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“And I’m not happy with all the analyses that go with
just the classical theory, because nature isn’t classical,
dammit, and if you want to make a simulation of na-
ture, you’d better make it quantum mechanical, and by
golly it’s a wonderful problem, because it doesn’t look
so easy.”

R. P. Feynman [1]
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Zusammenfassung

Quantensimulation der Hochenergiephysik mit ultrakalten Atomen

Die Vorhersage der Quantendynamik von geladener Materie, die mit dynamischen
Eichfeldern interagiert, ist eine außerordentliche Herausforderung in der theoreti-
schen Physik. In Ermangelung einer allgemein anwendbaren Berechnungsmethode
bieten Quantensimulatoren eine vielversprechende Alternative.
Die vorliegende Arbeit leistet einen Beitrag zur Quantensimulation der Hochener-
giephysik, wobei wir uns auf die Plattform ultrakalter Atome konzentrieren. Mittels
Wilson-Fermionen schlagen wir vor die Implementierung von Gittereichtheorien
basierend auf Gemischen kalter Atome in einem optischen Gitter zu verbessern.
Numerische Simulationen zeigen, dass dies die Realisierung der Schwinger-Paar-
Produktion mit aktueller Technologie möglich macht. Unsere vorgeschlagene Im-
plementierung ist modular und ein elementarer Baustein wird experimentell de-
monstriert. Darüber hinaus identifizieren wir dynamische topologische Übergänge,
die wir im massiven Schwinger-Modell entdeckt haben, als geeignetes Ziel für die
Anwendung von Quantensimulatoren. Durch die Definition eines eichinvarianten
Ordnungsparameter können wir zeigen, dass diese Übergänge jenseits schwacher
Wechselwirkungen bestehen bleiben.
Im zweiten Teil dieser Arbeit entwickeln wir einen Formalismus für die Analyse
von Quantensimulatoren mittels experimentell zugänglicher irreduzibler Korrelati-
onsfunktionen zu gleichen Zeiten. Wir verifizieren diesen Ansatz numerisch für das
Sine-Gordon-Modell im thermischen Gleichgewicht, das durch zwei tunnelgekop-
pelte Superfluide quantensimuliert wird. Schließlich wenden wir unsere Analyse
auf die Nichtgleichgewichtsdynamik eines Spinor-Bose-Gases an und finden eine
unterdrückte effektive Wechselwirkung in einem stark korrelierten Infrarotbereich.





v

Abstract

Quantum simulation of high-energy physics with ultracold atoms

Predicting the quantum dynamics of charged matter interacting with dynamical
gauge fields poses an outstanding challenge in theoretical physics. Lacking a gen-
erally applicable computational method, quantum simulators offer a promising
alternative.
In this thesis, we contribute to the quantum simulation of high-energy physics,
focusing on the platform of ultracold atoms. Using Wilson fermions, we propose to
improve implementations of lattice gauge theories based on mixtures of cold atoms
in optical lattices. Numerical benchmarks indicate that this makes the realization of
Schwinger pair production feasible with current technology. Our proposal is modu-
lar and an elementary building is demonstrated experimentally. We further identify
dynamical topological transitions, which we discovered in the massive Schwinger
model, as a suitable target for quantum simulators. Defining a gauge-invariant
order parameter, these transitions are shown to persist beyond weak coupling.
In the second part of this thesis, we develop a framework for analyzing quantum
simulators in terms of experimentally accessible irreducible correlation functions
at equal times. We verify this approach numerically for the sine-Gordon model
in thermal equilibrium, quantum simulated by two tunnel-coupled superfluids.
Finally, we apply our analysis to the non-equilibrium dynamics of a spinor Bose gas,
revealing suppressed effective interactions in a strongly-correlated infrared regime.
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Chapter 1

Introduction

1.1 Motivation

Since quantum computers were first envisioned in the early 1980’s [1, 2] the mi-
croscopic control of quantum systems has reached an unprecedented level. This
progress paved the way for the fast-growing field of quantum simulation [3, 4].
By quantum simulation we understand the controlled manipulation of a physical
quantum system with the purpose of emulating another quantum system [4]. While
quantum simulators found their first application in condensed matter physics [5, 6],
the interest in quantum simulations of high-energy physics (HEP) started growing
in the last decade [7–9]. Physical phenomena arising in this context include fermion
pair production [10] or string breaking [11], both occurring in the real-time dynamics
of gauge theories such as quantum electrodynamics (QED) or quantum chromody-
namics (QCD). Difficulties in simulating the quantum dynamics of these theories
motivate the use of quantum devices, which promise to overcome the limitations of
classical computational resources [3, 12]. In recent years, several theoretical propos-
als have been put forward, resulting in the first experimental realizations [13–16] of
quantum simulators for simple small-scale model systems motivated by HEP.

Along the way towards the long-time goal of quantum simulating QCD [17],
a number of open problems need to be resolved. The first theoretical task in any
quantum simulation is the identification of an appropriate experimental platform,
together with a mapping of the target model onto the experimental system. In
this context, the improvement and extension of existing proposals to higher spatial
dimensions and non-abelian gauge groups (see [7–10, 18–30] and references therein),
while retaining experimental feasibility together with the possibility to reach large
system sizes [31], is the key challenge. At the same time, it is necessary to identify
relevant physical scenarios [32, 33] that can be addressed by a quantum simulator,
taking into account experimental limitations and imperfections. Related questions
are how to verify a quantum simulation [34, 35], and in particular, to what extent
does the simulator respect gauge invariance [36, 37]? These questions lead to
the read-out of quantum simulators in general. What observables are accessible
and how to sort the relevant information [38, 39]? This thesis presents our recent
contributions towards resolving these open questions. Specifically, we address the
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quantum simulation of U(1) gauge theories and the analysis of quantum simulators
from a quantum field theory perspective.

1.2 Key concepts

The quantum simulation of HEP is an interdisciplinary field of research, bringing
together different disciplines within physics. In order to bridge this gap, we give
a brief introduction into key concepts relevant for this thesis: quantum simulation,
quantum field theory, and gauge theories.

1.2.1 Quantum simulation

In a digital quantum computation, described by the circuit model [40], one encodes
information in the quantum state of a collection of quantum bits (qubits) as a
superposition of binary bit strings. An arbitrary unitary transformation of this state
may then be realized in terms of elementary operations (universal quantum gates)
acting on a few qubits. While it is indeed possible to simulate any local quantum
system in this way [41], digital quantum simulators are not the main topic of this
work.

Instead, we focus on analog quantum simulators. The basic idea of an analog
quantum simulation is to engineer a synthetic quantum system in a highly controlled
fashion in order to emulate the physics of a target model. This approach is usually
formulated in the Hamiltonian picture as follows [4]. The task is to control an
experimental system described by Hsim such that its Hamiltonian can be directly
mapped to a desired model Htarget,

Htarget ↔ Hsim . (1.1)

Ideally, Eq. (1.1) should be understood as a one-to-one map1 that identifies suitable
degrees of freedom, Hilbert spaces, and the structure of the Hamiltonians on both
sides. In this way, the experimental system describes the same physical content as the
target model. In practice, the mapping (1.1) between target model and simulator is
of course not exact, but relies on approximations. Nevertheless, an analog quantum
simulation can provide important qualitative or even quantitative predictions [34].

The potential of quantum simulators is based on the structure of quantum many-
body systems. In general, the Hilbert space dimension grows exponentially with
the number of degrees of freedom. This fact impedes solutions using an exact diago-
nalization of the Hamiltonian for large systems, for instance in the thermodynamic
limit. Sometimes this curse of dimensionality can be circumvented by quantum
Monte-Carlo methods [42, 43] that solve the quantum many-body problem by effi-
cient sampling from a statistical ensemble. However, these statistical approaches

1Crucially, only relative (energy) scales matter for this mapping such that the huge difference in
absolute scales between, e.g., a high-energy collision and an ultracold atom experiment is unimportant.
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can break down due to so-called sign problems [44, 45], which can occur for instance
in the presence of fermions or in real-time dynamics. Quantum simulators, being
intrinsically of quantum nature, are a priori free of these complications and thus
offer a promising alternative [3].

The platforms employed for quantum simulations range from arrays of trapped
ions [46] over photons [47] and superconducting circuits [48] to ultracold atomic
gases [49]. The choice of platform depends on the desired target model and the
details of its implementation. In this thesis, we focus on quantum simulations based
on ultracold atoms.

1.2.2 Quantum field theory

Quantum field theory (QFT) describes quantum many-body systems in the limit of
infinitely many degrees of freedom. The most profound difference between (few-
body) quantum mechanics and QFT is the concept of renormalization. In a generic
QFT, quantum fluctuations introduce a dependence of coupling parameters g on the
energy scale µ at which the system is observed. This scale-dependence is described
within the renormalization group by beta-functions [50],

β(g) =
dg

d log µ
. (1.2)

If β(g) > 0, the coupling increases with increasing energy scale. Conversely, it
decreases with decreasing energy scale and therefore does not affect the low-energy
physics. Consequently, the coupling is called irrelevant. The situation is reversed
for β(g) < 0 and the coupling is called relevant.

Due to this behavior, the renormalization group provides the modern interpreta-
tion of QFT: A (renormalizable) QFT is determined by a finite number of relevant
couplings (and the corresponding terms in the action or Hamiltonian) whose values
at a given energy scale have to be fixed by an experimental measurement. At the
same time, QFT can be seen as a low-energy effective theory which describes the
universal long-distance behavior (determined by the relevant couplings) that is
independent of the microscopic details (the irrelevant couplings) [51].

The observables of QFT are correlation functions C(n)(x1, . . . , xn), i.e., quantum
expectation values of field operators at different points x1, . . . , xn in space-time. The
way in which these correlators change at large distances between points encodes
the scale-dependence of the QFT. Thus, by measuring correlation functions in a
quantum simulator, it is in principle possible to access this information and to
identify the relevant couplings.

For numerical calculations2, a QFT can be formulated by specifying an action S
with coupling parameters g on a space-time lattice with finite spacing a. Formally, a
provides an ultraviolet (UV) regulator and sets the energy scale µ ∼ 1/a at which

2In fact, this is more than a practicality: The lattice approach provides a definition of QFTs beyond
perturbation theory.
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S with its parameters g is defined. One then calculates correlators according to a
functional integral with a weight determined by S. Finally, one has to reduce awhile
keeping certain values of (renormalized) correlators fixed, such as a physical mass
m [52]. The existence of a continuum limit with finite m means that it is possible to
approach the limit a→ 0 with fixed m by appropriately adjusting the parameters g
according to β(g). In this limit, the correlation length ξ = (ma)−1, which controls the
exponential decay of the correlator C(2)(x, 0) ∼ e−|x|/ξ at large distances, diverges.
In practice, this allows to extract the physical behavior at small but finite a from a
suitable scaling analysis [52].

Throughout this thesis, we employ a Hamiltonian formulation of QFT. While
this choice is less common in the HEP context, it is most convenient for quantum
simulations because we aim to identify an experimental setup with a target model
according to Eq. (1.1). Within this approach, it is also useful to employ a Hamiltonian
lattice regularization where space is discretized but time is kept continuous.

1.2.3 Gauge theories

The concept of symmetries is ubiquitous in theoretical physics. It describes that
certain aspects of a physical model are preserved under transformations described by
a corresponding symmetry group. Most prominent examples include the invariance
of the laws of classical mechanics under spatial translations and rotations. These
global symmetries imply, via Noether’s theorem [53], the conservation of linear and
angular momentum.

A symmetry is called local if the corresponding transformation can act differently
at every point in space-time. Loosely speaking, gauge theories are physical models
with such local symmetries. More precisely, a gauge theory can be defined as a
field theory whose action is gauge invariant, i.e., it remains unchanged under local
transformations specified the gauge group [50]. Among the simplest examples
are U(1) gauge theories, such as QED. Here, a global U(1) symmetry implies the
conservation of an associated charge Q. Gauge invariance further ties local changes
of this charge to the surrounding gauge fields. For example, in electrodynamics the
electric charge density ρ and the corresponding current j are coupled to electric E

and magnetic fields B according to Maxwell’s equations [54].
The framework of lattice gauge theories (LGT) implements the lattice formulation

of QFT while retaining gauge invariance exactly [52, 55]. This formulation provides
a non-perturbative definition of quantum gauge field theories and has proven to
be invaluable for numerical simulations. It is also perfectly suited for quantum
simulators as discussed in this thesis.

In the Hamiltonian formulation of LGTs [56], gauge invariance implies an exten-
sive3 number of conserved quantities described by operators Gn that commute with

3Here we mean extensive in the thermodynamic sense: There exist constraints at every lattice point
n and thus the number of constraints increases linearly with the system size.
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the Hamiltonian H ,

[Gn, H] = 0 . (1.3)

Additionally, the allowed states |phys〉 are restricted to be eigenstates of Gn. These
constraints make a prediction of the resulting dynamics extremely challenging.

1.3 Overview

In this work, we specifically address the quantum simulation of gauge theories and
the analysis of quantum simulators from a QFT perspective. Accordingly, this thesis
is structured in two parts. In the remainder of this introduction, we give a brief
overview over our contributions to the quantum simulation of HEP.

1.3.1 Quantum simulation of gauge theories

The main target model of part I is QED in one spatial dimension, also known as the
massive Schwinger model. This model is one of the simplest theories to describe
charged matter interacting with gauge fields, here electrons and positrons interacting
with an electric field. Sharing certain features with QCD, the massive Schwinger
model has proven to be a valuable toy model for HEP [57].

Implementation of lattice gauge theories with Wilson fermions. In chapter 2, we
describe a detailed proposal [29] to implement the massive Schwinger model with a
mixture of ultracold bosons and fermions trapped in an optical lattice potential. Here,
two hyperfine states of the bosonic and fermionic species are used to implement the
gauge and matter fields, respectively. Following earlier proposals [10, 18], we realize
the gauge-invariant interaction with hetero-nuclear collisions that exchange angular
momentum between the two species. Crucially, these spin-changing collisions (SCC)
conserve the global magnetization, which – by careful engineering of the trapped
mixture – is turned into a local symmetry that furnishes the required U(1) gauge
invariance of QED.

In contrast to earlier proposals, we exploit the possibility to use different lattice
formulations leading to the same continuum theory to improve our setup by using
Wilson fermions. With numerical benchmark simulations, we show that an opti-
mized set of experimental parameters allows to observe the process of Schwinger
pair production, i.e., the creation of electron-positron pairs from the fermionic vac-
uum due to a strong electric field. In particular, we show that the non-perturbative
nature of this effect can be extracted quantitatively from a quantum simulation with
currently available technology.

Realization of a scalable building bock for U(1) gauge theories. The following
chapter 3 extends our proposal by giving up the direct correspondence between
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the lattice sites of the target model and the lattice wells of the simulator. In this
way, the gauge-invariant interaction is isolated in an elementary building block,
which simplifies the experimental realization. An extended U(1) gauge theory can
be realized by connecting multiple building blocks via laser-assisted tunneling,
demonstrating the potential scalability of our approach.

We further describe our recent experiment [16] that realizes a single building
block with bosonic instead of fermionic matter. The faithful representation of this
minimal U(1) gauge theory and its full tunability is demonstrated experimentally,
which we verify by comparison to numerical simulations of the target model includ-
ing experimental imperfections.

Dynamical topological transitions in the massive Schwinger model. The first
part closes with chapter 4, which focuses on an extension of the massive Schwinger
model that includes a so-called topological θ-term. This term originates in the
vacuum structure of the theory and analogous terms also appear for other gauge
theories, in particular QCD in three spatial dimensions. In both cases, the topolog-
ical term breaks combined charge conjugation and parity (CP) symmetry, i.e., the
invariance of the model under a simultaneous reflection of space and the exchange
of positively and negatively charged excitations. Experimental observations indicate
that QCD conserves CP [58], which implies the absence of a θ-term. This puzzle has
been coined the strong CP problem. Its most common resolution [59] involves an
additional hypothetical field (the axion) that leads to a dynamical relaxation of the
θ-term.

Motivated by this solution to the strong CP problem, we study the dynamics
of the massive Schwinger model after a quench of its θ-term [33]. We discover
dynamical topological transitions, which are signaled by an order parameter that
we construct from gauge-invariant time-ordered two-point correlation functions
of the matter fields. These transitions are related to dynamical quantum phase
transitions (DQPT), which have been observed previously in condensed matter
lattice models [60]. Our results show that DQPTs also exist in the continuum limit.
Moreover, our numerical simulations indicate that the transitions persist in the
presence of interactions. Furthermore, these transition can robustly be identified
on small lattices due to their topological origin. Together with their occurrence on
short time-scales, the dynamical topological transitions constitute an ideal target for
quantum simulations of QED.

1.3.2 Analyzing quantum simulators with quantum field theory

The focus of part II lies on the read-out of quantum simulators. We address the
question of how to sort the information that can be extracted by measuring higher-
order correlation functions. To this end, we apply the concept of one-particle
irreducible (1PI) correlators [50], which constitute the building blocks of every QFT.
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Extraction of the instantaneous effective action in equilibrium. In chapter 5, we
first give a detailed review of the different types of correlation functions and the
associated generating functionals which occur in the construction of QFTs. In con-
trast to the standard approach, we employ a formulation [61] based on correlation
functions at equal times, which have become accessible in recent quantum simula-
tion experiments [38]. We show that the measurement of equal-time 1PI correlators,
which are generated by the instantaneous effective action, allows to extract the
momentum-dependence of effective interaction vertices, thereby providing impor-
tant information about the scale-dependence of the underlying QFT.

In thermal equilibrium, we test our approach [39] for the example of the Sine-
Gordon model, a paradigmatic QFT in one spatial dimension. Numerical sim-
ulations exhibit excellent agreement with qualitative and quantitative analytical
expectations, which verifies our method. Additionally, the model is quantum sim-
ulated by two tunnel-coupled superfluids in a proof-of-principle experiment that
confirms the possibility to extract the field theory description of a quantum many-
body system from experimental data.

Extraction of the instantaneous effective action out of equilibrium. The chapter
6 extends the approach developed in the previous chapter and contains a first
application out of equilibrium. Here, the experimental platform is a spin-1 Bose gas
that has recently been employed to quantum simulate the physics of non-thermal
fixed points [62]. The latter are characterized by a self-similar evolution of an
emergent (particle number) distribution function in momentum and time. The
theoretical description of non-thermal fixed points remains challenging as it requires
non-perturbative methods due to strong correlations (large occupations) in the
infrared (IR) regime. Approximate kinetic descriptions [63, 64] suggest that the
dynamics is driven by an effective momentum-dependent interaction vertex.

Our analysis [65] of the non-equilibrium dynamics in terms of equal-time 1PI
correlators indeed reveals a similar qualitative behavior We find a strong suppression
of the 1PI four-vertex in a strongly-correlated IR regime. Additionally, the structure
of this vertex indicates momentum conservation, which signals spatial translation
invariance of the quantum simulation. These results demonstrate the capabilities of
quantum simulators to provide input for improving QFT descriptions of challenging
non-equilibrium situations.

Conclusion. We discuss our results and their relevance for the quantum simulation
of HEP in the concluding chapter 7. In the final section, we give an outlook for
future research directions.

1.3.3 Statement of contribution

The five main chapters of this thesis are based on research articles [16, 29, 33, 39,
65] that are either published or being considered in peer-reviewed journals. Since
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modern physics is a collaborative research effort, I am not the single author of any of
these articles. While none of the discussed experiments were carried out by myself,
I performed most of the theoretical calculations. My personal contributions to the
articles [16, 29, 33, 39, 65] are clearly indicated in the beginning of the corresponding
chapters where I list the contributions of all authors and mark the inclusion of
additional material.
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Part I

Quantum simulation of gauge
theories
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Chapter 2

Implementation of lattice gauge
theories with Wilson fermions

This chapter is based on the article [29] with the figures and large parts of the
text taken from it. The improved implementation based on Wilson fermions was
developed in discussions among all authors (F. Hebenstreit, F. Jendrzejewski, M.
Oberthaler, J. Berges, P. Hauke and myself). While all authors participated in the
writing of the manuscript [29], I made significant contributions to the wording and
structuring of the text. The explicit calculations, i.e., the parameter estimates and
the numerical simulation, were performed by me. In the appendices 2.A and 2.B, I
include additional related material that was not printed in [29].

2.1 Introduction

Even though many proposals to quantum simulate gauge theories exist, there is
yet no experimental realization capable of simulating relevant physical processes,
such as Schwinger pair production of fermions and anti-fermions in the presence of
strong electric fields [66, 67] or string breaking due to confinement [68–70]. Further
progress hinges crucially on efficient implementations, such that present state-
of-the-art experimental resources become sufficient to achieve this goal. In view
of finding optimal implementations, the Nielsen-Ninomiya no-go-theorem [71]
becomes particularly important: it states that it is not possible to discretize relativistic
fermions while retaining the relevant symmetries of the continuum theory. Being
forced to make a choice between discretizations with different symmetry properties,
one should be guided by the requirements of the task at hand, e.g, by conceptual
advantages, numerical efficiency, or – as discussed here – ease of experimental
implementation. So far, however, most proposals for the engineering of quantum
simulators for lattice gauge theories employ one specific discretization procedure
via the so-called staggered fermion formulation [72].

In this chapter, we propose the use of an alternative discretization based on Wil-
son fermions [73]. As discussed below, Wilson fermions have conceptual advantages
over staggered fermions when going to higher dimensions. Moreover, we show
that Wilson fermions can provide a very efficient framework for the experimental
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FIGURE 2.1: Sketch of the proposed implementation of lattice QED in one
spatial dimension. Fermions trapped on the lattice sites (blue circles) are
coupled via a correlated interaction with the Bose condensates residing on the
links (red ellipses). The zoom schematically shows how the gauge-invariant
coupling can be realized via spin-changing collisions between the fermions
(blue) and bosons (orange) in a tilted optical lattice. This process involves two
internal states per species as indicated by the blue and red bars.

implementation of gauge theories using ultracold atoms in optical lattices. As an
example, we discuss QED in 1 + 1 space-time dimensions implemented with a
two-species mixture. Radiofrequency-dressed 6Li atoms act as the fermionic matter,
while small condensates of bosonic 23Na atoms represent the dynamical gauge fields.
Inter-species spin-changing collisions generate the dynamics of an interacting gauge
theory, where local gauge invariance is ensured by angular momentum and energy
conservation, see Fig. 2.1. Strikingly, the use of Wilson fermions enables an imple-
mentation through tilted optical lattices, instead of the more involved superlattices
employed for staggered fermions [11]. We benchmark our proposal by a theoretical
analysis, and show that the non-perturbative onset of Schwinger pair production
may be observed in realistic experimental settings.

Wilson fermions have been considered previously in a cold-atom context for the
quantum simulation of topological insulators [74–76]. In contrast, we are interested
here in the full, interacting quantum theory with dynamical gauge fields.

This chapter is organized as follows. In Sec. 2.2, we present the lattice Hamilto-
nian of Wilson fermions. We show that an optimal choice of parameters significantly
simplifies the resulting setup, and we compare it to the staggered-fermion formula-
tion. In Sec. 2.3, we discuss how the theory is promoted to a gauge theory by the
introduction of dynamical gauge fields. Moreover, we reformulate the gauge theory
to match it with the degrees of freedom available in cold atomic gases and propose
a possible implementation in a Bose-Fermi mixture in an optical lattice. We give
an intuitive interpretation of various processes appearing in the proposed experi-
mental setup, describe the envisioned experimental protocol, and discuss possible



2.2. Wilson fermions 13

limitations. Sections 2.4 and 2.5 give details on the experimental implementation
and the choice of parameters, respectively. In Sec. 2.6, we benchmark the proposed
experiment with the example of the Schwinger mechanism. In particular, we show
that an experiment with realistic parameters may extract the rate of particle–anti-
particle production. Details of the numerical simulation are discussed in Sec. 2.7.
Section 2.8 presents our conclusions.

2.2 Wilson fermions

Before turning to dynamical gauge theories describing the Lorentz-invariant in-
teraction of fermionic matter with gauge bosons, we momentarily drop the gauge
degrees of freedom for clarity. The non-interacting fermion part of the theory is
described in the continuum in d spatial dimensions by the Dirac Hamiltonian

HD =

ˆ
ddxψ†(x)γ0

[
iγj∂j +m

]
ψ(x) , (2.1)

where ψ(x) is a fermionic Dirac spinor with 2d/2 components for d even and 2(d+1)/2

components for d odd. The γ0 and γj denote the gamma matrices in d+1 space-time
dimensions [77] and ∂j is a partial derivative in the spatial direction j = 1, . . . , d.
This Hamiltonian describes the kinetic energy and rest mass m of Dirac fermions
and leads to the dispersion relation of relativistic particles with energy

√
m2 + p2.

2.2.1 The doubling problem

For simulations on classical computers as well as on quantum devices consisting of
sites in optical lattices or arrays of qubits, the continuum theory has to be discretized
on a lattice. In view of quantum simulation, we work here in the Hamiltonian lattice
formalism, with spatial lattice spacing a and continuous real time t.

The simplest discretization of fermions replaces the kinetic energy in Eq. (2.1)
with a nearest-neighbor hopping term. This naive procedure, however, leads to a
discretized model with an additional “doubling symmetry” [78]. Its physical conse-
quence is the appearance of spurious states, where each fermion in the continuum
theory leads to 2d fermion species for d discretized dimensions, see Fig. 2.2. These
additional degrees of freedom affect the extrapolation to the continuum limit such
that the correct continuum results are not recovered.

The Nielsen–Ninomiya no-go-theorem [71] implies that, in order to remove these
doublers, one has to sacrifice at least one of several fundamental characteristics of
the continuum derivative: hermiticity, locality, discrete translational symmetry or
chiral symmetry. The choice which of these characteristics to sacrifice gives room
for various strategies [79], with the staggered fermion [72] and Wilson fermion [80]
prescriptions being among the ones most commonly known.
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FIGURE 2.2: Comparison of the continuum and lattice dispersion relations,
plotted within the first lattice Brillouin zone for lattice spacing a = 0.1/m
and d = 1 spatial dimension. The black, dashed line is the continuum result
given by the Dirac Hamiltonian (2.1), the low-energy behavior of which we
aim at reproducing. Discretizing the continuum kinetic energy by a nearest-
neighbor hopping yields the blue, dashed-dotted dispersion relation, which
has spurious low-energy states. The addition of a Wilson term, see Eq. (2.3),
removes the minima at the edge of the Brillouin zone, and thus effectively
eliminates the fermion doublers (red, solid line; plotted here for r = 1).

2.2.2 Non-interacting Wilson fermions

Wilson fermions sacrifice chiral symmetry to decouple the doublers from the low-
energy degrees of freedom that describe the continuum theory. Despite the lack of
chiral symmetry, relevant real-time phenomena can be efficiently simulated with
Wilson fermions, with accuracy comparable to alternative implementations that
respect chiral symmetry [81].

Wilson fermions can be understood as the addition of a second-order derivative,
which is discretized as

−a
2

ˆ
ddx

∑

j

ψ†(x)γ0∂2
jψ(x)→ −a

2

∑

n

ad


ψ†nγ0

∑

j

ψn+ej − 2ψn + ψn+ej

a2


 .

(2.2)

Here and in the following, the fermionic Dirac spinor ψn is located at lattice site n =

(nj)j=1,...,d and ej denotes a translation by a single site along the spatial direction
j. This so-called Wilson term together with a hermitian discretization of the Dirac
Hamiltonian (2.1) yields the lattice Hamiltonian of Wilson fermions,

HW =
∑

n

adψ†nγ
0

(
m+

d r

a

)
ψn −

ad−1

2

∑

n


ψ†nγ0

∑

j

[
iγj + r

]
ψn+ej + h.c.


 .

(2.3)

The Wilson term is proportional to the lattice spacing a and thus does not contribute
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in the continuum limit a→ 0. Nevertheless, for any a > 0 it suppresses the fermion
doublers as low-energy degrees of freedom, which is illustrated in Fig. 2.2. This
assures the recovery of the relevant continuum theory in the limit a → 0. The
strength of the Wilson term, given by the Wilson parameter r, can be adjusted in
the range 0 < |r| ≤ 1 while still describing the same continuum theory [52]. In
the following, we will exploit this freedom to optimize the implementation in a
cold-atom quantum simulator.

2.2.3 Optimized Hamiltonian

In principle, the matrices iγ0γj + rγ0 in Eq. (2.3) couple all components of the
spinors on neighboring lattice sites. In an optical-lattice implementation, each of
these couplings needs to be realized by a separate hopping process, which in the full
gauge theory discussed below will moreover require the correct interactions with
the gauge fields. With regard to experimental feasibility, it is thus highly desirable
to minimize the number of coupling terms. In view of our application to Schwinger
pair production below, we consider the case of one spatial dimension, d = 1, where
the gamma matrices can be represented with the three Pauli matrices σα, α = x, y, z,

γ0 = σα , γ1 = iσβ , (α 6= β) . (2.4)

In the following, we choose α = x and β = z. In the Hamiltonian (2.3), the second
term then takes a particularly simple form by adjusting the Wilson parameter to
r = 1, such that

γ0 =

(
0 1

1 0

)
, γ1 =

(
i 0

0 −i

)
, iγ0γ1 + rγ0 =

(
0 2

0 0

)
(2.5)

These choices lead to the Hamiltonian

HW =

(
m+

1

a

)∑

n

(
ψ†n,1ψn,2 + h.c.

)
+

1

a

∑

n

(
ψ†n,1ψn+1,2 + h.c.

)
, (2.6)

where we have substituted ψn →
√
a (−1)n ψn and written out the components,

ψn = (ψn,1, ψn,2), which fulfill the anti-commutation relations

{
ψn,α, ψ

†
n′,β

}
= δαβδnn′ . (2.7)

The above choice of the γ-matrix representation and Wilson parameter is optimal in
the sense that only one out of four possible terms that couple neighboring lattice
sites remains.

Though the striking simplicity of (2.6) is special for one spatial dimension, in
higher dimensions one can apply the same strategy of choosing different values of r,
representations of γµ, and canonical transformations to ψn → Cnψn to optimize for
experimental needs.
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FIGURE 2.3: Sketch of a cold-atom implementation of lattice fermions in one
spatial dimension. (a) Optimized Wilson formulation; (b) staggered formula-
tion. The levels (blue) representing fermionic atoms are coupled as indicated
with arrows. The gray curves represent optical potentials. The Hamiltonian of
Wilson fermions (2.6) has a ladder-like structure, which suggests that it can
be implemented in a tilted lattice, while proposals with staggered fermions
based on (2.8) typically require an optical superlattice [11].

2.2.4 Comparison to staggered fermions

It is instructive to compare the above Wilson Hamiltonian to the lattice Hamiltonian
of staggered fermions as it has been used in previous proposals for quantum simula-
tors of lattice gauge theories. Staggered fermions sacrifice the discrete translational
invariance on the lattice. They give a particularly simple formulation in one spatial
dimension, where they enable one to analytically remove the fermion doublers [82].
The Hamiltonian for non-interacting fermions reads in this case

Hst =
∑

n

{
m (−1)n c†ncn − i

2a

[
c†ncn+1 − h.c.

]}
. (2.8)

Here, the Dirac spinor is decomposed onto neighboring lattice sites such that there
is only one fermionic degree of freedom cn living on each site.

In contrast, the Wilson formulation contains two components ψn,1 and ψn,2 at
each lattice site, and thus realizes the same number of degrees of freedom in only
half the space. Moreover, as discussed in the next section, gauge fields enter only on
links connecting different lattice sites, such that Wilson fermions require only about
half the gauge degrees of freedom.

A prominent difference of Eq. (2.8) with respect to the optimized Wilson formu-
lation (2.6) concerns the sign factors appearing in the staggered mass term, which
are also present in the interacting Hamiltonian that takes gauge fields into account.
The experimental realization of the alternating on-site energy typically requires an
optical superlattice [11], while the Wilson formulation suggests a tilted potential as
illustrated in Fig. 2.3. The tilted potential could be less demanding experimentally
and can be used to suppress unwanted tunneling processes as discussed in detail in
Section 2.3.

Moreover, the decoupling of fermion doublers in the staggered formulation is
special to 1 + 1 space-time dimensions [52]. The theory becomes considerably more
involved in higher dimensions where multiple, coupled fermion species have to
be simulated. The resulting theory involves several coupled fermion species called
“tastes”, and the computation of physical observables requires a correction scheme by
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taking roots of the staggered fermion determinant. This “rooting procedure” is some-
times discussed controversially, but in practice many complications come from the
multi-parameter fitting procedures that are required because of (“taste”) symmetry
violations involving the spurious degrees of freedom in staggered formulations [52].

In comparison, the Wilson decoupling of spurious doublers proceeds along
the same lines in one or more spatial dimensions. On the other hand, while the
low-energy sector of staggered fermions produces the correct dispersion relation up
to order a2, the usual Wilson Hamiltonian is only accurate to first order in the lattice
spacing a. Nevertheless, as it has been recently shown, relatively simple (“tree-
level”) improvements enable a remarkably good scaling towards the continuum
limit of relevant real-time processes of QED and QCD in three spatial dimensions [83–
85]. These include not only Schwinger pair production but also, e.g., the important
phenomenon of anomalous currents due to the presence of quantum anomalies
in QED and QCD. The latter depend crucially on the chiral characteristics of the
system, showing that the explicit breaking of chiral symmetry by Wilson fermions is
no fundamental roadblock.

2.2.5 Coupling to gauge fields

The strong potential of Wilson fermions for atomic quantum simulations becomes
fully apparent when considering interacting gauge theories, as we will discuss
now. Prominent examples for interacting gauge theories include QED based on the
Abelian U(1) gauge group, and QCD with underlying non-Abelian SU(3) gauge
group [52].

To illustrate the use of Wilson fermions, we proceed by focusing on the rela-
tively simple example of the gauge group G = U(1) as realized in QED, where the
fermionic matter fields ψn represent single-flavor Dirac spinors. In this case, since
the U(1) gauge group is local, gauge transformations amount to multiplication of
the fermion fields with a potentially site-dependent phase αn,

ψn → ψ′n = eiαnψn . (2.9)

Hopping terms such as ψ†nψn+ej appearing in the non-interacting fermion Hamil-
tonian (2.3) are not invariant under this local gauge transformation for arbitrary
non-constant αn 6= αn+ej .

In the interacting gauge theory, gauge invariance is obtained by coupling to
operators Un,j , which reside on the links between two neighboring lattice sites n

and n + ej , and which transform as

Un,j → U ′n,j = eiαnUn,je
−iαn+ej . (2.10)

The transformations (2.9) and (2.10) can be realized as ψ′n = V †ψnV and U ′n,j =
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V †Un,jV via the unitary operator V = exp [−i/e∑n αnGn] with the hermitian gen-
erator Gn =

∑
j

(
En,j − En−ej ,j

)
− eψ†nψn

1. Here, En,j is the conjugate field to Un,j ,
which fulfills the commutation relation

[En,j , Um,k] = eδjkδn,mUm,k . (2.11)

Gauge invariance corresponds to [Gn, H] = 0. Thus, the full Hilbert space can be
decomposed into sectors corresponding to different eigenvalues qn of Gn, and the
physical Hilbert space is defined by picking a suitable subspace. Physically, the qn
are interpreted as the conserved charges of the group G = U(1), i.e., the electric
charge. The restriction of the accessible Hilbert space to a single eigensector of the
generator Gn is the lattice analogue of the familiar Gauss’ law, which states that the
electric charge is locally conserved, i.e.,∇E = ρ. To fulfill the requirement of gauge
invariance, in the interacting theory the hopping terms in the lattice Hamiltonian
(2.3) are replaced by the combination ψ†nUn,jψn+ej , which couples the dynamics of
the fermions to that of the gauge fields.

The presence of the gauge fields is associated to an energy cost, governed by the
electric Hamiltonian2

HE =
a2−d

2

∑

n,j

E2
n,j . (2.12)

This Hamiltonian is gauge invariant and implements the equations of motion for
U that give rise to the correct continuum limit as a→ 0 [56]. In spatial dimensions
higher than d = 1, the gauge fields also have a magnetic contribution HB , for details
on which we refer to Refs. [56]. In total, we end up with the lattice Hamiltonian of
QED with Wilson fermions as

HQED = HE +HB +
∑

n

ψ†nγ
0
(
m+

r

a

)
ψn (2.13)

− 1

2a

∑

n


ψ†nγ0

∑

j

[
iγj + r

]
Un,jψn+ej + h.c.


 .

As far as the fermion sector is concerned, it is straightforward to generalize
the above construction also to non-Abelian gauge theories. In the fundamental
representation of SU(N), the fermion spinors carry an additional group index and
the link variables require a different formulation, but the structure of the gauge-
matter interactions as given by Eqs. (2.9) and (2.10) remains the same [52]. For

1The definition of Gn is not unique. The sign of e and a possible constant shift are conventions
depending on the definition of the fermionic charge operator (see Eq.s (2.15) and (2.24)).

2The power of a arises from our choice of dimensions, where [E] = [e] = (3− d)/2 in units where
[m] = 1, in contrast to [Ẽ] = (d+ 1)/2 in the continuum. While both choices agree for d = 1, in our
convention the phase α is dimensionless for all d. Similarly, we rescaled ψ to be dimensionless in
contrast to [ψ̃] = d/2 in the continuum.
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staggered fermions, implementations of non-Abelian gauge theories with cold
atoms have been discussed in Refs. [19, 23, 24].

2.3 Cold-atom QED

The lattice gauge theory written in Eq. (2.13) consists of fermions interacting with
gauge fields. We now reformulate the theory in a way that matches the degrees
of freedom available in cold atomic gases, using the simplest case of QED in one
spatial dimension, also known as the massive Schwinger model [86]. In this case,
Eq. (2.13) simplifies due to the absence of the magnetic field term HB and we can
adopt the compact form of Eq. (2.6).

2.3.1 Optimized cold-atom Wilson Hamiltonian

Using the same optimization choices as led to Eq. (2.6), Eq. (2.13) yields the quantum
many-body Hamiltonian

HQED =
∑

n

{
a

2
E2
n +

(
m+

1

a

)
ψ†n

(
0 1

1 0

)
ψn

}
(2.14)

+
1

a

∑

n

{
ψ†n

(
0 1

0 0

)
Unψn+1 + h.c.

}
.

To alleviate notation, we label the gauge fields for d = 1 only with the site to the left,
i.e., En = En,j=1 and analogously for U . Here, n = 1 . . . N is the number of lattice
sites. Thanks to the choices of the previous section, the number of links carrying
the gauge–matter interactions is only half that of staggered fermions for the same
number of quantum simulated fermionic degrees of freedom.

The generators of the gauge transformations are now given by

Gn = En − En−1 + e


1−

∑

α=1,2

ψ†n,αψn,α


 . (2.15)

We choose our physical states from the zero-charge sector Gn|phys〉 = 0.
The remaining procedure is similar to previous implementations with stag-

gered fermions [10, 87]. The commutation relation (2.11), together with the re-
quirements of E being hermitian and U being unitary, can only be fulfilled in an
infinite-dimensional Hilbert space. Since the quantum control of infinitely many
degrees of freedom is in practice impossible, we adopt the so-called quantum link
[88] formalism as a regularization, which replaces the gauge operators on each link
by spin operators,

En → eLz,n , Un → [`(`+ 1)]−1/2 L+,n , (2.16)
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with [Ln,α, Lm,β ] = iδnmεαβγLm,γ , α, β, γ ∈ {x, y, z} and L±,n = Lx,n ± iLy,n. This
regularization leaves gauge invariance and the commutation relation (2.11) intact,
but sacrifices unitarity of the link operators, which now fulfill the commutation
relation

[
Un, U

†
m

]
= 2δnmEm/ [e`(`+ 1)]. Already for small representations of the

quantum spin [89], quantum link models share salient features with QED, such as
confinement and string breaking [23]. Moreover, in the limit of large spins (`→∞),
which we are focusing on, one recovers full QED [10]. Finally, we represent the spin
operators with two Schwinger bosons,

Lz,n =
1

2

(
b†nbn − d†ndn

)
, L+,n = b†ndn , (2.17)

which fulfill the constraint

2` = b†nbn + d†ndn . (2.18)

This yields the final Hamiltonian that may be realized with cold atoms in an optical
lattice,

HCA =
ae2

4

∑

n

(
b†nb
†
nbnbn + d†nd

†
ndndn

)
+

(
m+

1

a

)∑

n

(
ψ†n,1ψn,2 + h.c.

)

+
1

a
√
`(`+ 1)

∑

n

(
ψ†n,1b

†
ndnψn+1,2 + h.c.

)
, (2.19)

where we used thatL2
z,n =

(
b†nbn − `

)2
/2+

(
`− d†ndn

)2
/2 and dropped an irrelevant

constant. As it becomes apparent in this formulation, gauge degrees of freedom
only enter in couplings between matter fields at different sites, but not in the on-site
terms ∼ ψ†n,1ψn,2.

2.3.2 Experimental implementation

We propose to realize the Hamiltonian (2.19) with a Bose-Fermi mixture in a tilted
optical lattice as sketched in Fig. 2.4. Transverse motion is frozen out by a strong
radial confinement, rendering the system effectively one-dimensional. The mixture
is additionally subjected to an optical lattice potential that is attractive (repulsive)
for the fermions (bosons), such that the atomic species are allocated in an alternating
fashion. In the following, we will refer to the positions of the fermions (bosons) as
sites (links). For a sufficiently deep lattice, the atoms will occupy localized Wannier
states, such that tunneling beyond neighboring sites (links) can be neglected. Tilting
the optical potential suppresses this direct tunneling and effectively localizes the
atoms on single sites (links). Moreover, the species are prepared in two selected hy-
perfine states each (denoted by annihilation operators ψ1,n, ψ2,n respectively bn, dn).
The desired dynamics governed by Eq. (2.19) can now be realized by implementing
the following three interactions among these states (angular momentum and energy
conservation ensure that the dynamics accesses no other states [18, 87]).
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FIGURE 2.4: Sketch of the proposed implementation. Fermions and bosons
(blue and red bars, respectively) can occupy two hyperfine states each and
are trapped in a tilted optical lattice potential (gray line). The gauge-invariant
dynamics of 1+1D QED is realized by three processes: (i) local oscillation
between the fermionic species [see Eq. (2.20)]; (ii) local bosonic self-interaction
[see Eq. (2.21)]; (iii) correlated hopping of both species due to spin-changing
collisions [see Eq. (2.22)].

(i) We propose to drive resonant oscillations with Rabi frequency Ω between the
two fermionic states on each site using radiofrequency radiation. This realizes
the second line of Hamiltonian (2.19), i.e., the electron mass plus the on-site
part of the Wilson term,

Ω ↔ m+
1

a
. (2.20)

(ii) We assume 2� Bose condensed atoms on each link. In the trapping poten-
tial, the atomic cloud feels an effective interaction constant gB given by the
scattering length, the boson mass, and overlap integrals over localized Wan-
nier functions, see Eq. (2.48). These interactions set the energy scale for the
simulated electric field, the first line of Hamiltonian (2.19),

gB ↔ ae2

2
. (2.21)

(iii) The gauge-invariant interactions in the third line of Hamiltonian (2.19) are
implemented using spin-changing collisions (SCC) between the fermions
and bosons [18, 22, 87]. For this purpose, one has to choose appropriate
hyperfine states to ensure angular momentum conservation and then apply an
external magnetic field in order to tune the SCC into resonance. These lead to
a correlated hopping of the bosons and fermions with an effective interaction
gBF , see Eq. (2.46). These interactions set the lattice-spacing parameter of the
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quantum-simulated gauge theory,

gBF ↔
1

a
√
`(`+ 1)

. (2.22)

Further details on a possible realization will be discussed in the following section
2.4. Equations (2.20-2.22) define the two relevant dimensionless parameters of the
simulated theory, am and e/m. Note that the value of a is not equivalent to the
optical-lattice spacing alat imposed in the quantum simulator [see Eq. (2.27)].

2.3.3 Interpretation of the cold atom Hamiltonian

The individual processes contributing to Eq. (2.19) permit of physical interpretations
in simplified limits, which are useful to gain some intuition.

Free fermion Hamiltonian

The fermionic part of Hamiltonian (2.19) becomes particularly simple in the absence
of interactions with the gauge fields. Referring to the single-particle states of ψn,1 and
ψn,2 as |↑〉n and |↓〉n, respectively, we start by considering the local, purely fermionic
part in the second line of (2.19), which dominates in the heavy-mass limit m→∞.
It is diagonal in the basis |←〉n = 1√

2
(|↑〉n − |↓〉n) and |→〉n = 1√

2
(|↑〉n + |↓〉n), with

eigenvalues −m and +m, respectively. In this basis the local fermionic Hilbert space
is given by

Hn = {|0←0→〉n, |1←0→〉n, |0←1→〉n, |1←1→〉n} , (2.23)

where |j→k←〉n denotes a state with j fermions in the state |→〉n and k fermions in
|←〉n. We can therefore identify the fermionic vacuum and electron/positron states
according to

vacuum (“Dirac sea”) : |Ω〉n ↔ |1←0→〉n , (2.24a)

electron : |e−〉n ↔ |1←1→〉n , (2.24b)

positron : |e+〉n ↔ |0←0→〉n , (2.24c)

electron + positron : |e−e+〉n ↔ |0←1→〉n . (2.24d)

Intuitively, an electron corresponds to the presence of a fermion in |→〉n, while a
positron corresponds to the absence of a fermion in |←〉n.

For a finite fermion mass m, we have to take into account the fermionic hopping
terms in (2.19). The decomposition of the vacuum state into the local fermionic
states is then formally given by a Slater determinant involving all lattice sites.
In this case, it is more convenient to describe the quantum system in terms of
correlation functions. In absence of interactions with the gauge field, the matter
fields form a free theory. An initial vacuum of non-interacting fermions can thus
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be completely described in terms of the equal-time statistical propagators Fαβmn =
1
2

〈[
ψm,α, ψ

†
n,β

]〉
. In momentum space, this non-interacting vacuum is characterized

by the correlations (cf. section 2.7)

F 11
kk = 0 , F 22

kk = 0 , F 21
kk =

ωk
2zk

(2.25)

and Fαβkk′ = 0 for k 6= k′. Here, zk = m + 1
a

(
1 + exp

(
2πik
N

))
and the dispersion

ωk = |zk|, k = 0, 1, . . . , N − 1.

Gauge-field energy

In the experiment, the gauge part corresponds to an array of trapped spinor BECs
in two hyperfine states. For the semi-classical limit of large occupation numbers,
every local BEC can be pictured by a collective spin Bloch sphere. According
to the replacements (2.16) and (2.17) the simulated electric field corresponds to
an occupation imbalance between the two states, i.e., En/e ↔ 1/2

(
b†nbn − d†ndn

)
.

Consequently it can be associated with the azimuthal angle measuring the distance
from the equator of the Bloch sphere. Thus, the electric energy, which arises from the
bosonic self-interactions in Eq. (2.19) corresponds to the so-called one-axis twisting
Hamiltonian [90]. This clarifies the contribution from (2.21): It generates a rotation of
the polar angle, whose frequency depends on the azimuthal angle. This corresponds
to a phase rotation of Un ↔ [`(`+ 1)]−1/2 b†ndn in the gauge theory. However, this
simple dynamics that happens locally on every link is modified by the correlated
hopping of bosons and fermions.

Correlated hopping

In the heavy-mass limit underlying the identifications of equation (2.24), one can
also easily visualize the effect of the correlated hopping (2.22). For example, the
elementary process for the local production of a single e+e− pair is composed of the
hopping and simultaneous flipping of a single (fermionic) spin from one site to the
next, while decreasing the (bosonic) imbalance on the link joining the two sites.

As for the free-fermion part discussed above, the simplified interpretation in
terms of local single-particle states is convenient to gain a basic understanding of
the cold-atom system, but in order to describe the full complexity of the many-
particle quantum dynamics it becomes necessary to consider many-body correlation
functions. Indeed, for a finite fermion mass, pair production happens non-locally
and can only be detected by measuring correlation functions. In fact, even the
concept of a particle is ill-defined in the generic interacting non-equilibrium situation
[91]. As a measure for the total fermion particle number density n = 1

L

∑
k ñk, we

employ a typical definition following from the instantaneous diagonalization of the
purely fermionic contribution to the full Hamiltonian. Then, n can be expressed in
terms of the energy density ε̃k, which is a function of the statistical propagator, and
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the dispersion ω̃k,

ñk =
ε̃k
ω̃k

+ 1 , ε̃k = −
(
z̃kF

21
kk +

[
z̃kF

21
kk

]∗)
, (2.26)

where the tilde indicates that all quantities have to be calculated on the background
of the gauge fields.

2.3.4 Experimental limitations

There are a number of experimental limitations that set bounds on the implementa-
tion of (2.19). In realistic conditions, the number of bosons on each link will fluctuate
around the target value 2` in a range in the order of

√
2`/ (2`). One may interpret

this as disorder on the hopping terms between sites. In the weak-coupling regimes
accessible to our benchmarking calculations, one may estimate the resulting local-
ization lengths by diagonalizing the free-fermion Hamiltonian. For the occupation
numbers that we aim at, the relative disorder strength will be on the percent level,
resulting in localization lengths that are purely finite-size limited for realistic system
sizes of few tens of sites. Thus, while it is an interesting perspective to study the
effect of this disorder in large systems and strong coupling, for early experiments it
is negligible compared to other error sources. Another error source derives from
nearest-neighbor elastic scattering between the species. As we argue below in sec-
tion 2.4, for weak coupling its effect on the dynamics is negligible, though it may
have a quantitative influence at strong coupling. Nevertheless, these terms are
gauge invariant, so that the result will remain a valid U(1) gauge theory.

Stronger restrictions come from several experimental imperfections. The most
important ones limit the accessible time-scales in the experiment as summarized in
the following, and discussed in detail in the sections 2.4 and 2.5.

First of all, we have replaced the gauge fields by finite spin operators (2.16). To
quantitatively approach QED predictions, we would thus like to employ BECs with
large atom numbers corresponding to `→∞. The large boson density will lead to
considerable three-body losses [92], which depend on the precise lattice structure.
These losses set a limiting time T3 for the validity of the quantum simulation.

A second restriction comes from the need to suppress direct hopping terms of
the two species and to conserve the boson number locally on each link to ensure the
constraint (2.18). Wilson fermions naturally favor a tilted lattice, which conveniently
suppresses direct tunneling. On the downside, the tilt renders states localized on
single lattice sites unstable [93]. After a time TLZ , they decay due to Landau-Zener
transitions, which is the second main limitation of our proposed setup.

Finally, experiments will implement a set of lattice QED parameters a,m, e with
a resulting Brillouin zone of finite size ∼ 1/a. Since we are interested in Schwinger
pair production in strong electric fields, the creation and subsequent acceleration of
particles becomes unphysical when the energy of these particles reaches the cutoff
∼ 1/a. This gives a third time-scale Tlat that limits the accessible dynamics.
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An experimental implementation will have to carefully balance between these
different imperfections. Nevertheless, as we will show in the remainder of this
chapter, the observation of relevant phenomena is achievable in state-of-the art
experiments. Moreover, T3 and Tlat can be mitigated if we do not require quantitative
agreement with continuum QED. For any finite a, the experiment will implement
a valid lattice gauge theory. Similarly, by settling for finite representations l <∞,
one implements quantum links models, which are valid gauge theories in their own
right. Already for extremely small representations, these share the most salient
qualitative features with usual QED, such as string-breaking dynamics [11].

2.4 Details of the experimental implementation

As outlined above, we propose to implement (2.19) with a mixture of fermions and
bosons trapped in an optical lattice. In the following, we discuss some details and
subtleties that arise in this implementation. Though we keep the discussion general,
when giving numerical estimates we assume a mixture of fermionic 6Li and bosonic
23Na. For the most part, we assume transverse degrees of freedom to be frozen out
and consider the mixture to be effectively one-dimensional.

2.4.1 Single-particle Hamiltonian

In accordance with the structure of Wilson fermions (see Fig. 2.3), we propose to
employ a tilted optical lattice of the form

V (lat)
χ (x) = Fχx+




Vχ cos2

(
πx
alat

)
, χ = B

Vχ sin2
(
πx
alat

)
, χ = F

, (2.27)

where the species index χ = F,B refers to either fermions on the lattice sites or
bosons on the links. The depth Vχ, the spacing alat, and the tilt strength Fχ of
the optical lattice may be tuned independently. Additionally, we apply a constant
magnetic field B perpendicular to the x-direction, which we assume to give rise to a
linear Zeeman shift,

V (Z)
χ,s = −mχ,sg

(B)
χ,sµBB . (2.28)

Here, s =↑, ↓ denotes the selected two hyperfine states for each species to which the
relevant dynamics of the system is restricted; mχ,s is the corresponding magnetic
quantum number, µB denotes the Bohr magneton, and g

(B)
χ,s is the Landé g-factor.

Neglecting interactions for a moment, the quadratic part of the full Hamiltonian is
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given by

H0 =
∑

χ,s

ˆ
dx χ†s(x)H0(χ, s)χs(x) (2.29)

H0(χ, s) = −~2∂2
x

2Mχ
+ V (lat)

χ (x) + V (Z)
χ,s , (2.30)

where Mχ is the atomic mass and we assumed the lattice potential to be species-
dependent, but the same for different hyperfine states. The fields, which we denote
by χs, obey canonical commutation or anti-commutation relations according to their
statistics, i.e.,

[
χs(x), χ†r(y)

]
ζ(χ)

= δ(x− y) , (2.31)

where we abbreviate [X,Y ]± = XY ± Y X with ζ(B) = − and ζ(F ) = +.

2.4.2 Suppression of direct tunneling in a tilted lattice

Additionally to its matching the natural structure of Wilson fermions, we employ
the tilt to suppress direct tunneling of the fermions. This is crucial to ensure gauge
invariance, because the fermions must only hop between different lattice sites due
to interactions with the bosons. In the untilted case (Fχ = 0), the one-particle Bloch
waves for the potential in Eq. (2.30) without external magnetic field (B = 0) are
Mathieu functions. In this case, the ground band has the dispersion relation

εχ(k) =
ωχ
2
− 2Jχ cos(kalat) , k ∈

[
− π

alat
,
π

alat

)
, (2.32)

with the mean energy ωχ = 2
√
VχErec,χ. Here Erec,χ = ~2/

[
2Mχ(alat/π)2

]
is the

recoil energy and the ratio ξχ = 2
√
Vχ/Erec,χ controls the lattice depth. In the limit

of a deep lattice (ξχ � 1) the hopping element is given by

Jχ =

√
2

π
Erec,χ (ξχ)3/2 e−ξχ [1 +O(1/ξχ)] , (2.33)

which can be obtained exactly from analytic properties of the Mathieu functions.
We can suppress direct tunneling for both species by choosing a sufficiently

strong tilt, i.e.,

alatFχ � Jχ . (2.34)

In the presence of the tilt, the states in the ground band are modified into resonances
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of a Wannier-Stark ladder (for more details see the appendix 2.A). Including non-
vanishing B 6= 0, the energy levels are

EF,s(l) =
1

2
ωF + lalatFF −mF,sg

(B)
F,sµBB , (2.35)

EB,s(l) =
1

2
ωB +

(
l +

1

2

)
alatFB −mB,sg

(B)
B,sµBB . (2.36)

The states of the Wannier-Stark ladder have a finite lifetime which can be esti-
mated from the decay rate Γχ due to Landau-Zener transitions (for more details see
the appendices 2.A and 2.B).

Γχ =
alatFχ
2π~

exp

(
−

π2∆2
χ

8EχalatFχ

)
≤ alatFχ

2π~
, (2.37)

where ∆χ ≈ ωχ is the gap between the ground band and the first excited band. This
lifetime is one of the relevant experimental restrictions.

2.4.3 Choice of the magnetic field

Under the above condition (2.34), we may neglect direct tunneling. The quadratic
part (2.29) of the full Hamiltonian then amounts to a Wannier-Stark ladder of long-
lived resonances. These are coupled by a correlated hopping of the fermions and
bosons as in Ref. [87], which induces the gauge-invariant matter–gauge-field inter-
action. For this purpose, the spin-changing collisions for the chosen hyperfine levels
s =↑, ↓ need to be tuned into resonance, i.e., we demand

EF↑ (l)− EF↓ (l + 1)
!

= EB↑ (l)− EB↓ (l) ∀l . (2.38)

If the two components ↑, ↓ are chosen from the same hyperfine manifold for each
species, the g-factors are spin-independent, g(B)

χ,s = g
(B)
χ . Then the resonance condi-

tions can be rewritten as

alatFF
µBB

!
= g

(B)
B ∆

(B)
B − g(B)

F ∆
(B)
F , (2.39)

where we introduced the abbreviation ∆
(B)
χ = mχ↑ −mχ↓.

For a mixture of bosonic 23Na and fermionic 6Li, respectively, we choose the
following levels from the ground hyperfine manifold:

mB↑ = 0 , mB↓ = −1 , mF↑ =
1

2
, mF↓ = −1

2
. (2.40)

The corresponding Landé factors are g(B)
F = −2

3 and g(B)
B = −1

2 .
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2.4.4 Effective interaction constants from overlap integrals in the tilted
lattice

In order to match the coefficients of Hamiltonian (2.19) with experimental param-
eters, we need to calculate overlap integrals involving Wannier-Stark functions
Ψl,χ(x). In our case, they are built from the Wannier functions ψl,χ(x) located at
lattice sites (respectively links) l = 1 . . . N of the untilted lattice. The Wannier-Stark
functions can be written as superpositions (see the appendix 2.A)

Ψl,χ(x) =
∑

m

Jm−l
(

2Jχ
alatFχ

)
ψm,χ(x) , (2.41)

where Jm(. . . ) denote Bessel functions of the first kind. We only consider the
ground band here. For sufficiently deep lattices, to estimate the relevant overlap
integrals, we may approximate the Wannier functions appearing in the series (2.41)
as harmonic oscillator eigenfunctions,

ψl,χ(x) =
(
πaHO

χ

)−1/4
exp

[
−1

2

(
x− xl,χ
aHO
χ

)2
]
, (2.42)

where xl,χ denote the minima of the tilted potentials and the harmonic oscillator
lengths should be determined from a Taylor expansion of the tilted potentials around
their minima. The minima are shifted from the untilted case to the positions

xl,B =

(
l +

1

2

)
alat − δB , xl,F = lalat − δF , (2.43)

δχ =
alat

2π
arcsin

(
alatFχ
πVχ

)
≈ alat

2π

alatFχ
πVχ

. (2.44)

The oscillator length, aHO
χ =

√
~/
(
mχωHO

χ

)
, is determined from the condition

mχ

(
ωHO
χ

)2 !
= 2Vχ

(
π

alat

)2
√

1−
(
alatFχ
πVχ

)2

. (2.45)

Using the approximation (2.42), we can calculate the effective interaction con-
stants that enter the quantum simulation. For clarity, we first present estimates based
on single-particle wavefunctions. For the bosonic condensates, we subsequently use
a more appropriate estimate to take their high occupation into account.

The effective boson-fermion inter-species interaction generating the matter-field
hopping is given by the 3D overlap integral

gBF =
g

(3D)
BF

2

ˆ
dx dy dz |ΦB(y, z)|2 |ΦF (y, z)|2 (Ψl+1,F (x))∗ |Ψl,B(x)|2 Ψl,F (x) ,

(2.46)
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where g
(3D)
BF =

(√
2/3
)

2π~2aBF /Mred is the relevant three-dimensional interac-
tion constant with scattering length aBF ≈ 0.9a0 and the reduced mass Mred =

MFMB/ (MF +MB). The Clebsch-Gordon coefficient
√

2/3 is the same as for the
previous proposal [87]. For simplicity, we assume a symmetrically harmonic trans-
verse confinement with the same trapping frequency ω⊥ for B and F , i.e.,

Φχ(y, z) =
(
πa2
⊥,χ
)−1/2

exp

(
−y

2 + z2

2a2
⊥,χ

)
(2.47)

and a⊥,χ =
√
~/ (Mχω⊥) .

Furthermore, we need to calculate the effective bosonic intra-species interaction

gB =
g

(3D)
B

2

ˆ
dx dy dz |ΦB(y, z)|4 |Ψl,B(x)|4 , (2.48)

where g(3D)
B = (1/6) 4π~2aB/MB is the relevant interaction strength with aB ≈ 5a0.

For the Clebsch-Gordon coefficient, we again refer to [87]. At the large boson
occupation numbers that we are interested in, the effective interaction constant
is modified due to deviations of the bosonic wave-function from the harmonic-
oscillator shape. In a first approximation, we may treat this effect in a Thomas-Fermi
(TF) limit, i.e., we consider the bosonic mean-field wavefunction as

ΦTF(x) =

√
µ̃

g̃

[
1− x2

x2
TF

]
Θ (|x| − xTF) (2.49)

with the TF radius xTF =

√
2µ̃/

[
MB

(
ωHO
B

)2] and the effective chemical potential µ̃

is determined by the number of bosons on each link as NB = 4xTFµ̃/ (3g̃). Thus, in
terms of the experimental parameters,

xTF =





4VB
3g̃NB

(π
a

)2

√
1−

(
alatFB
πVB

)2




−1/3

, (2.50)

where g̃ is the effective 1D inter-bosonic coupling given by

g̃ =
g

(3D)
B

2

ˆ
dy dz |ΦB(y, z)|4 . (2.51)

Due to the vastly different trapping frequencies (few Hz compared to several kHz,
see below), it is justified to treat the bosons in the radial direction in the harmonic
approximation, while taking into account the TF profile in the longitudinal direction.
The results of the following sections are obtained with the effective interaction
constants calculated within this approximation.
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2.4.5 Other scattering processes

So far, we have only related the effective interaction constants of the desired interac-
tions to the microscopic properties of the Bose-Fermi mixture. In this subsection, we
briefly discuss possible other scattering processes.

In general, all on-site or nearest-neighbor, both of density-density and spin-spin
type, inter- and intra-species interactions could be as relevant as the desired spin-
changing collision (2.22). Due to a judicious choice of the magnetic field together
with the tilted lattice as described above only the SCCs are resonant and all other
inelastic processes are presumably suppressed. We therefore restrict ourselves to
elastic collisions. Since these do not change the local occupation numbers of either
species, the corresponding contributions all commute with the Gauss’ law operator
and hence do not spoil gauge-invariance of the quantum simulator. The leading
purely bosonic contribution comes from on-site interactions that have already been
taken into account and set the energy scale for the simulated electric field (2.21).

In addition, density-density interactions between the two species on neighboring
sites give rise to a term like

∼
∑

n



(
b†nbn + d†ndn

) ∑

α=1,2

(
ψ†n,αψn,α + ψ†n+1,αψn+1,α

)

 . (2.52)

For an appropriate initial state preparation that respects the constraint (2.18), the
above term reduces to the total fermion particle number (which is conserved) and
thus does not affect the dynamics.

Nearest-neighbor spin-spin interactions on the other hand lead to the contribu-
tion

∼
∑

n

(
d†n−1dn−1 + d†ndn

)(
ψ†n,1ψn,1 − ψ†n,2ψn,2

)
(2.53)

=
∑

n

(
2`− En−1 + En

e

)(
ψ†n,1ψn,1 − ψ†n,2ψn,2

)
, (2.54)

where we used the definitions (2.16) & (2.17), as well as the constraint (2.18). The
term proportional to ` only affects the resonance condition (2.39) and can be absorbed
into a redefinition of the energy levels (2.38). For the real-time dynamics considered
in this work, it is useful to further define En ≡ E

(0)
n + δEn, where E(0)

n = 〈En(t =

0)〉 & m2

e is the initial value of the electric field. Absorbing also E
(0)
n into the

energy levels (2.38), we parametrically estimate that the above contribution does
not alter the dynamics as long as 〈δEn〉 � m2

e . This argument is most accurate in the
weak-coupling limit, where

(
m
e

)2 � 1. In fact, for our benchmarking simulations
the condition is fulfilled for all times shown below in figures 2.9 & 2.7. We can
therefore neglect it for the proposed experiment that may extract the Schwinger
pair production rate as shown in figure 2.8. For the case of strong coupling, which
we are ultimately interested in, these elastic inter-species spin-spin interactions
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will however quantitatively change the behavior in general. We want to stress that
the resulting theory will nevertheless be a fully interacting dynamical U(1) gauge
theory.

Finally, we note that for a general choice of fermion species, purely fermionic
on-site interactions can yield unwanted effects. However, for the present choice
of Lithium, these are absent due to a zero of the relevant scattering length at low
magnetic fields [94].

2.4.6 Three-body losses

One of the leading limitations of our proposal is the instability of the local BECs
due to three-body collisions. On a mean-field level, these three-body losses may be
modeled as

ṄB

NB
= −K3

NB

ˆ
dx dy dz |ψB(x, y, z)|6 , (2.55)

with the total particle number per link NB =
´

dx dy dz |ψB(x, y, z)|2 and the
species-dependent constant K3, commonly referred to as the three-body loss rate
coefficient. We estimate the typical time-scale for three-body losses, T3, as the inverse
of the right-hand side of equation (2.55). Demanding this time to be much larger
than any other time scale in the experiment sets a limit on the boson particle number
NB per link.

2.5 Choice of experimental parameters

In the implementation proposed above, several imperfections arise that limit accessi-
ble time scales. In this section, we discuss the main limitations and an optimization
procedure to maximize the time simulatable in the experiment.

2.5.1 Experimental limitations

A first limitation appears through the three-body loss time of the bosonic conden-
sates, T3. Second, the localized Wannier-Stark states in the tilted periodic potential
have a finite life-time. For the choice of a mixture between 6Li and 23Na, due to the
smaller mass of the fermionic atoms the limiting factor will be the fermion life time,
which we denote by TLZ . Third, the proposed lattice QED implementation will have
a finite lattice spacing a. Deviations from the continuum limit will appear at a time
scale Tlat, which is defined below.

One can balance between these three effects by adapting the following experi-
mental parameters:

1. The number of bosons per link NB ,

2. the number of lattice sites N ,
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3. the optical lattice spacing alat,

4. the lattice depth Vχ,

5. the radial confinement ω⊥,χ,

6. the tilt of the lattice alatFχ.

Allowing different parameters for the bosons and fermions, the three time-scales
depend on 9 different experimental parameters. We are looking for a set of parame-
ters for which the minimum of (T3, TLZ , Tlat) becomes maximal. This optimization
is constrained by experimental restrictions, for instance the achievable number of
lattice sites.

In addition, each parameter set corresponds to two dimensionless parameters on
the lattice QED side, namely the lattice spacing am and the coupling constant e/m
in units of the fermion mass m. We wish to obtain relevant results for continuum
QED and thus seek small values of am . 1. On the other hand, we want to perform
benchmarking simulations employing an approximation which relies on e/m < 1.
These different desiderata generate a rather complicated optimization problem.

2.5.2 Simplified optimization procedure

Relying on physical intuition, we simplify the problem by considering the limiting
time-scales as a function of alat in the range 5 − 10 µm. Since one of the main
complications consists of realizing strong spin-changing collisions, we choose rather
shallow lattices, VB = 2Erec,B and VF = Erec,F and fix the tilts alatFχ = 10Jχ such
that direct tunneling in the shallow lattice is suppressed. We further fix a strong
radial confinement ω⊥,χ = 2π × 10 kHz that renders the system effectively one-
dimensional. Now we can tune NB , such that T3 and TLZ lie approximately in the
same range. We choose NB = 3000, i.e., ` = 1500, which is sufficiently large for
the quantum link regularization to approximate QED. Finally, the total number of
lattice sites is irrelevant for the determination of three time-scales, but enters as the
IR-cutoff after having determined the simulation parameter am. We will come back
to this point later.

We can now calculate the effective bosonic interaction constant (gB) and the ef-
fective interaction constant for correlated hopping between the fermions and bosons
(gBF ) as functions of alat. Finally, we may adjust the local oscillation frequency be-
tween the two fermionic states (Ω). Then, we can make the connection to lattice QED
according to Eqs. (2.20), (2.21), and (2.22). On the QED side, we choose to measure
energies and times in units of m, which in experimental parameters corresponds
to m ↔ Ω − 2

√
`(`+ 1)gB . As a bound for the validity of the lattice simulation,

we take Tlatm = 2π/ (am), which is the time when the momentum plat = eETlat of
particles accelerated by a constant electric field E = m2/e reaches the cutoff ∼ 2π/a.
Within this framework, we consider a two-step procedure choosing first alat and
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FIGURE 2.5: The limiting time-scales T3(alat) (blue, solid), TLZ(alat) (red,
dashed), and Tlat(alat,Ω) (green, dotted; top to bottom for Ω = 2π × 4− 7Hz
in steps of 0.5Hz). An optimal choice of experimental parameters maximizes
the minimum of these three time scales, conditioned on the desired set of
simulation parameters, see 2.6. Note the logarithmic scale of the ordinate.

FIGURE 2.6: Dimensionless parameters entering the lattice QED simulation,
am (Ω) (red diamonds, dashed), and e/m (Ω) (blue squares, dotted). The
horizontal gray dashed-dotted line indicates the limiting unity. The inverse
behavior favors strong coupling at small lattice spacing.

subsequently Ω in order to optimize the functions T3(alat), TLZ(alat) and Tlat(alat,Ω),
am(alat,Ω), e/m(alat,Ω).

Figure 2.5 shows the limiting time-scales for different values of Ω in the range
of 2π × (4 − 7)Hz. As this plot shows, large values of alat are favorable if we
adjust Ω accordingly. Consequently, we choose a rather large alat = 10µm and
plot the remaining Ω dependence of the lattice QED parameters in Fig. 2.6. The
observed converse behavior of am and e/m restrains us from choosing an arbitrarily
small lattice spacing a for the benchmarking simulations. Note that this should
not be seen as a problem of the implementation, but rather getting close to the
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continuum limit means studying the strong-coupling regime of QED3. This regime
is notoriously difficult for numerical simulations and thus a non-trivial target for
quantum simulation. For benchmarking, however, we choose the following two
possibilities:

Ω = 2π × 4.5 Hz : am = 0.45 , e/m = 0.45 (2.56)

Ω = 2π × 6 Hz : am = 0.94 , e/m = 0.22 (2.57)

Finally, we choose the number of lattice sites to be N = 20, which corresponds to
a reasonable size of the optical lattice. The corresponding IR-cutoff on the QED
side in units of the fermion mass is given by 1/ (N × am) ∼ O(0.1). Thus, we
should be able to resolve sufficiently many modes at small momenta to observe the
phenomenon of Schwinger pair production.

2.6 Benchmark: Onset of Schwinger pair production

Having shown how to use Wilson fermions in order to realize a particularly compact
formulation of 1+1D QED in optical lattices, we now turn to making quantitative
predictions for the proposed experimental realization. To this end, we perform
numerical simulations of an important effect that occurs in 1+1D QED: pair produc-
tion via the Schwinger mechanism [66, 67]. The mechanism describes how a strong
external electric field transfers energy to vacuum fluctuations and turns them into
pairs of real particles and anti-particles. In the present case of 1+1 dimensions, one
can analytically compute the particle-production rate in the continuum

ṅ

m2
=

E

πEc
exp

(
−πEc

E

)
, (2.58)

which is valid for a constant background field that was turned on in the infinite past
[67] (see appendix 2.B for a heuristic derivation). Most importantly, the exponential
factor induces a dramatic increase of particle production above a critical field Ec =

m2/e. In this regime, the particle production is non-perturbative and thus constitutes
an excellent non-trivial target for quantum simulation. Moreover, there is no known
analytic prediction for the fully interacting theory including the back-reaction of the
produced particles onto the gauge fields [91].

In the following, we show that the proposed implementation strategy, using a
mixture of fermionic 6Li and bosonic 23Na based on current technology, allows one
to simulate the Schwinger mechanism and the non-perturbative particle-production
rate. For benchmarking purposes, we consider the limit of weak gauge coupling,
where powerful functional-integral methods provide quantitatively reliable results
[95, 96]. Beyond this weak-coupling benchmark regime, the experiment should

3Here, we are referring to the bare parameters am and e/m. Approaching the correct continuum
limit is more subtle in general since it requires to adjust the bare coupling parameters as briefly
discussed in the introduction.
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be able to proceed also into the regime of strong coupling, where these functional-
integral methods are expected to fail. Details of the simulation procedure are
summarized in the following section 2.7.

2.6.1 Proposed experimental protocol

To quantum simulate the Schwinger mechanism, we propose the following experi-
mental protocol. First, the bosonic and fermionic atoms are loaded into the tilted op-
tical lattice structure. At sufficiently low temperatures, we will have single fermions
per lattice site in the state |↓〉n and single-component condensates with average
particle number 〈d†ndn〉 on the links. Initially, the imbalance δNn = 〈b†nbn − d†ndn〉 of
the two hyperfine states, which defines the electric field as discussed in section 2.3.3,
is tuned to δNn = 0. This can be achieved with a linear coupling between the two
states, e.g., via radiofrequency radiation. This initial state, where the electric field is
prepared in a product of coherent states, is only approximately restricted to a single
gauge sector. However, as it has been shown numerically [95], in the limit of large
boson number and for the present scenario the small fluctuations of the electric field
are too insignificant to compromise the gauge-invariant dynamics.

As described in the previous section, in the heavy-mass limit, the fermionic
vacuum is given by the local superpositions |←〉n = 1√

2
(|↑〉n − |↓〉n). This state

can be easily generated from a polarized gas by a π/2 radiofrequency pulse (with
a phase shift of π/2 with respect to the radiofrequency pulse ∝ Ω that drives the
dynamics). Together with the gauge fields, this realizes the ground state at infinite
fermion mass. Alternatively, one may adiabatically prepare the ground state at a
finite value of the fermion rest mass, e.g., by adiabatically ramping down the optical
lattice such that the correlated hopping is gradually turned on.

With either choice of the fermion initial state, the dynamics can be started by
quenching the bosonic imbalance δNn from zero to a desired initial electric field. For
the experimentally less demanding case of the infinite-mass ground state, this will
realize a combination of the targeted Schwinger mechanism with a mass quench
from infinity to a desired, finite value. Below, we demonstrate that both initialization
procedures yield comparable results for the particle production rate, at least for the
parameter regimes studied in this work (i.e., weak coupling and relatively coarse
lattices).

After the initialization procedure, the system evolves for a desired time under
Hamiltonian (2.19), after which we extract the relevant observables. In particular,
we are interested in the volume-averaged electric field and the total fermion particle
number. The first is easily achieved by reading out the bosonic imbalance via
standard absorption imaging. Current experimental techniques allow for single-site
resolution, such that one can also access the local electric fields and their spatial
correlations.
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The total fermion particle number can be measured in a number of ways. First,
the definition of the particle number given in Eq. (2.26) can be measured by adia-
batically transferring the system to the limit of infinite mass by increasing Ω, see
Eq. (2.20). A subsequent π/2 radiofrequency pulse around the y axis on the fermion
Bloch sphere maps fermions in the upper (lower) band onto the pseudo-spin state
|↑〉 (|↓〉). Through a Stern-Gerlach measurement, one can thus detect the produced
particle–anti-particle pairs. In addition, their momentum dependence can be re-
solved by time-of-flight imaging. Since the increase of m amounts to an increase of
the critical field Ec = m2/e, this scheme effectively turns the Schwinger mechanism
off smoothly, in a similar spirit as for the so-called Sauter pulses that are often
used to model the Schwinger mechanism in time-dependent (classical) background
fields [91]. Second, one can map out the full band structure by adapting the to-
mography scheme developed in Ref. [97] and first demonstrated experimentally
in Ref. [98]. The particle number is obtained by comparison to the tomography
for the ground state at the mass parameter targeted in the dynamics. Third, the
full information about the fermionic part of the theory can be reconstructed by
measuring spin-dependent and spatially resolved fermion correlation functions,
either via quantum-gas microscopy [99–101] or, since we are interested in the spatial
continuum limit, on coarse grained length scales larger than the lattice spacing.

2.6.2 Simulated real-time dynamics of fermion density and electric field

While lattice-QED has only two free parameters am and e/m, one can change
various ingredients on the experimental side. Different choices can drastically affect
the various time scales governing the quantum simulator. Following the simple
optimization procedure discussed in 2.5, we focus on two examples of realistic
parameter sets, which translate to

(i): am = 0.45 , e/m = 0.45 , E0/Ec = 7 .

(ii): am = 0.94 , e/m = 0.22 , E0/Ec = 3 ,

As these values illustrate, if working at finer lattice spacing am, experimental re-
strictions of the present proposal require an increase of the coupling e/m. This
combination limits the numerical technique employed here to coarse lattices, as it is
quantitatively reliable only at small e/m. However, in the experiment it will allow
one to reach exactly the most interesting regime, namely close to the continuum
limit and with strong coupling.

Since the results for these parameter sets are qualitatively very similar, we
discuss in the following only the set (i) (Fig. 2.7) and delegate the results of set (ii)
to the next section (Fig. 2.9). For both choices, the initial electric field E0 exceeds
the critical value in Eq. (2.58), and thus we expect an enhanced production of
electron-positron pairs. We simulate the real-time evolution of the particle number
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FIGURE 2.7: Benchmarking simulations (e/m = 0.45, am = 0.45, N = 20, and
� = 1500; blue solid line) qualitatively recover the ideal continuum Schwinger
rate (the limit of small am as well as large N and �; black dash-dotted). As
the interpolating lines for different am at fixed volume L = aN = 9/m show,
the benchmark simulations are converged with respect to � and smoothly
approach the continuum prediction (dashed lines from dark to light blue
am = 0.3, 0.225, and 0.1).

as well as the decay of the initial electric field employing a semi-classical functional-
integral method [10, 87, 95] summarized in the next section 2.7 and compare them
to an idealized implementation with �,N → ∞ and a → 0. The latter is obtained
numerically by increasing � and approaching the spatial continuum limit (a → 0

with aN = const) until convergence of the fermion density and the electric field is
observed. For the presented realistic parameter sets, though quantitative deviations
from the expected QED behavior occur, the observed particle production shows
good qualitative agreement. It is also possible to observe the onset of the decay of
the electric field due to the backreaction of the fermions. Observed deviations are
mainly due to the large lattice spacings and do not result from the finite � < ∞,
which we conclude from the interpolating curves that approach the continuum
limit with decreasing a, while keeping � constant. The quantum simulator will thus
be capable of simulating a dynamical lattice gauge theory, though the realistically
reachable lattice parameters a still lead to quantitative deviations from the spatial
continuum limit, at least for the weak coupling regime.
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m o st s q u a r e s c o r r e s p o n d s t o t h e s et of r e ali sti c  p a r a m et e r s  u s e d i n Fi g. 2. 7
( a n d 2. 1 1 ) a n d t h e ot h e r s o nl y  diff e r i n t h e i niti al el e ct ri c  fi el d.  T h e bl a c k
d a s h e d- d ott e d li n e i s t h e a n al yti c  p r e di cti o n. F o r t h e  p a r a m et e r s c h o s e n i n t hi s
w o r k, t h e r e s ult s f o r b ot h i niti ali z ati o n  p r o c e d u r e s a g r e e  wit hi n t h e e sti m at e d
e x p e ri m e nt al a c c u r a c y ( cf. s e cti o n 2. 7 ).  M ai n  p a n el:  p a rti cl e- p r o d u cti o n r at e,
r e s c al e d b y t h e li n e a r f a ct o r E / (π E c ) . I n s et: f ull r at e i n l o g a rit h mi c s c al e.

2. 6. 3  N o n- p ert ur b ati v e  p arti cl e  pr o d u cti o n r at e

E v e n  wit h l atti c e a rtif a ct s, t h e  d e p e n d e n c e of t h e  p a rti cl e  p r o d u cti o n r at e o n t h e

i niti al v al u e of t h e el e ct ri c  fi el d i s hi g hl y n o n-t ri vi al. I n Fi g. 2. 8 ,  w e  p r e s e nt t h e

n u m e ri c all y e xt r a ct e d  p a rti cl e  p r o d u cti o n r at e aft e r  di vi di n g o ut t h e “t ri vi al ” li n e a r

d e p e n d e n c e o n E , f o r b ot h i niti ali z ati o n  p r o c e d u r e s o utli n e d a b o v e a n d c o m p a r e

it t o t h e a n al yti c al  p r e di cti o n (2. 5 8 ).  O u r si m ul ati o n s i n di c at e t h at t h e  p r o p o s e d

i m pl e m e nt ati o n c a n r e p r o d u c e q u a ntit ati v el y t h e n o n- p e rt u r b ati v e s u p p r e s si o n

of  p a rti cl e  p r o d u cti o n f o r  w e a k  fi el d s E  < π E c . F o r l a r g e r  fi el d s E  > π E c ,  w e

f u rt h e r m o r e o b s e r v e t h e e x p e ct e d s at u r ati o n of t h e r e s c al e d r at e, t h o u g h q u a ntit ati v e

a g r e e m e nt i s n ot a c hi e v e d  d u e t o  d e vi ati o n s f r o m t h e c o nti n u u m li mit.  N e v e rt h el e s s,

t h e f ull r at e,  pl ott e d i n t h e i n s et of Fi g. 2. 8 i s r e m a r k a bl y cl o s e t o t h e a n al yti c

p r e di cti o n o v e r t w o o r d e r s of  m a g nit u d e f o r o u r si m ul ati o n s b ot h  wit h a n d  wit h o ut

i niti al  m a s s q u e n c h. ( T h e e x c ell e nt a g r e e m e nt f o r  w e a k  fi el d s s h o ul d b e t a k e n  wit h a

g r ai n of s alt si n c e t h e r at e  will b e v e r y c h all e n gi n g t o e xt r a ct i n a r e ali sti c e x p e ri m e nt

i n t hi s r e gi o n.)  A s t h e s e r e s ult s i n di c at e, n o n-t ri vi al eff e ct s of l atti c e g a u g e t h e o ri e s

a r e  wit hi n r e a c h of c u r r e nt o pti c al-l atti c e t e c h n ol o g y.
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2.7 Details of the numerical simulation

For our numerical simulations, we employ a functional-integral approach that was
also used to benchmark a previous implementation with staggered fermions [10,
87]. The main idea of this method is to map the full quantum theory onto a classical-
statistical ensemble, which is achieved by a semi-classical expansion around the
initial state. Observables are then obtained by solving classical equations of motion
and sampling over fluctuating initial values. This results in a non-perturbative
approximation of the quantum dynamics, which is valid for sufficiently large electric
fields E and weak coupling e/m. In the context of cold atomic gases, the method
is related to the well-known truncated Wigner approximation and can be derived
by integrating out the fermionic degrees of freedom. The validity to benchmark the
proposed quantum simulator relies on the fact that the dynamics is dominated by
the Bose condensates and that direct interactions between the fermions are absent.

2.7.1 Classical equations of motion

In order to calculate the equations of motions for the classical-statistical approach to
Bose-Fermi mixtures, we consider the Weyl symbol of the cold atom Hamiltonian
(2.19), which is given by

H =
ae2

4

∑

n

(
|bn|4 + |dn|4

)
+

(
m+

1

a

)∑

n

(
ψ†n,1ψn,2 + ψ†n,2ψn,1

)
(2.59)

+
1

a
√
` (`+ 1)

∑

n

(
ψ†n−1,1b

∗
n−1dn−1ψn,2 + h.c.

)
.

In this expression, bn, dn are c-numbers and ψn,α are fermionic operators at site n
and hyperfine state α. Thus, we can decompose the Hamiltonian to H = HB +HF ,
with the pure c-number part HB = ae2

4

∑
n

(
|bn|4 + |dn|4

)
and the fermionic part

HF =
∑

mn,αβ ψ
†
m,α (hF )αβmn ψn,β , where we abbreviated

(hF )αβmn =

(
m+

1

a

)
δmnσ

αβ
x

+
1

a
√
` (`+ 1)

(
b∗mdmδm,n−1σ

αβ
+ + d∗m−1bm−1δm−1,nσ

αβ
−
)

(2.60)

with the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σ± =

1

2
(σx ± iσy) . (2.61)

In terms of the equal-time two-point function Dαβ
mn =

〈
ψ†m,αψn,β

〉
, where 〈. . . 〉

denotes a quantum expectation value, the explicit equations of motion for the
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classical-statistical theory are derived from

i∂tcn =
∂HA

∂c∗n
+ Tr

[
∂ (hF )

∂c∗n
D

]
, i∂tD

αβ
mn = [hF , D]αβmn , (2.62)

where c ∈ {b, d} and the trace runs over spatial and fermionic species indices
m,n and α, β, respectively. Rewriting Dαβ

mn = 1
2δmnδ

αβ − F βαnm with the statistical
propagator Fαβmn = 1

2

〈[
ψm,α, ψ

†
n,β

]〉
, the full set of equations of motion can be

reduced to

i∂tbn =
ae2

2
|bn|2 bn −

dn

a
√
`(`+ 1)

[
F 21
n+1,n

]∗
, (2.63a)

i∂tdn =
ae2

2
|dn|2 dn −

bn

a
√
`(`+ 1)

F 21
n+1,n , (2.63b)

i∂tF
21
nm =

(
m+

1

a

)(
F 22
nm − F 11

nm

)
(2.63c)

+
1

a
√
`(`+ 1)

(
b∗mdmF

22
n,m+1 − b∗n−1dn−1F

11
n−1,m

)
,

i∂tF
11
nm =

(
m+

1

a

)([
F 21
mn

]∗ − F 21
nm

)
(2.63d)

+
1

a
√
`(`+ 1)

(
b∗mdm

[
F 21
m+1,n

]∗ − d∗nbnF 21
n+1,m

)
,

i∂tF
22
nm =

(
m+

1

a

)(
F 21
nm −

[
F 21
mn

]∗) (2.63e)

+
1

a
√
`(`+ 1)

(
d∗m−1bm−1F

21
n,m−1 − b∗n−1dn−1

[
F 21
m,n−1

]∗)
.

Solving these equations numerically for the initial values specified in the next
subsection allows us to benchmark our proposed implementation with Wilson
fermions. Since the dynamics is dominated by the coherent electric field, a single run
with given initial conditions already gives a good approximation. For the purpose
of the present work, we therefore omit the statistical sampling of fluctuating initial
values, similar to what was done in Refs. [10, 87].

2.7.2 Initial values

As discussed above, we consider Schwinger pair production as a test of the proposed
implementation of cold-atom QED. Accordingly, we initialize a fermionic vacuum
state in the presence of a strong electric field that exceeds the critical value Ec =

m2/e.

Gauge sector

In the gauge sector, we initialize a coherent electric field as a coherent spin state
with expectation value L(0)

z,n. The constraint 2` = b†nbn + d†ndn is Wigner transformed
to the c-number expression 2` = |bn|2 + |dn|2 − 1, which allows for solving the
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Weyl symbol of the spin operator, Lz,n = 1
2

(
|bn|2 − |dn|2

)
, for b or d as |bn|2 =

(
`+ 1

2

)
+ (Lz,n)W , |dn|2 =

(
`+ 1

2

)
− (Lz,n)W . Thus, we choose the initial values

bn(t0) =

√(
`+

1

2

)
+ L

(0)
z,n , (2.64)

dn(t0) =

√(
`+

1

2

)
− L(0)

z,n , (2.65)

where L(0)
z,n ∈ [−`, `]. We choose a homogeneous initial value L(0)

z,n = E0/e with
electric field E0 = 7Ec and E0 = 3Ec, respectively, for the two sets of optimized
experimental parameters. These values are related to the initial bosonic imbalance
as ∆N = 2E0/e ∼ O(100) � `. To ensure that three-particle losses are not only
irrelevant for the absolute number ofNB atoms but also for their relative distribution
among the two hyperfine states, we stop the simulations at O(100 ms) instead of
O(1 s).

Fermion sector

We want to initialize the fermion sector in a vacuum state, i.e., a ground state of
the fermionic part Hψ without electric fields. To this end, we diagonalize Hψ =∑

k ωk

(
a†kak + c†kck − 1

)
, by the canonical transformation

(
ak

c†k

)
=

1√
2

(
ψk,1 + zk

ωk
ψk,2

ψk,1 − zk
ωk
ψk,2

)
(2.66)

in Fourier space, ψk,α = 1√
N

∑N−1
n=0 e

−2πink/Nψn,α, with the dispersion relation ωk =

|zk|, where zk = m+ 1
a

(
1 + exp

(
2πik
N

))
. The ground state |Ω〉 is defined by ak|Ω〉 =

ck|Ω〉 = 0, which translates into the following initial conditions for the fermionic
propagator in momentum space,

F 11
kk (t0) = 0 , F 22

kk (t0) = 0 , F 21
kk (t0) =

ωk
2zk

, (2.67)

and Fαβkk′(t0) = 0 for k 6= k′. These correlators are related to position space via
Fαβkk′ = 1

N

∑
nm e

− 2πi
N

(mk′−nk)Fαβmn.

Gauge invariance

The chosen initial conditions fulfill the (mean) Gauss’ law

〈Gn〉 =
1

2

(
|bn|2 − |dn|2

)
− 1

2

(
|bn−1|2 − |dn−1|2

)
+ F 11

nn + F 22
nn = 0 . (2.68)

This constraint is satisfied during the time evolution by construction, which can also
be verified explicitly by applying the equations of motion.
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2.7.3 Observables

We extract the total electric field as

E

Ec
=

e2

m2

1

2N

∑

n

(
|bn|2 − |dn|2

)
. (2.69)

The total fermionic particle number density is

n =
1

L

∑

k

ñk , (2.70)

where ñk = 〈ã†kãk + c̃†k c̃k〉 = ε̃k
ω̃k

+ 1 and the tilde denotes quantities derived from
the instantaneous diagonalization of the fermionic part of the Hamiltonian in the
homogeneous background of b, d. Then

ε̃k = −
(
z̃kF

21
kk +

[
z̃kF

21
kk

]∗) (2.71)

with z̃k(b, d) = M + 1
a

(
1 + d∗b exp

(
2πik
N

))
and ω̃k = |z̃k|.

2.7.4 Numerical results for an alternative parameter set

For comparison with Fig. 2.7, we show in Fig. 2.9 the results for the second parameter
set

am = 0.94 , e/m = 0.22 , E0/Ec = 3 ,

Qualitatively, the behavior is very similar to what we found in Fig. 2.7, indicating
that in this regime of weak coupling the slightly different values of e/m do not
qualitatively affect the physics of the Schwinger mechanism. However, due to the
relatively large lattice spacing, the electric field and the fermion density start to
deviate more strongly from the expected continuum behavior at about t ≈ 70 ms.

2.7.5 Details concerning Fig. 2.8, particle production rate

We extract the particle production rate by fitting a linear function with an offset to
the simulated particle number. The final and initial points for this fit have to be
adjusted due to the following two reasons. First, the initial value problem considered
here can be understood as a quench of the electric field. Therefore, the very early
time dynamics is dominated by this quench and not by the Schwinger mechanism,
which is a many-body phenomenon appearing in the long-time limit. Second, the
simulation is limited by lattice artifacts as discussed in section 2.5. The reason is that
the produced particles are accelerated and invalidate the simulation as soon as they
reach the boundary of the Brillouin zone. We empirically find that we can avoid
both complications if we take δt = 1/m as a constant window length for the fit and
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adjust the initial point accordingly. In Fig. 2.10, we show the fits for the largest and
smallest values of E0 that we considered.

In order to estimate the experimental error of the rescaled rate, we tentatively
assume that the bosonic particle number imbalance 〈b†nbn − d†ndn〉 can be measured
with an absolute accuracy of 10 particles on each site. Then the electric field E/Ec
has an uncertainty of ∆ (E/Ec) ≈ 0.07, see Eq. (2.69). We have further included the
standard deviation of the fits in the calculation of the errors, although it is negligibly
small compared to the uncertainty of the electric field. Though both errors are
barely visible in total rate (inset of Fig. 2.8), they lead to significant uncertainties
of the rescaled rate for larger fields (main panel of Fig. 2.8). Nevertheless, the non-
perturbative behavior of the Schwinger rate can be clearly seen, and the qualitative
agreement with the analytical predictions is satisfactory, in particular in light of the
fact that the latter are derived for the limit of infinitely large times.

To close this section, let us comment on the experimental challenges to extract the
rate. The total particle number corresponding to the density n/m = 1 is n/m×L = 9,
thus on average O(10) respectively O(0.1) particles are produced over the whole
lattice for the initial value E = 7Ec respectively E = 1Ec. Consequently, while the
large-field case seems reasonably accessible, in the weak-field case the precise detec-
tion of the produced particles is very challenging with current technology. Moreover,
the measurement of the rate requires an even higher accuracy as compared to the
total particle number. This is more relevant for the weak-field regime, where the
initial quench dynamics dominates the total particle number production at the short
times accessible in the experiment. Concerning the time-scales, we finally note
that the fits for E < 7Ec require an observation time of up to ∼ 400 ms. This may
limit the observability of rates at small fields, since then three body losses become
increasingly important, see Sec. 2.5.1.

2.7.6 Results for the initial infinite-mass vacuum

In this subsection, we present results for the experimentally more feasible initial-
ization of the free fermion vacuum for infinite mass m. Therefore we initialize the
numerical simulation according to the fermion correlators (2.67) with m→∞ and
solve the same equations of motions as before (with finite m). This corresponds to
an additional quench of the fermion mass that is absent in the adiabatic preparation
of the fermion vacuum. Figure 2.11 compares the extracted particle number density
and the electric field for this initial condition to the data already shown in the main
part. Due to the additional mass quench, the initial state is not the true vacuum of
free fermions and thus the system starts at non-vanishing fermion density. Even
though the quantitative behavior of the particle-production is quite different, the
production rate is very similar to the previously shown result. At the short times
presented here, the electric field also shows qualitatively the same behavior as for
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FIGURE 2.11: The mass-quenched simulation (e/m = 0.45, am = 0.45,
N = 20, and � = 1500; red dashed line) shows a similar growth of the fermion
density as the simulation without an initial mass quench (same lattice parame-
ters; blue solid line). The main qualitative difference for this parameter regime
is the non-vanishing initial fermion density, which is due to the mass quench
not realizing the vacuum of the free fermions. Both experimentally relevant
simulations yield a growth rate comparable to the ideal continuum result (the
limit of small am as well as large N and �; black dash-dotted).

the simulations without mass quench. For comparison, we have included the simu-
lations with mass quench in the analysis of the production rate of electron-positron
pairs shown in figure 2.8.

The consistence of the results leads us to conclude that the quantum simulator
could also be benchmarked following the experimentally simpler initialization
procedure, at least for the experimental and resulting lattice parameters that we
have chosen in this work.

2.8 Summary

To summarize, exploiting the freedom in discretizing relativistic fermions on a lattice
opens up a hitherto unexplored possibility for optimizing quantum simulators in
view of experimental implementations. We have exemplified this for the Wilson
formulation of lattice fermions, where it enables an elegant implementation of 1+1D
QED. Our numerical benchmark calculations indicate that available experimental
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resources may access the Schwinger mechanism of particle-anti-particle production,
and in particular extract the non-perturbative onset of the production rate. The
performance of the quantum simulator may even be further improved by resorting
to mixtures with enhanced spin-changing collisions, such as sodium–potassium.

As a final aim of a cold-atom quantum simulator, it stands to advance into pa-
rameter regimes that are not accessible to computer simulations. For the optimized
parameters in the experimental implementation proposed in this work, the dimen-
sionless coupling e/m and the lattice spacing am cannot be tuned independently.
Rather, as one is increased, the other one has to be decreased and vice versa, which
can be exploited as follows. First, one can use the particle-production rate in the
regime of small e/m (and thus large am) to benchmark the quantum simulator using
numerical methods. The experiment may then proceed into the relevant regime
of strong coupling, which for the optimized parameters permits us also to reduce
the lattice spacing. This regime of strong coupling is not accessible within current
numerical simulations such as the functional integral method employed here. The
proposed experiment involves 20× 2 = 40 fermionic degrees of freedom interacting
with 20 BECs of O(1000) atoms each, resulting in a Hilbert space size that is also
beyond the capability of exact diagonalization methods. While the specific case
of 1+1D gauge theories can also be treated efficiently using methods based on the
density matrix renormalization group [96, 102–104], these approaches are typically
limited to low dimensions and equilibrium properties or short time dynamics. Since
a quantum simulation of lattice gauge theories may in principle be free of such
limitations, a generalization of our present work using Wilson fermions to, e.g.,
higher dimensions will be extremely interesting.

Our work also opens an interesting pathway for future theoretical investigations.
By casting Wilson fermions in the compact form of the Hamiltonian in Eq. (2.6),
the free lattice theory becomes manifestly equivalent to the Su-Schrieffer-Heeger
model, one of the simplest models displaying non-trivial topological properties [105].
Indeed, the topological properties of free Wilson fermions have been considered in
Ref. [74] and, very recently, in Ref. [76]. Such topological properties in the context of
interacting gauge theories are the subject of the final chapter 4 of the first part of this
thesis.
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Appendix: Cold atoms in a tilted optical lattice and Landau-
Zener tunneling

In this appendix, we give more details about the description of cold atoms a tilted
optical lattice. In section 2.A, we discuss the energy levels of the Wannier-Stark lad-
der, their wavefunctions and estimated lifetime. In section 2.B, we present a simple
derivation of the Landau-Zener formula, from which we deduce the Schwinger pair
production rate.

2.A The Wannier-Stark system

In this section, we summarize some important aspects of the Wannier-Stark problem
following the detailed review [93]. Consider a quantum-mechanical particle of
mass m moving in a one-dimensional periodic potential V (x + a) = V (x) with
lattice spacing a, subject to a constant force F . For later purposes, we also assume a
reflection invariant potential V (−x) = V (x). The corresponding Hamiltonian reads

HW = H0 + Fx , H0 =
p2

2m
+ V (x) , (2.72)

where H0 denotes the unperturbed Hamiltonian (F = 0). Most importantly, the
linear term breaks the discrete symmetry x→ x+ a. Thus for an eigenstate HWΨ =

E0Ψ, we can generate a ladder of new eigenstates with different energies

El = E0 + laF , l ∈ Z , (2.73)

by translation over l periods. This is the so-called Wannier-Stark (WS) ladder. We
expect any superposition of these states to show oscillations with the Bloch period
TB = 2π

aF . However, the tilt leaves the full Hamiltonian (F 6= 0) unbounded from
below, such that HW has a continuous spectrum. In fact, the states of the WS ladder
are merely resonances,

Eα,l = Eα + laF − i

2
Γα , (2.74)

with a finite lifetime τ = 1
Γα

and band index α. There exist powerful methods to
determine the precise value of Eα,l and the corresponding eigenfunctions, see [93].
For our purposes, it suffices to treat the eigenfunctions and the real part of Eα,l
within a tight-binding approximation and determine the imaginary part of Eα,l from
a Landau-Zener tunneling estimate.
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2.A.1 Tight-binding model

It is well known that the eigenfunctions of the F = 0 case are Bloch waves,

H0φα,k = εα(k)φα,k , φα,k(x) = eikxuα,k(x) , uα,k(x+ a) = uα,k(x) , (2.75)

where the quasi-momentum k is restricted to the first Brillouin zone −π
a ≤ k < π

a

because of the periodicity of the Bloch bands, εα(k) = εα
(
k + 2π

a

)
. We may choose

the phase of the complex Bloch functions φα,k(x) to make them periodic and analytic
functions of k, such that we can expand them in a Fourier series with coefficients

ψα,l(x) =

ˆ π/a

−π/a
dk e−iklaφα,k(x) (2.76)

known as Wannier functions. They are exponentially localized in the l-th cell
of the potential and form a complete set w.r.t. both indices, α and l. The tight-
binding approximation is derived by calculating matrix elements in the Wannier
basis, keeping only the diagonal elements of Fx, as well as diagonal and secondary
diagonal elements of H0 w.r.t. l, i.e.,

HTB =
∑

α,l

〈ψα,l|H0 + Fx|ψα,l〉|ψα,l〉〈ψα,l|

+
∑

α,l

{〈ψα,l|H0|ψα,l+1〉|ψα,l〉〈ψα,l+1|+ 〈ψα,l+1|H0|ψα,l〉|ψα,l+1〉〈ψα,l|} .

(2.77)

In particular, H0 gives the energy contribution

〈ψα,l|H0|ψα,l〉 =

ˆ
dxψ∗α,l(x)H0ψα,l(x) =

ˆ
dx dk dq φα,q(x)eiqlaH0e

−iklaφα,k(x)

=
a

2π

ˆ
dk dq ei(q−k)laδααδkqεα(k) =

a

2π

ˆ
dk εα(k) ≡ ε̄α (2.78)

and similarly the hopping element

〈ψα,l|H0|ψα,l+1〉 =

ˆ
dxψ∗α,l+1(x)H0ψα,l(x) =

a

2π

ˆ
dk e−ikaεα(k) ≡ Jα , (2.79)

where every momentum integration is restricted to the first Brillouin zone. Since
Bloch waves are eigenfunctions of the translation operator Tax = x+ a, the Wannier
functions obey ψα,l+1(x) = ψα,l(x− a) from which we find

〈ψα,l+n|Fx|ψα,l+n〉 − 〈ψα,l|Fx|ψα,l〉 = naF , n ∈ N. (2.80)

Dropping an irrelevant constant, the tight-binding Hamiltonian becomes

HTB =
∑

α,l

{(ε̄α + laF ) |ψα,l〉〈ψα,l|+ Jα [|ψα,l〉〈ψα,l+1|+ h.c.]} , (2.81)
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where we have used Jα = J∗α due to the symmetry εα(−k) = εα(k). To diagonalize
HTB , we make the ansatz |Ψα,l〉 =

∑
m cm (α, l) |ψα,l〉. The eigenvalue equation

HTB|ψα,l〉 = Eα,l|ψα,l〉 implies

cm+1(α, l) + cm−1(α, l) =
Eα,l − (ε̄α +maF )

Jα
cm(α, l) , (2.82)

i.e., the expansion coefficients obey the same recurrence relation as solutions to the
Bessel equation

z2B′′ν (z) + zB′ν(z) +
(
z2 − ν2

)
Bν(z) = 0 ,

2ν

z
Bν(z) = Bν+1(z) +Bν−1(z) .

(2.83)

Normalizability in the infinitely large system determines the coefficients to be Bessel
functions of the first kind4,

cm(α, l) = Jm−l

(
2Jα
aF

)
, (2.84)

and determines the spectrum to be the WS ladder, Eα,l = ε̄α + laF . The physical
interpretation is the following:

• For F = 0, the energy levels of the Wannier states |ψα,l〉 coincide for every
l and the tunneling Jα couples them into Bloch states |φα,k〉 =

∑
l e
ikl|ψα,l〉,

which produces the Bloch bands εα(k) = ε̄α + 2Jα cos(ak).

• For F 6= 0, the degeneracy is lifted and tunneling is suppressed, such that we
find the Wannier-Stark functions |Ψα,l〉 =

∑
m Jm−l

(
2Jα
aF

)
|ψα,l〉 as eigenfunc-

tions corresponding to the discrete WS ladder, which are effectively localized
on a few lattice sites.

2.A.2 Landau-Zener tunneling

Since the tight-binding approximation is unable to determine the lifetime of the
WS resonances, we make a semi-classical estimate using the Landau-Zener (LZ)
formula,

PLZ = exp

(
− π∆2

4 |ε̇(∆ = 0)|

)
, (2.85)

which yields the asymptotic probability for a transition between two energy eigen-
states at an avoided crossing. Here, ∆ denotes the energy gap between the two
states and |ε̇(∆ = 0)| is the “velocity” of the crossing at vanishing gap. We restrict
ourselves to the lowest band in the tight-binding model described above. ∆ is then
just given by the band gap between the ground band and the first excited band and
it remains to determine the “velocity” |ε̇(∆ = 0)|.

4There should be no danger of confusing the tunneling elements Jα with the Bessel functions Jm−l.
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The gauge transformation ψ(t, x)→ ψ(t, x)e−iFxt brings the Hamiltonian (2.72)
into the form

H ′ =
(p− Ft)2

2m
+ V (x) . (2.86)

This observation demonstrates that any Bloch state (semi-classically) has a time-
dependent momentum k(t) = k0 − Ft, which explores the first Brillouin zone and
gets periodically reflected at its boundaries, |k| = π

a . For simplicity, we consider
a single LZ transition at the position of the avoided crossing between the ground
band and the first excited band, i.e., at |kavoided| = π

a , for each Bloch period TB . In
the limit of vanishing gap, the dispersion relation becomes the one of a free particle,
ε(k) = k2

2m , such that we can calculate the “velocity”

|ε̇(∆ = 0)| =
∣∣∣∣
dε(k)

dk

dk(t)

dt

∣∣∣∣
∆=0 , k=π

a

=
π

ma
F =

2a

π
ErF , (2.87)

where we have introduced the recoil energy Er = π2

2ma2 . Thus we approximate the
decay rate of the ground band as

Γ ≈ 1

TB
PLZ =

aF

2π
exp

(
− π2∆2

8EraF

)
. (2.88)

Note that we have implicitly assumed that the system is “off resonance”, in the
sense that no two states of WS ladders from different bands are degenerate. We
should keep in mind that such a degeneracy may drastically decrease the lifetime
due to resonant LZ tunneling.

2.A.3 Cold atoms in a tilted lattice

For the relevant case of cold quantum gases in an optical lattice, we consider the
potential

V (x) = V0 sin2
(πx
a

)
. (2.89)

The case of F = 0 is well-known [106] and the corresponding eigenvalue problem
can be brought into the form of a Mathieu equation,

[
∂2
y +

(
E

V0
− s
)

+ s cos(2y)

]
ψE(y) = 0 , (2.90)

where y = πx
a and the parameter s = 2

√
V0
Er

controls the lattice depth. The dispersion
relation for the ground band is given by

ε(k) =
ω0

2
− 2J̃ cos(ka) , (2.91)
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where ω0 = sEr. The width J̃ of the band can be expressed with the help of Mathieu
functions. In the limit of a deep lattice, s� 1, one finds

J̃ ≈ ω0

(
8s

π2

)1/4

e−s + . . . . (2.92)

Consequently, the tilted lattice (F 6= 0) features the WS ladder

El =
ω0

2
+ laF , l ∈ Z (2.93)

and nearest-neighbor hopping is suppressed for

aF � |J | = 2J̃ . (2.94)

Additionally, experiments are limited by the lifetime

τ =
1

Γ
=

2π

aF
exp

(
π2∆2

8EraF

)
≈ 2π

aF
exp

(
π2s2Er

8aF

)
, (2.95)

where the band gap can be calculated from Mathieu eigenvalues as ∆ ≈ ω0 in the
limit s� 1. In this limit, we may further approximate the Wannier functions of the
ground band at site l as harmonic oscillator eigenfunctions

ψl(x) =
(
πa2

HO
)−1/4

exp

(
−(x− xl)2

2a2
HO

)
, (2.96)

where xl denotes the l-th minimum of V (x) and the harmonic oscillator length aHO =

(mωHO)−1/2 is obtained by matching the trapping frequencies with the curvature of
the potential around the minima, i.e., mω2

HO = V ′′(xl). For the calculation of overlap
integrals involving Wannier-Stark functions we use the next-to leading order in their
expansion as

Ψl(x) =
∑

m

Jm−l

(
− 4J̃

aF

)
ψm(x) ≈ ψl(x)− 2J̃

aF
[ψl+1(x)− ψl−1(x)] , (2.97)

where we made use of the series expansion of Bessel’s functions as

Jn(z) =
∞∑

j=0

(−1)j

j! Γ(n+ j + 1)

(z
2

)2j+n
. (2.98)

2.B Derivation of the Landau-Zener formula

Consider a two-level system described by the Hamiltonian

HLZ =
1

2

(
vt ∆

∆ −vt

)
. (2.99)
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It has the eigenvalues λ±(t) = ±1
2

√
∆2 + (vt)2, i.e., for ∆ 6= 0 the system exhibits

an avoided crossing. Let us assume that we prepare the ground state in the infinite
past. What is the probability to find the system in the excited state in the infinite
future? The answer is given by the Landau-Zener (LZ) as discussed below.

We give a convenient solution of the problem [107] that does not rely on the
explicit solution of the Schrödinger equation. Writing the general wavefunction
ψ(t) = (α(t), β(t))T with the initial condition |ψ(t)|2 → (1, 0)T (t→ −∞), it is our
task to calculate |α(t)|2 at t → ∞. Applying the Schrödinger equation i∂tψ(t) =

Hψ(t) twice, the components decouple and we find

−α̈(t) =

[
iv

2
+

(
∆

2

)2

+

(
vt

2

)2
]
α(t) . (2.100)

Instead of solving this equation explicitly, we use the fact that

ˆ ∞
−∞

dt
α̇(t)

α(t)
= log

[
α(∞)

α(−∞)

]
(2.101)

and evaluate the left-hand side as follows. If the problem has a convergent solution,
then

α(t) ' |α|e−iϕα(t) (2.102)

as an asymptotic expansion at t → ±∞ with a time-dependent phase ϕα(t) and a
time-independent amplitude |α|. Then the e.o.m. becomes

{
ϕ̇2
α(t)−

[(
∆

2

)2

+

(
vt

2

)2
]

+ i
[
ϕ̈α(t)− v

2

]}
α(t) = 0 , (2.103)

which is solved by

ϕ̈α(t) =
v

2
, ϕ̇α(t) = ±v|t|

2

√
1 +

(
∆

vt

)2

=
vt

2

{
1 +

1

2

(
∆

vt

)2

+O
[(

∆

vt

)4
]}

.

(2.104)

Consequently, we approximate

α̇(t)

α(t)
' −iϕ̇α(t) ≈ −i

(
vt

2
+

∆2

4vt

)
+ . . . (2.105)

and solve the integral by extending it to the complex plane and applying Cauchy’s
theorem,

ˆ ∞
−∞

dt
α̇(t)

α(t)
= −

ˆ
C±

dz
α̇(z)

α(z)
, (2.106)
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where C± denotes an upper resp. lower infinite half-circle given by z = Re±iθ with
θ ∈ [0, π] and R→∞. Therefore

log

[
α(∞)

α(−∞)

]
= ±

ˆ π

0
dθ

(
vR2

2
e±2iθ +

∆2

4v

)
= ±π∆2

4v
. (2.107)

Normalizability requires the negative sign, such that

α(∞) = α(−∞) exp

(
−π∆2

4v

)
. (2.108)

Using the initial value |α(−∞)|2 = 1, we arrive at the celebrated LZ formula for the
probability to find the system in the excited state,

P ≡ |α(∞)|2 = exp

(
−π∆2

2v

)
. (2.109)

The final result depends on the energy gap ∆ between the two states. We want to
emphasize that the second parameter v can be obtained as

v

2
=

∣∣∣∣
dλ±(t)

dt

∣∣∣∣
∆=0

, (2.110)

i.e., it describes the “slope” of the energy levels at the avoided crossing in the limit
∆→ 0.

2.B.1 Schwinger pair production from Landau-Zener tunneling

Using the Landau-Zener formula, we also provide a heuristic derivation of the
Schwinger pair production, Eq. (2.58), in the following. The bare fermion vacuum
of QED can be seen as an insulator with mass gap 2m. Applying a constant external
electric field modifies the momentum as p→ p+ eEt. Focusing first on p = 0, the
probability of exciting a fermion-antifermion pair is equivalent to the Landau-Zener
problem with v = eE and ∆ = 2m. This observation immediately implies that the
electric field results in an occupation of

n0 = exp

(
−πm

2

eE

)
. (2.111)

Due to the dispersion ω(p) =
√
p2 +m2, the pair production is exponentially sup-

pressed for any p 6= 0. Neglecting any backreaction of the produced fermions on
the electric field, the former will simply shift through momentum space with p(t) =

p+ eEt. We thus expect the particle number distribution n(p, t) = n0Θ(p)Θ(eEt− p)
for an external field turned on at t = 0. Then the total particle number density is

n(t) = 2

ˆ ∞
−∞

dp

2π
n(p, t) =

eEt

π
exp

(
−πm

2

eE

)
, (2.112)
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where we included a factor of 2 to account for fermions and anti-fermions. Taking a
time derivative, we reproduce Eq. (2.58). This argument also gives another point
of view on the validity of the Schwinger rate. It neglects any switch-on effect of
the electric field and can therefore only be valid at sufficiently late times when the
Landau-Zener formula becomes accurate. At the same time, the backreaction of the
produced fermions on the electric field is neglected, which invalidates the rate in
fully dynamical QED at late times. Moreover, the whole argument is based on a
tunneling process across the mass gap. Hence, we can the expect the pair production
rate to be correct in an intermediate regime of not too early and not too late times,
parametrically 1/m . t . 1/e, in a weak-coupling regime e� m with strong fields
E & m2/e.
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Chapter 3

Realization of a scalable building
block for U(1) gauge theories

This chapter and its appendices 3.A and 3.B are based on the article [16] with the
figures and large parts of the text taken from it. The authors of [16] contributed
as follows: A. Mil, A. Hegde, A. Xia and R. P. Bhatt set up the experiment and
performed the measurements; A. Mil and myself performed the data analysis;
P. Hauke, J. Berges and myself developed the theory; P. Hauke, J. Berges, M. K.
Oberthaler and F. Jendrzejewski supervised the project. All authors participated
in the writing of the manuscript [16] and I made significant contributions to the
wording and structuring of the text. In the appendices 3.C and 3.D, I include
additional related material that was not printed in [16]. The article [16] is also
covered in the experimental doctoral thesis by A. Mil [108].

3.1 Proposed implementation

Our aim is the development of a scalable and highly tunable platform for a continu-
ous U(1) gauge theory, such as realized in QED. Here we enforce the defining local
U(1) symmetry through spin-changing collisions in atomic mixtures, as discussed
in the previous chapter. This promising mechanism to protect gauge-invariance
has been put forward in various proposals [10, 18, 22, 29] but so far it was not
demonstrated experimentally. In this chapter we demonstrate the engineering of
an elementary building block in a mixture of bosonic atoms, demonstrate its high
tunability, and verify its faithful representation of the desired model.

Building on the results of the previous chapter, we further propose an extended
implementation scheme in an optical lattice, where each lattice well constitutes an
elementary building block that contains both matter and gauge fields. Repetitions
of this elementary unit can be connected using laser-assisted tunneling. Importantly,
gauge and matter fields are spatially arranged in such a way that the spin-changing
collisions occur within single lattice wells, in contrast to previous proposals [10,
18, 22, 29] where the gauge and matter fields were spatially separated and spin-
changing collisions had to be accompanied by hopping across different sites of the
optical lattice.
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FIGURE 3.1: Engineering a gauge theory. (A) Structure of a lattice gauge
theory. Matter fields reside on sites, gauge fields on the links in-between.
(B) Proposed implementation of the extended system. Individual building
blocks consist of long spins (representing gauge fields) and matter states,
which are confined within the same well and whose interaction constitutes
a local U(1) symmetry. An array of building blocks in an optical lattice is
connected via laser-assisted tunneling. (C) Experimental realization of the
elementary building block with bosonic gauge (sodium) and matter (lithium)
fields. The gauge-invariant interaction is realized by hetero-nuclear spin-
changing collisions.

We specify our proposal for a one-dimensional gauge theory on a spatial lattice,
as visualized in Fig. 3.1A. Charged matter fields reside on the lattice sites n, with
gauge fields on the links in-between the sites [109]. We consider two-component
matter fields labeled “p” and “v”, which are described by the operators (b̂n,p, b̂n,v).
To realize the gauge fields with the atomic system, we employ the quantum link
formulation [11, 88, 110], where the gauge fields are replaced by quantum mechan-
ical spins L̂n, labeling link operators by the index of the site to the left. In this
formulation, the spin z-component L̂n,z can be identified with a discrete “electric”
field. We recover the continuous gauge fields of the original quantum field theory in
a controlled way by working in the limit of long spins [10].

Physically, this system of charged matter and gauge fields can be realized in a
mixture of two atomic Bose–Einstein condensates (BECs) with two internal com-
ponents each (in our experiment, we use 7Li and 23Na). An extended system can
be obtained by use of an optical lattice. In our scheme, we abandon the one-to-one
correspondence between the sites of the simulated lattice gauge theory and the
sites of the optical-lattice simulator. This correspondence characterized previous
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proposals and necessitated physically placing the gauge fields in-between matter
sites [10, 18, 22, 29]. Instead, as illustrated in Fig. 3.1B, here one site of the physical
lattice hosts two matter components, each taken from one adjacent site (b̂n+1,p and
b̂n,v), as well as the link (L̂n).

The enhanced physical overlap in this configuration decisively improves time
scales of the spin-changing collisions, which up to now was a major limiting factor
for experimental implementations. Moreover, a single well of the optical lattice
already contains the essential processes between matter and gauge fields, and thus
represents an elementary building block of the lattice gauge theory. These building
blocks can be coupled by Raman-assisted tunneling of the matter fields [111, 112].

The Hamiltonian Ĥ =
∑

n[Ĥn + ~Ω(b̂†n,pb̂n,v + h.c.)] of the extended system can
thus be decomposed into the elementary building-block Hamiltonian Ĥn and the
laser-assisted tunneling (with Raman frequency ∼ Ω). Here, Ĥn reads (writing
b̂p ≡ b̂n+1,p, b̂v ≡ b̂n,v, and L̂ ≡ L̂n)

Ĥn/~ = χL̂2
z +

∆

2

(
b̂†pb̂p − b̂†vb̂v

)
+ λ

(
b̂†pL̂−b̂v + b̂†vL̂+b̂p

)
. (3.1)

The first term on the right-hand side of Eq. (3.1), which is proportional to the
parameter χ, describes the energy of the gauge field, while the second term ∼ ∆

sets the energy difference between the two matter components. The last term ∼ λ
describes the U(1) invariant coupling between matter and gauge fields, which is
essential to retain the local U(1) gauge symmetry of the Hamiltonian Ĥ .

3.1.1 Bosonic U(1) lattice gauge theory

Our experiment aims at implementing a U(1) lattice gauge theory with bosonic
matter. Since this is non-standard, we briefly discuss the target model and its relation
to QED in this section. The theory is described by the Hamiltonian

Ĥ =
∑

n

{
a

2
Ê2
n +

(
m+

1

a

)[
b̂†n,1b̂n,2 + h.c.

]}
+

1

a

∑

n

[
b̂†n,1Ûnb̂n+1,2 + h.c.

]
. (3.2)

Here, the gauge fields Ên, Ûn live on links n that connect two neighboring lattice
sites n and n − 1 where the two-component matter fields b̂n,i with i = 1, 2 are
situated. The gauge fields obey the standard commutation relations

[
Ên, Ûm

]
= eδnmÛm , (3.3)

where e is the electric charge. In contrast to QED, we consider bosonic operators for
the matter fields, obeying

[
b̂n,i, b̂

†
m,j

]
= δnmδij . (3.4)
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Nevertheless, the Hamiltonian is gauge-invariant,
[
Ĥ, Ĝn

]
= 0, with the Gauss’ law

operator

Ĝn = Ên − Ên−1 − e
∑

i

b̂†n,ib̂n,i (3.5)

that generates U(1) gauge transformation. Consequently, the model is a proper U(1)

lattice gauge theory.
The Hamiltonian in the form (3.2) is motivated by our previous proposal, dis-

cussed in chapter 2, to implement QED with Wilson fermions with mass m and
lattice spacing a. With the identifications

χ↔ ae2

2
, λ↔ 1

a
√
L(L+ 1)

, Ω↔ m+
1

a
, (3.6)

our proposed extended implementation realizes the target model in the limit of
large spin length L of the “gauge” bosons when tuning ∆ → 0. When bosonic
matter is used instead of fermionic matter, for QED in three spatial dimensions it is
known that Lorentz invariance remains broken even in the continuum limit, which
prohibits an interpretation as a relativistic quantum field theory. Similarly, in one
spatial dimension, we expect that the theory with bosonic matter will not lead to a
relativistic continuum theory. Thus, to obtain a well-behaved continuum limit, we
intend to replace the bosons by fermions in future experiments. Following Ref. [29],
after replacing the bosons in the experiment by fermions, the above Hamiltonian
will describe a standard lattice discretization of QED. In particular, the fermionic
version of the model has a well-behaved continuum limit where Lorentz invariance,
which is explicitly broken by the lattice discretization, is recovered.

3.2 Experimental realization of the building block

We implement the elementary building block Hamiltonian Ĥn with a mixture of
300× 103 sodium and 50× 103 lithium atoms as sketched in Fig. 3.1C (see appen-
dices 3.A and 3.B for details). Both species are kept in an optical dipole trap such
that the external trapping potential is spin-insensitive for both species. An external
magnetic bias field of B ≈ 2 G suppresses any spin change energetically, such that
only the two Zeeman levels, mF = 0 and 1, of the F = 1 hyperfine ground state
manifolds are populated during the experiment. The 23Na states are labeled as
|↑〉 = |mF = 0〉 and |↓〉 = |mF = 1〉, on which the spin operator L̂ associated to the
gauge field acts. The first term of (3.1) is then identified with the one-axis twisting
Hamiltonian [113, 114]. We label the 7Li states as “particle” |p〉 = |mF = 0〉 and
“vacuum” |v〉 = |mF = 1〉, in accordance with the matter field operators b̂p and
b̂v. With this identification, the second term arises from energy shifts due to the
external magnetic field and density interactions. Finally, the term ∼ λ is physically
implemented by hetero-nuclear spin-changing interactions [115].
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μ

F = 2

FIGURE 3.2: Tunability of the initial conditions. The normalized spin z-
component Lz/L of 23Na atoms as a function of the preparation pulse length,
which shows that the gauge field can be tuned experimentally over the entire
possible range. Simultaneously, the particle number Np/N of 7Li is kept in the
vacuum state. The inset shows a sketch of the experimental protocol used for
tuning the initial conditions.

3.2.1 Initialization

The resulting setup is highly tunable, as we now demonstrate experimentally on the
building block. We achieve tunability of the gauge field through a two-pulse Rabi
coupling of the Na atoms between |↓〉 and |↑〉 using an intermediate |F = 2〉 state,
which yields a desired value of Lz/L = (N↑ −N↓)/(N↑ +N↓) (Fig. 3.2). At the same
time, we keep the 7Li atoms in |v〉, corresponding to the initial vacuum of the matter
sector at ∆ → ∞, with � 1% detected in |p〉 (see Fig. 3.2).

3.2.2 Dynamics of spin-changing collisions

If the gauge invariant coupling is turned off by removing the Na atoms from the
trap, we observe no dynamics in the matter sector beyond the detection noise. On
the other hand, once the gauge field is present, the matter sector clearly undergoes
a transfer from |v〉 to |p〉 for proper initial conditions, as illustrated in Fig. 3.3A
for an initialization to ÑG = −0.188 at a magnetic field of BA = 2.118(2)G 1. This
observation demonstrates the controlled operation of hetero-nuclear spin-changing
collisions implementing the gauge-invariant dynamics in the experiment.

To quantify our observations, we extract the ratio NP , with N = Np + Nv, as
a function of time as presented in Fig. 3.3B. We observe non-zero NP , describing
“particle production”, on a timescale of few tens of ms, with up to 6% of the total
N being transferred to |p〉. This value is consistent with our expectations from
conservation of the initial energy E0/� = χL2

z −∆Nv/2, from which we estimate a
maximum amplitude on the order of a few percent (see appendix 3.D for a simple
explanation of the maximum amplitude in terms of a particle oscillating in an
anharmonic potential). Due to the much larger 23Na condensate, the expected

1All uncertainties given in this chapter correspond to a 68% confidence interval.
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p
A

B

FIGURE 3.3: Dynamics of particle production. (A) The number density dis-
tribution in state |p〉 as a function of time for ÑG = −0.188. (B) The cor-
responding particle number Np/N . The blue circles give the experimental
values with bars indicating the statistical error on the mean. The red curve
is the theoretical mean-field prediction of Hamiltonian (3.1) with parameters
determined from a fit of the data in Fig. 3.4A and phenomenological damping.
The shaded area indicates the experimental noise floor. The dashed line marks
the time of 30ms as it is used for the experimental sequence generating the
data in Fig. 3.4.

corresponding change in ÑG is ∼ 2%, which is currently not detectable with our
imaging routine (see appendix 3.A). Coherent oscillations in NP are seen to persist
for about 100ms.

3.2.3 Tunability of the model parameters

We display NP /N over the entire range of initial Lz in Fig. 3.4, keeping a fixed
time of 30ms. The upper panel A corresponds to the same experimental setting as
in Fig. 3.3. A clear resonance for particle production can be seen around Lz/L �
−0.5, approximately captured by the resonance condition 2χLz ∼ ∆ (see section
3.3 below). The asymmetry of the resonance is a clear manifestation of the non-
linearity of the dynamics (see appendix 3.D for a detailed discussion of the non-
linearity). As we reduce the magnetic field B, presented in Fig. 3.4B-D, we observe
a shift of the resonant particle production together with a reduction in amplitude,
which continues to be qualitatively captured by the resonance condition 2χLz ∼
∆. The maximal amplitude of the particle production is necessarily reduced by
the conservation of total magnetization as the resonant peak is pushed closer to
Lz/L = −1. For fields that are smaller than Bmin ≈ 1.96G, the matter field and
gauge field dynamics become too off-resonant and particle production can no longer
be observed.

We compare the experimental results to the mean-field predictions of Hamilto-
nian (3.1) for chosen χ, λ and ∆(Lz, B) = ∆0 +∆LLz/L+∆B(B−BA)/BA (see 3.B
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for the origin of the dependence on the magnetic field B and the initial spin Lz).
A first-principle calculation of these model parameters, using only experimental
input of our setup, yields χth/2π ≈ 14.92 mHz, λth/2π ≈ 42.3 µHz, ∆th

0 /2π ≈ −77 Hz,
∆th
L /2π ≈ 4.474 kHz and ∆th

B/2π ≈ −1.669 kHz. These values are obtained by ne-
glecting any residual spatial dynamics [116] of the atomic clouds within the trapping
potential, which renormalizes the model parameters. Moreover, the mean-field ap-
proximation cannot capture the decoherence observed in Fig. 3.3 at later times.
However, the features of the resonance data in Fig. 3.4 are more robust against the
decoherence as it probes the initial rise of particle production.

We include the decoherence into the model phenomenologically by implement-
ing a damping term characterized by γ/2π = 3.54(94) Hz, which is determined by
an exponential envelope fit to the data of Fig. 3.3B. Physically, the damping has
several origins: Quantum fluctuations; fluctuations of initial state preparation as
well as values of parameters; atom loss; the spatial dynamics of the two species
within the building block. Importantly, the first two do not compromise gauge
invariance. The last two sources of dissipation can be controlled by reducing the
particle density and by implementing a deep optical lattice that freezes out the spa-
tial dynamics within individual wells. Fixing γ, the best agreement (solid red line)
with the data in Fig. 3.4A is obtained for χ/2π = 8.802(8) mHz, λ/2π = 16.4(6) µHz,
∆0/2π = −4.8(16) Hz and ∆L/2π = 2.681(1) kHz. The prediction with these model
parameters shows excellent agreement with the data in Fig. 3.3B (red line) for all
times observed. Remarkably, our established model also describes the data in
Fig. 3.4B-D by including ∆B/2π = −519.3(3) Hz. In the next section, we discuss this
effective model in more detail.

3.3 Effective description of the building block dynamics

We find that all experimental data is well described by the building block Hamilto-
nian in the mean-field approximation with a phenomenological damping term. The
deviation from the mean-field building block can be understood from considering
experimental imperfections, such as fluctuating initial conditions and spatial inho-
mogeneities, or quantum fluctuations. These lead to a decoherence of the observed
oscillations and renormalize the building block parameters. The damping is charac-
terized by a decoherence time scale 1/γ, which is determined by fitting the envelope
of the oscillation in Fig. 3.3B1 with an exponential decay, yielding 1/γ = 46(12)ms,
i.e., γ/2π = 3.54(94) Hz.

In practice, we solve the dynamics arising from the Hamiltonian in Eq. (3.1) in
the mean-field approximation. For convenience, we rewrite it in terms of two
coupled effective spins of length LN = NN/2 and LL = NL/2 by using the
Schwinger representation also for Li. Then the Hamiltonian becomes H/~ =

χL2
z,N + ∆Lz,L + 2λ (Lx,NLx,L + Ly,NLy,L). We can take the damping into account

by formally coupling the system to a bath (consisting, e.g., of the spatial modes
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FIGURE 3.4: Resonant particle production. (A-D) The number of produced
particles as a function of initially prepared Lz/L after 30ms for different bias
magnetic fields. Blue circles are experimental values with bars indicating the
error on the mean. The red curve in (A) arises from the theoretical model using
the best estimate values of χ, λ, ∆0 and ∆L. The remaining curves in (B-D) are
computed using the same parameters including ∆B . The shaded area indicates
confidence intervals of the fit from bootstrap resampling. The dashed line in
(A) indicates the Lz/L value corresponding to the time evolution shown in
Fig. 3.3.

that we neglected). Assuming dephasing of the spin components orthogonal to the
magnetization M = Lz,N +Lz,L, we employ the Lindblad-type Heisenberg equation
of motion (as discussed, e.g., in [117]) for an observable O,

∂tO = i [H,O] + γ

(
L†OL− 1

2

{
L†L,O

})
(3.7)
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with a single jump operator L = M with the decay rate γ. The resulting (mean-field)
equations of motion for the spin components are

∂tLx,N = −2χLz,NLy,N + 2λLz,NLy,L −
γ

2
Lx,N , (3.8a)

∂tLy,N = 2χLz,NLx,N − 2λLz,NLx,L −
γ

2
Ly,N , (3.8b)

∂tLz,N = 2λ(Ly,NLx,L − Lx,NLy,L) , (3.8c)

∂tLx,L = −∆Ly,L + 2λLz,LLy,N −
γ

2
Lx,L , (3.8d)

∂tLy,L = ∆Lx,L − 2λLz,LLx,N −
γ

2
Ly,L , (3.8e)

∂tLz,L = 2λ(Ly,LLx,N − Lx,LLy,N ) , (3.8f)

with initial conditions LL(0) = (0, 0,−1) × LL and LN (0) = (cos θ, 0, sin θ) × LN .
Here, θ ∈ [−π, π] is chosen in accordance to the quench that initiates the dynamics.
We fit the numerical solution to the resonance data via the observableNp = Lz,L+LL.
To this end, we assume that ∆ = ∆0 + ∆LLz,N (0)/LN + ∆B(B − BA)/BA. This
dependence of ∆ on the initial spin Lz,N (0) (for fixed LL(0)) and the magnetic field
B is analogous to the functional form derived in appendix 3.B for an ideal building
block. We obtain the effective model parameters χ, λ,∆0 and ∆L from a single fit to
the data shown in Fig. 3.4A with given γ. Fixing these parameters, ∆B is determined
by a second fit to the data of Fig. 3.4B-D. Explicitly, the fits yield the following set of
model parameters describing all experimental data:

χ

2π
= 8.802(8) mHz , (3.9a)

λ

2π
= 16.4(6) µHz , (3.9b)

∆0

2π
= −4.8(16) Hz , (3.9c)

∆L

2π
= 2.681(1) kHz , (3.9d)

∆B

2π
= −519.3(3) Hz . (3.9e)

Comparing to the microscopic ab-initio estimates (see appendices 3.B and 3.C)
gives

χth/χ ≈ 1.7 , (3.10a)

λth/λ ≈ 2.6 , (3.10b)

∆th
0 /∆0 ≈ 16 , (3.10c)

∆th
L /∆L ≈ 1.7 , (3.10d)

∆th
B/∆B ≈ 3.2 . (3.10e)

The estimates are typically larger than the measured values by factors of about 2 to 3,
which hints at a systematic uncertainty in the microscopic parameters that enter the
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ab-initio calculation. Nevertheless, most values lie in the right order of magnitude.
Importantly, the signs agree, such that the qualitative nature of the shift due to B
and Lz,N is predicted in agreement with the experiment. The precise value of ∆0 is
less important to fit the experimental data (essentially because of the large value of
∆L), which is also apparent from its larger uncertainty. This observation makes the
larger deviation between the fitted value ∆0 and the estimate ∆th

0 plausible.
In terms of the two coupled spins, the resonance can also be understood more

intuitively as follows. In our case, LN ≈ 6LL and thus by angular momentum
conservation the component Lz,N can not change much (at most ∼ 17%) in the
course of the dynamics. Now, if the spins were not coupled, they would rotate in
the (x, y)-plane with frequencies given by 2χLz,N and ∆. If the two frequencies
were very different, the coupling ∝ λ would average out. Therefore 2χLz,N ∼ ∆

gives an approximate condition for the resonance (assuming approximately constant
Lz,N ). Solving this condition for Lz,N with the fitted experimental parameters gives
the following resonance estimates for the four magnetic fields employed in the
experiment:

Lz,N
LN

∣∣∣∣
resonance

=
∆0 + ∆B (B −BA) /BA

χNN −∆L
∈ {0.12(4),−0.18(4),−0.47(5),−0.78(6)} ,

B ∈ {BA, BB, BC, BD} . (3.11)

The actual peak position is not accurately reproduced because the naive resonance
condition is not quantitative for the employed particle numbers, and non-linearities
and damping of the equations of motion modify the resonance. Nevertheless, the
qualitative shift of the resonance peak is well captured.

3.4 Summary

Our results demonstrate the controlled operation of an elementary building block
of a U(1) gauge theory, and thus open the door for large-scale implementations
of lattice gauge theories in atomic mixtures. The potential for scalability is an
important ingredient for realistic applications to gauge field theory problems. Digital
quantum simulations of gauge theories on universal quantum computers [13, 14]
are challenging to scale up. This difficulty makes analog quantum simulators, as
treated here, highly attractive, since they can be scaled up while still maintaining
excellent quantum coherence [3, 25, 31, 35, 118, 119]. Proceeding to the extended
system requires to combine the current experiment with the established tools of
an optical lattice and laser-assisted tunneling (see appendix 3.B). The resulting
extended gauge theory will enable the observation of relevant phenomena such as
plasma oscillations or resonant particle production in strong-field QED [95]. Along
the path to the relativistic gauge theories realized in nature, we will replace bosonic
7Li with fermionic 6Li, which will allow for the recovery of Lorentz-invariance in
the continuum limit.



3.A. Experimental details 65

Appendix: More details about the spinor Bose-Bose mixture

In this appendix, we give more details about the experiment (section 3.A) and about
the implementation of the U(1) gauge theory (section 3.B). In section 3.C, we discuss
how to simulate the experiment in three spatial dimensions, which demonstrates
how spatial dynamics affects the evolution. Finally, we give another explanation for
the observed resonance by rewriting the dynamics of spin-changing collisions as an
anharmonic oscillator in section 3.D.

3.A Experimental details

We prepare a mixture of bosonic 23Na and 7Li in a single crossed optical dipole
trap from a far red detuned laser with 1064 nm wavelength. The atoms experience
trapping frequencies of (ωx, ωy, ωz)Na ≈ 2π × (243, 180, 410)Hz for sodium and
(ωx, ωy, ωz)Li = 2.08× (ωx, ωy, ωz)Na for lithium. To maximize the spatial overlap of
the two individual clouds, we align the direction of strongest confinement in gravity
direction whereby reducing the differential gravitational sag to approximately 1.1µm.
The atomic clouds are evaporatively cooled to Bose Einstein condensation and
contain about 300 ×103 23Na atoms and 50 ×103 7Li atoms respectively.

For the spin-exchange dynamics we take into account the following sublevels
of the Hyperfine ground state: |↓〉 = |F = 1,mF = 1〉 , |↑〉 = |F = 1,mF = 0〉 for
sodium, as well as |v〉 = |F = 1,mF = 1〉 , |p〉 = |F = 1,mF = 0〉 for lithium. We
apply an offset magnetic field of BA = 2.118(2)G, which lifts the degeneracy of the
magnetically sensitive states. Moreover around B0 the level spacing of both species
approach each other at (E|↑〉 − E|↓〉)/~ ≈ (E|p〉 − E|v〉)/~ ∼ 1.45 MHz, energetically
allowing hetero-nuclear spin transfer. Detailed information about the scattering
lengths in our system is given in section 3.B.

At the beginning of the experimental sequence the atoms are prepared in |↓〉
and |v〉 respectively, suppressing any spin exchange due to conservation of mag-
netization. We initiate the spin dynamics by quenching sodium into a desired
superposition of |↑〉 and |↓〉. To ensure that lithium stays spin polarized during
the quench, instead of direct radiofrequency transfer we couple the sodium states
with a two pulse microwave transition sequence using the sodium |F = 2,mF = 0〉
state as an intermediate state. The first pulse is of variable length, driving pop-
ulation from |↓〉 to the intermediate state with a Rabi frequency of 2π × 2.5 kHz.
The second pulse is fixed to 100µs (corresponding to a π-pulse) and subsequently
drives the population from the intermediate state to |↑〉. The total length of the pulse
sequence is at most 300µs, which is at least one order of magnitude faster than the
spin dynamics we observe in our experiment. The initial superposition quench
causes undesired external dynamics of the sodium cloud due to the two states |↑〉
and |↓〉 being immiscible [116]. This leads to relative motion of the two sodium
spin components within the trap after the superposition quench (see section 3.C for
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more details). Our observation time is limited by losses in the |↑〉 state, leading to a
lifetime of the |↑〉 population of about 560 ms for the data shown in Fig. 3.4.

After an evolution time of up to 100 ms we switch off the trapping potential and
perform a Stern-Gerlach sequence, where a magnetic field gradient is applied across
the atoms’ position for 1.5 ms that separates the magnetic substates spatially. After a
free expansion time of 3 ms (sodium) and 2 ms (lithium) the two spin states of each
species are separated by approximately 130µm. Then we use absorption imaging to
detect the spatial distribution of both species on two individual CCD cameras. The
information about the population of substates is then extracted from the images by
integrating the density distribution of the individual spin components.

The observable in the experiment is the relative lithium atom number population
Np/N . For lithium being initially spin polarized in |v〉, atoms transferred to |p〉 are
the signature of spin-changing collisions. The main source of detection noise for this
observable are fringe patterns on the images which are resulting from diffraction
and interference in the imaging path. To account for those we post-process the
lithium absorption images by applying a fringe removal algorithm [120], which
reduces the experimental noise floor below 1% (see Fig. 3.3B).

Due to the 6 times higher sodium atom number the relative change between the
population of |↑〉 and |↓〉 resulting from spin-changing collisions is expected to be at
most 1%. This change can currently not be detected with our imaging routine. Main
limitation are the external dynamics of the sodium spin components in the trap
after the initial quench. This results in strong variation of the density distribution of
the individual sodium components which our imaging calibration is systematically
sensitive to [121].

The observable Np/N is obtained as an average from a statistical ensemble
of multiple experimental realizations. Each data point shown in Figs. 3.3 and 3.4
corresponds to at least three and ten measurements, respectively. The data displayed
in Fig. 3.4 is binned in 5% intervals of Lz/L. As the curve in Fig. 3.4D becomes
comparably featureless, we used our resources to more accurately resolve the other
sets for Fig. 3.4A-C.

For more details about the experiment, we refer to the doctoral thesis of A.
Mil [108].

3.B Details of the implementation

3.B.1 Microscopic Hamiltonian

In our experiments, we work with two internal spin states, mF = 0, 1, each from
the spin Fs = 1 manifold of the two Bose gases, s = N,L (23Na and 7Li in our
case). The total Hamiltonian, H = H0 +H1, of the combined system splits into free,
H0 = HN +HL, and interaction, H1 = HNN +HLL +HNL, parts [122, 123]. The free
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parts have the form

Ĥs =

ˆ
d3x

∑

α

ψ̂†s,α(x)Ĥs,α (x) ψ̂s,α (x) , (3.12a)

Ĥs,α (x) =
−∇2

x

2ms
+ Vs(x) + Es,α(B) . (3.12b)

Here, ms denotes the atomic masses, Vs is the trapping potential and Es,α(B) is
the Zeeman shift in the presence of an external magnetic field B, given by the
Breit-Rabi formula. The field operators ψ̂s,α(x) fulfill bosonic commutation relations[
ψ̂s,α(x), ψ̂†s′,β(y)

]
= δss′δαβδ (x− y), where α, β ∈ {0, 1} denote the mF states.

The intra-species and inter-species interactions which are spin-conserving are
described by

Ĥss =
1

2

ˆ
d3x

∑

α,β

gsαβ ψ̂
†
s,α(x)ψ̂†s,β(x)ψ̂s,β(x)ψ̂s,α(x) , (3.13a)

ĤNL =

ˆ
d3x

∑

α,β

gMix
αβ ψ̂†N,α(x)ψ̂†L,β(x)ψ̂L,β(x)ψ̂N,α(x) , (3.13b)

where the interaction constants gsαβ = 4π~2

ms
asαβ and gMix

αβ = 2π~2

µ aMix
αβ are determined

by the following scattering lengths: aN11 = aN10 = aN01 = 55aB , aN00 = 53aB , aL11 =

aL10 = aL01 = 6.8aB , aL00 = 12.5aB [122] and aMix
00 = aMix

10 = aMix
01 = 19.65aB ,

aMix
11 = 20aB [124]. The hetero-nuclear spin-changing collisions are described by

ĤSCC = gSCC
ˆ

d3xψ†N,0(x)ψ†L,1(x)ψN,1(x)ψL,0(x) + h.c. (3.14)

with the interaction strength gSCC = 2π~2

µ aSCC and the scattering length aSCC =

0.35aB [124].

3.B.2 Proposed extended implementation

We propose to implement the extended U(1) gauge theory described in section 3.1 as
follows. Starting from the microscopic Hamiltonian, a deep optical lattice localizes
the atomic clouds on individual lattice wells n. Expanding the field operators into lo-
calized Wannier functions, ψ̂s,α =

∑
n b̂s,α,nΦs,α,n(x), we first perform the spatial in-

tegration to obtain a tight-binding Hamiltonian. For a sufficiently deep potential, all
tunneling and interaction terms between neighboring wells are negligible, resulting
in an array of elementary building blocks n, each containing both species. The Hamil-
tonian has the form Ĥ =

∑
n Ĥn with Ĥn =

∑
s,n

(
Ĥs,n + Ĥss,n

)
+ ĤNL,n + ĤSCC,n
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and

Ĥs,n =
∑

α

Es,α(B)b̂†s,α,nb̂s,α,n , (3.15a)

Ĥss,n = Xs
11b̂
†
s,1,nb̂

†
s,1,nb̂s,1,nb̂s,1,n +Xs

00b̂
†
s,0,nb̂

†
s,0,nb̂s,0,nb̂s,0,n

+ 2Xs
10b̂
†
s,1,nb̂

†
s,0,nb̂s,1,nb̂s,0,n , (3.15b)

ĤNL,n = XMix
11 b̂†N,1,nb̂N,1,nb̂

†
L,1,nb̂L,1,n +XMix

00 b̂†N,0,nb̂N,0,nb̂
†
L,0,nb̂L,0,n

+XMix
10 b̂†N,1,nb̂N,1,nb̂

†
L,0,nb̂L,0,n +XMix

10 b̂†N,0,nb̂N,0,nb̂
†
L,1,nb̂L,1,n , (3.15c)

ĤSCC,n = XSCC
[
b̂†N,0,nb̂

†
L,1,nb̂N,1,nb̂L,0,n + b̂†N,1,nb̂

†
L,0,nb̂N,0,nb̂L,1,n

]
. (3.15d)

The precise values of the energy levels E and interaction constants X depend on the
details of the optical lattice and the corresponding Wannier functions Φs,α,n(x).

We then identify the gauge fields on the building block via the Schwinger repre-
sentation of angular momentum operators,

L̂+,n = b̂†N,0,nb̂N,1,n , L̂−,n = b̂†N,1,nb̂N,0,n , L̂z,n =
1

2

(
b̂†N,0,nb̂N,0,n − b̂

†
N,1,nb̂N,1,n

)
.

(3.16)

The matter fields on a building block, however, are partially associated with the two
neighboring internal degrees of freedom according to

b̂n =

(
b̂n,p

b̂n,v

)
, b̂n,p = b̂L,n−1,0 , b̂n,v = b̂L,n,1 . (3.17)

The matter fields carry a U(1) charge Q̂n, which enters the Gauss’ law operators Ĝn
as

Q̂n = b̂nb̂n = b̂†n,pb̂n,p + b̂†n,vb̂n,v , Ĝn = L̂z,n − L̂z,n−1 − Q̂n . (3.18)

This construction ensures Gauss’ law,
[
Ĝn, Ĥ

]
=
[
Ĝn, ĤSCC,n + ĤSCC,n−1

]
= 0, be-

cause
[
L̂z,n, ĤSCC,n

]
−
[
L̂z,n−1, ĤSCC,n−1

]
=
[
Q̂n, ĤSCC,n + ĤSCC,n−1

]
. Physically,

a global U(1) symmetry due to the conservation of the total magnetization, which
arises from angular momentum conservation, is localized on each building block.
This localization, which is achieved by associating a building block n with a link n
and components of the matter fields on the neighboring lattice sites n and n+ 1, is
the key to the scalability of our proposal.

Finally, we connect the building blocks to an extended one-dimensional system
by the term

HΩ = ~Ω
∑

n

(
b̂†L,n,1b̂L,n−1,0 + h.c.

)
= ~Ω

∑

n

(
b̂†n,vb̂n,p + h.c.

)
, (3.19)

which can be realized with, e.g., laser-assisted tunneling. Crucially, this connection



3.B. Details of the implementation 69

respects Gauss’ law,
[
HΩ, Ĝn

]
=
[
HΩ, Q̂n

]
= 0. The resulting lattice model is similar

to our previous proposal [29] with Dirac fermions replaced by two-component
bosons,

Ĥ/~ =
∑

n

{
χ L̂2

z,n + Ω b̂†nσxb̂n + λ
[
b̂†n,vL−,nb̂n+1,p + h.c.

]}
(3.20)

+ (other gauge-invariant terms) ,

as discussed in section 3.1.

3.B.3 The building block

In the following, we focus on a single building block n of the extended proposal, as
realized in the present experiment. To this end, we consider only two matter field
components, b̂p = b̂L,n,0 and b̂v = b̂L,n,1, together with a single spin L̂ = L̂n. The
microscopic Hamiltonian conserves the total magnetization M̂ and the total particle
numbers N̂L, N̂N . To simplify the Hamiltonian of a single building block, we assume
an initial state with fixed magnetization M and particle numbers NN , NL

2. After
some algebra, we obtain the building block Hamiltonian given in Eq. (3.1), up to
constants involving only the conserved numbers NN , NL and M . The Hamiltonian
is gauge invariant because it commutes with the two reduced Gauss’ law operators
associated with neighboring lattice sites,

Ĝ′n = L̂z + b̂†pb̂p , Ĝ′n+1 = −L̂z + b̂†vb̂v . (3.21)

The parameters are given by

∆ = −
[
δLext − δNext + δLint − δNint +

χNL
2

(NN −NL) + 2M
{
−χL −

χNL
2

}]
, (3.22a)

χ = −χN − χL − χNL , (3.22b)

λ = XSCC , (3.22c)

where we abbreviated the effective interaction constants

χs = − [Xs
00 +Xs

11 − 2Xs
10] = [Xs

11 −Xs
00] , (3.23)

the mean-field energy shifts

δsint = [Xs
11 −Xs

00] (Ns − 1) = χs(Ns − 1) , (3.24)

2It is questionable whether this condition can be realized by preparing a corresponding eigenstate
in the experiment. The fact that we can describe the experiment on the mean-field level shows that this
subtlety is not relevant at the moment. However, it can be crucial for investigating quantum effects
after preparing a gauge-invariant state in future experiments.
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and the single-particle energy level differences δsext = Es,1 − Es,0. The interaction
constants are calculated from the relevant overlap integrals by rescaling the mi-
croscopic parameters as Xs

αβ = Isαβ
gsαβ

2 , XMis
αβ = IMix

αβ gMix
αβ and XSCC = IMix

10 gSCC

with

Isαβ =

ˆ
d3xΦ2

s,α,n(x)Φ2
s,β,n(x) , IMix

αβ =

ˆ
d3xΦ2

N,α,n(x)Φ2
L,β,n(x) , (3.25)

where we have chosen real basis functions Φ. From the known experimental parame-
ters, we estimate the overlap integrals from the initial mean-field BEC wave-function
Φs,1,n with all atoms of both species in the mF = 1 state by setting Φs,1,n = Φs,0,n.
We have calculated the necessary wave-functions by imaginary-time propagation of
the Gross-Pitaevskii equation corresponding to full microscopic Hamiltonian (for
more details see the section 3.C). In the experiment, we tune the magnetization M
through the initial value of the spin Lz(0) and the magnetic field B. To quantify this
dependence, we split ∆ = ∆0 + ∆LLz,N (0)/LN + ∆B(B − BA)/BA, which holds
for (B − BA) � BA and fixed initial condition for the Li atoms. With the given
experimental and microscopic parameters, we obtain the following estimates:

χth

2π
≈ 14.92 mHz , (3.26a)

λth

2π
≈ 42.3 µHz , (3.26b)

∆th
0

2π
≈ −77 Hz , (3.26c)

∆th
L

2π
≈ 4.474 kHz , (3.26d)

∆th
B

2π
≈ −1.669 kHz . (3.26e)

3.B.4 Estimates for the extended system

For scaling up our system to an extended lattice gauge theory, we propose to use a
one-dimensional optical lattice array created by a laser of 532nm wavelength, which
is blue detuned for both species. The connecting term, Eq. (3.19), can be realized
by laser-assisted tunneling between neighboring lattice sites. Former proposals re-
quired a species selective lattice, where different species reside on alternating lattice
sites whereas in this implementation both atomic species reside on the same sites.
This arrangement greatly improves the feasibility of an experimental realization.
First, an alternating lattice is technically more demanding. Second, in an alternating
lattice tight confinement is necessary to avoid undesired direct tunneling between
lattice sites. This confinement, however, diminishes also the spin-changing collisions
dynamics, which involve spatial hopping across lattice sites. In our implementation,
each site already contains the gauge-invariant interaction via on-site spin-changing
collisions. Therefore, tight confinement on individual lattice wells that suppresses
direct tunneling at the same time increases the gauge-invariant coupling.
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For the laser-assisted tunneling, we consider two laser beams, each having a
large detuning ∆ from the lithium D1 line. We describe the two beams by E1,2 =

E1,2u1,2 cos(k1,2x− ω1,2t), with k1,2 and ω1,2 being the wave vector and frequency
of each laser beam, respectively. The frequency difference of the lasers is tuned to
match the transition frequency between the states ψp = ψL,0 and ψv = ψL,1. As
discussed, e.g., in [125] this leads to the following contribution to the Hamiltonian,

V̂ =

ˆ
d3x Ωeψ̂

†
p(x)ψ̂v(x)eiqx + h.c. , (3.27)

where q = k1 − k2, and Ωe being the effective coupling strength. To estimate the
effective tunneling strength, we use similar parameters as in the previous proposal
[29]. For the lattice this results in a lattice spacing of aL = 2 µm and a lattice depth of
15ER for lithium, and 115ER for sodium, such that tunneling is even more strongly
suppressed for sodium. In this configuration, we obtain a direct tunneling element
on the order of a few Hz. We then estimate the tunneling strength in the presence
of Eq. (3.27). A lower limit for the estimate is given when considering the Wannier
functions within the lattice sites to be harmonic oscillator ground states. Further
assuming a detuning of ∆ = 1nm, we estimate a laser-assisted tunneling strength
on the order of a few kHz. Considering spin-changing collisions dynamics, which
may also happen on the scale of hundreds of Hz, we expect the overall dynamics of
the extended system to be at least ten times faster than in previous proposals [10,
29].

3.C Numerical simulation of the trapped mixture

To get a better understanding of the experimental setup we need to go beyond
an ideal setup and take into account experimental imperfections. Here, we focus
on the spatial structure and residual dynamics of the atomic clouds within the
trapping potential. As a first approximation, we describe the BECs in a mean-field
approximation which means that we solve the Gross-Pitaevskii equation (GPE)
derived from the microscopic Hamiltonian described in section 3.B.1 numerically.
The numerical solution is based on a pseudo-spectral method, called “split-step”,
where we refer to [126, 127] for more details. In the following we briefly summarize
the main idea and point out necessary modifications to simulate the present model.

Consider a partial differential equation (PDE) of the form

i∂tψ(t, x) = (T + V )ψ(t, x) , (3.28)

where T and V are (not necessarily linear) differential operators, for which the
corresponding PDE is exactly solvable, i.e., we have explicit expressions for the
formal solutions ψ(t, x) = e−iDtψ(0, x) with D = T, V . Then the solution for a short
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time ∆t may be written as

ψ(t, x) = e−i(T+V )∆tψ(0, x) ≈ e−iT∆te−iV∆tψ(0, x) , (3.29)

where the error goes to zero as ∆t → 0 according to the BCH formula. For the
GPE of a one-component BEC, T = −∇2/(2m) is the kinetic energy term, which is
diagonal in Fourier space, and V = Vtrap + g|ψ|2 is the potential energy term, which
is diagonal in position space. By evolving ψ(t, x) in alternating steps according
to T and V one obtains an approximation to the exact solution of the full PDE. In
practice, space is discretized on a periodic lattice with spacing a and spatial extent
L and one can efficiently switch between position and momentum space using the
fast Fourier transform algorithm. The resulting numerical implementation scales
as ∼ NtNx logNx, where Nt is the number of time steps and Nx = (L/a)d is the
total number of lattice sites for spatial dimension d. The parameters have to be
tuned such that convergence with respect to decreasing the time step ∆t, increasing
the system size L and decreasing the lattice spacing a (for fixed L) is achieved to a
desired precision. Crucially, the split-step method is symplectic, which ensures that
certain symmetries of the system are preserved [127, 128]. For the case of a GPE, this
includes the conservation of total particle number and total energy.

In contrast to the standard GPE, the Bose-Bose mixture involves four hyperfine
components, described by ψN/L,1/0. As a consequence, the GPE includes not only
kinetic energy terms T and potential energy terms V , which are both diagonal in the
hyperfine index. There is a third type of terms, due to the spin-changing collisions,
that mix the different hyperfine components. This part of the evolution equation is
local in position space and takes the form

i∂tψN,1 = gψ∗L,1ψL,0ψN,0 , i∂tψN,0 = gψ∗L,0ψL,1ψN,1 , (3.30a)

i∂tψL,1 = gψ∗N,1ψN,0ψL,0 , i∂tψL,0 = gψ∗N,0ψN,1ψL,1 . (3.30b)

We have not found a simple analytic solution to these equations. To be able to
include the spin-changing collision in the simulation, we instead consider

i∂ψ1 = g̃ψ0 , i∂ψ0 = g̃∗ψ1 , (3.31)

which can be seen as “half” of the previous equations for, e.g., fixed g̃ = gψ∗L,1ψL,0.
With initial conditions ψ1(0) and ψ0(0), the solution is

ψ1(t) = ψ1(0) cos(ωt)− iψ0(0)
ω

g̃
sin(ωt) , (3.32a)

ψ0(t) = ψ0(0) cos(ωt)− iψ1(0)
ω

g̃∗
sin(ωt) , (3.32b)

with ω = |g̃|. We can thus approximate the solution to Eq. (3.30) by solving alternat-
ingly for ψN,1/0 with g̃ = gψ∗L,1ψL,0 and for ψL,1/0 with g̃ = gψ∗N,1ψN,0. Specifically,
we evolve ψN,1/0 for a short time ∆t/2, then ψL,1/0 for ∆t and again ψN,1/0 for ∆t/2.
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F I G U R E 3. 5: T h e  pl ot s s h o w t h e i nt e g r at e d ( o v e r z, y, x f r o m l eft t o ri g ht) t w o-
di m e n si o n al  d e n sit y  p r o fil e s i n  u nit s of 1 / m 2 of s o di u m (i n m F = 1 , t o p r o w)
a n d lit hi u m (i n m F = 1 , t o p r o w), o bt ai n e d f r o m i m a gi n a r y ti m e  p r o p a g ati o n
of t h e c o r r e s p o n di n g  G P E.  We o b s e r v e a cl e a r c h a n g e of t h e at o mi c cl o u d s  d u e
t o t h ei r i nt e r a cti o n: t h e s m all e r a n d li g ht e r lit hi u m cl o u d “ sit s ” o n t o p of a
di st o rt e d elli p s oi d al s o di u m cl o u d ( g r a vit y a ct s i n z - di r e cti o n).  T h e si m ul ati o n
w a s  d o n e o n a t h r e e- di m e n si o n al l atti c e  wit h N x = N y = 2 5 6 a n d N z = 1 2 8
g ri d  p oi nt s a n d l atti c e s p a ci n g a = 0 .1 5 µ m.

T hi s ( s o- c all e d St r a n g) s plitti n g i s a c c u r at e t o s e c o n d o r d e r [ 1 2 7 ]. I n t hi s  w a y  w e

i n cl u d e t h e s pi n- c h a n gi n g c olli si o n s i nt o t h e n u m e ri c al s plit- st e p i nt e g r ati o n of

t h e c o m bi n e d  G P E.  A s a r e s ult, t h e  fi n al i nt e g r at o r i s a g ai n s y m pl e cti c a n d al s o

a p p r o xi m at el y c o n s e r v e s t h e t ot al  m a g n eti z ati o n ( u p t o b o u n d e d o s cill ati o n s t h at

g o t o z e r o a s ∆ t → 0 ).

S ol vi n g t h e i m a gi n a r y ti m e v e r si o n f o r t h e  G P E (t o g et h e r  wit h a p p r o p ri at e n o r-

m ali z ati o n st e p s, s e e [ 1 2 9 ] f o r  m o r e  d et ail s)  w e h a v e c al c ul at e d t h e i niti al  m e a n- fi el d

w a v ef u n cti o n s ψ
( 0 )
N / L, 1 ( x, y, z ) of t h e  B E C  mi xt u r e i n t h e m F = 1 st at e s.  T h e r e s ult-

i n g  d e n sit y  p r o fil e s n
( 0 )
N / L, 1 ( x, y, z )  = |ψ

( 0 )
N / L, 1 ( x, y, z )|2 a r e s h o w n i n t h e  fi g u r e s 3. 5

a n d 3. 6 .  T h e o bt ai n e d s ol uti o n s a r e t h e n  u s e d a s a n i niti al st at e f o r si m ul ati n g

t h e r e al-ti m e  d y n a mi c s f oll o wi n g t h e q u e n c h of t h e e x p e ri m e nt,  w hi c h  w e r e al-

i z e b y i niti ali zi n g a  d e si r e d i m b al a n c e b et w e e n t h e t w o s o di u m c o m p o n e nt s, i. e.,

ψ N, m F
( x, y, z )( t = 0)  = α m F ψ

( 0 )
N, 1 ( x, y, z ) wit h |α 1 |2 + |α 0 |2 = 1 .

I n o r d e r t o  d e s c ri b e t h e e x p e ri m e nt i n  m o r e  d et ail,  w e t a k e i nt o a c c o u nt s e v e r al

i m p e rf e cti o n s t h at a r e n e gl e ct e d i n t h e i d e al  G P E si m ul ati o n. I n  p a rti c ul a r,  w e

h a v e o b s e r v e d l o s s i n t h e m F = 0 d e n sit y of s o di u m.  A n e x p o n e nti al  fit of t h e

e x p e ri m e nt al  d at a r e v e al e d a  fi nit e lif e-ti m e τ ,  w hi c h  w e t a k e i nt o a c c o u nt b y a d di n g

a t e r m, i /( 2 τ )ψ N, 0 , t o t h e c o r r e s p o n di n g c o m p o n e nt of t h e  G P E. F u rt h e r m o r e,  w e

h a v e o b s e r v e d a st r o n g  d e p e n d e n c e of t h e si m ul ati o n r e s ult s o n t h e i niti al  p a rti cl e

n u m b e r s N N a n d N L .  C o n s e q u e ntl y,  w e e xt r a ct e d t h e  fl u ct u ati o n s f r o m e x p e ri m e nt
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F I G U R E 3. 6: T h e  pl ot s s h o w t h e i nt e g r at e d ( o v e r z a n d y , z a n d x , y a n d x
f r o m l eft t o ri g ht) o n e- di m e n si o n al  d e n sit y  p r o fil e s of s o di u m (i n m F = 1 , t o p
r o w) a n d lit hi u m (i n m F = 1 , t o p r o w) f o r t h e  p a r a m et e r s a s i n  fi g u r e 3. 5 .  We
c o m p a r e t h e r e s ult f r o m i m a gi n a r y ti m e  p r o p a g ati o n ( s oli d li n e s, “I T ”) t o a
T h o m a s- F e r mi  p r e di cti o n t h at n e gl e ct s t h e i nt e r a cti o n b et w e e n s o di u m a n d
lit hi u m ( d a s h e d li n e s, “ T F ”),  w hi c h s h o w s t h at t h e  d e n sit y- d e n sit y i nt e r a cti o n s
si g ni fi c a ntl y  m o dif y t h e s h a p e of t h e t w o- s p e ci e s c o n d e n s at e.

a n d c al c ul at e d t h ei r  m e a n v al u e s a n d e m pi ri c al st a n d a r d  d e vi ati o n s,

¯N N ≈ 2 9 5 .8 × 1 0 3 , σ N N
≈ 7 .2 × 1 0 3 , ( 3. 3 3 a)

¯N L ≈ 5 5 .6 × 1 0 3 , σ N L
≈ 3 .9 × 1 0 3 , ( 3. 3 3 b)

τ̄ ≈ 5 0 5 .7 m s , σ τ ≈ 2 4 .0 m s . ( 3. 3 3 c)

We i n cl u d e t h e s e  fl u ct u ati o n s i nt o o u r si m ul ati o n b y s a m pli n g t h e c o r r e s p o n di n g

p a r a m et e r s f r o m i n d e p e n d e nt  G a u s si a n  di st ri b uti o n s  wit h e x p e ct ati o n v al u e a n d

v a ri a n c e e sti m at e d f r o m t h e e x p e ri m e nt al  d at a.  T h e r e s ult s of a si n gl e si m ul ati o n

a r e ill u st r at e d i n  fi g u r e 3. 7 .

T h e si m ul ati o n  d e m o n st r at e s t h at t h e s o di u m cl o u d s c h a n g e t h ei r s p ati al s h a p e

i n t h e c o u r s e of t h e  d y n a mi c s. I n  p a rti c ul a r, t h e t w o c o m p o n e nt s m F = 1 , 0 t e n d

t o “ a v oi d e a c h ot h e r ”, i. e., r e gi o n s of l a r g e  d e n sit y i n o n e c o m p o n e nt t y pi c all y

c o r r e s p o n d t o l o w  d e n siti e s i n t h e ot h e r c o m p o n e nt.  T hi s b e h a vi o r i s e x p e ct e d

b e c a u s e t h e h y p e r fi n e st at e s a r e i m mi s ci bl e [ 1 3 0 ].  A s a  di r e ct c o n s e q u e n c e of t hi s

o b s e r v ati o n,  w e  d o n ot e x p e ct t o b e a bl e t o  d e s c ri b e t h e e x p e ri m e nt i n a si n gl e- m o d e

a p p r o xi m ati o n  wit h t h e n ai v e  mi c r o s c o pi c  p a r a m et e r s gi v e n i n  E q. (3. 2 6 ).  H o w e v e r,

t h e  fit s h o w n i n  fi g u r e s 3. 3 a n d 3. 4 d e m o n st r at e s t h at a si n gl e  m o d e  d e s c ri pti o n i s

s uf fi ci e nt t o  d e s c ri b e t h e e x p e ri m e nt al o b s e r v ati o n s.  T hi s f a ct f o rti fi e s o u r st at e m e nt

t h at t h e s p ati al  d y n a mi c s e s s e nti all y “ r e n o r m ali z e s ” t h e  m o d el  p a r a m et e r s,  w hi c h

i n t u r n e n a bl e s a si m pl e  d e s c ri pti o n of t h e gl o b al o b s e r v a bl e N p / N .

B y a v e r a gi n g  m ulti pl e  G P E si m ul ati o n s,  w e o bt ai n a  p r e di cti o n f o r t h e e x p e ri-

m e nt al o b s e r v a bl e, s h o w n i n  fi g u r e 3. 8 .  E v e n t h o u g h t h e  p r e di ct e d c u r v e  d o e s n ot



3. C.  N u m e ri c al si m ul ati o n of t h e t r a p p e d  mi xt u r e 7 5

0 1 0 2 0 3 0

− 1 0

0

1 0

N a: m F = 1, x - dir.

0 1 0 2 0 3 0

− 1 0

0

1 0

N a: m F = 1, y - dir.

0 1 0 2 0 3 0

− 5

0

5

N a: m F = 1, z - dir.

0 1 0 2 0 3 0

− 1 0

0

1 0

N a: m F = 0, x - dir.

0 1 0 2 0 3 0

− 1 0

0

1 0

N a: m F = 0, y - dir.

0 1 0 2 0 3 0

− 5

0

5

N a: m F = 0, z - dir.

0 1 0 2 0 3 0

− 1 0

0

1 0

Li: m F = 1, x - dir.

0 1 0 2 0 3 0

− 1 0

0

1 0

Li: m F = 1, y - dir.

0 1 0 2 0 3 0

− 5

0

5

Li: m F = 1, z - dir.

0 1 0 2 0 3 0

Ti m e t[ m s]

− 1 0

0

1 0

x
[µ

m]

Li: m F = 0, x - dir.

0 1 0 2 0 3 0

− 1 0

0

1 0

y
[µ

m]

Li: m F = 0, y - dir.

0 1 0 2 0 3 0

− 5

0

5

z
[µ

m]

Li: m F = 0, z - dir.

0

1

2

3

× 1 0 1 0

0

1

2

3

× 1 0 1 0

0 .0

0 .5

1 .0

1 .5

× 1 0 1 0

0

2

4

6

8

× 1 0 8

F I G U R E 3. 7: We  pl ot t h e e v ol uti o n of o n e- di m e n si o n al i nt e g r at e d  d e n siti e s
( r o w s: m F = 1 , 0 c o m p o n e nt s f o r s o di u m a n d lit hi u m, c ol u m n s:  p r o fil e s
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lit hi u m i n m F = 0 .  H o w e v e r,  w e al s o o b s e r v e s u b st a nti al s p ati al  d y n a mi c s
t h at “ d e mi x e s ” t h e s o di u m cl o u d s.  N ot e t h e i n c r e a s e d c ol o r s c al e of t h e lit hi u m
m F = 0 st at e b y a f a ct o r of 2 0 c o m p a r e d t o m F = 1 f o r b ett e r vi si bilit y



76 Chapter 3. Realization of a scalable building block for U(1) gauge theories

0 20 40 60 80 100
Time t[ms]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
a
rt

ic
le

n
u

m
b

e
r
N

p
/N

single run

averaged GPE

experiment

FIGURE 3.8: We show the average evolution of the particle number (black
dashed line) obtained from 100 GPE simulations with fluctuating experimental
parameters. The red band indicates the error on the mean and the gray
dashed-dotted line corresponds to the specific realization shown in figure 3.7.
The initial rise is in reasonable agreement with the experimental data (blue
symbols).

quantitatively agree with the experimental data, the amplitude of the initial rise
agrees well3. However, due to lattice artifacts at t � 30ms (not shown) the present
lattice sizes prohibit long simulation times, which would be necessary to make a
quantitative prediction of, e.g., an oscillation frequency. Additionally, the individual
runs start to differ strongly after ∼ 20ms, such that also the required statistics in-
creases with the evolution time. As a consequence, we have no quantitative ab-initio
prediction of the experiment for the full observation time at the moment.

There is a number of possible reasons for the deviations between the simulation
and the experiment. First, the GPE simulation is a mean-field approximation that
neglects quantum-statistical fluctuations. Second, the approximation also assumes
perfect condensates and neglects any thermal fraction of the Bose gases. Third, any
experimental input parameter is not perfectly fixed; moreover, their fluctuations are
neither Gaussian nor independent. Finally, after the presented simulations were
completed, the particle number measurements were re-calibrated, which revealed
substantially lower particle numbers for lithium (see [108] for new parameter esti-
mates). We expect that a repetition of the simulation, including for instance more
appropriate fluctuations and refined parameters, would lead to a better agreement.
Nevertheless, the results presented in this section already provide a qualitative
picture of the real-space dynamics of spin-changing collisions and indicate that the
experiment indeed follows the expected dynamics.

3We have chosen to display a specific realization in figure 3.7 that is close to this mean evolution.
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3.D Spin-changing collisions as an anharmonic oscillator

Let us reconsider the mean-field single mode evolution equations of the two coupled
spins, Eq. (3.8). Without the phenomenological damping, this set of equations can
be written as

i∂tLz,N = λ (L+,NL−,L − L−,NL+,L) , (3.34a)

i∂tL±,N = ∓2χLz,NL±,N ± 2λLz,NL±,L , (3.34b)

i∂tLz,L = λ (L+,LL−,N − L−,LL+,N ) , (3.34c)

i∂tL±,L = ∓∆L±,L ± 2λLz,LL±,N , (3.34d)

where L± = Lx ± iLy, which arise from the classical Hamiltonian

H = χL2
z,N + ∆Lz,L + λ (L+,NL−,L + L−,NL+,L) . (3.35)

The evolution can be simplified by considering the conservation of the total energy
E = H , the magnetization M = Lz,N + Lz,L, as well as the spin lengths `s =√
L2
z,s + L+,sL−,s = Ns

2 for both species s = N,L. With

Lz,N = M − Lz,L , (3.36a)

L+,LL−,L = `2L − L2
z,L , (3.36b)

L+,NL−,N = `2L − (M − Lz,L)2 , (3.36c)

λ (L+,NL−,L + L−,NL+,L) = E − χ (M − Lz,L)2 −∆Lz,L , (3.36d)

we can exploit the conservation laws to derive a closed equation for Lz,N . Explicitly,
we calculate

−∂2
t Lz,L = λ [(−∆L+,L + 2λLz,LL+,N )L−,N − (∆L−,L − 2λLz,LL−,N )L+,N ]

+ λ [(2χLz,NL−,N − 2λLz,NL−,L)L+,L

− (−2χLz,NL+,N + 2λLz,NL+,L)L−,L] (3.37a)

= g (L+,NL−,L + L−,NL+,L) (−∆ + 2χLz,N )

+ 4λ2 [Lz,LL+,NL−,N − Lz,NL+,LL−,L] (3.37b)

= λ
(
E − χ (M − Lz,L)2 −∆Lz,L

)
[−∆ + 2χ (M − Lz,L)]

+ 4λ2
{
Lz,L

[
`2N − (M − Lz,L)2

]
− (M − Lz,L)

(
`2L − L2

z,L

)}
. (3.37c)

This equation has the form of a particle oscillating in an anharmonic potential, i.e.,

∂2
t Lz,L = −V ′ (Lz,L) , V (Lz) = c1Lz +

c2

2
L2
z +

c3

3
L3
z +

c4

4
L4
z (3.38)
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FIGURE 3.9: The plot shows the resonance of figure 3.4A with the same ex-
perimental data (blue symbols), together with numerical simulations of the
anharmonic oscillator, Eq. (3.38), with fit parameters given in Eq. (3.9). While
the damped simulation (red curve, evaluated at fixed time t = 30ms) fits the
experimental data, the pure anharmonic oscillator (black dashed curved, eval-
uated is the oscillation amplitude) clearly shows the characteristic triangular
shape (cf. figure 3.10.)

with the coefficients

c1 = −∆m+ 2χEM − 4λ2`2LM + χ ∆M − 2χ2M3 , (3.39a)

c2 = −2χE + 4λ2`2L + 4λ2`2N + ∆2 − 4χ∆M + 6χ2M2 − 4λ2M2 , (3.39b)

c3 = 3χ∆− 6χ2M + 12λ2M , (3.39c)

c4 = 2χ2 − 8λ2 . (3.39d)

For our usual initial conditions, Li is fully polarized. This implies the initial values

Lz,L(t0) = −`L , ∂tLz,L(t0) = 0 . (3.40)

The resulting oscillation of Lz,L can therefore be pictured by the potential V , which
is set by the initial condition of Na. In our case, the total energy is then fixed to be

E = χ (M − `L)2 + ∆`L (3.41)

and the behavior of the system is dictated by the initial Na imbalance, which sets
the magnetization in the range

−`L − `N ≤M ≤ −`L + `N . (3.42)

In figure 3.9, we show the resulting resonance obtained from a numerical solution
with the parameters given in Eq. (3.9) that we used to fit the experiment at the
magnetic field BA. The plot shows the amplitude of the oscillation of Lz,L (i.e., the
maximum value) together with the value at fixed time t = 30ms for a simulation
where we include a friction term 2γ∂tLz,L with the same damping constant as before.
Although the dynamics of this damping is not identical with the one introduced in
Eq. (3.8), the obtained resonance again fits the experimental data. Both the damped
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FIGURE 3.10: The three rows show simulation results for different values of
Lz,N/�N = −0.7,−0.68,−0.118 (top to bottom). The middle panel shows the
potential V with the initial condition Lz,L = −�L indicated by the gray lines.
The right panel shows the following dynamics of Lz,L for undamped (gray
dashed line) and damped (red solid line) oscillators. The left panel shows a
phase space picture of the evolution. The change of the shape of the potential
is responsible for the shape of the resonance shown in figure 3.9. In particular,
the (dis)appearance of a local minimum close to the initial state is responsible
for the non-analytic change of the amplitude of Lz,L as a function of the initial
Lz,N .

and undamped results show a characteristic asymmetric shape with a very steep
slope around Lz,N ≈ −0.7�N .

The origin of this shape is a direct consequence of the anharmonic potential
V (Lz). This is illustrated in figure 3.10. Depending on the initial value of Lz,N ,
the potential V (Lz,L) changes its shape and the spin Lz,L is either “trapped” in a
local minimum or can “escape” to the global minimum, resulting in much larger
oscillation amplitudes.

The plot in the bottom right of figure 3.10, which includes the experimental
data, shows that the phenomenological friction term describes the experiment less
accurately than the damping introduced in Eq. (3.8). However, the resonance shown
in figure 3.9 is not affected because it only probes the early-time dynamics where
this difference is insignificant. In conclusion, the qualitative features of the spin-
changing collisions observed in the experiment are well captured by a anharmonic
oscillator. This observation may provide important physical intuition for future
experiments on hetero-nuclear spin-changing collisions.





81

Chapter 4

Dynamical topological transitions
in the massive Schwinger model

This chapter is based on the article [33] with the figures and large parts of the text
taken from it. This project was initiated by discussions among F. Jendrzejewski,
P. Hauke and myself during our combined work on the projects discussed in the
previous two chapters. I performed the analytic and numerical calculations pre-
sented here. The numerical simulations were supported by J. T. Schneider. The
interpretation in terms of correlation functions was developed in discussions among
N. Müller, J. Berges, P. Hauke and myself. While all authors participated in the
writing of the manuscript [33], I made significant contributions to the wording and
structuring of the text. In the appendices 4.A and 4.B, I include additional related
material that was not printed in [33].

4.1 Motivation and setup

The topological structure of gauge theories has many important manifestations [131–
135]. In quantum chromodynamics (QCD), e.g., it allows for an additional term in
the action that explicitly breaks charge conjugation parity (CP) symmetry [136–138].
Though the angle θ that parametrizes this term is in principle unconstrained, experi-
ments have found very strong bounds on CP violation, consistent with θ = 0 [58]. In
one elegant explanation, θ is described as a dynamical field that undergoes a phase
transition, the “axion” [59, 139, 140], which is currently sought after in experiments
[141]. However, the controlled study of topological effects far from equilibrium
remains highly challenging [142]. Here, quantum simulators, as discussed in the
previous chapters, offer an attractive alternative approach. While theories of the
standard model, such as QCD, are beyond the current abilities of quantum simula-
tors, existing technology [13, 14] can already simulate simpler models, which puts
insights into the topological properties of gauge theories within reach. In this respect,
the massive Schwinger model [86], describing quantum electrodynamics (QED) in
1+1 dimensions, is particularly interesting because it allows for a CP-violating θ-
term similar to QCD. However, while ground state and thermal properties of QCD
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and of the Schwinger model have been extensively studied [57, 143], much less is
known about their topological structure out of equilibrium.

In this chapter, we investigate the non-equilibrium real-time evolution of the
massive Schwinger model after a quench of the topological θ angle. We find topolog-
ical transitions in the fermion sector, which appear as vortices in the single-particle
propagator when θ changes by more than a critical value. In the limit of vanishing
gauge coupling, we rigorously connect this phenomenon to dynamical quantum
phase transitions (DQPTs), which in condensed-matter lattice models are currently
receiving considerable attention [60, 144–146]. A topological nature of DQPTs has
previously been revealed in non-interacting theories [147–149]. Here, we demon-
strate how to construct a general dynamical topological invariant that is valid in the
continuum and, most importantly, also in interacting theories. Moreover, our topo-
logical invariant provides a physical interpretation of DQPTs in terms of fermionic
correlation functions. Enabled by this result, we use non-perturbative real-time
lattice calculations at intermediate to strong coupling to show that the topological
transition persists up to e/m . 1. Already for lattices as small as 8 sites, we obtain
good infrared convergence. Moreover, the relevant phenomena occur on time scales
that have already been accessed in proof-of-principle quantum simulations of gauge
theories [13, 14]. These features will enable near-future experiments based on
trapped ions [13], superconducting qubits [14], and cold neutral atoms [29] to probe
this dynamical topological transition.

4.1.1 θ-quenches in the massive Schwinger model

The massive Schwinger model is a prototype model for 3+1D QCD since both share
important features such as a non-trivial topological vacuum structure and a chiral
anomaly [57, 86]. CP violation can be studied by adding a so-called topological
θ-term, (eθ/2π)Ex, to the Hamiltonian density, where E is the electric field and e

the dimensionful gauge coupling. In temporal axial gauge, and by making a chiral
transformation, the θ-term can be absorbed into the fermion mass term to give the
following Hamiltonian [86],

Hθ =

ˆ
dx

[
1

2
E2
x + ψ†xγ

0
(
iγ1Dx +m eiθγ

5
)
ψx

]
. (4.1)

Here, ψ are two-component fermion operators, γ0/1 constitute the Clifford algebra
in two space-time dimensions, and γ5 ≡ γ0γ1. The Hamiltonian contains the energy
of the electric field, the kinetic term of the fermions, which are coupled to the
gauge sector via the covariant derivative Dx = ∂x + ieAx, where e is the electric
coupling, and the fermion rest mass m. While the addition of the θ-term is an
imaginary contribution to the action (see [150]), we emphasize that the Hamiltonian
(4.1) remains hermitian. In particular, its spectrum is real and θ does not introduce
any instability.
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FIGURE 4.1: Phase of the time-ordered correlator [Eq. (4.2)] after θ quenches
at vanishing gauge coupling. The real-time evolution of the phase exhibits
qualitative differences when the quench is weaker/stronger than the criti-
cal value ∆θc = π/2, exemplified here for ∆θ = 0.45π (left) and ∆θ = π
(right). The phase is analytic for small quenches (|∆θ| < ∆θc), while for large
quenches (|∆θ| > ∆θc) vortices form at (±kc, t(n)c ). The integration path C+(t),
here shown for tm ≈ 9, encloses a discrete number of vortices (marked by
yellow circles), leading to integer increments of the topological invariant ν as
time progresses (see Fig. 4.2).

Here, we wish to study how topological properties appearing through the CP-
violating θ-term become manifest in the real-time dynamics of the theory. To this
end, we prepare the system in the ground-state |Ω(θ)〉 of Hθ and switch abruptly to
another value θ′, thereby quenching the system out of equilibrium. Since the θ-angle
in the massive Schwinger model has the same topological origin as its counterpart
in 3+1D QCD, we can interpret the studied quench as a classical, external axion field.
In the following, we will show that this quench generates topological transitions,
which appear as momentum–time vortices in the phase of the gauge-invariant
time-ordered Green’s function,

gθ→θ′(k, t) =

ˆ
dx e−ikx〈ψ†(x, t)e−ie

´ x
0 dx′ A(x′,t)ψ(0, 0)〉. (4.2)

Here, we abbreviated 〈. . . 〉 = 〈Ω(θ)| . . . |Ω(θ)〉 and O(x, t) = eiHθ′ tO(x)e−iHθ′ t with
O ∈

{
ψ,ψ†, A

}
, which encodes the dependence on the quench parameters. We will

first discuss these topological transitions in the continuum theory at weak coupling,
where we show analytically their direct correspondence to DQPTs. These results
will motivate the definition of a general topological invariant, which will enable us
to study also the interacting theory, discussed further below.

4.2 Non-interacting limit

In the limit of vanishing coupling, e/m → 0, the massive Schwinger model is
reduced to a free fermionic theory that can be solved analytically (see appendix
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(a)

(b)

FIGURE 4.2: Dynamical topological transitions at vanishing gauge coupling.
(a) The topological invariant exhibits jumps at critical times t(n)c = (2n −
1)π/ [2ω(kc)] with n ∈ N, if |∆θ| > π/2, while the dynamics is topologically
trivial for |∆θ| < π/2. (b) For |∆θ| > π/2, the rate function [Eq. (4.5)] shows
non-analytic kinks at times t(n)c .

4.A for detailed calculations) by diagonalizing Hθ =
´

dkHθ(k), with Hθ(k) =

ψ†kγ
0
(
kγ1 +m eiθγ

5
)
ψk. Figure 4.1 displays the phase of gθ→θ′ as a function of (k, t)

for two exemplary quenches with ∆θ = 0.45π, π (our results here depend only on
∆θ = (θ − θ′) ∈ (−π, π]). Strong quenches in the range |∆θ| > π

2 are accompanied
by the formation of vortices at critical times t(n)

c = (2n− 1)tc, with tc = π/ [2ω(kc)],
n ∈ N and ω(k) =

√
k2 +m2. These appear in pairs of opposite winding at critical

modes ±kc = ±m
√
− cos (∆θ).

4.2.1 An order parameter for dynamical topological transitions

This observation suggests to define a dynamical topological order parameter that
counts the difference of vortices contained in left (−) versus right (+) moving modes,
ν ≡ n+ − n−, with

n±(t) ≡ 1

2π

˛
C±(t)

dz
{
g̃†(z)∇zg̃(z)

}
. (4.3)

Here, g̃(z) ≡ gθ→θ′(k, t′)/|gθ→θ′(k, t′)| and C±(t) is a rectangular path enclosing the
left/right half of the z = (k, t′)-plane up to the present time t, i.e., it runs (counter-
clockwise) along (0, 0) ↔ (0, t) ↔ (±∞, t) ↔ (±∞, 0) ↔ (0, 0) as visualized in
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Fig. 4.1. As exemplified in Fig. 4.2(a), the topological invariant remains trivial for
|∆θ| < π/2, while for |∆θ| > π/2 it changes abruptly at critical times t(n)

c .
These critical times coincide with fundamental changes in the properties of

the real-time evolution, coined DQPTs [60]. DQPTs are revealed in the so-called
Loschmidt amplitude, which is related to the vacuum persistence amplitude [91]
and which is a common measure, e.g., in the field of quantum chaos [151]. The
Loschmidt amplitude quantifies the overlap of the time-evolved state with its initial
condition,

Lθ→θ′(t) ≡ 〈Ω(θ)|e−iHθ′ t|Ω(θ)〉 . (4.4)

It is convenient to further define an intensive “rate function”

Γ
(L)
θ→θ′(t) ≡ − lim

V→∞
1

V
log |Lθ→θ′(t)| . (4.5)

DQPTs appear as non-analyticities of Eq. (4.5) [zeros of Eq. (4.4)].
In the limit e/m→ 0, where the system is in a product state |Ω(θ)〉 =

⊗
k |Ωk(θ)〉,

the Loschmidt amplitude can be decomposed into Fourier modes,

Lθ→θ′(t) =
∏

k

〈Ωk(θ)|e−iHθ′ (k)t|Ωk(θ)〉 . (4.6)

At e/m → 0, we have the additional identity 〈Ωk(θ)|e−iHθ′ (k)t|Ωk(θ)〉 = gθ→θ′(k, t)

(see 4.A for a proof). Thus, zeros of the Loschmidt amplitude imply that the phase of
the Green’s function becomes undefined for a critical mode, enabling the appearance
of the vortices seen in Fig. 4.1. As a consequence, at zero coupling the topological
transitions and non-analyticities of the rate function in Eq. (4.5) strictly coincide [see
Fig. 4.2(b)].

For non-interacting lattice theories, a topological nature of DQPTs has previously
been revealed through the phase of the Fourier-decomposed Loschmidt amplitude,
arg [〈Ωk(θ)| exp[−iHθ′(k)t]|Ωk(θ)〉] = φgeom + φdyn [147]. Here, the total phase has
been divided into a trivial dynamical phase φdyn(k, t) and the so-called Pancharat-
nam geometric phase, φgeom(k, t). At a DQPT, the winding number of φgeom changes
by an integer. This change can be computed by integration across (half) the Bril-
louin zone at fixed time t [147], which has been used in the recent experiments of
Refs. [148, 149]. For this prescription to work, however, one needs to subtract the
trivial dynamical phase φdyn, which can reasonably be obtained only perturbatively
close to the non-interacting case. Compared to this standard prescription, our con-
struction in Eq. (4.3) has a number of advantages. First, the prescription of Ref. [147]
fails for θ 6= 0, π, where the absence of a particle–hole symmetry makes modes at
k = 0,±∞ inequivalent. Second, and more importantly, by using a closed path
in the (k, t) plane (cf. Fig. 4.1) only the singular geometric part contributes to the
integral in Eq. (4.3), irrespective of the smooth dynamical phase. Thus, together
with the definition through fermionic correlators, Eq. (4.2), instead of Fourier modes
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(a) (b) (c)

FIGURE 4.3: Dynamical topological transitions beyond weak coupling. (a)
The integer-valued topological invariant ν clearly distinguishes different
“phases” in the (t, e)-plane. The topological transition persists at larger cou-
pling, but shifts towards later times and appears at sufficiently large coupling.
(b) The maxima of the rate function obtained from the many-body overlap
agree qualitatively with the transitions in ν, but are blurred by the finite lat-
tice size. (c) Rate functions computed from the full wave-function overlap
[red dotted; c.f. panel (b) and Eq. (4.5)], from fermionic two-time correlators
[orange dot-dashed; c.f. panel (a) and Eq. (4.2)], and equal-time correlators
[blue solid line; c.f. Eq. (4.8)], all indicate the same time of the first topological
transition, here illustrated for e/m = 1. Simulations are for a small lattice of
N = 8 sites as relevant for first quantum-simulator experiments, and with
lattice spacing am = 0.8.

of the wave-function overlap, Eq. (4.6), our formulation enables us to tackle also the
interacting theory.

4.3 Towards strong coupling

To investigate if the topological transitions persist at non-vanishing coupling, e/m >

0, we perform non-perturbative real-time lattice simulations based on Exact Diago-
nalization (ED), using the Python package QuSpin [152]. We focus on the strongest
quench ∆θ = π (or −m→ m), using staggered fermions with lattice Hamiltonian
[82]

H =
N−1∑

n=0

[
a

2
E2
n +m (−1)n φ†nφn −

i

2a

(
φ†nUnφn+1 − h.c.

)]
. (4.7)

Here, φn are one-component fermion operators on an even number of lattice sites
N , En and Un are electric fields and links, and a is the lattice spacing. To apply ED,
we restrict the simulation to the physical Hilbert space by solving the Gauss’ law
constraint Gn|phys〉 = 0 with Gn = En − En−1 − e

[
φ†nφn + (−1)n−1

2

]
. In contrast

to previous works [13, 153], we use periodic boundary conditions (PBC) 1, see the
appendix 4.B for more details. To efficiently compute the topological invariant
ν in our numerics, we adapt a formalism that has originally been developed for
computing Chern numbers in momentum space [154]. The possibility to adapt

1To obtain a finite-dimensional Hilbert space, we drop the single remaining bosonic mode describ-
ing a homogeneous background electric field.
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this formalism to our case is another feature of our definition in Eq. (4.3) since it
is enabled by the use of a closed integration path in the (k, t) plane. This adaption
forces ν to remain integer-valued even when evaluated on coarse grids, thus leading
to convergence already for small lattices 2.

As can be expected from the above discussions, at small e/m transitions in
the topological invariant coincide with maxima in the rate function, see Fig. 4.3.
Further, both structures congruently persists at larger values of e/m. Importantly,
however, while the system sizes accessible for ED do not allow one to discern
clear kinks in the rate function, the non-equilibrium topological invariant ν sharply
distinguishes between topologically inequivalent phases, revealing a shift of the
transitions towards larger tc as e/m is increased. While the results for e/m . 1

are already reasonably finite-volume converged for the small system size plotted,
at e/m & 1 finite-volume effects persist up to N = 20 (see section 4.3.2 below).
Nevertheless, the topological transition must vanish at sufficiently large coupling
ec because θ becomes an irrelevant parameter in the limit m→ 0 [155]. Finite size
effects in our numerical results hinder a quantitative determination of ec. Motivated
by these limitations, we propose to quantum simulate of the present setup.

4.3.1 Quantum simulation

Importantly, the first topological transition happens on times of order tcm ∼ 1− 2,
which lies within coherence times that are accessible with existing and proposed
quantum simulators [13, 14, 29]. A straightforward realization of the scenario
discussed in this chapter may be achieved with a quantum computer based on
trapped-ions or superconducting qubits, where quench dynamics has been studied
recently [13, 14]. Though these experiments used only four lattice sites of staggered
fermions, larger lattices are within reach of current technology [156–159]. Very
recently, it has been shown that variational algorithms can prepare the ground state
of the lattice Schwinger model with 8 to 20 sites with high fidelity [35, 160]. The rele-
vant dynamics can be implemented by discretizing the unitary evolution operator
into a sequence of quantum gates [13, 161]. For staggered fermions, the mass term is
realized by local rotations and can be quenched by inverting the direction of rota-
tion. All observables studied in this chapter can then be accessed by an appropriate
sequence of unitary operators intermitted by spin flips. Alternatively, various works
have proposed analog quantum simulators of the massive Schwinger model [7, 8,
26, 162]. In the implementations proposed in the previous chapters, which are based
on mixtures of cold atoms in a tilted optical lattice, the fermion mass corresponds to
Rabi oscillations between two hyperfine states driven by radiofrequency radiation
or is set by the laser-assisted tunneling. In these setups, a mass quench may be

2In the non-interacting limit the topological invariant is not affected by the choice of lattice regular-
ization, which we have explicitly checked at the example of staggered and Wilson fermions. Here, we
restrict the simulations in the interacting case to staggered fermions, which are closer to the continuum
limit given the limited resources.
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simply implemented by abruptly adjusting the corresponding parameters, e.g., the
Rabi frequency.

These experiments may unveil the topological transitions through different
observables: First, a digital quantum computer could in principle work with the
many-body wavefunctions to directly calculate the order parameter ν [Eq. (4.3)]
and the rate function Γθ→θ′(t) [Eq. (4.5)]. Second, one could measure the two-time
correlator gθ→θ′(k, t) [Eq. (4.2)] [163, 164] and thereby avoid the study of many-
body overlaps. Third, the discrete transition points of the order parameter are
indicated also in experimentally more accessible equal-time correlation functions,
[F (t)]αβxy ≡

〈[
ψα(t, x), ψ̄β(t, y)

]〉
. Namely, let us define

Kθ→θ′(t) ≡
∏

k

[F(k, t) + F(k, 0)]2 , (4.8)

where F = (Fs, F1, F5) are Lorentz components3 of the correlator, F (t) = Fs(t)1 +

Fµ(t)γµ + iF5(t)γ5. One has Kθ→θ′(t) =
∏
k |gθ→θ′(k, t)|2 = |Lθ→θ′(t)|2 in the non-

interacting limit (for details, see the appendix 4.A). This motivates to define the rate
functions Γ(g)(t) and Γ(K)(t) analogously to Γ(L)(t) by replacing |L(t)| in Eq. (4.5)
with

∏
k |g(k, t)| and

√
K(t), respectively. We thus have three complementary defini-

tions that coincide for e/m→ 0, obtained from equal-time correlators, Eq. (4.8), two-
time correlators, Eq. (4.2), and the full many-body Loschmidt amplitude, Eq. (4.4).
Remarkably, as illustrated in Fig. 4.3(c) for e/m = 1, even at intermediate couplings
the maxima of all three rate functions indicate the same critical times with relative
deviation less than about 8%. Below we show a quantitative comparison, which
demonstrates that the three rate functions show comparable finite size deviations,
which for the topological order parameter are significantly smaller.

Besides its experimental simplicity, Eq. (4.8) also gives an interesting interpreta-
tion of the dynamical topological transition in terms of a dephasing effect. Namely,
Eq. (4.8) has zeros if and only if the mode kc at time tc exhibits perfect anti-correlation
with the initial state, F(kc, tc) = −F(kc, 0). This anti-correlation is responsible for
the non-analytic behavior of the associated rate function.

4.3.2 Finite size dependence of the transition times

We have extracted the critical times of the first topological transition t(1)
c as indicated

by the rate functions of the Loschmidt amplitude L, the equal-time correlator K, the
two-time correlator g, and the dynamical topological order parameter ν. While ν
unambiguously determines a critical time by its discontinuous jump between two
integer values, we have chosen the maxima of the three different rate functions
as an indicator of t(1)

c for a quantitative comparison. This comparison is shown in
Fig. 4.4 for weak (e/m = 0.5) and intermediate (e/m = 1.0) coupling strength as
a function of lattice sites N . Remarkably, all three rate functions indicate similar

3We exclude F0 in F because mode-wise charge conservation implies F0(k, t) = 0 at e/m = 0.
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F I G U R E 4. 4: T h e c riti c al ti m e s t
( 1 )
c of t h e  fi r st t o p ol o gi c al t r a n siti o n a s i n-

di c at e d b y t h e  fi r st  m a xi m a of t h e t h r e e  diff e r e nt r at e f u n cti o n s - e xt r a ct e d
f r o m t h e  L o s c h mi dt a m plit u d e L ( r e d,  d ott e d), t h e e q u al-ti m e c o r r el at o r K
( bl u e, s oli d) a n d t h e t w o-ti m e c o r r el at o r g ( o r a n g e,  d a s h e d) - a r e s h o w n i n
c o m p a ri s o n t o t h e ti m e i n di c at e d b y t h e  d y n a mi c al t o p ol o gi c al o r d e r  p a-
r a m et e r ν ( bl a c k,  d a s h e d- d ott e d). I n g e n e r al,  fi nit e- si z e  d e vi ati o n s a r e  m o r e
p r o n o u n c e d f o r i nt e r m e di at e c o u pli n g ( e / m = 1 .0 , ri g ht) t h a n f o r  w e a k c o u-
pli n g ( e / m = 0 .5 , l eft), a n d a r e st r o n g e r f o r t h e r at e f u n cti o n s t h a n f o r t h e
o r d e r  p a r a m et e r.  N ot e t h at  w e o nl y s h o w  d at a f o r ν f o r N / 2 e v e n b e c a u s e o u r
d e fi niti o n i s a m bi g u o u s f o r N / 2 o d d.  T h e l atti c e s p a ci n g i s a m = 0 .8 f o r all
si m ul ati o n s.  T h e e r r o r b a r s a ri s e f r o m a  fi nit e ti m e st e p dt / a = 0 .0 1 f o r s a vi n g
t h e  d at a.
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4.4 Summary

In this chapter, we have studied the real-time dynamics of massive 1+1D QED
with a θ-term, as a prototype model for topological effects in gauge theories. By
establishing a general dynamical topological order parameter, which can be obtained
from fermionic correlators and is valid in interacting theories, we have identified
the appearance of dynamical topological transitions after changes in the external
“axion” field. A connection between the topological transitions to DQPTs, which is
rigorous at zero coupling, persists in our numerics of the interacting theory, thus
providing a physical interpretation of DQPTs in terms of fermionic correlators.
Finally, our topological order parameter can directly be applied also in the study
of condensed-matter models, where the construction of topological invariants for
interacting systems is a major outstanding challenge [165–167].

In this study, we have identified a relevant problem for state-of-the-art quantum
simulation. The described dynamical transitions constitute an ideal first step because
the relevant dynamics appears at short time scales and small system sizes. We expect
the topological nature to provide robustness against experimental imperfections,
which may provide a starting point to tackle the question of certifiability of quantum
simulation.

Despite the simplicity of the considered model, our study shows that quantum
simulators provide a unique perspective to the topological structure of QCD out
of equilibrium. Phenomena closely related to the physics studied in this chapter
are the conjectured Chiral Magnetic and similar effects [168–171], which remain
challenging in and out of equilibrium for theoretical studies [81, 84, 142, 172–178].
Here, a simple next step for future quantum simulators is to model these effects by
spatial domains of the θ-parameter [179].
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Appendix: Even more about the massive Schwinger model

In the first section 4.A of this appendix, we give a detailed summary of analytic
predictions for the quench dynamics, which are based on non-interacting fermions.
In the second section 4.B, we prove a general solution of Gauss’ law on a periodic
one-dimensional lattice for arbitrary fermion discretizations, which we used for the
numerical ED simulations.

4.A Free fermion calculations

4.A.1 Diagonalization

Consider the free fermion Hamiltonian H =
´ L

0 dxψ†xγ0
(
iγ1∂x +meiθγ

5
)
ψx on a

circle of length L. The spatial structure of the Hamiltonian becomes diagonal in
Fourier space,

ψx =
1√
L

∑

p

ψpe
ipx , ψp =

1√
L

ˆ L

0
dxψxe

−ipx , (4.9)

where the sum runs over all p = 2πn/L with n ∈ Z. Choosing

γ0 =

(
1 0

0 −1

)
, γ1 =

(
0 1

−1 0

)
, γ5 =

(
0 1

1 0

)
, (4.10)

as a specific representation of the Clifford algebra, the Hamiltonian reads

H =
∑

p

ψ†pHpψp , Hp(θ,m) =

(
m cos θ −p+ im sin θ

−p− im sin θ −m cos θ

)
, (4.11)

which leads to the eigenvalues and -vectors ±ωp = ±
√
p2 +m2 and u±p . Defining

quasi-particle operators by

(
ap

b†−p

)
= U †pψp , (4.12)

where Up = (u+
p , u

−
p ) is the unitary with U †pHpUp = diag(ωp,−ωp), this yields

H =
∑

p

ωp

(
a†pap + b†pbp − 1

)
. (4.13)
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The explicit expressions for the eigenvectors are

u+
p = [2ωp(ωp −m cos θ)]−1/2

(
p− im sin θ

m cos θ − ωp

)
, (4.14a)

u−p = [2ωp(ωp −m cos θ)]−1/2

(
−m cos θ + ωp

p+ im sin θ

)
, (4.14b)

such that the commutation relations are preserved,
{
ap, a

†
q

}
= δpq =

{
bp, b

†
q

}
. The

vacuum |Ω〉 is the ground state of H and fulfills ap|Ω〉 = 0 = b−p|Ω〉.
Two sets of quasi-particle operators corresponding to H(θ,m) and H(θ′,m′) are

directly related by

(
ap(θ,m)

b†−p(θ,m)

)
= U †p(θ,m)Up(θ

′,m′)

(
ap(θ

′,m′)

b†−p(θ
′,m′)

)
. (4.15)

The two corresponding vacuua can be related by

|Ω(θ,m)〉 =
∏

p

N−1
p

[
Ap +Bpa

†
p(θ
′,m′)b†−p(θ

′,m′)
]
|Ω(θ′,m′)〉 (4.16)

with the coefficients

Ap(θ,m; θ′,m) =
(
u−p
)†

(θ′,m′)u−p (θ,m) , (4.17a)

Bp(θ,m; θ′,m) =
(
u−p
)†

(θ′,m′)u+
p (θ,m) (4.17b)

and |Np|2 = |Ap|2 + |Bp|2 = 1 is fixed by the normalization 〈Ω|Ω〉 = 1 and the
orthonormality of the eigenvectors u±p .

4.A.2 Quench dynamics and DQPT

The dynamics following a quench from H(θ,m) to H(θ′,m′) is described by

|ψθ,m→θ′,m′(t)〉 = e−iH(θ′,m′)t|Ω(θ,m)〉 (4.18)

=
∏

p

N−1
p

[
Ape

iωp(m′)t +Bpa
†
p(θ
′,m′)b†−p(θ

′,m′)e−iωp(m′)t
]
|Ω(θ′,m′)〉 .

Thus, the Loschmidt amplitude follows as

Lθ,m→θ′,m′(t) = 〈ψθ,m→θ′,m′(0)|ψθ,m→θ′,m′(t)〉 (4.19)

=
∏

p

[
cos(ωpt) + i

|Bp|2 − |Ap|2
|Ap|2 + |Bp|2

sin(ωpt)

]
.
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Focusing on θ-quenches with m′ = m, we explicitly obtain after some algebra,

|Ap|2 =
ω2
p + p2 +m2 cos (θ − θ′)

2ω2
p

, |Bp|2 =
m2 sin2

(
θ′−θ

2

)

ω2
p

. (4.20)

Therefore the Loschmidt amplitude becomes

Lθ→θ′(t) =
∏

p

`θ→θ′(t, p) , `θ→θ′(t, p) = cos (ωpt)− i
p2 +m2 cos (θ′ − θ)

ω2
p

sin (ωpt) ,

(4.21)

and from the condition `(p, t) = 0 we can read off the zeros to occur at

t(n)
c =

π(2n+ 1)

ωpc
, p2

c = −m2 cos
(
θ − θ′

)
. (4.22)

In the thermodynamic limit, these zeros cause non-analyticities in the rate function
associated to the Loschmidt amplitude,

Γθ′→θ(t) = − lim
V→∞

1

V
log |Lθ→θ′(t)| = −

ˆ −∞
∞

dp

2π
log `θ→θ′(t, p). (4.23)

The final integral expression is evaluated numerically for the results plotted in figure
4.1.

4.A.3 Two-time correlation functions and the order parameter

To get a better understanding of the physics underlying the DQPT, we observe the
following identity

`θ→θ′(t, p) = 〈Ω(θ)|a†p(θ′)ap(θ′)eiωpt + b−p(θ′)b
†
−p(θ

′)e−iωpt|Ω(θ)〉
= 〈Ω(θ)|ψ†p(t)ψp(0)|Ω(θ)〉 = g(t, p) , (4.24)

where ψ(t) = eiH(θ′)tψe−iH(θ′)t denotes a Heisenberg field operator w.r.t. to the post-
quench Hamiltonian. Consequently, the DQPTs occur at zeros of the time-ordered
correlator g(t, p). As a consequence, the phase of g(t, p) = |g(t, p)|eiϕ(t,p) becomes
ill-defined at the critical points (t

(n)
c , pc) and develops a winding. This observation

underlies the order parameter introduced in this chapter. Crucially, we change
the perspective from the Loschmidt amplitude to correlation functions, which in
turn have a straightforward generalization and interpretation also in the interacting
theory.
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4.A.4 Interpretation with equal-time correlators

We can give yet another interpretation by considering the Loschmidt echo,

|Lθ→θ′(t)|2 = Tr [ρθ→θ′(t)ρθ→θ′(0)] , (4.25)

where ρθ→θ′(t) = e−iH(θ′)t|Ω(θ)〉〈Ω(θ)|eiH(θ′)t is the pure-state density operator. For
two Gaussian states ρk, k = 1, 2, e.g., ground states of a non-interacting system and
their time-evolution, the trace in (4.25) can be calculated (see [180]) as

Tr [ρ1ρ2] = det
[
G1G2 + G̃1G̃2

]
, (4.26)

with the correlators

(Gk)ij = Tr
[
ρkψ

†
iψj

]
,

(
G̃k

)
ij

= δij − (Gk)ij . (4.27)

In our case the indices i, j label both lattice sites and spinor components. Introducing
the statistical propagator

(Fk)ij =
1

2
Tr
[
ρk

(
ψ†iψj − ψjψ

†
i

)]
, (4.28)

and using the commutation relations
{
ψ†i , ψj

}
= δij , we can rewrite the result (4.26)

as

Tr [ρ1ρ2] = det

[
2F1F2 +

1

2

]
. (4.29)

In the our case, this gives

|Lθ→θ′(t)|2 = det

[
2F (t)F (0) +

1

2

]
=
∏

p

det′
[
F (p, t)F (p, 0) +

1

2

]
, (4.30)

where the prime indicates the remaining determinant in spinor space after perform-
ing the spatial functional determinant in Fourier space where the correlators are
diagonal,

Fxy(t) =

ˆ
dp

2π
eip(x−y)F (p, t) . (4.31)

We further decompose the correlator in its Lorentz components4, F = Fγ0 =

Fs1 + F0γ
0 + F1γ

1 + iF5γ
5. For brevity, we only state the explicit expressions for

4The additional matrix γ0 corresponds to a change of variables from ψ† to ψ̄ = ψ†γ0.
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the simplest quench −m→ m (or θ′ = π → θ = 0),

Fs(p, t) =
1

2
Tr
[
F (p, t)γ0

]
=
m

ω3
p

[
1

2
(p2 −m2) + p2 cos (2ωpt)

]
(4.32a)

F0(p, t) =
1

2
Tr
[
γ0F (p, t)γ0

]
= 0 (4.32b)

F1(p, t) =
1

2
Tr
[
γ1F (p, t)γ0

]
=

p

ω3
p

[
1

2
(m2 − p2) +m2 cos (2ωpt)

]
(4.32c)

F5(p, t) =
1

2
Tr
[
−iγ5F (p, t)γ0

]
=
mp

ω2
p

sin (2ωpt) . (4.32d)

At the critical momenta, where p2
c = m2, these equations further simplify

Fs(pc, t) = F1(pc, t) =
1

2
√

2
cos
(

2
√

2mt
)
, F5(pc, t) =

1

2
sin
(

2
√

2mt
)
. (4.33)

For a general θ-quench, the electric charge is conserved for each momentum
mode separately, i.e., F0(p, t) = 0, and the remaining components form a spin-
1/2 vector F(p, t) = (Fs(p, t), F1(p, t), F5(p, t)) with F2(p, t) = 1/4. Then a direct
computation of the relevant determinant gives

det′
[
F (p, t)γ0F (p, 0)γ0 +

1

2

]
=

1

2
+ 2F(p, t) · F(p, t) (4.34)

and therefore the Loschmidt can be written as

|Lθ→θ′(t)|2 =
∏

p

[F(p, t) + F(p, 0)]2 . (4.35)

Thus a DQPT, determined by |Lθ→θ′(t)|2 = 0, occurs if F(p, t) = −F(p, 0) (as already
visible in Eq. (4.33)). This expression for the orthogonality of the time-evolved
state and the initial state becomes particularly simple because the (non-interacting)
system remains in a product state in momentum space, completely determined by
the spin-1/2 vectors F(p, t), and may be pictured as a collection of Bloch spheres.

4.B Solving Gauss’ law on a ring

In one spatial dimension, gauge invariance is very restrictive and prohibits propagat-
ing gauge degrees of freedom. As a consequence, the restriction to gauge-invariant
states that fulfill Gauss’ law allows us to rephrase the theory in terms of fermions
only. While this procedure is well known in the continuum and straightforwardly
generalizes to a lattice with open boundary conditions, we are not aware of a solu-
tion of Gauss’ law with periodic boundary conditions (PBC). In this section we give
a detailed solution of this problem with PBC.
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4.B.1 Separating the background

We consider a general coupling between gauge and matter fields described by
some fermion Hamiltonian Hψ and focus on the electric energy part HE . The full
Hamiltonian reads

H = HE +Hψ , HE =
a

2

N−1∑

n=0

E2
n (4.36)

with a general Gauss’ law operator

Gn = En − En−1 −Qn , (4.37)

where Hψ and Qn depend on the fermion discretization. PBCs imply E0 = EN and
Q0 = QN . We split

En = E + δEn (4.38)

with E =
∑

nEn, such that we have the constraint

∑

n

δEn = 0 . (4.39)

We can thus rewrite

∑

n

1

2

[
E2 + 2EδEn + (δEn)2

]
=
N

2
E2 +

1

2

∑

n

(δEn)2 . (4.40)

In the following we focus on the background-independent part and change notation
δEn → En and HE → HE − aNE2/2, i.e we restrict ourselves to

HE =
a

2

N−1∑

n=0

E2
n ,

N−1∑

n=0

En = 0 . (4.41)

4.B.2 Solving Gauss’ law

For simplicity, we assume N even. We will show that

HE ' a
N−1∑

n=0

N/2∑

d=0

f(d)Qn (Qn+d +Qn−d) (4.42)

for a suitably chosen function f(d). Here, “'” denotes equality on the physical
subspace where Gn = 0. This result depends crucially on the periodic boundary
conditions and the constraint (4.39) as will become clear in the following. Consider



4.B. Solving Gauss’ law on a ring 97

the contribution

Cd =
∑

n

Qn (Qn+d +Qn−d) (4.43)

'
∑

n

(En − En−1) (En+d − En+d−1 + En−d − En−d−1) (4.44)

=
∑

n

En (2En+d + 2En−d − En+d+1 − En+d−1 − En−d+1 − En−d−1) , (4.45)

where we have first applied (4.37) for Gn = 0 and then shifted indices (which is
possible due to the PBCs). It is helpful to picture the different contributions by a
string of numbers specifying their coefficients as follows

C0 ↔ · · · − 2,+ 4,−2 . . . (4.46a)

C1 ↔ · · · − 1,+2,− 2,+2,−1 . . . (4.46b)

C2 ↔ · · · − 1,+2,−1,+ 0,−1,+2,−1 . . . (4.46c)

C3 ↔ · · · − 1,+2,−1,+0,+ 0,+0,−1,+2,−1 . . . . (4.46d)

Now, we we want to choose f(d), weighting the coefficients in the above diagram,
such that every column-wise sum is canceled and only the middle one is non-
vanishing. Special care needs to be taken about the boundary conditions. To this
end, we replace the terms

EnEn+N/2 = −
∑

j 6=N/2
EnEn+j (4.47)

according to the constraint (4.39). In this way, we arrive at the following conditions
on f(d) (the “obvious” conditions from the above diagram on the left-hand side, the
“boundary” conditions on the right-hand side)

4f(0)− 2f(1) 6= 4f

(
N

2

)
− 2f

(
N

2
− 1

)
(4.48a)

2f(1)− 2f(0)− f(2) = 4f

(
N

2

)
− 2f

(
N

2
− 1

)
(4.48b)

2f(d)− f(d− 1)− f(d+ 1) = 4f

(
N

2

)
− 2f

(
N

2
− 1

)
(4.48c)

2f

(
N

2
− 1

)
− 2f

(
N

2

)
− f

(
N

2
− 2

)
= 4f

(
N

2

)
− 2f

(
N

2
− 1

)
. (4.48d)

Here the first inequality insures that the coefficient in front of E2
n is non-zero, while

the other coefficients (EnEn+d) are all vanishing. The d-dependent equation is only
valid for d 6= 0, 1, N/2−1, N/2. In principle we thus have 2+(N/2 + 1)−4 = N/2−1

equations and one inequality for N/2 + 1 unknown variables. The normalization
(the overall factor) gives one more condition, such that we expect a one-dimensional
solution space (without the inequality).
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We will make the ansatz f(0) = 0 and f(1) = 1 and solve the system recursively.
In the end, we will see that the solution satisfies the inequality

f

(
N

2
− 1

)
− 2f

(
N

2

)
6= 1 (4.49)

and we adjust the overall factor. Note that there could be other solutions, but the
following one leads to consistent physical interpretation as discussed further below.
Our recursive ansatz yields

f(2) = 2− 4f

(
N

2

)
+ 2f

(
N

2
− 1

)
(4.50a)

f(d+ 1) = 2f(d)− f(d− 1)− 4f

(
N

2

)
+ 2f

(
N

2
− 1

)
, 3 ≤ d ≤ N

2
− 1

(4.50b)

6f

(
N

2

)
= 4f

(
N

2
− 1

)
− f

(
N

2
− 2

)
. (4.50c)

The first two lines are solved as

f(d) = d−



d−2∑

j=0

4j


 f

(
N

2

)
+



d−2∑

j=0

2j


 f

(
N

2
− 1

)
, 2 ≤ d ≤ N

2
− 1 (4.51)

= d+
(
d2 − 3d+ 2

) [
−2f

(
N

2

)
+ f

(
N

2
− 1

)]
, (4.52)

which can be used to obtain

f

(
N

2
− 1

)
=
−2N + 4 + 2f

(
N
2

) (
N2 − 10N + 24

)

N2 − 10N + 20
(4.53)

f

(
N

2
− 2

)
=
N2 − 8N + 8 + 2f

(
N
2

) (
N2 − 14N + 48

)

N2 − 10N + 20
, (4.54)

from which one finds from the remaining equation

6f

(
N

2

)
=
−N2 + 8 + f

(
N
2

) (
6N2 − 52N + 96

)

N2 − 10N + 20
(4.55)

with the solution

f

(
N

2

)
=

N2 − 8

8(N − 3)
, (4.56)

such that

f(d) = d+
d2 − 3d+ 2

3−N , 2 ≤ d ≤ N

2
− 1 (4.57)
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and the constraint

f

(
N

2
− 1

)
− 2f

(
N

2

)
=

1

3−N 6= 1 (4.58)

is indeed satisfied if N 6= 2. The difference of the two sides of the equality N−2
N−3 sets

the prefactor of E2
n.

In conclusion, we have found the identity

N−1∑

n=0

E2
n ' −

N − 3

2(N − 2)

N−1∑

n=0

{
Qn (Qn+1 +Qn−1) +

N2 − 8

4(N − 3)
QnQn+N/2

+

N/2−1∑

d=2

[(
d+

d2 − 3d+ 2

N − 3

)
Qn (Qn+d +Qn−d)

]
 ,

(4.59)

on the physical Hilbert space, assuming N 6= 2, periodic boundary conditions and
the separation of the background electric field.

4.B.3 Limits of the potential

In a more compact notation our result takes the form

HE =
a

2

∑

n

E2
n =

∑

nm

v (dnm)QnQm , (4.60)

where dnm is the distance

dnm = min (|n−m| , N − |n−m|) , (4.61)

and the potential v(d) is given by

v(d) = −a
4

(
N − 3

N − 2

)
×





d , d = 0, 1

d+ d2−3d+2
3−N , 2 ≤ d ≤ N

2 − 1

N2−8
4(N−3) , d = N

2

. (4.62)

If we take first the infinite volume limit N →∞, then

v(d)→ −ad
4
, d <∞ . (4.63)

Taking first the continuum limit, we define x = ad and L = aN . Keeping L fixed the
asymptotic behavior is

d+
d2 − 3d+ 2

3−N =
x2 − Lx+ 2a2

3a2 − La → 1

a

(
x− x2

L

)
, (4.64)
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such that

v(d)→ −1

4

(
x− x2

L

)
. (4.65)

In any case, the continuum limit in infinite volume gives

HE → −
e2

4

ˆ
dx dy |x− y|ρ(x)ρ(y) , (4.66)

which is precisely the result one can obtain directly in the continuum theory (see
[86]). For a finite system size with periodic boundary conditions, we have

H
(L)
E = −e

2

4

ˆ
dx dy V (rxy) ρ(x)ρ(y) (4.67)

with the potential

V (r) = r − r2

L
, rxy = min (|x− y|, L− |x− y|) =

1

2
(L− |L− 2 |x− y||) . (4.68)

Note that this gives a correction to the (otherwise constant) force

F (r) = V ′(r) = 1− 2r

L
, (4.69)

with minimum/maximum at r = 0, L/2.
In summary, we have obtained an explicit expression for the electric energy in

terms of the fermionic charge. Our result agrees with the expectations from the
continuum and provides a consistent correction for finite lattices.
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Part II

Analyzing quantum simulators
with quantum field theory
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Chapter 5

Extraction of the instantaneous
effective action in equilibrium

This chapter is based on the article [39] with the figures and large parts of the text
taken from it. The contributions are the following. Foundational ideas for this
project were defined in discussions among J. Schmiedmayer, J. Berges and S. Erne.
I performed the analytical and numerical calculations for the theoretical part of
this work. The code for extracting 1PI correlators was written by myself, while
the code for generating thermal phase profiles was written by S. Erne. T. Schwei-
gler performed the experiment and analyzed the experimental data, including the
comparison to theory. J. Schmiedmayer and J. Berges supervised and guided the
project. While all authors participated in the writing of the manuscript [39], I made
significant contributions to the wording and structuring of the text. F. Cataldini, S.
Ji, B. Rauer and M. Tajik helped conducting the experiment. In the appendix 5.B, I
include additional related material that was not printed in [39].

5.1 Introduction

Quantum Field Theory (QFT) has a wide range of very successful applications from
early-universe cosmology and high-energy physics to condensed matter physics. A
central aspect of QFT is that it describes the many-body limit of complex interacting
quantum systems, which is also relevant for quantum technology if devices become
large. Present large-scale analog quantum simulators using ultra-cold atoms explore
the many-body limit described by QFT [38, 62, 65, 99, 118, 119, 181–192]. Therefore,
they may also be used to solve outstanding theoretical problems of QFT that are
beyond classical computational techniques.

One of the big experimental challenges is probing the complex many-body
states. One strategy is to detect every constituent (atom, superconducting qubit,
quantum dot . . . ) and its state. Such detections constitute a projective measurement
of the many-body wave function in the constituent basis. For large systems such a
measurement contains way too much information to be ever analyzed fully. This is
reflected by the exponential complexity of “tomography” that prevents a complete
characterization of the many-body quantum states [193].
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By contrast, there are important simplifications occurring in the many-body limit
described by QFT. In QFT, often only a small subset of the microscopic details of the
underlying theory is relevant for the computation of measurable physical properties.
This effective loss of details has its mathematical foundation in the renormalization
program of QFT [50]. As a result, for a quantum simulation of such a theory, many
of the detailed properties of the microscopic quantum device have no effect on the
simulation outcome for quantities of interest [31].

This raises the important question of how to extract from experimental data the
relevant information content of QFT. It is well known that an efficient description
of QFT can be based on one-particle irreducible (1PI) correlation functions, called
irreducible or proper vertices [50]. They represent the irreducible building blocks
from which all physical observables may be constructed. This can be, e.g., the
effective Hamiltonian determining the macroscopic dynamics, a possible spectrum
of quasi-particles and their effective interaction strength. In a general setting, these
vertices are functions of space and time or momentum and frequency, encoding
the “running” of couplings prominently discussed in high-energy physics in the
framework of the Standard Model of particle physics.

In principle, the irreducible vertices can be extracted from higher-order correla-
tion functions [50]. The standard procedure employs correlation functions involving
large time differences. While this is very suitable for high-energy collider experi-
ments, where an analysis is based on the concept of asymptotic states in the infinite
past and future, this is not adequate for many realizations of strongly interacting
many-body systems where the notion of an initial state “long before” and a final
state “long after” the collision is not physical. Moreover, often these systems are
studied at a given snapshot in time, without any direct reference to states in the
asymptotic past or future. This is especially true for cold-atom experiments where
one takes pictures, for example measuring every atom either after time of flight [194]
or in-situ [195, 196].

In this chapter, we develop a pathway to extract the irreducible vertices of a
quantum many-body system from experimental measurements. Our approach em-
ploys a formulation of QFT based on equal-time correlation functions only [61, 197].
Equal-time correlation functions can be extracted from snapshot measurements [38,
190, 198] and, therefore, match well with experimental capabilities. We lay out the
theoretical foundations of this approach, and illustrate the derivations using the
sine-Gordon model. The irreducible vertices at equal times are estimated for this
model both analytically and using numerical simulations. In particular, we show
how to recover from the vertices the effective Hamiltonian underlying the dynamics.
These theoretical results provide the basis for the benchmark verification of the
QFT description extracted from experimental measurement. In the experiment, the
sine-Gordon model is quantum simulated with two tunnel-coupled superfluids in
thermal equilibrium [38]. We show how to extract the irreducible vertices from
the experimental setup and compare the measurements to the theoretical estimates.
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The agreement of the experimental results with the theoretical expectations within
errors provides a proof-of-principle verification of the approach. This represents an
important step towards quantum simulator applications that are beyond reach of
classical computational techniques. A first example of such an application is the
recent experimental extraction of the irreducible two- and four-vertices for a strongly
correlated spin-1 Bose condensate far from equilibrium [65], where no theoretical
solution is available and which has been performed in parallel to this work.

This chapter is organized as follows. We start in section 5.2 with a self-contained
description of an equal-time formulation of quantum field theory and equal-time
correlation functions as they arise naturally in experiments. In particular, we show
how the instantaneous 1PI vertices, which constitute the fundamental building
blocks of the QFT description of the many-body system, can be extracted from
the measured equal-time correlation functions. In section 5.3, we illustrate these
theoretical foundations for the sine-Gordon (SG) model [199–202] and calculate the
1PI correlation functions and the instantaneous effective action in the classical field
theory limit in thermal equilibrium and compare it to numerical simulations. As a
proof of principle, we show in section 5.4 an application to an experiment with two
tunnel-coupled superfluids, which realizes the SG model [38, 203]. We conclude
our work in section 5.5. The appendix 5.A contains detailed calculations.

5.2 Extracting the irreducible vertices from equal-time cor-
relations

In a standard formulation of quantum field theory one starts from a typical scattering
experiment which gives access to the transition amplitude between an initial state at
times long before the collision and its final state at much later times. These transition
amplitudes determine the S-matrix elements, which can be expressed in terms of
time-ordered correlation functions of the underlying quantum field theory [50].
Knowledge of all time-ordered correlation functions is then equivalent to solving
the quantum theory [204, 205].

However, time-ordered correlation functions and the description by an S-matrix
formulation are conceptually less suitable in the analysis of strongly correlated
complex quantum systems, which are often studied at a given snapshot in time. Such
measurements at a given instant of time lead to the notion of equal-time correlation
functions. In quantum field theory, these can be represented by expectation values of
Weyl ordered products of field operators [61, 206]. Knowledge of all instantaneous
(equal-time) correlation functions at a given time t contains all information about the
many-body system at this instant of time. For example, the factorization properties
of higher-order correlation functions directly reveal if the system is free (factorizing)
or interacting (non factorizing) [38]. To extract the interaction constants of the
underlying (effective) Hamiltonian one has to extract the so-called one-particle
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irreducible (1PI) correlation functions [50] which represent the full non-perturbative
interaction vertices of the quantum system.

While there are standard textbook concepts to extract the 1PI correlation func-
tions from time-ordered correlation functions, the possibility to extract them from
equal-time correlation functions is much less explored. Here we illustrate how to
extract them from the equal-time correlations and thereby show how to determine
the effective Hamiltonian from experiment at a snapshot in time.

We start in section 5.2.1 with an introduction to quantum field theory in an
equal-time formalism. At the example of a scalar field theory, we show the relation
to Wigner’s phase-space formalism commonly used, e.g., in quantum optics. We
further summarize how to extract connected correlation functions (5.2.2) and one-
particle irreducible vertices (5.2.3) by introducing suitable generating functionals.
Finally, we approximately calculate the instantaneous 1PI effective action in thermal
equilibrium in section 5.2.4, which provides a direct connection to the parameters of
the microscopic Hamiltonian, and give a recipe on how to proceed (5.2.5).

5.2.1 Equal-time formulation of quantum field theory

The use of equal-time correlations is motivated by the progress of cold atomic setups
which nowadays allow to extract highly resolved images at a given instant in time.
It has long been known that QFT can be set up by only employing such equal-
time information, without relying on multi-time correlations [61, 197, 207]. This
formulation has, however, never been widely used. Theoretical progress in solving
the equal-time formalism is hampered by the lack of appropriate approximation
schemes. Nevertheless, an equal-time formulation is perfectly suited to extract the
irreducible vertices from experimental data representing a snapshot of the system at
a fixed time.

Setting up an equal-time formulation relies on measurements of conjugate ele-
mentary operators that are non-commuting. As a consequence, one has to choose
an ordering prescription [206]. Since correlations in cold atom systems are straight-
forwardly obtained by multiplying and averaging single shot results, the obtained
correlations correspond to a fully symmetrized (so-called Weyl) ordering of the
quantum operators. Moreover, as we show below, this choice of ordering leads to a
definition of 1PI correlators that is directly related to Hamiltonian parameters. For
the rest of this paper, we thus focus on Weyl-ordered correlation functions. A short
discussion of other ordering prescriptions is given in the appendix 5.A.2.

For simplicity, we start with a real scalar field theory with Schrödinger field
operators Φ̂(x) and Π̂(x) that fulfill the canonical commutation relation

[
Φ̂(x), Π̂(y)

]
= i~δ (x− y) . (5.1)

A general quantum state at time t is in the Schrödinger picture described by the
density operator ρ̂t. Equivalently, knowing all correlations characterizes the state ρ̂t
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(see appendix 5.A.3 for more details). Formally, all correlations can be conveniently
summarized in the generating functional

Zt[J ] = Tr
[
ρ̂t exp

(
Jϕx Φ̂x + Jπx Π̂x

)]
. (5.2)

Here we have introduced a notation where repeated indices are integrated over,
e.g., Jϕx Φ̂x =

´
ddxJϕ(x)Φ̂(x). The J ’s are so-called source fields, i.e., auxiliary

variables that encode the dependence of ρ̂t on Φ̂ and Π̂, as indicated by ϕ and π. In
the definition of Zt, we have implemented the choice of ordering by treating the
conjugate fields Φ̂ and Π̂ symmetrically. The resulting correlation functions, which
are obtained by taking functional derivatives are Weyl-ordered. For example at
second order, we have

G
(2)
x,y(t) =

(
〈ϕxϕy〉Wt

〈ϕxπy〉Wt

〈πxϕy〉Wt
〈πxπy〉Wt

)
, (5.3)

which consists of the three independent correlators

〈ϕxϕy〉Wt
=

δ2Zt[J ]

δJϕx δJ
ϕ
y

∣∣∣∣
J=0

=
1

2
Tr
[
ρ̂t

(
Φ̂xΦ̂y + Φ̂yΦ̂x

)]
, (5.4a)

〈ϕxπy〉Wt
=

δ2Zt[J ]

δJϕx δJπy

∣∣∣∣
J=0

=
1

2
Tr
[
ρ̂t

(
Φ̂xΠ̂y + Π̂yΦ̂x

)]
, (5.4b)

〈πxπy〉Wt
=

δ2Zt[J ]

δJπx δJ
π
y

∣∣∣∣
J=0

=
1

2
Tr
[
ρ̂t

(
Π̂xΠ̂y + Π̂yΠ̂x

)]
. (5.4c)

This is explicitly verified in appendix 5.A.2, where also the higher-order case is
discussed.

For a general quantum many-body system, Zt[J ] may involve more than one
pair of canonically conjugated fields. This possibility can be incorporated by adding
appropriate sources J and essentially does not affect the general discussion.

In the following, we consider only correlators of ϕ to lighten the notation. Nev-
ertheless, ϕ may stand for either of the two fields and π is only written explicitly
when necessary to avoid confusion. In general, we then denote all Weyl-ordered
correlators as

G
(n)
x1,...,xn(t) = 〈ϕx1 · · ·ϕxn〉Wt

=
δnZt[J ]

δJx1 · · · δJxn

∣∣∣∣
J=0

. (5.5)

We refer to the appendix 5.A.1 for a summary of all notational conventions used
throughout this paper. In Eq. (5.5), we have assumed a proper normalization,
Tr ρ̂t = 1, which implies Zt[0] = 1.

To make use of established, powerful QFT tools, we seek a representation of Zt
in terms of functional integrals. As shown in the appendix 5.A.4, the expression (5.2)
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can be rewritten as a

Zt[J ] =

ˆ
DϕDπWt [ϕ, π] exp (Jϕxϕx + Jπxπx) . (5.6)

The integration kernel Wt can be interpreted as a quasi-probability distribution,

Wt[ϕ, π] =

ˆ
Dϕ̃

〈
ϕ− ϕ̃

2

∣∣∣∣ ρ̂t
∣∣∣∣ϕ+

ϕ̃

2

〉
exp

(
i

~
ϕ̃xπx

)
, (5.7)

the so-called Wigner functional. Here |ϕ〉 denotes an eigenstate of the field opera-
tor Φ̂ with eigenvalue ϕ. The Wigner function itself has previously been applied
successfully in the context of quantum optics [208] and also plays a prominent role
in the semi-classical description of non-equilibrium quantum dynamics [209, 210].
Eq. (5.6) is the basis of the equal-time formulation of QFT and allows us to apply
established procedures in the following.

5.2.2 Connected correlation functions

In QFT (and analogously in classical probability theory) it is well known that the cor-
relations encoded in Zt are largely redundant [50, 211]. The first step is the removal
of additive redundancies, by the introduction of another generating functional,

Et[J ] = logZt[J ] . (5.8)

We denote the corresponding correlations, called connected correlators, as

G
(n)
c,x1,...,xn(t) =

δnEt[J ]

δJx1 · · · δJxn

∣∣∣∣
J=0

. (5.9)

Explicitly, as shown in the appendix 5.A.5, up to fourth order they are given by

G(1)
c,x1

= G(1)
x1

, (5.10a)

G(2)
c,x1,x2

= G(2)
x1,x2

−G(1)
c,x1

G(1)
c,x2

, (5.10b)

G(3)
c,x1,x2,x3

= G(3)
x1,x2,x3

−
(
G(2)

c,x1,x2
G(1)

c,x3
+G(2)

c,x2,x3
G(1)

c,x1
+G(2)

c,x3,x1
G(1)

c,x2

)

−G(1)
c,x1

G(1)
c,x2

G(1)
c,x3

, (5.10c)

G(4)
c,x1,x2,x3,x4

= G(4)
x1,x2,x3,x4

−
(
G(2)

c,x1,x2
G(2)

c,x3,x4
+G(2)

c,x1,x3
G(2)

c,x2,x4
+G(2)

c,x1,x4
G(2)

c,x2,x3
+
)

−
(
G(3)

c,x1,x2,x3
G(1)

c,x4
+G(3)

c,x2,x3,x4
G(1)

c,x1
+G(3)

c,x3,x4,x1
G(1)

c,x2
+G(3)

c,x4,x1,x2
G(1)

c,x3

)

−
(
G(2)

c,x1,x2
G(1)

c,x3
G(1)

c,x4
+G(2)

c,x1,x3
G(1)

c,x2
G(1)

c,x4
+G(2)

c,x1,x4
G(1)

c,x2
G(1)

c,x3

+ G(2)
c,x2,x3

G(1)
c,x1

G(1)
c,x4

+G(2)
c,x2,x4

G(1)
c,x1

G(1)
c,x3

+G(2)
c,x3,x4

G(1)
c,x1

G(1)
c,x2

)

−G(1)
c,x1

G(1)
c,x2

G(1)
c,x3

G(1)
c,x4

, (5.10d)

where we suppressed the overall time-dependence for brevity. For every order n,
the connected part G(n)

c , is obtained by subtracting the information already given by
lower-order functions G(m<n)

c .
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FIGURE 5.1: Feynman diagrams relating full and connected correlation
functions. At first-order (a) the correlations are identical. At second-order
(b) there is one disconnected diagram that contains redundant information.
At higher orders an increasing number of disconnected diagrams need to
be considered. We explicitly show the third-order (c) and fourth-order (d)
correlations. The dots indicate permutations of the diagrammatic structure
within the brackets, similar to (c).

This can be visualized by a graphical representation in terms of Feynman dia-
grams, which is very helpful to organize the underlying combinatorics. By careful
examination of this reorganization, exemplified in Fig. 5.1, one learns that only
connected graphs contribute to the correlators generated by Et, hence the name
connected correlations. In short, taking the logarithm of Zt in Eq. (5.8) removes all
disconnected diagrams.

Physically, this means that by inspecting the factorization of higher-order corre-
lation functions, one can determine whether or not the quantum system is described
by a Gaussian density operator ρ̂t. Since Gaussian distributions correspond to free
(non-interacting) QFTs, this in principle allows to determine the basis of conjugate
fields which diagonalizes the quantum many-body Hamiltonian that governs the
system at hand.
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5.2.3 One-particle irreducible vertices

The connected correlators of order higher than two still contain redundant informa-
tion. In order to access the irreducible vertices, we define the instantaneous effective
action

Γt[Φ] = −Et[J(Φ)] + Jx(Φ)Φx (5.11)

as a Legendre transform of Et. In Eq. (5.11) the relation Φx(J) = (δEt[J ]) / (δJx)

thus has to be inverted to obtain Jx(Φ). We emphasize that the above notation is an
abbreviation for a double Legendre transform in both of the conjugate fields Φ and
Π. Accordingly, equations in this section implicitly include appropriate sums over
the two fields.

Expanding the effective action in a functional Taylor series we have

Γt[Φ] =
∞∑

n=2

1

n!
Γ

(n)
x1,...,xn(t)

n∏

j=1

(
Φxj − Φ̄xj (t)

)
. (5.12)

Here Φ̄x(t) = 〈ϕx〉Wt is the mean value at time t, for which the effective action is
stationary, i.e., (δΓt[Φ]) / (δΦ) |Φ=Φ̄ = 0. The 1PI vertices,

Γ
(n)
x1,...,xn(t) =

δnΓt[Φ]

δΦx1 · · · δΦxn

∣∣∣∣
Φ=Φ̄

, (5.13)

are the expansion coefficients in this series. In Eq. (5.12), the sum starts at n =

2 because we have omitted an irrelevant constant Γ(0)1 and the first order, Γ(1),
vanishes by construction due to the expansion around Φ̄. Physically, Φ̄ can take a
non-vanishing value, which plays a crucial role, e.g., in the case of spontaneous
symmetry breaking or the false vacuum decay [212].

As shown in the appendix 5.A.6, the 1PI vertices up to fourth order are related
to the connected correlation functions as follows:

Γ(1)
x1

= 0 , (5.14a)

Γ(2)
x1,x2

=
[
G(2)

c

]−1
x1,x2

, (5.14b)

Γ(3)
x1,x2,x3

= −Γ(2)
x1,y1

Γ(2)
x2,y2

Γ(2)
x3,y3

G(3)
c,y1,y2,y3

, (5.14c)

Γ(4)
x1,x2,x3,x4

= −Γx1,y1Γx2,y2Γx3,y3Γx4,y4G
(4)
c,y1,y2,y3,y4

+ Γ(2)
x1,y1

Γ(2)
x2,y2

Γ(2)
x3,y3

Γ(2)
x4,y4

Γ(2)
z1,z2

×
(
G(3)

c,y1,y2,z1
G(3)

c,z2,y3,y4
+G(3)

c,y1,y3,z1
G(3)

c,z2,y2,y4
+G(3)

c,y1,y4,z1
G(3)

c,z2,y2,y3

)
.

(5.14d)

We again emphasize that the explicit equations should be understood including
appropriate sums over ϕ and π correlators (see appendix 5.A.6). For higher orders
these relations become more complicated and calculations are conveniently per-
formed with the graphical notation exemplified in Fig. 5.2. These diagrams also

1In thermal equilibrium and for an unnormalized density operator, the constant Γ(0) plays the role
of a thermodynamic potential, see appendix 5.B.



5.2. Extracting the irreducible vertices from equal-time correlations 111

FIGURE 5.2: Feynman diagrams relating connected and 1PI correlation
functions. At second order (a), the correlators are each others inverse. At
third order (b), the connected correlator is “built” from connected two-point
functions that are connected by the irreducible three-vertex. At fourth or-
der (c), the structure is similar to (b) with contributions from the four- and
three-vertices. Given the 1PI vertices Γ(n), all connected correlations can be
calculated by summing so called tree-diagrams, which separate into two dis-
connected parts upon cutting a single line G

(2)
c and hence do not contain any

closed loops.

explain the attribute 1PI: The diagrams representing the vertices can not be discon-
nected by cutting a single line. In this sense they are the irreducible structures from
which all correlation functions and thus all physical observables can be recovered.

This also justifies the name effective action: Γt is the quantum generalization of
a classical action including all corrections due to quantum-statistical fluctuations.
However, in contrast to the “standard” (unequal-time) action, there is one stationar-
ity condition for each time t. Together, they do not give a time evolution equation
for the one-point function in the usual sense2 but one differential equation for each
time t. In this way the time t is treated as a label in the equal-time formulation of
QFT.

2The usual evolution equation for the (time-dependent) one-point function Φ̄x(t) can be obtained
by taking another derivative of Eq. (5.14a) with respect to time t.
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5.2.4 Measuring the effective Hamiltonian

So far, we have equivalently rewritten the quantum-statistical information of a
system described by a density operator ρ̂t in terms of generating functionals Zt,
Et and Γt which encode full, connected and 1PI correlation functions, respectively.
While the entries of the density matrix are typically inaccessible and less intuitive,
the equal-time correlators can be measured in experiments and are directly related
to relevant observables and structural information, such as occupation numbers and
couplings. Next, we employ the equal-time formalism to relate parameters of an
Hamiltonian to the 1PI correlators.

As a generic example we consider a relativistic scalar field theory with potential
V described by the Hamiltonian

Ĥ =

ˆ
x

[
1

2
Π̂2

x +
1

2

(
∇xΦ̂x

)2
+ V

(
Φ̂x

)]
. (5.15)

Given the Hamiltonian Ĥ , it is possible to derive an evolution equation for Γt [61]
(see also the next chapter 6). For simplicity, we focus on the case of thermal
equilibrium, which is a stationary solution Γβ , described by the density operator
ρ̂β ∼ exp

(
−βĤ

)
with the prefactor fixed by normalization

In order to obtain the generating functional Eq. (5.6) we need to calculate the
Wigner functional Eq. (5.7). In the interacting case, the involved functional integra-
tion can only be performed approximately. It is however possible to derive an exact
equation for the thermal Wigner functional (see appendix 5.A.7). It takes the form
of a functional flow equation, ∂βWβ = −(H0 + ~2H1 + . . . )Wβ , with

H0 =

ˆ
x

[
1

2
π2
x +

1

2
(∇xϕx)2 + Vx (ϕ)

]
. (5.16)

It is straightforward to solve the equation for Wβ perturbatively by a semi-classical
expansion in powers of ~. An exact solution for V = 0 is discussed in appendix 5.B.

The leading order is the classical field theory limit, where we obtain Wβ ∼
exp (−βH0) with the classical Hamiltonian H0. Then the generating functional
Eq. (5.6) becomes

Zβ [J ] ∼
ˆ
DπDϕ e−βH0+Jϕx ϕx+Jπxπx . (5.17)

Thus βH0 plays the role of a classical action for the fluctuating fields ϕ and π. This
allows us to calculate the effective action Γβ in the equal-time formalism using
established QFT methods, such as a the background field method employed below.

We note that the two conjugate fields ϕ and π decouple in the present limit,
which implies that the effective action separates as

Γβ [Φ,Π] = Γβ [Φ] + Γβ [Π] (5.18)
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with Γβ [Π] = β
2

´
x Π2

x + const., as shown in appendix 5.A.8. The separation Eq. (5.18)
is a property of the classical field approximation. In general, the quantum effective
action of the full quantum theory requires knowledge of all equal-time correlators
of ϕ and π, including mixed terms. However, symmetries such as time translation
invariance simplify the discussion, see appendix 5.A.9.

By means of the background field method, we can calculate the effective action
in a loop expansion. In the present formalism, we split

Γβ [Φ] = βH[Φ] + Γ′β [Φ] , (5.19)

where H[Φ] = H0[ϕ = Φ, π = 0]. As shown in the appendix 5.A.10, the “rest” Γ′β
obeys the following functional integro-differential equation,

e−Γ′β [Φ] =

ˆ
Dϕ exp

(
−βK[ϕ,Φ] +

δΓ′β [Φ]

δΦx
ϕx

)
, (5.20)

where we abbreviated

K[ϕ,Φ] = H[Φ + ϕ]−H[Φ]−
ˆ
x

δH[Φ]

δΦx
ϕx . (5.21)

The solution of this equation is organized diagrammatically as an expansion in
the number of loops (see [213] for a proof to all orders). At leading order (tree-
level) in this expansion Γ′β = 0 and thus the equal-time effective action is directly
related to the microscopic Hamiltonian. Consequently, the 1PI vertices correspond
to the interaction constants of the underlying system. Beyond the leading-order
approximation, the notion of the microscopic Hamiltonian becomes a less useful
concept. The effective action then plays the role of an “effective Hamiltonian”, with
all corrections from quantum-statistical fluctuations taken into account.

Returning to the leading order approximation, which gives rise to the tree-level
1PI vertices, we explicitly have

Γ
(2)
x,y = ∇2

xδ(x− y) +

ˆ
z

δ2Vz(Φ)

δΦxδΦy

∣∣∣∣
Φ=Φ̄

, (5.22a)

Γ
(n)
x1,...,xn =

ˆ
z

δnVz(Φ)

δΦx1 · · · δΦxn

∣∣∣∣
Φ=Φ̄

, (5.22b)

where n ≥ 3. Eq. (5.19) or more explicitly Eq. (5.22) directly show the relation
between the 1PI correlation functions and the parameters of the microscopic (or
more generally an effective) Hamiltonian. Together with the procedure to obtain
the 1PI correlators, outlined below, they provide an experimental prescription for
measuring a quantum many-body Hamiltonian.
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5.2.5 Recipe to extract 1PI correlators

The extraction of 1PI correlators, which are the fundamental irreducible building
blocks for the QFT description, from equal-time data proceeds in the following steps.

1. Identify the degrees of freedom of interest which constitute the elementary
fields ϕ of the QFT.

2. Obtain many realisations (i = 1, . . . , N ) of the desired field ϕi(x) at the times t
of interest.

3. Estimate the full correlators up to order n by calculating the ensemble average
G

(n)
x1,...,xn ≈ 1

N

∑
i ϕi(x1) · · ·ϕi(xn).

4. Obtain the connected correlators G(n)
c by subtracting the disconnected contri-

butions according to Eq. (5.10).

5. Calculate the 1PI correlators Γ(n) by reducing the connected correlators accord-
ing to Eq. (5.14).

This procedure corresponds to a shift of representation from the density operator
ρ̂ to Γ, the generating functional for 1PI correlators. In the following two sections
we will illustrate and verify the method in the case of the sine-Gordon model with
numerically simulated data (Section 5.3) and with experimental measurements
(Section 5.4).

5.3 Example: Sine-Gordon model

As an explicit example, we consider the sine-Gordon model [199–202] in thermal
equilibrium. It is an interacting relativistic scalar field theory described by

βĤSG =

ˆ
x

{
βgΠ̂2

x +
λT
4

[
1

2

(
∂xΦ̂x

)2
− 1

`2J
cos
(

Φ̂x

)]}
, (5.23)

where β = (kBT )−1 is the inverse temperature. The specific form of the Hamiltonian
ĤSG given above is motivated by the recent progress to quantum simulate the SG
model by two tunnel coupled 1D superfluids [38, 203]. See section 5.4 for the
physical origin of the fields Φ̂ and Π̂, the microscopic parameter g and the length
scales λT and `J .

The semi-classical approximation Eq. (5.17) is valid for

√
4γ � min

[
1,

4

Q

]
, (5.24)

where the dimensionless parameters are γ = 16gβ/λT and Q = λT /`J . In the semi-
classical limit the loop expansion is controlled byQwith the tree-level approximation
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valid for 1/Q� 1 (see appendix 5.A.7 and 5.A.10 for details). We therefore consider
in the following λT = 17.35µm and vary `J such that 1 . Q . 20.

Following the general discussion of the previous section, the tree-level vertices
corresponding to Eq. (5.23) are

Γ(2),tree
p =

λT
4

(
p2 +

1

`2J

)
, (5.25a)

Γ(2n),tree
p1,...p2n−1

= − λT
4`2J

(−1)n , (5.25b)

Γ(2n−1),tree
p1,...p2n−2

= 0 , (5.25c)

where n > 2 and we switched to momentum space correlators. Here and in the
following we always consider a specific diagonal part in momentum space, namely
Γ

(n)
p1,...,pn = (2π) δ(p1 + · · ·+ pn)Γ

(n)
p1,...,pn−1 , which removes the volume factors arising

from translation invariance. Note that Γ(2n−1) = 0 (∀n ≥ 1) remains valid beyond
the tree-level approximation due to the symmetries of the SG Hamiltonian.

Employing a stochastic process based on a transfer matrix formalism [214], we
numerically obtain thermal profiles of the field ϕx, corresponding to the operator Φ̂x.
These are exact solutions of the SG model within the semi-classical approximation
and hence have contributions up to arbitrary order in the above loop expansion.
With these statistical samples, we carry out the procedure described in section 5.2.5
and calculate the 1PI correlators up to fourth order.

So far, we have implicitly assumed in Eq. (5.25) that the correlations are obtained
for an infinite system with periodic boundary conditions. The employed numerics,
however, yield correlators from a finite subsystem, which is better described by
open boundary conditions. We therefore employ a cosine transform and translate
the results to momentum space, i.e., Fourier momenta (for details see appendix 5.A).

Figure 5.3 shows the calculated 1PI vertices in momentum space for a large
value of Q ≈ 11.5 and different volumes L. Note that due to the periodicity of
the sine-Gordon potential3 the value of p = 0 is not defined for the correlations
considered. Therefore the fact that the correlation function is diagonal is crucial to be
able to perform the inversion of the connected second order correlation function in
order to obtain Γ(2). The diagonal form allows to do the inversion for p 6= 0 without
knowing the value for p = 0.

We find excellent agreement with the tree-level predictions for the momentum
diagonal of the two and four vertex 4. This demonstrates the possibility to carry out
the procedure described in the previous section, which allows to directly measure the

3The SG model is invariant under the shift ϕ→ ϕ+ Z× 2π. This leads to an undefined offset for
the numerical profiles ϕx and hence an undefined value of the momentum correlators for p = 0.

4One might expect a better signal-to-noise ratio for larger system sizes due the larger number
of data points. However, for a given correlator of order n the number of independent values to be
estimated from the sample increases at the same time. This effect is more pronounced for larger n and
we expect more noise at large momenta p (due to an effective volume average at low p), consistent
with the observed behavior of the statistical errors. In view of experimental limitations, a detailed
statistical survey of this point could be helpful.
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i nf r a r e d,  w e o b s e r v e  d e vi ati o n s  d u e t o l o o p c o r r e cti o n s.  T h e c o r r e s p o n di n g
c ol o r e d  d a s h e d- d ott e d li n e s i n cl u d e t h e o n e-l o o p c o r r e cti o n.  T h e c o r r e s p o n d-
i n g s elf- e n e r g y (l o w e r  p a n el) q u a nti fi e s t h e  d e vi ati o n s f r o m t h e t r e e-l e v el
p r e di cti o n.  T h e c o r r e cti o n s b e c o m e  m o r e  p r o n o u n c e d f o r s m all e r Q , a s e x-
p e ct e d.  N u m e ri c al r e s ult s a r e c al c ul at e d f o r L = 2 0 0 µ m a n d a s a m pl e si z e of
1 0 8 .

Q u a ntit ati v el y, t h e c o r r e cti o n s t o t h e 1 PI t w o- p oi nt f u n cti o n a r e s u m m a ri z e d i n

t h e “ s elf- e n e r g y ” Σ ,  d e fi n e d vi a

Γ ( 2 )
p =  Γ ( 2 ) ,t r e e

p +  Σ p . ( 5. 2 6)

I n t h e a p p e n di x 5. A. 1 3 ,  w e c al c ul at e t h e l e a di n g c o r r e cti o n,

Σ
o n e-l o o p
p = − 1 / ( 4 J ) . ( 5. 2 7)

I n Fi g. 5. 4 , t h e 1 PI t w o- p oi nt f u n cti o n a n d t h e s elf- e n e r g y a r e  pl ott e d a s a f u n cti o n

of p .  G e n e ri c all y, t r e e-l e v el  d o mi n at e s i n t h e  U V (i. e., at hi g h  m o m e nt a),  w hi c h  w e
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p ( 1 /µ m )

1 0 − 1

1 0 0

1 0 1

1 0 2

1 0 3

−
Γ

(
4)

p
(
1/µ

m)

t r e e-l e v el

Q = 8. 1 4

Q = 5. 7 6

Q = 4. 0 7

1 0 − 1 1 0 0

p ( 1 /µ m )

1 0 − 4

1 0 − 3

1 0 − 2

1 0 − 1

1 0 0

−
Γ

(
4)

p
(
1/µ

m)

t r e e-l e v el

Q = 2. 8 8

Q = 2. 0 4

Q = 1. 4 4

F I G U R E 5. 5:  L o o p c orr e cti o n s t o t h e 1 PI f o ur- v ert e x f o r  diff e r e nt v al u e s of Q .
T h e ( n e g ati v e) f o u r- v e rt e x ( , , ), s h o w n f o r l a r g e r v al u e s of Q ( u p p e r  p a n el,
c o r r e s p o n di n g t o Fi g. 5. 4 ), cl e a rl y a p p r o a c h e s t h e c o r r e s p o n di n g t r e e-l e v el
p r e di cti o n s ( c ol o r e d  d a s h e d li n e s) at hi g h  m o m e nt a. I n t h e i nf r a r e d,  w e o b-
s e r v e a st r o n g  m o m e nt u m  d e p e n d e n c e, i n c r e a si n g t h e eff e cti v e c o u pli n g. F o r
d e c r e a si n g v al u e s of Q (l o w e r  p a n el) t h e ( n e g ati v e) f o u r- v e rt e x i s i n c r e a si n gl y
s u p p r e s s e d i n t h e i nf r a r e d.  T h e r e s ult s a r e c o n si st e nt  wit h t h e a p p r o a c h of
t h e t r e e-l e v el  p r e di cti o n ( c ol o r e d  d a s h e d li n e s) f o r hi g h  m o m e nt a.  N u m e ri c al
r e s ult s a r e c al c ul at e d f o r L = 1 0 0 µ m a n d a s a m pl e si z e of 1 0 8 .  T h e e r r o r b a r s
i n di c at e t h e st a n d a r d e r r o r of t h e  m e a n.  N ot e t h at  w e e x cl u d e d  d at a  p oi nt s at
hi g h  m o m e nt a  wit h e r r o r s l a r g e r t h a n t h e  m e a n f r o m t hi s  pl ot.

al s o o b s e r v e  n u m e ri c all y.  T h e 1 PI t w o- p oi nt f u n cti o n a p p r o a c h e s t h e  p o w e r-l a w

∝ p 2 i n t hi s li mit a n d t h e ( n o r m ali z e d) s elf- e n e r g y v a ni s h e s.

I n t h e I R (l o w  m o m e nt a), h o w e v e r, l o o p c o r r e cti o n s a r e i m p o rt a nt. It i s t hi s

r e gi m e  w h e r e c oll e cti v e  m a c r o s c o pi c  p h e n o m e n a e m e r g e a n d t h e  mi c r o s c o pi c  d et ail s

a r e  w a s h e d o ut.  We o b s e r v e a n e g ati v e s elf- e n e r g y a n d h e n c e a r e d u cti o n of t h e

1 PI t w o- p oi nt f u n cti o n,  w hi c h a g r e e s  wit h t h e o n e-l o o p r e s ult o v e r a n i nt e r m e di at e

r a n g e of  m o m e nt a ( a n d Q ).  P h y si c all y, t hi s r e s ult i m pli e s st r o n g e r  fl u ct u ati o n s a s

Q d e c r e a s e s, c o n si st e nt  wit h t h e e x p e ct ati o n f o r a st r o n gl y c o r r el at e d r e gi m e of t h e

si n e- G o r d o n  m o d el.

Si mil a rl y, t h e l o o p c o r r e cti o n s t o t h e 1 PI v e rti c e s l e a d t o t h e n oti o n of r u n ni n g
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1 0 0 1 0 1

Q = λ T / J

1 0 − 5

1 0 − 3

1 0 − 1

1 0 1

1 0 3

−
Γ

(
4)

p
(
1/µ

m)
t r e e-l e v el

p = 0. 0 3 1 ( µ m ) − 1

p = 0. 1 2 5 ( µ m ) − 1

p = 0. 2 1 9 ( µ m ) − 1

F I G U R E 5. 6: 1 PI f o ur- v ert e x a s a f u n cti o n of Q f o r t h r e e  diff e r e nt  m o m e nt a
p = 0 .0 3 1 µ m − 1 ( ), 0 .1 2 5 µ m − 1 ( ), a n d 0 .2 1 9 µ m − 1 ( ).  At l a r g e  m o m e nt a,
t h e v e rt e x a p p r o a c h e s t h e t r e e-l e v el  p r e di cti o n ( bl a c k  d a s h e d-li n e).  At l o w
m o m e nt a, l o o p c o r r e cti o n l e a d t o a s u p p r e s si o n o r a n e n h a n c e m e nt  d e p e n di n g
o n t h e v al u e s of Q a n d p ( c.f. Fi g. 5. 5 ).  N u m e ri c al r e s ult s a r e c al c ul at e d f o r
L = 1 0 0 µ m a n d a s a m pl e si z e of 1 0 8 .

c o u pli n g s, i. e.,  m o m e nt u m- d e p e n d e nt i nt e r a cti o n v e rti c e s t h at  d e vi at e f r o m t h e

c o n st a nt  mi c r o s c o pi c v al u e s. I n t h e a p p e n di x 5. A. 1 3 .  w e c al c ul at e t h e o n e-l o o p

v e rt e x

Γ
( 4 ) ,o n e-l o o p
p = −

λ T

4 2
J

−
1

8 3
J

1

p 2 + 1 / 2
J

. ( 5. 2 8)

A g ai n, it i s e x p e ct e d t h at l o o p c o r r e cti o n s v a ni s h f o r hi g h  m o m e nt a a n d t h e 1 PI

f o u r- v e rt e x c o n v e r g e s t o t h e t r e e-l e v el r e s ult, i. e., t h e  mi c r o s c o pi c  p a r a m et e r s of t h e

H a milt o ni a n,  w hi c h i s c o n fi r m e d b y o u r n u m e ri c al si m ul ati o n s.

T hi s i s  d e m o n st r at e d i n Fi g. 5. 5 ,  w h e r e t h e 1 PI f o u r- v e rt e x i s s h o w n f o r t h e

s a m e v al u e s of Q a s i n Fi g. 5. 4 . F o r v e r y hi g h  m o m e nt a,  w e a r e a g ai n li mit e d b y

fi nit e st ati sti c s. I n t h e i nf r a r e d,  w e cl e a rl y o b s e r v e t h e  m o m e nt u m- d e p e n d e nt, i. e.,

r u n ni n g, c o u pli n g.  T h e i n c r e a s e d v al u e s i n di c at e st r o n g e r i nt e r a cti o n s, q u alit ati v el y

c o n si st e nt  wit h t h e o n e-l o o p c al c ul ati o n.  T h e eff e ct i s a g ai n  m o r e  p r o n o u n c e d f o r

s m all e r v al u e s of Q , a s e x p e ct e d i n t h e st r o n gl y c o r r el at e d r e gi m e of t h e si n e- G o r d o n

m o d el.

We o b s e r v e a q u alit ati v e  diff e r e n c e b et w e e n l a r g e a n d s m all v al u e s of Q . F o r

Q 4 , t h e  m a g nit u d e of t h e 1 PI f o u r- v e rt e x i s i n c r e a s e d i n t h e i nf r a r e d a n d s h o w s a

r u n ni n g c o u pli n g t o w a r d s t h e s m all e r t r e e-l e v el v al u e. F o r Q 3 , t h e  m a g nit u d e

of t h e v e rt e x  d e c r e a s e s i n t h e i nf r a r e d a s c o m p a r e d t o t h e t r e e-l e v el v al u e at hi g h e r

m o m e nt a.  T hi s b e h a vi o r i s al s o cl e a rl y vi si bl e i n Fi g. 5. 6 ,  w h e r e  w e s h o w t h e

f o u r- v e rt e x a s a f u n cti o n of Q f o r  fi x e d  m o m e nt a.



120 Chapter 5. Extraction of the instantaneous effective action in equilibrium

5.4 Experimental results: Proof of principle

As a proof of principle to extract the 1PI vertices from experimentally measured
correlations we apply the formalism discussed above to the physical system of
two tunnel-coupled one-dimensional superfluids in a double-well potential on an
atomchip. Such a system can be seen as a quantum simulator of the sine-Gordon
model [38, 203]. The relative phase ϕx between the superfluids corresponds to Φ̂

in Eq. (5.23) in section 5.3 while the relative density fluctuations correspond to the
conjugate field Π̂.

A schematic of the experimental system is given in Fig. 5.7. The parameters
in HSG (5.23) are related to the experimental parameters via λT = 2�2n1D/(mkBT ),
�J =

√
�/(4mJ), and g = g1D + �J/n1D. Here the 1D effective interaction strength

g1D = 2�asω⊥ is calculated from the s-wave scattering length as and the frequency
ω⊥ of the radial confinement; n1D is the 1D density and m is the mass of the 87Rb
atoms which the superfluids consist of. The single particle tunneling rate between
the wells is denoted by J .

In the experiment, the two superfluids are prepared by slow evaporative cooling
in the double-well potential (the same way the slow-cooled data presented in [38]
was prepared). However, in contrast to [38], the data used here was taken for a
box-like longitudinal confinement [215] of 75 µm length. Matter-wave interferome-
try [216] gives access to the spatially resolved relative phase fluctuations ϕx between
the two superfluids. More details about the experimental procedure and the data
analysis can be found in [38, 217].

Starting from the measured phase profiles, we can calculate the 1PI vertices in
the same way as was done for the numerics (see section 5.3 and appendix 5.A). For
box like potentials one naturally gets Neumann boundary conditions (BC) for the

Adjustable
tunnel-coupling

Relative degrees 
of freedom Double-well 

potential
φ(x) = θ1(x) - θ2(x)
π(x) = [δρ1(x) - δρ2(x)]/2

δρ1, θ1

δρ2, θ2

T, n1D

Box-like potential

T, n1D

J

FIGURE 5.7: Schematics of the experimental setup. We consider two tunnel-
coupled one-dimensional superfluids in a double-well potential at a common
temperature T . Changing the barrier height of the potential (blue lines) al-
lows for an adjustable tunnel-coupling J between the two superfluids. The
superfluids are described in terms of density fluctuations δρ1,2 around their
equal mean densities n1D and fluctuating phases θ1,2 (black lines). From these
quantities we define the relative degrees of freedom π and ϕ which represent
the conjugate fields in the sine-Gordon Hamiltonian. Figure adapted from
[38].
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-50 0 50 -40 -20 0 20 40

FIGURE 5.8: Cosine transformed second-order connected correlation func-
tion. Results for different phase-locking strength as indicated by the values
of Q stated above the respective subplots. The color represents the values
for cosine transformed second-order connected correlation function G̃(2)

c,p,p′ as
defined in (5.29). Note that the value (249.9 in the left subplot and 93.9 in the
right subplot) for the lowest leftmost data point, lies outside the color-range.
The color-range was chosen like this to get better visibility.

phase from the condition of vanishing particle current on the edges [215]. From the
cosine transform (compatible with the Neumann BC) of the complete system we
therefore get the 1PI vertices of the Hamiltonian with this BC. Acknowledging that
our system is still too short to get results free from finite size effects, we nevertheless
apply the conversion factors to Fourier momentum space given in (5.64) and (5.65)
for consistency when presenting Γ(n).

Let us start the discussion of the experimental results with the cosine transformed
second-order correlation function

G̃
(2)
c,p,p′ =

2

L

(
〈ϕ̃pϕ̃p′〉 − 〈ϕ̃p〉〈ϕ̃p′〉

)
. (5.29)

Here ϕ̃p represents the cosine transform (5.63b) over the finite interval with length
L and we chose the prefactors for later convenience. The factor 2 comes from the
identity (5.64) and the factor 1/L from the delta function. We see from Fig. 5.8
that the correlations are approximately diagonal. Further, note that density-phase
two-point correlations, 〈πϕ〉Wt , vanish due to time-translation invariance of the
thermal state, even beyond the semi-classical approximation Eq. (5.17). Together,
this enables us to calculate the 1PI two-point correlator as

Γ(2)
p =

1

G̃
(2)
c,p,p

, (5.30)

where we neglected the small off-diagonal elements of G̃(2)
c,p,p′ . The results are

presented in Fig. 5.9.
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FIGURE 5.9: Experimental 1PI two-point function. The four different mea-
surements correspond to Q = 4.5 ( ), 3.1 ( ), 2.4 ( ), and 1.3 ( ). The error
bars represent the 80% confidence intervals obtained using bootstrapping. We
see good agreement with the theory prediction from the sine-Gordon model
in thermal equilibrium calculated for 106 numerical realizations (black solid
lines). The height of the green bars indicates the 80% confidence interval for
the numerical predictions considering the finite experimental sample size.
Note that all uncertainty comes from the finite sample size, no uncertainty in
the parameters λT and Q was assumed. The width of the bars was chosen
arbitrarily.

All experimental results presented in this chapter are corrected for the expected
influence of the finite imaging resolution. In our simple model, the imaging process
leads to a convolution of the true phase profiles with a Gaussian function with σpsf =

3 µm [217]. In momentum space this leads to a multiplication with exp
(
−p2σ2

psf/2
)

,
which can be corrected by dividing the cosine transformed relative phase ϕ̃(p) by
this factor.

In order to connect the experimental results to the theoretical model (section 5.3)
we estimate λT = 11 µm for all the different measurements. The values for Q =

λT /�J are then self consistently fitted from 〈cos(ϕ)〉 [217]. We see good agreement
between experiment and thermal sine-Gordon theory for the 1PI two-point function
in Fig. 5.9.

Having obtained the two-point function, and using that the third-order correla-
tion functions vanish for symmetry reasons, we can calculated the diagonal part of
the 4-vertex as

Γ(4)
p = −8

3

1

L
〈ϕ̃4

p〉c ×
(
Γ(2)
p

)4
. (5.31)

Here 〈ϕ̃4
p〉c stands for the diagonal elements of the cosine transformed fourth-order

connected correlation function. The factor 8/3 comes from the identity (5.65), the
factor 1/L again comes from the delta function. The results for the three lowest lying
momentum modes are presented in Fig. 5.10 as a function of Q. We find qualitative
agreement between experiment and theory as well as the expected approach towards
the tree-level result for higher momenta. The momentum dependence for the
measurements with large experimental sample size (Fig. 5.11) reveal a running
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FIGURE 5.10: Experimental four-vertex. The red bullets represent the exper-
imental results for the four-vertex as a function of Q = λT /�J . The points in
one particular subplot correspond to separate measurements with different
tunneling strength. The different subplots show the results for the lowest three
values of p indicated in the upper left corner of the subplots. The error bars
represent 80% confidence intervals obtained using bootstrapping. The numer-
ical prediction from the sine-Gordon model in thermal equilibrium is given by
the green bars. The height of the bars indicates the 80% confidence interval for
the theory predictions considering the finite experimental sample size. Note
that all uncertainty comes from the finite sample size, no uncertainty in the
parameters λT and Q was assumed. The width of the bars was chosen arbitrar-
ily. The solid black line represents the theory prediction from 106 numerical
realizations and the dashed black line the tree-level prediction (5.25).
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coupling with a qualitative agreement between the experiment and thermal sine-
Gordon theory.

5.5 Summary

The presented method provides a general framework to extract and test the effective
or emergent quantum field theoretical description of generic quantum many-body
systems from experiments. For the example of the sine-Gordon model, which is
quantum simulated with two tunnel-coupled superfluids, we have demonstrated
how to experimentally obtain the irreducible vertices in thermal equilibrium and
compared to theoretical expectations. This represents an essential step in the verifi-
cation of the approach, which opens a new pathway to study fundamental questions
of QFT through large-scale (analog) quantum simulators.

This becomes especially interesting for strongly correlated systems and in non-
equilibrium situations, where it is often not possible to solve the theory using
classical computational techniques. Extracting the irreducible building blocks of
quantum many-body systems, and how they change with time, promises to provide
detailed insights into the dynamics for these cases. The next chapter – where we
discuss a spin-1 Bose condensate far from equilibrium [65], which has been studied
in parallel to the work presented in this chapter and employed similar methods –
presents an example where currently no theoretical solution is available. In turn, the
insight from experimental measurement can support theoretical developments in
devising new approximation schemes and effective field theory descriptions.



5.5. Summary 125

FIGURE 5.11: Running coupling. Like Fig. 5.10, but showing Γ
(4)
p as a func-

tion of p for the four measurements with the biggest experimental sample
size. Depending on the value of Q indicated in the different subplots one can
see a clear momentum dependence, i.e., “running coupling”. Note that the
vertical axis of the uppermost subplot is different from the rest. However, the
logarithmic range is the same as in the other subplots.
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ρ̂[Φ̂] density operator Φ̂ field operator (non-commuting)
W [ϕ] Wigner functional ϕ fluctuating (microscopic) field
Z[J ] g.f. for full correlators G(n) J auxiliary source field
E[J ] g.f. for connected correlators G(n)

c

Γ[Φ] g.f. for 1PI correlators Γ(n) Φ macroscopic field

TABLE 5.12: Overview over the different objects that appear in the general
discussion. “g.f.” abbreviates “generating functional”.

Appendix: Details about the QFT analysis in equilibrium

In this appendix we show in section 5.A explicit calculations and detailed dis-
cussions that we left out in the discussion of equal-time correlation functions, as
well as technical details concerning the example which is discussed in this chapter.
Additionally, we briefly discuss quantum thermal equilibrium in section 5.B.

5.A Technical details

5.A.1 Notational conventions

In table 5.12, we have summarized the different generating functionals and the
involved fields which appear throughout this chapter.

We use the following notations: Operators are always indicated by a hat. Tr [. . . ]

indicates a trace over the full Hilbert space. The absence of a hat implies a c-number
(i.e., commuting objects). In the whole formalism, the time t is treated as a label
and often left out for brevity. Repeated spatial indices are integrated over, e.g.,
Jϕx Φ̂x =

´
ddxJϕ(x)Φ̂(x); we write explicit integrals if there is room for confusion.

In this appendix, we also use collective Latin indices, such as a = (ϕ/π,x);
then repeated indices are integrated or summed over as appropriate, e.g., JaΦ̂a =´

ddx
[
Jϕ(x)Φ̂(x) + Jπ(x)Π̂(x)

]
. It is useful to think of correlation functions as

tensors, e.g., G(2)
c,ab and its inverse Γ

(2)
ab are the components of 2-tensors that ful-

fill G(2)
c,abΓ

(2)
bd = δad. Here δad is the product of a discrete Kronecker delta and a

continuous Dirac delta distribution.

5.A.2 Operator ordering at equal-time

There are three common choices of different orderings, often referred to as symmetric
(Weyl), normal (P) and anti-normal (Q). In terms of creation and annihilation oper-
ators âp and â†p, which fulfill

[
âp, â

†
q

]
∼ δpq, they can be realized by the definitions
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Z
(W )
t [J ] = Tr

[
ρ̂t exp

(
Jpâ
†
p − J∗p âp

)]
, (5.32a)

Z
(P )
t [J ] = Tr

[
ρ̂t exp

(
Jpâ
†
p

)
exp

(
−J∗p âp

)]
, (5.32b)

Z
(Q)
t [J ] = Tr

[
ρ̂t exp

(
−J∗p âp

)
exp

(
Jpâ
†
p

)]
. (5.32c)

In general, there is a continuum of other choices that smoothly connect these three
cases. However, all different choices are fully equivalent in the sense that they
contain all measurable information and the main difference lies in the associated
quasi-probability distributions. For more details we refer to [206].

Explicitly, for our choice, the ordering is resolved as

exp
(
Jϕx Φ̂x + Jπx Π̂x

)
= eJ

ϕ
x Φ̂xeJ

π
x Π̂xe−

i
2
Jϕx J

π
x = eJ

π
x Π̂xeJ

ϕ
x Φ̂xe

i
2
Jϕx J

π
x (5.33)

where we used the BCH formula in the form

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂] , (5.34)

which is valid for
[[
Â, B̂

]
, B̂
]

=
[[
Â, B̂

]
, Â
]

= 0. Thus, derivatives acting on

exp
(
Jϕx Φ̂x + Jπx Π̂x

)
from the left result in operators and additional sources accord-

ing to

δ

δJϕx
→ Φ̂x −

iJπx
2

,
δ

δJπx
→ Π̂x +

iJϕx
2

. (5.35)

Using this correspondence, it is straightforward to generate explicit expression for
all correlators. For instance, at second order, we have

δ

δJϕx

δ

δJπy
→ δ

δJϕx

(
Π̂y +

iJϕy
2

)
→
(

Π̂y +
iJϕy
2

)(
Φ̂x −

iJπx
2

)
+
i

2
δ (x− y) .

Setting the sources to zero proves that

〈ϕxπy〉Wt
= Tr

[
ρ̂tΠ̂yΦ̂x

]
+
i

2
δ (x− y) =

1

2
Tr
[
ρ̂t

(
Φ̂xΠ̂y + Π̂yΦ̂x

)]
, (5.36)

where we used the canonical commutation relations and the normalization of ρ̂t. In
the following we drop the label t for brevity.

5.A.3 Correlations and the density operator

The density operator ρ̂ can formally be recovered from Z as [206]

ρ̂ =

ˆ
DJϕDJπ Z[J ]

[
exp

(
Jϕx Φ̂x + Jπx Π̂x

)]−1
. (5.37)
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Furthermore, the mappings between the different functionals are invertible (under
appropriate mathematical assumptions): W and Z are related by Fourier transforms,
Z and E by an exponential (or logarithmic) map, E and Γ by Legendre transforms.
Thus, it is completely equivalent to work with the Wigner functional W or any of
the generating functionals Z, E, Γ instead of the density operator ρ̂.

5.A.4 Functional integral representation, Eq. (5.6)

We seek a representation of Z in terms of classical (commuting) instead of operator-
valued fields. To this end, we evaluate the trace as

Z[J, ρ(t)] =

ˆ
Dϕ+Dϕ−

〈
ϕ+
∣∣ρ(t)

∣∣ϕ−
〉 〈
ϕ−
∣∣eJϕx Φx+Jπx Πx

∣∣ϕ+
〉

(5.38a)

=

ˆ
Dϕ+Dϕ−Dπ̃

〈
ϕ+
∣∣ρ(t)

∣∣ϕ−
〉 〈
ϕ−
∣∣eJϕx Φx

∣∣π̃
〉 〈
π̃
∣∣eJπx Πx

∣∣ϕ+
〉
e−

i
2
Jϕx J

π
x

(5.38b)

=

ˆ
DϕDϕ̃Dπ̃

〈
ϕ+

ϕ̃

2

∣∣∣∣ρ(t)

∣∣∣∣ϕ−
ϕ̃

2

〉

× eJ
ϕ
x (ϕx− ϕ̃x2 )+i(ϕx− ϕ̃x2 )π̃x+Jπx π̃x−i(ϕx+ ϕ̃x

2 )π̃x− i
2
Jϕx J

π
x (5.38c)

=

ˆ
DϕDϕ̃Dπ̃DπWt [ϕ, π] eiπxϕ̃x+Jϕx (ϕx− ϕ̃x2 )+Jπx π̃x−iϕ̃xπ̃x− i

2
Jϕx J

π
x

(5.38d)

=

ˆ
DϕDπWt [ϕ, π] exp [Jϕxϕx + Jπxπx] . (5.38e)

In the above calculation, we have again used the BCH formula, performed a change
of variables ϕ± ≡ ϕ± ϕ̃/2, and employed the definition of the Wigner functional.

5.A.5 The connected correlators, Eq. (5.10)

To discuss the explicit form of the connected and 1PI correlators, we use the short-
hand notation, where sources Ja have a single index indicating space x, as well as
any of the two fields ϕ and π. Repeated indices are summed and integrated over.
Similarly, we abbreviate the fields as ϕa.

At first order, the connected correlators are directly related to the full Weyl-
ordered one-point function,

δE

δJa
=
δ logZ

δJa
=

1

Z

δZ

δJa
. (5.39)

Setting the sources to zero, we have Z[J = 0] = 1, which proves Eq. (5.10a).
At second order, we calculate

δ2E

δJaδJb
=

δ

δJa

(
1

Z

δZ

δJb

)
=

1

Z

δ2Z

δJaδJb
− 1

Z2

δZ

δJa

δZ

δJb
, (5.40)

which proves Eq. (5.10b).
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The higher orders follow analogously by the combinatorics of the derivatives.
E.g., the third order, Eq. (5.10c), is obtained by

δ3E

δJaδJbδJc
=

1

Z

δ3Z

δJaδJbδJc
−
(

1

Z2

δ2Z

δJaδJb

δZ

δJc
+ 2 perm.

)
+ 2

1

Z3

δZ

δJa

δZ

δJb

δZ

δJc

(5.41)

and using Eqs. (5.39) and (5.40).

5.A.6 The 1PI vertices, Eq. (5.14)

The expression for the 1PI two-point function is central for the construction of the
higher orders. It follows by considering a derivative of the stationarity condition,

δ2Γ

δΦaδΦb
=
δJb
δΦa

. (5.42)

This is the matrix inverse of the derivative of the one-point function (in the presence
of sources), i.e.,

δΦa(J)

δJb
=

δ

δJb

(
1

Z

δZ

δJa

)
=

δ2E

δJaδJb
. (5.43)

Thus, we find Eq. (5.14b), or

δ2Γ

δΦaδΦb
=

[(
δ2E

δJδJ

)−1
]

ab

, (5.44)

which also holds without setting the sources to zero.
The higher orders follow by taking derivatives of this equation (with non-zero

sources). To this end, we replace a derivative by

δ

δΦc
=
δJc′

δΦc

δ

δJc′
=

δ2Γ

δΦcδΦc′

δ

δJc′
(5.45)

and calculate the derivative of the inverse of a matrix M(y) depending on a parame-
ter y according to

d

dy

(
M−1

)
= −M−1 · dM

dy
·M−1 . (5.46)

This results for the third order in

δ3Γ

δΦaδΦbδΦc
= − δ2Γ

δΦaδΦa′

δ2Γ

δΦbδΦb′

δ2Γ

δΦcδΦc′

δ3E

δJa′δJb′δJc′
, (5.47)

which proves Eq. (5.14c).
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Similarly, the fourth order, Eq. (5.14d) , follows by the combinatorics of taking
further derivatives,

δ4Γ

δΦaδΦbδΦcδΦd
=− δ2Γ

δΦaδΦa′

δ2Γ

δΦbδΦb′

δ2Γ

δΦcδΦc′

δ2Γ

δΦdδΦd′

δ4E

δJa′δJb′δJc′δJd′

+
δ2Γ

δΦaδΦa′

δ2Γ

δΦbδΦb′

δ2Γ

δΦcδΦc′

δ2Γ

δΦdδΦd′

×
(

δ3E

δJa′δJb′δJe

δ2Γ

δΦeδΦf

δ3E

δJfδJc′δJd′
+ 2 perm.

)
. (5.48)

5.A.7 The thermal case and the classical limit

In thermal equilibrium, the (unnormalized) canonical density operator ρ̂β = e−βĤ

fulfills the equation ∂β ρ̂β = −1
2

(
Ĥρ̂β + ρ̂βĤ

)
. Employing the quasi-probability

formalism [208], one can show that this equation translates to an equation for Wβ . It
takes the form

∂βWβ = −1

2

[
H+
W +H−W

]
Wβ , (5.49)

where H±W = HW

[
ϕ± i~

2
δ
δπ , π ∓ i~

2
δ
δϕ

]
is a functional differential operator obtained

from the Weyl-transform HW [ϕ, π] of the Hamiltonian Ĥ by replacing the argu-
ments with the given operators [208]. With the initial condition Wβ→∞ = const.,
which follows from the high-temperature limit, this functional flow equation can be
solved perturbatively by expanding Wβ = exp

[∑∞
n=0 ~nW

(n)
β

]
in powers of ~ and

comparing the coefficients5.
The first order in this expansion is the classical field theory limit, where Wβ ∼

e−βH with the classical Hamiltonian H = HW . Parametrically, this is a valid ap-
proximation when ~ is small. Since ~ is a dimensionful quantity, the precise power-
counting of this expansion has to be determined for each theory separately. In
general, any quantum system in thermal equilibrium will be governed by (at least)
two dimensionless parameters εq and εth that control the strength of quantum and
classical fluctuations, respectively. A sufficient condition for the validity of the
classical approximation is

εq � min[1, εth] . (5.50)

The parameters εq and εth are obtained by rescaling the Hamiltonian and the
fundamental fields to dimensionless quantities. Explicitly, for the sine-Gordon
model in the form of Eq. (5.23), we have

βĤ =
1

εth

ˆ
x′

{
1

2

[(
Π̂′
)2

x′
+
(
∂x′Φ̂

′
x′

)2
]
− cos

(
Φ̂′x′
)}

, (5.51)

5See, however, our comment on this point for the example of a non-interacting theory in section
5.B.
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together with the rescaled commutation relations

[
Φ̂′x′ , Π̂

′
y′

]
= iεqδ(x

′ − y′) , (5.52)

such that we find

εq =
√

4γ , εth =
4`J
λT

=
4

Q
. (5.53)

Here

γ =
mg

~2n1D
= γLL +

1

n2
1D`

2
J

, (5.54)

is dominated by the 1D Lieb-Liniger parameter γLL = mg1D/(~2n1D), such that the
semi-classical approximation is valid in the weakly interacting regime γLL � 1, as
expected.

5.A.8 Derivation of Eq. (5.18) and the Π-dependence

From Eq. (5.17), the generating functional separates into a product, i.e., Zβ [J ] =

Zϕβ [Jϕ]Zπβ [Jπ], with

Zϕβ [Jϕ] ∼
ˆ
Dϕe−β

´
x[ 1

2
(∇xϕx)2+Vx(ϕ)]+

´
x J

ϕ
x ϕx , (5.55a)

Zπβ [Jπ] ∼
ˆ
Dπ exp

[
−β

2

ˆ
x
π2
x +

ˆ
x
Jπxπx

]
∼ exp

[
1

2β

ˆ
x

(Jπx )2

]
. (5.55b)

This directly implies that E[J ] = logZϕβ [Jϕ] + logZπβ [Jπ] + const. and thus the
effective action becomes Γ[Φ,Π] = Γϕ[Φ] + Γπ[Π] + const., which proves Eq. (5.18).

Carrying out the Legendre transform in Jπ, we solve

Πx(Jπ) =
δZπ[Jπ]

δJπx

∣∣∣∣
J=0

=
Jπx
β
⇒ Jπx (Π) = βΠx . (5.56)

and finally obtain

Γπ[Π] = − logZπ[Jπ(Π)] + Jπx (Π)Πx =
β

2

ˆ
x

Π2
x . (5.57)

5.A.9 Time translation invariance

For a stationary system, all observables are time-independent, ∂tTr [ρ̂t . . . ] = 0. If
additionally the Hamiltonian is of the form Ĥ[Φ̂, Π̂] = Ĥ[Π̂] + Ĥ[Φ̂] with Ĥ[Π̂] =
1
2

´
x Π2

x, then it follows that 0 = Tr
[
ρ̂t

(
Φ̂xΠ̂y + Π̂xΦ̂y

)]
= 〈ϕxπy〉Wt . As a con-

sequence the two-point function becomes block diagonal, which simplifies the
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inversion,

G(2)
c =

(
〈ϕϕ〉 0

0 〈ππ〉

)
⇒ Γ(2) =

(
〈ϕϕ〉−1 0

0 〈ππ〉−1

)
. (5.58)

5.A.10 Loop expansion of the effective action

Starting from Eq. (5.19), we calculate

e−Γ′β [Φ] = e−Γβ [Φ]+βH[Φ] = elogZ[J(Φ)]−Jx(Φ)Φx+βH[Φ] (5.59a)

=

ˆ
Dϕe−βH[ϕ]+Jx(Φ)ϕx−Jx(Φ)Φx+βH[Φ] (5.59b)

=

ˆ
Dϕe−β(H[ϕ+Φ]−H[Φ])+Jx(Φ)ϕx (5.59c)

=

ˆ
Dϕe−β

(
H[ϕ+Φ]−H[Φ]− δH[Φ]

δΦx
ϕx

)
+
δΓ′β [Φ]

δΦx
ϕx . (5.59d)

Here, we have used Eqs. (5.11) and (5.17), then performed a change of variables
ϕ→ ϕ+ Φ and finally expressed the sources as Jx(Φ) = (δΓ[Φ]) / (δΦx) .

The first non-trivial correction (one-loop) is obtained by neglecting all terms
beyond quadratic order in the fluctuating fields ϕ. The remaining Gaussian integral
can then be performed analytically, which gives

e−Γ
′,one-loop
β [Φ] =

ˆ
Dϕe− 1

2
ϕxG

−1
x,y[Φ]ϕy =

(
detG−1[Φ]

)−1/2
. (5.60)

The name “one-loop” stems from the expansion in terms of the tree-level two-point
function G0. To see this, we rewrite

Γ
′,one-loop
β [Φ] =

1

2
log detG−1[Φ] =

1

2
Tr logG−1[Φ] (5.61a)

=
1

2
Tr log

(
G0G

−1[Φ]
)

+
1

2
Tr logG−1

0 (5.61b)

=
1

2

∞∑

n=1

(−1)n+1

n
Tr
{
G0

(
G−1[Φ]−G−1

0

)}n (5.61c)

where we have used the identity log detA = Tr logA, employed the series expansion
of the logarithm and dropped the irrelevant constant. Graphically the result can be
pictured as a sum of loops consisting of lines that stand for G0 connected by field
insertions coming from

(
G−1[Φ]−G−1

0

)
. For more details about the loop expansion,

we refer to [50, 213].
Note that in the standard (unequal-time) formalism, the loop expansion is used as

an expansion in weak quantum fluctuations. Here, in the context of the classical field
theory limit in thermal equilibrium, it is employed as an expansion in weak thermal
fluctuations. In terms of the dimensionless parameters introduced in section 5.A.7,
the loop expansion is applicable for εth � 1. Thus, the tree-level approximation (i.e.,
the leading order in the loop expansion), which we used to extract the microscopic
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Hamiltonian parameters, is applicable when the following separation of scales holds:

εq � εth � 1 . (5.62)

Colloquially speaking, this is the limit of weak thermal fluctuations and even weaker
quantum fluctuations.

5.A.11 Cosine vs. Fourier transform and the boundary conditions

For an infinite system with translation invariance, the correlation functions in mo-
mentum (Fourier) space are directly related to the correlators obtained by a cosine
transform. Explicitly, with the transforms

ϕp =

ˆ
dx e−ipxϕx , (5.63a)

ϕ̃p =

ˆ
dx cos(px)ϕx =

1

2
(ϕp + ϕ−p) , (5.63b)

the two-point functions are related as

〈ϕ̃2
p〉 =

1

2
〈ϕpϕ−p〉 , (5.64)

where we assumed translation invariance, thus 〈ϕ2
p〉 = 0. Similarly, for the four-point

functions, we have

〈ϕ̃4
p〉 =

3

8
〈ϕpϕpϕ−pϕ−p〉 , (5.65)

where the prefactors arises from the 6 non-vanishing contributions out of 24 = 16

combinations.
In practice, we deal with a finite system without periodic boundary conditions.

A discrete Fourier transform is then not appropriate as it yields numerical artifacts.
Since the calculation of 1PI correlators simplifies tremendously in Fourier space, we
still prefer to work in a Fourier basis. Therefore, we calculate the correlators with a
discrete cosine transform, which reduces the artifacts from the boundary conditions.
Then we translate the correlators using the factors of 1/2 and 3/8 to Fourier-space
correlators and subsequently calculate the 1PI correlation functions. For sufficiently
large system sizes, this procedure yields the desired results and reduces numerical
artifacts in a controlled way.

5.A.12 The 1PI vertices from the numerical data

In practice, the numerical and experimental profiles live on a spatial lattice with
lattice spacing ∆x and a finite number of lattice sites N , i.e., we have ϕx for
x

∆x ∈ {0, 1, . . . , N − 1}. We employ a discrete cosine transform of the individual real-
izations to obtain profiles ϕ̃plat and later translate the results to the Fourier transform.
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The lattice momentum takes the values plat = j 2π
∆xN with j ∈

{
−N

2 , . . . ,
N
2 − 1

}
. We

correct for some artifacts of the discrete transform at large momenta by considering
physical momenta

pphys =
2

∆x
sin

(
plat∆x

2

)
. (5.66)

The two- and four-vertex densities (normalized to have units of 1/L with L = N∆x)
from the main part of this chapter are obtained by

Γ(2)
p =

L〈∣∣∣ϕpphys

∣∣∣
2
〉

c

, Γ(4)
p = −

L3

〈∣∣∣ϕpphys

∣∣∣
4
〉

c〈∣∣∣ϕpphys

∣∣∣
2
〉4

c

. (5.67)

Here, the expectation values are

〈
|ϕp|2

〉
c

= 〈ϕpϕ−p〉c = 2
〈
ϕ̃2
p

〉
c , (5.68a)

〈
|ϕp|4

〉
c

= 〈ϕpϕpϕ−pϕ−p〉c =
8

3

〈
ϕ̃2
p

〉
c , (5.68b)

where the index c indicates connected correlators according to Eq. (5.10).

5.A.13 One-loop corrections

To obtain the one-loop correction to the effective action, we approximate

βK[ϕ,Φ] = β

(
H[ϕ+ Φ]−H[Φ]− δH[Φ]

δΦx
ϕx

)
(5.69a)

=
λT
4

ˆ
x

{
1

2
(∂xϕx)2 − 1

`2J
cos Φx [−1 + cosϕx]− 1

`2J
sin Φx [ϕx − sinϕx]

}

(5.69b)

=
1

2
ϕxG

−1
x,y[Φ]ϕy +O

(
ϕ3
)

(5.69c)

with G−1
xy [Φ] = λT

4

[
−∂2

x + 1
`2J

cos (Φx)
]
δ(x− y). From Eq. (5.61), we then have

Γ
′,one-loop
β [Φ] = −1

2

∞∑

n=1

1

n

(
λT
4

2

`2J

)n
Tr
{
G0 sin2

(
Φ

2

)}n
, (5.70)

where

G0,xy =

ˆ
dp

2π
eip(x−y)G0,p (5.71)

with G0,p = 4
λT
/(p2 + 1/`2J).

The one-loop corrections to the 1PI vertices are now obtained by taking deriva-
tives of Eq. (5.70), evaluated at Φ = 0 in the symmetric case. Explicitly, we find at
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second order

∆Γ
(2),one-loop
xy = − 1

2`2J
G0,xxδ(x− y) (5.72)

and at fourth order

∆Γ
(4),one-loop
xyzw =

1

2`2J
G0,xxδ(x− y)δ(x− z)δ(x− w)

− 1

2`4J
[G0,xyG0,zwδ(x− z)δ(y − w) + 2 perm.] . (5.73)

The involved loop integrals are given by

ˆ ∞
−∞

dq

2π

1

q2 + 1/`2J
=
`J
2
, (5.74a)

ˆ ∞
−∞

dq

2π

1

q2 + 1/`2J

1

(p− q)2 + 1/`2J
=

`J
(2/`J)2 + p2

, (5.74b)

which results in the expressions discussed in the main part of this chapter,

Γ
(2),one-loop
p =

λT
4

(
p2 +

1

`2J

)
− 1

4`J
, (5.75a)

Γ
(4),one-loop
p = − λT

4`2J
− 1

8`3J

1

p2 + 1/`2J
. (5.75b)

Note that the one-loop correction is indeed of order O (εth) = O (1/Q) = O (`J/λT )

compared to the tree-level approximation.

5.B Quantum thermal equilibrium

The main results of this chapter are obtained for a system in classical thermal equi-
librium. We now briefly discuss how quantum fluctuations enter the presented
formalism, which differs from the usual approach (see [218]). For simplicity, we re-
strict ourselves to a non-interacting real scalar field theory (in one spatial dimension),
where the instantaneous effective action can be calculated analytically. Starting from
the Hamiltonian

Ĥ =
1

2

ˆ
x

{
Π̂2
x +

(
∂xΦ̂x

)2
+m2Φ̂2

x

}
, (5.76)
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the β-flow equation for the Wigner functional Wβ of the unnormalized density
operator ρ̂β = e−βĤ , Eq. (5.49), becomes

∂βWβ = −1

2

ˆ
x

{
π2
x +

[(
m2 − ∂2

x

)
ϕ2
x

]
− ~2

4

(
δ2

δϕ2
x

+

[(
m2 − ∂2

x

) δ2

δπ2
x

])}
Wβ

(5.77a)

= −
ˆ
p>0

{
π∗pπp + ω2

pϕ
∗
pϕp −

~2

4

[
δ

δϕ∗p

δ

δϕp
+ ω2

p

δ

δπ∗p

δ

δπp

]}
, (5.77b)

where we switched to Fourier space6 in second the line, used ϕ−p = ϕ∗p and the
same for π and abbreviated ω2

p = p2 +m2. The flow equation can be solved by the
ansatz7

Wβ [ϕ, π] = exp

{
−
ˆ
p>0

[
∆β,p

(
π∗pπp + ω2

pϕ
∗
pϕp
)

+Nβ,p

]}
. (5.78)

Then the functions ∆ and N have to obey the equations

∂β∆β,p = 1−
~2ω2

p

4
∆2
β,p , (5.79a)

∂βNβ,p =
~2ω2

p

4
∆β,pL , (5.79b)

and the volume factor arises from functional derivatives like (δϕp) / (δϕp) = L. With
the initial condition ρ̂β=0 = 1̂, which translates to Wβ=0 = 1 and thus ∆β=0,p = 0

and Nβ=0,p = 0, we obtain the solutions

∆β,p =
2

~ωp
tanh

(
β~ωp

2

)
, (5.80a)

Nβ,p = L log

[
cosh

(
β~ωp

2

)]
. (5.80b)

As a consistency check we note that ∆β,p → β and Nβ,p → 0 in the limit ~ → 0,
such that we recover the classical limit Wβ → e−βHW . From this simple example we
also learn that a perturbative solution of the flow equation in powers of ~ has to be
considered very carefully. Here, the dimensionless expansion parameter would be
β~ωp and thus the range of validity of the semi-classical expansion involves a certain
temperature and momentum regime. Including interactions, the power counting
will be more complicated in general.

Since the Wigner function (5.78) is Gaussian, we can directly read off the instan-
taneous effective action as

Γβ [Φ, π] =

ˆ
p>0

∆β,p

(
Π∗pΠp + ω2

pΦ
∗
pΦp

)
+ Γβ [0, 0] , (5.81)

6We ignore the zero modes in the following.
7Here, we follow [208]. We refer to [207] for an alternative derivation in the context of a scalar field

theory.



5.B. Quantum thermal equilibrium 137

where the constant Γβ [0, 0] would be zero if we had normalized the Wigner func-
tional. If we keep the density operator unnormalized, the constant is determined by
the normalization and can be calculated by performing the Gaussian integration,

e−Γβ [0,0] =

ˆ
DϕDπWβ [ϕ, π] =

∏

p

[
eNβ,p/L

~ωp∆β,p

]
=
∏

p


 1

2 sinh
(
β~ωp

2

)


 . (5.82)

In this way, we can recover the well-known result for the free energy density [218]

F

L
= − 1

βL
log Tr

[
e−βĤ

]
=

Γβ [0, 0]

βL
=

1

β

ˆ
p

log

[
2 sinh

(
β~ωp

2

)]

=

ˆ
p

{
~ωp
2

+
1

β
log
[
1− e−β~ωp

]}
. (5.83)

In the free theory, the only non-trivial equal-time correlation functions are

Γππp = ∆β,p , Γϕϕp = ω2
p∆β,p . (5.84)

They determine the particle number distribution np as

(
np +

1

2

)−1

= Γa
∗a
p =

~
2ωp

Γϕϕp +
~ωp
2

Γππp = ~ωp∆β,p , (5.85)

which follows from a change of variables to the modes ap, a∗p,

Φp =

√
~

2ωp

(
ap + a∗−p

)
, Φp = −i

√
~ωp
2

(
ap − a∗−p

)
, (5.86)

As expected, we find the Bose-Einstein distribution

np =
1

2


 1

tanh
(
β~ωp

2

) − 1


 =

1

eβ~ωp − 1
, (5.87)

which is characteristic for non-interacting bosons in thermal equilibrium.
Finally, by identifying Γβ = βHeff with an effective “Hamiltonian”, we can also

identify an effective “mass” as

m2
eff =

Γϕϕp=0

β
=

2m

β~
tanh

(
β~m

2

)
. (5.88)

It reduces to the bare mass in the limit of weak fluctuations, i.e., m2
eff → m2 as

β~m→ 0. For large fluctuations (for instance increasing the temperature), the mass
becomes irrelevant, m2

eff → 0, as expected.
In conclusion, the equal-time formulation provides an alternative approach to

study quantum field theory in thermal equilibrium. An extension to interacting
theories may give a new perspective on thermal phase transitions and critical



138 Chapter 5. Extraction of the instantaneous effective action in equilibrium

phenomena. We plan to study this possibility in a future work.
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Chapter 6

Extraction of the instantaneous
effective action out of equilibrium

This chapter is based on the article [65] with the figures and large parts of the text
taken from it. The authors of [65] contributed as follows: The experimental and
theoretical concept was developed in discussions among all authors. M. Prüfer, P.
Kunkel, S. Lannig, and A. Bonnin controlled the experimental apparatus. M. Prüfer
and myself analyzed the data. M. Prüfer, P. Kunkel, H. Strobel, J. Berges, M. K.
Oberthaler and myself discussed the measurement results. J. Berges and myself
elaborated the equal-time formalism. All authors participated in the writing of the
manuscript [65] and I made significant contributions to the wording and structuring
of the text. In appendix 6.C, I include additional related material that was not
printed in [65]. The article [65] is also covered in the experimental doctoral thesis by
M. Prüfer [219].

6.1 Introduction

Understanding how macroscopic phenomena emerge from a given microscopic de-
scription is a formidable and often unsolvable theoretical task. On the fundamental
level, quantum fluctuations or entanglement lead to novel forms of complex macro-
scopic dynamical behavior in many-body systems [220] for which a description as
emergent phenomena can be found within the framework of quantum field theory.
A central quantity in these efforts, containing all information about the measurable
physical properties, is the quantum effective action [50]. Though the problem of non-
equilibrium quantum dynamics can be exactly formulated in terms of the quantum
effective action, the solution is in general beyond capabilities of classical computers
when real-time or non-equilibrium questions are addressed [221]. In this chapter,
we extend the strategy introduced in the previous chapter to determine the non-
equilibrium quantum effective action [61] using analog quantum simulators, and
demonstrate our method experimentally with a quasi one-dimensional spinor Bose
gas out of equilibrium [122, 222]. Spatially resolved snapshots of the complex-valued
transversal spin field [223] allow us to infer the quantum effective action up to fourth
order in an expansion in one-particle irreducible correlation functions at equal times.
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We uncover a strong suppression of the irreducible four-vertex emerging at low
momenta, which solves the problem of dynamics in a highly occupied regime far
from equilibrium where perturbative descriptions fail [224]. Similar behavior in
this non-perturbative regime has been proposed in the context of early-universe
cosmology [225]. Our results constitute a new realm of large-scale analog quantum
computing [226], where the high level of control of synthetic quantum systems [227]
provides the means for the solution of theoretical problems in high-energy and
condensed matter physics with an experimental approach [8, 44, 45, 228].

6.2 Extraction of the effective action

In the many-body limit the measurable physical properties of an interacting quan-
tum system are determined by only a small subset of all microscopic parameters.
As a consequence of this effective loss of details, efficient descriptions of quantum
many-body systems can be found using a concept known as the renormalization pro-
gram of quantum field theory [50, 229]. Renormalization implies a scale-dependent
description that links the physics on small characteristic distances with phenomena
on macroscopic length scales. The scale dependence is encoded in “running” cou-
plings, determined by momentum dependent expansion coefficients of the quantum
effective action. Matching the experimental capabilities, we choose a formulation
of quantum field theory based on equal-time correlation functions only [61] which
has been exemplified in thermal equilibrium [39] but remains challenging far from
equilibrium. Finding the time-dependent quantum effective action Γt, equivalent to
solving the non-equilibrium dynamics, involves experimentally observable expec-
tation values of the underlying quantum fields. Therefore, the problem is mapped
onto the ability of synthetic quantum systems giving higher-order correlation func-
tions [38, 198, 230, 231].

Our quantum simulation builds on a spinor Bose-Einstein condensate [122] and
the spatially resolved detection of a complex-valued field F⊥(y) = Fx(y) + iFy(y) =

|F⊥(y)|eiϕ(y) [223] (see appendix 6.A). We employ ∼ 100, 000 87Rb atoms in a quasi
one-dimensional regime and quench the effective detuning of spin-mixing [62] by
employing microwave dressing [232]. This leads to spin dynamics in the F = 1

hyperfine manifold (see Fig. 6.1a), building up excitations in the Fx-Fy-plane [233].
Here, Fx and Fy are the components of the hyperfine spin perpendicular to an
applied external magnetic field. With an optimized optical trap we achieve coherence
times, i.e., we find well defined phase relations of the three magnetic sublevels, up
to ∼ 50 s due to reduced heating and efficient evaporative cooling. We find that
the dynamics leads to an approximately constant spin length |F⊥| and a fluctuating
phase degree of freedom ϕ (see Fig. 6.1c), resembling the structure of a single-
component Bose gas. By averaging over many realizations, we infer an estimator
of the two- and four-point correlation functions (correlators) from the single-shot
results of F⊥(y) (see Fig. 6.1b).
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FIGURE 6.1: Experimental platform and extraction of correlation functions.
a, The experimental system consists of an elongated, quasi one-dimensional
87Rb Bose-Einstein condensate in a magnetic field Bz in z-direction. The spin
dynamics takes place in the F = 1 hyperfine manifold and is controlled by
employing microwave dressing (blue shading). b, In a single realization we
access spatially resolved snapshots of the dynamics. We infer the transversal
spin Fy and Fx (green lines) from atomic densities (gray shading) measured
after a spin mapping sequence in the indicated magnetic substates in the
F = 1 and F = 2 hyperfine manifolds, respectively (for details see appendix
6.A). Many realizations are used to determine the correlation functions of
F⊥ = Fx + iFy to infer the proper vertices Γ

(n)
t . c, The distribution of F⊥

(all realizations and all spatial points) for 18 s evolution time. The black dots
indicate the single realization shown in b, neighboring points are connected
by a gray line. The colored arrows correspond to the spin inferred at the points
y1, ..., y6.

At evolution time t, the corresponding instantaneous effective action Γt (see
appendix 6.C for the connection to the Wigner distribution, e.g., used in quantum
optics [208]) is a functional depending on the macroscopic field Φ1(y) and its canoni-
cally conjugated field Φ2(y) =

(
Φ1(y)

)∗. Using a compact notation, the full quantum
effective action may then be written as an expansion in the fields as (cf. Eq. (5.12) of
the previous chapter)

Γt[Φ] =
∞∑

n=1

1

n!
Γα1,...,αn
t (y1, . . . , yn) Φ

α1(y1) · · ·Φαn(yn), (6.1)

where we sum over repeated indices, αj = 1, 2 and integrate over all coordinates
yj with j = 1, . . . , n. The expansion coefficients Γα1,...,αn

t (y1, . . . , yn) in (6.1), so-
called proper vertices [50], are the one-particle irreducible (1PI) n-point correlation
functions of F⊥(y). By assuming global U(1) symmetry for our system, the only
independent coefficients are Γ1...12...2

t (y1, . . . , yn) ≡ Γ
(n)
t (y1, . . . , yn) with n even

and equally many field and conjugate field components. These quantities directly
characterize the propagation (Γ(2)

t ) and interactions (Γ(n>2)
t ) of the field including

all quantum-statistical fluctuations.
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FIGURE 6.2: Statistical significance of the four-point 1PI correlator in mo-
mentum space. a, 1PI four-vertex Γ

(4)
t=18s(0, 0, p3, p4) for experimental data

(left panel); for Gaussian model with same statistics (right panel). pL = 1/L is
the lowest momentum corresponding to the size L of the evaluation region. b,
Ratio of experimental data and Gaussian model indicating the statistical sig-
nificance of the inferred signal (see colorbar for scale). c, Γ

(4)
t=18s(p1, p2, p3, p4)

for different p1 and p2 (fixed in each gray square), divided by the Gaussian
bias, revealing an overall momentum conserving structure (see colorbar in b
for scale). We note that some values in b and c lie below the lower limit of the
colorbar of 2.4, which was chosen for better visibility.

As discussed in the previous chapter 5, the equal-time 1PI effective action con-
tains the same information as the density matrix but expressed in terms of observ-
ables (see also appendix 6.C for more details in the non-equilibrium case). While
the entries of the density matrix are often inaccessible, the equal-time correlators
can be extracted in experiments and are directly related to relevant observables,
such as occupation number distributions. The 1PI vertices such as Γ

(4)
t quantify the

interactions between the excitations described by F⊥ in our system. These vertices
are a generalization of the scattering amplitudes, which are often employed for the
description of high-energy collider experiments. However, the scattering amplitudes
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are typically based on the concept of asymptotic states in the infinite past and future
[50], which is not adequate for strongly correlated many-body systems such as our
cold Bose gas.

The proper vertices represent the irreducible building blocks for the description
of the quantum many-body dynamics, and they can be related to the full correlation
functions measured such as 〈F⊥(y1)F ∗⊥(y2)〉t or 〈F ∗⊥(y1)F ∗⊥(y2)F⊥(y3)F⊥(y4)〉t. Next,
we obtain the connected correlation functions C(2)

t (y1, y2) = 〈F⊥(y1)F ∗⊥(y2)〉t,c and
C

(4)
t (y1, y2, y3, y4) = 〈F ∗⊥(y1)F ∗⊥(y2)F⊥(y3)F⊥(y4)〉t,c [38] by subtracting the redun-

dant disconnected parts (according to Eq. (5.10)) from the full correlators. The
connected correlators are then decomposed into their irreducible parts representing
the proper vertices (according to Eq. (5.14)). We obtain a momentum resolved
picture by performing a discrete Fourier transform, which yields |C(n)

t (p1, . . . , pn)|
with momenta pj (see appendix 6.B). With that the macroscopic, long wavelength,
behavior of the quantum system is encoded in the low-momentum or “infrared”
properties of the 1PI correlation functions. More precisely, we extract Γ

(2)
t (p,−p) ≡

Γ
(2)
t (p) =

(
C

(2)
t

)−1
(p) from the inverse of the connected two-point correlator and

with that the 1PI four-point correlation function for our U(1)-symmetric case:

Γ
(4)
t (p1, p2, p3, p4) = −Γ

(2)
t (p1) Γ

(2)
t (p2) Γ

(2)
t (p3) Γ

(2)
t (p4)C(4)(p1, p2, p3, p4) . (6.2)

Pictorially, acting with the inverse two-point correlators on the connected four-point
function removes the “external legs” of the diagram (see Fig. 6.1b, and Fig. 5.2).

The experimental extraction of the 1PI four-point correlations requires suffi-
ciently many experimental realizations to ensure the statistical significance of the
results. In Fig. 6.2a we plot a slice of |Γ(4)

t=18s(p1, p2, p3, p4)| by fixing p1 = p2 = 0 and
showing its dependence on p3 and p4. Note that Γ

(4)
t (p1, p2, p3, p4) is by construc-

tion symmetric under the exchange p1 ↔ p2 and p3 ↔ p4, however the symmetry
pi ↔ −pi is an experimental observation. The correlator exhibits an overall mo-
mentum dependence with a prominent contribution on the momentum conserving
diagonal (p1 +p2 +p3 +p4 = 0). The values found are contrasted to a finite statistical
bias obtained from a Gaussian model with the same number of realizations as in
the experiment (see appendix 6.B). The momentum-conserving diagonal is shown
to be statistically significant by dividing the values inferred from the experimental
data by the finite statistical bias (see Fig. 6.2b). In Fig. 6.2c the same proper vertex
divided by the Gaussian bias is shown for different p1 and p2. This corroborates the
overall momentum conserving structure.

6.3 Momentum and time dependence

For quantifying the renormalization effects, we investigate the momentum depen-
dence of the proper vertices. Fig. 6.3a shows Γ

(2)
t=18s(p) as a function of the spatial
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FIGURE 6.3: Momentum conserving diagonals of the 1PI correlators. a, Mo-
mentum conserving diagonal of Γ(2)

t=18s. b-d, We show three different momen-
tum conserving diagonals of the four point 1PI correlations (blue diamonds)
for t = 18 s. They are statistically significant as quantified by the comparison
to the finite statistics level for the Gaussian case (gray shaded region, see
appendix 6.B). The complex-valued field allows the distinction between case
b and c. The momentum dependence of these correlators over almost two
orders of magnitude indicates the dramatic renormalization of the couplings.
All error bars shown are 1 s.d. calculated from bootstrap resampling.

momentum p. We observe a suppression in the infrared [62, 187] up to a characteris-
tic momentum set by the inverse of the length scale ls ∼ 30µm. For the four-vertex
|Γ(4)

t=18s(p1, p2, p3, p4)|, we focus on statistically significant momentum conserving
diagonals. As a representative example, the case of p1 = p2 = 0 and p = p3 = −p4

(Fig. 6.3b) shows strongly momentum-dependent values in the observed momen-
tum regime; a similar behavior is also found for different diagonals as shown in
Fig. 6.3c and 6.3d. This demonstrates that the infrared regime exhibits a strongly
suppressed interaction vertex in this far-from-equilibrium situation [63, 64, 225, 234].
While quantitative theoretical predictions for this vertex are so far not possible, the
observed qualitative behavior is expected from the large occupations in the infrared,
as discussed below.

Motivated by the observed structure of the complex valued field, we derive an
exact evolution equation for the two-point function C

(2)
t (p) of a one-component

Bose gas with interaction strength g (assuming spatial translational invariance; see
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appendix 6.C for details):

∂tC
(2)
t (p) = g

ˆ
q,r,l

i
[
Γ

(4)
t (p, q,−r,−l)− Γ

(4)
t (l, r,−q,−p)

]

× C(2)
t (p)C

(2)
t (q)C

(2)
t (r)C

(2)
t (l) . (6.3)

Here, C(2)
t (p) has the interpretation of an occupation number distribution, where

the total number
´
pC

(2)
t (p) is conserved because of the U(1)−symmetry assumed.

Eq. (6.3) may be viewed as the full quantum field theoretical version of kinetic de-
scriptions for the time evolution of C(2)

t (p). With our results we have determined the
defining parameters Γ

(4)
t (p1, p2, p3, p4) of this exact evolution equation 1, answering

the question about the dynamics in the highly occupied regime, which cannot be
captured by standard kinetic theory. Fig. 6.3 and 6.4 show that the momentum-
dependent vertex Γ

(4)
t drops by almost two orders of magnitude as the occupancy

grows strongly towards lower momenta. The reduced effective interaction strength
diminishes the rate of change of the distribution C(2)(p) according to (6.3), counter-
acting the Bose-enhancement from the high occupancies at low momenta.

Moreover, in our experiment we find self-similar dynamics for the statistically
accessible diagonals of Γ

(4)
t according to Γ

(4)
t (0, 0, p,−p) = tγΓS(0, 0, tβ4p,−tβ4p)

with scaling exponents γ and β4. In Fig. 6.4b we show the time evolution (inset)
and the rescaled data with γ = 0 and β4 = 1/2 revealing a scaling collapse on the
function ΓS ∝ 1 + (p/pS)ζ4 with ζ4 = 2.2± 0.2. We also find scaling of the two-point
correlator C(2)

t = tαCS(tβ2p) with CS ∝
(
1 + (p/pS)ζ2

)−1 with ζ2 = 2.3±0.1 and the
expected exponents α = β2 ' 1/2 [62, 234] (see Fig. 6.4a). The evolution equation
(6.3) connects (α, β2) to (γ, β4). Testing a relation of α and γ, implicitly given by the
integration in Eq. (6.3), is currently hampered by the limited statistics. We anticipate
that C(2)

t and Γ
(4)
t have the same momentum scaling exponents, i.e., β2 = β4, which

is consistent with our findings.

6.4 Summary

Our procedure provides a first application to extract the effective or emergent
quantum field theoretical description of a far-from-equilibrium quantum many-
body system from experiment. The approach is general with applications to a wide
range of systems described by quantum field theory in and out of equilibrium. While
our analog quantum simulator employs a specific setup with a spinor Bose gas,
many of the results are insensitive to the detailed properties of the device on short-
distance scales because of renormalization. Our methods are uniquely suitable to
address such quantum simulations, where concepts of quantum field theory such as

1To be precise, we have only determined the absolute value of the four-vertex. However, our
derivation of the perturbative Boltzmann equation in section 6.C suggests that the four-vertex can
exhibit a complex oscillating behavior as a function of time and momentum. We want to clarify this
point in a future study.
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FIGURE 6.4: Observation of scaling in time of the distribution function
as well as corresponding couplings. Rescaled distribution function C

(2)
t (p)

and 1PI four-point correlators Γ
(4)
t (0, 0, p,−p) for times between 9 s and 18 s

evolution time (the reference time for the rescaling is 12 s). We fit a universal
function (red line; see text) with power law ζ and scale pS up to the momentum
scale indicated by the gray shading. The inset shows the unscaled data with
same axis ticks as the main figure. The vertical lines indicate the unscaled
momentum regions excluded for the fit shown in the main figure. a, We use
α = β2 = 1/2 for rescaling and find pS = 1/199µm−1 and ζ2 = 2.3. Here,
error bars are smaller than the size of the plot markers. b, We use β4 = 1/2 for
rescaling and find pS = 1/93µm−1 and ζ4 = 2.2. All error bars shown are 1
s.d. calculated from bootstrap resampling.

renormalization and the “running” of couplings become essential for a quantitative
understanding. We are convinced that on the experimental side this will lead to a
new class of continuous-variable quantum machines which operate in the regime
of many degrees of freedom. On the theoretical side we foresee breakthroughs in
understanding fundamental questions in quantum field theory inspired by results
of this experimental approach.
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Appendix: Details about the QFT analysis out of equilibrium

In this appendix we give more details about the experiment (section 6.A) and the
data analysis (section 6.B). Additionally, we discuss in detail the real-time evolution
of the instantaneous effective action for the example of a non-relativistic Bose gas
in section 6.C. Within this formalism, we also provide an alternative derivation of
Boltzmann’s kinetic equation in a perturbative limit.

6.A Experimental details

In the experiment, we prepare ∼ 105 atoms in the state |F,mF〉 = |1, 0〉 in a static
magnetic field of 0.884 G in an optical dipole trap of 1030 nm light with trapping
frequencies (ω‖, ω⊥) ≈ 2π × (1.6, 167) Hz. We initiate dynamics by changing the
experimental control parameter q, the second order Zeeman shift, by applying off-
resonant microwave dressing. For details on the experiment and the parameter
regime employed see [62].

We use a readout scheme to detect multiple spin projections in a single realization
[223]. After the desired evolution time t we apply a first π/2-rf rotation around
the y-axis to map the spin projection Fx on the detectable population imbalance
N+1 −N−1. We store this projection in the initially empty F = 2 hyperfine manifold
by splitting the populations of the three mF states with three mw π/2 pulses. A
second, hyperfine selective, rf rotation in F = 1 around the x-axis allows us to map
the spin projection Fy onto the population imbalance in F = 1. Together with a
single absorption image of the 8 hyperfine levels this procedure allows us to extract
single shot snapshots of the complex valued order parameter F⊥(y) = Fx(y)+ iFy(y)

with

Fx(y) =
(
NF=2

+2 (y)−NF=2
−2 (y)

)
/NF=2

tot (y) (6.4)

Fy(y) =
(
NF=1

+1 (y)−NF=1
−1 (y)

)
/NF=1

tot (y), (6.5)

where NF=f
mf (y) is is the atom number in the state |f,mf 〉 at position y and NF=f

tot (y)

is the total atom number in the hyperfine manifold f after the readout sequence.
At evolution times of 18 s we observe no substantial loss of coherence of the

different mF states which would correspond to reductions of the transversal spin
length. Optimizing the transversal confinement leads to coherence times up to∼ 50 s
due to reduced heating and efficient evaporative cooling. Due to the harmonic
confinement the atomic density is inhomogeneous and so is the transversal spin
length profile. We choose to analyze the central 400 pixels corresponding to ∼
168µm. The spatial resolution is ∼ 1.1µm corresponding to three pixels (pixel size
corresponds to 420 nm). As we are interested in the long wavelength (infrared)
excitations we sum over 9 adjacent pixels to reduce the number of points and
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Evolution Time (s) Number of realizations
9 294
12 511
15 316
18 559

TABLE 6.5: Number of experimental realizations for the evolution times
shown in this chapter.

the computation time. We use the number of realizations given in Table 6.5 for
estimating the correlators.

For more details about the experiment, we refer to the doctoral thesis of M.
Prüfer [219].

6.B Data analysis of correlation functions

In practice, we calculate the connected correlation functions in position space using
the Julia package Cumulants.jl [235], which provides a very efficient implementation
of Eq. (5.10). Assuming spatial translation invariance, we then calculate the 1PI
correlators in momentum space where Eq. (5.14) becomes local.

6.B.1 Momentum resolved picture

We calculate all connected correlators in position space and find translation in-
variance. To obtain a momentum resolved picture we perform a discrete Fourier
transform:

Cα1,...,αn
t (p1, . . . , pn) = DFT

yj→pj
[Cα1,...,αn
t (y1, . . . , yn)] (6.6)

≡
N∑

y1=1

· · ·
N∑

yn=1

e−i2πy1p1 · · · e−i2πynpnCα1,...,αn
t (y1, . . . , yn),

where pi ∈ [pL, 2pL, . . . , NpL], with pL = 1/L and L the size of the evaluation region.
Further, we compared the results obtained with this procedure with an evaluation
based on calculating the correlator in momentum space by Fourier transforming the
single shot profiles and find no qualitative differences.

6.B.2 Comparison with Gaussian fluctuations

Correlation functions of order > 2 will typically show non-vanishing values when
inferred from finite statistics samples, even for the Gaussian case. In order to check
for significance we compare the correlations obtained from the experimental data
to samples drawn from a Gaussian distribution with a covariance matrix given
by the experimentally estimated two-point correlations. We analyze the profiles
obtained from this routine in the same way as the experimental data. The result of
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this procedure is shown as the upper limit of the gray shaded areas in Fig. 6.3. Data
points for which the 1 s.d. interval lies above this threshold are called significant.
For non-significant points we cannot make a statement whether they are zero in the
infinite statistics limit or just too small to resolve their value with the amount of
experimental realizations employed here.

6.C Quantum field dynamics with equal-time correlations

In this section, we discuss a formulation of quantum field dynamics in terms of
equal-time correlation functions. To be specific, we restrict ourselves to a single-
component non-relativistic complex bosonic field, i.e., Schrödinger picture field
operators ψ̂, ψ̂† that fulfill

[
ψ̂x, ψ̂

†
y

]
= δx,y. A generalization to multiple components,

fermions, or relativistic fields is straightforward.

6.C.1 Instantaneous effective action

For completeness, we first repeat the constructions of chapter 5, but now with
non-relativistic fields. An arbitrary state is determined by a density operator ρ̂t, or
equivalently a generating functional Zt, constructed as

Zt[J, J
∗] = Tr

[
ρ̂t e

´
x

(
Jxψ̂

†
x+J∗x ψ̂x

)]
=

ˆ
DψDψ∗Wt[ψ,ψ

∗] e
´
x(Jxψ∗x+J∗xψx) . (6.7)

Zt generates symmetrically ordered equal-time correlation functions and it is given
by a functional integral with measure DψDψ∗ =

∏
x

[
1
πdRe (ψx) dIm (ψx)

]
over Wt,

the field theoretic version of the Wigner distribution which is extensively employed
in quantum optics [208]. The Wigner functional Wt is given by the Wigner-Weyl
transform of the density operator,

Wt[ψ,ψ
∗] =

ˆ
DηDη∗

〈
ψ − η

2

∣∣∣ ρ̂t
∣∣∣ψ +

η

2

〉
e−
´
x[ψ
∗
xψx+ 1

4
η∗xηx+ 1

2
(ψ∗xηx−η∗xψx)] . (6.8)

The instantaneous (equal-time) effective action is defined by the Legendre transform

Γt[Ψ,Ψ
∗] = − logZt[J(Ψ,Ψ∗), J∗(Ψ,Ψ∗)] +

ˆ
x

[J∗x(Ψ,Ψ∗)Ψx + Ψ∗xJx(Ψ,Ψ∗)] .

(6.9)

It generates the 1PI correlation functions as discussed in chapter 5.

6.C.2 Evolution equation

Given a Hamiltonian Ĥ , the von-Neumann equation,

i∂tρ̂t =
[
Ĥ, ρ̂t

]
, (6.10)
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dictates the quantum dynamics. It translates to an evolution equation for the
instantaneous effective action according to

i∂tΓt[Ψ,Ψ
∗] = − i∂tZt[J, J

∗]
Zt[J, J∗]

∣∣∣∣
J=J(Ψ,Ψ∗),J∗=J∗(Ψ,Ψ∗)

(6.11)

= − 1

Zt[J, J∗]
Tr
{
ρ̂t

[
Ĥ, e

´
x

(
Jxψ̂

†
x+J∗x ψ̂x

)]}∣∣∣∣
J=J(Ψ,Ψ∗),J∗=J∗(Ψ,Ψ∗)

.

(6.12)

We can evaluate the trace in terms of phase-space averages over Wt as follows. For a
general operator Ô, the expectation value w.r.t. ρ̂t is given by

Tr[ρ̂tÔ] =

ˆ
DψDψ∗Wt[ψ,ψ

∗]OW [ψ,ψ∗] , (6.13)

where OW is the Weyl symbol corresponding to Ô [208, 209]. The Weyl symbol of a
product of two operators can be expressed as [208, 209]

(
ÂB̂
)
W

= AW e
Λ
2 BW = BW e

−Λ
2 AW , (6.14)

where we introduced the symplectic operator

Λ =

ˆ
x

( ←−
δ

δψx

−→
δ

δψ∗x
−
←−
δ

δψ∗x

−→
δ

δψx

)
. (6.15)

Therefore the trace in (6.11) becomes

Tr
{
ρ̂t

[
Ĥ, e

´
x

(
Jxψ̂

†
x+J∗x ψ̂x

)]}
= 2

ˆ
DψDψ∗WtHW sinh

(
Λ

2

)
e
´
x(Jxψ∗x+J∗xψx) ,

(6.16)

where HW is the Weyl symbol of the Hamiltonian Ĥ . Given an explicit form of HW ,
it is straightforward to calculate the right-hand side. Plugging the result back into
(6.11), the sources are evaluated at

Jx = Jx(Ψ,Ψ∗) =
δΓt[Ψ,Ψ

∗]
δΨx

. (6.17)

Then, by construction of the effective action, the resulting expression involves
symmetrically ordered equal-time correlation functions which have to be expressed
in terms of 1PI correlators. Since the latter are generated by Γt, this procedure yields
a closed evolution equation.
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6.C.3 Evolution of the Bose gas

As an explicit example, relevant for the experiment discussed in this chapter, we
consider a non-relativistic Bose gas described by the quantum many-body Hamilto-
nian

Ĥ =

ˆ
x

[
1

2m

(
∇xψ̂†x

)(
∇xψ̂x

)
+
g

2
ψ̂†xψ̂

†
xψ̂xψ̂x − µψ̂†xψ̂x

]
. (6.18)

Here, m, g and µ denote the mass, interaction constant and chemical potential,
respectively. Direct computation yields the Weyl symbol

HW =

ˆ
x

[ |∇xψx|2
2m

− (µ+ gδ(0)) |ψx|2 +
g

2
|ψx|4 +

g

4
δ2(0)

]
, (6.19)

where δ(0) =
[
ψ̂x, ψ̂

†
x

]
arises from the commutation relations. The last term is a

constant and does not affect the evolution. The remaining term involving δ(0) can
be removed by adding the constant2 term gδ(0)

´
x ψ̂
†
xψ̂x to the Hamiltonian, which

renormalizes the chemical potential.
Since HW involves at most four powers of fields, only the first two terms of

2 sinh(Λ/2) = Λ + Λ3/4! + . . . contribute to (6.16). Explicitly, the quadratic terms
contribute as
ˆ
x
ψ∗xψx 2 sinh

(
Λ

2

)
e
´
y(Jyψ

∗
y+J∗yψy) =

ˆ
x

(ψ∗xJx − J∗xψx) e
´
y(Jyψ

∗
y+J∗yψy) (6.20)

and the quartic term gives

ˆ
x
ψ∗xψ

∗
xψxψx 2 sinh

(
Λ

2

)
e
´
y(Jyψ

∗
y+J∗yψy)

=

ˆ
x

[
ψ∗x

(
2ψ∗xψx −

1

2
J∗xJx

)
Jx − J∗x

(
2ψ∗xψx −

1

2
J∗xJx

)
ψx

]
e
´
y(Jyψ

∗
y+J∗yψy) .

(6.21)

Taking the phase space average w.r.t. Wt and replacing the sources by derivatives,
we find

i∂tΓt[Ψ,Ψ
∗] = LclΓt[Ψ,Ψ

∗] + Lq[Γt] , (6.22)

where the “classical” part Lcl resp. “quantum” part Lq are linear resp. nonlinear in
derivatives,

Lcl =

ˆ
x

{[(
−∇

2
x

2m
− µ

)
Ψx + gGψ

∗ψψ
xxx

]
δ

δΨx
−
[(
−∇

2
x

2m
− µ

)
Ψ∗x + gGψ

∗ψ∗ψ
xxx

]
δ

δΨ∗x

}
,

(6.23a)

Lq =
g

4

ˆ
x

(
Ψ∗x

δΓt
δΨ∗x

δΓt
δΨ∗x

δΓt
δΨx

−Ψx
δΓt
δΨx

δΓt
δΨx

δΓt
δΨ∗x

)
. (6.23b)

2It is proportional to the total number of particles, which is conserved.
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Here, the full three-point functions have to be expressed in terms of 1PI correlators,

Gψ
∗ψψ

xxx = Gψ
∗ψψ

c,xxx + 2Gψ
∗ψ

c,xxΨx +Gψψc,xxΨ∗x + Ψ∗xΨxΨx , (6.24a)

Gψ
∗ψ∗ψ

xxx = Gψ
∗ψ∗ψ

c,xxx + 2Gψ
∗ψ

c,xxΨ∗x +Gψ
∗ψ∗

c,xx Ψx + Ψ∗xΨ∗xΨx , (6.24b)

with the connected two- and three-point functions given by

Gαβc,xy =

[(
δ2Γt
δΨδΨ

)−1
]αβ

xy

, (6.25a)

Gαβγc,xyz = −
∑

α′,β′,γ′

ˆ
x′y′z′

Gαα
′

c,xx′G
ββ′
c,yy′G

γγ′
c,zz′

δ3Γt

δΨα′
x′ δΨ

β′
y′ δΨ

γ′
z′
. (6.25b)

6.C.4 Symmetric case

Since the Hamiltonian is U(1) symmetric, an initially U(1) symmetric state will re-
main so. For simplicity, we now focus on this symmetric phase, where all correlation
functions are invariant under global U(1) transformations. This symmetry simplifies
the structure of the effective action,

Γt[Ψ,Ψ
∗] = Γ̄t[|Ψ|2] , (6.26)

where we denote |Ψ|2xy = Ψ∗xΨy. With this assumption, the evolution equation
reduces to

i∂tΓ̄t[|Ψ|2] =

ˆ
xy

[
−∇2

y +∇2
x

2m
|Ψ|2xy + g

(
Gψ
∗ψψ

yyy Ψ∗x −Gψ
∗ψ∗ψ

xxx Ψy

)] δΓ̄t
δ|Ψ|2xy

+
g

4

ˆ
xyzw

|Ψ|2xy|Ψ|2zw
(

δΓ̄t
δ|Ψ|2zx

δΓ̄t
δ|Ψ|2xw

− δΓ̄t
δ|Ψ|2zy

δΓ̄t
δ|Ψ|2yw

)
δΓ̄t
δ|Ψ|2xy

. (6.27)

In order to obtain explicit expressions for the evolution equations of correlation
functions, we need to express the terms involvingG(3) with 1PI correlators. To reveal
the dependence of these terms on |Ψ|2, we first split the 1PI two-point function as
Γ(2) = Γ̄(2) + Γ̃(2) with

Γ(2)
xy =




δΓ̄t
δΨxδΨy

δΓ̄t
δΨxδΨ∗y

δΓ̄t
δΨ∗xδΨy

δΓ̄t
δΨ∗xδΨ∗y


 , (6.28a)

Γ̄(2)
xy =


 0 δΓ̄t

δ|Ψ|2yx
δΓ̄t

δ|Ψ|2xy 0


 , (6.28b)

Γ̃(2)
xy =

ˆ
zw


Ψ∗zΨ

∗
w

δ2Γ̄t
δ|Ψ|2zxδ|Ψ|2wy Ψ∗zΨw

δ2Γ̄t
δ|Ψ|2zxδ|Ψ|2yw

ΨzΨ
∗
w

δ2Γ̄t
δ|Ψ|2xzδ|Ψ|2wy ΨzΨw

δ2Γ̄t
δ|Ψ|2xzδ|Ψ|2yw


 . (6.28c)
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Analogously, we write the connected two-point function as G(2)
c = Ḡ

(2)
c + G̃

(2)
c with

Ḡ
(2)
c =

(
Γ̄(2)

)−1
, which implies the geometric (Dyson-type) series

G(2)
c = Ḡ(2)

c − Ḡ(2)
c Γ̃(2)Ḡ(2)

c + Ḡ(2)
c Γ̃(2)Ḡ(2)

c Γ̃(2)Ḡ(2)
c ∓ . . . . (6.29)

In the following, we will further restrict our attention to the 1PI two- and four-point
functions,

Γ̄xy =
δΓt
δ|Ψ|2xy

∣∣∣∣
Ψ=Ψ∗=0

= Γ̄(2)
xy

∣∣∣
Ψ=Ψ∗=0

, (6.30a)

Γ̄xy,zw =
δ2Γt

δ|Ψ|2xyδ|Ψ|2zw

∣∣∣∣
Ψ=Ψ∗=0

. (6.30b)

Since we need to take at most two |Ψ|2 derivatives of equation (6.27), only the first
two terms of the Dyson series contribute to the evolution of these correlators.

6.C.5 Evolution of the two-point and four-point functions

Explicitly, the two-point function evolves according to

i∂tΓ̄xy =
−∇2

y +∇2
x

2m
Γ̄xy + g

ˆ
zw

δ
(
Gψ
∗ψψ

www Ψ∗z −Gψ
∗ψ∗ψ

zzz Ψw

)

δ|Ψ|2xy

∣∣∣∣∣∣
Ψ=Ψ∗=0

Γ̄zw . (6.31)

The evolution equation for the four-point function reads

i∂tΓ̄xy,zw =
−∇2

x +∇2
y −∇2

z +∇2
w

2m
Γ̄xy,zw

+ g

ˆ
ab

δ
(
Gψ
∗ψψ

bbb Ψ∗a −Gψ
∗ψ∗ψ

aaa Ψb

)

δ|Ψ|2xy

∣∣∣∣∣∣
Ψ=Ψ∗=0

Γ̄ab,zw + (xy ↔ zw)

+ g

ˆ
ab

δ2
(
Gψ
∗ψψ

bbb Ψ∗a −Gψ
∗ψ∗ψ

aaa Ψb

)

δ|Ψ|2xyδ|Ψ|2zw

∣∣∣∣∣∣
Ψ=Ψ∗=0

Γ̄ab

+
g

4

[(
Γ̄zwΓ̄xw − Γ̄zyΓ̄yw

)
Γ̄xy +

(
Γ̄xzΓ̄zy − Γ̄xwΓ̄wy

)
Γ̄zw

]
, (6.32)

where (xy ↔ zw) denotes the permutation of the expression in the same line with
the indicated replacement. Evaluating the remaining derivatives is tedious, but
straightforward. For future reference, we sketch how to perform this calculation.
Consider

δ
(
Gψ
∗ψψ

www Ψ∗z
)

δ|Ψ|2xy
=
δ
(
Gψ
∗ψψ

c,wwwΨ∗z
)

δ|Ψ|2xy
+ |Ψ|2zw

δGψ
∗ψ

c,ww

δ|Ψ|2xy
+
δ
(
Gψψc,wwΨ∗wΨ∗z

)

δ|Ψ|2xy
+ 2δxzδywG

ψ∗ψ
c,ww + δxwδyw|Ψ|2zw + δxzδyw|Ψ|2ww . (6.33)
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Using the geometric series for the two-point functions, we obtain

δGψ
∗ψ

c,ww

δ|Ψ|2xy
=
δḠψ

∗ψ
c,ww

δ|Ψ|2xy
−
ˆ
w′w′′

δ
(
Ḡψ
∗ψ

c,ww′Γ̃
ψψ∗
w′w′′Ḡ

ψ∗ψ
c,ww′

)

δ|Ψ|2xy
± . . . (6.34)

The first term is given by

δḠψ
∗ψ

c,ww

δ|Ψ|2xy
= −
ˆ
w′w′′

δΓ̄

δ|Ψ|2ww′
δ2Γ̄

δ|Ψ|2w′w′′δ|Ψ|2xy
δΓ̄

δ|Ψ|2w′′w
, (6.35)

and the second term does not contribute to the evolution of the two- and four-point
functions. Similarly, we have

δ
(
Gψψc,wwΨ∗wΨ∗z

)

δ|Ψ|2xy
= −
ˆ
w′w′′

δ
(
Ḡψψ

∗
c,ww′Γ̃

ψ∗ψ∗
w′w′′Ḡ

ψ∗ψ
c,w′′wΨ∗wΨ∗z

)

δ|Ψ|2xy
± . . . (6.36)

and only the leading term contributes as

δ
(
Ḡψψ

∗
c,ww′Γ̃

ψ∗ψ∗
w′w′′Ḡ

ψ∗ψ
c,w′′wΨ∗wΨ∗z

)

δ|Ψ|2xy

=

ˆ
w̃′w̃′′

[(
δΓ̄

δ|Ψ|2
)−1

]

w′w

δ2Γ̄

δ|Ψ|2w′w̃′δ|Ψ|2w′′w̃′′

[(
δΓ̄

δ|Ψ|2
)−1

]

w′′w

×
(
δxzδyw̃′′ |Ψ|2ww̃′ + δxwδyw̃′ |Ψ|2zw̃′′

)
+ . . . , (6.37)

where we have not written out terms involving higher powers of |Ψ|2. The connected
three-point function contributes

δ
(
Gψ
∗ψψ

c,wwwΨ∗z
)

δ|Ψ|2xy
= −

∑

α,β,γ

ˆ
w′w′′w′′′

δ

δ|Ψ|2xy

{
Gψ
∗α

c,ww′G
ψβ
c,ww′′G

ψγ
c,ww′′′

δ3Γ̄t

δΨα
w′δΨ

β
w′′δΨ

γ
w′′′

Ψ∗z

}
.

(6.38)

Again, we do not need the full expression, but just the terms up to |Ψ|2. The leading
term in the series of the “diagonal” two-point functions Gψψc and Gψ

∗ψ∗
c involves

two powers of the fields Ψ or Ψ∗. The same is true for the third derivative of Γ̄t

times one field Ψ. Thus only the following four (out of the total eight) terms of the
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sum can contribute,

(1) = Gψ
∗ψ

c,ww′G
ψψ∗
c,ww′′G

ψψ∗
c,ww′′′

δ3Γ̄t
δΨw′δΨ

∗
w′′δΨ

∗
w′′′

Ψ∗z , (6.39a)

(2) = Gψ
∗ψ∗

c,ww′G
ψψ∗
c,ww′′G

ψψ∗
c,ww′′′

δ3Γ̄t
δΨ∗w′δΨ

∗
w′′δΨ

∗
w′′′

Ψ∗z , (6.39b)

(3) = Gψ
∗ψ

c,ww′G
ψψ
c,ww′′G

ψψ∗
c,ww′′′

δ3Γ̄t
δΨw′δΨw′′δΨ

∗
w′′′

Ψ∗z , (6.39c)

(4) = Gψ
∗ψ

c,ww′G
ψψ∗
c,ww′′G

ψψ
c,ww′′′

δ3Γ̄t
δΨw′δΨ

∗
w′′δΨw′′′

Ψ∗z . (6.39d)

For example, the term (1) involves the third-order derivative

δ3Γ̄t
δΨw′δΨ

∗
w′′δΨ

∗
w′′′

Ψ∗z =

ˆ
w̃′′w̃′′′

[(
|Ψ|2zw̃′′δw̃′w′ + |Ψ|2zw̃′′δw̃′′′w′

) δ2Γ̄t
δ|Ψ|2w′′′w̃′′′δ|Ψ|2w′′w̃′

+|Ψ|2zw̃′ |Ψ|2w̃′w̃′′
δ3Γ̄t

δ|Ψ|2w′′′w̃′′′δ|Ψ|2w′′w̃′′δ|Ψ|2w′w̃′

]
. (6.40)

Collecting all relevant terms, the evolution equation of the 1PI two-point function
reads

i∂tΓ̄xy =

[
−∇2

y +∇2
x

2m
+ 2g

(
Γ̄−1
yy − Γ̄−1

xx

)
]

Γ̄xy

+ 2g

ˆ
zabc

Γ̄−1
za Γ̄−1

bz

(
Γ̄−1
zc Γ̄cy,abΓ̄xz − Γ̄−1

cz Γ̄xc,abΓ̄zy
)
, (6.41)

where we denote the inverse of Γ̄xy as Γ̄−1
xy . We emphasize that this equation holds

exactly (assuming only U(1) invariance). Given the 1PI four-point function Γ̄xy,zw,
it determines the real-time evolution of Γ̄xy.

The evaluation of the terms for the evolution equation of the four-point function
proceeds analogously. For brevity, we just state a part of the full result,

i∂tΓ̄xy,zw =

[
−∇2

y +∇2
x −∇2

z +∇2
w

2m
+ 2g

(
Γ̄−1
yy − Γ̄−1

xx + Γ̄−1
ww − Γ̄−1

zz

)
]

Γ̄xy,zw

+ g
[
δxyδxwΓ̄zx + δzyδzwΓ̄xz − δyxδyzΓ̄yw − δwxδwzΓ̄wy

]

+
g

4

[(
Γ̄zwΓ̄xw − Γ̄zyΓ̄yw

)
Γ̄xy +

(
Γ̄xzΓ̄zy − Γ̄xwΓ̄wy

)
Γ̄zw

]

+ . . . . (6.42)

The dots indicate several terms that we omitted. They are all proportional to the
coupling g and involve at least one power of Γ̄xy,zw or they depend on the 1PI six-
point function Γ̄xy,zw,uv. Neglecting the six-point function closes the set of coupled
evolution equations. If we further assume that the four-point function is of order
g, then the omitted terms above do not contribute to leading order in g. In the
remainder of this section, we will demonstrate analytically that this perturbative
truncation can be reduced to a standard kinetic description. We plan to solve the full
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system (neglecting only, e.g., the six-point function) numerically in a future work.

6.C.6 Definition of the particle number distribution

Out of equilibrium, the concept of a particle is not uniquely defined. For a physical
interpretation, it is nevertheless useful to define a particle number distribution. In
the following we assume spatial translation invariance and then define the number
density fp according to

fp +
1

2
=

ˆ
x−y

e−ip(x−y) 1

2
Tr
[
ρ̂t

(
ψ̂†xψ̂y + ψ̂yψ̂

†
x

)]
. (6.43)

To motivate that this definition makes sense, we consider ρ̂t = |Ωt〉〈Ωt|with a U(1)

symmetric pure and spatially translation invariant state |Ωt〉. In this case, equation
(6.43) becomes

fp =
1

V
〈Ωt|ψ̂†pψ̂p|Ωt〉 (6.44)

with the momentum space operators

ψ̂p =

ˆ
x
e−ipxψ̂x , ψ̂†p =

ˆ
x
eipxψ̂†x (6.45)

that fulfill
[
ψ̂p, ψ̂

†
q

]
= (2π)dδ(p − q), resulting in the volume factor V = (2π)dδ(0).

In the non-interacting case fp therefore coincides with the usual definition. In the
interacting case the definition remains sensible because

fp ≥ 0 . (6.46)

This follows from the Cauchy-Schwartz inequality

〈u|u〉〈v|v〉 ≥ |〈u|v〉|2 ⇒ fp (fp + 1) ≥ 0 (6.47)

with |u〉 = ψ̂p|Ωt〉 and |v〉 = ψ̂†p|Ωt〉, where we used the commutation relations and
U(1) invariance.

The definition (6.43) is equivalent to

fp +
1

2
=

ˆ
x−y

e−ip(x−y)Γ̄−1
yx = Γ̄−1

−p , f−p +
1

2
=

ˆ
x−y

e−ip(x−y)Γ̄−1
xy = Γ̄−1

p , (6.48)

such that the equation (6.41) becomes an exact Boltzmann-type evolution equation,

∂tfp = Cp[f,Γ
(4)] . (6.49)
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Here the “collision integral”Cp[f,Γ(4)] explicitly depends on the two-point functions
(or according to (6.48) equivalently on f ) and on the 1PI four-vertices as

Cp[f,Γ
(4)] = −ig

ˆ
qrl

(
fp +

1

2

)(
fq +

1

2

)(
fr +

1

2

)(
fl +

1

2

)

×
[
Γψψψ

∗ψ∗
l,r,−q,−p − Γψψψ

∗ψ∗
p,q,−r,−l

]
, (6.50)

where we relabeled the 1PI four-vertex in accordance with the presentation in section
6.3,

Γψψψ
∗ψ∗

l,r,−q,−p =
δ4Γ̄t

δΨlδΨrδΨ∗−qδΨ
∗
−p

∣∣∣∣∣
Ψ=Ψ∗=0

=

ˆ
xyzw

e−i(ly−rw−qx−pz)
Γ̄xy,zw

2
. (6.51)

Of course the Boltzmann-type equation (6.49) can be obtained with much less effort,
e.g., by directly calculating the Heisenberg equations of motion for the product of
two field operators, taking the average w.r.t. the density operator and expressing
the appearing four-point functions in terms of 1PI correlators. The advantage of the
approach presented here is that it generates equations for the full hierarchy of 1PI
correlators. We use this to discuss the evolution of the 1PI four-vertex next.

6.C.7 Perturbative four-vertex and Boltzmann equation

To leading order in g, the evolution of the four-vertex [Eq. (6.42)] can be written in
momentum space as

i∂tΓ
ψψψ∗ψ∗
pqrl = −∆ωpqrlΓ

ψψψ∗ψ∗
pqrl − g

2
δ (p+ q + r + l) ḡpqrl (6.52)

with ∆ωpqrl = (p2 + q2 − r2 − l2)/(2m) and the abbreviation

ḡpqrl[f ] = 4
(
Γ̄p + Γ̄q − Γ̄−r − Γ̄−l

)
− Γ̄pΓ̄q

(
Γ̄−r + Γ̄−l

)
+ Γ̄−rΓ̄−l

(
Γ̄p + Γ̄q

)
.

(6.53)

The general solution of (6.52) with initial condition Γψψψ
∗ψ∗

pqrl (t0) is given by

Γψψψ
∗ψ∗

pqrl (t) = Γψψψ
∗ψ∗

pqrl (t0) ei∆ωpqrl(t−t0)

+
ig

2
δ (p+ q + r + l)

ˆ t

t0

dτ e−i∆ωpqrl(τ−t) ḡpqrl[f ](τ) . (6.54)
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Without the initial condition (for, e.g., a Gaussian initial state) the contribution to
the collision integral (6.50) becomes

Γψψψ
∗ψ∗

l,r,−q,−p − Γψψψ
∗ψ∗

p,q,−r,−l = 2ig δ (p+ q − r − l)
ˆ t

t0

dτ cos [∆ωpqrl(τ − t)] ḡp,q,−r,−l[f ](τ)

≈ 2ig δ (p+ q − r − l) ḡp,q,−r,−l[f ](t)

ˆ t

t0

dτ cos [∆ωpqrl(τ − t)] ,

= 2ig δ (p+ q − r − l) ḡp,q,−r,−l[f ](t)
sin [∆ωpqrl(t− t0)]

∆ωpqrl(τ − t)
→ 2igδ (p+ q − r − l)πδ(∆ωpqrl)ḡp,q,−r,−l[f ](t) , (6.55)

where the approximation of the second line holds for slowly varying f and we have
taken the limit of late times (t − t0 → ∞) in the last line. Inserting this result into
(6.50) gives

Cp[f ] ≈ g2

2

ˆ
qrl

dΩpqrl

(
fp +

1

2

)(
fq +

1

2

)(
fr +

1

2

)(
fl +

1

2

)
ḡp,q,−r,−l[f ] (6.56)

with the integration constrained by momentum and energy conservation,

ˆ
qrl

dΩpqrl =

ˆ
ddq

(2π)d
ddr

(2π)d
ddl

(2π)d
(2π)d δ(d) (p+ q − r − l) (2π) δ (∆ωpqrl) . (6.57)

Rewriting the integrand in terms of the distribution f ,

(
fp +

1

2

)(
fq +

1

2

)(
fr +

1

2

)(
fl +

1

2

)
ḡp,q,−r,−l[f ]

= 4 [(fp + 1)(fq + 1)frfl − (fr + 1)(fl + 1)fpfq] , (6.58)

we finally arrive at the standard perturbative Boltzmann equation (see, e.g., [234])

∂tfp ≈ 2g2

ˆ
qrl

dΩpqrl [(fp + 1)(fq + 1)frfl − (fr + 1)(fl + 1)fpfq] . (6.59)

In the approach presented here, the Boltzmann equation relies on several assump-
tions. It is valid in the spatially translation invariant and U(1) symmetric case.
Additionally, we solved the evolution of the 1PI four-vertex by neglecting the effect
all 1PI correlators of order six or higher, assuming Gaussian initial conditions and
a perturbative expansion in the coupling. Finally, we approximated the resulting
integral for a slowly evolving two-point function at sufficiently late times.
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Chapter 7

Conclusion

The work presented in this thesis includes several results relevant for the quantum
simulation of high-energy physics. In this chapter, we briefly discuss the relevance
of the different results before closing with an outlook on possible future research
directions.

7.1 Discussion

Our proposal to implement a quantum simulation of QED in one spatial dimension
with Wilson fermions (chapter 2) illustrates the importance of taking into account
equivalent formulations of the same physics for finding experimentally feasible
schemes. Here we exploited the possibility to choose different representations of
the Clifford algebra together with the fundamental non-uniqueness of discretizing
Dirac fermions. From a more general point of view, it is sufficient to realize an
experimental system that has the right continuum limit. In principle this opens up
the possibility to consider a multitude of different Hamiltonians, only constrained
by relevant couplings (in the sense of the renormalization group), which share the
same universal properties.

In a similar spirit, it is only necessary to retain the mathematical equivalence
between the target system of the quantum simulation and the experimental platform.
By giving up the direct correspondence between the lattice sites of the simulated
gauge theory and the lattice wells of the trapped quantum gas, we have also ex-
ploited this fact (chapter 3). Our improved proposal combines these advances and
can be scaled to large system sizes by connecting elementary gauge-invariant build-
ing blocks. Together with the experimental demonstration of the building block, this
moved the quantum simulation of continuous U(1) gauge theories in one spatial
dimension within immediate reach.

Motivated by the prospect of an experimental realization of QED, we identified
dynamical topological transitions (chapter 4) as an ideal target phenomenon for a
quantum simulation. Here we take into account experimental imperfections since
this physical phenomenon is robustly accessible within relatively short time-scales
and small lattice sizes. In this context, we also re-interpreted the physics of DQPTs in
terms of correlation functions, which allowed us to obtain a dynamical topological
order parameter that remains well-defined in the interacting theory.
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Since correlation functions completely determine any quantum field theory,
a correlator-based description of quantum simulators is highly desirable for the
simulation of high-energy physics. We presented such a formulation based on
equal-time correlation functions (chapter 5), which allows for the extraction of
irreducible vertices directly from experimental data. We verified this novel approach
to analyze quantum simulators for the example of the sine-Gordon model in thermal
equilibrium, both numerically and in a proof-of-principle experiment.

The application of this approach to the dynamics of a strongly correlated Bose gas
(chapter 6) shed some new light on the interaction vertices in a far-from-equilibrium
regime associated to a non-thermal fixed point. In this way, the analysis in terms of
the instantaneous effective action can provide new input for developing effective
models for situations that have otherwise eluded an efficient description.

7.2 Outlook

While our results significantly advance the quantum simulation of high-energy
physics – specifically the simulation of U(1) LGTs and the analysis of quantum
simulators from a QFT perspective – many important questions remain to be tackled
in the future.

One of the most pressing tasks is the extension of LGT implementations to
spatial dimensions larger than one, where qualitatively different phenomena emerge.
The drastic simplification of our approach based on Wilson fermions is unique to
one spatial dimension. However, by relaxing the requirement to recover Lorentz
covariance in the continuum limit and by allowing, e.g., for bosonic matter, an
extension of the matter-gauge coupling to higher dimensions appears to be feasible.

The implementation of non-abelian theories, which has not been addressed
within this thesis, is of equal importance. Since the formulation of non-abelian
gauge invariance differs significantly from the abelian case, we believe that this
step requires a careful re-examination of the available mathematically equivalent
descriptions [56, 236, 237]. For the U(1) case, it was the combination [18] of a suitable
formulation, together with the atomic symmetry underlying SCCs that allowed for
an efficient scalable implementation. We expect a similar approach to be successful
in the case of non-abelian gauge groups, such as SU(N). Promising examples are the
combination of a quantum link formulation with the approximate SU(N) symmetry
present in alkaline-earth atoms [23], and dual formulations of LGTs combined with
atomic constraints arising in Rydberg systems [30].

For both higher dimensions and non-abelian theories, it is conceivable that the
dynamical topological transitions discovered in this work persist. Moreover, it is
straightforward to apply the dynamical topological order parameter introduced
here to these situations and other models as well. It will be exciting to study this
possibility, for instance in QED in two spatial dimensions [32] and related condensed
matter models, arising in the context of topological insulators [238], in the future.
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The demonstrated equal-time formulation of QFT offers unique complementary
perspectives. It provides an equivalent, but yet unexplored description of thermal
field theory that requires further development. If successful, this approach might
provide an alternative picture for thermal phase transitions and critical phenomena.
With the directly experimentally accessible 1PI vertices, this possibility becomes
particularly appealing in the vicinity of a quantum critical point, which could
lead to new experimental signatures of the quantum critical region in terms of
renormalization effects.

Out of equilibrium, extracting the instantaneous effective action can provide
previously unavailable information of the physics emerging in the real-time dynam-
ics of quantum fields. To elevate this method from diagnostics to a theoretical tool
with predictive power, it is crucial to develop controlled approximation schemes.
Although this has not been achieved yet [239], the fact that it is possible to recover
perturbative kinetic descriptions gives hope that this endeavor is not in vain. A
starting point can be non-thermal fixed points [234], which simplify the dynamics
due to self-similarity. If possible, an approximate numerical solution of the evo-
lution of the instantaneous effective action, which is local in time and scales only
polynomially with increasing order of the employed correlation functions, could
even shed new light on the late-time dynamics of quantum fields and the eventual
thermalization [240].

Finally, we plan to apply the equal-time formulation also to LGTs. To this end, it
is necessary to extend the formalism from scalars to fermions [241], spins and gauge
fields [242]. Since the instantaneous effective action captures the same information
as the density matrix, it is in principle possible to study intriguing quantum effects
such as entanglement in real-time dynamics in terms of 1PI correlation functions.
Moreover, it is possible to translate unitary transformations, in particular those
corresponding to symmetries, to the correlators. Concerning gauge invariance,
this translation will yield a set of constraints among the correlators, similar to
Ward identities [50], which in turn may provide the means to test gauge invariance
experimentally. In this way, analyzing quantum simulators of LGTs with QFT
methods may facilitate the controlled quantum simulation of the non-equilibrium
dynamics of gauge theories.
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