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Zusammenfassung In dieser Arbeit wurde die Rekonstruktion von klimatischen Be-
dingungen und Paldotemperaturen mittels der Analyse von Sauerstoff (§'80) und Was-
serstoff (02H) aus Fliissigkeitseinschliissen von Speldothemen fiir zwei unterschiedli-
che klimatische Zonen (geméBigte Breiten und Tropen) untersucht. Zu diesem Zweck
wurde ein Fluidextraktions- und Messsystem aufgebaut, welches Cavity Ring- Down
Spektroskopie zur Messung verwendet. Ich konnte Memory - und Mengeneffekte aus-
schlieBen und eine Genauigkeit von 0.5 %o fiir 680 und 1.5 %o fiir 62H bei wiederholten
Messungen mit Wasservolumen > 0.2 ul erreichen. Die Analyse stabiler Wasserisotope
erlaubt die Bestimmung von Paldotemperaturen mit dem klassischen Karbonat Ther-
mometer, sowie mit der Anwendung der §?H/T - Beziehung mit einer Genauigkeit von
bis zu = 0.45 °C. Fiir den westlichen tropischen Atlantik konnte ich eine Abkiihlung von
~ 3°C wiihrend der Heinrich Stadiale (2 und 3) ermitteln. Uber die direkte Tempera-
turbestimmung hinaus, liefert die Analyse von Fluideinschliissen Informationen iiber
die Verfiigbarkeit von Karstwasser wihrend der Stalagmitenbildung. Die 6'¥0 und §H
Werte von zwei Speldothemenen aus Deutschland und Puerto Rico zeigen z.B. Stei-
gungen von +2.3 + 1.1 bzw. +3.7 £ 0.2, welche signifikant niedriger sind als die von
typischen meteorischen Wasserlinien (Steigung ~8). Damit zeigt sich ein klares Ver-
dunstungssignal in der stabilen Isotopenzusammensetzung der Fliissigkeitseinschliisse,
welches wahrscheinlich auf Verdunstungseffekte in der Hohle oder dem Epikarst hin-
deutet. Ich konnte zeigen, dass unter trockeneren Klimabedingungen die beobachteten
Verdunstungssignale verstirkt auftreten.

Abstract In this thesis the reconstruction of climatic conditions and paleotempera-
tures by the analysis of oxygen (61¥0) and hydrogen (62H) isotopes of fluid inclusions
in speleothems from two different climatic zones (mid - latitudes and tropics) was per-
formed. An extraction and processing system for fluid inclusion analysis with laser
spectroscopy was developed and characterized with respect to the memory or amount
effect. I could exclude disturbance effects and achieve a precision of 0.5 %o for 580 and
1.5 %o for §%H in replicated measurements with water volumes > 0.2 ul. The analysis of
stable water isotopes allows the determination of paleotemperatures using the classic
carbonate thermometer as well as the application of the §?H/T - relationship with a
precision down to 40.45°C. For the western tropical Atlantic I identified a cooling
during the Heinrich stadials (2 and 3) of ~3°C applying the classic carbonate oxygen
isotope thermometer. Beyond direct temperature determination, the analysis of fluid
inclusions provides information about karst water availability during stalagmite for-
mation. For instance, the §'%0 and §%H values of two speleothems from Germany and
Puerto Rico, show slopes of +2.3 + 1.1 and +3.7 + 0.2, respectively, that are signifi-
cantly lower compared to meteoric water lines (slope of ~8). This clear evaporation
signal in the related fluid inclusions probably indicates evaporation effects (cave or
epikarst), which are enhanced during drier climate conditions.
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1 | Introduction

1.1 Motivation

One central element of climate change is the impact on the Earth’s hydrological cycle.
The prediction of water availability is highly uncertain, but at the same time the water
demand continues to rise, leading to an increase in water stress! worldwide (see figure
1.1). Changes in average precipitation are much more difficult for climate models to
predict than temperature. While the projection of temperature changes and global
warming is generally predicted with a high degree of confidence using climate models,
the forecast of precipitation changes can only be determined with medium certainty
[IPCC, 2013]. It is certain that as the temperature rises the water - holding capacity
of the air increases, according to the Clausius- Clapeyron equation with generally 7 %
more water vapour in the atmosphere for every 1°C of temperature rise [Oltmans and
Hofmann, 1995]. However, corresponding precipitation is not evenly distributed across
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Figure 1.1: Aqueduct - Water Risk Atlas with the predicted water stress simulation
according to the business as usual scenario for 2040 [WRI, accessed March 19, 2020].

! Groundwater stress measures the ratio of total water withdrawals to the available renewable surface
and groundwater resources. In this context, water abstraction is defined as the use of water by
agriculture, livestock, households and industry. For the available renewable water resources, the
impact of dams or industry consuming water must be taken into account [WRI, accessed March
19, 2020].
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the planet. Some regions will likely experience an increase in extreme precipitation,
while in other, already arid regions, droughts will be more pronounced both spatially
and temporally [I[PCC, 2013]. In order to assess future changes in the climate sys-
tem, it is important to integrate palaco-data into the model-based projections and
thus contribute to the improvement of climate models. Thus, the key to predicting
future changes in precipitation is a well - founded knowledge and understanding of pa-
leo - rainfall variations in the past.

A well understood archive, which preserves information on rainfall is needed for the
reconstruction of paleo - precipitation. This work focusses on speleothems, which rep-
resent a potential high - resolution and continuous terrestrial archive besides tree rings,
lake sediments and pollen records. Stalagmites are the perfect archive for this task, as
they contain water - filled (fluid) inclusions, which are potentially unchanged aliquots
of the original drip water that was enclosed during the period of calcite growth and
consequently relics of past precipitation [Schwarcz et al., 1976; Van Breukelen et al.,
2008]. Therefore, they represent a direct record for paleo- precipitation that can be
found worldwide in regions with karstified carbonate bedrock (see figure 1.2) [Fairchild
and Baker, 2012]. Speleothems allow climatic reconstructions in the same time range as
ice cores, but are not restricted to polar regions, since they are formed under a variety
of hydroclimatic conditions, from extremely cold climates to very dry regions as long as
liquid water is available. The decay of uranium into a series of daughter isotopes is one

Figure 1.2: Global distribution of carbonate rocks. In karstified areas (blue) caves
could potentially form and thus also speleothems could be found [The University of
Auckland, accessed March 20, 2020].



1.2 OQutline of this thesis

of the main chronometers of palacoclimatology. The principle of 23°Th/?34U dating
is based on the observation that the 233U decay series in a speleothem sample return
from an initial state of imbalance to a secular equilibrium, which can be expressed as
a function of time using the decay constants of the radioactive isotopes [Richards and
Dorale, 2003]. As the 239Th/?34U ratio will change over time after the growth layer has
been deposit because the speleothem contains some uranium (?*4U decays via alpha
decay to 23°Th) from aqueous solution during growth, but not the insoluble element
thorium [Fairchild and Baker, 2012]. Due to the high precision of uranium - series dat-
ing, speleothems can be dated back up to 600000 years and offer the possibility to
retrieve information about climate change and the timing of regional hydrological re-
sponses to global events [Genty et al., 2002; Lachniet et al., 2009; Van Breukelen et al.,
2008]. Using the multi- proxy approach, which combines the analysis of highly resolved
carbon (6%3C qcite) and oxygen (5180 qcite) isotope data from speleothem calcite with
the additional analysis of various trace elements, climatic changes of the past can be
reconstructed [Fairchild et al., 2000; McDermott, 2004; Dreybrodt and Scholz, 2011].
By means of isotope analysis of the fluid inclusions, not only the 6180ﬂm-d value of
the paleo- drip water but also its §2H fluid composition can be reconstructed. This in
turn provides information about the origin of the water masses (using the deuterium
excess) and can help to better classify changes in the isotopic composition of the drip
water (possible evaporation) [Gat et al., 1994; Pfahl and Sodemann, 2014]. If the
formation conditions of the carbonate precipitation are known, i.e. whether the min-
eral was formed under equilibrium conditions, paleotemperatures can be reconstructed
by simultaneous measurement of the oxygen isotopes in the calcite and in the fluid
inclusions [Kim and O’Neil, 1997; Tremaine et al., 2011].

1.2 Outline of this thesis

This thesis focuses on tow main aspects, (i) to design, construct and calibrate the
fluid inclusion line, which uses absorption spectroscopy to measure the water stable
isotopes of fluid inclusions and (ii) to apply this new technique in different case studies.
For the first objective an extraction line was developed and further improved, which is
based on the principle of Affolter et al. [2014] and produces a continuous vapour water
background on which the aliquot of water released from the crushed speleothem is
measured. This setup allows the simultaneous measurement of 620 fluid and °H Fluid
isotopes by means of cavity ring- down spectroscopy, which has a comparable precision
to traditional mass spectrometry, but is much less expensive. In chapter 3, the setup
of the line, the calibration using independently measured in - house standards and the
newly developed water amount calibration method with glass capillaries is described.
This also includes an advanced evaluation software for the measurement of the stable
isotopes, which takes into account the unavoidable variation of the water vapour back-
ground (see section 3.4). Furthermore, the influence of possible disturbance effects on
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the actual measurement of the isotopic signal in fluid inclusions of speleothems was in-
vestigated, which include absorption on freshly crushed calcite surfaces and the amount
or memory effect (see section 3.7). Inter-laboratory comparison measurements were
performed to test and verify the accuracy and reliability of the stable isotope analysis.

For the second objective this new technique was applied to three climatological different
speleothem case studies: (i) Stam 4 from the Closani Cave (Romania), (ii) Bu4 from
Bunker Cave (Germany), (iii) LA-1 from Cueva Larga (Puerto Rico) and comprises
the second part of this thesis. The climate of central Europe is affected for example by
the variability of the North Atlantic Oscillation (NAO) [Hurrell, 1995; Wanner et al.,
2001], whereas the precipitation for tropical regions mainly depends on the position
of the Intertropical Convergence Zone (ITCZ) [Lachniet et al., 2009; Strikis et al., 2011].

The selected stalagmites cover three very different time scales, from decadal varia-
tions to multicentury and millennial timescale. Since 1979, Europe sees a more pro-
nounced warming trend [Bohm et al., 2010]. Therefore, I selected the fast growing
stalagmite Stam 4 from Clogani Cave (Romania), which covers the 20th century be-
tween 1911-2010 to test if the application of the §2H/T relationship on stable isotope
measurements of fluid inclusions is feasible for temperature reconstructions. I can di-
rectly compare my findings with local mean annual air temperature records and check
if this method provides reliable temperatures for the temperature increase for parts of
the late Holocene (1911-2008) (see chapter 4). The second stalagmite, from a con-
tinental climatic environment, was collected from the Bunker Cave (Germany) and
covers parts of the Holocene (present - 8.6 ka BP), whose climatic variability of winter
precipitation may be stored in the fluid inclusions. The stalagmite Bu4 has already
been intensively investigated and it has been shown that drier and more humid periods
can be identified in the stable isotopes of the carbonate [Fohlmeister et al., 2012]. In
this study, I analysed to what extent the stable isotopes of the fluid inclusions and
their abundance can be used to predict changing precipitation conditions (see chapter
5). As a final case study I have chosen a tropical stalagmite covering parts of the Last
Glacial. The stable isotope analysis of the stalagmite (LA-1) carbonate suggests rapid
climatic fluctuations on Puerto Rico from cold (stadial) to warmer (interstadial) con-
ditions and strong variations in precipitation. Since it is still unclear how pronounced
this climatic variations were in the tropics, the water stable isotope signal stored in the
fluid inclusions was applied to reconstruct precipitation changes (drier or wetter peri-
ods) and determine the strength of the possible cooling trend during Heinrich events
(see chapter 6).



2 | Theoretical background

This chapter focuses on the processes, which influence the composition of stable iso-
topes (680 and 6%H) in precipitation and accordingly in drip water, which is the
signal that is stored in fluid inclusions of speleothems. The summary given here is
mainly based on the work of Clark and Fritz [1997] and Mook and Rozanski [2000].
Furthermore, it discusses the formation and growth of stalagmites and how fluid inclu-
sions are formed, using the work of McDermott [2004], Lachniet [2009] and Fairchild
and Baker [2012] as a basis. Most classic studies on speleothems focus on the stable
isotopes of calcite (5180 and §'3C) and trace elements to reconstruct climatic condi-
tions and variations during speleothem growth Fairchild and Baker [2012]. This thesis,
however, aims on the fractionation between carbonate and water as an application of
the paleo-thermometer. The versatility of the interpretation of the stable water iso-
topes is demonstrated by three very different case studies, each representing an unique
speleothem record influenced by different climatic backgrounds on different time scales.
In addition, the focus of this work is on the methodology and measurement techniques
of stable water isotopes by means of laser absorption spectroscopy, more precisely cav-
ity ring - down spectroscopy (CRDS). Here a short overview of the basics of technology
and the current state of research is given.

2.1 Stable isotopes

Isotopes are elements that contain the same number of electrons and protons, but differ
in the number of neutrons. This leads to a difference in mass which causes different
physical properties, the so- called isotope effect, and makes it possible to use isotopes as
tracers of environmental processes. They can be categorized in stable and radioactive
isotopes. While radioactive isotopes are mainly used for dating as their concentration
diminishes with time, the composition of stable isotopes provides information about
the fractionation conditions during proxy formation.

2.1.1 Isotope notation

For water there are two stable isotopes for hydrogen ('H and 2H) and three stable
isotopes for oxygen (160, 170 and '80). The isotope 2H is called Deuterium and often
given the symbol D. For light elements one isotope is generally predominant, while the
others are only found in trace amounts [Hoefs, 2009]. In case of water molecules, the
two isotopes that are most abundant are 'H and '°O and the three rare stable isotopes
are 2H, 70 and O (natural abundance see table 2.1).
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hydrogen oxygen
isotope mole fraction isotope mole fraction
'H 0.99985 160 0.99757
’H 0.00015 170 0.00038
180 0.00205

Table 2.1: Average terrestrial abundance of the stable isotopes of hydrogen and oxy-
gen [Coplen et al., 2000].

When these isotopes form molecules, the compounds are called isotopologues. Numer-
ous species can exist with the most common isotopologues in decreasing abundance:
LHYHYO, 'HYH®O and 'H2H'O [Mook and Rozanski, 2000]. Isotopic concentra-
tions or abundance ratios are often very small and, therefore, not given in absolute
values, but related to those of a specially selected standard in the form of deviations,
the so-called § — notation. Thus, for the oxygen isotopic composition of a sample, it

gives [Clark and Fritz, 1997]:
180
sample

< 180 )
16
0 standard

The abundance of stable isotopes is generally expressed in %o (per mil) and defines the
relative deviation from an internationally accepted standard, which is Vienna Standard
Mean Ocean Water (VSMOW) for the hydrogen and oxygen isotope ratios of water
[Coplen, 1994]. In the calcite system the internationally accepted standard is Vienna
PeeDee Belemnite (VPDB) [Coplen, 1994]. Thereby, the relationship for the §'%0
value of a sample between the VSMOW and VPDB scales can be expressed as [Kim
et al., 2015]:

S0 (in %o) = — 11 -1000 (2.1)

68 0vsmow = 1.03092 - 680vppp + 30.92 (%) (2.2)

2.1.2 Isotope fractionation

Isotopes have the same number of electrons, but can be distinguished by their physico-
chemical properties due to their different mass. The difference in mass leads to two
properties in which the isotopes differ from one another:

e Physicochemical fractionation: Different bond strengths for reaction compounds
varying only by the isotopes of the same element have an effect on the cor-
responding reaction rates. The heavier the isotope, the lower the zero- point
energy (with few exceptions for specific isotopologues'), which represents the

'For carbon dioxide (CO2) the lighter isotopologue *C'%0'0O (atomic mass constant u=45) has a
lower zero- point energy than the heavier isotopologue *C*®*0'®0 (atomic mass constant u=46)
[Prokhorov et al., 2019].
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minimum potential energy of a molecular bond in a vibrating molecule. This
difference in binding energies implies that heavier isotopes are statistically more
likely to remain in the bound state than lighter isotopes [Mook and Rozanski,
2000]. For the stable water isotopologues this implies that the lighter isotopo-
logues evaporate more easily and the heavier ones are more likely to remain in
the liquid phase.

o Diffusive fractionation: Fractionation arises from the different diffusive velocities
between isotopes [Mook and Rozanski, 2000]. Thereby lighter and therefore faster
molecules have a higher diffusion velocity and a higher frequency to collide with
other molecules, which can be one of the drivers for chemical reactions.

The isotope separation during phase transitions is much stronger for lighter elements,
such as hydrogen, where the difference in mass between two isotopes relative to the
mass of the element is larger. However, all these isotope effects decrease with increasing
temperature, as the energy of the vibrating molecules becomes independent of mass
and binding energy [Mook and Rozanski, 2000].

Isotope fractionation leads to a partial separation of isotopic species during physical
or chemical processes, which results in a disproportional concentration of one isotope
over the other on one side of the reaction [Clark and Fritz, 1997]. The fractionation
factor o describes the fractionation from state A to state B:

R
apa = R—j (2.3)

where R is the isotope ratio of the rare isotope over the abundant isotopes. Since
isotope effects are small and resulting in a1, the fractionation is referred to as
deviation of « from 1 [Mook and Rozanski, 2000], called e:
Rp
e=aga—1=—7-1 2.4
/ R (2.4)
here € >0 refers to an enrichment and € <0 to a depletion of the rare isotope. The
fractionation of the isotopes can take place under equilibrium conditions, under non -
equilibrium conditions (kinetic) or under disequilibrium conditions, which are ex-
plained below [Clark and Fritz, 1997]:

e Equilibrium fractionation: Fractionation is generally regarded as equilibrium
fractionation when A and B are in chemical equilibrium. The reaction between
A and B is completely reversible, and the effective mass transport is identical
in both directions. Equilibrium conditions exist in a closed system, for example
for water and water vapour in a closed volume, with the lighter isotope enriched
in the vapour phase. Here the equilibrium fractionation factor « is temperature
dependent, which is an important property for paleoclimatic studies with stable
isotopes.
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¢ Kinetic fractionation: Kinetic fractionation is associated with incomplete and
unidirectional processes, which can be caused by a sudden change in temperature
or the additional removal of the reactant. This means that the reaction from A
to B is irreversible, the effective mass transport is permanent from A to B and
the mass is immediately removed from the system. In a purely kinetic process
no mass transport from B to A can take place. An example is the freezing of
water under a varying temperature.

e Disequilibrium fraction: This fraction is similar to kinetic fractionation, but
mass transfer between A and B can occur in both directions, with one direction
dominating. An example is the evaporation of water in an open volume. Even
under evaporative conditions it is almost impossible to prevent a flux into the
water reservoir.

2.1.3 Oxygen and hydrogen in the hydrological cycle

Isotopic fractionation of water molecules occurs during different processes in the hy-
drological cycle. The isotopic composition of the precipitation depends on relevant
meteorological parameters and thus serves as an important tool in palaeoclimatology.
It was found that in general there is a strong correlation between the temperature of
surface air and the stable isotope ratios of oxygen or hydrogen in precipitation at loca-
tions for mid and high latitudes [Dansgaard, 1964; Rozanski et al., 1992]. However, the
isotopic composition of precipitation is not always only temperature dependent, but
also the product of significant changes in atmospheric circulation patterns [Sonntag
et al., 1979; Leng, 2006]. These different factors, which have an influence on the 680
and §%H composition of the precipitation, are discussed in the following.

Isotopic composition of precipitation

Different processes influence and control the isotopic compositions of atmospheric wa-
ter vapour and precipitation in the troposphere (see figure 2.1). When water evaporates
from the ocean surface, it becomes depleted in 2H and 0 because isotopically lighter
isotopologues (e.g. 'H'H'60) evaporate more easily than the heavier ones [Craig and
Gordon, 1965]. The overall isotopic composition of ocean water can significant vary
between — 7 up to +2 %0 for 680, for example, due to local evaporation in tropical
latitudes or in zones with freshwater discharge [Rohling, 2013]. Thereby the isotopic
composition of the vapour is determined by the isotopic composition of the ocean sur-
face, sea-surface temperature, relative humidity of the atmosphere and wind regime
[Leng, 2006]. After evaporation, the water vapour is transported both vertically and
horizontally until saturation conditions are reached and cloud formation begins. Dur-
ing the vertical transport, the isotopic composition of the water vapour in the cloud
can be modified, e.g. by mixing with additional and isotopically different water vapour.
When the rising vapour reaches the dew point, it condenses, which can be achieved
by an orographic upward movement or a frontal cooling. During the movement of an
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Figure 2.1: Effects controlling the isotopic composition of atmospheric water vapour
and precipitation [Leng, 2006].

air parcel towards the poles, the residual water vapour becomes progressively lighter
with each successive precipitation event, and consequently the precipitation of the
residual vapour becomes lighter, which is the so- called rainout effect (see figure A.1).
The isotopic composition of rainfall collected at the ground is close to isotopic equi-
librium, because raindrops leaving the cloud continuously re-equilibrate isotopically
with surrounding moisture during falling [Leng, 2006]. So the progressive condensa-
tion of water vapour on a global scale can be represented as a continuous Rayleigh
distillation process (see figure A.3), because the process of rainout distils the heavy
isotopes from the vapour [Gat, 1996]. Dansgaard [1964] described a number of em-
pirical relationships between observed isotopic composition of monthly precipitation
and environmental parameters (temperature, latitude and altitude) using the Rayleigh
model?>. However, the isotopic composition of the annual precipitation at any point

2The isotope fractionation process can be described using the Rayleigh equation, which is a exponen-
tial relation that describes the stable isotopic evolution of a homogeneous reservoir from which a
phase is continuously extracted [Rayleigh, 1896]. The state in a closed system undergoing isotopic
fractionation can be described as: R = Ro - f~ !, where Ry is the initial isotope ratio, R is the
product of the reaction process, « is the fractionation factor and f is the fraction of the reaming
substrate.
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on the Earth’s surface is not only determined by the continuous rainout towards the
poles, but also depends on many other effects, which are explained in detail below.

On a global scale, a differentiation can be made between the temperature, latitude
and continental effects, and on a local scale between the altitude, seasonal and amount
effects.

The temperature effect is the observed positive correlation between the isotopic com-
position of precipitation and the local air temperature (with an annual mean for mid
to high latitudes of d§'80/dT =0.69 %/T) [Dansgaard, 1964]. In fact, it is the tem-
perature in the cloud that controls the condensation and thus the isotopic fractiona-
tion. Under typical atmospheric conditions, the saturation water vapour pressure in
the cloud depends exponentially on the temperature (Clausius—Clapeyron relation).
More precisely, there is a temperature dependent isotope exchange between conden-
sate and water vapour at the cloud base [Gat, 1996]. The cloud base temperature is
closely related to the surface temperature and falling raindrops equilibrate with the
surrounding water vapour, whereby the degree of isotopic re - equilibration depends on
raindrop size, relative humidity and cloud height [Leng, 2006]. However, the §'80-T
relationship is only an approximation and strongly variable, depending on the location
with gradients between 0.17 %q/T for marine stations up to 0.90 %0/ T for the Antarc-
tica peninsula [Rozanski et al., 1992; Mook and Rozanski, 2000).

The latitude effect is strongly related to the §'80 - T relationship, hence more depleted
isotope values are expected for precipitation at higher latitudes (for 6180 — 0.6 %o per
degree of latitude). For polar regions, this is due to the low temperatures and the fact
that they are at the end of the Rayleigh rainout effect resulting in a steeper 6'80/T
gradient (of about — 2% per degree of latitude). For the tropics, the recycling of
moisture due to evapotranspiration in tropical forest can vary these gradients [Salati
et al., 1979].

The continental effect describes the decrease of 680 and §%H values in precipitation
with distance from the ocean [Dansgaard, 1964; Clark and Fritz, 1997]. As an air mass
moves across a continent, the land mass causes a progressive cooling and rainout of
the air mass. The isotope signal of precipitation can be influenced by recycling of wa-
ter over continents by evapotranspiration, the so-called continental recycling [Koster
et al., 1993; Bowen et al., 2019]. In the tropics, moisture recycling is a dominant
effect and leads to a lower slope of the §'80/distance gradient along the advection
path. Plants may also lead to a re-introduction of moisture into the atmosphere, but
no isotopic fractionation occurs. However, increased d-values (deuterium excess) of
precipitation indicate evaporation of a terrestrial moisture source [Salati et al., 1979;
Gat and Matsui, 1991].

The amount effect is relevant for coastal areas and islands in tropical regions, where
a seasonal variation of temperature is minimal and deep vertical convection is com-
mon. It is associated with strongly depleted 680 and §2H values for increased rainfall
amounts [Dansgaard, 1964]. The more it rains, the more the remaining water vapour
is depleted of heavy isotopes, and precipitation becomes isotopically lighter. However,
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the exact physical context for these observations remains unclear and various theo-
retical approaches, such as cloud height or precipitation types, are currently under
investigation to explain the amount effect in detail. In more arid regions, the amount
effect refers to a negative correlation between local monthly precipitation amounts and
precipitation isotope ratios. The evaporation during rainfall leads to isotopic values,
which are shifted away from the GMWL towards meteoric water lines with an evapo-
ration slope less than 8 [Clark and Fritz, 1997].

The altitude effect is associated with an increased depletion for the heavier isotopes of
precipitation with altitude, since any kind of relief forces the air mass to rise [Clark
and Fritz, 1997]. Decreasing temperatures with increasing altitude in mountainous
regions usually lead to increased condensation, as the vapour air mass expands during
rising due to adiabatic cooling and thus causes rainout [Siegenthaler and Oeschger,
1980]. The progressive Rayleigh distillation produces orographic precipitation. All
these effects influence the isotopic composition of the precipitation and thus produce
a unique fingerprint of rainfall on a global scale (see figure A.2).

Global meteoric water line (GMWL) and deuterium excess

Considering the different effects on the isotopic composition of the precipitation, it
is notable that a global correlation between §'80 and 62H values was found in fresh
water. Craig [1961] and Dansgaard [1964] stated the relation

62H ~ 8- 60 + 10%o (2.5)

which is named the Global Meteoric Water Line (GMWL), where the term meteoric
refers to meteorological and has nothing to do with fiery objects from space [Clark and
Fritz, 1997]. Both, oxygen and hydrogen are influenced by the same isotopic effects
and are linearly correlated with a slope of ~8, which results from the ratio of the
equilibrium fractionation factors for 2H and '80. If the water evaporates at a rela-
tive humidity below saturation, condensation no longer takes place under equilibrium
conditions, resulting in slopes of less than 8 [Gat, 1996]. The evaporation of water
leads to an enrichment of heavier isotopes in the residual water (evaporative loss see
figure 2.2), which in turn depends on the humidity of the ambient air and can reach
a slope of about 4 under very dry conditions (relative humidity h = 0.25) [Gat, 1971].
The isotopic composition of §'%0 and §2H in precipitation is generally predictable at
the global scale, with water containing highly depleted §'*0 and §?H values associ-
ated with colder regions and vice versa (see figure 2.2). This key observation of Craig
[1961] is the basis of many palaeoclimatology studies. Rozanski et al. [1993] observed
significant deviations from this global relationship at the local scale, which is mainly
explained by variable climatic conditions and geographical parameters, resulting in
specific local MWL.

11
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A proxy suitable to describe the hydrological cycle of moisture is the deuterium excess,
which is defined as d = §°H — 8 - 80 [Dansgaard, 1964]. The deuterium excess
is a consequence of the slower movement of the 'H'H'80 (H*O) molecule during
diffusion, which leads to a relative enrichment of the 'H2H'90O (HDO) molecule in
the water vapour. During evaporation, non - equilibrium fractionation is intrinsically
dominant since the diffusive transport into the free atmosphere above is caused by
a strong gradient of relative humidity above the water surface and by winds that
transport the evaporate away from the water surface [Pfahl and Sodemann, 2014].
The global average deuterium excess in precipitation is 10 %o [Craig, 1961}, reflecting
the fact that the ocean is generally out of equilibrium with the atmosphere and the
mean relative humidity of air at the evaporating ocean surface is <100 %. The value
of deuterium excess (d-value) is a proxy for the physical conditions at the oceanic
moisture source, mainly relative humidity (hs) and sea surface temperature (SST). If
the evaporation of the ocean is the only moisture source for the atmospheric boundary
layer, then d in the evaporation flux increases with decreasing hg and increasing SST
[Merlivat and Jouzel, 1979]. It is even possible to see well defined climatic changes with
deuterium profiles from Greenland and Antarctic ice cores, if the deuterium signature
of the evaporation conditions is preserved at least partially along the trajectory of the
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Figure 2.2: Schematic plot of §'%0 versus §°H showing the different effects which
can influence the Global Meteoric Water Line. Precipitation from colder regions and
higher latitudes is more likely to have a lower isotopic composition than precipitation
from warmer regions. The slope of the MWL can be influenced by evaporation and
is characteristic for local climatic conditions. The deuterium excess in precipitation
increases in response to enhanced moisture recycling, whereas the deuterium excess
is reduced when water is lost through enhanced evaporation [Froehlich et al., 2002].
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advected vapour until precipitation [Jouzel et al., 2007]. There are other processes
that influence the deuterium excess in precipitation, such as the re-evaporation of
falling raindrops and moisture exchange with the ambient air in the subcloud layer,
which leads to lower d-values [Guan et al., 2013]. Also the type of weather system
producing precipitation can vary the d - values, because the moisture source area is very
different for frontal or cyclonic precipitation than for purely convective or orographic
precipitation [Aemisegger et al., 2014; Scholl and Murphy, 2014]. In tropical regions,
deuterium excess may also be an indicator of continental moisture recycling, which
is a well - known phenomenon for the Amazon basin, where large amounts of recycled
moisture contribute to the air masses transported by the trade winds [Salati et al.,
1979; Gat and Matsui, 1991; Risi et al., 2013]. In this context, increased deuterium
values during the dry season indicate an additional contribution to local precipitation
due to the evapotranspiration of the forest [Ampuero et al., 2020].

2.2 Speleothems as paleoclimatic archive

Speleothems are formed by precipitation of carbonate - saturated seepage water orig-
inating from meteoric water. They provide continental archives in caves where the
climate signal can be conserved very well, as they are protected by their location from
erosion by chemico - physical processes occurring at the surface [Fairchild and Baker,
2012]. Stalagmites can be dated absolutely and precisely, e.g. with the 23Th /24U
method [Edwards et al., 1987; Scholz and Hoffmann, 2008; Cheng et al., 2013] or in
some cases with layer counting [Shen et al., 2013].

2.2.1 Speleothem evolution and growth

Moore [1952] defined speleothems as secondary cave deposit of calcium carbonate
(CaCOg), which consist of the minerals calcite and/or aragonite. The origin of the
precipitated mineral lies above the cave within the karst zone or the carbonate bedrock
(typically limestone (CaCOg) and/or dolomite (CaMg(CO3)2)) where carbonate is dis-
solved by the percolating water [Fairchild and Baker, 2012]. Speleothem growth (see
figure 2.3) starts when a rainfall event occurs in a region with sufficient COy supply
and which is characterized by a soluble and porous rock (epikarst). The increased
CO4 concentration in the percolation water compared to the atmosphere above (400 -
4000 ppm) is a consequence of the COg rich soil zone (up to 100000 ppm) due to
root respiration and microbial decomposition. The percolating water dissolves gaseous
COg until it is in equilibrium with soil air pCO2 and produces carbonic acid (HoCOs3),
which is a weak acid and progressively dissociates into HCOj3 (bicarbonate) and CO%f
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Figure 2.3: Illustration of natural cave system in a karst environment with the disso-
lution and precipitation regime and the corresponding chemical reactions (illustration
from Arps [2017] after Fairchild and Baker [2012]).

(carbonate ions) [Fairchild and Baker, 2012]:

co®) = col (2.6)

O 4 H,0 = H,CO; (2.7)

H2CO3 + HyO = H30T + HCO3 (2.8)

HCO3 + H20 = H301 + CO3~ (2.9)

The concentration of total dissolved inorganic carbon (DIC) depends on the pH value
of the solution, with HCOj3 being the dominant species at nearly neutral pH values.

The resulting acid solution percolates through the soil zone to the epikarst where it

is able to dissolve the surrounding carbonate (CaCOés)) host rock [Dreybrodt, 1980]
following the chemical reaction:

CaCOY) + HCO3 + Hz0T = Ca?t (9 4 005~ Y £ HCO; + H;0T  (2.10)
= Ca’T(HCO3 )2 + Hy0 (2.11)

The solubility of the calcium carbonate depends on the pCOs and the temperature
[McDermott, 2004]. With the entry of the carbonate saturated water into the cave, the
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pCO2 drops suddenly, because a sufficiently ventilated cave has a much lower partial
pressure as the soil. The drip water entering the cave atmosphere begins to degas the
dissolved COs in the solution and subsequently becomes supersaturated with respect
to Ca?*, resulting in a shift of the solution equilibrium towards calcite precipitation
(CaCOg3) [Fairchild and Baker, 2012], which can be described as:

Ca?T(HCO3 )2 = CaCO3 + Hy0 + CO; (2.12)

Over the time the accumulation of these precipitates forms speleothems (see figure
2.3), whereby the growth rate (typically varies from 0.01 to 1 mm/year) of stalagmites
depends on the following factors: (i) drip rate, (ii) degree of supersaturation of drip
water with respect to Ca2*, (iii) gradient between cave air and drip water pCOs and
(iv) cave temperature [Dreybrodt, 1980, 2012]. Here an increase in drip rate leads to
increased calcite precipitation if the same super - saturation is given. If the drip rate
is too high and the drop tends to flow continuously, the time for degassing is not suf-
ficient so the calcite precipitation will stop, called hiatus [Miihlinghaus et al., 2007].
A hiatus can also be caused by drying out of the stalagmite surface. However, the
growth of the stalagmites is mainly dependent on the supersaturation of drip water
with respect to calcium carbonate, which is related to the CO5 content of the soil, the
subsequent dissolution of the host rock, the cave air temperature, the gradient between
cave air and drip water pCOq [Baker et al., 2016]. These parameters are linked to the
outside climate and thus the precipitation of cave carbonate minerals reflects climate
variations.

The most common speleothems are stalagmites and stalactites [Frisia, 2019], with
stalactites hanging from the ceiling and growing to the cave floor and stalagmites
growing from the cave floor upwards. Stalagmites are usually fed by water dripping
from an overhead stalactite. Further forms of cave deposit are flowstone, which do not
show a clear age structure, or tubular soda straws, which are characterized by a central
hollow tube and a translucent wall structure. Commonly found in caves are so- called
pools, which can also contain calcite deposits, these are called pool spars and form at
or under the water surface. Speleothems can be found where carbonate rock is present
although growth may be slow in regions with dry or frozen environments, but they are
typically found worldwide and record the regional climate of the past.

2.2.2 Fluid inclusions

Stalagmites usually contain microscopically small water - filled cavities called fluid in-
clusions (see figure 2.4), which are filled with cave water from the time of stalagmite
growth [Schwarcz et al., 1976; Harmon et al., 1979]. They are formed by the incomplete
growth process of neighbouring crystallites, whereby a micro- cavity is created which
is filled with the remains of the former calcite - precipitating drip water [Kendall and
Broughton, 1978]. Thus, they are of primary origin and their age corresponds to that
of the surrounding host calcite [Fairchild and Baker, 2012]. They generally present an
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Figure 2.4: Thin sections with clearly visible fluid inclusion, adapted from Meckler
et al. [2015]. The picture shows a columnar calcite fabric (b) with an abundance
of large single-phase fluid inclusions of elongated shape (¢) and very small fluid
inclusions (d). Air-filled inclusions appear darker than water - filled inclusions. The
single images show the typical inclusion shapes (f) and a growth hiatus, which shows
evidence of a slight calcite dissolution (black arrows in e).

elongated shape (or sometimes irregular shape) and are typically arranged perpendic-
ular to the growth layers and parallel to the crystallites boundaries [Schwarcz et al.,
1976]. The length of the elongated inclusions (see (f) at figure 2.4) can vary from 1 to
100 micrometers (sometimes up to 1 cm), as well as the water content can vary between
0.005 to 5.0 ul per g calcite [Kendall and Broughton, 1978]. Within a stalagmite, the
distribution is inhomogeneous and can vary between layers with many water - filled
inclusions (milky whitish calcite) and inclusion free layers (transparent calcite) [Genty
et al., 2002]. The reasons for the variable water content within a stalagmite and the
presence of water - filled inclusions is due to crystal growth. Boch et al. [2011] found,
that transparent calcite were interpreted as having developed during times of increased
water excess and high drip rates, whereas the milky whitish calcite is formed by rapid
crystal growth from highly oversaturated solutions [Frisia et al., 2000]. Therefore,
fabrics of calcite precipitates are controlled by host rock parameters and in particular
by the amount of surface precipitation and temperature [Frisia and Borsato, 2010;
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2.2 Speleothems as paleoclimatic archive

Frisia, 2014]. Presumably a strongly changing water content is an indirect indicator
for changing climatic conditions [Vogel et al., 2013].

It has been established that the drip water isotopic composition generally represents
the weighted mean of local precipitation [Yonge et al., 1985; Genty et al., 2014], but
can deviate from rainwater due to evaporation in the epikarst or cave under dry cli-
matic conditions [Bar-Matthews et al., 1996; Denniston et al., 1999]. Cave drip water
is incorporated into the calcite at the time of its precipitation and can therefore be
stratigraphically related to the time of dripping, so fluid inclusions represent past drip
water [Schwarcz et al., 1976; McDermott et al., 2006]. Therefore, measurements of the
stable water isotopes in fluid inclusions provide a direct proxy of moisture history of
past precipitation above the cave [Van Breukelen et al., 2008; Griffiths et al., 2010]
and/or paleotemperature using the relationship between 60 fluid and 80 calcite frac-
tionation for calcite precipitation at equilibrium (more details see section 2.2.3) [Kim
and O’Neil, 1997; Tremaine et al., 2011]. In order to interpret the fluid inclusion
record, they must preserve the isotopic signal of the drip water. However, there are
processes, which can alter the isotopic signal recorded in the fluid inclusions after
enclosure, which are discussed in the following:

o Schwarcz et al. [1976] noticed, that a post - depostional alteration of fluid inclu-
sions may occur through oxygen isotope exchange between trapped water and
surrounding CaCOgs. However, it is questionable to what extent this isotopic
exchange actually plays a role. On the one hand, it is a slow diffusive process,
which is negligible on Quaternary time scales at Earth surface temperatures [Mc-
Dermott et al., 2006]. On the other hand, the oxygen reservoir of the carbonate
is much larger than that of the water inclusions. Nevertheless, a possible oxy-
gen exchange between 6180ﬂm-d and 6'80,q1cite Would be recognizable, because
it would affect the 5180 - 62H relationship of the fluid inclusions and accordingly
lead to values located away from the GMWL.

o Another effect that may influence the isotopic compositions of inclusion - hosted
water is disequilibrium fraction during dissolution or recrystallization after depo-
sition at the water - calcite interface. Additionally, this subsequent modification
would alter the stable isotope and trace element compositions of the carbonate
[Frisia and Borsato, 2010; McDermott et al., 2006]. [Frisia, 1996] investigated
the recrystallization in stalagmites in detail by optical microscopy and defined
the evolution of the main fabric types. The columnar structure of calcite crystals
appears to be primary, without evidence of dissolution or recrystallisation after
deposition [Kendall and Broughton, 1978].

e Another possible alteration of the isotopic composition of fluid inclusions com-
pared to the original drip water is the evaporation of the water before the voids
are closed, which depends on the relative humidity in the cave and the cave ven-
tilation. This evaporation would influence 6180 fluid as well as §2H fluida and lead
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to values on a waterline with a slope significantly lower than 8 [Gat et al., 1994].

o To what extent PCP (Prior Calcite Precipitation) changes 5180ﬂm-d value is
not yet known in detail due to the significantly higher abundance of oxygen
atoms in the water solvent than in the dissolved carbonate. However, PCP is a
clear indication of non - equilibrium fractionation during carbonate precipitation,
which may bias the reconstructed paleotemperatures [Riechelmann et al., 2013].

2.2.3 The 60 qcite signal

Stable isotope data records (6'®Ocqieite and d'3Ceqieize) from speleothem calcite are
often used as paleoclimatic proxies [Duplessy et al., 1970; Bar-Matthews et al., 1999;
Wang et al., 2001; Fairchild et al., 2006a; Lachniet, 2009]. The detection of isotope sig-
nals in calcite depends on the isotopic composition of the oxygen and carbon sources,
their modification on the way to the cave (see figure 2.5) and fractionation during cal-
cite precipitation [Lachniet et al., 2009]. Therefore, the original climate signal can be
altered by the development in the percolating water and the conditions at the dissolu-
tion of the calcite and furthermore at the time of deposition. Accordingly, measured
signals in the stalagmite are diminished, attenuated, or even overprinted progressively
through these factors, e.g. the seasonal variability of isotopic composition in precip-
itation is smoothed in the soil reservoir [Fairchild and Baker, 2012]. Here I will be
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Figure 2.5: The encoded proxy parameters in a speleothem are the result of various
processes that change and smooth the climate signal. Information about the origi-
nal conditions can be reconstructed by reversing the coding process, which is called
transfer function [Fairchild and Baker, 2012].
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2.2 Speleothems as paleoclimatic archive

focusing on oxygen, as it is essential for calcite precipitation and thus for the ap-
plication of the classical carbonate thermometer. The role of carbon will be briefly
explained later (see section 2.2.4).

The complexity of the interpretation of the §'¥O.qcite signal depends on external fac-
tors outside the cave, which control the isotopic composition of the rainwater (see
section 2.1.3). While percolating into the soil, the drip water 80 signal is typically
modified by mixing of meteoric water of several months and the recycling of seep-
age water by evapotranspiration. A minor effect on the oxygen signal of the water is
caused by the dissolution of old carbonate in the epikarst/host rock and through prior
calcite precipitation (PCP) [McDermott, 2004; Lachniet, 2009]. For the 580 qcite sig-
nal, the effect of carbonate dissolution is only relevant if the water percolates through
the soil very fast. If the solution remains in the soil for more than several days, the
residence time is long enough to regain the isotopic equilibrium after carbonate disso-
lution [Dreybrodt and Scholz, 2011]. As the drip water enters the cave, dissolved COq
degases and causes calcite precipitation, which is controlled by cave properties such
as temperature, relative humidity or partial pressure of COs. The moment of CO9
outgassing can occur even before the actual stalagmite is formed, and early calcite
precipitation, known as PCP, can appear in the epikarst or at the drip point.

The classic carbonate thermometer

Isotope thermometry has become well established since the classic paper of Urey [1948]
on the thermodynamic properties of isotopic substances, because the oxygen isotopic
fractionation between water and calcite during calcite precipitation is temperature de-
pendent [McCrea, 1950; Epstein et al., 1953]. In this process, fractionation depends
fundamentally on difference in mass with the heavy isotope preferably being incorpo-
rated into the calcite [Dreybrodt and Scholz, 2011], but becomes insignificant at higher
temperatures. Theoretical studies show that the fractionation factor «(calcite - water)
for isotope exchange between minerals and water on a logarithmic scale is a linear
function of 1/T? (see figure 2.6), where T is the temperature at which the carbon-
ate/mineral is precipitated and can be expressed as [Bottinga and Javoy, 1973]:

1000 - In(a) = A(10%/T?) + B(10*/T) + C (2.13)

For calcite precipitation under equilibrium conditions many equations have been devel-
oped describing the fractionation between HoO and CaCOg3 with different parametriza-
tion based on theoretical calculations [Schauble et al., 2006; Chacko and Deines, 2008],
experimental determinations in the laboratory [Kim and O’Neil, 1997; Dietzel et al.,
2009; Hansen et al., 2019] or empirical/semi-empirical calibrations [Coplen, 2007;
Tremaine et al., 2011; Johnston et al., 2013].

Paleotemperatures can be calculated if mineral formation conditions similar to the
parametrization reference are present. Depending on the selected parametrization,
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Figure 2.6: The temperature dependence for the oxygen isotope fractionation between
water and calcite, according to Fairchild and Baker [2012]. Different parametrization
based on theoretical calculations, experimental work and a selection of field data are
compared. It should be noted here that this parametrization is only valid for low
temperatures (0-40°C).

the calculated temperatures differ by an offset, for example Kim and O’Neil [1997]
proposed for synthetic carbonates produced in the laboratory at low temperatures the
following expression: 1000-In(a) = 18.03-(103/T)—32.42. Tremaine et al. [2011] found
580 qicite values in in-situ cave calibrations that were systematically too high for lab-
oratory based predictions. In this study, the authors found an empirical relationship
for cave specific water —calcite oxygen isotope fractionation over a realistic tempera-
ture range and for different cave environments as 1000 - In(a) = 16.1 - (103/T) — 24.6
[Tremaine et al., 2011]. The study of active growing speleothems at different latitudes
and altitudes worldwide after Johnston et al. [2013] gives the following parametriza-
tion: 1000 -In(a) = 17.66 - (103/T) — 30.16. The selection of the parametrization must
be made individually for each cave and is preferably checked with recently precipi-
tated calcite. Most paleotemperature equations are based on calcite, although it is
also possible that the deposit consists of aragonite, which would lead to a tempera-
ture - independent offset from the calcite value [Grossman et al., 1986].

In order to interpret speleothem isotopic records, it is crucial to evaluate whether
the calcite was deposited in nominal isotopic equilibrium. Provided that sufficient
time is available for the exchange of isotopes, equilibrium conditions are likely to oc-
cur. Whether a stalagmite has grown in isotopic equilibrium can be investigated by
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2.2 Speleothems as paleoclimatic archive

analysing 08O g1cite and '3C.qieite along a laminae, the so - called Hendy test [Hendy,
1971]. Constant isotope values along a growth layer are an indicator of equilibrium
fractionation, while the simultaneous increase of 580 gicite and 63 C\yicite values is an
indication of a disequilibrium. However, recent studies show that the Hendy test can
be ambiguous and insufficient [Dorale and Liu, 2009; Mihlinghaus et al., 2009]. Kinetic
fractionation significantly affects the isotopic composition of speleothem calcite, with
higher 680 4cite values than expected according to Kim and O’Neil [1997], and can
obscure the originally imprinted environmental signals [ Tremaine et al., 2011]. Kinetic
fractionation occurs especially for fast or incomplete reactions, such as fast COq de-
gassing from drip water, fast calcite precipitation [Mickler et al., 2004; Dreybrodt and
Scholz, 2011] or rapidly changing growth rates [Watkins and Hunt, 2015]. Another
important control mechanism is the occurrence of PCP, which leads to a shift in the
super saturation at the stalagmite surface and favours disequilibrium [Riechelmann
et al., 2013]. Not only fast dripping can influence fractionation, but also too slow drip
rates can favour evaporation in the cave and thus lead to kinetic fractionation during
calcite precipitation [Mickler et al., 2004].

2.2.4 Other proxies in speleothems

Speleothems record environmental information such as climate signals and offer the
analysis of multiple proxies, where the stable isotopes of calcite provide information
on the isotopic composition of precipitation (variation of 6*¥O,4eite) and changes in
vegetation (variation of §'3C.qjeite) [MeDermott, 2004]. Further proxies encoded in the
fluid inclusions, like 5180ﬂmd and 62Hﬂuid, noble gases [Kluge et al., 2008; Scheideg-
ger et al., 2010] and the liquid — vapour homogenisation temperature of the inclusions
[Kriger et al., 2011] can provide information about paleotemperatures [Affolter et al.,
2019; Arienzo et al., 2015] and precipitation [Fleitmann et al., 2003b]. Nevertheless,
it is preferable for paleoclimatic interpretations if the calcite has precipitated under
equilibrium conditions, however, is this not the case, clumped isotopes are a sensitive
indicator for disequilibrium effects [Affek et al., 2008; Kluge and Affek, 2012]. In ad-
dition to the oxygen isotopes of calcite, several other proxies can be used to decode
climate signals from speleothem records. For example, the §'2C isotopic composi-
tion of speleothems can be used to infer the isotopic composition of atmospheric COq
[Baskaran and Krishnamurthy, 1993] or the type and density of vegetation growing
above the cave [Dorale et al., 1992], because the main driver of §13C variability in the
soil is the primary carbon production by plants (C3 or C4), which have a very different
s3C signature and transfer processes. Furthermore, another important source of car-
bon is the dissolution of the carbonate bedrock, which has a different isotopic signature
than the carbon in the soil and atmosphere and, therefore, can provide information on
the formation of the stalagmite [Hendy, 1971; Genty et al., 1998].

The growth rate of a stalagmite is controlled by the saturation state of the drip wa-
ter, drip rate, temperature and pCOs in the cave and thus can be used as indicator
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for a number of environmental parameters, such as cave air circulation or amount of
precipitation [Baker et al., 1993; Genty and Quinif, 1996]. In addition, speleothems
not only consist of pure calcite, but also incorporate traces of other elements into
their crystal structure, such as Mg (magnesium), Na (sodium), Sr (strontium), Ba
(barium), P (phosphor) or U (uranium) which are becoming increasingly important in
multi- proxy analyses of speleothems [Fairchild and Treble, 2009]. The source of these
trace elements is in the atmosphere or soil and their concentration in the speleothem
is controlled by recycling processes in the soil and by calcite precipitation process. For
example, Mg/Sr ratios are used as a proxy for precipitation changes [Roberts et al.,
1998; Sinclair et al., 2012] and phosphorus concentrations provide information about
the seasonal hydrological variability [Lewis et al., 2011].

2.3 Cavity Ring- Down Spectroscopy (CRDS)

2.3.1 Basics of absorption spectroscopy and CRDS

Absorption spectroscopy by measuring the decay time of an optical resonator, also
known as "Cavity Ring- Down Spectroscopy”, attributes absorption measurement to a
time measurement [Zalicki and Zare, 1995; Demtréoder, 2013]. Of fundamental impor-
tance is the Lambert - Beer law, which describes the relationship between the attenu-
ation of light through a substance and the properties of that substance. Considering
the ring - down time measurement of the CRDS technique, the exponential loss of light
intensity at the photodetector is defined over the Lambert - Beer law, which can be
written as follows [Picarro, accessed February 28, 2020]:

It N) =T - et (2.14)

with the initial light intensity Iy and the wavelength of the laser A. When the laser is
switched off, the ring-down time constant 7(\) indicates the time until the intensity
has decreased with 1/e below an adjustable threshold. For CRDS, a laser pulse is stored
in a high - quality optical cavity containing the sample, and the pulse decay is monitored
with the aid of a photodetector that measures the intensity of light transmitted through
one of the mirrors [Zalicki and Zare, 1995]. The optical cell (cavity) consists of two
or more spherical mirrors (three for the L2130-i analyser) with very high reflectivity
R >0.995%. This technique allows the laser beam to perform a large number of
reflections within a cavity. Thus, achieving average absorption path lengths (1) of
up to several kilometres (~20km for the L2130-i analyser) and exceeding the actual
cavity length (L) by a factor of 105 [Berden et al., 2000]. For a measurement, light from
a continuous wave laser is first injected into the cavity (see right panel of figure 2.7).
The light intensity builds up inside the cavity due to the high degree of reflectance
of the mirrors and is monitored by a photodetector. The ring-down measurement is
performed by quickly switching off the laser and measuring the light intensity in the
cavity, as this decays exponentially over time. When the cavity contains an absorbing
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Figure 2.7: Left: Principle of cavity ring-down spectroscopy for a Picarro analyser
with three reflecting mirrors with a reflectivity of 99.995 % , which circulate the laser
beam and exceed the optical path length (I) to ~20km. The laser is switched off
when a threshold intensity is reached and the ring-down time (7) of the laser pulse is
subsequently measured. Right: The ring-down time varies depending on the cavity
contents, with an absorbing species 7 is reduced [Picarro, accessed February 28, 2020].

gas, an additional optical loss occurs which causes a decrease in the ring-down time
(see left panel of figure 2.7). The difference of the measured photon decay time with
(1) and without (79) an absorbing species in the cavity can be described as follows | Yu
and Lin, 1993]:

1 1 a«a-c-l

= 2.15
T T n-L ( )

where ¢ is the speed of light, [ is the length of the absorbing medium, L is the cavity
length, n is the index of refraction of the absorbing medium and « is the absorption
coefficient, which is the product of the extinction coefficient ¢ and the sample con-
centration C. For a more detailed derivation of the difference of the reciprocal decay
times see Demtroder [2013].

By scanning the wavelength of the laser over the relevant wavelength range (spec-
tral range 7 183.5-7184.0 cm™!) of the water isotopologues (*H'H'O, ' H2H'60, and
LH'H'™0) and measuring the decay time (optical loss), an optical spectrum and thus
the detailed spectral profile is generated [Gianfrani et al., 2003]. The concentration of
each isotopologue is then proportional to the area under each measured isotopologue
spectral feature [Brand et al., 2009]. The advantage of using the three mirror cavity
to extend the effective absorption path is that the signal to noise ratio is significantly
reduced compared to a two mirror cavity which favours a standing wave [Demtrdder,
2013]. In addition, with the effective path length of many kilometres, the sensitivity of

23



2 Theoretical background

the infrared spectrometers can be significantly increased, which also allows to detect
rare isotopologues with a natural abundance in the per mil range [Picarro, accessed
February 28, 2020]. Another advantage of this technique is that infrared laser can
be used to detect the unique near - infrared absorption spectrum of the water isotopo-
logues. These lasers can be operated at room temperature and require no additional
nitrogen cooling [Lis et al., 2008].

The known wavelength of the continuous wave laser of the L2130-i analyser is tuned
over (in 0.01cm™! steps) the absorption spectra of the 'H'H6O, 'H?H!60, and
LH'H'O isotopologues with lines around 7183 cm™! [Gianfrani et al., 2003]. During
the measurement, the pressure and temperature in the cavity are continuously mon-
itored and maintained constant at 50.00 £ 0.02 torr and 80.00 £ 0.02 °C, respectively
[Picarro, 2015]. To completely minimize the instrumental measurement drift of the
L2130-i analyser, the sample cavity is surrounded by layers of thermally insulating
material to provide a high degree of passive thermal stability and further stabilized by
means of a solid state heating system. Comparison of the measured relative intensity
of the peaks for the water isotopologues with those of the respective standards (VS-
MOW for this study) gives 60 and §2H values [Picarro, 2015]. At low water vapour
concentrations, the overlapping absorption of other species (e.g. CHy) may interfere
with the actual water isotope absorption spectra. The L2130-i analyser corrects for
these overlapping spectra, by analysing and evaluating each species which interferes
with water isotopologue measurements. This correction enables an accurate and pre-
cise measurement of the water stable isotopes with low or even varying water vapour
concentration (see figure A.9) [Aemisegger et al., 2012].

2.3.2 State of the art for stable water isotope measurements of fluid
inclusions of speleothems

Two physically different measuring principles allow the determination of the isotopic
composition of fluid inclusions of speleothems. Laser spectroscopic systems use the
difference in the structure of the rotational - vibration energy level of the individual
isotope molecules, resulting in isotopic characteristic absorption peaks in the near-
infrared region. The traditional technique to measure stable isotopes is by isotope
ratio mass spectrometry (IRMS), which utilizes the different mass-to-charge ratios
of the isotopes. Before the stable water isotopes are measured they must be released,
which can be done either by crushing [Schwarcz et al., 1976] or thermal decrepita-
tion [Yonge, 1982]. Thermal decrepitation releases water by heating the fluid bearing
sample to a high temperature (~ 550°C). This method has the disadvantage that the
extraction temperature and isotope exchange may vary during extraction resulting in
large fractionation of up to 30%¢ for §°H in comparison to parent cave drip water
[Yonge, 1982; Matthews et al., 2000; McGarry et al., 2004], which can be avoided by
crushing the sample mechanically. In the 1970 s [Schwarcz et al., 1976; Harmon et al.,
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1978, 1979], pioneering work was carried out to measure stable isotopes of fluid in-
clusions using mass spectrometry (IRMS). For this purpose, the water was extracted
by crushing the sample under vacuum conditions and then subsequently converted
into water vapour of molecular species suitable for O and H isotopic analysis. The
first combined method for oxygen and hydrogen measurements with an off - line crush-
ing method and dual - inlet isotope mass spectrometer was developed by Dennis et al.
[2001], achieving good precisions but requiring a large sample size of 1 to 3 ul [Matthews
et al., 2000]. A reduction of sample size down to 0.1 ul , which correspondence to 0.1g
of calcite [Fleitmann et al., 2003b], was achieved by Vonhof et al. [2006] by combining
off - line preparation and continuous- flow mass spectrometry. This technique enables
a faster analysis of smaller sample sizes with comparable precision of 0.5 %o for 620
and 1.5 %o for §°H of 0.1-0.2 ul of released water to dual-inlet IRMS [Vonhof et al.,
2006; Dublyansky and Spotl, 2009].

Laser spectroscopy does not require any additional water treatment, like the reduc-
tion of H2O in a pyrolysis reactor into measurable molecules like Hy or CO. It is less
expensive and allows a reliable, precise and easy technique to measure stable water
isotopes [Brand et al., 2009; Gupta et al., 2009]. The first application using cavity
ring - down spectroscopy to measure fluid inclusions in speleothems was developed by
Arienzo et al. [2013] using a L2130-i analyser from Picarro. The Miami Device, with
a stainless steel line heated to 115°C and constantly flushed with dry nitrogen as a
carrier gas, achieves comparable precisions as the traditional IRMS technique, with
0.5 %0 for oxygen and 2.0 %o for hydrogen. The application of another analyser using
off - axis integrated cavity output spectroscopy (OA-ICOS) achieve comparable pre-
cisions [Czuppon et al., 2014] and newest developments are able to measure released
water volumes in the nano litre range (50 to 260 nl) by using the CRDS technique with
a precision of 0.33 %o for 680 and 1.6 %o for 62H [Uemura et al., 2016].

All these lines [Arienzo et al., 2013; Czuppon et al., 2014; Uemura et al., 2016] are
working with a dry carrier gas and low water vapour concentrations in the analyser
cavity, which can influence the stable isotope measurements. The measured isotopic
signal needs to be corrected for these disturbance effects, e.g. the isotopic dependency
on the water vapour content [ Uemura et al., 2016] or the memory effect. Regarding the
so - called memory effect, the cavity remembers the previously measured sample, which
results from the fact that the cavity of the CRDS analyser cannot be completely evac-
uated between two measurements. Thus, the sample signal of the previously measured
sample remains in the cavity due to adsorption of water molecules on the cavity walls.
This can be avoided by injecting the desired water sample multiple times, then the
measured signal converges exponentially to the actual sample signal. However, mul-
tiple injections are not feasible for fluid inclusion measurements of speleothems since
the amount of water of these samples is too low (ul range). This issue was handled
by Affolter et al. [2014] with an extraction line that is always kept under humid con-
ditions, therefore an artificial water vapour background is generated, which contains
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a known §'%0 and 62H isotopic composition. The permanently saturated line allows
the measurement of fluid inclusions of speleothems by the instantaneous evaporation
of the released water followed by spectroscopic analysis of the resulting mixture of
water vapour background and sample signal. The advantages of the line are: (i) it
is easy to build, (ii) the operational costs are low compared to vacuum and IRMS
systems and (iii) it avoids additional corrections of the measured water stable isotopes
with standard deviations smaller than 0.4 %o for 5180ﬂm~d and 1.5%0 6°H fluid- The
achieved precision is comparable with the traditional IRMS technique [Vonhof et al.,
2006; Dublyansky and Spdtl, 2009] and CRDS setups working with a dry carrier gas
[Arienzo et al., 2013; Czuppon et al., 2014].

2.4 Climatological setting of the three different study sites
concerning the time scale of the speleothem records

2.4.1 The transitional climatic zone (Romania) - present day

The Carpathian mountains are located in a transitional climatic zone between central
Europe, western Furasia and the Mediterranean. By their position and the main mor-
phological features, they divide the country into two major regions of different climatic
characteristics: with colder and wetter climatic conditions in the north, whereas the
south is dominated by a drier and warmer climate [Micu et al., 2016]. Winter climate
in Romania is strongly affected by the North Atlantic Oscillation (NAO) [Bojariu and
Paliu, 2001; Micu et al., 2016], which is characterized by a meridional displacement
in the atmospheric pressure between the Icelandic Low and the Azores High [ Wanner
et al., 2001] and associated with changes in the westerlies across the Atlantic onto
Europe [Hurrell, 1995]. For central and northern Europe, NAO + years are associated
with relatively humid and mild winters, while NAO — conditions lead to less precipita-
tion and colder temperatures during European winter (position of atmospheric patterns
see figure A.4) [Dai et al., 1997; Trouet et al., 2009]. For the Mediterranean region
another teleconnection pattern affects the weather process, the East Atlantic West
Russia (EAWR) pattern [Krichak and Alpert, 2005]. Positive trends in the NAO and
the EAWR are associated with drier than normal weather conditions in the Mediter-
ranean region [Bojariu and Paliu, 2001].

For an inland continental site, like the location of the cave, the dominant control
on the isotopic composition of the precipitation is the Rayleigh rainout effect. The
air masses follow an eastward progressing rainout trajectory over the European land
mass with an isotopic composition of the precipitation, which becomes more depleted
if regional temperatures are decreased and vice versa [Rozanski et al., 1993]. The di-
rect link of fluid inclusions to drip water and therefore to paleoprecipitations, enables
the reconstruction of temperatures based on the relationship between 680 and ac-
cordingly 62H in precipitation and air temperature for continental climate [Rozanski
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et al., 1992]. For Hungary, Demény et al. [2017] showed that the application of the
§?H/T relationship on stable isotope measurements of fluid inclusions led to reliable
temperature reconstructions for the last interglacial. At present, there are indications
of progressive climate change from global observation data sets, which suggests visible
changes in the average values or the overall variability of climate characteristics. In
general, Europe has shown a greater warming trend since 1979 compared to the global
mean and the related climate trends in mountainous regions are even more pronounced
[Béhm et al., 2010].

2.4.2 Central Europe (Germany) - Holocene

The weather system of central Germany (location of the Bunker Cave) is, like most of
the climate in Europe, determined by the NAO (see section 2.4.1), which dominates the
mid - latitude westerly wind systems and thus influences the precipitation and temper-
ature pattern [Hurrell, 1995]. The present interglacial, the Holocene, covers the period
of the last 11700 years and marks the rapid transition from the cold period (Younger
Dryas) to a subsequent, generally warmer period with relatively small temperature
variations [Dansgaard et al., 1989; Mayewski et al., 2004]. For the Holocene on the
multidecadal to multicentury timescale, periods of more stable and warmer climate
were interrupted by several cold relapses. These cold interruptions were most likely
favoured by decreasing solar insolation combined with a possible slowdown of the ther-
mohaline circulation and in some cases also combined with a series of tropical volcanic
eruptions [ Wanner et al., 2011]. One pronounced cooling event during the Holocene is
the 8.2ka event, which was triggered by cooler conditions in the North Atlantic due to
a slowdown of the thermohaline circulation [Fohimeister et al., 2012]. For the Atlantic
episode of the Holocene (9.6-5.5ka), [Niggemann et al., 2003b] found an increased
stalagmite growth for a cave in central Germany, which is associated with variations
in precipitation. The mainly wet and warmer period of the Holocene was interrupted
by colder and drier conditions. Stalagmites offer the possibility to study variation in
precipitation with the analysis of stable isotopes in fluid inclusions, but are biased
towards autumn and winter in Central Europe, as the drip sites are mainly active in
winter due to evapotranspiration in summer [Wackerbarth et al., 2010].

2.4.3 The tropical west Atlantic (Puerto Rico) - millennial timescale

Puerto Rico, as the easternmost island of the Greater Antilles, is a tropical island
in the north-eastern Caribbean and lies between the high pressure cell over the At-
lantic and the Inter - Tropical Convergence Zone (ITCZ). The surface temperature of
the sea, which averages around 27 °C has a direct effect on the climate through large
amounts of latent and sensible heat transfer throughout the year [Granger, 1985]. This
ocean - atmosphere coupling is of great importance for the climate in the Caribbean
since the area is dominated by sea surface and the numerous islands are not large
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enough to cause strong climatic fluctuations. The climate is, therefore, predomi-
nantly maritime, which nowadays leads to comparatively small temperature variations
[Schellekens et al., 2004]. The seasonal weather patterns for the Caribbean region
are broadly divided into dry winter (December-March) and rainy summer (June-
November) seasons [Grist, 2002] with the climate strongly dominated by easterly trade
winds especially in the winter months [Scholl et al., 2009]. Thereby, the rain isotopic
signature of precipitation differ between rain and dry season due to a varying source
or different climate patterns. The dry season in the Caribbean is characterized by
orographic precipitation from frontal system rain (cold fronts from North America,
trade winds and sea breeze showers) which occasionally pass over the island. In con-
trast, during the rainy season convective rainfall, which originates from the passage
of tropical easterly wave and is formed by low pressure system (tropical storms and
hurricanes) accounts for half of the total precipitation [Scholl and Murphy, 2014].

On millennial timescale, rainfall variability in the tropical regions of the western At-
lantic dependence on the latitudinal position of the ITCZ [Lachniet et al., 2009], which
effects the strength and track of easterly trade winds. For the tropics, the increased
input of freshwater into the North Atlantic and the weakening of the AMOC (Atlantic
Meridional Overturning Circulation) during Heinrich events led to a southward shift
of the ITCZ. The consequences are colder and drier climate conditions for westerly
Atlantic tropics during stadials as has been shown in various paleostudies of stalag-
mites, ocean sediment or lake sediment cores [Lachniet et al., 2009; Hodell et al., 2012;
Grauel et al., 2016; Escobar et al., 2012; Deplazes et al., 2013; Arienzo et al., 2015].
In contrast, a northward shift of the ITCZ is expected during the interstadials, which
will be accompanied by warmer and wetter climatic conditions [Deplazes et al., 2013].
It is questionable how pronounced these rapid climatic fluctuations from cold (stadial)
to warmer (interstadial) conditions appear in the Caribbean tropics, since in some
stalagmite records no characteristic of D/O events can be found, although HS events
are very clearly represented [Carolin et al., 2013; Arienzo et al., 2017].
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3 | Fluid inclusion line - setup, data
evaluation, calibration and
Intercomparison

Fluid inclusions archive the drip water from which the speleothem formed and can
therefore provide valuable insights into the paleo-hydrological conditions. Here I
present a setup that measures oxygen and hydrogen simultaneously with the laser ab-
sorption technique. Technical advances now allow to determine §'%0O fluid and 5°H Fluid
of microliter water amounts with high precision and accuracy. The construction of the
Fluid inclusion line located in Heidelberg is based on the prototype developed by Af-
folter et al. [2014] in Bern, but has been modified and further developed as described in
the following section. Moreover, I have developed a protocol for data evaluation, which
can be downloaded here: https://github.com/bhemmer/IsoFluid. In the following
I will describe the setup and investigate precision and accuracy. Furthermore, I discuss
possible effects, which could disturb the stable isotope measurement of fluid inclusion
water. For example the memory effect, the effect of adsorption and desorption on the
stalagmite surface or the effect of isotopic composition of the water vapour background.
Finally, I will show the robustness of the measurements and the reproducibility by per-
forming first speleothem test measurements. The inter - laboratory comparison (Max
Planck Institute for Chemistry, Mainz and University of Bern) shows that the mea-
surements with a CRDS (Cavity ring-down spectroscopy) analyser attached to this
extraction line achieves an accuracy comparable to mass spectrometry.

For this setup, I used a CRDS analyser from the company Picarro (Santa Clara,
USA). The L2130-i isotope and gas concentration instrument is used regularly in many
fields of environmental studies, such as hydrology, oceanography or palaeoclimatology
[Benetti et al., 2014; von Freyberg et al., 2017; Affolter et al., 2019; Gao et al., 2019).
I discuss the principle of laser spectrometric isotope and water vapour mixing ratio
measurements in section 2.3. Here I will focus on the specifications of the L2130-i
analyser, which is based on cavity - ring down spectroscopy.

3.1 Preparation line

To enable a reproducible and precise analysis of stable isotopes of fluid inclusions, an
artificial water vapour background is generated, which contains a known 6'¥0 and §°H
isotopic composition. This allows the measurement of fluid inclusions of speleothems by
the instantaneous evaporation of the released water followed by spectroscopic analysis
of the resulting mixture of water vapour background and sample signal. More precisely,
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Figure 3.1: The Fluid inclusion line for the measurement of stable isotopes of fluid
inclusions in speleothems. Water with a known isotope composition is mixed into a
nitrogen gas flow to create a stable water vapour background (see point A). The purge
capillary reduces the background vapour flow from 280 to 40 ml/min as required for
the CRDS analyser. The two volumes provide a smoothing of the background vapour
signal and an adjustment of the measurement signal. The speleothem sample is
placed in a copper tube and installed at position B. In order to prevent the backflow
of the water vapour signal from the freshly crushed sample, a reflux valve is installed.
Thereby the respective flow directions are shown as blue arrows. All used components
and the corresponding companies are listed in table A.1 and A.2.
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the preparation line (figure 3.1) generates a stable water vapour background by mixing
water of a known isotopic composition into a nitrogen gas flow. A peristaltic pump
(Ismatec - REGLO Digital (Wertheim, Germany)) continuously supplies small amounts
of water (1 ul) to the line through the injection port. Instant evaporation is enabled via
a fused silica capillary, which slightly touches the heated base of the port. The nitrogen
flow of 300 ml/min is controlled by an Analyt- MTC - mass flow controller (Miillheim,
Germany). This causes a constant overpressure of 0.5bar above atmosphere in the
preparation line, with a flow rate of 40 ml/min of the CRDS analyser the surplus
gas stream is vented through the purge capillary. Thus, it is possible to create a
background with a low water vapour concentration in the range of 6 000 to 8 000 ppmV
(details about precision see section 3.6).

Details - setup preparation line

The vaporizing unit consists of an injection port with a septum, enabling the fused
silica capillary to penetrate without atmospheric disturbance. The capillary itself is
connected to the peristaltic pump tube without a further adapter. The selected inner
(tube with 0.13mm) and outer (capillary with 0.36 mm) diameter allow an airtight
connection. The mixing cavity with a volume of 21 enables a stable water vapour
background and compensates fluctuations caused by pump cycles of the peristaltic
pump. While crushing of the speleothem sample the water in the fluid inclusions
immediately evaporates. This leads to a sudden volume increase, which produces a
gas flow in both flow directions. Therefore, I installed a reflux valve between mixing
cavity and sample mounting to prevent a backflow and thus, a loss of the sample
signal. The reproducibility is largely influenced by the installation of the reflux valve.
For a test measurement with six 1.0 ul injections the actual measured signal varies
between 0.1 and 0.8 ul (see figure A.5). In order to perform test measurements as
e.g. memory effect tests (see section 3.7), I placed a second injection port directly in
front of the sample inlet. This allows syringes to access the closed line, enabling faster
measurements as the water vapour background remains under stable conditions. The
majority of the line is heated to a constant temperature of 120°C by an oven (see section
3.1.2). Connecting parts between vaporizing unit and oven or oven and CRDS analyser
are heated via a heating tape to the same temperature. A temperature of 120°C ensures
a total and instantaneous evaporation of the water without any fractionation.

Details - sample mounting

The speleothem sample does not require any special preparation, only the edge length
must correspond to the inner diameter of the copper tube (8 mm) through which it is
mounted in the line. Compact pieces are preferred as the sample is crushed from the
outside by a hydraulic crusher, the position of the sample is marked and fixed with
glass wool. An additional small mixing cavity (400 ml) is installed directly behind the
sample inlet. This converts the generated sample signal into a measurable signal. With
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the additional mixing cavity the duration of the sample signal is extended from less
than a minute to 30 minutes (0.5 ul) or even to 60 minutes (2 ul), whereby the duration
of the sample signal depends on the released water volume. The CRDS analyser records
one data point every 0.8 seconds, but light isotopes reach the analyser within the first
seconds due to fractionation. With a very small cavity (2ml) the actual isotope signal
of the sample is only partially recorded and important information about the complete
evolution of the isotope signal is lost (see figure A.6). In addition, a filter is installed
to protect the laser cell against small calcite particles.

3.1.1 Hydraulic crusher

The copper tube, equipped with the desired sample, is installed at position B as shown
in figure 3.1. Hereby an airtight connection between line and copper tube is enabled
using a brass ferrule nut set (Swagelok), which is used for each sample once. The
hydraulic crusher, as shown in figure 3.2 exerts a pressure of 200-300bar onto the
copper tube. A small barrier (2mm height) prevents a complete compression of the
tube, which would lead to an interruption of the water vapour flow. The piston in
the stainless steel jack is moved by a hydraulic hand pump. Since the piston has
a diameter of 4cm, very large samples require crushing in two steps. To crush the

hydraulic hand pump |

barrier

sample in
copper tube

hydraulic
cylinder

Figure 3.2: Schematic illustration of the hydraulic crusher, which consist of a piston
fixed in a stainless steel jack and a hydraulic hand pump. It exerts a pressure of 200 -
300 bar onto the sample, whereby a small barrier prevents a complete compression of
the tube. All used components and corresponding companies are listed in table A.2.
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sample the oven door must be opened, which results in a decrease in temperature and
disturbs the water vapour background signal (see figure 3.4). An experienced user can
complete this process in less than 30 seconds. Then the disturbance has no effect on
the measurement signal as it reaches the analyser with a 90 second delay and is taken
into account in the evaluation (see section 3.4). For the analysis of the sample signal,
this intermediate interval is set to two minutes, which ensures that the undisturbed
water vapour background is used to calculate the background signal.

Particle size analysis

I carried out a grain size analysis at the Institute of Earth Sciences Heidelberg to test
the efficiency of the hydraulic crusher. The samples were analysed with the Analysette
22 Micro Tec (Fritsch - Achern, Germany) based on the principle of laser diffraction
analysis. It follows the fundamental that particles of different sizes produce different
diffraction patterns. Thus a simple and fast measurement of the geometrical dimen-
sions of the particle is possible [Beuselinck et al., 1998]. For particles with a diame-
ter above 10 ym the laser diffraction analysis is based on the Fraunhofer diffraction,
whereas Mie diffraction plays a role for smaller particles, which will not be discussed
here [de Boer et al., 1987]. The Fraunhofer diffraction theory states that the intensity
of light, scattered by a particle, is directly proportional to the size of the particle.
Thus, the grain size can be determined by measuring the diffraction angle of the laser
beam. The relation is inversely proportional: the smaller the particle, the larger the
diffraction angle. The detailed measurement process is described in the appendix A.2.

I have selected five already crushed and measured samples for fluid inclusion to deter-
mine the particle size. The results of the particle size analysis are shown in figure 3.3
and listed in table 3.1, with each sample measured ten times. The left side of figure
3.3 shows the development of the median over the number of measurements. Here the
median or d50 describes the average grain size. There is a decrease in the median
with progressive measurements, indicating a change in the particle size distribution.
This observation implies that some particles stick together and only gradually separate

sample name weight median
[g] ()]
1 Closani II C1 0.251 26.56
2 Closani II B2 0.261 57.63
3 LA-1-24 B 0.303 36.67
4 LA-1-13 B 0.309 29.86
5 LA-1-1 A 0.315 36.36

Table 3.1: Five samples already crushed and measured for fluid inclusion were anal-
ysed for particle size analysis. The mean value or d50 is the value of the particle
diameter at 50 % in the cumulative distribution.
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3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

with running an ultrasonic bath. During crushing a high pressure (up to 300 bar) is
performed on the sample. This pressure leads to crushing of the stalagmite as well as
to a compression and compaction of the fine material.

Due to the non constant median, I used the last five measurements of each sample
to determine the mean particle size distribution (figure 3.3 right panel). Here the mass
fraction in % is plotted against the particle diameter in um. Two peaks have to be
distinguished. Peak I at a particle diameter of about 20-30 pum represents the mean
diameter of single particles, whereas peak II rather correspondence to several particles
that stick together due to the high pressure exerted during crushing. As the grain
size measurement progresses a decrease of the peak II is visible, corresponding to a
dissolution of the clumping particles, at the same time peak I increases. All samples
are showing a similar particle size distribution, which speaks for a homogenous and
reproducible crushing routine. With a mean grain size around 30 pum, it is feasible to
open almost all fluid inclusions as they have typically a size from 1 to 50 um [Schei-
degger et al., 2010] or 10 to 50 ym [Schwarcz et al., 1976].

Compared to other techniques, the hydraulic crusher of the fluid inclusion line achieves
a very good crushing efficiency with an average d50 value of 37 ym. A similar crushing
procedure developed by Affolter et al. [2014] results in a d50 value of 495 ym with the
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Figure 3.3: Left: Median or d50 with progressive measurements for five different
samples illustrated in different colours. The median measurement was repeated ten
times. A decrease of the median indicates a change in the particle size distribution.
Right: Grain size distribution for all five samples, whereby the last five measurements
were taken into account. Two particle diameters are dominant with peaks at 20-
30 um (peak I) and 400 um (peak IT), while peak II does not correspond to a single
particle size, but to the size of several particles clumping together due to the high
pressure exerted during crushing. The mean diameter of single particles is dominant
at a particle diameter of about 20-30 um indicated as peak I. Detailed data for all
samples and the 10 individual measurements are listed in the appendix (A.4, A.5,
A6, A7, A8 and A.9).
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3.1 Preparation line

difference that the barrier is adjusted to a higher level and therefore the copper tube is
not compressed as much as for this setup. Kluge et al. [2008] has developed a crushing
method for noble gas analysis, where they achieved an average grain size of 630 um.
With the Amsterdam Device of Vonhof et al. [2006] a grain size distribution from 100
up to 1000 pm was achieved.

3.1.2 Temperature control

A constant temperature at 120°C ensures a complete and immediate evaporation,
which is important to avoid fractionation by partial evaporation. The majority of
the preparation line is heated by an oven, whose temperature can be recorded by a
temperature sensor (pt1000). A representative temperature profile is shown in fig-
ure 3.4, with a constant temperature at 120°C. Temporary temperature decreases are
due to the necessary opening of the oven door during sample crushing or changing
samples, as the heating must be deactivated briefly. In this case, the temperature
decreases below 100°C, but returns to the initial value after approximately 20 minutes.
The actual measurement, which takes place about 90 minutes after sample change, is
not disturbed by sample exchange. The time interval of 90 minutes is required for
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Figure 3.4: A representative temperature profile of the oven with which the main
part of the extraction line is heated. When crushing the sample the oven door has
to be opened, which is shown as the first and third drop. The temperature does
not decrease below 100°C during crushing so condensation can be excluded. For a
sample change the heating must be switched off temporarily, which leads to a strong
temperature decrease whereby a constant temperature of 120°C is reached again after
approximately 20 minutes.
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3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

the water vapour background to reach stable conditions (standard deviation below
20 ppmV) again and for the desorption of water molecules from the sample surface to
be completed. As the desorption of water molecules would lead to a measurable shift of
the isotopic composition towards lighter values, since due to fractionation isotopically
heavier molecules preferentially adsorb onto an active grain surfaces [Dennis et al.,
2001]. T have investigated the effect of adsorption in detail in section 3.7.3.

3.2 Picarro analyser - L2130-i

In this thesis a cavity ring-down spectrometer L2130-i from the company Picarro is
used as CRDS analyser. Picarro analysers use time-based optical absorption spec-
troscopy to determine the concentration or isotopic composition of the sample gases
(more details see section 2.3). It is based on wavelength - scanned cavity ring-down
spectroscopy (WS-CRDS), a method in which the laser beam passes through the sam-
ple many times, creating a long effective path length for the interaction of the light
with the sample. L2130-i provides high quality measurements of 6'30 and §2H, which
are measured simultaneously every 0.8 seconds with a measurement range of vapour
samples from 1000 to 50000 ppmV. The guaranteed precision at 2500 ppmV for an
integration period of 100 seconds is 0.080/0.500 %o for 6'*0/6%H. With a higher wa-
ter vapour concentration of 12500 ppmV the precision increases to 0.040/0.100 %o for
§'80/6%H. The CRDS technology provided by Picarro guarantees a temperature and
pressure controlled analyser, with a typical 24 h drift of 0.082/0.336 % VSMOW for
§180/6%H when measuring liquid samples [Picarro, 2015].

3.2.1 Short - term stability - 24 hours

Infrared spectrometers generate data that are affected by different types of noise (usu-
ally white noise), which can be significantly reduced by time averaging. As the integra-
tion time increases, it is expected that the precision of the measurements will initially
improve by reducing the white noise up to the point where the instrumental drift be-
comes visible [Casado et al., 2016]. This can be shown in a so- called Allan - Werle plot
(see figure A.8). Here a 24 h experiment was performed with a water vapour mixing
ratio of 15700 ppmV. Aemisegger et al. [2012] has found the optimal integration time
7o to 100 min for oxygen and to 170 min for hydrogen.

I also performed a long-term measurement (22h) where a significant lower water
vapour concentration compared to Aemisegger et al. [2012] was established with a mean
value and corresponding standard deviation of 6 961 £+ 18 ppmV for the last 30 min (de-
tailed data is listed in table A.10). The isotopic signals for both 680 and §%H for the
last 30 min obtained a mean value of —11.00+0.21 %0 and — 54.01 & 0.76 %o, respec-
tively (see figure 3.5). It is important to mention here that two systemic uncertainties
appear for this fluid inclusion line. On the one hand, the water vapour concentration
decreases during the course of the day by about 250-500 ppmV (see figure A.14), and
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3.2 Picarro analyser - L2130-i

on the other hand, the isotopic composition of the background water changes (see fig-
ure 3.5).

The water standard that is used to generate the water vapour background concen-
tration is stored in a bottle next to the oven. This is necessary because the line is
constructed with the smallest possible volumes and, therefore, the setup is spatially
limited. Even if this effect is small it leads to shorter optimal integration times than
those found by Aemisegger et al. [2012]. The lowest standard deviations for oxygen
and hydrogen were achieved for an integration time of 60 minutes (see table A.10),
whereby the standard deviation barely changes after 100seconds. For this setup a
standard deviation of 0.208/0.731 % VSMOW for 6'¥0/§?H is achieved for an inte-
gration time of 60 min, which is comparable to other CRDS systems operating in a
constant flow mode. For example, Gupta et al. [2009] using WS- CRDS technology ob-
tained a precision of 0.2/1.0 % VSMOW for §'80/62H when measuring liquid samples
evaporated onto a dry background. Considering once again the variation of the water
vapour concentration, Aemisegger et al. [2012] found that for the L2130-i analyser the
precision of the isotope measurements barely depends on the water vapour mixing ratio
(see figure A.9). Therefore, if the isotopic measurements are not performed under dry
conditions (< 500 ppmV), no correction due to different water vapour concentrations
of the isotope signal are required.

For the calibration of the isotope signal, the measurement signal is integrated over
a period of 60 min with a constant water vapour concentration. The resulting drift
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Figure 3.5: For the 22 h measurement of the fluid inclusion line a trend in the isotopic
composition of the water vapour background is measurable. The isotope values of
oxygen and hydrogen shift to heavier values due to evaporation in the supplying
water bottle. Overall, a total deviation of 0.066/0.242 % VSMOW for §'80/§?H can
be measured for the 22h measurement. The mean value with associated standard
deviation refers to the last 30 min of the measurement.
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3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

due to evaporation is 0.003/0.011 %o for §'80/62H and is thus, far below the uncer-
tainty resulting from the standard deviation of 0.21/0.75 %o. For the evaluation of the
sample signal, the isotope signal is averaged over 30 min before each measurement and
then calibrated with the independently measured standard (see section 3.5). Thus, for
each measurement a relative calibration instead of an absolute calibration is carried
out, accordingly drifts can be observed very well throughout the day.

3.2.2 Long - term drift - for several months

Since the L2130-i analyser is not calibrated daily, it must be ensured that no drift of
the isotope signal occurs over a longer period of time. Therefore, it is verified if the
calibration remains valid for several months. In fact, the calibration is repeated at
regular intervals and the results of a selection of different standards are listed in table
A.11. Tt shows, that the measurements agree within the standard deviation and only
deviate by less than 0.1%o for 680 and 0.5%c for §2H, respectively (see table A.11),
even if there are several months or even one year between the respective measurements.
Accordingly, a drift for this setup over a period of several months to a year can be
excluded.

3.3 Measurement routine - daily and weekly

3.3.1 Daily routine

The daily routine of a measurement sequence follows the course shown in figure 3.6.
Starting the nitrogen flow, the water supply and the heating causes a decrease of
the water vapour concentration. After connecting the first sample, the setup requires
approximately 90 minutes until the water vapour background has reached stable con-
ditions. I verify this by calculating the standard deviation of the water vapour con-
centration over 30 minutes. If it is below 20 ppmV the sample is crushed with the
hydraulic crusher. The oven door must be opened for this, which can be seen as a
short dip in the water vapour concentration in figure 3.6. The actual sample measure-
ment runs for 90 minutes to ensure that the complete peak is recorded. Afterwards,
the line is opened and a new sample is installed. This can be seen in figure 3.6 as
second or fourth increase in water vapour concentration, labelled sample change. This
peak indicates desorption of water molecules from the speleothem surface. Thereby
the peak height varies depending on the characteristics of the sample piece. For exam-
ple, a pool spar with a larger surface area compared to a compact stalagmite sample
desorbs more water. A detailed evolution of the water vapour concentration peak for
four different speleothem samples is shown in the appendix in figure A.15. Since no
spikes on the desorption signal are observed, thermal decrepitation of fluid inclusions
can be excluded. This is a further proof that the chosen temperature (120°C) is not too
high. After sample crushing, the initial water vapour concentration is reached again
after approximately 1h and the next speleothem sample can be measured 90 min after
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Figure 3.6: Water vapour concentration record of a measurement routine for a stan-
dard day on which three speleothem samples were measured. The actual measurement
peak of the sample is shown in blue, the corresponding background in light brown
with the linear regression of the background as a red dotted line. Installing fresh sam-
ples increases the water vapour concentration due to desorption of water molecules
from the speleothem surface.

placement in the oven. Before crushing of the next sample the stability of the wa-
ter vapour background is checked by calculating the standard deviation (< 20 ppmV).
Typically three speleothem samples can be measured per day. Over night the CRDS
analyser measures atmospheric air to avoid accidental flooding. Therefore, the heating,
the water and nitrogen supply is switched off.

3.3.2 Weekly routine

On a weekly basis the calibration for the Fluid inclusion line is verified by isotope and
volume calibration measurements. For this purpose, glass capillaries (see section 3.5.2)
filled with water of known isotopic composition and volume are measured regularly.
In addition, parts of the line to wear and tear are renewed on a weekly basis, this
includes especially the pump tube of the peristaltic pump and the FS capillary, because
the pump tube guarantees a constant volume delivery for a working time of 35 hours
[ISMATEC, accessed January 09, 2020]. Other parts of the line, like the two septa of
the injection ports, must be checked regularly and replaced if necessary. In addition, a
fresh water standard to produce the water vapour background is filled up once a week.
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3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

3.4 Data Evaluation

The evaluation software provided by Picarro cannot be used for the stable isotope
measurements of speleothems containing fluid inclusions. As mentioned before, liquid
samples are measured by default with the CRDS analyser, but if operated in a constant
flow mode the actual measured signal must be integrated over the corresponding time
interval. With the isotope signal of oxygen and hydrogen, a splitting into light and
heavy isotopes takes place (see figure 3.8). The light isotopes reach the analyser first
due to fractionation. Simultaneously, the water vapour concentration changes (see
figure 3.7). The released water is recognizable as a peak with a sharp increase and
an exponential decrease. For this reason, I developed an evaluation protocol, which
is partly based on Affolter et al. [2014]. Necessary for the evaluation are: water
vapour concentration in ppmV, 620 in % VSMOW and §2H in % VSMOW over time,
covering 40 min prior to the sample crushing and 40 min after the crushing. With
the assistance of the Python script IsoFluid, which can be downloaded here https:
//github.com/bhemmer/IsoFluid, the import of the data and the actual evaluation
can be carried out.

3.4.1 Peak detection

If a speleothem sample is crushed and contains water - filled fluid inclusions, a peak
will appear in the water vapour concentration (see figure 3.7). The main evaluation
step is to separate this sample signal from the manually generated water vapour back-
ground. I defined a slope criterion (dH2O/dt) to detect the peak, which is generated
by the released water. Therefore, peak-start is defined as a positive slope that must
be above a threshold, with exemplary parameter setting see figure A.16. The same
applies for peak-end, whereby the slope here is negative. Typically, the increase in
water vapour concentration at the beginning of a peak takes place in small intervals
of only a few data points (n="5 and t=4s). Whereas the falling edge follows an ex-
ponential decrease, larger intervals are chosen (n=300 and t =240s). In addition, at
shallow slopes, the measured sample - based signal is superimposed by the signal of the
peristaltic water pump. These pump cycles can also be seen in figure 3.7 as regular
periodic waves. In order to filter out this disturbing signal, I apply the running mean
method to calculate the undisturbed end criterion.

For the calculation of the peak-end criterion the water vapour background has to
be considered. Because, the background water vapour concentration cannot be as-
sumed constant during ongoing measurements (see figure 3.6) as it shows a decreasing
trend through time. At the beginning of a measurement day, the slope is steeper than
at the end, where the water vapour background can sometimes even rise. I take these
background changes into account when fitting peak - start and peak - end, which is re-
ferred to as water vapour background correction (see section 3.4.1). Increase in water
vapour concentration at peak-start is significant and happens between two to four
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Figure 3.7: Peak evaluation of the water vapour concentration for a stalagmite sam-
ple. The sample- based signal interval is shown in blue and the corresponding back-
ground intervals in light brown. A superposition of the background signal with the
signal of the peristaltic water pump (regular periodic waves) can be identified, which
is considered by calculating the peak-end criterion. The linear decrease of the water
background is fitted with a linear regression (dashed line).

data points (data points are recorded every 0.8s). Therefore, the effect of background
changes on the sample signal is negligible for the starting conditions. For the peak-end
however, the sample signal needs to be corrected for the slope of the background.

Water vapour background correction

For the calculation of the water vapour background I selected two intervals, one di-
rectly before the peak and one afterwards. The duration of the intervals is set to
20 minutes, which has proven to be sufficient with the best fit - probability. Before the
peak rises a drop in the water vapour concentration can be observed, which occurs
due to the opening of the oven door. This cannot be avoided, but will be consid-
ered during the evaluation. It can be seen in figure 3.7 as a white space between
background interval and peak-start. This intermediate interval is set to two minutes,
which ensures that the undisturbed water vapour background is used to calculate the
background signal. Once the two intervals are fixed, the background during the sample
peak is simulated with a linear regression. The assumption of a constant mean value
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3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

is not adequate for calculating the water vapour background as it would underesti-
mate the actual measured signal. An exact determination of the background and thus,
of the sample signal is especially important for the accuracy of small amounts of water.

After peak-start (t9), peak-end (¢1) and the corresponding water vapour background
of the peak are defined, the water vapour concentration is integrated over the time
interval ¢o-¢; and corrected for the background (see equation (3.3)). The computed
signal in ppmV-s can be converted to a water volume using the associate calibration
described in section 3.5. In order to ensure a consistent evaluation of a data record, the
specified parameters for the individual samples should not be changed. An example on
how to select these parameters is given in section A.2, along with a brief explanation
of how to use the IsoFluid script.

3.4.2 Transfer of ¢, and ¢, to isotope signal

Figure 3.8 shows the temporal evolution of the isotope ratios, which can be explained
as follows: Due to isotope fractionation, the light isotopes evaporate first, which leads
to a shift to more negative (lighter) values. Followed by the heavier isotopes, which
leads to the opposite effect. This behaviour can be observed so clearly in figure 3.8,
because a stalagmite sample (Stam 4 - Clogani) was measured here with an isotope
ratio similar to the one of the water vapour background (VE).

To evaluate the isotope signal, the start and end positions of the water vapour peak are
transferred to the oxygen and hydrogen peak. However, the background of the isotope
signal is calculated differently. As shown in figure 3.8, the background of the isotope
signal is much more stable than that of the water vapour background. For this reason,
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Figure 3.8: 6'80 evolution during sample crushing on the left and §2H on the right.
The interval of the peak duration is shown in blue, the background interval in light
yellow and the corresponding mean isotope signal of the background in red. A strong
isotope fractionation can be observed, which leads first to a shift to more negative
isotope values (lighter) and subsequently to more positive values (heavier).
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3.4 Data Evaluation

the mean value method is adequate for this calculation. Only the interval before the
peak is used to compute the mean background during the isotope peak of the sample.
Similar to the calculation of the water background, there is an intermediate interval
(related to the opening of the oven door) to exclude from the evaluation. When the
isotope signal reaches equilibrium conditions again depends strongly on the deviation
between sample signal and used isotopic composition of the background as well as on
the amount of released water. Therefore, the duration until the isotopic equilibrium is
reached again can vary between 10 and 45 min. For example shown in figure 3.8 the
duration is approximately 20 min.

To calculate the isotope signal, the actual water volume must be taken into account.
The evaluation for 6'¥0 and §?H is equivalent and illustrated exemplarily for oxygen:

A

tl
/518050mple(t) : HQOsample(t) -dt

51805ample =4 i (31)

/HQOsample(t) -dt
t0

B
with:
tl tl
A= /6180mim(t) : HQOmix(t) ~dt — /6180back(t) : HZOback(t) -dt (3'2)
t0 t0
and:
t1 t1
B— / HoyOuin (1) - dt — / HoOpaer (1) - dt (3.3)
t0 10

where A is the corrected isotope signal of the sample and B is the corresponding
water signal. The measured signal of 60, and HoO,pip is a mixture of sample
and background, with 6'®¥Opqcr and HoOpger Tesulting from the background fit using
the mean method for the isotope signal and a linear regression for the water vapour
concentration, respectively. The time interval, ty to t;, indicates the start and end
point of the sample peak. Subsequently, the measured sample signal is calibrated as
described in the following section.
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3.5 Calibration

For the analysis of speleothem samples, both the isotope signal of oxygen and hydrogen
and the amount of released water is relevant. For this purpose I have developed a new
water amount calibration method using glass capillaries. This can also be used for
inter - laboratories comparison, because the capillaries can be filled with water of a
known isotopic composition and volume. This would allow the internal calibration
of different laboratories working with similar setups to be analysed independently.
For the calibration of the isotope signal I used five independently measured in- house
standards.

3.5.1 Isotopic calibration

The five different standards used for calibration are listed in table 3.2. They were mea-
sured independently with the LGR! analyser at GGWI Group Heidelberg. The LGR
analyser calibration procedure includes three in - house standards (DI, Colle and Alpen)
spanning a range between —8.01 and —22.74 %o for 6§80 and —49.7and —176.3 %o for
§?H in VSMOW. At least once per year, the in-house standards are analysed against
the international primary reference material VSMOW2 and SLAP2. In 2016, the IAEA
has organized a worldwide comparison of stable isotopes in water [Wassenaar et al.,
2018]. Four unknown water samples were analysed in a routine sequence with the
LGR analyser of the GGWI group. The reported results were within the uncertainty
given by the IAEA. Offsets between the reported and the true value were smaller
than 0.08/0.7 % VSMOW for §'80/§?H [personal correspondence Martina Schmidst,
03.12.2019]. The desalinated deep sea water - Kona was measured in Mainz using mass
spectrometry to —0.01/0.39 % VSMOW for §'80/§2H [personal correspondence with

5180 error §’H error

[%0 VSMOW]  [%0 VSMOW]  [% VSMOW]  [% VSMOW]
Kona - ocean water -0.05 0.08 0.54 0.70
VE - tap water -8.75 0.08 -61.65 0.70
VCL - Alps -13.04 0.08 -98.32 0.70
CC - Colle Alps -15.13 0.08 -110.58 0.70
NG - North Greenland -26.54 0.08 -212.11 0.70

Table 3.2: In-house water standards for isotopic calibration, which were indepen-
dently measured at the Institute of Environmental Physics with the LGR analyser at
GGWTI Group Heidelberg [personal correspondence Martina Schmidt, 03.12.2019].

!Triple isotope water analyser TIWA -45EP from Los Gatos Research company. In contrast to
conventional CRDS, the laser beam is directed off - axis with respect to the cavity axis hence, the
name Off - Axis Integrated Cavity Output Spectroscopy (OA-ICOS).
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Hubert Vonhof, 25.07.2018]. This independent measurement shows a very good agree-
ment within the uncertainty compared to the measurements on the LGR, which gives
for Kona §'%0 values to —0.05 & 0.08 %0 and for 62H values to 0.5440.70 %0 in VS-
MOW, respectively. Five water standards were selected to calibrate the fluid inclusion
line spanning an isotope range of —26.5 up to 0.1 %o for 6'¥0 and —212.1 up to 0.5 %o
for 6°H in VSMOW, which includes the relevant range for speleothem samples.

The five different isotope background levels are realized by adding the correspond-
ing standard water to the supplying water bottle of the peristaltic pump. Once a
stable water vapour concentrations is achieved in the preparation line (stdv below
20 ppmV) the isotope signal is averaged over 60 minutes, which results in a standard
deviation of 0.2/0.7 %o for §180/§%H. In figure 3.9 the measured isotope signal with the
standard deviation is plotted against the expected value that is based on independent
analyses of the GGWI Group. Over a period of one year, the respective standards were
measured twice without any significant discrepancies (see section 3.2.2). The data is
fitted with a linear regression taking x- and y - uncertainties into account, resulting in
y = (0.99 - x 4+ 2.30) %o for oxygen and y = (0.98 -  — 7.77) %o for hydrogen. In the
upper part of figure 3.9 the residuals for both calibrations are shown. Thereby, the
residual is a quantity for the deviation from the measured value to the expected one
and can be used to asses the quality of the regression.
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Figure 3.9: The calibration for oxygen and hydrogen results in a linear regression,
where the uncertainties of x and y are taken into account. The calibration equation
is y = (0.99 -z + 2.30) %o for oxygen and y = (0.98 -z — 7.77) %o for hydrogen, which
have remained constant over time. The upper section shows the residuals.
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Even if only a limited number of data points are available, it shows that the residuals
are randomly distributed around zero. This proves that the selected linear regression
model is appropriate.

3.5.2 Water amount calibration

Knowing the exact amount of released water from the crushed speleothem requires a
precise water amount calibration. The standard volume calibration is carried out by
injecting water in the ul range with syringes. At a more detailed analysis, however,
the large uncertainty for this method becomes obvious (see section 3.5.3). Therefore, I
have developed an individual water amount calibration method with glass capillaries,
which can additionally be used for comparison between laboratories.

The glass capillary (borosilicate, see figure 3.10) can be filled with water of desired
volume (0.1-5.0ul) and isotopic composition. It is closed airtight by melting the
edges off and the exact volume is defined by scanning the capillary and comparison
with the 1 ul labels. This procedure is repeated five times and the mean value gives the
exact volume with an volume uncertainty of 0.025 ul. In total 45 capillaries (table A.12
and A.13) were measured to calibrate a volume spanning a range from 0.2 up to 4.3 ul
(see figure 3.10), which yielded a linear regression as y = (5.9 x 10719 . 2 — 0.011) pl.
The capillaries are measured weekly to monitor the stability of the calibration.
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Figure 3.10: Left: The integrated measured volume signal in ppmV is plotted against
the water volume in ul derived form the glass capillaries. The resulting linear regres-
sion y = (5.9 x 107192 —0.011) gl is used to determine the released amount of water
from speleothem samples. Right: Picture scan of two glass capillaries at which the
black labels indicate one microlitre steps. The added water is clearly visible as a dark
column.
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3.5 Calibration

3.5.3 Volume accuracy of syringes compared to glass capillaries

The standard method for calibrating the water amount is by manual injection of var-
ious water volumes in the range of typical fluid inclusions. This has the advantage
that the preparation line does not have to be opened and injections can be performed
sequentially. With an injection port directly in front of the sample inlet (see point B
in figure 3.1), an actual sample is simulated. I found, however, that different syringe
brands have varying volume accuracies and do not achieve the accuracy of glass cap-
illaries regarding the water amount. Therefore, I have selected two brands Hamilton
and SGFE, which are common for water amount calibration and tested them more in-
tensively for accuracy and reproducibility.

To cover a volume range from 0.1 to 5 ul, two syringes with different volumes were
used of both Hamilton and SGE. The 1 ul-syringe for all injections up to 1 ul and the
5 ul-syringe for all larger injections. The 1 ul-syringe from SGE is equipped with an
additional injection help, which enables homogeneous injection and thus, achieves a
higher volume accuracy. However, various problems with the handling of the syringes
appeared. In some cases it was difficult to penetrate the septum or septum residues re-
mained in the syringe needle and blocked it. Furthermore, the later evaluation showed
that the actual injected volume deviates from the measured one. This is visible in
figure 3.11, where the actual injected volume in ul is plotted against the evaluated
volume in ppmV -s. Both syringe brands vary significantly in the evaluated signal, i.e.
in the actual signal measured with the CRDS analyser and integrated over the peak
duration (evaluation details see section 3.4), compared to the glass capillaries. From
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Figure 3.11: Left: The injected volume of the syringes is plotted against the inte-
grated measurement signal ppmV - s for the Hamilton syringe (black circles), the SGE
syringe (red circles) and the glass capillaries (blue triangles) with linear regression
(black line). The actually injected volume of the syringes does not reproduce ade-
quately. For a better overview, no error bars are included. Right: A zoom for the
small volume range below 1 ul is shown.

47



3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

figure 3.11, it is recognizable that especially Hamilton can not reproduce the desired
volume and show significant scatter. The volume uncertainties of the syringes are:
+0.02 pl for 1 pl-syringes and £ 0.1 pl for 5 ul-syringes. The volume accuracy of the
glass capillaries from the graphic evaluation is much better with £0.0025 pl.

I have found that with the assistance of syringes only an approximate calibration
for the released water amount is possible. Therefore, I decided to use the calibration
method with water - filled glass capillaries for the water amount.

3.6 Precision of isotope measurement
The precision of isotopic measurements for the fluid inclusion line is quantified using

the amount of variation in the data set based on the calculated standard deviation (see
figure 3.12). For this purpose, water of a known isotopic composition, in this case VE,
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Figure 3.12: Precision of the isotope measurements with the individual injections
(circles) shown over the gradually volume increase from 0.1 to 4.0 ul. The resulting
mean values with associated standard deviation are shown as dots in green for oxygen
and in blue for hydrogen. The standard deviation decreases with increasing volume.
Thus, the precision of the isotope measurement improves with increasing volume. The
black line gives the expected values for VE - tap water, which are: 680 =-8.57 %o
and 02H =-61.04% in VSMOW. The results of the individual measurements are
listed in table A.14.
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3.7 Possible disturbance effects during stable isotope measurement

was injected several times. The volume of the injection is gradually increased from
0.1 to 4.0 ul. Even if the number of injections is not equal for all volumes, a clear
decrease of the standard deviation with increasing volume becomes apparent. For vol-
umes above 1.0 ul, the standard deviation reduces from 0.50 to 0.15 %o for §'%0 and
from 1.5 to 0.4 %o for 6°H in VSMOW, respectively. For small volumes, i.e. below 1 pl,
the individual values scatter significantly around the expected value (60 =-8.57 %o
and §?H=-61.04%0 in VSMOW). This indicates that small volumes have a higher
standard deviation than larger ones. Accordingly, the precision of the isotope mea-
surement improves with increasing volume.

The measurements shown in figure 3.12 demonstrate a high reproducibility of iso-
tope ratios determined from pul water aliquots. However, this alone is not sufficient to
conclude the actual uncertainty of a single measurement. Systematic errors must also
be taken into account. For example does the difference in isotopic signal between the
water vapour background used and the sample signal (see section 3.7.4) affect the actu-
ally measured isotopic composition of the sample? Even though the reproducibility for
larger volumes above 1 pl decreases to less than 0.2/0.4 % VSMOW for 6'30/62H, we
have decided in favour of a conservative estimate of the uncertainty. The uncertainty
for a single measurement of the isotope signal is 0.50 %o for 680 and 1.50 %o for 62H
in VSMOW.

3.7 Possible disturbance effects during stable isotope
measurement

When measuring fluid inclusions in speleothems, processes during sample processing
and water extraction occur which can influence the measurement of the actual isotope
signal. First, the liquid water in the inclusions is evaporated and then mixed with water
vapour, that has a different isotopic composition than the sample. In addition, crushing
a speleothem sample produces a large fresh calcite surface to which water molecules are
most prone to adhere. Furthermore, the CRDS system used has an internal memory
effect [Gupta et al., 2009], which should be excluded with the construction of the
preparation line. In the following, I investigated which effects are present and how
they can influence or change the actual measurement of the isotopic signal.

3.7.1 Memory effect

If water samples are measured with CRDS system, the cavity is evacuated between
each measurement. This leads to an unavoidable memory effect since water molecules
from the previous measured sample remain in the cavity and affect the current one.
This can be avoided when measuring liquid samples by injecting several times, because
the isotopic signal will exponentially converge to the actual sample signal. This proce-
dure is difficult to adapt for speleothem samples as they contain only small amounts of
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3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

water and, therefore, only one measurement is possible. Gupta et al. [2009] developed
a method to quantify the memory effect and to apply this to speleothem samples.
Since the memory effect is very consistent, a factor X can be determined with which
the measured sample signal is subsequently corrected. In doing so, X is the memory
coefficient for the n'* injection with (M — P)/(T — P), where M is the measured value
of the actual injection, T is the expected value of the actual injection and P is the
value of the previous injection. A memory coefficient close to one indicates that the
measured value corresponds to the expected one.

To test the memory effect for the fluid inclusion line, a set of various standard wa-
ters was measured six times each including multiple injections (see table 3.3). It is
ensured that the isotopic composition of the second injection is significantly different
from that of the first one. Then, a possible memory effect can be quantified. Therefore,
I started with the injection of VE - tap water, followed by several injections of NG
- North Greenland water. These two standard waters have a large difference in the
isotopic signal (with approximately 22 %o for 6'*O and 182 %o for 62H) and thus, a

Injections X (6'80) X (0°H) Injections X (§'80) X (62H)

test A test D
1 1.00 1.01 1 0.97 1.00
2 0.99 1.01 2 0.98 0.99
3 0.99 1.01 3 0.98 1.01
4 0.99 1.01 4 0.98 1.00
test B test E
1 1.00 1.01 1 0.99 1.01
2 1.01 1.02 2 1.01 1.03
3 1.01 1.01 3 0.99 1.01
test C test F
1 0.99 1.00 1 0.98 1.00
0.99 1.00 2 0.98 1.00
3 0.99 1.01 3 0.98 1.00

Table 3.3: Measured memory coefficient for the fluid inclusion line with six sets of
multiple injections denoted by the capital letters A to F. The memory coefficient X
is a ratio of (M - P) divided by (T - P), where M is the measured value of the
actual injection, T is the value of the actual injection and P is the expected value of
the previous injection. A X value close to one indicates that the measured sample
corresponds to the expected value and that no memory effect occurs. Detailed data
of all individual injections used to characterize the memory effect is listed in table
A.15.
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3.7 Possible disturbance effects during stable isotope measurement

high probability of measuring a memory effect. Regarding the fluid inclusion line, it
proves that the mean memory coefficient with corresponding standard deviation for all
measurements is X (6180) = 0.9940.01 and X (62H) = 1.01+0.01, respectively. Thus,
a memory effect can be excluded. For a better classification of the results, Uemura
et al. [2016] found a system memory for the 1st injection of previous water, expressed
as a percentage of the previous sample, to 29.3 % for §°H and 6.9 % for 6'80.

3.7.2 Amount effect

Recent studies on isotopic measurements in fluid inclusions of speleothems with similar
CRDS systems have shown that an amount of water inferior to 1 ul can have a signif-
icant effect on the measured isotope signal [Brand et al., 2009; Arienzo et al., 2013;
Uemura et al., 2016]. Thus, Brand et al. [2009] found a deviation of 0.5 %0 for 680
and even 1.6 %o for 62H from expected values when the injected water was reduced
from 1.0 to 0.5 ul. The deviation increases even further for volumes below 0.5 ul and
becomes nonlinear. For the fluid inclusion line a deviation of the isotopic composi-
tion for volumes below 1 pl is not observed (see figure 3.12 and table A.14). This is
demonstrated in the precision measurements (see section 3.6), where injections of 0.1
up to 4.0 ul were measured. The standard deviation for volumes below 1 ul is signifi-
cantly higher than for larger ones, but no trend can be detected. This is mainly due
to the different measurement methods. As already mentioned, the line is operated in a
constant flow mode. So a constant water vapour background (approximately 6 000 to
8000 ppmV) is generated, which leads to a completely saturated surface of the entire
line and the cavity in the CRDS analyser. Accordingly, it is not operated with almost
dry conditions, which would correspond to a water vapour concentration of 10 up to
500 ppmV [Picarro, 2015]. With a cavity close to dry conditions, water molecules tend
to adhere to the cavity walls, which may lead to fractionation. This is especially rel-
evant when evaluating small water amounts. With a completely saturated surface of
the cavity and the entire line, it is possible to measure even small water amounts down
to 0.2 ul with a precision of 0.50/1.50 % VSMOW for oxygen/hydrogen.

3.7.3 Adsorption and/or desorption on calcite surface

When a speleothem is crushed, a large fresh calcite surface is produced to which water
molecules are most likely to adhere. This can lead to a large negative isotopic shift for
both oxygen and hydrogen, as Dennis et al. [2001] showed for crushing at room tem-
perature. Dennis et al. [2001] found that the degree of depletion is inversely related to
the water/calcite ratio with fractionation of 6**0 exceeding — 10 %0 and 62H — 20 %o.
Under vacuum conditions, a temperature around 130°C [Vonhof et al., 2006] or even
110 to 120°C [Dublyansky and Spétl, 2009] is sufficient to avoid adsorption. Although,
adsorption and/or desorption is less problematic working with a humid water vapour
background, because the entire line and the cavity is saturated it should studied care-
fully.
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3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

I used an artificial inclusion calcite system (speleothem analogues) as it is described
by Dennis et al. [2001] to quantify the influence of adsorption on the actual measured
isotopic signal. Therefore, I measured Iceland spar (see figure 3.13) together with a
water - filled glass capillary such as those used for water amount calibration. The size
of the compact Iceland spar piece as well as the released water of the capillary repre-
sent a typical speleothem sample with a water content of 4.3 up to 7.8 ul per g calcite.
An exemplary sample composition of the artificial inclusion calcite system is shown in
figure A.18 and detailed data is listed in table A.16.

I started with inserting Iceland spar (inclusion free) without additional water in glass
capillaries. As it can be seen in figure 3.13, the water vapour concentration decreases
during crushing, which is indicative of an adsorption of water molecules on the freshly
generated calcite surface. The measurement shown in figure 3.13 included a piece of
Iceland spar with a sample weight of 0.25¢g and led to an adsorption of 0.023 ul of
water from the water vapour background. An effect on the isotopic background signal
(see figure A.17) could not be detected. With further measurements of the artificial
inclusion calcite system, it is investigated to what extent this limited adsorption of
water influences the actually measured isotopic signal. In total, I prepared and com-
pared five such calcite systems with measurements containing only water - filled glass
capillaries without additional calcite. As can be seen in figure 3.14, the adsorption of
water molecules on the calcite surfaces does not affect the actually measured isotopic
signal. Both oxygen (green triangles) and hydrogen (blue triangles) accurately match
the expected value.
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Figure 3.13: Left: Compact piece of transparent and inclusion free Iceland spar.
Right: Measurement of the water vapour concentration during crushing of a 0.25g
Iceland spar piece. The decrease of water vapour concentration indicates an adsorp-
tion of water molecules on the freshly generated calcite surface. More precisely a
depletion of 0.023 ul of water during crushing. The interval to calculate the water
vapour background before and after the sample measurement is marked in orange,
the actual measurement in blue.
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Figure 3.14: Results for the artificial inclusion calcite system, for which compact
Iceland spar pieces were measured together with VE water - filled glass capillaries,
shown as triangles. The circles indicate water - filled glass capillaries (VE) without
calcite addition measured for comparison, with §'%0 data in green and 62H in blue.
A fractionation due to adsorption of water molecules on the calcite surface is not
detectable. Detailed data of the individual measurements is listed in table A.16.

With a standard deviation of 0.05 %o for §'%0 and 0.22 %o for 62H in VSMOW, a very
good reproducibility of the individual measurements is achieved.

The artificial inclusion calcite systems selected here correspond to a speleothem ana-
logues with a high water content (4.3-7.8 ul/g). In order to conclusively quantify the
influence, it is recommended to measure small amounts of water, ranging from 0.2 to
0.5 ul, and Iceland spar samples with a weight of 0.5g. Here the analysed Iceland spar
sample (0.25g) adsorbed 0.023 ul water, which correspondence to a ratio of approxi-
mately 0.1 ul water per g calcite.

Affolter et al. [2014] describes desorption of atmospheric water vapour on the sta-
lagmite sample when it is placed in the copper tube and connected to the line. An
increase in water vapour concentration is visible for the first minutes of heating and
depends on the sample surface and amount of material. The desorption signal of four
different sample changes is shown in figure A.15. The total release of the desorbed
water lasts between 30 to 60 minutes and is completed before the actual measurement
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3 Fluid inclusion line - setup, data evaluation, calibration and intercomparison

takes place. This is ensured by monitoring the background water vapour concentra-
tion, because only when the original background value is reached again, the sample is
crushed and measured.

3.7.4 Effect of isotopic background

I have investigated to what extent the isotope signal of the background vapour influ-
ences the actually measured sample signal. This is especially relevant for speleothem
samples whose isotopic composition strongly differs from that of VFE-water that is
used as the standard background.

For this test measurement, I injected VE-tap water on four different water vapour
isotope backgrounds (see figure 3.15). The used standard background waters are: NG -
North Greenland, CC - Alps Colle, VE-tap water and WW -lake water (Willersin-
nweiher). In addition, I decided to use VE-water as injection, because its isotopic
composition is comparable to the majority of mid - latitudes speleothems. In total, five
times 3.0 ul of VE-water were injected, the results of the individual measurements
are listed in table A.17. This time the standard deviation is not used as an uncer-
tainty. Since the uncertainty of the expected value must also be taken into account,
with 0.08/0.7 %o for 6¥0/§?H, which are measured independently with the LGR anal-
yser (see section 3.5). If the isotope signal of the sample to be measured corresponds
to that of the background (see figure 3.15) no deviation can be detected. Therefore,
the mean value corresponds to the expected value, which for example is the case if
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Figure 3.15: The deviation of the measured injected isotope signal to the expected
value is shown depending on the difference of the injection to the isotope signal of
the background. Single injections are shown as circles and the corresponding mean
values as dots, with oxygen in green and hydrogen in blue. The green/blue line in-
dicates the linear regression of the single measurements. No deviation is detectable
if the measured isotopic signal corresponds to the one of the water vapour back-
ground. Whereas, if the deviation between the measured isotopic signal and that of
the background increases, a deviation becomes obvious.
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3.7 Possible disturbance effects during stable isotope measurement

VE - water is injected on VE background water vapour. However, if the deviation be-
tween the measured isotopic signal and that of the background increases a deviation
is obvious. For example, with VE injections on NG water vapour background, a devi-
ation of 40.40 %o for 6'30 and even +2.87 %o for 62H, both in VSMOW, is measurable.

It is debatable why such a characteristic arises. Intuitively one would assume that
the isotopic signal of the background affects the actual measurement. The prepara-
tion line is completely saturated with the background water vapour and is, therefore,
dominated by this isotope signal. For a relatively light background water like NG
this would mean that the measured VFE signal should shift to lighter and thus more
negative values. Considering that North Greenland with an isotopic composition of
—26.54 %o for 680 and —212.11 %o for 6°H in VSMOW, is much lighter than VE tap
water with 6180 = —8.75%¢ and 6°H= —61.65%0 in VSMOW. In fact, exactly the
opposite is true. The measured signal of a VFE injection on a NG background becomes
heavier (more positive). It seems that the isotope signal of the injection dominates and
the background signal is superimposed at the moment of injection. The water vapour
background is generated by the peristaltic pump, which supplies 1 ul per minute to
the line. The injection, however, introduces 3 ul into the line within a few seconds.
Thus, at the moment of injection the dominant isotopic signal is that of the injec-
tion. In the case of a VE-injection on NG - background, the isotopic signal of North
Greenland water vapour background is superimposed by relatively heavier water and
thus, the actually measured injection signal is shifted to heavier (more positive) values.

To test this hypothesis and actually determine a correction factor for the isotope mea-
surements in fluid inclusions, further measurements need to be performed. In doing so,
the volume of the injections should be varied (0.2-5ul) in order to test whether the
injection itself actually has an influence on the measured isotope signal. If this hypoth-
esis is correct a clear volume dependence should be detectable, i.e. a stronger deviation
of the measured isotope signal for larger injected volumes. Hence, an intensive study
have to be performed to quantify the effect accurately and apply this correction to real
speleothem samples. Indeed, this deviation is only relevant for speleothem samples
with an significantly different isotopic composition of the fluid inclusions compared to
the background (£ 10 %o for §180 and +50 %o for §2H). Otherwise it is covered by the
conservative uncertainty estimation.

3.7.5 Implication for fluid inclusion measurements

I investigated how possible disturbance effects could influence or change the actual
measurement of the isotopic signal of fluid inclusions. Thus, I was able to show that
both a memory effect and an amount effect can be excluded. In addition, the ad-
sorption of water during crushing is observed, but this has no effect on the measured
isotope signal of the speleothem sample. However, the selection of the water vapour
background used has an impact. It is important to ensure that the isotope signal of the
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water vapour background corresponds to that of the fluid inclusion of the speleothem
to be measured (£10%o for 6'*0 and 4+50%0 for 62H). Although, a considerably
lower standard deviation is observed for released volumes above 1 ul. T have decided
on a conservative estimate of the error of the individual measurement, with 0.5 %¢ for
680 and 1.5%0 for 6°H in VSMOW. This uncertainty can be reduced by measuring
replicates.

3.8 First test speleothem samples - reproducibility and
accuracy measurements

After successfully construction and calibrating the fluid inclusion line the first mea-
surements were performed. For testing purpose different speleothem types were in-
vestigated, e.g. soda straws, stalactites and pool spars from German caves. These
first measurements were mainly used to become familiar with the measurement rou-
tine and to optimally adapt the evaluation software. In order to verify the accuracy
of the fluid inclusion line, I exchanged reference samples with Hubert Vonhof (Max
Planck Institute for Chemistry in Mainz) and wit Stéphane Affolter (University of
Bern). The speleothem measurements performed in Mainz were conducted with a
standard Thermo Finnigan TC - EA pyrolysis unit with an additional crusher and cold
trap unit [Vonhof et al., 2006], while the measurements in Bern were performed with
the analogue CRDS setup [Affolter et al., 2014].

3.8.1 Different types of speleothem samples - reproducibility
measurements

I selected three different speleothem samples for the first test measurements: soda
straws, stalactites and pool spars. For all three samples sufficient material was available
to perform several replicate measurements. The Bunker Cave (soda straw), as well as
the Dechen Cave (sinter) and also the Hiittenblaserschacht Cave (pool spar) are located
close to Iserlohn. All three caves are part of extensive DFG funded research group
DAPHNE. Moreover, in section 5 I examined the stalagmite Bu4 from the Bunker
Cave in more detail.

Sinter and soda straws from Dechen Cave and Bunker Cave

The sinter (left side of figure 3.16) has grown on a power cable accordingly, a re-
cent growth can be assumed. Overall six replicate measurements (see table 3.4)
were carried out with a mean value and the corresponding standard deviation of
60 = —6.01 £0.65% and 6*H = —48.58 £ 0.66%0 in VSMOW. For a better
classification of the measured isotope values the mean drip water composition for the
Dechen Cave is given here: §'80 = —8.4% VSMOW [Wurth, 2003]. It is evident that
the measured fluid inclusion value for oxygen deviates significantly from the expected
drip water composition. A reason for the shift of the oxygen isotopic composition to
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Figure 3.16: Left: A sample picture of a recent precipitate growing on a power cable
in the Dechen Cave. Right: Picture from a soda straw growing in the Bunker Cave.

heavier (more positive) values could be, that the sinter experienced additional heating
during calcite precipitation. Because the sinter grew on a power cable, which is used
for lighting. Therefore, it can be assumed that the cable heats up under electricity flow
and accordingly, also the drip water from which the stalactite precipitates. Neverthe-
less, the replicate measurements show good reproducibility with a standard deviation
of 0.65/0.66 % VSMOW for §'80/§%H.

As a second set of test samples, four replicates of the soda straws (right side of
figure 3.16) from the Bunker Cave were analysed. The resulting mean values with
corresponding standard deviation are given to 680 = —5.80 +1.11 %0 and to §2H =
—47.52 £ 2.76 %o in VSMOW (see table 3.4). In direct comparison to the sinter sam-

sample mass  water water 680 error 6°H  error

1D volume content

[g] (1] (Wl/g] (%] [%o]  [%e]  [%o]
Dechen Cave

A 1.2 0.66 0.5 -6.20 0.50 -47.90 1.50
B 0.5 0.27 0.5 -6.45 0.50 -49.44 1.50
C 0.6 0.30 0.5 -5.57 0.50 -48.99 1.50
D 0.6 0.34 0.6 -6.17 0.50 -48.75 1.50
E 0.5 0.27 0.5 -4.81 0.50 -47.51 1.50
F 1.2 0.61 0.5 -6.83 0.50 -48.87 1.50
mean - - - -6.01 0.65 -48.58 0.66

Bunker Cave

A 1.3 0.63 0.5 -7.26  0.50 -50.19 1.50
B 14 0.26 0.2 -4.53 0.50 -47.18 1.50
C 2.7 1.01 0.4 -6.47 0.50 -49.57 1.50
D 1.6 0.18 0.1 -4.95 050 -43.15 1.50
mean - - - -5.80 1.11 -47.52 2.76

Table 3.4: Results of water stable isotope measurements (in VSMOW) of fluid inclu-
sions for sinter (Dechen Cave) and soda straws (Bunker Cave) are given as well as
the mean values with corresponding standard deviation.
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ples a stronger variability of the individual measurements becomes noticeable. Here
the standard deviation increases from 0.65 to 1.11 % (10) for 680 and from 0.66 to
2.76 %o (10) for §2H. For the soda straw samples no further information like 5'®Oqcite
or age distribution is available. However, if the results are compared with current
drip water data from the Bunker Cave a distinct deviation is noticed. Current drip
water data is given to —8.0 0.2 %o for 680 and —54.5 &+ 1.5 %o for 62H, in VSMOW
[Riechelmann et al., 2011]. Soda straws are narrow, hollow tubes of stalactites in which
the drip water flows along the length of the soda straw growing down from the cave
ceiling. Depending on the drip interval, the length of the flow path and the humidity
in the cave, it is not clear how fluid inclusions are formed. Therefore, also evaporation
effects during soda straw formation are possible and it is questionable whether a drip
water isotope composition is to be expected at all.

Pool spar from Hiittenblaserschacht Cave

I selected pool spars from three different ponds out of the Hiittenblédserschacht Cave to
analyse them as a third set of test samples. Pool spars are speleothem formation, which
precipitate below the water surface. The entrapped fluid inclusions should therefore
correlate to the isotopic composition of the pond. It is possible that the ponds may
experience evaporation effects as well. Also for these samples no further information
about age distribution or calcite composition is available.

Nevertheless, I compared the stable isotope results with the LMWL (see figure 3.17),
which is computed from rain water samples collected at the German Cave Museum
Iserlohn. It shows that the respective individual measurements (see table A.18) of
the different ponds reproduce and scatter around the LMWL. The fact, that the data
fits to the LMWL excludes evaporation effects in the pond water and proves that the
measurements are reliable. Since no drip water data is available for this cave, the data
of the Bunker Cave (blue triangle) is shown for a better comparison. The uncertain-
ties of the mean values plotted in figure 3.17 are calculated after the propagation of
uncertainty. The standard deviation appears to be meaningless for a mean value con-
sisting of two individual measurements. In particular, the composition of the oxygen
isotopes of pool spar and drip water agrees very well. The mean value of all pool spars
from the different pond results to —7.62 4 0.23 %o for 680 and —50.87 & 1.47 %o for
§%H. Compared with the mean drip water of the Bunker Cave, —8.0 0.2 %o for 680
and —54.541.5 %o for §2H, especially the 6'80 data corresponds within the uncertainty.

In summary, the fluid inclusion line is able to measure different types of speleothem
samples with high reproducibility, e.g. for the sinter growing on power cable with a
standard deviation of 0.65/0.66 %o for §1¥0/6%H. The measurement of the pool spar
and the comparison with the LMWL shows that reliable stable isotope values are pro-
duced for fluid inclusions of speleothems. Furthermore, the conservative uncertainty
estimation of 0.5/1.5 %0 for 6180 /§%H chosen for this purpose proves to be realistic.
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Figure 3.17: Results of stable isotope measurements of fluid inclusions for pool spar
speleothems from Hiittenblaserschacht Cave. The mean values for the three different
ponds are shown as dots and the corresponding individual measurements as circles.
The isotopic composition of the mean drip water (blue triangle) for the Bunker Cave
is shown as well as the LMWL (black line) with 62H = 7.72- 5180+ 7.14 % VSMOW
[Riechelmann et al., 2017).

3.8.2 Comparison between laboratories - accuracy measurements

Two different types of speleothem samples were selected for the comparison measure-
ments with Hubert Vonhof (Max Planck Institute for Chemistry in Mainz) and with
Stéphane Affolter (CRDS analogous in Bern). The stalagmite from the Huagapo cave
in the Peruvian Andes was measured with both setups, whereas the flowstone from the
Scladina cave in Belgium was only measured with IRMS. I measured a series of five
replicates in the case of Huagapo and four of Scladina with the fluid inclusion line.
The results for each measurement as well as the mean value and the corresponding
standard deviation are listed in table 3.5.

It proves, that the individual measurements of Huagapo reproduce within a stan-
dard deviation of 0.75/1.35 %o for §'80/§2H and of Scladina with a standard deviation
of 0.48/0.35%0 for §'80/6%H. In a direct comparison Heidelberg/Mainz the results
for Scladina correspond within the uncertainty, with —5.49/ — 5.51 % for 6'*O and
—44.59/ — 42.50 %o for 62H. For Huagapo the oxygen isotope data reproduces as well
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Huagapo

mean with stdv

IRMS (Mainz)
Picarro (Bern)
Picarro (Bern)

Scladina

mean with stdv

IRMS (Mainz)

sample

#

o Q0 T o

Qo o w

5180 error 502H error
VSMOW VSMOW VSMOW VSMOW
(Y00] [%oo] [%o] [Yo0]
-16.61 0.5 -122.18 1.50
-17.34 0.5 -125.81 1.50
-16.84 0.5 -124.47 1.50
-15.68 0.5 -123.62 1.50
-17.92 0.5 -125.66 1.50
-16.88 0.75 -124.35 1.35
-16.25 0.40 -118.00 3.00
-16.1 0.5 -124.2 1.5
-16.3 0.5 1245 1.5
-5.70 0.50 -44.76 1.50
-5.86 0.50 -45.03 1.50
-5.80 0.50 -44.50 1.50
-4.68 0.50 -44.09 1.50
-5.51 0.48 -44.59 0.35
-5.49 0.40 -42.50 3.00

water
content

[1l/g]

1.92
1.72
2.03
1.59
1.62

1.57
2.97
2.77
1.70
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Table 3.5: Results of the inter laboratory comparison for the stable isotope mea-
surements of fluid inclusions. With the fluid inclusion line a series of replicates was
measured for Huagapo as well as for Scladina. The mean values with the correspond-
ing standard deviation are given in direct comparison to the single measurements

performed with IRMS or CRDS.



3.9 Technical conclusion

with —16.88/ — 16.25 %0 measured at Heidelberg/Mainz. Indeed, for hydrogen the ex-
pected value is not precisely reached and deviates significantly with almost 6 %o. This
could also be explained by the natural heterogeneity in the samples, which is already
recognizable in the larger standard deviation for Huagapo in comparison to Scladina.
In fact, two bands were measured for Huagapo (data listed in table A.19), which differ
from each other by about 4 %c. Since stalagmites are natural samples it is difficult to
measure actual replicates. All units are given relative to VSMOW.

If Heidelberg and Bern are compared, a very good correspondence between the two
setups is shown. With the CRDS analogous based in Bern the fluid inclusions of the
stalagmite Huagapo were measured to - 16.2 %o for 6'80 and - 124.35 %o for 62H. This
is in excellent agreement with the mean values of this fluid inclusion line, which are
—16.88 + 0.75 %0 for 680 and —124.35 + 1.35%0 for 6°H, with all units relative to
VSMOW.

This inter laboratory comparison shows that with the fluid inclusion line based in
Heidelberg it is possible to perform very accurate stable isotope measurements, with
e.g. for Scladina a deviation below 0.1/2.0%0 for 6'*0/6%H. These results are par-
ticularly important as two different measurement methods, IRMS and CRDS, were
compared. Comparing the same measurement technique with the CRDS analogous
based in Bern, accurate stable isotope results were achieved.

3.9 Technical conclusion

o Advantages of the CRDS method (with L2130-i analyser) compared to
IRMS

— The CRDS method is less expensive than the classical method with
IRMS (factor 3-5).

— The measurement setup (preparation line) is mechanically more ro-
bust, because it is not operated in vacuum but with an overpressure
of about 0.5 bar.

— L2130-i analyser from Picarro provides accurate and precise stable
isotope measurements with a guaranteed precision of 0.080/0.500 %o
for 6180 /6?H at a water vapour concentration of 2 500 ppmV and with
an integration time of 100s [Picarro, 2015].

— The L2130-i analyser shows no dependence of the precision of the sta-
ble isotope measurements regarding the water vapour concentration
[Aemisegger et al., 2012].
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o Advantages of operation with a saturated water background

— The isotope and volume calibration for the preparation line with con-

nected L2130-i analyser remains valid for several months.

I could prove with direct comparison measurements that the adsorp-
tion of water molecules on the speleothem surface has no effect on
the measured isotope signal.

I could exclude an amount effect as well as the memory effect for
this system. However, when choosing the water vapour background
it should be taken into account that the isotope signal of the sample
and that of the background do not deviate significantly in the isotopic
composition (£10 %o for 680 and 4-50 %o for §2H).

e Precision and accuracy of the fluid inclusion line

— I achieve a precision of isotope measurements for aliquots of water

from speleothem fluid inclusions to 0.5 %o for §'%0 and 1.5 %o for §2H
relative to VSMOW.

This precision is comparable to other CRDS systems such as Arienzo
et al. [2013] (0.5/2.0%0 for 6'¥0/6%H) and Affolter et al. [2014]
(0.5/1.5%0 for §'80/5%H).

The precision is also comparable to traditional measurement tech-
niques, like IRMS, which achieve a precision to + 0.5 %0 for §'%0 and
2.0 %o for 62H for a single measurement [ Dublyansky and Spdtl, 2009).

The inter laboratory comparison measurements with IRMS [ Vonhof
et al., 2006] and the CRDS analogous [Affolter et al., 2014] show the
accuracy of the isotope measurements performed with fluid inclusion
line.



4 | Case study |: Late Holocene
stalagmite (1911 - 2010) in the
transitional climatic zone - Romania,
Closani Cave

I selected Stam 4 for a first detailed fluid inclusion study on a late Holocene stalag-
mite covering the 20th century between 1911-2010. The stalagmite was collected by
an expedition conducted by Sylvia Riechelmann in the Clogani Cave, which is one of
the most famous caves in Romania. The cave was first cited scientifically in 1913 and
has been part of intensive scientific studies [Diaconu, 1990; Constantin and Lauritzen,
1999; Warken et al., 2018]. Located on the southern slope of the Carpathians, the
cave is in a climatic transition zone between Central Europe and the Mediterranean.
Thus, the mountain range divides Romania into two main regions with different cli-
matic characteristics by blocking the mixing of the northern polar/Arctic and southern
Mediterranean air flows. For the Carpathians temperature reconstruction of the late
Holocene are mainly based on tree rings [Levanic¢ et al., 2013; Popa and Kern, 2009],
which are biased towards the growing season (summer months). However, Warken
et al. [2018] showed that speleothem growth in the Clogani Cave is favoured in au-
tumn and winter. The actively and fast growing stalagmite Stam 4 contains many
water - filled inclusions (mean water content of 0.90 ul/g), making it a perfect research
object for studying the stable isotope composition in fluid inclusions for a modern
stalagmite. Due to the continental location of the cave, the relationship between the
isotopic composition of precipitation and air temperature (62H/T) [Rozanski et al.,
1992] can be used to determine cave temperatures by measuring the §2H fluid signal
[Demény et al., 2017; Affolter et al., 2019]. The results can be directly compared with
the local mean annual air temperature records [Micu et al., 2016] and checked whether
this method provides reliable temperatures for the more pronounced warming trend
in Europe since 1979 [Bohm et al., 2010]. This first application was also part of a
bachelor project carried out by Marie-Christin Juhl in 2019.

4.1 Site description - the Closani Cave

The Clogani Cave is located on the southern slope of the Carpathians (see figure A.19)
at an altitude of 433 m above sea level close to the village Clogsani. The cave developed
in massive limestones of Upper Jurassic-Aptian age [Constantin and Lauritzen, 1999],
whereby the limestone mainly consist of calcite (93 %) and dolomite (7 %) [Diaconu,
1990]. The cave is divided into two main passages (see figure A.19), which split shortly
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after the entrance and sum up to a total length of 1458 m. While the Crystal Passage
is located at an upper level, approximately 8 m in average above the other passage,
Stam 4 was collected in the deeper sector of the Laboratory Passage. The stalagmite
was removed at a maximum distance of one meter from the drip site CL3, where the
host rock overburden is approximately 100 m.

A detailed monitoring programme in the years 2010 to 2012 and 2015 showed re-
markable microclimate stability for the Clogani Cave, with a mean air temperature of
11.4° C varying with inner annual variations of 0.5°C and a relative humidity close
to 100 % [Warken et al., 2018]. The cave air pCOg pattern follows a strong seasonal
cycle with high values in late summer (up to 8000 ppmV) and low values during winter
(2000 ppmV). The winter time (October - March) is also the period where 75 to 100 % of
the meteoric precipitation is available for infiltration, which almost disappears during
summer due to evapotranspiration. Warken et al. [2018] showed, that calcite precipi-
tation is strongly favoured in winter and suppressed in summer, as both pH and Ca?*
of the drip water follows the seasonal cycle of cave air pCO4. The isotopic composition
of the drip water for CL3 shows no seasonal cycle and is rather constant with a mean
value of —9.62 + 0.20 %o for oxygen and —66.32 + 1.68 %o for hydrogen in VSMOW,
detailed data see table A.20. Mean annual air temperature records for three stations
close to the cave are shown in figure A.20. The meteorological station with the longest
record (1896 - 2008) is located in the city of Drobeta Turnu Severin and gives a MAAT
(Mean Annual Air Temperature) of 11.7°C for the last 100 years [Klein Tank et al.,
2002]. The LMWL is determined using stable istope data from the nearest GNIP sta-
tion in Cluj-Napoca (336 m above sea level), which is 260 km from the Clogani Cave
at a comparable altitude above sea level [Cozma et al., 2017].

4.2 Late Holocene stalagmite - Stam 4

The relatively small and fast - growing stalagmite Stam 4 has a total length of 6cm
and an average growth rate of 510 um per year. The stalagmite has grown on solidified
cave floor, which is clearly visible as brown colouring in the lower part (see left side of
figure 4.1). The available piece (light red coloured) to study fluid inclusions is taken
from the edge of Stam 4 with an approximate distance of 1 to 1.5cm from the actual
growth axis. This must be taken into account when determining an age distribution
of the sample levels. In doing so, I attempted to follow the respective growth layers
as well as possible, which are marked exemplarily as red lines on the left in figure
4.1. The stalagmite was dated by layer counting and additional radiocarbon dating
(personal correspondence with Dana Riechelmann and Jens Fohlmeister). Here the
measurements show an increase in 4C activity (see figure A.22), which confirms that
Stam 4 grew at the time of the *C bomb- peak. This increase of the atmospheric
radiocarbon concentration (pmC) in the late 1950s can be identified between 1.9 and
3.9cm distance from top. Accordingly, the '4C dating supports the age depth model
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Figure 4.1: Left: Stalagmite Stam 4 with light red colouration of the sample piece,
which was analysed for stable isotopes in fluid inclusions. The individual sample levels
range form B to K starting at the base of the stalagmite. Right: Age depth model
with dft (distance from top) in pum. The stalagmite was dated by layer counting and
additional '*C measurements, unpublished data provided by Dana Riechelmann and
Jens Fohlmeister.

derived from layer counting (right side of figure 4.1), which shows a constant growth
over the period from 1911 to 2010 without any significant hiatus. Both summer and
winter layers are clearly detectable in the thin - sections (left side figure A.21), whereas
winter layers show a compact structure with less inclusions and summer layers contain
air - and water - filled ones. The uniform growth is also reflected in the crystal structure,
as Stam 4 consists mainly of columnar fabrics (right side of figure A.21).

4.2.1 Sampling strategy for Stam 4

In order to determine the water content (ul/g) of Stam 4 and thus estimate how much
sample material is required per measurement, the piece was divided into two parts
(see left side of figure 4.2). Part II is the smaller piece (length of 2.5 cm), which was
divided into 13 cubes of equal size with a band saw. The sample levels ranging from
B (close to base) to G (top). Since it is the outermost edge of Stam 4, part II is also
called the edge. A diamond wire saw was used to cut part I and to follow the growth
layers as closely as possible. Thereby, in total 28 samples were cut with the sample
levels ranging from B up to K.

Those samples closest to the growth axis are numbered with I, which can be seen
on the right in figure 4.2.
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Figure 4.2: Left: The piece of Stam 4 with the subdivision into part I and II. Right:
Part I and II with sample mapping and corresponding labelling. Part II was mea-
sured first as a test and therefore cut into cubic sample blocks. For the detailed fluid
inclusion study of part I 1 tried to follow the growth layers as good as possible.

4.3 Results
4.3.1 5'%0 and 6%H of fluid inclusions for part Il - the edge

Since growth layers in the marginal section of a stalagmite can no longer be resolved,
an age classification is not possible. Due to the drip water running off at the edge of the
stalagmite, it can be assumed that younger calcite precipitates there and accordingly,
younger drip water is enclosed in the fluid inclusions. For this reason, I compared the
fluid inclusion data of part II (see figure 4.3) with the current drip water. Figure 4.3
shows the individual stable isotope measurements for part II in direct comparison with
the drip water data for the drip site CL3. The resulting mean for the fluid inclusions of
part II is given as 6180 = —9.4740.49 %0 and 6°H = —64.5741.16 %0 and the resulting
mean of the drip site CL3 to 6'®®*0 = —9.62 £ 0.20% and §°H= —66.32 £ 1.68 %0
in VSMOW. The 13 individual measurements of part II reproduce with a standard
deviation of 0.49/1.16 %o for 6180 /§62H.
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Figure 4.3: Fluid inclusion results for part II shown as light blue dots, with the
corresponding mean value and standard deviation as dark blue dot. The drip water
data of CL3 is shown as light green triangles, with the corresponding mean value and
stdv as dark green triangle [Warken et al., 2018]. Additionally, the measurements
match to the LMWL of Cluj-Napoca given to §2H = 8.03 - §1%0 + 11.29 % VSMOW
[Cozma et al., 2017]. The results of the respective individual measurements with

corresponding water content are listed in table A.21.

4.3.2 5'%0 and 6%H of fluid inclusions for part I - relative temperature

determination

Part I of Stam 4 contains sections where the edge of the growth plateau is still identifi-
able. Thus, I attempt to match the age ranges to the corresponding sample levels (see
figure A.23). This was done visually and only partly growth lines could be followed.
It should be explicitly pointed out that this does not lead to clearly defined ages, but
age ranges were associated to the individual sample levels (B to K). Samples near the
base (level B) are definitely older than samples close to the top (level K). Due to the
large uncertainties in the age distribution, only sample levels (B to K) are given in the
following figures. The complete data set of all 28 individual stable isotope measure-

ments is listed in table A.22.
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In the following I will determine temperature changes using two methods. First, with
the classic approach of temperature dependence of the oxygen fraction during calcite
precipitation, called AT,. Second, with the temperature dependence of hydrogen,
called ATsp. Since an absolute temperature reconstruction is difficult and some as-
sumptions are required, I only examined the relative temperature change (A(7)) in
the following. Therefore, I relate this temperature change to the start of stalagmite
growth, thus to sample level B.

Classic carbonate thermometer AT,

The fractionation factor « (calcite-water) can be calculated by the concurrent mea-
surement of 680 g4icire and (5180flm-d. In order to calculate a, I averaged the calcite
oxygen isotope measured at a considerably higher resolution than the §'¥0 fluid data.
This is shown in figure 4.4 as light green dots which are smoothed with an inter-
val corresponding to the edge length (0.5 cm) of the stalagmite samples measured for
fluid inclusions. Here the same constraint appears as with the age distribution, since
80 qicite was analysed at the growth axis and needs to be translated to the position
of the fluid sample piece, resulting in a relative large depth uncertainty. To verify
the reproducibility of the individual measurements, fluid inclusion samples with both
numbering ! and 2 are shown. Although only samples with numbering 7 are used for
further analysis, as they are located closest to the growth axis. This is particularly rel-
evant for level C, which shows significantly higher values then the surrounding samples.
Since C1 and C2 were measured independently and confirm the same value, C1 must
be considered in the data set. For sample level D, only sample D2 is utilized because
D1 is below the evaluation limit with a sample water volume of 0.18 yl. In summary,
all 6180 fluid measurements reproduce within the uncertainty of 0.5 %o and on average
the samples numbered with 1 and 2 deviate from each other by —0.07 £ 0.44 %o for
oxygen, in VSMOW.

The temperature dependence of the fractionation factor « (calcite-water), which is
defined as (1000 + 68O qicire ) /(1000 + 5180f1m-d) becomes visible when using the nat-
ural logarithmic as a scale. This is shown as grey squares in figure 4.4, which varies
between 30.67 and 32.76. For synthetic carbonates at low temperatures Kim and
O’Neil [1997] proposed the following expression: A = 18.03(10%/T) — 32.42 which can
be used to calculate absolute temperatures. The use of a calibration of Ba, Jwy based
on the composition of extremely slow growing calcites from Devils Hole and Laghetto
Basso, would lead to different absolute temperatures [Daéron et al., 2019]. However,
the temperature dependence of the fractionation factor is comparable to the one of
Kim and O’Neil [1997]. With this calibration the temperature change in relation to
sample level B is determined. In figure 4.4, the relative temperature change (orange
dots) varies in the range of approximately 10 K. If this is transferred to the age of the
stalagmite, it would result in a temperature variation of 10°C over the last 100 years.

68



[% VPDB]

calcite

50

-10

-11

B C DEFGH I J K
e A E—

L} I L}
T 1
=
1 1
I—i—tt!—l
1
>
L
I—I—I
1

dft [cm]

4.3 Results
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Figure 4.4: Part I - data of 6180ﬂuid (blue triangles), as well as 6'¥Oqcite (green
triangles) and the resulting fractionation factor A(a) (grey squares) are shown.
Smoothed calcite data (green line) with an interval corresponding to the edge length
(0.5cm) of the fluid inclusion sample piece. The relative temperature change derived
form A(«) related to sample level B is shown as orange dot. For a better overview the
depth (dft) errors of A(a) and A(T') are not shown, but are the same as for §'¥O ;4.
The exact calculation of the respective fractionation factors with the corresponding
propagation of errors is listed in table A.23.
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Temperature calculation based on hydrogen isotopes ATjsp

The relationship between the isotopic composition of precipitation and temperature
was investigated by Rozanski et al. [1992] for Central Europe to +0.59 +0.04 %0 /T for
oxygen and thus 4+4.72 4+ 0.32 %0 /T for hydrogen, in VSMOW. Since the stalagmite
Stam 4 from the Clogani Cave grew under continental climatic influence, the mean
value for Europe seems to be the best estimate to determine the relative temperature
change with the D4/ T relationship (see figure 4.5). As in the immediate envi-
ronment, all GNIP stations only have very short time series (2012-2016) of isotopic
measurements in precipitation and are therefore not adequate to calculate an exact
local hydrogen - temperature dependency.

Figure 4.5 shows the fluid inclusion data of §Dy;,q as blue triangles over the depth
of Stam 4. As it is the case for AT,, the individual measurements with numbering
1 and 2 are shown to prove the reproducibility. On average, the 4D ;4 results of
the samples with numbering 7 and 2 deviate by 0.14 + 0.84 %o, which is within the
uncertainty of the single measurement of 1.5 %o, in VSMOW. Again, the data in level C
appears significantly higher than the surrounding data points, but as it reproduces an
outlier can be excluded. For level D, only sample D2 is used, because DI is excluded
due to a released water volume below the threshold value for evaluation. The relative
deviation of deuterium A(D) to sample level B is shown as a grey square, whereby
the uncertainty of depth is equal to 0D 4, but not shown for a better overview. I
could identify a significant increase for A(D) of 4+4.76 +2.12 %0 between sample level
F and K (see figure 4.5 ), which using the relation given by Rozanski et al. [1992] can
be transferred to a temperature change with a total increase of +1.01 4+ 0.63 °C.

4.4 Discussion

4.4.1 Part Il - verification of the current drip water isotopy

For Part II of the recent stalagmite Stam 4, I could show that with the fluid inclusion
line it is feasible to measure the stable isotopic composition of fluid inclusions, which
corresponds to the isotopic composition of the actual drip water within the uncertainty.
A direct comparison of the mean values of inclusion/drip shows the following results for
§180 with (—9.47+0.49)/(—9.6240.20) %0 and for 62H with (— 64.574+1.16)/(— 66.324
1.68) %o, in VSMOW. The sampling of Stam 4 part II does not allow to assign the
individual samples to an absolute age or an age range. Therefore, only mean values
are discussed here, which are very consistent within the uncertainty. Furthermore, with
the analysis of Part II I could achieve a good reproducibility of measurements of stable
isotopes in fluid inclusions with a standard deviation of 0.49/1.16 %o for 630 /§2H.
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Figure 4.5: Stam 4 part I - data of 0Dyyiq (blue triangles) and the resulting deu-
terium deviation A(D) (grey squares) relative to level B. For §Dyjyq samples with
both numbering 7 and 2 are shown. An increasing trend is visible for A(D) as well as
for A(T). Using the §D/T relationship of 4.72 £0.32 % VSMOW /T [Rozanski et al.,

1992] a total increase of A(T") =1.0140.63°C is obtained.
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4.4.2 Part | - relative temperature determination

First, the relative temperature variation was determined for part I using the fraction-
ation factor approach for oxygen - AT,. In Central Europe, I expect a temperature
increase towards a modern age due to anthropogenic climate change. Accordingly,
with the proportionality of A (10%In(a)) to temperature, a linear decrease towards the
top of the stalagmite should be recognizable. This decrease (A(a) as grey square)
can be detected in figure 4.4 starting at sample level D, i.e. with the exception of
sample levels B and C. However, if I consider the relative temperature variation to
sample level B with the calibration according to Kim and O’Neil [1997], the relative
temperature change varies by + 5 K. Transferring the sample levels to an age range,
this temperature variation would be obtained for the period from 1919 to 2005. One
reason for this unrealistic temperature determination is the fact that the isotopes of
the calcite were measured at the growth axis and the isotopes for the fluid inclusions
at the edge. Accordingly, the measurements do not reflect the fractionation between
calcite and water at the same position. Furthermore, the assumption of equilibrium
fractionation for calcite precipitation is insufficient. Another reason that the precipita-
tion took place in a non - equilibrium regime is the variation in growth rate. The strong
seasonal cycle of the cave air CO4 leads to a stalagmite growth restricted to the cold
season, which results in rapidly changing growth rates that may favour isotopic dise-
quilibrium [Watkins and Hunt, 2015]. Exactly this becomes obvious when considering
the large variation of the fractionation factor a, shown as A (103In(«)) in figure 4.4.
Consequently, a temperature determination according to the temperature dependency
by calcite precipitation is therefore not suitable and leads to an inadequate estimation.

In contrast, hydrogen is not involved in calcite precipitation and therefore an undis-
turbed signal [Affolter et al., 2019; Uemura et al., 2020]. It is directly linked to the
drip water compositions and features a temperature dependence. The characteriza-
tion of the slope of this relationship varies according to the location and altitude, but
can be approximated with a mean value for Europe. Figure 4.6 shows the relative
temperature change (orange dots) derived from the deuterium-temperature relation
of 4.72+£0.64 %/ T [Rozanski et al., 1992]. Here sample level C was not considered due
to the higher 6?H value, which will be discussed later. As already mentioned, an ab-
solute age determination is difficult due to the peripheral position of the sample piece.
However, it is clear that from the base to the top (B to K) the stalagmite is getting
progressively younger. Because of the consistent growth of Stam 4 (see right side of fig-
ure 4.1), I decided to visually transfer the age distribution to the sample levels, which
only applies for samples with numbering 1. Details about this procedure are shown in
figure 4.6. As a result, I have assigned samples level D to the year 1930 and the peak
of the stalagmite piece to the year 2010, with correspondingly large uncertainty. It can
be seen that A(T) is close to zero till a depth of 3cm or an age of 1950, followed by
an increase of 1.01 +0.63 °C till the top of the stalagmite or to the year 2010. On the
right side of figure 4.6 a local MAAT record (grey line) of the station Drobeta is shown
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Figure 4.6: Left: Relative temperature change derived from deuterium (orange dots)
over the depth (distance from top). No absolute age determination is possible, but
the possible age range of Stam 4 is given. Right: The mean annual air temperature
of Drobeta (grey line) for the last 100 years with the smoothed signal (blue line) and
the mean temperature as black line is given [Klein Tank et al., 2002]. The interval
(10 years) of the running mean is the age range that the fluid inclusion samples sum
up on average.

[Klein Tank et al., 2002]. The signal is smoothed (blue line) with a time interval of
10 years, which equals the time frame of the stalagmite pieces. The mean annual air
temperature for the time period from 1928 to 2008 is shown as black line, whereby an
increase in temperature can be identified from 1980 until 2008. This is supported by
findings of Micu et al. [2016] that the temperature for the Romanian Carpathian have
risen by up to 1°C from 1960 to 2010 (see figure A.25). Additionally, the 6th climate
report of the Ministry of Environment and Climate Change claims a mean temperature
increase for Romania of 0.8 °C for the period of 1901-2012 [Ministry of Environment
and Climate Change, 2013]. Considering the AT derived from deuterium, it seems that
around 1950 a temperature increase begins which is not reflected in the local MAAT.
One reason for this could be that the sample section measured here is an edge piece of
the stalagmite, which is located at the margin of the growth plateau. Accordingly, the
growth layers are not distinguishable and a mixing of drip water of different ages can
occur. During precipitation of the calcite at the edge, younger and heavier drip water
is enclosed in the fluid inclusions, which would lead to an earlier and much higher
relative temperature change.

For oxygen isotopes the §'%0/T relationship can vary from 0.17 %:°C~! (marine sta-
tions) to 0.90%°C~! (Antarctic Peninsula), with an average slope for continental
Europe of 0.58 +0.08 %:°C~! [Rozanski et al., 1992; Clark and Fritz, 1997]. In the
following I will compare the slope and the resulting temperature changes with lo-
cal studies. For example, a stable isotope study from Hungary found a relation of
0.37£0.03 %0°C~! for present-day precipitation for a 9 year record [Vodila et al.,
2011]. Another study in Hungary by Varsdnyi et al. [2011], which used noble gases
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in groundwater, derived a slope of 0.47%c°C~! (with the isotopic correction due to
changing sea levels). According to Vodila et al. [2011] I would obtain a relative tem-
perature change of 1.61+0.73°C, which corresponds within the uncertainty to the
one determined previously to 1.01 4 0.63 °C. However, I decided on the §'80/AT de-
pendence according to Rozanski et al. [1992], as he considered 47 stations in Europe
with the longest record in Vienna over 30 years. If Rozanski et al. [1992] focuses on
seasonal changes, a much smaller slope for Europe with a mean of 0.34 4 0.02 %0°C~*
is obtained, which is similar to that of Vodila et al. [2011]. Since there is a wide
range of "climates" within an annual cycle, the temperature coefficient for long- term
temperature changes is advantageous for paleoclimatic reconstructions [Siegenthaler
and QOeschger, 1980]. It shows that the conservative error approximation of the sin-
gle measurement for the stable water isotopes in fluid inclusions is reasonable, even
if the uncertainty seems to be overestimated for deuterium when considering figure 4.6.

Although I did not obtain absolute temperatures, the relative temperature change
is in excellent agreement with the increase of the mean annual air temperature for Ro-
mania. This proves that the A(D) approach is a reliable method to determine mean
annual air temperatures via fluid inclusions.

Part | - sample level C

For figure 4.6 I have ignored sample level C, because the measurements show signif-
icantly higher (more positive) values for oxygen and hydrogen than the surrounding
inclusion measurements. Since (5180ﬂm-d as well as 0D y,;q were measured indepen-
dently and reproduce within the uncertainty, C1 and C2 must be considered in the
data set. If sample level C is translated into an age range. It relates to the period of
1924 to 1932. Warken et al. [2018] describes a dry period for the Closani Cave during
that time interval, characterized by significantly higher Mg/Ca ratios. However, a
clear evaporation pattern in the isotopic composition, as observed in other stalagmites
(see chapter 5 and 6), could not be conclusively identified for sample level C. Although
the stable isotope values are higher (more positive) in both oxygen and hydrogen, they
correspond within the uncertainty to the LMWL (see figure A.24).

Another possibility, which might explain the more positive isotope values of sample
level C, is the influence of the North Atlantic Oscillation (NAO). Comas-Bru et al.
[2016] found an effect of the North Atlantic Oscillation on the isotopic composition of
precipitation through its control of air temperature and the trajectory of the westerly
winds that carry moisture to Europe during the boreal winters. Hence, the NAO index
is positively correlated with §'80 in precipitation and the §'80,,.. value is negatively
correlated with the amount of precipitation for South East Europe. This means that
with a positive NAO index, also positive (518013,«6C values are expected and at the same
time less precipitation (see figure A.26). A decline of the Mediterranean precipitation
has been noted for positive trend of the NAO accompanied by a positive trend of the
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East Atlantic Western Russia (EAWR) pattern [Krichak and Alpert, 2005]. Warken
et al. [2018] found for the time period between 1926 -1936 a positive NAO index and
a positive EAWR, index, resulting in pronounced less winter precipitation in South
Romania. Presumably the noticeable higher (more positive) values for §180 fluia and
60°H fluid are a result of a changed circulation pattern, with a strong Azores High and
deeper than normal Icelandic Low [Comas-Bru et al., 2016]. As a result, the Atlantic
influence is decreasing, which means that warmer air from the Mediterranean is in-
creasingly becoming a source of precipitation [Baldini et al., 2008].

Findings for the late Holocene stalagmite in the transitional climatic zone -
Romania

o Part II (the edge): 5180ﬂm~d and 62H fluid measurements reflect the iso-
topic composition of the actual drip water within the uncertainty. Addi-
tionally, I was able to achieve a good reproducibility of stable isotope mea-
surements in fluid inclusions with a standard deviation of 0.49/1.16 %ofor
§180/6%H in VSMOW.

e Part II: The classic carbonate thermometer would led to an unrealistic
temperature variation of +5°C for the Clogani Cave over the last 100
years.

e Part II: The newly applied deuterium - temperature relation is a reliable
method to determine mean annual air temperatures via fluid inclusions
for mid - latitude speleothems.

e Part II: For the period between 1950-2010 I obtained a temperature in-
crease for the Clogani Cave of 4+ 1.01 £ 0.63 °C, which is in excellent agree-
ment with local temperature records [Micu et al., 2016].
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5 | Case study |lI: Holocene stalagmite
(present - 8.6 ka BP) from Central
Europe - Bunker Cave

The second application of the Fluid inclusion line was related to the Holocene stalag-
mite Bu4 from Bunker cave. A number of stalagmites from Bunker cave were part
of the extensive DFG funded research group DAPHNE. Numerous publications have
already been published about both the Bunker cave and stalagmite Bud [Miihlinghaus
et al., 2009; Wackerbarth et al., 2010; Kluge et al., 2010; Riechelmann et al., 2011;
Fohlmeister et al., 2012; Miinsterer et al., 2012; Riechelmann et al., 2017], which is
investigated in terms of water isotopes in fluid inclusions in this thesis. The previous
studies are the basis for the interpretation of the fluid inclusion data. I conducted
a detailed study of the stable water isotopes in the fluid inclusions embedded in the
carbonate lattice of Bu4. It is noticeable that only a small segment of the stalag-
mite contains water - filled inclusions, which are suitable for a detailed examination.
The varying fabrics and facies zones of calcite precipitates of Bud are controlled by
changing climatic conditions and in particular by the amount of surface precipitation
and temperature [Frisia et al., 2000; Frisia and Borsato, 2010; Frisia, 2014]. The
fact that evaporation can occur in caves and has an influence on the isotopic signal
is known [Dreybrodt and Deininger, 2014], but it is questionable how strong this phe-
nomenon will effect the isotopic composition of the fluid inclusions. In the following I
will investigate to what extent the analysis of fluid inclusions from the stalagmite of
the Bunker Cave allows to draw conclusion about the changed climatic conditions for
Central Europe during the Holocene.

5.1 Site description - the Bunker Cave

The Bunker Cave is located in the Rhenish Slate Mountains close to the city Iserlohn
in North Rhine- Westphalia (see map A.27). The cave developed in Middle to Upper
Devonian limestone and is part of the large Bunker- Emst cave system [Riechelmann
et al., 2011]. The entrance of the cave is located 184 m above sea level and separates
into two chambers in the deeper part of the cave (see figure A.29). The thickness of
the overburden rocks ranges from 15 to 30 m whereby the vegetation above the cave
is a mixture of deciduous forest and scrubs [Grebe, 1993]. Riechelmann et al. [2011]
conducted an intensive monitoring program (2006 - 2009), where they observed a stable
cave air temperature of 10.6 £ 0.2 °C and pCOs variation between 900 to 1200 ppmV in
chamber 2 (sampling position of Bu4). Since the carbon dioxide concentration in the
cave air lacks a clear seasonal cycle, regular changes of the cave air pCOq variability are
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not a major driving force for calcite precipitation. This is supported by missing annual
laminae in speleothems [Riechelmann et al., 2011]. A changing outside temperature
causes alternating ventilation inside the cave, enabled by the two entrances. This
leads to a homogeneously ventilated cave with a relative humidity varying between 86
and 97 %. Drip water was regularly collected as part of the monitoring programme,
although only data from the drip site TS8 are relevant for this study. The drip water
isotopic composition of §'80 and §2H show low variability and no seasonal pattern (see
figure A.31) with a mean value of —8.0 + 0.2 %o for §'80 and —54.5 4+ 1.5 %0 for 6°H
in VSMOW. Those values fit very well to the infiltration weighted annual mean values
of rainwater, which was found to be §'*0 = —8.1%¢ and §°H = —55.0%0 in VSMOW.
Accordingly, the drip water at TS8 shows no instantaneous response to precipitation
events, suggesting a specific water capacity threshold in the soil/karst aquifer with
an average residence time of up to a 3 years [Kluge et al., 2010; Riechelmann et al.,
2017]. In addition, the 6'¥0 and 62H drip water values correspond with the LMWL
(see figure A.31), thus fractionation effects due to evaporation in the soil, epikarst and
cave can be excluded nowadays. However, T'S8 is characterized by a very low drip
rate (0-0.07 drops/min) and a varying drip classification from seasonal drip to seepage
flow, corresponding to a drip rate decrease of about 50 % [Riechelmann et al., 2013].
Variations in drip rates can be caused by various factors. For example, an increase in
drip rate can be induced by heavy rainfall events, filling the reservoir feeding TSS8 to
a threshold resulting in more continuous flow. Contrary, the drip rate can be reduced
if carbonate deposits originating from prior calcite precipitation (PCP) might change
or block the water flow path [Fairchild et al., 2006b]. Riechelmann et al. [2013] found
evidence that PCP is an important process at the TS8 drip site, which was supported
by the analysis of calcite precipitate samples on watch crystals showing clear indications
of disequilibrium fractionation for §'*8O0gcite and 13Chgicite-

5.2 Holocene stalagmite - Bu4

The stalagmite Bu4 (see figure 5.1) with a length of approximately 21 cm was collected
in 2007 under the actively drip site TS8. Fohlmeister et al. [2012] dated the oldest part
of Bu4 with Th/U - dating to 8 600 years before present. Additional radiocarbon dating
from the very top part of Bu4 shows the typical increase and decrease in radiocarbon
as would have been expected for the cave carbonates precipitating during the period of
tropospheric nuclear bomb testing and the following atmospheric radiocarbon decrease
(late 1950 to recent). This proves that the stalagmite was actively growing during the
last 60 years. Bu4 shows a constant growth over the last 8 600 years with a growth rate
of 20 um per year in the lower part and an increasing growth velocity in the upper part
with a growth rate of 60- 80 um per year. The upper part of Bud with a relatively fast
but constant growth rate shows mainly columnar fabrics (see figure A.30). In contrast,
the lower part shows columnar fabrics that merge into dendritic fabrics [Frisia et al.,
2000; Frisia and Borsato, 2010]. In addition, at 146 and 169 mm distance from top
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two coralloid or detrital layers are visible (red lines in figure 5.1), these contain aerosol
particles and are associated with drier conditions [Dreybrodt, 1980; Dredge et al., 2013].
These layers indicate that the dripping process was interrupted and the stalagmite sur-
face dried out [Hill and Forti, 1997]. Riechelmann [2010] classified two different facies
zones, type A and B which can be seen in figure 5.1. Type A is characterized by dark,
clear and compact crystals, indicating an continued calcite growth with compact and
nearly fluid inclusion free calcite formation. This growth is favoured with a relatively
thick water film (1 mm) on the stalagmite surface [Kendall and Broughton, 1978]. In
contrast the milky, porous and therefore fluid inclusion rich facies type B develops
during rapid and incomplete calcite formation [Frisia et al., 2000]. This is possible if a
thin water film (0.01 mm) stays long enough on the stalagmite surface to form a highly
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Figure 5.1: Left: Bu4 stalagmite with dating points and resulting age. The two
different facies zones are identified with A and B, the red lines indicating detritus
layers. The left picture is adapted from Riechelmann et al. [2011] and sample ages af-
ter Fohlmeister et al. [2012] are added. Right: Samples are shown with corresponding
sample ID, with those measured for fluid inclusions marked in blue.
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supersaturated solution which leads to an irregular calcite formation and therefore to
porous and fluid inclusion rich crystals [Dreybrodt, 1980]. This is favoured by a slow
drip rate or even if the dripping stopped.

The right side of figure 5.1 shows the Bu4 samples with corresponding sample ID
for fluid inclusion measurements. Bu4 was partially pre-cut for a planed noble gas
study in 2008. For this application I sawed the lower part (sample ID 27-32) with a
band saw to the required sample size of ~5mm edge length. Due to the low water
content, only a few measurement were conducted for facies zones A and mainly samples
of the facies zones B were analysed. All measured samples for fluid inclusion analysis
are marked in blue.

5.3 Results

5.3.1 Water content - stalagmite Bu4

A total of 49 stalagmite samples were available for the analysis of fluid inclusion mea-
surements. At the beginning of the measurement it became apparent that not the
complete stalagmite was suitable for a fluid inclusion study as a significant part of
the stalagmite contained no water - filled inclusions (see figure 5.2). Therefore, I have
performed a total of 19 individual measurements. The water content varies between 0
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Figure 5.2: The measured water content in ul per g calcite over the depth (distance
from top) is shown. The two different facies zones are identified with A and B, with
the two detrital layers illustrated as blue dotted lines.
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and up to 27 ul per g calcite. For facies zones B, a significant increase in water content
can be identified, whereas facies zones A is characterized by a very low water content.
Overall, within the area of the facies zones A less than 0.2 ul water was released in 6
measurements, which is the threshold value for a reliable evaluation. As a consequence,
I conducted no further measurements in this section of Bu4. The two detritus layers
at 146 and 169 mm are plotted as a blue dotted line and enclose the facies zones B.

5.3.2 §'%0 and 6%H of fluid inclusions - stalagmite Bu4

The results of the 19 individual measurements of oxygen and hydrogen isotopes in
fluid inclusions are shown as blue circles in figure 5.3. For a better comparison of
the results, the drip water of TS8 (green triangles) as well as various rainwater data
(grey dots) are shown. The rainwater data consists of a data set collected above the
Dechen Cave (2007-2013) and GNIP data from Bad Salzufern (1978-2006) [Riechel-
mann et al., 2017]. A clear deviation of the measured fluid inclusion data from the
GMWL and LMWL can be identified, which is illustrated with the magnification of
the dotted square on the right side of figure 5.3. The measured water isotopes of the
fluid inclusions do not represent the actual drip water at TSS8.
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Figure 5.3: Left: Individual measurements of the stable isotopes, 6'0 and §2H, in
fluid inclusions (blue circles) of Bud. Drip water of T'S8 (green triangles) as well as
rain water data (grey dots) is shown for a better comparison [Riechelmann et al.,
2017]). A deviation from the GMWL is obvious. Right: Magnification of the dotted
square. The detailed results of the individual measurements are listed in table A.24
and A.25.
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5.4 Discussion

5.4.1 Water content - changing climate condition

I found a strong variation in water content for the stalagmit Bu4, with values close to
0 up to 27 ul per g calcite. Facies zone A contains almost no water - filled inclusions,
whereas facies zone B contains a number of them. This coincides with the theoretical
considerations of Riechelmann [2010], which, based on thin sections, predicted such
a pattern of water content over depth (see figure A.30). For the facies zone A with
its compact crystals resulting from a very regular crystal growth, I found no to very
few water - filled inclusions (0.01 up to 0.35ul/g). The compact crystals formed by a
continuous calcite precipitation from a relatively thick water film (1 mm [Kendall and
Broughton, 1978]), which is favoured at higher and continuous drip rates [Genty and
Quinif, 1996; Frisia and Borsato, 2010]. Boch et al. [2011] found that compact/dense
laminae developed during times of increased water excess and high drip rates, and
therefore during climatic conditions with increased rainfall. These dark facies zone A
is in strong contrast to the white porous facies zone B with a high water content (0.75
up to 26.79 ul/g), which is confined by the two coralloid layers at 146 and 169 mm (5.5
and 7.1 ka before present). This milky, inclusion - rich and porous facies zone is formed
by rapid crystal growth from highly oversaturated solutions [Frisia et al., 2000], which
is favoured by a thin water film (0.01 mm [Kendall and Broughton, 1978]). The strong
supersaturation of the solution in this thin water film, which forms under low drip rates
[Dreybrodt, 1980], enhances the out - gassing of COg due to the long residence time on
the stalagmite surface. Low drip rates could be a sign of dry climatic conditions, which
is confirmed by the two coralloid layers since only under very dry conditions aerosol
particles can deposit on the stalagmite surface and form this type of calcite fabric
[Frisia, 2014]. Therefore, fabrics and facies zones of calcite precipitates are controlled
by host rock parameters and in particular by the amount of surface precipitation and
temperature [Frisia and Borsato, 2010; Frisia, 2014]. Presumably a strongly changing
water content is an indirect indicator for changing climatic conditions. This coincides
with the findings of [Niggemann et al., 2003b], who observed dark compact laminae to
develop preferentially during the wet winter times, whereas the white porous laminae
grow in drier cave environments and probably reflect periods of stronger evaporation
and/or higher supersaturation. In fact, longer residence time of water in a thin film on
the stalagmite surface favours the possibility of evaporation [Dreybrodt and Deininger,
2014].

The two coralloid layers (5.5 and 7.1ka before present) enclose the section with a high
water content, whereby the samples in which the two coralloid layers were included,
with a water content of ~ 1.5 and ~ 7 pul/g, do not exhibit the highest water content
measured in this speleothem. However, this period (5.5-7.1ka) is associated with
rather dry climatic conditions, which is consistent with the results of Niggemann et al.
[2003b], who found light - porous micro facial laminae with a high water content for the
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period between 9.6 and 5.5ka BP (Atlantic episode of the Holocene). In this case the
water content of two stalagmites from the Sauerland was not measured directly, but
qualitatively determined by thin sections. Furthermore, Niggemann et al. [2003a] has
recently observed the formation of white, porous facies zones where the speleothem
sites are characterized by a stronger air flow and the surfaces dry out completely in
summer and autumn. A rather dry period of the Holocene between 7 and 5 ka before
present was also observed in other stalagmites from various German caves, followed by
moister climatic conditions from 5ka until today [Wurth, 2003]. This coincides with
the low water content of the upper part of Bu4 (5.5ka until present), where facies zone
A is dominant. The seasonal variability of climatic conditions would be reflected in
the alternation of annually deposited white porous and dark compact laminae [Genty
and Quinif, 1996] due to the strong seasonal fluctuations of the water excess (dark
compact lamellae in years with high water excess). Since the facies zone of Bu4 does
not fluctuate on an annual time scale, it can be assumed that growth conditions were
rather constant over a longer period of time (e.g. 5.5 and 7.1ka before present) for
sections with uniform crystal structure.

Comparing the water content with the isotope (0'3Ceaeite and '8O0.4cite) and trace
element (Mg/Ca) measurements of Fohlmeister et al. [2012] reveals only a limited ac-
cordance. The purple box in figure 5.4 shows the section with highest water content
of Bu4 and thus the period in which I assume dry climate conditions. The findings
of cold and dry climate periods after Fohlmeister et al. [2012] are illustrated as green
boxes and are mainly based on the Mg/Ca ratios. Higher Mg/Ca ratios are interpreted
as periods with less precipitation and accordingly periods with rather dry climate con-
ditions. For the time span from 7.1 to 5.5ka, with a high water content this is only
partially the case. Fohlmeister et al. [2012] suggest dry and cold climate conditions
for the period of 7.7-7.3ka and around 5.6ka. This corresponds to the segment of
the two coralloid layers, which confirms our results. However, I would also assume dry
climate conditions between these two layers, which is not consistent with Fohlmeister
et al. [2012]. For the 6'3C,4cite signal, more positive values indicate a lower drip rate,
which I would expect for facies zone B. This facies zone is assumed to form under a
very thin water film on the stalagmite surface or temporary drying. Accordingly, the
drip rate must have been reduced or even completely stopped, which is supported by
the two coralloid layers. This hypothesis is consistent with the findings of Fohlmeister
et al. [2012], who measured more positive 6'3C,4 it values for this section from 7.1 to
5.5ka and, in particular, the coralloid layer. Fleitmann et al. [2003a] found that the
enrichment of heavier stable isotopes of the calcite (6'3Crqicire and 6'¥Oqieite) may be
used as an indicator of lower humidity in a cave due to less dripping activity caused
by less precipitation. However, the §'8O,qcite signal of the speleothem is influenced by
the 680 value of the drip water and by isotopic fractionation processes that take place
during calcite precipitation. Thereby, the relationship between temperature and the
080 qicite value resulting from isotopic fraction during calcite precipitation is negative
and compensate the positive relationship between temperature and the §'%0 value of
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Figure 5.4: Bu4 data adapted and modified from Fohlmeister et al. [2012]. Shown is
the deviation from the mean for the Mg/Ca ratio (black) and the §'3C signal (blue),
which are both detrended and smoothed. The smoothed 'O qicite signal is shown
in red and the green boxes are related to dry and cold periods. The section where I
measured a high water content in the fluid inclusions is illustrated as purple box.

the meteoric precipitation [Wackerbarth et al., 2010]. Since the signals of stable iso-
topes are influenced by various processes, the §'%0 qicite signal should be interpreted
carefully.

In summary, the measurements of an increased water content in facies zone B are
consistent with the theoretical considerations of Riechelmann [2010]. The findings,
that the water content is an indirect indicator for changing climatic conditions are
supported by the investigations of Niggemann et al. [2003b, a] for Holocene stalag-
mites from Sauerland. Dark compact laminae (facies zone A) develop under constant
drip water supply and thus under preferentially more humid climatic conditions. While
the white porous laminae (facies zone B), which developed during frequent dripping
interruptions, are favoured in drier cave environments and probably reflect periods of
stronger evaporation and/or higher supersaturation. The trace element ratio Mg/Ca
as well as the 6'80,41cite signal do not show the expected accordance.
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5.4 Discussion

However, the more positive §'3Clqcite signal for the period 7.1 to 5.5 ka indicates lower
drip rates, increased kinetics and temporary drying, which is consistent with the water
content measurements of Bu4.

5.4.2 Water stable isotopes in fluid inclusions - evaporation signal

Of the 19 measured samples, I could only use 13 for a detailed analysis of the stable
water isotopes in the fluid inclusions, as only these samples have released more than
0.2 pl water. This water volume is considered to be the threshold value for a reliable
evaluation (see section3.6). These 13 samples are in an age range of 7.7 to 5.0ka (185
to 140 mm dft). For the oldest sample (7.7ka) a correction due to a different sea level,
which corresponds to a different isotopic composition of the global ocean would result
only in a correction of —0.05%0 for 6'**0 and —0.40 %o for 6H in VSMOW [Wael-
broeck et al., 2002]. This correction is so minor that it is not considered in the further
discussion. Nevertheless, the corrected data is listed in table A.26. This correction is
an important aspect for samples formed during the Last Glacial Period (115—-11.7ka
BP [Dansgaard et al., 1993]), since the changing ocean as a reservoir for the resulting
precipitation and therefore drip water has a oxygen glacial - interglacial amplitude of
~1%0 VSMOW [Waelbroeck et al., 2002].

The fluid inclusion data indicate more positive values in both, §'*¥O and 62H, with
respect to the current drip water composition (see figure 5.5). This suggests that
fractionation occurs. I performed a linear regression (red line) considering the x- and
y - uncertainties and obtained a slope of (+2.27 £ 1.12) 62H/6'%0. Hu et al. [2009] per-
formed evaporation experiments in which the water vapour was not recycled. They
found deuterium to be fractionated more strongly than oxygen by a factor of 3.432 with
the correlation coefficient (R?) of 0.845 [Hu et al., 2009]. Accordingly, I performed a
linear regression (blue line) with a fixed slope of 3.4 62H/6'®0. The actual mean drip
water composition over the intersection point of the evaporation line (linear regression
with a fixed slope) and the GMWL could be calculated. The resulting values close to
the modern - day drip water isotope ratios suggest that the deviation from the original
stable isotopic composition of the fluid inclusions was caused by evaporation. This
is consistent with the consideration of drier climatic conditions during the period be-
tween 7.7-5.0ka and therefore a lower drip rate or even a complete stop of dripping. It
would allow long residence times on top of the stalagmite surface, which would favour
evaporation [Niggemann et al., 2003b]. As already mentioned, the two coralloid layers
could only form under extremely dry conditions. Accordingly, it could be possible
that the drip water on the stalagmite top has evaporated and thus experienced kinetic
fractionation. The hypothesis that the isotopic composition of the fluid inclusions was
effected by evaporation seems to be realistic, considering the related evaporation line
of y=(3.7+0.2) -+ (5.1 £ 1.8) %o which I found for a stalagmite from a different
climatic region (see section 6).
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Figure 5.5: Water stable isotopes of Bu4 (blue circles) together with mean annual drip
water (green triangles) and rain water data (light grey dots). The linear regression
(red line) for Bu4 fluid inclusion data taking x- and y-uncertainties into account
results to a slope of +2.27 4+ 1.125%H/6'80. Considering the findings of Hu et al.
[2009] for fractionation under evaporation with a slope of 3.4 62H/§'80, the point
of intersection between the GMWL and the resulting linear regression (blue line)
predicts the actual drip water composition.

Where occurs evaporation - soil or stalagmite surface ?

I detect a clear evaporation signal in stable isotopic composition of the fluid inclusions
of the stalagmite Bu4. The question arises where this evaporation takes place. Does
evaporation already occur in the infiltration process or does it only take place in the
cave. Evapotranspiration in the soil above the Bunker Cave was detected by Miinsterer
et al. [2012] through the analysis of cosmogenic 3¢Cl in drip water. Furthermore, the
occurrence of PCP at the drip site TS8 indicates a previous change in the chemical
composition of the drip water [Riechelmann et al., 2013]. This mechanism is possi-
ble when the water percolates through the air- filled soil/epikarst and an initial COq
outgassing is enabled. However, previous outgassing does not affect the oxygen and
hydrogen isotopic composition of the drip water, because it is representing the mean
annual rainwater composition and does not deviate from the GMWL (see figure A.31).
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5.4 Discussion

Watch glass experiments today show kinetically fractionated 6'8Oqeire values below
TS8, which are not completely understood [Riechelmann et al., 2013]. Riechelmann
et al. [2013] exclude evaporation today, because the average humidity in the cave varies
around 93 + 2 %. Still, increased residence times on the stalactite tip or the stalagmite
surface could lead to evaporation and has not been investigated so far. Assuming dry
climatic conditions in the time period from 7.1 to 5.5ka, it cannot be excluded that
the humidity in the cave was lower than today. In a homogeneously ventilated cave,
like Bunker Cave (see figure A.28), the evaporation increases proportional to (1-h) for
a humidity below 95 % and significant effects altering the isotope ratio are possible
[Dreybrodt and Deininger, 2014]. If the mean deviation of the current drip water to the
measured fluid inclusions is considered, an enrichment of approximately 2 % VSMOW
for 6180 fluid can be identified. This enrichment due to evaporation would theoretically
be possible in a moderately ventilated cave with a mean cave temperature of 10°C,
a wind speed of 0.1 m/s and a mean humidity of 80% [Deininger et al., 2012]. The
possibility that evaporation in the cave effects the isotopic composition of the fluid
inclusions is also supported by speleothem studies of Holocene stalagmites from Sauer-
land. Niggemann et al. [2003b, a] suspect that areas with white porous lamina (the
region of Bu4, which contains water - filled inclusions) were precipitated during periods
of low humidity in the cave, which enhances evaporation from the thin water film. This
assumption is confirmed by significantly increased ¥ O 41cite values (> +1%o) and the
correlation of 680 gicite and 83 Clgieite, which gives evidence of periodic kinetic frac-
tionation due to evaporation and fast degassing COq [Niggemann et al., 2003a].

In summary, I exclude the possibility of evaporation in the soil or epikarst, as the
current drip water data does not provide any indication of this effect. The measured
isotopic signal in the fluid inclusions shows a clear evaporation signal, which was prob-
ably imprinted during the residence time on the stalagmite surface. Evaporation was
favoured by a very thin water film and partial drying of the stalagmite surface. With
regard to the interpretation of 6804 ite signals in stalagmites, the effect of kinetic
fractionation induced by evaporation should be discussed more intensively.

Findings for the Holocene stalagmite from Central Europe - Bunker Cave

e A strongly changing water content is an indirect indicator for varying
climatic conditions.

o I observe a high water content in the facies zone B (white porous lam-
inae), which is preferred under drier climatic conditions and slow drip
rates and probably reflect periods of stronger evaporation and/or higher
supersaturation.
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5 Case study Il: Holocene stalagmite (present - 8.6 ka BP) from Central Europe - Bunker
Cave

o For facies zone A (dark compact laminae) no water - filled inclusions could
be found. The compact crystals develop under constant drip water supply
and therefore resulting from a very regular crystal growth under more
humid climatic conditions.

e I detect a clear evaporation signal in the stable isotopic composition of
the fluid inclusions of the stalagmite Bu4 with a linear regression slope of
+2.2741.12 (62H/6*¥0), which is comparable to other evaporation exper-
iments [Hu et al., 2009].

e I assume that the 518Ofluid—62H fluid evaporation signal was imprinted
during the residence time on the stalagmite surface.
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6 | Case study Ill: Tropical stalagmite (15
- 46 ka BP) from Puerto Rico - Cueva
Larga

In tropical regions, the isotopic composition of precipitation is mainly controlled by
the amount effect [Dansgaard, 1964], in contrast to the relationship between precipi-
tation and land surface temperature for the continental northern hemisphere. For this
reason, after a detailed examination of the two European stalagmites, I have chosen a
tropical stalagmite from Puerto Rico covering parts of the Last Glacial Period (LGP)
(15-110ka), which was characterized by rapid climatic fluctuations from cold (stadial)
to warmer (interstadial) conditions recurring on millennial time scales. The instability
of large ice sheets in the northern hemisphere led to a large input of fresh water into
the North Atlantic, followed by a weakening of the Atlantic Meridional Overturning
Circulation (AMOC) [Heinrich, 1988; Bond et al., 2001; Béhm et al., 2015]. The so
called Heinrich events are well documented in the Northern Hemisphere by ice- core
records, but the global imprint and the strength of the different HS (Heinrich stadials)
events might vary [Hemming, 2004]. For the tropics, the increased input of freshwater
into the North Atlantic and the weakening of the AMOC led to a southward shift of
the ITCZ (Inter - Tropical Convergence Zone). The consequences are colder and drier
climate conditions for the western Atlantic tropics as has been shown in various pale-
ostudies on stalagmites, ocean sediment or lake sediment cores [Lachniet et al., 2009;
Hodell et al., 2012; Grauel et al., 2016; Escobar et al., 2012; Deplazes et al., 2013,
Arienzo et al., 2015]. Similarly, the Greenland stadials are interrupted by interstadi-
als, in which an abrupt warming is followed by a gradual cooling. These interstadial
warming events are better known as Dansgaard Oeschger (D/O) events [Dansgaard
et al., 1984]. The typical saw - tooth pattern is well preserved in oxygen stable isotope
records of ice cores from North Greenland Andersen et al. [2004], whereas the pro-
cess behind these D/O events and their timing is still debated [Clement and Peterson,
2008]. For the tropics, a northward shift of the ITCZ is expected during the intersta-
dials, which will be accompanied by warmer and wetter climatic conditions [Deplazes
et al., 2013]. Furthermore, it is questionable how pronounced these events appear in
the tropics, since in some stalagmite records no characteristic of D/O events can be
found, although HS events are very clearly represented [Carolin et al., 2013; Arienzo
et al., 2017]. This is also evident for the findings of Deplazes et al. [2013], who suggest
that a general adaptation period of the tropical North Atlantic SST to the forcing at
high latitudes can lead to a considerable smoothing of the tropical reaction.
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6 Case study Ill: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

Here I present a detailed stable isotope study of fluid inclusions from stalagmite LA-
1 covering the interval between 15.4 to 46.2ka, including HS1 to 4 and D/O2 to
12 [Warken et al., 2020]. Some events are not represented in the stalagmite record
due to a growth stop of LA-1, between 41.1 and 35.5 ka. I conducted in total 64 fluid
inclusion measurements on samples based on a selection following prominent §'¥O.qicite
changes. The fluid inclusion data show a strong variation of the water content as well
as two different clusters for the stable isotopic composition with respect to the GMWL.
The reconstructed paleotemperatures with the classic carbonate thermometer are in
accordance with local SST reconstructions [Ziegler et al., 2008] and a cooling of ~ 3°C
during HS 2 and HS 3, which is comparable to a Bahamian speleothem record [Arienzo
et al., 2015] and lake sediment records of northern Guatemala [Grauel et al., 2016].

6.1 Site description - Cueva Larga in Puerto Rico

Cueva Larga is located 350 m above sea level in the north central karst region of Puerto
Rico, which is the easternmost island of the Great Antilles (see left side of figure 6.1).
Puerto Rico is surrounded by the Atlantic Ocean to the north and the Caribbean Sea
to the south. The area around Cueva Larga with a total rainfall of 2 137 mm per year
[Vieten et al., 2018] is a developed holokarst, characterized by sinkholes and mogotes,
with the cave located in dense oligocene lares limestone [Monroe, 1980]. Thus, the
overburden limestone reaches a depth of 30 to 100m and is covered by a thin layer of
soil and vegetation consisting of dense tropical forest. The main passage in the cave

Luquillo Mountains
R _' S T

Figure 6.1: Left: Gulf of Mexico and the Caribbean Sea with the location of Puerto
Rico marked as red circle. The positions of two ocean sediment cores (green and red
triangle) as well as the position of the speleothem record (brown triangle) and the lake
sediment core (yellow triangle) are shown, which will be discussed in the following
(map is adapted and modified after Wikimedia [accessed January 26, 2020]). Right:
Map of Puerto Rico showing the position of the Cueva Larga cave (red star) and the
two locations of the LMWL stations (map is adapted and modified after maps for
free [accessed January 26, 2020]).
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6.1 Site description - Cueva Larga in Puerto Rico

is almost horizontal and has a total length of 1400 m with a ceiling height of up to
30m, for details see cave map A.33 [Miller, 2010]. Since 2012 cave parameters have
been recorded and show a constant cave temperature of 22.54+0.2°C and a humidity
close to 100 % [ Vieten et al., 2018]. The cave air pCO3 varies depending on the season,
with high values of up to 1800 ppm in summer and low values of around 550 ppm in
winter at drip site SW-2 close to the sampling location of stalagmite LA-1 [Vieten
et al., 2016]. This seasonal pattern indicates a very well ventilated cave environment
in winter and low ventilation in summer, which can be explained by the temperature
differences inside and outside the cave. In winter, the outside temperature is below
the cave temperature, allowing the air to circulate, whereas in summer, the cave tem-
perature is similar to the outside temperature and ventilation is stagnant.

As is typical for the location, there is also a seasonal variation in precipitation above
the cave, with a bimodal maximum (peaks in May and September/October) in summer
and dry season in winter. For the summer months (April to November), with increased
precipitation, more negative values in the isotopic composition of the rain are observed
than during the winter months (December to March) [Vieten et al., 2016, 2018]. This
pattern (see figure A.35) is mainly due to the relationship between rain water isotopes
and atmospheric temperature with different types of precipitation that form at dif-
ferent altitudes and temperatures [Scholl et al., 2009]. The dry season (December to
March) in the Caribbean is characterized by orographic precipitation from clouds not
higher than 3km. This precipitation from frontal system rain (cold fronts from North
America) and orographic processes of trade winds accounts for only one third of the
total precipitation [Scholl and Murphy, 2014]. In orographic precipitation isotopically
heavier (more positive) values are found than in convective rainfall which is charac-
terized by isotopically lighter (more negative) values (see figure A.36). Convective
precipitation, which originates from clouds extending above 5km in the atmosphere,
is formed by low pressure systems during the rainy season (April to November) and
accounts for half of the total precipitation. This pressure system can develop into
tropical storms and hurricanes, with the hurricane season starting in June and ending
in November [Taylor et al., 2002]. Despite the increased convective precipitation in
the rainy season, Scholl and Murphy [2014] showed that the groundwater contains an
increased input of orographic precipitation formed during the winter months of the dry
season. Indeed, the seasonal variation of isotopic composition in the rainfall above the
cave is not reflected in the drip water data in the cave. For example, for the drip water
composition at drip site SW-2 in close proximity to stalagmite LA-1 no seasonal varia-
tion is recognisable between 2013 - 2019 with a mean value and corresponding standard
deviation of 6'%0 as —2.59 4 0.27 %0 and 0°H as —9.49 & 0.11 %o in VSMOW [ Vieten
et al., 2018]. The individual drip water data of drip site SW-2 is listed in table A.28.
It can be assumed that the seasonal variation in isotope composition is smoothed by
the soil and the epikarst above the cave with a mixing time of at least several months
to years [ Vieten et al., 2018].
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6 Case study Ill: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

On the right side of figure 6.1 the two positions of weather stations on Puerto Rico
are shown where a LMWL is available. Govender et al. [2013] collected rain water
data in a monthly interval (2008-2011) at the station Guéanica Dry Forest (yellow
star) and determined a LMWL to 62H = 7.79 - 6'¥0 4 10.85 % VSMOW. The station
Guaéanica Dry Forest is located in the southwest of Puerto Rico with less annual pre-
cipitation than typical for the area around Cueva Larga (see figure A.34). In contrast,
the Luquillo Mountain station is located in the northeast of the island. This region is
characterized by particularly high precipitation. Scholl and Murphy [2014] found the
LMWL to 62H = 8.2- 680 + 14 % VSMOW.

6.2 Stalagmite LA -1

The stalagmite LA-1 (left side of figure 6.2) with a total length of 1.85 m was collected
between 2012 and 2013 in several field trips. It was found lying on the cave floor close

to the drip site SW-2 in the main passage where the rock overburden is 40 to 80 m
depth (see cave map A.33). Warken et al. [2020] dated LA-1 with 230Th/U - dating
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Figure 6.2: Left: Sample slabs of stalagmite LA-1 with a total length of 1.85m
[Warken, 2017]. Right: Age model calculated using "StalAge" with the position of
fluid inclusion samples (blue circles) [Warken et al., 2020]. In total, I analysed 64
fluid inclusion samples for different depths of LA-1. For a better overview, only the
age intervals resulting from the depth uncertainty of the fluid samples are shown
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6.3 Results

and the calculated age model results in growth periods from 15.4 to 46.2ka before
present with a hiatus between 35.5 and 41.1ka. The right side of figure 6.2 shows the
age model as well as the position of the fluid inclusion samples (blue circles). Growth
rates vary from phases of rapid growth (50 to 100 um/yr) to phases of slower growth
(10 to 30 um/yr). As shown in figure 6.2, the stalagmite LA-1 consists of whitish
translucent calcite, which in most parts has a convex shaped lamination. However, the
lower part shows an irregular growth ("donut" shaped) with a depression in the middle.
Warken et al. [2020] analysed LA-1 in detail and showed that Greenland stadials and
interstadials are recorded in the stable isotopes (6'¥O.gcite and §13C) of the calcite
and in the trace elements (e.g. Mg/Ca). Furthermore, Warken et al. [2020] conducted
an inverse model (I- STAL) to asses potential drivers of trace element variability.

6.3 Results
6.3.1 680 and §%H of fluid inclusions - pool spar A4

As a modern analogue, pool spar samples were collected during a field trip in 2019 out of
the pool A4 of Cueva Larga (see figure A.33) with a water stable isotope composition
of 60 = —2.59 + 0.11%¢ and 6°H = —9.49 4+ 0.27 %0 in VSMOW. I performed a
total of six replicate measurements for the pool spar samples. The results of the stable
water isotopes are shown in figure 6.3 with the corresponding mean value and standard
deviation of —0.76 £+ 0.76 %o for oxygen and 3.34 4+ 1.83 %o for hydrogen in VSMOW.

6.3.2 §'%0 and 6%H of fluid inclusions - stalagmite LA-1

I sampled 30 different time periods of the stalagmite LA-1, which, including replicate
measurements, yielded a total of 64 fluid inclusion measurements (see figure 6.4). At
the appropriate depth, or age, samples were mainly taken from areas where Heinrich
events or D/O events are suspected. These intervals are assumed to be characterized
by internally small variable §'¥0 . cie isotopes, but strongly varying signals before
and after the respective section. Since some samples had a very low water content,
B samples were re-sampled with slightly offset depth. It becomes apparent that the
measurements of the stable isotopes in the fluid inclusions can be divided into two
clusters. One cluster of samples is located on the GMWL or scatters around it, another
one shows increased isotopic values in both §'%0 and §2H.
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Figure 6.3: Water stable isotopes of fluid inclusions from pool spar out of the pool
A4 from the Cueva Larga. For direct comparison of the results, the same axis scaling
as in figure 6.4 was chosen. Single values (blue circles) and resulting mean value with
corresponding standard deviation (blue dot) are shown together with pool water
(purple diamond), drip water SW-2 (2013-2019, green triangles) close to the pool
A4 and rain water data (2012-2019, grey dots) above the cave [Vieten et al. [2018]
and personal correspondence Sophie Warken, 30.01.2020]. The LMWL with §2H =
8.2:00 +14 % VSMOW [Scholl and Murphy, 2014] as well as the GMWL are shown
for a better classification. The data of the single measurements are listed in table
A.27.
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Figure 6.4: 6'%0 and 6H of fluid inclusions from stalagmite LA-1 (blue circles). The
drip water of drip site SW-2 close to the sampling location of LA-1 is shown as green
triangles. For a better classification, rain water data collected above the cave (light
grey circles, 2012-2019) [Vieten et al., 2018] and close to it (grey circles) at San
Juan (GNIP station, 1968-1970, downloaded from GNIP’s WISER data-platform
https://nucleus.iaea.org/wiser IAEA/WMO, 2015) as well as the LMWL after Scholl
and Murphy [2014] are shown. The results of the stable isotope measurements as well
as the water content of all single samples with corresponding depth and age are listed
in the tables (A.29, A.30, A.31, A.32 and A.33).
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6.4 Discussion

6.4.1 Modern precipitation conditions of pool spar A4

Vieten et al. [2018] measured oxygen isotope values of —2.9 + 0.2 % VPDB in recent
precipitated calcite at drip site SW-2 near LA-1. Unfortunately, no information about
the oxygen isotope composition of the calcite or the age is available for the measured
pool spar samples yet. The samples were taken at the edge of pool A4, i.e. not un-
der the current water surface. However, since the individual measurements scatter
around the GMWL and the mean value is located on it, I regard kinetic fractiona-
tion due to evaporation as not very likely. The measured stable isotope values of the
fluid inclusions from the pool spar differ from the current isotopic composition of the
pool water from which they were sampled by approximately +2/12 %o for 680 /§?H.
Assuming that §'8Oqeite corresponds to the value of the recently precipitated calcite
(—2.9+0.2 % VPDB) and the average §'80 f1,,4 value (—0.76£0.76 %o VSMOW), a pre-
cipitation temperature of 24 °C would be obtained using the classic carbonate oxygen
isotope thermometer with isotope fractionation factors according to Kim and O’Neil
[1997]. For the same isotope values and with isotope fractionation factors according
to Tremaine et al. [2011], a temperature of 31.5°C would be obtained. Vieten et al.
[2018] recorded a mean temperature of up to 23.43 £ 0.19°C in the back area of the
cave at site C-2 near pool A4 (see figure A.33). The calcite precipitation tempera-
ture according to Kim and O’Neil [1997] corresponds roughly to the current cave air
temperature. Even this result is promising and suggests that the applied method is
feasible, the final interpretation of this result remains speculative, since so far no data
of the §'®O,qicite of pool A4 are available.

6.4.2 Variation of the water content - LA-1

Measurements of the fluid inclusions of LA-1 show a variation of the water content
from close to 0 up to 3ul/g. In figure 6.5 I compare the averaged water contents
with the simulated growth rates. I separate the water content into high (stars) and
low (half filled stars) with the threshold for high set at 0.4 ul/g. The growth rates of
LA-1, which are derived from the age model ("StalAge" [Scholz and Hoffmann, 2011))
vary over more than an order of magnitude from less than 10 to up of 2000 pm per
year. Some sections (e..g. at dft of 745mm or 1440 mm) with a high water content
also show a high growth rate or a highly variable one, and similarly, parts (at dft of
642 mm or 1046 mm) with a very low water content are found mainly in sections with
lower growth rates relative to the immediate surroundings. However, no correlation
can be identified between growth rate and the water content. This may be also related
to the difficulties of "StalAge" to simulate realistic growth rate patterns [Scholz and
Hoffmann, 2008]. On average, the samples which are clearly allocated to Heinrich
stadials show a water content of 0.60 & 0.13 ul/g and samples which are from sections
of Greenland interstadials show a water content of 1.02 £ 0.47 ul/g. For the tropics,
HS are associated with rather dry and cold climatic conditions, which is reflected in a
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Figure 6.5: The mean measured water content for LA-1 compared to the modelled
growth rate. The water content is divided into high (brown stars) and low (half filled
stars) with a threshold value of 0.4 ul/g. The modelled growth rate using "StalAge"
is shown as black circles on a logarithmic scale [Warken et al., 2020]. The vertical
line at 1445.8 mm indicates the growth stop of LA-1.

lower water content compared to the interstadials, which are regarded as more humid
and warmer.

6.4.3 Interpretation of §'®0 and §°H values of the fluid inclusions

The measured mean values (5120 fluid and 8°H fluid) for the individual depths are shown
in figure 6.6 with the division into high (blue circles) and low (orange circles) water
content, with the threshold value set to 0.4 ul/g. As already observed for the 62H over
5180 plot of the individual measurements (figure 6.4), two clusters are obtained.

One group of fluid inclusion samples is located on the GMWL or scatters around
it, the other group shows increased isotopic composition. It is noticeable that oxygen
is more strongly fractionated than hydrogen. I performed a linear regression taking
x-and y - errors into account, which results to y = (7.24+0.8) -2+ (13.6 £0.6) %o shown
as blue line for the cluster of high water content. The slope of 7.2 + 0.8 corresponds to
that of the LMWL, which Govender et al. [2013] derived to 7.8. The measured mean
values indicate heavier isotope values compared to current drip water data, as already
observed in the results of the pool spar samples. For the second group with low water
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contents, certain samples released water volumes below 0.2 ul. The isotopic data of
samples, which have released water below this threshold are only considered in the eval-
uation if the values were reproduced by several replicate measurements. This has been
verified for the samples presented see table A.29- A.33. These samples show a clear
deviation from the GMWL as already observed for the fluid inclusion measurements
of Bu4 (see section 5.4.2). If I perform a linear regression taking x- and y - errors into
account, the function: y = (3.74+0.2) - & + (5.1 & 1.8) %o is obtained shown as orange
line. The slope of 3.7 for the cluster of low water contents deviates significantly from
the other samples. Nevertheless, it corresponds with the findings of Hu et al. [2009] for
evaporation experiments, where they derived a significantly lower slope than that of
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Figure 6.6: 6'%0 and 6°H of fluid inclusions from stalagmite LA-1. Shown are the
mean values of the respective depths divided into high (blue circles) and low (orange
circles) water content. The sample identification is the same as in table A.29 - A.33.
The LMWL (solid line) after Scholl and Murphy [2014] as well as the GMWL (dotted
line) are shown. In addition, drip water data at site SW-2 (green triangles) as well
as the rain water (grey dots) above the cave are shown. Both groups of samples were
fitted with a linear regression, whereby a comparable slope to the one of the GMWL
results for the samples with a high water content. The samples with a low water
content show fractionation due to evaporation.
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the GMWL with a value of 3.4. For the samples with a low water content, the stable
isotopic composition is interpreted to show kinetic fractionation, which was probably
caused by evaporation. No conclusions can be derived from the stable isotopic com-
position of the fluid inclusions as to whether the evaporation took place in the cave
or in the soil above the cave. The temperature-driven cave ventilation, which occurs
when the outside temperature is lower than the cave temperature, might have been
more pronounced in colder periods [Vieten et al., 2016]. Strong ventilation and low
drip rates during stadials favour the possibility of evaporation. Furthermore, Warken
et al. [2020] shows that the stable isotopes in the calcite (6'8Ocqieite and 613C) as well
as the trace elements indicate partly strong kinetic fractionation, which could have
been caused by evaporation.

Correction due to the changing isotopic composition of the ocean

To compare the measured stable isotope results of fluid inclusions with the actual pre-
cipitation above the cave or the drip water in the cave, the values must be corrected.
Since during the growth period of LA-1 variations in continental ice volume led to
a changed global §'80 composition of the ocean, because ice formation preferentially
removed Hi%0 from the ocean. In addition, the evaporation/precipitation ratio in
the western tropical Atlantic varied due to changing atmospheric circulation patterns,
which also affects the §'%0,, composition of the surface water. For the transitions be-
tween glacial - interglacial for the last 136 ka, Schmidt et al. [2004] found an amplitude
of the local §'%0Oy,, of about 1.5%¢ for the Colombian basin, which is considerably
larger than the global 680 change due to ice volume (6804 ~1%0). However, on
glacial time scales 8180y, is also affected by the variation of the continental ice vol-
ume. If these two corrections are applied to the results of the measurements of the
stable isotopes of the fluid inclusions, the values of 680 and §?H would be shifted to
lighter isotopes because the global ocean from which the precipitation is formed was
heavier (see figure A.40). For the overall mean value of the 630 results for all samples
with a high water content, this correction would shift the result from +0.37 4= 1.17 %o
to —1.13 £ 1.17 % in VSMOW. This 6180ﬂm-d value is still heavier compared to the
present - day drip water isotopic composition at site SW-2, with a mean 520 value of
—2.59 £ 0.27 % VSMOW. Nevertheless, the overall pattern, that samples with a high
water content are located on the GMWL and samples with a low water content are
showing evaporation effects does not change. The analysis of the isotope values (6'¥0,,
and 62 H,;) corrected for the changing sea level also results in comparable slopes of the
derived linear regressions (see figure A.37). For the following application of the clas-
sic carbonate thermometer these corrections are not required, because here only the
fractionation between 680 fluid and 880 qicite is considered. Hence, both signals are
equally affected by a changed 6'80,,.
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6 Case study Ill: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

Can a climatic signal be distinguished in the isotopic pattern of 5180flm-d and
6% H fruia ?

In figure 6.7 each sample is associated with the respective climatic condition through
the analysis of the 0'¥O,4cite signal and the trace elements [Warken et al., 2020],
whereby a distinction is made between cold phases (HS, LGM, GS) and warm phases
(GI). All samples that clearly represent a Greenland interstadial (red triangle) show
a uniform pattern, with the stable isotopic composition located on the GMWL or
correspondingly on the linear regression close to the LMWL. This corresponds to the
expectations for a relatively warm and moist climatic period. In contrast, I would ex-
pect a deviation in the isotopic composition of samples formed during colder climatic
conditions, with precipitation decreasing during Heinrich stadials for the tropical re-
gions of the western Atlantic [Deplazes et al., 2013]. In figure 6.7 no uniform cluster on
the GMWL or shifted towards higher isotope values can be identified for the 680 Fluid
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Figure 6.7: Water stable isotope data of all measured fluid inclusion samples from
LA-1, with the mean values categorized according to the warm or cold periods in
which they were formed. Thereby a distinction is made between Heinrich stadi-
als (blue dots), LGM (green square), Greenland stadials (blue triangle), Greenland
interstadials (red triangle) and samples whose depths covers several events (green
diamond).
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and 0?H 1,4 data formed during HS (blue circle) or GS (blue triangle). Over the pe-
riod of the LGM (24 - 18ka) I measured at 6 different depths, but also in this interval
no clear pattern with regard to the GMWL could be identified. Unfortunately, some
samples appear to accumulate depths intervals with highly variable 6'¥0qjcie signal
and, therefore, potentially mix different climatic conditions.

HS, LGM and Greenland stadials - increased d - excess during colder and drier
climatic conditions

A further parameter that can give information about the formation conditions of pre-
cipitation when analysing stable water isotopes is the d-excess [Craig, 1961; Dans-
gaard, 1964; Gat, 1996; Froehlich et al., 2002]. It is related to evaporative fractionation
of isotopes and the temperature and humidity conditions during evaporation and can
vary due to local climate, land cover and history of the air mass producing rain [Mer-
livat and Jouzel, 1979]. The d-excess can be both an indicator for ocean evaporation
or an indicator for moisture recycling. In the case of atmospheric vapour of oceanic
origin, the deuterium excess, generally reflects the climatic conditions where the water
evaporates [Merlivat and Jouzel, 1979]. The d-excess increases with decreasing rela-
tive humidity (hs) and increasing SST in the evaporation flux above the ocean [Craig,
1961; Uemura et al., 2008]. However, the influence of locally evaporated vapour could
also lead to higher d-values (>10%0) for precipitation originating from an air mass
into which this re-evaporated water vapour is admixed, the so called moisture recy-
cling [Gat et al., 1994]. If water vapour from precipitation with an average d - value of
10 %o is re-evaporated, the lighter 2H' H'60O molecule may again contribute preferen-
tially to the isotopic composition of the vapour and this, in turn, leads to an enhanced
deuterium excess in precipitation. Accordingly, d - excess is not only influenced by hu-
midity (hs) during evaporation above the ocean, but also by local evapotranspiration
[Aemisegger et al., 2014].

Considering the stable isotope results of the fluid inclusions measured for LA-1, figure
6.8 focuses on the samples which could be clearly associated to colder and drier climatic
conditions (HS, LGM and GS). The observed pattern may be explained by a simple
conceptual model, which takes into account evaporation on the one hand and a varying
d - excess on the other hand. If I examine these samples relative to an evaporation line
which originates from the present - day drip water composition, a clear offset towards
higher 62H fluid values becomes evident. Because it is not possible to determine the
exact origin of these samples during the LGP. I decided to choose the mean isotopic
composition of present-day drip water and thus determine a maximum possible deu-
terium excess. This vertical offset from the GMWL, the so- called d - excess quantifies
the degree of moisture recycling or a lower humidity above the ocean during evapora-
tion. In this case, the offset does not refer to the GMWL, but to the evaporation line
(orange line) since these samples probably experienced additional evaporation. The
maximum possible d-excess with respect to the evaporation line for each sample is
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Figure 6.8: Possible d-excess relative to an evaporation line for samples associated
with Heinrich stadials (blue circle), LGM (green square) or Greenland stadials (blue
triangle). The intersection between the evaporation line (y = 3.72-x — 1, orange) and
the GMWL (black line) reflects the present - day drip water composition. Possible d -
excess relative to the evaporation line is illustrated as blue circles with approximate
values listed in the table on the right.

illustrated as blue circle and the possible d - value is listed in figure 6.8. It is likely that
the isotopic composition of the samples selected here was influenced by a combination
of several processes, which are explained in the following.

Firstly, an increased deuterium excess, which shifts the samples to higher 62H Fluid
values, exceeding 10 %¢ due to an increased moisture recycling or less humidity above
the ocean. It could be assumed that during colder and drier climatic conditions, a
larger humidity gradient between the saturated layer directly at the ocean surface and
the sub-saturated atmosphere above, leading to strong non-equilibrium fractionation
and thus higher d-values in the evaporating moisture [Pfahl and Sodemann, 2014].
Furthermore, dry climatic conditions favour evaporation, particularly under unsatu-
rated air conditions. Therefore, precipitation from air masses that have undergone
considerable incorporation of evaporated water will present higher d - values [Froehlich
et al., 2002; Pfahl and Wernli, 2008; Ampuero et al., 2020]. The assumption that an
increased deuterium - excess can be expected under drier climatic conditions is further
confirmed by the results of Vieten et al. [2018] for today’s precipitation above the
cave, with significant higher d-values (>15%0) for the dry season (winter months).
According to the theoretical considerations of Merlivat and Jouzel [1979] and a SST of
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6.4 Discussion

22°C [Schmidt et al., 2010], the highest d - value of 26 %o for sample 8 (21.43 ka) would
theoretically be possible at a humidity at the sea surface of approximately 50 %. It
is quite conceivable that the humidity during the Greenland stadials was significantly
lower than the present - day average humidity above the ocean’s surface, which today
varies between 65 % and 80 % for the tropics of the western Atlantic depending on the
season [Aemisegger et al., 2014].

Both stable water isotopes are influenced by evaporation, which fractionates oxygen
more than hydrogen, with the characteristic slope of ~3.4. This possible evapora-
tion, which has already been discussed, shifts the samples to both higher 618Oflmd
and 62H fluid values. The superposition of the variable d-excess and the evaporation
causes some samples to be shifted from the evaporation line (orange) towards the
GMWTL (black), see figure 6.8. This would also explain why HS 1 (sample 1), which is
actually the most pronounced Heinrich event for LA-1 considering the §'8O,qcie signal
[Warken et al., 2020], does not show a clear evaporation pattern because it seems to
lie on the GMWL. Furthermore, some samples show an atypical position above the
GMWL (e.g. 5, 8 and 13), which could also be due to an increased deuterium excess
relative to the evaporation line.

It is possible that for samples from Greenland stadials, HS and LGM different fac-
tors are superimposed which influence the d-excess to different strengths. Both low
humidity over the ocean and increased moisture recycling can be favoured by rather
dry climatic conditions [Froehlich et al., 2002; Masson-Delmotte et al., 2005; Jouzel
et al., 2007; Pfahl and Sodemann, 2014]. In such a scenario, the varying d - excess may
shift samples that are actually on the evaporation line towards the GMWL, which
makes it difficult to identify a uniform pattern. Considering the measured deuterium
excess of the Greenland interstadials and stadials, the possible deuterium excess rel-
ative to an evaporation line shifts the very negative d-values of the stadials to more
realistic d - values compared to the interstadials (see figure A.38).

Greenland interstadials - 5180flm-d compared to present - day rainfall

If T consider the samples of the presumably warm and moist Greenland interstadials,
a clear pattern scattered around the GMWL with a d - value around 10 %o can be ob-
served. In comparison to modern cave drip water (6**0 = —2.6 + 0.2 %0) the mean
S0 fluid value shows an average enrichment of 3.3+0.5 %0 in VSMOW, see figure 6.9.
If the results are corrected for the changing ice sheets (data of sea level corrected values
see table A.34) and thus for the changed isotopic composition of the ocean, the average
enrichment is 2.1 4 0.43 % VSMOW. As discussed before, this correction is question-
able and does not change the overall pattern that the paleodrip water is isotopically
enriched compared to modern day drip water. I suppose that the precipitation and
thus the drip water that fed the stalagmite during the LGP was different from modern
drip water. These findings are similar to the results of Millo et al. [2017], which found
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6 Case study Ill: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

an enrichment of about 4 % VSMOW for paleodrip water compared to modern cave
water for a subtropical stalagmite covering parts of the LGP from Brazil.

Regarding recent precipitation in Puerto Rico, Scholl and Murphy [2014] have shown
that isotopically enriched precipitation is associated with trade wind orographic rain
and isotopically lighter precipitation with convective rain such as hurricanes and tropi-
cal storms (see figure A.36). Accordingly, the paleoprecipitation during the Greenland
interstadials of LA-1 could be characterized rather by orographic rain than by convec-
tive rain. These results are further supported by findings of Winter et al. [2020] for the
hydroclimatic regime in Central America during the transition from the Last Glacial
Period into the Holocene. The authors argue, that the type of precipitation (convec-
tive or orographic) depends on the location of the ITCZ and the related Caribbean
SST. The exceeding of an SST threshold in the nearby tropical ocean triggered a deep
atmospheric convection during the Holocene, which lead to a shift of the regime from
drought during the LGP to humidity over Central America. In contrast, during the
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Figure 6.9: Mean 6'80 deviation for samples of the Greenland interstadial to present -
day rainfall (mean 60 = —2.64-0.2 %0). The uncorrected isotopic composition (red
triangles) results to a mean §'%0 tluid value of 0.69 £ 0.49 %o, whereas the sea level
corrected (half filled triangle) oxygen values results to —0.47 4 0.43 %o in VSMOW.
The paleodrip water is isotopically enriched compared to present-day cave water,
which indicates that orographic precipitation is more pronounced.
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glacial period relatively cold Caribbean SST (approximately 2-3°C colder [Schmidt
et al., 2010]) in the Guatemalan region could not sustain strong convective activity
[ Winter et al., 2020]. Consequently, during the LGP with rather colder SST than to-
day the precipitation is interpreted to be of more orographic origin.

Observations by Rozanski et al. [1993] on the relationship between the amount and
isotopic composition of precipitation for tropical regions between 20°S and 20°N show
a shift towards more positive (heavier) §'80 values with decreasing amounts of precip-
itation (see figure A.39). Above the cave with an annual precipitation of 2130 mm per
year a 680 value of ~ 3 £ 1 % VSMOW would be expected according to Rozanski et al.
[1993], which agrees within the uncertainty with the mean isotopic signal of present -
day drip water. Accordingly, it could be assumed that for Greenland interstadial the
amount of rainfall has been reduced to 600- 800 mm per year with an average 680 Fluid
value which is about 2 %o heavier than present - day drip water taking the more positive
sea water into account. This assumption of a drastic reduction of rainfall during the
Greenland stadials of the LGP may be too extreme. However, the shift of 680 values
to more positive values may indicate not only a change in the type of precipitation but
also a reduction of the amount during the Greenland stadials compared to today.

Findings of the fluid inclusion 680 and §%H interpretation

« The stable isotope measurements of §'20 fluid and 5°H fluid for LA-1 show
two characteristic patterns. Samples with a water content above 0.4 ul/g
are located on the GMWL or scatter around it with a slope of 7.2 4+ 0.8,
whereas samples with a lower water content deviate significantly from that
with a slope of 3.7 £ 0.2 indicating evaporation effects.

o For HS, LGM and Greenland stadials: The varying deuterium excess shifts
some samples that experienced evaporation and should follow the evapo-
ration line towards the GMWL, which may lead to misinterpretation.

e For Greenland interstadials: The samples exhibit no increased d-excess
and are located on the GMWL, accordingly, an isotopic modification due
to evaporation can be excluded.

o For Greenland interstadials: The 680 fluid values are up to 3 % VSMOW
more positive than 680 of modern drip water, which is similar to findings

of late glacial fossil drip water from a subtropical Brazilian stalagmite
[Millo et al., 2017].
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6 Case study Ill: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

« For Greenland interstadials: The isotopically enriched §'%O fluid Values in-
dicate paleodrip water that was dominated by orographic rain and perhaps
the amount of precipitation was significantly reduced.

6.4.4 Application of the classic carbonate thermometer for samples with a
high water content

For the samples with a high water content, where the isotopic composition of the
fluid inclusion measurements are located on the GMWL, it can be assumed that they
have not experienced kinetic fractionation due to evaporation. For the calculation
of paleotemperatures with the classic carbonate thermometer (see section 2.2.3), the
S0 fluid and 880 qicite values need to be harmonized to the equivalent depth range,
since the 6'80q1cite data were measured with a much higher resolution than the iso-
topes of the fluid inclusion samples. Figure 6.10 shows the high resolution 68O.qcite
signal in grey with the averaged values (green circles) for the respective depth of the
corresponding fluid sample pieces with the uncertainty resulting from the standard
deviation of the fluid isotope analysis. For the 6180 fluid measurements, only the mean
values with a high water content are shown (blue circle) together with the overall
mean (dotted line). I decided to parametrize the classic oxygen isotope carbonate
thermometer with isotope fractionation factors according to Johnston et al. [2013]
with 1000 - In(eateite—water) = 17.66 - (103/T') — 30.16, which derived the most realis-
tic temperature patterns. For comparison with other parametrizations, temperatures
calculated after Kim and O’Neil [1997] and Tremaine et al. [2011] are listed in table
A.36 and shown in figure A.41.

The paleotemperatures were calculated for 17 individual depths using the classic car-
bonate thermometer, with temperatures varying between 15.2 + 1.7°C (sample 8,
21.43 £ 0.25ka) and 33.5 £ 1.5°C (sample 9, 22.65 £+ 0.23ka). Samples which can
be clearly assigned to cold and dry climatic conditions due to their calcite signal
(higher 6'80qieite values) are e.g. samples 1 (24.9 &+ 1.8°C), 12 (22.5 + 1.8°C) and
18 (17.6 £ 1.7°C). In contrast, samples which clearly originate from a warmer and
wetter climatic period are for example sample 9 (33.6 + 1.6°C), 24 (24.0 £ 1.3°C), 27
(29.3+£1.5°C) and 32 (29.9 +2.6 °C). Here the interstadials show higher temperatures
on average compared to the stadials, but temperatures strongly exceeding present - day
cave air temperature (22.5°C) and are rather unrealistic even for Greenland intersta-
dials of the LGP.

The green bars in figure 6.10 illustrate intervals during the LGP, when LA-1 shows
elevated 6'80.qcire values (HS1 (17.2-15.5ka), HS2 (24.3-23.8ka) and HS3 (29-
30ka)), which are associated with cold and dry climatic conditions. The calculated
paleotemperatures for HS 2 are 21.4+1.4°C (sample 10), 22.5+1.8°C (sample 12) and
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16.51 £ 1.4°C (sample 13) and for HS3 are 17.6 +1.7°C (sample 18) and 18.7+1.4°C
(sample 19), respectively. Accordingly, a mean cooling compared to the present cave
air temperature of 2.4 +£2.6 °C for HS2 and 4.4 4+ 0.6 °C for HS 3 could be obtained. In
contrast, HS 1 shows no temperature decrease, although Arienzo et al. [2015] has found
the most pronounced cooling (~ 4 °C) for HS 1 for a Bahamian stalagmite record. How-
ever, considering the §'8O0q1cie signal of LA-1, it appears that HS 1 is characterized by
the most extreme conditions (cold and dry) in Puerto Rico [ Warken et al., 2020]. It is
likely that very slow drip rates and enhanced PCP (Prior Calcite Precipitation) were
dominant here, which may have also influenced the isotopic composition of the fluid
inclusions. Considering figure 6.8 for HS 1, a strong possible d - excess (d = 22.9 %o) is
visible relative to the evaporation line for HS 1, which shifts the sample from the evap-
oration line towards the GMWL. Therefore, I hypothesize that HS 1 has experienced
very strong evaporation, which is not obviously visible with the misleading location on
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Figure 6.10: Measured 68O qicite signal in grey with harmonized to fluid inclusion
sample depth mean values (green circles). The §'%O0 4 results with a high water
content are shown as blue circles and the calculated paleotemperatures via the classic
carbonate thermometer according to Johnston et al. [2013] as light yellow dots. For
a better orientation presumably relatively dry and/or cool periods during the Last
Glacial Period are illustrated as light blue bars. The corresponding time intervals of
the colder periods refer to the clearly pronounced HS events with increased 68O qicite
values according to Warken et al. [2020].

107



6 Case study Ill: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

the GMWL, but has shifted the 680 fluid to a heavier (more positive) value. Accord-
ingly, sample 1 (HS1) should be excluded from the discussion of paleotemperatures.
This is not the case for all samples which are formed during a Heinrich stadial, for
example sample 13, which is assigned to HS 2. Here a clear d - excess can be recognized,
but no strong evaporation. Accordingly, the 5180ﬂm-d value is not modified and the
obtained temperature of 16.5 + 1.4°C (see figure 6.10) can be considered realistic.

When the reconstructed paleotemperatures are examined more closely, a tempera-
ture fluctuation between 15°C and 33 °C can be observed in particularly conspicuous
samples (1, 8, 9, 27, 32 and 36). The samples 1, 8, 9, and 32 are to be excluded from
the data set, because they have a misleading positions on the GMWL (see figure 6.8)
despite a high water content. It can be assumed that these samples were affected by
the evaporation of the drip water after precipitation of the calcite and therefore did
not preserve the original (5180ﬂmd signal. Another effect which is often observed in
caves and which extensively alters the signal in stalagmites is PCP. This leads to an
accumulation of Mg and Sr in the drip water as well as to increased 68O qicite and 63C
values, at the same time PCP leads to slower growth [Stoll et al., 2012]. The growth
rates of LA-1 vary from 10 to up to 2000 um per year [Warken et al., 2020] suggesting
the presence of PCP as modulator for the growth rate changes and correspondingly
a modified 6'8Oq1cite signal, which is not only controlled by temperature. To what
extent PCP changes the isotope composition of the drip water is difficult to determine.
However, the presence of PCP indicates a very difficult temperature reconstruction,
because the temperature signal is additionally superimposed by kinetic effects. No-
ticeable are two additional samples, which show significantly higher temperatures than
the present cave temperature. Samples 27 and 36 were taken in sections of LA-1 with
a highly variable 60 qcite signal and may not have been accurately sampled.

6.4.5 Comparison between classic carbonate thermometer with Bahamian
speleothem, SST and Lake temperature records

I compare the 680 fluid - carbonate precipitation temperatures (after Johnston et al.
[2013]) for the samples with a high water content and where kinetic fractionation due
to evaporation can be excluded with temperature records from marine and terres-
trial archives. The locations of the individual studies are shown in figure 6.1. Figure
6.11 shows the different temperature reconstructions, with the fluid inclusion derived
temperatures of LA-1 (light yellow dots) together with a Bahamian speleothem record
[Arienzo et al., 2015], marine SST (Sea Surface Temperature) reconstructions [Schmidt
et al., 2010; Ziegler et al., 2008] and land surface temperatures records from lake sed-
iments from central America [Grauel et al., 2016]. For the paleotemperatures derived
from 680 fluid measurements of LA-1, samples (15, 24 and 35) associated with Green-
land interstadials agree very well with the reconstruction of the SST of the Gulf of
Mexico. Compared to the rather constant SST of the Cariaco Basin in the Caribbean,
the SST record of the Gulf of Mexico shows a much stronger temperature variation
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Figure 6.11: Fluid inclusion derived temperatures after Johnston et al. [2013] with
sample ID are shown in light yellow. For comparison another speleothem record (di-
amond), two marine records (dots) and one terrestrial record (triangles) are shown.
The temperature reconstruction of the Bahamian speleothem record is also based on
the analysis of fluid inclusions, with a temperature uncertainty of +2.7°C [Arienzo
et al., 2015]. The present - day cave air temperature of Larga (yellow square) and
Abaco Island (purple square) is given for a better comparison. The SST are derived
from a sediment core located in the Cariaco Basin (Caribbean after Schmidt et al.
[2010]) in dark grey and from the Orca Basin (Gulf of Mexico after Ziegler et al.
[2008]) in light grey, based on the Mg/Ca ratio of surface-dwelling foraminifera. The
terrestrial record from Lake Petén Itzd (Guatemala) after Grauel et al. [2016] using
two different biogenic carbonates, with benthic ostracod limnocythere opesta (green
triangle) and gastropods Cochliopinasp and Tryonia exigua (blue triangle). In the
tropical Atlantic, Heinrich stadials (1 to 3) as well as Greenland stadials are associ-
ated with cold and dry conditions (light blue bars) and Greenland interstadials are
associated with warmer and more humid climatic conditions (light red bars) [Peterson
et al., 2000].
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6 Case study Ill: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

of about 4.5°C for the time period shown here. It is notable that both SST records
indicate no significant cooling for HS 1, although this event is the most pronounced
event in the terrestrial records after Arienzo et al. [2015] and Grauel et al. [2016]. In
fact, the fluid inclusion derived temperature for HS1 (24.9 + 1.8°C) corresponds to
the SST of the Gulf of Mexico within the uncertainty (see figure A.42). However, this
sample was excluded from interpretation due to evaporation, as well as the samples 9,
27, 32, and 36 which indicate significant higher temperatures than present - day cave
air temperature. In contrast, sample 8 (21.43 £0.25ka) with T = 15.24+1.7°C shows a
significantly lower temperature, which is consistent with the SST according to Ziegler
et al. [2008] as this record shows a temperature minima around 21 ka (see figure A.42).
In order to remain consistent and stringent in the argumentation that evaporation
leads to kinetic fractionation and therefore no paleotemperatures can be determined
with the classic carbonate thermometer, these samples must be excluded.

For intervals during the LGP, when LA-1 shows elevated §'®Oqcize values, the pa-
leotemperatures indicate significantly lower values. These are, however, not as pro-
nounced as Arienzo et al. [2015] found for a Bahamian speleothem (temperature vari-
ation between 12°C and 22°C) or as terrestrial lake paleotemperature reconstruc-
tions for central America (temperature variation between 13°C and 25°C) demon-
strate [Grauel et al., 2016]. For the reconstruction of the lake temperatures ostracodes
are used, these are bottom dwellers which archive hypolimnetic temperatures that are
recorded during winter mixing [Grauel et al., 2016]. So it is questionable if a lake
sediment record is suitable to compare the formation of a stalagmite in a cave. Fur-
thermore, because of the geographical location of Puerto Rico in respect to the two
terrestrial records, located further south than the Bahamas and no continental influ-
ence as for Lake Petén Itza, I would expect less pronounced temperature variations
between glacial and interglacial and a more maritime Atlantic climate. For our mea-
surements the temperature decrease during HS 3 was the most pronounced one, with
both individual measurements indicating a cooling of about ~4.4°C. This temperature
decrease is consistent with the results of Arienzo et al. [2015], which found an average
temperature decrease of ~4°C across the Heinrich stadials 1 to 3.

In summary, the reconstructed paleotemperatures based on the fluid inclusion mea-
surement show a variation of 7.5°C between a minimum temperature of 16.5 £ 1.4°C
(24.6ka) and a maximum temperature of 24.0 + 1.3°C (33.5ka). This temperature
variation between Greenland stadials and interstadials is more pronounced than the
variation of the SST after Ziegler et al. [2008] and less pronounced than the variation
of the Bahamian speleothem record after Arienzo et al. [2015]. I could show that
during HS 2 a temperature decrease of ~2.4°C and during HS3 an even more pro-
nounced cooling of ~4.4°C occurred, which is consistent with the results of Arienzo
et al. [2015] for an average temperature decrease of ~4°C during HS1 to 3. This
much stronger temperature decrease on land compared to the sea surface is consistent
with other findings of speleothem records [Arienzo et al., 2015] or lake sediments from

110



6.4 Discussion

Central America [Grauel et al., 2016]. For the reconstructed paleotemperatures during
the Greenland interstadials I could show that they correspond to the temperatures of
the sea surface of the Gulf of Mexico.

Findings for the paleotemperature reconstruction using the classic carbonate
thermometer

e A paleotemperature reconstruction using the classic carbonate thermome-
ter is useful if kinetic fraction during calcite formation can be excluded.
Therefore, the measured stable water isotopes should be analysed with
respect to possible evaporation and/or a varying deuterium excess.

o In many terrestrial paleorecords Heinrich stadial 1 is the most pronounced
one [Arienzo et al., 2015], which is also the case for the 68Oy ite signal
of LA-1 [Warken et al., 2020]. In contrast, SST reconstructions show no
significant temperature decrease for HS 1, which agrees with the results of
the fluid inclusion measurements. Therefore, I assume that the 680 i
and 6°H fluid values mainly indicate an evaporation signal with a strong
deuterium excess due to dry climatic conditions.

e For Greenland interstadials: Reconstructed paleotemperatures match with
sea surface temperatures from the Gulf of Mexico.

e For Greenland stadials: A mean temperature decrease compared to the
present - day cave air temperature of 2.37 + 2.59 °C for HS2 and 4.35 +
0.56 °C for HS 3 could be obtained.
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7 | Conclusion and Outlook

7.1 Conclusion

7.1.1 Fluid inclusion line

A major goal of this work was the design and development of the fluid inclusion line
for the simultaneous measurement of the stable water isotopes of fluid inclusions of
speleothems by absorption spectroscopy. The determination of the §'%0 and §6°H
value of fluid inclusion water is complicated by the small amount of released water in
the ul to sub-pul range. So far, only a few laboratories have set up suitable systems
(IRMS [Vonhof et al., 2006; Dublyansky and Spdtl, 2009] or CRDS [Arienzo et al.,
2013; Affolter et al., 2014] / OA-ICOS [Czuppon et al., 2014]) to perform these mea-
surements. Consequently, the potential for detailed studies is severely limited by the
small number of laboratories. Therefore, I have built up a line, which follows the basic
idea of Affolter et al. [2014] to generate a continuous water vapour background with
known isotopic composition on which the aliquots of water of the crushed speleothems
are measured. The measurement precision of the Picarro analyser used in this thesis
(L2130-i) for the single water isotopes is independent of water volumes. Therefore, I
am able to work with significant lower water vapour background concentrations (6 000 -
8 000 ppmV) compared to Affolter et al. [2014] and could measure released water vol-
umes down to 0,2 ul with high precision. The achieved precision of 0.5 %o for oxygen
and 1.5 %¢ for hydrogen, VSMOW respectively, is comparable to the precision of classic
mass spectrometer measurements and also to those with comparable laser absorption
based setups. I have verified the accuracy of my measurements with inter - laboratory
comparisons. Regarding the future exchange between laboratories measuring stable
isotopes in fluid inclusions, I have developed a water amount calibration method using
glass capillaries. These glass capillaries can be used to check the water amount cali-
bration as well as the isotopic accuracy. In this context, an evaluation routine is made
available, which helps laboratories with comparable measurement methods to evaluate
the data in a fast and standardized manner. Thus, laboratory internal evaluation can
be adjusted and the measured data can be compared more consistently.

Furthermore, I have considered different effects, which could influence the measure-
ment of the stable water isotopes. I was able to show that both adsorption and memory
effects can be excluded for laser adsorption measurements when working with a satu-
rated water vapour background. However, a crucial point with regard to the generated
water vapour background is the selection of the isotopic composition of this background
water. If this deviates significantly from the isotopic composition of the speleothem,
shifts of up to 0.4 %o for oxygen and 3 %o for hydrogen can be observed. Nevertheless,
if the isotopic signal of the water vapour background is within a range of & 10 %o for
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6180 and £50 %o for 6°H from the analysed speleothem, no significant deviation can
be observed. This requirement is usually fulfilled when stalagmites from mid - latitudes
are measured with a water vapour background generated from tap water.

7.1.2 Different paleotemperature reconstructions using fluid inclusions

I have applied two different methods to reconstruct paleotemperatures using the stable
isotopes of fluid inclusions. Firstly by means of the classic application of the carbonate
thermometer and secondly by means of the §2H/T relationship. However, both appli-
cations can only be used under certain circumstances. For the application of the classic
carbonate thermometer the calcite precipitation must take place in equilibrium, which
proves to be problematic for several stalagmite studies. Kinetic fractionation occurs
for fast growing stalagmites or for rapidly changing growth rates. This is partly the
case for Stam 4 from Closani, where the traditional carbonate thermometer leads to
unrealistic temperature variations of 10°C for the last 100 years. Another factor that
enhances kinetic fractionation is a drip rate that is too fast or too slow. In case of a very
slow or even interrupted drip rate, evaporation in the cave can be enhanced and causes
kinetic fractionation during calcite precipitation. For this reason I excluded a large
number of samples for the temperature reconstruction of LA -1 (Puerto Rico). I have
found that the use of the carbonate thermometer can only be applied under a suitable
pre-selection and exclusion of fractionation effects. I could show that for the westerly
tropical Atlantic during the Heinrich stadial a significant cooling of about 3.5°C has
occurred, which is more pronounced than expected by SST reconstructions. For the
interstadials, temperatures were reconstructed that are comparable to the present day
cave air temperature and the reconstructed sea surface temperatures.

In contrast, the application of the §2H/T relation is a suitable approach for stalagmites
that have grown under continental climatic influence. This means that the isotopic
composition of the precipitation is mainly controlled by the Rayleigh rainout effect
and not by other isotopic effects such as the amount effect, which excludes tropical
stalagmites. If the relationship between the §'%0 value of precipitation and surface
temperature is well characterized, the deuterium signal in the fluid inclusions can de-
termine temperatures with a precision of 4+ 0.45°C. With this I was able to resolve the
temperature increase due to anthropogenic climate change for southern Romania for
the second half of the 20th century using the fluid inclusion measurement. The recon-
structed temperature increase of 1.02 +0.63 °C for the period between 1950 to 2010 is
in excellent agreement with local temperature records. Thus, the newly applied deu-
terium - temperature relationship proves to be a suitable method to determine mean
annual temperatures for mid - latitude stalagmites.
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7.1.3 Climatic imprint on isotopic compositions of fluid inclusions

I was able to demonstrate the extent to which a climate signal is imprinted in stable
isotopes of fluid inclusion in addition to the temperature information. For two different
climatic regions (continental and tropical) I have found significantly increased isotope
values in comparison to the isotopic composition of the present day drip water. Frac-
tionation was more pronounced for oxygen than for hydrogen with a slope (62H/§'80)
of +2.274+1.12 for Bu4 (Germany) and +3.73£0.22 for LA-1 (Puerto Rico). This
clear deviation from the GMWL with slopes of 2.3 and 3.7 indicates fractionation
due to evaporation. This effect has never been reported before in stable isotope mea-
surements of fluid inclusions. In fact, evaporation effects in caves are usually only
marginally discussed due to the typically high humidity in the cave. However, that
the same evaporation pattern can be found for these two different stalagmites shows,
that evaporation in caves is an important phenomenon that can lead to disequilibrium
conditions during calcite precipitation. The findings obtained in this thesis on the
analysis of fluid inclusions make an important contribution to the better characteriza-
tion of kinetic fractionation due to evaporation. For both stalagmites it was further
shown that evaporation was favoured by dry climatic conditions, so the position of
the stable isotopes of the fluid inclusions relative to the GMWL can be used as an
indicator for dry or humid climatic conditions.

With the simultaneous measurement of §'%0 and 6?H, the deuterium excess can be
determined, which provides information about the conditions of formation or possible
moisture recycling of the precipitation [Froehlich et al., 2002]. Here I could show that
with respect to the 62H signature very dry climatic conditions can lead to a strongly
varying deuterium excess. Furthermore, the varying deuterium excess shifts some sam-
ples that experienced evaporation and should follow the evaporation line towards the
GMWL, which may lead to misinterpretation. Although deuterium excess has no in-
fluence on the §'¥0 signal and thus does not concern the use of the classic carbonate
thermometer, it should be discussed in detail as it can provide important information
on the formation conditions of precipitation.

A further conclusion is, that the source of precipitation can be derived from the fluid
inclusions. I was able to identify §'%O values for the tropical stalagmite that are sig-
nificantly higher than the isotopic composition of today’s drip water, which indicates a
change in the type of precipitation. The measured fluid inclusion data of LA-1 indicates
that there was a shift from convective rain to more orographic rain during the Green-
land interstadials. For the stalagmite from Clogani, I could show that significantly
increased (more positive) isotope values and concurrently positively correlated NAO
and EAWR modes indicate a shift of the precipitation source towards Mediterranean
influence. Regarding the interpretation of circulation patterns (Clogani - Romania),
kinetic effects during calcite formation are excluded and it is assumed that the signal
stored in the fluid inclusions is purely atmospheric.
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7.1.4 Water content as climate proxy

Apart from the isotopic analysis of the fluid inclusions, I was able to measure the vol-
ume of the released water and thus the water content per gram of calcite. This can also
be used to reconstruct possible climate changes. I could identify that for the Holocene
stalagmite Bu4, rather dry climatic conditions with sporadic or seasonal water supply
tend to be associated with a higher water content and more humid climatic conditions
with a lower water content. The fact that less precipitation is associated with a higher
water content seems counter - intuitive at first. In fact, reduced drip rates lead to ir-
regular crystal growth and thus to more possibilities for incorporating fluid inclusions.
This signal is not always completely clear, as I would expect LA-1 to have a high wa-
ter content during the Greenland stadials, as these periods are associated with rather
cold and dry climatic conditions, which, however, is not the case. Indeed, I measure
a high water content for the Greenland interstadials, which are associated with rather
humid and warmer climatic conditions. Accordingly, the results of the water content
in relation to the climatic conditions for Bu4 and LA-1 are contradictory. More studies
need to be carried out to identify whether a changing water content can be used to
reconstruct varying climatic conditions

7.2 Summary and Outlook

In summary, with the construction of the fluid inclusion line 1 was able to measure
stable isotopes of the fluid inclusions very precisely (£ 0.5 %o for §'%0 and £ 1.5 %o for
§?H) with a simple and robust method. The measuring method based on absorption
spectroscopy has proven to be low - cost and effective with an average measuring time
of 2h per sample. However, influences of the background water’s isotopic composition
on the actual sample measurement need to be investigated in more detail. In addi-
tion, other available CRDS analysers are able to measure §'70O, which can be used as
an additional proxy to identify the relative humidity at the moisture source [Uemura
et al., 2010] and has not been studied intensively in continental archives so far [Af-
folter et al., 2015]. T have developed a calibration method based on water - filled glass
capillaries, which simplifies inter - laboratory comparison. Furthermore, this technique
allows for a simultaneous calibration of isotopic and water amount measurements. In
this context an evaluation protocol was developed, which is publicly accessible to for
better comparison of measurement results.

With the application of this new technique to three different stalagmites, I have demon-
strated the advantage of using fluid inclusions to learn about the climatic conditions in
various settings. The analysis of stable isotopes of fluid inclusions is suitable for the de-
termination of paleotemperatures (classic carbonate thermometer or 62H/T relation)
and changing climatic conditions can be reconstructed. Here the isotopic composition
of the fluid inclusions shows distinct evaporation effects for rather dry climatic condi-
tions, which is an important contribution to the understanding of kinetic fractionation
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during speleothem formation. Regarding the stalagmites presented here, a subsequent
analysis of the oxygen isotopes of the already crushed fluid inclusion samples could be
performed for the Romanian stalagmite. For Stam 4, the application of the classic car-
bonate thermometer was hampered by the fact that the fluid inclusion measurements
were not taken at the growth axis and therefore the fractionation between 680 q1cite
and 5180flm-d could not be determined. Here subsequent measurements could clarify
whether sampling away from the growth axis has an influence on the kinetic frac-
tionation leading to the resulting unrealistic temperatures. In order to demonstrate
possible evaporation in the present day monitoring range, the isotopic composition of
thin water films on stalagmites could be sampled. Concerning the stalagmite Bu4,
both water film and fluid inclusion measurements could be performed on the recently
precipitated calcite samples of the watch glasses under the drip site TS8 (location of
Bu4). Here the calcite precipitation shows clear evidence of isotopic disequilibrium
with significantly higher §'8O.qcire values than expected [Riechelmann et al., 2013].
For Puerto Rico, additional pool spar measurements of the §'¥O.qcire signal would
help to better characterise present day calcite precipitation in the cave, as there is as
significant deviation in isotope values between fluid inclusions and pool water.

I conclude, that measurements of stable isotopes of fluid inclusions provide an impor-
tant contribution for reconstructing the past climate. The here developed analytical
technique should therefore be routinely incorporated in already existing standard anal-
yses of stable isotopes of the carbonate in order to obtain a comprehensive picture of
the speleothem under investigation.
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A.1 Theoretical background
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Figure A.1: Rainout effect on §'%0 values of atmospheric water [Hoefs, 2009).
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Figure A.2: The global distribution of mean annual 6'¥0 values show a spatial varia-
tion, with 6'80 values decreasing from low to high latitudes and heights [Bowen and

Wilkinson, 2002].
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Figure A.3: The Rayleigh distillation process describes the relationship between the
isotopic composition of atmospheric vapour and precipitation. Here, the isotopic
composition of the first condensate (rain) is close to the local seawater composition,
with ongoing rain-out the isotope values become more and more depleted (lighter)
[adapted from [Rohling, 2013]]. The isotopic composition of the atmospheric vapour
(AV) is approximated by 61804y = 6*¥0g + 103(a — 1)in(f), where 680x denotes
the evaporated water, o the fractionation and f is the fraction reaming after rain-
out. The isotopic composition of the precipitation formed at equilibrium is given to:
§180p = 6804y + 103In(«) [Dansgaard, 1964].



A.1 Theoretical background
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Figure A.4: Graphical representation of the two modes of the North Atlantic Os-
cillation (positive and negative). The NAO index describes the pressure gradient
of the normalised sea level pressure values at two different location (Gibraltar and
south-west Iceland) [Jones et al., 1997]. The respective effects on the flow systems are
shown as arrows, with the corresponding impacts of the NAO index on the European
winter climate [ Wanner et al., 2001]. In case of NAO + conditions a strong Low above
Iceland and a strong High above the Azores is found, while in NAO — conditions the
highs and lows are weaker and the westerlies are less pronounced [Hurrell, 1995].
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A.2 Fluid inclusion line - setup, data evaluation, calibration
and intercomparison

Preparation line - effect on stability by different components of the preparation
line
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Figure A.5: The water vapour concentration in ppmV of six equal injections is not
reproduced. Although always 1pl is injected, the actual measured signal varies be-
tween 0.1 and 0.8 ul. Without an installed reflux valve, the reproducibility of the
released water volumes cannot be guaranteed. Additionally, a 2ml mixing cavity is
installed, accordingly the peak duration is approximately one minute.
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Figure A.6: The recorded §'%0 signal with a small mixing cavity (2ml). The signal is
measured within one minute, since only every 0.8 sec a data point is recorded. Despite
the injection of isotopic equal water, the signal does not reproduce, because no reflux

valve is installed.
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Preparation line - setup with individual components

17 6
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119 8

16

14 13 12
15

Figure A.7: Construction of the Fluid inclusion line line with the numbering of the
single components used as listed in table A.1.
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numbering

preparation line

1

U = W N

N

10
11
12
13

14
15
16
17

component

peristaltic pump
flow controller
tygon tubing
FS - capillary
injection port
with septum
seamless tubing
heating tape
temperature regulator
mixing cavity
union tee

purge capillary
reflux valve
injection port
copper tube
brass ferrule set
tube fitting
tube fitting
mixing cavity
oven

filter

Picarro

company

Cole Parmer
ANALYT-MTC
Cole Parmer
BGB

CS

CS

Swagelok
HORST
HORST
FESTO
Swagelok
Swagelok
Swagelok

CS

C. Fischer GmbH
Swagelok
Swagelok
Swagelok
FESTO
SALVIS LAB
Swagelok
Picarro

specification

Reglo Digital ISM 597D

electronic mass flow controller GFC-17
3-STP LMT55 0.13MMID

TSP standard FS tubing, 50 ym ID, 363 pm OD
injector nut 1/8in connection (492EN2ST)
replacement septa, 350C, 1/4in OD low bleed
1/8in OD (SS-T2-S-028-6ME)

HS - 450° C with very small winding radius
HT 30 - desktop regulator

CRVZS-2.0 - 21

Swagelok Tube Fitting (SS-200-3)

tubing 1/16in OD x 0.02in (SS-T'1-S-020-6ME)
poppet 6000 psig (SS-CHS2-1/3)

injector nut 1/8in connection (492EN2ST)
cuprofrio 10x1 mm

B-10M0O-SET

reducer, 10 mm x 3/8in (SS-10M0-R-6)
reducing Union, 3/8in x 1/8in (SS-600-6-2)
CRVZS-0.4 - 400 ml

old oven with glass door

in-line particulate filter (SS-2F-7)

L2130-i Isotopic Water Analyzer

Table A.1: Components with corresponding companies for the setup of the Fluid inclusion line based at Heidelberg University.

The numbering can be seen in figure A.7.
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component

hydraulic crusher

stainless steal jack
piston
hand pump

syringes

Hamilton - 1.0 ul
Hamilton - 5.0 ul
SGE - 1.0 ul
SGE - 5.0 ul

ILS - 1.0l

ILS - 5.0 ul

other components

glass capillary
micro pipettor

temperature sensor

glass wool

company

workshop IUP
FTP Krevet
FTP Krevet

VWR
VWR
VWR
VWR
ILS
ILS

Hirschmann
Hirschmann
HORST
VWR

specification

self built
ENERPAC - low height hydraulic cylinder (RCS101)
ENERPAC - lightweight hydraulic hand pump (P142)

7000 series pl syringes - 7001KH

700 series pul syringes - 75 N

plunger in needle syringes - 1BR-7TRAX
plunger in needle syringes - 5BR-7TRAX
1 pl syringe T-AG RN 0.47¢70

5 ul syringe T-Ag RN 0.50d70

ringcaps

to fill ringcaps

Pt100 insertion sensor
glass wool, superfine

Table A.2: Additional components with corresponding companies for the setup of the

Fluid inclusion line.
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Particle size analysis - test of crushing efficiency

For the Analysette 22 two lasers are implemented, a green laser for small particles
(<600nm) and an infrared laser for larger particles (>600nm). The system is cali-
brated before each measurement with aluminiumoxid, of which the grain size distribu-
tion is well known. The measuring process consists of several steps: First the sample
is weighed and a suspension is prepared. This consists of deionised water to which a
surfactant and an alcohol are added. Hereby, the surfactant does prevent the individ-
ual particles from sticking together. The alcohol reduces the surface tension and thus
bubble formation. This would interfere with the actual analysis as bubbles appear
like particles. Afterwards, the suspension is well mixed in an ultrasonic bath and then

added to the analyser.

sample name weight
# [g]

1 a Closani II C1 0.251

1 b Closani II C1 0.251

2 Closani II B2 0.261

3 LA-1-24 B 0.303

4 LA-1-13 B 0.309

5 LA-1-1_A 0.315

dilution

[%]

10
S
7

14

16

14

number of
measurements

##

)
10
10
10
10
10

Table A.3: The speleothem samples used for the particle size analysis. All samples
have already been crushed and analysed for stable isotopes in fluid inclusions. The
dilution and the number of measurements refer to the measuring procedure for particle

size analysis.
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Table A.4: For the speleothem sample Closani Il C1 the results of the grain size
analysis are given, with D values in um. Thereby stands the D -value for the % of
sample material which contains particles with a diameter below the given value in pm.
The first measurement run was performed without an ultrasonic bath. Numbering I

D values

%

D5
D10
D25
D50
D75
D90
D95
D99

I
[pm]
2.0
5.4
17.3
48.7
207.1
368.5
439.5
551.7

11
[pim]
2.1
5.7
17.5
43.8
171.7
346.0
4175
533.9

111
[pim]
2.0
5.4
16.3
39.8
146.9
290.1
356.9
459.8

v
[pm]
2.2
5.9
17.0
41.2
146.4
326.8
407.6
535.3

.
[pm]
2.4
6.4
17.7
44.4
164.4
344.8
423.0
545.7

to V indicates the repetition of the measuring process.

D values 1 I m v VvV VI Vvl IX IX X
70 [pm]  [pm]  [pm]  [pm]  [pm]  [pm]  [pm] o [pm] o [pm] o [pm]
D5 16 15 1.7 16 16 16 16 16 17 17
D10 38 36 41 37 38 37 37 37 37 38
D25 140 136 144 130 133 127 125 123 121 125
D50 325 304 322 286 289 271 27.0 271 257 260
D75 823 679 791 635 642 61.6 60.7 66.0 57.7 587
D90 226.3 205.0 292.1 1429 177.3 151.3 141.0 208.0 123.6 142.7
D95 2912 2834 399.9 210.1 256.8 244.6 2328 347.9 198.5 216.6
D99 3932 395.8 5540 302.6 361.1 357.7 344.6 512.8 304.6 316.5

Table A.5: Repetition of the measurement of the speleothem sample Closani Il C1
with an ultrasonic bath. The results of the grain size analysis are given, with D values
in pgm. Numbering I to X indicates the repetition of the measuring process.
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D values I I I v vV VI VI IIX IX X
7 [pm]  [pm]  [pm]  [pm]  [pm]  [pm] [pm] [pm] [pm] o [pm]
D5 24 27 27 26 27 27 26 26 26 26

D10 69 77 73 68 67 69 65 65 62 6.2

D25 21.0 218 208 198 19.7 192 189 185 178 179
D50 845 879 762 737 673 631 613 558 56.2 51.8
D75 293.0 296.3 266.4 270.6 240.2 217.5 221.6 196.3 214.2 194.0
D90 436.7 441.2 421.3 4453 412.0 405.6 391.2 369.4 420.5 371.8
D95 505.3 5H11.7 492.8 524.2 488.5 487.1 466.1 445.3 503.0 448.9
D99 623.1 6319 609.1 653.7 609.9 617.1 590.3 567.6 640.2 575.0

Table A.6: For the speleothem sample Closani_ Il B2 the results of the grain size
analysis are given, with D values in ym. The measurement was performed with an
ultrasonic bath. Numbering I to X indicates the repetition of the measuring process.

D values 1 I m v VvV VI Vvl IX IX X
70 [pm]  [pm]  [pm]  [pm]  [pm]  [pm]  [pm] o [pm] o [pm] o [pm]
D5 13 14 14 15 14 15 15 15 16 15

D10 31 32 34 34 31 36 35 35 35 32

D25 145 143 147 147 131 145 141 138 137 125
D50 50.3 43.8 423 416 36.8 400 385 370 363 316
D75 208.8 155.8 136.7 134.3 115.2 127.2 120.8 116.8 117.6 91.7
D90 383.8 3639 321.5 340.3 250.8 311.2 3224 306.7 329.6 197.8
D95 459.4 448.6 408.7 436.5 323.9 404.7 420.8 407.7 437.5 268.0
D99 584.8 582.1 544.0 579.9 4379 544.0 561.9 552.1 589.5 386.1

Table A.7: For the speleothem sample LA-1-2/ B the results of the grain size analysis
are given, with D values in ym. The measurement was performed with an ultrasonic
bath. Numbering I to X indicates the repetition of the measuring process.
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D values I 11 111 v A% VI VII 1IX IX X
7 [pm]  [pm]  [pm] - [pm]  [pm]  [pm] [pm] [pm] o [pm] o [pm]
D5 1.0 1.0 1.0 1.1 1.1 1.2 1.1 1.3 1.2 1.2

D10 1.9 2.0 2.2 2.3 2.3 2.6 2.4 2.8 2.5 2.6
D25 8.9 9.5 10.1 10.7  10.1 11.6 105 12.0 10.2 109
D50 284 288 297 314 290 319 293 322 278 281
D75 108.2 91.7 984 109.0 90.1 103.6 92.1 1143 84.3 82.1
D90 287.9 248.3 258.7 315.8 225.2 292.6 244.0 342.1 214.1 204.6
D95 361.7 326.8 336.9 409.7 303.6 3954 3294 443.6 295.1 283.1
D99 474.5 443.0 452.8 5474 423.7 540.6 452.1 590.2 420.7 407.3
Table A.8: For the speleothem sample LA-1-13 B the results of the grain size analysis

are given, with D values in ym. The measurement was performed with an ultrasonic

bath. Numbering I to X indicates the repetition of the measuring process.

D values I 11 III v A% VI VII 1IX IX X
7 [pm]  [pm]  [pm]  [pm]  [pm]  [pm]  [pm] o [pm] o [pm] o [pm]
D5 1.2 1.3 1.3 14 14 1.4 14 14 1.5 1.5

D10 2.7 3.0 2.9 3.1 3.1 3.2 3.3 3.1 3.4 3.4

D25 130 136 133 136 13.0 132 134 128 135 13.7
D50 42.7 446 40.0 407 378 363 382 352 36.1 36.0
D75 241.1 240.5 167.8 183.1 154.5 130.7 155.2 131.8 134.1 134.9
D90 419.3 425.9 359.7 402.9 3758 3264 3684 330.9 337.5 339.5
D95 494.2 502.5 440.8 485.1 456.7 411.9 452.2 421.0 428.2 432.1
D99 614.0 632.2 569.7 611.6 586.4 544.1 584.8 553.2 5619 568.4

Table A.9: For the speleothem sample LA-1-1__ A the results of the grain size analysis
are given, with D values in um. The measurement was performed with an ultrasound

bath. Numbering I to X indicates the repetition of the measuring process.
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CRDS analyser - Picarro L2130-i
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Figure A.8: Allan deviation plot adapted from Aemisegger et al. [2012] for L2130-i
(light blue), with the short - term stability for 6'*0 (bottom) and 62H (top) measure-
ments at a water vapour concentration of 15700 ppmV. Two different CRDS analyser
from the company Picarro are shown. The Allan deviation is shown as a function of
integration time on a log-log scale.
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Figure A.9: Adapted from Aemisegger et al. [2012], shown is the dependency of
isotope measurements on water vapour concentrations in ppmV. For the L2150-i,
shown as a light blue dotted line, the dependence between isotopic accuracy and
water vapour concentration is very small. The measured isotope values for oxygen

and hydrogen require no correction for a varying water content.

time time o (6'80) o (0°H)
[min] [s] (Y00 VSMOW]  [%0VSMOW]
0.2 10 0.2733 1.1052
0.8 50 0.2205 0.9038
1.7 100 0.2293 0.7943
8.3 500 0.2128 0.7629
16.7 1000 0.2119 0.7335
60.0 3600 0.2078 0.7311
83.3 5000 0.2081 0.7353
100.0 6000 0.2086 0.7380
141.7 8500 0.2117 0.7598
170.0 10200 0.2087 0.7499
14166.7 850000 0.2118 0.7598

Table A.10: Variation of the standard deviation for isotopic measurements with in-
creasing integration time. Thereby, the standard deviation are calculated exemplary
only for a couple of time intervals for the L2130-i analyser. For our measurement o
(6'80) and o (62H) is lowest for an integration interval of 60 min.
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Long-term drift for the isotope calibration - L2130-i

date 5180 stdv 5%H stdv
Yool [Jo]  [%o]  [%0]

CC

28.05.2018 -17.65 0.20 -105.33 0.71
16.07.2018 -17.54 0.20 -105.40 0.72
19.09.2019 -17.61 0.21 -104.87 0.75

VE

21.06.2019 -11.16 0.21 -54.67 0.80
17.09.2019 -11.13 0.21 -54.52 0.75

VCL

29.05.2018 -15.53 0.20 -92.95 0.70
14.05.2019 -1547 0.20 -92.73 0.69

NG

16.05.2018 -29.13 0.20 -209.28 0.66
17.05.2018 -29.10 0.20 -208.90 0.66

Table A.11: Analysis of long-term drift for the isotope calibration for the L2130-i
analyser. With a selection of the standard waters used (CC (Colle Alps), VE (tap
water), VCL (Alps) and NG (North Greenland)). The results are uncalibrated and
averaged values over a time interval of 60 min. Since the isotope calibration standards
are measured at regular intervals, no deviation of the measured isotope signals can
be identified even over several months.
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Long-term measurement (22 h) for the L2130-i

d180 [permil]

water vapour concentartion [ppmV]

7000

6980

6940

— measurement

—— measurgment

-10.5
E
-11.0 g
(2]
T
e
-11.5
7
60000 65000 70000 75000 60000 65000 70000 75000
seconds [s] seconds [s]
Figure A.10: A: §'%0 mean=- Figure A.11: B: 6°H mean=-
11.00%0 / stdv=0.21%0 (30 min) 53.96 %o / stdv=0.75%0 (30 min)
=
g 7300, measurement
= linear fit
§ 7200
£
ol
< 7100
g
6960 TT T T . 8 TO00
g
& 6900
=
ks
60000 65000 70000 75000 g 20000 40000 60000 80000 100000
seconds [s] seconds [s]
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Figure A.14: Short-term stability measurement over 22 hours. A, B and C show
stability over the last 30 minutes, with %in VSMOW standard. D shows the 22 hour
trend of water vapour concentration with a linear decreasing trend, resulting in a
total decrease of 1584 ppmV.
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Desorption signal during sample change
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Figure A.15: Variation in water vapour concentration induced by sample change.
Therefore, the line must be opened, visible as the first irregularity of the water con-
tent. As soon as the line is closed again and the sample is heated, the water content
rises rapidly. This is due to the desorption of water molecules from the sample sur-
face. The peak height varies depending on the characteristics of the sample piece.
For example, the pool spar (Hiittenblaserschacht Cave) has a relatively large surface
area, while the stalagmite from the Bunker Cave was a compact sample piece. This
difference is reflected in the peak height. In addition, no spikes can be observed, so
that a cracking of fluid inclusions can be excluded. A further proof that the chosen
temperature (120°C) is not too high.
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Evaluation Protocol - How to use the Python script

Global Configuration

import data

t.datetime (ye

time offset = dt.timedelta(hou

ists(plots): os.makedirs(plots)

if not os.path.exists(results): os.makedirs(results)

ex_eval.set (name = '=

018_calib_param
H2_calib param
volume_mode =

set calibartion
parameters

set start slope criteria
start_slope_n = 3,
ignore_intervals = [(eval time('6:00', ex_eval.tref), ——» selection of intervals

e which are scanned for
\—> a peak
interval between two peaks

end_slope = -
set end slope criteria

end_slope_n

running_mean_n =
min_peak_size =
max_peak_size =
bg_calc_mode = 'fi
bg_model = 'lin’,

bg_fit_start paranm = None, \—> selection of background fit

duration of background

bg_period ,
bg_separation befors_peak = 120

e e ~  —————— > separation between
verbosity = 1) background and peak start

Figure A.16: Jupyter notebook interface to operate the Python script for evaluat-
ing fluid inclusion measurements. Shown are the different parameters which can be
adjusted for evaluation.

In the following, the handling of the Python script (IsoFluid) will be explained briefly.
IsoFluid can be operated via the web interface, called Jupyter Notebook, which allows
a fast and easy data evaluation.

A shortcut of the interface is shown in figure A.16, where all the available param-
eters are listed. First, to evaluate the data is imported. This is done within the global
configuration via the import function. The Picarro analyser stores a text file every
hour. Afterwards, the criteria for peak-start and peak-end are defined. Therefore the
slope (start__slope/end__slope) must be specified and the interval of data points which
are used for the calculation. Since a running mean is used at the end of the peak to
filter out the disturbing pump cycles, this interval (runnin_mean_n) must also be
defined. Furthermore, it is possible to specify intervals (ignore_intervals) at which
a peak is searched for, thus excluding peaks occurring during sample change. The
selection of how the water background should be fitted is done via bg__model, either
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linear or exponential. All the other parameters are shown in figure A.16. This evalu-
ation protocol is intended to make data evaluation simpler and faster. Laboratories,
which also perform fluid inclusion measurements with Picarro analysers and therefore
have to evaluate small amounts of water, could use this evaluation method too. This
could also help to better compare fluid inclusion data between laboratories by avoiding
different evaluation routines.
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Calibration - all measured glass capillaries

Date

02.08.2018
03.08.2018
10.09.2018
11.09.2018
12.09.2018
13.09.2018
14.09.2018
23.10.2018
31.10.2018
02.11.2018
23.11.2018
12.03.2019
13.03.2019
14.03.2019
21.05.2019
22.05.2019

Water
type

Ww
Ww
Ww
Ww
Ww
WwW
Ww
WwWw
Ww
WwWw
Ww
WwW
Ww
Ww
WwW
Ww

Volume
[11]
0.470
0.700
4.280
1.170
1.510
2.630
4.220
2.920
3.800
1.730
1.640
0.685
0.317
2.425
0.932
3.056

Error
[11]
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025

5180
[%00]
1.31

-0.40

-0.38

-0.27

-0.51

-0.35

-0.38

-0.35

-0.34

-0.31

-0.20

-0.27
0.01

-0.37

-0.31

-0.32

Error

[%o0]

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

§%H
[%oo]
-17.88
-18.36
-18.99
-18.08
-19.23
-19.01
-18.90
-18.83
-18.80
-18.77
-18.27
-18.75
-19.46
-18.71
-18.24
-18.81

Error

(o]

1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50

Table A.12: Results of the glass capillaries used for volume calibration

. The results

of the water volumes are given in ul and the stable water isotope data is given in
VSMOW.
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Date Water Volume Error 6%0  Error 5%H Error
type (1] (1] (%]  [%o] [%oo] [%oo]

27.07.2018 CC 0.810 0.025 -14.53 0.50 -111.23 1.50
31.07.2018  CC 0.440 0.025 -14.34 0.50 -108.31 1.50

08.08.2018 Kona  0.910 0.025 0.12 0.50 1.89 1.50
10.08.2018 Kona  0.230  0.025  0.70 0.50 7.49 1.50

09.08.2018 NG 0.890 0.025 -29.52 0.50 -240.73 1.50
05.12.2018 NG 3.600 0.025 -30.28 0.50 -244.29 1.50
09.01.2019 NG 2496  0.025 -30.42 0.50 -244.66 1.50

06.08.2018 VCL 0.360 0.025 -11.96 0.50 -95.73  1.50
07.08.2018 VCL 0.300 0.025 -12.10 0.50 -93.89 1.50
04.09.2018 VCL 2.871  0.025 -13.07 0.50 -99.30 1.50
05.09.2018 VCL 2218 0.025 -13.26 0.50 -99.55 1.50
07.09.2018 VCL 2.140  0.025 -13.31 0.50 -99.30 1.50

18.05.2018  VE 0.436 0.025 -822 050 -5874 1.50
18.05.2018  VE 0.367 0.025 -846 0.50 -58.76  1.50
22.05.2018 VE 1.058 0.025 -8.63 0.50 -61.26 1.50
23.05.2018 VE 0.526 0.025 -845 0.50 -60.62 1.50
28.05.2018 VE 0.310 0.025 -8.63 0.50 -58.63 1.50
29.05.2018  VE 0.261 0.025 -879 0.50 -5837 1.50
30.05.2018  VE 1.318 0.025 -8.62 0.50 -61.20 1.50
18.06.2018  VE 0.356 0.025 -824 0.50 -59.80 1.50
19.06.2018  VE 1488 0.025 -8.66 0.50 -61.43 1.50
20.06.2018  VE 1.675 0.025 -8.67 050 -60.71  1.50
21.06.2018  VE 1482 0.025 -8.75 0.50 -60.85 1.50
20.07.2018  VE 2515 0.025 -8.62 050 -61.28 1.50
23.07.2018 VE 0.264 0.025 -859 050 -62.77 1.50
25.07.2018 VE 0.338 0.025 -796 050 -58.99 1.50
12.07.2019 VE 2.640 0.025 -843 050 -60.15 1.50
15.07.2019  VE 4.082 0.025 -854 0.50 -60.77  1.50
15.07.2019  VE 0.341 0.025 -7.64 050 -62.52 1.50

Table A.13: Results of the glass capillaries used for volume calibration. The results
of the water volumes are given in ul and the stable water isotope data is given in
VSMOW.
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Precision of isotope measurement - VE injections via syringes

140

volume number of 5180 5°H
injections mean stdv mean stdv
(1] # ool - [%o]  [%o] [kl
small
0.1 6 -8.60 0.54 -60.76 1.83
0.2 6 -8.76  0.34 -60.96 1.58
0.3 6 -8.76 0.49 -61.19 1.64
0.4 6 -8.45 0.3 -60.57 1.06
0.5 6 -8.62 0.58 -61.53 1.43
0.6 6 -7.97 0.56 -60.82 1.00
large
1.0 16 -8.53 0.17 -60.71 0.42
2.0 11 -8.35 0.21 -60.39 0.41
3.0 11 -8.56 0.16 -60.86 0.41
4.0 9 -8.62 0.10 -60.98 0.11
expected
VE -8.57 0.08 -61.04 0.70

Table A.14: Precision measurements with several syringe injections. The mean values
with corresponding standard deviation are given in VSMOW. The injections spanning
a volume range form 0.1 up to 4.0 ul, whereby reliable isotopic results are achieved
with a released water volume above 0.2 ul. The expected value for VE water is
independently measured with the LGR analyser.
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water type volume 5180 error 6’H error
(1] [ VSMOW] [ VSMOW]  [%eVSMOW]  [%0VSMOW]

test A
VE 3.48 -8.32 0.50 -60.41 1.50
NG 2.31 -30.13 0.50 -243.54 1.50
NG 3.51 -29.99 0.50 -243.59 1.50
NG 3.54 -30.08 0.50 -244.08 1.50
NG 3.54 -30.08 0.50 -243.87 1.50
test B
VE 3.38 -8.48 0.50 -60.75 1.50
NG 3.44 -30.35 0.50 -244.70 1.50
NG 3.55 -30.37 0.50 -244.92 1.50
NG 4.13 -30.36 0.50 -244.40 1.50
test C
VE 2.48 -8.09 0.50 -59.92 1.50
NG 3.22 -30.03 0.50 -242.97 1.50
NG 3.22 -29.95 0.50 -242.97 1.50
NG 3.21 -29.94 0.50 -243.07 1.50
test D
VE 0.39 -8.73 0.50 -58.91 1.50
NG 0.46 -29.65 0.50 -242.87 1.50
NG 0.50 -29.73 0.50 -240.00 1.50
NG 0.49 -29.88 0.50 -244.08 1.50
NG 0.40 -29.91 0.50 -242.37 1.50
test B
VE 2.46 -8.40 0.50 -60.41 1.50
NG 2.55 -29.99 0.50 -243.96 1.50
NG 2.51 -30.44 0.50 -242.99 1.50
NG 2.48 -30.03 0.50 -243.60 1.50
test F
VE 0.99 -8.23 0.50 -60.54 1.50
NG 1.00 -29.77 0.50 -242.94 1.50
NG 1.00 -29.89 0.50 -242.14 1.50
NG 1.00 -29.90 0.50 -242.79 1.50

Table A.15: The measurement to examine the memory effect were repeated six times
(A to F), whereby after a first VE injection, water with significantly different iso-
topic composition was injected (NG). The volumes of the injection were varied in
the range of 0.4 to 4.0 ul. The independently measured isotope data for VFE_ II are
5180 =-8.22% and 02H=—60.53%c and for NG they are 680 =—30.24 % and
§?H = —242.15%0 in VSMOW.
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Possible disturbance effects during stable isotope measurement
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Figure A.17: Isotopic signal evolution for the measurement of pure Iceland Spar with
a sample weight of 0.2524g. The integrated background signal is shown in light
brown, with the resulting mean in red. The interval of the actual sample signal is
shown in light blue. There are no significant differences in the oxygen or hydrogen
signal, both in dark green. The water vapour background is CC - Colle Alps with
580 =—15.13%0 and 6°H=—110.58 %0, in VSMOW.

Figure A.18: Image of the sample configuration for testing whether adsorption influ-
ences the isotopic sample signal. Iceland Spar is measured together with a water-filled
glass capillary, which is mounted together in a copper tube.
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5180 52H volume mass
value error value error
(%] (%] [%o] [ [1]] ]

only capillaries

I -8.54 0.50 -60.77 1.50 4.04 -
II -8.43 0.50 -60.15 1.50 2.65 -

capillaries plus Iceland spar

I -8.47 0.50 -60.16 1.50 3.49 0.58
11 -8.58 0.50 -60.46 1.50 2.63 0.61
111 -8.49 0.50 -60.77 1.50 3.67 0.55
v -8.58 0.50 -60.46 1.50 3.52 0.45
\% -8.51 0.50 -60.17 1.50 2.89 0.56
mean with stdv -8.52 0.05 -60.40 0.22 - -

Table A.16: Results for the measurement whether adsorption influences the isotopic
sample signal. First (I and IT), water-filled glass capillaries ( VE) were measured alone
to check the precision of the isotope measurement. Afterwards, glass capillaries filled
with the same standard water (VE) were measured together with Iceland Spar. Iso-
topic results are given in VSMOW. The isotopic signal for the measurement together
with Iceland Spar does not differ from the measurements with only glass capillaries.
The independently measured data for VE-tap water is — 8.50 %o VSMOW for §'20
and — 60.70 %0 VSMOW for §2H.
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injection water 5180 error 5%H error
on volume
background [1]] [%0VSMOW] [ VSMOW]  [%VSMOW]  [%0VSMOW]

VE on NG

2.76 -8.07 0.5 -57.82 1.50

2.79 -8.13 0.5 -57.87 1.50

2.84 -8.15 0.5 -57.71 1.50

2.76 -8.11 0.5 -57.84 1.50

2.81 -8.05 0.5 -57.93 1.50

mean with stdv -8.10 0.04 -57.83 0.07
VE on CC

2.78 -8.53 0.5 -59.79 1.50

2.27 -8.46 0.5 -59.82 1.50

2.64 -8.47 0.5 -60.08 1.50

2.88 -8.49 0.5 -59.67 1.50

3.13 -8.45 0.5 -59.77 1.50

mean with stdv -8.48 0.03 -59.83 0.14
VE on VE

2.81 -8.53 0.5 -60.36 1.50

2.31 -8.54 0.5 -60.48 1.50

2.69 -8.41 0.5 -60.22 1.50

3.10 -8.48 0.5 -60.97 1.50

3.05 -8.50 0.5 -60.48 1.50

mean with stdv -8.49 0.05 -60.50 0.25
VE on WW

3.07 -8.65 0.5 -60.92 1.50

3.11 -8.58 0.5 -60.88 1.50

2.79 -8.72 0.5 -61.09 1.50

2.91 -8.66 0.5 -60.99 1.50

2.90 -8.63 0.5 -61.21 1.50

mean with stdv -8.65 0.04 -61.02 0.12

Table A.17: VE injections to analyse the effect of the selected isotopic background
on the actually measured isotopic signal. On four different isotope backgrounds (NG,
CC, VE and WW) the same standard water (VE) was injected five times. The
independently measured data for VE-tap water are 680 = —8.50%¢ and §°H =
—60.70 %o , in VSMOW.
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First test speleothem samples - reproducibility measurements

sample mass

ID
[g]
A pond
1 0.52
2 0.52
mean -
B pond
1 0.57
2 0.65
mean -
C little pond
1 0.59
2 0.45
mean -

water
volume

[121]

0.24
0.31

0.43
0.42

1.78
0.48

water
content

111/ ]

0.46
0.60

0.76
0.64

3.02
1.08

5180

[%o0]

-7.46
-7.92
-7.69

-7.60
-7.84
-7.72

-7.25
-7.68
-7.46

error

[%oc]

0.50
0.50
0.35

0.50
0.50
0.35

0.50
0.50
0.35

5%H

[%oc]

-53.15
-51.86
-52.50

-49.65
-48.56
-49.11

-51.08
-50.95
-51.01

error

[Yoc]

1.50
1.50
1.06

1.50
1.50
1.06

1.50
1.50
1.06

Table A.18: Results of stable isotope measurements in fluid inclusions for pool spar
mean values
with corresponding error, calculated after propagation of uncertainty, are given as
well. The mean drip water values of the Bunker Cave, which is located nearby, are:
5180 =-8.0+£0.2% and 6°H=-54.5+1.5%0, in VSMOW [Riechelmann et al., 2011].

speleothems in Hiittenbldserschacht Cave are given in VSMOW. The
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First test speleothem samples - accuracy measurements

sample mass  water water 00  error 5°H error

1D volume content
[g] (1] wd/gl (k] ol [o]  [%0]
HUAGAPO
Band 1
a 0.32 0.62 1.9 -16.61 0.5 -122.18 1.50
b 0.39 0.67 1.7 -17.34 0.5 -125.81 1.50
¢ 0.34 0.69 2.0 -16.84 0.5 -124.47 1.50
d 0.32 0.52 1.6 -15.68 0.5 -123.62 1.50
e 1.18 1.90 1.6 -17.92 0.5 -125.66 1.50
Band 2
a 0.66 0.68 1.0 -17.46 0.5 -128.46 1.50
b 0.56 0.62 1.1 -18.60 0.5 -128.17 1.50
c 0.59 0.75 1.3 -18.31 0.5 -131.37 1.50
d 0.48 0.50 1.1 -16.69 0.5 -127.28 1.50

Table A.19: Results of stable isotope measurements in fluid inclusions for speleothem
samples Huagapo Band 1 and 2 are given in VSMOW. Speleothems were analysed
for inter lab comparison with IRMS technique (Hubert Vonhof, Max Planck Institute
for Chemistry in Mainz).
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A.3 Case study I: Late Holocene stalagmite (1911 - 2010) in the transitional climatic
zone - Romania, Closani Cave

A.3 Case study I: Late Holocene stalagmite (1911 - 2010) in
the transitional climatic zone - Romania, Closani Cave

Site description - the Closani Cave and late Holocene stalagmite - Stam 4

) lf Pestera Closani

(Mehedinti Mountains, Romania)

...........

wwwwwww

Figure A.19: Left: Topographic map of Romania [Vidiani [accessed November 17,
2019]], the red points mark the following locations: Clogani (location of the cave), Dro-
beta (location of the station), Cluj-Napoca (location of GNIP station) and Bucharest,
the capital. Right: Map of the Clogani cave (45.1°N, 22.8°E) [Constantin and Lau-
ritzen, 1999], Stam 4 was sampled near to the drip site CL3, which is located in the
deeper sector of the Laboratory Passage.
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14 1 L 1 L 1 L 1 L 1 L 1
—— Drobeta Turnu Severin - station (80 m a.s.l.)

—— Apa Neagra - station (259 m a.s.l.)
—— Targu Jiu - station (200 m a.s.l.)
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114

MAAT [°C]
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Figure A.20: Mean annual air temperature records for three meteorological stations
close to the Clogani Cave. The longest record (1896 - 2008) from the station Drobeta
Turnu Severin gives a mean annual air temperature for the last 100 years of 11.7°C.
The station Apa Neagra, with a record from 1961 up to 2010 gives a mean MAAT of
9.7°C and Targu Jiu (1900 - 2008) with a mean MAAT of 10.3°C [Klein Tank et al.,
2002]. All stations show an increase in temperature between 1980 - 2010.

sample sample date 5180 error 5°H error
ID point VSMOW VSMOW VSMOW VSMOW

[%eo] (%ol (%eo] [%eo]

CL3.10-05 CL3  25.04.2010 -9.74 0.15 -65.40 1.00
CL3.10-09 CL3  28.08.2010 -9.14 0.15 -69.00 1.00
CL3.10-11 CL3  05.11.2010 -9.62 0.15 -65.90 1.00
CL3.11-01 CL3  11.01.2011 -9.76 0.15 -69.40 1.00
CL3.11-07 CL3  14.07.2011 -9.84 0.15 -64.79 1.00
CL3.12-03 CL3  04.03.2012 -9.75 0.15 -66.80 1.00
CL3.12-05 CL3  13.05.2012 -9.51 0.15 -66.20 1.00
CL3.12-07 CL3  13.07.2012 -9.61 0.15 -64.70 1.00
CL3.12-09 CL3  13.09.2012 -9.58 0.15 -64.70 1.00
mean -9.62 0.20 -66.32 1.68

Table A.20: Drip water isotopic composition for the site CL3 in the Clogani Cave,
where Stam 4 was collected 1 m nearby. Drip water was measured from 2010 to 2015
in bimonthly intervals [Warken et al., 2018]. There are 8 data pairs of drip water
isotopic composition available for site CL3, covering both the summer and the winter
months.



A.3 Case study I: Late Holocene stalagmite (1911 - 2010) in the transitional climatic
zone - Romania, Closani Cave

B coumnar
short columnar

equant

Figure A.21: On the left side a thin section of Stam 4 is shown, where the width of the
image is 3mm. The individual layers can be distinguished by the presence of inclu-
sions. Winter layers showing very little inclusions, while summer layers are showing
air-filled and water-filled inclusions. On the right side, the crystal fabrics with pre-
dominantly columnar is shown. Both pictures were provided by Dana Riechelmann.

Year [A.D.]
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Figure A.22: Left: Stam 4 with the four sampling points for radio carbon dating.
Right: 4C results for Stam 4, with the atmospheric input curve in blue (unpublished
data, personal correspondence Jens Fohlmeister, 18.12.2019). The increase of the

atmospheric 14C anomaly (bomb-peak) can be found in the depth between 1.9 and
3.9 cm distance from top.
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sample  edge length  translate to dft

translate ta age range comment

1] [m] [erm]
K 05 0,1-0.6 19992008 edge
] oA 038-1.3 1965-1954 adge
| o5 15-20 1972-1983 adge
H o4 2,0-24 1964-1571 plateau
bt s8ill om the =dge
] o4 24-28 1957-1963 plateau
hust still an the edge
F 4 28.32 19471556 plateau
| bust still on the sdge
E o4 3.2 -3 1341-1945 plateau
stratification schamaticalty
=] o5 36-41 1333-1540 plateau
Stratification schematically
C oA 4,15 - 4,55 1924-1933 plateau
stratification schematically
q6-5 1912-192% stratification = nod detectable

Figure A.23: Graphical age distribution for Stam 4, where the sample piece (marked
in light red) is located at the age of the stalagmite and far away from the growth
axis. For this reason, the age determined should not be understood as absolute, but
as an age range with large uncertainty.
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A.3 Case study I: Late Holocene stalagmite (1911 - 2010) in the transitional climatic
zone - Romania, Closani Cave

Fluid inclusion results - Stam 4

sample mass  water water 510 error 5°H error

1D volume amount VSMOW VSMOW VSMOW VSMOW
[g] (1] 11/ g] [%oo] [%oo] [%oo] [%oo]

part IT
Al 0.69 0.34 0.49 -8.72 0.50 -62.95 1.50
B1 0.61 0.40 0.65 -9.40 0.50 -66.59 1.50
B2 0.30 0.22 0.72 -9.54 0.50 -66.62 1.50
B3 0.37 0.34 0.91 -8.71 0.50 -63.10 1.50
B4 0.38 0.29 0.75 -9.41 0.50 -64.55 1.50
C1 0.38 0.33 0.87 -10.63 0.50 -63.50 1.50
C2 0.40 0.15 0.38 -8.65 0.50 -62.87 1.50
C3 0.44 0.42 0.95 -9.70 0.50 -65.00 1.50
D1 0.41 0.56 1.35 -9.65 0.50 -65.03 1.50
D2 0.47 0.33 0.70 -10.01 0.50 -65.65 1.50
E1 0.23 0.27 1.19 -9.34 0.50 -64.15 1.50
E2 0.22 0.26 1.19 -9.36 0.50 -63.88 1.50
F 0.28 0.39 1.38 -9.59 0.50 -63.58 1.50
G 0.28 0.26 0.92 -9.05 0.50 -64.76 1.50

Table A.21: Fluid inclusion data for Stam 4 from Closani Cave - part II. Samples
marked in blue are not used for the interpretation because the water volume is below
the critical evaluation limit, which is 0.2 pl.
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sample mass  water water 5180 error 5°H error
1D volume amount VSMOW VSMOW VSMOW VSMOW
[¢] [121] 11/ g] [%oo] [%oo] [%oo] [%oo]
part 1
Al 0.58 0.30 0.52 -9.53 0.50 -65.36 1.50
A2 0.49 0.29 0.59 -9.76 0.50 -59.66 1.50
B1 0.42 0.40 0.95 -9.62 0.50 -64.14 1.50
B2 0.49 0.37 0.75 -9.55 0.50 -64.72 1.50
B3 0.53 0.40 0.76 -8.87 0.50 -64.85 1.50
B4 0.52 0.29 0.56 -9.07 0.50 -66.31 1.50
B5 0.42 0.19 0.45 -9.41 0.50 -68.45 1.50
C1 0.49 0.81 1.66 -7.98 0.50 -57.61 1.50
C2 0.42 0.51 1.21 -8.52 0.50 -59.63 1.50
C3 0.54 0.44 0.81 -8.97 0.50 -60.41 1.50
D1 0.32 0.18 0.57 -8.45 0.50 -63.79 1.50
D2 0.51 0.42 0.83 -9.95 0.50 -63.80 1.50
D3 0.56 0.50 0.89 -10.43 0.50 -63.68 1.50
D4 0.55 0.54 0.98 -10.13 0.50 -63.95 1.50
D5 0.40 0.35 0.88 -8.97 0.50 -61.69 1.50
E1 0.49 0.38 0.78 -10.25 0.50 -62.93 1.50
E2 0.58 0.46 0.78 -9.41 0.50 -62.51 1.50
E3 0.54 0.44 0.82 -10.39 0.50 -62.75 1.50
E4 0.53 0.32 0.60 -9.95 0.50 -63.14 1.50
E5 0.25 0.14 0.55 -9.03 0.50 -59.40 1.50
F1 0.47 0.35 0.75 -9.59 0.50 -63.52 1.50
F2 0.58 0.82 1.40 -9.42 0.50 -63.22 1.50
F3 0.56 0.87 1.56 -8.33 0.50 -59.81 1.50
Gl 0.46 0.40 0.87 -9.03 0.50 -61.96 1.50
G2 0.50 0.76 1.53 -8.85 0.50 -61.82 1.50
H1 0.40 0.46 1.16 -9.08 0.50 -61.57 1.50
H2 0.35 0.46 1.30 -8.80 0.50 -60.96 1.50
I 0.39 0.28 0.72 -9.29 0.50 -60.34 1.50
J 0.50 0.43 0.86 -8.72 0.50 -59.20 1.50
K 0.46 0.43 0.94 -8.37 0.50 -59.38 1.50
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Table A.22: Fluid inclusion data for Stam 4 from Clogani Cave - part I. Samples
marked in blue are not used for the interpretation because the water volume is below
the critical evaluation limit, which is 0.2 pl.
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sample dft error 5180ﬂmd error 580 catcite error A(a) error T error  A(T) error
VSMOW VSMOW VSMOW VSMOW

D fem]  fem] %] (o] [%oc] [%o0] Kl KK [K]
Bl 482 020  -9.62 0.50 22.36 0.19 3178 050 280.83 2.19
Cl 439 020  -7.98 0.50 22.92 028  30.67 050 28579 226 496 155
D2 3.90 025  -9.95 0.50 22.83 0.10 3257 050 27742 213 -342 1.57
El 345 020 -10.25 0.50 22.71 0.14 3276 050 276.61 212 -4.22 1.58
F1 301 020  -9.59 0.50 22.55 0.19 3194 050 28015 218 -0.68 1.50
Gl 262 020  -9.03 0.50 22.51 0.22  31.33 050 282.83 222 200 1.54
HI 221 020  -9.08 0.50 23.03 020  31.89 050 280.35 218 -0.48 157
I 178 025  -9.29 0.50 22.90 020 3198 050 279.98 217 -085 1.54
J 109 020 @ -8.72 0.50 22.78 0.16  31.28 0.50 283.06 222 223 1.55
K 039 025  -837 0.50 22.59 0.15 3074 050 28546 226 4.63 154

Table A.23: Results for classical carbonate thermometer Stam 4 - part I, with calcite oxygen values averaged over the
edge length of the fluid inclusion sample piece (typically 5mm) and corresponding standard deviation. To calculate the
fractionation factor a(calcite - water), 6'8O.qicite must be converted to the VSMOW scale. «a(calcite - water) is defined as
(1000 + 63O caicite) /(1000 + JISOﬂuid). The temperature dependence of « is used to determine relative temperature changes
(A(T)) to the sample level B. Kim and O’Neil [1997] obtained a relation between A (103In(a)) and temperature, with the
following parameters: A = 18.03(10%/T) — 32.42 (for calcium carbonate). The errors were calculated by error propagation,
adding the squared contributions of the individual uncertainties.
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Figure A.24: Fluid inclusion results for part I all sample levels (B to K) with num-
bering 1 and 2 are shown. The LMWL of Cluj-Napoca with §2H = 8.03-6'80+11.29
%0 VSMOW is shown as back line [Cozma et al., 2017].
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A.3 Case study I: Late Holocene stalagmite (1911 - 2010) in the transitional climatic

Fig. 8.3 Regional seasonal
mean temperature
anomalies ( 5-year moving
averages) in the Romanian
Carpathians (1961-2010)
relative to 1961-1990. The
columns show the general
seasonal anomalies over the
region

R - T T )

zone - Romania, Closani Cave

Oweral —Southem —Westem  —Enstem

1860 1970 1880 1860 2000 200
Winter DJF

1860 1970 14980 19e0 2000 2000
Spring MAM

1860 1970 1980 1880 2000 2010
Sumimer JJA
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Auvtumn SON

Figure A.25: Temperature anomalies in the Romanian Carpathians after Micu et al.
[2016]. A total number of 35 weather stations were analysed (statistical details see
Micu et al. [2016]) for the period between 1960 - 2010. The temperature variation
is more significant in winter than in summer with an overall increase of 1°C for the

period between 1960 - 2010.
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Y

Figure A.26: European climate pattern (temperature, isotopic composition and
amount of precipitation) for a positive NAO mode. For the Closani Cave with its
location in Romania a positive NAO mode shows a decrease in the amount of precip-
itation and isotopically heavier precipitation, due to the warmer Mediterranean Sea
as source of precipitation. Schematic illustration adapted from Wackerbarth [2011].



A.4 Case study II: Holocene stalagmite (present - 8.6 ka BP) from Central Europe -
Bunker Cave

A.4 Case study II: Holocene stalagmite (present - 8.6 ka BP)

from Central Europe - Bunker Cave

Figure A.27: Location of Bunker Cave close to the city Iserlohn. The grey shading
indicating Middle to Upper Devonian limestone [Riechelmann et al., 2011]. Bunker
Cave is located in the federal state of North Rhine-Westphalia, see black square in

the small map of Germany.

entrance

Emst Cave .
_ 197 m above sea-level su probe

0 A2 entrance
sy Bunker Cave
L1384 m above sea-level

Figure A.28: Longitudinal section of Bunker Cave with the two entrances, adapted

from Riechelmann et al. [2011]
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Figure A.29: Cave map of the Bunker Cave, with the location of the drip site T'S8
and the sampling site of the stalagmite Bu4 in chamber 2. The map is modified after
Riechelmann et al. [2013].
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A.4 Case study II: Holocene stalagmite (present - 8.6 ka BP) from Central Europe -
Bunker Cave

thin sections
transmitted light polarized light

corallodis /
detrital layers

- |+
water content

Figure A.30: Thin sections, left with plane-polarized light and right with cross -
polarized light (Nicol prism). In the middle the theoretically expected water content
of the stalagmite Bud after the analysis of thin sections. A high water content is
expected between the two detrital layers. On the right side the crystallographic
fabrics of Bud are shown with coralloids and/or detrital layers in orange, columnar
fabrics in blue and dendritic fabrics in pink [Riechelmann, 2010].
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Figure A.31: TS8 drip water isotopic composition with the individual measurements
(blue dots), summer means (light grey triangles), winter means (dark grey trian-
gles) and annual means (orange diamond). No seasonal pattern can be distinguished.
The trip water isotopic composition was measured with mass spectrometry (1o re-
producibility) with an uncertainty of £0.09%0 for 6'¥0 and +1.0%0 for §%H, in
VSMOW [Riechelmann et al., 2017].



sample DFT (total) error water water crystal
ID volume content fabric
[mm] [mm] [11] [11/g]

1 2.75 2.75 cl
2 8.25 2.75 0.17 0.23 cl
3 16.75 3.25 cl
4 24.00 4.00 cl
5 35.50 2.50 cl
6 48.00 3.00 cl
7 55.00 4.00 cl
8 60.25 1.25 cl
9 64.25 2.75 cl
10 70.50 3.50 cl
11 75.75 1.75 0.06 0.10 cl
12 80.50 3.00 cl
13 85.75 2.25 cl
14 89.50 1.50 cl
15 97.25 3.25 cl
16 103.25 2.75 cl
17 108.25 2.25 cl
18 113.00 2.50 cl
19 117.75 2.25 0.38 0.49 cl

191

Table A.24: Part 1: All available sample pieces for Bu4 with depth information (distance from top), weight, water volume
and water content. The stable isotope values are given in VSMOW, if no uncertainty is specified the released water volume
was beneath the threshold (0.2 ul) for a reliable evaluation. The abbreviation of the crystal fabric stands for: ¢l for columnar,
d for dendritic and dl for detrial layers.
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sample
1D

20_A
20_B
21_A
21 B
22
23_A
23_B
24 A
24 B
25_A
25_B
26_A
26_B
27_A
27_B
28 A
28_B
29 A
29 B
30_A
30_B
31_A
31_B
32_A
32 B
33_A
33_B
34 A
34_B
35_A
35_B

DFT (total)

[mm]

122.50
122.50
127.00
127.00
132.00
142.50
142.50
149.00
149.00
153.25
153.25
157.75
157.75
162.50
162.50
167.50
167.50
172.50
172.50
177.50
177.50
182.50
182.50
187.50
187.50
192.50
192.50
197.50
197.50
202.50
202.50

error

[mm]

2.50
2.50
2.00
2.00
3.00
2.50
2.50
2.00
2.00
2.25
2.25
2.25
2.25
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50

mass

0.50
0.32

0.32
0.36
0.36
0.36
0.33

0.41
0.39
0.77
0.90
0.83
0.82
0.79

0.74

0.83

water
volume

(1]

0.18
0.08

0.25
0.39
0.63
0.56
2.08

2.49
1.19
7.32
24.17
6.26
5.35
0.11

0.55

0.01

water
content

[11/g]

0.35
0.24

0.77
1.08
1.76
1.58
6.23

6.09
3.08
9.52
26.79
7.52
6.51
0.14

0.75

0.01

5180

%]

-3.11
-2.91

-6.32
-5.32
-6.03
-4.51
-5.38

-5.32
-4.87
-4.78
-4.50
-4.86
-6.11
-0.08

-9.54

18.37

error

[

0.5
0.5
0.5
0.5
0.2

0.2
0.2
0.2
0.2
0.2
0.2

0.5

§°H

[

-40.54
-41.01

-43.84
-42.18
-45.35
-42.78
-43.53

-43.74
-41.82
-43.40
-41.85
-42.81
-45.73
-40.56

-49.54

-24.89

error

[

1.5
1.5
1.5
1.5
0.5

0.5
0.5
0.5
0.5
0.5
0.5

1.5

crystal
fabric

cl
cl
cl
cl
cl
cl
cl
cl
cl
cl
cl
cl
cl
cl
cl
dl
dl
cl
cl
cl
cl

[eNeNeyaNjcNa

cl

cl
cl

Table A.25: Part 2: See previous label.
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A.4 Case study Il: Holocene stalagmite (present - 8.6 ka BP) from Central Europe -
Bunker Cave

Water content - changing climate condition

water content [ul/g]

Figure A.32: Measured water content (ul per g calcite) in direct comparison to the
smoothed 080, qcite signal (blue line) of Bu4. The running mean interval (5mm)
is equal to the edge length of fluid inclusion sample pieces. After Vogel et al. [2013]
higher 6'8Ocqicite values are associated with a higher water content and vice versa.
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Sea level corrected stable isotope results

sample

1D

19

23

A

23 B

24

A

24_B

25__
26_

A
A

26_B

27

A

27_B

28

A

28 B

31

A

DFT

[mm]

115.5 - 120
140 - 145

147 - 151

151 - 155.5
155.5 - 160

160 - 165
165 - 170

180 - 185

mass

lg]

0.77
0.32
0.36
0.36
0.36
0.33
0.41
0.39
0.77
0.90
0.83
0.82
0.74

water
volume
(]

0.38
0.25
0.39
0.63
0.56
2.08
2.49
1.19
7.32

24.17
6.26
5.35
0.55

water
content

11/ g]

0.49
0.77
1.08
1.76
1.58
6.23
6.09
3.08
9.52
26.79
7.52
6.51
0.75

518051

(o]

-5.47
-6.34
-0.34
-6.05
-4.54
-5.41
-5.36
-4.91
-4.82
-4.54
-4.91
-6.16
-9.59

error

[%oc]

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

§%2Hy

(o]

-43.07
-44.00
-42.34
-45.55
-42.98
-43.77
-44.06
-42.14
-43.72
-42.17
-43.21
-46.13
-49.94

error

[%oc]

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
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Table A.26: Stable isotope results for Bu4 samples with a released water volume
above 0.2 ul, which is set as a threshold for a reliable evaluation. I corrected these
5180 and §%H values for sea level change after Waelbroeck et al. [2002], in VSMOW.



A.5 Case study IlI: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

A.5 Case study Ill: Tropical stalagmite (15 - 46 ka BP) from
Puerto Rico - Cueva Larga

Site description - Cueva Larga cave

Puerto Rico

Cueva Larga .
Arecib
Utuado, Puerto Rico a0 san Juan
(©T. Miller (2006) *cuevaLarga
Y
'once

Entrance

Figure A.33: Cueva Larga map from Warken [2017] position of LA-1 (red square),
the closet drip site SW-2 (orange square) and site A4 with the location of pool A4

(green square).
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Figure A.34: Mean annual rainfall for Puerto Rico (1981-2010) after Govender et al.
[2013]. The black dot shows the location of the study site Boca Station (Guénica Dry
Forest) and the blue dot the location of the Cueva Larga cave. Govender et al. [2013]
derived a LMWL as 62H = 7.0- 630 + 10.3 % VSMOW for rainwater in dry months
and a LMWL as 6°H = 7.37 - 6'0 + 8.0 %0 VSMOW for rainwater in wet months.
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Figure A.35: Monthly rainwater samples from Mayagiiez (GNIP station) for a two-
year record of oxygen and hydrogen values of precipitation, as well as the amount of
rainfall and the air temperature (adapted from [Vieten et al., 2018]).
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A.5 Case study IlI: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga
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Figure A.36: Stable isotopes of precipitation (Pico del Este) in Puerto Rico adapted
from Scholl and Murphy [2014]. Composition of the weekly collected rain water sam-
ples in Puerto Rico: 52% convective rain (with 14 % cyclonic low-pressure systems,
8 % named tropical storms and hurricanes, 15% troughs and 15 % tropical easterly
waves), 25 % orographic rain (with 13 % trade wind showers and 12 % passing show-
ers) and 10 % cold fronts and showers with thunderstorms.

sample mass  water water 5180 error 5°H error
1D volume content VSMOW VSMOW VSMOW VSMOW
[¢] [11] [11/g] [Yoo] [%oo] [Yoo] [oo]
LA4 A 0.36 0.01 0.03 12.64 0.50 51.80 1.50
LA4 B 0.51 0.02 0.04 23.38 0.50 63.57 1.50
Ad A 0.36 0.20 0.55 -0.37 0.50 0.40 1.50
A4 B 0.45 0.19 0.42 0.11 0.50 4.72 1.50
A4 C 0.79 0.40 0.51 -1.63 0.50 5.75 1.50
A4 D 1.54 1.04 0.68 -0.74 0.50 2.32 1.50
A4 E 1.63 1.13 0.70 -0.76 0.50 4.77 1.50
A4 F 1.54 0.91 0.59 -1.63 0.50 2.25 1.50
A4 G 1.40 1.35 0.96 0.58 0.50 4.53 1.50
mean with stdv -0.76 0.76 3.34 1.83

Table A.27: Water stable isotope results of fluid inclusions for pool spar from the
pool A4 and LA4 in the Cueva Larga. The ones marked in blue released a water
volume below the critical threshold value (< 0.2ul) for a reliable evaluation. For
the samples with sufficient released water, the mean value and the corresponding
standard deviation was calculated.
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date 5180 error 5’H error
VSMOW VSMOW VSMOW VSMOW
[Yoo] [Yoo] [Yoo] [Yoo]
LA-SW2
02.09.13 -2.66 0.08 -12.79 0.50
08.04.14 -3.31 0.08 -11.54 0.50
31.05.14 -2.81 0.08 -7.86 0.50
07.10.15 -2.52 0.08 -5.14 0.50
16.12.15 -2.59 0.08 -5.77 0.50
20.03.16 -2.54 0.08 -8.83 0.50
16.07.16 -2.65 0.08 -9.56 0.50
21.09.16 -2.62 0.08 -9.08 0.50
13.12.16 -2.64 0.08 -9.34 0.50
25.06.17 -2.55 0.08 -8.77 0.50
03.12.17 -2.43 0.08 -9.03 0.50
12.03.19 -2.09 0.08 -8.43 0.50
LA-A4
21.11.19 -2.72 0.26 -9.17 0.17

Table A.28: Water stable isotope results for drip site SW-2 close to the location where
the stalagmite LA-1 was collected [Vieten et al., 2018]. Drip water was measured in
Innsbruck using a Picarro 1.2140-i analyser. The stable isotope composition of pool
water from A4 was measured at the Institute of Environmental Physics, Heidelberg
[personal correspondence Sophie Warken, 30.01.2020].



sample dft error  age  error error mass  water water 5180 error 6’H error
ID plus  minus volume content VSMOW VSMOW VSMOW VSMOW
mm]  [mm]  [ka]  [ka]  [ka]  [g] (1] [11/g] [%eo] [%eo] [%eo] [%eo]
1_A 9.00 3.00 16.04 16.61 15.32 0.51 0.33 0.66 1.95 0.50 34.39 1.50
1B 9.00 3.00 16.04 16.61 15.32 0.42 0.28 0.67 3.97 0.50 32.32 1.50
5 A 32.00 2.00 17.65 17.97 17.35 0.35 0.11 0.31 8.95 0.50 37.26 1.50
5 B 32.00 2.00 17.65 17.97 17.35 0.47 0.14 0.30 6.25 0.50 41.57 1.50
5b_ A 38.00 200 17.70 18.01 1740 1.06 0.45 0.42 0.88 0.50 24.00 1.50
5b_B 38.00 2.00 17.70 18.01 17.40 1.03 0.37 0.36 -1.32 0.50 16.91 1.50
7T_A 112.75  0.75 20.19 20.54 19.67 0.30 0.04 0.12 10.77 0.50 39.40 1.50
7 B 112.75  0.75 20.19 20.54 19.67 0.27 0.02 0.08 12.03 0.50 42.96 1.50
7b_ A  160.00 2.00 20.81 21.00 20.56 0.74 0.47 0.64 -0.71 0.50 11.20 1.50
™ B 160.00 2.00 20.81 21.00 20.56 1.34 2.98 2.21 4.68 0.50 19.34 1.50
8_A 212.00 2.00 2143 21.66 21.16 0.36 0.20 0.57 -1.38 0.50 16.07 1.50
8 B 212.00 2.00 2143 21.66 21.16 0.61 0.29 0.48 -2.07 0.50 20.99 1.50
9a_A  293.00 1.50 22.54 22.74 2231 0.33 0.10 0.31 4.81 0.50 18.81 1.50
9a_B  293.00 1.50 2254 22774 2231 0.25 0.11 0.45 3.25 0.50 15.89 1.50
9b_A 291.50 1.50 22,52 22.72 2229 040 0.22 0.54 1.70 0.50 13.18 1.50
95_B 301.00 4.00 22.65 2286 2239 0.21 0.18 0.85 0.25 0.50 7.34 1.50
9¢c_A  301.00 4.00 22.65 2286 22.39 0.70 0.46 0.66 1.27 0.50 12.37 1.50
9¢c_B  301.00 4.00 22.65 22.86 22.39 0.77 0.65 0.84 241 0.50 12.52 1.50

691

Table A.29: Results of stable isotope measurements for the fluid inclusions of the stalagmite Larga LA-1, with the corre-
sponding depth (distance from top) and age (personal correspondence Sophie Warken). The capital letters (A to C) indicate
the replicate measurements. Whereas the small letters (a to ¢) indicate repeated measurements with a slight depth offset.
They were performed when the initial water content was too low and the released water volume was below the evaluation
limit of 0.2 ul.
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0.1

sample
ID

10_A
10_B
10_C

12_A
12 B

13_A
13_B
13 C

14_A
14_B

15 A
15 B
15b_A
15b_B
15b_C
15¢_ A
15¢ B

16_A
16_B

17_A
17_B

dft

[mm]

370.00
370.00
370.00

482.50
482.50

525.00
525.00
525.00

642.00
642.00

689.50
667.50
689.50
689.50
694.50
689.50
689.50

745.00
745.00

827.50
827.50

error

[mm]

1.00
1.00
1.00

2.50
2.50

2.50
2.50
2.50

2.00
2.00

19.50
2.50
19.50
19.50
2.50
19.50
19.50

2.00
2.00

1.50
1.50

age

[ka]

23.53
23.53
23.53

24.23
24.23

24.67
24.67
24.67

26.76
26.76

27.74
27.72
27.74
27.74
27.75
27.74
27.74

28.09
28.09

29.29
29.29

error
plus
[kal

23.73
23.73
23.73

24.42
24.42

24.91
24.91
24.91

27.03
27.03

28.01
27.96
28.01
28.01
27.97
28.01
28.01

28.78
28.78

29.51
29.51

error
minus

[ka]

23.39
23.39
23.39

23.97
23.97

24.39
24.39
24.39

26.43
26.43

27.46
27.45
27.46
27.46
27.50
27.46
27.46

27.68
27.68

29.07
29.07

mass

(g

0.43
0.38
0.32

0.47
0.63

0.57
0.51
0.50

0.34
0.23

0.57
0.51
0.41
0.75
0.33
0.71
0.74

0.24
0.33

0.44
0.65

water
volume

[1]]

0.78
0.60
0.70

0.34
0.44

0.72
1.06
1.34

0.16
0.08

0.84
0.17
0.26
1.15
0.17
0.99
0.65

0.74
0.93

0.12
0.34

water
content

[11/g]

1.81
1.56
2.21

0.71
0.71

1.27
2.07
2.70

0.47
0.35

1.49
0.33
0.62
1.53
0.50
1.39
0.88

3.05
2.83

0.27
0.52

5180 error 5%H
VSMOW VSMOW VSMOW VSMOW

[%oc] [%oc] [%o0]

-0.21 0.50 6.81

-0.64 0.50 8.39
-0.88 0.50 5.90
1.02 0.50 13.29
1.67 0.50 11.53
-2.64 0.50 6.38
-0.99 0.50 7.08
-1.98 0.50 7.10
3.61 0.50 20.96
2.25 0.50 19.76
-0.37 0.50 13.15
1.52 0.50 19.80
1.60 0.50 12.67
-0.81 0.50 11.27
-0.78 0.50 20.41
-0.04 0.50 12.47
-0.40 0.50 17.18
0.02 0.50 10.59
-0.14 0.50 10.41
5.15 0.50 30.45
1.64 0.50 23.11

error

[%oc]

1.50
1.50
1.50

1.50
1.50

1.50
1.50
1.50

1.50
1.50

1.50
1.50
1.50
1.50
1.50
1.50
1.50

1.50
1.50

1.50
1.50

Table A.30: Stable isotope results of fluid inclusion measurements for Larga LA-1, with labelling see table above.
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sample dft error  age  error error mass  water water 50 error §°H error
1D plus  minus volume content VSMOW VSMOW VSMOW VSMOW

mm]  [mm]  [ka]  [ka]  [ka]  [g] (1] [11/g] [%oo] (%ol (%oo] [%eo]
17b_A 83150 3.50 29.31 29.52 29.07 0.61 0.23 0.38 8.04 0.50 27.88 1.50
17b_B 83150 3.50 29.31 29.52 29.07 0.62 0.25 0.40 4.83 0.50 27.10 1.50
18 A 940.00 2.50 30.00 30.23 29.75 0.46 0.24 0.53 0.65 0.50 23.25 1.50
18 B 940.00 2.50 30.00 30.23 29.75 0.30 0.14 0.45 2.98 0.50 27.29 1.50
18 C 940.00  2.50 30.00 30.23 29.75 0.38 0.29 0.77 1.20 0.50 18.26 1.50
19 A 101050 11.50 30.58 31.55 30.08 0.58 0.25 0.44 0.59 0.50 20.26 1.50
19 B 1010.50 11.50 30.58 31.55 30.08 0.58 0.43 0.74 -0.96 0.50 17.19 1.50
20_A 1010.50 11.50 30.58 31.55 30.08 0.54 1.21 2.24 -0.71 0.50 12.43 1.50
21b_A 1028.00 3.00 3148 31.93 30.40 0.69 1.19 1.74 0.44 0.50 14.67 1.50
21b_B 1028.00 3.00 3148 31.93 30.40 0.75 0.39 0.53 4.43 0.50 22.73 1.50
22_A 1045.50 1.50 32.22 3259 31.78 045 0.08 0.18 8.21 0.50 43.40 1.50
22_B 104550 1.50 32.22 32.59 31.78 0.43 0.07 0.15 8.28 0.50 37.87 1.50
23_A  1052.00 2.00 3249 33.32 32.01 0.31 0.17 0.55 3.50 0.50 25.21 1.50
23_B 1052.00 2.00 32.49 33.32 32.01 0.24 0.13 0.53 3.30 0.50 25.75 1.50
24 A 1079.50 9.50 33.50 33.98 3295 0.61 0.29 0.48 0.03 0.50 20.17 1.50
24 B 107950 9.50 33.50 33.98 3295 0.56 0.22 0.39 0.64 0.50 30.49 1.50
24b_A  1082.00 2.00 33.55 33.89 3322 0.1 0.32 0.40 7.85 0.50 28.91 1.50
24b_B 1082.00 2.00 33.55 33.89 33.22 0.80 0.06 0.08 11.27 0.50 33.31 1.50
24c_ A 1079.50 9.50 3350 33.98 3295 0.64 0.83 1.30 0.53 0.50 14.53 1.50
24c_B 1079.50 9.50 33.50 33.98 3295 0.69 0.76 1.10 -1.12 0.50 9.99 1.50
24c_C 1088.00 2.00 33.64 33.99 33.26 0.49 0.24 0.48 10.74 0.50 35.12 1.50

TL1

Table A.31: Stable isotope results of fluid inclusion measurements for Larga LA-1, with labelling see table above.
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A

sample
ID

25_A
25_B

271 A
27 B
27b_A
27b_B

28_A
28 B
28 C

30_A
30_B

31_A
31_B

32_A
32_B
32b_A
32b_B
32b_C

33_A
33_B

dft

[mm]

1235.00
1235.00

1398.00
1398.00
1407.00
1398.00

1441.00
1441.00
1441.00

1463.00
1463.00

1504.50
1504.50

1554.50
1554.50
1556.00
1556.00
1556.00

1637.50
1637.50

error

[mm]

1.50
1.50

10.00
10.00
3.00
10.00

2.00
2.00
2.00

2.00
2.00

2.50
2.50

2.50
2.50
4.50
4.50
4.50

2.50
2.50

age

[ka]

34.00
34.00

35.33
35.33
35.39
35.33

35.63
35.63
35.63

41.43
41.43

41.48
41.48

42.98
42.98
43.02
43.02
43.02

43.23
43.23

error
plus
[ka

34.53
34.53

35.70
35.70
35.72
35.70

36.05
36.05
36.05

41.67
41.67

41.81
41.81

43.40
43.40
43.46
43.46
43.46

43.68
43.68

error
minus

[kal

33.54
33.54

35.00
35.00
35.09
35.00

35.24
35.24
35.24

41.24
41.24

41.26
41.26

42.53
42.53
42.52
42.52
42.52

42.78
42.78

mass

[g]

0.44
0.65

0.35
0.70
0.54
1.20

0.48
0.37
0.49

0.49
0.47

0.29
0.75

0.44
0.56
0.77
0.61
0.70

0.39
0.73

water
volume

(1]

0.12
0.27

0.27
0.27
0.20
0.69

0.58
0.56
1.11

0.18
0.11

0.12
0.37

0.15
0.31
0.93
0.50
0.26

0.18
0.22

water
content

[11/g]

0.27
0.42

0.79
0.38
0.37
0.57

1.21
1.50
2.24

0.36
0.24

0.42
0.50

0.35
0.55
1.22
0.82
0.37

0.47
0.30

5180 error 52H
VSMOW VSMOW VSMOW VSMOW
[%oo] [Yoo] (Yoo
9.29 0.50 47.60
4.68 0.50 27.75
0.94 0.50 14.55
-0.40 0.50 18.05
2.13 0.50 19.65
1.39 0.50 17.81
0.16 0.50 15.53
0.36 0.50 12.66
0.09 0.50 12.49
11.88 0.50 45.26
8.83 0.50 44.63
4.04 0.50 25.07
5.61 0.50 29.62
0.74 0.50 18.60
0.81 0.50 20.03
8.59 0.50 25.74
8.35 0.50 28.68
4.75 0.50 20.67
0.36 0.50 10.61
6.19 0.50 22.94

error

[Yoc]

1.50
1.50

1.50
1.50
1.50
1.50

1.50
1.50
1.50

1.50
1.50

1.50
1.50

1.50
1.50
1.50
1.50
1.50

1.50
1.50

Table A.32: Stable isotope results of fluid inclusion measurements for Larga LA-1, with labelling see table above.
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€L1

sample
1D

34 A
34 B
34b_A
34b_B

35_A
35 B
35_C

36_A
36_B

dft

[mm]

1725.00
1725.00
1742.50
1742.50

1767.50
1767.50
1767.50

1819.50
1819.50

error

[mm]

2.00
2.00
4.50
4.50

1.50
1.50
1.50

3.50
3.50

age

[kal

44.46
44.46
44.69
44.69

44.98
44.98
44.98

45.61
45.61

€error
plus
[ka

45.68
45.68
46.03
46.03

46.14
46.14
46.14

46.51
46.51

error
minus

[kal

43.63
43.63
43.65
43.65

43.75
43.75
43.75

44.81
44.81

mass

(g]

0.47
0.82
0.75
0.72

0.34
0.31
0.31

0.42
0.55

water
volume

(1]

0.32
0.37
1.19
0.66

0.63
0.58
0.32

0.25
0.30

water
content

1/ g]

0.68
0.46
1.57
0.92

1.83
1.84
1.04

0.60
0.54

5180

VSMOW  VSMOW  VSMOW  VSMOW

(Yool

13.48
2.67
9.69
3.73

1.00
0.17
1.66

-0.53
3.56

error

(%ol

0.50
0.50
0.50
0.50

0.50
0.50
0.50

0.50
0.50

§?H

[

28.18
23.45
27.12
18.67

16.97
17.27
20.48

14.63
17.73

error

[

1.50
1.50
1.50
1.50

1.50
1.50
1.50

1.50
1.50

Table A.33: Stable isotope results of fluid inclusion measurements for Larga LA-1, with labelling see table above.
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¥.1

sample number of  water

ID replicate  content

[11/g]
high water
content

1 2 0.66
5 2 0.39
8 2 0.52
9 3 0.68
10 3 1.86
12 2 0.71
13 3 2.01
15 5 1.18
16 2 2.94
18 2 0.65
19 3 0.59
24 4 0.82
27 3 0.58
28 3 1.65
32 1 0.55
35 3 1.57
36 2 0.57

age

[kal

16.04
17.70
21.43
22.65
23.53
24.23
24.67
27.74
28.09
30.00
30.58
33.50
35.33
35.63
42.98
44.98
45.61

error

[kal

0.64
0.30
0.25
0.23
0.17
0.22
0.26
0.27
0.55
0.24
0.73
0.52
0.35
0.40
0.43
1.19
0.85

B0y error §%2Hy error d-excess
VSMOW VSMOW VSMOW VSMOW VSMOW
[oo] [Yoo] [oo] [%oo] [Yoo]
2.04 0.35 26.00 1.06 9.70
-1.21 0.35 12.50 1.06 22.22
-2.74 0.35 10.36 1.06 32.32
0.79 0.29 4.66 0.87 -1.63
-1.56 0.29 -0.85 0.87 11.63
0.38 0.35 4.68 1.06 1.66
-2.82 0.29 -0.77 0.87 21.81
-0.83 0.22 6.75 0.67 13.38
-0.86 0.35 4.06 1.06 10.95
0.21 0.35 15.09 1.06 13.38
-1.05 0.29 11.11 0.87 19.49
-0.65 0.25 13.44 0.75 18.63
-0.03 0.29 11.40 0.87 11.66
-0.47 0.29 8.19 0.87 11.91
0.18 0.50 15.01 1.50 13.56
0.32 0.29 13.23 0.87 10.67
0.90 0.35 11.22 1.06 4.03

Table A.34: Mean stable isotope results for fluid inclusion measurements of LA-1. Only samples with a mean water content
above 0.4 ul/g are listed. The isotopic data is corrected for a changing isotopic composition of the ocean due to changing sea

levels after Waelbroeck et al. [2002].
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6.1

sample number of  water age  error 5180y error §%°Hy error d-excess
1D replicate  content VSMOW VSMOW VSMOW VSMOW VSMOW
[Wl/g]  [ka]  [kal [Yoo] [Voo] [%oo] [Yoo] [Voo]
low water
content
5 2 0.30 17.65 0.31 6.62 0.35 31.58 1.06 -21.38
7 2 0.10 20.19 043 10.36 0.35 32.87 1.06 -50.03
9 2 0.38 22.54 0.21 3.02 0.35 9.30 1.06 -14.88
14 2 0.41 26.76  0.30 2.06 0.35 13.42 1.06 -3.08
17 2 0.39 29.31 0.22 5.71 0.35 21.65 1.06 -24.01
22 2 0.17 32.22 041 7.58 0.35 35.26 1.06 -25.35
24b 2 0.24 33.55 0.33 8.89 0.35 25.75 1.06 -45.37
25 2 0.34 34.00 0.49 4.00 0.50 22.37 1.50 -9.66
30 2 0.30 4143 0.21 9.77 0.35 40.23 1.06 -37.91
33 1 0.30 43.23 0.45 5.56 0.50 17.90 1.50 -26.61

Table A.35: Mean stable isotope results for fluid inclusion measurements of LA-1. Only samples with a mean water content
below 0.4 ul/g are listed. The isotopic data is corrected for a changing isotopic composition of the ocean due to changing sea
levels after Waelbroeck et al. [2002].
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A Appendix

5'80 and 6H of fluid inclusions with sea level correction - stalagmite LA-1
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Figure A.37: Results of the stable water isotopes from LA-1 fluid inclusion measure-
ments with the correction for the changing sea level (open circles) and the uncorrected
results (half filled circles). Shown are the mean values of the respective depths divided
into high (blue) and low (orange) water content. The drip water data at side SW-2 is
shown as green triangle. Both groups of samples were fitted with a linear regression,
whereby a comparable slope to the one of the GMWL results for the samples with a
high water content. The samples with a low water content show fractionation due to
evaporation.
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A.5 Case study IlI: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

580 and §H of fluid inclusions with possible deuterium excess
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Figure A.38: Mean stable isotope values (680 and §?H) for all sampled depths of
LA-1 are shown in blue (oxygen) and orange (hydrogen). Half filled circles indicate
samples with a water content below 0.4 ul/g which are labelled as low water content.
The measured deuterium excess (purple triangle) calculated via the relationship of
the GMWTL as well as the the possible d - excess relative to an evaporation line (pink
triangle) are shown. The the oxygen isotope record of an ice core from North Green-
land NGRIP (red) is shown to identify cold and warm periods [Andersen et al., 2004]
with the numbers indicating D/O events (light red bars) according Capron et al.
[2010]. The HS events and Greenland stadials are illustrated as light green bars.
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A Appendix

Amount effect for tropical island
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Figure A.39: Long - term monthly and annual mean §*0 values for tropical island sta-
tions (20°S to 20°N) are shown against the amount of monthly precipitation [Rozanski

et al., 1993].
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A.5 Case study IlI: Tropical stalagmite (15 - 46 ka BP) from Puerto Rico - Cueva Larga

Correction due to the changing isotopic composition of the ocean
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Figure A.40: Fluid inclusion results with possible correction for local Caribbean sea
surface 080y, variability [Schmidt et al., 2004]. The stable water isotopes from
LA-1 fluid inclusion measurements are divided into high (blue) and low (orange)
water content, with the identification of the two clusters. The possible effects due to
580y, changes in the Cariaco Basin are illustrated as dotted circles. Thereby the
change of the isotopic composition of the surface water is mainly due to a varying
evaporation/precipitation ratio over the western tropical Atlantic.
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A Appendix

Application of the classic carbonate thermometer for samples with
parametrizations after Kim and O’Neil [1997]; Tremaine et al. [2011]; Johnston
et al. [2013]
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Figure A.41: Measured 6'®O.qcite signal in grey with harmonized to fluid inclusion
sample depth mean values (green circles). The 0'®Oyyiq results with a high wa-
ter content are shown as blue circles and the calculated paleotemperatures via the
classical carbonate thermometer with different parametrizations as dots. Thereby,
Kim and O’Neil [1997] is shown in pink, Tremaine et al. [2011] in light blue and
Johnston et al. [2013] in yellow. The dotted line represents the present day cave air
temperature (22.5°C). For a better orientation presumably relatively dry and/or cool
periods during the last Glacial are illustrated as light green bars. The overall means
of 60 #1454 and §'8O0cqicite are shown as dotted line, respectively.
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sample
1D

1
)
8
9

10
12
13
15
16
18
19
24
27
28
32
35
36

180 f1uia
(Vo]

2.96
-0.22
-1.72

1.79
-0.57

1.34
-1.87

0.00
-0.06

0.92
-0.36

0.02

0.64

0.21

0.81

0.95

1.52

error

[%oc]

0.35
0.35
0.35
0.29
0.29
0.35
0.29
0.22
0.35
0.35
0.29
0.25
0.29
0.29
0.50
0.29
0.35

18
0 Ocalcite

(o]

32.57
30.04
29.80
29.64
29.66
31.40
29.36
30.04
30.60
32.00
30.45
29.73
29.29
30.83
29.34
31.11
30.08

stdv
[%oo]

0.39
0.45
0.14
0.11
0.15
0.22
0.17
0.38
0.14
0.55
0.33
0.47
0.21
0.34
0.18
0.48
0.21

Qec—w

1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03

error

0.36
0.36
0.36
0.30
0.30
0.36
0.30
0.23
0.36
0.36
0.30
0.26
0.30
0.30
0.51
0.30
0.36

Kim O‘Neil

T
°C]
19.94
16.56
10.76
28.14
16.63
17.67
12.01
17.56
14.80
13.03
14.09
19.06
24.17
14.98
24.71
17.13
24.68

error
°C]
1.68
1.65
1.58
1.45
1.34
1.66
1.30
1.05
1.63
1.61
1.32
1.18
1.42
1.33
2.46
1.35
1.74

Tremaine

T
°C]
26.68
22.72
15.97
36.33
22.81
24.03
17.42
23.90
20.67
18.61
19.85
25.66
31.64
20.88
32.29
23.39
32.25

error
°C]
1.97
1.92
1.84
1.72
1.57
1.94
1.51
1.23
1.90
1.87
1.54
1.39
1.67
1.55
2.90
1.58
2.05

Johnston

T
°C]
24.88
21.31
15.19
33.54
21.38
22.48
16.51
22.37
19.45
17.59
18.71
23.95
29.34
19.64
29.92
21.91
29.88

error
°C]
1.78
1.74
1.66
1.54
1.42
1.75
1.37
1.11
1.71
1.69
1.39
1.25
1.50
1.40
2.60
1.42
1.84

Table A.36: Temperature reconstruction after Kim and O’Neil [1997] with 1000-In(cee—) = 18.03(103/T) —32.42, Tremaine

et al. [2011] with 1000-In(qee—w) = 16.1(10%/T) —24.6 and after Johnston et al. [2013] with 1000-In(cee—vw) = 17.66(10%/T) —

30.16. In order to calculate o we averaged the calcite oxygen isotope, measured at a considerably higher resolution than the
580 ¢1yiq data. Thereby the intervals for averaging the data correspond to the depth errors of the fluid inclusion sample
pieces. Both (5180flmd and 6'80.qicite are given in VSMOW.
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A Appendix

All samples for 6180flm-d temperature reconstruction compared to SST and lake
sediments - LA-1 - Cueva Larga
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Figure A.42: Fluid inclusion derived temperatures after Johnston et al. [2013] as
shown in figure 6.11 with all measured samples.
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Figure A.43: Comparison between §'30 fluid and 0 BOpased on 521 With coloured bars in the back identifying the events which
can be associated due to the 68O qicite signal.
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