2.2. Large scale structure

The modes of any large scale structure probe can be calculated, to first order, as a weighted
line-of-sight integral of the modes of the density field

A`m =

∫
dχ WA(χ)δ`m(χ) , (5.35)

where χ is the comoving distance and a suitable weighting function WA(χ). Corresponding
spectra involve integration over Bessel functions due to the spherical basis. However, in the
flat sky and Limber approximation, the calculation is simplified greatly and any angular
power spectrum is given by [236]

CAB(`) =

∫
dχ

χ2
WA(χ)WB(χ)Pδδ

(
`+ 0.5

χ
, χ

)
. (5.36)

Note that the comoving wave vector of a mode k is related to the multipole ` via k =
(` + 0.5)/χ in the Limber projection. We will continue by listing the weight functions of
all probes used:

1. Cosmic shear [237, 238]:

W (χ) =
3Ωmχ

2
H

2aχ

∫ χi+1

min(χ,χi)
dχ′p(χ′)

dz

dχ′

(
1− χ

χ′

)
, (5.37)
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with the Hubble radius χH = c/H, i the tomographic bin index and the Jacobi
determinant dz/dχ′ = H(χ′)/c due to the transformation of the redshift distribution
p(z)dz of background galaxies in redshift z, which is given by [210]

p(z) dz ∝ z2 exp

[
−
(
z

z0

)β]
. (5.38)

Typical parameters for stage IV experiments are z0 ≈ 1 and β = 3/2.

2. Galaxy clustering [239–241]

W (k, χ) =
H(χ)

c
b(k, χ) p(χ) if χ ∈ [χi, χi+1) , (5.39)

where b is the galaxy bias [242] for which we assume [207]:

b(χ) = b0 [1 + z(χ)] , (5.40)

with a free positive parameter b0.

3. Lensing of the CMB [243, 244]:

W (χ) =
χ∗ − χ
χ∗χ

H(χ)

ca
, (5.41)

with the comoving distance to the last scattering surface χ∗.

4. Integrated Sachs-Wolfe effect [245]:

W (k, a) =
3

2χ3
H

a2E(a)F ′(k, a) , (5.42)

where the prime denotes a derivative with respect to a and

F (k, a) = 2
D+(k, a)

a
, (5.43)

which is measured in cross-correlation with galaxy clustering and weak lensing.

The noise covariance of cosmic shear and galaxy clustering is given by

NLSS(`) = σ2ntomo

n̄gal
δ``′ , (5.44)

with σ = 0.3 and σ = 1 for lensing and galaxy clustering, respectively, describing the
intrinsic ellipticity of galaxies and the Poissonian fluctuation of galaxy numbers in each
bin, n̄gal/ntomo. Note that the tomographic bins are chosen such that the same amount
of galaxies, i.e. n̄gal/ntomo, lie in each bin. For CMB-lensing, we assume the noise to be
given by the quadratic estimator described in Hu and Okamoto [246], Okamoto and Hu
[247] using all five non-vanishing estimators involving T , E and B.

In our analysis, we combine the currently most powerful cosmological probes into a
joint likelihood function. Specifically, we start out with spectra of the temperature and
polarisation anisotropies in the CMB (labeled as CMB primary), and successively add
CMB-lensing, tomographic galaxy clustering (GC) and tomographic weak gravitational
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shear (WL), while taking account of all possible cross-correlations. As the reference cos-
mology, we use the Planck collaboration [83] result. The Fisher matrices used here were
computed with the code of [248] where all cross-correlations are taken into account. At the
moment, to apply this approach to available data would not be fully correct since it is not
available the correlation between probes that have overlap areas of scan as it is the case
for some surveys of galaxy clustering and weak lensing. Therefore, we use these specific
Fisher matrices as a proof of concept, that is, to assess relations between the Bayesian
statistics methods and information theory measures.

5.3. Comparison of uncertainty measures

Firstly, we would like to see how the statistical uncertainty in a ΛCDM or wCDM cos-
mology is reduced by combining cosmological probes. Starting from constraints from the
temperature and polarisation anisotropies of the cosmic microwave background, we add
successively gravitational lensing of the CMB, galaxy clustering and weak gravitational
lensing, i.e. the large-scale structure probes ordered by decreasing redshift. In doing that,
we are considering all nonzero cross-correlations in the data covariance, most notably the
integrated Sachs-Wolfe effect between the CMB-temperature and any low-redshift tracer
of the large-scale structure, plus the nonzero cross-correlations between the galaxy density
and weak lensing.

At some point, the distribution will become very narrow such that their entropies will
become negative, irrespective of the Shannon or Rényi definition. This can be explained
straightforwardly by considering a one-dimensional Gaussian distribution with variance
σ2, where the relevant term in both entropy definitions is ln(σ2) which tends towards
−∞ as σ2 → 0. The Dirac distribution δD with perfect knowledge of the parameters has
infinite negative entropy and not zero as a consequence of the continuum limit.

We start by quantifying the absolute entropies S and Sα for the four cosmological data
sets separately and put them into relation with other measures of total error that can be
directly derived from the Fisher-matrix such as tr(F ) and tr(F 2), where the inequality

ln det(F ) = tr lnF ≥ ln tr(F ) (5.45)

is obeyed as it should be expected from a positive definite and symmetric Fisher matrix
Fµν . As such, the entropies are in fact not only scaling with Fisher invariants but are
bounded by them as well, keeping in mind that 2S = n[ln(2π) + 1]− ln det(F ).

The absolute Shannon entropies S and Rényi entropies Sα for α = 1/2 are listed in
Tab. 5.1 for a ΛCDM cosmology and in Tab. 5.2 for a wCDM cosmology. It is clear for
both cosmological models, that the cosmic microwave background is the primary source
of information, followed by galaxy clustering and weak lensing, and with CMB-lensing
adding the smallest amount of information. Comparing the two cosmological models, the
entropies in ΛCDM are smaller, reflecting the reduced parameter space in comparison to
wCDM, leading to tighter constraints, smaller entries in the parameter covariance matrix,
and consequently, of the information entropies. The Shannon and Rényi entropies are
related for the Gaussian distributions by a fixed factor, for which we have chosen to
compute the case for α = 1/2.

In opposition to the absolute entropies, the relative entropies ∆S and ∆Sα are inde-
pendent under transformations of the random variable, and for this reason the choice of
units does not matter. However, in particular for Cosmology, most of the cosmological
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Table 5.1.: Absolute Shannon S and Bhattacharyya entropies Sα with α = 1/2, in units of
nats, for the likelihood of a ΛCDM model, computed from the Fisher matrices.

Probe Shannon entropy S Bhattacharyya entropy Sα
CMB -29.38 -28.03
CMB lensing 1.03 2.38
galaxy clustering -13.09 -11.75
weak lensing -8.21 -6.85

Table 5.2.: Absolute Shannon S and Bhattacharyya entropies Sα with α = 1/2, in units
of nats, characterising the likelihood of a wCDM model.

Probe Shannon entropy S Bhattacharyya entropy Sα
CMB -44.31 -42.76
CMB lensing -4.62 -3.00
galaxy clustering -24.40 -22.85
weak lensing -59.21 -57.67

parameters are defined in a dimensionless way such that it is sensible to compare absolute
entropies directly. Fig. 5.1 refers to the total entropy of all cosmological probes individu-
ally, and show their scaling with tr(F )/n, (tr(F )/n)1/p and ln det(F )/n. It does not come
as a surprise that information entropies visibly scale with trace invariants of the Fisher
matrix. As stated before, the primary CMB has the highest information content for a
ΛCDM, followed by galaxy clustering, weak lensing and CMB-lensing, in that particular
order. Additonally, the inequalities of Eq. (5.13) and Eq. (5.14) are fulfilled as expected.
Likewise, in Fig. 5.2 shows for the same cosmological probes their respective information
content for a wCDM cosmology, where the increased parameter space typically comes
along with higher uncertainties and thus, higher entropies. In this case, the gain of infor-
mation on cosmology is highest for weak lensing, as the CMB is not as sensitive to details
of the dark energy equation of state.

5.4. Information update in relative entropies

The total statistical uncertainty can be measured by both the information entropies and
invariants of the Fisher-matrix. As such, one should expect a relation between S (or
generally Sα) with tr(F), tr(F 2) and det(F ) at every stage of combining cosmological
probes.

Although it is clear that for an uncorrelated multivariate Gaussian distribution with
covariance Cµν ∝ δµν , the entropies of the individual distributions add, S =

∑
µ Sµ, the

same does not hold if correlations are present. In fact, the total entropy is bounded
by the conditional and marginal variances, respectively. For both Shannon and Rényi
entropies, the conditional error results from the corresponding inverse entry of the Fisher

matrix, σ2
µ,c = (Fµµ)−1, such that with S

(c)
µ ∝ σ2

µ. Ignoring non-relevant prefactors, one

obtains exp(−S(c)
µ ) = Fµµ. Using the Hadamard-inequality, one then finds exp(−S) =

det(F ) ≤ ∏µ Fµµ =
∏
µ σ

2
µ,c =

∏
µ exp(−S(c)

µ ) = exp
(∑

µ S
(c)
µ

)
, such that S ≥ ∑µ S

(c)
µ

for conditional variances. Conversely, the marginalised variance is computed from the
inverse Fisher-matrix, σ2

µ,c = (F−1)µµ, as well as det(F−1) = 1/det(F ), implying exp(S) =
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Figure 5.1.: Absolute Shannon entropy S in units of nats for the likelihood of a
ΛCDM cosmology, constrained through primary CMB fluctuations, CMB lens-
ing, galaxy clustering and weak lensing individually, plotted against tr(F )/n,
[tr(F p)/n]1/p, p = 2, and det(F )1/n.

det(F−1). Then, exp(S) = det(F−1) ≤ ∏
µ(F−1)µµ =

∏
µ σ

2
µ,m =

∏
µ exp(−S(m)

µ ) =

exp
(∑

µ S
(m)
µ

)
, and from that S ≤∑µ S

(m)
µ . In summary,

∑
µ S

c
µ ≤ S ≤

∑
µ S

(m)
µ , where

equality is given for the uncorrelated case.

The Cramér-Rao inequality asserts that the estimated variance of a distribution is
bounded by the Fisher matrix from below, where equality between the variances σ2 and
F−1 is only given for a Gaussian distribution. If one estimates the covariance matrix
from a non-Gaussian distribution, the resulting variance would be larger than that of a
Gaussian distribution for the same Fisher-matrix. Naturally, this assigns an entropy to
that covariance through S ∝ ln det(C) which yield a larger result than − ln det(F ). This
statement is not in contradiction with the property of the Gaussian distribution to max-
imise S for a given covariance, because the actual value of S depends on the shape of the
distribution. The actual value of S has to be either computed from the functional shape
or be estimated from data, through S = −

∫
dnx p ln p or Sα = −

∫
dnx ppα−1/(α− 1).

It is a standard derivation to show by functional extremisation δS = 0 of S = −
∫

dxp(x) ln p(x)
while incorporating the boundary conditions

∫
dx p(x) = 1 and

∫
dx p(x)x2 = σ2 with

Lagrange-multipliers, that the Gaussian distribution is in fact the one with the largest
possible entropy for fixed variance. We would like to point out that the Gaussian distribu-
tion is likewise the solution if one fixes the Fisher matrix F = 〈(∂ ln p)2〉 =

∫
dxp(∂ ln p)2.

Formulating the entropy functional as the averaged logarithmic curvature,

S = −
∫

dx p ln p+ λ

[∫
dx p− 1

]
+ µ

[∫
dx p(∂ ln p)2 − F

]
(5.46)
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Figure 5.2.: Absolute Shannon entropy S in units of nats for the likelihood of a wCDM
cosmology, constrained through primary CMB fluctuations, CMB lensing,
galaxy clustering and weak lensing individually, plotted against tr(F )/n,
[tr(F p)/n]1/p, p = 2, and det(F )1/n.

yields as a solution to δS = 0 the differential equation

ln p(x) + 1 + λ+ µ
∂2p

p
= 0 (5.47)

using ∂2p/p = −(∂ ln p)2. While identifying F with σ−2, this is solved by the Gaussian
distribution p(x) = exp(−x2/(2σ2))/

√
2πσ2.

We compute information entropy differences for combinations of cosmological data
sets and again add successively, in order of decreasing redshift, CMB-lensing, tomo-
graphic galaxy clustering and tomographic weak gravitational lensing to the primary
CMB-fluctuations. In this computation, we use the resulting combined Fisher matrix
including all cross-correlations in order to quantify the gain of information relative to the
previous combination of probes. The results are shown in Fig. 5.3 for both the Kullback-
Leibler divergence ∆S as well as the α-divergence ∆Sα for α = 1/2 for a ΛCDM cosmology
in black solid and dashed lines. The analysis is repeated for a marginalised likelihood of
each individual parameter Ωm, σ8, h, ns, w0 and wa, where the above discussed inequali-
ties for the sum of the marginalised entropies in comparison to the total entropy become
relevant. These results are represented in Fig. 5.4. For the ΛCDM case, the σ8 parameter
is the one that gains more information from the combination of all probes compared to
the starting point of CMB. On the case of wCDM, the parameter with the highest gain is
the matter density parameter Ωm.
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Figure 5.3.: Relative entropies ∆S from the marginalised likelihoods for each of the param-
eters in a ΛCDM cosmology in units of nats, i.e. for the marginal Gaussian
distributions for Ωm, σ8, h, ns, and w0, for combining successively the four
probes from high to low redshift: primary CMB, CMB lensing, galaxy cluster-
ing and weak lensing. The black solid and dashed line correspond respectively
to the relative entropies ∆S and ∆Sα with α = 1/2 for all the model param-
eters considered.

5.5. Entropy increase through systematics

The assumption of unbiased measurements has been always included throughout this anal-
ysis. As such, the averaged likelihoods should be peaked at the fiducial cosmology because
the data was on average equal to the theoretical prediction. We will next relax this as-
sumption by considering shifts in the likelihood functions of different cosmological probes
due to systematical errors. As introduced by [249], the figure of bias Q from the Fisher-
matrix Fµν and the shifts δµ of the best-fit point can take these shifts into account. It
is obtained through the quadratic form Q2 =

∑
µν Fµνδµδν and it is connected to the

Kullback-Leibler-divergence ∆S = Q2/2, if the covariance is unaffected by the systematic.
The interpretation of Q is straightforwardly associated to the systematic error in units
of the statistical error. It is likewise obvious that there is an effect of systematic errors
on relative entropies. Indeed, the explicit relationship for the Kullback-Leibler divergence
∆S between two Gaussian distributions with Fisher matrices Fµν and Gµν has a term
involving δµ,

∆S =
1

2

(
δµGµνδν + ln

det(F )

det(G)
− n+ F−1

µν Gµν

)
(5.48)
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Figure 5.4.: Relative entropies ∆S and ∆Sα for α = 1/2 from the marginalised likelihoods
for each of the parameters in a wCDM cosmology in units of nats, i.e. for the
marginal Gaussian distributions for Ωm, σ8, h, ns, w0, and wa, for a successive
combination of the four probes primary CMB, CMB lensing, galaxy clustering
and weak lensing. The black solid and dashed line correspond respectively to
the relative entropies ∆S and ∆Sα with α = 1/2 for all the model parameters
considered.

which reverts to Eq. (5.27) in the case of vanishing tension, δµ = 0. The analogous
relationship for the relative Rényi entropy ∆Sα can be derived to be

∆Sα =
1

2

1

α− 1
ln

(
detα(F )

detα−1(G)det(A)
×

exp
[
−α

2
δα
(
Fαβ − αFαµA−1

µνFνβ
)
δβ

])
,

(5.49)

again with

Aµν = αFµν + (1− α)Gµν , (5.50)

where the previous relation for the Rényi entropy ∆Sα is recovered for δµ = 0, as the
exponential becomes equal to one.

For the application of the above concepts, we consider three well-known examples of
tensions between likelihoods, assmuning Gaussian distributions. These examples are the
tension in the value of the Hubble-parameter H0 between the CMB and Cepheids, the
tension in the (Ωm, σ8)-plane between the CMB and weak lensing, and intrinsic align-
ments as a contaminant in weak lensing data as a theoretical forecast. Regarding the
interpretation of ∆S and ∆Sα, the Kullback-Leibler divergence for two identical Gaussian
distributions shifted by δ is given by (δ/(

√
2σ))2, such that the square root measures the

number of standard deviations by which the Gaussian distributions are displaced relative
to each other. This immediately suggests the interpretation of the integrated probability
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to obtain values larger than the actual bias δ as

P (x ≥ δ) =
1

2
erfc

(
δ√
2σ

)
, (5.51)

where one could substitute the square root of the entropy difference ∆S inside the com-
plementary error function.

5.5.1. Hubble parameter H0 from Cepheids and the CMB

The Hubble parameter H0 quantifies the current rate of expansion of the Universe, but
values from the CMB [83] and the local value of H0 [250] are in disagreement by 4.4σ of sta-
tistical significance. The CMB temperature fluctuations provides cosmological parameter
values with very good statistical precision, assuming a ΛCDM cosmology. More recently,
the improvements on the distance ladder using near-infrared Cepheids variables in host
galaxies with recent type Ia supernovae reduced the uncertainty on H0 to 2%. Typically
this measurement is model-independent as it follows directly from the Hubble-Lemâıtre
law and does not dependent on a specific cosmological model. Up to this point, all the
methods were in agreement but the recent better control over systematics revealed two
distinct sides for this H0 quantity. The origin is yet unknown and most of the formulated
solutions involve hidden systematics or new physics. This tension clearly shows up as a
nonzero Kullback-Leibler divergence ∆S. With CMB as a reference to be updated by
Cepheids, this gives a value of ∆S = 44 nats, and has a value of Q2 = 88 for the figure of
bias.

5.5.2. (Ωm, σ8)-plane from the CMB and weak lensing

There is an older unsolved disparity between determinations of Ωm and σ8 from the CMB
and from weak gravitational lensing. This appers as the lensing data preferring smaller val-
ues for both parameters relative to the CMB. However, it is worth to recall the well-known
degeneracy between these parameters as a lensing essentially determines the product of
both parameters and not the parameters individually. For this reason and since the best
fit value for (Ωm, σ8) does not have a Gaussian uncertainty, we opt to use the parameter
S8 = σ8

√
Ωm/0.3. This estimator encapsulates the information of both parameters and

has a Gaussian uncertainty. Otherwise, it would not have been possible to use these data
as one needs a full correlation matrix between the parameters to compute correctly this
shift between likelihoods. One obtains an entropy difference ∆S = 2 nats for the Kullback-
Leibler divergence, between Planck’s CMB observation and KiDS’s weak lensing data set
[251], with CMB as the reference value. As for the figure of bias, we obtain Q = 1. Again,
we would like to emphasise that in contrast to quantities like Q, one does not assume
Gaussianity of the distributions.

5.5.3. wCDM and lensing with intrinsic alignments

Lastly, we quantify the effect of intrinsic alignments in weak lensing data on parameter
estimation and the bias that they cause. From a physical point of view, intrinsic align-
ments are mechanisms related to tidal interaction of galaxies with the large-scale structure,
which causes them to have correlated intrinsic shapes. This then changes the fundamental
assumption that lensing is the only mechanism to generate shape correlations. One can
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derive estimation biases for the wCDM parameter set including the dark energy equation
of state parameters w0 and wa. This is possible only when deriving intrinsic ellipticity
spectra using tidal shearing for elliptical and tidal torquing for spiral galaxies including the
cross correlation that exists between gravitational lensing and the intrinsic shapes of ellip-
tical galaxies. Expressed in terms of the ratio δ/σ, those are in fact significant for a weak
lensing survey like Euclid. In this particular case, we work with the approximation that
the intrinsic alignments only give rise to a nonzero bias δµ while keeping the covariance,
or equivalently, the Fisher matrix Fµν fixed. The numerical value of the Kullback-Leibler
divergence is computed to be ∆S = 549573 nats, for an analysis of Euclid’s weak lensing
data in the framework of a wCDM cosmology.

5.6. Bayesian evidence and information entropy

Bayesian evidence as a criterion for model selection provides a trade-off between the size
of the statistical errors and the model complexity. It is straightforward to show that, for a
Gaussian likelihood L(D|xµ,M) with a Fisher matrix Fµν and a Gaussian prior π(xµ|M)
with the inverse covariance Pµν , the evidence p(D|M) is given by

p(D|M) =

√
det(F )det(P )

(2π)ndet(F + P )
, (5.52)

which implies a scaling ∝ π−n/2 disfavouring models with high complexity.

The expression for the evidence p(D|M) changes to

p(D|M) =

√
det(F )det(P )

(2π)ndet(F + P )
exp

{
−1

2
δµ

[
Pµν − Fµα(F + P )−1

αβFβν

]
δν

}
, (5.53)

if likelihood and prior are displaced by δµ relative to each other. Comparing this expression
with Eq. (5.49), shows that the two expressions are related to each other if α = 1 − α,
i.e. if α = 1/2, which is the Bhattacharyya entropy. For this particular case, the Rényi
entropy would weigh both likelihood and prior equally,

∆Sα = 2 ln

∫
dnx

√
L(D|xµ,M)π(xµ|M), (5.54)

with the natural bound
√
L(D|xµ,M)π(xµ|M) ≤ [L(D|xµ,M) + π(xµ|M)]/2. This is

given by the inequality of the geometric and arithmetic mean such that ∆Sα ≥ 0 as both
L(D|xµ,M) and π(xµ|M) are normalised. Because the logarithm is a concave function,
one can use Jensen’s inequality to write ln

∫
dnx

√
L(D|xµ,M)π(xµ|M) ≥

∫
dnx ln

√
Lπ =∫

dnx (lnL + lnπ)/2, such that ∆Sα ≤
∫

dnx (lnL + lnπ), bounding the evidence from
above, although in most cases this particular bound is diverging.

Finally, expressing the evidence p(D|M) for Gaussian distributions in terms of the Rényi
entropy yields

p(D|M) = exp(−∆Sα)
√

det(F + P ) π−n/2. (5.55)

This relation shows that the evidence is made up from three contributions. On the one
hand, it decreases ∝ π−n/2 if the dimensionality of the parameter space, i.e. the model
complexity is increased. Also, the determinant of the Fisher matrix generates a scaling
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∝∏µ 1/σµ, such that models with large errors are assigned low evidences as well as being
a measure of the dissimilarity of likelihood and prior. Taking the logarithm shows that

ln p(D|M) = −∆Sα +
1

2
tr ln(F + P )− n

2
lnπ, (5.56)

meaning that the evidence reflects the inverse volume of the permissible parameter space,
allowed by combining likelihood and prior.

Comparing Bayes evidences and information entropy differences shows a clear mathe-
matical relationship between the two, implying perhaps that one could in principle state
the relative entropy instead of the Bayesian evidence ratio. The advantage in doing that
would be to avoid the empirical Jeffreys scale. Instead, relative entropies would be stated
in units of nats. In addition, the usage of the evidence ratio appears to be motivated
by the Neyman-Pearson lemma known from hypothesis testing, where it ensures that two
hypotheses are tested against each other with the most efficient test statistic. While it
seems to be unclear whether the Neyman-Pearson lemma applies to evidences as well in
the sense if evidence ratios constitute the most efficient statistical test to decide between
two models, these difficulties are avoided by relative entropies. They are axiomatically de-
fined and unambiguous, and the evidence difference, in units of nats, can be computed for
every likelihood, with the only complication originating from having to estimate ln p(xµ)
from samples in the case of non-Gaussian likelihoods or priors.

Using the current Fisher generator code, it is not possible to directly do this comparison
since the prior is fixed to be an unbounded uniform distribution. In future work, we will
explore this with the usage of the Monte Carlo Markov chains upgrade of this code, where
this comparison can be more extensively explored.

5.7. Summary

The current framework in Cosmology is data driven and employing Bayesian statistics.
Given the complexity of systematical effects that blur the cosmological data, a better
understanding of statistics is required, or perhaps just a different interpretation. In this
work, we have applied concepts from information theory and made an analogy with the
commonly used quantities of statistical inference.

Using the same key ingridient of likelihood functions, we compared the associated Fisher
matrix and information entropy following the Shannon and the Bhattacharyya definitions.
We show how these scale with measures of total error derived from the Fisher matrix, in
particular, for the case of tr(F ), tr(F 2) or ln det(F ). This comparison was done using
specifically the likelihoods for the spectra of the cosmic microwave background tempera-
ture and polarisation anisotropies, CMB lensing, galaxy clustering and weak gravitational
lensing by the cosmic large-scale structure. Assuming a Gaussian distribution for the cos-
mological parameters, this computation comes out as purely analytical given the parameter
covariance matrix, or equivalently, the inverse of the Fisher matrix.

We compared the conventional ΛCDM and wCDM cosmologies with the aim of quan-
tifying the information content of these cosmological probes. From the absolute entropies
for each probe individually, we can conclude that the CMB is the primary source of in-
formation for the ΛCDM model and weak lensing for the wCDM scenario. This arises
naturally as constraints on the dark energy equation of state stem from lower redshift
probes such as weak lensing. Next, we computed the entropy differences for combination
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of cosmological data sets, in decreasing order of redshift, having as reference the CMB.
This update of the likelihood function as more information is taken into account resem-
bles the usual Bayesian approach. For the individual and all parameters considered of
ΛCDM and wCDM cosmologies, we find that the information about the σ8 is significantly
different from the CMB with the additional information for the ΛCDM scenario, where as
for the wCDM scenario that is achieved by the Ωm.

The data tensions can be expressed as a shift between likelihoods which one wants to
minimize. We computed the relative entropy and the figure of bias for the three known data
discrepancies: on the H0 parameter from Cepheid variable stars and the cosmic microwave
background, the tension in (Ωm, σ8) between weak lensing and the CMB, and the bias
caused by intrinsic alignments in weak gravitational lensing in wCDM models. Also, we
showed how the Bayesian evidence and information entropy are related, suggesting that
the information entropy can be used in a model comparison analysis. There is a relation
between the entropy difference ∆Sα and the evidence p(D|M) if α is chosen to be 1/2.
This comparison is beyond the Fisher code used in this work and an MCMC approach
will enable this work in the future.

The main goal of this work is to show the wide range of applications of the infor-
mation theory concepts. The connection between Bayesian statistics and information
entropy measures is straightforward which enables another perspective on distinguishing
uncertainties components, systematical errors or tensions between datasets and evidences.
Even further, it can provide with a viable alternative to the Jeffreys scale which thresh-
olds are sometimes not conclusive or even reliable for model comparison. The expressions
here derived are assuming a Gaussian likehood which is a common and generally good as-
sumption in Cosmology but information entropies are not dependent of this assumption.
Further exploration of these concepts is one of the next goals of future work. Information
entropies are suited for any probability distribution which acts as an advantadge with
respect to a Fisher matrix formalism. On the other hand, the additivity and other Fisher
matrix properties are extremly useful, surpassing the Kullback-Leibler divergence with its
lack of triangule property. The progress in cosmology envolves not just new theoretical
possibilities but also a new take on statistical inference, which hopefully can clear out the
data tensions and develop our knowledge on the history and dynamics of the Universe.
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In this dissertation, we covered different approaches to assess deviations to the standard
model of cosmology, the ΛCDM model. This includes estimators built to test gravity and
a new framework to measure information in statistical inference.

In Chapter 2, we have explained the foundations of General Relativity and the ΛCDM
model. Regarding alternative theories, we described the difference between modified grav-
ity and dark energy models, detailing the Horndeski theory. We introduced common
parametrizations of modified gravity and details about the structure formation. On the
observational side, we characterized the most important cosmological probes: the cosmic
microwave background, weak lensing, galaxy clustering and Hubble parameter.

Next, in Chapter 3, we explored how the anisotropic stress parameter can be computed
in a model-independent way. The recent gravitational-wave events have ruled out several
models by setting the speed of gravity to be nearly the speed of light. This constrained,
for example, a few sectors of the Horndeski theories. Since most of the cosmological
data points towards a ΛCDM description of the Universe, we need to test gravity in a
model-independent way. The anisotropic stress parameter, η, is defined by the ratio of the
gravitational potentials Φ and Ψ. In General Relativity, η = 1 for all scales and redshifts.
If η is determined to be different from one, it means that the perfect fluid approach is not
valid. This allows us to discriminate and rule out models that have this assumption.

We estimate the anisotropic stress parameter, η, in a model-independent way. For this,
we use the set of observable quantities that do not depend on the assumptions of the
initial conditions of the Universe or about the primordial power spectrum. Also in these
quantities, it is not assumed a particular description of dark matter or an expression
for the galaxy bias. With the ratios of these observable quantities, we can build model-
independent parameters [65, 145] that correspond to linear relations of cosmological data.
If one substitutes the model-independent parameters in the linearized Poisson equations
in Fourier space, we obtain an expression for ηobs written in terms of the data observables.

These data are compilations of the Hubble parameter, the fσ8, and the EG statistics.
Each of these datasets has measurements taken at different redshifts. Additionally, the
model-independent estimator for η includes derivatives of the direct data. For these rea-
sons, we need data reconstruction methods to obtain a continuous function of redshift.
Firstly, we use the binning method which consists of a weighted average for a specific red-
shift interval. This simple method can be useful in large datasets as it has the least amount
of assumptions. However, it does not capture higher mode behaviors and it strongly limits
the number of data points available after applied. As a second method, we use the Gaus-
sian Processes method. This is a generalization of the Gaussian distribution to function
space where it is assumed that the data are Gaussian distributed. It is not exactly a non-
parametric method because a kernel function is chosen as the covariance matrix. Finally,
we do a polynomial regression where the exponents and coefficients are determined by each
dataset. This method provides an easy computation for the derivatives and a guaranteed
smooth function of redshift. It requires a lower inconsistency in the dataset which means
there should not a big scatter of values for a small redshift interval.
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The binning method reduces the redshift range to three points at which we compare
each method. Gaussian Process is the method that delivers the most stringent error bars.
For the first bin, the results from the different methods are compatible with each other.
The binning method is 1.5σ away from the Gaussian Processes, in the second bin. The
last and farthest bin, the errors are much larger and the comparison is not significant.
Conclusions are dependent on the redshift and method. For instance, in the case of the
second bin of the binning, it is two or even three sigma away from the standard gravity
value η = 1. In general, the results are in every bin compatible with at least two of the
three methods. The polynomial regression appears to be the most conservative error bars.
We quote that as our method and we find ηobs = 0.44±0.92 at z = 0.294, ηobs = 0.42±0.89
at z = 0.58, and ηobs = −0.14± 3.01 at z = 0.86.

The future large scale surveys will soon obtain large amounts of data. For example,
Euclid combines galaxy clustering and lensing with unprecedented quality. The forecasts
of [62] show that a constant ηobs could be measured up to a few percent. To revisit this
estimator when the Euclid [178] data are available is the next step. We would like to
emphasize that to performing null-tests is as important as testing specific models.

We explored another gravity test called the EG statistics in Chapter 4. This estimator
distinguishes modified gravity models through the comparison of weak lensing and galaxy
clustering signals. The theoretical definition simplifies to a ratio of the matter density
over the growth function for the ΛCDM model. However, the observational definition of
this estimator takes the galaxy-lensing and galaxy-galaxy two-point correlation functions,
and only recovers the simplified expression under certain conditions. We have explored
this definition deeper intending to understand how far the correspondence between the
theoretical and observational definitions is valid.

It has been shown before by [146] that there are a few choices possible in the EG statis-
tics. First, it depends on the redshift distribution of sources Ps(z), which is usually
defined by the experimental setup. The cutoff-scale R0 is chosen and this is defined as the
scale below which information is discarded. The projection length δ` at the galaxy-galaxy
cross-correlation is another parameter that is chosen. Finally, it also depends on the bias
function b(z, k) which is usually taken as linear but in reality this an assumption. It is im-
portant to confirm that this definition should allow for alternative theories of gravity. This
should be done by carefully account for the geometry of the sources and lensed galaxies.
After deriving the equations and implement them numerically, we identified the relevant
parameter space. This is work in progress but it is present in this dissertation as another
example of an estimator build to test gravity.

Unlike the model-independent estimation for η, the EG statistics has been measured by
a few lensing and galaxy clustering surveys. Given the current data tensions which also
include the estimation of the matter density, the EG statistics needs to be taken with a
grain of salt. We point out that an estimator truly is model-independent can help assess
properties of gravity. A correct calculation of the EG statistics could be interesting to
measure with future missions such as Euclid [178].

Finally, we applied information theory concepts to the cosmological framework in Chap-
ter 5. The precision era of Cosmology includes plenty of observables and data which are
often combined in a single analysis. At the moment each analysis is also more complex
where systematical effects can easily undermine its accuracy or a discovery. The majority
of the currently available data prefers a ΛCDM description of the Universe while still al-
lowing for alternative theories. The motivation for a new approach in statistical inference
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stems from the lack of distinction between theories and it is also suggested by the recent
data tensions.

Typically in statistical inference, the main quantity is the likelihood function which
encompasses both the model and the data. If the likelihood function is a Gaussian dis-
tribution, it is defined by a mean vector and a covariance matrix. For a fixed model, we
can compute the Fisher matrix from which the inverse is the covariance matrix. When
forecasting for future surveys, the Fisher matrix is the primary tool used to estimate the
parameter uncertainties. Through geometrical matrix properties, such as the trace, it is
how often the information from a Fisher matrix is summarized. As a comparison, we have
used the information theory concept of entropy to measure the amount of information in
a dataset. We computed the Shannon and the Bhattacharyya entropy definitions and we
have shown how these scale with measures of total error derived from the Fisher matrix.
In particular, we compare the entropy with the Fisher matrix properties tr(F ), tr(F 2) or
ln det(F ). Specifically, this comparison was done using the likelihoods for the spectra of
the cosmic microwave background temperature and polarization anisotropies, CMB lens-
ing, galaxy clustering and weak gravitational lensing by the cosmic large-scale structure.
This computation comes out as purely analytical since we assume a Gaussian distribution
defined by the cosmological parameters covariance matrix, or equivalently, the inverse of
the Fisher matrix.

We compared the ΛCDM and wCDM cosmologies to quantify how much information
can each cosmological probe provide. The computed absolute entropies show that the
CMB is the primary source of information for the ΛCDM model and weak lensing for the
wCDM scenario. This may reflect from the fact that weak lensing probes the late Universe
and therefore naturally constraints on the dark energy equation of state. The combination
of cosmological datasets is also a choice that can help break parameter degeneracies or
hide them. For this reason, we set the CMB as the reference and updated the correspond-
ing likelihood with more information from the remaining probes, in decreasing order of
redshift. In this Bayesian-like approach, we computed the entropy differences for probe
combination, for all and each parameter considered in a ΛCDM and wCDM cosmology.
We find that the information about the σ8 is significantly different from the CMB with
the additional information for the ΛCDM scenario, whereas for the wCDM scenario that
is done by the Ωm.

The degree of dissimilarity between likelihoods is what is important to measure when
understanding the data tensions. The relative entropies and the figure of bias are two
ways of evaluating this. We have computed those quantities for the H0 tension between
Cepheid variable stars and the cosmic microwave background, the tension in (Ωm, σ8)
parameter plane between weak lensing and the CMB, and the bias caused by intrinsic
alignments in weak gravitational lensing in wCDM models. Finally, we derived how the
Bayesian evidence and information entropy are related. This means that information
entropies can be useful to compare models. A particularly interesting quantity is the
relative entropy ∆Sα if α is chosen to be 1/2 when compared with the evidence p(D|M).
However, this comparison requires a full Monte-Carlo Markov chain approach to fully
compute the posterior distribution which will be done in future work. Also, the same
sampling code for the posterior distribution could enable to take the comparison further
to a non-Gaussian distribution since the information theory concepts can be applied in
any probability distribution.

The goal of this dissertation was to understand what are the next steps towards finding a
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complete description of the Universe. This is especially important when most observational
data prefer the ΛCDM model but at the same time, several questions remain unsolved.
We consider of fundamental value a model-independent approach in cosmology, or at
least, to be fully aware of every assumption. We propose two ways to address this issue:
measuring estimators built for testing deviations of general relativity or ΛCDM, and an
alternative point of view on how statistics is used. The future of cosmology requires not
just new theories but also new perspectives on statistical inference. These steps hopefully
contribute to clear out the data tensions and deepen our understanding of the Universe.
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A. Details of the Polynomial Regression
Method for the reconstruction of ηobs

We want to estimate the value of the functions y(i), for i = 1, 2, 3, 4 at a number of
arbitrary points, labeled by subscripts A,B,C . . . , which we call the interpolated points
and assume that there is a domain D common to all datasets, in which all the interpolated
points are contained. We further assume that the three initial datasets, y(j), for j = 0, 1, 2
are independent of each other. Now we use for all initial datasets, a polynomial of the
form

g(j) =

Nj∑
α=0

(1 + x)α , (A.1)

with Nj the maximum order of the polynomial, which depends on the characteristics of
each dataset y(j), and will be explained further below. Then the function f in Eq. (3.24)
will have Nj + 1 coefficients, ranging from Ā0 to ĀNj . If we now take the derivative of
this function, we obtain

f (j)′ =

Nj∑
µ=1

−µĀ(j)
µ g(j)

µ = −
Nj∑
µ=1

B̄(j)
µ g(j)

µ , (A.2)

where g
(j)
α is the α-th term in the sum g(j). For notational simplicity we define the indices

α, β to always run from 0 to Nj , while the indices µ, ν will run from 1 to Nj . As we
can see, the derivative functions f (j)′ have one coefficient less, because there is no A0

coefficient. The relation between the old and new coefficients is

B̄µ = µĀµ . (A.3)

This means that the covariance matrix (F j)−1 of the coefficients Āj has to be modified
with a Jacobian of the form

J jµα =
∂B̄µ
∂Āα

= µδαµ = diag(0, 1, 2, ..., Nj) , (A.4)

to obtain the covariance matrix F̃ of the new coefficients

(F̃ j)−1
µν = J jµα(F jαβ)−1Jβν . (A.5)

Since α, β = 0, . . . , Nj and µ, ν = 1, . . . , Nj the Jacobian is a rectangular matrix of di-
mensions (Nj − 1)×Nj , therefore the F̃ matrices have a dimension equal to the original
F minus unity.

Summarizing, we have the following four functions at the wanted points A

f̄
(a)
A = B̄

(a)
{α,µ}p

(a)
A{α,µ} . (A.6)



A. Details of the Polynomial Regression Method for the reconstruction
of ηobs

Where due to the derivative, we have the following basis functions,

p(1)
α = g(1)

α , p(2)
α = g(2)

α , p(3)
µ = −g(0)

µ , p(4)
µ = −g(1)

µ , (A.7)

for α = 0, . . . , Nj and µ = 1, . . . , Nj . Which in turn leads to a change in the vector of
coefficients, such that they read now

B̄(1)
α = Ā(1)

α , B̄(2)
α = Ā(2)

α , B̄(3)
µ = µĀ(0)

µ , B̄(4)
µ = µĀ(1)

µ . (A.8)

The Fisher matrices for B̄(1) and B̄(2), are F (1) and F (2), respectively. For B̄(3) the
Fisher matrix is F̃ (3), while for B̄(4) it is F̃ (4). The F̃ matrices have a dimension smaller
by one unit than the original F ,

C
(1,1)
αβ = Var(B̄(1)

α B̄
(1)
β ) =

(
F (1)

)−1

αβ
, (A.9)

C
(2,2)
αβ = Var(B̄(2)

α B̄
(2)
β ) =

(
F (2)

)−1

αβ
, (A.10)

C(3,3)
µν = Var(B̄(3)

µ B̄(3)
ν ) =

(
F̃ (3)

)−1

µν
, (A.11)

C(4,4)
µν = Var(B̄(4)

µ B̄(4)
ν ) =

(
F̃ (4)

)−1

µν
, (A.12)

C
(1,4)
αβ = Var(B̄(1)

α B̄
(4)
β ) = Var(Ā(1)

α βĀ
(1)
β ) =

(
F (1)

)−1

αγ
Jγβ . (A.13)

The full matrix Cab,AB is our final result: the covariance matrix at any two different points
xA, xB for any pairs of datasets f (a), f (b)

Cab,AB = C
(a,b)
αβ p

(a)
Aαp

(b)
Bβ . (A.14)
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[7] A. M. Pinho, R. Reiscke, and B. M. Schäfer, “Information entropy in cosmological
inference problems,” (2020), in preparation.

[8] L. Amendola and A. M. Pinho, “The EGstatistics, revisited,” (2020), in
preparation.

[9] B. Bertotti, L. Iess, and P. Tortora, “A test of general relativity using radio links
with the Cassini spacecraft,” Nature 425, 374 (2003).

[10] M. Kramer, I. H. Stairs, R. N. Manchester, M. A. McLaughlin, A. G. Lyne, R. D.
Ferdman, M. Burgay, D. R. Lorimer, A. Possenti, N. D’Amico, and et al., “Tests
of general relativity from timing the double pulsar,” Science 314, 97–102 (2006).

[11] B. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley,
C. Adams, T. Adams, P. Addesso, R. Adhikari, and et al., “Observation of
gravitational waves from a binary black hole merger,” Physical Review Letters 116
(2016), 10.1103/physrevlett.116.061102.

[12] S. Perlmutter et al. (Supernova Cosmology Project), “Measurements of Ω and Λ
from 42 high redshift supernovae,” Astrophys. J. 517, 565 (1999),
arXiv:astro-ph/9812133 [astro-ph].

http://arxiv.org/abs/1710.00844
http://dx.doi.org/ 10.1093/mnras/stx721
http://dx.doi.org/ 10.1093/mnras/stx721
http://arxiv.org/abs/1607.03155
http://dx.doi.org/10.1111/j.1365-2966.2012.21473.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21473.x
http://dx.doi.org/ 10.1088/1475-7516/2018/11/027
http://arxiv.org/abs/1805.00027
http://dx.doi.org/10.1142/S0217751X18440220
http://arxiv.org/abs/https://doi.org/10.1142/S0217751X18440220
http://dx.doi.org/10.3390/universe6020020
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/ 10.1126/science.1132305
http://dx.doi.org/ 10.1103/physrevlett.116.061102
http://dx.doi.org/ 10.1103/physrevlett.116.061102
http://dx.doi.org/ 10.1086/307221
http://arxiv.org/abs/astro-ph/9812133


Bibliography Bibliography

[13] A. G. Riess et al. (Supernova Search Team), “Observational evidence from
supernovae for an accelerating universe and a cosmological constant,” Astron. J.
116, 1009 (1998), arXiv:astro-ph/9805201 [astro-ph].

[14] K. C. Freeman, “On the disks of spiral and s0 galaxies,” Astron. J. 160, 811 (1970).

[15] V. C. Rubin and J. Ford, W. Kent, “Rotation of the andromeda nebula from a
spectroscopic survey of emission regions,” Astron. J. 159, 379 (1970).

[16] V. C. Rubin, J. Ford, W. K., and N. Thonnard, “Rotational properties of 21 sc
galaxies with a large range of luminosities and radii, from ngc 4605 (r=4kpc) to
ugc 2885 (r=122kpc).” Astron. J. 238, 471 (1980).

[17] A. Einstein, “The Field Equations of Gravitation,” Sitzungsber. Preuss. Akad.
Wiss. Berlin (Math. Phys.) 1915, 844 (1915).

[18] A. Einstein, “Cosmological Considerations in the General Theory of Relativity,”
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1917, 142 (1917).

[19] W. de Sitter, “Einstein’s theory of gravitation and its astronomical consequences.
Third paper,” Monthly Notices of the Royal Astronomical Society 78, 3 (1917).

[20] J. Martin, “Everything you always wanted to know about the cosmological constant
problem (but were afraid to ask),” Comptes Rendus Physique 13, 566–665 (2012).

[21] C. P. Burgess, “Quantum gravity in everyday life: General relativity as an effective
field theory,” Living Reviews in Relativity 7 (2004), 10.12942/lrr-2004-5.

[22] A. Ashtekar, M. Reuter, and C. Rovelli, “From General Relativity to Quantum
Gravity,” arXiv e-prints , arXiv:1408.4336 (2014), arXiv:1408.4336 [gr-qc].

[23] I. Zlatev, L. Wang, and P. J. Steinhardt, “Quintessence, cosmic coincidence, and
the cosmological constant,” Physical Review Letters 82, 896–899 (1999).

[24] L. Amendola and S. Tsujikawa, Dark Energy: Theory and Observations (2010).

[25] A. Joyce, L. Lombriser, and F. Schmidt, “Dark energy versus modified gravity,”
Annual Review of Nuclear and Particle Science 66, 95–122 (2016).

[26] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified gravity and
cosmology,” Physics Reports 513, 1–189 (2012).

[27] L. Amendola, “Coupled quintessence,” Physics Review D 62, 043511 (2000),
arXiv:astro-ph/9908023 [astro-ph].

[28] L. Amendola, S. Appleby, D. Bacon, T. Baker, M. Baldi, N. Bartolo,
A. Blanchard, C. Bonvin, S. Borgani, E. Branchini, C. Burrage, S. Camera,
C. Carbone, L. Casarini, M. Cropper, C. de Rham, C. Di Porto, A. Ealet, P. G.
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structure covariance matrices across parameter space,” MNRAS 465, 4016 (2016),
1607.03136.

[230] A. Taylor and B. Joachimi, “Estimating cosmological parameter covariance,”
MNRAS 442, 2728 (2014).

[231] E. Sellentin and A. F. Heavens, “Parameter inference with estimated covariance
matrices,” MNRAS 456, L132 (2016), 1511.05969.

[232] E. Sellentin and A. F. Heavens, “Quantifying lost information due to covariance
matrix estimation in parameter inference,” MNRAS 464, 4658 (2016), 1609.00504.

[233] E. Sellentin and A. F. Heavens, “On the insufficiency of arbitrarily precise
covariance matrices,” MNRAS 473, 2355 (2018), 1707.04488.

119

http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1093/mnras/sty2919
http://dx.doi.org/10.1093/mnras/sty2919
http://arxiv.org/abs/1804.02441
http://mnras.oxfordjournals.org/content/442/2/1326.short
http://mnras.oxfordjournals.org/content/442/2/1326.short
http://arxiv.org/abs/1607.01014
http://arxiv.org/abs/1607.01014
http://dx.doi.org/10.1093/mnras/stx1044
http://arxiv.org/abs/1707.08153
http://dx.doi.org/10.1051/0004-6361/201117294
http://arxiv.org/abs/1105.3980
http://dx.doi.org/10.1093/mnras/sts340
http://arxiv.org/abs/1601.05779
http://arxiv.org/abs/1601.05779
http://dx.doi.org/ 10.1214/11-AOP648
http://arxiv.org/abs/1508.03162
http://arxiv.org/abs/1508.03162
http://arxiv.org/abs/1607.03136
http://arxiv.org/abs/1607.03136
http://dx.doi.org/10.1093/mnras/stu996
http://dx.doi.org/ 10.1093/mnrasl/slv190
http://arxiv.org/abs/1511.05969
http://arxiv.org/abs/1609.00504
http://arxiv.org/abs/1609.00504
http://arxiv.org/abs/1707.04488
http://arxiv.org/abs/1707.04488


Bibliography Bibliography

[234] L. Knox, “Determination of inflationary observables by cosmic microwave
background anisotropy experiments,” PRD 52, 4307 (1995).

[235] R. J. Thornton, P. A. R. Ade, S. Aiola, F. E. Angilè, M. Amiri, J. A. Beall, D. T.
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F. Köhlinger, J. McFarland, A. Mead, J. Merten, N. Napolitano, J. A. Peacock,
M. Radovich, P. Schneider, P. Simon, E. A. Valentijn, J. L. van den Busch, E. van
Uitert, and L. Van Waerbeke, “Kids-450: cosmological parameter constraints from
tomographic weak gravitational lensing,” MNRAS 465, 1454 (2017),
arXiv:1606.05338 [astro-ph.CO].

[252] I. Olkin and F. Pukelsheim, “The distance between two random vectors with given
dispersion matrices,” Linear Algebra and its Applications 48, 257 (1982).

[253] D. C. Dowson and B. V. Landau, “The fréchet distance between multivariate
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