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Abstract

Maximal representations into Lie groups of Hermitian type have been introduced
in [7], and further studied in [2,/6,126]. All maximal representation are discrete
embeddings, and spaces of maximal representations are unions of connected com-
ponents of the character varieties, hence they provide examples of so-called higher
Teichmiiller spaces. Connected components of spaces of maximal representations
have complicated topology which is not well understood.

In this thesis, we study classical Hermitian Lie groups of tube type and give a
parametrization of spaces of decorated (maximal) representations of the fundamental
group of a punctured surface into a Hermitian Lie group of tube type. Using this
parametrization, we describe the topology and the structure of the spaces of maximal
representations.

In the first chapter, we introduce coordinates on the space of Lagrangian deco-
rated representations of the fundamental group of a surface with punctures into the
symplectic group Sp(2n,R). These coordinates provide a noncommutative general-
ization of the parametrization of the space of representations into SL(2,R) given by
V. Fock and A. Goncharov. The locus of positive coordinates maps to the space
of decorated maximal representations. We use this to determine the homotopy type
and the homeomorphism type of the space of decorated maximal representations, and
when n = 2, to describe its finer structure as a smooth locus and kind of singularities.

In the second chapter, we study Hermitian Lie groups of tube type and their com-
plexifications uniformly as Spy(A) over some special real algebra A. We use this
approach to describe the flag variety of such groups corresponding to a maximal
parabolic subgroup, a maximal compact subgroup and different models of the sym-
metric space. For complexified groups this construction is new. Further, we introduce
in these terms coordinates on the space of decorated maximal representations of the
fundamental group of a punctured surface into a Hermitian Lie group of tube type
and use them to determine the homotopy type and the homeomorphism type of the
space of decorated maximal representations.






Zusammenfassung

Maximale Darstellungen in Hermitesche Lie-Gruppen wurden in [7] eingefiihrt und
danach in |2,626] untersucht. Alle maximalen Darstellungen sind diskrete Einbet-
tungen, und Rdume der maximalen Darstellungen sind Vereinigungen von Zusam-
menhangskomponenten von der Charaktervarietdt. Somit liefern sie Beispiele von
den sogenannten hoheren Teichmiiller Rdumen. Zusammenhangskomponenten der
Réume der maximalen Darstellungen haben komplizierte Topologie, die noch nicht
wohlverstanden ist.

In dieser Doktorarbeit untersuchen wir klassische Hermitesche Lie-Gruppen von
Tubentyp und parametrisieren Riaume der dekorierten (maximalen) Darstellungen
der Fundamentalgruppe einer punktierten Flidche in eine Hermitesche Lie Gruppe
vom Tubentyp. Mithilfe von dieser Parametrisierung beschreiben wir die Topologie
und die Struktur der Rdume der maximalen Darstellungen.

Im ersten Kapitel fiihren wir Koordinaten auf dem Raum von mit Lagrange
Unterrdumen dekorierten Darstellungen der Fundamentalgruppe einer punktierten
Fléche in die symplektische Gruppe Sp(2n,R) ein. Diese Koordinaten liefern eine
nicht kommutative Verallgemeinerung von den von V. Fock und A. Goncharov
eingefiihrten Parametrisierungen der Raume von Darstellungen in SL(2,R). Der Un-
terraum von positiven Koordinaten wird auf den Raum von maximalen Darstellungen
abgebildet. Wir verwenden das, um den Homotopietyp und Homeomorphietyp des
Raums der dekorierten maximalen Darstellungen zu bestimmen und im Falle n = 2
seine feinere Struktur sowie die Glattheitsbereich und Typen der Singularitéten zu
beschreiben.

Im zweiten Kapitel untersuchen wir Hermitesche Lie-Gruppen vom Tubentyp und
ihre Komplexifizierungen auf einheitliche Weise als Spy(A) fiir spezielle reelle Alge-
bren A. Wir verwenden diesen Ansatz, um die zu den maximalen parabolischen Un-
tergruppen zugehorigen Fahnenvarietdten, maximale kompakte Untergruppen und
verschiedene Modelle der symmetrischen Rdume von diesen Gruppen zu beschreiben.
In diesen Termen fithren wir Koordinaten auf dem Raum der dekorierten maximalen
Darstellungen der Fundamentalgruppe einer punktierten Flédche in eine Hemitesche
Lie-Gruppe vom Tubentyp ein und verwenden sie, um den Homotopietyp und den
Homeomorphietyp des Raums der dekorierten maximalen Darstellungen zu bestim-
men.
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0 Introduction

0.1 Higher Teichmiiller theory: from hyperbolic
structures to representation varieties

Higher Teichmiiller theory was developed as a generalization of classical Teichmiiller
theory that studies moduli spaces of complex structures on a fixed topological surface
S of negative Euler characteristic. This moduli space is called Teichmdiller space
T(S), and it can also be seen as the moduli space of marked complete hyperbolic
structures on the surface S. Teichmiiller space 7 (S) can be naturally embedded
into the representation variety Hom(m(S), PSL(2,R))/PSL(2,R) as a connected
component which consists entirely of discrete and faithful representations.

Higher Teichmiiller theory generalizes this approach and studies representations
of 71 (S) into a reductive Lie group G of higher rank. A higher Teichmiiller space is
a subset of Rep(m1(S), G) := Hom(71(S5), G)/G which is a union of connected com-
ponents that consist entirely of discrete and faithful representations. There are two
well-known families of Higher Teichmiiller spaces: Hitchin components and spaces of
maximal representations.

Hitchin components are defined when G is a split real simple Lie group (e.g.
SL(n,R)) [11,20,21]. The space of maximal representations is defined when G is a
noncompact simple Lie group of Hermitian type (e.g. Sp(2n,R)) [6,/7]. They have
been discovered from very different points of view and by very different methods.
They also have different properties, e.g. Hitchin components are always contractible
and homeomorphic to an Euclidean ball. In contrast, connected components of spaces
of maximal representations have nontrivial complicated topology. Nevertheless, as
described before, they also share many properties [6,21]. Moreover, in the case when
G = PSL(2,R), the Hitchin component and the space of maximal representations
agree and coincide with the Teichmiiller space 7(.S) [28].

However, higher Teichmiiller spaces do not exist for every Lie group G. Discrete
and faithful representations form in general only a closed subset of Rep(m(S), G)
but not connected components. In fact, there are special families of Lie groups for
which higher Teichmiiller spaces exist.

One example of Lie groups which admit higher Teichmiiller spaces is conjectured
to be Lie groups with a notion of positivity. The theory of ©-positivity was developed
by O. Guichard and A. Wienhard and generalizes Lusztig’s total positivity for split
real Lie groups and maximality for Hermitian Lie groups to a larger class of simple

Lie groups (e.g. SO(p,q), p # q) [16].



0.2 Fock—Goncharov’s X-space

In their seminal paper [11], Fock and Goncharov introduced an X-moduli space,
which is closely related to the variety of representations of the fundamental group
of a surface S, of genus g with k punctures into a split real simple Lie group G.
They introduced explicit cluster X-coordinates on this space associated to an ideal
triangulation of Sy . Changing the triangulation, the coordinates change by positive
rational functions. Thus the locus of positive coordinates is independent of the choice
of triangulation. When G is SL(2,R), the positive locus in the X-space is closely
related to the Teichmiiller space, and the Fock—Goncharov coordinates are extensions
of Thurston’s shear coordinates. When G is a split real group of higher rank, this
moduli space gives higher Teichmiiller space, and the positive locus of the X-space
is closely related to the Hitchin component in the representation variety.

The set of positive representations of Fock—Goncharov and the Hitchin components
account only for one family of higher Teichmiiller spaces, another family is given by
maximal representations into Lie groups of Hermitian type. The symplectic groups
Sp(2n,R) form essentially the only family of Lie groups that are both split real forms
and of Hermitian type.

In the first chapter of this thesis, we generalize the work of Fock and Goncharov in
the following way. We introduce a new moduli space, an X-space of representations
of the fundamental group of S, into the symplectic group Sp(2n,R), and describe
non-commutative Aj-type cluster coordinates on them. We show that the positive
locus of the X-space corresponds precisely to maximal representations into Sp(2n, R);
we use this to determine the homeomorphism type and the homotopy type of the
space of maximal representations, and for Sp(4, R) also its finer structure as a smooth
locus and kind of singularities.

In Fock—Goncharov’s work, an important role is played by Lusztig’s total positivity,
in our work, a similar role is played by positivity related to the Maslov index. As
such, our work fits well in the framework of ©-positivity, recently introduced by
O. Guichard and A. Wienhard [14-16}28|, that generalizes Lusztig’s total positivity
and provides a unifying framework for the different higher Teichmiiller spaces.

When the Fock—Goncharov’s approach is applied to the group Sp(2n,R), they
define a positive locus in the space of symplectic representations. It is important to
remark that the positive locus that our approach gives in the space of symplectic
representations is larger than the Fock—-Goncharov’s one (see Sectionin Chapter
1 for more details). This is because the two theories are based on two different ©-
positive structures on Sp(2n,R): respectively the one for split groups and the one
for groups of Hermitian type. The perspective chosen in the present thesis is the one
which is suitable for describing the spaces of maximal representations.

We now describe our results in more detail.



0.3 Generalization of X-moduli space

In the first chapter of the thesis, we introduce the space of decorated symplectic
representations (i.e. arepresentation m(Sy ) — Sp(2n,R) together with a consistent
choice of Lagrangian subspaces, which are fixed by peripheral elements in 71(Sg))
which serves as our X'-space.

Fixing an ideal triangulation 7 of Sy, we introduce systems of &X’-coordinates,
using invariant of triples, 4-tuples, and 5-tuples of Lagrangian subspaces. A system
of X-coordinates consists of a triangle invariant for each triangle, which is given by
the Maslov index of the three Lagrangians associated to the vertices of the triangle,
an edge invariant for every edge of the triangulation, which can be seen as a cross-
ratio function of four Lagrangians, and an angle invariant, associated to each corner
of a triangle, which comes from an invariant of 5-tuples of Lagrangians. We then
describe in detail a map denoted by rep from the set X(7T) of X'-coordinates to the
space of decorated representations. A special role is played by the set X+ (T) of
positive X-coordinates, those for which the triangle invariants are equal to n, the
edge invariants are just n-tuples of positive real numbers, and the angle invariants
take values in O(n).

Theorem 0.3.1. The map rep induces a proper surjection with generically finite
fibers from X (T) to the space of decorated mazimal representations

Let us emphasize that the correspondence between positive X'-coordinates and
decorated maximal representations is not a one-to-one. To every decorated maxi-
mal representation corresponds a system of positive X-coordinates, but in general
only the edge invariants are uniquely determined, the angle invariants involve some
choices. We also explicitly describe the fibers of the map rep (Proposition and

Theorem [1.5.18]).

0.4 Topology of the space of maximal representations

We now discuss the applications to the topology of the space of (decorated) maximal
representations. Let us point out that contrary to the space of positive represen-
tations or the Hitchin component, which are contractible, the space of maximal
representations has non-trivial topology. In the case of maximal representations of
fundamental groups of closed surfaces, the topology of the space of maximal repre-
sentations has been studied using the theory of Higgs bundles in [1,|5,|12}|13]. These
techniques do not apply easily to the case of maximal representations of fundamen-
tal groups of surface with punctures, in particular since we do not fix the holonomy
along peripheral curves on the surface.

Here we rely on Theorem [0.3.1] and the positive locus of the X-coordinates to
determine the topology of the space of maximal representations. Note that the
positive locus of the X-coordinates does not parametrize the space of decorated
maximal representations, but maps surjectively to it. The fibers of this surjection



are complicated to describe, because they depend on the shape of the edge invariants.
Studying this fibration, we can describe precisely the homeomorphism type of the
space of decorated maximal representations:

Theorem 0.4.1. The space of decorated mazimal representations into Sp(2n,R) is
homeomorphic to
Sym™ (n, R)%*70 5 O(n)?++~1/ O(n)

where Sym™ (n,R) is the space of all symmetric positive definite matrices and O(n)
acts by simultaneous conjugation in every factor.

As consequence of this statement, we derive the homotopy type of the space of

decorated maximal representations any connected central extension of PSp(2n,R),
see Theorem [1.6.6]

Theorem 0.4.2. The space of decorated mazimal representations into Sp(2n,R)
admit as a deformation retract the space O(n)29k=1/0(n), where the action of O(n)
1s by simultaneous conjugation.

As a corollary, we obtain a different proof of |26, Theorem 7.2.7] on the number
of connected components.

Corollary 0.4.3. The space of mazximal representations and the space of decorated
maximal representations into Sp(2n,R) have 229tk=1 connected components. The
space of decorated mazimal representations into PSp(2n,R) has 22951 connected
components when n is even; it is connected if n is odd.

When n = 2, we analyze this space in more detail and show that all connected com-
ponents except one are orbifolds, one connected component contains a non-orbifold
singularity, see Section [1.4.3

0.5 Hermitian Lie groups of tube type

In the second chapter of this thesis, we study classical Hermitian Lie groups of
tube type. We prove that all of them can be seen as a noncommutative analog
of the symplectic group Spy(R) = SLy(R). More precisely, it is possible to see all
classical Hermitian Lie groups of tube type uniformly as Spy(A, o) over some special
noncommutative R-algebra with an anti-involution (A4, o) or as Spy(G, o) where G
is a Lie group of some special type.

To be exact, sometimes, the entire algebra (A, o) is to large to construct the group
Spy(A, o), and it is reasonable to consider a suitable Lie subgroup G of A* that is
closed under o and such that the Lie algebra B of G admits a G-invariant proper
convex cone BY™ inside the space of o-symmetric elements B*¥™ := Fixp(c). For
such G, the group Spy(G, o) can be defined. Moreover, the case of Spy(A, o) can be
seen as a special case of Spy(G, o) taking G = A*.



In fact, the group Spy(G, o) generalizes the case of Spy(A, o) at the cost of addi-
tional complications. Therefore, first in Section [2.1] we discuss the easier case, defin-
ing the group Spy(A, o) and studying its properties, and only later in Section
we give the most general definition of Spy(G, ).

For example, the real symplectic group Sp(2n,R) discussed in the first chapter
is isomorphic to Spy(A4,0) for A = Mat(n,R) and the anti-involution o corre-
sponds to the matrix transposition. The group U(n,n) can be seen as Spy(A,0)
for A = Mat(n,C) and the anti-involution o corresponds to the complex conjuga-
tion composed with the matrix transposition. The group SO*(4n) is isomorphic to
Spy(A, o) for A = Mat(n,H) and the anti-involution o corresponds to the quater-
nionic conjugation composed with the matrix transposition. In contrast, the group
Spin(2,n) can only be seen as Spy (G, o), where G is the so-called Clifford group, but
it cannot be described as Spy (A, o).

Moreover, using this approach, it becomes possible to describe a wider class of
groups. Namely, we can see in this picture groups that are complexifications of
Hermitian groups of tube type (e.g. Sp(2n,C), GL(4n,C) and O(4n,C)). For this
wider class of groups, we study their maximal compact subgroups and the space of
isotropic A- and G-lines as the flag variety corresponding to a maximal parabolic
subgroup of Spy(A, o), resp. Spy(G, o). In fact, this flag variety generalizes the real
projective space RP? which the group Sp,(R) = SLa(R) is acting on. We discuss
properties of the action of Spy(A, o) and Sp,(G, o) on this flag variety and find out
what are invariants of tuples of isotropic lines under this action. These invariants
are closely related to the well-known invariants as the Maslov index and the cross
ratio that we discussed in the first chapter for such action of the group Sp(2n,R) on
the Lagrangian Grassmannian.

Further, we discuss the symmetric spaces of Spy(A, o) and Spy(G,o). We are
considering two cases: classical Hermitian Lie groups of tube type and their com-
plexifications. In both cases, we can describe their symmetric spaces with models.
More precisely, we construct the upper half space model, the projective model, the
precompact model (that is usually called bounded model in the literature) and the
complex structure model (for real groups) and the quaternionic structure model (for
complexified group). We also discuss the natural compactification of these symmetric
spaces and an analog of the Shilov boundary for complexified groups. These mod-
els are well-known for Hermitian Lie groups [6], but in the case of the complexified
groups these results are new.

At the end of the second chapter, we discuss decorated maximal representations
of the fundamental group of a punctured surface S, into classical Hermitian Lie
groups that we see as Spy(G, o). We define noncommutative positive X-coordinates
in terms of the group G that generalize positive X-coordinates associated to an
ideal triangulation of the surface that we defined in the first chapter. As before, we
associate to every edge of the ideal triangulation an n-tuple of positive real numbers
where n is the rank of G. The angle invariants take value in the group

U(G,0)={gecGloa(g)g=1}.



As in the first chapter, we obtain the map rep that maps surjectively the space
of positive X-coordinated onto the space of decorated maximal representations.
Analysing this map rep, we obtain the generalization of the Theorem describ-
ing the homeomorphism type of the space of decorated maximal representations into

SPQ(Ga U):

Theorem 0.5.1. The space of decorated mazximal representation into Spy(G, o) is
homeomorphic to

(Biym)6g+3k76 % U(G, O_)Qngkfl/U(G?O_)
where U(G, o) acts by simultaneous conjugation in every factor.

As corollary from this Theorem, we derive the homotopy type of the space of
decorated maximal representations into Spy(G, o):

Theorem 0.5.2. The space of decorated maximal representations admits as a defor-
mation retract the space U(G, )29 k=1 /U(G, o). The quotient is taken by the action
of U(G,0) on U(G,0)?9Hk=1 by simultaneous conjugation.

0.6 Structure of the thesis

The present thesis contains the Introduction and two Chapters. The first Chapter
is dedicated to the study of the decorated representations into the group Sp(2n,R).
In Section [1.1] we introduce the invariants of Lagrangians which are used to define
coordinates. In Section [1.2] we introduce the spaces of decorated representations,
recall the definition and key properties of maximal representations. In Section [I.3]
we introduce positive X'-coordinates, and construct the map to decorated maximal
representations. The applications for the topology of the space of maximal repre-
sentations are proven in Section 1.4l The general X-coordinates are introduced in
Section [I.5] and in Section [I.6] we generalize them to representations into central
extensions of PSp(2n,R). The first Chapter is part of the joint work with Daniele
Alessandrini, Olivier Guichard and Anna Wienhard and is published on the arXiv
as [2]. Main contributions of the author in this project are the definition of general
X-coordinates, the standard form of a pair of bilinear forms and the description of
the topology and homotopy type of the space of maximal representations.

The second Chapter is dedicated to the study of Hermitian groups of tube type in
terms of the symplectic group Sp, over noncommutative algebras. In Sections
we introduce Hermitian algebras with anti-involution (A, o), their complexifications
and the group Sp,(A, o), discuss their properties and give examples. In Section
we construct the space of isotropic lines and discuss the action of Spy(A,0) on it
and find invariants of tuples of isotropic lines. In Sections [2.3] and 2.4 we construct
different models of symmetric space of Spy(A, o), discuss its compactification and
Shilov boundary. In Section [2.5] we implement these models for examples of classical
Hermitian Lie groups and their complexifications. In Section[2.6] we define Hermitian



Lie algebras with an anti-involution (B, o) and Lie groups (G, o) corresponding to
such Lie algebras. In Section we define the group Spy(G, o) and discuss its
properties. In Section [2.8] we construct the space of isotropic G-lines and discuss
invariants of tuples of isotropic G-lines. In Sections[2.9] we introduce different models
of symmetric space of Spy(G, o), discuss its compactification and Shilov boundary.
In Section we describe the group Spin(2,n) as Spy(G, o). In Section
decorated maximal representations into Spy (G, o) are discussed. The second Chapter
will appear in a joint work with Daniele Alessandrini, Arkady Berenstein, Vladimir
Retakh and Anna Wienhard. Main contributions of the author in this project are the
development of the general theory of Spy(G, o), describing the right conditions for
G such that the group Sp,(G, o) is well-defined, including the group Spin(2,n) into
this context and the description of models of the symmetric spaces for complexified
groups.

The Appendix contains a description of the invariants of pairs of non-degenerate
symmetric bilinear forms that are used in Section [I.5] and explicit constructions of
isomorphisms between matrix algebras that are used in Sections to construct
examples of symmetric spaces.



1 Noncommutative coordinates for symplectic
representations

1.1 Invariants of Lagrangian subspaces

1.1.1 Lagrangian Grassmannian

We consider the symplectic vector space (R?",w) where w is the standard symplectic
form on R?", i.e.

n n
w(z,y) = Z LilYn+i — an—i-iyia
i=1 =1

for x = Zfﬁl xiei, Y = 21221 yie; where (eq,...,ea,) is the standard basis of R?".
With respect to the standard basis, w can be written as
- 0 1d,
w = <_Idn 0 ) (1.1.1)

Every basis of R?" such that w, expressed in that basis, has the form (1.1.1) is
called a symplectic basis. We will usually write a symplectic basis as (e, f), where

e = (61, ceey en), f= (fh e ,fn), and w(ei, f]) = 5@]
We denote by Sp(2n,R) the symplectic group,

Sp(2n.R) = {g € GL(2n,R) | ¢"wg = w},
and by PSp(2n,R) = Sp(2n,R)/{£1d} the projective symplectic group.

Definition 1.1.1. A subspace L of R?" is called Lagrangian if dim(L) = n and
w(u,v) = 0 for all u,v € L. The set of all Lagrangian subspaces of (R?", w) is called
Lagrangian Grassmannian, we denote this set by Lag(2n,R).

Definition 1.1.2. A framed Lagrangian is a pair (L,v), where L € Lag(2n,R) and
v is a basis of L. The set of all framed Lagrangians of (R?",w) is called framed La-
grangian Grassmannian, we denote this set by Lag’ "(2n,R). The natural projection
to Lag(2n,R) turns this space into a principal GL(n, R)-bundle.

The group Sp(2n,R) acts naturally on Lag(2n,R) and Lagf’"(Qn, R):

g(L) :=={g(z) |z € L},
g(L, (Ulv s 7””)) = (g(L), (g(m), s ,g(vn)))-



These actions are transitive, hence the spaces Lag(2n,R) and Lag/"(2n,R) are
homogeneous spaces over the symplectic group. To better see this structure, consider
the stabilizers of a point:

P = Stabsp(sz)(L), (112)
U= Stabsp(ng)((L, v)) (1.1.3)

The group P is a parabolic subgroup of Sp(2n,R), and U C P is its unipotent
subgroup. As homogeneous spaces, we have

Lag(2n,R) = Sp(2n,R)/P,
Lag/"(2n,R) = Sp(2n,R)/U.
)

Anyway, the action of Sp(2n,R) on Lag(2n,R) is not effective, it has kernel {£1d}.
The actual group of symmetries of Lag(2n,R) is the projective symplectic group
PSp(2n,R).

Definition 1.1.3. Two Lagrangians L;, Ly € Lag(2n,R) are called transverse if
Ly ® Ly = R™.

We now describe charts for Lag(2n,R). Since we will work in these charts regularly,
we describe them and the coordinate changes in detail. Given a Lagrangian L., we
denote by U, the subset of Lag(2n,R) consisting of all the Lagrangians transverse
to L. This is an open dense subset of Lag(2n,R). Fixing a Lagrangian Ly € Uy__ any
other Lagrangian L € Ur,__ is the graph of a linear map Ly, : Lo = L, i.e. for
each v € Ly, Ly, 1. (v) is the unique element in Lo, such that v+ L, (v) € L.
So we define If L is also transverse to Lg, this map, which we denote just by L if
there is no danger of confusion, is a linear isomorphism.

We will often use an explicit matrix expression for this linear map. If we choose
e = (e1,...,e,) a basis of Ly, there exists a unique basis f = (f1,..., f,) of Ly such
that (e, f) is a symplectic basis. Given a symplectic basis (e, f) will more generally
write then

Le := Span(e),
L¢ := Span(f).

We write [Lr,—1,]e s for the matrix of the map Ly, 1, with respect to the bases e, f.
It is easy to check that this matrix is symmetric. The linear map L and its matrix
[LLo—Leles Will be used often in this thesis.

We thus have a map

Viep UL 3 L — [Li.spger € Sym(n,R)

This map is a homeomorphism to the vector space of symmetric matrices. To see
that it is invertible, the inverse map is given by the formula

Le#(A) := L = Span(e + fA)



The set
{Ug,, ‘lj(ei‘)) | (e,f) symplectic basis }

is a manifold atlas for the space Lag(2n,R).

Remark 1.1.4. We can write the transition functions of this atlas. Assume (e, f) and
(e/,f') are two symplectic bases. There is a unique symplectic matrix B € Sp(2n,R)
such that (¢/,f) := (e,f)B~!. Write B as

Bi1 B
B= € Sp(2n, R),
(321 322> p(2n,R)

where the B;; are n X n matrices. For every L € Ur, NUL o denote by

A=W p(L)
A, = \Il(e’,f') (L)

Then
A" = (Bi1 + B12A) " (B2 + Bz A) € Sym(n, R). (1.1.4)

Remark 1.1.5. Formula ([1.1.4) also represents the action of the matrix B on
Lag(2n,R), when restricted to a coordinate chart Uy, ;i for a Lagrangian L such
that both L, B(L) € Uz,

we have

AP = (By1 + B1oA)"Y(By1 + By A) € Sym(n, R).

In fact the action of Sp(2n,R) on Lag(2n,R) is formally similar to the action by
Mébius transformations of SL(2,R) on CP! (which is the case n = 1).

The action of Sp(2n,R) on pairs of transverse Lagrangians is transitive, but the
action of Sp(2n,R) on triples, quadruples and 5-tuples of pairwise transverse La-
grangians is not transitive any more. We will now describe invariants of such tuples
of Lagrangians, which will lie the foundation for the rest of the thesis.

Similarly, the action of Sp(2n, R) on pairs ((L,v), L), where (L, v) € Lag/"(2n,R),
L’ € Lag(2n,R) and L, L are transverse, is transitive and free. But when we consider
pairs (L,v), (L',v') € Lag/"(2n,R), the action is not transitive any more, and we
describe invariants of such pairs.

1.1.2 Maslov index

In this section we review properties of the Maslov index of three pairwise transverse
Lagrangians, for a more general discussion we refer the reader to [22].

Let L1, Lo, L3 be three pairwise transverse Lagrangians. As in the previous section,
we consider the linear map L3y, r,. When this does not cause confusion, we will
denote the linear map just by Ls.

10



Using the symplectic form w, we can define a bilinear form 83 on L1 in the following
way: for vy,ve € L
B3(v1,v2) = w(vy, L3(v2)).

We also denote the bilinear form S3 by [L1, L3, Lo].

Proposition 1.1.6. The bilinear form B3 = [L1, L3, La] is non degenerate and sym-
metric.

Proof. Since L3(v) +v € L3 for all v € V7,
0 =w(Lsv+ v, Law + w) = w(Lsv,w) + w(v, Lyw).
Therefore,
Bs(v, w) = w(v, Lsw) = —w(Lgv,w) = w(w, L3v) = B3(w,v)

The form fs is non-degenerate because L3 is a linear isomorphism between two
transverse Lagrangians L and Lo, i.e. w|r, x1, i non-degenerate. ]

We will denote the signature of 3 by

sgn(Bs) = (p, q),

where p is the dimension of a maximal subspace of L; on which 83 is positive definite
and ¢ is the dimension of a maximal subspace of L1 on which 33 is negative definite.
They satisfy p + g = n. We will also sometimes express the signature as

dsgn(B3) =p—qe{-n,—n+2,....,n—2n}.

Definition 1.1.7. The Maslov index of the triple of Lagrangians (Lq, L3, L2) is the
signature dsgn([L1, L3, L2]) and denoted by p(Ly, L3, La).

For n = 1, the three Lagrangians (L1, Ls, L2) correspond to distinct points in the
circle RP'. The Maslov index is 1 if the three points are cyclically ordered, and it is
—1 if they are in the reverse cyclic order.

Proposition 1.1.8 (Properties of Maslov index). The Maslov index
e is invariant under the action of Sp(2n,R) on Lag(2n,R);
e is anti-symmetric when two of its variables are exchanged;

e satisfies the cocycle relation, i.e. for all pairwise transverse Li, Lo, L3, Ly €
Lag(2n,R)

(L1, Lo, L3) — p(Ly, Lo, Ls) + (L1, Ly, La) — (Lo, L3, Ly) = 0
e the group Sp(2n,R) acts transitively on the set of triples of pairwise transverse

Lagrangians with the same Maslov indez, i.e. Sp(2n, R)-orbits of pairwise trans-
verse triples of Lagrangians are in 1-1 correspondence with the Maslov indices.

11



1.1.3 Cross ratio

Let L1, Lo, L3, Ly be four Lagrangians such that L3 and L4 are transverse to L and
Lo. We use the linear isomorphisms L3: Ly — Lo and Ly: Ly — Lj to introduce the
map

[Ll, L3, Lz, L4] =Ljo0 Lg: Ly — 1Ly

which is a linear automorphism of L.
Definition 1.1.9. The map
(L1, L3, Lo, Ly]: L1 — Ly
is called the cross ratio of the 4-tuple of Lagrangians (Li, L3, Lo, Ly).

For related invariants of 4 Lagrangians, see [3,4},(18,/23-25,29|]. For n = 1, the cross
ratio is a linear map from a line to itself. This is just the multiplication by a scalar,
which is exactly the cross ratio of four lines in R? in the classical sense.

Proposition 1.1.10 (Properties of cross ratio).
e The cross ratio is equivariant under the action of Sp(2n,R) on Lag(2n,R).

e [L1,Ls, Ly, Ly] = [Ly, Ly, Ly, Ls]™*;
[Lb L3a L27 L4] - Lg_l o [L27 L47 Lla L3] o L3'

e The group Sp(2n,R) acts transitively on quadruples of pairwise transverse La-
grangians having conjugate cross ratios, i.e. the Sp(2n,R)-orbits of pairwise

transverse quadruples of Lagrangians are in 1-1 correspondence with the con-
jugacy classes of cross ratios.

Proposition 1.1.11. The cross ratio B := [L1, L3, La, L4] is a symmetric linear
map with respect to the bilinear forms [L1, L3, Lo] and [L1, Ly, Lo].
Proof. Let 83 = [L1, L3, L] and 84 = Lo, L4, L1] be a symmetric bilinear form on
Lo. Let v,w € Li. Then:
B3(Bv,w) = w(LsL3v, Lyw) = —w(L3w, L4L3v) =
= —B4(L3w,L3v) = —,84(L31), ng) = —w(L3U, L4L3w) =

= w(L4L3w, L3v) = B3(Bw,v) = B3(v, Bw). O]
Corollary 1.1.12. If [Li,Ls,Lo] and [Lo, L4, L1| are positive definite, then
—[L1, L3, Lo, Ly] is diagonalizable with positive eigenvalues.

Proof. We set as before 33 = [L1, L3, Lo] and 4 = [La, L4, L1]. Let e be a basis of
L; such that [#3]e = Id and [Ble = —diag(A1,...,\n). We take the unique basis f
of Lo such that w(e,f) =1Id. Then L3(e) = f and [L3]e ¢ = Id.
In the basis f the bilinear form (5, is diagonal because for every two basis vectors
fis 1
Balfi, f7) = w(fi. La(£))) = w(LsLy " (f:), LaLs Ly (£7)) =
= w(Lgei, Bej) = —w(Bej, Lgei) = —Bg(Bej, ei) = )\152]

Since B4 is positive definite, we have \; > 0 for all 4. O
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1.1.4 Angles

We will also make use of invariants of five Lagrangians, here we describe it in the
simplest case, when all the Maslov indices are maximal. For the general version of
this invariant, see Section [I[.5.1] Let Ly,..., Ls be pairwise-transverse Lagrangians,
which we will think as the vertices of a pentagon, as in Figure 2.81] Assume that

/J'(leL37 LQ) = /-‘L(L27 L47 Ll) = M(Lla L57 L3) =n.

The bilinear forms B3 = [L1, L3, Lo] and 84 = [Lg, L4, L1] are positive definite,
therefore, by Corollary [1.1.12] there exists a basis €1 of L; such that [53]e, = Id and
[Ll, Ls, Lo, L4}e1 = — diag(/\l, e )\n) with Ay > --- > X, > 0.

L> L3

L4 Ls

Ly

Figure 1.1.1:

We can do the same for the quadruple (L3, Lo, L1, Ls) and find a basis g of Lg such
that the bilinear forms [L3, Lo, L1], = Id and —[L3, Lo, L1, Ls|g = diag(p1, ..., tin)
with uy > -+ > uy > 0.

We take the unique basis ez on Lq such that w(g,e2) = Id. In the basis eg of L;
we have

[B3les = [L1, L2, L3ley, = [L3, L2, L1]g = 1d.

Let U € O(n) be the change-of-basis matrix from the basis e to the basis e;. We
will call this matrix an inner angle in the pentagon of Lagrangians (L1, L4, Lo, L3, Ls)

(see Figure [2.8.1]).

The matrix U is not uniquely defined because the bases e; and g are not
unique. In general, U is only well defined as an element of the double coset space
Stab; \ O(n)/ Stabg, where

Stab; :={A € O(n) | Adiag(\1,...,\)AT =diag(A,..., )},

Staby := {A € O(n) | Adiag(p1, ..., un) AT = diag(p1, ..., pun)}.

We denote by [Li, Ls, L3, La, L4] the class of U in Stab; \ O(n)/ Staby. If bases e
and eg are chosen as above, we will write

U =: [Ll, Ls, L3, Lo, L4]€1782'
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1.2 Representation varieties

One goal of this thesis is to give a parametrization of spaces of representations of
the fundamental group of a punctured surface into Sp(2n,R), which can be viewed
as a non-commutative generalization of the parametrization of representations into
SL(2,R) by Thurston and Penner coordinates. We will in fact not directly parame-
terize the representation variety, but an extension of it, which we call decorated or
framed representations.

1.2.1 Representation spaces

Let S be a punctured surface of genus g with £ > 0 punctures. We assume that the
Euler characteristic x(S) of S is negative. In this case the fundamental group 71 (.5)
of S is free with 29 + k — 1 = |x(S5)| + 1 > 2 generators.

Definition 1.2.1. An element g € m1(.5) is called peripheral if g is freely homotopic
to a loop contained in an arbitrarily small neighborhood of a puncture. We denote

by 77" (S) the subset of 71(S) containing all peripheral elements. Since we consider

per

only punctured surfaces, " (S) # @.

By Hom(m(S),G) we denote the set of all representations of the fundamen-
tal group m(S) of the surface S into some Lie group G. The group G acts on
Hom(71(S), G) by conjugation.

Definition 1.2.2. The quotient space

Rep(m1(S), G) := Hom(m1(5),G)/G
is called the moduli space of representations. We denote by [p] the class in
Rep(m1(S), G) of the representation p € Hom(71(S5), G).

Remark 1.2.3. The action of G on Hom(m(S),G) by conjugation is not proper,
hence the quotient is, in general, not Hausdorff. The action is proper on the subset
of reductive representations, which has an Hausdorff quotient, usually called the
character variety. In this thesis, it is more natural to consider the quotient of all
representations, and to deal with a quotient space which is not Hausdorff.

Definition 1.2.4. A representation p € Hom(7(.5), Sp(2n,R)) will be called periph-

erally parabolic if for every g € m}“"(S), the matrix p(g) lies in a subgroup conjugate

to P (see Formula (1.1.2))).

In other words, a representation is parabolic if and only if every peripheral element
leaves invariant a Lagrangian in (R?",w). We will denote by Hom® (71(S), G) the
subset of Hom(71(S), G) consisting of peripherally parabolic representations.

Definition 1.2.5. The quotient space
Repp(ﬂ’l(S), Sp(2n7 R)) = HOInP(TFl(S), Sp(?n, R))/ Sp(2n7 R)

is called the moduli space of peripherally parabolic representations.
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Remark 1.2.6. The space Rep(m1(S), G) does not depend very much on the surface
S, because it depends only on m1(S), and there are several surfaces with the same
fundamental group. For this reason, it is not easy to study this space using topologi-
cal decompositions of S. In the space Rep? (1(S), G) however we put conditions on
the peripheral elements in 71 (.5), and thus it depends on and is more closely related
to the topology of S.

Definition 1.2.7. A representation p € Hom(71(5), Sp(2n,R)) will be called periph-

erally unipotent if for every g € 70" (S), the matrix p(g) lies in a subgroup conjugate

to U (see Formula (1.1.3))).

In other words, a representation is peripherally unipotent if and only if every
peripheral element leaves invariant a framed Lagrangian in (Rzn, w). We will denote
by HomV (71 (S), G) the subset of Hom(;(S), G) consisting of peripherally unipotent
representations.

Definition 1.2.8. The quotient space
RepY (m1(S), Sp(2n, R)) := HomY (71 (S), Sp(2n, R))/ Sp(2n, R)

is called the moduli space of peripherally unipotent representations.

1.2.2 Decorated representations

For a peripherally parabolic representation there might be many ways to choose the
invariant Lagrangians. A decoration is a special way to make this choice.

Definition 1.2.9. A decoration of p is a map
D: 7" (S) — Lag(2n,R)
satisfying the following properties:
(a) D(g) is invariant under p(g) for all g € 7{“"(S).
(b) If g1, 92 € T (S), h € 71 (S) such that hg;h™! = go, then

p(h)(D(g1)) = D(g2).

(c) For every k € Z \ {0} and for every g € 77" (S),
D(g) = D(g").

A decorated representation is a pair (p, D), where p is a representation and D a
decoration of p.

Remark 1.2.10. By properties a), b), ¢) of decorations, for every puncture, one has
to choose a Lagrangian for only one peripheral element going around the puncture.
Then the Lagrangians associated to the other peripheral elements going around the
same puncture are determined.
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We denote by Hom®(71(S), Sp(2n, R)) the set of all decorated representations. The
action of Sp(2n,R) on Hom(71(S),Sp(2n,R)) and on Lag(2n,R) induces an action
on Hom?(m;(S), Sp(2n,R)). We will study the quotient:

Definition 1.2.11. The quotient space
Rep?(71(S), Sp(2n, R)) := Hom%(71(S), Sp(2n, R))/ Sp(2n, R)

is called the moduli space of decorated representations. We denote by [p, D] the class
of (p, D) in the moduli space of decorated representation.

Remark 1.2.12. We have natural surjective maps

Hom?(71(9),Sp(2n,R)) — Hom® (r1(S),Sp(2n,R))
(p, D) = p

Repd(ﬂ'l(S), Sp(2n7R)) - Repp(ﬂ-l (S)v Sp(2n7R))
o, D] = (o]
These maps are generically 2"k : 1-map, where k is the number of punctures.

1.2.3 Transverse representations

We now fix an ideal triangulation 7 of S.

Definition 1.2.13. We say that (p, D) € Hom(m(S,b),Sp(2n,R)) is transverse
with respect to T if the following condition holds: for every edge e of 7 connecting
punctures p; and p;, for every point b’ € Int(e) and for every curve v connecting
b and b, we require that the Lagrangians D(vy x a; x v~ ') and D(y x aj xy~1) are
transverse, where the curves ; and «; are as in Figure

We denote by Hom% (71 (S, b), Sp(2n,R)) the set of all decorated representations
which are transverse with respect to the triangulation 7.

Remark 1.2.14. The transversality property required in the previous definition does
not depend on the choice of the path v and the base point b. Moreover, this property
is invariant under the action of Sp(2n,R), hence we can define the quotient:

Repgr(m(S), Sp(2n,R)) := Homgr(m(S, b),Sp(2n,R))/Sp(2n,R)

Remark 1.2.15. For each T, the space Rep%i-(m(S),Sp(Qn,R)) is an open dense
subspace of Rep?(m1(S), Sp(2n, R)).

Let T be a triangle of 7 with boundary 0T. Using the orientation of S, we can
orient 0T so that T is to the left from 0T'. This gives us a cyclic order on the vertices
{p1,p2,p3} of T. We assume that (p1,p2,ps) are in positive cyclic order.

Definition 1.2.16. Let [p, D] € Rep%(m(S),Sp(2n,R)), and consider elements
g1, 92,93 € (S, b) that go around p1,p2, p3 (see Figure. We can consider
the Maslov index u? := u(D(g1), D(g2), D(g3)). Since u is Sp(2n, R)-invariant, u?
is a well defined invariant of [p, D] for each triangle T of 7. We call u? the Maslov
index of the positive oriented triangle T for [p, D).
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Figure 1.2.1:

1.2.4 Toledo number and maximal representations

An important invariant for representations [p] € Rep(m1(S), Sp(2n,R)) is the Toledo
number, here denoted by 7T),, which was defined in |7] using bounded cohomology. It
is a real number which satisfies the Milnor—-Wood inequality:

—n|x(5)] < T, < n[x(5)]-

Moreover, for all representations [p] € Rep® (1 (S), Sp(2n, R)), this invariant takes
only integer values. The representations where this invariant achieves its maximum
have particularly nice geometric properties, see |7].

Definition 1.2.17. A representation [p| € Rep(71(S), Sp(2n,R)) is called mazimal
if T, = n|x(9)].

We denote by M(m1(S), Sp(2n,R)) the subspace of Rep(m1(S), Sp(2n, R)) consist-
ing of all maximal representations. Similarly, we denote by M?(m1(S), Sp(2n, R))
the subspace of Rep?(m;(S),Sp(2n,R)) of all decorated maximal representations,
and by M%(m1(S), Sp(2n, R)) the subspace of all decorated maximal representations
which are transverse with respect to a chosen triangulation 7. The following facts
are proven in |7].

Proposition 1.2.18. [7/

(a) M(m1(S),Sp(2n,R)) C Rep?(m1(S),Sp(2n,R)). In particular, the natural pro-
jection map

/\/ld(wl(S),Sp(Qn,]R)) - M(ﬂ'l(S),Sp(Qn,R)).

18 surjective.
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Figure 1.2.2:

(b) Mazimal representations are transverse with respect to any ideal triangulation T :
Mi(m1(S). Sp(2n, ) = M (x4 (S). Sp(2n, B)).

(c) All mazximal representations are reductive, hence the spaces M(mw1(S), Sp(2n,R))
and M%(m1(S),Sp(2n,R)) are Hausdorff (cfr. Remark .

Remark 1.2.19. A representation [p] € Rep(m1(S5), Sp(2n,R)) is called almost maxi-
mal if T, > (n —1)|x(S)| (see [9]). The Remark (c) holds also for the subsets
of the moduli spaces consisting of all almost maximal representations.

We now show that the Toledo number of a decorated representation can be com-
puted easily using an ideal triangulation. In the special case of a pair of pants the
following proposition was proven in [26].

Proposition 1.2.20. Let T be an ideal triangulation of S and (p,D) €
Hom4-(71(S),Sp(2n,R)). The Toledo number T, of p can be computed from the
following formula:

T,=> u

TeT

where u' is the Maslov index of the positive oriented triangle T for [p, D).

Corollary 1.2.21. The number Y rcr u® only depends on the representation. In
particular it does not depend on the choice of decoration nor on the ideal triangula-
tion.

The fact that > .. u” does not depend on the triangulation can also be seen
directly since every two triangulations are connected by a sequence of flips, and
for a flip the statement follows from the cocycle relation of the Maslov index (see
Remark .

As a corollary of the previous proposition, we can recognize decorated maximal
representations using a triangulation:
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Corollary 1.2.22. Given a decorated representation p, and an ideal triangulation
T of S, we have that p is mazximal if and only if the Maslov index of each positively
oriented triangle T in T is n.

The proof of Proposition [I.2.20] will take the rest of this subsection. It will use, as
tools, the Souriau index and the rotation number, whose properties we will briefly
discuss.

Let G be the universal covering of G := Sp(2n, R) and Lag(2n, R) be the universal
covering of Lag(2n,R). In [7] it is shown that G acts on Lag(2n,R) in a compatible
way with respect to the action of G on Lag(2n,R), i.e. for all g € G and for all
Le I/JE\%(Qn, R):

p(g-L) = pc(g)-p(L)

where p: I_T;g(Qn,]R) — Lag(2n,R), pg: G — G are natural projections of coverings,
and by . we denote the actions of corresponding groups.
The Souriau Index is a map

m: f‘;g(Qn,]R) X fgm/g(Qn?R) —R

which is G-invariant and satisfies the following relation: for each Li,Lo, Ly €
Lag(2n,R)
m(L1, La) + m(La, L3) + m(Ls, L1) = p(L1, Lo, L)

where L; = p(L;) for i € {1,2,3}. See |8] and [26] for a precise definition.

We also need the rotation number Rot: G — R, a conjugation invariant function
defined in [7] using the theory of bounded cohomology. We will need the following
properties:

Lemma 1.2.23 ( [26]). Let j € G, L € Lag(2n,R) and let p(L) € Lag(2n,R) be a
fized point of pa(g) € G. Then

Rot: G

S =

L)

@
11

m(

s

Lemma 1.2.24 ( |7, Thm. 12|). Let p € Hom(m(5),Sp(2n,R)) and

7T1(S) = <a1,b1,...,ag,bg,cl,...,ck | Cl...k [bg,ag]...[bl,al] = 1)

be a presentation of mi(S). Let p € Hom(m(S),G) be a lift of p to the universal
covering G of Sp(2n,R). The Toledo number of p can be computed as:

k
T, =~ Rot(p(c:))
=1

We are finally ready to present the
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Proof of Proposition[1.2.20, First we fix a presentation of 7 (.5):
m1(S) = (a1,b1,...,a9,bg,¢1,...,c | c1.. .k [bg,aq]...[b1,a1] =1)

where ¢ is the genus of S, k is the number of punctures. We choose a lift p: m1(S) —
G. From p, we can compute 7}, using Lemma

We can assume that p(c;) have a fixed point z;, ¢ > 2 in Ij;g(Qn, R). So
f{\o/t(ﬁ(ci)) = 0. This is possible since p(c2), . . ., p(cx) have fixed points in Lag(2n, R).
We also denote by yo a lift of a fixed point of p(cq).

We denote for all admissible i:

By induction, we denote

!

yi =B 'AT B Ajy; 4
forie {1,...,g}.
We consider a polygon model of S and the ideal triangulation as in Figure [1.2.3
where the vertices of the triangulation are decorated by lifted fixed points of the
corresponding peripheral elements, and the edges are marked by letters and arrows

corresponding to the generators of the fundamental group and gluing/cutting direc-
tions.

To write the sum of Maslov indices, we use the Souriau index [26} 3.2|:

g
Z by = Z(m(yi—la A7 BiAyyiq) + m(A;7 BiAyyioa, Bidiyio1)+
TeT =1
+ m(BiAiyi-1, Aiyio1) + m(Ayi—1, By A7 BiAiyiq))+
+ m(yq, C~’k_1 . C~’3_1,22)+

k—1 k-1
+ Z m( ’;1 o Cilllzi, C,;l o CierZZiJrl) + Zm(ziﬂ, Zl) + m(ZQ, yo).
i=2 i=2

Using the G-invariance of the Souriau index and its anti-symmetry we can see that

m(BiAiyi-1, Aiyi—1) = m(A7 BiAyio1,yi-1) = —m(yi—1, A7 Bidiyi1)
m(A;7 B Ayi—1, BiAiyi—1) = m(B; "A7 B Ayiq, Ajyio1) =
= —m(Ayi—1, By "A7 B Ayiq).

Therefore, the first sum is equal to zero. Moreover,

~1 —1 —1 —1 _ o N
m(Cy ... Ch 2, O . Cipzinr) = m(C 20, ziv1) =
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Iy

Figure 1.2.3:

= m(zi, éi—i—lzi—i-l) = m(zi, Zi+1)~

Therefore, the second sum is equal to minus the third sum. So we get:

Do =mlyy, Ot Gyt za) + mlz2,m0) =
TeT
=m(yy, Cy ' ... C5'Cy ' 2) + m(22, 0) =
= m(CaCs...Chyy, 22) + m(ZQ, yo) = m(Cy o, 22) + m(22,30) =
= m(Cy g0, 90) = Rot(C ') = —Rot(Cy) = T,. O

1.3 X-coordinates for maximal representations

In this section we introduce positive X-coordinates. They will give a parametriza-
tion of the space of maximal representations: we restrict our attention here to this
special case because the definition is significantly simpler than in the general case.
The definition of general X’-coordinates for decorated representations that are not
necessarily maximal will be given in Section
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1.3.1 Ideal triangulations of surfaces

Let 7 be an ideal triangulation of a punctured surface S = S\ P where P =
{p1,...,px} is the set of punctures. We consider 7 as a graph 7 = (P, E) embedded
in S so that the complement of 7 in S is a disjoint union of triangles which we call
faces or triangles of the triangulation 7. We denote by F' the set of all faces of T.

The X-coordinates will in general consist face invariants, edge invariants, and angle
invariants. The face coordinates essentially come form the Maslov index, so they take
values in a discrete set, and for positive X'-coordinates, they are all constant equal
to n, so that we can suppress them. For the angle coordinates it is important to
introduce the angles of the triangulation, which is what we do know.

For each edge e € E there are up to homotopy two parametrizations €: [0,1] — e
and € ~1: [0,1] — e, where & ~1(¢) = &(1 —t). The restrictions €,& ~*: (0,1) — e\ P
are bijective. The choice of € for e € F is called an orientation of the edge e € F.
We denote by E,, the set of all oriented edges of 7.

The orientation of S defines maps:

r: E, — F

l: Eopp = F

which associate to an oriented edge € the unique face whose closure contains this
edge and which lies to the right (resp. to the left) of €.

Definition 1.3.1. An ideal triangulation 7 together with a chosen orientation for
every edge is called an oriented ideal triangulation.

Definition 1.3.2 (Positive and negative angles). The triple (€1, &, f) € E2, x F is
called a positive angle of the triangulation 7T if

e &(1)=a&(0)C PN,
o (61) =1(&2) = f.

Similarly, the triple (€1, &, f) € E2.x F is called a negative angle of the triangulation

T it
e &(1)=a&(0)C PN,
o r(é1) =r(€2) = f.

We denote by W (resp. W) the set of all positive (resp. negative) angles of T,
and by W the set of all angles of T, i.e. W =WtTUW~.

For each angle w = (€}, €3, f) the opposite angle is defined as:
wl=(& e ew

Obviously, the opposite angle of a positive angle is negative and vice versa.
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Definition 1.3.3 (Positive triple). We call a triple of different positive angles
(w1, wa, ws) positive if

w1 = (517527.]0)7 wo = <€27€37f)7 w3 = (537517 f)
for €1, éa, €3 € Ey.

Obviously, the positivity of a triple of positive angles is invariant under cyclic
permutations.
For simplicity we will draw orientation of angles using arrows as on Figure [1.3.1

Figure 1.3.1:

1.3.2 Positive X-coordinates

Let S be a surface with an oriented ideal triangulation 7. We use the notation
introduced in Section [.3.11

Definition 1.3.4 (Positive X-coordinates). A system of positive X-coordinates of
rank n on (S,7) is a map

z: EUWYT = R2,00(n)
such that

e the edge invariant z(e) for an edge e € F is an n-tuple of positive real numbers
1‘(6) = ()\1, - ,)\n) S R;LO with \; > )‘i—i-l ;

e the angle invariant x(w) for a positive angle w € W is an orthogonal matrix
z(w) € O(n). The angle coordinates are subject to the following relation: for
each positive triple of positive angles (w1, we, ws) we require

z(ws)x(ws)z(w) = 1d.

We denote by X (S, T,n) the set of all positive systems of X-coordinates of rank
non (S,7T).
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As a convenient notation, if x € XT(S,T,n) is a system of X-coordinates and
w € W~ is a negative angle, we will write x(w) = z(w=1)~L.

Given a system of positive X'-coordinates, we can construct a decorated transverse
homomorphism of the fundamental group (S, b) for an appropriately chosen b € S.
We describe this procedure in two steps, first constructing the homomorphism and
then the decoration.

For this we lift the triangulation 7 of S to a triangulation 7 = (P, E) of the
universal covering S of S.

We define a graph I' on the surface in the following way: in every triangle we
choose three points close to the three edges, these points will be the vertices of the
graph. The edges of I' are segments connecting the three points in one triangle and
segments connecting the two points in neighboring triangles that are close to the
same edge of the triangulation (see Figure .

Figure 1.3.2:

We assume that the base point b coincide with one of vertices of I'. Now, every
element o € 71(S,b) has a representative which is a closed simplicial path in the
graph I'. We can write o as composition of paths

a=Qp0o---0qQq,

where every «; is a path along one edge of IT'.
To define the representation p = rep™t (), we will associate to every a the matrix

p(a) :AkAl

We introduce the following notation, if z(r) is an edge invariant, i.e. it a an n-tuple
of positive real numbers (A1,..., ;) € RY, with A; > \j11, then diag(z(r)) denotes
the diagonal matrix whose ith-entry is ;.

Then A; is defined as follows:
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e If a; is going along an edge of I' which crosses the oriented edge 7 of the
triangulation from the right to the left assuming that the edge 7 is oriented
upwards, we have

. ( 0 —Mdiag(x(r)))

dag(z(r) 0

where /diag(x(r)) is a coordinatewise positive square root.

o If «; is going along an edge of I' which crosses the oriented edge 7 of the
triangulation from the left to the right assuming that the edge 7 is oriented
upwards, we have

o ( 0 —\/diagm(r)))
’ diag(

= -1
x(r)) 0
where (/diag(z(r)) is a coordinatewise positive square root.

e [f o; is along an edge of I' that follows the angle w of the triangulation, consider
the matrices

_(-1d 1d o

We have A; = TTU (resp. A; = Tlf]) if when going from «;_1 to a; we are
turning to the right (resp. to the left). Notice that, 7, and U commute:
T.U =UT,, ;U =UT,.

All the matrices A; are symplectic, so p(a) € Sp(2n, R). It is easy to check that this
matrix only depends on the homotopy class of «, and that the map is a group homo-
morphism. In this way we constructed a representation p € Hom(71(S, b), Sp(2n,R)).

We now construct a decoration D for this representation. First, consider the case
of a puncture that is a vertex of an edge of 7 which is close to the basepoint b.
A simple peripheral element of 71 (.5, b) around this puncture can be represented by
a circle ¢ going around this puncture. Then going around ¢ we always are turning
either to the right or to the left. Therefore, either Le = Span(e) or Ly = Span(f)
is preserved by p(c), where (e, f) is the standard symplectic basis of (R?",w) (see
Figure .

Now we extend this definition to general punctures. First, we note that if « is any
path in the graph I', we write a = a o - - - 0 a1, where every «; is a path along one
edge of I'. The definition of the matrix p(a) given above can be applied also to this
path «, even if it is not closed.

Finally, for each simple peripheral curve v around some puncture p with start- and
endpoint b, we can take a point & which lies in a triangle adjacent to p. Then we
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Figure 1.3.3:

can decompose v up to homotopy into a path « from b to ¥/, circle ¢ around p and
the inverse path a~! from ¢’ to b. The representation p associates to this element
the matrix

p(y) = plaHp(e)p(a)

We have already seen how to construct a Lagrangian L preserved by the matrix p(c),
we can then associate to v the matrix D(v) := p(a™!)L.

For each non-simple peripheral curve which is a power of some simple one, we define
a decoration of non-simple peripheral curve to be the decoration of the corresponding
simple curve. All other non-simple curves are of the form v = f~'a"3, where « is
simple closed curve, S is some closed curve. So we define D(v) := p(8).D(«).

In this way, starting from a system of X-coordinates x, we defined an element
(p, D) € Hom%(m1 (S, b),Sp(2n,R)). We define rep* (z) := (p, D).

1.3.3 Properties of the map rep*

We now describe properties of the map rept :  XT(S,T,n) —
Hom& (71 (S, b), Sp(2n, R)).

For this we introduce the notion of coordinates that are admissible with respect to
a decorated representation [p, D] € M%(m1(S,b),Sp(2n,R)). Note that we can lift
the decoration D to a map D: P — Lag(2n,R).

Definition 1.3.5. z € X1 (S,T,n) is called admissible for a maximal representation
[p7 D] S M%’(Trl(s7 b)7 Sp(2n7 R)) if

e for each edge e € E on the boundary of the triangles T = (t1,t3,t2) and

T' = (tg,ta,t1) of T, the cross ratio [D(t1), D(t3), D(t2), D(t4)] is conjugated
to — diag(z(e));
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e for each pentagon in 7 as in Figure the orthogonal matrix z(w) belongs

to the double coset [D(t1), D(t5), D(t3), D(t2), D(t4)].

) t3

fq

Figure 1.3.4:

Remark 1.3.6. This definition is independent on the choice of (p, D) € [p, D] and of
the lift D of D.

Proposition 1.3.7. For every x € X™(S,T,n), the image rep™(z) is a decorated
mazimal representation , and x is admissible for the representation rep™ (z).

Proof. A direct calculation in one triangle shows that for the decoration constructed
above each positive oriented triangle has maximal Maslov index. Similarly, a direct
calculations in a quadrilateral and in a pentagon show admissibility of = for rep(z).

O

We denote by [rept](z) the conjugacy class of rep™(z). We just constructed a
map
[rept]: XT(S,T,n) — MdT(m(S, b),Sp(2n,R)).

This map is surjective (see Corollary [1.3.13)) but it is not injective: sometimes
changing the angle coordinates, the image representation stays the same. We describe
this ambiguity explicitly.

Proposition 1.3.8. Let x € XT(S,T,n). Consider two triangles adjacent by an
edge e. Let x(e) = A and consider the angle coordinates be defined as in Figure ,
Let us change angle coordinates in the following way:

Uy =Wu, V{ =viw'~1,

Uy =UW™L, Vi = W'Vs.
We denote by ' the changed coordinates. Then [rep™|(x) = [rep™](z’) if and only if

W e O(n) N O(diag(A)),

w':= D7'WTD,
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Figure 1.3.5:

D := y/diagA.

Moreover, if [rept](z) = [rep™](2') for some z,2’ € XT(S,T,n) then x(e) = x'(e)
for all edges e and there exists a finite sequence of changing of angle coordinates
defined by formulas above which puts x(w) to x'(w) for all angles w.

Remark 1.3.9. The ambiguity in a choice of angle coordinated around an edge e
depends on how generic the tuple z(e) =: Ais. Let Ay > - -+ > \;, are different entries
of A with multiplicities l1,...,l, then W € O(l;) x --- x O(lg) < O(n) (diagonally
embedded). In particular, for generic A with all entries different, W € ZJ. On the
other hand, if A = (A,...,A) for some A > 0, then W € O(n).

Proposition [1.3.8] will be proven in Section where we treat general X-
coordinates.

1.3.4 The set of positive X-coordinates associated to a representation

So far we only constructed a decorated maximal representation given a system of
positive X-coordinates. Now we describe how, given an ideal triangulation, we can
associate a system of positive X'-coordinates to a decorated maximal representation
[(p, D)] so that [rep*(z)] = [(p,D)]. The basic idea is clear, we want a system
of coordinates that is admissible for [(p, D)] - so essentially for each edge e of the
triangulation there are two adjacent triangles, whose vertices are decorated by four
Lagrangian subspaces Lj, Ly, L3, Ly, and the edge invariant x(e) is the ordered set
of eigenvalues of the cross ratio map [Li, Lo, L3, L4] : L1 — Ly, and for every angle,
we have a decoration by five Lagrangians, and the angle coordinate is the angle
(L1, La, L3, L4, Ls), see Figure[2.8.1] However one has to be a bit careful when making
the precise definitions, because we do not only want the the system of coordinates
is admissible with respect to [(p, D)], but that moreover that [rep™(x)] = [(p, D)].
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And in general there are admissible system of X-coordinates x € X+ (S,7T,n) for
[p, D] € M (71(S,b),Sp(2n, R)) such that [rep™](z) # [p, D].

So we take an ideal triangulation 7 of S and choose by € S. Let (p,D) €
Hom4 (71 (S, by), Sp(2n, R)) be a decorated maximal representation.

We lift the oriented triangulation 7 of S to the oriented triangulation 7 of the
universal covering S. We also fix a lift b € S of by € S. Punctures are lifted to
visual boundary points of S (after choice of some Riemannian metric of finite area).
Using the decoration D, each boundary point can be decorated by a Lagrangian in
a unique way. This decoration is 7 (.5, bg)-equivariant.

We consider the graph I' associated to this triangulation as in Section [[.3.2] see
Figure We can assume that T is invariant under the action of (S, by) on S.
First, we associate a symplectic basis to each vertex of I' and a tuple (A1,...,\,)
with Ay > -+ > X\, > 0 to each edge of lifted triangulation 7.

For each vertex b of I' there is the unique edge r close to which this vertex lies
and unique triangle T in which b lies. We take an orientation of the edge 7 such
that the vertex b lies to the right from . We consider the triangle, which is ad-
jacent to T across the edge r. Thus we have a quadrilateral decorated by La-
grangians (Lj, L3, Lo, L4). Since the representation is maximal, the bilinear form
B3 := [L1, La, L3]: L1 — L7 is well defined and positive definite, and the cross ratio
map F := [Ly, L3, Lo, Ly]: L1 — L; is well defined and symmetric with respect to
B3 with positive eigenvalues.

We say that the four tuple (Li, Lo, L3, L4) is in standard position with respect
to a symplectic basis (e,f) if Ly = Le, and Ly = L¢, [L3lesr = Id, and [Lules =
—diag(A1, ..., A\n), where [Fle = —diag(A1, ..., A\n).

We then define the edge invariant z(r) = x(7) = (A\1,...,A,) and associate the
symplectic bases B(b) = (e, f) to the vertex b of T".

Because the oriented edge 7 defines the point b uniquely, sometimes we will say
that the basis B(b) is associated to the oriented edge 7 and write B(7).

By construction, the map x for oriented edges is 71 (S, bg)-invariant, therefore, x is
well-defined for oriented edges of triangulation T of S. Moreover, the easy calculation
shows that x(7) = z(# ~1), therefore x(r) is well defined and does not depend on the
choice of orientation. We have to take care of two other issues:

1. For each oriented edge 7 of triangulation there are two vertices by, by of I' lying
close to 7. In general, there are many possibilities to define B(bg) if B(b1) is
fixed. We fix one of them, which is consistent with the construction of the map
rep™, namely with the matrix associated to the crossing of an edge. Assume

7 is oriented upwards, by lies to the right from 7 and by lies to the left. Let
B(b) =: (e,f) then B(by) := (—f\/diag(h1, .., An),er/diag(hs, -, An) )

where (1) = (A1, ..., Ap).

2. The choice of bases B is in general not unique. But it can always be chosen
in a p-equivariant way with respect to the action of Sp(2n,R) on symplectic
bases because the lifted decoration by Lagrangians is p-equivariant. We will
always assume that B is p-equivariant.
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To define the angle coordinate, we consider a pentagon decorated by Lagrangians
as on the Figure [1.3.6] To each oriented diagonal 7y and 7} of this pentagon are
associated bases B(7)) =: (eg,fo) of (L1, L2) and B(7) =: (e1,f1) of (L3, L1). So
we can define the angle invariant x(w) to be x(w) := [L1, Ls, L3, L2, L4leg £, -

L L3

Ly

Ly

Figure 1.3.6:

Remark 1.3.10. Since the map B is p-equivariant, the map z for angles is w1 (.S, bg)-
invariant. Therefore, x is well-defined for all oriented angles of the triangulation T
of S.

Remark 1.3.11. Ordered tuple z(r) = (A1,. .., A,) for each edge r is uniquely defined.
In contrast, the matrices U for each angle are in general not uniquely defined by the
representation p. To define U, we have chosen a map B fixing a symplectic basis for
each oriented edge which is not unique in general.

Lemma 1.3.12. Let [p, D] € M%(m(S,b),Sp(2n,R)). Consider x € X*(S,T,n)
constructed from [p, D] as above. Then [rep™](x) = [p, D].

Proof. Notice, the bases on vertices of I' were chosen in compatible way with the
construction of the map rep™, i.e. let by, by be vertices of I' connected by an edge 7.
To r the matrix F is associated as in the previous section (going along an angle or
crossing an edge of triangulation). Then E maps the basis B(b1) to B(b2).
Therefore, by induction, for every loop a based in b, rep™(a)(B(b)) = B([a]b),
where by [a]b we understand the action of [a] € m1(S,b) on vertices of I' C S. But
the choice of B is p-equivariant, i.e. rep’(a)(B(b)) = B([a]b) = p(a)B(b). But
the action of Sp(2n,R) on symplectic bases is exact, therefore, rep™ (a) = p(a) for
all [a] € m1(S,b), where p(a) is written as a matrix with with respect to the basis

B(b). O

Corollary 1.3.13. The map [rep™] is surjective.

1.3.5 Change of coordinates

The constructions of positive X-coordinates depends on a choice of ideal triangula-
tion 7 of S, however the representation [rep™ (z)] is independent of the triangulation.
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If we choose a different ideal triangulation 77 we get a different set of positive X-
coordinates. In the work of Fock and Goncharov, it was essential that the coordinate
changes going from one triangulation to another are given by positive rational func-
tions, because these implies that the set of positive representations is independent
of the triangulation used to define it. Here we know here a priori that the image of
[rep™] is independent of the triangulation, because it is the set of maximal represen-
tations, which can be defined without reference to any triangulation. It is of interest
of interest to understand the coordinate changes.

Since every ideal triangulation 7’ can be obtained from any other ideal trian-
gulation T by a sequence of flips, i.e. changing the triangulation just by taking a
quadrilateral and exchanging one diagonal for the other one, the coordinate change
of a flip is the central ingredient.

In the case of positive X-coordinates it is quite difficult to write explicit formulas
for this coordinate change. In particular the angle coordinates are given rather
implicitly. However in the case of "scalar" edge invariants. Let x(r) = [1d then

Figure 1.3.7: Flip along “scalar” edge

Uy = Uy, Vi = VoW4

Wy = Vals, Wy = UsV;

(triangles and angles are oriented counterclockwise).

In section 7?7 we give a nice formula for the flip after applying a local change of
coordinates such that in the quadrilateral where we perform the flip, every edge is
labeled by a symmetric n x n matrix. With this local change of coordinates the
formulas for the flip look like noncommutative analogues of the formula for the flip
for representations into SL(2,R).

1.3.6 Comparison with Fock—Goncharov coordinates

In this section we show that a maximal representation is not always positive in
terms of Fock—Goncharov coordinates [11]. To do this, we take a positive 4-tuple
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of Lagrangians and show that it does not have always positive Fock—Goncharov
coordinates.

To do this, first, we fix some symplectic basis (e,f) = (e, ea, f1, f2) on (R* w)
and consider the following four Lagrangians: Ly := Le, Lo := L¢, L3 := Le¢(Id),
Ly := Le¢(—1d). This 4-tuple has as X-coordinate (1,...,1).

Since the Fock—Goncharov coordinates are defined for decorations by full flags, we
have to choose a line in each Lagrangian. We choose:

ll = <€1 + 9€2> < L1

lo={(fi+Af2) < Lo
I3 =(e1+ f1+ ple2 + f2)) < L3
ly="(e1 — fi+viea— f2)) < Ly

where 0, A\, u, v € R some constants. Then the corresponding full flag for each ¢ €
{1,2,3,4} is (I, Ly, I-), where I = {v € R* | w(l;,v) = 0}.

(2

(I L2)

I
(s L) (s L3)

(I, L1)

Figure 1.3.8:

So we get the following coordinates:

Dlz_(,uﬁ—i-l)(/\—y) _A=wl-v)
W+ D0 —p 2T 0w
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_ WO -N o MDA
D=0 0)0—p 27 Optr D=0 BT Gus1

M+ —-v) . wA+DA=0) . (v+1
12__@0+nw—A)73__wx+nu_u)ﬂ*‘ (Ow +

We are going to show that all these coordinates can not be all positive for fixed

0, )\, i, v € R. Assume first:

0— A\
VES T

Since T» > 0, we get
A—p

0

Ap+1 -

Since Ts > 0, we get
A—v 0
vA+1

Therefore,

Qw0 D) A+ D)
DyD3g = — - _

(0 —p)A=v) (pA+1)(0 —v)

and Dy and D3 cannot be positive at the same time.
If we assume

0
N1
then, since To > 0, we get
A—p
0
Ap+1 <
Since T5 > 0, we get
A—v <0
vA+1
Therefore,
OO (A DO (A p)
DyD3 = — =—

(ur+ DA =)

(0 — ) (A =v) (A +1)(0 —v)

and Dy and D3 cannot be positive at the same time.

A+ (A=)

<0

<0

This shows that the 4-tuple (L, Lo, L3, L4) is not positive in the sense of Fock—

Goncharov for each choice of lines [; € L;, i € {1,2,3,4}.

1.4 Topology of the space of maximal representations

We now use positive X-coordinates to understand the topology of the space of (dec-
orated) maximal representation, focussing first on the homotopy type and then on
the homeomorphism type. Note that our results are for surfaces with punctures;
in the case of a closed surface, topological information about the space of maximal
representations in Sp(2n,R) can be obtained using Higgs bundles [1.[5/12,/13].
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1.4.1 Homeomorphism type of the space of maximal representations

In this section we go further to determine not only the homotopy type, but actually
the homeomorphism type of the space of decorated maximal representations.

We recall from the description of positive X-coordinates, that if 7 is an idea
triangulation of the oriented surface S of genus g with k punctures, the three angle
coordinates associated to the three corners of one triangle satisfy the relation that
their product is equal to the identity. We therefore choose in every triangle two
independent angles, the third one is then uniquely defined. We denote the set of
chosen independent angles by W'.

The space of positive X-coordinates

XH(S,T,n) = (Rsg x RZHE x O(n)"V
can be seen as a trivial bundle
0: XT(S,T,n) = (Rsg x Rgal)E =B

with compact fiber O(n)"".

Let y € B, then y(e) = (y1(e),...,yn(e)). Consider the set {y1(e),...,yn(e)}, let k
be the cardinality of this set, so {y1(€e),...,yn(e)} = {A1,..., A} for A; > A\; 41 for all
1 <i<k—1. We denote by n§ the multiplicity of ); in the tuple (yi(e),...,yn(e)).

We define the stabilizer of y to be

Stab(y) := [[ O(n§) x -+ x O(ng).

ecE

By Proposition the stabilizer of y acts on the fiber §71(y) C X+ (S, T,n) over
y € B. So we can consider the following singular fibration:

9=1(y)/Stab(y) — X*(S,T,n)/ ~

i}
yeDB

~

where the equivalence relation ~ is defined fiberwise by action of Stab(y) on =1 (y)
om)"'.
By proposition the map

[rep™]: X1(S,T,n) — M%(n1(S), Sp(2n, R))
is constant on each orbit of Stab(y) on §~1(y). Therefore, the map
rept) := [rept] o g t: XT(S, T, n)/ ~— M%(m1(S),Sp(2n, R))
well-defined and is a homeomorphism, where

q: XT(S,T,n) = XS, T,n)/ ~
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is the quotient map.
Since 67 '(y) = Om)"', we have the following description of
M%’(ﬂ—l(s)a Sp(2n> R))

O(n)"V'/Stab(y) — M(m1(S),Sp(2n,R))
1
y € (Ryo R%I)E

Proposition 1.4.1. The space X+ (S, T,n) has #W' = 2#T connected components
that are all diffeomorphic to each other.

The connected components of X1(S,T,n) can be labeled by elements of the set
{0, 13",

Moreover, for each y € B

') = || B

pe{0,1}W’

where Fy(y) is the fiber in the connected component Cp, over y € B, p € {0, 1}W/.
For ally € B and for all p,q € {0,1}V" fibers F,(y) and Fy(y) are diffeomorphic.

Proof. The set of connected components of X*(S,7,n) can be identified with the
set {0, 13"’ where to each independent angle w we associate 0 if it is z(w) € SO(n)
and 1 otherwise (z € X1 (S,7T,n)).

The diffeomorphism between connected components Cy, and Cy, for p,q € {0, l}W/
is given by multiplication of angle coordinates z(w) with a matrix UP(*)2(%) for all
w € W where U € O(n) \ SO(n). This diffeomorphism is given fiberwise, therefore,
F,(y) and F,(y) are diffeomorphic for all y € B and for all p, ¢ € {0,1}"V O

Proposition 1.4.2. Fach connected component C, is mapped by [rep™] surjectively
onto some connected component of M%(m1(S), Sp(2n,R)).

Proof. First of all, we fix some connected component Cj, and consider the restriction
of [rep™] to this component. [rep*](C),) is path connected and, therefore, is contained
in some connected component of M3(m1(S), Sp(2n, R)) which we denote by C,,.

Since 0|c, : Cp — B is surjective, it is enough to show that [rep™] maps each fiber
of C), surjectively to each fiber of C, over B. We take some y € B and consider the
fiber F(y) C Cp, the fiber F,(y) C Cp and F(y)' := 0~1(y) N [rep™]71(Cp).

Since F(y) = F(y)'/Stab(y) is a quotient be an action of a group, the map
[rep™]|p(yy: F(y) — F(y) = F(y)'/ Stab(y) is open.

F(y) = UgeqF,(y) where Q is some subset in {0,1}#"" and p € Q. So F(y)' is
a union of finitely many diffeomorphic connected components, and Fj,(y) is one of
them. Therefore Fj(y) is open in F(y)'.

Moreover, since F),(y) is compact, [rept]F,(y) is open and compact in F(y), so it
is closed and, therefore, [rep™|F,(y) = F(y). O
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Theorem 1.4.3. The space of decorated maximal  representation
M (11(S),Sp(2n, R)) is homeomorphic to

Sym* (n, R)%6 5 O(n)?+571/ O(n)

where Sym™ (n, R) is the space of all symmetric positive definite matrices and O(n)
acts by simultaneous conjugation in every factor.

Proof. To proof this theorem, first, we need the next technical proposition. But
before state it, we fix the following notation:

A" = {diag(ds,...,dn) | dy > -+ >d, >0} C Sym™(n,R).

Stab(D) := O(n) N O(D)

for D € A™. Note that A™ is diffeomorphic to Ry x Rgal. We freely identify edge
coordinates with elements of A™.

Proposition 1.4.4. The space of decorated maximal representation
M (71(S),Sp(2n,R)) is homeomorphic to the singular fibration

FD‘—> FE

1
D e A"

which is obtained from the trivial bundle

Sym+(n,]R)69+3k_7 % O(n)29+k_1 N Sym+(n,]R)69+3k_7 % O(n)Zg—i-k—l % A"

!
D e A"

by dividing fiberwise by the action by common conjugation of Stab(D) on the fiber
over D € A™, i.e.

Fp = (Sym+(n,R)6g+3k_7 x O(n)29+k_1) / Stab(D)

where Stab(D) acts on Sym™ (n, R)%9+3%=7 5 O(n)297+=1 by common conjugation.

Proof. We consider a special ideal triangulation of S, see Figure [1.4.1]

This triangulation divides the surface in blocks of four different types. The blocks
of type 1, see Figure the clock of type 2, see Figure and the blocks of
type 3 and 4, see Figure [1.4.6]

We parametrize each block and then describe, how to glue the different blocks
together. Recall that we chose two independent angles in each triangle, the third
angles coordinate is then uniquely determined.

Block of type 1: We choose independent angles as indicated in Figure with
coordinates Uy, ..., Ug and denote by Dy, D1, D2, D3 the edge coordinates (considered
as diagonal n x n-matrices, where the entries are ordered by size).
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Cz b2 az b1

C1 (251

Ci bl

C2 az bz ai

Figure 1.4.1: Triangulation of S. Sides with the same labels are identified

LY

Py \ | Ut

D1
DS DU

Us Us

Figure 1.4.2: Block of type 1

We define three maps:
f1(U1, D1, Us) = (U1 DU, U Uy ) =2 (S, a),

f2(Us, D2, Uy) = (U ' DoUs, Uy 'U; ) =2 (2, Va),
f3(Us, D3,Us) = (Us ' D3Us, Uy 'Us) =: (3, V3),
where S; are symmetric matrices, and V; are orthogonal matrices. By definition, these
maps are invariant under changing of angles along edges with coordinates D, Do, Ds.
We consider (S;, Vi) as new coordinates on the block of type 1 (see Figure left).
From the remaining “unused” edge coordinate Dy we get an additional equivalence
relation for the new coordinates {(S;,V;)} (see Proposition [1.3.8)). We could multi-

ply the angle coordinates Uy, Ug, Us, Us by elements of Stab(Dy). This induces the
following equivalence relation:

S~ WSW1

S ~ W SoW 1

37



A ﬁl‘ A ﬁ]“

A3 L)

Figure 1.4.3: New coordinates on the block of type 1

Vi~ ViW !
Vo~ WV,
Va~ VWt
for W € Stab(Dg). We therefore define the map:

f4(517 SZ; Vi, Vo, Vs, Do) =

= (ViS1 Vi L VSV L ViDo Vit ViV, Va3V =
=: (84,55, S0, V4, V).

By definition, these maps are invariant under changing of angles along the edges with
coordinates Dy. We consider (Sy, 51,55, 53, V3, V3) as new coordinates on the block
of type 1 (see Figure right). They define the old edge and angle coordinates
exactly up to equivalence relation given by Proposition [1.3.8]

Note, that we have not yet used the left edge. this edge will play a role when
gluing the different blocks . Changing of angle coordinates along this edge induces
a global conjugation on all new coordinates of the block of type 1.

Block of type 2: We now proceed in a similar way, we choose independent angles as
indicated in Figure[I.4.4with coordinates Uy, ..., Us and denote by Dy, D1, Do, D3, Dy
the edge coordinates.

We introduce new coordinates (S;, V;) on the block of type 2 (see Figure left)
by defining

f1(U1, D1,Us) = (U DUy L UTUSY) =: (81, W),

f2(Us, Do, Uy) = (U3 ' DoUs, U3 'U) =2 (S, Va),
f3(Us, D3,Us) = (Us ' D3Us, U 'Us) =: (S5, V3),
f1(Uz, D3, Us) = (UrDyU; ', Uz Ug ) =: (S, V).

By definition, these maps are invariant under changing of angles along edges with
coordinates D1, Do, D3, Dy.
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LY A

¥ < A QE
Sa

Dy
Va
83
LN KS:Sz LY LN
A% A) AR LY

Figure 1.4.5: New coordinates on the block of type 2

The “unused” edge with coordinate Dg gives us an additional equivalence relation

We could multiply Uz, Ug, Ua, Us by elements of Stab(Dy). This induces the following
equivalence relation:

Si~WSWw!
Sy ~ W SoW 1
Sy~ WSW1
Vi~ Vit
Vo~ W,
Vs~ VWt
Vy~WVy

for W € Stab(Dy). Therefore we set :

f4(515 527 547 VYla V2> VY37 ‘/217 DO) =
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= (V351 V5 1, VaSaVy L VA8, Vot VaDoVy L ViV L VsV, Va V) =
= (517 Sé? Sélb SOv V1/7 V2/7 V;l/)

and consider (Sp, S, S5, Ss, 55, V{, V5, V/) as a new coordinates on the block of type
2 (see Figure right). They define the old edge and angle coordinates exactly
up to equivalence relation given by Proposition [1.3.8

Block of type 3: We choose independent angles as indicated in Figure left,
with coordinates Uy, ..., Uy and denote by D1, Dy the edge coordinates. Consider

f1(U1, D1,Us) = (Uy ' DUy, U7 UR) =: (S1, V1),

f2(Us, Do, Uy) = (Us DU Y, UsUL) =: (Sa, Va).

By definition, these maps are invariant under changing of angles along edges with
coordinates D1, Dy, and we consider (S;,V;) as a new coordinates on the block of

type 3 (see Figure left).
D1

A %
Us U
D1

Uz
LY
Y

Figure 1.4.6: Block of type 3 (left), block of type 4 (right)

Figure 1.4.7: New coordinates on the block of type 3 (left) and on the block of type
4 (right)
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Block of type 4: We choose independent angles as indicated in Figure [I.4.6] right,
with coordinates Uy, Uy and denote by D; the edge coordinate. We define

f(Uy, Dy, Us) = (U DU, UUL) =: (S, V),

and consider (S,V) as a new coordinates on the block of type 4 (see Figure m
right). Note, the right edge which we have not used yet will play a role in the gluing
of blocks. Changing of angle coordinates along this edge induces a global conjugation
of the new coordinate.

With this, for every block we have now a parametrization given by several copies
of Sym™(n,R) and of orthogonal groups O(N). We now explain how to glue the
different blocks.

We will glue blocks from the right to the left as on the Figure [I.4.1] by induction.
Assume that the part of the surface laying to left has the parametrization P; = O(n) x
O(n) x P., the block lying to the right has parametrization P, = Sym™ (n, R)M x
O(n)™2 for some Ny, Ny > 0 and this is not the last step of gluing so it is not the
block of the type 4. We assume as well that changing of angles around the gluing
edge by an angle W € Stab(D) induces a conjugation of all coordinates in P; by W.
We can assume that this holds by induction, since in the first step, when gluing a
block of type 1 with some other block it holds.

We describe the gluing of two blocks along an edge with coordinate D and coor-
dinates around this edge as in Figure [[.4.8] We denote by K; the coordinates in P.

N

D

U -‘Im

Figure 1.4.8: Gluing, intermediate step

The edge with coordinate D gives us an additional equivalence relation for coor-
dinates P; and (Uy, Us):
K ~ WKW

Uy ~U Wt
Uy ~ WUy

for W € Stab(D) and for all K; coordinates of P,. So we can define the map:

fo (U1, Us, (K;), D) == (U1Us, U1 DU (UL KU ).
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By definition, this map is invariant under changing of angles along edges with coordi-
nates D. We consider these as the new coordinates on the glued block. They define
the old coordinates exactly up to equivalence relation given by Proposition |1.3.§
Note, that there is a right edge which we have not used yet. Changing of angle co-
ordinates along this edge induces conjugation on the new coordinate of glued block.

Now we describe the last step of gluing with a block of type 4. We can write again
P, = Sym™(n,R)M x O(n)™? for some N1, Ny > 0 and P; = Sym™ (n,R) x O(n).
Coordinates on the glued edge is D (see Figure .

Ki;l
A

V
Lo

Figure 1.4.9: Gluing, last step

As we have seen, the changing of angles around this edge by some W € Stab(D)
induces the common conjugation by W of all coordinates in P, and P;. To define
the space which is in 1-1 correspondence with the M%(m1(S), Sp(2n, R)) we have to
take a quotient by conjugation depending on D. It can be seen as a singular fibration
coming from the projection map:

p: P — A"

of P:="P, x P; x A" to A" by dividing of the equivalence relation ~ such that for
each K, K’ € P with p(K) = p(K') it is K ~ K’ if and only if (K!) = (WK,W 1)
for some W e Stab(p(K)), where K = (K;), K' = (K]). O

Now we finish the proof of the theorem:

Notice that Sym™ (n, R)%9+3k=7 x O(n)29+k=1 x Sym™(n,R) is homeomorphic to
Sym™ (n, R)8935=7 5 O(n)29tk=1 x O(n) x A"/ ~ where ~ is the equivalence relation
given fibrewise by the action of Stab(y) < O(n) for y € A™ in the following way:
Stab(y) does not act on Sym™ (n, R)%93k=7x O(n)297+~1 acts by right multiplication
on O(n) and does not act on A™. The homeomorphism

Sym™ (n, R)%9T3 75 O (n)2* "1 x O(n)x A"/ ~— Sym™ (n, R)59T3* T O (n)29 T+~ 1 xSym™ (n, R)
is given by the diagonalization in the last Sym™ (n, R)-factor

-1
(Sl, ey S6g+3k—T, ULy - - -, U2g+k—1, 7, d) — (81, <oy S6g+3k—T7, ULy - - - U2g+k—1, vdv )
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Now, consider the space Sym™(n,R)69+3F=6 » O(n)29tF=1/0(n) =
Sym™ (n, R)%936=7 . O(n)29T+1 x Sym™(n,R)/O(n). where O(n) acts
by simultaneous conjugation in every factor. It s homeomorphic to
(Sym™ (n, R)69+36=T x O(n)2tF=1 x O(n) x A"/ ~)/O(n) where O(n) acts
by simultaneous conjugation in Sym™(n,R)%9+3%=7 x O(n)29tk=! and by
left multiplication in O(n). Consider the following homeomorphism from
Sym™ (n, R)93+=7 x O(n)29+*=1 x O(n) x A™ to itself given by the rule:

-1 -1 -1 -1
(815 v+ s 56g43k—7, ULy -+, U2gtk—1,V,d) = (V810,07 86943570,V UL, ...,V Uggyk—10,V,d).

After this map, the components Sym™ (n, R)69+3k=7x O(n)29+* =1 are invariant under
O(n) action. Therefore,

Sym™ (n, R)59F3=750(n)29* =1 O(n) x A"/ O(n) = Sym™ (n, R)59T3* =75 O (n)29 -1 x A",

On Sym™ (n, R)%93%=T x O(n)29t#=1 x A", the equivalence relation ~ acts fibrewise
by the simultaneous conjugation of Stab(y) < O(n) for y € A™. By the Proposi-
tion this quotient space is homeomorphic to M%(m1(S), Sp(2n, R)). O

Remark 1.4.5. From the Theorem [1.4.3| we get:
dim M%(71(S), Sp(2n, R)) = dim Sym™ (n, R)% 376 x O(n)29™1/0(n) =
=(29+k—-2)n2n+1) = |x(5)|dim(Sp(2n,R)).
Remark 1.4.6. Consider the subset
Agen = {diag(dy,....dn) [ Vi€ {1,...,n = 1}(di # dit1)} C A"

then for all D € AJ,, it is Stab(D) = O(1)". We can consider the subfibration
Ey = Elap,, — Af,. Since Stab(D) = O(1)" for all D € Af,,,, we have

gen* gen>

Eo = ((Sym*(n, R x O(n)2571) fO(1)") x A

gen

where O(1)" < O(n) acts by simultaneous conjugation. This is an orbifold and it is
an open dense subset of M%(71(S), Sp(2n, R)).

Remark 1.4.7. The definition of Ey =: E(ep) depends on the edge eg along which we
were gluing in the last step in the proof of the Proposition [I.4.4] Actually, we can
choose any edge to do this last gluing. So for each edge e the constructed as above
subspace E(e) is homeomorphic to Ey. Because the property to be an orbifold is a
local property, the finite union of all E(e) for all edges e is an orbifold. We denote
this subspace by E’ and call it generic part of ./\/l%l—(m(S),Sp(Qn,R)). It contains
all representation with at least one edge coordinate in Ag,,. This is an open dense
subset of M%l-(m(S), Sp(2n,R)).

Corollary 1.4.8. The space E' for n = 2 contains all Zariski dense representations.
Proof. Let [p,D] € M%(m1(S),Sp(2n,R)) \ E' and z € XT(S,T,n) such that
[rept](x) = [p,D]. Then for every edge e, x(e) = (A, A) for some A > 0.

By Proposition ??, [p, D] is a representation into some copy by conjugation of
SL(2,R) ®z, O(2) < Sp(4,R), therefore, it is not Zariski dense. O
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1.4.2 Homotopy type of the space of maximal representations

Using the topological description of the space of decorated maximal representations
form the previous section, we can determine its homotopy type.

Theorem 1.4.9. The space of decorated mazimal  representations
M(m1(8),Sp(2n,R)) admits as a deformation retract the space O(n)29+*=1/0(n),
where g is the genus of S, k is the number of punctures and the quotient is taken by
the action of O(n) on O(n)29+k=1 by simultaneous conjugation.

Proof. First, we consider the space Sym™(n, R). We consider the following retraction:
R: Sym™(n,R) x [0,1] — {Id,,}

where

R(A,t) :=UT diag(A (1 —t) +t,..., (1 —t) + )U

such that A = U~ diag(\1,. .., \,)U for U € O(n). The matrix U is not uniquely
defined by A, but R(A,t) does not depend on the choice of U. Indeed, if we take
another U’ € O(n) such that A = (U’")~tdiag(\1, ..., \p)U’, then U(U’) ™! commutes
with diag(Ag, ..., Ap). But then it commutes with diag(A1(1—¢)+¢,..., \p(1—1)+1)
as well. Therefore, this retraction is well defined.

If we consider the action of O(n) by conjugation on Sym™(n,R), then the re-
traction R is equivariant with respect to this action. Therefore, using R in every
Sym™ (n, R)-factor of Sym™ (n,R)69+3k=6 » O(n)29t+=1/0O(n), we can retract it to
O(n)29++=1/0(n). O

As a corollary we also get

Corollary 1.4.10. The space of decorated mazimal representations
M(m1(8),PSp(2n,R)) is homotopically equivalent to PO(n)?97+=1/PO(n),
where g is the genus of S, k is the number of punctures and the quotient is taken by
the action of PO(n) on PO(n)2+=1 by simultaneous conjugation.

Proof. For representations in M4 (1 (S), PSp(2n, R)) all angle coordinates are in the
group PO(n). So repeating the argument in the proof of Theorem m gives the
result. O

As a corollary we obtain the following statement on the number of connected
components that had been proven in |26].

Corollary 1.4.11. [26, Theorem 7.2.7]

e The space of decorated maximal representations M%(m1(S),Sp(2n,R)) has
229tk=1 connected components.

e The space of decorated mazimal representations M(m1(S),PSp(2n,R)) has
220+k=1 connected components if n is even. If n is odd, it is connected.
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We now turn to determine the number of connected components of the space of
maximal representation M (m1(S), Sp(2n,R)) without any additional decoration. We
prove the following theorem:

Theorem 1.4.12. The number of connected components of M(mw1(S),Sp(2n,R))
agree with the number of connected components of M%(m1(S),Sp(2n,R)). In partic-
ular the space of mazimal representations has 22971 connected components.

First, we need the following lemma:

Lemma 1.4.13. Let M C Sp(2n,R) be the set of all diagonalizable symplectic ma-
trices with pairwise different eigenvalues. Set M? := {(A,L) € M x Lag(2n,R) |
A.L = L}. Then the projection map p: M?® — M is a 2™ : 1-covering map.

Proof. Observe that since A € M has pairwise distinct real eigenvalues, it has exactly
2™ invariant Lagrangians, so the map p is a 2" : 1-map.

Without lost of generality, consider A € M a diagonal matrix and L some fixed
Lagrangian of A. Since any small variation of A can be written as B := T(A+A)T~!
where T' € Sp(2n,R) close enough to Id and A is a small diagonal matrix so that
A+ A € M, we can take a small neighborhood U of A in M parameterized in this
way. Since, A+ A has distinct eigenvalues, T is well defined up to right multiplication
with a matrix of the following form diag(41,...,4+1). These matrices act trivially
on Lag(2n,R), therefore the invariant Lagrangian for B given by T.L is well defined.
For T small enough the rule B + T.L is a continuous inverse map for p|y. So p is a
local homeomorphism.

The map p is a proper local homeomorphism, so it is a covering. ]

Remark 1.4.14. Let us make the following observations

e For every A € M all eigenvalues of A are different from 1. Such elements
are Shilov hyperbolic, they have a unique attracting Lagrangian and a unique
repelling Lagrangian fix point.

e The set M is an open subset of Sp(2n,R) and Sp(2n,R) \ M is closed of
codimension 2.

For the following discussion, we denote by Hompmax(m1(S),Sp(2n,R)) C
Hom(m(S),Sp(2n,R)) the space of maximal homomorphism and by
Hom?,_ (71(S),Sp(2n,R)) < Hom?(w1(S),Sp(2n,R)) the space of decorated
maximal homomorphisms, without taking conjugacy classes. Note, that the
number of connected components of M(m(S),Sp(2n,R)) is equal to the number
of connected components of Hompax(71(S), Sp(2n,R)). This follows from the fact
that the group Sp(2n,R) is connected. The same holds for M9 (m;(S),Sp(2n, R))
and Hom? __(71(S),Sp(2n,R)). We denote the natural projections:

max

U: Hompax(m1(5),Sp(2n,R)) — M(m1(S), Sp(2n, R)),
¥?: Hom?,_ (71(S),Sp(2n,R)) — M%(71(S),Sp(2n, R)).
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Corollary 1.4.15. Let X C Hompax(m1(S),Sp(2n,R)) be the subset containing
all maximal representation such that for every p € X «all peripheral elements

of p are Shilov hyperbolic. Let X¢ be the preimage of X wunder the projection
p: Hom, (71(S),Sp(2n,R)) — Hompax(71(S),Sp(2n,R)). Then the restriction

max
plxa: X = X is a finite-to-one covering.
Note that by Remark |1.4.14] X resp. X9 are open subsets in

Homyyax (1 (S), Sp(2n, R)) resp. Hom?  (71(S),Sp(2n,R))), and the complements
Homyax (71 (S), Sp(2n,R)) \ X and Hom<, (71(S),Sp(2n,R)) \ X? are closed of
codimension at least 2. In particular, X and Hompax(71(S), Sp(2n,R)) have the
same number of connected components, and in every connected component of

Hompax (71(S), Sp(2n,R)) there is a representation that is contained in X.

Proposition 1.4.16. The space of mazimal homomorphisms
Hompax (71(S), Sp(2n,R)) has the same number of connected components as
the space of decorated mazimal homomorphisms. Hom  (71(S),Sp(2n,R)).

max

Proof. Let N be the number of connected components of Homy,ax(71(.5), Sp(2n,R))
and Ny the number of connected components of Hom? ,_(71(S), Sp(2n, R)).

It is immediate that N; > N, thus we have to show that N > Ny For this
we assume that there are two decorated representations (p, D1) and (p, D2), which
project to the same (undecorated) representations p € Hompax(7m1(S), Sp(2n, R)).
We show that then (p, D1) and (p, D2) are in the same connected component of
Hom? _(m1(S), Sp(2n,R)). Without loss of generality we can assume that p € X.

We consider the set of degenerate representations D-(m1(S), Sp(2n, R)). Note that
all homomorphisms in

D(m1(S),Sp(2n, R)) := ¥~ (D(m1(S), Sp(2n, R)))

admit only one decoration. So we can take some representation p € X and
connect it by a path 7:[0,1] — Hompax(m1(S),Sp(2n,R)) to a representation
po € D(m1(S),Sp(2n,R)) so that v([0,1)) C X.

Let (p,D1), (p, D2) be two lifts of p in M%(m(S),Sp(2n,R)). We also lift a
path v twice starting from (p, D1) and from (p, D2). Because of compactness of
Lag(2n,R), both of these lifts finish at the same point namely at the unique lift of
po in D4(m1(S), Sp(2n, R)). The concatenation of these two lifted paths gives a path
between (p, D1) and (p, D3). This proves that Ny < N. O

This finishes the proof of the Theorem [T.4.12}

1.4.3 Topology of M%(7,(S),Sp(4,R))

Theorem [1.4.3] give a description of the homeomorphism type of the space of deco-
rated maximal representations M%-(m1(S), Sp(2n,R)) as a singular fibration. When
n = 2 we can go further to explicitly determine the homeomorphism type of all
connected components of M%(m1(5), Sp(4,R)). In this case the singular fibration is

(Sym* (2, R)N x O(2)M x A2)/ ~— A2
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where N = 6g + 3k — 6, M = 29 + k — 1 and the equivalence relation ~ is given
by fiberwise action of the group Stab(y) for y € A2 Since n = 2, there are two
possibilities for the stabilizer , we can have Stab(y) = O(1) x O(1) < O(2) when
y = (dy,d2) with dy # da, and Stab(y) = O(2) for y = (d,d). Since Stab(y) acts by
simultaneous conjugation on all factors, there is a kernel {£1Id} € O(1) x O(1) of
this action.

We identify Sym™ (2, R) with R~ x C using the following map:

Roo x C — Sym™(2,R)
(q,7exp(2i¢)) ~ R(¢)diag(q+r,q)R(—9)

cos¢p sing
where R(¢) = (— sing cos¢
the map is well defined and is a homeomorphism.

The action of R(¢) € SO(2), ¢ € S! is a rotation in C-factor by 2¢, for g =
diag{1,—1} it is the reflection around the z-axis. Since O(2) = Zy x SO(2) where
Zo = {Id,diag(1,—1)}, first we can quotient out the fiberwise action of Stab(y) N
SO(2) and then the global action of Zs.

We now focus first on analyzing the connected component

). Notice, although R(¢) is defined only up to sign,

Co :== (Sym™ (2, R)Y x SO(2)M)/ 0(2).

Theorem 1.4.17. The connected component Cy is homeomorphic to the product
Rg&l x Q, where (Q = (SYM x Q1)/Zy where Zs acts by the diagonal complex
conjugation on each factor. Q1 = (CV x Rsq)/ ~1— Rxq is a singular fibrations,
whose total space is equal to CN x Rsg LU CN/SO(2) x {0}. In particular Q1 is a
manifold away from (0,...,0) € CN x Rsq, and (0,...,0) is not an orbifold point.

We subdivide the proof of Theorem into several Lemmata.
First note that we can write

Co = Qo/Z2
Qo == (Sym™(2,R) x 80(2)™)/S0(2)

where SO(2) acts by simultaneous conjugation, and then Zsy acts by simultaneous
conjugation by diag(1,—1).

Lemma 1.4.18. Qg is homeomorphic to the product of RYy x (SHYM and @ :=
CN/SO(2). Q) :=Q1\{(0,...,0)} is a manifold diffeomorphic to Rsg x CPN1,

Proof. The homeomorphism of Qg with the product of ]R;VJ Ly (S1)YM and the singular
fibration Q1 = CV/SO(2) is given just by the identification above of Sym™(2,R)
with Rsg x C, SO(2) with U(1) = S' c C.

Moreover Q) = CV\ {(0,...,0)}/S0(2) = Ry x S2V=1/S0(2) = Rsg x CPN !

is a manifold. O
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Lemma 1.4.19. The connected component Cqy is homeomorphic to the product of
RY) and the quotient Q2 == ((SY)YM x Q1)/Z2 where Zs acts by the simultaneous
complex conjugation on each factor.

Let QY == ((SHYM x Q') /72 C Qa. QY is a manifold everywhere except for points
of the following form: (s1,...,Sm,[21,-..,2N]), where all s; € {£1}, z; € R.

Proof. We have (21,...,2y5) ~ (21", ..., zy€e'®) in Qg for every ¢ € R, it is

(Z1,...,28) ~ (21€7%, ... Zne ) = (2169, . .., zy€i®),
the complex conjugation on ()1 is well-defined. This gives the homeomorphism given
in the statement of the lemma.

Since the action by simultaneous complex conjugation is free and discrete ev-
erywhere on (S1)M x Q) except for real points, the corresponding quotient is a
manifold. O

Lemma 1.4.20. QY is an orbifold but not a manifold. The real points of Qf are
orbifold points. Small neighborhoods of these points are homeomorphic to products of
Euclidian balls of dimension N and Fuclidian balls of dimension M + N — 1 modulo
the antipodal map.

Proof. Let p:= (s1,...,80,7 [x1,...,2n]) € (SHM x Q) = (SHM x CPN~! x Ry
be some real point. Since at least one z; # 0, choose an affine chart of CPN—!
associated to the index 4 that is homeomorphic to CN~1. Then

pe (SHM x CN1 x Ryy.

Note that C = R@ iR and since Zs acts by complex conjugation on (S1)M x CN-1 x
R, we can write:

(SHM x Rug x CVN71/Zy = (SHM x RV /Zo x RV x Ry

where Zso acts on R-factors by antipodal map. The fixed points by this Zs-action are
exactly the real points.

In a small neighborhood Uy of £1 € S!, the map Uy > +e® st € V = (—¢,¢) is
a homeomorphism. Zs-action by conjugation on UL induces the action by antipodal
map on V. So the small neighborhood of points (£1,...,£1,0,...,0) looks like an
Euclidean ball of dimension M + N — 1 modulo the antipodal map.

Note that N 4+ M > 3. The fact that @ is not a manifold follows from

Proposition 1.4.21. Let X be a smooth manifold, G be a finite group acting on X
by diffeomorphisms. Let X' be the subset of X consisting of points with non-trivial
stabilizer in G. Assume, X' is discrete in X.

If dim X > 3, then X/G is not a topological manifold, but (X \ X')/G is a smooth
manifold.
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Proof of Proposition. We prove it by contradiction. Assume, X/G is a manifold.

Note, the quotient map ¢: X — X/G is open because G acts by diffeomorphism
on X. Moreover, q|x\x’ is a covering map. Therefore, (X \ X’)/G is a manifold

Let x € X' and y := ¢(z). Since X/G assumed to be a topological manifold,
we can take an open neighborhood V' of y which is homeomorphic to an Euclidian
ball. Then ¢~!(V) is a union of open sets which are open neighborhoods of points of
g (y). We can always assume that it is a disjoint union of neighborhoods of points
in ¢~ !(y) by taking V small enough.

We take a component U of ¢~ !(V) which is an open connected neighborhood of
z. We can take V' C ¢(U) open neighborhood of y € X/G homeomorphic to an
Euclidian ball because ¢ is open. Then U’ := q|g1(V’) is connected, open in X and
qU") =V'=U"/G,, where G, is the stabilizer of z in G.

The group G, acts freely and properly discontinuously on U\ {z}. Therefore,
G <m((U'\{z})/Gz) = m(V'\{y}) # {1}, but V'\ {y} is a Euclidian ball without
one point of dimension at least 3, so it has a trivial fundamental group. This is a
contradiction to the assumption that X/G is a manifold. t

Remark 1.4.22. The condition dim X > 3 is essential. To see it, take X = S1 x §1 C
C? and G = Zs = {1,a} and a(z1, z2) = (%1, 22). Then X/G is homeomorphic to S,
so it is a manifold.

O]

Proposition 1.4.23. The point 0 = (0,...,0) € Q; = CV/SO(2) is not an orbifold
singularity.

Proof. We use the following proposition (see |19, Exercise 3.3.33]):

Proposition 1.4.24. If M is a compact contractible n-manifold then OM 1is a ho-
mology (n — 1)-sphere; that is H;(OM;Z) = H;(Sn—1;7Z) for all i.

As we have seen, Q; = CV/SO(2) is a manifold everywhere except for 0. First
of all, we take the following contractible neighborhood of 0 € Q;: U := B/SO(2)
where B = {z € CV | ||z|| < €} for some ¢ > 0. Everywhere except for 0 it is a
manifold with boundary oU = S?N=1/S0(2) =2 CPN~!. QU is simply connected, so
if we assume 0 € Q1 to be an orbifold point, then, by Proposition OU, have
to be a finite quotient of homology sphere, but by generalized Poincaré conjecture,
OU have to be a sphere since it is simply connected. This is a contradiction because
oU = CPN1, O

Now we consider any of the other connected components
Cy:= (Sym™ (2, R)N x SO(2)M~7 x (JS0O(2))9)/ O(2)

where J = diag(1, —1), ¢ # 0. We prove
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Theorem 1.4.25. The connected component Cq is homeomorphic to
RYy x RY x ((SHM~1 x RY)/Z,.

(SHYM=1 x RN)/Zy is a manifold everywhere except for the following points:
(£1,...,4£1,0,...,0). These points are orbifold points. Small neighborhoods of them
are homeomorphic to Euclidian balls modulo the antipodal map.

We can write
Cq= Qq/Z2
Qq := (Sym™ (2, R)N x SO(2)M74 x (JSO(2))?)/SO(2)

where SO(2) acts by simultaneous conjugation in every factor, and then Zs acts by
simultaneous conjugation by diag(1, —1).
Then Theorem is a direct consequence of the following

Lemma 1.4.26. (), s homeomorphic to
RY, x (SHML x €V =RY, x RN x (SHM~1 x RV,

Proof. As before, we identify Sym™ (2, R) = R.q x C, SO(2) = S'. We also identify
J SO(2) with SO(2) 2 S! by the map JU + U and write:
Qq = Ry x (51177 x (CY x (81)7)/80(2)

where R(¢) € SO(2), ¢ € S! acts by rotations by 2¢ on S'-factors and C-factors
around the origin.
Since g # 0 we can consider the following map:

f:CN x (8H1 — NV x (Y9,
f(z1,.. . 2N, 81, .., 8q) i= (zlsq_l, .. .,stq_l,slsq_l, e sq_lsgl, Sq)-

This map is a homeomorphism, and the first N 4+ ¢ — 1 components are invariant
under SO(2)-action. So we can write:

¢ ZRY < (SHM1 < €V x (81/S0(2)) = RY, x (SHM~1 x V.
Using the identification C = R + ¢R, we obtain
g ZRY X RY x (SHM-L xRN, O

Now, we are ready to describe precisely the singular locus of M%(71(S), Sp(4,R))
in terms of representations. First, we consider the following embeddings of groups
into Sp(4, R):

SL(2,R) x SO(2) —  Sp(4,R)

(¢ a)v) (@ w)
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and the diagonal embedding of SL(2,R) x SL(2,R). These two embeddings induce
maps:

M (71(S), SL(2,R) x SO(2)) = M (71(S),Sp(4,R))
M?(m1(S),SL(2,R) x SL(2,R)) — M(m1 (), Sp(4, R))
Notice, these maps are not embeddings.

Theorem 1.4.27. e The mnon-orbifold singular locus of the Cy C
M(m1(S),Sp(4,R)) agree with the image of M%(m1(S),SL(2,R) x SO(2)) in
M?(m1(8), Sp(4, R)).

e The orbifold singular locus in M%(m1(S),Sp(4,R)) agree with the points of the
image of M%(m1(S),SL(2,R) x SL(2,R)) in M%(m1(S), Sp(4,R)) that are not
in the image of M%(w1(S),SL(2,R) x SO(2)).

Proof. Follows directly from the Theorems [1.4.17| and [1.4.25] O

1.5 General X-coordinates

In this section we introduce general, not necessarily positive X-coordinates with
respect to a chosen ideal triangulation 7 of S. General X-coordinates consists of
triangle invariants, which are signatures of certain quadratic forms, associated to
every triangle of T, edge invariants and angle invariants.

For the edge invariants we had to simultaneously diagonalize pairs of positive
definite bilinear forms. Here we would have to simultaneously diagonalize pairs of
non-degenerate bilinear forms of varying signature. This is in general impossible.
We need to find some analog of this diagonalization process. To do this, we use the
following theorem (for the proof and details, see Appendix:

Theorem 1.5.1. Let 33, B4 be two symmetric non-degenerate bilinear forms on some
vector space L. We consider B3, B4 as maps L — L* and define the map ¢ := 63_1064.
Then there exists a basis e of L such that

J 0 0
(¢le = X(B3,B4) = 0 Fo O
0 0 K
Iy 0 0
[Bsle = X'(Bs,B4) == 0 =I5 O
0 0 T2*

[Ba]e = X*(Bs, Ba) := X (B3, B1) X (B3, B1)

where forr =1,2

I 0 ... 0 0 Jr 0 ... 0 0
o [0 B0 0 [0 e 00
0 0 ... 0 I, 0 0 ... 0 Jp,
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0 ... 0 0 Ki 0 ... 0 0
2| 0 2 ... 0 0 K= 0 Ky ... 0 0
0 0 ... 0 I* 0 0

where n;y = dim(I}) = dim(Jy.), m; = dim([?*) = dim(K;) and

00 ... 01
|00 - 0
10..00
Njr XMy
00 0 0 1 0
00 0 0 0 -1
=10 0 1 0 0 0
0 0 0 -1 0 0
1 0 0 0 0 0
0 -1.0 0 0 0/ . im,
mJXmJ

Jir are Jordan blocks with eigenvalue \; € R, K; are generalized Jordan blocks with
etgenvalue pj € C \ R such that Niy > Niy1,r, fj > prj+1, where for complex numbers
the following linear order is used: x + iy > ' + iy’ if x > 2’ orx =2' andy > y/.

Remark 1.5.2. The basis e is in general not unique but the matrices X°(8s, 1),
X1(B3, B4), X%(33, B4) are well defined by B3, 4. We denote the edge invariant by

X (B3, B4) == (J1, T2, K)

The triple X (83, 84) defines X°(83, 84), X' (83, B4), X?(B3, 1) uniquely.

Definition 1.5.3. The signature of the triple X (3, 54) = (J1, J2, K) is the signature
of the bilinear form X°(B3, 34). We will write sgn(J1, Jo,K). This is the triangle

invariant.

Definition 1.5.4. We denote by £(n) the set of all triples (71, J2, K) where J1, Jo2, K
are of the form as in the Theorem [[.5.1] with

dim J; +dim Jo +dimK =n
Definition 1.5.5. If the basis e of L is chosen so that [33]e = X1(83,84), [Ba]e =

X2(Bs3, B4), we will say that in the basis e the pair of forms (83, 84) is in the standard
form.
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1.5.1 The angle of five Lagrangians

To define the angel invariant in general X-coordinates we need an invariant of 5
Lagrangians. In the Section [1.1| we already defined this invariant only in the case
when all triangles have maximal Maslov index. Now we do it in the general case.

For the 4-tuple (Ly, Lo, L3, L4) there exists a basis e of L; such that two bilinear
forms By := [L1, L3, Lo] and [, := [L1, L4, Lo| are in the standard form, i.e. [Byle =
X1<ﬁ0766)7 [/Bé]e = X2(/807B(/))'

For the 4-tuple (L3, Lo, L1, L5) there exists a basis g of L3 such that two bilinear
forms (1 := [L3, L2, L1] and B3] := [Ls, L5, L1] are in the standard form, i.e. [51]g =
X1(B1,8)), [Bile = X%(B1,8,). Let € be a basis of L; such that w(g,e’) = Id.

Notice, [Boler = [B1]g = X*(B1, B}) in the basis €. Therefore, we can take matrices
of (p, ¢)-shape transformations Py, g, and Pg, 1 (for more details see Appendix,
and define ep := ePy,5 and ey := €' Py 5. Then [Bole, = [Bole; = Ipg and there
exists U € O(p, q) such that eg = e1U, where (p, q) is a signature of 8y. We will call
this matrix an inner angle in the pentagon of Lagrangians (Li, L4, Lo, L3, L) (see

Figure [1.5.1)).
Lz L3

Lq LS

L4

Figure 1.5.1:

Remark 1.5.6. U is well defined only if the bases e, e’ of L1 and g of L3 are chosen

such that
[Bole = X (B0, B)  [Bole = X2(Bo, Bo)
[Bilg = X' (1, 81) [Bilg = X*(B1,51) (1.5.1)
w(g,€e) =1d.

We denote [L1, Ls, L3, Lo, Ls)e e := U. We denote by [L1, Ls, L3, Lo, L4] the set of
all possible [L1, Ls, L3, L, L1]e o When e, € satisfy

1.5.2 Definition of X-coordinates

Now we can define the general X-coordinates for a triangulated surface (S, 7).

Definition 1.5.7. Let S be a surface with an ideal triangulation 7. Let E,. be
the set of oriented edges of 7 and W be the set of angles of 7, F' be the set of all
triangles of T.
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A system of X-coordinates of rank n on (S,7T) is a map
x: FUE,UW —={(p,q) | p,g e NU{O},p+qg=n}UE(n)U U O(p,q)
ptg=n
such that

o z(T) € {(p,q) | p,g € NU{0},p+ ¢ = n}. We call z(T') signature of the
triangle T’

o 2(6) = (J1, T2, K) € E(n) for each € € E,,. x(¢ ~1) = o(x(€)), where o is the

edge reorientation map:

o E(n) — &(n)
X(bl,bg) — X(bsaby{)

where b7, b4 are dual bilinear forms. sgn(x(€)) = z(r(€)), i.e. the signature of
x(€) agree with the signature of the triangle r(€) which lies to the right form
€

e x(w) € O(p,q) for each w € W, where (p,q) is a signature of the triangle
defined as above to which this angle corresponds. z(w)~! = z(w™!). For each
positive triple of positive angles (wy, we,ws) it is

x(w3)z(ws)z(wy) = 1d

We denote by X'(S,7T,n) the set of all X-coordinates of rank n on (S, 7).

Remark 1.5.8. Since we are going to associate triples ([J1, J2, ) to oriented edges,
we will write sometimes z(€) = Xz = (J1, J2,K) = X (B4, f2) for some pair of forms
(81, B2). We will also write X? for i € {0,1,2} for corresponding X*(1, 32) because
X"(f1, B2) is completely determined by the triple (J1, J2, K) and the pair (81, B2) is
not really important.

Positive X-coordinates are imbedded into the space of general X-coordinates. A
coordinate z € X (S, T,n) is sent to 2’ € X(S,T,n) defined by

e 2/(T) = (n,0) for all T € F;
e /() = (diagz(e), s, ) for all e € E;

o 2/(w) = x(w) for all w e W.

1.5.3 Construction of a decorated representation using X-coordinates

Let S be a surface with punctures and let 7 be an oriented ideal triangulation.
Given a decorated representation [p, D] € Rep4-(71(S,b), Sp(2n, R)), we can lift the
decoration D to a map D: P — Lag(2n,R).

o4



Definition 1.5.9. A system of X-coordinates x € X (S, 7, n) is aid to be admissible
for a representation [p, D] € Rep%(m1 (S, b), Sp(2n, R)) if
e for each triangle T = (t1,t3,t2) of T, the signature z(T") agrees with the sig-

nature of the bilinear form [D(t1), D(t3), D(t2)].

e for cach oriented edge € € F on the boundary of the triangles T' = (t1,t3,t2) and
T" = (to,ta,t1) of T, the cross ratio [D(t1), D(t3), D(t2), D(t4)] is conjugated
to —X°([L1, La, La], [L1, Ls, La]) ™"

e for each pentagon in 7 as in Figure the orthogonal matrix z(w) belongs

to the set [D(tl), D(t5), D(tg), D(tz), D(t4)]

tz t3
w
ty : ts
Figure 1.5.2:
We now construct as in Section [1.3.2] a map

rep: X(S,7,n) — Hom%l—(m(S, b),Sp(2n,R)),

such that, for every x € X(S,7T,n), rep(x) is a decorated representation and z is
admissible for the representation rep(z).

For this we let I' be the graph on the surface introduced in Section [1.3.2] see
Fig. [1.5.3]

To every vertex of I' we associate an edge coordinate by the rule: let the oriented
edge 7 of the triangulation is oriented upwards, then to the point lying to the right
from 7 we associate (), to the point lying to the left from 7 we associate (7 ~1)

We assume that the base point b coincide with one of vertices of I'. Now, every
element a € 71(9,b) has a representative which is a closed simplicial path in the
graph I'; so

a=apo---oay,

where every «; is a path along one edge of T
We associate to every o the matrix

where A; is defined as follows:
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Figure 1.5.3:

e If a; is going along an edge of I' which crosses the oriented edge 7 of the

triangulation from the right to the left assuming that the edge 7 is oriented

upwards, we have
0 ~-TT®
E:= <T1<I>1 0 )

where ® and 7" are matrices associated to x(7) from the definition of the back

transformation (see Appendix [A.1.5)).

If o; is going along an edge of I" which crosses the oriented edge 7 of the
triangulation from the left to the right assuming that the edge  is oriented

upwards, we have
0 -7
Bi=- <T1<I>1 0 )

where ® and T are matrices associated to x(7 ~!) from the definition of the
back transformation (see Appendix [A.1.5)).

If a; is along an edge of " that follows the angle w of the triangulation, consider
the matrices

Pla(w)T PyT 0 ) (15.2)

UX.Y) = ( 0 Py la(w) 1Py

)= (6 ) B - @eo)rt

where X is the coordinate on the starting vertex of «;, Y is the coordinate
on the ending vertex of a;, Px, Py are matrices of shape transformations (see
Appendix |A.1.6) corresponding to X, resp Y. We have 4; = U(X,Y)T,(X)



(resp. A; = U(X,Y)Tj(X)) if when going from a1 to o; we are turning to the
right (resp. to the left). Notice that, U(X,Y)T.(X) = (U~Y(Y, X))T.(Y)) L.

After multiplication of all these matrices we get a matrix in Sp(2n,R) for each
curve «. So this process gives us a representation p € Hom(w(S,b), Sp(2n,R)).

This representation admits a natural decoration D. To see this, first, we note that
the procedure above works also for non-closed curves.

If b lies in the triangle near to the oriented edge 7 which is adjacent to some
puncture and the peripheral curve is just a circle ¢ around this puncture. Then going
around ¢ we always are turning either to the right or to the left. Therefore, either
Le,, or L, is preserved by p(c) (Figure [L.5.4)). Finally, for each simple peripheral
curve ~ around some puncture p with start- and endpoint b, we can take a point o/
which lies in the triangle adjacent to p. Then we can decompose v up to homotopy
into a path o from b to ¥, circle ¢ around p and the inverse path a~! from b to
b. For a we get M,. The matrix corresponding to ¢ preserves some Lagrangian L.
Therefore, p(7y) preserves M;'.L, and we define D(v) := M '.L

Figure 1.5.4:

For each non-simple peripheral curve which is a power of some simple one, we define
a decoration of non-simple peripheral curve to be the decoration of the corresponding
simple curve. All other non-simple curves are of the form v = f~'a"3, where « is
simple closed curve, f is some closed curve. So we define D(v) := p(8).D(«). By
construction, this decorated representation is a representative in a standard form of
its class. So we define rep(x) := (p, D).

1.5.4 The set of X-coordinates associated to a representation

So far we only constructed a decorated representation given a system of X-
coordinates. Now we describe how, given an ideal triangulation, we can asso-
ciate a system of X-coordinates to a decorated representation [(p, D)] so that
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[rep(z)] = [(p, D)]. The procedure described below is very similar to the case of
maximal representations. But in this case, one has to be a bit more careful because
the cross ratio map is in general not diagonalizable.

We take an ideal triangulation 7 of S and choose by € S. Let (p,D) €
Hom4-(71(S, by), Sp(2n, R)) be a decorated representation.

We lift the oriented triangulation 7 of S to the oriented triangulation 7 of the
universal covering S. We also fix a lift b € S of by € S. Punctures are lifted to
visual boundary points of S (after choice of some Riemannian metric of finite area).
Using the decoration D, each boundary point can be decorated by a Lagrangian in
a unique way. This decoration is 71 (.S, by)-equivariant.

We consider the graph I' associated to this triangulation as in Section [1.5.3] see
Figure We can assume that T is invariant under the action of (S, by) on S.
First, we associate a symplectic basis to each vertex of ', a pair (p, ¢) to each triangle
and an element from £(n) to each oriented edge of the lifted triangulation 7. For
each vertex b of I there is the unique edge r close to which this vertex lies and unique
triangle T in which b lies. We take an orientation of the edge 7’ such that the vertex
b lies to the right from 7. We consider the triangle which is adjacent to T across
the edge r. Thus we have a quadrilateral decorated by Lagrangians (L1, L3, L2, Ly).
The following symmetric non-degenerate bilinear forms on L:

B3 := L1, L3, La],

B4 = _[L17 L47 LQ]

are well-defined.
We put the pair (3, 84) to the standard form, i.e. we choose a basis e = (e1, ..., ey,)
of L1 such that

([/83]67 [ﬁ4]e) = (Xl (1637 B4)7 X2(ﬁ37 164))
Since w identifies Ly with L], we define a basis f of Ly to be the dual basis to e.
So we get in the notation of the previous section:

L, = Span(e) = Le, Lo = Span(f) = L¢

Ly = Span(e + £X'(B3,81)) =t Le (X" (83, B4))
L4 == Span(e - fXZ(/B3a 54)) = Le,f(_X2(B37 54))
w(ei, f7) = 0ij
In this case, we will say that the four tuple (L, Lo, L3, L4) is in standard position
with respect to a symplectic basis (e, f).
We define the invariants z(7") := sgn(fs) for the triangle 7', x(7) := X (03, f4)

for the oriented edge 7 and associate also the symplectic basis B(b) := (e, f) to the
vertex b of T'.

Because the oriented edge 7 defines the point b uniquely, sometimes we will say
that the basis B(b) is associated to the oriented edge 7 and write B(7).
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To define the angle coordinate, we consider a pentagon decorated by Lagrangians
as on the Figure [1.5.5] To each oriented diagonal 7y and 77 of this pentagon, bases
B(79) =: (eo,fo) of (L1, Le) and B(71) =: (e1,f1) of (Ls, L) are associated. So we
can define the angle invariant z(w) to be x(w) := [L1, Ls, L3, L2, L4leg £, -

L Lz

Ly I

Figure 1.5.5:

Remark 1.5.10. 1. The choice of bases B is in general not unique. But it can be
always chosen in a p-equivariant way with respect to the action of Sp(2n,R) on
symplectic bases because the lifted decoration by Lagrangians is p-equivariant. We
will always assume that B is p-equivariant.

2. By construction, the map x is 71 (S, bg)-invariant, therefore, = is well-defined
for the triangulation 7 of S.

3. By construction, z(7 ~1) = X (85, 8%) = o(X (83, 84)). So our definition of the
map z for edges is consistent with the definition of X-coordinates.

4. For each oriented edge 7 of triangulation there are two vertices by,bs of T’
lying close to 7. In general, there is a lot of possibilities to define B(by) if B(b1)
is fixed. We need to fix one of them, which is consistent to the definition of the
map rep, namely with the matrix associated to the crossing of an edge. We do
the following: Assume 7 is oriented upwards, b lies to the right from 7 and by lies
to the left. Let B(b1) =: (e,f) then B(b) := (—f®T,e® 'T~T) where ® and T
are matrices associated to z(7) from the definition of the back transformation (see
Appendix .

5. Coordinate which we associate to an edge are in fact connected with the cross
ratio operator in the following way:

(L1, L3, Lo, Lale = [L 'se[Lales = —X (B3, 84) "

6. This construction does not depend on the choice of a representative (p, D) in
the class [p, D]. The triple (J1, J2, K) for each edge is uniquely defined. In contrast,
matrices U for each angle are in general not uniquely defined by the representation
p. To define U, we have chosen a map B which, as we have seen, is in general not
unique.

99



Lemma 1.5.11. Let [p, D] € Repd(mi(S,b),Sp(2n,R)). Consider x € X(S,T,n)
constructed from [p, D] as above. Then [rep|(z) = [p, D].

Proof. Notice, the bases on vertices of I' were chosen in compatible way with the
construction in the previous section, i.e. let b1, by be vertices of I' connected by an
edge e. To e the matrix E is associated as in the previous section (going along an
angle or crossing an edge of triangulation). Then E maps the basis B(b1) to B(ba).

Therefore, by induction, for every loop « based in b, rep(a)(B(b)) = B([a]b),
where by [a]b we understand the action of [a] € m1(S,b) on vertices of I' C S. But
the choice of B is p-equivariant, i.e. rep(a)(B(b)) = B([a]b) = p(a)B(b). But the
action of Sp(2n,R) on symplectic bases is exact, therefore, rep(a) = p(«a) for all
[a] € 7 (S,b), where p(«) is written as a matrix with with respect to the basis

B(b). O
Corollary 1.5.12. The map [rep] is surjective.

Definition 1.5.13. Let [p, D] € RepdT(m(S, b),Sp(2n,R)), let (p, D) be a repre-
sentative of [p, D]. Assume, the point b lies in the triangle Ty near to the upwards
oriented edge €. Assume that peripheral curves «; (see Figure , i€{1,2,3,4}
are decorated by Lagrangians L; € Lag(2n,R).

Figure 1.5.6:

We consider bilinear forms S, 84 as above. Then there exists a symplectic basis
(e,f) of (R?",w) such that

Ly = Span(e) = Lo, Lo = Span(f) = L¢
Ls = Span(e + £X' (B3, 84)) =t Le (X" (83, B4))

Ly = Span(e — £X%(B3, 1)) = Let(—X>(B3, Ba))
w(es, fj) = 0ij
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The change-of-basis matrix from the standard basis (est, fs¢) to (e, f) let be 7. Then
(¢, D) = (T7'pT,T~1D) € [p, D] is called a representative in standard form of
[p, D]. Tt has the following property:

D/(al) = Lest7 DI(O@) = Lfst’

D/<a3) - Lest,fst (X1(537 54))7
D/(a4) = Lest,fst(_XQ(BSa B4))

Corollary 1.5.14. The map rep constructed in the previous section gives us for each
x € X(S,T,n) a representative in standard form.

Remark 1.5.15. Let (S,7T) be a surface with ideal triangulation. Assume b € S lies
in the triangle Ty near to the oriented edge €. We take four peripheral curves «;,
i€{1,2,3,4} as on the Figure m
Let [p, D] € Rep%(m1(S,b),Sp(2n,R)) and = € X (S, T, n) is admissible for [p, D].
Then there exists (p, D) € Hom%(m1(S,b),Sp(2n,R)) a representative in standard
form such that:
D(a1> = Leg; D(OQ) = Lg,

D(Oég) = Lest,fst (Xé)
D(O{4) = Lestafst(_Xg)

where z(7) = Xy. Moreover, (p, D) have the same decoration as rep(z), and p and
rep(z) act in the same way on D(7]“ (S, b)).

Remark 1.5.16. Let x € X(S,T,n) be admissible for [p1, D1] and for [p2, D2]. Then
there exist (p1, D1) € [p1, Di1] and (p2, D2) € [p2, D2] representatives in a standard
form such that D; = Ds. In particular, the decoration of rep(z) coincides up to
Sp(2n, R)-action with decoration of each decorated representation for which = is
admissible.

Remark 1.517. If x € X(S,7,n) is admissible X-coordinates for [p, D] €
Repd-(71(S, b), Sp(2n, R)), then in general it is wrong that [rep(z)] = [p, D].

As we have seen, angle coordinates are not uniquely defined. Sometimes different
collections of angle coordinates define the same representation. Now we are going to
find out how the angles can be changed so that the representation stays the same.

We take two adjacent by an edge e triangles. The coordinate on the edge is X,
(oriented as on fig. . The coordinate associated to the opposite orientation of
e we denote by X,. Signature of right triangle assume to be (p,q) = sgn(X}!) =
sgn(f(g), signature of left triangle assume to be (p/,¢') = sgn(X?) = sgn(j(el). We
also assume that all angles are oriented counterclockwise with respect to the triangle.

Theorem 1.5.18. Let € X(S,T,n). Let us change angle coordinates along the
edge e in a following way:

U =WU, V] =W Uy =U,W, Vi =WV, (1.5.3)
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e

Figure 1.5.7:

where
W € O(p,q) NO(Py X2Py1)

W' :=D"'W'D
D := Py ¥y, Tx, P)f(:
This gives us another ' € X(S,T,n). Then [rep(z)] = [rep(z’)].
Proof. First, we need the following proposition:

Proposition 1.5.19.

! /o T v2p—1
W' e 0@, ¢)NO(PL XZPL)

Proof. First, we note that D™ I, D! = Px, (Xg)_lp):?e:

D_TIp’q’ _ PXE(I);(iT);eTP}geIp/q/ = PXe(I);(lT);TXelP;(: =
= [(XH)7T'OT = o7 T "X = Py (X2) ' 0x, Tx P! =

= Px.(X2)7'PX,D
Therefore,
WTlLyyW' = D"WD 1,y D'W'D = D"WPx (X2)"' Py W'D =
=[W e O(Py" X2Py")] = D" Px (X2)7'PY.D = Iy

So W'e O, q). )
Second, we note that D_TP)?(ETXEQP)?(:D_l = Iy

-T T yv2p—1 —1p—T pT p—-Tv2p—1 1 —T 2 p—1
D™H(PLTXZPLY) = Px, @3 Ty Py PLTXIPC = Py, O3 Ty X2PL! =
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= [X'0T = @771 X?) = Px, X  0x,Tx, Py = [PX IpgPx, = X;] = IpgD
Therefore,
WP TXZP YW = DTWDTT(PTX2P]) DT WD =
=D'WTIL,,WD = [W € O(p,q)] = D" I,,D = P)?QTXEP)?(:

1 -Ty2p—1
So W' e O(PXF Xebg ).

O
Using the last proposition, it is easy to calculate that:
VT, Ex, U, = V{T,Ex. U}
UsT,Ex, Vo = UsT,Ex,Vy
VT Eg Uy' = VIT.Eg Uj
So holonomies of all curves are not changed. O

Corollary 1.5.20. Let x,2’ € X(S,T,n) such that rep(z) = rep(a’). Let w € W be
an angle which is adjacent to some oriented edge €. Then angle coordinates of x along
€ can be changed as above to coordinates x” € X(S,T,n) such that x’'(w) = 2" (w)
and z(w'") = 2" (W) for all angles w' which are not adjacent to €

Lemma 1.5.21. The only possible changes of angle coordinates so that the recon-
structed representation does not change are given by formulas[1.5.3

Proof. (Sketch) We take the surface S of genus g and k punctures and fix the trian-
gulation and the base point as on the picture. For another choice of triangulation
the proof is similar.

We take x, 2’ € X (S, T,n) such that rep(z) = rep(z’). We assume that z, 2’ define
two different collections of angles {U;} and {U;}. Now we show that by correction
of angles {U;} by formulas above we can get the collection {U/}.

Using Corollary we correct all upper angles (Us, Ug, U1, U, Uy, . . . see Fig-
ure getting 2”7 € X(S,T,n) such that rep(z) = rep(z’) = rep(z”). Note,
that the number of these corrected angles agree with the total number of (non-
oriented edges) since we correct each angle along exactly one edge. It makes au-
tomatically that some other angles agree (Ur,Us,...) because product of angles in
one triangle is always Id. To see that all other agree, it is enough to look at gen-
erators of m(S,b) (aq,p1,... on Figure [L5.8). Since their holonomies agree for
rep(z) = rep(z’) = rep(z”), all other angles (Ug,Us, Uy, Ui, ...) agree automati-
cally. So we get v = x”

O

Remark 1.5.22 (Changing of X-coordinates by a flip). As we have see already for
positive X-coordinates, it is difficult to write an explicit formula of change of coor-
dinates by a flip. In the general case, it is even more difficult. However we will see
in Section 7?7, using A-coordinates we can give explicit formulas, which tell us how
the X-coordinates change.
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Figure 1.5.8:

1.6 X-coordinates for representations into central
extensions

We introduced X-coordinates for decorated representations into Sp(2n,R) using in-
variants of Lagrangian subspaces. As we remarked before, the action of Sp(2n,R) on
Lag(2n,R) is not effective, but factors through PSp(2n,R). Therefore, the construc-
tion of X-coordinates works as well for decorated representations into PSp(2n,R).
The notions of decoration and transversality are well-defined because the action of
Sp(2n,R) on Lag(2n,R) is just the lift of the action of PSp(2n,R) on Lag(2n,R).
We only have to modify the angle invariants, as they now take values in PO(p, q).

We can then similarly define a map rep from X’-coordinates to the space of trans-
verse decorated representations Rep%-(m1 (S, b), PSp(2n, R)).

Note that Sp(2n,R) is a central extension of PSp(2n,R) by the abelian group
Zso. In this section, we extend the construction of X-coordinates to representations
into arbitrary central extensions of PSp(2n,R). The most interesting cases are the
connected coverings of PSp(2n, R).

Let S be a surface with punctures as above, 7 be an ideal triangulation of
S. Each representation p € Hom(m(S),G) projects to some representation p’ €
Hom(m(S), PSp(2n,R)). Assume p’ admits a decoration D which is transverse with
respect to 7. If D is fixed, then (p/, D) € Hom%—(m(S), PSp(2n,R)).

Definition 1.6.1. The pair (p, D) constructed as above is called decorated repre-
sentation into the central extension G transverse with respect to T. The set of all
decorated representation into the central extension G transverse with respect to T
is denoted by Homd-(71(S), G).

Definition 1.6.2. We denote

Repd-(m1(S), G) := Hom*(m1(S), G)/G
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Definition 1.6.3. A representation p € Hom(7w1(S),G) is called mazimal if it
projects to a maximal representation p’ € Homyy,q, (m1(S), PSp(2n,R)). The space

of all maximal representations into G is denoted by Homy,q,(71(S), G). The space

of all maximal decorated representations into G is denoted by Homd,  (71(S), G).

Definition 1.6.4. We denote
M(m1(5), G) := Homypez(m1(S), G) /G

MU 7y(S), @) := Hom? _(m1(S),G)/G

max

Consider the embedding:

¥: PO(p,q) —  PSp(2,R)
U —  diag(U,U~T)

and the homomorphism corresponding to the central extension:
ma: G — PSp(2n,R).

Then we define
G(p,q) = 75 (¥ (PO(p, q))-

Before we give the definition of X'-coordinates for central extension, we recall that
E(n) is the set of all triples (J1,J2,K) where Ji,J2, K are of the form as in the
Theorem [[L.5.7] with

dim J1 + dim J5 + dim K = n.

Definition 1.6.5 (X-coordinates for central extension). Let S be a surface with an
ideal triangulation 7. Let E,,. be the set of oriented edges of 7 and W be the set of
angles of T, F' be the set of triangles of 7.

A system of X-coordinates of rank n for the central extension G with respect to
T is a map

z: FUE, UW = {(p,q) | p,a e NU{0},p+q=n}U&m)U |J Glp,q)
pF+q=n
such that

e the triangle invariant z(7T) takes values in {(p,q) | p,qg € NU{0},p + ¢ = n}.
We call z(T') also signature of the triangle T'

e the edge invariant x(€) is given by z(€) = (J1, J2,K) € E(n) for each € € E,,.
X(e71) = o(X(€)), where o is the edge reorientation map:
o En) —  &n)
X (by,b2) —  X(b5,0b7)
where b7, b5 are dual bilinear forms to by, bs. sgn(z(€)) = z(r(€)), i.e. the

signature of x(€) agree with the signature of the triangle r(€) which lies to the
right form é;
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e the angle invariant z(w) takes values in G(p, q) for each w € W, where (p, q)
is a signature of the triangle defined as above which this angle corresponds to.
U(w™') = U(w)~!. For each positive triple of positive angles (w1, ws,ws3) is
subject to the condition

We denote by Xg(S,7T,n) the set of all X-coordinates of rank n for the central
extension G on (S, T).

By the same procedure as for X-coordinates for Sp(2n,R), see Section we
can construct a map rep from the space of X'-coordinates to the space of decorated
homomorphism Hom‘fir(ﬂ'l(S ), G), which induces a surjective map

[repa): X (S, T,n) — RepdT(m(S),G).

Using the map [rep] restricted to the positive locus of X(S, T, n), i.e. the subset
of Xa(S,T,n) such that all triangle invariants are (n,0), as in the Section we
can study the homotopy type of M%(m(S),G). Namely, we can get the following
result:

Theorem 1.6.6. The space of decorated mazimal representations M (m1(S), G) is
homotopically equivalent to G(n,0)29t%=1/G(n,0), where g is the genus of S, k
is the number of punctures and the quotient is taken by the action of G(n,0) on
G (n,0)29%k=1 by simultaneous conjugation.

Theorem 1.6.7. The space of decorated maximal representation M%(m1(S),G) is
homeomorphic to

Sym™ (n, R)59736=6 « Q(n,0)2 %1 /G(n,0)

where Sym™ (n,R) is the space of all symmetric positive definite matrices and G(n,0)
acts by simultaneous conjugation in every factor.
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2 Hermitian Lie groups and noncommutative
algebras

2.1 Symplectic group over algebras with anti-involution

2.1.1 Algebras with an anti-involution

Let A be a unital associative possibly noncommutative finite-dimensional R-algebra.

Remark 2.1.1. The assumption that A is finite-dimensional over R implies that A
has a well-defined topology.

Definition 2.1.2. An R-linear map o: A — A is called an anti-involution if
e o(ab) = o(b)o(a);
e o2 =1d.
Now we fix a pair (A4, 0).
Definition 2.1.3. An element a € A is called o-symmetric if o(a) = a. We denote
A% = A" :=Fixy(o) ={a € A| o(a) = a}.

Remark 2.1.4. We will use the notation A%Y™ when there is only one anti-involution
on A. If there are more then one anti-involutions defined on A, then we always use
the notation A% to emphasize which anti-involution we mean.

Proposition 2.1.5. Let A be a unital associative K-algebra, of finite dimension n
over K for some field K. Then A is isomorphic to a subalgebra of Mat(n, K).

Proof. For every x € A, consider the linear map L, : A — A defined by
Ly(y) =zy.

Consider the map
A>z — L, € Mat(n,K).

This is an injective K-algebra homomorphism (there is no kernel because A is unital).

O]

Corollary 2.1.6. Let A be a unital associative K-algebra, which is finite-dimensional
over K. The non-invertible elements are all zero-divisors.

Proof. Using the previous proposition, given x € A, x is invertible if and only if L,
is surjective. If L, is not surjective, it has a kernel, hence x is a zero-divisor. O
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We denote by A* the subgroup of invertible elements of A. If V' C A is a vector
subspace, we denote

V¥X=A"NnV,
the set of invertible elements in V.

Corollary 2.1.7. Let A be a unital associative R-algebra, which is finite-dimensional
over R, and let V be a vector subspace of A that contains at least one invertible
element. Then V> is an open dense subset of V.

Proof. Using the previous proposition. First notice that x € A is invertible in A if
and only if the linear map L, is surjective, if and only if L, is invertible in Mat(n, R).
Using this, since the invertible elements are open in Mat(n,R), they are open in V.

To see density, consider an invertible element uw € V. The subspace v~ ! -V
contains the unit 1. We now prove that density holds for ©=! -V, and we are done.
If 2 € u=' -V is not invertible, consider y. = = + € - 1. We claim that there are only
finitely many values of € such that y. is not invertible, hence we can approximate x
with invertible elements. To prove the claim, notice that the rank of L,, as a matrix
over R is the same as its rank as a matrix over C. Put L, in Jordan form, then we
can see that L,, is still in Jordan form, and it is invertible for all values of € different
from the eigenvalues of x. O

Corollary 2.1.8. It follows that A* is open and dense in A and (A%Y™)* is open
and dense in A%Y™,

Consider the following map

0: A — Am
a +— o(a)a

Definition 2.1.9. The subgroup
U(A,0)={aec A" |0(a) =1}
of A% is called the unitary group of A.

Definition 2.1.10. A subset C' C V of an R-vector space is a cone if it is stable
under multiplication by a strictly positive scalar. A cone is convex if it is stable by
sums of its elements.

Remark 2.1.11. If C is a convex cone, its closure C and its interior C are still convex
cones. The set of the opposites of the elements of C, denoted by —C, is still a convex
cone.

Definition 2.1.12. A convex cone C'is proper if

cn-C={0}.
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Definition 2.1.13. Given a subset D C V, the convex cone generated by D, denoted
by C(D), is the smallest convex cone containing D, the set of all linear combinations
of elements of D with positive coefficients.

Definition 2.1.14. An algebra with an anti-involution (A, o) is called Hermitian if:
1. The convex cone C(0(A®*Y™)) is proper;

2. A%Y™ does not contain nilpotent elements, i.e. for every b € AY™ b? = 0 if
and only if b = 0.

Definition 2.1.15. If (A, o) is Hermitian, we define
AP = O(B((4)),

and A% as the closure of A%Y™. In this case, AY"™ and A" are proper convex
cones in ASY™. -

Remark 2.1.16. We will see later in Corollaries [2.6.20] [2.6.24] and [2.6.42] together
with the Corollary [2.7.29| that A%'™ = 0(A*) and it is open subset of A*¥™ and it

is contained in A*. Moreover, from the Corollary [2.6.44] it follows that for every
a € A, we have o(a)a = 0 if and only if a = 0.

Corollary 2.1.17. A subalgebra of a Hermitian algebra which is closed under o is
also Hermitian.

Theorem 2.1.18. The group U(A, o) is compact.

Proof. The Definition [2.1.14] implies that by Definition [2.6.11} (A, o) is a weakly
Hermitian Lie algebra. We define the following map 8: A x A — R:

B(a1,as) = tr <U(a1)a2 ;_O-(CLQ)CL1> |

where tr: A¥™ — R is the trace map defined in Definition 2.6.28] By the Proposi-
tion this map is an inner product on ASY™. It is easy to see, that it is bilinear
on A. To see that £ is an inner product on A, we have only to check the positive
definiteness, i.e. f(a,a) =0 if and only if a = 0.

For a € A take its polar decomposition : a = uag where ag € Aiym, u €
U(A, o). Then S(a,a) = a3 = 0 if and only if ap = 0 if and only if a = 0. Therefore,
B is an inner product on A. The group U(A, o) acts on A by left multiplication
preserving . Therefore, U(A, o) C Isom(f3), where Isom(f) is the group of linear
transformations of A preserving 8 which is compact and U (A, o) is a closed subgroup
of it. So it is compact as well. O

Remark 2.1.19. In the Corollary [2.6.43] we will see that for a Hermitian algebra
(A, o), the group U(G, o) is a maximal compact subgroup of A*.
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Classical examples

In this subsection, we recall classical algebras with anti-involutions and introduce
notation that we will use later.

1. For any field K such that R C K, A = Mat(n,K), o(r) := rT is an algebra with
an anti-involution. Then A% = Sym(n,K) space of all symmetric matrices. If
K = R, (A,0) is Hermitian with A7 = Sym™(n,R) real symmetric positive
definite matrices.

2. A =Mat(n,C), &(r) := 7! is a Hermitian algebra with A° = Herm(n, C) com-
plex Hermitian matrices and A = Herm™ (n,C) complex Hermitian positive
definite matrices.

3. A = Mat(n,H), o1(r) := 77, is a Hermitian algebra with A%t = Herm(n, H)
quaternionic Hermitian matrices and A7' = Herm™ (n, H) quaternionic Hermi-
tian positive definite matrices.

4. There is another anti-involution on A = Mat(n, H), namely o¢(r) := o(r1) +
a(re)j where 11,79 € Mat(n,C). This algebra is not Hermitian.

2.1.2 Sesquilinear forms on A-modules and their groups of symmetries

Let A be a unital associative finite dimensional R-algebra with an anti-involution o.

Definition 2.1.20. A o-sesquilinear form w on a right A-module V is a map
w: VxV—oA

such that
w(@ +y,2) =w®,2) +w(y,2)
)+ w(x, z

9y )

w(xiry, xere) = o(ry)w(x1, x2)rs

w(@,y +2) = w(z,y) + w(

We denote by
Aut(w) :={f € Aut(V) [Va,y € V1 w(f(z), f(y) = w(z,y)}
the group of symmetries of w. We also define the corresponding Lie algebra:
End(w) :={f € End(V) [ Vz,y € V : w(f(2),y) + w(z, f(y)) = 0}
with the usual Lie bracket [f,g] = fg — gf.

Let us take V = A? (as the set of columns).

Definition 2.1.21.
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A pair (z,y) for z,y € A? is called basis of A? if for every z € A? there exist
a,b € A? such that z = xza + yb.

e The element x € A? is called reqular if there exists y € A% such that (z,y) is
a basis of A2.

e | C A?is called a line if | = 2 A for a regular = € A%. We denote the space of
lines of A% by P(A42).

e Two regular elements x,y € A? are called linearly independent if (z,y) is a
basis of A2.
e Two lines [, m are called transverse if [ = x A, m = yA for linearly independent

x,y € A%

e An element z € A? is called isotropic with respect to w if w(x,z) = 0. The set
of all isotropic regular elements of (4% w) is denoted by Is(w).

e A line [ is called isotropic if | = A for an regular isotropic = € A2. The set of
all isotropic lines of (A2, w) is denoted by P(Is(w)).

Definition 2.1.22.

e A form w is called non-degenerate if for every regular x € A? there exists a
y € A? such that w(z,y) € AX.

e A form is called o-symmetric if w(wa, 1) = o(w(z1,22)) for all x1, 22 € A2

e For A Hermitian, a o-symmetric form is called o-inner product if w(x,x) €
AZY™ for all regular x € A2

e A form is called o-skew-symmetric if w(za,x1) = —o(w(z1,22)) for all z1,z9 €
A2,

Proposition 2.1.23. For every basis (x,y) of A? and for every z € A? there eist
unique a,b € A such that z = xa + yb. Moreover, for every reqular x € A%, the map

A — zA
a — za

s an isomorphism of right A-modules.

Proof. Take a basis (x,%y) of A2. Consider the following A-homomorphism of right
A-modules:

A2 A2

(a,b) — za+yb
This is also a surjective R-homomorphism of vector spaces of the same dimension.
Therefore, it is injective, i.e. (a,b) is uniquely defines by z. The restriction of this
homomorphism to A x {0} is an isomorphism A — zA of right A-modules. O
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Definition 2.1.24. We denote Spy(A,o) := Aut(w), spy(A,0) := End(w) for

w(z,y) == o(z)TQy where Q = <_01 (1)>

Remark 2.1.25.

Spy(A, o) = {(Z 2) | o(a)e, o(b)d € AV™, o(a)d — o(c)b = 1} C Mat (A)

spo(A,0) = {(‘;" _Uz(x)> |z €Ay z€ ASW} C Maty(A)

From now on, we assume w(z,y) := o(x)7Qy on A2,
Proposition 2.1.26. The form w is non-degenerate.

Proof. Let x = (x1,22)" € A? regular. We want to find y € A% such that w(y, z) = 1.

Since x is regular, there exists ' = (2,75)T € A? such that (z,2') is a basis.
/
That means that the matrix X := 3:1 x}) is invertible, i.e. there exists the
2 2
. . -1 al ag
inverse matrix X+ = <a’ a’>' Therefore, aix1 + asxo = 1. We take y :=
1

(o(ag), —J(al))T, then

st =teson (& g) (1) = oo (5) =

So w is non-degenerate. 0

T

Proposition 2.1.27. An element x = (x1,22)7 € A? is isotropic if and only if

0(1'1)332 € Asvm,
Proof. Direct computation. O

Proposition 2.1.28. If z,y € A% are isotropic and w(x,y) = 1, then (x,y) is a
basis.

Definition 2.1.29. A basis (x,y) of A% is called symplectic if x,y are isotropic and
w(z,y) =1.

Proof. Let x,y € A? are isotropic and w(x,y) = 1. Consider the map

A2 A2
(a,b) — za+ yb.

To see that this map is an isomorphism, it is enough to check that it is injective.
Assume xa + yb = 0 for some a,b € A, then

0 =w(x,za+ yb) = w(z,y)b = b,

0=w(y,za+ yb) = —w(z,y)a = —a.
Soa=1b=0. O

72



Corollary 2.1.30.

ot = (01 (()2(2)) oot s

Proposition 2.1.31. Let v € A? reqular isotropic, y € A% and w(x,y) € A*. Then
(w,y) is a basis of A%. In particular, y is regular.

Proof. To see that (z,y) is a basis, it is enough to check that the map

A2 A2
(a,b) — za+yb

is injective. Assume za + yb = 0 for some a,b € A, then
0 =w(x,ra+ yb) = w(z,y)b.

Since w(z,y) € A*, b= 0.
The element z € A2 is regular, therefore, by Proposition [2.1.23] if za = 0, then
a = 0. So, we obtain z = 0, i.e. the map above is an isomorphism. ]

Proposition 2.1.32. For every reqular isotropic x € A?, there exists an isotropic
y € A? such that (z,y) is a symplectic basis.

Proof. Since w is non-degenerate, there exists y' € A% such that w(x,y’) € A* and
(z,y') is a basis. We take y” :=y' — Zw(y',z) 'w(y, y), then
1 _
w(y,y) =wysy) = e/, 2w, 2) " w(y, y)-

1

—§J(w(y/,$)_1w(y,y))w(9&,y') —0.

Since w(z,y’) = w(x,y”), if we take y := y"w(x,y’)~!, we obtain w(z,y) = 1 and
x,y are isotropic, so (z,y) is a symplectic basis. ]

Corollary 2.1.33. The group Spy(A, o) acts transitively on regular isotropic ele-
ments of (A2, w).

Proof. If x = (x1,22)" € A? is regular isotropic, then there exists y = (y1,y2) € A2
regular isotropic such that (x,y) is a symplectic basis. Then

1 Y1
= € Spy(A,
g (332 y2> p2(4,0)

and ¢(1,0)T = z. O
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2.1.3 2x2-matrix algebra over a Hermitian algebra

In this section, we assume (A,o0) to be a Hermitian R-algebra. We consider the
following anti-involution on the algebra Maty(A) of 2x2-matrices over A:

UTI Matg(A) — Matg(A)
M = o(M)T

We denote
Sme(A, U) = FiXMatQ(A) (JT);

Sym5’(A,0) := {M € Symy(A,0) | o(x)" Mz € AL for all z € A%}
Symj (A,0) == {M € Symy(A,0) | o(z)" Mz € AY™ for all regular z € A?};
Ua(A,0) := UMat (A),0) = {M € Mata(A) | o(M)TM = 1dy}.

Proposition 2.1.34. For a Hermitian algebra (A, o), the algebra (Mata(A), o™ is
Hermatian.

Proof 1. Show that Sym2 (A,0) is a closed proper convex cone. By definition,
Syms"(4,0) is closed in Symy(A, o) because it is defined by a closed condition.
It is a cone because for every A > 0, if o(z)" Mz € AY[" for all z € A?, then

o(x)"(AM)z = Ao(x)" Mz € A" because AL[" is a cone. It is a convex cone
because for My, My € Symy (A, o),

o(z)T (M + M)z = o(z)T Mz + o(z)T Mz € AT

for all x € A% because A%" is a convex cone. If M, —M € Sym2 O(A, o), then for all
re€ A% o(x)' Mz, —o(z )TMx e AZ". Since the cone AZ(" is proper, o (x)" Mz = 0

mir M2
o(miz2) ma2
x = (1,0)7, then my; = 0. Take z = (0,1)7, then mgs = 0. Take z = (1,1)” then

for all x € A%. Let M := ( > where mq1,mog € A%Y™ mqo € A. Take
U(.Z‘)TM.%' = a(m12) + mqg = 0.
i.e. mia = —o(mi2). Take x = (1,m12), then the cone Sy]rn2 (A, o) is proper.
o(x)' Mz = 2m3y = —20(mis)mis = 0

Because (A, o) is Hermitian, mi2 = 0. So we obtain M = 0.
2. Show that for every M € Maty(A), o(M)"M € Sym5°(A,0). For every
r = (21,72) € A2,

T

o(x)'x = o(x1)r1 + o(x9)zs € AL

because A% is a convex cone. Therefore,

o(x)o(M)" Mz = o(Mz)T (Mz) € AL
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Therefore, the convex cone C(f(Maty(A))) where (M) = o(M)TM for M €
Matg(A) is contained in the proper convex cone Syms (A, o), i.e. it is proper as
well.

3. Show that for M € Symy(A,o), M? = 0 if and only if M = 0. Let M :=

mi1p M2
where mq1,moo € A%Y™, mqg € A. Assume
o(miz) mao

0= M2 — < miy +migo(mmz) miimi2 + m12m22>
o(miz)mi1 + mogo(miz)  o(miz2)miz + m%g

Since the cone A“;yg” is proper,
m%l + migo(miz2) =0
implies m1; = 0 and mq5 = 0, and
o(mi2)miz + miy =0
implies mog = 0. O]
Corollary 2.1.35. Uy(A,0) is a mazimal compact subgroup of Mat; (A)

Proof. Follows from the Remark [2.1.19 O

Let A be a Hermitian algebra. We consider A¢c := A ®g C and extend o in the
complex anti-linear way, i.e. we define &(z +iy) := o(x) — o(y)i. In this section, we
show that (Ac, o) is Hermitian.

We embed Ac into Matg(A) in the following way:

T: A(C — Matg(A)
Tty (a; y>‘ (2.1.1)

This map is a injective homomorphism of R-algebras. Moreover, the anti-involution
& corresponds under this embedding to ¢”. By Corollary [2.1.17, we obtain:

Corollary 2.1.36. e The algebra (Ac,a) is Hermitian.

o The group U(Ac,0) = {z € Ac | a(z)z = 1} is a mazimal compact subgroup
of AZ.

Analogously, we can consider the quaternionification Ag := A®gH of A (for more
details about quaternionic extensions of algebras see Section [2.4.1)). Then Ay can
be embedded into Matg(Ac) in the following way:

Ty: Al — Matg(Ac)

. x oy (2.1.2)
r+y) — <—gj ;z)
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This map is a injective homomorphism of C{i}-algebras. Moreover, the anti-
involution o; on Ay defined as follows:

o1(z+yj) =0(x) +o(y)j

for 2,y € Ac, corresponds under this embedding to 7. By Corollary [2.1.17, we
obtain:

Corollary 2.1.37. e The algebra (A, o1) is Hermitian.
e The group U(Amg,01) = {z € Ac | 01(2)z = 1} is a mazimal compact subgroup
of Aj.
2.1.4 Maximal compact subgroup of Sp,(A, o)

In this section, we assume (A, o) to be Hermitian algebra with an anti-involution.
Let (Ac, oc) be the complexification of (4, 0), i.e. Ac := A®grC, oc is the complex
linear extension of o. We also denote by &¢ the complex antilinear extension of o,
ie. forz,ye A

oc(x + yi) = o(z) — o(y)i.

We state two theorems that describe maximal compact subgroups of Spy(A, o)
and Spy(Ac,oc). The proofs of this theorems will be given in more general case in

Sections [2.7.4] and R.7.5

Theorem 2.1.38. The subgroup

KSp2(A7 U) = Sp2(A7 J) N UQ(A7 U) =

) {(—ab b> & Maty(4) | 7100+ o = 1}

ola)b—o(b)a=0
is a maximal compact subgroup of Spy(A, o).

Corollary 2.1.39. The embedding YT from maps isomorphically U(Ac,d) to
KSp2 (A7 U) .

Theorem 2.1.40. The subgroup

KSp5(Ac, oc) := Spa(Ac, oc) N Uz(Ac,oc) =

= {(_“b 2) € Mat(Ac)

is a mazimal compact subgroup of Spy(Ac,dc).

oe(a)a+ oc(b)b =1 }
o a=20

Corollary 2.1.41. The embedding Yy from maps isomorphically U(Ay, o1)
to KSp5(A4, o).
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2.1.5 Classical examples
Some classical Lie groups of tube type can be seen as Spy(A4, o).
1. For any field K, A = Mat(n,K), o(r) = rT, we get
Spy(A, o) = Sp(2n, K).
In the case K =R, (A4, o) is Hermitian.
KSpy(A,0) = T(U(n)) =2 U(n).

In the case K = C, (A,0) is the complexification the Hermitian algebra
Mat(n, R).
KSp5(4,0) = Sp(n).

2. For A = Mat(n,C), 5(r) = 71, Spy(A, &) is isomorphic to U(n,n). To see this,
we notice that the standard Hermitian form h of signature (n,n) on C2" is
given by h(z,y) := iw(zT,yT) where T' = diag(Id,,, —iId,,)). In this case Ac
is isomorphic to Mat(n, C) x Mat(n,C) (see Section [A.2.1)). Therefore.

KSpy(A,0) 2 U(n) x U(n).

3. For A = Mat(n,H), o1(r) =71 = &(r1) — o(r2)j for r = r1 +r9j and r,79 €
Mat(n,C). We get in this case Spy(A,o1) is isomorphic SO*(4n) (or some
authors use terminology O(2n,H)) considered as the group of isometries of the
following quaternionic form 8 on H?":

2n

Bx,y) = Zijys = 2" (Idan 5)y.
i=1

To see this, we notice that

Idgn] = O‘1(T) ( 0 Idn> T

—-1d, O
for
T i 1d,, —1Id, j
- V2 \—1d,j Id,, ’

In this case Ac is isomorphic to Mat(2n,C) (see Section |[A.2.2)). Therefore.
KSpy(A,0) = U(2n).
4. For A = Mat(n,H), oo(r) = o(r1) + a(r2)j for r = r; + roj and ry,re €

Mat(n,C). We get in this case Spy (A, 0¢) is isomorphic Sp(n,n) considered as
the group of isometries of the following quaternionic form w on H?":

2n
—1d 0
_ = =T n o
/B(‘T’y)_Elxzyz—x ( 0 Idn>y_
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—k (00(33) (Idg ’ —I?in k:) y) '

To see this, we notice that
Id, k 0 _ 0 Id,,
< 0 —Id, k:> = oo(T) (Idn 0 ) T

p_ L (T, Idk
T V2 \Id.k 1, )

The algebra (A,o0p) is not Hermitian. The maximal compact subgroup of
Sp(n,n) is Sp(n) x Sp(n) (one can see it using the machinery developed in the

Section [2.3.2]).

for

2.2 Invariants of isotropic lines

In this section, we assume (A, o) to be an R- or C-algebra with an anti-involution.
We take the group Spy(A, o). It acts on the space of isotropic lines in (42, w):

P(Is(w)) = {zA C A% | w(z,z) = 0, = regular}.

Similarly to the previous section, here we want to study this action.

2.2.1 Action of Sp,(A, o) on isotropic lines
Proposition 2.2.1. Spy(A, o) acts transitively on P(Is(w)).

1 T x sy
Stabgp, (4,0) <<O> A) = {(0 U(acg)J1> |z e A,y e A% }

0 x 0 sym
s (0)4) = (2 2 )1 rccaom)

Proof. Spy(G, o) acts transitively on the space of isotropic lines since it acts transi-
tively on Is(w).
We prove only the statement for the first stabilizer. The second one can be proved

analogously.
T a 1\ (=
b t)\0) \b)’

Since
x € A* and b = 0. Furthermore,

(GO 6D ot o) = (5 0):

we obtain t = o(x) 7!, a = xy for y € AY™. O
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2.2.2 Action of Sp,(A, o) on pairs of isotropic lines

Proposition 2.2.2. Two elements u,v € Is(w) are linearly independent if and only
if, up to action of Spy(A, o), u = (1,007, v = (a,b)T with b € AX. Moreover, if
w(u,v) =1, then a € A%Y™ b=1.

Proof. Spy(A, o) acts transitively on Is(w), therefore, up to Spy(A,o)-action, we
can assume u = (1,0)”. Since u and v are linearly independent, b € A*. If,
w(u,v) =1 =>b, then v = (b, 1)T isotropic, i.e.

w(v,v) =0(b) —b=0
So b e A%Y™, O
Corollary 2.2.3. If x,y € Is(w) linearly independent, then w(z,y) € A*.
Proposition 2.2.4. If (z,y) is a symplectic basis then there exists the unique

g € Spy(A, o) such that g(1,0)1 = z, g(0,1)T = y. In particular, Spy(G, o) acts
transitively on (G, o)-symplectic bases.

Proof. We can assume, z = (1,0)”, y = (a,1)” and a € A*¥™. Take g := <(1) (1I>,
then gz =z, gy = (0,1)7. O

Corollary 2.2.5. Let ©A, yA be two transverse isotropic lines with x,y € Is(w).
Then there exist M € Spy(A,o) and y' € Is(w) such that y A = yA and Mx =
(1,007, My’ = (0, )T In particular, w(z,y’) = 1.

Proposition 2.2.6. Spy(A, o) acts transitively on pairs of transverse isotropic lines.

i () -0)4) ~{(; )2}

Proof. By the Corollary[2.2.5] every pairs of transverse isotropic lines can be mapped
to ((1,0)T 4, (0,1)T A) by an element of Spy(A, 7). So Spy(A, o) acts transitively on
pairs of transverse isotropic lines.

By the Proposition [2.2.]

1 0
stabsy,iae ( (o) 4 (1) 4) =

— Stabgp, (4.0) <<(1)> A) N Stabgp, (4.0 <<(1)> A> _
:{G U(ﬁ)_1>\xeA}. O
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2.2.3 Action of Sp,(A, o) on triples of isotropic lines

Let (x1A,x34,22A) be a triple of pairwise transverse isotropic lines where all z; €
Is(w). Because of transversality of x1 A and x2 A, we can assume w(z1,22) = 1. Up to
action of Spy(A, o), we can assume x; = (1,0)7, 2o = (0,1)7. We can also normalize
x3 so that w(xy,z3) = 1. Then x3 = (b, )T, b = w(x3,12) € (A%Y™)*.

Proposition 2.2.7. Orbits of the action of Spy(A, o) on triples of pairwise trans-
verse isotropic lines are in 1-1 correspondence with orbits of the following action of
AX on (ASym)X

v AX x (Asym)x N (Asym)x

(a,b) — abo(a).

Proof. Let (ly,13,l2) is a triple pairwise transverse of isotropic lines. As we have
seen, up to Spy(A, o)-action, we can assume I; = ;A for 1 = (1,0)7, 2o = (0,1)7,
z3 = (1,b)T with b € (A%¥™)*. The stabilizer Stabgp (4)((1,0)7 A4, (0,1)TA) = A*
acts on z3 in the following way:

diag(a,o(a) s = (ab,o(a) T = (abo(a),1)Ta™?

i.e. diag(a,c(a)~1)(b,1)T = (abo(a), )T A
So we see that in the orbit of (b,1)T' A are exactly all isotropic lines of the form
(v, 1)T A where V' is from the orbit of b under 1. O

Corollary 2.2.8. If A is the complezification of some Hermitian algebra (Ag,oR)
and o is the complex linear extension of og, then Spy(A, o) acts transitively on the
set of all triples of pairwise transverse isotropic lines.

Proof. By the Theorem the action )¢ is transitive. O

Definition 2.2.9. In the case (A4, 0) to be Hermitian, the triple (I1,[3,12) is called
positive if up to action of Spy(A, o), l; = x;, 21 = (1,0)7, 29 = (0, )T, 23 = (b,1)7
with b € BYY™.

Proposition 2.2.10. In the case (A, o) to be Hermitian, Spy(A, o) acts transitively
on positive triples of isotropic lines.
The stabilizer of the positive triple

()~ ()~ 6))

in Spy(A, o) coincides with the following subgroup:

U= {(g 0) lue U(A,a)} ~ (A, 0)

u

The stabilizer of every positive triple of isotropic lines is conjugated in Sps(A, o)

to U.
Proof. See Proposition O
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2.2.4 Invariants of quadruples of isotropic lines

We consider the following subspace of A:
Ag = {bV' | b1/ € (AY™)*}.
A* acts on Ay by conjugation because for b, b’ € (A%Y™)* a € A*:
a(b)a™! = (abo(a))(o(a) )™t € Ap.

Remark 2.2.11. The well-known fact from the linear algebra is that for matrix alge-
bras A over R, C or H, it is always Ayg = A*.

Proposition 2.2.12. Orbits of the action of Spy(A, o) on quadruples of pairwise
transverse isotropic lines are in 1-1 correspondence with orbits of the following action
of A* on Ag:
n: AX x Ag — AO
(a,b) +~ aba"l.

Proof. Let (l1,13,12,14) be a quadruple pairwise transverse of isotropic lines. Then
up to action of Spy(A4, ), we can assume I; = (1,0)7A4, I = (0,1)T A, I3 = (b,1)T A,
I3 = (1,0)T A with b, € (A%¥™)*. Consider the action of the stabilizer of (I1,12):

diag(a,o(a))(b,1)T A = (abo(a),1)A,

diag(a,o(a) ) (1,0) A= (1,0(a) " Wa 1) A.

We consider the map (l1,13,12,14) — bb' € Ag. This map is well-defined, bijective
and the action of the stabilizer of (I3, l2) (that is isomorphic to A*) induces the action
of A* by conjugation on Ag. So we obtain that this two actions are isomorphic. [J

Definition 2.2.13. The conjugacy class of Ay corresponding to the quadruple
(I1,13,12,14) of pairwise transverse isotropic lines is called cross ratio.

2.2.5 Examples of matrix algebras

In this section, we construct explicit examples of spaces of isotropic lines for classical
matrix algebras. To avoid abusing of notation, we will use the following notation: for
complex numbers, we write C{I} to emphasize that the imaginary unit is denoted by
I. Similarly, for quaternions, we write H{I, J, K} to emphasize that the imaginary
units are denoted by I, J, K. The multiplication rule is then IJ = K.

Example 1. Let (A,0) be (Mat(n,R),0), (Mat(n,C),o), (Mat(n,C),5) or
(Mat(n,H), o) where o is the transposition, & the composition of transposition and
complex /quaternionic conjugation.

Every regular element of z € A? can be seen as a 2n x n-matrix of maximal rank.
Columns of this matrix are elements of R?" considered as a right R-module where
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R is R, C or H. If we take the R-span of this columns, we obtain n-dimensional
submodule of R?" denoted by Spang(x). It is easy to see that the map:

L: P(A?) — Gr(n,R*™)
A +— Spang(z)

where Gr(n, R?") is the space of all n-dimensional submodules of R?" is a bijection.
We consider the following form (bilinear or sesquilinear depending on o) on R?":

o, v) = o(u) (_ ?dn I‘é“) v

for u,v € R?". Then x € Is(w) if and only if Spang(z) is isotropic with respect
to @, that means for all u,v € Spang(x), @(u,v) = 0. So we obtain that L maps
bijectively isotropic lines of A? to isotropic n-dimensional submodules of R?". Such
submodules are called Lagrangian with respect to @. The space of all Lagrangian
with respect to @ submodules are denoted by Lag(R*", ).

Example 2. Let A = Mat(n,C{I}) ® C{i} with the anti-involution & ® Id. We use
the map x form the Section to identify A with Mat(n, C{i}) x Mat(n, C{i}) =:
A’. The induced by & ® Id anti-involution

o' :=xo(E®Id)ox !
on Mat(n,C{i}) x Mat(n,C{i}) acts in the following way:
(m1,ma) = (m3,m7).
The map x can be extended componentwise to the map
X': Mato(A) — Matg(A).
Proposition 2.2.14. Spy(A, ¢ ®1d) is isomorphic to GL(2n,C).
Proof. First, we note that
A% — Sym(n, C{i}) + Skew(n, C{i})I.

It is enough, to identify spy(A, 5 ® Id) and Mate(Ar) = Mat(2n, C) as Lie algebras.
First, we take the map y’ restricted to spy (A4, ® Id):

X' spy(A, o) — Mat(2n, C{i}) x Mat(2n,C{i})
a1 + asl b1 + bol . ai + ast b1 + boi ai — ast b1 — bot
c1+col —al +all c1tcoi —al +ali) \e1—coi —al —ali) )"

where a1,a2 € Mat(n,C{i}), bi,c1 € Sym(n,C{i}), ba,ca € Skew(n,C{i}). This

is an injective homomorphism of C{i}-Lie algebras as restriction of injective map.
Finally, we take a projection to the first component:

m1: Mat(2n, C{i}) x Mat(2n,C{i}) — Mat(2n, C{i}).

Easy computation shows that 71 o X’ is an isomorphism. O
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The set (A’)? can be identified with the space of pairs (1, 29)” such that z1, x5 €
Mat(n,C{i}). We define the sesquilinear form:

w((@1,22)", (y1,92)") = 0’ (1, 22) (—(Id,?, Id,) (Idn(’)ldn)) (y2,52)" =
ooy, B, )

Is(w) = {(l1,12) | | = z1 Mat(n,C{i}), lo = xo Mat(n,C{i}), z1, z2 regular, w(z1,x2) = 0}.

Therefore,

Since w is non-degenerate, lo is uniquely determined by [;. Therefore, we can identify:
Is(w) = {z Mat(n, C{i}) | x regular}.

As in the previous example, we can identify lines in Mat(n, C{i})? with Lagrangian
subspaces of (C?", &) where:

. 7 0 Id,
&(u,v) =u (—Idn 0 )Y

So the space Is(w) can be identified with
Is(w) = {(I1,15) € Gr(n,C*™)? | &(u,v) =0 for all u € I, v € Iy }.

The form @ is a non-degenerate. Therefore, for I € Gr(n, C?") there exists exactly
one @-orthogonal complement [+ € Gr(n,C?") such that for all u € I, v € I+,
@(u,v) = 0. So we can identify

Is(w) = Gr(n, C*™)
and GL(2n,C) acts on Gr(n,C?") in the standard way.

Example 3. Let A = Mat(n, H{i, j, k}) ® C{I} with the anti-involution & @ Id. We
use the map ¢ form the Section to identify A with Mat(2n,C) =: A’. The
induced by ¢ ® Id anti-involution

o :=1o(G®Id)oy?

on Mat(2n, C) acts in the following way:

(0 1y (0 1
" ~1d 0)™ \~1d 0)"
We define the following o’-sesquilinear form on (A4’)?: for x,y € (A)?

0 Iday,
s =@ (g )
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Proposition 2.2.15. Spy(A,d ®1d) is isomorphic to O(4n,C).
Proof. M € Spy(A’,0") = Spy(A, 5 ®1d) if and only if

g 0 g, [ 0 Idy,
o (M) (—1d2n 0o JM={ 1 0 )

ie.
0 Idy 0 Idn
[ -1dn O 0 Vi Id, 0 0
0 0 1d,, 0 0 1d,
- Idn 0 - Idn 0
0 Iday, _ 0 Iday,
'(—Idgn 0 >M_ (—Idgn 0 )
This is equivalent to:
0 Id, 0 Idy
0 0
—1d 0 —1Id 0
T n _ n
M 0 —Id, 0 M= 0 —Id, 0
1d,, 0 Id,, 0

So the group Spy(A, o) is the group of symmetries of the symmetric bilinear form
form

0 Id,,
—1d, O

0

0

0 —-Id,
Id,, 0

on C*. But all symmetric bilinear forms on C** are conjugated. Therefore,

Sps(A, o) is isomorphic to O(4n,C). O
Note that Is(w) = Is(w’) for

0 Id,
. 0 ~1d, 0
0 —1Id, 0 Y-
d, 0

(z,y) =

As before, we can identify lines in (A’)? with the space Gr(2n,C*") of 2n-
dimensional subspaces of C*" using the map L (see Example . Under this map,
the space Is(w) goes to the space Lag(C*", &) where

0 Id,
0
- ~Id, 0
0 —Id,
Id, 0 0

@(u,v) =u

for z,y € C¥. The group O(@) = O(4n,C) acts on Lag(C*",&) in the standard
way.
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2.3 Models for the symmetric space of Sp,(A, o) for
Hermitian A
The goal of this Chapter is to construct different models of the symmetric space for

Spy(A, o) for a Hermitian algebra (A, o).

2.3.1 Complex structures model

Definition 2.3.1. A complex structure on an right A-module V' is an A-linear map
J:V — V such that J? = —Id.

Let V = A? and w be the standard symplectic form in A2. For every complex
structure J on A2, we can define the following o-sesquilinear form

hy: A?x A2 - A
(z,y) = wlJ(2),y)

We remind the definition of the o-inner product:

Definition 2.3.2. A o-sesquilinear form h on (A% w) is called o-inner product if h
is o-symmetric and for all regular v € A2, h(v,v) € AT

We consider the following space:
¢:= {J complex structure on A? | hy is an o-inner product} .

Proposition 2.3.3. Let J € € and w € Is(w), then J(w) € Is(w).

Proof. For w € Is(w),

therefore, J(w) € Is(w). O
Definition 2.3.4. The standard complex structure on A2 is the map

Jo: A2 — A2
(.7), y) = (yv —33')

Theorem 2.3.5. Spy(A, o) acts on € by conjugation. This action is transitive. The
stabilizer of the standard complex structure Jo is KSpy(A, o).
In particular, € is a model of the symmetric space of Spy(A, o).

Definition 2.3.6. We call the space € the complex structure model of the symmetric
space of Spy (A4, o).

This Theorem will be proved in more general case in the Section [2.9.1]
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2.3.2 Symmetric space of O(h) for an indefinite form h

Definition 2.3.7. The o-sesquilinear o-symmetric form h on A? such that there
exist a basis (e1, es) of A% such that h(ej,e1) = —1, h(ez,ea) = 1, h(e1,ex) = 0 is
called indefinite.

The standard indefinite form hg is the o-sesquilinear o-symmetric form on A?

given by the matrix <_01 (1)) in the standard basis ((1,0)7, (0,1)T) of A2.

We define the group of symmetries of h:

O(h) = {g € Aut(A?) | h(gz, gy) = h(x,y) for all 2,y € A%}.
We define the following spaces:
Koy = {zA | h(z,z) € AP}
X = X0 (hyy)-
Remark 2.3.8. Xo) is well defined because if A = yA, i.e. there exists a € A~
such that y = xa, then
h(y,y) = o(a)h(z,x)a = o(a)o(p)pa = o(pa)pa € A¥™

where p € A%, o(p)p = h(z,z) € A™.

Remark 2.3.9. Since Aut(A?) acts transitively on bases of A2, all O(h) are isomorphic
for indefinite h. Therefore, all Xg(3) are also isomorphic.

Proposition 2.3.10. O(hy) acts transitively on X with stabilizer of (0,1)T A equal
to U(A,0) x U(A, o) diagonally embedded into O(hst).

Proof. Since hg((0,1)7,(0,1)7) =1 € A™, the line (0,1)7A € X. Let vA € X for
some v € A%, Since hg(v,v) € A¥™, there exists p € A such that hg(v,v) = o(p)p.
Let v’ := vp~!, then h(¢/,v') = 1 and v'A = vA.

Consider the following vector v’ := (z,0(ve) Lo (v1)x)T where v = (vy,v2)T, 2 =
(1+ vla(vl))%. Then easy calculation shows that h(v',v") = —1 and h(v,v") = 0.
So we can take the following matrix M := (v,v) € O(hg). Since M(0,1)T = v, we
obtain M (0,1)TA = vA, i.e. O(hg) acts transitively on X.

Now, compute the stabilizer of (0,1)T A. Let

M= <‘CL Z) € O(hg)

stabilizes (0,1)TA. Then M (0,1)" = (b,d), i.e. b =0. Moreover

(@ =0 B D Y- )6 -
_ (—U(a)ao—i- o(c)e a((%cé) '

Therefore, o(d)d = 1, i.e. d is invertible. So we obtain ¢ = 0 and o(a)a = 1, i.e.

a,d € U(A, o). O
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Proposition 2.3.11. The group U(A,o) x U(A, o) diagonally embedded into O(hs;)
is a mazximal compact subgroup of O(hst). In particular, X is a model of the sym-
metric space of O(hgt).

Proof. First, note that the Lie algebra of O(hg;) is:

o(hs) = {(J?b) Z) lo(a) = —a € Ao(d) = —d € Abe A} |

Assume, K is compact subgroup of O(hs) that contains U (A, o) xU (A, o) as a proper

a b .
o (b) d) with b # 0. Therefore,

v = (ot 0) = (otty 0) = (6 1) <me®

te = (w(zb) té’) € Lie(K)

for all ¢ € R. Take a polar decomposition of b = uy where u € U(A,0), y € AY™.
We take the spectral decompositions of y: y = Zle Aic; where (¢;) is a complete
system of orthogonal idempotents, A1,..., A € R.

subgroup. Then Lie(K) contains an element (

and

Further,
1:2 . bO'(b) 0

N 0 ob)b) "
Therefore,

k k

bo(b) = UZ Meu™, o(b)b = Z Me;
i=1 =1

and

k P koo N
exp(tz) = u z;fi:l ?OSh(t)‘z)Cﬂil U Z};i:l sinh(tA;)¢; K
> iz sinh(tAi)ciu Y oioq cosh(th)c

For ¢ goes to infinity, exp(xt) does not converge even up to subsequence unless
all A\; = 0. But this means that b = 0, so we obtain K = U(A,0) x U(A, o). This
contradicts to our assumption that U(A, o) x U(A, o) is a proper subgroup of K. [J

Proposition 2.3.12. The following map

P X = D(A0):={ceA|l-o(c)ce A¥"}
(a,0)TA — ab!

1s @ homeomorphism.
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Proof. Let A € X then z = (a,b)” with —o(a)a + a(b)b € A", i.e. there exists
p € A* such that
—a(a)a+a(b)b=o(p)p.

Therefore,
a(b)b=o(p)p +o(a)a € AY™,

ie. b e AX. So for c = ab~!, xA = (¢,1)T A. Moreover, for every line zA € X, the
element ¢ € A such that 4 = (c,1)" A is well defined and 1 — o(c)c € A¥™.
For every ¢ € lo?(A, o), the line (¢,1)T A € X because

ha((e )T, (e 1)7) = 1 - o(c)e € AP™,
Therefore, ® is a homeomorphism. O

Corollary 2.3.13. O(hy) acts on D(A, o) via

2 M.z = (az + b)(cz +d)~!, where M = (Z Z) :

This transformation is called Mobius transformation.

Remark 2.3.14. Since (A, o) is Hermitian, by Proposition [2.6.49| the domain lo)(A, o)
is precompact.

2.3.3 Projective model

As usual, we denote by o¢ the C-linear extension of o, i.e.
oc(z +1y) = o(x) +io(y)

for every xz,y € A and by ¢ the C-antilinear extension of o, i.e.
oc(z +iy) = o(x) —io(y)

for every z,y € A.
As we have seen in the Corollary [2.1.36] (Ac,oc) is Hermitian.
We extend w in the following way:

setes) =@ (5 ) w

The following g-sesquilinear form is an indefinite form on A%:

0

) =oe(o) (0 §) = ivc(z.o)

Indeed,

s = e (0 §)o=oe (an@ (O 1)) = oethiz.

—1
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N\T \T
Then in the basis e1 := (%, ﬁ) , €9 1= (%, —ﬁ) , the form h is represented by

0\ . . . . .
1), i.e. h is a d¢-sesquilinear indefinite form on A(QC.

0
Note, Spy(4, o) acts on A% preserving we and h.

the matrix <

Proposition 2.3.15. Spy(A, o) acts transitively on the space
P = {vAc | v € Is(we), h(v,v) € (AZ)1} =Is(we) N Xo(n)

with the stabilizer of (i,1)" Ac equal to KSpy(A, o).
In particular, P is a model of the symmetric space of Sps(A, o).

Definition 2.3.16. We call the space B the projective model of the symmetric space
of Spy(A, o).

This Theorem will be proved in more general case in the Section [2.9.2]

2.3.4 Precompact model

We consider the following Sp,(Ac, o¢)-transformation that maps h to the standard

indefinite form hg:
1 /1 4
=35l 1)

ie. o(T)'[hT = diag(—1,1) = [hg]. Since T € Spy(Ac,oc), it stabilizes the set
Is(w(c).

Theorem 2.3.17. The map
®:  TMR = D(AX,5¢):={ce AT |1 —éce (AZ)}
(a, b)TA(C = ab!
is a homeomorphism. The set B(A((U:C, oc) C AZE is precompact.

This Theorem will be proved in more general case in the Section [2.9.3]

Remark 2.3.18. The group T~ !Spy(A,0)T < Spy(Ac,ac) acts on ZOD(A%C,&(C) by
Mébius transformations.

Definition 2.3.19. We call the space E(Afé‘c, ac) the precompact model of the sym-
metric space of Spy(A4, o).
2.3.5 Compactification and Shilov boundary
We take the topological closure of lo?(A%C, ) in A7
D(AZ,5) :=={ce€ AL | 1 —cc € (AZ)>0}
The boundary of D(AZ",5) contains the following closed subspace:

S(AZ6,5) := {c € AZ | 1 —cc=0}.
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Definition 2.3.20. We call S(AE‘C,(?) Shilov boundary of the precompact model
D(AZE,5).
Note, that
S(AZE,5) =U(Ac,0) NAZE
and it is compact.

Remark 2.3.21. The map ®~! extends to the boundary of D(AZF,5) and remains
continuous and bijective. Since the boundary is compact, it is a homeomorphism.
Therefore, we can see the boundary also in the projective model. In particular, we
can see the Shilov boundary there.

The next Proposition describes the Shilov boundary in the projective model.
Proposition 2.3.22. The preimage of the Shilov boundary S(AZC,¢) in P(Is(wc))

under the map ®oT ™! gives a compact subset of the boundary of the projective model.
It consists of all lines of the form xAc such that x € Is(w).

This Proposition will be proved later in the Section [2.9.4]

Corollary 2.3.23. The space P(Is(w)) of isotropic lines of (A% w) embedded into
P(Is(wc)) as:

A — zAC
is a Shilov boundary in the projective model. This is a closed (even compact) orbit
of the action of Spy(A, a) on the boundary of the projective model.

2.3.6 Upperhalf space model

We denote as before by Ac the complexification of A4, i.e. A¢c := A®r C. We extend
o to Ac complex linearly, i.e. oc(z + yi) := o(z) + o(y)i.

Every element of z € A" can be uniquely written as z = x+yi where z,y € A%Y™.
We denote by Re(z) := x, Im(z) := y. We also have a complex conjugation on B¢
given by z = x — yi.

Definition 2.3.24. The upperhalf space is
Ui={ze€ AL | Im(z) € A"}
Theorem 2.3.25. Spy(A, o) acts transitively on 4 via

d

This transformation is called Mo6bius transformation.  The stabilizer of 1i 1is
KSpy(A, o). In particular, L is a model of the symmetric space of Spy(A, o).
The map:

2z M.z = (az +b)(cz +d)~, where M = (Z b) :

F: P — by

(a:l,mg)TAC — x1x2_1

defines a Sps(A, 0)-equivariant homeomorphism between projective model and upper-
half space model.

This Proposition will be proved later in more general case in the Section [2.9.5
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2.3.7 Connection between projective, precompact and upperhalf space
models

In this section, construct explicitly an Spsy(A,o)-equivariant homeomorphism be-
tween the projective model and the upperhalf space model of the symmetric space
for Spy(A, o).

As we have seen, the map:

F: xB — by

(:L’l,l’Q)TA(C —> SL‘1CL’51

is a homeomorphism.
As we have seen in the Proposition [2.3.17] the map

DoT ' P - D(AT, 6¢) i={c € AT | 1—cc € (AT),}.

defines another homeomorphism. These maps F and ® o7 ! can be seen as different
coordinate charts for the projective model B of the symmetric space for Spy (A, o).

2.4 Models for the symmetric space of Sp,(A, o) for
complexified A

The goal of this Chapter is to construct different models of the symmetric space for
Sps(A, o) where A = Ag ®p C for some Hermitian algebra (Ag, oR).

2.4.1 Quaternionic extensions of algebras

Let H be the quaternionic skew-field. Sometimes, to make a construction more
precise, we will write H{¢,n,(} to emphasize what the imaginary unities of H are.
The multiplication rule is then {n = —né = (. Sometimes, we will also write C{x}
for C to emphasize the imaginary unit .

If Br ®r C is the complexification of some real Lie algebra Bg, then it can be
embedded into Bg ®g H in many different ways. If we write B := Br ®gr C{i},
By := Br ®r H{i, J, K}, it means that B is embedded into By by the map induced
by the identification B 3 i — i € By.

Let B be a C-algebra, By C B be R-subalgebra of B, and there is a central element
I € Z(B) such that I? = —1 and B = By @ Bol. Then we say that By be a real
locus of B with respect to the imaginary unit /. In this case, B is isomorphic to
By ®@r C{I} as C{I}-algebras. We take the following H-algebra:

H[BaBOale] := By ®RH{17J7K}
The algebra B sits in H[B, By, I, J] as described above.

Definition 2.4.1. We call H[B, By, I, J] the quaternionification of B with respect
to the real locus By and the imaginary unit 1.
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2.4.2 Quaternionic structures model

Let (AR, oRr) be a Hermitian algebra with anti-involution og. We consider the com-
plexification A := Ar ®r C. We denote by o the complex linear extension of og and
by & the complex anti-linear extension of og. As we have seen, (A, ) is a Hermitian
algebra.

Definition 2.4.2. A quaternionic structure on an right A-module V is an additive
map J: V — V such that J?2 = —Id and J(za) = J(z)a for all z € V, a € A.

Let V = A? and w be the standard symplectic form in A?. For every quaternionic
structure J on A2, we can define the form:

hy: A2x A2 — A
(r,y) = w(J(2),y)

that is g-sesquilinear. Indeed, for a1,a0 € A
hj(zai,yas) = w(J(za1),yaz) = w(J(x)ay,ya2) = d(a1)hs(x,y)as.
We consider the following space:
¢ := {J quaternionic structure on A% | h; is a g-inner product}.

Definition 2.4.3. The standard quaternionic structure on A? is the map

Jo: A2 o A2
(x,y) = (gu_j:)

Remark 2.4.4. hy, is the standard G-inner product on AZ.

Proposition 2.4.5. Let J be a quaternionic structure on A%. J € € if and only if
there exists a reqular isotropic w € A% such that (J(w),w) is a symplectic basis.

Proof. 1. Let J € ¢ and w € A? some regular isotropic element. Since hj(w,w) €
A7, we can normalize w so that hj(w, w) = 1. Then:

w(J (w), J(w)) = hy(w, J(w)) = (h;(J (w), w)) = o(w(w, w)) = 0,
w(J(w),w) = hyj(w,w) = 1.

Therefore, (J(w),w) is a o-symplectic basis.
2. Let w € A? and (J(w),w) is a o-symplectic basis. Then,

hy(w,w) =w(J(w),w) =1
ha(J(w), J(w)) = w(J*(w), J(w)) = w(J (w),w) =1,
hy(J(w),w) = w(J*(w),w) = —w(w,w) = 0.

Therefore, (w, J(w)) is an orthonormal basis for hy, and in this basis, h; is the
standard o-inner product, so h; is an -inner product. O
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Corollary 2.4.6. For every J € €, for every v € Is(w), J(v) € Is(w).

Theorem 2.4.7. Spy(A, o) acts on € in the following way:
(9,J) =g todog

This action is transitive. The stabilizer of the standard quaternionic structure is
KSp5(4,0).
In particular, € is a model of the symmetric space of Spy(A, o).

Proof. 1. First, we prove that Spy(A, o) acts on € by conjugation. Let J € €,
g € Spy(A, o). Consider J' := g1 oJog. Then

(J)?=gtoJogogloJog=—Id.
So J' is a quaternionic structure on A2. For a regular z € A2,
hy(z,2) = w(J'(x),2) = w(g™ Jg(), 2) = w(Jg(), g(x)) =

= hy(g(z), 9(x)) € AT

Therefore, h s is an inner product on A%, ie. J' € €.

2. Second, we prove that the action is transitive. Let J € €, take a symplectic
basis (J(w),w) from the Proposition 2.4.5 Since Spy(A4,0) acts transitively on
symplectic bases, there exists g € Spy(A, o) which maps the standard symplectic
basis to (J(w),w). That means, g maps the standard complex structure Jy to J. So
the action is transitive.

3. Finally, compute the stabilizer of Jo. g € Stabgp (4,0)(Jo) if and only if g €
Spa(A,0) and g € O(hy,) = Uz(Ac, ), ie.

g € Spy(A,0) NUs(Ac,0) = KSps(A4, o). O

Remark 2.4.8. Since any quaternionic structure is a C-antilinear map, if we write
the action of Spy(A, o) in the matrix form, we need to add the complex conjugation:
i.e. let [J] be the matrix for the quaternionic structure J, then

[g7 o Jogl =g "[J]g.

2.4.3 Projective model for Sp,(A, o)
Now, we consider the following quaternionic extension of A:
Ay :=H[A, AR, i, j| = Ar @ H{4, j, k}.
This space can be embedded into Mats(A) as a subalgebra in the following way:

AH — Matg (A)

. al as
a1 +azy I
—a2 ai
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The anti-involution 7 on Mats(A) restricts to the following anti-involution on Ag:
o1(a1 + azj) := &(a1) — o(az)j,

where aj,as € A. Because (A,5) is Hermitian, by the Proposition
(Matz(A),&7) is Hermitian and, therefore, (A, o1) is Hermitian as well.
We denote:
AZ = Fixaglon), (AZ) o= Bi(A%)

where
Ou: Am — Af
a — oi(a)a.

We also consider the following anti-involution on Ag:
oo(a1 + azj) := o(a1) + o(az)y,

where a1,a2 € A and extend w in the following way:

anla) = (O )

The following o-sesquilinear form is an indefinite form on AIQHI:

) =@’ (% 3)v

Indeed,
wna) =" (2 9) o= (@ (7)) =ortate)

\T \T
Then in the basis e; := (%, %) , €9 1= (%, —%) , the form h is represented by

. (—1 0\ . . e . .
the matrix ( 0 1>, i.e. his a oj-sesquilinear indefinite form on A[QHI.

Proposition 2.4.9. Spy(A, o) acts on A% preserving h. So we can see Spy(A, o) as
a subgroup of O(h).

Proof. Let z,y € A%, M € Spy(A, o), then

WMz, My) = o1(Mz)" ( 0 g) My = o1(2) (M) <_01 é) My =

— o1(2)"jo(M)T <_01 é) My = o1(2)” (_0] é) y = hiz,y).

So M preserves h. O
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Every quaternionic structure J on A? can be extended additively to a quaternionic
structure Jyg on AIQHI in the following linear way:

Ju(z(a+bj)) = J(z)(a+bj).
where x € A%, a,b € A.

Proposition 2.4.10. For every quaternionic structure J € S', there exist reqular
z,y € A% such that Ju(x) = xj, Ju(y) = —yj. Elements z,y are uniquely defined
up to multiplication by elements of Ay.

Proof. Since Spy(A, o) acts transitively on &', it is enough to prove the proposition
for the standard quaternionic structure Jp.
Since
Jo(ar + azj, b+ b2j)" = (b1 + bajj, —a1 — aj)”,
we obtain
)" )"

(b1 + bag, —a1 — agj)" = (a1 + azj, b1 + b2j) 5 = (—az + a1j, —by + b1j

if and only if a1 = bg, ao = —b1, ie.
o . _ N\T .o NT T
x = (a1 + azj, —az +aij)” = (a1 + azj, jlar +azj))” = (1,5 )a,

where a = aj + azj € Ap arbitrary element. Analogously, ¥ = (j,1)Ta where
a = a1 + azj € Ay arbitrary element. O

For a quaternionic structure J € &', we denote by [ the Ag-line y Ay such that

Je(y) = —yJ-
We consider the spaces of isotropic elements and isotropic lines of (AIQHI,WH)Z

Is(wy) := {z | © € A% regular, wy(z,z) = 0},
P(Is(wp)) := {zA | = € Is(wn)}.
We also consider the symmetric space of O(h):
Xom) =A{zA | h(z,z) € (A )+}.
Proposition 2.4.11. The map

F.: ¢ — PB:.= XO(h) N P(IS(WH))
J = lJ

defines is a homeomorphism that is equivariant under the action of Spy(A, o).

Definition 2.4.12. We call the space

P = XO(h) N P(IS(WH))

the projective model of the symmetric space of Spy (A, o).
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Proof. 1. Show that I € Xg(j). Since Spy(A,0) acts transitively on €, it is enough
to check it the standard quaternionic structure Jy:

(G076 =) (4 3) (1) =an (]) =2 e (g

2. Show that Iy € P(Is(w)). It is enough to prove it for Jy:

(G G =) () 5) (1) =1 (]) =0

3. Show that F' is surjective. Let v = u + wj € Ag such that vAy € PB. Since
h(v,v) € (Af' )+, we can renormalize v so that h(v,v) = 2. Since v € Is(w),

0 =wp(v,v) =w(u,u) + jw(w,w)j +w(u, w)j + jw(w,u) =

= w(u,u) — w(w,w) + (w(u, w) + w(w,u))j
So we have:
w(u,u) = w(w,w)
w(u,w) = —w(w,u).
Moreover,
2 = h(v,v) = h(u+ wj,u + wj) = h(u,u) — jh(w,w)j + h(u,w)j — jh(w,u).
Notice, for u,w € A2, h(u,w) = w(t,w)j = jw(u,w). Therefore,
h(”? U) = w(ﬂ, ﬂ)] + w(w7 w)] - w(ﬂ, U_J) + O.)('LU, 'LL)
= 2w(w, u) + 2w(w,w)j
So we have:
w(w,u) =1
wu,u) = w(w,w) =0
It means that (w,u) is a symplectic basis of (A2 w). We can define the following
quaternionic structure: J(u) = w, J(w) = —u. By the Proposition J e c.
Since
Ju(v) = Ju(u+wj) =w —uj = —(u+wyj)j = —vj,
we obtain F'(J) = vA, i.e. F is surjective.
4. The map F is injective because if l; = [y = yA for J,J' € S8 and some

y =y1 +y2j € Af. Then J(y1) = J'(y1) = —y2, J(y2) = J'(y2) = y1 and (y1,y2) is
a basis of 42, ie. J=J'.

5. Now, show the equivariance of F. Let M € Spy(A, o), J € € and u, w € A% such
that w := J(u), J(w) = —u. Then MJM 1 (Mu) = Mw, MJM~(Mw) = —Mu.
That means that for v = u + wj,

F(MJM™Y) = (Mv)Ay = M(vAy) = MF(J),

i.e. F is equivariant with respect to the Spy(A, o)-action. O]
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Corollary 2.4.13. The map

7. Spe(A,0)/KSp5(A, o) — B

is an Sps(A, o)-equivariant homeomorphism.

2.4.4 Precompact model for Sp,(A, o)

As we have seen in the Chapter in the Proposition 2.3.12] the space X' = Xo,,)
for the standard o;-indefinite form on A]%I can be seen as a precompact domain

D(Aw,5) :={c€ A | 1 — o1(c)c € (AF)+} C Ap.

To see the symmetric space for Spy(A, o) as a subset of this domain, we need an
Ag-linear transformation that maps h to the standard indefinite form. We can take

the following matrix:
1 /1 j)
T:=—1|. .
V2 (J 1

Then o1(T)T[h]T = diag(—1,1) = [hg] and TP C X. Notice, T € Spy(An, o),
therefore it stabilizes the set of isotropic elements of (A%, w).

Proposition 2.4.14. The image of T~YP under the homeomorphism ®: X —
D(Ay,o01) is

D(AD,01) == D(Am,01) NAY = {c € AD |1 —a1(c)c € (AF)+}.

Proof. To characterize the image of the symmetric space for Spy(A4, o) inside
D(Ag, 01), we remind that (x1,22)T € Is(w) if and only if og(z1)z2 € Af. There-
fore, (¢, 1)T is isotropic if and only if og(c) € AP, ie. ce AR,

(T 'Sy ={ce AP |1 —ai(c)c € (AT )4} C AP, O

Remark 2.4.15. The group T~ Spy(A, 0)T acts on b(AgHO, o1) by Mébius transfor-
mations.

2.4.5 Compactification and Shilov boundary

Let (A, o) be the complexification of a Hermitian algebra as before. The space
D(AR ., 01) = {c € AP |1 —a1(c)c € (AF)+}
is precompact. Let us take the topological closure of lo)(Aﬁ'_Ho, o1) in AR:
DAY, 01) :=={ce AR | 1 —o1(c)c € (AF')>0}-

The boundary of D(AJf,01) contains the following closed subspace:

S(AY,01) :=={ce A} | 1 —o1(c)c = 0}.
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Definition 2.4.16. We call S(Agﬂo,al) Shilov boundary of the precompact model
D(AR, 01).

Note, that S (Aff,01) is compact as a closed subspace of a compact.

Remark 2.4.17. The map ®~! extends to the boundary of D(A’,01) and remains
continuous and bijective. Since the boundary is compact, it is a homeomorphism.
Therefore, we can see the boundary also in the projective model. In particular, we
can see the Shilov boundary there.

The next Proposition describes the Shilov boundary in the projective model.
Proposition 2.4.18. The preimage of the Shilov boundary S(AJ, 1) in Is(wy) the
map ® o T~! gives a compact subset of the boundary of the projective model. It
consists of all lines of the form xAy such that x € Is(w).

Proof. Note that the line | € Is(wy) is of the form zAy for some x € Is(w) if and
only if n(l) = [ where n: Ay — Ap the following involution

n(er +c2j) = c1 — caj
for ¢1,co € Acyyy- Notice, 7 is an involution on Ay and
o1(oo(cr + c2j)) = &1 — 2j = —jnlc1 + c2j)J.

Assume ¢ € S(AY, 01), i.e. o1(c)! = ¢, op(c) = c. Then

(@oT (T od c) =& <((]) 6) <n(16)>) = <<jn{c)>> -

= —jnle) i =a1(oo(c)) = ai(c) t=c

i.e. for I = (c, 1) Ay, n(l) = 1.
If we take a line z Ay for some = = (21, 22)7 € Is(w), then

¢:= (o T ) (2A) = (21 — jws)(—ju1 + x2)~".
Since = € Is(w) C Is(wm), ¢ € Ag’. Further
a1(c)e = a1(o0(c))e = (F1 + jZ2) (jT1 + B2) "' (w1 — jwa)(—jar + 22) "' =
= (T1 + jZ2) (jT1 + B2) " (jT1 + B2)(—j) (—ja1 + 22) ' =
= (T1 + j22) (=) (—jar + 22) 7" = (—jar + 22)(—jzr + 22) ' = 1.
Therefore, (® o T~1)(zA) € S(AY, a1). O
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2.4.6 Upperhalf space model for Sp,(A, o)

Let Ar be an Hermitian R-algebra with an anti-involution og. We assume A :=
Ar ®r C{I} to be the complexification of Ag. We denote here the imaginary unit
by I because the algebra A sometimes is already a complex algebra where we just
forget about its complex structure, so it may contain ¢ as an element. In order to be
more precise, we do not use the letter ¢ in our construction.

We denote by o the complex linear extension of og. We denote by & the complex
antilinear extension of og.

We denote by A the quaternionification of Ag, i.e. Ay := Ag @gr H{I, J, K}. By
our convention form the previous Section we have A C Agy.

We extend o to Ag quaternionic linearly, i.e.

op:=0(z)+Jo(y) =o(z)+o(y)J =o(z)+a(y)J.

So AfY = Fixay(09) = A7 @ A%J is well defined.

Every element of z € A can be uniquely written as z = x + yJ where x € A7,
y € A°. We denote by Re(z) := z, Im(z) := y. We also have a quaternionic
conjugation on Ay given by 2=z — Jy =7 —yJ.

Definition 2.4.19. The upperhalf space is
U:={z € AP | Im(z) € AT}
Proposition 2.4.20. The following map

F: Pt — by
-1
(1, 22)T A+ 125
is @ homeomorphism.

Proof. Let (xl,xg)TAH € P. We take such representative (a:l,a:g)T that 29 € A.
Then

0= wH((azl,xg)T, (l’l,:(}Q)T) = O’o(ml)x'Q — O’o(mg)xl,

ie. op(xy)xe = o(z2)xy

h((z1,22)7, (21, 22)7) = (01 (21), 01 (72)) <_0J ‘g) <x1> —

Z2

=o1(x1)Jxe — d(xg)Jxy = 01(21)J29 — JOo(22)21 =
= O’1(.%'1)J.CE2 — J(T()(I’l).%'z = J(—2Im(ao(x1))J:v2) = 2Im(00(:1:1)):1:2 S (A]%Il)_;_.

In particular, xo ia invertible. If 1 = x17 + x12j then
Im(og(z1))x2 = o(212)22 € AT.
Therefore, x5 L' e Ay is well-defined. Moreover,

oo(z125 ") = o(23 oo(w1) = o(zy o (z2)miay ' = 2135,
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ie. x1w2_1 € AJ. Furthermore,
Im(ﬂ:lx;l) =Im((x11 + x12J)x51) = Im((:nnx;l + :L"lg:i‘glJ) = :Elgff;l € A7
if and only if
O'(ZL‘Q)IElgSE‘;lCEQ = o(z9)x12 € Ai
if and only if
0(3712)1‘2 c Ai_

So we obtain x1x2_1 € S. It is easy to check that the map
F1. a4 - L
z = (z,1)TAy

is inverse to F. Since F' and F~! are continuous, F is a homeomorphism. O

Corollary 2.4.21. Spy(A, o) acts on Y via

2+ M.z = (az +b)(cz +d)~, where M = <CCL Z) € Spy(A, o).

This transformation is called Mo6bius transformation. With respect to this action
of Spa(A, o) on U and the natural action on P, the map F becomes an Spy(A,o)-
equivariant homeomorphism.

Proposition 2.4.22. The map

w: Spy(A,o0) — U
M — M.1J

is continues, proper and surjective, i.e. Spy(A, o) acts transitively on S. The stabi-
lizer of 1J is KSps(A, o).

In particular, S is a model for the symmetric space for Spy(A, o).

Proof. Let z = x +yJ € S then y = u? for some u € (A%)*. Then
1 z\ (u 0 B u zo(u) N\ _
(0 D6 o)) = T ) oo -
=z+us(u)J =z+yJ ==z
An element M = <CCL Z) stabilizes 1J if and only if
1J = MAJ = (aJ +b)(c] +d)~' = (aJ +b)(—c+dJ) " .
So, a =d and ¢ = —b, i.e. M € KSp5(A, o). O

Corollary 2.4.23. The map 7 induces a homeomorphism

T sz(A, U)/ KSp%(A, U) - U
MKSp$(A, o) > M.1J

A Mébius transformation z — M'.z corresponds under this homeomorphism to the
left multiplication M KSp§(A, o) — M'M KSps5(A, o).
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2.4.7 Connection between projective, precompact and upperhalf space
models

Consider a Hermitian algebra (Ag, or) and its complexification A = Ar ®p C.
As we have seen, the map:

F: P — by

(z1,22)Ag — xlxgl

is a homeomorphism.
As we have seen in the Proposition [2.4.14] the map

DT P = DAY, 01) = {c € AL | 1 —o1(c)c € (AZ)+ ).

defines another homeomorphism. These maps F and ®o7~! can be seen as different
coordinate charts for the projective model B of the symmetric space for Spy (A4, o).

2.5 Classical examples

In this Chapter, we construct explicit examples of models of symmetric space for
classical Hermitian Lie groups of tube type. We will always denote by Ar a real
Hermitian algebra, the complexified algebra will be denoted by A := Ag ®gr C. The
quaternionification of Ag will be denoted by Ap.

For the algebras Mat(n,R) and Mat(n,C), we denote by o the transposition. For
Mat(n, C), we denote by & the composition of transposition and complex conjugation.
For Mat(n,H{i, j, k}), we denote by og the anti-involution acting in the following
way:

oo(a+bj) :=a’ + b4,

and by o1 the anti-involution acting in the following way:
o1(a+0bj) :=al — bl

for a,b € Mat(n,C{:}). In particular, we use the same notation in the case n = 1,
i.e. & is the complex conjugation on C.

To denote different models of the symmetric space for a group I' that can be seen
as Spy(A4, o) for some reel or complex A and anti-involution o, we use the following
letters: $(T") for the upperhalf space model, P(I") for the projective model, B(I") for
the precompact model and €(I") for the complex/quaternionic structure model.

2.5.1 Upperhalf space model

In this section, we construct upperhalf space models for classical Hermitian Lie
groups of tube type.
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Example 4. Let Ag := Mat(n,R) with the anti-involution o, then
A = Mat(n,R) ®r C = Mat(n,C),
Sps(Mat(n, C), o) = Sp(2n,C), Spy(Mat(n,R), o) = Sp(2n,R),
Ag = Mat(n,H), A° = Sym(n,C), A7 = Herm™ (n,C).

So we have the following model for the symmetric space for Sp(2n, C):

U(Sp(2n, C)) = {My + MaJ | My € Sym(n,C), My € Herm™(n)} C
C Mat(n, H).

The symmetric space for Sp(2n,R) is the real locus of this space:

U(Sp(2n,R)) = {M; + MaJ | My € Sym(n,R), My € Sym™(n,R)} C
C U(Sp(2n,C)).

Example 5. Consider the real algebra Ar := Mat(n, C{i}) with the anti-involution
0. Then
A = Mat(n,C{i}) ®r C{I},

Sps(Agr, ) = U(n,n),
Spy(A4, 0 ®Id) = GL(2n,C).
In the Section we studied the following C{i}-algebras isomorphism:

x: Mat(n,C{I}) ®r C{i} — Mat(n,C{i}) x Mat(n,C{i})
a+ bl > (a+ bi,a — bi)

where a,b € Mat(n, C{i}).
We have seen,

X(Ar) = x(Mat(n, C{I})) = {(m,m) | m € Mat(n, C{i})},
(A1) = L(m, mT) | m € Mat(n, C{I})} = Mat(n, C).
x(A4%®7) = Herm(n, C{i}) x Herm(n, C{i}),
X(A3%7) = Herm™ (n, C{i}) x Herm™ (n, C{i}).

So we have the following model for the symmetric space for GL(2n, C):

$(GL(2n,C)) = {(mlT1> i (mw) il maE Mat (n, C{i}), } C

mi Mmoo mi2, mao € Herm™ (n, C{i})

C H[Mat(n,C{i}) x Mat(n,C{i}), x(Mat(n,C{I})), (3,1), j].
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Since A = Ag N A% = Ap N A79% = Herm(n), we obtain the symmetric space
for U(n,n) is:

U(U(n,n)) = {(’m) + <m2)j mi € Herm(n, Cii}), } C U(GL(2n,C)).

my Mo mgo € Herm™ (n, C{i})

To see (U(n,n)) as a subset of Mat(n, C{i}) x Mat(n,C{i}), we have to identify j
and (i,7) = x(1 ® 1), so we get
U(U(n, n)) =

= {(m1 + mat, mq + in) ’ my € Herm(n,(C{i}),mg € Herm+(n,C{i})} -
C Mat(n, C{i}) x Mat(n, C{i}).

In a pair (my + mai,m1 + mai) for my € Herm(n,C{i}),ms € Herm™ (n, C{i}),
the second component is completely determined by the first one. It is easy to see,
because ims is skew-Hermitian and mq + mei corresponds to the decomposition of
an element from Mat(n,C{i}) in Hermitian and skew-Hermitian part. Therefore,
m1 and meo are well-defined by my + msi. Therefore, we can identify

U(U(n,n)) = {my + mai | m1 € Herm(n, C{i}),my € Herm™ (n, C{i})}.

Example 6. Consider the real algebra Ar := Mat(n,H{4,j,k}) with the anti-
involution o1, then

A = Mat(n, H{i, j, k}) @r C{I},
Spa(Ag, 01) = SO*(4n),
Spa(A, 01 ®1d) = O(4n,C).
In the Section we studied the following C{I}-C{i}-algebras isomorphism:
:  Mat(n,H{i,j,k}) ®r C{I} — Mat(2n,C{i})

g1 +pit g2 +P2i>

+ @)+ (p1+pg)l o
(@1 + q27) + (p1 + p2j) o — Poi 1+ pui

where g1, q2,p1,p2 € Mat(n, C{i}).
We remind, ¢(Id,, ®I) = Idg, i and

b (Ag) = (Mat(n, Hi,j. k})) = {(_‘{;2 gj) | 1oaa € Mat(n, c>} |

Under 1, the anti-involution o; ® Id on Mat(n, H{i, j,k}) ®r C{I} indices the

following anti-involution

o' :=1po(o;®Id)orp?
on Mat(2n,C{i}) = Maty(Mat(n, C{i})):

0 Id, 0 Id,
o'(m) =~ (—Idn 0 )mT <—Idn 0 )
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for m € Mat(2n, C{i}). So we have:

o = fmemaenetip im=- (g '5")m" (L, )} -

= sp(2n, CL4}).

The anti-involution o3 ® ¢ on Mat(n, H{i, j, k}) ®r C{I} indices the following anti-
involution

G=1o(c1®a) o !

on Mat(2n,C):

ag(m)=m".
So, as expected, (Mat(2n,C{i}),5) is a Hermitian algebra and

P(AT'®7) = Herm™ (2n).

Since (1 ® I) = Idyy, 7, we have to do quaternionification with respect to Idi. So
the symmetric space is:

U(O(4n,C)) = {M;y + MaJ | My € sp(2n,C), My € Herm™ (2n)} C

C H[Mat(2n, C{i}), ¥ (Mat(n, H{3, 7, k})), Idan 3, .J].

Since Ay = AT®1d 0 4797 the real locus of this space is the symmetric space of
SO*(4n):
U(SO* (4n)) =

= {M; + MyJ | My € sp(2n,C) NHerm(2n), Ms € sp(2n,C) N Herm™ (2n)} C
C U(O0(4n,C)).
After identification J and Idgy, ¢, we obtain it as a subset of Mat(2n, C{i}):
U(SO*(4n)) =
= {M;y + Mai | My € sp(2n,C) N Herm(2n), M € sp(2n,C) NHerm™ (2n)} C
C Mat(2n, C{i}).
2.5.2 Precompact model

In this section, we construct precompact models for classical Hermitian Lie groups
of tube type.
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Example 7. Consider the real algebra Agr := Mat(n,R) with the anti-involution o,
then
A = Mat(n,R) ®@g C = Mat(n,C)

Sps(Mat(n, C), o) = Sp(2n, C),
Spa(Mat(n,R), o) = Sp(2n,R),
Ag = Mat(n, H),
ao(My + Maj) = (M) + 5(Ma)j = M{ + My j.
o1(My + Maj) = 5(M1) — o(Ma)j = M — Mj j.
where Mj, My € Mat(n,C). Then
AR = {M;y + Myj € Mat(n,H) | M; € Sym(n,C), My € Herm(n,C)}.
So we have the following precompact model for the symmetric space for Sp(2n,C):

B(Sp(2n,C)) =
= {M; + Myj € AP | 1d,, —(M; — Mj)(M; + Msj) € Herm™ (n,H)}
The symmetric space for Sp(2n,R) can be seen as the intersection of B(Sp(2n,C))
with Mat(n, C{j}):
B(Sp(2n,R)) =
= {My + Myj € Sym(n,C{j}) | Id, —(My — Maj)(M + Maj) € Herm™ (n, C{j})} =
= {M € Sym(n,C{j}) | Id, —MM € Herm™ (n,C{j})} C B(Sp(2n,C)).

Example 8. Consider the real algebra Ag := Mat(n, C{I}) with the anti-involution
0. Then

A = Mat(n, C{I}) ®g C{i} = Mat(n,C{I}) ® Mat(n, C{I})i,
Spy(A,5 ®1d) = GL(2n, C),
Spy(Ar, ) = U(n,n),
A = Mat(n,C{I}) ®@r H{i, j, k}.

We use the map v from the Section to identify Ag with Mat(2n,C).
As we have seen, the anti-involution & ® o9 on Mat(n, C{I}) ®g H{3, j, k} induces
the following anti-involution

Yo (F®ag)oyp™!

_ 0 Id\ _p/0 Id
on Mat(2n,C).m%<Id 0>m <Id O>.Therefore,

Y(AZD) = {m € Mat(2n, C{}) | m = <1(21 Ig) m7 (1(21 Ig) } .

105



Similarly, the anti-involution ¢ ® o1 on Mat(n, C{I}) ®g H{i, j, k} induces the fol-
lowing anti-involution

Yo(c@ay)oh™!

on Mat(2n,C): M + M7T and so ¢(AF"7') = Herm(2n,C). So we obtain the
following precompact model for the symmetric space of GL(2n,C):

B(GL(2n,C)) = {M € ¢(AZ*°) | 1d2, —M* M € Herm™ (2n,C)}.

To see the precompact for U(n,n) as a subspace of B(GL(2n, C)), we have to intersect
of with ¢(Mat(n, C{I}) ®r C{j}). We remind from the Section [A.3.2]

¢ (Mat(n, C{I}) ®r C{j}) =

. 0 Id 0 Id
:{meMat@n,C{z})]m——(_Id 0>m<—1d 0)}
a b
{ <—b a> | a,b € Herm(n, (C)} )
we obtain:

a b Id,, —a? — b? ba — ab
B(U(n,n)) = {(—b a> \ < b — ba I, —a? b2> € Herm+(2n,(C)} C

C B(GL(2n,C)).

Since

(Mat(n, C{I}) ®r C{j}) N(AF*")

Under the map x from the Section A can be identified with Mat(n,C) x
Mat(n, C), so we obtain the following precompact model for U(n,n):

B(U(n,n)) =

= {(M,MT) | M € Mat(n,C), Id,, —MTM € Herm™ (n,C),1d,, —MM?* € Herm™ (n, C)}.

The second component if the pair (M, M T) is determined by the first one. Moreover,
if Id,, —~M*TM € Herm™(n,C) then Id,, —MM7T € Herm™ (n,C). Therefore, we can
identify:

B(U(n,n)) = {M € Mat(n,C) | Id, —MTM € Herm™ (n,C)}.
Remark 2.5.1. The description for the precompact model of the symmetric space of
U(n,n) seen as Spy(Mat(n, C), 5) agree with the description for the projective model

of the symmetric space of U(n,n) seen as O(hg) for hg the standard indefinite form
(see Section [2.3.2)).
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Example 9. Consider the real algebra Ag := Mat(n,H{I, J, K}). Then
A = Mat(n,H{I, J,K}) ®g C{i}
where i is a central element of A such that > = —1. Further,
Ap = Mat(n,H{I, J, K}) ®r H{3, j, k}.

We use the map ¢ from the Section to identify Ay with Mat(4n, R).
As we have seen, the anti-involution o1 ® g corresponds under ¢ to the following
anti-involution on Mat(4n,R): M + —ZMT= where

0 0 0 Id,
~ [ o 0o -m, o
=7l 0o W, 0o o0
~d, 0 0 0

The anti-involution o7 ® o7 corresponds under ¢ to the transposition on Mat(4n, R).
So we obtain the following precompact model of the symmetric space of O(4n, C):

B(0(4n,C)) = {M € ¢(AF®7°) |1 — MTM € Sym™ (4n,R)}

where

H(AFFF70) = {M € Mat(4n,R) | M = ~EMTZ} = sp(4n, R).

To see the precompact model B(SO*(4n)) for the symmetric space of
SO*(4n) as a subspace of B(0(4n,C)), we have to intersect B(O(4n,C)) with
o(Mat(n,H{I, J, K}) ®g C{j}). We remind from the Section

o(Mat(n,H{I, J, K})@rC{j}) = {m € Mat(4n,R) | M = —¢(Id,, ®j) M ¢(1d,, ®7)} .
Therefore, we obtain:
B(SO*(4n)) = {M € B(0(4n,C)) | M = —¢(1d,, ®j) M ¢(1d,, ®7)} .

Under the map 1 from the Section we can identify A with Mat(2n,C). The
anti-involution o1 ® Id corresponds to the following anti-involution on Mat(2n, C):

o 0 Id\ -/ 0 Id
" ~1d 0)™ \-1d 0)"
Therefore, 1(A%1®14) = sp(2n, C).
The anti-involution o1 ® & corresponds to the following anti-involution on

Mat(2n,C): M + MT. Therefore, we obtain the precompact model for SO*(4n):

B(SO*(4n)) = {M € sp(2n,C) | 1 — MTM € Herm™* (2n,C)}.
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2.5.3 Projective model

In this section, we construct projective models for classical Hermitian Lie groups of
tube type. We will see that projective models can be seen in two equivalent ways:
in terms of matrix algebras and in terms of subspaces of some modules or vector
spaces. Projective models in terms of matrix algebras are denoted by 33, projective
models in terms of modules/vector spaces are denoted by .

We will use the following notation: Let R be some division ring, V' be a right
R-module of dimension 2n for some n € N, b be a (bilinear or sesquilinear) form on
V. We denote by Gr(k,V) the space of all k-dimensional R-submodules of V. We
denote by Lag(V,b) the space of all n-dimensional b-isotropic R-submodules of V,
ie.

Lag(V,b) :={l € Gr(n,V) | Vv €1, b(v,v) = 0}.
The elements of Lag(V,b) are called b-Lagrangians of V.
Example 10. Consider the real algebra Ag := Mat(n,R), then
A = Mat(n,R) ®g C = Mat(n, C),

Spa(Mat(n,C), o) = Sp(2n,C),
Spy(Mat(n,R), o) = Sp(2n,R),
Am = Mat(n, H),
oo(My + Maj) = (M) + 5(Ma)j = M + M j,
o1(Mi + Maj) = 6(My) — o(Ma)j = M| — Mj j.
where My, Mo € Mat(n, C). Further, for z,y € A?

0 Id,,
W(CL‘,y) = O-O(x)T <_ Idn 0 ) Y,

L G A T
We obtain the projective model for Sp(2n,C):
PB(Sp(2n,C)) = {zAy | z € A, w(z,z) =0, h(z,z) € Herm™ (n, H)}.
The Shilov boundary corresponds in this model to the space:
S(Sp(2n,C)) = {zAy | z € A, w(z,z) = h(z,z) =0} =

~ (zA |z € A%, w(z,z) = 0}.

The projective model for Sp(2n,R) can be seen as:

PB(Sp(2n,R)) = {IEA(C{]} |z € A%{]}v w(z,z) =0, h(z,z) € Herm+(n, C{ih}
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where C{j} C H and Ac(jy = Ar ®r C{j} = A. P(Sp(2n,R)) can be embedded
into *P(Sp(2n, C)) using the following injective map: for z € C{j}, zAcy;) — zAn.
The Shilov boundary corresponds in this model to the space:

S(Sp(2n>R)) = {xA(C{j} | x € A]%%? OJ(:U,.Z‘) = h(.%’,l‘) = O} =

> (2Ag |z € A, w(z,z) =0}

We can also construct the projective model in terms of Lagrangians of H?". Con-
sider H?" as a right module over H. We can identify a line z Ay for a regular z € A%
with a n-dimensional submodule of H?" in the following way:

L(zA) := Spang(zey, ..., ze,) C H?

where e; is the i-th basis vector (considered as a column) of the standard basis of
H™. In fact, the map L is well-defined (does not depend on the choice of a regular
x € vA) and, moreover, it is a bijection.

We define two forms on H?": for u,v € H?",

. 0 1d,
@l v) = oo(u)” <—Idn 0 ) °

S (00 I,
h(u,v) := o1(u) (—j W, o v

If we take = € Is(w), then L(zA) € Lag(H?",&). Using the map L, we obtain the
following projective model for Sp(2n,C) = Spy(A, 0):

P (Sp(2n,C)) = {I € Lag(H>",&) | Yo € 1\ {0}, h(v,v) > 0}.
The Shilov boundary corresponds in this model to the space:
S(Sp(2n,C)) = {I € Lag(H*",&) | Yv € 1\ {0}, h(v,v) = 0} = Lag(C*", o).
The projective model for the symmetric space of Sp(2n,R) = Spy(Ag, oRr) is:
P (Sp(2n,R)) = {I € Lag(C{;j}*", @) | Yo € I\ {0}, h(v,v) > 0}.
It can be embedded to the projective model for Sp(2n, C) using the map:

Lag(C{j}*",®) — Lag(H*",®)
l —  Spang(l)

The Shilov boundary corresponds in this model to the space:

S(Sp(2n,R)) = {I € Lag(C{j}?", @) | Yv € I\ {0}, h(v,v) = 0} = Lag(R*", o).
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Example 11. Consider the real algebra Agr := Mat(n,C{I}) with the anti-
involution . Then

A = Mat(n,C{I}) ®r C{i},
Ag = Mat(n, C{I}) ®g H{i, ], k}.

We use the map 1 from the Section to identify Ay with Mat(2n,C) =: A’
As we already have seen, under 9, the anti-involution & ® o¢ on Mat(n, C{I}) g
H{i, j, k} induces the following anti-involution

o' :=1po (G ®ag)o?

_ 0 Id,\ 7 (0 Id,
on Mat(2n,C): M — <Idn 0 >M (Idn 0 ) Therefore,

- 0 Idn) o (0 Idy

Similarly, the anti-involution ¢ ® o1 on Mat(n, C{I}) ®r H{i, j, k} induces the fol-
lowing anti-involution
O'// = on (6’@0’1) wal

on Mat(2n,C): M + M7T and so (AZ>") = Herm(2n, C).
Further, for z,y € (A")?

0 Iday,
sl =@ ()=

0 M, 0 0 Id, 0
(0 1\ o [1d, 0 0 0 0 Id.| _
<Idn o)x 0 0 Id, |-, o o o |[YT
Id, 0 0 —Id, 0 0
0 0 0 Id
(0 14\ o[ 0 0 1d, 0
- <Idn 0 )x 0 -Id, o o |Y
~d, 0 0 0

0 Ids, ¢ _ 0 Ids,, ¢
h(m,y)—aﬂ(x)T<_1d2ni é)y_$T<—Id2ni (QJ)y

Note, x € Is(w) if and only if 2 € Is(w’) where

0 0 0 Id,
/ T 0 0 Id,, 0
w (.’B, y) =T 0 _ Idn 0 0 Yy
—1d, 0 0 0
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We obtain the projective model for GL(2n, C):
PB(GL(2n,C)) = {zA' |z € (A)?, W' (x,2) =0, h(z,2) € Herm™ (2n,C)}.
The Shilov boundary corresponds in this model to the space:
S(GL(2n,C)) = {zA' |z € (A)?, W' (z,2) = h(z,z) = 0}.

The projective model for U(n,n) can be seen as a subspace of P(GL(2n,C)) in
the following way. As we have seen in the Section

p

- {m € Mat(2n, C{i}) [ m = — (_ (I)dn I((i)n> " <— ?dn Iiﬂ) } '

Therefore, if we define

Y(Ar @r C{j}) = {(_q f;) | p,q € Mat(n, C{i})} -

0 Id,

for x € (4")2. We obtain
P(U(n,n)) = {zA’ € P(GL(2n,C)) | z € (A)f, d(z) = «}

We can also see the projective model for U(n,n) in another way. We consider
the isomorphism x from the Section identifying Mat(n, C{I}) ®r C{i} with
Mat(n, C{i}) x Mat(n,C{i}) =: A”. Then the induced by ¢ ® Id anti-involution

xo(e®Id)ox™
on Mat(n,C{i}) x Mat(n,C{i}) acts in the following way:
(m1,m2) = (mg,mi).
The induced by ¢ ® ¢ involution
xo(G®a)ox™
on Mat(n,C{i}) x Mat(n,C{i}) acts in the following way:

(mla m2) = (m{7 mle“)

Note,
(A")? = Mat(n, C{i})? x Mat(n, C{i})>.
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We take x1, 22, 91,y2 € Mat(n, C{i})?, then we can define

w((z1,22), (y1,2)) =

= xo (6 ®Id) o x (z1,22) (—(Id,?, Id,) (Idnbldn)> (y1,92) =

([ rf 0 1d, r( 0 Id,
_(xQ (—Idn 0o )Y\ _14, o )%)

- 0 Id,, B 0 1d,, ¢
h((z1,22), (Y1, 92)) := <”51T <_ Id,i 0 )yl’”g (— Id,i 0 )y2>'

We obtain the projective model for U(n,n):

r1, 9 € Mat(n, C{i})?, &(x1,29) =0,
h(z1,21), h(z2,z2) € Herm™ (n, C)

PU(n,n)) = {(xl,m)A”

. 0 1d,, - _ 0 Id,, ¢ . -
where &(x1,29) 1= @] (_ I, o ) Y2, hz,y) = zT (_ i 0 > y1. Since @

is non-degenerate, the line x9 Mat(n, C{i} is uniquely defined by z;.

Let us check that for the pair (z1,z2) such that w(z1,z2) = 0, fz(a:l,:vl) €
Herm™ (n,C), we have always h(za,z5) € Herm™ (n,C). As we have seen in the
Section , we can always choose 1 = (mq,1)T, 23 = (mg,1)T. Then

&(x1,22) = mi —mg =0,
h(x1,21) = i(mf —m;) € Herm™ (n, C).
These two conditions imply
h(zg, z2) = i(md —mgo) = i(m1 — m¥) = i(m¥ —my)T € Herm™ (n, C).
Therefore, we can write the following identification:
B(U(n,n)) = {xMat(mC{z’}) | iz, z) € Herm+(n,<C)} .

The Shilov boundary corresponds in this model to the space:

S(U(n,n)) = {xMat(n,C{i}) | h(z,z) = o} .

To construct the projective model in terms of Lagrangians, similarly to the Ex-
ample we can identify the space of A’-lines of (A’)? with the space Gr(2n, C*")
of 2n-dimensional subspaces of C4"* by the rule:

L(zA") := Spang(xeq, ..., xe,)

where e; is the i-th basis vector (considered as a column) of the standard basis of
Ccn.
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We define two forms on C**: for u,v € C**,

0 0 0 Id,

. R 0 Id, 0
@(u,v) =1 0 —1d, o o |Y

—1d, 0 0 0

z 0 11d
5T 2n
h(u,v) :=u (—i Iy, 0 > v
The projective model for the symmetric space of GL(4n,C) = Sp,(A, o) can be seen
as the following space:

P'(GL(4n,C)) = {I € Lag(C*", @) | Vv € 1\ {0}, h(v,v) > 0}.
The Shilov boundary corresponds in this model to the space:
S(GL(4n,C)) = {l € Lag(C*,&) | Yo € 1\ {0}, h(v,v) = 0}.

We can see the the projective model for the symmetric space of U(n,n) =
Spy (AR, or) as a subspace of P(GL(4n,C)):

F'(U(n,n)) = {l € B(GL(4n,C)) | §'(D) = 1}

where
5. C*» — Cin
0 1d,,

—-1d, O

~

We can also see another projective model for the symmetric space of U(n,n) =
Sps(Ag, 0) if we identify again A = Mat(n, C)®rC with Mat(n, C) x Mat(n,C) =: A’
by the map y form the Section As before, we can identify every line zA’ C
(A’)? with pair of n-dimensional subspaces of C2". We define two forms on C?": for

u,v € C*"
a0 I,
@(u,v) :=u <_ M, 0)Y

S a0 Tdei
h(u,v) :=u (—Idni 0 )

The pair (I1,l3) of n-dimensional subspaces of C?" is called w-orthogonal if for all
v € ly, u € lg, @(v,u) = 0. So we can see the projective model of the symmetric
space for U(n,n):

B’ (U(n,n)) = {(I1, 1) @-orthogonal pair | Vu € I; Uly \ {0}, h(u,u) > 0}.
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Since w is non-degenerate, the space Iz is completely determined by /1. And as we
have seen for P(U(n,n)), if for all u € I \ {0}, h(u,u) > 0, then for all u € I2 \ {0},
h(u,u) > 0. Therefore, we can identify

P (U(n,n)) = {l € Gr(n,C?) | Yu € 1\ {0}, h(u,u) > 0}.
The Shilov boundary corresponds in this model to the space:

S(U(n,n)) = {1 € Gr(n,C*") | Yu € 1\ {0}, h(u,u) = 0}.

Remark 2.5.2. The description for the projective model of the symmetric space of
U(n, n) seen as Spy(Mat(n, C), ) agree with the description for the projective model
of the symmetric space of U(n,n) seen as O(hg) for hg the standard indefinite form

(see Section [2.3.2)).

Example 12. Consider the real algebra Agr := Mat(n,H{I, J, K'}) with the anti-
involution o1. Then

A = Mat(n,H{I, J, K}) ®@r C{i},
Ag = Mat(n,H{I, J, K'}) ®r H{1, j, k}.
As we have seen in the Section the map ¢ defines an R-algebra isomorphism:
¢: Ag — Mat(4n,R) =: A’
Moreover, the anti-involution o; ® oy corresponds under 1 to the following anti-
involution oy on Mat(4n,R): of(M) = —EMTZ where

0 0 0 1d,,

0 0 —-Id, O

0 Id, 0 0
—-Id, O 0 0

The anti-involution o1 ® o1 corresponds under ¢ to the transposition on Mat(4n, R).
Further, for z,y € (A")?

0 Idyy,
wtea) =@ (g, 0=

0 0 Idy, O
_ =, T (E 0) 0 0 0 Idgy |
— o0 =) | -1dy, O o o |Y7
0 —Idy O 0
O 0 0 0 o 0 0 Id,
O 0 0 0 0O 0 -Id, 0
O 0 0 0 0 Id, 0 0
_ oz 00 0 0 -H, 0 0 0
- o o o0 -1 o o o o |?
o 0 1Id, O O 0 0 0
0 —Id, 0 0 O 0 0 0
d, 0 0 0 O 0 0 0
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0 0 0 0 0 0 Id, O
0 0 0 0 0 0 0 Id,
0 0 0 0 —1d, 0 0 0
N Y 0 0 0 0 —Id, O 0
May) =1 o o _w, o 0 o o o |¥
0 0 0 —1Id, 0 0 0 0
Id, O 0 0 0 0 0 0
0 Id, 0 0 0 0 0 0
By definition of h, we use that
0 0 Id, O
. 0 0 0 Id,
@) =1 _1a, 0o 0o o0
0 —Id, O 0
Note, x € Is(w) if and only if = € Is(w’) where
0 0 0 0 0 0 0 1d,
0 0 0 0 0 0 —-Id, O
0 0 0 0 0 1d, 0 0
' (2,y) = | O 0 0 0 —-1d, O 0 0
wmiy=tte 0o 0o -, 0o o0 o o[

0 0 1d, 0 0 0 0 0
0 —-Id, O 0 0 0 0 0
1d,, 0 0 0 0 0 0 0

So we obtain the projective model for the symmetric space of O(4n,C):
P(O(4n,C)) = {zA’ | z € (A")?, W'(z,z) =0, h(z,z) € Sym™ (4n,R)}.
We can see the Shilov boundary in this model as the space:
S(0(4n,C)) = {zA' |z € (A)?, W' (z,z) = h(zx,z) = 0}.

The projective model for SO*(4n) can be seen as a subspace of J(O(4n,C)) in the
following way. As we have seen in the Section

P(Ar ®r C{j}) = {m € Mat(4n,R) | m = —p(1 ® j)mop(1® j)} .
Therefore,
P(SO*(4n)) = {zA” € P(GL(2n,C)) | 2 = —¢(1 ® jzd(1 ® j)}-

To see another projective model for the symmetric space of SO*(4n), we remind
that A = Mat(n, H) ®g C is to Mat(2n,C) =: A” isomorphic under the map 1 from
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the Section The anti-involution o1 ® Id corresponds under this map to the
anti-involution ¢’ on Mat(2n,C) given by:

o' (m) = — 0 1d,, mT 0 Id,,
N —Id, O -1d, 0 )°
The anti-involution o1 ®& corresponds under v to the complex conjugation composed

with transposition on Mat(2n, C).
We define for z,y € (A”)?,

0 Id, .
ey) o | T O ( 0 Id2n>y:
) . 0 Id,|\=1dy, ©
~Id, 0
0 0 0 Id,
T RS A
- 0 -1d, o0 o |¥
d, 0 0 0

Az, y) = 57 (_Igw Idén z) )
Then the projective model of the symmetric space for SO*(4n) can be seen as:
P(SO*(4n)) = {zA” | z € (A")?, h(z,z) € Herm™ (2n,C)}.
We can see the Shilov boundary in this model as the space:
S(SO*(4n)) = {zA" | z € (A")?, h(x, z) = 0}.

Now we construct the projective model in terms of Lagrangians. As before, we
identify using the map L the space of A’-lines and the space Gr(4n,R®") of 4n-
dimensional subspaces of R3":

L(xzA’) := Spang(zey, ..., ze4m)

where e; is the i-th standard basis vector of R**. We define two forms on R8": for
u,v € R,

0 0 0 0 0 0 0 Id,,

0 0 0 0 0 0 -—-Id, O

0 0 0 0 0 Id,, 0 0
o, v) = 0T 0 0 0 0 -Id, O 0 0 y
’ 0 0 0 -Id, 0 0 0 0 ’

0 0 Id,, 0 0 0 0 0

0 -—-Id, O 0 0 0 0 0

1d,, 0 0 0 0 0 0 0
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0o 0 0 0 0 0 Id, 0
0 0 0 0 0 0 0 Id,
0 0 0 0O -1, 0 0 0
- 1o o o 0 0 —Id, 0 0
huv):=ul g o g o 0 o o o |"”
o 0 0 —Id, O O 0 0
d, 0 0 0 0 O 0 0
0 Id, 0 0 0 o 0 0

The space of @-isotropic vectors of R®” is denoted by Is
model of the symmetric space for O(4n,C) can be seen as:

P'(0(4n, C)) = {I € Lag(R®™, &) | V& € I\ {0}, h(z,z) > 0}.

—

@). Then the projective

We can see the Shilov boundary in this model as the space:
S(0(4n,C)) = {I € Lag(R®*", &) | Yz € I\ {0}, h(z,z) = 0}.

The projective model for the symmetric space of SO*(4n) can be seen as a subspace

of P(O(4n,C)):
P'(SO*(4n)) = {l € P(O(4n,C)) | 6(1) = 1},

where
5: R R8”

o s <¢(Id8®j) ¢(Id2®j)>v'

To see another projective model for the symmetric space of SO*(4n), we remind
that A = Mat(n, H) ®g C is to Mat(2n,C) =: A” isomorphic under the map 1 from
the Section The anti-involution o7 ® Id corresponds under this map to the
anti-involution ¢’ on Mat(2n, C) given by:

0 Id 0 Id
/ _ n T n
o (m) = (—Idn 0 )m (—Idn 0 >
The anti-involution o1 ®& corresponds under ¥ to the complex conjugation composed
with transposition on Mat(2n, C).
To construct the projective model in terms of Lagrangians, as before, we identify
using the map L the space of A”-lines and the space Gr(2n, C**) of 2n-dimensional

subspaces of C*":
L(zA") := Spang(zey, . .., zea,)

where e; is the i-th standard basis vector of C**. We define two forms on R3": for
u,v € R¥",

0 1d,, 0

&(u,v) == ul —lda 0 0 Idon v=
o 0 Id,, —Idy, O

—-Id, O
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0 0 0 Id,

YN B A
0 -Id, o0 o0 |"
Id, 0 0 0

- A R
h(u,v) :=u <—Idni 0 )?

Then the projective model of the symmetric space for SO*(4n) can be seen as:
P'(SO*(4n)) = {I € Lag(C*™, &) | Yz € I\ {0}, h(x,z) > 0}.
We can see the Shilov boundary in this model as the space:

S(SO*(4n)) = {I € Lag(C*", ) | vz € 1\ {0}, h(x, z) = 0}.

2.5.4 Quaternionic structure model
In this section, we construct quaternionic structure model models for classical Her-
mitian Lie groups of tube type.
Example 13. Consider the real algebra Ag := Mat(n,R), then
A = Mat(n,R) ®r C = Mat(n,C)
Spy(A, ) = Sp(2n,C),
Sps(Ar,0) = Sp(2n, R).

The quaternionic structure on A can be seen as a 2n x 2n-matrix J acting on A? as
J(x) = Jz for z € A% Since J(J(x)) = JJz = —x, JJ = —1d,.
The corresponding &-sesquilinear form is then

o) =) =" (3K

So we obtain the quaternionic structure model for Sp(2n,C) :

0 Id,,

¢(Sp(2n,C)) := {J € Mat(2n,C) | JT (_ Id, 0

) € Herm™ (n,C), JJ = —Id} .

The space of complex structures on A% can be seen as a subspace of €(Sp(2n, C)) be-
cause every complex structure can be extended in the unique way to the quaternionic
structure on A? in the following way: for a complex structure J we define:

Je(x +yi) == J(x) — J(y)i

where z,y € Ag. So we obtain the inclusion of the complex structure model for
Sp(2n,R) into the quaternionic model for Sp(2n,C) as subspace of quaternionic
structure fixing A% C A%

0 Id, . ) B
14, O)ESym (n,R), J —Idgn}

={J € €(Sp(2n,C)) | J € Mat(2n,R)}

¢(Sp(2n,R)) := {J € Mat(2n,R) | J© (
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Example 14. Consider the real algebra Ag := Mat(n,C{I}). Then
A = Mat(n,C{I}) ®r C{i},
Sps (4,5 ® Id) = GL(2n, C),
Spy(Ar, ) = U(n,n).

We use the map x from the Section to identify A with A’ := Mat(n,C{i}) x
Mat(n,C{i}). The involution Id ®& is mapped under x to the involution

(ml, mg) — (T?LQ, ml).

on Mat(n,C{i}) x Mat(n,C{i}).
If we take a quaternionic structure J on A% then we define
J :=xoJox L

If we see J' as a pair (J1, J2) of 2n x 2n complex matrices then .J;.Jo = — Ida,, because
for (m1,msg) € (A')? = Mat(n, C{i})? x Mat(n, C{i})?,

J (m1,ma) = (J1, J2)(m2, m1) = (Jima, Jama),

—(my,mg) = (J')?(m1,ma) = (JiJoma, JoJimy).
The induced by ¢ ® Id anti-involution
xo(@®Id)ox™
on Mat(n,C{i}) x Mat(n,C{i}) acts in the following way:
(m1,ma) = (m3,mi).

We take the standard symplectic structure on (A’)%: for z1, x2,y1, y2 € Mat(n, C{i})

(o), ) = xo @ 910 0 x o) (L ga” 1y ) ) =

({0 I\ o[ 0 Idy
_<x2 <—Idn o)™ \~1d, 0)%)"

For a quaternionic structure on (A’)? seen as pair of matrices (Ji, J2), we define

h(J17J2)(($1a x2), (y1,Y2)) :=

_ 0 1d,, _ 0 Id,
= <(J1961)T (_ d, 0 )y1, (Jo2)" (_ d, 0 >y2> =

_ 0 Id, _ 0 Id,
= (@t (i, )t (L, ) )
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The quaternionic structure model for GL(2n,C) is then:

Jl,Jg S Mat 277, (C

JiJy = —Idy,,
¢(GL(2n,C)) := {(Jl,JQ) JT <—?dn o) ( 0 Id, > € Horm™* (20, C) }

0 Id,,

Since JiJo = —Ida,, by given J; such that J{ (_ Id 0

> € Herm™ (2n,C), we

can calculate Jy = —jl_ 1 Then

-1
T 0 Id,\ _ 77 0 Id,\ 0 Id,, n
J5 <_ M, o)~ J , o)~ 1, 0 J1 € Herm™ (2n,C)

if and only if

< (I)d ké“) J& € Herm™ (2n, C)

if and only if

Ji <_ I, o € Herm™ (2n, C).

Therefore, we can identify

¢(GL(2n, C)) = {J € Mat(2n,C) | J7 (_ X . I‘é”) € Herm™ (2n, (C)} .

In this presentation of the symmetric space, GL(2n,C) acts on it in the following

way:
(0 I\ p( 0 Id,
(9,) = —g J(_Idn 0 )9 |14, o

for g € GL(2n,C).

Since x(Ar) = {(m,m) | m € Mat(n,C{i})}, the quaternionic structure model
for U(n,n) = Spy(Ag,d) can be seen as a subset of €(GL(2n,C)) stabilizing x(Agr).
(J1, J2) € €(GL(2n, C)) stabilizes x(Ag)? if and only if for all m € Mat(n, C{i})?,

(J1, Jo)(m,m) = (Ji(m), Jo(m)) = (m',m),
for some m’ € Mat(n,C)?, i.e. J; = Jo. Therefore,
€(U(n,n)) = {(J,J) € €(GL(2n,C))}.
We can also see €(U(n,n)) directly as the space complex structures on AZ:

0 Id

¢(U(n,n)) = {J € Mat(2n,C) | J* (—Idn 0

n> € Herm™ (2n,C), JJ = —Idgn} .
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Example 15. Consider the real algebra Agr := Mat(n,H{3,j,k}). Then A =
Mat(n, H{3, j, k}) ®r C{I} and

Spa(A4, 01 ®1d) = O(4n, C),

Spy(Agr, 01) = SO*(4n).

We use the map ¢ from the Section to identify A with A" := Mat(2n, C{i}).
The induced by Id ® involution

o :==1po(Id®a)orp!
on Mat(2n, C) acts in the following way:
m +— —Qms)

0 Id,,

where ) = (_ d, 0

Mat(4n, C).
If we take a quaternionic structure J on A2 then we define

> € Mat(2n,C). We also denote by o := diag(2,Q2) €

J i=voJoy L
We can see J' as a complex 4n x 4n-matrix acting on (A4’)? in the following way: for
x € (A
J(z) = J o (x) = =T QoTN.

J' is a quaternionic structure, therefore,
—x = (J)2(x) = QT Q70 = —J' Q0 Qo

So we obtain, J’ is a quaternionic structure on A if and only if

J'QoJ Q= 1dy, .

The induced by o; ® Id anti-involution

Yo (o @Id)oyp™!

on Mat(2n, C) acts in the following way:
m— —QmTQ.

So we define the standard symplectic form w on (A’)? with respect to this anti-
involution: for z,y € (A")?,

0  Id,
w(z,y) == —Qoz" Y (_ Idy, 02 ) Yy
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and for a quaternionic structure J’, we define

_ 0 1ds,,
hJ’(xay) = UJ(J,(ZL'),y) = xTQO(‘],)TQOQO (_ Id2 02 ) Yy =

i 0 Idg,
= —z70(J)" <_ d, 0 ) y

The quaternionic structure model for GL(2n,C) is then:

J'Q0J'Qy = Idyy,

0 Iday,

I !
e(0(n,€)) := 4 J' € Mat(dn,©) | _, % (_Id?n : ) € Herm™* (4n, C)

The model for the symmetric space of €(SO*(4n)) can be seen as a subset of
¢€(O(4n,C)) whose elements commute with o’ i.e. o'(J'(z)) = J'(o'(x)). There-
fore:

0’(]’($)) = —QJ (2)Q = QJ'QzQ0 = —Qj/Qx,
J (o' (x)) = —J' Qo (2)Q = J' QN0 = —J'x

and we obtain:
¢(SO*(4n)) = {J' € ¢(0(4n,C)) | J' = Qj’Q}.

The space €(SO*(4n)) can be also seen directly as complex structures J on A2
such that the form:
h(z,y) = o1(2)" o1(J)" Qoy

is positive definite. So we obtain:

T + -
¢(SO*(4n)) = {J’eMat(Qn,H{i,j,k} f};@ ?SEHE’”“ (2n, Fi{7, 5, k}), }
- - 2n

2.6 Hermitian Lie algebras with anti-involution

2.6.1 Weakly Hermitian Lie algebras

Let (A, o) be a finite dimensional R-algebra with an anti-involution. A can be turned
into a Lie algebra with the Lie bracket [z,y] = xy—yz. Let B C A be a Lie subalgebra
that is closed under . We define:

B¥"™ .= Fixp(o) = BN A%Y™.

Remark 2.6.1. The theory developed in the Section is the special case when
B=A.

Corollary 2.6.2. If B is a Lie subalgebra of A containing 1, then B* is open and
dense in B and (B*Y™)* := B* N A®™ is open and dense in B*Y™ := B N A%,

122



Proof. Follows from the Corollary O
Definition 2.6.3. A Lie subalgebra B is called of Jordan type, if:

1. for every z,y € B, zxy € B.
Remark 2.6.4. The condition implies that for all b € B*Y™ b2 Bsz%m.

Proposition 2.6.5. Let B be of Jordan type. Then for every x € B and for every
be BY™ og(x)b+ bx € BV™.

Proof. Take z° := H%(z), [ xig(z), then z = 2% + 2%, 2% € B%™ and o(2%) =

—x% Then we can write

o(x)b+bx = (2 — 2*)b+ b(z® + 2) = (2°b + bx®) + (ba” — x°D).

Since B is of Jordan type, x°b, bz® € B and so x°b+bz® € B%¥™. Further, bz®—x% =
[b,2%] € B and o(bz® — z%) = —z% + bx®, i.e. bz® — 2% € B*¥™. So we obtain,
o(x)b+ bx € BV™. ]

Definition 2.6.6. We denote
B .= Fixp(—0).
Remark 2.6.7. The following properties hold:
[Banti ganti] C panti  [ganti gsym] C gsym - [psym psym] C ganti

In particular, B is a sub Lie algebra of B.

Let B be of Jordan type, let Gg be the unique connected subgroup of A* such
that Lie(Gp) = B. We assume Gy to be a Lie subgroup of A*. We denote:

U(Go,0) ={ue Gy | o(u)u =1}
Remark 2.6.8. Lie(U(G,0)) = B,

Proposition 2.6.9. Let B be of Jordan type with 1 € B. For every g € Go and for
every b € BY™ o(g)bg € B%Y™.

Proof. We consider the following map:

F: U(G,o0) xexp(B¥™) — G
(u,b) = ub

We notice, that since for all b € B%¥™, > € B, we have b" € B%Y™ for all
n € N. Moreover, B%¥™ is closed in A, therefore, exp(b) — 1 € B%Y™. Since exp is a
diffeomorphism in a small neighborhood of 0 € B, Ty exp(B*®*¥"™) = B%Y™.

The differential of F' at (1,1) is a bijection. Indeed:

DuyyF(z,y)=z+yeB

123



where x € B = Lie(U(G, 0)), y € B*¥™. Therefore, in a small neighborhood V'
of (1,1) e U(G, o) x exp(B*Y™), F' is a homeomorphism. Moreover, G is generated
by F(V), therefore, for every g € G, there exist » > 0 and uy,...,u, € U(G,0),
bi,...,br € exp(B®"™) such that g = uib; ... u.by.

Since o(u) = u~! for u € U(G,0), o(u)bu = u~tbu € BY™ for all b € BY™,

Let b € B™ ¥ € exp(B*¥™), then b/ = 1 + by for by € B™.

o (b)Y = bbb = (14 bo)b(b + by) = b + bob + bbg + bobbo.

By Proposition [2.6.5] bob~+bby = b for b € B*¥™. Therefore, bybby = bob — (by)?b € B
and, since b'bb’ € ASY™  we obtain V'bb’ € BSY™.
Therefore, by induction, we obtain o(g)bg € B*¥™ for all g € Gj. O

Remark 2.6.10. The group Gq acts on B*¥™ in the following way:

v: Gy — Aut(Bv™)
g = [¥(g): b a(g)bgl.

Definition 2.6.11. A Lie subalgebra B of Jordan type is called weakly Hermitian,
if:

1. 1 € B;
2. The convex cone C(6(B*¥™)) is proper;

3. B*¥™ does not contain nilpotent elements, i.e. for every b € BY™ b> = 0 if
and only if b = 0.

Definition 2.6.12. If B is Hermitian, we define
BY™ = 0(0((BV™))),

sym sym . sym sym
and B20 as the closure of B\”". In this case, B\”" and B20 are proper convex
cones in B,

We recall the definition of Jordan algebra and formally real Jordan algebra.

Definition 2.6.13. Let (V, o) be an possibly non-associative algebra over some field
K. (V,0) said to be a Jordan algebra if for all z,y € V

1. xoy=you;
2. (xoy)o(zox)=zo(yo(zox)) (Jordan identity).

A Jordan algebra (Vo) is called formally real if for all x,y € V, 22 +y> = 0
implies x,y = 0.

Proposition 2.6.14.
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e For B of Jordan type, the algebra (B%Y"™,0) is a Jordan algebra where

Ty + Yyx
5 .

roy =

e For weakly Hermitian B, the Jordan algebra (B®Y™,0) is formally real.

Proof. Since for all x,y € BY™, xy € B, we get zoy € BY™. Also zoy=yox is
clear. The Jordan identity:

Ty + yx 0 g2 — a:ya:Q + ym?’ + a:3y + x2ym
2 4

(zoy)o(zon) =

_ zya® + 23y + yad + 2?yx o yr? + 22y

4 2

So (B*Y™ o) is a Jordan algebra.
Assume now B to be weakly Hermitian. Let a1, as € B¥¥™, then a? € BZ". The
convex cone B" is proper, so a}+ a3 vanishes if and only if a? = a3 = 0. Therefore,

a1 = az = 0 by (B) in the Definition [2.6.11] O

—zo(yo(zoa)).

2.6.2 Classification of simple formally real Jordan algebras

In this section, we remind the well-known classification of simple formally real Jordan
algebras (for more details, see [10/17]).

Fact 2.6.15. Every simple formally real Jordan algebra is isomorphic to one of the
following Jordan algebras:

1. (Sym(n,R),0) where aob= 2L for a,b € Sym(n,R);

2. (Herm(n,C),0) where aob = % for a,b € Herm(n, C);
3. (Herm(n,H), o) where aob = @ for a,b € Herm(n, H);
4. (B®¥™(1,n),0) where aob = % for a,b e B¥Y™(1,n);
5. (Herm(3,0),0) where aob = @ for a,b € Herm(3, Q)

where B*Y™(1,n) is the Jordan algebra defined in the Section Herm(3,0) is the
space of 3 x 3 Hermitian octonionic matrices.

Fact 2.6.16 ( |17, Corollary 2.8.5|). The Jordan algebra (Herm(3,0),0) is ex-
ceptional. This means that there is no associative real algebra A that contains
Herm(3,0) as a Jordan subalgebra.
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2.6.3 Spectral theorem

In this section, we assume B to be weakly Hermitian. As we have seen, (B*Y™ o) is
a formally real Jordan algebra.

We are going to state the first versions of the spectral theorem for formally real
Jordan algebras. But before we do it, first, we give some necessary definitions:

Definition 2.6.17. e An clement ¢ € B*Y™ is called an idempotent if ¢? = c.
e Two idempotents ¢, € B%¥™ are called orthogonal if cocd = 0.

e A tuple (¢1,...,cx) of pairwise orthogonal idempotents is called a complete
orthogonal system of idempotents if ¢; + -+ ¢ = 1.

sym

Remark 2.6.18. Every idempotent ¢ € By

Theorem 2.6.19 (Spectral theorem, first version |10, Theorem III.1.1]). For every

b € B%™ there exist a unique k € N, unique real numbers \i,..., A\ € R, all
distinct, and a unique complete system of orthogonal idempotents c1,...,c, € BY™
such that

k
b= Z )\ici-
i=1
Corollary 2.6.20. For b € BI(", the numbers A1,...,\x > 0. For b € BY™, the
numbers Ai, ..., \x > 0. In particular,
Bj_ym — 9((Bsym)><)’ Bsz%m — 0(‘Bsym)7

Corollary 2.6.21. The set of all invertible elements (B*Y"™)* of B*¥™ consists of
elements such that all A\; # 0. If all \; # 0, then

k -k
(Z )\icz) = Z)\Z’_ICi~
i=1 i=1
Corollary 2.6.22. B3Y™ is connected, open in BY™, open and closed in (B¥¥™)*.

BZ" is connected and closed in B¥Y™.

Corollary 2.6.23. For every (continuous/smooth) function f: R — R, the (contin-
uous/smooth) map
fiBvm — povm

can be defined: if
k
b= Z )\ici,
i=1

then
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This map is well defined because the spectral decomposition is unique. Analogously,
for any function f: R>og = R or f: Ry — R, f: B — BV™ resp. f: Bj_ym —
BY™ can be defined.

In particular, for every b € BX", the element b' € B for t > 0 is well-defined.
This definition is compatible with integer powers of element.

Corollary 2.6.24. B'™ is homeomorphic to B*¥™. In particular, B{Y™ is open in
B™ and contractible. {1} C BY™ is a deformation retract of BY™.

Proof. B%Y™ is a R-vector space, so it is contractible. {0} C B®*¥™ is a deformation
retract of B%Y™. Take f(t) = log(t). O

To state the second version of the spectral theorem, we need to give some additional
definitions:

Definition 2.6.25. e An idempotent 0 # ¢ € B*¥™ is called primitive if it
cannot be written as a sum of two orthogonal non-zero idempotents.

e A complete orthogonal system of primitive idempotents (cy, ..., cy) is called a
Jordan frame.

Theorem 2.6.26 (Spectral theorem, second version |10, Theorem I11.1.2]). Suppose,

BY™ has rank n. For every b € B%Y™ there exist a Jordan frame (e1,...,e,) and
real numbers A\i,..., A\, € R such that

n

i=1
The numbers Ai,...,A\n € R (with their multiplicities) called eigenvalues of b are

uniquely determined by b. In particular, they do not depend (up to permutations) on
the Jordan frame eq, ..., e, € B%Y™,

Remark 2.6.27. The Jordan frame eq,...,e, € B*¥™ associated to the element b €
B%Y™ as in the Theorem [2.6.20] is, in contrast to the complete system of orthogonal
idempotents from the Theorem [2.6.19] in general not unique.

Definition 2.6.28. Let b € B and Ay, ..., \, are all its eigenvalues (with multi-
plicities). We define the trace and the determinant of b:

tr(b) := Zn: i, det(b) := ﬁ i
i=1 i=1
Proposition 2.6.29 ( |10, Proposition III.1.5]). The function
B: B x BT — R
(biobo) e (Brphabs)

is an (R-vector space) inner product on B*Y™.
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2.6.4 Lie group corresponding to weakly Hermitian Lie algebra

As before, let (A,0) be an R-algebra with an anti-involution. The space A* of
invertible elements of A is a Lie group and its Lie algebra is A with the Lie bracket
given by [z,y] = vy — yz. We take Gy < A* a connected Lie subgroup of A* closed
under 0. We denote B := Lie(Gp) the Lie algebra of Gy. Notice that G is uniquely
defined by B, and it is generated by exp(B). Since G is closed under o, B is closed
under o as well. We define

G = Gy N AT BT .= BN AY™.
Definition 2.6.30. A weakly Hermitian Lie subalgebra B is called Hermitian, if:
1. the group U(Go,0) :={g € Go | 0(9)g = 1} is compact;
Proposition 2.6.31. If B is weakly Hermitian, then Biym C Gy

Proof. Let b € Bj_ym, Take its spectral decomposition: b = Zle Aic; where
A, ..oy Ak > 0, (c1,...,cr) is a complete system of orthogonal idempotents. Then
log(b) = Zle log(Ai)ei € B*Y™ and exp(log(b)) = b € Gp because the map exp
defined on R extended to B*¥™ and the exponential map exp: B — G restricted to

B%Y™ defined by the same power series and thus they agree. O
Corollary 2.6.32. e For every b € BY¥™ and for every g € Go, o(g)bg € BY¥™.

sym

In particular, o(g)g € BYY™.

sym sym

e For every b € BSy" and for every g € Go, o(g)bg € By

Proof. Tt is clear that o(g)bg € (B*¥™)* for g € G and b € BY¥™. Since G is

connected, o(g)g is in the connected component of 1 € (B*¥™)* which is BY"™.
The second one follows from the fact that BJ" is a topological closure of B¥™

in Bsv™, - O

Let us restrict the action 1 from the Remark|2.6.10|to the subgroup U(Gy, o) < Go.
Then the action w‘U(GU,U) preserves Jordan frames.

Corollary 2.6.33. Assume, w‘U(GQ,U) is transitive on Jordan frames of B%¥™. Sup-
pose, BY™ has rank n. For every Jordan frame ey,...,e, € B%™ and for every
b € BY™ there exist uw € U(Gy, o) such that

w(u)b = En: )\iei.
i=1

where A1, ..., A\, € R are all eigenvalues of b (with their multiplicities).

Remark 2.6.34. In general, for a fixed Jordan frame ej,...,e, and b € B%"™ the
element u € U(Gy, o) is not unique.

Corollary 2.6.35. For b € BI{", the numbers A1, ..., Ay > 0. For b € B, the
numbers A, ..., Ap > 0.
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2.6.5 Disconnected extension of G|

Let B C A be semi Hermitian Lie subalgebra of A. As we have seen, the group Gy
we considered before is supposed to be connected and Biym C Gy. In this section,
we study the disconnected extension G of Gy generated by Gy and (B*¥™)*.

Proposition 2.6.36. The group Gy is a normal subgroup of G.

Proof. It is enough to show that b='gbh € G for all b € B¥™ g € Gy. Since Gy is
generated by exp(B), it is enough to check it for all g = exp(V’) for ¥’ € B. Notice
that in this case, b~!gb = exp(b~'b'b).

By Proposition Wb+ bl =b e BSY™. Therefore, b *6'b = b~1b— V. Since B
is of Jordan type, b~'b € B. Therefore, b-'0'b € B and exp(b~1b'b) € Gy. O

From now on, we assume that U(Gy, o) acts transitively on Jordan frames of B*¥"™.

Theorem 2.6.37. The factor group G/Gy is finite. Moreover, G has finitely many
connected components and Gy is one of them containing 1. In every connected com-
ponent of G, there is an element of B%Y™.

Proof. Let g € G, then by Definition of G, there exist gg, g1,..., 9, € Go, b1,...,b. €
(B*Y™)* such that g = gob1g1 ...brg,. We take such presentation with minimal 7.
We choose a Jordan frame (eq,...,e,) of B¥¥™ and take a spectral decomposition

according Corollary [2.6.33}
n n n
bi = ul-_l Zsij)\ijejui = (ul_l Zeijeju,-)(u_l Z )\,-jejui)
Jj=1 j=1 j=1
where all \j; > 0, g;5 € {1, -1}, u; € U(Gop,0). We denote:
n n
b; = Z )\ijejui, S; = sgn(bi) = Zeijej.
Jj=1 Jj=1

Notice, b € BY¥™ C Gy, s; € (B%™)*. So we obtain:
9= 90b1g1 - .- Gr—1brgr = gob191 - - . Gr—ou, 1 b1 Sp_1Ur—1Gr—1U; "b)S1 U G

_ -1
We denote gl = urgr, gy = Ur_1gr—1u, b, € Go, gh_g = gr_ou ' b._, € Go.
Then

/ / / / -1 7 /
g =9ob1g1 ... 9, 9Sr—19; 15rGr = b191 ... Gy _9Sr—15:5," Gy _15rG,-

Since Gy is a normal subgroup in G, ¢'r —1 := s, 1g._1s.9, € Go. Moreover,

/ — — n sym in-
Sp_1 1= Sr—18p = )i Er—1,jErjej € B¥™. So we obtain:

9= gob1g1 ... 995, 19/ 1-
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So we reduced the number r. Therefore, g can be written as

g = gob1g1 = gouy ‘Vys1uigr = ghsig}

where g = gouj 'b), ¢ = u1g1. Further,
/ / -1 7 / /
g = 905191 = S181 9oS191 = 519

where ¢ := s7'ghs1g] € Go because Gy is a normal subgroup in G. Therefore,
gGo = s1Go.Consider the group

S = {jzlzfiei ’ g € {1,—1}} C (Bsym)x.

This is a finite abelian subgroup of A* isomorphic to (Z/2Z)". The map S > s —
sGp € G/Gp is a surjective group homomorphism. Therefore, G/Gy is finite. In
particular, dim(G) = dim(Gp), so G is open in G. Gy is closed in A* as a Lie
subgroup. Therefore, G is also closed in G, i.e. Gy is a connected component of G.
Every connected component of G has form sGg for s € S, so G has finitely many
connected components, and, since d € B®*¥™, in every connected component of G
there is an element from B*¥™. O

Corollary 2.6.38. If B is Hermitian, then U(G, o) is compact.
Proposition 2.6.39. The group G acts on B%Y™ in the following way:

V. G x BSYm s psym
(g,b)  — oa(g)bg

. sym sym
preserving BYY and By

Proof. First, we note that every element g € GG can be written as g = sgg for go € Gg
and s € S from the proof of the previous theorem.

Since the construction of G does not depend on the choice of the Jordan frame
(e1,...ey) from the proof of the previous theorem, we assume this basis correspond to
the spectral decomposition of b, i.e. b= """, A\je;. Then g = sgo for s =" | g5,
g0 € Go.

Then o(g)bg = o(go)(sbs)go. But sbs =Y 1 | e?\;e; = b € B. Therefore o(g)bg =

o(go)bgo € B%¥™ because G acts on B*¥™ in this way.

From the same reason, if b € BYY™ or b € BX", then o(g)bg € B}Y™ resp.

o(g)bg € Bsz%m. O

2.6.6 Polar decomposition in G and maximal compact subgroup of G

Assume B C A to be weakly Hermitian Lie subalgebra. In this section, we assume
G to be either the connected group Gg or the the extension G from the previous
section. Notice that G acts on B*Y™ in the following way:
v: G x B%Y™ —  BWY™
(9:0) = alg)bg
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preserving B3Y™.
Theorem 2.6.40 (Polar decomposition, first version). The map
pol: U(G,o0)xB¥" — @G
(u,b) — ub

is a homeomorphism, i.e. for every g € G there exist unique b € Bj_ym and u €

U(G, o) such that g = ub.

Proof. The map pol is well-defined because BYY™ C G. First, we prove the sur-
jectivity. Take g € G, then o(g)g = ¥(g)(1) € BY™. Take b := (a(g)g)%, then
U= g(a(g)g)_% € U(G, o). Indeed,

=1.

D=

Now, we prove the injectivity. Let g = ub = «'b’ where u,uv’ € U(G,0), b,i €
B¥™. Then o(g)g = (')* = b* € BY¥™. We take the spectral decompositions of b

and b’
k,/

k
b= Nici, b =) N
=1

i=1
where all k, k" € N, \;, A, > 0 and {¢;}, {c/} complete orthogonal systems of idem-
potents of B, Then
k K
B = Nei=) (X))’ = ().
i=1 i=1

Because of the uniqueness of the spectral decomposition, k = k" and, up to reordering,
all A2 = (\))2, ¢; = ¢}. But all \; > 0, therefore, \; = X, i.e. b=0 and u=gb~! =

g(¥) =t =,
Finally, by definition, pol is continuous. Moreover,

_ 1 1
pol™'(9) = (9(o(9)9)) 2. (0(9)9))2)
is continuous as well. Therefore, pol is a homeomorphism. O
Corollary 2.6.41. Similarly can be proved that the map

BY" xU(G,0) — G
(b,u) = bu

is a homeomorphism, i.e. for every g € G there exist unique b € Biym and u €
U(G, o) such that g = bu.

Corollary 2.6.42. For any g € G, 0(g9) = o(g)g € BY™.
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Corollary 2.6.43. The group U(G,0) < G is a deformation retract of G. In par-
ticular, if B is Hermitian, it is a mazximal compact subgroup of G.

Corollary 2.6.44. The polar decomposition [2.6.40 as well as the Corollary
hold also for any Lie subgroup G < A* such that Lie(G) = B. In particular, it holds
in the case B = A for a Hermitian algebra A.

Theorem 2.6.45 (Polar decomposition, second version). Let G be the extension of
Gy as in the previous section. The map

pol':  U(Goy,0) x (B¥™)* — G
(u,b) — ub

1s surjective and continuous.

Proof. Let g € G. We take its polar decomposition as in the Theorem g =
uby for an u € U(G,0), by € BY™. We take a Jordan frame (e;)?_; such that
bo = >, Aie; and take a group

S = {i&iei | e € {1,—1}} C (Bsym)x N U(G,U).

Then, as we have seen in the proof of the Theorem [2.6.37], every connected component
of G contains an element form S. Moreover, since U(G, o) is a deformation retract
of G, and S € U(G,0), every connected component of U(G, o) contains an element
of S. Therefore, there exists s € S such that u = ugs for an ug € U(Go,0). Then

g = ubg = ugsbg =: ugb
for b:=sby =D 1 eilie; € (B¥Y™)*. O
Remark 2.6.46. The map pol is in general not injective. For example, if we take
B = A = Mat(2,R)
with o to be the transposition, then
U(Ggy,0) =SO(2,R), B*¥™ = Sym(2,R).

Then the matrix
Id = u1b1 = u2b2
for uyp = b1 = Id, ug = b2 = —1Id.
The reason for that is the fact that U(Go,0) N B¥™ # {1}. If B = A, then
U(Go,0) N B%Y™ = {1}, if and only if A = R with ¢ = Id (follows from the Theo-

rem [2.7.27]).

Consider the topological closure G of G in A.
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Proposition 2.6.47. G is a monoid.

Proof. Let g,g' € G C A, then gg' € A. We want to show that there exists {h;} C G
such that lim h; = g¢. Since g,¢' € G, there exist {g;},{¢;} C G such that lim g; = g,
lim g} = ¢’. Take h; = ¢;g, € G, then

lim h; = lim g;¢; = lim g; lim g, = gg'. O
By taking closure in the polar decomposition, we get the following map:

pol: U(G,o)x BE" — &
(u,b) —  ub.

This map is not a homeomorphism anymore, but it is surjective. If B is Hermitian,
it is also proper because U(G, o) is compact. The map € can be extended to the map

6: G — B
g = o9y
Proposition 2.6.48. If B is Hermitian, the map 0: G — BI" is proper.

Proof. Let K C BZ" be a compact subset. Then

671 (K) = {ub? | u € U(G,0),by € K} = pol(U(G, 0) x K).

Since U(G,0) x K is compact in U(G,0) x B[ and pol is continuous, =" (K) is
compact. ]

Proposition 2.6.49. If B is Hermitian, the set
D:=D(G,0):={acG|1-0(a)ac BI"} C G
18 compact.

Proof. First, we need the following Lemma:

Lemma 2.6.50. Let C' be a closed proper convex cone in some finite-dimensional
R-vector space V. Then for every ¢ € V, the set K := C N (¢ — C) is compact.

Proof. Assume K is not compact. We fix some norm || - || on V. There exists a
sequence () such that ||z, || — co. Since yy, := ﬁ € S' and for finite-dimensional

V', S1 is compact, there exists a limit point y of (y,,). Since C'is a closed cone, yRy C
CN(c—C) and, therefore c—yRy C C'N(c—C). Analogously, c+yRy C CN(c—C)
and, therefore —yR; C C' N (¢ — C). That means, yR € C N (—C), so y = 0. This
contradicts to y € S'. Therefore, K is compact. O

By the Lemma [2.6.50] the set
K:={reBJ": 1 -z e B} = B&" n (1 - BL")

is compact. Since §~1(K) = D and 0 is proper, D is compact. O

133



Corollary 2.6.51. Let G be the extension of Gy from the previous section. The map

pol’:  U(Gg,0) x BV — @
(u,b) — ub

18 surjective and continuous. In particular, G is connected.

2.7 The symplectic group over GG

2.7.1 The group Sp,(G, o) (first definition)

Consider an R-algebra A with an anti-involution o. Consider G < A* a Lie subgroup

of A* which is closed under o, we denote B := Lie(G) and assume (B*¥™)* C G. By

G, we denote the connected component of 1 in G. Then B = Lie(Gy) = Lie(G) < A.

If B is weakly Hermitian, we always take G to be the extension form the Section[2.6.5]
Consider

EPQ(B,O') = {(z _O_Z(x)> | YIS B,y,Z € Bsym} C 5p2(A70)

In general, it is not a Lie algebra. We need to take some additional assumption:

Proposition 2.7.1. spy(B,0) is a Lie subalgebra of sps(A, o) if and only if B is of
Jordan type.

Proof. Matrixes

r(z) = (8 g)  U(x) = (2 8) and d(2) = (g —oo(a:)>

generate sp,(B,0) as a vector space. sp,(B, o) is a Lie subalgebra of spy(A, o) if
and only if all Lie bracket of these elements are in sp,(B, o).
For y,z € B%Y™

renil = (1)) e walBoo)

so zy,yz € B and we need the condition that B is of Jordan type.
For a € B, z € BsY™:

)= (3 7 57) omimo

so xz + zo(z) € B*¥™. This holds for B of Jordan type by Proposition [2.6.5
Fora € B, y € B¥Y™:

0 0

104 = (s e o

) € spy(B, o)

so o(z)y + yz € B%¥™. This holds for B of Jordan type by Proposition [2.6.5] O
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We consider the following matrices:

2= (5 o) 0= 1) 1= (g )

where x € G, y, z € B%Y™. These matrices, acting on A2, preserve the standard sym-

_01 [1)) Therefore, the set {L(y)D(z)R(y) | y,z € B¥Y™, x € G}

is contained in Spy(A4, o).

plectic form w =

Definition 2.7.2. We denote by Spy(G,o) the topological closure of
{L(y)D(2)R(2) | y,z € B¥™, x € G} in Spy(4, o).

Lemma 2.7.3. If B is weakly Hermitian, Spy(G, o) is connected.

Proof. We show that for every generic element g := L(y)D(z)R(z) such that y, z €
BV x € G there exists a path g;: [0,1) = Spy(G, o) such that go = g, lim—,; g, =

(5 o)

Using polar decomposition, x = ub for some u € U(Gy,0), b € (BY™)*. Take

u: [0,1) = U(Go,0) such that up = u, u = 1 for t > 1. It is possible because

U(Gg,0) is connected. Take b;: [0,1) — (B*¥™)* such that lim;,1 b, = 0. Take

Y, 2 [0,1) — B%Y™ such that z0 = 2z yo = y and x; = —y = bt_1 for t > % It is
possible since B*Y™ is connected. Define g: = L(y;)D(x¢)R(2). Then:

lim ¢g; = lim ueby urbizi =

PR yeushy  ypughpze + o(uhy) 1)

b ™ beb; * (0 1
TSt \b Ty bbbt T \-1 0)°

Therefore,

Spa(G,0) = {L(y)D()R(2) | y,> € B, & € G}U {(_01 é)}

and {L(y)D(z)R(2) | y,z € B¥Y™, x € G} U{ <_01 é)} is connected. So Spy(G, o)

is connected.

Theorem 2.7.4. Let B be of Jordan type such that 1 € B. Then the space Spy(G, o)
1S a group.

Proof. First, we prove the two Lemmata:

Lemma 2.7.5. Let 1 + y is not invertible for a y € A. Then there exists a neigh-
borhood U of 0 € R such that for everyt € U\ {0}, 1 +y(1+t) is invertible.
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Proof. As we have seen in the Proposition [2.1.5, A can be embedded as a subalgebra
into Mat(r,R) for some r € N. We identify B with a Lie subalgebra of Mat(r, R).
Since 1+ y is not invertible, —1 is an eigenvalue of y. Since y has only finitely many
eigenvalues, there exists a neighborhood U of 0 € R such that for every t € U \ {0},
1+ y(1 +t) is invertible. O

We remind, G is the topological closure of G in A. It is a monoid.

Lemma 2.7.6. Lety,z € BSY™ then 1+zy € G. In particular, if 14 zy is invertible,
then 1+ zy € G.

Proof. First, assume z € (B¥"™)* C G. Then 1+ 2y = (2 + 2yz)z~! € G because
2 Ve @, z,2yz € BY™ C G.

If z is not invertible, take a sequence of invertible (z;) such that lim z; = z. Then
all 1+ 2y € G and lim(1 + z;y) = 1 + 2y. Since G is closed, 1+ 2y € G. O

Let a = limL(y;)D(x;)R(z;), b = lim L(y,)D(z})R(%,) for some sequences
{vi}, {vi}, {zi}. {#]} C B%Y™, {x;},{z}} € G. We want to show that there exist
sequences {y!'}, {z} € BY™, {2/} C G such that ab = lim L(y")D(x])R(=!).

K2 1
Since limits for a and b exist, we can write:

ab = 1im L(y;) D (i) R(zi) L(y;) D () R(2;).

1

Consider the term

1 z 1 0 l—i-Zig 2
R(zi)L(yg):(O 1) <y{ 1):< S 1).

If 1+ zy, is invertible then by the Lemma 1+ zy} € G, then we can write
R(z)L(y;) = L(=i(1 + 2iy) ™) D(L + 2 R((L + zi97) i)

If 1+ zy} is not invertible in B then we take a sequence {t;} C R such that
lim¢; = 0 and t; € U; where Uj; is the neighborhood of 0 € R form the Lemma [2.7.5
for the element 1+ zy,. Then b = lim L(y}(1 +t;))D(z;)R(z]) and 1+ z;y/(1 +¢;) is
invertible in B.

To conclude the proof, note the following permutation rules:

D(x)L(y) = L(o(z)~'yz~")D(x),
R(2)D(z) = D(z)R(z 'zo(z)™ 1)
that always make possible to reorder matrices and
Ly)L(y') = Ly + '), R(z)R(a") = R(z + 7'), D(z)D(a') = D(za)

for all z,2' € G, y,y/, 2,2 € B¥Y™.

Now, we show that for a € Spy(G, o), a=! € Spy(G,0). Indeed, Spy(G, o) C
Spy(A, o) and Spy(A, o) is a group, therefore, a~! exists in Spy(4,0). As before,
we take a sequence a; := L(y;)D(x;)R(z;) where z; € G, y;,z € B%Y™ such that
lima; = a. Then a; ' = R(—2)D(z;")L(~y;) € Sps(G,0o). Therefore, lima; ' =

a~! € Spy(G,0). O
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Definition 2.7.7. Matrices of the form L(y)D(z)R(z) for y,z € B¥™ x € G are
called generic.

Proposition 2.7.8. sp,(B, o) is the Lie algebra of Spy(G, o).

Proof. The neighborhood of the identity in Spy(G, o) consists only of generic matri-
ces. Consider a smooth path p(t) := L(y(t))D(x(t)) R(2(t)) such that y, z: (—=1,1) —
B#Y™ are smooth and y(0) = 2(0) = 0 and z: (—1,1) — G smooth and z(0) = 1.
Then
/ 2'(0)  Z(0) )
p(0) = ( € spy(B, o
( ) y’(O) —O’(.T,(O)) p2( )

z sym
U(x)> € spy(B,o), y,x € BV x € B the

path p(t) := L(yt)D(exp(xzt))R(zt) € Spy(G,o) and p'(0) = m. Therefore,
Lie(3p(G, 0)) = b (B, ). .

x
Moreover, for every m := (
y —_

2.7.2 Another definition of Sp,(G, o)
We denote by Sp5(G, o) the Lie subgroup of Spy(A, o) generated by matrices:

D(z) := <g 0(9?)1> » Ti= (—01 é)  Rz) = <(1) i)

where © € Gy, z € B*™. Since all generators of Sp)(G, o) are in Spy(G, o),
Sp5(G,0) < Spy(G,o). In this subsection, we show that actually Sph(G,o) =
Sp2(G7 U)'

Lemma 2.7.9. Matrices L(z) := (i (1)> are in Sph(G, o) for all z € BSY™.

o= ()= (% )6 DY)

Proposition 2.7.10. spy(B, o) is the Lie algebra of Sph(G, o).

Proof.

Proof. Let xy € B. Since Lie(G) = B, there exists a smooth path z(t) € G such that

z(0) = 1 and 2/(0) = zy. Take a smooth path g(t) = <xét) o—(x((z))_1> € Spy(G, o).

Let zp € B*Y™. Since B*Y™ is a vector space, there exists a smooth path z(t) €

B such that z(0) = 0, 2/(0) = 2z9. Consider the smooth path g(t) = ((1) Z(lt)> e
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/
Sps2(G, o) where z(t) € B%Y™ for all ¢t and z(0) = 0. Then ¢'(0) = (0 ‘ <0)> Since
Z'(0) € BV™, ¢'(0) € spy(B, o).

Since (_01 (1)>3<(1) i) (_01 é)-(_lz (1)>

8) for z € BSY™ are also

covered by derivations of paths in Spy(G, o). O

the similar argument as above shows that elements <2

Proposition 2.7.11. If B is weakly Hermitian, then Sph(G, o) = Spy(G, o)

Proof. Let U be a small neighborhood of 0 € Lie(Sp,(G, o)) such that exp |: U —
Spy(G, o) is a diffeomorphism and exp(U) consists only of regular elements. Then
exp(U)  Sp (G o).

Moreover, since Spy(G, o) is connected, exp(U) generates Spy(G, o). Therefore,
Sp2(G7 U) < Sp,?(Gv J)' O

2.7.3 Center of Sp,(G, o) and the group PSp,(G, o)

Proposition 2.7.12. The center Z(Spy(G, o)) of Spy(G, o) is isomorphic to Z(G)N
U(G, o) where Z(Q) is the center of G. More precisely,

Z(Spy(G,0)) = {diag(a,a) | a € Z(G)NU(G,0)}.

a b
Proof. Let M = (c d 10

) € Z(Spy(G,0)), then M commutes with ( 0 1>. This
0 1
b= 0. Since M = diag(a,a) € Spy(A4,0), o(a)~! = a. Moreover, M commutes with
all diag(g,o(g9)™1), i.e. a € Z(G). Therefore,

gives: d = a, ¢ = —b. Also M commutes with <1 1> € Spy(G, o). This gives

Z(Spy(G,0)) < {diag(a,a) |a € Z(G)NU(G,0)}.

It is also easy to see that matrices diag(a,a) for a € Z(G) N U(G, o) commute
with all elements of Spy(G, o). therefore,

Z(Spy(G,o0)) = {diag(a,a) |a € Z(G)NU(G,0)}.

Corollary 2.7.13. For B Hermitian, Z(Spy(G, o)) is compact.

Definition 2.7.14. The quotient group
PSp2(G7 U) = Sp2(G7 U)/Z(SPQ(Ga J))

is called projective symplectic group.
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2.7.4 Maximal compact subgroup of Sp,(G, o)

In this section, we assume B to be Hermitian. We describe a maximal compact
subgroup of Spy(G, o).

Definition 2.7.15. We denote:
Us(A,0) := {M € Maty(A) | o(M)' M = 1d};
KSp,y(G,0) := Spy(G,0) NUsz(A, o).
Lemma 2.7.16. For every M € Spy(G, o), all components M;; € G.
Proof. Since M = limM® such that M® are generic, i.e. Ml(zl) e G,

For every M € Spy(G,0), (0 1)M € Spy(G,0). Therefore,

My € 10

)
)

Proposition 2.7.17. KSp,(G,0) = {(_ab Z)

= —My € G. Similarly, M 0 1 = My € G and
1 -10//4

M
1
0 1 ~
M(—l 0>>11——M22€G. O]

ola)a+o(b)b=1
o(a)b —o(b)a=0"

a,be@}.

a b
Proof. Take M := <c d

= (e (4 3)= (4 )

On the other hand, M € Uy(A, o), therefore,

) € KSp,(G, o). On one hand, M € Sp,y(G, o), therefore,

So we obtain, a = d and b= —c. O
Remark 2.7.18. The Proposition [2.7.17] holds also for semi-Hermitian B.
Theorem 2.7.19. KSpy(G, o) is a mazimal compact subgroup of Spy(G, o).

Proof. By definition, KSp,(G, o) is closed subgroup of Spy(G,o). Let M :=
<a b) € KSpy(G, o). Then

=05 ) (5 )
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= (U(G)G:U(b)b a(b)bia(a)a> B (é (1)>

Since o(a)a + o(b)b =1, i.e.
a,bED:{xEC_H1—0(m)x€BsZy0m}§C_;
which is compact by [2.6.49, KSpy(G, o) can be seen as a closed subset of the compact
D*, so it is compact.
Now, we show that KSp,y(G, o) is a maximal compact subgroup of Sp,y(G, o). Let

K be some compact subgroup containing KSpy(G, o) as a proper subgroup. We
consider the following decomposition of spy(G, 0):

spo (G, 0) = tspy(G, o) ® Symy (G, 0)

where

tpy (G, o) = Lie(KSpy(G, o)) = {(_“b 2) |o(a) = —a € B,b e Bsym} ,

Sym, (G, 0) = {(2 _dc> | c,d € Bsym} .

By our assumption, Lie(K) contains €sp,(G, o) and has nontrivial intersection with

Symy(G, o). Take some (Ccl —dc> € Lie(K) N Symy(G,0), ¢,d € B¥™. The matrix

< 0 d> € tspy (G, 0) C Lie(K), therefore,

—d 0
<8 ﬁ) - <Ccl _dc> + (_Od g) € Lie(K) \ tsp, (G, 0).

Using the exponential map of spy(G, o) restricted to Lie(K'), we obtain that there

exits a matrix M = <g gg_x1> € K \ KSpy(G,0) where g = exp(c) € G,

x € B%Y™, Consider the spectral decomposition of g = Zle Aici for some \; # 0 and
(ci)¥_, a complete orthogonal system of idempotents. Take a sequence {M"} C K.
Then

k
T k T
Mll — g — Z)\Z’Ci,
=1

k
Mp =gt =3 A
i=1

Assume, there exists s € {1,...,k} such that \; # £1. Then either 0 < [As| < 1 or
0 < |A;Y < 1. Without lost of generality, assume 0 < |\s| < 1. Since K is compact,
{M"} C K have a convergent subsequence {M"i} C K:

k

k
limMﬁ = lim E A;Jci = g NiCi
i=1 =1
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where /A\Z = lim )\:j. But 5\5 = lim Ay = 0 for any subsequence {r;j}. Therefore
lim Mﬁ is not invertible and do lim M"7 is not invertible as well. Therefore, all

Ai = #+1 and ¢?> = 1. The element L := (g 991> € KSpy(G,0) € K. Then

ML = ((1) ”13) € K. Take (ML)" = <é Tf
any convergent subsequence unless x = 0. So we get M = L € KSpy(G, o). This
contradicts to the assumption M ¢ KSp,(G, o) and we obtain that KSpy(G, o) is a
maximal compact subgroup of Spy(G, o). O

> € K. This sequence does not have

2.7.5 Maximal compact subgroup of Sp,(G, o) for complex G

In this section, we assume A to be a C-algebra with a C-linear anti-involution o,
B C A a C-Lie subalgebra, G C A* a Lie subgroup such that LieG = B, B and G
are closed under o and (B, o) to be semi Hermitian. We denote by & the composition
of o and the complex conjugation. To distinguish between symmetric elements with
respect to different anti-involutions o and &, we denote

BY :=Fixg(o), B? := Fixp(7),

G := Fixg(0), G7 := Fixg (7).

We assume (B?)* C G, so the group Spy(G, o) is well-defined. Assume also (B, d)
to be Hermitian, so we have the proper convex cone Bgo.

Definition 2.7.20. We denote:
KSp$(G, o) := Spy(G,0) NUs(A, 7).

Lemma 2.7.21. For every M € Spy(G, o), all components M;; € G.

Proof. The proof is identic to the Lemma [2.7.16 O
Proposition 2.7.22. KSp5(G,0) = {(al_) 2) gEZ;Z+Z((g))2 i (1) , a,be G} :

a b
Proof. Take M := <c d

et (0 oo ()= (5 )

On the other hand, M € Us(A, ), therefore,

> € KSp,(G, ). On one hand, M € Sp,y(G, o), therefore,

So we obtain, d = @ and ¢ = —b. O
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Theorem 2.7.23. KSp5(G, o) is a mazimal compact subgroup of Spy(G, o).
Proof. By definition, KSp§(G, o) is closed subgroup of Spy(G,o). Let M :=

a b B

a(b) o(a) J\-b a
_ (&(a)a+ o(b)b * (10
N ( * ab)b+o(a)a) (O 1)
Since a(a)a + o(b)b = 5(a)a + 5 (b)b =1, i.e.

a,beD={reG|1-5(x)zc B} CqG

which is compact by KSp$(G, o) can be seen as a closed subset of the compact
D4, so it is compact.

Now, we show that KSp$(G, o) is a maximal compact subgroup of Sp,y(G, o). Let
K be some compact subgroup containing KSp$(G, o) as a proper subgroup. We
consider the following decomposition of spy(G, 0):

spy(G, o) = tspS(G, o) @ Hermy (G, 7)

where

tsp3(G, o) = Lie(KSp3(G, o) {( ) (a)=—a€B,be B"},

Hermy (G, 0) = {< C>]chBo}

By our assumption, Lie(K) contains £sp$(G, o) and has nontrivial intersection with
Hermy (G, o). Take some <cci d > € Lie(K) N Hermy (G, o), ¢,d € B?. The matrix

< 0 d> € tsp5(G, o) C Lie(K), therefore,

—d 0
<8 3Cé> = <ch _dé> + (_OJ g) € Lie(K) \ sp5(G, o).

Using the exponential map of sp,(G, o) restricted to Lie(K), we obtain that there

exits a matrix M := (g ;_xl) € K \ KSp5(G, o) where g = exp(c) € G°, z € B°.

Consider the spectral decomposition of g = Zle Aic; for some \; # 0 and (ci)le a
complete orthogonal system of idempotents. Take a sequence {M"} C K. Then

k

My =g = Z)\gci,
i=1
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k

i=1
Assume, there exists s € {1,...,k} such that \; # £1. Then either 0 < |As| < 1 or
0 < |A;Y < 1. Without lost of generality, assume 0 < |\s| < 1. Since K is compact,
{M"} C K have a convergent subsequence {M"i} C K:

k k

. T4 . T <

lim M,{ = lim E Aei = g NiCi
i=1 =1

where /A\Z = lim )\:j. But 5\3 = lim A\ = 0 for any subsequence {Tj}. Therefore
lim Mﬁ is not invertible and do lim M"/ is not invertible as well. Therefore, all

A\i = +1 and ¢> = 1. The element L := (g ggl) € KSp5(G,o) € K. Then

ML = ((1) f) € K. Take (ML)" = <(1) ’“1”5
any convergent subsequence unless x = 0. So we get M = L € KSp5(G, o). This
contradicts to the assumption M ¢ KSp5(G, o) and we obtain that KSp5(G, o) is a
maximal compact subgroup of Spy(G, o). O

> € K. This sequence does not have

2.7.6 More on the algebra Ac

In this section, we study some additional properties of the complexified algebra Ac
of some Hermitian algebra (A, o) that are connected to the spectral theorem. As we
have seen, (Ac, ) is Hermitian as well. First, we study the group U(Ac, ). Later,
we find out how AZ acts on (AZ)*.

Theorem 2.7.24. Let Y be a finite dimensional C-algebra, V- C'Y be a C-vector
subspace. Then V* is connected.

Proof. If V* = & then V* is connected.

Assume now that 1 € V> # @&. As we have seen in the Proposition Y can
be embedded as a subalgebra into Mat(r,C) for some r € N. We identify ¥ as a
subalgebra of Mat(r,C). Let a € V* C GL(n,C). Since a has only finitely many
eigenvalues, and 0 is not one of them, there is a point z € S* C C such that the line
in C through the origin containing z does not intersect any of the eigenvalues of a.
Now, consider the path f(t) = at + z(1 —t)Id, t € [0,1]. It lies completely in V'
because it is a C-vector space. This has determinant 0 if and only if z(¢ — 1) is an
eigenvalue of at, which happens if and only if z(1 — ¢)/t is an eigenvalue of a (this
does not work when ¢ = 0, but then it is clear that the determinant is non-zero). By
construction, it is not the case for any ¢ € [0, 1], so this defines a path form a to zId.

Now, there is a path in C not passing through 0 from z to 1, and, since {z1d | z €
St c C} ¢ V*, this gives rise to a path in AZ from z1d to Id, and so concatenating
these two paths, we get a path from a to Id that lies in V'*, showing that V> is path
connected.
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Finally, if 1 ¢ V* but there exists v € V*, then V* is connected if and only
if (v=1V)* = v~ H(V>) is connected. Moreover, v~V is also a C-vector space and
1€ (v™1V)*. So (v™1V)* is connected and, therefore, V* is connected as well. [

Corollary 2.7.25. The space Ay is path connected. In particular, U(Ac, ) is path
connected (as deformation retract of AZ ).

Later, we assume that Ac can be embedded as a subalgebra into Mat(r,C) for
some r € N.

Theorem 2.7.26 (Spectral theorem for U(Ac,a), first version). For every u €
U(Ac, ), there exist a unique r € N, a unique complete system of orthogonal idem-
potents ci, ..., ¢, € AZ and a unique sequence of elements 01, ..., 0, € R/(27Z) such

that for all i # j, 0; # 0;
U = Z echj.
j=1

Proof. Consider the Lie algebra of U(Ac,d):
Lie(U(Ac,0)) ={z € Ac | d(z) = —z}.
Consider the following map:

Y A% — Lie(U(Ac, 7))

a ia
This map is injective. Moreover, because
dimg (AZ) = dimg A = dimg(Lie(U(Ac, 7)),

this map is an isomorphism of R-vector spaces. By the first version of the spectral
theorem, for every a € AZ, there exists a unique complete system of orthogonal
idempotents c1, ..., ¢, € AZ of A% and a unique sequence of elements 64,...,60, € R
such that for all i # j, 6; # 6; and

r
a = E QjCj.
J=1

Therefore,
,
exp(ia) = Z eic; € U(Ac, ).
j=1
The exponential map is surjective for compact connected groups, so every element
of U(Ac, ) admit such presentation.

Assume, there are two such presentations with minimal number of idempotents
for an element u € U(Ac,0):

u = exp(ia) = exp(ia’),
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r r
_ h ! /!
a= E Oicj, a’ = E 0;c;
Jj=1 J=1

for some r,7" € N, (), (¢7) in R, (¢;), (¢}) complete systems of orthogonal idempo-
tents. Since the number of idempotents is minimal in both presentations, e%i #£ e
for all ¢ # k and also e +£ €% for all i # k.

We multiply u by ¢, from the left and by ¢} from the right:
0

. o
cruc) = e cc) = ey

. . o
So either c;c; =0 or e = ¢l qe.

{eO% | ke{l,...,r}y={% |le{1,...,1"}},

in particular r = 7. We can reorder indices so that e = ¢/ for all k € {1,...7}.
Therefore:
0,

CLU = ew’“ck =e ckcz,

o .
uc), = e ¢, = e el

We get ¢y = cpe), = ¢, for all k € {1,...,7}, i.e. (¢;) = (). So we obtain that the
presentation is unique. O

Theorem 2.7.27 (Spectral theorem for U(A,0)). For every u € U(A, o), there
exist unique r,s € N{0}, s < 2, unique systems of idempotents ci,...,¢, € AZ

/

and ¢y, ..., c, € A% such that c1,...,¢p,C1,. .., Cp, ), ..., Cs is a complete orthogonal

system of idempotents of AZ and unique sequences of elements 0y,...,0, € R/(27Z)
and €1, ...es € {1, =1} such that for all i # j, 6; # 0; and ; # €; and

T

s
u = E (eijj—i-eiiejEj)-l- E 5]'0;.

Jj=1 J=1

Proof. For an element u € U(Ac,d), u € U(A,o0) if and only if u = u. We take the
spectral decomposition of u and u:

k
u= Ze’ajcj,

Jj=1
k
n=>Y e e
j=1
Notice, all ¢, ..., ¢ is a complete orthogonal system of idempotents of A(‘E because

¢;¢j = ¢;cj. If u = u, then, because of uniqueness of the spectral decomposition, for
every j € {1,...,k} there exists j/ € {1,...,k} such that eic; = e7";. There
can be to cases:

145



1. j =7 then ¥ € Rie. ¥ € {1,-1}.
2. # j/ then cjr = Cj.

Because all €% are distinct, there can be at most one j such that €% = 1 and at

most one j with ¢ = —1. For such 7, c;j € A?. So we obtain
r s
w— Z(echj + e—iejéj) + Zgjcg,
j=1 Jj=1
for appropriate r, s € N{0}, s < 2. O]

Corollary 2.7.28. In every connected component of U(A, o) there is an element
from (A%)*.
Proof. Take u € U(A, o) and its spectral decomposition:

T

S
u= Z(eiejcj +e7%ig;) + Z £5C;.

Jj=1 Jj=1

Since the circle R/(277Z) is connected, take for every j a path 6;(t) connecting 6;
and 0 € R/(27Z). Then

r

u(t) = Z(eiaj(t)cj‘ + efiej(t)éj) + ZEJ‘CQ-.
j=1

j=1
connects u and 7%, (¢c; + &) + 37, ;¢ € (A7), O

Corollary 2.7.29. The group A* is generated by Aj and (A%)* where AJ is the
connected component of 1 € A*.

Proof. As we have seen using the polar decomposition, U(G, o) is a deformation
retract of A*. In every connected component of U(G,o), there is an element of
(A7)*. Therefore, every connected component C' C A can be written as C' = bAj
where Aj is a connected component of 1 € A%, b € (A7)*. Therefore A* is contained
in the group generated by A and A?. That the group generated by A and A7 is
contained in A* is clear. O

Corollary 2.7.30 (Spectral theorem for U(Ac, 7), second version). Suppose, AZ has
rank n. For every u € U(Ac,d), there exist unique sequence 6y,...,0, € R/(277Z)
and a Jordan frame ey, ..., e, € AZ such that

n
=S eitie,
u = e J€].

j=1

The elements 01, . ..,0, € R/(2nZ) (with their multiplicities) are uniquely determined
by w. In particular, they do not depend (up to permutations) on the Jordan frame
€1,...,en € BSY™,
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Definition 2.7.31. The determinant map on U(Ac, ) is given by:
n .
det(u) = H elieslcc
j=1
where u = Z;‘:l ewfej for some Jordan frame eq,...,e, € A%.
Proposition 2.7.32. The fundamental group of U(Ac, ) is infinite.
Proof. The determinant map
det: U(Ac,5) — S!
is continuous and surjective. It induces the homomorphism of fundamental groups:
(det),: m(U(Ac,5),1) — m (S 1)

that is surjective because the curve u(t) = e'le; + > i_gej for t € [0,27] for some

Jordan frame ey, ..., e, maps to the following generator of w1 (S*,1): €', t € [0, 27].
So m(U(Ac,0d),1) is infinite. O

Corollary 2.7.33. The fundamental group of Spy(A, o) is infinite.

Theorem 2.7.34. The following action of A& on (AZ)*

Yo Ag x (AR = (4g)”
(a,b) —  o(a)ba

1s transitive.

Proof. Take b € (AZ)*. We take a polar decomposition of b = ub’ where u € U(A, o),
b e (AZ)*. We take the spectral decomposition of b':

k
- Z \ici
=1

for a complete system of orthogonal idempotents {Ci}le C AZ and all \; > 0.

The group U(Ac,d) acts transitively on Jordan frame of AZ. Therefore, if we
fix a Jordan frame {z;}¥ | C A%¥™ C AZ, there exists ' € U(Ac,5) such that
x; = a(u')e;u’. Then

o(u)bu' = o(u)us(u') e (u)b'u = o(u)ua(u) ™ Z N =: u”b"

where u" = o(u')us(u')~t, V' = Zle \i;.
Since o(u)bu' = u"b" € A7, W'V = o(u'b") = b"o(u") = b'(@’)~!. Therefore,

b" = u"b"u”. By induction, we obtain b” = (u”)"b"(a”)" for all n € Z, or equivalently
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()™ = v (w”)~™. Since it holds for every n € Z, the following holds: f(u")d" =
V' f((@")~1) for every holomorphic function in small enough neighborhood of wu”.
Since u” € U(Ac,d), v’ # 0. By the Theorem there exists w € U(Ac, )
such that (u”) = w?. So we can take as f the branch of square root such that
f(u") = w. Then we obtain wb” = b”(w)~1. Therefore,

-1

=

u"Y = wb"wt = (wb2)brw !t = o(brw b2

Therefore, o(u')bu’ = u”b"” is in the orbit of 1 under the action ¥¢ and also b is in

this orbit because b = o ((u')~1)u”b" (u/) 1. O

2.8 Invariants of G-isotropic lines

2.8.1 G-isotropic lines

In this section, we assume B to be weakly Hermitian. We consider Isg(w) =
Sps (G, a)(1,0)T the orbit of (1,0)7 € A2? under the action of Spy(G,o). Note, if
x € Isg(w), then zc € Isg(w) for all c € G.

Remark 2.8.1. The element (0,1)7 is in Isg(w) since —I(1,0)7 = (0,1) where I =

(50)

Remark 2.8.2. The space Isg(w) is closed in the space Is(w) of all isotropic elements
of A%, Tt follows from the fact that Spy(G, o) is closed in Spy(A, o) and Spy(A, o)
acts transitively on Is(w).

Definition 2.8.3. A line [ C A2 is called G-isotropic if | = yA for some y € Isg(w).

Proposition 2.8.4. Let = (x1,22)7 € G? be a regular element, then
o(x1)x1 + o(x2)xe € BY™.
In particular, this holds for all elements of Isg(w).

Proof. First, we prove the following Lemma:

Lemma 2.8.5. Let b € BY™ is not invertible, then there exists b’ € BZ"\ {0} such
that bb' = 0 -

Proof. Assume b to be not invertible and consider its spectral decomposition b =
Zle Aici for some (¢;) complete system of orthogonal idempotents. Since b is not
invertible, there exist j € {1,...,k} such that A\; = 0. Take b’ = ¢; € BZ[". O

Since for every g € G, o(g9)g € BX", b= o(x1)z1 + o(z2)72 € BY". Assume, b
is not invertible for some regular x € G2. Take b’ as in Lemma, then

0 =00 = c(x1t))x1b + o(x2b )zl

148



and o(z1b)x b, o (w2 )zt € BZY". Since BY™ is a proper convex cone,
o(x1b)x1b = o(z2b)xeb = 0. Since x1b, x2b € G’T take its polar decomposition:
21b = u1y1, T2b = ugys where y1,ya € BY™ uy,uz € U(G, o). Then o(x1b)x1b = 32,
o(xeb)xzeb = y3. Since B*¥™ does not contain nilpotents, y; = y2 = 0. Therefore,
21b = 29b = 0, i.e. © = (x1,22)7 is not regular. This contradicts to our assumption
that x is regular. O

2.8.2 Action of Sp,(G, o) on G-isotropic lines

Proposition 2.8.6. Spy(G, o) acts transitively on the space of G-isotropic lines.

z Ty

StabSPQ(Gp-)(l, O)TA = {<O 0’(3’))1) | x 6 G»Q 6 Bsym}

x 0
zx o(x)”!

Stabgp, (¢,0) (0, nTA .= {< ) |z e G,z € Bsym}

Proof. Spy(G, o) acts transitively on the space of G-isotropic lines since it acts tran-

sitively on Isg(w).
We prove only the statement for the first stabilizer. The second one can be proved

analogously.
Ty 1y [z
z t)\0) \z)’

Since
x € A* and z = 0. Therefore, the matrix is generic. So it has the form D(z)R(y). O

2.8.3 Action of Sp,(G, o) on pairs of G-isotropic lines

Proposition 2.8.7. Two elements u,v € Isg(w) are linearly independent if and
only if, up to action of Spy(G, o), u= (1,0)7, v = (a,b)” with b € G. Moreover, if
w(u,v) =1, then a € BY™, b= 1.

Proof. Spy(G, o) acts transitively on Isg(w), therefore, up to Spy(G,o)-action, we
can assume u = (1,0)7.

Since u and v are linearly independent, b € A* and v = g(1,0)” for some g €
Spy(G,0). If g = L(y)D(z)R(2) for some x € G, y,z € BY™, then v = (z,yx)! =
(1,5)"z. Therefore, y € (B*¥™)* C G and so b = yx € G.

If g is not generic, take a sequence {g,} of generic elements such that g, — g.
Then G > ypx, — b € A*. Since G is closed in A* and z,,,y, € G, b € G.

Let now w(u,v) = 1, then 1 = w(u,v) = yz. So if g generic, then a = 2z =y~ €
B*Yy™_ If g is not generic, then a = lim(z,) = lim(y,!). But all y,! € B%™ and
B%Y™ is closed in A, so a € B3V, O

Corollary 2.8.8. If x,y € Isg(w) linearly independent, then w(x,y) € G.
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Definition 2.8.9. A symplectic basis (z,y) of (4% ,w) is called (G, o)-symplectic if
z,y € Isg(w).

Proposition 2.8.10. If (z,y) is a (G, o)-symplectic basis then there exists the unique
g € Spy(G,0) such that g(1,0)T = =z, g(0,1)T = y. In particular, Spy(G, o) acts
transitively on (G, o)-symplectic bases.

Proof. We can assume, z = (1,0)7, y = (a,1)” and a € B*%¥™. Take g := R(—a),
then R(—a)z =z, R(—a)y = (0,1)T. O

Corollary 2.8.11. Let A, yA be two transverse isotropic lines with x,y € Isg(w).
Then there exist M € Spy(G, o) and y' € Isg(w) such that YA = yA and Mz =
(1,007, My’ = (0, )T In particular, w(z,y’) = 1.

Proposition 2.8.12. Sp,(G, o) acts transitively on pairs of transverse G-isotropic
lines.

Stabsy, .0) (1, 0)T A, (0,1)T A) := {(g i (3?)1) |2 € G} ~ G,

Proof. By the Corollary every pairs of transverse G-isotropic lines can be
mapped to ((1,0)TA, (0,1)T A) by an element of Sp,y(G, ). So Spy(G, o) acts tran-
sitively on pairs of transverse G-isotropic lines.

By the Proposition for every M € Stabsp2(G7(,)((1,O)TA, 0,1)7A), M =
D(z)R(y) for x € G, y € B*¥™. Moreover, D(z)R(y)(0,1)" = (xy,o(z)~!). There-
fore, y = 0. O

2.8.4 Action of Sp,(G, o) on positive triples of G-isotropic lines

Let (z1A,23A,22A) be a triple of pairwise transverse G-isotropic lines where all
x; € Isg(w). Because of transversality of z1 A and z9 A, we can assume w(z1,z2) = 1.
Up to action of Spy(G, o), we can assume x1 = (1,0)7, 25 = (0,1)7. We can also
normalize 3 so that w(z3,2z2) = 1. Then x3 = (1,b)7, b = w(xy,23) € (BY™)*.

Definition 2.8.13. A triple of pairwise transverse G-isotropic lines (x1 A, 34, z2A)

is called positive if w(x1,z2) = w(xz,z2) =1 and w(z1,23) € BY™.

Proposition 2.8.14. The definition of positivity of a triple of G-isotropic lines does
not depend on the choice of x1,x2, 3.

Proof. Let y; € Isg(w) such that y;A = x;A for all i € {1,2,3}. Then y; = x;¢;

for some ¢g; € G. Since 1 = w(y1,y2) = o(g1)w(x1,22)92 = 0(91)92, g2 = U(gl)_l.
Similarly g = o(g3)~!. Therefore, g1 = gs.

w(y1,y3) = o(g1)w(z1,z3)g1 = o(g1)bgr € BY™

if and only if b € BY™. O
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Remark 2.8.15. For every transverse triple (x1A,x34,22A), up to action of
Spy(G, o), we can write 1 = (1,0)7, 22 = (0,1)T and:

=3 ) ()1-()-

sym

for b € B*¥™. The triple is positive if and only if b € B\”". Matrices of the form

(11) (1)) for b € BYY™ form a subsemigroup of Spy(G, o) which we denote by U>°.

Lemma 2.8.16. For every positive triple (l1,l3,l2) of isotropic lines, elements
Y1, Y2, Y3 € Isg(w) can be chosen so that

o [, =y A forie{l1,2,3};
e w(y,y2) =1;

® Y3 =y + Y2
Proof. Let l; = z;A for some regular x; € Isg(w). By transversality, (x1,x2) form a
basis. As above, we can assume w(z1,x2) = 1, x3 = 21 + x2a for a € BY"™. Take

1 . .
c:=a2 € BYY"™ C G. Consider a new basis y1 = z1¢™ !, y2 = x20(c). Then,

w(yt,y2) = w(zic ™, 220(c)) = o(c) tlo(c) = 1.

Moreover, x3 = yic + y20(c) Lo(c)c = yic + yac. If we take y3 1= w3¢™ = y1 + 9o,

we get y3A = x3A. O

Proposition 2.8.17. Spy(G, o) acts transitively on the space of positive triples of
pairwise transverse isotropic lines.
The stabilizer of the positive triple

()~ ()~ 6)4)

in Spy(G, o) coincides with the following subgroup:

= {(g O) e U(G,a)} ~ (G, o)

u

The stabilizer of every positive triple of isotropic lines is conjugated in Spy(G, o)

to U.

Proof. Let (I1,13,12) be a positive triple. By the Lemma there exist y; € [;, 1 €
{1,2,3} such that [; = 5;A, w(y1,y2) = 1 and y3 = y1+y2. By the Proposition[2.8.10]
there exists M € Spy(G,o) such that My; = (1,0)7, Mys = (0,1)7. Therefore,
Ml = (1,007 A, Mly = (0,1)TA, Ml3 = (1,1)T A i.e. every positive triple can be
mapped to the standard positive triple ((1,0)T 4, (1,1)T 4, (0,1)T A).

By the Proposition [2.8.12] for every M that stabilizes <<é> A, (i) A, <(1)) A),

M = D(zx) for x € G. Moreover, M(1,1)T = (z,0(z)~1). Therefore, z = o(x)~!,
ie. z € U(G,0). O
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Proposition 2.8.18. Positivity of triple is an invariant under cyclic permutations,
i.e. if (I1,13,12) is positive, then (l2,l1,13) is positive as well.

Proof. The triple (I1,13,1l2) is positive if and only if there exist x1,zo, x5 € Isg(w)
such that l; = x; A4, i € {1,2,3} and w(x, 22) = w(ws, x2) = 1, w(zy,23) = b e BY™.
The triple (l2,11,13) is positive if and only if there exist y1,y2,ys € Isg(w) such
that I; = y;A, i € {1,2,3} and w(y2,y3) = w(y1,y3) = 1, w(ye,y1) € BY™.
Take y1 = 2107, yo = —2, y3 = =3, then w(ya, y3) = w(—w2,23) = 1, w(y1,y3) =
w(@1b ! 23) = 1, w(ya, y1) = w(—z2, 2107 1) = b~ € BPY™. O

2.8.5 Invariant of a positive quadruple of G-isotropic lines
For this an next section, we fix some Jordan frame (e;)!" ; of B%Y™.

Definition 2.8.19. A quadruple (I1,13,l2,14) of pairwise transverse G-isotropic lines
is called positive if the triples (I1,13,12), (l2,14,11) are positive.

Proposition 2.8.20. Let (I1,13,12,14) be a positive quadruple of G-isotropic lines.
Then there exist y1,...,ys € Isg(w) such that l; = y; A, y3 = y1 + Y2, Y4 = y1 — Y240,
a e BY™.

For any such choice of (y1,y2,y3,y4), there exists a Jordan frame (e)_, of BY™,
where n = rk(B%Y™) and a unique tuple (A1,...,Ap) with \y > -+ > A, > 0 such
that where a = Y1 | A€}

Up to action of Spy(B, o) on G-isotropic lines, we can assume that all €}, = e;.

Proof. Follows directly from the spectral theorem and Proposition [2.8.17] O

Remark 2.8.21. e The tuple (A1,...,\,) with A\ > --- > )\, > 0 does not depend
on the choice of (y1,y2,y3,y4). It is an invariant of quadruple of G-isotropic
lines under the action of Spy(G, o). We denote

[lla l37 l21 l4] = ()\17 ceey )\n)

e Although the tuple (Aq,. .., \,) is unique, the Jordan frame (e})?_; is in general
not unique.

Proposition 2.8.22. Positivity of quadruple is an invariant under cyclic permuta-
tions, i.e. if (I1,13,l2,14) is positive, then (l3,1la,14,11) is positive as well. Moreover,
Zf Ula l3, lg, l4] = ()\1, ey )\n); then

I3, 12,14, 1] = ()\;1, ey /\1_1)_

Proof. Let (I1,13,12,14) be a positive quadruple of isotropic lines. Then up to action
of Spy(G, o), there exist y1,...,ys € Isg(w) such that I; = yA, y3 = y1 + yo,
Ys =y1 — Y2a, a =y i Aie; with Ay > -+ > X, > 0.
The triple (I3,12,14) is positive. Indeed, since a +1 € BYY™, it is invertible. So we
can take
3= y3(a+1)77 €l

152



VI

Ty = —y4(a + 1)_ € ly,

D=

xo :=1ya(a+1)2 € lo.

Therefore,

NI

(s, wa) = w((y1 +y2)(a+1)"2,—(y1 — yea)(a + 1)~

) =
= —(a+1)2(~a—1)(a+1)"2 =1,
w(ws,24) = w(ya(a+1)7, (g —a)(a+1)72) =1,
w(ws, m2) = w((y1 + ) (a+1)72,ya(a +1)2) =1 € BY™

Analogously, the triple (l4,11,13) is positive as well. So we get that the quadruple
(I3,12,14,11) is positive.

Take 1 := y1(a + 1)% € l;. Then easy calculation shows that

-1
T = T3+ T4, T1 = T3 — T40Q

where a=' = 1" | Ate;. Therefore, (I3, 12,14, 11] = (A1, ..., AT Y). O

i=1"% n o

2.8.6 Invariant of a positive 5-tuple of G-isotropic lines: angles

Definition 2.8.23. A 5-tuple (11, 15,13, 12,14) of pairwise transverse G-isotropic lines
is called positive if the triples (I1,13,12), (I2,14,11) and (l1,15,13) are positive.

Let (I1,15,13,12,14) be positive 5-tuple of isotropic lines, which we will think as the
vertices of a pentagon, as in Figure

1 I

A I8 ¥

Figure 2.8.1:

Using Proposition [2.8.20] up to action of Spy(G, ), we can find y1, ..., 31 € Isg(w)
such that I; = y; A, i € {1,2,3,4} and y3 = y1 + y2, ¥4 = y1 — Y2a, and there exists
a unique tuple (A1,...,A,) with A\; > -+ > X, > 0 such that where a = > | Aie;.

Since the triples (I3, l2,11) and (I3, 15, [3) are positive and yo = y3 —y1 = (y1+y2) —
y1, by Proposition there exists an element y5 € Isg(w) such that I5 = y5A4 and
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ys = ys+yia’, a’ € BY"™. By the second version of the spectral theorem, there exists
an element u € U(G, o) and a unique tuple (u1, ..., p,) with g1 >+ > g > 0 such
that where ¢’ = o(u) Y"1 | pie;u.

We will call this element u € U(G, o) an inner angle in the pentagon of isotropic
lines (L1, L4, Lo, L3, L) (see Figure [2.8.1]).
Remark 2.8.24. The element u is not uniquely defined. In general, u is only well
defined as an element of the double coset space Stab(a) \ U(G, o)/ Stab(a’), where

Stab(a) :=={v € U(G,0) | o(v)av = a},

Stab(a’) := {v € U(G,0) | o(v)d'v=ad'}.

This double coset is an invariant of 5-tuple of G-isotropic lines under the action of
Sps(G, o). It depends on the choice of the Jordan frame (e;)} ;.

2.9 Models for the symmetric space of Sp,(G, o) for real G

The goal of this Chapter is to construct different models of the symmetric space for
Spy(G, o) for Lie G = B where B C A is a Hermitian Lie subalgebra.

2.9.1 Complex structures model

In this section, we assume (A, o) to be an R-algebra with an involution, B C A be
a Hermitian Lie subalgebra, G C A* a Lie group such that LieG = B as in the
Section [2.6.5] so the group Spy(G, o) is well-defined.

Definition 2.9.1. A complex structure on an right A-module V is an A-linear map
J:V — V such that J? = —1Id.

Let V = A? and w be the standard symplectic form in A2. For every complex
structure J on A2, we can define the following o-sesquilinear form

hy: A2x A? - A
(r,y) = w(J(2),y)

Definition 2.9.2. A o-sesquilinear form h on (A% w) is called (G, )-inner product
if h is o-symmetric and for all v € Isg(w), h(v,v) € B¥™.

We consider the following space:

J(Isg(w)) = Isg(w), } .

=< J lex struct A? . :
¢ { compIex SEHEbtLe on hy is a (G, o)-inner product

Definition 2.9.3. The standard complex structure on A? is the map

Jo: A2 — A2
(ZL‘, y) = (yv —CB)
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Remark 2.9.4. hy, is the standard (G, o)-inner product on A?, i.e. [hy,] = diag(1,1).
By the Proposition Joe 8.

Remark 2.9.5. If G = A* and A is a Hermitian algebra, then every (A*,o)-inner
product on (A2%,w) is a o-inner product on A2

Proposition 2.9.6. Let J be a complex structure on A%. J € € if and only if there
exists w € Isg(w) such that (J(w),w) is a (G, o)-symplectic basis.
Proof. 1. Let J € € and w' € Isg(w). Since hy(w',w’) = b € BY¥™, we can take
w = w'b~ 2, then hy(w,w) = 1. Then:
w(J (w), J(w)) = hy(w, J(w)) = o(h;(J(w), w)) = o(w(w, w)) = 0,

w(J(w),w) = hj(w,w) = 1.

Therefore, (J(w),w) is a (G, o)-symplectic basis.
2. Let w € A? such that (J(w),w) is a (G, o)-symplectic basis. Then,
hJ(lU,lU) = w(‘](w)v w) =1
hy(J(w), J(w)) = w(J*(w), J(w)) = —w(w, J(w)) =1,
hJ(J(w)a w) = (,u(JQ(u))’w) = _w(w7w) =0.

Therefore, (J(w),w) is an orthonormal basis for h; and in this basis hy is the

standard o-inner product, so hy is an o-inner product. ]

Theorem 2.9.7. Spy(A, o) acts on € by conjugation. This action is transitive. The
stabilizer of the standard complex structure is KSpy(A4, o).
In particular, € is a model of the symmetric space of Spy(A, o).

Proof. 1. First, we prove that Sp,y(G, o) acts on &’ by conjugation. Let J € &',
g € Spy(A, o). Consider J' := g~ tJg. (J)? = g 'J%g = —1d so J' is a complex
structure on A%. For z € Isg(w), g(z) € Isg(w) and we obtain

hy(z,2) =w(J (z),2) = w(g_ng(m),:U) =

= w(Jg(z),9(z)) = hy(9(x), g(z)) € BY™.
Moreover, J' preserver Isg(w), therefore, hy is a (G,o)-inner product on A?, i.e.
J eS'.

2. Second, we prove that this action is transitive. Let J € &', take a (G, 0)-
symplectic basis (J(w),w) from the Proposition Since by Proposition
Sp2(G, o) acts transitively on (G, o)-symplectic bases, there exists g € Spy(G,0)
which maps the standard symplectic basis to (J(x),z). That means, g maps the
standard complex structure Jy to J. So the action is transitive.

3. Finally, compute the stabilizer of Jy. g € Stabgp, () (Jo) if and only if g €
Spa(G, o) and g € O(hy,) = Ua(A4,0), ie.

g € Spy(G,0) NUz(A,0) = KSpy(G, o). O
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2.9.2 Projective model

In this section, we assume B C A to be a Hermitian Lie subalgebra of A. Let
Be ;= BerC C A®r C = A¢ be the complexification of B and G¢ the Lie
subgroup of A* as in the Section m

As usual, we denote by o the C-linear extension of o, i.e.
o(x +1iy) = o(x) + io(y)
for every z,y € B and by & the C-antilinear extension of o, i.e.

o(x +iy) = o(x) —io(y)

for every z,y € B.

In this section, we do not assume (Bg, ) to be Hermitian.

We extend w in the complex linear way to we on A%. We also extend every complex
structure on A2 to a complex structure on A(% in the complex linear way. We denote
the extension of J by J¢.

Proposition 2.9.8. For every complex structure J € S’, there exist reqular isotropic
T,y € A(2C such that Jo(x) = iz, Jc(y) = —iy. Lines xAc, yAc are uniquely defined.

Proof. Since Spy(G, o) acts transitively on &', it is enough to prove the proposition
for the standard complex structure Jp.

Since Jo(a,b)” = (b, —a)T, (b, —a)T =i(a,b)” ifand only if b = ai, ie. z = (1,7)Ta
for a € Ac, i.e. xAc is uniquely defined. Analogously, y = (i,1)Ta for a € Ac, i.e.
yAc is uniquely defined. Moreover, we(z,z) = we(y,y) =0, so z,y € Isg.(we) O

Remark 2.9.9. For every (G, o)-symplectic basis (w, u) of (4%, w), elements u+wi, w+
11 are isotropic.

For a complex structure J € €, we denote by l; the line yAc such that Je(y) =
—Yi.
Proposition 2.9.10. The map

F: ¢ — P:={(ut+wiAc| (w,u) is a (G,0)-symplectic basis of A%}
J = 1y

defines is a homeomorphism that is equivariant under the action of Spy(G, o).

Definition 2.9.11. We call the space B the projective model of the symmetric space
of Spy(G, o).

Proof. 1. Show that [; € B. It is again enough to prove for the standard com-

plex structure Jy. We take v := (i,1)T = (0,1)T + (1,0)%4, then 1;, = vAc,
((1,0)7,(0,1)T) is a (G, o)-symplectic basis.
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2. Show that F' is surjective. Let v = u + wi, (w,u) is a (G, o)-symplectic basis
of (A2, w). We can define the following complex structure: J(u) = w, J(w) = —u.
By Proposition J € €. Since

Je(w) = Je(u+iw) = w — iu = —i(u + iw) = —iv,

we obtain F(J) = vAc, i.e. F is surjective.

3. The map F is injective because if [; = [y = yAc for J,J' € € and y = y1+y2i €
AZ. Then J(y1) = J'(y1) = —y2, J(y2) = J'(y2) = v1 and (y1,92) is a basis of A2,
Le. J=J'.

4. Now, show the equivariance of F. Let M € Spy(G,0), J € € and (w,u) be
a (G,o)-symplectic basis of (A% ,w) such that w := J(u), J(w) = —u. Then for
v =u+wi, Jc(v) = —iv.

Moreover, MJM~Y(Mu) = Mw, MJM~Y(Mw) = —Mu where (Mw, Mu) is also
a (G, o)-symplectic basis of (42,w). Then (MJM1)c(Mv) = —iMv and

F(MJM™') = (Mv)Ac = M(vAc) = MF(J),
i.e. F is equivariant with respect to the Spy(G, o)-action. O
Corollary 2.9.12. The map

7. Spe(G,0)/KSpy(G,0) — Py
M KSpy(G, o) = M(i,1)T Ac

is an Spy(G, o)-equivariant homeomorphism.
Consider the following 7-sesquilinear form on A(QC:
h(z,y) := iwe(Z, y).
It is indefinite. Indeed, it is o-symmetric:

h(y,[l?) = iw@(gv Q?) - 6((_Z’)(_W(C(jja y))) = 5’(h(1‘, y))7

T N\T
and in the basis e; := (i, L) , €9 1= (%, —ﬁ) , h is represented by the matrix

2
-1 0
(o 7)
Lemma 2.9.13. Assume (Bc,0) to be semi-Hermitian and (BZ)* C Gc, so the
group Spy(Ge, o) is well defined. For v := u+wi € AL such that (w,u) is a basis
of A?, the basis (w,u) is (G,o)-symplectic if and only if h(v,v) = 2 € AT and
v € Isg.(we).

[

Proof. Direct computation. O

Remark 2.9.14. Sp,y(G,0) acts on A2 preserving we and, therefore, preserving h
from the Section So we can see Sp,(G, o) as a subgroup of O(h).
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2.9.3 Precompact model

In this section, we assume (Bg,d) to be Hermitian. We want to see the symmetric
space of Spy(G, o) as a subset of some compact domain. We consider the following
Spy (G, o)-transformation that maps A to the standard indefinite form:

50

ie. a(T)T[RT = diag(—1,1) = [hg]. Since T € Spy(Gc, o), it stabilizes the set
ISGC(w(c).

Proposition 2.9.15. The map

®: TP = D(BE5):={ceB%|1—-¢cce (BZ):}

(a,0)TAc +— ab™!

18 a homeomorphism. The set ]_O)(B(‘E, o) C BZ is precompact.
Proof. First, we prove the following Lemma:
Lemma 2.9.16. Let (c,1)T € A2. (¢, 1)T € Isg.(wc) if and only if c € BE.
Proof. Let (c,1)T € Isg(w), then ((1,0)7,(c,1)T) is a (G, o)-symplectic basis.
Therefore, the matrix <(1) ;) € Spy(Ge,0) and so ¢ € BZ.

(1) i) € Spy(Ge,0), then

M(0, 1)T = (e, 1)T € Isg (we)- O

Let (¢,1)T € A% and ¢ € BZ. Consider M := (

Let v = (v1,v2)T € Isg.(wc) such that vAc € P and v = u + wi where (w,u) is a
(G, o)-symplectic basis of (A%, w). Then by the Lemma [2.9.13

2 = h(v,v) = ha(T 10, T~ ) = —&(21)21 + 5(22)72 € BY

where T 'v =: (z1,22)T. Therefore, 5(z2)ze = (21)z1 + 2 € B] because B is
a proper convex cone. This means that zo is invertible, i.e. 29 € G, (c,1)T =
(1255, )T € Tsge (we) and (¢, 1)TAc = (T~ 'v) Ac.

By Lemma, (c,1)T € Isg.(wc) if and only if ¢ € BZ, and h((c,1)T, (¢, 1)T) =
1 — é € B]. Therefore, ®(T~'v) € D(BZ,7).

The map @ is infective because T is injective and, if xw;l = (I)(J:l,xg)T =
O(y1,52)" = 11y s then (y1,y2)" = (w1, 29) 2y o, i (1,22)T Ac = (y1,92)" Ac.

The map ® is surjective because for every ¢ € D(BZ,5), (¢,1)TAc = (T~1v)Ac
for v := T(c,1)Tv/2(1 — Ec)_%. Then v € Isg.(wc) and h(v,v) = 2. Therefore, by
Lemma v = u+wi for (w,u) a (G, o)-symplectic basis of (A%, w). Therefore,
vAc € T_1q3.
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The set ﬁ(B(‘E, 7) is precompact because it is a subset of the following domain:
D(Gc¢,5) :={a € Gc|1-a(a)a e (BZ)>o}
that is compact by Proposition O

Remark 2.9.17. Assume that (Bc, &) is not Hermitian but (Bg, o) is semi-Hermitian.
Then we can define D(BZ, ) in the following way:

D(Bg,0) :={be BE |1 bb € 6c((B2)"))}

where 0c(b) = bb for b € BZ. If we assume additionally that 6c(BZ)) € BZ and

o

D(Bg, &) is precompact, then the Proposition holds also in this case. We will also
denote in this case

(BZ)+ := 0c((BE)™),
(BZ)>0 := Oc(BE).

Remark 2.9.18. The group T~ !Spy(G,0)T < Spy(Gc,o) acts on f?(B(‘é,&) by
Mobius transformations.

2.9.4 Compactification and Shilov boundary
Let (B, o) be a Hermitian Lie subalgebra of A such that

D(BZ,5) = {ce BE | 1—cce (BE).)

is precompact. As we have seen, it holds always if (B¢, ) is Hermitian. It is also
true for some other cases described in the Remark Let us take the topological
closure of D(BZ,5) in B7:

D(BE,@') = {C S B(% ’ 1—cce (Bg)zg}

The boundary of D(BZ, &) contains the following closed subspace:

S(B¢,0) :={ce B¢ |1—c¢cc=0}.

Definition 2.9.19. We call S’(BE,&) Shilov boundary of the precompact model

o

D(BgZ,0).

Note, that

$(B2,5) = U(Ge.5) N B2
and it is compact.

Remark 2.9.20. The map ®~! extends to the boundary of D(BZ,5) and remains
continuous and bijective. Since the boundary is compact, it is a homeomorphism.
Therefore, we can see the boundary also in the projective model. In particular, we
can see the Shilov boundary there.

159



The next Proposition describes the Shilov boundary in the projective model.

Proposition 2.9.21. The preimage of the Shilov boundary S(B(‘é, a) in Isg.(w) un-
der the map ® o T~ gives a compact subset of the boundary of the projective model.
It consists of all lines of the form xAc such that x € Isg(w).

Proof. Note that the line [ € Isg.(w) is of the form zAc for some = € Isg(w) if and
(@oT HTod 1(c) = 043 (¢
t 0 1

only if [ = L.
Assume ¢ € S(BZ,5), i.e. ¢ 1 =c. Then
iy <<1>> —el =
ci
ie. forl = (c,1)TAc, I =1.
If we take a line zAc for some x = (21, 22)7 € Isg(w), then
c:=(®oT ) (zAc) = (z1 —izg)(—izy 4+ z2) "L
Since z € Isg(w), ¢ € BZ
ée = (x1 +ixe) (imy + x2) "Ny — ixg)(—izy + 29) "L =
= i(x1 + i) (21 — ix0) M (1 — dxe)(—izy + 20) ' =
=i(xy +ixe)(—izy + .Tg)fl = (z1 + iz2) (21 + Z'l’g)fl =1.
Therefore, (® o T71)(zA) € S(BZ,5). O
Corollary 2.9.22. The space of G-isotropic lines of (A%, w) embedded into

P(Isg.(w)) as:
zA — zAC

is a Shilov boundary in the projective model. This is a closed (even compact) orbit
of the action of Spy(G, o) on the boundary of the projective model.

2.9.5 Upperhalf space model

Let A be an R-algebra, G C A* be a Lie subgroup, B := Lie(G) C A be a Hermitian
Lie subalgebra of A.

We denote by B the complexification of B, i.e. Be := B ®g C. To be consistent
with the next Chapter, we denote by j the imaginary unit in C. We extend o to B¢
complex linearly, i.e. o(z+yj) = o(x) +0(y)j. So B = Fixp.(0) = B*¥™ @ B*¥Y™j
is well defined.

Every element of z € BZ can be uniquely written as z = z +yj where z,y € B%™.
We denote by Re(z) := x, Im(z) := y. We also have a complex conjugation on B¢
given by z = x — yj.

Definition 2.9.23. The B-upperhalf space is

W:={z € B | Im(z) € B}
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Note, for Hermitian tube type A, S(A,0) is open in BEZ™

Proposition 2.9.24. Spy(G, o) acts on i via

2z M.z = (az +b)(cz +d), where M = (‘; Z) .

This transformation is called Mobius transformation. The kernel of this action is

Z(Spo(G,0)).

Proof. Since Spy(G, o) is generated by by matrices

<8 a(c?)‘1>’<—01 é)((l) l1)>

where a € G, b € B%™, we proof M.z € S on these generators.
If M := <é ll)> with b € BY™ then M.z = z + b € BZ and Im(M.z) = Im(z) €
BY™.

If M:= (_01 é), then M.z = —2"' ¢ BZ. If z =z + 1y, then

=y ey +ay )T =iy +ay )

ie. Im(M.z) = (y + zy~'z)~!. For y € B¥™, also y~! € BY¥™.
Let y~! = o(p)p for some p € B*, then

-1

y+axy x=y+o(px)pr € BY".

Therefore, Im(M.z) = (y + zy~'2)~t € BYY"™.
If M= <a o(a) 1) for a € G, then M.z = azo(a) € BE because B*¥™ is closed

by action of G. Im(M.z) = alm(z)o(a) € BYY™ because B¥™ is closed by action of
G.

An direct calculation on matrices shows that this is an action and that the kernel
of this action is exactly Z(Spy(G,0)). O

Proposition 2.9.25. The map

m: Spe(G,o0) — U
M — M.y

is continues, proper and surjective, i.e. Spy(G, o) acts transitively on . The stabi-
lizer of 15 is KSpy(G, o).
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Proof. Let z = x +yj € 4 then y = u? for some u € (B*Y™)*. Then

(GG o) ((5 ) o

M = <CCL 2) stabilizes 15 if and only if

1j=M.1j=(aj+b)(cj+d) " = (aj +b)(—c+dj) 5.
So, a =d and ¢ = —b, i.e. M € KSpy(G, o). O
Corollary 2.9.26. The map 7 induces a homeomorphism

T Sp2(G70)/KSp2(Gaa> - u
M KSpy (G, 0) = M.1j

A Mébius transformation z — M'.z corresponds under this homeomorphism to the
left multiplication M KSpy(G, o) — M'M KSpy(G, o).

2.10 Spin group as Spy(G, o)

2.10.1 spin(2,n) as spy(B, o)

Let V' be a real vector space of dimension m 4+ n > 0 with the standard symmetric
bilinear form b of signature (m,n). We denote by Cl(b) the Clifford algebra generated
by (V,b). We remind, Cl(b) is a unital algebra generated by all elements of V' and
the following relation v? = b(v,v) for v € V. From this relation follows that for
v,w €V, vw + wu = 2b(v, w).

The Clifford algebra Cl(b) contains a subalgebra Cleyen(b) that is generated by
elements {vw | v,w € V'}. Tt is called even Clifford algebra.

Fixing an orthonormal basis (fi,..., fm,e1,...,en), i.e. b(es, ;) = 0i5, b(fi, fj) =
—0i5, b(fi,ej) = 0, we identify (V,b) with R™". The Clifford algebra corresponding
to R™" is denoted by Cl(m,n).

We define the anti-involution ¢ on Cl(b) by the following rules: on V, it is defined
as o(e;) = e;, o(fi) = —fi and then extend it to Cl(b). We consider the following
Lie subalgebra:

B(mu TZ) = SpanR(lveiejafkeivfkfl ’ 1,] € {17 s 7”}7 kal € {17 s 7m}’i < jvk < l)
with the Lie bracket [z,y] := xy — yz. Notice that B(m,n) is closed under o, and
B¥™(m,n) = Fix(0|pmn)) = Spang(1, fre; | i € {1,...,n}, k€ {1,...,m}).

Proposition 2.10.1. B%Y™(m,n) is of Jordan type if and only if m <1 orn < 1.
In particular, spy(B(m,n),o) is a Lie algebra if and only if m <1 orn < 1.
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Proof. Assume m > 1 and n > 1 then fie; foes ¢ B.
If m =0, then B*Y™ = {1} is of Jordan type.
If m =1, then fie; fie; = —fieie; = e;ej € B, s0 spy(B(1,n),0) so B is of Jordan

type. O
Definition 2.10.2. For an element e € Spang(ey,...,ey,), we denote:

lell :== v/b(e, ) = 0.
This is a norm on Spang(ey, ..., ep).

Proposition 2.10.3. For every x € B*¥™(1,n) there exist ag € R, r > 0 and
e € Spang(e1, ..., e,) with |le|| =1 such that © = ag + 7 fie.

Proof. Let x € B%™(1,n), then x = ag + Y ;- a; fie;. Take

n
V= E aiei, 7 :=+/b(v,v), e := ey
r

=1

Then x = ag + r fie. O
Proposition 2.10.4.

BE"(1,n) = {t+ufre|t>0,0<u<t, ecSpang(e,...,en), [l =1}.
s a closed proper convex cone.

Proof. Let * = a9 + rfre € B¥™(1,n) where a¢p € R, r > 0 and e €
Spang(ey, . .., e,) with |le|]| = 1. Then 22 = a2+r2+2agr fie. Denote t := a3+7r? > 0.
Then u := 2aor = 2sgn(ag)V't — r?r. For fixed t > 0, u = u(r) takes all values be-
tween —t and t. So we get

BI"(1,n) = {t +ufie |t >0, |u| < t,e € Spang(eq,...,en), || = 1}.
This is a closed cone. It is also proper because for
v € B (1,n) N (=B25"(1,n)),

t = 0 and so u = 0. This cone is also convex. Indeed, take x = t + ufie, 2’ =
t' + ' fie’. Then

z+2 =t+t)+ filue+u'e) = (t+t) +0f1E

where v = |lue + u'e’||, € = %“,e/ Using the triangle inequality we get:
v = |vé| = [lue +u'e|| < [lue|| +[Ju'e|| = Ju| + |[u| <t +¢.
Therefore, = + 2’ € B (1, n). O
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Corollary 2.10.5. B(1,n) is weakly Hermitian.

Proof. In the Proposition we have seen that B(1,n) is of Jordan type. By the
Proposition , BZ"(1,n) is a proper convex cone and 1 € B (1,n). Finally,
show for b € B*¥™ b = 0 if and only if b> = 0. Let b = ag + a1 fe € B*™ with
b(e,e) = 1. Then b? = a% + a? + 2apay fe = 0, therefore ag = a; = 0,ie. b=0 O

We are going to identify sp,(B(1,n), o) with spin(2,n+1). We recall the definition
of spin(m,n):

spin(m,n) = SpanR(eiej7 fk€i7 fkfl ‘ (WES {17 s 777’}7 k,l € {17 cee 7m})
where e;, f; as above.
Theorem 2.10.6. The following map is an isomorphism of Lie algebras:

p: spa(B(Ln),0) = spin(2,n+1)

diag(eiej, 67;63') — €;e;
diag(fie;, —fiei) fiei
diag(1,—1) > faent1
S(f1ei) > fa€i
A(flei) — €iCn+1
S(1) = —fient
A1) = fife
0 z 0 —=z
where S(z) = <a: 0>, A(z) = <$ 0 >
Proof. Direct computation of Lie brackets. O

2.10.2 Clifford group and its Lie algebra

In this section, we describe a Lie group which Lie algebra is B(1,n).
The group of all invertible elements Cl(m,n)* of Cl(m,n) acts on Cl(m,n) in the
following way
7: Cl(m,n)* x Cl(m,n) — Cl(m,n)
(z,y) = az)yz

where « is the standard involution on Cl(m, n) induced by the automorphism v — —v
on R"™",

Definition 2.10.7. The (even) Clifford group is the group of all invertible elements
of Cleyen(m, n) that stabilize V' = R™" under the action 7, i.e.

ClGr(m,n) :={z € Cl,,,(m,n) | Yo € V : 7(z)v € V}.

even

We denote by ClGrg(m,n) the connected component of 1 in ClGr(m,n). We call
it also Clifford group.
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Remark 2.10.8. The Lie algebra of C1Gr(m,n) can be described as follows:
clge(m,n) = {x € Cl(m,n) |Yv € V : afx)v —vx € V}.

We recall the following well known properties of the Clifford group (for more details
see [27]):

Fact 2.10.9. The Clifford groups fit to the following exact sequence:
1 = R* S ClGr(m,n) & SO(m,n) — 1.

1 — Ry S ClGro(m,n) = SOg(m,n) — 1.

In particular,

(m+n)(m+n—1).

dimg ClGr(m,n) = dimg R + dimg SO(m,n) =1 + 5
Fact 2.10.10. The following map is well defined:

N: ClGr(m,n) — R~

xT — l‘tl‘

where (+)* is the standard anti-involution on Cl(m,n) induced by the trivial automor-
phism on R™™,

We remind the definition of the spin group:
Definition 2.10.11. The spin group is the following subgroup of the Clifford group:
Spin(m,n) = {xz € ClGr(m,n) | N(z) = 1},
Sping(m,n) = {z € ClGro(m,n) | N(x) = 1}.

Remark 2.10.12. If m > 0 and n > 0 then Spin(m, n) has two connected components.
If m =0 or n =0, then Spin(m,n) is connected, i.e. Spin(m,n) = Sping(m,n).

Corollary 2.10.13. e For z € ClGro(m,n), N(x) > 0;

e The map
x
T —
N(z)
maps ClGro(m,n) surjectively to Sping(m,n);
e The map
x
D —
[N ()]

maps ClGr(m,n) surjectively to Spin(m,n);

Proposition 2.10.14. U(ClGro(m,n), o) = Spin(m) x Spin(n).
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Proof. Both groups are connected. So it is enough to show that their Lie algebras
agree.

Lie(U(ClGro(m,n),0)) ={x € B|o(z) + z =0} =
= Spang(fifj,exer | 3,5 € {1,...,m}, k,le{l,...,n}) =

= spin(m) & spin(n). O
Lemma 2.10.15. clgt(m,n) = B(m,n).

Proof. Fasy calculation on the basis (f;, 63‘)?,?21 shows B(m,n) C clgt(m,n). More-
over,

2 2 2 9
_ - - —n+2
dimRB(m,n)zl—}-m2m+n2n+mn:1+m m—|—n2 n+ mn._

(m +n)? — (m+n)

=1
+ 2

= dimg clgr(m, n).
So we have, B(m,n) = clgt(m,n) O]
Proposition 2.10.16. B(1,n) is Hermitian.

Proof. In Corollary|2.10.5, we have seen that B(1,n) is weakly Hermitian. By Propo-
sition [2.10.14}) U(CIGr(1,n), o) is compact. O]
2.10.3 Spectral decomposition in B*¥™(1,n)

To be able to use the Corollary for B*Y™(1,n), we have to prove that
U(ClGro(1,n),0) on Jordan frames of B*Y™(1,n). In this section, we find out what
all Jordan frames in B*Y™(1,n) look like and show that U(ClGro(1,n), o) acts tran-
sitively on them.

Proposition 2.10.17. Every nontrivial idempotent c € B*Y™(1,n) is of the following
form: ¢ = % for some e € Spang(ey,...,e,), ble,e) =1

Proof. Let ¢ = x 4+ yfi1e be an idempotent, b(e,e) = 1. Then

=249+ 2xyfie=x+yfie=c

So 2zy = y. If y =0, then ¢ = 1 is trivial idempotent. If y # 0, then x = %, y = %
because by [2.10.3] y > 0. O
Theorem 2.10.18. Every Jordan frame is BY"™(1,n) of the following form: (c1,c2)
where ¢ = 156, co = % for some e € Spang(ey,...,e,), ble,e) = 1.
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Proof. Let ¢; = leel, co = HleeQ be two orthogonal idempotents, b(eq,e1) =
b(ea, e2) = 1. Then:

L+ fien 14 fiee (L4 fre)(+ fieo) + (L4 fie2)(1 + frer))

O0=ciocyg =

2 2 8
14 fier + fiea + frenfiea+ 1+ fien + fiea + freafier
= < =
_ 14b(er,ea) +2f1(e1 + e2)
— g _
Therefore, e; = —es.

So we have that every complete system of idempotents has at most two elements.

In particular, all Jordan frames are of the form (c1, c2) where ¢; = %, o = % O

Theorem 2.10.19. U(ClGro(1,n),0) acts transitively on Jordan frame.

Proof. Let <01 = 1+Tfle,02 = I_Qfle) and (c’l = 1+Tfle/,c’2 = I_Tflel) be two Jordan
frame. Since b(e,e) = b(e’,e¢’) = 1, there exists an orthogonal transformation
u € SO(n) such that u(e) = €. Take some preimage v of u in Spin(n) =
U(ClGro(1,n),0). Then

o(v)erv =v ey = Lt (vlf;)<vlev) _ 1t U(Qf)u(e) - +2fe/ =c.

Similarly, o(v)cav = ca. O

2.10.4 The group Spiny(2,n + 1) as Sp,(ClGr(1,n),0)

In this section, we want to identify the groups Sping(2,n+1) and Spy(ClGr(1,n),0).
First, note that a generic matrix in Sp,y(CIGr(1,n),0) has the following shape:

b )66 ) 1)

where x € Spin(1,n), A > 0, y,z € B¥Y™(1,n).
The embedding:

RL? = Span(fi,e1,...,6,) C R27H = Span(f1, fa,€1,. ., €nt1)

induces the embedding of spin groups ¢: Spin(1,n) < Spin(2,n + 1). Moreover, we
can embed the entire Spin(1, n) into Sping(2,n+ 1) the following way: we define the
map (g

e if x € Spiny(1,n), then (o(z) := 1(x);
e if z € Spin(1,n) \ Spiny(1,n), then wo(z) = = foent1.

The map ¢g is a group homomorphism.
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Theorem 2.10.20. The following map is an isomorphism of Lie groups:

®:  Spy(ClGr(l,n),0) — Sping(2,n + 1)
diag(y,o(y)™") to(y)
diag()‘7 >‘_1) = )\+§\_1 + f2€n+1)\_T)\_1
R(flel-) — 1+ 7f2+§"+1 €;
L(flei) — 1+ 7f2_;"+1 €;
R(1) — 1— fatens1 g
L(1) I i

where y € Spin(1,n), A > 0, R(z) = <(1) gf), L(z) = (31; (1)> The map ¢ is the
differential of ® at 1d.

Proof. The map ® is well defined and it is a homeomorphism of groups. This can
be seen on generators. Moreover, on generators one can also see that the map ¢ is
the differential of ® at Id. This implies that ® is a local diffeomorphism. Since both
groups are connected, the map ® is surjective.

To see, that the map ® is injective, first we can note that there is only one generic
element that is mapped to 1 € Sping(2,n+1), namely Id € Spy(ClGr(1,n),0). Then
we can take a sequence of generic elements, map it by ® to Sping(2,n + 1) and see
that this sequence converges to Id € Spy(ClGr(1,n), o) if and only if the sequence of
images converges to 1 € Sping(2,n + 1). O

2.10.5 Models of symmetric space of Spiny(2,n + 1)

In this section, we construct different models of the symmetric space of Sping(2,n +
1) = Spy(ClGr(1,n), 0).

Example 16 (Upperhalf space model). We remind:
B(1,n) = Spang(1, e;e;, fiex | 4,5,k € {1,...n})
B®*"™(1,n) = Spang (1, fiex | k € {1,...n})
BY"™(1,n) ={t+ufie|t>0,uec|0,t),e € Spang(ei,...,en), |le]| =1}.

So
U(Sping(2,n+ 1)) ={z+yi |z € B¥"(1,n), y € BY"(1,n)}.

Non-Example 1. Let us try to do the complexification for the previous example.
Consider the real Lie algebra Bg = B(1,n) = clgt(1,n) and corresponding real Lie
group Gg = ClGr(1,n). The anti-involution o acts in the following way on generators
o(f)=—f, o(e;) = e; and extends then to CI(1,n).

Now, consider complexified algebra:

Bc = B(1,n) ®@r C = Spanc(1, eiej, fiex | 4, k, 1€ {1,...n})
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B¢ = Spanc(1, fier | k € {1,...n}).
Therefore,
5p2(3C7 U) = 5p2(B7 U) ®R C= 5pin(27 n, (C) = spin(n + 2? C)

We get the same on the level of Lie groups, i.e. Spy(Gc, o) = Spin(n + 2,C), where
Gc = ClGr(1,n,C) = ClGr(n + 1,C).
But
BZ = Spang(1, fiex,iere; | j, k, 1 € {1,...n}),

i.e. (Bg, o) is not of Jordan type because
(fiex)(ieie;) = ifiexee; ¢ Be

if K # 1 # j. So our construction does not work in this case because the complexified
Lie algebra B¢ together with complex antilinear extension & of ¢ is not Hermitian.

Example 17 (Precompact model). We take the complexification
B(C = Bc(l,n) = Spanc{l, flei, €i€; ’ i,j c {1, - ,n}}

with complex linear extension of ¢ denoted also by ¢ and the complex antilinear
extension of ¢ denoted by . Then

BZ = Spanc{1, fie; | i € {1,...,n}}.

To construct the precompact model of the symmetric space for Spiny(2,n + 1), we
use the Remark 2.9.171 We consider the set:

D(BE,5) = {be BZ|1—0bbe Oc(BE)*} =
={z+yfie|1— (Z+ gfie)(x +yfie) € 0c(BR)*, e =1} =
={z+yfie|l—(zx+gy) — (Ty + yz) fre € 0c(BZ)™, || = 1}.

Let us find out what the set Oc(BZ) is. Let riexp(ig1) + riexp(i¢1)fie € BE,
1,72 > 0, ¢1,02 € R, [le]| =1 then

Oc(r1exp(igr) + riexp(ior) fre) = (r% + r%) + 2r17g cos(p2 — é1) fie.
We denote rf + r3 =: r. then
Oc(r1exp(id1) + o exp(iga) fre) = r + 2r1\/r — 1} cos(¢p2 — ¢1) f1e

For fixed 7 > 0, the expression 2r11/r — r? cos(¢2 — ¢1) can take every value in the
interval [—r, 7], i.e.

0c(BE) = {r+pfie|r>0, pe[-r], |e] =1} = BY"
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Analogously,
Oc(Bg)* = B¥™.

Therefore,
D(BE,5) = {z +yfie € BE|1— (zx +Jy) — (Zy + ga) fre € BY™, |le| = 1}
is the precompact model of the symmetric space for Spiny(2,n + 1).
Example 18 (Projective model). We take the upperhalf space model:
U(Sping(2,n+ 1)) = {z+yi |z € B¥"(1,n), y € BY"(1,n)}.

We know that the map z ~— (z,1)T Ac is a homeomorphism between the upperhalf
space models and projective model. So we obtain:

PB(Sping(2,n)) = {(z + yi, )T Ac | z € B¥™(1,n), y € BY"(1,n)} =

_ { <(x1 +y11) + ];1(61'2 + 6/y2)i> 4

r1 €R, y1 € Ry, m2 € Ry, }
y2 € [0,22), |le]| = [l =1

We can also construct the projective model for Sping(2,n + 1) in terms of lines
in C"*3. First, we note that the stabilizer of the line (i,1)T Ac C A% corresponds
under the (complexified) map ® from the Theorem to the stabilizer of the
line (f2 + f14)C C C*™3 where Spiny(2,n + 1) acts on C"*3 by (complexified) 7. So
we can take the following injective map:

F: B(Sping(2,n+1)) — {l€CP""?|1=vC,veC"3 be(v,v) =0}
9(i, )" Ac = T(D(9)(f2 + f11)C = ®(g)(f2 + f1))P(9)'C

where g € Spy(G, o), be the complex bilinear extension of b.
Since Sping(2,n+ 1) acts on R"™+3 preserving b, it acts on C"*3 preserving bc and
the sesquilinear extension b of b, i.e.

b(v1 + vai, w1 + wei) := b(vy, wy) + b(ve, wa) + (b(v1, we) — b(va, wy))i

for v,w € R""3. Note, the form b on C"3 has signature (2,n + 1). Therefore, F
maps injectively B (Sping (2,7 + 1)) to

B’ (Sping(2,n + 1)) := {l e CP"2 | =oC, v e C"3, be(v,v) =0, b(v,v) < 0} :
Let v = v 4+ v2i € C"3 such that be(v,v) = 0, b(v,v) = —2. Then b(vy,v;) =
b(va,v2) = —1, b(v1,v2) = 0. There exists an SO(2, n + 1)-transformation that maps

(f2, f1) to (v1,v2). Therefore, Spiny(2,n+ 1) acts transitively on P’ (Sping(2,n+1)),
so it is a model of the symmetric space of Sping(2,n + 1).
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Example 19 (Complex structure model). We consider the complex structure model
for the symmetric space of Spy(G, o) = Sping(2,n + 1):

J(Isg(w)) = Isg(w), }

o 2
¢(Spy(G,0)) = {J complex structure on A hy is a (G, o)-inner product

where hy(z,y) = w(J(x),y).
Notice that €(Sping(2,n+1)) C Spy(G, o) because the standard complex structure
Jo € Spy(G, o) and Spy(G, o) acts on €(Spiny(2,n + 1)) transitively by conjugation.
If we take the standard complex structure Jy = — (_01 [1)), then ®(Jy) = fif2
where @ is the isomorphism between Sping(2,n + 1) and Spy(G, o) from the The-
orem [2.10.20, For every v € R"3 there exist unique e € Spang(ey,...,ey,),

f € Spang(f1, f2) such that v = e+ f. Then
O(Jo)v®(Jo) P =e— f.

For another complex structure .J, there exists g € Spy(G, o) such that J = g~ 1.Jyg.
Let v = ®(g) (e + f)®(9), e, f as above,

()@ (J) " = @(g)" @ (Jo)(e + f)(Jo) " @(g) = (9) " (e — )2 (9).

Since Sping(2, n+1) acts preserving b on (R"3 b), the restriction of b to the subspace
®(g)~! Spang(e1, ..., ent1)®(g) is positive definite and the restriction of b to the
subspace ®(g)~! Spang (f1, f2)®(g) is negative definite.

Consider the following space:

D= {(Vy, Vo) | R"™ = Vo @V_, bly, is positive definite, b|y._ is negative definite}.
We have a map F': Spy(G,0) — D,

F(g) := (®(g)~" Spang(e1, ..., ent1)®(g), ®(g9) " Spang(f1, f2)P(g)).

Notice,

F~1(Spang(e1, ..., en), Spang(fi1, f2)) = Spin(2) x Spin(n + 1).

Therefore, D is isomorphic to Sping(2,n + 1)/(Spin(2) x Spin(n + 1)), i.e. D is the
model of the symmetric space of Sping (2,74 1). This is an analogous of the complex
structures model for Sping(2, n+ 1) because, as we have seen, the complex structures
model €(Spy(G, o)) can be mapped to D by taking a complex structure, mapping
it by ® to Spiny(2,n + 1) and the considering the decomposition of R"*3 in its 1-
eigenspace and (—1)-eigenspace. As we have seen, b restricted to the 1-eigenspace is
positive definite, b restricted to the (—1)-eigenspace is negative definite.
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2.11 Maximal representations into Sp,(G, o)

In the Section [I.2.4] we introduced the space of maximal representations of the
fundamental group of a punctured surface into Sp(2n,R). The notion of maximality
can be generalized for every Hermitian Lie group, in particular, for groups that can
be seen as Spy(G, o) where G is the Lie subgroup contained in some algebra with
anti-involution (A, o) such that Lie G = B and (B, o) is a Hermitian Lie subalgebra
of A.

In this Chapter, we generalize X'-coordinates we introduced for decorated maximal
representations into Sp(2n, R) for decorated maximal representations into Spy(G, o)
and describe some topological properties of the space of decorated maximal repre-
sentations into Sp, (G, o) using them as we have done it for the group Sp(2n,R).

2.11.1 Decorated representations

Definition 2.11.1. A representation p € Hom(m(S), Sps(G, o)) will be called pe-

ripherally parabolic if for every g € m1“"(S), the matrix p(g) leaves invariant some

isotropic line form P(Isg(w)).

We will denote by Hom® (71(S), Spy(G, o)) the subset of Hom(71(S), Spy(G, o))

consisting of peripherally parabolic representations.

Definition 2.11.2. The quotient space
Repp(ﬂl (S)v Sp2(G7 J)) = HOHIP (7’(1(5), Sp2(G7 U))/ Sp2(G7 U)
is called the moduli space of peripherally parabolic representations.

For a peripherally parabolic representation there might be many ways to choose
the invariant isotropic line. A decoration is a special way to make this choice.

Definition 2.11.3. A decoration of p is a map
D: 7" (S) = Isg(w)
satisfying the following properties:
(a) D(g) is invariant under p(g) for all g € 70" (S).
(b) If g1, 92 € T (S), h € 71(S) such that hgih~! = go, then

p(h)(D(g1)) = D(g2)-
(c) For every k € Z \ {0} and for every g € " (S),
D(g) = D(¢").

A decorated representation is a pair (p, D), where p is a representation and D a
decoration of p.
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Remark 2.11.4. By properties a), b), ¢) of decorations, for every puncture, one has
to choose a Lagrangian for only one peripheral element going around the puncture.
Then the Lagrangians associated to the other peripheral elements going around the
same puncture are determined.

We denote by Hom?(m1(S),Spy(G, o)) the set of all decorated representations.
The action of Spy(G, o) on Hom(m(S), Sps(G, o)) and on Isg(w) induces an action
on Hom? (1 (S), Spy(G, o). We will study the quotient:

Definition 2.11.5. The quotient space
Rep?(71(S), Spy(G, 0)) := Hom(m1(S), Spy (G, 0))/ Sps(G. o)

is called the moduli space of decorated representations. We denote by [p, D] the class
of (p, D) in the moduli space of decorated representation.

Remark 2.11.6. We have natural surjective maps

Hom®(m1(S),Spy(G,0)) — Hom® (71(9),Spy(G, o))
(p, D) — p '

Repd(ﬂ-l (S)v SpQ(Gv U)) — Repp(ﬂ'l(S), SpQ(G7 U))
[0, D] = (]

These maps are generically finite-to-one maps.

2.11.2 Transverse representations
We now fix an ideal triangulation 7 of S.

Definition 2.11.7. We say that (p, D) € Hom?(m(S,b),Spy(G,0) is transverse
with respect to 7 if the following condition holds: for every edge e of T connecting
punctures p; and pj, for every point b’ € Int(e) and for every curve  connecting b
and V', we require that the isotropic lines D(7y * o * 1) and D(y x aj x y~1) are
transverse, where the curves a; and «a; are as in Figure

We denote by Hode(ﬂl(S, b),Sps(G, o)) the set of all decorated representations
which are transverse with respect to the triangulation 7.

Remark 2.11.8. The transversality property required in the previous definition does
not depend on the choice of the path « and the base point b. Moreover, this property
is invariant under the action of Sp,(G, o), hence we can define the quotient:

Repg’<ﬂ1(s)7 SPQ(Gﬂ J)) = Hom%l’(ﬂl(‘& b)a Sp2<G7 J))/ Sp2<G7 J)

Remark 2.11.9. For each T, the space Repk(mi(S),Spy(G,o)) is an open dense
subspace of Rep?(m1(S), Spy(G, 0)).

Let T be a triangle of 7 with boundary 0T. Using the orientation of S, we can
orient 9T so that T is to the left from 9T. This gives us a cyclic order on the vertices
{p1,p2,p3} of T. We assume that (p1,p2,ps3) are in positive cyclic order.
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Figure 2.11.1:

Definition 2.11.10. Let [p, D] € Rep%(mi(S),Sp(2n,R)), and consider elements
91, 92,93 € ™" (S, b) that go around p1, p2, p3 that are vertices of an oriented triangle
T (see FigureP2.11.2)). We can consider triple of isotropic lines (D(g1), D(g2), D(g3)).
We say that this triangle if positive with respect to the decoration D if the triple
(D(g1), D(g2), D(g3)) is positive. Since the positivity is Sp(2n,R)-invariant, it is a
well defined invariant of [p, D] if the triangle is positive with respect to D.

Figure 2.11.2:
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2.11.3 Toledo number and maximal representations

We remind that the key invariant in the definition of maximality for representations
[p] € Rep(m1(S5), Spa(G, o)) similarly to the case of Sp(2n,R) is the Toledo number,
here denoted by T}, which was defined in |7] using bounded cohomology. It is a real
number which satisfies the Milnor-Wood inequality:

—n|x(S)| < T, < n|x(9)|

where n is the rank of the Jordan algebra B*Y™.
Moreover, for all representations [p] € Rep? (71 (S), Spy(G, o)), this invariant takes
only integer values.

Definition 2.11.11. A representation [p] € Rep(m1(S), Spa(G, o)) is called mazimal
if T, = n|x(9)].

We denote by M(71(S), Spy(G, o)) the subspace of Rep(m1(S), Spa(G, o)) consist-
ing of all maximal representations. Similarly, we denote by M%(71(S), Spy(G, o))
the subspace of Rep?(m1(S),Spy(G,0)) of all decorated maximal representations,
and by M%(m1(S), Spy(G, o)) the subspace of all decorated maximal representations
which are transverse with respect to a chosen triangulation 7. The following facts
are proven in [7].

Proposition 2.11.12. [7/

(a) M(m1(S),Spo(G, ) C Rep? (m1(S),Spy(G, o). In particular, the natural pro-
jection map

MA(m1(S5),8py(G,0)) — M(mi(S), Spo(G, 9)).
18 surjective.

(b) Mazimal representations are transverse with respect to any ideal triangulation T :

MF(m1(8),Spy(G, 7)) = M (m1(S), Spa(G, ).

(¢) All mazimal representations are reductive, hence the spaces M(m1(S), Spa(G,0))
and M (71(S),Sps(G, 7)) are Hausdorff.

As for the representations into Sp(2n,R), we have the following Proposition:

Proposition 2.11.13. Let T be an ideal triangulation of S and (p,D) €
Hom4-(71(S), Spa(G, 7). (p, D) is mazimal if and only if all positive oriented trian-
gles of T are positive with respect to the decoration D.

The proof of this Proposition goes analogously to the proof of the Proposi-
tion [1.2.20)
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2.11.4 Positive X-coordinates

Let S be a surface with an oriented ideal triangulation 7. We use the notation
introduced in Section [L3.1]

Definition 2.11.14 (Positive X-coordinates). A system of positive X -coordinates
of type (G,0) on (S,T) is a map

r: EUWT - R, UU(G,0)
such that

e the edge invariant z(e) for an edge e € F is an n-tuple of positive real numbers
z(e) = (M, ..., An) € RYy with A\; > A1 where n is the rank of G ;

e the angle invariant x(w) for a positive angle w € W is an element z(w) €
U(G, o). The angle coordinates are subject to the following relation: for each
positive triple of positive angles (w1, ws, ws) we require

x(w3)z(wy)z(wy) = 1.

We denote by X*(S,7T,G, o) the set of all positive systems of X-coordinates of
type (G,0) on (S, T).

Remark 2.11.15. As we have seen in the Chapter 1, the edge invariants and angle
invariants are related to the invariants of quadruple of Lagrangians and 5-tuple of
Lagrangians. In this more general situation, the edge and angle invariants are related
in the same way to the invariants of quadruple and 5-tuple of G-isotropic lines,
discussed in Sections and

As a convenient notation, if x € X (S, T,G,0) is a system of X-coordinates and
w € W~ is a negative angle, we will write x(w) = z(w=1)~L.
Analogously to the case of Sp(2n,R), the map

[rept]: X1(S,T,G,0) = M&(m1(S), Sps (G, 7))

can be defined, and it is continuous, surjective and proper.

2.11.5 Topology of the space of maximal representations

Using positive X-coordinates, we can understand the topology of the space of (dec-
orated) maximal representation. In this section, we state the results we obtain
for maximal representations into Spy(G, o) and the consider examples for classical
groups. All proofs go completely analogously to the case of Sp(2n,R).

Theorem  2.11.16. The space of decorated maximal representations
MU (71(S),Spo(G, ) is homotopically equivalent to U(G,o)*T+1/U(G,0),
where g is the genus of S, k is the number of punctures and the quotient is taken by
the action of U(G, o) on U(G,)?9tF=1 by simultaneous conjugation.
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Theorem  2.11.17. The space of decorated maximal representation
M (m1(8S), Sps(G, ) is homeomorphic to

(Biym)6g+3k76 % U(G, 0_)29+k71/U(G’ 0')
where U(G, o) acts by simultaneous conjugation in every factor.

Now, we implement the Theorem [2.11.16|for classical Lie groups of tube type that
we can see as Spy(A, o) or Spy(G, o).

Example 20. Let A = Mat(n,C) and ¢ be the transposition composed with the
complex conjugation. This is a Hermitian algebra,

BY¥™ = Herm™ (n,C), U(G,5) = U(n).

We take G = A*, then, as we have seen, Spy(G,5) = U(n,n). So we obtain:
M (71(S),U(n,n)) is homeomorphic to

(Herm™ (n, C))8913k=6 » U(n)297+=1/ U(n),
ant it is homotopically equivalent to
U(n)*> =1/ U(n).

Example 21. Let A = Mat(n,H) and o; be the transposition composed with the
quaternionic conjugation. This is a Hermitian algebra,

Bj_ym = Herm™ (n,H), U(G, 1) = Sp(n).

We take G = A*, then, as we have seen, Spy(G,01) = SO*(4n). So we obtain:
M (71(S),SO*(4n)) is homeomorphic to

(Herm* (n, H))® 36 » Sp(n)2+5=1/ $p(n),
ant it is homotopically equivalent to
Sp(n)***~1/Sp(n).

Example 22. Let A = CI(1,n) and o be the anti-involution as in the Chapter m
Then we take G = ClGr(1,n). We remind:

B(1,n) = Lie(ClGr(1,n)) = Spang(1, e;ej, fiex | 4,4,k € {1,...n})
B*™(1,n) = Spang(1, fiex | k € {1,...n})
BY"(1,n) ={t+ufie|t>0,ue[0,t),ec Spang(ei,...,en), [le] =1}.

where (f1,e1,...,ey,) is the standard orthonormal basis of R"*! with the standard
bilinear form of signature (1,n).

Then, as we have seen, Spy(G,0) = Spiny(2,n + 1). So we obtain:
M (m1(S), Sping(2,n + 1)) is homeomorphic to

(BE™(1,1))50+3= x Spin(n)2 -1/ Spin(n),
ant it is homotopically equivalent to

Spin(n)?**=1/ Spin(n).
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A Appendix

A.1 Spectral theorem with signature

The well known spectral theorem from the linear algebra says that for two bilinear
forms by, bo on a real vector space V such that by is positive definite, there exists
a basis e such that [bi]e = Id,, [b2]e = diag(A1,...,A,) where n = dimV and
A1 > -+ > A\,. Therefore, the tuple (A1,...,\,) defines the pair (by,b2) up to
change of basis of V. We can define the standard form of the pair of bilinear forms
(b1, b2) to be the pair of matrices (Id,, diag(A1, ..., A,)) and say that the basis e puts
(b1, b2) to the standard form. We use this standard form to define edge invariants
for maximal representations in the Section

In this section, we define the standard form for a pair of bilinear forms (b1, b2)
assuming only nondegeneracy of b;. This standard form will be used to define edge
invariants for general representations in the Section [1.5.2]

A.1.1 Bilinear forms and symmetric linear maps

Let V' be n-dimensional vector space over some field K, b1, by be symmetric bilinear
forms on V and b; be not degenerate. We denote by bg: V — V* the linear map

corresponding to b;, i.e. bj(x,y) = bf(y)(x) for z,y € V. Then we can consider the
linear isomorphism f: V' — V such that f := (bg)_l o bg.

Lemma A.1.1. The map [ is symmetric with respect to the form by and for all
x,y€eV

ba(z,y) = bi(z, fy)

Proof.
bi(z, fy) = b5 ((B) " (b () () = bh(y)(z) = ba(, y)

bi(fz,y) = bi(y, fz) = ba(y, z) = ba(x,y) = b1 (=, fy)

A.1.2 Jordan blocks

In this section, we define a standard form for a pair of bilinear forms (by, b2) if the
map f := (bg)_l o bg is a Jordan block in some basis, i.e. there exists a basis e of V'
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such that

[l 1 0 0 0
017 1 0 0
0 0 I 0 0
[f]e:Jn(l):
000 ... 1
000 ... 01

for some [ € K. We also find out how unique the basis e is. Instead of J,(l),
sometimes for simplicity, we will just write J.

Lemma A.1.2 (Jordan block over R). Let [fle = Jn(l) in some basis e of V. Then
there exists another basis € of V' such that [fler = Jn(l) and either [bi]e = eCy
where € € {1, —1},

00 0 1
C, = 0 0 1 0

1 0 ... 0O

Proof (Only idea). Let e = (e1,...,e,). Consider 9 := f — [1d, then d(e;) = e;—1
and J(e1) = 0. Since f is symmetric with respect to by, 0 is it as well. We get

b(ei, e5) = b(0" "en, 0" Vey) = bley, 9 (ey,).

Since 0° =0 for s > n —1, b(e;,e;) =0 for i +j < n+1. Moreover, if i +j > n+1,
blei,ej) = bleg,e) fori+j=k+1,k1>0,ie.

0 0 e 0 al
0 0 e al a9
[bl]e —
0 a ... QApn—2 Qap-—-1
ay az ... Ap—1 (079
We rescale the basis e such that a; = sgn(a;). Then we take a basis € :=

(Id +b10 + - - - + b,_10"1)e. Note that [f]er = [f]e for every b;. Coefficients b; can
be successively chosen so that all a; = 0 for ¢ > 1.
O

Corollary A.1.3 (Jordan block over algebraically closed field). Owver algebraically
closed fields the basis € in the previous lemma can be always chosen (by possible
rescaling by i) so that
00 ... 01
00 10
[bl]e’ -
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Lemma A.1.4 (Over R or algebraically closed field). The basis which was found in
the previous lemma (in this lemma denoted by e) is unique up to multiplication of
all vectors with £1.

Proof. Let u = (u;) be another basis with necessary property.
Step 1. By induction, we will show that

k
T
=1

1. f(u1) = Aug, ug is an eigenvector of f. But all eigenvectors of f are ceq, ¢ € R.
Therefore, u; = cieq for some ¢ # 0.
2. We assume that us =Y ;| cs—iy1e; forall s < k. f(uy) = au+ug_1, therefore

g(ug) = fug) — aug, € Rug_1 < (e1,...,ex_1). If we assume
n
=Y cues
i=1
then

n
g(ug) = chiei—l € (e, .., ep-1)-
i—2

Therefore ¢i; = 0 for all 4 > k. Moreover

k-1 k
g(u) = up—1 = ) ck-1-j41¢; = [above] = _cpiei
j=1 =2

Therefore, ci; = cx—ij+1, and so we have

k
Uk = E Ck—i+16i
i=1

Step 2. Now we show that ¢y = +1 and ¢; = 0 for ¢ > 1. To do that we use the
form by. By assumption

bi(ui,uj) = bi(es, €5) = digjnt1

k l k
by (ug, w) = Z Z Ch—it1C1—j+1b(es e5) = Z Chk—i+1Cl—n—1+i+1
=1 j:l =1
We assume here ¢; = 0 for ¢ < 0. If we take [ = n, then we get
k
b1 (tthytn) = Y Chi1Ci
i=1
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For k = 1:
1 = bi(u1,u,) = crc1

Therefore, ¢; = £1. Further, we take k = 2,
0 = bi(ug,un) = cac1 + c1c2

Therefore, co = 0. And so on by induction, we assume ¢; = 0 for all 1 < ¢ < k for
some k, then
0 = by (up, un) = cpc1 + cp—1c2 + -+ + cicy,

Therefore ¢, = 0 for all k # 1. O

Definition A.1.5. Let B be a symmetric n X n matrix over some field K. We denote
by
O(B) := {X € Mat,(K) | X' BX = B}.

the orthogonal group of B considered as a bilinear form on the vector space K™.

Corollary A.1.6. For everyl € R
O<Cn) N O(Can(l)) - {:l: Idn}

Remark A.1.7. If f is a Jordan block, then we have shown that there exists a basis
e such that [bi]e = €Cy, [b2]e = eCpJy, for € € {1,—1}. We take this as the standard
form for the pair of bilinear forms (b, b2). The basis e is uniquely defined up to sign.

Dual bilinear forms

Let b1, by be two bilinear forms in some n-dimensional R-vector space V' such that
[b1]e = eC = eCy, [baJle = €C'J in some basis e, where J is a Jordan block with
eigenvalue [ # 0, w = +1.

In order to construct a representation by given coordinates in Section we
will need another basis v of V' such that

[bilv+ = sgn(l)[ba]e

[b3]v+ = sgn(l)[b1]e
where v* is the dual basis for v, b7 are the bilinear forms on the dual space V*
corresponding to b;, i.e. (b)) = (bg)_l. We denote by ® the change-of-basis matrix
from e to v.
Since C'= C~!, we get the following conditions for ®:

sen(l)®CdT = CJ
sgn(l)®(CJ) tol =C
Lemma A.1.8. & = +&7
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Proof. We assume [ > 0. The case [ < 0 is similar.
oce’ =CJ
d(c) et =C

are equivalent to
eCdT =0T

dTCd =CJ

Therefore,
2o~ TCce o =C

o~ T(Ccryo el =CJ
So @17 € O(C)NO(CJT) = {£1d} and we have ® = +®7. O
Lemma A.1.9. If there exists ® € Sym(n,K) such that
sgn(lw)®C® = CJ
then this ® is unique up to sign.

Proof. We assume [ > 0. The case [ < 0 is similar. Assume, there are two @, ¥ €
Sym(n, K) such that
OCP=vCV =CJ

Then we have
o lCcelv =C

vt (cne v =cJ
So @10 € O(C)N O(CJ) = {+1d} and we have & = +U. O
Lemma A.1.10. There ezists ® € Sym(n,K) such that
sgn(lw)®CP = C'J

0 0 0 ||
0 0 N m T
$— L 0 0 T 9
0 ’l| e ITp—2 Tp-1
Il x ... Tp1 T

where x; are some rational functions in \/|l|.

Proof. Put this matrix in the equation $CP = C'J and calculate successively all
coefficients. O

Remark A.1.11. ® is uniquely defined up to sign. To make the choice of ® unique,
we take plus sign in case [ > 0. Otherwise, we take minus sign. At this point, it
does not really matter how we choose the sign. It will be important later when we
will consider degenerate representations.
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A.1.3 Classification of symmetric maps
Over algebraically closed fields

In this section we want to show that over algebraically closed field K for every
symmetric (with respect to some non-degenerate form b) linear map f there is an
orthogonal basis e such that

J 0 ... 00

0 Jo ... 0 O
[f]e: 2 I

0 0 ... 0 Jg

where Ji is a n, X ng Jordan block corresponding to the eigenvalue A; and

Iy 0 ... 0 0
o I ... 0 0
[b]e: 2 ’
0 0 ... 0 I
where
0 0 0 1
= 0 0 1 0
1 0 ... 0
NgXMNg

By the theorem of Jordan we already know that there exists a basis e such that
[f]e has a necessary form. We want to show that we can correct this basis to another
basis €’ such that [b]es is of the form as above and [fle = [f]e'-

Lemma A.1.12. Blocks with different eigenvalues are orthogonal.

Proof. Let vy,...,v; is a Jordan basis of a block with eigenvalue A, ie. f(v;) =
A +vi—1, f(v1) = Avi. Let wy,. .., wy, is a Jordan basis of a block with eigenvalue

p, ie. f(wi) = pw; + wi—1, f(v1) = pwr and p # X,
1. First, prove that b(vi,wy) = 0:

Ab(vy, wi) = b(f(v1),w1) = b(v, f(w1)) = pb(vy, w1).
Since p # A, b(vy,wy) = 0.

2. Second, prove that b(vy,w;) = 0 for every i € {2,...,m} by induction assuming
b(vi,w,) =0forall 1 <r <i:
Ab(v1, wi) = b(f(v1),w;) = b(vr, f(wi)) = b(v1, pw; + wi—1) = pb(vy, w;).

Since pu # A, b(vi,w;) =0 for every i € {1,...,m}.

3. Finally, prove that b(v;, w;) = 0 for every ¢ € {2,...,n}, j € {1,...,n} by
induction assuming b(vs,w,) =0for 1 <s <iandr € {1,...,m}, and b(v;,w,) =0
forall 1 <r < j:

Ab(vi, wy) = b(f(vi) — vi—1,wj) = b(f(vi), w;) = b(vy, f(w;)) =
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= b(v1, pw; + wi—1) = pb(vr, w;).

Since p # A, b(vi, w;) =0 for every i € {1,...,1}, j € {1,...,m}.
O

As we also have seen, if we restrict the form b to each Jordan block, then, if
this form is not degenerate, then the basis of this block can be chosen so that this
restriction of b has a form:

0 0 0 1
F_]00 10
10 ... 00

We call such blocks “non-degenerate”.

Therefore, we have to prove two things:

1. If the restriction of b to some block is degenerate, then there exists another
block with the same eigenvalue. Using this block we will correct the “degenerate”
block to “non-degenerate” block.

2. We can orthogonalize non-degenerate blocks with the same eigenvalue.

Lemma A.1.13. Let Js be a block, m := ny = dim(Js), A is its eigenvalue. v =
(v1,...,vm) is corresponding subbasis of e for this block, V' = Span(v). Let J, be a
block with the same eigenvalue X\, | := n, = dim(Jp), w = (w1, ..., w;) corresponding
subbasis of e, W = Span(w).

If m > [, then

0 O 0 0

0 O 0 0

va = (b(vi,wj)) = 0 0 0 C1

0 0 C1 (&)

cCl Cp ... Chn—1 Cn

If m <1, then

Ooo0 ... 0 0 ... 0 c1
By = (b(uvi, wj)) = 00 ... 0 0 ... c1 Co
00 ... ¢1 ¢ ... Cm-1 Cm

Proof. We proof the first case. The second is analogous. We use
b(f(vi), wj) = b(vs, f(w;)) = Ab(vi, ws) + b(v, wj—1)

b(f(v,), wj) = /\b(’l)i, UJj) + b(UZ‘_l, wj)

We get b(v;, wj_1) = b(vi—1,w;) forall i € {1,...,m}, j € {1,...,1} and b(v;,w;) =
0 for all j € {1,...,m}. So we get (b(v;,w;)) as above inductively. O
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Lemma A.1.14. Let Js be a block, m := ng, X is its eigenvalue. v = (v1,...,0p)
is corresponding subbasis of e for this block, V' = Span(v). Let J, be a block with
the same eigenvalue A, | == ny,, w = (w1,...,w;) corresponding subbasis of e, W =
Span(w).

Then u = v + w1 is a basis of Jordan block with the same eigenvalue X\ if and
only if T has the following form: for m <1

c1 Cp ... Cm—1 Cm
0 cClT ... Cnpn—2 Cmpm-1
o 0 0 C1 (&)
I= 0 0 0 c1
0 O 0 0
0 O 0 0
form >1
0O ... 0 ¢ ¢ ... g1 ¢
0 0 0 clT ... C—92 C—-1
T = e
0o ... 0 O 0 . C1 C2
0O ... 00 0 ... 0 c1

Matrices of this form we will call diagonal upper triangular.

Proof. For every basis u = (u1,...,us) we denote by du := (0,uy,...,us—1). Then
for each basis of Jordan block we have f(u) = Au + du. The map 0 in basis u is
given by matrix

01 ... 00

00 ... 00
P =0y =

00 ... 01

00 ... 00

Now we want f(u) = Au+ 0u for u = v +wT. That means
fv4+wT) = f(v)+ f(W)T =Av+0v+(Aw+0ow)T = A(v+wT)+0v+ (0w)T =

=Au+0Ju+ (0w)T — O(wT).

That means, u is Jordan basis if and only if PT = TP.

If T'= (t;j) then PT = (t;—1,), TP = (t; j+1) (to make this notation completely
correct, we assume here t;; = 0 for ¢ > [ or j > m or for i,j < 1). That means,
ti—1,j = tij+1 and ty; = 0 for j > 1, t;, = 0 for 7 < m. Therefore, T' has a necessary
form. ]
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Lemma A.1.15. Let Jg be a block, m := ng, X is its eigenvalue. v = (v1,..., V) is
corresponding subbasis of e for this block, V' = Span(v). Let by be degenerate. Then
there exists another block J, with the same eigenvalue A, | := ny, w = (w1, ..., w)
corresponding subbasis of e, W = Span(w) and bygw is not degenerate.

Moreover, there exists another basis u = (uy,...,un) such that U = Span(u) is
invariant by f, UOW =V @ W, [flu]u = Js and by is not degenerate.

Proof. Without lost of generality, assume A = 0. Otherwise, consider f— A Id instead
of f.

Since

b(f(vz), Uj) = b(Ui, f(UJ)) = )\b(Uz‘, ’Uj) + b(vi, ’Uj_l)
b(f(vi),v5) = Ab(v, vj) + b(vi-1,v;),

we get b(v;,vj—1) = b(vi—1,v;) for all i,j = 1,...,m and b(vy,v;) = 0 for all j =
1,...,m — 1. Therefore,

0 0 N 0 aq

0 0 .o aq a9
By = [blv]y =

0 a ... Qapn—2 Qp_-1

ay ag ... Anp—1 (07%%

This matrix is degenerate, that means that a; = 0 and v; is orthogonal to the whole
block. w1 is also orthogonal to all blocks with eigenvalues different form A. But the
form b is not degenerate. Therefore, there exists another block J, with the eigenvalue
A and basis w = (w1,...,w;) such that blg,an(v,w) 13 nondegenerate. Therefore,
b(vi,w;) # 0 and b(vy,w,) = 0 for all » < [ since b(vy,w,) = b(vy, f"(w;)) =
b(f1" (v1),wy) = b(0,w;) = 0.

Blwnwn),, —£0. Then b(x,v;) = b(z,w;) = 0 for all i < m, j < L.

b(vr,wy)
Moreover, b(z,w;) = b(wy,w;) — %b(vl,wl) = 0. Since b is nondegenerate,

b(x,vy) # 0:

Let x := w; —

b(wy,wy)

0 # b(z,vm) = b(wi, v,) — b(v1, V) = b(wi, v,) = b(fl_lwl,vm) =

b(vl,wl)
= b(wy, [ om) = blwr, vym—i11)

ie. m>1.
We take u := (v1,...,0m) + (0,...,0,v1,...,w;), it has all necessary properties.
O

Using the last lemma we can always assume that the basis is chosen so that all
Jordan blocks are non degenerate with respect to b. Now we want to correct this
basis so that different blocks are orthogonal.
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Lemma A.1.16. Let Js is a non degenerate with respect to b Jordan block, m := ng,

A is its eigenvalue. v = (v1,...,vy) 18 corresponding subbasis of e for this block,
V = Span(v).
Let Jp, be another block with the same eigenvalue X, | := n,, w = (w1,...,w;)

corresponding subbasis of e, W = Span(w). We assume m > I.
Then there exists a diagonal upper triangular matrix T such that u = w + vT s
a basis of Jordan block which is orthogonal to Js and VoW =U & W

Proof. That u =w + vT is a basis of Jordan block, we already know by the lemma
We want orthogonality. That means

0=>b(v,w+vT)=0b(v,w)+b(v,vD) = By w + ByT
Because By is not degenerate, we have
T = By wB,!

This is a product of two diagonal upper triangular matrices, which is diagonal upper
triangular. The new block is not degenerate because, otherwise, the form would be
degenerate on V @ U, but this is not the case. O

Corollary A.1.17. If we have many blocks with the same eigenvalue, then we do
the process as in previous lemma successively as in Gram—Schmidt orthogonalization.

Case K = R with real eigenvalues

Because R is not algebraically closed, we have to take care by the process which we
did in the case K algebraic closed.

First, assume that all eigenvalues of f are real, otherwise the theorem of Jordan
does not guarantee us that the Jordan basis exists.

Theorem A.1.18. For every symmetric with respect to some non-degenerate form
b linear map f with real eigenvalues there is an orthogonal basis e such that

Ji 0 .0 0

0 Jo ... 0 O
[f]e: ’ “ e

0 0 ... 0 Jg

where Ji is a ng X ng Jordan block corresponding to the eigenvalue A\ and

ol 0 ... 0 0
0 0 0 oxl}
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where o; = 1 and

NngXMNs

Moreover,

« _ JO , forng even
sgn(ly) = {1 , for ng odd

and, therefore,

k
sgn(b) = ZO’Z‘ sgn(l) = Z o

{i|n; is odd}

Proof. In this case, we only have to prove that in each Jordan block the basis can

be chosen so that the restriction of b on this block is represented by a matrix 4+1*.
To do this, first, we consider a complexification of f and find a complex basis

(v3)7_, for a fixed chosen Jordan block n X n as in the previous section. That means

f(vi) = v + vigq

b(vi, vj) = ditjmr1-

If we conjugate these equalities, we get (since A € R):
f(0:) = A0 + Vi

b(Vs,05) = Sitjmnt1-

Case 1. (v;) and (v;) define bases of different complex Jordan blocks. Therefore v;
and ¥; are not collinear and there exist unique collections of non-zero vectors (u;),
(w;) such that

U tw;

v; =
V2

Therefore, (u;) and (w;) define real bases of two different Jordan blocks. We can
correct these bases so that they are orthogonal and the restriction of b on corre-
sponding subspaces is represented by a matrix +I* [see lemma .

Case 2. (v;) and (v;) define bases of the same complex Jordan block. Because of
uniqueness of basis v; = ;.

Case 2.1. v; = v;. That means, v = (v;) is a real basis of the chosen Jordan block
with [b|SpanR(v)]V =1TI"

Case 2.2. v; = —v; = iw;. That means, w = (w;) is a real basis basis of the chosen
Jordan block with [blgpang (w)lw = —1* O
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Case K = R with complex eigenvalues. Generalized Jordan blocks

Remark A.1.19. For some technical reasons, we need some linear order on C. It
does not really matter which one, but to make some constructions unique we have
to fix one. We will use the following order: we say z > 2z’ if Re(z) > Re(?') or
Re(z) = Re(2’) and Im(z) > Im(2').

If the linear map f have a complex not real eigenvalue A = a + b then it has
an eigenvalue A = a — ib as well because the characteristic polynomial is real. We
consider some Jordan block J with eigenvalue A of the size m x m. Then we have
automatically a Jordan block for A\. Moreover, these both blocks have the same size
because if

f(vj) = Avj +vj1
then

f(05) = Avj + 051
where (v;) is a basis of the block J. So (v;) is a basis of another Jordan block with
eigenvalue A which we denote by J. We denote

s = Uj + iwj
J \/5
We can also assume b(v;, vi) = b(0;, Uk) = 6j4k,m+1

We consider another basis for pair of blocks (J, J):

_vj—i-vj vj — Uj

U; = , Wi =
! V2 T2

It is easy to see that
f(uy) = auj — bw;j + uj—
f(wj) = buj + aw; +w;_1
Because of the discussion above we can assume that all complex Jordan blocks are
orthogonal to each other. Therefore,
buj, ur) = —b(wj, we) = b(vj, vk) = dj4km+1,
b(uj,wy) = 0.

So we get that in the real basis (u1,w1,...,Un,wy,) the pair of blocks (J,J) is
represented by the following matrix

a b 1 0 0 0
b a 0 1 0 O
0 0 a b 0 0
0 0 =b a 0 O
K =
0 0 0 O 1 0
0 0 0 O 0 1
0 0 0 O a b
0 0 0 O b a

2mx2m
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which we will call generalized Jordan block. The restriction of b on

Span(uq, w1, . . ., Un, wy) have the form I2% | where
0O 0 0 O 1 0
0O 0 0 O -1
IZx=10 0 1 0 0 0
0 0 0 -1 0 0
1 0 0 O 0 O
0 -1 0 0 0 O

2mx2m

This matrix has signature
sgn(l3,,) =0

Moreover, because all complex Jordan blocks are orthogonal, this generalized block
is orthogonal to other blocks.

Corollary A.1.20. If f consists only on one generalized Jordan block then the basis
above is unique up to simultaneous multiplication of all basis vectors with —1.

Proof. The proof is identical to the proof of O

Lemma A.1.21. There exists unique up to sign ® € Sym(n,R) such that

OI*® = [*K
0 0 0 O c d
0O 0 0 O d —c
0 0 0 0 x %
0O 0 0 O * %
b =
0 0 ¢ d * %
0 0 d —c x ok
c d x * %
d —c x* * ok

where (¢ + id)? = a + ib and * are some rational functions in c, d.

Proof. Similar to O

Remark A.1.22. The pair (¢, d) is defined up to sign. To make ® unique we choose
(¢, d) so that ¢+ id is the biggest square root of a + ib.
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A.1.4 Standard form of a pair of bilinear forms

So we can summarize that for each bilinear form b and each linear operator f which
is symmetric with respect to b there exists a basis e such that

Iy 0 0 J 0 0
[b]e = 0 —I; 0 s [f]e = 0 J 0
0o o0 I* 0 0 K
where for r =1,2
If, 0 ... 0 0 Jr 0 ... 0 0
T 0 I3 ... 0 0 I= 0 Jo 0 0
0 0 ... 0 If, 0 0 ... 0 Jy»,
Z* 0 ... 0 0 Ki 0 ... 0 0
g2 _ | 0 I ... 0 0 = 0 Ko 0 0
0 0 ... 0 I* 0 0 ... 0 K

where n;, 1= dim([}.) = dim(J;), m; = dim(Ijz*) = dim(K).

Definition A.1.23 (Order on blocks). For two (generalized) Jordan blocks J with
eigenvalue [ and J’ with eigenvalue I’ we will say that J > J' if dimJ > dim J’
or dimJ = dim J’ and [ > I’ (for generalized blocks we compare complex numbers
using the order defined earlier).

Definition A.1.24 (Standard form of a pair of bilinear forms). If the basis e is
chosen as above and blocks in [J1, J2, K are in order of decreasing then we will say

that pair of forms b; = b and by = bo f is in the standard form. We will use the
following notation:

X(b1,b2) = (N, T2, K)
XOb1,b2) = [fles X' (b1,b2) = [b1]e, X?(br,b2) = [boe
Remark A.1.25. Because

sgn(I*) = {O , for dim I'* even

2K\
| for dim I* odd * S8T) =0

we get

sgn(b) = #{i|dim I} is odd} — #{i| dim I}} is odd}

Remark A.1.26. The standard form is unique. Instead, the basis, which puts a pair
of forms to the standard form, is not.
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Remark A.1.27. X (by,bs) defines XO(b1,bs), X1(b1,bs), X2(b1,bo) uniquely and de-
fines b1, be uniquely up to change of basis.

XO(by, by) = diag(X (b1, b))

XO(by,by) = (X (b1, b2)) L X2 (by, bo)
We define the signature
sgn(X (b1, b2)) :=sgn(by)

A.1.5 Back transformation

Definition A.1.28. We will say that matrix H is consistent to the pair of forms
(b1, ba), if
H = dia’g(H17 H27 H3)

Hy = diag(Hyg, ..., Hg,k)

and dim H;; = dim J;; for j = 1,2, dim H;3 = dim K for all possible .
Definition A.1.29. Let Y = diag(Y7,...,Ys), 0 € Sym({1,...,s}). The matrix
Ty ... Tis
Ta T'ss
is called block permutation matriz for Y if T; 5;y = Idqimy; for all ¢ and T;; = 0 for
all other (i, 7).
Remark A.1.30. It is easy to see that

T diag(Z1, ..., Zs)T = diag(Zy(1y, - - -+ Zo(2.))
for all diag(Z1, ..., Zs) such that dim Z; = dim Y] for all 1.

Definition A.1.31 (Minimal ordering matrix). Let
Y = diag(Y1,...,Ys), Z =diag(Z1,...,Zs)
and dimY; = dim Z; for all i € {1,...,s}. Moreover, assume

Y; € {IF, I, I* | r € N}

ryor

and Z; is a Jordan block for all i € {1,...,s} such that ¥; = +I} and Z; is a
generalized Jordan block for all i € {1,...,s} such that Y; = I2*.

We will say that a block permutation matrix 17" = T, for Y is minimal ordering
matriz for (Y, Z) if
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o (Y'Y'Z") := (TTYT, TTY ZT) is the standard form for some pair of bilinear
forms, where
Y = diag(Yo_(l), e Y, (s))

7' = diag(Zy(1y - > Zo(s))
o if Y;Z; =Y;Z; for i < j then o(i) < o(j).

Remark A.1.32. For fixed pair (Y, Z) as above the minimal ordering matrix is unique
because is well-defined by the corresponding permutation ¢ which is unique.

Proposition A.1.33. There exist consistent to (bi,bs) matriz ® € Sym(n,R) and
the (unique) minimal ordering matriz T for (®X2(by,be) 1@, ®X (b1, be)®) such
that )
TTOX Y (by, by)®T = X2(b5,b%) =: X2(by, by)
TTOX2(by, by) tOT = X1 (b3, b7) =: X1(by, bo).

We will call this transformation back transformation.

Proof. Tt follows from [A.1.10] and [A.1.21] We take ¢ = diag(®y,...,®P,) where ®;
are from [A.1.10|or [A.1.21| for corresponding pair of blocks of (X! (b1, bo), X?(by, b2)).
After that we do a minimal ordering. O

Remark A.1.34. In the previous proposition, ® is unique up to sign of each block.
But as we already have seen, this sign can be chosen in a canonical way. So we can
assume that ® and 7" are well defined by (b1, b2).

Remark A.1.35. The direct calculation shows that the back transformation applied

twice gives the identity map.

Corollary A.1.36. The last proposition can be reformulated in the following way:
Let (b1, b2) is a pair of bilinear forms on a vector space V' and in a basis e:

[b1]e = X' (b1,b2), [bo]e = X*(b1,b2)

We consider a pair of bilinear forms (b3,b]) on the dual space V*. In the dual basis
f:
[b1e = X (b1, b2) 7", [bole = X (b1, b2) ™"

The change of basis on V given by a matriz ® 1T~ e — €' induce change of basis
on V* by a matriz ®T: £ — ' so that
[bi]er = X2 (03, 07), [b3]e = X' (b5, 07)

This change-of-basis is determined by X (by,by). We denote this transformation
on bases of V' by ox(y, p,), the corresponding dual transformation of bases of V* is
denoted by 0}(b17b2), This transformation will be used to define the basis associated
to the opposite oriented edge.
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A.1.6 (p,q)-shape transformation

Let
n:=(ny,...,nk), m:=(my,...,mk,), r:=(T1,...,T%)

be three decreasing sequences of natural numbers.

Inmy = diag(L} ..., I}, —1I; J A SO

YNy ml""’_ka’ Tl""’rkg,)

We consider this matrix as a matrix of some bilinear form. Let (p, q) be the signature
of this form. We fix one matrix Pymr such that

Pr?mrqupnmr = Inmr
and the corresponding P-matrix for I, is Id.

Definition A.1.37. We denote by P, the set of all matrices Pyme such that Inme
has signature (p, q).

Definition A.1.38. Let (b1,b2) be a pair of bilinear forms and b; has signature
(p,q). We denote by Py, the corresponding Pymr as above such that

X1(b1,bo) = PngIqublbz

Definition A.1.39. Let X = X (b1, b2) for some pair of forms (b1, b2). Then b; has
signature (p,q). We denote by Px the corresponding P, 5, as above such that

X' = XY(by,by) = PL1,,Px

Remark A.1.40. As we have seen before, X (b1,bs) defines X9(by, ), X1(by,b2),
X2(by,b2). So if we know X (b1, bs), we do not need any information about (by, bs).
Therefore, sometimes we will write just X instead of X (b1, b2) and also X°, X!, X?
instead of X%(by,by), X1(by,bs), X2(by,bs) (and correspondent expressions with”) if
forms (b1, by) are not important.

A.2 Three isomorphisms of matrix algebras

In this section, we describe three well-known matrix algebras isomorphisms that
we will us in to construct examples of symmetric spaces. For every algebra A and
(anti-)involution o, we denote by A the set of fixed points of o in A.

A.2.1 Mat(n,C) ®g C and Mat(n,C) x Mat(n, C)
Fact A.2.1. The following map is an isomorphism of C{i}-algebras:

x: Mat(n,C{I}) ®r C{i} — Mat(n,C{i}) x Mat(n,C{i})
a+bl — (a + bi,a — bi)

where a,b € Mat(n, C{i}). In particular,
x(IdI ®1) = (i, —1), x(Id®i) = (4,1).
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The induced by ¢ ® Id anti-involution

Xo(a@ld)ox_l

on Mat(n,C{i}) x Mat(n,C{i}) acts in the following way:
(m1,m2) = (m{,m3).

The induced by ¢ ® Id anti-involution

Xo(&@ld)ox_l

on Mat(n,C{i}) x Mat(n,C{i}) acts in the following way:
(m1,ma) = (m3,m7).
The induced by Id ®5 involution
xo (Id®a) oy
on Mat(n,C{i}) x Mat(n,C{i}) acts in the following way:
(mq, mg) — (Mg, mq).

Therefore:

X(Mat(n, C{I}) @z C{i})"') = {(m,m") | m € Mat(n, C{i})},

x((Mat(n, C{I}) ®r C{i})?®?) = Herm(n, C{i}) x Herm(n, C{i}),

x(Mat(n, C{I})) = x((Mat(n, C{I})®@r C{i})19®?) = {(m,m) | m € Mat(n, C{i})}.
A.2.2 Mat(n,H) ®g C and Mat(2n,C)

Fact A.2.2. The following map is an isomorphism of C{I}-C{i}-algebras:

¥:  Mat(n,H{i,j,k}) @ C{I} — Mat(2n,C{i})
@ +pii @ +pzi)

+ go7) + +p27)f = o T
(@1 + q27) + (p1 + p2j) o — Pai @+ pui

where q1,q2, p1,p2 € Mat(n,C{i}). In particular,

_ Idi 0 . 0 Id
X(Idl®1)—(0 —Idz')’X(Id@’J)_(—Id 0>,

0 Idi .
x(Idk®1) = <Idz’ OZ> , x(Id®I) = 1di.
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The induced by o¢ ® Id anti-involution
Yo (oo ®Id)orp™
on Mat(2n, C) acts in the following way:
S (Id 0 )mT<Id 0 )
0 —1Id 0 —1Id
The induced by o1 ® Id anti-involution
Yooy ®@Id)oy™
on Mat(2n, C) acts in the following way:
m>—>—< 0 Id)mT< 0 Id)z (0 i)mT<0 z>
—Id 0 —Id 0 —i 0 —i 0
The induced by Id ®& involution
Yo (ldea) oy
on Mat(2n,C) acts in the following way:
m'_>_< 0 Id>m< 0 Id>:<0 z)m(o z)
—1d 0 —Id 0 —i 0 —i 0
The induced by oy ® ¢ anti-involution

on(a()@&)ozp*l

on Mat(2n, C) acts in the following way:
= 0 Id\ /0 Id
d o)™ \1a o)
Y ((Mat(n, H{i, j, k}) @ C{I})7®!) =
_ , _ 0 Idy -/ 0 Id\]| _
—{mEMat(2n,(C{z})|m——<_Id O>m <—Id O>}_

0 Id
=0 (—Id O) = sp(2n,C),

Therefore:

Y((Mat(n, H{s, j, k}) @ C{I})7%7) =

= {m € Mat(2n, C{i}) | m = <1(21 I(;i) ' (121 I(?) } ’
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Y((Mat(n, H{i, j, k}) ®r C{I})7*®?) = Herm(2n, C),

(Mat(n, H{i, j, k})) = ((Mat(n, H{i, j, k}) @r C{I})"®7) =
. 0 Idy _( 0 Id
:{mEMat(2n,C{z})|m:<_Id 0>m<_1d 0>}:

S (ERI I

—q2 q1

A.2.3 Mat(n,H) ®g H and Mat(4n, R)
Fact A.2.3. The following map:
¢: Mat(n,H{I, J, K}) ®r H{i, j, k} — Mat(4n,R)

defined on generators of Am as follows:

0 a 0 0 0 0 a 0
. —a 0 0 . 0 0 0 a
¢(a®z)— 0 0 0 —a 7¢(a®])_ —a 0 O 0 9
0 0 a O 0 —a 0 0
0 0 0 a 0 —a 0 0
0 0 —a 0 a 0 0 0
dladk)=1 4 , o o d2D=1y o ¢ _4|
—a 0 0 0 0 0 a 0
0 0 —a O 00 0 -—a
0 0 0 a 00 —a 0
dlaJel)=| o o o K= " o
0 —a 0 0 a 0 0 0

where a € Mat(n,R) is an R-algebra isomorphism

The anti-involution o1 ® o corresponds under ¢ to the following anti-involution

po(o1®ag)o¢

on Mat(4n,R): m — —=m’Z where
0 0 0 1d,,
- 0 0 -Id, O
- 0 Id, 0 0
—Id, O 0 0

The anti-involution o1 ®oc; corresponds under ¢ to the transposition on Mat(4n, R).
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Therefore:
o(Mat(n, H{Z, J, K}) x H{i, j. k})7 %) = {m € Mat(4n, R) | m = —EmT=} =

= 0(E) = sp(4n, R),
¢((Mat(n’ H{Za Js k}) ®R H{Za Js k})01®01) = Sym(4n7 R)a

The real locus Mat(n, H{I, J, K}) of Mat(n,H{I, J, K}) ®@g H{i, j, k} is mapped

by ¢ to:
o(Mat(n,H{I,J,K})) =

a —b —c —d
b a —-d c

= c d a —b | a,b,c,d € Mat(n,R)
d —c b a

A.3 Embeddings between matrix algebras
In this section, we consider the following two embeddings:
Mat(n,C{I}) ® C{j} — Mat(n,C{I}) ® H{i,j, k},

Mat(n,H{I, J, K}) ® C{j} — Mat(n,H{I, J, K}) @ H{i, j, k}.

We are interested in this embedding because, for the first embedding, the restriction
of @ ® o1 corresponds to & ® ¢ and the restriction of & ® ¢ corresponds to o® Id.
For the second embedding, the restriction of o1 ® o1 corresponds to o1 ® ¢ and the
restriction of o1 ® o corresponds to o1 ®Id, and so we can use these embedding to see
the symmetric space for the real group inside the symmetric space for complexified

group.

A.3.1 Embedding Mat(n,C{I}) ® C{j} — Mat(n,C{I}) ® H{i, j, k}

In the previous sections, we have seen isomorphisms:

x: Mat(n,C{I})®r C{j} — Mat(n,C{j}) x Mat(n,C{j})
a+ bl = (a+bj,a—bj)

where a,b € Mat(n,C{j}). And
¥:  Mat(n,C{I}) ®@r H{i,j,k} — Mat(2n, C{i})

, , @ +pit g2+ pa
+ + + I e I
(@1 + g27) + (p1 + p2J) (_q2 i @ +p1l)
where q1, g2, p1,p2 € Mat(n,C{i}). Since

t: Mat(n,C{I}) ® C{j} — Mat(n,C{I}) @ H{i, j, k},
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we want to describe the map 1 o s oy~ L.

Let (a,b) := (a1 + a2j, b1 + b2j) € Mat(n,C{j}) x Mat(n,C{j}) for a1, as,b1,bs €
Mat(n,R), then

1 at+b a-—b a1+b1+(a2+b2)j az—bg—(al—bl)j
b prg I: I.
X H(ab) = e+ 2 + 2
Therefore,
_ 1/ ar+bi+(azg—0b2)i as+by— (a3 —by)i
1 1 1 2 2 2 2 1 1
b)) = - ) }
w(X (a’ )) 2 (—(a2+b2)+ (a1 —bl)’L a1 + by —1—((12 —bg)l

and

t(pocox ™) ={ (4 2} p.qeMartn.Ciip)} -

-pP q
. - 0 Id 0 Id
= {m € Mat(2n,C{i}) | m = — (—Id 0> m <—Id 0)}
A.3.2 Embedding
Mat(n, H{I, J, K}) ® C{j} — Mat(n, H{I, J, K'}) ® H{z, j, k}
In the previous sections, we have seen isomorphisms:

¥: Mat(n,H{I,J, K}) ®r C{j} — Mat(2n, C{I})

: a+pil g +p2—7)
+q2J) + (p1 + p2J = = _ = TR O
(@1 + a2J) + (p1 + p2J)j <—q2 — ol G+l

where q1, q2,p1,p2 € Mat(n,C{I}) and
¢: Mat(n,H{I, J, K}) ®r H{i, j, k} — Mat(4n,R)
defined as in the Section [A.2.3 Since
t: Mat(n,H{I, J, K}) ® C{j} — Mat(n,H{I, J, K}) ® H{i, j, k},
we want to describe the image of the map ¢ ot ot ~!. Note that for x €
Mat(n,H{I, J, K}) ® H{i,j, k}, * € Mat(n,H{I,J,K}) ® C{j} if and only if =

commutes with 1 ® j. So we obtain:

Im(w oLo Xﬁl) = {m € Ma’t(4n’ R) | m = _d)(Idn ®])m¢(1dn ®.7)}
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