
Author: Leon Radeck

Automated deployment of machine
learning applications to the cloud

Master Thesis

Heidelberg University

Supervisors: Prof. Dr. Barbara Paech
Prof. Dr. Ullrich Köthe
Dr. Felix Roth

Software Engineering Group
Applied Computer Science

26.10.2020

Declaration of Authorship

I, Leon Radeck, declare that this thesis titled, “Automated deployment of machine learning
applications to the cloud” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Signed:

Date:

3

Zusammenfassung

Der Einsatz von Maschinellem Lernen (ML) als Schlüsseltechnologie in der Künstlichen Intelli-
genz (KI) gewinnt in der zunehmenden Digitalisierung von Geschäftsprozessen kontinuierlich an
Bedeutung. Der Großteil des Entwicklungsaufwands von ML Anwendungen fällt dabei jedoch
nicht auf die Programmierung des ML Modells, sondern auf die Erstellung der Server-Struktur,
die für einen hochverfügbaren und fehlerfreien Produktivbetrieb der ML Anwendung verant-
wortlich ist. Die Generierung einer solchen Server-Struktur durch die EntwicklerInnen ist dabei
zeitaufwändig und kompliziert, da umfangreiche Konfigurationen vorgenommen werden müssen.
Neben der Erstellung der Server-Struktur ist es außerdem sinnvoll, neue ML Anwendungsver-
sionen nicht direkt produktiv zu setzen, sondern zur Qualitätssicherung das Verhalten der ML-
Anwendung in Bezug auf unbekannte Daten zu beobachten. Dabei soll beispielsweise die Fehler-
rate, sowie der CPU und RAM Verbrauch überprüft werden. Das Ziel dieser Arbeit ist es daher,
einerseits Anforderungen an eine geeignete Server-Struktur zu erheben und andererseits an einen
Automatisierungsmechanismus, der diese Server-Struktur generiert, darauf die ML-Anwendung
produktiv setzt und eine Beobachtung des Verhaltens einer neuen ML Anwendungsversion an-
hand von Echtzeit-Nutzerdaten ermöglicht. Zu diesem Zweck wird als Grundlage zuerst eine
systematische Literaturrecherche durchgeführt, die untersucht, wie das Verhalten von ML An-
wendungen vor ihrer Produktivsetzung unter dem Einfluss von Echtzeit-Nutzerdaten analysiert
werden kann. Anschließend wird im Rahmen der Anforderungsanalyse eine Ist-Soll-Analyse in
der Abteilung einer Unternehmensberatungsfirma im Automobilsektor durchgeführt und zusam-
men mit den Ergebnissen der Literaturrecherche eine Liste von User Stories für das Automa-
tisierungswerkzeug ermittelt und priorisiert. Die Umsetzung des Automatisierungswerkzeugs
erfolgt in Form einer Python Konsolenanwendung, die die gewünschte Funktionalität mittels
Einsatz von IaaC (Infrastructure as a Code) und der AWS (Amazon Web Services) SDK in der
Cloud ermöglicht. Das Automatisierungswerkzeug wird abschließend in der Abteilung evaluiert.
Dabei führen die zehn Teilnehmer selbstständig vorgegebene Nutzungsszenarien durch und be-
werten das Werkzeug anschließend über einen Fragebogen, der auf Basis des TAM-Modells
entwickelt wird. Die Ergebnisse der Evaluierung sind überwiegend positiv und das konstruk-
tive Feedback der Teilnehmer beinhaltet zahlreiche interessante Anmerkungen über mögliche
Änderungen und Erweiterungen des Automatisierungswerkzeugs.

5

Abstract

The use of machine learning (ML) as a key technology in artificial intelligence (AI) is becoming
more and more important in the increasing digitalization of business processes. However, the
majority of the development effort of ML applications is not related to the programming of
the ML model, but to the creation of the server structure, which is responsible for a highly
available and error-free productive operation of the ML application. The creation of such
a server structure by the developers is time-consuming and complicated, because extensive
configurations have to be made. Besides the creation of the server structure, it is also useful
not to put new ML application versions directly into production, but to observe the behavior
of the ML application with respect to unknown data for quality assurance. For example, the
error rate as well as the CPU and RAM consumption should be checked. The goal of this
thesis is to collect requirements for a suitable server structure and an automation mechanism
that generates this server structure, deploys the ML application and allows to observe the
behavior of a new ML application version based on real-time user data. For this purpose, a
systematic literature review is conducted to investigate how the behavior of ML applications
can be analyzed under the influence of real-time user data before their productive operation.
Subsequently, in the context of the requirements analysis, a target-performance analysis is
carried out in the department of a management consulting company in the automotive sector.
Together with the results of the literature research, a list of user stories for the automation
tool is determined and prioritized. The automation tool is implemented in the form of a
Python console application that enables the desired functionality by using IaC (Infrastructure
as code) and the AWS (Amazon Web Services) SDK in the cloud. The automation tool is
finally evaluated in the department. The ten participants independently carry out predefined
usage scenarios and then evaluate the tool using a questionnaire developed on the basis of the
TAM model. The results of the evaluation are predominantly positive and the constructive
feedback of the participants includes numerous interesting comments on possible adaptions and
extensions of the automation tool.

6

Acknowledgement

This master thesis would not have been possible without the active support of
several people.

First of all, I would like to thank Prof. Dr. Barbara Paech, who supported
me during the writing of this thesis from the very beginning with helpful

advice, suggestions and constructive criticism. The conversations with you
were always pleasant and positive.

I would like to acknowledge Dr. Felix Roth, who actively supported me within
the MHP department with all my problems and gave me many helpful

suggestions for this thesis.

I am also grateful for Fabian Wittke and his commitment in all matters
concerning the work. I would also like to thank all my colleagues at MHP for

their support and good cooperation.

Furthermore, I would also like to thank Dr. Eckhart von Hahn for referring
me to MHP and for the many enjoyable talks.

I am thankful for Prof. Dr. Ullrich Köthe who is willing to be second
supervisor.

I would like to give a thank to Anja Kleebaum for her support during the
decision knowledge documentation.

I would also like to thank Marcus Seiler for his assistance in organisational
matters.

I am thankful for the support of Anke Sopka regarding all of my problems
during studies.

Finally, I am grateful for my family and my friends who have always
supported me.

7

Contents

1. Introduction 12
1.1. Motivation and challenges . 12
1.2. Goals, methodology and contributions . 13

2. Background 14
2.1. Machine learning . 14
2.2. AWS . 15
2.3. Docker . 16

3. Literature search 17
3.1. Methodology . 17
3.2. Literature results . 21
3.3. Summary . 27

4. Requirements analysis 28
4.1. Preparation and execution of the target-performance analysis 28
4.2. Results . 30
4.3. Discussion . 38
4.4. Lessons learned . 39
4.5. Threats to validity . 40
4.6. Requirements extraction and prioritization . 40

5. Design, implementation and quality assurance 45
5.1. Design and implementation . 45
5.2. Quality assurance . 55

6. Evaluation 58
6.1. Preparation and execution of the evaluation . 58
6.2. Results . 59
6.3. Discussion . 65
6.4. Lessons learned . 66
6.5. Threats to validity . 67

7. Conclusion and outlook 68
7.1. Conclusion . 68
7.2. Outlook . 69

Appendices 71

Appendix A. Literature overview 73

Appendix B. Interview questionnaire 77

Appendix C. Class diagram of the automation tool 81

Appendix D. Evaluation guideline 84

9

Appendix E. Evaluation results 88

8. Bibliography 98

10

11

1. Introduction

1.1. Motivation and challenges

In the course of the industry 4.0, machine learning (ML) is getting more and more adopted to
improve the efficiency of production processes and the analysis of the resulting data [23]. The
application scenarios in this field are diverse. Predictive maintenance allows to plan mainte-
nance work more efficiently by forecasting devices failures and malfunctions [22]. Autonomous
driving enables automatically operating a vehicle without any interventions of a driver by an-
alyzing the environment and predicting adequate control reactions [22]. Continuous quality
assurance makes it possible to detect manufacturing issues close to their source by real-time
analysis of production data [22]. The basic principle of machine learning in all of these areas
is to create a model out of example data by using learning algorithms [23]. The model, which
represents the acquired knowledge representation, can then be applied to new, potentially un-
known data of the same type. Besides the mentioned application scenarios, machine learning
can be appropriate whenever processes are too complicated to describe analytically, but enough
sample data is existent [23].

To make organizations aware of the advantages of artificial intelligence and to investigate how
the advances impact their businesses, the artificial intelligence department of the company MHP
provides management consulting from the integration of an AI strategy to the implementation
of the solution [38]. The MHP Management- and IT-Consulting GmbH is one of the leading
consulting companies and a subsidiary of Porsche AG. Their focus is on the automotive indus-
try, where consulting is offered to manufacturers, suppliers, dealers and importers. This thesis
was written during a cooperation between Heidelberg University and the artificial intelligence
department of MHP. Within the AI department, the productive operation of ML applications is
especially important to meet the requirements of the customers. In this context, the successful
transfer of ML applications to their productive operation in the cloud is associated with exten-
sive technical hurdles. The server structure, that allows to operate the ML application has to
be scalable and fail-safe. This server structure will be referred to as application infrastructure
in this work. The application infrastructure consists out of numerous services that have to be
configured and linked. Examples are networking, storage and computing services that require
specific settings to function properly and collectively. Without tool support, this setup process
is time-consuming and error-prone. The automatic creation of an application infrastructure
through an automation tool would therefore provide great added value for the department.
Furthermore, it would make sense not to put new ML application versions into production
directly, but to observe the behavior of the ML applications with regard to real-time user data
beforehand. The behavior includes for example the CPU and RAM consumption of the ML
application and the error rate of the ML model.

Hence, the goal of this thesis is to collect requirements for a suitable application infrastructure
and to implement an automation mechanism that generates this application infrastructure,
deploys the ML application and allows to observe the behavior of a new ML application version
based on real-time user data. This automation mechanism is then implemented based on the
requirements to counteract the mentioned problems while being used by MHP employees in
their respective machine learning projects.

12

1.2. Goals, methodology and contributions

The goals of this thesis are shown in Table 1.1. The first goal G1 is to collect requirements
for an appropriate application infrastructure. The second goal G2 is to develop an automation
tool that generates this application infrastructure, deploys the ML application and allows to
observe the behavior of a new ML application version based on real-time user data.

 Goal Description

G1 Collect requirements for an appropriate application infrastructure

G2
Develop an automation mechanism that generates the application infrastructure,

deploys the ML application and allows to observe the behavior of a new ML
application version based on real-time user data

Table 1.1.: Goals of this thesis

In order to achieve G1 and G2, the following steps are performed.

1. A comprehensive literature search is conducted to find out how the behavior of ML appli-
cations can be investigated under the influence of real-time user data before their release.

2. A target-performance analysis is carried out in the artificial intelligence department of the
company, to identify prioritized requirements for the automation tool by revealing how
the current application infrastructures look like, how ML applications are currently being
put into operation and to what extent the behavior of a new ML application version is
already being observed.

3. The automation tool is implemented based on the identified and prioritized requirements.

4. The automation tool is evaluated by employees of the company according to the TAM
model under the aspects of perceived-ease-of-use, perceived usefulness and behavioral
intention. It is then discussed whether or not the change requests should be included in
the functionality of the automation tool.

The contributions of this thesis are the target-performance analysis itself and the automation
tool.

13

2. Background

This chapter describes the background knowledge that is necessary to understand the thesis.
Section 2.1 gives a brief overview over the key concepts of machine learning, because this thesis
mentiones machine learning applications and models. Section 2.2 describes AWS, because the
automation tool is implemented with the use of AWS services. Section 2.3 explains Docker,
because containerization is used to encapsulate ML applications.

2.1. Machine learning

Machine learning (ML) is the study of computer algorithms that allows computer programs to
automatically improve through experience [39]. This makes it possible to generate predictions
without any pre-defined rules or calculation instructions. The basic principle of machine learn-
ing is to create an ML model out of example data by using learning algorithms [23]. The ML
model represents the machine learning artifact that encodes the decision or prediction logic [23].
The example data are also referred to as training data. The more training data the learning
algorithm receives, the more it can improve the ML model and reduce its error rate [22]. A
property of the training data, such as a column name is called feature [53].

There are different types of learning algorithms to generate an ML model. In any situation where
the example data contains both the inputs and outputs, supervised learning can be performed.
This makes it possible to learn classification and regression tasks where examples are assigned
to their respective labels [44]. In contrast to supervised learning, unsupervised learning is
about learning without explicit feedback. Data can be divided into different clusters or the
number of dimensions can be reduced [44]. Another type of learning algorithm is reinforcement
learning, where the algorithm learns by interacting with its environment. Rewards are received
for performing correctly and punishments for performing incorrectly. In contrast to supervised
learning, this feedback is not fixed from the beginning, but dependent on the actions that
are taken. Therefore, reinforcement learning algorithms can solve sequential decision-making
problems [44].

The quality of the ML model can be assessed based on different aspects, such as its performance,
robustness, scalability and explainability [47]. The performance of an ML model signifies how
reliably the model estimates the output value [47]. Since a finite number of examples describes
the totality of all possible variants incompletely, each learned model is afflicted with uncertainty
[23]. The model can also be either overfitted or underfitted to the example data. It is overfit,
if it performs well when using the training data, but poorly when using unknown data. When
overfitted, the model is too closely matched to the examples given and irrelevant differences
or statistical noise could be included in its decision [22]. In case of an underfit, the model
does not fit the example data well enough and thus also does not perform well on unknown
data. The robustness of the model indicates the resiliency of the model to inconsistent inputs,
for example when their distribution is shifted [47]. The scalability represents the ability of
the model to scale to high data volume during training. It can be measured by analyzing the
execution time and hardware demand dependent on the number of examples and the dimensions

14

of their characteristics [47]. The explainability of the ML model denotes how understandable
the predictions of the model are [47].

After the ML model was created, it can be applied to new, potentially unknown data of the
same type. When an ML model is contained inside a software application that accesses its
functionality, the application is referred to as ML application in this work.

2.2. AWS

AWS (Amazon Web Services) is a cloud computing provider that offers a variety of web services
in the context of computing, storage and networks [11]. According to the National Institute
of Standards and Technology (NIST), cloud computing is a “model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources
(e.g. networks, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction” [37].

Cloud computing can be classified into three main cloud service models and four cloud deploy-
ment models [42]. The three main cloud service models are:

• Infrastructure as a Service (IaaS) — offers fundamental resources like computing, storage
and networking capabilities, using virtual servers such as Amazon EC2 or Google Compute
Engine [49].

• Platform as a service (PaaS) — provides platforms to deploy custom applications to the
cloud, such as AWS Elastic Beanstalk or Google App Engine [49].

• Software as a service (SaaS) — combines infrastructure and software running in the cloud,
including office applications like Amazon WorkSpaces or Google Apps for Work [49].

The four cloud deployment models are:

• Public — In the public service model, all the systems and resources that provide the
service are located at an external service provider. That service provider is responsible
for the management and administration of the systems that are used to provide the service
[42].

• Private — In a private cloud, the systems and resources that provide the service are
located internal to the company or organization that uses them. That organization is
responsible for the management and administration of the systems that are used to provide
the service [42].

• Community — Community clouds are semi-public clouds that are shared between mem-
bers of a select group of organizations. These organizations will generally have a common
purpose or mission [42].

• Hybrid — A hybrid cloud model is a combination of two or more other cloud models.
The clouds themselves are not mixed together, but each cloud is separate and they are
all linked together [42].

AWS follows the public cloud deployment model and offers all main cloud service models (IaaS,
PaaS and SaaS).

15

Examples for AWS services in the area of computing, storage and network are named in the
following. EC2 (Elastic Compute Cloud) and ECS (Elastic Container Service) are examples for
computing services. EC2 allows to execute virtual machines, and ECS facilitates to run docker
images in AWS. The service S3 (Simple Storage Service) is an example for a storage service.
It allows to upload files into so-called “buckets”, which represent storage locations in AWS.
The service VPC (Virtual Private Cloud) is a popular networking service. It allows to logically
separate specific resources in isolated sections of AWS [11].

The mentioned services can be orchestrated programmatically using a language-specific SDK
(software development kit) to achieve functionality of a greater use. For each service a dedicated
web API (application programming interface) exists that allows to interact with it. Theses
APIs are well documented, so that the meaning of their inputs, their functionality and their
outputs are comprehensible. The server structure of the services can be divided into regions and
availability zones. A region represents a geographic location with multiple availability zones,
whereby an availability zone consist out of one or more data centers that are equipped with
redundant systems for power, network and connectivity [11].

2.3. Docker

Docker is an open source project for building, shipping, and running applications [30]. The key
terms are defined in the following.

• Docker container — A docker container is the active instance of a docker image [30].

• Docker image — A docker image is a collection of all of the files that make up a software
application [41].

• Docker registry — The docker image can be stored in a docker registry in order to be
publicly found, accessed, and used by developers [41].

In contrast to virtual machines, docker containers only store the application itself and not
the operating system [31]. Applications that run within docker containers directly interact
with the kernel of the host system. Many applications can run simultaneously in isolation
without running redundant operating systems or having to execute boot sequences. This is an
important difference, because docker only helps to use the container technology already built
into the existing operating system [30].

Working with docker containers has a variety of benefits. It is helpful for packaging software
that requires a lot of dependencies, because the dependencies can be installed and uninstalled
in their entirety without leaving any residues. It allows to safely run legacy applications and
up-to-date applications on the same server. Furthermore, horizontal scalability can be achieved
through running multiple docker containers simultaneously. Another common docker use case
is to deploy a container across multiple stages from development to production, to allow for a
consistent, testable environment [31].

On the other hand, performance can be reduced by overlaying network processes and commu-
nication between the containers and the host system [31]. Also, saving files before stopping a
docker container causes difficulties. Although persistent storage is possible using docker data
volumes, the integration is associated with difficulties [31]. Furthermore, the use of docker
containers is only fully exploited when a microservice architecture is utilized. Otherwise, just
the packaging functionality is used [41].

16

3. Literature search

To find publications that are relevant to the given research question, a systematic literature
search was conducted. In Section 3.1 the research question is described, the inclusion criteria
are listed and the execution of the search is explained. The results of the literature search, an
overview of all relevant articles and the synthesis are detailed in Section 3.2. A summary is
provided in Section 3.3.

3.1. Methodology

This literature search provides an overview over the current state of research regarding the
research question “How can the behavior of ML applications be investigated before release under
the influence of real-time user data?”. The literature search used a combination of database
searches and snowballing, which refers to the use of the reference list of an article, also called
“backward snowballing”, and the citations of an article, also called “forward snowballing” [29].
Snowballing is used complementarily to cover important literature that is not found by the
termbased searches, as proposed in [50].

Both search methods used the search sources in Table 3.2. A large part of scientific literature
on relevant topics of IT can usually be found in the online libraries of the three important
scientific associations IEEE, ACM and SpringerLink. The published articles of these sources
are generally of good quality. In order to expand the search results, arXiv and Google were also
included in the search. ArXiv is a comprehensive source for publications in computer science,
whereby it also allows non peer-reviewed articles. Google was used to identify relevant blog
articles from respectable authors.

Nr. Inclusion criteria

1 Title suggests relevance to research question

2
Abstract suggests relevance to research

question

3 Article is available

4 Article is written in German or English

5
Article describes how the behaviour of an ML
application can be investigated before release

using real-time user data

Table 3.1.: Inclusion and exclusion criteria.

Source URL

IEEE ieeexplore.ieee.org

ACM dl.acm.org

SpringerLink link.springer.com

arXiv arXiv.org

Google google.de

Table 3.2.: Search sources.

17

Table 3.1 contains five criteria to include an article in the selection of relevant literature for this
work. First it was checked whether the title of an article indicates relevance to the research
question. If that was the case, the abstract was checked as well. Next, the availability of the
full text was examined. If the full text was available and written in German or English, then
it was read and it was verified whether the article fulfills the last inclusion criterion, which
states that the article describes how the behaviour of an ML application can be investigated
before release using real-time user data. If all five inclusion criteria matched, the article was
declared as relevant. If one of the inclusion criteria did not match, the article was declared as
not relevant.

To gain a basic understanding of suitable search terms, step one of the termbased search was
to find at least two relevant articles. These two articles could then be used as the basis for
constructing further search terms. For this purpose, three experimental searches were conducted
on IEEE on 26.03.2020. The different search queries can be seen in Table 3.3. First, the research
question was split into its parts. For the terms “behavior”, “release”, “machine learning”, “real-
time user data” and “monitor” several related terms were searched. For the term “behavior”,
the terms “behavior”, “metric”, “graph” and “statistic” were chosen, because all of them can be
assigned to the area of data analysis. For the term “release”, the terms “release”, “deployment”
and “rollout” were selected, because they are often used synonymously. The term “machine
learning” is represented by its abbreviation “ML” and its generic term “artificial intelligence”
or “AI”. The term “real-time”, is covered by the terms “real-time”, “live” as a synonym and
“traffic” which means the user web traffic data. For the term “monitoring” the two terms
“monitor*” and “observ*” were used synonymously. The asterisk in “monitor*” and “observ*”
allows for different word endings, for example “observing” and “observer”. The first search
query was then constructed out of the mentioned terms. For this first experimental search, all
of the metadata of a publication are included. As a result, it was noticed that the abstracts of
many search results contained the specified terms in a different context, for example “machine
learning” as a tool for solving a problem. Also, there was no relevant article found.

Search
step

Search step and readable search term

1

Metadata: (behavior OR metric OR graph OR statistic) AND
(release OR deployment OR rollout) AND ("AI" OR "ML" OR
"machine learning" OR "artificial intelligence") AND

(live OR "real-time" OR traffic) AND („monitor*“ OR „observ*“)

2
Title: (release OR deployment OR rollout) AND

("AI" OR "ML" OR "machine learning" OR "artificial intelligence")

3
Title: "AI" OR "ML" OR "Machine Learning" OR "Artificial

Intelligence" AND Full text: canary

Table 3.3.: Experimental termbased search on IEEE performed on 26.03.2020 with no search
limitations.

Consequently, a more general search with focus on the publication title was performed. At this
time, the search query focused on the terms “deployment”, “release” and “rollout” in connection
with “ML”, “machine learning”, “AI” and “artificial intelligence”. Now, only the title was used
as a search criteria, to limit the result set to articles that contain a combination of the search
terms in the title. One relevant article [40] was found. Another article was still missing to

18

provide a basis for further search queries. The article [40] mentioned “canary deployment” as
a way to observe an ML application under the influence of real-time user data. Since “canary”
is an unusual term, it was used as a search term for the full text in the next search query. The
terms “ML” and “AI”, as well as their full words are used for the title, to find only relevant
articles in the domain of machine learning. The next relevant article [17] was found.

The first three experimental searches served to gain an overview of the literature and to get an
understanding about the use of important search terms. So far, the search yielded two relevant
articles. The abstracts and the relevant full text extracts of [40] and [17] were then used to
generate tag clouds. Tag clouds are visual aids to display frequently used terms. The more
often a term appears in the text, the larger it is displayed. Figure 3.1 shows the different tag
clouds of the articles for their abstracts and full text extracts.

(a) Tag cloud of abstract of [40] (b) Tag cloud of relevant full text extracts of [40]

(c) Tag cloud of abstract of [17] (d) Tag cloud of relevant full text extracts of [17]

Figure 3.1.: Tag clouds of abstracts and relevant full text extracts of [40] and [17]

A new search query was then constructed based on the keywords of the titles, abstracts and full
texts of [40] and [17]. The most frequent terms are selected in each case. The terms “data” and
“system” were omitted, as they were very general. For the title, the search terms “ML”, “AI”
and their full words “Machine Learning” and “Artificial Intelligence” were used, because to this
point, both relevant articles contained “AI” or “ML” in their title. The terms “monitoring”
and “production” were picked from the tag cloud of the abstract of [40] in Figure 3.1a, as
they were used frequently and fit to the research question. The term “monitoring” was used,
because the research question asks about behavior monitoring and the term “production” was
selected, because the release of an application is often times reffered to as making it ready for
production. The terms “model” and “application” were picked from the frequent terms of the
abstract of [17] in Figure 3.1c, because the research questions contains the word “application”
and because an ML application uses an ML model for predictions. The tag clouds of the relevant
full text extracts in Figures 3.1b and 3.1d share the terms “model”, “input” and “feature” and
“data”. The term “data” was again omitted, as it is very general. Finally, the terms for
the title (“ML”, “Machine Learning”, “AI” and “Artificial Intelligence”), the terms for the
abstract (“model”, “application”, “monitoring” and “production”) and the terms for the full
text (“model”, “input” and “feature”) were used to construct the search query for search step
four in Table 3.4. The terms for the title and the abstract were combined with the operator

19

OR, because they appeared in the two different titles and abstracts independently. The terms
for the full text were combined with AND, as they appeared in both full texts.

Search
step

Readable search term

4
Title: "AI" OR "ML" OR "Machine Learning"

OR "Artificial Intelligence" Abstract: model OR application OR
monitoring OR production Full text: model AND input AND feature

5
Terms for title and abstract stay the same

Full text: model AND input AND feature AND (behavior OR behaviour)
AND detect AND traffic

Table 3.4.: Termbased search on IEEE, performed on 29.03.2020, using specific keywords of
the relevant results.

Because the result was still too large with 4203 results, the search term had to be adjusted.
For further concretization, the relevant text passages of both full texts were examined with a
text analysis tool for terms that occur in both full texts. The terms “detect”, “traffic” and
“behaviour” or “behavior” were used in both full texts. These terms were appended to the full
text search term and search step five was performed.

The search result still contained 372 hits, thus it had to be narrowed down, to evaluate all search
results. In one article, the term “traffic” appeared only in the sense of car traffic. Therefore the
term was removed. The term “deploy” was used instead, as it appeared in all relevant full texts
found so far. It was tried to limit the search results by restricting the publication dates and
index terms of the search results, but the number of results was still 290 and thus still relatively
high. That’s why, all titles of the previous search results were checked for common phrases.
Articles that dealt with the use of certain machine learning techniques were not relevant. Thus,
the search term was further adjusted by excluding phrases like “based on machine learning” or
“using machine learning”. The resulting search term can be seen in Listing 3.1. The search
results were then limited to articles that were published between 2010 and 2020. Some index
terms were also excluded (“pattern classification”, “support vector machines”, “neural nets”,
“regression analysis”, “5G mobile communication”).

In Title: "AI" OR "ML" OR "Machine Learning" OR "Artificial Intelligence" NOT

"using machine learning" NOT "machine learning based" NOT "based on

machine learning" NOT "machine learning techniques" NOT "machine learning

approach"

In abstract: model OR application OR monitoring OR production

In full text: model AND input AND feature AND (behavior OR behaviour) AND

detect AND deploy"

Listing 3.1: Search term used on ACM

To expand the set of relevant articles, forward and backward snowballing was performed.

Next, a termbased search on ACM was performed on 02.02.2020. The term in Listing 3.1 was
used. The publication dates for articles were limited to “2015 - 2020”.

20

Afterwards, a termbased search was performed on SpringerLink on 04.04.2020. The input mask
of SpringerLink did not allow a combined search of title, abstract and full text. Therefore, the
search terms for title, abstract and full text of the term in Listing 3.1 were combined with AND

and a full text search was conducted.

The next search took place on arXiv on 04.04.2020. ArXiv did not provide a full text search,
so the search term for full text is in Listing 3.1 was omitted. The publication date was set to
“2015 - 2020”, the discipline was set to “computer science” and the search was performed.

Finally, a search was conducted via Google on 04.04.2020. The same search term as for Springer-
Link was used.

3.2. Literature results

The results of the termbased searches can be seen in Table 3.5. The search on IEEE delivered
three relevant articles [40], [17] and [53] out of 230 search results. The search on ACM did not
deliver any new relevant publications out of 210 search results. One relevant book [3] and one
relevant article [36] could be found on SpringerLink. The number of search results was 570, but
only 50 results could be checked, as the majority of articles was not available publicly or through
the university access. The search on arXiv returned two relevant publications [2] and [16] out
of 424 search results. Finally, the search on Google returned one relevant web article [45] out of
around 50 million results, where only the first 20 results were checked. Overall the termbased
search returned 8 results. In summary, the combination of termbased search and snowballing
has delivered a satisfactory amount of relevant articles. However, five search engines had to
be used for the result and the review of the extensive result sets was very time consuming.
Also, the individual adaptation of the search terms to the logic used by the search engines was
laborious and not immediately comprehensible. An export function of the search results was
only available at IEEE and ACM. It simplified the documentation of the relevance assessment
with Excel considerably. The command search under IEEE had the highest flexibility among
all search engines, but its operation was also associated with a high learning curve. The use
of tag clouds to identify frequently used terms proved to be helpful. The construction of the
resulting search terms could thus be well justified.

The results of the snowballing can be seen in Table 3.6. Article [15] was found during backward
snowballing of [17]. The publication [47] was identified while forward snowballing [15]. An
overview of all 10 relevant articles, their authors, publication years and sources is given in
Table 3.7. Even though the publication period was limited to the years 2015 to 2020, it can be
seen that 8 out of 10 articles were published in the years 2020 and 2019, which suggests that
the research area is of relevance to the present situation.

Source # Results # Checked # Relevant

IEEE 230 230 3

ACM 210 210 0

SpringerLink 570 50 2

arXiv 424 424 2

Google 50 million 20 1

Table 3.5.: Termbased search results

21

Search
direction

Article # Results
Relevant

results

Forward
Towards Enterprise-Ready AI Deployments Minimizing the Risk of

Consuming AI Models in Business Applications [40]
1 0

Backward " 5 0

Forward
The ML test score: A rubric for ML production readiness and

technical debt reduction [17]
3 0

Backward " 19 1

Backward Machine Learning Testing: Survey, Landscapes and Horizons [53] 292 0

Forward " 21 0

Backward
TFX: A TensorFlow-based production-scale machine learning

platform [15]
21 0

Forward " 42 1

Backward
Towards CRISP-ML(Q): A Machine Learning Process Model with

Quality Assurance Methodology [47]
138 0

Table 3.6.: Snowballing based on relevant results, performed on 02.04.2020.

Title Author Year Source

Towards Enterprise-Ready AI Deployments Minimizing the
Risk of Consuming AI Models in Business Applications [40]

Muthusamy, V.
Slominski, A.

2019 IEEE

The ML test score: A rubric for ML production readiness
and technical debt reduction [17]

Breck, E. et Al. 2017 IEEE

Machine Learning Testing: Survey, Landscapes and Horizons
[53]

Zhang, Jie M. et al. 2019 IEEE

Tfx: A tensorflow-based production-scale machine learning
platform [15]

Baylor, D. et al. 2017 ACM

Towards CRISP-ML(Q): A Machine Learning Process Model
with Quality Assurance Methodology [47]

Studer, S. et al 2020 arXiv

A taxonomy of software engineering challenges for machine
learning systems: An empirical investigation [36]

Lwakatare, Lucy E. et
al.

2019 SpringerLink

Practical DataOps [3] Atwal, H. 2020 SpringerLink

Towards Automating the AI Operations Lifecycle. [2] Arnold, M. et al. 2020 arxXiv

Engineering AI Systems: A Research Agenda [16] Bosch, J. 2020 arXiv

Continuous Delivery for Machine Learning [45] Sato, D. et al. 2019 Google

Table 3.7.: All relevant articles with their authors, publications years and sources.

22

The overview table for the relevant articles can be found in the appendix. It is split into the
Tables A.1, A.2 and A.3. In the overview table, a row is created for each publication used.
Each cell in the row contains information concerning the content of the publication, including
abstract, author keywords, context and motivation, research questions and problems, principal
ideas and results, as well as the contribution of the article. The keywords column is based
on the author keywords of the publications. The publications [3], [2] and [16] did not contain
author keywords, so the different chapter headings were used to extract them. The context and
motivation provides background information and briefly explains what motivated the research
direction. The research questions and problems column provides a basic understanding of what
will be answered or solved in the examined article, as well as problems that occured during the
research. The principal ideas and results column contains a description of the research process
and the results that represent answers to the research questions or solutions to the mentioned
problems. Finally, the contribution column describes how the article helps others in their work.

In the following, the synthesis is explained, which presents the findings of the individual relevant
publications. It is split into Tables 3.8 and 3.9. The monitoring context, the monitoring
objectives, the particular metrics and from the authors as useful considered practices were
chosen as key points. The relevant articles were then compared and categorized on the basis
of these key points. The monitoring context was selected to identify the circumstances that
form the setting for the monitoring. It was also selected to check whether certain monitoring
objectives are targeted more frequently in a particular monitoring context. The monitoring
objectives were chosen to summarize the metrics according to intended use. This subdivision
further structures the findings and simplifies the reading comprehension. The metrics were
selected as a key point because they provide the basis for formal comparison and evaluation
possibilities. The last two key points are the percentages of articles with a specific monitoring
context that mention the respective monitoring targets. These two key points were selected to
check whether there is a connection between monitoring context and objective.

First, the monitoring context is explained. Six of the ten relevant articles ([40], [17], [15], [47],
[3], [2] and [45]) state that monitoring before release and with real-time user data can be done
during a so-called “canary deployment”, five ([53], [36], [3], [2] and [16]) propose “A/B testing”,
two of them ([3], [2]) propose both and [45] suggests “shadowing” as a possiblity. These terms
are now briefly explained.

Canary deployment represents a gradual release of a new application version where the
version is first released to a subset of users. For that, a small percentage of the users that
are currently using the application are forwarded to the new application version. The new
application can then be monitored with actual real-time user data. The word “canary” comes
from the small birds used by miners as an early-warning mechanism of toxic gases in mines.
When poisonous gases overcame the birds and they stopped singing, it was time for miners to
evacuate [3].

A/B testing refers to the use of statistical hyphothesis testing to compare two groups of
users that use either the new application version (treatment group) or the current one (holdout
group). The goal of A/B testing is to identify the preferable version based on a predefined
metric, for example the purchase rate [3].

Shadowing means that the new application version is subject to the same real-time user data
as the current application version [45].

Next, the monitoring objectives are explained. The monitoring objectives summarize the field
of application of the metrics thematically. Table 3.9 has been created to provide a better
view on the objectives and their respective metrics. The table changes the grouping from per

23

Ref. Monitoring context Monitoring objective Recommended practices

[40] Canary deployment

Model inputs and outputs

Thresholding Model age

Application performance

[17] Canary deployment

Model inputs and outputs

Thresholding,
data slicing

Application performance

Model age

Others

[53] A/B testing Business performance -

[15] Canary deployment

Application performance

Loose thresholding,
data slicing

Business performance

Model inputs and outputs

[47] Canary deployment

Application performance

Thresholding
Model inputs and outputs

Model age

Business performance

[36] A/B testing Application performance -

[3]
Canary deployment, A/B

testing

Business performance

Thresholding Application performance

Model inputs and outputs

[2]
Canary deployment, A/B

testing
Business performance -

[16] A/B testing Business performance -

[45]
Shadowing, canary

deployment

Business performance

Data slicing Model inputs and outputs

Others

Table 3.8.: Synthesis (1).

article to per objective and addresses the origin articles. Furthermore, the last two columns
provide the percentages of articles with a specific monitoring context that mention the respective
monitoring target. This metric was used to further analyze what objective is important during
what context.

Business performance is proposed to be monitored by seven articles ([53], [15], [47], [3], [2],
[16] and [45]). To measure it, specific key performance indicators (KPIs) are monitored. Key
performance indicators are quantifiable measures used to evaluate the success of an organization
or employee for performance [34]. Proposed KPIs were open rate, reading time, click-through
rate [53], usage rate [47], transaction time, response time, service availability [3], sales rate,
click rate, time on page [2], conversion rate [16] purchase rate [45] and install rate [15]. Four

24

out of five articles that propose A/B testing and four out of seven articles that propose canary
deployment monitor business performance.

Application performance was proposed to be monitored by six articles ([17], [40], [15], [47],
[36] and [3]). RAM and CPU usage were the most frequent metrics here, used by respectively
four and three articles. Other metrics were latency, throughput, execution time, inference time
and disk load. Two out of five articles that propose A/B testing and five out of seven articles
that propose canary deployment monitor application performance.

Model inputs and outputs were considered to monitor by six articles ([3], [15], [40], [17],
[47] and [45]). [3], [15] and [17] monitor the error rate of predictions to prevent malfunctioning.
[17] also monitors the occurence of NaNs (Not a Number) or infinities in that regard. [17] and
[47] monitor the inputs to verify whether they conform to a predefined data schema and to
make sure the feature distribution matches that of the training data to prevent performance
deviation. A difference between performance regarding training data and performance during
serving is called “training/serving skew” [20]. Metrics that are monitored for this purpose are

Monitoring
objective

Metrics Articles

Percentage
of articles

that propose
A/B testing

Percentage of
articles that

propose canary
deployment

B
us

in
es

s
pe

rf
or

m
an

ce
 Open rate, reading time and click-through rate [53a]

4/5 = 80% 4/7 ≈ 57%

Usage rate [47c]

Transaction times, response times, service availability, [3ca]

Sales rate, click rate, time on page [2ca]

Conversion rate [16a]

Purchase rate [45c]

App install rate [15c]

A
pp

lic
at

io
n

P
er

fo
rm

an
ce

 RAM usage
[15c], [17c], [36a],
[47c]

2/5 = 40% 5/7 ≈ 71%

CPU usage [3ca], [15c], [36a]

Latency [17c], [36a]

Throughput [17c], [36a]

Execution time [40c], [47c]

Inference time [47c]

Disk load [3ca]

M
od

el
 in

pu
ts

 a
nd

 o
ut

pu
ts

Error rate of predictions [3ca], [15c], [17c]

1/5 = 20% 6/7 ≈ 86%

Data schema match [17c], [47c]
Number of features that exhibit skew, number of examples exhibiting
skew for each skewed feature,
match of distributions of training features and sampled serving
features, statistical bias (average of predictions in a slice of data),
accuracy if label is available

[17c]

Incoming data: quantiles, histograms, standard deviation,
top-K values of most frequent features, predicted labels

[47c]

Distribution of outputs and their confidence over time, Input feature
clusters, anomalous inputs

[40c]

Inputs and outputs in general [45c]

Occurence of NaNs or infinities [17c]

M
od

el

ag
e Time since deployment [17c], [40c], [47c] 0/5 = 0% 3/7 ≈ 43%

O
th

er

Model coefficients such as ELI5 or LIME [45c]
0/5 = 0% 2/7 ≈ 29%

List of announcements for each dependency [17c]

Table 3.9.: Synthesis (2). Articles that propose A/B testing are marked with an “a”. Articles
that propose canary deployment are marked with a “c”. Articles that propose

both are marked with “ca”.

25

the number of features that exhibit skew, the number of examples exhibiting skew for each
skewed feature, the match of distributions of training features and sampled serving [17] and
quantiles, histograms, standard deviation and top-K values of most frequent features [47]. [17]
also computes the average of predictions in a slice of data, to get information about a potential
statistical bias. [40] uses clustering to identify anomalous values within the inputs and monitors
the outputs and their distribution and confidence over time. [45] also monitors all inputs and
outputs of the model to prevent training/serving skew, but it was not mentioned what metrics
were used. Only one [3] out of five articles that propose A/B testing monitors the model inputs
and outputs. Only one article among the ones that propose canary deployment does it not.

Model age is reported to be monitored by three articles ([17], [40], [47]). As a metric, they all
use the time since the model was deployed initially. Three out of seven articles that propose
canary deployment monitor model age. It is not monitored by any article that proposes A/B
testing.

Other metrics that were mentioned, are model coefficients such as ELI5 or Lime [45] to help
debugging the model and a list of announcements for each dependency to avoid incompatibilities
between infrastructure and model. These are proposed by two out of seven articles that propose
canary deployment. They are not monitored by any article that proposes A/B testing.

The frequent use of A/B testing to verify business objectives may be related to the fact that
A/B testing has been a tool of user experience researchers for decades [52] and is a standard
way to evaluate user engagement or satisfaction [51]. Canary deployment contrarily is a means
to check general quality aspects of new software versions [24], which could be a reason that it
covers the monitoring objectives more evenly.

In summary, the articles that propose A/B testing mainly suggest metrics in the area of business
performance and rarely consider the machine learning associated metrics in the area of model
inputs and outputs. They do not monitor model age or other metrics. The articles that propose
canary deployment mainly focus on the model inputs and outputs, as well as the application
and business performance, but they also monitor model age and other metrics. It can therefore
be stated that the articles that propose canary deployment have a higher coverage of the
monitoring objectives than those that propose A/B testing and that A/B testing is almost
always associated with business performance.

Lastly, the recommended practices in Table 3.8 are explained. These methods have been fre-
quently encountered and suggested when reading the articles.

Thresholding refers to the practice of setting limits for a specific metric. It can be used
to allow only high confidence predictions of a new model [40]. The thresholds can start high
and then be lowered continuously after as the effects of the new model have been observed.
Thresholds can be set to initiate alert notifications that report the exceeding of the specified
limit to the developer [17]. [15] suggests to use loose thresholds to avoid false negatives.

Data slicing means slicing a data set along certain dimensions of interest to allow for a more
fine-grained understanding of model quality. Slices should distinguish subsets of the data that
might behave qualitatively differently, for example, users by country or movies by genre [17].

26

3.3. Summary

The aim of the literature search was to answer the research question “How can the behavior
of ML applications be investigated before release under the inuence of real-time user data?”.
A combination of termbased searches and snowballing was carried out and five different search
sources were used. To facilitate the identification of key terms during the search, the use of
tag clouds as means of visualization has proven to be useful. As a result, ten relevant articles
were found, which were then summarized in an overview table contentwise and furthermore
compared in a synthesis based on different selected key points. It turns out that the behaviour
of an application in machine learning can be assessed against various monitoring objectives,
each of which requires the examination of specific metrics. There are metrics that monitor
the achievement of economic goals, metrics that focus on application performance and metrics
that examine specific aspects of machine learning. In the literature, methods such as canary
deployment, A/B testing or shadowing are used to enable monitoring under the influence of
real-time user data. For this purpose, the user data is either split or replicated to different
application versions. It was recognized that A/B testing mainly focuses on metrics that are
relevant for business performance and that canary deployment has a broadercoverage of the
monitoring objectives . Furthermore, many relevant articles mentioned practices to facilitate
and support monitoring, such as setting thresholds for metrics and slicing the datasets along
certain dimensions to improve understanding of model quality. The methodology of the litera-
ture search and its results, consisting out of the essential contents of the relevant articles and
their comparison, summarize this chapter.

27

4. Requirements analysis

This chapter describes how a target-performance analysis in the department “Artificial Intel-
ligence” of an IT consulting organization was prepared, how it was executed and what results
were obtained. It then describes how prioritized requirements for an ML infrastructure and an
automation tool were derived from the results of the analysis.

4.1. Preparation and execution of the target-performance
analysis

For the preparation of the target-performance analysis, an interview guideline with six sections
was created. This guideline was then followed in all interviews conducted. In the first section the
interviewee was welcomed and thanked for their willingness to participate. Then the motivation
for carrying out the target-performance analysis within the framework of this master thesis was
explained. The interviewee was told that their name will only appear pseudonymously in
connection with the answers and it was asked whether the interview could be recorded. In the
second section, key terms and their definitions were explained in order to have clarity about their
meaning during the interview and to avoid misunderstandings. The terms and their definitions
can be seen in Table 4.1.

Term Definition

ML model
Artifact of machine learning that is generated using training data and can make
predictions about input values.

ML application Software program that accesses the functionality of the ML model.

Deployment Installation of an ML application on a target system.

Release Publication of a provided ML application for use by end users.

Infrastructure Server structure on which the ML application is provided.

Live userdata
All input data of end users during the productive operation of an ML application
(HTTP requests, form input, etc.)

Table 4.1.: Term definitions.

After the explanation of terms, the next section discusses an overview of the machine learning
life cycle with the interviewee. The overview image is shown in Figure 4.1. Some details have
been removed for a simpler introduction. The terms “release” and “infrastructure” have been
added for clarity.

The overview image of the machine learning life cycle takes up the defined terms and is intended

28

Figure 4.1.: Machine learning life cycle [45] with manual alterations.

to create a common understanding for the subsequent questions. After discussing the overview
image, general questions about the person’s work are asked in the next section to give an insight
into the person’s experience, their current tasks, problems and solutions. Additionally, these
questions make it easier for the interviewee to get comfortable, since the answers are relatively
easy to give. In the interview guide, general questions of this type are marked with the letter
A. In contrast to type A questions, type B questions are aimed at specific topics of this work.
Questions of type C refer to solutions of problems that were proposed. In the next section, the
interviewee is first told that the following questions refer to their current project. The questions
in this section are divided into the areas “infrastructure”, “deployment”, “monitoring”, and
“overall” and shed light on the actual state on the one hand and the target state on the other.
The order of the questions correlates with the phases of the machine learning life cycle. First an
infrastructure is created, the deployment can then take place and afterwards the monitoring can
be applied. In the case of the infrastructure, questions about the structure, creation and non-
functional requirements are asked. The questions about deployment focus on the deployment
procedure and the questions about monitoring focus on the monitoring procedure, metrics and
their presentation. Finally, a last question that affects all areas is asked. The list of all questions
can be seen in the result section in Tables B.1, B.2 and B.3 in the appendix. In the last section
of the interview guide it is asked whether the interviewee still has a question. If yes, it is
discussed, if not, thanks are given for their participation and it is clarified how the interviewee
will be contacted in case of subsequent questions. Finally, the farewell is said.

In order to contact potential candidates, an e-mail template was created together with the
supervisor in the company and sent to a total of twelve people. Of the twelve people contacted,
ten agreed to an interview. One person did not respond and the other person did not see
any professional reference in the machine learning area. Meetings were arranged for the ten
participants via Outlook and Microsoft Teams. An online telephone call was made with each of
the ten participants, the duration of which was planned to be 45 minutes. The six sections of
the interview guide (introduction, explanation of terms, view of the machine learning life cycle,
general questions about the person’s work, specific questions about the areas and completion)
were gone through. During the interviews, key notes were made on the interviewees’ answers in
order to refer to the subsequent questions and to show interest. Since the interview was taped,
extensive notes were not necessary. For the discussion of the machine learning life cycle, the
screen was temporarily shared.

29

After the interview was completed, the recording was listened to again and the key points of
the answers to each of the questions were documented. The names of the interviewees were
written pseudonymously in form of letters next to the answers. For questions about projects,
the project names were also written down pseudonymised in form of letters.

4.2. Results

The questions on project experience, role and current project are shown in Table 4.2 along with
their evaluation.

 Question Evaluation

How many ML projects
have you been involved
in?

The average person interviewed has already been involved in 3 to 4 projects in the
ML. The number of projects had a value range from 1 to 7.

What was your role in
this project?

A: ML Engineer B: Technical project manager C: Software developer D: Software
developer E: Software developer F: Software architect G: Project manager H:
Technical project manager and ML Engineer I: Data Scientist J: Software architect
and developer

What project are you
currently working on?

A: PV - B: PW - C: PX - D: PX - E: PZ - F: PQ - G: PS - H: PX - I: PZ - J: PY

The project names were pseudonymised.

0

1

2

3

4

5

6

7

8

Person interviewed

N
um

be
r

of
 p

ro
je

ct
s

Project experience

C A H B D E I J G F Average

0

1

2

3

4

5

Roles

Q
ua

nt
ity

Distribution of roles

Software Developer ML Engineer

Technical Project Manager Software Architect

Data Scientist Project Manager

Table 4.2.: General questions about the work of the interviewee.

30

The average interviewee has been involved in 3 to 4 projects and the value range was from 1 to
7. Interviewee C had the most project experience with 7 projects. Interviewee F had the least
experience with one project. Six different roles were mentioned. Software developer was the
most frequent one. Other roles were ML Engineer, Data Scientist, Software architect, technical
project manager and project manager. Each of the ten interviewees was working at one project
at that moment of time. Interviewees C, D and H were all working on project PX.

The tasks, problems and solutions for each role are now described.

Software Developer

C The task was the implementation of a new use case, as well as the search and evaluation
of data and its quality at the customer’s site, as well as the subsequent data homoge-
nization. Data silos or places where data cannot be found due to access restrictions, are
problematic when searching for data. One problem with the homogenization of data is
the heterogeneity of their formats. Data preparation is thus considered to be the most
time-consuming activity. Depending on the scope of the project, setting up the CI/CD
pipeline can also be extensive. The use of cloud services is seen as helpful in this context.

D The task was software development in the cloud and DevOps area. The AWS documen-
tation was seen as problematic related to practical programming. Therefore debugging
had to be used frequently.

E The task was the implementation of new features. In the context of testing, blocked ports
in the infrastructure were mentioned as problematic. A test was therefore divided into
several tests, which were then checked individually.

J The task was the development and integration of new features and the execution of refac-
torings. The communication between different systems or components was mentioned as
a problem, which is often difficult to establish. The deployment procedure depends on
the use case and there are various ways of its realization in the cloud. When deploying
a new version of an application or model, it must be ensured that the quality does not
deteriorate.

ML Engineer

A The task consisted of integrating and homogenizing data sources for later analysis while
fulfilling data protection requirements with user consensus. In general, problems often
arose with APIs, logging at different levels, data protection compliance during implemen-
tation, testing and data heterogeneity. Communication problems also occurred frequently.

H The task was to build the AWS infrastructure and to answer the question how general-
izable the infrastructure could be. There were problems with the customer’s fragmented
infrastructure and the lack of knowledge about standardized procedures for accessing
SAP systems. For data access, the team enquired about similar projects and contacted
colleagues. In some cases, the company itself created so-called blueprints (generalizable
pieces of software) that various teams in the same situation can use in the future. Fur-
thermore, there were problems with the deployment. In AWS there is no superordinate
structure to operate multi-account management. This means that it is difficult to pro-
vide many other accounts with the same software from one central account. Here, the
development of individual software was helpful.

31

Technical Project Manager

B The task was the development of the software model as well as customer communication.
One problem was the lack of clarity about the shape of the product at the end. The
customer is aware that ML should be used, but it is not clear how the final product
should look like. This ambiguity was tried to be solved by increased client conversations.

H The task was to define work packages and the next steps in the project (roadmap plan-
ning), to record the customer’s requirements and to check the project progress. The
problem is usually that the customer has no idea what AI can do and has no vision of
where he wants to go. To solve this problem, workshops are held with the customer,
where examples are used to explain what AI is and how it can help. In this step possible
use cases and problems are discussed. A business value calculation is also carried out to
clarify what value a use case has for the customer.

Software architect

F The task was to design the project architecture. There were problems with the topic data
security, legal and consent scopes in relation to the DSGVO. Here, the coordination and
time expenditure was very high. In some cases, teams shifted the responsibilities to each
other. As a consultant, a lot of communication was required to satisfy the customer’s
needs on the one hand and to facilitate internal cooperation on the other.

J Conception of new features or components and integration into the given environment
were the tasks.

Data Scientist

I The task was to build the infrastructure and enable deployment in the context of transfer-
ring a POC to a production system. There were problems with the versioning of services,
models and data. Terraform was used to facilitate the creation of the infrastructure and
the versioning of the services was done via ECR.

Project Manager

G Creating new offers for assignments and report problems was the task.

The overview in Figure 4.2 classifies the tasks of the interviewees related to the machine learning
life cycle. The classification was done manually on the basis of the answers to the questions
of the personal tasks. It is noticeable that the tasks focus mainly on the area of application
code (B, C, D, E, F, J), infrastructure (A, F, G, H, I, J) and deployment (H, I). Cross-project
tasks (H, B, G) and the handling of training data (C, A) are further areas. Tasks in the
area of monitoring were not explicitly mentioned. This does not mean that monitoring has
no relevance. It was simply not mentioned as a current task in the currently assigned project.
According to the answers to questions 18a and 18b for example, properties of the ML model or
ML application are already being monitored in four projects and nine out of ten interviewees
believe that monitoring should be used in the future. This diagram can therefore only be seen
as an overview of the primary tasks of the interviewees that have just been assigned and not as
a general assessment of the relevance of the individual areas.

32

Figure 4.2.: Classification of the tasks of the interviewees in the machine learning life cycle
[45].

The complete evaluations of the specific questions on infrastructure, deployment and monitoring
are listed in Tables B.1, B.2 and B.3 in the appendix. These tables contain more specific details
about each individual project and also link each answer to the corresponding interviewee. These
details have been omitted in the following for easier reading comprehension. For examples of
concrete infrastructure designs or deployment procedures, it is recommended to review the full
evaluation in the appendix, questions 7a and 11a in particular. In the following, reference is
made to the alphanumeric identifiers of the questions from the full evaluation in the appendix.

Infrastructure

Design of the infrastructure

Q: What does the infrastructure for the deployment of ML applications in the current project
consist of (7a) and how would it look ideally (7b)?

A: In the interviews, it was mentioned that AWS is the primary cloud provider and that
an individual infrastructure for a project can be created by orchestrating different AWS
services, such as S3 as data or model storage, ELB for load balancing or ECS/ECR/EKS for
deployment. Sometimes, external tools were used as well, e.g. MetaFlow for the structuring
of Data Science workflows or Cloudera as a platform for data engineering. Especially for
the different stages (dev, prod, pre-prod and prod) a satisfactory capacity was considered
important. A wide choice of frameworks, programming languages and visualization methods
was wished for as well. A quick access to notebooks during model development was also
considered important. Sufficient performance regarding GPU and RAM was one optimal
feature that was mentioned. AWS as a cloud provider was regarded as suitable for a quick
creation of the infrastructure. One interviewee described the optimal infrastructure as a
combination of an S3 bucket for data storage, Kubernetes for preprocessing and a container
for training. Another interviewee said that using a pure EC2 instance would be good if less
abstraction is preferred.

33

Creation of the infrastructure

Q: How was the infrastructure created (8a) and would a tool be helpful to automate it (8b)?

A: Tools such as Terraform or CloudFormation are used for the creation of the infrastructure.
Of the four projects to which there was a response, three projects used Terraform and one
used CloudFormation to create the infrastructure. These tools use IaC (Infrastructure as
code) to define and create the infrastructure. The interviewees justified the use of such
tools with a reduced workload, time savings, easier reproducibility and lower susceptibility
to errors. Reference was always made to existing tools and no new form of a tool was
requested.

Q: What problems occured during the creation of the infrastructure (9a) and what solutions can
be imagined (9b)?

A: The automation of the creation of the infrastructure is not possible without appropriate
know-how. The complexity of the infrastructure can be very high and the occurence of
role and authorization problems is difficult to handle. Managing multiple accounts in AWS
simultaneously is problematic as well. One interviewee said that there is no reasonable
verification of CloudFormation templates without deployment. The necessary know-how
for realising the automation of the creation could be acquired through communication with
colleagues. The role and authorization problems can be handled through a trial and error
procedure. The management of several accounts simultaneously in AWS can be solved by
developing individual software. In order to reduce the management effort of the infrastruc-
ture, services controlled by AWS can be increasingly used.

Q: What are the differences between the infrastructure for development of a prototype and a
production application (25a)?

A: During the development of a prototype, the load on the infrastructure is significantly lower
than in a productive application. This means that the hardware costs are also lower.
Furthermore, the infrastructure does not have to be connected to the Internet, as there
are no external accesses. With a productive application, more emphasis is also placed on
monitoring and traceability. A structured approach to version control is also more important
here. Scalability and security are particularly important in a production application.

Non-functional requirements of the infrastructure

Q: Which non-functional infrastructure requirements were specified in the current project
(10a)?

A: The most frequent non-functional requirements were scalability, mentioned by six inter-
viewees and data protection, mentioned by four interviewees. Others were reaction time,
modularity, model quality and multi tenancy.

34

Deployment

Procedure of the deployment

Q: How was the ML application deployed (11a) and would a tool be helpful to automate the
deployment (11b)?

A: For the deployment of an ML application, tools like Bamboo, Concourse, Gravity and
MetaFlow are used. Bamboo [14] is a continuous integration and deployment tool that
ties automated builds, tests and releases together in a single workflow. Concourse [25] is
most commonly used for CI/CD and is built to scale to any kind of automation pipeline.
Cloud Foundry [18] is an industry-standard open source cloud application platform for
developing and deploying enterprise cloud applications. Gravity [27] is an open source
toolkit that provides true portability for cloud-native applications. It allows developers
to package a Kubernetes cluster and all its applications into a single file called a “Clus-
ter Image”. Metaflow [26] is a human-friendly Python library that helps scientists and
engineers build and manage real-life data science projects. Three projects trigger the de-
ployment by commits. All 8 interviewees who responded think that a tool for automating
the deployment is helpful. The reasons for this are time saving, automatic test execu-
tion and automatic triggering. One interviewee finds automatic deployment useful, but
prefers manual deployment to have more control. Suggestions for the form of the tool
were not given, reference was made to existing tools such as Bamboo, CloudFoundry and
CodePipeline.

Q: What problems occured during the deployment of the ML application (12a) and what pos-
sible solutions can be imagined (12b)?

A: The configuration of the test and production environments, which is particularly error-
prone, is mentioned as a problem during deployment. The versioning of data and model
is also sometimes problematic. Five interviewees said, that there were no problems. With
regard to the versioning of data, there are third-party tools. A blue-green deployment
could be used to ensure model quality.

Q: What are the differences in deployment when developing a prototype and a production
application (13a)?

A: A prototype has no contact to user and thus requires no automatic data processing. It even
may not be deployed at all, when it is sufficient to determine certain evaluation metrics on
the own laptop to show the customer whether a use case is doable. A prototype does also
not require a release and therefore there is no release process compared to a productive
application. A zero downtime deployment is also not necessary.

Quality assurance during deployment

Q: What methods were used to check the quality of a model before going live (14a) and should
these methods (still) be used in the future (14b)? Under what circumstances are these
methods feasible (15b)? If no methods were used, what were the reasons for that (15a)?

A: Offline evaluation metrics, such as precision, recall and f1 score are used to check the
quality of the model during training. An alarm is triggered of certain metrics fall below

35

a defined limit. Functional tests are used to check if the predictions of the model are
valid. Furthermore, it is checked whether the model has been trained with the correct
parameters. The test results of the new and old model are compared. A dashboard
with metrics on the quality of the predictions is also used. This prevents a new model
from being of lower quality than a previous model. Five interviewees gave an answer and
all think that quality review methods should be used in the future to detect changes in
data and model quality, to maintain the quality characteristics and to guarantee correct
functionality. To monitor the quality of the model, quality criteria must be defined and
test data must be available. Furthermore, a reasonable versioning of the model is required,
which must be compatible with the deployment pipeline. A microservice architecture is
also required in many cases where traffic (real-time user data) needs to be switched between
different models. Eventually, to monitor the verification of the quality of the model during
production operation, there must be at least some users.

Q: Was canary deployment, A/B testing or shadowing (16a) used? Which errors could be
prevented by those methods (17a)?

A: A/B Testing, Canary Deployment and Shadowing are not used in any current project.
In previous projects A/B testing was performed. According to four interviewees, canary
deployment is considered to be useful. Two interviewees have already performed a Blue-
Green deployment. The lack of A/B testing or canary deployment could be related to the
fact that these methods may not sufficiently known or technically difficult to implement.
By using these methods, changes in the data and model quality can be detected. In
addition, software problems are detected and server errors occur due to incompatibility
of software and server. A/B testing can be used to assess changes in user experience. A
blue-green deployment can also enable high availability.

Monitoring

Procedure of the monitoring

Q: Are properties of the ML application or ML model currently monitored (18a)? If and why
should they be monitored in the future (18b)?

A: Four projects monitor properties of the ML application or the ML model. Nine interviewees
responded that they think that properties of the ML application or model should be
monitored. This will allow changes in user behavior, data distribution and model quality
to be identified. If several models are used simultaneously, it is also important to monitor
the query rate of the models. Scaling can also be simplified by monitoring. Furthermore,
calls of the ML application for traceability and time measurement should be monitored.
The error rate of the model and all important fixed KPIs should be monitored, CPU and
RAM consumption are also interesting for monitoring. In general, online monitoring is
more meaningful than monitoring during training. Monitoring in general is helpful for
quality assurance.

Q: How was the monitoring carried out from a technical point of view in the majority of
projects (19a) and how could the procedure be made easier (19b)?

A: In one project, the evaluation metrics of a new model are compared with the old model
after each training. Thresholding is used and alarms are triggered in this context. In
another project, the CPU load is measured manually in Python. In one instance, the

36

results of the ML application are written in tables and then displayed via frontend in the
form of a dashboard. In one project an ELK stack (Elastic Search, Logstash and Kibana)
is used within AWS. Elasticsearch is a distributed, open source search and analytics engine
for all types of data [48]. Logstash is a free and open server-side data processing pipeline
that ingests data from a multitude of sources and transforms it [35]. Kibana is a free and
open user interface that lets you visualize your Elasticsearch data [32]. In one project,
Splunk and Kibana are used in combination. Splunk is a scalable platform for monitoring
and analyzing data [46]. The application either writes logs to files if Kibana runs on the
same server. Alternatively, Kafka is used as a message broker to send log messages to the
server running Kibana. The log data can then be queried via Query Language. Often call
IDs, user name, component, class and message are logged. In general, all requests can
be logged and displayed on a dashboard. Alternatively, certain metrics can be displayed
per model. CloudWatch [19], an AWS service, can also be used for logging and alerting.
Together with integration via a slack channel, the alert messages reach the recipients. The
use of cloud services could facilitate monitoring, an example is the load monitoring in
AWS. The use of thresholding and alerting during monitoring is also seen as useful.

Q: What problems occured during monitoring in the majority of projects (20a)? What are
possible solutions (20b)?

A: A universal evaluation metric such as accuracy is not always useful or applicable. Addi-
tionally, in monitoring, there are access problems and the customer’s specifications limit
the choice of tools. The granularity of monitoring is important to avoid fingerpointing. If
a service has a poor performance, it could be because it internally accesses another service,
which is solely responsible for the performance. So the granularity of monitoring must be
fine enough. This can be achieved by logging the complete call stack.

Monitoring metrics

Q: What characteristics of the ML application and the ML model were monitored (21a) and
what other properties should be monitored ideally and why (21b)? What errors should be
prevented by monitoring (22b)?

A: Several characteristics were mentioned. The precision, recall, f1 score, learning rate, ac-
curacy of the model was monitored during training. The response time and quality of
predictions of the model were found helpful to monitor during operation. It would make
sense to monitor user behavior, data distribution, model quality and all KPIs. Precision,
recall, f1 score are useful for classification problems, accuracy for numerical problems.
The maximum and average of the data is useful to monitor. The frequency of the model
calls and the distribution of the output values is also useful. For scalability, monitoring
the CPU load is helpful. Through monitoring, the user satisfaction should be ensured
and the probability distribution of expenditure should be kept satisfactory. Unrealistic
inputs should be avoided and the timeliness of the data should be guaranteed. In general,
monitoring is helpful for error analysis, as errors can then be better reproduced.

Metric presentation

Q: Where were the results of the metrics presented (23a) and how should they be presented
ideally (23b)?

A: A dashboard was used in all projects that applied monitoring. It was considered to be a

37

satisfactory option. It should be clarified with stakeholders which metrics are presented.
A clean definition of metrics is important.

Infrastructure, Deployment and Monitoring

Q: Is there a core functionality among all projects that can be automated for infrastructure,
deployment and monitoring (24b)?

A: One interviewee said that the automation of data integration via pipelines for reproducibi-
lity would be helpful. The feedback loop from monitoring to model building is important.
In general, deployment, infrastructure and testing can be well simplified by automation.
Another interviewee said that an S3 bucket in combination with ECS would be a good
basis for an infrastructure. One opinion was that the different test stages should be pre-
built and have guaranteed resources. It should be obvious why a build takes a long time
and how long it takes to start. One interviewee said that a knowledge base for example
architectures is useful and is currently being created. Two interviewees said it would not be
possible. One reasoned it with the customers having strict specification. One interviewee
said that data access, model development, deployment and production can be automated.
Another one said that monitoring for AWS could possibly be generalized.

4.3. Discussion

The target-performance analysis provided insights into the experiences, projects, roles and tasks
of ten interviewees from a department for artificial intelligence on the one hand and into their
knowledge of the specific areas of machine learning infrastructure, deployment and monitoring
on the other.

In the first part of the analysis, it could be determined that the average person interviewed was
a software developer with the experience of about three to four machine learning projects. In
addition to the software developer, five other roles were identified. Apart from the four software
developers, two ML Engineers, two Technical Project Managers, two Software Architects, one
Data Scientist and one Project Manager were interviewed. The identified tasks, problems and
solutions of the interviewees gave a short impression of their daily work and are helpful to get
a better understanding of the responsibilities of the different roles. It was noticeable that the
tasks of a role were sometimes not self-evident. A data scientist, for example, had the task of
creating the infrastructure, although it was assumed that his role would be more closely related
to data processing. The mapping of the tasks in the machine learning lifecycle showed that at
the time of the interview, the application code, infrastructure and deployment were the most
important fields of activity. At this point it was suspected that the phase of model building
would be of more relevance. However, the questioning of the tasks only represented a snapshot
in time and therefore cannot give any statement about the general importance of the areas of
activity.

In the second part of the target-performance analysis, the areas of infrastructure, deployment
and monitoring were examined. Regarding the infrastructure, questions were asked about its
design, creation and non-functional requirements. It was revealed that a machine learning in-
frastructure can consist out of different AWS services and that it can be automatically created
by using infrastructure as code (IaC) tools, such as CloudFormation or Terraform. The range
of services was suprisingly wide, whereby the most frequently mentioned AWS services were S3,
Sagemaker, ELB, ECS, ECR and EKS, and Route53. This shows that the adoption of AWS as

38

a cloud provider is essential for the design of the infrastructure and that the department has a
particular technical affinity in this area. Various non-functional requirements of the infrastruc-
ture were mentioned, but the most commonly called ones were scalability and data protection.
This is not surprising, as these requirements are commonplace in the industry. Regarding the
deployment, questions were asked about the procedure and quality assurance. The deployment
process was heavily reliant on the use of external tools. For example, Bamboo, Concourse or
MetaFlow were integrated into pipelines, which were partly triggered by new commits. The
deployment methods identified in the literature search, such as canary deployment, A/B testing
or shadowing were interestingly not used in the current projects. The lack of such methods
could be related to the fact that these methods may not be sufficiently known or technically
difficult to implement. However, blue-green deployments have already been carried out in some
projects as a means of quality assurance. The area of monitoring was the last to be examined.
In this context, questions were asked about the procedure, metrics and their presentation. The
approach of monitoring differs between projects. Often external tools, such as Kibana, are used
to aggregate, query and display logs. In doing so, the accuracy of logging is essential, because
it must be possible to determine exactly how long which component takes to execute an oper-
ation in order to identify performance bottlenecks. Within the projects, evaluation metrics are
currently being monitored especially in the training phase of the model. Examples for those
metrics are precision, recall, f1 score and accuracy. During productive operation, the response
time and the quality of the model’s predictions are also checked. However, this is only a small
part of the metrics that were identified in the literature search. The visualization of metrics
on a dashboard is generally considered useful, whereby the selection of metrics must always
be tailored to the individual application or model. For example, the accuracy is meaningful
for numerical problems and the precision, recall and f1 score are more appropriate for classifi-
cation problems. In general, determining the metrics in coordination with the stakeholders is
recommended. The setting of threshold values for certain metrics in combination with alarm
messages is considered helpful, which also corresponds to the findings of the literature research.

The results of the target-performance analysis provided valuable insights into the work of the
interviewees. It was shown how industrial projects in the field of machine learning are realised
and how modern cloud technologies play a key role in this context. The detailed answers of the
interviewees could especially help non-experts with the implementation of well built machine
learning projects. For specialists in the field on the other hand, the findings may provide new
incentives due to the variety of different technologies involved. Overall, the conduction of the
analysis is considered to be successful, because the conversations with the interviewees not only
produced relevant results but also strengthened interpersonal relationships and contributed to
the exchange of knowledge in the department.

4.4. Lessons learned

The execution of the target-performance analysis was carried out without any major problems.
One reason for this was the thoughtful and considerate development of the interview guide
together with the supervisor, whereat the exact formulations of the questions and the use of
specific terms were checked multiple times for comprehensibility. The clarification of the term
definitions in the beginning of the interviews prevented misunderstandings and the inclusion of
the machine learning overview image ensured a common understanding between both parties.
Starting the interview with general questions about the interviewee had a loosening effect on
the dialogue atmosphere and is therefore considered recommendable. In some situations it was
difficult to adhere to the questionnaire exactly. When solutions for problems were asked and
the interviewee already mentioned a lot of problems before, it had to be decided whether a
solution would be asked for each of the problems or, out of time reasons, only for a subset

39

of them. Sometimes it was also difficult to not let the conversation topic slip into areas that
were not covered by the questionnaire. In these cases it has proven to be useful to let the
interviewee finish speaking, then take up an aspect of his answer and subsequently ask the next
relevant question. For the documentation of the answers to the questions of each interviewee,
a text file was created each time. In retrospect, using a central document for the answers of
all interviewees in the first place, would have saved a lot of time that was spent on gathering
the answers of each question into one place. Regarding the evaluation, the classification of
questions into sections and subsections was important to structure the questionnaire, resulting
in an easier reading comprehension.

4.5. Threats to validity

The validity of the target-performance analysis denotes the trustworthiness of the results, and
to what extent the results are not biased by the researchers’ subjective point of view [43]. In the
following, the construct validity, internal validity and external validity is discussed. Construct
validity reflects to what extent the operational measures that are studied really represent what
the researcher has in mind and what is investigated according to the research questions. The
construct validity of the target-performance analysis is reinforced through the communication
of the definitions of the fundamental terms in the beginning of the interview. Nevertheless, it
cannot be said with absolute certainty whether the participants deviated from the established
definitions in their mind during the interview and there could be further terms that were
perceived differently. The aspect of internal validity is of concern when causal relations are
examined [43]. More specific, a study with a high internal validity accounts for confounding
variables that could have unnoticed effects on the outcome. To prevent these confounding
variables, the interviewees were asked about their previous project experience, their current
project and their role in it. These details prevent that the requirements of the automation tool
are heavily based on the desires of a specific role or the circumstances of a specific project.
However, the relationship between interviewer and interviewee could undermine the internal
validity, because the extent and detailedness of the answers of the interviewee might be higher
when a mutual friendship exists. The external validity is concerned with to what extent it is
possible to generalize the findings, and to what extent the findings are of interest to other people
outside the investigated case [43]. The small sample size and the fact that all participants were
volunteers do not contribute to a satisfactory external validity, because the general population
may not be represented very well. It could also be that the machine learning expertise in the
department is focused on specific approaches that work well for their relevant domain specific
problems. Then the findings might not be applicable to other areas of ML.

4.6. Requirements extraction and prioritization

In a joint discussion with the industrial supervisor prior to the start of this master thesis, a
high relevance for an automatic creation of the infrastructure and monitoring with real-time
user data in the department was already suspected. The results of the interviews confirmed this
assumption. When asked whether a tool for the automatic creation of the infrastructure would
be useful (8b), seven interviewees answered that it would reduce effort, save time, improve
reproducibility and reduce the error rate. The same question regarding monitoring (18b) was
answered by nine interviewees, who said that changes in user behavior, data distribution and
model quality can be easier identified. In order to derive requirements for an infrastructure
and an automation tool from the results of the interviews, the evaluation results were discussed

40

Influencing factor EG EI ED EM

Literature search
RI1
RI3
RI5

RD2
RM1
RM2

Supervisor
RI2
RI4

RD1 RM3

10a
RI1
RI3

16a
RD2
RD3

9a RG1

7b RI5

25a RI5

21b RM1

23b RM1

19b RM2

Table 4.3.: Influence factors for each of the requirements grouped by epic and ordered by
descending influence.

together with the industrial supervisor and the answers to each question were examined to
investigate whether a requirement could be derived. Additionally, the results of the literature
search were examined. The extracted requirements were formulated as user stories and were
grouped by epics. Four epics were created. One epic was created for general requirements (EG)
regarding the use of an automation tool itself and three for requirements regarding infrastructure
(EI), deployment (ED) and monitoring (EM).

The Table 4.3 shows which of the influence factors (literature search, supervisor and answers of
the target-performance analysis) represent the source of the reasons for each of the requirements.
The answers of the target-performance analysis are represented by alphanumerical identifiers
and can be looked up in Tables B.1, B.2 and B.3 in the appendix. Regarding the influence
factors, the literature search had the highest impact, followed by the supervisor and then the
answers of interviewees. Among all questions, the questions 10a and 16a were particularly
helpful for the identification of requirements. Out of the answers to 31 questions of the target-
performance analysis, the answers of eight questions had influence on the requirements. This
does not mean that the answers to the other questions were not important, they just could not
be taken into account due to the limited scope of the requirements. It could also be recognised
that answers to questions that have examined the actual state in the department had influence
on five requirements and that answers to questions that focused on the target state had influence
on four requirements. The concrete reasons for each of the requirements are mentioned in the
following description of all epics.

The epic EG only contains the user story RG1 that describes the purpose of using an au-
tomation tool. It is shown in Table 4.4. The reasons for the need of automation regarding
the infrastructure and deployment were extracted out of the answers of question 8b and have
already been explained in the previous paragraph and were considered important. One inter-
viewee also mentioned that automation is only possible with appropriate know-how (9a). The

41

ID User Story Acceptance criteria Priority

RG1
As a developer, I want to use an automation

mechanism to reduce effort, save time,
guarantee reproducibility and prevent errors.

- The tool can be operated by
interacting with a graphical user
interface

HIGHEST

Table 4.4.: User stories for the epic EG (general)

creation of an automation tool therefore also makes a contribution in this respect. Thus, the
user story RG1 was given top priority. To simplify the operation, the use of a graphical user
interface was set as an acceptance criterium.

The epic EI contains user stories related to the configuration and creation of the training
and application infrastructure, which are shown in Table 4.5. According to the supervisor, the
creation of the application and the training infrastructure in RI2 and RI4 is both a frequent and
important use case. However, the application infrastructure must be created more often, that’s
why the user stories RI1 and RI2 are therefore given highest priority. In RI1 the developer
configures the infrastructure with relevant parameters, such as the scaling threshold. The
scaling threshold represents the value of the workload of the infrastructure at which scaling
is initiated. According to the answers of question 10a, scalability is the most frequent non-
functional requirement. In the literature, the practice of setting limits for a specific metric
was frequently described and recommended. These reasons contribute to the priority score of

ID User Story Acceptance criteria Priority

RI1
As a developer I want to make settings for the

application infrastructure (e.g. scaling threshold)
to provide parameters for its creation.

- Input values can be entered by the
developer

HIGHEST

RI2
As a developer I want to create the application

infrastructure to be able to deploy the
application.

- The components of the application
infrastructure are created

HIGHEST

RI3

As a developer I want to make settings for the
training infrastructure (e.g. scaling threshold,

training data location) to provide parameters for
its creation.

- Input values can be entered by the
developer

HIGH

RI4
As a developer I want to create the training

infrastructure to be able to train the ML model.
- The components of the training

infrastructure are created
HIGH

RI5
As a developer, I want to use automatic resource
scaling to avoid the overload of the training or

application infrastructure.

- The application infrastructure scales
automatically when the load exceeds
or falls below the scaling threshold

HIGH

Table 4.5.: User stories for the epic EI (infrastructure)

42

the user stories RI1 and RI3 and RI5. RI5 referrs to the automatic scaling of the training
and application infrastructure. The automatic scaling allows to meet the requirements of GPU
and RAM, which were requested in the answers of questions 7b. Scalability is also particularly
important in a production application (25a). Metrics for measuring application performance
were also often mentioned in literature research. Since satisfactory application performance is
not possible without a sufficiently powerful infrastructure, the user story RI5 was given high
priority.

 ID User Story Acceptance criteria Priority

RD1
As a developer, I want to make the ML

application available to users to allow their access
via HTTP.

- The uses are able to access the
application via HTTP

HIGHEST

RD2
As a developer, I want to trigger and execute a

Canary Deployment to provide the basis for
monitoring with real-time user data

- Another instance of the application
is deployed

- A defined amount of user traffic is
forwarded to the new application
instance

HIGHEST

RD3
As a developer I want to trigger and execute a
Blue-Green deployment to check the quality of

the new application version

- Another instance of the application
with all of its dependencies is
deployed in a new environment (e.g.
a virtual private cloud)

- The complete user traffic is
forwarded to the new application
environment

MEDIUM

Table 4.6.: User stories for the epic ED (deployment)

Epic ED contains user stories that describe the deployment of the ML application, which are
shown in Table 4.6. In RD1 the ML application is made available to the users via HTTP. This
user story is rated with highest priority because the application needs to be accessible to users,
according to the industrial supervisor. In RD2 the usage of a canary deployment is requested. A
canary deployment was not yet used in any of the projects of the interviewees, but it was found
to be useful by four interviewees (16a). In the literature search, canary deployment was the most
frequent deployment method. Because of these reasons, RD2 is rated with the highest priority.
Two interviewees mentioned that they already performed a blue-green deployment (16a). As
this method was not yet researched in the literature and the industrial supervisor could not
give an estimate about the effort that it takes to implement, the priority of RD3 was set to
medium. The implementation of an A/B testing was discussed. It was decided not to further
extend the scope of the requirements regarding the deployment, since the implementation of
a canary deployment would be sufficient for the industrial supervisor. This is also the reason
why shadowing was not further pursued.

The epic EM contains user stories that describe activities that are relevant for monitoring
the ML application, model or the underlying infrastructure. They are shown in in Table 4.7.
According to the answers of question 22b, monitoring is helpful for error reproducibility and
analysis. The timeliness of the data has to be ensured and the CPU load should be monitored
(21b). All of these metrics can also be found in the results of the literature search. At this point
the inclusion of further metrics from the results of the literature search was discussed. It was
decided not to include any more metrics as requirements, because the mentioned metrics already

43

 ID User Story Acceptance criteria Priority

RM1

As a developer, I want to be able to view metrics
of an ML application and ML model on a

dashboard to check their functionality. Metrics
include CPU and RAM consumption, error rates,

and age of the ML application and model.

- A dashboard is created with metrics
regarding CPU/RAM usage, age and
error rate of the model

HIGHEST

RM2
As a developer, I want to receive a message if the
workload on the application infrastructure exceeds

the scaling threshold to be notified.

- The developer receives a message
per mail if the application
infrastructure exceeds the scaling
threshold

LOW

RM3

As a developer, I want to be able to see the
current resource utilization, such as CPU/RAM

load, of the application infrastructure to check it.

- A dashboard is created with
workload information of the
application infrastructure

LOW

Table 4.7.: User stories for the epic EM (monitoring)

provide a good basis for monitoring and the scope was considered sufficient by the supervisor.
Due to the importance of the mentioned metrics RM1 was rated with highest priority. As an
acceptance criterium, the usage of a dashboard is expected, as it is a good means for visualization
(23b). According to the results of the literature research and the interviews, especially question
19b, the sending of messages when thresholds are exceeded is a useful practice. As the scaling
of the application infrastructure should work automatically, the user story RM2 was set to low
priority, because it is only a control function. This also applies to RM3. Since the scaling of the
infrastructure is automatic, the view of the utilization values is useful for validation according
to the supervisor, but it is not of high priority.

In summary, the ideas for implementing an infrastructure and an automation tool were in
retrospect well reflected by the results of the interviews. Among the methods identified for
monitoring the ML application and the model, a canary deployment was included as a require-
ment. A/B testing and shadowing were not included as a requirement in order not to exceed
the scope. The metrics from the literature research partly overlapped with the desired ones
from the interviews. Here, a small selection of the metrics was chosen, as the supervisor felt
that they were sufficient. Many findings that emerged from the interviews were not included
as requirements. One example is the fine-grained monitoring of calls to the ML application to
find performance bottlenecks (18b) or the solution of problems related to the management of
several AWS accounts simultaneously (9b). A limit had to be drawn so that, on the one hand,
sufficient requirements for infrastructure and automation tool were imposed and, on the other
hand, sufficient time was left for code quality assurance and testing.

44

5. Design, implementation and quality
assurance

This chapter describes the design, implementation and quality assurance of the automation
tool, which implements the requirements that were identified in the previous chapter.

5.1. Design and implementation

The design and implementation of the automation tool is covered in this section. First, a general
overview over the automation tool is given, important architectural decisions are presented and
the general implementation is described. Afterwards, the design and implementation of the
core functionalities of the automation tool are explained.

Overview

The goal of the automation tool is to implement the requirements that were collected during
the requirement analysis in Chapter 3. For this purpose a console application was developed
in Python. The user is expected to be a developer in the area of machine learning, because
the average interviewee that took part in the interviews for the requirement analysis was an
engineer in this field.

Core functionalities

The automation tool provides five options to the user that represent its core functionalities.
Table 5.1 shows which requirements are implemented by which core functionalities. The first
core functionality is to create an application infrastructure for a given ML application. The
application infrastructure is representative for all resources which are necessary to enable users
the access to the ML application via the internet. The second core functionality is the creation
of a training infrastructure. The training infrastructure is representative of all resources that are
needed to train an ML model. The third and fourth core functionality enable the execution of
a canary and blue green deployment. Both deployment types replace a current ML application
version with a new one. While a canary deployment gradually redirects more and more users
to the new ML application version, a blue green deployment instead redirects all users at once.
The fifth core functionality allows to view monitoring metrics of an ML application and its
infrastructure through the use of a dashboard. All five core functionalities are based on the
orchestration of specific AWS (Amazon Web Services) services. These services are then used
to take over different tasks, such as storing data, executing containers or sending notifications.
AWS is used as a service provider, because of an ongoing partnership with the department of
the company.

45

Core functionality
Covered

requirements

Create application
infrastructure

RI1

RI2

RI5

RM2

Create training
infrastructure

RI3

RI4

RI5

Execute blue green
deployment

RD1

RD2

RD3

View monitoring metrics
RM1

RM3

Table 5.1.: Mapping of core functionalities to requirements.

User interaction

A graphical user interface for the automation tool was not created, because a console applica-
tion can be used more easily within automation scripts and furthermore provides better support
for systems with no graphics card. When the start screen in Figure 5.1 is visible, the developer
has the possibility to use the arrow keys to switch back and forth between the menu entries
and to confirm the selection with the enter key. After entering the required settings for the
selected functionality, the automation tool starts to execute an automation procedure, while
simultaneously displaying the status of the execution progress in the console. When the execu-
tion is completed, the developer can extract relevant information from the console output. The
automation tool is exited like any other console application by pressing the control key and “c”
at the same time.

Figure 5.1.: Screenshot of the start screen of the automation tool.

46

Architectural decisions

Various architectural decisions had to be made regarding the implementation of the automation
tool. One decision revolved around the selection of the programming paradigm. Here, object-
oriented programming was compared to procedural programming. One of the main differences
between object-oriented programming (OOP) and procedural programming is that the focus of
procedural programming lies on dividing the programming task into a collection of variables
and methods, while the focus of OOP is to decompose the programming task into objects that
encapsulate variables and methods. Compared to procedural programming, which takes up less
memory and allows to re-use the same piece of code at different places in the program without
a detour over a class, OOP benefits from polymorphism and data encapsulation. Since the core
functionalities of the automation tool are fundamentally based on polymorphism, the object-
oriented approach was preferred over the procedural one. The decision knowledge visualization
is shown in Figure 5.2 and was produced by the JIRA plugin ConDec [33]. It can be seen that
the decision is displayed as the root of the graph. The next node below represents a problem
that is associated with the decision. In this case, the problem is which programming paradigm
should be used. The two alternatives that were compared, are shown in orange. The arguments
for each of the alternatives are shown in green. For this problem, only arguments are used that
support the alternatives.

Figure 5.2.: ConDec decision knowledge visualization of decision about programming
paradigm.

For the generation of resources, an IaC approach is used. IaC (Infrastructure as Code) means
that all required resources and their configuration are defined in form of text files. On the basis
of these text files, the resources and their configuration can be generated automatically with
the help of dedicated tools. The tools CloudFormation [7] and TerraForm [28] were investigated
in this regard. CloudFormation is natively offered by AWS and TerraForm is an OpenSource
IaC tool. The decision was made on AWS CloudFormation because, unlike TerraForm, it offers
the possibility to group the generated resources in so-called “stacks”, which greatly simplify
collective resource deletion, as well as improvement of their traceability in the cloud.

47

General implementation

This section describes the general implementation of the automation tool. It first describes the
Stack class and then all other classes.

A stack in the sense of CloudFormation is a collection of resources which is defined by a template
file containing all resource definitions. Attributes of the resources can be dynamically initialized
with values by the use of stack parameters, which makes it possible to configure the resources
based on external input. The template file also contains an output section that defines a list of
specific attributes of resources that should be accessible after the stack creation. Using OOP,
the concept of a stack can be implemented by the abstract class Stack. The corresponding
class diagram can be seen in Figure 5.3. The already mentioned parameters and outputs of
the stack are modeled by the classes StackParameters and StackOutputs. The definitions of
these classes are shown in the complete class diagram C.1 in the appendix. Further attributes
of the Stack are its _region and its _stack_name. The region of the stack corresponds to the
geographic location of the stack and the stack name is the identifier of the stack in AWS. The
_template_file_name contains the name of the template file of the stack. In addition to the
_stack_parameters, there is also the attribute _action_parameters, which encapsulates all
parameters that are not needed for the stack creation, but still important for the implementation
of the respective core functionality. For example, the training data file for the training of the
ML model is an action parameter, because it is uploaded after the training infrastructure stack
has been created. The last attribute of the stack is the _command that is necessary for the
stack creation. When a stack object is instantiated via the constructor, the method deploy()

executes the command to create the stack in AWS. The abstract methods before instantiate(),
after instantiate() and before delete() are implemented by the respective concrete subtypes of

Stack and allow the execution of code at certain points of the stackślife cycle. The other methods
are not relevant for the understanding of this chapter and are thus not further described.

It is continued with the description of the remaining classes, leaving out those that are described
in the next sections in context of the core functionalities. The class Start represents the entry
point of the application. It is responsible for triggering the core functionalities that are selected
by the developer. The class Menu contains all menu messages and handles the selection of menu

+region : str
+stack_name : str
#_template_file_name : str
#_stack_parameters : StackParameters
#_action_parameters : ActionParameters
#_command : str
#_outputs : StackOutputs
+__init__(region_name, stack_name, action_parameters : ActionParameters, stack_parameters : StackParameters)
+deploy() : bool
+exists() : bool
+delete() : bool
-_wait_until_created() : void
-_construct_stack_deployment_command() : str
#_before_instantiate() : void
#_after_instantiate() : void
#_before_delete() : void
#_get_stack_name_prefix() : void
#_get_template_file_name() : void
#_init_outputs(stack_output) : void

<<abstract>>
Stack

Figure 5.3.: Class diagram of the class stack.

48

items, It is responsible for receiving the developers input and provides default values whenever
possible. The Configuration class contains constants that define the S3 bucket name that is
necessary for the automation tool and the prefixes of the different stack types in AWS. The class
Serializable allows to save a stack object to a file and read it back. This is helpful for testing.
The ShellExecutor class is able to execute commands in the console. It is the superclass of the
StackHelper class and the DockerHelper class. The StackHelper class offers utility methods
to create a stack object from a remote CloudFormation stack, the get the outputs from a
remote stack and to create a an S3 bucket that is necessary because of CloudFormation. The
DockerHelper class contains utility functions regarding Docker. It allows to login to a docker
repository, to tag, untag, pull, upload, remove or inspect an image and to list all images. It is
noted that a summary of the descriptions of all classes of the automation tool can be found in
Table C.1.

Application infrastructure

The first core functionality of the automation tool, is to create an application infrastructure.
The purpose of the application infrastructure is to make an ML application available to users,
while enduring peak traffic loads and guarantee high availability.

Resources

The application infrastructure consists of the following resources.

ECR repository - An Elastic Container Registry (ECR) repository [8] contains the docker
image that was specified by the developer.

VPC - A Virtual Private Cloud (VPC) [6] is used to logically isolate resources of the application
infrastructure. Within the VPC, a private and a public subnet exist. Resources in a public
subnet can be accessed over the internet, resources in a private subnet cannot.

Internet Gateway - An internet gateway is the logical connection between the VPC and the
internet. If the VPC had no internet gateway, then resources in the VPC could not be accessed
from the internet.

NAT Gateway - A Network Address Translation (NAT) gateway allows a resource, that is
inside a private subnet to connect to other AWS services.

ECS Task - An Elastic Container Service (ECS) task runs docker containers in ECS [5]. ECS is
a fully managed container orchestration service in AWS. An ECS Task requires a task definition
that must contain the location of the docker image.

ECS Service - An ECS service allows to run a specified number of instances of an ECS task
simultaneously in an ECS cluster.

ECS Cluster - An ECS cluster is a logical grouping of ECS tasks or services.

Load Balancer - The application load balancer distributes the load between several application
instances.

49

Figure 5.4.: Ressources of the application infrastructure.

Autoscaling Target - A resource that is associated with auto scaling functionality.

Autoscaling Policy - An autoscaling policy defines lower bound and upper bound metric
values by which to scale in or scale out the autoscaling targets.

SNS Topic - A Simple Notification Service (SNS) topic is a logical access point that acts as a
communication channel.

The Figure 5.4 shows all resources at a glance. The internet gateway receives the requests of
the user of the ML application and forwards them to the public subnet of the VPC via the
internet gateway. Within the public subnet, the requests reach the application load balancer.
The load balancer checks the status of all ECS tasks by calling each of their health check paths.
If the tasks responds with HTTP 200, they are marked as “healthy”, if they do not respond or if
they respond with another status code, they are marked as “unhealthy”. The application load
balancer decides to which of the healthy ECS tasks in the private subnet the requests should
be forwarded based on the current load of the tasks. The corresponding task, which runs the
docker image containing the ML application, receives the requests and sends their responses
back to the NAT gateway in the public subnet. Afterwards the responses are forwarded back
to the user over the internet gateway. It can be noticed, that the docker image is located in two
places, the ECR repository and the ECS task. The difference is that the ECS task executes
the docker image and the ECR repository only serves as storage space. When creating the
application infrastructure, the ECR repository is first created, the docker image is uploaded to

50

it and then the ECS task is created with a reference to the docker image in the ECR repository.
The last relevant resource of the application infrastructure is the SNS topic. The SNS topic
is responsible for notifying the developer about scaling events. Every time a new ECS task is
started or deleted, the SNS Topic receives an event and notifies all registered subscribers via
email.

User flow

After choosing to create an application infrastructure in the start menu, the developer has
to decide if the default region to create the infrastructure in is appropriate. If the developer
denies, another region can be selected. Afterwards, a name for the project has to be entered,
which will be used internally to name the infrastructure components. Next, the docker image
must be selected and the docker image port must be entered. The health check path for the
ML application has to be entered subsequently. The subsequent inputs all impact the scaling
behavior of the application. The first input regarding the scalability is the minimum number of
ECS tasks that are running concurrently. Assuming the number two is entered here, this means
that two ECS tasks are created initially, for which the load balancer equally distributes the
load. Afterwards, a maximum number of simultaneously running ECS tasks must be entered.
Subsequently, the maximum CPU usage of an ECS task must be entered. Assuming the number
80 is entered here, that means that if any of the currently running ECS tasks CPU load exceeds
80%, then another ECS task is started, presuming the current number of ECS tasks is not
already the maximum number. Finally, the developer provides an email address, that receives
notifications when a new ECS task is started or deleted. The input of the settings is complete
at this point. After entering the email address, the automation tool starts the creation of the
application infrastructure in AWS. The developer is then provided with important information
about the application infrastructure through the console output. This includes the link of the
ML application and the names of various resources, for example the load balancer.

Implementation decisions and details

To enable the scalability and security of the application infrastructure, a suitable AWS service
had to be found on which a dockerized application could be run and a dedicated load balancer
had to be used to distribute the load between several application instances, while ensuring that
every access to an application instance is always routed over the load balancer. As the service
for the execution of a docker image in AWS, ECS was chosen. The alternatives EC2 (Elastic
Compute Cloud) [4] and EKS (Elastic Kubernetes Service) [12] were also considered, but ECS
promised less management effort and an on-demand pricing system. To enable scalability, the
service ELB (Elastic Load Balancing) [13] was used, which allows to distribute user traffic to
various ECS tasks using an application load balancer [10]. In order to protect the individual
application instances from direct access over their IP addresses, which would circumvent the
functionality of the load balancer, the service VPC [6] was used in combination with public and
private subnets [9]. On code level, the application infrastructure is mapped by two concrete
subtypes of the Stack class. The first subtype is called EcrStack. The only task of the
EcrStack is to create the ECR repository and then upload the specified docker image to it.
The EcrActionParameters only contain the docker image and the EcrStackOutputs consist of
the ECR repository name and the identifier of the latest used docker image. Once the docker
image is uploaded to the ECR repository, the task of the EcrStack is complete. Afterwards
on object of the class EcsStack is instantiated. The EcsStack creates all remaining resources
that form the application infrastructure shown in Figure 5.4. In particular, it creates the

51

Figure 5.5.: Ressources of the training infrastructure.

configured number of ECS tasks from the existing docker image of the ECR repository. The
EcsStackParameters contain the docker image, the docker image port, the minimum number of
containers, the maximum number of container, the autoscaling threshold value, the subscriber
email, the health check path, the ECR repository name and the name of the ECR stack.
The EcsStackOutputs contain the ECS cluster name, the code deploy application name, the
dashboard url, the dashboard name, the load balancer name, the name of the ECR repository,
the name of the ECR stack, the endpoint of the ML application and some load balancer and
security specific settings.

Training infrastructure

The second core functionality of the automation tool, is to create a training infrastructure. The
purpose of the training infrastructure is to provide computing resources and data storage for
the training of an ML model.

Resources

The training infrastructure consists of the following resources:

S3 Bucket - S3 is an object storage service of AWS. A bucket represents a location where
objects can be stored.

Sagemaker Notebook Instance - A SageMaker notebook instance is a machine learning
compute instance running the Jupyter Notebook App. Jupyter is a program which is used
by data scientists to create so-called Jupyter notebooks. Jupyter notebooks are often used to
program and train ML models.

VPC - A VPC is used to logically isolate the notebook instance. Within the VPC a public
subnet exists.

The Figure 5.5 shows all resources in one view. The Sagemaker Notebook Instance is assigned to
a public subnet which belongs to the VPC. Its computing power is configured by the developer
through the console input. The S3 bucket contains the training data for the model training,
which the developer specified during the settings of the training infrastructure. The data storage
service that was used is AWS S3. It is the standard solution for storing files in AWS.

52

User flow

To create the training infrastructure, the developer first specifies the AWS region in which the
training infrastructure will be created and enters a project name into the console. The developer
then enters a path for a file with training data into the console. The training data will be used
to train the ML model later. Subsequently, the developer chooses how much computing power
is needed for the training of the model. For this purpose, the type of the AWS Sagemaker
notebook instance must be selected. Once the settings have been entered, the automation tool
begins to create the training infrastructure. After the creation of the infrastructure is finished,
the developer accesses the Jupyter environment over an URL that can be extracted from the
console output. The developer can then create a Jupyter notebook to start the training of an
ML model. When the ML model training is complete, the developer can choose to save the
model in the provided S3 bucket.

Implementation details

The functionality of the training infrastructure is represented by the class TrainingStack in
the code. TrainingStack, like EcrStack and EcsStack inherits from the abstract class Stack.
It further contains a method to upload the training data of the developer to the dedicated S3
bucket. This makes the training data available for the training on the notebook instance. The
EcrActionParameters are initialized with the training file path and the EcrStackParameters

contain the instance type of the notebook. The EcrStackOutputs contain the name and link
of the S3 bucket, as well as the link to the jupyter notebook.

Canary and blue-green deployment

The third and fourth core functionality of the automation tool, enable the execution of a canary
and blue green deployment. The purpose of these deployments is to exchange the currently
running ML application version with a new one. The new application version can either be
exposed to new users gradually in form of a canary deployment, or at once by using a blue
green deployment.

Resources

The following resources are created before executing a canary or blue green deployment:

CodeDeploy Application - A container to hold the deployment group.

CodeDeploy Deployment Group - The basic configuration for a deployment.

New ECS Task - An updated version of the currently used ECS Task of the selected application
infrastructure.

CodeDeploy Deployment - Process that deploys the new ECS task based on the task defi-
nition.

A CodeDeploy application and deployment group are created to encapsulate the deployment

53

configuration. Inside the deployment group, the deployment type is defined, which is either a
canary or blue green deployment. Furthermore, attributes of the load balancer are configured
so that the traffic can be redirected to the new ECS Task after it has been created. The new
ECS task contains the docker image which is provided by the developer and it is created by
executing the CodeDeploy deployment.

User flow

The steps necessary for the developer to execute a canary or blue green deployment are as
follows. The developer first confirms if the default region should be used to search for the
existing application infrastructures. If the developer denies, another region can be selected.
Next, the developer selects the desired application infrastructure, which is be the basis for
the canary or blue green deployment. The developer then selects the new docker image that
contains the new ML application version. The docker image port and health check path have
to be entered afterwards. When these inputs are done, the execution of the corresponding
deployment type starts. In the console the developer can then open up a link to a page with
information about the deployment.

Implementation details

In the code, the functionality of the deployment is provided with the class DeploymentMixin.
Mixins are used in object-oriented programming to enrich an existing class with properties and
methods. In this case, the class EcsStack, which represents the application infrastructure, is ex-
tended with functionality from the DeploymentMixin class through inheritance. Since the class
EcsStack already inherits from the abstract class Stack, this is its second superclass. Within
Python, multiple inheritance is possible and especially useful in this case. The advantage of this
approach is, that within the DeploymentMixin class the attributes of the EcsStack can be eas-
ily accessed and used to achieve the required functionality. The DeploymentActionParameters
contain the docker image and its port.

Monitoring metrics

The fifth core functionality of the automation tool is the presentation of monitoring metrics
regarding the application infrastructure, the ML application and ML model. The only resource
that has to be created within AWS is a dashboard for the metrics. For the developer, the access
to the dashboard is easy. Within the automation tool, the application infrastructure is selected
and the link to the dashboard appears in the console.

Implementation decisions and details

AWS CloudWatch was chosen as a service to display metrics through the use of a dashboard.
The alternative would have been to program a web application with a dashboard in the frontend
that displays the desired metrics. Although the flexibility of the presentation options would be
higher in this case, the development effort would be considerable. Since the AWS SDK also
offers the possibility to send metric values to the dashboard via an API, it was decided to use
the combined functionality of a CloudWatch dashboard and the AWS SDK. The CloudWatch

54

dashboard is configured to show the CPU and RAM consumption of the application infrastruc-
ture and ML application, as well as the error rate of the responses that the ML application
produces. It is noted, that the metrics for the error rate of the ML model, for its age and the age
of the ML application require manipulation of the corresponding software code. Similar to the
deployment functionality, the monitoring functionality is represented as a mixin which extends
the class EcsStack. The mixin MonitoringMixin contains methods to construct metrics and
to add them to the dashboard. The mixin has full access to the attributes of the EcsStack

which facilitates the metric creation.

5.2. Quality assurance

To ensure the quality of the automation tool, a combination of testing, static code analysis and
code documentation was used. Component and system tests were created to test individual
pieces of software and to determine if the entire automation tool works under realistic inputs.
The test coverage is 93%. It was made sure that the tests can be executed in parallel, which
greatly reduces their runtimes.

A static code analysis was performed to gain insight into metrics such as LOC (lines of code)
and average cyclomatic complexity. In Figure 5.6 the LOC metric for each python class and
template file can be seen. The total number of code lines is 2138, where 1308 lines are python
code and 830 lines are template code. The average cyclomatic complexity of a python class is
A 1.5, which means it is of low risk and high maintainability. There are 143 python methods
in the source code which themselves are associated with 25 classes. The metrics were collected
with a command line tool called radon [1]. During programming, the coding convention PEP8 is
followed and Flake8, a python linter, is used to highlight errors and spelling mistakes within the
code. Code comments were added to classes and methods, listing the reason for their existence
and their parameters.

187

6 26
110 103

51

325

77
139

25
58 89 81 31 15

606

209

0
100
200
300
400
500
600
700

de
plo
ym
en
t_m

ixin
.py

co
nfi
gu
rat
ion
.py

ser
ial
iza
ble
.py

sta
rt.p

y

ecs
_st
ack
.py

ecr
_st
ac
k.p
y

me
nu
.py

tra
ini
ng
_st
ack

.py

sta
ck.
py

pa
ram

ete
rs.
py

me
tric
_m
ixin

.py

do
cke

r_h
elp
er.
py

sta
ck_
he
lpe
r.p
y

she
ll_e

xec
uto
r.p
y

ecr
_st
ac
k.y
ml

ecs
_st
ack
.ym

l

tra
ini
ng
_st
ack

.ym
l

Figure 5.6.: LOC metric for each python file.

The unit tests are executed with each commit by the use of a pipeline which was created in
Gitlab. The unit tests check if the action and stack parameters are constructed by variables of
the right type. For example, it is tested whether numbers are entered when numeric inputs are

55

expected and whether special characters are denied. The correct serialization and deserialization
of stack objects in the class Serializable is also checked. Here it is tested whether files are
created in the right places and whether all attributes of the object can be saved and restored
correctly. The methods of the helper classes are also tested for correct functionality. In the
class StackHelper it is tested whether a CloudFormation stack can be successfully converted
into the instance of a Stack class, whether all attributes are set correctly and if the output of
a CloudFormation Stack can be read successfully. In the class DockerHelper the methods are
checked for the case that the docker image does not exist or attributes like its tag are missing.
The ShellExecutor class checks whether the method for executing a command produces valid
results. Within the unit tests, method calls are mocked if necessary. This is sometimes required
for API calls of the AWS SDK.

The integration tests are ran manually, because a permanent execution would cause significant

ID Prerequisite Description Expected result

ST1 -

1. Choose „Create application infrastructure“
2. Select the region (“eu-central-1”)
3. Enter a random alphanumeric project name
4. Select docker image („nginx:mainline-alpine”)
5. Enter docker port („80“)
6. Enter health chech path („/“)
7. Enter minimum number of containers (1)
8. Enter maximum number of containers (2)
9. Enter autoscaling value (0.1)
10. Enter email leon.radeck@web.de
11. Wait until application infrastructure is created
12. Execute a load test

• An email was sent with a notification
of a starting ECS Task

• The application is reachable
under the corresponding URL

ST2 -

1. Choose “Create training infrastructure”
2. Select the region (“eu-central-1”)
3. Enter a random alphanumeric project name
4. Enter the path of the training data file

(“./data.csv”)
5. Select the instance type (“ml.t2.medium”)

• The training data was uploaded
to the S3 bucket

• The training instance notebook is
reachable
over its URL

ST3

An
application

infrastructure
exists

1. Choose “Execute canary deployment”
2. Select the region (“eu-central-1”)
3. Select the previously created application

infrastructure
4. Select the docker image (“nginx:mainline-

alpine”)
5. Enter the docker port (80)

• The old application version is replaced
with the new one

• The new application version
is reachable over its URL

ST4

An
application

infrastructure
exists

1. Choose “Execute blue green deployment”
2. Select the region (“eu-central-1”)
3. Select the previously created application

infrastructure
4. Select the docker image (“nginx:mainline-

alpine”)
5. Enter the docker port (80)

• The old application version is replaced
with the new one

• The new application version
is reachable over its URL

ST5

An
application

infrastructure
exists

1. Choose “Show monitoring metrics”
2. Select the region (“eu-central-1”)
3. Select the previously created application

infrastructure

• The dashboard is reachable over its
URL

Figure 5.7.: System tests.

56

costs in AWS. An overview of the system tests can be seen in Figure 5.7. ST1 tests the creation
of an application infrastructure in the default region with a random alphanumeric project name.
The docker image “nginx:mainline-alpine” is used as an example application. The minimum
number of containers is set to “1” and the maximum number to “2” so that the scaling can be
tested. The autoscaling value is set to “0.1” so that even few requests will trigger the scaling of
the application infrastructure. A load test is executed subsequently so that it can be checked
whether an email was sent with a notification. The reachability of the application is tested
additionally. ST2 tests the creating of the training infrastructure. The project name is again
a random alphanumeric string. Example training data is provided and as the instance type
“ml.t2.medium” is chosen. It is tested whether the training data was uploaded to the S3 bucket
and whether the instance notebook is reachable over its URL. ST3 and ST3 test the execution
of a canary and blue green deployment. Both tests follow the same structure. An application
infrastructure has to be created beforehand to execute the tests. The default region is used
and the previously created application infrastructure is selected. The nginx docker image with
port 80 is used as an example again. It is tested whether the old application version is replaced
by the new one and whether the new application version is reachable over its URL. ST5 tests
if the monitoring metrics are reachable. First, the default region is used and the previously
created application infrastructure is selected. Then it is tested whether the dashboard for the
metrics is reachable over its URL.

57

6. Evaluation

This chapter describes how the evaluation of the automation tool was prepared, how it was
executed and what results were obtained.

6.1. Preparation and execution of the evaluation

The goal of the evaluation is to answer the key evaluation questions in Table 6.1 to validate how
good the automation tool matches the requirements that were identified in Chapter 2. EQ1
and EQ2 each aim to validate the configuration, creation and scaling of the application and
training infrastructure. EQ3 addresses the process of making available the ML application and
the execution of a blue green deployment, whereas EQ4 covers the monitoring metrics about
the ML application, ML model and application infrastructure, as well as the automatic scaling
notifications. The validation of the execution of a canary deployment is omitted because it
hardly differs from that of a blue green deployment and the evaluation schedule was already
time extensive.

 ID Requirements Question

EQ1 RI1, RI1, RI5 Is the automation tool suitable for creating an application infrastructure?

EQ2 RI2, RI3, RI5 Is the automation tool suitable for creating a training infrastructure?

EQ3 RD1, RD3 Is the automation tool suitable for executing a blue green deployment?

EQ4 RM1, RM2, RM3 Is the automation tool suitable for viewing monitoring metrics?

Table 6.1.: Key evaluation questions.

In order to answer the evaluation questions, the evaluation guideline, which is shown in Figures
D.1, D.2 and D.3 was developed. In the introduction of the evaluation guideline the partici-
pants are welcomed and thanks are given for their willingness to take part in the evaluation.
Just like in the requirement analysis, the participants are told that their name will only appear
pseudonymously in connection with the evaluation results. In the next section, the partici-
pants are briefed with general information about the automation tool. Here, the meaning of
the inputs and outputs of the automation tool is explained and its functionality is described.
In the following section, the participants perform predefined usage scenarios while operating
the automation tool independently. The design of the usage scenarios is based on two con-
siderations. First, all functionalities that fulfill the requirements have to be validated by the
participants. In the evaluation guideline, the steps of the usage scenarios are therefore mapped
to the corresponding requirements that they validate. For example, when the developer follows
the instructions to check that the application infrastructure correctly scaled after a load test,
the corresponding requirement RI5 is noted next these instructions. Second, the instructions

58

for the usage scenarios are described in great detail, so that the participants are not dependent
on external help. Although it would have been easier to identify usability problems with coarser
instructions, the focus of the evaluation was to ensure that all usage scenarios were executed
within the specified time frame. In the last section of the evaluation guideline, the participants
answer a questionnaire that follows the TAM model [21] to measure the perceived ease-of-use
(PEOU), perceived usefulness (PU) and behavioral intention (BI) of the functionalities of the
automation tool. Perceived ease-of-use is defined as “the degree to which an individual believes
that using a particular system would be free of physical and mental effort”. Perceived usefulness
is defined as “the degree to which an individual believes that using a particular system would
enhance his or her job performance”. Behavioral intention is defined as “the individual’s sub-
jective probability that he or she will perform a specified behavior”. The questionnaire consists
out of 39 questions, which have to be answered by the participants using one of the following
options: “Strongly disagree”, “Disagree”, “Neutral”, “Agree”, “Strongly Agree”. Each question
focuses on one TAM criterium and can be mapped to a requirement and an evaluation question.
Each requirement is addressed by a number of questions which each focus on either PU, PEOU
or BI. The questions which focus on PU ask whether the corresponding functionality is simple
to perform or to understand. If the PU is high, the effort to use the automation tool would
be low. Questions with the PU criterion aim to recognize the meaningfulness and the degree
of coverage of the respective functionality. If the meaningfulness and task coverage is high, the
automation tool would positively influence the work performance of the participant. Lastly,
questions that address the BI of the participant ask if the functionality will be used in the
future. A high BI would mean the participant is sure to continue to use the functionality of
the automation tool and a low BI could mean that difficulties occured during its operation.
The BI of the participant is especially important, because it is influenced by PU and PEOU.
Due to the orientation of the questions according to the TAM model, the evaluation questions
can be evaluated in a differentiated way according to the criteria PU, PEOU and BI and the
general feedback that can be given by the participants in form of free text.

For the organization of the evaluation, an email was sent to twelve employees of the department.
Ten employees agreed to participate in the evaluation. The meetings were scheduled for 45
minutes. Since face-to-face meetings were not possible, the evaluation was conducted online
via Microsoft Teams. In order to do this, it was made sure in advance that the technical
possibility of sharing the screen control was working. Furthermore, it was checked whether the
transmission quality was sufficient for an uninterrupted screen transfer. The questionnaire was
provided to the participants over Google Forms. During the evaluation, the screen control was
shared via Microsoft Teams and the participants had control over mouse and keyboard. The
usage scenarios were documented as step by step instructions in a text file and could be read
after the screen was shared. The participants switched back and forth between the window of
the text file and the window of the automation tool during the execution of the usage scenarios.

6.2. Results

The results of the questionnaire are presented in this section. Out of the ten participants that
took part in the evaluation, seven filled out the questionnaire. Sending a circular email to all
participants as a reminder had no success to motivate the remaining three participants to fill
out the questionnaire. In total, the participants strongly agreed to the questions in 46% of the
cases, they agreed in 35%, they chose “Neutral” in 15% and “Disagree” in 4%. No participant
strongly disagreed with any question. In the following the results regarding the evaluation
questions EQ1, EQ2, EQ3 and EQ4 are presented. To find out which participant gave which
answer and why, the complete result table can be found on pages 89-97 in the appendix.

59

EQ1

0 1 2 3 4 5 6 7

(Q1) It is easy to make the settings for the
application infrastructure.

(Q2) The settings for the application infrastructure
make sense.

(Q3) I will continue to make the settings for the
application infrastructure this way in the future.

(Q4) Creating the application infrastructure is easy.

(Q5) The tool completely covers the task of creating
the application infrastructure.

(Q6) I will continue to create application
infrastructures in this way in the future.

(Q7) The scaling of the application infrastructure is
understandable and comprehensible.

(Q8) The task of scaling the application
infrastructure is fully covered.

(Q9) I will continue to use scaling for application
infrastructures in the future.

Disagree
Neutral
Agree
Strongly agree

Figure 6.1.: Results of questions regarding EQ1

[PEOU] The answers of the questions Q1, Q4 and Q7 were all positive. Regarding the configu-
ration of the application infrastructure, the participants stated that it would be self-explanatory,
clear and understandable. The steps in the console would be easy to understand and good default
values are provided. As feedback it was mentioned that clicking on the menu items should not
throw an error and that the settings may be more specific for some applications. Concerning the
creation of the application infrastructure, the participants said that it would be very easy again
and that the degree of automation would be very high. They complimented that it would save a
lot of time effort compared to manually executing the steps in AWS. A better structure for the
console output was proposed to make the outputs more clear. The scaling of the application
infrastructure was understandable and clear to all participants. It was added that horizontal
scalability cannot be used in all cases though.

[PU] Among the questions Q2, Q5 and Q8 there were three neutral answers and one negative
answer next to the positive answers. According to the results of Q2 the settings of the ap-
plication infrastructure were easy to understand and clear for all except one participant who
chose neutral. The reason for the neutral answer was that the participant was not sure what
would have happened when invalid inputs were entered. The reasons for the positive answers
were, that the settings cover most scenarios well and that most points are adjustable. It was
proposed to not only use CPU usage as a metric but also the number of requests and RAM
usage. One participant mentioned that every project has different requirements and that it
would be hard to find general settings for all projects. Q5 asked about the coverage of the
application infrastructure creation and had one neutral and one negative answer. The reason
for the neutral answer was that the participant misses the aspects of data integration, multi-user
usage, versioning and security. The participant who disagreed, said that not all details of the
application infrastructure are individually adjustable. The remaining answers were all positive
with no special reasons. Q8 was rated positively by all but one participant. The reasons for
the positive answers were, that the scaling would be very clear through the use of CloudWatch
and emails and that an additional instance would be started when the CPU load is reached.
All typical scenarios are covered and the scaling would be good for services. It was added that

60

disk space and system failure should be included as scaling metrics as well. One participant
gave a neutral answer with the reason, that it would be unknown whether all scaling settings
can be adjusted.

[BI] The results for the questions Q3, Q6 and Q9 were positive except three neutral answers
and one negative. The reasons for the positive answers regarding the configuration of the
infrastructure were, that it would be simple, quick and repeatable. However, it was emphasized
that the settings would have to be adjusted according to the individual project requirements
when used in the future. The necessary adaptation was also the reason for the neutral answer.
The creation of the infrastructure was perceived as quick, easy and uniform. One neutral answer
was given with the reason that setting up the application infrastructure would be not the task
of the participant. The reason for the negative answer was, that more individual settings would
be necessary. One participant liked the scaling of the application infrastructure, because it was
comfortable and useful for applications with fluctuating access rates. The reason for the only
neutral answer was that the scaling depends on the system and its requirements.

In the general feedback, the handling of the automation tool was complimented and it was
pointed out, that the automation tool can save a lot of effort. It was proposed to visualize the
output in a more compressed way and to make the settings more flexible.

EQ2

0 1 2 3 4 5 6 7

(Q10) It is easy to make the settings for the training
infrastructure.

(Q11) The settings for the training infrastructure
make sense.

(Q12) I will continue to make the settings for the
training infrastructure this way in the future.

(Q13) Creating the training infrastructure is easy.

(Q14) The tool completely covers the task of
creating the training infrastructure.

(Q15) I will continue to create training
infrastructures in this way in the future.

(Q16) The scaling of the training infrastructure is
understandable and comprehensible.

(Q17) The task of scaling the training infrastructure
is fully covered.

(Q18) I will continue to use scaling for training
infrastructures in the future.

Disagree
Neutral
Agree
Strongly agree

Figure 6.2.: Results of questions regarding EQ2

[PEOU] The questions Q10, Q13 had only positive answers. The reasons for that were that
the settings would be self-explanatory, the automation tool would give detailed instructions
and it would be easy to create a training infrastructure. It was proposed to add a retraining
feature to periodically execute the training and to use MetaFlow instead of Sagemaker. The
results of Q16 contained two neutral answers, because the vertical scaling would be not evident
to the participants. The other answers were positive, because the scaling was perceived as
understandable and comprehensible. One participant noted that it would be not clear what
Sagemaker does with intermediate results.

61

[PU] The answers of the questions Q11, Q14 and Q17 were once negative and seven times
neutral. The reasons for the neutral answers were that no arbitrary training structures can
be created, no versioning would be available and no training results could be reported. It was
also unclear which libraries could be used for training and that the vertical scaling would be not
evident. The reason for the negative answer was that the creation of a training infrastructure
would be not necessary in the current project. The positive answers stated that the settings
of the training infrastructure would be simple, sufficient and well explained. Some participants
used the same reasons for multiple answers, which were not listed here.

[BI] The questions Q12, Q15 and Q18 had the most negative answers in summary. The reasons
for the five negative answers were, that it would be not necessary to use the automation tool in
the current project, because the training infrastructure already exists, the usage of the training
infrastructure would be highly dependent on the data, algorithms and preprocessing, it would
not be the task of the participant to create the infrastructure and horizontal scaling would be
preferred over vertical scaling. The four neutral answers were reasoned with a missing possibility
to connect data sources for the training infrastructure and that the scaling would be either not
always necessary or it would be dependent on the scenario.

In the general feedback, the automation tool was described as very useful and it was proposed
that features for versioning, user rights and optional scaling should be added.

EQ3

0 1 2 3 4 5 6 7

(Q19) The time of availability of the application via
HTTP is easily visible for the users.

(Q20) The task of making the application available
to users via HTTP is fully covered.

(Q21) I will continue to make applications available
to users via HTTP in this way.

(Q22) The execution of a blue green deployment is
simple.

(Q23) The task of executing a blue green
deployment is fully covered by the tool.

(Q24) I will continue to execute blue green
deployments in this way in the future.

(Q25) Checking the quality of the new application
version is easy.

(Q26) The task of checking the quality of the new
application version is fully covered by the tool.

(Q27) I will continue to check the quality of the new
application version this way.

Disagree
Neutral
Agree
Strongly agree

Figure 6.3.: Results of questions regarding EQ3

[PEOU] The answers of the questions Q19, Q22 and Q25 were positive except for two neutral
answers. The reasons for the positive answers were as following. The availability of the ML
application would be indicated in the output and it would be clearly visible by the AWS GUI
through helpful visual dashboards. The execution of a blue green deployment would be self-
explanatory, understandable and simple. Checking the quality of the new application version
would be easy with the help of the metrics. One answer was neutral because it was unclear to
the participant what was meant by “quality”. The other neutral answer was given because of
missing experience.

62

[PU] The results of Q20, Q23, Q26 consisted of four neutral answers and many positive ones.
Regarding the positive answers, it was stated that the deployment of the application would work
properly and it would always be clear which application was running and when the new one
would be made available. One participant added that it would be even better to integrate the
task of making the application available into a CI/CD pipeline. One neutral answer was given
because of a lack of knowledge in the completeness of HTTP applications. Another participant
noted that tests and abort scenarios should be used in combination with the blue green de-
ployment. The remaining three neutral answers were given because of missing knowledge and
because it would be not sure whether the automation tool checks if the new application version
was deployed. Furthermore, it was added that test scenarios would have to be considered in
production deployments.

[BI] The questions Q21, Q24 and Q27 were answered with one negative and seven neutral
answers, next to the positive ones. In the positive answers the participants mentioned that the
task of making the application available would be definitely covered and that they consider to
continue to use the automation tool. The three neutral participants said it would depend on
the application and requirements. One participant disagreed to continue to use the blue green
deployment because the task would be covered by a CI/CD pipeline in the project. It was added
that the automation tool could be used in this context. One participant was neutral because
of missing experience. The remaining participants agreed to use the blue green deployment in
the future. One added that it would further be nice to have an overview over all deployments
of all services. Checking the quality of the new application will be done by four participants in
the future. The other three were neutral, because of missing experience and because it would
depend on the project.

In the general feedback the participants said that the automation tool would be very easy to
use, that it would be limited to the most necessary functions and that a blue green deployment
could be easily executed. It was added that the automation tool would have to be extended for
more complex systems.

EQ4

[PEOU] The questions Q28, 31 and Q34 only contain one neutral answer next to the positive
ones. The reasons for the positive answers were that the metrics would be easy to understand
and very clear. It was proposed to add other metrics too, to be used for management reporting.
One neutral participant mentioned that the metrics would be clear but not totally understand-
able for someone who has no idea of machine learning. Regarding Q37, all participants agreed,
because the notifications would be helpful and were written in an understandable way. One
participant added that displaying the message on a dashboard would be even better, because
emails would sometimes be not read.

[PU] The answers of questions Q29, Q32 and Q35 were rated three times neutral and once
negative, next to the positive ones. The reasons for the positive answers were that metrics
would be mandatory to monitor ML applications, that it would be easy to understand the ML
model with the existing metrics and that all informations about the application infrastructure
would be visible at a glance. It was proposed to add additional metrics depending on the model
type. The neutral participants stated that, regarding the ML application, it depends on the
hypothesis that is investigated. Every project would have to create its own KPIs manually, but
the existing metrics would be a good starting point. Regarding the ML model, one participant
could not fully agree to the question and another one had problems to differentiate the meaning
of the metrics. According to the negative answer, the more complicated a model is, the more
difficult it would be to understand it. The metrics would not help here, because each model
would be different and has different properties. Regarding Q38 there was one neutral answer,

63

s

0 1 2 3 4 5 6 7

(Q28) The metrics about the ML application are
presented in a clear and understandable way.

(Q29) The metrics about the ML application are
useful to better understand the ML application.

(Q30) I will continue to view metrics about the
ML application in the future.

(Q31) The metrics about the ML model are
presented in a clear and understandable way.

(Q32) The metrics about the ML model are useful
to better understand the ML model.

(Q33) I will continue to view metrics about the
ML model in the future.

(Q34) The metrics about the application
infrastructure are presented in a clear and

understandable way.

(Q35) The metrics about the application
infrastructure are useful to better understand the

application infrastructure.

(Q36) I will continue to view metrics about the
application infrastructure in the future.

(Q37) When the application infrastructure scales
the automatic notification reaches me via the

desired communication channel and is written in
an understandable way.

(Q38) The task of automatic notification when
the application infrastructure scales is fully

covered.

(Q39) I will continue to rely on notifications when
the application infrastructure scales in the future.

Disagree

Neutral

Agree

Strongly agree

Figure 6.4.: Results of questions regarding EQ4

because a dashboard would be preferred over an email notification. The other participants
agreed, that the task of automatic notification would be fully covered. One mentioned that a
notification about the accuracy of the trained model would be important too.

[BI] Among the questions Q30, Q33 and Q36 there were only two neutral answers besides the
positives ones. The participants agreed to continue to view metrics about the ML application,
ML model and the application infrastructure, because without monitoring the quality could not
be checked, which would be necessary during operation. The neutral participants were either
not sure or said it would be dependent on the ML model. The results of question Q39 were
positive except for two neutral answers. The neutral participants mentioned that notifications
would be interesting for the company and that a dashboard could be used alternatively to the
emails. Other participants pointed out that there should always be notifications and that they

64

would be very useful.

In the general feedback the participants stated that the automation tool would be very helpful
and efficient. For one participant, the questions regarding the monitoring metrics were too
extensive and they should have been more precise and summarized. Another participant men-
tioned that the metrics about the infrastructure could be used as a template, while the metrics
for the ML model would have to be adjusted by hand. The importance of the metrics was
emphasized by another participant.

It is noted that in this section all free text answers of the participants were taken up except for
some repetitive, inexplicit or incomprehensible answers which have been omitted to improve
the reading flow.

6.3. Discussion

The conduction of the evaluation of the automation tool provided interesting insights into the
perspectives of the participants. It is now discussed whether the change and extension requests
of the participants should be included into the functionality of the automation tool. The change
requests are discussed in descending order of relevance.

[Application infrastructure] It has been pointed out that the application infrastructure
settings cover most common conditions, but would be too inflexible for more complex projects.
This comment is understandable. In order to increase the flexibility of the setting, the individual
characteristics of the various projects must be identified and the current rigid configuration
structure must be loosened up. This adaptation would be demanding and require a lot of
programming. For the broad use of the automation tool, however, it is necessary. With regard
to the scaling of the application infrastructure, it was suggested to use other metrics, such as
the request rate disk storage or system failures to trigger scaling activities. This suggestion
is probably easy to implement, since AWS offers various metrics by default. Therefore the
cost/benefit ratio would be relatively good and the functionality should be included in my
opinion. It was noted that an error occurs during the creation of the application infrastructure,
when the developer clicks on menu items of the automation tool. The remark is completely
understandable and the bug should be fixed in any case. The improvement of the structure of
the console output is obvious. The output would benefit from a clearer tabular form, which is
easy to implement. It was also suggested to create an application infrastructure via Kubernetes.
In this respect, the current architecture offers potential, since the use of the technology also
allows the launching of Kubernetes pods. However, the changeover would involve a great deal
of effort and it is advised to first reflect whether the goals cannot be achieved with the current
approach through AWS ECS. Some comments could not really be understood. For example, it
was incomprehensible what exactly the meaning of multi-user usage or versioning would be. It
was also suggested to create an application infrastructure via Kubernetes. In this respect, the
current architecture offers potential, since the use of the technology also allows the launching of
Kubernetes pods. However, the changeover would involve a great deal of effort and it is advised
to first reflect whether the goals cannot be achieved with the current approach through AWS
ECS.

[Training infrastructure] With regard to the training infrastructure, a versioning of the
training data makes sense, because the role of data is especially important and hard to handle
in machine learning. Here, the versioning function of AWS S3 could be used to begin with. The
possibility to vertically scale the training infrastructure should be visible more prominently
in the settings. Maybe it was not obvious that different CPU and RAM specifications can

65

be generated by choosing the notebook instance types or the term “scaling” was interpreted
differently. An optional scaling feature would be very easy to implement and should be inte-
grated in the automation tool. The generation of result reports regarding the model training
is considered useful. It would be necessary to research the possibilities that Sagemaker offers
in this regard. The mentioned periodic retraining feature could be a helpful functionality to
avoid having to start the training manually. In this case, it would be necessary to communicate
with the developers from the department to determine whether this feature is desired by other
parties too. According to one participant, the use of clusters and multiple instances would be
desirable. Since I myself come from the software engineering field, I cannot judge with certainty
whether this feature is absolutely necessary. It could be that for larger models a parallelisation
of the model training is important. The training infrastructure would then have to be adapted
accordingly. Using MetaFlow as an alternative to Sagemaker cannot be judged by me, as I have
no experience with MetaFlow.

[Blue green deployment] Currently, the developer can only check the metrics manually.
Automatic analysis of the metrics in combination with a rollback functionality is desirable and
essential for productive use. In an internal meeting of the department, this functionality was
already presented as a proof of concept and it should be included in the automation tool in
the future. The combination of tests with a blue green deployment is particularly important in
this context. The integration of the blue green deployment functionality of the automation tool
into a CI/CD pipeline makes total sense. Since the automation tool is a console application,
a blue green deployment could be started by passing parameters to the application from a
script. With regard to the mentioned overview of all deployed services, it would be necessary
to communicate again with the participant to have a clear understanding about this feature.

[Monitoring metrics] In terms of scaling notifications, a dashboard was requested. For this,
the existing dashboard of the monitoring metrics could be extended by the scaling metric. This
feature would be relatively easy to implement and should therefore be included. The use of
multiple metrics in the context of management reporting makes sense. The relevance of metrics
is strong enough to justify this request. The programming effort is difficult to estimate, as it
depends on the conditions of the reporting.

6.4. Lessons learned

The execution of the online evaluation with the help of screen sharing turned out to be less
problematic than initially thought. Microsoft Teams worked satisfactorily, even if there were
some minor technical problems. The keyboard layout did not allow any underscores or dashes to
be entered by the participants and the scrolling speed was hard to control. These circumstances
made remote control of the computer more difficult, but did not seriously affect the progress
of the evaluation. The evaluation of the scaling behavior of the application infrastructure was
unproblematic in all but one case. In this case, the requests sent to simulate user traffic were
not sufficient to exceed the scaling threshold of the application infrastructure. In this point,
the evaluation took a little longer because the load test had to be repeated with more requests.
All participants showed great interest in the automation tool and the atmosphere during the
evaluations was not stressful or tense. The use of Google Forms as a platform for the distribution
and completion of the questionnaire turned out to be user-friendly and unproblematic. The
questionnaire could be shared via a link and the results of the questions were available as
a tabular file. Although only 70% of the participants filled out the questionnaire, with 39
questions it was relatively extensive. Furthermore, all fields were mandatory fields, which
might have required too much effort for the three participants. On the other hand, the answers
of the completed questionnaires were even more complete.

66

6.5. Threats to validity

In the following, the construct validity, internal validity and external validity of the evaluation
is discussed. The construct validity of the evaluation is strengthened through the detailed
explanation of the functionalities of the automation tool and the fine granular instructions of
the usage scenarios. In the questionnaire, only questions were asked that related to the actions
performed by the participant, to reduce the room for misunderstandings. Furthermore, the
participants had the possibility to give a neutral answer to misleading questions and to write
the reason for it in the free text field. Thus, ambiguities in the question were noticed and could
be taken into account accordingly in the evaluation. An attempt was made to comply with
the internal validity of the evaluation by always strictly adhering to the evaluation guideline.
Particular attention was paid to ensuring that the automation tool always had the same initial
status and was reset afterwards. During the explanation of the inputs and outputs of the
tool, only the prewritten text was used and no other informations were given. The different
response time of each participant regarding the questionnaire could be a confounding variable.
For some participants it took several days to complete the questionnaire and for others the
submission took place twenty minutes later. In retrospect, it should have been recorded which
participant took how much time between the evaluation and the submission of the questionnaire,
to understand whether the response quality or the response scope is related to it. Regarding
external validity, just like with the requirements analysis, the small sample size and the fact that
all participants were volunteers do not speak for a satisfactory external validity, because the
general population may not be represented very well. Furthermore, some of the participants of
the evaluation also took part in the requirements analysis, which means that so the significance
of the results should be treated with caution.

67

7. Conclusion and outlook

This chapter summarizes the results of this work and gives an outlook that describes possible
extensions of the automation tool and the implications of this work.

7.1. Conclusion

In this thesis, we aimed to collect requirements for an appropriate application infrastructure
and to develop an automation tool that generates this application infrastructure, deploys the
ML application and allows to observe the behavior of a new ML application version based on
real-time user data.

To achieve this, we first conducted a comprehensive literature search by using a combination of
termbased searches and snowballing. It turned out that the behavior of an ML application can
be assessed against various monitoring objectives, such as business performance, application
performance or model inputs and outputs. Each of the objectives can be measured by specific
metrics, such as click-through-rate, inference time and prediction error rate. We found out
that canary deployment, A/B testing or shadowing can be used to enable monitoring under
the influence of real-time user data. Furthermore, we noticed that the monitoring practices
thresholding and data slicing were frequently recommended in the literature.

Second, we carried out a target-performance analysis in the department of artificial intelligence
at MHP, to find out how ML applications are currently operated productively and to what extent
the behavior of a new ML application version is already being observed. We found out that
the productive operation of an ML application requires a scalable application infrastructure,
which can be implemented by using different AWS services that are configured and created by
using infrastructure as code. We discovered that none of the monitoring methods that were
identified in the literature search are currently used in the department. However, blue-green
deployments have already been used in several projects as a means of quality assurance. Based
on the results of the analysis, we elicited prioritized requirements for the infrastructure and the
automation tool. We specified that the automation tool should configure and create a scalable
application and training infrastructure, that it enables the execution of a canary and blue green
deployment, and that it allows to view specific monitoring metrics.

Third, we implemented the automation tool according to the specified requirements. We de-
veloped a python console application that utilizes the AWS SDK to configure and create the
required AWS services by using infrastructure as code. The tool is operated by first selecting
the desired functionality and then entering the required inputs. Subsequently, the progress and
the results of the automation tool are shown in the console output. The quality of the object-
oriented implementation was assured through static code analysis, unit tests and integration
tests.

Fourth, the evaluation of the automation tool is conducted by employees of the department
according to the TAM model under the aspects of perceived ease-of-use, perceived usefulness

68

and behavioral intention. During the evaluation, the participants were first briefed about
the functionality of the automation tool and then had to perform predefined usage scenarios
independently. Finally, a questionnaire on the evaluating criteria had to be filled out. 81% of
the responses to the evaluation were positive, which suggests that the automation tool performs
its tasks satisfactorily. Although the evaluation was conducted online and screen control was
shared with the interviewees, there were no serious technical complications. The use of google
forms to distribute and fill out the questionnaires was also unproblematic.

7.2. Outlook

In the following, possible extensions of the automation tool are presented first and then the
implications of this work are illustrated.

Possible extensions

[Increased flexibility of settings] The functionalities of the automation tool in its current
form can only be adjusted by a small number of settings. For the use in different projects with
different requirements it is necessary to increase the flexibility of the functionalities. Regarding
the scalability, more metrics should be available as triggers and it should be possible to choose
between vertical, horizontal and no scaling. Furthermore, the developer should be able to choose
whether the scaling notification are shown on a dashboard or whether they are sent via email.
With regard to the training infrastructure, the developer should be able to select whether the
training data is versioned and whether the training results should be reported. Also, there
should be an option to allow for periodic retraining.

[Deployments with tests and rollbacks] During a canary or blue-green deployment it
would be essential to allow for customizable tests to be run on the new ML application version.
Based on the results of the tests, the deployment should then be either completed or aborted.
In case of a termination, already created resources should be removed and the user traffic
should be redirected back to the current ML application version. Furthermore, it should be
possible to make the deployment dependent on a critical metric. For example, if the error rate
of the new ML application version is particularly high, the old ML application version should
automatically be restored.

[Usage of command line parameters] For the integration of the automation tool into a
CI/CD pipeline, the usage of command line parameters would be necessary. Currently the tool
receives user input through sequential querying and subsequent receiving. For each developer
input, a command line parameter would have to exist, which would then be appended to
the python script in the console. This would make it possible to configure and execute a
functionality using a single command.

[Web interface] The automation tool must currently be installed on a computer that runs
python, docker and the AWS client tools. The AWS client tools furthermore have to be con-
figured to allow access to AWS. The time required to install the automation tool is thus not
negligible. It would be possible to run the automation tool itself in AWS and allow access via a
web interface. This would eliminate the installation for the developer and would allow to start
using the tool immediately.

[Elimination of vendor lock-in] Although the automation tool is currently tied to the

69

use of AWS, the binding should be loosened to support other cloud providers like Google
Cloud Platform or Microsoft Azure. This would increase the number of potential users and
the applicability to different projects. The current approach of infrastructure as code can be
further pursued, but instead of CloudFormation a provider independent IaC tool like Terraform
would have to be used.

Implications of this work

The approach for monitoring of new ML application versions under the influence of real time
user data is not yet uniformly regulated within the department. The results of the interviews
show that the methods of the literature search (canary deployment, A/B testing and shadowing)
are only used sporadically among the projects or not at all. In order to provide guidance on
existing procedures and their purpose, educational work must be provided. For this, a central
document could be created that would represent the first port of call for employees. Another
opportunity would be to organize workshops in which practical examples are performed and
discussed.

To further increase the applicability of the above mentioned methods without having to rely
on the development of individual software, a broadly used CI/CD deployment tool, such as
Bamboo, would have to be complemented with an appropriate extension. This would make it
possible to configure a canary deployment directly in the build plan of a Bamboo deployment
job, without having to manually operate an additional tool. Furthermore, all end users of
Bamboo would benefit from the feature and not just the MHP department. Even though
Bamboo itself is not open source, by using its plugin functionality, such an extension could be
realised.

70

Appendices

71

A. Literature overview

73

Authors Abstract Author keywords Context and motivation
Research questions (RQs) and

problems
Principal ideas and result Contribution

M
ut

hu
sa

m
y,

 V
.

Sl
om

in
sk

i,
A

.

The stochastic nature of artificial intelligence
(AI) models introduces risk to business
applications that use AI models without careful
consideration. This paper offers an approach to
use AI techniques to gain insights on the usage
of the AI models and control how they are
deployed to a production application.

Artificial
Intelligence,
machine learning,
microservices,
business process

Context: Artificial intelligence (AI), including deep
learning, have
revolutionized business applications in diverse fields,
including finance, manufacturing, and logistics. For
businesses, adopting AI presents an opportunity and
a risk. On the one hand, AI can reduce cost or
provide better customer experience. On the other
hand, adopting AI models present risks that can
manifest in the form of monetary or reputation loss.
Motivation: The authors want to reduce the risk of
artificial intelligence models adversely affecting a
business.

RQ: How to reduce the risk of
artificial intelligence models
adversely affecting the
business?
Problems: The effect of AI
models on business applications
can be
unpredictable due to the
stochastic nature of many
machine learning models.

Principal idea : The authors develop an
architecture that allows a set of AI
algorithms to be transparently plugged into a
business application.
Result: An architecture that allows new
models to be promoted carefully to
production without breaking the application.
It allows to track their performance over time
with the assurance to get early warning about
unexpected behaviour and the possiblity to
quickly, and in many cases automatically, roll
back to previous versions.

The article contributes an
architecture that can be
used to minimize the
negative impact of AI
models.

B
re

ck
,
E
.
et

 A
l.

Creating reliable, production-level machine
learning systems brings on a host of concerns
not found in small toy examples or even large
offline research experiments. Testing and
monitoring are key considerations for ensuring
the production-readiness of an ML system, and
for reducing technical debt of ML systems. But
it can be difficult to formulate specific tests,
given that the actual prediction behavior of any
given model is difficult to specify a priori. In
this paper, we present 28 specific tests and
monitoring needs, drawn from experience with
a wide range of production ML systems to help
quantify these issues and present an easy to
follow road-map to improve production
readiness and pay down ML technical debt.

Machine
Learning,
Testing,
Monitoring,
Reliability, Best
Practices,
Technical Debt

Context: As machine learning (ML) systems
continue to take on ever more central roles in real-
world production settings, the issue of ML reliability
has become increasingly critical. ML reliability
involves a host of issues not found in small toy
examples or even large offline experiments, which
can lead to surprisingly large amounts of technical
debt. Testing and monitoring are important
strategies for improving reliability, reducing technical
debt, and lowering long-term maintenance cost.
Motivation: The authors want to quantify issues of
production ML systems and present an easy to follow
road-map to improve production readiness and pay
down ML technical debt.

RQ: What should be tested
regarding the use of ML in a
production setting and how
much is enough?
Problems: ML system testing
is a more complex challenge
than testing manually coded
systems, due to the fact that
ML system behavior depends
strongly on data and models
cannot be strongly specified a
priori.

Principal idea : The authors collect knowledge
out of engineering decades of production-level
ML systems at Google, in systems such as ad
click prediction and the Sibyl ML platform.
Result: A set of 28 actionable tests and a
scoring system to measure how ready for
production a given machine learning system
is.

The article contributes a
test set that acts as an
easy to follow road-map to
improve production
readiness and pay down
ML technical debt.

Z
ha

ng
,
Ji

e
M

.
et

 a
l.

This paper provides a comprehensive survey of
Machine Learning Testing (ML testing)
research. It covers 144 papers on testing
properties (e.g., correctness, robustness, and
fairness), testing components (e.g., the data,
learning program, and framework), testing
workflow (e.g., test generation and test
evaluation), and application scenarios (e.g.,
autonomous driving, machine translation). The
paper also analyses trends concerning datasets,
research trends, and research focus, concluding
with research challenges and promising
research directions in ML testing.

Machine learning,
software testing,
deep neural
network

Context: The prevalent applications of machine
learning arouse natural concerns about
trustworthiness. Safety-critical applications such as
self-driving systems and medical treatments increase
the importance of behaviour relating to correctness,
robustness, privacy, efficiency and fairness. With the
recent rapid rise in interest and activity, testing has
been demonstrated to be an effective way to expose
problems and potentially facilitate to improve the
trustworthiness of machine learning systems.
Motivation: The paper seeks to provide a
comprehensive survey
of ML testing and software testing solutions for
improving the trustworthiness of machine learning
systems. The autors want to help software
engineering and machine learning researchers to
become familiar with the current status and open
opportunities of and for of ML testing

RQs: What is the definition of
machine learning testing? What
is the current research state of
machine learning testing? What
are the challenges of ML
testing? What are promising
research directions?
Problems: Machine learning are
difficult to test because they
are designed to provide an
answer to a question for which
no previous answer exists
(Oracle Problem). The
behaviours of interest for
machine learning systems
are also typified by emergent
properties, the effects of which
can only be fully understood by
considering the machine
learning system as a whole.

Principal idea : The authors define machine
learning testing and they collect and analyze
papers about the topic. They give an overview
about challenges regarding ML testing and an
outlook about ML testing in the future.
Results : A definition of Machine Learning
Testing, overviewing the concepts, testing
workflow, testing properties and testing
components. A comprehensive survey of 144
machine learning testing papers, across
various publishing areas such as software
engineering, artificial intelligence, systems
and networking, and data mining. An analysis
of the papers regarding their research
distribution, datasets, and trends. An outlook
that identifies challenges, open problems, and
promising research directions for ML testing,
with the aim of facilitating and stimulating
further research.

The survey provides a
comprehensive overview
and analysis of research
work on ML testing.

Table A.1.: Literature overview (1)

74

Authors Abstract Author keywords Context and motivation
Research questions (RQs) and

problems
Principal ideas and result Contribution

B
ay

lo
r,
 D

.
et

 a
l.

Creating and maintaining a platform for reliably
producing and deploying machine learning models
requires careful orchestration of many components -
a learner for generating models based on training
data, modules for analyzing and validating both
data as well as models, and finally infrastructure for
serving models in production. [...] Unfortunately,
such orchestration is often done ad hoc using glue
code and custom scripts developed by individual
teams for specific use cases, leading to duplicated
effort and fragile systems with high technical debt.
We present TensorFlow Extended (TFX), a
TensorFlow-based general-purpose machine learning
platform implemented at Google. [...]

Large-scale
machine learning;
end-to-end
platform;
continuous training

Context: More and more organizations adopt machine
learning as a tool to gain knowledge from data across a
broad spectrum of use cases and products.
Motivation: Having an appropriate machine learning
platform enables teams to easily deploy machine
learning in production for a wide range of products,that
ensures best practices for different components of the
platform, and limits the technical debt arising from
one-off implementations that cannot be reused in
different contexts.

RQ: How can machine learning
be deployed in production?
Problems: There are multiple
problems. Products can have
substantially different needs in
terms of data representation,
storage infrastructure, and
machine learning tasks. Also,
the platform has to support the
case of training a single model
over fixed data, but also the
case of generating and serving
up-to-date models through
continuous training over evolving
data

Principal idea : The paper presents the anatomy
of end-to-end machine learning platforms and
introduces TensorFlow Extended (TFX), one
implementation of such a platform that the
authors built at Google to address the
aforementioned challenges. They describe the
key platform components and the salient points
behind their design and functionality. They also
present a case study of deploying the platform
in Google Play and discuss the lessons that they
learned in this process.
Results : TFX, a platform with TensorFlow-
based learners and support for continuous
training and serving with production-level
reliability. Also, several best practices for using
TFX.

The paper provides a
machine learning platform
to easily deploy machine
learning applications in
production, as well as best
practices for it that are of
general interest to
researchers and
practitioners in the field

St
ud

er
,
S.

 e
t

al

We propose a process model for the development
of machine learning applications. It guides machine
learning practitioners and project organizations
from industry and academia with a checklist of
tasks that spans the complete project lifecycle,
ranging from the very first idea to the continuous
maintenance of any machine learning application.
With each task, we propose quality assurance
methodology that is drawn from practical
experience and scientific literature and that has
proven to be general and stable enough to include
them in best practices. We expand on CRISP-DM,
a data mining process model that enjoys strong
industry support but lacks to address machine
learning specific tasks.

Machine Learning
Applications;
Quality Assurance
Methodology;
Process Model;
Automotive
Industry and
Academia; Best
Practices;
Guidelines

Context: The authors created another paper about a
process model for data mining, called "CRISP-DM"
Motivation: The authors have identified two major
shortcomings of CRISP-DM. First, CRISP-DM does
not cover the application scenario where a ML model
is maintained as an application. Second, CRISP-DM
lacks guidance on quality assurance methodology. Now
they want to expand on CRISP-DM to address machine
learning specific tasks.

RQ: How can CRISP-DM be
adapted to machine learning
specific tasks?
Problems: -

Principal idea : The authors follow the principles
of CRISP-DM, to create a process
model for the development of practical ML
applications, that fulfills ML specific
requirements and proposes a quality assurance
methodology.
Result: A process model that is called CRoss-
Industry Standard Process for the development
of Machine Learning applications with Quality
assurance methodology (CRISP-ML(Q)).

A process model
for machine learning
applications, that helps
organizations to increase
efficiency and success rate
in their machine learning
projects.

Lw
ak

at
ar

e,
 L

uc
y

E
.
et

 a
l.

Artificial intelligence enabled systems have been an
inevitable part of everyday life. However, efficient
software engineering principles and processes need
to be considered and extended when developing AI-
enabled systems. The objective of this study is to
identify and classify software engineering challenges
that are faced by different companies when
developing software-intensive systems that
incorporate machine learning components. Using
case study approach, we explored the development
of machine learning systems from six different
companies across various domains and identified
main software engineering challenges. The
challenges are mapped into a proposed taxonomy
that depicts the evolution of use of ML
components in software-intensive system in
industrial settings. Our study provides insights to
software engineering community and research to
guide discussions and future research into applied
machine learning.

Artificial
intelligence,
Machine learning,
Software
engineering,
Challenges

Context: The application areas of ML to real-world
problems are vast and range from large use in
recommendation systems of social and e- commerce
services, to highly regulated products, such as
autonomous vehicle prototypes.The development of AI-
enabled applications in real-world settings is non-trivial
and the development process differs from that of
traditional software.
Motivation: There is a growing interest and need to
understand how AI-enabled applications are developed,
deployed and maintained over-time in real world
commercial.

RQ: How to identify and classify
challenges when developing
software-intensive systems that
incorporate machine learning
components?
Problems: -

Principal idea : The authors conducted an
interpretive multiple-case study, to provide a
deeper understanding of SE challenges for
developing and operating ML systems in real-
world commercial settings.
Results : A description of the development
process of six AI-enabled applications across
various domains. A taxonomy to depict evolution
in the use of ML components in commercial
software-intensive systems. A classification of
most important challenges at each stage of the
evolution in the use of ML components in
software-intensive systems.

The paper provides insights
into the development and
challenges of industrial ML
systems.

Table A.2.: Literature overview (2)

75

Authors Abstract Author keywords Context and motivation
Research questions (RQs) and

problems
Principal ideas and result Contribution

A
tw

al
,
H

.
[...] DataOps methodology is the best way to
eliminate barriers, collaborate, and
maximize the chances of success. DataOps turns
data science and analytics from the
craft industry it is today in most organizations into a
slick manufacturing operation.
DataOps enables rapid data product development and
creates an assembly line that
converts raw data from multiple sources into
production data products with a minimum
of waste.[...]

Data science
problems, data
strategy, Lean
thinking, Agile
Collaboration, Build
Feedback and
Measurement,
Building trust,
DevOps, DataOps,
Organizing,
Technology, Factory

Context: DataOps is a collaborative data management
practice focused on improving the communication,
integration and automation of data flows between data
managers and consumers across an organization. The goal
of DataOps is to create predictable delivery and change
management of data, data models and related artifacts.
Motivation: Most organizations still approach data
science as a series of large bespoke, waterfall research
projects with artificial constraints in the provision of data
when instead data-driven decisions can be automated,
scalable, reproducible, testable, and fast.

RQ: How to adopt DataOps as a
solution for delivering data
science in an organization?
Problems: Knowledge gaps,
outdated approaches to managing
data and producing analytics, and
a lack of support for data
analytics within the
organization

Principal idea : The author describes current
challenges with delivering data science, introduces
Lean Thinking and agile methodology, explains how
to build trust in data and offers recommendations
to evaluate the technology to support DataOps
objectives for agility and self-service.
Result: A book with four main parts and ten
chapters in total, that aims to challenge existing
approaches of delivering data science and analytics
by introducing a relatively new methodology that is
much more flexible to adapt to future change.

With this book, data
scientists can learn how to
automate the testing and
deployment of their data
products and CIOs can
measure the impact of their
teams to adapt their
business strategy.

A
rn

ol
d,

 M
.
et

 a
l.

Today’s AI deployments often require significant
human involvement and skill in the opera-
tional stages of the model lifecycle, including pre-
release testing, monitoring, problem diagnosis and
model improvements. We present a set of enabling
technologies that can be used to in- crease the level
of automation in AI operations, thus lowering the
human effort required. [...]

Automating AI,
Operations
Lifecycle,
Performance
Prediction, KPI
Analytics, AI
Operations, Pre-
Deploy Test,
Monitor, Diagnose
and improve

Context: The end-to-end AI lifecycle consists of many
often complex stages, including data preparation,
modeling, and operations. While the details may vary from
instance to instance, the overall flow often consists out of
the same stages.
Motivation: A lot of attention in both academia and
industry has been focused on the earlier data science
stages of the lifecycle.The final stages in AI operations
are often neglected, or even overlooked entirely, despite
being critical to the successful use of AI models in real-
world applications.

RQ: How to increase the level of
automation in the AI operations
lifecycle?
Problems: Pre-release tests are
expensive to create and hard to
keep updated. Manual labeling is
costly. Monitoring is often done
manually.

Principal idea : The authors develop technologies
that capture aspects of production performance
and they show how these technologies can be used
to drive automation during operations.
Result: A set of enabling technologies for
(performance prediction and KPI analytics) that
can be used to increase the level of automation in
the four operation stages: pre-deploy test, deploy,
monitoring and improvement.

The papers facilitates the
automation of AI operations
by providing different
enabling technologies.

B
os

ch
,
J.

Deploying machine-, and in particular deep-learning,
(ML/DL) solutions in industry-strength, production
quality contexts proves to challenging. This requires a
structured engineering approach to constructing and
evolving systems that contain ML/DL components.
In this paper, we provide a conceptualization of the
typical evolution patterns that companies experience
when employing ML/DL well as a framework for
integrating ML/DL components in systems consisting
of multiple types of components. In addition, we
provide an overview of the engineering challenges
surrounding AI/ML/DL solutions and, based on that,
we provide a research agenda and overview of open
items that need to be addressed by the research
community at large.

AI systems,
Conceptualizing AI
Engineering, data
science, cyber
physical systems,
safety-critical
systems

Context: Over the last decade, the prominence of
artificial intelligence (AI) and specifically machine- and
deep-learning (ML/DL) solutions has grown exponentially.
Motivation: Their research shows that the transition from
prototype to industry-strength, production-quality
deployment of ML/DL models proves to be challenging for
many companies.

RQ: How can typical evolution
patterns of ML/DL systems be
conceptualized? What are
engineering challenges surrounding
ML/DL solutions? What is the
current state of research in AI
engineering?
Problems: Few, if any, models
exist that seek to create a
structure and conceptualization of
the problem space of AI
development.

Principal ideas and results : First, the authors
provide a conceptualization of the typical evolution
patterns that companies experience as well as a
framework for integrating ML/DL components in
systems consisting of multiple types of
components. Second, they provide an overview of
the engineering challenges surrounding ML/DL
solutions. Third, they provide a research agenda
and overview of open items that need to be
addressed by the research community at large.

The papers provides evolution
patterns and engineering
challenges of ML/DL
systems and the current
research state of AI
engineering.

Sa
to

,
D

.
et

 a
l.

Machine learning applications are becoming popular
in our industry, however the process for developing,
deploying, and continuously improving them is more
complex compared to more traditional software, such
as a web service or a mobile application. They are
subject to change in three axis: the code itself, the
model, and the data. Their behaviour is often
complex and hard to predict, and they are harder to
test, harder to explain, and harder to improve. [...]

Automating AI,
Operations
Lifecycle,
Performance
Prediction, KPI
Analytics, AI
Operations, Pre-
Deploy Test,
Monitor, Diagnose
and improve

Context: Continuous Delivery for Machine Learning
(CD4ML) is a software engineering approach in which a
cross-functional team produces machine learning
applications based on code, data, and models in small and
safe increments that can be reproduced and reliably
released at any time, in short adaptation cycles.
Motivation: The authors previously published a case study
from a client project. They decided to build a sample ML
application based on a public problem and dataset to
illustrate a CD4ML implementation, as they were not
allowed to use examples from real client code.

RQ: How to automate the end-to-
end lifecycle of Machine Learning
applications?
Problems: different teams might
own different parts of the
process, and there is a hand over
without clear expectations of how
to cross these boundaries. Also,
the process is hard to make
reproducible and auditable,
because of a variety of tools and
large artefacts.

Principal idea : The authors describe the technical
components they found important when
implementing CD4ML, using a sample ML
application to explain the concepts and
demonstrate how different tools can be used
together to implement the full end-to-end process.
They also discuss further areas of development and
research.
Result: The technical components for CD4ML
(Discoverable and Accessible Data, Reproducible
Model Training, Model Serving, Testing/QA,
Experiments Tracking, Model Deployment, CD
Orchestration and Model monitoring) and example
implementations.

The article provides help to
automate the lifecycle of ML
applications

Table A.3.: Literature overview (3)

76

B. Interview questionnaire

77

Se
ct

io
n

Su
bs

ec
tio

n Is Should

Questions and Answers Questions and Answers
IN

FR
A

ST
R

U
C

T
U

R
E

D
E
SI

G
N

7a
What does the infrastructure for the deployment of ML applications

in the current project consist of?
7b

What does an optimal infrastructure for the deployment of an ML
application look like? Why?

Cloud provider: AWS is used as a cloud provider in five of eight projects.

All AWS services used and reasons for using them in the projects:

- Sagemaker: Training (B, F, H, I)
- S3: Data storage, model memory (C, H, I, J)
- ELB: Load distribution (B, I, J)
- ECS, ECR or EKS: Deployment (C, I, J)
- Route53: DNS entries (B, I, J)
- EC2: Deployment (H, I)
- CloudTrail: Logging (H)
- Glue/Athena, CodeBuild: Data Processing (H)
- EMR: Spark Cluster (E)
- Lambda: Periodic data download (I)
- SNS: Email dispatch (I)

Tools used and reasons for use:

- MetaFlow: Model training, structuring of Data Science workflows
(C, H)

- Terradata: Use as DBMS (A)
- Cloudera: Use as platform for data engineering (A)

Infrastructures:
Project W: Training with Tensorflow and Docker on Sagemaker, deployment
on EC2, load balancer and Route53 for DNS.

Project X: Deployment of Sagemaker with Jupyter notebooks, S3 buckets for
data storage, CloudTrails for logging, Glue/Athena for data processing,
MetaFlow for model training, instead of combining Sagemaker and EC2

Project Z: Transfer of data from Google Bigquery to S3 via Lambda using
Cronjob, then preprocessing on CodeBuild, then saving on S3 and subsequent
training on Sagemaker. Models are stored on S3. Application deployed via
ECS (individual software). ECR for containers. Spark Cluster on EMR. EC2
for execution. Application of Load Balancing and Route53. SNS for email
dispatching.

Project Y: Deployment on EKS in the form of microservice with REST
endpoint. Model storage in S3. Use of database for storage of all model
versions in S3. Load-Balancer for load distribution on different EKS nodes.
Route53 for DNS.

Optimal features would be:
- High performance (RAM/GPU) required (A, D)
- AWS as a cloud provider, for fast infrastructure creation (G)
- Wide choice of frameworks, programming languages and visualization for

more flexibility (A)
- Quick access to notebooks during model development is important (A)

Optimal structure would be:

- S3 Bucket for data storage and Kubernetes for preprocessing. Container for
ML-Training. S3 as model storage. This would be a good basic
infrastructure (C)

- Possibility to use a pure EC2 instance for developers who prefer less
abstraction (D)

- Provisioning of different stages (Dev, Test, Pre-Prod, Prod) with sufficient
capacities, as these are often not available (E)

C
R

E
A

T
IO

N

8a How is the infrastructure created in the current project? 8b
Would you find a tool helpful that automatically creates the infrastructure?

If so, why? What should it look like?

Of the four projects to which there was a response, three projects used
Terraform and one used CloudFormation to create the infrastructure.

Of the ten interviewees, seven had an opinion and agreed that infrastructure
creation using a tool contributes to effort reduction (A), time savings (B, D, G),
reproducibility (B, C, F, I) and error prevention (F). Reference was always made to
existing tools (e.g. CloudFormation and Terraform) and no new form of a tool was
described.

9a What problems are there when creating the infrastructure? 9b What possible solutions can you imagine?

Problems relating to infrastructure construction:
- Automation is not possible without appropriate know-how (A)
- Managing multiple accounts in AWS simultaneously is problematic.

(H)
- There is no reasonable verification of the CloudFormation templates

without deployment (H)
- There are role and authorization problems (I)
- Complexity of the infrastructure (J)

Possible solutions:
- Know-how for automation can be gained through communication with

colleagues (A)
- The management of several accounts simultaneously in AWS can be solved

by developing individual software (H)
- The solution to the role and authorization problems is a trial and error

procedure (I)
- In order to reduce the management effort of the infrastructure, services

controlled by AWS can be increasingly used (J)

25a

What are the differences between the development of a prototype
and an application that is put into production?

During the development of a prototype, the load on the infrastructure is
significantly lower than in a productive application (F). This means that the
hardware costs are also lower (F). Furthermore, the infrastructure does not
have to be connected to the Internet, as there are no external accesses (F).
With a productive application, more emphasis is also placed on monitoring
and traceability (G). A structured approach to version control is also more
important here (G). Scalability and security are particularly important in a
production application (I).

N
FR

10a
Which non-functional infrastructure requirements are specified in the

current project?

Non-functional requirements:
- Scalability (B, C, E, F, H, J)
- Data protection (B, C, F, J)
- Reaction time (B)
- Modularity (E)
- Model quality (F)
- Multi-Tenancy (cross-account authorizations) (H)

Table B.1.: Results for questions related to infrastructure

78

D
E
P
LO

Y
M

E
N

T

P
R

O
C

E
D

U
R

E

11a How is the ML application deployed? 11b
Would you think a tool for automatic deployment is helpful? If so, why?

What should it look like?

Project V: Artifact is transferred via build server to application server and
 started by script. (A)
Project W: There are three pipelines for pre-processing, model training and
 service delivery. They are fully automated and are triggered
 automatically when data changes, model quality deteriorates, at
 specific times, or commit-driven (B)
Project X: Jupyter Notebook or pure Python code is deployed via
 MetaFlow (H). After the training the model is stored in S3
 Bucket (C)
Project Z: A commit on the master branch triggers an Oozie workflow in

 Bamboo to deploy the application (E)
Project Q: There is a pipeline in Concurs and Cloud Foundry is used (F)
Project S: Bamboo is used as a build server and triggered by commit.
 Gravity and CloudFoundry are used. (G)

X, Z, Q and S use tools such as MetaFlow, Bamboo, Concourse,
CloudFoundry and Gravity for deployment. W, Z and S trigger the
deployment commit-driven.

All 8 interviewees who responded think that a tool is helpful. The reasons for this
are time saving (A), automatic test execution (E, F, G) and automatic triggering
(B). One interviewee finds automatic deployment useful, but prefers manual
deployment to have more control (D). Suggestions for the form of the tool were
not given, reference was made to existing tools such as Bamboo (A, E, G, H),
CloudFoundry (A) and CodePipeline (H).

12a What problems are there with the deployment of the ML application? 12b What possible solutions can you imagine?

Problems:
- The configuration of the settings for test and production environments

is often incorrect. For example, incorrect addresses or database
constraints are configured (A)

- Versioning data and ensuring model quality during deployment can be
problematic (H)

- No problems (B, C, E, F, S)

With regard to the versioning of data, there are third-party tools (E). Blue-green
deployment could be used to ensure model quality (H).

13a
What are the differences in deployment when developing a prototype

and an application that is put into production?

Differences in the deployment of a prototype and a productive application:
- No automatic data processing is used in a prototype and there is no

contact with users (B)
- A prototype may not be deployed at all. It is sufficient if certain

evaluation metrics are determined on the own laptop to show the
customer whether a use case is doable (C)

- A prototype does not require a release and therefore there is no
release process compared to a productive application. Zero-Downtime-
Deployment is also not necessary (F)

Q
U

A
LI

T
Y

 A
SS

U
R

A
N

C
E

14a Are methods used to check the quality of a model before going live? 14b Should these methods be (still) used in the future? Why?

Methods for quality control before going live:

Project Y: Offline evaluation metrics
Project W: During training, Precision, Recall and F1-Score are

 monitored
Project X: There are functional tests to check if the predictions of the

model are valid. Furthermore it is checked whether the model
has been trained with the correct parameters (C). The test
results of the new and old model are compared (D)

Project Z: Yes, during training the properties of the model are monitored.
 There is an alarm functionality (E)

Project Q: There is a dashboard with metrics on the quality of the
predictions. This prevents a new model from being of lower
quality than a previous model (F)

Five interviewees gave an answer and all think that quality review methods should
be used in the future to detect changes in data and model quality (A), to maintain
the quality characteristics (B, D, H) and to guarantee correct functionality (C).

15a If no quality assurance methods are used, why not? 15b Under what circumstances are the methods feasible?

To monitor the verification of the quality of the model during production
operation, there must be users. In this case there were no users (D).

To monitor the quality of the model, quality criteria must be defined and test data
must be available (A). Furthermore, a reasonable versioning of the model is
required, which must be compatible with the deployment pipeline. A microservice
architecture is also required in many cases where traffic (real-time user data) needs
to be switched between different models (H).

16a
If the interviewee does not know, then ask whether canary

deployment, A/B testing or shadowing is used.

A/B Testing, Canary Deployment and Shadowing are not used in any current
project. In previous projects A/B testing was performed by C. According to
A, V, D and F, canary deployment is considered to be useful. F and H have
already performed a Blue-Green deployment. The lack of A/B testing or
canary deployment could be related to the fact that these methods may not
sufficiently known or technically difficult to implement.

17a
Which errors can be prevented with a canary deployment, A/B

testing or shadowing?

By using methods for quality assurance of the model before going live,
changes in the data and model quality can be detected (A). In addition,
software problems are detected (B) and server errors occur due to
incompatibility of software and server (D). A/B testing can be used to assess
changes in user experience (C). A blue-green deployment can also enable high
availability (C).

Table B.2.: Results for questions related to deployment

79

M
O

N
IT

O
R

IN
G

P
R

O
C

E
D

U
R

E

18a Are properties of the ML application or ML model monitored? 18b
Should characteristics of the ML application or model be monitored in the

future? If so, why?

Project W: Yes
Project X: Yes
Project Z: Yes
Project Q: Yes

Nine interviewees responded that they think that properties of the ML application
or model should be monitored. This will allow changes in user behaviour, data
distribution and model quality to be identified (A). If several models are used
simultaneously, it is also important to monitor the query rate of the models (B).
Scaling can also be simplified by monitoring (D). Furthermore, calls of the ML
application for traceability and time measurement should be monitored. (G). The
error rate of the model and all important fixed KPIs should be monitored (I), CPU
and RAM consumption are also interesting for monitoring (E). In general, online
monitoring is more meaningful than monitoring during training (H). Monitoring is
helpful for quality assurance (C, J).

19a
How is the monitoring of properties from a technical point of view

carried out in the majority of projects?
19b How could the procedure be made even easier?

Procedures for monitoring:
- The evaluation metrics of a new model are compared with the old

model after each training. Thresholding is used and alarms are
triggered (C),

- The CPU load is measured manually in Python
- Results of the ML application are written in tables and then displayed

via frontend in the form of a dashboard (E).
- An ELK stack (Elastic Search, Log Stack and Kibana) is used within

AWS (F).
- Splank and Kibana are used in combination. The application either

writes logs to files if Kibana runs on the same server. Alternatively
Kafka is used as a message broker to send log messages to the server
running Kibana. The log data can then be queried via Query
Language. Often call IDs, user name, component, class and message
are logged (G).

- All requests can be logged and displayed on a dashboard. Alternatively,
certain metrics can be displayed per model (H).

- CloudWatch can be used for logging and alerting. Together with
integration via a slack channel, the alert messages reach the recipients
(I).

The use of cloud services could facilitate monitoring (D), an example is the load
monitoring in AWS (J). The use of thresholding and alerting during monitoring is
seen as useful (I).

20a
If properties are monitored, what problems are there with monitoring

in the majority of projects? 20b What possible solutions can you imagine?

A universal evaluation metric such as Accuracy is not always useful or
applicable (C). In monitoring, there are access problems (E) and the
customer's specifications mean that you are bound by fixed tools (F). The
accuracy of monitoring is also important to avoid fingerpointing. If a service
has a poor performance, it could be because it internally accesses another
service, which is solely responsible for the performance. So it must be
monitored fine enough (F).

The fineness of monitoring a user call can be achieved by including the complete
call stack (F).

M
E
T

R
IC

S

21a
Which characteristics of the ML application and the ML model are

monitored?
21b Which other properties should ideally also be monitored and why?

Project W: Precision, Recall and F1-Score during training (B)
Project X: Response time, accuracy (H)
Project Z: Learning rate in training. It is checked whether current data is

 used. (E)
Project Q: The model monitors metrics on the quality of the predictions

 (F).

It would make sense to monitor user behaviour, data distribution, model quality
and all KPIs (A). Precision, Recall, F1-Score are useful for classification problems
(C, D), Accuracy for numerical problems (C). The maximum and average of the
data is useful to monitor (D). The frequency of the model calls and the distribution
of the output values is useful (B). For scalability, monitoring the CPU load is
useful (D).

22b Which errors should be prevented by monitoring?

User satisfaction should be given (A) and the probability distribution of expenditure
should be satisfactory (B). Unrealistic inputs should be avoided (D) and the
timeliness of the data should be ensured (E). Monitoring is helpful for error
analysis, as errors can be better reproduced (H).

P
R
E
SE

N
T

A
T

IO
N

 23a Where are the results of the metrics presented? 23b How should the metrics be presented optimally and why?

A dashboard is used for all monitoring projects (B, D, E, F, G, H, I) A dashboard is good (A, D, E, F, G, H, I) It should be clarified with stakeholders
which metrics are presented (A). A clean definition of metrics is important (H).

O
V

E
R

A
LL

24b

Is there a core functionality among all projects that can be automated for
infrastructure, deployment and monitoring? What is the core functionality?

- Automation of data integration via pipelines for reproducibility would be
helpful. The feedback loop from monitoring to model building is important.
In general, deployment, infrastructure, and testing can be well simplified by
automation (A).

- An S3 bucket in combination with ECS would be a good basis (C).
- No (D).
- The different test stages should be pre-built and have guaranteed resources.

It should be obvious why a build takes a long time and how long it takes to
start (E).

- A knowledge base for example architectures is useful and is currently being
created (F).

- Probably not. The customers have specifications. In sub-projects it might be
possible (e.g. VPC creation in AWS), but generally there are few POCs on
the own AWS infrastructure (G).

- Data access, model development, deployment and production can be
automated (H).

- Monitoring for AWS could possibly be generalized (I).

Table B.3.: Results for questions related to monitoring and the overall question

80

C. Class diagram of the automation tool

81

+PARAMETER_KEY_INSTANCE_TYPE : str
+instance_type : str

+__init__(instance_type)
+as_dict() : dict

TrainingStackParameters

+OUTPUT_KEY_S3_BUCKET : str
+OUTPUT_KEY_S3_BUCKET_URL : str
+OUTPUT_KEY_JUPYTER_NOTEBOOK_URL : str
+s3_bucket : str
+s3_bucket_url : str
+jupyter_notebook_url : str

+__init__(stack_output : dict)

TrainingStackOutputs

#_outputs : TrainingStackOutputs
#_stack_parameters : TrainingStackParameters
#_action_parameters : TrainingActionParameters

+__init__(region, stack_name, action_parameters = Traini...
#_before_instantiate() : void
#_after_instantiate() : void
#_init_outputs(stack_output) : void
#_before_delete() : void
#_get_stack_name_prefix() : void
#_get_template_file_name() : void
-__upload_training_data() : void

TrainingStack

+training_file_path : str

+__init__(training_file_path)

TrainingActionParameters

-menu : Menu

+__init__()
+start() : void

Start

+as_dict() : dict

StackParameters

+values : list [str]

+__init__(stack_output : dict)
+get_value(key) : str

StackOutputs

+region : str
+stack_name : str
#_template_file_name : str
#_stack_parameters : StackParameters
#_action_parameters : ActionParameters
#_command : str
#_outputs : StackOutputs

+__init__(region_name, stack_name, action_parameters : ActionParameters, stack_parameters : StackParameters)
+deploy() : bool
+exists() : bool
+delete() : bool
-_wait_until_created() : void
-_construct_stack_deployment_command() : str
#_before_instantiate() : void
#_after_instantiate() : void
#_before_delete() : void
#_get_stack_name_prefix() : void
#_get_template_file_name() : void
#_init_outputs(stack_output) : void

<<abstract>>
Stack

+write_to_file() : void
+restore_from_file() : Stack

Serializable

+add_metrics_to_dashboard() : void
+get_dashboard_url() : str
-construct_metric(x, y, metric, title) : dict
-construct_standard_metrics() : list [dict]

Metr icMixin

+q_use_cases : dict
+q_project_name : dict
+q_use_default_region : dict
+q_use_subscriber_email : dict
+q_region : dict
+q_docker_image : dict
+q_docker_port : dict
+q_health_check_path : dict
+q_minimum_containers : dict
+q_maximum_containers : dict
+q_autoscaling_value : dict
+q_application_stack : dict
+q_instance_type : dict
+q_training_data : dict
+q_subscriber_email : dict

+__init__()
+get_answer(question : dict) : str

Menu

helper

+PARAMETER_KEY_DOCKER_IMAGE_URL : str
+PARAMETER_KEY_CONTAINER_PORT : str
+PARAMETER_KEY_MINIMUM_CONTAINERS : str
+PARAMETER_KEY_ECR_STACK_NAME : str
+PARAMETER_KEY_MAXIMUM_CONTAINERS : str
+PARAMETER_KEY_AUTO_SCALING_TARGET_VALUE : ...
+PARAMETER_KEY_SUBSCRIBER_EMAIL : str
+PARAMETER_KEY_HEALTH_CHECK_PATH : str
+PARAMETER_KEY_ECR_REPOSITORY : str
+docker_image_url : str
+container_port : str
+minimum_containers : str
+maximum_containers : str
+auto_scaling_value : str
+subscriber_email : str
+health_check_path : str
+ecr_repository : str
+ecr_stack_name : str

+__init__(docker_image_url, container_port, minimu...
+as_dict() : dict

EcsStackParameters

+OUTPUT_KEY_CLUSTER_NAME : str
+OUTPUT_KEY_LISTENER_1 : str
+OUTPUT_KEY_LISTENER_2 : str
+OUTPUT_KEY_TARGET_GROUP_1 : str
+OUTPUT_KEY_TARGET_GROUP_2 : str
+OUTPUT_KEY_CODE_DEPLOY_APPLICATION : str
+OUTPUT_KEY_ECS_ROLE_FOR_CODE_DEPLOY : str
+OUTPUT_KEY_DASHBOARD_URL : str
+OUTPUT_KEY_DASHBOARD_NAME : str
+OUTPUT_KEY_LOAD_BALANCER : str
+OUTPUT_KEY_ECR_REPOSITORY : str
+OUTPUT_KEY_ECR_STACK_NAME : str
+OUTPUT_KEY_ENDPOINT : str
+cluster_name : str
+listener_1 : str
+listener_2 : str
+target_group_1 : str
+target_group_2 : str
+code_deploy_application : str
+ecs_role_for_code_deploy : str
+dashboard_url : str
+dashboard_name : str
+load_balancer : str
+ecr_repository : str
+ecr_stack_name : str
+endpoint : str

+__init__(stack_output : dict)

EcsStackOutputs

#_outputs : EcsStackOutputs
#_stack_parameters : EcsStackParameters

+__init__(region_name, stack_name, stack_parameters : EcsStackParameters)
#_before_instantiate() : void
#_init_outputs(stack_output) : void
#_after_instantiate() : void
#_before_delete() : void
#_get_stack_name_prefix() : void
#_get_template_file_name() : void

EcsStack

+OUTPUT_KEY_ECR_REPOSITORY : str
+OUTPUT_KEY_DOCKER_IMAGE : str
+ecr_repository : str
+latest_docker_image : str

+__init__(stack_output : dict)

EcrStackOutputs

#_outputs : EcrStackOutputs
#_action_parameters : EcrActionParameters

+__init__(region_name, stack_name, action_parameters : EcrActionParameters)
#_before_instantiate() : void
#_init_outputs(stack_outputs)
#_after_instantiate() : void
#_before_delete() : void
#_get_stack_name_prefix() : void
#_get_template_file_name() : void

EcrStack

+docker_image : str

+__init__(docker_image)

EcrActionParameters

+OUTPUT_KEY_LATEST_DOCKER_IMAGE : str

+execute_canary_deployment(action_parameters : DeploymentActionParameters) : str
+execute_blue_green_deployment(action_parameters : DeploymentActionParameters) : str
+get_deployment_url(deployment_id) : str
-execute_deployment_with_config(deployment_config, docker_image, docker_port) : str
-get_appspec_content(task_definition, container_name, container_port) : dict
-get_deployment_group_name() : str
-get_latest_task_definition_arn(family) : str
-create_deployment_group(deployment_config) : dict
-create_deployment(task_definition_arn, container_name, container_port) : dict
-create_new_task_definition(old_task_definition, new_docker_image_url) : str

DeploymentMixin

+docker_image : str
+docker_port : int

+__init__(docker_image, docker_port)

DeploymentActionParameters

+S3_BUCKET_FOR_DEPLOYMENT : str
+ECR_STACK_PREFIX : str
+ECS_STACK_PREFIX : str
+TRAINING_STACK_PREFIX : str

Conf igurat ion

ActionParameters

+get_stack(stack_name, region)
+get_stacks_with_pattern(text, region)

StackHelper
+run_command(cmd)

ShellExecutor

+login(repository_uri, region)
+tag_image(repository_uri, docker_image)
+untag_image(repository_uri)
+upload_image(docker_image, repository_uri, region)
+pull_image(docker_image)
+remove_image(docker_image)
+inspect_image(docker_image)
+list_images()

DockerHelper

Powered By�Visual Paradigm Community Edition

Figure C.1.: Class diagram of the automation tool

82

Class Description

Menu Contains all menu messages

Start
Entry point of the application. The core functionalities are triggered from
here.

Configuration Configures S3 deployment bucket name and stack prefixes

Serializable Allows to save an object to a file and read it back

Stack The central class representing the CloudFormation Stack

DeploymentMixin
Extends the functionality of the stack to be able to execute blue green
and canary deployments

MetricMixin Extends the functionality of the stack to view metrics on a dashboard

EcrStack
Represents first part of the application infrastructure. It creates an ECR
repository with the docker image

EcsStack
Represents second part of the application infrastructure. Responsible for
all remaining resources

TrainingStack Represents the training infrastructure

StackParameters Represents the stack parameter of a stack

EcsStackParameters The stack parameters of the EcsStack

TrainingStackParameters The stack parameters of the TrainingStack

ActionParameters Represents the action parameters of a stack

EcrActionParameters The action parameters of the EcrStack

TrainingActionParameters The action parameters of the TrainingStack

DeploymentActionParamters The action parameters for the DeploymentMixin

StackOutputs Represents the outputs of a stack

EcsStackOutputs Represents the outputs of the EcsStack

EcrStackOutputs Represents the outputs of the EcrStack

TrainingStackOutputs Represents the outputs of the TrainingStack

ShellExecutor Executes commands in the console

StackHelper
Utility functions, such as creating a Stack object from a remote
CloudFormation stack

DockerHelper Docker utility functions, such as tagging an image

Table C.1.: Description of all classes of the automation tool.

83

D. Evaluation guideline

84

Se
ct

io
n

Su
bs

ec
tio

n

Evaluation Guideline
IN

T
R

O

 Thanks for the participation

Explanation of the procedure

Assurance of anonymity and data protection

Question whether session can be recorded

B
R

IE
FI

N
G

The automation tool functionality is briefly described and its inputs and outputs are explained

U
SA

G
E
 S

C
E
N

A
R

IO
S

C
R

E
A

T
E
 A

N
 A

P
P
LI

C
A

T
IO

N
 IN

FR
A

ST
R

U
C

T
U

R
E
 (

S1
)

In this scenario you create an application infrastructure for a given sample application.
Start the console application with "python start.py.

R
I1

Configure the application infrastructure like that:

1. Please select "Create an application infrastructure" first.
2. Confirm the default region with "y”
3. Enter a name for the project (e.g. "test-<your first name>").
4. Select the docker image "example-image".
5. Confirm the proposal for port 80
6. Confirm the suggestion for "/" as health check path
7. Confirm the proposal for the minimum of one application instance
8. Enter "2" for the maximum number of application instances
9. For the CPU limit in percent please enter "1" instead of "80
10. Press "y" to be informed about scaling events via email
11. Enter "leon.radeck@web.de" as email

The configuration of the application infrastructure is now completed.

R
I2

After entering the parameters, the creation of the application infrastructure should begin. It now takes about five minutes until the
following line is displayed in the console: Successfully created/updated stack - ml-app-test-<your first name> in eu-central-1
Check the console output if all resources were successfully created.

The creating of the application infrastructure is now completed.

R
I5

You can view the current application instances by opening up the TaskOverview url in the console. Please check that there is currently one
instance. Please execute the following command in four separate command lines, to trigger the scaling of the application infrastructure:
curl <endpoint>?[1-5000]

Please refresh the TaskOverview url in the browser until you see two application instances. This means that the scaling of the application
infrastructure was successful.

R
M

2 Please check that you received an email that notifies you about the scaling. Open up the email application and look under Web >>
Unknown.

C
R

E
A

T
E
 A

 T
R

A
IN

IN
G

 IN
FR

A
ST

R
U

C
T

U
R

E
 (

S2
)

In this scenario, you create a Sagemaker Notebook instance on which you run a Jupyter notebook, which uses your supplied training data to train
a model and stores it in S3.

R
I3

Configure the training infrastructure like that:

1. Start the console application with "python start.py”
2. Please select "Create a training infrastructure" first
3. Confirm the default region with "y”
4. Enter a name for the project (e.g. "test-<your first name>2").
5. Enter "/Users/leonradeck/Documents/Master thesis/Evaluation/Scenarios/Scenario2/bank_clean.csv" as path for your training

data.
6. Choose "ml.t2.medium" as a notebook instance type to vertically scale the notebook instance to 2vCPus and 4GB RAM

The configuration of the training infrastructure is now completed.

R
I4

After entering the parameters, the creation of the application infrastructure should begin. It now takes about five minutes until the
following line is displayed in the console: Successfully created/updated stack - ml-training-test-<your first name> in eu-central-1
Check the console output if all resources were successfully created.

The creation of the training infrastructure is now completed.
To test whether an ML model can be trained, follow these steps:

Please open up the link that is displayed in the console. Check that you get forwarded to a jupyter notebook environment. Follow these
steps to check that you can train a model:

1. Click on "New" >> "conda_python3".
2. Under the path: "…/Evaluation/Scenarios/Scenario2/notebook.txt" you will find the code for the Jupyter notebook. Please copy

the code from the file into the notebook.
3. Before you execute the code via "Run" and thus start the training of the model, you have to initialize the variables

"bucket_name" and "training_file_name" with the correct values.

Table D.1.: Evaluation guideline (1)
85

4. For "bucket_name" you enter the output value of the console at "S3Bucket" (e.g. "ml-training-test-leon").
5. For "training_file_name" you enter "bank_clean.csv".
6. Now click on "Run".

After some time the message Starting - Starting the training job... should be displayed. After 5 minutes the message Training job
completed should appear.
Please check now if the completed trained model (model.tar.gz) was uploaded to its S3 bucket in the folder /sagemaker/DEMO-xgboost-
dm/output/. For easy access to the S3 Bucket, you can click on the S3 bucket link in the console output.

If the model exists, this means that the training was successful.

R
I5

 Copy the NotebookInstanceURL from the console output into the browser and press enter. Check that the notebook instance type is
“ml.t2.medium”.
This means that the correct notebook instance was used during the training and your desired CPU and RAM specifications were met.

E
X

E
C

U
T

E
 A

 B
LU

E
 G

R
E
E
N

 D
E
P
LO

Y
M

E
N

T
 (

S3
)

The application provided in S1 is now to be replaced by a new application version. A blue-green deployment will be executed for this purpose.

R
D

3

Configure and execute the blue green deployment like that:

1. Open a new browser tab with the endpoint of the application from S1 and click on “Auto Refresh”. You can search for the endpoint
in the outputs of the corresponding CloudFormation stack. The stack name follows the pattern “ml-app-test-leon”.

2. Start the console application with “python start.py
3. Select “Execute a blue-green deployment”.
4. Confirm the default region with “y
5. Select the created stack in S1
6. Select “example-image2” as the docker image.
7. Confirm port 80.
8. Confirm “/” as Health Check path

Wait until a link appears in the console output and copy the link to the browser. You will be redirected to a page with deployment
information. In the diagram on the right side you can see which of the two ML application versions is currently receiving user traffic. Wait
until the replacement task traffic is “100%” and then check if the endpoint shows a green image instead of a blue one. You successfully
executed a blue green deployment by shifting the complete user traffic to the new application version.

To check the quality of the new application version, copy the DashboardURL of the console output into the browser and open it. Now
check if the RequestError metric in the dashboard shows the number of requests of the application version and their error count by
refreshing the endpoint url of the application a few times while looking at the metric. The metric should show no errors and the correct
number of requests. Click on the following link […] to generate an error. Now check if the metrics has changed and shows one error.

R
D

1 Because the endpoint now shows a green image, this means that the new application version is running without problems and it is available
to user via HTTP.

V
IE

W
 M

O
N

IT
O

R
IN

G
 M

E
T

R
IC

S
(S

4)

In this scenario you look at metrics for an existing application infrastructure with an ML application containing an ML model.
Follow these steps:

1. Start the console application with "python start.py
2. Select "View resource utilization metrics
3. Confirm the default region with "y
4. Select "ml-app-radioreco”
5. Click on the link that is output.
6. Select "1h" as the period in the upper right corner.

R
M

3

Check whether you can see metrics such as CPU/RAM usage of the application infrastructure.

R
M

1 Check whether you can see the error rate and age of the ML application and ML model. The CPU/RAM usage of the application
infrastructure corresponds to the CPU/RAM usage of the ML application and its model.

Q
U

E
ST

IO
N

N
A

IR
E

EQ Req. Variable Nr. Questions

E
Q

1

RI1

Perceived easy-of-use 1 It is easy to make the settings for the application infrastructure.

Perceived usefulness 2 The settings for the application infrastructure make sense.

Behavioral intention 3 I will continue to make the settings for the application infrastructure this way in the future.

RI2

Perceived easy-of-use 4 Creating the application infrastructure is easy.

Perceived usefulness 5 The tool completely covers the task of creating the application infrastructure.

Behavioral intention 6 I will continue to create application infrastructures in this way in the future.

RI5

Perceived easy-of-use 7 The scaling of the application infrastructure is understandable and comprehensible.

Perceived usefulness 8 The task of scaling the application infrastructure is fully covered.

Behavioral intention 9 I will continue to use scaling for application infrastructures in the future.

Table D.2.: Evaluation guideline (2)

86

E
Q

2

RI3

Perceived easy-of-use 10 It is easy to make the settings for the training infrastructure.

Perceived usefulness 11 The settings for the training infrastructure make sense.

Behavioral intention 12 I will continue to make the settings for the training infrastructure this way in the future.

RI4

Perceived easy-of-use 13 Creating the training infrastructure is easy.

Perceived usefulness 14 The tool completely covers the task of creating the training infrastructure.

Behavioral intention 15 I will continue to create training infrastructures in this way in the future.

RI5

Perceived easy-of-use 16 The scaling of the application infrastructure is understandable and comprehensible.

Perceived usefulness 17 The task of scaling the application infrastructure is fully covered.

Behavioral intention 18 I will continue to use scaling for training infrastructures in the future.

E
Q

3

RD1

Perceived easy-of-use 19 The time of availability of the application via HTTP is easily visible for the users.

Perceived usefulness 20 The task of making the application available to users via HTTP is fully covered.

Behavioral intention 21 I will continue to make applications available to users via HTTP in this way.

RD3

Perceived easy-of-use 22 The execution of a blue green deployment is simple.

Perceived usefulness 23 The task of executing a blue green deployment is completely covered by the tool.

Behavioral intention 24 I will continue to execute blue green deployments in this way in the future.

Perceived easy-of-use 25 Checking the quality of the new application version is easy.

Perceived usefulness 26 The task of checking the quality of the new application version is fully covered by the tool.

Behavioral intention 27 I will continue to check the quality of the new application version this way.

E
Q

4

RM1

Perceived easy-of-use 28 The metrics about the ML application are presented in a clear and understandable way.

Perceived usefulness 29 The metrics about the ML application are useful to better understand the ML application.

Behavioral intention 30 I will continue to view metrics about the ML application.

Perceived easy-of-use 31 The metrics about the ML model are presented in a clear and understandable way.

Perceived usefulness 32 The metrics about the ML model are useful to better understand the ML model.

Behavioral intention 33 I will continue to view metrics about the ML model.

RM3

Perceived easy-of-use 34 The metrics about the application infrastructure are presented in a clear and understandable way.

Perceived usefulness 35
The metrics about the application infrastructure are useful to better understand the application

infrastructure.

Behavioral intention 36 I will continue to view metrics about the application infrastructure.

RM2

Perceived easy-of-use 37
The automatic notification when the application infrastructure scales reaches me via the desired

communication channel and is written in an understandable way.

Perceived usefulness 38 The task of automatic notification when the application infrastructure scales is fully covered.

Behavioral intention 39 I will continue to rely on notifications when the application infrastructure scales.

Table D.3.: Evaluation guideline (3)

87

E. Evaluation results

88

E
Q

Evaluation Questionnaire Results (1) – Application Infrastructure

E
Q

1

1 It is easy to make the settings for the application infrastructure.

Strongly agree Self-explanatory (A)

Strongly agree Clear, simple information required (G)

Strongly agree The tool is clearly understandable and very well structured! (E)

Strongly agree The steps in the console are easy to understand and have good default values. (D)

Agree Relatively intuitive, some little things (no confirmation with Enter after y/n, click on menu item leads to exception etc.) should
possibly be changed. (C)

Agree Simple in principle. The workflow was easy to follow and the options were understandable. However, a certain amount of prior
knowledge is required:
- Set environment variables correctly or install library in environment
- Using the Console
- AWS Options
But with the appropriate documentation, it should be easy to use. (F)

Agree Some applications need more specific settings and unique solutions (B)

2 The settings for the application infrastructure make sense.

Strongly agree Easy to understand and clear (A)

Strongly agree The settings cover most scenarios well. (D)

Agree Like previous comment (B)

Agree For smaller applications the most important points are adjustable (C)

Agree Depending on the application purpose, not only CPU usage but also number of requests or RAM usage could be accepted as a
trigger. Within the scope of your work the CPU usage is of course completely sufficient! (E)

Agree Every project has different requirements. A general setting for all projects is rather difficult. (F)

Neutral Yesterday I was wondering what happens if there are errors or wrong entries - there is probably more you can do in terms of user
control. (G)

3 I will continue to make the settings for the application infrastructure this way in the future.

Strongly agree (A)

Strongly agree (B)

Agree Yes (D)

Agree That depends strongly on the respective requirements. Of course, this can also differ and must be chosen according to the
context. (E)

Agree The creation or configuration of the infrastructure is simple, quick to implement and, above all, repeatable! (F)

Agree It may well be that we will introduce something like this in the project (G)

Neutral Similar but more individually adjustable depending on the application. (C)

4 Creating the application infrastructure is easy.

Strongly agree Self-explanatory (A)

Strongly agree (B)

Strongly agree Super easy! Click "Enter" a few times. Manually in AWS this would take forever. (E)

Strongly agree Everything automated - top! (G)

Agree Creating the application infrastructure was easy. (C)

Agree Just after creating the application infrastructure it was a bit confusing due to many generated URLs. If necessary this can be
arranged better. (Table?) (D)

Agree The workflow makes creation easier and traceable. (F)

5 The tool completely covers the task of creating the application infrastructure.

Strongly agree (A)

Strongly agree In any case! (D)

Strongly agree Absolute agreement ;-) (E)

Agree (B)

Agree I like the creation today - I would still be interested in the topic CF Stack Updates. So what happens if you create a new version
of the stack in the same account and make updates with it. (G)

Neutral Here it depends on the requirements. From my point of view, for example, the following are missing:

Table E.1.: Results of questions regarding EQ1

89

- Data integration (Which possibility do I have to address different data pools?)
- Multi-User usage (Can other developers work with me?)
- Is there a versioning? Security, e.g. access rights? (F)

Disagree Not all details are individually adjustable for the creation of application infrastructure (C)

6 I will continue to create application infrastructures in this way in the future.

Strongly agree Quick and easy (A)

Strongly agree (B)

Strongly agree The infrastructure is created in a uniform way. Errors are thereby avoided. (E)

Agree Yes (D)

Agree It is a cool tool and it can update / create whole systems with appropriate development (G)

Neutral Up to now it was not necessary to set up an infrastructure, because this is implemented by other colleagues. However, if I had to
do it, such an automation tool would be useful. (F)

Disagree For many larger projects individual settings are necessary (C)

7 The scaling of the application infrastructure is understandable and comprehensible.

Strongly agree (A)

Strongly agree (B)

Strongly agree There is nothing to add here. This basic knowledge should be assumed in any case. (D)

Strongly agree Very understandable. The trigger for scaling is also more than clear! (E)

Strongly agree Was understandable! (F)

Agree The procedure with step-by-step instructions and checking the results makes the individual steps easy to follow (C)

Agree Horizontal scalability cannot be used in all cases in our systems (G)

8 The task of scaling the application infrastructure is fully covered.

Strongly agree With CloudWatch and emails very clear (A)

Strongly agree (B)

Strongly agree Yes, when the CPU load is reached, an additional instance is started. (E)

Agree Typical scenarios are covered. (D)

Agree Not only the main memory plays a role, but also hard disk space, system failures, etc. AWS offers these features by default. (F)

Agree Good for services; however, horizontal scaling cannot be used in all system parts (G)

Neutral Lack of knowledge whether all horizontal scaling settings can be adjusted (C)

9 I will continue to use scaling for application infrastructures in the future.

Strongly agree Very comfortable (A)

Strongly agree (B)

Strongly agree Not only in the future, but also in the past always done ;-) (E)

Strongly agree From a purely ecological point of view, scaling out or scaling in for peaks makes sense. The system becomes more robust through
distribution/replication. Also, misjudgments can be intercepted. (F)

Agree Always useful for applications with fluctuating access rates (C)

Agree Yes, I don't know of any reason to the contrary. (D)

Neutral Depends on the system and its requirements - cool would be a deployment as container in a Kubernetes or similar to get more
properties directly out-of-the-box (G)

=> General feedback about the application infrastructure

As mentioned above, the results of a creation are a bit confusing, maybe you can visualize the data in a more compressed way so that you have to scroll
less. The handling was very intuitive like you are used to from other CLI. (D)

I think the tool is really great! Depending on your requirements, it can take a lot of the work out of your hands and you can see very clearly that especially
the infrastructure setup in the cloud can be wonderfully automated! (E)

A really cool and useful tool. Since the requirements are constantly changing, the tool should definitely be flexible. As mentioned above, there are still some
features missing, which are essential. (F)

Cool implementation! good job :) (G)

Table E.2.: Results of questions regarding EQ1 (2)

90

E
Q

Evaluation Questionnaire Results (2) – Training Infrastructure

E
Q

2

10 It is easy to make the settings for the training infrastructure.

Strongly agree Self-explanatory (A)

Strongly agree (B)

Strongly agree (D)

Strongly agree The tool gives detailed instructions (E)

Agree As with application infrastructure well step-by-step guide to setting (C)

Agree See reason for application structure (F)

Agree I am no friend of Sagemaker, so I would rather deploy standard Python with Metaflow or similar but basically good idea. (G)

11 The settings for the training infrastructure make sense.

Strongly agree Simple and sufficient (A)

Agree (B)

Agree Well explained but a data scientist will probably have his problems without support. (G)

Agree Yes, they cover most scenarios. (D)

Agree Same as before (E)

Neutral As far as the evaluation showed, not arbitrary training structures (e.g. training jobs with own maintainers etc.) can be set, for the
use case it was sufficient (C)

Neutral See reason for application structure (F)

12 I will continue to make the settings for the training infrastructure this way in the future.

Strongly agree Quick and easy (A)

Agree Yes, for sure. (D)

Agree Not my field of application. Therefore I will probably not create any training infrastructures in the future. (E)

Agree It is a good start. But there should be much more properties configurable for a project deployment I think. (G)

Neutral It is highly dependend on the type of data, algorithms, preprocessing ... (B)

Neutral I'm still missing the possibility to enter the resources (Where does the data come from?). (F)

Disagree In the current project IaC is available for the creation of training infrastructure (C)

13 Creating the training infrastructure is easy.

Strongly agree See above (A)

Strongly agree (B)

Strongly agree Yes, I can only agree with that. (D)

Strongly agree Same as before (E)

Agree It is easy to create the training infrastructure. (C)

Agree See reason for application structure (F)

Agree It is easy and a first step towards complete automation - maybe add a Lamba-Function or regular "retraining" via AWS Step-
functions (G)

14 The tool completely covers the task of creating the training infrastructure.

Strongly agree (A)

Strongly agree Yes (D)

Strongly agree Absolute agreement here again (E)

Agree A basic training with clean data was provided (B)

Neutral Can I use any library that exists? Versioning available? Is there a possibility for reporting on the findings in the training? (F)

Neutral See comment above - Partial automation only the beginning of training infrastructures (G)

Disagree See above (C)

15 I will continue to create training infrastructures in this way in the future.

Strongly agree Quick and easy (A)

Agree Yes (D)

Agree Quickly setting up a Jupyter notebook in the cloud and getting started is great! (F)

Table E.3.: Results of questions regarding EQ2

91

Agree I like the type of deployment (G)

Disagree It is highly depends on the type of data, algorithms, preprocessing ... (B)

Disagree See above (C)

Disagree Not my field of application. Therefore I will probably not create any training infrastructures in the future. (E)

16 The scaling of the training infrastructure is understandable and comprehensible.

Strongly agree (A)

Strongly agree Is understandable and comprehensible. (F)

Agree (B)

Agree Yes (D)

Agree I like to use the mechanisms of Sagemaker, but it is not understandable what Sagemaker does with intermediate results, etc. (G)

Neutral The vertical scaling was not discussed in detail (C)

Neutral The vertical scaling went completely past me. I must have "clicked through" too fast. (E)

17 The task of scaling the training infrastructure is fully covered.

Strongly agree (A)

Strongly agree Was understandable (F)

Agree Yes, for my requirements. (D)

Agree Same reason as above - traceability in one training run and several experiments is currently not good with Sagemaker. (G)

Neutral training on multiple instances? (B)

Neutral The vertical scaling was not discussed in detail

Neutral The vertical scaling went completely past me. I must have "clicked through" too fast. (E)

18 I will continue to use scaling for training infrastructures in the future.

Strongly agree Quick and easy (A)

Strongly agree Scaling (vertically and possibly horizontally) brings speed advantages over non-scaled trainings (C)

Agree (B)

Agree Use yes - but rather via Metaflow or similar (G)

Neutral Depending on the respective scenario yes. (D)

Neutral Usually scaling is not necessary for exploration/training. If you have to go there every day for intensive training to have a model
on the same day, both vertical and horizontal scaling is useful. (F)

Disagree I prefer horizontal scaling if possible (E)

=> General feedback about the training infrastructure

Your tool is also very useful here. (E)

In itself really good, things like versioning of the code, user rights, optional scaling are missing? Or did I overlook that? (F)

Table E.4.: Results of questions regarding EQ2 (2)

92

E
Q

Evaluation Questionnaire Results (3) – Blue green deployment

E
Q

3

19 The time of availability of the application via HTTP is easily visible for the users.

Strongly agree (A)

Strongly agree (B)

Strongly agree Availability is indicated in the output (C)

Strongly agree Yes (D)

Strongly agree Clear display by the AWS GUI (E)

Strongly agree Visual dashboards are always good ;-) (F)

Strongly agree I like it (G)

20 The task of making the application available to users via HTTP is fully covered.

Strongly agree (A)

Strongly agree (B)

Strongly agree Full agreement! (D)

Strongly agree Deployment of the application using the tool works properly (E)

Strongly agree It was always clear which application was running and when the new one would be made available. (F)

Strongly agree if you build it into a CI/CD chain, yes :) (G)

Neutral Lack of knowledge in the completeness of HTTP applications (security, performance, ...) (C)

21 I will continue to make applications available to users via HTTP in this way.

Strongly agree Quick and easy (A)

Strongly agree The Blue-Green Deployment process alone is one of the best practices. The tool can implement exactly that. (F)

Agree Yes, definitely! (D)

Agree with some adaptation to Code-Deploy or Bamboo builds (G)

Neutral It depends on the application (B)

Neutral Lack of experience (C)

Neutral Depends as always on the requirement (E)

22 The execution of a blue green deployment is simple.

Strongly agree Self-explanatory (A)

Strongly agree Understandable process (C)

Strongly agree Yes (D)

Strongly agree Absolutely simple (E)

Strongly agree Simple operation. (F)

Strongly agree Correct (G)

Agree (B)

23 The task of executing a blue green deployment is completely covered by the tool.

Strongly agree (A)

Strongly agree (B)

Strongly agree Yes (D)

Strongly agree Fully functional (E)

Agree Blue green deployment worked (whether complete cannot be judged due to lack of experience)

Agree Unfortunately, I could not see the error. But it looked quite good. (F)

Agree Missing tests and abort scenarios for faulty tests (G)

24 I will continue to execute blue green deployments in this way in the future.

Strongly agree Quick and easy (A)

Strongly agree Yes, because of the ease of use it makes sense. (D)

Agree (B)

Agree Sometimes you have not only one but several services. Here it would be nice to have an overview and control of all deployments
of the services. (F)

Table E.5.: Results of questions regarding EQ3

93

Agree It is nevertheless a conceivable tool (G)

Neutral Lack of experience (C)

Disagree A Blue-Green deployment in projects is covered by CI/CD. Here, for example, a part of your tool could be used. (E)

25 Checking the quality of the new application version is easy.

Strongly agree (A)

Strongly agree Yes (D)

Strongly agree Nothing to say (F)

Agree (B)

Agree Fits with the existing metrics (G)

Neutral Lack of experience (C)

Neutral I am not sure what you mean by quality? (E)

26 The task of checking the quality of the new application version is fully covered by the tool.

Strongly agree (A)

Strongly agree (B)

Strongly agree (D)

Agree From my point of view not the version but the tested artifact is important and only this one may be deployed. To have a
comparison here would be useful. (F)

Neutral Lack of experience (C)

Neutral Does the tool check if the new version is deployed? (E)

Neutral The test scenarios in large projects are of course not considered - but they would have to be in Prod. deployments. Therefore
possible tool but extension with testing necessary (G)

27 I will continue to check the quality of the new application version this way.

Strongly agree (A)

Strongly agree Yeah, there's no reason not to. (D)

Agree (B)

Agree But with the artifact. (F)

Neutral Lack of experience (C)

Neutral Same here (E)

Neutral Depends on the project (G)

=> General feedback about the blue green deployment

Very easy to use and limited to the most necessary functions. (D)

A blue green deployment can be easily done with the help of your tool. (E)

If you want to have a smooth deployment moment, you can't avoid a blue green deployment. (F)

The approach is good - must be extended for complex systems (G)

Table E.6.: Results of questions regarding EQ3 (2)

94

E
Q

Evaluation Questionnaire Results (4) – Monitoring metrics

E
Q

4

28 The metrics about the ML application are presented in a clear and understandable way.

Strongly agree Easy to understand (A)

Strongly agree There is nothing to say. (F)

Strongly agree All fine (G)

Agree Other metrics could be added too (B)

Agree Yes (C)

Agree (D)

Agree The metrics are very clear. (E)

29 The metrics about the ML application are useful to better understand the ML application.

Strongly agree (A)

Strongly agree (B)

Strongly agree Metrics are mandatory to monitor ML applications (G)

Agree Yes (C)

Agree (D)

Agree Metrics are generally useful, not only for understanding (E)

Neutral Depends on the hypothesis under investigation. I think every project has to create its own KPIs manually. But you can start with
the basic metrics. (F)

30 I will continue to view metrics about the ML application.

Strongly agree Fast, simple and clear (A)

Strongly agree (B)

Strongly agree Without monitoring the metrics the quality / availability cannot be checked (C)

Strongly agree Certainly, I had used this function superficially before. (D)

Strongly agree During operation one should generally have knowledge about the metrics of applications. (E)

Strongly agree Necessary (G)

Agree These and others. (F)

31 The metrics about the ML model are presented in a clear and understandable way.

Strongly agree (A)

Strongly agree (D)

Strongly agree Could be understood very well. (F)

Agree (B)

Agree Yes (C)

Agree as part of CloudWatch, yes (G)

Neutral The metrics are very clear, but not 100% understandable for someone who has no idea about ML. (E)

32 The metrics about the ML model are useful to better understand the ML model.

Strongly agree (B)

Strongly agree (D)

Strongly agree Fits well here (G)

Agree Is easy with the existing metrics, depending on the model you need additional metrics, which you would have to add manually (A)

Agree Yes (C)

Neutral I can only partially validate with my knowledge. (E)

Disagree The more complicated a model is the more difficult it is to understand. Unfortunately, the metrics do not help either.
Furthermore, each model is different and has different properties. (F)

33 I will continue to view metrics about the ML model.

Strongly agree For a quick check and very well suited as an indicator (A)

Strongly agree (B)

Table E.7.: Results of questions regarding EQ4 (1)

95

Strongly agree (D)

Strongly agree without metrics, no quality checks (G)

Agree Yes (C)

Neutral Possibly, yes (E)

Neutral Depends on the model (F)

34 The metrics about the application infrastructure are presented in a clear and understandable way.

Strongly agree (A)

Strongly agree Simple and clearly structured, also expandable for further metrics. (D)

Agree (B)

Agree Yes (C)

Agree The metrics are very clear (E)

Agree These are sufficient for the own development. For management reporting this presentation is not sufficient. (F)

Agree Enough metrics to monitor this model (G)

35 The metrics about the application infrastructure are useful to better understand the application infrastructure.

Strongly agree (A)

Strongly agree (B)

Strongly agree I have all information about the infrastructure at a glance. (F)

Strongly agree Definitely a must (G)

Agree (D)

Agree I can no longer tell which metrics are which ;) (E)

Neutral The metrics and the application infrastructure are only connected through scaling, only from the metrics the infrastructure cannot
be identified (C)

36 I will continue to view metrics about the application infrastructure.

Strongly agree (A)

Strongly agree (B)

Strongly agree Nothing to say (F)

Strongly agree Each of our systems has its own monitoring system for supervision (G)

Agree Useful for monitoring utilization / availability (C)

Agree (D)

Agree Same here (E)

37
The automatic notification when the application infrastructure scales reaches me via the desired communication channel and is written in an

understandable way.

Strongly agree (A)

Strongly agree (D)

Strongly agree Super Idee! Es sollte immer eine Art Benachrichtigung geben. Von selber schaut meistens keener (E)

Strongly agree There is nothing to say. (F)

Agree (B)

Agree Is formulated in an understandable way (C)

Agree Mails are ok, a dashboard application with appropriate hints would be more desirable in large systems because mails are not read
:) (G)

Table E.8.: Results of questions regarding EQ4 (2)

96

38 The task of automatic notification when the application infrastructure scales is fully covered.

Strongly agree (A)

Strongly agree Yes (E)

Strongly agree Does what it should do (F)

Agree Other notifications such as accuracy of trained model are important (B)

Agree Agree (C)

Agree (D)

Neutral Rather dashboard application with corresponding hints (G)

39 I will continue to rely on notifications when the application infrastructure scales.

Strongly agree (A)

Strongly agree (B)

Strongly agree There should always be notifications! (E)

Agree Is very useful. (D)

Agree Yes but other notifications (G)

Neutral Possibly notifications or even just monitoring via dashboards or similar (C)

Neutral The notification is interesting for the company. (F)

=> Please provide general feedback about viewing the metrics.

Very helpful and efficient! (D

As I mentioned above, this is a few too many questions about metrics. These should either be specified more precisely, or summarized (E)

The metrics for the infrastructure can be used very well as a template. For models, the metrics have to be adjusted by hand. (F)

Metrics are an extremely important topic and must be considered (G)

Table E.9.: Results of questions regarding EQ4 (3)

97

8. Bibliography

[1] Radon, https://pypi.org/project/radon/

[2] Arnold, M., Boston, J., Desmond, M., Duesterwald, E., Elder, B., Murthi, A., Navratil, J.,
Reimer, D.: Towards Automating the AI Operations Lifecycle (mar 2020)

[3] Atwal, H.: Practical DataOps. Apress (2020)

[4] AWS: Amazon EC2, https://aws.amazon.com/ec2/

[5] AWS: Amazon ECS - Run containerized applications in production, https://aws.amazon.
com/ecs/

[6] AWS: Amazon Virtual Private Cloud (VPC), https://aws.amazon.com/vpc/

[7] AWS: CloudFormation, https://aws.amazon.com/cloudformation/

[8] AWS: Elastic Container Registry (ECR), https://aws.amazon.com/ecr/

[9] AWS: VPC with public and private subnets (NAT) - Amazon Virtual Private Cloud, https:
//docs.aws.amazon.com/vpc/latest/userguide/VPC{_}Scenario2.html

[10] AWS: What Is an Application Load Balancer? - Elastic Load Balancing, https://docs.aws.
amazon.com/elasticloadbalancing/latest/application/introduction.html

[11] AWS: Übersicht über Amazon Web Services. Tech. rep. (2018)

[12] AWS: Amazon EKS - Managed Kubernetes Service (2019), https://aws.amazon.com/eks/

[13] AWS: Elastic Load Balancing - Amazon Web Services (2019), https://aws.amazon.com/

elasticloadbalancing/

[14] Bamboo Continuous Integration and Deployment Build Server: https://www.atlassian.

com/software/bamboo

[15] Baylor, D., Breck, E., Cheng, H.T., Fiedel, N., Foo, C.Y., Haque, Z., Haykal, S., Ispir, M.,
Jain, V., Koc, L., Koo, C.Y., Lew, L., Mewald, C.: TFX: A TensorFlow-based production-scale
machine learning platform. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. vol. Part F1296, pp. 1387–1395. Association for
Computing Machinery, New York, USA (aug 2017)

[16] Bosch, J., Crnkovic, I., Olsson, H.H.: Engineering AI Systems: A Research Agenda (jan 2020)

[17] Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D.: The ML test score: A rubric for ML
production readiness and technical debt reduction. In: Proceedings - 2017 IEEE International
Conference on Big Data, Big Data 2017. vol. 2018-Janua, pp. 1123–1132 (2017)

[18] CloudFoundry: https://www.cloudfoundry.org/

[19] CloudWatch - Application and Infrastructure Monitoring: https://aws.amazon.com/

cloudwatch/?nc1=h{_}ls

[20] David, W., Brandt, P.: Rules of Machine Learning: — ML Universal Guides — Google
Developers, https://developers.google.com/machine-learning/guides/rules-of-ml

98

https://pypi.org/project/radon/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/vpc/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/ecr/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC{_}Scenario2.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC{_}Scenario2.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://aws.amazon.com/eks/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://www.cloudfoundry.org/
https://aws.amazon.com/cloudwatch/?nc1=h{_}ls
https://aws.amazon.com/cloudwatch/?nc1=h{_}ls
https://developers.google.com/machine-learning/guides/rules-of-ml

[21] Davis, F.D.: A technology acceptance model for empirically testing new end-user information
systems : theory and results. Tech. rep. (1985)

[22] Doebel, I., Leis, M., Vogelsang, M., Neustroeov, D., Petzka, H., Rueping, S., Voss, A., Wegele,
M., Welz, J.: Maschinelles Lernen - Kompetenzen, Anwendungen und Forschungsbedarf (2018)

[23] Doebel, I., Leis, M., Vogelsang, M., Neustroeov, D., Petzka, H., Rueping, S., Voss, A., Wegele,
M., Welz, J.: Maschinelles Lernen. Eine Analyse zu Kompetenzen, Forschung und Anwendung
(2018)

[24] Ernst, D., Becker, A., Tai, S.: Rapid Canary Assessment Through Proxying and Two-Stage
Load Balancing. In: Proceedings - 2019 IEEE International Conference on Software Architec-
ture - Companion, ICSA-C 2019. pp. 116–122. Institute of Electrical and Electronics Engineers
Inc. (may 2019)

[25] GitHub - concourse/concourse: Concourse is a container-based continuous thing-doer written
in Go and Elm.: https://github.com/concourse/concourse

[26] GitHub - Netflix/metaflow: Build and manage real-life data science projects with ease.:
https://github.com/Netflix/metaflow

[27] Gravity Overview - Gravitational Gravity: https://gravitational.com/gravity/docs/

[28] HasiCorp: TerraForm, https://www.terraform.io/

[29] Jalali, S., Wohlin, C.: Systematic literature studies: Database searches vs. backward snow-
balling. In: International Symposium on Empirical Software Engineering and Measurement.
pp. 29–38. ACM Press, New York, USA (2012)

[30] Jeff, N.: Docker in Action. Manning Publications, 2 edn. (2019)

[31] Johnston, J.: Docker in the Trenches: Successful Production Deployment. Bleeding Edge
Press, 1 (early release) edn. (2015)

[32] Kibana: Visualisieren, Analysieren und Erkunden von Daten — Elastic: https://www.

elastic.co/de/kibana

[33] Kleebaum, A., Johanssen, J.O., Paech, B., Bern, B.: Continuous Management of Requirement
Decisions Using the ConDec Tools - heiDOK (2020)

[34] Lexico: Key Performance Indicator, https://www.lexico.com/definition/

key{_}performance{_}indicator

[35] Logstash: Collect, Parse, Transform Logs — Elastic: https://www.elastic.co/logstash

[36] Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H., Crnkovic, I.: A taxonomy of software
engineering challenges for machine learning systems: An empirical investigation. In: Lecture
Notes in Business Information Processing. vol. 355, pp. 227–243. Springer Verlag (2019)

[37] Mell, P.M., Grance, T.: The NIST definition of cloud computing. Tech. rep., National Insti-
tute of Standards and Technology, Gaithersburg, MD (2011), https://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

[38] MHP: Artificial Intelligence — MHP – A Porsche Company, https:

//www.mhp.com/de/services/focus-topics/artificial-intelligence{#}!

artificial-intelligence-driving-revolution-

[39] Mitchell, T.: Machine Learning (1997)

[40] Muthusamy, V., Slominski, A.: Towards enterprise-ready AI deployments Minimizing the risk
of consuming AI models in business applications. Tech. rep. (2019)

[41] Pethuru, R.: Learning Docker. Packt Publishing (2015)

99

https://github.com/concourse/concourse
https://github.com/Netflix/metaflow
https://gravitational.com/gravity/docs/
https://www.terraform.io/
https://www.elastic.co/de/kibana
https://www.elastic.co/de/kibana
https://www.lexico.com/definition/key{_}performance{_}indicator
https://www.lexico.com/definition/key{_}performance{_}indicator
https://www.elastic.co/logstash
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.mhp.com/de/services/focus-topics/artificial-intelligence{#}!artificial-intelligence-driving-revolution-
https://www.mhp.com/de/services/focus-topics/artificial-intelligence{#}!artificial-intelligence-driving-revolution-
https://www.mhp.com/de/services/focus-topics/artificial-intelligence{#}!artificial-intelligence-driving-revolution-

[42] Rountree, D., Castrillo, I.: Introduction to the Cloud. In: The Basics of Cloud Computing,
pp. 1–17. Elsevier (jan 2014)

[43] Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Engineering 14(2), 131–164 (apr 2009)

[44] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (2020)

[45] Sato, D., Wider, A., Windheuser, C.: Continuous Delivery for Machine Learning (September),
1–34 (2019), https://martinfowler.com/articles/cd4ml.html

[46] Splunk Platform — Splunk: https://www.splunk.com/en{_}us/platform.html

[47] Studer, S., Bui, T.B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., Mueller, K.R.:
Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance Method-
ology (mar 2020)

[48] What is Elasticsearch? — Elastic: https://www.elastic.co/de/what-is/elasticsearch

[49] Wittig, A.: Amazon web services in action (2015)

[50] Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: ACM International Conference Proceeding Series. pp. 1–10. Associ-
ation for Computing Machinery, New York, New York, USA (2014)

[51] Xu, Y., Chen, N., Fernandez, A., Sinno, O., Bhasin, A.: From infrastructure to culture:
A/B testing challenges in large scale social networks. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. vol. 2015-August, pp.
2227–2236. Association for Computing Machinery, New York, USA (aug 2015)

[52] Young, S.W.H.: Improving Library User Experience with A/B Testing: Principles and Pro-
cess. Weave: Journal of Library User Experience 1(1) (aug 2014)

[53] Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine Learning Testing: Survey, Landscapes
and Horizons (jun 2019)

100

https://martinfowler.com/articles/cd4ml.html
https://www.splunk.com/en{_}us/platform.html
https://www.elastic.co/de/what-is/elasticsearch

	Introduction
	Motivation and challenges
	Goals, methodology and contributions

	Background
	Machine learning
	AWS
	Docker

	Literature search
	Methodology
	Literature results
	Summary

	Requirements analysis
	Preparation and execution of the target-performance analysis
	Results
	Discussion
	Lessons learned
	Threats to validity
	Requirements extraction and prioritization

	Design, implementation and quality assurance
	Design and implementation
	Quality assurance

	Evaluation
	Preparation and execution of the evaluation
	Results
	Discussion
	Lessons learned
	Threats to validity

	Conclusion and outlook
	Conclusion
	Outlook

	Appendices
	Appendix Literature overview
	Appendix Interview questionnaire
	Appendix Class diagram of the automation tool
	Appendix Evaluation guideline
	Appendix Evaluation results
	Bibliography

