
D I S S E R T A T I O N
submitted

to the

Combined Faculty of the Natural Sciences and Mathematics

of

H E I D E L B E R G U N I V E R S I T Y, G E R M A N Y

for the degree of

Doctor of Natural Sciences

Put forward by

M.Sc. Silvan Lindner

Born in:

Meyrin, Switzerland

Date of oral examination:

. .

Optimization Based Coverage Path Planning
for Autonomous 3D Data Acquisition

Supervisors

Prof. Dr. Katja Mombaur
Priv.-Doz. Dr. Christoph Garbe

Abstract
The demand for 3D models that represent real-world objects such as structures and
buildings has increased in recent years. It is becoming increasingly important that
the reconstructions are not only visually convincing but also feature high geomet-
ric accuracy. This includes, for example, the fields of civil engineering, terrestrial
surveying and archeology, where precise measurements are made in the models for
documentation and analysis purposes. There are different approaches to create such
a reconstruction. The photogrammetric method Structure from Motion and laser
scanning are among the most widely used methods here, as they do not require a
complicated setup and can be used for scenarios at small to large scale. Recent
developments are enabling unmanned robotic systems, especially sensor mounted
UAVs, to assist in the recording of areas which are otherwise difficult to observe.
The demand for a high geometric accuracy, however, comes at the expense of high
computational complexity of up to several days. Hence, especially real-time recon-
structions are unfeasible, such that recording and reconstruction procedure must
be executed consecutively. The resulting model quality, i.e. completeness and ac-
curacy, is only assessable afterwards. Since it is often difficult or even impossible
to improve these models with additional measurements afterwards, methods that
ensure a reliable acquisition of sufficient data is required.

In this thesis we develop new methods and theory that address this problem for
the mentioned sensor types. For both, a probabilistic description of the expected
surface reconstruction error is maintained cost-efficiently as an estimate for the
model quality during the recording procedure. For image sensors this is realized
by incrementally constructing confidence ellipsoids that describe the information
obtained from all views. With depth sensors the surface quality is described by the
variance of a Gaussian process implicit surface regression fit to point cloud data using
polyharmonic kernel functions. Sensor poses are then assessed by the information
they add to the subsequent reconstruction up to a desired geometric accuracy using
a formulation that is motivated from Optimal Experimental Design. This quantity
is further used in an iterative next-best-view selection framework as a subproblem
of a coverage path planning problem.

The general formulations presented in this thesis enables a wide range of applica-
tions, such as offline and online view planning or various autonomous robot systems
under consideration of dynamic and geometric constraints. We present the first
multi-view coverage path planning approach, specifically targeted at autonomous
Structure from Motion data acquisition. Its correctness is validated in simulation
using the physics simulator Gazebo. Furthermore, we lay a foundation for simi-
lar applications with depth sensors. All presented algorithms were developed with
scalability in mind and show promising results regarding real-time usability.

i

ii

Zusammenfassung
Der Bedarf an 3D-Modellen, die reale Objekte wie Strukturen und Gebäude dar-
stellen, hat in den letzten Jahren stark zugenommen. Gleichzeitig wird es immer
wichtiger, dass diese Rekonstruktionen nicht nur visuell überzeugend sind, sondern
auch eine hohe geometrische Genauigkeit aufweisen. Diese werden beispielsweise in
den Bereichen Bauingenieurwesen, terrestrische Vermessung und Archäologie benö-
tigt, wo präzise Messungen in den Modellen für Dokumentations- und Analysezwecke
vorgenommen werden. Zu den am weitesten verbreiteten Rekonstruktionsmethoden
gehören das photogrammetrische Structure from Motion und das Laserscanning, da
sie keinen komplizierten Aufbau benötigen und für Anwendungen in kleinem bis
großem Maßstab eingesetzt werden können. Eine neuere Entwicklung in diesem Be-
reich besteht darin, dass immer mehr unbemannte Robotersysteme, insbesondere
sensorgestützte UAVs, unterstützend bei der Aufnahme von Bereichen eingesetzt
werden, die sonst nur schwer zu beobachten sind. Eine hohe geometrische Genau-
igkeit zu erreichen, benötigt jedoch eine lange Rechenlaufzeit von bis zu mehre-
ren Tagen. Daher sind insbesondere Rekonstruktionen in Echtzeit nicht möglich
und die Datenerfassungs- und Rekonstruktionsverfahren müssen nacheinander aus-
geführt werden. Die resultierende Modellqualität, d.h. Vollständigkeit und Genau-
igkeit, wird erst anschließend ersichtlich. Da es oft schwierig oder gar unmöglich ist,
diese Modelle anschließend mit zusätzlichen Messungen zu verbessern, sind Metho-
den erforderlich, die eine zuverlässige Erfassung ausreichender Daten gewährleisten.

In dieser Arbeit entwickeln wir neue Methoden und Theorien, die dieses Problem
behandeln. Dafür werden probabilistische Größen eingeführt und während des Auf-
nahmevorgans aktualisiert, die den zu erwartenden Rekonstruktionsfehler schätzen.
Bei einem kamerabasierten Verfahren wird diese aus Konfidenzellipsoiden konstru-
iert. Im Falle von Tiefensensoren wird die Objektoberfläche implizit durch einen
Gauß-Prozess aus Punktwolkendaten unter Verwendung polyharmonischer Kovari-
anzfunktionen modelliert. Die Qualität lässt sich dann anhand der zugehörigen Va-
rianz beschreiben. Damit lassen sich nun die Informationen, die eine Sensorposition
zur Rekonstruktion beitragen, bewerten. Dies ist aus der optimalen Versuchspla-
nung motiviert. Diese Größe wird weiter zur Planung neuer Sensorpositionen, als
Unterproblem von Coverage Path Planning, benutzt.

Die in dieser Arbeit vorgestellten Lösungsansätze sind allgemein formuliert. Da-
durch ergibt sich ein breites Anwendungsspektrum, wie zum Beispiel für Offline-
und Online- Pfadplanungen, sowie die Unterstützung verschiedener autonomer Ro-
botersysteme. Wir stellen den ersten Multi-View Coverage Path Planning Ansatz
vor, der speziell auf die autonome Datenerfassung für Structure from Motion aus-
gerichtet ist. Dessen Korrektheit wird in der Simulation mit dem Physiksimulator
Gazebo validiert. Darüber hinaus schaffen wir die Grundlage für ähnliche Anwen-
dungen mit Tiefensensoren. Alle vorgestellten Algorithmen wurden mit Blick auf die
Skalierbarkeit entwickelt und zeigen vielversprechende Ergebnisse hinsichtlich ihrer
Echtzeit-Nutzbarkeit.

iii

iv

Contents

Acknowledgments ix

Acronyms & Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 4

1.2.1 Structure from Motion and Laserscanning 4
1.2.2 Next-Best-View Planning . 5
1.2.3 Coverage-Path-Planning . 7

1.3 Contribution & Outline . 8

I Preliminaries 11

2 Structure from Motion 13

3 Optimal Experimental Design 17
3.1 Confidence Regions . 17

3.1.1 Degenerate Cases . 20
3.1.2 Misconceptions . 20

3.2 Optimality Criteria . 20

4 Occupancy Grid Maps 23
4.1 Occupancy Grid Mapping using Inverse Sensor Model 23
4.2 Efficient Octree Implementation . 25

5 Gaussian Process Fundamentals 29
5.1 Formal Definition . 29
5.2 Closure under Evaluation of Linear Operators 31
5.3 Log Marginal Likelihood . 32
5.4 Mean Square Continuity . 33
5.5 Interpretation as Linear Regression Model 34

II Structure from Motion Next-Best-View Planning 35

6 Theoretical Derivation 37
6.1 Special Treatment of Singular Precision Matrices 38
6.2 Estimating Expected Reconstruction Quality 39

v

6.2.1 Point Observations . 39
6.2.2 Choice of Estimator Parameters 42
6.2.3 Image Observations . 43

6.3 Optimal View Planning . 44
6.3.1 Next-Best-View: Gain Formulation 45
6.3.2 Gain Clamping . 47
6.3.3 Next-Best-View Trajectory 49

7 SfM-NBV Algorithm 51
7.1 Surface Geometry Discretization . 52

7.1.1 3D Model . 53
7.1.2 Primitive Hulls . 54
7.1.3 Voxel Discretization . 54

7.2 Pseudo-Code . 56

8 Implementation Details 61
8.1 OctoMap Overview . 61
8.2 Gain-Octree . 63
8.3 Leveled Octree . 64

8.3.1 Filter Function . 64
8.3.2 Ray Traversal . 68
8.3.3 Inserting Measurements . 72

8.4 Parallelization . 74

9 Simulation and Evaluation Setup 77
9.1 Simulation Setup . 77
9.2 Evaluation Pipeline . 82

9.2.1 SfM Reconstruction . 82
9.2.2 Analysis Procedure . 82

10 Results 87
10.1 Lorsch Abbey King’s Hall . 88
10.2 Holbeach Cemetery Chapel . 96
10.3 Tyche Sculpture . 108
10.4 Roman Temple of Évora . 116

III Towards Autonomous Gaussian Process
Implicit Surface Next-Best-View Planning 121

11 GPIS Surface Estimation 123
11.1 Duality to Regularization Formulation 123
11.2 Polyharmonic Kernels . 126
11.3 Adding derivative observations . 135

12 GPIS Next-Best-View Planning 141
12.1 Local GPIS . 142
12.2 Intersections - Meshing . 147
12.3 Intersections - Ray-Marching . 150

vi

12.4 Final Remark . 152

IV Conclusion & Future Work 153

13 Conclusion 155

14 Future Work 159

Appendix 161
A Weyl’s inequality . 161
B Gain Function Derivative . 161
C Computing Eigenvalues and Eigenvectors of Symmetric 3× 3 Matrices164

References 167
List of Figures . 167
List of Tables . 171
List of Algorithms and Files . 173
Bibliography . 175

vii

viii

Acknowledgments

First and foremost I would like to express my gratitude to my supervisors Prof. Dr.
Katja Mombaur and Priv.-Doz. Dr. Christoph Garbe for believing in me and giving
me the opportunity for this research project. Without their guidance, support, and
motivation this thesis would not have been possible.

I am deeply grateful to the Heidelberg Graduate School of Mathematical and Com-
putational Methods for the Sciences (HGS MathComp) for supporting me financially
with a scholarship. The courses they offered for Ph.D. fellows and the possibility of
connecting with scientists from different fields from all over the world was immensely
helpful and enabled for interesting interdisciplinary discussions.

I would also like to thank all staff at Heidelberg University that handled bureaucracy
and had a huge impact in making the last few years a pleasant experience. This
especially includes Sarah Englert from our research group, as well as people from
the Faculty of Mathematics and Computer Science, the HGS and the IWR.

Very special gratitude goes to my colleagues of the research group Optimization
Robotics & Biomechanics, especially all current and previous office members, Ben-
jamin Reh, Christian Seitz, Monika Harant, Felix Aller and Alexander Stepanov,
as well as Marina Horn, I had the pleasure working with. They taught me a lot
on a scientific and personal level. Their friendship, support, feedback, the interest-
ing discussions and the fun we had are the most valuable experiences I gathered
throughout my Ph.D. studies. Thank you for the amazing time. Furthermore, I
want to thank Jonas Große Sundrup for helpful discussions, especially about func-
tional analysis, and Dr. Matthew Millard for motivational support and mentoring
regarding scientific practices.

Last but not least, I would like to express my deepest gratitude to my family and
friends who unconditionally supported and encouraged me throughout these years
in the pursuit of this project. This especially includes my parents, which I am very
proud of and who made me who I am. Most importantly, I wish to thank my loving
and supporting wife Fata, who always gave me strength and inspiration over the
last 10 years. Without you, I would not have made it.

ix

x

Acronyms & Abbreviations

ALS - Airborne Laser Scanning
COLLADA - COLLAborative Design Activity
CPP - Coverage Path Planning
CPU - Central Processing Unit
CUDA - Compute Unified Device Architecture
DDA - Digital Differential Analyzer
FOV - Field Of View
GNSS - Global Navigation Satellite System
GPIS - Gaussian Process Implicit Surface
GPS - Global Positioning System
GPU - Graphics Processing Unit
HOG - Histogram of Oriented Gradients
ICP - Iterative Closest Point
k-NN - k-Nearest Neighbors
LiDAR - Light Detection And Ranging
NBV - Next Best View
ODE - Ordinary Differential Equation
OED - Optimal Experimental Design
RANSAC - RANdom SAmple Consensus
RBF - Radial Basis Function
RKHS - Reproducing Kernel Hilbert Space
ROS - Robot Operating System
RRT - Rapidly-exploring Random Tree
RTK - Real-Time Kinematic
SfM - Structure from Motion
SIFT - Scale-Invariant Feature Transform
SLAM - Simultaneous Localization And Mapping
SMART - Spatial Measure for Accelerated Ray Tracing
SQP - Sequential Quadratic Programming
SURF - Speeded Up Robust Features
TIFF - Tagged Image File Format
TLS - Terrestrial Laser Scanning
TVP - Target Visitation Problem
UAV - Unmanned Aerial Vehicle
UGV - Unmanned Ground Vehicle
URDF - Unified Robot Description Format
UUV - Unmanned Underwater Vehicle
XACRO - XML Macros

xi

xii

1Introduction

1.1 Motivation
In recent years, the demand for high-resolution large scale 3D reconstructions has
increased rapidly. For many scientific fields, it is not sufficient to simply create a
visually appealing model. Rather, high geometric accuracy is required to carry out
measurements and analyses to scale. Examples of this can be found in many areas.

In civil engineering, highly detailed models are used to assess structural stability
as a cost and time-efficient alternative to conventional visual investigations. This is
important to ensure the safety and usability of those structures. Popular applica-
tions include maintenance and inspection tasks of civil infrastructure, such as bridges
([Lattanzi and Miller, 2014], [Chen et al., 2019]) and tunnels ([Attard et al., 2018]).
The required data acquisition is usually assisted by robotic systems, such as un-
manned aerial vehicles (UAVs). The 3D representation allows the automatic de-
tection of material defects such as cracks ([Jahanshahi et al., 2013]), deformations
([Hallermann et al., 2014], [Bhadrakom and Chaiyasarn, 2016]) and the analysis of
surface structure and properties.

Another application of these scale models is in the field of terrestrial surveying,
where they are used for analysis and evaluation of terrain properties. Besides small
scale micro-topography analysis [Lucieer et al., 2014b], large scale surveys of land-
slides [Lucieer et al., 2014a], coastal environments [Mancini et al., 2013] and river
flood-plains [Bakker and Lane, 2017] are performed. Data acquisition is sped up
and simplified with UAVs. There are also applications for other types of robots. For
example, unmanned underwater vehicles (UUVs) are used in [Pizarro et al., 2004]
and [Storlazzi et al., 2016] to survey the ocean floor.

Three dimensional reconstructions are already extensively used in archaeology.
There, very detailed models are created for the documentation of cultural heritages
and excavation sites. These are subsequently used for an extensive analysis, e.g. us-
ing orthographic projections, cuts and contour profiles. Especially the photogram-
metric method Structure from Motion (SfM) has become an important tool for ar-
chaeological documentation (e.g. [Green et al., 2014], [Lo Brutto and Meli, 2012],
[López et al., 2016]). Besides a highly accurate 3D model, it additionally yields
high-resolution surface textures crucial for those documentation tasks. SfM proves
to be cost-efficient, easy to use, versatile in rough environments and allows for
fast data acquisition. The latter in particular is very important, as the recording
time is often limited. As for the beforehand mentioned examples, the aid of un-
manned robotic systems for the data acquisition gained popularity in the last few
years, especially for large scale objects and structures. In [Chiabrando et al., 2015],
[Lo Brutto et al., 2014] and [Aicardi et al., 2016], UAVs are used to capture and

1

CHAPTER 1. INTRODUCTION

document cultural heritage sites using SfM. There are also examples where differ-
ent reconstruction methods are employed simultaneously, e.g. [Xu et al., 2014] and
[Valenti and Paternò, 2019] where SfM is used in combination with terrestrial laser
scanning (TLS).

The biggest drawback of SfM is its high runtime requirement. Depending on
factors like the number of acquired images and their resolution, a high detail re-
construction may even take several days to fully compute. This introduces further
problems regarding the recording processes. When manually taking the required
pictures, the distribution of their poses is often very uneven, over-observing certain
areas of the geometries surface while others are captured poorly (see figure 1.1).
Hence, the main difficulty lies in determining a set of images that provides good ob-

Figure 1.1: Choice of camera positions for an SfM reconstruction of the King’s Hall
of Lorsch Abbey (UNESCO World Heritage Site) by hand. A total amount of 1300
images were taken from a manually controlled UAV with strongly varying recording
pose densities.

Source: ©2016 Christian Seitz

servability of all points on the object’s surface. If the distribution of recording poses
is too sparse, few or no feature correspondences can be detected between disjoint
subsets of images. This leads to erroneous feature matching, a subsequent bad or
wrong camera pose estimation and ultimately in a bad reconstruction quality (i.e.
high reconstruction error and missing data), which is only visible after concluding
all computations. The density of the SfM dense point cloud may then be too sparse
or noisy in certain areas that have not been sufficiently observed, or, in the worst
case, introduces holes (figure 1.2) or misaligned object subsets (figure 1.3). Those
problems are unfortunately common in the SfM community and require subsequent
improvements by increasing the image set size. However, those improvements in-
troduce further problems due to different light and weather conditions, possibly
changed object geometry or texture. In the worst case, they may even be impos-
sible, which is common in archeology, where excavations are often time-limited or
already too far advanced.

2

1.1. MOTIVATION

Figure 1.2: Faulty SfM reconstruction of the Monastery of St. Michael (Heidelberg).
The right tower was not sufficiently observed leading to holes in its SfM reconstruction.

Source: ©2018 Christian Seitz

Figure 1.3: Faulty SfM feature matching of
a meerschaum pipe. Two sets of images
recorded on both sides of the pipe do not have
sufficient overlap resulting in wrong camera
pose estimations and wrong feature match-
ing.

Acknowledgement: The meerschaum pipe was
generously provided by the Reiss-Engelhorn-
Museen Mannheim for the ArchEye Auto-
matics project ([Seitz and Altenbach, 2011],
[Seitz, 2012]).

Similar problems exist for data acquisition with a laser scanner. A reconstruc-
tion is built from a set of erroneous point measurements. In order to obtain a
model representation with high geometric accuracy, all individual measurements
are registered in a global point cloud first. A surface mesh is then usually created
from a regression fit. Examples of surface reconstruction methods can be found
in [Berger et al., 2014]. Computing these meshes is computationally expensive and
results in long runtimes, such that the reconstruction algorithms must be run of-
fline in post-processing. Only then can the resulting model quality be evaluated
and deficits be identified. These, again, correspond to holes in the reconstruction or
uncertainties about the surface shape, i.e. a locally insufficient level of detail. They
are caused by occlusion in the individual measurement observations or insufficient
surface point densities in areas with high geometric fidelity. While it is possible to
maintain an approximate voxel discretization of measurement data during runtime
to identify unobserved areas, the voxel sizes pose a limit to the detectable model
resolution.

These problems are addressed in this thesis. Instead of selecting sensor poses
manually, we choose them based on the information they will contribute to a subse-

3

CHAPTER 1. INTRODUCTION

quent reconstruction. This class of problems is called next-best-view (NBV) plan-
ning. If, in addition, a collision-free recording path that provides full coverage of the
structure is to be achieved, it belongs to the class of coverage path planning (CPP)
problems. We will present the first NBV planning approach that solves a multi-view
CPP problem in the SfM case. The term “multi-view” here refers to the fact that
depth can not be extracted from a single image and each surface point must be
observed sufficiently often to determine its spatial position correctly. Furthermore,
a foundation is laid to extend similar techniques we develop in this context to laser
scanning. More specifically, we propose a method that allows maintaining a surface
model of a point cloud that scales well with the number of points and similarly
allows for efficient NBV assessments. We will now give a short introduction and an
overview of related work regarding the different recording methods, NBV planning
and CPP.

1.2 Related Work

1.2.1 Structure from Motion and Laserscanning
Most of the application examples mentioned in the previous section utilize Structure
from Motion (SfM) (e.g. [Agarwal et al., 2011]) to create the 3D models, while some
employ light detection and ranging (LiDAR) sensors, e.g. terrestrial laser scanning
(TLS) or airborne laser scanning (ALS). When it comes to creating such highly de-
tailed models on a medium to large scale, these are the state-of-the-art methods. On
a smaller scale, structured light scanning systems are used alternatively. Over the
years, SfM has proven itself as a cost-effective alternative to especially laser scan-
ning. SfM requires a set of images captured by (consumer-grade, high resolution)
cameras to calculate 3D reconstructions using methods from computer vision1. Re-
garding the reconstruction accuracy, SfM was considered inferior to TLS for a long
time. However, recent advances in technology and algorithms for computer vision
have leveled the odds. Recent studies show that both methods can compete, as they
result in comparative model qualities ([Zhang et al., 2016], [Carraro et al., 2019]).
This statement proofs to be true even for large scale structures and high dis-
tance recordings as shown in [Bolognesi et al., 2014]. They compared reconstruc-
tions from SfM using a set of images taken from a distance of 50m with a TLS
scan and observed that discrepancies between both point clouds did not exceed
3 cm. [Skarlatos and Kiparissi, 2012] even suggests that modern image-based meth-
ods may replace TLS standard solutions for small and medium size objects. While
SfM can already achieve sub-millimeter precisions in certain scenarios, the sensor
accuracy of laser scanners is often still higher than the accuracy of individual points
of an SfM reconstruction. However, the latter usually produces a higher point cloud
density which benefits a subsequent mesh generation that smooths out these errors.
Further differences exist in the accuracy of sensor pose estimations. Laser scanning
approaches are usually either ground-based and require manual, precise pose cali-
bration or use the iterative closest point (ICP) algorithm [Besl and McKay, 1992]
to merge multiple measurements. The accuracy of the latter highly depends on the
point cloud overlap and densities. SfM utilizes thousands of features extracted from

1For a more detailed explanation of SfM consider section 2.

4

1.2. RELATED WORK

each image to obtain a robust and highly accurate pose estimation, leading to high
flexibility in application. This allows for easy integration into robotic systems such
as UAVs and UUVs that support the user to record areas that would otherwise be
difficult to observe (e.g. roofs). Such integrations are already very widespread as
seen in the beforehand mentioned example applications.

The high geometric accuracy of SfM comes at the cost of computational com-
plexity, such that the construction of models in real-time becomes infeasible. While
other impressive photogrammetric approaches exist that are capable of performing
incremental reconstruction in real-time using consumer-grade phone cameras (for
example [Newcombe et al., 2011] [Nießner et al., 2013] [Klingensmith et al., 2015]),
those suffer from compromises between image resolution, frame rate, and reconstruc-
tion accuracy. In comparison, SfM being an offline method does not require sacrific-
ing accuracy at the cost of run-time. Especially all recorded data is already available
before executing the algorithm. Hence, joint bundle-adjustment is performed over
all poses simultaneously, increasing the overall camera pose estimation accuracy and
mitigating drift. More expensive and more robust Histogram-of-Oriented-Gradient
(HOG) features (SIFT [Lowe, 1999] / SURF [Bay et al., 2006]) can be extracted,
matched and tracked on the higher resolution images. The higher resolution images
additionally allow for a more photo-realistic texture mapping.

1.2.2 Next-Best-View Planning
NBV planning has been a very active field of research over the last 40 years. A good
overview of different types of NBV algorithms is given in [Scott et al., 2003]. They
describe the classic model building cycle in four steps:

• Planning: A new view is planned based on a utility or gain function that
assesses a selection of admissible sensor poses. The viewpoint space is of-
ten constraint, e.g. to lie on the surface of a cylinder [Pito, 1999] or sphere
[Banta et al., 2000] to improve planning performance.

• Scanning: A scan is performed at the beforehand planned pose.

• Registration: Acquired data is registered with previous measurements, e.g.
transformed into a global map using the ICP method [Besl and McKay, 1992].

• Integration: The new information is integrated into a globally consistent
model. The model is usually maintained either as a surface based (e.g. mesh)
or a volumetric (e.g. voxel occupancy map) representation.

The class of problems where no prior information is available is called non-model-
based. Methods, where a priori knowledge of the object model is available at some
fidelity, are classified as model-based. Those allow for a simulation of the model
building cycle, such that all views can be planned offline. Another more recent
overview of common NBV approaches is given in [Chen et al., 2011]. They per-
formed a broad survey on the development of NBV planning, focusing on various
applications in autonomous robotics. Those fields include autonomous navigation
and exploration, inspection, modeling and grasp planning. Each task involves dif-
ferent requirements on the model to be captured. For example, while a rough voxel
representation may be sufficient for autonomous navigation, the main purpose of

5

CHAPTER 1. INTRODUCTION

model perception is to obtain a highly detailed geometric representation. These
different application purposes have resulted in a wide range of task-specific NBV
approaches that address their respective requirements. However, the underlying
methods are always similar and especially the basic model building workflow men-
tioned above applies. Some recent application examples are stated below.

Consider the field of non-model-based 3D surface reconstruction using depth
sensors. While pure voxel-based space carving approaches, which use the number of
unobserved voxels in their measure for the NBV selection (e.g. [Banta et al., 2000]),
were most popular several years ago, additional quality criteria are now included
in the utility function. In [Vasquez-Gomez et al., 2014] the authors include terms
related to scan overlay, the path cost, the angle between view direction and surface
normals, as well as a factor describing the amount of occlusion plane voxels (i.e.
voxels bordering free and occluded space) in their utility function while still oper-
ating in a voxel map. Another popular approach is given in [Kriegel et al., 2015].
Besides a voxel map, they additionally maintain a surface mesh with fixed minimal
resolution. Their utility function also depends on an exploration term related to
a voxel map, but further includes quantities computed from a boundary detection
and surface trend estimation on the mesh. Those include the angle of incidence, the
relative point density and the border edge percentage (i.e. the amount of all visible
border edges divided by the amount of all visible edges).

Autonomous mapping and exploration tasks also count to non-model-based NBV
planning problems. Here, probabilistic voxel maps are still the most widespread
volumetric model representation due to their excellent performance on robotic plat-
forms. In this context, a selection of various volumetric information gain metrics is
introduced and evaluated in [Delmerico et al., 2018]. Those metrics include terms
related to visibility and occlusion, relative geometric relations to neighboring voxels,
and voxel entropies. An example application of such a metric for autonomous explo-
ration of an unknown volume or surface manifolds is given in [Bircher et al., 2018].
They create random viewpoint candidates using a rapidly-exploring random tree
(RRT) [Karaman and Frazzoli, 2011], which are evaluated online on a UAV. A fun-
damentally different approach is given by [Jadidi et al., 2014]. They estimate con-
tinuous occupancy maps using a Gaussian process without the need for grid dis-
cretization (see [Ramos and Ott, 2016], [O’callaghan and Ramos, 2012]). Frontier
maps (boundaries between known-free and unknown areas) are extracted from the
Gaussian process and used in an information gain formulation to determine NBV
poses.

Similar approaches for NBV computations also exist for surface inspection tasks,
e.g. [Hollinger et al., 2012]. They use probabilistic regression to incrementally train
a Gaussian process that implicitly describes the geometry for the purpose of model-
based inspection planning. This surface is called Gaussian process implicit surface
(GPIS) [Williams and Fitzgibbon, 2007]. NBVs are then picked as sensor poses that
reduce the uncertainty (i.e. covariance function) on the surface mesh. Their method,
however, requires an a priori mesh of the model. Other large scale terrain modeling
GPIS approaches [Vasudevan et al., 2009] [Hadsell et al., 2010] exist that could also
be equipped with a similar NBV selection strategy.

GPIS are already very popular in modeling small objects from measurements of
tactile sensors [Dragiev et al., 2011], [Ottenhaus et al., 2016]. There, only a small
amount of measurements are integrated into the model in each iteration, such that

6

1.2. RELATED WORK

the computational complexity of the Gaussian process stays reasonable. This al-
lows for online haptic exploration, commonly used in grasp planning, which is an-
other task associated with non-model-based NBV planning. Examples are given in
[Caccamo et al., 2016] and [Huang and Hermans, 2019] where the next best mea-
surement pose is again determined from the surface model uncertainty given by
covariance information.

1.2.3 Coverage-Path-Planning
The field of coverage path planning (CPP) addresses the task of determining a
collision-free path that allows the observation of all points of a volume or area
of interest. An extensive survey of state-of-the-art CPP approaches is given in
[Galceran and Carreras, 2013] and includes cellular decompositions, graph-, or grid-
based schemes. These allow for a wide range of applications. Some examples of
paths that follow simple geometric patterns are given below.

In [Yakoubi and Laskri, 2016] the authors present an evolutionary approach us-
ing a genetic algorithm to compute a coverage trajectory of a confined 2D region
with obstacles for a cleaning robot. [Torres et al., 2016] consider polygonal shapes in
the context of UAV terrain coverage for image-based 3D reconstructions. They use
a line sweep algorithm to obtain piecewise linear path segments in a plane that guar-
antee a specified image overlap. An application for underwater inspection is given
in [Galceran et al., 2014]. They cover complex structures on the ocean floor using
paths obtained from intersecting horizontal planes with the target region at uni-
formly spaced depths. A similar strategy is employed in [Peng Cheng et al., 2008].
A time-optimal UAV flight path is computed from horizontally sliced cylinders,
providing complete 3-dimensional coverage of 2.5-dimensional features in urban en-
vironments.

These pattern-based algorithms, however, do not take the quality of the ob-
served area into account. CPP approaches that do consider this quantity for the
view selection are closely related to NBV planning. More precisely, by iteratively
performing NBV planning and interconnecting the resulting sensor poses, full cov-
erage is achieved. For example, the beforehand mentioned NBV 3D surface recon-
struction algorithms [Vasquez-Gomez et al., 2014] and [Kriegel et al., 2015], as well
as the autonomous exploration approach by [Bircher et al., 2018] fall into this cat-
egory. The main task of extending NBV planning to CPP is to connect individual
sensor poses. For many years, view planning and path planning were treated as
separate problems. All sensor poses were computed first and were subsequently
connected as a solution to a target-visitation problem (TVP), yielding the shortest
connecting path. However, this two-step optimization scheme suffered from certain
limitations. Depending on the optimality criteria, the resulting trajectory may not
be optimal since path costs could not be considered in the NBV planning. Fur-
thermore, even if the computed poses provide full coverage, there is no guarantee
that a solution to the TVP exists that is capable of reaching all views, due to
robotic specific dynamic constraints or cluttered environments. In recent years, fun-
damentally different approaches that rely on rapidly-exploring random trees (RRT)
[Karaman and Frazzoli, 2011] have gained popularity. Here, the planning step of
the NBV selection is adjusted slightly. A random tree from the robot’s current pose
is grown, which especially also considers the robot’s dynamics and geometric con-

7

CHAPTER 1. INTRODUCTION

straints. The utility function is then evaluated for all computed trajectory endpoints
and the branch with the highest score is chosen as NBV. Executing this NBV plan-
ning iteratively ultimately results in an admissible coverage path. Note that this pro-
cedure does not yield optimal trajectories, i.e. neither a minimum set of views nor the
shortest coverage path. Optimality can be achieved nonetheless with model-based of-
fline planning. There, a refinement procedure can be used to iteratively resample the
random tree. Popular examples employing RRT∗ to solve 3D CPP problems include
the rapidly-exploring random tree of trees (RRTOT) method [Bircher et al., 2017],
the random inspection tree algorithm (RITA) [Papadopoulos et al., 2013] and the
method introduced in [Englot and Hover, 2013] employing the sampling-based sub-
routine RRT∗||. An application of another resampling approach for autonomous 3D
structural inspection using aerial robots is given in [Bircher et al., 2016].

In order to obtain an SfM reconstruction, each point on the geometries sur-
face must be observed a sufficient number of times in the recorded images to allow
for proper triangulation. Depending on the distance of the recording pose to the
surface and spatial relations to other viewpoints, multiple views of the same area
may be necessary to achieve a desired reconstruction quality. Since current CPP
approaches only guarantee to observe a surface once, they are not suitable for this
task. While some of them are targeted at 3D reconstructions from photogrammetry
(e.g. [Torres et al., 2016]), these only consider image overlap for simple geometric
primitives. This is not sufficient for our application, because we consider complex
3D structures where the geometry may not be known in advance.

1.3 Contribution & Outline
This thesis covers two main topics.

In part II, we present the first full 3D multi-view CPP algorithm that aims at
collecting images, such that a subsequent SfM reconstruction is complete and satis-
fies certain quality constraints. This section has already been partially published by
us in [Lindner et al., 2019]. An estimator is constructed that estimates the expected
reconstruction quality (i.e. reconstruction error) of surface points during the record-
ing procedure. Besides its quality estimation properties, it also indicates whether a
point was observed and whether it can be reconstructed at all. Based on the covari-
ance information obtained from our estimator, a utility function is developed that
measures information gain for arbitrary viewpoints. For that purpose, we utilize
methods from optimal experimental design (OED) to measure the gain in entropy
a new view provides, i.e. the change in relevant information for the reconstruction.
The theory developed for quality estimation and NBV planning is given in chapter
6. Afterward, we follow the standard NBV - RRT cycle explained above to solve the
CPP problem: multiple viewpoint candidates are obtained from RRT samples that
also consider the utilized robotic system’s dynamics. The highest score trajectory is
executed and quality estimates inside the camera field of view (FOV) are updated.
We present different strategies for performing these updates with various model
representations, for use in both model-based (offline) and non-model-based (online)
planning. The corresponding algorithm for practical application is given in chapter
7. Because of the general formulation given there, a high degree of flexibility is
achieved. This allows for the adaption of our algorithms for a wide variety of robots
and specialized RRT sampling methods. Especially RRT resampling schemes could

8

1.3. CONTRIBUTION & OUTLINE

be utilized for offline planning to obtain optimal trajectories, which is a topic for
future research. The evaluation of the utility function proofs to be the bottleneck
in the computational complexity of our algorithm. Hence, we give implementation
details on crucial performance culprits (e.g. ray-casting in voxel maps) in chapter 8,
such that a fast runtime is achieved. This is especially important for use cases for
online planning. A simulation environment is described in chapter 9 that allows for
a comparison between obtained SfM reconstruction with a ground-truth reference
mesh, such that the estimate on the expected reconstruction quality can be ana-
lyzed. We verify and analyze the derived algorithm in this simulation environment
in chapter 10. While our main application is in archaeology for the documentation
of structures, the general formulation allows for a wide range of other use cases.
Possible further application scenarios include UAV aided reconstructions of large
scale areas, small scale photogrammetric based surface scanning using robotic arms,
or to provide a guide for manual photography, each for real-time non-model-based
planning or model-based offline planning, where optimal coverage trajectories can
be precomputed.

In part III we lay the foundation to extend similar methods we developed in
part II to an application with depth sensors. As in [Vasquez-Gomez et al., 2014]
and [Kriegel et al., 2015], we want to assess the quality of the observed surface. In-
stead of geometric measures, however, a Bayesian regression approach is employed.
A local GPIS [Williams and Fitzgibbon, 2007] is used to represent the model surface
similar to [Vasudevan et al., 2009]. The main benefit over mesh-based representa-
tions is that – in theory – arbitrary small geometric details can be described by
the implicit surface using a probabilistic model. The covariance information then
reflects the surface quality as in [Hollinger et al., 2012]. The kernel function deter-
mines the surface properties, i.e. inter- and extrapolation behavior. In order to
maintain surface orientations or curvature when extrapolating to unmapped areas,
we use polyharmonic kernel functions [Wahba, 1990]. They are augmented as in
[Solak et al., 2003] [Wu et al., 2017] to include observations of surface normals to
improve the model representation. The primary difficulty in utilizing a similar NBV
- RRT approach as in part II lies in computing ray-model intersections for arbitrary
viewpoints to evaluate a utility function.

Our main contributions in this second part are twofold. First, we give a clean
derivation of GPIS with polyharmonic kernels in the context of surface modeling
in chapter 11. Especially the connection to polyharmonic spline interpolation is
highlighted. We believe that such an approach to this topic does not yet exist to
this extent. Chapter 12 addresses the problem of computing GPIS-ray intersections,
required for a NBV gain function. Two methods are presented that efficiently solve
this problem and especially allow for large scale environments. One approach cal-
culates these intersections using iterative ray-marching directly from a point cloud
without the need for any explicit surface representation. The other approach main-
tains a tetrahedral mesh of the implicit surface, such that intersections can efficiently
be extracted from the depth buffer of a GPU. This mesh is updated for each new
NBV. In addition, we provide an algorithm that requires almost constant runtime
for local mesh approximations, independent of the size of the observed point cloud.

This thesis brings together different topics from computer vision, statistics, nu-
merical optimization, and autonomous robotics. Therefore, a short but detailed
insight into various topics is given in part I. These include structure from mo-

9

CHAPTER 1. INTRODUCTION

tion (chapter 2), optimal experimental design (chapter 3), occupancy grid mapping
(chapter 4) and Gaussian processes (chapter 5). The level of detail of the individual
components of each topic depends on the extent to which they are later used.

For the remainder of this thesis, we assume that the locations of all robot and
camera poses are known. We believe that this assumption can be made since si-
multaneous localization and mapping (SLAM) is a very active field of research that
is already achieving impressive results in localization accuracy. Furthermore, addi-
tional hardware exists that achieves millimeter-precise localization accuracies with
external positioning systems like the real-time kinematic (RTK) navigation tech-
nique.

10

Part I

Preliminaries

11

2Structure from Motion

Structure from motion (SfM) is the process of estimating three-dimensional struc-
tures from a set of two-dimensional images. This photogrammetric technique is
versatile since consumer-grade digital cameras suffice to obtain a highly accurate
representation of the recorded objects on small to large scale. The resulting model
quality is even comparable to those obtained from other methods such as LiDAR
or structured light scans. As one camera is sufficient as a recording device, SfM
comes at a comparatively low cost and does not require extensive specialized train-
ing. This also enables applications in special environments where other methods are
unsuitable. Furthermore, the images obtained can additionally be used for texture
mapping allowing for photo-realistic representations with high geometric and visual
accuracy.

The main drawback of SfM is its high computational complexity. For example,
creating models from thousands of images may take days to weeks to process on
consumer hardware. As stated in the introduction, this is the main motivation
for the NBV planning derived in part II. There, we strive to collect a small set
of images that sufficiently captures the full scene in order to reduce the image set
size and consequently computational time, while still obtaining high accuracy and
complete models.

Roughly speaking, SfM triangulates each point of an object through several
observations in overlapping images, as shown in figure 2.1. A more detailed outlineobjectfeatu object pointimag image plain k image plain k+1
Figure 2.1: Simplified visualization of the SfM method. Feature points are observed in

multiple images, allowing for camera pose estimation and object point triangulation.

of the main steps of the SfM workflow is given below in chronological order. It is
worth noting that in the SfM pipeline, algorithms with higher accuracy are usually
preferred to faster approaches with less accurate output. The individual steps are
illustrated with an example.

13

CHAPTER 2. STRUCTURE FROM MOTION

Feature extraction

Given a set of images, features are extracted in each of them. A feature point is
a salient point that usually corresponds to a corner obtained by an edge detector.
More elaborate features can also range from edges over blobs to complex objects.
Those points are further converted to a descriptive formulation that uniquely char-
acterizes each feature and allows the identification of equivalent features across the
set of images. Therefore, it is also important that the extractor selects points that
are stable under viewpoint and lighting differences. Usually, a descriptor computes
a unique identifier from the intensities of a region around the feature point. Scale
Invariant Feature Transformation (SIFT, [Lowe, 1999]) and Speeded-Up Robust Fea-
tures (SURF [Bay et al., 2006]) are popular descriptors that are commonly used for
SfM. There, a feature is described by histograms over pixel intensity gradients.
This yields descriptors with high robustness to small viewpoint changes, local affine
distortions, changes in illumination, noise and partial occlusion at the cost of com-
paratively high computational time. An example of feature extraction is shown in
figure 2.2a.

(a) Feature Extraction. (b) Feature Matching.

Figure 2.2: Feature extraction and matching using Agisoft Photoscan [Agisoft, 2017]
on the example of a meerschaum pipe. Blue points correspond to extracted features,
while blue lines indicate feature correspondences between two images.

Acknowledgement: The meerschaum pipe was generously provided by the
Reiss-Engelhorn-Museen Mannheim for the ArchEye Automatics project
([Seitz and Altenbach, 2011], [Seitz, 2012]).

Feature matching

Feature matching identifies feature correspondences between images. While this step
depends on the descriptor used, this is usually merely a comparison of all identified
features. The feature matching step is visualized on an example in figure 2.2b. To
receive many feature correspondences, an adequate image overlap among all images
is necessary.

Camera pose estimation

Given matching features in multiple overlapping images, the camera poses can be
estimated. Each feature corresponds to an ideally unique object point. The camera

14

pose is obtained by minimizing the reprojection error given a camera model. Usually,
the simple pinhole camera model is used. Besides the extrinsic matrices, the intrinsic
camera parameters can be optimized at the same time. Due to imperfections from
the feature description and matching steps, not all feature points are considered
for optimization, but a subset obtained from a RANSAC2 selection. Further graph
optimization methods like bundle-adjustment or additional sensor data (e.g. GNSS3)
are commonly employed to improve the pose estimation accuracy, overall consistency
and mitigate camera pose drift over long distances. The result of a camera pose
optimization step is illustrated in figure 2.3.

Figure 2.3: Camera pose estimation using the align step of Agisoft Photoscan
[Agisoft, 2017] with the highest accuracy settings on the example of a meerschaum
pipe. All of the 20 circular arranged camera poses could successfully be estimated.
The sparse object feature point cloud consists of 5116 points.

Acknowledgement: The meerschaum pipe was generously provided by the
Reiss-Engelhorn-Museen Mannheim for the ArchEye Automatics project
([Seitz and Altenbach, 2011], [Seitz, 2012]).

Dense Point Cloud Computation

Given the estimated camera poses, a dense point cloud is computed, e.g. by esti-
mating depth for all individual pixels of all images with epipolar geometry. This
step is visualized in figure 2.4a.

Surface reconstruction

Surface meshes are estimated from the dense point cloud. Popular methods to
achieve this are Poisson surface reconstruction or radial basis function approaches.
An overview of common surface reconstruction methods from point cloud data is
given in [Berger et al., 2014]. This step is visualized in figure 2.4b.

Texture mapping

After computing the 3D mesh, the texture can be added by projecting all images
from their respective viewpoint onto the mesh. A 2D texture is obtained by pa-
rameterizing the surfaces and blending all projected photos. An example of texture
mapping for SfM is given in figure 2.4c.

2Random Sample Consensus.
3Global Navigation Satellite System.

15

CHAPTER 2. STRUCTURE FROM MOTION

(a) Dense point cloud.

(b) Surface mesh.

(c) Textured mesh.

Figure 2.4: Full reconstruction of the meerschaum pipe using the entire Agisoft Pho-
toscan [Agisoft, 2017] SfM pipeline on the highest settings. A total amount of 202
images with a resolution of 4912 × 7360 pixels taken at grid-points of two geodesic
domes with different radii were considered for the reconstruction. The dense point
cloud comprises 6 048 155 points, while the mesh contains 3 486 117 faces and 1 930 199
vertices. Despite the relatively small scale of the pipe (length of 8.3 cm), the object
could be reconstructed with very high geometric and visual fidelity. The zoomed-in
section describes a part of the model magnified by a factor of 160.

Acknowledgement: The meerschaum pipe was generously provided by the
Reiss-Engelhorn-Museen Mannheim for the ArchEye Automatics project
([Seitz and Altenbach, 2011], [Seitz, 2012]).

16

3Optimal Experimental Design

Optimal experimental design (OED, e.g. [Körkel, 2002]) describes the process of
planning experiments, such that subsequent measurements are estimated to be op-
timal in some sense. In sections 6.3 and 12, the NBV planning is designed to result
in sensor poses that contribute the most information to a subsequent reconstruction.
They can therefore be interpreted as OED problems, which will be briefly explained
in this section.

Consider an experiment that is used to estimate an unknown model parame-
ter. The obtained measurements are subject to errors and are therefore modeled
as random variables. Then an optimal parameter is usually chosen such that the
likelihood of the observed data is maximized. Hence, the parameters also allow for a
description as random variables. OED addresses the reverse question of how exper-
iments must be conducted to optimally estimate model parameters, i.e. how their
uncertainty can be minimized. This uncertainty is usually expressed in terms of
covariance matrices that describe the spread of the random variable. Some common
ways to formulate this quantity, together with their respective geometric interpreta-
tion, are given in section 3.2. As all of them depend on covariance information, an
intuitive understanding of confidence regions, i.e. the interpretation of covariance
matrices as ellipses and ellipsoids is required first, which is given in section 3.1. We
stress the importance of this interpretation as it is later used to construct covariance
updates for the NBV planning problem in part II of this thesis.

3.1 Confidence Regions
A confidence region quantifies the likeliness of a random variable being contained
in a given area. Usually, the inverse question is more interesting: to determine a
region which contains a random variable with a given probability. In the case of
N -dimensional multivariate normal random variables, these regions often come in
the shape of ellipsoids4 centered on the mean. In order to motivate those shapes, we
first need to understand the relation between the covariance matrix and ellipsoids.

Consider the N -dimensional multivariate random variable X ∼ N (µ,Σ), with
mean µ ∈ RN and symmetric, positive definite covariance matrix Σ ∈ RN×N . Then

E =

{
x ∈ RN

⏐⏐⏐⏐⏐ 1√
(2π)N detΣ

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
= l

}
(3.1)

4More precisly, for N = 1 the shape is a line segment, for N = 2 an ellipse, for N = 3 an
ellipsoid and for N > 3 a hyper-ellipsoid. For simplicity we will refer to all of those shapes as
N -dimensional ellipsoids.

17

CHAPTER 3. OPTIMAL EXPERIMENTAL DESIGN

describes a level-set of the probability density function for fixed level l ∈ R. This is
equivalent to

E =
{
x ∈ RN

⏐⏐⏐ (x− µ)TΣ−1(x− µ) = −2 log
(
l ·
√

(2π)N detΣ
)

  
=:l̃

}
, (3.2)

which is the level set of an affine transformation of an N -sphere centered at µ, at
level l̃ ∈ R, i.e. an N -dimensional ellipsoid. This can be realized by identifying the
quadric in equation (3.2) together with the symmetry and positive definiteness of
Σ−1. A visualization of this quadric in the two-dimensional case is given in figure
3.1.

Figure 3.1: Visualization of two level-
set ellipses for the bivariate nor-
mal distribution probability density
function with mean µ =

[
1 3

]T and

covariance matrix Σ =

[
6 −3
−3 4

]
.

To further analyze the properties of said shapes, consider the spectral decompo-
sition Σ = UΛUT , where Λ ∈ RN×N is a diagonal matrix containing the eigenvalues
{λi}Ni=1 of Σ which correspond to the eigenvectors {vi}Ni=1 given by the columns of
the unitary matrix U ∈ RN×N . Then Σ−1 = UΛ−1UT and

E =

{
x ∈ RN

⏐⏐⏐ Λ− 1
2UT (x− µ)

2
2
= l̃

}
. (3.3)

Note that Λ− 1
2 is still a diagonal matrix containing the inverse square roots of the

eigenvalues as its diagonal, which are still larger than zero due to the positive defi-
niteness of Σ. Substituting y = Λ−

1
2UT (x− µ) we obtain

E =
{
x = µ+ UΛ

1
2y
⏐⏐⏐ ∥y∥2 =√l̃, y ∈ RN

}
. (3.4)

Equation (3.4) reveals the geometric shape of E. The set{
y ∈ RN

⏐⏐⏐ ∥y∥2 =√l̃
}

(3.5)

describes an N -sphere with radius
√
l̃. In (3.4) this N -sphere is scaled along the

main axes (i.e. the i-th main axis direction is scaled by
√
λi), rotated by U and finally

translated by µ. Hence, the half-axes of the resulting ellipsoid can be identified. The
i-th half-axis has direction vi and length

√
λil̃.

By definition, the confidence region corresponding to a given confidence pconf ∈
[0, 1] is not unique. Uniqueness can be achieved by choosing the region with highest

18

3.1. CONFIDENCE REGIONS

probability density, such that it contains all most-likely sub-regions. This property
results in the smallest possible region size and corresponds to a set of points that
are bound by the previously explained ellipsoidal level-sets. In order to determine
a confidence region with this property, we need to find a level QN(pconf) such that

P
(
(X − µ)TΣ−1(X − µ) ≤ QN(pconf)

)
= pconf (3.6)

holds. By substituting

Y =
[
Y1 . . . YN

]T
:= Λ−

1
2UT (X − µ) ∼ N (0, IN), (3.7)

equation (3.6) reduces to

P

(
N∑
i=1

Y2
i ≤ QN(pconf)

)
= pconf . (3.8)

Since {Yi}Ni=1 are independent standard normal random variables,
∑N

i=1 Y2
i is chi-

square distributed, i.e.
N∑
i=1

Y2
i ∼ χ2(N). (3.9)

Given this insight, QN(pconf) can be identified as the quantile function5 of the chi-
square distribution. While no analytic formulation for this function is known, it is
well studied and can be evaluated using lookup tables. Some values of QN(pconf)
for different N and pconf are given in table 3.1. As explained earlier in this section,
the half-axes of the ellipsoids can be stated explicitly. Here, the i-th half-axis with
direction vi has length

√
λiQN(pconf).

Table 3.1: Values of the quantile function QN (pconf) of the chi-square distribution for
various N and pconf .

0.01 0.05 0.1 0.2 0.8 0.9 0.95 0.99

1 0.0002 0.0039 0.0158 0.0642 1.6424 2.7055 3.8415 6.6349

2 0.0201 0.1026 0.2107 0.4463 3.2189 4.6052 5.9915 9.2103

3 0.1148 0.3518 0.5844 1.0052 4.6416 6.2514 7.8147 11.3449

N
pconf

We only analyzed confidence regions for multivariate random variables. For
other distributions, the ellipsoidal shapes are still used to approximate maximum
probability density confidence regions. Multivariate random variables are uniquely
characterized by their mean and second central moment (covariance matrix). As the
mean only acts as a shift for the confidence regions, the ellipsoid shape is determined
solely by the covariance information. The central moments of any probability dis-
tribution function – if they exist – can be interpreted somewhat sloppily formulated
as the Taylor expansion of the density function around the mean. Geometrically the

5Also known as inverse cumulative distribution function.

19

CHAPTER 3. OPTIMAL EXPERIMENTAL DESIGN

second central moment (covariance matrix) gives information about the “spread” of
a random variable. The third central moment contains the skewness, and the fourth
central moment relates to the kurtosis. Hence, confidence ellipses can be interpreted
as a linearization of this expansion, giving us insight over the size and shape of the
real confidence regions.

3.1.1 Degenerate Cases
In the previous section, we required Σ to be positive definite. However, also pos-
itive semi-definite covariance matrices can occur. In this case, Σ has eigenvalues
equal to zero which prohibits its inversion. However, similar results can still be
obtained by projecting the matrix into a lower-dimensional and strictly positive
definite subspace. This is easily achieved by removing all eigenvalues with λi = 0
and their corresponding eigenvectors from the singular value decomposition as they
correspond to zero variance directions in the distribution. The resulting matrix is
again strictly positive definite, allowing us to apply results from the previous section.
Those can now be generalized for positive semi-definite matrices. The length of the
i-th half axis with direction vi in N dimensions is then given by

√
λiQN−N0(pconf),

where N0 denotes the dimension of the null-space of Σ.
Another special case arises if the precision matrix Σ−1 has eigenvalues equal to

zero. In terms of confidence ellipsoids, this corresponds to an infinite uncertainty
in the direction of the corresponding eigenvector. This comes to no surprise given
that {1/λi}Ni=1 are the eigenvalues of Σ−1. Precision matrices with zero eigenvalues
will play an important role later on in chapter 6 and are elaborated in more detail
in section 6.1.

3.1.2 Misconceptions
Confidence regions describe areas given the distribution of a random variable. If this
random variable was observed a sufficient number of times, the observation would be
inside the confidence region with a probability of pconf . Now consider a parameter
that is being measured a finite number of times given some measurement error. Then
mean and covariance can be approximated using an estimator, hence, also yielding
confidence ellipsoids. However, as the parameter is an unknown constant, it never
necessarily lies inside any of those regions – which is the general misconception about
confidence ellipsoids. In those cases, the confidence probability relates to the quality
of the estimator and not the quality of the measurement.

3.2 Optimality Criteria
Consider an experiment that is conducted in order to measure design variables x
(parameters, functions) that control the experimental setup. Given a distribution
for the measurement error, let the covariance matrix of the design variable estimator
be given by Σ(x). Then the minimization problem

min
x

Φ(Σ(x)), (3.10)

where Φ : Σ(x) → R is a function corresponding to some statistical criterion, is
considered an optimal experimental design problem.

20

3.2. OPTIMALITY CRITERIA

For simplicity, we will drop the x from this notation. The criterion can often
be related to the eigenvalues of Σ. From the previous sections we know that the
half-axes of confidence ellipsoids are proportional to the square root of their corre-
sponding eigenvalues, since QN(pconf) is constant for fixed pconf . Hence, we can give
geometric interpretations for some commonly used optimality criteria:

• A-Criterion: Φ(Σ) = 1
N
tr Σ

As the trace of a matrix is equal to the sum of its eigenvalues, minimizing
the A-Criterion corresponds to minimizing the length of the diagonal of a
hyperrectangle with side lengths given by the confidence ellipsoids half-axis
length.

• E-Criterion: Φ(Σ) = ∥Σ∥2
The two-norm of a matrix is equivalent to its largest singular value. Since
singular values are equivalent to eigenvalues for symmetric positive definite
matrices, the E-Criterion corresponds to the largest half-axis length squared.

• D-Criterion: Φ(Σ) = (detΣ)
1
N

The determinant of a matrix is equivalent to the product of its eigenvalues. As
the volume of an ellipsoid is equivalent to the volume of an N -sphere scaled by
the product of all half-axes lengths, minimizing the D-Criterion is equivalent
to minimizing the volume of any confidence ellipsoid. In the degenerate case,
the D-Criterion can be formulated as the product of all non-zero eigenvalues.

21

CHAPTER 3. OPTIMAL EXPERIMENTAL DESIGN

22

4Occupancy Grid Maps

The NBV planning method proposed in part II of this thesis requires a discrete
representation of the surface geometry (see section 7.1). This can be achieved with
voxels that classify free and occupied space. These voxel maps allow for a memory
and runtime efficient spatial representation, which is easily integrable into an au-
tonomous exploration framework using occupancy mapping. A brief introduction to
occupancy grid mapping using an inverse sensor model alongside a short discussion
regarding shortcomings and alternative mapping methods is given in the first part
of this chapter. Voxel grid maps are usually implemented using n-tree data struc-
tures, due to their good memory efficiency. In three dimensions these are also called
octrees. We will make extensive use of this data structure in our proposed NBV
planning approach using a voxel grid surface geometry representation. Details on
efficient implementations of required voxel map operations, such as ray casting, are
presented in section 8. An introduction to octrees is given in the second part of this
chapter.

Occupancy grid maps have become one of the most prominent tools in mobile
robotics for tasks such as path planning, navigation, and collision avoidance. They
refer to a family of algorithms that give a spatial representation of a robotic envi-
ronment. Space – usually two- or three-dimensional – is discretized into grid cells,
each equipped with information on its occupancy (e.g. occupancy probability). In
mobile robotics, creating those maps goes hand in hand with the additional task
of localizing the robot. Hence, it is not only required to accommodate for sensor
measurement errors, but additionally localization errors when integrating new mea-
surements into the grid map. The task of simultaneous localizing the robot and
building a map of the environment is often referred to as simultaneous localization
and mapping (SLAM). However, as stated in the introduction, SLAM is beyond the
scope of this thesis. Some examples of two- and three-dimensional occupancy grid
maps are given in figure 4.1.

4.1 Occupancy Grid Mapping using
Inverse Sensor Model

The theory of occupancy grid mapping was developed in the mid-80s and first in-
troduced by [Moravec and Elfes, 1985], who mapped an environment with an au-
tonomous robot using a wide-angle sonar. This approach is still one of the most
popular ones for discrete spatial representations due to its simple implementation,
fast measurement updates, and good scalability properties.

Consider a sensor that is able to measure depth. Examples include sonar, LiDAR

23

CHAPTER 4. OCCUPANCY GRID MAPS

Figure 4.1: Left: 2D occupancy grid map generated using Revo LDS sensor data. Right:
3D occupancy grid map of the Freiburg campus dataset. The scene has a total size of
292× 167× 28 m3 at a voxel resolution of 0.2m. Colors correspond to height.

Source: Left: [Hess et al., 2016] ©2016 IEEE, Right: Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer [Hornung et al., 2013]
©2013.

or stereo-camera setups. Let z1:T = {z1, . . . , zT} denote the set of measurements
along with the corresponding sensor poses. The measurement poses are assumed
to be known. We further assume that the area that is observed is not subject
to change during the mapping process. Space is divided into equally sized cells,
indexed by an index set I. Each grid cell corresponds to a binary random variable
that models the occupancy of cell i ∈ I. We indicate the probability that cell i is
occupied with p(mi), while p(¬mi) denotes the probability of cell i being free. As
the number of grid cells rapidly grows with the granularity of the discretization,
estimating the posterior p({mi}i∈I | z1:T) for the joint map is infeasible due to
the high dimensionality. Hence, by assuming independence between all cells, the
problem is decomposed into many one-dimensional problems instead. Applying a
binary Bayes filter for static state estimation, the occupancy probabilities is given
by

p(mi|z1:T)
Bayes’

theorem=
p(zT |mi, z1:T−1) · p(mi|z1:T−1)

p(zT |z1:T−1)
Markov

assumption
=

p(zT |mi) · p(mi|z1:T−1)

p(zT |z1:T−1)
Bayes’

theorem=
p(mi|zT) · p(zT)

p(mi)
· p(mi|z1:T−1)

p(zT |z1:T−1)
.

(4.1)

Note that the Markov assumption p(zT |mi, z1:T−1) = p(zT |mi) is used for the second
identity. It states that sensor readings are assumed to be conditionally independent
given knowledge of the cell’s occupancy. In order to obtain a representation that
enables more computational efficient updates, the log-odds formulation is employed.
It is given by

p(x) �→ log

(
p(x)

1− p(x)

)
=: l(x). (4.2)

This mapping is bijective, hence the occupancy probability can also be calculated

24

4.2. EFFICIENT OCTREE IMPLEMENTATION

from the log-odds ratio with

l(x) ↦→ 1− 1

1 + exp(l(x))
= p(x). (4.3)

In analogy to (4.1), the posterior probability of a cell being free is obtained as

1− p(mi|z1:T) = p(¬mi|z1:T) =
p(¬mi|zT) · p(zT)

p(¬mi)
· p(¬mi|z1:T−1)
p(zT |z1:T−1)

. (4.4)

Hence, the log-odds ratio is given as

p(mi|z1:T)
p(¬mi|z1:T)

=
p(mi|zT)

1− p(mi|zT)
· p(mi|z1:T−1)

1− p(mi|z1:T−1)
· 1− p(mi)

p(mi)

=⇒ l(mi|z1:T) = l(mi|zT) + l(mi|z1:T−1) − l(mi)

inverse sensor
model recursive term prior

. (4.5)

This ratio can therefore easily be calculated incrementally from previous occupancy
estimates. The inverse sensor model describes the certainty of occupancy along a
measurement ray. For example, consider a single depth measurement. Then all cells
traversed by this ray are updated with some value p(mi|zT) < 0.5, while the grid cell
containing the ray endpoint is updated with p(mi|zT) > 0.5. The prior is commonly
chosen as a constant value p(mi) ∈ [0.2, 0.5].

This mapping approach, however, suffers from some shortcomings even with
noise-free data. Assigning a single binary random variable to each cell implies that
each cell is either completely free or occupied. Furthermore, the assumption of mu-
tually independent grid cells, and in consequence the utilized Markov assumption,
does not hold in reality. Consider a set of depth measurements. Then some rays
pass through cells that may also contain ray-endpoints. This results in uncertainty
for partially occupied cells. In practical application this approach nevertheless gen-
erated satisfactory spatial representations.

There are other methods that do not suffer from this shortcoming. For ex-
ample, methods involving reproducing kernels (e.g. [O’callaghan and Ramos, 2012]
[Ramos and Ott, 2016]) have attracted attention in the last few years. They predict
occupancy values through a learned regression classifier, thus allowing for theoret-
ically infinite detail without the need for discretization. For navigation purposes,
these maps are usually also discretized afterward. These learning approaches, how-
ever, entail a higher computational complexity, which is undesirable for our purposes.

4.2 Efficient Octree Implementation
An octree is a hierarchical data structure, where each node is subdivided into eight
equally sized child nodes. Although more abstract scenarios are also possible, they
can intuitively be interpreted as a spatial subdivision of three-dimensional space.
The 2D equivalent of an octree is called quadtree due to subdivision in four equally
sized child nodes.

Two popular octree implementations that are available as open-source C++ li-
braries supporting occupancy mapping are given by OctoMap [Hornung et al., 2013]

25

CHAPTER 4. OCCUPANCY GRID MAPS

and GPU-Voxels [Hermann et al., 2014]. The latter provides a fast CUDA imple-
mentation, requiring a NVIDIA graphics card, while OctoMap runs on the CPU.
In mobile robotics, graphics cards are not always viable due to power consumption
and weight restrictions. For this reason, OctoMap is more widely used and enjoys
greater popularity in the scientific community. We will now give an overview of some
common implementation details of octrees for occupancy grid mapping. Note that
while these apply to other implementations as well, we focus on OctoMap, since this
library is used and also improved upon in some of our algorithms (see section 8).

In OctoMap octrees have a fixed depth of d = 16, with occupancy information
being stored in the grid defined by the lowest tree level in terms of log-odd values.
Nodes at this level are commonly referred to as leaves. Given a leaf-voxel resolution
of r meter, a cube with side length r · 2d m can be covered by the octree. Due to
the tree structure, a random leaf lookup has complexity O(d). Using a log-odds
threshold, occupancy information can be classified into the two discrete states free
and occupied. A voxel occupancy update is realized by

l(mi|z1:T)) = max (min (l(mi|z1:T−1) + l(mi|zT), lmax) , lmin) , (4.6)

with some constants lmin and lmax, i.e. a clamped version of equation (4.5). This
clamping ensures the adaptability to temporary or permanent changes in the map.
Furthermore, if a voxel reaches one of those clamping parameters, it is assumed
to be stable. This is an important property as it allows for pruning. Instead of
maintaining eight stable children with identical information, their memory can be
freed after passing this occupancy value to their common parent node, optimizing
memory usage. This is especially important for voxels observed as free. Occupied
voxels usually represent a two-dimensional manifold defined by surface observations,
while free voxels are characterized by large voxel volumes that would dominate
memory usage if left un-pruned. Details regarding the inverse sensor model and
parameters used can be found in [Hornung et al., 2013].

By only initializing voxels once they have been observed at least once (free or
occupied), memory usage is further improved. This has the additional benefit that
not only two discrete states (free and occupied) can be defined, but additionally
unknown if a voxel is never observed. A visualization of this OctoMap data structure
is given in figure 4.2.

Figure 4.2: Visualization of the OctoMap octree data structure (left: volumetric, right:
tree). Opaque white squares correspond to free voxels, the black one to an occupied
voxel. All other voxels are unknown.

Source: Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer [Hornung et al., 2013] ©2013.

26

4.2. EFFICIENT OCTREE IMPLEMENTATION

Furthermore, [Hornung et al., 2013] implemented methods to counteract the short-
comings described in the previous section, i.e. the occupancy uncertainty for voxels
being observed both as free or occupied. Instead of inserting each measurement ray
consecutively, a full sweep from a single sensor pose is processed simultaneously.
Two disjoint sets of free and occupied voxels are created from these measurements.
If a voxel is contained in both sets, it is discarded from the one containing the free
voxels. Afterward, each voxel of these sets is updated exactly once accordingly. This
way, cancellation errors are mitigated.

In OctoMap, occupancy information is propagated to all parent nodes as the
maximum of all of its children’s occupancy. Then a coarse approximation of the
occupancy map is given on other levels of the octree, which can later be exploited in
our NBV algorithms (see section 8). This especially includes distance computations
and the iteration of voxel subsets (section 8.3.1), as well as ray traversal operations
(section 8.3). In section 8.3.3 we will further take advantage of this property to
allow for updates of free and occupied voxels on different octree levels.

27

CHAPTER 4. OCCUPANCY GRID MAPS

28

5Gaussian Process Fundamentals

In part III of this thesis, the surface of a model is estimated as an implicit function
of the posterior mean of a Gaussian process. Therefore, we give a brief introduction
to Gaussian processes as well as some of their properties in this chapter. For the
most part, we will follow [Rasmussen and Williams, 2006, chapters 2,4], which is also
recommended for further details on the topic. Besides a formal definition, especially
their behavior under linear operator transformations is highlighted. We will return
to this topic in section 11.3, where surface normal measurement observations are
included in the Gaussian process.

Gaussian processes are used to mathematically model the behavior of nonde-
terministic systems from observations. This Bayesian machine learning approach
is often described as a distribution over functions. Although widely used in the
context of classification and signal analysis, we will be particularly interested in its
application for interpolation, extrapolation, and smoothing of discrete measurement
points in this work. In contrast to other machine learning methods, such as neural
networks, Gaussian processes are derived from statistical quantities, using linear al-
gebra and probability theory. Hence, the entire mathematical process remains very
transparent and controllable. In addition, the method provides associated variance
information for each output value describing its predictive uncertainty.

5.1 Formal Definition

Definition 5.1 (Gaussian process). Let X be an arbitrary index set. A stochas-
tic process (f(x))x∈X is called Gaussian process if all of its finite subsets have a
joint Gaussian distribution.

Since a Gaussian multivariate random variable is uniquely characterized by its mean
and covariance matrix, a Gaussian process, written as f ∼ GP (m, k), is uniquely
defined by a mean function m : X → R and a kernel function (also called covariance
function) k : X × X → R with

m(x) := E [f(x)]

k(x, x′) := E
[
(f(x)−m(x)) (f(x′)−m(x′))

T
]
= cov(f(x), f(x′)).

(5.1)

Covariance matrices must be positive definite, hence, the kernel function must also
be positive definite, i.e.

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0, ∀n ∈ N, xi ∈ X , ci ∈ R. (5.2)

29

CHAPTER 5. GAUSSIAN PROCESS FUNDAMENTALS

Two classes of special covariance functions can be defined:

Definition 5.2 (stationary, isotropy). Let X be a vector space. If the kernel
function is a function of x − x′ it is called stationary. If additionally X is a
normed vector space and the kernel is a function of ∥x − x′∥, it is called an
isotropic kernel.

Geometrically speaking, for example, if X refers to an Euclidean space, stationary
kernels are invariant to translations, while isotropic kernels are invariant to all rigid
motions.

A Gaussian random field is the d ∈ N dimensional generalization of a Gaussian
process, i.e. we allow for m : X → Rd and k : X ×X → Rd×d with d ∈ N. However,
by simply augmenting X̃ := X ∪ {1, . . . , d} and defining

m̃ : X̃ → R, m̃({x, i}) := m(x)i

k̃ : X̃×X̃ → R, k̃({x, i}, {x′, j}) := k(x, x′)i,j,
, (5.3)

with the subscripts corresponding to rows (and columns), we can transform the
Gaussian random field to the Gaussian process f̃ ∼ GP(m̃, k̃). Hence, we will also
allow for d-dimensional mean and d×d dimensional kernel functions, but due to the
reasoning given above, refer to them as d-dimensional Gaussian processes.

For ease of notation we introduce ordered sets of variables, i.e.

X := {xi ∈ X}Ni=1 , training points
X∗ := {x∗i ∈ X}

M
i=1 , test points.

(5.4)

From now on the asterisk superscript will indicate that a quantity is related to test
input or – in absence – training input. We further allow functions to be evalu-
ated with those sets of variables as arguments, yielding (block) matrix and vector
expressions, e.g.

k(X,X∗) =
k(x1, x

∗
1) k(x1, x

∗
M)

k(xN , x
∗
1) k(xN , x

∗
M)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣ , m(X) =

m(x1)

m(xN)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣ . (5.5)

With this new notation we can give a definition for d-dimensional Gaussian process
that is equivalent to definition 5.1 in the one-dimensional case:

Definition 5.3 (d-dimensional Gaussian process). Let m : X → Rd and k :
X ×X → Rd×d with d ∈ N. Furthermore, let k(X,X) be positive semi-definite
for all finite subsets X ⊂ X . Then f ∼ GP(m, k) is a d-dimensional Gaussian
process and f(X) ∼ N (m(X), k(X,X)) holds.

Due to the relation of Gaussian processes to normal distributions given in defi-
nition 5.3, posterior distributions for Gaussian processes can be derived. Let

f1:N := f(X) + ϵ = [f(x1), . . . , f(xN)]
T + ϵ, ϵ ∼ N (0, IN · σ2) (5.6)

30

5.2. CLOSURE UNDER EVALUATION OF LINEAR OPERATORS

be a set of observations disturbed by measurement errors ϵ, observed at the training
points X. Assume the Gaussian process is to be evaluated at all test points X∗, i.e.
we are interested in

f ∗1:M := f(X∗) = [f(x∗1), . . . , f(x
∗
M)]T . (5.7)

The joint prior distribution of training and test data is given by[
f1:N
f ∗1:M

]
∼ N

([
m(X)
m(X∗)

]
,

[
k(X,X) + σ2I k(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (5.8)

Using the multivariate conditional distribution, the posterior distribution is given
as

f ∗1:M |X, f1:N , X
∗ ∼ N (mpost(X

∗), kpost(X
∗)) with (5.9)

mpost(X
∗) = m(X∗) + k(X∗, X)

[
k(X,X) + σ2I

]−1
(f1:N −m(X)) (5.10)

kpost(X
∗, X∗) = k(X∗, X∗)− k(X∗, X)

[
k(X,X) + σ2I

]−1
k(X,X∗). (5.11)

The posterior kernel consists of a prior minus a term representing the information
gained by the observations at X. As posterior mean (5.10) and covariance functions
(5.11) are functions in X∗ and kpost is positive semi-definite for all possible inputs
if σ > 0, they define the posterior Gaussian process

f ∗ ∼ GP (mpost, kpost) . (5.12)

Note that the requirement σ > 0 is only necessary for special cases of positive
semi-definite kernels, as [k(X,X) + σ2I] may not be invertible otherwise. Also note
that large portions of (5.10) and (5.11) can be precomputed given measurement
data X and f1:N . Then the evaluation of the posterior mean at a single training
point is a simple vector matrix multiplication together with an addition of total
computational complexity O(N). The posterior variance of a single point is then
similarly obtainable in O(N2).

5.2 Closure under Evaluation of Linear Operators
Gaussian processes are closed under the evaluation of linear functionals:

Theorem 5.1. Let f ∼ GP (m, k) be a Gaussian process and L be a bounded
linear operator operating on f . If Lm and L1(L2k)T exist and are well defined,
then Lf ∼ GP

(
Lm,L1(L2k)T

)
. The notation Li here means that the operator

L acts on a function, where all but the i-th argument are fixed, i.e. L1k =
Lk(·, x′) and L2k = Lk(x, ·).

Proof. From (5.1) we obtain Lf ∼ GP (mL, kL) with

mL(x) = E [Lf(x)]

kL(x, x
′) = E

[
(Lf(x)− E [Lf(x)]) (Lf(x′)− E [Lf(x′)])T

]
Hence, in order to conclude the proof it suffices to show that E [Lf(x)] = LE [f(x)].
This is shown in [Papoulis et al., 2002, chapter 10]. ■

31

CHAPTER 5. GAUSSIAN PROCESS FUNDAMENTALS

As differentiation is a linear operation, theorem 5.1 implies that the Gaussian
process ∂f/∂xi exists if ∂m(x)/∂xi and ∂2k(x, x′)/∂xi∂x

′
i exist and are well defined.

Similar statements can be formulated for higher-dimensional functions, higher order
derivatives or integration operators. Theorem 5.1 is extremely powerful, as it allows
for some interesting applications:

• Let L =
[
L1 · · · LnL

]T be a linear operator with nL ∈ N. Theorem 5.1
allows us to include observations Ljf with j = 1, . . . , nL in the joint prior
distribution (5.8). This results in a different posterior from the conditional
distribution (5.9), that also considers these new types of measurements. Note
that especially the number of observations, as well as the observation points,
may be different for each Lj. One example application is given in section
11.3 where we will include derivative observations to a Gaussian process. An-
other example using zeroth, first and second order derivative observations to
compute Bayesian quadratures is given in [Wu et al., 2017].

• Similarly, the posterior distribution can be modified with Lf ∗ to obtain only
relevant informations for the respective problem.

• A Gaussian process can be constrained to linear operators. For example, if we
find an operator L̄ s.t. LL̄ ≡ 0 and define f = L̄g ∼ GP(L̄m, L̄k) then Lf ≡ 0
holds. This constraint can – for example – describe a differential equation. For
further details on Gaussian processes constrained by linear operators, with
equality and inequality constraint, see [Agrell, 2019], [Jidling et al., 2017].

5.3 Log Marginal Likelihood
In this section we will briefly elaborate the log marginal likelihood function for a
Gaussian process and its use in the context of hyperparameter optimization. From
(5.6) follows

f1:N ∼ N
(
m(X), k(X,X) + σ2I

)
. (5.13)

The log likelihood function, marginalizing over the function values f of the Gaussian
process, is then given - analogous to the multivariate Gaussian distribution - as

log p(f1:N |X) =− 1

2
tr
[
(f1:N −m(X))T

(
k(X,X) + σ2I

)−1
(f1:N −m(X))

]
− 1

2
log det

(
k(X,X) + σ2I

)
− n

2
log (2π) .

(5.14)

Assume the mean function m and the kernel function k depend on some unknown
parameters p. The optimal parameters p̂ that give the highest probability for the
observed data are obtained as:

p̂ = argmin
p

l(f1:N |X). (5.15)

A solution to (5.15) can easily be computed using numerical methods (e.g. SQP
method).

32

5.4. MEAN SQUARE CONTINUITY

5.4 Mean Square Continuity
Later on in chapter 11 we will model implicit surfaces using the posterior mean of
a Gaussian process. Since smoothness of those surfaces is a desired property the
continuity of the mean is now analyzed.

Definition 5.4 (Mean-Square Continuity). A Gaussian process f ∼ GP(m, k)
is called continuous in mean square at x̂ ∈ X if for all sequences x1, x2, . . . in X
with ∥xi − x̂∥2

i→∞−→ 0 the limit lim
i→∞

E [|f(xi)− f(x̂)|2] converges to zero.

Mean-Square continuity of a Gaussian process corresponds to pointwise convergence
in real analysis. Note that, while it does not imply sample function continuity, it
is a necessary condition for continuous sample paths (see [Adler, 2010, chapter 2]).
Fortunately, there is a simple criterion to check for mean-square continuity given
below:

Theorem 5.2. Let f ∼ GP(m, k) be a Gaussian process with continuous mean
m. Then f is mean square continuous at x̂ ∈ X if and only if k(x, x′) is
continuous at x = x′ = x̂ ∈ X .

Proof. Consider an arbitrary series xi
i→∞−→ x̂ and the expansion

E
[
|f(xi)− f(x̂)|2

]
= E [f(xi)− f(x̂)]2 + k(xi, xi)− 2k(xi, x̂) + k(x̂, x̂)

= (m(xi)−m(x̂))2 + k(xi, xi)− 2k(xi, x̂) + k(x̂, x̂).
(5.16)

I. Let k(x, x′) be continuous at x = x′ = x̂. Then the right part of (5.16) vanishes
for i→∞, hence, proofing mean square continuity of f in x̂.

II. Assume mean square continuity of f in x̂. Then the limit i → ∞ of (5.16) is
given by

0 = lim
i→∞

k(xi, xi)− lim
i→∞

2k(xi, x̂) + k(x̂, x̂)

⇐⇒ lim
i→∞

2k(xi, x̂) = lim
i→∞

k(xi, xi) + k(x̂, x̂).
(5.17)

Squaring both sides we can apply the Cauchy-Schwarz inequality given by
k(xi, xi)k(x̂, x̂) ≥ k(xi, x̂)

2, i.e.

4 lim
i→∞

k(xi, xi)k(x̂, x̂) ≥
(
lim
i→∞

k(xi, xi) + k(x̂, x̂)
)2

⇐⇒ 0 ≥
(
lim
i→∞

k(xi, xi)− k(x̂, x̂)
)2

.
(5.18)

This inequality is satisfied if and only if lim
i→∞

k(xi, xi) = k(x̂, x̂), proofing the
continuity of k(x, x′) in x = x′ = x̂.

■

Theorem 5.2 further simplifies in the case of stationary or isotropic kernels, as
continuity only has to hold for a single point, i.e. x− x′ = 0.

33

CHAPTER 5. GAUSSIAN PROCESS FUNDAMENTALS

5.5 Interpretation as Linear Regression Model
A Gaussian process can be transformed into other regression models, each of which
highlighting different aspects and properties of the Gaussian process. In this section
we will briefly relate them to linear regression models. Let f ∼ GP (m, k) be a
one dimensional Gaussian process. Consider the eigenfunction expansion of the
kernel given by k(x, x′) =

∑
i λiφi(x)φi(x

′). Then the Gaussian process is equivalent
to the linear regression model f(x) = φ(x)Tw + m(x) with prior on the weights
wi ∼ N (0, λi), because

E[f(x)] = φ(x)TE[w] +m(x) = m(x),

E[(f(x)−m(x))(f(x′)−m(x′))] = φ(x)TE[wwT]φ(x′) = k(x, x′).
(5.19)

Hence, the eigenfunctions of the kernel project the inputs into a feature space, where
linear regression is applied. This connection between non-linearity of the Gaussian
process and the corresponding linear regression model is also refereed to as the kernel
trick and is extensively used in machine learning.

34

Part II

Structure from Motion
Next-Best-View Planning

35

6Theoretical Derivation

In this chapter, we derive the theory for SfM-NBV planning. We introduce an esti-
mator for the expected SfM reconstruction quality. This estimator is subsequently
employed in a gain formulation that assesses arbitrary recording poses. The gain
term is then used in the objective function of an OED problem to obtain full, ad-
missible NBV trajectories. Mathematical formulations are kept very general and
especially allow for arbitrary robotic systems acting as recording platforms and
multi-camera setups. The resulting OED problem will prove too hard to be solved
analytically. Obtaining approximate solutions will be the subject of chapter 7.

We will now give a geometric motivation on how the estimate on the expected
reconstruction quality will be modeled. Consider a single surface point and a set of
camera poses that observe it. For the sake of simplicity, let the cardinality of this
set of viewpoints be two for now. Then the reconstruction of the surface point can
be thought of as a triangulation, i.e. computing intersections between the rays from
the camera centers through the observations of the point on the image plane. If the
viewpoints are identical or collinear with the surface point, such unique intersection
points do not exist and reconstruction becomes impossible. Also, small baselines
between the rays lead to an erroneous point reconstruction. Then the angle between
the rays becomes very narrow and small errors in the image plane observations are
greatly amplified during triangulation. Hence, it is insufficient to only consider the
number of viewpoints, as the spatial relation between the recording poses is also
important. A naive approach would associate the point with each camera pose
that observed it, e.g. by arrows pointing in the respective directions. However,
then the computational complexity required for evaluating a quality measure, as
well as the memory consumption for each point, would grow indefinitely with the
number of images. Instead, we describe the area that is estimated to contain the
true position of the point using simple geometric shapes. Since depth can not be
extracted from a single image, such a shape would be an infinite height elliptic
cylinder, oriented such that its main axis coincides with the viewing direction, for
each recorded image. The intersection of all elliptic cylinders would then describe
our assumption on the position of the point. However, this would lead to complex
geometric shapes, the description of which would also require an increasing number
of parameters. Fortunately, these elliptic cylinders can be related to Bayesian theory
as confidence areas of Gaussian distributions. Each image can be interpreted as a
measurement and the quality estimate of the point is simply the joint distribution
of all measurements. Then a single symmetric 3 × 3 matrix, that describes the
covariance of the joint distribution, is required for the quality estimate of each
point. The associated confidence region’s shape is an ellipsoid.

37

CHAPTER 6. THEORETICAL DERIVATION

6.1 Special Treatment of
Singular Precision Matrices

Precision matrices of the form Σ−1 ∈ R3×3 appear frequently in the following sec-
tions. While – by definition – those are symmetric positive definite, we will also
allow for positive semi-definite matrices. In the special case of a singular precision
matrix, the inverse (covariance matrix) does not exist. However, we will introduce
a way to overcome this issue and define some properties of an associated covariance
matrix. Consider the symmetric positive semi-definite precision matrix Σ−1 ∈ R3×3.
Its singular value decomposition is given by

Σ−1 = U

⎡⎣λ1

λ2

λ3

⎤⎦UT , (6.1)

where λ1, λ2, λ3 ∈ R≥0 are the eigenvalues and U ∈ SO(3) contain the eigenvectors
of Σ−1. In the case of positive definiteness, i.e. strictly positive eigenvalues, this
matrix is invertible with its inverse given by

Σ = U

⎡⎣1/λ1

1/λ2

1/λ3

⎤⎦UT . (6.2)

If one of those eigenvalues λi goes to zero, all entries of Σ go to infinity. Hence, it
makes sense that this matrix expression does not exist, since in this case Σ·Σ−1 ̸= I3.
Although no analytic expression of its inverse is possible, we can characterize it using
the singular value decomposition (6.2) and consider the limits λi ↘ 0.

An interpretation of covariance matrices as confidence ellipsoids is given in chap-
ter 3.1. The eigenvalues 1/λi of Σ define the lengths of these ellipsoids half-axes,
while the eigenvector matrix U rotates it from its axis-aligned position. Without
loss of generality, let λ1 be the single eigenvalue that goes to zero. Then the confi-
dence ellipsoid scales in the direction of the associated eigenvalue u1 and ultimately
becomes an elliptic cylinder. This makes sense, as a precision of zero results in
maximum uncertainty (i.e. “infinite” variance) in this direction. The associated
axis-aligned multivariate normal distribution is given by⎡⎣Y1

Y2

Y3

⎤⎦ ∼ UT (N (µ,Σ)− µ) = N

⎛⎝0,

⎡⎣1/λ1

1/λ2

1/λ3

⎤⎦⎞⎠ , (6.3)

with a mean vector µ ∈ R3. Note that {Yi}i∈{1,2,3} are mutually independent dis-
tributed. While not mathematically rigorous, we now allow for infinite variance
distributions, i.e.

lim
λ1↘0
Y1 ∼ N (0,∞). (6.4)

In this artificial distribution each value in R has the same probability. These obser-
vations allow us to justify the following notation:

N (µ,Σ). (6.5)

38

6.2. ESTIMATING EXPECTED RECONSTRUCTION QUALITY

Although the matrix Σ cannot be represented analytically for λ1 ↘ 0, the corre-
sponding distribution can be determined unambiguously in the limiting case by the
singular value decomposition of its precision matrix.

We will also require a notation for the eigenvalues of Σ for possibly singular
precision matrices. Again, from the singular value decomposition (6.2), we can
define them using the eigenvalues of the precision matrix with

λi [Σ] :=
1

λi [Σ−1]
, i ∈ {1, 2, 3}. (6.6)

Note that those eigenvalues are always in R>0 ∪ ∞ and especially are never zero.
This further allows for the definition of the determinant as

det(Σ) := λ1 [Σ] · λ2 [Σ] · λ3 [Σ] =
1

det (Σ−1)
=

1

λ1 [Σ−1]
· 1

λ2 [Σ−1]
· 1

λ3 [Σ−1]
, (6.7)

which is defined for all possible semi-definite precision matrices Σ−1 and also maps
to R>0 ∪∞.

Ultimately, this extension to singular precision matrices is only required to sim-
plify the notation for the following sections. In the end, all quantities will be formu-
lated in terms of precision matrices that do not require this unconventional use of
inverses of singular matrices. Identical results can be achieved by consideration of
the respective limits for the problematic eigenvalues. Alternatively, arbitrarily small
constant values can be used instead of zero eigenvalues in the precision matrices.

6.2 Estimating Expected Reconstruction Quality
In this section, we develop an estimator for the expected SfM reconstruction error
for a single surface point. While this surface point does not necessarily correspond
to a SfM feature in any image, it is assumed to be reconstructable during depth
map estimation in the SfM workflow. Points that do not satisfy this assumption
correspond to reflective or (semi-) transparent surfaces, or areas that result in low
image gradients (e.g. due to lack of texture, monochromatic surfaces). Even if
observed in many overlapping images, those areas can not be correctly reconstructed,
hence, all contained points are neglected by the estimator.

We treat each image that observes the point as an additional measurement that
improves the estimate of the true surface point. Combining all measurements yields a
joint posterior distribution that quantifies the point quality (i.e. the reconstruction
error) in terms of the estimated covariance matrix and confidence volume. We
will now give the mathematical background and construct a suitable measurement
covariance matrix.

6.2.1 Point Observations
Let M ⊂ R3 be a set of two-dimensional manifolds that describe the surface of
the object to be observed. Furthermore, let pw = (xw, yw, zw)

T ∈ M be a point
on this surface in world-space that is observed in the image of a camera located at
{Rc, tc} ∈ SO(3)× R3. Then point pw in camera coordinate frame is given as

pc =

⎡⎣xc

yc
zc

⎤⎦ = RT
c

⎛⎝⎡⎣xw

yw
cw

⎤⎦− tc

⎞⎠ . (6.8)

39

CHAPTER 6. THEORETICAL DERIVATION

The world point is projected to the image plane using a pinhole camera model
[
u0

v0

]
=

[
fu s
0 fv

] [
xc/zc
yc/zc

]
+

[
cx
cy

]
, (6.9)

where fu, fv are the cameras focal lengths, s the axis skew and (cx, cy)
T the principal

point, all expressed in pixel units. Since pixels are discrete quantities and due to
other imprecision introduced in the recording procedure, the exact value of (u0, v0)

T

can not be measured exactly in an image. This error is modeled by a normal
distributed random variable

[
U
V

]
∼ N

([
u0

v0

]
,ΣIMG

)
, ΣIMG :=

[
σ2
u 0
0 σ2

v

]
, (6.10)

with some constants σu, σv ∈ R>0. By reprojecting (U ,V)T into camera space with
known depth zc, we obtain a random variable in camera space:

[
X
Y

]
∼ N

([
xc

yc

]
, z2c ·

[
f2
vσ

2
u+s2σ2

v

f2
uf

2
v

− sσv

fuf2
v

− sσv

fuf2
v

σ2
v

f2
v

]

︸ ︷︷ ︸
=:ΣCAM(zc)

)
. (6.11)

This covariance matrix is visualized in figure 6.1a in terms of confidence ellipses for
different zc.

z0
z1

z2
z3

ΣCAM (z0)

ΣCAM (z1)

ΣCAM (z2)

ΣCAM (z3)

Image Plane

z

y

x

v

u

ΣIMG

(a) Confidence cone.

projection plane

image plane

ΣCAM(zc)

ΣIMG p c

x

z

camera frame

(b) Projected confidence cone.

Figure 6.1: Reprojection of a confidence ellipse on the image plane into camera coor-
dinates for different values of zc. The depth zc parameterizes an oblique confidence
cone. Each ΣCAM lies on a projected plane parallel to the image plane.

Source: Left: [Lindner et al., 2019] ©2019 IEEE.

We now want to extend ΣCAM to three dimensions, such that the information
added by the camera is modeled. From a single image, depth can not be mea-
sured. Hence, the desired covariance matrix should have infinite variance in the ray-
direction �pc. Expressed in terms of confidence ellipsoids, this corresponds to a pre-
cision matrix with one eigenvalue equal to zero (see section 3.1). The remaining two
half-axes are now to be determined from ΣCAM(zc) using upper bounds.

40

6.2. ESTIMATING EXPECTED RECONSTRUCTION QUALITY

Definition 6.1 (Covariance upper bound). Let Σ ∈ R3×3 be a covariance ma-
trix. Then the covariance matrix Σ̃ ∈ R3×3 is called an upper bound of Σ if
for any fixed confidence percentage the confidence ellipsoid of Σ are completely
contained in the confidence ellipsoid of Σ̃.

The half-axes of ellipsoids are always orthogonal, hence, an upper bound on conic
sections of the confidence cone (see figure 6.1a) orthogonal to the view directions is
required. For geometric reasons ΣCAM is always an upper bound to this orthogonal
projection (see figure 6.1b, blue line) and is chosen to define the remaining two
confidence ellipsoid half-axes. To further simplify calculations, we introduce another
upper bound. Since the lengths of the confidence ellipsoid half-axes correspond to
the eigenvalues of their covariance matrices,

Σ∗CAM(zc) := z2cγ
2I2, γ =

√λmax

([
f2
vσ

2
u+s2σ2

v

f2
uf

2
v

− sσv

fuf2
v

− sσv

fuf2
v

σ2
v

f2
v

])
(6.12)

is an upper bound of the reprojected covariance matrix ΣCAM.
With all axes of the desired confidence ellipsoid determined, it needs to be rotated

into the world frame. Let

Rpc =
[
r1 r2

pc
∥pc∥2

]
∈ SO(3) (6.13)

be a rotation matrix, rotating the image plane normal (z-axis in camera frame) onto
pc. Then a measure for the information an image taken at pose {Rc, tc} contributes
to the SfM reconstruction of a surface point pw is given in terms of the precision
matrix (inverse covariance matrix)

Θ−1(pw, Rc, tc) = RcRpc

[
Σ∗

−1

CAM(zc)
0

]
RT

pcR
T
c

= Rc

[
1

γ2z2c

(
I3 −

pc
∥pc∥2

pTc
∥pc∥2

)]
RT

c

=
1

γ2⟨pw − tc, Rz
c⟩2

(
I3 −

(pw − tc)

∥pw − tc∥2
(pw − tc)

T

∥pw − tc∥2

)
,

(6.14)

where Rz
c is the image plane normal in world coordinates. Note that the scaling

factor of 1/γ2∥pc∥22 can alternatively be used in equation (6.14), as this results yet
again in a coarser upper bound estimate. Doing so would make the precision matrix
independent of the camera orientation.

Since the true value of pw is unknown, we model it using the multivariate normal
distribution

Pi ∼ N (pi,Σi), (6.15)
where the mean pi ∈ R3 and covariance matrix Σi ∈ R3×3 correspond to our prior
knowledge of the true value pw after observing it in i images. As we will see later,
pi is of no importance for our estimator. An image observing the point pw from a
camera pose {Rc, tc} can be interpreted as a measurement mi ∈ R3 of pw, which is
a sample from a distribution

Mi|Pi ∼ N (Pi,Θ(pw, Rc, tc)). (6.16)

41

CHAPTER 6. THEORETICAL DERIVATION

For simplicity of notation we omit the arguments of Θ(pw, Rc, tc) and only write
Θ. We are now interested in the distribution of (Pi|Mi = mi), to obtain a more
precise estimate of the true value pw. From Bayes’s rule the density function of this
posterior distribution is given by

fPi|Mi=mi
(p) =

fMi|Pi=p(mi)fPi
(p)

fMi
(mi)

, ∀p ∈ R3. (6.17)

Gaussian distributions are self-conjugate. Hence, by straight forward multiplication
of the densities in equation (6.17), we obtain

Pi+1 := (Pi|Mi = mi) ∼ N (pi+1,Σi+1), (6.18)

with
pi+1 = Σ−1i+1

(
Σ−1i pi +Θ−1mi

)
Σi+1 = Σi (Σi +Θ)−1Θ =

(
Σ−1i +Θ−1

)−1
.

(6.19)

Note that, strictly speaking, the matrix Θ does not exist, since one eigenvalue of
Θ−1 is equal to zero by construction. Similarly, Σ−1i may also have zero eigenval-
ues. Those zero eigenvalues correspond to “infinite variance” in the direction of
their corresponding eigenvectors. Ultimately, however, we are only interested in the
posterior covariance information, which can be written entirely in terms of precision
matrices without the need of matrix inversion:

Σ−1i+1 = Σ−1i +Θ−1(pw, Rc, tc). (6.20)

This result is still valid for those zero eigenvalue precision matrices, which is easily
checked by following the same argumentation as above and looking at the limits
for the problematic eigenvalues. This is explained in more detail in section 6.1.
Further consideration of the eigenvalues of all quantities in equation (6.20) provides
a geometrical interpretation. Weyl’s inequality (see appendix A) guarantees that
the eigenvalues of a sum of symmetric positive definite matrices are always larger or
equal to the eigenvalues of each individual matrix. This means that the confidence
ellipsoid of the precision matrix Σ−1i+1 is guaranteed to be a subset of both confidence
ellipsoids Σ−1i and Θ−1 (see section 3.1). Hence, those prior confidence ellipsoids are
guaranteed to shrink, improving our knowledge about the precision of our estimate.
This is illustrated in figure 6.2.

The recursive update formulation in equation (6.20) is computationally efficient.
All of the involved matrices are symmetric, which means that only an upper trian-
gular matrix has to be stored in memory. Due to the structure of the update (6.14),
equation (6.20) is nearly as simple as a rank 1 update. Furthermore, multi-camera
systems with varying intrinsic parameters are easily supported. This is realized
by simply adjusting γ accordingly, as it is the only quantity that depends on the
intrinsic parameters.

Note that while pw is assumed to be unknown Θ−1 still depends on it. This is
further discussed in section 7.1.

6.2.2 Choice of Estimator Parameters
Before the point pw is observed for the first time, it is considered unknown. There-
fore, we choose Σ0 = 03×3 as initial value. The constant γ is computed from each set

42

6.2. ESTIMATING EXPECTED RECONSTRUCTION QUALITY

Figure 6.2: SfM covariance quality estimate example for three consecutive updates.
The green elliptic cylinder (ellipse with infinite half axis length in one direction)
corresponds to confidence area of the update Θi, i.e. the gained information. The
blue ellipse is the confidence area of the prior Σi and the red one the confidence ellipse
of the posterior Σi+1.

of intrinsic camera parameters and the assumption on the image plane error σu and
σv. Note that usually the axis skew s is zero, such that equation (6.12) simplifies to
γ = max{σu/fu, σv/fv}.

The variances σ2
u and σ2

v describe the spread of the pixel error in the image
plane. They can be determined from a desired confidence interval sizes. Following
the notation of chapter 3.1, if a confidence of pconf is desired for an interval of ±npix
pixel, the identity

|npix|
!
=
√
σ2
uQ2(pconf)

|npix|
!
=
√
σ2
vQ2(pconf)

(6.21)

must hold, which is equivalent to

σu =
|npix|√
Q2(pconf)

σv =
|npix|√
Q2(pconf)

.

(6.22)

Then γ can be written as

γ =
|npix|√
Q2(pconf)

max{1/fu, 1/fv}. (6.23)

By construction, γ has only a scaling effect on Θ and consequently on the precision
matrices that describe the estimate of the expected point reconstruction quality.
More precisely, if we scale γ by a factor c ∈ R>0, then all Σ−1i are scaled by a
factor of 1/c2. From (6.23), similar statements are obtainable for npix and pconf .
Appropriate values for npix and pconf will be specified in chapter 10.

6.2.3 Image Observations
In this section, the estimator for the expected point reconstruction quality is ex-
tended to the whole set of manifolds M . This is as simple as defining the quality of

43

CHAPTER 6. THEORETICAL DERIVATION

each point in M , while accounting for observability. The main purpose of this chap-
ter is to introduce new notations. We are interested in the quality of an arbitrary
point on that manifold after taking n images at locations ξi := {Ri, ti} ∈ SO(3)×R3.
The set of all n previous camera recording poses is denoted by Ξn := {ξ1, . . . , ξn}.
Furthermore, let

FOV : ξ ∈ SO(3)× R3 ↦→ FOV(ξ) ⊂M (6.24)

denote the set of all surface points that are visible from configuration ξ. The ob-
servability function classifying surface points as visible or occupied, is given by

visξ(p) :=

{
1 if p ∈ FOV(ξ), i.e. p is visible from pose ξ

0 if p /∈ FOV(ξ), i.e. p is not visible from pose ξ.
(6.25)

Then the point reconstruction quality estimator from equation (6.20) can be written
as

Σ−1(p,Ξn) :=
∑
ξ∈Ξn

visξ(p) ·Θ−1(p, ξ), (6.26)

with Θ−1 as in (6.14). Equivalently, the following recursive formulation holds:

Σ−1(p,Ξn+1) =

{
Σ−1(p,Ξn) + Θ−1(p, ξn+1) if p ∈ FOV(ξn+1)

Σ−1(p,Ξn) if p /∈ FOV(ξn+1).
(6.27)

As explained in section 6.2.2, this recursion is initialized with Σ−1(p, {}) = 03×3.
The associated multivariate random variable describing a point’s quality is denoted
by

Xp(Ξn) ∼ N (0,Σ(p,Ξn)). (6.28)

6.3 Optimal View Planning
In the previous sections we derived an estimator for the expected SfM reconstruction
quality, given a set of camera poses Ξn. Now the question arises how these recording
poses can best be chosen to achieve a uniform coverage of the manifolds. An optimal
set must contain as few images as possible, such that the SfM reconstruction runtime
is minimal. At the same time it must be possible to reconstruct the geometry
sufficiently, i.e. without holes and with a certain reconstruction quality. The latter
requirement can be formulated as

λi [Σ(p,Ξn)] ≤ λmin, i ∈ {1, 2, 3}, ∀p ∈M, (6.29)

for some constant threshold λmin ∈ R>0. This means that all half-axes of the as-
sociated confidence ellipsoids (see section 3.1) must be sufficiently small. In order
to obtain a small image set, each individual photograph, again interpreted as mea-
surements, must significantly improve the estimate of the reconstruction quality.
Putting this into a mathematical framework, we are interested in the solution to

min
n∈N

n (6.30a)

s.t. Ξ∗n = argmin
Ξn

∫
M

Φ(Σ(p,Ξn))dp, (6.30b)

λi [Σ(p,Ξ
∗
n)] ≤ λmin, i ∈ {1, 2, 3}, ∀p ∈M, (6.30c)

44

6.3. OPTIMAL VIEW PLANNING

i.e. the minimum number of pictures n, such that the camera poses obtained by
(6.30b) still satisfy constraints (6.29). The function Φ quantifies the size of the
confidence ellipsoid associated with a covariance matrix. It may correspond to an
OED optimality criteria (see section 3.2), e.g.

Φ(Σ(p,Ξn)) = log det[Σ(p,Ξn)], (6.31)

which is equivalent to the D-optimality criteria in the minimization context. This
choice seems intuitive, due to the equivalence to the minimization of

Φ(Σ(p,Ξn)) = H(Xp(Ξn)), (6.32)

where
H[Xp(Ξn)] =

3

2
(log [2π] + 1) +

1

2
log det [Σ(p,Ξn)] (6.33)

is the differential entropy6 of a surface point. Entropy plays a key role in information
theory and describes the average information content or the minimum number of
bits necessary to encode a message. This means that a low entropy gives higher
certainty about the observed data.

The two-stage mixed-integer minimization problem in equation (6.30) is NP-
hard. For practical applications, we further require additional geometric constraints
to guarantee feasibility of the optimized camera poses and an admissible path con-
necting them. However, even without these additional constraints, problem (6.30)
is infeasible to solve numerically. The sub-problem (6.30b) is high dimensional and
the function Φ is non-smooth at the borders of each viewing frustum. To overcome
these issues, we will now propose an alternative approach that does not optimize all
camera poses at once, but greedily searches only for the NBV.

6.3.1 Next-Best-View: Gain Formulation
By only searching for a NBV, we are not interested in the total quality obtained
from all views combined, but the improvement this next view provides. Assume
n images are already taken at poses Ξn. In analogy to (6.30b), we are therefore
interested in the solution to

ξ∗n+1 = argmax
ξn+1

∫
M

gain(p,Ξn, ξn+1) dp. (6.34)

Note that this gain-function plays a similar role as Φ in (6.30b). However, instead
of quantifying the absolute quality, it describes the information gained from view
ξn+1.

The choice of this gain function determines the behavior of the NBV planning.
By choosing it similar to Φ, e.g. as one of the OED criteria given in section 3.2,
the NBV would prefer observing the currently worst covered parts of the surface
geometry. In the greedy NBV scheme, this results in a uniform reduction of the
half-axes of all confidence ellipsoids of the expected reconstruction quality of points
on the whole surface. However, consecutive views will also be far apart as they tend
to result in poses with little image overlap with previous recordings. Ultimately, we

6Note that differential entropy is not the continuous analogue of discrete entropy. However, it
can be interpreted similarly.

45

CHAPTER 6. THEORETICAL DERIVATION

are not only interested in a set of NBVs, but also a trajectory connecting all views.
Therefore, the gain function should “motivate” the NBV selection to first observe
local portions of the surface sufficiently before continuing to explore the surface.
This motivates our choice of the gain function as

gain(p,Ξn, ξn+1) := H[Xp(Ξn)]−H[Xp(Ξn+1)]

=− 1

2
log

[
detΣ(p,Ξn+1)

detΣ(p,Ξn)

]
.

(6.35)

This formulation is inspired by the mutual information approach for optimal sensor
placements given in [Krause et al., 2008]. It describes a relative quantity and is
therefore only observing relative improvements of the estimated surface quality. Note
that we still require a termination criteria that stops observing surface points once a
certain quality threshold is reached. Again, all the precision matrices associated with
covariance matrices in (6.35) may be singular, leading to undefined gain expressions.
Both of these issues will be discussed in the next section. For now we will assume
that these matrices are regular.

Similar to OED optimality criteria, the gain function (6.35) also allows for a
geometric interpretation. Due to (6.27) and Weyl’s inequality (appendix A), the
eigenvalues of Σ(p,Ξn+1) must always be smaller or equal to the ones of Σ(p,Ξn).
The fraction

detΣ(p,Ξn+1)

detΣ(p,Ξn)
. (6.36)

is always in (0, 1], but apart from the initial observation closer to 1. Then a good
approximation of the gain function (6.35) is given by

gain(p,Ξn, ξn+1)

First order
Taylor expansion

of log at 1
≈ 1−

√
detΣ(p,Ξn, ξn+1)

detΣ(p,Ξn)  
∈[0,1]

. (6.37)

As we have seen in section 3.2, the square root of the determinant of a covariance
matrix is proportional to the volume of its confidence ellipsoid. Therefore, equation
(6.37) describes the percentage decrease of confidence volume given a new observa-
tion ξn+1.

The gain function (6.35) gives us a computational advantage over an absolute
measure like (6.31). Considering the recursive definition of Σ−1(p,Ξn+1) given in
(6.27), we realize

gain(p,Ξn, ξn+1) = 0, ∀p /∈ FOV(ξn+1). (6.38)

This allows us to simplify (6.34) to obtain

ξ∗n+1 = argmax
ξn+1

∫
FOV [ξn+1]

gain(p,Ξn, ξn+1) dp. (6.39)

Now, the objective function only considers points which are inside the viewing frus-
tum of ξn+1. This insight is extremely important, as it significantly accelerates
computations when evaluating this function later on in section 7.2. From now on
we will only consider the non-trivial case of gain(p,Ξn, ξn+1) ̸= 0, or equivalently
p ∈ FOV(ξn+1), when talking about the gain function.

46

6.3. OPTIMAL VIEW PLANNING

6.3.2 Gain Clamping
In section 6.1 we established how to treat singular precision matrices. The matrix
Σ−1(p,Ξn) may be singular for some values of p and Ξn, resulting in det[Σ(p,Ξn)] =
∞. This poses a problem as the gain function (6.35) can yield undefined expressions
(e.g. log(∞/∞)) or a small surface area may dominate the whole objective func-
tion integral (6.39) (e.g. log(0)). This is quite common since the precision matrix
Σ−1(p, {}) is initialized with 03×3, and Σ−1(p, {ξ1}) always has one eigenvalue equal
to zero. To overcome these issues, we introduce an upper bound for the eigenvalues
of Σ, such that a modified determinant is computed as

3∏
i=1

min (λi[Σ(p,Ξn)], λmax) , (6.40)

with some constant λmax ∈ R>0. Similarly, a lower bound λmin ∈ R>0 can be
introduced that acts as a termination criterion. The modified gain formulation is
then given as

gain(p,Ξn, ξn+1) := −
1

2
log

[
det Σ(p,Ξn+1)

det Σ(p,Ξn)

]
,

with det[A] := λ1[A] · λ2[A] · λ3[A],

λi[A] := clamp(λmin ≤ λi[A] ≤ λmax).

(6.41)

The constants λmin and λmax ensure that only relevant changes to the covariance
matrix of point p are observable. The upper bound λmax now allows us to sense
measurements even in the case of singular precision matrices. Furthermore, the lower
bound λmin has the same functionality as the constraint (6.30c), because points p
with

λi [Σ(p,Ξn)] ≤ λmin, ∀i ∈ {1, 2, 3} (6.42)

yield a gain equal to zero. It is therefore used to avoid over-observing surface points.
Note that the clamping parameters also introduce bounds on the gain function itself,
given by

gain(p,Ξn, ξn+1) ∈
[
0,−3

2
log

(
λmin

λmax

)]
. (6.43)

The effect this clamping formulation has on the gain is visualized in figure 6.3.
Finally, the gain formulation can also be formulated in terms of the precision

matrices:

gain(p,Ξn, ξn+1) =
1

2
log

[
det Σ−1(p,Ξn+1)

det Σ−1(p,Ξn)

]
det Σ−1(p,Ξi) =

3∏
i=1

clamp
(

1

λmax

≤ λi

[
Σ−1(p,Ξi)

]
≤ 1

λmin

) (6.44)

Since the gain update (6.27) also only requires precision matrices, covariance ma-
trices never need to be calculated explicitly. This way we avoid unnecessary matrix
inversions and no longer require the properties of inverses of singular matrices de-
fined in section 6.1.

47

CHAPTER 6. THEORETICAL DERIVATION

(a) No clamping.

min
 clamping

(b) Clamping to λmin.

max
 clamping

(c) Clamping to λmax.

min
 clamping

max
 clamping

(d) Clamping to λmin and λmax.

Figure 6.3: Contour lines of the gain function. The confidence ellipse of Σ(p,Ξn) is
visualized in gray (transparent) with the point p being in its center. The position of
each new view ξn+1 is sampled in the 2D plane, with the viewing direction from the
camera to the point being orthogonal to each image plane. Clamping to λmin is active
inside the area enclosed by the gray line in figure 6.3b and 6.3d. Clamping to λmax is
active in the lower left and upper right corners in figure 6.3c and 6.3d, bordered by
the yellow line.

The values of λmin and λmax can be chosen from the ground sampling distance of
the camera7. Assume a sufficient ground sampling distance is achieved from pictures
that are as close as dmin meters from the surface point p. This means that a single
recording ξ from a distance of equal or less than dmin meters is sufficient to reach the
desired precision λmin for two out of three eigenvalues of Σ(p, {ξ}). By construction
(see equation 6.14), these two finite eigenvalues can be identified as the eigenvalues
of Σ∗

CAM(dmin). Analogous we can define a maximum distance dmax after which the
information contributed by the observations become irrelevant. Hence, the clamping
parameters can be chosen as

λmin := d2minγ
2

λmax := d2maxγ
2.

(6.45)

7If several different cameras are used, these clamping parameters can be selected differently for
each camera.

48

6.3. OPTIMAL VIEW PLANNING

Note that by choosing the clamping parameters as in (6.45), the gain function
(6.44) becomes invariant to scaling of γ. This especially implies that the actual
assumption on the image plane error σu, σv – and in consequence npix and its as-
sociated confidence percentage (see section 6.2.2) – do not affect the gain function
or the NBV computation. Therefore, the sole purpose of these parameters is to
approximate the magnitude of the expected reconstruction error (see section 9.2.2).

6.3.3 Next-Best-View Trajectory
We only considered discrete camera poses so far. In order to take a new measurement
at camera pose ξn+1, it is also important to find a short, collision-free trajectory
ξ(t) : R → SO(3) × R3 that describes the cameras pose at time t. Hence, we are
interested in an admissible path from ξ(tn) := ξn to ξ(tn+1) := ξn+1 for a greedy
NBV selection. As the camera may be attached to a robotic system, such as a
robotic arm or a UAV, we write the camera trajectory as a dynamic system for the
sake of generality. The full OED problem, which calculates the NBV, is given by

max
ξ(·),u(·),tn+1

∫
FOV [ξ(tn+1)]

gain(p,Ξn, ξ(tn+1)) dp (6.46a)

−
∫ tn+1

tn

cost(ξ(τ)) dτ (6.46b)

s.t. ξ̈(t) = f(t, ξ(t), u(t)), ξ(tn) = ξn, ξ̇(tn) = ξ̇n (6.46c)
g(t, ξ(t), u(t)) ≤ 0 (6.46d)
omin ≤ go(ξ(tn+1)) (6.46e)
do
min ≤ do(ξ(t)) ≤ do

max (6.46f)
du
min ≤ du(ξ(t)). (6.46g)

The objective function consists of the gain term (6.46a) (see equation 6.44), as well
as a penalty term (6.46b) describing the cost of state trajectory segment ξ[tn,tn+1].
This cost can, for example, be directly related to the segment length, the time
to reach the goal pose ξ(tn+1), or the energy required to execute the trajectory.
The dynamic system is described by the initial value problem (6.46c), together with
dynamic constraints (6.46d), and a control function u(t) : R→ Rnu . A constraint on
the minimum overlap of images with previous recordings is given by (6.46e). This is
only active after taking the first image and further encourages the NBV selection to
first observe a surface sufficiently locally. We further introduced additional geometric
constraints on the minimum/maximum distance to the geometries surface (6.46f),
as well as a minimum distance to potentially unknown space (6.46g).

Problem (6.46) is now solved iteratively for n = {0, 1, . . .}. After each itera-
tion, the quality estimate of all points in FOV[ξn+1] is updated according to (6.27).
The algorithm terminates once gain(p,Ξn, ξ(tn+1)) is zero for all points p and ad-
missible path segments ξ[tn,tn+1]. Then full coverage is achieved up to geometric
and dynamic limitations. Note that the total number of images obtained from
this greedy procedure is not optimal. As mentioned in section 1.2.3 such optimal-
ity can be achieved using an RRT resampling scheme (e.g. [Bircher et al., 2017],
[Papadopoulos et al., 2013], [Englot and Hover, 2013]). Obtaining approximate so-
lutions to (6.46) numerically is the subject of the next chapter.

49

CHAPTER 6. THEORETICAL DERIVATION

50

7SfM-NBV Algorithm

In the previous chapter we derived an estimator for the expected SfM reconstruc-
tion quality (6.27). It is subsequently used in an OED problem (6.46) in order to
obtain optimal NBV trajectories. While theoretically solving the task of computing
satisfying recording poses for a SfM reconstruction, the OED problem is still too
hard to solve for various reasons:

• The gain function (6.44) used inside the objective function (6.46a) of the OED
problem requires information on the current estimate of the reconstruction
quality Σ−1(p,Ξn), which is computed from (6.27). Even though the true
position of a point on the surface of a geometry is unknown, the measure
for the information Θ−1 (see equation (6.14)) gained from an observation still
depends on it. By construction, the axis of the elliptic confidence cylinder
described by Θ−1 must point in the direction of said point. This makes sense
as depth can not be extracted from single images. The ellipses obtained from
right sections of this cylinder also depend on the orthogonal distance of the
point to the image plane. This is a direct result of the reprojection of a fixed
size confidence ellipse on the image plane into world space in the derivation of
Θ−1.

• Furthermore, prior knowledge of the geometry is also required to determine ob-
servability. The integral in the objective function of the OED problem (6.46a)
depends on the set of all surface points that are observable from a recording
pose FOV(ξn+1). To compute this set, we need to be able to differentiate
between visible and occluded points. Therefore, a representation of the set of
surface manifolds is required as prior information.

• Additionally, FOV[ξ(tn+1)] is an infinite set containing continuous subsets of
points on the surface geometry. Since the set of manifolds that describes the
geometries surface can usually not be parameterized, the integral (6.46a) can
only be evaluated numerically. This means we need to determine a finite
discrete set of points that allows us to approximate this integral with a sum.

• Most of the constraints in the OED problem have infinite dimensionality.
Hence, they must hold for an infinite number of points on the whole time
interval [tn, tn+1]. The path cost term (6.46b) depends on the continuous cost
function and can be obtained from analytic integration in some cases, other-
wise numeric integration must be used. The differential constraints (6.46c)
and (6.46d), as well as the geometric constraints (6.46f) and (6.46g), are also
infinite dimensional. Solving similar systems with different objective functions

51

CHAPTER 7. SFM-NBV ALGORITHM

is already well studied in the context of optimal control8. Since our focus lies
on the evaluation of the quality estimate and NBV planning, this point will
not receive much attention. In chapter 10, we will use a directly positional
and orientational controlled camera without differential constraints. The path
costs will then relate to the length of line segments between successive views.

In order to obtain an approximate solution for the OED problem (6.46) nonethe-
less, we will use the standard direct approach commonly employed in numerics:
first discretize, then optimize in order to reduce the infinite to a finite dimensional
problem.

We will first discuss some types of required prior knowledge of the surface geome-
try and their respective discretization in section 7.1. The full, implementation-ready
algorithm is given in section 7.2. Finally, an additional correction step is introduced
to further enhance the NBV solution.

7.1 Surface Geometry Discretization
For the reasons stated above, a dense representation of the geometries’ surface is
required as prior knowledge. Since this representation comes from previous measure-
ments or geometric approximations, it is always subject to some error. As a result, a
discrepancy between true and estimated observability is introduced. Surface points
that may be visible from a camera configuration in reality, may be occluded in the
geometric approximation and vice-versa. We call this error the observability error.

The surface integral (6.46a) will now be approximated from a finite set of points
obtained from this surface approximation. For performance reasons, it is desirable
that this set is uniquely determined from a collection of points that does not change
during the runtime of the algorithm. This way, we can associate each point with a
quality estimate that can simply be updated by (6.27) when inserting new images.
Otherwise, the quality estimate would have to be recomputed from all previous
recording poses each time a point is observed for every evaluation of the gain function
(6.44). We will call this discrete set of points control points. The finite set of control
points which are visible from a pose in the geometric approximation is denoted by

FOV : ξ ∈ SO(3)× R3 ↦→ FOV(ξ) (finite set). (7.1)

Since we are only able to use a geometric approximation, control points are usually
not exactly on the surface of the real geometry. However, this poses no problem,
as the quality of theoretical points in space can also be estimated by (6.27). We
then assume that the estimate for the expected SfM reconstruction quality does
not change significantly in a small, local area around those control points. The
discretization into control points introduces another source of error, which we will
call the discretization error. It summarizes the effects of the deviation of control
points from the real surface and errors introduced due to their local approximations.

8A common approach to solve optimal control problems (for example, see [Betts, 2010]) is to
discretize the control functions (e.g. piecewise linear), use numerical integration (e.g. RKF45) to
solve the initial value problem and then apply an SQP method to find optimal control functions.
There, constraints are usually discretised and only evaluated at grid points. Alternatively, a control
function sampling RRT (e.g. [Kuwata et al., 2009]) can be used.

52

7.1. SURFACE GEOMETRY DISCRETIZATION

By assuming that control points sample the surface evenly, the gain term (6.46a)
in the objective function of the OED problem can be replaced by the sum

w ·
∑

p∈FOV[ξ(tn+1)]

gain (p,Ξn, ξ(tn+1)) , (7.2)

where w ∈ R>0 is a constant relating to the average mutual distance of control
points. Demanding an even distribution is important here, as otherwise areas with
higher point densities would be weighted more. This would result in higher objective
function values for views that observe high point density areas. According to the
integral (6.46a), this should instead be the case when observing large surface areas.
Hence, an uneven control point density would manipulate the NBV selection in the
OED problem. If control points are chosen arbitrarily, weights corresponding to
local point densities would be required for each term in (7.2).

The combination of discretization and observability errors poses another prob-
lem. Consider the case where a control point is assumed to be observable, but in
reality the associated surface geometry is actually occluded. When inserting a new
image at this position, the estimate of the expected reconstruction quality of that
control point may get updated, although this image does not provide information
on the real geometry in that area. There, the true reconstruction error will then be
higher than the estimated one. This effect will be called overestimation.

Now we have reached a paradoxical point. In order to be able to collect data that
suffices to build a 3D reconstruction, a 3D representation is already required to be
known in advance. However, as we will see later, this is only a minor inconvenience.
The prior knowledge can be a very coarse approximation, while the resulting model
will have a very high resolution and accuracy. We will also present an approach
in section 7.1.3 that does not require any prior information on the geometry, by
combining our NBV planning with an autonomous exploration approach in an oc-
cupancy map. On the other hand, there are advantages if the complete geometry is
already known in advance. Then the full NBV trajectory can be precomputed and
planned offline. Such a path can further be refined using RRT resampling strategies
(see section 1.2.3) to obtain truly optimal trajectories.

We will now give a few examples of how the surface geometry can be approxi-
mated. For each of them, we will also propose a possible choice of control points
and explain how the set FOV(ξ) is efficiently obtained.

7.1.1 3D Model
Sometimes a full 3D mesh is already available. This may be the case, for example, in
construction research or for inspection tasks, where the same structure is recorded
at different points in time. Depending on the accuracy of the mesh, the observability
error can be negligible. One way to obtain evenly distributed control points is to
resample the mesh with equilateral triangular faces of arbitrary, but similar size
as in [Pietroni et al., 2010]. Then the set of control points is chosen as vertices of
the new mesh. Alternatively, the entire surface area can be sampled uniformly. By
selecting many sample points, the discretization error becomes smaller but leads to
higher computational costs when evaluating the gain function 7.2. The set FOV(ξ)
is computed according to standard ray tracing approaches, which can also be heavily
parallelized (e.g. with GPU acceleration).

53

CHAPTER 7. SFM-NBV ALGORITHM

7.1.2 Primitive Hulls
The object’s surface can be approximated by (hand crafted) geometric primitives.
For instance, a building can be represented by cubes, cylinders, cones and prisms.
An example of primitive hull approximation is given in figure 7.1a. As for the
3D model approach, the set of control points can be obtained by resampling the
primitive mesh or by drawing uniform samples. Observability is also computed in
the same way through ray tracing.

Compared to the other methods, the observability and discretization errors are
usually the largest here, since they depend on the accuracy and fidelity of the prim-
itive hull approximation. Constructing these hulls is often cumbersome, since scale
and proportions need to be known in advance and require additional measurements.

(a) Primitive hull. (b) Voxels (multiple resolutions).

Figure 7.1: Visualization of different surface geometry approximations using the example
of the King’s Hall of Lorsch Abbey (UNESCO World Heritage Site).

7.1.3 Voxel Discretization
The surface geometry can also be approximated using a voxel representation. Space
is tesselated into cubes of equal size. All voxels that presumably contain segments of
the surface geometry are marked as occupied, while others are labeled as free space.
The control points are then selected as the centers of all occupied voxels. Due to the
grid structure, those voxel representations can be efficiently stored in octrees (see
section 4.2).

The set FOV(ξ) is obtained by collecting all occupied voxels that are visible
from configuration ξ, i.e. not occluded by other occupied voxel volumes. A voxel
is classified as visible if it lies inside the camera frustum and the intersection point
of the ray from the camera center to the voxel center with the voxel surface is

54

7.1. SURFACE GEOMETRY DISCRETIZATION

observable. This makes sense because it is equivalent to the control point being
visible in the grid map if we count the corresponding voxel as transparent. Details
on a cost-efficient implementation of the required ray casting task inside octree
structures are given in section 8.3.2. Since voxels describe cubic volumes, the real
surface geometry within occupied voxels can be arbitrarily complex. Approximating
it with a cubic volume therefore introduces an observability error, because parts of
the true geometry may be occluded even if the voxel is visible.

For a voxel discretization, overestimation is a noticeable issue. Consider the
case where a voxel is placed on a sharp edge of an object. Then it is visible from
various sides around the edge, even though the associated camera poses each only
contain information about a single side that connects to that edge. This effect
is also observed later in our simulations in chapter 10. The discretization error,
observability error and effects of overestimation are all proportional to the voxel
size.

The voxel surface approximation is illustrated in figure 7.1b. A visualization of
the discrete gain term (7.2) for NBV selection using voxel discretization is given in
figure 7.2.

Combination with Autonomous Exploration

The main benefit of the voxel discretization is that it can be used in an autonomous
exploration framework. This is significant because then no prior information about
the surface geometry is required. Here, an additional sensor is necessary, that
greedily builds a 3D occupancy map (see chapter 4), which is also used as voxel
discretization for NBV planning. The OED problem (6.46) can easily be converted
to an OCP9 that is used for autonomous exploration. For that purpose, the image
overlap constraint (6.46e) is removed and an exploration objective function term is
introduced, replacing the gain integral (6.46a). This new exploration term could,
for example, count the number of unknown voxels inside the field of view of a cam-
era pose. Other possible autonomous exploration objective functions are given in
[Delmerico et al., 2018]. An example application of this autonomous exploration
framework using UAVs is given in [Bircher et al., 2018]. The exploration and NBV
objective function are then evaluated simultaneously and the task (exploration or
recording an image) corresponding to the higher-value objective function is executed.
As the map becomes more explored, the quality estimates of newly discovered, oc-
cupied voxels need to be updated according to previous recording poses.

The additional advantage of using an occupancy map is that free, occupied
and unknown space can be distinguished. Together with the octree structure, this
enables for cost-efficient collision checking and, in consequence, fast collision-free
path planning. If our NBV planning is run simultaneously with an autonomous
exploration framework, no global optimal coverage trajectories can be computed,
because the full geometry is not known during runtime. Here, however, it is possible
to run the entire approach online without the need for an excessive amount of
preparatory work in order to obtain prior information on the geometry.

9By removing the gain term we do not have an OED objective function anymore.

55

CHAPTER 7. SFM-NBV ALGORITHM

Figure 7.2: Iterative gain selection (top to bottom) using a voxel discretization at the
example of the King’s Hall of Lorsch Abbey (UNESCO World Heritage Site). The
camera position is constrained to the gray plane with fixed orientation and camera
far plane at 5m. The color in the left column correspond to the largest eigenvalue
of the estimator covariance matrices for each voxel (red = large, green = small). For
each iteration, the objective function (7.2) is sampled in the gray plane and visualized
as contour plot in the right column (with different colormap scalings). The next
viewpoint is inserted at the maximum of the objective function.

Source: [Lindner et al., 2019] ©2019 IEEE.

7.2 Pseudo-Code

Now the complete iterative NBV planning algorithm can be formulated. The pseudo-
code of the main loop is given in algorithm 7.1. Here, approximate solutions to the
OED problem (6.46) are generated by the getNextSegment function (see algorithm
7.2). These NBV paths are then executed. If the algorithm is run online, an image
is recorded at the end of each trajectory. This step is skipped if the NBV trajectories
are to be precomputed. Finally, the estimator updates the estimate of the expected

56

7.2. PSEUDO-CODE

Algorithm 7.1: SfM-CPP pseudo-code.

1 Ξ0 ← {}; n← 0 // initialization
2 do // main loop
3

4 // execute NBV trajectory
5 ξ|[tn,tn+1], gain← getNextSegment(Ξn)

6 execute trajectory ξ|[tn,tn+1]

7 insert image at ξn+1

8

9 // update precision matrices (6.27)
10 for p ∈ FOV[ξn+1]

11 Σ−1(p,Ξn+1)← Σ−1(p,Ξn) + Θ−1(p, ξn+1)

12 end for

13 Ξn+1 ← Ξn ∪ {ξn+1}; n← n+ 1

14

15 while gain > threshold

reconstruction quality for each control point that is visible from the new camera
location. The algorithm terminates, once the gain term obtained from (7.2) is below
a threshold value. This means that no relevant improvement to a subsequent SfM
reconstruction can be achieved from additional measurements. Then gain clamping
to λmin is active for almost all observable control points, i.e. a desired estimator
quality is reached. This threshold is rather important. In some special cases, a
control point may be very hard to observe, such that a huge amount of images would
be required to sufficiently capture that single point, each of which contributing little
new information to the reconstruction. Therefore, the threshold acts as a safeguard
that ignores these points and keeps the number of images reasonable.

The computation of a single NBV segment is realized in algorithm 7.2, which
is explained below. First, we will state the final discretized version of the OED
problem (6.46):

max
ξ(·),u(·),tn+1

⎧⎨⎩w ·
∑

p∈FOV[ξ(tn+1)]

gain (p,Ξn, ξ(tn+1)) if omin ≤ go(ξ(tn+1))

0 if omin > go(ξ(tn+1))
(7.3a)

−
∫ tn+1

tn

cost(ξ(τ)) dτ (7.3b)

s.t. ξ̈(t) = f(t, ξ(t), u(t)), ξ(tn) = ξn, ξ̇(tn) = ξ̇n (7.3c)
g(t, ξ(t), u(t)) ≤ 0 (7.3d)
do
min ≤ do(ξ(t)) ≤ do

max (7.3e)
du
min ≤ du(ξ(t)). (7.3f)

Here, we use the control point discretization from section 7.1 that leads to the

57

CHAPTER 7. SFM-NBV ALGORITHM

Algorithm 7.2: getNextSegment(Ξn) pseudo-code.

1 function ξ|[tn,tn+1], gain = getNextSegment (Ξn)

2

3 // compute L RRT candidates
4 for i = 1 : L

5 ξi|[tn,tn+1] ← random RRT path-segment satisfying

dynamic constraints (7.3c, 7.3d) and

geometric constraints (7.3e, 7.3f)

6 costi = ∥ξi|[tn,tn+1]∥ // path cost (7.3b)
7

8 // gain computation (7.3a)
9 gaini = 0

10 for p ∈ FOV[ξin+1]

11 gaini += w · gain(p,Ξn, ξ
i
n+1)

12 end for

13

14 // check image overlap (7.3a)
15 if (n > 0) and (omin > go(ξ

i
n+1))

16 gaini = 0

17 end if

18 end for

19

20 // return segment with biggest objective function
21 k = argmaxi gaini − costi

22 return ξk|[tn,tn+1], gaink

23 end function

discretized gain term (7.2). Note that the image overlap constraint (6.46e) is addi-
tionally incorporated into the objective function. The overlap function go(ξ(tn+1))
is now defined as the fraction of points from the set FOV[ξ(tn+1)] that have been
observed before, i.e. with precision estimates Σ−1(p,Ξn) not equal to zero. The case
distinction in (7.3a) is not made for the first recording pose (n = 0), since it can-
not overlap with other measurements. Although this modification of the objective
function worsens its smoothness properties, it will ultimately not be an issue.

As we have seen in figure 7.2, the gain objective function term (7.2) has disconti-
nuities and many local minima, despite it being a very basic example. This already
makes the OED problem difficult to solve using gradient based numerical methods.
In the end, however, we are not interested in optimal NBV solutions – as these
will not result in global optimality anyways – but in good recording poses that yield
much information for the reconstruction process. In addition, computing these exact

58

7.2. PSEUDO-CODE

solutions would require a large amount of runtime. Therefore, we employ an RRT
sampling-based approach that approximates good NBV trajectories that satisfy all
constraints and yield high objective functions values. This is realized in line 5 of
algorithm 7.2, where in total L ∈ N valid samples are drawn. For dynamic systems,
trajectories are obtained by control space sampling (e.g. [Kuwata et al., 2009]),
while standard RRT and RRT∗ (e.g. [Karaman and Frazzoli, 2011]) approaches can
be utilized otherwise. Samples are considered valid and are accepted if they satisfy
constraints (7.3c) - (7.3f). Continuing with algorithm 7.2, the gain and cost terms
are evaluated for each admissible RRT trajectory. The path corresponding to the
highest value objective function is returned.

In optimization problem (7.3), dynamic and geometric constraints (7.3c - 7.3f)
are completely separated from the task, which is now solely defined by the objective
function. This allows us to simultaneously evaluate multiple objective functions with
identical constraints, each relating to a different task, with the same RRT samples.
Depending on the values of each objective function the corresponding action (NBV
recording, exploration, ...) can be executed. As elaborated in section 7.1.3, such a
task can be, for example, related to autonomous exploration. Then exploration and
NBV planning can run in parallel and online on an autonomous robot.

While we stated that gradient based approaches are not suitable to obtain so-
lutions to the OED problem 7.3, a combined approach could be realized. For that
purpose good NBV trajectories are computed first, using the RRT sampling scheme.
Subsequent Newton correction steps can then be used to improve the estimate and
ultimately converge to a local minimum of the OED problem. Among other things,
this requires derivatives of the objective function (7.3a), thus also derivatives of the
gain function (6.44). These can be derived analytically (see appendix B) and de-
pend on the eigensystems of the precision matrix quality estimates. However, this
approach was not further analyzed.

59

CHAPTER 7. SFM-NBV ALGORITHM

60

8Implementation Details

The pseudo code for our greedy NBV algorithm is given in algorithms 7.1 and 7.2.
These still depend on the choice of the type of voxel discretization (see section 7.1).
Furthermore, the actual implementation of the FOV(ξ) function (see equation (7.1))
proves to be difficult because it involves visibility checks. It is used both in the main
loop of the RRT sample generation as well as in the update step for the precision
matrices and will turn out to be the most expensive sub-task, which dominates
runtime and therefore requires special attention and efficient implementation. In
order to achieve high performance, C++ is used as the programming language of
choice. We will now cover some implementation details.

Due to its versatility, we have adopted a voxel discretization strategy (section
7.1.3) using version 1.9 of the OctoMap library [Hornung et al., 2013]. The octree
structure used for storing the voxel map gives us many advantages over other dis-
cretization methods. As will be shown, it allows for computational fast visibility
checks such that the set FOV(ξ) can be determined efficiently. In addition, collision
checks can be implemented cost-effectively as part of collision-free path planning.
Furthermore, the voxel discretization allows for easy integration into a combined
autonomous exploration framework, as described in section 7.2, and different dis-
cretization accuracies.

This chapter is structured as follows. We give a brief overview of the octree
implementation in the OctoMap library in section 8.1. Based on this library, a
custom gain-octree structure is built in section 8.2 that contains information on
the estimate of the expected SfM reconstruction quality in each occupied voxel.
Extensions to the OctoMap library that result in better runtime performance are
explained in section 8.3. Finally, in section 8.4, the runtime of the algorithm is
discussed. Note that the supplied C++ snippets may have been simplified for better
understanding.

8.1 OctoMap Overview
The OctoMap library (see [Hornung et al., 2013]) provides an octree structure for
a 3D occupancy grid mapping approach. Some aspects of this library have already
been described in section 4.2. There, our focus lied on its occupancy mapping
properties. Now we will give some details about the implementation of the data
structure and its use as an efficient voxel map:

• Memory Layout
The octree is stored as a singly linked tree of maximum depth 16, with the
root node at depth 0. Each tree node contains a single pointer to an array of

61

CHAPTER 8. IMPLEMENTATION DETAILS

pointers to 8 potential child nodes. If the node is a leaf then the pointer to the
array is a null pointer. Similarly, any of the pointers in the array of pointers
can be a null pointer, meaning that the respective child node does not exist.
Hence, the memory usage for a single node is either 8 bytes if it is a leaf, or
8 + 8 · 8 bytes if at least one child is available10. Furthermore, each node can
hold additional data.

• Spatial Relation
Each node represents a space described by a cube. Subdividing this cube into
eight equally sized child cubes (see figure 4.2) then defines the cubes corre-
sponding to all potential child nodes. The position of the cube corresponding
to a child node relative to its parent is uniquely determined by the position of
the child node pointer in the array of pointers. Hence, its position within the
parent node can be described by 3 bits (x, y, z positions), and the position
of each cube at level 16 relative to the root cube is uniquely determined by a
3 · 16 bit key. The side length of a voxel at level 16 is denoted as resolution r.
Since the root node defines a bounding box, the entire space described by the
octree is a cube with side length r · 216.

• Tree Traversal
A node itself has no information about its spatial position. Consider the case
where the position of a given node inside the octree has to be computed. Since
nodes do not contain pointers to their parents, the entire tree must be searched
recursively from the root node. This is very inefficient. Hence, the 3 · 16 bit
key is used instead, as it describes the full path from the root node through
the entire tree. Note that although child nodes do not have to exist, each node
traversed on the path defined by the key also contains the target cube at level
16.
A common task is to find a node that contains a specific Euclidean point.
Such nodes can be obtained at any octree level by first converting the point’s
position to a key, which is then used to traverse the tree.

• Tree Pruning
The OctoMap octrees can be pruned. This means that all children of a node
can be deleted if a certain requirement is met. Usually this is the case when
all children contain identical or similar data. Then this data is summarized
inside their parent node, all child nodes are destroyed, and the node’s pointer
to the array of pointers is set to a null pointer. Pruning is extremely important
in the context of voxel maps. In this spatial representation, the majority of
space is usually free and can be heavily pruned. Therefore, it is possible to
represent large areas with relatively little memory.

One example of nodes inside the OctoMap library is given by the class OcTreeNode.
Besides pointers to potential child nodes, it also holds a float representing an occu-
pancy value. This value is clamped to a minimum and maximum value. Based on
thresholds for the occupancy value, nodes are classified as free or occupied space.
Moreover, if a node has at least one child, then all other child null pointers corre-
spond to unknown space. Nodes can be pruned if all 8 of their children exist and

10On a 64 bit system.

62

8.2. GAIN-OCTREE

have identical occupancy value. The occupancy of a cube can only be modified at
tree level 16. Then either new child nodes need to be created or occupancy values of
old ones are updated. Occupancy values propagate through the whole tree. Starting
from the leaf nodes, all parents receive the maximum of their children’s occupancy
values. This especially implies that if a node at any tree level is classified as free,
all of its children must also correspond to free or unknown space.

8.2 Gain-Octree
We introduce a new octree type called GainOcTree. The nodes in this tree inherit
from the class OcTreeNode (described above) and is given by

1 class GainOcTreeNode : public OcTreeNode {
2 ...
3 private:
4 std::array<float, 6>* prec_mat;
5 };

. (8.1)

The corresponding tree GainOcTree is used for voxel discretization as described in
section 7.1.3. We associate the voxel discretization points with the centers of each
occupied node at level 16. The expected reconstruction quality of these control
points is encoded in a precision matrix (see section 6.2), which is stored in the
tree nodes. Since precision matrices are symmetrical, only 6 additional floats are
necessary to encode this information. However, we can not distinguish directly
between node types when allocating the required memory. This would lead to a
large memory overhead, since nodes classified as free or at tree levels other than 16
would also allocate 6 floats, despite them not corresponding to control points. Hence,
the pointer prec_mat (see (8.1)) is added to each node instead. Then new memory
is allocated for the pointer if and only if its node corresponds to a control point
(occupied, tree level 16) and is a null pointer otherwise. All floats in the precision
matrices are initialized with 0. The total memory usage of a single GainOcTreeNode
is given in table 8.1.

Table 8.1: Memory usage of a single GainOcTreeNode. The occupancy value (float, 4
bytes) is present in all nodes. The pointer (8 bytes) to the array of child nodes is
a null pointer if no children exist. The pointer (8 bytes) to the precision matrix (6
floats, 24 bytes) is a null pointer if the node is no control point.

has child nodes is control point memory usage

false false 20 bytes
false true 44 bytes
true false 84 bytes
true true does not exist

Control points are associated with occupied nodes at level 16. Therefore, those
nodes must not be pruned. This behavior is realized in the GainOcTreeNode class:
pruning is prohibited for all occupied nodes, while free and unknown ones are pruned
identical as in the parent class OcTreeNode. Theoretically, the largest possible mem-
ory consumption of a GainOcTree is 15 763 terabytes and is reached in a fully ex-
panded tree where all nodes at level 16 are occupied. In reality, free space dominates

63

CHAPTER 8. IMPLEMENTATION DETAILS

the octree and can efficiently pruned. Thus, usually only up to several hundred
megabytes of memory are used.

In the clamped gain formulation (6.44), the eigenvalues of the precision matrices
need to be computed. For general square matrices, eigenvalues are usually obtained
from iterative methods or matrix decompositions. Depending on the discretization
of the geometries’ surface and the camera pose, each RRT sample in algorithm 7.2
may require the evaluation of thousands of clamped gain function terms. Hence, the
beforehand mentioned eigenvalue computation approaches becomes computationally
too expensive. Fortunately, our precision matrices are only of size 3×3, symmetrical
and positive definite. This special structure can be exploited to efficiently obtain an
analytic solution to the eigenvalue problem (see [Kopp, 2008]). For more details on
our implementation of the eigenvalue computation, please refer to appendix C.

The GainOcTree class is given as

1 class GainOcTree : public OccupancyOcTreeLeveledBase <GainOcTreeNode>
2 {...}; . (8.2)

The OccupancyOcTreeLeveledBase class is the subject of the following section.

8.3 Leveled Octree
The templated class OccupancyOcTreeLeveledBase<NODE> is an extension to the
OctoMap class OccupancyOcTreeBase<NODE>. There, the octree structure is further
exploited to increase runtime performance. This is achieved through extensive use
of different tree levels, wherefrom the class’s name originates. Compared to the
original OctoMap implementation, computationally demanding functions such as
ray-casting, generic filtering, and mapping tasks receive a considerable speedup.

This section is divided into three parts. The first two cover recursive depth-first
tree traversal approaches. An important application of this will be the computation
of the set FOV(ξ) (see equation (7.1)). First, all occupied voxels that are inside
the camera frustum are collected using a depth-first filter. Their visibility from the
camera pose is subsequently checked using a depth-first ray casting method. An
extension to occupancy grid mapping using our new tree class is given in the final
section. In contrast to the corresponding OctoMap implementation, we allow up-
dates of occupied and free nodes at different levels. This may be used in combination
with an autonomous exploration framework in the future.

8.3.1 Filter Function
We introduce a filterNodes function that iterates all nodes of the octree in a
depth-first manner. It is given by

1 template<class NODE>
2 template<typename FCN, typename... Args>
3 void OccupancyOcTreeLeveledBase <NODE>::filterNodes

(const FCN& filter, Args && ... args);
. (8.3)

The filter input must be a function that matches the signature

1 bool filter(NODE* node, const OcTreeKey& key,
unsigned int depth, Args && ... args) (8.4)

64

8.3. LEVELED OCTREE

and defines the operations that are performed for each node in the recursion. The
inputs node, key and depth correspond to each voxel that is iterated through by
the filterNodes function. The Boolean return value controls the recursion. If true
is returned, the depth-first iteration continues. Otherwise, if false is returned, the
current tree branch is skipped. Skipping branches early results in a fast termina-
tion of the recursion. The parameter pack args describes an arbitrary amount of
additional input arguments of arbitrary type. Those additional parameters are not
used inside the filterNodes function (8.3) directly, but are only forwarded to the
filter function (8.4) using perfect forwarding11

1 std::forward<Args>(args)... . (8.5)

Note that the parameter pack can also contain reference types that may be used to
obtain additional outputs. It can also be empty. Then the filter function (8.4) is
utilized to modify the iterated nodes directly. By using a template for the type of the
function argument and a variadic template for the parameter pack in (8.3), better
runtime performance is achieved. Each call to filterNodes with different filter
functions results in a new template instance. Since this happens during compile
time, the compiler can heavily optimize the code for the specific filter functions (e.g.
by inlining).

We will now give a few examples of how the filterNodes function (8.4) is used
in our implementation.

Get Voxel in Field of View

All occupied nodes on tree level 16 with centers inside a given viewing frustum are
to be determined. For an efficient implementation as a filter using the filterNodes
function (8.4), branches that do not contain relevant voxels need to be discarded
early in the depth-first recursion. Consider the case from figure 8.1, where a voxel
center is barely inside the camera frustum. In order to have potential child nodes

n f
1

nf2 n
f
3

−n
f 1

·

·

·

·

d c
(1
3)

dc(13)

d
c (13)

d c
(1
3)

·

·

·

· Figure 8.1: Maximum allowed dis-
tance of voxel centers to the cam-
era frustum. In order for the red
dot (voxel center of node on low-
est tree level) to be inside the frus-
tum, all parent node centers (e.g.
blue) must be within a certain dis-
tance dc(13) (see equation (8.6))
to all frustum planes. The vec-
tors nf1 , nf2 , nf3 denote the frus-
tum normals.

inside the FOV, all parent nodes’ centers can only have a maximum signed distance
11This means that all arguments are passed to a function as if it had been called directly (e.g. not

within a wrapper function) with those arguments. This allows us to preserve the arguments value
category (lvalue, rvalue, ...) and modifiers (const, volatile, ...). Furthermore, possible intermediate
copy operations are omitted.

65

CHAPTER 8. IMPLEMENTATION DETAILS

to the frustum planes. Here, the direction of the frustum plane normals, which are
pointing inwards, define the side with positive sign. The maximum absolute value
of this distance can be identified to be the length of a cube diagonal, from the center
of any parent node at arbitrary depth to the center of one of its corner voxel on tree
level 16. This length can be calculated as

dc(depth) =
(
216−depth − 1

) √3
2

r, depth ∈ {0, 1, . . . , 16}. (8.6)

Since dc only depends on the depth and the voxel resolution r, all 17 possible
values can be precomputed. In our implementation they are stored inside the
OccupancyOcTreeLeveledBase<NODE> class as

1 std::array<float, 17> range; . (8.7)

An additional function is required that determines if a point is within a range of
the frustum. We introduce a camera class

1 class Camera {
2 public:
3 bool isInRangeOfFOV
4 (const octomap::point3d& point, float range) const;
5 ...
6 private:
7 octomap::point3d center; // camera center
8 octomath::Vector3 view_dir; // camera view direction
9 float near, far; // distance to near and far plane
10 std::array<octomath::Vector3, 4> normals; // frustum side normals
11 };

(8.8)

that contains information on its frustum’s geometry. The desired function, called
isInRangeOfFOV, is given in algorithm 8.1. There, the distance to each frustum
plane is computed separately. The dot product is utilized to obtain the length of
the orthogonal projection of a point onto the frustum normals.

Algorithm 8.1: Code of the isInRangeOfFOV function that checks if a point is within a
distance to a given viewing frustum.

1 bool Camera::isInRangeOfFOV(const octomap::point3d& point, float range) const {
2
3 const octomath::Vector3 camToPoint = point - this->center;
4
5 // check near / far planes
6 float viewDirProjection = static_cast<float>(camToPoint.dot(this->view_dir));
7 if (!(viewDirProjection >= - range + this->near) ||
8 !(viewDirProjection <= + range + this->far)) {
9 return false;
10 }
11
12 // check frustum side planes
13 for (const octomath::Vector3& normal : this->normals) {
14 if (!(static_cast<float>(camToPoint.dot(normal)) >= -range)) {
15 return false;
16 }
17 }
18
19 return true;
20 }

66

8.3. LEVELED OCTREE

Finally, the full procedure can be assembled using the filterNodes function
(8.3) and a lambda expression. The function that determines all keys of occupied
voxels at tree level 16 that are within a camera frustum is given in algorithm 8.2.
Note that especially all free nodes can be skipped since all of their children must

Algorithm 8.2: Code of the getVoxelFOV function which determines all occupied voxels
at tree level 16 inside a viewing frustum given by camera.

1 float GainOcTree::getVoxelFOV(const Camera& camera,
2 std::vector<octomap::OcTreeKey >& keyVec) const {
3
4 // initialize output
5 keyVec.resize(0);
6
7 // create filter-lambda
8 auto filter = [this, &camera](octomap::GainOcTreeNode* node,
9 const octomap::OcTreeKey& key, unsigned int depth,

10 std::vector<octomap::OcTreeKey >& out)
11 {
12
13 if (node && this->isNodeOccupied(node)) {
14 octomap::point3d point = this->keyToCoord(key, depth);
15
16 if (camera.isInRangeOfFOV(point, this->range[depth])) { // see alg. 8.1
17 if (depth == 16) {
18 out.emplace_back(key);
19 return false;
20 }
21 return true;
22 } else {
23 return false;
24 }
25 }
26
27 return false;
28 };
29
30 // apply filter
31 this->filterNodes(filter, keyVec);
32 }

also be unknown or classified as free. The result is returned in the call by reference
parameter keyVec as a vector of octree keys (see section 8.1). Depending on the tree
resolution, the size of this vector can get large. Dynamic arrays, such as vectors,
can become a performance hit if used incorrectly. If they grow above a certain size,
these containers require memory reallocation and a copy operation. To avoid this,
memory for the keyVec vector should be allocated once. It can then be reused for
subsequent calls to getVoxelFOV. The initial size can be set to the volume of the
camera frustum divided by the volume of a cube at tree level 16, as an approximation
of the maximum number of cubes that fit into the frustum.

Compute Distance

In order to compute the distance from a point to the next occupied node center
at tree level 16, we proceed analogously to the previous chapter. Through similar
geometrical considerations, an upper bound for this distance can be formulated
using different tree levels. Consider a node at arbitrary tree level l that is currently
being processed in the depth-first recursion of the filterNodes function (8.4). The
distance of the point to this node’s center can be computed easily. Then any of
its child-nodes centers at tree depth 16 may have a maximum additional distance

67

CHAPTER 8. IMPLEMENTATION DETAILS

of dc(l) (see equation (8.6)). Hence, we can reuse the range variable introduced in
(8.7) and state the corresponding C++ implementation of this distance function in
algorithm 8.3. The function returns the distance to the closest node center at level
16, as well as the corresponding voxel key in the call by reference argument outkey.

Algorithm 8.3: Code of the distance function that returns the distance from a point
to the closest occupied voxel center at tree level 16.

1 template<class NODE>
2 float OccupancyOcTreeLeveledBase <NODE>::distance(const octomap::point3d& point,

octomap::OcTreeKey& outkey) const {
3
4 // upper bound on distance
5 float distance_max = std::numeric_limits<float>::max();
6
7 auto filter = [this, &distance_max, &point]
8 (NODE* node, const octomap::OcTreeKey& key, unsigned int depth, octomap::

OcTreeKey& outkey)
9 {
10 // fast return, only check occupied nodes
11 if (!node || !this->isNodeOccupied(node)) {
12 return false;
13 }
14
15 float distance = (point - this->keyToCoord(key, depth)).norm();
16
17 if (distance > distance_max + this->range[depth]) {
18 return false;
19 } else {
20 outkey = key;
21 distance_max = std::min(distance_max, distance + this->range[depth]);
22 return true;
23 }
24 };
25
26 // apply filter
27 this->filterNodes(filter, outkey);
28
29 // substract radius -> distance to voxel-center
30 return distance_max;
31 }

8.3.2 Ray Traversal
In the previous section, we discussed how to determine a set of nodes on tree level 16,
where each node center lies inside a camera frustum defined by a pose ξ ∈ SO(3)×R.
To derive its subset FOV(ξ), the visibility of each control point (i.e. node center)
inside the voxel map must be tested. A voxel at level 16 is called visible if a ray from
the camera center to the voxel’s center only passes space (at level 16) classified as
free until it reaches the target voxel. In the OctoMap library the digital differential
analyzer (DDA) algorithm [Amanatides and Woo, 1987] is implemented12 to collect
the keys of all voxels on level 16 that are passed by a ray iteratively. This is
realized by parameterizing the ray as a line. Beginning at the starting point, it is
iteratively traversed by computation of the next ray-voxel intersection (see figure
8.2). Depending on the voxel exit point, the neighboring voxel key is determined.

12See octomap::OcTreeBaseImpl::computeRayKeys(...) in the OctoMap library.

68

8.3. LEVELED OCTREE

Figure 8.2: Visualization of the DDA ray iteration approach. The gray cells represent
voxels traversed by a ray (blue line). The red crosses are intermediate intersections
with voxels that are computed during the iterative process.

For our use case, the DDA algorithm poses some problems. It only operates
on a single, fixed octree level (in our case level 16). This creates the following
dilemma. Small voxel resolutions are desirable for an accurate discretization of the
surface geometry (see section 7.1.3), leading to low discretization and observability
errors. However, by decreasing the voxel size, the amount of voxels traversed by
a ray increases rapidly, which proportionally affects the runtime of the algorithm.
Since intersections are computed using floating point precision, round off errors
accumulate faster and lead to an offset from the original ray. Furthermore, the
DDA algorithm only returns keys. To determine voxel visibility, the occupancy
values of nodes corresponding to the voxel keys must be queried. Obtaining a single
node from a key requires an additional tree traversal from the root node to a leaf
node.

In order to speed up this procedure, the structure of the octree can again be
exploited, such that ray traversal can be realized at different tree levels. For that
purpose we implemented the Spatial Measure for Accelerated Ray Tracing (SMART)
algorithm proposed by [Spackman and Willis, 1991]. Their algorithm can be de-
scribed as depth-first recursion inside an octree along a ray. It is particularly nu-
merically stable and may even be maintained in integer space. Simplified it can be
summarized as follows:

1. Initialization: Consider the starting point of the ray.

2. Depth iteration: The tree is traversed down to the point until a certain
criterion is met.

3. Ray iteration: If this criterion does not lead to the termination of the re-
cursion, we iterate in the direction of the ray to the largest possible tree-node
neighbor. A theoretical reference point is now set at the intersection of the
ray with the new node.

4. Recursion: Go to step 2.

An illustration of the SMART algorithm is given in figure 8.3. The concept of the
SMART algorithm is very similar to the exhaustive filterNodes octree recursion
(8.3) from section 8.3.1. Both perform depth-first iterations, where only the branch

69

CHAPTER 8. IMPLEMENTATION DETAILS

Figure 8.3: Visualization of the SMART algorithm by [Spackman and Willis, 1991] in
a quadtree. The black squares correspond to the voxels that satisfy a criterion when
iterating downwards, before continuing the iteration in the direction of the ray (white
line).

Source: Reprinted from publication [Spackman and Willis, 1991], ©1991, with permission
from Elsevier.

switching behavior differs. Hence, we implement the SMART algorithm with a
similar function signature as (8.3) with

1 template<class NODE>
2 template<typename FCN, typename... Args>
3 bool OccupancyOcTreeLeveledBase <NODE>::rayTraverseLeveled(

const point3d& origin, const point3d& end, const FCN&
filter, Args && ... args);

. (8.9)

The points origin and end define the starting and endpoint of the ray. The filter
must be a function with arguments identical to the filter function from (8.4), i.e.

1 RayTraverseAction filter(NODE* node, const OcTreeKey& key,
unsigned int depth, Args && ... args); . (8.10)

The parameter pack args is solely passed through to this filter function using
perfect forwarding, identical to (8.5). These optional arguments can again be used
to obtain additional output using call by reference. Unlike the filter function (8.4),
this new one not only returns a boolean that defines the branching behavior. Two

70

8.3. LEVELED OCTREE

additional return states are possible, which completely terminate the ray traversal
and indicate success or failure. All possible values for RayTraverseAction are
given in table 8.2. The rayTraverseLeveled function (8.9) returns true if the node

Table 8.2: Possible states of the RayTraverseAction type.

RayTraverseAction description

STOP_FAIL terminate recursion with failure
STOP_SUCCESS terminate recursion with success
EXIT_BRANCH continue ray iteration (next branch)
CONTINUE_BRANCH continue depth iteration

corresponding to the endpoint at level 16 is reached during iteration, or if the filter
function returns RayTraverseAction::STOP_SUCCESS. Otherwise, false is returned.
Starting from the root node, all relevant keys are iterated exactly once, together
with their respective node pointers. Then, in contrast to the DDA algorithm, no
key-node lookups are required. Together with the recursive, templated formulation,
this results in major performance benefits.

Ray Casting

The rayTraverseLeveled function (8.9) allows for arbitrary operations on nodes
along a ray, which are defined by a filter function (8.10). We will now return to
the initial problem of determining voxel visibility of voxel centers inside a camera
frustum. The solution to this problem is as simple as defining a suitable filter and
is given in algorithm (8.4). A substantial speedup compared to the DDA approach
can be achieved, since the majority of the voxel map consists of empty space. If this
space is pruned, the ray can be iterated at much higher octree levels. Note that if
a voxel is classified as free, its children must not be occupied. They can only be
unknown or free as well.

Algorithm 8.4: Code of the isPointVisibleLeveled function. It determines if a point
is occluded or visible for a given camera pose.

1 template<class NODE>
2 bool OccupancyOcTreeLeveledBase <NODE>::isPointVisibleLeveled
3 (const octomap::point3d& camera_center, const octomap::point3d& point) const {
4
5 auto filter = [this](const NODE* node, const octomap::OcTreeKey& key, unsigned

int depth) {
6 if (!node) {
7 return RayTraverseAction::STOP_FAIL; // unknown -> exit
8 } else if (!this->isNodeOccupied(node) &&
9 !this->nodeHasChildren(node)) {

10 return RayTraverseAction::EXIT_BRANCH; // free -> end branch
11 } else if (depth < 16) {
12 return RayTraverseAction::CONTINUE_BRANCH; // occupied -> continue branch
13 } else {
14 return RayTraverseAction::STOP_FAIL; // occupied -> exit
15 }
16 };
17
18 return this->rayTraverseLeveled(camera_center, point, filter);
19 }

71

CHAPTER 8. IMPLEMENTATION DETAILS

8.3.3 Inserting Measurements
As previously stated in section 7, the NBV planning can easily be integrated into
an autonomous exploration framework. In this case, an additional sensor is re-
quired which estimates an occupancy map in the same octree that stores the quality
estimate. The map is updated with each depth measurement ray to reflect the corre-
sponding occupancy changes (see section 4). Here, we encounter a similar problem
as in the previous section. While a dense discretization of the surface geometry
(i.e. low voxel size at level 16) is desirable, this is also detrimental to the task of
autonomous navigation. All voxels traversed by the measurement ray require an up-
date, which is computationally expensive for small voxel sizes. On the other hand,
those small voxel sizes are not necessary for the task of autonomous navigation,
where the map resolution is usually much lower. Hence, we allow measurement
updates on higher octree levels. This means, while the endpoints are still updated
as occupied at tree level 16, only voxels traversed on a higher level (e.g. 14) are
updated as free. We refer to the tree level on which autonomous navigation takes
place as the navigation layer. Note that the node on the navigation layer containing
the endpoint requires special attention, since it would otherwise be updated as free
(navigation layer) and occupied (level 16). Here, the tree is simply only updated on
level 16 for free nodes as well, which we will refer to as filler nodes. The basic idea
of this leveled measurement insertion is illustrated in figure 8.4.

Figure 8.4: Relevant voxels for depth measurement ray insertion. The blue line represents
a measurement ray. Gray cells correspond to voxels traversed by the ray that are
updated as free space at the navigation layer. Blue cells represent filler voxels that
are also updated as free, but this time at tree level 16. The red cell corresponds to
the ray endpoint and is updated as occupied.

In the OctoMap library, the insertion of measurement rays on level 16 is real-
ized inside the OccupancyOcTreeBase<NODE>::insertPointCloud function. The
pseudo code for our new leveled implementation of insertPointCloud is given in
algorithm 8.5. The individual components of this pseudo code are explained below:

• free_depth, occ_depth
Tree depth of free voxel updates (navigation layer) and occupied voxel updates
(level 16).

• discretize_scan
Flag, indicating if the scan (i.e. a collection of depth measurements, corre-

72

8.3. LEVELED OCTREE

sponding to measurement rays) should be preprocessed. In the case of a high
resolution scan, this can lead to a massive increase in runtime performance.

• discretize(scan, depth)
Function that discretizes a scan. All voxels at tree level depth that contain
a point are collected. Their centers are returned as a new scan. This way the
number of scan points can significantly be reduced.

• computeKeysFree(scan, sensor_origin, free_depth)
This function computes all OctoMap voxel keys on the navigation layer that
are traversed by any measurement ray from the sensor_origin to endpoints
given by scan. For that purpose, each ray is traversed individually using the
DDA algorithm (see section 8.3.2). Keys corresponding to each traversed voxel
are collected in an unordered_set. This method can easily be parallelized for
all individual rays.

• computeKeysFiller(scan, sensor_origin)
This function is similar to computeKeysFree. Only voxels on the navigation
layer that contain an endpoint are considered and used as bounding boxes.
Voxels on a measurement ray inside these bounding boxes at level 16 are
added to the unordered_set of filler voxels.

• computeKeysOccupied(scan)
All keys at tree level 16 that contain a scan endpoint are collected and returned
as unordered_set.

• cleanFiller(keys_filler, keys_occ)
This function makes the sets keys_filler and keys_occ disjoint. In order to
counteract cancellation errors (i.e. updating voxels as free, despite them also
being measured as occupied), keys corresponding to occupied updates get a
higher priority. Hence, keys that are present in both sets are removed from
keys_filler.

• cleanFree(keys_free, keys_occ)
For the same reasoning as for the previous function, the set of free keys
keys_free is modified. If a parent node of any voxel corresponding to a
key in keys_occ is present in keys_free, it is removed from that set.

• updateNode(key, type, depth)
This function applies the occupancy update to a node that corresponds to the
key value at a given depth. The type can either be OCCUPIED or FREE. The
update is a simple addition to the log-odds value that is stored inside each
node (see equation (4.5)). As for the OcTree class implemented in OctoMap,
this occupancy value is propagated to all parents as the maximum of their
children. If the node corresponding to the key does not exist, it is created at
the specified depth first.
On the other hand, if this node has children, then a different update is ap-
plied. This is only the case for FREE updates (e.g. at navigation layer), since
OCCUPIED updates only happen at tree level 16. If such a node has children,
then it has especially not been pruned. Then child nodes exist that are classi-
fied as occupied or correspond to unknown space. Instead of updating the node

73

CHAPTER 8. IMPLEMENTATION DETAILS

itself, all child nodes are then updated with a damped log-odds value. This
further counteract erasure errors. For example, if the parent node contains
occupied children that were only classified from previous scans but have not
been observed in the current scan, then it should be more difficult to change
that classification to free.

Ultimately, we introduced an algorithm that allows for efficient autonomous nav-
igation in an occupancy map, while maintaining a high detailed representation of
surface geometries.

Algorithm 8.5: Pseudo-code of the insertPointCloud function. A more detailed de-
scription of all components is given in the text.

1 function insertPointCloud(scan, sensor_origin)
2
3 if (discretize_scan)
4 scan_discrete ← discretize(scan, free_depth)
5 keys_free ← computeKeysFree(scan_discrete, sensor_origin)
6
7 scan_discrete ← discretize(scan, occupied_depth)
8 keys_filler ← computeKeysFiller(scan_discrete, sensor_origin)
9 keys_occ ← computeKeysOccupied(scan_discrete)
10 else
11 keys_free ← computeKeysFree(scan, sensor_origin)
12 keys_filler ← computeKeysFiller(scan, sensor_origin)
13 keys_occ ← computeKeysOccupied(scan)
14 end if
15
16 // remove filler keys that are occupied keys
17 keys_filler ← cleanFiller(keys_filler, keys_occ)
18 // remove free keys that are parents of occupied keys
19 keys_free ← cleanFree(keys_free, keys_occ)
20
21 // insert data into tree
22 for (key in keys_free)
23 updateNode(key, FREE, free_depth);
24 end for
25 for (key in keys_filler)
26 updateNode(key, FREE, occupied_depth);
27 end for
28 for (key in keys_occ)
29 updateNode(key, OCCUPIED, occupied_depth);
30 end for
31
32 end function

8.4 Parallelization

The functions isPointVisibleLeveled (algorithm 8.4) and getVoxelFOV (algo-
rithm 8.2) are used in combination to compute the set p ∈ FOV (see equation (7.1),
algorithms 7.1 and 7.2). The reader may have realized that the check for voxel
visibility isPointVisibleLeveled could also have been realized in the filter func-
tion of getVoxelFOV to directly discard obstructed voxel centers. This way some
additional conversion between key, node and center point representations of voxels
could be omitted. However, by keeping both algorithms separate, the ray casting
from isPointVisibleLeveled can easily be parallelized over each key inside the
frustum. In our simulations in chapter 10, we use 4 threads for this purpose, as it

74

8.4. PARALLELIZATION

resulted in the best average runtime using an I7-4790k processor. Similarly, the loop
computing the L RRT samples (see algorithm 7.2) is parallelized on 4 threads.

Taking into account all implementation and parallelization details, the calls to
getVoxelFOV still accumulate to an average of 7.3% of the total runtime of the SfM-
CPP algorithm 7.1, while calls to isPointVisibleLeveled account for 83.9% of the
total runtime. We believe that this can be significantly improved in the future by
using a GPU acceleration, as it is predestined for ray casting tasks. Libraries such
as GPU-Voxels [Hermann et al., 2014] can then be utilized to maintain the octree
structure inside the GPU memory.

75

CHAPTER 8. IMPLEMENTATION DETAILS

76

9Simulation and Evaluation Setup

In this chapter, we describe the simulation setup and evaluation pipeline required
for chapter 10, where the SfM-NBV algorithm 7.1 is analyzed. We use a voxel
discretization (section 7.1.3) as model representation, with implementation details
given in section 8. The focus of our analysis lies on the comparison of the estimate
of the expected SfM reconstruction quality with the actual reconstruction error and
its application in the gain formulation of the NBV planning (7.3a). For that pur-
pose, we ignore the path cost term (7.3b) and allow for arbitrary long trajectory
segments between consecutive views. Then the objective function of the OED prob-
lem 7.3 is only depending on the final pose of this path segment and especially
independent of the traversed trajectory. Now, only the RRT sampling from algo-
rithm 7.2 depends on the differential constraints (7.3c) and (7.3d). RRT based
path planning is already a very well studied topic, both for direct pose control (e.g.
[Karaman and Frazzoli, 2011], [Cover et al., 2013]), as well as in combination with
kinodynamic constraints (e.g. [Kuwata et al., 2009], [Webb and van den Berg, 2013]).
Hence, it is easy to include robot specific RRT algorithms into our SfM-NBV ap-
proach. Since those differential constraints only further constrain the admissible
space SO(3) × R3 for the NBV selection, it is sufficient for our analysis to directly
control position and orientation of a camera with a simple RRT using piecewise
linear path segments between consecutive views.

For our purpose, a simulation environment has several advantages over a real-
world example. Exact reference data can be used as ground truth, i.e. the model
obtained from a SfM reconstruction using the simulated images can be compared
to an exact reference mesh. Furthermore, additional photogrammetric effects that
otherwise contribute to the reconstruction error and distort the analysis can be mit-
igated. This is discussed along with the simulation setup in section 9.1. Afterward,
an overview over our analytic methods is given in section 9.2. The simulation results
for four distinct scenarios are presented in chapter 10, each highlighting a different
aspect of the SfM-NBV planning.

9.1 Simulation Setup

A schematic overview over the full simulation setup is given in figure 9.1. We are
using the simulation environment Gazebo [Koenig and Howard, 2004] to simulate a
robot that is able to take images of a scenery. Our SfM-CPP algorithm communi-
cates with Gazebo using the Robot Operating System (ROS) [Quigley et al., 2009]
as interface. We send control commands to the simulation and receive images
through a ROS topic.

77

CHAPTER 9. SIMULATION AND EVALUATION SETUP

urdfsensor

robot	description

model.sdf

3D	model

model.conf

reference	model	(mesh)

Gazeo	simulation
environment

default.world

world	description octree	discretization

binvox

control
ROS
interface NBV	planning

sensor	data

Input

Simulation

model.dae robot.xacro

Figure 9.1: Schematic illustration of the different components in the simulation setup.

The world description file 9.2 contains general settings for the simulated environ-
ment. In order to eliminate SfM reconstruction effects caused by poor illumination,
shadows are disabled and the ambient color is set to white. Due to the absence
of lights in the scene, all textures now only render with their ambient color. This
means that especially diffuse, specular, and emissive effects of the Blinn-Phong shad-
ing model [Blinn, 1977] are not visible and thus will have no effect on the images
recorded in the simulation. By picking a monochrome background color (e.g. white),
we prevent it from interfering with the SfM pipeline.

The 3D mesh of a structure is used as a reference model in the simulation. The
necessary files required to import a COLLADA (.dae) model in Gazebo are given
in files 9.1 and 9.3. Note that in order for the texture to be rendered properly,
all material’s ambient colors need to be set to <color>1 1 1 1</color> in the
COLLADA file. Then all textures are rendered exactly with the colors specified
in the texture files inside the simulation. The same 3D model is rasterized into a
binary 3D voxel grid using the open source tool binvox ([Nooruddin and Turk, 2003]
[Min, 2019]). This voxel representation is used as surface discretization, where all
voxel centers of occupied nodes correspond to control points (see section 7.1.3). Here
it is important to ensure that both, the reference mesh and its voxel representation,
are properly aligned, i.e. scale, position and orientation must match.

The robot description is provided as an XML Macros (xacro) [Glaser et al., 2009]
file. A minimal example of a free-floating camera is given in file 9.4. The xacro
file is later expanded into the unified robot description (URDF) format. The
<gazebo>...</gazebo> tag is an extension to the URDF format, used to pass
additional information to gazebo. In this example, we specify a camera sensor
with an image resolution of 800 × 800 and horizontal field of view of 80◦ (≈ 1.396
radians) that is to be simulated. All camera intrinsic parameters as well as lens
distortion parameters and image noise can be specified. Their exact values can
also be passed to the SfM reconstruction tool to avoid parameter estimation er-
rors. For our use case, we chose to disable all distortion and noise. The observed
scenery is published as a video stream at 30 frames per second through the ROS
topic /robot/camera/image_raw. In order to capture an image, we simply extract
a single frame from this video stream. The utilized image format must be lossless,
as compression artifacts also have effects on the SfM reconstruction (see figure 9.2).
Hence, we store all of our captured images in the tagged image file format (tiff).

78

9.1. SIMULATION SETUP

File 9.1: Minimal model.config file.
1 <?xml version="1.0"?>
2
3 <model>
4 <name>model name</name>
5 <version>1.0</version>
6 <sdf version="1.5">model.sdf</sdf>
7
8 <author>
9 <name>author name</name>

10 <email>author email</email>
11 </author>
12
13 <description>
14 description
15 </description>
16 </model>

File 9.2: Minimal default.world file.
1 <?xml version="1.0" ?>
2 <sdf version="1.5">
3 <world name="default">
4 <scene>
5 <ambient>
6 1.0 1.0 1.0 1.0
7 </ambient>
8 <background>
9 1.0 1.0 1.0 1.0

10 </background>
11 <shadows>0</shadows>
12 </scene>
13 </world>
14 </sdf>

File 9.3: Minimal model.sdf file.
1 <?xml version="1.0"?>
2 <sdf version="1.5">
3 <model name="model name">
4 <pose>0 0 0 0 0 0</pose>
5 <static>true</static>
6 <link name="link">
7 <collision name="collision">
8 <geometry>
9 <mesh>
10 <uri>model://model.dae</uri>
11 </mesh>
12 </geometry>
13 </collision>
14 <visual name="visual">
15 <geometry>
16 <mesh>
17 <uri>model://model.dae</uri>
18 </mesh>
19 </geometry>
20 </visual>
21 </link>
22 </model>
23 </sdf>

In file 9.5, we specify a minimal ROS launch file that starts the Gazebo server and
client, loads the robot into the robot_description ROS parameter, and spawns it
in the simulation. While the robot is directly spawned using the launch file, the
3D ground-truth model is imported into the simulation with a ROS service call
to /gazebo/spawn_sdf_model using a gazebo_msgs::SpawnModel message. The
robot can be controlled using one of the ROS services provided by gazebo, e.g.
/gazebo/set_link_state and /gazebo/set_model_state, or by publishing mes-
sages to the eponymous topics.

79

CHAPTER 9. SIMULATION AND EVALUATION SETUP

File 9.4: Minimal robot.xacro file. The robot consist of a single box to which a simulated
camera is attached.

1 <?xml version="1.0"?>
2 <robot name="robot" xmlns:xacro="http://www.ros.org/wiki/xacro">
3
4 <!-- robot geometry -->
5 <link name="camera_link">
6 <inertial>
7 <mass value="1.0" />
8 <inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1" />
9 </inertial>
10 <visual>
11 <geometry>
12 <box size="0.1 0.05 0.05"/>
13 </geometry>
14 <material name="orange">
15 <color rgba="1.0 0.5 0.0 1"/>
16 </material>
17 </visual>
18 <collision>
19 <geometry>
20 <box size="0.1 0.05 0.05"/>
21 </geometry>
22 </collision>
23 </link>
24
25 <!-- gazebo specific settings -->
26 <gazebo reference="camera_link">
27 <turnGravityOff>true</turnGravityOff>
28 <material>Gazebo/Orange</material>
29 <!-- camera simulation -->
30 <sensor type="camera" name="camera1">
31 <update_rate>30.0</update_rate>
32 <camera name="head">
33 <horizontal_fov>1.3962634</horizontal_fov>
34 
39 <clip>
40 <near>0.02</near>
41 <far>300</far>
42 </clip>
43 </camera>
44 <plugin name="camera_controller" filename="libgazebo_ros_camera.so">
45 <alwaysOn>true</alwaysOn>
46 <updateRate>0.0</updateRate>
47 <cameraName>robot/camera</cameraName>
48 <imageTopicName>image_raw</imageTopicName>
49 <cameraInfoTopicName>camera_info</cameraInfoTopicName>
50 <frameName>camera_link</frameName>
51 <hackBaseline>0.0</hackBaseline>
52 <distortionK1>0.0</distortionK1>
53 <distortionK2>0.0</distortionK2>
54 <distortionK3>0.0</distortionK3>
55 <distortionT1>0.0</distortionT1>
56 <distortionT2>0.0</distortionT2>
57 </plugin>
58 </sensor>
59 </gazebo>
60
61 </robot>

80

9.1. SIMULATION SETUP

Figure 9.2: Effect of jpg compression artifacts on an SfM reconstruction using the ex-
ample of the King’s Hall of Lorsch Abbey (UNESCO World Heritage Site). Left:
Example image of a set of pictures used for the SfM reconstruction. For visualization
purposes, the color [255, 255, 255] has been replaced with green, such that compres-
sion artifacts become visible at the model outline. Right: SfM reconstruction from the
jpg images. The background color is chosen as green. Notice the white noise around
the model.

File 9.5: Minimal ROS launch file. The robot description is passed to ROS. Afterward,
the gazebo simulation is started, wherein the robot is spawned.

1 <launch>
2
3 <!-- start gazebo server-->
4 <node name="gazebo" pkg="gazebo_ros" type="gzserver" respawn="false" output="screen

" required="true" args="default.world" />
5
6 <!-- start gazebo client -->
7 <node name="gazebo_gui" pkg="gazebo_ros" type="gzclient" respawn="false" output="

screen" />
8
9 <!-- Load XACRO -->

10 <param name="robot_description" command="$(find xacro)/xacro --inorder 'robot.xacro
'" />

11
12 <!-- Run a script to send a service call to gazebo_ros to spawn a URDF robot -->
13 <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false"

output="screen" args="-urdf -model robot -x 0 -y 0 -z 1 -param
robot_description"/>

14
15 </launch>

81

CHAPTER 9. SIMULATION AND EVALUATION SETUP

9.2 Evaluation Pipeline
In this section, we describe how the simulations are evaluated. New terminology is
introduced that will be important for the evaluation of the results in chapter 10.

Using the simulation setup from the previous section, the SfM-CPP algorithm
(algorithm 7.1) is executed with a given reference mesh. Subsequently, a SfM re-
construction is calculated from the resulting set of images using Agisoft Photoscan
[Agisoft, 2017], which is to be compared with the reference mesh. Instead of the
resulting textured SfM mesh, we directly use the dense SfM point cloud (see section
2) for this comparison. The reasoning behind this is that the dense cloud can be
interpreted as the raw reconstruction data, since each point corresponds to multiple
depth hypotheses of pixels in the recorded images. A subsequent SfM meshing step
would distort our analysis, as a surface mesh is fit to the point cloud data, which
heavily depends on the utilized surface reconstruction method. Due to interpolation,
there could then be segments of the mesh that belong to areas where no data has
been recorded. The fit would also further alter and smooth the reconstruction er-
ror (see [Berger et al., 2013]) and especially remove most of the outliers completely.
Furthermore, working with discrete SfM points simplifies the analysis, since these
can be associated with a reconstruction error, and an estimate of their expected
reconstruction quality, as we will see later in this section.

9.2.1 SfM Reconstruction
We import the camera poses associated to all images obtained from the Gazebo sim-
ulation in Photoscan, which are used as initial guess for the camera pose estimation.
This way the SfM reconstruction will have the same scale and orientation as the
reference mesh and comparisons become easier. In order to eliminate reconstruc-
tion errors caused by parameter estimation, the camera intrinsics are provided and
fixed13. This is achieved through Tools → Camera Calibration..., where we set
the type to Precalibrated and check Fix calibration in the Initial tab. Then
the camera alignment step is performed, followed by the point cloud densification.
The parameters used in the SfM reconstruction workflow are given in table 9.1.

9.2.2 Analysis Procedure
We now want to evaluate how well our estimate of the expected reconstruction error
reflects the actual reconstruction error. To achieve this, we first assume that a SfM
point represents the reconstruction of a point on the reference mesh that has the
smallest distance to the SfM point. These points are denoted as reference points.
Using the mesh surface normals, we can define the signed distance to the mesh,
which is called the signed reconstruction error. Note that the absolute value of the
signed reconstruction error corresponds to the distance between reference point and
SfM point. For the calculation of both signed reconstruction errors and reference
points, a custom plugin for the point cloud and triangular mesh processing software
CloudCompare [CloudCompare, 2019] has been developed. There the parallelized
function computeCloud2MeshDistance is used to compute all reference points and

13These correspond to the sensor settings specified in file 9.4.

82

9.2. EVALUATION PIPELINE

Table 9.1: Agisoft Photoscan paramters used in
the SfM reconstruction workflow.

Name Value

Align Photos
Accuracy Highest
Generic preselection enabled
Reference preselection enabled
Key point limit 40, 000
Tie point limit 4, 000
Adaptive camera model fitting disabled

Build Dense Cloud
Quality Ultra high
Depth filtering Aggressive

their associated signed reconstruction errors. It utilizes an octree segmentation to
drastically reduce the number of mesh triangles considered for this calculation.

Since we are using a voxel discretization of the surface manifold, each reference
point lies inside a voxel classified as occupied. The voxel centers are used as control
points that provide local estimates of the expected reconstruction errors (see section
7.1.3). Therefore, all SfM points and their corresponding reference points can be
associated to their closest control point. Note that some occupied voxels may not be
observable due to occlusion (see figure 9.3). Hence, in order to analyze the quality of
the local estimates, we do not consider voxels that are not observed in the SfM-NBV
simulation. These are identified as voxels with control point precision matrix zero.

voxel not observable

surface mesh

SfM dense cloud
reference points
control points

reconstruction error

Figure 9.3: Different point types used in the SfM-NBV analysis procedure in 2D.

Finally, the estimates on the expected reconstruction quality of the control points
need to be compared to all associated reconstruction errors of the SfM points. The
former is given in the form of a precision matrix whose confidence ellipsoid can be
used to compare both quantities. While the choice of the reference points can be
a good approximation to the real ones that actually correspond to the SfM points,
the direction of the reconstruction error can be arbitrary for small distortions of the
reference points. Therefore, it does not make sense to directly test whether SfM

83

CHAPTER 9. SIMULATION AND EVALUATION SETUP

points are contained inside the confidence ellipsoid centered at their reference point.
Especially in the case of narrow confidence ellipsoids this may lead to distorted
results. This is also the case if the reference point is far away from the control point,
i.e. close to voxel corners. For that reason, we test instead whether the signed
reconstruction error is within a confidence interval defined by the largest confidence
ellipsoid half-axis. This interval is given by

[−cqe,+cqe], with cqe =
√

Q1(0.99) · 1/λmin[Σ−1], (9.1)

where Σ−1 denotes the beforehand mentioned precision matrix andQ1 is as in section
3.1. We have chosen a 99% confidence interval here, but the exact percentage is of
less importance, which is explained in the next paragraph. The value cqe is called
quality estimate and can be interpreted as an approximation of the magnitude of
the expected reconstruction error.

The size of the quality estimate still depends on the parameters npix and pconf (see
equation (6.2.2)), which represents our assumption on the pixel plane error. Note
that these and the confidence percentage in (9.1) only act as a scaling factor to the
quality estimate. Hence, we fix pconf to 95% and determine a suitable value for npix
in simulation in section 10.1, such that the quality estimate adequately represents
the magnitude of the real reconstruction error. More specifically, the parameter
must be large enough, that most of the reconstruction errors of SfM points are
within their associated intervals defined in (9.1). On the other hand, we want it to
be sufficiently small such that the quality estimate still gives a good approximation
to the real reconstruction error. However, these parameters have no influence on
the NBV selection. In fact, if λmin and λmax are chosen as in (6.45), the clamped
gain formulation (6.44) is independent of npix, pconf , and even the camera intrinsic
parameters, since they cancel out in the fraction. In real world applications, the
quality estimate provides the user with an estimate of the expected reconstruction
error.

Altogether, each SfM point is associated with a reference point, a signed re-
construction error, a control point, and consequently a quality estimate. Since the
signed reconstruction error and the quality estimate are one-dimensional quantities,
they can conveniently be visualized by colors in 3D, either on the surface of the
reference mesh or as voxel in the voxel discretization. We will analyze and visualize
the following quantities:

• Signed reconstruction error
Consider the untextured, monochrome reference mesh with a simple shading
model. The SfM point cloud is projected onto this mesh and each point is
colored according to its associated signed reconstruction error. This visualiza-
tion especially gives insight over regions with high reconstruction errors. Also,
areas that could not be reconstructed can be identified as the mesh is visible
there. A histogram containing the overall reconstruction error distribution
is provided. Note that this only allows us to evaluate the quality of a SfM
reconstruction and no conclusions can be drawn about the quality estimate.

• Voxel quality estimate
The voxel discretization is visualized by rendering all occupied cells. Each
of these cubes is colored according to the quality estimate of the associated
control points. The result is compared to the 3D visualization of the signed

84

9.2. EVALUATION PIPELINE

reconstruction error visually. We can check if areas with high or low quality
estimates match the actual reconstruction error. Also, their overall coverage
of the reference mesh can be compared. A histogram over all control points’
quality estimates is provided. The magnitude of these expected reconstruction
errors can be compared with the histogram of the signed reconstruction error.

• Point quality estimate
Both previous visualizations only consider either the quality estimate or the
signed reconstruction error. Each point of the SfM point cloud is assigned
their associated quality estimate from their closest control point. We then
divide a histogram over the quality estimates of all points into a set where
the estimate holds (i.e. the absolute reconstruction error is smaller than the
quality estimate) and another one where the estimate fails. The percentage of
SfM points that satisfy the quality estimate is called acceptance rate. This his-
togram gives insight into the acceptance rate for different orders of magnitude
of the quality estimate.

• Distance to quality estimate
The visualization method from the previous section provides a statement over
the correctness of the quality estimates. Here, we are highlighting the distance
between reconstruction error and quality estimate, i.e.

|(reconstruction error)| − (quality estimate). (9.2)

Note that in (9.2) a negative value means that the quality estimate holds, while
a positive value indicates that it fails. Again, a corresponding histogram gives
insight over the distribution of the distance to the quality estimate. Ideally,
the percentage of points not meeting the quality estimate is reasonably small,
while being close to zero for most other points. SfM points violating the quality
estimate are projected onto the shaded, untextured, monochrome reference
mesh and colored according to the size of the violation. This gives insight
over the spatial position of these points.

85

CHAPTER 9. SIMULATION AND EVALUATION SETUP

86

10Results

We will now present four different simulations using the simulation setup and evalua-
tion pipeline of chapter 9. Each experiment consists of a unique reference mesh with
high-resolution textures. Their respective reference meshes have varying geometric
and topological properties. All the simulations highlight and analyze a different
aspect of the SfM-CPP algorithm.

• Lorsch Abbey King’s Hall
Analysis is performed for two extreme camera resolutions (very high / very
low). The main purpose here is to compare the behavior and performance
of the SfM-CPP algorithm for these extreme resolution cases and to find a
suitable value for the parameter npix.

• Holbeach Cemetery Chapel
In the second simulation example the focus lies on the evolution of the SfM re-
construction and the corresponding quality estimates with increasing number
of recorded images.

• Tyche Sculpture
For the Tyche sculpture, the effect of the discretization error is analyzed. This
is achieved by executing the SfM-CPP algorithm multiple times for varying
discretization resolutions (i.e. voxel sizes of the voxel discretization).

• Roman Temple of Evora
This simulation is designed such that all observability properties of the whole
reference mesh are predeterminable. The focus lies on the comparison of the
expected coverage with the SfM reconstruction obtained from the set of images
of an exhaustive SfM-CPP run.

The different camera parameters used in the simulations are given in table 10.1.

Table 10.1: Parameters for all three cameras used in the simulations.

identifier resolution horizontal FOV focal length (pixel)

CAM_LR 640× 480 80◦ 381.362
CAM_MR 2240× 1680 80◦ 1334.769
CAM_HR 5456× 3632 80◦ 3251.115

87

CHAPTER 10. RESULTS

10.1 Lorsch Abbey King’s Hall
Here we consider the extreme camera configurations CAM_LR and CAM_HR and their
effects on the comparison of quality estimate and reconstruction obtained by the
SfM-CPP algorithm. Furthermore, a suitable value for the image plane pixel error
assumption npix (with a confidence percentage of 95%, see section 6.2.2) is deter-
mined, which will be used for all remaining simulations.

Model
A 3D model of the King’s Hall of Lorsch Abbey is used as a reference mesh. The
structure was build in the early 9th century A.D. and is the only remaining building
of Lorsch Abbey. In 1991 the monastery was listed as UNESCO World Heritage
Site. The 3D model was kindly provided by Christian Seitz, head of the ArchEye
Automatics project [Seitz and Altenbach, 2011], [Seitz, 2012]. It was originally cre-
ated from a set of several thousand ground- and drone-acquired photos using SfM,
where access to the structure was kindly granted by the director of the world her-
itage site Lorsch monastery. Figure 1.1 shows the corresponding camera positions
of the drone. The resulting mesh consists of 15 million faces and 7 million vertices.
It was reduced to a size of 500 000 faces and 250 508 vertices using quadric edge
collapse decimation (e.g. [Shaffer and Garland, 2001]) to increase the simulation
performance. The high resolution texture was not modified, but re-mapped to the
reduced mesh. Furthermore, the model was scaled to a size of 12.92m × 9.12m ×
13.50m (width × depth × height). Since the real dimensions where unknown to us,
these values may not reflect the actual size of the King’s Hall. However, having vis-
ited the site ourselves, we believe this is a reasonable scaling. The mesh is oriented
such that it stands on the xy plane at z = 0. The reference mesh is visualized in
figure 10.1.

SfM-CPP Algorithm
For each RRT Sample in the getNextSegment subroutine (see algorithm 7.2) we
demand a minimum distance to the mesh of 1m, a maximum distance of 5m, a
minimum altitude of 1m, and a collision-free path from the last pose. In total,
we create 8000 valid RRT samples that satisfy those conditions. More precisely,
1000 valid positions, each sampled 8 times with their yaw angle are considered.
Pitch and roll angles of the camera are fixed to 0◦. The required minimal image
overlap omin is set to 20%. The utilized clamping parameters are given in table
10.2. We run the SfM-CPP algorithm for 300 iterations using a voxel discretization
with voxel resolution of 5 cm. As previously mentioned, the choice of the parameter
npix does not affect the NBV selection. Therefore, the simulations are only run
once for each CAM_LR and CAM_HR. The quality estimates are adapted afterwards
to reflect the respective choices of npix. The resulting camera poses are visualized
in figure 10.2. We measured an average runtime of L · 3.75ms for each evaluation
of the getNextSegment subroutine and 3.36ms for the precision matrix updates
(see algorithm 7.1) on an I7-4790k. Note that both of these measurements were
dominated by visibility checks, i.e. computations of FOV[ξn+1]. These took on
average 3.30ms to identify several thousand voxels, that are visible inside the viewing

88

10.1. LORSCH ABBEY KING’S HALL

Figure 10.1: King’s hall of Lorsch Abbey (UNESCO World Heritage Site) reference
mesh.

Source: [Lindner et al., 2019] ©2019 IEEE.

frustum.
Different cameras (without axis skew) scale the estimate on the expected recon-

struction quality (precision matrix) by their focal lengths (see section 6.2.2). Since
the clamped gain term (6.44) is a relative quantity, this scaling does not affect the
gain computations. Furthermore, by choosing the clamping parameters as proposed
in (6.45), this scaling does not affect the NBV selection and the objective function
value (7.3a) remains the same. This effect is observed in figure 10.3, where gain
terms for both CAM_LR and CAM_HR are almost identical.

Evaluation
The estimated reconstruction quality is given in figures 10.4 and 10.5. These esti-
mates can be compared to the measured signed reconstruction errors in figures 10.6
and 10.7. There, the magnitude of the signed reconstruction error is similar to the
magnitude of the quality estimate. While the quality estimate is higher than the
reconstruction error in most areas, especially some edges and geometric details such
as the stucco on the windows seem to violate the quality estimate. As previously
stated in section 7.1, this behavior is caused by the observability error. This be-
comes most apparent on the edge of the roof (left), where the quality estimate is
much lower than the reconstruction error. Images that capture the edge from both

89

CHAPTER 10. RESULTS

Table 10.2: Clamping parameters (see section 6.3.2).

Parameter Value (CAM_LR) Value (CAM_HR)

dmin 4m 4m

λmin n2
pix · 2.864× 10−5 n2

pix · 3.941× 10−7

corresponding 99%
confidence interval

± npix · 1.38 cm ± npix · 0.16 cm

dmax 100m 100m

λmax n2
pix · 1.790× 10−2 n2

pix · 2.463× 10−4

corresponding 99%
confidence interval

± npix · 34.46 cm ± npix · 4.04 cm

Figure 10.2: Camera positions after 300 SfM-CPP iterations using the high-resolution
camera CAM_HR. Left: front view, right: top view.

sides are assumed to contribute to the quality estimate of the control point, while
in reality only one side neighboring this edge is visible in these pictures.

More information on points that do not satisfy the quality estimate are given
in figures 10.8 and 10.9, visualizing the distance to the quality estimate. Here our
earlier assumption is confirmed. In most cases, only edges and areas with higher
geometric fidelity do not satisfy the quality estimate. These areas may not be
sufficiently approximated by the voxel discretization and are therefore subject to
discretization and observability errors. This also applies to the CAM_HR visualization,
however, due to the much larger point cloud size, noise distorts the visualization.
There the point density is much higher in areas that are also highlighted in the
CAM_LR case. Note that the shapes of both histograms look similar for all values of
npix, especially for points violating the quality estimate. Overall, a good value for
npix is given by 3. Then only a small fraction of points do not satisfy the quality
estimate, while it is still a good guess for the reconstruction error, i.e. the distance
to the quality estimate does not become too negative. In real world applications
other values may be chosen. Smaller values for npix provide a better approximation
of the reconstruction error (i.e. peaks in the histograms of figures 10.8 and 10.9
are closer to zero) at the expense of estimator confidence (i.e. more points do not

90

10.1. LORSCH ABBEY KING’S HALL

10
0

10
1

10
2

image number

10
-2

10
0

10
2

10
4

10
6

to
ta

l
g

ai
n

CAM_LR

CAM_HR

50 100 150 200 250 300

image number

0

1

2

3

4

5

6

re
la

ti
v
e

g
ai

n

CAM_LR

CAM_HR

Figure 10.3: Gain objective function term (7.3a) for each selected NBV. Left: Loga-
rithmic plot. Right: Relative gain, i.e. normalized by the number of all voxels that
contribute to the gain with a term greater than zero.

satisfy the estimate). A value of npix = 3 proved to be a good balance between
both properties and especially does not clutter the renderings of the distance to the
quality estimate, highlighting the worst offenders.

Similar statements also result from the acceptance rate plots from figure 10.10
and 10.11, which focus on the relative amount of points that do not satisfy the quality
estimate. Areas where the best quality is expected contain the largest amount of
estimate violations. While the shape of the area where the estimate does not hold
changes significantly for npix ≤ 3, it remains almost identical for npix ≥ 3. This
statement is further substantiated by the total acceptance rate given in table 10.3.

Despite the huge difference in focal length and resolution between cameras
CAM_LR and CAM_HR, all related plots look similar. This is particularly true for the
provided histograms, which exhibit almost identical shapes. There, the axes cor-
responding to quality estimate and point count only differ by a constant common
scaling factor. This shows that our algorithm performs similar for various camera
settings. However, this comes to no surprise. As mentioned earlier in this section,
the focal length is a linear scaling factor to the precision matrices of the expected
reconstruction quality. In consequence, it also scales the quality estimate linearly.
Hence, this factor can be calculated as the fraction between both focal lengths as
8.53. Since a similar scaling factor is observed for the signed reconstruction error
(figures 10.6 and 10.7), the correctness of our estimator is substantiated.

The desired reconstruction quality is defined by λmin (see table 10.2). The cor-
responding desired quality estimate (i.e. reconstruction error) for npix = 2 is given
as 27.6mm for CAM_LR and 3.2mm for CAM_HR. We can verify that almost all SfM
points satisfy this desired quality estimate from figures 10.6 and 10.7.

Table 10.3: Total acceptance rate of the quality estimate. The point cloud size only
contains points that could be associated with a control point.

camera point cloud size npix = 1 npix = 2 npix = 3 npix = 4 npix = 5

CAM_LR 3 040 952 73% 85% 90% 94% 95%
CAM_HR 242 286 040 76% 89% 93% 96% 97%

91

CHAPTER 10. RESULTS

quality estimate (mm)

0

5

10

15

20

25

v
o

x
el

 c
o

u
n

t

10
2

5 15 25 35

Figure 10.4: Voxels colored according to their quality estimate for the CAM_LR simulation
and npix = 2.

quality estimate (mm)

0

5

10

15

20

v
o

x
el

 c
o

u
n

t
10

2

0.5 1.5 2.5 3.5

Figure 10.5: Voxels colored according to their quality estimate for the CAM_HR simulation
and npix = 2.

signed reconstruction error (mm)

0

5

10

15

p
o

in
t

co
u

n
t

10
4

-30 -20 -10 0 10 20 30

Figure 10.6: Projection of the SfM point cloud onto the reference mesh, colored according
to the signed reconstruction error for the CAM_LR simulation.

92

10.1. LORSCH ABBEY KING’S HALL

signed reconstruction error (mm)

0

2

4

6

8

p
o
in

t
co

u
n
t

10
6

-4 -2 0 2 4

Figure 10.7: Projection of the SfM point cloud onto the reference mesh, colored according
to the signed reconstruction error for the CAM_HR simulation.

distance to quality estimate (mm)

0

5

10

15

p
o

in
t

co
u

n
t

10
4

1

2

3

4

5

n
pix

-40 -20 0 20 40

Figure 10.8: Distance to quality estimate for the CAM_LR simulation. All projected SfM
points that do not satisfy the predicted quality estimate are visualized for npix = 2.

distance to quality estimate (mm)

0

2

4

6

8

10

p
o

in
t

co
u

n
t

10
6

1

2

3

4

5

n
pix

-4 -2 0 2 4

Figure 10.9: Distance to quality estimate for the CAM_HR simulation. All projected SfM
points that do not satisfy the predicted quality estimate are visualized for npix = 2.

93

CHAPTER 10. RESULTS

5 15 25 35

quality estimate (mm)

0

2

4

6

8

10

p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(a) npix = 1

5 15 25 35

quality estimate (mm)

0

1

2

3

4

5

p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(b) npix = 2

5 15 25 35

quality estimate (mm)

0

0.5

1

1.5

2

2.5

3

p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(c) npix = 3

10 20 30 40

quality estimate (mm)

0

0.5

1

1.5

2

2.5
p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(d) npix = 4

10 20 30 40

quality estimate (mm)

0

0.5

1

1.5

2

p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(e) npix = 5

Figure 10.10: Quality estimate of SfM points divided into classes where the estimate
holds and where the estimate fails for the CAM_LR simulation.

94

10.1. LORSCH ABBEY KING’S HALL

0.5 1.5 2.5 3.5

quality estimate (mm)

0

1

2

3

4

5

6

p
o
in

t
co

u
n
t

10
6

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(a) npix = 1

0.5 1.5 2.5 3.5

quality estimate (mm)

0

0.5

1

1.5

2

2.5

3

p
o
in

t
co

u
n
t

10
6

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(b) npix = 2

0.5 1.5 2.5 3.5

quality estimate (mm)

0

0.5

1

1.5

2

p
o
in

t
co

u
n
t

10
6

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(c) npix = 3

1 2 3 4

quality estimate (mm)

0

2

4

6

8

10

12

14

p
o
in

t
co

u
n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(d) npix = 4

1 2 3 4

quality estimate (mm)

0

2

4

6

8

10

12

p
o
in

t
co

u
n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(e) npix = 5

Figure 10.11: Quality estimate of SfM points divided into classes where the estimate
holds and where the estimate fails for the CAM_HR simulation.

95

CHAPTER 10. RESULTS

10.2 Holbeach Cemetery Chapel

The Holbeach Cemetery Chapel is used to analyze the evolution of the quality esti-
mate and the corresponding SfM reconstruction with increasing number of images.

Model

The Cemetery chapel is located at Holbeach in the county of Lincolnshire in the
United Kingdom. It is a prime example of Victorian architecture and was build in
1854. A high detailed 3D reconstruction of the chapel was created by [Glauser, 2017]
in 2017 from approximately 1600 photos, which is available online and licensed under
[CC BY 4.0, 2013]. This model is used with slight modifications as reference mesh
in this simulation. We removed some faces at the base and additionally rotated and
scaled it. The version of the mesh we use has 998 267 faces and 499 365 vertices. It
is aligned with the coordinate axis and stands on the xy plane at z = 0. While this
may not represent the actual size of the chapel, it is scaled to the reasonable size
of 26.14m × 14.43m × 24.98m (width × depth × height). The reference mesh is
visualized in figure 10.12.

Figure 10.12: Holbeach Cemetery Chapel reference mesh.

96

10.2. HOLBEACH CEMETERY CHAPEL

SfM-CPP Algorithm
We geometrically constrain the cameras trajectory to have a minimum distance of
1m and a maximum distance of 5m to the mesh. The minimum altitude is 1m.
The camera is constraint to have a fixed roll angle of 0◦ and a pitch angle of 30◦. In
the getNextSegment subroutine (see algorithm 7.2), we use 8000 RRT samples, i.e.
1000 position samples that satisfy the geometric constraints, each sampled 8 times
with their yaw angle. The required minimal image overlap is set to omin = 20%. We
are using the CAM_MR camera with clamping parameters given in table 10.4. Changes
in the quality estimate and the associated SfM reconstruction and reconstruction
error are analyzed for a total of 500 images, using a voxel discretization with a
voxel resolution of 5 cm. The respective gain objective function values are given in
figure 10.14. Note that the total gain gradually decreases as more and more voxels
have been sufficiently observed, i.e. gain clamping for λmin becomes active. Then
these voxels do not contribute to the total gain anymore. Full SfM reconstructions
where built from the nIMG ∈ {10, 20, 30, 40, 50, 100, 200, 300, 400, 500} first acquired
images. Some of the resulting camera poses are visualized in figure 10.13. First, the
structure is coarsely covered, then details are observed.

Table 10.4: Clamping parameters (see section 6.3.2).

Parameter Value (CAM_MR)

npix 3

pixel error confidence 95%

dmin 2m

λmin 5.260× 10−6

corresponding 99%
confidence interval

± 0.59 cm

dmax 50m

λmax 3.288× 10−3

corresponding 99%
confidence interval

± 14.77 cm

For this simulation, we measured a runtime of L · 9.38ms for each evaluation
of the getNextSegment subroutine on an I7-4790k. This is roughly 2.5 times the
runtime measured for the King’s Hall of Lorsch Abbey. The reason behind this is the
more complex object geometry, where ray casting is more expensive and on average
much more voxels are visible in the FOV of cameras.

Evaluation
The quality estimates of all control points are visualized in figures 10.15 and 10.16.
These can be compared to the signed reconstruction errors from figures 10.17 and

97

CHAPTER 10. RESULTS

(a) nIMG = 100 (b) nIMG = 300 (c) nIMG = 500

Figure 10.13: Camera positions after 100, 300 and 500 SfM-CPP iterations. Top: top
view. Bottom: front view.

10.18. We expect all areas that correspond to a finite quality estimate to be re-
constructable. From visual inspection, we conclude that this is true for most areas.
Especially for nIMG = 500 the complete geometry is covered and reconstructed with
high detail. At first glance, it seems like few observations of the same area already
suffice to get the final reconstruction error, since the magnitude of the reconstruc-
tion error does not change much between nIMG = 10 and nIMG = 500. On closer
inspection, it becomes apparent that certain areas that correspond to low quality
estimates are much more noisy than in reconstructions with higher image count.
A prime example is the part of the roof on the right building that becomes recon-
structable between nIMG = 40 and nIMG = 50. A high level of noise is visible for
the signed reconstruction error, which is mitigated at nIMG = 100 and vanishes for
higher image numbers. This change is also correctly reflected in the quality estimate.
Note that this effect can also be observed for higher values of nIMG, as can be seen
in the detailed view of the tower in figure 10.18. Even though it is already recon-
structable with high accuracy for nIMG = 300, point density and accuracy further
increase with additional photos.

Details on the accuracy of the quality estimate can be extracted from figures
10.19 and 10.20. As for the previous simulation, we realize that high-density areas
of SfM points that do not satisfy the quality estimate correspond to edges. Figures
associated with higher number of images exhibit more additional outliers. Their rel-
ative amount, measured on the size of the SfM point clouds, however, only gradually
increases as can be seen in table 10.5. Additionally, we realize a shift of the peaks
in the histograms towards zero. This effect can be explained as follows.

A point that is assumed to be observable in a photo may not contribute to the
reconstruction of said point. This could be due to observability errors, difficulties
when creating depth map hypothesis for each image, when associating multiple
depth map hypothesis, or other error sources in the SfM pipeline. Hence, the total
number of images that contribute to the reconstruction quality of a point can be less
then the amount of photos contributing to its quality estimate. With higher image

98

10.2. HOLBEACH CEMETERY CHAPEL

10
0

10
1

10
2

image number

10
2

10
3

10
4

10
5

to
ta

l
g

ai
n

100 200 300 400 500

image number

0

1

2

3

4

5

6

re
la

ti
v
e

g
ai

n

Figure 10.14: Gain objective function term (7.3a) for each selected NBV. Left: Loga-
rithmic plot. Right: Relative gain, i.e. normalized by the number of all voxels that
contribute to the gain with a term greater than zero.

count this effect is amplified and accumulates. This claim is further supported by
figures 10.21 and 10.22, as well as table 10.5. Points with small quality estimates are
assumed to have been observed the most on average. Hence, these points violate the
quality estimate most, especially for large number of images. However, since these
are the most frequently recorded points, their reconstruction error is usually still
already smaller than the desired target accuracy defined by λmin (here: ± 5.9mm),
even if they violate the quality estimate.

Table 10.5: Total acceptance rate of the quality estimate. The point cloud size only
contains points that could be associated with a control point.

nIMG point cloud size acceptance rate

10 5 255 850 98.51%
20 9 796 686 98.32%
30 16 744 189 98.06%
40 22 892 641 97.95%
50 29 653 231 97.84%

100 49 441 712 96.81%
200 70 579 815 94.79%
300 79 726 281 92.48%
400 88 290 206 90.66%
500 94 770 892 89.04%

99

CHAPTER 10. RESULTS

quality estimate (mm)

0

10

20

30

40

v
o

x
el

 c
o

u
n

t

10
2

10

20

30

40

50

n
IMG

5 10 15 20 25

(a) nIMG = 10

(b) nIMG = 20 (c) nIMG = 30

(d) nIMG = 40 (e) nIMG = 50

Figure 10.15: Voxels colored according to their quality estimate for nIMG between 10
and 50. Gray areas correspond to control points that have only been observe once,
i.e. they are estimated to not be reconstructable yet.

100

10.2. HOLBEACH CEMETERY CHAPEL

quality estimate (mm)

0

2

4

6

8

10

v
o

x
el

 c
o

u
n

t
10

3

100

200

300

400

500

n
IMG

2 6 10 14

(a) nIMG = 100

(b) nIMG = 200 (c) nIMG = 300

(d) nIMG = 400 (e) nIMG = 500

Figure 10.16: Voxels colored according to their quality estimate for nIMG between 100
and 500. Gray areas correspond to control points that have only been observe once,
i.e. they are estimated to not be reconstructable yet.

101

CHAPTER 10. RESULTS

signed reconstruction error (mm)

0

5

10

15

20

p
o

in
t

co
u

n
t

10
5

10

20

30

40

50

n
IMG

-10 -5 0 5 10

(a) nIMG = 10

(b) nIMG = 20 (c) nIMG = 30

(d) nIMG = 40 (e) nIMG = 50

Figure 10.17: Projection of the SfM point cloud onto the reference mesh, colored ac-
cording to the signed reconstruction error for nIMG between 10 and 50.

102

10.2. HOLBEACH CEMETERY CHAPEL

signed reconstruction error (mm)

0

10

20

30

40

50

p
o

in
t

co
u

n
t

10
5

100

200

300

400

500

n
IMG

-10 -5 0 5 10

(a) nIMG = 100

(b) nIMG = 300 (c) nIMG = 500

(d) nIMG = 100 (e) nIMG = 300 (f) nIMG = 500

Figure 10.18: Projection of the SfM point cloud onto the reference mesh, colored ac-
cording to the signed reconstruction error for nIMG between 100 and 500.

103

CHAPTER 10. RESULTS

distance to quality estimate (mm)

0

20

40

p
o

in
t

co
u

n
t

10
4

10

20

30

40

50

n
IMG

-20 -10 0 10

(a) nIMG = 10

(b) nIMG = 20 (c) nIMG = 30

(d) nIMG = 40 (e) nIMG = 50

Figure 10.19: Distance to the quality estimate for nIMG between 10 and 50. All projected
SfM points that do not satisfy the predicted quality estimate are visualized.

104

10.2. HOLBEACH CEMETERY CHAPEL

distance to quality estimate (mm)

0

10

20

30

40

p
o

in
t

co
u

n
t

10
5

100

200

300

400

500

n
IMG

-20 -10 0 10

(a) nIMG = 100

(b) nIMG = 300 (c) nIMG = 500

(d) nIMG = 100 (e) nIMG = 300 (f) nIMG = 500

Figure 10.20: Distance to the quality estimate for nIMG between 100 and 500. All
projected SfM points that do not satisfy the predicted quality estimate are visualized.

105

CHAPTER 10. RESULTS

5 10 15 20 25

quality estimate (mm)

0

2

4

6

8

10

12

14

p
o

in
t

co
u

n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

5 10 15 20 25

quality estimate (mm)

0

0.5

1

1.5

2

p
o
in

t
co

u
n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

5 10 15 20 25

quality estimate (mm)

0

0.5

1

1.5

2

2.5

3

p
o
in

t
co

u
n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

5 10 15 20 25

quality estimate (mm)

0

0.5

1

1.5

2

2.5

3

3.5
p
o
in

t
co

u
n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

5 10 15 20 25

quality estimate (mm)

0

1

2

3

4

5

p
o
in

t
co

u
n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

Figure 10.21: Quality estimate of SfM points divided into classes where the estimate
holds and where the estimate fails for nIMG between 10 and 50.

106

10.2. HOLBEACH CEMETERY CHAPEL

2 6 10 14

quality estimate (mm)

0

1

2

3

4

5

6

p
o
in

t
co

u
n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

2 6 10 14

quality estimate (mm)

0

2

4

6

8

10

p
o

in
t

co
u

n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

2 6 10 14

quality estimate (mm)

0

5

10

15

p
o

in
t

co
u

n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

2 6 10 14

quality estimate (mm)

0

0.5

1

1.5

2

p
o
in

t
co

u
n
t

10
6

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

2 6 10 14

quality estimate (mm)

0

0.5

1

1.5

2

2.5

p
o
in

t
co

u
n
t

10
6

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

Figure 10.22: Quality estimate of SfM points divided into classes where the estimate
holds and where the estimate fails for nIMG between 100 and 500.

107

CHAPTER 10. RESULTS

10.3 Tyche Sculpture

The computational complexity of the SfM-CPP algorithm is proportional to the
number of voxels observed from cameras. Therefore, especially a lower voxel dis-
cretization resolution could significantly improve the overall runtime. However, in-
creasing the size of the individual voxels could deteriorate the accuracy of the quality
estimation due to higher observability and discretization errors. In this simulation
example, the effects of different voxel discretization resolutions on quality estimate
and the resulting SfM reconstruction are evaluated.

Model

We consider a marble sculpture from the second century B.C. of Tyche, the Greek
goddess of destiny and fortune. It is currently located in the Musee du Cinquante-
naire in Brussels, Belgium. A high detail 3D reconstruction of this sculpture (see
figure 10.23), which is licensed under [CC BY-NC 4.0, 2013], was obtained from
[Marchal, 2018]. It consists of 563 890 faces, 282 696 vertices and high resolution
textures. The true dimensions of the model were unknown to us, however we esti-
mated its scale from photos. Hence, it was scaled to a bounding box of 0.77m ×
0.38m × 1.70m (width × depth × height). Furthermore, it has been transformed
to be axis-aligned and stands on the xy plane at z = 0. This model is the smallest in
scale we chose as reference mesh for our simulations. Therefore, we can experiment
with much lower voxel discretization resolutions without running out of memory or
experiencing exorbitant runtime.

Figure 10.23: Tycho sculpture reference mesh. Left: full view. Right: detailed view.

108

10.3. TYCHE SCULPTURE

SfM-CPP Algorithm
The camera is constrained to a minimum distance of 0.2m and a maximum distance
of 2m to the mesh, and a minimum altitude of 0.1m. Its roll and pitch angles are
fixed to 0◦. We consider 8000 RRT samples (1000 position samples, each with 8
yaw samples) that satisfy these geometric constrains for each NBV iteration. The
required image overlap with previously recorded photos omin is set to 20%. The
simulation utilizes the CAM_MR camera with gain clamping parameters given in table
10.6. In total, the SfM-CPP algorithm is run for 50 iterations for three different
voxel discretization resolutions (10mm, 5mm, 2.5mm). In order to allow for a better
comparison of observability properties, an additional estimate of the reconstruction
quality is created with a voxel size of 2.5mm and camera poses identical to the 10mm
simulation. This simulation is identified by an additional asterisk, i.e. 2.5∗mm.

The gain objective function term is given in figure 10.25. The “smoothness” and
almost-monotonicity of the curves indicates that the approximate solution of the
OED problem (7.3) using RRTs is close to a global solution. Note that the curves,
corresponding to different voxel discretization sizes, only differ approximately by a
constant linear scaling factor. This comes to no surprise, because by doubling the
voxels’ cube length we increase the number of voxels on the surface by roughly four.
A similar scaling can be observed when looking at the individual runtime of each
simulation given in table 10.7.

Table 10.6: Clamping parameters (see section 6.3.2).

Parameter Value (CAM_MR)

npix 3

pixel error confidence 95%

dmin 1m

λmin 1.315× 10−6

corresponding 99%
confidence interval

± 0.30 cm

dmax 25m

λmax 8.219× 10−4

corresponding 99%
confidence interval

± 7.39 cm

Evaluation
The quality estimate of individual voxels is visualized in figure 10.26. There, the
histograms have almost identical shapes. The associated renderings are also almost
identically colored, despite the strongly varying voxel sizes. Especially the shoulder
section is estimated to have a bad reconstruction quality. This observation is con-
sistent with the signed reconstruction errors in figure 10.27, where the same section

109

CHAPTER 10. RESULTS

Figure 10.24: Camera positions after 50 SfM-CPP iterations for the 10mm voxel reso-
lution simulation. Left: side view, right: top view.

10
0

10
1

image number

10
1

10
2

10
3

10
4

10
5

10
6

to
ta

l
g

ai
n

10mm

5mm

2.5mm

voxel size

10 20 30 40 50

image number

0

1

2

3

4

5

6

re
la

ti
v
e

g
ai

n

10mm

5mm

2.5mm

voxel size

Figure 10.25: Gain objective function term (7.3a) for each selected NBV. Left: Loga-
rithmic plot. Right: Relative gain, i.e. normalized by the number of all voxels that
contribute to the gain with a term greater than zero.

shows deficiencies in the reconstruction. Ultimately, the quality estimate fits the
reconstruction error very well. For example, consider folds in the dress and fruits in
the basket. Also, the histograms of the signed reconstruction error and the quality
estimates have the same order of magnitude.

The comparability of all different voxel sizes becomes more apparent when look-
ing at the distance to the quality estimate plots in figure 10.28. With the exception
of a few outliers where the visualization differs, areas with high point densities are
located very similarly. Even the magnitude of the quality estimate violation is com-
parable in these regions. The histograms are also almost identical, especially for the
10mm and 2.5∗mm voxel sizes. The acceptance rates in figure 10.29 and table 10.8
further show the huge similarity between the conducted simulations.

These simulations have shown that the control point density on the surface mesh
does not need to be too large, as the obtained results are almost identical beyond
a certain point. The voxel size should therefore be as large as possible, in order to
reduce the runtime of the algorithm, but still be small enough to sufficiently capture
significant details.

110

10.3. TYCHE SCULPTURE

(a
)
10

m
m

vo
xe

ls
iz

e

quality estimate (mm)

0

2

4

6

8

v
o

x
el

 c
o

u
n

t

10
2

1 3 5 7

(b
)
2.
5∗
m
m

vo
xe

ls
iz

e

quality estimate (mm)

0

2

4

6

8

v
o

x
el

 c
o

u
n

t

10
3

1 3 5 7

(c
)
5
m
m

vo
xe

ls
iz

e

quality estimate (mm)

0

5

10

15

20

v
o
x
el

 c
o
u
n
t

10
2

1 3 5 7

(d
)
2.
5
m
m

vo
xe

ls
iz

e

quality estimate (mm)

0

2

4

6

8

v
o

x
el

 c
o

u
n

t

10
3

1 3 5 7

Figure 10.26: Voxels colored according to their quality estimate for different voxel dis-
cretization resolutions.

111

CHAPTER 10. RESULTS

signed reconstruction error (mm)

0

2

4

6

p
o
in

t
co

u
n
t

10
4

10mm

5mm

2.5mm

voxel size

-4 -2 0 2 4 (a) 10mm voxel size

(b) 5mm voxel size (c) 2.5mm voxel size

(d) 10mm voxel size (e) 5mm voxel size (f) 2.5mm voxel size

Figure 10.27: Projection of the SfM point cloud onto the reference mesh, colored ac-
cording to the signed reconstruction error for different voxel discretization resolutions.

112

10.3. TYCHE SCULPTURE

distance to quality estimate (mm)

0

10

20

30

40

50

p
o

in
t

co
u

n
t

10
3

10mm

2.5mm

5mm

2.5mm

voxel size

-6 -4 -2 0 2

(a) 10mm voxel size (b) 2.5∗mm voxel size

(c) 10mm voxel size (d) 2.5∗mm voxel size

(e) 5mm voxel size (f) 2.5mm voxel size

Figure 10.28: Distance to the quality estimate for different voxel discretization resolu-
tions. All projected SfM points that do not satisfy the predicted quality estimate are
visualized.

113

CHAPTER 10. RESULTS

Table 10.7: Runtime information. L denotes the number of RRT samples used in the
getNextSegment subroutine.

voxel size average getNextSegment
runtime

10mm L · 1.58ms
5mm L · 5.83ms

2.5mm L · 25.82ms

Table 10.8: Total acceptance rate of the quality estimate. The point cloud size only
contains points that could be associated with a control point.

voxel size point cloud size acceptance rate

10mm 2 390 758 92.72%
2.5∗mm 2387 441 93.20%

5mm 2534 972 93.45%
2.5mm 2 136 472 92.95%

114

10.3. TYCHE SCULPTURE

1 3 5 7

quality estimate (mm)

0

1

2

3

4

5

6

p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e
estimate holds

estimate fails

(a) 10mm voxel size

1 3 5 7

quality estimate (mm)

0

1

2

3

4

5

6

p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(b) 2.5∗mm voxel size

1 3 5 7

quality estimate (mm)

0

1

2

3

4

5

6

p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

(c) 5mm voxel size

1 3 5 7

quality estimate (mm)

0

1

2

3

4

5

p
o
in

t
co

u
n
t

10
4

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e
estimate holds

estimate fails

(d) 2.5mm voxel size

Figure 10.29: Quality estimate of SfM points divided into classes where the estimate
holds and where the estimate fails for different voxel discretization resolutions.

115

CHAPTER 10. RESULTS

10.4 Roman Temple of Évora
In this simulation, we consider a large model with difficult topological and observ-
ability properties. The camera pose is intentionally constraint such that certain
regions are not observable. The main focus here lies on analyzing the total coverage
of the reconstruction, both for the whole model and details.

Model

We consider the 3D model of the Roman Temple of the Portuguese city of Évora in
the Alentejo region. Presumably constructed by the Romans around the first century
A.D. the building experienced multiple modifications and adaptions for different use
cases throughout the centuries. Its current form was achieved in the 19th century,
when all non-roman elements were removed. The temple is part of historical town
center, a UNESCO World Heritage Site. A 3D model of the structure is obtained
from [Global Digital Heritage, 2019], where it is available for free and licensed under
[CC BY-NC 4.0, 2013]. It is already scaled correctly according to the real structures
dimensions with a size of 25.94m × 15.64m × 13.27m (width × depth × height).
Hence, only slight modifications to the model were made. We removed any stray
vertices that were not part of a face, such that we obtain a total vertex count of
1 063 843 and an unmodified number of 2 125 853 faces. Additionally, the mesh is
translated along the z-axis to stand on the xy plane at z = 0. The resulting reference
mesh is visualized in figure 10.30.

Figure 10.30: Roman Temple of Évora reference mesh. Left: Overview of the whole
model. Right: Detailed view of a single capital.

SfM-CPP Algorithm
The utilized CAM_MR camera is constraint to have a minimum distance of 1m and
a maximum distance of 5m to the mesh. Its minimum altitude is set to 1m. The
pitch angle is fixed to 30◦, the roll angle to 0◦. Note that by the choice of this
slanted camera view, we intentionally create areas on the mesh that are not ob-
servable, e.g. the bottom side of the stone beams. This should later be correctly

116

10.4. ROMAN TEMPLE OF ÉVORA

reflected in the quality estimate, signed reconstruction errors and SfM point cloud.
As for the other simulations, 8000 poses are obtained from the RRT algorithm in
the getNextSegment algorithm 7.2. These are composed of 1000 poses that meet
the geometric constraints, each with 8 sampled yaw angles. The required minimal
image overlap omin is set to 20%. The utilized clamping parameters are given in
table 10.9. We run the SfM-CPP algorithm for a total of 500 images using a voxel
discretization with a voxel resolution of 5 cm. The resulting NBV camera poses
are visualized in figure 10.31. The corresponding gain objective function values are
given in figure 10.32.

The runtime of each evaluation of the getNextSegment subroutine was measured
to be L · 10.16ms, with the number of RRT samples L. This performance is similar
to the one of Holbeach Cemetery Chapel, since due to the tilted view a large number
of voxels are visible for the camera poses on average. The pillars also contribute to
this runtime, as they increase the complexity of ray casting computations.

Table 10.9: Clamping parameters (see section 6.3.2).

Parameter Value (CAM_MR)

npix 3

pixel error confidence 95%

dmin 2m

λmin 5.260× 10−6

corresponding 99%
confidence interval

± 0.59 cm

dmax 50m

λmax 3.288× 10−3

corresponding 99%
confidence interval

± 14.77 cm

Figure 10.31: Camera positions after 500 SfM-CPP iterations. Left: side view, right:
top view.

117

CHAPTER 10. RESULTS

10
0

10
1

10
2

image number

10
2

10
3

10
4

10
5

to
ta

l
g

ai
n

100 200 300 400 500

image number

0

1

2

3

4

5

6

re
la

ti
v
e

g
ai

n

Figure 10.32: Gain objective function term (7.3a) for each selected NBV. Left: Loga-
rithmic plot. Right: Relative gain, i.e. normalized by the number of all voxels that
contribute to the gain with a term greater than zero.

Evaluation
The quality estimate is given in figure 10.33 and can be compared to the signed
reconstruction error in figure 10.34. Recessed areas in the columns are expected to
have a higher reconstruction error than the rest of the columns, what is correctly
reflected in the computed signed reconstruction error. However, the magnitude of
the quality estimate is smaller than the magnitude of the signed reconstruction error
in many areas. This is further highlighted by the distance to the quality estimate
in figure 10.35. There, a lot of points violate the quality estimate (see table 10.10
for acceptance rate). Consider the side wall and the floor of the temple. The signed
reconstruction error for both sections is similar in figure 10.34. However, there is a
large discrepancy between their respective quality estimates in figure 10.33. Note
that the quality estimate of the side wall roughly fits the reconstruction error, which
becomes apparent in figure 10.34. There, as usual, edges are the biggest violators.
It is therefore necessary to explain why the estimate for the floor does not hold
for this high number of points. In fact, we observe the same effect as in the Hol-
beach Cemetery Chapel simulation. This area is visible in a large number of photos.
However, only a fraction of these photos contributes to the reconstruction, due to
discrepancies between expected and real observability of individual points and ef-
fects from the SfM reconstruction algorithm. This effect can further be observed in
the acceptance rate plot in figure 10.37 and is explained in more detail in the eval-
uation section of the Holbeach Cemetery Chapel simulation. Nevertheless, it most
prominently appears for areas that are already far beyond the desired reconstruction
quality defined by λmin (see table 10.9), what can be verified in figure 10.37.

Through a visual inspection, we verify that the entire geometry has been com-
pletely captured with a single exception. This exception is highlighted in figure
10.36, which shows the bottom of the stone beam together with a detailed view of
a single capital. As expected, the bottom segments could not be reconstructed due
to the fixed pitch angle of 30◦. This applies equally to small details of the capital,
which would require other camera pitch angles. This suggests that the SfM-CPP
algorithm achieves full mutli-view coverage up to geometric constraints, i.e. robot
constraints and geometric limitations of the structure.

118

10.4. ROMAN TEMPLE OF ÉVORA

quality estimate (mm)

0

2

4

6

8

v
o

x
el

 c
o

u
n

t

10
3

2 6 10 14

Figure 10.33: Voxels colored according to their quality estimate.

signed reconstruction error (mm)

0

5

10

15

20

25

p
o

in
t

co
u

n
t

10
5

-20 -10 0 10 20

Figure 10.34: Projection of the SfM point cloud onto the reference mesh, colored ac-
cording to the signed reconstruction error.

distance to quality estimate (mm)

0

5

10

15

p
o

in
t

co
u

n
t

10
5

-15 -10 -5 0 5 10 15

Figure 10.35: Distance to the quality estimate. All projected SfM points that do not
satisfy the predicted quality estimate are visualized.

119

CHAPTER 10. RESULTS

Figure 10.36: Detailed view of a single capital. Left: Voxels colored according to their
quality estimate (same colors as the histogram in figure 10.33). The gray voxels have
not been observed at all. Middle: Projected signed reconstruction error (see figure
10.34). Right: Distance to quality estimate (see figure 10.35).

2 6 10 14

quality estimate (mm)

0

2

4

6

8

10

p
o

in
t

co
u

n
t

10
5

0

0.2

0.4

0.6

0.8

1

ac
ce

p
ta

n
ce

 r
at

e

estimate holds

estimate fails

Figure 10.37: Quality estimate of SfM points divided into classes where the estimate
holds and where the estimate fails.

Table 10.10: Total acceptance rate of the quality estimate. The point cloud size only
contains points that could be associated with a control point.

point cloud size acceptance rate

61 343 840 65.81%

120

Part III

Towards Autonomous
Gaussian Process Implicit Surface

Next-Best-View Planning

121

11GPIS Surface Estimation

A surface can implicitly be described by a function. Given a set of training points,
such a function can be given by the posterior mean of a Gaussian process. This
method of implicit surface modeling is called Gaussian process implicit surface
(GPIS) [Williams and Fitzgibbon, 2007]. It combines the great inter- and extrapo-
lation properties of Gaussian process regression with a (theoretical) infinite level of
detail for the surface estimation, as no grid discretization is required. Measurement
errors are also modeled and will be used to control the smoothness of the resulting
surfaces. In addition, variance information of surface points can easily be computed.
They can later be used as a quality measure for the surface quality. Then an (en-
tropy based) gain formulation similar to section 6.3.1 can be defined and used in the
context of NBV planning.

In this chapter we will cover the theory of GPIS using polyharmonic kernels.
Since the original paper [Williams and Fitzgibbon, 2007] is rather short and contains
some errors, we will give a clean, more detailed mathematical derivation. They
proposed to utilize polyharmonic kernels that originate from polyharmonic spline
interpolation for the task of implicit surface modeling. These give the GP the
property to keep the curvature or orientation of the implied surfaces almost constant
during surface extrapolation. First, the connection between Gaussian processes
and regularized fitting problems is derived. Then the regularization term of the
polyharmonic spline interpolation is used to construct polyharmonic kernels. Finally,
we allow for derivative observations, i.e. observations of the surface curvature to
eliminate the need of interior and exterior control points during the training of the
Gaussian process. We use the same notation as in chapter 5.

For the remainder of this thesis, implicit surfaces are defined as follows. Let
f : Rd → R be a function. Then it defines an implicit surface as the set of points
{x ∈ Rd | f(x) = 0}. Moreover, we define interior and exterior of this surface as

f(x)

⎧⎪⎨⎪⎩
> 0 x is an exterior point
= 0 x is a surface point
< 0 x is an interior point.

(11.1)

11.1 Duality to Regularization Formulation
In this section we will discover that a Gaussian process can be interpreted as a
regularized spline interpolation problem, following [Rasmussen and Williams, 2006,
chapter 6] and [Wahba, 1990, chapter 1]. This will allows us to model custom Gaus-
sian processes where a desired behavior can be controlled by the regularization term,

123

CHAPTER 11. GPIS SURFACE ESTIMATION

or to find out more about properties of existing processes. In order to gain these
insights, we musts first relate kernel functions to reproducing kernels of reproducing
kernel Hilbert spaces:

Definition 11.1 (Reproducing kernel Hilbert space (RKHS)). Let H be a
Hilbert space of real-valued functions defined on an arbitrary set X . Then H is
called reproducing kernel Hilbert space if there exists a function k : X ×X → R,
called the reproducing kernel of H, with

1. k(x, ·) ∈ H ∀x ∈ X and

2. k has the reproducing property ⟨f(·), k(x, ·)⟩H = f(x). Note that this
especially implies that ⟨k(x, ·), k(·, x′)⟩H = k(x, x′).

From definition 11.1 it follows directly that all reproducing kernels of RKHS must
be symmetric and positive definite functions. As it turns out, this observation is
bidirectional according to the Moore-Aronszajn theorem:

Theorem 11.1 (Moore-Aronszajn theorem [Aronszajn, 1950]).
Let k(·, ·) : X × X → R be a symmetric, positive definite function on a set X .
Then there exists a unique Hilbert space for which k is its reproducing kernel.

The relation of RKHS to regularized spline interpolation is given by the representer
theorem:

Theorem 11.2 (Representer theorem [Wahba, 1990, chapter 1]).
Let H = H0 ⊕ H1 be a RKHS and P1 be the orthogonal projection from H
onto H1. Let Li, i = 1, . . . , n be bounded linear functionals on H with given
measurement observations

fi = Lif(xi) + ϵi, ϵi ∼ N (0, σ2), i = 1, . . . , n. (11.2)

Then the function f ∈ H minimizing
n∑

i=1

(fi − Lif(xi))
2 + λ∥P1f∥2H (11.3)

with some constant λ ∈ R is given by

f =
M∑
i=1

diφi +
n∑

i=1

ciξi, (11.4)

where φ1, . . . , φM span the null space (H0) of P1 and ξi = P1ηi, with ηi being
the representer for Li in H, i.e.

⟨ηi, g⟩H = Lig(xi), ∀g ∈ H. (11.5)

124

11.1. DUALITY TO REGULARIZATION FORMULATION

The weights c = (c1, . . . , cn) and d = (d1, . . . , dM) are given as solution to the
linear system

(K + λI)c+ Td = (f1, . . . , fn)
T

T T c = 0,
(11.6)

with

K = {⟨ξi, ξj⟩H}ni=1
n
j=1 ∈ Rn×n (11.7)

T = {Liφj(xi)}ni=1
M
j=1 ∈ Rn×M . (11.8)

What is impressive about the representer theorem is that it explicitly states a so-
lution to an infinite-dimensional minimization problem in a finite-dimensional sub-
space. Under certain conditions, this solution can be formulated in terms of repro-
ducing kernels. Consider the special case with H0⊥H1, where k0 is the reproducing
kernel of H0 and k1 the reproducing kernel of H1. Then the reproducing kernel of
H is given by k = k0 + k1. Using the reproducing property of k and the fact that ηi
is the representer of Li we obtain the explicit form

ξi(x) = ⟨P1ηi, k(x, ·)⟩H = ⟨ηi, P1k(x, ·)⟩H = L2
i k1(x, xi). (11.9)

Furthermore, as ξi ∈ H1 and ξi − ηi ∈ H0,

⟨ξi, ξj⟩H = ⟨ξi + ηi − ηi, ξj⟩H = ⟨ηi, ξj⟩H = Liξj(xi) = L1
iL2

i k1(xi, xj). (11.10)

This allows us to directly evaluate calculate (11.7) and subsequently simplifies solv-
ing the system of equations (11.6).

Since all kernels of Gaussian processes are positive definite, each of them can be
associated with their respective RKHS. Hence, each Gaussian process can be refor-
mulated as a smoothing spline interpolation problem and vice versa. Although they
used a different terminology, this fact was first stated in [Kimeldorf and Wahba, 1971].
As a direct consequence of the representer theorem (theorem 11.2), we can formulate
the following statement:

Theorem 11.3. Let f ∼ GP(0, k) be a Gaussian process and measurement
observations be given by

fi = Lif(xi) + ϵi, ϵi ∼ N (0, σ2), i = 1, . . . , n, (11.11)

with the bounded linear operators Li : H → H and the RKHS H spanned by
its reproducing kernel k. Then the posterior mean minimizes

1

σ2

n∑
i=1

(fi − Lif(xi))
2 + ∥f∥2H (11.12)

in H.

Proof. Consider the representer theorem 11.2 with P1 = id and λ = σ2. Hence, the
dimension of H0 is 0. From (11.10) we obtain the matrix K as

K = {L1
iL2

jk(xi, xj)}ni=1
n
j=1. (11.13)

125

CHAPTER 11. GPIS SURFACE ESTIMATION

The minimizer of
1

σ2

n∑
i=1

(fi − Lif(xi))
2 + ∥f∥2H (11.14)

is then given by

f =
n∑

i=1

ciLik(x, xi), (11.15)

where
c1:n =

[
K + σ2I

]−1
f1:n. (11.16)

This is equivalent to the posterior mean (5.10) using theorem 5.1. ■

There is also a similar analogy for P1 ̸= id and non zero mean (see [Wahba, 1990,
chapter 1.5] and [Rasmussen and Williams, 2006, chapter 6.3]). However, for our use
case in the following sections, the formulation from theorem 11.3 suffices. Note that
the weight of the regularization term can be controlled by weighting k or, equiv-
alently, by inverse-weighting the measurement error variance. Another important
observation can be deduced from the previous proof. Equation (11.15) gives an
explicit formulation of the posterior mean as weighted sum of functions Lik(x, xi).
Hence, in the special case of Li = id, these functions are given as the kernel of the
Gaussian process.

11.2 Polyharmonic Kernels
Minimizing equation (11.12) is similar to a regularized least square formulation.
The first (fitting) term ensures that the resulting function follows the measurement
data, the second (regularization) term characterizes the function’s behavior. We
now formulate such a regularized fit for the task of surface estimation with specific
regularization properties and derive the associated Gaussian process kernel. Let
measurements of a function f : B → R be given as

fp
i = f(xp

i) + ϵi, ϵi ∼ N (0, σ2
p), i = 1, . . . , Np, (11.17)

where B is any compact subset of interest in Rd, i.e. containing all training points
xp
i and potential test points. When interpreting the function as a surface, a regular-

ization term related to certain measures on its derivatives seems natural. For this
purpose consider the class of polyharmonic (or smoothing) splines. They are given
as minimizers of

min
f∈H

N∑
i=1

(fp
i − f(xp

i))
2 + λ

∫
B⊂Rd

∥∇mf(x)∥22 dx, (11.18)

with some weighting factor λ ∈ R≥0 that controls the smoothing. By ∇m we denote
the column vector of all m-th order partial derivative operators, e.g. for m = 2 and
input dimension d = 3

∇2 =
[

∂2

∂2x1

∂2

∂x1∂x2

∂2

∂x1∂x3

∂2

∂x2∂x1

∂2

∂2x2

∂2

∂x2∂x3

∂2

∂x3∂x1

∂2

∂x3∂x2

∂2

∂2x3

]T
. (11.19)

The value m ∈ N≥0 is the degree of derivatives considered in the regularization
term. For example, a value of m = 2 minimizes second derivatives, such that the

126

11.2. POLYHARMONIC KERNELS

function derivatives tend to stay constant, especially outside of the measurements
points. This specific polyharmonic spline is referred to as thin plate spline and
often associated with the physical motivation of minimizing the bending energy of
a thin plate. Similarly, for m = 3, terms related to third order derivatives are
minimized. This can be imagined as a fitted surface that tries to maintain its
curvature. A solution to (11.18) for arbitrary Hilbert spaces H can be computed
with theorem 11.2. Using the notation from this theorem, the function space of the
classic polyharmonic spline problem can be described. There, H1 is spanned by the
polyharmonic radial basis functions (RBF)

ξi(x) =

{
∥x− xi∥2m−d2 log(∥x− xi∥2) if 2m− d is an even integer
∥x− xi∥2m−d2 otherwise

(11.20)

and H0 usually consists of all constant and linear polynomial functions.
The regularization term from (11.18) is now used to derive polyharmonic kernels,

i.e. kernels that give the posterior mean of a Gaussian process similar smoothing
properties to the polyharmonic splines. According to theorem 11.3, it suffices to
find a kernel function k, such that

∫
B ∥∇

mf(x)∥22 dx defines a norm in the RKHS
associated to the kernel. We first introduce the new operator

Dα :=
∂|α|

∂α1x1 . . . ∂αdxd

, α = (α1, . . . , αd), |α| =
d∑

i=1

αi. (11.21)

The desired kernel function can then be obtained implicitly:

Lemma 11.1. Let B ⊂ Rd be a compact subset and k : B × B → R be a
function that satisfies the polyharmonic equation

(−1)m∆m
x k(x, x

′) = δ(x− x′), ∀x, x′ ∈ B, (11.22)

with the m-th order Laplace operator ∆m and the Dirac delta δ. Furthermore,
the following requirements on k must hold:

• All m-th order partial derivatives of k are in L2(B). (11.23)
• Dαk(·, x′) vanishes towards ∂B, ∀|α| < m, ∀x′ ∈ B̃ ⊂ B. (11.24)

Then k is symmetric, positive definite and defines a RKHS H(B̃) with induced
norm

∥f∥2H(B̃) =

∫
B
∥∇mf(x)∥22 dx. (11.25)

Proof. Let H(B̃) be the Hilbert space that contains all functions f, g with all m-th
order partial derivatives in L2(B), such that all partial derivatives of order up tom−1
vanish towards ∂B. Then [Dαf]·[Dβg] vanishes towards ∂B for all |α|+|β| = 2m−1.
We can equip H(B̃) with the inner product

⟨f, g⟩H(B̃) :=

∫
B
(∇mf(x))T · (∇mg(x)) dx, (11.26)

127

CHAPTER 11. GPIS SURFACE ESTIMATION

which induces the norm given in (11.25). Hence, it suffices to show that k is the
reproducing kernel of H(B̃). Clearly, the requirements on k(x, ·) imply that it must
be in H(B̃) for all x ∈ B̃. We will now show the reproducing property of k to
conclude the proof. Equation (11.26) is identical to∫

B

∑
|α|=m

(Dαf(x)) (Dαg(x)) dx. (11.27)

We can now shift derivatives from f to g using integration by parts d times. Then
(11.27) expands to

∑
|α|=m−1

∫
B

d∑
i=1

∂

∂xi

[h(x)  
(Dαf(x)) ·

(
∂

∂xi

Dαg(x)

)]
dx

−
∑

|α|=m−1

∫
B

d∑
i=1

(Dαf(x)) ·
(

∂2

∂2xi

Dαg(x)

)
  

(Dαf(x))·(∆Dαg(x)) dx

,

(11.28)

with the Laplace operator ∆. Due to the requirements on the Hilbert space, h(x)
vanishes towards ∂B. Hence, using the divergence theorem we obtain∫

B

d∑
i=1

∂

∂xi

h(x) dx = 0. (11.29)

In consequence, the first term in (11.28) is also zero. This variable shifting process
can be repeated analogously m− 1 times, until we obtain the identity

⟨f, g⟩H(B̃) = (−1)m
∫
B
f(x)

(
m∏
i=1

∆

)
g(x) dx

= (−1)m
∫
B
f(x)∆mg(x) dx

(11.30)

This equality is used to reformulate the reproducing property, i.e.

⟨f(·), k(x, ·)⟩H(B̃) =

∫
B
(∇m

y f(y))
T · (∇m

y k(x, y)) dy

(11.30)
= (−1)m

∫
B
f(y)∆m

y k(x, y) dy

!
= f(x)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,∀f ∈ H(B̃),∀x ∈ B̃. (11.31)

The last identity is true if and only if

(−1)m∆m
y k(x, y) = δ(x− y), ∀x ∈ B̃,∀y ∈ B. (11.32)

Due to the reproducing property, k is especially also positive definite. Note that
this proof works identically for B = B̃ = Rd ∪ {∞}. However, as we will see later,
then no solution to (11.22) exists that satisfies (11.24). ■

128

11.2. POLYHARMONIC KERNELS

Solutions to the differential equation (11.22) can be identified as Greens func-
tions, which have been extensively studied in literature. Explicit solutions for this
differential equation are given in [Wahba, 1990, chapter 2.4] as

k(x, x′) = G(∥x− x′∥2)

with G(τ) =

{
θm,dτ

2m−d log τ if 2m− d is an even integer
θm,dτ

2m−d otherwise,
(11.33)

with weights θm,d defined by

θm,d =

⎧⎪⎪⎨⎪⎪⎩
(−1)d/2+1+m

22m−1πd/2(m− 1)!(m− d/2)!
if 2m− d is an even integer

Γ(d/2−m)

22mπd/2(m− 1)!
otherwise.

(11.34)

Some explicit values of these weights are given in table 11.1.

Table 11.1: Values of θm,d for various m and d.

0 1 2 3 4

1 0 −1
2

1
12

− 1
240

1
10080

2 0 − 1
2π

1
8π

− 1
128π

1
4608π

3 0 1
4π

− 1
8π

1
96π

− 1
2880π

4 0 0 − 1
8π2

1
64π2 − 1

1536π2

d
m

The functions G(τ) are again the polyharmonic RBFs (see (11.20)). For (11.33)
to be a valid kernel, all additional requirements from lemma 11.1 must be met.
However, this is currently not possible, as especially G(τ) does not vanish for points
other then τ = 0, i.e. (11.24) does not hold and k is not positive definite. Hence,
the function

k̃(x, x′) =

{
G̃(∥x− x′∥2) x, x′ ∈ B̃
0 x, x′ ∈ B \ B̃

with G̃(τ) = G(τ) +
m−1∑
i=0

aiτ
2i, a0, . . . am−1 ∈ R

(11.35)

is considered instead. This new formulation is also an isotropic solution to the
polyharmonic equation (11.22), since ∆m∥x − x′∥i2 ≡ 0 if and only if i is even and
i < 2m. Now we see why B̃ can not be Rd. In that case

lim
τ→∞

G̃(τ)→∞, (11.36)

such that k̃ could not vanish at infinity (requirement (11.24)) and would therefore
not be a reproducing kernel nor positive definite.

129

CHAPTER 11. GPIS SURFACE ESTIMATION

For lemma 11.1 to apply, it is additionally required that partial derivatives of
order m must be in L2(B) (11.23). This implies that all partial derivatives of order
up to m − 1 of k̃ must be continuous, i.e. especially the transition in the case
distinction in (11.35) must be smooth. Mixed partial derivatives of order i of k̃
contain terms

∂j

∂jτ
G̃(τ), j = 0, . . . , i, (11.37)

which must all vanish towards ∂B. Note that G̃ is a radial function. Hence, we can
pick a fixed radius R ∈ R>0 and impose the constraints

∂i

∂iτ
G̃(R)

!
= 0, ∀i ∈ {0, . . . ,m− 1} (11.38)

to achieve the desired smoothness at ∥x − x′∥2 = R. These m constraints then
uniquely determine a0, . . . , am−1. The value R is chosen as the maximum distance
of two points in the set B̃, which contains all relevant test and training points14.
The minimal set of B then includes all points with a maximum distance of R to B̃.
Finally, one can easily verify that all partial derivatives of order m of k(·, x′) are in
L2(Rd) if and only if 2m − d > 0 to avoid a singularity at x = x′, i.e. they satisfy
(11.23). Now the polyharmonic kernel functions can uniquely be computed. These
are referred to as

kd,m(x, x
′) = Gd,m(∥x− x′∥2), ∀x, x′ ∈ B̃. (11.39)

Some explicit examples are given in table 11.2. Note that all of them are smooth
functions for all ∥x−x′∥2 ∈ [0, R]. This especially implies mean square continuity of
the corresponding Gaussian processes (theorem 5.2), and the smoothness of posterior
mean (5.10) and covariance function (5.11). Furthermore, as stated in the previous
section, the posterior mean is a weighted sum of its kernel functions in this case.
For odd 2m− d, for example, it is piecewise polynomial.

Table 11.2: Polyharmonic kernel functions (see equation (11.39)).

d m Gd,m(τ)

1 2 1
24
(2τ 3 − 3Rτ 2 +R3)

1 3 1
1920

(−8τ 5 + 15Rτ 4 − 10R3τ 2 + 3R5)

2 2 1
16π

(2τ 2 log τ − (1 + 2 logR)τ 2 +R2)

2 3 1
512π

(−4τ 4 log τ + (3 + 4 logR)τ 4 − 4R2τ 2 +R4)

3 2 1
16π

(
1
R
τ 2 − 2τ +R

)
3 3 1

768π

(
− 3

R
τ 4 + 8τ 3 − 6Rτ 2 +R3

)
At this point we want to highlight some differences to the polyharmonic kernels

introduced in [Williams and Fitzgibbon, 2007]. Note that for (d,m) ∈ {(1, 2), (2, 2)}
14The shape of the largest possible set in two dimensions that meets this requirement is a

Reuleaux triangle.

130

11.2. POLYHARMONIC KERNELS

the kernel functions are scaled differently. Strictly speaking, their version only satisfy
a scaled version of the polyharmonic equation (11.22). Ultimately this only affects
the weight λ of the regularization term in (11.18). Furthermore, their kernel function
for (d,m) = (3, 2) actually satisfies a scaled version of a polyharmonic equation
with m = 3. Additionally, this kernel does not satisfy (11.38). It has been pointed
out in literature (e.g. [Martens et al., 2017]) that they used a wrong sign in their
formulation15. Even with the correct sign, equation (11.38) is only satisfied up
to the first derivative. Hence, (11.29) does not hold, such that the kernel relates
to a different regularization term that additionally penalizes other mixed partial
derivative terms.

The polyharmonic kernel (11.39) shall now be used for Gaussian process regres-
sion. Theorem 11.3 states that the measurement error σ2

p (see equation (11.17)) is
a weighting factor between fitting and regularization term, i.e. it has the same task
as λ in (11.18). Hence, besides its statistical interpretation as measurement error,
it is used to control smoothing. An example of a one-dimensional Gaussian process
posterior using a polyharmonic kernel is given in figure 11.1. Note that the slope of
the function remains almost constant for test points lower in the intervals [−2,−1]
and [1, 2]. Furthermore, the curve looks stiff (i.e. bending is kept to a minimum),
what is to be expected when minimizing second derivatives. This behavior can be
compared to a Gaussian process fit with exponential kernel in figure 11.2. There,
the posterior rapidly goes to the mean value of zero on the sides.

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Figure 11.1: Gaussian process posterior distribution for 20 given training points using
the k1,2 kernel with σ2

p = 0.001. The gray area corresponds to their 99% confidence
intervals. From left to right: R = 4, R = 20, R = 100. The dotted black line is the
solution to the polyharmonic spline regression fitting problem (11.18).

We will now highlight the key differences to polyharmonic spline regression using
the example given in figure 11.1. While both regression methods are almost identical
close to the training points, their values differ towards the sides. This effect is most
prominent for small R and is explained in the following. As mentioned in section
11.1, a Gaussian processes posterior mean can be written as a weighted sum of
kernel functions. By restricting ourselves to the domain B, equation (11.38) implies
that the posterior mean and its derivatives of order up to m − 1 are zero for all
points with a distance of R to their closest training point. Moreover, since G1,2 is a
polynomial of degree 3, this effect becomes more observable with increasing distance
to measurement points. This behavior can be explained in a different way by looking

15Equation (11b) in [Williams and Fitzgibbon, 2007] should therefore be c(r) = 2|r|3−3Rr2+R3.

131

CHAPTER 11. GPIS SURFACE ESTIMATION

-2 -1 0 1 2

-2

-1

0

1

2

Figure 11.2: Exponential kernel k(x, x′) = e−10∥x−x
′∥22 one-dimensional Gaussian process

regression example with σ2
p = 0.001. The 20 training points are identical to those given

in figure 11.1. The gray area corresponds to 99% confidence intervals.

at the RKHS H of each kernel function. The corresponding induced norm (11.25)
does not penalize polynomials in d variables of total degree less than m. Therefore,
they are not included inH and not considered for the Gaussian process regression fit.
However, using the representer theorem 11.2, a minimizer to the functional (11.18)
can be calculated, which includes functions from the null space of the regularization
term. Thus, polyharmonic spline regression can minimizes over a larger function
space, that especially considers these polynomial functions. In the example of figure
11.1, the difference between the function spaces consist of all constant and linear
polynomials. This results in straighter extrapolation behavior for points with a large
distance to training points.

For our use case, the absence of polynomial function of order less then m does
not pose a problem. From the representer theorem 11.2 we realize that these addi-
tional basis functions of the null space do not depend on the measurement positions.
Therefore, they only describe the global behavior of the regression fit. Since we are
only interested in the implicit surface described by the zero level set of the Gaus-
sian process posterior mean, it is desirable that the weights for those terms are
zero. Without any training points, this posterior mean is constant zero. Insert-
ing measurements deforms this plane, while locally minimizing m-th order partial
derivatives. Geometrically speaking, the training points are used to “draw” contour
lines onto the plane.

For the application in object reconstruction, measurements usually correspond
to surface points, i.e. observations of the zero level set. However, these training
points do not suffice, since this would again result in a constant zero posterior
mean. Additional interior and exterior measurement points are used to obtain the
desired implicit surface. In this context we want to highlight the importance of
the constructed polyharmonic kernel and its superiority compared to other kernels
when constructing implicit functions in figure 11.3. Another two-dimensional GPIS
example is given in figure 11.4, while a three-dimensional example is given in figure
11.5. In the latter we see the effect of different choices of m. In three dimensions,
the regularization term (11.25) with m = 2 only considers two partial derivatives in
each term, leading to bumps in the surface. For m = 3 the curvature tends to stay
constant, resulting in much smoother surfaces. From figure 11.5b we also realize the
importance of carefully placed interior and exterior points, since these may lead to
unintended deformations. Overcoming this issue is the topic of the following section.

132

11.2. POLYHARMONIC KERNELS

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) Kernel function k(x, x′) = e−10∥x−x
′∥22 .

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) Kernel function k(x, x′) = k22(x, x
′), with R = 3.

Figure 11.3: Comparison of implicit surfaces obtained from the zero level set of the
posterior mean of different Gaussian processes in two dimensions. The training points
are given in red, indicating function values of = 1, = −1 and = 0. The
measurement error is set to σ2

p = 1× 10−6. Left: Contour line of Gaussian process
posterior mean. The blue line indicates the zero level set. Right: Probability of
posterior to be close to 0, i.e. inside [−ϵ, ϵ], visualized with shades of gray.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 11.4: Further two-dimensional GPIS examples. The notation and utilized pa-
rameters are identical to the one in figure 11.3b (left).

133

CHAPTER 11. GPIS SURFACE ESTIMATION

(a) Kernel function k(x, x′) = k32(x, x
′).

(b) Kernel function k(x, x′) = k33(x, x
′).

Figure 11.5: Visualization of a 3D GPIS of the Stanford bunny trained on 800 surface
(= 0, red points), 1 interior (= −1, at center) and 42 exterior (= 1, grid points of
geodesic dome) points. Left: Shaded zero level set of the posterior mean. Right: Zero
level set colored according to the posterior variance.

134

11.3. ADDING DERIVATIVE OBSERVATIONS

11.3 Adding derivative observations

As we have seen in the previous section, interior and exterior points have to be
placed carefully when modeling implicit surfaces from point observations. If their
position is chosen insufficiently, the implicit surface may not represent the desired
geometry (e.g. figure 11.5b). The problem is that the model shape is rather complex
and due to the relatively small number of interior and exterior points the GPIS has
a high uncertainty in classifying space in between. A similar effect is observable
in figure 11.3b. There, the probability of points being on the surface does not
define a sharp curve in some areas, i.e. the Gaussian process is uncertain about
the implicit surface location. A slightly different choice of interior or exterior points
could therefore change the shape. Even with apparently simple shapes undesirable
effects occur. While the contour lines in figure 11.4 follow the measurements, the
placement of interior and exterior points affects how strongly the corners of the
implicit surfaces are rounded. Furthermore, in the right plot we observe how their
choice alters the extrapolation properties, i.e. by bending the curve outwards.

In the context of surface modeling, a common approach is to automatically place
a surface point with additional slightly offset interior and exterior points along each
measurement ray. However, even there corner-cases exist where problems can occur
during surface reconstruction and we have to maintain three times the measurement
points. In order to overcome these issues we will eliminate the need for off-surface
training points in this section. Instead, surface normal measurements are included
into the Gaussian process. The idea is that a single point together with its sur-
face normal sufficiently defines the desired surface locally. Ultimately, a much more
accurate model representation is achieved with fewer measurement locations. In-
tegrating gradient measurements into a Gaussian process is not new. It is already
successfully employed for a variety of tasks, such as nonlinear systems modelling
[Solak et al., 2003], Bayesian optimization and quadrature [Wu et al., 2017] or GPIS
with exponential kernels [Dragiev et al., 2011]. In practical application, these sur-
face normal measurements are usually easily obtained. Our main use case is a sensor
that measures a number of surface points simultaneously. Then the surface normal
measurements can be computed from a set of nearest neighbors.

We will now show how these measurements can be integrated into the GPIS. For
that purpose, first consider a general zero mean Gaussian process

f ∼ GP(0, k), (11.40)

with a positive definite kernel function

k : U × U → R, (x, x′) ↦→ k(x, x′), with U ⊂ Rd. (11.41)

We are now interested in the joint distribution of f and ∇f . Using theorem 5.1
with the linear operator L =

[
1 ∇T

]T , this is obtained as

Lf =

[
f
∇f

]
∼ GP

(
0,

[
k(x, x′) ∇x′k(x, x′)
∇xk(x, x

′) ∇x∇x′k(x, x′)

])
. (11.42)

Note that it is required that ∇x∇x′k(x, x′) exists and is well defined for all x, x′ ∈ U .

135

CHAPTER 11. GPIS SURFACE ESTIMATION

Similar to section 5.1, sets of point and gradient measurements

Xp :=
{
xp
i ∈ Rd

}Np

i=1
, training points (point measurements)

Xg :=
{
xg
i ∈ Rd

}Ng

i=1
, training points (gradient measurements)

fp := f(Xp) + ϵ, ϵ ∼ N (0, σ2
p · INp)

f g := ∇f(Xg) + ϵ, ϵ ∼ N (0, σ2
g · INg ·d),

(11.43)

can be defined. Given these measurements, we are now interested in evaluating a
trained Gaussian process at

X∗ :=
{
x∗i ∈ Rd

}M
i=1

, test points (point evaluations) (11.44)

to obtain an estimate for

f ∗ := f(X∗) = [f(x∗1), . . . , f(x
∗
M)]T . (11.45)

The joint distribution of test and training data is given as⎡⎣fp

f g

f ∗

⎤⎦ ∼ N
⎛⎝0,

⎡⎣ K
k(Xp, X∗)
∇xk(X

g, X∗)
k(X∗, Xp) ∇x′k(X∗, Xg) k(X∗, X∗)

⎤⎦⎞⎠ , (11.46)

with

K =

[
k(Xp, Xp) ∇x′k(Xp, Xg)
∇xk(X

g, Xp) ∇x∇x′k(Xg, Xg)

]
+

[
σ2
p · INp 0
0 σ2

g · INg ·dI

]
. (11.47)

Then the Gaussian process posterior is obtained analogous to section 5.1 by calcu-
lating the conditional distribution

f ∗|Xp, f p, Xg, f g, X∗ ∼ N (mpost(X
∗), kpost(X

∗)) , with

mpost(X
∗) =

[
k(Xp, X∗)
∇xk(X

g, X∗)

]T
K−1

[
fp

f g

]
kpost(X

∗, X∗) = k(X∗, X∗)−
[

k(Xp, X∗)
∇xk(X

g, X∗)

]T
K−1

[
k(Xp, X∗)
∇xk(X

g, X∗)

] (11.48)

that defines a new Gaussian process

f ∗ ∼ GP(mpost, kpost). (11.49)

Note that this derivation also works analogously for other measurement quanti-
ties that can be described using a linear operator. First, the joint Gaussian process
of all training and test quantities must be determined (equation (11.42)). Subse-
quently, the joint distribution of all measurement and evaluation data can be calcu-
lated (equation (11.46)). The posterior process is then obtained from a conditional
distribution (equation (11.48)).

Using polyharmonic kernels, the Gaussian process prior is given by

f g
d,m ∼ GP

(
0, kg

d,m

)
, (11.50)

136

11.3. ADDING DERIVATIVE OBSERVATIONS

with the kernel function

kg
d,m(x, x

′) =

[
kd,m(x, x

′) ∇x′kd,m(x, x
′)

∇xkd,m(x, x
′) ∇x∇x′kd,m(x, x

′)

]
. (11.51)

For our use case, we simultaneously obtain surface normals for each surface point
measurement, i.e. Xp = Xg. With this simplification, the posterior (11.48) is
obtained equivalently by first constructing the joint Gaussian process posterior of
both point and gradient quantities (see equations (5.10), (5.11)), and then applying
the linear operator

[
1 0 · · · 0

]
to it. In order for f g

d,m to be a valid Gaussian
process, kg

d,m(x, x
′) must be well defined for all x, x′ with ∥x − x′∥2 ≤ R. This

is now further investigated for some values of d and m. The required first and
second order partial derivatives of kd,m are given in table 11.3 and 11.4. Note that
∂
∂xi

kd,m(x, x
′) = − ∂

∂x′
i
kd,m(x, x

′) for all i ∈ {1, . . . , d}16.

Table 11.3: First order partial derivatives of polyharmonic kernel functions.

d m ∂
∂xi

kd,m(x,x′), τ = ∥x− x′∥2 ∂
∂xi

kd,m(x,x′) at x→ x′

1 2 1
4
(xi − x′i) (τ −R) 0

1 3 1
96
(xi − x′i) (−2τ 3 + 3Rτ 2 −R3) 0

2 2 1
4π
(xi − x′i) (log τ − logR) 0

2 3 1
64π

(xi − x′i) (−2τ 2 log τ + (1 + 2 logR)τ 2 −R2) 0

3 2 1
8π
(xi − x′i)

(
1
R
− 1

τ

)
undefined

3 3 1
64π

(xi − x′i)
(
− 1

R
τ 2 + 2τ −R

)
0

We observe that ∂2

∂xi∂x′
j
kd,m(x, x

′) is undefined at x = x′ for (d,m) ∈ {(2, 2), (3, 2)}.
The first and second order partial derivatives of all other (d,m) pairs are continuous
on ∥x−x′∥2 ∈ [0, R]. Hence, theorem 5.2 ensures the mean-square continuity of the
associated Gaussian processes. Equation (11.48) additionally implies that the pos-
terior mean and kernel functions are continuous as well and in thus also the curves
implicitly defined by the posterior mean zero level set.

For the purpose of surface modeling, the inter- and extrapolation behavior of the
Gaussian process posterior mean is important. A natural choice of kernel functions
is m = 3. This kernel minimizes third order partial derivatives, i.e. the bending of
the surface between observations, and therefore strives to keep curvature constant.
Consider the case of observing solely a straight wall. Then this GPIS describe a
plane. Areas with varying surface normals are interpolated with a uniform curvature,
resulting in smooth shapes. However, as seen in figure 11.5, this choice of m does
not yield the desired results if solely point measurements are considered. Additional
gradient observations allow for a regression fit that has knowledge about an estimate
of a function’s local orientation. In the context of GPIS the local orientation of the
implicit surface is described. A three-dimensional example is given in figure 11.6.

16This actually holds for all stationary kernel functions.

137

CHAPTER 11. GPIS SURFACE ESTIMATION

Table 11.4: Second order partial derivatives of polyharmonic kernel functions. Here, δij
denotes the Kronecker delta.

d m ∂2

∂xi∂x
′
j
kd,m(x,x′), τ = ∥x− x′∥2 ∂2

∂xi∂x
′
j
kd,m(x,x′) at x→ x′

1 2 −1
4
(2τ −R) R

4

1 3 − 1
96
(−8τ 3 + 9Rτ 2 −R3) R3

96

2 2 − 1
4π

[
(xi−x′

i)(xj−x′
j)

τ2
+ δij (log τ − logR)

]
undefined

− 1
16π

[
(xi − x′i)(xj − x′j) (logR− log τ)

2 3
+δij

1
4
(−2τ 2 log r + (1 + 2 logR)τ 2 −R2)

] δij
R2

64π

3 2 − 1
8π

[
(xi−x′

i)(xj−x′
j)

τ3
+ δij

(
1
R
− 1

τ

)]
undefined

− 1
32π

[
(xi − x′i)(xj − x′j)

(
1
τ
− 1

R

)
3 3

+δij
1
2

(
− 1

R
τ 2 + 2τ −R

)] δij
R
64π

Although there are far fewer measurement positions than in the figure 11.5, the
GPIS approximates the geometry of the Stanford bunny much better without the
need for interior or exterior points. Similarly, a two-dimensional GPIS including
normal measurements is given in figure 11.7. Compared to figure 11.3b, the contour
lines now follow the zero level set more tightly and the certainty in this curve is
much higher. This behavior is similar in two further examples in figure 11.8a. Due
to normals describing the local orientation of the surface, especially sharper edges
can be achieved compared to figure 11.4.

As previously stated, the gradient measurements are usually obtained from a
set of nearest neighbor surface points. Depending on the pairwise distance between
points and the geometric fidelity of the true model, these measurement normals
may be subject to a high error. However, this does not pose a problem, since in
this case a larger value σg can be chosen. In fact, we experienced that this value
can be picked much larger then the point measurement variance σp. The obtained
surfaces are then very robust to surface normal measurement errors, as illustrated
on a two-dimensional example in figure 11.8b. The measurement normals only need
to indicate an approximate direction from interior to exterior.

138

11.3. ADDING DERIVATIVE OBSERVATIONS

Figure 11.6: GPIS representation of the Stanford bunny using the kg3,3 kernel. Here a set
of 400 training points is used, which form a subset of the surface points in figure 11.5.
No interior or exterior points are considered, however, each training point corresponds
to both surface and normal measurement.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 11.7: Two-dimensional GPIS example with point and surface normal measure-
ments. The surface training point positions are identical to figure 11.3. The kernel
function is kg2,3 with R = 3. Red dots and arrows indicate point and surface normal
training data. The measurement error is set to σ2

p = σ2
g = 1× 10−6. Left: Contour

line of Gaussian process posterior. The blue line indicates the zero level set. Right:
Probability of posterior to be close to 0, i.e. inside [−ϵ, ϵ] visualized with shades of
gray.

139

CHAPTER 11. GPIS SURFACE ESTIMATION

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) Exact normal measurements with σ2
g = 1× 10−6.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) Disturbed normal measurements with σ2
g = 1× 10−2.

Figure 11.8: Comparison of disturbed and exact normal measurements in two 2D GPIS
scenarios for a cube and an edge. The surface training point positions are identical
to figure 11.4. The Gaussian process uses the kg2,3 kernel with R = 3. The point
measurement error is set to σ2

p = 1× 10−6.

140

12GPIS Next-Best-View Planning

The GPIS surface estimation explained in the previous chapter shall now be used in
the context of NBV planning. This representation provides information about the
quality of the surface reconstruction using the posterior covariance function. A NBV
can then be picked as a sensor pose that maximizes the information gained about the
surface geometry. Since we are dealing with depth sensors, the task of assessing the
quality of an arbitrary sensor location can be divided into two components. First,
the set of points that describe intersections between measurement rays and the GPIS
need to be computed, which we denote as I. These are subsequently used to evaluate
the local surface quality in a second step. Using a Gaussian process, the latter task
can be related to the covariance function of the posterior. In [Hollinger et al., 2012],
two metrics are defined that relate to the certainty of the entire implicit surface.
They pick a sensor viewpoint that minimizes either of

Javg =

∫
S
k̃post(x, x) dx

Jmax = max
x∈S

k̃post(x, x)
with S = {x ∈ B̃ | m̃post(x) = 0}, (12.1)

i.e. the average or maximum surface variance, where kpost and mpost define the
current GPIS (see (11.48)), while m̃post and k̃post describe the GPIS after inserting
additional expected surface measurements at training positions I. The formulations
in (12.1) consider the entire implicit surface. While it is desirable to also include
uninstrumented surface points in this metric, its computational complexity grows
with the size of the surface. This makes an application for large scale reconstructions
unfeasible, especially in the non-model-based online case. Hence, we propose a gain
formulation similar to that in section 6.3, i.e. the estimated change in entropy in
the surface intersection points I (see equation (6.35)). Such a metric could be given
analogous to the clamped gain formulation of section 6.3.2 as

JH =
∑
x∈I

log

⎛⎝max
{
λmin, k̃(x, x)

}
max {λmin, k(x, x)}

⎞⎠ , (12.2)

where λmin ∈ R>0 is again a clamping parameter that describes a desired quality
threshold that is to be achieved. A NBV can then by calculated as a sensor pose
maximizing JH. Formulation (12.2) is now independent of the size of the implicit
surface. Given a set of points I, its computational complexity solely depends on
the computational complexity of the posterior kernel functions, since the maximum
cardinality of I is given by the specifications of the utilized sensor.

The main task now is to efficiently calculate the set I for arbitrary sensor poses,
which is the topic of the remainder of this chapter. The surface is represented by an

141

CHAPTER 12. GPIS NEXT-BEST-VIEW PLANNING

implicit function, which generally does not allow for an explicit formulation. There-
fore, the posterior mean must be evaluated multiple times to obtain its zero level
set. The complexity of each call to this function grows non-linearly with the number
of training points (see equation (11.48)). Since this number of training points easily
exceeds several million in practical application, it becomes completely infeasible to
evaluate the posterior mean. Hence, in section 12.1, we first introduce a local ver-
sion of GPIS with an almost constant complexity. Afterward, two approaches for
the computation of GPIS-ray intersections are presented, whose runtimes are also
almost independent of the number of training points. Note, however, that these are
only outlined and not fully analyzed due to time limitations and are still subject to
further research. In the first approach in section 12.2, a complete surface mesh is
generated such that these points can be extracted from the depth-buffer of a GPU.
This allows for a very fast computation of intersection points, however, requires the
generation of the full surface mesh first, which entails a computational overhead in
each NBV iteration. There, a compromise must be made between mesh approxi-
mation accuracy of the implicit surface and runtime. Using a tetrahedral structure
allows for iterative surface mesh improvements and changes when inserting new
measurements. A second, completely mesh-less approach, is given in section 12.3.
GPIS-ray intersections are iteratively computed using a ray-marching method. This
eliminates the overhead necessary for maintaining a surface mesh representation,
but the computation of each intersection point is more expensive.

12.1 Local GPIS
Consider the posterior GPIS distribution (11.49). Note that given a set of training
points, some quantities of (11.48) can be precomputed to allow for a faster evaluation
of posterior mean and kernel. This precomputation step will be called training and
includes the construction and inversion of K, as well as the multiplication

K−1
[
fp

f g

]
. (12.3)

Since it is symmetric and positive definite, the matrix K can efficiently be inverted
using the Cholesky decomposition LLT = K, and by solving a triangular system
to obtain L−1. Note that all of these operations can be executed in-place17, such
that only a single R(d+1)Np×(d+1)Np matrix must be stored, which dominates memory
consumption for large training sets. More precisely, L and L−1 are stored in a single
matrix, while

L−1
[
fp

f g

]
and L−1

T
L−1  

K−1

[
fp

f g

]
(12.4)

are contained in vectors. When adding additional measurements, matrix and vectors
can be updated without the need for a new full Cholesky decomposition of the
joint training data. Ultimately the training step has a computational complexity
of O(N3

p). Evaluating mpost at a single test point then involves a single vector-
vector multiplication with a runtime of O(Np). Similarly, matrix-vector products

17These in-place operations are implemented, for example, in the Eigen3 library
[Guennebaud et al., 2010].

142

12.1. LOCAL GPIS

are calculated for a call to kpost, leading to a complexity of O(N2
p). This is verified

with a benchmark in figures 12.1a and 12.1b.

10 0 10 1 10 2 10 3

training set size

10 -6

10 -4

10 -2

10 0

10 2

ru
n
ti
m

e
 (

s
)

(a) GPIS: Point observations only.

10 0 10 1 10 2 10 3

training set size

10 -6

10 -4

10 -2

10 0

10 2

ru
n

ti
m

e
 (

s
)

(b) GPIS: Point and gradient observations.

10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8

training set size

10 -6

10 -4

10 -2

10 0

10 2

ru
n
ti
m

e
 (

s
)

(c) Local GPIS: Point and gradient observations. The query runtime is dominated by the
inversion of the matrix K, such that posterior mean and variance function evaluations
behave almost identical.

Figure 12.1: Mean Runtime comparison between GPIS and local GPIS. Each Gaussian
process is trained 10 times for each training set size that is sampled from the surface
of the Stanford bunny. Each of these instances is queried 100 times for posterior mean
and variance.

The standard GPIS approach is practical for relatively small training set sizes
due to the fast evaluation of mean and kernel functions after training. For exam-
ple, all images in chapter 11 were created this way by sampling the posteriors with
test values on a fine grid18. As previously mentioned, a standard use case for sur-
face reconstruction contains up to several million training points. This introduces
horrendous runtimes for training and querying. Moreover, keeping the matrix con-
taining L and L−1 in memory becomes infeasible for most computers. Therefore, a

18The surface is obtained using the contourf (two dimensional) and isosurface (three dimensions)
functions of Matlab.

143

CHAPTER 12. GPIS NEXT-BEST-VIEW PLANNING

local GPIS strategy is used similar to the one proposed in [Vasudevan et al., 2009].
Instead of training the Gaussian process on all training points, only a small subset
is considered, which locally approximates the GPIS. Consider a single test point
where the process is to be evaluated. A subset of nkNN ∈ N training points is ob-
tained from a k-nearest neighbor (k-NN) algorithm. These are used to train a GPIS,
which is subsequently queried at the test point. Note that now no components of
the posterior functions can be precomputed, since the k-NN set may change with
every test point. Hence, the full formulation (11.48) is computed for each query
test point, i.e. especially the matrix K is recomputed and inverted each time. In
order to improve the runtime for the k-NN search, a K-d tree of all training points
is maintained19. Then the training step only consists of creating or updating the
K-d tree. The computational complexity of this new training step is O(Np). Fur-
thermore, since nkNN is fixed and the nearest neighbors are obtained in O(1), the
computational complexity of each query is also constant. This is yet again verified
with a benchmark in figure 12.1c.

Local GPIS versions of previous two dimensional examples are given in figures
12.2 and 12.3. The discontinuities correspond to changes of the k-NN set of train-
ing points and describe Voronoi cells. Note that the smoothness of the contours
increases closer to the zero level set. The implicit surfaces are almost identical to
their counterparts from section 11.3. Similarly, the local GPIS still proofs to be
robust to large gradient measurement errors, as illustrated in figure 12.4. Finally,
a three dimensional local GPIS example is given in figure 12.5. Both the surface
geometry from the posterior mean zero level set and the posterior variances look
almost identical to their non-local counterpart from figure 11.6.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 12.2: Two dimensional local GPIS example with point and surface normal mea-
surements. The setup is identical to figure 11.7. The amount of points considered
for the local approximation is nkNN = 5. Left: Contour line of Gaussian process
posterior. The blue line indicates the zero level set. Right: Probability of posterior
to be close to 0, i.e. inside [−ϵ, ϵ] visualized with shades of gray.

19We are using the nanoflann library [Blanco and Rai, 2014] for that purpose in our implemen-
tation.

144

12.1. LOCAL GPIS

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) nkNN = 2

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) nkNN = 3

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(c) nkNN = 5

Figure 12.3: Cube and corner two dimensional local GPIS example with different num-
bers of nearest neighbors. The setup is identical to figure 11.8a. Here, however, we
use the local GPIS.

145

CHAPTER 12. GPIS NEXT-BEST-VIEW PLANNING

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 12.4: Local GPIS approximations for disturbed normal measurements in two
dimensions. The setup is identical to figure 11.8b. Here, however, we use the local
GPIS with nkNN = 3.

Figure 12.5: Three dimension local GPIS example of the Stanford bunny. The setup is
identical to figure 11.6. Here, however, we use the local GPIS with nkNN = 10.

146

12.2. INTERSECTIONS - MESHING

12.2 Intersections - Meshing

When computing a NBV using a sampling based approach, many different view
candidates need to be evaluated. GPIS-ray intersections need to be computed for
every individual pose and measurement ray. Depending on the utilized sensor and
the number of RRT samples used in each NBV iteration, the amount of required
intersection computations can be very large and heavily dominates the total runtime.
Therefore we propose a new approach for a fast computation of these intersections.

The task we are trying to solve in this section is very similar to topics from
computer graphics that include ray-casting. One of its most widespread application
includes a standard rendering pipeline of three dimensional objects. This area has
undergone a constant development in the last decades, so that today specialized
hardware (GPUs) is available that is predestined to efficiently solve these problems
in a highly parallelized way. A two dimensional rasterized (pixel grid) orthographic
projection of an object can be obtained from its representation as a polygon mesh.
Each pixel of the rendered image can be thought of as a ray from the point of view
through the pixel center to the object. For opaque objects, a technique called depth
buffering is commonly employed to only visualize non-occluded parts. The buffer is
a two dimensional array with the same resolution as the rendered image and con-
tains the distance from the camera center to the mesh along the associated rays. It
is computed on the GPU as follows. For a triangular mesh, each triangle is pro-
jected to the image plane and rasterized. The distance to the camera center is then
stored in the associated depth buffer pixels. If another triangle must be rendered
at a previously set pixel, the depth value is overridden if the new pixel is closer
to the camera. Hence, given a mesh representation of the implicit surface and the
measurement ray pattern, GPIS-ray intersection points are easily obtainable using
this rendering pipeline. The three dimensional point positions are then obtained
from the direction of the individual measurement rays and the depth buffer.

Now the main difficulty lies in obtaining and maintaining this mesh represen-
tation of the surface. There exist a large number of approaches to build meshes
from point cloud data that may also include normal observations. A comprehensive
overview over the state of the art in that field is given in [Berger et al., 2014], to-
gether with a benchmark comparison in [Berger et al., 2013]. Especially methods us-
ing RBFs are of interest in our context, because they solve (11.18), i.e. they are poly-
harmonic splines that implicitly define a surface. For example, in [Carr et al., 2001]
a RBF approach is presented that implicitly describes a surface and also consid-
ers normal measurements. They achieve impressive reconstruction results and their
algorithm even permits a considerable number of measurements. However, the num-
ber of observations directly translates to larger linear systems that must be solved
(iteratively) and ultimately total runtime. While this is fine for the use case of ob-
ject reconstruction, it is not sufficient for NBV planning. There, new views must be
computed sufficiently fast, especially in the non-model-based case. In addition, the
runtime should not increase excessively for a large number of observations. For this
purpose, a meshing method is desirable that iteratively updates the surface mesh
for each new measurement data obtained from the NBV iteration.

The main idea of our approach is to maintain a spatial tetrahedral mesh that
describes space classified as interior. A triangular surface mesh is then given by its
facets. The choice of a tetrahedral structure has two main reasons:

147

CHAPTER 12. GPIS NEXT-BEST-VIEW PLANNING

• It is easy to refine. While the (local) GPIS is an implicit function, the asso-
ciated Gaussian process explicitly assigns each test point its level set. This
value can be interpreted as a distance to the implicit surface and can be used
iteratively to obtain an approximate surface point. Hence, a Delaunay refine-
ment strategy can be used to iteratively approximate the surface mesh from
the boundary of a tetrahedral mesh (see [Alliez et al., 2019]). Starting from
a single tetrahedron, the volumetric mesh is subdivided until a desired accu-
racy, that is defined by the beforehand mentioned zero level set distance, is
achieved. In order to keep memory usage low but still achieve a high approx-
imation accuracy, the tetrahedral mesh is usually designed to have a much
finer structure towards its facets. This way it adequately approximates the
implicit function, while improving memory consumption.

• It is easy to locally remesh. As previously mentioned, it is inefficient to re-
compute the full mesh in order to integrate new measurement observations. A
tetrahedral mesh allows for local remeshing by applying the steps described in
the previous point to only a subregion of the tetrahedral mesh. The extend of
this local area is also limited by the point selection of the local GPIS approach.
This means that only areas that contain test points that are affected by the
new measurements must be remeshed. Those are all points with kNN sets
that contain new observations. Unfortunately, this has not yet been further
analyzed due to time limitations.

Note that such a remeshing step would be much harder to implement for a
simple non-volumetric surface mesh representation, because each new mea-
surement could significantly affect the topology.

We will now give some examples on the described mesh representation, the mesh-
ing runtime and the performance of the GPIS-ray intersection computations. For
that purpose, a point cloud including point normals is generated from a mesh. These
points are then treated as a single, large measurement observation. A full surface
representation is then constructed using local GPIS and the 3D (tetrahedral) mesh
generation component [Alliez et al., 2019] of the C++ Computational Geometry Al-
gorithms Library (CGAL) [The CGAL Project, 2019]. The tetrahedral meshes are
visualized using the tool MEDIT [Frey, 2001]. Figure (12.6) shows the example of
a dragon sculpture for different target accuracies. Here, the Delaunay refinement
can be observed, i.e. the refinement of the mesh around geometric details. In these
areas the number of polygons is higher while their sizes are smaller. Furthermore,
despite a substantial amount of measurement points, a reasonable runtime can be
achieved. Note, however, that there is still always a trade-off between runtime and
surface representation accuracy. Depending on the complexity of the implicit sur-
face described, the computational overhead increases and is proportional to the the
relation between objects surface area and interior volume. This effect is noticeable
in figure (12.7). Despite a similar magnitude of measurement points the meshing
step requires a much higher runtime than in the previous example. Note that for
practical application in a NBV-RRT context, the model representation is updated
with new measurement data in each iteration, such that the actual meshing cost is
much lower. Ultimately this methods strength lies in the fast computation of GPIS-
ray intersection points for viewpoint information gain assessment. This is visualized

148

12.2. INTERSECTIONS - MESHING

in figure 12.8. There, we measured a runtime of 7.6× 10−4 s for the computation of
a pattern of 100× 100 intersection points using a NVIDIA GTX 1050 TI GPU.

(a) Low meshing accuracy (73 850 faces).
Required runtime of 18.30 s.

(b) Medium meshing accuracy (244 916
faces). Required runtime of 59.32 s.

(c) High meshing accuracy (3 383 556
faces). Required runtime of 744.23 s.

(d) Section through the tetrahedral mesh
from figure 12.6c. Tetrahedrons are vi-
sualized in red, while facets are colored
blue. Notice the finer mesh resolutions
towards the surface.

Figure 12.6: Tetrahedral mesh of the local GPIS of a dragon sculpture. A total amount
of 105 259 points together with their normals were used as measurement data. All
computations were run on an Intel i7 4790k CPU in parallel using 8 threads.

149

CHAPTER 12. GPIS NEXT-BEST-VIEW PLANNING

Figure 12.7: Tetrahedral mesh of the local GPIS of the King’s Hall of Lorsch Abbey (see
section 10.1 for details on the model). A total amount of 250 508 points together with
their normals were used as measurement data. The surface meshing required 107 s.
The resulting surface mesh consists of 567 170 triangles and is visualized in blue. The
right image illustrates a cut through the tetrahedral mesh with tetrahedrons colored in
red. All computations were run on an Intel i7 4790k CPU in parallel using 8 threads.

12.3 Intersections - Ray-Marching
As we have seen in the last section, computing GPIS-ray intersection from a trian-
gular mesh representation is very efficient. Creating the mesh, however, introduces
a computational overhead that grows proportional with a desired meshing accuracy.
Therefore, in this section we present another method to calculate these intersections
directly, without the need for any model representation. It is again motivated from
rendering approaches of implicit surfaces from the field of computer graphics and re-
lies on ray marching. This means that for a given sensor position, each measurement
ray is iterated until a stopping criteria is met (e.g. it intersects the implicit surface).
In our case, this criteria is satisfied when the local GPIS evaluated at the current
ray position is zero. A pseudo code for the computation of GPIS-ray intersection
points is given in algorithm 12.1. The main difficulty of ray-marching is the choice of
the step lengths. A common technique to determine the step length is called sphere
marching [Hart, 1996]. There, the stepsize is computed from a distance function,
that returns the distance to the implicit surface. Unfortunately, this approach is not
applicable to our problem, since the (Euclidean) distance to the GPIS can not be
calculated. Other popular methods employ a gradient based root finding method,

150

12.3. INTERSECTIONS - RAY-MARCHING

Figure 12.8: Visualization of GPIS-ray intersection points for the dragon sculpture data.
Left: Measurement data consisting of 105 259 surface points and their normals. Right:
Computed GPIS-ray intersection points for a depth sensor with 100×100 measurement
rays.

which can efficiently be implemented on a GPU (e.g. [Singh and Narayanan, 2010]).
While the GPIS allows evaluation of gradient information, discontinuities due to the
local kNN approximation may lead to problems here as well. This needs to be an-
alyzed in future work. As a proof of concept we implemented a simple stepsize
computation. It is computed as follows:

• If no interior point (i.e. negative mean posterior) has been observed during
ray-marching, the stepsize is chosen as 0.5 times the distance of the current
ray point to the closest point in the current kNN set.

• If an interior point has been observed, the stepsize is computed from a lin-
earization of the interior and exterior ray points which are closest to the zero
level set. More precisely, let tE, tI ∈ R>0 be the distances on the ray where
exterior and interior points have been observed with a posterior mean value
of mE

post ∈ R>0 and mE
post ∈ R<0. Then

step_size =
mE

post(t
I − tE)

mE
post −mI

post
. (12.5)

Using this naive implementation, a runtime around 0.6 s - 1.2 s is achieved when
computing 100 × 100 intersection points (e.g. figure 12.8) on 8 threads of an Intel
i7-4790k CPU. We believe that a significant speedup could be achieved if the same
code is ported to a GPU, since all rays can be handled independently. Then all
measurement points and normals are stored in GPU memory and a graphics card
accelerated kNN and GPIS implementation would be required.

151

CHAPTER 12. GPIS NEXT-BEST-VIEW PLANNING

Algorithm 12.1: Pseudo-code of the ray-marching approach for computing GPIS-ray
intersections.

1 // max_dist - maximum distance threshold
2 // max_it - maximum number of iterations
3 // eps - small positive constant
4
5 // returns [bool, point], where the boolean indicates if the ray intersects the
6 // surface. If this boolean is true, the returned point is the intersection point.
7 function computeIntersectionRaymarching(origin, direction)
8
9 ray_dir = normalize(ray_dir); // direction of measurement ray
10 ray_point = origin; // current point on the ray
11 ray_dist = 0; // distance traveled along the ray
12 step_size = 0; // step size from current to new ray point
13 it_count = 0; // iteration counter
14
15 while (ray_dist < max_dist) && (it_count < max_it)
16 // evaluate GPIS
17 kNN_set = {kNN(ray_point)};
18 mean = GPIS(kNN_set, ray_point)
19
20 // check if implicit surface has been hit
21 if (abs(mean) < eps)
22 return [true, ray_point];
23 end if
24
25 // compute new step size and increment iteration count
26 step_size = raymarchingStepsize(...); // see text for further details
27 it_count = it_count + 1;
28
29 // iterate to new ray point
30 ray_dist = ray_dist + step_size;
31 ray_point = origin + ray_dist * direction;
32 end
33
34 return [false, ray_point];
35 end function

Since the meshing approach only evaluates the implicit mesh at only a few points
for each surface polygon, the intersection points computed there suffer from the
meshing accuracy trade-off. This is not the case for ray-marching, because the
GPIS is evaluate directly at the intersection points for each ray that hits the surface
when the iteration terminates. Although we do not need a mesh representation
(which would introduce a computational overhead) using the ray-marching approach,
individual intersection points cannot be calculated with the same efficiency due to
the iterative nature of the algorithm.

12.4 Final Remark
We want to point out a problem that may arise when executing the NBV algorithm
outlined above. Due to extrapolation errors during surface estimation, the expected
GPIS-ray intersection points for a NBV are not identical to real measurements. In
the worst case, each measurement ray can even completely miss the object. Therefore
we believe that an additional representation of the observed space as a voxel map
is unavoidable. Then a new gain formulation is required that combines (12.2) with
the visibility of the associated voxels.

152

Part IV

Conclusion & Future Work

153

13Conclusion

In this thesis, we propose new methods for optimization-based data collection for
the purpose of obtaining 3D reconstructions with high geometric accuracy that scale
well for large scale applications. They are formulated as general CPP problems that
are solved iteratively. In each iteration, an RRT is spanned that gives a set of sensor
viewpoint candidates together with collision-free trajectories that connect them with
the current pose. The NBV is chosen from this set as the pose that yields the highest
information gain in reconstruction quality, formulated by a probabilistic model.
For this purpose, we consider two classes of sensors, which are used fundamentally
differently for obtaining the reconstructions.

• Image sensors
A reconstruction is created from a set of images using SfM. This photogram-
metric method is able to achieve high detail photorealistic reconstructions at
the cost of a high computation complexity, which makes it unfeasible for real-
time applications. The main difficulty, therefore, lies in capturing an object
sufficiently prior to the reconstruction while keeping the total number of im-
ages reasonable. This motivates the necessity for a CPP procedure, which
estimates the expected reconstruction quality at the time of recording for an
appropriate NBV selection. We quantify this expected reconstruction qual-
ity of surface points in terms of covariance matrix information, constructed
from an assumption on the image plane error and a camera model that can
be updated efficiently. This allows us to formulate an entropy-based informa-
tion gain function that is motivated by OED. While some knowledge of the
geometry is required, we present various options for model representations,
each of which targeted at individual use cases. We also describe how our ap-
proach can be used in combination with an autonomous exploration algorithm,
eliminating the need for preliminary information.

Depth can not be extracted from a single image, such that each individual sur-
face points must be observed in multiple images to allow for a reconstruction.
This is the key difference to classic CPP that only considers single-view cov-
erage. Hence, to the best of our knowledge, our approach constitutes the first
multi-view CPP algorithm for recording arbitrary geometric shapes. More-
over, we do not simply distinguish between non-reconstructable and recon-
structable surface points. By quantifying the expected reconstruction quality
in each step of the iterative NBV approach, a desired reconstruction quality
can be achieved that functions as the stopping criterion for the recording pro-
cedure. Using an elaborate simulation environment and evaluation pipeline,
we verify the correctness of our approach. There, the obtained SfM reconstruc-

155

CHAPTER 13. CONCLUSION

tion is compared with a ground-truth mesh and the expected reconstruction
quality. The simulation results show that a high level of detail is achievable
from a reasonably sized set of photographs obtained from our CPP method.
Furthermore, the quality estimate provides information about the actual re-
construction error during the recording procedure. While this provides a good
estimate most of the time, we have observed some discrepancies that are most
noticeable in the case of many images observing the same areas. These arise
because photographs that are assumed to contribute to the reconstruction
of these areas may eventually be neglected in the SfM pipeline, or there are
differences between real and estimated observability.

• Depth sensors
The model representation is given as a point cloud, such that a different as-
sessment of model reconstruction quality is required. For this purpose, we
employ GPIS, where the object’s surface is described implicitly from a set of
point observations. The posterior kernel function then provides a measure of
the surface quality and can be used in an information gain formulation for
NBV computations. In order to evaluate such a function, intersections be-
tween the implicit surface and the measurement rays have to be determined.
Two approaches are presented that compute these quantities:

– A surface mesh is created from the implicit function using a tetrahedral
mesh approximation. The intersection points are then extracted from
the depth buffer of a GPU, which is extremely efficient.

– Using ray-marching, intersection points are computed iteratively. This
approach does not require a model representation besides the raw mea-
surement data.

Polyharmonic kernels are used in the Gaussian process that implicitly de-
scribe the surface. We give an elaborate motivation and theoretical derivation
of polyharmonic kernels for probabilistic surface modeling to address some
shortcomings that currently exist in the literature. Especially the connection
to polyharmonic splines as regularized regression problem is highlighted and
explicit kernel functions are given. Furthermore, we show how the quality of
the surface representation can be significantly improved by including normal
observations. A local GPIS approach is presented, where Gaussian processes
trained from small subsets of measurements are considered that locally de-
scribe the surface implicitly. This makes the application to large scale models
and a large point clouds feasible. Especially the GPIS-ray intersection com-
putation profits from local GPIS. While the tetrahedral meshing approach
still introduces an overhead for mesh generation that depends on the point
cloud size, we believe that runtimes can be improved with incremental update
formulations in the future. On the other hand, the ray-marching approach al-
lows for constant complexity independent of point cloud size. Ultimately, we
lay the foundation for a depth sensor CPP approach that maintains a model
representation with infinite detail. First tests showed very promising results
regarding runtime and surface representation quality that indicate real-time
capabilities.

156

Through iterative computation of NBVs, ultimately full coverage is achieved
up to geometric and dynamic constraints. Due to the general CPP formulation
many RRT variations are possible, such that especially dynamics and control of a
sensor mounted robotic system can be considered. This allows for a wide range of
robot-aided applications, e.g. using UAVs, UGVs or UUVs or arbitrary multi-sensor
setups. All proposed CPP approaches were designed with real-time application in
mind. We have achieved promising results regarding the algorithm’s computational
complexity, as they scale well with the size of the object that is to be recorded.
This indicated the feasibility of real-time applications, and an implementation for
non-model-based (online) planning is therefore conceivable. Ultimately, we believe
that our new methods have enormous potential for future application, especially
for medium to large scale scenarios in areas such as civil engineering, terrestrial
surveying, and archaeology.

157

CHAPTER 13. CONCLUSION

158

14Future Work

The CPP algorithms presented in this thesis are given in a very general formulation.
While this offers a high degree of flexibility and allows for a variety of application
scenarios, those are not presented here and are therefore subject to further research.
This especially includes UAV mounted sensors for autonomous recordings.

On these systems, new questions regarding runtime complexity arise. As previ-
ously stated, we believe that current performance culprits of our algorithms could
receive significant speedup if implemented with GPU acceleration. Those especially
include voxel visibility checks for the SfM-CPP algorithm (see section 8.3.2) and the
computation of local GPIS-ray intersections in the ray-marching subroutine (section
12.3). In this context, a performance analysis is desirable that considers low-power
embedded GPUs such as the NVIDIA Jetson Xavier, which are suitable for robotic
platforms. Similarly, the meshing approach for computing GPIS-ray intersections
(section 12.2) requires additional performance improvements. While the computa-
tion of the actual intersection points is exceptionally fast, a surface mesh represen-
tation is required, which introduces a computational overhead that increases with
the number of observations. We outlined how this overhead could be reduced with
incremental mesh updates, but we still lack an implementation, along with a run-
time analysis. Additionally, the question arises how well such an algorithm scales
for large numbers of measurement observations.

Other interesting topics arise when distinguishing between model-based and non-
model-based planning. For example, practical realizations of completely autonomous
CPP methods could be considered, that combine our algorithms with autonomous
exploration frameworks. Then the SfM-CPP algorithm would be able to record
structures without any prior information on the geometry. Future research could
also focus on obtaining optimal20 coverage trajectories in the case of offline planning.
One approach commonly employed in the NBV-RRT framework for CPP considers
RRT resampling strategies (e.g. [Englot and Hover, 2013]). Such a method must be
adapted accordingly in order to be applicable to our CPP algorithms.

Finally, the surface meshes obtained from the meshing approach for the compu-
tation of GPIS-ray (section 12.2) showed interesting properties regarding approx-
imation quality and especially runtime. Therefore, the question arises how this
compares to other surface reconstruction methods, such as Poisson or RBF.

20E.g. shortest / fastest path, minimum number of recording poses.

159

CHAPTER 14. FUTURE WORK

160

Appendix

A Weyl’s inequality

Theorem .1 (Weyl’s inequality [Weyl, 1912]). Let A,B ∈ RN×N and λ1(A) ≤
λ2(A) ≤ . . . ≤ λN(A) denote the eigenvalues of A. Then

λi(A) + λj(B) ≤ λi+j−1(A+B)

λi(A) + λj(B) ≥ λi+j−N(A+B)
, ∀i, j with 1 ≤ i+ j − 1 ≤ N. (A.1)

A special case of Weyl’s inequality which is interesting for us is given for positive
semi-definite matrices. Here, all eigenvalues are greater or equal to zero. Letting
i = 1 (or j = 1 respectively), we get a new estimate of the eigenvalues of the sum,
which is given by

0 ≤
{

λi(A)
λi(B)

}
≤ λi(A+B), ∀i = 1, . . . , N. (A.2)

Note that strict positive definiteness equivalently results in strict inequalities.

B Gain Function Derivative
Solving an OCP using gradient-based approaches requires derivatives of the objective
function with respect to parameters describing a discretized control function. In the
context of the OED given in (7.3), the derivatives of the clamped gain function (6.44)
are required. In this section such derivatives will be derived analytically. Suppose
the camera pose at time tn+1 depends on a parameter u ∈ R, i.e.

ξn+1 := {R(u), t(u)} : u ∈ R ↦→ SO(3)× R3. (B.1)

As Ξn does not depend on u, the derivative of the gain is then given as

d

du
gain(p,Ξn, ξn+1) =

(
d
du
detΣ−1(p,Ξn+1)

)
2 detΣ−1(p,Ξn+1)

. (B.2)

The difficulty now lies in calculating the derivative of the determinant term in the
numerator. For this purpose, we will first analyze the case without clamping, i.e.

d

du
detΣ−1(p,Ξn+1). (B.3)

161

CHAPTER 14. FUTURE WORK

Consider the update formula (6.27). For p /∈ FOV(ξn+1) the updated precision
matrix Σ−1(p,Ξn+1) does not depend on ξn+1 and the derivative (B.3) is zero. Hence,
we are now interested in the case p ∈ FOV(ξn+1). From update formula (6.27) and
the definition of Θ−1 (see equation (6.14)) we obtain the identity

Σ−1(p,Ξn+1) = Σ−1(p,Ξn) + Θ−1(p, ξn+1)

= Σ−1(p,Ξn) +
1

γ2⟨p− t(u), Rz(u)⟩2

(
I3 −

(p− t(u))

∥p− t(u)∥2
(p− t(u))T

∥p− t(u)∥2

)
,

(B.4)

where Rz(u) is the z component of the matrix R(u), i.e. Rz(u) = R(u)e3. We can
now express the derivative of (B.3) in terms of the derivative of (B.4) using Jacobi’s
formula:

Theorem .2 (Jacobi’s formula). Let A(u) : R→ RN×N be a map. Then

d

dp
det(A(u)) = tr

(
adj(A(u))

dA(u)

du

)
, (B.5)

where adj(·) is the adjugate operator.

For simplicity of notation the argument u is now omitted. The derivative of (B.4)
is computed as

d

du
Σ−1(p,Ξn+1) =

=
2
(
⟨ d
du
t, Rz⟩ − ⟨p− t, d

du
Rz⟩
)

γ2⟨p− t, Rz⟩3

(
I3 −

(p− t)

∥p− t∥2
(p− t)T

∥p− t∥2

)
− 1

γ2⟨p− t, Rz⟩2

(
2⟨p− t, d

du
t⟩

∥p− t∥42
(p− t)(p− t)T

)

+
1

γ2⟨p− t, Rz⟩2

(
1

∥p− t∥22

[(
d

du
t

)
(p− t)T + (p− t)

(
d

du
t

)T
])

.

(B.6)

After regrouping terms and substituting v := p− t, this simplifies to

d

du
Σ−1(p,Ξn+1) = α0

(
α1I3 + α2vv

T + α3

[(
d

du
t

)
vT + v

(
d

du
t

)T
])

, (B.7)

where the scalars α0, α1, α2, α3 are given by

α0 =
1

γ2⟨p− t, Rz⟩2

α1 =
2
(
⟨ d
du
t, Rz⟩ − ⟨p− t, d

du
Rz⟩
)

⟨p− t, Rz⟩

α2 = −

(
2
(
⟨ d
du
t, Rz⟩ − ⟨p− t, d

du
Rz⟩
)

⟨p− t, Rz⟩
+

2⟨p− t, d
du
t⟩

∥p− t∥42

)
α3 =

1

∥p− t∥22
.

(B.8)

162

B. GAIN FUNCTION DERIVATIVE

Now Jacobi’s formula could be applied. However, it would require the computation
of an adjugate matrix and a matrix-matrix product in each step, which is compu-
tationally expensive. Therefore, we derive an alternative analytical expression in
terms of eigenvalues and eigenvectors.

Let the singular value decomposition of Σ−1(p,Ξn+1) be given by

Σ−1(p,Ξn+1) =

⎡⎣ | | |
u1 u2 u3

| | |

⎤⎦⎡⎣λ1

λ2

λ3

⎤⎦⎡⎣— uT
1 —

— uT
2 —

— uT
3 —

⎤⎦ , (B.9)

where 0 ≤ λ1 ≤ λ2 ≤ λ3 ∈ R are the eigenvalues of Σ−1(p,Ξn+1) with associated
eigenvectors u1, u2, u3 ∈ R3. Then the adjugate of Σ−1(p,Ξn+1) can be expressed as

A : = adj
(
Σ−1(p,Ξn+1)

)
=

⎡⎣ | | |
u1 u2 u3

| | |

⎤⎦⎡⎣λ2λ3

λ1λ3

λ1λ2

⎤⎦⎡⎣— uT
1 —

— uT
2 —

— uT
3 —

⎤⎦ .
(B.10)

Using (B.7) and (B.10) we can now apply Jacobi’s formula, resulting in

d

du
det
(
Σ−1(p,Ξn+1)

)
= tr

(
A d

du
Σ−1(p,Ξn+1)

)
= α0

(
α1 tr(A) + α2v

TAv + 2α3v
TA
(

d

du
t

))
.

(B.11)

Note that most of the tr(·) operators could be eliminated due to the invariance of
the trace under cyclic permutations.

As the determinant of a matrix is the product of its eigenvalues, another formu-
lation for the derivative of detΣ−1(p,Ξn+1) in terms of its eigenvalues is given by

d

du
det
(
Σ−1(p,Ξn+1)

)
= λ2λ3

(
d

du
λ1

)
+ λ1λ3

(
d

du
λ2

)
+ λ1λ2

(
d

du
λ3

)
. (B.12)

Since all terms in equation (B.11) that contain the adjugate can also be expressed
in terms of eigenvalues and eigenvectors, i.e.

tr(A) = λ2λ3 + λ1λ3 + λ1λ2

vTAv = λ2λ3⟨u1, v⟩2 + λ1λ3⟨u2, v⟩2 + λ1λ2⟨u3, v⟩2

vTA
(

d

du
t

)
= λ2λ3⟨u1, v⟩⟨u1,

d

du
t⟩+ λ1λ3⟨u2, v⟩⟨u2,

d

du
t⟩+ λ1λ2⟨u3, v⟩⟨u3,

d

du
t⟩,

(B.13)
we can compare coefficients between (B.11, B.13) and (B.12) and identify

d

du
λi = α0

(
α1 + α2⟨ui, v⟩2 + 2α3⟨ui, v⟩

⟨
ui,

d

du
t

⟩)
, i ∈ {1, 2, 3}. (B.14)

Instead of matrix-matrix products, this formulation only requires vector-vector prod-
ucts. Having derived the derivative of the determinant of the precision matrix we

163

CHAPTER 14. FUTURE WORK

can now analyze the corresponding clamped formulation. Similar to (B.12), we can
write

d

du
det
(
Σ−1(p,Ξn+1)

)
= λ2λ3

(
d

du
λ1

)
+ λ1λ3

(
d

du
λ2

)
+ λ1λ2

(
d

du
λ3

)
, (B.15)

where

λi = clamp
(

1

λmax

≤ λi ≤
1

λmin

)
, i ∈ {1, 2, 3} (B.16)

are the clamped eigenvalues of Σ−1(p,Ξn+1) similar to (6.44). The constants λmin and
λmax are as in section 6.3.2. Formulation (B.15) deviates from (B.12) if clamping
is active for eigenvalues. Hence, those cases need to be distinguished in order to
determine d

du
λi. We could now set the clamped eigenvalue derivative to zero if

clamping is active. This makes sense for the 1/λmin case as it indicates that a point
has been sufficiently observed. Additional observations of the point p would even
result in over-observation, resulting in a larger image set and, ultimately, higher
SfM reconstruction times. If clamping to 1/λmax is active, the information gained
for that point is too small. While the gain should also be zero in that case, we can
and should still use the derivatives of the un-clamped eigenvalues, as they still point
in the direction of highest gain improvements. This can also be realized from figure
6.3. Hence, we only clamp the derivative of the clamped eigenvalue to 1/λmin and
define

d

du
λi :=

{
d
du
λi if λi ≤ 1/λmin

0 otherwise , i ∈ {1, 2, 3}. (B.17)

Summarizing equations (B.2) and (B.15), the clamped gain derivative is then given
by

d

du
gain(p,Ξn, ξn+1) =

d
du
det (Σ−1(p,Ξn+1))

2λ1λ2λ3

=
1

2λ1

(
d

du
λ1

)
+

1

2λ2

(
d

du
λ2

)
+

1

2λ3

(
d

du
λ3

)
.

(B.18)

Despite requiring eigenvalues and eigenvectors, the clamped gain derivative does
not introduce a significant computational overhead. The eigenvalues are already
available since they are also required for gain clamping in gain formulation (6.44).
Additional eigenvectors are required, however, due to the structure of Σ−1(p,Ξn+1)
(symmetric, 3×3) those can be computed cost-efficiently using a single cross-product
operation (see appendix C).

C Computing Eigenvalues and Eigenvectors
of Symmetric 3× 3 Matrices

Let A ∈ R3×3 be a symmetric matrix. Applying Cardanos method on the charac-
teristic polynomial (of order 3) of A, an analytic representation can be derived for

164

C. COMPUTING EIGENVALUES AND EIGENVECTORS OF SYMMETRIC
3× 3 MATRICES

the eigenvalues λ1 ≤ λ2 ≤ λ3 of A. They are given by (see [Kopp, 2008]):

λ3 = q + 2p cos (φ)

λ2 = q + 2p cos

(
φ+

2π

3

)
λ1 = q + 2p cos

(
φ− 2π

3

)
= 3q − λ2 − λ3,

(C.1)

where

q =
tr(A)

3
= a11 + a22 + a33

p =

√
tr ((A− qI)2)

6
tr
(
(A− qI)2

)
= (a11 − q)2 + (a22 − q)2 + (a33 − q)2

+ 2a212 + 2a213 + 2a223

φ =
1

3
arccos

det ((1/p)(A− qI))

2
.

(C.2)

In addition, the associated eigenvectors are also obtainable analytically. Due to
the symmetry of A, the null space of A− λiI is perpendicular to its column space.
Hence, the cross product of two linear independent columns of A − λiI yields the
eigenvector of the eigenvalue λi.

A special case arises when A − λiI does not contain two linear independent
columns, but is not zero. Then λi is a degenerate eigenvalue with multiplicity 2, i.e.
the null space of A− λiI has dimension 2. The corresponding eigenvectors are still
obtainable from a non-zero column u of A− λiI and any vector v ∈ R3 that is not
parallel to u with v × u and (v × u)× v.

In [Kopp, 2008] the numeric stability of these analytic solutions is analyzed.
They observe that due to cancellation, large errors are introduced in the case of
high condition numbers. Hence, a hybrid approach is proposed which falls back to
computing eigenvalues and eigenvectors using a QL decomposition if the lengths of
analytically computed, unnormalized eigenvectors becomes too small. The imple-
mentation of this hybrid approach proved to be even faster than the pure analytic
method, as fewer conditional branches are necessary.

165

CHAPTER 14. FUTURE WORK

166

List of Figures

1.1 Choice of camera positions for an SfM reconstruction of the King’s
Hall of Lorsch Abbey (UNESCO World Heritage Site) by hand. . . . 2

1.2 Faulty SfM reconstruction of the Monastery of St. Michael (Heidel-
berg). 3

1.3 Faulty SfM feature matching of a meerschaum pipe. 3

2.1 Simplified visualization of the SfM method. 13
2.2 SfM feature extraction and feature matching example. 14
2.3 SfM camera pose estimation example. 15
2.4 Full SfM reconstruction example using a meerschaum pipe. 16

3.1 Visualization of two level-set ellipses for the bivariate normal distri-
bution probability density function. 18

4.1 Two- and three-dimensional occupancy map examples. 24
4.2 Visualization of the OctoMap octree data structure. 26

6.1 Reprojection of a confidence ellipse on the image plane into camera
coordinates. 40

6.2 SfM covariance quality estimate example for three consecutive updates. 43
6.3 Contour lines of the gain function. 48

7.1 Visualization of different surface geometry approximations. 54
7.2 Iterative gain selection using a voxel discretization 56

8.1 Maximum allowed distance of voxel centers to the camera frustum. . 65
8.2 Visualization of the DDA ray iteration approach. 69
8.3 Visualization of the SMART algorithm by [Spackman and Willis, 1991]. 70
8.4 Relevant voxels for depth measurement ray insertion. 72

9.1 Schematic illustration of the different components in the simulation
setup. 78

9.2 Effect of jpg compression artifacts on an SfM reconstruction. 81
9.3 Different point types used in the SfM-NBV analysis procedure in 2D. 83

10.1 King’s hall of Lorsch Abbey (UNESCO World Heritage Site) refer-
ence mesh. 89

10.2 Lorsch Abbey King’s Hall: Camera positions after 300 SfM-CPP
iterations using the high-resolution camera CAM_HR. 90

10.3 Lorsch Abbey King’s Hall: Gain objective function term (7.3a) for
each selected NBV. 91

167

LIST OF FIGURES

10.4 Lorsch Abbey King’s Hall: Voxels colored according to their quality
estimate for the CAM_LR simulation and npix = 2. 92

10.5 Lorsch Abbey King’s Hall: Voxels colored according to their quality
estimate for the CAM_HR simulation and npix = 2. 92

10.6 Lorsch Abbey King’s Hall: Projection of the SfM point cloud onto
the reference mesh, colored according to the signed reconstruction
error for the CAM_LR simulation. 92

10.7 Lorsch Abbey King’s Hall: Projection of the SfM point cloud onto
the reference mesh, colored according to the signed reconstruction
error for the CAM_HR simulation. 93

10.8 Lorsch Abbey King’s Hall: Distance to quality estimate for the CAM_LR
simulation. All projected SfM points that do not satisfy the predicted
quality estimate are visualized for npix = 2. 93

10.9 Lorsch Abbey King’s Hall: Distance to quality estimate for the CAM_HR
simulation. All projected SfM points that do not satisfy the predicted
quality estimate are visualized for npix = 2. 93

10.10Lorsch Abbey King’s Hall: Quality estimate of SfM points divided
into classes where the estimate holds and where the estimate fails for
the CAM_LR simulation. 94

10.11Lorsch Abbey King’s Hall: Quality estimate of SfM points divided
into classes where the estimate holds and where the estimate fails for
the CAM_HR simulation. 95

10.12Holbeach Cemetery Chapel reference mesh. 96
10.13Holbeach Cemetery Chapel: Camera positions after 100, 300 and 500

SfM-CPP iterations. 98
10.14Holbeach Cemetery Chapel: Gain objective function term (7.3a) for

each selected NBV. 99
10.15Holbeach Cemetery Chapel: Voxels colored according to their quality

estimate for nIMG between 10 and 50. 100
10.16Holbeach Cemetery Chapel: Voxels colored according to their quality

estimate for nIMG between 100 and 500. 101
10.17Holbeach Cemetery Chapel: Projection of the SfM point cloud onto

the reference mesh, colored according to the signed reconstruction
error for nIMG between 10 and 50. 102

10.18Holbeach Cemetery Chapel: Projection of the SfM point cloud onto
the reference mesh, colored according to the signed reconstruction
error for nIMG between 100 and 500. 103

10.19Holbeach Cemetery Chapel: Distance to the quality estimate for nIMG
between 10 and 50. All projected SfM points that do not satisfy the
predicted quality estimate are visualized. 104

10.20Holbeach Cemetery Chapel: Distance to the quality estimate for nIMG
between 100 and 500. All projected SfM points that do not satisfy
the predicted quality estimate are visualized. 105

10.21Holbeach Cemetery Chapel: Quality estimate of SfM points divided
into classes where the estimate holds and where the estimate fails for
nIMG between 10 and 50. 106

168

LIST OF FIGURES

10.22Holbeach Cemetery Chapel: Quality estimate of SfM points divided
into classes where the estimate holds and where the estimate fails for
nIMG between 100 and 500. 107

10.23Tyche sculpture reference mesh. 108
10.24Tyche Sculpture: Camera positions after 50 SfM-CPP iterations for

the 10mm voxel resolution simulation. 110
10.25Tyche Sculpture: Gain objective function term (7.3a) for each se-

lected NBV. 110
10.26Tyche Sculpture: Voxels colored according to their quality estimate

for different voxel discretization resolutions. 111
10.27Tyche Sculpture: Projection of the SfM point cloud onto the refer-

ence mesh, colored according to the signed reconstruction error for
different voxel discretization resolutions. 112

10.28Tyche Sculpture: Distance to the quality estimate for different voxel
discretization resolutions. All projected SfM points that do not sat-
isfy the predicted quality estimate are visualized. 113

10.29Tyche Sculpture: Quality estimate of SfM points divided into classes
where the estimate holds and where the estimate fails for different
voxel discretization resolutions. 115

10.30Roman Temple of Évora reference mesh. 116
10.31Roman Temple of Évora: Camera positions after 500 SfM-CPP iter-

ations. 117
10.32Roman Temple of Évora: Gain objective function term (7.3a) for

each selected NBV. 118
10.33Roman Temple of Évora: Voxels colored according to their quality

estimate. 119
10.34Roman Temple of Évora: Projection of the SfM point cloud onto the

reference mesh, colored according to the signed reconstruction error. . 119
10.35Roman Temple of Évora: Distance to the quality estimate. All pro-

jected SfM points that do not satisfy the predicted quality estimate
are visualized. 119

10.36Roman Temple of Évora: Detailed view of a single capital. 120
10.37Roman Temple of Évora: Quality estimate of SfM points divided into

classes where the estimate holds and where the estimate fails. 120

11.1 Example 1D Gaussian process posterior distribution for 20 given
training points with polyharmonic kernel function. 131

11.2 Exponential kernel one-dimensional Gaussian process regression ex-
ample. 132

11.3 Comparison of implicit surfaces obtained from the zero level set of
the posterior mean of different Gaussian processes in two dimensions. 133

11.4 Further two-dimensional GPIS examples. 133
11.5 Visualization of a 3D GPIS of the Stanford bunny trained on points. 134
11.6 GPIS representation of the Stanford bunny using the kg

3,3 kernel. . . 139
11.7 Two-dimensional GPIS example with point and surface normal mea-

surements. 139
11.8 Comparison of disturbed and exact normal measurements in two 2D

GPIS scenarios for a cube and an edge. 140

169

LIST OF FIGURES

12.1 Mean Runtime comparison between GPIS and local GPIS. 143
12.2 Two dimensional local GPIS example with point and surface normal

measurements. 144
12.3 Cube and corner two dimensional local GPIS example with different

numbers of nearest neighbors. 145
12.4 Local GPIS approximations for disturbed normal measurements in

two dimensions. 146
12.5 Three dimension local GPIS example of the Stanford bunny. 146
12.6 Tetrahedral mesh of the local GPIS of a dragon sculpture. 149
12.7 Tetrahedral mesh of the local GPIS of the King’s Hall of Lorsch Abbey.150
12.8 Visualization of GPIS-ray intersection points for the dragon sculpture

data. 151

170

List of Tables

3.1 Values of the quantile function QN(pconf) of the chi-square distribu-
tion for various N and pconf . 19

8.1 Memory usage of a single GainOcTreeNode. 63
8.2 Possible states of the RayTraverseAction type. 71

9.1 Agisoft Photoscan paramters used in the SfM reconstruction workflow. 83

10.1 Parameters for all three cameras used in the simulations. 87
10.2 Lorsch Abbey King’s Hall: Clamping parameters (see section 6.3.2). . 90
10.3 Lorsch Abbey King’s Hall: Total acceptance rate of the quality esti-

mate. 91
10.4 Holbeach Cemetery Chapel: Clamping parameters (see section 6.3.2). 97
10.5 Holbeach Cemetery Chapel: Total acceptance rate of the quality es-

timate. 99
10.6 Tyche Sculpture: Clamping parameters (see section 6.3.2). 109
10.7 Tyche Sculpture: Runtime information. 114
10.8 Tyche Sculpture: Total acceptance rate of the quality estimate. . . . 114
10.9 Roman Temple of Évora: Clamping parameters (see section 6.3.2). . . 117
10.10Roman Temple of Évora: Total acceptance rate of the quality estimate.120

11.1 Values of θm,d for various m and d. 129
11.2 Polyharmonic kernel functions (see equation (11.39)). 130
11.3 First order partial derivatives of polyharmonic kernel functions. . . . 137
11.4 Second order partial derivatives of polyharmonic kernel functions. . . 138

171

LIST OF TABLES

172

List of Algorithms

7.1 SfM-CPP pseudo-code. 57
7.2 getNextSegment(Ξn) pseudo-code. 58
8.1 isInRangeOfFOV(...) function. 66
8.2 getVoxelFOV(...) function. 67
8.3 distance(...) function. 68
8.4 isPointVisibleLeveled(...) function. 71
8.5 insertPointCloud(...) function pseudo-code. 74
12.1 computeIntersectionRaymarching(...) function pseudo-code. 152

List of Files

9.1 Minimal model.config file. 79
9.2 Minimal default.world file. 79
9.3 Minimal model.sdf file. 79
9.4 Minimal robot.xacro file. 80
9.5 Minimal ROS launch file. 81

173

LIST OF FILES

174

Bibliography

[Adler, 2010] Adler, R. J. (2010). The Geometry of Random Fields. Society for
Industrial and Applied Mathematics.

[Agarwal et al., 2011] Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless,
B., Seitz, S. M., and Szeliski, R. (2011). Building rome in a day. Commun. ACM,
54(10):105–112.

[Agisoft, 2017] Agisoft (2017*). AgiSoft PhotoScan Professional (Version 1.3.3).
http://www.agisoft.com/downloads/installer/ (Software).

[Agrell, 2019] Agrell, C. (2019). Gaussian processes with linear operator inequality
constraints. Journal of Machine Learning Research, 20(135):1–36.

[Aicardi et al., 2016] Aicardi, I., Chiabrando, F., Grasso, N., LINGUA, A., Noardo,
F., and Spano, A. (2016). Uav photogrammetry with oblique images: First anal-
ysis on data acquisition and processing. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1:835–
842.

[Alliez et al., 2019] Alliez, P., Jamin, C., Rineau, L., Tayeb, S., Tournois, J., and
Yvinec, M. (2019). 3D mesh generation. In CGAL User and Reference Manual.
CGAL Editorial Board, 5.0 edition.

[Amanatides and Woo, 1987] Amanatides, J. and Woo, A. (1987). A fast voxel
traversal algorithm for ray tracing. In Eurographics, volume 87, pages 3–10.

[Aronszajn, 1950] Aronszajn, N. (1950). Theory of reproducing kernels. Transac-
tions of the American Mathematical Society, 68(3):337–404.

[Attard et al., 2018] Attard, L., Debono, C. J., Valentino, G., and Di Castro, M.
(2018). Tunnel inspection using photogrammetric techniques and image process-
ing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 144:180
– 188.

[Bakker and Lane, 2017] Bakker, M. and Lane, S. N. (2017). Archival photogram-
metric analysis of river–floodplain systems using structure from motion (sfm)
methods. Earth Surface Processes and Landforms, 42(8):1274–1286.

[Banta et al., 2000] Banta, J. E., Wong, L. M., Dumont, C., and Abidi, M. A.
(2000). A next-best-view system for autonomous 3-d object reconstruction. IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,
30(5):589–598.

175

http://www.agisoft.com/downloads/installer/

BIBLIOGRAPHY

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded
up robust features. In Leonardis, A., Bischof, H., and Pinz, A., editors, Com-
puter Vision – ECCV 2006, pages 404–417, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[Berger et al., 2013] Berger, M., Levine, J. A., Nonato, L. G., Taubin, G., and Silva,
C. T. (2013). A benchmark for surface reconstruction. ACM Trans. Graph.,
32(2):20:1–20:17.

[Berger et al., 2014] Berger, M., Tagliasacchi, A., Seversky, L., Alliez, P., Levine,
J., Sharf, A., and Silva, C. (2014). State of the art in surface reconstruction
from point clouds. In Eurographics 2014 - State of the Art Reports, volume 1 of
EUROGRAPHICS star report, pages 161–185, Strasbourg, France.

[Besl and McKay, 1992] Besl, P. J. and McKay, N. D. (1992). Method for regis-
tration of 3-D shapes. In Schenker, P. S., editor, Sensor Fusion IV: Control
Paradigms and Data Structures, volume 1611, pages 586 – 606. International So-
ciety for Optics and Photonics, SPIE.

[Betts, 2010] Betts, J. T. (2010). Practical Methods for Optimal Control and Esti-
mation Using Nonlinear Programming: Second Edition. Advances in Design and
Control. Society for Industrial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104).

[Bhadrakom and Chaiyasarn, 2016] Bhadrakom, B. and Chaiyasarn, K. (2016). As-
built 3d modeling based on structure from motion for deformation assessment of
historical buildings. International Journal of Geomate, 11:2378–2384.

[Bircher et al., 2017] Bircher, A., Alexis, K., Schwesinger, U., Omari, S., Burri, M.,
and Siegwart, R. (2017). An incremental sampling-based approach to inspection
planning: the rapidly exploring random tree of trees. Robotica, 35(6):1327–1340.

[Bircher et al., 2016] Bircher, A., Kamel, M., Alexis, K., Burri, M., Oettershagen,
P., Omari, S., Mantel, T., and Siegwart, R. (2016). Three-dimensional coverage
path planning via viewpoint resampling and tour optimization for aerial robots.
Autonomous Robots, 40(6):1059–1078.

[Bircher et al., 2018] Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-
wart, R. (2018). Receding horizon path planning for 3d exploration and surface
inspection. Autonomous Robots, 42(2):291–306.

[Blanco and Rai, 2014] Blanco, J. L. and Rai, P. K. (2014). nanoflann: a C++
header-only fork of FLANN, a library for nearest neighbor (NN) with kd-trees.
https://github.com/jlblancoc/nanoflann.

[Blinn, 1977] Blinn, J. F. (1977). Models of light reflection for computer synthesized
pictures. SIGGRAPH Comput. Graph., 11(2):192–198.

[Bolognesi et al., 2014] Bolognesi, M., Furini, A., Russo, V., Pellegrinelli, A., and
Russo, P. (2014). Accuracy of cultural heritage 3d models by rpas and terrestrial
photogrammetry. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XL-5:113–119.

176

https://github.com/jlblancoc/nanoflann

BIBLIOGRAPHY

[Caccamo et al., 2016] Caccamo, S., Bekiroglu, Y., Ek, C. H., and Kragic, D. (2016).
Active exploration using gaussian random fields and gaussian process implicit
surfaces. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 582–589.

[Carr et al., 2001] Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright,
W. R., McCallum, B. C., and Evans, T. R. (2001). Reconstruction and represen-
tation of 3d objects with radial basis functions. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01,
pages 67–76, New York, NY, USA. ACM.

[Carraro et al., 2019] Carraro, F., Monego, M., Callegaro, C., Mazzariol, A., Perti-
carini, M., Menin, A., Achilli, V., Bonetto, J., and Giordano, A. (2019). The 3d
survey of the roman bridge of san lorenzo in padova (italy): A comparison between
sfm and tls methodologies applied to the arch structure. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, XLII-2/W15:255–262.

[CC BY 4.0, 2013] CC BY 4.0 (2013). Creative commons attribution. https://
creativecommons.org/licenses/by/4.0/. Last accessed on Dec 17, 2019.

[CC BY-NC 4.0, 2013] CC BY-NC 4.0 (2013). Creative commons attribution-
noncommercial. https://creativecommons.org/licenses/by-nc/4.0/. Last
accessed on Dec 17, 2019.

[Chen et al., 2019] Chen, S., Laefer, D., Mangina, E., Zolanvari, I., and Byrne, J.
(2019). Uav bridge inspection through evaluated 3d reconstructions. Journal of
Bridge Engineering, 24.

[Chen et al., 2011] Chen, S., Li, Y., and Kwok, N. M. (2011). Active vision in
robotic systems: A survey of recent developments. The International Journal of
Robotics Research, 30(11):1343–1377.

[Chiabrando et al., 2015] Chiabrando, F., Donadio, E., and Rinaudo, F. (2015). Sfm
for orthophoto to generation: A winning approach for cultural heritage knowledge.
ISPRS - International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XL-5/W7:91–98.

[CloudCompare, 2019] CloudCompare (2019). CloudCompare (Version 2.10.1
Zephyrus). http://www.cloudcompare.org/ (Software).

[Cover et al., 2013] Cover, H., Choudhury, S., Scherer, S., and Singh, S. (2013).
Sparse tangential network (spartan): Motion planning for micro aerial vehicles.
In 2013 IEEE International Conference on Robotics and Automation, pages 2820–
2825.

[Delmerico et al., 2018] Delmerico, J., Isler, S., Sabzevari, R., and Scaramuzza, D.
(2018). A comparison of volumetric information gain metrics for active 3d object
reconstruction. Autonomous Robots, 42(2):197–208.

[Dragiev et al., 2011] Dragiev, S., Toussaint, M., and Gienger, M. (2011). Gaus-
sian process implicit surfaces for shape estimation and grasping. In 2011 IEEE
International Conference on Robotics and Automation, pages 2845–2850.

177

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
http://www.cloudcompare.org/

BIBLIOGRAPHY

[Englot and Hover, 2013] Englot, B. and Hover, F. S. (2013). Sampling-based cov-
erage path planning for inspection of complex structures. In Proceedings of the
Twenty-Second International Conference on International Conference on Auto-
mated Planning and Scheduling, ICAPS’12, pages 29–37. AAAI Press.

[Frey, 2001] Frey, P. (2001). MEDIT : An interactive Mesh visualization Software.
Technical Report RT-0253, INRIA.

[Galceran et al., 2014] Galceran, E., Campos, R., Palomeras, N., Carreras, M., and
Ridao, P. (2014). Coverage Path Planning with Realtime Replanning for Inspec-
tion of 3D Underwater Structures. In ICRA, pages 6586–6591. IEEE.

[Galceran and Carreras, 2013] Galceran, E. and Carreras, M. (2013). A survey
on coverage path planning for robotics. Robotics and Autonomous Systems,
61(12):1258–1276.

[Glaser et al., 2009] Glaser, S., Woodall, W., and Haschke, R. (2009). Xacro. http:
//wiki.ros.org/xacro. Last accessed on Jan 9, 2019.

[Glauser, 2017] Glauser, J. M. (2017). 3D Model of Holbeach Ceme-
tery Chapel, Lincolnshire, UK. https://sketchfab.com/3d-models/
11d45085a31d422cb2b28eb7328d989a. Last accessed on Dec 17, 2019.

[Global Digital Heritage, 2019] Global Digital Heritage (2019). 3D Model of the Ro-
man Temple of Evora, Alentejo, Portugal. https://sketchfab.com/3d-models/
935f17a3824d49f7b2505a0686450d51. Last accessed on Dec 17, 2019.

[Green et al., 2014] Green, S., Bevan, A., and Shapland, M. (2014). A comparative
assessment of structure from motion methods for archaeological research. Journal
of Archaeological Science, 46:173 – 181.

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.
http://eigen.tuxfamily.org.

[Hadsell et al., 2010] Hadsell, R., Bagnell, J. A., Huber, D., and Hebert, M. (2010).
Space-carving kernels for accurate rough terrain estimation. The International
Journal of Robotics Research, 29(8):981–996.

[Hallermann et al., 2014] Hallermann, N., Morgenthal, G., and Rodehorst, V.
(2014). Vision-based deformation monitoring of large scale structures using un-
manned aerial systems. In IABSE Symposium Report, volume 102, pages 2852–
2859.

[Hart, 1996] Hart, J. (1996). Sphere tracing: A geometric method for the antialiased
ray tracing of implicit surfaces. The Visual Computer, 12:527 – 545.

[Hermann et al., 2014] Hermann, A., Drews, F., Bauer, J., Klemm, S., Roennau,
A., and Dillmann, R. (2014). Unified gpu voxel collision detection for mobile ma-
nipulation planning. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4154–4160.

178

http://wiki.ros.org/xacro
http://wiki.ros.org/xacro
https://sketchfab.com/3d-models/11d45085a31d422cb2b28eb7328d989a
https://sketchfab.com/3d-models/11d45085a31d422cb2b28eb7328d989a
https://sketchfab.com/3d-models/935f17a3824d49f7b2505a0686450d51
https://sketchfab.com/3d-models/935f17a3824d49f7b2505a0686450d51
http://eigen.tuxfamily.org

BIBLIOGRAPHY

[Hess et al., 2016] Hess, W., Kohler, D., Rapp, H., and Andor, D. (2016). Real-time
loop closure in 2d lidar slam. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 1271–1278.

[Hollinger et al., 2012] Hollinger, G. A., Englot, B., Hover, F., Mitra, U., and
Sukhatme, G. S. (2012). Uncertainty-driven view planning for underwater in-
spection. In 2012 IEEE International Conference on Robotics and Automation,
pages 4884–4891.

[Hornung et al., 2013] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C.,
and Burgard, W. (2013). Octomap: an efficient probabilistic 3d mapping frame-
work based on octrees. Autonomous Robots, 34(3):189–206.

[Huang and Hermans, 2019] Huang, K. and Hermans, T. (2019). Building 3d object
models during manipulation by reconstruction-aware trajectory optimization.

[Jadidi et al., 2014] Jadidi, M. G., Miro, J. V., Valencia, R., and Andrade-Cetto, J.
(2014). Exploration on continuous gaussian process frontier maps. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 6077–6082.

[Jahanshahi et al., 2013] Jahanshahi, M., Masri, S., Padgett, C., and Sukhatme,
G. (2013). An innovative methodology for detection and quantification of cracks
through incorporation of depth perception. Machine Vision and Applications, 24.

[Jidling et al., 2017] Jidling, C., Wahlström, N., Wills, A., and Schön, T. B. (2017).
Linearly constrained gaussian processes. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems 30, pages 1215–1224. Curran Associates,
Inc.

[Karaman and Frazzoli, 2011] Karaman, S. and Frazzoli, E. (2011). Sampling-based
algorithms for optimal motion planning. The International Journal of Robotics
Research, 30(7):846–894.

[Kimeldorf and Wahba, 1971] Kimeldorf, G. and Wahba, G. (1971). Some Results
on Tchebycheffian Spline Functions. MRC technical summary report. University
of Wisconsin, United States Army, Mathematics Research Center.

[Klingensmith et al., 2015] Klingensmith, M., Dryanovski, I., Srinivasa, S., and
Xiao, J. (2015). Chisel: Real Time Large Scale 3D Reconstruction Onboard
a Mobile Device using Spatially Hashed Signed Distance Fields. In Robotics:
Science and Systems XI. Robotics: Science and Systems Foundation.

[Koenig and Howard, 2004] Koenig, N. P. and Howard, A. (2004). Design and use
paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 3, pages 2149–2154 vol.3.

[Kopp, 2008] Kopp, J. (2008). Efficient numerical diagonalization of hermitian 3 x
3 matrices. International Journal of Modern Physics C, 19(03):523–548.

179

BIBLIOGRAPHY

[Körkel, 2002] Körkel, S. (2002). Numerische Methoden für optimale Versuchspla-
nungsprobleme bei nichtlinearen DAE-Modellen. PhD thesis, Heidelberg Univer-
sity.

[Krause et al., 2008] Krause, A., Singh, A., and Guestrin, C. (2008). Near-optimal
sensor placements in gaussian processes: Theory, efficient algorithms and empiri-
cal studies. Journal of Machine Learning Research, 9:235–284.

[Kriegel et al., 2015] Kriegel, S., Rink, C., Bodenmüller, T., and Suppa, M. (2015).
Efficient next-best-scan planning for autonomous 3d surface reconstruction of
unknown objects. Journal of Real-Time Image Processing, 10(4):611–631.

[Kuwata et al., 2009] Kuwata, Y., Theo, J., Fiore, G., Karaman, S., Frazzoli, E.,
and How, J. P. (2009). Real-time motion planning with applications to au-
tonomous urban driving. IEEE Transactions on Control Systems Technology,
17(5):1105–1118.

[Lattanzi and Miller, 2014] Lattanzi, D. and Miller, G. (2014). 3d scene reconstruc-
tion for robotic bridge inspection. Journal of Infrastructure Systems, 21:04014041.

[Lindner et al., 2019] Lindner, S., Garbe, C., and Mombaur, K. (2019). Optimiza-
tion based multi-view coverage path planning for autonomous structure from mo-
tion recordings. IEEE Robotics and Automation Letters, 4(4):3278–3285.

[Lo Brutto et al., 2014] Lo Brutto, M., Garraffa, A., and Meli, P. (2014). Uav plat-
forms for cultural heritage survey: First results. ISPRS Annals of Photogramme-
try, Remote Sensing and Spatial Information Sciences, II-5.

[Lo Brutto and Meli, 2012] Lo Brutto, M. and Meli, P. (2012). Computer vision
tools for 3d modeling in archaeology. International Journal of Heritage in the
Digital Era, 1:1–6.

[López et al., 2016] López, J. B., Jiménez, G. A., Romero, M. S., García, E. A.,
Martín, S. F., Medina, A. L., and Guerrero, J. E. (2016). 3d modelling in ar-
chaeology: The application of structure from motion methods to the study of
the megalithic necropolis of panoria (granada, spain). Journal of Archaeological
Science: Reports, 10:495–506.

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant fea-
tures. In Proceedings of the Seventh IEEE International Conference on Computer
Vision, volume 2, pages 1150–1157 vol.2.

[Lucieer et al., 2014a] Lucieer, A., de Jong, S. M., and Turner, D. (2014a). Mapping
landslide displacements using structure from motion (sfm) and image correlation
of multi-temporal uav photography. Progress in Physical Geography: Earth and
Environment, 38(1):97–116.

[Lucieer et al., 2014b] Lucieer, A., Turner, D., King, D. H., and Robinson, S. A.
(2014b). Using an unmanned aerial vehicle (uav) to capture micro-topography
of antarctic moss beds. International Journal of Applied Earth Observation and
Geoinformation, 27:53 – 62. Special Issue on Polar Remote Sensing 2013.

180

BIBLIOGRAPHY

[Mancini et al., 2013] Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri,
S., and Gabbianelli, G. (2013). Using unmanned aerial vehicles (uav) for high-
resolution reconstruction of topography: The structure from motion approach on
coastal environments. Remote Sensing, 5(12):6880–6898.

[Marchal, 2018] Marchal, G. (2018). 3D Model of a Tyche Sculpture, Musee
du Cinquantenaire (Brussels, Belgium). https://sketchfab.com/3d-models/
f27fa510181946f4924080e3ccda3946. Last accessed on Dec 17, 2019.

[Martens et al., 2017] Martens, W., Poffet, Y., Soria, P. R., Fitch, R., and
Sukkarieh, S. (2017). Geometric priors for gaussian process implicit surfaces.
IEEE Robotics and Automation Letters, 2(2):373–380.

[Min, 2019] Min, P. (2004 - 2019). binvox. http://www.patrickmin.com/binvox.
Last accessed on Jan 9, 2019.

[Moravec and Elfes, 1985] Moravec, H. P. and Elfes, A. (1985). High resolution
maps from wide angle sonar. In Proceedings. 1985 IEEE International Conference
on Robotics and Automation, volume 2, pages 116–121.

[Newcombe et al., 2011] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J.
(2011). DTAM: Dense tracking and mapping in real-time. In ICCV, pages 2320–
2327. IEEE.

[Nießner et al., 2013] Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M.
(2013). Real-time 3D Reconstruction at Scale using Voxel Hashing. ACM Trans-
actions on Graphics, 32(6):169:1–169:11.

[Nooruddin and Turk, 2003] Nooruddin, F. S. and Turk, G. (2003). Simplification
and repair of polygonal models using volumetric techniques. IEEE Transactions
on Visualization and Computer Graphics, 9(2):191–205.

[O’callaghan and Ramos, 2012] O’callaghan, S. T. and Ramos, F. T. (2012). Gaus-
sian process occupancy maps. The International Journal of Robotics Research,
31(1):42–62.

[Ottenhaus et al., 2016] Ottenhaus, S., Miller, M., Schiebener, D., Vahrenkamp,
N., and Asfour, T. (2016). Local implicit surface estimation for haptic explo-
ration. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), pages 850–856.

[Papadopoulos et al., 2013] Papadopoulos, G., Kurniawati, H., and Patrikalakis,
N. M. (2013). Asymptotically Optimal Inspection Planning using Systems with
Differential Constraints. In ICRA, pages 4126–4133. IEEE.

[Papoulis et al., 2002] Papoulis, A., Pillai, S., and Pillai, S. (2002). Probability, Ran-
dom Variables, and Stochastic Processes. McGraw-Hill electrical and electronic
engineering series. McGraw-Hill.

[Peng Cheng et al., 2008] Peng Cheng, Keller, J., and Kumar, V. (2008). Time-
Optimal UAV Trajectory Planning for 3D Urban Structure Coverage. In IROS,
pages 2750–2757. IEEE.

181

https://sketchfab.com/3d-models/f27fa510181946f4924080e3ccda3946
https://sketchfab.com/3d-models/f27fa510181946f4924080e3ccda3946
http://www.patrickmin.com/binvox

BIBLIOGRAPHY

[Pietroni et al., 2010] Pietroni, N., Tarini, M., and Cignoni, P. (2010). Almost iso-
metric mesh parameterization through abstract domains. IEEE Transactions on
Visualization and Computer Graphics, 16(4):621–635.

[Pito, 1999] Pito, R. (1999). A solution to the next best view problem for auto-
mated surface acquisition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(10):1016–1030.

[Pizarro et al., 2004] Pizarro, O., Eustice, R., and Singh, H. (2004). Large area
3d reconstructions from underwater surveys. In Oceans ’04 MTS/IEEE Techno-
Ocean ’04 (IEEE Cat. No.04CH37600), volume 2, pages 678–687 Vol.2.

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Y. Ng, A. (2009). Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software.

[Ramos and Ott, 2016] Ramos, F. and Ott, L. (2016). Hilbert maps: Scalable con-
tinuous occupancy mapping with stochastic gradient descent. The International
Journal of Robotics Research, 35(14):1717–1730.

[Rasmussen and Williams, 2006] Rasmussen, C. and Williams, C. (2006). Gaussian
Processes for Machine Learning. Adaptative computation and machine learning
series. University Press Group Limited.

[Scott et al., 2003] Scott, W. R., Roth, G., and Rivest, J.-F. (2003). View plan-
ning for automated three-dimensional object reconstruction and inspection. ACM
Comput. Surv., 35(1):64–96.

[Seitz, 2012] Seitz, C. (2012). Vom foto zum 3d-modell: Open-source-
nahbereichsphotogrammetrie im einsatz für die archäologie. Master’s thesis, Hei-
delberg University.

[Seitz and Altenbach, 2011] Seitz, C. and Altenbach, H. (2011). Project archeye–the
quadrocopter as the archaeologist’s eye. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci, 38(1).

[Shaffer and Garland, 2001] Shaffer, E. and Garland, M. (2001). Efficient adaptive
simplification of massive meshes. In Proceedings of the Conference on Visualization
’01, VIS ’01, page 127–134, USA. IEEE Computer Society.

[Singh and Narayanan, 2010] Singh, J. M. and Narayanan, P. J. (2010). Real-time
ray tracing of implicit surfaces on the gpu. IEEE Transactions on Visualization
and Computer Graphics, 16(2):261–272.

[Skarlatos and Kiparissi, 2012] Skarlatos, D. and Kiparissi, S. (2012). Comparison
of laser scanning, photogrammetry and sfm-mvs pipeline applied in structures
and artificial surfaces. ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, I-3:299–304.

[Solak et al., 2003] Solak, E., Murray-smith, R., Leithead, W. E., Leith, D. J., and
Rasmussen, C. E. (2003). Derivative observations in gaussian process models of
dynamic systems. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances
in Neural Information Processing Systems 15, pages 1057–1064. MIT Press.

182

BIBLIOGRAPHY

[Spackman and Willis, 1991] Spackman, J. and Willis, P. (1991). The smart navi-
gation of a ray through an oct-tree. Computers & Graphics, 15(2):185 – 194.

[Storlazzi et al., 2016] Storlazzi, C., Dartnell, P., Hatcher, G., and Gibbs, A. (2016).
End of the chain? rugosity and fine-scale bathymetry from existing underwa-
ter digital imagery using structure-from-motion (sfm) technology. Coral Reefs,
35:889–894.

[The CGAL Project, 2019] The CGAL Project (2019). CGAL User and Reference
Manual. CGAL Editorial Board, 5.0 edition.

[Torres et al., 2016] Torres, M., Pelta, D. A., Verdegay, J. L., and Torres, J. C.
(2016). Coverage path planning with unmanned aerial vehicles for 3d terrain
reconstruction. Expert Systems with Applications, 55:441 – 451.

[Valenti and Paternò, 2019] Valenti, R. and Paternò, E. (2019). A comparison be-
tween tls and uav technologies for historical investigation. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, XLII-2/W9:739–745.

[Vasquez-Gomez et al., 2014] Vasquez-Gomez, J. I., Sucar, L. E., Murrieta-Cid, R.,
and Lopez-Damian, E. (2014). Volumetric next-best-view planning for 3d object
reconstruction with positioning error. International Journal of Advanced Robotic
Systems, 11(10):159.

[Vasudevan et al., 2009] Vasudevan, S., Ramos, F., Nettleton, E., and Durrant-
Whyte, H. (2009). Gaussian process modeling of large-scale terrain. Journal
of Field Robotics, 26(10):812–840.

[Wahba, 1990] Wahba, G. (1990). Spline Models for Observational Data. CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics.

[Webb and van den Berg, 2013] Webb, D. J. and van den Berg, J. (2013). Kin-
odynamic rrt*: Asymptotically optimal motion planning for robots with linear
dynamics. In 2013 IEEE International Conference on Robotics and Automation,
pages 5054–5061.

[Weyl, 1912] Weyl, H. (1912). Das asymptotische verteilungsgesetz der eigenwerte
linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der
hohlraumstrahlung). Mathematische Annalen, 71(4):441–479.

[Williams and Fitzgibbon, 2007] Williams, O. and Fitzgibbon, A. (2007). Gaussian
process implicit surfaces. In Gaussian Processes in Practice.

[Wu et al., 2017] Wu, A., Aoi, M. C., and Pillow, J. W. (2017). Exploiting gradients
and hessians in bayesian optimization and bayesian quadrature.

[Xu et al., 2014] Xu, Z., Wu, L., Shen, Y., Li, F., Wang, Q., and Wang, R. (2014).
Tridimensional reconstruction applied to cultural heritage with the use of camera-
equipped uav and terrestrial laser scanner. Remote Sensing, 6(11):10413–10434.

183

BIBLIOGRAPHY

[Yakoubi and Laskri, 2016] Yakoubi, M. A. and Laskri, M. T. (2016). The path
planning of cleaner robot for coverage region using genetic algorithms. Journal of
Innovation in Digital Ecosystems, 3(1):37 – 43. Special issue on Pattern Analysis
and Intelligent Systems – With revised selected papers of the PAIS conference.

[Zhang et al., 2016] Zhang, R., Schneider, D., and Strauß, B. (2016). Generation
and comparison of tls and sfm based 3d models of solid shapes in hydromechanic
research. ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLI-B5:925–929.

184

	Acknowledgments
	Acronyms & Abbreviations
	Introduction
	Motivation
	Related Work
	Structure from Motion and Laserscanning
	Next-Best-View Planning
	Coverage-Path-Planning

	Contribution & Outline

	I Preliminaries
	Structure from Motion
	Optimal Experimental Design
	Confidence Regions
	Degenerate Cases
	Misconceptions

	Optimality Criteria

	Occupancy Grid Maps
	Occupancy Grid Mapping using Inverse Sensor Model
	Efficient Octree Implementation

	Gaussian Process Fundamentals
	Formal Definition
	Closure under Evaluation of Linear Operators
	Log Marginal Likelihood
	Mean Square Continuity
	Interpretation as Linear Regression Model

	II Structure from Motion Next-Best-View Planning
	Theoretical Derivation
	Special Treatment of Singular Precision Matrices
	Estimating Expected Reconstruction Quality
	Point Observations
	Choice of Estimator Parameters
	Image Observations

	Optimal View Planning
	Next-Best-View: Gain Formulation
	Gain Clamping
	Next-Best-View Trajectory

	SfM-NBV Algorithm
	Surface Geometry Discretization
	3D Model
	Primitive Hulls
	Voxel Discretization

	Pseudo-Code

	Implementation Details
	OctoMap Overview
	Gain-Octree
	Leveled Octree
	Filter Function
	Ray Traversal
	Inserting Measurements

	Parallelization

	Simulation and Evaluation Setup
	Simulation Setup
	Evaluation Pipeline
	SfM Reconstruction
	Analysis Procedure

	Results
	Lorsch Abbey King's Hall
	Holbeach Cemetery Chapel
	Tyche Sculpture
	Roman Temple of Évora

	III Towards Autonomous Gaussian Process Implicit Surface Next-Best-View Planning
	GPIS Surface Estimation
	Duality to Regularization Formulation
	Polyharmonic Kernels
	Adding derivative observations

	GPIS Next-Best-View Planning
	Local GPIS
	Intersections - Meshing
	Intersections - Ray-Marching
	Final Remark

	IV Conclusion & Future Work
	Conclusion
	Future Work
	Appendix
	Weyl's inequality
	Gain Function Derivative
	Computing Eigenvalues and Eigenvectors of Symmetric 3 ×3 Matrices

	References
	List of Figures
	List of Tables
	List of Algorithms and Files
	Bibliography

