
I N A U G U R A L – D I S S E RTAT I O N

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich–Mathematischen Gesamtfakultät

der

RU P R E C H T – K A R L S – U N I V E R S I T Ä T
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Zusammenfassung

Das Kennzeichnungsproblem von Bildern bezeichnet die Aufgabe, jedem Pixel eines
Bildes genau ein Element einer vordefinierten Menge an Kennzeichnungen zuzuwei-
sen. Klassische Ansätze dieses Kennzeichnungsproblems sind als Minimierungsproble-
me speziell strukturierter Funktionen formuliert. Zuweisungsflüsse für kontextbasiertes
Kennzeichnen von Bildern sind eine neuartige, alternative dynamische Formulierung
durch räumlich gekoppelte Replikatorgleichungen. In dieser Arbeit werden die klassi-
sche und dynamische Sichtweise in einer variationellen Formulierung kombiniert. Dies
wird dadurch erreicht, dass das System dem induzierten Riemannschen Gradientenfluss
auf einer elementaren statistischen Mannigfaltikeit bezüglich der Informationsgeometrie
folgt. Konvergenz und Stabilität dieses Ansatzes werden mithilfe der logarithmischen
Barrierefunktion untersucht. Eine neue Parametrisierung des Zuweisungsflusses durch
seine dominante Komponente deckt die enthaltene Struktur eines Riemannschen Gra-
dientenfluss auf, wodurch die beiden beherrschenden Prozesse des Flusses identifiziert
werden: räumliche Regularisierung von Zuweisungen und allmähliches Erzwingen ein-
deutiger Entscheidungen. Des Weiteren wird eine räumlich kontinuierliche Formulierung
des zugehörigen Potenzials vorgestellt und nachgewiesen, dass das entsprechende Opti-
mierungsproblem gut gestellt ist. Darüber hinaus wird ein alternativer variationeller An-
satz für Maximum-a-posteriori Inferenz hergeleitet, basierend auf diskreten graphischen
Modellen unter Verwendung lokaler Wassersteindistanzen. Im resultierenden Inferenz-
prozess, basierend auf dem Riemannschen Gradientenfluss, sind die lokalen Marginali-
sierungsbedingungen immer erfüllt und eindeutige Entscheidungen werden asymptotisch
erreicht.
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Abstract

The image labeling problem refers to the task of assigning to each pixel a single element
from a finite predefined set of labels. In classical approaches the labeling task is formu-
lated as a minimization problem of specifically structured objective functions. Assign-
ment flows for contextual image labeling are a recently proposed alternative formulation
via spatially coupled replicator equations. In this work, the classical and dynamical
viewpoint of image labeling are combined into a variational formulation. This is accom-
plished by following the induced Riemannian gradient descent flow on an elementary
statistical manifold with respect to the underlying information geometry. Convergence
and stability behavior of this approach are investigated using the log-barrier method.
A novel parameterization of the assignment flow by its dominant component is derived,
revealing a Riemannian gradient flow structure that clearly identifies the two govern-
ing processes of the flow: spatial regularization of assignments and gradual enforcement
of unambiguous label decisions. Also, a continuous-domain formulation of the corre-
sponding potential is presented and well-posedness of the related optimization problem
is established. Furthermore, an alternative smooth variational approach to maximum
a-posteriori inference based on discrete graphical models is derived by utilizing local
Wasserstein distances. Following the resulting Riemannian gradient flow leads to an
inference process which always satisfies the local marginalization constraints and incor-
porates a smooth rounding mechanism towards unambiguous assignments.
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Artjom Zern and Matthias Zisler for their support as well as many interesting and
fruitful discussions. Special thanks also go to my close colleague Ruben Hühnerbein,
with whom I shared an office and traveled to many conferences across the world. I had
great pleasure of doing mathematics with you. I also warmly thank Evelyn Wilhelm
and Barbara Werner for their valuable administrative help, as well as the Dean’s Office
of the Department of Mathematics and Computer Science. Many thanks also to Anika
Schwind, Michael Seufert and my sister, Marina, for their helpful comments and proof-
reading.

Finally, I am extremely grateful to my family, especially to my life companion Jan-
ina and our daughter Mila, for all their love, encouragement and unconditional support
during this time.

Financial support by the German Science Foundation (DFG), grant GRK 1653, is
gratefully acknowledged. This work has also been stimulated by the Heidelberg Excel-
lence Cluster STRUCTURES, funded by the DFG under Germany’s Excellent Strategy
EXC-2181/1 - 390900948.

ix





Contents

List of Publications 1

1. Introduction and Overview 3

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1. Image Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2. Assignment Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3. Replicator Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Contribution and Organization . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Preliminaries 9

2.1. Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Information Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1. Dually Flat Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2. Discrete Probability Distributions with Full Support . . . . . . . . 13

2.3. Image Labeling by Geometric Assignment . . . . . . . . . . . . . . . . . . 15

2.3.1. The Labeling Problem on Graphs . . . . . . . . . . . . . . . . . . . 16

2.3.2. Assignment Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3. Assignment Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.4. Geometric Numerical Integration of the Assignment Flow . . . . . 29

3. General Variational Models on the Assignment Manifold 31

3.1. Log-Barrier Perturbation of the Variational Model . . . . . . . . . . . . . 32

3.2. Mathematical Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1. Euclidean Isometric m-Affine Coordinates . . . . . . . . . . . . . . 38

3.2.2. Analytic Functions and the  Lojasiewicz Inequality . . . . . . . . . 43

3.3. Perturbed Riemannian Gradient Descent Flows for Optimization . . . . . 44

3.3.1. Basic Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2. General Properties of Perturbed Riemannian Gradient Flows . . . 46

3.3.3. Convergence Analysis for Analytic Variational Models . . . . . . . 48

3.4. Numerical Integration of the Perturbed Riemannian Gradient
Descent Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1. Geometric Euler Integration . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2. L-smooth Adaptability . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3. Geometric Euler with Armijo Step-Size . . . . . . . . . . . . . . . 60

3.4.4. Convergence Analysis for Analytic Variational Models . . . . . . . 65

xi



Contents

4. Variational Formulation of the Assignment Flow 75

4.1. Discrete-Domain Variational Model . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1. Nonexistence of a Potential . . . . . . . . . . . . . . . . . . . . . . 76

4.1.2. S-Parameterization and Variational Model . . . . . . . . . . . . . . 80

4.1.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2. Continuous-Domain Variational Model . . . . . . . . . . . . . . . . . . . . 91

4.2.1. Background on Functional Analysis . . . . . . . . . . . . . . . . . 92

4.2.2. Well-Posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.3. Fixed Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 95

4.2.4. Numerical Algorithm and Example . . . . . . . . . . . . . . . . . . 96

4.2.5. A PDE Characterizing Optimal Assignment Flows . . . . . . . . . 98

5. A Variational Approach Based on Graphical Models 101

5.1. Background on Graphical Models for Image Labeling . . . . . . . . . . . . 102

5.1.1. Local Polytope Relaxation of Graphical Models . . . . . . . . . . . 103

5.1.2. Smoothed LP Relaxation and Belief Propagation . . . . . . . . . . 105

5.2. Variational Formulation of Graphical Models using local
Wasserstein Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1. A Reformulation of the Smoothed LP Relaxation . . . . . . . . . . 107

5.2.2. General Smoothed Wasserstein Distances . . . . . . . . . . . . . . 110

5.2.3. Entropy Regularized Wasserstein Distance . . . . . . . . . . . . . . 117

5.2.4. Variational Formulation on the Assignment Manifold . . . . . . . . 123

5.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.1. Influence of the Integrality Parameter . . . . . . . . . . . . . . . . 130

5.3.2. Comparison to Other Methods . . . . . . . . . . . . . . . . . . . . 133

6. Conclusion and Outlook 135

A. Differential Geometry 137

A.1. General Manifolds and Submanifolds of Rd . . . . . . . . . . . . . . . . . . 137

A.2. Flows on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.3. Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3.1. Parallel Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3.2. Geodesics and Exponential Maps . . . . . . . . . . . . . . . . . . . 141

A.3.3. Flat Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.4. Riemannian Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.4.1. Riemannian Gradients . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.4.2. Levi-Civita Connection . . . . . . . . . . . . . . . . . . . . . . . . 144

A.4.3. Riemannian Distance and Mean . . . . . . . . . . . . . . . . . . . 144

A.4.4. Riemannian Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B. Convex Analysis 147

B.1. Affine and Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2. Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xii



Contents

B.3. Bregman Divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.4. Lagrange Duality and KKT Conditions . . . . . . . . . . . . . . . . . . . 150

Bibliography 153

xiii





List of Publications

The following publications were created during the work on this thesis.

(1) R. Hühnerbein, F. Savarino, F. Åström and C. Schnörr, Image Labeling Based on
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Chapter 1

Introduction and Overview

1.1. Motivation

The image labeling problem refers to the task of assigning to each pixel a single element
from a finite predefined set of labels. This problem formulation can be applied in many
different fields, including image compression and denoising, calculating optical flow, ob-
ject segmentation, and many more. The individual labels in these cases might represent
color information, vectors of the velocity field, or fore- and background information in
the image, respectively.

The classical approach for image labeling is to devise a quality measure of label as-
signments, called objective function, whose global optima represent desired label config-
urations depending on the domain of application. A large class of models is given by
discrete objective functions related to probabilistic graphical models. These functions
are composed of a data term, measuring the deviation of labels from the given data,
and a regularizer, compensating for noise in the data and representing prior knowledge
of the problem. In this case, image labeling then corresponds to the task of finding
global minimizers for the discrete objective function, resulting in a hard combinatorial
problem. Thus, various relaxations are used in practice to arrive at a computationally
feasible formulation. Usually, convex relaxations are favored to obtain global optimal
solutions of the approximate problem.

There is a recent alternative formulation of image labeling via a smooth dynamical
selection process using information geometry. For this, label decisions at each pixel
are relaxed to probabilistic assignments and viewed as points on the manifold of dis-
crete probability distributions with full support on the set of labels, called assignment
manifold. The resulting dynamical system, called assignment flow, is given by spa-
tially coupled replicator equations and is mainly driven by two distinct processes: spatial
regularization of assignments through geometric averages and gradual enforcement of
unambiguous label decisions.

The goal of this thesis is to combine the classical and recent dynamical viewpoint
of the image labeling task into a variational formulation: minimize a given objective
function through the dynamics of the induced Riemannian gradient descent flow with
respect to the underlying information geometry on the assignment manifold. Due to the
Riemannian structure, the resulting dynamical system again has the form of a spatially
coupled replicator equation. However, in contrast to the classical approach of ‘solely’
finding global minimizers, the focus is on following the dynamics of the system, generally
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Chapter 1. Introduction and Overview

resulting in local optima. A good analogy might be dropping a ball in a room of a build-
ing. The resulting dynamic of the falling ball is adequately described by the equation of
motion induced by the corresponding gravitational potential, leading to a local optimum
somewhere in the room, rather than by the global minimizer of the potential, lying some-
where in the basement of the building. Similarly, non-convexity of objective functions
and local optima in the proposed variational image labeling approach are not an issue,
as label decisions are determined through the selection process of the corresponding
Riemannian gradient flow, driven by the dynamical flow of information.

1.2. Related Work

1.2.1. Image Labeling

Discrete graphical models are a well established approach for image labeling and dom-
inated the field in the past [GG84, Lau96, WJ08]. The special binary case of only two
labels can efficiently and optimally be solved [KZ04]. If the regularizer is induced by a
metric, then the image labeling problem is referred to as metric labeling problem [KT02].

A widely used convex relaxation for the corresponding combinatorial problem is based
on the local polytope relaxation [Wer07], a special linear programming (LP) relaxation
for adequately representing the specific structure of maximum a-posteriori (MAP) infer-
ence problems underlying discrete graphical models. As a consequence of the relaxation,
however, optimal solutions of the LP do not necessarily correspond to valid labelings
of the original problem. To remedy this shortcoming, various rounding schemes for
converting a relaxed solution into a valid labeling in a post-processing step are avail-
able [CKNZ05, KT02]. Due to the large problem size of typical applications, standard
methods for solving the LP relaxation are infeasible in practice. For example, the use
of interior point methods [NN87] is prohibitively expensive because of the dense linear
algebra steps required to find update directions. An iterative algorithm for tackling
these LPs is given by belief propagation and variations thereof [YFW05]. Even though
convergence guarantees are only available in special cases, the numerical update can
efficiently be implemented via ‘message passing’ and the overall method achieves good
performance in practice [YMW06]. For further references and experimental evaluations,
the reader is referred to the recent survey [KAH+15] on the image labeling problem and
on algorithms for solving it either approximately or exactly.

In addition, continuous models for image labeling together with various relaxations
are investigated in the literature [CCP12, LS11]. Similar to the discrete case, the special
binary case of two labels can be solved optimally by convex programming [CEN06].

In recent years, deep convolutional neural networks (CNNs) achieved outstanding
performance in different tasks of machine learning and pattern recognition, including
image classification and image labeling [KSH12]. However, there are instabilities and
systematic failures associated with these approaches, showing that further research for
a deeper mathematical understanding of CNNs is needed [ARP+19].
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1.2. Related Work

1.2.2. Assignment Flow

The assignment flow for smooth geometric image labeling was first proposed in [ÅPSS17].
It was in part motivated by seminal work on relaxation labeling [HZ83, RHZ76] and has
connections to other fields, including nonlinear diffusion filters [Wei98], nonlocal means
filter [BCM05], and replicator dynamics [HS03]. The assignment flow also fits into a
recent development of mathematically interpreting deep residual networks, a network
architecture introduced in [HZRS16], as discretized realizations of dynamical systems
[E17, HR17]. For a recent overview of the assignment filter in general and additional
remarks see [Sch20].

Over the past view years, several extensions of the original assignment flow have been
proposed. In [ZSPS20], the linear assignment flow together with geometric numerical
integration methods for integrating flows on the assignment manifold are considered.
Incorporating additional prior knowledge as global constraints on label assignments via
linear filters is explored in [ZRS18]. Initial work on parameter learning is reported in
[HSPS19], where the proposed approach is successfully applied to learn regularization
parameters for the linearized assignment flow. However, this general framework is not
limited to the linear model and can also be used for learning parameters of the fully
nonlinear flow. The work of [ZZPS20] introduces an unsupervised assignment flow, where
specified labels simultaneously evolve on a separate feature manifold coupled with the
underlying assignment process, allowing to adapt the given label dictionaries. A further
extension to a completely unsupervised scenario, where no labels are prespecified at all,
is presented in [ZZPS19]. There, the emergence of labels together with their assignments
is induced by a low-rank data representation evolving through dynamically assigning the
data to itself, resulting in the so-called self-assignment flow.

1.2.3. Replicator Dynamics

Replicator equations are a widely used dynamical model in various fields, including evo-
lutionary biology, game theory and economics, see [HS03, San10] and references therein.
Even though the replicator dynamic seems to be a simple ordinary differential equation
at first glance, it possesses a rich mathematical structure [AE05] and is even capable of
chaotic behavior [SC03]. Since the literature on replicator dynamics is vast, only a few
related works on models involving spatial interaction in physics [dB13, TC04] and ap-
plied mathematics [BPN14, NPB11] are pointed out, as well as extensions to an infinite
number of strategies (i.e. infinite labels in the case of image labeling) [AFMS18]. There
are also applications for finding good local optima for combinatorial problems, such as
the graph isomorphism problem [Pel99].

Regarding the connection to information geometry, it is well known that if the fit-
ness function corresponds to the gradient of a potential, then the replicator equation is
nothing else than the Riemannian gradient flow with respect to the Fisher-Rao metric
[AJVLS17, HS03].
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1.3. Contribution and Organization

In [ÅPSS17], the assignment flow originally started out as a variational model contain-
ing Riemannian means on the assignment manifold. Using a simplifying assumption and
approximating the Riemannian mean to first order by the geometric mean, the corre-
sponding Riemannian gradient descent flow resulted in the assignment flow formulation.
Unfortunately, this approximation is unavoidable for obtaining efficient numerical up-
date schemes, as there is no explicit formula for the Riemannian mean. Even though
the mean itself can be computed numerically (cf. [ÅPSS17, Sec. 3.3.2]), the derivation
of a numerical scheme for the corresponding derivative, contained in the Riemannian
gradient, is rather involved. This motivated the investigation of variational approaches
for image labeling on the assignment manifold in this thesis. Among other things, the
convergence of general variational models will be investigated together with the question
to which extend the assignment flow is still variational.

The main contributions of this thesis include:

• Transferring established convergence and stability results for gradient flows of an-
alytic functions on Euclidean space to Riemannian gradient flows of log-barrier
perturbed analytic objective functions on the assignment manifold.

• Proving that the assignment flow is not a Riemannian gradient flow. Introducing
a suitable parameterization of the assignment flow by its dominant component
and showing that this in turn is a Riemannian gradient flow with an explicitly
given potential. Also, generalizing this potential to the continuous-domain case,
which reveals connections to harmonic maps and corresponding partial differential
equations (PDEs).

• Deriving a relaxed geometric variational formulation of discrete energies corre-
sponding to discrete graphical models on the assignment manifold. This is done
by reformulating the smoothed local polytope relaxation in terms of entropy reg-
ularized local Wasserstein distances. The resulting inference process through the
Riemannian gradient flow always satisfies the local marginalization constraints and
incorporates a smooth rounding mechanism towards unambiguous labels decisions.

Subsequently, an overview regarding the organization of this work is given:
In Chapter 2, the necessary mathematical background for this work is presented. The

basic notation used throughout this thesis is laid out in Section 2.1. The reader is
assumed to be familiar with the basic definitions and facts from differential geometry
and convex analysis presented in the corresponding appendices A and B. Section 2.2
introduces the necessary fundamental concepts and results from information geometry
needed to define and investigate the dynamical formulation of the image labeling problem
on the assignment manifold in Section 2.3.

In Chapter 3, the process of inferring label assignments through the Riemannian gra-
dient descent flow and the corresponding numerical integration with the geometric Euler
method are considered. For this, Section 3.1 defines the log-barrier method on the as-
signment manifold and Section 3.2 introduces special affine coordinates as well as the

6
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 Lojasiewicz inequality for analytic functions. After these mathematical preparations,
the established convergence theory of gradient flows for analytic functions in Euclidean
space is transferred to Riemannian gradient flows on the assignment manifold in Sec-
tion 3.3. Section 3.4 deals with the corresponding theory for the numerical integration
through the geometric Euler method.

Chapter 4 is concerned with the variational formulation of the assignment flow. In
Section 4.1, it is shown that even though the assignment flow itself is not a Riemannian
gradient flow, it can alternatively be parameterized by its dominant component, called
S-flow, which in turn admits the characterization as a Riemannian gradient flow. Sub-
sequently, the corresponding potential is investigated and basic properties are evaluated
with two academical examples. A continuous-domain variational formulation is studied
in Section 4.2. After establishing well-posedness of the associated optimization problem
and deriving a numerical algorithm for solving it, the close relation of this approach to
the assignment flow is illustrated by an experiment. In the end, a PDE characterization
of solutions is obtained by a ‘formal’ derivation.

Finally, in Chapter 5, an alternative approach for optimizing discrete functions related
to discrete graphical models is presented. For this, a relaxed variational model on the
assignment manifold is derived in Section 5.2 using entropy regularized local Wasser-
stein distances. This derivation is based on the smoothed local polytope relaxation,
which will be introduced in Section 5.1. Following the corresponding Riemannian gradi-
ent flow of the variational model results in an alternative inference process for discrete
graphical models using parallel ‘Wasserstein messages’ along edges. In contrast to estab-
lished methods, the local marginalization constraints are always satisfied and a smooth
rounding mechanism towards integral assignments is incorporated in the inference pro-
cess. Basic properties of this approach are evaluated with academical experiments in
Section 5.3, including a comparison with two established methods in the field.

A summary of this thesis together with a short list of further research directions is
presented in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, the central mathematical objects of this thesis are defined, the so called
assignment manifold, encoding fully probabilistic label assignments, together with the
assignment flow, inferring label configurations on the assignment manifold. Before this
is done, the fundamental concepts from information geometry are introduced, necessary
to define and investigate the dynamical formulation of the image labeling problem on
the assignment manifold. The reader is assumed to be familiar with the basic definitions
and results from differential geometry and convex analysis as presented in Appendix A
and B.

2.1. Basic Notation

In the following, an overview of the notation for standard mathematical objects used
throughout this work is given. For the notation regarding differential geometry and
convex analysis, the reader is referred to the corresponding appendices A and B. Unless
otherwise stated, the Einstein summation convention is used (see appendix A).

For n ∈ N = {1, 2, . . .}, the first n natural numbers are denoted by

[n] := {1, 2, . . . , n− 1, n}

and the n-dimensional vector containing only ones by 1n := (1, 1, . . . , 1) ∈ Rn. The
standard basis of Rn is given by Bn := {e1, . . . , en} ⊂ Rn.

For two indices i, j ∈ N, the Kronecker delta is denoted by δij and takes the values
δij = 1 if i = j and δij = 0 else. The indicator function of a set S ⊂ X is defined as

χS : X → {0, 1}, x 7→ χS(x) =

{
1 , for x ∈ S
0 , for x /∈ S.

(2.1)

For a differentiable function f : U → R, with U ⊂ Rn open, the ordinary gradient is
denoted by1 ∂f and the Hessian by Hess f . The dependence of a linear map F : V →W
between two vector spaces V and W on the argument x is denoted by F [x], for example
F [A] = B>A> + AB for matrices A ∈ Rm×n and B ∈ Rn×d. If the action of F on x is
explicitly given by matrix multiplication, then also Fx is used. The kernel (nullspace)

1As subdifferentials of a function will not occur in this thesis, there is no danger of confusion.
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and image (range) of a linear mapping F is denoted by ker(F ) and Im(F ). If U ⊂ V is
a linear subspace of a Euclidean vector space (V, 〈·, ·〉), then the orthogonal projection
onto U is denoted by PU : V → U and the orthogonal complement of U in V by U⊥.

Due to the Einstein summation convention, basis vectors will always have lower and
vector coordinates always upper indices, e.g. if x ∈ Rn, then x = xiei. Unless otherwise
stated, a matrix A ∈ Rm×n will be identified with an element of the product space

Rm×n ∼= (Rn)m =
∏
i∈[m]

Rn,

that is, the i-th component of A = (Ai)i∈[m] is given by the i-th row vector of A, again

denoted by Ai ∈ Rn. Expressing this row vector Ai in coordinates gives Ai = Ajiej .

Thus, an element of a matrix A ∈ Rm×n will be indexed by Aji , where i ∈ [m] is the row
index and j ∈ [n] the column index. The j-th column vector of A is therefore denoted
by Aj .

The standard inner product of two vectors x, y ∈ Rn is denoted by 〈x, y〉 and the
induced Euclidean norm by ‖·‖, other norms will always be indicated by a corresponding
subscript. If M ⊂ Rn is a submanifold, then the canonical Riemannian metric given by
the induced Euclidean metric is sometimes denoted by E = 〈·, ·〉 to simplify notation,
especially in the context of Riemannian gradients. Furthermore, the Frobenius inner
product of two matrices A,B ∈ Rm×n is given by

〈A,B〉 := tr
(
A>B

)
=

∑
i∈[m],j∈[n]

AjiB
j
i =

∑
i∈[m]

〈Ai, Bi〉 =
∑
j∈[n]

〈Aj , Bj〉,

and induces the Frobenius matrix norm, again denoted by ‖·‖. The closure of a set M in
Rn or Rm×n with respect to ‖ ·‖ is indicated by M and the interior by int(M) := M \M .
Furthermore, open Euclidean balls with radius r > 0 around a point x ∈ Rn are always
denoted by Br(x) and similarly for balls around X ∈ Rm×n.

Inequalities between two vectors or matrices are meant componentwise, i.e. if x = xiei
and y = yiei are vectors in Rn, then x > y means xi > yi for all i ∈ [n]. The Hadamard
product, i.e. componentwise multiplication of matrices A,B ∈ Rm×n, is denoted by A•B
and componentwise division for B > 0 by A

B or A/B respectively. Define A•0 to be the

identity matrix and inductively A•k := A•A•(k−1) for k ∈ N. For two vectors x, y ∈ Rn,
the Hadamard product is simply denoted by xy := x•y, since there is no confusion with
matrix multiplication. Also, for x, y, z ∈ Rn and A,B,C ∈ Rm×n the relations

xy = Diag(x)y, 〈xy, z〉 = 〈x, yz〉 and 〈A•B,C〉 = 〈A,B•C〉

hold. The componentwise application of a given scalar function f : R → R to a vector
x = xiei ∈ Rn is defined by f(x) := f(xi)ei, e.g. ex = (ex

1
, . . . , ex

n
) ∈ Rn. Similarly,

f(X) denotes the componentwise application of f to a matrix X ∈ Rm×n.

10
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2.2. Information Geometry

The notion of a dually flat manifold originates in the field of information geometry,
where families of probability distributions, such as exponential families, are treated as
manifolds. There, the investigation of intrinsic geometric properties of these statisti-
cal manifolds naturally leads to the concept of dually flat structures, which provides a
rich mathematical framework with applications in statistical inference, information the-
ory, machine learning and many more, see [AN07], [Ama16], [AJVLS17] and references
therein. These basic information geometric concepts will be a powerful tool for defin-
ing and investigating the dynamical formulation of image labeling on the assignment
manifold throughout this work.

In the following, the general concept of a dually flat manifold together with some of the
fundamental properties are introduced, based on the aforementioned references. Then,
the natural dually flat structure for the space of discrete probability distributions with
full support, used to encode label decisions in the subsequent sections, is considered.

2.2.1. Dually Flat Manifolds

Let (S, g) be a Riemannian manifold. Two affine connections ∇ and ∇∗ on S are dual,
if for all vector fields X,Y, Z ∈ X(S)

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗ZY ) (2.2)

holds. The triple (g,∇,∇∗) is called a dualistic structure on S. The manifold S together
with the choice of a dualistic structure is a dualistic manifold, denoted by (S, g,∇,∇∗).

For a given connection ∇ there exists a unique dual connection ∇∗, implying the
equality (∇∗)∗ = ∇. Uniqueness also results in self-duality (∇g)∗ = ∇g for the Levi-
Civita connection ∇g associated to the Riemannian metric g.

A statistical manifold is a dualistic manifold (S, g,∇,∇∗) with ∇ and ∇∗ torsion free.
Since ∇ and ∇∗ are dual connections, ∇′ := 1

2(∇+∇∗) is a metric connection on (S, g).
Because ∇ and ∇∗ are additionally torsion free, so is ∇′ and as a consequence, equals
the Levi-Civita connection ∇g = ∇′. Furthermore, the dual connections ∇ and ∇∗ of
the statistical manifold S can be encoded by a symmetric 3-tensor as follows.

Theorem 2.2.1. For every statistical manifold (S, g,∇,∇∗) there is an associated sym-
metric 3-tensor via the construction

T (X,Y, Z) := g(∇∗XY −∇XY, Z) for X,Y, Z ∈ X(S)

Conversely, any symmetric 3-tensor on a Riemannian manifold (S, g) results in a sta-
tistical manifold (S, g,∇,∇∗), where ∇ is defined by the equation

g(∇XY, Z) = g(∇gXY, Z)− 1

2
T (X,Y, Z) for all X,Y, Z ∈ X(S)

and ∇∗ is uniquely determined by ∇ through the duality condition (2.2).

11
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Proof. See [AJVLS17, Thm. 4.1] and [AJVLS17, Thm. 4.2].

A dualistic manifold (S, g,∇,∇∗) is called dually flat manifold if both dual connections
∇ and ∇∗ are flat. Since flat connections are also torsion free, a dually flat manifold is
always also a statistical manifold.

The next result shows that any dually flat structure is locally induced by dually convex
functions defined on dual affine coordinates.

Theorem 2.2.2. Let (S, g,∇,∇∗) be a dually flat manifold. For any ∇-affine coordinate
system θ on U ⊂ S, there exists a dual coordinate system η on U which is ∇∗-affine. Also,
there are smooth convex functions ψ(θ) and ϕ(η) (convex with respect to the coordinates)
related by a Legendre transformation

ϕ(η) = max
θ
{〈θ, η〉 − ψ(θ)} = ψ∗(η),

inducing the dual affine coordinates

η = ∂ψ(θ) and θ = ∂ϕ(η) with ψ(θ) + ϕ(η)− 〈θ, η〉 = 0, (2.3)

as well as the Riemannian structure

gij = g

(
∂

∂θi
,
∂

∂θj

)
=

∂2

∂θi∂θj
ψ and g∗ij = g

(
∂

∂ηi
,
∂

∂ηj

)
=

∂2

∂ηi∂ηj
ϕ (2.4)

with gij = g∗ij. Furthermore, the components Tijk of the symmetric 3-tensor T from
Theorem 2.2.1, encoding the dual torsion free connections ∇ and ∇∗, are given by

Tijk =
∂3

∂θi∂θj∂θk
ψ, (2.5)

showing that ψ completely induces the dually flat structure.

Proof. For a proof see [AJVLS17, Thm. 4.4] as well as [AN07, Thm. 3.6].

Following the construction of [AN07, Sec. 3.4], there is a uniquely determined local
divergence for every dually flat manifold (S, g,∇,∇∗), called the canonical local diver-
gence. Let θ and η be dual ∇- and ∇∗-affine coordinate systems on an open set U ⊂ S
together with their respective convex potentials ψ(θ) and ϕ(η). For p, q ∈ U , the canon-
ical divergence associated with ψ is defined by

Dψ(p‖q) := ψ
(
θ(p)

)
+ ϕ

(
η(q)

)
− 〈θ(p), η(q)〉

(2.3)
= ψ

(
θ(p)

)
− ψ

(
θ(q)

)
−
〈
∂ψ
(
θ(q)

)
, θ(p)− θ(q)

〉
= Dψ(θ(p), θ(q)),

(2.6)

which is nothing else than the Bregman divergence (B.7). Dually, there is the corre-
sponding canonical divergence associated with ϕ by exchanging the role of ψ and η,
resulting in

Dϕ(p‖q) = ϕ
(
η(p)

)
+ ψ

(
θ(q)

)
− 〈η(p), θ(q)〉 = Dϕ(η(p), η(q)). (2.7)

12
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Comparing (2.6) and (2.7) shows that the two divergences are given by the same ex-
pressions and only differ by swapping the arguments. This motivates to define the dual
canonical divergence as

D∗ψ(p‖q) := Dϕ(p‖q) = Dψ(q‖p).

Furthermore, they also induce the Riemannian metric by

∂2

∂θi∂θj
Dψ(p‖q) = gij as well as

∂2

∂ηi∂ηj
Dψ(p‖q) = gij

and it can be shown that Dψ(p‖q) is invariant under affine coordinate transformations.
Thus, (2.6) and its dual are indeed uniquely determined by the dually flat structure.

2.2.2. Discrete Probability Distributions with Full Support

Probability distributions on a discrete set X with a finite number of elements |X | = n
are identified as points on the probability simplex

∆ :=
{
p ∈ Rn

∣∣ 〈1n, p〉 and p ≥ 0
}

= conv(Bn). (2.8)

Hence, the set of discrete probability distributions on X with full support is represented
by the manifold

S :=
{
p ∈ ∆

∣∣ p > 0
}

= rint(∆), (2.9)

with constant tangent space

TpS =
{
v ∈ Rn

∣∣ 〈1n, v〉 = 0
}

=: TS ∀p ∈ S (2.10)

and trivial tangent bundle TS = S × TS . In the following, the natural dually flat struc-
ture of S is introduced, based on [Ama16] and [AJVLS17].

The manifold S can be viewed as an exponential family (see [Ama16, Sec. 2.2.2]) by
defining the natural parameters θ = θ(p) ∈ Rn−1 of a point p = piei ∈ S as

θi = log
pi

pn
for i ∈ [n− 1], (2.11)

with the associated convex cumulant generating function

ψ(θ) = log
(
1 +

〈
1n−1, e

θ
〉)

= − log pn. (2.12)

The resulting dual coordinates η = η(p) ∈ Rn−1 are

ηi = pi for i ∈ [n− 1] (2.13)

with the negative entropy as corresponding dual convex function

ϕ(η) = 〈η, log η〉+
(
1− 〈1n−1, η〉

)
log
(
1− 〈1n−1, η〉

)
= 〈p, log p〉 =: −H(p). (2.14)

13
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Therefore, the natural dually flat structure of S is induced by the strictly convex negative
entropy −H(p). The resulting Riemannian metric

gp : TS × TS → R, (u, v) 7→ gp(u, v) =

〈
u,Diag

(
1

p

)
v

〉
, ∀p ∈ S, (2.15)

is called Fisher-Rao (information) metric and plays an important role for estimation
theory in statistics and related fields, see [AN07], [AJVLS17] and references therein.
The related dual connections, induced by (2.5) through Theorem 2.2.1, are denoted
by ∇(e) and ∇(m) =

(
∇(e)

)∗
and called e- and m-connection respectively. With this

(S, g,∇(e),∇(m)) is a dually flat manifold and the above introduced dual coordinates θ in
(2.11) and η in (2.13) are dual e- and m-affine global coordinates of S. The corresponding
maximal m- and e-geodesics at p ∈ S in the direction v ∈ TS are given by (see [AJVLS17,
Prop. 2.5])

γ(m)
v : (t−, t+)→ S, t 7→ p+ tv (2.16a)

γ(e)
v : R→ S, t 7→ pe

t v
p

〈p, et
v
p 〉
, (2.16b)

where (t−, t+) ⊂ R is the maximal interval for γ
(m)
v with t− < 0 < t+. Therefore, the

resulting exponential maps are

Exp(m) : E (m) → S, (p, v) 7→ Exp(m)
p (v) = p+ v (2.17a)

Exp(e) : S × TS → S, (p, v) 7→ Exp(e)
p (v) =

pe
v
p

〈p, e
v
p 〉
, (2.17b)

with E (m) =
{

(p, v)
∣∣ p+ v ∈ S

}
⊂ TS = S × TS . Furthermore, the canonical diver-

gences associated with ψ and ϕ from (2.6) and (2.7) in this setting are given by the KL
divergence from (B.12) and its dual (see [AJVLS17, Eq. (4.78)]),

Dψ(p‖q) = KL∗(p, q) = KL(q, p), Dϕ(p‖q) = D∗ψ(p‖q) = KL(p, q)

Remark 2.2.1. The exponential maps Exp(m) and Exp(e) corresponding to ∇(m) and
∇(e) are not the exponential map Expg with respect to the Levi-Civita connection ∇g
induced by the Riemannian metric on S. Consequently, the affine geodesics (2.16) are
not length-minimizing with respect to the Riemannian structure g. But locally, they
provide a close approximation [ÅPSS17, Prop. 3] and are more convenient for numerical
computations.

There is an alternative characterization of the Fisher-Rao metric on S. For this,
consider the part of the sphere with radius two, denoted by 2Sn, in the positive orthant
of Rn, i.e.

2Sn>0 := 2Sn ∩ Rn>0 =
{
x ∈ Rn

∣∣ ‖x‖2 = 2, x > 0
}
.
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2.3. Image Labeling by Geometric Assignment

This manifold is identified with S via the following diffeomorphism, called sphere map,

ξ : S → 2Sn>0, p 7→ ξ(p) := 2
√
p.

The submanifold 2Sn>0 ⊂ Rn has a canonical Riemannian metric given by the induced
Euclidean metric E = 〈·, ·〉 on Rn.

Proposition 2.2.3. [AJVLS17, Prop. 2.1]. The sphere map ξ is an isometry between the
Riemannian manifolds (S, g) and (2Sn>0, E), i.e. the Fisher-Rao metric is the pullback
of the standard Euclidean metric under ξ,

gp(u, v) = 〈dξ(p)[u], dξ(p)[v]〉 =

〈
u
√
p
,
v
√
p

〉
,

for all p ∈ S and u, v ∈ TS .

As a consequence of this relation between S and 2Sn>0, there is an explicit expression
for the Riemannian distance dg on S, given by

dg(p, q) = dSn(
√
p,
√
q) = 2 arccos

(
〈√p,√q〉

)
, (2.18)

as well as an explicit expression for the geodesics on (S, g), see [ÅPSS17, Proposition 2]
for details. Because all geodesics of the sphere 2Sn eventually leave the positive orthant
in finite time, the Riemannian manifolds (2Sn>0, E) and (S, g) are not complete.

2.3. Image Labeling by Geometric Assignment

In this section, the dynamical formulation of image labeling on the assignment manifold
together with the required definitions and geometric concepts from [ÅPSS17] and [Sch20]
are introduced. Even so, the main area of application in this thesis will be in the
context of image labeling, the smooth geometric assignment approach is developed in
full generality, i.e. for any given data with values in an abstract metric space defined on
an arbitrary graph. Thus, the framework is also applicable to manifold valued images,
spatio-temporal data in R×Rd, graphs representing a discretized submanifold in Rd and
many more.

First, the labeling problem on a graph with respect to some given data and a predefined
set of labels is formalized. Next, the assignment manifold, encoding the label decisions
on the graph, is introduced together with the induced dually flat structure and the
resulting Riemannian gradient, as well as the replicator operator and the lifting map.
These concepts are then combined to define the assignment flow, a spatially coupled
dynamical system on the assignment manifold for inferring label assignments. Finally,
geometric Runge-Kutta methods for numerically integrating the assignment flow on the
assignment manifold are briefly discussed.
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2.3.1. The Labeling Problem on Graphs

Let G = (V, E) be an undirected graph with m := |V| vertices. Throughout this text,
the identification V = [m], resulting from any numbering of the vertices, will be used for
convenience. Suppose some data

f : V → F , i 7→ f(i) =: fi ∈ F (2.19)

defined on G with feature values fi in a metric space (F , dF ), called feature space, together
with prototypical features or labels

X = {`1, . . . , `n} ⊂ F (2.20)

is given, with |X | = n. Each label `j represents a class j of features. The labeling
task or labeling problem corresponds to finding a task specific label assignment V → X ,
assigning a class label to each node, depending on the given data f in a local spatial
context encoded by the graph structure. Since the number of vertices m is finite, label
assignments can equivalently be viewed as elements of Xm.

The spatial relation between the data points fi, represented by the adjacency relation
of the graph, induces neighborhoods

Ni =
{
k ∈ V

∣∣ ik ∈ E}, ∀i ∈ V, (2.21)

where ik is shorthand for the undirected edge {i, k} ∈ E . Unless otherwise stated,

i ∈ Ni ∀i ∈ V (2.22)

is always assumed. As a consequence of the graph being undirected, the neighborhoods
satisfy the relations

k ∈ Ni ⇔ i ∈ Nk, ∀i, k ∈ V, (2.23)

meaning that feature fk is spatially related to feature fi if and only if fi is related to
fk. For various calculations, it will be convenient to use the indicator function of the
neighborhoods Ni from (2.1), for i ∈ V, which take the form

χNi : V → {0, 1}, j 7→ χNi(j) =

{
1 , for j ∈ Ni
0 , else.

(2.24)

As a result of the symmetry relation of the neighborhood structure in (2.23), the equality

χNi(j) = χNj (i) ∀i, j ∈ V (2.25)

follows. Furthermore, weights ωik ∈ R for all k ∈ Ni may be associated to every neigh-
borhood Ni from 2.21, fulfilling

ωik > 0 and
∑
k∈Ni

ωik = 1 ∀i ∈ V. (2.26)
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These weights quantify the influence of feature fj on fi in the spatial neighborhood
j ∈ Ni and are used to parametrize the regularization property of the assignment flow
below.

The graph G may result from discretizing the image domain Ω ⊂ R2 of a given (gray-
value) image Ω→ R. In this case, each node indexes a position xi ∈ Ω and neighboring
nodes k ∈ Ni represent spatial locations xk with small distance ‖xi − xk‖ to xi. The
features fi are then called image features and are extracted from the raw image at pixel
i in a preprocessing step. The resulting labeling task is referred to as image labeling.

In this setting, a standard graph for representing rectangular digital images is the
image grid graph Gg = (Vg, Eg) from low-level image processing. The vertex set is given
by Vg = [nx]× [ny] ⊂ Z×Z, representing the nx×ny pixel grid of the image, nx, ny ∈ N.
For a given radius r ∈ N, the neighborhood Ni at vertex i ∈ Vg is chosen to be the
‖ · ‖max ball in Vg centered at i, i.e.

Ni =
{
j ∈ Vg

∣∣ ‖i− j‖max ≤ r
}
.

These neighborhoods are also called ‘N ×N neighborhoods’, because for a vertex in the
interior of the pixel grid, Ni is given by the N × N pixel patch centered at i, where
N = 2r + 1. This neighborhood structure uniquely determines the edge set Eg of the
grid graph Gg.

2.3.2. Assignment Manifold

Every label `j ∈ X can be encoded as the vertex ej of the probability simplex ∆ from
(2.8), with ej being the j-th standard basis vector of Rn. This results in the identification

X ⊂ ∆.

It is therefore natural to allow fully probabilistic label assignments on the manifold S of
discrete probability distributions with full support from (2.9). Points p ∈ S sufficiently
close to ej are interpreted as unique label assignments `j ∈ X .

In the same way as global discrete label assignments V → X are encoded as points
in the product space Xm, also global probabilistic label assignment V → S may be
represented on the product space of probability distributions with full support.

Definition 2.3.1 (Assignment Manifold). The set of global probabilistic label assign-
ments is called assignment manifold and defined by the product space

W :=
∏
i∈V
S. (2.27)

Remark 2.3.1. In the following, points on the assignment manifold will always be
denoted by upper-case letters.
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The fact that the tangent space TS of S is constant together with the identification
(A.4) for the tangent space of the product manifold W, implies that the assignment
manifold also has a constant tangent space

TPW =
∏
i∈V

TPiS =
∏
i∈V

TS =: TW , ∀P = (Pi)i∈V ∈ W,

and therefore a trivial tangent bundle TW =W × TW .
Since a point p ∈ S ⊂ Rn has coordinates p = pjej in the standard basis ej of Rn,

the i-th component of a point P = (Pi)i∈V ∈ W has coordinates Pi = P ji ej . As a
consequence, W is identified with the following embedding into Rm×n

W =
{
W ∈ Rm×n

∣∣W1n = 1m and W j
i > 0 for all i ∈ [m], j ∈ [n]

}
. (2.28)

Thus, points W ∈ W are row-stochastic (m × n) matrices, where the i-th row vector,
denoted by Wi = W j

i ej ∈ S, represents the label assignments for node i ∈ V. Due to
this embedding of W, the tangent space TW can be identified with

TW =
{
V ∈ Rm×n

∣∣ V 1n = 0
}
.

Therefore, every row vector Vi = V j
i ej of a tangent vector V ∈ TW is contained in TS ,

for every i ∈ V.
As a consequence of the natural dually flat structure of S, induced by the negative

entropy (see Section 2.2.2), this probabilistic encoding of label assignments allows for a
geometric model of the labeling task within the rich framework of information geometry.
In the following, the product dually flat structure of W is investigated and subsequently
the replicator operator as well as the lifting map are introduced together with their basic
properties.

Dually Flat Structure of the Assignment Manifold

The dually flat structure of the factors S naturally carries over to the product space W
in the following way.

Let P ∈ W. For the i-th factor S of W, i ∈ V, denote the e-affine coordinates (2.11)
by θi = θi(Pi) ∈ Rn−1 and the dual m-affine coordinates (2.13) by ηi = ηi(Pi) ∈ Rn−1

as well as the corresponding convex function (2.12) by ψi(θi) and dual convex function
(2.14) by ϕi(ηi). Furthermore, define the global product coordinates of W by

θ := (θi)i∈V and η := (ηi)i∈V (2.29)

together with the associated convex functions

ψ(θ) :=
∑
i∈V

ψi(θi) and ϕ(η) :=
∑
i∈V

ϕi(ηi).

Since ψ factorizes, the conjugate function of ψ is given by

ψ∗(η) = max
θ=(θi)

{∑
i∈V

(
〈θi, ηi〉 − ψi(θi)

)}
=
∑
i∈V

max
θi

{
〈θi, ηi〉 − ψi(θi)

}
= ϕ(η),
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showing that θ and η are global dual e- and m-affine coordinates of W, induced by the
negative global entropy, or again simply called entropy, on W defined by

HW(P ) :=
∑
i∈V

H(Pi)
(2.29)

= −
∑
i∈V

ϕi(ηi) = −ϕ(η), ∀P ∈ W. (2.30)

By Theorem 2.2.2, ψ induces a Riemannian metric with coordinates

gP (θ)

(
∂

∂θik
,
∂

∂θjl

)
=

∂2

∂θik∂θ
j
l

ψ(θ) = δkl
∂2

∂θik∂θ
j
k

ψk(θk) = δklgPk(θk)

(
∂

∂θik
,
∂

∂θjk

)

at P ∈ W, where δkl is the Kronecker delta. For V,U ∈ TW , these coordinates of the
Riemannian metric result in

gP (V,U) = V i
kU

j
l gP

(
∂

∂θik
,
∂

∂θjl

)
= V i

kU
j
kgPk

(
∂

∂θik
,
∂

∂θjk

)
=
∑
k∈V

gPk(Vk, Uk).

Therefore, the Riemannian metric of the dually flat structure (W, g,∇(e),∇(m)), induced
by the negative global entropy HW from (2.30), is given by the Riemannian product
metric, again called Fisher-Rao metric and denoted by g. Again due to the special
factorization of ψ and ϕ, the canonical divergence between P,Q ∈ W is the global KL
divergence, or again simply called KL divergence, given by

Dϕ(P‖Q) =
∑
i∈V

Dϕi(Pi‖Qi) =
∑
i∈V

KL(Pi, Qi) =

〈
P, log

(
P

Q

)〉
=: KL(P,Q). (2.31)

Replicator Operator, Riemannian Gradient and Lifting Map

To simplify notation and streamline calculations in the following, it will be advantageous
to introduce the replicator operator and the lifting map from [Sch20] together with their
basic properties and relations.

For every p ∈ S, the replicator operator is the linear map Rp : Rn → TS , defined by

Rp := Diag(p)− pp> ∈ Rn×n, (2.32)

and the lifting map by

expp : Rn → S, x 7→ expp(x) :=
pex

〈p, ex〉
. (2.33)

Furthermore, the barycenter, given by the uniform distribution, is denoted by

1S :=
1

n
1n ∈ S (2.34)
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and the orthogonal projection PTS : Rn → TS with respect to the standard inner product
on Rn is given by the matrix

PTS := In − 1S1>n ∈ Rn×n. (2.35)

The next two lemmas collect some basic properties for the replicator operator and the
lifting map frequently used in the subsequent chapters.

Lemma 2.3.1. The symmetric matrix Rp ∈ Rn×n satisfies the following properties:

(1) RpPTS = Rp = PTSRp for all p ∈ S and ker(Rp) = R1.

(2) Restricting the linear map Rp to TS results in a linear isomorphism Rp : TS → TS
for every p ∈ S with inverse

(Rp|TS )−1 = PTS Diag

(
1

p

)
: TS → TS , v 7→ PTS

v

p
. (2.36)

(3) The replicator operator Rp and the variance of a vector x ∈ Rn with respect to the
probability distribution p ∈ S are connected by the identity

〈x,Rpx〉 = Varp(x) ≥ 0. (2.37)

Thus, Rp is a positive semi-definite symmetric matrix and has real eigenvalues in
the interval 0 ≤ λ1 ≤ . . . ≤ λn ≤ 1

2 . The restricted map Rp|TS is a symmetric
positive definite endomorphism on TS .

Remark 2.3.2. Strictly speaking, the restriction of Rp to TS and its inverse should
always be denoted by Rp|TS and (Rp|TS )−1. However, to simplify notation only Rp and
R−1
p are used in the following. This will not be a source of confusion, because solving

an equation Rpx = y ∈ TS for x ∈ Rn only introduced an additional projection PTS due
to property (1), i.e.

y = Rpx = RpPTSx ⇔ R−1
p y = PTSx.

Proof. To (1): Let p ∈ S be arbitrary and take any x ∈ Rn. Then

〈Rpx,1n〉 = 〈px,1n〉 − 〈x, p〉〈p,1n〉 = 〈x, p〉 − 〈x, p〉 = 0,

showing that Rpx ∈ TS and therefore also PTSRp = Rp. Since PTS and Rp are symmetric,

RpPTS = (PTSRp)
> = R>p = Rp.

Let p ∈ S and x ∈ Rn. Because p > 0, it follows

x ∈ ker(Rp) ⇔ 0 = Rpx = p
(
x− 〈x, p〉1n

)
⇔ x ∈ R1n.

To (2): Since R1n = ker(Rp) is the orthogonal complement of TS , the decomposition
Rn = R1n ⊕ TS follows and therefore also ker(Rp|TS ) = 0. As a consequence, the
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2.3. Image Labeling by Geometric Assignment

endomorphism Rp|TS is an isomorphism. To verify that the inverse is given by (2.36),
take an arbitrary v ∈ TS . Keeping 〈v,1n〉 = 0 in mind,

RpPTS Diag

(
1

p

)
v = Rp

v

p
= v − 〈v,1n〉p = v.

To (3): Let x = xiei ∈ Rn and p = piei ∈ S. It follows

〈x,Rpx〉 = 〈x, px〉 − 〈x, p〉2 =
∑
i∈[n]

(
xi − 〈x, p〉

)2
pi = Varp(x) ≥ 0,

proving (2.37) and that Rp is indeed positive semi-definite. Because of Rn = R1n ⊕ TS ,
any x ∈ TS implies x /∈ R1n. Therefore, the above equation also yields 〈x,Rp|TSx〉 =
Varp(x) > 0 for all 0 6= x ∈ TS , showing that Rp|TS : T → T is positive-definite.

Since Rp is symmetric, all eigenvalues λi are real. For p = piei ∈ S, the i-th absolute
row sum of Rp is given by∑

j∈[n]

|(Rp)ij | = pi(1− pi) + pi
∑

i 6=j∈[n]

pj = 2pi(1− pi) = 2−1 − 2
(
pi − 2−1

)2
,

resulting in ‖Rp‖∞ = maxi∈[n]

∑
j∈[n] |(Rp)ij | ≤

1
2 . Thus, if λ is an eigenvalue with

corresponding eigenvector xλ 6= 0, then the estimate

|λ|‖xλ‖∞ = ‖λxλ‖∞ = ‖Rpxλ‖∞ ≤ ‖Rp‖∞‖xλ‖∞ ≤
1

2
‖xλ‖∞

holds. Because Rp is positive semi-definite, all eigenvalues fulfill 0 ≤ λ ≤ 1
2 .

Lemma 2.3.2. The following properties hold for the lifting map (2.33):

(1) The lifting map implicitly projects onto TS , i.e.

expp(PTSx) = expp(x), ∀x ∈ Rn. (2.38)

(2) The restriction expp : TS → S is a diffeomorphism for every p ∈ S with inverse

exp−1
p : S → TS , q 7→ exp−1

p (q) := PTS log
q

p
. (2.39)

The differentials of expp and exp−1
p at v ∈ TS and q ∈ S, respectively, are given by

dexpp(v)[u] = Rexpp(v)u and dexp−1
p (q)[u] = R−1

q u ∀u ∈ TS . (2.40)

(3) For every p ∈ S, the maps expp and Exp
(e)
p are related by Exp

(e)
p ◦Rp = expp. As a

consequence, the inverse of the e-exponential map at p ∈ S is globally defined and
given by (

Exp(e)
p

)−1
= Rp ◦ exp−1

p : S → TS . (2.41)
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(4) If Rn is viewed as an abelian group, then exp: Rn×S → S given by (v, p) 7→ expp(v)
defines a Lie-group action, i.e.

expp(v + u) = expexpp(u)(v) and expp(0) = p ∀v, u ∈ TS and ∀p ∈ S.
(2.42)

Furthermore, the following identities hold for all p, q, a ∈ S and v ∈ Rn

expp(v) = expq
(
v + exp−1

q (p)
)

(2.43a)

exp−1
q (p) = −exp−1

p (q) (2.43b)

exp−1
q (a) = exp−1

p (a)− exp−1
p (q). (2.43c)

(5) For x ∈ Rn and p ∈ S, the lifting map is characterized by

expp(−x) = argminq∈∆

{
〈q, x〉+ KL(q, p)

}
. (2.44)

Remark 2.3.3.

(1) Similar to Remark 2.3.2, the restriction of expp to TS and its inverse should always
be denoted by expp|TS and (expp|TS )−1. However, as a consequence of property (1)

q = expp(x) = expp|TS (PTSx) ⇔ (expp|TS )−1(q) = PTSx

for all x ∈ Rn and p, q ∈ S. Hence, in order to simplify notation expp and exp−1
p

will be used in the following, by keeping in mind that an additional projection
enters the equation if exp−1

p is applied.

(2) The characterization of expp in (2.44) was already derived in [BT03] as a special
case for solving convex optimization problems minx∈C f(x). There it is shown
that the mirror descent method [NY83] can be viewed as a nonlinear projected
subgradient method using Bregman divergences, i.e.

xk+1 = ∂ϕ∗
(
∂ϕ(xk)− hk∂f(xk)

)
= argminx∈∆{hk〈x, ∂f(xk)〉+Dϕ(x, xk)}

where hk > 0 is the step size and ϕ a smooth strictly convex function fulfilling
some additional technical assumptions. If the convex function is defined on the
probability simplex f : ∆ → R and ϕ is chosen as the negative entropy, then
Dϕ = KL and the characterization (2.44) follows in the form

xk+1 = expxk
(
− tk∂f(xk)

)
.

Proof. To (1): Take x ∈ Rn and α ∈ R. Then ex+α1n = exeα and therefore also
expp(x+ α1n) = expp(x). Due to PTSx = x− 〈x,1n〉1S by (2.35), the previous identity
directly implies the statement.

Statement (2) is shown by a direct computation. Fix p ∈ S and let q be any point in
S. Then by property (1),

expp

(
PTS log

q

p

)
= expp

(
log

q

p

)
=

p qp
〈p, qp〉

=
q

〈1n, q〉
= q.
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2.3. Image Labeling by Geometric Assignment

For an arbitrary v ∈ TS , it follows from ker(PTS ) = R1 that

PTS log

(
expp(v)

p

)
= PTS log

(
ev

〈p, ev〉

)
= PTS

(
v − (log〈p, ev〉)1n

)
= PTSv = v.

The differentials are calculated using (A.3). For this, let u ∈ TS and define γ(t) := v+tu
as well as β(t) := q + tu for sufficiently small t ∈ R. Using (2.32) and (2.36), leads to

d

dt

peγ(t)

〈p, eγ(t)〉

∣∣∣
t=0

=
pev

〈p, ev〉
u− pev

〈p, ev〉2
〈pev, u〉 = Rexpp(v)u,

d

dt
PTS log

β(t)

p

∣∣∣
t=0

= PTS
p

q

u

p
= PTS

u

q
= R−1

q u.

Regarding (3), the definitions for Exp
(e)
p in (2.17b) and expp in (2.33) together with

property (1) directly imply

Exp(e)
p (v) = expp

(
v

p

)
= expp

(
PTS

v

p

)
= expp(R

−1
p v) ∀v ∈ TS ,

which is equivalent to Exp
(e)
p Rp = expp. Since Rp and expp restricted to TS are invertible,

so is Exp
(e)
p with inverse given by (2.41).

To (4): Properties (2.42) defining the group action are directly verified

expexpp(u)(v) =

peu

〈p,eu〉e
v〈 peu

〈p,eu〉 , e
v
〉 =

peu+v

〈p, eu+v〉
= expp(u+ v).

Now, suppose p, q, a ∈ S and v ∈ Rn are arbitrary. The group action property together
with p = expq

(
exp−1

q (p)
)

yield

expp(v) = exp
expq

(
exp−1

q (p)
)(v) = expq

(
v + exp−1

q (p)
)
,

which proves (2.43a). To show (2.43b), set va := exp−1
p (a) and substitute this vector

into (2.43a). Applying exp−1
q to both sides then gives

exp−1
q (a) = exp−1

q

(
expp(va)

)
= va + exp−1

q (p) = exp−1
p (a) + exp−1

q (p). (2.45)

Setting a = q in this equation, (2.43b) is obtained from

0 = exp−1
q (q) = exp−1

p (q) + exp−1
q (p).

Using exp−1
q (p) = − exp−1

p (q) in (2.45) results in (2.43c).

To (5): The constraints of the optimization problem in (2.44) are 〈q,1n〉 − 1 = 0 and
q ≥ 0. Therefore, the overall optimization problem is convex (B.19) and the KKT opti-
mality conditions (B.18) are sufficient. Because the objective 〈q, x− log p〉+ 〈p, log p〉 is
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strictly convex, the minimizer q∗ is unique. In order to determine this unique minimizer,
consider the Lagrangian (B.15) of the form

L(q, λ, ν) = 〈x, q〉+ KL(q, p) + λ(〈q,1n〉 − 1)− 〈ν, q〉,

with Lagrange multipliers λ ∈ R and ν ∈ Rn, ν ≥ 0. The KKT-conditions (B.18) for the
minimizer q∗ and corresponding multipliers λ∗, ν∗ are given by

0 = ∂qL(q∗, λ∗, ν∗) = x+ log q∗ − log p+ (1 + λ∗)1n − ν∗ = 0 (2.46a)

1 = 〈q∗, 1n〉, q∗ ≥ 0, ν∗ ≥ 0, 〈ν∗, q∗〉 = 0. (2.46b)

Rearranging (2.46a) yields

log q∗ = ν∗ − x+ log p− (1 + λ∗)1n ⇔ q∗ = eν
∗−xpe−(1+λ∗).

Therefore, q∗ > 0 and (2.46b) implies ν∗ = 0. Furthermore,

1 = 〈1n, q∗〉 = 〈e−x, p〉e−(1+λ∗).

As a consequence, the minimizer q∗ has the form

q∗ = e−xpe−(1+λ∗) =
pe−x

〈p, e−x〉
= expp(−x).

As shown in [AJVLS17, Prop. 2.2] and [ÅPSS17, Prop. 1], the Riemannian gradient
and the Euclidean gradient of a function are related by the replicator operator. This
relation can easily be derived by using the above properties of the replicator operator.

Lemma 2.3.3. Suppose J : S → R is C1. Additionally to the Fisher-Rao metric g, let
E = 〈·, ·〉 be the standard Euclidean metric on S ⊂ Rn. Then the Riemannian gradient
gradg J(p) of (S, g) and the Riemannian gradient gradE J(p) of (S, E) are related by

gradg J(p) = Rp gradE J(p). (2.47)

If J is defined on an open subset U ⊂ Rn containing S, then gradE J(p) = PTS∂J(p)
and the relation takes the form

gradg J(p) = Rp∂J(p). (2.48)

Remark 2.3.4. As a consequence of this relation, the Riemannian gradient of J repre-
sents a replicator equation with fitness function ∂J or grade J respectively, selecting the
assignment with the highest fitness, a fact well known in evolutionary game dynamics
[HS03].

Proof. Let p ∈ S and v ∈ TS . By the definition of the Riemannian gradient,

〈gradE J(p), v〉 = dJ(p)[v] = gp(gradg J(p), v) =
〈
PTS Diag

(
1
p

)
gradg J(p), v〉.
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2.3. Image Labeling by Geometric Assignment

Since v was arbitrary, the equality

gradE J(p) = PTS Diag
(

1
p

)
gradg J(p)

follows. Multiplying the above equation by Rp and keeping in mind that PTS Diag(p−1)
is the inverse of Rp on TS by Lemma 2.3.1 (2), the relation (2.47) is established. If J
is defined on the set U containing S, then dJ(p)[v] = 〈∂J(p), v〉 = 〈PTS∂J(p), v〉 for all
v ∈ TS , proving gradE J(p) = PTS∂J(p). Due to RpPTS = Rp by Lemma 2.3.1 (1), also
(2.48) follows.

All the introduced concepts on S naturally extend to the product manifold W. The
global uniform distribution, given by the uniform distribution in every row and again
called barycenter, is denoted by

1W := (1S , . . . ,1S) = 1m1S
> ∈ W,

where the second equality is due to the embedding (2.28). All the mappings PTS , R,
exp and Exp(e) as well as their inverses also carry over to the assignment manifold as
product maps (see (A.5)) and are again denoted by the same symbols, e.g. for X ∈ Rm×n,
V ∈ TW and W ∈ W, given by

PTW [X] =
(
PTSXi

)
i∈[m]

∈ TW ,

RW [X] =
(
RWiXi

)
i∈[m]

∈ TW ,

Exp
(e)
W (V ) =

(
Exp

(e)
Wi

(Vi)
)
i∈V ∈ W

and so on. Also most of the properties from Lemma 2.3.2 and Lemma 2.3.2 are still
valid. As a result of the factorization

min
P∈∆m

{
〈P,X〉+ KL(P,W )

}
=
∑
i∈V

min
Pi∈∆

{
〈Pi, Xi〉+ KL(Pi,Wi)

}
(2.49)

for W ∈ W and X ∈ Rm×n, also the characterization (2.44) and the corresponding
interpretation of the lifting map in Remark 2.3.3 (2) are valid on W

expW (−X) = argminP∈∆m

{
〈P,X〉+ KL(P,W )

}
. (2.50)

As a direct consequence of the Fisher-Rao metric on W being a product metric, the
same relation between the Riemannian and Euclidean gradient as in Lemma 2.3.3 holds.

Corollary 2.3.4. Let J : W → R be C1 and consider the Fisher-Rao metric g as well
as the standard Euclidean metric E = 〈·, ·〉 on W. Then the Riemannian gradients
gradg J(W ) of (W, g) and gradE J(W ) of (W, E) are related by

gradg J(W ) = RW [gradE J(W )], ∀W ∈ W. (2.51)

If J is defined on an open set U ⊂ Rm×n containingW, then gradE J(W ) = PTW [∂J(W )]
and the relation takes the form

gradg J(W ) = RW [∂J(W )], ∀W ∈ W. (2.52)
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Remark 2.3.5. As a result of the identification in (2.3.2), the gradients gradg J(W ),
gradE J(W ) and ∂J(W ) are real m × n matrices. For i ∈ V, the i-th row of these
matrices is denoted by gradg,i J(W ), gradE,i J(W ) and ∂iJ(W ) respectively, representing
the change of J with respect to the i-th row Wi of W . Locally at a vertex i ∈ V, (2.52)
takes the form

gradg,i J(W ) = RWi∂iJ(W ), ∀W ∈ W. (2.53)

Since ∂iJ(W ) generally not only depends on Wi but also on assignments Wj at other
locations j ∈ V, the Riemannian gradient gradg J(W ) represents a spatially coupled
replicator equation with fitness gradE J or ∂J respectively.

2.3.3. Assignment Flow

Motivated by the relation (2.52) between the Riemannian and the Euclidean gradient,
the dynamical selection process of the assignment flow is modeled as a spatially coupled
replicator equation, combining three distinct objectives: (I) selecting the best label fit at
every location i ∈ V while (II) minimizing the deviation to neighboring assignments in
a small neighborhood around i for spatial regularization and (III) gradually enforcing
unambiguous labels decisions. In the following, the construction of the assignment flow
is explained in more detail.

Based on the given data (2.19) and labels (2.20) with values in the feature (metric)
space (F , dF ), the label fit is measured by the distance matrix DF ∈ Rm×n with i-th
row defined by

DF i :=
(
dF (fi, `1), . . . , dF (fi, `n)

)
∈ Rn, for all i ∈ V. (2.54)

This distance information is lifted onto the assignment manifold by the following likeli-
hood matrix

L(W ) := expW (−DF/ρ) ∈ W, (2.55a)

Li(W ) =Li(Wi) =
Wie

− 1
ρ
DF i

〈Wi, e
− 1
ρ
DF i〉

, ρ > 0, i ∈ V, (2.55b)

where ρ > 0 is a scaling parameter to normalize the a-priori unknown scale of the
distances induced by the features fi depending on the application at hand. As a result
of (2.49) and (2.50), the likelihood vector Li is characterized by

Li(Wi) = argminp∈∆

{
ρ〈Wi, DF i〉+ KL(p,Wi)

}
.

and can be interpreted as selecting the best label assignment at every i ∈ V while taking
the current assignment state Wi ∈ S into account through the KL divergence, with the
tradeoff controlled by ρ.

This representation of the data on the assignment manifold W is regularized in the
local neighborhoods (2.21) using the associated weights (2.26) to obtain the similarity
matrix S(W ) ∈ W, with i-th row Si(W ) defined through the condition

0 =
∑
k∈Ni

ωik
(

Exp
(e)
Si(W )

)−1(
Lk(Wk)

)
∀i ∈ V. (2.56)
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If the e-exponential map Exp(e) is replaced by the exponential map Expg with respect
to the Riemannian structure (Levi-Civita connection), then the above condition would
be the optimality condition (A.16) used to determine the Riemannian center of mass. In
view of Remark 2.2.1, this interpretation of the similarity matrix is only approximately
true mathematically. However, as the next proposition shows, it is still correct conceptu-
ally: Si(W ) moves Wi towards the normalized geometric mean of the likelihood vectors
Lk for k ∈ Ni.

Proposition 2.3.5. For every i ∈ V and W ∈ W, the i-th row Si(W ) of the similarity
matrix S(W ) ∈ W is uniquely determined through condition (2.56) and can be explicitly
expressed as

Si(W ) = exp1S

( ∑
k∈Ni

ωik

(
exp−1

1S
(Wk)−

1

ρ
DFk

))
. (2.57)

Denoting the weighted geometric mean of the likelihood vectors in the neighborhood Ni
around i ∈ V with weights ωi = (ωik)k∈Ni by

gmωi
{
Lk(Wk)

}
k∈Ni

:=
∏
k∈Ni

(
Lk(Wk)

)ωik ,
the similarity matrix is equivalently characterized as the normalized geometric mean,
which is the weighted center of mass with respect to the canonical KL divergence on S

Si(W ) =
gmωi{Lk(Wk)}k∈Ni〈

1n, gmωi{Lk(Wk)}k∈Ni
〉 = argminp∈∆

{ ∑
k∈Ni

ωik KL
(
p, Lk(Wk)

)}
. (2.58)

Remark 2.3.6. In a similar way, the normalized geometric mean was already derived
in [ÅPSS17, Lem. 5] as a reasonable approximation of the underlying Riemannian mean
with respect to the Fisher-Rao metric.

Proof. To simplify notation in this proof, the explicit dependency of the similarity and
likelihood vectors on W is dropped and they are simply denoted by Si and Lk. Next,
note that by (2.43a), the likelihood vector at k ∈ V can be expressed as

Lk = expWk
(−DFk/ρ) = exp1S

(
exp−1

1S
(Wk)−DFk/ρ

)
(2.59)

and by (2.43c), the following identity holds

exp−1
Si

(Lk) = exp−1
1S

(Lk)− exp−1
1S

(Sk). (2.60)

Applying the inverse of RSi(W ) to (2.56) (the inverse of Exp
(e)
Si

only takes values in TS)

and using the explicit expression for
(

Exp
(e)
Si

)−1
from (2.41) yields,

0 = R−1
Si(W )

∑
k∈Ni

ωik
(

Exp
(e)
Si(W )

)−1(
Lk(Wk)

)
=
∑
k∈Ni

ωikexp−1
Si(W )(Lk)

(2.60)
=

∑
k∈Ni

ωikexp−1
1S

(Lk)− exp−1
1S

(Sk).
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Bringing exp−1
1S

(Sk) to the other side and applying exp1S finally results in

Sk = exp1S

( ∑
k∈Ni

ωikexp−1
1S

(Lk)
)

(2.59)
= exp1S

( ∑
k∈Ni

ωik
(
exp−1

1S
(Wk)−DFk/ρ

))
,

showing uniqueness and existence for every W ∈ W. The connection to the normalized
geometric mean is established by continuing the first equality of the above equation

Sk = exp1S

( ∑
k∈Ni

ωikexp−1
1S

(Lk)
)

(2.39)
= exp1S

(
PTS

∑
k∈Ni

ωik log(Lk)
)

(2.38)
= exp1S

(
log
( ∏
k∈Ni

Lωikk

))
=

gmωi
{
Lk(Wk)

}
k∈Ni〈

1n, gmωi
{
Lk(Wk)

}
k∈Ni

〉 .
Let a ∈ Rn>0 and consider the problem of minimizing the generalized KL divergence
KL(q, a) (B.13) with respect to q ∈ ∆ for fixed a. Because the argmin does not depend
on constant terms,

argminq∈∆

{
KL(q, a)

}
= argminq∈∆

{
〈q,− log a〉+ KL(q,1S)

}
(2.44)

= exp1S (log a) =
a

〈1n, a〉
.

With this, the second equality in (2.58) directly follows from the observation

∑
k∈Ni

ωik KL
(
q, Lk

)
= KL

(
q,
∏
k∈Ni

Lωikk

)
.

The inference of label assignments is defined as a dynamical system evolving on the
statistical manifold W steered by the similarity matrix, which quantifies label decisions
in a spatial context.

Definition 2.3.2 (Assignment Flow). The assignment flow on W is the dynamical
system

Ẇ (t) = RW (t)

[
S
(
W (t)

)]
, W (0) = 1W . (2.62)

Because every Si(W ), i ∈ V depends on the assignments Wk in a neighborhood k ∈ Ni
(see Proposition 2.3.5), the assignment flow is a system of spatially coupled replicator
equations. Integrating this flow yields smooth curves Wi(t) ∈ S for every pixel i ∈ V
emanating from Wi(0) = 1S , which approach a label state Wi(t) for sufficiently large
t > 0 and hence a unique label assignment after trivial rounding.
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2.3.4. Geometric Numerical Integration of the Assignment Flow

If a given ODE on a manifold can be represented by a Lie group action, then geometric
Runge-Kutta methods on the manifold can be used for integration, see [MK99] and
references therein. In the following, the application of this approach in [ZSPS20] to the
assignment flow is summarized.

Due to Lemma 2.3.2(4), setting Λ(V,W ) := expW (V ) defines a Lie group action on
the assignment manifold Λ: TW × W → W. Since the Lie group in the present case
is given by the flat abelian vector space TW , the geometric Runge-Kutta method on
the assignment manifold is considerably simplified. Overall, the resulting approach for
integrating an arbitrary vector field F : W → TW is as follows. Suppose, the ODE

Ẇ (t) = RW (t)

[
F (W (t))

]
, W (0) = 1W (2.63)

on the assignment manifold is given. Then the parametrization W (t) = exp1W (V (t))
yields an equivalent reparametrized ODE

V̇ (t) = F (W (t)) = F
(

exp1W

(
V (t)

))
, V (0) = 0 (2.64)

purely evolving on the vector space TW . There, standard Runge-Kutta methods (see e.g.
[HPW93]) can now be used for numerical integration. Translating these update schemes
back onto W, yields geometric Runge-Kutta methods on W induced by the Lie-group
action Λ = exp.

Remark 2.3.7. Notice, that the assumption F (W ) ∈ TW is crucial, because the trans-
formation of the ODE (2.63) onto TW in (2.64) uses the inverse of RW , which only exists
for elements from TW but not for those from Rm×n. However, as already mentioned in
Remark 2.3.2 this is no limitation. Suppose any vector field G : W → Rm×n is given.
Then the relation RW = RWPTW from Lemma 2.3.1(1) allows to consider instead the
vector field

F (W ) := PTW [G(W )] ∈ TW ,

without changing the underlying ODE (2.63) for W (t).

An important special case for numerically integrating the assignment flow (2.64),
sufficient for most applications (see the discussion in [ZSPS20]), is the explicit Euler
method on the vector space TW , i.e.

V (k+1) = V (k) + hkF
(
W (k)

)
, W (k) = exp1W

(
V (k)

)
, V (0) = 0 (2.65)

with step-size hk > 0. Due to the Lie-group action, this update scheme translates to the
geometric Euler integration on W, given by

W (k+1) = expW (k)

(
hkF

(
W (k)

))
, W (0) = 1W , (2.66)

with step-size hk > 0.
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Chapter 3

General Variational Models on the
Assignment Manifold

In the assignment flow framework from Section 2.3, the inference of assignment config-
urations is done by following a certain dynamical system, a spatially coupled replicator
equation, of the general form

Ẇ (t) = RW (t)

[
F (W (t))

]
(3.1)

with a vector field F : W → TW acting as fitness function. During inference, a label
assignment with locally highest fitness is selected. In case of the assignment flow (2.62),
the fitness is given by the similarity matrix, consisting of weighted geometric means of
likelihood vectors in spatial neighborhoods, according to Proposition 2.3.5.

The more classical strategy for image labeling would be a variational approach (see e.g.
[LS11], [KAH+15] and references therein), i.e. finding an optimal labeling with respect
to an objective function, measuring the quality of label assignments depending on the
domain of application. In the present case of fully probabilistic assignments on W, this
would mean to devise a function J : W → R in such a way that minimizers correspond
to desired assignment configurations. In this approach, inference of assignments is done
by finding global minimizers of the optimization problem

inf
W∈W

{
J(W )

}
.

Since there is a difference between methods for integrating a flow and optimizing a
function, the two mentioned approaches follow different philosophies. In the first case,
the focus of numerical algorithms is on closely following the dynamics of the system with
minimal deviation over a certain period of time, [HPW93]. In the second case, the aim
is on finding a global minimizer of J , irrespective of whether the chosen method follows
any specific dynamics or which minimizer is found, [NW06].

Motivated by [ÅPSS17], the approach of variational models for image labeling onW in
this thesis is to combine both viewpoints: minimize the objective function J through the
dynamics of the Riemannian gradient descent flow with respect to the Fisher-Rao metric.
Due to the relation between the Fisher-Rao and Euclidean gradient from Corollary 2.3.4,
the resulting dynamical system has the form

Ẇ (t) = − gradg J
(
W (t)

)
= RW (t)

[
− gradE J

(
W (t)

)]
, W (0) = W0 ∈ W (3.2)
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and fits into the general formulation (3.1) of the assignment flow for inferring label
assignments through spatially coupled replicator equations with fitness F = − gradE J .
As a consequence of

d

dt
J
(
W (t)

)
= gW (t)

(
gradg J

(
W (t)

)
, Ẇ (t)

)
= −

∥∥gradg J
(
W (t)

)∥∥2

g,W (t)
≤ 0, (3.3)

the function values of J are minimized along solutions W (t) of (3.2).

In order to avoid issues arising from the fact that (W, g) is not a complete Riemannian
manifold and minimizers of J may lie on the boundary ofW, a slightly perturbed version
Jε of the original variational model with preferable convergence properties is introduced
in the next Section 3.1. This is done by prohibiting arbitrary certain label decisions
using the log-barrier method, a standard interior point approach in optimization, see
e.g. [NN87, Ter96]. For all practical purposes, this perturbed version is a sufficiently
close approximation to the original function J and only has minimizers that stay a
small fixed distance away from the boundary, ensuring the numerical integration of the
Riemannian gradient flow (3.2) stays onW. The main class of variational models in this
work are analytic functions on W. Therefore, after some preparations in Section 3.2, it
will be shown in the subsequent Sections 3.3 and 3.4 that the perturbed model Jε allows
to transfer the convergence and stability results for the gradient flow and numerical
integration of analytic functions on Rn from [AMA05] and [AK06] to the assignment
manifold. Furthermore, convergence rates for the Riemannian gradient flow and the
geometric Euler discretization are derived using the approach of [BDL07] and [AB09].
For this thesis to be as self-contained as possible, the results and involved concepts are
fully developed and proven in detail.

3.1. Log-Barrier Perturbation of the Variational Model

Throughout this chapter, J : W → R is always assumed to be at least C2 and lower
bounded, i.e.

inf
W∈W

{
J(W )

}
> −∞.

Since (W, g) is not a complete Riemannian manifold (see Section 2.2.2), curves can leave
W in finite time. Also, minimizers of J may lie on the boundary of W = ∆m outside of
W, representing arbitrary certain label decisions. In this case, solutions of the Rieman-
nian gradient flow might converge to a boundary point, leading to asymptotic singular
behavior. Optimization approaches in this scenario often assume J to be defined on an
open set containing W = ∆m and additionally to be convex, for proving convergence
results for the integral curves, see e.g. [ABB04] and references therein. In the following,
neither of these assumptions will be made.

As already mentioned in [ÅPSS17], there is an additional practical issue using nu-
merical integration methods on the assignment manifold in applications. Numerically,
only finite precision is available to represent real numbers on a computer, resulting in
a difference between mathematical and numerical positivity. Therefore, if the integral
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curve of the Riemannian gradient flow is to close to the boundary of W, the numerical
integration method might leave the manifold.

In order to avoid these issues, the log-barrier approach of interior point methods for
optimization problems is applied, see e.g. [NN87, Ter96]. For this, consider the following
optimization problem on a convex domain given by equality and inequality constraints
of the form

min
x∈Rd

{
Φ(x)

}
subject to Ax = b, Ψi(x) ≥ 0, ∀i ∈ [K]

where A ∈ Rc×d, b ∈ Rc and Φ,Ψi : Rd → R, with Ψi convex for all i ∈ [K]. In the
present case of the assignment manifold, the relevant inequality constraints are W > 0
for W ∈ Rm×n. The log-barrier method consists of penalizing the inequality constraints
by − log(Ψi(x)) for i ∈ [K] and adding them all to the objective Φ with a sufficiently
small factor 0 < ε, resulting in the approximate optimization problem

min
x∈Rd

{
Φ(x)− ε

∑
i∈[K]

log
(
Ψi(x)

)}
subject to Ax = b.

Since this is a minimization problem and − log(Ψi(x)) → ∞ for Ψi(x) → 0, all points
x ∈ Rd with Ψi(x) = 0 for any i ∈ [K] are avoided.

Motivated by this approach, the log-barrier function for the constraints W > 0 of the
assignment manifold is defined as follows.

Definition 3.1.1. The log-barrier function ξ : W → R for W ∈ W is given by

ξ(W ) := − 1

n

∑
i∈[m]

∑
j∈[n]

log
(
W j
i

)
= −〈log(W ), 1W〉 = −

∑
i∈V
〈log(Wi), 1S〉 (3.4)

Due to 0 < W j
i < 1, this function is non-negative on W. It also has the property

that if
(
W (k)

)
k∈N is a sequence in W converging to a boundary point, then the corre-

sponding log-barrier values diverge towards infinity, limk→∞ ξ
(
W (k)

)
= ∞. With this,

the perturbed variational model can be defined next.

Definition 3.1.2. The perturbed variational model Jε : W → R is defined by

Jε(W ) := J(W )− εξ(W ) = J(W )− ε〈log(W ), 1W〉, W ∈ W, (3.5)

for a sufficiently small 0 < ε� 1.

The interpretation of Jε from the image labeling point of view is as follows: besides
measuring the quality of a probabilistic assignment with J , also an additional ”price”
for more certain label decisions is included in the model.

All local minimizers of Jε less or equal a certainty value stay a small fixed distance
away from the boundary. This can be seen by noticing that all level sets of Jε are
compact in Rm×n, as shown next. Since function values along integral curves W (t) of
the Riemannian gradient descent flow are decreasing by (3.3), a minimum amount of
uncertainty is introduced in the model Jε, preventing W (t) to reach the boundary.

33



Chapter 3. General Variational Models on the Assignment Manifold

Definition 3.1.3. The level set of a function Φ: W → R for α ∈ R is given by

levα(Φ) := Φ−1
(
(−∞, α]

)
= {W ∈ W : Φ(W ) ≤ α}.

Lemma 3.1.1. The level sets levα(Jε) ⊂ W are compact.

Proof. Because W ⊂ Rm×n is bounded with respect to the Euclidean norm ‖ · ‖, so is
levα(Jε). To show the level set is compact, it remains to show levα(Jε) is closed as
a subset of Rm×n. For this, let (W (k))k∈N ⊂ levα(Jε) ⊂ W be a sequence converging
to some W ∗ ∈ levα(Jε) ⊂ W = ∆m. As a result of infW∈W J(W ) =: J∗ > −∞, the
estimate

α ≥ Jε(W (k)) ≥ J∗ − ε

n

〈
log(W (k)), 1m1>n

〉
shows that the log-barrier is bounded on the whole sequence, implying W ∗ ∈ W. Since
Jε is continuous on W, the estimate α ≥ Jε(W ∗) follows, proving levα(Jε) is closed and
therefore also compact.

The perturbed variational model Jε also results in a perturbed dynamical system for
image labeling through the Riemannian gradient of Jε.

Lemma 3.1.2. For W ∈ W, the Euclidean and Fisher-Rao gradients of Jε are

gradE Jε(W ) = gradE J(W )− εPTW
[
1W/W

]
gradg Jε(W ) = gradg J(W ) + ε(W − 1W)

Proof. The log-barrier function is well defined on Rm×n>0 with gradient ∂ξ(W ) = −1W/W
for W ∈ W. Since W ⊂ Rm×n>0 , Corollary 2.3.4 gives

gradE ξ(W ) = −PTW
[
1W/W

]
and gradg ξ(W ) = −RW

[
1W/W

]
The i-th row of gradg ξ(W ) reads

−RWi

[ 1S
Wi

]
= −

(
Wi

1S
Wi
−
〈
Wi,

1S
Wi

〉
Wi

)
=
(
Wi − 1S

)
,

where the last equality follows from 〈1S ,1n〉 = 1 by the definition of the barycenter 1S
from (2.34).

In this chapter, the convergence properties for the perturbed Riemannian gradient
descent flow, induced by the perturbed variational model Jε, of the form

Ẇ (t) = − gradg Jε
(
W (t)

)
= − gradg J(W ) + ε

(
1W −W

)
, W (0) = W 0 ∈ W, (3.6)

is investigated. Compared to the unperturbed version (3.2), any integral curve W (t) of
this flow is now additionally slightly pushed away from the boundary and towards the
barycenter 1W of W through the perturbation term. Therefore, adding the log-barrier
can be interpreted as adding a ”force field”, preventing W (t) from getting arbitrarily
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close to the boundary.

Next, the behavior of critical points of Jε for small perturbation parameter ε con-
verging towards zero is considered. It will be shown that if a sequence of parameters εk
decreases towards zero and the corresponding sequence of interior critical points W (k)

of Jεk converges to an interior point W ∗ ∈ W, then W ∗ is a critical point of the original
objective function J . Thus, for most practical applications in image labeling, the per-
turbed model Jε will be a good approximation to the original function J for sufficiently
small ε > 0.

Proposition 3.1.3. Let (εk)k∈N ⊂ R>0 be such that limk→∞ εk = 0. If
(
W (k)

)
k∈N ⊂ W

is a sequence of critical points of Jεk , i.e. gradE Jεk
(
W (k)

)
= 0, converging to some

interior point W ∗ ∈ W, then W ∗ is a critical point of J , i.e. gradE J(W ∗) = 0.

Proof. The gradient gradE Jε evaluated at W (k) gives

0 = gradE Jε
(
W (k)

)
= gradE J

(
W (k)

)
− εk gradE ξ

(
W (k)

)
∀k ∈ N.

Since W ∗ ∈ W, the expression gradE ξ
(
W ∗
)

is well defined and
∥∥ gradE ξ

(
W (k)

)∥∥ is a
bounded sequence converging towards

∥∥ gradE ξ
(
W ∗
)∥∥. As a consequence of the conti-

nuity of gradE J on W, it therefore follows∥∥ gradE J
(
W ∗
)∥∥ = lim

k→∞

∥∥ gradE J
(
W (k)

)∥∥ = lim
k→∞

εk
∥∥ gradE ξ

(
W (k)

)∥∥ = 0.

This statement also holds in the case where J is defined on an open set U ⊂ Rm×n

containing W = ∆m and local minimizers of J : ∆m → R possibly lie on the boundary.
According to [RW09, Thm. 6.12], a necessary first-order condition for a point W ∗ in the
convex set ∆m to be locally optimal is given by the variational inequality

〈∂J(W ∗), P −W ∗〉 ≥ 0 ∀P ∈ ∆m. (3.7)

Proposition 3.1.4. Assume J is defined on some open set U ⊂ Rm×n containing
the closure W = ∆m and let (εk)k∈N ⊂ R>0 be a sequence with limk→∞ εk = 0. If(
W (k)

)
k∈N ⊂ W is a sequence of critical points of Jεk , i.e. gradE Jεk

(
W (k)

)
= 0, con-

verging to some W ∗ ∈ ∆m, then W ∗ is a critical point of J , i.e. the variational inequality
(3.7) for W ∗ is fulfilled.

Proof. Due to the fact that the log-barrier is well-defined on Rm×n>0 , the perturbed func-
tion Jε = J + εξ is defined on U ∩ Rm×n>0 with ordinary gradient ∂Jε = ∂J + ε∂ξ. By
Corollary 2.3.4, the Euclidean Riemannian gradient of Jε is given by gradE Jε(W ) =
PTW [∂Jε(W )]. Therefore, the relation

0 = gradE Jεk
(
W (k)

)
= PTW

[
∂J
(
W (k)

)]
+ εkPTW

[
∂ξ
(
W (k)

)]
(3.8)

holds for all k ∈ N. Since ξ is convex on Rm×n>0 , the first-order convexity condition (B.4)
for an arbitrary P ∈ W gives

ξ
(
P
)
≥ ξ
(
W (k)

)
+
〈
∂ξ
(
W (k)

)
, P −W (k)

〉
= ξ
(
W (k)

)
+
〈
PTW

[
∂ξ
(
W (k)

)]
, P −W (k)

〉
,

(3.9)
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where the last equality follows from the fact that P−W (k) ∈ TW for all k ∈ N. Combining
this inequality with the above relation results in〈

∂J
(
W (k)

)
, P −W (k)

〉
=
〈
PTW

[
∂J
(
W (k)

)]
, P −W (k)

〉
(3.8)
= −εk

〈
PTW

[
∂ξ
(
W (k)

)]
, P −W (k)

〉
(3.9)

≥ εkξ
(
W (k)

)
− εkξ

(
P
)
≥ −εkξ

(
P
)

for P ∈ W and all k ∈ N, where the last inequality holds due to ξ(W ) ≥ 0 for all W . As
a consequence, taking the limit k →∞ on both sides gives〈

∂J
(
W ∗
)
, P −W ∗

〉
≥ 0, ∀P ∈ W.

Because the function P 7→ 〈∂J(W ∗), P −W ∗〉 is continuous on Rm×n, the variational
inequality is fulfilled on all of ∆m.

A critical but non-optimal point. In the remaining part of this section, a function
J : W → R is constructed such that the points W (k) ∈ W are local minimizers of Jεk but
the limit point W ∗ is only a critical point of J and not a local minimizer. Thus, in this
sense the previous two statements are the best one can hope for the log-barrier method
on the assignment manifold.

Before the example can be constructed, consider the Hessian HessE Φ of a C2 function
Φ: W → R from (A.17), with respect to the induced Euclidean metric E = 〈·, ·〉 on W.
Since (W, E) is a flat, parallel transport is the identity. Since the covariant derivative
of a vector field Y : W → TW can be recovered through parallel transport by (A.8), the
following expression holds for every V ∈ TW = TWW

∇V Y (W ) = lim
t→0

1

t

(
Y (W + tV )− Y (W )

)
=

d

dt
Y (W + tV )

∣∣
t=0

= dY (W )[V ]. (3.10)

Therefore, the Hessian of Φ evaluated at W ∈ W in direction V ∈ TW is given by

HessE Φ(W )[V ] = ∇EV gradE Φ(W ) = d gradE Φ(W )[V ]. (3.11)

Let η : W → UW be the isometric chart from Corollary 3.2.3. Since the coordinates
of gradE Φ(W ) in this chart are ∂Φ̂(η), the coordinates of HessE Φ(W ) are given by
Hess Φ̂(η). Thus, if gradE Φ(W ) = 0 and HessE Φ(W ) is positive definite, then W is a
strict local minimum of Φ.

Next, determine the unique minimizer of the log barrier ξ on W. Since ξ is strictly
convex on Rm×n>0 , so is ξ on W and thus the minimizer is unique if it exists. As a
consequence of Corollary 2.3.4, the gradient of ξ is given by

gradE ξ(W ) = PTW
[
∂ξ(W )

]
= −PTW

[1W
W

]
and therefore, according to (3.11), the Hessian has the form

HessE ξ(W )[V ] =
d

dt
PTW

[
∂ξ(W + tV )

]∣∣
t=0

= PTW
[

Hess ξ(W )[V ]
]

= PTW

[ V

W •2

]
,
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for V ∈ TW . Note, that for all W ∈ W and 0 6= V ∈ TW〈
V,HessE ξ(W )[V ]

〉
=
〈
V,

V

W •2

〉
=
∑
i∈[m]

∑
j∈[n]

(
V j
i

W j
i

)2

> 0. (3.12)

Since gradE ξ(1W) = −PTW
[
1m1>n

]
= 0, it follows that 1W is a local minimizer and thus

the unique global minimizer of ξ on W.
After these preparations, define the function

J(W ) :=
∑
i∈m

∑
j∈n

(
W j
i −

1
n

)3
=
〈
(W − 1W)•3,1m1n

〉
.

The gradient and Hessian of J at W ∈ W are given by

gradE J(W ) = 3PTW
[
(W − 1W)•2

]
HessE J(W )[V ] = 6

(
W − 1W

)
•V

for all V ∈ TW . Evaluating these expressions at 1W gives gradE J(1W) = 0 and
HessE J(1W) = 0. As a consequence of this, it follows for the perturbed model Jε

gradE Jε(1W) = gradE J(1W) + ε gradE ξ(1W) = 0

HessE Jε(1W) = HessE J(1W) + εHessE ξ(1W) = εHessE ξ(1W).

Since HessE ξ(1W) is positive definite, the point Jε(1W) is a strict local minimum. How-
ever, 1W is not a minimizer of J , as shown next. For this, let r > 0 and assume
n = |X | ≥ 3 labels are given. Define

W±r := 1W ± r1m
(
e>1 −

1

n− 1

n∑
j=2

e>j

)
. (3.13)

Because of W±r1m = 1n and W±r > 0 for r > 0 sufficiently small, W±r ∈ W follows. To
determine the function values of J at W±r, note that

(
1me>j

)
•
(
1me>i

)
= δij1mej holds,

where δij is the Kronecker delta. With this,

J(W±r) = ±r3
〈(

1me
>
1 −

1

n− 1

n∑
j=2

1me
>
j

)•3
,1m1>n

〉
= ±r3

〈
1me

>
1 −

1

(n− 1)3

n∑
j=2

1me
>
j ,1m1>n

〉
= ±r3m

(
1− 1

(n− 1)2

)
.

Since r3m
(
1− 1

(n−1)2

)
> 0 and J(1W) = 0, the function value of W±r are

J(W+r) > 0 = J(1W) > J(W−r) (3.14)

for every sufficiently small r > 0, showing that J(1W) is not a local minimum. Thus, if
εk > 0 is any sequence with limk→∞ εk = 0, then W (k) := 1W is a local minimizer of Jεk
for all k ∈ N, but limk→∞W

(k) = 1W is not a local minimizer of J .
Even so the presented example shows that critical limit points are not guaranteed

to be optimal, this will rarely happen in practice, as the parameters of objective func-
tions usually contain random measurement errors in reality and therefore prevent such
‘pathological’ cases.
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3.2. Mathematical Preparations

3.2.1. Euclidean Isometric m-Affine Coordinates

Subsequently, an alternative pair of m- and e-affine coordinates is introduced, such that
the m-affine coordinates are an Euclidean isometry between S ⊂ Rn and an open set
U ⊂ Rn−1 equipped with their corresponding induced Euclidean metric. This m-affine
chart naturally extends to the product manifold W and provides a convenient way of
proving some of the results in this and subsequent chapters. These coordinates are then
also used to characterize convex functions on the assignment manifold W independent
of any specific m-affine coordinate chart.

Construction of the m- and e-Affine Coordinates

For the construction of the Euclidean isometric m-affine coordinates, consider the linear
map G : Rn → R defied by G(x) := 〈1n, x〉. It follows from linear algebra that the set

A := G−1(1) =
{
x ∈ Rn

∣∣ 〈x,1n〉 = 1
}

is an affine subspace of Rn. Due to the definition of S in (2.9) and the structure of
the resulting tangent space TS in (2.10), the identities S = A ∩ Rn>0 and ker(G) = TS
follow. Also note that the orthogonal projection PTS = In−1S1>n from (2.35) has kernel
ker(PTS ) = R1n, where 1S is the barycenter of S from (2.34). Thus, the affine space A
can be represented by

A = ker(G) + 1S = TS + 1S ,

Choose an orthonormal basis of TS

BTS = {b1, . . . , bn−1} ⊂ TS ⊂ Rn (3.15)

and define the matrix with i-th column given by the basis vector bi as

B := (b1| . . . |bn−1) ∈ Rn×(n−1). (3.16)

Since BTS is an orthonormal basis, the relations

B>B = In−1 and BB> = PTS (3.17)

follow, where In−1 denotes the identity matrix. Therefore, a global affine chart of the
affine manifold A = TS + 1S together with its inverse is given by

F : A 7→ Rn−1, x 7→ B>(x− 1S) and F−1 : Rn−1 → A, y 7→ By + 1S . (3.18)

Lemma 3.2.1. The chart F : A→ Rn−1 from (3.18) is an isometry, where A ⊂ Rn and
Rn−1 are viewed as Riemannian manifolds with the standard inner product 〈·, ·〉.
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Proof. The tangent space of A is constant and given by TxA = TS for every x ∈ A. The
differential of F at x ∈ A has the form

dF (x) : TS → Rn−1, u 7→ dF (x)[u] = B>u. (3.19)

Now, let u ∈ TS . With respect to BTS , u has the coordinates u = ûibi = Bû with
B>u = û. For x ∈ A and u, v ∈ TS , it therefore follows

〈u, v〉 = 〈Bû,Bv̂〉 (3.17)
= 〈û, v̂〉 = 〈B>u,B>v〉 (3.19)

= 〈dF (x)[u], dF (x)[v]〉.

Since S = A ∩ Rn>0, the chart F from (3.18) also defines a chart for S into the open
set U := F (S) ⊂ Rn−1, by

η := F |S : S → U, p 7→ B>(p− 1S) (3.20a)

η−1 := (F−1|U ) : U → S, η 7→ Bη + 1S . (3.20b)

Proposition 3.2.2. If S ⊂ Rn is viewed as a Riemannian submanifold with the in-
duced Euclidean metric E = 〈·, ·〉, then the chart η : S → U from (3.20) is an isome-
try between (S, E) and (U, 〈·, ·〉). Furthermore, η is an m-affine coordinate system for
(S, g,∇(e),∇(m)), with the negative entropy as associated convex function

ϕ(η) =
〈
Bη + 1S , log

(
Bη + 1S

)〉
= −H(p), (3.21)

for η = η(p), p ∈ S. The corresponding dual e-affine coordinates are given by

θ : S → Rn−1, p 7→ B> log(p) and θ−1 : Rn−1 → TS , θ 7→ p(θ) =
eBθ

〈1n, eBθ〉
(3.22)

with corresponding conjugate convex function

ψ(θ) = log
(
〈1n−1, e

Bθ〉
)
, (3.23)

where B is the matrix from (3.16).

Remark 3.2.1. The formulas in (3.22) and (3.23) suggest to think of TS as an abstract
basis independent e-affine coordinate system with coordinate chart

S 3 p 7→ v(p) = PTS log(p) = exp−1
1S

(p) ∈ TS

TS 3 v 7→ p(v) =
ev

〈1n, ev〉
= exp1S (v) ∈ S,

as well as convex function ψ : TS → R and conjugate convex function ϕ : S → R given by

ψ(v) = log(〈1n, ev〉) = logexp(v) and ψ∗(p) = ϕ(p) = −H(p),

where the function logexp above is the well-known log-exponential function (see e.g.
[RW09]). Thus, (S, E) as a flat Riemannian submanifold of the affine space A, may be
viewed as an abstract basis independent m-affine coordinate system.
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Proof. Due to η = F |S , the isometry property directly follows from Lemma 3.2.1. To
show that η is m-affine, consider the m-affine coordinate system η from (2.13) and the
coordinate change α := η η−1 : Rn−1 → Rn−1. The chart η can be expressed by the linear
map

η(p) = Mp, with the matrix M :=
(
In−1, 0n−1

)
∈ R(n−1)×n,

where In−1 denotes the identity matrix and 0n−1 ∈ Rn−1 the zero vector. Since the
inverse of η is given as an affine map p(η) = Bη + 1S by (3.18), the coordinate change
α is again an affine map

α(η) = η(p(η)) = Cη + c, with C := MB and c := M1S .

Because α is a diffeomorphism, the differential dα(η) = C is invertible, i.e. C ∈ GLn(R).
As a result of the characterization (A.11) in the Appendix A.3.3, η is also an m-affine
coordinate chart. The formula in (3.21) for the corresponding convex function is just
the coordinate expression ϕ(η) = −Ĥ

(
η
)

= −H
(
p(η)

)
of the negative entropy on S in

η coordinates.
To obtain the conjugate convex function and e-coordinates, consider the optimization

problem ψ(θ) = maxη{〈θ, η〉 − ϕ(η)} with optimality condition

θ = ∂ϕ(η) = B> log(Bη + 1S), (3.24)

where the formula for the gradient follows from the fact that B>1S = 0 as a result of 1S
being orthogonal to all basis vectors b1, . . . , bn−1 from (3.15). With p = p(η) = Bη+ 1S ,
the desired expression θ(p) = B> log(p) in (3.22) directly follows. Multiplying (3.24) by
B yields

Bθ = BB> log(p)
(3.17)

= PTS log(p)
(2.35)

= log(p)− 〈log(p),1n〉
n

1n.

Because eβ1n = eβ1n, for every β ∈ R, setting β := −〈log(p),1n〉 1
n ∈ R gives

eBθ = elog(p)+β1n = peβ.

As a consequence of eβ ∈ R together with the constraint 1 = 〈1n, p〉, the identity
eβ = 〈1n, eBθ〉 follows, resulting in the expression p(θ) for the inverse θ−1 on the right-
hand side of (3.22).

For proving (3.23), let θ ∈ Rn−1. Taking the logarithm of the expression for p(θ) on
the right-hand side of (3.22) yields

log(p(θ)) = Bθ −
(

log
〈
1n, e

Bθ
〉)

1n. (3.25)

The η coordinates of p(θ) are η(θ) = B>(p(θ) − 1S) = B>p(θ), where the last equality
again follows from B>1S = 0. Since〈

θ, η(θ)
〉

=
〈
θ,B>p(θ)

〉
=
〈
Bθ, p(θ)

〉 (3.25)
= −H

(
p(θ)

)
+ log

〈
1n, e

Bθ
〉
, (3.26)

the conjugate convex function ψ(θ) = ϕ∗(θ) is given by

ψ(θ) =
〈
θ, η(θ)

〉
− ϕ

(
η(θ)

) (3.21)
=

〈
θ, η(θ)

〉
+H

(
p(θ)

) (3.26)
= log

〈
1n, e

Bθ
〉
.
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As a direct consequence of the product structure of W and Proposition 3.2.2, also the
corresponding product m-coordinate chart η : W → UW :=

∏
i∈[m] U ⊂ Rm×(n−1) from

(2.29) is an isometry with respect to the standard Euclidean inner product.

Corollary 3.2.3. If W ⊂ Rm×n is viewed as Riemannian submanifold with the induced
Euclidean metric E = 〈·, ·〉, then the m-affine chart η : W → UW from (2.29) is an
isometry between (W, E) and (UW , 〈·, ·〉).

Characterization of Convexity on the Assignment Manifold

The characterization of convexity and strong convexity through Bregman divergences in
Section B.3 is only valid for functions defined on a convex set with nonempty interior.
However, the convex set W ⊂ Rm×n has no nonempty interior and therefore, the above
mentioned criterion via Bregman divergences only holds in an m-affine chart. In the
following, a coordinate independent way for characterizing convex and strongly convex
functions on W is given. For this, let E be the induced Euclidean metric of W ⊂ Rm×n

and suppose Φ: W → R is a C1 function. Define DΦ : W ×W → R by

DΦ(P,W ) := Φ(P )− Φ(W )−
〈

gradE Φ(W ), P −W
〉
, ∀P,W ∈ W. (3.27)

This function is linear in Φ, i.e. if α, β ∈ R and Ψ,Φ ∈ C1(W), then

DαΦ+βΨ = αDΦ + βDΨ.

As the next Lemma shows, using this coordinate independent Bregman divergence onW,
convexity and strong convexity can be characterized in the same way as in Section B.3.

Lemma 3.2.4. Let η : W → UW be the isometric chart from Corollary 3.2.3 with respect
to the Euclidean metric E on W. If a subset K ⊂ W is convex, then also K̂ := η(K)
is convex and a function Φ: K → R is convex if and only if the coordinate function
Φ̂ : K̂ → R is convex. If Φ: K → R is additionally C1, then

DΦ(P,W ) = DΦ̂

(
η(P ), η(W )

)
(3.28)

for all P,W ∈ K and the following characterizations hold:

Φ is convex on K ⇔ ∀P,W ∈ K, DΦ(P,W ) ≥ 0 (3.29)

Φ is σ-strongly convex on K ⇔ ∀P,W ∈ K, DΦ(P,W ) ≥ σ

2
‖P −W‖2. (3.30)

Proof. It is first shown that for all r ∈ [0, 1] and P,W ∈ W the equality

η
(
rP + (1− r)W

)
= rη

(
P
)

+ (1− r)η
(
W
)

(3.31)

holds. Since η is a product chart η = (ηi)i∈V by (2.29), it suffices to show (3.31) for each
component ηi : S → U from (3.20), with i ∈ V. Let Pi,Wi ∈ S and r ∈ [0, 1]. Due to
ηi(p) = B>(p− 1S) for p ∈ S, it immediately follows

ηi(rPi + (1− r)Wi) = rB>(Pi − 1S) + (1− r)B>(Wi − 1S) = rηi(Pi) + (1− r)ηi(W ),
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establishing (3.31) on W. Due to η being a bijection, equality (3.31) directly implies
that convexity of K ⊂ W is equivalent to the convexity of K̂ ⊂ UW and that Φ: K → R
is convex if and only if Φ̂ : K̂ → R is convex.

Next, the equality (3.28) is proven. For this, suppose Φ is C1. In the following, the
notation gradE,i Φ(W ) and ∂iΦ̂(η) from Remark 2.3.5 is used to denote the i-th row of
the gradients, representing the change with respect to Wi and ηi respectively. Because
η : (W, E)→ (UW , 〈·, ·〉) is an isometry, Lemma A.4.1 gives

∂Φ̂(W ) = dη(W )[gradE Φ(W )].

As a result of the expression ηi(p) = B>(p− 1S) for p ∈ S on each component i ∈ V by
(3.20), the i-th row of the gradients are related by

∂iΦ̂(η(W )) = dηi(W )[gradE,i Φ(W )] = B> gradE,i Φ(W ). (3.32)

Define ηP := η(P ) and ηW := η(W ) as well as ηPi := ηi(Pi) and ηWi := ηi(Wi) for
the components, with i ∈ V. According to (3.20), the inverse of ηi(Pi) has the form
Pi(ηi) = Bηi + 1S , implying

Pi −Wi = B
(
ηPi − ηWi

)
. (3.33)

Combining these equations shows the following relation for all components i ∈ V〈
gradE,i Φ(W ), Pi −Wi

〉 (3.33)
=

〈
B> gradE,i Φ(W ), ηPi − ηWi

〉 (3.32)
=

〈
∂iΦ̂(ηW ), ηPi − ηWi

〉
,

resulting in the desired equality

DΦ

(
P,W

)
= Φ(P )− Φ(W )−

〈
gradE Φ(W ), P −W

〉
= Φ̂(ηP )− Φ̂(ηW )−

〈
∂Φ̂(ηW ), ηP − ηW

〉
= DΦ̂

(
ηP , ηW

)
.

To show (3.29), assume Φ is convex on K. By the first part, this is true if and only if
Φ̂ is convex on K̂, which in turn is equivalent to DΦ

(
P,W

)
= DΦ̂

(
ηP , ηW

)
≥ 0 for all

P,W ∈ K by (B.9).
For proving (3.30), suppose Φ is σ-strongly convex. Since η is a Euclidean isometry,

it follows ‖P −W‖ = ‖ηP − ηW ‖ and therefore by definition, Φ is σ-strongly convex if
and only if Φ̂ is σ-strongly convex, which in turn is equivalent to

DΦ

(
P,W

)
= DΦ̂

(
ηP , ηW

)
≥ σ

2
‖ηP − ηW ‖ =

σ

2
‖P −W‖2, (3.34)

by (B.10).

Lemma 3.2.5. The negative global entropy −HW from (2.30) is n−1-strongly convex.

Proof. Due to Proposition B.2.1, the negative entropy −H is 1-strongly convex on S =
rint(∆) with respect to ‖ · ‖1 and therefore

D−H(p, q) = KL(p, q) ≥ 1

2
‖p− q‖21 ∀p, q ∈ S (3.35)
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by (B.10). As a consequence of the norm estimate ‖x‖21 ≥ n−1‖x‖2 for x ∈ Rn together
with the identity KL(P,W ) = D−HW (P,W ) and the corresponding factorization from
(2.31), it follows

D−HW (P,W )
(2.31)

=
∑
i∈V

KL(Pi,Wi)
(3.35)

≥ 1

2

∑
i∈V
‖Pi −Wi‖21 ≥

n−1

2
‖P −W‖2

for all P,W ∈ W. As a result of Lemma 3.2.4, the negative entropy −HW is indeed
n−1-strongly convex on W.

3.2.2. Analytic Functions and the  Lojasiewicz Inequality

Recall (e.g. from [KP02]) that a real analytic manifold M is a smooth manifold whose
coordinate transitions are real analytic. A function Φ: M → R on an analytic manifold
M is real analytic if for each coordinate chart ϕ on M , the coordinate representation
Φ̂ = Φ◦ϕ−1 is real analytic. Therefore, viewingW as an affine manifold by the m-affine
charts, it is also a real analytic manifold and a smooth function Φ: W → R is analytic
if and only if it is analytic in any m-affine chart.

The fundamental property for proving convergence of analytic gradient flows in Rn is
the  Lojasiewicz inequality.

Lemma 3.2.6. [ Lojasiewicz inequality] Let U ⊂ Rd be an open set, φ : U → R a real
analytic function and z ∈ U . Then there exist a neighborhood UL ⊂ U of z and constants
c > 0, µ ∈ [0, 1) such that

‖∇φ(x)‖ ≥ c|φ(x)− φ(z)|µ for all x ∈ UL, (3.36)

where the convention 00 = 0 is adopted in the case µ = 0. The exponent µ is also called
the  Lojasiewicz exponent.

Proof. See [lL65] or [BM88].

There are generalizations of the  Lojasiewicz inequality to analytic Riemannian man-
ifolds [Lag07] as well as to the large class of subanalytic functions [BDL07], used to
prove convergence for subgradient differential inclusions. For ease of exposition, the
 Lojasiewicz inequality is directly shown to hold on W via the above introduced m-affine
isometric coordinates.

Corollary 3.2.7. [ Lojasiewicz inequality on W] Let Φ: W → R be analytic and Z ∈ W.
Let E = 〈·, ·〉 be the induced Euclidean metric on W ⊂ Rm×n. Then there exists a
neighborhood UL ⊂ W of Z and constants C > 0, µ ∈ [0, 1) such that

‖ gradE Φ(W )‖ ≥ C|Φ(W )− Φ(Z)|µ for all W ∈ UL, (3.37)

with the convention 00 = 0 in the case µ = 0.
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Proof. Let η : W → UW be the m-affine isometric chart from Corollary 3.2.3, where
W ⊂ Rm×n is equipped with metric E. By assumption, Φ̂ = Φ◦η−1 : UW → R is analytic.
Define ηZ := η(Z) ∈ UW . By Lemma 3.2.6, there exists a neighborhood UL ⊂ UW of ηZ ,
on which the  Lojasiewicz inequality (3.36) holds with exponent µ ∈ [0, 1) and constant
C > 0. Set UL := η−1(UL). Since ‖∂Φ̂(η(W ))‖ = ‖ gradE Φ(W )‖, as a consequence of
Lemma A.4.1 and the fact that η is an isometry, the inequality

C|Φ(W )− Φ(Z)|µ = C|Φ̂(η(W ))− Φ̂(ηZ)|µ ≤ ‖∂Φ̂(η(W ))‖ = ‖ gradE Φ(W )‖

holds for all W ∈ UL, proving the statement.

3.3. Perturbed Riemannian Gradient Descent Flows for
Optimization

In the following, convergence properties of the perturbed Riemannian gradient flow (3.6)
are investigated. After proving some basic relations between ‖ · ‖ and ‖·‖g, in Sec-
tion 3.3.1, general properties of the Riemannian gradient descent flow for Jε are shown
in Section 3.3.2. As the counterexamples from [PDM12] and [AMA05] in the Euclidean
case demonstrate, integral curves of gradient flows do not necessarily converge to a
single point. However, for gradient flows of analytic functions in Rd, it can be shown
that bounded integral curves indeed converge [AMA05]. Even stability results [AK06]
and convergence rates are available [BDL07] in this case. Proving the corresponding
statements on the assignment manifold will be done in Section 3.3.3.

3.3.1. Basic Estimates

In order to proof the convergence results in the remaining part of this section, some
basic relations between ‖ · ‖ and ‖·‖g, are needed. Establishing these relations will be
done in the following. First, the situation on one factor S of W is considered.

Lemma 3.3.1. For all p ∈ S and u, v ∈ TS , the identity

gp(v,Rpu) = 〈v, u〉 (3.38)

and the inequality

‖Rpu‖ ≤ ‖Rpu‖g,p ≤ ‖u‖ (3.39)

hold. Furthermore, for every compact subset K ⊂ S, there exist constants CK , C
′
K > 0

such that

CK‖u‖ ≤ ‖Rpu‖g,p ≤ C
′
K‖Rpu‖ ∀p ∈ K and ∀u ∈ TS . (3.40)

Proof. The identity in (3.38) is a consequence of

gp(v,Rpu)
(2.15)

=
〈
v,Diag

(
1
p

)
Rpu

〉
=
〈
v, PTS Diag

(
1
p

)
Rpu

〉 (2.36)
= 〈v, u〉.
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The inequality on the right-hand side of (3.39) follows from

‖Rpu‖2g,p
(3.38)

= 〈u,Rpu〉 ≤ ‖u‖2,

where the last estimate results from all eigenvalues of Rp being upper bounded by 1/2
according to Lemma 2.3.1 (3). Define Rpu =: vp = vipei. Since the components of
p = piei ∈ S are contained in the interval 0 < pi < 1, the inequality on the left-hand
side of (3.39) is a result of

‖vp‖2g,p
(2.15)

= (vip)
2 1

pi
≥ ‖vp‖2.

To show (3.40), let K ⊂ S be compact. The minimal eigenvalue λmin(Rp|TS ) of Rp|TS
continuously depends on p ∈ S and is positive by Lemma 2.3.1 (3). Thus, a minimal
positive eigenvalue C2

k := minp∈K{λmin(Rp|TS )} > 0 exists on K, implying

‖Rp‖2g,u
(3.38)

= 〈u,Rpu〉 ≥ λmin(Rp|TS )‖u‖2 ≥ C2
k‖u‖2,

for all u ∈ TS and p ∈ K. Similarly, the function α(p) := maxi∈[n]{(pi)−1} continuously
depends on p = piei ∈ S and obtains a maximal value (C ′K)2 := maxp∈K{α(p)} > 0 on
the compact set K. As a consequence, using Rpu = vp = vipei from above yields

‖vp‖2g,p
(2.15)

= (vip)
2 1

pi
≤ α(p)‖vp‖2 ≤ (C ′K)2‖vp‖2

for all u ∈ TS and p ∈ K.

Because the Fisher-Rao metric g on W is a product metric, the equality (3.38) and
inequality (3.39) directly carry over to W, i.e. if W ∈ W and U, V ∈ TW , then

gW
(
V,RW [U ]

)
=
〈
V,U

〉
, (3.41)

‖RW [U ]‖ ≤ ‖RW [U ]‖g,W ≤ ‖U‖ (3.42)

hold. For transferring the third inequality (3.40) to W, suppose K ⊂ W is a compact
subset. Since the canonical projection onto the i-th factor πi : W → S, defined by
πi(W ) = Wi, is continuous, also Ki := πi(K) ⊂ S is compact. Let CKi , C

′
Ki

> 0 be
the constants fulfilling (3.40) on Ki ⊂ S on the i-th factor of W. Then, the constants
CK := mini∈V{CKi} > 0 and C ′K := maxi∈V{C ′Ki} > 0 satisfy the inequality

Ck‖U‖ ≤ ‖RW [U ]‖g,W ≤ C
′
K‖RW [U ]‖ ∀W ∈ K and ∀U ∈ TW . (3.43)

As a direct consequence of the relation between the Riemannian gradient and Eu-
clidean gradient through the replicator operator in Corollary 2.3.4, the above inequalities
on W yield the following statement.
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Corollary 3.3.2. Let J : W → R be C1. Then, for all W ∈ W, the Riemannian gradient
gradg J(W ) of the Fisher-Rao metric g and the Riemannian gradient gradE J(W ) of the
Euclidean metric E = 〈·, ·〉 on W fulfill

gW
(
V, gradg J(W )

)
=
〈
V, gradE J(W )

〉
=
〈
V, ∂J(W )〉, (3.44)

where the last equality holds if J is defined on an open set U ⊂ Rm×n containing W, and
the inequality

‖ gradg J(W )‖ ≤
∥∥gradg J(W )

∥∥
g,W
≤ ‖ gradE J(W )‖ (3.45)

is satisfied. Furthermore, for any compact set K ⊂ W, there are constants CK , C
′
K > 0

such that

CK‖ gradE J(W )‖ ≤
∥∥gradg J(W )

∥∥
g,W
≤ C ′K‖ gradg J(W )‖ ∀W ∈ K. (3.46)

3.3.2. General Properties of Perturbed Riemannian Gradient Flows

Following the Riemannian gradient flow for minimizing Jε on the assignment manifold is
related to general optimization approaches on Riemannian manifolds, see [ABB04] and
references therein. In [ABB04] the optimization framework is developed for Riemannian
metrics induced by Legendre functions on convex subsets of Rd. However, most ap-
proaches rely on the objective function also to be defined outside the manifold, so as to
be well behaved on the boundary. In contrast, in the present setting J is only assumed
to be defined on W and lower bounded.

First, it is shown that integral curves of the perturbed Riemannian gradient flow (3.6)
are well defined in the sense that they exist for all future time.

Proposition 3.3.3. For every initial condition W (0) ∈ W, there exists a unique solution
W (t) of the perturbed Riemannian gradient descent flow (3.6) for all t ≥ 0. The function
values Jε(W (t)) are monotonically decreasing and converge towards

lim
t→+∞

Jε(W (t)) = inf
t≥0
{Jε(W (t))} > −∞. (3.47)

For α ∈ R, the compact level sets levα(Jε) are positively invariant, i.e. W (0) ∈ levα(Jε)
implies W (t) ∈ levα(Jε) for all t ≥ 0.

Proof. Let α ∈ R and assume W (0) ∈ levα(Jε). By the fundamental theorem on flows
A.2.1, there exists a unique maximal solution W : I → W of (3.6), where I ⊂ R is an
open interval containing 0. Define TM := sup I ∈ (0,+∞]. Because of (3.3), the value
Jε(W (t)) is monotonically decreasing in t, implying α ≥ Jε(W (0)) ≥ Jε(W (t)) and
therefore W (t) ∈ levα(Jε) for all t ∈ [0, TM ). Due to the compactness of levα(Jε) by
Lemma 3.1.1, the Escape Lemma A.2.2 implies that TM = +∞, showing that levα(Jε)
is positively invariant. The convergence of the function values Jε(W (t)) to the infimum
in (3.47) also follows from the monotonicity (3.3) by a standard argument. Since every
point W (0) ∈ W is always contained in the level set levα0(Jε) with α0 := Jε(W (0)), the
statement for an arbitrary point on W follows.
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As one would expected, the Riemannian gradient of Jε converges towards zero for
t → ∞. The proof follows the one in [Jos17, Lemma 8.4.4], however, with different
assumptions. The argument makes use of Barbalat’s lemma, stated next.

Lemma 3.3.4 (Barbalat’s lemma). Suppose ϕ : [0,∞)→ [0,∞) is uniformly continuous,
i.e. for every ε > 0 there exists a δ > 0 such that |t1 − t2| < δ for t1, t2 ∈ [0,∞) implies
|ϕ(t1)− ϕ(t2)| < ε. If

∫∞
0 ϕ(t)dt <∞, then limt→∞ ϕ(t) = 0.

Proof. See e.g. [Kha02]

Remark 3.3.1. If ϕ : [0,∞)→ [0,∞) is Lipschitz, i.e. there exists an L > 0 such that

|ϕ(t1)− ϕ(t2)| ≤ L|t1 − t2| for all t1, t2 ∈ [0,∞), (3.48)

then ϕ is also uniformly continuous, by choosing δ := ε
L > 0 for any given ε > 0.

Proposition 3.3.5. If W (t) ∈ W is an integral curve of the perturbed Riemannian
gradient descent flow (3.6) then limt→∞ gradg Jε(W (t)) = 0.

Proof. By Proposition 3.3.3, the solution W (t) ∈ W of (3.6) exists for all t ≥ 0, is
contained in the compact set K := levα0(Jε), with α0 := Jε(W (0)), and the function
values Jε(W (t)) converge monotonically decreasing to limt→∞ Jε(W (t)) =: J∗ε > −∞.
As a result of

Jε(W (t1))− Jε(W (t2)) = −
∫ t2

t1

d

dt
Jε(W (t))dt

(3.3)
=

∫ t2

t1

∥∥gradg Jε(W (t))
∥∥2

g,W (t)
dt

and Corollary 3.3.2, the overall estimate

∞ > Jε(W (0))− J∗ε =

∫ ∞
0

∥∥gradg Jε(W (t))
∥∥2

g,W (t)
dt

(3.45)

≥
∫ ∞

0
‖ gradg Jε(W (t))‖2dt

follows. Define 0 ≤ ‖ gradg Jε(W (t))‖2 =: ϕ(t). It is shown that ϕ is Lipschitz continuous
on [0,∞) by proving ϕ̇(t) is bounded on [0,∞). For this, represent ϕ as the composition
ϕ(t) = g(W (t)) with g : W → R defined by g(W ) := ‖ gradg Jε(W )‖2. Because J is C2,
the function g is C1. Equipping W with the standard Euclidean metric E = 〈·, ·〉 yields
the continuous gradient gradE g : W → TW . Since K is compact, there exists a constant
L > 0 simultaneously bounding g and ‖ gradE g‖2 on K. As a result of W (t) ∈ K for all
t ≥ 0 the estimate

|ϕ̇(t)| = |〈gradE g(W (t)), Ẇ (t)〉| ≤ ‖ gradE g(W (t))‖‖ gradg Jε(W (t))‖ ≤ L2

follows, showing that ϕ is indeed Lipschitz continuous on [0,∞). Lemma 3.3.4 together
with Remark 3.3.1 then implies limt→∞ ‖ gradg Jε(W (t))‖2 = 0.
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3.3.3. Convergence Analysis for Analytic Variational Models

As already mentioned above, integral curve of gradient fields do not necessarily converge
to a single point. Thus, in order to prove any convergence results, additional assumptions
on the function Jε have to be made. E.g. in [ABB04], a convexity assumption results
in a convergent statement for the corresponding integral curves [ABB04, Thm. 4.7] as
well as in convergence rates [ABB04, Prop. 4.4]. Since J is not assumed to be convex,
the focus will be on analytic variational models for the remaining part of this section.
For this class of functions, the  Lojasiewicz inequality results in convergence statements
for integral curves of the corresponding gradient flow, as first shown by  Lojasiewicz in
[Loj82]. See [AMA05] for a review of the chase in Rd, [Lag07] for the general case of ana-
lytic Riemannian manifolds and [BDL07] for a generalization to subgradient differential
inclusions for subanalytic functions.

In the following, convergence for analytic Jε on the assignment manifold will be shown
based on the case for analytic function in Rd from [AMA05]. This way, the parallels be-
tween the present continuous-time case and the geometric Euler discretization discussed
in the next Section 3.4 will become most apparent. Subsequently, the stability results
from [AK06] are shown to also hold on the assignment manifold and finally, also conver-
gence rates are proven based on [BDL07].

The key argument, underlying the following proofs is the fact that the  Lojasiewicz
inequality can be used to find an estimate of the arc length for integral curves in various
situations. The corresponding statement in Lemma 3.3.7 below is a general formulation,
extracted from the proofs in [AK06] and [AMA05].

Lemma 3.3.6. Let α ∈ R. Then, there exists a constant C > 0 such that for any initial
condition W (0) ∈ levα(Jε), the flow W (t) from (3.6) fulfills

d

dt
Jε(W (t)) ≤ −C‖ gradE Jε(W (t))‖‖Ẇ (t)‖ for all t ≥ 0.

Furthermore, d
dtJε(W (t0)) = 0 for some t0 ≥ 0 then Ẇ (t) = 0 for all t ≥ t0.

Remark 3.3.2. The presentation in [AMA05] follows the generalization of gradient
flows from [Lag02]. The first condition is called angle condition and the second one weak
decrease condition. To prove convergence, a flow only has to fulfill these two conditions.

Proof. If d
dtJε(W (t0)) = 0 for some t0, then gradg Jε(W (t0)) = 0 as a consequence of

d

dt
Jε(W (t)) = −

∥∥gradg Jε(W (t))
∥∥2

g,W (t)
. (3.49)

Since integral curves are unique by Theorem A.2.1, the solution is given by the constant
curve W (t) = W (t0) for all t ≥ t0 and therefore d

dtW (t) = 0 follows. To prove the
first statement, note that due to Proposition 3.3.3, the flow W (t) ∈ W with initial
condition W (0) ∈ levα(Jε) =: Kα is contained in the compact set Kα for all t ≥ 0. By
Corollary 3.3.2, there exists a constant C > 0 such that∥∥gradg Jε(W (t))

∥∥
g,W (t)

≥ C‖ gradE Jε(W (t))‖

and
∥∥gradg Jε(W (t))

∥∥
g,W (t)

≥ ‖ gradg Jε(W (t))‖ = ‖Ẇ (t)‖
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for all t ≥ 0. Combining these inequalities with (3.49), results in the first statement.

Lemma 3.3.7. Let Jε : W → R be analytic, Z ∈ W and α ∈ R. Suppose UL ⊂ W is
a neighborhood of Z ∈ W on which the  Lojasiewicz gradient inequality with exponent
µ ∈ [0, 1) is satisfied. Then there exists a constant C > 0 with the following property.
For any solution W (t) of the Riemannian gradient flow (3.6) with W (0) ∈ levα(Jε), if
Jε(W (t)) ≥ Jε(Z) and W (t) ∈ UL is satisfied for t ∈ [t1, t2], then the arc length of W (t)
on [t1, t2] with respect to the Euclidean metric ‖ · ‖ is bounded by∫ t2

t1

‖Ẇ (t)‖dt ≤ C
(
Jε(W (t1))− Jε(Z)

)1−µ
. (3.50)

Proof. To simplify notation, define Φ(t) := Jε(W (t)) − Jε(Z). By Lemma 3.3.6 there
exists a C ′ > 0 such that any solution W (t) of (3.6) with W (0) ∈ levα(Jε) satisfies
d
dtJε(W (t)) ≤ −C ′‖∇Jε(W (t))‖‖Ẇ (t)‖ for all t ≥ 0. Let C ′′ > 0 and µ ∈ [0, 1) be the
constants of the  Lojasiewicz inequality on UL and define

C :=
(
(1− µ)C ′C ′′

)−1
> 0.

If W (t) is a solution of the Riemannian gradient descent flow with W (0) ∈ levα(Jε)
satisfying W (t) ∈ UL on [t1, t2], then

d

dt
Φ(t) ≤ −C ′‖∇Jε(W (t))‖‖Ẇ (t)‖ ≤ −C ′C ′′|Φ(t)|µ‖Ẇ (t)‖ ∀t ∈ [t1, t2]. (3.51)

The remaining proof is divided into two cases.
First assume Φ(t) > 0 on [t1, t2). It follows by the definition of C that

d

dt

(
Φ(t)

)1−µ
= (1− µ)

1(
Φ(t)

)µ ddtΦ(t) ≤ − 1

C
‖Ẇ (t)‖

(3.51)

≤ 0 ∀t ∈ [t1, t2).

As a consequence of this and µ < 1, the arc length is upper bounded by∫ t2

t1

‖Ẇ (t)‖dt ≤ −C
∫ t2

tt

d

dt

(
Φ(t)

)1−µ
dt

= C
[(

Φ(t1)
)1−µ − (Φ(t2)

)1−µ] ≤ C(Φ(t1)
)1−µ

where the last inequality holds due to
(
Φ(t2)

)1−µ ≥ 0.
Now, suppose Φ(t) > 0 on [t1, t2) is not true. Since Φ(t) ≥ 0 on [t1, t2] by assumption,

the existence of
T := inf

{
t ∈ [t1, t2)

∣∣ Φ(t) = 0
}
< t2

is implied. The condition Φ(T ) = 0 translates to Jε(W (T )) = Jε(Z). As a result of
the monotonicity of Jε(W (t)) from Proposition 3.3.3, the equality Jε(W (t)) = Jε(Z) for
t ∈ [T, t2) follows. Therefore d

dtJε(W (t)) = 0 on [T, t2), implying

Ẇ (t) = 0 ∀t ≥ T (3.52)
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by Lemma 3.3.6. Due to the Φ(t) > 0 for all t ∈ [t1, T ), by the choice of T , the above
estimate from the first case can be applied on [t1, T ) resulting in∫ t2

t1

‖Ẇ (t)‖dt (3.52)
=

∫ T

t1

‖Ẇ (t)‖dt ≤ C
(
Φ(t1)

)1−µ
.

After these preparations, it is now possible to prove the convergence of integral curves
for analytic Jε on the assignment manifold.

Theorem 3.3.8. Assume Jε : W → R is analytic and let W (t) ∈ W be the solution of the
perturbed gradient descent flow (3.6) with W (0) ∈ levα(Jε). Then there exists a critical
point W ∗ ∈ levα(Jε) ⊂ W of Jε, i.e. gradg Jε(W

∗) = 0, such that limt→∞W (t) = W ∗.

Proof. The adapted proof of [AMA05, Thm. 2.2] on W is given, using Lemma 3.3.7 for
estimating the arc length of W (t). By Proposition 3.3.3, the flow W (t) is contained in the
compact set levα(Jε) =: Kα. Thus, W (t) has an accumulation point W ∗ in Kα, i.e. there
is a sequence 0 < t1 < t2 < . . . with limk→∞ tk = ∞ such that limk→∞W (tk) = W ∗.
Because Jε(W (t)) is monotonically decreasing in t, the continuity of Jε implies

Jε(W
∗) = lim

k→∞
Jε(W (tk)) = lim

t→∞
Jε(W (t)). (3.53)

Similarly, the continuity of gradg Jε : W → TW and Proposition 3.3.5 give

gradg Jε(W
∗) = lim

k→∞
gradg Jε(W (tk)) = lim

t→∞
gradg Jε(W (t)) = 0,

showing W ∗ is indeed a critical point of Jε.
As a consequence of Jε being analytic on W, Corollary 3.2.7 yields the exists of a

neighborhood UL ⊂ W of W ∗ on which the  Lojasiewicz inequality holds with exponent
µ ∈ [0, 1). In the following, it will be shown by contradiction that for arbitrarily small
r > 0, with Br(W

∗) ⊂ UL, the curve W (t) eventually enters Br(W
∗) and never leaves.

Since r is arbitrarily small, it then follows that W (t) converges to W ∗.
Assume an arbitrary r > 0 with Br(W

∗) ⊂ UL is given. Let C > 0 be the constant
from Lemma 3.3.7 corresponding to the choice Z = W ∗. The fact that W ∗ is an accu-
mulation point of the curve W (t) together with (3.53) implies the existence of a time
t1 ≥ 0 such that

‖W (t1)−W ∗‖ < r

4
and C|Jε(W (t1))− Jε(W ∗)|1−µ <

r

4
. (3.54)

Now, suppose W (t) would leave Br(W
∗) on [t1,∞), i.e.

t2 := inf
{
t > t1

∣∣ ‖W (t)−W ∗‖ = r
}
> t1

exists. The fact that W (t) ∈ Br(W
∗) ⊂ UL on [t1, t2] by the choice of t2 together with

Jε(W (t)) ≥ Jε(W ∗) due to the monotonicity of Jε(W (t)) shows that the assumptions of
Lemma 3.3.7 with constant C are fulfilled on [t1, t2]. The resulting estimate of the arc
length by (3.50) gives

‖W (t2)−W (t1)‖ ≤
∫ t2

t1

‖Ẇ (t)‖dt ≤ C
(
Jε(W (t1))− Jε(W ∗)

)1−µ (3.54)
<

r

4
.
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It then follows ‖W (t2) − W ∗‖ ≤ ‖W (t2) − W (t1)‖ + ‖W (t1) − W ∗‖ < r
4 + r

4 = r
2 ,

contradicting the choice of t2. Thus W (t) has to be contained in Br(W
∗) for all t ≥ t1,

proving the statement.

Stability of the Riemannian Gradient Flow for Jε

Even if the objective function is C∞, local minima are not necessarily stable equilibria
of the corresponding gradient flow, as the counterexample from [AK06, Prop. 2] in the
Euclidean case shows. There are also C∞ functions with stable equilibria which are not
local minima. However, in [AK06] it is shown that for analytic functions on Rd, local
minima are in one to one correspondence with stable equilibria of the gradient flow. The
same holds for strict local minima and asymptotically stable equilibria.

In the following, this is also proven for the Riemannian gradient descent flow of Jε
on the assignment manifold, where stability will be understood with respect to the ‖ · ‖
norm on Rm×n.

Definition 3.3.1 (Stability). Let F : W → TW be a vector field on W. Consider the
dynamical system Ẇ (t) = F (W (t)) and suppose W ∈ W is an equilibrium point, i.e.
F (W ) = 0 holds.

(1) W is (Lyapunov) stable, if for every r > 0 there is a δ = δ(r) > 0 such that if
‖W (0)−W‖ < δ, then ‖W (t)−W‖ < r for all t ≥ 0.

(2) W is asymptotically stable, if it is stable and a constant δ > 0 can be chosen such
that if ‖W (0)−W‖ < δ then limt→∞W (t) = W .

The stability results on the assignment manifold W are directly shown using the
 Lojasiewicz inequality on W from Corollary 3.2.7.

Theorem 3.3.9. Let Jε : W → R be analytic. Then Z ∈ W is a local minimum of Jε if
and only if Z is a stable equilibrium of the Riemannian gradient descent flow (3.6).

Proof. The first direction is an adapted version from the proof of [AK06, Thm. 3] and
is similar to the argument in Theorem 3.3.8. For this, assume Z is a local minimum of
Jε. Due to the local minimality, there exists a neighborhood Um ⊂ W of Z such that
Jε(Q) ≥ Jε(Z) for all Q ∈ Um and gradg Jε(Z) = 0, showing that Z is an equilibrium
of the Riemannian gradient flow (3.6). Since Jε is analytic, there is a neighborhood
UL ⊂ W of Z from Corollary 3.2.7 on which the  Lojasiewicz inequality is fulfilled with
exponent µ ∈ [0, 1). Assume an arbitrary r > 0 with Br(Z) ⊂ Um ∩UL is given. Choose
α sufficiently large such that also Br(Z) ⊂ levα(Jε) holds and let C > 0 be the constant
from Lemma 3.3.7 corresponding to the choices of α and Z. Then, by the continuity of
Jε, there is a 0 < δ < r

4 such that

C|Jε(X)− Jε(Z)|1−µ < r

4
∀X ∈ Bδ(Z). (3.55)

Now, suppose an arbitrary W (0) ∈ Bδ(Z) is chosen. It is shown by contradiction that
W (t) ∈ Br(Z) holds for all t ≥ 0. Assume W (t) leaves Br(Z) at some point, i.e.

T := inf
{
t ≥ 0

∣∣ ‖W (t)− Z‖ = r
}
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exists. Then W (t) ∈ Br(Z) ⊂ UL ∩ Um for all t ∈ [0, T ] by the choice of T , resulting
in Jε(W (t)) ≥ Jε(Z) on [0, T ]. Since α was chosen such that Br(Z) ⊂ levα(Jε), the
starting point W (0) is contained in levα(Jε). Overall, the assumptions of Lemma 3.3.7
with constant C from above are satisfied, resulting in the arc length estimate

‖W (T )−W (0)‖ ≤
∫ T

0
‖Ẇ (t)‖dt ≤ C|Jε(W (0))− Jε(Z)|1−µ

(3.55)
<

r

4
. (3.56)

It then follows ‖W (T )−Z‖ ≤ ‖W (T )−W (0)‖+‖W (0)−Z‖ < r
4 + δ < r

2 , contradicting
the choice of T . Thus W (t) ∈ Br(Z) for all t ≥ 0 must be true, showing that the local
minimum Z is indeed a stable equilibrium.

As for the other direction, suppose Z is a stable equilibrium. Since Jε is analytic,
Corollary 3.2.7 gives a neighborhood UL ⊂ W of Z on which the  Lojasiewicz inequality
(3.44) with constants C > 0 and µ ∈ [0, 1) is fulfilled. Choose any r > 0 with Br(Z) ⊂
UL. Because Z is stable, there is a δ = δ(r) > 0 such that W (t) ∈ Br(Z) for all t ≥ 0 if
W (0) ∈ Bδ(Z). To show Z is a local minimum, let X ∈ Bδ(Z) be arbitrary. According to
Theorem 3.3.8 the trajectory W (t) with initial condition W (0) := X converges towards
a point W ∗ ∈ W, the values Jε(W (t)) are monotonically decreasing and the gradient
vanishes

0 = gradg Jε(W
∗) = RW ∗ [gradE Jε(W

∗)].

Due to the invertibility of RW ∗ by Lemma 2.3.1, also gradE Jε(W
∗) = 0 follows. Since

W (t) is contained in Br(Z) for all t ≥ 0, the limit point W ∗ lies in the closure Br(Z).
Because r was chosen to guarantee Br(Z) ⊂ UL, the  Lojasiewicz inequality

C|Jε(W ∗)− Jε(Z)|µ ≤ ‖ gradE Jε(W
∗)‖ = 0,

resulting in Jε(W
∗) = Jε(Z). As a result of the monotonicity of Jε(W (t)),

Jε(X) = Jε(W (0)) ≥ Jε(W (t)) ≥ Jε(W ∗) = Jε(Z)

follows. Since X ∈ Bδ(Z) was arbitrary, the equilibrium Z is a local minimum of Jε.

Theorem 3.3.10. Let Jε : W → R be analytic. Then Z ∈ W is a strict local minimum
of Jε if and only if Z is an asymptotically stable equilibrium of the Riemannian gradient
descent flow (3.6).

Proof. Suppose Z ∈ W is a strict local minimum, i.e. there is a neighborhood Um ⊂ W
of Z such that Jε(X) > Jε(Z) for all X ∈ Um with X 6= Z. By Corollary 3.2.7,
there exists a neighborhood UL ⊂ W of Z on which the  Lojasiewicz inequality with
exponent µ ∈ [0, 1) and constant C > 0 is fulfilled. Choose r > 0 sufficiently small
such that Br(Z) ⊂ Um ∩ UL. Since strict local optima are also local optima, it follows
from Theorem 3.3.9 that Z is a stable equilibrium of the flow, thus there is a δ > 0
such that if W (0) ∈ Bδ(Z) then W (t) ∈ Br(Z) ⊂ Um for all t ≥ 0. For any such
W (0) ∈ Bδ(Z), Theorem 3.3.8 shows the convergence of W (t) ∈ Br(Z) towards a critical
point W ∗ ∈ Br(Z) ⊂ UL, i.e. gradg Jε(W

∗) = 0. Due to the invertibility of RW ∗ by
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Lemma 2.3.1 and gradg Jε(W
∗) = RW ∗ [gradE Jε(W

∗)], also gradE Jε(W
∗) = 0. The

 Lojasiewicz inequality then implies

C|Jε(W ∗)− Jε(Z)|µ ≤ ‖ gradE Jε(W
∗)‖ = 0, (3.57)

showing hat Jε(W
∗) = Jε(Z). Because W ∗ is an element of Um and Z is a strict

minimum, the equality Jε(W
∗) = Jε(Z) implies Z = W ∗ = limt→∞W (t). This proves

the asymptotic stability of Z.

Conversely, suppose, Z is an asymptotically stable equilibrium, i.e. Z is stable and
there is a δ > 0 such that limt→∞W (t) = Z for all W (0) ∈ Bδ(Z). Since Z is stable,
Theorem 3.3.9 shows that Z is a local minimum on some neighborhood Um. By choosing
a sufficiently small δ > 0, Z is a local minimum on Bδ(Z) ⊂ Um. It remains to show
Z is also strict on Bδ(Z). For this, suppose Jε(Z) = Jε(X) holds for some X ∈ Bδ(Z).
As a consequence of Z being asymptotically stable, the flow W (t) with initial condition
W (0) = X converges towards Z. According to Proposition 3.3.3 the corresponding
function values Jε(W (t)) are monotonically decreasing, resulting in the inequality

Jε(Z) = Jε(X) = Jε(W (0)) ≥ Jε(W (t)) ≥ lim
t→∞

Jε(W (t)) = Jε(Z).

This shows Jε(W (t)) = Jε(Z) is constant for all t ≥ 0 and d
dtJε(W (t)) = 0 follows.

Lemma 3.3.6 then implies Ẇ (t) = 0 for all t ≥ 0, proving that W (t) is constant and
hence X = W (0) = limt→∞W (t) = Z holds. This establishes the strict minimality of Z
on Bδ(Z).

Convergence Rates of the Riemannian Gradient Flow for Jε

The derivation of convergence rates for bounded solutions of subgradient differential
inclusions from [BDL07] can be adapted to obtain convergence rates for the perturbed
Riemannian gradient descent flow (3.6). The argument relies on comparing solutions of
differential equations on R.

Lemma 3.3.11 (Comparison Lemma). Consider the scalar differential equation

ẏ(t) = f(t, y(t)), y(t0) = y0 (3.58)

where f(t, y) is continuous in t and locally Lipschitz in y, for all t ≥ 0 and all y ∈ I ⊂ R.
Let [t0, T ) be a maximal interval of existence of the solution y(t) (T could be infinite)
and suppose y(t) ∈ I for all t ∈ [t0, T ). Let σ(t) be a continuous function satisfying the
differential inequality

σ̇(t) ≤ f(t, σ(t)), σ(t0) ≤ y0, (3.59)

with σ(t) ∈ I for all t ∈ [t0, T ). Then σ(t) ≤ y(t) for all t ∈ [t0, T ).

Proof. See e.g. [Kha02]
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Theorem 3.3.12. Let Jε : W → R be analytic and suppose W (t) ∈ W is a solution
of the perturbed gradient descent flow (3.6) converging towards W ∗ ∈ W. Let UL be a
neighborhood of W ∗ on which the  Lojasiewicz inequality is fulfilled with exponent µ ∈
[0, 1). Then the following estimates hold for t→∞

(1) If µ ∈ [0, 1
2), then W (t) converges to W ∗ in finite time.

(2) If µ = 1
2 , then there exist β,C > 0 such that

‖W (t)−W ∗‖ ≤ Ce−βt. (3.60)

(3) If µ ∈ (1
2 , 1), then there exist β,C > 0 such that

‖W (t)−W ∗‖ ≤ C(t+ β)
− 1−µ

2µ−1 . (3.61)

Proof. The proof follows the one for the convergence rates in [BDL07], with some neces-
sary modifications. Since W (t) converges to W ∗, there is a T > 0 such that W (t) ∈ UL
for all t ≥ T . Because Jε(W (t)) is monotonically decreasing by Proposition 3.3.3,
also Jε(W (t)) ≥ Jε(W

∗) for all t ≥ T is fulfilled. Therefore, all the assumptions for
Lemma 3.3.7 are satisfied and there exists a C ′ > 0 such that

σ(t) :=

∫ ∞
t
‖Ẇ (t)‖dt ≤ C ′

(
Jε(W (t))− Jε(Z)

)1−µ
<∞ for all t ≥ T. (3.62)

The following two properties

‖W (t)−W ∗‖ ≤ σ(t) and σ̇(t) = −‖Ẇ (t)‖ (3.63)

show that σ(t) is non-negative and monotonically decreasing. Below, the convergence
rates are proven using the above comparison lemma together with a differential inequality
of σ(t), which is derived now. For this, suppose µ ∈ (0, 1). Then (3.62) and the
 Lojasiewicz inequality (3.2.7) on UL with constant C > 0 imply

σ(t) ≤ C ′
(
Jε(W (t))− Jε(Z)

)1−µ ≤ C‖ gradE Jε(W (t))‖
1−µ
µ . (3.64)

Since levα0(Jε) =: Kα0 with α0 := Jε(W (0)) is positively invariant and compact by
Proposition 3.3.3, it follows W (t) ∈ Kα0 for all t ≥ 0. According to (3.46) of Corol-
lary 3.3.2, there is a constant Cα0 > 0 such that

Cα0‖ gradE Jε(W (t))‖ ≤ ‖ gradg Jε(W (t))‖ for all t ≥ 0. (3.65)

With this and C
′
:= CC

− 1−µ
µ

α0 > 0, the estimation of σ(t) in (3.64) can be continued as

σ(t) ≤ C‖ gradE Jε(W (t))‖
1−µ
µ ≤ C ′‖ gradg Jε(W (t))‖

1−µ
µ

= C
′‖Ẇ (t)‖

1−µ
µ

(3.63)
= C

′(− σ̇(t)
) 1−µ

µ .
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Rearranging this inequality and setting ν := µ
1−µ as well as L :=

(
C
′)−ν

> 0, results in

σ̇(t) ≤ −L(σ(t))ν .

The smooth function R>0 → R>0, given by y 7→ L(y)ν , is locally Lipschitz and the
comparison lemma can be applied in the following arguments to obtain convergence
rates. For this, consider the autonomous ODE

ẏ(t) = −L(y(t))ν with y(0) := σ(0) ≥ 0 (3.66)

and assume a solution on [0, τ) exists. Then

‖W (t)−W ∗‖
(3.63)

≤ σ(t) ≤ y(t) (3.67)

for all t ∈ [0, τ), according to the comparison lemma 3.3.11.

In the following, W (0) 6= W ∗ is always assumed, resulting in σ(0) > 0. In order to
prove the convergence rates, it remains to find solutions of y(t) with initial condition
y(0) = σ(0) > 0 depending on the value of µ ∈ (0, 1).

To (1): If µ = 0, then |Jε(W (t)) − Jε(W ∗)|µ = 1 for Jε(W (t)) 6= Jε(W
∗) and 00 = 0

otherwise, according to the adopted convention. Proposition 3.3.5 and the  Lojasiewicz
inequality with constant C then give

C|Jε(W (t))− Jε(W ∗)|µ ≤ ‖ gradE Jε(W (t))‖ → 0 for t→∞. (3.68)

Hence, there is a T0 with Jε(W (t)) = Jε(W
∗) for all t ≥ T0, resulting in d

dtJε(W (t)) = 0

for t ≥ T0. Lemma 3.3.6 then implies Ẇ (t) = 0 for t ≥ T0, showing that W (t) is constant
from T0 onward. Since W (t) converges towards W ∗, the equality W (t) = W ∗ for t ≥ T0

follows, proving convergence in finite time.

Now suppose µ ∈ (0, 1
2). Then, ν = µ

1−µ ∈ (0, 1) and by separation of variables, the
solution

y(t) =
(
σ(0)1−ν − (1− ν)Lt

) 1
1−ν for 0 ≤ t ≤ σ(0)1−ν

(1− ν)L
=: τ (3.69)

for the ODE (3.66) is found. For t = τ , the value y(τ) = 0 together with (3.67) implies
W (τ) = W ∗, showing that W (t) converges in finite time.

To (2): If µ = 1
2 , then ν = µ

1−µ = 1 and the ODE (3.66) takes the form ẏ = −Ly.

Thus, the solution of the initial value problem is given by y(t) = σ(0)e−Lt for all t ≥ 0.
Due to (3.67), setting C := σ(0) > 0 and β := L > 0 results in the desired estimate.

To (3): If µ ∈ (1
2 , 1), then ν = µ

1−µ > 1 and thus ν−1 > 0. By separation of variables,
the solution

y(t) =
(
(ν − 1)Lt+ σ(0)−(ν−1)

)− 1
ν−1 = C(t+ β)−

1
ν−1 for all t ≥ 0 (3.70)

for the ODE (3.66) is found, with C := ((ν − 1)L)−
1

ν−1 > 0 and β := σ(0)−(ν−1)

(ν−1)L > 0.

Because of 1
ν−1 = 1−µ

2µ−1 , the desired estimate for ‖W (t)−W ∗‖ follows from (3.67).

55



Chapter 3. General Variational Models on the Assignment Manifold

3.4. Numerical Integration of the Perturbed Riemannian
Gradient Descent Flow

Recall the geometric integration framework from Section 2.3.4 for numerically integrating
flows of the form Ẇ (t) = RW (t)[F (W (t))] with an arbitrary vector field F : W → TW .
Due to the relation between the Fisher-Rao and the Euclidean gradient in Corollary 2.3.4,
the Riemannian gradient descent flow (3.6) fits into this integration scheme with the
vector field F (W ) = − gradE Jε(W ).

In general, there is a difference between numerically integrating a vector field and
numerically optimizing a function. In the first case, it is important to develop methods
to accurately follow the dynamics given by the vector field, see e.g. [HPW93]. In the
second case, the focus is on minimization and methods trying to find descent directions
by preferably using second-order information, without the need to track any specific
integral curve, see e.g. [NW06]. The explicit Euler method is the simplest approach that
can be viewed as both, a method for numerically integrating the flow and for optimizing
Jε. Therefore, in the following, convergence will only be investigated for the geometric
Euler integration (2.66) on W.

As it turns out, most of the results in the continuous-time setting from the previous
Section 3.3 carry over to the corresponding statements for the geometric Euler in the
discrete-time case. In Section 3.4.1 the geometric Euler is revisited and connections to
existing numerical optimization techniques in the literature are pointed out. Section 3.4.2
introduces the concept of L-smooth adaptability from [BSTV18], a weaker form of the
Lipschitz condition for determining step-sizes. Subsequently, this concept is used in
Section 3.4.3 to inspect general properties of the geometric Euler with Armijo step-size
selection. Similar to the continuous-time setting, convergence and stability results for
iterative optimization schemes are known for analytic functions on Rd [AMA05] as well
as convergence rates [AB09]. In Section 3.4.4 , these results are shown to also hold for
analytic Jε on the assignment manifold.

3.4.1. Geometric Euler Integration

The explicit geometric Euler integration (2.66), for integrating the Riemannian gradient
descent flow (3.6) takes the form

W (k+1) = expW (k)

(
− hk gradE Jε

(
W (k)

))
, W (0) ∈ W, (3.71)

with step-size hk > 0. Using the characterization of expW in (2.50) and keeping in mind
that the argmin does not depend on constant terms, results in the expression

W (k+1) = argminW∈∆m

{
hk
〈

gradE Jε
(
W (k)

)
,W −W (k)

〉
+ KL

(
W,W (k)

)}
. (3.72)

As already mentioned in Remark 2.3.3 (2), this clearly demonstrates the connection
between geometric Euler integration of the Riemannian gradient descent flow and the
Bregman projected (sub)gradient methods in optimization, as e.g. in [BT03]. In [RM15],

56



3.4. Numerical Integration of the Perturbed Riemannian Gradient Descent Flow

it was proven that this relation holds in general between natural gradient descent up-
dates, originally proposed in [Ama98], and mirror descent updates with respect to the
convex function inducing the dually flat structure on the manifold.

The geometric Euler (3.71) is also related to line-search methods on manifolds as in
[AMS08], based on the concept of retractions. A retraction for a general manifold M
is a smooth mapping R : TM → M such that for every x ∈ M , Rx : TxM → M fulfills
Rx(0) = x and dRx(0)[v] = v for every v ∈ TxM . The line-search method on M for
minimizing a given function Φ: M → R is based on the update xk+1 = Rxk(hkζk),
where ζk ∈ TxkM and hk > 0 are a suitable chosen search direction for minimizing Φ
and a positive step-size. Consider the exponential map Exp(e) : TW = W × TW → W
corresponding to the e-connection. Since Exp(e) is an exponential map, it obviously
fulfills all the requirements to be a retraction on W. Thus R = Exp(e) can be chosen.

Keeping in mind the relations Exp
(e)
W ◦RW = expW for all W ∈ W from Lemma 2.3.2 (3)

and gradg Jε(W ) = RW [gradE Jε(W )] from Corollary 2.3.4, results in

W (k+1) = RW (k)

(
− hk gradg Jε

(
W (k)

))
= Exp

(e)

W (k)

(
RW (k)

[
− hk gradE Jε

(
W (k)

)])
= expW (k)

(
− h gradE Jε

(
W (k)

))
.

Therefore, the geometric Euler update can also be interpreted as a line-search method
on W in the setting of [AMS08], with the choice Exp(e) as retraction.

To simplify notation for the subsequent analysis of the geometric Euler scheme (3.71),
the following map is defined.

Definition 3.4.1. Define the geometric Euler map GE: R×W →W by

(h,W ) 7→ GEh(W ) := expW
(
− h gradE Jε(W )

)
. (3.73)

A geometric Euler (GE) sequence is a sequence of the form

W (k+1) = GEhk
(
W (k)

)
, W (0) ∈ W (3.74)

with step-sizes hk > 0 for all k ∈ N.

The next lemma collects some important basic properties of the geometric Euler map,
relevant for the convergence analysis below.

Lemma 3.4.1. Let h > 0. Then gradE Jε(W ) = 0 if and only if W = GEh(W ).
Additionally, the inequality

h
〈

gradE Jε(W ),GEh(W )−W
〉

+ KL
(
GEh(W ),W

)
≤ 0 (3.75)

holds for all h > 0 and W ∈ W

Proof. Let gradE Jε(W ) = 0. Because expW is a Lie group action by Lemma 2.3.2, it
directly follows GEh(W ) = expW (0) = W . If W = GEh(W ) = expW (−h gradE Jε(W )),
then it again follows from Lemma 2.3.2 that

0 = exp−1
W (W ) = exp−1

(
GEh(W )

)
= −h gradE Jε(W ).
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Since h > 0, gradE Jε(W ) = 0 follows. To prove inequality (3.75), define

Fh,W (P ) := h
〈

gradE Jε(W ), P −W
〉

+ KL
(
P,W

)
∀P ∈ W.

With this, the characterization of the geometric Euler step in (3.72) is expressed as
GEh(W ) = expW

(
−h gradE Jε(W )

)
= argminP∈∆m

{
Fh,W (P )

}
, implying the inequality

Fh,W (GEh(W )) = min
P∈∆m

{
Fh,W (P )

}
≤ Fh,W (W ) = 0.

3.4.2. L-smooth Adaptability

In order to establish convergence results, it is usually assumed (e.g. [BT03]) that Jε is
convex and globally Lipschitz continuous. Since neither of these assumptions are given
in the present case, the concept of L-smooth adaptability, introduced in [BSTV18], is
used in a slightly modified version. This concept can be viewed as a generalized Lipschitz
condition and is applied to derive the sufficient decrease property of the geometric Euler
update for a suitable choice of step-sizes, depending on the constant L.

Definition 3.4.2 (L-smooth adaptable (L-smad) [BSTV18]). Let Φ,Ψ: W → R be two
C1 functions and additionally assume Ψ is convex. Then, the pair (Φ,Ψ) is called L-
smooth adaptable (L-smad) on a convex subset K ⊂ W, if there exists a constant L > 0
such that LΨ− Φ is convex on K.

For proving convergence results, an alternative characterization of the L-smad condi-
tion as in [BSTV18, Lemma 2.1] is more convenient. This characterization is also valid
on the assignment manifold, as shown next.

Corollary 3.4.2. Let Φ,Ψ: W → R be C1 and suppose Ψ is convex. Then (Φ,Ψ) is
L-smad on a convex subset K ⊂ W if and only if

Φ(P )− Φ(W )−
〈

gradE Φ(W ), P −W
〉
≤ LDΨ

(
P,W

)
∀P,W ∈ K.

Proof. Due to Lemma 3.2.4, LΨ− Φ is convex on K if and only if

0 ≤ DLΨ−Φ(P,W ) = LDΨ(P,W )−DΦ(P,W ) ∀P,W ∈ K.

Bringing DΦ(P,W ) to the left-hand side together with the definition of DΦ from (3.28),
shows the equivalent characterization.

The next proposition gives a sufficient condition on Φ and Ψ such that (Φ,Ψ) is L-
smad on compact convex subsets of W. As a consequence of this, it will be shown that
(Jε,−HW) is always L-smad on compact convex subsets of the assignment manifold,
where HW is the global entropy from (2.30).

Proposition 3.4.3. Let Φ,Ψ: W → R be C2 and assume Ψ is σ-strongly convex with
respect to a norm ‖ · ‖p on Rm×n. Then, for any compact convex subset K ⊂ W there
exists a constant L > 0, such that (Φ,Ψ) is L-smad on K.
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Proof. Let η : W → UW be the isometric chart from Corollary 3.2.3. If K ⊂ W is
compact convex, then so is K̂ := η(K) ⊂ UW , according to Lemma 3.2.4. Define the C2

function αL := LΨ−Φ, with constant L > 0 and consider the coordinate expressions α̂L,
Ψ̂ and Φ̂. Since any two norms on Rm×n are equivalent, there exists a constant ν > 0
with ‖X‖p ≥ ν‖X‖ for all X ∈ Rm×n. Thus, the fact that Ψ is σ-strongly convex with
respect to ‖ · ‖p and (B.10) gives

DΨ̂(P,W ) ≥ σ

2
‖P −W‖2p ≥

νσ

2
‖P −W‖2 ∀P,W ∈ K̂,

showing that Ψ̂ is σ := νσ-strongly convex on K̂ (i.e. with respect to ‖ · ‖). Due to the
characterization (B.6),〈

X,Hess Ψ̂(η)[X]
〉
≥ σ‖X‖2 ∀η ∈ UW and ∀X ∈ Rm×n (3.76)

follows. Denote the maximal eigenvalue of Hess Φ̂(η) by λΦ̂
max(η). As a consequence of

K̂ being compact and λΦ̂
max(η) continuously depending on η, the maximum eigenvalue

MK := maxη∈K̂ λ
Φ̂
max(η) exists and results in

〈
X,Hess Φ̂(η)[X]〉 ≤ λΦ̂

max(η)‖X‖2 ≤MK‖X‖2 ∀η ∈ UW and ∀X ∈ Rm×n. (3.77)

Combining the estimates (3.76) and (3.77) finally gives〈
X,Hess α̂L(η)[X]

〉
≥ (Lσ −MK)‖X‖2 (3.78)

for all η ∈ UW and X ∈ Rm×n. Hence, Lσ −MK > 0 can be achieved by choosing
a sufficiently large value for the constant L. This results in Hess α̂L(η) being positive
definite for all η ∈ K̂, implying the convexity of α̂L on K̂. Then, also αL = LΨ − Φ is
convex on K, according to Lemma 3.2.4 and proves that (Φ,Ψ) is L-smad on K.

Corollary 3.4.4. For every compact convex subset K ⊂ W, there exits an L > 0 such
that (Jε,−HW) is L-smad on K.

Proof. Since −HW is n−1-strongly convex on W and −HW as well as Jε are C2 , the
statement directly follows from Proposition 3.4.3.

Similar to [BSTV18, Lemma 4.1] the L-smad property of (Jε,−HW) on compact
convex subsets guarantees a sufficient decrease of the objective function values for the
geometric Euler updates (3.71).

Lemma 3.4.5 (sufficient decrease). Let α ∈ R. Then there is a constant L > 0 such
that for any parameter τ ∈ [0, 1) and step-size h ∈ (0, L−1(1− τ)], the inequality

Jε(GEh(W )) ≤ Jε(W ) + τ
〈

gradE Jε(W ),GEh(W )−W
〉
≤ Jε(W ) (3.79)

holds for all W ∈ levα(Jε), where GE is the geometric Euler map from (3.73).
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Proof. By Lemma B.1.1, Kα := conv(levα(Jε)) is a compact convex subset ofW. Choose
an arbitrarily large R > 0. Since the geometric Euler map GE: R×W →W from (3.73)
is continuous, so is Jε ◦ GE: R ×W → R and obtains a maximum on the compact set
[0, R]×Kα, denoted by

α := max
(h,W )∈[0,R]×Kα

{
Jε(GEh(W ))

}
≥ α. (3.80)

Define Kα := conv(levα Jε). Again by Lemma B.1.1, also Kα is a compact convex subset
of W and as a consequence of Corollary 3.4.4, there exists a constant Lα > 0 such that
(Jε,−HW) is Lα-smad on Kα. Define the desired constant L as

L := max{Lα, R−1} > 0.

Notice that (Jε,−HW) is also L-smad on Kα, because of L ≥ Lα. Since α ≤ α, the
inclusion levα(Jε) ⊂ levα(Jε) and thus also Kα ⊂ Kα hold.

Now, let τ ∈ [0, 1) and h ∈ (0, L−1(1 − τ)]. Due to the definition of L > 0, the
inequalities

h ≤ R and L < h−1(1− τ) (3.81)

follow. Suppose an arbitrary W ∈ levα(Jε) is given. Then, (h,W ) is contained in
[0, R] × Kα and implies GEh(W ) ∈ Kα, as a result of (3.80). Tanks to the equiv-
alent characterization of the L-smad property in Corollary 3.4.2 and the fact that
W,GEh(W ) ∈ Kα, the inequality

Jε(GEh(W ))− Jε(W )−
〈

gradE Jε(W ),GEh(W )−W
〉
≤ LKL

(
GEh(W ),W

)
(3.82)

holds. Furthermore, the choice of h and Lemma 3.4.1 give

LKL(GEh(W ),W )
(3.81)

≤ h−1(1− τ) KL(GEh(W ),W ) (3.83a)

(3.75)

≤ −(1− τ)
〈

gradE Jε(W ),GEh(W )−W
〉
. (3.83b)

Overall, the established inequalities lead to

Jε(GEh(W ))− Jε(W )
(3.82)

≤
〈

gradE Jε(W ),GEh(W )−W
〉

+ LKL
(
GEh(W ),W

)
(3.83)

≤ τ
〈

gradE Jε(W ),GEh(W )−W
〉
,

proving the inequality on the left-hand side of (3.79). The one on the right-hand
side follows from

〈
gradE Jε(W ),GEh(W ) − W

〉
≤ −h−1 KL(GEh(W ),W ) ≤ 0, due

to Lemma 3.4.1.

3.4.3. Geometric Euler with Armijo Step-Size

The sufficient decrease result in Lemma 3.4.5 shows that a constant L > 0 exists such that
if the constant step-size h ∈ (0, L−1(1 − τ)), with τ ∈ (0, 1), is chosen in the geometric
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Euler update (3.71), then for every W (0) ∈ levα(Jε) the function values Jε(W
(k)) are

decreasing. However, in order to choose a constant step-size this way, one has to know or
estimate the constant L. This might be infeasible in practice. An alternative approach
for obtaining step-sizes which decrease the function value Jε(W

(k)) without knowing L
is given by Armijo step-size selection via line-search. This is a well-known technique for
step-size selection in optimization problems on real vector spaces [NW06] as well as for
optimization on manifolds [AMS08].

In the following, Armijo step-size selection for the geometric Euler onW is introduced
and basic convergence properties are proven.

Definition 3.4.3 (Armijo step-size). Suppose a descent parameter τ ∈ (0, 1), a dimin-
ishing factor s ∈ (0, 1) and a maximal step-size hmax > 0 is given. Define the function

β : N→ R, j 7→ β(j) := sjhmax > 0. (3.84)

For W ∈ W, let jmin(W ) ∈ N be the smallest integer such that the Armijo condition

Jε(GEβ(j)(W )) ≤ Jε(W ) + τ〈gradE Jε(W ),GEβ(j)(W )−W 〉 for j ∈ N (3.85)

is fulfilled, where GE is the geometric Euler map (3.73). The Armijo step-size for W ∈ W
is defined by

hτ,s,hmax(W ) := β(jmin) = rjminhmax > 0. (3.86)

Remark 3.4.1. As a consequence of

gW
(

gradg Jε(W ),GEh(W )−W
)

=
〈

gradE Jε(W ),GEh(W )−W
〉
,

resulting from GEh(W ) −W ∈ TW together with (3.44), the Armijo condition (3.85)
is exactly the same as the one on manifolds in [AMS08]. However, in what follows
the presented version will be more convenient for proving the convergence results and
additionally highlights the connection to other optimization techniques in the literature,
such as [BSTV18].

Choosing the Armijo step-size for the geometric Euler sequence (3.74) avoids to deter-
mine L from Lemma 3.4.5 and potentially allows for a larger step-size locally, while still
ensuring the sufficient decrease of the generated sequence. Algorithmically, the Armijo
step-size is calculated by successively computing the sequence

β(0), β(1), β(2), . . .

until the Armijo condition (3.85) is satisfied. The next lemma shows that this procedure
always terminates.

Lemma 3.4.6 (Armijo line-search terminates). Suppose τ, s ∈ (0, 1) and hmax > 0 are
given. Then for every α ∈ R there exists a minimal step-size 0 < hmin ≤ hmax such that
the Armijo step-size (3.86) is a is a well-defined function

hτ,s,hmax : levα(Jε)→ [hmin, hmax], (3.87)

taking only finitely many values, i.e. |hτ,s,hmax(levα(Jε))| <∞.
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Proof. Again by Lemma B.1.1 and the compactness of levα(Jε), the set conv(levα) is
compact convex. Due to the sufficient decrease property in Lemma 3.4.5, there exists a
constant L, such that

Jε(GEh(W ))− Jε(W ) ≤ τ
〈

gradE Jε(W ),GEh(W )−W
〉

(3.88)

for all W ∈ levα(Jε) and h ∈ (0, L−1(1 − τ)]. As a result of s ∈ (0, 1), the function
β : N → R from (3.84) is strictly monotonically decreasing and limj→∞ β(j) = 0. Thus,
there exists the minimal integer lmin ≥ 0 (not to be confused with the minimal integer
in Definition 3.4.3) such that

hmin := β(lmin) ≤ L−1(1− τ).

Because of hmin ∈ (0, L−1(1 − τ)], the sufficient decrease condition (3.88) is fulfilled
and therefore also the Armijo condition (3.85). As a consequence of this, the smallest
integer jmin(W ) satisfying the Armijo condition is upper bounded by lmin and has to
be one of the finitely many candidates 0 ≤ 1 ≤ . . . ≤ lmin. Therefore, the Armijo
line-search sequence β(0), β(1), . . . terminates and hτ,s,hmax(W ) is well-defined for every
W ∈ levα(Jε), taking only one of the finitely many possible values

hmax = β(0) ≥ β(1) ≥ . . . ≥ β(lmin) = hmin

In the remaining part of this section, it will be shown that geometric Euler sequences
with Armijo step-size inherit the corresponding convergence properties from their contin-
uous counterpart in Section 3.3. For this, it will be convenient to introduce the following
notation.

Definition 3.4.4 (geometric Euler sequence with Armijo step-size (GEA)). Let the
parameters τ, s ∈ (0, 1) and hmax > 0 be given. The geometric Euler map with Armijo
step-size GEA : W →W is defined as

W 7→ GEA(W ) := GEh(W )(W )

where GE is the geometric Euler map from (3.73) and h(W ) = hτ,s,hmax(W ) the Armijo
step-size (3.86). The discrete-time dynamical system

W (k+1) = GEA
(
W (k)

)
, W (0) ∈ W (3.89)

is called geometric Euler sequence with Armijo step-size (GEA) and the step-size in
iteration k ∈ N is denoted by hk := h(W (k)) > 0.

In order to study the convergence behavior of GEA-sequences, some basic estimates
involving the map GEA are needed. These are given in the next preparatory lemma.

Lemma 3.4.7. Let α ∈ R and suppose the parameters τ, s ∈ (0, 1) as well as hmax > 0
are given for the geometric Euler with Armijo step-size. Then,

Jε
(
GEA(W )

)
≤ Jε

(
W
)
, ∀W ∈ levα(Jε) (3.90)
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and there are constants C1, C2 > 0 as well as C1, C2 > 0 such that

C1

∥∥GEA(W )−W
∥∥ ≤ ∥∥ gradE Jε(W )

∥∥ ≤ C2

∥∥GEA(W )−W
∥∥, (3.91)

C1

∥∥GEA(W )−W
∥∥2 ≤ Jε(W )− Jε

(
GEA(W )

)
≤ C2

∥∥GEA(W )−W
∥∥ (3.92)

hold for all W ∈ levα(Jε).

Remark 3.4.2. Suppose
(
W (k)

)
is a GEA-sequence with starting point W (0) ∈ W and

parameters τ, s ∈ (0, 1), hmax > 0. Then the inequalities (3.91) and (3.92) say that any
of the quantities

∥∥ gradE Jε
(
W (k)

)∥∥,
∥∥W (k)−W (k−1)

∥∥ or Jε
(
W (k−1)

)
−Jε

(
W (k)

)
can be

used as a criterion for terminating the sequence.
Also, notice that the inequality on the left-hand side of (3.92) really involves the

squared Euclidean distance.

Proof. The well-known fact that continuously differentiable maps are Lipschitz contin-
uous on compact convex sets is frequently used in the following. For this, note that the
set Kα := conv(levα(Jε)) is compact convex by Lemma B.1.1. For simplicity, denote the
Armijo step-size (3.86) by hW := hτ,s,hmax(W ).

First, (3.90) is proven. As a result of Lemma 3.4.6, there is a minimal step-size such
that 0 < hmin ≤ hW ≤ hmax for all W ∈ levα(Jε). Since h(W ) fulfills the Armijo
condition (3.85), Lemma 3.4.1 gives

Jε
(
W
)
− Jε

(
GEA(W )

)
≥ −τ

〈
gradE Jε(W ),GEA(W )−W

〉
(3.93a)

≥ τ

hW
KL
(
GEA(W ),W

)
≥ 0, (3.93b)

implying the inequality Jε
(
GEA(W )

)
≤ Jε(W ) for all W ∈ levα(Jε). It also follows that

Jε
(
GEA(W )

)
≤ Jε(W ) ≤ α and thus GEA(W ) ∈ levα(Jε) for all W ∈ levα(Jε).

Next, the inequality (3.91) is shown. For this, note that exp1W : TW → W and

exp−1
1W

: W → TW from Section 2.3 are continuously differential. Since Kα is compact

convex, exp−1
1W

is Lipschitz continuous with some constant L2 > 0. Inequality (3.90) for

the function values shows GEA(W ) ∈ Kα for all W ∈ levα(Jε), resulting in∥∥exp−1
1W

(
GEA(W )

)
− exp−1

1W

(
W
)∥∥ ≤ L2

∥∥GEA(W )−W
∥∥. (3.94)

By continuity of exp−1
1W

, the set exp−1
1W

(Kα) is compact and conv
(

exp−1
1W

(Kα)
)

=: Mα

compact convex, due to Lemma B.1.1. Hence, exp1W is Lipschitz continuous on Mα with

some constant L1 > 0. Set V := exp−1
1W

(
W
)

as well as U := exp−1
1W

(
GEA(W )

)
. The fact

that U, V ∈Mα for W ∈ levα(Jε) then implies∥∥GEA(W )−W
∥∥ =

∥∥exp1W (U)− exp(V )
∥∥ ≤ L1‖U − V ‖. (3.95)

As a result of Lemma 2.3.2 together with the definition of GEA(W ), the identity

− hW gradE Jε(W ) = exp−1
W

(
GEA(W )

) (2.43c)
= exp−1

1W

(
GEA(W )

)
− exp−1

1W

(
W ) (3.96)
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follows. Thus, combining (3.96) with (3.94) and (3.95), keeping hmin ≤ hW ≤ hmax in
mind and setting C1 := (hmaxL1)−1 > 0 as well as C2 := h−1

minL2 > 0, finally proves the
inequality (3.91).

At last, (3.92) is shown. Due to −HW being n−1-strongly convex by Lemma 3.2.5,

KL
(
GEA(W ),W

)
≥ n−1

2

∥∥GEA(W )−W
∥∥2

holds all W ∈ levα(Jε). Combining this with (3.93) and defining C1 := τ(2hmaxn)−1 > 0
results in the first inequality of (3.92). Because Kα is compact convex, Jε is Lipschitz
continuous with some constant C2 > 0 and the second inequality of (3.92) follows from
the fact that Jε

(
W
)
− Jε

(
GEA(W )

)
≥ 0.

With the estimates from the previous lemma, the discrete analog of Proposition 3.3.3
and 3.3.5 regarding the Riemannian gradient flow can now be shown for GEA-sequences.

Proposition 3.4.8. Suppose the parameters τ, s ∈ (0, 1) and hmax > 0 are given. If
(W (k))k∈N is a GEA-sequence with W (0) ∈ W, then the function values Jε

(
W (k)

)
are

monotonically decreasing with limit value

lim
k→+∞

Jε(W
(k)) = inf

k∈N

{
Jε(W

(k))
}
> −∞. (3.97)

Furthermore, limk→∞ gradE Jε
(
W (k)

)
= 0 as well as limk→∞ gradg Jε

(
W (k)

)
= 0 and

lim
k→∞

∥∥W (k+1) −W (k)
∥∥ = 0.

For α ∈ R, the compact level sets levα(Jε) are positively invariant, i.e. W (0) ∈ levα(Jε)
implies W (k) ∈ levα(Jε) for all k ∈ N.

Proof. Let α ∈ R and assume W (0) ∈ levα(Jε). According to (3.90) from Lemma 3.4.7,
the sequence of function values Jε

(
W (k)

)
is monotonically decreasing and therefore fulfills

Jε
(
W (k)

)
≤ Jε

(
W (0)

)
≤ α for all k ∈ N, showing the positive invariance of levα(Jε).

Due to the monotonicity of the function values, the convergence in (3.97) to the limit
value J∗ε := infk∈N

{
Jε
(
W (k)

)}
follows.

As a consequence of Lemma 3.4.7 and the fact that levα(Jε) is positively invariant,
there exist constants C,C ′ > 0 such that

C
∥∥ gradE Jε

(
W (k)

)∥∥2
(3.91)

≤ C ′
∥∥W (k+1) −W (k)

∥∥2
(3.92)

≤ Jε
(
W (k)

)
− Jε

(
W (k+1)

)
is fulfilled for all k ∈ N, resulting in

C lim
k→∞

∥∥ gradE Jε
(
W (k)

)∥∥2 ≤ C ′ lim
k→∞

∥∥W (k+1) −W (k)
∥∥2

≤ lim
k→∞

(
Jε
(
W (k)

)
− Jε

(
W (k+1)

))
= J∗ε − J∗ε = 0.

Because of ‖ gradg Jε(W )‖ ≤ ‖ gradE J(W )‖ by Corollary 3.3.2, also gradg Jε
(
W (k)

)
converges to zero.

Since any starting point W (0) ∈ W is always contained in the level set levα0(Jε) with
α0 := Jε

(
W (0)

)
, the statements also hold for an arbitrary W (0) ∈ W.
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Remark 3.4.3. All that was needed in the preceding proof are the inequality on the
right-hand side of (3.91) and the one on the left-hand side of (3.92). In the more general
setting of non-convex composite functions in [BSTV18], sequences fulfilling an analogue
of these two inequalities plus an additional continuity assumption for the objective func-
tion are called gradient-like descent sequences. These properties are all that is needed
to prove the corresponding results in a more abstract setting, cf. [BSTV18, Prop. 4.1].

3.4.4. Convergence Analysis for Analytic Variational Models

Similar to the continuous-time case, the iterates of numerical methods for minimizing
a C∞ function do not necessarily converge to a single point, see the counterexample
from [AMA05] in Rd. Therefore, some additional assumptions on Jε are again needed to
ensure convergence of the iterates. Once more, the focus will be on analytic variational
models in the remaining part of this section. Also in this case, the  Lojasiewicz inequality
can be used to obtain convergence and stability results of the corresponding discrete-
time dynamical system, as proven in [AMA05] for analytic functions on Rd. In [AB09],
even convergences rates are derived. In the following, these results are proven for GEA-
sequences on W under the assumption of Jε being analytic.

As in the analysis for continuous-time setting in Section 3.3.3, the key argument for
proving the results is the fact that the  Lojasiewicz inequality can be used to estimate
the sum of the length of line segments between iterates, the discrete analogue of the arc
length. The corresponding discrete-time version of Lemma 3.3.7 will be proven below.

Corollary 3.4.9. Let α ∈ R and suppose the parameters τ, s ∈ (0, 1) and hmax > 0 are
given. Then, there exists a constant C > 0 such that any GEA-sequence

(
W (k)

)
k∈N with

W (0) ∈ levα(Jε) satisfies

Jε
(
W (k)

)
− Jε

(
W (k+1)

)
≥ C

∥∥ gradE Jε
(
W (k)

)∥∥∥∥W (k+1) −W (k)
∥∥ (3.98)

for all integers k ≥ 0. Furthermore, Jε
(
W (k0+1)

)
= Jε

(
W (k0)

)
for some k0 ∈ N implies

W (k0) = W (k) for all k ≥ k0.

Remark 3.4.4. These two conditions together are called strong descent conditions and
are all that is assumed in [AMA05, Thm. 3.2] to prove convergence for analytic functions.
This assumption is sufficiently general to cover the analysis of trust-region methods in
[AMA05, Sec. 4.2].

Proof. First note that the set levα(Jε) is positive invariant by Proposition 3.4.8 and
therefore contains W (k) for all k ∈ N. As a consequence of Lemma 3.4.7, there are
constants C1 > 0 and C2 > 0 such that

Jε
(
W (k)

)
− Jε

(
W (k+1)

)
≥ C1

∥∥W (k+1) −W (k)
∥∥2

C2

∥∥W (k+1) −W (k)
∥∥ ≥ ∥∥ gradE Jε

(
W (k)

)∥∥
holds for all k ∈ N. Combining these inequalities and setting C := C1C

−1
2 > 0 proves the

first statement. For the second statement, assume Jε
(
W (k0+1)

)
= Jε

(
W (k0)

)
for some
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k0 ∈ N. Then the above inequality gives

0 = Jε
(
W (k0)

)
− Jε

(
W (k0+1)

)
≥ C1

∥∥W (k0+1) −W (k0)
∥∥2
,

implying W (k0+1) = W (k0). By induction, it follows

W (k+1) = GEA
(
W (k)

)
= GEA

(
W (k0)

)
= W (k0+1) = W (k0)

for k ≥ k0.

Lemma 3.4.10. Let Jε : W → R be analytic, Z ∈ W and α ∈ R. Suppose the parameter
τ, s ∈ (0, 1) as well as hmax > 0 are given and UL ⊂ W is a neighborhood of Z on
which the  Lojasiewicz inequality with exponent µ ∈ [0, 1) holds. Then there exists a
constant C > 0 with the following property. For any GEA-sequence

(
W (k)

)
n∈N with

W (0) ∈ levα(Jε), if there are k0 < k1 such that Jε
(
W (k)

)
≥ Jε

(
Z
)

and W (k) ∈ UL for

k0 ≤ k ≤ k1, then the sum of the length of line segments of W (k), for k0 ≤ k ≤ k1, with
respect to the Euclidean metric ‖ · ‖ is bounded by

k1−1∑
k=k0

∥∥W (k+1) −W (k)
∥∥ ≤ C(Jε(W (k0)

)
− Jε

(
Z
))1−µ

. (3.99)

Proof. To simplify notation during the proof, define Φ(W ) := Jε(W ) − Jε(Z). Due to
Corollary 3.4.9 there exists a constant C ′ > 0 such that for any GEA-sequence with
W (0) ∈ levα(Jε) the inequality (3.98) is satisfied for all k ∈ N. Let C ′′ > 0 and µ ∈ [0, 1)
be the constants of the  Lojasiewicz inequality on UL from Corollary 3.2.7 and define

C :=
(
(1− µ)C ′C ′′

)−1
> 0.

If
(
W (k)

)
k∈N is a GEA-sequence with W (0) ∈ levα(Jε) and W (k) ∈ UL for k0 ≤ k ≤ k1,

then combining (3.98) and the  Lojasiewicz inequality gives

Φ
(
W (k)

)
− Φ

(
W (k+1)

)
≥ C ′‖ gradE Φ

(
W (k)

)∥∥∥∥W (k+1) −W (k)
∥∥

≥ C ′C ′′
∣∣Φ(W (k)

)∣∣µ∥∥W (k+1) −W (k)
∥∥

for k0 ≤ k ≤ k1. The remaining proof is divided into two cases.
First assume Φ

(
W (k)

)
> 0 for k0 ≤ k < k1. Then the above inequality together with

the definition of C results in∥∥W (k+1) −W (k)
∥∥ ≤ (1− µ)C

Φ
(
W (k)

)
− Φ

(
W (k+1)

)(
Φ
(
W (k)

))µ for k0 ≤ k < k1. (3.100)

Because of µ ≥ 0, choosing ζ ∈ R in the interval 0 ≤ Φ
(
W (k+1)

)
≤ ζ ≤ Φ

(
W (k)

)
gives(

Φ
(
W (k)

))−µ ≤ ζ−µ. As a consequence of this and the fact that µ < 1, the inequality

Φ
(
W (k)

)
− Φ

(
W (k+1)

)(
Φ
(
W (k)

))µ =

∫ Φ
(
W (k)

)
Φ
(
W (k+1)

) 1(
Φ
(
W (k)

))µdζ ≤ ∫ Φ
(
W (k)

)
Φ
(
W (k+1)

) 1

ζµ
dζ

= (1− µ)−1
((

Φ
(
W (k)

))1−µ − (Φ(W (k+1)
))1−µ)
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holds for k0 ≤ k < k1. Combining this with (3.100) results in the overall estimate for
the sum of line segments

k1−1∑
k=k0

∥∥W (k+1) −W (k)
∥∥ ≤ C k1−1∑

k=k0

((
Φ
(
W (k)

))1−µ − (Φ(W (k+1)
))1−µ)

= C
((

Φ
(
W (k0)

))1−µ − (Φ(W (k1)
))1−µ) ≤ C(Φ(W (k0)

))1−µ
,

where the last inequality is a consequence of
(
Φ
(
W (k1)

))1−µ ≥ 0.

Now suppose Φ
(
W (k)

)
> 0 for k0 ≤ k < k1 is not true. Since Φ

(
W (k)

)
≥ 0 for

k0 ≤ k ≤ k1 by assumption, the existence of

K := min
{
l ∈ N

∣∣ k0 ≤ l < k1 and Φ
(
W (l)

)
= 0
}
< k1

follows. Since the condition Φ
(
W (l)

)
= 0 is equivalent to Jε

(
W (l)

)
= Jε

(
Z
)
, the mono-

tonicity of the function values Jε
(
W (k)

)
from Proposition 3.4.8 results in the equality

Jε
(
W (k)

)
= Jε

(
Z
)

for K ≤ k ≤ k1. As a consequence of K < k1, this equality holds

at least for K and K + 1, i.e. Jε
(
W (K)

)
= Jε

(
Z) = Jε

(
W (K+1

)
. Thus, Corollary 3.4.9

implies
W (k) = W (K) ∀k ≥ K. (3.101)

Due to Φ
(
W (k)

)
> 0 for k0 ≤ k < K by the choice of K, the estimate from the first case

can be applied for the length of line segments on k0 ≤ k ≤ K resulting in

k1−1∑
k=k0

∥∥W (k+1) −W (k)
∥∥ (3.101)

=

K−1∑
k=k0

∥∥W (k+1) −W (k)
∥∥ ≤ C(Φ(W (k0)

))1−µ
.

Applying this estimate for the sum of the length of line segments, convergence for
GEA-sequences of analytic Jε can now be proven.

Theorem 3.4.11. Let Jε : W → R be analytic and assume
(
W (k)

)
k∈N is a GEA-sequence

with W (0) ∈ levα(Jε) and parameters τ, s ∈ (0, 1) as well as hmax > 0. Then there exists a
critical point W ∗ ∈ levα(Jε) of Jε, i.e. gradg Jε

(
W ∗
)

= 0, such that limk→∞W
(k) = W ∗.

Proof. For completeness, the adapted proof of [AMA05, Thm. 3.2] on W is given, using
Lemma 3.4.10 for estimating the sum of line segments. Due to Proposition 3.4.8, the
sequence is contained in the compact set levα(Jε) =: Kα and therefore has an accumula-
tion point W ∗ ∈ Kα, i.e. there is a subsequence k1 < k2 < . . . with limj→∞W

(kj) = W ∗.
As a consequence of the continuity of Jε, it follows

Jε
(
W ∗
)

= lim
j→∞

Jε
(
W (kj)

)
= lim

k→∞
Jε
(
W (k)

)
. (3.102)

Similarly, the continuity of gradg Jε : W → TW and Proposition 3.4.8 imply

gradg Jε
(
W ∗
)

= lim
j→∞

gradg Jε
(
W (kj)

)
= lim

k→∞
gradg Jε

(
W (k)

)
= 0,

67



Chapter 3. General Variational Models on the Assignment Manifold

showing that W ∗ is a critical point of Jε.
As a consequence of Jε being analytic on W, Corollary 3.2.7 yields the exists of a

neighborhood UL ⊂ W of W ∗ on which the  Lojasiewicz inequality holds with exponent
µ ∈ [0, 1). In the following, it will be shown by contradiction that for arbitrarily small
r > 0, with Br(W

∗) ⊂ UL, the iterates W (k) eventually enter Br(W
∗) and never leave.

Since r is arbitrarily small, it then follows that W (k) converges to W ∗.
Assume an arbitrary r > 0 with Br(W

∗) ⊂ UL is given. Let C > 0 be the con-
stant from Lemma 3.4.10 corresponding to the choice Z = W ∗. As a consequence of
limk→∞

∥∥W (k+1)−W (k)
∥∥ = 0 from Proposition 3.4.8 together with (3.102) and the fact

that W ∗ = limj→∞W
(kj), there exists an index k0 ∈ N such that∥∥W (k+1) −W (k)

∥∥ < r

6
∀k ≥ k0 (3.103a)∥∥W (k0) −W ∗

∥∥ < r

6
(3.103b)

C
(
Jε
(
W (k0)

)
− Jε

(
W ∗
))1−µ

<
r

6
(3.103c)

holds simultaneously. Now suppose W (k) would leave Br
(
W ∗
)

for some k ≥ k0, i.e.

K := min
{
k > k0

∣∣ ∥∥W (k) −W ∗
∥∥ ≥ r} > k0

exists. The inequalities (3.103a) and (3.103b) result in∥∥W (k0+1) −W ∗
∥∥ ≤ ∥∥W (k0+1) −W (k0)

∥∥+
∥∥W (k0) −W ∗

∥∥ ≤ r

6
+
r

6
< r, (3.104)

from which W (k0+1) ∈ Br
(
W ∗
)

and therefore k0 < K − 1 follows. The fact that

W (k) is contained in Br

(
W ∗
)

for k0 ≤ k ≤ K − 1 by the choice of K together with

Jε
(
W (k)

)
≥ Jε

(
W ∗
)

due to the monotonicity of Jε
(
W (k)

)
shows that the assumptions

of Lemma 3.4.10 with constant C for k0 ≤ k ≤ K − 1 are fulfilled. The resulting upper
bound for the sum of line segments then gives

∥∥W (K−1) −W (k0)
∥∥ ≤ K−2∑

k=k0

∥∥W (k+1) −W (k)
∥∥ ≤ C(Jε(W (k0)

)
− Jε

(
W ∗
))1−µ (3.103c)

<
r

6
.

Combining all these estimates yields∥∥W (K) −W ∗
∥∥ ≤ ∥∥W (K) −W (K−1)

∥∥+
∥∥W (K−1) −W (k0)

∥∥+
∥∥W (k0) −W ∗

∥∥ < r

2
,

contradicting the choice of K. Therefore, W (k) has to be contained in Br
(
W ∗
)

for all
k ≥ k0, proving the statement.

Stability of GEA-Sequences

The stability analysis for Riemannian gradient descent flows of analytic Jε carries over to
GEA-sequences, viewed as a discrete-time dynamical system induced by the map GEA.
Again, stability with respect to the Euclidean norm on Rm×n is considered.
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Definition 3.4.5. Let F : W → W be a continuous map. Consider the discrete-time
dynamical system W (k+1) = F

(
W (k)

)
on W and suppose W ∈ W is a fixed point, i.e.

W = F
(
W
)
.

(1) W is (Lyapunov) stable, if for every r > 0 there is a δ = δ(r) > 0 such that if
‖W (0) −W‖ < δ, then ‖W (k) −W‖ < r for all integers k ≥ 0.

(2) W is asymptotically stable, if it is stable and a constant δ can be chosen such that
if ‖W (0) −W‖ < δ then limk→∞W

(k) = W .

In [AMA05, Prop. 3.3], stability of local minima is shown for discrete dynamical sys-
tems on Rd fulfilling the strong descent conditions from Corollary 3.4.9 together with
an additional termination criterion. A similar result is also presented in [AMS08] for se-
quences generated by retractions on a manifold. Subsequently, analogue stability state-
ments as for the continuous-time case are directly proven for GEA-sequences on the
assignment manifold.

Theorem 3.4.12. Let Jε : W → R be analytic and suppose the parameters τ, r ∈ (0, 1)
as well as hmax > 0 are given. Then Z ∈ W is a local minimum of Jε if and only if Z
is a GEA stable fixed point.

Proof. The first direction is an adapted version from the proof of [AMA05, Prop. 3.3]
and is similar to the argument in Theorem 3.4.11. For this, assume Z is a local minimum
of Jε. Then, there exists a neighborhood Um ⊂ W of Z such that Jε(P ) ≥ Jε(Z) for all
P ∈ Um and gradE Jε(Z) = 0. According to Lemma 3.4.1, Z = GEA(Z) follows, showing
that Z is a GEA fixed point. Due to Jε being analytic, there is also a neighborhood
UL ⊂ W of Z by Corollary 3.2.7 on which the  Lojasiewicz inequality is fulfilled with
exponent µ ∈ [0, 1). Assume an arbitrary r > 0 with Br(Z) ⊂ Um ∩ UL is given and
choose α sufficiently large such that Br(Z) ⊂ levα(Jε) holds. Let C > 0 be the constant
from Lemma 3.4.10 corresponding to the choices for α and Z. By Lemma 3.4.7, there
exists a constant C ′ > 0 with∥∥GEA(W )−W

∥∥ ≤ C ′∥∥ gradE Jε
(
W
)
‖ ∀W ∈ levα(Jε).

As a consequence of the continuity of Jε and gradE Jε, there exists a 0 < δ < r
6 such

that simultaneously∥∥GEA(P )− P
∥∥ < r

6
and C

(
Jε
(
P )− Jε(Z)

)1−µ
<
r

6
(3.105)

for all P ∈ Bδ(Z) holds. Now suppose an arbitrary W (0) ∈ Bδ(Z) is chosen. It is shown
by contradiction that the whole GEA-sequence W (k) lies in Br(Z). Assume W (k) leaves
Br(Z) for some integer k > 0, i.e.

K := inf
{
k > 0

∣∣ ∥∥W (k) − Z
∥∥ ≥ r} > 0

exits. Due to (3.105),
∥∥W (1) −W (0)

∥∥ < r follows, which in turn implies 0 < K − 1.

The fact that W (k) is contained in Br(Z) ⊂ UL ∩ Um for 0 ≤ k ≤ K − 1 by the choice
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of K, results in Jε
(
W (k)

)
≥ Jε

(
Z
)

for 0 ≤ k ≤ K − 1. Since α was chosen such that

Br(Z) ⊂ levα(Jε), the starting point W (0) also lies in levα(Jε). Overall, the assumptions
of Lemma 3.4.10 with constant C are satisfied, resulting in the estimate

∥∥W (K−1) −W (0)
∥∥ ≤ K−2∑

k=0

∥∥W (k+1) −W (k)
∥∥ ≤ C(Jε(P )− Jε(Z)

)1−µ (3.105)
<

r

6
.

Combining all the estimates yields∥∥W (K) −W (0)
∥∥ ≤ ∥∥W (K) −W (K−1)

∥∥+
∥∥W (K−1) −W (0)

∥∥+
∥∥W (0) − Z

∥∥ < r

2
,

contradicting the choice of K. Thus W (k) ∈ Br(Z) for all integers k ≥ 0 has to be true,
proving that Z is a stable fixed point.

For the other direction, suppose Z is a stable fixed point. Because Jε is analytic, there
is a neighborhood UL ⊂ W of Z by Corollary 3.2.7 on which the  Lojasiewicz inequality
with constant C > 0 and exponent µ ∈ [0, 1) is fulfilled. Choose any r > 0 with
Br(Z) ⊂ UL. Since Z is stable, there is a δ = δ(r) > 0 such that if W (0) ∈ Bδ(Z) then
W (k) ∈ Br(Z) for all k ≥ 0. To show Z is a local minimum, let P ∈ Bδ(Z) be arbitrary.
By Theorem 3.4.11, the GEA-sequence W (k) with W (0) := P converges towards a critical
point W ∗ ∈ W, the function values Jε

(
W (k)

)
are monotonically decreasing and the

gradient at W ∗ vanishes. Due to

0 = gradg Jε
(
W ∗) = RW ∗

[
gradE Jε

(
W ∗
)]

and the invertibility of RW ∗ by Lemma 2.3.1, also gradE Jε(W
∗) = 0 follows. As W (k)

is contained in Br(Z) for all k ≥ 0, so is the limit point W ∗. As a result of Br(Z) ⊂ UL,
the  Lojasiewicz inequality

C
∥∥Jε(W ∗)− Jε(Z)

∥∥µ ≤ ∥∥ gradE Jε
(
W ∗)

∥∥ = 0

shows Jε(W
∗) = Jε(Z). As a consequence of the monotonicity of Jε

(
W (k)

)
,

Jε
(
P
)

= Jε
(
W (0)

)
≥ Jε

(
W (k)

)
≥ Jε

(
W ∗
)

= Jε
(
Z
)

follows. Since P ∈ Bδ(Z) was arbitrary, the fixed point Z is a local minimum of Jε.

Theorem 3.4.13. Let Jε : W → R be analytic and suppose τ, r ∈ (0, 1) as well as
hmax > 0 are given. Then Z is a strict local minimum of Jε if and only if Z is a GEA
asymptotically stable fixed point.

Proof. Assume Z is a strict local minima of Jε. Then, gradE Jε(Z) = 0 and there exists
a neighborhood Um ⊂ W of Z such that Jε(P ) > Jε(Z) for all P ∈ Um with P 6= Z. By
Corollary 3.2.7, there is a neighborhood UL of Z on which the  Lojasiewicz inequality is
valid with constants C > 0 and µ ∈ [0, 1). Fix a radius r > 0 such that Br(Z) ⊂ Um∩UL.
According to the previous Theorem 3.4.12, local minima are stable fixed points. Thus
there is a δ > 0 such that W (0) ∈ Bδ(Z) implies W (k) ∈ Br(Z) for all integers k ≥ 0.
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Due to Theorem 3.4.11, the GEA-sequence converges to a fixed point W ∗ ∈ Br(Z) ⊂ UL
with gradE Jε(W

∗) = 0. Therefore, the  Lojasiewicz inequality on UL gives

C
∣∣Jε(W ∗)− Jε(Z)

∣∣µ ≤ ∥∥ gradE Jε(W
∗)
∥∥ = 0,

implying Jε(W
∗) = Jε(Z). Since Z is a strict minimum on Um and W ∗ ∈ Br(Z) ⊂ Um

by the choice of r > 0, equality of the function values results in Z = W ∗ = limk→∞W
(k).

Thus, the asymptotic stability of Z is established.
Now suppose Z is an asymptotically stable fixed point, i.e. Z is stable and there is

a δ > 0 such that W (0) ∈ Bδ(Z) implies limk→∞W
(k) = Z. Due to the stability of Z,

the previous Theorem 3.4.12 shows the local minimality of Z. By choosing a sufficiently
small δ > 0, Z can be assumed to be a minimum on Bδ(Z). It remains to show Z
is also strict on Bδ(Z). For this, suppose Jε(Z) = Jε(P ) for some P ∈ Bδ(Z). As
a consequence of Z being asymptotically stable, the iterates W (k) with starting point
W (0) = P converge towards Z. By Proposition 3.4.8 the function values Jε

(
W (k)

)
are

monotonically decreasing, resulting in the inequality

Jε
(
Z
)

= Jε
(
P
)

= Jε
(
W (k)

)
≥ Jε

(
W (0)

)
≥ lim

k→∞
Jε
(
W (k)

)
= Jε

(
Z
)
.

Therefore, Jε
(
W (k)

)
= Jε

(
Z
)

is constant for all k ∈ N. Corollary 3.4.9 then implies

that the whole sequence W (k) is constant, resulting in P = W (0) = limk→∞W
(k) = Z.

Hence, Z must be a strict minimum on Bδ(Z).

Convergence Rates of GEA-Sequences

In the following, the convergence rates for bounded Bregman proximal gradient sequences
from [BSTV18] are proven for GEA-sequences, based on the original proof in [AB09].

Theorem 3.4.14. Let Jε be analytic and suppose the parameters τ, r ∈ (0, 1) as well
as hmax > 0 are given. Assume (W (k))k∈N is a GEA-sequence converging to W ∗ ∈ W
and let UL be a neighborhood of W ∗ on which the  Lojasiewicz inequality is fulfilled with
exponent µ ∈ [0, 1). Then the following estimates hold for k →∞

(1) If µ = 0, then W (k) converges in a finite number of steps.

(2) If µ ∈ (0, 1
2 ], then exist constants C > 0 and ζ ∈ (0, 1) such that∥∥W (k) −W ∗

∥∥ ≤ Cζk.
(3) If µ ∈ (1

2 , 1), then there exists a C > 0 such that∥∥W (k) −W ∗
∥∥ ≤ Ck− 1−µ

2µ−1 .

Proof. The proof is an adapted version of the one in [AB09] with some necessary modi-
fications. Because W (k) converges to W ∗, there exists a K > 0 such that W (k) ∈ UL for
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all k ≥ K. Also, Jε
(
W (k)

)
≥ limk→∞ Jε

(
W (k)

)
= Jε(W

∗) by Proposition 3.4.8. There-

fore, with the choices Z = W ∗ and α = Jε
(
W (0)

)
, all assumptions of Lemma 3.4.10 are

fulfilled and there exists a C ′ > 0 with

σk :=

∞∑
l=k

∥∥W (l+1) −W (l)
∥∥ ≤ C ′|Jε(W (k))− Jε(W ∗)|1−µ <∞, for all k ≥ K. (3.106)

By definition of σk and the triangle inequality,

σk ≥
∥∥W (k) −W ∗

∥∥ and σk − σk+1 =
∥∥W (k+1) −W (k)

∥∥ for all k ∈ N. (3.107)

This equation shows that σk is non-negative and monotonically decreasing in k. Thus,

∃k0 ≥ K : σk0 = 0 ⇒ ∀k ≥ k0 : 0 = σk ≥
∥∥W (k) −W ∗

∥∥. (3.108)

In this case, W (k) = W ∗ is constant for all k ≥ k0 and hence, the sequence converges to
W ∗ in a finite number of steps.

To (1): If µ = 0, then |Jε(W (k)) − Jε(W ∗)|µ = 1 for Jε(W
(k)) 6= Jε(W

∗) and 00 = 0
otherwise, according to the adopted convention. Because W (k) ∈ UL for k ≥ K and
limk→∞ gradE Jε

(
W (k)

)
= 0 by Proposition 3.4.8, the  Lojasiewicz inequality implies

C
∣∣Jε(W (k)

)
− Jε

(
W ∗
)∣∣µ ≤ ∥∥ grad Jε

(
W (k)

)∥∥→ 0 for k →∞.

Hence, there exists a k0 ≥ K with Jε
(
W (k)

)
= Jε

(
W ∗
)

being constant for all k ≥ k0.
Then, the estimate (3.106) implies σk0 = 0 and as a consequence of (3.108) the sequence
W (k) converges to W ∗ in finitely many steps.

According to Lemma 3.4.7, there exists a constant C2 > 0 with∥∥ gradE Jε
(
W (k)

)∥∥ ≤ C2

∥∥W (k+1) −W (k)
∥∥ ∀k ∈ N.

Therefore, (3.106) together with the  Lojasiewicz inequality on UL and the above estimate
for
∥∥ gradE Jε

(
W (k)

)∥∥ imply

σk ≤ C ′
∣∣Jε(W (k)

)
− Jε

(
W ∗
)∣∣1−µ ≤ C ′′∥∥ gradE Jε

(
W (k)

)∥∥ 1−µ
µ

≤ C̃
∥∥W (k+1) −W (k)

∥∥ 1−µ
µ = C̃(σk − σk+1)

1−µ
µ

(3.109)

for k ≥ K, with suitable choices for C ′′, C̃ > 0.
To (2): If µ ∈ (0, 1

2 ], then 1 ≤ 1−µ
µ . Because limk→∞

∥∥W (k+1) − W (k)
∥∥ = 0 by

Proposition 3.4.8, the above chosen constant K can be assumed to be sufficiently large,
such that additionally to W (k) ∈ UL also σk − σk+1 =

∥∥W (k+1) −W (k)
∥∥ < 1 for k ≥ K

holds. In this situation, (3.109) gives

σk+1 ≤ σk ≤ C̃(σk − σk+1)
1−µ
µ ≤ C̃(σk − σk+1) for k ≥ K,

where the first inequality follows from the monotonicity of σk. Rearranging yields

σk+1 ≤
C̃

1 + C̃
σk for k ≥ K.
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Define ζ := C̃
1+C̃
∈ (0, 1). Then, it follows from induction that

σk ≤ ζk−KσK = Cζk for k ≥ K,

with C := ζ−KσK > 0.
To (3): Since µ ∈ (1

2 , 1), the variable ρ := µ
1−µ is contained in ρ ∈ (1,∞). First,

suppose σk0 = 0 for some k0 ≥ K. Then (3.108) again implies W (k) = W ∗ for all
k ≥ k0, showing that W (k) converges in finitely many steps and the estimate for the rate
of convergence trivially holds. Thus, in the following σk > 0 for k ≥ K is assumed. If
t > 0 is chosen in the interval 0 < σk+1 ≤ t ≤ σk, then σ−ρk ≤ t−ρ. Define the constant

C̃ ′ := C̃ρ(ρ− 1)−1 > 0. With this, (3.109) can equivalently be rewritten as

1 ≤ C̃ρ(σk − σk+1)σ−ρk = C̃ρ
∫ σk

σk+1

σ−ρk dt ≤ C̃ρ
∫ σk

σk+1

t−ρdt

=
C̃ρ

1− ρ
(σ1−ρ
k − σ1−ρ

k+1) = C̃ ′(σ1−ρ
k+1 − σ

1−ρ
k ),

for k ≥ K. By telescopic canceling and σ1−ρ
K > 0,

k −K =

k−1∑
l=K

1 ≤ C̃ ′
k−1∑
l=K

(σ1−ρ
k+1 − σ

1−ρ
k ) = C̃ ′(σ1−ρ

k − σ1−ρ
K ) ≤ C̃ ′σ1−ρ

k for k ≥ K.

Therefore, if k ≥ 2K, then
2−1k ≤ k −K ≤ C̃ ′σ1−ρ

k . (3.110)

Due to the definition of ρ, the expression 0 > 1− ρ = (1− 2µ)(1− µ)−1 follows. Hence,
rearranging the above inequality and keeping 1− ρ < 0 in mind, yields

∥∥W (k) −W ∗
∥∥ (3.107)

≤ σk
(3.110)

≤ (C̃ ′2)
− 1

1−ρk
1

1−ρ = Ck
− 1−µ

2µ−1 for k ≥ 2K,

with C := (C̃ ′2)
− 1

1−ρ > 0, establishing the desired asymptotic estimate.
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Chapter 4

Variational Formulation of the
Assignment Flow

Comparing the Riemannian gradient descent flow induced by a C1 function J : W → R

Ẇ = − gradg J(W ) = −RW
[

gradE J(W )
]

with the specific form of the assignment flow

Ẇ = RW
[
S(W )

]
,

raises the following natural question: Does there exist a potential J such that the assign-
ment flow is a Riemannian gradient descent flow with respect to J , i.e. does the equality
RWS(W ) = − gradg J(W ) hold?

This question will be answered in the beginning of Section 4.1, by proving that no such
potential exists (Section 4.1.1). Subsequently, a novel parameterization of the assign-
ment flow is derived by separating a dominant component of the flow, called S-flow, that
completely determines the remaining component and hence essentially characterizes the
assignment flow (Section 4.1.2). As it turns out, the S-flow does correspond to a non-
convex potential, under an additional symmetry assumption with respect to the weights
(2.26) that parameterize the similarity matrix (2.57). This potential can be decomposed
into two components which clearly identify the two main interacting processes of the
assignment flow: regularization and gradually enforcing integral assignments.

Based on this result, a corresponding continuous-domain variational formulation is
consider in Section 4.2. Well-posedness of the resulting optimization problem is proven
(Section 4.2.2), which is not immediate due to nonconvexity, and an algorithm that
computes a locally optimal assignment is proposed (Section 4.2.4). A numerical example
demonstrates that the PDE-based approach reproduces results obtained with the above
discrete-domain variational formulation of the S-flow. Finally, a PDE that characterizes
global minimizers of the nonconvex objective function is derived under an unrealistic
regularity assumption, providing yet another interpretation of the assignment flow.

This chapter is based on a preliminary version of the presented results currently sub-
mitted for publication and is available as preprint [SS19b].
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4.1. Discrete-Domain Variational Model

In the following, the question from the introduction of this chapter will be negatively
answered in Section 4.1.1, by showing that for all practical purposes a potential for the
assignment flow does not exist. However, in Section 4.1.2, the assignment flow is decou-
pled into two separate flows, where one flow, called S-flow, steers the other and in this
sense dominates the assignment flow. Under the additional assumption that the weights
ωij of the similarity map S(W ) in (2.57) are symmetric, it is shown that the dominating
S-flow is indeed a Riemannian gradient flow induced by a nonconvex potential. This
result is the basis for the continuous-domain formulation of the assignment flow studied
in Sections 4.2 below. Finally, some basic properties of this potential flow are evaluated
by investigating two academical image labeling problems.

4.1.1. Nonexistence of a Potential

In Theorem 4.1.2 below, it is shown that under some mild assumptions on the distance
matrix DF (2.54), which are always fulfilled in practice, no potential J exists that
induces the assignment flow (2.62). In order to prove this result, explicit expressions
for the differential dS(W ) of the similarity map (2.56) and its transpose dS(W )> with
respect to the standard Euclidean structure on Rm×n are derived next.

Lemma 4.1.1. The i-th row of the differential dS(W ) is given by

dSi(W )[X] =
∑
j∈Ni

ωijRSi(W )
Xj

Wj
for all X ∈ TW and i ∈ V.

Furthermore, the i-th row of the adjoint differential dS(W )> : TW → TW with respect to
the standard Euclidean inner product on TW ⊂ Rm×n is given by

dSi(W )>[X] =
∑
j∈Ni

ωjiPTS
RSj(W )Xj

Wi
for every X ∈ TW and i ∈ V.

Proof. Define the map Fi : W → Rn by Fi(W ) :=
∑

j∈Ni ωij
(
exp−1

1S
(Wj)− 1

ρDF j
)

for all
W ∈ W. Let γ : (−ε, ε)→W be a smooth curve, with ε > 0, γ(0) = W and γ̇(0) = X.
It then follows for the differential of Fi

dFi(W )[X] =
d

dt
Fi(γ(t))

∣∣
t=0

=
∑
j∈Ni

ωij
d

dt
exp−1

1S
(γj(t))

∣∣
t=0

(2.40)
=

∑
j∈Ni

ωijPTS
Xj

Wj
.

As a consequence of the explicit expression Si(W ) = exp1S

(
Fi(W )

)
for the i-th row of

the similarity map from Proposition 2.3.5, the differential of Si is given by

dSi(W )[X] = dexp1S

(
Fi(W )

)[
dFi(W )[X]

] (2.40)
= Rexp1S (Fi(W ))dFi(W )[X]

= RSi(W )

∑
j∈Ni

ωijPTS
Xj

Wj
=
∑
j∈Ni

ωijRSi(W )
Xj

Wj
,
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where RSi(W )PTS = RSi(W ) from Lemma 2.3.1 was used to obtain the last equation.

Now let W ∈ W as well as X,Y ∈ TW be arbitrary. The symmetry of the matrix
RSi(W ) ∈ Rn×n and the indicator function of the neighborhoods χNi (2.24) together
with their corresponding symmetry relation (2.25) result in〈

dS(W )[X], Y
〉

=
∑
i∈V

〈
dSi(W )[X], Yi

〉
=
∑
i∈V

∑
j∈Ni

ωij

〈
RSi(W )

Xj

Wj
, Yi

〉
=
∑
i∈V

∑
j∈V
χNi(j)ωij

〈Xj

Wj
, RSi(W )Yi

〉
=
∑
i∈V

∑
j∈V
χNj (i)ωij

〈
Xj ,

RSi(W )Yi

Wj

〉
=
∑
j∈V

∑
i∈Nj

ωij

〈
Xj , PTS

RSi(W )Yi

Wj

〉
=
∑
j∈V

〈
Xj ,

∑
i∈Nj

ωijPTS
RSi(W )Yi

Wj

〉
.

(4.1)

On the other hand,〈
dS(W )[X], Y

〉
=
〈
X, dS(W )>[Y ]

〉
=
∑
j∈V

〈
Xj , dSj(W )>[Y ]

〉
. (4.2)

Because (4.1) and (4.2) hold for all X,Y ∈ TW , the formula for dSi(W )>[X] is proven.

In order to prove the following nonexistence result, it will be assumed that for at least
on node i the corresponding row in the distance matrix DF i is not constant, i.e. there
is at least one preferred label choice based on the distance information. Since in reality
any measured data contains errors, this assumption will always be fulfilled in practice.

Theorem 4.1.2. Suppose |X | = n ≥ 3 and there exists a node i ∈ V such that the
distance vector DF i ∈ Rn is not constant, i.e. DF i /∈ R1n. Then no potential function
J : W → R exists satisfying RW [S(W )] = − gradg J(W ), i.e. the assignment flow (2.62)
is not a Riemannian gradient descent flow.

Proof. According to Lemma 2.3.1, RW [S(W )] = RW
[
PTW [S(W )]

]
and RW : TW → TW

is invertible. Therefore, the question of the existence of a potential J : W → R for the as-
signment flow (2.62) can be transferred to the Euclidean setting by applying (RW |TW )−1

to both sides of the equation RW [S(W )] = − gradg J(W ) = RW [− gradE J(W )], result-
ing in

PTW [S(W )] = − gradE J(W ) ∈ TW .

Consider the Riemannian Hessian HessE J from (A.17). In this Euclidean setting,

−HessE J(W )
(3.11)

= −d gradE J(W ) = d
(
PTW ◦ S

)
(W ) = PTWdS(W ) = dS(W ),

where the last two equations follows due to PTW being linear and dS(W ) : TW → TW .
Since the Riemannian Hessian is symmetric by (A.18), it follows that if a potential J
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exists, then HessE J(W ) and therefore also dS(W ) must be symmetric with respect to
the Euclidean inner product for every W ∈ W.

Hence, in order to prove that a potential cannot exist, it is shown that dS(W ) is not
symmetric at every point W ∈ W. To this end, a point W ∈ W and tangent vector
X ∈ TW with dS(W )[X]− dS(W )>[X] 6= 0 are constructed. It suffices to show

dSj(W )[X]− dSj(W )>[X] 6= 0 for some row index j ∈ V. (4.3)

To simplify notation, the j-th row of the distance matrix DF j is denoted by Dj in the
remainder of the proof. Due to the hypothesis,

Di = DF i 6= R1n. (4.4)

Let k, l ∈ [n] be label indices such that

Dk
i = min

s∈[n]
Ds
i and Dl

i = max
s∈[n]

Ds
i .

Relation (4.4) implies Dk
i < Dl

i, resulting in

e
− 1
ρ
Dki > e

− 1
ρ
Dli . (4.5)

Using the standard basis Bn of Rn, define

u := ek − el ∈ TS , ek, el ∈ Bn. (4.6)

Since n ≥ 3, there is also a point

p ∈ S with p 6= 1S and pk = pl, (4.7)

e.g. by choosing 0 < α < 1
n and setting pk = pl = α and pr = (n − 2)−1(1 − 2α) for all

indices r /∈ {k, l}.
With these choices, define the point W ∈ W, by setting

Wj := expp

(1

ρ
Dj

)
for all j ∈ V.

According to (2.43a), the j-th row of W can be expressed as Wj = exp1S

(
v + 1

ρDj

)
,

with v := exp−1
1S

(p). The expression for the r-th row of the similarity matrix from
Proposition 2.3.5 then implies

Sr(W ) = exp1S

( ∑
j∈N (r)

ωrj

(
exp−1

1S

(
Wj

)
− 1

ρ
Dj

))
= exp1S

( ∑
j∈N (r)

ωrjv
)

= exp1S (v) = p,
(4.8)

78



4.1. Discrete-Domain Variational Model

for all r ∈ V. Now, define the tangent vector X ∈ TW by

Xk =

{
u ∈ TS , if k = i

0, if k 6= i.

Using the expressions for dSi(W ) and dSi(W )> from Lemma 4.1.1, one obtains

dSi(W )[X]− dSi(W )>[X] = ωiiRSi(W )
Xi

Wi
− ωiiPTW

RSi(W )Xi

Wi

(4.8)
= ωiiRp

u

expp(
1
ρDi)

− ωiiPTW
Rpu

expp(
1
ρDi)

(2.33)
= ωii〈p, e

1
ρ
Di〉

(
Rp

ue
− 1
ρ
Di

p
− PTW

(e− 1
ρ
Di

p
Rpu

))
. (4.9)

Since ωii〈p, e
1
ρ
Di〉 > 0, only the expression inside the brackets has to be checked. As for

the first term, using the definition of Rp (2.32), one obtains

Rp
ue
− 1
ρ
Di

p
= ue

− 1
ρ
Di −

〈
u, e
− 1
ρ
Di
〉
p.

Setting a :=
(〈
e
− 1
ρ
Di , 1S

〉
1n − e−

1
ρ
Di
)
, it follow for the second term

PTW

(e− 1
ρ
Di

p
Rpu

)
= PTW

(
e
− 1
ρ
Diu− 〈u, p〉e−

1
ρ
Di
)

= e
− 1
ρ
Diu− 〈u, e−

1
ρ
Di〉1S + 〈u, p〉a.

Thus, the term inside the brackets in (4.9) reads

Rp
ue
− 1
ρ
Di

p
− PTW

(e− 1
ρ
Di

p
Rpu

)
= −

〈
u, e
− 1
ρ
Di
〉
p+ 〈u, e−

1
ρ
Di〉1S − 〈u, p〉a

= 〈u, e−
1
ρ
Di〉
(
1S − p

)
− 〈u, p〉a.

The choices of u and p in (4.6) and (4.7) imply

〈u, e−
1
ρ
Di〉 = e

− 1
ρ
Dki − e−

1
ρ
Dli

(4.5)
> 0 and 〈u, p〉 = pk − pl = 0

such that

〈u, e−
1
ρ
Di〉
(
1S − p

)
− 〈u, p〉a = (e

− 1
ρ
Dki − e−

1
ρ
Dli)
(
1S − p

)
6= 0.

can be concluded. This proves (4.3) and consequently the theorem.
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4.1.2. S-Parameterization and Variational Model

Even though Theorem 4.1.2 says that no potential exists for the assignment flow in
general, in this section a ”hidden” potential flow is revealed under an additional sym-
metry assumption on the weights ωij from (2.26). To this end, the assignment flow is
decoupled into two components, where one component depends on the second one. The
dominating second one, therefore, provides a new parameterization of the assignment
flow. Assuming symmetry of the averaging weights, i.e. ωij = ωji, the dominating flow
becomes a Riemannian gradient descent flow. The corresponding potential defined on a
continuous domain will be studied in the subsequent Section 4.2.

For notational efficiency, all weights (2.26) are collected into the averaging matrix

Ωω ∈ Rm×m with
(
Ωω
)j
i

:= χNi(j)ωij =

{
ωij if j ∈ Ni,
0 else

, for i, j ∈ V, (4.10)

whereχNi(j) is the indicator function of the neighborhoods (2.24). Due to the properties
of the weights,

Ωω1m = 1m (4.11)

holds and the symmetry of the averaging matrix Ωω is equivalent to the symmetry
ωij = ωji of the weights.

For an arbitrary matrix M ∈ Rm×n, the average of its row vectors using the weights
indexed by the neighborhood Ni is given by the corresponding row vectors of the matrix
ΩωM , i.e. ∑

k∈Ni

ωikMk =
(
ΩωM

)
i
, ∀i ∈ V. (4.12)

Next, a new representation of the assignment flow is introduced based the averaging
matrix.

Proposition 4.1.3. The assignment flow (2.62) is equivalent to the system

Ẇ = RW [S ] with W (0) = 1W (4.13a)

Ṡ = RS [ ΩωS ] with S(0) = S(1W). (4.13b)

Remark 4.1.1. Observe that the flow W (t) is completely determined by S(t). In the
following, the dominating part (4.13b) is referred to as the S-flow. In order to stress the
underlying connection to the assignment flow and to simplify notation, the S-flow S is
again denoted by S.

Proof. Let W (t) be a solution of the assignment flow, i.e. Ẇi = RWiSi(W ) for all i ∈ V.
Set S(t) := S(W (t)). Then (4.13a) is immediate from the assumption on W . Using the
expression for dSi(W ) from Lemma 4.1.1 gives

Ṡi =
d

dt
S(W )i = dSi(W )[Ẇ ] =

∑
j∈Ni

ωijRSi(W )
Ẇj

Wj
. (4.14)
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Since W solves the assignment flow and ker(RSi(W )) = R1n by Lemma 2.3.1, it follows
from the explicit expression (2.32) of RSi(W ) that

RSi(W )
Ẇj

Wj
= RSi(W )

RWjSj(W )

Wj
= RSi(W )

(
Sj(W )− 〈Wj , Sj(W )〉1n

)
= RSi(W )Sj(W ).

Substitution of this identity into (4.14) and keeping Si(W ) = Si in mind, results in

Ṡi =
∑
j∈Ni

ωijRSi(W )Sj(W ) = RSi

∑
j∈Ni

ωijSj
(4.12)

= RSi
(
ΩωS

)
i

for all i ∈ V.

Collecting these vectors as row vectors of the matrix Ṡ gives (4.13b).

Next, it will be shown that the S-flow, which essentially determines the assignment flow
(Remark 4.1.1), becomes a Riemannian descent flow under the additional assumption
that the averaging matrix (4.10) is symmetric.

Proposition 4.1.4. Suppose the weights defining the similarity matrix in (2.56) are
symmetric, i.e. (Ωω)> = Ωω. Then the S-flow (4.13b) is a Riemannian gradient decent
flow Ṡ = − gradg J(S), induced by the potential

J(S) := −1

2
〈S,ΩωS〉, S ∈ W. (4.15)

Proof. Since J is defined on all of Rm×n and Ωω is symmetric, the ordinary gradient is
given by ∂J(S) = −ΩωS. Due to Corollary 2.3.4, the Riemannian gradient is expressed
as gradg J(S) = RS [∂J(S)] = −RS [ΩωS].

It is interesting to note that the decoupling of the assignment flow in the continuous-
time case has an analogue in the discrete-time setting. Due to Proposition 4.1.4, this
discretization of the S-flow (4.17b) is nothing else than the corresponding geometric
Euler discretization of the Riemannian gradient descent flow with respect to the objective
function J .

Proposition 4.1.5. The geometric Euler integration (2.66) of the assignment flow
(2.62) with step-sizes hk > 0, given by

W (k+1) = expW (k)

(
hkS

(
W (k)

))
(4.16)

is equivalent to the geometric Euler integration of the decoupled system (4.13), given by

W (k) = expW (k)

(
hkS

(k)
)

with W (0) = 1W (4.17a)

S
(k)

= exp
S
(k)

(
hkΩ

ωS
(k)
)

with S
(0)

= S(1W). (4.17b)
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Proof. Assume W (k) is the discrete-time solution of the assignment flow given by (4.16)

and define S
(k)

:= S
(
W (k)

)
for all k ∈ N. Then (4.17a) is a direct consequence of the

assumption on W (k). Using (2.43a), W
(k+1)
i can be rewritten as

W
(k+1)
i = exp

W
(k)
i

(
hkS

(k)
i

)
= exp1S

(
exp−1

1S

(
W (k)

)
+ hkS

(k)
i

)
(4.18)

for every i ∈ V. As a result of the explicit expression (2.57) for S
(k)
i = Si

(
W (k)

)
from

Proposition 2.3.5, it follows

exp−1
1S

(
S

(k+1)
i

)
(2.57)

=
∑
j∈Ni

ωij

(
exp−1

1S

(
W

(k+1)
j

)
− 1

ρ
DF j

)
(4.18)

=
∑
j∈Ni

ωij

(
exp−1

1S

(
W

(k)
j

)
− 1

ρ
DF j

)
+ hk

∑
j∈Ni

ωijS
(k)
j

(2.57)
= exp−1

1S

(
S

(k)
i

)
+ hk

(
ΩωS

(k)
)
i
,

where the last equality also used the relation (4.12) for the last term. Applying exp1S
to both sides and again using (2.43a) gives

S
(k+1)
i = exp1S

(
exp−1

1S

(
S

(k)
i

)
+ hk

(
ΩωS

(k)
)
i

)
= exp

S
(k)
i

(
hk

(
ΩωS

(k)
)
i

)
for all i ∈ V.

Collecting these vectors as row vectors of the matrix Ṡ results in (4.17b).

In the following, an alternative expression for the objective function J is derived. For
this, consider the matrix

LG = Im − Ωω ∈ Rm×m, (4.19)

where Im denotes the identity matrix. Since Im = Diag(Ωω1m) by (4.11) is the degree
matrix of the symmetric averaging matrix Ωω, LG can be regarded as Laplacian (matrix)
of the underlying undirected weighted graph G = (V, E)1. For the analysis of the S-flow
it will be convenient to rewrite the potential (4.15) accordingly.

Proposition 4.1.6. Under the assumption of Proposition 4.1.4, the potential (4.15) can
be written in the form

J(S) =
1

2
〈S,LGS〉 −

1

2
‖S‖2 =

1

4

∑
i∈V

∑
j∈Ni

ωij‖Si − Sj‖2 −
1

2
‖S‖2. (4.20)

The matrix LG is symmetric, positive semidefinite and LG1n = 0.

1For undirected graphs, the graph Laplacian is commonly defined by the weighted adjacency matrices
with diagonal entries 0, whereas Ωωii = ωii > 0. The diagonal entries do not affect the quadratic form
(4.20), however.
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4.1. Discrete-Domain Variational Model

Proof. From the expression of the Laplacian (4.19) and the potential (4.15),

J(S) = −1

2

(
〈S, (Ωω − Im)S〉+ 〈S, S〉

)
=

1

2

(
〈S,LGS〉 − ‖S‖2

)
directly follows. Thus, the focus will be on the double sum of (4.20).

First, note that ‖Sj − Si‖2 = 〈Sj , Sj − Si〉 + 〈Si, Si − Sj〉. As a consequence of the
symmetry relation χNi(j) = χNj (i) for the indicator functions of the neighborhoods

(2.24) as well was the symmetry assumption on the weights ωij = ωji, the identity∑
i∈V

∑
j∈Ni

ωij〈Sj , Sj − Si〉 =
∑
i,j∈V

χNi(j)ωij〈Sj , Sj − Si〉 =
∑
i,j∈V

χNj (i)ωji〈Sj , Sj − Si〉

=
∑
j∈V

∑
i∈Nj

ωji〈Sj , Sj − Si〉 =
∑
i∈V

∑
j∈Ni

ωij〈Si, Si − Sj〉 (4.21)

follows, where the last equality results from renaming the indices i and j. Thus, using
the properties of the weights (2.26),∑

i∈V

∑
j∈Ni

ωij‖Si − Sj‖2 =
∑
i∈V

∑
j∈Ni

ωij〈Sj , Sj − Si〉+
∑
i∈V

∑
j∈Ni

ωij〈Si, Si − Sj〉

(4.21)
= 2

∑
i∈V

∑
j∈Ni

ωij〈Si, Si − Sj〉 = 2
∑
i∈V

〈
Si, Si −

∑
j∈Ni

ωijSj

〉
= 2

∑
i∈V
〈Si, (LGS)i〉 = 2〈S,LGS〉.

The properties of LG follow from the symmetry of Ωω, nonnegativity of the quadratic
form in the above equation and definition (4.19).

The expression in (4.20) allows to clearly identify the two competing ‘forces’ governing
the S-flow, and due to the decomposition (4.13) also the assignment flow: regularization
through the convex term

Jreg(S) :=
1

2
〈S,LGS〉 =

1

4

∑
i∈V

∑
j∈Ni

ωij‖Si − Sj‖2, S ∈ W, (4.22)

favoring constant assignments and integrality enforcing through the concave part

Jint(S) := −1

2
‖S‖2, S ∈ W. (4.23)

Lemma 4.1.7. For all p ∈ ∆ the inequality ‖p‖ ≤ 1 holds and ‖p‖ = 1 if and only if p
is a standard basis vectors of Rn, i.e. p ∈ Bn.

Proof. The first inequality and the ‘if’ statement are obvious. As for the ‘only if’, suppose
p = piei 6∈ Bn, i.e. pi < 1 for all i ∈ [n]. Then (pi)2 < pi and ‖p‖2 < ‖p‖1 = 1.
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Chapter 4. Variational Formulation of the Assignment Flow

As a consequence of this property, the integrality term Jint attains its minimum

min
S∈W
{Jint(S)} = −1

2
m (4.24)

only at the vertices of the simplex, representing integral (unique) label decisions. There-
fore, in contrast to classical methods, where a post-processing step is needed to achieve
integrality, the dynamics of the S-flow (and therefore also the assignment flow) has a
built in state depending mechanism to continuously enforce integrality.

Introducing an additional parameter α > 0 in the model enables to trade off the
influence of integrality enforcing against regularization

Jα(S) := Jreg + αJint =
1

2
〈S,LGS〉 − α

1

2
‖S‖2, S ∈ W. (4.25)

Since Jα is a continuous function on the compact set W = ∆m, the existence of mini-
mizers on ∆m is ensured. For α tending towards 0, the integrality enforcing term Jint

vanishes in the limit and the model reduces to a convex function Jα = Jreg with global
minimizers given by constant assignments. For very large α, the dynamics is dominated
by the integrality term Jint and the influence of regularization through Jreg is greatly
diminished.

Since the function Jα is defined on all of Rm×n, the ordinary gradient is given by

∂Jα(S) =
(
LG − αIm

)
S

(4.19)
=

(
(1− α)Im − Ωω

)
S, ∀S ∈ W,

where Im denotes the m×m identity matrix. The resulting Riemannian gradient descent
flow on the assignment manifold W has the form

Ṡ = − gradg Jα(S) = RS
[
(αIm − LG)S

]
, S(0) = S(1W) ∈ W.

4.1.3. Experiments

In the following, two academical examples are presented to illustrate and assess basic
properties of the S-flow under the symmetry assumption (Ωω)> = Ωω of the weights.
For this, the framework of log-barrier perturbed objective functions from Chapter 3 is
applied and GEA-sequences from Section 3.4.3 are used for numerical integration of the
resulting perturbed Riemannian gradient flow. Both examples are represented on the
grid graph from Section 2.3.1.

Perturbed model and flow. The perturbed variational model is given by

Jα;ε(S) :=
(
Jα
)
ε
(S) = Jα(S)− ε〈log(S),1W〉, S ∈ W, (4.26)

with 0 < ε� 1. By Lemma 3.1.2, the Euclidean gradient has the form

gradE Jα;ε(S) = PTW
[(
LG − αIm

)
S − ε1W/S

]
, S ∈ W, (4.27)
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4.1. Discrete-Domain Variational Model

resulting in the perturbed Riemannian gradient flow

Ṡ = RS
[
(αIm − LG)S

]
+ ε
(
1W − S

)
, S(0) = S(1W) ∈ W. (4.28)

Due to Jα;ε : W → R being analytic, the convergence and stability results from Sec-
tion 3.3.3 apply.

Numerical integration. For parameters τ, s ∈ (0, 1) and hmax > 0, the general update
scheme of a GEA-sequence (3.89) is of the form

S(k+1) = GEA
(
S(k)

)
= expS(k)

(
−hk gradE Jα;ε

(
S(k)

))
, S(0) = S(1W) ∈ W, (4.29)

where the step-size hk = h
(
S(k)

)
> 0 is the Armijo step-size (3.86) depending on the

choices for the descent parameter τ , the diminishing factor s and the maximal step-size
hmax. Replacing the Euclidean gradient by the explicit expression in (4.27) and using
the fact that the liftmap implicitly projects onto TW according to (2.38), the update
scheme reads

S(k+1) = expS(k)

(
hk

((
αIm − LG

)
S(k) + ε1W/S

(k)
))
, S(0) = S(1W).

As a consequence of Jα;ε : W → R being analytic, the convergence and stability results
from Section 3.4 are valid.

Termination criterion. In both experiments, the normalized relative change of Jα;ε

nrcJα;ε

(
S(k)

)
:=

Jα;ε

(
S(k)

)
− Jα;ε

(
S(k+1)

)
hk
∣∣Jα;ε

(
S(k)

)∣∣ ≥ 0 (4.30)

is used as convergence criterion. Using the properties of the liftmap from Lemma 2.3.2,
it can be shown that for hk → 0, the nrc of Jα;ε approaches

−
d
dhk

Jα;ε

(
S(k)

)∣∣
hk=0∣∣Jα;ε

(
S(k)

)∣∣ =

∥∥gradg Jα;ε

(
S(k)

)∥∥2

g,S(k)∣∣Jα;ε

(
S(k)

)∣∣ ≥ 0 (4.31)

and is therefore an approximation of the relative continuous-time change (3.3) for the
underlying Riemannian gradient flow.

Symmetric uniform weights. Consider a general grid graph Gg = (Vg, Eg). For a
vertex i ∈ Vg in the interior of the grid with an associated N × N neighborhood Ni,
uniform weights ωij = 1

|Ni| = 1
N2 for all j ∈ Ni are chosen. Since |Ni| < N2 for vertices

i ∈ V close to the boundary of the grid, symmetry of the weights can only be ensured
if ωij = 1

N2 for i 6= j ∈ Ni and the remaining mass is concentrated at the center weight
ωii. Overall, the symmetric uniform weights, used in the following examples, are defined
as

ωij :=

{
1
N2 , for i 6= j
1
N2

(
1 +N2 − |Ni|

)
, for i = j.

(4.32)
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Chapter 4. Variational Formulation of the Assignment Flow

Unbiased Geometric Regularization

The image labeling experiment from [ÅPSS17, Fig. 6] is used to evaluate the influence of
ρ and the neighborhood size |Ni| = N×N on the performance of geometric regularization
of the S-flow in an unbiased way. The spatial structure of the data is given by a grid
graph Gg with V = [256]×[256] pixels (see Section 2.3.1). In order for the distance matrix
not to be biased towards any specific label, every pixel can take one of 31 possible discrete
values with uniform distance between the values. This is modeled on the set of standard
basis vectors in R31 as metric space and labels space

F = B31 = {e1, . . . , e31} = X

with distance measure dF (f, f ′) := ‖f−f ′‖1. Thus, for any given input data f : Vg → F ,
the entries of the distance matrix are given by

DF
j
i = ‖ei − ej‖1 =

{
2 , for i 6= j

0 , else

and are therefore unbiased towards any label. The underlying ground truth pattern
together with a noisy version used as input for the model Jα;ε (4.26) is depicted on the
left in Figure 4.1, where the 31 elements of F = X are encoded by 31 different colors
for visualization purposes. Symmetric uniform weights (4.32) are used for regularization
together with the integrality enforcing parameter α = 1 and perturbation parameter
ε = 10−10. For the GEA update scheme (4.29), the chosen parameters are τ = 0.01,
s = 0.5 and hmax = 0.5. The iteration is terminated if the nrc of Jα;ε (4.30) drops below
the threshold of 10−6. In all experiments, the step-size of the last iterate was maximal,
i.e. hk = 0.5, meaning the function value in the last iteration changed less then 5 · 10−7

percent.
The 3 by 3 image array on the right-hand side of Figure 4.1 shows the influence

of different choices for ρ ∈ {0.01, 0.1, 1.0} and N ∈ {3, 5, 11} on the regularization
properties of the model Jα;ε. The color values of each image represent the expected label

value ESi [X ] =
∑

j∈[31] S
j
i `j for every pixel i, given the assignments S after termination of

the sequence. Increasing the neighborhood size results in more regularized assignments
but also in an increasing loss of pattern structure by favoring rounded edges. The effect
of ρ appears to depend on the given neighborhood size N . For a small size of N = 3,
larger ρ values produce less noisy assignments, while for a larger size of N = 11, an
increase of ρ leads to an additional loss in spatial structure, as can be seen in the last
row for the bottom right structure of the images. In the case of N = 5, the effect of ρ
in the parameter range (0.01, 1.0) seem negligible.

In Figure 4.2, the effect of different neighborhood sizes N and parameters ρ on nrc Jα;ε

as well as the average values of Jint and Jreg can be seen. The left column of Figure 4.2
corresponds to the choices of N ∈ {3, 5, 11} for fixed ρ = 1.0. In this case, the values
of 1

mJint (top left) rapidly decrease within the first 300 iterations, slightly delayed for
increased neighborhood sizes N . Since 1

mJint has the minimal value of −1
2 by (4.24),

corresponding to integral assignments, this plot shows that unique label decisions are
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4.1. Discrete-Domain Variational Model

ground truth data

noisy input data

ρ = 0.01 0.1 1.0

3
×

3
5
×

5
|N

i|
=

11
×

11

Figure 4.1.: Influence of the parameter ρ and neighborhood size N on the regularization
of the S-flow model Jα;ε (4.26) with α = 1 and ε = 10−10. Left: The underlying ground
truth pattern together with the noisy version used as input of the model. The data is
given on a 256×256 pixel grid, where each pixel can take one of 31 possible discrete values,
encoded by 31 different color values for visualization purposes. Right: The results for
varying ρ ∈ {0.01, 0.1, 1} and N ∈ {3, 5, 11} after reaching the termination criterion with
a threshold of 10−6. The images depict the expected label value ESi [X ] =

∑
j∈[31] S

j
i `j

given the assignment Si for every pixel i.

enforced in the early phase of the minimization process, while the remaining time is
mostly spend for regularization. Since the Euclidean distance ‖Si − Sj‖2 between two
assignment vectors is maximal if Si and Sj are two distinct integral assignments, i.e.
if Si and Sj are distinct vertices of the simplex ∆, the early integrality enforcement
amplifies the Euclidean distance between different assignments and therefore leads to
an increase of 1

mJreg (middle left). Larger neighborhood sizes N result in higher values
for 1

mJreg and longer runtime until the convergence criterion is fulfilled (bottom left), as
more spatial information is incorporated in the regularization measure. The (log-scale)
plot on the bottom left depicts the corresponding nrc Jα;ε curves.

For the right column of Figure 4.2, corresponding to the choices ρ ∈ {0.01, 0.1, 1} for
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ρ = 1 N = 3
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Figure 4.2.: Influence of varying neighborhood sizes N (left column with fixed ρ = 1)
and parameter values ρ (right column with fixed N = 3) on the average values of
the integrality enforcing and regularization terms Jint (4.23) (top row) and Jreg (4.22)
(middle row) in the first 300 iterations as well as the normalized relative change nrc Jα;ε

(4.30) (bottom row) for all iterations.
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fixed neighborhood size N = 3, consider the initial condition S(1W) of the S-flow. Due
to Proposition 2.3.5

Si(1W) = exp1S

(
− 1

ρ
ai

)
, ∀i ∈ Vg,

with the average vectors ai :=
∑

j∈Ni ωijDF j ∈ Rn. From this expression, it can be seen
that the influence of the averaged data ai is diminished for large values of ρ. In the limit
limρ→∞ Si(1W) = 1S , in which case any information is lost. On the other hand, for ρ
tending towards 0, it can be shown (see Lemma 5.2.15 below) that if ai has a unique
minimal entry (always fulfilled in practice due to random noise in the data), say aj0i ,
then limρ→0 Si(1W) = ej0 , i.e. Si(1W) converges to the vertex ej0 of ∆ representing the
label `j0 ∈ X .

As a consequence of this, 1
mJint starts at lower values (top right) for smaller ρ, because

the starting point S(1W) gets closer to an integral assignment. As in the case for
varying N , the value of 1

mJint decreases in the first 300 iterations and thereby enforces
integrality, more rapidly for smaller values of ρ, while the remaining time is mostly spend
for regularization. Similarly, 1

mJreg starts at lower values (middle right) for larger ρ, as
the starting point S(1W) is getting closer to the barycenter and thereby diminishes the
Euclidean distance between different assignments. As before, the integrality enforcement
in the first phase leads to an increase in 1

mJreg. The log-scale plots of nrcJα;ε (bottom
right) confirms, that for larger values of ρ less time is spend for regularization, leading
to faster convergence.

Influence of the Integrality Enforcing Term

In this experiment, the effect of the integrality parameter α on the model Jα;ε (4.26)
is investigated. The grid graph Gg (see Section 2.3.1) with Vg = [100] × [100] and
neighborhood size N = 3 represents the spatial structure of the 100 × 100 noisy RGB-
image f : Vg → [0, 1]3, depicted in Figure 4.3, used as input. The distance measure of
the RGB feature space F := [0, 1]3 is given by dF (f, f ′) = ‖f−f ′‖1/3 and 8 prototypical
colors (Figure 4.3 top right) are chosen as labels X . Again, symmetric uniform weights
(4.32) are used for regularization together with ρ = 0.1 and perturbation parameter
ε = 10−10. For the GEA update scheme (4.29), the values τ = 0.01, s = 0.5 and
hmax = 0.5 are chosen and the iteration is terminated if the nrc of Jα;ε (4.30) drops
below the threshold of 10−6 or the maximum number of 25000 iterations is reached.

The middle and bottom row of Figure 4.3 show the influence for the parameter choices
α ∈ {0, 0.1, 0.5, 0.7, 1, 2} on the model Jα;ε. Again, the color values of each image

represent the expected label value ESi [X ] =
∑

j∈[31] S
j
i `j for every pixel i, given the

assignments S after termination of the sequence. For α = 0, the model reduces to
the convex function J0;ε = Jreg (4.22), with the set of minimizers given by uniform
assignment. The sequence converges to such an optimal point in the interior of the
assignment manifold, resulting in a uniform brownish expected value. The choice α = 0.1
is sufficient to push the sequence towards an integral assignment, however, the influence
of the integrality enforcing term compared to the regularizer is too weak to preserve any
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original data noisy input data labels

α = 0 α = 0.1 α = 0.5

α = 0.7 α = 1 α = 2

Figure 4.3.: Effect of the integrality parameter α on the S-flow model Jα;ε (4.26) with
the choices ε = 10−10, ρ = 0.1 and neighborhood size N = 3. Top row: The underlying
100 × 100 pixel RGB-image together with the noisy input version of the model and 8
prototypical colors used as labels. Middle and bottom row: Results for varying values
of α after reaching the termination criterion with a threshold of 10−6. The images again
show the expected color label ESi [X ] =

∑
j∈[8] S

j
i `j given the assignment Si at every

pixel i.

image structure and therefore results in a uniform integral assignment. For larger values
α ≥ 0.5, an increasing amount of the image structure is preserved.

Figure 4.4 shows the influence of the parameter values α ∈ {0, 0.1, 0.5, 0.7, 1, 2} on
1
mJint (4.23), 1

mJreg (4.22) and nrcJα;ε (4.30) in the first 500 iterations, as well as the
effect on nrcJα;ε up to the maximum number of 25000 iterations. For α = 0, the
maximum number of iteration was reached, while in all other cases the nrc of Jα;ε
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Figure 4.4.: Influence of the integrality parameter α on the average integrality values
1
mJint (4.23) (top left), regularization values 1

mJreg (4.22) (top right) and nrc of Jα;ε

(4.30) (bottom left) for the first 500 iterations. Additionally, the nrc of Jα;ε up to the
maximum number of 25000 iterations is shown (bottom right).

dropped below 10−6 (bottom right) first. Larger values of α cause more emphasis on the
minimization of Jint (top left), leading to a faster decay in the value and therefore also a
faster convergence towards integral assignments (bottom row). For smaller values of α,
the influence of Jint is diminished and more time is spend on minimizing Jreg, resulting
in smaller values for Jreg (top right) and therefore more regularized assignments.

4.2. Continuous-Domain Variational Model

In this section, a continuous-domain variational formulation of the potential from Propo-
sition 4.1.6 is studied. The following considerations are confined to the case of uniform
weights (2.26) and neighborhoods (2.21) that only contain the nearest neighbors of each
vertex i, such that LG becomes the discretized ordinary Laplacian. As a result, the
minimization of the following functional with α ≥ 0 is consider

Jα : H1(M; Rn)→ R, S 7→ Jα(S) :=

∫
M
‖DS(x)‖2 − α‖S(x)‖2 dx . (4.33)

Throughout this section, M ⊂ R2 is a simply-connected bounded open subset in the
Euclidean plane. Parameter α controls the interaction between regularization and en-
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forcing integrality when the function values of S are restricted to the probability simplex
S(x) ∈ S for all x ∈M.

In the following, well-posedness for vanishing (Section 4.2.2) and Dirichlet boundary
conditions (Section 4.2.3), respectively, are proven and the set of minimizers in the
former case is explicitly specified. The gradient descent flow corresponding to the latter
case, initialized by means of given data and with parameter value α = 1, may be seen as
a continuous-domain extension of the assignment flow, that is parameterized according
to (4.1.3) and operates at the smallest spatial scale in terms of the size |Ni| of uniform
neighborhoods (2.21) (in the discrete formulation (2.62): nearest neighbor averaging).
This is illustrated by a numerical example (Section 4.2.4), based on discretizing (4.33)
and applying an algorithm that mimics the S-flow and converges to a local minimum of
the non-convex functional (4.33), by solving a sequence of convex programs.

It is pointed out that M could be turned into a Riemannian manifold using a metric
that reflects images features (edges etc.), as was proposed with the Laplace-Beltrami
framework for image denoising [KMS00]. In this work the focus is on the essential point,
however, that distinguishes image denoising from image labeling, i.e. the interaction of
the two terms in (4.33) which essentially is a consequence of the information geometry
of the assignment manifold W from Section 2.3.2.

4.2.1. Background on Functional Analysis

Subsequently, a few basic facts and definitions regarding Sobolev spaces are listed from
[Zie89, ABM14] and the corresponding notation is fixed. In the following, Ω ⊂ Rd

denotes an open bounded domain.

The inner product and the norm of functions f, g ∈ L2(Ω) is denoted by

(f, g)Ω =

∫
Ω
fgdx, ‖f‖Ω = (f, f)

1/2
Ω .

Functions f1 and f2 are equivalent and identified whenever they merely differ pointwise
on a Lebesgue-negligible set of measure zero. f1 and f2 then are said to be equal a.e.
(almost everywhere). H1(Ω) = W 1,2(Ω) denotes the Sobolev space of functions f with
square-integrable weak derivatives Dαf up to order one. H1(Ω) is a Hilbert space with
inner product and norm denoted by

(f, g)1;Ω =
∑
|α|≤1

(Dαf,Dαg)Ω, ‖f‖1;Ω =
( ∑
|α|≤1

‖Dαf‖2Ω
)1/2

. (4.34)

Lemma 4.2.1 ([Zie89, Cor. 2.1.9]). If Ω is connected, u ∈ H1(Ω) and Du = 0 a.e. on
Ω, then u is equivalent to a constant function on Ω.

The closure in H1(Ω) of the set of test functions C∞c (Ω) that are compactly supported
on Ω, is the Sobolev space

H1
0 (Ω) = C∞c (Ω) ⊂ H1(Ω).
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It contains all functions in H1(Ω) whose boundary values on ∂Ω (in the sense of traces)
vanish. The space H1(Ω; Rd), with 2 ≤ d ∈ N contains vector-valued functions f whose
component functions fi, i ∈ [d] are in H1(Ω). For notational efficiency, the norm of
f ∈ H1(Ω; Rd) is again denoted by

‖f‖1;Ω =
(∑
i∈[d]

‖fi‖21;Ω

)1/2
,

as in the scalar case (4.34). It will be clear from the context if f is scalar- or vector-
valued.

The compactness theorem of Rellich-Kondrakov [ABM14, Thm. 5.3.3] says that the
canonical embedding

H1
0 (Ω) ↪→ L2(Ω)

is compact, i.e. every bounded subset in H1
0 (Ω) is relatively compact in L2(Ω). This

extends to the vector-valued case

H1
0 (Ω; Rd) ↪→ L2(Ω; Rd) (4.35)

since H1
0 (Ω; Rd) is isomorphic to H1

0 (Ω) × · · · ×H1
0 (Ω) and likewise for L2(Ω; Rd). The

dual space of H1
0 (Ω) is commonly denoted by H−1(Ω) =

(
H1

0 (Ω)
)′

. Accordingly, this is

extended to the vector valued case H−1(Ω; Rd) =
(
H1

0 (Ω; Rd)
)′

.

Strong and weak convergence of a sequence (fk) is written as fk → f and fk ⇀ f , re-
spectively. Next, further basic facts regarding weak convergence from [Zei85, Prop. 38.2]
and [ABM14, Prop. 2.4.6] are listed.

Proposition 4.2.2. The following assertions hold in a Banach space X.

(1) A closed convex subset C ⊂ X is weakly closed, i.e. a sequence (fk)k∈N ⊂ C that
weakly converges to f implies f ∈ C.

(2) If X is reflexive (in particular, if X is a Hilbert space), then every bounded sequence
in X has a weakly convergent subsequence.

(3) If fk weakly converges to f , then (fk)k∈N is bounded and

‖f‖X ≤ lim inf
k→∞

‖fk‖X . (4.36)

The following theorem states conditions for minimizers of the functional to satisfy a
corresponding variational inequality.

Theorem 4.2.3 ([Zei85, Thm. 46.A(a)]). Let F : C → R be a functional on the convex
nonempty set C of a real locally convex space X, and let b ∈ X ′ be a given element.
Suppose the Gateaux-derivative F ′ exists on C. Then any solution f of

min
f∈C

{
F (f)− 〈b, f〉X′×X

}
, (4.37)

satisfies the variational inequality

〈F ′(f)− b, h− f〉X′×X ≥ 0, for all h ∈ C. (4.38)

93



Chapter 4. Variational Formulation of the Assignment Flow

4.2.2. Well-Posedness

Based on (2.8), the closed convex set

D1(M) = {S ∈ H1(M; Rn) : S(x) ∈ ∆ a.e. inM} (4.39)

is defined and the focus is on the variational problem

inf
S∈D1(M)

Jα(S), (4.40)

with nonconvex Jα given by (4.33). The set of minimizers for (4.40) is specified below.

Proposition 4.2.4. The functional Jα : D1(M)→ R given by (4.33) is lower bounded,

Jα(S) ≥ −αVol(M) > −∞, ∀S ∈ D1(M). (4.41)

This lower bound is attained at some point in

arg min
S∈D1(M)

Jα(S) =

{
{Se1 , . . . , Sen}, if α > 0,

{Sp : M→ ∆: p ∈ ∆}, if α = 0,
(4.42)

where, for any p ∈ ∆, Sp denotes the constant map x 7→ Sp(x) = p.

Proof. Let S ∈ D1(M) be arbitrary. Since S(x) ∈ ∆ for a.e. x ∈M, it follows ‖S(x)‖2 ≤
‖S(x)‖1 = 1 and therefore also

Jα(S) ≥ −α‖S‖2M ≥ −α‖1‖M = −αVol(M), (4.43)

which is (4.41).
Next, it is shown that the right-hand side of (4.42) specifies minimizers of Jα. For

any p ∈ ∆, the constant map Sp is contained in D1(M). Consider specifically Sei for
all basis vectors ei ∈ Bn,i ∈ [n]. Since ‖Sei(x)‖ = ‖ei‖ = 1 and DSei ≡ 0, the lower
bound is attained, Jα(Sei) = −αVol(M), and the functions {Se1 , . . . , Sen} minimize Jα,
for every α ≥ 0. If α = 0, then the constant functions Sp are minimizers as well, for any
p ∈ ∆, since then

Jα(Sp) = ‖DSp‖2M = 0 = −0 ·Vol(M). (4.44)

The proof is conclude by showing that no minimizers other than (4.42) exist. Let
S∗ ∈ D1(M) be another minimizer of Jα with Jα(S∗) = −αVol(M). The two cases
α = 0 and α > 0 are distinguished in the following.

If α = 0, then S∗ satisfies (4.44) and ‖DS∗‖2M = 0. Since ‖DS∗;i‖M ≤ ‖DS∗‖M = 0
for every i ∈ [n], S∗ is constant by Lemma 4.2.1, i.e. a p ∈ ∆ exists such that a.e. S∗ = Sp
holds.

If α > 0, then using the equation Jα(S∗) = −αVol(M) and ‖S∗(x)‖2 ≤ 1 gives

αVol(M) ≤ ‖DS∗‖2M + αVol(M) = ‖DS∗‖21;M − Jα(S∗) = α‖S∗‖2M
≤ α‖1‖M = αVol(M),
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which shows ‖DS∗‖M = 0 and hence by Lemma 4.2.1 again S∗ = Sp for some p ∈
∆. The preceding inequalities also imply Vol(M) = ‖S∗‖2M, i.e. ‖S∗(x)‖ = 1 for a.e.
x ∈ M. By Lemma 4.1.7, the equality S∗ = Sp with p ∈ Bc can be concluded, that is
S∗ ∈ {Se1 , . . . , Sen}.

Proposition 4.2.4 highlights the effect of the concave term in the objective Jα (4.33):
labelings are enforced in the absence of data. Below, the latter are taken into account
(i) by imposing non-zero boundary conditions and (ii) by initializing a corresponding
gradient flow (see Section 4.2.4).

4.2.3. Fixed Boundary Conditions

In this section, the case where boundary conditions are imposed by restricting the feasible
set of problem (4.40) to

A1
G(M) = {S ∈ D1(M) : S −G ∈ H1

0 (M; Rn)} =
(
G+H1

0 (M; Rn)
)
∩ D1(M) (4.45)

is considered, where G is some fixed map that prescribes simplex-valued boundary values
(in the trace sense). As intersection of a closed affine subspace and a closed convex set,
A1
G(M) is closed convex.
Weak lower semicontinuity is a key property for proving the existence of minimizers.

In the case of Jα (4.33) this is not immediate, due to the lack of convexity.

Proposition 4.2.5. The functional Jα given by (4.33) is weak sequentially lower semi-
continuous on A1

G(M), i.e. for any sequence (Sk)k∈N ⊂ A1
G(M) weakly converging to

S ∈ A1
G(M), the inequality

Jα(S) ≤ lim inf
k→∞

Jα(Sk) (4.46)

holds.

Proof. Let Sk ⇀ S converge weakly in A1
G(M) ⊂ H1

0 (M; Rn). Then, by Prop. 4.2.2 (3),

‖S‖1;M ≤ lim inf
k→∞

‖Sk‖1;M. (4.47)

Since S, Sk ∈ A1
G(M), it also follows (Sk −G) ⇀ (S −G) in H1

0 (M; Rn) by (4.45) and
consequently Sk → S strongly in L2(M; Rn) due to (4.35). Taking into account (4.47)
and lim infk→∞ ‖Sk‖M = limk→∞ ‖Sk‖M = ‖S‖M results in

Jα(S) = ‖S‖21;M − (1 + α)‖S‖2M ≤ lim inf
k→∞

‖Sk‖21;M + lim inf
k→∞

(
− (1 + α)‖Sk‖2M

)
≤ lim inf

k→∞
Jα(Sk).

After these preparations, it is now shown that Jα attains its minimal value on A1
G(M),

following the basic proof pattern of [Zei85, Ch. 38].

Theorem 4.2.6. Let Jα be given by (4.33). There exists a S∗ ∈ A1
G(M) such that

J∗α := Jα(S∗) = inf
S∈A1

G(M)
Jα(S). (4.48)
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Proof. Let (Sk)k∈N ⊂ A1
G(M) be a minimizing sequence such that

lim
k→∞

Jα(Sk) = J∗α. (4.49)

Then there exists some sufficiently large k0 ∈ N such that

1 + J∗α ≥ Jα(Sk) = ‖Sk‖21;M − (1 + α)‖Sk‖2M, ∀k ≥ k0.

Since Sk(x) ∈ ∆ for a.e. x ∈M, the inequality ‖Sk‖2M ≤ Vol(M) follows and results in

‖Sk‖21;M ≤ 1 + J∗α + (1 + α)‖Sk‖2M ≤ 1 + J∗α + (1 + α) Vol(M), ∀k ≥ k0.

Thus the sequence (Sk)k∈N ⊂ H1(M; Rn) is bounded and, by Prop. 4.2.2 (2), a weakly
converging subsequence Skj ⇀ S∗ ∈ H1(M; Rn) may be extracted. Since the subset
A1
G(M) ⊂ H1(M; Rn) is closed convex, Prop. 4.2.2 (1) implies S∗ ∈ A1

G(M). Conse-
quently, by Prop. 4.2.5 and (4.49),

Jα(S∗) ≤ lim inf
j→∞

Jα(Skj ) = lim
j→∞

Jα(Skj ) = J∗α (4.50)

which implies Jα(S∗) = J∗α, i.e. S∗ ∈ A1
G(M) minimizes Jα.

4.2.4. Numerical Algorithm and Example

Subsequently, the variational problem (4.48)

inf
S∈A1

G(M)

∫
M
‖DS‖2 − α‖S‖2dx, (4.51)

for some fixed G specifying the boundary values S|∂M = G|∂M, and the problem to
compute a local minimum numerically using an optimization scheme that mimics the
S-flow of Proposition 4.1.3 is considered.

Based on (4.45), the problem (4.51) is rewritten in the form

inf
F∈H1

0 (M;Rn)

{
‖D(G+ F )‖2M − α‖G+ F‖2M + δD1(M)(G+ F )

}
=

inf
F∈H1

0 (M;Rn)

{
‖DF‖2M + 2〈DG,DF 〉M − α

(
‖F‖2M + 2〈G,F 〉M

)
+ δD1(M)(G+ F )

}
+ c,

where δD1(M) is the convex indicator function (B.2) of the convex set D1(M) and the
last constant c collects terms not depending on F . Discretization of the problem is done
as follows, where the symbols F,G are kept for simplicity. F becomes a vector F ∈ Rnm

with m = |V| subvectors Fi ∈ Rn, i ∈ [m] or alternatively with n = |X | subvectors
F j , j ∈ [n]. The inner product 〈G,F 〉M is replaced by

〈G,F 〉 =
∑
i∈[m]

〈Gi, Fi〉 =
∑
j∈[n]

〈Gj , F j〉 =
∑
i∈[m]

∑
j∈[n]

GjiF
j
i .
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In the following, the discretized setting is indicate by the subscript d as introduced
next. D becomes a gradient matrix Dd that estimates the gradient of each subvector F j

separately, such that

LdF := D>d DdF

is the basic discrete 5-point stencil Laplacian applied to each subvector F j . The feasible
set D1(M) (4.39) is replaced by the closed convex set

Dd := {F ≥ 0: 〈1n, Fi〉 = 1, ∀i ∈ V}. (4.52)

Thus the discretized problem reads

inf
F

{
‖DdF‖2 + 2〈LdG− αG,F 〉 − α‖F‖2 + δDd(G+ F )

}
, (4.53)

where δDd again denotes the convex indicator function (B.2) of the convex set Dd. Having
computed a local minimum F∗, the corresponding local minimum of (4.51) is of the form
S∗ = G+ F∗.

In order to compute F∗, the proximal forward-backward scheme

F (k+1) = arg min
F

{
‖DdF‖2 + 2〈LdG−α(G+F (k)), F 〉+ 1

2hk
‖F −F (k)‖2 + δDd(G+F )

}
(4.54)

is applied, with proximal parameters hk, k ∈ N and initialization F
(0)
i , i ∈ V specified

further below. The iterative scheme (4.54) is a special case of the PALM (Proximal
Alternating Linearized Minimization) algorithm [BST14, Sec. 3.7]. Ignoring the proximal
term, each problem (4.54) amounts to solve n (discretized) Dirichlet problems with
the boundary values of Gj , j ∈ [n] imposed, and with right-hand sides that change
during the iteration since they depend on F (k). The solutions (F (k))j , j ∈ X to these
Dirichlet problems depend on each other, however, through the feasible set (4.52). At
each iteration k, problem (4.54) can be solved by convex programming. The proximal
parameters hk act as step-sizes such that the sequence F (k) does not approach a local
minimum too rapidly. Then the interplay between the linear form that adapts during
the iteration and the regularizing effect of the Laplacian can find a labeling (partition)
corresponding to a good local optimum.

As for G, the value Gi = Li(1S) for boundary vertices i ∈ V is chosen and Gi = 0 for
every interior vertex i, where Li are the likelihood vectors (2.55) containing data informa-

tion via the distance matrix. Consequently, with the initialization F
(0)
i = Li(1S), i ∈ V

at interior vertices (the boundary values of F are zero), the sequence S(k) = G + F (k)

mimics the S-flow of Proposition 4.1.3 where the given data also show up in the initial-
ization S(0) only.

Figure 4.5 provides an illustration using the experiment from Section 4.1.3 for evalu-
ating the performance of geometric regularization in an unbiased way. Parameter values
are specified in the caption. The result confirms that the continuous-domain formula-
tions discussed above represent the assignment flow at the smallest spatial scale.
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Chapter 4. Variational Formulation of the Assignment Flow

Figure 4.5.: Evaluation of the numerical scheme (4.54) that mimics the S-flow of Propo-
sition 4.1.3. Parameter values: α = 1, hk = τ = 10, ∀k. Top, from left to right: Ground
truth, noisy input data F (0), iterate F (100) and F∗ resulting from F (100) by a trivial
rounding step. S(k) = F (k) +G differs from F (k) by the boundary values corresponding
to the noisy input data. Inspecting the values of F (100) close to the boundary shows that
the influence of boundary noise is minimal. Bottom, from left to right: The iterates
F (10), F (20), F (30), F (40). Taking into account rounding as post-processing step, the se-
quence F (k) quickly converges after rounding to a reasonable partition. About 50 more
iterations are required to fix the values at merely few hundred remaining pixels. Slight
rounding of the geometry of the components of the partition, in comparison to ground
truth, corresponds to using uniform weights (2.26) for the assignment flow.

4.2.5. A PDE Characterizing Optimal Assignment Flows

This chapter is concluded by deriving a PDE corresponding to (4.56), that a minimizer
S∗ is supposed to satisfy in the weak sense. The derivation is formal in the sense that
the unrealistic regularity assumption

S∗ ∈ A2
G(M) (4.55)

adopt, with A2
G(M) defined analogous to (4.45). Since S∗ is expected (and wished) to

become discontinuous, this would violate the regularity assumption (4.55) and the conti-
nuity implied by the Sobolev embedding theorem forM⊂ Rd with d = 2. Nevertheless,
since the PDE provides another interpretation of the assignment flow, it is stated – see
(4.59) below – and hoped to stimulate further research.

Proposition 4.2.7. Let S∗ solve the variational problem (4.51). Then S∗ satisfies the
variational inequality

〈DS∗, DS −DS∗〉M − α〈S∗, S − S∗〉M ≥ 0, ∀S ∈ A1
G(M). (4.56)
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Proof. Functional Jα given by (4.51) is Gateaux-differentiable with derivative

〈J ′α(S∗), S〉H−1(M;Rn)×H1
0 (M;Rn) = 2

(
〈DS∗, S〉M − α〈S∗, S〉M

)
.

The assertion follows from applying Theorem 4.2.3.

In view of assumption (4.55), inserting S∗ and an arbitrary S ∈ A1
G(M) into (4.56)

together with partial integration results in

〈−∆S∗ − αS∗, S − S∗〉M ≥ 0, (4.57)

where ∆S∗ = ∆Si∗ei applies componentwise for S∗ = Si∗ei. Using the shorthands

να(S∗) := −∆S∗ − αS∗,
µα(S∗) := να(S∗)− 〈να(S∗), S∗〉R21n,

with 〈να(S∗), S∗〉R2 denoting the function x 7→
〈
να(S∗)(x), S∗(x)

〉
, x ∈M, it follows

〈µα(S∗), S∗〉M = 0 (4.58a)

since 〈1n, S∗(x)〉 = 1 for a.e. x ∈M, and

〈µα(S∗), S〉M = 〈να(S∗), S − S∗〉M ≥ 0, (4.58b)

which is (4.57). Since the components Si(x) of S(x) are nonnegative a.e. inM and may
have arbitrary support, it can be deduce from the inequality 〈µα(S∗), S〉M ≥ 0 and from
the self-duality of the nonnegative orthant Rd≥0, i.e.

Rd≥0 =
{
y ∈ Rd

∣∣ ∀z ∈ Rd≥0, 〈y, z〉 ≥ 0
}
,

that µα(S∗) ≥ 0 a.e. in M. Since also S∗ ≥ 0 a.e., this implies that equation (4.58a)
holds pointwise a.e. in M:

µα(S∗)(x)S∗(x) = να(S∗)(x)S∗(x)−
〈
να(S∗)(x)S∗(x)

〉
S∗(x) = 0 a.e. inM.

Substituting να(S∗) shows that a minimizer S∗ as characterized by the variational in-
equality (4.56) weakly satisfies the PDE

RS∗(−∆S∗ − αS∗) = 0, (4.59)

where RS∗ defined by (2.32) applies RS∗(x) to the vector (−∆S∗ − αS∗)(x) at every
x ∈M.

Remark 4.2.1. Note, that computing a vector field S∗ satisfying (4.56) is difficult
in practice, due to the nonconvexity of problem (4.51). On the other hand, the algo-
rithm proposed in Section 4.2.4 and the result illustrated by Figure 4.5 shows that good
suboptima can be computed by merely solving a sequence of simple problems.
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Chapter 5

A Variational Approach Based on
Graphical Models

In the following, a classical discrete formulation of the image labeling problem on a graph
G = (V, E) with label set X is considered. In this discrete setting, a random variable
with values in the set of labels

xi ∈ X = {`1, . . . , `n}

is associated to each vertex i ∈ V. The image labeling problem then refers to the task
of assigning to each xi a label such that the discrete objective function

min
x∈Xm

J(x), J(x) =
∑
i∈V

Ji(xi) +
∑
ij∈E

Jij(xi, xj) (5.1)

is minimized. This function contains for each pixel i ∈ V local energy terms Ji(xi)
that evaluate local label predictions for each possible value of xi ∈ X . In addition,
J(x) also contains for each edge ij ∈ E local energy functions Jij(xi, xj) that evaluate
the joint assignment of labels to xi and xj . If the local energy functions Jij(xi, xj) =
d(xi, xj) are defined by a metric d : X × X → R, then (5.1) is called the metric labeling
problem [KT02]. In general, the presence of these latter terms Jij makes the discrete
image labeling formulation (5.1) a combinatorially hard task. The function J(x) has the
common format of an objective function for image analysis consisting of a data term
and a regularizer. From a Bayesian perspective, therefore, minimizing J corresponds
to maximum a-posteriori (MAP) inference with respect to the associated probability
distribution

p(x) =
1

Z
exp(−J(x)), (5.2)

also called discrete probabilistic graphical model, with the the underlying graph G ex-
pressing the conditional dependence between the individual random variables xi, i ∈ V.
The reader is referred to [KAH+15] for a recent survey on the image labeling problem
and on algorithms for solving either approximately or exactly problem (5.1).

A major class of algorithms for approximately solving (5.1) is based on the local poly-
tope relaxation [Wer07], a special linear programming (LP) relaxation for adequately
representing the specific structure of the MAP inference problem of the form (see Sec-
tion 5.1 for details)

min
µ∈LG

〈ϑ, µ〉, (5.3)
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where LG is a convex set representing certain constraints of the relaxed indicator vector
µ with components in [0, 1]. If the globally optimal solution µ is a binary vector, i.e. with
components either 0 or 1, then it corresponds to a solution of problem (5.1). In realistic
applications, however, this is not the case and the relaxed solution µ has to be rounded
to an integral solution in a post-processing step. The local polytope relaxation can also
be tightened by adding additional facet-defining inequalities, see [WJ08] and references
therein.

The goal of this chapter is to derive a relaxed smooth variational model on the as-
signment manifold which represents problem (5.1) in a suitable geometric way and si-
multaneously incorporates a smooth rounding mechanism towards integral assignments.
The starting point for this derivation is the above mentioned LP relaxation (5.3) and a
smoothed version of it, introduced in more detail in Section 5.1, which results in the well
known belief propagation algorithm [YFW05, WJ08]. The variational model is defined
in Section 5.2 based on a reformulation of the smoothed LP relaxation using entropy
regularized Wasserstein distances. These distances allow to properly take into account
the regularization terms Jij coupling the assignments Wi and Wj along edges ij ∈ E .
Subsequently an expression for the gradient of the entropy regularized Wasserstein dis-
tance is derived, making it possible to calculate these gradients using an iterative matrix
scaling algorithm, called Sinkhorn’s algorithm [Sin64, Sch90], made popular in the field
of machine learning by [Cut13]. Finally, basic properties of the presented variational
model are evaluated with two academical experiments in Section 5.3. The first one il-
lustrates the effect of the rounding mechanism for enforcing integral assignments. The
second one compares the accuracy and discrete energy level J(x) for a specific binary
image denoising problem to sequential tree-reweighted message passing (TRWS) [Kol06]
(which is regarded as state of the art) and to loopy belief propagation (BP) based on
the OpenGM package [ABK12].

This chapter is based on joint work which has already published in [HSÅS18].

5.1. Background on Graphical Models for Image Labeling

In the following, the necessary basic notation and definitions of the common linear
programming (LP) relaxation (5.3) for the discrete labeling problem (5.1) is given in
Section 5.1.1. Subsequently, in Section 5.1.2, a smoothed version of the LP relaxation
is introduced whose optimality condition results in the belief propagation by ‘message
passing’ algorithm. The reader is referred to [Wer07] for more information about the
LP relaxation of labeling problems, to [WJ08] for connections to discrete probabilistic
graphical models from the variational viewpoint and to [YFW05, WJ08] for more details
on belief propagation.

It remains to address a minor technical point concerning the pairwise discrete energies
Jij(xi, xj) in (5.1), for ij ∈ E . So far, the functions Jij are not assumed to be symmetric,
allowing for Jij(xi, xj) 6= Jij(xj , xi). However, if the graph G is undirected, there is no
distinction between ij and ji, leading to the problem that the assignment of edges ij
to energy values Jij(xi, xj) might not be well defined due to asymmetry. One way to
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overcome this, is to choose an arbitrary orientation of the edges, resulting in a well defined
map ij 7→ Jij(xi, xj) and allowing for asymmetric pairwise energies. It is important to
note, that the orientation itself plays no essential role in the model, it is merely a technical
assumption. If the pairwise energies are all symmetric, no orientation is necessary.

Assumption 5.1.1. Unless otherwise stated, the edge set E of the graph G is assumed
to be (randomly) oriented throughout this chapter. By abuse of notation an oriented
edges (i, j) ∈ E is often again denoted by ij = (i, j), i.e. ij ∈ E then implies ji /∈ E .

5.1.1. Local Polytope Relaxation of Graphical Models

In the following, the transition from the discrete energy minimization problem (5.1) to
the local polytope relaxation (5.3) is sketched. Thereby, additional notation needed in
subsequent sections is introduced.

The linear map of simultaneously extracting the row and column sums of a square
matrix M ∈ Rn×n is defined by

A : Rn×n → R2n, M 7→ A[M ] :=

(
M1n
M>1n

)
. (5.4a)

Its adjoint with respect to the corresponding Euclidean inner products is given by

A> : R2n → Rn×n, z =

(
x
y

)
7→ A>[z] = x1>n + 1ny

>, with x, y ∈ Rn. (5.4b)

For future reference, the following characterization for the kernel of A is stated next.

Lemma 5.1.1. The kernel of A> and its orthogonal complement are given by

ker(A>) =

{
a

(
1n
−1n

)
∈ R2n : a ∈ R

}
(5.5a)

ker(A>)⊥ =

{
z ∈ R2n :

〈
z,

(
1n
−1n

)〉
= 0

}
. (5.5b)

Proof. Let z = ( xy ) ∈ R2n, with x, y ∈ Rn and assume 0 = A>[z] = x1>n + 1ny>.
Applying A results in

0 = A[x1>n + 1ny
>] =

(
nx+ 〈y,1n〉1n
〈x,1n〉1n + ny

)
⇔ z =

(
x
y

)
= − 1

n

(
〈y,1n〉1n
〈x, 1n〉1n

)
.

Substituting the right-hand side back into 0 = A>[z] directly gives 〈x,1n〉 = −〈y,1n〉.
Thus, setting a = 1

n〈x,1n〉 ∈ R shows that z has the form (5.5a). Conversely, in view of
(5.4b), it is clear that any vector from the set (5.5a) is in ker(A>). The characterization
of the orthogonal complement ker(A>)⊥ directly follows from the definitions.
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Let p, q ∈ ∆, representing two discrete probability distributions on the set of labels
X . Using the map A, the set of joint probability distributions on X ×X with marginals
p and q, also called the set of coupling measures, is defined by

Π(p, q) :=

{
M ∈ Rn×n

∣∣∣∣ M ≥ 0 and A[M ] =

(
p
q

)}
(5.6)

The first step towards the LP relaxation is the definition of local model parameter
vectors and matrices associated to each vertex i ∈ V and edge ij ∈ E , encoding the
values of the corresponding discrete energy values Ji and Jij in the objective function
(5.1). For each i ∈ V and ij ∈ E , these associated vectors and matrices are defined by

ϑi ∈Rn with components (ϑi)
k :=Ji(`k), ∀k ∈ [n], (5.7a)

ϑij ∈Rn×n with components (ϑij)
l
k :=Jij(`k, `l), ∀k, l ∈ [n], (5.7b)

where `k, `r ∈ X . These local terms are commonly called unary and pairwise terms in
the literature. Recall from the discussion of (5.1) that the unary terms represent the
data and the pairwise terms specify a regularizer. All these local terms, indexed by the
vertices i ∈ V and edges ij ∈ E of the underlying graph G = (V, E), are stacked into the
vector

ϑ :=

(
ϑV
ϑE

)
, with ϑV := (ϑi)i∈V ∈ R|V|n and ϑE := (ϑij)ij∈E ∈ R|E|n

2
, (5.8)

where ϑij is conveniently regard either as a vector in Rn
2

or as a matrix Rn×n, depending
on the context.

Next, local indicator vectors and matrices are used to represent label choices x ∈ Xm.
For each vertex i ∈ V and edge ij ∈ E , the associated indicator vector and matrix with
respect to the choices xi, xj ∈ X are given by

µi ∈ {0, 1}n and µij ∈ {0, 1}n×n, (5.9)

where µi = ek and µij = eke
>
l , if xi = `k and xj = `l, with the standard basis vectors

ek, el ∈ Bn. In the same way as (5.8), all local terms are stacked into the vector

µ :=

(
µV
µE

)
, with µV := (µi)i∈V and µE := (µij)ij∈E . (5.10)

This encoding establishes a one-to-one correspondence between label choices x ∈ Xm
and discrete indicator vectors in the set

DG :=
{
µ ∈ {0, 1}|V|n+|E|n2 | ∀i ∈ V, µi ∈ ∆ and ∀ij ∈ E , µij ∈ Π(µi, µj)

}
, (5.11)

where A is the linear map from (5.4a).
Combining the indicator vector µ and the model parameter ϑ, the energy values Ji

and Jij for vertex i ∈ V and edge ij ∈ E can now be written as inner products

Ji(xi) = 〈ϑi, µi〉 and Jij(xi, xj) = 〈ϑij , µij〉.
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Therefore, the overall combinatorial optimization problem (5.1) now reads

min
x∈Xm

{
J(x)

}
= min

µ∈DG

{
〈ϑ, µ〉

}
.

The corresponding linear programming relaxation consists in replacing the constraint
of the indicator vectors in (5.11) from taking values in the discrete set {0, 1} to taking
values in the interval [0, 1] ⊂ R, resulting in the so-called local polytope LG , defined by

LG :=
{
µ ∈ R|V|n+|E|n2

∣∣∣ ∀i ∈ V, µi ∈ ∆ and ∀ij ∈ E , µij ∈ Π(µi, µj)
}
, (5.12)

where the adjective ‘local’ refers to the local marginalization constraints Π(µi, µj) (5.6).
As a consequence of this, the LP relaxation (5.3) of (5.1) reads more explicitly

min
µ∈LG

{
〈ϑ, µ〉

}
= min

µ∈LG

{
〈ϑV , µV〉+ 〈ϑE , µE〉

}
, (5.13)

5.1.2. Smoothed LP Relaxation and Belief Propagation

Next, the smoothed LP relaxation is introduced and belief propagation is sketched to-
gether with the origin of the corresponding messages.

Starting point is the primal LP (5.3) written in the form

min
µ
〈ϑ, µ〉 subject to Aµ = b, µ ≥ 0, (5.14)

with a suitably chosen matrix A and vector b for representing the constraints of the
entire feasible set LG explicitly given by (5.12). The corresponding dual LP (B.24) reads

max
ν

{
〈b, ν〉

}
, A>ν ≤ ϑ,

with dual (multiplier) variable ν corresponding to the affine primal equality constraints
Aµ = b. Due to the specific structure of these constraints, for each i ∈ V and ij ∈ E the
vector ν contains local dual variables

νi ∈ R and νij =

(
νij;i
νij;j

)
∈ R2n, with νij;i, νij;j ∈ Rn,

where νi corresponds to the constraint 〈µi,1n〉 = 1 and νij to the marginal constraints
on µij , with νij;i being associated to µij1n = µi and νij;j to µ>ij1n = µj . With this, ν
can be viewed as resulting from stacking all local dual vectors

ν =

(
νV
νE

)
, with νV := (νi)i∈V and νE := (νij)ij∈E .

In order to obtain a condition that relates optimal vectors µ and ν without subdiffer-
entials that are caused by the non-smoothness of these LPs, one considers the smoothed
primal convex problem

min
µ∈LG

{
〈ϑ, µ〉 − τHB(µ)

}
, (5.15)
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with smoothing parameter τ > 0 and the Bethe entropy HB. This entropy constitutes
an approximation of the underlying (usually) intractable true entropy of the associated
probability distribution (5.2), defined by

HB(µ) :=
∑
ij∈E

H(µij)−
∑
i∈V

(
d(i)− 1

)
H(µi), (5.16)

with degree d(i) := |Ni \ {i}| of vertex i ∈ V (number of neighboring vertices) and the
local entropy functions

H(µi) = −〈µi, logµi〉 H(µij) = −〈µij , logµij〉. (5.17)

As a consequence of this specific approximation, −HB is not convex. Setting temporarily
τ = 1 and evaluating the optimality condition ∂µL(µ, λ, ν) = 0 based on the correspond-
ing Lagrangian (B.15) for the primal LP (5.14)

L(µ, λ, ν) = 〈ϑ, µ〉 −HB(µ)− 〈λ, µ〉+ 〈ν,Aµ− b〉, (5.18)

yields λ = 0 and the following relations connecting µ and ν,

µli = eνie−ϑ
l
i

∏
j∈Ni

eν
l
ij;i , ∀l ∈ [n] ∀i ∈ V, (5.19a)

(µij)
r
l = eνi+νje−(ϑij)

r
l−ϑ

l
i−ϑrj

∏
k∈Ni\{j}

eν
l
ik;i

∏
k∈Nj\{i}

eν
r
jk;j , ∀l, r ∈ [n] ∀ij ∈ E . (5.19b)

The terms eνi , eνi+νj ∈ R normalize the expressions on the right-hand side, whereas
the so-called messages eνij;i ∈ Rn enforce the local marginalization constraints of the
joint distributions µij ∈ Π(µi, µj). Utilizing these latter constraints allows, after some
algebra, to eliminate the left-hand side of (5.19) to obtain the fixed point equations

eν
l
ij;i = eνj

∑
r∈[n]

(
e−(ϑij)

r
l−ϑ

r
j

∏
k∈Nj\{i}

eν
r
jk;j

)
, ∀l ∈ [n], ∀ij ∈ E , (5.20)

solely in terms of the dual variables, commonly called sum-product algorithm or loopy be-
lief propagation by message passing. Repeating this derivation with the general smooth-
ing parameter τ > 0 of (5.15), it can be shown that taking the limit limτ↘0 results in
the fixed point equations

νlij;i = νj + max
r∈[n]

{
e−(ϑij)

r
l−ϑ

r
j

∏
k∈Nj\{i}

eν
r
jk;j

}
, ∀l ∈ [n], ∀ij ∈ E ,

called max-product algorithm in the literature, solving the original primal LP (5.14).

Using a smooth approximation with 0 < ε� 1 for loopy belief propagation (5.20) to
avoid the inherently non-smooth max-operation in the max-product algorithm, necessi-
tates to choose ε very small so as to stay close to the original primal LP (5.14). Also, local
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marginalization constraints are only satisfied after convergence of the iteration. Further-
more, the feasible set of the relaxation (5.13) is a superset of the original feasible set of
(5.1). Therefore, a globally optimal solution µ of (5.13) generally does not correspond to
a valid labeling, but rather contains non-integral components µli ∈ (0, 1), l ∈ [n] i ∈ V.
On way to overcome this are randomized rounding schemes as post-processing step for
converting a relaxed solution vector µ to a valid labeling x ∈ Xm [KT02, CKNZ05].

5.2. Variational Formulation of Graphical Models via local
Wasserstein Distances

Optimal transport and the Wasserstein distance have become a major tool of signal mod-
eling and analysis [KPT+17]. In connection with the metric labeling problem, using the
Wasserstein distance (aka. optimal transport costs, earthmover metrics) was proposed
before by [AFH+04] and [CKNZ05] in a non-smooth setting. However, the focus of the
presented approach is on a smooth geometric problem reformulation on the assignment
manifold which simultaneously performs rounding and that scales well with both the
problem size and the number of labels.

Towards this goal, the smoothed LP relaxation (5.15) is reformulated in Section 5.2.1
using local entropy regularized Wasserstein distances, which will be the basis for the
variational model on the assignment flow. In Section 5.2.2, the dual of the underlying
convex optimization problem for general regularized Wasserstein distances is considered
and optimality conditions are given. Furthermore, differentiability and analyticity is
investigated and an expression for the corresponding gradient is derived. Subsequently,
these results are applied in Section 5.2.3 in the case of the entropy regularized Wasser-
stein distance and a matrix scaling algorithm for computing the corresponding gradients,
called Sinkhorn’s algorithm [Sin64], will be derived based on [Cut13]. Finally, in Sec-
tion 5.2.4, the definition of the variational model is given, the effect of its components
on the Riemannian gradient descent flow is identified and the Euclidean gradient is cal-
culated. From the viewpoint of belief propagation, the Wasserstein gradients contained
in the Riemannian gradient of the model can be considered as ‘Wasserstein messages’.
At the end, some beneficial properties of the Riemannian gradient flow compared to
loopy belief propagation are discussed and the influence of the rounding mechanism in
the initial phase of the Riemannian gradient flow is investigated.

5.2.1. A Reformulation of the Smoothed LP Relaxation

Regarding the linear objective function of the LP relaxation (5.13) of the form

〈ϑ, µ〉 = 〈ϑV , µV〉+ 〈ϑE , µE〉, µ ∈ LG , (5.21)

the parameters µi ∈ ∆, with i ∈ V, can be interpreted as assignment vectors Wi on S
and thus, µV can be viewed as an assignment matrix W ∈ W. It is therefore natural
to consider the LP relaxation as a starting point for deriving a variational formulation
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of the underlying discrete objective (5.1) on the assignment manifold W. With this
identification of µV and W in mind, the unary data terms ϑi can simply be represented
on W through the inner product 〈ϑV ,W 〉. However, it is not obvious how a variational
formulation solely based on the assignment vectors Wi (i.e. µi) should properly incorpo-
rate the pairwise regularization parameters ϑij for the edges ij ∈ E , without referring to
the coupling measures µij ∈ Π(µi, µj).

The key observation for ‘eliminating’ the edge-based variables µij in the LP relax-
ation (5.13), is the fact that the linear function 〈ϑE , µE〉 as well as the corresponding
constraints for µE separate over the edges ij ∈ E . This allows to split and encapsulate
the minimization with respect to the coupling measures µij as subproblems inside the LP
minimization itself, resulting in individual local Wasserstein distances only depending
on the corresponding marginal distributions µi and µj for any edge ij ∈ E .

Lemma 5.2.1. The local polytope relaxation (5.13) given by

min
µ∈LG

{
〈ϑ, µ〉

}
,

with LG from (5.12) is equivalent to the problem

min
µV∈∆m

{∑
i∈V
〈ϑi, µi〉+

∑
ij∈E

dϑij (µi, µj)
}

(5.22)

involving the local Wasserstein distances

dϑij (µi, µj) := min
µij∈Π(µi,µj)

{
〈ϑij , µij〉

}
, (5.23)

with the set of coupling measures Π(µi, µj) given by (5.6).

Proof. The claim follows from reformulating the LP-relaxation based on the local poly-
tope constraints (5.12) with the indicator functions δΠ(µi,µj) from (B.2) as follows.

min
µ∈LG

{
〈ϑ, µ〉

}
= min

µ∈LG

{
〈ϑV , µV〉+ 〈ϑE , µE〉

}
= min

µV∈∆m

{
〈ϑV , µV〉+ min

µE

∑
ij∈E

(
〈ϑij , µij〉+ δΠ(µi,µj)(µij)

)}
= min

µV∈∆m

{∑
i∈V
〈ϑi, µi〉+

∑
ij∈E

min
µij∈Π(µi,µj)

{
〈ϑij , µij〉}

}
= min

µV∈∆m

{∑
i∈V
〈ϑi, µi〉+

∑
ij∈E

dϑij (µi, µj)
}
.

This way, the edge-based variables µij are hidden in the optimization subproblems
for the local Wasserstein distances, where ‘local’ refers to the fact that the Wasserstein
distances itself only depend on the local marginal distributions µi, µj for ij ∈ E .

As only unary variables µi with simplex constraints occur in the reformulated problem
(5.24), this objective function it a suitable candidate for a variational model on the
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assignment manifold which properly takes into account the regularization parameters ϑij .
However, due to the convex but non-smooth (piecewise-linear (cf. [RW09, Def. 2.47]))
local Wasserstein distances (5.23), the reformulated problem (5.22), as the original LP
relaxation, is non-smooth.

To overcome this deficit and derive a smoothed version of (5.22), the reformulation
from the proof of Lemma 5.2.1 is applied to the smoothed primal LP relaxation (5.16).

Lemma 5.2.2. The smoothed LP relaxation (5.15) given by

min
µ∈LG

{
〈ϑ, µ〉 − τHB(µ)

}
,

with the local polytope LG (5.12), Bethe entropy HB (5.16) and smoothing parameter
τ > 0 is equivalent to the problem

min
µV∈∆m

{
〈ϑV , µV〉+

∑
ij∈E

dϑij ,τ (µi, µj) + τ
∑
i∈V

(
d(i)− 1

)
H(µi)

}
, (5.24)

where the smoothed entropy regularized local Wasserstein distances dϑij ,τ (µi, µj) are ob-
tained by entropy regularization

dϑij ,τ (µi, µj) := min
µij∈Π(µi,µj)

{
〈ϑij , µij〉 − τH(µij)

}
, (5.25)

for all ij ∈ E, with entropy H(µij) = −〈µij , logµij〉 and smoothing parameter τ > 0.

Proof. Keeping in mind the specific form of the Bethe entropy HB and reformulating
the smoothed LP relaxation as in the proof of Lemma 5.2.1, results in

min
µ∈LG

{
〈ϑ, µ〉 − τHB(µ)

}
= min
µ∈LG

{
〈ϑV , µV〉+ 〈ϑE , µE〉 − τ

∑
ij∈E

H(µij) + τ
∑
i∈V

(
d(i)− 1

)
H(µi)

}
= min
µV∈∆m

{
〈ϑV , µV〉+

∑
ij∈E

min
µij∈Π(µi,µj)

{
〈ϑij , µij〉 − τH(µij)

}
+ τ

∑
i∈V

(
d(i)− 1

)
H(µi)

}
Using the entropy regularized local Wasserstein distances (5.25) implies that the local

marginalization constraints Π(µi, µj) of the underlying ‘hidden’ edge variables µij are
always satisfied by definition. This is in sharp contrast to inference for the smoothed
LP relaxation (5.15) by loopy belief propagation (5.20), were these constraints are only
gradually enforced during the iteration and are guaranteed to hold only after convergence
of the entire iteration process. Therefore, the reformulation (5.24) has two key properties
that distinguishes it from established work:

(I) inherent smoothness and

(II) validity of the local polytope constraints at anytime.
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Since the edge variables are only contained in the subproblems (5.25), this approach
does not suffer from the enormous memory requirements that would arise from directly
solving the smoothed LP (5.15) in the primal domain and thus allows to work with
graphs having higher connectivity.

Thus, (5.25) will be the basis for the variational model in Section 5.2.4 below. However,
first some basic properties of general regularized Wasserstein distances are investigated.

5.2.2. General Smoothed Wasserstein Distances

In this section, properties of a general regularized Wasserstein distance are considered.
First, the dual optimization problem and corresponding optimality conditions are de-
rived. Subsequently, differentiability as well as analyticity are investigated and an ex-
pression for the gradient is given. To this end, it will be convenient to temporarily
simplify notation.

Suppose p = (p1, p2) ∈ ∆ × ∆ ⊂ R2n are two discrete probability distributions on
the set of labels X and Θ ∈ Rn×n is an associated nonnegative cost matrix. The (non-
smooth) Wasserstein distance then reads

dΘ(p1, p2) = min
M∈Π(p1,p2)

{
〈Θ,M〉

}
. (5.26)

Explicitly expressing the constraints Π(p1, p2) from (5.6) using the linear map A defined
by (5.4a), the linear optimization problem (5.26) may be written as

dΘ(p1, p2) = min
M∈Rn×n

〈Θ,M〉 s.t. A[M ] =

(
p1

p2

)
= p, M ≥ 0 . (5.27)

The corresponding dual LP of (5.27) is given by (B.24) and takes the form

max
p∈R2n

〈µ, ν〉 s.t. A>[ν] ≤ Θ . (5.28)

Using a general convex, lower-semicontinuous smoothing function Fτ : Rn×n → R, with
R = R ∪ {∞}, results in the smoothed local Wasserstein distance

dΘ,τ (p1, p2) := min
M∈Π(p1,p2)

{
〈Θ,M〉+ Fτ (M)

}
, (5.29)

with smoothing parameter τ > 0. If the nonnegative cost matrix Θ is symmetric, then,
under an additional assumption on the smoothing function, this property also translates
to the smoothed Wasserstein distances.

Lemma 5.2.3. Suppose the cost matrix is symmetric Θ> = Θ and the convex smoothing
function Fτ in (5.29) satisfies Fτ (M) = Fτ (M>) for all M ∈ [0, 1]n×n. Then, for any
points p1, p2 ∈ ∆, the smoothed Wasserstein distance is symmetric, that is

dΘ,τ (p1, p2) = dΘ>,τ (p2, p1). (5.30)
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Proof. Assume M ∈ Π(p1, p2) is a minimizer of (5.31). Then, due to the assumption on
Fτ , it follows

dΘ,τ (p1, p2) = 〈Θ,M〉+ Fτ (M) = 〈Θ>,M>〉+ Fτ (M>) .

Let M ∈ Π(p2, p1) be arbitrary. Then M> ∈ Π(p1, p2) and

〈Θ>,M〉+ Fτ (M) = 〈Θ,M>〉+ Fτ (M>) ≥ 〈Θ,M〉+ Fτ (M) = 〈Θ>,M>〉+ Fτ (M>) .

This shows that M> ∈ Π(p2, p1) is a minimizer of dΘ>,τ (p2, p1), establishing (5.30).

It will be advantageous to slightly rewrite problem (5.29) with explicit expressions for
the constraints in the form

dΘ,τ (p1, p2) = min
M∈Rn×n

{
〈Θ,M〉+ Fτ (M)

}
s.t. A[M ] = p, M ≥ 0, (5.31a)

= min
M∈Rn×n

{
〈Θ,M〉+Gτ (M)

}
s.t. A[M ] = p, (5.31b)

where Gτ : Rn×n → R is defined as

Gτ (M) := Fτ (M) + δRn×n≥0
(M), (5.32)

with the convex indicator function δRn×n≥0
of (B.2) expressing the nonnegativity con-

straints for M . As Rn×n≥0 is a closed convex set, δRn×n≥0
and therefore also Gτ is convex

and lower semicontinuous.
Next, the dual problem of (5.31b) is derived and, under the additional assumptions of

strong duality and differentiability of the conjugate G∗τ , an optimality condition relating
the primal and dual solution is given.

Lemma 5.2.4. The dual problem of (5.31b) is given by

max
ν∈R2n

{
〈p, ν〉 −G∗τ

(
A>[ν]−Θ

)}
, (5.33)

where G∗τ is the conjugate function (B.3). Additionally, suppose strong duality holds.
Then, if G∗τ is defined and continuously differentiable on all of Rn×n, the condition for
optimal primal M and dual ν = (ν1, ν2) solutions is

M = ∂G∗τ
(
A>[ν]−Θ

)
, with A[M ] = p and M ≥ 0. (5.34)

Proof. Since the primal optimization problem (5.31b) has no inequality constraints, the
associated Lagrangian (B.15), depending on p = (p1, p2), is given by

Lp(M,ν) =
〈
Θ,M

〉
+Gτ (M) +

〈
ν, p−A[M ]

〉
=
〈
ν, p
〉

+
〈
Θ−A>[ν],M

〉
+Gτ (M),

with (M,ν) ∈ Rn×n × R2n. The corresponding dual function then reads

hp(ν) = inf
M

{
Lp(M,ν)

}
=
〈
ν, p
〉

+ inf
M

{〈
Θ−A>[ν],M

〉
+Gτ (M)

}
=
〈
ν, p
〉
− sup

M

{〈
A>[ν]−Θ,M

〉
−Gτ (M)

}
=
〈
ν, p
〉
−G∗τ (A>[ν]−Θ),
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where the last equality directly follows from the definition (B.3) of conjugate functions.
Next, suppose strong duality holds and G∗τ is continuously differentiable on all of Rn×n.

For the optimal primal M and dual ν = (ν1, ν2) solutions, strong duality then implies〈
ν, p
〉
−G∗τ

(
A>[ν]−Θ

)
= hp(ν) = dΘ,τ (p1, p2) =

〈
Θ,M

〉
+Gτ (M). (5.35)

As a consequence of the constraint A[ M ] = p, the reformulation〈
ν, p
〉

=
〈
ν,A[ M ]

〉
=
〈
A>[ν],M

〉
(5.36)

follows. Furthermore, G∗∗τ = Gτ as a consequence of Gτ being convex and lower semi-
continuous. Thus, rearranging (5.35) and applying the reformulation of (5.36) gives〈
A>[ν]−Θ,M

〉
−G∗τ

(
A>[ν]−Θ

)
= Gτ (M) = G∗∗τ (M) = sup

Z

{
〈Z,M〉 −G∗τ (Z)

}
.

Therefore, A>[ν] − Θ is a maximizer of H(Z) := 〈Z,M〉 − G∗τ (Z) and fulfills the first
order optimality condition

0 = ∂H
(
A>[ν]−Θ

)
⇔ M = ∂G∗τ

(
A>[ν]−Θ

)
. (5.37)

The other two constraints in (5.34) directly follow from the primal optimality of M .

Remark 5.2.1. The condition of strong duality (cf. Section B.4) made by Lemma 5.2.4
is crucial for what follows. This condition will be satisfied later on when working with
the entropy regularization in a geometric setting with local coupling measures M , and
p1, p2 ∈ S with full support.

In order to get a better intuition for suitable candidates Fτ in (5.29) for smoothing the
original problem (5.26), rewrite the constraints of (5.28), using the indicator function
(B.2) of the set Rn×n≤0 , in the form of

δRn×n≤0

(
A>ν −Θ

)
. (5.38)

Comparing this with the dual problem (5.33) shows that G∗τ should be a smooth ap-
proximation of the indicator function for the set Rn×n≤0 . This point is revisited.

In the remainder of this section, it will be shown that, depending on the function
G∗τ , the smoothed Wasserstein distance dΘ,τ is differentiable or even analytic. Based on
the dual problem (5.33), an expression for the gradient is given, allowing to numerically
compute it in practice.

Theorem 5.2.5 (Wasserstein distance gradient). Suppose for every p = (p1, p2) ∈ S×S
strong duality holds for the problem (5.31b) and the conjugate function G∗τ is C2 on
Rn×n with positive definite Hessian everywhere. Then the smoothed Wasserstein distance
dΘ,τ : S ×S → R is differentiable, and the Riemannian gradient of dΘ,τ at p with respect
to the induced Euclidean metric is given by

gradE dΘ,τ (p) =

(
gradE,1 dΘ,τ (p1, p2)

gradE;2 dΘ,τ (p1, p2)

)
=

(
PTSν1

PTSν2

)
= PTS×TS [ν], (5.39)
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where gradE,i dΘ,τ denotes the gradient with respect to the argument pi, i ∈ {1, 2}, and

ν =

(
ν1

ν2

)
∈ argmax

ν∈R2n

{
〈p, ν〉 −G∗τ (A>ν −Θ)

}
.

Additionally, if G∗τ is analytic, then so is dΘ,τ : S × S → R.

Corollary 5.2.6. Suppose the assumptions of Theorem 5.2.5 are fulfilled. Furthermore,
assume the cost matrix Θ is symmetric and Fτ (M) = Fτ (M>) for all M ∈ [0, 1]n×n

holds. Then the Euclidean gradient of dΘ,τ : S × S → R, with τ > 0, satisfies

gradE,2 dΘ,τ (q, p) = gradE,1 dΘ,τ (p, q), ∀p, q ∈ S. (5.40)

Proof. By Theorem 5.2.5, the Wasserstein distance dΘ,τ is differentiable. The equal-
ity (5.40) is verified by a direct calculation based on the symmetry of dΘ,τ due to
Lemma 5.2.3. For this, let γ : (−r, r) → S, for r > 0, be a smooth curve with γ(0) = p
and γ̇(0) = v ∈ TS . Then〈

gradE,2 dΘ,τ (q, p), v
〉

=
d

dt
dΘ,τ (q, γ(t))

∣∣
t=0

(5.30)
=

d

dt
dΘ,τ (γ(t), q)

∣∣
t=0

=
〈

gradE,1 dΘ,τ (p, q), v
〉
.

Since this holds for any v ∈ TS , the equality in (5.40) follows.

A proof of Theorem 5.2.5 is given below after some preparatory lemmas. For this, it
will be convenient to refer to the dual function (5.33) with the shorthand notation

hp(ν) := 〈p, ν〉 −G∗τ
(
A>[ν]−Θ

)
(5.41)

and view p ∈ ∆2 and ν ∈ R2n as stacked vectors of the form

p =

(
p1

p2

)
, p1, p2 ∈ ∆, and ν =

(
ν1

ν2

)
, ν1, ν2 ∈ Rn.

The next lemma characterizes the set of optimal dual solutions to problem (5.33).

Lemma 5.2.7. Assume strong duality holds and the function G∗τ of the dual objective
function (5.33), respectively (5.41), is defined, strictly convex and continuously differ-
entiable on Rn×n. Let p ∈ ∆2. If ν minimizes the dual function hp, then the set of all
optimal dual solutions has the form

argmax
ν∈R2n

{
hp(ν)

}
= ν + ker(A>). (5.42)

Proof. Let ν be an optimal dual solution. First, the inclusion from left to right is shown.
For this, suppose ν ′ is another optimal dual solution, that is hp(ν

′) = hp(ν). Using the
shorthands w := A>[ν]−Θ and w′ := A>[ν ′]−Θ in the following gives

w − w′ = A>[ν − ν ′]. (5.43)
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Due to (5.41), the equality hp(ν
′) = hp(ν) can be reformulated as

G∗τ (w)−G∗τ (w′) = 〈p, ν − ν ′〉 . (5.44)

Since the requirements of Lemma 5.2.4 are satisfied, ν ′ fulfills the optimality condition

M
′
= ∇G∗τ (w′), A[M

′
] = p, (5.45)

with a corresponding primal optimal solution M
′
. Hence

〈p, ν − ν ′〉 = 〈A[M
′
], ν − ν ′〉 (5.43)

= 〈M ′, w − w′〉 (5.45)
= 〈∇G∗τ (w′), w − w′〉 . (5.46)

Overall, the equality

G∗τ (w)−G∗τ (w′)
(5.44)

= 〈p, ν − ν ′〉 (5.46)
= 〈∇G∗τ (w′), w − w′〉 (5.47)

follows. As a consequence of G∗τ being strictly convex, the corresponding first order
condition (B.4) is a strict inequality for w′ 6= w. Thus, (5.47) can only hold if

0 = w′ − w (5.43)
= A>[ν ′ − ν],

showing that ν and ν ′ only differ by a vector in ker(A>), i.e. ν ′ ∈ ν + ker(A>).
It remains to prove the reverse inclusion, that is vectors characterized by the right-

hand side of (5.42) maximize the dual objective function hp. Let ν ′ be an arbitrary
vector in ν + ker(A>). Lemma 5.1.1 implies that ν ′ takes the form

ν ′ = ν + a
( 1n
−1n

)
, with a ∈ R.

The fact that A>[ν ′] = A>[ν] and 〈p,
( 1n
−1n

)
〉 = 〈p1,1n〉 − 〈p2,1n〉 = 1 − 1 = 0, as a

consequence of p ∈ ∆2, implies

hp(ν
′) =

〈
p, ν + a

( 1n
−1n

) 〉
−G∗τ

(
A>
[
ν + a

( 1n
−1n

) ]
−Θ

)
=
〈
p, ν
〉
−G∗τ

(
A>[ν]−Θ

)
= hp(ν),

showing that ν ′ ∈ argmaxν∈R2n hp(ν).

Using the characterization ker(A>)⊥ = Im(A), the space R2n is orthogonally decom-
posed for the subsequent considerations into

R2n = ker(A>)⊕ Im(A).

Denoting the orthogonal projections of a vector ν ∈ R2n by

νk := Pker(A>)ν and νI := PIm(A)ν, (5.48)

any vector ν ∈ R2n can be decomposed as

ν = νk + νI. (5.49)

With this, the attainment of optimal dual solutions on the subspace Im(A) can now be
clarified.
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Lemma 5.2.8. Suppose the assumptions of Lemma 5.2.7 are fulfilled and let p ∈ ∆2.
Then, for any ν ∈ argmaxν∈R2n{hp(ν)} with the decomposition ν = νk + νI from (5.49),
it follows

hp(ν) = hp(νI) = max
z∈Im(A)

{
hp(z)

}
and argmax

z∈Im(A)

{
hp(z)

}
= {νI}, (5.50)

that is a unique dual maximizer exists in the subspace Im(A).

Proof. First, the equality on the left-hand side of (5.50) is shown. Lemma 5.2.7 yields

argmaxν∈R2n

{
hp(ν)

}
= ν + ker(A>). (5.51)

The decomposition ν = νI + νk shows that νI is contained in ν + ker(A>) and therefore
also maximizes hp over both sets, R2n and Im(A).

For the characterization of the minimizers of hp over Im(A) on the right-hand side of
(5.50), let z ∈ Im(A) be another maximizer. As a consequence of the already established
equality, hp(z) = maxz∈Im(A)

{
hp(z)

}
= hp(ν) follows and therefore implies z = ν + y

with y ∈ ker(A>) by (5.51). Applying the orthogonal projection onto Im(A) from (5.48)
results in

z = PIm(A)z = PIm(A)[ν + y] = PIm(A)ν = νI.

After these preparations, the main result Theorem 5.2.5 of this section can now be
proven.

Proof of Theorem 5.2.5. The proof consists of two parts. First, the orthogonal decom-
position R2n = ker(A>)⊕ Im(A) is related to the tangent space TS×S = TS × TS ⊂ R2n.
Second, this relation together with the implicit function theorem is used to show differ-
entiability and derive the relation (5.39).

The first part begins by establishing the inclusion

TS × TS ⊆ Im(A) = ker(A>)⊥. (5.52)

For this, let v = ( v1v2 ) ∈ TS × TS be arbitrary. By definition of TS in (2.10), the equality
〈1n, v1〉 = 〈1n, v2〉 = 0 and thus 〈v,

( 1n
−1n

)
〉 = 0 follows, which according to Lemma 5.1.1

means v ∈ ker(A>)⊥ = Im(A) and therefore establishes the inclusion. Next, consider
the unique orthogonal decomposition ν = νk +νI ∈ ker(A>)⊕ Im(A) from (5.49) for any
vector ν ∈ R2n. As a consequence of (5.52), PTS×TS [νk] = 0 holds and implies

PTS×TS [νI] = PTS×TS [ν]. (5.53)

For the second part, let C be a 2n× (2n− 1) matrix with the columns Cj forming an
orthonormal basis of Im(A) ⊂ R2n. Denote the coordinates of u ∈ Im(A) by x = C>u
and define the linear map

C : R2n−1 → Rn×n, x 7→ C[x] := A>[Cx]. (5.54)
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Furthermore, let η : S2 → U2 denote the stacked m-affine coordinates from (3.20), i.e. for
p = (p1, p2) ∈ S2 let

η(p) =

(
η1(p1)
η2(p2)

)
, with ηi : S → U for i ∈ {1, 2}.

With this, the coordinate expression of hp(u), with Cx = u ∈ Im(A), is given by

ĥη(x) = hp(η)(Cx) = 〈p(η), Cx〉 −G∗τ
(
C[x]−Θ

)
.

The gradient of ĥη(x) with respect to x can be viewed as a map

Φ: R2(n−1) × R2n−1 → R2n−1, Φ(η, x) := ∂ĥp(η)(x) = C>p(η)− C>
[
∂G∗τ

(
C[x]−Θ

)]
.

Since G∗τ is assumed to be C2, the map Φ is C1 and the Jacobian of Φ with respect to
x takes the form

JΦ,x(η, x) = −C> ◦HessG∗τ
(
C[x]−Θ

)
◦ C.

If 0 6= z ∈ R2n−1 then 0 6= Cz ∈ Im(A) = ker(A>)⊥ and thus also 0 6= A>[Cz] = C[z].
As a consequence of HessG∗τ being positive definite everywhere, 0 6= z ∈ R2n−1 implies〈

z, JΦ,x(η, x)[z]
〉

= −
〈
C[z],HessG∗τ

(
C[x]−Θ

)
C[z]〉 < 0,

showing that JΦ,x(η, x) is negative definite and therefore invertible for every η and x.
Now let p ∈ S2 be arbitrary and suppose M as well as ν are primal and dual solutions.

Because the Hessian of G∗τ is positive definite, G∗τ is strictly convex and the assumptions
of Lemma 5.2.8 are fulfilled, resulting in the unique dual maximizer νI = PIm(A)ν of hp
in the subspace Im(A) with coordinates x, i.e. Cx = νI. Since strong duality is assumed
to hold, Lemma 5.2.4 gives the corresponding optimality condition

M = ∂G∗τ
(
A>[νI]−Θ

) (5.54)
= ∂G∗τ

(
C[x]−Θ

)
and A[ M ] = p. (5.55)

Using these conditions in the evaluation of Φ at (η, x) gives

Φ(η, x) = C>
(
p(η)−A[ M ]

)
= 0.

As JΦ,x(η, x) is invertible, the implicit function theorem yields that the maximizer can
be parameterized by a unique C1 function x = x(η) in a small neighborhood of η. Since
this holds for all η ∈ U2, the maximizer x is a global C1 function of η, resulting in the
differentiable map

νI : S2 → Im(A), p 7→ νI(p) := Cx(η(p)) (5.56)

Due to strong duality, the Wasserstein distance is then given by the expression

dΘ,τ (p) = hp(νI(p)) = 〈p, νI(p)〉 −G∗τ
(
A>
[
νI(p)

]
−Θ

)
,

proving differentiability. Because of

∂hp(νI) = p−A
[
∂G∗τ

(
A>[νI]−Θ

)] (5.55)
= p−A

[
M
] (5.55)

= 0,
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the gradient of the Wasserstein distance is given by

gradE dΘ,τ (p) = PTS×TS

[
νI(p) + dνI(p)

>[∂hp(νI(p))
]]

= PTS×TS
[
νI(p)

]
.

Finally, for an arbitrary ν ′ ∈ argmaxν∈R2n{hp(ν)}, the uniqueness of νI(p) according to
Lemma 5.2.8 implies ν ′I = νI(p) and therefore by (5.53)

gradE dΘ,τ (p) = PTS×TS
[
νI(p)

]
= PTS×TS

[
ν ′
]
,

establishing (5.39).
Now, suppose G∗τ is additionally analytic. Since all involved charts are analytic, so

is the above defined map Φ. Then, the real analytic implicit function theorem [KP02,
Thm. 2.5.3] implies that the parameterization x(η), and therefore also νI(p) from (5.56),
is analytic. Hence, this property also holds for dΘ,τ (p) = hp(νI(p)) as the composition
of two analytic functions.

5.2.3. Entropy Regularized Wasserstein Distance

In the following, the results from the previous section are applied to the smoothed
entropy regularized local Wasserstein distance (5.25). Based on [Cut13], an iterative
matrix scaling algorithm, called Sinkhorn’s algorithm [Sin64], will be derived for com-
puting gradients of the entropy regularized Wasserstein distance and numerical aspects
with respect to the smoothing parameter τ are examined. For clarity, the simplified
notation from the previous section is kept in the following.

The smooth entropy regularized Wasserstein distance (5.25) corresponds to the choice
Fτ (M) = −τH(M). For p1, p2 ∈ ∆ and nonnegative cost matrix Θ ∈ Rn×n, the opti-
mization problem reads

dΘ,τ (p1, p2) = min
M∈Π(p1,p2)

{
〈Θ,M〉 − τH(M)

}
, (5.57)

with the entropy function

H(M) = −〈M, logM〉 = −
∑
i,j∈[n]

M j
i logM j

i .

Since the set of coupling measures Π(p1, p2) (5.6) is compact as well as 〈Θ,M〉−τH(M)
continuous and strictly convex, a unique minimizer M of (5.57) always exists.

Lemma 5.2.9. For every p1, p2 ∈ S and smoothing parameter τ > 0, the optimization
problem (5.57) defining dΘ,τ (p1, p2) satisfies strong duality.

Proof. Problem (5.57) is a convex optimization problem with affine equality and inequal-
ity constraints. For p1, p2 ∈ S and τ > 0, the matrix p1p

>
2 ∈ Rn×n fulfills

p1p
>
2 > 0, and A[ p1p

>
2 ]

(5.4a)
=

(
p1p
>
2 1n

p2p
>
1 1n

)
=

(
p1

p2

)
.

Because of dom(〈Θ, ·〉 − τH) = dom(−H) = Rn×n≥0 , the matrix p1p
>
2 is contained in the

relative interior rint(dom(−H)) = Rn×n>0 . Thus, p1p
>
2 satisfies Slater’s condition (B.21),

implying strong duality.
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In order to state the dual problem (5.33) for this choice of Fτ , the conjugate function
of Gτ from (5.32) is calculated next.

Lemma 5.2.10. For the choice Fτ (M) = −τH(M), the conjugate of Gτ (M) from (5.32)
is an analytic function G∗τ : Rn×n → R given by

G∗τ (X) = e−1τ
〈
e

1
τ
X , 1n1>n

〉
= e−1τ

∑
k,l∈[n]

e
1
τ
Xl
k , ∀X ∈ Rn×n, (5.58)

where eX is the componentwise application of the exponential map.

Remark 5.2.2. Because strong duality holds according to Lemma 5.2.9, the constant
e−1 can be absorbed into the cost matrix Θ. Thus, the factor is dropped in the following
considerations.

Proof. The optimization problem defining the conjugate G∗τ separates as

G∗τ (X) = sup
M≥0

{
〈X,M〉+ τH(M)

}
=
∑
k,l∈[n]

sup
M≥0

{
M l
kX

l
k − τM l

k logM l
k

}
. (5.59)

Thus, consider the maximization of the real valued function

hx : [0,∞)→ R, y 7→ hx(y) := yx− τy log y,

for fixed x ∈ R. limy→∞ hx(y) = −∞ and hx(0) := limy→0+ hx(y) = 0 directly follow.
Due to h′′x(y) = −τ/y < 0, the function is strictly concave, with unique minimizer y

h′x(y) = x− τ log y − τ = 0 ⇔ e
1
τ
x−1 = y > 0

and corresponding maximum value supy≥0{hx(y)} = hx(y) = τe
1
τ
x−1. Using this in

(5.59) and extracting the common factor e−1τ establishes (5.58).

By Lemma 5.2.4 and with the expression of G∗τ from Lemma 5.2.10, keeping in mind
Remark 5.2.2, the dual problem of (5.57) reads

max
ν∈R2n

〈p, ν〉 − τ
〈
e

1
τ

(A>ν−Θ),1n1>n
〉
. (5.60)

Regarding the role of G∗τ in the dual problem, the indicator function (5.38) is smoothly

approximated by the function τe
1
τ
x. Figure 5.1 compares this approximation with the

classical logarithmic barrier −τ log(−x) function for approximating the indicator func-
tion δR≤0

of the nonpositive orthant. Log-barrier penalty functions are the method of
choice for interior point methods (see Section 3.1) which strictly rule out violations of
the constraints. While this is essential for many applications where constraints repre-
sent physical properties that cannot be violated, it is not essential in the present case
for calculating the Wasserstein distance. Moreover, the bias towards interior points by
log-barrier functions, as Figure 5.1 clearly shows, is unfavorable in the present context
and thus formulation (5.60) is preferred.
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Figure 5.1.: Approximations of the indicator function δR≤0
(red curves). Left: The log-

barrier function (black curves) strictly rules out violations of the constraints but induce
a bias towards interior points. Right: The entropy based formulation (blue curves) is
less biased and approximates the δ-function (red curve) reasonably well depending on
the smoothing parameter τ . Displayed are the approximations of δR≤0

for τ = 1
5 ,

1
10 ,

1
50 .

By Lemma 5.2.10 and Remark 5.2.2, the gradient and Hessian of G∗τ are given by

∂G∗τ (X) = e
1
τ
X and HessG∗τ (X)[U ] =

1

τ
e

1
τ
X•U, ∀U ∈ Rn×n. (5.61)

Because of 〈
U,HessG∗τ (X)[U ]

〉
=

1

τ

〈
U•2, e

1
τ
X
〉

=
1

τ

∑
k,l∈[n]

(U lk)
2e

1
τ
Xl
k > 0 (5.62)

for all X,U ∈ Rn×n with U 6= 0, the Hessian is positive definite everywhere, showing that
G∗τ is strictly convex. Therefore, all assumptions of Theorem 5.2.5, including analyticity,
are fulfilled, directly implying the following statement.

Corollary 5.2.11. For any cost matrix Θ ≥ 0 and smoothing parameter τ > 0, the
entropy regularized Wasserstein distance dΘ,τ : S ×S → R is analytic and the Euclidean
gradient at p = (p1, p2) is given by

gradE dΘ,τ (p) =

(
gradE,1 dΘ,τ (p1, p2)

gradE;2 dΘ,τ (p1, p2)

)
=

(
PTSν1

PTSν2

)
= PTS×TS [ν], (5.63)

where ν is any maximizer of the dual problem (5.60) and gradE,i dΘ,τ denotes the gradient
with respect to the argument pi, for i = 1, 2. Moreover, if Θ is additionally symmetric,
then so is dΘ,τ and the gradients satisfy

gradE,1 dΘ,τ (p1, p2) = gradE,2 dΘ,τ (p2, p1), ∀p1, o2 ∈ S. (5.64)
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Proof. The first part directly follows from Theorem 5.2.5. Since H(M) = H(M>) for all
matrices M ∈ Rn×n, the second part follows from Lemma 5.2.3 and Corollary 5.2.6.

Next, it will be derived how the local Wasserstein gradients (5.39) are computed based
on the formulation (5.57) and numerical aspects depending on the smoothing parameter
τ are examined. It is well known that doubly stochastic matrices as solutions of convex
programs like (5.57) can be computed by iterative matrix scaling [Sin64, Sch90], [Bru06,
ch. 9]. This has been made popular in the field of machine learning by [Cut13].

Because strong duality holds by Lemma 5.2.9 and G∗τ is differentiable, the optimality
condition (5.34) from Lemma 5.2.4 for optimal primal M and dual ν solutions holds and
takes the form

M = ∂G∗τ
(
A>[ν]−Θ

) (5.61)
= e

1
τ

(A>ν−Θ).

Rearranging this condition yields the connection to matrix scaling:

M = e
1
τ

(
A>ν−Θ

)
(5.4b)

= e
1
τ

(
ν11>n+1nν>2 −Θ

)
=
(
e

1
τ ν11>n

)
•e−

1
τ Θ•

(
e

1
τ ν21n

)>
= Diag

(
e

1
τ ν1
)
e−

1
τ Θ Diag

(
e

1
τ ν2
)
,

where Diag(·) denotes the diagonal matrix with the argument vector as entries and
results in a row-wise (left diagonal matrix) and column-wise (right diagonal matrix)
scaling of the matrix

K := exp
(
− 1

τΘ
)
.

For given marginals p = (p1, p2) ∈ S × S, the optimal dual variables ν = (ν1, ν2) ∈
R2n can be determined by the Sinkhorn’s iterative algorithm [Sin64], up to a common
multiplicative constant.

Lemma 5.2.12 ([Cut13, Lemma 2]). For τ > 0, the solution M of (5.57) is unique and
has the form M = Diag(u1)K Diag(u2), where the two vectors u1, u2 ∈ Rn are uniquely
defined up to a common multiplicative factor.

Accordingly, by setting

u1 := e
1
τ ν1 , u2 := e

1
τ ν2 , (5.65)

the corresponding fixed point iterations of Sinkhorn’s algorithm read

u
(k+1)
1 =

µ1

K
(

µ2

K>u
(k)
1

) , u
(k+1)
2 =

µ2

K>
(

µ1

Ku
(k)
2

) , (5.66)

which are iterated until the change between consecutive iterates is small enough. De-
noting the iterates after convergence by u1, u2, resubstitution into (5.65) determines the
optimal dual variables

ν1 = τ log u1, ν2 = τ log u2. (5.67)
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Figure 5.2.: The plots show the entropy-regularized Wasserstein distance dΘ,τ (1S , γ(t))
for varying τ and increasing numbers of labels n. Here, γ(t) = t(e1−1S) + 1S ∈ ∆, with
t ∈ [0, 1], is the line segment connecting the barycenter 1S (2.34) to the vertex e1 on the
simplex ∆. The cost matrix Θ is given by the Potts prior (see (5.86)). In all three plots
the parameter τ has been chosen as τ = 1

5 (cyan), τ = 1
10 (green), τ = 1

20 (blue), τ = 1
50

(red) and τ = 1
100 (black). Even though the values of the entropy regularized Wasserstein

distance dΘ,τ differ considerably, the slope of the distance, is already approximated quite
well for larger values of τ , uniformly for small up to large numbers n of labels.

Due to Corollary 5.2.11, the local Wasserstein gradients then finally are given by

gradE dΘ,τ (p1, p2) =

(
PTSν1

PTSν2

)
,

where the orthogonal projection PTS (2.35), due to ker(PTS ) = R1n , removes the com-
mon multiplicative constant resulting from Sinkhorn’s algorithm.

While the linear convergence rate of Sinkhorn’s algorithm is known theoretically
[Kni08], the numbers of iterations required in practice significantly depends on the
smoothing parameter τ . In addition, for smaller values of τ , an entry of the matrix
K = exp

(
− 1

τΘ
)

might be too small to be represented on a computer, due to machine
precision. As a consequence, the matrix K might have entries which are numerically
treated as zeros and Sinkhorn’s algorithm does not necessarily converge to the true op-
timal solution. Fortunately, the role of the smoothing parameter τ of the variational
approach presented in the next section does allow larger values.

Fortunately, the variational approach presented in the next section does allow larger
values of τ because merely a sufficiently accurate approximation of the gradient of the
Wasserstein distance is required to obtain valid descent directions for the Riemannian
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Figure 5.3.: The plot shows the exact Wasserstein distance (top) compared to the entropy
regularized Wasserstein distance with the Potts prior (5.86) as a function dΘ,τ (·,1S) from
the barycenter to every point on ∆ for n = 3 labels. Different values of τ are compared:
(a) τ = 1

5 , (b) τ = 1
10 , (c) τ = 1

20 and (d) τ = 1
50 . These plots confirm that even for

relatively large values of τ , e.g. 1
10 and 1

20 , the gradient of the Wasserstein distance is
sufficiently accurate approximated so as to obtain valid descent directions for distance
minimization through the Riemannian gradient descent flow.
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gradient descent flow. Figures 5.2 and 5.3 demonstrate that this indeed holds for rela-
tively large values of τ , e.g. τ ∈ {1

5 ,
1
10 ,

1
15}, no matter if the number of labels is n = 10

or n = 1000.

5.2.4. Variational Formulation on the Assignment Manifold

In this section, the variational model on the assignment flow is defined based on the
reformulation in Lemma 5.2.2. The resulting model consists of a data and regularization
component plus an extra integrality enforcing term responsible for rounding to integral
assignments, analog to the S-flow. Due to the results from the previous section, the
model is analytic and an expression for the gradient can be given. Similar to message
passing in belief propagation, the local gradients of the entropy regularized Wasserstein
distances in the resulting Riemannian gradient descent flow can be seen as ‘Wasserstein
messages’ that are ‘passed along edges’. Finally, the influence of the integrality enforcing
term in the initial phase of the gradient flow is investigated.

Throughout this section dθ,τ always refers to the entropy regularized Wasserstein dis-
tance.

Variational Model

Motivated by the reformulation of the smoothed LP relaxation (5.24) in Lemma 5.2.2,
the following variation model on the assignment manifold is defined by replacing µV with
W and absorbing the nonnegative factors τ(d(i)− 1) weighting the entropy term into a
second parameter α.

Definition 5.2.1 (variational model). Suppose a discrete objective J : Xm → R of the
form (5.1) is given. Then the associated variational model on the assignment manifold
W with smoothing and integrality enforcing parameter τ, α > 0, is defined by

Jτ,α : W → R, W 7→ Jτ,α(W ) := 〈ϑV ,W 〉+
∑
ij∈E

dϑij ,τ (Wi,Wj) + αHW(W ), (5.68)

where HW(W ) =
∑

i∈V H(Wi) is the global entropy on W.

The variational model Jα,τ consists of three terms, each representing different ‘forces’
in the associated dynamics of the Riemannian gradient descent flow which drives infer-
ence. The data term,

Jdata(W ) := 〈ϑV ,W 〉 =
∑
i∈V
〈ϑi,Wi〉

is responsible for selecting the best fitting label at each individual vertex based on the
given unary values ϑi alone, irrespective of the spatial context. Regularization is induced
by the regularization term,

Jreg,τ (W ) :=
∑
ij∈E

dϑij ,τ (Wi,Wj) (5.69)
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taking into account the spatial context and punishing neighboring deviations in the
assignments according to the pairwise cost matrices ϑij , ij ∈ E . Since the smoothed
Wasserstein distances dϑij ,τ converge to the underlying non-smooth distances dϑij in the
limit τ → 0, the data and regularization term together,

Jτ (W ) := Jdata(W ) + Jreg,τ (W ) = 〈ϑV ,W 〉+
∑
ij∈E

dϑij ,τ (Wi,Wj) (5.70)

constitute an approximation of the reformulated non-smooth local polytope relaxation
(5.22). Finally, the smooth rounding mechanism of the model is represented by the
integrality enforcing term, given by the entropy

Jint(W ) := HW(W ) =
∑
i∈V

H(Wi) = 〈W, logW 〉. (5.71)

Since H(Wi) ≥ 0 with H(Wi) = 0 if and only if Wi is one of the standard basis vectors,
this term pushes the flow towards integral assignments. As will be demonstrated in
Section 5.3, the additional introduced integrality parameter α > 0 enables to control
precisely the trade-off between accuracy of labelings in terms of the given function Jτ ,
approximating the local polytope relaxation (5.22), and the speed of convergence to an
integral assignment, independent of the choice for τ > 0. This shows that the rounding
mechanism to integral assignments is a different one compared to the local polytope
relaxation (5.22), where the values τ have to be chosen close to zero and an additional
post-processing step is needed.

Calculating the Euclidean Gradient of Jτ,α

In order to compute the Euclidean gradient gradE Jτ,α of the variational model, the
regularization term Jreg (5.69) is slightly rewritten. As E is assumed to be oriented
according to Assumption 5.1.1, an edge ij = (i, j) ∈ E is interpreted as starting in i and
ending in j. The corresponding sets of outgoing and incoming edges at vertex i ∈ V are
defined as

O(i) :=
{

(i, j) ∈ E
∣∣ j ∈ V} and I(i) :=

{
(j, i) ∈ E

∣∣ j ∈ V}. (5.72)

Since E ⊂ V2, the indicator function χE : V2 → {0, 1} from (2.1) is given by

χE(ij) =

{
1 , for ij ∈ E
0 , for ij /∈ E .

(5.73)

With this, the regularization term (5.69) can equivalently be expressed as

Jreg,τ (W ) =
∑
i∈V

∑
j∈V
χE(ij)dϑij ,τ (Wi,Wj) =

∑
i∈V

∑
ij∈O(i)

dϑij ,τ (Wi,Wj) . (5.74)
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Proposition 5.2.13 (gradient of Jτ,α). The objective function Jα,τ : W → R is analytic
and the i-th row of the Euclidean gradient gradE Jτ,α(W ) ∈ TW at W ∈ W has the form

gradE,i Jτ,α(W ) = PTSϑi + gradE,i Jreg,τ (W )− α exp−1
1S

(Wi) , (5.75)

with the gradient of Jreg,τ being given by

gradE,i Jreg,τ =
∑

ij∈O(i)

gradE,1 dϑij ,τ (Wi,Wj) +
∑
ji∈I(i)

gradE,2 dϑji,τ (Wj ,Wi) ,

where gradE,k dϑij ,τ (Wi,Wj) ∈ TS denotes the gradient with respect to the k-th argument,
for k ∈ {1, 2}, and O(i) as well as I(i) are the sets from (5.72).

Proof. As a consequence of Corollary 2.3.4, the gradients of Jdata(W ) = 〈ϑV ,W 〉 and
Jint(W ) = −〈W, logW 〉 are directly given by

gradE Jdata(W ) = PTW
[
∂Jdata(W )] = PTW [ϑV ]

gradE Jint(W ) = PTW
[
∂Jint(W )] = −PTW

[
logW

] (2.39)
= −exp−1

1W
(W ).

To determine the gradient of Jreg,τ , let γ : (−r, r)→W, for r > 0, be a smooth curve with
γ(0) = W and γ̇(0) = V ∈ TW . The i-th row of the assignment matrix γ(t) ∈ W ⊂ Rm×n

is denoted by γi(t). With this, the global gradient of Jreg,τ is expressed as

〈gradE Jreg,τ (W ), V 〉 =
d

dt
Jreg,τ

(
γ(t)

)∣∣∣
t=0

(5.74)
=

∑
i∈V

∑
ij∈O(i)

d

dt
dθij ,τ (γi(t), γj(t))

∣∣∣
t=0

=
∑
i∈V

∑
ij∈O(i)

(〈
gradE,1 dθij ,τ (Wi,Wj), Vi

〉
+
〈

gradE,2 dθij ,τ (Wi,Wj), Vj
〉)

. (5.76)

Using the indicator function χE (5.73), the sum over the expressions〈
gradE,2 dθij ,τ (Wi,Wj), Vj

〉
=: aij(Wi,Wj , Vj)

in (5.76) can be rewritten as∑
i∈V

∑
ij∈O(i)

aij(Wi,Wj , Vj) =
∑
i∈V

∑
j∈V
χE(ij)aij(Wi,Wj , Vj) =

∑
j∈V

∑
i∈V
χE(ij)aij(Wi,Wj , Vj)

=
∑
j∈V

∑
ij∈I(j)

aij(Wi,Wj , Vj) =
∑
i∈V

∑
ji∈I(i)

aji(Wj ,Wi, Vi) ,

where the last equation follows by renaming the indices of summation. Substitution into
(5.76) results in∑

i∈V

〈
gradE,i Jreg,τ (W ), Vi

〉
=
〈

gradE Jreg,τ (W ), V
〉

=
∑
i∈V

〈 ∑
ij∈O(i)

gradE,1 dθij ,τ (Wi,Wj) +
∑
ji∈I(i)

gradE,2 dθji,τ (Wj ,Wi), Vi

〉
which proves (5.75). As the local entropy regularized Wasserstein distances are all
analytic due to Corollary 5.2.11, the objective function Jτ,α itself is analytic.
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Subsequently, the specific case that all pairwise discrete energies Jij(xi, xj) in (5.1) are
symmetric is considered. This assumption translates to the condition that all pairwise
model parameters (5.7) are symmetric matrices ϑij = ϑ>ij , which in turn leads to sym-
metric Wasserstein distances dϑij ,τ by Corollary 5.2.11. As a consequence of this, and
also in light of the discussion leading up to Assumption 5.1.1, there is no need to choose
an orientation for the edges in this situation, as the mapping of edges ij to Jij(xi, xj),
respectively dϑij ,τ , is well defined. In this case, the regularization term can alternatively
be expressed as

Jreg,τ (W ) =
1

2

∑
i∈V

∑
j∈Ni

dϑij ,τ (Wi,Wj) , (5.77)

where the additional factor 1/2 enters because every edge occurs twice on the right-hand
side. With this, Proposition 5.2.13 is now reformulated accordingly.

Proposition 5.2.14 (gradient of Jτ,α: symmetric case). Suppose all edges ij ∈ E are
undirected and the corresponding pairwise parameter matrices ϑij are symmetric. Then
Jτ,α : W → R is analytic and the i-th row of the Euclidean gradient gradE Jτ,α(W ) ∈ TW
is given by

gradE,i Jτ,α(W ) = PTSϑi +
∑
j∈Ni

gradE,1 dϑij ,τ (Wi,Wj)− α exp−1
1S

(Wi) , (5.78)

where gradE,1 dϑij ,τ (Wi,Wj) ∈ TS denotes the gradient with respect to the first argument.

Proof. The expressions for the gradients of Jdata and Jint as well as the analyticity of
Jτ,α follow from Proposition 5.2.13. Thus, only the gradient of the regularization term
has to be calculated. The differential of Jreg,τ for the alternative expression (5.77) is
given by

dJreg,τ (W )[V ] =
1

2

∑
i∈V

∑
j∈Ni

(〈
gradE,1 dθij ,τ (Wi,Wj), Vi

〉
+
〈

gradE,2 dθij ,τ (Wi,Wj), Vj
〉)
,

with V ∈ TW arbitrary. Using the indicator functions χNi : V → {0, 1} of the neighbor-
hoods Ni and following the analog calculation as in the proof of Theorem 5.2.13 after
(5.76) shows∑

i∈V

∑
j∈Ni

〈
gradE,2 dθij ,τ (Wi,Wj), Vj

〉
=
∑
i∈V

∑
j∈Ni

〈
gradE,2 dθij ,τ (Wj ,Wi), Vi

〉
. (5.79)

As a consequence of the costs ϑij being symmetric for all ij ∈ E , the equality

gradE,2 dθij ,τ (Wj ,Wi)
(5.64)

= gradE,1 dθij ,τ (Wi,Wj)

can be applied to (5.79), overall resulting in∑
i∈V

〈
gradE,i Jreg,τ (W ), Vi

〉
=
〈

gradE Jreg,τ (W ), V
〉

= dJreg,τ (W )[V ]

=
∑
i∈V

〈 ∑
j∈Ni

gradE,1 dθij ,τ (Wi,Wj), Vi

〉
.
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Since this equation holds for all V ∈ TW , the desired expression in (5.78) for the regu-
larization term follows.

The Riemannian Gradient Descent Flow

The resulting Riemannian gradient descent flow for Wi, i ∈ V, on the assignment mani-
fold W has the form

Ẇi = − gradg,i Jτ,α(W )
(5.75)

= RWi

[
− ϑi − gradE,i Jreg,τ (W ) + α exp−1

1S
(Wi)

]
, (5.80)

with initial condition given by the unbiased uniform label distribution Wi(0) = 1S .

With respect to loopy belief propagation (5.20), message passing for vertex i ∈ V in
this approach is defined by evaluating the local Wasserstein gradients in the expression of
gradE,i Jreg,τ for all edges incident to i. Therefore these local gradients are call Wasser-
stein messages which are ‘passed along edges’. Similarly to loopy belief propagation,
each such message is given by dual variables through (5.63), that solve the regularized
local dual LPs (5.60).

In addition, the following observations in correspondence to the the smoothed local
polytope relaxation (5.15) and loopy belief propagation (5.20) can be made:

(1) Local convexity and valid constraints. Wasserstein messages of (5.75) are de-
fined by local convex programs (5.60). As a consequence, all local marginalization
constraints for the ‘hidden’ coupling measures of Wi and Wj are always satisfied
throughout the inference process. This is in sharp contrast to belief propagation
where this generally only holds after convergence.

(2) Smooth global rounding. Rounding to integral solutions is gradually enforced
by the Riemannian flow induced through Jint (5.71) depending on the integrality
parameter α. In particular, repeated ‘aggressive’ local max operations of the max-
product algorithm are replaced by a smooth flow.

(3) Smoothness and weak nonlinearity. The role of the smoothing parameter τ in
the variational model Jτ,α (5.68) differs from the role of the smoothing parameter
in the smoothed LP relaxation (5.15). While in the latter case, τ has to be chosen
quite close to 0 so as to achieve rounding at all, the smoothing parameter of the
variational model Jτ,α merely mollifies the dual local problems (5.33) and hence
should be chosen small, but may be considerably larger than for the smoothed local
polytope relaxation. The decoupling of smoothing and rounding in Jτ,α therefore
enables to numerically compute labelings more efficiently. The results reported in
the experiment section below demonstrate this fact.

In the remaining part of this section, the influence of the integrality enforcing term
Jint in the initial phase of the Riemannian gradient flow (5.80) is investigated. For this,
suppose that for all ij ∈ E the pairwise parameters ϑij are symmetric and such that
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dϑij ,τ (Wi,Wj) = 0 if and only if Wi = Wj . Under this assumption, Wj is the global
minimum of dϑij ,τ (·,Wj), resulting in

gradE,1 dϑij ,τ (Wj ,Wj) = 0. (5.81)

Because of the initial condition Wi(0) = 1S , for all i ∈ V, all assignments Wj(t) in
the neighborhood of i ∈ V are almost the same on the initial time interval [0, T ) for
sufficiently small 0 < T � 1. Therefore, the initial dynamics of the Riemannian gradient
flow is essentially governed by

Ẇi = RWi

[
− ϑi + α exp−1

1S
(Wi)

]
, Vi(0) = 1S for t ∈ [0, T ),

depending only on the local unary costs ϑi and the parameter α ≥ 0. Applying the trans-
formation Wi(t) = exp1S (Vi(t)) from (2.64), with Vi(t) ∈ TS , the equivalent dynamical
system on TS reads

V̇i = −PTSϑi + αVi, with Vi(0) = 0 ∀i ∈ V.

Thus, for α = 0, the solution of this linear ODE is given by

Vi(t) = −tPTSϑi
while for α > 0, the solution has the form

Vi(t) = 1
α(1− eαt)PTSϑi.

Since exp1S implicitly projects onto the tangent space by (2.38), the corresponding
curves on S in terms of Wi are given by

Wi(t) = exp1S

(
− tϑi

)
and Wi(t) = exp1S

(
1
α(1− eαt)ϑi

)
(5.82)

The limit behavior for t towards infinity is clarified in the next statement.

Lemma 5.2.15. Let x, y ∈ Rn and suppose x has a unique maximum entry, i.e. there
is an r ∈ [n] with xr > xj for all j 6= r. If h : R → R is continuous and satisfies
limt→∞ h(t) =∞, then exp1S (h(t)x+ y) = er ∈ Bn.

Proof. Define a(t) := h(t)x+ y. By assumption xj − xr < 0 for every j 6= r, resulting in
the limit

lim
t→∞

ea
j(t)−ar(t) = lim

t→∞
eh(t)

(
xj−xr

)
+yj−yr = δjr,

where δjr is the Kronecker delta. Therefore, subtracting ar(t) in every component results
in limt→∞ e

a(t)−ar(t)1n = er. Because exp1S implicitly projects onto the tangent space
according to (2.38), it finally follows

lim
t→∞

exp1S (a(t))
(2.38)

= lim
t→∞

exp1S (a(t)− ar(t)1n) = lim
t→∞

ea(t)−ar(t)1n〈
ea(t)−ar(t)1n , 1n

〉 = er.

Suppose ϑi has a unique minimum in the r-th component. Applying Lemma 5.2.15
implies that in both cases, α = 0 and α > 0, the solutions Wi(t) from (5.82) converge
towards the integral assignment er. However, in the latter case, the solution approaches
er exponentially faster, showing that an increase in α leads to a more aggressive push of
the assignments toward integral solutions in the initial phase of the flow.
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5.3. Experiments

In this section, the main properties of the presented variational approach Jτ,α (5.68) are
assessed by two selected academical experiments. The dependency of label assignment
on the integrality parameter α is illustrated in Section 5.3.1. A competitive evaluation
of the variational approach with two established and widely applied methods, sequential
tree-reweighted message passing (TRWS) [Kol06] and loopy belief propagation (5.20)
based on the OpenGM package [ABK12], is made in Section 5.3.2.

The approach from Chapter 3 of GEA-sequences for numerical integration of the per-
turbed Riemannian gradient flow is used for optimization.

Perturbed model and flow. The perturbed variational model of Jτ,α (5.68) reads

Jτ,α;ε(W ) := Jτ,α(W )− ε〈log, 1W〉, W ∈ W, (5.83)

with 0 < ε� 1. By Lemma 3.1.2, the i-th row of the Euclidean gradient has the form

gradE,i Jα;ε(W ) = PTSϑi + gradE,i Jreg,τ (W )− α exp−1
1S

(Wi)− εPTS
1S
Wi

, (5.84)

for W ∈ W. Due to Jτ,α;ε : W → R being analytic as a consequence of Proposition 5.2.13,
the convergence and stability results for the corresponding Riemannian gradient descent
flow from Section 3.3.3 apply.

Numerical integration. For given descent parameter τ̃ and diminishing factor s, with
τ̃ , s ∈ (0, 1) as well as the maximal step-size hmax > 0, the general GEA-sequence update
scheme (3.89) is of the form

W (k+1) = GEA
(
W (k)

)
= expW (k)

(
−hk gradE Jτ,α;ε

(
W (k)

))
, W (0) = 1W ∈ W, (5.85)

where the step-size hk = h
(
W (k)

)
> 0 is the Armijo step-size (3.86), depending on the

choices for τ̃ , s and hmax. As a result of Jτ,α;ε : W → R being analytic according to
Proposition 5.2.13, the convergence and stability results for the discrete-time case from
Section 3.4 are valid.

Termination criterion. In all experiments, the normalized relative change (nrc) of
Jτ,α;ε from (4.30) is used as part of the convergence criterion.

Wasserstein gradients. In all experiments the iterative Sinkhorn’s algorithm (5.66)
is used to simultaneously compute the local Wasserstein gradients for all edges. The

k-th (global) iteration of Sinkhorn’s algorithm then results in an approximation V
(k)

reg,τ

for the gradient of the regularization term gradE Jreg,τ . The iteration is terminated if
the relative change with respect to the Euclidean metric∥∥V (k)

reg,τ − V (k−1)
reg,τ

∥∥∥∥V (k)
reg,τ

∥∥
drops below the threshold of 10−5.
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5.3.1. Influence of the Integrality Parameter

The influence of the integrality parameter α ≥ 0 on the variational model Jτ,α (5.68) is
assessed through the second labeling problem of Section 4.1.3. Figure 5.4 again shows
the noisy RGB-image f : V → [0, 1]3 on the grid graph Gg = (Vg, Eg) (see Section 2.3.1)
with minimal neighborhood size |Ni| = 3×3, i ∈ V, together with the eight prototypical
colors X = {`1, . . . , `8} ⊂ [0, 1]3 used as labels. Similar to the distance matrix (2.54) of
the assignment flow, the unary (or data) term is defined using the ‖ · ‖1 distance and a
scaling factor ρ > 0 by

ϑi :=
1

ρ

(
‖f(i)− `1‖1, . . . , ‖f(i)− `8‖1

)
, ∀i ∈ Vg,

and Potts regularization is used for defining the pairwise parameters of the model(
ϑij
)r
k

= 1− δk,r, ∀ij ∈ Eg, (5.86)

where δk,r is the Kronecker delta. This way, the penalty costs of any two different
discrete label choices is uniform.

For this experiment, the feature scaling factor is chosen as ρ = 0.3, the smoothing
parameter as τ = 0.12 and the perturbation parameter as ε = 10−10. The GEA update
scheme (5.85) uses the parameters τ̃ = 0.01, s = 0.5 and hmax = 0.05. The iteration
is terminated if either the normalized relative change of Jτ,α;ε (4.30) drops below the
threshold of 10−5 or the maximum number of 500 iterations is reached.

Figure 5.4 shows the influence of the integrality parameter α for the parameter choices
α ∈ {0, 0.5, 2, 4, 8, 16}. The color values of the individual results are the expected color
label EWi [X ] =

∑
j∈[8]W

j
i `j given the assignment Wi at every pixel i after reaching the

termination criterion. For α = 0 and α = 0.5 the maximum number of 500 iterations was
reached, while in all other cases the nrc of Jτ,α;ε (4.30) drop below 10−5 first. If either
no rounding is performed (α = 0) or if the influence of rounding is too small compared
to the smoothing of the Wasserstein distances (α = 0.5), the Riemannian gradient flow
does not converge to an integral solution, even though the assignments show a clear
tendency. Increasing the strength of rounding (i.e. larger α) leads to a faster decrease
in the integrality enforcing term Jint(W ) = HW(W ) (cf. Figure 5.5) and therefore to
an earlier convergence of the process to a specific labeling. Thus, a more aggressive
rounding scheme yields a less regularized result due to the rapid decision for a labeling
at an early stage of the algorithm (see also the discussion at the end of Section 5.2.4).

Figure 5.5 shows the interplay between minimizing the approximation of the LP relax-
ation Jτ (5.70) (middle) and the values of the integrality term Jint given by the entropy
HW (top) for the first 100 iterations dependent on the different choices for α. Less
aggressive rounding in terms of smaller values for α results in a more regularized as-
signment as the flows spends more time minimizing Jτ . For too small values of α, the
entropy is not sufficiently minimized leading to non-integral assignments, as discussed
in the preceding paragraph. The effect of α on the speed of convergences can also be
seen by the nrc values of Jτ,α;ε (bottom) for the first 100 iterations.
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original data noisy input data labels

α = 0 α = 0.5 α = 2

α = 4 α = 8 α = 16

Figure 5.4.: Influence of the integrality parameter α on the model Jτ,α;ε (5.83) with
smoothing parameter τ = 0.12 and perturbation parameter ε = 10−10. Top row: The
underlying original RGB-image together with a noisy input version of the model and 8
prototypical colors used as labels. Middle and bottom row: Results for increasing
values of α after reaching the termination criterion. The images show the expected color
label EWi [X ] =

∑
j∈[8]W

j
i `j given the assignment Wi at every pixel i. For small values of

α (0 and 0.5) the integrality term is too weak, resulting in non-integral assignments. For
larger α, the rounding mechanism is becoming more dominant, leading to less regularized
results.
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Figure 5.5.: The average values of the integrality term Jint = HW (5.71) (top), approxi-
mation of the LP relaxation Jτ (5.70) (middle) and the nrc of Jτ,α;ε (4.30) in the first 100
iterations are shown for τ = 0.12, ε = 10−10 and varying parameter α ∈ {0, 0.5, 2, 4, 8, 16}
(see color code on top). Top: With increasing values of the rounding parameter α, the
entropy Jint = HW drops more rapidly and hence the iterates converge faster to an inte-
gral assignment. Middle: Two phases of the algorithm depending on α are visible. In
the first phase, Jτ is minimized up to the point where rounding takes over in the second
phase. For smaller values of α, the flow spends more time on minimizing Jτ leading
to more regularized assignments. Bottom: Normalized relative change of Jτ,α;ε (4.30).
For α = 0, 0.5 the nrc did not drop below 10−5 within the allowed 500 iterations.
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5.3.2. Comparison to Other Methods

The geometric variational approach is compared to sequential tree-reweighted message
passing (TRWS) [Kol06] and loopy belief propagation [Wei01] (Loopy-BP) based on the
OpenGM package [ABK12].

Original data Noisy data

Figure 5.6.: Noisy image labeling problem: A binary ground truth image (left) with
various rectangles and circles to be recovered from noisy input data (right).

For this comparison, the performance of the methods is evaluated with a noisy binary
labeling scenario on a 128 × 128 image depicted by Figure 5.6. The spatial structure
of the data is given by a slightly modified version of the grid graph Gg = (Vg, Eg) from
Section 2.3.1, where instead of the ‖ · ‖max the ‖ · ‖1 norm is used for determining the
neighborhood structure of the graph. In the following, the minimal nontrivial neighbor-
hoods given by the ‖ · ‖1 balls of radius 1 are used, also simply called 4-neighborhoods.
Let f : Vg → [0, 1] be the noisy image data and X = {0, 1} the binary set of labels. A
standard (unary) data term together with the Potts prior (5.86) is used

ϑi =

(
f(i)

1− f(i)

)
for i ∈ V and ϑij =

(
0 1
1 0

)
for ij ∈ E . (5.87)

For this experiment, the smoothing parameter is chosen as τ = 0.1 and the pertur-
bation parameter again as ε = 10−10. The GEA iteration (5.85) uses the parameters
τ̃ = 0.01, s = 0.5 and hmax = 0.1. The iteration is terminated if the normalized relative
change of Jτ,α;ε (4.30) drops below the threshold of 10−5.

Figure 5.7 shows the resulting visual reconstruction as well as the corresponding values
of the underlying discrete objective function J (5.1) and percentage of correct labels for
all three methods. The variational model Jτ,α;ε achieves similar accuracy and discrete
function value than TRWS and Loopy-BP.

Figure 5.8 shows the nrc of Jτ,α;ε (4.30) (bottom) and the interplay between the
two terms in Jτ,α = Jτ + αJint (top, yellow), with relaxed LP approximation Jτ (5.70)
(orange) and integrality term Jint (5.71) (blue). These curves illustrate again the smooth
combination of optimization and rounding into a single two stage process.
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Variational Approach TRWS Loopy-BP
4979.23 / 98.40% 4979.61 / 98.07% 4977.75 / 98.38%

Figure 5.7.: Integral labeling results for the noisy labeling problem from Figure 5.6 for
all three methods, using a standard data term with Potts prior. The presented numbers
are in the formal discrete energy / accuracy. All methods show similar performance.

Figure 5.8.: Top: Decomposition of the variational model Jτ,α = Jτ + αJint (5.68)
into the approximation of the LP relaxation Jτ (5.70) and the integrality enforcing term
Jint = HW (5.71) during iteration of the GEA sequence. The two stages of the algorithm
are weakly visible. In the first 50 iterations Jτ is minimized until Jint takes over and
drives the flow towards an integral assignment. Bottom: The corresponding normalized
relative change of Jτ,α;ε (4.30).
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Chapter 6

Conclusion and Outlook

Summary. The assignment flow is a dynamic selection process on the assignment man-
ifold for image labeling. It is given by a spatially coupled replicator dynamic, driven by
spatial regularization and gradual enforcement of unambiguous label decisions. Combin-
ing this dynamical process with the more classical viewpoint of image labeling results in
a variational approach on the assignment manifold where label assignments are inferred
through the induced Riemannian gradient descent flow with respect to the underlying
information geometry.

This provided the motivation to consider general variational models in Chapter 3. To
avoid any boundary issues, arbitrarily precise label decisions were avoided by slightly
perturbing the model through the log-barrier function, introducing a minimum amount
of uncertainty in the assignments. This made it possible to transfer already established
convergence and stability results as well as convergence rates for the Euclidean setting to
the assignment manifold for the Riemannian gradient flow and its discretization through
the geometric Euler update with Armijo step-size selection.

The natural question whether there exists a potential, such that the assignment flow is
a Riemannian gradient descent flow on the assignment manifold, was negatively answered
in Chapter 4. However, alternatively parameterizing the assignment flow by its dominant
component revealed a ‘hidden’ Riemannian gradient flow whose potential consists of a
graph Laplacian and an integrality term, clearly identifying the two competing processes
governing the flow: regularization of assignments in a spatial context and gradually
enforcing unambiguous label decisions. Based on this potential, a continuous-domain
variational formulation was introduced and well-posedness of the resulting optimization
problem could be established.

Finally, in Chapter 5, relaxed variational models of discrete objective functions cor-
responding to discrete probabilistic graphical models were derived on the assignment
manifold. For this, the associated smoothed local polytope relaxation was rewritten us-
ing entropy regularized local Wasserstein distances. Following the Riemannian gradient
descent flow for inference resulted in an alternative optimization approach of discrete
graphical models using parallel ‘Wasserstein messages’ along edges. In contrast to estab-
lished methods, the local marginalization constraints are always satisfied and a smooth
rounding mechanism towards integral assignments is incorporated in the inference pro-
cess.
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Chapter 6. Conclusion and Outlook

Future work. Subsequently, several research directions and open problems for further
research are pointed out:

• Besides analyticity, compactness of level sets for the perturbed objective function
was a vital property for transferring the presented general convergence and stability
results from the Euclidean setting onto the assignment manifold in Chapter 3.
To which extend these results also hold for the underlying unperturbed function
remains an open question.

• In [ÅPSS17], the similarity matrix of the assignment flow was originally defined
to be the weighted Riemannian mean of the likelihood vectors. In order to ar-
rive at explicit formulas for efficient numerical updates, the Riemannian mean
with respect to the Fisher-Rao metric was approximated by the geometric mean.
Regarding the potential in the S-flow formulation in Section 4.1.2, the squared
Euclidean differences between neighboring assignments may be replaced by the
squared Riemannian distances as an alternative measure for similarity in spatial
neighborhoods. This way, a relation to Riemannian means re-enters the assign-
ment flow via the S-flow formulation through the objective function that defines
the Riemannian mean. The corresponding Riemannian gradient S-flow pushes the
assignments towards the Riemannian means of the likelihood vectors depending
on the current assignment state. Since explicit expressions for the Riemannian
distance and its gradient are available, there is no need for approximations. Initial
work in this direction using an explicit data term and the entropy for integrality
enforcement was presented in [SS19a].

• The derived numerical discrete-time algorithm for optimizing the continuous do-
main formulation of the assignment flow in Section 4.2 consists of a sequence of
linear discretized elliptic PDE problems together with a convex simplex constraint.
However, the limit case has not been considered so far and provides an opportunity
for further investigation.

• In this thesis, uniform weights for controlling the spatial averages of the assignment
flow were chosen. Depending on the application, however, it might be advanta-
geous to allow label-dependent weights which adapt to the specific task at hand
using methods from optimal control. A first step in this direction was presented
in preliminary work on learning the weight parameter for a linearized version of
the assignment flow in [HSPS19]. This might also be an interesting approach for
parameter learning of discrete graphical models using the relaxed variational for-
mulation in Chapter 5, as the relation between approximations for the learning
problem and approximations of the inference problem for this class of models is
less well understood [Wai06].
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Appendix A

Differential Geometry

In the following, some basic definitions and facts from Riemannian geometry relevant
for this work are briefly summarized. For proofs of the presented results and a more de-
tailed exposition, the reader is referred to introductory material such as [Lee12], [Lee18]
or [Jos17] and references therein. A treatment from the viewpoint of optimization on
Riemannian manifolds can be found in [AMS08]. As in the latter reference, most of the
considered manifolds are viewed as embedded submanifolds in Rd.

In the context of pure geometric considerations in this work, the Einstein summation
convention is used. That is, if the same index appears twice in an expression, once as
an upper and once as a lower index, then it is implicitly assumed to be summed over,
e.g.

aibi =
n∑
i=1

aibi. (A.1)

A.1. General Manifolds and Submanifolds of Rd

Let M be smooth manifold of dimension m with associated tangent and cotangent bundle
TM and T ∗M . The set of all smooth vector and covector fields of M is denoted by X(M)
and X∗(M) respectively. Using local coordinates x around a point p ∈M , a vector field
X ∈ X(M) and covector field ω ∈ X∗(M) can be expressed in local coordinates around
p through the induced basis ∂

∂xi
and dual basis dxi as

X = Xi ∂

∂xi
and ω = ωidx

i.

Suppose N is another smooth manifold of dimension n. The differential of a smooth
function F : M → N at p ∈M is denoted by

dF (p) : TpM → TF (p)N, X 7→ dF (p)[X].

The map F in local coordinates is denoted by F̂ . That is, let φ : UM → ÛM be a chart
around p with open sets UM ⊂M and ÛM ⊂ Rm as well as η : UN → ÛN a chart around
F (p) with open sets UN ⊂ N and ÛN ⊂ Rn with F (UM ) ⊂ UN . Then

F̂ := η−1 ◦ F ◦ φ : ÛM → ÛN . (A.2)
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Appendix A. Differential Geometry

If there is an embedding of the manifold M into Rd, then M is identified as a sub-
manifold M ⊂ Rd. In this case, the tangent space at any p ∈ M can be identified with
a characterization using smooth curves on M by

TpM =
{
v ∈ Rd

∣∣ ∃ curve γ on M, γ(0) = p, γ̇(0) = v
}
.

Let N ⊂ Rd
′

be another submanifold and F : M → N a smooth map. With the above
identification of the tangent space, the differential of F applied to v ∈ TpM can be
expressed using any smooth curve γ : (−ε, ε) → M , ε > 0, with γ(0) = p and γ̇(0) = v
as

dF (p)[v] =
d

dt
F (γ(t))

∣∣
t=0

. (A.3)

Often, this equality provides a useful way of efficiently calculating dF (p)[v], avoiding
local coordinates.

Let K ∈ N and assume Mi is a smooth manifold for every i ∈ [K]. The tangent space
of the product manifold M :=

∏
i∈[K]Mi at p = (pi)i∈[K] ∈M can naturally be identified

(see e.g. [Lee12, Prop. 3.14]) with the product of the tangent spaces, i.e.

TpM =
∏
i∈[K]

TpiMi. (A.4)

If Ni with i ∈ [K] is another family of smooth manifolds together with smooth maps
Fi : Mi → Ni for every i ∈ [K], then there is a canonical product map F between M and
N :=

∏
i∈[K]Ni, defined by

F : M → N, p = (pi)i∈[K] 7→ F (p) :=
(
Fi(pi)

)
i∈[K]

. (A.5)

Due to the above identification of the tangent spaces TpM and TF (p)N with the product
of the corresponding tangent spaces TpiMi and TFi(pi)Ni, the differential of F at point
p = (pi)i∈[K] ∈M factorizes and has the form

dF (p) : TpM → TpN, V = (Vi)i∈[K] 7→ dF (p)[V ] =
(
dFi(pi)[Vi]

)
i∈[K]

. (A.6)

A.2. Flows on Manifolds

Let M be a manifold and I ⊂ R an open interval. A smooth curve γ : I →M determines
a tangent vector, also called velocity, γ̇(t) = d

dsγ(s)
∣∣
s=t

= dγ(t)[ ∂∂t ] ∈ Tγ(t)M at every
point along its trajectory. For X ∈ X(M), a smooth curve γ : I →M is an integral curve
of X, if

γ̇(t) = X(γ(t)) for all t ∈ I.

Collecting all integral curves into one mathematical object leads to the concept of a
”flow”. For this, a flow domain on M is an open subset D ⊂ R×M such that for every
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A.3. Connections

p ∈ M the set D (p) :=
{
t ∈ R

∣∣ (t, p) ∈ D
}

is an open interval containing 0. A smooth
flow on M is a smooth map θ : D →M , with D being a flow domain and θ satisfying

θ(0, p) = p and θ(t, θ(s, p)) = θ(t+ s, p),

whenever the latter expressions are defined. The infinitesimal generator of θ is the vector
field X ∈ X(M) defined by X(p) := d

dtθ(t, p)
∣∣
t=0

.

The following fundamental result shows that smooth flows induced by vector fields
are unique if they are required to be maximal.

Theorem A.2.1 (Fundamental Theorem on Flows). [Lee12, Thm. 9.12] For every vec-
tor field X ∈ X(M) there is a unique maximal smooth flow θ : D → M whose infinites-
imal generator is X, where maximal means θ cannot be extended to a flow on a larger
flow domain. For every p ∈ M , the curve θ(p) : D (p) → M , defined by θ(p)(t) := θ(t, p),
is the unique maximal integral curve of X starting at p, i.e. θ(p)(0) = p.

Even so, in general, integral curves only exist locally on a short time scale, the next
lemma can often be used to prove global existence.

Lemma A.2.2 (Escape Lemma). [Lee12, Lem. 9.19] Let X ∈ X(M). If γ : I →M is a
maximal integral curve of X such that the interval I ⊂ R has a finite least upper bound
b = sup{s ∈ I}, then for every t ∈ I, the image γ([t, b)) is not contained in any compact
subset of M .

A.3. Connections

Connections generalizing the notion of directional derivatives of vector fields on smooth
manifolds in a coordinate independent way. A covariant derivative or affine connection
on a smooth manifold M of dimension m is a map

∇ : X(M)× X(M)→ X(M), (X,Y ) 7→ ∇XY,

fulfilling the following three properties:

(I) ∇XY is tensorial in X. That is, for f1, f2 ∈ C∞(M) and X1, X2 ∈ X(M)

∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y.

(II) ∇XY is R-linear in Y , i.e. for a1, a2 ∈ R and Y1, Y2 ∈ X(M)

∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2.

(III) ∇ satisfies the product rule

∇X(fY ) = f∇XY + (Xf)Y for all f ∈ C∞(M).
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Appendix A. Differential Geometry

The expression ∇XY is termed the covariant derivative of Y in the direction X. Using
local coordinates, the Christoffel symbols of the connection ∇ are defined by

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
.

For general vector fields X,Y ∈ X(M), the covariant derivative ∇XY then hast the
coordinate expression

∇XY =
(
XY k + ΓkijX

iY j
)k ∂

∂xk
,

showing that the m3 Christoffel symbols completely determine the affine connection.
The torsion tensor for a connection ∇ is defined as

T (X,Y ) := ∇XY −∇YX − [X,Y ]

for X,Y ∈ X(M), where [X,Y ] = XY − Y X is the Lie bracket of two vector fields.
Using the local coordinate vector fields ∂

∂xi
, the components of T are given by

Tij = T
( ∂

∂xi
,
∂

∂xj

)
=
(

Γkij − Γkji

) ∂

∂xk
.

A connection ∇ is called torsion-free or symmetric, if the torsion vanishes T ≡ 0, which
is equivalent to the Christoffel symbols being symmetric

Γkij = Γkji for all i, j, k ∈ [m].

The curvature tensor corresponding to ∇ is defined as

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ X(M).

A.3.1. Parallel Transport

Let γ : I → M be a smooth curve, with I ⊂ R an open interval. A smooth vector field
X along γ is a smooth map X : I → TM such that X(t) ∈ Tγ(t)M for every t ∈ I. Any
connection ∇ on M induces a covariant derivative along γ, denoted by ∇γ̇(t)X. In local
coordinates, this covariant derivative has the form

∇γ̇(t)X(t) =
(
Ẋk(t) + γ̇i(t)Xj(t)Γkij

(
γ(t)

)
.
) ∂

∂xk
(γ(t)). (A.7)

A smooth vector field X along γ is parallel along γ if ∇γ̇X ≡ 0. Since (A.7) is a system
of linear first-order ODEs, for any given initial value V ∈ Tγ(0)M there exists a unique
parallel vector field X along γ with the initial condition X(0) = V . The parallel transport
Πγ
pq between p = γ(t0) and q = γ(t1) along γ is a linear isomorphism defined by

Πγ
pq : TpM → TqM, V 7→ XV (t1),
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A.3. Connections

where XV (t1) is the parallel vector field along γ with XV (t0) = V . For X,Y ∈ X(M),
the covariant derivative ∇XY can be recovered through parallel transport along any
smooth curve γ : I →M with γ(0) = p and γ̇(0) = X(p) by

∇XY (p) = lim
t→0

1

t

(
Πγ
pγ(t)Y (γ(t))− Y (p)

)
. (A.8)

A vector field X ∈ X(M) is said to be parallel if X(γ(t)) is a parallel vector field along
γ for every smooth curve γ in M . This is equivalent to the condition ∇X ≡ 0.

A.3.2. Geodesics and Exponential Maps

A geodesic is a smooth curve γ : I → M with zero acceleration ∇γ̇(t)γ̇ along γ. In local
coordinates γ = (γi) this is expressed as

0 = ∇γ̇(t)γ̇(t) = γ̈k(t) + γ̇i(t)γ̇j(t)Γkij
(
γ(t)

)
, (A.9)

which is a system of linear second-order ODEs. For every p ∈M and V ∈ TpM there is
a unique maximal open interval IV ⊂ R with 0 ∈ IV and a geodesic γV : IV → M with
γV (0) = p and γ̇V (0) = V . A connection is called complete if every maximal geodesic
exists for all time, i.e. γV : R→M .

Viewing geodesics as a map depending on the initial conditions leads to the concept
of the exponential map induced by a connection ∇

Exp: E →M, V 7→ Exp(V ) := γV (1), (A.10)

with domain E :=
{
V ∈ TM

∣∣ 1 ∈ IV
}
⊂ TM . The exponential map at a specific point

p ∈M is denoted by Expp : Ep →M and has a star-shaped domain Ep := E ∩ TpM . For
every V ∈ TpM the geodesic γV can then be expressed as

γV (t) = Expp(tV )

for all t such that either side is defined. Furthermore, the differential of Expp at 0 ∈ TpM
is the identity dExpp(0) = idTpM , under the identification T0(TpM) = TpM .

A.3.3. Flat Connections

A connection ∇ on a m dimensional manifold M is called flat if for each point p ∈ M
there exists local coordinates x = (xi) on a neighborhood U , for which all coordinate
vector fields ∂

∂xi
are parallel, i.e. ∇ ∂

∂xi
≡ 0. Such coordinates are said to be an ∇-affine

coordinate system. Flat connections can equivalently be characterized by their torsion
and curvature tensor.

Theorem A.3.1. [Jos17, Thm. 4.1.3]. A connection ∇ on M is flat if and only if its
curvature and torsion tensor vanish identically, i.e. T ≡ 0 and R ≡ 0.
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A necessary and sufficient condition for a coordinate system y = (yi) to be another
affine coordinate system on U is that the transition map y ◦x−1 between the coordinate
systems is a regular affine transformation (cf. [AN07, Ch. 1.7]), i.e. there exists a matrix
A ∈ GLm(R) and a vector b ∈ Rm such that

y = Ax+ b. (A.11)

Therefore, if a flat connection ∇ exists on M , then M is an affine manifold, i.e. M is
covered by coordinate charts with affine coordinate changes.

A.4. Riemannian Manifolds

Denote the bundle of covariant k-tensors of a smooth manifoldM by T kM =
⊗

i∈[k] T
∗M .

A Riemannian metric g on M is a symmetric 2-tensor field g : M → T 2M which is pos-
itive definite at each point, that is, gp is an inner product on the tangent space,

gp : TpM × TpM → R, (X,Y ) 7→ gp(X,Y ),

smoothly varying in p ∈ M . A Riemannian manifold is a manifold M together with a
choice of a Riemannian metric g, sometimes denoted by (M, g). The induced Riemannian
norm on TpM at p ∈M is denoted by

‖X‖g,p :=
√
gp(X,X), ∀X ∈ TpM.

In any smooth local coordinates x = (xi), a Riemannian metric g can be written as

g = gijdx
i ⊗ dxj with gij = g( ∂

∂xi
, ∂
∂xj

).

The matrix (gij) is symmetric and positive definite with smooth component functions.

Its inverse is given by (gij), i.e. gikg
kj = δji , where δji is the Kronecker delta.

Suppose (M, g) and (N,h) are Riemannian manifolds. An Isometry from (M, g) to
(N,h) is a diffeomorphism F : M → N such that F ∗h = g, i.e.

gx(u, v) = hF (x)

(
dF (x)[u], dF (x)[v]

)
, ∀x ∈M and ∀u, v ∈ TxM.

Two Riemannian manifolds (M, g) and (N,h) are isometric, if there exists an isometry
between them.

Suppose (Mi, gi) is a Riemannian manifold for every i ∈ [K], K ∈ N. Using the
identification (A.4), the product manifold, M =

∏
i∈[K]Mi has a natural Riemannian

metric g, called product metric, defined by

gp(V,U) :=
∑
i∈[K]

gi|pi(Vi, Ui) (A.12)

for all p = (pi) ∈M and V = (Vi), U = (Ui) ∈ TpM .
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A.4. Riemannian Manifolds

A.4.1. Riemannian Gradients

A Riemannian metric also induces a natural identification between the tangent space
TpM and cotangent space T ∗PM . Every X ∈ TpM defines a covector ωX ∈ T ∗pM by
setting ωX(Y ) := gp(X,Y )R for all Y ∈ TpM . The induced map

TpM → T ∗pM, X 7→ ωX (A.13)

is a linear isomorphism. Thus, for every η ∈ TpM∗ there is a unique Xη ∈ TpM such
that η = ωX . The identification between a vector X = Xi ∂

∂xi
and covector ω = ωjdx

j

in local coordinates is given by

Xi = gijωj and ωi = gijX
j .

In particular, for a smooth function f : M → R, the above identification (A.13) between
vectors and covectors is used to define the Riemannian gradient gradg f of f as the
tangent vector uniquely determined by the 1-form df via the identity

gp
(

gradg f(p), X
)

= df(p)[X] for all p ∈M, X ∈ TpM.

In local coordinates, the Riemannian gradient is expressed by

(gradg f)i = gij
∂f

∂xj

It is important to note, that whether a vector field X has a potential, i.e. a function f
with gradg f = X, not only depends on X but also on the Riemannian metric. Also, for
a fixed metric g, not every vector field has a potential in general.

If two Riemannian manifolds are isometric, then their Riemannian gradients are re-
lated

Lemma A.4.1. Let F : (M, g) → (N,h) be an isometry between two Riemannian
manifolds and f : N → R and f̄ : M → R a smooth function with f̄ = f ◦ F . Then the
Riemannian gradients of f and f̄ are related by

gradh f(F (p)) = dF (p)[gradg f̄(p)] ∀p ∈M (A.14)

and their norms by

‖ gradh f(F (p))‖h,F (p) = ‖ gradg f(p)‖g,p ∀p ∈M. (A.15)

Proof. Since f̄ = f ◦ F , it follows for the 1-form df̄ = d(f ◦ F ) = F ∗df . Let q ∈ N and
u ∈ TqN be arbitrary and set p := F−1(q) ∈M as well as v := dF (p)−1[u] ∈ TpM . The
definition of the Riemannian gradient and g = F ∗h yields

df(q)[u] = df(F (p))[dFp[v]] = (F ∗df)(p)[v] = df̄(p)[v] = gp
(

gradg f̄(p), v
)

= hF (p)

(
dF (p)[gradg f̄(p)], dF (p)[v]

)
= hq

(
dF (p)[gradg f̄(p)], u

)
.

Because this equality holds for every u ∈ TqN and the Riemannian gradient is uniquely
determined by the property df(q)[u] = hq

(
gradh f(q), u

)
, the relation (A.14) is estab-

lished. With this characterization of gradients and g = F ∗h, the norm equality in (A.15)
directly follows.
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A.4.2. Levi-Civita Connection

A connection ∇ on a Riemannian manifold (M, g) is a metric connection or compatible
with g, if it fulfills the product rule

∇Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY )

for all X,Y, Z ∈ X(M). For every Riemannian structure g on M , there exists a unique
torsion free metric connection ∇g, called the Levi-Civita connection of g. In local coor-
dinates, the Christoffel symbols of the Levi-Civita connection are given by

Γ
(g)k
ij =

1

2
gkl
(
∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)
.

The geodesics and exponential map corresponding the Levi-Civita are called Riemannian
geodesics and Riemannian exponential map, where the latter will be denoted by Expg to
avoid confusion when multiple connections and their corresponding Exponential maps
are considered.

A.4.3. Riemannian Distance and Mean

For a Riemannian manifold (M, g), the length of a smooth curve γ : [a, b]→M depends
on the metric and is defined by

Lg(γ) :=

∫ b

a

√
gγ(t) (γ̇(t), γ̇(t))dt.

If M is connected, the Riemannian distance between two points x, y ∈M is defined as

dg(x, y) := inf
{
Lg(γ)

∣∣ γ : [a, b]→M piecwise smooth , γ(a) = x, γ(b) = y
}

and turns (M,dg) into a metric space. If (N,h) is another connected Riemannian man-
ifold and F : M → N an isometry, then F is also an isometry between the metric spaces
(M,dg) and (N, dh), i.e.

dg(x, y) = dh(F (x), F (y)) ∀x, y ∈M.

Viewing the squared distance as a smooth function x 7→ 1
2d

2
g(x, y) := ζ(x) on M , for

fixed y ∈M , the Riemannian gradient is given by

grad ζ(x) = −
(

Expgx
)−1

(y)

Let x1, . . . , xN ∈ M be some points with associated weights ω1, . . . , ωN ∈ R, satisfying∑
k∈[N ] ωk = 1 and ωk > 0 for k ∈ [N ]. The Riemannian center of mass, in the following

just called Riemannian mean, is a point x∗ ∈M minimizing the function

x 7→ c(x) :=
1

2

∑
k∈[N ]

ωkd
2
g(x, xk)

on M , i.e. x∗ fulfills the optimality condition (see [Jos17, Lem. 6.9.5])

0 = grad c(x∗) =
∑
k∈[N ]

ωk
(

Expgx∗
)−1

(xk). (A.16)
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A.4.4. Riemannian Hessian

Suppose (M, g) is a Riemannian manifold and f : M → R a smooth function. Using the
definition from [AMS08], the Riemannian Hessian of f at p ∈M is the linear map

Hessg f(p) : TpM → TpM, X 7→ Hessg f(p)[X] := ∇gX gradg f(p). (A.17)

Due to [AMS08, Prop. 5.5.3], Hessg f is symmetric with respect to the Riemannian
metric g, i.e. at p ∈M

gp
(

Hessg f(p)[X], Y
)

= gp
(
X,Hessg f(p)[Y ]

)
(A.18)

holds for all X,Y ∈ TpM .
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Appendix B

Convex Analysis

The basic definitions and results from convex analysis necessary for this work are briefly
summarized in the following, based on [BV04], [Roc70] and [RW09].

B.1. Affine and Convex Sets

A subset A ⊂ Rn is called an affine set, if rx + (1 − r)y ∈ A holds for all x, y ∈ A and
r ∈ R. For any subset S ⊂ Rn the affine hull of S, denoted by aff(S), is the smallest
affine set A ⊂ Rn containing S. A subset C ⊂ Rn is convex, if for all x, y ∈ C the line
segment rx + (1 − r)y, with r ∈ [0, 1], is contained in C. Similar to the affine hull, the
convex hull conv(S) of a subset S ⊂ Rn is the smallest convex set C ⊂ Rn containing
the set S.

Lemma B.1.1. For any compact set K ⊂ Rd, the convex hull conv(K) is compact.

Proof. See e.g. [RW09, Corollary 2.30].

Let (Rn, d) be a metric space. The relative interior of a convex set C ⊂ Rn is denoted
by rint(C) and defined to be the interior when C is regarded as a subset of its affine hull
aff(C) in the subspace topology. Since the topology of Rn is induced by the metric d,
the relative interior of C can equivalently be described as

rint(C) =
{
x ∈ aff(C)

∣∣ ∃ε > 0: Bε(x) ∩ aff(C) ⊂ C
}
, (B.1)

where Br(x) = {y ∈ Rn | d(x, y) < r} is the open ball in Rn of radius r > 0 around x.

B.2. Convex Functions

Let C ⊂ Rn be a convex set. A function f : C → R is convex if

f(rx+ (1− r)y) ≤ rf(x) + (1− r)f(y) ∀x, y ∈ C and ∀r ∈ [0, 1].

The function f is called strictly convex, if the above inequality is strict for x 6= y and
r ∈ (0, 1). Furthermore, for a constant σ > 0, the function f is σ-strongly convex with
respect to the norm ‖ · ‖p, if

f(rx+ (1− r)y) ≤ rf(x) + (1− r)f(y)− σ

2
r(1− r)‖x− y‖2p
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holds for all x, y ∈ C and r ∈ (0, 1). If ‖ · ‖p = ‖ · ‖, then f is just said to be σ-strongly
convex, without referring to the norm.

Proposition B.2.1. [BT03, Prop. 5.1] The negative entropy −H is 1-strongly convex
on rint(∆) with respect to ‖ · ‖1.

In the following, it will be convenient to extend a convex function f : C → R onto all
of Rn by allowing f to take the value infinity outside its domain, i.e. to be an extended
real-valued function

f : Rn → R := R ∪ {∞} with dom(f) := {x ∈ Rn| f(x) <∞}.

If f is convex then so is the set dom(f). Thus, there is no need to refer to the convex
set C when defining f , since it is implicitly given as dom(f) = C.

Let C ⊂ Rn be a subset and define the indicator function of C from an optimization
point of view by

δC : Rn → R, x 7→ δC(x) =

{
0 , for x ∈ C
∞ , else.

(B.2)

If C is convex, then δC is an extended real-valued convex function. Moreover, if addi-
tionally C is closed, then δC is lower semicontinuous. With this, minimizing a function
f : Rn → R restricted to a set C ⊂ Rn can now be viewed as minimizing f + δC over all
of Rn, i.e.

min
x∈C

{
f(x)

}
= min

x∈Rn

{
f(x) + δC(x)

}
.

For a function f : Rn → R, the conjugate function, denoted by f∗, is defined by

f∗(y) := sup
x∈Rn

{
〈y, x〉 − f(x)

}
= sup

x∈dom(f)

{
〈y, x〉 − f(x)

}
(B.3)

and its domain consists of all y ∈ Rd for which the supremum is finite. The conjugate
function is always convex. If f is convex and lower semicontinuous, then f∗∗ = f .

Suppose the convex set C ⊂ Rn is open and f is continuously differentiable on C, then
all these different forms of convexity can be characterized through first-order conditions.
In this case, f is convex if and only if

f(y) ≥ f(x) + 〈∂f(x), y − x〉 ∀x, y ∈ C (B.4)

and strictly convex if and only if the above inequality is strict for x 6= y. Additionally,
σ-strong convexity of f with respect to ‖ · ‖p is equivalent to the condition

f(y) ≥ f(x) + 〈∂f(x), y − x〉+
σ

2
‖y − x‖2p ∀x, y ∈ C. (B.5)

If f is even twice continuously differentiable, then second-order conditions are available.
In this situation, the convexity of f is equivalent to the Hessian of f being positive
semi-definite for all x ∈ C. For strict convexity, the condition of Hess f(x) to be positive
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definite for all x ∈ C is only sufficient but not necessary. Furthermore, f is σ-strongly
convex if and only if the smallest eigenvalue of Hess f(x) is lower bounded by σ for all
x ∈ C, i.e.

〈u,Hess f(x)u〉 ≥ σ‖u‖2, ∀u ∈ Rn. (B.6)

As a consequence, f is σ-strongly convex, if and only if f − 1
2σ‖ · ‖

2 is convex.

B.3. Bregman Divergences

Let the convex set C ⊂ Rn be open and f : C → R continuously differentiable. Define
the function Df : C × C → R by

Df (y, x) := f(y)− f(x)− 〈∂f(x), y − x〉, ∀x, y ∈ C. (B.7)

This function is linear in f , i.e. for another function g : C → R and constants α, β ∈ R
it follows

Dαf+βg = αDf + βDg. (B.8)

Due to the definition of Df and the first-order condition of convexity in (B.4), the
characterization

f : C → R is convex ⇔ Df (y, x) ≥ 0 ∀x, y ∈ C (B.9)

follows as well the equivalence between f being strictly convex and Df (y, x) > 0 for
all x 6= y, by the corresponding first-order condition of strict convexity. Similarly, as a
result of (B.5),

f is σ-strictly convex w.r.t. ‖ · ‖p ⇔ Df (y, x) ≥ σ

2
‖y − x‖2p ∀x, y ∈ C. (B.10)

For a strictly convex function f , the expression Df is called a Bregman divergence (see
[Bre67]) and generalizes the concept of a distance. Examples of Bregman divergences
are the Euclidean distance on Rn, induced by the squared Euclidean norm

D‖·‖2(y, x) = ‖y − x‖2, ∀x, y ∈ Rn (B.11)

and the Kullback-Leibler (KL) divergence on the probability simplex ∆ ⊂ Rn (see (2.8)),
induced by the negative entropy −H(p) = 〈p, log p〉, for p ∈ ∆ and is given by

D−H(p, q) =
〈
p, log

p

q

〉
=: KL(p, q), ∀p, q ∈ ∆. (B.12)

Since the negative entropy can be extended onto the nonnegative orthant Rn≥0, the KL
divergence can be generalized, again denoted by KL, as

KL(x, y) = D−H(x, y) =
〈
x, log

x

y

〉
− 〈x,1n〉+ 〈y,1n〉, ∀x, y ∈ Rn≥0. (B.13)

Bregman divergences are a useful concept with many applications in different fields, in-
cluding information theory [CT12], optimization [BT03], information geometry [Ama16]
and many more.
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B.4. Lagrange Duality and KKT Conditions

Subsequently, a short summary of the necessary definitions and concepts from optimiza-
tion theory for this work is given, based on [BV04].

Suppose a general minimization problem with equality and inequality constraints of
the form

min
x∈Rn

{
f(x)

}
s.t. F (x) ≤ 0 and H(x) = 0 (B.14)

is given, where the functions f : Rn → R, F : Rn → R
m

and H : Rn → R
r

are not
necessarily convex and R = R∪{∞} as above. The domain of the minimization problem
is defined by

D := {x ∈ Rn| f(x) <∞, H(x) <∞ and F (x) <∞}

and the minimal value of the problem (B.14) is denoted by f∗. The associated Lagrangian
to the optimization problem (B.14) is the function

L : Rn × Rm × Rr → R, L(x, λ, ν) := f(x) + 〈λ, F (x)〉+ 〈ν,H(x)〉. (B.15)

The vectors λ and ν are called Lagrange multipliers or dual variables. The corresponding
Lagrange dual function, or just dual function, is given by

h : Rm × Rr → R, h(λ, ν) := inf
x∈D

{
L(x, λ, ν)

}
, (B.16)

and is concave in (λ, ν). In case the Lagrangian L(x, λ, ν) is unbounded below in x, the
function h(λ, ν) takes the value −∞.

If λ ≥ 0 is assumed, then the dual function gives lower bounds on the optimal value
f∗ of problem (B.14), i.e. h(λ, ν) ≤ f∗ holds. The optimization problem of finding the
best lower bound is called Lagrange dual problem, or just dual problem

max
λ,ν

{
h(λ, ν)

}
s.t. λ ≥ 0. (B.17)

In this context, the original minimization problem (B.14) is referred to as the primal
problem. The optimal value of (B.17) is denoted by h∗ and the corresponding pair of
maximizers (λ∗, ν∗) is termed dual optimal or optimal Lagrange multipliers. Since h∗ is
the best lower bound of f∗, the inequality

h∗ ≤ f∗

is always fulfilled. This fact is called weak duality and the difference 0 ≤ f∗ − h∗ is
referred to as duality gap. The case in which the duality gap is zero and

h∗ = f∗

holds is termed strong duality. In general, strong duality is not guaranteed to hold, how-
ever, there are various known sufficient conditions for it, named constraint qualifications.

If the functions f , F and H of the primal problem (B.14) are differentiable, then
there is a set of optimality conditions, called KKT conditions, which hold under the
assumption of strong duality.
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Theorem B.4.1 (Karush-Kuhn-Tucker (KKT) conditions [BV04]). Let L(x, λ, ν) be
the Lagrangian (B.15) and suppose x∗ is a primal optimal point of (B.14) and (λ∗, ν∗)
a dual optimal point of (B.17). If strong duality is satisfied, then the following KKT
conditions hold:

∂f(x∗) + dF (x∗)>λ∗ + dH(x∗)>ν∗ = ∂xL(x∗, λ∗, ν∗) =0, (B.18a)

F (x∗) ≤ 0, H(x∗) = 0, 0 ≤ λ∗, and 〈λ∗, F (x∗)〉 =0. (B.18b)

In the following, convex optimization problems

min
x∈Rn

{
f(x)

}
s.t. F (x) ≤ 0 and Ax = b (B.19)

are considered, where A is a matrix, b a vector and f : Rn → R as well as all components
F i : Rn → R, i ∈ [m], are convex. In this case, the resulting domain of the problem

D = {x ∈ Rn| f(x) <∞, and F (x) <∞} = dom(f) ∩
⋂
i∈[m]

dom(F i) (B.20)

is a convex set. It is important to note, that if the primal problem (B.14) is convex,
then the KKT conditions are also sufficient for optimality, i.e. if x∗, λ∗ and ν∗ are points
satisfying the KKT conditions (B.18), then x∗ and (λ∗, ν∗) are primal and dual optimal
and the duality gap is zero.

A well known constraint qualification for convex problems is Slater’s condition, re-
quiring the existence of a strictly feasible point

∃x ∈ rint(D), F (x) < 0 and Ax = b. (B.21)

If additionally, F is also affine, i.e. there is a matrix C and a vector d with F (x) = Cx+d,
then the domain (B.20) of the convex problem reduces to D = dom(f) and the condition
can be weakened to

∃x ∈ rint(dom(f)), Cx+ d ≤ 0 and Ax = b. (B.22)

As an example, consider a linear program (LP) in standard form

min
x∈Rn
〈c, x〉 s.t. x ≥ 0 and Ax = b, (B.23)

where c ∈ Rn is a given cost vector and the equality constraints are represented by a
matrix A ∈ Rm×n and a vector b ∈ Rm. The Lagrangian (B.15) is given by

L(x, λ, ν) = 〈c, x〉 − 〈λ, x〉+ 〈ν, b−Ax〉 = 〈b, ν〉+ 〈c− λ−A>ν, x〉,

for (x, λ, ν) ∈ Rn × Rn × Rm and the corresponding dual function (B.16) takes the form

h(λ, ν) = 〈b, ν〉+ inf
x∈Rn

{
〈c− λ−A>ν, x〉

}
=

{
〈b, ν〉 , for 0 = c− λ−A>ν
−∞ , else.
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The resulting dual problem (B.17) is then given by

max
λ∈Rn,ν∈Rm

{
〈b, ν〉

}
s.t. λ ≥ 0 and 0 = c− λ−A>ν

= max
ν∈Rm

{
〈b, ν〉

}
s.t. A>ν ≤ c, (B.24)

after eliminating the variable λ. Since the primal problem (B.23) is convex with affine
equality and inequality constraints as well as rint(dom(〈c, ·〉)) = Rn, the weak Slater’s
condition (B.22) is fulfilled, proving that the LP satisfies strong duality.
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