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Usually in integration theory the function space S on which the functional I 

is defined is assumed to be a lattice, and this property is used right from the begin­

ning. We avoid this. XX and the integral are constructed and the Beppo Levi Theo­

rem is proved, without the lattice condition. With a weak extra assumption, the 

Monotone Convergence Theorem holds. If in addition J+1 is a lattice (which is much 

weaker than requiring $ to be a lattice), Fatou’s Lemma and Lebesgue’s Theorem 

on Dominated Convergence follow. In the classical case where <S is a lattice, the 

construction is equivalent to the usual one and yields the same results. Proofs are 

simple. In a sense, the procedure just described makes integration more applicable. 

Even when there is an underlying measure, it is sometimes convenient and natural 

to start from a function space S’ that is not a lattice. Such a situation in Harmonic 

Analysis will be discussed in a subsequent note.

N denotes the natural numbers, R the real numbers, R the extended real numbers 

Ru {- 00,00} with the usual ordering and operations (in particular 0 ■ oo = 

oo • 0 = 0, whereas oo — oo is not defined). The infimum of any subset of R is taken 

in R and so always exists. For instance inf 0 = oo. If S is a space of functions with 

values in R, we denote by S+ the positive part of S’, that is: <f+ = {/ e S | / A 0}. 

For R-valued functions f, g we let / a g = min (/, g), fvg = max (/, g) and /+ = f v 0. 

By | g | we denote the absolute value of g. By {| g | = oo}, {g 0}, {g > a} we mean 

the sets of all points x in the domain of g such that | g(x) | = oo, g(x) =%= 0, g(x) > a 

respectively. We denote by %A, A\B, f\A the characteristic function of A, the set- 

theoretic difference of A and B, and the restriction of the map / to the subset A 

of its domain.

1. Let I be a non-void set, S a vector space of real functions on X and let I be 

a Daniell integral on S, that is: a map 7: —> R satisfying

(1) f ^g-^I(f) > 1(g) (Isotony)

(2) I (af + pg) = a I (/) + £1 (g) (Linearity)

OO oo

(3) /e<T, /nG<f+, 2/^ = 7(/) (Continuity

1 1 from below).
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Because of (2), we may replace (1) by 

(!') / 0 ->/(/) ^ 0 (Positivity).

Letting / = f2 = /3 = ••• = 0 in (3), we see that (!') and hence (1) follows from (2) 

and (3).

Starting from (X, S, I), we now want to construct XT = SX^^X, S, I) and the 

integral J on JZ71. For the construction of X1 condition (3) is not needed, so let us 

first use only positivity and linearity of I. For arbitrary /: X —> [0, oo] let

/(/) = inf {2Itf.) | /» e S /}.

Note that 7(/) may be infinite. On the set 0 of all functions /: X -> [0, oo] the 

functional I is isotone and positive (as I is positive) and satisfies

(4) I (a/) — 0.1(f) for a A 0 (Positive homogeneity).

(5) 1(2 fn) 2 (/«) (Countable subadditivity).

By the isotony of I, we obtain from (5) that I is continuous from below on (that is:

(3) holds if I is replaced by I and S, S+ are replaced by ^3). Clearly I -X I on S+.

For arbitrary g: X -> K let ||gr|| == /(|^|). Let S' = {/ e S\ ||/|| < oo} and 

= {g-hll < co}-

Remark. If f = g — h with g,he S+, then | f | g + h e S+ and so || f\\ A I(g) 

+ Z(A) < oo. Hence S' = S if we have S = S+ — S+.

Definition. A function g\ X [R is called a null function if || g\\ — 0. A set A c X 

is called a null set if is a null function. A property Q is said to hold almost every­

where (a.e.) if Q holds outside some null set.

Proposition, (i) ||g|| = 0g = 0 a.e.

(ii) The countable union of null sets is a null set.

(iii) g = f a.e. ->\\g\\ = ||/||.

(iv) g&.X->{\g\ = co} is a null set.

OO

Proof, (i) Let ||^|| — 0 and set A = {g =)= 0}. As %a A 2 I S'I we obtain 

i
|| %a || =0 by isotony and countable subadditivity of I, so A is a null set, and g = 0 

outside A.

: Let B c X be a null set such that g = 0 outside B. As | g | A 2 %b we obtain 

IM=o.

oo oo

(ii) Let {Ai} be a sequence of null sets and let A = Then A 2%^«»

sollzn||=0. 1 1

(iii) It suffices to show: if N is a null set and M = X\N, then ||^%m|| = ||<7||.

OO

This last assertion follows from | g | A | g | A | g | + 2 Zw • 

i
(iv) Let A = {|(?| — co}. We have n%A | J71 > so n||/^|| A ||gf|| < oo for all n, 

hence ||/^|| = 0.

17*
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For convenience we identify functions that are equal almost everywhere. It then 

follow’s from the above Proposition that IX with pointwise operations (where we

define (/ + </)(£) = 0 if f(x) -f- g(x) does not exist) and norm || || is a normed linear 

space. We can (and shall) admit the elements of X to be defined only almost every­

where, since this does not change -F as a normed linear space. We note that, on the

set of all a.e. defined functions, || || is countably subadditive in the following sense:

If fn converges pointwise a.e. (so that

I co

12/™
I i

makes sense), then

This follows from the isotony and countable subadditivity of I.

i

Generalized Beppo Levi Theorem. If fn e IX2ll fn || < then ^fn converges point- 

OO Ic oo

wise a.e. and ^fn — ^fn -> 0. In particular, ^fn is in X. 

i i

Proof. Por every n e N there are hnk e A+, such that | fn | hnk and 2 I(AWfc)

< II/nil + 2-n- Since 2 l/«l = 2^ we obtain II 21/” I ll = 211/4 + 1 < °°- By
n n,k

(iv) of the above Proposition we have 2 | fn | < 00 a-e- I* 1 particular 2 fn converges 

OO OO 1c J oo
a.e. and the function 2 fn so defined satisfies 2 fn — 2/”l — 2 II fn II by the

1 11| A+l

countable subadditivity of || ||.

Corollary 1. If {gk} is a Cauchy sequence in X, then there is g e X with i| g — gk || -> 0 

and gkn -> g a.e. for a suitable subsequence {</*„}.

Proof. Choose a subsequence {gkn} such that ^gkn — <7jfc„+1|| < 2~” for all n. As 

fn = gkn — gkn+i satisfies the hypothesis of the above theorem, the sequence 

n-1 °°
9kn = ^-1 — yjm converges a.e. and in norm to g = gkl — ^fm e X.

1 1

Corollary 2. X is complete.

Definition. A function g: X -> R is called integrable if for every s > 0 there is 

f e S' with || (/ — /|| < e. The space of all integrable functions is denoted by XI

Remark. XX is the norm closure of S' in X, and X is complete, so XX is complete.

From now on we also use condition (3). Then I Ion and, since we already 

have the reverse inequality, I = I on S+.

Proposition. |/(/)| AJ ||/|| for feS'.

Proof. Let gneS+ such that / jg |/| ^2^- By continuity from below we 

obtain /(/) Ai hence Z(/) AJ ]|/||. Since also — 1(f) — I(~~f) = II/lb the

assertion is proved.
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Definition. The extension of 11^ to a norm-continuous linear functional on 

is called the I-integral. Its value at f is denoted by f / di or simply J f and called the 

integral of f (with respect to I).

Beppo Levi Theorem. Let fneLf1, 2 || fn || < oo. Then ^fn converges a.e. and 

OO & OO OO OO

^fn — ^fn 0, 'particular 2 fn is in JT- and J 2 fn = 2 J fn && norm 

it i ii

continuity of the integral.

Proof. The assertion follows from the generalized Beppo Levi Theorem and the 

fact that A1 is a closed subspace of J'.

Let us consider the following conditions:

(6) Every / e can be approximated in || || by elements of <o+.

(T) ST1 is a lattice, that is: f, g e J1 —> f Kg, fvgE

(It is sufficient to require: / e ->f+e J"1.)

If S is a lattice, then (6) and (7) are satisfied because of | f+ — h+| | f — h\.

Since || )) = I = I = J on <f+ and since the integral J is || ||-continuous, condition 

(6) implies

(8) J/ =11/11 for /e(^)+.

Condition (8) implies in particular that J is a positive functional on One might 

think that (8) is always true, but this is not so (see b) of the example in part 2). Erom 

now on we suppose (8) to be satisfied.

Monotone Convergence Theorem. Let fn e LL1, fn / /, A const < oo. Then 

j| f — fn || -> 0, in particular f e J1 and J f = lim J fn.

Proof. Consider ^gn where gn — fn+i —- fn AO. As, by (8), J and || || coincide 

on (=2?1)+, the assertion follows from the Beppo Levi Theorem.

If Ja?1 is a lattice (in particular if $ is a lattice), then

(i) Fatou’s Lemma and Lebesgue’s Theorem on Dominated Convergence hold and 

are proved in the usual fashion by means of the Monotone Convergence Theorem.

(ii) The integrable sets (i.e. the sets whose characteristic function is in J5?1) form 

a ring because of %A^B = %a^ %b and %A\B = %Ae>b — %B- The measurable 

sets (i. e. the sets whose intersection with integrable sets is integrable) then form 

a cr-algebra JI, and we obtain a measure p on Ji by defining

f %A, A integrable

A oo otherwise.

If the Stone condition

(9)

is satisfied, it follows by monotone convergence that JJ is a lattice: for f e A21 we

,u(A) =
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have f a — = — (nf a 1) g S?1 and f a — \ / a 0. Stone’s Theorem that (9) implies 

72/ Tb 7b

JS?1 = J/?1 (|w) is proved as usual.

Example. Consider the space S of all real polynomials on X = [0, 1] with I — 

the Riemann integral. The conditions (6) and (9) and hence (8) and (7) are satisfied 

and in fact J?1 is the usual 1). This follows from the WeierstraB Approxima­

tion Theorem.

The example shows that integration without the lattice condition on S makes 

good sense. In the case when S happens to be a lattice, we obtain the usual results, 

as the reader will have noticed, and the proofs appear to be simpler than the ones 

using the lattice property. However, integration in the sense of Bourbaki, using nets 

of functions, is not covered.

To finish this part let us mention a few simple facts without proof:

a) Denote by the space of all bounded functions in XX and suppose that every

g g can be approximated in || || by functions f g S' with | /1 A C < oo where C 

is a constant depending on g. Now, if the implication / g S' -> f2 G S' holds 

(which is equivalent to S' • S' c S'), then c Xfa so with pointwise

operations is an algebra. It follows that the integrable sets form a ring and the 

measurable sets form a o-algebra, on which the integral defines a measure /z 

as described above.

b) Eor X1 to be a lattice it is necessary and sufficient that the implication / g S' -> 

/ v 0 g XX holds. In particular, X1 is a lattice if for every f g S' and e > 0 

there are fa, faG S' such that /i f v 0 fa and I (fa — /i) < s. Note that in 

this case also (6) and hence (8) is satisfied, so all results except possibly Stone’s 

Theorem hold.

c) X1 satisfies the Stone condition (9) if and only if the implication f g S' -» 

f a 1 g X1 holds. In particular, J?1 satisfies the Stone condition, if for every 

f g S' and e > 0 there are /i, fa e S' such that /x f A 1 fa and I (fa — fa) < e.

Appendix. Keep the above notation and let X, S, I be as in the beginning of 

part 1. We give an alternative description of the integral J on X1 and derive from 

this that J is a positive functional, without assuming (8).

For arbitrary /: X -> [R define

1
OO °O

2 I (fn) I /i e S, fiGS+ for i 2, 2 

i i

Then I' is isotone, positive homogeneous, subadditive (more precisely: I' (f + g) 

I' (/) fi- I' (g) if f + g is defined and I' (/) + I' (g) is defined) and I' = I on S by 

continuity of I from below. Clearly I' A / on X. We assert

(10) |Z'(/)| =11/11 for /gJ5". In particular, I'(f) is finite.

Proof. Since f |/|, we have I'(f) I'(\f\) Z(|/|) = \\f\\. One is tempted 

to derive I' (/) — \\f\\ by using /'(—/) = — !'(/), but this is not in general true

for f gX. So let faG S, fa,fa,...e S+ such that ^fn f and let Ai, fa, ... e S+ 
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such that J hn | /1 and 2 1 (M < II f II + e- Since 2 fn does not assume the value

— oo, the function ^fn + is well defined. We have 2/« + 2^re — ^ence 

2 I (fn) + 2 I (Aw) 0 by continuity of I from below, which implies 2 (/») =

— 11/11 — e. This proves /'(/) — ||/||.

Even though I' is usually not linear on we have

(11) |/'(/)- i'(g)I II/-g\\ for

Proof. Suppose / and g assume only values in [R. Then — | / — <?| ^ / — 

| / — 0|. In particular f g + |/ — g\ which implies !'(/) U P (g) + P(\f — gj), 

and g^f-\-\f — g\ which implies P(g) P(f)P(\f — g\). So we have 

11' (/) — Z' (<?) | = Z' (| f — g |) = || f — g || • This proof does not work if /, g are allowed 

to take infinite values, but this does not matter since we have

(12) f,ge&, f = g a,.e.-+P(f) = P(g).

Proof. As P is isotone, it suffices to prove the assertion for / a g and f v g, that is: 

we may assume f g. Let N = {f q= g}. Then and hence oo • is a null function, 

so there are hn e dU with 2^» = 00 ' and 2-I(^») < e- N°w let /i G S, 

fz, f3, ... G dU such that ^fn /• As does not assume the value — oo, the 

function 2 fn + 2 is well defined, and it dominates g, since it is + oo on N. 

So we have P (g) 2 / (/n) + 2Z(M < 2 + £ which implies I'(g) !'(/).

The opposite inequality is obvious, as Z' is isotone.

Since, by (11), P is continuous on and coincides with I on <f', we obtain

(13) //=/'(/) for

Since P (/) A 0 for f A 0 (by continuity of I from below), we obtain from (13) that 

the integral is a positive functional on J271. So, (8) is not needed for this. Note that, 

by (13), assuming (8) is equivalent to assuming P = I on (=2’1)+.

Let us finish the Appendix with a general remark to point out that we could have 

chosen a different approach. Starting with P as above, we can define || ||' by \\f\\' = 

P (| f |) and then proceed as we have done with I and || ||. Whenever I' is countably 

subadditive on positive functions (or at least when I' (2 | fn |) US 2 (I /«I) ^or 

fn g J2?1, 1Z21 now being the || ||'-closure of S' = {g g S\ H <71|' < 00}), then the results 

of part 1 up to (and including) the Monotone Convergence Theorem hold, without 

additional assumptions. For the rest we need the same assumptions as before. 

Unfortunately, P need not in general be countably subadditive, not even on sums 

2 fn with fn e (^?1)+. (This can be seen by looking at a countable sum of things like 

the example in part 2, but where we let the length of the middle interval J1 tend to 2 

and define I(/) = — length of J\ whereas the Z(/M) remain unchanged.) Since it 

seems that the countable subadditivity of I' is not an easily tested property (even 

though it almost always holds) we have not adopted this approach but chosen the 

approach described in part 1.

2. The following is a variant of part 1 with slightly weaker assumptions. We sup­

pose that I is defined on <f+, taking possibly infinite values and satisfying a slightly 

weaker continuity condition than before. Under the assumptions of part 1 we obtain 

a possibly smaller J2U space than before.
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Let X be a non-void set, S’ a vector space of real functions and let I: -> [0, oo]

be isotone, positive linear (that is: (2) holds for a., fl e K+, f, g e <^+) and continuous 

from below on S+ (that is: (3) holds for / e <^+). As before, for f: X —> [0, oo] we define

/(/) = inf {J /(/„) | /. e

Then on the set 0 of all f: X —> [0, oo] the functional I is isotone, positive homo­

geneous, countably subadditive, and I = I on S+ by continuity from below. Again, 

for arbitrary g: X R let ||gr|| = Z(|(/|) and let SF = {g\ X -> IR | ||<7|| < oo}. Now 

let (oq = {/ e S+\ ||/|| < oo} = {/ e ^+| Z(/) < ©o} and let Sq — Sq — Sq . Then 

<^o is a linear space and I(^o+ extends in a unique way to a linear functional on <fo- 

Since (<A))+ = this linear functional on <^o, call it I again, is positive. Things now 

work the same way as in part 1, if we replace by <fo ■ There is a slight change in the 

proof of | /(/) | || f || for / e <^o '■ Let / e <A) • Then f = fr — with /i, /2 e Sq .

oo oo

Let gn e <o+ such that / = /i — /2 X | /1 X 2 dn • Since /i /a + 2 we obtain 

oo 11

I (/i) is 1 (/a) + 2 by continuity from below of I on +. So 

i

OO

!(/) = /(«- £ 2 As-.).
1

which implies /(/) ||/||. Also — Z(/) = Z(—/) ^ ||/||, hence |Z(/)| ||/||.

This proof also shows that, on <^o> I is continuous from below in the sense of (3). 

So we could consider (X, <A), Z) and apply part 1 to it. The results would be identical, 

since, by continuity from below, Z constructed from Sq is the same as Z constructed 

from S+. Under the assumptions of part 1, we have S'o c S' and so J*? 1 is contained 

in the space of part 1. Of course, equality holds, if = <f+ — ^+, in particular 

if S is a lattice, but in general the inclusion may be strict, as we see from the following

Example, a) Let

X = (-l,l),

/ 1

Jn= 1
\ n

for natural n 2. Let be the characteristic function of Jn, n 1. Denote by / 

the identity map of ( — 1, 1). Define S to be the space of all finite linear combinations 

a/ + 2°^%* ’ Note that such a linear combination is positive if and only if a = 0 

i
and all ai 0. Let 1 be the Lebesgue integral on S. Then (1), (2), (3) hold as follows 

from the properties of the Lebesgue integral on all of =^1(— 1, 1). Since |/| 1

oo

and 2/n — 1 we have ||/(| 2 — 2 < °o, so / e S' c as in part 1).

Let g e Sq. Then g is of the form 2a^/»’ anc^ we bave

i

sup {| /(a;) — g(x) | | x e [— |, j]}

= sup {| /(x) — ai%1 (z) I IZ e [— |,1-]} | •
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oo

Therefore ^tx.n%n \f — implies ai 2g |, hence \\f — (?|| ^ail(%i) 2g |. This 

t

shows that f does not belong to of this part 2).

b) We now show that for the example just given condition (8) is not satisfied. 

n

Let denote the of part 1. Consider g = / fi- 1 0. For gn = / fi- 2 we

oo j 1

have \g — gn\ = J fa, hence \\g — gn\\ ^2- - - —> 0. So g e (^)+. Since

oo n+1 OO n “T 1

$Z = /+2/w’ we have I'(g) 1(f) + I (%n) = 2 (in fact I'(g) = 2). If

oo 1 1

2 a» = CJ ti1611 aw f for ali n (look at the value of g at the right endpoint of Jn 

i

for every n). This implies 1(g) — ||^|| J2g 2 • | — 3. So I'(g) =j= 1(g) which by (13) 

shows that (8) is not satisfied for this example.
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