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REMARKS ON SEGAL ALGEBRAS

Michael Leinert

Let B be an abstract Segal algebra in some Banach algebra A. There was 

some belief that in the commutative case A should be semi-simple, if 

B is, but this is not so (Section I). It is well known that a (proper) 

abstract Segal algebra does not have bounded right approximate units. 

It may however have a left unit. Pseudosymmetric Segal algebras in the 

sense of Reiter do not have bounded left approximate units (Section II). 

A nonfactorization proof is given for a class of algebras which contains 

most of the known examples of Segal algebras on abelian groups (Section 111).

Throughout this note A denotes a Banach algebra with norm | |^. We say 

that A factorizes, if any a e A can be written a = be with b, c e A.

We say that A has left (right) approximate units, if for any a e A and 

e>0 there is some b e A with |a - ba< e ( |a - ab < e); i f b can 

be chosen with norm less than some fixed constant, A is said to have 

bounded left (right) approximate units. This is equivalent (see [6]) 

to the existence of a bounded left (right) approximate identity, which 

is a net {e } in A, bounded in norm, with lim e a = a (lim ae = a) 
a a a a a

for all a e A. By the right operator norm on A we mean the norm which 

is induced by the right regular representation of A on itself. If G is 

a locally compact group and f is a function on G, we define f for

x e G by xf(y) = f(yx b, y e G, and call f the (right) translate of

f by x. We define R f by R f(y) = A(x) f.(y), where A is the modular

function of G. The support of f is denoted by supp (f). For a subset

K G we write xK for i+s characteristic function. If G is abelian 

and B L1(G) is a normed algebra with norm | |B, we denote by B the 

image of B under the Fourier transformat ion f -> ?*, and for g e B we 

define |g|^ = |g|g. By |N we denote the set of natural numbers, by C 

the set of complex numbers.
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Def i n i ti on: Let A be a Banach algebra with norm | and let B be a 

dense left ideal in A such that

(i) B is a Banach algebra with some norm | |B

(ii) There is a constant D>0 such that

|b|A i 0 •|b|B

for all b e B.

Then B is called an abstract Segal algebra in A (or: left normed ideal 

in A).

For the definition of Segal algebra (on a locally compact group) see

Reiter, [4]. An equivalent definition (see [2] and[3], p. 298) is:

Let G be a locally compact group. A Segal algebra on G is a dense left 

ideal S in l\g) which is a Banach algebra with some norm | and has 

left approximate units (which are unbounded in all known cases).

I. Let S be the multiplicative semi-group of all integers k > 2.

1 . .
Consider the Banach algebra £ (S). We write e^ for the element 

in £? (S) correspond i ng to k e S. Let (Dz be a one-dimensional 

o
algebra with z = 0, and consider the direct product Banach algebra

A = Z1(S)®Cz

with norm |b + Xz|A = + |x|.

For each integer k > 2 denote by p^ the smallest prime factor of 

k and define

I z + k ek i f k i s prime

bk = J 1

I T~~ otherwise.
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LeT B = { E X.b.| E [X. | < 

i>2 i>2

00}. We have Be A, and for b e B The

unique. Th-us B is a Banach space withrepresentation

the norm

i >2

X.e. i n A and
1 1

E

UJ eij

For a = ?z + b = E y.b. in B we have

b = EX.b. is

1 >2

ab = E X. -
i.i 1 PJ

II. It is well known that an abstract Segal algebra B in A cannot 

have bounded right approximate units unless B = A. This is not

Since p.. < p. we obtain ab e B and

|ab|B < E |x.p. | < |a|A |b|B .

i J

So B is a left ideal, and since la|A < 21 a ID for a e B, it is 

a Banach algebra. Since the closure of B in A contains z, B is 

dense in A. So B is an abstract Segal algebra in A. For b e B 

the spectrum in B and the spectrum in A coincide, B being a left 

ideal in A. In particular the spectral radius of b in B is the 

1 1
spectral radius of its Z (S) - component in Z (S). So B is semi- 

simple, since z^B and Z (S) is semi-simple (being a subalgebra 

of a commutative group algebra). We have zA = {0}, so A is not 

semi-simp Ie.

This example contradicts the second part of Theorem 2.1 in [l ]

and shows that the condition given in [3], p. 3o3, is non-void. II.
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so for left approximate units.

2 1
Let A = £ (IN), B = £ (IN). Choose £ e B with = 1 and define 

for a, b e A

a • b = <a, £ > b

2 
where <,> denotes the scalar product in £ (bl). We thus obtain an 

assoziative multiplication for A, with labL < laLlbL for

a, b e A. Obviously we have £b = b for all b e A. Since B is a 

linear subspace, it is a left ideal in A. For a, b e B we have

lablB 1 |a|A ldA lblB 1 lalB |b|B •

So B is an abstract Segal algebra in A having a left unit.

It is not known, if Segal algebras (in the sense of Reiter) can 

have bounded left approximate units. For Segal algebras on 

compact groups this is not possible (B.E. Johnson, unpublished). 

The same holds for pseudosymmetric Segal algebras.

Proposition 1. Let G be a locally compact group and S be a 

pseudosymmetric Segal algebra on G. If S has bounded left 

approximate units, then S = L (G).

Proof. Suppose S has a left approximate identity bounded in 

norm by C>0. Let KCG be a fixed compact neighbourhood of the 

identity in G. There is a (two-sided) approximate identity {f} 

of functions f e S, fQ > 0, Cf = 1 with supp (f )CK (see [4], 

p p p p

p. 34). We have for f e S
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|W6IS • lp6cy) y <MS

< 1 ■ sup IRyf Is < + oo 

yeK

By the principle of uniform boundedness the 

bounded in right operator norm on S, say by

L are

C. We

uni form Iy 

have

lf6ls ■ l'im e«f6ls 5 c-c •

So {f } is bounded in S, hence S = L^G). 

p

III. The example given in II. shows that abstract Segal algebras may 

factorize. It is not known if this is possible in the case of Segal 

algebras on o locally compact group.

Proposition 2. Let G be a locally compact nondiscrete abelian group 

with dual group S. Suppose G to be compactly generated and let 

U = U 1 be a generating compact subset of S. Let Bcl'(G) be a 

subalgebra which is a Banach algebra with respect to some norm 

| | and suppose that BCL^CG) for some finite p. Let f | 0 e B 

be such that f is nonnegative or has compact support in G and such 

that all translates of by elements of S are in If there is a 

real polynomial P such that

(1) |af|£ < P(n>

for all a e Un and all n el'll then B does not factorize.

Proof, a) Let X be a quasi-normed linear space i.e. a normed 

linear space except for the fact that

5



6 LEINERT

|a+b|x < C (|a|x + |b|x)

with. some constant C. Define a subset ScX to be open, if for any 

s e S there i s an "open ba I I " U£ (s ) = { x e X | |x-s|x<e}with 

U£(s)cS. Then an "open ball" need not be open but has non-void 

interior containing 0. Hence a linear map T from X to some quasi­

normed space Y is continuous if and only if it is bounded. If we 

denote by |T| the least constant C with |Ta| < c|a| for all

Y X

a e X, the space of all continuous linear maps from X to Y becomes 

a quasi-normed linear space (and a normed space, if Y is normed). 

It is easy to check that nearly everything works as in the normed 

linear case. In particular the Principle of uniform boundedness, 

the Open mapping theorem, and the Closed graph theorem are valid 

for complete quasi-normed linear spaces.

b) Let B, f, and U be as in the assumption of the proposition and 

suppose f > 0 (the modification of the proof for f complexvalued 

with compact support will be obvious). We assume that B factorizes. 

This implies, since BclP(S), that ^cAg) and hence § cL^ 2 (S) 

for all n e IN. So ScL^d)) for all q>0. By means of the Closed 

graph theorem (it may be applied, since L^(G) is a complete 

quasi-normed linear space) we obtain that the inclusion map 

i : § -> LC'(S) is continuous. Hence we have 

q

(2) lb I < Ca’|b|A
1 q q B

for all b e B. Let P be a polynomial of degree m say, such that (1) 

1 .
holds. Choose p < - 7 and c>0. There is some sompact set K in G

r m+1

with K = K 'oU and such that
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|?(x)|P dx < £

6\k

Choose x, e K3k\K3k 1 for all k e |N. We have 

k

1
This and (3) contradict (2), since — > m + 1. So B does not 

factor!ze.

Coro I I ary, If § is trans I ation-invariant and | g|A = |g| for all 

a 9 B B

a e G, g e then B does not factorize.

x^K nxk, K = 0

n a i
for k + kT. For n € |N let g = E f . We have KcU for some 

n k=1 xk

i e IN. Hence

(3)

k=1

< E P(3ik)

k=1

<Q(n) ,

where Q is a suitable polynomial of degree n + 1. We a I so have

ignip > 2x xK> ip

" p ' k=i xk

since f is nonnegative,

’ f * U’t F > n <|?|P- e>, 

Jk=1 k p

hence 1
|g„| > np const.

n p

7



8 LEINERT

Remark. As H.G. Feichtinger has pointed out to me, if the algebra B 

in Proposition 2 is a Segal algebra, the assumption on f to have 

positive or compactly supported Fourier transform is not necessary. 

For, let f } 0 e B satisfy equation (1) and k e B be such that R has 

compact support and f*k =[ 0. Then

< | k . P(n) .

So f’ = k*f } 0 satisfies (1) and its Fourier transform has compact 

support.

Proposition 2 has some overlap with. [5], Theorem 4.1.
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