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Abstract 

Injury to the adult spinal cord damages ascending and descending spinal fiber tracts thereby 
disrupting proper information transmission between the brain, spinal cord and periphery of the 
body. Restoring neural connectivity beyond the site of injury is the prerequisite for functional 
recovery to occur. Without intervention, central nervous system (CNS) axons fail to regenerate, 
resulting in tremendous impairment of sensorimotor function as well as autonomic dysfunction 
and, consequently, a significant reduction of the patients’ quality of life. Hence, putative repair 
strategies for spinal cord injury (SCI) were developed including cell transplantation and bio-
material implantation. However, functional axonal growth past the lesion site remains insuffi-
cient due to inappropriate implant integration, detrimental fibroglial scarring and failure of spinal 
axons to grow beyond the site of injury. Recently, astrocytes were identified as essential key 
players for neuroregeneration due to their neuroprotective and supportive functions after CNS 
injury. Further, immature astrocytes not only fulfil scaffolding functions during development, but 
might also adapt to the harsh lesion environment without adopting detrimental phenotypes. 
Thus, astrocyte are prime candidates to provide structural as well as trophic support for grow-
ing axons in combination with biomaterial implants at SCI lesion sites. 
In the present study, novel alginate-based hydrogel implants with a defined channel micro-
structure were combined with cellular grafts of immature astrocytes derived either from the 
cortex or the spinal cord of neonatal Fischer-344 rats to: (1) provide a physical guidance struc-
ture for regrowing axons at the site of injury; and (2) establish a permissive cellular growth 
substrate within and beyond the hydrogel implant supporting axonal crossing of the lesion cav-
ity of a cervical unilateral hemisection of the spinal cord in adult rats. 
First, alginate-based hydrogel implants were modified with polypetides to improve their bio-
compatibility and cell viability in vitro and in vivo. Afterwards, immature astrocytes from neona-
tal rat cortex were cultivated and enriched in vitro. Seeding of alginate-based hydrogel implants 
with immature cortex-derived astrocytes improved axonal regrowth compared to non-seeded 
hydrogel implants following SCI. The grafted astrocytes interacted with the host astrocytic net-
work and aligned into tissue bridges structurally guiding axons across the host-graft interface. 
To elucidate whether astrocytes with a spinal cord identity would elicit superior pro-regenera-
tive effects after SCI, immature astrocytes were isolated from the spinal cord of neonatal rats 
and compared with cortex-derived astrocytes. Phenotypic characterization revealed minor mo-
lecular and morphological differences between both astrocyte populations in vitro and in vivo. 
Particularly, cortex-derived astrocytes were found to have a more mature phenotype compared 
to spinal cord-derived astrocytes in vitro, however, both cell populations adopted a differenti-
ated morphology and expressed functional molecular astrocytic markers in vivo after trans-
plantation into the intact spinal cord. After SCI, seeded hydrogel implants together with addi-
tional caudal grafts of either immature astrocyte population further enhanced axonal growth 
through the implantation site and promoted revascularization. The grafted cells connected with 
the host spinal parenchyma facilitating tissue bridging between implant and host. Finally, 
seeded hydrogel implants in combination with rostral and caudal immature astrocyte grafts 
were shown to additionally increase axonal growth through the hydrogel implants after SCI by 
70% compared to the previous transplantation paradigms. 
Thus, the combination of biomaterial implantation with cell transplantation superiorly promotes 
axonal growth through sites of acute SCI compared to treatment paradigms based only upon 
biomaterial implants. Moreover, additional grafts of immature astrocytes into the surrounding 
host tissue improve host-graft interactions by formation of a continuous cellular substrate span-
ning the SCI lesion site. Nonetheless, axonal re-entry into the distal host spinal cord may re-
quire additional trophic attraction. 
  



Zusammenfassung 

Die Wiederherstellung zerstörter neuronaler Verbindung über eine Läsionsstelle hinweg stellt 

die Grundvoraussetzung für eine funktionelle Erholung nach Rückenmarksverletzungen dar. 

Durch die limitierte inhärente Regenerationskapazität adulter Neurone des zentralen Nerven-

systems (ZNS) führen Rückenmarksverletzungen zu temporären aber meist permanenten Be-

einträchtigungen der sensomotorischen sowie autonomen Funktionen des Körpers und somit 

zu einer signifikanten Reduktion der Lebensqualität der Betroffenen. Folglich wurden im Laufe 

der letzten Jahrzehnte eine Vielfalt an experimentellen Behandlungsstrategien für Rücken-

marksläsionen entwickelt unter denen Zelltransplantationsansätze sowie die Implantation ei-

nes Biomaterials in die Läsionsstelle bereits vielversprechende Erfolge erzielen konnten. 

Nichtsdestotrotz stellt funktionell relevantes axonales Wachstum über die Rückenmarksläsi-

onsstelle hinaus, bedingt durch die unzureichende Integration des Biomaterials, geringe 

Wachstumsfähigkeit adulter Rückenmarksneurone, sowie gliale Narbenbildung um die Läsi-

onsstelle, weiterhin ein fundamentales Problem aller potentiellen Regenerationstherapien dar. 

In der vorliegenden Studie wurde daher untersucht, ob die Integration eines Biomaterials in 

das verletzte Rückenmark durch Verbesserung der inhärenten Biokompatibilität des Biomate-

rials an sich, sowie durch die Verbindung des Biomaterials mit Zelltransplantationen verbessert 

werden kann. Hierzu wurde die Oberfläche von Alginat-basierten anisotropen Kapillarhydro-

gelen zunächst mit dem synthetischen Polypeptid Poly-L-Ornithin und dem extrazellulären 

Matrix-Protein Laminin beschichtet. Die Zellvitalität in den Alginat-basierten Hydrogelen konnte 

hierdurch sowohl in vitro wie auch in vivo verbessert werden. Nach Implantation in die Läsi-

onskavität einer unilateralen Hemisektionsverletzung der zervikalen (C5/6) Rückenmarks im 

Tiermodell der Ratte führte die Oberflächenbeschichtung zu einer dichten Zellfüllung und sig-

nifikant gesteigertem Axonwachstum innerhalb des Biomaterials, jedoch nicht darüber hinaus. 

Aufgrund der unzähligen unterstützenden und neuroprotektiven Funktionen von Astrozyten im 

adulten ZNS sowie der Tatsache, dass unreife Astrozyten während der Embryonalentwicklung 

als leitendes strukturelles Zellgerüst sowie als Quelle neurotropher Faktoren für wachsende 

Axone fungieren, wurde weiterhin untersucht, ob durch die Verbindung des Biomaterials mit 

Transplantation von neonatalen Astrozyten die Integration des Biomaterials in das umliegende 

Rückenmark weiter verbessert und axonale Regeneration über das Alginat-Hydrogel hinaus 

erreicht werden kann. Durch Besiedelung der Hydrogele mit Astrozyten aus dem Kortex ne-

onataler Ratten konnte eine strukturelle Kontinuität sowie Zell-Zell-Interaktionen zwischen dem 

Implantat und dem umliegenden Rückenmarksgewebe hergestellt werden. Obwohl das axo-

nale Wachstum innerhalb des Implantats weiter gefördert werden konnte, wurde axonaler Wie-

dereintritt in das kaudale Rückenmarksparenchym jedoch erneut nicht erreicht. Um zu unter-

suchen, ob Astrozyten aus dem Rückenmark einen stärkeren pro-regenerativen Effekt in 

Verbindung mit den Alginat-Hydrogelen besitzen, wurden neonatale Astrozyten aus dem Rü-



ckenmark isoliert und in vitro und in vivo im Vergleich zu neonatalen Astrozyten aus dem Kor-

tex charakterisiert. Hierbei konnte ein reiferer und differenzierter Phenotyp in Kortex-Astrozy-

ten nachgewiesen werden. Nach Transplantation in das intakte Rückenmark zeigten jedoch 

beide Astrozyten-Populationen ein ähnliches Verhalten, integrierten in das umgebene Wirts-

gewebe und zeigten ein Markerexpressionsprofil vergleichbar zu differenzierten und funktio-

nellen Astrozyten. Durch Besiedelung des Alginat-Hydrogels mit Kortex- sowie Rückenmarks-

Astrozyten in Kombination mit zusätzlicher Zelltransplantation in das umliegende Rückenmark-

sparenchym konnten die Vaskularisation sowie das axonale Wachstum absteigender Rücken-

marksbahnen innerhalb der Implantate nach Rückenmarksverletzung maximiert werden. Zu-

dem generierten die Astrozyten-Populationen gleichermaßen ein kontinuierliches zelluläres 

Substrat über die Läsionsstelle hinweg, indem longitudinale Gewebebrücken mit Wirts-Astro-

zyten ausgebildet wurden, welche als Leitstrukturen für wachsende Axone dienten. Nichtsdes-

totrotz konnte axonale Reinnervation des kaudalen Rückenmarks nicht beobachtet werden. 

Folglich konnte im Zuge der vorliegenden Arbeit nachgewiesen werden, dass die Integration 

eines Alginat-Hydrogels mit Hilfe von Oberflächenbeschichtung sowie zusätzlicher Zelltrans-

plantation von neonatalen Astrozyten signifikant verbessert werden kann. Durch strukturelle 

Kontinuität zwischen Implantat und umgebenen Wirtsgewebe werden sowohl Axonwachstum 

als auch Vaskularisation in die Läsionsstelle erhöht. Um substanzielles Axonswachstum über 

die Läsionsstelle hinweg in das kaudale Rückenmark hinein zu erreichen, sind jedoch zusätz-

liche Interventionen, z.B. Chemoattraktion von wachsenden Axonen sowie Freisetzung von 

neurotrophischen Faktoren zur Unterstützung des regenerativen axonalen Wachstums, not-

wendig. 
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1 Introduction 

The adult mammalian central nervous system (CNS) is characterized by a high degree of cel-

lular, morphological and functional complexity. Over the past century, our understanding of its 

anatomy and function expanded continuously but is still far from being complete. Conse-

quently, traumatic injuries and degenerative states of the brain and spinal cord represent major 

obstacles of both medical science and modern society. 

The spinal cord anatomically and functionally connects the instructive and regulatory control 

centers of the brain (sensorimotor cortex) via descending axonal tracts with effector compart-

ments in the body, namely muscles and tendons of torso and limbs. On the other side, ascend-

ing axonal tracts convey sensory information from the periphery back to the cortex, where they 

contribute to regulatory feedback loops, constantly modulating the brains’ output signals. 

Hence, spinal cord injury (SCI) damages ascending and descending axonal tracts, thereby 

disrupting proper information transmission between the brain, the spinal cord, and the body 

periphery. Re-establishing neural connectivity beyond the site of injury is an essential prereq-

uisite for functional recovery to occur. Without intervention, CNS axons fail to regenerate, lead-

ing to a mostly permanent impairment of sensorimotor function, sexual function, and autonomic 

dysfunction, tremendously reducing the patients’ quality of life. 

Constant progress in neuroscience, surgical procedures, clinical management and rehabilita-

tive paradigms significantly improve functional outcomes and decrease morbidity in SCI pa-

tients. Thus, nowadays, affected individuals reach a lifespan comparable to healthy individuals 

but face years and decades of permanent paralysis, sensory and motor disabilities as well as 

neuropathic pain, dependent upon the location and severity of the injury (Rowland, Hawryluk 

et al. 2008, Blesch and Tuszynski 2009, Weidner, Rupp et al. 2017). Although a considerable 

effort has been spent over the last decades to develop new effective treatment paradigms, no 

randomized clinical trial has yet shown significant functional improvement after SCI (Fehlings, 

Tetreault et al. 2017, Blight, Hsieh et al. 2019, Courtine and Sofroniew 2019, Silvestro, 

Bramanti et al. 2020). A putative repair strategy must tackle several aspects of the multi-facet-

ted pathophysiology of SCI to achieve clinical efficacy. Amongst the plethora of different ex-

perimental approaches, biomaterial-supported transplantation of axonal growth-permissive 

cells holds great promise in facilitating axonal regeneration across SCI lesion site to restore 

neural connectivity and eventually improve functional outcomes (Liu, Schackel et al. 2017). 
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1.1 Spinal cord injury 

Spinal cord injury is clinically defined as either traumatic or non-traumatic induced damage to 

the neural tissue of the spinal cord that results in neurological deficits below the level of injury 

(Weidner, Rupp et al. 2017). Globally, SCI has a total incidence of 10.5 cases per 100,000 

individuals with ~ 250,000 to 500,000 new cases every year. Based on worldwide region-de-

pendent differences, in Europe, the mean incidence is 3.4 cases per 100,000 individuals and 

5.1 cases per 100,000 individuals in the USA/Canada (WHO 2013, Singh, Tetreault et al. 2014, 

Kumar, Lim et al. 2018). 

Traumatic SCI results from a mechanical impact onto the spinal column causing contusion, 

compression, extension, flexion, laceration or (partial) transection of the spinal tissue. Accord-

ing to the National Spinal Cord Injury Statistical Center, traumatic SCI is most frequently 

caused by traffic accidents (38.6%), bodily violence (14.0%), sport accidents (7.8%), and falls 

(32.2%) (National Spinal Cord Injury Statistical Center 2020). Epidemiological analysis of the 

age distribution revealed 2 peaks within the SCI populations, the first peak was identified for 

young adults at 15 – 29 years of age and the second peak for the elderly people with an age 

above 65 years. The sex ratio tends to show a predominance of males among cases (van den 

Berg, Castellote et al. 2010, Kumar, Lim et al. 2018). Along with the global demographic 

change in age, also the fraction of elderly SCI patients is constantly increasing. Hence, the 

prevalence of falls of elderly and SCI pathologies as consequences of non-traumatic conditions 

such as cancer, chronic neurodegenerative diseases, infection, (neuro-)inflammatory events 

and other etiologies are dramatically increasing (McKinley, Jackson et al. 1999, van den Berg, 

Castellote et al. 2010, Silvestro, Bramanti et al. 2020). Statistical analysis regarding the level 

of injury showed 54% of all human SCI occur in the cervical, 24% in the thoracic, 19% in the 

lumbar and ~1% in the sacral spinal cord and, interestingly, a greater fraction of cervical SCI 

was found in the elderly (> 60 years, 94% cervical SCI) compared to younger individuals (< 60 

years, 70% cervical SCI) (Pickett, Campos-Benitez et al. 2006). Hence, SCI was recognized 

as an important global health priority representing a significant burden for the affected individ-

uals and their social environment as well as for modern medicine and society (Global Burden 

of Disease Study 2016: Traumatic Brain Injury and Spinal Cord Injury Collaborators 2019). 

 

1.1.1 Pathophysiology of spinal cord injury in humans 

The clinical picture of SCI can be classified as sensory and/or motor complete or incomplete 

reflecting varying degrees of sensorimotor and autonomic impairment below the level of injury. 

Dependent upon the level of SCI, motor impairments can affect only the hindlimbs (paraplegic) 
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or affect all extremities (tetraplegic). A commonly used clinical classification system for SCI is 

the American Spinal Cord Injury Impairment scale according to standardized neurological ex-

amination protocols testing sensory and motor functions below the neurological level of injury 

(Roberts, Leonard et al. 2017). 

The pathophysiology of SCI is a sequence of a myriad of different molecular, cellular and sys-

temic processes triggered by the initial damage to the spinal tissue. It can be subcategorized 

into primary and secondary injury phase followed by the persisting chronic phase (FIG 1). 

Initially, a mechanical force impacts the spinal column what directly induces neural tissue de-

struction, disruption of axonal tracts, intraspinal bleeding and subsequently spinal swelling and 

eventually cell death by compression and/or (partial) transection of the spinal cord (Norenberg, 

Smith et al. 2004, Rowland, Hawryluk et al. 2008). Additionally, bone and tissue fragments of 

the initial impact can penetrate the spinal tissue and thereby exacerbate neural damage. Sub-

sequently, the secondary injury phase follows which is characterized by a breakdown of the 

blood-spinal cord-barrier (BSCB) and a delayed period of extensive hemorrhaging in the grey 

and white matter (GM/WM), (neuro-)inflammation, hypoxia, and ischemia leading to progress-

ing additional necrotic tissue loss (Rowland, Hawryluk et al. 2008, Ahuja, Nori et al. 2017). As 

a consequence of vasculature destruction and progressing BSCB leakage, blood vessels at 

the lesion penumbra become hyperpermeable, enabling the infiltration of inflammatory cells 

into the lesion site and the surrounding spinal parenchyma (Haggerty, Maldonado-Lasuncion 

et al. 2018). Signals released from damaged and apoptotic cells recruit and orchestrate the 

initial acute immune response at the lesion site, which is composed of mainly activated mac-

rophages/microglia as well as other blood-derived immune cells such as lymphocytes and neu-

trophils (Zhang and Mosser 2008, Zhang, Raoof et al. 2010). Within the first 12 hours post-

injury, infiltrated inflammatory cells secrete immunomodulatory factors like tumor necrosis fac-

tor α (TNFα), interleukin-1α (IL-1α), IL-1β, and IL-6 (Nakamura, Houghtling et al. 2003, 

Donnelly and Popovich 2008, Kim, Ha et al. 2017). Additionally, deteriorated tissue homeosta-

sis causes ionic dysregulation, excitotoxicity, accumulation of reactive oxygen species (ROS) 

and nitric oxide (NO), and intracellular hypercalcemia further contributes to neuronal and glial 

cell loss (Li and Stys 2000, Park, Velumian et al. 2004, Rowland, Hawryluk et al. 2008, Ahuja, 

Nori et al. 2017). Onset of oligodendrocyte apoptosis leads to chronic demyelination, antero-

grade axonal dieback and ongoing Wallerian degeneration (Norenberg, Smith et al. 2004). 

Together, all these processes participate in the propagation of necrosis and tissue loss aggra-

vating lesion extent and finally exacerbating neurological deficits early after SCI (0 – 48 hours 

post-injury) (Liu, Wu et al. 2015). 

A few days after SCI, cell and myelin debris clearance reaches its maximum and the inflam-

matory spread is chemically and physically restricted by narrow astrocytic scars separating the 
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necrotic lesion core from the healthy adjacent spinal parenchyma  (Sofroniew 2014, Sofroniew 

2015). Further, cells associated with tissue repair and replacement -including endothelial pro-

genitors, fibroblast-lineage cells and neural precursors- become locally activated and migrate 

towards the lesion core (Burda and Sofroniew 2014). Intact spinal tissue directly adjacent to 

the SCI becomes partially activated and undergoes substantial tissue reorganization, local cir-

cuit remodeling, and collateral axonal sprouting (Rowland, Hawryluk et al. 2008, O'Shea, 

Burda et al. 2017). Spontaneous functional recovery may occur during the subacute and later 

on in the chronic phase due to spared axonal tracts, but this remains very limited (Rowland, 

Hawryluk et al. 2008). 

In the subchronic and chronic phase after SCI (> 6 months post-injury), a cystic cavitation has 

formed in most cases at the lesion epicenter surrounded by a cellular compartment comprised 

mainly of non-neural stromal cells and the surrounding astrocytic and fibroglial scars have fully 

matured (O'Shea, Burda et al. 2017). More than a year after the initial injury, neurological def-

icits in sensory and motor function have clinically manifested and stabilized in most cases 

(Rowland, Hawryluk et al. 2008). Neurological deficits range from partial or complete paralysis 

of the lower and upper extremities (paraplegia and tetraplegia) to sensory (mechanosensation, 

thermal sensation) and proprioceptive impairments as well as pathologic neuropathic pain, and 

autonomic dysfunction including respiratory, cardiovascular and thermoregulatory, bowel and 

bladder function as well sexual function can be affected in a location and severity-dependent 

fashion (Winslow and Rozovsky 2003, Finnerup, Sorensen et al. 2007, Felix and Widerstrom-

Noga 2009, Finnerup 2013, Hou and Rabchevsky 2014, Weidner, Rupp et al. 2017). Further, 

several secondary complications might develop in the chronic phase like, for instance, pres-

sure ulcers, impaired immunity, spasticity, muscular atrophy, and osteoporosis as well as psy-

chological symptoms such as (severe) depression and distress (McKinley, Jackson et al. 1999, 

Craig, Tran et al. 2009, Sezer, Akkus et al. 2015). 
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Figure 1: Pathophysiology of traumatic SCI. (A) An initial trauma to the spinal column leads to the 

destruction of spinal tissue. Ascending and descending axonal tracts become disrupted accompanied 

by BSCB breakdown and vasculature collapse. (B) Consequently, the lesion site is filled with blood, 

cellular and myelin debris and, subsequentially, infiltrated by activated resident microglia/macrophages 

and blood-derived immune cells initiating a neuroinflammatory cascade that results in the recruitment of 

further immune cells, activated resident astrocytes as well as NG2+ glia precursors and meningeal fi-

broblasts. Ongoing neuroinflammation causes an expansion of the necrotic lesion into the adjacent in-

tact spinal cord. Moreover, neural cell loss proceeds, and more activated astrocytes are recruited to the 

lesion site. Activated astrocytes start to seal the disrupted blood-spinal cord-barrier. In contrast, acti-

vated scar-forming astrocytes, in parallel with fibroblasts and other stromal cells, form a fibrotic scar at 

the lesion core. Activated scar-forming astrocytes finally form a dense network of elongated astrocytic 

processes to seal the necrotic lesion core and prevent further expansion of the damaged area. Damaged 

spinal axons retract and degenerate. (C) In the chronic phase, the astroglial scar is fully matured and 

surrounds the lesion. A cystic cavity has been established at the lesion core, surrounded by stromal cells 

and meningeal fibroblasts. Local neuronal circuit reorganization and other neuroplastic changes occur 

in the spinal tissue adjacent to the lesion site leading and contributing to a minimal amount of natural 

recovery. Freshly differentiated oligodendrocytes start to myelinate the newly organized circuitries and 

re-myelinate spared spinal axons. 
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1.1.2 Hurdles for spinal cord regeneration 

In addition to destructive primary and secondary injury mechanisms, there are various intrinsic 

and extrinsic hurdles for CNS axon regeneration (Blesch and Tuszynski 2009, Cregg, DePaul 

et al. 2014, Ahuja, Nori et al. 2017, Sofroniew 2018). 

For decades, astroglial scarring around CNS injury sites was proposed to be a major cause 

for CNS axonal regenerative failure (Cajal 1928). Reactive, scar-forming astrocytes were con-

sidered as an impermeable physical barrier for growing axons and, more importantly, as the 

primary source of growth-repulsive molecules (diffuse and contact-depending axonal growth 

inhibitors) such as chondroitin sulfate proteoglycans (CSPGs) at the lesion site (Davies, 

Goucher et al. 1999, Jones, Margolis et al. 2003, Tang, Davies et al. 2003, Tom, Doller et al. 

2004, Tom, Steinmetz et al. 2004, Buss, Pech et al. 2009, Wanner, Anderson et al. 2013, 

Cregg, DePaul et al. 2014). However, over the last years, compelling evidence arose that chal-

lenged this view of the astroglial scar as the major hurdle for axonal regeneration in the CNS 

(Sofroniew 2018). Mature scars at CNS lesions are built up in a structurally layered manner. 

After an injury, perivascular/meningeal fibroblasts and stromal cells accumulate at the lesion 

epicenter, forming a non-neural lesion core considerably contributing to the inhibitory character 

of the scar (Pasterkamp, Giger et al. 1999, Bundesen, Scheel et al. 2003, Goritz, Dias et al. 

2011, Soderblom, Luo et al. 2013). 

More intriguing, the extracellular milieu and molecular environment in the intact as well as 

damaged adult mammalian CNS does not allow for extensive long-distance axonal growth but 

only local axonal sprouting and plasticity (Ahuja, Nori et al. 2017, Fuhrmann, Anandakumaran 

et al. 2017, Curcio and Bradke 2018, Fawcett and Verhaagen 2018, Fuhrmann, 

Anandakumaran et al. 2018). As a consequence of myelin sheath destruction during CNS in-

jury, potent axon growth-inhibitors including neurite outgrowth inhibitor-A (Nogo-A), myelin-as-

sociated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), semaphorins, and 

ephrins are released (McKerracher, David et al. 1994, Chen, Huber et al. 2000, GrandPre, 

Nakamura et al. 2000, Kottis, Thibault et al. 2002, Moreau-Fauvarque, Kumanogoh et al. 2003, 

Benson, Romero et al. 2005) Although structurally distinct, Nogo-A, MAG and OMgp bind to 

the same receptor, Nogo receptor 1 (NgR1), comprised with other complex members p75-NTR 

and LINGO-1 (Atwal, Pinkston-Gosse et al. 2008). Receptor binding, hence, activates Rho 

A/ROCK (Rho-associated protein kinase) signaling resulting in actin cytoskeleton destabiliza-

tion, growth cone collapse and finally inhibition of neurite outgrowth (Winton, Dubreuil et al. 

2002, Filbin 2003, Yiu and He 2006). Experimental blocking of ligand binding to NgR or genetic 

depletion of myelin-associated inhibitors lead to promising results in rodent models, but the 

extent of its benefits in human SCI patients is still under investigation (Bregman, Kunkel-

Bagden et al. 1995, Huang, McKerracher et al. 1999, Zheng, Atwal et al. 2005, Lee, Chow et 
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al. 2010, Lee, Geoffroy et al. 2010) also by a phase II clinical trial in our department (“NISCI – 

Nogo Inhibition in Spinal Cord Injury”, NCT identifier: NCT03935321). 

Furthermore, CSPG expression at and around adult CNS lesion sites has long been consid-

ered as purely inhibitory to axonal regeneration (Davies, Fitch et al. 1997, Davies, Goucher et 

al. 1999). At acute SCI lesions, several cell types, including astrocytes, activated microglia and 

macrophages, pericytes, and meningeal/perivascular fibroblasts express different subtypes of 

CSPGs like aggrecan, brevican, neurocan, and versican (Volpato, Fuhrmann et al. 2013, 

Anderson, Burda et al. 2016, van Niekerk, Tuszynski et al. 2016). CSPGs mediate their axonal 

growth inhibition via activation of the Rho/ROCK pathway, phosphorylation of epidermal growth 

factor receptor (EGFR), Akt inhibition, and Erk1/2 phosphorylation through binding to their re-

ceptors, leukocyte common antigen-related phosphatase (LAR), protein tyrosine phosphatase 

σ (PTPσ) as well as the Nogo receptors NgR1 and NgR3 (Koprivica, Cho et al. 2005, Cregg, 

DePaul et al. 2014, Dyck, Alizadeh et al. 2015). Recent studies implicated CSPG expression 

of neurons and astrocytes as an essential part of the perineuronal net (PNN) that limits and 

restricts synapse remodeling and neuroplasticity during development and adulthood but also 

after CNS insults and disease (Wang and Fawcett 2012, Mironova and Giger 2013, Dyck, 

Alizadeh et al. 2015). Interestingly, also myelin-associated inhibitors were implicated in regu-

lating synapse remodeling during health and disease (Schwab and Strittmatter 2014). Experi-

mental removal of CSPGs at acute and chronic lesion sites by genetic depletion, enzymatic 

digestion or receptor blockade failed to induce long-distance axonal growth but rather lead to 

local circuit reorganization, especially in models of incomplete SCI (Bradbury, Moon et al. 2002, 

Massey, Hubscher et al. 2006, Garcia-Alias, Barkhuysen et al. 2009, Wang, Ichiyama et al. 

2011, Shinozaki, Iwanami et al. 2016). Hence, axonal growth inhibition through myelin-associ-

ated inhibitors and CSPGs might be rather relative than absolute as shown in vitro and in vivo. 

For example, a permissive laminin substrate can induce neurite outgrowth in vitro even in the 

presence of growth inhibitors (Tom, Steinmetz et al. 2004). In vivo, not only repulsive molecules 

such as myelin-associated inhibitors and CSPGs but also growth permissive substrates like 

laminin are present at SCI lesion sites (Anderson, Burda et al. 2016). Moreover, appropriately 

stimulated and chemoattracted axons grow robustly through regions of increased CSPG ex-

pression and astrocytic scars in a laminin-integrin-dependent manner (Jones, Sajed et al. 

2003, Lu, Jones et al. 2007, Anderson, Burda et al. 2016). 

Finally, since adult CNS neurons have downregulated their developmental axonal growth ca-

pacity, they essentially lack the capacity to initiate developmental genetic growth programs 

thereby fail to regrow after injury during adulthood (Goldberg, Klassen et al. 2002, Sun and He 

2010, Puttagunta, Tedeschi et al. 2014, He and Jin 2016). In contrast, neurons of the peripheral 
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nervous system (PNS) harbor the ability to regenerate in adulthood (Plunet, Kwon et al. 2002, 

Raivich, Bohatschek et al. 2004, Seijffers, Allchorne et al. 2006). 

 

1.1.3 Endogenous repair mechanisms 

Since the adult CNS harbors only a very limited intrinsic regenerative capacity, insults such as 

spinal cord injury are especially devastating for the affected individuals and their social com-

munities. Adult CNS neurons fail to regenerate across extended SCI lesion sites due to (1) 

lack of intrinsic genetic programs to initiate and maintain axonal growth, (2) growth-inhibitory 

microenvironment at CNS lesion sites, (3) lack of (neuro-)trophic support, and (4) lack of struc-

tural support and guidance for regenerating axons at lesion sites (Blesch and Tuszynski 2009, 

Silver, Schwab et al. 2014, Fawcett and Verhaagen 2018, Sofroniew 2018). Nonetheless, the 

notion that the adult mammalian CNS is entirely static is incorrect, although long-distance ax-

onal regeneration does not naturally occur, local axonal sprouting and circuit reorganization do 

allow for a limited degree of functional recovery (Onifer, Smith et al. 2011). In particular, elec-

tromyographic (EMG) recordings revealed recovery of hindlimb function after contusion or tran-

section injuries in rodents (Basso, Beattie et al. 1996, Loy, Magnuson et al. 2002, Basso, Fisher 

et al. 2006). Likewise, EMG analysis found reoccurring muscle activity in SCI patients after 

complete cervical or thoracic SCI (Calancie, Molano et al. 2002, Dietz, Grillner et al. 2009). 

Intriguingly, the formation of an astroglial scar has to be considered as an essential endoge-

nous repair mechanism early after SCI. Scar-forming astrocytes align into a distinct limitans 

border that separates the necrotic and apoptotic lesion core from the healthy surrounding spi-

nal parenchyma, thereby, restricting the spread of neuroinflammation, necrosis and neural tis-

sue loss (Sofroniew 2015). Notably, neither experimental ablation of astrocyte scar formation 

nor the removal of chronic astrocytic scars leads to enhanced spontaneous axonal regenera-

tion after SCI but significantly enhanced axonal dieback (Anderson, Burda et al. 2016). 

Further, the recruitment of inflammatory and blood-derived immune cells to the lesion site im-

mediately after the initial impact to the spinal cord primarily serve to clear the lesion site from 

pathogens, foreign bodies as well as cellular and myelin debris (Okada 2016). Upon resolution 

of the acute immune response, tissue-resident activated macrophages phenotypically trans-

form from a cytotoxic inflammatory state (M1 macrophages) into a regulatory pro-regenerative 

state (M2 macrophages) (Kigerl, Gensel et al. 2009). Although pro-inflammatory, M1 macro-

phages secrete pro-angiogenic factors that initiate revascularization of the lesion site and the 

later M2 macrophages promote stabilization and maturation of the newly formed vasculature 

(Nucera, Biziato et al. 2011, Spiller, Nassiri et al. 2015). Additionally, M2 macrophages were 

shown to be involved in the regulation of oligodendrocyte differentiation, remyelination, and 
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neuroprotection (Kigerl, Gensel et al. 2009, Miron, Boyd et al. 2013). Moreover, activated mac-

rophages can functionally adapt their phenotype in a context-dependent manner in response 

to new stimuli (Stout and Suttles 2004, Martinez and Gordon 2014, Gensel and Zhang 2015). 

Initially after SCI (~24 h post-injury), local NG2+ glia precursors become activated and differ-

entiate into scar-forming astrocytes (Zai and Wrathall 2005, Hackett, Yahn et al. 2018). Later, 

platelet-derived growth factor-receptor α+ (PDGFRα+) glia precursors give rise to oligodendro-

cyte precursor cells (OPCs) and finally myelinating Schwann cells (SC) and mature oligoden-

drocytes (Assinck, Duncan et al. 2017). Moreover, SC remyelination occurs shortly after SCI 

(within 7 - 14 days post-injury) compared to oligodendrocytic remyelination (Duncan, Radcliff 

et al. 2018). Hence, there is substantial and progressing remyelination of spared axons after 

SCI (Powers, Lasiene et al. 2012, Assinck, Duncan et al. 2017). 

More importantly, the adult spinal cord is characterized by a certain degree of neuronal plas-

ticity after injury. Although many synapses are lost at the site of injury and in the spinal areas 

below the injury, local spontaneous axonal sprouting and neuronal circuit remodeling occur 

(Weidner, Ner et al. 2001, Bareyre, Kerschensteiner et al. 2004, Rosenzweig, Courtine et al. 

2010). In particular, after incomplete SCI, axonal sprouting of descending spinal tracts (e.g., 

corticospinal tract (CST), raphespinal tract, reticulospinal tract) and local supraspinal axons 

possibly could account for spontaneous functional recovery (Courtine, Song et al. 2008, 

Takeoka, Vollenweider et al. 2014). 

 

1.1.4 Current treatment regimens and preclinical approaches 

The complex and highly variable pathophysiology of SCI makes clinical management extraor-

dinarily challenging. Most current SCI treatment regimens aim at ameliorating secondary injury 

mechanisms to prevent lesion expansion and limit neural tissue loss. Mostly, immediate secur-

ing of respiratory function, circulation stabilization and prevention of acute hypotension fol-

lowed by surgical decompression of the lesioned spinal area represents the first clinical inter-

ventions established to improve the patients’ functional outcome (Batchelor, Wills et al. 2013, 

Ahuja, Nori et al. 2017, AOSPINE 2017). To date, immediate administration (< 8 h post-injury) 

of high doses of the glucocorticoid steroid methylprednisolone (MP) for 24 h represents the 

only pharmacologic intervention shown to elicit neurological benefits for the affected individu-

als. Mechanistically, MP treatment reduces oxidative stress and ameliorates the acute inflam-

matory response, thereby enhancing neuroprotection and neural cell survival (Ahuja, Nori et 

al. 2017, AOSPINE 2017). However, its use in acute SCI patients remains controversial 

(Hurlbert, Hadley et al. 2013). Additionally, blood pressure augmentation was shown to im-

prove tissue preservation and neurological outcome measures by enhancing perfusion 
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(Wilson, Forgione et al. 2013, Ahuja, Nori et al. 2017). After clinical handling of acute injury-

related pathologies, rehabilitative training is widely used to induce neuronal circuit reorganiza-

tion and neuroplasticity in affected individuals (Field-Fote, Lindley et al. 2005, Morawietz and 

Moffat 2013). 

Since clinical interventions for acute SCI patients remain limited in number and success, vari-

ous experimental approaches to improve neuroprotection and support endogenous neuro-

regeneration were developed and partially tested in clinical trials. Putative pharmacological 

agents for SCI treatment include mainly anti-inflammatory and neuroprotective drugs. For ex-

ample, Riluzole, a benzothiazole sodium channel blocker, restricts presynaptic glutamate re-

lease and blocks sodium influx into neurons, thereby preventing excitotoxic cell death 

(Nogradi, Szabo et al. 2007). Studies in animal models demonstrated its efficacy after SCI and 

a randomized control phase II/III clinical trial was launched in 2017/2018 (Schwartz and 

Fehlings 2001, Simard, Tsymbalyuk et al. 2012, Ahuja, Nori et al. 2017). Riluzole is approved 

by the US Food and Drug Administration (FDA) and European as well as Canadian health 

authorities for amyotrophic lateral sclerosis (ALS) treatment (Bhatt and Gordon 2007). 

Minocycline, a bacteriostatic tetracycline antibiotic, was shown to elicit neuroprotection and 

anti-inflammatory behavior by inhibition of microglial activation and downregulation of pro-in-

flammatory cytokines in preclinical models of CNS disease and animal SCI models (Giuliani, 

Fu et al. 2005, Festoff, Ameenuddin et al. 2006, Seabrook, Jiang et al. 2006). In patients with 

incomplete cervical SCI, a completed phase II clinical trial demonstrated elevated neurological 

outcomes and lead to a placebo-controlled phase III trial (Casha, Zygun et al. 2012). 

Besides synthetic drugs, growth factors were enrolled in experimental treatment paradigms. 

For example, granulocyte colony-stimulating factor (G-CSF) has been demonstrated to have 

anti-inflammatory and anti-apoptotic effects in the CNS and was tested for safety in a non-

randomized phase I/IIa clinical trial that also showed improvements in American Spinal Injury 

Association Impairment Scale (AIS) outcomes (Takahashi, Yamazaki et al. 2012, Wallner, 

Peters et al. 2015). Additionally, fibroblast growth factor (FGF) and hepatocyte growth factor 

(HGF) showed promising neuroprotective and anti-inflammatory effects with respective im-

proved functional outcomes in animal models and early phase I/II clinical trials (Teng, Mocchetti 

et al. 1999, Kitamura, Fujiyoshi et al. 2011). Furthermore, pharmacological agents that interfere 

with the axonal degeneration and support neuroregeneration were tested experimentally but 

also in clinical trials. For instance, Cethrin/VX-210 is a specific Rho inhibitor that was tested in 

phase I/II clinical trials, where it showed no adverse side effects and improved motor recovery 

(Fehlings, Tetreault et al. 2017). A phase III trial in acute cervical SCI subjects was recently 

initiated (Fehlings, Kim et al. 2018). Similarly, monoclonal antibodies against Nogo-A (anti-
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Nogo) showed promising results in terms of animal studies by neutralizing the inhibitory envi-

ronment at SCI sites. Anti-Nogo antibodies were successfully tested in phase I (Bregman, 

Kunkel-Bagden et al. 1995, Kucher, Johns et al. 2018) and recently, a European-wide multi-

center phase II clinical trial was launched, including our own department (NISCI – Nogo Inhi-

bition in Spinal Cord injury, NCT identifier: NCT03935321). 

Alternatively, various neurotechnology approaches including brain-computer-interface (BCI)-

driven neuroprostheses, functional electrostimulation (FES) of the spinal cord alone or in com-

bination with (weight-supported) locomotion training as well as gait-supporting exoskeletons 

are currently under investigation in SCI patients (Rupp 2014, Courtine and Sofroniew 2019). 

 

1.2 Astrocytes as key players in the healthy and injured central 
nervous system 

The adult mammalian CNS is characterized by a high degree of morphological and functional 

complexity. Based upon this complexity, injuries to the adult CNS, such as SCI, have a multi-

factorial character with various molecular and cellular components, and their intricate interac-

tome leading to disastrous consequences for injury affected individuals. Over the last decades, 

resident CNS glia cells, namely astrocytes and microglia, came into focus in the neuroregen-

eration field as potential key players for both regenerative success and failure after CNS injury 

or disease. 

Neuroglia, in particular astrocytes, were first described by Rudolf Virchow in the middle of the 

19th century as a homogenous cell population that supports neuronal (Virchow 1858). Since 

then, astrocytes have been characterized as the most abundant cell type in the adult mamma-

lian CNS, outnumbering neurons by nearly eightfold (Freeman 2010, Sofroniew and Vinters 

2010). On average, each astrocyte extends processes and interacts with 8 neuronal cell bod-

ies, 5 blood vessels, and more than 100,000 synapses (Bushong, Martone et al. 2002). Hence, 

astrocytic loss of function or abnormal gain of function is often associated with severe CNS 

disorders and disabilities (Sofroniew and Vinters 2010). 

 

1.2.1 Astrocyte development, specification and heterogeneity 

Neurogenesis developmentally precedes gliogenesis with neural stem cells (NSCs) and radial 

glia cells as the cellular origin for both neurons and glia cells, respectively. Gliogenesis is initi-

ated by inhibition of neurogenesis in NSCs through acetylation and tri-methylation of the pro-

neuronal genes neurogenin-1 (ngn-1) and neurogenin-2 (ngn-2) inducing the transition from 
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NSCs to glia-restricted precursor cells (GRPs) (Hirabayashi, Itoh et al. 2004, Hirabayashi, 

Suzki et al. 2009). This so-called gliogenic switch occurs at embryonic day 12.5 (E12.5) in the 

developing spinal cord and in the cortex at E16-18 in rodents (Deneen, Ho et al. 2006, Ge, 

Miyawaki et al. 2012, Kang, Lee et al. 2012). Additionally, positive Notch signaling activates 

cardiotrophin-1 (CT-1)/Janus kinase-signal transducers and activators of transcription (JAK-

STAT) axis in GRPs inducing the expression of pro-glionic and eventually pro-astrocytic genes 

such as Nuclear factors-1A and B (NFIA/B) and Sex-determining region Y-box 9 (Sox9) 

(Namihira, Kohyama et al. 2009). The transcription factor Sox9 is expressed by NSCs from 

E10.5 on in the ventricular zone (VZ) of the developing mammalian spinal cord and triggers 

NFIA/B expression at E11.5 (Stolt, Lommes et al. 2003, Kang, Lee et al. 2012). Both factors 

form a transcriptional complex that acts as an inducer of GFAP (Glial fibrillary acidic protein) 

expression either directly or indirectly via enhanced STAT3 signaling in GRPs in a Sonic 

hedgehog (Shh)- and Notch-dependent way (Namihira, Kohyama et al. 2009). From E17.5 on, 

GFAP is expressed in mice and represents a key regulator of the astrocytic lineage driving 

astrocyte precursor cell (APC) migration and terminal specification. However, GFAP itself is 

finely regulated by other signaling cascades, including Notch and Bone morphogenetic protein 

(BMP) signaling (Barnabe-Heider, Wasylnka et al. 2005, Miller and Gauthier 2007, Namihira, 

Kohyama et al. 2009). Extrinsically, astrocyte differentiation can be influenced by IL-6, CT-1, 

JAK/STAT, and Ciliary neurotrophic factor (CNTF)/Leukemia inhibitory factor (LIF) cascades 

(Barnabe-Heider, Wasylnka et al. 2005, Miller and Gauthier 2007). Finally, APCs start to mi-

grate along radial glia processes in the late embryonic stage towards their final destinations 

throughout the CNS. Importantly, evidence from lineage-tracing studies in rodents suggests a 

second wave of APC migration in the postnatal stage along white matter tracts and radially into 

grey matter regions as well as limited migration from their ventricular zone origin (Hatton, 

Nguyen et al. 1993, Jacobsen and Miller 2003). 

During migration, terminal astrocyte specification and functional maturation are initiated in 

APCs. The exact mechanism of how APCs adopt their final molecular and functional phenotype 

still remains elusive. However, lineage-tracing studies clearly support an instructive role of de-

velopmental patterning to be essential in astrocyte subtype specification (Molofsky, Krencik et 

al. 2012). Tight spatial and temporal expression profiles of morphogenic genes and transcrip-

tion factors result in domain patterning along the dorsoventral axis of the developing spinal 

cord where distinct domains give rise to specific neuronal and astrocytic subtypes representing 

their original patterning domain (Muroyama, Fujiwara et al. 2005, Molofsky, Krencik et al. 

2012). For example, three subclasses of white matter astrocytes (VA1, VA2, VA3) arise from 

the postnatal ventral spinal cord (Hochstim, Deneen et al. 2008). In adulthood, a plethora of 

plastic specialized astrocyte subtypes develop depending on their location and overall CNS 
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physiology. From a classical anatomical perspective, the adult CNS contains two different as-

trocyte subtypes, namely protoplasmic astrocytes in the GM and fibrous astrocytes in the WM 

(Freeman 2010). Recently, multiple astrocyte subtypes were identified by astrocyte-specific 

reporter mouse lines, sophisticated single cell-RNA sequencing and transcriptional profiling 

approaches (Emsley and Macklis 2006, Molofsky, Kelley et al. 2014, Lanjakornsiripan, Pior et 

al. 2018). Zeisel and colleagues applied single cell-transcriptional profiling in combination with 

data-driven taxonomy clustering to ~500,000 cells of the adult mouse CNS. They were able to 

classify seven regionally distinct astrocytic subtypes within the brain. The spatial distribution of 

these astrocytic subtypes correlated with different anatomical brain compartments with little to 

no overlap. Moreover, the spatial distribution was associated with potential functional implica-

tions; for example, the separation between telencephalic and non-telencephalic astrocytes was 

evident at the anatomical level, and also when the expression of neurotransmitter transporters 

were present. In particular, vesicular glutamate transporter 1 (VGLUT1) was expressed by tel-

encephalic astrocytes, whereas glycine transporter (GLYT1) was exclusively expressed in non-

telencephalic astrocytes (Zeisel, Hochgerner et al. 2018). Likewise, Batiuk et al. performed 

single cell-transcriptional profiling and in situ-hybridization (RNAscope) on cortex- and hippo-

campus-derived astrocytes and found five molecularly distinct astrocyte subtypes. Interest-

ingly, from all analyzed genes, only 30% were commonly expressed across the majority of 

astrocytes, with > 70% of all genes differentially expressed. Commonly expressed genes were 

mainly associated with energy metabolism (e.g., Ldha involved in glycolysis/lactate synthesis) 

and astrocyte specification (e.g., Sox9). Furthermore, two identified subtypes were linked to 

neurogenesis (expression of stem cell genes Ascl1, Dab1 and Slc1a3) and adult astrocyte 

precursor niches (expression of cell cycle control genes Sirt2, Sept2, Emp2) (Batiuk, 

Martirosyan et al. 2020). Within the neocortex, layer-specific astrocyte populations with distinct 

morphologies were recently identified using a combination of Aldh1L1- and GLT-1/EAAT2-

reporter mouse lines together with fluorescence activated cell sorting (FACS) and RNAseq 

(Morel, Chiang et al. 2017, Morel, Men et al. 2019). In adulthood, molecular differences be-

tween outer cortex layer (I + II) and deeper layer (III, IV) astrocytes might reflect layer-specific 

neuron-astrocyte interactions and originate from developmental cortex layering, since Layer I 

astrocytes are born around E12 in mouse and retain a rather immature and precursor-like 

transcriptome, whereas later-born astrocytes of cortical layer III and IV predominantly express 

perisynaptic astroglial proteins. Furthermore, Layer I astrocytes developmentally originate from 

ventricular zone-precursors at the basal lamina and deeper layer astrocytes from subventricu-

lar zone-derived radial glia and immature astrocyte precursors in the late embryonic and early 

postnatal stage, which may also contribute to layer-specific differences (Ge, Miyawaki et al. 
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2012, Tabata 2015). Additionally, astrocytes from different cortex layers display distinct mor-

phological patterns and structural interactions with synapses. For instance, Layer I astrocytes 

occupy a smaller territorial domain than deeper layer astrocytes (Layer II – IV). Cell orientation 

clustering analysis revealed a radial orientation in Layer I astrocytes and a tangential orienta-

tion in astrocytes from Layer II and III (Lanjakornsiripan, Pior et al. 2018). 

Proliferation of APCs and maturing astrocytes adds another level of heterogeneity. During de-

velopment, APC proliferation in the cortex bimodally peaks at E14.5 in the VZ and E16.5 in the 

surrounding parenchyma, whereas in the spinal cord, APC proliferation maximizes at E14.5 

and P2/3 (Ge, Miyawaki et al. 2012, Tien, Tsai et al. 2012). The first wave of proliferation occurs 

most likely before APC migration at the precursor niches, where radial glia-like cells give rise 

to early APCs by asymmetric cell divisions (Tien, Tsai et al. 2012). The second wave is done 

by APCs after migration to their final destinations with symmetric cell divisions (Masahira, 

Takebayashi et al. 2006, Rowitch and Kriegstein 2010). Importantly, APC proliferation and mat-

uration are molecularly linked through Mitogen-activated protein kinase (MAPK) - Extracellular 

signal-regulated kinase (ERK) pathway-dependent cytokine expression (Li, Newbern et al. 

2012). Additionally, CNS disease and insult tremendously increase astrocyte heterogeneity in 

a spatial-, temporal- and context-dependent fashion (Anderson, Ao et al. 2014). Liddelow et al. 

introduced a classification scheme for reactive astrocytes based on a panel of 10 – 13 differ-

entially expressed genes in reactive astrocytes in response to activating stimuli such as IL-1α 

compared to native quiescent astrocytes. In particular, A1 astrocytes were considered as det-

rimental and potentially neurotoxic, whereas A2 astrocytes resemble pro-regenerative charac-

teristics (Liddelow, Guttenplan et al. 2017). However, a strict classification of reactive astro-

cytes into distinct subtypes might not be appropriate, since reactive astrocyte phenotypes were 

shown to be highly plastic, reversible and -most importantly- dependent on the molecular en-

vironment of the individual astrocytes rather than on an intrinsic reactivity program (Hara, 

Kobayakawa et al. 2017). Given the plastic and heterogeneous nature of APCs as well as 

terminally differentiated astrocytes during health and disease, the astrocytic transcriptome and 

marker expression profile remains complex and highly dynamic (Hamby, Coppola et al. 2012, 

Zamanian, Xu et al. 2012, Rodriguez, Yeh et al. 2014). Thus, astrocyte heterogeneity is deter-

mined by differential developmental origins and mainly spatial and cellular context-dependent 

intrinsic diversity. Astrocyte heterogeneity during reactivity, hence, is stimulus-dependent and 

additionally added on top of an intrinsically morphological and functionally diverse cell popula-

tion. 
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1.2.2 Astrocytes in the healthy central nervous system 

During early postnatal CNS development, astrocyte-secreted proteins -including thrombos-

pondins, glypicans, ephrins, and integrins- actively participate in the formation, modulation and 

elimination of synapses as well as scaffolding and support of migrating neuroblasts and NPCs 

(Pfrieger and Barres 1997, Christopherson, Ullian et al. 2005, Reichenbach, Derouiche et al. 

2010, Kucukdereli, Allen et al. 2011, Allen, Bennett et al. 2012). 

In adulthood, one central astrocyte function is the tissue and extracellular homeostasis of ions, 

metabolites, pH, water, and neurotransmitters (Barres 2008, Obara, Szeliga et al. 2008, 

Allaman, Belanger et al. 2011, Papadopoulos and Verkman 2013). Especially the regulation of 

ions and transmitter substances at synaptic clefts underlines their involvement in neuronal 

network activity and modulation of synaptic transmission and plasticity that leads to the devel-

opment of the concept of the “tripartite synapse” (Araque and Navarrete 2010). Here, the pre- 

and post-synaptic compartments are ensheathed by astrocytes enabling them to actively par-

ticipate in the signal transmission process. For example, buffering of extracellular potassium 

levels through the inward-rectified potassium channel Kir4.1 was found to be predominantly 

done by astrocytes in close spatial association to motor neurons in the ventral horn of the 

spinal cord and in cortical layers II/III and V (Olsen, Campbell et al. 2007, Kelley, Ben Haim et 

al. 2018). Alternatively, astrocytes can modulate the signal transmission process via secretion 

of gliotransmitters (e.g., glutamate, D-serine, ATP, adenosine) in a Ca2+-dependent manner 

(Volterra and Meldolesi 2005, Durkee and Araque 2019). Importantly, astrocytes were shown 

to mediate activity-dependent stabilization and/or elimination of synapses (Luo and O'Leary 

2005, Stevens, Allen et al. 2007, Halassa and Haydon 2010). Astrocytes may additionally sup-

port oligodendrocyte-mediated myelination as well as axonal sprouting (Ishibashi, Dakin et al. 

2006, Liauw, Hoang et al. 2008, Watkins, Emery et al. 2008). Furthermore, astrocytes form 

and maintain the blood-brain-barrier (BBB) and the blood-spinal cord-barrier thereby regulating 

blood flow and molecule transfer between blood and neurons (Takano, Tian et al. 2006, Attwell, 

Buchan et al. 2010). 

Another main feature of astrocytes is their metabolic coupling to neurons. In particular, astro-

cytes were identified as the primary energy suppliers for neurons in the CNS. Astrocytes take 

up glucose from nearby blood capillaries, store it intracellularly as glycogen and transmit it as 

lactate via monocarboxylate transporter 1 or 4 (MCT-1/-4) and MCT-2 to neurons, where lac-

tate is finally converted to pyruvate and serves for ATP synthesis associated with long-term 

memory formation (Suzuki, Stern et al. 2011). Another implication of the metabolic coupling is 

uptake, clearance and recycling of neurotransmitters at the synaptic cleft. Since the overstim-

ulation of neuronal glutamate receptors is highly toxic to neurons, excessive glutamate is taken 
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up by nearby astrocytes via glutamate transporter-1 (GLT-1) and glutamate aspartate trans-

porter (GLAST) and re-distributed to neurons (Bak, Schousboe et al. 2006, McKenna 2007, 

Sarafian, Montes et al. 2010). Additionally, due to their high expression of antioxidants and 

ROS-detoxifying enzymes, astrocytes are critical in handling oxidative stress in the CNS (Shih, 

Johnson et al. 2003, Belanger and Magistretti 2009). Thus, astrocytes are involved in basically 

all physiological processes of the developing and adult mammalian CNS and are, therefore, 

key to normal neuronal function. 

 

1.2.3 Astrocytes in the injured central nervous system 

The astrocytic response to CNS insults is classically termed reactive astrogliosis and is hall-

marked by a broad, finely tuned spectrum of molecular, morphological and functional changes 

of astrocytes reflecting the type, severity and context of the insult. Most importantly, astrocytes 

do not respond alone but rather in a coordinated fashion together with other cells including 

resident microglia and precursor populations as well as non-neural cells to CNS damage. 

Hence, the CNS response is a plastic cascade of multifactorial and multi-cellular events in a 

temporal and spatial context-dependent fashion (Sofroniew 2014). 

Immediately after injury, reactive astrogliosis is initiated by a myriad of extracellular signaling 

molecules released and secreted by the damaged neural tissue itself, such as neurotransmit-

ters, purines, ROS, NH4
+, extracellular glucose and ATP, and infiltrating activated macro-

phages/microglia as well as blood-derived immune cells (e.g., IL-1, IL-1β, IL-6, interferon γ 

(INFγ), TNFα) (Sofroniew 2009, Burda and Sofroniew 2014, Sofroniew 2014, Liddelow, 

Guttenplan et al. 2017). Following BBB/BSCB breakdown, the lesion environment becomes 

hypoxic contributing to astrocyte activation. Additionally, damaged endothelial cells and blood-

derived macrophages secrete endothelin-1 (ET-1) or CT-1 that specifically activate the resident 

astrocytes and promote injury-related astrocyte proliferation (Barnabe-Heider, Wasylnka et al. 

2005, Gadea, Schinelli et al. 2008). As a key event during activation, astrocytes upregulate 

GFAP in a context- and severity-dependent fashion triggering intracellular cascades including 

Notch, JAK/STAT, and BMP signaling (Miller and Gauthier 2007, Gallo and Deneen 2014, 

Hammond, Gadea et al. 2014). Thus, changes in the astrocyte transcriptome are highly selec-

tive and linked to specific trigger factors or combinations of different factors enabling the acti-

vated astrocytes to react to any alteration of the molecular and cellular environment (Cahoy, 

Emery et al. 2008, Zamanian, Xu et al. 2012, Anderson, Ao et al. 2014, Orre, Kamphuis et al. 

2014, Liddelow, Guttenplan et al. 2017). However, the specific molecular interactions and 

mechanisms of astrocyte activation remain far from being fully understood. 
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Another pathological hallmark of injury-activated astrocytes is cellular hypertrophy accompa-

nied by strongly enhanced GFAP expression and increased interdigitation between neighbor-

ing astrocytes dependent upon the severity and proximity of the individual astrocyte to the 

lesion (Sofroniew and Vinters 2010, Anderson, Ao et al. 2014, Sofroniew 2015). Under normal 

conditions, individual astrocytes occupy spatially distinct and non-overlapping domains in the 

CNS parenchyma, but during severe astrogliosis, those domains start to overlap since inter-

digitation between individual astrocyte processes increases (Wilhelmsson, Bushong et al. 

2006, Wanner, Anderson et al. 2013). Besides cellular hypertrophy, astrocytes start to prolifer-

ate upon injury-related activation. Molecular triggers as well as the origin of the newly prolifer-

ated astrocytes at CNS lesion sites, remain elusive and incompletely characterized. However, 

it has been shown that factors like EGF, FGF, ET-1, Shh and extracellular ATP and the serum 

proteins albumin and thrombin are experimentally linked to astrocyte proliferation in vivo 

(Gadea, Schinelli et al. 2008, Neary and Zimmermann 2009, Sirko, Behrendt et al. 2013). 

There is evidence that adult astrocytes can re-enter the cell cycle upon injury-related activation 

(Buffo, Rite et al. 2008, Gadea, Schinelli et al. 2008). Moreover, NG2+ glia precursors as well 

as several other precursor cell pools in the adult CNS are considered as potential sources for 

proliferating astrocytes (Magnus, Carmen et al. 2008, Meletis, Barnabe-Heider et al. 2008, 

Carlen, Meletis et al. 2009). 

Hypertrophic reactive astrocytes start to migrate away from the lesion epicenter towards the 

lesion margins (penumbra) and blend with newly proliferated astrocytes at the lesion margins 

(Faulkner, Herrmann et al. 2004). The reactive astrocytes arrange into a thin layer and form a 

dense mesh-like barrier of entangled filamentous processes at the penumbra that entirely en-

capsulates the lesion site. Hence, scar-forming reactive astrocytes form a chemical and phys-

ical barrier separating the lesion core from the surrounding intact neural networks prohibiting 

extensive tissue loss and spread of inflammation and necrosis (Wanner, Anderson et al. 2013, 

Cregg, DePaul et al. 2014, Sofroniew 2015, Anderson, Burda et al. 2016). Finally, maturing 

astroglial scars start to express and deposit high concentrations of CSPGs (Tang, Davies et 

al. 2003, Cregg, DePaul et al. 2014). 

Thus, for decades, reactive astrocytes and astroglial scars were seen as the primary cause of 

regenerative failure after CNS damage but this view has been revised over the last years. In 

fact, reactive astrocytes fulfill a plethora of mainly neuroprotective and immunomodulatory 

functions, and thereby represent an integral part of the naturally occurring CNS response to 

damage. For example, CSPG deposition from reactive hypertrophic astrocytes was recently 

proven to be an essential component for the reorganization of the spared, intact neural tissue 

adjacent to the lesion site (Wang and Fawcett 2012, Mironova and Giger 2013, Khakh and 

Sofroniew 2015). Moreover, putative inhibitory CSPGs were mainly secreted by non-neural 
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stromal cells at the mature lesion core (Anderson, Burda et al. 2016). For instance, aggrecan 

is absent from acute and mature astroglial scars but present in considerable quantities in the 

PNN of the adjacent intact tissue (Andrews, Richards et al. 2012, Lang, Cregg et al. 2015, 

Anderson, Burda et al. 2016). In contrast, scar-forming astrocytes express growth-promoting 

laminin, and the antibody-blockade of laminin-integrin binding prohibits axonal growth after 

injury (Anderson, Burda et al. 2016). Moreover, upon appropriate stimulation, regrowing CNS 

axons extend in direct contact to reactive astrocytes and astroglial scars (Kawaja and Gage 

1991, Lee, Geoffroy et al. 2010, Zukor, Belin et al. 2013, Anderson, Burda et al. 2016). Since 

reactive astrocytes partially originate from adult precursor populations, they share many char-

acteristics of immature astrocytes. Indeed, axons were shown to grow along aligned radial glia 

cells and astrocyte precursors during development and through cellular grafts containing im-

mature astrocytes (Mason, Edmondson et al. 1988, Davies, Huang et al. 2006, Raper and 

Mason 2010, Wanner, Anderson et al. 2013, Shih, Lacagnina et al. 2014, Zhang, Burda et al. 

2015, Rigby, Gomez et al. 2020). Further, formation of aligned astrocytic bridges at the lesion 

penumbra was identified by numerous studies as an anatomical predictor for axonal regener-

ation through SCI lesions (Joosten, Bar et al. 1995, Xu, Guenard et al. 1995, Guest, Hesse et 

al. 1997, Spilker, Yannas et al. 2001, Iseda, Nishio et al. 2004, Ma, Wei et al. 2004, Liu, Lu et 

al. 2010, Hurtado, Cregg et al. 2011, Zukor, Belin et al. 2013). 

Most intriguingly, genetic ablation or pharmacological depletion of astroglial scarring leads to 

greatly expanded CNS lesion sites, massive infiltration of inflammatory cells, and worse func-

tional outcomes (Faulkner, Herrmann et al. 2004, Okada, Nakamura et al. 2006, Herrmann, 

Imura et al. 2008, Wanner, Anderson et al. 2013, Anderson, Burda et al. 2016). In line with this, 

also genetic ablation of single molecules expressed by reactive astrocytes did not result in 

significantly improved recovery but appeared to be rather detrimental. For example, although 

KO of GFAP and vimentin decreased astrogliosis and promoted axonal regrowth, lesion size 

and immune response were exacerbated which in turn worsens the outcome (Liedtke, 

Edelmann et al. 1998, Wilhelmsson, Li et al. 2004). In contrast, the combination of administra-

tion of chondroitinase ABC (ChABC) and FGF1 was shown to interfere with astrocyte scar 

formation in such a way to facilitate long-distance axonal regeneration and functional recovery 

of urinary tract function in a SCI transection model in rats (Tsai, Shen et al. 2008, Lee, Lin et 

al. 2013). Specifically, FGF1 treatment induced a morphological shift in a subpopulation of 

reactive astrocytes towards a bipolar/elongated cell shape that formed aligned astrocyte 

bridges between uninjured host tissue and the lesion site. 

As astrocytes make up the BBB/BSCB, they serve as gatekeepers for immune cell invasion 

into the CNS as well as contact-/diffusion-mediated trafficking of immunomodulatory cytokines. 

Hence, astrocytes actively take part in the recruitment, instruction and restriction of leukocyte 
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invasion into the CNS (Bush, Puvanachandra et al. 1999, Voskuhl, Peterson et al. 2009). De-

pendent upon the type, severity and context of the insult, the transcriptome and secretome of 

reactive astrocytes adopt pro- and anti-inflammatory capacities (Sofroniew 2014). After expo-

sure to immune-activating molecules (e.g., lipopolysaccharide (LPS), TNFα), reactive astro-

cytes upregulate signaling pathways such as nuclear factor-κB (NFκB) or suppressor of cyto-

kine signaling 3 (SOCS3) cascades and pro-inflammatory mediators like CC-chemokine ligand 

2 (CCL2) and CXC-chemokine ligand 10 (CXCL10) (Okada, Nakamura et al. 2006, Brambilla, 

Persaud et al. 2009, Kim, Hoffman et al. 2014, Mills Ko, Ma et al. 2014). In contrast, reactive 

astrocytes can act anti-inflammatory, especially at the lesion penumbra, where astroglial scar-

ring spatially restricts the inflammatory reaction, thereby enhancing tissue sparing (Faulkner, 

Herrmann et al. 2004, Voskuhl, Peterson et al. 2009, Toft-Hansen, Fuchtbauer et al. 2011). 

The gp130-STAT3 signaling pathway was identified as crucial for astrocyte-mediated anti-in-

flammatory processes (Okada, Nakamura et al. 2006, Herrmann, Imura et al. 2008, Wanner, 

Anderson et al. 2013). Additional secretion of transforming growth factor β (TGFβ), IL-10, IL-

11, IL-19, and IL-27 and other signaling molecules by reactive astrocytes attenuates activated 

macrophages/microglia and supports the resolution of inflammation (Meeuwsen, Persoon-

Deen et al. 2003, Min, Yang et al. 2006, Hamby, Coppola et al. 2012, Zamanian, Xu et al. 2012, 

Norden, Fenn et al. 2014). Importantly, along with their immunomodulatory properties, reactive 

astrocytes regulate BBB/BSCB integrity, breakdown and repair after CNS insults via secretion 

of various factors including Shh, retinoic acid, and apolipoprotein E (APOE) (Alvarez, Dodelet-

Devillers et al. 2011, Argaw, Asp et al. 2012, Bell, Winkler et al. 2012, Chapouly, Tadesse Argaw 

et al. 2015). 

Finally, non-scar-forming reactive astrocytes in the adjacent intact tissue additionally contribute 

to neuroprotection via re-establishing and maintenance of the extracellular homeostasis as 

well as neutralization of free radicals and excitotoxic neurotransmitters (Bush, Puvanachandra 

et al. 1999, Chen, Vartiainen et al. 2001, Shih, Johnson et al. 2003, Lin, Lou et al. 2008, Zador, 

Stiver et al. 2009). 

 

1.3 Experimental approaches for spinal cord repair 

Unfortunately, although an enormous effort has been spent over the last decades to find new 

effective treatment paradigms for SCI patients, no randomized clinical trial has shown efficacy 

in restoring significant function after SCI (Fehlings, Tetreault et al. 2017, Blight, Hsieh et al. 

2019, Courtine and Sofroniew 2019). Due to the multi-facetted pathophysiology of SCI, a pu-

tative effective repair strategy has to tackle several aspects at once including (1) initiation and 

maintenance of the intrinsic regenerative capacity of adult CNS neurons, (2) neutralization or 
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modification of the growth-inhibitory (micro-)environment at lesion sites, as well as (3) struc-

tural guidance and trophic support of regrowing axons. Hence, various experimental strategies 

were developed and tested in preclinical animal models of SCI that addressed individual or 

multiple of the targets mentioned here. 

 

1.3.1 Modification of central nervous system lesion sites 

While the adult PNS is able to regenerate over long distances, the adult CNS fails to regenerate 

even over short distances. Therefore, the PNS environment seems to be more permissive for 

axonal growth than the environment at the CNS lesion. As a consequence of this observation, 

numerous experimental approaches aimed at the modification of the microenvironment at the 

CNS lesion site to create a milieu allowing for robust axonal growth (Fawcett 2020). 

Neutralization of the inhibitory molecules at CNS lesion sites was achieved by the delivery of 

either ChABC or antibodies blocking myelin-associated inhibitors such as MAG, OMgp or 

Nogo-A. In particular, administration of ChABC alone or in combination with cells and/or bio-

materials resulted in reduction of CSPG levels at lesion sites, fibroglial scarring and partially 

led to functional recovery (Bradbury, Moon et al. 2002, Massey, Hubscher et al. 2006, 

Shinozaki, Iwanami et al. 2016, Burnside, De Winter et al. 2018, Fuhrmann, Anandakumaran 

et al. 2018, Nori, Khazaei et al. 2018, Rosenzweig, Salegio et al. 2019). Blockage of PTPσ 

receptor binding similarly promoted axonal regeneration and improved functional outcomes 

(Lang, Cregg et al. 2015). However, the observed functional recovery may have be due to 

axonal plasticity and reorganization of the PNN rather than restoration of original axonal con-

nections beyond the lesion site (Garcia-Alias, Barkhuysen et al. 2009, Sorg, Berretta et al. 

2016). In line with these findings, experimental manipulation of Nogo and its receptors led to 

long-distance axonal growth and functional recovery in the injured spinal cord, but the under-

lying anatomical changes in the spinal cord are still unclear (Bregman, Kunkel-Bagden et al. 

1995, Huang, McKerracher et al. 1999, Zheng, Ho et al. 2003, Zheng, Atwal et al. 2005, Liu, 

Lu et al. 2010). Again, positive outcomes after Nogo treatment might be attributed to synapse 

remodeling and circuit reorganization in the adjacent spinal tissue (Schwab and Strittmatter 

2014). 

Furthermore, axonal growth could be supported by the reduction of fibroglial scarring around 

SCI lesions. For example, the microtubule-stabilizing drugs Paclitaxel, Epothilone B and D 

were used to interfere with fibroblast migration/polarization attenuating scarring and stabilizing 

regrowing axons at SCI lesion site, thereby, contribute to the recovery of hindlimb locomotor 

function (Hellal, Hurtado et al. 2011, Ruschel, Hellal et al. 2015, Ruschel and Bradke 2018, 

Sandner, Puttagunta et al. 2018). 
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1.3.2 Trophic factor delivery 

During development, growing axons are extrinsically guided and attracted by various soluble 

trophic factors secreted by other CNS cells, however, after damage in the adult CNS, regrow-

ing axons lack this trophic support (Blesch and Tuszynski 2009). Hence, delivery of growth 

factors and neurotrophins alone or in combination with biomaterials and/or cells into the injured 

CNS has been extensively investigated over the last decades. Among those trophic factors, 

neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) delivery via various sys-

tems for administration promoted regrowth of different spinal tracts after SCI (Bamber, Li et al. 

2001, Shumsky, Tobias et al. 2003, Zhou and Shine 2003, Oudega, Hao et al. 2019). However, 

growth factor delivery also elicited controversial outcomes (Bradbury, King et al. 1998, Griffin 

and Bradke 2020). Although BDNF delivery in combination with cell transplantation (e.g., 

BMSCs, SCs) was associated with axonal regeneration after SCI (Sasaki, Radtke et al. 2009, 

Gunther, Weidner et al. 2015, Ritfeld, Patel et al. 2015, Liu, Sandner et al. 2017), continuous 

overexpression of BDNF was also linked to abnormal spasticity (Fouad, Bennett et al. 2013). 

Likewise, ectopic overexpression of NGF was linked to severe hyperalgesia in rats (Tang, 

Tanelian et al. 2004, Lu, Blesch et al. 2012). The combination of growth factors with stem cell-

derived NPCs was found to facilitate long-distance axonal growth within the injured spinal cord, 

but may harbor the risk of tumor formation (Hofstetter, Holmstrom et al. 2005, Mitsui, Fischer 

et al. 2005, Johnson, Tatara et al. 2010, Lu, Wang et al. 2012, Lu, Kadoya et al. 2014). 

 

1.3.3 Reawakening of the intrinsic growth capacity of central nervous 
system neurons 

Early transplantation studies of embryonic grafts into CNS lesion sites revealed that graft-de-

rived and, therefore, embryonic axons could grow even over longer distances within the adult 

CNS (Reier, Bregman et al. 1986, Wictorin, Brundin et al. 1990). Additionally, axons originating 

from fetal NSC-grafts showed long-distance growth and synapse formation with mature host 

neurons (Lu, Wang et al. 2012, Lu, Kadoya et al. 2014). Therefore, the inhibitory environment 

of the adult CNS does not affect embryonic axons, while mature CNS neurons have lost their 

ability to regrow (Fawcett 2020). Thus, reawakening of this embryonic growth state in adult 

CNS neurons may have the capacity to induce robust long-distance axonal growth. Moreover, 

PNS neurons initiate an intrinsic pro-regenerative genetic program after injury leading to the 

upregulation of regeneration-associated genes (RAGs) thought to be encoding for instructive 

and regulatory axonal growth-associated genes that finally enables them to regenerate, while, 

in contrast, damaged CNS axons harbor only a very limited capacity to upregulate RAGs, 
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therefore, fail to regenerate (Schmitt, Breuer et al. 2003, Palmisano, Danzi et al. 2019). This is 

particularly striking in sensory axons of the dorsal root ganglia (DRG). Here, the peripheral 

branch regenerates after axotomy, while the central branch does not. Moreover, after lesioning 

the peripheral DRG branch, the regenerative capacity of the central branch is significantly im-

proved (Oblinger and Lasek 1984, Erturk, Hellal et al. 2007). This phenomenon was termed a 

“conditioning effect” and initiates the upregulation of RAGs in the central and peripheral branch 

of the DRG neuron (Blesch, Lu et al. 2012). Early attempts to mimic the pro-regenerative pro-

gram of peripheral neurons in the CNS used intraganglionic injection of cyclic adenosine mono-

phosphate (cAMP) in vitro and in vivo after dorsal column lesion (DCL), however, this did not 

entirely recapitulate the conditioning effect (Neumann, Bradke et al. 2002, Blesch, Lu et al. 

2012). 

Transcriptional analysis of conditioned DRG neurons revealed that injury-induced RAGs do 

not entirely reflect the developmental axonal growth program (Enes, Langwieser et al. 2010). 

Numerous studies focused on the manipulation of these developmental signaling pathways in 

injured adult CNS neurons. Most of these pathways are involved in developmental regulation 

of cytoskeleton dynamics of cellular growth and size as well as axon growth and pathfinding 

but become inactive in mature CNS neurons. For example, the GTPase RhoA and its down-

stream effectors are essential mediators of cytoskeleton dynamics of axonal growth and path-

finding during development. However, after injury the adult CNS, RhoA levels are increased at 

the lesion site and were associated with axonal degeneration and p75-NTR-dependent cell 

death (Wu and Xu 2016, Kalpachidou, Spiecker et al. 2019). After SCI, inhibition of RhoA can 

block the detrimental character of myelin-associated inhibitors in rodents and humans 

(Monnier, Sierra et al. 2003, Joset, Dodd et al. 2010, Fehlings, Theodore et al. 2011). Likewise, 

Phosphatase and tensin homolog (PTEN) is a negative regulator of the phosphatidylinositol-

3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling cascade, which controls 

cell size and growth during development. Thus, genetic depletion of PTEN activated PI3K/AKT 

pathway eliciting robust axonal regeneration of retinal ganglion cells and corticospinal tract 

(CST) axons after injury (Park, Liu et al. 2008, Liu, Lu et al. 2010, Zukor, Belin et al. 2013). 

Similarly, extrinsic inhibition of Glycogen synthase kinase 3 (GSK3), which is involved in mi-

crotubule dynamics in axons and gene transcription at the neuronal soma, leads to activation 

of PI3K pathway and subsequently SMAD1, a transcription factor associated with sensory 

axon regeneration (Saijilafu, Hur et al. 2013). Alternatively, overexpression of axon growth-

stimulating mediators increased axonal regeneration after injury. For example, several studies 

overexpressed JAK/STAT3 cascade components to successfully boost axon elongation (Miao, 

Wu et al. 2006, Bareyre, Garzorz et al. 2011, Mehta, Luo et al. 2016). Accordingly, depletion 

of SOCS3, a negative regulator of the JAK/STAT3 downstream cascade, induced collateral 
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sprouting of the CST and improved forelimb function after pyramidotomy in mice (Jin, Liu et al. 

2015). Additionally, external regulation of JAK/STAT3-dependent transcription factors of the 

Krüppel-like family (KLF) showed some promise in enhancing axon elongation of mature CNS 

neurons. KLF7, for instance, is expressed by CNS neurons during developmental periods of 

axon growth but becomes downregulated in mature CNS neurons. Hence, extrinsic overex-

pression of KLF7 promoted sprouting as well as long-distance growth of damaged CST axons 

in adult mice (Moore, Blackmore et al. 2009, Blackmore, Wang et al. 2012). 

Alternatively, interfering with the epigenetic regulation of RAGs was extensively tested to pro-

mote axonal regeneration. For instance, manipulation of DNA histone modifiers such as his-

tone acetyltransferases (HATs) and histone deacetylases (HDACs) to induce transcription of 

RAGs was shown to promote axonal regeneration after SCI (Gaub, Joshi et al. 2011, 

Puttagunta, Tedeschi et al. 2014, Hervera, Zhou et al. 2019). 

 

1.3.4 Transplantation approaches 

In the scope of putative treatment strategies for the complex SCI pathology, transplantation 

approaches that aim at filling the SCI lesion cavity with (1) a cellular graft, (2) a biomaterial-

based delivery matrix for trophic factors or pharmacological compounds, (3) a biomaterial-

based delivery matrix for cellular grafts, (4) a physical scaffold that provides structural guidance 

for regrowing spinal axons, and/or (5) various combinations of the aforementioned strategies, 

were developed and extensively tested in numerous SCI animal models and -partially- in hu-

man SCI patients (Fuhrmann, Anandakumaran et al. 2017, Katoh, Yokota et al. 2019, Griffin 

and Bradke 2020). 

 

1.3.4.1 Cell transplantation 

Historically, transplanting cells into the areas of tissue loss is one of the oldest treatment strat-

egies after CNS injury going back to pioneer experiments performed in Ramon y Cajal’s labor-

atory in the late 19th century (Cajal, DeFelipe et al. 1991). The primary goal of cell transplan-

tation after SCI is to compensate for tissue loss and disrupted axonal connections with (1) 

neurons to either directly replace the lost connections or to form a neuronal relay across the 

lesion site, (2) neural cells to create a growth-permissive environment and to support the en-

dogenous axonal regeneration, or (3) stem and precursor cells that differentiate into neurons 

and glia. Further, the grafted cells can be genetically modified to express trophic factors to 

attract and promote axonal growth additionally. Hence, a plethora of different cell types that 
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have been used for cell transplantation approaches following SCI, a selection of which will be 

discussed below. 

 

1.3.4.1.1 Schwann cells 

Schwann cells (SCs) are the myelinating cells of the PNS and were found to be essential for 

peripheral nerve regeneration. Early studies showed axon regeneration after spinal cord tran-

section where peripheral nerve grafts (PNGs) containing surviving adults SCs were implanted 

into the lesion cavity (Richardson, McGuinness et al. 1980). Important for clinical translation, 

SCs can be obtained in appropriate quantities from peripheral nerve biopsies of human sub-

jects and expanded in vitro. Furthermore, SCs do not form tumors after transplantation (Bunge 

2016). Thus, the transplantation of autologous adult SCs was extensively tested in animal 

models of SCI. For example, purified SCs in PAN/PVC channel implants formed tissue bridges 

spanning complete spinal cord transection injuries, thereby promoted robust axonal regenera-

tion and remyelination (Xu, Guenard et al. 1995, Xu, Chen et al. 1997, Xu, Zhang et al. 1999, 

Williams, Henao et al. 2015). Similar results were found after thoracic contusion injuries in 

adult rats, when SCs were grafted directly into the lesion epicenter 1 week post-injury (Takami, 

Oudega et al. 2002, Pearse, Sanchez et al. 2007). Notably, SCs secrete several trophic factors 

after transplantation including NGF, NT-3, GDNF and CNTF (Golden, Pearse et al. 2007, 

Zhang, Huang et al. 2013). The combination of SC transplantation with additional treatments 

such as growth factor secretion, ChABC and transgenic overexpression of neurotrophins was 

shown to be even more effective (Weidner, Blesch et al. 1999, Fouad, Schnell et al. 2005, 

Golden, Pearse et al. 2007, Enomoto, Bunge et al. 2013, Flora, Joseph et al. 2013, Kanno, 

Pressman et al. 2014). Consequently, autologous SC transplantation was tested in clinical tri-

als in human patients with acute SCI (< 1 month post-injury) and determined to be safe. Hence, 

a second phase I clinical trial (NCT identifier: NCT02354625) was initiated to test autologous 

SC transplantation in chronic SCI patients (Guest, Santamaria et al. 2013, Bunge 2016). The 

study was completed in August 2019, but results are not yet available. 

 

1.3.4.1.2 Olfactory ensheathing cells 

Olfactory ensheathing cells (OECs) represent a unique, terminally differentiated glia cell type 

located in the peripheral olfactory nerve and the central olfactory nerve layer. OECs wrap the 

olfactory receptor neurons, enabling them to regenerate throughout their entire life (Schwob, 

Jang et al. 2017, Gomez, Sanchez et al. 2018). Hence, it was thought that OECs have the 
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capacity to facilitate CNS axonal regeneration and were therefore studied as potential candi-

dates for cell transplantation after SCI. OECs showed some promise in promoting axonal re-

generation in acute and chronic SCI. For example, OECs can act neuroprotective via secretion 

of trophic factors and ECM metalloproteinases dampening astrocyte reactivity and scar-asso-

ciated CSPG deposition (Garcia-Alias, Lopez-Vales et al. 2004, Pastrana, Moreno-Flores et 

al. 2006, Sasaki, Hains et al. 2006, O'Toole, West et al. 2007). Adult OECs can serve as a 

cellular substrate for growing axons and were shown to remyelinate damaged axons after SCI 

in vivo (Radtke, Akiyama et al. 2004). Further, OEC transplantation into full transection injuries 

of the rodent spinal cord led to functional recovery of sensory and motor function (Ramon-

Cueto, Cordero et al. 2000, Ruitenberg, Plant et al. 2003, Li, Li et al. 2011). Based upon this 

promising experimental data, OEC transplantation alone or in combination with SC transplan-

tation was investigated in several human clinical trials, but only modest or partially controver-

sial results were reported so far (Mackay-Sim, Feron et al. 2008, Chen, Huang et al. 2014, 

Guest and Dietrich 2015). 

 

1.3.4.1.3 Bone marrow stromal cells and other mesenchymal stem cells 

Bone marrow stromal cells (also known as bone marrow-derived mesenchymal stem cells, 

BMSCs) are pluripotent, non-hematopoietic stem cells. Since BMSCs can be obtained from 

the bone marrow of patients via biopsies, expanded and easily genetically manipulated in vitro, 

they have been extensively tested in various disease conditions (Forostyak, Jendelova et al. 

2013, Yang, Zhu et al. 2014, Hernigou, Flouzat-Lachaniette et al. 2015, Kim, Shapiro et al. 

2015). They secrete a myriad of different trophic factors and ECM components, and act in an 

immunomodulatory manner (Meirelles Lda, Fontes et al. 2009, Ren, Jin et al. 2011). After SCI, 

BMSCs elicited tissue sparing and functional recovery (Ohta, Suzuki et al. 2004, Nandoe 

Tewarie, Hurtado et al. 2009, Ritfeld, Nandoe Tewarie et al. 2012). Other studies have shown 

that BMSCs improved axonal regrowth and suppressed astroglial scarring in a contusive SCI 

model (Urdzikova, Jendelova et al. 2006, Ide, Nakai et al. 2010, Okuda, Horii-Hayashi et al. 

2017). In contrast, subacute intraparenchymal grafting of BMSCs did not improve tissue spar-

ing and had only minimal impact on functional recovery after thoracic contusion injury in adult 

rats (Sandner, Ciatipis et al. 2016). However, multiple phase I and phase I/II clinical trials were 

initiated recently to test autologous BMSC transplantation in human SCI patients showing 

safety and efficacy after chronic SCI and partially clinical improvement (El-Kheir, Gabr et al. 

2014, Mendonca, Larocca et al. 2014, Satti, Waheed et al. 2016, Silvestro, Bramanti et al. 

2020). 
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However, BMSCs grafts often lack integration and/or survival into the injured spinal cord, which 

significantly reduces their impact on axonal regeneration. Dependent upon the transplantation 

technique, either grafted BMSCs infiltrated and colonized the SCI lesion site or were not de-

tectable even short-time after transplantation (Ohta, Suzuki et al. 2004, Okuda, Horii-Hayashi 

et al. 2017, Romero-Ramirez, Wu et al. 2020). 

 

1.3.4.1.4 Astrocytes 

Astrocytes play a myriad of different essential functions both under physiological and patho-

physiological conditions in the CNS. Over 30 years ago, the idea of taking advantage of the 

astrocytic supportive character for neurons during development, but also after SCI had devel-

oped. Hence, early transplantation studies grafted neonatal cortex-derived astrocytes into 

acute SCI lesions in adult rats. After crush injury of the L5 dorsal root entry zone (DREZ), 

immature astrocytes were seeded into a Millipore pennant and implanted directly into the lesion 

site. The grafted cells integrated into the lesion site, migrated along WM tracts and partially 

reduced inflammation and glial scarring around the implantation site. Moreover, regrowth of 

sensory axons through the implantation site was strikingly enhanced compared with lesion and 

pennant controls. Some sensory axons re-entered the spinal cord and extended rostrally along 

the dorsal columns (Kliot, Smith et al. 1990). Likewise, immature cortex-derived astrocytes 

filled the lesion cavity of a unilateral L3 hemisection injury in adult Sprague-Dawley rats and 

significantly reduced the surrounding scar volume 4 and 8 weeks post-injury. Grafted astro-

cytes spread out into the surrounding uninjured host tissue and were intermingled with fibrous 

host-derived astrocytes and promoted the regrowth of Neurofilament (NF)-labeled axons into 

and partially through the transection site (Wang, Chuah et al. 1995). Later studies showed that 

phenotypical and morphological differences in the graft astrocyte populations strikingly af-

fected their impact on axonal regeneration (Williams, Henao et al. 2015). In particular, A2B5-

/GFAP+ cortex-derived astrocytes formed dense clusters encapsulated with fibroglial scar tis-

sue, while A2B5+/GFAP+ cortex-derived astrocytes formed an aligned network at the lesion site 

(Blakemore and Crang 1989, Franklin, Crang et al. 1992, Wang, Chuah et al. 1995, Joosten, 

Veldhuis et al. 2004). The latter astrocyte grafts were closely associated with the adjacent host 

tissue and penetrated by newly formed microvasculature (Olby and Blakemore 1996). 

Besides phenotypical differences, also developmental differences might affect the functional 

outcome of astrocyte transplantation as mature astrocytes -although plastic- become reactive 

and potentially scar forming after SCI (Sofroniew 2014, Hara, Kobayakawa et al. 2017). In 

contrast, immature astrocytes retain some of their developmental characteristics and conse-

quently harbor scaffolding functions for growing neurons (Joosten and Gribnau 1989, 
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McDermott, Barry et al. 2005, Nomura, Kim et al. 2010). Hence, various studies using different 

kinds of immature astrocytes alone or with additional treatments showing a positive effect on 

acute SCI lesion sites. For example, immature cortex-derived astrocytes (A2B5-/GFAP+) were 

seeded into a collagen type I matrix and implanted into a dorsal hemisection injury of the tho-

racic spinal cord (Th7 – 9) of adult Wistar rats. After 4 weeks, the grafted astrocytes remained 

at the injury site. They were closely associated with regrowing NF-positive axons and BDA-

traced CST axons at the implantation site, whereas animals that only received the collagen 

matrix only contained sparse individual axons. Furthermore, animals with astrocyte grafts 

showed subtle functional improvements of hindlimb locomotion as assessed by the Basso, 

Beattie and Bresnahan (BBB) motor score, BBB subscores and CatWalk™ gait analysis 

(Joosten, Veldhuis et al. 2004). Importantly, immature cortex-derived astrocytes were shown 

to be more axon growth-permissive than their mature counterparts in vitro and in vivo which 

might be attributed to a higher expression of matrix metalloproteinase-2 (MMP-2) (Filous, Miller 

et al. 2010). Hence, immature astrocytes have the ability to modulate the ECM at CNS lesion 

sites. 

Moreover, grafted immature astrocytes formed tissue bridges to structurally guide growing ax-

ons past corpus callosum microlesions in combination with ChABC (Filous, Miller et al. 2010). 

Similarly, transplantation of APCs derived from in vitro pre-differentiated glia-restricted precur-

sors (GRPs) obtained from E13.5 rat spinal cords was shown to positively affect axonal regen-

eration after a unilateral DCL at cervical level C1/2 in adult rats. The grafted APCs integrated 

into the lesion cavity, suppressed neurocan and NG2 expression, and aligned with host-de-

rived astrocytes to serve as a tissue bridge for regrowing rubrospinal axons. Moreover, animals 

with immature astrocyte grafts performed significantly better in the Grid-walk test compared 

with lesion controls or animals that received non-differentiated GRPs (Davies, Huang et al. 

2006). Another study confirmed these promising findings with immature astrocytes derived 

from human GRPs (Walczak, All et al. 2011). Unfortunately, a follow-up study that used CNTF 

and BMP to pre-differentiate GRPs in vitro was not able to reproduce the previously observed 

findings, since APCs pre-differentiated with CNTF and undifferentiated GRPs induced me-

chanical allodynia and thermal hyperalgesia after unilateral DCL (Davies, Proschel et al. 2008). 

Consequently, pre-differentiation of GRPs to APC as well as tissue origin of the GRPs were 

identified as crucial determinants for the properties of the resulting astrocyte populations 

(Davies, Huang et al. 2006, Strathmann, Wang et al. 2007, Davies, Proschel et al. 2008, 

Davies, Shih et al. 2011, Noble, Davies et al. 2011). For example, spinal cord-derived GRPs 

pre-differentiated with BMP4 mediated neuroprotection, promoted axonal regeneration of as-

cending dorsal column axons and functional recovery, whereas telencephalic GRPs pre-differ-

entiated with CNTF induced sensory abnormalities associated with enhanced calcitonin-gene-
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related peptide-positive (CGRP+) fiber sprouting in the spinal dorsal horn (Hofstetter, 

Holmstrom et al. 2005, Macias, Syring et al. 2006, Davies, Proschel et al. 2008, Davies, Shih 

et al. 2011). In line with these findings, different in vitro pre-differentiation protocols generated 

different astrocyte subpopulations with varying properties in vitro and in vivo (Bonaguidi, 

McGuire et al. 2005, Krencik, Weick et al. 2011, Haas, Neuhuber et al. 2012, Haas and Fischer 

2013). Nevertheless, APCs generated via BMP exposure most likely resemble immature spinal 

cord astrocytes and showed striking neuroprotective effects without adverse side effects in 

vivo (Davies, Huang et al. 2006, Davies, Proschel et al. 2008, Jin, Neuhuber et al. 2011, Fan, 

Zheng et al. 2013, Haas and Fischer 2013). 

 

1.3.4.1.5 Oligodendrocyte precursor cells 

Oligodendrocyte precursor cells (OPCs) represent a bipotent glia precursor population capable 

of generating myelinating oligodendrocytes and quiescent NG2+ glia precursors. As a conse-

quence of SCI, myelin loss and oligodendrocyte apoptosis are prominent pathologies that con-

tribute to functional impairment due to axonal signal conduction disruption (Norenberg, Smith 

et al. 2004). Therefore, compensating oligodendrocyte cell loss and enhancing remyelination 

might be a powerful way to support functional strategy to restore function after SCI (Myers, 

Bankston et al. 2016, Assinck, Duncan et al. 2017). For example, human iPSC-derived OPCs 

were delayed (7 dpi) transplanted into the host spinal cord rostrally and caudally to the epicen-

ter of a Th10 contusion SCI in adult rats. After 8 weeks, grafted OPCs were terminally differ-

entiated into mature oligodendrocytes and myelinated NF-labeled host axons which induced 

moderate locomotion recovery of the hindlimbs as assessed via increased BBB motor score 

and improved hindlimb kinematics (e.g., paw rotation, toe spread) (Keirstead, Nistor et al. 

2005). Likewise, human iPSC-derived OPCs remyelinated NF200+ axons after clip compres-

sion injury of the thoracic spinal cord (Th7), leading to increased BBB motor scores as well as 

reduced footfalls during the Grid walk test and improved interlimb coordination 2 months post-

injury (Karimi-Abdolrezaee, Eftekharpour et al. 2006). Interestingly, both studies showed that 

functional recovery is only observed when cells are grafted subacutely in comparison to cell 

transplantation in the chronic phase after SCI (> 10 months). Another study grafted iPSC-OPCs 

only 1 day after injury directly into the lesion epicenter and was able to show reduced lesion 

size and improved remyelination of spared host axons correlated with an improvement in BBB 

motor scores (All, Gharibani et al. 2015). Moreover, Wu et al. isolated OPCs from neonatal rats 

and transplanted them delayed (1 week post-injury) into the lesion cavity of a Th10 contusion 

injury in adult Sprague-Dawley rats. Treated rats showed increased BBB motor scores and 

improved motor evoked potentials (MEPs) as well as somatosensory evoked potentials 
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(SSEP) during electrophysiological evaluation 8 weeks after SCI (Wu, Sun et al. 2012). How-

ever, recent work demonstrates that a certain threshold of remyelination has to be reached 

until functional improvements can occur and, most intriguingly, that functional recovery of step-

ping after contusive SCI does not require oligodendrocyte-mediated remyelination (Plemel, 

Chojnacki et al. 2011, Duncan, Manesh et al. 2018). Hence, it still remains unclear if and how 

efficient endogenous remyelination helps after SCI since most studies report effects on spared 

axons rather than improved axonal regeneration. 

 

1.3.4.1.6 Neural stem and precursor cells 

Neural stem cells (NSCs) and neural precursor cells (NPCs) are multipotent cell populations 

that can differentiate into both neurons and glia, capable of replacing the lost neural tissue 

after SCI. Furthermore, NSC/NPC grafts were shown to extend axons into the surrounding 

spinal parenchyma and form synapses with host-derived neurons. Hence, NPCs/NSCs harbor 

the potential to not only compensate for lost tissue but also restore lost axonal connections via 

neuronal relay formation but might require additional trophic support (Lu, Wang et al. 2012, Lu, 

Kadoya et al. 2014). Recently, it was shown that fetal NPCs without additional trophic factor 

supply arrange into functional domains and that damaged spinal ascending and descending 

axons regrow into appropriate interneuronal layers of the domains (Dulin, Adler et al. 2018, 

Kumamaru, Lu et al. 2019). In most studies, rodent or human NSCs/NPCs were obtained from 

fetal tissue resulting in post-transplantation differentiation into neurons and glia, whereas adult-

derived NSCs/NPCs predominantly differentiated into astrocytes and oligodendrocytes 

(Wictorin, Brundin et al. 1990, Cao, Zhang et al. 2001, Pfeifer, Vroemen et al. 2004, Karimi-

Abdolrezaee, Eftekharpour et al. 2010). Besides relay formation, NSC/NPC grafts secrete var-

ious trophic and immunomodulatory factors that promote and attract axonal growth towards 

and into the grafts (Lu, Jones et al. 2003, Kokaia, Martino et al. 2012). Moreover, E12 spinal 

cord-derived NPCs transplanted with a fibrin matrix into a C5 dorsal column lesion (DCL) in 

adult mice induced a sustained embryonic transcriptional state in injured CST axons 

(Poplawski, Kawaguchi et al. 2020). Nonetheless, the use of human embryonic or fetal tissue 

as the source for NSCs/NPCs makes their use in regenerative medicine controversial or at 

least more difficult for clinical translation. 

 

1.3.4.1.7 Induced pluripotent stem cells 

Induced pluripotent stem cells (iPSCs) are multipotent stem cells that were artificially gener-

ated by reprogramming adult somatic cells via re-expression of embryonic stem cell (ESC) 
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transcription factors (Takahashi and Yamanaka 2006, Nagoshi and Okano 2018). They share 

characteristics of ESCs and can give rise to all three germ layers and circumvent many prob-

lems associated with transplantation of ectopic cells, e.g., adverse immune responses, as they 

can be obtained in a patient-specific manner from skin biopsies. Nonetheless, iPSCs harbor 

the potential risk of tumorigenicity, however, modification of the induction protocols and pre-

treatment of the cells with a γ-secretase inhibitor significantly reduces tumor formation after 

iPSC-NPC transplantation (Okano, Nakamura et al. 2013, Okubo, Iwanami et al. 2016, Okubo, 

Nagoshi et al. 2018). After contusive Th 10 SCI in mice, grafted iPSCs predominantly differen-

tiated into myelinating oligodendrocytes that enhanced remyelination of spared host axons and 

induced regrowth of serotonergic axons around the lesion site finally facilitating hindlimb loco-

motion recovery as assessed by increased Basso Mouse Scale (BMS) motor scores (Tsuji, 

Miura et al. 2010, Salewski, Mitchell et al. 2015). Besides remyelination, iPSCs were shown to 

differentiate into neurons forming synapses with choline acetyltransferase (ChAT)-labeled host 

axons, promoted revascularization and axonal regeneration of serotonergic raphespinal axons 

which finally lead to improved electrophysiological (e.g., MEPs) and motor outcomes of the 

hindlimbs in mice (Nori, Okada et al. 2011) and primates (Kobayashi, Okada et al. 2012). Nu-

merous studies used iPSCs for transplantation into different SCI animal models with variable 

success (Fujimoto, Abematsu et al. 2012, Lu, Woodruff et al. 2014, Oh, Lee et al. 2015, 

Pomeshchik, Puttonen et al. 2015, Romanyuk, Amemori et al. 2015, Ruzicka, Machova-

Urdzikova et al. 2017). Consequently, a pioneer clinical trial using human iPSCs for the treat-

ment of subacute SCI patients (cervical/thoracic SCI, ASIA-A classification, 2 – 4 weeks post-

injury) was recently started in Japan (Tsuji, Sugai et al. 2019). However, significant concerns 

regarding undifferentiated proliferation and tumorigenesis as well as detrimental long-term ef-

fects of the grafted iPSCs due to the virally induced pluripotency or reprogramming techniques 

remain. 

 

1.3.4.2 Biomaterial implantation 

Since cavitation at the lesion epicenter is a prominent characteristic of SCI, experimental ap-

proaches were developed to implant biomaterial constructs into the lesion cavity to fill the 

physical gap and provide neural cells as well as regrowing axons with a growth substrate. 

Additionally, the topographical structure of the implant can be combined with cells and/or bio-

active compounds like drugs and growth factors. Nonetheless, some fundamental issues need 

to be considered in biomaterial-based approaches, namely (1) biocompatibility, (2) cytocom-

patibility, (3) physicochemical properties, (4) topography, and (5) biodegradability/biotrans-

formability of the biomaterial implant. Thus, the structure of biomaterial implants reaches from 
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hollow conduits and tubes to solid and semi-solid hydrogels, self-assembling peptides as well 

as electrospun (nano-)fibers and gelfoams (Fuhrmann, Anandakumaran et al. 2017). In the 

following sections hydrogel-based approaches will be the focus. 

 

1.3.4.2.1 Hydrogels as biocompatible implants 

Among potential biomaterial formulations, hydrogels fabricated from synthetic and natural pol-

ymers represent a promising candidate since their mechanical (e.g., stiffness, elasticity, micro-

architecture) as well as chemical properties (e.g., surface modification, biodegradability, bind-

ing of additional factors) can easily be modified to match those of the intact spinal cord tissue. 

Further, due to their high water content, they mimic the hydrophilic 3D network of the ECM of 

the surrounding spinal cord tissue. 

Chemically, hydrogels are elastic coherent colloid-dispersed systems with at least one chemi-

cal component and high amounts of water (≥ 60% v/w) as the dispersion medium. On the 

structural level, the dispersed component(s) forms polymer chains that arrange (Liu, Sandner 

et al. 2017, Grijalvo, Nieto-Diaz et al. 2019) into a 3D network whose interspaces are filled with 

aqueous solution and additional hydrogel components (e.g., cross-linking agents, peptides, 

etc.). Other macrostructural features like pore size, flexibility, elasticity and -to a lesser degree- 

biodegradability are determined by the physicochemical and electrostatic properties of the gel-

forming polymers. Finally, based upon their hydrophilic state and usually high flexibility/elastic-

ity, classical hydrogels exhibit low interfacial tensions and tension/shear forces at tissue inter-

faces and allow for molecule and gas diffusion, cell migration and penetration (Nisbet, 

Pattanawong et al. 2007, Khaing, Ehsanipour et al. 2016, Fuhrmann, Anandakumaran et al. 

2017). 

 

1.3.4.2.2 Synthetic hydrogels 

Hydrogels fabricated from synthetic polymers such as poly-2-hydroxyethyl methacrylate 

(pHEMA), and other polyacrylamides, polyethylene glycol (PEG) as well as poly-lactic acid 

(PLA) and poly-lactic-co-glycolic acid (PLGA) were extensively studied over the last decades 

for biomedical applications (Atala, Lanza et al. 2018). pHEMA hydrogel implants were tested 

individually or in combination with cells and/or trophic factors in numerous preclinical SCI stud-

ies. For example, animals that received a pHEMA hydrogel implant after a full transection of 

the thoracic spinal cord at Th7 showed greater regrowth of NF-labeled axons originating from 

the reticular, vestibular and raphe brain nuclei as identified via retrograde axonal tracing com-

pared with non-treated control animals (Tsai, Dalton et al. 2004). In another study, pHEMA 
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implants significantly reduced GFAP upregulation at the lesion margins of a Th7 DCL in adult 

Wistar rats (Li, Fuhrmann et al. 2013). Furthermore, Bakshi et al. implanted pHEMA hydrogels 

either non-functionalized or functionalized with BDNF into the lesion cavity of a lateral DCL at 

cervical level C3 – 4 in adult Sprague-Dawley rats. After 4 weeks, only the BNDF-pHEMA 

implants facilitated a reduction in scar volume, CSPG expression as well as ingrowth of mi-

crovessels and NF-labeled axons, although pure pHEMA did not affect axonal regrowth nor 

scarring (Bakshi, Fisher et al. 2004). A similar study used pHEMA implants functionalized with 

serotonin in combination with spinal cord-derived NPCs and implanted them into a 2 mm-wide 

unilateral hemisection lesion of the Th8 spinal cord in adult Wistar rats. After 3 months, signif-

icantly more blood vessels and axons were found in the pHEMA + NPC group compared with 

animals that received either pHEMA hydrogels or NPCs alone (Ruzicka, Romanyuk et al. 

2013). However, no study reported significant functional improvements so far. 

Additionally, several studies used PLGA- or PLG-based hydrogel implants in various experi-

mental SCI models in rodents and primates. Implantation of a PLG multichannel hydrogel im-

plant into the lesion cavity of a unilateral C4-5 hemisection lesion leads to growth of CST axons 

through the hydrogel implant back into the caudal host parenchyma in adult GFP-transgenic 

C57Bl6 mice. This associated with fewer errors of the ipsilateral forelimb in the horizontal lad-

der test 10 weeks post-injury, whereas no effect was observed in the cylinder test. However, a 

causal relationship between the observed axonal growth within the implant and the behavioral 

results was not examined (Pawar, Cummings et al. 2015). PLGA-based multichannel hydro-

gels in combination with SC transplantation (suspended in Matrigel) promoted growth of NF-

labeled axons after thoracic (Th7) full transection in adult Sprague-Dawley rats. The implants 

were filled with the seeded SCs and infiltrated macrophages, whereas control groups (no treat-

ment, PLGA hydrogel + Matrigel) showed less cell infiltration and no axonal growth within the 

implant channels (Moore, Friedman et al. 2006). Alternatively, PLGA nanoparticles can be used 

to release BDNF and NT-3 (Pakulska, Elliott Donaghue et al. 2016). After clip compression of 

the thoracic spinal cord in adult rats, PLGA nanoparticles were used to intraspinally deliver 

Neuregulin-1 immediately after injury. After 4 weeks, treated animals showed greater tissue 

sparing and reduced neuroinflammation/scarring around the lesion site accompanied by ax-

onal sparing (Santhosh, Alizadeh et al. 2017). Biodegradable PLGA hydrogels seeded with 

human NSCs were implanted into African green monkeys after hemisection of the thoracic 

spinal cord at Th9 – 10. Although axonal regrowth through the implant was not investigated, 

decreased axonal dieback of the CST as well as improved locomotion parameters of the af-

fected hindlimb were observed 12 weeks after implantation (Pritchard, Slotkin et al. 2010) 

Noteworthy, a phase I clinical trial was launched in 2014 which aimed to assess the safety and 

feasibility of the implantation of a biodegradable PLGA implants after thoracic SCI in a total of 
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20 human patients (“The INSPIRE Study: Probable Benefit of the Neuro-Spinal Scaffold for 

Treatment of ASIA A Thoracic Acute Spinal Cord Injury, Identifier: NCT02138110). The first 

participant (25 years, male) underwent spinal cord decompression and fixation followed by 

implantation immediately after the initial spinal cord trauma (within the first 12 hours post-in-

jury). A 1 cm-long PLGA implant was placed directly into the lesion cavity of a multivertebra-

trauma, thoracic compression SCI (ASIA A, injury level Th11). After 3 months, the patient im-

proved to an L1 ASIA C grade with hints of sacral spinal cord sparing, intact voluntary anal 

contraction and deep anal sensation as well as voluntary bladder function. Moreover, the pa-

tient showed normal dermatome sensation above spinal level L1 and improved muscle 

strength in hip extensors and knee flexors. Within a 6 months long post-implantation follow-up 

timespan, no adverse side effects, complications or apparent safety issues were reported 

(Theodore, Hlubek et al. 2016). Nonetheless, although encouraging, the outcomes of this pio-

neer trial have to be critically reviewed for several reasons including, firstly, the lack of control 

groups; and, secondly, due to the immediate implantation of the PLGA hydrogel within hours 

after SCI, it is impossible to dissect a putative therapeutic effect of the implant from spontane-

ous recovery. 

Finally, PEG-based hydrogels were used alone or for the functionalization of other solid hydro-

gel implants. For example, a composite implant containing an outer PLGA tube and an inner 

PEG core was seeded with NPCs and implanted into the cavity of a unilateral hemisection 

injury at Th9 – 10 in adult Sprague-Dawley rats. After 8 weeks, NPC-seeded implants were 

vascularized and NF200-positive as well as GAP-43-labeled axons extended into the implants. 

Notably, non-seeded implants remained structurally separated from the surrounding host tis-

sue and only minimally penetrated by blood vessels (Rauch, Hynes et al. 2009). Similarly, a 

NT-3 – and PEG-functionalized PLA hydrogel was placed into a Th8 unilateral hemisection 

injury in adult male Sprague-Dawley rats. Animals that received implants releasing NT-3 per-

formed better on the gridwalk test and showed significantly improved BBB motor scores com-

pared with animals that only received the co-polymer implant. The observed functional recov-

ery was associated with increased axonal growth of the CST and raphespinal tract through the 

implant and back into the distal spinal cord (Piantino, Burdick et al. 2006). Other studies fo-

cused on a PEG-functionalized poly-N-isopropyl-acrylamide hydrogel modified to release 

BDNF and tested it in a cervical DCL SCI model in adult Sprague-Dawley rats. The BDNF-

releasing implant did not negatively affect the host immune response and contained more 

NF200+ axons compared with non-BDNF-releasing implants. Moreover, individual rubrospinal 

axons completely crossed the implants, however, axonal re-entry into the distal spinal cord 

was not observed. BDNF delivery may have caused local sprouting of the RST which led to 

improved performance of the rats during the cylinder test and in reach-grasp-paradigms 
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(Conova, Vernengo et al. 2011, Grous, Vernengo et al. 2013). Recently, Koffler and colleagues 

facilitated 3D bioprinting to fabricate a PEG-based hydrogel mimicking the tract-specific anat-

omy of the Th3 rat spinal cord and seeded the scaffold with NPCs prior to implantation. The 

scaffolds remained structurally intact up to 6 months post-injury and mediated axonal regrowth 

of CST and serotonergic axons, which may have led to the recovery of electrophysiological 

signal transmission through the implantation site as measured by MEP recordings at the 

hindlimbs after transcranial stimulation as well as locomotor function as indicated by elevated 

BBB motor scores. Notably, complete crossing of host-derived serotonergic axons was only 

found, when the implant was seeded with NPCs. Non-seeded implants contained host-derived 

serotonergic axons, but these axons did not completely cross the implants (Koffler, Zhu et al. 

2019). 

 

Although synthetic hydrogels showed some promise in experimental SCI models and were 

already tested in humans, several limitations remain, namely the high potential for long-term 

toxicity due to the instability of bound chemical additives, or toxic degradation products or the 

low biocompatibility of the synthetic implants per se. In particular, most studies only revealed 

pre-regenerative properties of the implants when they were combined with either growth fac-

tors or cellular grafts (Moore, Friedman et al. 2006, Ruzicka, Romanyuk et al. 2013, Koffler, 

Zhu et al. 2019). Moreover, in some studies, the synthetic implants lead to expansion of the 

lesion or elevated macrophage activation (Moore, Friedman et al. 2006, Pritchard, Slotkin et 

al. 2010). 

 

1.3.4.2.3 Natural hydrogels 

Although synthetic hydrogels were partially shown to be promising in experimental SCI models, 

natural hydrogels may be more suitable to the injured spinal cord by providing a per se bio-

compatible matrix, native biological surfaces and inherent bioactivity. Importantly, natural hy-

drogels undergoing biodegradation most likely do not release (cyto-)toxic byproducts or other 

toxic additives in comparison with synthetic fabricates (Fuhrmann, Anandakumaran et al. 

2017). 

Among the natural polymers that can be used to form hydrogel implants, collagen and hyalu-

ronic acid are the main components of the mammalian ECM and, therefore, endogenous to 

the CNS. Hence, in situ-polymerizing or structural collagen hydrogels have been utilized as 

carrier matrices for cells and trophic factors and promoted axonal regrowth. For example, adult 

Schwann cells were suspended with a collagen:laminin carrier matrix and transplanted into the 
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lesion cavity of a Th9 contusion injury in adult Fischer rats. Although the implantation site con-

tained neurofilament-positive axons and blood vessels, no functional recovery was observed. 

Surprisingly in the same study, animals that received an SC graft (suspended in BD Matrigel™) 

did show elevated BBB motor scores 4 weeks post-injury (Patel, Joseph et al. 2010). Similarly, 

NF-labeled axons entered a multichannel collagen implant biofunctionalized with NT-3 after a 

2 mm-wide full transection of the thoracic spinal cord at Th9 in Sprague-Dawley rats, but did 

not show any significant recovery compared with non-functionalized collagen implants (Yao, 

Daly et al. 2013). However, linear type I collagen fibers bound to a sponge-like implant facili-

tated regrowth of rubrospinal axons after Th9 full transection in Fischer rats. Furthermore, 

some of the regrown axons were re-myelinated and signal transduction was partially restored 

through the implantation site as assessed via MEP recordings (Suzuki, Kanchiku et al. 2015). 

Another study found similar results after a 6 mm-wide transection injury of the thoracic spinal 

cord (Th8 – 9) in adult rats, when a linearly organized collagen fiber implant releasing myelin-

neutralizing antibodies and BDNF was implanted immediately after lesioning. After 8 weeks, 

the implant contained NF+ axons and spinal somatosensory evoked responses (SSERs) could 

be recorded rostral to the injury after stimulation of the tibial nerve. However, non-functional-

ized implants nor implants that just released BDNF or the myelin inhibitors showed any func-

tional recovery (Han, Jin et al. 2010). 

Hyaluronic acid is a glycosaminoglycan and, in most cases, used in combination with either 

methylcellulose (HAMC) or PLGA nanoparticles for trophic factor or cell delivery after SCI. In 

combination with adult brain-derived NSCs/NPCs and delivery of PDGFA, a HAMC implant 

was implanted delayed and shown to enhance survival and oligodendrocytic differentiation of 

the co-grafted precursor cells and reduced lesion size as well as microglial activation around 

a Th2 clip compression injury in adult Wistar rats. Although rats did not improve their BBB 

motor scores, HAMC-treated animals performed better on the horizontal ladder test and 

showed fewer footfalls compared to animals that only received an NPC graft (Mothe, Tam et 

al. 2013). Similar results were obtained when the HAMC implant released NT-3 (Elliott 

Donaghue, Tator et al. 2015). After a dorsal Th9 hemisection SCI in Sprague-Dawley rats, a 

hyaluronic acid-based multichannel hydrogel modified with BDNF-, VEGF- and Anti-Nogo-re-

leasing PLGA nanoparticles improved vascularization and regrowth of NF-labeled axons 4 and 

8 weeks after injury. Furthermore, animals exhibited higher BBB motor scores and less prom-

inent weight distribution on the forelimbs as assessed by CatWalk™ gait analysis (Wen, Yu et 

al. 2016). However, in none of the studies, did the HAMC itself directly affect axonal growth, 

since axon numbers as well as functional improvements were only observed when the HAMC 

implant was combined with either cells or growth factors. 
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Alternatively, ECM-derived hydrogels can be generated based on fibrin. In particular, fibrin and 

fibrin glue (a mixture of fibrinogen and thrombin) have been extensively studied in wound heal-

ing and peripheral nerve regeneration (Cote, Amin et al. 2011). After SCI, fibrin matrices were 

often used as a carrier matrix for NPC transplantation (Lu, Wang et al. 2012, Lu, Kadoya et al. 

2014) but were also shown to impact axonal regeneration alone or in combination with NT-3. 

In particular, a fibrin matrix releasing NT-3 was implanted into a Th 9 full transection injury in 

adult Long Evans rats and lead to a higher density of locally sprouting CGRP-, ChAT, and 5-

HT-labeled axons throughout the implant, but did not affect motor outcomes as BBB motor 

scores were not different from non-treated controls (Taylor, Rosenzweig et al. 2006). Similarly, 

a 2 week-delayed implantation of pre-polymerized fibrin hydrogels into the cavity of a dorsal 

hemisection injury at Th9 in adult Long Evans rats resulted in increased axonal density, 

whereas animals that received injections of an in situ-polymerizing fibrin hydrogel did only 

show minimal axonal growth at the lesion site. Moreover, the in situ-polymerizing implants were 

already degraded after 1 week post-implantation. Nonetheless, functional improvements were 

not found in both groups (Johnson, Parker et al. 2010). In another study, a hydrogel based on 

collagen, fibronectin, fibrin or a mixture of fibrin and fibronectin was placed into a lateral DCL 

injury at Th7 – 9 in adult Wistar rats. Histological analysis of the implant 1 or 4 weeks post-SCI 

revealed substantial axonal ingrowth only into the fibrin + fibronectin group along with SC infil-

tration and vascularization, whereas all other groups did only showed minor axonal growth 

(King, Alovskaya et al. 2010). Thus, functional improvements were not observed in any of the 

studies, most likely due to the instability and lack of physical guidance provided by the fibrin-

based implants. However, an open-label, prospective, non-controlled phase I clinical trial was 

initiated recently in which chronic cervical and thoracic SCI patients (> 24 months post-SCI) 

received a fibrin glue matrix releasing FGF1 and additional bolus injections of FGF1 3 and 6 

months after the initial treatment. In a 24 months follow-up, safety and feasibility were proven 

along with modest recovery in a subcohort of participants as indicated by improved ASIA motor 

and sensor scores (e.g., light touch, pinprick) (Wu, Huang et al. 2008, Wu, Huang et al. 2011). 

In contrast to the above-mentioned hydrogels, BD Matrigel™ is a heterogenous extract of ba-

sal membrane proteins derived from mouse sarcoma cell lines containing a plethora of different 

ECM components, for instance, laminin, type IV collagen as well as EGF and FGF (Hughes, 

Postovit et al. 2010). Although no experimental study was able to show a pro-regenerative 

effect of BD Matrigel™ itself, it is used in numerous studies to improve graft cell survival or 

integration of other biomaterial scaffolds (Xu, Zhang et al. 1999, Park, Lee et al. 2012, Williams, 

Henao et al. 2015, Han, Lee et al. 2018). 

Another type of natural hydrogels is fabricated based on polysaccharides. For example, chi-

tosan is a linear deacetylated polysaccharide obtained from crustaceans and insects. It has 
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been shown to act anti-oxidatively and anti-apoptotic in various biomedical approaches (Khor 

and Lim 2003, Zou, Yang et al. 2016) and neuroprotectively on neurons in an in vitro assay of 

amyloid β deposition (Khodagholi, Eftekharzadeh et al. 2010). Within the spinal cord, chitosan 

sheets showed no signs of degradation or mass loss as well as no chronic immune response 

even 12 months after implantation into the intact spinal cord (Kim, Tator et al. 2011). Several 

studies tested chitosan hydrogels with a channel structure in spinal transection injuries where 

the implants served as physical guidance structures and/or carrier matrix for cells. For exam-

ple, chitosan channels seeded with adult spinal cord-derived NPCs implanted 3 weeks after a 

clip compression injury at Th8 in Sprague-Dawley rats facilitated the robust survival of the 

seeded NPCs. Although NF200-labeled axons entered the channels and no excessive immune 

response at the implantation site occurred, also no functional recovery in BBB motor scores 

was observed 9 weeks post-injury (Bozkurt, Mothe et al. 2010). In contrast, empty chitosan 

channels were implanted into a Th8 full transection injury and facilitated the formation of a 

continuous cellular bridge between the rostral and caudal spinal cord stumps within 14 weeks 

after SCI. The tissue bridge was mainly formed by host-derived radial glia-like cells and some 

NF200+ axons were found to grow along the processes of these cells. However, no complete 

axonal crossing of the implantation site, nor any functional improvement was observed 

(Nomura, Baladie et al. 2008). In line with these findings, additional release of dibutyryl-cAMP 

from PLGA microspheres filled into a chitosan tube additionally seeded with adult spinal cord-

derived NPCs lead to minimal improvements in BBB motor scores after a Th8 full transection 

but complete axonal crossing of the implantation site was again not observed (Kim, Zahir et al. 

2011). Another complex approach used chitosan tubes seeded with adult brain-derived NPCs 

and placed them into the lesion cavity of a Th8 transection in adult rats. Additionally, a Nogo-

66 receptor fusion protein and growth factors cocktail (EGF, FGF2, PDGF-AA) were intrathe-

cally delivered via osmotic pumps, which induced a predominantly oligodendrocytic cell fate in 

the grafted NPCs and promoted the growth of NF200-labeled axons throughout the chitosan 

channel. BDA-traced CST axons entered the rostral extent of the chitosan channel but did not 

extend further caudally. Retrogradely traced descending rubro-, reticulo- and vestibulospinal 

axons did not enter the lesion site at all. Thus, no functional improvements were detected 12 

weeks post-injury (Guo, Zahir et al. 2012). Moreover, Li and colleagues achieved hindlimb 

locomotion recovery mediated by axonal growth of the damaged CST beyond a type I collagen-

filled chitosan channel implant 12 months after partial spinal cord transection at Th9 in adult 

Wistar rats (Li, Yang et al. 2009). A recent study showed functional restoration of electrophys-

iological signal transduction through a NT-3-releasing chitosan channel in primates after tho-

racic hemisection (Rao, Zhao et al. 2018). 
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Agarose and alginate are both polysaccharide polymers originally isolated from seaweed and 

widely used in the food industry and biomedicine. In more detail, agarose in aqueous solution 

can form a solid hydrogel in a temperature-dependent manner, whose mechanical properties 

can easily be altered by variation of the fabrication processes (Dillon, Yu et al. 1998, Balgude, 

Yu et al. 2001). Freeze-dried agarose hydrogels with a channel/honeycomb structure were 

shown in combination with BDNF either released from a collagen matrix within the agarose 

channels or directly incorporated into the agarose hydrogel to promote and physically guide 

regrowing NF-labeled axons through an acute cervical (C3) dorsal hemisection SCI lesion site 

in adult Fischer rats. In both groups, no fibrous encapsulation of the implants was found, but 

the implantation site remained separated from the surrounding spinal tissue (Stokols and 

Tuszynski 2006). In a combinatorial approach, multichannel agarose hydrogels were seeded 

with NT-3-releasing BMSCs and combined with a rostral lentiviral-delivery of NT-3 and im-

planted into a C4 DCL in adult Fischer rats. The intrinsic growth potential of the sensory axons 

was additionally initiated with a conditioning lesion of the sciatic nerve. Although ascending 

sensory axons completely crossed the hydrogel, axonal re-entry into the rostral spinal cord of 

regrown axons was not achieved (Gros, Sakamoto et al. 2010). Similarly, an agarose hydrogel 

seeded with BDNF-BMSCs facilitated regrowth of rubrospinal and serotonergic axons through 

the lesion, but axons failed to re-enter host tissue beyond the implantation site after a full tran-

section of the thoracic spinal cord at Th3 in adult Fischer rats (Gao, Lu et al. 2013). Nonethe-

less, functional recovery of sensorimotor function was not reported, even when the hydrogel 

implantation was combined with cell transplantation and growth factor delivery. 

Others used agarose to deliver bioactive peptides such as ChABC to SCI sites. Lee et al. 

performed a dorsal hemisection injury at Th10 in adult Sprague-Dawley rats and implanted 

agarose-microtubes releasing thermostabilized ChABC into the lesion cavity. The intervention 

reduced astrocyte reactivity and CSPG expression at the lesion site and induced sprouting of 

serotonergic axons rostral to the lesion. Moreover, ascending sensory axons completely trav-

ersed the lesion site, which was correlated with improved locomotion parameters in the Cat-

Walk™ gait analysis (e.g., wider stride length) but did not affect thermal hypersensitivity 6 

weeks after injury (Lee, McKeon et al. 2010). 

 

Alginate is a hydrophilic, chain-forming polysaccharide composed of β-D-mannuronic acid and 

α-L-guluronic acid organized in homopolymeric blocks or alternating polysaccharide sheaths. 

A solid hydrogel matrix is formed between the different homopolymeric blocks upon ionotropic 

crosslinking initiated by divalent cations (Draget, Skjak-Braek et al. 1997, Braccini and Perez 

2001). Similar to agarose, the mechanical properties of the alginate-based hydrogels can be 
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modified by alteration of the alginate concentration and/or interfering with the chemical cross-

linking after hydrogel polymerization (Lee, Rowley et al. 2000, Kong, Lee et al. 2002, Lee and 

Mooney 2012). After chemical crosslinking, alginate-based hydrogels are not biodegradable, 

but non-crosslinked alginate-based hydrogels rapidly dissolve in physiological solution by re-

placing the ionotopically crosslinked divalent cations with monovalent cations (Shoichet, Li et 

al. 1996). 

Due to its high biocompatibility, versatility and low immunogenicity, alginate-based hydrogels 

are widely used as a food additive and for various biomedical applications including dental 

applications and specialized wound dressings (Sweeney, Miraftab et al. 2012, Dumville, Keogh 

et al. 2015). Further, alginate or alginate-based additives are currently tested for several med-

ical conditions in phase I/II clinical trials, including novel dental restoration class II composites 

(Torres, Mailart et al. 2020), alginate-antacid add-on medication in patients with gastro-oe-

sophageal reflux disease (Coyle, Crawford et al. 2017), or as mucosa-sealing agent in patients 

with neoplastic lesions in the esophageal or gastric mucosa (Uemura, Oda et al. 2019). 

Early studies implanted alginate-based sponge-like hydrogels after thoracic full transection in-

juries in neonatal (Kataoka, Suzuki et al. 2001) and young adult rats (Suzuki, Suzuki et al. 

1999, Kataoka, Suzuki et al. 2004) proving complete crossing of ascending and descending 

axons which was accompanied with MEP and SEP recording across the lesion. Recently, a 

homogenous soft alginate-based hydrogel implant facilitated hindlimb motor function recovery 

as assessed via BBB and Louisville swim score (LSS) after Th9 – 10 hemisection injury in 

Wistar rats (Sitoci-Ficici, Matyash et al. 2018). 

Alternatively, alginate-based hydrogels can also be designed as in situ-polymerizing implants. 

Here, gel formation is initiated after injection into the damaged area by parallel co-injection of 

divalent cation-containing aqueous solution (e.g., CaCl2), resulting in a homogenous gel matrix 

that is able to fill even irregularly shape lesion cavities (Grulova, Slovinska et al. 2015). More-

over, in situ-polymerizing alginate-based hydrogels are widely used in bone, cartilage, cardiac 

and intervertebral disk regeneration (Bidarra, Barrias et al. 2014). Notably, due to very recent 

progress in 3D bioprinting techniques, alginate-based hydrogels can be fabricated into highly 

complex 3D structures with precisely defined mechanical properties (Giuseppe, Law et al. 

2018, Joung, Truong et al. 2018). To further enhance biocompatibility and overcome the bio-

logically inert surface charge of alginate polymers, surface modifications with synthetic pep-

tides, RGD peptides as well as integrin ligands and ECM components were developed (Ning, 

Xu et al. 2016, Wen, Xiao et al. 2019). 
Alginate-based hydrogels and microcapsules were used individually or in combination with 

other biomaterial matrices to deliver cells and bioactive compounds, e.g., BDNF, VEGF and 

ChABC, to sites of acute SCI. For example, BDNF-expressing fibroblasts were encapsulated 
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into alginate capsules and injected into a dorsolateral funiculotomy at C4 in adult Sprague-

Dawley rats. Eight weeks after injury, treated rats performed significantly better in the cylinder 

and horizontal rope test compared with non-treated control animals or animals that only re-

ceived a fibroblast graft. Although BBB motor scores were equal across groups and rubrospinal 

axons failed to enter the lesion site (Tobias, Han et al. 2005). In another study, alginate was 

used to generate a permeable membrane to enwrap the PLLA microfibers and to constantly 

release Rolipram after implantation into a cervical C5 hemisection cavity in adult Athymic rats. 

Two months after lesioning, partially myelinated axons were present in the implants and ani-

mals showed improved locomotion of the affected forepaw as assessed via the Martinez open-

field score (Downing, Wang et al. 2012). Likewise, adult rats showed improved BBB motor 

scores after Th9 full transection when a synthetic electrospun fiber mesh mixed with alginate 

beads releasing NGF and ChABC was implanted into the lesion epicenter (Colello, Chow et 

al. 2016). Moreover, Long Evans rats showed improved base of support values of their hind 

paws during CatWalk™ gait analysis after a in situ-polymerizing alginate hydrogel containing 

fibrinogen and GDNF-releasing PLGA microspheres was implanted into a unilateral hemisec-

tion of the thoracic spinal cord (Th9). Neurofilament-positive as well as GAP43-labeled axons 

extended through the lesion site but did not re-enter the caudal host spinal cord (Ansorena, 

De Berdt et al. 2013). In contrast, in a later study, no functional improvement was observed 

after implantation of a similar alginate implant releasing VEGF (des Rieux, De Berdt et al. 

2014). 

Alternatively, different types of solid anisotropic capillary alginate-based hydrogels were used 

by our laboratory and others to provide orientated physical guidance for regrowing axons in ex 

vivo slice culture models and in vivo both after DCL and cervical unilateral hemisection injuries 

in adult Fischer rats (Prang, Muller et al. 2006, Pawar, Mueller et al. 2011, Gunther, Gunther 

et al. 2015, Pawar, Prang et al. 2015). 

 

To summarize, natural hydrogel implants were used in various preclinical SCI models, how-

ever, their impact on regenerative success after traumatic SCI remains limited. Most studies 

used the hydrogel implants as a delivery matrix; hence, the implant only indirectly affected 

axonal growth and tissue regeneration as it served mainly as a physical protection of the co-

transplanted cells from the hostile SCI environment or as a deposit for bioactive compounds 

such as growth factors of ChABC at acute lesion sites. Moreover, many studies reported in-

sufficient integration of the implant into the lesion site since fibrotic tissue or cystic cavities 

often surrounded the hydrogels, which was only improved when the biomaterial implant was 

combined with trophic factors and/or cell transplantation. This is further supported by the fact 

that animals that only received the individual hydrogel implant showed minimal axonal growth 
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even into the implant as well as a lower degree of vascularization, but a greater immune cell 

response (e.g., higher density of activated macrophages or reactive astrocytes at the implan-

tation site). Although axonal regrowth was detected in most studies within the hydrogel im-

plants, axons typically failed to traverse the host-graft interface and re-entry into the distal 

spinal cord was only occasionally observed. 

 

1.3.4.3 Biomaterial-supported cell transplantation 

Numerous synthetic and natural hydrogel biomaterials were developed and tested in various 

experimental SCI and other injury/disease models. Although some biomaterial applications 

were already enrolled in phase I/II clinical trials, e.g., PLGA, fibrin glue or alginate, the potential 

of a biomaterial implant alone to significantly impact regeneration is very limited. In particular, 

regrowing axons extended into the hydrogel implants but failed to grow beyond the site of injury 

in most studies. The same holds true for cell transplantation approaches, since axonal growth 

rarely goes beyond the cellular grafts, thereby limiting their therapeutic potential and functional 

outcomes. 

Hence, treatment paradigms that combine different approaches might represent a powerful 

strategy to overcome the diverse limitations of the individual approaches. For example, Ander-

son and colleagues elegantly tackled multiple hurdles of CNS regeneration by combining the 

implantation of a growth permissive substrate (di-block co-polypeptide K180L20 hydrogel) at the 

SCI lesion epicenter with endogenous induction of CNS axonal regeneration (AAV-mediated 

PTEN knock-down and osteopontin, IGF1 and CNTF expression) and trophic support as well 

as chemoattraction (sustained release of EGF, FGF2, GDNF) to facilitate functional relevant 

regrowth of descending propriospinal axons across a complete spinal cord crush injury at Th10 

(Anderson, O'Shea et al. 2018). Alternatively, biomaterial implants can be combined with cell 

transplantation to overcome some limitations of cell transplantation alone, such as low survival 

rates at acute lesion sites, irregular lesion filling, lack of a 3D physical adherence matrix as 

well as lack of directed axonal guidance. On the other hand, cellular grafts can compensate 

for some drawbacks associated with the implantation of biomaterial scaffolds, including inap-

propriate implant integration, adverse immune reactions, enhanced astroglial/fibroglial scarring 

around the implantation site as well as lack of long-distance axonal growth. Consequently, 

biomaterial-supported cell transplantation represents a strategy to reconstruct the lost spinal 

tissue physically, cellularly and chemically (Liu, Schackel et al. 2017). 
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1.3.4.3.1 Biomaterials and NSCs/NPCs 

Transplantation of NSCs/NPCs after SCI has shown promising results in terms of replacement 

of lost spinal tissue, neuroprotection as well as trophic support and neuronal differentiation. 

However, NSC/NPC-containing cellular grafts often show low survival rates after transplanta-

tion into the damaged spinal cord. Thus, co-delivery of growth factors and/or the use of a bio-

material matrix were facilitated to improve the survival of the grafted cells. However, additional 

growth factors might not only affect the survival but also the differentiation potential of the 

NSCs/NPCs; hence, the risk for uncontrolled post-transplantation differentiation and tumor for-

mation rises. In contrast, a biomaterial matrix provides structural support as well as physical 

protection from the harsh lesion environment, thereby improving graft cell survival without in-

fluencing their differentiation potential. For example, fetal spinal cord E14.5 NSCs or adult SCs 

were seeded into macrocapillary PLGA hydrogels and implanted into a Th8 – 9 full transection 

injury which promoted excessive growth of neurofilament-positive axons throughout the im-

plant, but did not affect motor recovery since no differences in BBB motor scores were seen 4 

weeks post-implantation (Olson, Rooney et al. 2009). Similarly, early neonatal NSCs were 

seeded onto a surface- and PEG-functionalized PLGA scaffold, which facilitated proper implant 

integration, neuronal differentiation of the grafted cells and regrowth of host-derived NF-

positive as well as regenerating GAP43+ spinal axons after implantation into a thoracic hemi-

section lesion (Rauch, Hynes et al. 2009). Further, seeding of adult NSCs into HAMC hydro-

gels releasing PDGFα led to improved bladder function after delayed implantation (9 dpi) into 

a thoracic full compression injury (Mothe, Tam et al. 2013). Adult brain- or spinal cord-derived 

NSCs/NPCs in combination with a chitosan channel implant predominantly differentiated along 

the glial lineage and mediated tissue sparing and tissue bridge formation across a 10 mm-wide 

transection cavity (Nomura, Zahir et al. 2008). Moreover, cell line-derived NSCs were seeded 

into a macroporous PLGA and implanted into a thoracic hemisection lesion at Th9 – 10. Four 

months post-implantation, superior WM sparing as well as axonal growth of BDA-traced CST 

axons across the lesion site were observed and linked to improved motor function. Behavioral 

testing at 10 weeks post-injury revealed significant improvement of BBB motor scores and a 

better performance of the animals on the incline plane test, whereas control groups (PLGA 

implant only, cell graft only) exhibited only limited axonal regrowth and worse behavioral out-

comes (Teng, Lavik et al. 2002). 

Additional delivery of bioactive compounds did even further boost the pro-regenerative effects 

of biomaterial-supported stem cell transplantation after SCI. For instance, neonatal brain-de-

rived NSCs were transfected to overexpress NT-3 and TrkC and seeded into a PLGA hydrogel. 

Ten weeks after implantation into a Th10 full transection injury in adult Sprague-Dawley rats, 

animals that received the NSC-seeded implants showed elevated BBB motor scores and a 
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continuous tissue bridge had formed across the implantation site. The transplanted NSCs dif-

ferentiated into MAP2-positive neurons and appeared to form synaptic connections with host-

derived axons. However, although NF200-positive axons penetrated the implant from the ros-

tral and caudal spinal cord, no CST axons were present within the tissue bridge (Du, Xiong et 

al. 2011). In a later study, NSCs expressing TrkC were cocultured with adult SCs expressing 

NT-3, seeded together into a gelfoam matrix and placed into the lesion cavity of a thoracic 

transection at Th10 in Sprague-Dawley rats. Similarly, the grafted NSCs differentiated into 

MAP2+ neurons and formed synapses with host-derived axons. Although a continuous tissue 

bridge had formed, no long-distance growth of either CST nor RST axons was found but rather 

local sprouts of serotonergic and adrenergic axons at the lesion site. However, minor improve-

ments in BBB motor scores and signal transduction across the lesion was electrophysiologi-

cally measured (Wang, Zeng et al. 2011). Studies that used biomaterial-supported transplan-

tation of NSCs in combination with interventions aiming at neutralization of the growth-

inhibitory environment around SCI lesion reported similar results (Hwang, Kim et al. 2011, Li, 

Tang et al. 2011, Li, Xiao et al. 2013). In a pilot primate study, Pritchard and colleagues im-

planted NSC-seeded PLGA scaffolds into a 10-mm long unilateral Th9 hemisection lesion. 

Upon transgenic NT-3 expression in NSCs, they reported ameliorated CST axonal dieback and 

minimal hindlimb motor recovery as assessed by video-taped gait analysis. However, results 

were highly variable between animals (Pritchard, Slotkin et al. 2010). Recently, fetal spinal 

cord-derived NSCs/NPCs in combination with a 3D bioprinted PEG-based hydrogel formed 

electrophysiologically active neuronal relays spanning a 2-mm long full transection lesion of 

the thoracic Th3 spinal cord (Koffler, Zhu et al. 2019). 

 

1.3.4.3.2 Biomaterials and Schwann cells 

Although transplantation of SCs alone after SCI led to a certain degree of axonal growth, the 

combination of SCs with biomaterial implants might still be superior. Here, the axon growth-

promoting effect of the SCs can be combined with the structural guidance properties of a bio-

material implant. In numerous studies it has been shown that SC seeding into synthetic 

PAN/PVC channel implants could elicit axonal growth of proprio- and supraspinal axons either 

alone (Xu, Chen et al. 1997) or in combination with BDNF and NT-3 delivery (Xu, Guenard et 

al. 1995) after thoracic full transection injuries in adult Fischer rats. However, complete axonal 

crossing was only achieved in a less severe thoracic hemisection injury (Xu, Zhang et al. 1999). 

Locomotor recovery in terms of improved BBB motor scores occurred when the PAN/PVC 

channel was seeded with SCs, OECs grafted into the surrounding spinal parenchyma and 
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ChABC delivered additionally (Fouad, Schnell et al. 2005). In all of the above-mentioned stud-

ies, SCs were delivered with a Matrigel matrix to the PAN/PVC channels. When SCs were 

grafted in a fluid Matrigel matrix, tissue bridging between the implant and surrounding spinal 

tissue was improved, which helped descending spinal axons to re-enter the caudal host spinal 

cord facilitating gross motor recovery of the hindlimbs after Th8 full transection injury in adult 

Fischer rats (Williams, Henao et al. 2015). Furthermore, Novikova et al. combined SCs with a 

tubular poly-β-hydroxybutyrate implant and observed regrowth of CST and raphespinal axons 

after implantation into a cervical (C3/4) hemisection model in adult Sprague-Dawley rats 

(Novikova, Pettersson et al. 2008). Our own group was recently able to show that solid algi-

nate-based hydrogel implants with an anisotropic channel structure can be seeded with adult 

syngeneic SCs into the lesion cavity of a unilateral C5 hemisection. This promote daxonal 

crossing and caudal re-entry of descending axons upon additional caudal SC grafts and BDNF 

expression in adult Fischer rats (Liu, Sandner et al. 2017). 

 

1.3.4.3.3 Biomaterials and astrocytes 

Cells of the astrocytic lineage were among the first cell types that were grafted in combination 

with biomaterial implants. Kliot et al. seeded fetal astrocytes into a Millipore pennant and im-

planted the construct into the injured L5 dorsal root entry zone and found regrowth of sensory 

axons from the dorsal root through the lesion site back into the spinal cord and a decreased 

inflammatory response at the lesion site (Kliot, Smith et al. 1990). Similarly, neonatal cortex-

derived astrocytes soaked into a gelfoam matrix lead to reduced scarring at an acute L3 hem-

isection lesion in adult Sprague-Dawley rats. Importantly, graft- as well as host-derived astro-

cytes intermingled and associated with neurofilament-positive axons that partially traversed 

the lesion cavity (Wang, Chuah et al. 1995). Moreover, neonatal cortex-derived astrocytes de-

livered via a collagen matrix formed aligned bridges associated with regrowing CST axons at 

the lesion margins after implantation into a 2-mm long thoracic hemisection lesion, leading to 

subtle functional recovery of hindlimb locomotion (BBB and CatWalk™ gait analysis) (Joosten, 

Veldhuis et al. 2004). Another study from Deumens et al. demonstrated that astrocytes could 

align longitudinally onto PLA matrices. The astrocyte-seeded matrices were implanted into a 

dorsal hemisection injury at Th 11/12 in adult Lewis rats and together with additional astrocyte 

grafting into the surrounding host spinal cord, enhanced regrowth of the CST towards the im-

plant but, unfortunately, no axonal growth into the biomaterial bridge was observed (Deumens, 

Koopmans et al. 2006). Likewise, transplantation of immature astrocyte populations alone can 

contribute to robust axonal regeneration and partial locomotor recovery after cervical SCI, as 



1. Introduction 

 45

described in the previous section (Davies, Huang et al. 2006, Davies, Proschel et al. 2008, 

Davies, Shih et al. 2011). 

A prominent observation in these studies was the bridging function of the grafted astrocytes in 

combination with the different biomaterial implants, which is further supported by additional in 

vitro work showing alignment of astrocytes with each other or with structured biomaterial sub-

strates (East, de Oliveira et al. 2010, Pawar, Prang et al. 2015, Zuidema, Desmond et al. 2015). 

However, today, studies examining the combination of astrocyte grafting and solid structurally 

defined biomaterial implants within acute SCI lesions sites are limited. 
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1.4 Rationale and hypothesis 

Various experimental strategies have been developed over the years to tackle the individual 

or multiple hurdles of CNS regeneration. However, none of these approaches alone showed 

reliable efficacy in restoring meaningful sensorimotor function in either experimental animal 

models or clinical trials (Ahuja, Nori et al. 2017, Sofroniew 2018, Courtine and Sofroniew 2019). 

Putative effective treatment strategies should therefore combine different approaches to ad-

dress multiple CNS regeneration hurdles at once. Although still in the preclinical stage, bio-

material-supported cell transplantation alone or in combination with additional therapeutic in-

terventions such as growth factor delivery and chemoattraction represent a powerful tool and 

promising way to achieve meaningful functional recovery after SCI. 

 

Thus far, we were able to show that alginate-based hydrogel implants with an anisotropic chan-

nel structure physically guide regrowing spinal axons in rostrocaudal orientation through acute 

sites of SCI (Pawar, Mueller et al. 2011, Gunther, Gunther et al. 2015). Moreover, additional 

transplantation of genetically modified BMSCs overexpressing the neurotrophin BDNF signifi-

cantly enhances axonal growth into the alginate-based hydrogel implants (Gunther, Weidner 

et al. 2015). The combination of SC transplantation into and caudal to the hydrogel implant 

together with regulated viral BDNF delivery in the distal host spinal cord facilitate complete 

axonal crossing of the lesion site and caudal axonal re-entry (Liu, Sandner et al. 2017). How-

ever, implant integration as well as the survival of co-transplanted cells crucially rely on the 

biocompatibility of the biomaterial implant, since a biologically non-accessible implant might 

lead to a foreign body reaction of the host (Badylak 2015). Consequently, a strong immune 

response will negatively affect graft cell survival at acute SCI lesion sites even within bio-

material implants. Hence, graft cell survival has to be assured by either an additional support-

ive transplantation matrix (e.g., collagen or Matrigel) within the biomaterial implant or by mod-

ification of the biomaterial implants itself to improve its biocompatibility to reduce the hosts’ 

reaction to the implant, thereby support the survival of co-transplanted cells and axonal growth 

at the implantation site. 

Nonetheless, although axonal crossing of various synthetic or natural hydrogel implants was 

achieved, axonal re-entry into the distal host spinal cord and functional recovery was only oc-

casionally observed (Li, Yang et al. 2009, Lee, McKeon et al. 2010). Furthermore, hydrogel 

implants often remain spatially separated from the surrounding host spinal parenchyma by 

possibly the formation of glia limitans, whereas tissue continuity across the implantation site 

as well as tissue alignment at the lesion margins were identified as essential contributors to 

successful axonal crossing of the host-graft interface (Xu, Guenard et al. 1995, Guest, Hesse 
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et al. 1997, Xu, Chen et al. 1997, Xu, Zhang et al. 1999, Hurtado, Cregg et al. 2011, Zukor, 

Belin et al. 2013, Williams, Henao et al. 2015, Lee, Wu et al. 2017). Immature astrocytes were 

shown in this regard to be capable of mediating alignment of host and graft tissue (Joosten, 

Veldhuis et al. 2004, Davies, Huang et al. 2006, Davies, Proschel et al. 2008, Davies, Shih et 

al. 2011) as well as to be essential for axonal growth after SCI (Kliot, Smith et al. 1990, Wang, 

Chuah et al. 1995, Anderson, Burda et al. 2016, Anderson, O'Shea et al. 2018). However, the 

combination of astrocytes with a defined hydrogel guidance structure has yet to be investi-

gated. 

 

The overall aim of this study was to examine whether the combination of biocompatible algi-

nate-based hydrogel implants with an anisotropic channel structure along with transplantation 

of immature astrocytes into the hydrogel implant and into the surrounding host spinal cord 

allows for integration into the injured host spinal cord as well as axonal growth across an ex-

tended 2 mm-long SCI lesion sites in a unilateral cervical level C5 hemisection model in adult 

Fischer-344 rats. 

 

 

Hypothesis 

Immature astrocytes obtained from the cortex or spinal cord facilitate the integration of the 

alginate-based hydrogel implants into the injured host spinal cord and promote regeneration 

of damaged spinal axons. Additional transplantation of immature astrocytes into the surround-

ing spinal parenchyma facilitates axonal crossing of the host-graft interface and re-entry into 

the caudal host spinal cord. 

 

 

Aims 

1. Analyze whether surface coating of alginate-based hydrogels improves cell attachment 

and cell survival as well as axonal growth in vitro and in vivo. 

 

2. Determine whether the transplantation of immature cortex-derived astrocytes into algi-

nate-based hydrogels improves implant integration and axonal regrowth after SCI. 

 

3. Characterize phenotypic differences between immature spinal cord- and cortex-derived 

astrocytes. 
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4. Examine whether the transplantation of immature spinal cord- and cortex-derived as-

trocytes into alginate-based hydrogels and the surrounding host spinal cord improves 

implant integration and axonal regrowth after SCI. 

 

 

Figure 2: Hypothesis. (A) After SCI, spinal axons are damaged and neural tissue at the lesion 

epicenter is lost. (B) Regrowing spinal axons are physically guided in rostrocaudal direction through the 

SCI site by the implantation of an alginate-based hydrogel implant with anisotropic channel structure. 

The polypeptide PLO and ECM component laminin are bound to the surface of the hydrogel implant to 

enhance biocompatibility and viability within the implants. Additional seeding of the hydrogel with imma-

ture astrocytes further enhances axonal growth into and through the hydrogel implant. (C) Complete 

axonal crossing of the SCI site can be achieved by co-transplantation of either immature cortex- or spinal 

cord-derived astrocytes into the hydrogel implant and additionally into the adjacent host spinal cord. The 

grafted immature astrocytes create a continuous growth-permissive substrate for regrowing spinal ax-

ons. 
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2 Material and methods 

2.1 Materials 

2.1.1 Animals 

All experiments were conducted in accordance with national guidelines for animal care in ac-

cordance with the European Union Directive (2010/63/EU) and approved by the local govern-

ing body (Regierungspräsidium Karlsruhe). All in vitro- and in vivo-experiments were carried 

out with adult female Fischer-344 rats obtained from Charles River (Strain: F344-Tg(UBC-

EGFP)F455Rrrc) or Janvier labs (Strain: F344/HanZtmRj). In vivo-studies were exclusively 

performed with wildtype animals (> 150 g, 10 – 12 weeks old; >150 g); cells and tissues were 

dissected from either wildtype or stable GFP-transgenic Fischer-344 rats of both sexes. All rats 

were housed in groups of 4 – 5 animals/cage on a 12/12-hour light/dark cycle with free access 

to food and water (ad libitum) in the animal facility at the Spinal Cord Injury Center of the 

Heidelberg University Hospital. Animal well-being as well as temperature (20 ± 1°C) and hu-

midity (45 - 65%) were checked daily by trained staff of the animal facility. 

For in vivo-experiments, animals were randomly subdivided into different experimental groups 

and data from different cohorts combined for statistical analysis. 
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2.1.2 Animal care 

Drug Agent Dose Company 

Ampicillin-

ratiopharm® 
Ampicillin 50 mg/kg Ratiopharm 

Ampi-Dry® Ampicillin 50mg/kg 
Veryx-Pharma 

GmbH 
Bepanthen® Dexpanthenol - Bayer Vital GmbH 

Burpenovet® Burprenophine 0.03 mg/kg Bayer Vital GmbH 

Ketamine 10% Ketamine 62.5 mg/kg 
HFW Bremer 

Pharma GmbH 
NaCl 0.9% - - Braun 

Rimadyl® Carprofen 5 mg/kg Pfizer 

Ringer electrolyte 

solution 
- - Braun 

Temgesic® Burprenophine 0.03 mg/kg Reckitt Benckiser 

Ventraquil® 1% Acepromacine 0.625 mg/kg Ceva 

Xylariem® Xylacine 3.175 mg/kg Ecuphar® 

Table 1: List of animal medication. 

 

Drug Final concentration For 20 ml 

Acepromacine 0.625 mg/kg 0.75 ml 

Ketamine 62.5 mg/kg 7.50 ml 

Xylacine 3.175 mg/kg 1.90 ml 

NaCl 0.9% - 9.85 ml 

Table 2: Anesthesia mixture. 
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2.1.3 Antibodies 

2.1.3.1 Primary antibodies 

Antibody Species Isotype Type Dilution Company 

AQP4 ms IgG1 monoclonal 1:1000 Sigma Aldrich 

GLT-1 rb IgG1κ monoclonal 1:200 Merck Millipore 

GFAP ms IgG1 monoclonal 1:1000 Merck Millipore 

GFAP rb IgG polyclonal 1:1000 Dako 

Nestin ms IgG1 monoclonal 1:1000 Merck Millipore 

NFIA rb IgG polyclonal 1:200 Abcam 

S100 β ms IgG1 monoclonal 1:1000 Sigma Aldrich 

Sox 2 gt IgG polyclonal 1:200 
Santa Cruz 

Biotechnology 

Sox 9 rb IgG monoclonal 1:500 Abcam 

Vimentin ms IgG1 monoclonal 1:1000 Merck Millipore 

Vimentin rb IgG monoclonal 1:1000 Abcam 

Table 3: List of primary antibodies used for characterization of neonatal astrocytes in vitro. 
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Antibody Species Isotype Type Dilution Company 

AQP4 ms IgG1 monoclonal 1:1000 Sigma Aldrich 

A2B5 ms IgM monoclonal 1:500 Abcam 

CX43 rb IgG polyclonal 1:500 Invitrogen 

GFAP ms IgG1 monoclonal 1:1000 
Merck 

Millipore 

GFAP rb IgG polyclonal 1:1000 Dako 

GFP gt IgG polyclonal 1:1000 Rockland Inc. 

GFP rb IgG polyclonal 1:1000 
Merck 

Millipore 

GLT-1 gp - polyclonal 1:500 
Merck 

Millipore 

Ki67 rb IgG monoclonal 1:1000 Abcam 

Nestin ms IgG1 monoclonal 1:1000 
Merck 

Millipore 

Sox 2 gt IgG polyclonal 1:200 
Santa Cruz 

Biotechnology 

Sox 9 rb IgG monoclonal 1:500 Abcam 

S100 β ms IgG1 monoclonal 1:1000 Sigma Aldrich 

Vimentin ms IgG1 monoclonal 1:1000 
Merck 

Millipore 

Table 4: List of primary antibodies used for characterization of neonatal astrocytes in vivo. 
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Antibody Species Isotype Type Dilution Company 

CD31 gt IgG polyclonal 1:300 Biocompare 

GFAP ms IgG1 monoclonal 1:1000 
Merck 

Millipore 

GFAP rb IgG polyclonal 1:1000 Dako 

GFP gt IgG polyclonal 1:1000 
Rockland 

Inc. 

GFP rb IgG polyclonal 1:1000 Invitrogen 

Iba-1 rb IgG polyclonal 1:500 Wako 

βIII-tubulin ms IgG monoclonal 1:1000 Promega 

5-HT rb IgG polyclonal 1:2000 Immunostar 

von 

Willebrand 

factor 

rb IgG polyclonal 1:1000 
Sigma 

Aldrich 

Table 5: List of primary antibodies used for analysis of alginate-based hydrogels after implan-
tation into the injured spinal cord. 

 

2.1.3.2 Secondary antibodies 

Antibody Species Isotype 
Target 

species 
Dilution Company 

Alexa Fluor®-488 dk IgG (H+L) ms 1:300 Invitrogen 

Alexa Fluor®-488 dk IgG (H+L) rb 1:300 Invitrogen 

Alexa Fluor®-488 dk IgG (H+L) gt 1:300 Invitrogen 

Alexa Fluor®-594 dk IgG (H+L) ms 1:300 Invitrogen. 

Alexa Fluor®-594 dk IgG (H+L) rb 1:300 Invitrogen 

Alexa Fluor®-594 dk IgG (H+L) gt 1:300 Invitrogen 

Alexa Fluor®-594-

conjugated Streptavidin 
dk IgG (H+L) - 1:500 Jackson 

Cy5® dk IgG (H+L) ms 1:500 Jackson 

Cy5® dk IgG (H+L) rb 1:500 Jackson 

Table 6: List of secondary antibodies used to detect immunolabeling. 
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2.1.4 Cells and cell culture 

2.1.4.1 Primary cell cultures 

Cell type Origin Donor species 
Developmental 

stage 
Genetic 

background 

Neonatal 

astrocytes 

Cortex Fischer-344 rat P1, 3 eGFP+ 

Cortex Fischer-344 rat  P1, 3 WT 

Spinal cord Fischer-344 rat P1, 3 eGFP+ 

Spinal cord Fischer-344 rat P1, 3 WT 

DRG-derived 

neurons 
L4-L6 DRG Fischer-344 rat adult (8 -12 weeks) eGFP+ 

Table 7: List of primary cells. 
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2.1.5 Cell culture reagents, supplements and equipment 

Reagents/supplements Company 

1x Alpha medium Life Technologies 

B-27 supplement (50x) Life Technologies 

bidest. water Life Technologies 

destilled water - 

DMSO NeoLab 

DMEM (1x; high glucose, + NEAA, no pyruvate, no L-glutamine) Life Technologies 

DMEM/F12 (1x; 1:1) Life Technologies 

DPBS Life Technologies 

Gentamycin (10 mg/ml) Life Technologies 

L-glutamine (100x) Life Technologies 

Laminin (1 mg/ml) Sigma Aldrich 

PAA Gold FBS Biochrome 

Paraformaldehyde Carl Roth 

Penicillin (10,000 Units/ml) Life Technologies 

Poly-L-ornithine (10 mg/l) Sigma Aldrich 

Streptomycin (10,000 Units/ml) Life Technologies 

Cytosine-β-D-arabinofuranoside (10 mg/ml) Sigma Aldrich 

Table 8: List of cell culture reagents and supplements. 

 

Enzyme/reagent Company 

Collagenase XI (10 mg/ml) Sigma Aldrich 

Dispase I (10 mg/ml) Worthington 

DNAse I (1 mg/ml) Worthington 

Fibrinogen (100 mg/ml) Sigma Aldrich 

Thrombin (100 Units/ml) Sigma Aldrich 

TrypLE Express™ (1x) Life Technologies 

Table 9: List of enzymes. 
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Equipment Company 

AQUAline AL25 water bath Lauda 

“Blaudeckel” glass bottles NeoLab 

Cell strainer, 70 µm, Nylon Sigma Aldrich 

6-well cell culture plates Greiner Bio-One 

12-well cell culture plates Greiner Bio-One 

24-well cell culture plates Greiner Bio-One 

Glass coverslips (12 mm, 15 mm) Menzel GmbH 

Disposable pipette tips (1000 µl, 200 µl, 20 µl,) VWR 

DOS-20S orbital shaker NeoLab 

Eppendorf tubes (0.5 ml, 1.5 ml, 2 ml) Eppendorf 

Falcon tubes (15 ml, 50 ml) Greiner Bio-One 

HERAcell 240i CO2 incubator Thermo Scientific 

MSC-Advantage 1.2 Class II Microbiological safety  

cabinet 
Thermo Scientific 

Neubauers’ hemacytometer, 0.00025 mm2 Paul Marienfeld  

Pasteur glass capillary pipettes WU Mainz 

PIPETBOY acu2 INTEGRA Bioscience 

PIPETMAN® pipettes (1000 µl, 200 µl, 100 µl, 20µl, 10 

µl, 2µl) 
Gilson, Inc. 

Rotina 380R cell culture centrifuge Hettich Zentrifugen 

Cell culture flasks (T25, T75. T175) Greiner Bio-One 

Vortex mixer NeoLab 

Table 10: List of cell culture equipment. 
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2.1.6 Cell culture medium 

2.1.6.1 DRG neurons 

Reagent/supplement Stock concentration Final concentration 

DMEM/F12 (1x) - - 

B-27 supplement 50x  

L-Glutamine 200 mM 2 mM 

Penicillin/Streptomycin 10,000 Units/ml each 100 Units/ml each 

Table 11: Cell culture medium for DRG neurons. 

 

2.1.6.2 Neonatal astrocytes 

Reagent/supplement Stock concentration Final concentration 

DMEM (1x) - - 

L-Glutamine 200 mM 2 mM 

PAA Gold FBS - 5% 

Gentamycin 10,000 Units/ml 100 Units/ml 

Penicillin/Streptomycin 10,000 Units/ml each 100 Units/ml each 

Table 12: Cell culture medium for neonatal astrocytes. 

 

2.1.7 Alginate-based hydrogels 

All alginate-based hydrogels were fabricated and kindly provided by Apl. Prof. Dr. Rainer Müller 

from the Department of Physical and Theoretical Chemistry of the University of Regensburg, 

Germany. All experiments of this study were performed using alginate-based anisotropic hy-

drogels fabricated with either Sr2+ or Zn2+ ions. 
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2.1.8 Chemicals, solutions, buffers and equipment 

2.1.8.1 General chemicals 

Chemical Company 

Aceton Carl Roth 

Agar-agar, danish Carl Roth 

D(+)-Saccharose (Sucrose) Carl Roth 

Ethanol 99.8% (denatured) Carl Roth 

Gelatine Carl Roth 

D(+)-Glucose Carl Roth 

HCl (1 N)  NeoLab 

Isopropanol Carl Roth 

HDI Sigma Aldrich 

Methanol Carl Roth 

Na2HPO4 Carl Roth 

NaH2PO4 Carl Roth 

Na3PO4 Carl Roth 

NaCl VWR 

40% NaOH (10 N) Carl Roth 

Paraformaldehyde Carl Roth 

Sodium alginate (2% w/w) 
FMC Biopolymer AS d/b/a No-

vamatrix 

Sodium azide Carl Roth 

Sr(NO3)2 Carl Roth 

Tissue-Tek O.C.T.™ compound Sakura 

Trizma (TRIS) base NeoLab 

Trizma (TRIS) hydrochloride Carl Roth 

Triton X-100 NeoLab 

Ultrapure™ agarose Invitrogen 

Zn(NO3)2 Carl Roth 

Table 13: List of general chemicals. 
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2.1.8.2 Chemicals and kits used for immunolabeling 

Reagent Company 

Cytoseal™ 60 Thermo Scientific 

DAB peroxidase substrate kit Vector Stain 

4’,6-diamidino-2-phenylindole (DAPI) Sigma Aldrich 

Dk serum Biochrome 

Fluoromount-G  
Southern Biotechnology Associ-

ates 

VECTASTAIN® ABC Elite kit Vector Stain 

Table 14: List of chemicals and kits used for immunolabeling. 

 

2.1.8.3 Equipment and instruments for surgical procedures 

Equipment/Instrument Company 

Braunol® Braun Melsungen AG 

Disposable scalpel #11, #15 FEATHER Safety Razor  

Friedman-Pearson Rongeurs Fine Science Tools 

Forceps Dumont #2 Fine Science Tools 

Forceps Dumont #5 Fine Science Tools 

Forceps Dumont #55 Fine Science Tools 

Halsey Needle Holder Fine Science Tools 

Octagon forceps Fine Science Tools 

4/0 suture silk, braided, coated, non-adsorbable Braun Melsungen AG 

Steel wound clips, stainless, 9 mm MikRon Precision, Inc. 

PICOSPRITZER® III Microinjector General Valve 

Fisherbrand™ FB70155 pump Fisher Scientific 

Steri 250, dry bead sterilizator LAT Scientific Instruments 

Table 15: List of equipment used for surgical procedures. 
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2.1.9 Solutions and buffers 

Reagent For 1 liter 

Trizma (TRIS) base 1.94 g 

Trizma (TRIS) hydrochloride 13.22 g 

NaCl 9.00 g 

dH2O 1.00 l 

Adjust pH to 7.4 using 10 N NaOH or 1 N HCl, respectively 

Table 16: 1x TRIS-buffered saline, pH 7.4. 

 

Reagent Concentration For 1 liter 

NaH2PO4 0.25 M 230 ml 

Na2HPO4 0.2 M 770 ml 

Adjust pH to 7.3 using 10 N NaOH or 1 N HCl, respectively 

Table 17: 0.2 M phosphate buffer, pH 7.3. 

Solutions of mono- and dibasic sodium phosphate are prepared separately in dH2O and 

blended afterwards. 

 

2.1.10 Buffers and solutions for transcardial perfusion 

Reagent Final concentration For 1 liter 

NaCl - 9.00 g 

0.2 M phosphate buffer, pH 7.3 0.1 M 500.00 ml 

dH2O - 500.00 ml 

Table 18: 0.9% perfusion saline, pH 7.4. 
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Reagent Final concentration For 1 liter 

Paraformaldehyde - 40.00 g 

0.2 M phosphate buffer, pH 7.3 0.1 M 500.00 ml 

dH2O - 500.00 ml 

NaOH 10 N 4 drops 

Table 19: 4% paraformaldehyde fixative. 

 

Reagent Final concentration For 1 liter 

D(+)-Sucrose - 300.00 g 

0.2 M phosphate buffer, pH 7.3 0.1 M 350.00 ml 

dH2O - 350.00 ml 

Table 20: 30% sucrose solution. 

 

2.1.11 Buffers for immunolabeling 

Reagent Final concentration For 100 ml 

Dk serum 1% (v/v) 1 ml 

10% Triton X-100 0.1% (v/v) 1 ml 

1x TBS - 98.00 ml 

Table 21: Blocking buffer for immunocytochemistry. 

 

Reagent Final concentration For 100 ml 

Dk serum 5% (v/v) 5 ml 

10% Triton X-100 0.25% (v/v) 2.5 ml 

1x TBS - 92.5 ml 

Table 22: Blocking buffer for immunohistochemistry. 
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2.1.12 Equipment and software 

Equipment Company 

AL 5 water bath Lauda 

Anodized aluminum molds Schuett-Biotech 

Centrifuge Type 5418 Eppendorf 

HM 550 microtome Zeiss 

ISMATE® REGLO Digital MS-4/8 
IDEX Health & Science Oak 

Harbor 

Microscope glass slides (75 x 25 mm) Carl Roth 

PB-11 pH meter Satorius 

PAP PEN liquid blocker  Kisker Biotech 

Razorblades Apollo Solingen 

RS basic 2 heating plates IKA 

Single stage microelectrode puller PP-830 
Narishige Scientific Instrument 

Lab 

SUPERFROST® PLUS microscope glass slides (25 x 

75 mm) 
Menzel GmbH 

ThermoMixer C Eppendorf 

TissueCut® Type #42 microtome blades MEDITE 

Vibratome VT 1000S Leica 

Table 23: List of laboratory equipment. 

 

Microscope/Imaging equipment Company 

BX53 upright epifluorescence microscope Olympus Life Sciences 

BX61 confocal laser-scanning microscope Olympus Life Sciences 

CKX41 inverted epifluorescence microscope Olympus Life Sciences 

IX81 motorized epifluorescence microscope Olympus Life Sciences 

SZ51 stereo zoom microscope Olympus Life Sciences 

XC30 CCD digital camera Olympus Life Sciences 

Table 24: List of microscopes and imaging equipment. 
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Software Company Application 

Adobe Illustrator CS6 Adobe, Inc. Data illustration 

Adobe Photoshop CS6 Adobe, Inc. 
Image processing, 

data illustration 

CellF Olympus Life Sciences 
Fluorescence micro-

scopic imaging 

CellP Olympus Life Sciences 
Fluorescence micro-

scopic imaging 

FluoView 2.1.c Olympus Life Sciences 

Confocal laser-scan-

ning fluorescence im-

aging, image pro-

cessing 

ImageJ NIH 
Image processing, 

data analysis 

MatLab™ TheMathWorks, Inc. 

Data processing and 

analysis, statistical 

analysis 

Microsoft Excel 2016 Microsoft Corporation 
Data processing and 

analysis 

Prism 8 Graphpad Graphpad Software, Inc. 
Statistical analysis 

and data illustration 

Table 25: List of software used for imaging, data processing and analysis, statistical analysis 
and data illustration. 
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2.2 Methods 

2.2.1 Alginate-based hydrogels 

2.2.1.1 Fabrication of alginate-based hydrogels with anisotropic channels 
structure 

Alginate-based hydrogels were manufactured with minor modifications as previously described 

(Gunther, Gunther et al. 2015, Gunther, Weidner et al. 2015, Liu, Sandner et al. 2017) in the 

laboratory of Apl. Prof. Dr. Rainer Müller from the Department of Physical and Theoretical 

Chemistry of the University of Regensburg, Germany. Hydrogels were produced with sodium 

alginate (Pronova UP MVG, FMC Biopolymer AS d/b/a Novamatrix) with a guluronic acid con-

tent of > 70% and a dynamic viscosity of 211 mPa*s (10 g/l, 20 °C). Hydrogel polymerization 

and channel formation were performed using divalent Sr2+ (channel diameter: 40 – 60 µm) or 

Zn2+ ions (channel diameter: 70 – 90 µm); the type of the hydrogel used will be stated later on 

for each experiment. 

In brief, 65 g sodium alginate were dissolved in purified dH2O (final concentration: 20 g/l) under 

constant stirring until a homogeneous alginate solution was formed and transferred into ano-

dized cylindrical aluminum molds (dimensions: 5.5 cm diameter, 4 cm height, Schuett-Biotech). 

For polymerization, the aqueous alginate solution was carefully overlayed with 20 ml of either 

a 1M Sr(NO3)2 or 1M Zn(NO3)2 solution. Gel formation was performed at 10°C for at least 36 h 

until polymerization was completed. Afterwards, hydrogels were rinsed with dH2O (4x, 4h each) 

and chemically stabilized for 4 h at room temperature by an interpenetrating polymer network 

of hexamethylene-di-isocyanat (100 mM in dry acetone; HDI, Sigma Aldrich). Excessive HDI 

was removed by repeated washing steps in dry acetone (5 mins each; Carl Roth). Hydrogel 

blocks were rinsed in dH2O at 70°C and constant stirring until CO2 emission stopped. Non-

complexed divalent cations were removed from the hydrogel matrix by repeated washes in 0.1 

M HCl (5x, 2 h each, Carl Roth) and finally neutralized in purified dH2O. 

 

For in vitro-experiments, capillary-free alginate hydrogels blocks were cut into slices (300 µm 

thick, 1 cm x 1 cm) using a vibratome (Leica VT1000S, Leica Biosystems GmbH). 

For in vivo-experiments, cuboid alginate-based hydrogel implants (2 mm length x 2 mm height 

x 1.3 mm width) with anisotropic capillaries parallelly orientated to the 2 mm long edge were 

cut on a vibratome. 

Hydrogel matrix homogeneity, channel structure and orientation were inspected under a light 

microscope (Olympus BX53; Olympus Life Sciences). Hydrogels were stored in 70% EtOH at 

4°C until further use. 
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2.2.1.2 Surface coating of alginate-based hydrogels 

All hydrogels used for cell culture experiments and in vivo-studies were beforehand surface 

coated with poly-L-ornithine (PLO) and the extracellular matrix component laminin. 

First, hydrogel implants and slices were coated with PLO (0.5 mg/ml in ice-cold dH2O; Sigma 

Aldrich) overnight at 37°C, 5% CO2 followed by 2 washing steps in sterile 1x DPBS (30 mins 

each) on an orbital shaker (60 rpm, NeoLab). Subsequently, laminin (10 µg/ml in 1x DPBS; 

Sigma Aldrich) was added for 2 h at 37°C, 5% CO2 and the PLO-coated hydrogel slices after-

wards rinsed 3x 30 mins in 1x DPBS (Life Technologies) and stored in sterile 1x DPBS at 4°C 

until further use. 

 

2.2.2 Cell culture 

2.2.2.1 Surface coating of cell culture dishes and glass coverslips 

All cell culture dishes used for the cultivation of primary neonatal astrocytes were beforehand 

surface coated with PLO and laminin under sterile conditions. 

First, stock solutions of PLO (10 mg/ml) and laminin (1 mg/ml) were diluted in dH2O. The PLO 

solution (20 µg/ml) was added to the cell culture dishes and incubated for 1 h at 37°C, 5% 

CO2. Afterwards, the dishes were washed once with ice-cold dH2O and the laminin solution 

(10 µg/ml) was added and incubated for 2 h at 37°C, 5% CO2 followed by a final washing step 

with ice-cold dH2O. PLO/laminin-coated cell culture dishes were immediately used for cell cul-

ture experiments. 

To coat glass coverslips (12 mm or 15 mm in diameter, Menzel GmbH), stock solutions of PLO 

and laminin were prepared in ice-cold dH2O. First, glass coverslips were washed 3x in dH2O 

and subsequentially incubated for 16 h at room temperature in PLO (10 µg/ml) followed by a 

washing step with ice-cold dH2O. Laminin (5 µg/ml) was added to the PLO-coated coverslips 

for 2 h at 37°C, 5% CO2. Finally, the coated glass coverslips were rinsed once with ice-cold 

dH2O and immediately used. 
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2.2.2.2 Isolation and cultivation of astrocytes from neonatal Fischer-344 rats 

2.2.2.2.1 Cortex-derived astrocytes 

Cortex-derived astrocytes were isolated from neonatal (postnatal day 1 (P1) and postnatal day 

3 (P3)) wildtype and GFP-transgenic Fischer-344 rat pups of both sexes. Briefly, animals were 

killed by decapitation and their brains dissected. Brain hemispheres were separated and trans-

ferred into a 30 mm-cell culture dish (Greiner Bio One) containing 1 ml ice-cold 1x DMEM (Life 

Technologies). Excessive non-cortical tissues, meninges and blood vessel were carefully re-

moved under a dissection microscope (Olympus SZ51; Olympus Life Sciences) using micro-

scissors and forceps (Fine Science Tools). Afterwards, cortices were transferred into 12-well 

cell culture plates (Greiner Bio One) and mechanically dissociated using forceps and enzymat-

ically digested by adding 500 µl of a 1:1 mixture of Collagenase XI (1,200 U/mg in HBBS, 

Sigma Aldrich) and Dispase I (4 U/mg in HBBS, Worthington). Enzymatic digestion was done 

for 45 min at 37°C, 5% CO2 under permanent mechanical agitation (125 rpm) on an orbital 

shaker (NeoLab). Each individual cortex was used to generate a separate primary astrocyte 

culture; these unique cultures were not pooled later on. Following enzymatic digestion, 1 ml 

pre-warmed astrocyte cell culture medium containing 1x DMEM (Life Technologies) +5% FBS 

(Merck) +1% L-glutamine (200 mM, Life Technologies) + 0.5% Pen/Strep (10,000 U/ml each; 

Life Technologies), +0.5% Gentamycin (10,000 U/ml each; Life Technologies) was added and 

the tissue was further dissociated by gentle mechanical trituration (10x) with a sterile fire-pol-

ished Pasteur glass pipette (WU Mainz). The cell solution was afterwards filtered through a 

sterile cell strainer (70 µm pore size, Nylon; Sigma Aldrich) into 50 ml falcon tubes (Greiner 

Bio One). The filter was washed twice with 10 ml ice-cold 1x DMEM and the cell solution spun 

down at 9°C for 8 mins at 1,300 rpm. The cell pellet was resuspended in 1 ml pre-warmed 

astrocyte culture medium and cells seeded into T75 cell culture flasks (Greiner Bio One) con-

taining 15 ml pre-warmed cell culture medium. Cell culture medium was changed every two 

days. 

 

2.2.2.2.2 Spinal cord-derived astrocytes 

Spinal cord-derived astrocytes were isolated from neonatal Fischer-344 rat pups of both sexes 

at postnatal day 1 and 3. Briefly, neonatal rat pups were killed by decapitation, their torsos 

were fixed on a dissection plate and opened ventrally via a skin incision using angled surgical 

scissors (Fine Science Tools). The chest was opened and all intestines removed with blunt 

forceps (Fine Science Tools) and microscissors (Fine Sciences Tools). The paravertebral mus-
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cles were carefully removed, the spinal column opened ventrally using thin forceps and mi-

croscissors under a dissection microscope (Olympus SZ51; Olympus Life Sciences) and the 

spinal cord exposed. Ventral and dorsal roots were cut, the spinal cord dissected and trans-

ferred into a 30-mm cell culture dish coated with a thin 5% agarose gel. The spinal cord was 

cleared from dura mater and blood vessels and finally transferred into a 2-ml Eppendorf tube 

(Eppendorf) containing 1 ml ice-cold 1x DMEM. Each individual spinal cord was used to gen-

erate an individual primary astrocyte culture; unique cultures were not pooled later on. Spinal 

cords were mechanically and enzymatically digested as described above. After dissociation, 

the spinal cell solution was filtered through a 70-µm cell strainer and centrifuged for 8 mins at 

1,300 rpm. The resulting cell pellet was dissolved in 1 ml pre-warmed astrocyte cell culture 

medium and cells plated into PLO/laminin-coated T75 cell culture flasks. Cell culture medium 

was changed every 2 days. 

 

2.2.2.2.3 Enrichment of primary neonatal astrocytes 

To obtain enriched astrocytic cultures, non-astrocytic and neuronal cells were reduced from 

primary cultures of cortex-derived and spinal cord-derived astrocytes. 150 µl of cytosine-β-D-

arabinofuranoside (Ara-C, 1 mg/ml in 1x DMEM; Sigma Aldrich) were added to each T75 cell 

culture flask and incubated for 6 h under permanent mechanical agitation (225 rpm) on an 

orbital shaker at 37°C, 5% CO2. Afterwards, cells were washed once with 20 ml pre-warmed 

1x DPBS and enzymatically detached by adding 3 ml of the trypsin-analogon TrypleExpress™ 

(1x, Life Technologies) and incubated at 37°C, 5% CO2. After 8 minutes, the cell solution was 

spun down for 8 min at 1,300 rpm at 9°C. The cell pellets were resuspended in 1 ml pre-

warmed astrocyte cell culture medium and finally plated into new T75 cell culture flasks at a 

density of 0.5 x 106 cells, into 24-well cell culture plates at a density of 10,000 cells/well or onto 

glass coverslips (diameter 15 mm) at a density of 10,000 cells/coverslip. Cell culture medium 

was changed every 2 days. 

 

2.2.2.2.4 Purity control of enriched neonatal astrocytes 

All experiments were carried out with neonatal astrocytes of passage 2. To assure astrocyte 

enrichment, probes of each Ara-C-treated astrocyte culture were immunolabeled with antibod-

ies specific for the astrocyte marker GFAP (1:1,000; Dako), the neuronal marker βIII-tubulin 

(1:1,000; Promega), and IbaI to detect macrophages/microglia (1:500; Wako Chemicals). Im-

munolabeling was visualized using Alexa-fluorophore-conjugated secondary antibodies 

(1:300; Life Technologies) and detected under an epifluorescence microscope (Olympus IX81; 
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Olympus Life Sciences). For all in vitro- and in vivo-experiments, cortex-derived astrocyte cul-

tures with > 95% of total cells expressing GFAP and spinal cord-derived astrocyte cultures with 

> 65% of total cells expressing GFAP were used. 

 

2.2.2.2.5 Isolation of DRG neurons from adult Fischer-344 rats 

Adult Fischer-344 rats (10 – 12 weeks, > 150 g) were deeply anesthetized with an intraperito-

neal (i.p.) injection of a mixture of ketamine (62.5 mg/kg), xylazine (3.175 mg/kg), and 

acepromazine (0.625 mg/kg) (final conc. 5 ml/kg). Animals were killed by decapitation and the 

spinal column was exposed. The spinal cord was removed and the dorsal root ganglia were 

carefully dissected and collected in ice-cold Hibernate A medium (Life Technologies). Samples 

were washed once with ice-cold HBSS and enzymatically digested by incubation in a 1:1 mix-

ture of Collagenase XI (1,200 U/ml in HBSS; Sigma Aldrich) and Dispase I (4 U/ml in HBSS; 

Worthington) for 30 mins at 37°C, 5% CO2 with constant mechanical agitation (125 rpm) on an 

orbital shaker (NeoLab). DRG were washed once with 1x DMEM/F12 (Life Technologies) 

+10% FBS (Merck) and allowed to settle down before the supernatant was discarded. After-

wards, DRG were resuspended in DRG cell culture medium (1X DMEM/F12 +2% B-27 sup-

plement (Life Technologies) +1% L-glutamine (200 mM, Life Technologies) +1% Penicil-

lin/Streptomycin (10,000 U/ml each, Life Technologies) and immediately plated onto alginate-

based hydrogel slices. 

To fix primary cells, all cell culture medium was removed and the cells were washed once with 

pre-warmed 1x DPBS. Afterwards, 4% PFA/0.1 M PB was added for 30 mins at room temper-

ature followed by 3 washing steps with 1x TBS (10 mins each). For storage, 0.05% sodium 

azide/0.1 M PB was added and cells were stored at 4°C until further use. 

 

2.2.3 Immunocytochemistry 

Immunocytochemical labeling was performed on primary astrocytes isolated from the cortex 

or the spinal cord of neonatal Fischer-344 rats (P1 or P3) or on DRG neurons isolated from 

adult Fischer-344 rats. 

After fixation, cells were washed 3 times with 1x TBS. Blocking and permeabilization was per-

formed by incubation in 1x TBS +0.1% Triton-X 100 +1% donkey serum for 1 h at room tem-

perature. All primary antibodies were diluted in blocking buffer and added overnight at 4°C. 

Excessive primary antibodies were removed by 3 washing steps in 1x TBS +1% donkey serum 

for 10 mins each at RT. All secondary antibodies and 4’, 6-diamidino-2-phenylindole (1:2,000, 

DAPI) were diluted in 1x TBS +1% donkey serum and added to the samples for 2 h at RT in 
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the dark. Finally, cells were rinsed 3x in 1x TBS (10 mins each). Cells in cell culture plates 

were stored in 0.05% sodium azide/0.1 M PB at 4°C in the dark; cells on glass coverslips or 

hydrogel slices were mounted with Fluoromount G (Southern Biotechnology Associates) onto 

glass objective slides (Carl Roth) and stored in the dark. 

To phenotypically characterize neonatal astrocytes derived from cortices and spinal cord of 

postnatal day 1 and 3 Fischer-344 rats in vitro, varying combinations of the following markers 

have been used. Mouse anti-Nestin (1:1,000; Merck Millipore) and anti-Vimentin (mouse, 

1:1,000; rabbit, 1:2,000; both Merck Millipore) to identify stem cells/astrocyte precursors and 

astrocyte reactivity, and goat anti-Sox2 (sex-determining region Y-box 2, 1:200; Santa Cruz 

Biotechnology) to identify proliferating precursors. The transcription factors rabbit anti-NFIA 

(Nuclear factor 1A, 1:500; Abcam) and rabbit anti- Sox9 (sex determining region Y-box 9, 

1:500; Abcam) were used to label early astroglial precursors. Mature astrocytes were immu-

nolabeled with anti-GFAP (Glial fibrillary acidic protein, mouse, 1:1,000; Merck Millipore and 

rabbit, 1:1,000; Dako), anti-Aldh1L1 (Aldehyde dehydrogenase 1 family member L1, mouse, 

1:2,000; Merck Millipore), anti-AQP4 (Aquaporin 4, mouse, 1:500; Sigma Aldrich), anti-A2B5 

(mouse, 1:500; Abcam), anti-GLAST (Glutamate/aspartate transporter 1, rabbit, 1:200; 

Abcam), anti-GLT1 (Glial glutamate transporter 1, rabbit, 1:200; Merck Millipore), and anti-

S100β (S100 calcium binding protein β, mouse, 1:2,000; Sigma Aldrich). 

The following secondary antibodies were used: donkey anti-mouse/anti-rabbit Alexa Fluor®-

594 (1:300, Life Technologies) for GFAP; donkey anti-goat/anti-mouse/anti-rabbit Alexa 

Fluor®-488 (1:300, Life Technologies) for Nestin, Vimentin, Sox2, Sox9, Aldh1L1, AQP4, A2B5, 

GLAST, GLT1, and S100β. 

 

To measure neurite growth in response to surface coating of alginate-based hydrogels in vitro, 

DRG neurons were plated onto non-coated or coated hydrogel slices and immunolabeled with 

mouse anti-βIII-tubulin (1:1,000; Promega). The primary antibody was detected with donkey 

anti-mouse Alexa Fluor® 488 (1:300; Life Technologies). 

 

2.2.3.1 Characterization of neonatal astrocytes in vitro 

To examine the molecular phenotype, probes of neonatal astrocytes cultures isolated from P1 

and P3 cortices and spinal cords were plated into PLO/laminin-coated 24-well cell culture 

plates (BioOne Greiner) after Ara-C treatment and were allowed to recover for 2 days before 

cells were fixed as described previously. All analysis was performed with cells of passage 2. 

Immunolabeling was visualized using epifluorescence illumination with a fluorescence micro-

scope (Olympus BX53; Olympus) with attached camera (Olympus XC30; Olympus). Images 
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of all cultures were taken at 20x magnification with the same exposure time per marker, reso-

lution, optical aperture, and filter cube settings. Per astrocyte culture and marker, 5 individual 

wells were analyzed and averaged. The total number of cells in a randomly selected field of 1 

mm2 was determined (number of DAPI+ nuclei) and the number of positive cells for the different 

markers counted using the CellCounter plug-in for ImageJ and expressed as percentage of 

total cells or percentage of GFAP+ cells. Cell counts of at least 5 individual cultures were aver-

aged to obtain an expression profile of the cell isolation cycle (n represents a biological sam-

ple). Finally, data of 5 independent biological replicates were used (total n = 5). 

 

2.2.3.2 Quantification of cell morphology of neonatal astrocytes in vitro 

To analyze the cell morphology of neonatal astrocytes, samples of individual GFP-positive as-

trocyte cultures were plated onto PLO/laminin-coated glass coverslips (diameter: 15 mm; Men-

zel GmbH) after Ara-C treatment (passage 2) and allowed to recover for 2 days. Afterwards 

cells were fixed, immunocytochemically stained with goat anti-GFP (1:1,000; Rockland) and 

rabbit anti-GFAP (1:1,000; Dako) and mounted onto microscopic glass slides with Fluoro-

mount-G.  

Immunolabeling was visualized using epifluorescence illumination with a confocal laser scan-

ning microscope (Olympus FluoView1000 BX61; Olympus). Images were taken at 20x magni-

fication, constant laser/ detector settings, and identical digital resolution (1024 x 1024 pixel). 

Cell morphology was only examined from GFAP+ cells as these cells were considered to be 

part of the astroglial lineage. Since GFAP is not expressed in the entire soma of astrocytes, 

whereas the cytosolic GFP is expressed in the soma and in all processes, GFP immunolabel-

ing was used to analyze the cell morphology of GFAP+ cells. 

Prior to analysis, 4 cell morphology categories were defined (FIG 3): GFAP-expressing cells 

with a longitudinal or triangle cell shape were defined as (1) bi-/tripolar, roundish GFAP+ cells 

with no or only a few short processes and  a cell area < 100 µm2 were defined as (2) small 
fibrous, roundish GFAP+ cells with no or only a few short processes and a cell area > 100 µm2 

were defined as (3) large fibrous, and star-shaped process-bearing  GFAP+ cells were defined 

as (4) stellate. The number of cells per category were counted and expressed as a percentage 

of GFAP+ cells. Data of at least 5 individual cultures were averaged to obtain a morphological 

profile of each cell isolation cycle (n represents a biological sample). Finally, data of 5 inde-

pendent biological replicates were averaged (total n = 5). 
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Figure 3: Astrocyte morphology categories in vitro. Immature astrocytes were isolated either 

from the cortex or spinal cord of neonatal Fischer-344 rats and their cell morphology categorized as bi-

/tripolar (A), small fibrous (B), large fibrous (C), or stellate (D). Scale bar in D: 25 µm. 

 

2.2.3.3 Quantification of neurite outgrowth on surface-coated alginate-
based hydrogels in vitro 

After isolation, DRG neurons were plated onto non-coated, PLO or PLO/laminin-coated slices 

of alginate-based hydrogels. Neurons were allowed to grow for 48 h before fixation with 4% 

PFA/0.1 M PB. Immunolabeling was visualized using epifluorescent illumination with a fluores-

cent microscope (Olympus BX53; Olympus). Images of each hydrogel slice were taken at 10x 

magnification with a digital camera (Olympus XC30; Olympus) attached to the microscope in 

a randomly selected field of 1 mm2. Neurite growth was assessed by measuring the longest 

neurite from each βIII-tubulin-labeled DRG neuron using the NeuronJ plug-in for ImageJ. 

 

2.2.4 Animal experiments 

All in vivo-studies were performed in accordance with the European Union Directive 

(EU/2010/63) as well as National and Institutional guidelines and approved by the local author-

ities (Regierungspräsidium Karlsruhe). A total of 92 adult female Fischer-344 rats (wildtype or 

stable GFP-transgenic,10 -12 weeks, > 150 g) was used in this study. A detailed summary of 

all animal experiments is depicted in Suppl. Tab. 1. All animal experiments were carried out 

by experienced staff of the Laboratory for Neuroregeneration of the Spinal Cord Injury Center 

of the Heidelberg University Hospital. 
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2.2.4.1 Spinal cord injury 

A total of 80 animals underwent a unilateral spinal cord hemisection lesion at cervical level 

C5/6 combined with immediate implantation of a alginate-based anisotropic capillary hydrogel 

(2 mm in length, 2 mm in height, 1.3 mm in width) directly into the lesion cavity as previously 

described (Gunther, Gunther et al. 2015, Gunther, Weidner et al. 2015, Liu, Sandner et al. 

2017). 

Animals were deeply anesthetized via an i.p. injection with a mixture of ketamine (62.5 mg/kg), 

xylazine (3.175 mg/kg), and acepromazine (0.625 mg/kg) in sterile 0.9% saline (final conc. 2.5 

ml/kg). For surgery, the surgical area shaved and sterilized with Braunol®. Following a skin 

incision, the spinal column was exposed and a laminectomy was performed at cervical level 

C5/6 using a micro-rongeur (Fine Science Tools). A rostrocaudal incision along the spinal mid-

line was made into the dura with a scalpel and the spinal cord was exposed. For lesioning, the 

dura incision was spread and a block of spinal cord tissue (approx. 2 mm in length) was care-

fully removed unilaterally using bent microscissors (Fine Science Tools) and microaspiration 

under a surgical microscope (Olympus SZ51; Olympus Life Sciences). The resulting lesion 

cavity was washed once with sterile Ringer solution to remove blood and tissue debris. Hydro-

gels were directly implanted into the lesion cavity with their channels in rostrocaudal direction 

using thin blunt forceps (Fine Science Tools). Implant integrity and channel orientation were 

immediately checked with a surgical microscope (Olympus SZ51; Olympus Life Sciences). 

After hydrogel implantation, the dura was covered with a thin dried agarose film (1% Ul-

traPure™ agarose in sterile dH2O; Life Technologies) and sealed with tissue glue (2 µl fibrino-

gen (100 mg/ml) + 2 µl thrombin (400 U/ml); both Sigma Aldrich). Paravertebral muscle layers 

were readapted, sutured and the skin stapled. Each animal received a subcutaneous injection 

of 1 ml Ringer solution to compensate for surgery-related dehydration. After surgery, animals 

were placed back into their home cages with free access to water and food. 

Postoperatively, all rats were subcutaneously injected with burphrenophin (0.03 mg/kg in ster-

ile 0.9% saline; Reckitt Benckiser) to ameliorate acute pain and with ampicillin (50 mg/kg in 

sterile 0.9% saline; Ratiopharm) to prevent wound infection for the first 2 days after surgery. If 

animals still showed signs of acute pain, Carprofen (5 mg/kg in sterile 0.9% saline; Pfizer) was 

given once per day as needed. Skin staples were removed after 7 days when the wound was 

completely closed. To support recovery, animals were fed with a high caloric drink (Fresubin; 

Fresenius Kabi) up to 3x daily until their body weight stabilized. 
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2.2.4.1.1 Implantation of surface-coated alginate-based hydrogels 

To examine the impact of surface coating of alginate-based hydrogels with peptides on implant 

integration and axonal growth, a total of 24 wildtype adult female Fischer-344 rats was used 

received a unilateral C5/6 hemisection lesion as described previously. In this study, alginate-

based hydrogel implants fabricated with Sr2+ ions and had a corresponding channel diameter 

of 39.0 ± 1.6 µm. The implanted alginate-based hydrogels have dimensions of 2 mm in length, 

2 mm in height and 1.3 mm in width and therefore entirely fill out the cavity of the hemisection 

lesion. One group of animals was implanted with alginate-based hydrogels surface coated prior 

to surgery with PLO and laminin (n = 10), uncoated hydrogels served as controls (n = 9). 

Animals were allowed to recover for 4 weeks and were euthanized afterwards by transcardial 

perfusion with 4% PFA/0.1 M PB (3 animals died immediately after SCI. 

 

2.2.4.1.2 Implantation of astrocyte-seeded alginate-based hydrogels 

A total of 18 adult female Fischer-344 rats underwent a unilateral spinal cord hemisection at 

cervical level C5/6. 10 animals received PLO/lam-coated alginate-based hydrogel implants 

(Sr2+, channel diameter: 50.2 ± 2.1 µm) that were seeded with GFP-expressing astrocytes 

derived from cortices of P1 Fischer-344 rats, whereas 8 animals received non-seeded 

PLO/lam-coated hydrogels and served as controls. Briefly, a total of 200,000 cells (diluted in 

1% glucose/0.1 M PB, 2 µl total volume) was soaked into the channels of the hydrogels imme-

diately before implantation. Channels were inspected for dense cellular filling and the absence 

of air bubble under a surgical microscope (Olympus SZ51; Olympus Life Sciences). If the hy-

drogel channels were not densely filled with cells and/or contained air bubbles, the seeding 

procedure was repeated. Astrocyte-seeded hydrogels were then implanted into the SCI lesion 

cavity as described above with their channels oriented in the rostrocaudal direction (1 animal 

died immediately after SCI). Animals survived for 4 weeks and were afterwards euthanized via 

transcardial perfusion. 

 

2.2.4.1.3 Implantation of astrocyte-seeded alginate-based hydrogels combined with 

caudal astrocyte co-transplantation 

A total of 18 adult female Fischer-344 rats underwent a unilateral spinal cord hemisection at 

cervical level C5/6 and were implanted with PLO/lam-coated alginate-based hydrogels. In this 

study, alginate-based hydrogel implants fabricated with Zn2+ were used resulting in a channel 

diameter of 78.2 ± 1.7 µm. A total of 12 rats received hydrogel implants that were pre-seeded 
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with 200,000 GFP-expressing neonatal astrocytes whether derived from P1 cortices (n = 6) or 

P3 spinal cords (n = 6) of Fischer-344 rats; non-seeded PLO/lam-coated implants served as 

controls (n = 6; 1 died after surgery). 

Animals that were implanted with astrocyte-seeded hydrogels additionally received an injection 

of GFP-expressing neonatal astrocytes from the same origin caudal to the hydrogel implant. 

After hydrogel implantation, animals were fixed in a stereotaxic frame (Kopf instruments) using 

ear fixation bars. The astrocytes were again diluted in 1% glucose/0.1 M PB (final concentra-

tion: 100,000 cells/µl) and injected into the spinal cord with the PicoSpritzer® II microinjector 

(General Valve) and pulled glass capillaries (inner diameter: 100 µm). A total of 1 µl cell solution 

(100,000 cells total) was slowly injected ipsilateral to the hemisection lesion (coordinates: 1 

mm caudal to hydrogel implant, 0.5 mm lateral to spinal midline, 1.5 mm deep) into the unin-

jured caudal spinal cord parenchyma. The capillary was held in place for 2 minutes to prevent 

reflux out of the injection site. After cell injection, the rats were removed from the stereotaxic 

frame and their wound sutured and stapled. Animals were euthanized via transcardial perfu-

sion 4 weeks after SCI. 

 

2.2.4.1.4 Implantation of astrocyte-seeded alginate-based hydrogels combined with 

rostral and caudal astrocyte co-transplantation 

A total of 22 adult female Fischer-344 rats was used and all animals received a unilateral hem-

isection injury at cervical level C5/6 followed by immediate implantation of non-seeded 

PLO/lam-coated hydrogel implants (Zn2+, channel diameter: 88.6 ± 2.9 µm; controls; n = 6, 1 

died after surgery) or hydrogel implants seeded with GFP-expressing neonatal astrocytes 

(200,000 cells total,2 µl in 1% glucose/0.1 M PB) derived either from P1 cortices (n = 8, 2 died 

after surgery) or P3 spinal cords (n = 8, 2 died after surgery) of Fischer-344 rat pups. Again, 

animals that received astrocyte-seeded hydrogels were stereotaxically injected with GFP-

expressing neonatal astrocytes from the same origin 1 mm caudal (coordinates: 1 mm caudal 

to hydrogel implant, 0.5 mm lateral to spinal midline, 1.5 mm deep) to the implantation site 

(100,000 cells total diluted in 1 µl 1% glucose/0.1 M PB) and additionally received a second 

cell injection of astrocytes rostral to the implantation site (100,000 cells total diluted in 1 µl 1% 

glucose/0.1 M PB; coordinates: 1 mm rostral to hydrogel implant, 0.5 mm lateral to spinal mid-

line, 1.5 mm deep). All animals were sacrificed 8 weeks after SCI by transcardial perfusion. 
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2.2.4.2 Axonal tracing 

Axonal tract tracing studies were performed on all SCI animals. Animals were deeply anesthe-

tized (see 2.2.4.1) 7 days before transcardial perfusion. The rats were fixed in a stereotactical 

frame and a laminectomy was performed at cervical level C2 using micro-scissors and micro-

rongeurs (Fine Science Tools). A total volume of 1 µl of 10 kDa biotinylated dextran-amine 

(BDA, 10% in sterile 0.9% saline; Sigma Aldrich) was injected ipsilateral to the SCI lesion (co-

ordinates: 0.3 mm lateral to spinal midline, 1 mm deep) using the PICOSPRITZER® II mi-

croinjector. After tracer injection, the paravertebral muscle layers were sutured and the skin 

was stapled, the rats subsequentially received 1 ml Ringer solution (s.c.) to compensate for 

dehydration during surgery. Postoperatively, injections (s.c.) of burprenorphine (0.03 mg/kg, 

twice for 2 days) for pain relief and ampicillin (50 mg/kg) as an antibiotic were given. 

 

2.2.4.3 Transplantation of neonatal astrocytes into the intact spinal cord 

To phenotypically characterize isolated astrocytes derived from the cortex or the spinal cord of 

neonatal Fischer-344 rat pups (P1 and P3) in vivo, a total of 12 adult female Fischer-344 rats 

underwent a laminectomy at cervical level C5/6. Each animal received bilateral injections of 

astrocytes derived from P1 cortices or P3 spinal cords of neonatal Fischer-344 rats into the 

white matter of the C5 spinal cord (coordinates: 0.5 mm lateral of spinal midline, 1.5 mm deep). 

A total of 200,000 GFP-positive astrocytes was injected (100,000 cells per injection on each 

side, 1 µl per side) using a PICOSPRITZER®. After cell injections, muscle layers were rea-

dapted, skin stapled and the animals received s.c. injections of 1 ml Ringer solution. Pain 

medication and antibiotics were administered as described above. Animals were transcardially 

perfused after 2 or 4 weeks. 

 

2.2.5 Tissue processing 

All animals used in this study were euthanized at 2, 4 or 8 weeks after surgery depending upon 

the experiment. Animals received a lethal dose of a mixture of ketamine (62.5 mg/kg), xylazine 

(3.175 mg/kg) and acepromazine (0.625 mg/kg) diluted in sterile 0.9% saline intraperitoneally 

and were transcardially perfused with 0.9% saline and 4% PFA/0.1 M PB. The spinal cords 

and brains were carefully dissected in post-fixed for 1 h at RT in 4% PFA/0.1 M PB and sub-

sequently cryoprotected for 2 days in 30% sucrose/0.1 M PB at 4°C. Afterwards, the cervical 

spinal cord was embedded in Tissue-Tek O.C.T.™ compound (Sakura) and serially cut into 30 

µm thick horizontal sections using a Cryostat (Leica Biosystems). Tissue sections were directly 
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mounted onto glass slides (Menzel GmbH) with every 14th section on the same slide and stored 

at -80°C until further use. 

 

2.2.6 Immunohistochemistry 

Serial sections of the cervical spinal cord were used for immunohistochemical analysis. Tissue 

sections were thawed and dried for 30 mins at RT and encircled with liquid blocker. Samples 

were washed 3x for 20 mins each in 1x TBS and incubated for 2.5 h in 1x TBS +0.25% Triton-

X 100 +5% dk serum at RT to permeabilize the tissue and to block unspecific antibody binding. 

All primary antibodies were diluted in 1x TBS +0.25% Triton-X 100 +5% dk serum incubated 

overnight at 4°C under humid conditions. Afterwards, tissue sections were rinsed 3 times in 1x 

TBS +1% dk serum for 20 mins each at RT. All secondary antibodies and DAPI were diluted in 

1x TBS +1% dk serum and samples were incubated for 2.5 h at RT in the dark. Finally, samples 

were washed 3x in 1x TBS for 20 mins each, dried for 10 min at RT and sealed with Fluoro-

mount-G. 

To visualize the axonal tracer BDA, tissue sections were permeabilized blocked as described 

above. BDA was detected with Alexa Fluor® 594-conjugated Streptavidin (Jackson Immuno 

Research). Primary antibodies including Alexa Fluor®-594-conjugated Streptavidin were di-

luted in 1x TBS +0.25% Triton-X 100 +5% dk serum and samples were incubated for 48 h at 

4°C in the dark. After 3 washing steps in 1x TBS +1% dk serum (20 min each), tissue sections 

were incubated with secondary antibodies, rinsed and cover-slipped as described above. 

Vascularization of the SCI lesion site and the hydrogel implant was immunodetected using an 

antibody specific for the endothelial cell marker CD31/PECAM-1 (Cluster of Differentiation 31; 

R&D Systems). Tissue sections were thawed and briefly dried at RT, encircled with liquid 

blocker and blocked and permeabilized in 1x TBS +0.5% Triton-X 100 +5% dk serum overnight 

at 4°C under humid conditions. After blocking, samples were incubated with primary antibodies 

(in 1x TBS +0.5% Triton-X 100 +1% dk serum) overnight at 4°C under humid conditions fol-

lowed by 3 washing steps in 1x TBS +1% dk serum for 30 mins each. Secondary antibodies 

were diluted in 1x TBS +1% dk serum overnight at 4°C under humid conditions in the dark. 

Finally, tissue sections were rinsed 3x in 1x TBS (20 mins each), briefly dried and cover-slipped 

with Fluoromount-G. 

 

For tissue analysis, tissue sections of the cervical spinal cord including the lesion/implantation 

site (2 sections per animal, intersectional distance between individual sections was 200 µm) 

were used. 



2. Material and methods 

 77

To characterize host cell infiltration, immunolabeling with mouse anti-GFAP (1:1,000; Merck 

Millipore) to identify astrocytes, rabbit anti-IbaI (Ionized calcium-binding adapter molecule 1, 

1:500; Wako) to identify macrophages/microglia, mouse anti-p75-NTR (p75 neurotrophin re-

ceptor, 1:500; generated from 192 MB Hybridoma supernatant) to identify Schwann cells were 

performed in animals that received non-coated or PLO/lam-coated alginate-based hydrogel 

implants on serial horizontal section of the cervical spinal cord including the SCI lesion/implan-

tation site. 

The following secondary antibodies has been used: donkey anti-mouse Alexa Fluor®-488 for 

GFAP and p75-NTR, and donkey anti-rabbit Alexa Fluor®-594 for Iba I, respectively. 

 

To visualize grafted GFP-transgenic neonatal astrocytes, tissue sections of animals that re-

ceived astrocyte-seeded hydrogel implants whether in combination with or without cell injec-

tions into the surrounding spinal cord were labeled with anti-GFP (Green fluorescent protein, 

goat, 1:1,000; Rockland and rabbit, 1:1,000; Invitrogen) and anti-GFAP (mouse P, 1:1,000; 

Merck Millipore and rabbit, 1:1,000, Dako). 

To phenotypically characterize the grafted astrocytes, immunolabeling with varying combina-

tions of the following markers have been used: mouse anti-Vimentin (1:1,000, Merck Millipore) 

and mouse anti-Nestin (1:1,000,Merck Millipore) for stem cells/astrocyte precursors and astro-

cyte reactivity, goat anti-Sox2 (1:200; Santa Cruz Biotechnology) for proliferating stem cells 

and progenitors, rabbit anti-Sox9 (1:500, Abcam) for astrocyte progenitors, rabbit anti-Ki67 

(1:500, Abcam) for proliferating cells as well as mouse anti-AQP4 (1:500, Sigma Aldrich), 

mouse anti-A2B5 (1:500, Abcam), rabbit anti-CX43 (Connexin 43, 1:500, Invitrogen), guinea 

pig anti-GLT1 (1:500, Merck Millipore), and mouse anti-S100ß (1:1,000; Sigma Aldrich) to label 

mature astrocyte subtypes. 

To visualize immunolabeling the following secondary antibodies were used: donkey anti-goat 

Alexa Fluor®-488, donkey anti-rabbit Alexa Fluor®-488 (1:300, Life Technologies) for GFP, and 

donkey anti-goat/anti-mouse/anti-rabbit Alexa Fluor®-594 (1:300, Life Technologies) for GFAP, 

Nestin, Sox2, Sox9, Ki-67, AQP4, Aldh1L1, A2B5, CX43, GLT1 and S100ß. Donkey anti-

mouse and donkey anti-rabbit Cy5® conjugates (1:500, Jackson Immuno Research) were 

used to detect GFAP in triple immunofluorescence stainings. 
 

To evaluate axonal regrowth within the hydrogel implant after SCI, samples were immuno-

labeled with the neuronal marker mouse anti-βIII-tubulin (1:1,000; Promega). Descending ser-

otonergic axons were labeled with rabbit anti-5-HT (5-Hydroxytryptamine, 1:2,000; Im-

munostar). Descending propriospinal axons were specifically traced via BDA injection 7 days 

prior to perfusion. 
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Axonal markers were visualized using donkey secondary antibodies conjugated to Alexa 

Fluor®-594 (1:300, Life Technologies) for βIII-tubulin and 5-HT and Alexa Fluor® 594-conju-

gated Streptavidin (1:500, Jackson Immuno Research) for BDA. 

 

2.2.6.1 Quantification of host cell infiltration into alginate-based hydrogel 
implants 

The spinal cords of all animals that received a hydrogel implant were immunohistochemically 

analyzed post mortem. Over the course of 4 weeks, host cells filled the lesion cavity as well 

and infiltrated the implants channels. Host cell infiltration was measured at the channel entries 

(100 µm) and central regions (500 µm) at a virtual line perpendicular to the rostrocaudal chan-

nel orientation by determining the number of channels that were densely filled with DAPI+ nu-

clei of all hydrogel channels present on the tissue section. Channels that only contained single 

separated DAPI+ nuclei were considered as non-cell filled. Host cells could migrate from the 

rostral as well as caudal host spinal cord into the hydrogel channels, hence, both areas were 

analyzed separately. Cellular filling was analyzed on 2 serial tissue sections per animal (inter-

sectional space 210 µm) and afterwards averaged. Data were expressed as percentage of 

DAPI+ channels of total hydrogel channels. 

 

2.2.6.2 Quantification of astroglial and microglial responses 

To measure the astroglial and microglial response to the implanted alginate-based hydrogel, 

immunolabeling density of the astrocyte-specific marker GFAP and microglia/macrophage-

specific marker Iba I was analyzed. Immunolabeling for GFAP and Iba I was detected using 

epifluorescent illumination with a fluorescent microcope (Olympus BX53; Olympus Life Sci-

ences) in 2 serial tissue sections for each animal that received either a non-coated or PLO/lam-

coated hydrogel implant. Images were taken at 20x magnification with similar exposure time 

and resolution. Using ImageJ, a labeling threshold representing the labeling density on the 

uninjured contralateral side had been used to determine the labeling density of both markers 

on the injured side, rostrally and caudally to the implant. Data were expressed as percentage 

of positive labeling within the analyzed area for GFAP and Iba I. 
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2.2.6.3 Quantification of graft cell survival within alginate-based hydrogel 
implants 

For each animal that received an astrocyte-seeded hydrogel implant, two serial tissue sections 

(intersectional space 210 µm) of the hydrogel implantation site were analyzed. Immunolabeling 

of GFP was detected using epifluorescent illumination with a fluorescence microscope (Olym-

pus BX53; Olympus Life Sciences) and images captured using a XC30 camera (Olympus Life 

Sciences) with 10x magnification, similar exposure time and resolution. Afterwards, individual 

images were stitched together using the CellP imaging and processing software (Olympus Life 

Sciences) to gain an overview image of the entire hydrogel implant. Using ImageJ, channel 

filling with GFP-expressing grafted cells was analyzed separately at the channel entries (0 – 

500 µm) and central regions (500 – 1000 µm) from both the rostral and caudal edge of the 

hydrogel implant. First, the area of all cell-filled (DAPI+ channels) in the different hydrogel areas 

was measured (total cell-filled area). Second, a labeling threshold minimizing background and 

reflecting the GFP labeling was set and the area of positive GFP area per channel was meas-

ured. Graft cell survival were expressed as percentage of GFP+ channel area from the total 

area of all cell-filled channels. Additionally, the percentage of GFP+ channels of all DAPI+ chan-

nels was determined. 

 

2.2.6.4 Quantification of axonal growth within alginate-based hydrogel 
implants 

For quantification of overall non-specific axonal growth, βIII-tubulin-labeled axons crossing vir-

tual lines perpendicular to the rostrocaudal orientation of the hydrogel channels at 100 µm and 

500 µm from the rostral and caudal hydrogel edge, respectively, were counted. Since axonal 

penetration of the hydrogel implant may have occurred independently on both sides of the 

implant, the rostral and caudal half of the implants were examined separately. For each animal, 

two serial tissue sections 210 µm apart, were analyzed. In none of the analyzed hydrogel im-

plants was any axon could detected in a channel that did not contain cells (DAPI- channel). 

Therefore, since cell filling is a prerequisite for axonal growth with the hydrogel channels, data 

were expressed as number of axons per DAPI+ channel (cell-filled channel). 

Additionally, in animals that received astrocyte-seeded hydrogel implants, descending 

raphespinal axons were specifically labeled with an antibody for serotonin (5-HT) and descend-

ing propriospinal axons were labeled via injection of the anterograde tracer BDA and quantified 

at channel entries and central hydrogel regions. 
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To compensate varying numbers of channels per hydrogel implant, data of each axon labeling 

were again normalized to the entire implant area using the following equation: 

 

N = 
∑ axons

1,000,000 x section thickness *µm+ x ∑ width of hydrogel at specific distance [µm]
 

 

2.2.6.5 Quantification of vascularization within alginate-based hydrogel 
implants 

Along with infiltrating host cells, hydrogel implants were innervated by host-derived blood ves-

sels. In animals that received either non-coated, PLO/lam-coated hydrogel implants or astro-

cyte-seeded implants without additional cell injections, endothelial cells and blood vessels 

were only qualitatively investigated using immunolabeling with rabbit anti-von Willebrand factor 

(1:1,000; Sigma Aldrich). 

 

For animals that received astrocyte-seeded hydrogel implants combined with distal astrocyte 

injection, vascularization of the implant was quantified using immunolabeling of CD31. Two 

serial tissue sections (intersectional space 210 µm) per animal were analyzed. Immunolabeling 

was detected using epifluorescent illumination with a fluorescence microscope (Olympus 

BX53; Olympus Life Sciences) and images were taken with a XC30 camera (Olympus Life 

Sciences s) at 10x magnification with similar exposure time and resolution. Individual images 

were stitched using the CellP imaging and processing software (Olympus Life Sciences) and 

the resulting overview image analyzed with ImageJ. First, the total channel area of the hydrogel 

implant was measured. Second, a labeling threshold minimizing background and reflecting the 

CD31 labeling was set and the area of CD31-positive immunolabeling was measured. Data 

were expressed as percentage of positive CD31 area per channel. 

 

2.2.6.6 Quantification of migration of caudally co-transplanted astrocytes 

The spinal cords of animals that received astrocyte-seeded hydrogel implants and additionally 

a caudal astrocyte injection, were examined for the migratory behavior of the caudally grafted 

cells. 

For each animal, 2 serial tissue sections (intersectional space 210 µm) were analyzed meas-

uring the GFP labeling density in the caudal uninjured host spinal cord ipsilateral to the lesion. 

GFP immunolabeling was detected using epifluorescent illumination with a fluorescence mi-

croscope (Olympus BX53; Olympus Life Sciences) at 10x magnification with similar exposure 
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time and resolution. Images of the implantation site and the caudal host spinal cord were cap-

tured with a digital camera (XC30; Olympus Life Sciences). Individual images were stitched 

using the CellP software as stated above. Labeling density was measured with ImageJ by set-

ting a threshold minimizing the background and accurately reflecting the GFP signal; the unin-

jured and therefore non-grafted contralateral side of the spinal cord served as a reference. The 

GFP labeling density was analyzed in 6 separate regions-of-interest (ROI, dimensions: 1300 

µm in height, 500 µm in width) with the first ROI placed directly adjacent to the caudal hydrogel 

edge and the last one representing an area 3000 µm caudal to the implantation site. Data were 

expressed as percentage of positive GFP area per ROI. 

 

2.2.6.7 Characterization of neonatal astrocytes in vivo 

Immunolabeling was visualized using epifluorescence illumination with a confocal laser-scan-

ning microscope with attached photon detectors (Olympus BX61; Olympus Life Sciences). Im-

ages of the transplantation site were taken at 20x magnification with the same exposure time 

per marker, resolution, optical aperture, and filter cube settings. Marker expression of the 

grafted neonatal astrocytes was quantified in confocal z stacks (30 µm depth, 1 µm/slice) of at 

least 5 tissue sections (intersection spacing 200 µm) per animal. The total number of grafted 

cells in a randomly selected field of 1 mm2 was determined (number of GFP+ nuclei) and the 

number of positive cells for the different markers counted using the CellCounter plug-in for 

ImageJ. The incidence of immunopositive cells is expressed as percentage of the total number 

of GFP+/GFAP+ cells per each tissue section. 

 

2.2.6.8 Statistical analysis 

In vitro results of cell attachment and axonal growth on surface-coated alginate-based hydro-

gels were analyzed by an ordinary One-Way analysis of variance (ANOVA) followed by Tukey’s 

post hoc test to reveal overall group differences. Molecular marker expression of neonatal 

astrocytes in vitro were analyzed by an unpaired Student’s t-test comparing different develop-

mental stages (P1 or P3) of cells of the same tissue origin (cortex or spinal cord), and Two-

Way ANOVA followed by Sidak’s post hoc to reveal overall group differences between cortex- 

and spinal cord-derived astrocytes. Astrocyte morphological categories were analyzed via 

Two-Way ANOVA followed by Sidak’s post hoc to reveal group differences between cells iso-

lated at different developmental time points and tissues. Marker expression profiles of neonatal 

astrocytes injected into the intact spinal cord were compared by Two-Way ANOVA followed by 

Sidak’s post hoc testing. 
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Cell filling (DAPI+ channels) and axonal growth (βIII-tubulin and 5-HT) within hydrogel implants 

in vivo were analyzed via repeated measures Two-Way ANOVA to test for overall group differ-

ences at different distances from the hydrogel edges between uncoated and PLO/laminin-

coated hydrogel implants with Sidak’s post hoc test. The host immune response (GFAP and 

Iba I) was analyzed with Two-Way ANOVA followed by Sidak’s post hoc analysis. 

Similarly, after astrocyte seeding of the implants, results of cell filling and axonal growth were 

analyzed with repeated measures Two-Way ANOVA to reveal group differences between at 

different distances from the hydrogel edges between non-seeded control hydrogels and astro-

cyte-seeded samples. Astrocyte filling of the hydrogel implants was compared at different dis-

tances via repeated measures Two-Way ANOVA followed by Sidak’s post hoc test. Astrocyte 

colonization at the hydrogel entries (0 – 500 µm) and the central areas (500 – 1000 µm) was 

compared by an unpaired Student’s t-test. 

 

In animals that received either non-seeded implants or hydrogel implants seeded with neonatal 

cortex- or spinal cord-derived astrocytes with additional astrocyte grafts into the surrounding  

host spinal cord, cell filling (DAPI+ channels) as well as axonal growth (βIII-tubulin, 5-HT, BDA) 

were analyzed via repeated measures Two-Way ANOVA followed by Tukey’s post hoc test to 

test for overall group differences at different distances from the hydrogel edges. Astrocyte filling 

and colonization were compared between hydrogel implants seeded with either cortex- or spi-

nal cord-derived astrocytes using repeated measures Two-Way ANOVA followed by Sidak’s 

post hoc analysis. Results of blood vessel ingrowth into hydrogel implants were compared 

between non-seeded controls and astrocyte-seeded implants by ordinary One-Way ANOVA 

with Tukey’s post hoc test. In animals that received astrocyte-seeded hydrogel implants and 

only a caudal astrocyte graft, molecular marker expression and migration of the caudally in-

jected astrocytes was analyzed by repeated measures Two-Way ANOVA followed by Sidak’s 

post hoc test.  

 

Detailed descriptions of each statistical analysis are provided in the supplement and noted 

accordingly in the text or figure legends. Data are expressed as mean ± standard error of the 

mean (SEM) unless otherwise noted. All statistical analysis was performed using Prism 8 

(GraphPad Software). A significance criterion of p < 0.05 was used. 
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3 Results 

3.1 Impact of surface coating on the biocompatibility of 
alginate-based hydrogels in vitro and in vivo 

Previously, we and others have shown that the implantation of a physical biomaterial scaffold 

into acute SCI lesion sites is feasible (Pawar, Mueller et al. 2011, Gunther, Gunther et al. 2015), 

even in combination with co-transplantation of cells (Gunther, Weidner et al. 2015, Liu, 

Sandner et al. 2017). Nevertheless, significant hurdles for such tissue engineering approaches 

persist. On the one hand, the biocompatibility and integration of the implant itself requires fur-

ther enhancement. On the other hand, the grafted cells struggle to survive in the harsh SCI 

lesion environment. To overcome these limitations, we aimed at cellular and physical modifi-

cation of alginate-based anisotropic capillary hydrogels to improve their biocompatibility and 

thereby promote host-graft interactions as well as axonal growth through the hydrogel implant. 

 

The experiments in this first section (3.1) were conducted together with Dr. rer. nat. Manuel 

Ingo Günther in the course of my Master’s thesis project entitled “Surface modified hydrogels 

for stem cell therapy after spinal cord injury” and his Ph.D. project entitled “Biomaterial-based 

approaches for guided axon regeneration in the injured spinal cord”. A manuscript written by 

myself, including these results along with my own work in the second sections (3.2), was re-

cently published in the journal of Tissue Engineering Part A (Schackel, Kumar et al. 2019). 

 

3.1.1 Cell adhesion and axonal growth on surface-coated alginate-based 
hydrogels in vitro 

Alginate is a naturally occurring heteromeric polymer made of interconnected polysaccharide 

chains of α-L-guluronate and β-D-mannuronate. Under physiological conditions, the alginate 

is negatively charged due to free carboxyl groups of the polymer chains. Hence, cell adhesion, 

viability as well as axonal growth on non-functionalized alginate substrates remain limited 

(Dillon, Yu et al. 1998). Although we and others have shown that alginate-based hydrogel im-

plants can facilitate axonal growth, the achieved axonal growth through the hydrogel implant 

was attributed to infiltrated host cells or co-transplanted trophic cells colonizing within the im-

plants consequently serving as a growth substrate for penetrating axons rather than to the 

axonal growth-promoting effect of the hydrogel itself (Schackel, Kumar et al. 2019). 
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To improve cell adhesion to and viability on alginate-based hydrogels, we first sought to alter 

the negative surface charge of the hydrogel matrix to create a biologically permissive micro-

environment. Therefore, slices of alginate-based hydrogels were coated with the positively 

charged poly-peptide poly-L-ornithine (PLO) to mask the negative surface charge of the algi-

nate backbone and subsequently with the extracellular matrix component laminin (lam) to cre-

ate a bioactive signal on the hydrogel surface. 

To examine the feasibility of alginate-based hydrogels as growth substrates for cells in vitro, 

primary astrocytes derived from the cortices of neonatal Fischer-344 rats were cultured for 7 

days, as well as DRG neurons obtained from adult Fischer-344 rats, on alginate-based hydro-

gels and fixed after 48 h. Afterwards, the impact of surface coating on cell survival and attach-

ment was analyzed (FIG 4). Neonatal cortex-derived astrocytes attached to the surface of al-

ginate-based hydrogels of all tested conditions (FIG 4A – C). Nevertheless, coating with either 

the polypeptide PLO alone (FIG 4B) or in combination with laminin (FIG 4C) induced a bi-

/tripolar and process-bearing morphology with large cell bodies, whereas small cells showed 

a petite roundish morphology on uncoated control hydrogels (FIG 4A). Similarly, DRG neurons 

attached to hydrogels of all tested conditions, however neurons were detected only sporadi-

cally on non-coated hydrogels but more prominently on PLO- (FIG 4F) on PLO/laminin-coated 

hydrogels (FIG 4G). Independent of cell identity, surface-coating massively increased cell at-

tachment and thereby survival of the plated cells compared with uncoated hydrogels (FIG 4D, 
H; p < 0.0001). Surprisingly, the addition of laminin did not further quantitatively increase cell 

attachment but induced a differentiated cell morphology in GFAP-expressing astrocytes and 

DRG neurons. 
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Figure 4: Surface coating of alginate-based hydrogels enhances cell adhesion and viability of 
neural cells. (A – D) Neonatal astrocytes derived from the cortex of P1 Fischer-344 rats (GFAP, red) 

and (E – H) DRG neurons (βIII-tubulin, green) isolated from adult Fischer-344 rats were seeded on 

uncoated (A, E), PLO-coated (B, F), or PLO/laminin-coated alginate-based hydrogels (C, D). On un-

coated hydrogels, only a few cells attached to the hydrogel surface and astrocytes (A) as well as DRG 

neurons (E) showed roundish cell morphology. Both PLO- (B, F) and PLO/laminin-coating (C, G) mas-

sively improved cell attachment and induced a differentiated cell morphology in both cell types. (D, H) 

Quantification of attached cells revealed significantly higher cell numbers on surface-coated alginate-

based hydrogels compared with uncoated control hydrogels (One-Way ANOVA p < 0.0001, with Tukey’s 

post hoc ****p < 0.0001). Scale bar in C, G: 100 µm. Adapted from (Schackel, Kumar et al. 2019) 

 

Since alginate-based hydrogels should serve as permissive guidance structures for regener-

ating axons within acute SCI lesion sites, the effect of surface coating on axonal growth was 

examined in vitro by plating adult DRG neurons onto either uncoated, PLO- or PLO/laminin-

coated hydrogels and measuring the longest neurite after 48 h (FIG 5). Similar to cell attach-

ment results, surface coating with either PLO or PLO together with laminin significantly affected 

neurite outgrowth of adult DRG neurons. Only a few DRG neurons developed neurites on un-

coated hydrogels (FIG 5A). In contrast, coating with PLO increased neurite length (FIG 5B, 
D), while the addition of laminin resulted in more than a 10-fold increase in neurite length (FIG 
5C, D; ***p < 0.001) in comparison to uncoated controls and an additional 3-fold increase when 

compared with PLO-coated hydrogels (***p < 0.001). Noteworthy, DRG neurons showed only 

single unbranched neurites on control and PLO-coated hydrogels, whereas DRG neurons on 

PLO/laminin-coated hydrogels developed multi-branched neurites (FIG 5A – C). 

 

 

Figure 5: Surface coating of alginate-based hydrogels increases neurite outgrowth of adult 
DRG neurons. (A – C) Adult DRG neurons (βIII-tubulin, green) attached to the surface of all tested 

hydrogel conditions. (D) Quantification of the longest neurite per βIII-tubulin-labeled neuron revealed 

significantly longer neurites on PLO- and PLO/laminin-coated hydrogels (One-Way ANOVA p < 0.001, 

with Tukey’s post hoc ***p < 0.001). Scale bar in C: 100 µm. Adapted from (Schackel, Kumar et al. 2019) 
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3.1.2 Implantation of surface-coated alginate-based hydrogels into acute 
spinal cord injury sites 

The previous in vitro experiments underlined the feasibility of surface coating of alginate-based 

hydrogels with the synthetic polypeptide PLO and the biologically active protein laminin. To 

examine whether surface coating with PLO and laminin shows similar effects on neural cells 

and axonal growth in vivo, hydrogel cuboids (dimensions: 2 mm in height, 2 mm in length, 1.3 

mm in width; fabricated with Sr2+ ions, channel diameter: 39.0 ± 1.6 µm) were coated with PLO 

(1 mg/ml) and laminin (10 µg/ml) and implanted into the lesion cavity of a unilateral hemisection 

SCI at cervical level 5/6 in adult female Fischer-344 rats (FIG 6). Uncoated hydrogel implants 

served as controls. 
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Figure 6: Experimental setup. (A) A total of 24 adult female Fischer-344 rats (wildtype) underwent 

a unilateral hemisection at cervical level C5. (B) Alginate-based hydrogel cuboids (dimensions: 2 mm in 

length, 2 mm in height, 1.3 mm in width) fabricated with Sr2+ (channel diameter: 39.0 ± 1.6 µm) were 

used as implants. (C) Animals were allowed to recover for 4 weeks and finally transcardially perfused. 

(D) Tissue sections (horizontal, 30 µm thick) of the hydrogel implantation site were immunohistochemi-

cally analyzed. Host cell infiltration, cell filling and axonal growth were examined in the rostral and caudal 

hydrogel half at 100 µm and 500 µm from the rostral or caudal hydrogel edge, respectively (control: n = 

9, PLO/laminin: n = 10; 3 animals died after surgery; 2 were excluded from analysis see Suppl. table 
1). 

 

Four weeks after injury, the cervical spinal cord was immunohistochemically analyzed to as-

sess structural integrity and cell filling of the hydrogel implant (FIG 7). Independent of coating 

conditions, the three-dimensional (3D) channel structure remained intact and in a rostrocaudal 

orientation. Implants of both groups were in close contact with the surrounding spinal paren-

chyma and integrated into the lesion cavity tightly without cavitation, although a small area of 

irregularly organized hypercellularity was present around the hydrogel implants. The ruptures 

on the right side of the hydrogel implants are most likely related to tissue processing artifacts 

(FIG 7A, B). Host cells (indicated by DAPI-labeled nuclei) infiltrated the channels of both, un-

coated and coated hydrogel implants with significantly greater host cell infiltration into 

PLO/laminin-coated hydrogels (Two-Way ANOVA for overall group differences: p < 0.0001) 

both at channel entries (control: 58.58 ± 4.89% DAPI+ channels vs. PLO/laminin: 83.4 ± 4.98% 

DAPI+ channels) and central areas of the hydrogel (FIG 7C; control: 40.73 ± 5.88% DAPI+ 

channels vs. PLO/laminin: 68.23 ± 7.23% DAPI+ channels; Two-Way ANOVA for distance: p < 

0.01). Noteworthy, astrocytes were present at the host/graft interface but surprisingly did not 

enter the hydrogel channels (FIG 7D). 
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Figure 7: Surface coating improves host cell infiltration into alginate-based hydrogel implants 
4 weeks after implantation. (A) Uncoated control hydrogels as well as (B) PLO/laminin-coated im-

plants integrated tightly into the SCI lesion cavity. Implants of both groups showed no signs of degrada-

tion or structural collapse. Independent of surface coating, the implants channels (indicated by dashed 

lines) were infiltrated with host cells (DAPI+ nuclei, white). Rostral is to the left, medial to the top, and 

caudal to the right. (C) Quantification of cell-filled hydrogel channels (DAPI+ channels) revealed a sig-

nificantly greater host cell infiltration and colonization of PLO/laminin-coated implants compared to un-

coated control hydrogels (Two-Way ANOVA p < 0.0001, followed by Sidak’s post hoc *p < 0.05) both at 

channel entries (100 µm) and central regions (500 µm) of the implants (Two-Way ANOVA p < 0.01). (D) 

Host astrocytes (GFAP, green) were found at the host/graft interface surrounding the implantation site 

but were absent from the hydrogel channels (Control, n = 9; PLO/laminin, n = 10). Scale bar in D: 500 

µm. Adapted from (Schackel, Kumar et al. 2019) 

 

The higher host cell infiltration into PLO/laminin-coated hydrogel implants might be due to a 

stronger host immune response, thereby, hypercellularity at the lesion site. To assess the host 

immune response, immunoreactivity for the astrocyte marker GFAP and the microglia/macro-

phage marker Iba I was analyzed (FIG 8). Immunolabeling showed only sporadically GFAP+ or 
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Iba I+ cells on the uninjured contralateral side of the spinal cord (FIG 8A, D). In contrast, a 

strong upregulation of both markers was found directly adjacent to the hydrogel implantation 

site in the control (FIG 8B, E) as well as in the PLO/laminin-coated group (FIG 8C, F). By 

quantification of the GFAP labeling intensity, a significant upregulation of GFAP immunoreac-

tivity directly at the implantation site in comparison to the uninjured contralateral spinal cord 

side in the same animal was found (FIG 8G; Two-Way ANOVA, p < 0.0001, followed by Tukey’s 

post hoc ****p < 0.0001). More importantly, no difference between control and PLO/laminin-

coated hydrogels was found (Two-Way ANOVA p = 0.68 for GFAP). Analysis of Iba I immuno-

labeling revealed similar results (FIG 8H; Two-Way ANOVA for group differences: p = 0.11, for 

location: p < 0.0001 followed by Tukey’s post hoc ***p < 0.001, ****p < 0.0001). The host im-

mune response, therefore, was not additionally enhanced by surface coating of the hydrogel 

implants. 
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Figure 8: Surface coating of alginate-based hydrogel implants does not affect the host im-
mune response. (A – C) Immunolabeling for astrocytes (GFAP) and (D – F) microglia/macrophages 

(Iba I) indicated an upregulation for both markers at the implantation site compared to the uninjured 

contralateral spinal cord in the same animal (A, D). (G) Quantification of labeling density revealed no 

significant difference for GFAP immunoreactivity between coated or uncoated hydrogel implants (Two-

Way ANOVA for group differences: p = 0.68; for location: p < 0.0001, followed by Tukey’s post hoc ****p 

< 0.0001). (H) Similarly, no difference in Iba I labeling density was found between controls and coated 

hydrogel implants (Two-Way ANOVA for group differences: p = 0.11; for location: p < 0.0001, with 

Tukey’s post hoc ***p < 0.001, ****p < 0.0001; Control, n = 8; PLO/laminin, n = 10). Scale bar in F: 100 

µm. Adapted from (Schackel, Kumar et al. 2019) 

 

Consequently, the observed greater host cell infiltration into PLO/laminin-coated hydrogel 

channels was not exclusively based on infiltrating host immune cells such as astrocytes or 

microglia/macrophages. To further elucidate the identity of the infiltrated host cells, further im-

munohistological analysis was performed (FIG 9). The channel lumen of uncoated and 

PLO/laminin-coated hydrogel implants were filled predominantly with Iba I-expressing micro-

glia/macrophages and p75-NTR-labeled Schwann cells (FIG 9C, D), whereas astrocytes were 

not found within the hydrogel channels. Surface coating did not effect on the type of infiltrated 

host cells. 

 

 

Figure 9: Microglia and Schwann cells predominantly fill the channels of alginate-based hy-
drogel implants. After 4 weeks, the channels of uncoated and PLO/laminin-coated hydrogel implants 

were predominantly filled with (A, B) microglia/macrophages (Iba I, red) and with (C, D) Schwann cells 

(p75-NTR, green). Scale bar in D: 30 µm. Adapted from (Schackel, Kumar et al. 2019) 
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3.1.3 Axonal growth into surface-coated alginate-based hydrogel implants 

Besides integration and host cell infiltration, regrowth of spinal axons was examined within the 

hydrogel implants 4 weeks after SCI. Hence, tissue sections of animals that received either 

uncoated alginate-based hydrogel implant or implants that were previously coated with PLO 

and laminin were immunolabeled for the neuronal marker βIII-tubulin and the labeled axons 

were quantified at the channel entries (100 µm) and the central area (500 µm) of each hydrogel 

implant (FIG 10). Axons entered and extended within the channel of control as well as 

PLO/laminin-coated hydrogel implants (FIG 10A, B). Notably, independent of surface coating, 

axons were only found in channels that contained infiltrated host cells (defined as DAPI+ chan-

nels). In surface coated hydrogels, axons were preferentially organized in thin axon bundles, 

whereas only single axons could be found in control hydrogels. This perhaps contributes to an 

underestimation of the axon numbers in surface coated alginate-based hydrogel implants. 

Quantification of βIII-tubulin-labeled axons showed comparable numbers of axons per cell-

filled channels at the channel entries and central hydrogel (FIG 10C). In both groups, a signif-

icant reduction in axon numbers towards the center of the implants was observed (Two-Way 

ANOVA for distance: p < 0.0001, with Sidak’s post hoc ***p < 0.001). Since the number of 

channels varies between samples, the number of axons per channel was normalized to the 

area of each individual hydrogel implant (FIG 10D). Importantly, more axons entered the chan-

nels of PLO/laminin-coated hydrogels from the rostral (*p < 0.05) and caudal host spinal cord 

compared to uncoated controls. The total number of axons, however, significantly decreased 

towards the center of the implants in both groups (Two-Way ANOVA for distance: p < 0.0001, 

with Sidak’s post hoc ###p < 0.001 for PLO/laminin, +p < 0.05 for controls) which is consistent 

with the greater cell filling at the channel entries compared with the hydrogel center (FIG 7). 
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Figure 10: Axonal growth is enhanced in surface-coated alginate-based hydrogel implants 
after SCI. (A, B) After 4 weeks, βIII-tubulin-labeled axons (white) were found in channels of uncoated 

and PLO/laminin-coated hydrogels. Rostral is to the left, medial to the top, and caudal to the right. (C) 

Quantification of axon numbers per cell-filled channels (DAPI+ channel) at the channel entries (100 µm) 

or the central area of the implant (500 µm) revealed no significant difference between coated and un-

coated implants (Two-Way ANOVA p = 0.49) but a decline of axons per channel towards the hydrogel 

center (Two-Way ANOVA p < 0.0001, with Sidak’s post hoc ***p < 0.001). (D) Normalization to the entire 

hydrogel area revealed a significantly greater number of axons entering the channels in PLO/laminin-

coated hydrogel implants compared to uncoated hydrogels (Two-Way ANOVA p < 0.05, with Sidak’s 

post hoc *p < 0.05 at Rostral 100 µm). The number of axons significantly declined towards the center of 

the implant in both groups (Two-Way ANOVA p < 0.0001, followed by Sidak’s post hoc ### p < 0.001 

channel entries at 100 µm vs. central hydrogel at 500 µm for PLO/laminin; +p < 0.05 comparing channel 

entries at 100 µm vs. central hydrogel at 500 µm for control; Control, n = 9; PLO/laminin, n = 10). The 

red and blue boxes indicate the rostral and caudal halves of the hydrogel implant, respectively. Scale 

bar in B: 100 µm. Adapted from (Schackel, Kumar et al. 2019) 
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Taken together, coating with the poly-peptide poly-L-ornithine and the ECM component laminin 

is applicable to the surface of alginate-based hydrogels. It significantly improves cell attach-

ment, cell viability and axonal growth in vitro and host cell infiltration/colonization as well as 

regrowth of injured spinal axons in vivo. Although hydrogel implantation leads to an upregula-

tion of GFAP and Iba I directly at the lesion site, no signs of excessive (neuro-)inflammation, 

cavitation or hydrogel degradation could be observed. In contrast to the in vitro results showing 

that PLO/laminin-coating of alginate-based hydrogels directly enhanced cell attachment and 

neurite outgrowth of DRG neurons, the in vivo data suggests that surface coating might only 

indirectly affect axonal growth. It instead provides a permissive molecular environment for at-

tachment and colonization of host infiltrated cells within the hydrogel implant, creating a cellular 

growth substrate favorable for axon extension. 

 

3.2 Impact of neonatal astrocytes as a cellular growth substrate 
within alginate-based hydrogel implants on axonal 
regeneration after traumatic spinal cord injury 

Previous studies -including our own- using biomaterial scaffold implantation indicated that a 

permissive biological stimulus is essential to induce significant axonal regrowth into the hydro-

gel implant. In contrast, implantation of only a biomaterial into acute SCI sites resulted in only 

limited success (Nomura, Zahir et al. 2008, Wang, Zeng et al. 2011, Gunther, Weidner et al. 

2015, Liu, Sandner et al. 2017). 

 

Besides modification of the biomaterial itself by adding biologically active agents to its surface, 

the combination of the biomaterial implant with cell transplantation holds considerable promise 

in creating a growth-supportive environment at the lesion site. Among potential cell candidates, 

immature neurons, glia cells derived from NSCs, iPSCs or adult Schwann cells harbor great 

promise in restoring the lost spinal cord parenchyma and re-establishing lost axonal connec-

tions through the site of injury. These cells might have the capacity to improve the integration 

of the biomaterial implant into the host spinal cord and consequently improve the regrowth of 

spinal axons (Lu, Wang et al. 2012, Lu, Kadoya et al. 2014, Liu, Sandner et al. 2017, Koffler, 

Zhu et al. 2019). However, transplantation of Schwann cells and BMSCs have resulted in the 

formation of a glia limitans, clearly separating the cell grafts from the surrounding host spinal 

cord (Gunther, Weidner et al. 2015, Williams, Henao et al. 2015, Bunge 2016). This may be 

less likely the case for grafts containing CNS-derived glia cells. 
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Astrocytes facilitate structural and trophic support for neurons in both the developing as well 

as the adult CNS (Molofsky, Krencik et al. 2012, Chaboub and Deneen 2013). Moreover, net-

works of intermingled astrocytes were previously shown to serve as structural guidance matri-

ces for axons similar to radial glia cells during cortical and spinal cord development (Joosten, 

Bar et al. 1995, Xu, Guenard et al. 1995, Guest, Hesse et al. 1997, Spilker, Yannas et al. 2001, 

Iseda, Nishio et al. 2004, Ma, Wei et al. 2004, Liu, Lu et al. 2010, Hurtado, Cregg et al. 2011, 

Zukor, Belin et al. 2013, Cregg, DePaul et al. 2014). Indeed, combining the natural scaffolding 

by immature astrocytes with a biomaterial implant with a defined microarchitecture might, 

therefore, provide physical support for growing axons enabling them to completely traverse 

extended SCI lesion sites. Hence, we seeded immature astrocytes derived from cortices of 

neonatal Fischer-344 rats into the channels of surface coated alginate-based hydrogel im-

plants and examined their effect on implant integration assessed by analysis of host/graft in-

teractions and revascularization, and -most importantly- axonal growth in adult rats after trau-

matic SCI. 

 

3.2.1 Characterization of neonatal cortex-derived astrocytes from Fischer-
344 rats 

Astrocytes were isolated from neonatal Fischer-344 rats at postnatal day 1 (P1) with slight 

modifications as previously described (Albuquerque, Joseph et al. 2009). The primary neural 

culture was successfully cleared from contaminating non-astrocytic cells since barely any Iba 

I- or βIII-tubulin-positive cells could be detected after Ara-C treatment (FIG 11A – D). The vast 

majority of cells expressed additional markers of the astrocytic lineage (FIG 11E). Thus, en-

riched cortex-derived astrocyte cultures were obtained from neonatal rat pups and were used 

for in vivo-studies. 
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Figure 11: Neonatal cortex-derived astrocytes can be enriched in vitro. (A – C) Primary astro-

cyte cultures derived from the neonatal cortex were Ara-C-treated and immunolabeled for astrocytes (A, 

GFAP), microglia/macrophages (B, Iba I), and neurons (C, βIII-tubulin). (D) Ara-C treatment massively 

reduced the amount of contaminating non-astrocytic cells (Two-Way ANOVA p < 0.05, with Sidak’s post 

hoc ****p < 0.0001). (E) Isolated and treated cells expressed markers of immature astrocyte precursors 

(Vimentin, NFIA) as well as of mature astrocytes (S100β, GFAP). Scale bar in C: 30 µm. Adapted from 

(Schackel, Kumar et al. 2019) 

 

3.2.2 Implantation of astrocyte-seeded alginate-based hydrogel implants 
into the acutely injured spinal cord 

To examine whether immature astrocytes could improve implant integration and provide a per-

missive cellular substrate for axonal growth, GFP-transgenic cortex-derived astrocytes were 

seeded into the channels of alginate-based hydrogels immediately before implantation into the 

lesion cavity of a unilateral hemisection injury at C5/6. Since surface coating with PLO and 

laminin had proven to strikingly enhance host cell infiltration and survival within the implant, 

PLO/laminin-coated implants were used as controls (FIG 12). 
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Figure 12: Experimental setup. (A) A total of 18 adult female Fischer-344 rats were subjected to a 

unilateral C5 hemisection. The channels of PLO/laminin-coated alginate-based hydrogel implants were 

seeded with 200,000 GFP+ neonatal P1 cortex-derived astrocytes. (B) Animals survived for 4 weeks 

and were finally transcardially perfused and (C) immunohistochemically analyzed at 100 µm and 500 

µm from the rostral or caudal hydrogel edge, respectively (PLO/laminin: n = 6; + cortex-derived astro-

cytes: n = 10, see Suppl. table 1). 

 

Both, non-seeded control implants (FIG 13A) as well as astrocyte-seeded implants (FIG 13B) 

were in close contact to the surrounding spinal parenchyma and densely filled with cells as 

indicated by DAPI-labeled nuclei within the implant. Cell filling of the implants was examined 

by quantifying the percentage of cell-filled (DAPI+) of all hydrogel channels (FIG 13C). Overall, 

pre-seeding with cortex-derived astrocytes enhanced the cell filling of the implants both at the 

channel entries and at central regions on the hydrogel (Two-Way ANOVA for group differences 

p < 0.001). Cell filling significantly declined towards the hydrogel center in both groups (Two-

Way ANOVA for distance p < 0.0001; see Suppl. table 2), however, still more hydrogel chan-

nels were filled with cells in pre-seeded implants compared to non-seeded controls (at rostral 

500 µm: 78.78 ± 3.77% vs. 58.21 ± 10.57% cell-filled channels, *p < 0.05; at caudal 500 µm: 

75.97 ± 2.91% vs. 61.83 ± 4.64%, p = 0.09). Furthermore, a close association between cell 

grafting and distance was evident (Interaction between cell grafting and distance: p = 0.04). In 

astrocyte-seeded implants, the vast majority of all cell-filled channels were filled with GFP-
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positive graft-derived cells that co-expressed the astrocyte marker GFAP (GFP+/GFAP+; FIG 
13D, E). About 85% of all cell-filled channels per implant contained grafted GFP+ cells, also at 

the central regions of the implants (FIG 13F, One-Way ANOVA p = 0.52 for distance). Addi-

tionally, confocal imaging confirmed a dense filling of the implant channel lumen with 

GFP+/GFAP+ graft-derived astrocytes (FIG 13G, H). The astrocyte filling of the channels de-

creased towards the center of the hydrogel. Here, the grafted cells did not form a dense net-

work but were occasionally organized in distinct cell clusters. Accordingly, the GFP+ channel 

area (area occupied with GFP-expressing graft cells) was significantly reduced at the hydrogel 

center compared to the channel entries (FIG 13I; unpaired Students’ t-test ***p < 0.001). 
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Figure 13: The seeded cortex-derived astrocytes robustly survive within surface-coated hy-
drogel implants. (A, B) All hydrogel implants remained structurally intact and in close contact with the 

host spinal cord. Channels (dashed lines) of non-seeded controls (A) and astrocyte-seeded hydrogel 

implants (B) were densely filled with cells (DAPI+ nuclei, white). (C) Quantification of DAPI+ channels 

revealed an overall increased cell filling in astrocyte-seeded implants compared to non-seeded controls 

(Two-Way ANOVA p < 0.001, followed by Sidak’s post hoc *p < 0.05 at 500 µm Rostral; interaction cell 

grafting x distance: p = 0.04; PLO/laminin, n = 6; + cortex-derived astrocytes, n = 10). Blue and red 

boxes indicate the rostral and caudal halves of the implant, respectively. Detailed statistical analysis is 

depicted in detail in Suppl. table 2. (D, E) The majority of channels in cell-seeded implants is filled with 

grafted GFP-positive astrocytes (GFAP) 4 weeks after implantation. (F) Quantification of GFP+ channels 

of all DAPI+ channels showed a homogenous cell filling throughout the implants with grafted GFP-

expressing astrocytes (Two-Way ANOVA p = 0.52). (G, H) Within the hydrogel channels, the grafted 

GFP+ cells (G) line the channel walls and co-express the astrocyte marker GFAP (H). XZ and YZ planes 

are shown underneath and to the right, respectively. (I) The seeded GFP+ astrocytes were more densely 

packed at the channel entries (0 – 500 µm) in comparison with the central area of each implant (500 – 

1000 µm; unpaired Students’ t-test ***p < 0.001). Scale bars in B, E: 500 µm, in H: 50 µm. Adapted from 

(Schackel, Kumar et al. 2019) 

 

To gain a more detailed view of implant integration, confocal imaging of the host/graft interface 

and the adjacent spinal cord parenchyma was performed (FIG 14). Again, the grafted GFP-

transgenic astrocytes densely filled the channel lumen on the rostral as well as on the caudal 

side of the hydrogel implants (FIG 14A, B). They migrated into the host-graft interface on either 

side and extended protrusions into the adjacent uninjured host spinal cord intermingling with 

the host astrocytic network. Hence, graft- and host-derived astrocytes formed a continuous 

network-like guidance substrate connecting the implant with the host spinal parenchyma. Most 

importantly, host-derived spinal axons associated with the newly formed astrocytic network 

and were guided through the host/graft interface into the hydrogel implant (arrowheads in FIG 
14A, B). Additionally, astrocyte-seeded implants were penetrated by tubular structures of von 

Willebrand factor-positive endothelial cells that might resemble host-derived blood vessels 

(FIG 14C). Within astrocyte-filled channels, the surface of the newly formed vasculature was 

covered with protrusions and potential endfeet of the grafted cortex-derived astrocytes. 
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Figure 14: The grafted cortex-derived astrocytes intermingle with the host-derived astrocytic 
network and associate with endothelial cells and blood vessels within the hydrogel implants. (A, 
B) Graft-derived astrocytes (GFP, green) filled the channels of astrocyte-seeded hydrogels and migrated 

into the host/graft interface at the rostral (A) and caudal (B) side of the implants. GFP-positive graft-

derived astrocytes (GFP+/GFAP+) extended protrusions into the host/graft interface and adjacent host 

spinal cord and intermingled with host-derived astrocytes (GFAP, red) forming continuous cellular guid-

ance structures (arrowheads) for βIII-tubulin-labeled host axons (white) on both sides of the implant. (C) 

Immunolabeling for endothelial cells (von Willebrand factor, red) revealed tube-like structures within as-

trocyte-seeded hydrogel channels that were throughout the implant closely associated with grafted as-

trocytes (GFAP, white). XZ and YZ planes are shown underneath and to the right, respectively. Scale 

bar in B, C: 50 µm. Adapted from (Schackel, Kumar et al. 2019) 

 

3.2.3 Axonal growth into astrocyte-seeded hydrogel implants 4 weeks after 
spinal cord injury 

To assess whether astrocyte-seeding would improve axonal growth into and through the hy-

drogel implants, tissue sections were immunolabeled for βIII-tubulin and overall axonal growth 

was quantified at different distances within the hydrogel implant (FIG 15). Four weeks post-

implantation, host axons were found throughout the entire length of channels in non-seeded 

controls and astrocyte-seeded hydrogel implants (FIG 15A, B). Quantification of axons per 

channel at the channel entries (100 µm from the rostral or caudal hydrogel edge) or the central 

area (500 µm from the rostral or caudal hydrogel edge) appeared to exhibit slightly greater 
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axonal growth in animals that received pre-seeded implants compared with animals that re-

ceived a non-seeded implant. Unfortunately, this effect did not reach significance (FIG 15C; 

Two-Way ANOVA for overall group differences: p = 0.09). As previously reported, axons were 

exclusively found in channels that contained cells regardless of prior cell seeding (depicted in 

FIG 10). Further, axonal growth was significantly reduced at central hydrogel regions in both 

groups, comparable to the observed decrease in cell filling and graft cell survival at the central 

area of the implants (Two-Way ANOVA for distance p < 0.0001 see Suppl. table 3). Overall 

following normalization to the entire hydrogel implant area, more axons penetrated the astro-

cyte-seeded implants (FIG 15D; Two-Way ANOVA for overall group differences p < 0.001, fol-

lowed by Sidak’s post hoc *p < 0.05 at rostral 100 µm), but, again, axon numbers significantly 

declined towards the central regions of the implants in both groups (Two-Way ANOVA for dis-

tance p < 0.0001, see Suppl. table 4). In addition, axonal growth responses were specifically 

analyzed in hydrogel implants of the astrocyte-seeded group. Here, the axon distribution be-

tween channels filled with the grafted cells and channels that only contained infiltrated host 

cells was determined (FIG 15E – G): the vast majority (86.05 ± 4.57%) of all axons were found 

in channels filled with the grafted cortex-derived astrocytes which is consistent throughout the 

entire implant (Two-Way ANOVA p < 0.0001). 
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Figure 15: Seeding with cortex-derived astrocytes promotes axonal growth into alginate-
based hydrogel implants. (A, B) βIII-tubulin-labeled axons (white) entered and extended within the 

channels of non-seeded control implants (A) and astrocyte-seeded implants (B). Single unbranched 

axons and thin axon bundles were found within the control group, whereas branched axons and thick 

bundles were seen within the channels of implants seeded with cortex-derived astrocytes. Rostral is to 

the left, medial to the top. (C) Axon numbers per DAPI+ channels within the astrocyte-seeded implants 

appeared to be greater than in non-seeded controls (Two-Way ANOVA for overall group differences: p 

= 0.09), although axon numbers decreased towards the hydrogel center (Two-Way ANOVA for distance 

p < 0.0001, PLO/laminin, n = 6; + cortex-derived astrocytes, n = 10). Blue and red boxes indicate the 

rostral and caudal halves of the implant, respectively. Detailed statistical analysis is depicted in Suppl. 
table 3. (D) Throughout the implant, more axons were found in the astrocyte-seeded group compared 

with non-seeded controls (Two-Way ANOVA for overall group differences p < 0.001 followed by Sidak’s 

post hoc *p < 0.05 at Rostral 100 µm). Again, the amount of axonal growth within the implants declined 

towards the hydrogel center in both groups (Two-Way ANOVA for distance p < 0.0001). Detailed statis-

tical analysis is depicted in Suppl. table 4. (E – G) Within the astrocyte-seeded implants, axons prefer-

entially entered channels that contained the grafted GFP+ astrocytes compared to channels that only 

contained infiltrated host cells at the rostral (E) or caudal half (F) as well as throughout the hydrogel 

implant (G, Two-Way ANOVA p < 0.0001, with Sidak’s post hoc ****p < 0.0001). Scale bar in B: 25 µm. 

Adapted from (Schackel, Kumar et al. 2019) 

 

To regain function after SCI, signal transmission between brain areas (e.g., somatosensory 

and motor cortex, brainstem nuclei) and their effector targets has to be re-established. Since 

βIII-tubulin labels both ascending and descending axons, a serotonin antibody (5-HT) was 

used to immunohistochemically detect descending serotonergic raphespinal axons and assess 

their contribution to the axonal growth within the hydrogel implants (FIG 16). Serotonergic ax-

ons were detected in non-seeded as well as astrocyte-seeded hydrogel implants (FIG 16A, 
B). In astrocyte-seeded implants, 5-HT-positive axons were found in close association with the 

grafted GFP-expressing astrocytes (FIG 16B). Further quantification revealed a not significant 

trend towards higher axon numbers in the astrocyte-seeded hydrogel implants. In both groups 

the largest number of serotonergic axons per DAPI+ channel was present at the rostral side of 

the implants (FIG 16C, Two-Way ANOVA for group differences p = 0.27), but massively de-

creased towards the caudal side of the implants (Two-Way ANOVA for distance p < 0.0001; 

see Suppl. table 5). This was confirmed when the entire implant area was analyzed (FIG 16D, 

Two-Way ANOVA for overall group differences p = 0.14, for distance p < 0.0001, see Suppl. 
table 6) Consistent with βIII-tubulin-labeled axons, serotonergic axons preferentially entered 

implant channels filled with grafted astrocytes compared to channels containing only infiltrated 

host cells (FIG 16E, Two-Way ANOVA p < 0.0001). 
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Figure 16: Seeding with neonatal cortex-derived astrocytes enhances the growth of sero-
tonergic axons into alginate-based hydrogel implants. (A, B) Descending serotonergic axons (5-

HT, red) penetrated non-seeded controls (A) and astrocyte-seeded hydrogel implants (B) 4 weeks post-

injury. 5-HT-labeled axons and graft-derived GFP-positive astrocytes were found aligned within the hy-

drogel channels. Rostral is to the left, medial to the top. (C) Quantification of 5-HT+ axons per cell-filled 

channel showed a trend towards a slightly greater number of serotonergic axons in the astrocyte-seeded 

implants, but this did not reach significance (Two-Way ANOVA for overall group differences p = 0.27). 

Serotonergic axon numbers diminished towards the central and caudal part of the implants in both 

groups, but were more prominent in the astrocyte-seeded implants (Two-Way ANOVA for distance p < 

0.0001, with Sidak’s post hoc test ***p < 0.001 comparing rostral 100 µm with all other distances in the 

astrocyte-seeded group; PLO/laminin, n = 6; + cortex-derived astrocytes, n = 10). Detailed statistical 

analysis is depicted in Suppl. table 5. Blue and red boxes indicate the rostral and caudal hydrogel 

halves, respectively. (D) Similarly, a not significant trend towards enhanced ingrowth of raphespinal ax-

ons into implants pre-seeded with cortex-derived astrocytes was found but 5-HT+ axon numbers dra-

matically decreased along the rostrocaudal extent of the hydrogels (Two-Way ANOVA for group differ-

ences p = 0.14, for distance p < 0.0001, with followed by Sidak’s post hoc ****p < 0.0001 comparing 

rostral 100 µm with all other distances in the astrocyte-seeded group). Detailed statistical analysis is 

depicted in Suppl. table 6. (E – G) In the astrocyte-seeded implants, serotonergic axons entered and 

extended preferentially in channels that contained the grafted GFP-positive astrocytes. This effect was 

consistent throughout the entire hydrogel implants (Two-Way ANOVA p < 0.0001, with Sidak’s post hoc 

**p < 0.01 for the rostral half, *p < 0.05). Scale bar in B: 50 µm. Adapted from (Schackel, Kumar et al. 

2019) 

 

Taken together, astrocytes can be isolated from neonatal cortical tissue from rats and used as 

a permissive cellular substrate within the channels of alginate-based hydrogel implants in vivo. 

Grafted astrocytes survived within the implants, filled the vast majority of the implants’ channels 

and interacted with the host-derived vasculature and astrocytic network adjacent to the implan-

tation site. Most importantly, cortex-derived grafted astrocytes served as a growth substrate 

for spinal axons at the host/graft interface and within the hydrogel implants. 

 

3.3 Characterization of neonatal astrocytes in vitro and in vivo 

In the previous study, neonatal cortex-derived astrocytes were used to provide a permissive 

growth substrate within the alginate-based hydrogel implant in hopes to improve axonal growth 

through the implantation site after traumatic SCI. The grafted cells filled the hydrogel implants, 

interacted with the host spinal cord, and slightly enhanced axonal growth (Schackel, Kumar et 

al. 2019). Noteworthy, astrocytes isolated from cortical tissue have a molecular identity that 
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suits the healthy and injured brain but might not necessarily be ideal for the injured spinal cord. 

Therefore, astrocytes obtained from neonatal spinal cord tissue could potentially harbor a 

greater pro-regenerative capacity in comparison to cortex-derived neonatal astrocytes after 

transplantation into acute SCI lesions. Thus, in the next set of experiments, we sought to ex-

amine whether neonatal spinal cord-derived astrocytes might represent a superior candidate 

for cell transplantation into acute SCI lesions. 

 

3.3.1 Characterization of neonatal spinal cord-derived astrocytes 

First, astrocytes were isolated from spinal cords of postnatal day 1 Fischer-344 rats and were 

cultured. After Ara-C treatment, cells were immunolabeled for astrocytes (GFAP), microglia 

(Iba I), and neurons (βIII-tubulin) to determine the composition of the primary spinal cell culture 

(FIG 17). Similar to the isolation of cortex-derived astrocytes, the primary spinal cell culture 

contained neural as well as non-neural cells and had to be purified with Ara-C to obtain an 

enriched culture of spinal cord-derived astrocytes. About 10% of all cells were positively la-

beled for Iba I or βIII-tubulin, which decreased after Ara-C treatment (FIG 17D; Iba I: 0.53 ± 

0.25%, βIII-tubulin: 0.42 ± 0.19%). However, only 50.99 ± 2.70% of all the remaining cells 

expressed GFAP and were therefore identified as astrocytes, which is much lower than the 

amount of GFAP-expressing cells obtained from neonatal cortical tissue (94.59 ± 1.05%, FIG 
11). 
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Figure 17: P1 spinal cord-derived astrocytes can be enriched in vitro. (A – C) Immunolabeling 

for astrocytes (A, GFAP), microglia (B, Iba I), and neurons (C, βIII-tubulin) of primary spinal cultures. 

(D) Ara-C treatment decreased the amount of contaminating microglia and neuronal cells in the culture 

(Two-Way ANOVA p = 0.48). Scale bar in C: 30 µm. 

 

Since astrocyte development in the brain and spinal cord proceed along different time frames 

(Molofsky and Deneen 2015), we wondered whether more GFAP-expressing astrocytes could 

be obtained from the spinal cord of a later developmental timepoint. Further, immunolabeling 

for different molecular markers of neural stem cells, progenitor cells and cells of the astrocytic 

lineage was performed to phenotypically characterize purified astrocyte cultures generated 

from postnatal day 1 and 3 spinal cords (FIG 18). Both P1 and P3 spinal cord-derived cells 

showed strong immunolabeling for the cytoskeletal stem cell marker Vimentin (FIG 18A – F), 

Nestin (FIG 18G – L), and nuclear staining for Sox2 (FIG 18M – O). An equal percentage of 

P1 and P3 spinal cord-derived cells expressed the astrocyte marker GFAP (FIG 18S, 67.76 ± 

2.53% at P1 vs. 72.29 ± 0.12% at P3; unpaired Students’ t-test p = 0.14). Importantly, within 

the fraction of GFAP+ cells, ~80% of all cells co-expressed Vimentin and Nestin, and a total of 

40% of all GFAP-expressing cells were also found to be positive for Sox2, which labels prolif-

erating progenitor cells. However, no significant differences were found between the marker 

expression profile of spinal cord-derived cells at postnatal day 1 and 3 (Two-Way ANOVA for 

developmental timepoint: p = 0.39). Conclusively, the large number of GFAP+ cells co-express-

ing the tested stem cell and progenitor markers might be indicative of a rather immature or 

maturing phenotype of the isolated astrocytic cells. Since the morphology of cells of the astro-

cytic lineage changes during development (Freeman 2010, Vue, Kim et al. 2014, Zhao, Chen 

et al. 2014), GFAP+ astrocytes were also morphologically examined at both developmental 

timepoints (FIG 18U). Overall cell morphology was defined in 4 different categories: bi-/tripolar, 

small fibrous, large fibrous, and stellate (Bushong, Martone et al. 2002, Holtje, Hoffmann et al. 

2005, Sofroniew and Vinters 2010, Testen, Kim et al. 2020). At P1, significantly more GFAP-

positive cells showed a tri-/bipolar morphology compared to P3 (44.49 ± 4.68% vs. 30.39 ± 

0.73%; Two-Way ANOVA for morphological differences: p < 0.001, followed by Sidak’s post 

hoc *p < 0.05; Interaction between developmental timepoint and morphology: p = 0.0095). 

Further, the percentage of cells with a large fibrous and stellate cell shape increased from P1 

to P3, but this trend did not yet reach significance. 
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Figure 18: Spinal cord-derived astrocytes isolated at P1 and P3 show similar marker expres-
sion profiles but morphological differences in vitro. Ara-C-treated astrocyte cultures generated from 

postnatal days 1 and 3 were immunolabeled for the stem cell markers Vimentin (Vim, green, A – F), 

Nestin (green, G – L), and the progenitor marker Sox2 (green, M – R). (S) Quantification of GFAP 

expression revealed no significant difference between cells isolated at P1 and P3 (unpaired Students’ t-

test, p = 0.14). (T) The majority of GFAP+ cells similarly expressed Vimentin, Nestin and Sox2 at both 

developmental timepoints (Two-Way ANOVA for developmental timepoint: p = 0.39). (U) In contrast, the 

cell morphology of GFAP-expressing cells was significantly different between P1 and P3 (Two-Way 

ANOVA for morphological differences: p < 0.001, with Sidak’s post hoc test *p < 0.05 comparing bi/tri-

polar cell morphology between P1 and P3). Scale bar in F, L, R: 100 µm. 

 

To assess whether spinal cord-derived astrocytes shared characteristics of cortex-derived as-

trocytes, the same in vitro-characterization was done with cortex-derived astrocytes isolated 

at P1 and P3 (FIG 19). The vast majority of cortex-derived astrocytes at both developmental 

timepoints expressed Vimentin and Nestin together with GFAP (FIG 19A – L). The percentage 

of GFAP-expressing cells was unaltered between P1 and P3 (91.99 ± 1.21% at P1 vs. 94.92 

± 1.00% at P3, unpaired Students’ t-test p = 0.13). Quantification of marker expression in 

GFAP+ (FIG 19T) indicated no change in Vimentin or Nestin, GFAP co-expression at P1 and 

P3, but a sharp decline in GFAP+/Sox2+-expressing cells (Two-Way ANOVA for developmental 
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timepoint: p < 0.0001, with Sidak’s post hoc ****p < 0.0001). Further, a causal relation between 

developmental timepoints and marker expression might be present (Interaction between de-

velopmental timepoint and marker: p = 0.0002). Again, since more than 80% of all GFAP+ cells 

co-express stem cell markers, the isolated astrocytic cells might be in a maturing rather than 

a fully mature state. When cell morphology was examined, the vast majority of GFAP-

expressing astrocytes showed either an undifferentiated bi-/tripolar or small fibrous morphol-

ogy, which was consistent also at postnatal day 3 (FIG 19U). 

 

 



3. Results 

 109

Figure 19: Cortex-derived astrocytes isolated at P1 express significantly less Sox2 compared 
with cortex-derived astrocytes isolated at P3. After Ara-C treatment, cortex-derived cells from P1 

and P3 were immunolabeled for GFAP (red) and the stem cell markers Vimentin (green, A – F), Nestin 

(green, G – L), and Sox2 (green, M – R). (S) Similar to spinal cord-derived cells, no difference was 

observed in GFAP expression between P1 and P3 (unpaired Students’ t-test p = 0.13). (T) At P1, most 

GFAP+ cells co-expressed both Vimentin and Nestin, but their expression appeared slightly reduced at 

P3. Sox2 expression was, in contrast, strongly decreased at P3 (Two-Way ANOVA for developmental 

timepoint: p < 0.0001, followed by Sidak’s post hoc test ****p < 0.0001 for Sox2; Interaction between 

developmental timepoint and marker expression: p = 0.0002). (U) Morphology analysis cells revealed 

~75% of all GFAP-expressing cells to have either a bi-/tripolar or small fibrous cellular shape (Two-Way 

ANOVA for morphology differences: p < 0.0001; for developmental timepoint: p > 0.999). Scale bar in F, 

L, M: 100 µm. 

 

For comparison, marker expression as well as the morphology in vitro of cortex- and spinal 

cord-derived astrocytes at P1 and P3 were directly examined (FIG 20). At both postnatal 

timepoints, the amount of GFAP+ cells was significantly greater in cortex-derived samples 

(≥90% of all detected cells express GFAP) compared with spinal cord-derived samples (un-

paired Students’ t-test ****p < 0.0001). Within the fraction of GFAP-expressing cells -independ-

ent of cell origin and postnatal timepoint-, most cells co-express the stem cell markers Vimentin 

and Nestin. However, the percentage of GFAP+/Sox+ astrocytes derived from postnatal spinal 

cord was significantly higher than from cortex-derived astrocytes (FIG 20D, Two-Way ANOVA 

for cell type: p < 0.05, followed by Sidak’s post hoc test *p < 0.05), which was reversed when 

cells from P3 were compared (Two-Way ANOVA for cell type: p < 0.05, followed by Sidak’s 

post hoc test ****p < 0.05). Here, a causal relationship between cell type and marker expres-

sion was found (Interaction between cell type and marker: p = 0.0002). If cortex-derived P1 

astrocytes with spinal cord-derived astrocytes P3 were compared, the fraction of 

GFAP+/Vimentin+ and GFAP+/Nestin+ was slightly but not significantly enhanced in cortex-de-

rived astrocytes (FIG 20F). A more significant fraction of cortex-derived cells was co-labeled 

with GFAP and Sox2 (Two-Way ANOVA for cell type: p < 0.01, with Sidak’s post hoc test *p < 

0.05). If the different cell morphology categories were compared at P1, spinal cord-derived 

astrocytes appeared more often in a bi-/tripolar or large fibrous cell shape than cortex-derived 

cells. In contrast, a small fibrous cell shape was more prominent in the cortex-derived cells 

(Two-Way ANOVA for morphology. p < 0.0001, with Sidak’s post hoc **p < 0.01 for bi-/tripolar, 

****p < 0.0001 for small fibrous, *p < 0.05 for large fibrous; Interaction cell type x morphology: 

p < 0.0001). At postnatal day 3 (FIG 20H), only differences in the small and large fibrous frac-

tion were detected (Two-Way ANOVA for morphology: p < 0.0001, with Sidak’s post hoc ****p 

< 0.0001; Interaction between cell type and morphology: p < 0.0001), which was consistent 
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when cortex-derived astrocytes from P1 and spinal cord-derived astrocytes from P3 were com-

pared with each other (FIG 20I) (Two-Way ANOVA for morphology: p < 0.0001, with Sidak’s 

post hoc ****p < 0.0001; Interaction between cell type and morphology: p < 0.0001). 

 

 

Figure 20: Cortex- and spinal cord-derived astrocytes isolated at P1 and P3 show differences 
in marker expression and cell morphology. (A – C) Quantification of GFAP+ cells at P1 (A), P3 (B) 

and the direct comparison of P3 vs. P1 (C) revealed an overall higher percentage of GFAP-expressing 

cells in cortex-derived cells (unpaired Students’ t-test ****p < 0.0001). (D – F) Marker co-expression of 

GFAP+ cells at P1 (D) (Two-Way ANOVA for cell type: p < 0.05, with Sidak’s post hoc *p < 0.05 for Sox2), 

P3 (E) (Two-Way ANOVA for cell type: p < 0.05, with Sidak’s post hoc ****p < 0.05 for Sox2; Interaction 

between cell type and marker: p = 0.0002), and P1 vs. P3 (F)(Two-Way ANOVA for cell type: p < 0.01, 

with Sidak’s post hoc *p < 0.05 for Sox2). (G – I) Cell morphology of GFAP+ cells at P1 (G) (Two-Way 

ANOVA for morphology: p < 0.0001, with Sidak’s post hoc *p < 0.05, **p < 0.01, ****p < 0.0001 comparing 

spinal cord-derived astrocytes with cortex-derived astrocytes), at P3 (H) (Two-Way ANOVA for morphol-

ogy: p < 0.0001, with Sidak’s post hoc ****p < 0.0001 comparing spinal cord-derived astrocytes with 

cortex-derived astrocytes), and P1 vs. P3 (I) (Two-Way ANOVA for morphology: p < 0.0001, with Sidak’s 

post hoc ****p < 0.0001). 
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To summarize, astrocytic cells can be obtained from spinal cords of neonatal Fischer-344 rats, 

maintained in culture and enriched following Ara-C treatment. Importantly, the fraction of 

GFAP-expressing cells is significantly smaller in astrocyte cultures derived from the spinal cord 

compared to cortex-derived cultures. In vitro-characterization using immunolabeling revealed 

only minor differences between cortex- and spinal cord-derived astrocytes (GFAP+), also when 

cells were isolated at later developmental timepoints. Similarly, the morphology of GFAP+ as-

trocytes was comparable, although slight differences were found. 

 

3.3.2 Transplantation of neonatal cortex-derived or spinal cord-derived 
astrocytes into the intact spinal cord 

Since no striking differences between neonatal cortex- and spinal cord-derived astrocytes 

could be observed with the measured parameters, neonatal astrocytes derived from cortex at 

P1 and neonatal astrocytes derived from P3 spinal cord were used in the following in vivo 

studies. This decision was based upon previous studies that already successfully used trans-

plantation of P1 cortex-derived astrocytes after SCI (Kliot, Smith et al. 1990, Olby and 

Blakemore 1996, Joosten, Veldhuis et al. 2004) as well as several practical considerations. 

More precisely, although GFAP-expressing astrocytes were successfully isolated from P1 spi-

nal cord tissue, the overall cell yield per animal (~200,000 cells per spinal cord; ~60% GFAP+ 

cells ) and cell survival within the first days in vitro was minimal compared with the amount of 

cells that can be obtained from P1 cortical tissue (~2 x 106 cells per animal, more than 90% 

GFAP+ cells). In contrast, if P3 spinal cords were used, a total of 500,000 cells per animal could 

be obtained with 60 to 65% of all cells expressing GFAP. Furthermore, P3 spinal cord cells 

appeared to be more robust in vitro and during the Ara-C treatment resulting in an overall 

greater amount of cells that could be used for further experiments. 

 

In vitro-characterization of both, neonatal cortex-derived and spinal cord-derived cells, re-

vealed an immature or maturing phenotype of the isolated astrocytes (FIG 18 & 19). To deter-

mine how these immature astrocytes respond to an in vivo environment, P3 spinal cord-derived 

astrocyte and P1 cortex-derived astrocytes were transplanted into the intact spinal cord at 

cervical level C5 (FIG 21). 
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Figure 21: Experimental setup. (A) Neonatal P1 cortex-derived astrocytes (n = 6) or P3 spinal cord-

derived astrocytes (n = 6) were transplanted into the intact spinal cord at cervical level C5. (B) Animals 

were sacrificed 2 or 4 weeks after cell transplantation (n = 3/timepoint) and their spinal cords immuno-

histochemically analyzed (C). 

 

A total of 12 adult female Fischer-344 rats received cell injections of GFP-transgenic P3 spinal 

cord derived or P1 cortex-derived astrocytes (n = 6/cell type). In each group, a subgroup of 

animals was perfused 2 or 4 weeks after cell injection (n = 3/timepoint). Afterwards, their spinal 

cords were immunohistochemically analyzed to assess the expression of GFAP (FIG 22). The 

transplanted GFP+ cells survived and integrated into the host spinal cord parenchyma with no 

distinct boundary between injected cells and surrounding host spinal parenchyma. Independ-

ent of tissue origin, most transplanted cells expressed the astrocyte marker GFAP already 2 

weeks after transplantation (FIG 22A – D, I; P3 Spinal cord-derived astrocytes: 95.19 ± 3.34% 

GFP+/GFAP+ cells; P1 cortex-derived astrocytes: 99.09 ± 0.45% GFP+/GFAP+ cells) and con-

tinued to showed GFAP immunoreactivity also at 4 weeks post-transplantation (FIG 22D – H, 
I P3 Spinal cord-derived astrocytes: 96.41 ± 3.05% GFP+/GFAP+ cells; P1 cortex-derived as-

trocytes: 98.36 ± 0.51% GFP+/GFAP+ cells; Two-Way ANOVA for overall group differences: p 

= 0.24, for timepoints: p = 0.93). 
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Figure 22: The majority of P3 spinal cord- and P1 cortex-derived astrocytes expresses GFAP 
2 and 4 weeks after transplantation into the intact spinal cord. (A – D) Two weeks after transplan-

tation, the vast majority of the grafted P3 spinal cord-derived (A, B) and P1 cortex-derived astrocytes 

(C, D; GFP, green) express the astrocyte marker GFAP (red), which was consistent also at 4 weeks 

post-transplantation (E – H). (I) Quantification of immunolabeling confirmed a constantly high fraction of 

the grafted GFP+ cells to express GFAP (Two-Way ANOVA for overall group differences: p = 0.24; for 

timepoints: p = 0.93; spinal cord-derived astrocytes P3, n = 3/timepoint; cortex-derived astrocytes P1, n 

= 3/timepoint). Scale bars in D, H: 100 µm. 

 

Furthermore, co-expression of molecular markers of stem cells/progenitor cells (Vimentin, 

Nestin, Sox2), astrocyte precursors (Sox9) (FIG 23) and maturing or terminally differentiated 

astrocytes was determined (A2B5, AQP4, GLT-1, S100β) (FIG 24). About 80% of all trans-

planted astrocytes (GFP+/GFAP+) in both groups were positively labeled for Vimentin (FIG 23A 
– E) without any differences over time (Two-Way ANOVA p = 0.09). In contrast, Nestin expres-

sion appeared to be unaltered 2 and 4 weeks after transplantation (FIG 23F – J, Two-Way 

ANOVA for overall group differences: p = 0.85, for timepoint: p = 0.18). Sox2 expression was 
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surprisingly high in the P1 cortex-derived astrocytes at both timepoints (2 weeks: 40.24 ± 

3.13%; 4 weeks: 57.59 ± 11.24% of GFP+/GFAP+ cells) compared to P3 Spinal cord-derived 

astrocytes (2 weeks: 9.83 ± 1.49%; 4 weeks: 18.09 ± 5.32% of GFP+/GFAP+ cells; Two-Way 

ANOVA p < 0.01 followed by Sidak’s post hoc test *p < 0.05). Additionally, Sox9 expression of 

the transplanted cells was examined and quantified (FIG 23P – T). Similar to the other markers, 

both cell types expressed moderate levels of Sox9, 2 and 4 weeks post-transplantation (Two-

Way ANOVA for overall group differences: p = 0.24; for timepoints: p = 0.95). 
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Figure 23: Neonatal P3 spinal cord- and P1 cortex-derived astrocytes still express stem cell 
and precursor cell markers 2 and 4 weeks after transplantation into the intact spinal cord. (A – 
D) Immunolabeling of transplanted GFP+ astrocytes (GFP, green) derived from P3 spinal cord (A, B) or 

P1 cortex (C, D) showed strong Vimentin expression (Vim, magenta) 2 and 4 weeks after cell transplan-

tation (spinal cord-derived astrocytes P3, n = 3/timepoint; cortex-derived astrocytes P1, n = 3/timepoint). 

(E) Most transplanted cells consistently co-expressed GFAP and Vimentin 2 and 4 weeks after cell 

transplantation (n = 3 for each timepoint/astrocyte population; Two-Way ANOVA for overall group differ-

ences: p = 0.11; for timepoint: p = 0.09). (F – I) Spinal cord- (F, G) as well as cortex-derived astrocytes 

(H, I) were positively labeled for Nestin (magenta). However, Nestin expression was unaltered 2 and 4 

weeks after transplantation (J; Two-Way ANOVA for overall group differences: p = 0.85; for timepoint: p 

= 0.18). (K – N) Sox2 expression (magenta) was present in both P3 Spinal cord-derived (K, L) and P1 

cortex-derived (M, N) astrocytes but significantly elevated in cortex-derived astrocytes (O; Two-Way 

ANOVA for overall group differences: p < 0.001, with Sidak’s post hoc *p < 0.05; for timepoints: p = 0.11). 

(P – S) Both cell types equally expressed the transcription factor Sox9 (magenta) 2 and 4 weeks (T; 

Two-Way ANOVA for overall group differences: p = 0.24; for timepoints: p = 0.95). Scale bars in D, I, N, 

S: 100 µm. 

 

More than 95% of all transplanted GFP+ cells expressed the astrocyte marker GFAP early as 

2 weeks and constantly expressed GFAP+ 4 weeks after transplantation what perhaps indicate 

progressing astrocyte maturation. Surprisingly, the expression of the stem cell markers Vi-

mentin and Nestin were found to be unaltered post-transplantation, whereas in contrast, Sox2 

expression appeared to be elevated after transplantation and was significantly greater in P1 

cortex-derived astrocytes. 

Thus, to further examine the maturation state of the grafted astrocytes, the expression of mo-

lecular markers specific for maturing and functional astrocytes was immunohistochemically 

analyzed (FIG 24). Besides molecular markers for stem cells (Vimentin, Nestin) and progenitor 

cells (Sox2, Sox9), astrocytes derived from P3 spinal cord and P1 cortex displayed on overall 

high expression of markers indicative for mature and functional astrocytes in vivo. In particular, 

immunolabeling analysis revealed that expression of A2B5 may increase in P3 Spinal cord-

derived astrocytes from 2 to 4 weeks post-transplantation (FIG 24A – D; 52.77 ± 16.52% at 2 

weeks vs. 66.61 ± 8.07% of GFP+/GFAP+ cells at 4 weeks, Two-Way ANOVA p = 0.33), 

whereas A2B5 expression was unaltered in GFP+/GFAP+ cells derived from P1 cortex (Two-

Way ANOVA p = 0.91). Similarly, about ~50% of all grafted cells were labeled for AQP4, inde-

pendent of cell type and timepoint (Two-Way ANOVA p = 0.85), whereas a slightly lower per-

centage of P1 cortex-derived astrocytes were AQP4+ 4 weeks post-transplantation (Two-Way 

ANOVA p = 0.37). Analysis of the glutamate transporter GLT-1 (FIG 24K – O) revealed a trend 
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towards an elevating expression in both cell types over time (Two-Way ANOVA p = 0.14). Fi-

nally, independent of cell type and time after transplantation, ~80% of all transplanted astro-

cytes showed immunoreactivity for S100β (FIG 24P – T). 

 

 

Figure 24: Neonatal P3 spinal cord- and P1 cortex-derived astrocytes express functional as-
trocyte markers 2 and 4 weeks after transplantation into the intact spinal cord. (A – E) Immuno-

labeling of the transplanted (GFP, green) astrocytes (GFAP, red) for A2B5 (magenta) pointed towards a 

trend for an increased expression from 2 weeks to 4 weeks after transplantation in P3 Spinal cord-

derived astrocytes, whereas the expression was unaltered in P1 cortex-derived astrocytes (Two-Way 

ANOVA for overall group differences: p = 0.14; for timepoints: p = 0.48; spinal cord-derived astrocytes 

P3, n = 3/timepoint; cortex-derived astrocytes P1, n = 3/timepoint)). (F – I) Both cell types equally 

showed immunoreactivity for AQP4 (magenta) 2 and 4 weeks post-transplantation (J, Two-Way ANOVA 

for overall group differences: p = 0.56; for timepoints: p = 0.87). (K – O) More GFP+/GFAP+ astrocytes 

from both groups co-expressed GLT-1 4 weeks after transplantation compared to 2 weeks post-trans-

plantation (Two-Way ANOVA for overall group differences: p = 0.85; for timepoints: p = 0.13). (P – T) 

S100β colocalized with GFP+/GFAP+ transplanted astrocytes both derived from spinal cord (P, Q) and 

cortex (R, S) and its expression remained unaltered between 2 and 4 weeks post-transplantation inde-

pendent of the transplanted cell type (T, Two-Way ANOVA for overall group differences: p = 0.89; for 

timepoint: p = 0.66). Scale bars in D, I, N, S: 100 µm. 
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High-resolution confocal imaging of individual GFP+ transplanted cells allowed for qualitative 

assessment of cell morphology and interaction with the host spinal tissue. Specifically, co-

labeling with Connexin-43 (CX43) was used to visualize sites of direct cell-cell contact between 

astrocytes (Ezan, Andre et al. 2012, Lien, Tuszynski et al. 2019), whereas co-labeling with βIII-

tubulin showed astrocyte-axon interactions (FIG 25). Both, P3 spinal cord- as well as P1 cor-

tex-derived astrocytes (GFP+), developed process-bearing stellate morphology in vivo (FIG 
25A, C). More importantly, graft-derived astrocytes formed cell-cell contacts to host-derived 

astrocytes as indicated by the close association of GFP+/CX43+ cell processes (originating 

from transplanted cells) with GFP-/CX43+ cell processes (originating from the host astrocytic 

network) (arrowheads, FIG 25B, D). Further, transplanted GFP+ astrocyte of both origins ex-

tended processes along host axons (arrowheads in FIG 25F, H). 

 

 

Figure 25: Neonatal P3 spinal cord- and P1 cortex-derived astrocytes associate with the host 
astrocytic network and align with host axons. (A – D) GFP-positive transplanted spinal cord P3- (A, 
B) and P1 cortex-derived astrocytes (C, D) and co-expressed CX43 (red) and formed direct cell contact 

sites with the host astrocytic network (arrowheads, GFP-/CX43+ cells). (E – H) Transplanted astrocytes 

aligned with host axons (βIII-tubulin, red). XZ and YZ planes are shown to underneath and to the right, 

respectively. Scale bars in D, H: 25 µm. 

 

Taken together, independent of tissue origin, neonatal astrocytes can be successfully trans-

planted into the intact spinal cord. The transplanted cells survived for at least 4 weeks and 

distributed themselves into the adjacent spinal parenchyma without the formation of distinct 

borders between cell graft and host as previously reported for BMSC- and Schwann cell-con-

taining grafts (Gunther, Weidner et al. 2015, Williams, Henao et al. 2015, Liu, Sandner et al. 

2017). Although in vitro-characterization revealed a rather immature phenotype for both cell 
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types, P3 spinal cord- and P1 cortex-derived astrocytes equally expressed GFAP and devel-

oped a stellate cell morphology in vivo indicating progressing astrocyte maturation. However, 

most grafted cells still were positively labeled for Vimentin, Nestin and Sox2 2 and 4 weeks 

post-transplantation but started to additionally express markers specific for differentiating and 

functional mature astrocytes (A2B5, AQP4, GLT-1, S100β). CX43-positive cell processes of 

graft- and host-derived astrocytes were found in direct contact with each other, indicating an 

integration of the grafted cells into the host astrocytic network. In line with this, grafted cells 

aligned with host axons (FIG 25F, H). 

 

3.4 Impact of neonatal spinal cord- derived astrocytes as a 
cellular growth substrate within alginate-based hydrogel 
implants and in the surrounding host spinal cord on axonal 
regeneration after traumatic spinal cord injury 

Since astrocytes can be successfully obtained from neonatal spinal cord tissue and afterwards 

used for transplantation in vivo, we sought to test whether they represent a cellular growth 

substrate within alginate-based hydrogel implants superior to cortex-derived astrocytes used 

in the previous study (see 3.2). As stated in the last section, astrocytes derived from cortex as 

well as spinal cord harbor the capacity to adopt a mature morphology, express adult astrocyte 

markers and potentially integrate into the host astrocytic network in vivo. 

To further improve the integration of the hydrogel implants into the lesion site and thereby 

maximize axonal growth, the implantation paradigm was modified by combining the results of 

the previous in vivo study and another implantation study parallelly performed in our laboratory 

(Liu, Sandner et al. 2017). Instead of hydrogel implants with a mean channel diameter of 39.0 

± 1.6 µm, new alginate-based hydrogels fabricated with Zinc ions (Zn2+) were used resulting 

in a mean channel diameter of 78.2 ± 1.7 µm. Thus, the volume of each hydrogel channel was 

increased providing more space for the seeded astrocytes, infiltrating host cells and penetrat-

ing spinal axons. Additionally, the study by Liu et al. provided strong evidence that a continuous 

cellular substrate spanning the caudal host-graft interface is essential for re-entry of regrowing 

descending axons into the caudal spinal cord (Liu, Sandner et al. 2017). Hence, we grafted 

immature astrocytes either derived from P3 spinal cord or P1 cortex 1 mm caudal to the astro-

cyte-seeded hydrogel implants. Thereby, we sought to improve tissue penetration and conse-

quently improve implant integration into the SCI lesion site. 
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3.4.1 Implantation of astrocyte-seeded alginate-based hydrogel implants 
with additional caudal astrocyte transplantation after traumatic spinal 
cord injury 

In this study, P1 cortex- and P3 spinal cord-derived astrocytes were used for seeding of the 

implant as well as caudal cell transplantation (FIG 26) and their impact on implant integration 

as assessed via host-graft interactions and revascularization, and axonal growth were quanti-

tatively and qualitatively analyzed. 

 

 

Figure 26: Experimental setup. (A) A total of 18 adult female Fischer-344 underwent a unilateral 

C5 hemisection with immediate implantation of an alginate-based hydrogel implant pre-seeded with ei-

ther neonatal P1 cortex-derived (GFP+) or P3 spinal cord-derived astrocytes (GFP+). Additionally, 

100,000 GFP+ neonatal astrocytes were transplanted into the uninjured host spinal cord 1 mm caudal 

to the implantation site. After 3 weeks, the anterograde axon tracer BDA (10 kDa) was injected into the 

cervical spinal cord at C2 to label specifically label descending spinal axons. (B) Animals were allowed 

to survive for 4 weeks, transcardially perfused and (C) their spinal cords were immunohistochemically 

analyzed at 100 µm and 500 µm from the rostral or caudal hydrogel edge, respectively, and at the 

hydrogel center (1000 µm) (PLO/Laminin, n = 5 (1 animal excluded); + cortex-derived astrocytes, n = 

6(1 animal excluded); + spinal cord-derived astrocytes, n = 6; see Suppl. table 1). 
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3.4.1.1 Cell filling and graft cell survival in astrocyte-seeded hydrogel 
implants in combination with additional astrocyte grafting into the 
caudal host spinal cord 

To assess whether the neonatal spinal cord-derived astrocytes possess superior implant inte-

gration capacities and thereby increase axonal regrowth after SCI in comparison to cortex-

derived astrocytes, alginate-based hydrogel implants were seeded with neonatal P3 spinal 

cord- (n = 6) or P1 cortex-derived astrocytes (n = 6, 1 animal had to be excluded from analysis 

due to destruction of the hydrogel during cryosectioning) and implanted directly into the lesion 

cavity of a unilateral hemisection injury at C5/6. Additionally, neonatal astrocytes were trans-

planted into the uninjured host spinal cord 1 mm caudal to the lesion site. Surface coated 

hydrogels without cell seeding or additional cell grafts served as controls (n = 6, 1 died imme-

diately after SCI). Animals were allowed to recover and finally perfused 4 weeks after SCI; their 

spinal cords immunohistochemically analyzed (FIG 27). Similar to the previous in vivo-studies, 

hydrogel implants of all groups remained structurally intact with no signs of degradation and 

were integrated into the lesion site without cavitation (FIG 27A – C). Independent of cell seed-

ing, most implant channels (> 80% DAPI+ channels) were filled with cells particularly at the 

channel entries (FIG 27D; 100 µm from rostral/caudal hydrogel edge; Two-Way ANOVA for 

overall group differences: p = 0.51). In all groups, cell filling decreased towards the central 

area of each hydrogel implant, but surprisingly, this decline was most significant in implants 

seeded with cortex-derived astrocytes (Two-Way ANOVA for distance: p < 0.0001, followed by 

Tukey’s post hoc **p < 0.01 comparing the hydrogel edges with the hydrogel center in the 

cortex-derived astrocyte group; see Suppl. table 7). Within both astrocyte-seeded groups, the 

survival of the grafted GFP+ astrocytes was quantified by determining the percentage of 

DAPI+/GFP+ channels (FIG 27E), and via measuring the GFP-covered channel area (FIG 27F). 

Both methods indicated an overall moderate graft cell survival, since 89.26 ± 0.69% of all cell-

filled channels per implant contained GFP-expressing spinal cord-derived graft cells and 81.48 

± 2.51% of all cell-filled channels per implant contained GFP-expressing cortex-derived astro-

cytes. Noteworthy, in the cortex-derived astrocyte group the fraction of GFP+ channels might 

have dropped at the hydrogel center (73.82 ± 8.31% GFP+ channels) similar to the percentage 

of DAPI+ channels, whereas, it was constant throughout the rostrocaudal extent in implants 

seeded with spinal cord-derived cells (FIG 27E). Nonetheless, both astrocyte populations 

equally filled the hydrogel channels as no significant group differences were found when chan-

nel area occupied by GFP-expressing graft cells was examined (FIG 27F; Two-Way ANOVA p 

= 0.33). Again, less grafted cells were detected at the hydrogel center in both groups (Two-

Way ANOVA for distance: p < 0.001, followed by Tukey’s post hoc test **p < 0.01 for cortex-
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derived astrocytes, *p < 0.05 for spinal cord-derived astrocytes). Finally, most GFP-positive 

grafted cells from both groups co-expressed GFAP, filled the channel lumen and lined the 

channel walls within the hydrogel implants 4 weeks after injury (FIG 27G, H). 
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Figure 27: Neonatal P3 spinal cord- and P1 cortex-derived astrocytes fill alginate-based hy-
drogel implants and survive for at least 4 weeks in vivo. (A – C) Four weeks after implantation, non-

seeded hydrogel implants (A), and implants seeded either with neonatal cortex-derived astrocytes (B) 

or spinal cord-derived astrocytes (C) were tightly integrated into the lesion cavity with their channels 

infiltrated with host cells as indicated by DAPI-labeled nuclei (DAPI, white) (A) or filled with graft-derived 

GFP+ cells (GFP, green) (B, C). Dashed lines indicate hydrogel channels. Rostral is to the left, medial 

to the top and caudal to the right. (D) Quantification of DAPI+ channels revealed a dense cell filling at 

the rostral and caudal channel entries and a strong decline towards the hydrogel center in all groups 

(Two-Way ANOVA for overall group differences: p = 0.51; PLO/Laminin, n = 5; + cortex-derived astro-

cytes, n = 5; + spinal cord-derived astrocytes, n = 6). This decline was most prominent in implants 

seeded with cortex-derived astrocytes (Two-Way ANOVA for distance: p < 0.0001, with Tukey’s post hoc 

**p < 0.001 comparing channel entries on both sides with hydrogel center). Detailed statistical analysis 

is depicted in Suppl. table 7. (E) In hydrogel implants seeded with spinal cord-derived astrocytes, about 

86% of all channels were filled with grafted GFP-expressing cells, whereas the percentage of 

DAPI+/GFP+ channels in the cortex-derived astrocyte group appeared to be lower at the hydrogel center 

(Two-Way ANOVA for overall group differences: p = 0.17; for distance: p = 0.28). (F) Similarly, the chan-

nel area covered by GFP-positive cells was significantly higher at the channel entries (0 – 500 µm) and 

decreased towards the hydrogel center (500 – 1000 µm) (Two-Way ANOVA for overall group differences: 

p = 0.33; for distance: p < 0.001 with Tukey’s post hoc **p < 0.01 for cortex-derived astrocytes and *p < 

0.05 for spinal cord-derived astrocytes comparing channel entries and hydrogel center). Blue, red and 

grey boxes indicate the rostral and caudal hydrogel halves, and the hydrogel center, respectively. (G, 
H) Both, cortex-derived as well as spinal cord-derived astrocytes (GFP, green), primarily co-expressed 

GFAP (red) and densely filled the hydrogel implants and lined the channel walls. XZ and YZ planes are 

shown underneath and to the right, respectively. Scale bars in C: 500 µm, in H: 50 µm. 

 

3.4.1.2 Characterization of neonatal astrocytes transplanted into the caudal 
host spinal cord 

In this study, neonatal astrocytes were also transplanted into the uninjured host spinal cord 1 

mm caudal to the implantation site to establish a continuous cellular bridge spanning the cau-

dal host-graft interface (FIG 28). Both astrocyte populations survived after injection into the 

caudal host spinal cord and distributed themselves into the surrounding host spinal paren-

chyma (FIG 28A, E). High-resolution confocal imaging showed that cortex-derived astrocytes 

adopted a process-bearing cell morphology, whereas spinal cord-derived astrocytes adopted 

a longitudinal cell shape (FIG 28B, F). Moreover, both astrocyte populations distributed them-

selves into the host astrocytic network. The transplanted cells surprisingly showed a slightly 

different migratory behavior: neonatal cortex-derived astrocytes spread out widely in rostral 

and caudal direction from the injection site and were found up to 2 mm caudal from the injection 
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site. In contrast, astrocytes derived from neonatal spinal cords migrated preferentially in the 

rostral direction towards the hydrogel implant and only individual cells migrated into the more 

caudal areas of the host spinal cord (FIG 28I). Both astrocyte populations aligned into longitu-

dinal cellular bridges towards the hydrogel implant, forming physical guidance structures for 

host axons (FIG 28C, D & G, H). 
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Figure 28: Caudally transplanted neonatal astrocytes spread out into the host spinal paren-
chyma and bridge the caudal host graft interface. (A – D) GFP-labeled neonatal cortex-derived as-

trocytes (GFP, green) spread out widely into the surrounding host parenchyma (A; asterisk indicate 

injection site). Dashed lines indicate the hydrogel implant. Inlay in A is shown at a higher magnification 

in C, D. Rostral is to the left, medial to the top and caudal to the right. (B) Cortex-derived astrocytes co-

expressed GFAP (red), adopted a star-like morphology and distributed themselves into the host astro-

cytic network (GFP-/GFAP+). (C, D) The grafted cortex-derived astrocytes aligned into longitudinal tissue 

bridges (arrowheads in D) and were associated with host axons (βIII-tubulin, magenta). (E – H) GFP+ 

spinal cord-derived astrocytes preferentially spread towards the hydrogel implant and only for short dis-

tances caudally. (E; asterisk indicate injection site). Dashed lines indicate the hydrogel implant. Inlay in 

E is shown at a higher magnification in G, H. Rostral is to the left, medial to the top, and caudal to the 

right. (F) Spinal cord-derived astrocytes co-expressed GFAP and adopted an elongated cell morphology. 

(G, H) Similar to cortex-derived astrocytes, they aligned longitudinally and were associated with host 

axons. (I) Graft cell migration was assessed by quantification of the proportional GFP+ area in the host 

spinal parenchyma (Two-Way ANOVA for cell type: p < 0.001, with Sidak’s post hoc **p < 0.01 comparing 

both cell types at 0 – 500 µm and *p < 0.05 caudal from the injection site; + cortex-derived astrocytes, 

n = 6; + spinal cord-derived astrocytes, n = 6). Individual GFP-labeled astrocytes from both groups were 

found within a 3 mm wide interval caudal from the cell injection site (Two-Way ANOVA for distance: p < 

0.0001). Detailed statistical analysis is depicted in Suppl. table 8. Scale bars in A, E: 500 µm, in B, F: 

50 µm, in D, H: 100 µm. 

 

Although both astrocyte populations survived within the host spinal cord, they still exhibited a 

slightly different cell morphology and migratory behavior after transplantation. Given the rather 

immature phenotype of both astrocyte populations in vitro, their GFAP and Vimentin expression 

was assessed in vivo to determine whether the possibly observed morphological differences 

might be due to a differing maturation and/or reactivity states following transplantation (FIG 
29). Independent of their tissue origin, the vast majority of all transplanted GFP+ neonatal as-

trocytes expressed GFAP (FIG 29A – L, M; cortex-derived astrocytes: 93.78 ± 1.5% 

GFP+/GFAP+ cells, spinal cord-derived astrocytes: 92.11 ± 1.58% GFP+/GFAP+ cells, unpaired 

Students’ t-test p = 0.46). Additionally, more than 70% of the grafted GFAP+ astrocytes were 

co-labeled with Vimentin in both groups (unpaired Students’ t-test p = 0.55). Similarly, prolifer-

ation capacity was not different between the cortex- and spinal cord-derived astrocytes (cortex-

derived astrocytes: 15.54 ± 3.39% GFP+/GFAP+/Ki67+ cells vs. spinal cord-derived astrocytes: 

22.8 ± 5.66% GFP+/GFAP+/Ki67+ cells, unpaired Students’ t-test p = 0.3). Surprisingly, the per-

centage of Vimentin-expressing GFAP+ astrocytes was remarkably lower compared with the 

fraction of GFP+/GFAP+/Vim+ graft-derived cells after transplantation into the intact spinal cord 

(FIG 29E; cortex-derived astrocytes: 86.64 ± 5.31% GFP+/GFAP+/Vim+ cells, spinal cord-de-

rived astrocytes: 91.61 ± 2.81% GFP+/GFAP+/Vim+ cells). 
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Figure 29: Caudally transplanted neonatal astrocytes co-express Vimentin and are partially 
proliferative. (A – C) Cortex-derived and (D – F) spinal cord-derived neonatal astrocytes (GFP, green) 

co-expressed GFAP (red) as well as Vimentin (magenta) 4 weeks after transplantation into the caudal 

host spinal cord. (G – L) Additionally, ~20% of the grafted astrocytes (GFP+/GFAP+) were proliferative 

as indicated by Ki67 (magenta) expression. Rostral is to the left, medial to the top, and caudal to the 

right. (M) Quantification of immunolabeling showed that >90 % of all transplanted cells expressed GFAP 

(unpaired Students’ t-test p = 0.46; + cortex-derived astrocytes, n = 6; + spinal cord-derived astrocytes, 

n = 6) and a great fraction additionally co-expressed Vimentin (N, unpaired Students’ t-test p = 0.55). 

(O) Quantification of Ki67 immunolabeling revealed no significant differences between cortex- and spinal 

cord-derived astrocytes (unpaired Students’ t-test p = 0.3). Scale bars in F, B: 75 µm. 

 

3.4.1.3 Vascularization of astrocyte-seeded hydrogel implants 

Previously, thin blood vessels were found within the channels of astrocyte-seeded alginate-

based hydrogel implants previously (FIG 14), therefore, vascularization was immunohistologi-

cally analyzed for implants seeded with either neonatal cortex- or spinal cord-derived astro-

cytes as well (FIG 30). Instead of anti-von Willebrand factor, an antibody against the endothe-

lial cell marker CD31 was used to detect endothelial cells and thereby blood vessels. The 

CD31 antibody and the according tissue processing protocol were kindly provided by the la-

boratory of Carmen Ruiz de Almodovar (University of Mannheim). In particular, endothelial 

cells and blood vessels were detected in all hydrogel implants independent of astrocyte co-

transplantation (FIG 30A – C). However, the channel area that was occupied with CD31-

labeled endothelial cells was enhanced in astrocyte-seeded implants (FIG 30D, One-Way 
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ANOVA p < 0.05) and reached significance in implants seeded with astrocytes derived from 

neonatal spinal cord (*p < 0.05) but not for implants seeded with cortex-derived cells due to 

the high variance in this group (p = 0.06). Nevertheless, vascularization was similar in both 

astrocyte-seeded groups (p = 0.98). Within astrocyte-seeded implants, the grafted GFP+ as-

trocytes were found in close spatial association with the CD31-labeled blood vessels. Hence, 

the tubular blood vessels seemed to be partially enwrapped by the grafted astrocytes (arrow-

heads in FIG 30B, C), which becomes even more evident when examining the respective XZ 

planes. 

 

 

Figure 30: Newly formed vasculature is predominantly found in alginate-based hydrogel im-
plants seeded with neonatal astrocytes. (A – C) Immunolabeling with CD31 (red) indicated tubular 

aggregates of endothelial cells representing thin blood vessels within the channels of control hydrogels 

(A), implants seeded with neonatal cortex-derived astrocytes (B), and astrocytes derived from neonatal 

spinal cord (C) 4 weeks after SCI. The XY and XZ planes are shown underneath and to the right, re-

spectively. Both, cortex- as well as spinal cord-derived astrocytes were found in direct contact with 

CD31+ endothelial cells and lined blood vessels within the hydrogel channels (arrowheads in B, C). (D) 

Quantification of CD31+ area per hydrogel channel revealed a greater vascularization of astrocyte-

seeded hydrogel implants compared to non-seeded controls (One-Way ANOVA p < 0.05, with Tukey’s 

post hoc *p < 0.05 comparing controls with +spinal cord-derived astrocytes; PLO/Laminin, n = 5; + cor-

tex-derived astrocytes, n = 5; + spinal cord-derived astrocytes, n = 6). Scale bar in C: 50 µm. 
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3.4.1.4 Axonal growth into astrocyte-seeded alginate-based hydrogel 
implants with additional caudal astrocytic grafts 

Growth responses of host spinal axons were investigated to assess whether (1) the combina-

tion of cell-seeded hydrogel implants with additional caudal cell transplantation, and/or (2) ne-

onatal spinal cord-derived astrocytes, positively affect axonal regeneration. First, immunolabel-

ing with the neuronal marker βIII-tubulin was used to detect overall axonal growth within the 

channels of hydrogel implants 4 weeks post-injury (FIG 31). Consistent with previous obser-

vations, host spinal axons could be found in non-seeded controls as well as astrocyte-seeded 

hydrogel implants. Only individual axons and thin axon bundles were found in non-seeded 

implants (FIG 31A), whereas, in implants that were seeded with either neonatal cortex-derived 

astrocytes (FIG 31B) or spinal cord-derived astrocytes (FIG 31C) prior to implantation, thick 

axon bundles were detected. Quantitatively, astrocyte-seeded hydrogel implants showed a 

greater number of axons per cell-filled (DAPI+ channel) (FIG 31D). In particular, the axon num-

ber was greatest at the channel entries, especially on the rostral side of the implant, but ap-

peared to be reduced at the central area of the implants (Two-Way ANOVA for distance: p = 

0.21). At the rostral channel entries, significantly more axons per channel were detected in 

implants seeded with spinal cord-derived astrocytes compared to all other implants (Two-Way 

ANOVA for overall group differences: p < 0.05, with Tukey’s post hoc **p < 0.01 comparing 

spinal cord-derived astrocytes with cortex-derived astrocytes and with controls, see Suppl. 
table 9). Unfortunately, this effect diminished towards the central area of the implants. When 

the axonal growth within the entire hydrogel implant was analyzed, the greater axonal growth 

in both astrocyte-seeding groups was confirmed (FIG 31E). At all analyzed distances within 

the implants, the axonal growth was at least 2-fold greater in the spinal cord-derived astrocyte 

group compared with control hydrogels and 1.5-fold higher than in the cortex-derived astrocyte 

group (Two-Way ANOVA for overall group differences: p < 0.05 with Tukey’s post hoc test *p < 

0.05 comparing spinal cord-derived astrocytes with controls, see Suppl. table 10). Axonal 

growth in implants seeded with cortex- and spinal cord-derived astrocyte remained constant 

throughout the implants. Although, axonal growth in controls appeared to have declined at the 

hydrogel center but this effect did not reach significance (Two-Way ANOVA for distance: p = 

0.07). Most important, axons showed a strong preference for both grafted astrocyte popula-

tions as their growth substrate compared to infiltrated host cells within the same implant in all 

analyzed areas of the implants (FIG 31F). More precisely, in implants containing cortex-derived 

astrocytes, 90.44 ± 1.61% of all axons were found in channels filled with the grafted cells; in 

the spinal cord-derived astrocyte group, 90.9 ± 0.17% of all axons preferentially extended on 

grafted cells rather than on infiltrated host cells (Two-Way ANOVA p < 0.001). In comparison 
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to the previous study, in which immature cortex-derived astrocytes were only seeded into the 

alginate-based hydrogels (FIG 15), the number of βIII-tubulin-labeled axons per cell-filled 

channels was enhanced by approximately 27% in implants seeded with P1 cortex-derived as-

trocytes with additional caudal cell grafts (astrocyte seeding only: 7.11 ± 0.91 axons/cell-filled 

channel at Rostral 100 µm vs. astrocytes seeding + caudal astrocytic graft: 9.01 ± 2.51 axons 

at Rostral 100 µm) and even more intriguingly by 315% when P3 Spinal cord-derived astro-

cytes were used. At the rostral channel entries, implants seeded with P1 cortex-derived astro-

cytes from the previous study contained on average 7.11 ± 0.91 axons/cell-filled channel, 

whereas implants of the P3 spinal-cord derived astrocyte contained 29.56 ± 15.22 axons. Sim-

ilarly, also the overall axonal growth per hydrogel implant could be further enhanced when 

astrocyte-seeded implants were combined with additional caudal astrocytic grafts compared 

with the results of the previous study (+ 37% for cortex-derived astrocytes, + 140% for spinal 

cord-derived astrocytes). 
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Figure 31: Seeded neonatal astrocytes together with additional caudal astrocytic grafts im-
prove axonal growth within alginate-based hydrogel implants. (A, B) βIII-tubulin-labeled host axons 

(white) entered and extended within the channels of hydrogel implants without cell seeding (A), implants 

seeded with either neonatal cortex-derived astrocytes (B) or spinal cord-derived astrocytes (C). Dashed 

lines indicate channel walls. Rostral is to the left, medial to the top, and caudal to the right. (D) Quanti-

fication of axons per DAPI+ channel depicted an overall greater axonal growth within astrocyte-seeded 

hydrogel implants compared to non-seeded controls (Two-Way ANOVA for overall group differences: p 

< 0.05, followed by Tukey’s post hoc test **p < 0.01 comparing spinal cord-derived astrocytes with cor-

tex-derived astrocytes and with controls at Rostral 100 µm; PLO/Laminin, n = 5; + cortex-derived astro-

cytes, n = 5; + spinal cord-derived astrocytes, n = 6). However, the number of axons per channel may 

have declined towards the hydrogel center in all groups (Two-Way ANOVA for distance: p = 0.21). De-

tailed statistical analysis is depicted in Suppl. table 9. Blue, red and grey boxes indicate the rostral and 

caudal hydrogel halves, and the hydrogel center, respectively. (E) Overall, constantly more axons were 

found over the entire extent in astrocyte-seeded hydrogel implants compared with control implants (Two-

Way ANOVA for overall group differences: p < 0.05, followed by Tukey’s post hoc *p < 0.05 comparing 

spinal-cord-derived astrocytes with controls at Rostral 100 µm, for distance: p = 0.07). Detailed statistical 

analysis is depicted in Suppl. table 10. (F) Axons preferentially entered hydrogel channels filled with 

the grafted neonatal cortex-derived astrocytes (blue) or spinal cord-derived astrocytes (red) compared 

to channels containing only infiltrated host cells (white) in each hydrogel implant (Two-Way ANOVA for 

cell substrate within channels: p < 0.0001, with Tukey’s post hoc **p < 0.01 comparing axons in 

DAPI+/GFP- channels with axons in DAPI+/GFP+ channels). Scale bar in C: 50 µm. 

 

Analogous to previous studies, regrowth of the raphespinal tract was assessed by immuno-

labeling using an antibody specific for serotonin (5-HT) (FIG 32). In line with the results for 

overall axonal growth within the hydrogel implants, a greater number of 5-HT-labeled axons 

were detected in implants seeded with cortex- or spinal cord-derived astrocytes compared with 

non-seeded control hydrogels (FIG 32A – C; Two-Way ANOVA p < 0.05), however, this was 

mostly restricted to the rostral half of the hydrogel implants (Two-Way ANOVA for distance: p 

< 0.0001). This observation was consistent for the number of axons per cell-filled channel as 

well as the overall number of serotonergic axons per hydrogel implant (FIG 32D, E). At the 

rostral end (100 µm), significantly more 5-HT+ axons per channel were found in both astrocyte-

seeded groups (*p < 0.05 for cortex-derived astrocytes: 4.92 ± 1.35 5-HT+ axons/DAPI+ chan-

nels; **p < 0.01 for spinal cord-derived astrocytes: 5.01 ± 2.26 5-HT+ axons/DAPI+ channels 

vs. control: 1.51 ± 0.39 5-HT+ axons/DAPI+ channels). When the central and caudal areas of 

the implants were examined, only single 5-HT+ axons per channel were found in all groups. 

Overall, about 1.5- to 2-fold more 5-HT+ axons entered implants that were seeded with neona-

tal astrocytes (Two-Way ANOVA p < 0.05). In particular, the differences between non-seeded 

controls and implants seeded with cortex-derived astrocytes (####p < 0.0001) and spinal cord-
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derived astrocytes (*p < 0.05) were strongest at the rostral channel entries and diminished with 

rising distance from the rostral hydrogel edge (Two-Way ANOVA for distance: p < 0.0001, see 
Suppl. table 11; Interaction between cell type and distance: p < 0.05) (FIG 32E). Importantly, 

similar to βIII-tubulin-labeled axons, serotonergic axons also preferred graft-derived astrocytes 

containing channels over channels that were filled with infiltrated host cells. This effect was 

consistently observed for both astrocyte populations (Two-Way ANOVA p < 0.001, followed by 

Tukey’s post hoc *p < 0.05 for cortex-derived astrocytes vs. infiltrated host cells; **p < 0.01 for 

spinal cord-derived astrocytes vs. infiltrated host cells). Similar to the βIII-tubulin-labeled ax-

ons, by combining astrocyte seeding of the hydrogel implant with additional caudal astrocytic 

grafts, growth of serotonergic axons was further enhanced compared to the previous study 

(FIG 16). For example, at the rostral hydrogel edge, animals that received implants seeded 

with cortex-derived astrocytes and additional caudal grafts contained about 50% more 5-HT-

labeled axons per channel (astrocyte seeding only: 3.28 ± 1.11 5-HT+ axons/cell-filled channel 

at Rostral 100 µm vs. astrocyte seeding + caudal graft: 4.91 ± 1.48 5-HT+ axons/cell-filled 

channel at Rostral 100 µm). This effect was comparably strong when the data obtained for 

seeding and co-transplantation of spinal cord-derived astrocytes were compared with the re-

sults of the initial astrocyte seeding study (astrocyte seeding + caudal graft: 5.01 ± 2.26 5-HT+ 

axons/cell-filled channel at Rostral 100 µm). 
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Figure 32: Growth of serotonergic axons is increased within astrocyte-seeded hydrogel im-
plants with additional caudal astrocytic grafts. (A – C) Immunolabeling with 5-HT (red) showed ser-

otonergic axons entering and extending within the channels of non-seeded hydrogel implants (A) or 

implants seeded with cortex-derived astrocytes (B) or seeded with spinal cord-derived astrocytes (C). 

(D) Per cell-filled channel, more 5-HT-labeled axons were detected in both astrocyte-seeded groups 

compared to controls (Two-Way ANOVA for overall group differences: p < 0.05, with Tukey’s post hoc at 

rostral 100 µm: *p < 0.05 comparing control with cortex-derived astrocytes; **p < 0.01 comparing con-

trols with spinal cord-derived astrocytes; PLO/Laminin, n = 5; + cortex-derived astrocytes, n = 5; + spinal 

cord-derived astrocytes, n = 6). However, the 5-HT+ axons failed to extend over longer distances within 

the hydrogel channels (Two-Way ANOVA for distance: p < 0.0001), which was most prominent in both 

astrocyte-seeded groups. Detailed statistical analysis is depicted in Suppl. table 11. Blue, red and grey 

boxes indicate the rostral and caudal hydrogel halves, and the hydrogel center, respectively. (E) Quan-

tification of the entire hydrogel implants revealed a significantly greater number of 5-HT-labeled axons, 

especially at the rostral channel entries in astrocyte-seeded implants (Two-Way ANOVA for overall group 

differences: p < 0.05) which became similar to controls at the central and caudal areas of the implants 

(Two-Way ANOVA for distance: p < 0.0001. Detailed statistical analysis is depicted in Suppl. table 12. 

(F) Consistent with previous observations, significantly more serotonergic axons were found in channels 

containing the grafted astrocytes than in channels that only contained infiltrated host cells in the same 

hydrogel implant (Two-Way ANOVA for cell substrate within channels: p < 0.001, with Tukey’s post hoc 

*p < 0.05, **p < 0.01 comparing axons in DAPI+/GFP- channels with axons in DAPI+/GFP+ channels). 

Scale bar in C: 50 µm. 

 

Descending spinal axons were specifically labeled with the anterograde tracer BDA (10 kDa) 

rostral to the hydrogel, therefore, BDA-traced axons were primarily found at the rostral end of 

the hydrogel implants (FIG 33). Although BDA-labeled axons were present in the hydrogels of 

all 3 groups, a slightly greater number of them were found in astrocyte-seeded implants, es-

pecially in the spinal cord-derived astrocyte groups (FIG 33D; Two-Way ANOVA for overall 

group differences: p < 0.05, with Tukey’s post hoc test *p < 0.05 comparing controls with spinal 

cord-derived astrocytes at Rostral 100 µm, see Suppl. table 13). In the central and caudal 

areas of the hydrogel channels, BDA-traced axons were occasionally detected independent of 

group identity, in the more central and caudal areas of the hydrogel channels, no significant 

differences were found (Two-Way ANOVA for distance: p = 0.12). When normalized to the 

entire hydrogel implant area, overall slightly more BDA-traced axons were present in both as-

trocyte-seeded groups compared to non-seeded control implants (FIG 33E, see Suppl. table 
14). Although this effect appeared to be strongest in the rostral halves of the implants, due to 

high variability, no significant differences were observed between groups (Two-Way ANOVA p 

= 0.28). Consistent with the reduced number of BDA-axons per channel, the total number of 

BDA-traced descending axons was dramatically decreased at the center and caudal half of the 
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implants (Two-Way ANOVA for distance: p < 0.05). Similar to previous results, BDA-traced 

axons strikingly preferred the seeded astrocyte populations as their growth substrate over host 

cells within the hydrogel channels (FIG 33F; Two-Way ANOVA p < 0.0001). 
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Figure 33: Growth of descending axons is enhanced within astrocyte-seeded hydrogel im-
plants with additional caudal astrocytic grafts. (A – C) Descending spinal axons entered the chan-

nels of non-seeded controls (A) and implants seeded with neonatal cortex-derived astrocytes (B) or 

spinal cord-derived astrocytes (C). Dashed lines indicate channel walls. Rostral is to the left, medial to 

the top and caudal to the right. (D) Throughout the implants, a greater number of BDA-labeled axons 

per individual cell-filled channel was observed in astrocyte-seeded implants (Two-Way ANOVA for over-

all group differences: p < 0.05, with Tukey’s post hoc *p < 0.05 comparing spinal cord-derived astrocytes 

vs. controls at rostral 100 µm), although at the center and caudal areas of the implants no differences 

were observed (Two-Way ANOVA for distance: p = 0.12; PLO/laminin, n = 5; + cortex-derived astrocytes, 

n = 5; + spinal cord-derived astrocytes, n = 6). Detailed statistical analysis is depicted in Suppl. table 
13. Blue and red boxes indicate the rostral and caudal hydrogel halves, respectively. (E) Although, a 

trend towards an elevated number of BDA-traced axons in both astrocyte-seeded groups was found, 

this did not reach significance due to the high variability (Two-Way ANOVA for overall group differences: 

p = 0.28). However, only a small number of BDA+ axons extended over long distances within the hydro-

gel channels (Two-Way ANOVA for distance: p < 0.05). This decline in axon numbers towards the hy-

drogel center was most prominent in the implants that contained spinal cord-derived astrocytes (*p < 

0.05 comparing rostral 100 µm with the caudal half of the implant). Detailed statistical analysis is de-

picted in Suppl. table 14. (E) Within both astrocyte-seeded groups, BDA+ axons showed a strong pref-

erence for the grafted astrocytes as growth substrate within the channels compared to infiltrated host 

cells (Two-Way ANOVA for cell substrate within channels: p < 0.001, with Tukey’s post hoc **p < 0.01 

comparing axons in DAPI+/GFP- channels with axons in DAPI+/GFP+ channels) Scale bar in C: 50 µm. 

 

In summary, the results of the previous in vivo study (Schackel, Kumar et al. 2019) could be 

confirmed with neonatal cortex- as well as spinal cord-derived astrocytes used for seeding of 

the hydrogel implants. The additional caudal astrocyte grafts facilitated improved host-graft 

interactions as assessed by migration of the grafted cells into the surrounding host spinal pa-

renchyma, establishment of a continuous cellular bridge spanning the caudal host-graft inter-

face, and vascularization of the hydrogel implants. Importantly, both astrocyte populations 

equally supported axonal growth into and within the alginate-based hydrogel implants with only 

minor differences found between them. 
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3.5 Implantation of astrocyte-seeded alginate-based hydrogel 
implants together with additional astrocytic grafts into the 
rostral and caudal host spinal cord after traumatic spinal 
cord injury 

Since the previous in vivo studies underlined the importance of a tight hydrogel integration into 

the lesion site and given that additional cell grafts into the caudal host spinal cord improved 

host-graft interactions, we conducted a study in which PLO/laminin-coated alginate-based hy-

drogel implants (Zn2+, channel diameter: 88.6 ± 2.9 µm) were seeded with either GFP-

expressing neonatal P1 cortex-derived astrocytes or P3 spinal cord-derived astrocytes and 

implanted into the cavity of a C5 hemisection lesion. In addition, astrocytes were grafted 1 mm 

rostral and caudal to the implantation site to maximize host-graft interactions and thereby fur-

ther improve axonal growth through the hydrogel implant. Moreover, in contrast to the previous 

experiments, animals were allowed to survive for 8 weeks to test whether a longer survival 

time would enable descending spinal axons to completely traverse the injury site and re-enter 

the caudal host spinal cord (FIG 34). 
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Figure 34: Experimental setup. (A) A total of 22 adult female Fischer-344 rats underwent a unilat-

eral hemisection at C5 with immediate implantation of an astrocyte-seeded alginate-based hydrogel 

implant (fabricated with Zn2+; channel diameter: 88.6 ± 2.9 µm). Additionally, neonatal astrocytes were 

injected 1 mm rostral and 1 mm caudal to the implantation site. (B) In contrast to all previous studies, 

survival time was extended to 8 weeks post-SCI. BDA was injected 1 week before transcardial perfusion 

to trace descending spinal axons. (C) After perfusion, the implantation site was immunohistochemically 

analyzed at 100 µm and 500 µm from the rostral or caudal hydrogel edge, respectively, and at the 

hydrogel center (1000 µm) (PLO/Laminin; n = 6; + cortex-derived astrocytes; n = 6 (2 died after SCI); + 

spinal cord-derived astrocytes; n = 6 (2 died after SCI); see Suppl. table 1). 

 

3.5.1 Cell filling and graft cell survival within astrocyte-seeded hydrogel 
implants after additional astrocyte transplantation into the 
surrounding host spinal cord 

To determine cell filling and survival of the GFP+ grafted neonatal astrocytes, tissue sections 

of the cervical spinal cord containing the hydrogel implantation site and the surrounding host 

spinal cord were immunohistochemically analyzed (FIG 35). After 8 weeks, all analyzed hydro-

gel implants were structurally intact, in close contact with the surrounding host spinal cord and 

their channels were filled with cells (FIG 35A – C). While in both astrocyte-seeded groups 

~90% of all hydrogel channel showed cell filling (indicated by DAPI+ nuclei within the channels 

lumen), the overall cell filling in control implants was significantly lower throughout the implants 

(Two-Way ANOVA for overall group differences: p < 0.0001, followed by Tukey’s post hoc test 

at rostral 100 µm: #p < 0.05 comparing controls with cortex-derived astrocytes; at the 1000 µm: 

####p < 0.0001 comparing controls with cortex-derived astrocytes, ****p < 0.0001 comparing 

controls with spinal cord-derived astrocytes; at caudal 500 µm: #p < 0.05 comparing controls 

with cortex-derived astrocytes, *p < 0.05 comparing controls with spinal cord-derived astro-

cytes; at caudal 100 µm: ##p < 0.05 comparing controls with cortex-derived astrocytes, **p < 

0.05 comparing controls with spinal cord-derived astrocytes). Additionally, in control hydrogels, 

cell filling significantly decreased with increasing distance from the hydrogel edges (Two-Way 

ANOVA for distance: p < 0.001). This effect was not found in astrocyte-seeded implants (FIG 
35D, see Suppl. table 15). The grafted GFP-expressing neonatal astrocytes survived within 

the hydrogel channels (FIG 35B, C), and the majority of the cell-filled channels within these 

implants contained the grafted GFP+ cells (FIG 35E). Within these implants, the seeded astro-

cytes occupied a great portion of the hydrogel channel area. Consistent with the overall cell 

filling, significantly less channel area was filled with GFP+ with increasing distance from the 

rostral and caudal hydrogel edge (Two-Way ANOVA for distance: p < 0.01) equally for both 
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astrocyte populations (Two-Way ANOVA for overall group differences: p = 0.47). Cortex- as 

well as spinal cord-derived astrocytes expressed GFAP and densely filled the channel lumen 

of the hydrogel implants (FIG 35G, H). 

 

 



3. Results 

 137

Figure 35: Neonatal spinal cord- and cortex-derived astrocytes fill alginate-based hydrogel 
implants and survive for at least 8 weeks in vivo. (A – C) Hydrogel implants without cell seeding (A) 

and implants seeded with neonatal cortex-derived astrocytes (B) or spinal cord-derived astrocytes (C) 

remained structurally intact and were in direct contact with the surrounding host spinal parenchyma 8 

weeks after injury. Dashed lines indicate channel walls. Rostral is to the left, medial to the top, and 

caudal to the right. (D) Throughout the entire hydrogel implants, a greater percentage of channels were 

filled with cells in astrocyte-seeded implants (Two-Way ANOVA for overall group differences: p < 0.0001; 

PLO/Laminin; n = 6; + cortex-derived astrocytes; n = 6; + spinal cord-derived astrocytes; n = 6). Further, 

consistent with previous results, the hydrogel center showed a significantly smaller number of cell-filled 

channels in the control group (Two-Way ANOVA for distance: p < 0.001, with Tukey’s post hoc ***p < 

0.001 comparing rostral 100 µm with 1000 µm, *p < 0.05 comparing rostral 500 µm with 1000 µm). 

Detailed statistical analysis is depicted in Suppl. table 15. Blue, red and grey boxes indicate the rostral 

and caudal hydrogel halves, and the hydrogel center, respectively. (E) Within the astrocyte-seeded 

groups, consistently ~85% of all cell-filled channels contained the grafted GFP-expression neonatal as-

trocytes throughout the entire hydrogel (Two-Way ANOVA for overall group differences: p = 0.98; for 

distance: p = 0.6). (F) Both astrocytic populations equally occupied more than 70% of the channel area 

at the hydrogel entries and about 50% at the hydrogel center (Two-Way ANOVA for overall group differ-

ences: p = 0.47; for distance: p < 0.01 with Sidak’s post hoc *p < 0.05 comparing 0 – 500 µm and 500 

– 1000 µm in both groups). (G, H) The grafted GFP+ cortex-derived (G) and spinal cord-derived astro-

cytes (H) co-expressed GFAP (red), lined the walls and filled the lumen of the hydrogel channels. XZ 

and YZ planes are shown underneath and to the right, respectively. Scale bar in C: 500 µm, in H: 50 

µm. 

 

As a further advancement of the previous implantation study, each animal that was implanted 

with an astrocyte-seeded hydrogel additionally received astrocyte grafts rostral and caudal to 

the implantation site into the uninjured host spinal cord to establish a continuous astrocytic 

bridge traversing the SCI site (FIG 36). The rostrally and caudally transplanted GFP-

expressing neonatal astrocytes survived within the host spinal cord adjacent to the implanta-

tion site for 8 weeks and -independent of cell type- spread out into the surrounding intact host 

spinal parenchyma (FIG 36A, B & H, I). However, consistent with the previous results, cortex-

derived astrocytes tended to migrate over longer distances (> 3 mm caudal from implantation 

site) within the host spinal cord (FIG 36B). In contrast, spinal cord-derived astrocytes did not 

spread far into the distal host spinal cord but rather migrated towards the implanted hydrogel. 

High-resolution confocal microscopy was used to determine the cell morphology of the grafted 

astrocytes: cortex-derived astrocytes adopted a differentiated cell morphology with long and 

branched GFAP+ processes, whereas spinal cord-derived astrocytes appeared again in a ra-

ther elongated bipolar morphology with only a few long and thin processes (FIG 36C, J). Most 

important, both astrocyte populations intermingled with the host astrocytic network and aligned 



3. Results 

 138

into longitudinal bridges on both sides of the hydrogel implantation site (FIG 36D – G, K – N). 

Moreover, these astrocytic bridges were found in close spatial association with growing host 

axons confirming previous observations (FIG 28). 
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Figure 36: Rostrally and caudally co-transplanted astrocytes spread out into the surrounding 
host spinal parenchyma and form tissue bridges at the host-graft interface. The co-transplanted 
immature astrocytes (GFP, green) derived from the cortex (A – G) and spinal cord of neonatal rats (H – 
N) survived in the intact host tissue adjacent to the SCI site. They spread out into the surrounding rostral 

(A, H) and caudal spinal parenchyma (B, I). Asterisks indicate the cell injection site, while dashed lines 

the hydrogel implants and channel entries. Inserts in A, B are shown in D – G. Rostral is to the left, 

medial to the top and caudal to the right. (C) Cortex-derived astrocytes (GFP, green) expressed GFAP 

(red) and adopted a complex process-bearing morphology. (D – G) Adjacent to the hydrogel implantation 

site, the grafted astrocytes were in close contact with the host astrocytic network and aligned into longi-

tudinal bundles (arrowheads in E, G) associated with host axons (,III-tubulin, magenta) on the rostral 

(D, E) as well as the caudal side of the implant (F, G). Similarly, spinal cord-derived astrocytes distributed 

themselves into the rostral (H) and caudal (I) host spinal tissue. Boxed regions in H, I are shown in K – 
N. (J) In contrast to the grafted cortex-derived cells, spinal cord-derived astrocytes appeared to have an 

elongated cell shape with only a few thin processes. (K – N) Grafted spinal cord-derived astrocytes also 

aligned into longitudinal tissue bridges that served as a physical substrate for growing host axons (ar-

rowheads in L, N) on both sides of the hydrogel implantation site. Scale bars in B, I: 500 µm; in C, J: 50 

µm; in G, N: 100 µm. 

 

3.5.2 Vascularization of hydrogel implants after astrocyte seeding and 
additional astrocyte transplantation into the surrounding host spinal 
cord 

To investigate vascularization of the hydrogel implants 8 weeks after SCI, immunolabeling with 

a CD31 antibody was performed (FIG 37). CD31-labeled blood vessels entered and extended 

within the channels of control implants and, to a greater extent, within the channels of hydrogel 

implants that were seeded with neonatal astrocytes prior to implantation (FIG 37A – C). While 

19.61 ± 6.2% of the channel area of control implants were covered with CD31-positive endo-

thelial cells and blood vessels, twice as much channel area was filled with blood vessels in 

cortex-derived astrocyte-seeded implants (40.02 ± 5.7%; p < 0.05) and slightly less channel 

area in the spinal cord-derived astrocyte group (33.42 ± 2.41%) (One-Way ANOVA p < 0.05). 

Moreover, blood vessels were in close spatial association with the grafted GFP+ astrocytes 

and seemed to be at least partially enveloped by them (arrowheads in FIG 37B, C). 
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Figure 37: Seeding with neonatal astrocytes improves vascularization within alginate-based 
hydrogel implants. (A – C) CD31+ endothelial cells (red) formed tubular blood vessels (arrowheads in 

A) and were detected in the channels of control implants (A), in implants seeded with GFP-expressing 

neonatal cortex-derived (B) or spinal cord-derived astrocytes (C). XY and XZ planes are shown under-

neath and to the right, respectively. The grafted astrocytes partially enveloped the ingrowing blood ves-

sels (arrowheads in B, C). (D) Importantly, a significantly greater channel area was occupied with CD31-

positive blood vessels in both astrocyte-seeded groups compared to non-seeded controls (One-Way 

ANOVA p < 0.05, with Tukey’s post hoc *p < 0.05 control vs. cortex-derived astrocytes; PLO/Laminin; n 

= 6; + cortex-derived astrocytes; n = 6; + spinal cord-derived astrocytes; n = 6). Scale bar in C: 50 µm. 

 

3.5.3 Axonal growth into astrocyte-seeded hydrogel implants after 
additional astrocyte transplantation into the adjacent host spinal cord 

To assess axonal regrowth at the implantation site and within the hydrogel implants, spinal 

axons were immunolabeled with βIII-tubulin and analyzed at different areas within each hydro-

gel implant (FIG 38). In line with the previous results, seeding with neonatal astrocytes pro-

moted axonal growth into the hydrogel implants in comparison to non-seeded hydrogel im-

plants (FIG 38A – C, Two-Way ANOVA for overall group differences: p < 0.05). However, no 

differences between cortex-derived and spinal cord-derived astrocytes were observed for the 
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number of axons per channel (FIG 38D) or the overall axonal growth within the implants (FIG 
38E). In particular, an almost equal amount of axons extended within the channels of cortex- 

(38.91 ± 6.99 axons/DAPI+ channel) and spinal cord-derived astrocyte-seeded hydrogels 

(38.06 ± 7.6 axons/DAPI+ channel) in the rostral halves of the implants, whereas 70% fewer 

axons were present in non-seeded in the same area of the hydrogel (Two-Way ANOVA for 

overall group differences: p < 0.05, followed by Tukey’s post hoc **p < 0.01 comparing controls 

vs. astrocyte-seeded implants). The same trend was found in the caudal halves of the implants, 

as both astrocyte-seeded groups were found to contain significantly more axons in each chan-

nel than controls (**p < 0.01 for cortex-derived astrocytes vs. controls; *p < 0.05 for spinal cord-

derived astrocytes vs. controls). Although the axon number per channel in control implants was 

consistent along the rostrocaudal extent of the implants, it varied in both astrocyte groups 

(Two-Way ANOVA for distance: p < 0.0001, see Suppl. table 16). Notably, a statistically sig-

nificant caudal relation between cell type and distance was found (Interaction between cell 

type and distance: p < 0.05). Thus, when the entire hydrogel implants were analyzed, a similar 

axonal growth pattern was observed. While both astrocyte-seeded groups showed an equal 

amount of axons in the rostral, central and caudal area of the implant, only a few axons were 

present in non-seeded controls (Two-Way ANOVA for overall group differences: p < 0.01, see 

Suppl. table 17). This difference reached statistical significance especially at the rostral (###p 

< 0.001 for controls vs. cortex-derived astrocytes, **p < 0.01 controls vs. spinal cord-derived 

astrocytes) and at the caudal channel entries (####p < 0.0001 for controls vs. cortex-derived 

astrocytes, **p < 0.01 controls vs. spinal cord-derived astrocytes), while no significant differ-

ence at the hydrogel center was observed (FIG 38E). However, similar to the number of axons 

per DAPI+ channel, the overall axonal growth was massively reduced at the central area of the 

implants in controls compared with both astrocyte-seeded groups (Two-Way ANOVA for dis-

tance: p < 0.0001). Again, a much greater number of axons were present at the rostral and 

caudal channel entries compared to the hydrogel center (Rostral 100 µm vs. 1000 µm: ##p < 

0.01 for cortex-derived astrocytes, **p < 0.01 for spinal cord-derived astrocytes). Surprisingly, 

although ~20% more axons appeared to be present at the caudal hydrogel half than the rostral 

hydrogel half in both astrocyte-seeded groups, this effect did not reach significance (rostral 

100 µm vs. caudal 100 µm for cortex-derived astrocytes: p = 0.2; for spinal cord-derived astro-

cytes: p = 0.93). Controls showed similarly no change in overall axon numbers at the caudal 

hydrogel edge (p = 0.99). Additionally, the distribution of axons within the astrocyte-seeded 

hydrogel was determined (FIG 38F). Consistent with all previous results, the vast majority of 

axons were found in graft cell-filled channels compared to channels that only contained infil-

trated host cells (Two-Way ANOVA for cell substrate within channels: p < 0.0001) independent 

of the tissue origin of the seeded astrocytes (Two-Way ANOVA for overall group differences: p 
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= 0.74). Consequently, 95.94 ± 1.43% of all axons were present in astrocyte-containing chan-

nels in the cortex-derived astrocyte group (****p < 0.0001) and 97.3 ± 0.86% entered astrocyte-

containing channels in the spinal cord-derived astrocyte group (***p < 0.001) compared to 

channels filled only with infiltrated host cells. 

In comparison with the previous study, where immature astrocytes were seeded into the hy-

drogel implants and additionally grafted caudally (FIG 31), axonal growth into the hydrogel 

implants could be even further increased by a factor of 4 for implants containing cortex-derived 

astrocytes (astrocyte seeding + caudal graft: 9.01 ± 2.51 βIII-tubulin+ axons/cell-filled channel 

at Rostral 100 µm vs. astrocyte seeding + rostral/caudal grafts: 38.91 ± 6.99 βIII-tubulin+ ax-

ons/cell-filled channel at Rostral 100 µm). For implants seeded with spinal cord-derived astro-

cytes, axonal growth was further enhanced by 30% compared with the previous study (astro-

cyte seeding + caudal graft: 29.56 ± 15.22 βIII-tubulin+ axons/cell-filled channel at Rostral 100 

µm vs. astrocyte seeding + rostral/caudal grafts: 38.06 ± 7.59 βIII-tubulin+ axons/cell-filled 

channel at Rostral 100 µm). 
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Figure 38: Axonal growth is enhanced within astrocyte-seeded alginate-based hydrogel im-
plants after additional astrocyte transplantation into the surrounding host spinal cord. (A – C) 

Eight weeks post-injury, individual axons and thin axon bundles (βIII-tubulin, white) were found in non-

seeded control implants (A), whereas thick axon bundles were present within the channels of hydrogel 

implants seeded either with neonatal cortex-derived astrocytes (B) or spinal cord-derived astrocytes (C). 

Dashed lines indicate channel walls. Rostral is to the left, medial to the top and caudal to the right. (D) 

Especially in the rostral half of the implants, equal axon numbers per cell-filled channel were detected 

in both astrocyte-seeded groups, whereas only a small number was found in controls (Two-Way ANOVA 

for overall group differences: p < 0.05; PLO/Laminin; n = 6; + cortex-derived astrocytes; n = 6; + spinal 

cord-derived astrocytes; n = 6). The number of axons decreased in both astrocyte-seeded groups to-

wards the hydrogel center and elevated again in the caudal hydrogel half (Two-Way ANOVA for distance: 

p < 0.0001; Interaction between cell type and distance: p < 0.05). Detailed statistical analysis is depicted 

in Suppl. table 16. Blue, red and grey boxes indicate the rostral and caudal hydrogel halves, and the 

hydrogel center, respectively. (E) Overall, implants of both astrocyte-seeded groups contained a signif-

icantly greater number of βIII-tubulin-labeled axons compared to controls (Two-Way ANOVA for overall 

group differences: p < 0.01), although axonal growth was dramatically reduced at the hydrogel center in 

both astrocyte-seeded groups (Two-Way ANOVA for distance: p < 0.0001). Detailed statistical analysis 

is depicted in Suppl. table 17. (F) Within the astrocyte-seeded hydrogel implants, axons were almost 

exclusively found in channels containing the grafted cortex-derived astrocytes (blue) and spinal cord-

derived astrocytes (red) and not in channels filled with only host cells (white) throughout the entire hy-

drogel implant (Two-Way ANOVA for cell substrate within channels: p < 0.0001 with Tukey’s post hoc 

****p < 0.0001 comparing axons in DAPI+/GFP- channels with axons in DAPI+/GFP+ channels for cortex-

derived astrocytes, ***p < 0.001 comparing axons in DAPI+/GFP- channels with axons in DAPI+/GFP+ 

channels for spinal cord-derived astrocytes). Scale bar in C: 50 µm. 

 

To determine whether descending raphespinal axons contributed to the observed axonal 

growth within the hydrogel implants, serotonergic axons were immunolabeled with 5-HT and 

quantified at the hydrogel edges and center (FIG 39). Descending raphespinal axons entered 

the hydrogel implants of all 3 groups from the rostral host spinal cord leading to high axon 

numbers per cell-filled channel at the rostral hydrogel edge in all groups (FIG 39A – C). How-

ever, astrocyte-seeded hydrogels contained significantly more 5-HT-labeled axons than non-

seeded controls (FIG 39D, Two-Way ANOVA for overall group differences: p < 0.05, with 

Tukey’s post hoc ##p < 0.01 comparing controls vs. cortex-derived astrocytes, ****p < 0.0001 

comparing controls vs. spinal cord-derived astrocytes at Rostral 100 µm, see Suppl. table 18). 

Across the different tested distances from the hydrogel edge, the number of 5-HT+ axons/DAPI+ 

channels declined (Two-Way ANOVA for distance: p < 0.0001). In particular, the number of 

axons per channel dramatically decreased in both astrocyte-seeded groups from the rostral 

channel entries towards the hydrogel center (Two-Way ANOVA p < 0.0001, with Tukey’s post 
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hoc for cortex-derived astrocytes: ####p < 0.0001 comparing Rostral 100 µm and Center 1000 

µm; for spinal cord-derived astrocytes: ****p < 0.0001) and compared to the caudal hydrogel 

edge (Two-Way ANOVA p < 0.0001, with Tukey’s post hoc for cortex-derived astrocytes: ####p 

< 0.0001 comparing Rostral 100 µm vs Caudal 100 µm; for spinal cord-derived astrocytes: 

****p < 0.0001 comparing Rostral 100 µm vs Caudal 100 µm). The number of serotonergic 

axons in non-seeded controls slightly declined towards the hydrogel center and remained very 

limited throughout the central and caudal areas of the implants. Notably, an association be-

tween astrocyte seeding and axon number over distance within the hydrogel implants was 

found (Interaction between cell type and distance: p < 0.01). Generally, astrocyte-seeded im-

plants contained a strikingly greater number of 5-HT-labeled axons than non-seeded control 

implants, for instance, 3 times as much 5-HT-positive axons were detected at the rostral hy-

drogel edge in astrocyte-seeded implants (Two-Way ANOVA for overall group differences: p < 

0.05, followed by Tukey’s post hoc test at rostral 100 µm: ####p < 0.0001 control vs. cortex-

derived astrocytes; ****p < 0.0001 control vs- spinal cord-derived astrocytes) (FIG 39E, see 
Suppl. table 19). However, axon numbers fell towards the hydrogel center but surprisingly 

raised again at the caudal hydrogel edge in the cell-seeded implants (cortex-derived astro-

cytes: 790.426 ± 107.496 5-HT+ axons/mm2; spinal cord-derived astrocytes: 896.246 ± 

133.734 5-HT+ axons/mm2), whereas this increase in 5-HT-labeled axon numbers was absent 

in controls (277.343 ± 64.978 5-HT+ axons/mm2) resulting in a significant difference between 

groups (#p < 0.05 for control vs. cortex-derived astrocytes; **p < 0.01 for control vs. spinal cord-

derived astrocytes). Unfortunately, the axon density within implants decreased in all groups 

with rising distance from the rostral channel entries (Two-Way ANOVA for distance: p < 

0.0001). This decline was again most prominent in implants seeded with immature astrocytes 

(Two-Way ANOVA p < 0.0001, with Tukey’s post hoc test comparing Rostral 100 µm with Hy-

drogel center at 1000 µm: ####p < 0.0001 for cortex-derived astrocytes, ****p < 0.0001 for spinal 

cord-derived astrocytes). Contrary to βIII-tubulin-labeled axons, the number of serotonergic 

axons was significantly altered in control implants across different distances within the implants 

(Two-Way ANOVA p < 0.0001, with Tukey’s post hoc +++p < 0.001 comparing Rostral 100 µm 

with 1000 µm). Remarkably, at the caudal hydrogel edge, more serotonergic axons were found 

in both astrocyte-seeded groups compared with the hydrogel center (Center 1000 µm vs. Cau-

dal 100 µm: #p < 0.05 for cortex-derived astrocytes; ****p < 0.0001 for spinal cord-derived 

astrocytes), whereas there was no effect in controls (p = 0.78). Noteworthy, a significant inter-

action between astrocyte seeding and distance was found (p < 0.0001) indicating a strong 

association between the two parameters. If the axon distribution in astrocyte-seeded implants 

was examined (FIG 39F), a strong preference of the 5-HT+ axons for the grafted astrocytes as 

the cellular growth substrate within the hydrogel channels was found, comparable to the results 
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obtained for βIII-tubulin-labeled axons. More precisely, 94.73 ± 1.79 % of all axons present in 

the cortex-derived astrocyte-seeded implants were found in channels filled with the grafted 

astrocytes and, consistently, 94.38 ± 5.62% of all 5-HT-labeled axons entered spinal cord-

derived astrocyte-filled channels (Two-Way ANOVA p < 0.01, with Sidak’s post hoc test com-

paring axon number in astrocyte-filled channels vs. axon numbers in channels only containing 

host cells: ###p < 0.001 for cortex-derived astrocytes; ***p < 0.001 for spinal cord-derived as-

trocytes). Moreover, the addition of a rostral astrocytic graft further increased the ingrowth of 

serotonergic axons compared with the previous study, where astrocytic co-grafts were trans-

planted only caudally. Notably, more 5-HT+ axons were detected in the present study compared 

to the previous experiment (FIG 32), e.g., 5-HT+ axon numbers per channel were elevated by 

500% in the cortex-derived astrocyte group (25.28 ± 5.66 5-HT+ axons/channel vs. 4.91 ± 1.48 

5-HT+ axons/channel at Rostral 100 µm). Axon numbers in the spinal cord-derived astrocyte 

group were even further enhanced by more than 6-fold (5.01 ± 2.26 5-HT+ axons/channel vs. 

33.16 ± 5.99 5-HT+ axons/channel at Rostral 100 µm). Accordingly, the overall number of ser-

otonergic axons per hydrogel implant was enhanced as well. 
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Figure 39: Growth of serotonergic axons is enhanced within astrocyte-seeded hydrogel im-
plants after additional astrocyte transplantation into the surrounding spinal cord. (A – C) Sero-

tonergic axons grew within the hydrogel channels of controls (A), implants seeded with cortex-derived 

astrocytes (B) or spinal cord-derived astrocytes (C). (D) Significantly more 5-HT-labeled axons were 

found in the rostral fraction of the channels in astrocyte-seeded implants compared to non-seeded con-

trols (Two-Way ANOVA for overall group differences: p < 0.05, with Tukey’s post hoc **p < 0.01 compar-

ing controls vs. cortex-derived astrocytes, ****p < 0.0001 comparing controls vs. spinal cord-derived 

astrocytes at rostral 100 µm; *p < 0.05 comparing controls vs. spinal cord-derived astrocytes at Rostral 

500 µm; PLO/Laminin; n = 6; + cortex-derived astrocytes; n = 6; + spinal cord-derived astrocytes; n = 

6). However, this effect diminished towards the hydrogel center where all groups were equal (Two-Way 

ANOVA for distance: p < 0.0001). Detailed statistical analysis is depicted in Suppl. table 18. Blue, red 

and grey boxes indicate the rostral and caudal hydrogel halves, and the hydrogel center, respectively. 

(E) Similarly, the overall axon numbers were significantly greater in implants containing the grafted as-

trocytes (Two-Way ANOVA for overall group differences: p < 0.05) but serotonergic axons failed to ex-

tend over longer distances within the implants (Two-Way ANOVA for distance: p < 0.0001). Detailed 

statistical analysis is depicted in Suppl. table 19. Again, the number of axons were increased at the 

caudal end of the hydrogel implants. (F) Within both astrocyte-seeded groups, serotonergic axons pref-

erentially entered channels which were filled with the grafted cells instead of channels that were filled 

with host cells (Two-Way ANOVA p < 0.01). Scale bar in C: 50 µm. 

 

Descending spinal axons were specifically labeled in vivo with BDA injection into the cervical 

spinal cord at C2 one week before perfusion. Afterwards, regrown BDA-labeled axons were 

quantified at different distances within the hydrogel implants (FIG 40). Similar to 5-HT+ axons, 

BDA-traced axons entered the hydrogel implants in all groups (FIG 40A – C). The number of 

BDA-labeled axons per channel was highest in all groups at the rostral hydrogel edge (100 

µm), but throughout the hydrogels, the channels of astrocyte-seeded implants contained more 

traced axons (Two-Way ANOVA for overall group differences: p < 0.01) with implants seeded 

with cortex-derived astrocytes showing the greatest number of BDA+ axons in the rostral hy-

drogel halves (Two-Way ANOVA p < 0.01, with Tukey’s post hoc at rostral 100 µm: ****p < 

0.0001 controls vs. cortex-derived astrocytes; *p < 0.05 controls vs. spinal cord-derived astro-

cytes) (FIG 40D). Moreover, cortex-derived astrocyte-seeded implants contained significantly 

more axons than spinal cord-derived astrocyte-seeded hydrogels (**p < 0.01). This same effect 

was consistent in the rostral but also caudal halves of the hydrogels but was diminished at the 

hydrogel center (Two-Way ANOVA for distance: p < 0.0001, see Suppl. table 20). Surprisingly, 

in the caudal hydrogel halves, BDA axon numbers increased again in the cortex-derived as-

trocyte-seeded implants, whereas BDA-traced axons were only sparsely seen in controls (Two-

Way ANOVA p < 0.01 with Tukey’s post hoc at Caudal 100 µm: **p < 0.0001 controls vs. cortex-

derived astrocytes). However, the number of BDA-labeled axons in the spinal cord-derived 
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astrocyte-seeded group appeared to be constant throughout the entire length of the hydrogels. 

Again, a statistical interaction between cell seeding and distance was found (p < 0.01). Overall, 

both astrocyte-seeded groups contained a remarkably greater number of BDA-labeled axons 

compared with non-seeded controls (Two-Way ANOVA for overall group differences: p < 0.01), 

but with significant differences across the rostrocaudal extent of the implants (FIG 40E, Two-

Way ANOVA for distance: p < 0.0001; see Suppl. table 21). At the rostral hydrogel edge, the 

number of BDA-traced axons was about 3x greater in cortex-derived astrocyte-seeded im-

plants compared to controls and thereby even greater than in implants seeded with spinal cord-

derived astrocytes (Two-Way ANOVA p < 0.01, with Tukey’s post hoc at rostral 100 µm: ####p 

< 0.0001 control vs. cortex-derived astrocytes; ***p < 0.001 cortex-derived astrocytes vs. spinal 

cord-derived astrocytes). Hence, BDA-labeled axon numbers were significantly enhanced in 

cortex-derived astrocyte-seeded implants throughout the entire length of the implants com-

pared with controls. Similar to BDA axon numbers per channel, an interaction between dis-

tance and cell seeding was identified (p < 0.01). Finally, the previously observed strong pref-

erence of re-growing axons towards graft astrocyte-filled hydrogel channels was again 

confirmed when descending BDA-traced axons were tested since more than 90% of all de-

tected BDA+ axons were found in channels containing the grafted cortex- (**p < 0.01) or spinal 

cord-derived astrocytes (**p < 0.01) (FIG 40F). Importantly, regrowth of descending BDA-

traced axons was enhanced in comparison with the previous experiment (FIG 33). Especially 

in the cortex-derived astrocyte group, growth of descending BDA-labeled axons was elevated 

by a factor of 6.5 compared with the previous study (astrocyte seeding + caudal graft: 1.41 ± 

0.57 BDA+ axons/cell-filled channel at Rostral 100 µm vs. astrocyte seeding + rostral/caudal 

grafts: 9.19 ± 1.56 BDA+ axons/cell-filled channel at Rostral 100 µm). In the spinal cord-derived 

astrocyte group, the BDA axon numbers were increased by additional 60% more BDA-traced 

axons (astrocyte seeding + caudal graft: 3.29 ± 1.83 BDA+ axons/cell-filled channel at Rostral 

100 µm vs. astrocyte seeding + rostral/caudal grafts: 5.33 ± 1.12 BDA+ axons/cell-filled channel 

at Rostral 100 µm). 
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Figure 40: Growth of descending axons is enhanced in astrocyte-seeded hydrogel implants 
after additional astrocyte transplantation into the surrounding host spinal cord. (A – C) Descend-

ing BDA+ axons entered and extended within the channels of control hydrogels (A), implants seeded 

with astrocytes derived from the neonatal cortex (B) or spinal cord (C). Dashed lines indicate channel 

walls. Rostral is to the left, medial to the top, and caudal to the right. (D) Per cell-filled channel, a signif-

icantly greater number of BDA-traced axons in astrocyte-seeded implants was found compared with 

non-seeded controls in the rostral halves of the implants (Two-Way ANOVA for overall group differences: 

p < 0.01; PLO/laminin; n = 6; + cortex-derived astrocytes; n = 6; + spinal cord-derived astrocytes; n = 

6), whereas at the hydrogel center, no significant differences were observed. In the caudal hydrogel 

halves, implants seeded with cortex-derived astrocytes showed promoted growth of BDA-labeled axons. 

These differences were highly significant across all distances within the hydrogel implant (Two-Way 

ANOVA for distance: p < 0.0001; Interaction between cell grafting and distance: p < 0.01). Detailed 

statistical analysis is depicted in Suppl. table 20. Blue, red and grey boxes indicate the rostral and 

caudal hydrogel halves, and the hydrogel center, respectively. (E) Overall, implants of both astrocyte-

seeded groups contained at least the double amount of BDA-traced axons than the non-seeded controls 

at all analyzed distances (Two-Way ANOVA for overall group differences: p < 0.01), however, with rising 

distance from the rostral hydrogel edge, axon numbers appeared to slightly decline. In particular, axon 

numbers in implants seeded with cortex-derived astrocytes dramatically declined from the rostral chan-

nel entries towards the central area of the implants (Two-Way ANOVA for distance: p < 0.0001, with 

Tukey’s post hoc ####p < 0.0001 comparing rostral 100 µm and 1000 µm in the cortex-derived astrocyte 

group; Interaction between cell grafting and distance: p < 0.01). Detailed statistical analysis is depicted 

in Suppl. table 21. (F) The vast majority of BDA-labeled axons were found in astrocyte-containing chan-

nels throughout the entire implants (Two-Way ANOVA p < 0.05). Scale bar in C: 50 µm. 

 

Taken together, previous results regarding implant integrity, cell filling, graft cell survival and 

host-graft interactions were confirmed. Moreover, the addition of an astrocyte graft rostral to 

the hydrogel implantation and -in parallel- prolonging the survival time of the animals to 8 

weeks, further increased axonal growth into and through the hydrogel implants. Although no 

or only minor differences between neonatal astrocytes derived from cortex or spinal cord were 

found in the first set of experiments, cortex-derived astrocytes seemed to strongly promote re-

growth of descending spinal axons and slightly improve vascularization of the implantation site 

compared with spinal cord-derived astrocytes in this 8-week study. Consequently, the combi-

nation of cell-seeded implants and additional cellular grafts was again proven to be superior 

over the implantation of only a non-seeded hydrogel without any further trophic intervention. 

Axonal re-entry into the caudal host spinal cord, however, was not achieved, and therefore, 

additional trophic attraction of the growing axons within the caudal spinal parenchyma might 

be required. 
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4 Discussion 

The present study demonstrates that the implantation of a biocompatible alginate-based hy-

drogel implant in combination with co-transplantation of immature astrocytes into the bio-

material and the surrounding host spinal cord massively supports axonal growth after a unilat-

eral hemisection injury in the adult rat spinal cord. The biocompatibility of the hydrogel implants 

is improved by surface coating with the polypeptide PLO and the ECM component laminin. 

Seeding of the surface-coated hydrogel implants with immature cortex-derived astrocytes fa-

cilitates host-graft interactions and promotes axonal growth into the implants. Furthermore, the 

grafted astrocytes establish a cellular bridge connecting the hydrogel implants with the sur-

rounding host spinal cord. However, axons do not cross the caudal host graft interface and re-

innervate the caudal host spinal cord four weeks after SCI (Schackel, Kumar et al. 2019). 

To assess if further enhanced integration would promote reinnervation of the host spinal cord, 

we examined immature astrocytes of spinal cord origin in addition to cell transplantation within 

the uninjured tissue surrounding the hydrogel implant. No striking differences between the im-

mature cortex-and spinal cord-derived astrocytes could be found in vitro or in vivo. Cortex- as 

well as spinal cord-derived astrocytes form tissue bridges spanning the host-graft interface, 

even though minor differences in their morphology and migratory behavior with the spinal pa-

renchyma were observed. Moreover, either immature astrocytes equally facilitate vasculariza-

tion of the injury site and superior axonal regrowth compared to previous astrocyte seeding 

experiments. An additional rostral astrocytic graft combined with a prolonged survival time of 

8 weeks resulted in an overall additional improvement of vascularization and axonal growth 

within the hydrogel implants. This combinatorial treatment further enhances the regrowth of 

descending spinal axons by 400% compared with the previous co-transplantation studies, 

where immature astrocytes were only grafted caudal to the astrocyte-seeded hydrogel implant 

for a 4 week study. Nonetheless, axonal re-entry into the caudal host spinal cord was still not 

evident. 

The results suggest that the creation of a molecularly and cellularly permissive environment 

within biomaterial implants crucially affects the integration of the biomaterial implant into the 

host spinal cord, thereby increasing host-graft interactions and axonal growth within the im-

plantation site. A continuous cellular substrate connecting the uninjured host spinal cord and 

the hydrogel implant represents a prerequisite for axonal crossing of extended SCI sites. In 

this context, immature astrocytes can be used to bridge the interface between the hydrogel 

implant and the host spinal cord and facilitate vascularization and superior axonal growth of 

descending spinal tracts into and throughout the hydrogel implants without adopting per se a 

detrimental phenotype after transplantation into the hostile environment of acute SCI sites. 
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4.1 Biocompatibility of natural hydrogel biomaterials 

The success of each transplantation approach crucially relies on the biocompatibility between 

the implant and the host tissue. In particular, the host spinal cord will initiate an immune re-

sponse against each kind of implant. The hosts’ response to a biomaterial implants highly de-

pends upon the chemical formulation; physical properties, such as surface charge and elastic-

ity and stiffness; structural properties, like surface texture and porosity; and finally size as well 

as the shape of the implant. In addition, biodegradation of the biomaterial implant and poten-

tially toxic byproducts might contribute to the host immune response (Badylak 2015). 

Hydrogels were shown to have numerous advantages over other biomaterial types, such as 

synthetic hollow tube conduits. Especially hydrogels that are derived from natural polymers 

have superior capacities as implants for biomedical applications due to their low intrinsic tox-

icity and immunogenicity, variable mechanical properties and microstructure. Hydrogels allow 

for rapid gas, liquid and nutrient diffusion/osmosis making them specifically predestinated as 

carrier matrices for cell transplantation and factor release approaches. Additionally, their inher-

ent microstructure resembles (depending upon the basic chemical formulation) the natural mi-

crostructure of the mammalian ECM which further enhances their inherent biocompatibility 

(Fuhrmann, Anandakumaran et al. 2017, Liu, Schackel et al. 2017, Griffin and Bradke 2020). 

In the present study, solid hydrogel implants fabricated from the heteromeric polysaccharide 

alginate were tested as biocompatible biomaterials in vitro and in vivo. Naturally, mammals do 

not possess specific cell surface receptors nor alginate-specific antibodies against the alginate 

polymers. Hence, a specific adverse immune response against alginate per se can most likely 

be neglected but a general foreign body response may be present (Orive, Ponce et al. 2002, 

Lee and Lee 2009). Additionally, alginate is inherently non-degradable in mammals since they 

lack specific enzymes, such as alginase, to degrade the alginate chains. Based upon this in-

herent biocompatibility and low toxicity, various chemical formulations of alginate are used for 

numerous biomedical applications, e.g., dental restoration composite (Torres, Mailart et al. 

2020), wound dressings (Sweeney, Miraftab et al. 2012) or sealing agents for gastroesopha-

geal mucosa microlesions (Uemura, Oda et al. 2019); and as an additive for pharmacological 

compounds, like Gaviscon alginate-antacid in the treatment of gastroesophageal reflux dis-

ease (Coyle, Crawford et al. 2017), and in nutritional science as e.g., thickening agent (Lee 

and Mooney 2012). 

Nonetheless, alginate is biologically inert under physiological conditions due to a negative sur-

face charge of the alginate backbone (Dillon, Yu et al. 1998). In some instances, this charac-

teristic is advantageous for some biomedical applications; for example, non-adhesive wound 

dressings, where alginate-based hydrogels create a physiologically moist, absorb fluids from 
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and seal the wound, thereby preventing pathogen entry (Queen, Orsted et al. 2004, Sweeney, 

Miraftab et al. 2012, Dumville, Keogh et al. 2015). The non-permissive surface of pure alginate-

based hydrogels does not allow for cell adhesion; hence, alginate surfaces need to be ectopi-

cally modified to be feasible growth substrates for cells and neurites. 

To improve permissiveness and cell viability on alginate-based hydrogels, we applied surface 

coating with the synthetic polypeptide PLO to mask the negative surface charge and the ECM 

component laminin to introduce a biologically active signal to our alginate biomaterials (Dhoot, 

Tobias et al. 2004). In particular, masking the negative surface charge alone significantly im-

proved cell adhesion to alginate-based hydrogels. However, an additional biological stimulus 

of laminin was necessary to induce a differentiated cell morphology in immature cortex-derived 

astrocytes as well as neurite outgrowth from DRG neurons. Any cell adhesion on the uncoated 

hydrogels might be attributed to ECM protein deposition from the seeded cells rather than 

permissiveness of the alginate substrate itself (McLeod and Mauck 2016, Loebel, Mauck et al. 

2019). 

Most importantly, we tested whether PLO/laminin-coating would similarly improve biocompati-

bility of alginate-based hydrogels in vivo after traumatic SCI in adult rats. Non-coated and 

coated hydrogel implants were in direct physical contact with the surrounding host spinal cord 

and minor cystic cavitation was occasionally observed around non-coated hydrogel implants. 

Still, the hydrogel implants were surrounded by an area of hypercellularity indicating a host-

graft interface that mainly contained infiltrated fibroblasts, Schwann cells, microglia and mac-

rophages, as has been commonly observed after implantation of a biomaterial into SCI lesions 

(Guo, Zahir et al. 2012, Gao, Lu et al. 2013, Badylak 2015). Infiltration of SCI sites by non-

neural stromal cells, perivascular and meningeal fibroblasts as well as resident and blood-

derived immune cells is a component of the naturally occurring regeneration process after SCI 

(Norenberg, Smith et al. 2004). Hence, hypercellularity around the hydrogel implants indicates 

the natural hosts’ response to spinal cord damage per se and not a specific immune reaction 

against the biomaterial (Burda and Sofroniew 2014, Badylak 2015). Accordingly, surface coat-

ing did not affect the host immune response since astrocytes and macrophages/microglia were 

equally present at the lesion site in non-coated controls and animals that received surface-

coated hydrogels. 

Most intriguingly, surface coating significantly improved infiltration into and survival within the 

hydrogel implants of host-derived macrophages/microglia and Schwann cells. Thus, the 

PLO/laminin-coating remained stable and biologically active for at least 4 weeks in vivo, ex-

tending the previous in vitro results of two weeks (Schackel, Kumar et al. 2019). This is even 

more remarkable considering the presence of proteases and matrix metalloproteases at acute 

SCI lesion sites (Noble, Donovan et al. 2002, Zhang, Chang et al. 2011). Similar results were 
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obtained when a xyloglucan hydrogel was functionalized with poly-D-lysine (PDL) and trans-

planted into a lesion of the caudate putamen (Nisbet, Rodda et al. 2010). 

Cell filling was found most prominently at the hydrogel edges and significantly reduced in the 

central areas of the implant. This may be caused by an insufficient nutritional support of the 

infiltrated cells at the more central hydrogel areas resulting in cell migration from the hydrogel 

center towards the periphery. To examine whether the cell filling at the hydrogel center varies 

over time, timeline experiments at earlier timepoints post-injury (1- and 2-weeks after SCI) are 

required. Alternatively, cells might be apoptotic due to a hostile environment at the central hy-

drogel area, which could be assessed via Live/Dead assays as previously done in vitro 

(Schackel, Kumar et al. 2019). 

Along with greater host cell infiltration and survival, axonal growth was enhanced at channel 

entries in PLO/laminin-coated hydrogel implants compared with non-coated controls but 

equally decreased in both groups towards the hydrogel center. Since surface coating was suf-

ficient for cell attachment throughout the entire length of the hydrogel channels in vitro, the 

decrease in axonal growth might be attributed to the lower cell filling at the hydrogel center 

rather than to insufficient surface coating (Schackel, Kumar et al. 2019). Although there is a 

possibility for a shift in the cellular composition at the central hydrogel areas, our immunolabel-

ing data indicate a rather homogenous cellular composition of macrophages/microglia and 

Schwann cells throughout the entire hydrogel. 

An obstacle for axonal regeneration through biomaterial implants represents astroglial scarring 

around the implantation site. In our study, we found an area of irregular hypercellular tissue 

around the hydrogel implants but, surprisingly, this host-graft interface was devoid of astrocytes 

and only individual GFAP+ processes were extended from host astrocytes at the boundary 

between host and implant. However, host astrocytes formed thin but distinct borders at the 

boundary between the implant and the adjacent spinal cord, indicating astroglial scarring 

around the implantation site. This may hinder growing axons to cross the host-graft boundary 

due to the expression of axon growth-repulsive molecules such as CSPGs by reactive astro-

cytes and/or cells directly at the host-graft interface. Additionally, CSPG upregulation is also 

evident in the uninjured host spinal cord adjacent to the implantation site potentially impeding 

axonal re-entry (Silver and Miller 2004, Cregg, DePaul et al. 2014, Schwab and Strittmatter 

2014, Sofroniew 2015). Nonetheless, there is growing evidence that an astroglial scar and high 

CSPG expression levels around the SCI lesion site per se do not ultimately prevent axonal 

crossing of SCI sites (Kawaja and Gage 1991, Zukor, Belin et al. 2013, Anderson, Burda et al. 

2016). In line with this, we found βIII-tubulin-labeled axons enter the hydrogel implants from 

the rostral as well as caudal host spinal cord what contradicts an impermeable scar around the 

implantation site. 
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Most importantly, axons were not found extending in channels that were devoid of cells in any 

of the analyzed animals. In cell-filled channels, extending axons were mostly located centrally 

in the channel lumen and never found in direct contact with the alginate-based hydrogel itself. 

Consequently, it appears that the infiltrated host cells serve as cellular substrates for growing 

axons within the hydrogel channels; hence, surface coating alone does not affect axonal 

growth directly but indirectly by improving host cell viability within the alginate-based hydrogels. 

This differs from the in vitro results, where PLO/laminin-coating leads to neurite outgrowth of 

DRG neurons. However, this suggests that a cellular growth substrate may possess a greater 

axonal growth-promoting effect surface protein-coating itself. Further support comes from the 

fact that axonal growth during development is mediated via interaction of cell surface receptors 

with various components of the ECM which are present on cellular surfaces (Volpato, 

Fuhrmann et al. 2013, Fawcett and Verhaagen 2018). Most likely, the infiltrated Schwann cells 

might have served as an axonal growth-promoting cellular substrate in the hydrogel implants 

rather than the co-infiltrated macrophages and microglia (Weidner, Blesch et al. 1999, Pearse, 

Sanchez et al. 2007). Indeed, activated macrophages and microglia were found to be some-

what detrimental for axonal regeneration (Lang, Cregg et al. 2015, Anderson, Burda et al. 

2016, van Niekerk, Tuszynski et al. 2016). In comparison to previous work from our laboratory, 

axonal growth within surface-coated hydrogel implants was 40% greater than in hydrogels 

seeded with BMSCs expressing GFP (~350 axons/mm2 in PLO/laminin-coated hydrogels vs. 

~250 axons/mm2 in BMSC-seeded hydrogels at Rostral 100 µm) (Gunther, Weidner et al. 

2015). Thus, the data indicate that a biologically active protein coating of the hydrogel surface 

helps to establish a substrate of infiltrated host cells within the hydrogel channels which is 

more effective in promoting axonal regrowth than a cellular substrate consistent of pre-seeded 

autologous BMSCs. 

Thus, our data suggest that surface coating of alginate-based hydrogels improves their bio-

compatibility, thereby enhancing cell viability in vitro and in vivo. Surface coating, however, 

does not directly promote axonal growth through the hydrogel implants in vivo but instead cre-

ates a favorable molecular environment for host cell colonization within the implants. Hence, 

the infiltrated host cells, mainly Schwann cells, serve as a cellular growth substrate for the 

regrowing spinal axons. These findings further underline the notion that the combination of 

biomaterial implants with additional cell transplantation and/or factor delivery show great pro-

regenerative potential (Suzuki, Kitaura et al. 2002, Teng, Lavik et al. 2002, Joosten, Veldhuis 

et al. 2004, Deumens, Koopmans et al. 2006, Nomura, Baladie et al. 2008, Olson, Rooney et 

al. 2009, Rauch, Hynes et al. 2009, Gao, Lu et al. 2013, Li, Xiao et al. 2013, Zeng, Qiu et al. 

2015). In particular, cell transplantation and biomaterial implants act synergistically to over-

come some limitations of each individual approach. For example, low survival rates of grafted 
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cells as well as inappropriate filling of the lesion cavity after transplantation into acute SCI sites 

can be solved when the cells are delivered via a biomaterial (Olson, Rooney et al. 2009, 

Bozkurt, Mothe et al. 2010, Park, Lee et al. 2012). Notably, the biomaterial serves as a physical 

adherence matrix for the grafted cells and protects them in parallel from the hostile acute lesion 

environment. Surface coating and other biofunctionalization methods of biomaterial implants 

may serve as additional parameters to enhance graft cell survival. Since laminin displays a 

generally permissive biological signal for growing cells and neurites, surface coating with other 

ECM components such as hyaluronic acid, collagen, fibronectin or Matrigel might transduce 

an even stronger bioactive signal (Fouad, Schnell et al. 2005, Novikova, Mosahebi et al. 2006, 

Wang, Zhao et al. 2006, Tonge, de Burgh et al. 2012, Volpato, Fuhrmann et al. 2013). However, 

surface modification with full length proteins might potentially be problematic since bioactivity 

of several cell surface proteins requires a distinct 3D orientation and/or steric constellation. 

In our hands, surface coating with PLO and laminin was sufficient enough to support survival 

of the seeded immature astrocytes within the alginate-based hydrogel implants for at least 4 

weeks post-injury. When immature astrocytes were additionally grafted into the surrounding 

uninjured host spinal cord, the transplanted astrocytes survived even more robustly within the 

hydrogel implants. In contrast, other transplantation studies used additional growth factors or 

calpain inhibitor to ensure survival of grafted NSCs/NPCs (Fuhrmann, Tam et al. 2016) 

(Johnson, Tatara et al. 2010). Intrinsically, NSCs have a greater proliferative capacity than 

differentiated precursors populations such as our grafted immature astrocytes. However, the 

robust survival of the grafted astrocytes remains remarkable, especially when compared with 

the low survival rates reported for adult brain- or spinal cord derived NPCs/NPCs within chi-

tosan channel implants without additional trophic support (Kim, Tator et al. 2011, Guo, Zahir et 

al. 2012). 

 

4.2 The permissive astrocytic cellular substrate for axonal 
regeneration within biomaterial implants 

Surface-coated alginate-based hydrogels were primarily filled with mainly Schwann cells and 

macrophages/microglia 4 weeks post-injury. Although Schwann cells support axonal regener-

ation, tissue sparing and remyelination after SCI, they are not endogenous to the naïve spinal 

cord (Weidner, Blesch et al. 1999, Pearse, Sanchez et al. 2007). This raises the question of 

whether CNS endogenous cells would provide an even more permissive cellular substrate for 

axonal growth within our hydrogel implants. Previously, we successfully showed that our algi-

nate-based hydrogel implants could be used in combination with the transplantation of BMSCs 
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(Gunther, Weidner et al. 2015) and syngeneic adult Schwann cells (Liu, Sandner et al. 2017). 

Similar to Schwann cells, BMSCs are not natural residents to the naïve spinal cord, and cellular 

grafts containing BMSCs or SCs tend to form distinct boundaries and therefore poorly integrate 

into the host spinal cord (Weidner, Blesch et al. 1999, Vroemen, Caioni et al. 2007, Gunther, 

Weidner et al. 2015, Williams, Henao et al. 2015). Hence, the BMSC- and SC-seeded hydrogel 

implants remain separated from the surrounding host spinal cord, which may essentially con-

tribute to the failure of axons to easily cross the implantation site and re-enter the host spinal 

cord in the previous studies. We, therefore, sought to examine whether proper integration of 

our alginate-based hydrogel implants can be achieved by co-transplantation of cells that are 

endogenous to the CNS, thereby enhancing axonal growth through the SCI lesion. Conse-

quently, we selected immature astrocytes as cellular candidates for hydrogel seeding and co-

transplantation, which were previously shown to structurally support axonal growth similar to 

radial glia cells during development (Mason, Edmondson et al. 1988, Kliot, Smith et al. 1990, 

Hasegawa, Chang et al. 2005, Raper and Mason 2010, Wanner, Anderson et al. 2013, Shih, 

Lacagnina et al. 2014, Zhang, Burda et al. 2015, Rigby, Gomez et al. 2020). Grafts of immature 

astrocytes were previously shown to mediate neuroprotective as well as axonal growth-pro-

moting capacities. For example, fetal E13.4 spinal cord-derived astrocytes improved survival 

of dopaminergic neurons and parvalbumin+ interneurons after 4 weeks-delayed transplantation 

into 6-hydroxy-dopamine (6-OHDA) hemiparkinsonian rats (Proschel, Stripay et al. 2014). Sim-

ilarly, grafted fetal spinal cord-derived astrocytes facilitated neuroprotection of phrenic motor 

neuron pools in an amyotrophic lateral sclerosis (ALS) model in mice (SODG93A) by re-estab-

lishment of neurotransmitter homeostasis and amelioration of microglia activation (Lepore, 

Rauck et al. 2008). After SCI, transplanted human GRPs differentiated into functional astro-

cytes and supported regrowth of ascending sensory axons and descending raphe- and reticu-

lospinal axons across both, cervical hemisection as well as DCL injuries (Jin, Neuhuber et al. 

2011, Jin, Shumsky et al. 2018). Hence, the transplantation of immature astrocytes can lead 

to neuroprotective and axonal growth-promoting effects in the severed CNS without a potential 

risk of tumor formation as reported for undifferentiated stem cell grafts (Lee, Tang et al. 2009, 

Priest, Manley et al. 2015). 

Transplantation of undifferentiated GRPs, however, did not have any effect on axonal growth 

or even detrimental effects (Davies, Proschel et al. 2008). Thus, transplantation of uncommit-

ted glia precursors may harbor the potential for negative side effects which can be avoided 

when only cells that are terminally committed to the astrocytic lineage are transplanted. Indeed, 

in vitro pre-differentiation of fetal or ESC-derived GRPs with factors associated with astrocyte 

differentiation and maturation in vivo (e.g., BMP-4 or CNTF), resulted in functionally distinct 

astrocyte precursor (GDAs) subpopulations (Davies, Proschel et al. 2008, Davies, Shih et al. 
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2011, Haas, Neuhuber et al. 2012, Haas and Fischer 2013). Controversially, only GDABMP were 

shown to support regrowing spinal axons as well as transiently decrease neurocan expression 

at acute SCI sites (Davies, Huang et al. 2006, Davies, Proschel et al. 2008, Davies, Shih et al. 

2011), whereas Haas et al. did not find differences between BMP- or CNTF-GDAs after grafting 

into the injured spinal cord (Haas, Neuhuber et al. 2012, Haas and Fischer 2013). This dis-

crepancy might be explained by slightly different cell sources and in vitro-differentiation proto-

cols (Chu, Zhou et al. 2014). Given that our immature astrocytes were obtained from a later 

developmental stage (postnatal day 1 or 3) than the GRPs in the above-mentioned studies 

(E13.5 fetal spinal cord or ESCs), they most likely are already terminally committed to the 

astroglial lineage. Moreover, our grafted cells showed terminal astrocyte differentiation in vivo; 

hence, they do not represent undifferentiated GRPs but rather resemble pre-differentiated 

GDAs used by the previous studies (Davies, Huang et al. 2006, Haas, Neuhuber et al. 2012). 

Indeed, seeding of PLO/laminin-coated alginate-based hydrogel implants with immature cor-

tex-derived astrocytes leads to improved tissue penetration of the implantation site and host-

graft interactions as assessed by intermingled graft-derived and host-derived astrocytes at the 

host-graft interface, penetration of newly formed vasculature into the hydrogel channels, and 

most importantly, a striking enhancement of axonal growth within the hydrogel implants. Thus, 

immature cortex-derived astrocytes represent a permissive cellular substrate for axonal growth 

within biomaterial implants, which is in line with previous reports (Kliot, Smith et al. 1990, Wang, 

Chuah et al. 1995, Joosten, Veldhuis et al. 2004). Notably, pro-regenerative effects of immature 

astrocytes after transplantation into SCI sites were mostly observed when the astrocytes were 

grafted within a biomaterial implant, for instance a Millipore pennant (Kliot, Smith et al. 1990) 

or a collagen matrix (Wang, Chuah et al. 1995, Joosten, Veldhuis et al. 2004). Particularly, the 

grafted astrocytes reduced the volume of the astroglial scar around the implantation site 

(Wang, Chuah et al. 1995) and established cellular continuity between graft and the surround-

ing host spinal cord across already formed astroglial scars (Joosten, Veldhuis et al. 2004). In 

contrast, when graft and host tissue were spatially separated by dense scar tissue, axonal 

growth into the implants was limited (Wang, Chuah et al. 1995). Even without astrocyte graft-

ing, irregular astrocyte interface borders between lesion site and surrounding host tissue were 

found to facilitate greater regrowth of brain stem-derived spinal axons (vestibular, reticular, 

serotonergic, noradrenergic) compared with animals, which showed sharp distinct borders of 

GFAP-labeled astrocyte protrusions around a SC-seeded PAN/PVC channel implant at a tho-

racic full transection lesion (Williams, Henao et al. 2015). Likewise, linearly aligned PLA fiber 

conduits mediated aligned of host astrocytes at the margins of the implantation site which im-

proved axonal growth into the conduits after Th9 transection (Hurtado, Cregg et al. 2011). 

Astrocyte alignment between lesion site and adjacent uninjured host spinal cord was also 
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found when different astrocyte population derived from either fetal spinal cord-derived GRPs 

or human ESCs were transplanted into acute cervical DCL injuries (Davies, Huang et al. 2006, 

Davies, Proschel et al. 2008, Davies, Shih et al. 2011). Similarly, Hasegawa et al. found tissue 

re-organization at the penumbra of a thoracic contusion injury after implantation of an immor-

talized radial glia-like cell line derived from fetal spinal cord-GRPs (Hasegawa, Chang et al. 

2005). Most intriguingly, alignment of astrocytes across SCI sites was associated with greater 

regrowth of rubrospinal and ascending sensory axons and finally robust locomotion recovery 

on the horizontal ladder test (Davies, Huang et al. 2006, Davies, Proschel et al. 2008). These 

findings suggest that alignment of either grafted or host astrocytes at the lesion margins cru-

cially contributes to axonal growth through SCI sites. In our study, the seeded immature astro-

cytes formed longitudinal bundles of astrocytic processes with the host astrocytic network 

spanning the host-graft interface. Host-derived axons were found closely associated with these 

astrocytic processes indicating alignment of graft- and host-derived astrocytes similar to those 

observed in previous studies (Hurtado, Cregg et al. 2011, Williams, Henao et al. 2015). 

Thus, the combination of astrocyte grafting with the defined channel structure of our alginate-

based hydrogel implants may have led to longitudinal tissue re-organization and alignment 

across the entire SCI lesion site, whereas cell grafts alone did result only in alignment at the 

lesion margins (Davies, Huang et al. 2006). Further evidence arises from other studies that 

delivered astrocytes and astrocyte precursor cells into SCI lesion cavities without a supportive 

biomaterial matrix and barely saw any effect at all or even detrimental effects. Notably, negative 

outcomes were mainly observed, when the grafted astrocytes formed dense clusters instead 

of loose grafts with extended astrocytic processes into the surrounding spinal parenchyma as 

seen for neonatal P1 forebrain-derived astrocytes transplanted into focal infarct lesions of the 

dorsal funiculus (Hayashi, Hashimoto et al. 2011, Olby and Blakemore 1996). In another study, 

iPSC-derived astrocytes were grafted into the epicenter of a moderate Th8 contusion injury in 

adult rats. Although the grafted cells penetrated the host astrocytic network, they did not align 

longitudinally with host astrocytic processes nor with spinal axons (Hayashi, Hashimoto et al. 

2011). Most importantly, misaligned astrocyte grafts did not support axonal growth after SCI 

and were additionally associated with the induction of thermal and mechanical allodynia due 

to pathologic sprouting of CGRP+ axons in the dorsal horn caudal to the injury (Davies, 

Proschel et al. 2008). 

To summarize, immature astrocytes serve as a permissive cellular substrate within hydrogel 

implants, strikingly promoting axonal growth, specifically in comparison with previous work us-

ing autologous BMSCs (Lu, Yang et al. 2004, Gunther, Weidner et al. 2015) or syngeneic adult 

SCs without any further ectopic trophic factor delivery after traumatic SCI (Plant, Bates et al. 

2001, Liu, Sandner et al. 2017). Regrowing spinal axons preferentially enter and extend within 
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hydrogel channels that contained the grafted astrocytes rather than channels that were filled 

with infiltrated host cells. Furthermore, the grafted astrocytes established interactions and 

aligned with the host astrocytic network across the host-graft interface. Thus, immature astro-

cytes seeded into an alginate-based hydrogel implants can promote axonal regrowth and fa-

cilitate host-graft interactions after SCI. 

 

4.3 Differences between astrocyte populations 

Astrocytes represent a highly adaptive and plastic cell population with complex functional and 

morphological patterns. Accordingly, astrocytes display an enormous degree of heterogeneity 

across the entire CNS during development, health and disease (Westergard and Rothstein 

2020). In the first transplantation study, we co-transplanted immature cortex-derived astrocytes 

together with alginate-based hydrogel implants into a cervical SCI lesion. Although promising 

results in terms of host-graft interactions and promoted axonal regrowth were obtained with 

cortex-derived astrocytes, we wondered whether spinal cord-derived astrocytes further en-

hance implant integration and axonal growth. Consequently, we tested immature spinal cord-

derived astrocytes as potential candidates for biomaterial-supported cell transplantation into 

acute SCI sites. 

Developmentally, astrocytes arise from NSCs and glia-restricted precursors in different stem 

cell and precursor niches in the brain and spinal cord. In rodents, astrocyte specification starts 

at E10 to E12.5 in the spinal cord and slightly later in the forebrain, where it occurs from E16 

to E18 (Deneen, Ho et al. 2006). Astrocyte specification is immediately followed by a stage in 

which maturing APCs migrate along radial glia-like processes towards their final destination in 

the CNS. Importantly, APC migration happens extensively in the developing and postnatal 

brain, whereas it is restricted to individual spinal segments in the developing spinal cord 

(Jacobsen and Miller 2003). However, the temporal sequence of astrocyte specification and 

maturation are still incompletely understood (Hochstim, Deneen et al. 2008). Thus, those de-

velopmental differences may have implications on maturation stages of neonatal cortex- and 

spinal cord-derived astrocytes. 

Thus, to elucidate potential developmental differences, we isolated primary astrocytes from 

the cortex and the spinal cord of neonatal rats at postnatal days 1 and 3 and phenotypically 

characterized them in vitro as well as in vivo. Indeed, we found a differing marker expression 

pattern in vitro between cortex- and spinal cord-derived astrocytes at both tested postnatal 

timepoints. The difference in the expression of the astrocytic marker GFAP was most promi-

nent between the two astrocyte subpopulations, since > 95% of all cortex-derived cells ex-
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pressed GFAP, whereas only about 60 to 65% GFAP+ were detected in primary cultures de-

rived from postnatal spinal cord independent from the developmental timepoint. However, after 

transplantation into the intact spinal cord, no difference in GFAP expression was present indi-

cating terminal differentiation of the grafted immature astrocytes in vivo. Nearly all grafted cells 

expressed GFAP already 2 weeks after transplantation, which was consistent through the 4 

week timepoint identifying the grafted cells as late astrocyte precursors or terminally differen-

tiated astrocytes (Allaman, Belanger et al. 2011). In line with this, Sox2 and Sox 9 expression 

were elevated in grafted cortex- and spinal cord-derived astrocytes. Previously, transcriptome 

analysis found Sox2 expression to be enriched in purified mouse cortex-derived astrocytes 

(Cahoy, Emery et al. 2008, Zhang, Chen et al. 2014). Although Sox2 is thought to be respon-

sible for cellular maintenance and maintenance of embryonic stem cell pluripotency (Kiefer 

2007, Matsushima, Heavner et al. 2011), Kautzman et al. were able to link persistent Sox2 

expression to astrocyte maturation in the neonatal mouse retina (Kautzman, Keeley et al. 

2018). This idea is further supported by high Sox9 expression in both astrocyte populations 

after transplantation. Similar to Sox2, Sox9 is expressed by neural stem/progenitor cells to 

maintain stemness and involved, first, in the onset of gliogenesis by inducing NFIA/B expres-

sion, and second, in the initiation of astrocyte specification/migration (Stolt, Lommes et al. 

2003, Kang, Lee et al. 2012). However, high Sox9 levels were also found as a hallmark of 

reactive astrocytes by Hara et al. but the ability to induce reactivity could also be seen as an 

indicator for full maturity of the grafted cells (Hara, Kobayakawa et al. 2017). Hence, elevated 

Sox2 and high Sox9 expression levels might reflect ongoing astrocyte maturation of the grafted 

astrocytic cells. Surprisingly, the expression profiles of the intermediate filament proteins Vi-

mentin and Nestin were not altered in vivo compared with the in vitro results. Although both 

markers label NSCs (Sancho-Tello, Valles et al. 1995, Gilyarov 2008) expression profiling on 

astrocytes isolated either from intact or injured spinal cords of mice showed enhanced mRNA 

levels for Nestin and Vimentin at 7 dpi but decreased levels at later timepoints (Hara, 

Kobayakawa et al. 2017). Given that Nestin and Vimentin levels were analyzed exclusively on 

the protein level via immunolabeling in our study, both proteins might be detectable even at 

later timepoints post-injury than their respective mRNA. Moreover, enhanced Vimentin and 

Nestin levels were associated with an increased reactivity state of the astrocytes but not in-

volved with astroglial scarring (Hara, Kobayakawa et al. 2017). Thus, our data might partially 

reflect the reactive astrocyte phenotype that Hara and colleagues identified after transplanta-

tion, since even minimal manipulations like cell injections produce a small injury to the spinal 

cord. Accordingly, Nestin expression was not exclusively elevated in the grafted GFP-labeled 

cells but also in neighboring host-derived astrocytes (GFP-/GFAP+). 
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The corresponding changes in the molecular milieu at the injection site might eventually induce 

a status of reactivity in the grafted astrocytes. Furthermore, about 80% of all grafted astrocytes 

co-expressed GFAP and A2B5, which labels different NPC populations during development 

but in adulthood, GFAP+/A2B5+ astrocytes were identified as terminally differentiated fibrous 

astrocytes (Raff, Abney et al. 1983, Bonaguidi, McGuire et al. 2005). Additionally, a subclass 

of GFAP+/A2B5+ astrocytes were found to retain a certain degree of stem cell-like pluripotency 

representing a quiescent progenitor pool potentially capable of adult neurogenesis (Kondo and 

Raff 2000, Imura, Kornblum et al. 2003, Morshead, Garcia et al. 2003, Garcia, Doan et al. 

2004). The fibrous astrocyte identity of the grafted cells is further supported by the observed 

prominent fibrous cell morphology of the cortex- and spinal cord-derived astrocytes in vitro. In 

vivo, both astrocyte populations similarly adopted a differentiated morphology with long and 

thin GFAP+ processes resembling the classical fibrous astrocyte morphology found throughout 

the WM of mammals (Bushong, Martone et al. 2002, Sofroniew and Vinters 2010). 

Finally, the grafted cells expressed molecular markers of functional, terminally differentiated 

astrocytes, namely GLT-1/EAAT2, S100β, and AQP4. The glutamate transporter GLT-1/EAAT2 

is the major astrocytic glutamate transporter in the mature CNS. Its expression appears to 

increase from 2 to 4 weeks in vivo, pointing towards the functionality of the grafted astrocytes 

and a potential involvement in glio-/neurotransmitter homeostasis (Furuta, Rothstein et al. 

1997, Schreiner, Durry et al. 2014). S100β is expressed by late astrocyte precursors and fully 

mature astrocytes (Seri, Garcia-Verdugo et al. 2004). Additionally, about 50% of all grafted 

cells were GFAP+/AQP4+. Under healthy conditions, AQP4 is expressed in the endfeet of ter-

minally differentiated astrocytes and involved in water and ion homeostasis, astrocyte migra-

tion and maintenance of the blood-brain/spinal cord-barrier (Camassa, Lunde et al. 2015, 

Ikeshima-Kataoka 2016). However, AQP4 is predominantly expressed by perivascular astro-

cytes in direct contact with blood vessels and endothelial cells, so a moderate percentage of 

AQP4-positive labeling does not necessarily point towards an immature state of the grafted 

astrocytes. Both astrocyte populations formed CX43+ contact sites with host-derived astro-

cytes. CX43-labeled contact sites between astrocytes can be taken as signs for integration of 

the grafted cells into the perivascular astrocytic network of the host (Ezan, Andre et al. 2012, 

Chen, Qian et al. 2015, Lien, Tuszynski et al. 2019). Additionally, our grafted GFP-expressing 

cells aligned with host spinal axons similar to the results of Davies et al., where fetal spinal 

cord-derived and ESC-derived immature astrocytes aligned with host-derived axons after 

transplantation into a dorsal column lesion in adult Sprague-Dawley rats (Davies, Huang et al. 

2006, Davies, Proschel et al. 2008). Thus, our data suggest that although minor differences 
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between immature cortex- and spinal cord-derived astrocytes exist in vitro, both astrocyte pop-

ulations equally harbor the potential to differentiate into fully mature and functional astrocytes 

in vivo. 

Another line of evidence arises from the characterization of both astrocyte populations after 

transplantation into the acutely injured spinal cord. Similarly, most of the grafted cortex- and 

spinal cord-derived astrocytes co-expressed GFAP (> 95% GFP+/GFAP+) and Vimentin (~ 80% 

GFP+/GFAP+/Vim+) 4 weeks after SCI. Importantly, after transplantation into the uninjured spi-

nal cord, Vimentin expression was mostly restricted to the grafted astrocytes, whereas after 

SCI, Vimentin is overall elevated in the injured spinal cord. In particular, grafted GFP+ but also 

host-derived GFP- astrocytes were co-labeled with GFAP+/Vim+, but only a small fraction of the 

grafted cells were proliferative (~ 20% GFP+/GFAP+/Ki67+). Proliferative GFAP-expressing as-

trocytes are, in general, considered as reactive and potentially scar-forming (Sofroniew and 

Vinters 2010). However, live imaging studies showed only ~ 10% of the GFAP+ astrocytes were 

proliferating and not necessarily associated with astrocyte scarring after traumatic stab wound 

injury of the brain (Bardehle, Kruger et al. 2013). Hence, both host- and graft-derived astro-

cytes may be in a reactive state under injury conditions. In concordance, recent transcriptome 

analysis revealed striking differences within the pool of “reactive astrocytes”: although Vimentin 

and GFAP overexpression are typical indicators for a state of reactivity in astrocytes, detri-

mental reactivity states (e.g., neurotoxicity, scar-formation) as well as beneficial reactivity 

states (e.g., ROS buffering, sealing of BSCB leakage) can be classified by the expression of 

specific transcripts (Hara, Kobayakawa et al. 2017). Liddelow et al. referred to these bimodal 

reactivity states as neurotoxic A1 astrocytes and rather pro-regenerative A2 astrocytes, re-

spectively, based upon a panel of 10 differentially expressed genes after stimulation of isolated 

primary astrocytes with potent molecular triggers of astrocyte reactivity (Liddelow, Guttenplan 

et al. 2017). However, since no signs for severe astrocyte reactivity such as extensive cellular 

hypertrophy and formation of a distinct astrocytic scar by the grafted or host astrocytes around 

the implantation site were found, both astrocyte populations might be in a beneficial reactive 

state. 

Interestingly, the grafted astrocyte populations showed a differing migration behavior at the 

SCI lesion site. While grafted cortex-derived astrocytes spread out widely into the surrounding 

host spinal parenchyma (up to > 2 mm caudal from their injection site), the grafted spinal cord-

astrocytes migrated preferentially towards the injury. Although it remains unclear why this dif-

ference exists, it may be due to the tissue origin of the transplanted cells. Extensive migration 

of cortex-residential astrocytes was evident after brain injury (Elvira, Garcia et al. 2015) which 

was also seen after transplantation of primary cortex-derived or human NSC-derived astro-
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cytes into SCI lesions (Pencalet, Serguera et al. 2006, Lien, Tuszynski et al. 2019), while oth-

ers reported a somewhat restricted host astrocyte migration after brain injury (Bardehle, Kruger 

et al. 2013). Likewise, endogenous spinal cord astrocytes appear to be rather restricted to their 

spatial domain after stab wound injury of the spinal cord. Perhaps, the grafted spinal cord-

derived astrocytes might be more sensitive to the milieu of an acute SCI lesion, thereby directly 

attracted to the lesion site, while cortex-derived astrocytes might harbor a greater intrinsic mi-

gratory potential. Accordingly, immature cortex-derived astrocytes migrated over several milli-

meters within ex vivo postnatal brain slices (Jacobsen and Miller 2003). 

To summarize, P1 cortex- and P3 spinal cord-derived astrocytes show minor phenotypical dif-

ferences in vitro but equally mature and terminally differentiated in vivo within the intact and 

injured adult spinal cord. Immunolabeling by various molecular astrocyte markers elucidated 

the heterogeneous character of the transplanted astrocytes. Although, nearly all grafted cells 

could be associated with the astrocytic lineage, subgroups were identified as late astrocyte 

precursor cells/maturing astrocytes, while others were terminally differentiated fully mature as-

trocytes expressing functional astrocyte markers (e.g., AQP4, GLT-1). Hence, the environment 

of the acutely injured spinal cord equally induced terminal differentiation and progressing mat-

uration in the grafted cortex- and spinal cord-derived astrocytes. Moreover, both grafted astro-

cyte populations may have adopted a state of reactivity after SCI as indicated by elevated 

Vimentin expression 4 weeks post-injury. The ability to induce astrocyte reactivity can be taken 

as another indicator for a mature and functional phenotype of the grafted astrocytes. These 

findings are in line with previous work showing that the microenvironment of the transplantation 

site can override the astrocyte-intrinsic differentiation program and drive astrocyte maturation 

and phenotypical plasticity (Hara, Kobayakawa et al. 2017, Li, Khankan et al. 2019). 

Nonetheless, some constraints persist since the exact molecular and temporal mechanisms of 

astrocyte specification, maturation as well as astrocyte reactivity are still not fully understood 

and remain objects of ongoing research (Sofroniew 2014, Molofsky and Deneen 2015, 

Ceyzeriat, Abjean et al. 2016, Hara, Kobayakawa et al. 2017, Liddelow and Barres 2017). 

Firstly, GFAP is widely used as a universal astrocyte marker but its marker potential is limited 

and not exclusively restricted to astrocytic cells, for instance, DRG satellite cells or NPCs in 

the olfactory bulb also show a certain degree of GFAP expression (Allaman, Belanger et al. 

2011). Moreover, its induction and expression level varies between species, CNS insult condi-

tions, and even between individual astrocytes (Liddelow, Guttenplan et al. 2017, Pekny, 

Wilhelmsson et al. 2019). Hence, defining reliable molecular markers of astrocytic cells 

throughout development, during maturation, and into adulthood, as well as their interpretation 

remains extraordinarily challenging. Given that GFAP remains, however, the most consistently 
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induced gene in the astrocyte transcriptome, its combination with various markers and/or trans-

genic reporter lines harbor the potential to reliably label the majority of all astrocytic cells and 

to identify different astrocyte populations during health and disease (Emsley and Macklis 2006, 

Allaman, Belanger et al. 2011, Molofsky, Krencik et al. 2012, Zeisel, Hochgerner et al. 2018, 

Morel, Men et al. 2019, Pekny, Wilhelmsson et al. 2019). Even more intriguing, transcriptional 

analysis of astrocytes form intact and damaged spinal cord convincingly revealed that most 

markers that were classically associated with astrocyte development become upregulated 

again during reactivity, especially Vimentin and Nestin (Zamanian, Xu et al. 2012, Hara, 

Kobayakawa et al. 2017, Liddelow, Guttenplan et al. 2017). Secondly, it has to be noted that 

all procedures of cell isolation, cultivation and final transplantation change the molecular phe-

notype of the primary astrocytes. In this context, Foo et al. demonstrated that cortex-derived 

astrocytes can be consistently isolated in large quantities with stable marker expression pro-

files via immunopanning. These astrocytes were found to closely resemble astrocytes in vivo 

(Foo, Allen et al. 2011). Additionally, cultivating primary astrocytes under serum-containing 

conditions affects GFAP expression and potentially reactive behavior (Chaboub and Deneen 

2013). Therefore, the obtained marker expression data of the isolated immature astrocytes 

might not entirely reflect the expression pattern of astrocytes in their natural environment 

(Cahoy, Emery et al. 2008, Doyle, Dougherty et al. 2008). Thirdly and most importantly, astro-

cytes are a highly adaptive and plastic cell population during development, adulthood and dur-

ing the CNS response to insults. Various astrocyte subpopulations with differing functional 

phenotypes exist throughout the mammalian CNS which might have implications to their be-

havior after isolation and/or transplantation into the intact and severed spinal cord (John Lin, 

Yu et al. 2017, Morel, Chiang et al. 2017, Zeisel, Hochgerner et al. 2018). Furthermore, astro-

cytes respond to CNS insults in a finely tuned context-dependent manner; hence, reactivity 

states differ between SCI (Hara, Kobayakawa et al. 2017), Alzheimer’s disease (Ceyzeriat, 

Ben Haim et al. 2018), ischemia (Liddelow, Guttenplan et al. 2017), and multiple sclerosis (Itoh, 

Itoh et al. 2018). Strikingly, quiescent and reactivity states of astrocytes are plastic and reversi-

ble dependent upon their molecular environment (Hara, Kobayakawa et al. 2017) making a 

precise definition and comparison of astrocytic phenotypes and reactivity states in response 

to a multi-faceted pathology, such as SCI, difficult. 
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4.4 Distal cellular grafts to improve host-graft interactions and 
tissue bridging after biomaterial implantation 

Since the spinal cord is a highly organized anatomic structure, its regeneration benefits from 

defined physical guidance systems to ensure proper organization and guidance of the repaired 

tissues through the lesion site (Miller, Jeftinija et al. 2002, Gunther, Gunther et al. 2015, Koffler, 

Zhu et al. 2019). Although no excessive inflammatory reaction around surface-coated alginate-

based hydrogel implants was observed, the implants were surrounded by irregular hypercellu-

lar tissue, while penetration of regenerating tissue (e.g., vascularization) through the implants 

was limited. Therefore, a direct structural connection between the surrounding uninjured host 

spinal cord and hydrogel implant should support regeneration across extended SCI sites. By 

combining a biomaterial implant with cell transplantation, a continuous cellular substrate span-

ning the SCI lesion cavity can be established (Ramon-Cueto, Cordero et al. 2000, Fouad, 

Schnell et al. 2005, Deumens, Koopmans et al. 2006). 

Indeed, seeding of immature cortex-derived astrocytes into the channels of PLO/laminin-

coated alginate-based hydrogel implants mediated cellular interactions between the grafted 

astrocytes and the astrocytic network of the host. In particular, host- and graft-derived astro-

cytes intermingled and aligned longitudinally serving as astrocytic bridges for growing host 

spinal axons across the host-graft interface. Furthermore, endothelial cells and possibly blood 

vessels were found to extend mainly within the astrocyte-containing implant channels. Moreo-

ver, in consecutive experiments, we were able to further enhance tissue penetration of the 

alginate-hydrogel implants by adding grafts of either immature cortex- or spinal cord-derived 

astrocytes rostrally and caudally of the implantation site, further establishing structural conti-

nuity between biomaterial implant and surrounding host spinal parenchyma. 

In particular, although the grafted immature astrocytes showed robust survival within the hy-

drogel implants, the central regions of the hydrogels displayed only modest cell filling, when 

the astrocytes were exclusively seeded into the hydrogel channels. When additional astrocytic 

grafts were provided within the surrounding host spinal cord, the hydrogel channels were 

densely filled with graft-derived cells and a smaller fraction of host-derived cells over their en-

tire length at 8 weeks after implantation. This effect was not observed when the astrocytes 

were just grafted caudally to the hydrogel implant. Here, cell filling was similar to animals that 

were implanted with only astrocyte-seeded hydrogels. Hence, the greater cell filling could be 

correlated with the additional astrocyte grafting around the injury site. Noteworthy, the pro-

longed experimental timeframe might partially also account for the enhanced central cell filling, 

although cell filling within control hydrogels was unaltered between 4- and 8-weeks post-injury. 

Additionally, the grafted astrocytes might have migrated from the center towards the hydrogel 
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edges resulting in lower cell filling at the hydrogel center. Since the hydrogel edges were in 

direct contact with the damaged spinal cord tissue immediately after lesion, the lesion environ-

ment might have attracted the grafted astrocytes comparable to host astrocytes that at least 

locally migrate towards acute sites of CNS insults (Okada, Nakamura et al. 2006, Elvira, Garcia 

et al. 2015). This scenario is probably most relevant in animals that only received astrocyte-

seeded implants, since the filling of the hydrogel channels with seeded astrocytes was rather 

continuous in animals with additional rostral and caudal grafts. Here, astrocytes derived from 

the additional grafts might have ameliorated the acute injury environment thereby inhibiting 

further recruitment of astrocytes to the injury site. Alternatively, astrocytes derived from the 

surrounding grafts may have migrated into the hydrogel channels. However, central cell filling 

was also reduced in animals that received astrocyte-seeded hydrogel implant together with 

only a caudal astrocytic graft. The differing survival periods of the animals have to be consid-

ered, since animals with only a caudal graft survived for 4 weeks post-SCI, whereas animals 

with rostral and caudal grafts survived for 8 weeks. Perhaps, a longer survival period facilitated 

either greater astrocyte migration into the channels or progressing proliferation of the seeded 

astrocytes, since a small fraction of about 20% of the grafted astrocytes were found to be 

proliferative. 

Alternatively, the lack of vasculature at the implantation site and within the hydrogel implants 

might have contributed to the lower central hydrogel cell filling without additional astrocytic 

grafts. In comparison to the destruction and following degradation of blood vessels 2 to 3 days 

post-injury (Whetstone, Hsu et al. 2003, Ng, Stammers et al. 2011), our injury model completely 

removed a 2 mm-wide block of spinal tissue, which lead to an immediate void of the vascula-

ture at the lesion site. Consequently, the lesion site as well as the hydrogel channel lumen 

were without blood supply immediately after implantation leading to elevated apoptosis at the 

hydrogel center. Studies focused on contusive SCI revealed that endothelial cells give rise to 

newly formed microvessels starting at 3 dpi and finally restore the microvessel density to the 

level of the uninjured spinal cord within the first week after SCI (Casella, Marcillo et al. 2002, 

Dray, Rougon et al. 2009, Zhou, Zheng et al. 2019). Hence, the freshly formed blood vessels 

restore oxygen and nutritional supply improving graft cell survival and potentially axonal growth 

at the implantation site. This notion is supported by the fact that re-vascularization of the hy-

drogel implants was increased by transplantation of immature astrocytes into and even further 

enhanced by co-transplantation of immature astrocytes into the surrounding adjacent spinal 

tissue. Perhaps, the increased density of CD31-labeled blood vessels within astrocyte-seeded 

hydrogel implants might be due to the secretion of pro-angiogenic factors such as VEGF and 

Shh by the grafted astrocytes (Alvarez, Dodelet-Devillers et al. 2011, Argaw, Asp et al. 2012). 
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The grafted astrocytes might have additionally provided a structural guidance network for vas-

cularization of the implantation site. Likewise, in the developing mouse retina, an astrocytic 

scaffold is established that physically guides endothelial tip cell filopodia during blood vessel 

extension in a VEGF/VEGFR-dependent fashion (Gerhardt, Golding et al. 2003, Chappell, 

Darden et al. 2019). Host cells at the implantation site may also act pro-angiogenic. For exam-

ple, activated M1 macrophages secrete factors that initiate sprouting of freshly formed mi-

crovessels and M2 macrophages positively affect microvessel maturation and stabilization af-

ter SCI (Lutton, Young et al. 2012, Spiller, Nassiri et al. 2015). Within the hydrogel implants, 

many microvessels were at least partially enwrapped by the grafted astrocytes, potentially in-

dicating the formation of a functional BSCB (Whetstone, Hsu et al. 2003). In line with this, a 

moderate fraction of the grafted cortex- and spinal cord-derived astrocytes expressed the peri-

vascular astrocyte marker AQP4 and integrated via CX43+ gap junctions into the host astro-

cytic network, which might be indicative for the participation of the grafted cells in functioning 

BSCB (Attwell, Buchan et al. 2010, Langer, Gerkau et al. 2017). Given that blood vessels 

lacking association with the grafted astrocytes might be malfunctioning (Casella, Marcillo et al. 

2002), the functionality of the observed re-vascularization could be assessed by perfusion trac-

ing with i.v. injection of EvansBlue or Di I in future studies (Li, Song et al. 2008, Walchli, Mateos 

et al. 2015). 

Besides a positive effect on cell filling and graft cell survival, promoted vascularization of the 

implantation site might have positively affected axonal growth as well. Intriguingly, blood ves-

sels secrete factors such as VEGF, artemin and several neurotrophins to guide and attract 

growing axons (Carmeliet and Tessier-Lavigne 2005, Hatakeyama, Ninomiya et al. 2020). Ac-

cordingly, in the PNS, blood vessel formation precedes SC migration, formation of bands of 

Bügner and finally axonal growth across nerve gaps after sciatic nerve transection. Moreover, 

the delivery of VEGF enhanced SC migration into the lesion site, thereby promoting axonal 

regeneration from the proximal into the distal nerve stump (Hobson, Green et al. 2000). Later 

studies confirmed that migrating SCs used pioneer blood vessels at the injury site as physical 

tracks (Cattin, Burden et al. 2015). Similarly, in the CNS, vasculature networks were shown to 

guide migrating neuroblasts in a laminin-β1 integrin-dependent way after stroke (Fujioka, 

Kaneko et al. 2017). After SCI, migrating SCs form the PNS enter the spinal cord and infiltrate 

the lesion site along the local spinal cord microvasculature. During migration within uninjured 

spinal cord tissue, perivascular astrocytes confine SCs to the surface of blood vessels segre-

gating them from WM tracts (Afshari, Kwok et al. 2010). In contrast, after demyelination injury 

to the thoracic spinal cord of mice, endothelial cells of blood vessel walls around the lesion site 

upregulate fibronectin as well as β1 integrin allowing SC migration into the WM and towards 
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the lesioned area. Although the exact molecular mechanisms remain elusive, Eph/ephrin sig-

naling from pericytes and potentially perivascular astrocytes might be involved in controlling 

SC migration along blood vessels (Garcia-Diaz, Bachelin et al. 2019). Hence, blood vessels 

serve as physical guidance structures for cell migration and -although indirectly- for axonal 

growth after SCI. In our studies, vascularization of the hydrogel implants and the surrounding 

host-graft interface was greater after co-transplantation of either immature cortex- or spinal 

cord-derived astrocytes along with more axonal growth in the hydrogel implants. This data is 

in line with other reports that showed a positive correlation between blood vessel ingrowth and 

density with axonal growth within biomaterial implants after Th9 full transection in adult female 

Fischer and Sprague-Dawley rats (Madigan, Chen et al. 2014). 

Another aspect that influenced the enhanced axonal growth into and through the alginate-

based hydrogel implants may have been the longitudinal astrocytic bridges spanning the host-

graft interface, thereby connecting the hydrogel implant with the adjacent spinal tissue. Alt-

hough astrocytic bridges were also observed when the immature astrocytes were only seeded 

into the hydrogel implants, they appear more prominent when astrocytes were additionally 

grafted into the rostral and caudal host parenchyma. Host axons were often closely associated 

with these astrocyte bridges at the rostral and caudal host-graft interface, suggesting that the 

bridges provided physical guidance for the growing axons. Importantly, numerous studies iden-

tified the formation of astrocytic tissue bridges and tissue alignment at the periphery of SCI 

lesions as an anatomical predictor for axonal growth through SCI sites (Joosten, Bar et al. 

1995, Xu, Guenard et al. 1995, Guest, Hesse et al. 1997, Spilker, Yannas et al. 2001, Iseda, 

Nishio et al. 2004, Ma, Wei et al. 2004, Liu, Lu et al. 2010, Hurtado, Cregg et al. 2011, Zukor, 

Belin et al. 2013, Cregg, DePaul et al. 2014). However, why such bridges form remains vastly 

unknown. Probably, since reactive astrocytes share some characteristics with immature astro-

cytes (Wanner, Anderson et al. 2013) and axons grow along radial glia trajectories or immature 

astrocytes during development (Mason, Edmondson et al. 1988, Hasegawa, Chang et al. 

2005, Raper and Mason 2010), graft- and host-derived reactive astrocytes at the lesion site 

may recapitulate these developmental scaffolding properties. Immunolabeling analysis 

showed that subgroups of the grafted astrocytes still express differentiation markers after 

transplantation into the intact spinal cord; hence, their partially immature phenotype may allow 

them to act as they would during CNS development. Although the expression of maturation 

markers after transplantation into the acutely injured spinal cord was not specifically assessed 

in the present study, this might still be a possible explanation for the formation of the longitudi-

nal astrocyte bridges. Likewise, in vitro studies showed stable longitudinal alignment of imma-

ture cortex-derived astrocytes (East, de Oliveira et al. 2010, Winter, Katiyar et al. 2016). Alt-

hough astrocytes alignment as initiated by collagen-based hydrogel tubes in both studies, the 
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aligned astrocytic bundles retained their stability after removal of the hydrogel mold. Interest-

ingly, DRG neurons were shown to grow along these astrocyte bundles (Winter, Katiyar et al. 

2016). Moreover, in the study of Winter et al., the aligned astrocytes adopted an elongated 

bipolar cell shape (Winter, Katiyar et al. 2016), which was also observed for the co-grafted 

spinal cord-derived astrocytes in our study. 

The astrocytic bundles at the rostral and caudal host-graft interface consisted of graft- as well 

as host-derived astrocytes. Since the grafted astrocytes harbor the potential to form CX43+ 

direct contact sites with the host-astrocytic network, the mixed astrocyte population might have 

formed an astrocytic syncytium. Astrocytic responses to altered CNS conditions or insults are 

known to be orchestrated via cell-cell communication through CX43-positive gap junctions 

(Retamal, Froger et al. 2007, Orellana, Montero et al. 2013, Lagos-Cabre, Alvarez et al. 2017). 

Thus, the grafted astrocytes might have instructed host-derived astrocytes to align via those 

intercellular communication patterns. Although, whether an interconnected cellular network 

was formed after astrocyte co-transplantation was beyond the scope of this study, it can be 

examined via live imaging of Ca2+ wave dynamics and their propagation between graft- and 

host-derived astrocytes (Bazargani and Attwell 2016). 

Within the alginate-based hydrogels, axonal growth was significantly improved by both grafted 

immature astrocyte populations, whereas axon numbers in the non-seeded control hydrogels 

were consistently lower at 4 and 8 weeks post-implantation. The greatest axonal growth in 

each study was found at the rostral end of the hydrogel implants suggesting growth promotion 

of descending spinal tracts. Axonal growth declined towards the hydrogel center in all experi-

mental groups, nonetheless, with additional astrocytic grafts within the surrounding host spinal 

cord, we were able to ameliorate this decline partially. Noteworthy, the number of serotonergic 

raphespinal axons was especially high in hydrogels containing cortex-derived astrocytes in all 

studies. Since raphespinal axons originate from brainstem nuclei, cortex-derived astrocytes 

potentially preferentially attract them due to their brain origin. Accordingly, a study by Petit et 

al. demonstrated that neonatal cortex-derived astrocytes preferentially attracted 5-HT+ axons 

after transplantation into the striatum of adult rats (Petit, Pierret et al. 2001). In our study, the 

5-HT-labeled axons appeared to have a rather branched than extended morphology within 

hydrogel channels seeded with immature cortex-derived astrocytes; hence, the astrocytic sub-

strate within the hydrogel channels might have induced axonal branching or dendridization 

rather than long distance-growth. In concordance, Tom et al. showed that serotonergic axons 

tend to extend dendritic protrusions in areas of a high density of GFAP-expressing astrocytes 

in acute brain slice cultures in vitro (Tom, Steinmetz et al. 2004). 
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Surprisingly, axon numbers at the caudal hydrogel end were elevated 8 weeks post-injury. In 

comparison to the previous studies, axonal growth was more constant throughout the ros-

trocaudal extent of the implants, so the elevated axon numbers might account for axons that 

completely crossed the hydrogels. However, axon numbers were still significantly lower at the 

central hydrogel compared with the caudal edge; hence, the greater axonal growth at the cau-

dal half may be rather due to the entry of ascending axons. Although the origin of these caudal 

axons remains unknown, they may account for regrowing sensory axons from the periphery. 

Likewise, Kliot et al. showed already in 1990 that grafts of immature astrocytes attract sensory 

axons from DRGs (Kliot, Smith et al. 1990). To clarify the origin of theses ascending axons, 

the retrograde tracer cholera toxin subunit B (CTB) could be used to label sensory fibers from 

the fore- and hindlimbs via injection into the ulnary nerve (Kathe, Hutson et al. 2016) and sciatic 

nerve, respectively (Massey, Hubscher et al. 2006, Alto, Havton et al. 2009). Alternatively, since 

the number of BDA-traced axons was increased in animals that received rostral and caudal 

astrocytic grafts at the caudal hydrogel edge as well, descending axons might have started to 

branch rather than further elongate at the caudal hydrogel halves. Due to the anatomical co-

ordinates of the BDA tracer injection, a subfraction of the BDA-traced axons belongs to the 

corticospinal tract (CST). Previously, local sprouting of spared and severed descending spinal 

axons -including CST axons- was shown to contribute to limited spontaneous or treatment-

induced functional restoration after SCI (Fouad, Pedersen et al. 2001, Weidner, Ner et al. 2001, 

Bareyre, Kerschensteiner et al. 2004, Ballermann and Fouad 2006, Kanagal and Muir 2008, 

Kanagal and Muir 2009). Hence, the greater number of BDA-traced axons within the implants 

could be attributed to sprouting of BDA-traced descending axons. A molecular reason for po-

tential promoted branching of descending axons might be BDNF expression by the grafted 

astrocytes within the hydrogel channels. Indeed, reactive astrocytes were shown to express 

significant levels of BDNF in response to neuroinflammation, demyelination injury and com-

pressive SCI (Ikeda, Murakami et al. 2001, Saha, Liu et al. 2006, Fulmer, VonDran et al. 2014, 

Hong, Zhao et al. 2016). Similarly, Sasaki et al. reported enhanced sprouting of descending 

axons after transplantation of BDNF-expressing MSCs into dorsal hemisection lesions in rats 

(Sasaki, Radtke et al. 2009), which is consistent with previous observations from our own la-

boratory (Gunther, Weidner et al. 2015). Alternatively, contralateral sprouting of descending 

axons might have caused the elevated BDA-labeled axon numbers at the caudal edge of the 

hydrogels. In particular, descending spinal axons might have passed the injury site on the 

contralesional spinal cord side and extended axonal sprouts into the lesioned side caudal to 

the lesion, which entered the hydrogel channels from the caudal side. Likewise, contralateral 

CST axons were shown to sprout to the lesioned side in the lumbar spinal cord several spinal 

segments caudal to a unilateral T7 hemisection in mice (Collyer, Catenaccio et al. 2014). This 
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possibility is rather unlikely, since BDA+ axons were found only occasionally caudal to the le-

sion site. Alternatively, BDA-labeled axons on the ipsilateral spinal cord side approach the im-

plantation site, do not enter the hydrogel channels but circumvent the implant medially or lat-

erally. However, to determine the origin and identity of the axons at the caudal hydrogel edge, 

additional tract-specific tracing studies are necessary. 

In summary, our data indicate that a continuous cellular substrate across an extended 2 mm-

wide SCI lesion site can be established by implantation of an astrocyte-seeded alginate-based 

hydrogel implant and additional co-transplantation of immature astrocytes into the surrounding 

host spinal cord. Host- and graft-derived astrocytes intermingled and aligned across the host-

graft interface providing physical guidance for regrowing axons. Furthermore, the grafted as-

trocytes improved vascularization and axonal growth into and through the alginate-based hy-

drogel implants. 

 

4.5 Hurdles to axonal crossing at biomaterial implantation sites 
and axonal re-entry into the distal host spinal cord 

Various experimental approaches have been developed to support and maximize axonal 

growth beyond biomaterial implants after SCI. However, axonal re-entry into the distal spinal 

cord after application of a biomaterial implant remains unseen or occasional at best. By incor-

poration of bioactive compounds (Pakulska, Vulic et al. 2013, Colello, Chow et al. 2016, 

Pakulska, Elliott Donaghue et al. 2016), trophic factors (Patist, Mulder et al. 2004, Stokols and 

Tuszynski 2006, Tsai, Dalton et al. 2006, Jain, McKeon et al. 2011, Rao, Zhao et al. 2018), 

and/or various cell populations (Gunther, Weidner et al. 2015, Liu, Sandner et al. 2017, Koffler, 

Zhu et al. 2019), axonal growth through biomaterial implants was successfully improved. How-

ever, functional recovery was only occasionally reported and modest at best (Teng, Lavik et al. 

2002, Fouad, Schnell et al. 2005, Li, Yang et al. 2009, Du, Xiong et al. 2011, Wang, Sun et al. 

2017, Rao, Zhao et al. 2018, Koffler, Zhu et al. 2019). 

In the present study, we were able to consistently enhance axonal growth within alginate-based 

hydrogel implants (channel diameter: ~ 70 µm, + PLO/laminin) 4 and 8 weeks after SCI via co-

transplantation of immature cortex- and spinal cord-derived astrocytes. Importantly, the astro-

cytes were grafted without additional trophic support of a growth factor cocktail (Lu, Wang et 

al. 2012) nor additional delivery or ectopic expression of bioactive molecules (Fuhrmann, 

Anandakumaran et al. 2018, Nori, Khazaei et al. 2018) and/or trophic factors (Ghosh, Wang et 

al. 2018, He, Zang et al. 2019). Previous studies from our own laboratory combined our algi-
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nate-based hydrogel implants (channel diameter: ~ 50 µm, no PLO/lam) with co-transplanta-

tion of either BDNF-expressing BMSCs (Gunther, Weidner et al. 2015) or adult syngeneic 

Schwann cells together with inducible viral BDNF expression (Liu, Sandner et al. 2017). In 

direct comparison, axonal growth after astrocyte seeding of the hydrogel implants (FIG 14D, + 

cortex-derived astrocytes: ~ 710 axons/mm2 at Rostral 100 µm) outnumbered the axonal 

growth responses observed after seeding with GFP-expressing BMSCs (~ 250 axons/mm2 at 

Rostral 100 µm) by 2.5-fold, and nearly reached the level of axonal growth after seeding with 

constitutively BDNF-expressing BMSCs (~ 1000 axons/mm2 at Rostral 100 µm) 4 weeks after 

SCI (Gunther, Weidner et al. 2015). Moreover, the seeded cortex-derived astrocytes doubled 

the amount of βIII-tubulin-labeled axons in hydrogel implants seeded with SCs (~ 350 ax-

ons/mm2 at Rostral 100 µm, 4 weeks post-SCI) and showed an equal amount of axonal growth 

with SC-seeded implants with additional viral BDNF delivery in the caudal host parenchyma (~ 

700 axons/mm2) (Liu, Sandner et al. 2017). Most importantly, axonal growth was even further 

enhanced in alginate-based hydrogel implants when either cortex- or spinal cord-derived as-

trocytes were seeded into the implants and additionally grafted into the surrounding host spinal 

cord. In particular, both astrocyte populations (FIG 37D, ~ 2300 axons/mm2 across the entire 

implant) surpassed the axonal growth found in implants seeded with SCs and sustained caudal 

BDNF expression 8 weeks after SCI (~ 750 axons/mm2 across the entire implant). Unfortu-

nately, although the axonal growth was strikingly enhanced by co-transplantation with imma-

ture astrocytes, axonal re-entry into the caudal host spinal cord was not observed, consistent 

with previous reports from our group (Gunther, Weidner et al. 2015). 

The present data demonstrate, however, that co-transplantation of a continuous growth-per-

missive cellular substrate can strikingly enhance axonal growth into and through 2-mm long 

hydrogel implants, which is even greater than the BDNF-induced axonal growth of our previous 

studies. Intriguingly, either cortex- or spinal cord-derived astrocyte-seeded implants contained 

nearly 2x more axons than SC-seeded implants with additional SC grafts and constant BDNF-

expression (~ 2300 axons/mm2 vs. ~1 200 axons/mm2 across the entire implant) 8 weeks after 

SCI. Nonetheless, why axons failed to re-enter the caudal host spinal cord remains elusive. 

In our study, the observed axonal regrowth most likely accounts for neuroplasticity and axonal 

sprouting rather than long-distance regrowth of descending spinal tracts. A great fraction of the 

axons present in the hydrogel implants were serotonergic, hence, originate from the raphespi-

nal tract. Additionally, due to its injection coordinates, BDA anterogradely traced axons of dif-

ferent descending spinal tracts, including the CST, reticulospinal and raphespinal tract. Previ-

ously, axonal sprouting of these spinal tracts was associated with spontaneous functional 

recovery after incomplete SCI (Courtine, Song et al. 2008, Takeoka, Vollenweider et al. 2014). 



4. Discussion 

 173

Alternatively, numerous studies that used biomaterial implants after SCI reported fibroglial and 

astrocyte scarring around the implantation hindering complete axonal crossing (Suzuki, Kitaura 

et al. 2002, Vroemen, Caioni et al. 2007, Grulova, Slovinska et al. 2015, Gunther, Weidner et 

al. 2015, Pawar, Prang et al. 2015). Thus, to reduce scarring, digestion of the growth inhibitory 

CSPGs at the scar tissue by delivery of ChABC (Fouad, Schnell et al. 2005). Although scarring 

was not explicitly analyzed in the present study, no obvious signs of a dense scar around the 

astrocyte-seeded implants (indicated by a distinct GFAP+ border around the implantation site), 

especially when additional astrocytic grafts were placed in the adjacent host tissue. Moreover, 

axonal growth further enhanced from 4 to 8 weeks post-injury in the astrocyte transplantation 

groups counteracting the presence of an axon impermeable scar around the implants, at least 

in these animals. The combination of the astrocyte co-transplantation paradigm with additional 

ChABC delivery, however, harbors a prominent drawback, namely ChABCs’ lack of specificity. 

In particular, ChABC degrades not only growth-inhibitory CSPGs but also ECM components 

such as hyaluronic acid (Prabhakar, Raman et al. 2005) and axonal growth-supportive CSPGs 

including aggrecan, CSPG 4 and CSPG 5 (Anderson, Burda et al. 2016), which could attenuate 

regenerative success by interfering with plasticity and neural reorganization in the uninjured 

spinal cord adjacent to the lesion (Garcia-Alias, Barkhuysen et al. 2009). 

Alternatively, complete axonal crossing through biomaterial implantation sites can be achieved 

via the establishment of a cellular bridge between implant and host tissue (Ramon-Cueto, 

Cordero et al. 2000, Deumens, Koopmans et al. 2006, Williams, Henao et al. 2015) or a com-

bination of biomaterial-supported cell transplantation and growth factor delivery (Fouad, 

Schnell et al. 2005, Deng, Hu et al. 2011, Liu, Sandner et al. 2017). Conversely, the formation 

of cellular bridges across the rostral and caudal host-graft interface was observed in the pre-

sent study, especially after the co-transplantation of immature astrocytes into the rostral and 

caudal host tissue. Moreover, axons appeared to be closely associated with these cellular 

bridges, but hardly any BDA-traced descending axons were found at the caudal host-graft 

interface and the adjacent spinal parenchyma. 

At more caudal spinal cord segments, individual BDA+ axons were found on the lesioned side, 

however, since no BDA-labeled axons could be consistently followed from the hydrogel implant 

through the caudal host-graft interface and back into the caudal host tissue, contralateral 

sprouting cannot be excluded as the source of these BDA+ axons. It has to be noted that tissue 

processing may have negatively influenced the axon tracing data. For example, since the hy-

drogel implant as well as host-graft interface are particularly fragile, sectioning procedures can 

generate ruptures within the tissue sections, which interfere with consistent tracing of individual 

axons on their way across the host-graft interface. Moreover, hydrogel channels and axons 

are not perfectly straight oriented and might not be entirely displayed on one tissue section. 
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They are found on one tissue section but proceed on the next adjacent tissue section and, 

therefore, cannot be traced consistently. In our study, descending axons were labeled by a 

BDA injection into the ipsilateral cervical spinal cord; hence, unspecific labeling of axons on 

the contralateral spinal cord side due to tracer diffusion cannot be excluded. Generally, speci-

ficity and reliability of axonal tracing can be enhanced by site-specific injection of BDA or AAV-

based tracing vector systems into the contralateral motor cortex (Hutson, Verhaagen et al. 

2012, Soderblom, Lee et al. 2015). Since the hydrogel implant and implantation site are highly 

fragile thereby vulnerable to damage and artifacts during standard tissue processing proce-

dures, experiments to evaluate the feasibility of clearing protocols on our injury paradigm are 

currently underway in kindly collaboration with Dr. Carmen Ruiz de Aldomovar (University of 

Mannheim). Therefore, we hope to improve spatial resolution, thereby optimizing visualization 

of axonal tracing as well as interactions between the grafted astrocytes and host-derived cells 

by sophisticated imaging techniques including 2-photon and light-sheet microscopy 

(Soderblom, Lee et al. 2015). 

Nonetheless, Liu et al. showed that BDA-traced axons can successfully traverse the implanta-

tion site and re-enter the caudal spinal cord, when SC-seeded hydrogel implants were com-

bined with constant BDNF expression in the caudal host spinal cord and -most importantly- an 

additional SC graft adjacent to the implantation site (Liu, Sandner et al. 2017). Consequently, 

axonal re-entry essentially requires both, a continuous cellular substrate across the lesion site 

and caudal chemoattractance. Importantly, the growth of BDA-traced axons within the caudal 

host spinal cord was restricted to the areas of the caudal SC graft and BDNF expression and 

did not extend further into the distal spinal cord. Thus, long-distance axonal growth within the 

distal host spinal cord additionally relies upon persistent support of axonal growth. This notion 

is further supported by the elegant study of Anderson et al., where complete axonal crossing 

of a thoracic total crush injury was achieved via implantation of a synthetic hydrogel into the 

lesion epicenter, additional caudal growth factor delivery, and viral transduction of spinal axons 

(Anderson, O'Shea et al. 2018). Specifically, Anderson et al. transduced descending proprio-

spinal axons with AVV vectors to either knock down PTEN or to overexpress insulin growth 

factor 1 (IGF1), osteopontin, and CNTF. Hence, the intrinsic growth capacity of these neurons 

was ectopically enhanced, which may explain the robust axonal growth across and caudally to 

the SCI site. Similarly, serial intraspinal injections of ChABC caudal to the unilateral C8 hemi-

section facilitated functional recovery of forelimb function in rhesus monkeys (Rosenzweig, 

Salegio et al. 2019). In contrast, Rao et al. reported robust axonal regeneration, restoring sig-

nal transduction and locomotion after implantation of a continuous NT3-releasing chitosan 

channel into a 1 cm-wide thoracic hemisection lesion in rhesus monkeys without additional 

manipulation of the distal spinal cord (Rao, Zhao et al. 2018). 
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However, persistent expression of neurotrophins after SCI was previously linked to detrimental 

side effects, including dysreflexia, neuropathic pain and spasticity. For example, administration 

of low doses of NT-3 were associated with temporal mechanical hypersensitivity in uninjured 

rats (White 1998, Zhou, Deng et al. 2000) and ectopic NGF expression either from genetically 

modified SCs or fibroblasts promoted sprouting of nociceptive axons after SCI (Tuszynski, 

Peterson et al. 1994, Tuszynski, Gabriel et al. 1996, Weidner, Blesch et al. 1999). Similarly, 

sustained BDNF overexpression caused spasticity in rats after partial or complete spinal cord 

transection (Lu, Blesch et al. 2012, Fouad, Bennett et al. 2013). Although the potential combi-

nation of the present astrocyte co-transplantation paradigm with virally delivered BDNF ap-

pears promising, however, BDNF has been shown to promote the activation of astrocytes and 

microglia, thereby aggravating neuroinflammation and mechanical allodynia (Coull, Beggs et 

al. 2005, Lu, Biggs et al. 2009, Zhang, Wang et al. 2011, Ding, Chen et al. 2020). In contrast, 

intrathecal NGF delivery attenuated reactive astrogliosis, neuroinflammation and pain after SNI 

(Cirillo, Cavaliere et al. 2010). Thus, the combination of the biomaterial-supported cell trans-

plantation with additional manipulation such as growth factor or ChABC delivery might be use-

ful to achieve axonal re-entry and sustained axonal extension within the caudal spinal cord but 

a finely graded balance has to be kept to avoid maladaptive plasticity. Perhaps, some of these 

risks can be circumvented by the use of ectopically regulatable viral vectors (Liu, Sandner et 

al. 2017). Finally, additional therapeutic interventions such as rehabilitative training and/or 

functional electrical stimulation (FES) might be necessary to regain sensorimotor function. Ac-

cordingly, Asboth et al. showed convincingly that even a small fraction of spared spinal tissue 

is sufficient to facilitate meaningful locomotion recovery when appropriate FES and locomotion 

training is applied (Asboth, Friedli et al. 2018). Hence, only a small number of axons that com-

pletely crossed the lesion and formed functionally relevant synapses in the distal spinal cord 

might be enough to restore function after SCI. 
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5 Conclusions and future perspectives 

To conclude, the present study provides further evidence that a combinational approach con-

sisting of an alginate-based hydrogel implant with a defined 3D microarchitecture and co-trans-

plantation of a permissive cellular substrate is sufficient to robustly enhance axonal growth 

after a traumatic unilateral hemisection injury in adult female rats. Surface coating of the hy-

drogel implants with the synthetic polypeptide PLO and laminin improved their biocompatibility 

and positively affects cell viability of host and grafted cells. This may contribute to increasing 

graft cell survival rates thereby overcoming a major limitation of previous transplantation ap-

proaches. Moreover, co-transplantation of either immature cortex- or spinal cord-derived as-

trocytes facilitated implant integration in terms of host-graft interactions and improved vascu-

larization thereby strikingly enhancing axonal growth compared with previous studies from our 

laboratory. Thus, a continuous cellular substrate across extended SCI and biomaterial implan-

tation sites represents an essential component for proper implant integration and robust axonal 

growth into and through biomaterial implants. 

Future studies will focus, firstly, on finely tuned additional manipulation of the implantation site 

on the physical, molecular and cellular level to maximize axonal growth through and finally 

beyond SCI sites, and, secondly, on translating the presented biomaterial-supported cell trans-

plantation paradigm to more clinically relevant SCI models. 

Consequently, excessive regrowth of descending axonal tracts has to be initiated, physically 

and trophically guided through the implantation site back into the uninjured host spinal cord to 

form functional synapses with their putative targets and, eventually, restore function. Experi-

ments combining the present approach with additional interventions aiming at induction and 

maintenance of the intrinsic regenerative capacity of adult CNS neurons and chemoattrac-

tion/trophic support of regrowing spinal axons will be necessary. For example, delivery of neu-

rotrophic factors may potentially lead to complete axonal crossing of the implantation site and 

re-entry into the caudal host spinal cord. Thus, growth factors could be released caudal to the 

SCI site from either deposits or regulatable viral expression vectors as done previously (Liu, 

Sandner et al. 2017, Anderson, O'Shea et al. 2018). Alternatively, partial neutralization of the 

growth-inhibitory environment at SCI lesion sites with finely graded administration of chon-

droitinase ABC might reduce detrimental CSPG expression around the lesion and allow for 

successful axonal crossing of SCI sites (Suzuki, Ahuja et al. 2017, Fuhrmann, Anandakumaran 

et al. 2018, Hu, Granger et al. 2018, Rosenzweig, Salegio et al. 2019). 

Furthermore, the alginate-based hydrogel implant will be modified in terms of microarchitecture 

and mechanical properties. The currently used alginate-based hydrogels have a medium vis-

coelasticity of ~200 Pa*s, which is magnitudes stiffer than the surrounding spinal tissue (< 10 
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Pa*s). These stiffness differences might additionally affect implant integration and astroglial 

scarring (Moshayedi, Ng et al. 2014, Moeendarbary, Weber et al. 2017). CNS neurons partic-

ularly prefer growth substrates with physical characteristics of the natural ECM (Javid, Rezaei 

et al. 2014, Koser, Moeendarbary et al. 2015). Therefore, adjusting the viscoelasticity of the 

hydrogel implants to the mechanoproperties of the uninjured spinal cord may further support 

axonal growth within the implants and facilitate even greater implant integration and axonal 

growth (Javid, Rezaei et al. 2014, Koser, Moeendarbary et al. 2015, Koser, Thompson et al. 

2016). Hence, ongoing studies with our collaboration partner Apl. Prof. Dr. Rainer Müller (Uni-

versity of Regensburg) focus on the modification of the viscoelasticity of the alginate-based 

hydrogel implants via alteration of the chemical stabilization process during hydrogel fabrica-

tion. 

The present study further illustrates the potential of astrocytes to establish functional tissue 

connections between a biomaterial implant and the surrounding host tissue thereby providing 

a permissive and structurally continuous cellular substrate upon which damaged spinal axons 

can grow. Importantly, although transplantation of fetal-derived tissue in humans is per se legal, 

however, ethnical concerns remain. Therefore, graft cells have to be obtained from ESC- or 

iPSC-derived NSCs or generated via direct reprogramming of skin-derived fibroblasts 

(Kantawong, Saksiriwisitkul et al. 2018, Xiao, Liu et al. 2018). Thus, functional astrocyte sub-

types can be obtained from ESC- or iPSC-derived NSCs using a plethora of differentiation 

protocols (Davies, Huang et al. 2006, Davies, Proschel et al. 2008, Davies, Shih et al. 2011, 

Krencik, Weick et al. 2011, Sloan, Darmanis et al. 2017, Tcw, Wang et al. 2017, Canals, Ginisty 

et al. 2018). With progress in understanding different molecular astrocyte phenotypes, differ-

entiation protocols can be modified to generate distinct astrocytic subtypes with defined func-

tions to meet the specific needs of acute SCI lesion sites. 
Behavioral testing of potential functional recovery of sensorimotor function has not been done 

yet due to severe limitations of the SCI model used, namely the high severity of the hemisection 

injury and the resulting complete loss of neuronal circuitries essential for forelimb function and 

the lack or only minimal axonal re-entry into the caudal host spinal cord. Hence, potential func-

tional improvements might exclusively rely on post-injury plasticity and compensatory mecha-

nisms, such as contralateral sprouting or re-arrangement of local neuronal circuitries. 

To overcome the limitations of the current SCI model, ongoing studies in the laboratory facili-

tated the implantation of a 1 mm-long alginate-based hydrogel with defined anisotropic channel 

structure in combination with co-transplantation of immature astrocytes to a full transection 

injury of the thoracic spinal cord at Th11. A full transection of the spinal cord completely abol-

ishes all functions relying upon instructive or regulatory input from the motor cortex leaving 

only local circuitries below the level of injury intact that could mediate voluntary reflex-driven 
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function. Hence, potentially occurring functional improvements of locomotion and sensory 

function have to be necessarily based on functional axonal growth across the hydrogel implant. 

Moreover, the distance between lesion site and the putative targets of the regrowing axons in 

the lumbar motor neuron pools is minimal after a thoracic lesion. Hence, functional relevant 

reinnervation of the target regions is more likely to occur. Finally, by re-transection through the 

hydrogel implant and subsequent functional testing, a causal correlation between the observed 

functional improvements and axonal growth through the hydrogel implant can be determined.  

Most important, since all kinds of transection injuries only represent a minor fraction of human 

SCI cases, the paradigm has to be adopted to the human condition where most SCIs account 

for compressive/contusive injuries with irregularly shaped lesion borders. So far, solid implants 

-like our alginate-based hydrogel implants- require physical space at the lesion site for implan-

tation and cannot easily be trimmed to fit into a naturally occurring irregularly shaped lesion. 

Consequently, additional spinal tissue needs to be resected; thus, worsening the patients’ out-

come. Even after contusion injury and the resulting cyst formation at the lesion epicenter, im-

plantation of a biocompatible implant requires resection of either scar and/or spinal cord tissue. 

By the use of fMRI scanning and 3D bioprinting, implants can be fabricated to match even 

irregular lesion borders (Koffler, Zhu et al. 2019). Furthermore, the timing of therapeutic inter-

ventions is essential. In the present study, the alginate-based hydrogel implants and immature 

astrocytes were implanted immediately after SCI and the grafted cells were confronted with 

the hostile inflammatory environment at the acute lesion site, which may have negatively af-

fected regenerative success (Piltti, Salazar et al. 2013). Hence, a delayed transplantation par-

adigm needs to be considered, also in terms of the clinical setting where immediate transplan-

tations are not feasible. For example, a 7 days delayed transplantation of immature OPCs lead 

to significant improvement in hindlimb locomotion (BBB motor scores) and electrophysiological 

signal transduction across thoracic contusion injuries, whereas the effect of immediate cell 

transplantation was very limited (Keirstead, Nistor et al. 2005, Wu, Sun et al. 2012). Likewise, 

pre-gelled fibrin hydrogels were successfully implanted 14 days after a dorsal hemisection in-

jury of the Th9 spinal cord of Long Evans rats and lead to increased axonal density within the 

implants compared with fibrin implants that were immediately implanted (Johnson, Tatara et 

al. 2010). 

Thus, to achieve efficacy, a biomaterial-based cell transplantation approach has to tackle mul-

tiple facets of the multifactorial SCI pathology, namely (1) physical and trophic support of the 

regrowing spinal axons, (2) establishment of a continuous cellular substrate across the implan-

tation site, and (3) persistent chemoattractance and support of the growing spinal axons within 

the caudal host spinal cord. In the present work, we facilitated a structurally defined and bio-

compatible alginate-based hydrogel together with a continuous astrocytic substrate across an 
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extended SCI lesion, therefore, we addressed two of the above-mentioned facets. Moreover, 

we provided further evidence that regrowth of damaged axons at SCI sites can be enhanced 

by a physically guiding and biologically permissive biomaterial implant. Future studies will fo-

cus on persistent trophic support of regrowing axons at the lesion site and within the distal host 

spinal cord.
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7 Supplementary tables 

7.1 Summary of animal experiments 

Experiment Group Surgery Treatment Survival Outcome 
measures 

Group 
size 

Animals 
excluded 

non-coated 
vs. coated 
hydrogels 

non-coated 
(Control) 

unilateral 
hemisection at 

C5/6 

hydrogel 
implant 

4 weeks 
CF, 

HAR/HMR, 
HC, βIII 

n = 12 
(3 died 
after 
SCI) 

- 

coated (+ 
PLO/lam) 

unilateral 
hemisection at 

C5/6 

hydrogel 
implant 

4 weeks 
CF, 

HAR/HMR, 
HC, βIII 

n = 12 

n = 2 
(contamination 

in hydrogel 
implant) 

non-seeded 
vs. astrocyte-

seeded 
hydrogels 

non-seeded  
(+ 

PLO/lam, 
Control) 

unilateral 
hemisection at 

C5/6 

hydrogel 
implant 

4 weeks 
CF, Vas, 

βIII, 5-HT 
n = 6 - 

astrocyte-
seeded  

(+ cortex-
derived 

astrocytes) 

unilateral 
hemisection at 

C5/6 

astrocyte-
seeded 
hydrogel 
implant 

4 weeks 
CF, AF, AC, 
Vas, βIII, 5-

HT 
n = 10 - 

astrocyte 
transplantation 

into intact 
spinal cord 

cortex-
derived 

astrocytes 
P1 

bilateral cell 
injection at C5 

- 
2 weeks MM n = 3 - 

4 weeks  MM n = 3 - 

spinal 
cord-

derived 
astrocytes 

P3 

bilateral cell 
injection at C5 

- 

2 weeks MM n = 3 - 

4 weeks  MM n = 3 - 

non-seeded vs 
astrocyte-
seeded 

hydrogels with 
caudal 

astrocyte graft 

non-seeded  
(+ 

PLO/lam, 
Control) 

unilateral 
hemisection at 

C5/6 

hydrogel 
implant 

4 weeks 
CF, Vas, 

βIII, 5-HT, 
BDA 

n = 6 

n = 1 
(hydrogel 

destruction 
during tissue 
processing) 

+ cortex-
derived 

astrocytes 

unilateral 
hemisection at 

C5/6 

astrocyte-
seeded 
hydrogel 
implant + 

caudal cell 
graft 

4 weeks 

CF, AF, AC, 
CAM, Vas, 
βIII, 5-HT, 

BDA 

n = 6 

n = 1 
(hydrogel 

destruction 
during tissue 
processing) 

+ spinal-
derived 

astrocytes 

unilateral 
hemisection at 

C5/6 

astrocyte-
seeded 
hydrogel 
implant + 

caudal cell 
graft 

4 weeks 

CF, AF, AC, 
CAM, Vas, 
βIII, 5-HT, 

BDA 

n = 6 - 

non-seeded vs 
astrocyte-
seeded 

hydrogels with 
rostral and 

caudal 
astrocyte graft 

non-seeded  
(+ 

PLO/lam, 
Control) 

unilateral 
hemisection at 

C5/6 

hydrogel 
implant 

8 weeks 
CF, Vas, 

βIII, 5-HT, 
BDA 

n = 6 - 

+ cortex-
derived 

astrocytes 

unilateral 
hemisection at 

C5/6 

astrocyte-
seeded 
hydrogel 
implant + 

rostral/caudal 
cell graft 

8 weeks 

CF, AF, AC, 
CAM, Vas, 
βIII, 5-HT, 

BDA 

n = 8 (2 
died 
after 
SCI) 

- 

+ spinal-
derived 

astrocytes 

unilateral 
hemisection at 

C5/6 

astrocyte-
seeded 
hydrogel 
implant + 

rostral/caudal 
cell graft 

8 weeks 

CF, AF, AC, 
CAM, Vas, 
βIII, 5-HT, 

BDA 

n = 8 (2 
died 
after 
SCI) 

- 
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Supplementary table 1: Summary of animal experiments. CF: cell filling; HAR: host astroglial 

response; HMR: host microglial response; HC: host cell characterization; ,III: ,III-tubulin-labeled axons; 

5-HT: 5-HT-labeled axons; Vas: vascularization; AF: astrocyte filling; AC: astrocyte colonization; MM: 

molecular marker expression; BDA: BDA-labeled axons; CAM: migration of caudally injection astrocytes 

 

7.2 Impact of neonatal astrocytes as a cellular growth substrate 
within alginate-based hydrogel implants on axonal 
regeneration after traumatic spinal cord injury 

Statistical test Group Distance p value 

Two-Way ANOVA 

for overall group 

differences  

p < 0.001, with 

Sidak’s post hoc 

PLO/laminin  

vs. 

+ cortex-derived 

astrocytes 

Rostral 500 µm *p < 0.05 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Sidak’s post hoc 

PLO/laminin 

Rostral 100 µm vs. Rostral 500 

µm 
**p < 0.01 

Rostral 100 µm vs. Caudal 500 

µm 
*p < 0.05 

Rostral 500 µm vs. Caudal 100 

µm 
****p < 0.0001 

Caudal 500 µm vs. Caudal 100 

µm 
****p < 0.0001 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 

µm 
*p < 0.05 

Rostral 100 µm vs. Caudal 500 

µm 
**p < 0.01 

Rostral 500 µm vs. Caudal 100 

µm 
**p < 0.0001 

Caudal 500 µm vs. Caudal 100 

µm 
**p < 0.01 

Interaction Cell grafting x Distance *p < 0.05 

Supplementary table 2: Statistical analysis of cell filling within hydrogel implants (FIG 13C). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p = 0.09 

PLO/laminin  

vs.  

+ cortex-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Sidak’s post hoc 

PLO/laminin 
Rostral 100 µm vs. Rostral 500 µm *p < 0.05 

Rostral 100 µm vs. Caudal 500 µm *p < 0.05 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm ***p < 0.001 

Rostral 100 µm vs. Caudal 500 µm **p < 0.01 

Supplementary table 3: Statistical analysis of axonal growth within hydrogel channels (FIG 
15C). 

 

Statistical test Group Distance p value 

Two-Way ANOVA 

for overall group 

differences 

p < 0.001, with  

Sidak’s post hoc 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm *p < 0.05 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Sidak’s post hoc 

PLO/laminin 

Rostral 100 µm vs. Rostral 500 µm *p < 0.05 

Rostral 100 µm vs. Caudal 500 µm **p < 0.01 

Rostral 500 µm vs. Caudal 100 µm *p < 0.05 

Caudal 500 µm vs. Caudal 100 µm *p < 0.05 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 500 µm vs. Caudal 100 µm **p < 0.01 

Caudal 500 µm vs. Caudal 100 µm **p < 0.01 

Supplementary table 4: Statistical analysis of axonal growth within hydrogel implants (FIG 
15D). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p = 0.27 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Sidak’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm ***p < 0.001 

Rostral 100 µm vs. Caudal 500 µm ***p < 0.001 

Rostral 100 µm vs. Caudal 100 µm ***p < 0.001 

Supplementary table 5: Statistical analysis of growth of serotonergic axons within hydrogel 
channels (FIG 16C). 

 

Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p = 0.14 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

- ns 

Two-Way ANOVA  

for distance 

differences 

p < 0.0001, with 

Sidak’s post hoc  

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 100 µm ****p < 0.0001 

Supplementary table 6: Statistical analysis of growth of serotonergic axons within hydrogel 
implants (FIG 16D). 
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7.3 Impact of neonatal spinal cord-derived astrocytes as a 
cellular growth substrate within alginate-based hydrogel 
implants and in the surrounding host spinal cord on axonal 
regeneration after traumatic spinal cord injury 

Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p = 0.51 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

vs. 

+ spinal cord-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Center 1000 µm **p < 0.01 

Center 1000 µm vs. Caudal 100 µm **p < 0.01 

+ spinal cord-derived 

astrocytes 
- ns 

Supplementary table 7: Statistical analysis of cell filling within hydrogel implants (FIG 17D). 

 

Statistical test Group Distance p value 

Two-Way ANOVA  

for cell type 

p < 0.001, with 

Sidak’s post hoc 

+ cortex-derived 

astrocytes  

vs. 

+spinal cord-derived 

astrocytes 

Caudal 0 – 500 µm **p < 0.01 

Caudal 500 – 1000 µm *p < 0.05 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Sidak’s post hoc 

+ cortex-derived 

astrocytes 

Caudal 0 – 500 µm vs.  

Caudal 1000 – 1500 µm 
***p < 0.001 

Caudal 0 – 500 µm vs.  

Caudal 1500 – 2000 µm 
****p < 0.0001 

Caudal 500 – 1000 µm vs.  

Caudal 1500 – 2000 µm 
*p < 0.05 

+ spinal cord-derived 

astrocytes 
- ns 

Supplementary table 8: Statistical analysis of graft cell migration caudal to the hydrogel im-
plants (FIG 28I). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

- ns 

PLO/laminin 

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm **p < 0.01 

+ cortex-derived 

astrocytes  

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm **p < 0.01 

Two-Way ANOVA 

for distance 

p = 0.21 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 
- ns 

+ spinal cord-derived 

astrocytes 
- ns 

Supplementary table 9: Statistical analysis of axonal growth within hydrogel channels (FIG 
31D). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

- ns 

PLO/laminin 

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm *p < 0.05 

+ cortex-derived 

astrocytes  

vs. 

+ spinal cord-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p = 0.07 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 
- ns 

+ spinal cord-derived 

astrocytes 
- ns 

Supplementary table 10: Statistical analysis of axonal growth within hydrogel implants (FIG 
31E). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin 

vs.  

cortex-derived 

astrocytes 

Rostral 100 µm *p < 0.05 

PLO/laminin 

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm **p < 0.01 

+ cortex-derived 

astroctytes  

vs. 

+ cortex-derived 

astroctes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral  500 µm *p < 0.05 

Rostral 100 µm vs. Center 1000 µm ***p < 0.001 

Rostral 100 µm vs. Caudal 500 µm **p < 0.01 

Rostral 100 µm vs. Caudal 100 µm **p < 0.01 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm *p < 0.05 

Rostral 100 µm vs. Center 1000 µm ***p < 0.001 

Rostral 100 µm vs. Caudal 500 µm ***p < 0.01 

Rostrall 100 µm vs. Caudal 100 µm ***p < 0.01 

Supplementary table 11: Statistical analysis of growth of serotonergic axons within hydrogel 
channels (FIG 32D). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm ****p < 0.0001 

PLO/laminin 

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm *p < 0.05 

+ cortex-derived 

astrocytes 

vs. 

+ spinal cord-derived 

astrocytes  

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral  500 µm ****p < 0.0001 

Rostral 100 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 100 µm ****p < 0.0001 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm *p < 0.05 

Rostral 100 µm vs. Center 1000 µm ***p < 0.001 

Rostral 100 µm vs. Caudal 500 µm ***p < 0.01 

Rostral 100 µm vs. Caudal 100 µm ***p < 0.01 

Interaction Cell grafting x Distance *p < 0.05 

Supplementary table 12: Statistical analysis of growth of serotonergic axons within hydrogel 
implants (FIG 32E). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

- ns 

PLO/laminin 

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm *p < 0.05 

+ cortex-derived 

astrocytes 

vs. 

+ spinal cord-derived 

astrocytes  

- ns 

Two-Way ANOVA 

for distance 

p = 0.12 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 
- ns 

+ spinal cord-derived 

astrocytes 
- ns 

Supplementary table 13: Statistical analysis of growth of descending axons within hydrogel 
channels (FIG 33D). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p = 0.28 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

- ns 

PLO/laminin 

vs. 

+ spinal cord-derived 

astrocytes 

- ns 

+ cortex-derived 

astrocytes 

vs. 

+ spinal cord-derived 

astrocytes  

- ns 

Two-Way ANOVA 

for distance 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 
- ns 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm vs. Caudal 500 µm *p < 0.05 

Rostrall 100 µm vs. Caudal 100 µm *p < 0.05 

Supplementary table 14: Statistical analysis of growth of descending axons within hydrogel 
implants (FIG 33E). 
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7.4 Implantation of astrocyte-seeded alginate-based hydrogel 
implants together with additional astrocytic grafts into the 
rostral and caudal host spinal cord after traumatic spinal 
cord injury 

Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin 

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm *p < 0.05 

Center 1000 µm ****p < 0.0001 

Caudal 500 µm *p < 0.05 

Caudal 100 µm ***p < 0.001 

PLO/laminin 

vs. 

+ spinal cord-derived 

astrocytes 

Center 1000 µm ****p < 0.0001 

Caudal 500 µm *p < 0.05 

Caudal 100 µm ***p < 0.001 

+ cortex-derived 

astrocytes 

vs. 

+ spinal cord-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.001, with 

Tukey’s post hoc 

PLO/laminin 
Rostral 100 µm vs. Center 1000 µm ***p < 0.001 

Rostral 500 µm vs. Center 1000 µm *p < 0.05 

+ cortex-derived 

astrocytes 
- ns 

+ spinal cord-derived 

astrocytes 
- ns 

Supplementary table 15: Statistical analysis of cell filling within hydrogel implants (FIG 35D). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin  

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm **p < 0.01 

Rostral 500 µm *p < 0.05 

Caudal 100 µm **p < 0.01 

PLO/laminin  

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm **p < 0.01 

Caudal 100 µm *p < 0.05 

+ cortex-derived 

astrocytes 

vs.  

+ spinal cord-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Center 1000 µm ***p < 0.001 

Rostral 100 µm vs. Caudal 500 µm ***p < 0.001 

Rostral 500 µm vs. Center 1000 µm **p < 0.01 

Rostral 500 µm vs. Caudal 500 µm *p < 0.05 

Center 1000 µm vs. Caudal 100 µm ***p < 0.001 

Caudal 500 µm vs. Caudal 100 µm **p < 0.01 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm **p < 0.01 

Rostral 100 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 500 µm vs. Caudal 100 µm *p < 0.05 

Center 1000 µm vs. Caudal 500 µm *p < 0.05 

Center 1000 µm vs. Caudal 100 µm ***p < 0.001 

Interaction Cell grafting x Distance *p < 0.05 

Supplementary table 16: Statistical analysis of axonal growth within hydrogel channels (FIG 
38D). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.01, with 

Tukey’s post hoc 

PLO/laminin  

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm ***p < 0.001 

Rostral 500 µm **p < 0.01 

Caudal 100 µm ****p < 0.0001 

PLO/laminin  

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm **p < 0.01 

Caudal 500 µm *p < 0.05 

Caudal 100 µm **p < 0.01 

+ cortex-derived 

astrocytes  

vs. 

+ spinal cord-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Center 1000 µm **p < 0.01 

Rostral 500 µm vs. Caudal 100 µm **p < 0.01 

Center 1000 µm vs. Caudal 100 µm ****p < 0.0001 

Caudal 500 µm vs. Caudal 100 µm ****p < 0.0001 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm *p < 0.05 

Rostral 100 µm vs. Center 1000 µm **p < 0.01 

Rostral 500 µm vs. Caudal 100 µm **p < 0.01 

Center 1000 µm vs. Caudal 100 µm ***p < 0.001 

Supplementary table 17: Statistical analysis of axonal growth within hydrogel implants (FIG 
38E). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin  

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm **p < 0.01 

PLO/laminin  

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm  ****p < 0.0001 

Rostral 500 µm *p < 0.05 

+ cortex-derived 

astrocytes  

vs. 

+ spinal cord-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm *p < 0.05 

Rostral 100 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 100 µm ****p < 0.0001 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm ****p < 0.0001 

Rostral 100 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 100 µm ****p < 0.0001 

Rostral 500 µm vs. Center 1000 µm **p < 0.01 

Rostral 500 µm vs. Caudal 500 µm *p < 0.05 

Interaction Cell grafting x Distance **p < 0.01 

Supplementary table 18: Statistical analysis of growth of serotonergic axons within hydrogel 
channels (FIG 39D). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.05, with 

Tukey’s post hoc 

PLO/laminin  

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm ****p < 0.0001 

Rostral 500 µm *p < 0.05 

Caudal 100 µm *p < 0.05 

PLO/laminin  

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm ****p < 0.0001 

Rostral 500 µm **p < 0.01 

Caudal 100 µm **p < 0.01 

+ cortex-derived 

astrocytes  

vs. 

+ spinal cord-derived 

astrocytes 

- ns 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin 

Rostral 100 µm vs. Rostral 500 µm *p < 0.05 

Rostral 100 µm vs. Center 1000 µm ***p < 0.001 

Rostral 100 µm vs. Caudal 500 µm **p < 0.01 

Rostral 100 µm vs. Caudal 100 µm **p < 0. 01 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm ****p < 0.0001 

Rostral 100 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 100 µm ****p < 0.0001 

Rostral 500 µm vs. Center 1000 µm *p < 0.05 

Center 1000 µm vs. Caudal 100 µm  *p < 0.05 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm ****p < 0.0001 

Rostral 100 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 100 µm ****p < 0.0001 

Rostral 500 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 500 µm vs. Caudal 500 µm ***p < 0.001 

Center 1000 µm vs. Caudal 100 µm ****p < 0.0001 

Caudal 500 µm vs. Caudal 100 µm **p < 0.01 

Interaction Cell grafting x Distance ****p < 0.0001 

Supplementary table 19: Statistical analysis of growth of serotonergic axons within hydrogel 
implants (FIG 39E). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.01, with 

Tukey’s post hoc 

PLO/laminin  

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm ****p < 0.0001 

Rostral 500 µm ****p < 0.0001 

Caudal 500 µm *p < 0.05 

Caudal 100 µm **p < 0.01 

PLO/laminin  

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm *p < 0.05 

Rostral 500 µm *p < 0.05 

+ cortex-derived 

astrocytes  

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm **p < 0.01 

Caudal 100 µm **p < 0.01 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 100 µm ****p < 0.0001 

Rostral 500 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 500 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 500 µm vs. Caudal 100 µm  ****p < 0.0001 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm vs. Center 1000 µm **p < 0.01 

Rostral 100 µm vs. Caudal 500 µm **p < 0.01 

Rostral 100 µm vs. Caudal 100 µm **p < 0.01 

Interaction Cell grafting x Distance **p < 0.01 

Supplementary table 20: Statistical analysis of growth of descending axons within hydrogel 
channels (FIG 40D). 
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Statistical test Group Distance p value 

Two-Way ANOVA  

for overall group 

differences 

p < 0.01, with 

Tukey’s post hoc 

PLO/laminin  

vs. 

+ cortex-derived 

astrocytes 

Rostral 100 µm ****p < 0.0001 

Rostral 500 µm ****p < 0.0001 

Center 1000 µm *p < 0.05 

Caudal 500 µm **p < 0.01 

Caudal 100 µm ***p < 0.001 

PLO/laminin  

vs. 

+ spinal cord-derived 

astrocytes 

- ns 

+ cortex-derived 

astrocytes  

vs. 

+ spinal cord-derived 

astrocytes 

Rostral 100 µm ***p < 0.001 

Two-Way ANOVA 

for distance 

p < 0.0001, with 

Tukey’s post hoc 

PLO/laminin - ns 

+ cortex-derived 

astrocytes 

Rostral 100 µm vs. Rostral 500 µm ***p < 0.001 

Rostral 100 µm vs. Center 1000 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 500 µm ****p < 0.0001 

Rostral 100 µm vs. Caudal 100 µm ****p < 0.0001 

Rostral 500 µm vs. Center 1000 µm **p < 0.01 

+ spinal cord-derived 

astrocytes 
- ns 

Interaction Cell grafting x Distance **p < 0.01 

Supplementary table 21: Statistical analysis of growth of descending axons within hydrogel 
implants (FIG 40E). 

 

 


