
Dissertation

submi�ed to the

Combined Faculty of Natural Sciences and Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Alexander Mil

born in: Rudnja, Russia

Oral examination: 29.05.2020





Experimental realization of U(1) gauge invariance in

ultracold atomic mixtures

Referees: Prof. Dr. Fred Jendrzejewski

Prof. Dr. Selim Jochim





Abstract
This thesis reports on the experimental realization of an elementary building

block for analog quantum simulation of a U(1) lattice gauge theory in a mixture

of two bosonic quantum gases. Experimentally, the building block is realized

by Bose-Einstein condensates of lithium (7Li) and sodium (23Na) con�ned in a

single optical dipole trap. Gauge and matter degrees of freedom are mapped in

this system onto the internal states of the atomic species. The necessary U(1)

gauge invariance is realized via heteronuclear spin changing collisions (SCC)

between both species.

The building block represents an important stepstone towards quantum simu-

lation of extended lattice gauge theories as, within the same setting, it features

systematic protection of gauge invariance, a realistic approach of the continuum

limit for gauge �elds and the potential for scalability.

Using SCC, systematic protection of gauge invariance in the system is achieved

by exploiting the inherent angular momentum conservation in the atomic mixture.

The continuum limit of gauge �elds is recovered in the framework of quantum

link models by working with Bose-Einstein condensates with high atom numbers

in the order of 105
. The building block can be scaled up to an extended U(1) lattice

gauge theory by arranging individual building blocks on the sites of an optical

lattice and connecting them via Raman-assisted tunneling.

Great tunability of our experimental building block is demonstrated by study-

ing SCC dynamics as a function of various experimental parameters. We observe

coherent SCC interactions between both species after an initialization quench.

Furthermore, we recorded the SCC resonance as a function of this initialization

quench and the o�set magnetic �eld. We present a theoretical framewok for the

building block model based on a mean �eld theory with a phenomenological

decoherence term. Within this framework the experimental SCC measurements

are excellently described, identifying our experimental system as a faithful repre-

sentation of the building block.

Our results open up the possibility for extended lattice gauge theories based

on multiple building blocks. These systems will allow for quantum simulation

of gauge theories with the potential to address important questions in modern

physics that can currently not be simulated by classical computational techniques.

5



Zusammenfassung
Diese Arbeit berichtet über die experimentelle Realisierung eines elementaren

Bausteins für analoge Quantensimulation einer U(1) Gittereichtheorie in einem

Mischungsexperiment aus zwei bosonischen Quantengasen. Experimentell wird

der Baustein durch Bose-Einstein Kondensate von Lithium (7Li) und Natrium

(23Na) realisiert, die sich in einem optischen Fallenpotential be�nden. Eich - und

Materiefreiheitsgrade werden in diesem System auf die internen Zustände der

Atome abgebildet. Die notwendige U(1)-Eichinvarianz des Systems wird durch

heteronukleare Spin-Austauschprozesse (SCC) zwischen den beiden Atomsorten

realisiert.

Der Baustein stellt einen wichtigen Schritt in Richtung Quantensimulation

erweiterter Gittereichtheorien dar, da er gleichzeitig einen systematischen Schutz

der Eichinvarianz, das Potenzial für Skalierbarkeit und einen realistischen Ansatz

für das Erreichen des Kontinuumslimit für die Eichfelder bietet.

Durch die Verwendung von SCC wird systematischer Schutz der Eichinvarianz

erreicht indem die inherente Drehimpulserhaltung des Systems ausgenutzt wird.

Das Kontinuumslimit für die Eichfelder wird im Rahmen des Quantenlinkmod-

ells erreicht, indem mit Bose-Einstein Kondensaten mit hoher Atomzahl in der

Größenordnung von 105
gearbeitet wird. Unser Baustein lässt sich zu einer aus-

gedehnten U(1) Gittereichtheorie erweitern indem individuelle Bausteine auf den

Gitterplätzen eines optischen Gitters angeordnet und mit Raman-unterstütztem

Tunneln gekoppelt werden.

Gute Durchstimmbarkeit unseres experimentellen Bausteins wird demonstri-

ert indem die SCC-Dynamik als Funktion von verschiedenen experimentellen

Parametern untersucht wird. Wir beobachten kohärente SCC-Dynamik zwischen

beiden Atomsorten, nachdem wir das System mit einem Quench initialisieren.

Darüber hinaus haben wir die SCC-Resonanz als Funktion dieses Quenches und

des Magnetfeldes aufgnommen. Wir präsentieren eine theoretische Beschreibung

unseres Bausteins, die auf einer Näherung bei großen Besetzungszahlen und

einem phänomenologischen Dekohärenzterm basiert. Im Rahmen dieser Theorie

lassen sich die SCC-Messungen hervorragend beschreiben. Diese Übereinstim-

mung identi�ziert unser experimentelles System als eine getreue Repräsentation

des Bausteins.

Unsere Ergebnisse erö�nen die Möglichkeit für erweiterte Gittereichtheorien,

die auf mehreren Bausteinen basieren. Diese Systeme ermöglichen die Quanten-

simulation von Eichtheorien mit dem Potenzial, wichtige Fragen der modernen

Physik zu beantworten, die derzeit mit klassischen Computertechniken nicht

simuliert werden können.
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1. Introduction
Since the early days of ultracold quantum gases, experiments in this �eld have been success-

fully used as a platform to study various quantum many-body problems. The super�uid to

Mott insulator transition [1], the crossover from a Bose-Einstein condensate to a degenerate

Fermi gas [2–4] and the quantum simulation of antiferromagnetic spin chains [5] are just a

few examples where cold atom experiments have been used to shed light on long standing

questions of modern physics.

Closely related to these �ndings is the principle of analog quantum simulation, that is using

a highly tailored quantum system that constitues the same properties and Hamiltonian as the

speci�c problem one wants to study. Due to the inherent quantum properties of this quantum

simulator, its capability for providing solutions to certain quantum problems surpasses the

ones of classical supercomputers [6–8].

Made possible by recent advances in the experimental �eld of ultracold atoms [9, 10] as

well as by e�orts from theoretical side to provide feasible proposals [11–17], has put gauge

theories into the focus of recent experimental e�orts for quantum simulation, a class of

physical problems that for a long time has not attracted great attention from the cold atom

community.

Gauge theories play a fundamental role in the description of quantum physics and are well

studied in condensed matter physics [18] as well as high energy physics [19–21]. A prominent

example is quantum electrodynamics, which describes the interaction of electrons with the

electromagnetic �eld based on a U(1) gauge symmetry. Such a symmetry leads to dynamics

between matter and gauge �elds that include strict symmetry constraints. This leads to

phenomena like Schwinger pair-production [22–24] or string breaking due to con�nement

[25–27].

Lattice gauge theories provide a framework to formulate gauge theories on a discrete lattice,

o�ering a possibility to tackle these problems with numerical models, for instance Monte

Carlo techniques [28]. Nonetheless, the prediction of the out of equilibrium dynamics of these

theories remains an outstanding computational challenge. This fact has sparked great e�ort

across communities to realize quantum simulation experiments for those theories in highly

controlled table-top setups.

First experimental approaches have been made among others in trapped ions. In [29] a

digital quantum simulation method was used to perform time evolution of a gauge theory

on a few qubits. In [30] a hybrid classical–quantum algorithm is used to determine ground

state properties of a gauge theory. Rydberg atoms trapped in optical tweezers are another

promising experimental platform. As demonstrated in [31] such systems can be scaled up

to large one dimensional systems that can simulate Ising-type quantum spin models. As

shown in [32], the dynamics of such a Rydberg system map onto the ones of a U(1) lattice

gauge theory. Although reaching large system sizes, this implementation restricts the Hilbert
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1. Introduction

space of the gauge �elds. Another experimental approach is based on Floquet engineering in

ultracold atoms in optical lattices [33–35]. This approach led to the realization of a minimal

model of a discrete Z2 gauge theory.

In this thesis we present the experimental realization of a minimal instance of a U(1) gauge

theory in our ultracold mixture experiment of sodium and lithium. We call this minimal

instance a building block, as it contains all crucial gauge invariant interactions between gauge

and matter �eld. We point out conceptionally how the extension towards a one dimensional

lattice gauge theory based on repetitions of this building block is performed. The strength of

our proposed model lies in the combination of systematic protection of gauge invariance, the

potential for scalability and working in a regime that approaches the continuum limit of the

gauge �elds [36].

Experimentally, the building block is realized in a mixture of optically trapped Bose-Einstein

condensates of sodium and lithium. In this system gauge �eld (matter �eld) degrees of freedom

are mapped on the internal states of sodium (lithium). The essential U(1) gauge symmetry

in this system is enforced due to angular momentum conservation in the atomic mixture.

Accordingly the necessary gauge invariant interactions are realized by heteronuclear spin

changing collisions [37, 38]. The great advantage of using spin changing collisions is that

gauge invariance is systematically protected by inherent energy and symmetry constraints of

the system.

The main e�ort of this thesis as performed by myself has been the realization and the

systematic study of heteronuclear spin changing collisions in a mixture of bosonic sodium

and lithium and the veri�cation of that system to be a faithful representation of the desired

building block for the proposed gauge theory. The work included the ensuring of a reliable

operation of the experimental setup for generating ultracold samples, the characterization

and benchmarking of the experiment’s performance, the design of an experimental sequence

that allows to measure a clear signature of the desired spin changing collision process,

the identi�cation of the relevant experimental parameter regimes and the acquisition and

postprocessing of all experimental data presented in this work. From a theoretical point

of view my e�ort has been the preparation and display of experimental data as well as

setting up the necessary routines for analysis and comparison of measured data and the

theoretical prediction based on a mean �eld theory. The theoretical work has been done in

close collaboration with T. V. Zache, the entire work of this thesis has been supervised by F.

Jendrzejewski.

The main �ndings of this thesis are based on the article [36]. The data analysis that was

used for the current work is based on updated calibration and data treatment routines, leading

to slight variation in numerical values compared to the data presented in [36].

The thesis is structured in the following way:

• In chapter 2 we introduce theoretical concepts which will be used throughout this work.

This includes a short introduction on Bose-Einstein condensation and the framework

of the Gross-Pitaevskii equation.

We then continue with a general introduction of lattice gauge theories. In particular we
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point out how gauge �elds emerge from imposing gauge invariance onto the system

and how this leads to constraints on, for instance, the dynamics of the system. We also

introduce quantum link models, being the framework in which lattice gauge theories

are treated in this work.

In this chapter we also derive the building block Hamiltonian from a full microscopic

treatment of our ultracold atomic mixture system. We point out the important features

of the building block and show how multiple building blocks can be utilized to construct

an extended U(1) lattice gauge theory.

• In chapter 3 we introduce the experimental setup used to implement the building block

Hamiltonian with cold atoms. Many basic parts of the experiment have been developed

prior to this thesis and are well documented in previous works [39–42]. Therefore,

the focus of this chapter is on the experimental methods and techniques which were

designed and used for performing the measurements which are presented in this work

and are not described elsewhere.

We present the general setup and the experimental sequence that is used to prepare

ultracold mixtures of sodium and lithium. We explain in detail the methods we use

to characterize our experimental system including total atom number detection by

absorption imaging and determination of the trapping potential by trap frequency

measurements. Moreover, we explain in detail the experimental sequence for initializing

and observing heteronuclear spin changing collisions. In particular we elaborate on

the initial criteria to facilitate this e�ect and explain which experimental parameters

we can tune to systematically investigate heteronuclear spin changing collisions. The

chapter closes with a description of our data acquisition and processing routines that

were used to generate the data presented in this work.

• In chapter 4 we compare our experimental measurements with theoretical model pre-

dictions. To this end we numerically study the dynamics that emerge from the building

block Hamiltonian in the mean �eld limit. In order to perform this study in a physically

meaningful regime we use ab initio estimates for the building block parameter based

on experimental input and atomic density pro�les determined by means of the Gross-

Pitaevskii equation. We identify very characteristic features of the emerging dynamics

as a function of evolution time, initial internal state population of sodium and magnetic

o�set �eld which are parameters that are systematically scanned in the experimenal

measurements. We �nd that all experimental �ndings are excellently described by

the mean �eld building block model with a phenomenological decoherence term and

numerically determined best �tting building block parameters. We discuss the physical

reasons that lead to decoherence in our setup and point out strategies to overcome

them.

• In chapter 5 we summarize the main aspects of this work and point out the possibilities

that have been opened up by the �ndings related to our building block system.
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2. Theoretical concepts
In this chapter we provide theoretical concepts which are used throughout this thesis. Mainly

this covers three areas.

First, a short summary on Bose-Einstein condensation and an introduction of the Gross-

Pitaevskii Equation in order to introduce relations which will be used later in this work.

Second, an overview of U(1) lattice gauge theories. Main aspect will be to point out the

relation between gauge invariance and the emergence of gauge �elds and how this a�ects the

structure of the theory. Furthermore, we present concrete Hamiltonian formulations of lattice

gauge theories describing quantum electrodynamics. In addition the concept of quantum

link models will be introduced, which is the underlying framework for the experimental

implementation of lattice gauge theories in this work.

Third, a derivation of the building block Hamiltonian, which is the central subject of this

thesis. We start out from a microscopic description of our cold atom system and derive the

building block as an e�ective model. Furthermore, we show how to construct an extended

lattice gauge theory based of repetitions of individual building blocks.

The �rst two points can be considered textbook knowledge and are included here for the

sake of completeness as well as to point out the context in which some of the relations are

used later on in the thesis. The third point is more novel and is partly based on the article

[36] and has been mainly developed by T. V. Zache [43].

2.1. Bose-Einstein condensation and Gross-Pitaevskii
Equation

The experiments that are presented in this work are performed in trapped ultracold atomic

gases of the bosonic species of sodium (
23

Na) and lithium (
7
Li). During the experiment the

gases are cooled to quantum degeneracy, which results in Bose-Einstein condensation, an

e�ect that leads to the ground state of the trap being macroscopically populated.

Bose-Einstein condensation has been extensively coverd in literature both experimentally

[44–48] and theoretically [49–52]. Therefore this section presents the main �ndings that are

known about Bose-Einstein condensates (BECs) and describes some of the key properties that

we can determine experimentally to benchmark our system, see 3.4.2. In the following we use

the notation and line of reasoning of [53].
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2. Theoretical concepts

2.1.1. General considerations
In the following we consider a gas of N bosonic particles con�ned to a three dimensional

harmonic potential

V (x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (2.1)

with ωi, i ∈ x, y, z being the trapping frequency in the according spatial direction andm being

the mass of the trapped species. Furthermore the introduce the geometric average trapping

frequency ω̄ = (ω1ω2ω3)1/3
. The distribution of those particles is governed by Bose-Einstein

statistics

n̄i =
1

exp
(
εi−µ
kBT

)
− 1

, (2.2)

with n̄i being the mean occupation number of ith quantum state, εi being the corresponding

energy of that state, µ being the chemical potential, T being the temperature and kB being

the Boltzmann constant.

From 2.2 one can directly see some pecularities of the Bose distribution. The chemical

potential is restricted to µ < ε0, where ε0 is the lowest energy level of the system. Otherwise

one would obtain negative occupation numbers, which is an unphysical result. Furthermore

we can write the total particle number as N = N0 +NT with N0 being the particle number

occupying the ground state and NT being the particle number in all the other (excited) states.

The normalization condition N =
∑

i n̄i leads to the fact that for a given temperature the

amount of particles that occupy excited states is limited. This maximum NT,max is reached

in the limit of µ → ε0. When the total particle number is higher than NT,max, the rest

of the particles has to go to the ground state in order to satisfy the normalization, this

is the emergence of Bose-Einstein condensation. The temperature where N = NT,max is

called critical temperature Tc. In the case of the harmonic trapping potential 2.1 the critical

temperature is given by [54]

Tc = 0.94~ω̄N1/3/kB . (2.3)

From this expression directly follows the relation between temperature T and condensate

fraction ηCF = N0/(N0 +NT)

ηCF = 1−
(
T

Tc

)3

. (2.4)

Therefore, a measurement of the condensate fraction can be used to determine the temperature

of the system.
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2.1. Bose-Einstein condensation and Gross-Pitaevskii Equation

2.1.2. Gross-Pitaevskii Equation
In most experimental cases Bose-Einstein condensates are weakly interacting (in case the

experiment is performed far from a Feshbach resonance, as it is the case for our experiment).

Microscopically, the interactions are based on scattering processes of individual atoms. Since

typical Bose-Einstein condensates are occuring at low densities and low temperatures, the

interactions are described by s-wave scattering [55], with the interaction strength

g =
4π~2a

m
, (2.5)

where a is the s-wave scattering length, and m the mass of the colliding atoms.

A profound framework to treat such interacting Bose-Einstein condensates is the Gross-

Pitaevskii equation (GPE). In the following we consider the time-independent GPE [56, 57].

It is similar to the Schrödinger equation, but additionally takes into account the s-wave

interaction in a mean �eld description by an interaction term. The stationary wave function

Φ(x) of an interacting Bose-Einstein condensate is governed by the time-independent GPE

µΦ(x) = − ~2

2m
∇2Φ(x) + V (x)Φ(x) + g|Φ(x)|2Φ(x) , (2.6)

where µ is the chemical potential and |Φ(x)|2 = n(x) the spatial density of the condensate.

The �rst term on the right hand side of the equation describes the kinetic energy, the second

the potential energy due to an external potential and the third one the interaction energy.

For realistic experimental parameters of Bose-Einstein condensates, the kinetic energy

term can be neglected compared to the interaction energy term. This approximation is called

Thomas-Fermi approximation [55]. In this regime the solution of equation 2.6 simpli�es to

|Φ(x)|2 = n(x) =
µ− V (x)

g
. (2.7)

The explicit solution for a harmonic trapping potential is

nTF(x, y, z) =
15

8πrTF,xrTF,yrTF,z

(
1− x2

r2
TF,x

− y2

r2
TF,y

− z2

r2
TF,z

)
, (2.8)

with Thomas-Fermi radii

rTF,i =

√
2µ

mω2
i

, (2.9)
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2. Theoretical concepts

and chemical potential

µ =
1

2

(
15aN~2ω̄3

)2/5
m1/5 . (2.10)

The functional form of equation 2.8 is an inverted parabola and can be used as an experimental

signature for Bose-Einstein condensation. It was shown [49, 58] that this parabolic shape not

only describes the density distribution of a Bose-Einstein condensate in the trap but also the

shape of the cloud after free ballistic expansion. Therefore, a Thomas-Fermi pro�le is seen in

time of �ight measurements as presented in section 3.4.2. The description of Bose-Einstein

condensates via the aforementioned GPE formalism assumes T = 0 or in other words that all

bosonic particles are condensed. In experimental systems this assumption is only partially

full�lled, as certain amount of atoms accupy the thermal phase.

In order to compare the experimental time of �ight images of our clouds to a theoretical

model we use a bimodal function which is �tted to the data. As a bimodal function we choose

a combination that describes the atomic cloud in two limiting cases, i.e. the bimodal function

contains the parabolic Thomas-Fermi pro�le 2.8 that is a good description in the T = 0 limit,

and contains a gaussian pro�le that describes the high temperature limit [59]. By �tting time

of �ight absorption images to this bimodal distributions allows to determine the number of

atoms in the condensed phase and the numbe of atoms in the thermal phase. Using relation

2.3 and 2.4 this gives insight into important benchmark characteristics of the experimental

system, as will be shown in section 3.4.

2.2. La�ice gauge theories
Gauge theories are a fundamental concept in physics, being not only the base of theories like

electrodynamics but also the standard model of particle physics [60, 61]. The basis of each

gauge theory is a local gauge invariance determined by a gauge group. Quantum Electrody-

namics (QED) for instance has an underlying U(1) group whereas Quantum Chromodynamics

(QCD) is based on the SU(3) symmetry group. Enforcing the local gauge invariance leads

to the emergence of gauge �elds, which mediate the interaction between charged matter

particles. This local symmetry of the system leads to strong constraints on the dynamics of

gauge �eld and matter.

Lattice gauge theories are successful methods for studying above-mentioned theories by

formulating them on discretized space. The strength of these models is the ability to treat

nonperturbative problems numerically, for instance by using Monte-Carlo techniques [28].

This is especially useful in calculating out-of-equilibrium dynamics in QCD, where many

regimes cannot be accessed perturbatively due to the strong coupling. In the following I will

give a brief introduction to the principles of lattice gauge theory based on a U(1) gauge group

in one dimensional space. For further reading and a comprehensive treatment of the topic I

recommend [62–65]. Dedicated work to lattice gauge theories for implementation in cold

atom systems is found in [13, 16, 17].

For theoretical derivations regarding lattice gauge theories we use the units ~ = c = 1.
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2.2. Lattice gauge theories

Whenever we treat real systems or parameters related to experimental implementation we

use the proper SI units.

2.2.1. Introducing general concepts of la�ice gauge theories
Let us consider a matter �eld on a one dimensional lattice represented by �eld operators ψ†n
and ψn, where n denotes the lattice sites. The Hamiltonian describing a free moving matter

particle is given by:

H =
∑
n

mnψ
†
nψn + J

∑
n

(ψ†n+1ψn + h.c), (2.11)

with mn being the mass and J being the hopping element of the nearest-neighbour hopping

term. We further introduce the unitary gauge transformation

ψn −→ Vnψn ; ψ†n −→ ψ†nVn, (2.12)

with Vn being an element of the gauge group G. In the following we will treat the group

G = U(1) as found in QED. U(1) is the group of elements on the unit circle in the complex

plane. It is a continous symmetry group as rotations in the complex plane can be done in

contious fashion. In this case the gauge transformation can explicitly be written as:

Vn = exp

(
i
∑
n

αnGn

)
, (2.13)

with αn being the local phase and Gn being the Generator of transformation. It is important

to note that the gauge transformation is strictly local, i.e. the phase factor is changed on

each lattice site n independently. In other words, the e�ect of the transformation by Vn is

multipying a phase factor ∝ exp (iαn) to each lattice site. The important point is that this

phase factor is not the same for all lattice sites but individually depending on n. In a descriptive

picture one can imagine the discretized space, and the e�ect of this transformation is going

to each single lattice point and perform a local rotation at this point that is independent of

the neighbouring lattice sites.

A theory is said to be a gauge theory if the gauge transformation leaves it invariant. One

can see that this is not the case for Hamiltonian 2.11 assuming local gauge invariance (it is

invariant under a global gauge transformation though), as the hopping term is varied under

the transformation

ψ†n+1ψn −→ ψ†n+1V
†
n+1Vnψn (2.14)

for the case of nonconstant arbitrarily chosen αn 6= αn+1.

However, the local gauge invariance can be restored by introducing so called gauge links

Un which are located inbetween lattice sites and connect two matter �elds, see Fig. 2.1. The
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2. Theoretical concepts

n-1 n n+1

matter field gauge field

Figure 2.1.: Structure of a lattice gauge theory. Matter �elds reside on sites represented

by circles. Gauge �elds connecting two neighbouring matter sites are located

inbetween, represented by rectangles.

links are elements of the gauge group and transform in the following way:

Un −→ Vn+1UnV
†
n (2.15)

Note that we used the de�nition Un = Un,n+1 here, where the two indices label the position of

the two matter sites which are connected by the link. Note that the link is strictly de�ned as

the connector between two matter sites and not as a standalone object [66]. Furthermore, the

link operators obey the following commutation relation:[
Un, U

†
m

]
= 0 (2.16)

With the link added, the hopping term transforms as

ψ†n+1Unψn −→ ψ†n+1V
†
n+1Vn+1UnV

†
nVnψn = ψ†n+1Unψn . (2.17)

and Hamiltonian 2.11 becomes gauge invariant:

H −→ V HV † = H (2.18)

Which is equivalent to the commutation relation

[Gn, H] = 0 . (2.19)

Relation 2.18 is achieved with the generator

Gn = En+1 − En − eψ†nψn , (2.20)

with e being the unit charge which is carried by the matter �eld and En being the conjugate

�eld of the gauge link full�lling the commutation relations

[En, Um] = δn,mUme[
En, U

†
m

]
= −δn,mU †me .

(2.21)

20



2.2. Lattice gauge theories

From equation 2.19 follows that the eigenvalues gn of Gn are conserved quantities

Gn |ψ〉 = gn |ψ〉 . (2.22)

Therefore the full Hilbert space is decomposed into sectors associated with di�erent eigenval-

ues gn and gauge invariant dynamics do not mix between those sectors. We further impose

that the physical part of the Hilbert space is gauge invariant as well

Vn |ψphys〉 = |ψphys〉 , (2.23)

from which follows:

Gn |ψphys〉 = 0 (2.24)

(En+1 − En) |ψphys〉 = gn |ψphys〉 (2.25)

Last expression is the lattice version of Gauss’ law∇E = ρ.

The physical interpretation of above derivations is the following: Demanding gauge in-

variance on the theory of free matter �elds gives rise to gauge �elds. These gauge �elds

which were introduced as auxiliary �elds to restore gauge invariance lead to new physical

constraints in the theory. One consequence is that matter particles carry charges which

interact with the conjugate �eld of the gauge �elds, the electric �eld. The hopping term in 2.11

is modi�ed such that gauge and matter �eld interact in a correlated way which respects Gauss’

law i.e. a particle hopping from one site to another is always accompanied with changing

electric �elds on the neighbouring links, see Fig. 2.2. In this correlated hopping process Un
and U †n can be inteprated as the operators that raise and lower the value of En. In addition

gauge �elds have dynamics of their own. In analogy to real space momentum describing

kinetic energy of moving mass the conjugate momentum of the gauge link represents the

energy stored in the gauge �eld and therefore the dynamic part of the gauge �eld is

Hgauge ∝ E2
n . (2.26)

Note that in dimensions higher than one an additional contribution of the magnetic �eld to

the gauge �eld energy will arise.

2.2.2. La�ice formulation of quantum electrodynamics
In the previous section we pointed out general structures of lattice gauge theories based on

a U(1) gauge symmetry in one dimension. Main idea was to point out that imposing gauge

invariance leads to constraints on the resulting dynamics of the system, which in that case

manifests in the emergence of the correlated hopping term 2.17.

In the following section we will show concrete examples of lattice gauge theories in

Hamilton formulation for quantum electrodynamics. In the following the presentation will be

less didactical as the previous section and we will only present main �ndings. Comprehensive

information on this topic is found in [12, 13, 16, 17, 62–65].

21



2. Theoretical concepts
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ΔE = e

ΔE = eΔE = 0

ΔE = 0 ΔE = 0

ΔE = 0 ΔE = 0

ΔE = 0

ΔE = e

ti
m
e

Figure 2.2.: Illustration of correlated hopping. Analog to Fig. 2.1 blue circles represent

matter sites. The sectioned rectangles represent the electric �eld which is the

canonic conjugate �eld of the gauge �eld. A matter particle represented by e
is moving along the lattice. The rows depict three instances in time when the

particle has hopped one site further. Gauge invariant dynamics respect Gauss’

law, therefore at each site n the relation En+1 − En ≡ ∆E = e must hold. This

leads to correlated hopping, where each hopping of the matter particle is linked

to a change of the electric �eld by one quantum, illustrated by the blanking of

one unit of the rectangles.

A Hamilton formulation of quantum electrodynamics in one dimension on a lattice is given

by

HKS =
a

2

∑
n

E2
n +m

∑
n

(−1)nψ†nψn −
i

2a

∑
n

(ψ†n+1Unψn − h.c) , (2.27)

where matter particles are electrons following fermionic commutation relations{
ψm, ψ

†
n

}
= δm,n , (2.28)

and a is the lattice spacing of the discretized real space lattice .

This is the well established Kogut-Susskind Hamiltonian [62, 66]. It is employing the so

called staggered fermion discretization to deal with the fermion doubling problem which is

the appearence of redundant fermionic states due to the discretizing procedure when making

the transition from continuous real space to a lattice [67]. In this formulation the matter sites

are staggered, such that even lattice sites represent “particles” with positive mass and odd sites
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2.3. Quantum link model

“holes” with negative mass. The odd sites are interpreted as the Dirac sea. Occupation of an

odd site corresponds to a �lled Dirac sea i.e. vacuum, whereas a vacant odd site corresponds

to an antiparticle. The charge operator takes the form

qn
e

= ψ†nψn +
(−1)n − 1

2
. (2.29)

However, the staggered formulation is not unique for discretizing fermionic �elds. Another

way to implement the discretization is using Wilson fermions [68]. It turns out that this

method is advantageous for an experimental implementation with cold atoms [17], as will

be shown in section 2.4.4. When using Wilson Fermions, the matter �eld operators are two

component spinors:

ψn =

(
ψn,1
ψn,2

)
(2.30)

In this case the generator of gauge transformations contains a sum over both spinor compo-

nents:

Gn = En+1 − En − e
∑
i=1,2

ψ†n,iψn,i (2.31)

Using this approach one can write down the lattice QED Hamiltonian analogously to 2.27:

HW =
a

2

∑
n

E2
n +

(
m+

1

a

)∑
n

ψ†n

(
0 1
1 0

)
ψn +

1

a

∑
n

ψ†n

(
0 1
0 0

)
Unψn+1 + h.c. (2.32)

As one can see this formulation di�ers to some degree from the Kogut-Susskind Hamiltonian,

yet the fundamental constraint that hopping of matter particles form one site to the other is

correlated with altering the gauge �elds.

The goal of introducing the formulations 2.27 and 2.32 is to highlight the general structure

of lattice gauge theories and point out the necessary ingredients. On the Hamiltonian level

this includes degrees of freedom for gauge and matter �elds as well as the gauge invariant

interaction between both.

2.3. �antum link model
To implement lattice gauge theories with ultracold atoms one has to properly map the struc-

ture of the theory onto the experimental system. An inevitable problem that any experimental

implementation will face is that relations 2.16 and 2.21 are de�ned on an in�nite dimensional

Hilbert space. Since an in�nite amount of degrees of freedom cannot be realized experimen-

tally, a cuto� on the link’s Hilbert space dimensionality will always be introduced in real

systems.

A formal description on how this cuto� can be introduced in a controlled way is given
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by the so called quantum link model (QLM) [69]. The QLM for a U(1) lattice gauge theory

employs a substitution of the gauge link degrees of freedom by angular momentum operators

[15–17, 66]:

En −→ eLz,n (2.33)

Un −→ [l(l + 1)]−1/2L+,n (2.34)

U †n −→ [l(l + 1)]−1/2L−,n . (2.35)

Here, l is the magnitude of the angular momentum vector
~L, the components Li of the angular

momentum operator ful�ll the commutation relation

[Li, Lj] = iεijkLk , (2.36)

with i, j, k ∈ {x, y, z}. Furthermore the angular momentum raising and lowering operators

L+ and L− are de�ned as

L+ = Lx + iLy

L− = Lx − iLy .
(2.37)

This substitution of parameters preserves the gauge invariance as well as the commutator

relation 2.21. However, the link’s Hilbert space is now �nite dimensional with l determining

the largest value for the electric �eld representation. As a consequence, relation 2.16 is

replaced in QLM by

[
Un, U

†
m

]
=

2δn,mEm
[l(l + 1)]

, (2.38)

which reaches the value of the original relation 2.16 only in the limit of large l. However,

already for small values of l QLMs provide insights into genuine features of gauge theories

[70]. Furthermore, the full theory is recovered in the limit of large angular momentum

(l →∞), a regime which is approached in our experimental setup, where l is in the order of

10
4

to 10
5
.

Besides providing a formal description for the �nite size Hilbert space of the link, QLMs

o�er a descriptive interpretation of the gauge link. By introducing the well established SU(2)

algebra the link degrees of freedom can now be described with the Bloch sphere picture [71],

see Fig. 2.3. Now, inbetween two matter sites an angular momentum vector
~Ln is located,

which is represented on the bloch sphere. The magnitude of the electric �eld is easily read

o� as the z-projection of
~Ln. The correlated hopping of matter particles is associated with

the raising and lowering operators L+,n and L−,n which increase or decrease Lz,n by one

quantum.
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2.3. Quantum link model

n-1 n n+1

general lattice gauge theory

quantum link model

n-1 n n+1

Ln-2
⃗ Ln+1

⃗Ln⃗Ln-1
⃗

hopping ≙ raising/lowering
L_z component of link

correlated hopping e

Figure 2.3.: Illustration of quantum link models. Two neighbouring matter sites are

connected by an angular momentum vector (depicted by Bloch spheres). Main

di�erence compared to regular lattice gauge theory is that now the gauge degrees

of freedom have a �nite dimensional Hilbert space determined by the vector’s

magnitude l. The hopping of matter particles (indicated by e) is now correlated

with a raising/lowering operation on the angular momentum vector.

In the QLM formalism Hamiltonian 2.32 is replaced by:

HWQLM =
a

2

∑
n

L2
z,n

+

(
m+

1

a

)∑
n

ψ†n

(
0 1
1 0

)
ψn

+
1

a
√
l(l + 1)

∑
n

ψ†n

(
0 1
0 0

)
L+,nψn+1 + h.c. .

(2.39)

Inspired by this Hamiltonian we developed a proposal for an implementation of a U(1)

gauge theory in an ultracold atoms experiment [36]. Central point of this implementation is

the building block, which is a fundamental unit of the gauge theory containing all necessary

gauge invariant interactions. In the following sections we derive the building block from the

microscopic description of our experimental system.
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2. Theoretical concepts

2.4. Derivation of the building block from microscopic
description of the ultracold mixture

In this section we present the derivation of the building block. We start out from the micro-

scopic description of the experimental cold atom system that is bosonic sodium
23

Na and

lithium
7
Li that are trapped in a single optical dipole trap and interact via s-wave scattering.

By taking into account all microscopic interactions in the mixture, using a spin representation

for the internal state population of the species and exploiting conserved quantities in the

system one can recast the full microscopic Hamiltonian into an e�ective spin model – the

building block– which is described by three model parameters.

In the framework of quantum link models this building block is interpreted as a minimal

gauge theory including degrees of freedom for the gauge and matter �eld as well as ful�lling

gauge invariant interactions. Furthermore, we show how repetitions of the building block

can be used to construct an extended U(1) lattice gauge theory. Conceptionally, this section

links the physical disciplines of cold atoms and gauge theories by providing the information

how the experimental system maps onto the physical system that is to be quantum simulated.

The derivation presented is mainly based on [17, 36].

2.4.1. Microscopic cold atom Hamiltonian
Detailed description about the exact experimental system is provided in section 3.5. In general

we have sodium and lithium atoms that are externally trapped. Both species are prepared

in the hyper�ne groundstate with total spin F = 1. Within this manifold we consider the

two internal spin states with the magnetic quantum number mF = {0, 1}. In section3.5 it is

shown that for our speci�cally chosen experimental parameters the mF = −1 state is not

populated throughout the entire experiment and is therefore disregarded. In the following

we use the indices N (sodium) and L (lithium) as a label for the species. For internal state

labelling we use the value of the mF state as indices, i.e. 1 and 0. The Hamiltonian of the this

combined system is written in terms of a free part and an interaction part

H = HN +HL︸ ︷︷ ︸
free

+HNN +HLL +HNL +HSCC︸ ︷︷ ︸
interaction

.
(2.40)

The free parts contain the contribution of kinetic energy, potential energy from the con�ning

trap and the energy in the presence of a magnetic �eld

Hs =

∫
x

∑
α

ψ̂†s,α(x)

[
−∇2

x

2ms

+ Vs(x) + Es,α(B0)

]
ψ̂s,α (x) , (2.41)

where s ∈ {N,L}, ms denotes the atomic masses and Vs is the trapping potential (we assume

the trapping potential to be the same for the two magnetic substates). Es,α(B0) is the Zeeman

shift in the presence of an external magnetic �eld B0 and it can be calculated from the
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2.4. Derivation of the building block from microscopic description of the ultracold mixture

Breit-Rabi formula. The �eld operators ψ̂s,α(x) ful�ll canonical commutation relations[
ψ̂s,α(x), ψ̂†s′,β(y)

]
= δss′δαβδ (x− y) , (2.42)

with α, β ∈ {0, 1}.

sodium-sodium gNN

sodium-lithium (non-spin-changing) gNL

lithium-lithium gLL

sodium-lithium (spin-changing) gSCC

Figure 2.4.: Illustration of the two-body scattering processes appearing in the inter-
action Hamiltonian. Having two species with two internal spin states each,

leads to 11 permutations. Sodium atoms are displayed in orange, lithium atoms

in blue. Upwards pointing arrows represent atoms with mF = 0, downwards

pointing arrows represent atoms with mF = 1. The two upper particles denote

the con�guration before the collision, the lower particles denote the con�guration

after the collision.

The interactions within the BEC mixture arise almost entirely from two-body collisions

which can be treated within the framework of quantum scattering theory in the low energy

limit (s-wave scattering) [72]. Following [37, 38] we decompose the interaction potential

(which contains density and spin dependent contributions) such that the Hamiltonian is

grouped in terms of two-particle scattering processes, see Fig. 2.4. We distinguish between

intra-species and interspecies interactions. The intra-species Hamiltonian takes the form

Hs =
1

2

∫
x

[
gs11ψ̂

†
s,1ψ̂

†
s,1ψ̂s,1ψ̂s,1 + gs00ψ̂

†
s,0ψ̂

†
s,0ψ̂s,0ψ̂s,0 + 2gs10ψ̂

†
s,1ψ̂

†
s,0ψ̂s,1ψ̂s,0

]
, (2.43)

with

gsjj =
4π~2

ms

asjj (2.44)

being the interaction strength parameter, ms being the atomic mass of the species and asjj
being the reduced scattering lengths for homonuclear scattering with j ∈ {0, 1}.

The interspecies Hamiltonian again is separated into two parts. First a part HNL that

describes all heteronuclear scattering processes whereby the initial mF of a single atom is

not changed after scattering (non-spin-changing). Secondly a part HSCC which describes
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species red. scattering length value [aB]

sodium aN11 = aN10 55

aN00 53

lithium aL11 = aL10 12.5

aL00 6.8

sodium/lithium aNL
11 20

aNL00 = aNL
10 19.65

aSCC 0.35

Table 2.1.: Summary of the reduced scattering lengths. The reduced scattering lengths

are linear combinations of the scattering lengths a0 and a2, see [38]. The nu-

merical values for the intraspecies scattering lenghts are taken from [38], the

values for the interspecies scattering lengths are from (Eberhart Tiemann, personal

communication).

the scattering process whereby the inital mF of both atoms changes such that total angular

momentum is conserved (spin-changing). The non-spin-changing part has the form

HNL =

∫
x

[
gNL11 ψ̂

†
N,1ψ̂N,1ψ̂

†
L,1ψ̂L,1 + gNL00 ψ̂

†
N,0ψ̂N,0ψ̂

†
L,0ψ̂L,0

+ gNL10 ψ̂
†
N,1ψ̂N,1ψ̂

†
L,0ψ̂L,0 + gNL10 ψ̂

†
N,0ψ̂N,0ψ̂

†
L,1ψ̂L,1

]
,

(2.45)

with

gNLjj =
2π~2

µ
aNLjj . (2.46)

Here, µ is the reduced mass of both species and aNLjj are the reduced scattering lengths for

non-spin-changing heteronuclear scattering with j ∈ {0, 1}. Finally, the spin changing

collision part of the interaction Hamiltonian is

HSCC = gSCC

∫
x

[
ψ̂†N,0ψ̂

†
L,1ψ̂N,1ψ̂L,0 + ψ̂†N,1ψ̂

†
L,0ψ̂N,0ψ̂L,1

]
, (2.47)

with

gSCC =
2π~2

µ
aSCC , (2.48)

where aSCC is the reduced scattering length of the spin-changing-collisions. The numerical

values for the reduced scattering lengths can be found in Tab. 2.1.
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2.4.2. Spin and density decomposition of the system Hamiltonian
In the previous section we have derived the microscopical Hamiltonian of our experimental

system, which included the free part of each species as well as the interaction part arising from

two body collisions of atoms. On our way to establish a connection between this Hamiltonian

and the Hamiltonian of gauge theories we perform a number of steps. Since we are interested

in the spin dynamics of the system we will separate the interactions in the system into spin

and density dependent parts.

As a �rst step we assume the spatial dynamics to be frozen out, which is a reasonable

assumption for atoms con�ned in tight traps (a discussion regarding the validity of this

approximation is found in section 4.2.4). Formally this is done by a single mode approximation

(SMA) whereby the �eld operators are approximated as

ψ̂s,α(x) ≈ Φs,a(x)b̂s,α , (2.49)

with the single mode Φs,a(x) being an appropriately chosen wavefunction (which can be

determined from the ground state of the Gross-Pitaevskii equation 2.6), and b̂s,α, b̂
†
s,α being the

annihilation and creation operators for the single mode, hence N̂s,α = b̂†s,αb̂s,α is the number

operator for given species and magnetic substate. In the SMA the total Hamiltonian is

HSMA = hSMA
N + hSMA

L + hSMA
NN + hSMA

LL + hSMA
NL + hSMA

SCC

=
∑
s

[
Ẽs,1(B0)b̂†s,1b̂s,1 + Ẽs,0(B0)b̂†s,0b̂s,0

]
+
∑
s

[
Xs

11b̂
†
s,1b̂
†
s,1b̂s,1b̂s,1 +Xs

00b̂
†
s,0b̂
†
s,0b̂s,0b̂s,0 + 2Xs

10b̂
†
s,1b̂
†
s,0b̂s,1b̂s,0

]
+XNL

11 b̂†N,1b̂N,1b̂
†
L,1b̂L,1 +XNL

00 b̂†N,0b̂N,0b̂
†
L,0b̂L,0 +XNL

10 b̂†N,1b̂N,1b̂
†
L,0b̂L,0 +XNL

10 b̂†N,0b̂N,0b̂
†
L,1b̂L,1

+XSCCb̂†N,0b̂
†
L,1b̂N,1b̂L,0 +XSCCb̂†N,1b̂

†
L,0b̂N,0b̂L,1 ,

(2.50)

with the modi�ed energy levels

Ẽs,α(B0) = Es,α(B0) +

∫
x

Φ∗s,α(x)

[
−∇2

x

2ms

+ Vs(x)

]
Φs,α(x) , (2.51)

and the reduced interaction constants

Xs
αβ =

gsαβ
2

∫
x

|Φs,α(x)|2|Φs,β(x)|2 , (2.52)

XNL
αβ = gNLαβ

∫
x

Φ∗N,1Φ∗L,1ΦN,0ΦL,0 , (2.53)

XSCC = gSCC
∫
x

Φ∗N,1Φ∗L,1ΦN,0ΦL,0 . (2.54)
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Having integrated out all spatial degrees of freedom we want to focus on the spin dynamics

of the system. First we introduce spin operators using the Schwinger boson representation

L̂z,s =
1

2

(
N̂s,1 − N̂s,0

)
, L̂+,s = b̂†s,1b̂s,0, L̂−,s = b̂†s,0b̂s,1 . (2.55)

We further want to exploit conserved quantities of the system. Since we are dealing with a

closed system where no atoms can leak to other states, the total number of atoms of each

species is conserved

N̂N = N̂N,1 + N̂N,0 = const.

N̂L = N̂L,1 + N̂L,0 = const.
(2.56)

We use the introduced notation in 2.56 and 2.55 to separate the system Hamiltonian into parts

that contain spin operators and parts that contain number operators. This composition will

allow us to simplify the Hamiltonian later on as we will be able to drop terms which are

conserved quantities, since those do not contribute to dynamics in the system. Applying this

separation to the free Hamiltonian part yields

hSMA
s = Ẽs,1(B0)N̂s,1 + Ẽs,0(B0)N̂s,0

= N̂s

(
Ẽs,1(B0) + Ẽs,0(B0)

2

)
+ L̂z,s

(
Ẽs,1(B0)− Ẽs,0(B0)

)
.

(2.57)

Next we proceed in the same way with the interaction Hamiltonian part. Note that by moving

form the normal ordered creation and annihilation operators to number operators we have to

apply the bosonic commutation relations, i.e. b̂†s,1b̂
†
s,1b̂s,1b̂s,1 = N̂s,1(N̂s,1 − 1). Furthermore it

turns out that in the resulting representation the reduced interaction strengths always appear

as linear combinations. This motivates the de�nitions (following the notation in [73])

χs = Xs
11 −Xs

00 (2.58)

χNL = XNL
11 −XNL

00 . (2.59)

Eventually we get for the intra-species Hamiltonian

hSMA
ss = Xs

11N̂s,1(N̂s,1 − 1) +Xs
00N̂s,0(N̂s,0 − 1) + 2Xs

10N̂s,0N̂s,1

= χs(N̂s − 1)L̂z,s − χsL̂2
z,s

+ [Xs
11 +Xs

00 + 2Xs
10]

N̂2
s

4
− [Xs

11 +Xs
00]

N̂s

2
.

(2.60)
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In similar fashion we get for the interspecies Hamiltonian

hSMA
NL = (XNL

11 N̂N,1 +XNL
00 N̂N,0)N̂L,1 +XNL

00 (N̂N,1 + N̂N,0)N̂L,0

=
χNL

2
N̂N L̂z,L +

χNL
2
N̂LL̂z,N + χNLL̂z,N L̂z,L

+
(XNL

11 + 3XNL
00 )

4
N̂NN̂L ,

(2.61)

and for the SCC Hamiltonian

hSCC = XSCC
[
b̂†L,1L̂−,N b̂L,0 + b̂†L,0L̂+,N b̂L,1

]
. (2.62)

2.4.3. E�ective model of the microscopic system – the building block
In the previous section we decomposed the Hamiltonian into parts that are proportional to

spin operators and number operators, respectively. As the number dynamics is frozen out

by the local conservation laws for no kinetic energy we fully focus on the spin degrees of

freedom and drop all terms in the Hamiltonian which only contain number operators of

conserved quantities.

Finally we arrive at the full spin Hamiltonian by putting all terms together

Hspin
SMA =

[(
EN,1(B0)− EN,0(B0)

)
+ χN(N̂N − 1) +

1

2
χNLN̂L

]
L̂z,N − χN L̂2

z,N

+

[(
EL,1(B0)− EL,0(B0)

)
+ χL(N̂L − 1) +

1

2
χNLN̂N

]
L̂z,L − χLL̂2

z,L

+ χNLL̂z,N L̂z,L + hSCC .

(2.63)

We de�ne the total magnetization as M = L̂z,N + L̂z,L, which is a conserved quantitiy. The

reason for the total magnetization being the conserved quantitiy instead of the magnetization

of each species is the SCC process. It allows for the spin state of a single species to change

during a collisional process. In order to ful�ll angular momentum conservation such a spin

change in one species is always correlated with an opposite spin change in the other species

(compare Fig. 2.4). We use the de�nition of M to rewrite 2.63 such that we are only left with

spin operators that scale linearly with L̂z,L and quadratic with L̂z,N . Hence we get

HBB/~ = χL̂2
z,N + ∆L̂z,L + λ

(
L̂−,N L̂+,L + L̂+,N L̂−,L

)
(2.64)

= χL̂2
z,N +

∆

2

(
b̂†L,1b̂L,1 − b̂

†
L,0b̂L,0

)
+ λ

(
b̂†L,1L̂−,N b̂L,0 + b̂†L,0L̂+,N b̂L,1

)
,
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with the parameters λ, χ and ∆ de�ned as

λ = XSCC
(2.65)

χ = −χN − χL − χNL (2.66)

∆ =
(
EL,1(B0)− EL,0(B0)

)
−
(
EN,1(B0)− EN,0(B0)

)
(2.67)

+ χL(N̂L − 1)− χN(N̂N − 1) +
1

2
χNL(N̂N − N̂L) + 2M

(
−χL −

1

2
χNL

)
.

Hamiltonian 2.64 has an equivalent form when instead of using the representation in 2.55 we

use

L̂z,s =
1

2

(
N̂s,0 − N̂s,1

)
, L̂+,s = b̂†s,0b̂s,1, L̂−,s = b̂†s,1b̂s,0 . (2.68)

In this case we get

HBB/~ = χL̂2
z,N +

∆

2

(
b̂†L,0b̂L,0 − b̂

†
L,1b̂L,1

)
+ λ

(
b̂†L,0L̂−,N b̂L,1 + b̂†L,1L̂+,N b̂L,0

)
, (2.69)

with the identi�cation

λ = XSCC
(2.70)

χ = −χN − χL − χNL (2.71)

∆ = −
{ (

EL,1(B0)− EL,0(B0)
)
−
(
EN,1(B0)− EN,0(B0)

)
(2.72)

+ χL(N̂L − 1)− χN(N̂N − 1) +
1

2
χNL(N̂N − N̂L) + 2M

(
−χL −

1

2
χNL

) }
.

We call HBB the “building block” Hamiltonian, since it incorporates the important features to

be considered a minimal gauge theory. In the following we use HBB in the representation

given in equation 2.76. The parameters λ, χ and ∆ we call consequently “building block

parameters”. The physical origin of those is outlined in Fig. 2.5.

We associate the sodium degrees of freedom to a gauge �eld and the lithium degrees of

freedom to a matter �eld. For lithium we introduce the notation b̂L,0 ≡ b̂p for “particle” and

b̂L,1 ≡ b̂v for “vacuum”. This labeling indicates that when lithium is prepared fully in the

MF = 1 state, this can be considered to be the vacuum con�guration in the widest sense

and thus population transfer to the MF = 0 corresponds to excitations in the matter �eld i.e.

particles, see [36].

The building block Hamiltonian has great similarity to the QLM as introduced previously.

In the Schwinger boson representation the sodium population imbalance is mapped on a

term ∝ L̂2
z which is exactly the same term that describes the dynamics of the gauge �eld of a

single link in the QLM of 2.39. Furthermore, the spin-changing-collision term is in its form

equivalent to the gauge interaction (correlated hopping) term of 2.39, where the two internal
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0

1

7Li23Na λ

Δ0

1

Figure 2.5.: Relation of building block parameters to microscopic properties of the
system. Parameter λ stems from the heeronuclear spin changing collision process,

where the internal state of one species is changed in correlation with an opposite

change in the other species. Parameter ∆ has several contributions, including

energy shifts due to the Zeeman e�ect, mean �eld shifts and total magnetization.

All these e�ects can be interpreted as the parameter that shifts the resonance of

the spin changing collisions process by e�ectively introducing an energy penalty.

Parameter χ is a combination of overlaps of all species and is not indicated in the

�gure for the sake of clarity. Detailed discussion of the building block parameters

with respect to our experimental system is found in section 4.1.2.

states of lithium represent the two component spinors of the matter �eld. Since the building

block is realized in a single trap, i.e. physically represents one site, one interprets the two

lithium states each as one component of two adjecent matter sites in the lattice gauge theory

(see Fig. 2.6) with the notation b̂p ≡ b̂n+1,p and b̂v ≡ b̂n,v. The building block Hamiltonian is

U(1) gauge invariant which is formally shown by de�ning the reduced Gauß’ law operators

Ĝ′n = L̂z + b̂†
p
b̂p , Ĝ′n+1 = −L̂z + b̂†

v
b̂v . (2.73)

Due to total angular momentum conservation in the system

[
HBB, Ĝ

′
n

]
= 0 and

[
HBB, Ĝ

′
n+1

]
=

0 is ful�lled and thus the building block Hamiltonian is gauge invariant.

The building block contains all necessary gauge invariant processes to construct an ex-

tended lattice gauge theory by assembling multiple building blocks. The proposal for this

implementation is outlined in the next section.

2.4.4. Extended la�ice gauge theory based on building blocks
We suggest to implement a 1d extended U(1) lattice gauge theory based on elementary building

blocks 2.64. As a �rst step one introduces a deep optical lattice potential. Such that atomic

clouds of sodium and lithium are localized on individual lattice wells n. For su�ciently strong

con�nement in the lattice wells, direct tunneling of atoms between neighbouring wells is

supressed and the system resembles an array of individual building blocks. Mapping the cold

atom degrees of freedom onto building block parameters is then straightforward as in the

previous section (detailed steps are found in the supplementary materials of [36]).

Finally, the building blocks need to be connected with the term (in analogy to the mass
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0

1

7Li23Na

0

1 (iii)

(ii)(i)

(iii)

(ii)

(i)
n+1n

bn,vˆ bn+1,vˆ

bn,pˆ bn+1,pˆ

a)

b)

Figure 2.6.: Illustration of the way the building block maps onto a lattice gauge the-
ory. a) The building block in the cold atom system. b) Building block
as part of an extended lattice gauge theory. Sodium and lithium atoms are

trapped in a single optical dipole trap. The internal states of sodium are mapped

on spin operators which represent the gauge �eld. The two internal states of

lithium correspond to the matter �eld components as in the Wilson representa-

tion 2.30. The gauge invariant hopping of matter in the lattice gauge theory is

realized experimentally via spin-changing collisions between sodium and lithium.

Since the cold atom system is physically located at one site, the building block is

interpreted as a single quantum link with one matter �eld component each of the

two adjecent matter sites n and n+ 1.

term in 2.39)

HΩ,n = Ω
(
b̂†n,vb̂n,p + h.c.

)
, (2.74)

with Ω being the coupling strength between the two matter states b̂n,v and b̂n,p . This coupling

can be realized, for instance, with Raman-assisted tunneling [74–77]. It is important to note

that in the lattice gauge theory this coupling is between matter components on the same

matter site, however, as mentioned in the previous section one physical site in the optical

lattice does not correspond to a site of the simulated lattice gauge theory, and therefore the

Raman-assisted tunneling is coupling di�erent internal lithium states of neighbouring optical
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2.4. Derivation of the building block from microscopic description of the ultracold mixture

lattice sites (see Fig. 2.7). The full Hamiltonian of the proposed extended lattice gauge theory

then reads

Ĥ =
∑
n

[
ĤBB,n + ĤΩ,n

]
, (2.75)

with the index notation for the building block b̂p ≡ b̂n+1,p , b̂v ≡ b̂n,v and for the sodium in

Schwinger boson representation
~̂L ≡ ~̂Ln

HBB,n/~ = χL̂2
z +

∆

2

(
b̂†pb̂p − b̂†vb̂v

)
+ λ

(
b̂†pL̂−b̂v + b̂†vL̂+b̂p

)
. (2.76)

Compared to former proposals for U(1) lattice gauge theories in one dimension [16, 17],

n+1n

bn,vˆ bn+1,vˆ

bn,pˆ bn+1,pˆ

n-1

bn,vˆ

bn,pˆ

n+2

bn+2,vˆ

bn+2,pˆ

7Li 23Na7Li 23Na7Li 23Na

ΩΩ
Ω

Ω

Lnˆ Ln+1ˆLn-1ˆ

a)

b)

Figure 2.7.: Illustration of the proposed implementation of an extended lattice gauge
theory based on building blocks. a) The implementation in the cold atom
system. b) The corresponding simulated lattice gauge theory in the QLM
formalism. Individual building blocks are arranged next to each other by means

of an optical lattice potential. The coupling of neighbouring building blocks 2.74

is achieved by Raman-assisted tunneling with the coupling strength Ω. To avoid

transitions between internal states of lithium on the same optical lattice site,

the lattice potential is tilted. The gauge preserving interactions are realized by

spin-changing collisions according to Fig. 2.6, which are not indicated in this

illustration for the sake of clarity.

which were relying on a one-to-one correspondance of optical lattice and simulated lattice, the

architecture presented here exhibits various advantages. First of all, the mentioned proposals

rely on a species selective lattice which is technically much more demanding compared

to an optical lattice where both species are trapped on the same sites. Furthermore the

implementation presented here contains all necessary gauge invariant dynamics on-site. In
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order to increase the interaction strength of the gauge invariant coupling (spin-changing

collisions) one can use a stronger con�nement of the lattice, leading to a larger overlap of

the atomic clouds. At the same time a stronger con�nement aids in supressing unwanted

spontaneous tunneling between sites. The necessary coupling 2.74 is then tuned by the

independend process of Raman-assisted tunneling where the coupling can be varied with

experimental parameters, e.g. laser intensity, and wherefore account for possibly small spatial

overlap of lithium atoms in neighbouring sites.

In former proposals sodium and lithium are arranged on alternating lattice sites and

the gauge invariant coupling involves spin-changing collisions across multiple lattice sites.

Therefore in order to supress direct tunneling via tight con�nement inevitably compromises

the rate of spin-changing collisions.

In terms of the simulated lattice gauge theory the here described system is equivalent to 2.39

as proposed in [17], with the di�erence of having bosonic degrees of freedom for the matter

�elds instead of fermionic ones as well as high population of the matter �eld sites. Therefore

the continuum limit of this theory does not correspond to QED since Lorentz invariance is

not ful�lled. However, the signi�cant features of a gauge theory, especially the protection of

gauge invariance, are not in�uenced by the bosonic matter �elds. The building block was

experimentally realized �rst with bosonic sodium and bosonic lithium for technical reasons

and replacing lithium by the fermionic isotope
6
Li in the experiment is straightforward.

2.5. Summary
In this chapter we have introduced the main theoretical concepts that are important for

a comprehensive understanding of this work. First main aspect was to provide a basis

understanding of gauge theories. For instance a formal description how gauge �elds arise

from enforcing gauge invariance on the system. Furthermore, the goal was to break down

lattice gauge theories into their essential ingredients and mechanisms aiming at an better

understanding from an experimentalist’s point of view. We have presented two di�erent

Hamilton formulations of quantum electrodynamics to exemplary show what needs to be

engineered experimentally to sucessfully quantum simulated such theories. In essence these

main ingedients are: Matter degrees of freedom, gauge �eld degrees of freedom, and a gauge

invariant interaction between matter and gauge �eld. This interaction will lead to strong

constraints on the resulting dynamics which manifests among others in an appropriate version

of Gauss’ law.

Second main aspect of this chapter was to introduce our novel approach for an experimental

implementation to quantum simulate a U(1) lattice gauge theory in ultracold mixture experi-

ments. This implementation is based on a speci�c building block, which by itself features

matter degrees of freedom, gauge degrees of freedom and proper gauge invariant interaction.

The full extended lattice gauge theory is achieved by spatial repetitions of individual building

blocks and additional coupling between the building blocks. The physical system for the

building block are trapped ultracold sodium and lithium atoms interacting via contact inter-

action. Starting out from a full microscopic description of the cold atom system we derived

the building block as an e�ective model for this system. We pointed out the properties of the
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building block that predestine it to be used as a fundamental cornerstone for a lattice gauge

theory. Finally, we showed how the building block is used to construct the full extended U(1)

lattice gauge theory and pointed out the advantages of this proposed implementation over

former proposals.
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This chapter is dedicated to the experimental aspects of this work including technical informa-

tion about the experimental setup as well as the routines for data acquisition and processing.

It is structured in the following way.

In the beginning we introduce the experimental apparatus that was used to generate the

data that is presented in this work. The main components of the experimental setup have been

developed prior to this work and are described elsewhere [39–42]. Therefore the description

of the apparatus will focus on the main aspects. The sequence that constitues an individual

experimental cycle until reaching ultracold clouds of sodium and lithium is explained. For

further detailed information on this topic we refer to the cited work.

Next we describe the absorption imaging routine that is used in our experiment. This

includes a theoretical description of this imaging technique as well as the particular optical

setup that is used in our experiment. Furthermore we show the method that we used to

calibrate the imaging procedure for absolute atom number detection.

Then we present measurements that characterize our cold atom system, this includes

trapping frequency measurements of the optical dipole trap, which is the �nal trapping stage

of the experiment, as well as measurements of condensate fraction of the species.

The main focus of the chapter is then a detailed description of the procedure to experi-

mentally realize heteronuclear spin changing collisions between sodium and lithium. We

start by explaining the initial setting of the experiment, including the trap con�guration, the

con�guration of internal state population of the species and working o�set magnetic �eld. We

then explain how we initialize spin dynamics in the system and how we detect the signature

for spin changing collisions.

In the last sections of this chapter we explain our data acquisition and data processing

procedure for the experimental measurements on spin changing collisions that we performed.

We show how we extract the necessary observables from large data sets of absorption images.

We show that we use three experimental tuning parameters to systematically scan the param-

eter regime of spin changing collisions. These parameters are: The evolution time after the

spin dynamics have been initialized, the initial internal sodium state population ratio, and the

magnetic o�set �eld during the experiment. For these parameters we exemplarily show how

the data processing is applied.

Apart from the �rst section, where the experimental setup is introduced, this chapter repre-

sents genuine and generally novel work performed by myself, in particular the experimental

measurements on heteronuclear spin changing collisions between sodium and lithium.
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3.1. Experimental setup — an overview
Our experimental apparatus is a machine dedicated to producing ultracold mixtures of sodium

and lithium. The sodium isotope in the experiment is
23

Na, which is bosonic. In case of lithium

we have access to two lithium isotopes,
6
Li (fermionic) and

7
Li (bosonic). As our lithium laser

setup can only be tuned to one of the lithium isotopes, we can only trap one lithium species

at a time together with sodium. In the course of this work we used exclusively the bosonic

lithium species, however, changing the experimental setup in order to use fermionic lithium

only involves minor changes (choosing di�erent frequency lock point and recoupling some

beam paths).

The main components of the current setup have been described in detail in former works

[40–42]. Therefore the description here will be restricted to a general overview, mainly to

point out the main stages within one experimental cycle.

3.2. Sequence for preparing ultracold atomic mixtures
This section describes the chronological order of a typical experimental sequence from the

beginning to the creation of BECs of sodium and lithium.

The atom source in the experiment is a dual species oven [78]. Collimated atomic beams of

sodium and lithium with longitudinal velocities
1

in the order of 1000 m s−1
are copropagating

out of the oven. The atoms are slowed down by a Zeeman slower which is designed to enable

the slowing of both species [80]. The slowed atomic beams are used to load a two species

Magneto-Optical-Trap (MOT) [81]. The loading rate for lithium was generally much lower

than for sodium (loading time in the order of tens of seconds compared to a few seconds for

sodium). Therefore we programmed our sequences such that an experimental cycle starts

with parameters tuned to favour the lithium MOT loading and once it has been preloaded,

parameters are switched to enable the loading of a large sodium MOT as well. This two stage

loading procedure ensured to have a su�cient amount of lithium for the experiments.

After the MOTs have been loaded, the atoms are transferred to the magnetic trap (MT)

which is a Io�e-Pritchard type trap in cloverleaf con�guration [82]. Detailed parameters and

geometries of the MT in our experiment are found in [39]. Right before being transfered into

the MT we apply a spin polarizing scheme [40, 83] to prepare both species in the stretched

hyper�ne state |F = 2,mF = 2〉 in order to increase the transfer e�ciency into the MT as

well as to avoid detrimental atom loss in the MT later on due to spin exchange collisions.

In the MT we perform a standard forced evaporative cooling technique on sodium using

microwave (MW) coupling between the two hyper�ne states |F = 2〉 and |F = 1〉. With this

procedure we decrease the temperature of the sodium atoms to a few µK. Lithium atoms are

cooled by sodium sympathetically [84].

After the evaporation in the MT, both atomic clouds are loaded into the optical dipole trap

(ODT), which is comprised of two crossed beams from a far red-detuned (1064 nm) infrared

laser. We call the two beams “waveguide” and “dimple”. In order to overcome the problem of

1
At typical oven temperatures of 350°C the longitudinal velocity is centered around 800m s−1

for sodium and

1600m s−1
for lithium [79].
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strongly mismatching spatial modes of MT and ODT, the tranfer is arranged in two stages:

First, only the waveguide is ramped up leading to an elongated con�nement of the atoms

and which is favouring the transfer e�ciency as the waveguide accounts for the elongated

shape of the MT. After being loaded into the waveguide, both species are transfered with

a rapid adiabatic passage (RAP) [85] from |F = 2,mF = 2〉 to |F = 1,mF = 1〉. Compared

to the F = 2 manifold, atoms in the hyper�ned groundstate exhibit about ten times lower

three-body loss rates, which is a major issue to consider when the density is increased in the

crossed dipole trap. After the RAP the dimple beam is ramped up and we perform evaporative

cooling in the ODT by lowering the laser intensity. Within this last evaporation we reach

Bose-Einstein condensation of both atomic species.

At this point we have set the foundation for the spin dynamics experiments which are the

main focus of this work. Section 3.5 of this chapter provides detailed information related to

this stage of the experiment. The redout via absorption imaging is described in section 3.3.

Since this imaging technique is destructive it marks the �nish of a single experimental run.

Fig. 3.1 summarizes the aforementioned segments of a typical experimental cycle indicating

the main stages of the sequence.

Li MOT
loading

Na MOT
loading

evap.
in MT

evap.
in ODT

spin polarization
& MT loading

transfer
to ODT

SCC
initialization

SCC
dynamics

readout

16 s 8 s 15 s 4 s 0 - 100 ms

Figure 3.1.: Timeline of a typical experimental cycle. The main conceptual steps of the

sequence are mentioned and the usual duration is indicated (not to scale). Since

the redout is absorption imaging (which is destructive) the experimental sequence

has to be repeated after each measurement.

3.3. Absorption imaging
There are various imaging techniques in order to retrieve information about ultracold atomic

clouds [86–88]. In our experiment we use an absorption imaging technique, which relies on

the resonant interaction of atoms with light. The basic idea of this method is to illuminate

the atomic cloud with a laser beam pulse that is tuned to an optical transition of the species.

A certain amount of photons from the imaging beam are scattered due to the atom light

interaction. When recording the imaging beam pulse after passing through the atoms this

scattering results in a decrease of intensity in the beam pro�le. This signal can be used to

retrieve information about the spatial distribution as well as the total atom number of the

cloud.
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3.3.1. Theoretical description of absorption imaging
The reduction in light intensity when passing through an absorptive medium on resonance is

described by Beer’s law (following [88])

dI

dz
= −nσ(I)I , (3.1)

where I is the intensity of the imaging light, n is the density of the absorptive medium (in

our case the ultracold atomic clouds), σ(I) is the intensity dependent scattering cross section

and z is the propagation direction of the imaging beam. The intensity dependence of the

cross section stems from saturation e�ects in the transition
2
. We can write the intensity

dependence in 3.1 explicitly as

dI

dz
= −nσ0

α∗
1

1 + Isat
eff

I , (3.2)

with σ0 = 3λ2/2π being the resonant scattering cross section assuming a two level transition.

Here we have introduced the e�ective saturation intensity Isat
eff = α∗Isat

0 with the dimension-

less parameter α∗ > 1, which accounts for experimental imperfections leading to a deviation

from the ideal value of the saturation intensity Isat
0 . By integrating equation 3.2 in z direction

one obtains an expression for the atomic column density

nc(x, y) = − 1

σ0

[
α∗ ln

(
If (x, y)

Ii(x, y)

)
+
Ii(x, y)− If (x, y)

Isat
0

]
, (3.3)

where Ii(x, y) and If (x, y) are the initial (�nal) intensities before (after) passing through

the atomic cloud. From that the total atom number is retrieved by integrating the column

density in xy direction. In practice, Ii(x, y) and If (x, y) are detected with cameras during

a single experimental cycle. Isat
0 and α∗ have to be calibrated with an independent set of

measurements. The exact details are explained in the following sections.

3.3.2. Experimental setup and imaging sequence
Independently generated imaging light for both species (imaging transitions with wavelengths

λNa = 589 nm and λLi = 671 nm) is coupled into the same optical �ber and guided to the

experiment table. After exiting the �ber outcoupler, the collimated beams pass a polarizing

beam splitter and enter the vacuum glass cell where they illuminate the trapped atomic clouds.

In order to strongly increase the intensity of the imaging light at the position of the atoms

(which will be used for calibration of the imaging system), a lens with positive focal length

can be placed in the imaging beam path right before it enters the glass cell. The imaging beam

pro�le is imaged with the following optical assembly, see Fig. 3.2. First, a specially designed

2
The scattering response of a two level atom scales linearly in the low intensity limit and approaches a constant

value in the high intensity limit, see [85]
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Figure 3.2.: Sketch of the optical elements in the imaging system. Imaging light for

sodium and lithium is copropagating and illuminates the atomic clouds in the

glass cell. The atoms are imaged by a system of an objective lens and a secondary

lens. After the objective lens the two wavelengths are separated by a dichroic

mirror and imaged on separate cameras. Also shown is the optical lattice setup

which shares optical elements with the imaging beams. Two parallel beams of

the same laser are crossed onto the position of the atoms by a focussing lens. The

lattice spacing is determined by the spatial separation of the parallel beams and

the focal length of the focussing lens. This is used to determine the magni�cation

of the imaging systems.

objective lens [89] (fobj = 31.4 mm for lithium and fobj = 31.18 mm for sodium) is placed

close to the glass cell such that its focal plane matches the plane of the atoms, e�ectively
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sending the image to in�nity. After the objective lens, a dichroic longpass (cuto� at 650 nm) is

placed in the imaging path to separate the imaging beams of both species into two individual

paths. The �nal image of each path is cast by an individual secondary lens (fsec = 500 mm
for lithium and fsec = 200 mm for sodium) onto a CCD camera. Optical bandpass �lters

(Semrock BrightLine HC 673/11 for lithium and HC 590/20 for sodium) are placed in front of

each camera to avoid any light besides the imaging pulse to enter the detector.

atom picture reference picture dark picture 0
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Figure 3.3.: Example set of the three pictures that are taken during the imaging se-
quence (sodium imaging). The images in chonological order as they are taken

during the imaging procedure. For each image the camera is exposed for the

duration of the imaging pulse. Inbetween pictures there is a dwell time of 400 ms.

In the �rst two pictures one can see the clear near gaussian intensity pro�le of

the imaging light. The black shadow in the middle of the imaging light pro�le in

the atom picture is cast by a sodium BEC in time of �ight.

The absorption imaging sequence constitues the end of a single experimental cycle (as the

measurement is destructive). In particular, during the imaging procedure a set of three images

per species is recorded: The atomic picture Iatom(x, y), the reference picture Iref(x, y) and the

dark picture Idark(x, y), see Fig. 3.3. First picture taken is the atomic picture that records the

imaging light pulse that interacts with the atoms. During this process the atoms are expelled

from the trap due to the resonant light force. Afterwards, the reference picture is taken which

records a light pulse with the same parameters (duration, intensity) as the �rst pulse but in

the absence of any atoms. The last picture is the dark picture which records the background

signal on the camera when all experimental light sources are shut down. With this set of

images we employ euation 3.3 to calculate the atomic column density using the identi�cation

If (x, y) = Iatom(x, y)− Idark(x, y) (3.4)

Ii(x, y) = Iref(x, y)− Idark(x, y) , (3.5)

and the experiment speci�c values for Isat
0 and α∗, which need to be calibrated as explained

in the following section. Note that the imaging frequency for both species is tuned to the

F = 2 −→ F ′ transition which necessitates the use of a repumping beam when the atoms

occupy the hyper�ne ground state before being imaged. The repumping beam is then shone

in simultaneously with the imaging beam. In the case of lithium the same repumper beams as

in the MOT phase are used, for lithium the repumper is shone in from one side perpendicular
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3.3. Absorption imaging

to the imaging beam (same optical path as used during spin polarization).

3.3.3. Calibration of the imaging magnification
In order to determine the total atom number from the absorption images the magni�cation

of the imaging system has to be known. As described in the previous section we have to

individual imaging paths for sodium and lithium as well as two individual cameras: Retiga EXi
fast from Qimaging for the sodium imaging and hnü 512 from nüvü cameras for the lithium

imaging.

In our imaging system that is comprised of imaging objective and secondary lens, the ideal

case magni�cation M is given as the ratio of the secondary lens focal length fsec and imaging

objective focal length fobj

M =
fsec

fobj

. (3.6)

As this formula for M assumes perfect optical elements and perfect alignment, it is advisable

to determine the magni�cation directly with a measurement. One profound method for

determining M is to observe the atoms in free fall and relate the travelled distance (in units of

camera pixels) to the expected travel distance (in real space units) from gravity. In our setup,

however, this method can not be applied, because the imaging beam propagation direction is

parallel to gravity.

Therefore we used our optical lattice setup to calibrate the magni�cation. This is suitable,

since the lattice beams share the same optical path as the imaging beam after they are

combined on a polarizing beam splitter cube, see Fig. 3.2.

The lattice is generated in the following way (for detailed description on the lattice setup,

see [42, 90]: A single laser beam is split into two parallel beams of equal power and a distance

d = 10 mm between the two beams. The two parallel beams are focussed onto the position of

the atoms by a focussing lens of focal length ffoc = 200 mm. Due to the initial separation of

the two parallel beams, they cross at the position of the atoms under an angle 2α, where α is

geometrically de�ned by

tanα =
d

2ffoc

. (3.7)

The crossed lattice beams create a periodic interference pattern with periodicity alatt deter-

mined as

alatt =
λ

2 sinα
, (3.8)

with λ being the wavelength of the lattice laser light. On the left hand side of Fig. 3.4 we

show the fringe pattern as directly recorded on the lithium camera (for test purposes this was

recorded at low laser power and with the bandpass �lter in front of the camera removed).

On the right hand side of Fig. 3.4 we show an in situ absorption image of lithium in the
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crossed dipole trap with superimposed lattice laser beams. Since the lattice laser wavelength

is 532 nm, the lattice potential is repulsive and atoms accumulate in the regions of dark fringes

of the lattice.

Figure 3.4.: Experimental measurements of the optical lattice for calibration of the
magni�cation. Direct measurement of the Laser intensity pattern on the
lithium camera (left) and in situ density distribution of lithium in a com-
bined trap of lattice and crossed dipole trap (right). On the left hand side is a

direct image of the laser pattern on the lithium camera with reduced intensity. On

the right hand side is an in situ image of lithium when the regular optical dipole

trap is superimposed with the lattice. By �tting the periodic structure one obtains

the lattice spacing in camera pixel units. Since the theoretical lattice spacing in

real space units is known from geometric properties (see. equation 3.8), with this

measurements one can determine the magni�cation of the imaging system.

We determine alatt by �tting a sine to the integrated signals (after we manually compensated

for the evelope). The �tting yields alatt = (10.16 ± 0.03) px for the interference pattern and

alatt = (10.27 ± 0.08) px for the density distribution of lithium. These values are compared

to the predicted lattice spacing alatt,pred using equations 3.7 and 3.8 with the known values

d = 10 mm and ffoc = 200 mm yielding alatt,pred = 10.6 µm. By knowing that the real pixel

size of the hnü 512 is 16 µm × 16 µm the magni�cation is estimated to be MLi = 15.44 ±
0.12 for the lithium imaging. With the same procedure the magni�cation of the sodium

imaging (pixelsize Retiga EXi fast is 6.45 µm × 6.45 µm) is determined to be MNa = 6.58 ±
0.04. Table 3.1 summarizes the determined values for the magni�cation depending on species

and evaluation method.
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3.3. Absorption imaging

magni�cation magni�cation

using 3.6 using lattice pattern

sodium 6.41 6.58 ± 0.04

lithium 15.92 15.44 ± 0.12

Table 3.1.: Summarizing the magni�cation of the imaging system based on the imag-
ing path and the method of evaluation. The errors on the values determined

by the method that employ the lattice pattern represent standard error determined

from the �tting routine.

3.3.4. Absolute atom number calibration
As described before, in order to determine the total atom number from an absorption image

one has to know the two parameters Isat
0 and α∗. Isat

0 describes the saturation intensity in the

ideal case of a driven two level system in the presence of a decaying excited state with decay

rate Γ. The value for the saturation intensity is computed for each species according to [91]

Isat
0 =

π

3

hcΓ

λ3
, (3.9)

which results in Isat
0 (Na) = 6.26 mW cm−2

and Isat
0 (Li) = 2.54 mW cm−2

. Since the numer-

ical values are known, the calibration of Isat
0 reduces to determining how intensity of an

imaging pulse in the plane of the atoms translates to counts detected on the camera, taking

into account the properties of the imaging setup (quantum e�ciency of camera, magni�ca-

tion, re�ections on optics surfaces, etc.). To do so we make use of the fact that the imaging

beam pro�le spatially �ts within a camera frame, see Fig 3.3. We perform a sequence of

measurements where we repeatedly record imaging beam pro�les (without the presence of

atoms) on the camera, varying the total power of the beam from shot to shot. In addition we

measure the absolute total power of the beam with an optical laser powermeter. Assuming a

gaussian pro�le for the imaging beam we determine the spot size parameter w and the peak

intensity Ipeak by a Gaussian �t to the recorded beam pro�les. Together with the measured

total power Ptot of the beam one can represent the physical values for the intensity in camera

speci�c units using the relation between total power and peak intensity of a Gaussian beam

Ipeak = 2Ptot/(πw
2). By displaying the count rate of a pixel on the camera as a function of

intensity of the imaging beam and linear �tting the data yields

Isat
0 (Na) ≡ 20.3

counts

px× µs
, (3.10)

Isat
0 (Li) ≡ 11.2

counts

px× µs
. (3.11)
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Next, α∗ has to be calibrated. This parameter accounts for the fact that in the experiment

the intensity to saturate the imaging transition is generally higher than Isat
0 . The deviation

has multiple physical reasons. First, the atomic transition has substructure (Zeeman levels) in

the excited as well as in the ground state. This leads to di�erent steady state con�gurations

of the optical pumping which are further dependent on the polarization of the imaging light.

Residual detuning of the imaging light plus �nite linewidth of the transition contribute to this

e�ect, too. Furthermore, stray magnetic �elds which lead to �uctuations in the quantization

axis as well as limited quality in the polarization of the imaging light are experimental

imperfections which are accounted for by introducing the e�ective saturation intensity.

There are various methods for determining the e�ective saturation intensity, [92] exploit

the linear scaling of quantum �uctuations of mean atom number in a coherent spin state, [93]

use the momentum transfer between imaging light and atoms. In this work we follow the

method described in [88].

From equation 3.3 one sees that two terms enter the calculation of the column density. The

�rst term contains the ratio of atomic and reference picture, the second one the di�erence.

In the limit case of low intensity imaging I � Isat
0 the second term is negligible and for

calculating the atomic density it is su�cient to know the ratio of atomic and reference picture.

The downside of this regime is that an optically dense cloud is di�cult to image due to its

opaqueness, leading to a low signal to noise ratio. Furthermore imaging with low intensities

requires longer imaging pulses to scatter a su�cient amount of photons for the overall signal.

However, longer imaging pulses lead to stronger displacement of the atomic cloud during the

imaging process due to radiation pressure. This can lead to signi�cant defocussing e�ects

as the cloud is pushed out of the focal plane of the imaging system. This e�ect is all the

more dominant for lighter species. In Fig 3.5 we show this displacement of the cloud as a

function of the imaging pulse length for di�erent species and imaging intensities. For this

example we assumed the atoms to be initially at rest and neglected the Doppler shift induced

detuning. The displaced distance in light propagation direction ∆z as a function of time is

then calculated according to

∆z =
vrecγp

2
t2 , (3.12)

with vrec being the recoil velocity and γp being the intensity dependent on-resonance scattering

rate. As seen in Fig 3.5, ∆z is about one order of magnitude larger for
23

Na and
7
Li than for

87
Rb, which is used in [88, 92].

Moreover, the �gure reveals another impactful relation to consider. In order to restrain ∆z

to about 15µm, which corresponds to the depht of focus for the imaging lens in our setup [89],

an imaging pulse for lithium in the low intensity regime (I/Isat
0 = 0.1) can be about three

times longer than in the high intensity case (I/Isat
0 = 10). However, the total photon count in

the imaging pulse is smaller by a factor of 30. This eventually limits accessible low intensity

values due to too small signal to noise ratios or otherwise due to detrimental defocus e�ects.

In the high intensity limit I � Isat
0 the �rst term of equation 3.3 becomes less important. In

this regime imaging pulses can generally be kept short, and aforementioned complications due

to radiation force do not play a major role. However, as the scattering cross section is reduced
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Figure 3.5.: Displacement of an atom due to the light force during the imaging pro-
cess as a funciton of imaging pulse duration. The resonant atom light inter-

action results in a directed momentum transfer to the atoms which displace them

from the initial position. The atoms are assumed to be initially at rest and Doppler

induced shifts in detuning are neglected. Compared to rubidium the lighter species

sodium and lithum are displaced much more for given pulse duration and imaging

intensity.

at higher intensities this regime is disadvantageous when imaging very dilute atomic clouds.

The conceptual idea for the calibration of α∗ lies in the assessment that the column density

(or total atom number) of an atomic cloud is a propertiy that is independent of the intensity

of the imaging pulse. Therefore we repeatedly record atomic clouds with same experimental

settings only varying the imaging pulse intensity. We compute the total atom number of the

clouds according to equation 3.3 with di�erent numerical values of α∗. The proper value for

α∗ is the one that results in the least �uctuations of the numerical value for the atom number

across the whole range of imaging intensities, see Fig. 3.6. For each α∗ the corresponding

standard deviation of the atom number N is calculated, see Fig. 3.7. From this α∗(Na) = 3.6
and α∗(Li) = 3.1 are determined as the values corresponding to the minimum standard

deviation. In summary, the imaging calibration employed here provides reasonable results

compared to [94]. The method is straightforward to apply as from a technical perspective

it does not require additional setups and sequences besides the regular imaging routine.

However, in order for the method to perform properly the application of imaging intensities

across multiple orders of magnitude is necessary which leads to considerably long imaging

pulses for low intensities. This can lead to the aforementioned problems associated with

acceleration of the atomic cloud during the imaging process. This can lead to systematic

uncertainties in the calibration parameters especially considering the low mass of the atomic

species we use in the experiment.
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Figure 3.6.: Calibration of the α∗ parameter for sodium (top) and lithium (bottom).
Atomic clouds of the same atom number are recorded using varying imaging

intensities. The atom number is evaluated using equation 3.3 for various values

of α∗. As the atom number is a genuine property of the atomic cloud it is not

supposed to vary with the imaging intensity. The value for α∗ that results in the

least �uctuation in atom number across the whole range of imaging intensities

represents the correctly calibrated numerical value. Circles represent measured

data, solid lines are guides to the eye.
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Figure 3.7.: Fluctuation of atom number as a function of α∗ for sodium (left) and
lithium (right). The standard deviation of the atom number across all imaging

intensities is evaluated for each value of α∗. The minimum position of the graph

corresponds to the proper calibrated parameter α∗. The colored data points corre-

spond to the colored datasets shown in Fig. 3.6. The solid black line corresponds

to the α∗ datasets not shown in Fig. 3.6.

3.4. Characterization of trapped ultracold atoms
In the �nal stage of the experiment both species are trapped in an optical dipole trap. By

lowering the dipole laser beams’ intensity we further evaporatively cool both clouds and reach

temperatures below the critical temperature of Bose-Einstein condensation. As this point we

have set the experimental platform for the spin dynamics experiments which are described in

section 3.5. Since all important measurements are performed at condiditions which are set at

this stage it is necessary to characterize the experimental system at this point. On the one

hand this is important in order to make quantitative comparisons between experimental data

and theoretical models later on, since many parameters, for instance the total atom number,

enter into theoretical models and have to be determined experimentally. On the other hand

it is very useful from a technical point of view to benchmark the experimental system at

this crucial stage. Having a set of benchmark values which can easily be checked allows to

determine whether the whole experimental system is operating in a proper parameter space

or technical readjustments are necessary.

3.4.1. Optical trapping potential
Optical dipole traps are a well established technique in ultracold atom experiments [95–

99] to con�ne atoms in space. Hereby the laser intensity exerts an attractive or repulsive

force on the atoms depending on the detuning of the laser relative to the optical transition

in the atomic species. As mentioned in section 3.2 our dipole trap is generated by two

crossed laser beams of a far red-detuned laser. The resulting potential can be approximated

with a three dimensional harmonic potential, see equation 2.1. Experimentally the trapping

potential can be characterized by determining the three trapping frequencies. In order to

experimentally access the trap parameters with TOF measurements we perform externally
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controlled trap oscillations by inducing a well controlled motional excitation of the atoms in

the trap. Afterwards we release the atoms from the trap and the momentum of the atoms

maps onto real space position. By varying the waiting time between excitation and release

from the trap we sample the oscillation and thus the trapping frequency along the excited

direction.

Experimentally the motional excitation is performed by applying a pulse to the piezo

actuator that controls the mirror displacement in the optical path of the optical dipole beams,

see Fig. 3.8. The pulse displaces one of the dipole beams and moves it back to the original

glass cell
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Figure 3.8.: Schematic of the crossed optical dipole setup (left) and trap oscillations
measurements with sodium (right). A sudden shift of the trap center along a

certain axis induced by piezo actuators placed on mirrors results in oscillation

of the cloud. After the oscillation is excited the atoms are held in the trap for

a certain time and released afterwards. The Absorption images are taken after

a time of �ight of 8 ms (x,y-direction) and 18ms (z-direction). The circles are

the measured center of mass positions of the clouds as a function of time. The

solid line is a damped sine �t to the data from which the trapping frequencies are

deduced.

position. The pulse duration is chosen such that on one hand it is non adiabatic and on the

other hand the trapped atoms can follow the changing trapping potential e�ectively resulting

in a momentum transfer to the atoms perpendicular to the direction of the beam that is e�ected

by the piezo pulse. Fig. 3.8 shows the results of the trap frequency measurements performed

on sodium. For each direction we excite a clear oscillation of the atoms and determine the

clouds center position as a function of waiting time after the excitation. A sinusoidal �t to

the data yields for the three trapping frequencies

ωx = 2π × (243.7± 1.5)Hz (3.13)

ωy = 2π × (179.6± 0.4)Hz (3.14)

ωz = 2π × (410.4± 6.5)Hz . (3.15)

The measurements in the x and y directions were recorded with the main imaging system
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3.4. Characterization of trapped ultracold atoms

(optical axis parallel to gravity). In order to observe the oscillations in z direction we switched

to the alternative side imaging system (optical axis perpendicular to gravity). The oscillation

in z direction displays clear anharmonicity (as compared to the other directions), which

can be due to following reasons: Since the side imaging has a lower magni�cation as the

main imaging (by an order of magnitude), a larger amplitude of the piezo excitation was

needed. This led to an oscillation with components not only in z, but also in other directions.

Furthermore, the strong aplitude caused the measurement to probe the non harmonic parts of

the trapping potential as equation 2.1 is an approximation only valid for small displacements

around the trap’s center position [99]. This is re�ected in ωz entailing the largest uncertainty

of all three trapping frequencies.

It is su�cient to perform the trap frequency measurements on one species only, which we

did on sodium. Afterwards the trap frequencies for lithium can be computed [40] using the

relation

(ωx, ωy, ωz)(Li) = 2.08× (ωx, ωy, ωz)(Na) . (3.16)

The factor of 2.08 results from the fact that sodium and lithium have di�erent optical transition

frequencies. The optical dipole trapping depends on the detuning of the dipole laser from

a species’ transition. As the dipole laser has a �xed wavelength of 1064 nm, the di�erent

transition frequencies of sodium and lithium lead to di�erent trapping frequencies.

We have set up the geometry of the trapping laser beams to purposely generate an

anisotropie of the dipole trap towards the z direction. For that we set up the optical pa-

rameters such that the waveguide laser beam has a tighter focus in the direction of gravity.

This is done to reduce the di�erential gravitational shift [100–102] which leads to a dis-

placement of the trap center between the two potentials which are experienced by sodium

and lithium. This displacement leads to a reduced spatial overlap of the two species and

eventually makes the heteronuclear spin changing collision process which we intend to study

less favorable. According to our measured trapping frequencies, the di�erential gravitational

shift amounts to 1.1 µm, which is a great improvement compared to former works in this

group [40, 59] and considering that the spatial extend of the clouds is on the order of 10 µm.

3.4.2. Benchmarking the ultracold mixture
In order to increase the longevity of technical devices, the NaLi machine is put into standby

mode during times of no data acquisition. This is usually done overnight or when long-

standing hardware updates are performed on the experiment. The standby mode consists

of shutting down lasers, power supplies and the cooling unit for the coils that generare the

magnetic �elds in the experiment. Furthermore we reduce the temperature of the oven, which

reduces the �ux of atoms and makes a re�lling of the oven with new sodium and lithium less

often necessary.

When we switch the experiment from standby into active mode, all devices are turned on

and we perform basic optimization of parameters that are known to drift over time or to be very

crucial for the performance of the experiment. Such parameters are for instance the coupling

e�ciency of optical �bers that transport various laser beams (MOT,repumper,imaging) from
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the laser table to the position of the glass cell, as well as the level of the trap bottom [39, 41] of

the magnetic trap which can require an adjustment of the MW evaporation ramp performed

in the magnetic trap.

Figure 3.9.: Time of �ight absorption images (top) and corresponding integrated line
pro�les of sodium and lithium after the �nal evaporation in the ODT. A

time of �ight of 3 ms for sodium and 2 ms for lithium was used. The images were

recorded at the point in the sequence before the SCC experiments are initialized.

Total atom number of each species is evaluated by integrating the signal in the

region of the atomic cloud yielding 4.3×10
5

for sodium and 3.2×10
4

for lithium.

The characteristic features of Bose-Einstein condensation can be seen in the

bimodal distribution, which is qualitatively best seen in the line density. We apply

a �t of a combined function of Gaussian pro�le and Thomas-Fermi pro�le to

determine the condensate fraction ηCF, which yields 0.69± 0.01 for sodium and

0.56± 0.01 for lithium.

When performing this optimization we use the total atom number of sodium and lithium

in the ODT as a �gure of merit. The total atom number has empirically turned out to be

a robust indicator for the performance of the experiment. Furthermore the atom numbers

are straightforwardly determined from the absorption images. Fig. 3.9 shows typical TOF
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single realization in Fig. 3.9 set of 20 realizations

ηCF T [K] ηCF T [K]

Sodium 0.69± 0.01 604± 7 0.62± 0.02 641± 12

Lithium 0.56± 0.01 594± 6 0.48 ± 0.02 626± 10

Table 3.2.: Measured condensate fractions and resulting temperatures based on �t-
ting a bimodal distribution. The error from the single realization represents the

uncertainty determined form the �tting routine, the error for the 20 realizations

represents the statistical error, i.e. the standard error on the mean.

absorption images of sodium and lithium in the ODT after the �nal evaporation. The total

atom number is evaluated using equation 3.3 and taking into account the experimentally

determined magni�cation of the imaging system, see table 3.1. In the case of the data shown

in Fig. 3.9 this yields 4.3×10
5

atoms for sodium and 3.2×10
4

atoms for lithium. We consider

a total atom number for sodium in the range of (3-4.5)×10
5

and for lithium in the range of

(2-4)×10
4

to be a sign for proper operation of the system. This range re�ects the drifts in

atom number that occur on the order of days/weeks and inbetween changes from standby

and active mode of the experiment. During active data acquisition operation of the system

which usually comprises hundrets of single experimental cycles in the course of multiple

hours the atom number �uctuations are much smaller, see section 3.6.

In addition to the total atom number, we use the condensate fraction ηCF to benchmark

the performance of the experiment. As described in section 2.1 the signature of Bose-Einstein

condensation is the bimodal density distribution, which is seen in TOF images as well. In

order to determine the condensate fraction we integrate the 2d absorption images along

one axis and apply a �t to the data, see Fig. 3.9. The bimodal distribution that we use is a

combined function of a gaussian pro�le and a Thomas-Fermi pro�le (see. section 2.1.2). The

gaussian shape describes the thermal wings of the pro�le, while the Thomas-Fermi pro�le

describes the narrow central peak corresponding to the atoms that are in the BEC phase. By

determining ηCF we can infer the temperature of the system, see equation 2.4. The results

for condensate fraction and temperature are summarized in table 3.2. In general, ηCF and

T can be determined via a single experimental realization. However, the errors in that case

represent the uncertainties that arise from �tting routines, in particular the uncertainty on

the trap frequencies and the uncertainty on the condensate fraction as determined from the

�t to the single realization. In order to assess the statistical uncertainty on the condensate

fraction we evaluated a set of absorption images (total number of 20 shots) taken at the same

experimental setting and determined the standard error on the mean. The results are shown

in table 3.2.

It is important to note that the bimodal function we chose for the �tting routine is only an

approximation that, for instance, does not take into account the interactions between the two

species or the interactions between condensed part and thermal part within the same species.
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This can also be seen in the �t to the lithium line pro�le in Fig. 3.9, where the transition

between the two modes is poorly captured by the assumed bimodal distribution. Therefore a

non negligible systematic error on the �t has to be expected.

Nonetheless, the condensate fraction provides a good measure for the stability of the

experimental performance, because the qualitative di�erence between a partly condensed and

a purely thermal cloud can be seen very clearly in a single experimental realization. Moreover,

when the experimental parameters are tuned in accordance with hight condensate fraction

this typically correlates with high total atom numbers as well.

3.5. Realizing heteronuclear spin-changing collisions
In section 3.2 we described the experimental sequence up until reaching Bose-Einstein con-

densation of sodium and lithium. From here we proceed with the measurements related

to heteronuclear spin changing collisions (SCC). In the following subsections we provide a

detailed description of the experimental setting and protocol which is used for realizing SCC.

The timeline for a typical measurement is depicted in Fig. 3.10. After we have reached BECs

of sodium and lithium we initiate the SCC dynamics by a superposition quench for sodium.

Afterwards we let the system evolve for a given evolution time tevo. For the state selective

readout we apply a Stern Gerlach (SG) pulse [86] followed by TOF and absorption imaging.

readout
sequence

0 - 100 ms

BEC
generation

... superposition
quench

evolution
time

SG
pulse

time of
flight

100 - 300 µs 1.5 ms 2 - 3 ms~ 50 s

Figure 3.10.: Timeline of a typical SCC sequence.

3.5.1. Experimental se�ing
After the �nal evaporation in the ODT, both species occupy the |1, 1〉 state

3
. The BECs are

prepared at a speci�c magnetic o�set �eldB. This �eld is ramped up after the atoms have been

transferred from the magnetic trap to the waveguide. As will be shown in the following the

initialization of spin changing collisions in our experiment involves internal state transitions

between magnetically sensitive states. To perform those reliably, a magnetic o�set �eld

stabilitiy on the order of milliGauss is necessary. To ensure this stability we have established an

active feedback stabilization based on a �uxgate sensor and a proportional–integral–derivative

(PID) control loop. Details on experimental setup and performane of this stabilization is found

in [42].

The value of the magnetic o�set �eld B is usually in the range of 1.95 - 2.14 Gauss, which

leads to a Zeeman splitting of the hyper�ne groundstate according to the Breit-Rabi equation

3
To describe internal states of atoms we use the following notation: |F,mF 〉, where F is the total atomic

angular momentum quantum number, and mF the corresponding magnetic quantum number [103]
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[104] as shown in Fig. 3.11 and Fig. 3.12. B is chosen such that the energy splitting between
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Figure 3.11.: Level structure of sodium and lithium in a typical experimental setting.
Due to the applied magnetic o�set �eld B the hyper�ne ground state splits

into three magnetic substates. In our experiments we tune B such that the

energy splittings ∆ENa = (ENa,|1,1〉−ENa,|1,0〉) and ∆ELi = (ELi,|1,1〉−ELi,|1,0〉)
are equal. According to the Breit-Rabi formula this equity is reached at B =

1.953G. This region is advantageous for our experiments as on the one hand it

energetically enables SCC between the |1, 1〉 and |1, 0〉 states, while at the same

time shifting the |1,−1〉 states out of resonance, allowing us to treat the system

e�ectively as two two-level systems.
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Figure 3.12.: The di�erence in internal state energy splitting of the two species com-
puted by the Breit-Rabi formula as a function of themagnetic o�set �eld
B. The di�erence in energy splittings has two zero crossings, which indicate the

magnetic o�set �elds B, at which SCC are energetically favourable. The �rst

zero crossing is trivially atB = 0 G, where all three magnetically sensitive states

are degenerate. The second crossing is at B = 1.953 G, which is the region in

which we perform our SCC experiments.
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the |1, 1〉 and the |1, 0〉 state of both species is identical, ∆ENa ≈ ∆ELi (at B = 1.953, the

energy splitting is about 1.370 MHz). At the same time the splittings between |1, 0〉 and the

|1,−1〉 states are detuned from ∆ENa and ∆ELi by a few kHz. This allows us to treat the

hyper�ne groundstate manifolds of sodium and lithium e�ectively as two two level systems,

because the |1,−1〉 state is neither populated by any MW pulses during the initialization nor

is it populated by the induced SCC dynamics due to aforementioned detuning.

3.5.2. Initializing spin dynamics
In order for spin exchange between sodium and lithium to occur by means of spin changing

collisions it has to be energetically favourable (which is done by aforementioned tuning of the

magnetic o�set �eld). Moreover, the atoms before and after such a collision have to occupy

mF states that allow locally angular momentum conservation. Therefore, no spin dynamics

are expected to happen while both species occupy the |1, 1〉 state, because scattering into

the energetically favourable |1, 0〉 state requires the atom to loose one quantum of angular

momentum which can not be absorbed by any scattering partner, see Fig. 3.13 top. In order to

retrieve a clear signature for the spin changing collision process in the experiment, we use

the following approach: Starting from the spin polarized state (both species occupy |1, 1〉) we

quench sodium into a superposition between |1, 1〉 and |1, 0〉 while keeping lithium in |1, 1〉,
hereby allowing the spin exchange process as shown in Fig. 3.13 bottom. After the quench

we evaluate the state population of both species after some evolution time tevo (up to 100 ms).

A clear signature for spin changing collisions between sodium and lithium is the appearance

of lithium population in |1, 0〉, as otherwise a direct transfer from |1, 1〉 to |1, 0〉 is supressed

by the energy gap of ∆ELi ≈ 1.37 MHz, see Fig. 3.11.

3.5.3. Superposition quench
The initialization quench that renders sodium in a distinct superposition of |1, 1〉 and |1, 0〉 is

done by applying a two-pulse microwave sequence, see Fig. 3.14. To make this superposition

quench species dependent, the two-pulse sequence makes use of the di�erent hyper�ne

splitting of sodium (1772 MHz) and lithium (804 MHz) [41]. First pulse of the sequence is of

variable length τ1 and is tuned to the transition of |1, 1〉 to the intermediate state |2, 0〉 of

sodium. This pulse drives sodium population to the intermediate state with a Rabi frequency

of 2π × 2.5 kHz. The second pulse is �xed to a length of τ2 = 100 µs, which corresponds to

a π-pulse and subsequently drives the population from the intermediate state to |1, 0〉. The

total length of the pulse sequence is no longer than 300 µs and at least one order of magnitude

shorter than the timescale which we observe the SCC dynamics on. Therefore we consider

the superposition preparation as an instant quench that initializes the spin exchange.

3.5.4. State sensitive readout
For determining the exact sodium population imbalance which is generated by the initializing

quench as well as for determining lithium spin transfer due to spin changing collisions, we

rely on state sensitive detection by means of Stern Gerlach separation [86]. As described
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7Li23Na

1,0 1,0

1,1 1,1

7Li23Na

1,0 1,0

1,1 1,1

7Li23Na

1,0 1,0

1,1 1,1

1) both species are polarized, thus no dynamics

2) sodium is quenched into superposition

3) after some evolution time SCC is observed

Figure 3.13.: Illustration of the procedure for initializing spin changing collisions.
1) In the beginning both species are spin polarized, therefore no spin trans-

fer is possible due to energy and angular momentum conservation. 2) We apply

a quench based on external MW radiation that creates a superposition in sodium

while keeping the lithium state population unchanged. 3) After the quench a

heteronuclear spin exchange process is enabled, resulting in the emergence of

lithium population in the |0〉 state after some evolution time tevo. The inset

absorption images were taken with time of �ight and Stern Gerlach separation.

The lithium spin transfer in the bottom absorption image was recorded with

tevo = 30 ms.

above we initialize the spin dynamics by the superposition quench and let the system evolve

for a given evolution time. Subsequently the trapping potential is switched o� and a Stern

Gerlach pulse is applied for 1.5 ms, which is a strong magnetic �eld gradient. During the

pulse atoms are accelerated according to the force F in gradient direction

F = −µ∆B , (3.17)
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Figure 3.14.: Implementation of the initialization quench. 1) Energy level scheme. 2)
Double pulse sequence in time representation. 3) Relative state popula-
tion of the |1, 0〉 state as a function of the �rst pulse duration τ1. The

quench is realized by two subsequent MW pulses. The �rst pulse is of variable

duration τ1 and tuned to |1, 1〉 → |2, 0〉 of sodium. This pulse drives popula-

tion to |2, 0〉 (200 µs corresponds to a π-pulse). The second pulse is tuned to

|2, 0〉 → |1, 0〉 with a �xed duration of τ2 = 100 µs (π-pulse) and drives the popu-

lation from |2, 0〉 to |1, 0〉. Due to the di�erent hyper�ne splitting in sodium and

lithium this scheme is only sensitive to sodium and does not a�ect the lithium

state population. The graph in 3) is adapted from [36].

with µ being the magnetic moment, which is proportional to the magnetic quantum number

mF (mF ∈ {−1, 0, 1} in the case of the hyper�ne groundstate manifold) and ∆B being the

magnetic �eld gradient. The combination of SG pulse and TOF leads to a spatial separation of

about 130 µm between the |1, 1〉 and the |1, 0〉 state, see Fig. 3.15. The absolut and relative

state population is then determined by integrating the atomic signal in regions of interest

which are spatially selected corresponding to the separated clouds. Table 3.3 de�nes the

notation that is used in the following for the atom number corresponding to species and

internal state.
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3.6. Data acquisition and processing

sodium lithium

atom number in |1, 1〉 NNa,1 NLi,1

atom number in |1, 0〉 NNa,0 NLi,0

total atom number NNa,tot NLi,tot

initial state population ratio NNa,0/NNa,tot(0) NLi,0/NLi,tot(0)

≡ η0 ≡ µ0

Table 3.3.: Notation for the atom number corresponding to species and internal state.
Since we performed almost all experiments with lithium initially spin polarized

in |1, 1〉, µ0 is equal to zero most of the time. Note that in the other chapters the

index notation N for sodium and L for lithium is used as well.

Figure 3.15.: Absorption images of sodium (left) and lithium (right) after SG separa-
tion. In this experimental cycle an equal superposition between the |1, 1〉 and

|1, 0〉 state of sodium and lithium was generated by direct RF coupling. Before

the imaging sequence a SG pulse (1.5 ms) and subsequent TOF (3 ms for sodium,

2 ms for lithium) was applied. This leads to a clear spatial separation of about

130 µm between the two internal states. The relative population of the internal

states is determined by integrating the signal in the regions of interest (dashed

boxes). The di�erent direction of separation which is visible in sodium and

lithium stems from the di�erent orientation of the cameras in the experiment.

3.6. Data acquisition and processing
The absorption imaging that we use is destructive, therefore a single experimental cycle has

to be repeated multiple times to obtain a su�cient amount of data for quantitative analysis

and comparison with theoretical model predictions. In the following we explain how we

generate and analyse the datasets for our investigations.
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3.6.1. Defringing of the absorption images for lithium
As mentioned in section 3.5.2 we aim to detect the population transfer of lithium from |1, 1〉
to |1, 0〉, with lithium being initially polarized in the |1, 1〉 state. As shown in Fig. 3.15,

we retrieve the information about state population by cropping a designated area in the

absorption image and integrating the signal. As will be shown in the following sections, the

lithium population transfer due to SCC amounts only to a few percent of the total lithium

atom number. This can lead to low signal to noise ratio of the observable NLi,0.

There are various sources of technical noise that are present in absorption images. One

common source of noise is caused by interference fringes in the optical imaging system.

Re�ections of the imaging laser beam from the surfaces of optical elements are causing

various interference patterns in the imaging path. These are detected by the camera as well

and appear on the atomic picture as well as on the reference picture. This results in very typical

imaging artifacts in the absorption images characterized by fringy patterns, see Fig. 3.16. It is

Figure 3.16.: Absorption images of lithium selected from a large parameter scan
dataset, highlighting the e�ects of interference fringes. All �ve pictures

were recorded with same parameter setting. One can see that the majority of

atoms occupy the |1, 1〉 state. Only about 5% of total atom number populate |1, 0〉.
In order to highlight the signal in |1, 0〉, the colorcode was chosen accordingly.

On this scale one can see the imaging artifacts due to interference patterns,

manifesting as a periodic fringy pattern across the image. The amplitude of the

artifacts is on the same order of magnitude as the atom signal in |1, 0〉. About

50% out of all absorption images exhibit this e�ect.

important to note that not all interference patterns on atomic and reference picture will result

in fringe patterns in the �nal absorption image. If these patterns are static, i.e. they appear

with same phase and magnitude on the atom picture as well as on the reference picture then

the e�ect of the fringes is compensated when using equation 3.3. However, if the fringes are

�uctuating (caused for instance by vibrations in the experimental setup that translate onto

the optical elements) and appear shifted in atomic and reference picture, they are incorrectly

evaluated as atomic density signal in the absorption image. Since the time delay between

atomic and reference picture in our experiment is 400 ms, imaging artifacts due to moving

interference fringes is a common issue in our data sets. About 50% of our absorption images

do exhibit such fringe patterns.

In order to address the e�ects of these imaging artifacts in our lithium absorption images,

we apply an idea which is presented in [105, 106] and which we are going to call “defringing”

in the following. The method is based on imaging processing, in particular it exploits the
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3.6. Data acquisition and processing

fact that the fringe patterns that appear in the experiment have very distinctive features that

are recurring in the experiment. Therefore, when recording a large quantity of experimental

shots back to back, the absorption images included in this extended dataset will contain all

typical fringe patterns that can usually occur in the experiment. Technically, fringes in the

absorption image appear, when the reference picture has a mismatched pattern compared to

the atomic picture. The idea of the defringing method is to not use the reference picture Iref,k

corresponding to k-th shot, but to use an individually constructed reference picture Iconst,k,

which is chosen to match best the individual fringe pattern present in the atomic picture

Iatom,k. The conceptual steps for the defringing procedure are sketched in Fig. 3.17.
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Figure 3.17.: Sketch for illustrating the defringing procedure. 1) We randomly select

typically n = 200 reference pictures from a large dataset and apply the Gram-

Schmidt method to create a basis. 2) We mask an atomic picture and the n
reference pictures, which is blacking out the regions where atomic signal is

expected to appear. 3) We create a masked basis analagous to the �rst step.

4) We determine the coe�cients for the basis expansion by projection of the

masked basis pictures onto the atomic picture. 5)We construct a new reference

picture with matching fringe pattern to the atomic picture by expanding it in

basis pictures with the appropriate coe�cients.

First, we randomly select n reference pictures from a large dataset (usually we use n = 200,

where the total number of shots is on the order of 300-500). We apply the Gram-Schmidt

method [107] to those n reference pictures to construct n basis pictures bi. These basis pictures

form an orthogonal set and can be used to construct Iconst,k according to

Iconst,k =
n∑
i=1

ci,kbi , (3.18)
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with ci,k being coe�cients that have to be determined to best match the individual fringe

pattern of k-th atomic picture.

Second, we select k-th atomic picture and mask the regions where atomic signal is expected

to appear (in our case the crop regions for the |1, 1〉 and |1, 0〉 state). The same region is

masked in the n reference pictures and the Gram-Schmidt method is applied to those to

construct a masked basis b̃i. The masked basis is used to determine the coe�cients ci,k by

projection onto the masked atomic picture Ĩatom,k according to

ci,k = Ĩatom,k · b̃i , (3.19)

with · being the scalar product. The absorption image is then computed via 3.3 using Iatom,k

and Iconst,k. Although the basis we choose with a typical size of n = 200 is much smaller

than the amount of pixels in a masked image (∼ 10
5
), it is yet su�cient to construct a proper

reference picture due to aforementioned repetitive features of the fringe patterns.

The e�ect of using a “defringed” reference picture is demonstrated on a typical absorption

image shown in Fig. 3.18. The absorption image of the same experimental shot is evaluated

without defringing with defringing
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Figure 3.18.: Demonstration of the e�ect of the defringing method on an absorption
image. The lithium absorption image of the same experimental shot is computed

using the conventional (left) and the defringing method (right). The bottom panel

shows the integrated signal of the region marked with the dashed lines. The

decrease of the fringe pattern is clearly seen in the absorption image as well as

in the integrated signal.

once using the conventional (not defringed) method and once with the defringing. Qual-

itatively, the e�ect of defringing is clearly seen in the absorption image as well as in the

integrated signal. To quantitatively evaluate the e�ect of the defringing method, we select

from the large dataset which is partially presented in Fig. 3.16, all shots that do not contain

any atomic signal in |1, 0〉 by de�nition (tevo = 0). In this total of 58 shots we evaluate the
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3.6. Data acquisition and processing

standard deviation of the atomic signal in the cropped region of |1, 0〉. The standard deviation

is reduced by 50% in the case of the defringing method compared to the not defringed one.

We therefore apply the defringing method to the lithium data of all of our datasets. The

method is applicable to the sodium data in an analogous way. The sodium pictures are about

four times larger than the lithium ones. The way we implemented the defringing algorithm,

however, led to the circumstance that the resources of a personal computer did not su�ce to

perform the defringing of the sodium data with the full sodium picture and a total number of

basis pictures of n = 200. Since in our protocol the detection of NLi,0 is the crucial part for

investigating SCC, we applied the defringing solely to lithium and computed the absorption

images for sodium with the conventional method.

3.6.2. Parameter scans
The usual way for generating useful datasets is to perform parameter scans, that is running

the experimental cycle repeatedly, while a single parameter of the experiment is varied from

shot to shot. The parameters of interest for investigating spin changing collisions are:

• the evolution time tevo after the initialization quench

• the initial population ratio NNa,0/NNa,tot(0) ≡ η0 of sodium as set by the initialization

quench

• the o�set magnetic �eld B

From a technical point of view, the parameters tevo and η0 are most straightforwardly to

scan. Variation of tevo can directly be programmed into the experimental control sequence by

changing one single time variable. η0 is varied by changing the duration t1 of the �rst pulse of

the double pulse quench sequence, which again can be done by varying a single time variable.

The setpoint for the o�set magnetic �eld B is in principle controlled by a single variable as

well. However, when scanning only B the linear Zeeman shift leads to a detuning in the MW

pulses of the double pulse initialization, leading to a change in η0. Therefore, isolating the

scanning of B would require an adjustment of the double pulse parameters from shot to shot,

which is rather involved, as our experimental control is designed to scan only one parameter

at a time. We therefore refrain from scanning B directly and rather perform intensive scans

of tevo and η0 at given B which we set manually inbetween the scans.

3.6.3. Data analysis of evolution time (tevo) parameter scans
The acquired information during one experimental cycle consists of the full set of timings and

power levels which were used by the experimental control during this particular shot and the

absorption images (set of three pictures per species) taken by the cameras. Each experimental

cycle generates a hierarchical data format (HDF) �le [108], where aforementioned information

is stored. HDF allows for storage of large data and corresponding metadata and is our �le

format of choice for our analysis routines, which are written in Python. The HDF �les are

stored in folders corresponding to the day the data was taken on. The HDF �les of parameter
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scan measurements are tagged “scan_x_run_y”, with x being the number of the scan taken

on that particular day in chronological order and y being the number of the single shot taken

within particular scan in chronological order. First step of analyzing a scan measurement is

t = 8ms t = 20ms t = 30ms t = 4ms t = 4ms t = 20ms t = 20ms t = 30mst = 0mst = 0ms

lithium

sodium

nr = 41 nr = 42 nr = 43 nr = 44 nr = 45 nr = 46 nr = 47 nr = 48 nr = 49 nr = 50

1,0

1,1

1,0

1,1

[a
.u

.]
[a

.u
.]

Figure 3.19.: Segment of data display during the analysis routine of an tevo parameter
scan measurement. For a �rst visual inspection of the absorption images, we

crop the regions corresponding to the |1, 1〉 and |1, 0〉 state and plot them next

to each other as a function of shot number within the scan. The scan consists of

a total shot number of 483. The �gure displays shot numbers 41 to 50. To avoid

skewing of the data due to systematic drifts during the whole scan, the scan

parameter is varied randomized. The value of tevo of particular shot is displayed

in the bottom line. The origin of the ring shaped distribution of sodium atoms in

some shots is mentioned in the main text. The colorcode of the lithium optical

density is chosen to emphasize the atom signal in |1, 0〉 thus saturating the one

in |1, 1〉.

to evaluate the absorption images according to equation 3.3. We then select and crop out

the regions of interest according to the atoms corresponding to the |1, 1〉 and |1, 0〉 state and

display them next to each other, see Fig. 3.19 (in the following, if not stated otherwise we

present data from the scan taken on 18.04.2019, with B = 2.118G, η0 ≈ 0.41 and tevo as the

scanning parameter).

This display is particularly useful for a �rst visual inspection of the data. It allows to

identify single outliers in the dataset due to experimental error. For instance, shot number 49

in Fig. 3.19 displays two characteristics that classify it as an outlier. Firstly, there is no atomic

signal for lithium in any of the regions of interest, which indicates that in this shot lithium

has been lost from the trap somewhere along the sequence. The loss of lithium atoms can

have various reasons: insu�cient loading in the MOT, ine�cient transfer to the MT or the

ODT, ine�cient cooling of the atoms in one of the cooling stages. Such e�ects can occur due

to transient malfunctions of one of the many components of the experimental apparaturs.

Secondly, the sodium in shot 49 displays atomic signal in |1, 1〉 as well as in the |1, 0〉 state,

yet the ratio of the initial internal state population η0 is not consistent with the expected

desired one of ≈ 41%. This means that the superposition quench has not been performed
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correctly, either because the MW pulses were not applied properly or the magnetic o�set

�eld was not set properly, e�ectively detuning the transitions of the MW pulses.

From this initial visual inspection we empirically determine the typical characteristics of

outliers that appear regularly in scan measurements. Those are small to vanishing total atom

number in any of the species as well as a not properly initialized values for η0. Based on

these considerations we apply the following global postselection to the total set of data, see

Fig. 3.20. We apply a total atom number threshold for sodium and lithium. All shots that

exhibit total atom numbers below the threshold are disregarded for further analysis. Similarly

we apply a threshold for sodium atoms in the |1, 0〉 that �lters the shots where a proper initial

sodium superposition η0 was not achieved (with respect to the desired value of η0 which is

chosen for the scan). We estimate an appropriate value for the threshold based on the total

distribution of of atom numbers as displayed in the histrogramms in Fig. 3.20. In the case of

the histogramm for the total sodium numbers (top right) and the sodium numbers in the |1, 0〉
state (bottom right) one can clearly identify the distribution corresponding to regular shots

(hight atom numbers, approxemately normal distributed, high frequency) and the distribution

corresponding to the outliers (small atom numbers, low frequency and clearly separated from

the distribution of regular shots). The threshold is in those cases chosen at a point that clearly

marks a separation of those two distributions. In the case of the total lithium atom number

histogramm (middle right) one does identify at one end the distribution of proper generated

lithium clouds and at the other end the clearly outliers at zero. However, the distribution

of proper operations is not as clearly normal as in the case of sodium and exhibits a long

tail towards smaller atom numbers. In this case choosing an appropriate threshold is not as

straightforward and to some degree heuristic. In this case cutting o� the part of the long tail

of smaller atom numbers is nonetheless important to ensure similar initial conditions.

After the postselection of the data set we perform the statistics evaluation, which is grouping

the observables (internal state population) by scan parameter and evaluate mean and error

on the mean. Fig. 3.21 displays this evaluation performed on the scan data from 18.04.2019.

One can clearly see an initial rise of NLi,0 within the �rst 25 ms followed by damped

oscillations. The appearance of NLi,0 is a clear sign of heteronuclear spin changing collisions

as explained in section 3.5. In the lithium data the spin transfer is clearly visible, however, in

sodium the spin change due to SCC is not resolvable. First reason is that due to sodium having

higher total atom number, the relative change inNNa,0/NNa,tot is about an order of magnitude

lower than in NLi,0/NLi,tot. The second reason is that there are other systematic e�ects that

dominate the time evolution of the internal state population of sodium. For instance, we

observe a loss of atoms from the |1, 0〉 state as a function of time, clearly seen in the absolute

as well as the relative state population. By �tting an exponential decay to the data we estimate

the lifetime to be about 560 ms for the |1, 0〉 state, while the |1, 1〉 state remains stable on

those timescales. The exact origin of the state dependent loss process is not fully resolved

yet, however, we assume that it could be due to state sensitive loss processes or due to the

external dynamics of the cloud in the trap, which is described in the following.

The superposition quench performed on sodium in addition induces characteristic spatial

excitations of the individual sodium components in the dipole trap (due to the |1, 0〉 and |1, 1〉
state of sodium being immiscible, see section 4.2.4). These excitations result in characteristic

density distributions (ring/hollow sphere and dumbell-like shapes) in the TOF images as seen,
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Figure 3.20.: Postselection of a time evolution parameter scan. Observables of each
experimental shot plotted in chronological order (left) and the corre-
sponding histogramm of atom numbers (right). Filters are applied to ex-

clude outliers due to experimental error as well as to ensure similar initial

condition with regard to total atom number. Common outliers are characterized

by small to vanishing total atom numbers in lithium and sodium as well as an in-

correct realization of η0. The outliers are caused by transient malfunction of one

or multiple components of the experimental setup. Circles represent the values

of each individual shot, the dashed line marks the value of the threshold applied.

The exact value of the threshold is chosen to separate the two distributions

of normal operation and outliers, which is easily identi�ed in the case of total

sodium atom numbers (top right) and the sodium atom numbers in |1, 0〉 (bottom

right). The separation is not as straightforward in the case of total lithium atom

numbers as the distribution exhibits a long tail towards smaller atom numbers.
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for instance, in Fig. 3.22. In addition, our imaging system is systematically sensitive to these

spatial dynamics. In Fig. 3.21 one can see a clear initial rise of NNa,1, which appears to be

an artifact, since the rise is correlated in time with the emergance of the spatial dynamics

induced density shapes. This can be explained by systematically changing absorption imaging

due to highly non uniform density distribution of the clouds. Further discussion and detailed

comparison of the data to theoretical models is provided in the next chapter.
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Figure 3.21.: Qualitative display of internal state population of lithium (top) and
sodium (bottom) as a function of the evolution time tevo. The absolute

state population is shown on the left and the relative state population on the

right. The appearance of NLi,0 is a clear sign of SCC. The initial rise is on the

order of 10 ms followed by damped oscillations. The maximum yield of lithium

atoms in the |1, 0〉 state is about 6% of the total lithium atoms. The corresponding

change in NNa,0/NNa,tot due to SCC is not resolvable. Firstly, due to the higher

sodium atom number the relative change is below 1%. Secondly, other e�ects

(see text) are dominating the time evolution of NNa,0/NNa,tot. Marker represent

the mean and the errorbars the standard error on the mean.

69



3. Experimental system

Figure 3.22.: Averaged cropped density distributions as a function of tevo for both
species and respective internal states after time of �ight. Data
corrsponds to the data set shown in Fig. 3.21. For lithium one observes

an emergence of signal in the |1, 0〉 state after a few tens of milliseconds. The

colorbar cale for lithium has been chosen to make the signal in |1, 0〉 visible by

eye, accordingly the signal in |1, 1〉 is saturated. The e�ect of spatial dynamics

after the initialization quench is observed in the sodium images. On the order

of a few milliseconds both components undergo oscillations of various shapes

(ring,dumbell) after being damped out at later times.

3.6.4. Data analysis of initial sodium state population ratio (η0)
parameter scans

The data analysis of η0 scans is analogous to time evolution scans with some exceptions which

are mentioned here. The postselection in terms of total atom numbers for sodium and lithium

is applied in the same way as for the tevo scans. However, since the scanned parameter is the

initial sodium population ratio, outliers related to incorrect superposition preparation can not

be postselected by introducing a single global threshold but have to be excluded individually

by visual inspection. Furthermore, the variation of η0 is experimentally achieved by varying

the duration τ1 of the �rst MW pulse of the double pulse quench. The important properties

of the MW pulses (duration, frequency, power) are experimentally realized with very low

uncertainty compared to the uncertainties of other parameters in the experiment. However,

due to uncertainties and shifts in the magnetic o�set �eld which is applied in the experiment,

shots performed at the same MW pulse durations do not result in the same value for η0 (due

to Zeeman-shift induced detuning in the transition). Therefore we perform the grouping of

data by scan parameter in the following way (if not stated otherwise we present data from the

scan taken on 25.04.2019, with B = 2.118G, tevo = 30 ms and η0 as the scanning parameter in

the following). We �rst evaluate the ratio NNa,0/NNa,tot for every single shot in the scan, see

Fig. 3.23.

We then bin the data according to NNa,0/NNa,tot using 40 equidistant bins (resulting in bin

size of 0.025). All superposition scans are performed for tevo = 30 ms, which is small compared

to the lifetime of the |1, 0〉 state. Furthermore we know from the time evolution scans that

the internal state transfer due to SCC in sodium is very small compared to the total atom

number. We therefore approximate the initial sodium population ratio with the population

ratio at tevo = 30 ms, η0 ≈ NNa,0/NNa,tot(30 ms).

The lithium observables are then grouped and displayed as a function of the binned scale
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Figure 3.23.: Sodium observables of an initial sodium population ratio (η0) scan, abso-
lute (left) and relative (right) population of internal states as a function
of the �rst pulse duration, taken after (tevo = 30 ms). At longer times of τ1

the data displays larger �uctuations, an indication of a �uctuating magnetic o�set

�eld B. We therefore bin the data by NNa,0/NNa,tot and use this to determine

the initial sodium population ratio by approximating η0 ≈ NNa,0/NNa,tot, which

is then used as the x-axis for the lithium observables. Marker in the left �gure

represent the mean and the errorbars the standard error on the mean. Marker in

the right �gure represent single shot realizations.

η0. Fig. 3.24 shows the analyzed data for a typical scan of initial sodium state population

ratio. The characteristic feature seen in this data is a clear resonance of NLi,0 with respect to

η0. Furthermore, the resonance displays a characteristic asymmetry, with a very steep slope

towards smaller values of η0 and a less steep, tail-like behaviour towards higher η0.

3.7. Summary
This chapter discussed the technical aspects of the experiment as well as the techniques and

methods used to generate the data that is presented in this thesis.

We showed methods for the characterization of our experimental system. We demonstrated

how we calibrate our absorption imaging procedure for determining total atom numbers for

sodium and lithium. Typical experiments are performed with BECs containing about 3×105

(sodium) and 3.5×104
(lithium) atoms. To characterize the trapping potential of the optical

dipole trap we excite spatial oscillations in the system and experimentally determine the

trapping frequencies assuming a harmonic trapping potential.

We described the complete experimental cycle, mentioning the experimental sequence

up until creation of a sodium and lithium BEC. We then went into detail and described the

protocol for initializing and observing heteronuclear spin changing collision between sodium

and lithium. This is done by having both species �rst spin polarized in the |1, 1〉 state. A

quench that renders sodium in a superposition between |1, 1〉 and |1, 0〉 initializes the spin

dynamics. The clear signature for spin changing collisions is the subsequent appearance of

lithium population in the |1, 0〉 state which we detect using a combination of Stern-Gerlach
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Figure 3.24.: Lithiumobservables of an initial sodiumpopulation ratio (η0) scan, abso-
lute (left) and relative (right) population of internal states as a function
of η0, taken after (tevo = 30 ms). The SCC signal (NLi,0) displays a clear reso-

nance feature with an asymmetric shape which is characterized by a steep slope

towards lower values of η0 and a tail-like shape towards higher values of η0. The

maximum atom transfer to |1, 0〉 amounts to about 8% of the total lithium atom

number. Marker represent the mean and the errorbars the standard error on the

mean.

separation and absorption imaging after time of �ight.

Furthermore it was demonstrated how we generate large datasets. We do so by performing

parameter scans, which is running the same experimental sequence repeatedly while changing

one speci�c parameter from shot to shot. The parameters of interest for the investigation

of spin changing collisions are the evolution time tevo between initialization quench and

readout, the initial sodium state population ration η0 as set by the initializations quench, and

the magnetic o�set �eld B at which the SCC experiments are performed.

We showed how we postprocess the acquired data. We apply a defringing algorithm

to the absorption images of lithium to reduce speci�c systematic noise on the absorption

images caused by interference fringes in the optical imaging system. The observables of the

experiments are the absolute and relative internal state population of sodium and lithium.

We determine them by cropping the absorption images in the dedicated location of atomic

signal after the Stern-Gerlach separation and integrating the atomic signal in those areas. In

addition, we have to postselect the data of large parameter scans due to outliers in the data

that are caused by malfunctions of the experimental system. Those outliers appear typically as

strongly reduced atom numbers in any of the species and can easily be detected and excluded

by threshold �lters.

Typical data for parameter scans were presented. Scans of tevo are characterized by an

initial rise of NLi,0 on the order of a few tens of seconds followed by oscillations which are

damped. The maximum population transfer of lithium into the |1, 0〉 state due to SCC amounts

only to several percent of the total atom number. Scans of η0 at �xed tevo are characterized by

an asymmetrical resonance feature with a steep edge at smaller η0 and a tail like behaviour

at larger η0. Both scans provide clear evidence for heteronuclear spin changing collisions
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between sodium and lithium.
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4. Gauge invariance in ultracold atoms
- the experimental building block

In chapter 2 we proposed a one dimensional U(1) lattice gauge theory with bosonic matter.

We have put forward a clear roadmap for the experimental implementation of this lattice

gauge theory in cold atom mixture experiments. The cornerstone of this implementation is

the elementary building block, see section 2.4.3 which entails degrees of freedom for both

matter �eld and gauge �eld. Furthermore, the building block comprises all necessary gauge

invariant interactions between matter �eld and gauge �eld and can therefore be considered

as a minimal gauge theory with reduced dimensionality. Our proposed construction of an

extended lattice gauge theory is based on repetitions of such building blocks.

In this chapter we show that our experimental system is a faithful representation of the

building block model. To this end we study the characteristic dynamics that emerge in

the framework of the building block. For this purpose we numerically solve the equations

of motion resulting from Hamiltonian 2.76 in the mean �eld approximation. Our goal is to

determine the distinct properties that characterize these dynamics in order to make qualitative

and quantitative comparisons to the measurements we performed in our experiment. We

therefore investigate the behaviour of the building block via the observable Np/N = (Lz,L +
LL)/NL = NL,0/NL and as a function of time, Lz,N(0)/LN and B, which is equivalent to

the experimental parameters scans of tevo, η0 and B as introduced in section 3.6.2. For this

study we make an ab initio estimate for the building block parameters (χth
,λth

and ∆th
)

based only on experimental input parameters and wave-functions determined by imaginary-

time propagation of the Gross-Pitaevskii equation corresponding to the full microscopic

Hamiltonian.

After identifying the characteristics of the building block dynamics we compare these

�ndings with our experimental measurements on heteronuclear spin changing collisions

between sodium and lithium. In particular we made use of the high tunability of our experi-

ment to study the dynamics and characteristic resonance features of spin changing collisions

across a wide parameter range. We compare the experimental data to the building block

dynamics in the mean �eld approximation and show that the resonance characteristics of

spin changing collisions are perfectly described by this model and numerically determined,

best �tting building block parameters.

We further �nd that the experimentally observed oscillations in the spin population are

damped compared to the mean �eld prediction, however, show good agreement with the

model when we incorporate a phenomenological damping term. The observed damping has

various origins which we discuss in detail and address the e�ects that potentially compromise

gauge invariant interaction and point out methods to overcome them.
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The �ndings and data presented in this chapter are partly based on [36], however, in the

current work updated calibration and data treatment routines were used, leading to slight

variation of some numerical values. The theoretical framework of the building block has

been mainly developed by T. V. Zache. The analysis of the experimental data, particularly the

numericl determination of best �tting parameters has been performed by myself.

4.1. Mean field approximation of the building block
In this section we introduce the numerical mean �eld approach that we use to describe

the experimental �ndings both qualitatively and quantitatively. Moreover, this profound

theoretical model provides predictions in parameter regimes which have not been explored

experimentally.

4.1.1. Mean field equations of motion
We start out with the building block Hamiltonian

HBB/~ = χL̂2
z,N +

∆

2

(
b̂†L,0b̂L,0 − b̂

†
L,1b̂L,1

)
+ λ

(
b̂†L,0L̂−,N b̂L,1 + b̂†L,1L̂+,N b̂L,0

)
. (4.1)

In particular we are going to demonstrate that this Hamiltonian is a faithful representation of

our experimental system. For this purpose we solve the dynamics arising form HBB in the

mean �eld limit and compare them to our experimental �ndings. For convenience we �rst

write the Hamiltonian in terms of spin components for both species

HBB/~ = χL̂2
z,N + ∆L̂z,L + 2λ

(
L̂x,N L̂x,L + L̂y,N L̂y,L

)
, (4.2)

where we used the relations L̂+ = L̂x + iL̂y and L̂− = L̂x − iL̂y. Note that we are using

the Schwinger boson representation to relate the occupation number of the internal states

of the atoms to spins via L̂z,s = 1
2
(N̂s,0 − N̂s,1) with total spin length Ls = Ns/2, where

s ∈ {N,L}.
In the next step we assume the mean �eld limit in which the spin operators are replaced

by their expectation value
1

[73]. This is a reasonable approximation, since the total atom

numbers in our BECs are in the order of 105
for sodium and 104

for lithium and quantum

�uctuations can be neglected at high occupation numbers. We then compute the equations

of motion for the spin components Li,s with i ∈ {x, y, z} using the Ehrenfest theorem [109,

1
We use the notation withoutˆto represent the expectation value of an operator
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4.1. Mean �eld approximation of the building block

110]. This leads to the following set of coupled di�erential equations

∂tLx,N = −2χLz,NLy,N + 2λLz,NLy,L , (4.3a)

∂tLy,N = 2χLz,NLx,N − 2λLz,NLx,L , (4.3b)

∂tLz,N = 2λ(Ly,NLx,L − Lx,NLy,L) , (4.3c)

∂tLx,L = −∆Ly,L + 2λLz,LLy,N , (4.3d)

∂tLy,L = ∆Lx,L − 2λLz,LLx,N , (4.3e)

∂tLz,L = 2λ(Ly,LLx,N − Lx,LLy,N) . (4.3f)

We solve this set of equations numerically for building block parameters that we determine

by either making an ab initio estimate (see section 4.1.3) or by determining parameters that

lead to best agreement with the experimental data (see section 4.2).

The initial conditions are chosen according to the settings we use in the experimental

measurements i.e. (Lx,L, Ly,L, Lz,L)(t = 0) = (0, 0,−1) × LL and (Lx,N , Ly,N , Lz,N)(t =
0) = (cos θ, 0, sin θ) × LN , where θ ∈ [−π, π] is chosen in accordance to the quench that

initiates the dynamics. We chose the observable Np/N = (Lz,L + LL)/NL = NL,0/NL to

characterize the resulting mean �eld building block dynamics, as it is the same observable we

use in the experimental measurements.

4.1.2. Microscopic origin of the building block parameters
The dynamics that emerge from the equations in 4.3 genuinely depend on the building block

parameters χ, ∆ and λ. In fact, time dependent change in Lz,L is only expected for a certain

constrained parameter regime. To get a better understanding of how the building block relates

to the cold atom system on a microscopic level, we recall the de�nitions of the building block

parameters from section 2.4.2 and 2.4.3. The parameter λ is most straightforwardly to grasp

from a microscopic point of view

λ = XSCC = gSCC
∫
x

Φ∗N,1Φ∗L,1ΦN,0ΦL,0 . (4.4)

What enters lambda is on the one hand the overlap integral between the sodium and lithium

cloud and on the other hand the interaction strength gSCC
. The interaction strength is a �xed

value for our experiments, since it is determined by the scattering length aSCC
, which we

consider constant in the range of magnetic �elds that we operate the experiments in, see table

2.1. The spatial modes of our atomic clouds are determined by many factors, but mainly by

the trapping potential and the total atom numbers. Since those parameters are not actively

scanned in our experiment, λ is generally considered a �xed parameter.

The parameter χ is similar to λ a combination of overlap integrals and interaction strengths

χ = −
[
(XN

11 −XN
00) + (XL

11 −XL
00) + (XNL

11 −XNL
00 )

]
= −χN − χL − χNL . (4.5)
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In total six overlaps and interaction strengths enter into χ. By the same reasoning as in the

case above, χ is considered to be �xed in the regime we operate our experiment in.

The parameter ∆ includes the most contributions from di�erent physical e�ects

∆ = −
{ (

EL,1(B0)− EL,0(B0)
)
−
(
EN,1(B0)− EN,0(B0)

)︸ ︷︷ ︸
(I.)

(4.6)

+ χL(N̂L − 1)− χN(N̂N − 1) +
1

2
χNL(N̂N − N̂L)︸ ︷︷ ︸

(II.)

+ 2M

(
−χL −

1

2
χNL

)
︸ ︷︷ ︸

(III.)

}
.

The �rst term (I.) describes the relative di�erence in energy of the magnetically sensitive

substates of both species due to the Zeeman e�ect. As described in section 3.5 this term

approaches zero at an o�set magnetic �eld of B0 ≈ 2G. This term allows for very controlled

tunability in the experiment. The second term (II.) contains the same overlap integrals as in

the parameter χ. In addition this term scales with the total atom number of each species as

well as the di�erence in total atom number. In general (II.) can be considered as a density

or mean �eld shift that causes a detuning e�ect to the zero condition of the energy splitting

in (I.). The last term (III.) scales with the magnetization M = Lz,N + Lz,L which we can

experimentally control very conveniently, since Lz,N = 1
2

(NN,0 −NN,1). Scanning the initial

internal state population ratio of sodium η0 corresponds to a scanning of term (III.). It is

important to stress here thatM depends on the initial internal state population ratio of lithium

as well. However, we can treat it as a �xed o�set here, since all experiments are initialized

with Lz,L = −NL/2 . For convenience we rewrite the expression for ∆ in equation 4.6 to

point out that this parrameter has three contributions. One that can be considered a �xed

value, one that is tunable in the experiment by varying the initial sodium state population and

one that is as well tunable in the experiment and scales with the applied magnetic �eld o�set

∆ = ∆0 + ∆LLz,N(0)/LN + ∆B(B −B0)/B0 (4.7)

= ∆0 + ∆L(2η0 − 1) + ∆B(B −B0)/B0 ,

where ∆0 describes the �xed o�set contribution to D, ∆L describes the contribution that

scales with magnetization and ∆B describes the contribution that scales with the applied

magnetic o�set �eld B. Here we have chosen B0 = 2.118G for convenience.

We have examined the physical origin of the parameters that are contained in the building

block Hamiltonian. In the next step we compute ab initio estimates for those parameters in

a physically meaningful regime and investigate the ensuing dynamics resulting from those

parameters using the equations of motion 4.3 derived in the previous section.

4.1.3. Ab initio estimates of building block parameters
In this section we determine building block parameters χ, ∆ and λ that are reasonable for our

system from a physical point of view. We will do a �rst principle estimation of the parameters,
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4.1. Mean �eld approximation of the building block

that is making predictions based on a few experimental parameters of the system and not

relying on the actual spin changing collisions measurements.

The main task of this estimation is to determine the density distributions of the two species

from which the overlap integrals are computed. They enter into the three parameters in

equations 4.4 - 4.6. In situ images of the clouds, which are in principle a direct measurement of

the projected density distribution are in our case not reliable with our usual absorption imaging

procedure. The high peak densities due to high atom numbers and strong con�nement lead to

opaqueness of the cloud to the resonant light beam and inhibit quantitative evaluation of the

cloud, even for imaging intensities much higher than Isat
0 . We therefore rely on measurements

which are performed in TOF, which our imaging procedure is optimized to.

We determine the density distribution of the sodium and lihtium cloud by computing the

ground state wavefunction by imaginary-time propagation[111–113] of the Gross-Pitaevskii

equation 2.1.2 corresponding to the full microscopic Hamiltonian 2.40. As experimental input

parameter we use the experimentally determined trapping frequencies 3.13-3.16 and the

total atom numbers for sodium and lithium NN = 300× 103
and NL = 35× 103

. The trap

frequencies are used to determine the external trapping potential. The total atom numbers

are used for the normalization condition for the wavefunction. As the initial guess for the

iteration of the wavefunctions we choose the Thomas Fermi pro�le for sodium and lithium

i.e. we consider homonuclear interactions and disregard heteronuclear interactions. For a

starting point this is a reasonable assumption as it provides a pro�le in the right order of

magnitude. However, as it will be shown the interaction between sodium and lithium has a

major in�uence on the exact density pro�le of both clouds and the resulting overlap integrals.

In Fig. 4.1 we show results of the imaginary time propagation. The colorplots represent the

predicted column density for sodium and lithium projected on the respective spatial direction.

For this simulation we used the following numerical parameters. We used a three dimensional

grid with (256, 256, 128) grid points along the (x, y, z) directions. The spacing between two

grid points corresponds to a physical length of 0.15 µm. The reduced grid points along the

z direction accounts for the stronger con�nement in this direction and the subsequently

smaller spatial extent of the clouds in this direction. As a convergence criterion we chose a

relative change below 1× 10−5
for the chemical potential of sodium and lithium between two

consecutive iterations. The simulation corresponding to the data shown in Fig. 4.1 converged

at a chemical potential of µN/h = 5263 Hz for sodium and µL/h = 3739 Hz for lithium.

The characteristic feature that is seen from those pro�les is that the interactions between

sodium and lithium cause the clouds to repell each other resulting in an indent in the sodium

distribution at the position of the lithium cloud. Furthermore, the lithium cloud is pushed

away by the sodium resulting in an upshift of the lithium cloud against gravity direction.

Even though the peak density of the ground state wavefunctions of the individual species is

slightly higher compared to the Thomas Fermi case, the overlap between sodium and lithium

is smaller due to the displacement of both clouds.

The line plots in Fig. 4.2 are the corresponding integrated signal of the column densities.

Solid lines are the results of the imaginary time propagation, dashed lines correspond to the

Thomas Fermi pro�les which were used as the initial pro�les for the iteration. Having deter-

mined the density distributions of sodium and lithium, the corresponding overlap integrals

are computed numerically. From those we compute the following ab initio building block
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Figure 4.1.: Column densities of lithium (top) and sodium (bottom) determined from
imaginary time propagation of the Gross-Pitaevskii equation. As experi-

mental input parameters we used NN = 300× 103
and NL = 35× 103

and the

trapping frequencies determined in section 3.4.1. As initial start wavefunction we

used Thomas Fermi pro�les of the individual species (disregarding heteronuclear

interactions). Further details regarding the numerical methods are described in

the main text. The most distinct feature that is seen in the trapped mixture is the

repulsive interaction between the two species. This results in a density indent of

sodium around the position of the lithium cloud. Moreover, the lithium cloud is

pushed signi�cantly upwards against gravity compared to its trapping potential

center position.

parameters

χth = 20.88 mHz (4.8a)

λth = 57.7 µHz (4.8b)

∆th
0 = −75.2 Hz (4.8c)

∆th
L = 6.324 kHz (4.8d)

∆th
B = −1.669 kHz . (4.8e)
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4.1. Mean �eld approximation of the building block

Figure 4.2.: Line densities of lithium (top) and sodium (bottom) corresponding to the
numerical data shown in Fig. 4.1. Dashed lines corespond to the line pro�les

of the Thomas Fermi pro�les that were used as the initial start wavefunction for

the imaginary time propagation.

The parameter ∆th
B is calculated by linearizing the energy di�erence ∆EL − ∆EN as a

function of the magnetic o�set �eld B around B0 = 2.118G, see Fig. 3.12.

4.1.4. Building block dynamics from ab initio estimates
We numerically solve the equations of motion 4.3 with parameters 4.8. The initial con-

ditions are chosen according to the settings we use in the experimental measurements i.e.

(Lx,L, Ly,L, Lz,L)(t = 0) = (0, 0,−1)×LL and (Lx,N , Ly,N , Lz,N)(t = 0) = (cos θ, 0, sin θ)×
LN , where θ ∈ [−π, π] is chosen in accordance to the quench that initiates the dynamics.

We chose the observable Np/N = (Lz,L + LL)/NL to characterize the resulting mean �eld

building block dynamics, as it is the observable we use in the experimental measurements.

Time evolution

In Fig. 4.3 we display the time evolution ofNp/N for various values of η0 ranging over the full

span of tunability. For convenience we chose B = B0 to not take into account the magnetic
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Figure 4.3.: Mean �eld building block dynamics of observableNp/N for various val-
ues of η0. The time evolution of Np/N resulting from numerically solving

equations 4.3 with the ab initio estimates of the building block parameters 4.8.

The used magnetic o�set �eld is B = B0 = 2.118 G. The time dependence is

characterized by non harmonic oscillations with frequency and amplitude strongly

depending on η0, whereby the amplitude is zero at the extrema of η0. As a function

of η0, the oscillations display a discontinuity in the region between η0 = 0.25 and

η0 = 0.3, resulting in a sudden change of amplitude, frequency and the functional

shape of the oscillations.

�eld dependence yet. The time dynamics of Np/N are characterized by clearly non-harmonic

oscillations with varying period and amplitude, which depend strongly on η0. The timescale

of the oscillations is tens of milliseconds. The amplitude is vanishing when η0 approaches

zero, and has a maximum value of about 0.18 at η0 ≈ 0.3. As a function of η0, the oscillations

display a very characteristic resonance feature. This feature is characterized by a sudden

functional change of the oscillations when reaching a critical value of η0 = ηcrit ≈ 0.27, see

Fig. 4.4 and 4.5. Below ηcrit the oscillations are of low amplitude and increase in amplitude

and decrease in frequency with increasing η0. When crossing ηcrit a discontinuity occurs

which is re�ected in a sudden increase of amplitude, a sudden decrease of frequency, and

a change of the functional shape of the oscillations. For further increasing values of η0 the

oscillations continue to gradually decrease in amplitude.
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4.1. Mean �eld approximation of the building block

Resonance

We visualize the resonance behaviour in Fig. 4.4 by displaying the amplitude as a function of η0.

Clearly seen is the asymmetric shape of the resonance with a steep edge around ηcrit ≈ 0.27

0.0 0.2 0.4 0.6 0.8 1.0
0

0.00

0.05

0.10

0.15

0.20
N
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value at 10 ms

Figure 4.4.: Maximum amplitude ofNp/N as a function of η0. The parameter settings

are equivalent to the ones in Fig. 4.3. A clear resonance features is seen charac-

terized by a discontinuity around η0 = ηcrit ≈ 0.27 where a sudden change in

amplitude occurs. In addition the curve is shown where instead of the amplitude,

the value of Np/N at a �xed time of 10 ms is recorded with the idea to sample

the maximum of the �rst fringe. This curve is only an approximation to the exact

amplitude curve, since the maximum of the �rst fringe moves in time due to the

frequency varying as a function of η0. Nonetheless, this approximation captures

all important qualitative and to a degree the qualitative features of the resonance.

Since the method of sampling a single point at a �xed time is much less ressource

heavy, it is the method used to generate the experimental resonance data.

and a long tail towards higher values of η0. In addition to displaying the amplitude of the

oscillations we display the value of Np/N that is reached after 10 ms. The idea is to sample

the resonance by measuring the maximum of the �rst oscillation. As expected, this method is

only an approximation to the exact resonance, since the maximum value of the �rst oscillation

varies due to the frequency change that is associated with varying η0. The advantage of only

sampling a maximum point lies in the great reduction of necessary resources, since only

a single point has to be recorded compared to sampling at least one whole fringe. For the

numerical simulation of the dynamics this e�ect is negligible, however, for the experimental

measurements it makes a signi�cant di�erence, since about an order of magnitude more data

acquisition would have been necessary. Therefore, we sampled the oscillations only at one

point tor record the resonance data.

In Fig. 4.5 we visualize the behaviour ofNp/N around ηcrit by displaying the same dynamics

as shown in Fig. 4.3 but now for values of η0 around the critical value. In this “zoom-in” the

non harmonicity of the oscillations becomes most apparent and the discontinuity at this point

is clearly seen as a sharp spike that emerges out of the �at oscillations at smaller values of η0.

The origin of the discontinuity is a strict consequence of the nonlinear coupling that is an
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Figure 4.5.: “Zoom-in” of Fig. 4.3 around η0 = ηcrit. The smaller step size of η0 reveals the

exact changes associated with the discontinuity. At this level the non harmonicity

of the oscillations is clearly seen.

inherent feature of the building block Hamiltonian. For more detailed information and an

alternative interpretation of this discontinuity the interested reader is referred to [43].

Resonance behaviour as a function ofB

So far we have considered the dynamics and resonance features of the building block at a �xed

magnetic �eld of B = 2.118G. However, the magnetic o�set �eld o�ers another convenient

way for experimental tunability via the term ∆B(B −B0)/B0 that enters in ∆. To show the

depenence of the magnetic �eld on the building block dynamics, we evaluate the resonance

as in Fig. 4.4 for various magnetic o�set �elds B. The plots are shown in Fig. 4.6. Around

B = B0 a change in mangetic �eld causes the resonance to shift. Reducing B results in a

shift of ηcrit towards smaller values and increasing B results in a shift of ηcrit towards higher

values. When the magnetic �eld is tuned su�ciently far from B0, i.e. B0 − B ≈ 400G or

B −B0 ≈ 250G, the signal of Np/N is vanishing for all possible values of η0.

The reduction of Np/N as a function of B can easily be understood on a microscopic level.

Tuning B results in variation of the energy splitting of the atomic levels via the Zeeman

e�ect. Therefore, a B value that is tuned su�ciently far from B0 results in supressing the

spin changing collisions, as it adds an energy penalty to the process.

4.1.5. Summary
In this section we have established a theoretical model that describes the building block

dynamics in the mean �eld limit. We studied the emerging dynamics of this system across

a wide range of parameters which are available in the experiment as well. We found that

the system shows very distinct features of which the most prominent one is a discontinuity

in the functional behaviour of the temporal oscillations of the observable Np/N . These

characteristic signatures will allow to identify our experimental measurements as a faithful

implementation of the building block.

84



4.1. Mean �eld approximation of the building block

0.0

0.1

0.2
N

P/N
B = B0 = 2.118G B = B0 

+ 50mG

0.0

0.1

0.2

N
P/N

B = B0 - 100mG B = B0 
+ 100mG

0.0

0.1

0.2

N
P/N

B = B0 - 200mG B = B0 + 150mG

0.0

0.1

0.2

N
P/N

B = B0 - 300mG B = B0 + 200mG

0.0 0.2 0.4 0.6 0.8 1.0
0

0.0

0.1

0.2

N
P/N

B = B0 - 400mG

0.0 0.2 0.4 0.6 0.8 1.0
0

B = B0 + 250mG

Figure 4.6.: Maximum amplitude ofNp/N as a function of η0 for various magnetic
o�set �elds B. The individual resonance curves are plotted analogously to

Fig. 4.4. The left column shows decreasingB from top to bottom, the right column

shows increasing B from top to bottom. Varying of B results in a continuous

shift of the position of the discontinuity ηcrit. The peak of Np/N vanishes when

B is reduced to about B0− 400 mG and when B is increased to B0 + 200 mG. In

terms of varying B, the resonance shows asymmetric behavour as well since the

reduction in amplitude is gradually when reducingB and sharper when increasing

B.
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4.2. Experimental measurements
In the previous section we studied the dynamics that emerge from the building block in the

mean �eld approximation and we have identi�ed distinct features that characterize these

dynamics. In this section we will show that these features are found in our experimental

measurements as well, clearly identifying it as an experimental realization of a building block.

We �rst present time evolution data and introduce a formalism that can be implemented into

the equations 4.3 to account for the reduced visibility of the oscillations in the experimental

data. Using this method we numerically determine best �tting building block parameter that

remarkably describe the experimental data.

We then show that the determined building block parameter are consistent with experi-

mental resonance data that were recorded at the same magnetic o�set �eld B. Our recorded

resonance data display all characteristic features of the building block dynamics as a function

of both η0 and B. To emphasize even more the agreement between building block and experi-

mental resonance data we �nd building block parameter that perfectly describe the resonance

data even without the necessity to account for experimental visibility loss of the oscillations.

This is possible due to the resonance data being insensitive to the experimental visibility loss.

We compare the building block parameter that we determine via ab initio estimation in

section 4.1.3 and via �tting to the experimental data. We discuss the potential sources that lead

to deviation between the two parameter sets as well as sources that lead to the experimental

visibility loss of the oscillations.

4.2.1. Experimental time evolution measurements
We have recorded a total of three time evolution datasets at a magnetic o�set �eld of

B = B0 = 2.118 G. The data sets are tagged by the date they were recorded on. The data

sets from 18.04.2019 and 23.04.2019 were recorded with considerably long time inbetween,

during which the experiment was turned into standby mode. Nonetheless the experimental

benchmark values for the performance of the experiment on these two days were compatible

and the same value for η0 has been used on both days. We therefore combine the two data

sets to increase the overall number of data points as well as to improve the sampling of the

scanned parameter tevo. Table 4.1 summarizes all important parameter of the three mentioned

time evolution data sets. Further details on the experimental procedure, data generation and

post processing are found in section 3.6.3. Further statistics information on all experimental

data sets presented in this section are found in Appendix A.1. The observable NL,0/NL that

corresponds toNp/N as introduced in the previous section is plotted as a function of evolution

time tevo for the datasets in Fig. 4.7. Similar to the numerical data in Fig. 4.3 the experimental

data shows non harmonic oscillatory behaviour on the order of tens of milliseconds. However,

the experimental oscillations are damped at later times. Various e�ects and mechanisms come

to mind that can cause such form of reduced visibility:

• �uctuations in experimental parameters from shot to shot leading to �uctuations in the

building block parameters.
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data set 18.04.2019 data set 24.04.2019

and 23.04.2019

total shot number 541 211

magnetic �eld B [G] 2.118± 0.002 2.118± 0.002

η0 0.407± 0.002 0.292± 0.002

Table 4.1.: Characteristic properties of the time evolution data sets. Errors represent

the standard error of respective parameter.
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Figure 4.7.: Experimental time evolution measurements for two di�erent values of
η0 (left and right) and the respective building block dynamics with best
�tting parameters. The observableNp/N is plotted as a function of the evolution

time tevo. The experimental data (blue circles) displays an initial onset of Np/N
followed by damped oscillations at later times. The black curve is the result of

numerically solving the set of equations of motion 4.9 with parameters λexp
, χexp

and ∆exp
that best �t the experimental data. The shaded area represents the 68%

con�dence interval from bootstrap resampling of the �tted parameters. The grey

dashed line marks the value at tevo = 30 ms as used for generating the resonance

data presented in section 4.2.2. Errorbars on the experimental data points indicate

the standard error on the mean.

• atom loss from the trap during the evolution time, especially in the |1, 0〉 state of sodium,

see section 3.6.3.

• quantum �uctuations of the initial state.
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4. Gauge invariance in ultracold atoms - the experimental building block

• spatial dynamics of both atomic clouds within the trap that are not fully frozen out.

• �nite temperature e�ects since the clouds are only partially condensed.

A more detailed discussion about each of these points is provided in section 4.2.4, where

we elaborate on the impact that each e�ect has on the resulting dynamics and how it can

potentially be overcome. For now we disregard the exact origin of the damping and treat

it from a phenomenological point of view, generalizing all possible in�uences simply as a

decoherence e�ect. To this end we use the Lindbladian formalism which generally allows

for the description of non-unitary evolution of quantum systems [114, 115]. Formally, we

introduce a decoherence term into the equations of motion 4.3 that accounts for the damping

mentioned above, resulting in the modi�ed equations of motion

∂tLx,N = −2χLz,NLy,N + 2λLz,NLy,L −
γ

2
Lx,N , (4.9a)

∂tLy,N = 2χLz,NLx,N − 2λLz,NLx,L −
γ

2
Ly,N , (4.9b)

∂tLz,N = 2λ(Ly,NLx,L − Lx,NLy,L) , (4.9c)

∂tLx,L = −∆Ly,L + 2λLz,LLy,N −
γ

2
Lx,L , (4.9d)

∂tLy,L = ∆Lx,L − 2λLz,LLx,N −
γ

2
Ly,L , (4.9e)

∂tLz,L = 2λ(Ly,LLx,N − Lx,LLy,N) , (4.9f)

with the introduced decoherence timescale 1/γ, which is estimated by �tting an expo-

nential decay to the envelope of the data shown in Fig. 4.7, yielding 1/γ = 41± 13 ms, i.e.

γ/2π = 3.9± 1.2 Hz. A more rigorous derivation of equations 4.9 is found in [43].

We use this modi�ed set of equations to numerically determine best �tting building block

parameters λexp
, χexp

and ∆exp
that best describe the experimental time evolution data shown

in Fig. 4.7. The respective �tting results are summarized in table 4.2. The curves corresponding

to the �tted parameters are plotted in Fig.4.7, clearly illustrating that the experimental data is

well described by the model given by the equations 4.9. An important point to mention is

that �tting the experimental data did not converge then using simple damped trigonometrical

functions, stressing that the physics involved in our experiment cannot be described by a

Rabi-type coupled two level system [85].

In terms of the �tted parameters as presented in table 4.2 the results are consistent between

the two data sets, i.e. the parameters χexp
and λexp

are compatible within errorbars and only

∆exp
varies between the two data sets as expected for a change of η0 according to relation 4.7.

Using this relation and extrapolating between the two measured values of ∆exp
, in addition

we determine the parameters ∆exp
0 and ∆exp

L .
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data set 18.04.2019 data set 24.04.2019

and 23.04.2019

χexp/2π [mHz] 9.52± 0.09 9.52541± 0.00023

λexp/2π [µHz] 17.6± 1.0 18.7± 0.8

∆exp/2π [Hz] −546± 4 −1218

∆exp
0 /2π[Hz] 2± 7

∆exp
L /2π[kHz] 2.919± 0.017

Table 4.2.: Overview of the building block parameters determined by the �tting rou-
tine based on the equations in 4.9 and the time evolution data presented in
Fig. 4.7. The values for λexp

and χexp
are (as predicted by the building block model)

fully compatible within errorbars. As the two time evolution measurements were

recorded at two di�erent values of η0, the �tted values for ∆exp
di�er accordingly.

By using these two values for η0 and ∆exp
we determine the parameters ∆exp

0 and

∆exp
L using relation 4.7. Errors represent the standard error of respective parameter

as provided by the covariance matrix of the least squares �tting routine. No error

is indicated for ∆exp
from 24.04.2019 as it is negligibly small.

4.2.2. Experimental resonance measurements
Complementary to the time evolution data presented in the previous section we have recorded

an η0 scan at the same magnetic �eld of B = B0 (recorded on 25.04.2019). Further details

on the experimental procedure of generating this type of data set is found in section 3.6.4.

Additional statistics information on the experimental data sets are found in Appendix A.1.

Fig. 4.8 displays the data of this particular scan by plotting Np/N as a function of η0. The

experimental resonance scan shows all features of the building block resonance behaviour

as previously found with ab initio parameters, (see Fig. 4.4), i.e. the functional shape with a

steep edge at lower values of η0 and the long tail towards higher values of η0.

This scan allows for very useful crosschecking of our experimental measurements. The

time evolution data shown in Fig. 4.7 is partially incorporated in the data shown in Fig. 4.8

and vice versa. In particular the values for η0 ≈ 0.4 and η0 ≈ 0.29 in Fig.4.8 correspond to

respective time evolution data at tevo = 30 ms. This correspondence is indicated in all three

plots by dashed lines. In terms of this relation the experimental data of time evolution and

resonance scans are fully compatible. This �nding further con�rms that the experimental η0

scans are a valid measurement to determine the discontinuity feature that has been proven to

be a characteristic feature arising from building block dynamics.

Analogously to the �tting procedure described in the previous section we numerically �t

the resonance data with the model described by the set of equations 4.9 for varying values

of η0 and sampling the emerging dynamics at tevo = 30 ms according to the experimental
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Figure 4.8.: Experimental resonance measurement and the respective building block
resonance curve based on best �tting parameters. The observable Np/N
plotted as a function of η0. The experimental data (blue circles) display a clear

resonance feature characterized by a steep edge around η0 ≈ 0.2 and a long tail

towards higher values of η0. The black curve is the result of numerically solving

the set of equations of motion 4.9 and sampling the resulting curves at 30 ms. The

parameters λexp
, χexp

, ∆exp
0 and ∆exp

L were chosen to best �t the experimental

data. The shaded area represents the 68% con�dence interval from bootstrap

resampling of the �tted parameters. The grey dashed lines mark the values of η0

at which the time evolution data shown in Fig. 4.7 were recorded. Errorbars on

the experimental data points indicate the standard error on the mean. Datapoints

without errorbars represent experimental realizations of a single value and not a

mean, see Appendix A.1.

protocol. The so determined best �tting building block parameters are summarized in table

4.3 and the corresponding curve is shown in Fig. 4.8 once again con�rming the validity of

the used model to describe the experimental data. The best �tting parameters from the time

evolution measurements (table 4.2) and the resonance measurements (table 4.3) are fully

compatible within errorbars (with exception of λexp
at η0 = 0.292).

The data presented so far has been recorded at a �xed magnetic o�set �eld of B = 2118 G.

To make full use of the tunability of the building block, we performed resonance measurements

analogously to the data shown in Fig. 4.8 at various values of B. This data is shown in Fig. 4.9.

Once again one identi�es every qualitative feature of this kind of B �eld scan as previously

found in Fig. 4.6. With varying value of B the position of the steep edge moves in terms of η0

to smaller values for decreasing B and to higher values of η0 for increasing B. Furthermore,

the peak value of Np/N reduces with reduced B until almost no distinct peak structure is

seen at B = 1.968 G.
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Figure 4.9.: Experimental resonance measurements recorded at di�erent magnetic
o�set �eldsB. Resonance scans analogous to Fig. 4.8 for di�erent values of B.

For reducing values of B the experimental data (blue circles) show a shift of the

steep edge of the resonance to smaller values of η0. Furthermore, a reduction of

B is associated with a reduction of the peak value of Np/N . The black curves are

the results of our building block model in analogy to the curve shown in Fig. 4.8.

Note that for all curves we used the building block parameter λexp
, χexp

, ∆exp
0 and

∆exp
L as determined from the �t to the data at B = B0. For the data at B 6= B0

we used the magnetic �eld dependence term ∆B(B −B0)/B0 from equation 4.7,

with ∆B chosen to best �t all data sets.
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data set 25.04.2019

χexp/2π [mHz] 9.559± 0.010

λexp/2π [µHz] 16.7± 0.5

∆exp
0 /2π[Hz] 3.9± 2.1

∆exp
L /2π[kHz] 2.9168± 0.0015

Table 4.3.: Overview of the building block parameters determined by the �tting rou-
tine based on the equations in 4.9 and the resonance data presented in
Fig. 4.8. Errors represent the standard error of respective parameter as provided by

the covariance matrix of the least squares �tting routine. With only one exception

(λexp
at η0 = 0.292), these values are fully compatible with the �tted values from

the time evolution data, see table 4.2.

According to the building block model, all changes seen in the resonance plots at di�erent

values of B are governed by the single parameter ∆B , see equation 4.7. To emphasize that all

resonance measurements are consistent with this model, we use the values for the building

block parameters χexp, λexp,∆exp
0 , and ∆exp

L as determined by the �t at B = 2118 G, see table

4.3, to describe all resonance data shown in Fig. 4.9, only using the term ∆B(B − B0)/B0

to account for changes in ∆ due to the magnetic o�set �eld B, with ∆B determined to

best match all resonance data at the same time. The best �tting value for ∆B is found to

be ∆B/2π = (−517.10 ± 0.28) Hz. The so determined curves are plotted together with

experimental data in Fig. 4.9, showing an agreement that is remarkable, considering the

complexity of the underlying model based on the building block equations of motion 4.9 and

the fact that only the �tted parameter ∆B was used to describe the additional �ve resonance

scans taken at di�erent B.

With respect to the measurements at di�erent magnetic o�set �elds B, the parameter ∆exp
0

has an intuitive interpretation. It is a constant value for the building block in the sense that

it is not changed by the parameters η0 or B. The physical origin of this constant Parameter

are contributions of various mean �eld shifts, see equation 4.6. For the �tting routine we

have chosen the zero point of the magnetic �eld dependence to be B0 = 2.118 G, which is

165 mG higher than the zero magnetic �eld determined from the single particle evaluation

by the Breit-Rabi formula, see Fig. 3.12. By choosing B0 we therefore implicitly absorbed the

e�ect of the mean �eld shifts. The �tted value of ∆exp
0 being close to zero is con�rmation that

with our choice of B0 we have anticipated the correct value for the mean �eld shift in this

model which amounts to a value of approximately h · 107 Hz.
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4.2.3. Comparison of ab initio and best fi�ing parameter
When comparing our ab initio estimates for the building block parameters 4.8 with the

experimentally determined ones from table 4.3 one gets

χth/χexp ≈ 2.2 , (4.10a)

λth/λexp ≈ 3.5 , (4.10b)

∆th

0 /∆
exp

0 ≈ 19 , (4.10c)

∆th

L/∆
exp

L ≈ 2.2 , (4.10d)

∆th

B/∆
exp

B ≈ 3.2 . (4.10e)

The values of the ab initio estimates are with exception of ∆0 in the same order of magnitude.

Furthermore all ab initio estimates are larger than the experimentally determined ones. Most

important, the signs of the values agree, leading to a correct prediction of the resonance shift

as a function of B and η0 with regard to the experimental data. Comparing the time evolution

measurements with the dynamics emerging from the ab initio parameters in Fig. 4.1.4 one can

see that the experimental data have about a factor of two slower oscillation frequency and

about a factor two smaller amplitude. However, one can clearly see qualitative similarities, for

instance the non harmonic behaviour of the oscillations that re�ects in the strongly curved

and “pointy” looking maxima for η0 ≈ 0.29.

There are multiple reasons for the discrepancy of ab initio estimates and experimentally

determined values. First, the ab initio estimates were derived by assuming zero temperature

(Gross-Pitaevskii equation) and only a single spatial mode (see overlap integrals 2.52). As-

sumptions which are only partly ful�lled in the experiment. Second, the experimental input

parameter for deriving the density distributions by means of imaginary time propagation

have uncertainties which were not taken into account. Third, all e�ects that are incorporated

into our building block model via the decoherence term are not included in the ab initio

estimation of the building block parameters.

4.2.4. Decoherence e�ects present in the experimental building
block

A described in section 4.2.1 we incorporated a phenomenological decoherence term into the

mean �eld building block equations of motion 4.9 to account for the damping of oscillations

that we observe in the time evolution data. This modi�cation allowed for �nding building

block parameters that excellently describe all experimental �ndings.

In the following we will show that the inclusion of such a decoherence term is not only

justi�ed but strictly necessary to describe our system even in the absence of any experimental

imperfection, since undamped time evolutions are only expected to occur in the mean �eld

limit.
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Spatial dynamics of sodium

All experimental measuements are initialized by quenching sodium into a superposition of the

two magnetic substates |1, 1〉 and |1, 0〉, which corresponds to preparing a certain value of η0.

In addition to the state population the quench also initializes spatial dynamics in the sodium

cloud. In Fig. 4.10 we display the time of �ight density distribution of sodium after a quench

initialization to a value of η0 ≈ 0.5 as a function of evolution time and for two di�erent

total sodium atom numbers. The data is recorded after a Stern Gerlach separation and in the

absence of lithium in the trap. In the upper panel of Fig. 4.10 one can see a clear signature of

the spatial dynamics. The |1, 1〉 component develops a ring shaped structure while the |1, 0〉
component is compressed stronger and increases in density for the �rst few milliseconds of

the time evolution. For later interaction times the sodium components continue to perform a

breathing-type motion, where they oscillate between various shapes on a timescale of the

trapping frequencies. For the e�ects of the spatial dynamics at later evolution times, see

Fig. 3.22.

t = 8mst = 4mst = 0ms

sodium
1,0

1,1

[a
.u

.]
t = 10mst = 6mst = 2ms

sodium
1,0

1,1

[a
.u
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NN  ≈ 140 x 103

NN  ≈ 44 x 103

evolution time

Figure 4.10.: Averaged absorption images of sodium revealing signatures of the spa-
tial dynamics. An about equal superposition of sodium in the |1, 1〉 and |1, 0〉
is created and held in the trap for various evolution times tevo. Afterwards, we

apply our usual state sensitive readout, see Fig. 3.15. In this measurement lithium

is absent from the trap. In the case of higher total atom number (top row) the

|1, 1〉 component develops a ring shape structure as a function of time while the

|1, 0〉 component is visibly compressed, an observation which we attribute to the

spatial dynamics that occur after the superposition quench. In the case of reduced

atom number (bottom row) those kind of signature e�ects cannot be detected

visually. Note that the spin changing measurements that we presented in this

chapter were performed with a total sodium atom number of NN ≈ 300× 103
.

Those dynamics emerge from two di�erent physical e�ects, which are known as “poten-
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tial separation” [116, 117] and “sphase separation” or “immescibility” [53, 116, 117]. Both

e�ects arise from the fact that the ground state density distribution of an interacting BEC

is generally governed by the external trapping potential and the intra-species interaction

energy gj|Φj(x)|2, with j ∈ {0, 1}, see equation 2.43. In the case of a two-component bose

gas this can lead to situations where it is energetically favourable for the system that the

two components increase their spatial overlap (miscibility), or reduce their spatial overlap

(immiscibility). A criterion for miscibility is given by relation [53]

√
g11g00 < g2

10 , (4.11)

where we have used the index notation from section 2.4. If inequality 4.11 is ful�lled, the

system is miscible and if it is not ful�lled it is immiscible. In our case, the two components

|1, 1〉 and |1, 0〉 of sodium are immiscible, see table 2.1. The miscibility criterion holds even in

the absence of an external trapping potential, i.e. for a homogeneous system of two immiscible

components the ground state is comprised by two separated phases.

However, even for miscible components a redistribution of density of two components can

occur, when considering an external potential. Before the superposition quench all atoms

occupy the |1, 1〉 state in our experiment and the density distribution is governed by the

respective ground state of the system. By performing the sudden quench, the states |1, 1〉
and |1, 0〉 are populated, both having the spatial pro�le as the initial state before the quench.

As this spatial pro�le is not the ground state of the new two-component con�guration, the

system initializes a redistribution of the components density, where due to the asymmetry

g11 > g00 the |1, 1〉 component favours the edges of the trapping potential as the density in

that region is lower.

In general both mentioned e�ects contribute to the spatial dynamics that we observe in the

sodium components. As we are recording time of �ight measurements of the clouds we are

only indirectly inferring the in situ spatial dynamics of the components and do not describe

the process in a more quantitative way.

The spatial dynamics are not incorporated in the building block model, since in the single

mode approximation we have dropped the kinetic term of the Hamiltonian. The introduction

of a decoherence term in the equations in 4.9 is reasonable in order to account for the spatial

dynamics.

Firstly, this approach led to the determination of the �tting parameters χexp
, λexp

, ∆exp
0 and

∆exp
L , which on the one hand entail all characteristic features of the mean �eld building block

dynamics as presented in section 4.1.4 and on the other hand describe the experimental data

very well in both the time evolution and resoncance data. It is important to note here that the

time evolution scans are e�ected stronger by the damping as the resonance scans, since latter

samples the oscillation at 30 ms, a time when the data is more robust towards the decoherence

e�ects (as compared for instance to later times in the time evolution). Nonetheless, the

same �tting parameter are capable to describe both type of scans, a consistency that further

advocates our chosen approach.

Secondly, the method we chose can be understood from the following descriptive inter-

pretation. During the spatial dynamics of the sodium clouds in the trap, lithium and sodium

still have spatial overlap (although time vaying), i.e. the spin changing collision process is
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still possible. Due to the time dependent overlaps, however, we cannot allocate a single set of

parameters χ, λ, and ∆. We rather have to consider di�erent sets of parameters at di�erent

times. The resulting dynamics from the building block equations of motion averaged over

multiple parameter sets then indeed result in oscillations that would still have characteristic

features of the single mode mean �eld building block dynamics, however, would decohere for

later times. An observation that is compatible with our experimental �ndings.

Finally, we want to address possible methods to reduce the spatial dynamics. Since for now

we do not have access to the time and space resolved density distributions of the individual

components, we cannot quantitatively study how changing experimental parameters exactly

in�uences the spatial dynamics. One can, however, make an energy argument. Since the spatial

dynamics physically emerge form the interplay between potential energy and interaction

energy of the atoms, increasing the potential energy to the point where the interaction

energy becomes negligible would lead to a far less dominant e�ect of the spatial dynamics.

Whether such a regime can be reached by tuning trapping potential and atom numbers in our

experiment has yet to be explored.

An interesting observation related to the spatial dynamics is presented in the lower panel

of Fig. 4.10. By reducing the total atom number of sodium, the typical signature of spatial

dynamics that we use to observe in time of �ight does not appear. To quantify the e�ect of

the spatial dynamics, we compute the normalized spatial overlap between the |1, 1〉 and |1, 0〉
components as seen in Fig. 4.10 as a function of evolution time and for various total atom

numbers of sodium, see Fig. 4.11. It shows that the general signature of spatial dynamics

that we observe, i.e. di�erent deformation of the two clouds in time of �ight and after a

few milliseconds of evolution time is less pronounced at smaller atom numbers. Note that

this observation is just an implication on how the spatial dynamics can be in�uenced, since

inferring the exact spatial dynamics in the trap from time of �ight images is rather involved.

Atom loss

As mentioned in section 3.6.3 we observe state dependent atom loss of sodium during the

time evolution measurements. In ultracold atom experiments there are generally various loss

mechanisms of atoms from the trap. However, in the context of the spin changing collisions

experiments that we perform, we are interested in loss mechanisms that lead to trap lifetimes

on the order of hundrets of milliseconds. Therefore in this discussion we disregard the losses

due to collisions with background atoms due to �nite vacuum or the loss due to photon

scattering from the dipole trap as those happen on timescales of multiple tens of seconds.

We observe the atom loss solely in the |1, 0〉 component of sodium. In Fig. 4.12 we estimate

the 1/e-lifetime τ of sodium atoms in the |1, 0〉 state by �tting an exponential decay to the

sodium atom number data corresponding to the data sets thar are presented in Fig. 4.7. The

�ts yield a lifetime of τ = (508±22)ms for the combined data set of 18.04.2020 and 23.04.2020

(η0 = 0.407) and a lifetime of τ = (240 ± 6)ms for the data set of 24.04.2020 (η0 = 0.407).

In terms of the spin exchange dynamics that we observe in lithium, a decay of the |1, 0〉
component leads to time varying system parameters and similar to the case of the spatial

dynamics can damp the overall oscillations. More important is that the atom loss breaks

our assumption of the magnetization M to be a conserved quantity. In the end this process
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Figure 4.11.: Quantitative evaluation of the spatial dynamics signature for various
total atom numbersNN as seen in Fig. 4.10. The spatial overlap of the |1, 1〉
and |1, 0〉 column densities is evaluated and plotted as a function of the evolution

time tevo in the trap. The spatial overlap is normalized to the value at tevo = 0 ms.

Generally, a reduction in total atom number leads to more overlap as a function

of tevo. Note that since the absorption images are recorded after time of �ight, this

�ndings are only indications for the exact spatial dynamics in the trap. Circles

are experimental mean values with errorbars indicating the standard error on

the mean, solid lines are guides to the eye.

compromises the gauge invariance in the lattice gauge theory model, since the necessary

constraint between gauge �eld and matter �eld (which in the cold atoms system is given by

the constraint that sodium population changes only when lithium population changes, and

vice versa) is not ful�lled anymore.

In view of the detrimental e�ect of atom loss on gauge invariance it is of great importance to

determine the underlying loss mechanism. A systematic study hereof has yet to be performed

in our experiment. In particular the in�uence of the spatial dynamics on two-body loss [73,

118–120] and three-body loss [118, 121–123] processes has to be evaluated. Furthermore the

loss process in sodium has to be studied with regard to the presence and absence of lithium

in the trap.

Experimental fluctuations in initial parameters

Our experimental data relies on the averaging of many experimental realizations. Accordingly

shot to shot �uctuations in the experiment give rise to uncertainties on the measured (mean)

values. In particular �uctuations of important parameters (e.g. total atom number or η0)

lead to dynamics of spin changing collisions that average over various initial conditions. As

mentioned before, an averaging over many oscillations will eventually lead to a damped

oscillation as we observe in the experimental time evolution data.
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Figure 4.12.: Lifetime estimation of the |1, 0〉 component of sodium. Experimental mea-

surements (orange circles) of the sodium atom number in the |1, 0〉 state as a

function of evolution time tevo for the data sets that are presented in Fig. 4.7. The

data is �tted with an exponential decay (black line) to determine the 1/e lifetime

τ . Errorbars indicate the standard error on the mean.

Since we rely on averaging many experimental realizations, while a single realization takes

about one minute of time, makes data acquisition over a long period of time necessary. This

makes the data susceptive to drifts of certain parameters on the time scale of hours or days.

The e�ect of these drifts is not directly apparent from shot to shot, however, can in�uence

the data signi�cantly on a longer timescale. Parameters that tend to drift over time in our

experiment are the ambient temperature of the room, magnetic o�set �elds and overall laser

powers. We employed active stabilization schemes based on negative feedback control to

stabilize the magnetic o�set �eld [42, 124], the room temperature [73] and laser powers

[90] that are known to be critical in the experiment (e.g. laser power of the dipole laser

beams creating the optical trapping potential). Although these schemes greatly improved the

performance stability of the experiment, a certain amount of experimental �uctuations will

remain.

�antum fluctuations

Even in the absence of any experimental �uctuations, our system will still exhibit quantum

uncertainty. For our mean �eld building block equations of motion 4.3 we neglected quantum

e�ects by replacing the quantum mechanical spin operators by their respective expectation

values. Although the mean �eld approximation was reasonable considering the applicability

of the model to our experimental data, the fact that the resulting dynamics exhibit full fringe

contrast, is a signature of the mean �eld limit. Preliminary classical statistical simulations

of the dynamics imply that taking into account quantum e�ects lead to a damping of the

resulting dynamics. From this point of view our modi�cation of the equations of motion

by inclusion of a decoherence term (see equation 4.9) is in principle not only a method to
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phenomenologically describe the experimental data, but also the right modi�cation to our

theoretical description to capture the physics of our system.

Note that although we expect quantum e�ects to contribute to decoherence in our system,

it is not the dominating source. For instance, the quantum projection noise [92, 125] on the

determination of the sodium superposition ratio η0 is at least one order of magnitude smaller

than the experimentally measured �uctuations, indicating that in this regard our experiment

operates in a regime where experimental �uctuations dominate the noise source.

Non zero temperature e�ects

The building block Hamiltonian 2.76 has been derived assuming that all atoms of one species

occupy a single mode, see equation 2.49. This assumption is only valid in the case of a pure

BEC with none to very small thermal fraction and otherwise all atoms in the condensed

ground state. As shown in Fig. 3.9 our system has a non negligible amount of atoms in the

thermal part.

Although thermal atoms can undergo spin changing collisions as well, the underlying

process is quantitatively di�erent from the one in the condensed phase. Generally, the

thermal atoms have lower density than the condensed atoms. Furthermore, one has to take

into account that thermal atoms are populated over multiple momentum modes.

These considerations imply that the thermal part of the atoms does not coherently contribute

to the spin dynamics as exerted by the condensed part and therefore a damping of the overall

spin dynamics can occurs. In [37] coherent heteronuclear spin dynamics are reported between

an almost pure BEC of sodium and a thermal cloud of rubidium. In our case, where both species

are partly condensed, the quantitative in�uence of the thermal part is not fully described yet.

4.2.5. Summary
In this section we have presented experimental spin changing collisions data and compared

it qualitatively and quantitatively to the building block dynamics in the mean �eld limit as

derived in the previous section. Compared to the mean �eld dynamics the experimental

time evolution data exhibit damped oscillations at longer times. We introduced a physically

motivated decoherence term into the mean �eld equations of motion, such that the model

shows excellent agreement for the experimental data with numerically determined best �tting

building block parameters. This agreement is consistent across all systematically performed

parameter scans, including measurements (time evolution) that are prone to the decoherence

e�ects and measurements (resonance by scanning η0) that are more robust to them. These

�ndings stress the validity of our approach and identify our experimental system as a faithful

representation of the building block.

The e�ects that contribute to the decoherence have di�erent physical orgins and have been

discussed in detail. In the cases where the reduction of decoherence is not fundamentally

limited but due to experimental imperfections we lay out possible future e�orts for reducing

the decoherence.
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In this work we have presented the experimental realization of a building block for a U(1)

lattice gauge theory [36]. We have pointed out the theoretical framework for our proposed

system in the quantum link formalism, analogous to the Schwinger model with Wilson

Fermions [17]. Our proposal is based on repetitions of individual building blocks that are

arranged on the sites of an optical lattice and linked via Raman-assisted tunneling. The

individual building block is conceptionally the most crucial part of the proposal, as it contains

the gauge invariant interactions between matter �elds and gauge �elds, a constraint that is by

far the most di�cult one to implement in quantum simulators. Regarding that, our building

block o�ers the advantage that gauge invariance is systematically protected by inherent

symmetries of the experimental system.

We have realized the building block in our ultracold mixture experiment of optically

trapped bosonic sodium and lithium. In our system the gauge �eld is simulated by the sodium

atoms and the matter �eld by lithium atoms. The gauge invariant interaction is realized by

heteronuclear spin changing collisions between the two species. This process is constrained

by angular momentum and energy conservation in our sytem, making it highly suitable for

the experimental implementation of U(1) gauge invariance.

We have experimentally demonstrated heteronuclear spin changing collisions between

bosonic sodium and bosonic lithium. We have identi�ed the parameter regime in which

this process occurs in our system, e.g. the value of the magnetic o�set �eld where the spin

changing collision process exhibits a large amplitude turns out to be hundrets of milligauss

shifted compared to the single particle prediction based on the Breit-Rabi formula due to a

mean �eld shift. The spin changing collisions dynamics have been systematically studied and

characteristic features have been identi�ed. One of these features is a typical asymmetric

resonance of lithium spin transfer as a function of the initial sodium state population. We

have identi�ed our experimental system as a faithful representation of the building block as

needed for the quantum simulation of our proposed U(1) lattice gauge theory.

The next steps towards the experimental realization of an extended lattice gauge theory

include the arrangement of building blocks on sites of an optical lattice. The necessary

technical setup for generating lattice trapping potentials has already been established in

our experiment. In the course of this transition towards the lattice con�guration, important

questions to address are how the spatial dynamics and atom loss from the trap will behave

in a lattice con�nement compared to the con�nement in the crossed dipole trap. Generally

one could expect a reduction of spatial dynamics as those are e�ectively frozen out in lattice

con�nements with typical trap frequencies on the order of kilohertz. Furthermore, faster spin

changing collision dynamics can be expected as the tighter con�nement of the lattice wells

will lead to a larger spatial overlap of the species. However, a tighter con�nement could lead

to higher three-body losses due to the increased density of the species.
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Another important step towards the extended lattice gauge theory is the coupling of

individual building blocks via Raman-assisted tunneling [74–76]. A highly tunable laser

source that is capable of generating the necessary Raman laser beams has been established in

our group. An estimation based on realistic experimental parameters [36, 43] has shown that

our setup is capable of achieving Raman-assisted coupling strength on the order of kilohertz,

which is orders of magnitude higher than undesired direct tunneling strength. Together with

spin changing collision dynamics on the order of tens of milliseconds, our estimations for the

overall dynamics of our proposed extended lattice gauge theory are signi�cantly faster than

in previous proposals with comparable parameters [15, 17]

The building block presented here and the corresponding extended lattice gauge theory

are based on bosonic matter [36]. In order to realize a relativistic gauge theory as existing in

nature one will have to replace bosonic lithium with fermionic lithium, which will recover

Lorentz-invariance in the continuum limit. From a technical point of view the replacement

of bosonic lithium with fermionic lithium in our experiment is straightforward and does

require minimal e�ort [40, 41, 126, 127]. Towards the realization of heteronuclear spin

changing collisions between sodium and fermionic lithium one has to identify the necessary

experimental parameter regime. The �ndings about the heteronuclear spin changing collisions

presented here are of great value for that.

The �ndings presented in this thesis open the door for quantum simulation of gauge

theories in ultracold atoms experiments with the possibility to address physical questions

that are out of reach for classical computational techniques [11–17]
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A. Appendix

A.1. Statistics of individual data sets
The data points that are presented in section 4.2 represent the mean value of a set of raw data

points and the errorbar is indicating the standard error on the mean. Due to the randomized

fashion in which we recorded the data sets not every mean value is sampled with the same

amount of raw data points. Especially in the case of the resonance measurements, where η0

is estimated by measuring the corresponding sodium population and subsequent binning,

(see section 3.6.4), this leads in some cases to data with far less samples at higher values of η0

than at lower values.

In order to visualize the origin of the errorbars in the data presented in 4.2, here, we display

the corresponding raw data of the scans. In Fig. A.1 we display the raw data that corresponds

to the time evolution measurements shown in Fig. 4.7.
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Figure A.1.: Raw time evolution measurements corresponding to the data shown in
Fig. 4.7. Data points correspond to the value retrieved from a single experimental

cycle. Due to way the data has been acquired, for instance by randomizing the

parameter scan or due to the fact that two data sets have been combined, the

parameters on the x-axis have not been sampled by equally many samples.

In Fig. A.2 we display the raw data that corresponds to the resonance measurements shown

in Fig. 4.9.
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Figure A.2.: Raw resonance measurements corresponding to the data shown in
Fig. 4.9. Data points correspond to the value retrieved from a single experi-

mental cycle. The binning method for η0 as described in 3.6.4 leads to the fact

that larger values for η0 are in some scans sampled less frequently. The scans at

smaller magnetic �elds, especially when approaching B = B0− 150 mG contain

fewer data points. Since the curves in that parameter range become comparably

featureless, we used our experiemental resources to more accurately resolve the

other sets.

104



List of Figures
2.1. Schematic representation of the general structure of a lattice gauge theory . 20

2.2. Illustration of gauge invariant correlated hopping in a lattice gauge theory . 22

2.3. Illustration comparing the structure of lattice gauge theories and quantum

link models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4. Illustration of the two-body scattering processes appearing in the interaction

Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5. Relation of building block parameters to microscopic properties of the system 33

2.6. Illustration of the way the building block maps onto a lattice gauge theory . 34

2.7. Illustration of the proposed implementation of an extended lattice gauge

theory based on building blocks . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1. Timeline of a typical experimental cycle . . . . . . . . . . . . . . . . . . . . . 41

3.2. Sketch of the optical elements in the imaging system . . . . . . . . . . . . . 43

3.3. Example set of the three pictures that are taken during the imaging sequence 44

3.4. Experimental measurements of the optical lattice for calibration of the mag-

ni�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5. Estimated displacement of an atom due to the light force during the imaging

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6. Calculated total atom numbers as a function of imaging intensity . . . . . . 50

3.7. Calibration of the α∗ parameter by evaluating the standard deviation of the

atom number as a function of α∗ . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8. Sketch of the dipole trap laser beams and the results of the trap frequency

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9. Time of �ight absorption images and corresponding integrated line pro�les

of sodium and lithium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10. Timeline of a typical SCC sequence . . . . . . . . . . . . . . . . . . . . . . . 56

3.11. Internal level structure of sodium and lithium in a typical experimental setting 57

3.12. The di�erence in internal state energy splitting of the two species computed

by the Breit-Rabi formula as a function of the magnetic o�set �eld B . . . . 57

3.13. Illustration of the procedure for initializing spin changing collision . . . . . 59

3.14. Implementation of the initialization quench for spin changing collisions . . . 60

3.15. Absorption images of sodium and lithium after SG separation . . . . . . . . 61

3.16. Absorption images of lithium highlighting the e�ects of interference fringes 62

3.17. Sketch for illustrating the defringing procedure . . . . . . . . . . . . . . . . 63

3.18. Demonstration of the e�ect of the defringing method on an absorption image 64

3.19. Segment of data display during the analysis routine of an tevo parameter scan

measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

105



List of Figures

3.20. Postselection of a time evolution parameter scan . . . . . . . . . . . . . . . . 68

3.21. Qualitative display of internal state population of lithium and sodium as a

function of the evolution time . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.22. Averaged cropped density distributions as a function of tevo for both species

and respective internal states . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.23. Sodium observables of an initial sodium population ratio scan . . . . . . . . 71

3.24. Lithium observables of an initial sodium population ratio scan . . . . . . . . 72

4.1. Column densities of lithium and sodium determined from imaginary time

propagation of the Gross-Pitaevskii equation . . . . . . . . . . . . . . . . . . 80

4.2. Line densities of lithium and sodium corresponding to the numerical data

shown in 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3. Mean �eld building block dynamics of observable Np/N as a function of time

for various values of η0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4. Maximum amplitude of Np/N as a function of η0 corresponding to Fig. 4.3 . 83

4.5. Extract of building block dynamics for values of η0 around the discontinuity

feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6. Numerical building block simulation of maximum amplitude of Np/N as a

function of η0 vor various magnetic o�set �elds B. . . . . . . . . . . . . . . 85

4.7. Experimental time evolution measurements for two di�erent values of η0

(left and right) and the respective building block dynamics with best �tting

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8. Experimental resonance measurement at B = B0 and the respective building

block resonance curve based on best �tting parameters . . . . . . . . . . . . 90

4.9. Experimental resonance measurements recorded at di�erent magnetic o�set

�elds B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10. Averaged time of �ight absorption images of sodium revealing signatures of

the spatial dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.11. Quantitative evaluation of the spatial dynamics signature in sodium for various

total atom numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.12. Lifetime estimation of the |1, 0〉 component of sodium . . . . . . . . . . . . . 98

A.1. Raw time evolution measurements . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2. Raw resonance measurements recorded at di�erent magnetic o�set �elds B 104

106



List of Tables
2.1. Summary of the reduced scattering lengths . . . . . . . . . . . . . . . . . . . 28

3.1. Summarizing the magni�cation of the imaging system . . . . . . . . . . . . 47

3.2. Measured condensate fractions and resulting temperatures based on �tting a

bimodal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3. Notation for the atom number corresponding to species and internal state . 61

4.1. haracteristic properties of the time evolution data sets . . . . . . . . . . . . . 87

4.2. Overview of the building block parameters determined by the �tting the time

evolution data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3. Overview of the building block parameters determined by �tting the resonance

data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

107





Bibliography
1. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition

from a super�uid to a Mott insulator in a gas of ultracold atoms. nature 415, 39–44

(2002).

2. Bartenstein, M. et al. Crossover from a molecular Bose-Einstein condensate to a degen-

erate Fermi gas. Physical review letters 92, 120401 (2004).

3. Bourdel, T. et al. Experimental study of the BEC-BCS crossover region in lithium 6.

Physical Review Letters 93, 050401 (2004).

4. Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices

and super�uidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

5. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical

lattice. Nature 472, 307–312 (2011).

6. Feynman, R. P. Simulating Physics with Computers. International Journal of Theoretical
Physics 21, 467–488 (1982).

7. Lloyd, S. Universal quantum simulators. Science, 1073–1078 (1996).

8. Hauke, P., Cucchietti, F. M., Tagliacozzo, L., Deutsch, I. & Lewenstein, M. Can one trust

quantum simulators? Reports on Progress in Physics 75, 082401 (2012).

9. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum

gases. Nature Physics 8, 267–276 (2012).

10. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices.

Science 357, 995–1001 (2017).

11. Banerjee, D. et al. Atomic quantum simulation of dynamical gauge �elds coupled to

fermionic matter: From string breaking to evolution after a quench. Physical review
letters 109, 175302 (2012).

12. Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of gauge theories with ultracold

atoms: Local gauge invariance from angular-momentum conservation. Physical Review
A 88, 023617 (2013).

13. Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using

ultracold atoms in optical lattices. Reports on Progress in Physics 79, 014401 (Dec. 2015).

14. Dalmonte, M. & Montangero, S. Lattice gauge theory simulations in the quantum

information era. Contemporary Physics 57, 388–412 (2016).

15. Kasper, V., Hebenstreit, F., Oberthaler, M. & Berges, J. Schwinger pair production with

ultracold atoms. Physics Letters B 760, 742–746 (2016).

109



Bibliography

16. Kasper, V., Hebenstreit, F., Jendrzejewski, F., Oberthaler, M. K. & Berges, J. Implementing

quantum electrodynamics with ultracold atomic systems. New Journal of Physics 19,
023030 (Feb. 2017).

17. Zache, T. V. et al. Quantum simulation of lattice gauge theories using Wilson fermions.

Quantum Science and Technology 3, 034010 (June 2018).

18. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature

superconductivity. Reviews of modern physics 78, 17 (2006).

19. Montvay, I. & Munster, G. Quantum Fields on a Lattice Cambridge University Press 1994.

20. Weinberg, S. The Making of the standard model. The European Physical Journal C-
Particles and Fields 34, 5–13 (2004).

21. Fodor, Z. & Hoelbling, C. Light hadron masses from lattice QCD. Reviews of Modern
Physics 84, 449 (2012).

22. Sauter, F. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der

relativistischen Theorie Diracs. Zeitschrift für Physik 69, 742–764 (1931).

23. Heisenberg, W. & Euler, H. Folgerungen aus der diracschen theorie des positrons.

Zeitschrift für Physik 98, 714–732 (1936).

24. Schwinger, J. On gauge invariance and vacuum polarization. Physical Review 82, 664

(1951).

25. Philipsen, O. & Wittig, H. String breaking in non-Abelian gauge theories with funda-

mental matter �elds. Physical Review Letters 81, 4056 (1998).

26. Bali, G. S. et al. Observation of string breaking in QCD. Physical Review D 71, 114513

(2005).

27. Hebenstreit, F., Berges, J. & Gelfand, D. Real-time dynamics of string breaking. Physical
review letters 111, 201601 (2013).

28. Creutz, M., Jacobs, L. & Rebbi, C. Experiments with a gauge-invariant Ising system.

Physical Review Letters 42, 1390 (1979).

29. Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit

quantum computer. Nature 534, 516–519 (2016).

30. Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature
569, 355–360 (2019).

31. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator.

Nature 551, 579–584 (2017).

32. Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum

simulators. arXiv preprint arXiv:1902.09551 (2019).

33. Clark, L. W. et al. Observation of density-dependent gauge �elds in a Bose-Einstein

condensate based on micromotion control in a shaken two-dimensional lattice. Physical
review letters 121, 030402 (2018).

110



Bibliography

34. Görg, F. et al. Realization of density-dependent Peierls phases to engineer quantized

gauge �elds coupled to ultracold matter. Nature Physics 15, 1161–1167 (2019).

35. Schweizer, C. et al. Floquet approach to Z 2 lattice gauge theories with ultracold atoms

in optical lattices. Nature Physics 15, 1168–1173 (2019).

36. Mil, A. et al. A scalable realization of local U (1) gauge invariance in cold atomic

mixtures. Science 367, 1128–1130 (2020).

37. Li, X. et al. Coherent Heteronuclear Spin Dynamics in an Ultracold Spinor Mixture.

Phys. Rev. Lett. 114, 255301 (25 June 2015).

38. Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: Symmetries, magnetism, and

quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (3 July 2013).

39. Appmeier, J. Immersed Quantum Systems: A Sodium Bose-Einstein Condensate for Polaron
Studies PhD thesis (University of Heidelberg, 2010).

40. Rentrop, T. Observation of the Phononic Lamb Shift in a Synthetic Vacuum PhD thesis

(University of Heidelberg, 2016).

41. Trautmann, A. Spin Dynamics and Feshbach Resonances in Ultracold Sodium-Lithium
Mixtures PhD thesis (University of Heidelberg, 2016).

42. Olivares Legal, F. A. Towards Lattice Gauge Theories in Ultracold Mixtures of Sodium
and Lithium PhD thesis (University of Heidelberg, 2018).

43. Zache, T. V. Quantum simulation of high-energy physics with ultracold atoms PhD thesis

(University of Heidelberg, 2020). Unpublished thesis.

44. Davis, K. B. et al. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev.
Lett. 75, 3969–3973 (22 Nov. 1995).

45. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Obser-

vation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269, 198–201.

issn: 00368075, 10959203 (1995).

46. Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose-Einstein

Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 75, 1687–

1690 (9 Aug. 1995).

47. Ensher, J. R., Jin, D. S., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Bose-Einstein

Condensation in a Dilute Gas: Measurement of Energy and Ground-State Occupation.

Phys. Rev. Lett. 77, 4984–4987 (25 Dec. 1996).

48. Jochim, S. et al. Bose-Einstein Condensation of Molecules. Science 302, 2101–2103. issn:

0036-8075 (2003).

49. Castin, Y. & Dum, R. Bose-Einstein Condensates in Time Dependent Traps. Phys. Rev.
Lett. 77, 5315–5319 (27 Dec. 1996).

50. Minguzzi, A., Conti, S. & Tosi, M. P. The internal energy and condensate fraction of

a trapped interacting Bose gas. Journal of Physics: Condensed Matter 9, L33–L38 (Feb.

1997).

111



Bibliography

51. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein conden-

sation in trapped gases. Rev. Mod. Phys. 71, 463–512 (3 Apr. 1999).

52. Timmermans, E., Côté, R. & Simbotin, I. Self-similar BEC dynamics: accuracy and

applications. Journal of Physics B: Atomic, Molecular and Optical Physics 33, 4157–4176

(Sept. 2000).

53. Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation and Super�uidity (Oxford Uni-

versity Press, 2016).

54. Bagnato, V., Pritchard, D. E. & Kleppner, D. Bose-Einstein condensation in an external

potential. Phys. Rev. A 35, 4354–4358 (10 May 1987).

55. Pethick, C. J. & Smith, H. Bose–Einstein condensation in dilute gases (Cambridge univer-

sity press, 2008).

56. Gross, E. P. Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955-
1965) 20, 454–477 (1961).

57. Pitaevskii, L. P. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454

(1961).

58. Kagan, Y., Surkov, E. & Shlyapnikov, G. Evolution of a Bose-condensed gas under

variations of the con�ning potential. Physical Review A 54, R1753 (1996).

59. Scelle, R. Dynamics and Motional Coherence of Fermions Immersed in a Bose Gas PhD

thesis (University of Heidelberg, 2013).

60. Langacker, P. The Standard Model and Beyond (Taylor & Francis, 2017).

61. Halzen, F. & Martin, A. D. Quarks and leptons: an introductory course in modern particle
physics (Wiley, 1984).

62. Kogut, J. & Susskind, L. Hamiltonian formulation of Wilson’s lattice gauge theories.

Phys. Rev. D 11, 395–408 (2 Jan. 1975).

63. Wilson, K. G. Con�nement of quarks. Phys. Rev. D 10, 2445–2459 (8 Oct. 1974).

64. Kogut, J. B. The lattice gauge theory approach to quantum chromodynamics. Rev. Mod.
Phys. 55, 775–836 (3 July 1983).

65. Smit, J. Introduction to Quantum Fields on a Lattice (Cambridge University Press, 2002).

66. Kasper, V. Lattice Gauge Theory and Cold Atoms Out of Equilibrium PhD thesis (Univer-

sity of Heidelberg, 2016).

67. Nielsen, H. & Ninomiya, M. Absence of neutrinos on a lattice: (I). Proof by homotopy

theory. Nuclear Physics B 185, 20–40 (1981).

68. Wilson, K. G. New Phenomena in Subnuclear Physics 69–142 (Springer, 1977).

69. Chandrasekharan, S. & Wiese, U.-J. Quantum link models: A discrete approach to gauge

theories. Nuclear Physics B 492, 455–471 (1997).

70. Banerjee, D. et al. Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian

Lattice Gauge Theories. Phys. Rev. Lett. 110, 125303 (12 Mar. 2013).

112



Bibliography

71. Feynman, R. P., Vernon, F. L. & Hellwarth, R. W. Geometrical Representation of the

Schrödinger Equation for Solving Maser Problems. Journal of Applied Physics 28, 49–52

(1957).

72. Landau, L. & Lifshitz, E. Quantum Mechanics (Pergamon Press, 2002).

73. Strobel, H. Fisher Information and entanglement of non-Gaussian spin states PhD thesis

(University of Heidelberg, 2015).

74. Aidelsburger, M. et al. Experimental realization of strong e�ective magnetic �elds in

an optical lattice. Physical review letters 107, 255301 (2011).

75. Jaksch, D. & Zoller, P. Creation of e�ective magnetic �elds in optical lattices: the

Hofstadter butter�y for cold neutral atoms. New Journal of Physics 5, 56 (2003).

76. Dao, T.-L., Carusotto, I. & Georges, A. Probing quasiparticle states in strongly interacting

atomic gases by momentum-resolved Raman photoemission spectroscopy. Physical
Review A 80, 023627 (2009).

77. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the

Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices. Phys. Rev. Lett.
111, 185302 (18 Oct. 2013).

78. Stan, C. A. & Ketterle, W. Multiple species atom source for laser-cooling experiments.

Review of Scienti�c Instruments 76, 063113 (2005).

79. Weis, S. Setup of a Laser System for Ultracold Sodium - Towards a Degenerate Gas of
Ultracold Fermions (Diploma Thesis, University of Heidelberg, 2007).

80. Krieger, J. Zeeman-Slower und Experimentsteuerung für das NaLi-Experiment (Diploma

Thesis, University of Heidelberg, 2008).

81. Hadzibabic, Z. et al. Two-Species Mixture of Quantum Degenerate Bose and Fermi

Gases. Phys. Rev. Lett. 88, 160401 (16 Apr. 2002).

82. Mewes, M.-O. et al. Bose-Einstein Condensation in a Tightly Con�ning dc Magnetic

Trap. Phys. Rev. Lett. 77, 416–419 (3 July 1996).

83. Van der Stam, K. M. R., Kuijk, A., Meppelink, R., Vogels, J. M. & van der Straten, P.

Spin-polarizing cold sodium atoms in a strong magnetic �eld. Phys. Rev. A 73, 063412

(6 June 2006).

84. Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of Two

Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys. Rev. Lett. 78,
586–589 (4 Jan. 1997).

85. Metcalf, H. J. & Peter, v. d. S. Laser Cooling and Trapping (Springer, 1999).

86. Ketterle, W., Durfee, D., Stamper-Kurn, D., et al. Making, probing and understanding

Bose-Einstein condensates. arXiv preprint cond-mat/9904034 5 (1999).

87. Gajdacz, M. et al. Non-destructive Faraday imaging of dynamically controlled ultracold

atoms. Review of Scienti�c Instruments 84, 083105 (2013).

113



Bibliography

88. Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D. Strong saturation absorption

imaging of dense clouds of ultracold atoms. Optics letters 32, 3143–3145 (2007).

89. Mil, A. Design and Implementation of a Versatile Imaging Objective for Imaging of
Ultracold Mixtures of Sodium and Lithium (Master Thesis, University of Heidelberg,

2016).

90. Schymik, K.-N. Implementing an Optical Accordion Lattice for the Realization of a Quan-
tized Otto Cycle (Master Thesis, University of Heidelberg, 2018).

91. Kwon, W. J., Choi, J.-y. & Shin, Y.-i. Calibration of saturation absorption imaging of

ultracold atom clouds. Journal of the Korean Physical Society 61, 1970–1974 (2012).

92. Muessel, W. et al. Optimized absorption imaging of mesoscopic atomic clouds. Applied
Physics B 113, 69–73 (2013).

93. Hueck, K. et al. Calibrating high intensity absorption imaging of ultracold atoms. Opt.
Express 25, 8670–8679 (Apr. 2017).

94. Reinaudi, G. Manipulation et refroidissement par évaporation forcée d’ensembles atom-
iques ultra-froids pour la production d’un jet intense dans le régime de dégénérescence
quantique: vers l’obtention d’un" laser à atomes continu" PhD thesis (2008).

95. Kuppens, S. J. M., Corwin, K. L., Miller, K. W., Chupp, T. E. & Wieman, C. E. Loading an

optical dipole trap. Phys. Rev. A 62, 013406 (1 June 2000).

96. Adams, C. S., Lee, H. J., Davidson, N., Kasevich, M. & Chu, S. Evaporative Cooling in a

Crossed Dipole Trap. Phys. Rev. Lett. 74, 3577–3580 (18 May 1995).

97. Davidson, N., Jin Lee, H., Adams, C. S., Kasevich, M. & Chu, S. Long Atomic Coherence

Times in an Optical Dipole Trap. Phys. Rev. Lett. 74, 1311–1314 (8 Feb. 1995).

98. Kinoshita, T., Wenger, T. & Weiss, D. S. All-optical Bose-Einstein condensation using a

compressible crossed dipole trap. Phys. Rev. A 71, 011602 (1 Jan. 2005).

99. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical Dipole Traps for Neutral

Atoms. Advances in Atomic Molecular and Optical Physics 42, 95–170 (2000).

100. Ospelkaus, S., Ospelkaus, C., Humbert, L., Sengstock, K. & Bongs, K. Tuning of Het-

eronuclear Interactions in a Degenerate Fermi-Bose Mixture. Phys. Rev. Lett. 97, 120403

(12 Sept. 2006).

101. Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. All-optical formation of quantum

degenerate mixtures. Phys. Rev. A 79, 021601 (2 Feb. 2009).

102. Wang, F., Li, X., Xiong, D. & Wang, D. A double species23Na and87Rb Bose–Einstein

condensate with tunable miscibility via an interspecies Feshbach resonance. Journal of
Physics B: Atomic, Molecular and Optical Physics 49, 015302 (Nov. 2015).

103. Steck, D. A. Sodium D line data. Report, Los Alamos National Laboratory, Los Alamos
124 (2000).

104. Breit, G. & Rabi, I. I. Measurement of Nuclear Spin. Phys. Rev. 38, 2082–2083 (11 Dec.

1931).

114



Bibliography

105. Ockeloen, C. F., Tauschinsky, A. F., Spreeuw, R. J. C. & Whitlock, S. Detection of small

atom numbers through image processing. Phys. Rev. A 82, 061606 (6 Dec. 2010).

106. Niu, L. et al. Optimized fringe removal algorithm for absorption images. Applied Physics
Letters 113, 144103 (2018).

107. Cheney, W. & Kincaid, D. Linear Algebra: Theory and Applications 544 (Jones and Bartlett,

2009).

108. HDF o�cial website https://www.hdfgroup.org/. Accessed: 2020-01-27.

109. Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik

innerhalb der Quantenmechanik. Z. Phys. 45, 455–457 (1927).

110. Smith, H. Introduction to Quantum Mechanics 108–109 (World Scienti�c Pub Co Inc,

1991).

111. Lehtovaara, L., Toivanen, J. & Eloranta, J. Solution of time-independent Schrödinger

equation by the imaginary time propagation method. Journal of Computational Physics
221, 148–157 (2007).

112. Chin, S. A., Janecek, S. & Krotscheck, E. Any order imaginary time propagation method

for solving the Schrödinger equation. Chemical Physics Letters 470, 342–346 (2009).

113. Bader, P., Blanes, S. & Casas, F. Solving the Schrödinger eigenvalue problem by the imag-

inary time propagation technique using splitting methods with complex coe�cients.

The Journal of chemical physics 139, 124117 (2013).

114. Breuer, H.-P., Petruccione, F., et al. The theory of open quantum systems (Oxford Univer-

sity Press on Demand, 2002).

115. Manzano, D. A short introduction to the Lindblad Master Equation. AIP Advances 10,
025106 (2020).

116. Nicklas, E. A new tool for miscibility control: Linear coupling PhD thesis (University of

Heidelberg, 2013).

117. Timmermans, E. Phase separation of Bose-Einstein condensates. Physical review letters
81, 5718 (1998).

118. Schuster, T. Feshbach resonances and periodic potentials in ultracold Bose-Fermi mixtures
PhD thesis (University of Heidelberg, 2012).

119. Prentiss, M. et al. Atomic-density-dependent losses in an optical trap. Optics letters 13,
452–454 (1988).

120. Tojo, S. et al. Spin-dependent inelastic collisions in spin-2 Bose-Einstein condensates.

Physical Review A 80, 042704 (2009).

121. Burt, E. et al. Coherence, correlations, and collisions: What one learns about Bose-

Einstein condensates from their decay. Physical Review Letters 79, 337 (1997).

122. Söding, J. et al. Three-body decay of a rubidium Bose–Einstein condensate. Applied
physics B 69, 257–261 (1999).

115

https://www.hdfgroup.org/


Bibliography

123. Kraemer, T. et al. Evidence for E�mov quantum states in an ultracold gas of caesium

atoms. Nature 440, 315–318 (2006).

124. Gall, M.ActiveMagnetic Field Stabilisation for Ultracold Sodium LithiumMixtures (Master

Thesis, University of Heidelberg, 2015).

125. Itano, W. M. et al. Quantum projection noise: Population �uctuations in two-level

systems. Physical Review A 47, 3554 (1993).

126. Scelle, R., Rentrop, T., Trautmann, A., Schuster, T. & Oberthaler, M. Motional coherence

of fermions immersed in a Bose gas. Physical review letters 111, 070401 (2013).

127. Rentrop, T. et al. Observation of the phononic Lamb shift with a synthetic vacuum.

arXiv preprint arXiv:1605.01874 (2016).

116



Acknowledgements
I am very grateful for having received support from so many people during the last years,

which has made my exhausting phd-endeavour possible.

• I thank Fred for his support and supervision since the very beginning, when I joined

him as a master student. He welcomed me into his new group and together we faced

the task of taming the NaLi experiment. He has provided guidance to me whenever I

felt lost in view of the insurmountable challenges ahead of us. His relentless e�ort to

bring our mutual project forward has always been inspiring. Never have I seen him

being shy to get his hands dirty, be it crawling across the optical table in the lab or

tedious debugging of analysis code. Working with you has been a great experience,

thank you.

• Many thanks to Selim, who willingly agreed as second referee for this thesis, even when

he already had a whole lot of other theses to review.

• I thank all my collaborators in the gauge invariance project, in particular Markus and

Jürgen, who were the �rst to be bold enough to even think about something like this.

• This work would not have been possible without my collegues at matterwave/SynQS.

Everyone in this group has always been ready to help me out. Be it with discussions,

good advice or borrowing lab equipment. All the great group activities proved that we

have by far the greatest team spirit in the kip. It was an honor for me to be part of this

great community.

• I thank all former NaLi members, who have put a tremendous e�ort into building the

NaLi machine. Despite all of its stubbornness and �aws the NaLi was able to contribute

to science.

• I thank all current members of the NaLi/SoPa team for the great atmosphere in the

o�ce/lab as well as for introducing me to all kinds of culinary treats.

• Special thanks goes to Torsten, who has brought physics back to my phd life, after it

has consisted of treadmill lab work for an eternity. Our discussions have revived my

fascination for the small and big questions in physics, something that I have lost track

of. Thank you for that.

• I thank Helmut for being an almost in�nite source of good advice, great jokes and lots

of essential tricks that make you survive on the battleground of experimental physics.

117



Bibliography

• I thank Simon for our interesting discussions about god, philosophy and organs. Also a

big thanks for proofreading this manuscript.

• I thank my physics alpha one gang which is accompanying me since my �rst days in

Heidelberg. Without you I would not be as crazy as I am now, thank you.

• I thank my parents and my sisters for their support and trust in me. They gave me the

possibility to do what I am doing.

• Finally I thank the most important person. Hannah, without you I would not be who

I am now. You have always supported me, always trusted in me and in my strength

to overcome all obstacles ahead of me, even when I have doubted it myself. You have

encouraged me when I felt upset and calmed me down when I was furious. I can not

imagine to live without you, thank you for everything.

118



Bibliography

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 16.03.2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

119


	List of Tables
	Introduction
	Theoretical concepts
	Bose-Einstein condensation and Gross-Pitaevskii Equation
	General considerations
	Gross-Pitaevskii Equation

	Lattice gauge theories
	Introducing general concepts of lattice gauge theories
	Lattice formulation of quantum electrodynamics

	Quantum link model
	Derivation of the building block from microscopic description of the ultracold mixture
	Microscopic cold atom Hamiltonian
	Spin and density decomposition of the system Hamiltonian
	Effective model of the microscopic system – the building block
	Extended lattice gauge theory based on building blocks

	Summary

	Experimental system
	Experimental setup — an overview
	Sequence for preparing ultracold atomic mixtures
	Absorption imaging
	Theoretical description of absorption imaging
	Experimental setup and imaging sequence
	Calibration of the imaging magnification
	Absolute atom number calibration

	Characterization of trapped ultracold atoms
	Optical trapping potential
	Benchmarking the ultracold mixture

	Realizing heteronuclear spin-changing collisions
	Experimental setting
	Initializing spin dynamics
	Superposition quench
	State sensitive readout

	Data acquisition and processing
	Defringing of the absorption images for lithium
	Parameter scans
	Data analysis of evolution time (tevo) parameter scans
	Data analysis of initial sodium state population ratio (0) parameter scans

	Summary

	Gauge invariance in ultracold atoms - the experimental building block
	Mean field approximation of the building block
	Mean field equations of motion
	Microscopic origin of the building block parameters
	Ab initio estimates of building block parameters
	Building block dynamics from ab initio estimates
	Summary

	Experimental measurements
	Experimental time evolution measurements
	Experimental resonance measurements
	Comparison of ab initio and best fitting parameter
	Decoherence effects present in the experimental building block
	Summary


	Summary and outlook
	Appendix
	Statistics of individual data sets

	List of Figures
	List of Tables
	Bibliography

