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Zusammenfassung

In dieser Arbeit betrachten wir Mumford-Shah- und Potts-Modelle sowie Verallgemeinerungen
höherer Ordnung. Mumford-Shah- und Potts-Modelle gehören zu den bekanntesten variatio-
nellen Methoden zum kantenerhaltenden Glätten und Partitionieren von Bildern. Trotz ihrer
intuitiven Formulierung ist ihre Anwendung nicht trivial, da es das Lösen schwieriger Mini-
mierungsprobleme, welche insbesondere nicht konvex sind, erfordert. Das Entwickeln neuer
algorithmischer Ansätze zum Lösen von Mumford-Shah- und Potts-Modellen ist bis heute ein
aktives Forschungsgebiet und bildet den Schwerpunkt dieser Arbeit.

Zunächst betrachten wir die Situation für univariate Signale und stellen fest, dass durch das
Anwenden von Mumford-Shah-Modellen höherer Ordnung bekannte Nachteile der klassischen
Modelle erster Ordnung beim Verarbeiten von Daten mit steilen Steigungen behoben werden
können. Die existierenden Ansätze zum Lösen der Modelle erster Ordnung könnten prinzipiell
ebenfalls zum Lösen der Modelle höherer Ordnung genutzt werden, jedoch sind diese langsam
oder werden für höhere Ordnungen numerisch instabil. Deshalb entwickeln wir einen neuen
Algorithmus für univariate Mumford-Shah- und Potts-Modelle beliebiger Ordnung und zeigen,
dass dieser die Modelle stabil in O (n2) löst.

Dann entwickeln wir Algorithmen für das inverse Potts-Modell, welches einen Ansatz zur
gleichzeitigen Rekonstruktion und Partitionierung von Bildern, die nur indirekt in der Form
von Messdaten vorliegen, darstellt. Weiterhin führen wir eine Konvergenzanalyse unserer Al-
gorithmen durch. Insbesondere beweisen wir die Konvergenz gegen ein lokales Minimum des
zugrunde liegenden NP-schweren Minimierungsproblems. Wir wenden die Algorithmen auf
numerische Daten an und illustrieren ihre Vorteile.

Weiter wenden wir den mehrkanaligen Potts-Regularisierer auf das Rekonstruktionspro-
blem, welches in der multispektralen Computertomographie (CT) auftritt, an. Hierfür entwi-
ckeln wir einen neuen “Superiorizaton”-Ansatz. Dieser stört die Iterierten der Methode der
konjugierten Gradienten so, dass wir im Vergleich zu diesen bessere Resultate im Hinblick auf
den Potts-Regularisierer erhalten. In numerischen Experimenten beleuchten wir das Potential
dieses Ansatzes indem wir ihn sowohl mit dem Potts-Modell-Ansatz aus der Literatur als auch
mit den vorhandenen totalvariationsartigen Methoden vergleichen.

Als Nächstes betrachten wir das Mumford-Shah-Modell zweiter Ordnung für die kantener-
haltende Glättung von Bildern, welches –ähnlich wie im univariaten Fall– eine Verbesserung
gegenüber dem klassischen Mumford-Shah-Modell für Bilder mit linearen Farbverläufen dar-
stellt. Basierend auf Umformulierungen im Sinne von Taylor-Jets, d.h. speziellen Polynomfel-
dern, leiten wir diskrete Mumford-Shah-Modelle zweiter Ordnung her. Für diese diskreten Mo-
delle entwickeln wir unter Verwendung eines ADMM-Schemas einen e�zienten Algorithmus.
Wir veranschaulichen das Potenzial der entwickelten Methode durch den Vergleich mit existie-
renden Ansätzen für das Mumford-Shah-Modell zweiter Ordnung. Ebenfalls veranschaulichen
wir die Vorteile der entwickelten Methode im Hinblick auf das Detektieren von Bildkanten.

Schließlich betrachten wir das a�n-lineare Potts-Modell für das Bildpartitionierungspro-
blem. Da viele Bilder innerhalb homogener Regionen lineare Verläufe aufweisen, führt das An-
wenden des klassischen Potts-Modells häu�g zu einer Übersegmentierung. Das a�n-lineare



Potts-Modell berücksichtigt dieses Problem, indem es lineare Verläufe innerhalb der Segmente
zulässt. Wir reformulieren das zugrunde liegende Minimierungsproblem im Sinne von Jets und
entwickeln wiederum einen ADMM-basierten Algorithmus. In numerischen Experimenten zei-
gen wir, dass der entwickelte Algorithmus sowohl niedrigere Energiewerte als auch schnelle-
re Laufzeiten erreicht als die Vergleichsmethode, welche auf der iterativen Anwendung des
Graph-Cut-Algorithmus (mit α-Expansion-Moves) basiert.



Abstract

In this work, we consider Mumford-Shah and Potts models and their higher order generaliza-
tions. Mumford-Shah and Potts models are among the most well-known variational approaches
to edge-preserving smoothing and partitioning of images. Though their formulations are intu-
itive, their application is not straightforward as it corresponds to solving challenging, particu-
larly non-convex, minimization problems. The main focus of this thesis is the development of
new algorithmic approaches to Mumford-Shah and Potts models, which is to this day an active
�eld of research.

We start by considering the situation for univariate data. We �nd that switching to higher
order models can overcome known shortcomings of the classical �rst order models when ap-
plied to data with steep slopes. Though the existing approaches to the �rst order models could
be applied in principle, they are slow or become numerically unstable for higher orders. There-
fore, we develop a new algorithm for univariate Mumford-Shah and Potts models of any order
and show that it solves the models in a stable way in O (n2).

Furthermore, we develop algorithms for the inverse Potts model. The inverse Potts model
can be seen as an approach to jointly reconstructing and partitioning images that are only
available indirectly on the basis of measured data. Further, we give a convergence analysis for
the proposed algorithms. In particular, we prove the convergence to a local minimum of the
underlying NP-hard minimization problem. We apply the proposed algorithms to numerical
data to illustrate their bene�ts.

Next, we apply the multi-channel Potts prior to the reconstruction problem in multi-spectral
computed tomography (CT). To this end, we propose a new superiorization approach, which
perturbs the iterates of the conjugate gradient method towards better results with respect to the
Potts prior. In numerical experiments, we illustrate the bene�ts of the proposed approach by
comparing it to the existing Potts model approach from the literature as well as to the existing
total variation type methods.

Hereafter, we consider the second order Mumford-Shah model for edge-preserving smooth-
ing of images which –similarly to the univariate case– improves upon the classical Mumford-
Shah model for images with linear color gradients. Based on reformulations in terms of Taylor
jets, i.e. speci�c �elds of polynomials, we derive discrete second order Mumford-Shah models
for which we develop an e�cient algorithm using an ADMM scheme. We illustrate the po-
tential of the proposed method by comparing it with existing methods for the second order
Mumford-Shah model. Further, we illustrate its bene�ts in connection with edge detection.

Finally, we consider the a�ne-linear Potts model for the image partitioning problem. As
many images possess linear trends within homogeneous regions, the classical Potts model fre-
quently leads to oversegmentation. The a�ne-linear Potts model accounts for that problem by
allowing for linear trends within segments. We lift the corresponding minimization problem
to the jet space and develop again an ADMM approach. In numerical experiments, we show
that the proposed algorithm achieves lower energy values as well as faster runtimes than the
method of comparison, which is based on the iterative application of the graph cut algorithm
(with α-expansion moves).
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Jux �rst order Taylor jet of the function u at point x

O big O notation for time complexity (also called Bachmann-Landau notation)

E I optimal approximation error on a discrete interval I

MSSIM(u, f ) mean structural similarity between images u and f
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1. Introduction

1.1. Motivation

Smoothing and partitioning are important tasks in signal and image processing [174, 90].
Smoothing corresponds to the task of removing undesired or unimportant small scale vari-
ations in the data, e.g., noise, while preserving the important information. As a result, smooth-
ing is often used as the �rst low-level processing step. Subsequent processing steps can then
be applied to simpli�ed data which still hold the important information. Partitioning de-
scribes the task of subdividing the domain of a signal or image into regions of some simi-
lar characteristics. In particular, smoothing and partitioning can serve as a basis for a seg-
mentation pipeline [8]. Furthermore, smoothing and partitioning techniques are frequently
used in the context of inverse problems, i.e., the task of reconstructing an unknown signal
or image from data/measurements which are indirectly given and often incomplete. Corre-
sponding examples are computed tomography, magnetic resonance imaging or microscopy
[37, 101, 161, 35, 71, 131, 220].

Classical smoothing methods typically smooth a signal across its entire domain (e.g., smooth-
ing splines, low-pass �lters or Gaussian �lters). As a result, if the signal possesses discontinu-
ities or edges they will be typically smoothed out. However, these discontinuities often carry
important information about the considered signal. For instance, they indicate abrupt changes
of time series or boundaries of objects in images. In view of this, it is a natural objective to pre-
serve discontinuities throughout the smoothing process [207]. In Figure 1.1, we give a visual
comparison of classical non-discontinuity preserving smoothing and discontinuity-preserving
smoothing of a noisy image.

First approaches to discontinuity preserving reconstruction and smoothing, respectively,
were motivated by models from statistical mechanics. The Ising model [106] models the trans-
formation of a magnetic unsorted material into a ferro magnet at high temperatures. Here, the
spin at each atom has a binary value ±1 and neighboring atoms (in the sense of a discrete grid)
with di�erent spins increase the energy by a constant interaction energy. Potts [164] general-
ized the Ising model to q ≥ 2 states – also in the context of statistical mechanics and in a fully
discrete setting. With respect to this, the model is frequently called the Potts model. Geman
and Geman [83] adopted the Potts model for the edge-preserving reconstruction of piecewise
constant images. They motivated the model from a statistical viewpoint as the result can be
seen as a maximum a posteriori estimate for the unknown image. In his technical report [145],
Marroquin extended this model to continuous intensity values and piecewise smooth solu-
tions. In [21], Blake and Zisserman proposed a model for the piecewise smooth reconstruction
on discrete domains which they named weak string model for one-dimensional signals and
weak membrane model for images. Further, they already proposed extensions to second order
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(a) Noisy image

(b) Classical Gaussian �ltering (c) Edge-preserving smoothing

Figure 1.1.: Comparison of classical smoothing by Gaussian �ltering and edge-preserving smoothing.
While classical Gaussian �ltering smooths over the sharp contours, edge-preserving smoothing pre-
serves them (see, e.g., the eye of the parrot).

smoothness penalties named weak rod and weak plate model, respectively. In their seminal
works [148, 149], Mumford and Shah studied joint reconstruction and partitioning by impos-
ing piecewise smoothness and piecewise constancy on images in a spatially continuous frame-
work. Subsequently, the model and its variants are commonly called Mumford-Shah models.
Mumford-Shah models are frequently used for edge-preserving smoothing and the partition-
ing of images [8, 10, 185, 186, 5, 215] and time series [206, 79, 121].

Rudin, Osher and Fatemi proposed minimizing the total variation (see De�nition A.3 in the
appendix) of the image for edge-preserving smoothing [169]. Consequently, the corresponding
model is typically called the ROF model. In comparison to Mumford-Shah models, the ROF
model is easier to access both theoretically and algorithmically as it does not explicitly model
the edge set and corresponds to a convex problem. The concept was later extended to involving
higher order derivatives, that is, total generalized variation minimization [32].

Another class of methods is based on partial di�erential equations. It is a classical result
that the convolution of an image with a Gaussian kernel corresponds to the solution of a linear
di�usion equation –the heat equation– at a speci�c time (with the image as initial condition).
In [160], Perona and Malik proposed a nonlinear di�usion based model for edge-preserving
image smoothing which has been frequently called the Perona-Malik model. The basic idea
of the Perona-Malik model is to preserve edges by using a di�usion tensor which slows down
the di�usion at the locations of (potential) edges. A shortcoming of the method is the weak
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smoothing along edges. This problem was addressed in [199] by means of an anisotropic dif-
fusion model. In particular, the idea is to incorporate the structure tensor [76, 18] to obtain a
di�usion across edges as in the Perona-Malik model and a linear di�usion along edges.

The preservation of discontinuities is an important topic in other �elds than signal and image
smoothing as well. An example corresponds to �nding numerical solutions of di�erential equa-
tions and in particular the (numerical) approximation of hyperbolic conservation laws in �uid
dynamics. More precisely, shock-waves in the �ow will result in sharp, discontinuous changes
in �ow variables. In this situation, applying standard methods results in undesired e�ects
such as spurious oscillations near discontinuities. Therefore, so-called shock capturing meth-
ods have been developed. Prominent shock-capturing methods are essentially non-oscillatory
(ENO) schemes [93] and corresponding weighted (WENO) schemes [140].

In this thesis, we concentrate on Mumford-Shah and Potts models. In particular, the main
focus is the development of new algorithmic approaches to Mumford-Shah and Potts models
as well as to higher order generalizations of them. Because of their instructive formulation
and the appealing practical results, Mumford-Shah and Potts models are frequently employed
in data and image processing. Therefore, and because of the algorithmic challenges that come
with the corresponding minimization problems, numerical approaches to Mumford-Shah and
Potts models are actively researched to this day [147, 216, 180, 215, 158, 74, 112, 110]. Please
note that further related work will be discussed in the respective chapters.

The Mumford-Shah model. Mumford-Shah models are among the most well-known in-
stances of free-discontinuity problems. Free-discontinuity problems are variational problems
which are not formulated in terms of a function only, but in terms of a pair (u, Γ), where Γ ⊂ Ω
is a closed set and u is a function on the domain Ω which is (su�ciently) smooth on Ω \ Γ;
see [61]. As a consequence, free-discontinuity problems provide an explicit modeling of the
discontinuity set Γ.

We give a formulation of the classical Mumford-Shah model. To this end, we assume the
data image f : Ω → R to be de�ned on the open bounded domain Ω ⊂ R2. Then, the classical
Mumford-Shah model for the data image f corresponds to solving the variational problem

argmin
u,Γ

∫
Ω
|u (x ) − f (x ) |2 dx + β2

∫
Ω\Γ
‖∇u (x )‖2 dx + γ length(Γ). (1.1)

The minimum is taken with respect to the target variables u and Γ, where u : Ω → R is a
piecewise smooth function and Γ is the corresponding discontinuity set. The existence of a
minimizer was proven for a corresponding weak problem, where the discontinuity set Γ is not
explicitly modeled anymore [1]. Rather, it is implicitly modeled via u which is in the space
of special functions of bounded variation (see De�nition A.4 in the appendix). We discuss the
summands in the functional of (1.1) which correspond to a data penalty, a variation penalty,
and a length penalty, respectively. More precisely, the `2-distance between u and f ensures
closeness of the image u to the data f . The `2-norm of the gradient of u penalizes the variation
on u on the complement of Γ only. Therefore, (1.1) promotes smoothness on u outside of Γ,
while allowing for rapid changes at Γ, i.e.,u is continuously di�erentiable on Ω\Γ. Concerning
the length penalty, length(Γ) is de�ned as the one-dimensional Hausdor� measure of Γ (see
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(a) Noisy data (b) ROF model (c) Potts model

Figure 1.2.: Recovery of a piecewise constant signal from noisy data with the convex ROF model and the
Potts model. The ROF model tends to produce transitional points at the jumps of the signal. The Potts
model recovers the piecewise constant signal almost perfectly. (The red dashed lines correspond to the
ground truth signal.)

De�nition A.1 in the appendix). To �x ideas, if Γ is smooth, this amounts to the length of the
corresponding curve in the sense of di�erential geometry. In particular, when dropping the
length penalty in (1.1), we would simply reproduce the data, i.e., u = f and Γ = Ω. Finally,
the model parameters β > 0 and γ > 0 balance the variation penalty and the edge length,
respectively.

The Potts model. The solutions of the Mumford-Shah model (1.1) are piecewise smooth.
Mumford and Shah also studied the further restriction to piecewise constant solutions which
corresponds to the limit case of (1.1) for β → ∞. In this situation, any deviation of the gradient
∇u (x ) from zero is in�nitely penalized for all x < Γ. As a consequence, u is enforced to be
piecewise constant. Further, the discontinuity set Γ cannot exhibit open ends (so-called “crack
tips”) anymore. Hence, Γ corresponds to the union of segment boundaries of a partition of
the domain Ω. We call the resulting model the Potts model throughout the thesis at hand. (In
the literature, it may also be referred to as the piecewise constant Mumford-Shah model.) It is
given by

argmin
u,P

∑
P ∈P

∫
P
|u (x ) − f (x ) |2dx +

γ

2
length(∂P )

subject to u |P is constant for all P ∈ P .
(1.2)

The minimization in (1.2) takes place with respect to the partitions P of the function domain
Ω into disjoint connected open sets P and the functions u : Ω → R which are constant on
each segment P ∈ P. The remaining parameter γ > 0 balances the data �delity and the
length penalty term. Note that the factor 1

2 in (1.2) compensates for the double counting of
boundaries, when using this formulation. In Figure 1.2, we illustrate the bene�ts of the Potts
model compared to the ROF model (which may be seen as a convex relaxation of the Potts
model) for the recovery of a piecewise constant signal from noisy data.
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1.2. Contribution

This thesis contributes to the further development of algorithmic approaches to Mumford-Shah
and Potts models. In particular, the contributions are given as follows.

(i) We study higher order Mumford-Shah and Potts models for univariate discrete signals and
develop a new e�cient solver which is based on dynamic programming and recurrence
relations based on Givens rotations. Compared with the classical (�rst order) Mumford-
Shah and Potts models, higher order Mumford-Shah and Potts models have the advantage
that they can recover large gradients in the signal without introducing spurious segments
(“gradient-limit e�ect”).

It is well-known that global minimizers of (univariate) Mumford-Shah and Potts func-
tionals can be found via dynamic programming. However, using standard techniques for
solving the emerging subproblems yields algorithms with cubic time complexity which
become very slow for large data. For the classical �rst order models, there exists an
e�cient approach to these subproblems. On the �ipside, generalizing this approach to
higher orders becomes numerically unstable and the produced results become unsatis-
fying.

We develop a new fast and stable approach to these subproblems. We prove that the
resulting overall algorithm has quadratic time complexity and obtain stability results.
The practical runtime is improved by incorporating pruning techniques.

We study Mumford-Shah and Potts models of various orders in numerical experiments.
Furthermore, we illustrate the e�ectiveness and stability of the proposed algorithm.

Related material has been published in [179].

(ii) We propose new algorithmic approaches to the inverse Potts model. Compared to (1.2),
the data f does not necessarily correspond to a (noisy) data image anymore, but may be
given in terms of a linear imaging operator A. Thus, the inverse Potts model allows for
joint reconstruction and partitioning of images which are only indirectly given in the
form of (often incomplete) measured data.

We start with a quadratic penalty relaxation of the problem. We approach this relaxed
problem by solving a sequence of surrogate minimization problems which we see to de-
compose into univariate Potts problems. These are solved with solvers proposed in (i).
We further propose a projection procedure which constructs a feasible solution (w.r.t. the
original problem) from the result of the quadratic penalty relaxation. The thereby ob-
tained result is close to a local minimum of the original problem for lower bounded
imaging operators.

The second algorithm approaches the original problem by iterating between running the
�rst algorithm and updating the relaxation parameters according to a certain rule.

We give a convergence analysis for the proposed schemes. In particular, we prove the
convergence of the �rst algorithm to a local minimum of the relaxed problem and the
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convergence of the second algorithm to a local minimum of the original problem (on
subsequences).

The applicability of both algorithms is illustrated in several experiments including im-
age reconstruction from Radon data, partitioning of blurred images and classical image
partitioning.

A corresponding paper has been published as [118].

(iii) We apply the (multi-channel) Potts prior to the reconstruction problem in multi-spectral
computed tomography (CT).

We begin with considering the Potts prior in terms of the Potts model, which is algorith-
mically approached by an alternating direction method of multipliers (ADMM) scheme.
Then we study the Potts prior in connection with the superiorization methodology. The
main contribution of this chapter is the development of a superiorized algorithm that em-
ploys Potts-based target function reduction steps. As our prior has no calculable partial
derivatives or subgradients, our approach contributes to derivative-free superiorization
applied in a challenging non-convex setting.

In numerical experiments, we compare the Potts ADMM approach and the proposed
Potts superiorization approach to the existing TV-type approaches by applying them to
simulated multi-spectral CT data, which illustrates the bene�ts of employing the multi-
channel Potts prior in multi-spectral CT reconstruction.

(iv) We consider second and higher order Mumford-Shah models for edge-preserving smooth-
ing of images. Similarly to the univariate case, using the second order model can circum-
vent gradient limit e�ects.

We derive a new formulation of the corresponding variational problems in terms of Tay-
lor jets which allows us to explicitly model the partial derivatives of the image. Using
the jet formulation, we obtain a family of new jet-based discretizations.

We develop an algorithm based on the ADMM in a way that the subproblems decompose
into one-dimensional segmented jet estimation problems. We propose a fast and stable
solver for these subproblems based on our approach to higher order univariate Mumford-
Shah problems.

We illustrate the bene�ts of the proposed approach by comparing it with existing ap-
proaches to the second order Mumford-Shah model qualitatively as well as quantita-
tively. Further, we derive an edge detection method based on the proposed algorithm.
We compare it with classical Canny edge detection on the Berkley data test set and obtain
improved results.

(v) We consider the a�ne-linear Potts model for the image partitioning problem. As many
types of images posses linear trends within their segments (e.g., the sky in a landscape
image), the classical (piecewise constant) Potts model (1.2) might lead to oversegmen-
tation similarly as in the univariate case. A natural account for that is the extension to
piecewise a�ne-linear solutions.

6



We reformulate the corresponding variational problem in terms of Taylor jets so that the
solutions are piecewise constant Taylor jets. We approach the problem via the ADMM
such that the emerging subproblems decompose into linewise piecewise constant jet esti-
mation problems. For these, we obtain a fast and stable algorithm based on our approach
to higher order univariate Potts problems.

We illustrate the bene�ts of the algorithmic approach in numerical experiments. In par-
ticular, the proposed approach has lower mean computation times and lower mean func-
tional values than the state-of-the-art approach.

Related material has been published in [117]. Further, the resulting algorithm is made
publicly available as part of the IPOL publication [119].1

1.3. Organization

In Chapter 2, we give mathematical preliminaries which are needed later on repeatedly. In
Chapter 3, we consider higher order Mumford-Shah and Potts models for univariate signals.
In particular, we derive an e�cient and stable algorithm to solve them. In Chapter 4, we de-
rive new algorithms for the inverse Potts model for images and data which are given indi-
rectly. We give a convergence analysis and illustrate the proposed methods in numerical ex-
periments. In Chapter 5, we consider image reconstruction from multi-spectral CT data with
the multi-channel Potts model as well as a strategy based on superiorizing the conjugate gradi-
ents method towards Potts superiorized solutions. In numerical experiments, we demonstrate
the bene�ts of the Potts-based approaches by comparing them to TV-based approaches. In
Chapter 6, we consider the second Mumford-Shah model. We derive a new algorithm based
on Taylor jets and illustrate our �ndings in qualitative and quantitative experiments. Chap-
ter 7 deals with the a�ne-linear Potts model for image partitioning for which we develop an
algorithm based on Taylor jets. We underpin our �ndings by a quantitative comparison of the
proposed algorithm with the state-of-the-art approach. Finally, in Chapter 8, we discuss our
�ndings and give suggestions for potential directions of future work.

1https://www.ipol.im/pub/pre/295/
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2. Preliminaries

This chapter recalls some concepts which are used regularly throughout the thesis. In particu-
lar, we recall the augmented direction method of multipliers, give basics on the superiorization
methodology and on Taylor jets and give a brief description of the mean structural similar-
ity index. Proofs are omitted in general. Instead, we refer the interested reader to the given
references.

2.1. Alternating direction method of multipliers (ADMM)

In this section, we give basics on the alternating direction method of multipliers (ADMM) which
is a classical general framework for solving optimization problems with linear constraints [86,
81]; see also [25] for a review of the ADMM. In the context of imaging problems –which is of
primary interest in this thesis– it is well-known that the ADMM performs particularly well [88,
153, 177, 25, 213]. The ADMM approaches the constrained minimization problem by solving
a sequence of subproblems. Naturally, one requires that these subproblems are easier to solve
than the original problem.

In the Euclidean setting, the ADMM approaches problems of the form

min
x ∈Rm,y∈Rn

f (x ) + h(y)

subject to Ax + By = b,
(2.1)

where f : Rm → R ∪ {∞}, д : Rn → R ∪ {∞} and A ∈ Rp×m ,B ∈ Rp×n ,b ∈ Rp . The augmented
Lagrangian of this problem is given by

Lµ (x ,y, λ) = f (x ) + h(y) + 〈λ,Ax + By − b〉 +
µ
2 ‖Ax + By − b‖

2
2 , (2.2)

where λ ∈ Rp is a Lagrange multiplier corresponding to the constraint in (2.1) and µ > 0 is
a corresponding penalty parameter. (Lµ is called augmented Lagrangian since it amounts to
the usual Lagrangian together with the quadratic penalty weighted by µ/2.) The basic ADMM
scheme is then given by

x j+1 ∈ argmin
x
Lµ (x ,y

j , λj ) (2.3)

y j+1 ∈ argmin
y
Lµ (x

j+1,y, λj ) (2.4)

λj+1 = λj + µ (Ax j+1 + By j+1 − b). (2.5)

Hence, in the course of the iterations the ADMM synchronizes the solutions of the local sub-
problems (2.3), (2.4) to a solution of the global problem (2.1). In this context, the variable λ can
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be interpreted as the weighted running sum of the constraint errors. Therefore, the ADMM is
particularly useful if (2.3) and (2.4) can be solved e�ciently.

Concerning convergence, �rst assume that the functionals f and h are closed, proper and
convex. In this situation and if the (non-augmented) Lagrangian L0 has a saddle point, the
iterations (2.3)-(2.5) converge to a feasible point (x∗,y∗), that is, Ax∗ + By∗ = b, the objective
converges to the optimal value and λ∗ is an optimal dual point [25].

A standard extension to the ADMM is to include a varying penalty parameter µ j to improve
practical convergence. A basic strategy is to initialize µ0 by a small value and increase it after
each iteration by a constant factor φ > 1, that is, µ j+1 = φµ j . Intuitively, in view of the penalty
parameter, this allows the iterates x j and y j to evolve rather independently in the beginning
until the penalty parameter µ j becomes large which enforces the constraints in (2.1).

The minimization problems we deal with in this thesis are non-convex. Yet, originally formu-
lated for convex problems, the ADMM has been successfully applied to non-convex problems
as well [211, 54, 101, 214, 203]. In this context, the non-convex ADMM has gained increased
theoretical attention in recent years [197, 102, 136, 194, 195].

2.2. Basics on the superiorization methodology

In this section, we brie�y introduce the concepts of the superiorization methodology [60, 97]
as we need them later in Chapter 5. Further details and examples can be found in [45, 47]
and the references therein. For a comparison of the superiorization methodology to (convex)
optimization, we refer to [47]. For an extensive overview, we refer the interested reader to the
continuously updated bibliography on superiorization in [44].

The general framework of the superiorization methodology is to take an iterative algorithm,
the basic algorithm, and perturb its iterates in a way such that the �nal result becomes more
desirable in terms of an a priori chosen target function. More precisely, the perturbations are
used to lower the value of the target function in a way that, in principle, does not compromise
the convergence or, alternatively, the termination of the basic algorithm. Thereby, the target
function values of the iterates are decreased so that the �nal result should become more de-
sirable in terms of the target function. Thus, the perturbed algorithm is called the superiorized
version (w.r.t. the target function) of the original algorithm. Often, the superiorization method-
ology requires only minor modi�cations of the basic algorithm. In particular, the existing code
may only need to be slightly modi�ed.

We note that both energy minimization methods and superiorization methods typically re-
sult in two steps within an algorithmic scheme: a forward step followed by a regularizing step.
However, the interpretation of these steps is di�erent.

We �x some notation and give the basic de�nitions. First, we denote byST ⊂ Rn the solution
set of a given problem T . For a start, we let A be an algorithmic operator, which generates
sequences XA = (xk )k ∈N0 of the form

xk+1 = A (xk ) for all k ≥ 0 (2.6)

that converge to points in ST for any initial x0 ∈ Rn . To �x ideas, we give the following basic
example.
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Example 2.1. A prototypical example for a problem T is given by the least squares problem

min
x ∈Rn

φ (x ) = min
x

1
2 ‖Ax − b‖

2
2 , (2.7)

where A ∈ Rm×n ,b ∈ Rm . Consequently, ST corresponds to the set of minimizers of (2.7). Here,
A may be given by gradient descent steps, i.e., the Landweber iteration which is well-known to
converge to a solution of (2.6), [72]. The iterates are given by

xk+1 = A (xk ) = xk − α∇φ (xk ), (2.8)

for the gradient ∇φ (x ) = ATAx −ATb, step-size 0 < α < 1
‖A‖2

and any initial x0 ∈ Rn .

The following notion of perturbation resilience [47] provides a criterion for an iterative al-
gorithm A to be superiorizable by bounded perturbations.

De�nition 2.2 (Bounded perturbation resilience). Let A be an algorithmic operator which
creates sequences xk+1 = A (xk ) that converge to points in the solution set ST of a given
problem T for all starting points. Then A is bounded perturbation resilient if any sequence
yk+1 = A (yk + βkv

k ) also converges to a point in ST provided all βkvk are bounded pertur-
bations, i.e., (vk )k ∈N is bounded, βk ≥ 0 for all k and

∑∞
k=0 βk < ∞.

De�nition 2.2 is useful only for problems which do not involve noise1 and have a nonempty
solution set and basic algorithms whose theoretical convergence is guaranteed [97]. To this
end, the notion of bounded perturbation resilience was introduced in [97]. It ensures that an
iterative algorithm still terminates (rather than converges) when its iterates are (appropriately)
perturbed. To give a precise de�nition of strong perturbation resilience, we need some prepa-
rations.

De�nition 2.3 (Proximity function, ε-compatibility, proximity sets). Given a problem T , a
proximity function is a function PrT (x ) : Rn → [0,∞) that measures how incompatible x is
with T . For any ε > 0 and any proximity function, we de�ne that x is ε-compatible with T if
PrT (x ) ≤ ε . We call the sets

Γε =
{
x ∈ Rn : PrT (x ) ≤ ε

}
(2.9)

proximity sets.

For least squares problems T as in Example 2.1, the proximity function is typically given
by the residual sum of squares PrT (x ) = φ (x ) = 1

2 ‖Ax − b‖
2
2 and ε is chosen according to the

assumed level of noise.

De�nition 2.4 (ε-output of a sequence with respect to Γε ). For some ε > 0, a nonempty prox-
imity set Γε and a sequence X = (xk ) of points, the ε-output O (Γε ,X) of X w.r.t. Γε is de�ned to
be the element xk with smallest k ∈ N such that xk ∈ Γε .

We can now specify strong perturbation resilience of an algorithmic operator.
1 For example, if T is a least squares problem, then the exact solutions ST are desirable if no noise is involved.
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De�nition 2.5 (Strong perturbation resilience). Let Γε denote the proximity set and A be an
algorithmic operator. The algorithmic scheme (2.6) is strongly perturbation resilient if

(i) there is an ε > 0 such that the ε-output O (Γε ,XA ) of the sequence XA exists for every
x0 ∈ Rn ;

(ii) for all ε ≥ 0 such thatO (Γε ,XA ) is de�ned for everyx0 ∈ Rn , we also have thatO (Γε ′,YA )
is de�ned for every ε ′ ≥ ε and for every sequence YA = (yk ) generated by

yk+1 = A (yk + βkv
k ), for all k ≥ 0, (2.10)

where the terms βkvk are bounded perturbations as de�ned in De�nition 2.2.

We note that bounded perturbation resilience implies strong perturbation resilience given
ST , ∅ and ST ⊂ Γε for some ε > 0.

We discuss the choice of the basic algorithm. The Landweber iteration (2.8) converges
to solutions of least squares problems (2.7), but is known to have slow convergence for ill-
conditioned problems. The conjugate gradient algorithm (CG) converges to solutions of (2.7)
as well and at the same time copes better with ill-conditioned problems [192]. This motivates to
consider the CG algorithm. In [218], the authors studied several variants of the CG method and
identi�ed a particular one which is strongly perturbation resilient. The following pseudocode
describes this variant of the CG method.

Algorithm 2.1 (The conjugate gradient algorithm for least squares problems (2.7)).

• Set k = 0, pick an arbitrary initial point x0 ∈ Rn and ε > 0.

• Set p0 = −AT (Ax0 − b) and h0 = ATAp0.

• Iterate until ‖Axk − b‖22 ≤ ε :

1. д = AT (Axk − b)

2. α = 〈д,hk 〉/〈p,hk 〉

3. pk+1 = −д + αpk

4. hk+1 = ATAp

5. κ = −〈д,pk+1〉/〈pk+1,hk+1〉

6. xk+1 = xk + κp

7. k ← k + 1

We record the strong perturbation resilience of the presented variant of the CG algorithm
(Algorithm 2.1), which has been proven in [218, Theorem A.1].

Theorem 2.6. The CG method as recorded in Algorithm 2.1 is strongly perturbation resilient.
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We saw that if the sequence (2.6) created by the basic algorithm A converges to some x∗ ∈
ST and A is bounded perturbation resilient, then bounded perturbations may be used to �nd
anothery∗ ∈ ST without altering the convergence of the basic algorithm. Alternatively, ifA is
strongly perturbation resilient, then one obtains some y∗ ∈ Γε in a �nite number of iterations,
when perturbing its iterates by bounded perturbations.

Towards superiorized solutions, one perturbs the iterates of a basic algorithm by means of
an a priori chosen target function ϕ : Rn → R. Typically, in the context of superiorization,
the perturbations correspond to adding non-ascending directions w.r.t. the target function with
appropriate step-sizes as in De�nitions 2.2 and 2.5.

De�nition 2.7 (Non-ascending direction). Given a function ϕ : Rn → R and a point x ∈ Rn ,
the vector v ∈ Rn is a non-ascending direction for ϕ at x , if ‖v ‖ ≤ 1 and if there is t > 0 such
that

ϕ (x + tv ) ≤ ϕ (x ) for all t ∈ (0, t̄]. (2.11)

The computation of non-ascending directions should be cheap, typically partial derivatives
or subgradients of ϕ are used. In [47], the authors used proximal points, which was moti-
vated by the common practice of applying multiple perturbation steps (towards the proximal
mapping) before the next step of the basic algorithm.

The basic superiorization scheme in terms of non-ascending directions is given by

yk+1 = A (P (yk )) for all k ≥ 0, (2.12)

where the perturbation procedureP (yk ) = yk+βkvk adds a non-ascending directionvk w.r.t.ϕ
at yk to yk with appropriate step-size βk in the sense of De�nitions 2.2 and 2.5, respectively.
In practice, the sequence (βk )k ∈N0 is realized via βk = β0a

k for a positive β0 and 0 < a < 1
which, together with ‖vk ‖ ≤ 1, ensure the summability of the perturbations as required in
De�nitions 2.5 and 2.7. Finally, the iteration (2.12) is typically stopped when the proximity
satis�es PrT (yk ) ≤ ε ′, where ε ′ depends on the (estimated) noise-level.

2.3. Basics on Taylor jets

In this section, we give basics on Taylor jets as we need them in Chapter 6 and Chapter 7. We
also �x further notation regarding di�erentials. Throughout this section, we assume d ≥ 2,
Ω ⊂ Rd to be open and u : Ω → R being (su�ciently) smooth.

Jets. We �rst informally recall the notion of a jet. A jet J of order k is a smooth mapping
from Ω to the space of k-th order polynomials Πk , i.e., a k-th order polynomial Jx is assigned
to each point x ∈ Ω. In our context, we mean by the attribute “smooth” that the mapping is
su�ciently smooth, i.e., the mapping is Ck , meaning it is k times continuously di�erentiable
where the concrete k depends on the situation and is suitably chosen such that all appearing
di�erentials are indeed well-de�ned (in the classical sense).
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Taylor jets. The Taylor jet Jku of order k of u is a �eld of truncated Taylor polynomials
of order k . Formally, the Taylor jet is a smooth mapping from Ω to the space of k-th order
polynomials Πk , that is, Jku : Ω → Πk and the evaluation of Jku in a point x is pointwise
given by

Jkux (z) = u (x ) +
k∑
l=1

1
l !
Dlux (z − x , . . . , z − x︸             ︷︷             ︸

l times

) (2.13)

for all z ∈ Rd . (Note that (2.13) is well-de�ned as u is su�ciently smooth, i.e., u is at least k
times continuously di�erentiable and, in particular, the partial derivatives of u up to order k
exist.) We denote by Dlux the l-th order di�erential of u. Recall that Dlux corresponds to the
symmetric l-linear form which assigns the l-th directional derivative of u at x along z − x . Its
action on arguments h1, . . . ,hl ∈ Rd in terms of partial derivatives is given by

Dlux (h1, . . . ,hl ) =
d∑

i1, ...,il=1
∂i1 · · · ∂ilu (x ) · h1,i1 · · ·hl,il . (2.14)

Note that hl,il , is the il -th component of hl and ∂i1 · · · ∂ilu (x ) denotes the l-th partial derivative
of a function u for the coordinate directions i1, . . . , il , evaluated at the point x .

Example 2.8. For a domain Ω ⊂ R2 and order k = 1, the �rst order jet of a twice continuously
di�erentiable function u : Ω → R at x ∈ Ω is the �rst order Taylor polynomial of u at x , i.e., for
z ∈ R2 we have

J 1ux (z) = u (x ) + ∂1u (x ) (z1 − x1) + ∂2u (x ) (z2 − x2).

Representations of Taylor jets. The number of l-th order partial derivatives ofu at a point
x is Nl =

(
d+l−1

l

)
and, in view of (2.14), the space of l-th order di�erentials has dimension Nl .

More precisely, the identi�cation of the l-th order di�erential ofu at x with the vector of all l-th
order partial derivatives is an isomorphism. By using multi-index notation this vector is given
by (∂αu (x )) |α |=l ∈ RNl ,where α = (α1, . . . ,αd ) ∈ Nd

0 denotes a multi-index, |α | := α1+. . .+αd ,
and ∂αu (x ) := ∂α1

1 · · · ∂
αd
d u (x ). (For instance, in the bivariate setting d = 2, we have Nl = l + 1,

and thus l + 1 di�erent partial l-th order derivatives.)
Accordingly, the Taylor polynomial of u at x can be described by its coe�cients w.r.t. the

monomial basis which is shifted to the point x , i.e., it is fully described by the vector(
u (x ), ∂1u (x ), ∂2u (x ), . . . , (∂αu (x )) |α |=k

)
(2.15)

which is an element of Rr , r =
∑k
l=0 Nl =

(
d+k
k

)
. The representation in (2.15) depends on

the base point x . If we want to compare two Taylor polynomials, we have to represent Tay-
lor polynomials w.r.t. the monomial basis shifted to another point y given by the monomial
functions

z 7→ (z − y)α := (z1 − y1)
α1 · · · (zd − yd )

αd , |α | ≤ k . (2.16)

We note that the (polynomial) coe�cients of a Taylor polynomial –except the ones of the
highest order k– depend on the base point x .
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Example 2.9. For a domain Ω ⊂ R2 and a twice continuously di�erentiable bivariate function
u : Ω → R, the �rst order Taylor polynomial Jux of u at the point x can be represented (in x) by(

u (x ), ∂1u (x ), ∂2u (x )
)

(2.17)

and its representation at y , x is given by(
u (x ) + ∂1u (x ) (y1 − x1) + ∂2u (x ) (y2 − x2), ∂1u (x ), ∂2u (x )

)
. (2.18)

As a consequence, we consider the Taylor polynomials as the objects to study rather than
a speci�c vector representation. For notational convenience we use the representation of the
Taylor jet by

Jkx :=
(
u (x ), ∂1u (x ), ∂2u (x ), . . . , (∂αu (x )) |α |=k

)
(2.19)

which actually encodes a polynomial with coe�cients that depend on the considered point
dependent basis. In the bivariate �rst order case, we use the x-dependent vector

Jx := J 1
x := (u (x ),a J (x ),b J (x )), (2.20)

to represent the Taylor jet of the function u at the point x , where we let a J (x ) := ∂1u (x ) and
b J (x ) := ∂2u (x ). As we will be mostly concerned with the bivariate �rst order case, we will
frequently drop the order in the notation as on the left-hand side of (2.20).

2.4. Mean structural similarity index (MSSIM)

In this thesis, we will frequently need to assess the similarity between two images in a quanti-
tative fashion. As an example, we consider an image which has been corrupted by noise. The
result of a denoising method which has been applied to the noisy image should be “closer” to the
uncorrupted image than the noisy data. Here, a notion of closeness can serve as a quantitative
measure for the quality of a reconstructed image. The simplest choice for measuring this close-
ness corresponds to the Euclidean distance between two images. Frequently used quantities
which are based on the Euclidean distance are the mean squared error or the (peak) signal-
to-noise-ratio. However, it is known that these measures can di�er considerably from the
perceived visual quality; see [198] and the references therein. Therefore, we will use the mean
structural similarity index (MSSIM) which is better suited to perceived visual quality/closeness
than measures based on the Euclidean distance.

We start out by de�ning the structural similarity index (SSIM). To this end, we let u, f ∈
Rm×n be two (digital) images of size m × n. As a �rst step, we de�ne the mean intensity µu =

1
mn

∑
i, j ui, j , the (discrete) standard deviation σu =

(
1

mn−1
∑

i, j |ui, j − µu |
2
) 1

2 and the (discrete)
covarianceσuf = 1

mn−1
∑

i, j (ui, j−µu ) ( fi, j−µf ). The SSIM-index is a multiplicative combination
of the so-called luminance term, the contrast term and the structural term which are de�ned
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as follows

l (u, f ) =
2µuµf +C1

µ2
u + µ

2
f +C1

, luminance term, (2.21)

c (u, f ) =
2σuσf +C2

σ 2
u + σ

2
f +C2

, contrast term, (2.22)

s (u, f ) =
σuf +C3

σuσf +C3
, structural term, (2.23)

where the constantsCi are set toC1 = (0.01L)2,C2 = (0.03L)2,C3 = C2/2 for the dynamic range
of the pixel values L (in this thesis: L = 1) [198]. Then the SSIM-index is given by

SSIM(u, f ) = l (u, f )α · c (u, f )β · s (u, f )γ , (2.24)

where the exponents are typically chosen as α = β = γ = 1, [198]. The SSIM is symmetric, i.e.,
SSIM(u, f ) = SSIM( f ,u) bounded above by 1 and SSIM(u, f ) = 1 if and only if u = f .

Towards image quality assessment, that is, the MSSIM-value, the SSIM-index is applied lo-
cally rather than globally. To this end, the SSIM-index is computed for a local window around
each pixel. This window corresponds to an 11 × 11 circular-symmetric Gaussian weighting
function with standard deviation 1.5 normalized to unit sum [198] (boundary pixels are repli-
cated). The MSSIM is then given by the mean of all these local SSIM-values, i.e.,

MSSIM(u, f ) =
1
mn

mn∑
j=1

SSIM( fj ,uj ), (2.25)

where fj and uj denote the j-th window of f and u, respectively. By de�nition the MSSIM is
symmetric, bounded above by 1 and MSSIM(u, f ) = 1 if and only if u = f . For multi-channel
images, e.g., RGB images, the SSIM is computed for each channel in each pixel, where the
windows are taken across the channels. Then the mean is taken over all these values.
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3. An E�cient Algorithm for Univariate
Higher Order Mumford-Shah and Potts
Models

In this chapter, we consider higher order Mumford-Shah and Potts models for univariate data.
This chapter is based on the publication [179].

Organization of the chapter. In Section 3.1, we give an overview and discuss related work.
In Section 3.2, we describe and discuss higher order univariate Mumford-Shah and Potts mod-
els. Next, in Section 3.3, we develop a fast solver for higher order Mumford-Shah problems and
for higher order Potts problems, and we analyze the stability. A numerical study is given in
Section 3.4. Finally, Section 3.5 summarizes the chapter.

3.1. Overview and related work

Smoothing is an important processing step when working with measured signals or time se-
ries. Signals of interest often have discontinuities which typically indicate signi�cant changes;
examples are the cross-hybridization of DNA [175, 67, 104], the reconstruction of brain stim-
uli [207], single-molecule �uorescence resonance energy transfer [109], cellular ion channel
functionalities [103], photo-emission spectroscopy [78] and the rotations of the bacterial �ag-
ellar motor [176, 157]. Further examples can be found in [137, 138] and [78] as well as in the
references therein.

It is a standard technique to smooth signals with splines. However, classical spline smooth-
ing does not preserve discontinuities. The (discrete) Mumford-Shah model extends spline
smoothing by allowing for discontinuities between smooth signal parts [148, 149, 21]. How-
ever, a signi�cant limitation of the Mumford-Shah model emerges when applied to data with
linear or polynomial trends. In particular, if the slope of the signal is too high, the Mumford-
Shah model produces spurious segments. This is known as the gradient limit e�ect [21]. It
originates in the �rst order smoothing of the Mumford-Shah model, i.e., the model penalizes
deviations from constant signals to enforce smoothness (within segments). It is often more
desirable to penalize deviations from locally linear or locally polynomial signals instead.

A natural approach to preserving linear or polynomial trends is the usage of higher order
smoothing penalties. This gives rise to higher order Mumford-Shah models given by

(u∗,I∗) = argmin
u ∈RN ,I partition

‖u − f ‖22 +
∑
I ∈I

β2k ‖∇kuI ‖
2
2 + γ |I |, (Pk,β,γ )
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where the data is denoted by f ∈ RN , I is a partition of the data domain Ω = (1, . . . ,N ) and
∇kuI denotes the k-th order �nite di�erence operator (which is a discrete approximation of the
k-th derivative of u) applied to the vector u restricted to the discrete “interval” or segment I
of the domain partition I. More precisely, the functional value comprises cost terms for the
data deviation, for the inner energy of a (smoothing) spline on the single segments, and for
the complexity of the partition. The parameters β ,γ > 0 are model parameters which control
the tradeo� between data �delity and smoothness. To �x ideas, choosing a large β leads to
stronger smoothing on the segments, and choosing a largeγ leads to fewer segments. Together,
the minimizer u∗ is a (discrete) piecewise k-th order spline approximation with smoothing
parameter β to f . The discontinuities or breakpoints of u∗ are given by the boundaries of the
corresponding partition I∗.

The result of (Pk,β,γ ) consists of a partition I∗ and a corresponding (piecewise) smoothed
signal u∗. The partition I∗ can serve as a basis for identifying segment neighborhoods [6] and
indicates changepoints of the signal [121]. The corresponding optimal signal u∗ can serve as a
smoother for a signal with discontinuities [21, 206].

It is worth considering the limit cases of β and γ , respectively. Concerning β , we note that
the kernel of ∇k corresponds to the polynomials of maximum degree k −1. Thus, the limit case
of (Pk,β,γ ) for β → ∞ can be written as

argmin
u,I

‖u − f ‖22 + γ |I |, s.t. uI is a polynomial of maximum degree k − 1 for all I ∈ I.

(Pk,∞,γ )
Since the special case k = 1 in (Pk,∞,γ ) is known as the Potts model, we call (Pk,∞,γ ) the higher
order Potts model. In the other limit case γ → ∞, no discontinuities are allowed anymore as the
functional value would be in�nitely large. Hence, it reduces to the (discrete) k-th order spline
approximation

argmin
u

‖u − f ‖22 + β
2k ‖∇ku‖22 , (Pk,β,∞)

which is a classical method for smoothing data; see [204, 193].
To sum up, an important advantage of higher order Mumford-Shah and Potts models is that

they provide a richer representation, most notably the ability to reproduce polynomials of order
k − 1. As a consequence, they improve the estimation of data with linear, quadratic or other
polynomial trends. On the �ipside, higher order Mumford-Shah models are theoretically and
practically more involved: important questions are the uniqueness of minimizers, the choice of
a reasonable order, and e�cient and stable solvers for the involved non-convex optimization
problem. An illustration of the smoothing e�ect of higher order Mumford-Shah models in
comparison to classical splines and to �rst order models is given in Figure 3.1.

In this chapter, we study higher order Mumford-Shah and Potts models for univariate data.
We �rst discuss basic properties of the models, prove that the solutions are unique for almost
all data and discuss connections with related models. As a central contribution, we develop a
fast minimization algorithm for higher order Mumford-Shah and Potts models. We prove that
its worst case complexity is quadratic in the length of the signal and derive stability results.
By including pruning techniques, the practical complexity can be improved to a linear one.
Finally, we provide a numerical study in which we particularly compare higher order models
with the �rst order models w.r.t. runtime and reconstruction quality.
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(a) Noisy signal with discontinuities
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(b) Smoothing spline
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(c) Classical Mumford-Shah (P1,β,γ )

20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(d) Higher order Mumford-Shah
(P2,β,γ )
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(e) Higher order Mumford-Shah
(P3,β,γ )

20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(f) Higher order Mumford-Shah
(P4,β,γ )

Figure 3.1.: Smoothing of a noisy signal with discontinuities (a) using various models (with optimal
model parameters). The red dashed lines depict the ground truth; the streaks at the bottom indicate
the discontinuities or segments of the ground truth (top, red) and the computed segmentations (bottom,
blue). (b) Classical spline approximation smooths out the discontinuities. (c) The classical Mumford-
Shah model allows for discontinuities, but the estimate misses most of them and the result remains
noisy. (d–f) The higher order Mumford-Shah models provide improved smoothing and segmentation.
In particular, the third and the fourth order models recover the discontinuities of the ground truth.

Related work. Most literature studies the members of the family (Pk,β,γ ) individually for
the orders k = 1 or k = 2 and for β < ∞ or β = ∞. As pointed out in Chapter 1, the piecewise
constant variant (P1,∞,γ ) is often called Potts model [164]. (Therefore we refer to (Pk,∞,γ )
as higher order Potts model.) An early work by Bruce [34] used a related weighted version
of the Potts model for minimum error quantization. Bellman [14] studied curve �tting by
segmented straight lines, that is, the case (P2,∞,γ ). Kleinberg and Tardos [125] discuss this
approach and refer to it as segmented least squares problem. As we have seen in Chapter 1, the
�rst order problems (P1,β,γ ) for arbitrary parameters β have been studied in the seminal works
by Mumford and Shah [148, 149]. Hence, we call the family (Pk,β,γ ) higher order Mumford-
Shah models. At about the same time, Blake and Zisserman [21] studied (P1,β,γ ) under the
name weak string model. They already pointed out a shortcoming of the �rst order model,
namely the gradient limit e�ect which we mentioned above; it describes the phenomenon that
the �rst order model penalizes large slopes and produces spurious extra intervals to account for
them; cf. Figure 3.2. In the same work, they proposed a second order extension, called the weak
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rod model. Compared with (P2,β,γ ), the weak rod model has an extra penalty for discontinuities
in the �rst derivative. A recent survey on (continuous domain) Blake-Zisserman models can
be found in [43]. To the author’s knowledge, a systematically study of the models (Pk,β,γ ) for
arbitrary orders k has not been conducted.

For the �rst order models, other penalties and other data spaces than the `2-based penal-
ties have been studied. Fornasier and Ward [75] consider `p-based variation penalties with
p ≥ 1. The variant with `1 variation penalty –also known as truncated total variation– was
investigated in [101, 126]. `1-based data terms have been used for example in [79, 202, 184].
Mumford-Shah and Potts models for manifold-valued data spaces have been investigated in
[200].

Recall that computing solutions of the Mumford-Shah problem corresponds to solving a non-
convex minimization problem. It is well-known that the univariate situation (Pk,β,γ ) can be
formulated as a partitioning problem, which can be solved by dynamic programming; see [14,
20, 6, 206, 107, 79]. The state-of-the-art solver has the worst case complexity O (N 2ϕ (N )). Here,
ϕ (N ) denotes the costs of computing a spline approximation error on an interval of maximum
length N ; see [206, 125, 79]. Killick et al. [121] proposed a pruning strategy which accelerates
the algorithm: if the expected number of segments |I∗ | grows linearly in N and if the expected
log-likelihood ful�lls certain estimates, the expected complexity will be OP (Nϕ (N )). Another
pruning scheme has been established in [181]. An algorithm for computing the solutions of the
�rst order Mumford-Shah problem for all parameters γ simultaneously was proposed in [79].

By exploiting the band structure of the accompanying linear systems on each segment, one
can achieve the cost ϕ (N ) = N , so that the overall worst case complexity of the above solver
is O (N 3). For the �rst order problem (P1,β,γ ), [101] proposed an algorithm of O (N 2) worst
case complexity. It utilizes a fast computation scheme for the approximation errors which
was �rst proposed by Blake [20]. However, this scheme is based on algebraic recurrences and
a generalization to arbitrary orders k is di�cult. The approximation errors associated with
the higher order Potts model (Pk,∞,γ ) may be computed in constant time by precomputing
the moments of the data so that ϕ (N ) = 1; see [79]. Unfortunately, as the algorithm works
with large cumulative sums, they su�er from loss of signi�cance and become unstable for
higher orders. Blake and Zisserman [21] also discussed an alternative dynamic programming
approach of Viterbi-type. Here, the range of the signal u has to be restricted to a �nite range of
R real values so that we cannot expect to obtain an exact minimizer without prior knowledge
of the exact range. In addition, this approach costs O (NRk+1) which becomes too expensive
for higher orders [21].

3.2. Higher order univariate Mumford-Shah and Potts models

We start with the basic setup and notation. We aim at recovering the unknown signal д ∈ RN

of length N from noisy samples given by

fn = дn + ηn , n = 1, ...,N , (3.1)

where we assume additive white Gaussian noise, i.e., the ηn are independently and identi-
cally distributed Gaussian random variables with zero mean and variance σ 2. We denote a

20



(discrete) interval I with lower bound l and upper bound r by the Matlab-type notation I =
l : r = {l , l + 1, . . . , r }. Further, for convenience, we use the Matlab-type indexing xI = xl :r =
(xl ,xl+1, . . . ,xr ). We de�ne a partition into intervals I of the discrete signal domain Ω = 1 : N
as a set of intervals I ⊂ Ω which are pairwise disjoint and segment Ω. In particular, I ∩ J = ∅
holds for all distinct I , J ∈ I and

⋃
I ∈I = Ω. As we deal only with partitions into intervals

in this chapter, we brie�y call I a partition. Moreover, the squared Euclidean norm of u is
denoted by ‖u‖2 = ‖u‖22 =

∑N
n=1u

2
n for u ∈ RN .

3.2.1. First order Mumford-Shah model and the gradient limit e�ect

We �rst recall some important properties of the classical �rst order model. On the discrete
domain Ω, we write the �rst order Mumford-Shah problem as

(u∗,I∗) = argmin
u ∈RN , I partition of Ω

N∑
n=1
|un − fn |

2 + β2
∑
I ∈I

|I |−1∑
i=1
|(uI )i+1 − (uI )i |

2 + γ |I |. (3.2)

In this instructive formulation, the arguments of the minimization are the signal u and the
partition I. For the derivation of algorithms based on dynamic programming [20, 79], the
problem is typically reformulated in terms of partitions only given by

I∗ = argmin
I partition of 1:N

∑
I ∈I

(
E I + γ

)
, with E I = min

v ∈R|I |

|I |∑
i=1
|vi − fi |

2 + β2
|I |−1∑
i=1
|vi+1 −vi |

2. (3.3)

Here E I is the (optimal) �rst order discrete spline approximation error on the interval I , that
is, E I corresponds to the minimal sum of the data �delity term and the smoothing term in (3.2)
w.r.t. the reduced data fI .

For the �rst order model (3.2), the signal u∗ can be recovered from the partition I∗ and vice-
versa. As a consequence, we can also write the functional in terms of the signal u only. The
corresponding formulation (in terms of a potential in u) reads

u∗ = argmin
u ∈RN

N∑
n=1
|un − fn |

2 +

N−1∑
n=1

min
(
β2 |un+1 − un |

2,γ
)
. (3.4)

This formulation is the basis for the derivation of algorithms based on iterative thresholding
techniques [75].

The classical Mumford-Shah model is limited by the so-called gradient limit e�ect [21]. It
describes the introduction of extra (spurious) segments to account for steep slopes in the data.
Thus, linear or polynomial trends in the data are not well approximated which is illustrated in
Figure 3.2. We see that the solution of the �rst order model (with optimally chosen model pa-
rameters) does not recover all discontinuities. However, when choosing the model parameters
to allow for more discontinuities to compensate this, spurious extra segments are introduced
at steep slopes. This exempli�es that �rst order models are not comprehensive enough for data
with locally linear or polynomial trends.
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(a) Noisy signal with discontinuities
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(b) Result of (P1,β,γ ) with optimal β ,γ
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(c) Smaller complexity penalty γ
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(d) Larger smoothing parameter β

Figure 3.2.: Limitations of the classical (�rst order) Mumford-Shah model: (b)-(d) show reconstructions
of the signal in (a) by the �rst order Mumford-Shah model (P1,β,γ ). (b) Result for the optimized model
parameters γ = 0.04, β = 1.3625 (w.r.t. the `2-error to the ground truth). The smoothing is insu�cient
and not all discontinuities are detected. (c) The lower complexity penaltyγ = 0.02 yields more but falsely
located discontinuities. (d) Increasing the smoothing parameter to β = 3 leads to stronger smoothing,
but to spurious segments as well. In either case, the �rst order model su�ers from the gradient limit
e�ect, i.e., the creation of spurious segments at steep slopes.

3.2.2. Basic properties of higher order Mumford-Shah and Potts models

In contrast to the �rst order Mumford-Shah model which makes use of �rst order �nite di�er-
ences, the k-th order Mumford-Shah models incorporate k-th order �nite di�erences. Towards
a compact notation, we denote by the matrix ∇k ∈ R(q−k )×q the k-th order �nite di�erence
operator. For example, for k = 1 and k = 2, ∇k is given by

∇ =

*.....
,

−1 1
−1 1

. . .
. . .

−1 1

+/////
-

∈ R(q−1)×q and ∇2 =

*.....
,

1 −2 1
1 −2 1
. . .

. . .
. . .

1 −2 1

+/////
-

∈ R(q−2)×q

respectively. Regarding higher orders k ≥ 3, we recall the notion of the (discrete) convolution
of two vectors v ∈ Rm ,w ∈ Rp . It is given by the vector v ∗w ∈ Rm+p−1 with entries (v ∗w )i =∑

j vjwi−j+1 where the sum is taken over all admissible subscripts j. Then, for higher orders
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k ≥ 3 the row pattern of the matrix ∇k corresponds to the k-fold convolution t ∗ t ∗ · · · ∗ t of
the �nite di�erence vector t = (−1, 1) with itself.

With this notation at hand, we write the higher order Mumford-Shah problem (Pk,β,γ ) on
the discrete domain Ω as

(u∗,I∗) = argmin
u ∈RN , I partition of Ω

N∑
n=1
|un − fn |

2

︸          ︷︷          ︸
data penalty

+ β2k
∑
I ∈I

|I |−k∑
i=1

(∇kuI )
2
i︸                   ︷︷                   ︸

smoothness penalty

+ γ |I |.︸︷︷︸
complexity penalty

(3.5)

We recall that the objective function incorporates a data penalty (or data �delity) term, which
ensures closeness to the data, a smoothness term, which provides smoothness within segments,
and a complexity penalty that controls the �neness of the partition. As a result, on each seg-
ment I of the partition I the minimizer u∗ is a k-th order discrete smoothing spline for the
data f . The model parameter β controls the amount of smoothing within each segment and
the model parameter γ determines the costs of introducing a new segment. In view of the def-
inition of ∇k , the order k is the derivative order of the (discrete) splines. Thus, polynomials of
order k − 1 have zero smoothness penalty on a segment.

Formulation as partitioning problem. In Section 3.2.1, we reformulated the �rst order
Mumford-Shah model in terms of the partition only, i.e., as a partitioning problem. Accordingly,
we formulate higher order Mumford-Shah models (3.5) as partitioning problems by

I∗ = argmin
I partition of 1:N

∑
I ∈I

(E I + γ ). (3.6)

Here, E I is the k-th order spline approximation error on the interval I which given by

E I = min
v ∈R|I |

‖v − fI ‖
2
2 + β

2k ‖∇kv ‖22 = min
v ∈R|I |

|I |∑
i=1
|vi − ( fI )i |

2 +

|I |−k∑
i=1

β2k (∇kv )2i . (3.7)

From the de�nition of ∇k it follows immediately that the approximation error E I is only well-
de�ned for vectors of length greater than k . Hence, for intervals with length |I | ≤ k , we have
E I = 0. The signal u∗ is recovered from an optimal partition I∗ by solving the least squares
problems corresponding to the respective approximation errors for each interval, i.e.,

u∗I = argmin
v ∈R|I |

‖v − fI ‖
2
2 + β

2‖∇kv ‖22 , for all I ∈ I∗. (3.8)

Thus, after an optimal partition I∗ of the domain Ω has been found, the corresponding optimal
signal estimate u∗ is uniquely determined.

A formulation of higher order models in terms of the signalu only, similarly to the �rst order
model (3.4), is not feasible. In contrast to the �rst order model, a solution u can correspond to
multiple partitions which can be seen in the following basic example.

Example 3.1. Let k ≥ 2, γ < 2/3 and β be su�ciently large. Then for the data f = (0, 1, 0), a
minimizer is given by u = f . However, the three distinct partitions

{
(1, 2), (3)

}
,

{
(1), (2, 3)

}
and{

(1), (2), (3)
}
all induce this u = f .
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We elaborate on the relation between an optimal signal u∗ and the optimal partition I∗
in terms of block matrices. Taking k-th order di�erences of a signal u on each interval of a
partition I amounts to applying a block diagonal matrix LI which is given by

LI =

*.....
,

L |I1 |
L |I2 |

. . .

L |IM |

+/////
-

, with Lp = ∇
k ∈ R(p−k )×p , (3.9)

where the k-th order �nite di�erence matrices∇k of the appropriate size (p−k )×p is de�ned as
above. (The symbol |Im | denotes the cardinality of them-th element of the partitionI.) Ifp ≤ k,
we let Lp denote an “empty” block of length p.While the number of columns of LI is equal to
the signal length N , the number of rows depends on the length of the intervals in the partition
with minimum size k + 1, i.e., the number of rows of LI is given by

∑M
m=1 max( |Im | − k, 0). As

an example, for k = 2 and the partition I = {(1, 2, 3, 4), (5, 6), (7, 8, 9)}, we have

LI =
*..
,

1 −2 1
1 −2 1

1 −2 1

+//
-
∈ R3×9.

We use the block matrix notation (3.9) to formulate the minimization problem (3.5) as

argmin
u ∈RN , I partition

β2k ‖LIu‖
2
2 + ‖u − f ‖22 + γ |I |. (3.10)

If we �x a partition I, a minimizeruI satis�es the normal equations of the corresponding least
squares system, i.e., after taking derivatives w.r.t. u, a minimizer uI solves the linear system

β2kLT
I
LIuI + (uI − f ) = 0. (3.11)

We note that the system matrix on the left-hand side of (3.11) has full rank for all β ≥ 0. Hence,
(3.11) has the unique solution

uf ,I = SI,β f , where SI,β = (β2kLT
I
LI + id)−1. (3.12)

For readability, we drop the subscript if the dependence on I or β is clear. Towards a closed-
form G′

I
( f ) for the functional value of the higher order Mumford-Shah functional restricted

to the partition I, we plug (3.12) into (3.5) and obtain

G′
I
( f ) = β2k ‖LISI f ‖

2
2 + ‖SI f − f ‖22 + γ |I |. (3.13)

As a consequence, a minimizing partition I∗ corresponds to a minimizer of I 7→ G′
I
( f ).

Remark 3.2. In Example 3.1, all three partitions induce an empty matrix LI . Hence, they yield
the same map SI,β and by (3.12) the same signal u = f .
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Minimum functional values and minimum segment lengths. The following lemma
concerns the minimal functional values of the higher order Mumford-Shah problem. The proof
follows an argument similar to the one used in [21, Appendix C] for a continuous domain sec-
ond order problem.

Lemma 3.3. Let I∗ be a minimizing partition of the higher order Mumford-Shah problem (3.5).
Then the corresponding minimal functional value satis�es

G′
I∗
( f ) = ‖ f ‖22 − f T SI∗,β f + γ |I

∗ |.

Proof. Let ũ = SI∗,β f . Expanding the functional yields

G′
I∗
( f ) = β2k ‖LI∗ũ‖

2
2 + ‖ũ − f ‖22 + γ |I

∗ |

= β2kũTLT
I∗
LI∗ũ + (ũ − f )T (ũ − f ) + γ |I∗ |

= β2kũTLT
I∗
LI∗ũ + ũ

T (ũ − f ) + f T (ũ − f ) + γ |I∗ |

= ũT (β2kLT
I∗
LI∗ũ + (ũ − f )) − f T (ũ − f ) + γ |I∗ |

= −f T (ũ − f ) + γ |I∗ | = ‖ f ‖22 − f T ũ + γ |I∗ |,

where we used that a minimizer satis�es the normal equations (3.11) in the penultimate line.
�

In the next lemma, we show the existence of an optimal partition I∗ whose segments have
length not smaller than k with at most one exception.

Lemma 3.4. For any partition I there exists a partition I ′ such that all intervals I ′ ∈ I ′ have
length greater or equal than k (except possibly the leftmost one) and∑

I ′∈I′
E I
′

≤
∑
I ∈I

E I and |I ′ | ≤ |I|.

Consequently, the corresponding functional values satisfy G′
I′
( f ) ≤ G′

I
( f ).

Proof. The proof is based on the fact that intervals of length k have zero approximation error.
First, we �x a partition I and denote by I its right-most segment with |I | < k and by l its left
boundary index. If l = 1, the assertion holds and I ′ = I. For l , 1, we move the element
l − 1 from the left neighboring segment to I . We denote the partition modi�ed in this way by
I ′. (If the left neighboring segment becomes empty, we delete it from the partition.) Since the
new segment I ∪ {l − 1} has at most k elements, we have E {l−1}∪I = 0 for the corresponding
approximation error. Furthermore, we have |I ′ | ≤ |I|. After a �nite number of repetitions of
the above, we obtain a partition I ′′ whose segments have length greater or equal to k, except
possibly the leftmost segment. �
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Higher order Potts models. Recall that the higher order Potts model (Pk,∞,γ ) can be in-
terpreted as the limit case of the higher order Mumford-Shah model for smoothing parameter
β → ∞. As a consequence, while the higher order Mumford-Shah model approximates the
data on segments in a nonparametric way by k-th order smoothing splines, the higher order
Potts model approximates the data on the segments in a parametric way by a polynomial of
(maximum) degree k − 1. Therefore, for a segment I = l : r , the approximation error is now
given by

E I = min
v polynomial of

degree ≤ k − 1 on I

‖v − fI ‖
2
2 . (3.14)

After plugging the constraint on the right-hand side of (3.14) in the functional, we obtain a
least squares problem w.r.t. the k coe�cients of the polynomial.

By producing piecewise polynomial solutions, higher order Potts models are more restrictive
than higher order Mumford-Shah models. However, the piecewise polynomial prior is more
robust to noise. In practice, only one model parameter, that is the complexity parameter γ , has
to be determined.

As higher order Potts models correspond to the limit cases of higher order Mumford-Shah
models, they have similar properties. Speci�cally, there is no approximation error on a segment
if the data on the segment can be described by a polynomial of order k − 1 . In particular, an
interval I with |I | ≤ k has always approximation error zero. Therefore, Lemma 3.4 is also valid
for higher order Potts models.

3.2.3. Existence and uniqueness of minimizers

We show the existence of minimizers whose proof is straightforward.

Theorem3.5. The higher orderMumford-Shah (Pk,β,γ ) and the higher order Pottsmodel (Pk,∞,γ )
have a minimizer for each order k ∈ N and all model parameters γ > 0, β ∈ (0,∞].

Proof. Let the partition I be �xed. Now the minimization amounts to least squares problems
on the intervals in I which all possess a minimizer. Hence, as the number of partitions of the
discrete domain Ω is �nite, there exists at least one which minimizes the functional value. �

The uniqueness of minimizers is more cumbersome. The following example illustrates that
the solutions of higher order Mumford-Shah models (Pk,β,γ ) do not have to be unique.

Example 3.6. Consider data f = (0, 1, 0) and k = 2. The optimal signal corresponding to
the partition I3 = {(1), (2), (3)} is given by u3 = f and the corresponding functional value
equals 2γ . The optimal solution of a partition with two segments is given by u2 = f as well, and
yields the lower functional value γ . The one-segment partition I1 = {(1, 2, 3)} induces the signal
u1 = 1

1+6β 4 (2β4, 1 + 2β4, 2β4)T and the functional value is 4β 4

1+6β 4 . For γ =
4β 4

1+6β 4 or, equivalently,
β4 = γ/(4− 6γ ), the functional values of the two-segment and the one-segment solutions are both
minimal given that γ < 2/3. Hence, for each γ < 2/3 there exists β > 0 such that both the
two-segment and the one-segment solutions are minimizers and that u1 , u2.
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For convenience, we considered the second order case k = 2 in Example 3.6. Analogous
examples exist for any order k ≥ 3. We will see next that con�gurations as in Example 3.6 are
very unlikely. In preparation for proving this, we de�ne a notion of equivalence of partitions.

De�nition 3.7. We call two partitions I,J equivalent, i.e.,

I ∼ J :⇔ (I ∈ I, |I | > k ⇒ I ∈ J and J ∈ J , |J | > k ⇒ J ∈ J ) , (3.15)

if their intervals of minimum length k + 1 are the same. (The smaller intervals are irrelevant.)

Since the block matrices in (3.9) do not depend on intervals shorter than k+1, two equivalent
partitions I,J de�ne the same block matrices LI = LJ . Hence, by (3.12), their corresponding
minimizers are equal, i.e.,

uf ,I = SI,β f = SJ ,β f = uf ,J . (3.16)

In summary, each equivalence class of partitions [I] de�nes a unique restricted minimizeruf ,I
and for each equivalence class [I], there is a unique matrix LI . The latter is even a one-to-one
relationship. Altogether,

the assignments [I]→ LI , [I]→ uf ,I are well-de�ned,
and [I]→ LI is one-to-one.

(3.17)

The minimization problem (3.10) can now be recast in terms of equivalence classes [I] by

argmin
u ∈RN ,[I]

F[I] (u), where F[I] (u) = β
2k ‖LIu‖

2
2 + ‖u − f ‖22 + γ |[I]|. (3.18)

Here, the symbol |[I]| denotes the smallest cardinality among the members of [I], i.e., |[I]| =
minJ ∈[I] |J |. By employing this notation, the functional (3.13) is well-de�ned w.r.t. the equiv-
alence classes and we can write

G[I] ( f ) = β
2k ‖LISI f ‖

2
2 + ‖SI f − f ‖22 + γ |[I]|. (3.19)

We obtain the following result on the uniqueness of minimizers.

Theorem 3.8. Let γ > 0, β ∈ (0,∞], and k ∈ N. The minimizer u∗ of (Pk,β,γ ) is unique for
almost all input data f .

Proof. We infer from the notation introduced right above that the solution of (Pk,β,γ ) is unique
for any data f ∈ F , where the set F ⊂ RN is given by

F =
{
f ∈ RN : there is a partition I∗ with F[I∗] (uf ,I∗ ) < F[I] (uf ,I ) for all I < [I∗]

}
.

(3.20)
We will show that the complement F C of F is a null set, that is, it has Lebesgue measure zero.
The minimal function value constraint to [I] for data f is given by G[I] ( f ) as de�ned in (3.19).
We note that the main part of (3.19) is a quadratic form, i.e., Ḡ[I] ( f ) := G[I] ( f ) − γ |[I|] is a
quadratic form in f . Hence, F C is a subset of

H =
{
f ∈ RN : there are I,I ′ with [I] , [I ′] and Ḡ[I] ( f ) − Ḡ[I′] ( f ) = γ ( |[I ′]| − |[I]|)

}
.

(3.21)
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It follows from (3.17) and [I] , [I ′] that the quadratic form given by f 7→ Ḡ[I] ( f )−Ḡ[I′] ( f ) is
nonzero. Thus, each of its level sets is a hypersurface of dimension N −1 whose N -dimensional
Lebesgue measure is zero [64]. By forming the (�nite) union over all I,I ′, we obtain that H
has Lebesgue measure zero and since F C is a subset of H , it has Lebesgue measure zero as
well. �

3.2.4. Related models

Complexity-constrained models. Higher order Mumford-Shah models (Pk,β,γ ) control
the complexity of the partition in terms of a (complexity) penalty. Another approach is to
hard constrain the number of segments via

(u∗,I∗) = argmin
u ∈RN , |I |≤ J

‖u − f ‖22 + β
2k

∑
I ∈I

‖∇kuI ‖
2
2 . (Ck,β, J )

The models (Pk,β,γ ) and their constrained counterparts (Ck,β, J ) are closely related. We denote
by (u J ,I J ) a solution of (Ck,β, J ) constraint to at most J segments. Having determined all
constrained solutions (u J ,I J ), J = 1, . . . ,N , an optimal solution of (Pk,β,γ ) can be found by
simply choosing the constrained solution with smallest functional value (Pk,β,γ ):

J ∗ ∈ argmin
J=1, ...,N

γ J + ‖u J − f ‖22 + β
2k

∑
I ∈I J

‖∇ku JI ‖
2
2 .

This relation was exploited in [20] to derive a solver for the �rst order problem (P1,β,γ ).
As a useful consequence, the relation above allows us to compute minimizers of (Pk,β,γ ) for

all γ > 0 simultaneously. More precisely, the set of solutions of (Ck,β, J ) for all J = 1, . . . ,N ,
can be used to identify a �nite number of intervals for γ on which the corresponding solution
of (Pk,β,γ ) does not change.

`0-penalized problems. Similarly to the �rst order Mumford-Shah model (3.4), the �rst or-
der Potts model (P1,∞,γ ) can be formulated in terms of the signal u only by employing the
`0-“norm” of the vector of �nite di�erences, i.e.,

u∗ = argmin
u ∈RN

γ ‖∇u‖0 + ‖u − f ‖22 . (3.22)

Here, ‖v ‖0 denotes the number of non-zero elements of a vector; that is ‖v ‖0 = |{n : vn , 0}|.
In contrast to the �rst order Potts model, plugging ∇k in (3.22) does not give an equivalent
formulation of the higher order Potts model (Pk,∞,γ ). In general, for k ≥ 2 we have

argmin
w ∈RN

γ ‖∇kw ‖0 + ‖w − f ‖22 ,, u
∗, where u∗ is the minimizer of (Pk,∞,γ ). (3.23)

The following example illustrates the di�erence for k = 2.

Example 3.9. Let f = (−1,−1, 1, 1). The optimal partition with two elements is given by I2 =

{(1, 2), (3, 4)} and the corresponding optimal signal by uI2 = f whose approximation errors
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are equal to 0. (Other partitions with two elements have a positive approximation error.) The
best (linear) approximation on the one-segment partition I1 = {(1, 2, 3, 4)} is given by uI1 =

(− 6
5 ,−

2
5 ,

2
5 ,

6
5 ) so that E

(1:4) = 4
5 . The functional values are

4
5+γ for (I1,uI1 ) and 2γ for (I2,uI2 ).

Thus, (P2,∞,γ ) has the solution (I1,uI1 ) for γ > 4
5 , and (I2,uI2 ) for γ < 4

5 . (For γ =
4
5 they are

both optimal.) In contrast, as ‖∇2uI1 ‖0 = 0 and ‖∇2uI2 ‖0 = ‖ (2,−2)‖0 = 2, the critical value for
the `0-model (3.23) is γ = 2

5 . Thus, the solutions of (3.23) for k = 2 and (P2,∞,γ ) are di�erent for
γ ∈ ( 2

5 ,
4
5 ).

The intuition behind this di�erence is that (3.23) penalizes the number of kinks ofu for k = 2,
whereas (P2,∞,γ ) penalizes the number of changes in the a�ne parameters of the piecewise
a�ne-linear signal. The kink model, i.e., (3.23) for k = 2, was studied in [73].

3.3. Fast and stable solvers for higher order Mumford-Shah
problems

In this section, we derive e�cient and stable solvers for higher order Mumford-Shah and Potts
problems (Pk,β,γ ) for any order k ∈ N and model parameters β ∈ (0,∞],γ > 0. The approach is
based on a dynamic programming strategy which we brie�y recall. It turns out that the key for
an e�cient algorithm is the computation of spline approximation errors for which we develop
an e�cient and stable recurrence scheme. Finally, we give an analysis on the stability of the
proposed method.

3.3.1. Dynamic programming scheme for partitioning problems

We denote the functional in the partition-based formulation (3.6) of the higher order Mumford-
Shah model by

P (I) =
∑
I ∈I

(E I + γ ). (3.24)

It is an important observation that the functional P is also well-de�ned on the reduced domain
1 : r for the reduced data f1:r and in terms of a partition I of 1 : r . We denote the minimal
functional value on 1 : r by

P∗r = min
I partition on 1:r

P (I). (3.25)

Next, we let l : r be the rightmost interval in the partition I in (3.24) , i.e., I = J ∪ (l : r ) for a
partition J of the domain 1 : l − 1. Thus, we can write P (I) =

∑
I ∈J (E

I + γ ) + (El :r + γ ). By
taking the minimum we see that the value P∗r for the domain 1 : r satis�es the Bellman equation
[13], i.e.,

P∗r = min
l=1, ...,r

{
El :r + γ + P∗l−1

}
, (3.26)

where we let P∗0 = −γ ; see also [79]. Recall that E1:r = 0 if the interval 1 : r is shorter than k ,
i.e., if r − l + 1 ≤ k . Hence, the minimum on the right hand side of (3.26) actually has to be
taken only over the values l = 1, . . . , r − k which are the candidates for the left boundary of
an optimal rightmost interval. In view of the dynamic programming principle, we successively
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compute the optimal functional values for the reduced domains P∗1 , P
∗
2 , until we reach P∗N . Since

we are interested in an optimal partition rather than the functional values, we keep track of a
corresponding optimal partition I∗ by storing at step r the minimizing argument l ′ of (3.26)
as the value Lr . Then L encodes the boundaries of an optimal partition I∗ [79] by

I∗ =
{(
L(ri ) : ri

)
: r0 = N , ri+1 = L(ri ) − 1 for i ≥ 0 such that ri > 0

}
. (3.27)

In order to solve (3.6) by the above procedure, we have to compute O (N 2) approximation
errors E I . Thus, if we denote by ϕ the upper bound for the complexity of computing E I , the
procedure has O (N 2ϕ (N )) worst time complexity. Using a standard solver for the least squares
problem (3.7) results in ϕ (N ) = N (the involved matrices have a band structure) and an overall
O (N 3) algorithm. We develop a strategy that achieves ϕ (N ) = 1 in the next section.

Pruning the search space. It has been observed that the search space for problems of type
(3.26) can be pruned to speed up computations. We recall the two strategies developed in [181]
and [121], respectively. The strategy in [181] exploits that the approximation errors satisfy
El :r ≤ El

′:r if l ′ ≤ l . Then it follows from (3.26) that if the current value Pr for P∗r obeys

Pr < E
l :r + γ (3.28)

for some l , one can skip all l ′ < l for this r and hence P∗r = Pr . Therefore, we do not have to
compute El ′:r . The second strategy to prune the search space follows from the observation that
the approximation errors satisfy the inequality El :s + Es+1:r ≤ El :r , for all l ≤ s < r . Killick et
al. [121] showed that if

P∗s ≤ P∗l + E
l+1:s (3.29)

holds, then l cannot be an optimal last changepoint at any future time point r . That means, the
intervals l + 1 : r for all r = l + 1, . . . ,N cannot be reached and consequently l can be omitted
for any future time point r .

3.3.2. Fast computation of the approximation errors for higher order
Mumford-Shah problems

As seen in the last section, the computational complexity for solving (3.6) by dynamic pro-
gramming depends on the complexity ϕ of computing the approximation errors E I needed in
(3.26). In this section, we develop recurrence formulas for computing the E I in ϕ (N ) = O (1).
For readability, we describe the basic scheme for the left bound l = 1, that is, computing E1:r

for r = 1, . . . ,N . The approach for general left interval borders l > 1 works analogously.
Recall that the approximation errors for intervals of length shorter or equal than k is always

zero. Thus, we assume r > k in the following. First, we rewrite the underlying least squares
problem (3.7) for I = 1 : N in matrix form

E1:N = min
v ∈RN

‖Av − y‖22 . (3.30)
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Here, we denote the system matrix and the data vector by

A =

(
EN
βk∇k

)
∈ R(2N−k )×N and y = ( f1, . . . , fN , 0)T ∈ R2N−k , (3.31)

respectively. The identity matrix of dimension N is given by EN . Consequently, computing
E1:r for r < N amounts to solving the least squares problem of smaller size

E1:r = min
v ∈Rr

A
(r )v − y (r )

2

2
, (3.32)

where A(r ) is the submatrix of A given by

A(r ) =

(
A1:r,1:r

A(N+1:N+r−k ), (1:r )

)
, and y (r ) =

(
f1:r
0

)
. (3.33)

Note that it is not necessary to compute a minimizer v∗ of (3.32) to assess E1:r . Rather, we
derive a recurrence formula for computing E1:r directly which is based on applying Givens
rotations. To this end, we denote by Q (r ) and R (r ) the QR decomposition of the system matrix
A(r ) , i.e., R (r ) is an upper triangular matrix and Q (r ) is an orthogonal matrix such that

A(r ) = Q (r )
(
R (r )

0

)
.

After applying (Q (r ) )T to (3.32), the approximation error E1:r is given by

E1:r = min
v ∈Rr



(
R (r )

0

)
v − (Q (r ) )Ty (r )



2

2

= min
v ∈Rr

‖R (r )v − ((Q (r ) )Ty (r ) )1:r ‖
2
2 + ‖ ((Q

(r ) )Ty (r ) )r+1:2r−k ‖
2
2

= ‖ ((Q (r ) )Ty (r ) )r+1:2r−k ‖
2
2 ,

(3.34)

where we used that the `2-norm is invariant under orthogonal transformations for the �rst
equality and that the upper-triangular linear system induced by R (r ) can be solved exactly for
the last equality. Now the approximation errors are explicitly given by (3.34) and no minimiza-
tion is involved. Our goal is to recursively compute E1:r+1 without explicitly computing QR
decompositions and without carrying out the summation in the last line of (3.34).

As a �rst step, we derive the recurrence coe�cients. We assume that we have computed the
QR decompositionQ (r ),R (r ) ofA(r ) and explain how to obtain a QR decompositionQ (r+1),R (r+1)

of A(r+1) from these data Q (r ),R (r ) . Therefore, we de�ne the auxiliary matrixW (r ) given by

W (r ) =

*....
,

R (r ) 0
0 1
0 0

AN+r−k+1, (1:r+1)

+////
-

, (3.35)

i.e.,W (r ) is given by the upper triangular matrix R (r ) and the beginning of the (N +r −k +1)-th
row ofA. By the de�nition of∇k the matrixA has a band structure and only the last k+1 entries
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of AN+r−k+1, (1:r+1) are non-zero. We bringW (r ) to upper triangular form without altering the
already present zeros. To this end, we employ Givens rotations as a Givens rotation operates
exclusively on two rows ofW (r ) . Then, by the band structure ofW (r ) the present zeros are not
destroyed. (We remark that Householder re�ections would destroy the existing zero entries.)

Recall that the matrixG = G (j,m,θ ), which represents a Givens rotation with rotation angle
θ , is an identity matrix with the 2 × 2 submatrix (G j j ,G jm ;Gmj ,Gmm ) replaced by a planar
rotation:

G (j,m,θ ) =

*...............
,

1 · · · 0 · · · 0 · · · 0
...
. . .

...
...

...

0 · · · cos(θ ) · · · sin(θ ) · · · 0
...

...
. . .

...
...

0 · · · − sin(θ ) · · · cos(θ ) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

+///////////////
-

. (3.36)

We apply the Givens rotation G (j,m,Θmj ) to eliminate the matrix entry a = Amj by the pivot
element b = Aj j for which the parameters are determined by

cos(Θmj ) = b/ρ, sin(Θmj ) = a/ρ, (3.37)

where ρ = sign(b)
√
a2 + b2 and the corresponding rotation angle is denoted by Θmj . An impor-

tant observation is that a Givens rotation G (j,m,θ ) operates exclusively on the j-th and m-th
row of a matrix and does not destroy the zeros present in other rows. Therefore, we employ
k + 1 Givens rotations with parameters chosen according to (3.37) to eliminate the last row of
W (r ) which yields R (r+1) . In this manner, we can recursively compute R (r+1) from R (r ) , where
the rotation angles Θmj are the recurrence coe�cients.

If the coe�cients Θmj have been computed, the error update step E1:r → E1:r+1 can be
performed in O (1). We assume that we have computed E1:r and let the vector q (r ) be given by

q (r ) = (Q (r ) )Ty (r ) . (3.38)

The vectors q (r ) satisfy the recurrence relation

q (r+1) = G (r+1)
*.....
,

q (r )1:r
fr+1

q (r )r+1:2r−k
0

+/////
-

. (3.39)

Here, G (r+1) denotes the composition of the above k + 1 Givens rotations; that is, it is the
elimination matrix given by

G (r+1) =

k+1∏
j=1

G
(
r − k + j, 2(r + 1) − k,ΘN+r+1−k,r−k+j

)
, (3.40)
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Figure 3.3.: Approximation errors E1:r , r = 1, ...,N , for (a) a linear polynomial and order k = 2, for (b)
a quadratic polynomial and order k = 3, and for (c) a cubic polynomial and order k = 4. The theoret-
ical approximation errors are equal to zero; the approximation errors computed using the recurrence
formula (3.42) are accurate up to machine precision.

where we use the convention
∏k

j=1 Z j = ZkZk−1 · · ·Z1. AsG (r+1) only operates on the �rst r +1
rows and the last row of the vector on the right hand side of (3.39), we obtain

q
(r+1)
r+1:2r+1−k


2

2
=

q
(r )
r+1:2r−k


2

2
+

���q
(r+1)
2(r+1)−k

���
2
. (3.41)

Thus, in view of (3.34), the error update is given by

E1:r+1 = E1:r +
���q

(r+1)
2(r+1)−k

���
2
. (3.42)

To sum up, the update scheme needs to compute q (k+1) by (3.39) and update E1:r+1 by (3.42).
The update scheme for general left interval borders l works analogously. The above proce-

dure is applied to the data ( fl , . . . fr ) using the same recurrence coe�cients Θmj since they do
not depend on the data. In particular, we have to compute the (N − k ) (k + 1) coe�cients Θmj
only once and use them for computing all El :r .

We brie�y discuss the accuracy of the error update scheme (3.42). As Givens rotations are
orthogonal, they have the optimal condition number one. Hence, there is no inherent error
ampli�cation in the elimination steps. The practical accuracy of the error update is illustrated
by the following numerical experiment. We compute the approximation errors of a polynomial
of degree k − 1. As these are in the null space of ∇k , the approximation errors E1:r are exactly
zero for all r = 1, . . . ,N . Figure 3.3 shows that the proposed scheme reproduces the exact
results up to machine precision.

Incorporating the pruning strategies. We elaborate on how to incorporate the two strate-
gies discussed in Section 3.3.1. To e�ectively apply the �rst strategy which checks (3.28), we
have to run over the l-index in the order l = r , r −1, . . . , 1. The pruning condition of the second
strategy (3.29) can be checked when P∗r was computed. If the �rst condition (3.28) holds for
some l for the subdata 1 : r , then the second condition (3.29) cannot be checked for l ′ < l since
El
′:r has not been computed yet. In order to use both strategies e�ectively, we proceed as fol-

lows. At domain 1 : r , we run through all l stored in the list L (sorted in descending order) and
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update the corresponding approximation errors until El :r was reached. After each update step,
we check condition (3.29) for the current upper interval bound of the error and if so, delete l
from L and continue with the next entry in L. As a consequence, it is not necessary to adapt the
�rst pruning strategy essentially: we check condition (3.28) after testing if l is the current op-
timal last changepoint. Combining the pruning strategies decreases the total number of error
updates (3.42) that have to be performed; see Section 3.4.2 for a numerical study.

Algorithm 3.1 provides a pseudocode of the proposed scheme. We summarize the above
derivation in the following theorem.

Theorem 3.10. Let f ∈ RN , k ∈ N, and β,γ > 0. The proposed algorithm computes a global
minimizer of (Pk,β,γ ). The worst case time complexity is O (N 2).

Proof. Recall that the considered problem (3.5) satis�es the Bellman equation (3.26) and decom-
poses into the according subproblems on the reduced domains 1 : r . Algorithm 3.1 successively
computes the required optimal values P∗r of the subproblems in the Bellman equation (3.26) for
r = 1, 2, . . . until P∗N is reached and keeps track of an optimal partition by saving the mini-
mizing argument l ′ for each P∗r . Each P∗r on the other hand is computed by iterating through
the arguments l = 1, . . . , r in the Bellman equation of the corresponding subproblem in order
to �nd the optimal value and argument. Thus, Algorithm 3.1 computes a global minimizer of
problem (3.5). Regarding the computational complexity, we have to check for the costs of com-
puting the approximation errors El :r in the Bellman equations and for the costs of recovering
the optimal signal after the optimal partition has been determined. Concerning the recovery
of the optimal signal, we note that it corresponds to solving a least squares system of band
matrices with at most 2N − k rows each having at most k + 1 entries. Hence, this step has
linear costs in N . Regarding the computation of the approximation errors, we �rst have to
compute the rotation angles of the Givens rotations (i.e., the recurrence coe�cients Θ) which
bring the system matrix AN (see (3.31)) to upper triangular form. The elimination of a single
row of AN amounts to eliminating at most k + 1 entries in view of the band structure of AN .
The elimination of a single entry by a Givens rotation only creates nonzeros above the diagonal
AN
ii . Hence, the previously eliminated rows are preserved. Since applying a Givens rotation to

the band matrix AN has constant computational costs, this step has linear computational costs
in N . By using the recurrence (3.39), (3.42) together with the recurrence coe�cients given by
the already computed Givens rotation angles, the computation of a single approximation error
El :r has constant computational costs because applying a Givens rotation to a vector has con-
stant costs. Since there are quadratically many approximation errors, the computational costs
for computing all approximation errors is quadratic in N . Thus, the overall worst case time
complexity of Algorithm 3.1 is O (N 2). �

3.3.3. Fast computation of the approximation errors for higher order Potts
problems

We derive a fast and stable scheme to compute the approximation errors for higher order Potts
problems (3.14). We start by rewriting the approximation errors (3.14) as the optimal value of
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Algorithm 3.1: Solver for higher order Mumford-Shah and higher order Potts problems

Input: Data f ∈ RN ; model parameters k ∈ N, β ∈ (0,∞],γ > 0;
Output: Global minimizer (u∗,I∗) of (Pk,β,γ ) or (Pk,∞,γ )
/* Precomputations */

1 Row-wise transform the matrix A from (3.31) for (Pk,β,γ ) or B from (3.44) for (Pk,∞,γ ) to upper
triangular form using successive Givens rotations and store the rotation angles in Θ.

2 Compute E1:r for all r = 1, . . . ,N with Θ
/* Find optimal changepoints */

3 Initialize lists L = [2], R = [2], E = [0]
4 J1 ← 0, P∗1 ← 0
5 for r ← 2, . . . ,N do

/* Initialization */
6 Jr ← 0, P∗r ← E1:r

/* Find optimal P∗r using (3.26) */
7 for i = 1, ..., length of L do
8 while ri < r do

/* Update approximation error */

9



(Pk,β,γ ) : Compute Eli :ri+1 from Eli :ri using the recurrence (3.39)-(3.42)
(Pk,∞,γ ) : Compute Eli :ri+1 from Eli :ri using the recurrence (3.47)-(3.49)

10 Ei ← E
li :ri+1, ri ← ri + 1

/* Pruning (3.29) */
11 if P∗li−1 + Ei ≥ P∗ri then
12 Delete: li from L, ri from R and Ei from E
13 go to 7
14 end
15 end
16 b ← P∗li−1 + γ + Ei

17 if b ≤ P∗r then
18 P∗r ← b, Jr ← l − 1
19 end

/* Pruning (3.28) */
20 If Ei + γ > P∗r then break end
21 end

/* Update lists */
22 Prepend: r + 1 to L, r + 1 to R, 0 to E

23 end
/* Recover optimal partition I∗ from segment boundary locations J */

24 r ← N , I∗ ← ∅
25 while r > 0 do
26 l ← J (r ) + 1, I∗ ← I∗ ∪ {(l : r )}, r ← l − 1
27 end

/* Reconstruction of u∗ by solving the least squares problems on segments (using Θ for speedup) */
28 for I ∈ I∗ do
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(Pk,β,γ ): Solve u∗I = argmin
v ∈R|I |

‖v − fI ‖
2
2 + β

2k ‖∇kv ‖22

(Pk,∞,γ ): Solve u∗I = argmin ‖v − fI ‖
2
2 such that v is polynomial of degree ≤ k − 1 on I

30 end
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the least squares problem in terms of the polynomial coe�cients p ∈ Rk ; it is given by

El :r = min
p∈Rk

‖Bl :r,1:rp − fl :r ‖
2
2 , (3.43)

where B is the RN×k system matrix de�ned by

B =

*........
,

1 1 · · · 1k−1

1 2 · · · 2k−1

...
...

...

1 N − 1 · · · (N − 1)k−1

1 N · · · N k−1

+////////
-

∈ RN×k . (3.44)

Analogous to Section 3.3.2, we describe the method for the prototypical case l = 1. Moreover,
we assume that r > k since otherwise E1:r = 0. We denote the submatrix B1:r,1:k by B (r ) and
its QR decomposition by Q (r ),R (r ) . Similarly to (3.34), we obtain for the approximation errors

E1:r = min
p∈Rk



(
R (r )

0

)
p − (Q (r ) )T f1:r



2

2
= ‖q (r )k+1:r ‖

2
2 , (3.45)

where q (r ) is given by
q (r ) = (Q (r ) )T f1:r . (3.46)

In analogy to higher order Mumford-Shah models, the recurrence coe�cients for the error
updates Θr+1, j , j = 1, . . . ,k are given by the Givens rotation angles for eliminating the entry
Br+1, j of the system matrix B with the pivot element R (r )

j, j . Suppose that we have computed q (r )

and E1:r . Then –in accordance with (3.39)– q (r+1) can be expressed by the recurrence relation

q (r+1) = G (r+1)
(
q (r )

fr+1

)
, (3.47)

where G (r+1) is the composition of the Givens rotations G (j, r + 1,Θr+1, j ) for j = 1, . . . ,k ; i.e.,

G (r+1) =

k∏
j=1

G (j, r + 1,Θr+1, j ). (3.48)

Here, we again use the convention
∏k

j=1 Z j = ZkZk−1 · · ·Z1. As G (r+1) operates exclusively on
the �rst k entries and the last entry of q (k ), it follows from (3.45) that

E1:r+1 = ‖q (r+1)
k+1:r+1‖

2
2 = ‖q

(r )
k+1:r ‖

2
2 + (q (r+1) )2r+1 = E

1:r + (q (r+1) )2r+1. (3.49)

Numerical comparisonwith the precomputedmomentmethod. There exist closed for-
mulas for the approximation errors El :r in higher order Potts problems. For the �rst and second
order Potts problem such formulas were derived in [79, 135]. We derived corresponding formu-
las for the orders k = 3 and k = 4 with computer algebra. By using these formulas and precom-
puting the moments of the data, each of the errors El :r can be computed in O (1). Typically, this
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Figure 3.4.: Computation of the approximation errors for a parabolic signal for the higher order Potts
model of order k = 3. The graphs show the results based on precomputed moments (blue) and based on
the proposed scheme (red). The true approximation errors are all equal to zero. Left: Errors E1:r for r =
1, ...,N . The computation based on precomputed moments is distorted beyond machine precision and
gives even negative values. Right: Errors El :N for l = 1, ...,N −1. The values derived from precomputed
moments are strongly distorted when l approaches N . The proposed computation based on Givens
rotations is accurate up to machine precision in either case.

method yields acceptable results for the piecewise constant and piecewise a�ne-linear Potts
model (k = 1, 2) and moderate signal length. However, for k > 2 or longer signals, the ap-
proach becomes numerically unstable. To illustrate this, we consider the following experiment
(cf. Figure 3.4). We assume a parabolic signal fn = n2/100, n = 0, . . . ,N with N = 100. For
k = 3, the true approximation errors El :r for the higher order Potts model are zero since the
data follows the model. Figure 3.4 shows that the results for E1:r are distorted, when using
the approach based on precomputed moments. This becomes particularly severe when r ap-
proaches N . The errors El :N are even more severely a�ected because of loss of signi�cance.
In contrast to the precomputation of moments approach, the proposed method gives accurate
results up to machine precision.

Remark 3.11. In Section 3.3.2 and this section, we derived e�cient update schemes for the
approximation errors of higher order Mumford-Shah and Potts models as they are needed in
Algorithm 3.1. Recall that the approximation errors are given by the sums of squared resid-
uals of the least squares systems (3.32) w.r.t. the system matrix A and (3.43) w.r.t the system
matrix B, respectively. The proposed update scheme uses Givens rotations to update the QR
decomposition of the system matrix (and accordingly the approximation errors) as they pre-
serve already present zeros, or, in other words, using Givens rotations allows us to exploit the
band structure of A and the tallness of B , respectively. In principle, the proposed scheme can
be used to approach any partitioning problem for which the approximation error on each in-
terval is given by sums of residuals of least squares systems whose system matrices either have
a band structure or are tall.
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3.3.4. Stability results

In this section, we study the stability of the proposed algorithm. We begin with some basic
lemmas which will be needed later on. In the following, we consider the functional G[I] ( f )
de�ned in (3.19). For convenience, we omit the brackets and simply write GI ( f ).

Lemma 3.12. We consider data f ∈ RN . If there is a partition I ′ and ε > 0 such that

GI′ ( f ) < GI ( f ) − ε for all I < [I ′], (3.50)

then there is an Euclidean ball B ( f ,δ ) around f such that for any data д ∈ B ( f ,δ ) holds: there
is a unique optimal solution u = uд,I∗ of the problem (Pk,β,γ ) with data д, and the corresponding
partition I∗ ful�lls [I∗] = [I ′].We may choose δ by

δ := min
(

1
2
,

ε

2((2β )2k + 1) (2‖ f ‖ + 1/2)

)
. (3.51)

Proof. The essential argument here relies on the continuity of the quadratic forms x 7→ ḠI (x )
given by

ḠI ( f ) := β2k ‖LISI f ‖
2
2 + ‖SI f − f ‖22 (3.52)

which are the main parts ofGI given by (3.19). Each ḠI may be represented w.r.t. the Euclidean
standard scalar product 〈·, ·〉 via a symmetric matrix AI as ḠI (x ) = 〈AIx ,x〉. The operator
norm of AI equals the norm of the corresponding bilinear form which in turn, since the ḠI
are positive (semi-de�nite), corresponds to

‖AI ‖ = sup
x :‖x ‖=1

ḠI (x ). (3.53)

We �rst let δ ′ be de�ned by

δ ′ := min *.
,

1
2
,

ε

2 max
J
‖AJ ‖ (2‖ f ‖ + 1/2)

+/
-
. (3.54)

We want to estimate GI′ ( f ) from above for д in a δ ′-ball around f . For brevity, we write
GI′ (д) = ḠI′ (д) + γNI′ , where we let NI′ := |[I ′]|. Then we may estimate for I < [I ′],

GI′ (д) = ḠI′ (д) + γ |[I ′]| = ḠI′ ( f ) + ḠI′ ( f − д) − 2〈AI′ f , f − д〉 + γ |[I ′]|
< ḠI ( f ) − ε + δ

′2 ‖AI′ ‖ + 2δ ′ ‖AI′ ‖ ‖ f ‖ + γ |[I]|
= ḠI (д) + ḠI ( f − д) + 2〈AI f , f − д〉
− ε + δ ′2 ‖AI′ ‖ + 2δ ′ ‖AI′ ‖ ‖ f ‖ + γ |[I]|
≤ ḠI (д) − ε + 2δ ′ max

J
‖AJ ‖ (2‖ f ‖ + δ ′) + γ |[I]|

≤ ḠI (д) − ε + ε + γ |[I]| = ḠI (д) + γ |[I]| = GI (д). (3.55)
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For the �rst inequality, we applied (3.50) for GI′ ( f ) and used the assumption that д ∈ B ( f ,δ ′).
For the second inequality, we used that ‖AI′ ‖ and ‖AI ‖ are clearly bounded by maxJ ‖AJ ‖.
For the last inequality, we employed (3.54). In order to relate (3.54) with (3.51), we now estimate
maxJ ‖AJ ‖ using basic spectral theory for self-adjoint bounded operators. Since AJ is the
matrix representing the bilinear form corresponding to ḠJ , we may estimate using (3.52) that

‖AJ ‖ ≤ β
2k ‖LT

J
LJ ‖ ‖SJ ‖

2 + ‖id − SJ ‖2, for any partition J , (3.56)

with the de�nitions of LJ given in (3.9) and that of SJ given in (3.12); here we only employed
the triangle inequality, the submultiplicativity of operator norms and that ‖LT

J
LI ‖ = ‖LJ ‖

2

holds. By (3.12), SJ = (β2kLT
J
LJ + id)−1. Since LT

J
LI is self-adjoint and positive, the spectrum

of β2kLT
J
LJ+id is contained in [1,∞).Hence, its inverse SI has its spectrum contained in (0, 1].

Being again self-adjoint, and positive, ‖SI ‖ ≤ 1. Further, since SI has its spectrum contained
in (0, 1], id − SJ has its spectrum contained in (0, 1] as well. Then, with the same argument,
‖id − SJ ‖ ≤ 1. In order to estimate LT

J
LJ , we consider LJ in (3.9), and notice that LT

J
LJ

is block diagonal with entries consisting of convolutions of k-th di�erences with themselves.
Thus the row-sums of the absolute values as well as the column sums of the absolute values
of LT

J
LJ are bounded by 2k . By using the Schur criterion, the operator norm of LT

J
LJ w.r.t.

Euclidean norm in the base space can then be estimated by 22k . Summing up, we conclude
invoking these estimates in (3.56) that

‖AJ ‖ ≤ β
2k22k + 1, for any partition J . (3.57)

We gathered all ingredients to prove the lemma. If д ∈ B ( f ,δ ), then д ∈ B ( f ,δ ′), by the
estimate (3.57) relating (3.54) with (3.51). In consequence, the estimate (3.55) applies toд.Hence
the solution for д is unique and given by (3.12); in particular, the corresponding equivalence
class of partitions equals I ′ which shows the assertion. �

The next lemma is a stability result for the QR algorithm from [84]. We adapt it to our setup
as we need it later on. Similarly to (3.12), we denote by SI the linear mapping from fI (the data
restricted to the interval I ) to the solution uI .

Theorem 3.13. The QR algorithm S̃I for computing the approximation errors E I is backward
stable, i.e., given data fI on the subinterval I ⊂ {1, . . . ,N }, there is a perturbation f̃I of the data
fI such that

S̃I ( fI ) = SI ( f̃I ) with ‖ f̃I − fI ‖ ≤ δI , (3.58)

where δI depends on the machine precision τ and on the norm of the data on the subinterval ‖ fI ‖
via

δI (τ ) ≤ 6τ
√
|I |

(
9|I | − 5

4
− k

)
(1 + 6τ )3( |I |−1)−k ‖ fI ‖. (3.59)

Here, the QR algorithm is understood as in the analysis setup of [84, 205].

Proof. If |I | ≤ k, then S̃I ( fI ) = SI ( fI ) = 0. Thus, we assume |I | > k . We recall that computing
the approximation errors E I corresponds to computing the residual vector of the least squares

39



problem with model matrixA ∈ R2 |I |−k×|I | from (3.31) and data vector fI . In [84], it was shown
that

R̃ = Q̄T (A + ∆A), ‖∆A‖F ≤ µI (τ )‖A‖F , (3.60)

for µI (τ ) given by

µI (τ ) = 6τ
√
|I | ·

(
9|I | − 5

4
− k

)
(1 + 6τ )3( |I |−1)−k , (3.61)

where R̃ is the computed upper triangular matrix by means of Givens rotations and Q̄T is the
orthogonal matrix given by the composition of the exact Givens rotations we want to apply.
Analogously, for transforming the data vector it holds

IQT fI = Q̄
T ( fI + ∆fI ), ‖∆fI ‖ ≤ µI (τ )‖ fI ‖,

and therefore S̃I ( fI ) = SI ( fI + ∆fI ) which implies (3.59). �

Corollary 3.14. We consider bounded data f ∈ RN , ‖ f ‖ < C . For any partition I consid-
ered in the proposed algorithm for the higher order Mumford-Shah and Potts problem, there is a
perturbation f̃ of f such that

S̃I ( f ) = SI ( f̃ ) where ‖ f̃ − f ‖ < δI (τ ), (3.62)

where the dependency on the machine precision is given by δI (τ )2 =
∑

i δIi (τ )
2. It depends on the

estimation on intervals δIi (τ ) given in Theorem 3.13 and on C, but not on the data f . Concretely,
δI (τ ) can be estimated from above by

δI (τ )
2 ≤ 36C2τ 2

∑
i

|Ii |

(
9|Ii | − 5

4
− k

)2
(1 + 6τ )6( |Ii |−1)−2k . (3.63)

Proof. The statement follows from Theorem 3.13. For a �xed partition, the proposed algorithm
computes optimal solutions uf ,I = SI,β f (cf. (3.12)) by using the QR algorithm with Givens
rotations for each interval I ∈ I. Thus, (3.63) is a consequence of the estimation on intervals
given in (3.59). �

In the next statement, we denote by G̃I the algorithm to compute the energy GI given by
(3.19). The bound on the approximation error between G̃I and GI for all I is denoted by д(τ )
w.r.t. the precision τ .

Proposition 3.15. We consider bounded data f ∈ RN , ‖ f ‖ < C , and assume that (3.50) is
ful�lled for f . Let

δ ∗ (τ ) = max
I

δI (τ ) ≤ 6CτN
3
2

(9N − 5
4

− k
)
(1 + 6τ )3(N−1)−k (3.64)

for δI (τ ) in Corollary 3.14 and assume that τ is small enough such that δ ∗ (τ ) < δ/2 for δ given by
(3.51) and such that д(τ ) ≤ ε/4 with ε given in (3.50). Then, the higher order Potts and Mumford-
Shah problem (Pk,β,γ ) has a unique minimizeruf , and the proposed algorithm for computing this
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minimizer of the higher order Potts and Mumford-Shah problem (Pk,β,γ ) is backward stable in the
sense that

ũf = u f̃ where ‖ f̃ − f ‖ < δ ∗ (τ ). (3.65)

Here, ũf is the result produced by the proposed algorithm for data f andu f̃ is the (unique) solution

of the higher order Potts and Mumford-Shah problem (Pk,β,γ ) for perturbed data f̃ .

Remark 3.16. A more explicit relation between ε and the precision τ (without using the δ ’s
su�cient for the assumptions of Proposition 3.15 to hold) is given by

(1 + 6τ )3N−kτ <
ε

12CN (2β )2k (C + 1
2 )

(
9N−5

4 − k
) if ε ≤ (2β )2k (C +

1
2
), (3.66)

(1 + 6τ )3N−kτ <
1

12CN
(

9N−5
4 − k

) if ε > (2β )2k (C +
1
2
), (3.67)

µ1:N (τ ) <
1
2

(
4C2N + ε

C2N

) 1
2

− 1 (3.68)

w.r.t. µ1:N (τ ) from the proof of Theorem 3.13. Conditions (3.66) and (3.67) are su�cient for
δ ∗ (τ ) < δ/2 which is an immediate implication of combining (3.50) and (3.64). From (3.68)
follows д(τ ) ≤ ε/4 since: for any admissible discrete interval I , we have

����‖
IQT fI ‖

2 − ‖QT fI ‖
2���� ≤

(
‖QT fI ‖ + ‖IQT fI ‖

) ����‖Q
T fI ‖ − ‖IQT fI ‖

����
≤

(
C + ‖IQT fI ‖

)
‖QT fI − IQT fI ‖

and
‖IQT fI ‖ ≤ ‖Q

T fI ‖ + ‖Q
T fI − IQT fI ‖ ≤ C + ‖QT fI − IQT fI ‖ ≤ C + µ1:NC .

Combining both yields

д(τ ) = ���G̃I ( f ) − GI ( f )
��� ≤

∑
I ∈I

���Ẽ
I − E I

���

≤
∑
I ∈I

����‖
IQT fI ‖

2 − ‖QT fI ‖
2���� ≤ NC2µ1:N (τ ) (2 + µ1:N (τ )) .

An easy computation shows that (3.68) is equivalent to requiring the latter to be smaller than
ε/4.

Proof of Proposition 3.15. By (3.50), the solution uf of (Pk,β,γ ) is unique for data f .We denote
the equivalence class of partitions corresponding to this optimal solution uf by its representer
I ′. As a �rst step, we show that the solution ũf computed by the proposed algorithm for data
f has partition I ′ as well. To that end, we �rst notice that by Corollary 3.14, there is f̃I with
‖ f̃I − f ‖ < δI (τ ) such that S̃I ( f ) = SI ( f̃I ), for any partition I which is considered by the
algorithm. In particular, using the notation of Theorem 3.13,

‖S̃I ( fI ) − SI ( fI )‖ = ‖SI ( f̃I ) − SI ( fI )‖ ≤ ‖SI ‖ ‖ f̃I − fI ‖ ≤ ‖ f̃I − fI ‖ < δI . (3.69)
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For the second before last inequality, we used that ‖SI ‖ ≤ 1 which we have shown in the proof
of Lemma 3.12. As a consequence, by summing over all intervals of I of length at least k + 1,
we obtain from (3.69) that

‖S̃I ( f ) − SI ( f )‖ = ‖SI ( f̃I ) − SI ( f )‖ ≤ ‖ f̃I − f ‖ < δI (τ ) (3.70)

for any partition I which is considered by the algorithm. Then, using the notation G̃I for the
algorithmic variant of GI , we have (with the notation as in Lemma 3.12) that

G̃I′ ( f̃I′ ) ≤ GI′ ( f̃I′ ) + |G̃I′ ( f̃I′ ) − GI′ ( f̃I′ ) |

≤ GI′ ( f̃I′ ) + д(τ )

< GI ( f ) − ε + δI′ (τ )
2 ‖AI′ ‖ + 2δI′ (τ ) ‖AI′ ‖ ‖ f ‖ + д(τ )

≤ GI ( f̃I ) − ε + 2δ ∗ (τ ) max
I
‖AI ‖ (2‖ f ‖ + δ ∗ (τ )) + д(τ )

≤ GI ( f̃I ) − ε + ε/2 + д(τ )

≤ G̃I ( f̃I ) − ε + ε/2 + 2д(τ ) ≤ G̃I ( f̃I ). (3.71)

Here, the third inequality is the central estimate which is obtained in analogy to the �rst part
of the computation in (3.55) by replacing the role of the vector д there (not to be confused with
д(τ )) by that of the perturbation f̃ ′

I
of f here. The fourth inequality is obtained in analogy

to the second part of the computation in (3.55) with the role of the vector д there replaced
by the perturbation f̃I of f . The second before last and the last inequality follow from our
assumptions made on τ . Together, (3.71) tells us that the solution ũf computed by the proposed
algorithm has partition I ′ and

ũf = S̃I′ ( f ). (3.72)

Using again Corollary 3.14, we obtain

S̃I′ ( f ) = SI′ ( f̃ ) for ‖ f̃ − f ‖ < δI′ (τ ) ≤ δ
∗ (τ ), (3.73)

with the perturbation f̃ of f . We have that ‖ f̃ − f ‖ < δ ∗ (τ ) < δ with δ de�ned by (3.51).
Therefore, we may now employ Lemma 3.12 to conclude that the solution of the higher order
Potts and Mumford-Shah problem (Pk,β,γ ) denoted by u f̃ agrees with the optimal solution for
the partition I ′ which we have denoted by u f̃ ,I′ = SI ( f̃ ), i.e.,

u f̃ = u f̃ ,I′ = SI′ ( f̃ ). (3.74)

Combined with (3.72) and (3.73), this shows (3.65) which completes the proof. �

Lemma 3.17. We consider a nonzero quadratic form H in a ball of radius C in RN . Then, the
Lebesgue measure λ of the set Hε,c = {x : ‖x ‖ ≤ C, c − ε < H (x ) < c + ε } satis�es

λ(Hε,c ) ≤ 2
√

ε

‖A‖
CN−1, (3.75)

where ‖A‖ denotes the spectral norm of the representing matrix A of H .
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Proof. Without loss of generality, we may use an orthogonal transformation of the coordinate
system to represent H by H (x ) =

∑
i αix

2
i with the eigenvalues αi of the corresponding rep-

resenting matrix of the quadratic form. We sort the αi by modulus, i.e., |α1 | ≥ |α2 | ≥ . . . .

With respect to this coordinate system, we consider the C-ball with respect to the maximum
norm D = {x : ‖x ‖∞ ≤ C}. We distinguish the eigenvalue α1 of highest modulus which agrees
with the norm ‖A‖ of the representing matrix A of H . We estimate the Lebesgue measure of
{x : c−ε < H (x ) < c+ε } on the larger set D which provides an upper bound for that ofHε,c . To
this end, we notice that, for �xed x2, . . . ,xN ,we may estimate the univariate Lebesgue measure
λ1 of the section {x1 : x1 ≤ C, c − ε < H (x1,x2, . . . ,xN ) < c + ε } by

λ1 *
,
c +

N∑
i=2

αi
|α1 |

x2
i − ε < sign(α1) x

2
1 < c +

N∑
i=2

αi
|α1 |

x2
i + ε

+
-
≤ 2

√
ε

|α1 |
. (3.76)

(Notice that if α1 = 0 the quadratic form would be zero.) Hence, on D, the Lebesgue measure
of {x : c − ε < H (x ) < c + ε } is bounded by 2

√
ε
|α1 |

CN−1 which implies the assertion of the
lemma. �

Theorem 3.18. Let ε > 0 be given and assume that the precision τ ful�lls the assumptions of
Proposition 3.15. We consider the set of bounded data { f : ‖ f ‖ ≤ C} in RN for someC > 0. Then,
up to a set of Lebesgue measure 2

(
σN ,k

2

)√
ε

supI ‖AI ‖
CN−1, AI given by (3.53), σN ,k the number

of di�erent means to choose intervals of length at least k + 1 from a (discrete) set of length N ,
the proposed algorithm for computing a minimizer of the higher order Potts and Mumford-Shah
problem (Pk,β,γ ) is backward stable in the sense that

ũf = u f̃ where ‖ f̃ − f ‖ < δ ∗ (τ ), (3.77)

where δ ∗ (τ ) is given by (3.64). Here, ũf is the result produced by the proposed algorithm for data
f and u f̃ is the (unique) solution of the higher order Potts and Mumford-Shah problem (Pk,β,γ )
for perturbed data f̃ .

Proof. We proceed similarly to the proof of Theorem 3.8 to show that the set of those data
which do not ful�ll (3.50) have Lebesgue measure smaller or equal to 2

(
σN ,k

2

)√
ε

supI ‖AI ‖
CN−1.

We choose two di�erent partitions I,I ′ with [I] , [I ′], i.e., their equivalence classes do not
agree, and consider the corresponding quadratic forms GI ,GI′ . Their di�erence GI − GI′ is
again a quadratic form (plus a constant). By Lemma 3.17, the set where GI and GI′ are closer
than ε has Lebesgue measure 2

√
ε
|α1 |

CN−1. Iterating this for all
(
σN ,k

2

)
di�erent bilinear forms

GI −GI′ shows that the Lebesgue measure of those data for which (3.50) is not ful�lled can be
estimated from above by the quantity written in the formulation of the theorem. We may now
apply Proposition 3.15 to the complementary set to conclude the assertion of the theorem. �

3.4. Numerical study

In this section, we study the reconstruction quality of higher order Mumford-Shah and Potts
models as well as the runtimes of the proposed solvers in numerical experiments. We imple-
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mented the proposed algorithm in the C++ programming language. The algorithm was then
called from Matlab by using mex-�les. (The pseudocode was given in Algorithm 3.1.) We
performed all experiments on a standard desktop computer with 3.1 GHz Intel Core i5-2400
processor and 8 GB RAM.

3.4.1. Reconstruction results

We start out by studying the reconstruction quality of higher Mumford-Shah and Potts models.
To this end, we consider common test signals with discontinuities; see [66, 144].

Experimental setup. The signals were corrupted by additive white Gaussian noise with
variance σ 2. We denote by η the noise level which is given by η = σN /‖д‖1 in terms of the
clean signal д. In order to compare the models in a meaningful way, we use optimal complexity
parameters γ and smoothing parameters β for each model. In particular, we determined the
optimal γ and β such that the result u∗ provides the smallest relative reconstruction error

εrel = ‖u
∗ − д‖2/‖д‖2.

In practice, this is accomplished by performing a full grid search over γ ∈ (0, 1] with step size
0.001, and over β ∈ (0, 25] with step size 0.025. Additionally, we check for the higher Potts
model β = ∞. Besides the reconstruction error, we also assess the quality of the computed
partition I∗.We quantify it by the Rand index [167] which we brie�y explain in the following.
The Rand index Rind quanti�es the closeness of two partitions I,I ′ by means of

Rind (I,I
′) =

(
N

2

) ∑
{i, j : 1≤i<j≤N }

ti j .

Here, ti j is equal to one if there are intervals/segments I ∈ I and I ′ ∈ I ′ such that the indexes
i and j are in both I and I ′, or if i is in both I and I ′ while j is in neither I and I ′. Otherwise,
ti j = 0. (Recall that N denotes the length of the signal.) The value of Rind lies in [0, 1] and higher
values indicate a better match. In particular, Rind = 1 means that the two segmentations agree.
We use the Rand index of the computed segmentation and the ground truth segmentation to
measure the quality of the computed segmentation.1 We recall that larger values of β give a
stronger smoothing and larger values of γ give less segments.

Heavy sine signal. We �rst consider a sinusoidal signal with two steps and noise level 0.2.
The reconstruction results are shown in Figure 3.5. For the �rst order model, the optimal
smoothing parameter β is relatively small to avoid the gradient limit e�ect. As a consequence,
the reconstructed signal remains a�ected by the noise and further only one of the two discon-
tinuities is detected. The higher order models provide an improved smoothing and produce
better results w.r.t. the relative reconstruction error and the segmentation quality. It is worth
mentioning that the reconstruction quality starts decaying from order k = 6 on which can be
attributed to over�tting.

1The numerical evaluation of the Rand index was done using the implementation of K. Wang and D. Corney
available at the Matlab File Exchange.
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(b) (P1,β,γ ), β = 4.050, γ = 0.109
εrel = 0.053, Rind = 0.76
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(c) (P2,β,γ ), β = 9.500, γ = 0.067
εrel = 0.029, Rind = 1.00
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(d) (P3,β,γ ), β = 12.850, γ = 0.102
εrel = 0.027, Rind = 1.00

100 200 300 400 500

-0.6

-0.4

-0.2

0

0.2

0.4

(e) (P4,β,γ ), β = 15.300, γ = 0.115
εrel = 0.026, Rind = 1.00
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(f) (P5,β,γ ), β = 18.850, γ = 0.13
εrel = 0.024, Rind = 1.00

Figure 3.5.: Reconstructions of the “Heavy Sine”-signal from noisy data. (a) Data corrupted by Gaussian
noise of level 0.2. (b–f) Reconstructions for higher order Mumford-Shah and Potts models.

Blocks signal. The next signal is piecewise constant and the noise level is 0.2. In Figure 3.6,
we show the reconstruction results. Since the signal is constant within its segments, it is in-
tuitive that the optimal smoothing parameters are large and mostly β = ∞, i.e., the k-th order
Potts model, is preferable. The best result is produced by the �rst order Potts model whose
piecewise constancy assumption matches the signal perfectly. Nevertheless, using higher order
models yields very good segmentation results as well (up to order k = 5). The reconstructions
are satisfying up to order k = 3.

Piecewise smooth reconstruction for di�erent noise levels. In Figure 3.7, we show the
reconstruction results of a piecewise smooth signal for di�erent noise levels. The results of
the �rst order model remain relatively noisy on the segments. Again, this is due to relatively
small choices of the smoothing parameter to prevent the gradient limit e�ect. The second order
model improves the reconstructions signi�cantly. However, it also tends to produce spurious
segments at the parts of high curvature. Using higher ordersk ≥ 3 leads to improved smoothing
and better segmentations.

Real data. We consider a real data times series. In particular, we consider the time-averaged
(hourly) wind speeds at the summit of the highest German mountain Zugspitze collected from
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(b) (P1,β,γ ), β = ∞, γ = 0.343
εrel = 0.015, Rind = 1.00
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(c) (P2,β,γ ), β = ∞, γ = 0.205
εrel = 0.036, Rind = 1.00
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(d) (P3,β,γ ), β = ∞, γ = 0.078
εrel = 0.044, Rind = 1.00
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(e) (P4,β,γ ), β = ∞, γ = 0.044
εrel = 0.054, Rind = 1.00

100 200 300 400 500

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(f) (P5,β,γ ), β = 24.300, γ = 0.045
εrel = 0.058, Rind = 0.99

Figure 3.6.: Reconstructions of the “Blocks”-signal from noisy data. (a) Data corrupted by Gaussian noise
of level 0.2. (b–f) Reconstructions using higher order Mumford-Shah and Potts models.

November to December 2016.2 We observe that breakpoints are introduced for strong changes
of the wind speed Further, we can associate some breakpoints with a meaning: the break at 492
and the two breaks near 1154 and 1182 correspond to the days of strongest squalls in November
and December 2016, respectively.3

3.4.2. Computation time

We study the computation time of the proposed algorithm depending on the signal length N .
In order to measure the e�ectiveness of the pruning strategies explained at the end of Section
3.3.1, we further investigate the number of executed error updates El :r → El :r+1 in terms of
(3.42). Recall that the computation times strongly depend on the number of executed error
updates.

Signal generation. We generate two types of synthetic signals: signals whose number of
discontinuities increases with their length N and signals with constant number of discontinu-

2 The data were collected by German climate data center and are available via ftp at ftp://ftp-cdc.dwd.de/pub/
CDC/observations_germany/climate/hourly/wind/historical/ (station id: 02115).

3Monatsrückblick der Wetterwarte Garmisch-Partenkirchen/Zugspitze at http://www.schneefernerhaus.de/
�leadmin/web_data/bilder/pdf/MontasrueckblickeZG/MORZG1116.pdf and at http://www.schneefernerhaus.
de/�leadmin/web_data/bilder/pdf/MontasrueckblickeZG/MORZG1216.pdf
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Figure 3.7.: Smoothing of a piecewise de�ned signal with increasing noise level η (top row). We observe
that the segmentation quality improves and that the noise is smoothed out better on the segments when
using higher order Mumford-Shah models.
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Figure 3.8.: Top: hourly averaged windspeeds [m/s] at the summit of the Zugspitze from November to
December 2016. Bottom: result of the higher order Mumford-Shah model (P2;2;15).

ities for all lengths N . Concerning the �rst type of signals, we �x the probability of a jump
discontinuity after each data point to p = 0.01. Thus, the individual segment length follows
a geometric distribution with parameter p and the expected length is 1/p = 100. Further, the
expected number of segments grows linearly with respect to N . On a segment I , the signal д is
a polynomial of degree k−1 and its coe�cients are generated by the random variables 1

(j+1)2X j ,
j = 1, ...,k , where X j are i.i.d. uniformly distributed on [−1, 1]. The domain of дI is [0,hp] for
the length h of I sampled with step size p. For model order k , the polynomial degree is set
to k − 1. The second type of signals is obtained by (equidistant) sampling of the continuous
counterpart of the signal shown in Figure 3.7. In all cases, the signals are corrupted by additive
Gaussian noise with noise level η = 0.1. For every considered signal length, we computed 1000
instances. We report the mean computation time and the mean number of performed error
updates, respectively.

Results. In Figure 3.9, we report the results for the �rst type of signals. We make the im-
portant observation that the runtimes and number of error updates grow linearly in the signal
length. Hence, the proposed algorithm does not exhibit the worst case complexity which is
quadratic. The pruning strategies are therefore highly e�ective. The results for the second type
of signals are shown in Table 3.1. Here –in contrast to the �rst type of signals– the computa-
tion time is approximately quadratic in the number of elements. This means that the proposed
algorithm attains its worst case complexity. The results indicate that the proposed algorithm
is particularly e�cient for an increasing number of discontinuities.

3.5. Summary of the chapter

In this chapter, we studied higher order Mumford-Shah and Potts models for univariate data.
In contrast to the classical �rst order models, which penalize deviations from constant sig-
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Time [s] k =1 2 3 4

n =1000 0.0040 0.0049 0.0061 0.0065
4000 0.0183 0.0217 0.0268 0.0293
7000 0.0319 0.0382 0.0473 0.0513

10000 0.0464 0.0549 0.0682 0.0738

Time [s] k =1 2 3 4

n =1000 0.0032 0.0038 0.0044 0.0052
4000 0.0141 0.0164 0.0191 0.0222
7000 0.0247 0.0291 0.0333 0.0395

10000 0.0358 0.0417 0.0485 0.0570
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(a) Higher order Mumford-Shah model.
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(b) Higher order Potts model.

Figure 3.9.: Computational costs of Algorithm 3.1 for randomly generated piecewise polynomial signals
corrupted by Gaussian noise of level η = 0.1. Top: tables with computation times for selected lengths
N . Center: plots of computation times for N = 100, 200, . . . , 10000. Bottom: plots of the number of
performed error updates for N = 100, 200, . . . , 10000. The runtime only grows linearly in N , which is
much more favorable than the worst quadratic growth. This shows that the pruning strategies show
their full e�ectiveness for this type of signals, which is re�ected by the linear growth of the number of
performed error updates.

nals, higher order Mumford-Shah models penalize deviations from polynomial trends of oder
k − 1. This improves the estimation of data with piecewise linear or polynomial trends. In par-
ticular, higher order models provide improved smoothing as well as improved segmentations
compared to the �rst order models. We showed that the underlying minimization problems
have unique minimizers for almost all input signals. We derived a fast solver for higher order
Mumford-Shah and Potts models and obtained stability results for it. The solver uses a dynamic
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N
k 29 210 211 212 213 214 215 216 217

1 0.0025 0.0091 0.0363 0.1132 0.4230 1.6557 6.5899 28.8285 123.2784
2 0.0025 0.0064 0.0210 0.0714 0.4875 1.9040 7.5987 33.0966 139.5842
3 0.0030 0.0075 0.0196 0.0873 0.3435 2.3475 9.4270 40.4083 166.7910
4 0.0032 0.0078 0.0569 0.0935 0.3685 1.6173 10.1401 44.7423 179.0001

(a) Runtime [s] for (higher order) Mumford-Shah solver

N
k 29 210 211 212 213 214 215 216 217

1 0.0010 0.0030 0.0055 0.0147 0.0502 0.1627 0.5713 2.0363 7.1102
2 0.0016 0.0037 0.0090 0.0292 0.1036 0.3693 1.3562 4.7746 16.8562
3 0.0019 0.0048 0.0116 0.0423 0.1613 0.6022 2.2298 8.2050 30.1515
4 0.0024 0.0057 0.0172 0.0517 0.1977 0.7536 2.8576 10.8020 41.7345

(b) Runtime [s] for (higher order) Potts solver

Table 3.1.: Mean computation times of Algorithm 3.1 (in seconds) of the signal from Figure 3.7 sampled
on N points and corrupted by Gaussian noise with noise level 0.1. The runtime grows approximately
quadratically in N which is the worst case complexity. The relevant di�erence to the experiment in
Figure 3.9 is that the number of discontinuities does not grow with the signal length N . Yet, the solver
processes signals of size 216 in less than one minute.

programming scheme and the involved computation of approximation errors is based on an up-
date strategy with Givens rotations. The numerical experiments con�rmed the stability of the
proposed method and its robustness to noise. We showed that the worst case complexity of
the proposed algorithm is quadratic in the length of the signal for all orders k ≥ 1. In our
experiments, we illustrated the advantages of higher order models for signals with polynomial
trends and we further observed that the practical runtime grows only linear for signals with
linearly increasing number of discontinuities. Our C++ implementation processes even long
signals in reasonable time. In particular, signals, which have length 10, 000, are processed in
less than one second. Thus, higher order Mumford-Shah and Potts models can serve as e�cient
smoothers for signals with discontinuities.
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4. Surrogate Functional Approaches to the
Inverse Potts Model

In this chapter, we consider the inverse Potts model for images which are indirectly given in
terms of measured data. This chapter is based on the publication [118].

Organization of the chapter. First, in Section 4.1, we give an overview and discuss related
work. Next, we derive the proposed algorithmic schemes in Section 4.2. In Section 4.3, we
provide a convergence analysis for the proposed schemes. In Section 4.4, we apply the proposed
algorithms to concrete reconstruction and partitioning problems, respectively. In Section 4.5,
we give a summary of the chapter.

4.1. Overview and related work

In many applications, images are not given directly but indirectly in terms of measured data.
Such applications are for example computed tomography (CT), magnetic resonance imaging
(MRI) or microscopy. Typically, the measured data are noisy and often incomplete so that
the reconstruction of the unknown image becomes di�cult. In particular, the reconstruction
process is ill-posed. Therefore, it is necessary to apply prior knowledge/assumptions on the
image to be reconstructed, i.e., the reconstruction process needs to be regularized.

To this end, we apply the inverse Potts model which regularizes the reconstruction process
by assuming piecewise constancy and thereby partitions the unknown image directly from its
data. We point out that executing the reconstruction and partitioning steps jointly typically
leads to better results than performing the two steps successively [124, 165, 166, 183]. Further,
the usage of the Potts model in connection with inverse problems is theoretically motivated
by the considerations in [166]. The authors showed (after restricting the solution space) un-
der relatively mild assumptions that the method provides a regularizer in the sense of inverse
problems. In this context, we note that Mumford-Shah and Potts approaches also regularize
the boundaries of the underlying signal [108].

We start out by formulating the inverse Potts model, i.e., the counterpart of the classical
Potts model (1.2) for image data given in terms of an imaging operator. The Potts model for
indirect data f is given by

argmin
u,P

‖Au − f ‖22 +
∑
P ∈P

γ

2
length(∂P )

subject to u |P is constant for all P ∈ P .
(4.1)
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The linear operator A –the forward operator– models the measurement or imaging process.
Examples for A are point spread functions in microscopy, the Radon transform in CT or sam-
pled Fourier transforms, which appear in MRI. (Recall that (1.2) in Chapter 1 corresponds to
A = id.) Accordingly, the available data f is an element of the data space, e.g., a blurred im-
age, a sinogram in CT or k-space data in MRI. As for A = id in (1.2), the minimization in (4.1)
takes place w.r.t. the partitions P of the function domain Ω ⊂ R2 into disjoint connected open
sets P and the functions u : Ω → R which are constant on each segment P ∈ P. In order to
avoid oversegmentation, the total length of the segment boundaries is penalized. More pre-
cisely, length(∂P ) = H 1 (∂P ) denotes the one-dimensional Hausdor� measure of the segment
boundary ∂P (see De�nition A.1). To �x ideas, if the boundary of P corresponds to aC1-curve,
length(∂P ) equals its arc length. The second term measures the �delity of u to the data f in
terms of the squared `2-norm. The parameter γ > 0 balances the data �delity and the length
term.

The formulation of the Potts model with partitions (4.1) is instructive, but can become cum-
bersome in practice. An equivalent formulation in terms of the image u only is given by

argmin
u

‖Au − f ‖22 + γ ‖∇u‖0, (4.2)

where the gradient ∇u is understood in the distributional sense (recall (1.2) and De�nition A.2)
and the `0-term in (4.2) is given by

‖∇u‖0 = H
1
(
{x ∈ Ω : ∇u (x ) , 0}

)
(4.3)

which is �nite if and only if u is piecewise constant. Thus, feasible solutions of (4.2) are piece-
wise constant as in (4.1). In view of this, the set of points where ∇u (x ) , 0 is called the jump set
of the piecewise constant function u. Thus, we call ‖∇u‖0 the jump term or jump penalty. The
jump set of u corresponds exactly to the boundaries of the segments P ∈ P in (4.1). Note that
we dropped the factor 1

2 in (4.1) which compensated for the double counting of boundaries.
Summing up, the inverse Potts model (4.2) can be seen as a reconstruction approach if the

(unknown) image under consideration is (approximately) piecewise constant and as an parti-
tioning approach since the piecewise constant result induces directly a partitioning. Thus, the
(inverse) Potts model (4.2) is an approach to joint reconstruction and partitioning.

Solving the Potts problem (4.2) is algorithmically challenging as the underlying minimiza-
tion problem is NP-hard even for the simplest forward operator A = id; see [27, 190]. (In
contrast, for univariate signals it can be solved e�ciently if A = id as seen in Chapter 3, but it
also becomes NP-hard for general linear operators A , id [201].) In this chapter, we develop
new algorithmic approaches to the Potts model (4.2) based on majorization-minimization with
surrogate functionals, give a convergence analysis of the proposed algorithms and underpin
our �ndings in numerical experiments.

Related Work. We start with the Potts problem for general operators A and discuss the
special case A = id separately. In [9], Bar et al. use an approximation of Ambrosio-Tortorelli
type. The authors of [122] employ a level-set based active contour method for deconvolution.
Ramlau and Ring [165] consider joint reconstruction and segmentation of X-ray CT images for
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which they apply a level-set approach. Other applications are electron tomography [123] and
SPECT [124]. An ADMM strategy was proposed in [182] for the univariate case and in [183]
for the multivariate case.

We discuss work related to Mumford-Shah models for indirect data. Fornasier and Ward
[75] derive a reformulation of the problems as pointwise penalized problems and propose it-
erative thresholding algorithms to approach them. They prove that the method converges to
a local minimizer in the univariate case. This approach principally carries over to the Potts
problem which results in an `0 sparsity problem as explained in [182, 201]. This unconstrained
NP-hard optimization problem may be addressed by iterative hard thresholding algorithms for
`0 penalizations, which were analyzed by Blumensath and Davies in [22, 23]. (Daubechies, De-
frise, and De Mol [59] considered iterative soft thresholding for related `1 penalized problems.)
Artina et al. [5] consider the multivariate Mumford-Shah model and use the pointwise penal-
ization approach of [75] which results in a corresponding linearly constrained non-convex and
non-smooth problem. The authors approach this problem by successively minimizing local
quadratic and strictly convex perturbations (depending on the previous iterate) of a smoothed
version of the objective by augmented Lagrangian iterations, which themselves can be accom-
plished by iterative thresholding via a Lipschitz continuous thresholding function. They show
that the sequences produced by their algorithm yield accumulation points, which are con-
strained critical points of the smoothed problem. A similar approach for rewriting the Potts
problem results in an `0 sparsity problem with additional equality constraints. Algorithmic
approaches for such constrained `0 sparsity problems are the penalty decomposition methods
of [142, 143, 217]. They are related to iterative thresholding in the sense that the inner loop
of the employed two stage process usually is of the iterative hard thresholding type. In con-
trast to methods using hard thresholding, the approaches developed in this chapter do not have
to deal with constraints and the full matrix A but with the regularizing term ‖∇u‖0, which is
non-separable, so that we cannot use hard thresholding.

An often used method for restoring piecewise constant images is total variation minimiza-
tion [169]. Here, one uses the convex term ‖∇u‖1 instead of the jump penalty ‖∇u‖0. There-
fore, the corresponding minimization problem is convex and thus numerically tractable by
convex optimization techniques [51, 57]. Towards genuinely piecewise constant solutions,
Candès, Wakin, and Boyd [37] use iteratively reweighted total variation minimization. Re-
sults of compressed sensing type related to the Potts problem have been derived in [151, 152]:
if certain conditions are ful�lled, the minimizers of the Potts functional and of total variation
will agree. In the presence of noise –which is always the case in practical applications– the
results of total variation minimization and Potts minimization can di�er signi�cantly. How-
ever, the minimizers of the Potts problem are frequently desired in practice. Algorithms based
on convex relaxations of the Potts problem (4.2) have been often considered in recent years
[162, 134, 7, 50, 33, 87, 185].

We next discuss approaches to the multivariate Potts problem for the situation A = id, that
is, image partitioning for which further approaches exist. Classical algorithms are based on
simulated annealing [83] and on approximations by elliptic functionals [3]. Another class of
approaches corresponds to the application of graph cuts. As a �rst step, the codomain of u has
to be restricted to a relatively small number of values. While the problem remains NP-hard,
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it can then be approached by sequentially solving binary partitioning problems via minimal
graph cut algorithms [27, 127, 26]. There is also an approach which limits the number of val-
ues of u to k values without �xing them a priori. For k = 2, Chan and Vese [53] used the active
contours to minimize the corresponding binary Potts model. The partitions are represented
by a level set function which evolves according to the Euler-Lagrange equations of the Potts
model. In [52], the authors propose a strategy for the binary segmentation problem, which
is globally convergent. Later in [191], the active contour method for the binary case was ex-
tended to k values (for k > 2 the problem remains NP-hard). Further works on active contours
are [70, 219, 58]. For an overview on level set segmentation, we refer to [58]. In [98, 99, 100],
Hirschmüller proposes a non-iterative strategy for the Potts problem based on cost aggrega-
tion. Compared to graph cuts it has lower computational cost at the expense of lower quality
of the results. Since the number of potential values of u has to be restricted, these methods
are typically used in connection with image segmentation. Other approaches are based on
semi-global matching [100, 68], fused coordinate descent [56], region fusion [154], iterative
thresholding type techniques [75], and the alternating direction method of multipliers [181].
To obtain faster computation times, parallelization has recently received a lot of attention; see
[162, 185, 163, 180]. Nikolova et al. [156, 155] proposed methods for restoring piecewise con-
stant images, in which they use non-convex regularizers and the problems are algorithmically
approached using a graduated non-convexity approach. We note that the Potts problem (4.2)
is not a member of the class of problems considered in [156, 155]. Xu et al. [208] proposed a
piecewise constant model strongly reminiscent of the Potts model which they approach by a
half-quadratic splitting and using a pointwise iterative thresholding type technique. This was
later extended to blind image deconvolution [210].

4.2. Majorization-minimization algorithms for multivariate
Potts problems

In this section, we derive the proposed algorithmic approaches to multivariate inverse Potts
problems (4.2). In particular, we start with the discretization of the model (4.2), relax the dis-
crete optimization problem and reformulate the relaxed problem in a convenient way. Based
on these preparations we derive a majorization-minimization algorithm for the relaxed prob-
lem. Building on that, we derive an algorithm for the original problem. It turns out that the
subproblems which arise in the algorithmic schemes do not decompose into pixelwise thresh-
olding as for `0-sparsity problems. However, they can be solved exactly and e�ciently by the
dynamic programming approach of Chapter 3.

4.2.1. The discrete problem

We use a common discretization of the jump term in (4.2) in terms of �nite di�erences [49, 183].
Concretely, the Potts problem for discrete data is given by

min
u

{
Pγ (u) = ‖Au − f ‖22 + γ

S∑
s=1

ωs ∇asu 0

}
. (4.4)
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Here, the integer vectors as ∈ Z2, s = 1, . . . , S are the directions of the �nite di�erences
∇asu (x ) = u (i, j )+as − ui, j which are weighted by ωs > 0. We denote by ∇asu the vector which
comprises these di�erences for all x . The symbol ‖∇asu‖0 now denotes the number of nonzero
entries of∇asu . (Note that from now on we only consider the discrete setting, so we overloaded
the symbol ‖ ·‖0.) The set of directionsN = {as }Ss=1 forms a neighborhood system. The simplest
choice of the neighborhood system N corresponds to the unit vectors a1 = (0, 1), a2 = (1, 0)
with the unit weights ω1 = ω2 = 1. However, this discretization converges to a (continuous
domain) limit which penalizes the boundaries in terms of the `1-counterpart of the Hausdor�
measure [48]. In practice, this manifests in undesired block artifacts (geometric staircasing).
This can be improved by including the diagonal directions a3 = (1, 1), a4 = (1,−1) to the
directions a1 and a2 which overall yields an 8-neighborhood system. Another choice is the 16-
neighborhood system which also incorporates the knight-moves a5 = (1, 2), a6 = (2, 1), a7 =

(1,−2), a8 = (2,−1). (The additional directions correspond to the moves of the knights in
chess.) In Figure 4.1, we give an illustration of these neighborhood systems.

We need to determine the weights ωs of the 8-neighborhood and 16-neighborhood system,
respectively. The weights we use here are chosen so that the discrete length of an isolated jump
set/edge along each of the directions as equals its length in the continuous setting [183]. For the
8-neighborhood system this is accomplished by the weightsωs =

√
2−1 for the coordinate part

s = 1, 2 and ωs = 1 −
√

2
2 for the diagonal part s = 3, 4. When incorporating the knight-move

directions, the weights are chosen asωs =
√

5−2 for the coordinate part s = 1, 2,ωs =
√

5− 3
2
√

2
for diagonal part s = 3, 4, andωs =

1
2 (1+

√
2−
√

5) for diagonal part s = 5, . . . , 8. Concerning the
weight design for general neighborhood systems, we refer to [49, 183]. For the 8-neighborhood
system the weights obtained in [49] and [183] coincide. For the 16-neighborhood system the
weights above correspond to the weights derived by the scheme in [183]. In this chapter, we
focus on the 8-neighborhood discretization.

We record that the discrete problem has a minimizer.

Theorem 4.1. The discrete multivariate Potts problem (4.4) has a minimizer.

The proof follows the lines of the proof of [101, Theorem 2.1] which proved the analogous
statement for the inverse piecewise smooth Mumford-Shah problem.

4.2.2. Derivation of the proposed algorithmic schemes

As a �rst step, we reformulate the minimization problem (4.2) as a constrained problem. To
this end, we introduce the S splitting variables u1, . . . ,uS under the constraint that they are
equal, i.e., we consider

Pγ (u1, . . . ,uS ) → min, s.t. u1 = . . . = uS . (4.5)

The functional Pγ (u1, . . . ,uS ) of the S variables u1, . . . ,uS is given by

Pγ (u1, . . . ,uS ) =
S∑
s=1

1
S

Aus − f 2
2 + γ

S∑
s=1

ωs ∇asus 0 . (4.6)
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Figure 4.1.: Illustration of the discrete gradient of the imageu at the point (i, j ) for di�erent neighborhood
systems. The vectors as are the o�sets of the employed �nite di�erences u (i, j )+as − ui, j .

It is a basic but important observation that the constrained problem (4.5) and the original prob-
lem (4.4) are equivalent. Note that we have overloaded the symbol Pγ which, for one argument
u, denotes the discrete Potts functional in (4.4) and for S arguments u1, . . . ,uS denotes the
functional in (4.6). In particular, we have Pγ (u, . . . ,u) = Pγ (u).

Quadratic penalty relaxations of the Potts functional. First, we relax the equality con-
straints in (4.5) by replacing them by corresponding quadratic penalty terms in the functional.
The resulting quadratic penalty relaxation of (4.6) is given by

Pγ ,ρ (u1, . . . ,uS ) =
S∑
s=1

1
S

Aus − f 2
2 + γ

S∑
s=1

ωs ∇asus 0 + ρ
∑

1≤s<s ′≤S
cs,s ′ ‖us − us ′ ‖

2
2 . (4.7)

The constraints u1 = . . . = uS are now part of the functional in the form of soft constraints
which are given by the squared Euclidean norms

∑
1≤s<s ′≤S cs,s ′ ‖us − us ′ ‖

2
2 . Here, the cs,s ′

are nonnegative weights (which are possibly zero, if we do not want to directly couple us and
us ′) and ρ > 0 denotes a penalty parameter which promotes the soft constraints. Thus, larger
values of ρ result in a tighter coupling of the us as they are forced to be closer to each other
in the `2-sense. We will later quantify analytically the size of ρ necessary to obtain an a priori
prescribed tolerance in the deviations of the us ; see (4.23) below. For convenience we will
frequently use the notation

ρs,s ′ = ρ cs,s ′ . (4.8)

Two typical coupling strategies correspond to coupling all splitting variables or coupling
only consecutive splitting variables. They are realized by the following values of the ρs,s ′ ,

ρs,s ′ = ρ for all s, s ′, or ρs,s ′ = ρ δ (s+1) mod S,s ′ . (4.9)

The �rst corresponds to the constant choice cs,s ′ = 1. The second corresponds to letting cs,s ′ =
1 if and only if s and s ′ are (circularly) consecutive which we denote compactly in terms of
Kronecker deltas. For both couplings only one additional parameter ρ > 0 appears which is
tied to the tolerance one is willing to accept on the distances between theui ; see Algorithm 4.1.
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Majorization-minimization approach to quadratic penalty relaxations. Towards a maj-
orization-minimization approach, we �rst derive a surrogate functional [59] for Pγ ,ρ in (4.7).
To this end, we derive a vectorized Tikhonov type formulation of Pγ ,ρ , that is,

Pγ ,ρ (u1, . . . ,uS ) = ‖B (u1, . . . ,uS )
T − д‖22 + γF (u1, . . . ,uS )

for a matrix B, data д and a prior/regularizing term F . We de�ne the block matrix B and the
vector д given by

B =

*.........................................
,

S−1/2A 0 · · · 0
0 S−1/2A · · · 0
...

. . .
...

0 0 · · · S−1/2A 0
0 0 · · · 0 S−1/2A

ρ1/2
1,2 I −ρ1/2

1,2 I 0 . . . 0 0
ρ1/2

1,3 I 0 −ρ1/2
1,3 I . . . 0 0

...
...

ρ1/2
1,S I 0 0 . . . 0 −ρ1/2

1,S I

0 ρ1/2
2,3 I −ρ1/2

2,3 I . . . 0 0
...

...

0 ρ1/2
2,S I 0 . . . 0 −ρ1/2

2,S I
...
...

0 0 0 . . . ρ1/2
S−1,S I −ρ

1/2
S−1,S I

+/////////////////////////////////////////
-

, д =

*.......................................
,

S−1/2 f
S−1/2 f
...

S−1/2 f
S−1/2 f

0
0
...

0
0
...

0
...
...

0

+///////////////////////////////////////
-

. (4.10)

Here, I denotes the identity matrix and 0 the zero matrix. In total, the matrix B has S block
columns and S + S (S − 1)/2 block rows. Further, we introduce the di�erence operator D given
by

D (u1, . . . ,uS ) =
*..
,

∇a1u1
...

∇aSuS

+//
-

(4.11)

which takes the di�erences in direction as of the s-th component us of u . By including the
weightsω1, . . . ,ωS we de�ne the quantity ‖D (u1, . . . ,uS )‖0,ω which counts the weighted num-
ber of jumps via

‖D (u1, . . . ,uS )‖0,ω =
S∑
s=1

ωs ∇asus 0 . (4.12)

Now we can rewrite (4.7) as

Pγ ,ρ (u1, . . . ,uS ) =
B (u1, . . . ,uS )

T − д
2

2
+ γ

 D (u1, . . . ,uS )
0,ω

(4.13)
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and the surrogate functional of (4.13) in the sense of [59] is given by

P surr
γ ,ρ (u1, . . . ,uS ,v1, . . . ,vS ) =

1
L2
ρ

B (u1, . . . ,uS )
T − д

2

2
+
γ

L2
ρ

 D (u1, . . . ,uS )
0,ω

(4.14)

−
1
L2
ρ

B (u1, . . . ,uS )
T − B (v1, . . . ,vS )

T 
2

2
+

(u1, . . . ,uS )
T − (v1, . . . ,vS )

T 
2

2
,

where Lρ ≥ 1 is a constant larger than the spectral norm ‖B‖2 of B (i.e., the operator norm
w.r.t. the `2-norm) which ensures that B/Lρ is contractive. A su�cient choice of Lρ in terms of
the measurement operator A and the penalties ρs,s ′ corresponds to requiring

L2
ρ > ‖A‖

2
2/S + 2 max

s ∈{1, ...,S }

S∑
s ′:s ′,s

ρs,s ′ . (4.15)

For the coupling strategies in (4.9) we have sharper estimates. In particular, for the full coupling
ρs,s ′ = ρ we can choose

L2
ρ > ‖A‖

2
2/S + Sρ (4.16)

and when coupling only neighboring us for the same constant ρ, we have

L2
ρ > ‖A‖

2
2/S + αρ, (4.17)

where α = 4, if S is even, and α = 2 − 2 cos
(
π (S−1)

S

)
if S is odd. All these estimates are proven

in Lemma 4.9. Basics on surrogate functionals as we need them in this chapter are gathered in
Section 4.3.4. Further details on surrogate functionals can be found in [59, 22, 23].

In order to minimize the quadratic penalty relaxation (4.7), we use the surrogate iteration(
u (n+1)

1 , . . . ,u (n+1)
S

)
∈ argmin

u1, ...,uS
P surr
γ ,ρ (u1, . . . ,uS ,u

(n)
1 , . . . ,u

(n)
S ). (4.18)

In the following, we derive a more explicit formulation of (4.18). First, after using elementary
properties of the inner product we obtain

P surr
γ ,ρ (u1, . . . ,uS ,v1, . . . ,vS ) =

(u1, . . . ,uS )
T −

(
(v1, . . . ,vS )

T −
1
L2
ρ
BT (B (v1, . . . ,vS )

T − д)
)

2

2

+
γ

L2
ρ

 D (u1, . . . ,uS )
0,ω
+ R (v1, . . . ,vS ), (4.19)

where R (v1, . . . ,vS ) is a rest term which is negligible when minimizing Psurr w.r.t. u1, . . . ,uS
for �xed v1, . . . ,vS .We write (4.19) in terms of A and the data f as

P surr
γ ,ρ (u1, . . . ,uS ,v1, . . . ,vS ) (4.20)

=

S∑
s=1




us − *

,
vs +

1
SL2

ρ
A∗ f − 1

SL2
ρ
A∗Avs −

∑
s,s ′

ρs,s′
L2
ρ
(vs −vs ′ )+

-



2

2

+
γωs
L2
ρ

∇asus 0


+ R (v ).
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In view of (4.20), the surrogate iteration (4.18) is given by

(
u (n+1)

1 , . . . ,u (n+1)
S

)
∈ argmin

u1, ...,uS

S∑
s=1

[us − h
(n)
s


2

2
+

γωs
L2
ρ

∇asus 0

]
, (4.21)

where h (n)
s is given by

h (n)
s = u

(n)
s +

1
SL2

ρ
A∗ f − 1

SL2
ρ
A∗Au (n)

s −
∑

s ′:s ′,s

ρs,s′
L2
ρ
(u (n)

s − u
(n)
s ′ ), for all s ∈ {1, . . . , S }. (4.22)

In Section 4.2.3 below, we explain how to compute a minimizer of (4.21) e�ciently. Now we
assume that a small deviation between the us is acceptable, that is,

‖us − us ′ ‖
2
2 =

∑
i, j

|(us )i j − (us ′ )i j |
2 < ε2

cs,s′
(4.23)

for ε > 0 and all indices s, s ′ with cs,s ′ , 0. Then the following algorithm computes a result for
the quadratic penalty relaxation (4.7) which satis�es (4.23).

Algorithm 4.1. We consider the quadratic penalty relaxed Potts problem (4.7) and a tolerance ε
for the targetsus . The following algorithm approaches the relaxed Potts problem (4.7) and produces
a result for which the us deviate from each other by at most ε/√cs,s ′ .

• Set ρ according to (4.37), set Lρ according to (4.15) (in the special cases of (4.9), set Lρ
according to (4.16) or (4.17), respectively.)

Setn = 0 and initializeu (0)
s as discussed in the corresponding paragraph below, (e.g.,u (0)

s = 0
for all s).

• Iterate until convergence:

1. h (n)
s = u

(n)
s +

1
SL2

ρ
A∗ f − 1

SL2
ρ
A∗Au (n)

s −
∑

s ′:s ′,s

ρs,s′
L2
ρ
(u (n)

s − u
(n)
s ′ ), s = 1, . . . , S,

2.
(
u (n+1)

1 , . . . ,u (n+1)
S

)
∈ argmin

u1, ...,uS

S∑
s=1

[us − h
(n)
s


2

2
+

γωs
L2
ρ

∇asus 0

]
. (4.24)

By Theorem 4.5 below, Algorithm 4.1 converges to a local minimizer of the quadratic penalty
relaxation (4.7) and the components us are ε-close, i.e., (4.23) is ful�lled.

A projection procedure for solutions of the quadratic penalty relaxation. As stated
above, Algorithm 4.1 produces a local minimizer of the quadratic penalty relaxation (4.7) (The-
orem 4.5) of the Potts problem (4.6) and the variables of the produced result are close up to an
a priori chosen tolerance. (In practice, this may be already su�cient.) However, a local min-
imizer of the quadratic penalty relaxation (4.7) is not a feasible solution of the Potts problem
(4.6).
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In the following, we explain a projection procedure which produces a feasible solution for
the Potts problem (4.6) from a local minimizer of (4.7) with variables us close to each other (as
produced by Algorithm 4.1). Related theoretical results are stated as Theorem 4.6. In particular,
it will turn out that in case of a lower bounded imaging operator A, the projection procedure
yields a feasible point. Furthermore, the hereby obtained result is close to a local minimizer of
the original Potts problem (4.6).

In order to explain the procedure, we need some notions on partitionings of a discrete image
domain Ω. We recall that a partitioning P consists of a �nite number NP of segments Pi which
are pairwise disjoint sets of pixel coordinates whose union equals the image domain Ω, i.e.,

∪
NP
i=1Pi = Ω, Pi ∩ Pj = ∅ for all i, j = 1, . . . ,NP . (4.25)

Here, we assume that each segment Pi is connected w.r.t. the neighborhood system a1, . . . ,aS ,
i.e., for any two elements in Pi there is a path with steps in a1, . . . ,aS which connects them.

We will need the following proposed notion of a directional partitioning.

De�nition 4.2. A directional partition I of a discrete domain Ω w.r.t. a set of S directions
a1, . . . ,aS is a set of (discrete) intervals I . Each interval I is associated with exactly one of the
directions as ∈ {a1, . . . ,aS } and is of the form I = {(i, j ) +kas : k = 0, . . . ,K − 1}, where K ∈ N
and we require I ⊂ Ω. Further, for each (single) direction as , the corresponding intervals have
to form an ordinary partition.

We note that a result u = (u1, . . . ,uS ) : Ω → Rs of Algorithm 4.1 induces a directional
partitioning: each variable us is associated with a direction as and for any s ∈ {1, . . . , S }, we
let each (maximal) interval of constance of us be an interval in I associated with as .

Each partitioning P induces a directional partitioning I by letting the intervals I of I be
the stripes with direction as obtained from segment Pi for each direction s = 1, . . . , S and each
segment Pi , i = 1, . . . ,NP .

Conversely, each directional partitioning I induces a partitioning by the following merging
process.

De�nition 4.3. Two pixels x ,y are related, in symbols, x ∼ y, if they are connected by a path
x0 = x , . . . ,xN = y such that for any consecutive members xi ,xi+1, i = 1, . . . ,N − 1, of the
path there is an interval I of the directional partitioning I which contains xi and xi+1.

Obviously, the relation x ∼ y is an equivalence relation and the equivalence classes Pi form
a partitioning on Ω.We denote by

I (P) = IP , P (I) = PI , (4.26)

the mappings which assign a directional partitioning to a partitioning and vice versa, respec-
tively.

Finally, we de�ne for a function u = (u1, . . . ,uS ) : Ω → Rs and a partitioning P of Ω, the
projection to a function πP (u) : Ω → R by

πP (u) |Pi =

∑
x ∈Pi

∑S
s=1us (x )

S #Pi
. (4.27)
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Here, #Pi denotes the number of elements in the segment Pi . The projection π de�ned in (4.27)
averages the components us of u and all members of the segment Pi and thereby produces a
piecewise constant function w.r.t. the partitioning P .

We now propose the following projection procedure.

Procedure 4.1 (Projection Procedure). We consider output u = (u1, . . . ,uS ) : Ω → Rs of
Algorithm 4.1 together with its induced directional partitioning I.

1. Compute the partitioningP (I) = PI induced by the directional partitioningI as explained
above (4.26).

2. Project u = (u1, . . . ,uS ) : Ω → Rs to πPI (u) using (4.27) for the partitioning P (I) = PI ,
and return πPI (u) as output.

We remark that the second step might be replaced by solving the normal equations w.r.t.A
and f in the space of functions constant on PI which, however, might be more expensive.

An approach to the Potts problem based on the majorization-minimization approach
to its quadratic penalty relaxation. The coupling parameter ρ controls the similarity of
the components us , i.e., a large value of ρ enforces the us to be close to each other and in
the limit case ρ → ∞, they become equal and yield a solution to the Potts problem (4.4). As a
consequence, increasing the parameters ρ during the iterations should tie theus closer together
such that the constraint of (4.5) should be ultimately ful�lled and we obtain an approach for
the initial Potts problem (4.4). Recall that ρs,s ′ = ρ cs,s ′ was de�ned by (4.8), where the cs,s ′ are
nonnegative numbers weighting the constraints. The coupling parameter ρ is increased in the
course of the iterations, while the cs,s ′ are �xed during this process. We sum up the approach
in the following algorithm.

Algorithm 4.2. We consider the Potts problem (4.5) in S variables (which is equivalent to (4.4)
as explained above). We propose the following algorithm for the Potts problem (4.5).

Let ρ (k ) be a strictly increasing sequence (e.g., ρ (k ) = τ kρ (0), with ρ0,τ > 1) and δk → 0 be
a strictly decreasing sequence converging to zero (e.g., δk = δ0/τ

k .) Further, let

t > 2σ−1/2
1 S−1/2‖A‖ ‖ f ‖, (4.28)

where σ1 is the smallest non-zero eigenvalue of CTC with C given by (4.52). For the partic-
ular choice of coupling given by the left-hand and right hand side of (4.9) we let

t > 2
S ‖A‖ ‖ f ‖, and t > 2(2 − 2 cos(2π/S ))−1/2S−1/2‖A‖ ‖ f ‖, respectively.

(4.29)

• Initialize u (0)
s := u (0,0)

s as discussed in the corresponding paragraph below (e.g., u (0)
s = 0 for

all s).

Set ρ = ρ (0), ρs,s ′ = ρ (0)cs,s ′, δ = δ0, k,n = 0; set Lρ according to (4.15) (or, in the special
cases of (4.9), as explained below (4.15)).
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(i) While

u
(k,n)
s − u (k,n)

s ′
 >

t

ρ
√
cs,s ′
, or u

(k,n)
s − u (k,n−1)

s
 >

δ

Lρ
(4.30)

do

1. h (k,n)
s = u (k,n)

s + 1
SL2

ρ
A∗ f − 1

SL2
ρ
A∗Au (k,n)

s −
∑

s ′:s ′,s

ρs,s′
L2
ρ
(u (k,n)

s − u (k,n)
s ′ ), s = 1, . . . , S,

2.
(
u (k,n+1)

1 , . . . ,u (k,n+1)
S

)
∈ argmin

u1, ...,uS

S∑
s=1

[us − h
(k,n)
s


2

2
+

γωs
L2
ρ

∇asus 0

]
, (4.31)

and set n = n + 1.

(ii) Set

u (k+1)
s = u (k+1,0)

s = u (k,n)
s , (4.32)

set k = k + 1,n = 0, and let ρ = ρ (k ), ρs,s ′ = ρ (k ) cs,s ′,δ = δk ; set Lρ according to (4.15)
(or, in the special cases of (4.9), as below (4.15)) and goto (i).

This approach is inspired by the quadratic penalty methods of [142] for sparsity problems,
that is, searching for a solution with only a few nonzero entries. There, the corresponding
prior is separable, while we consider a non-separable prior.

Initialization. Although the initialization of Algorithm 4.1 and of Algorithm 4.2 is not rele-
vant for its convergence properties (cf. Section 4.3), the initialization in�uences the �nal result.
We discuss di�erent strategies. The simplest choice is the all-zero initialization (u (0)

1 , ...,u
(0)
s ) =

(0, ..., 0). Furthermore, one can select the right hand side of the normal equations of the un-
derlying least squares problem, that is AT f . A third reasonable choice is the solution of the
normal equations itself or an approximation of it. Using an approximation might especially be
reasonable to receive a regularized approximation of the normal equations. A possible strategy
to obtain such a regularized initialization is to apply a �xed number of Landweber iterations
[129] or of the conjugate gradient method to the underlying least square problem. (In our
experiments, we initialized Algorithm 4.1 with the result of 1000 Landweber iterations and
Algorithm 4.2 with AT f .)

4.2.3. Solving the subproblems

In both proposed algorithms we have to solve the Potts subproblem (4.21) in the backward step,
see (4.24) and (4.31), respectively. We �rst observe that (4.21) can be solved for each of the us
separately and the corresponding s minimization problems have the prototypical form

argmin
us :Ω→R

‖us − f ‖22 + γ
′
s ‖∇asu‖0 (4.33)
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(a) (b) (c) (d)

Figure 4.2.: Decomposition of the surrogate iteration (4.21) into univariate Potts problems along the
paths induced by th directions as . The speci�c paths depend on the directions used for discretizing the
gradient. (a)-(b): anisotropic discretization. (a)-(d): near-isotropic discretization.

for given data f , the jump penalty γ ′s =
γωs
L2
ρ
> 0 and the direction as ∈ Z2. Next, we see

that (4.33) decomposes into univariate Potts problems for data along the paths in f induced by
as . For example, the direction as = e1 induces paths which correspond to the rows of f and a
minimizer u∗s of (4.33) is obtained by determining each of its rows individually. An illustration
of the paths for the 8-neighborhood discretization is given in Figure 4.2. The univariate Potts
problem corresponds to

P id,1d
γ (x ) = ‖x − д‖22 + γ ‖∇x ‖0 → min, (4.34)

where the data д is given by the restriction of f to the pixels in Ω of the form v + asZ, i.e.,
д = f (v + as ·). Here the o�set v is �xed when solving each univariate problem, but varied
afterwards to get all lines in the image with direction as . The target to optimize is denoted by
x ∈ Rn and, in the resulting univariate situation, ‖∇x ‖0 = |{i : xi , xi+1}| denotes the number
of jumps of x . The univariate Potts problem can be solved with Algorithm 3.1 of Chapter 3, so
that the subproblems of the proposed algorithms are solved exactly and e�ciently.

4.3. Analysis

4.3.1. Analytic results

We started by considering the quadratic penalty relaxation (4.7) of the multivariate Potts prob-
lem when we derived the proposed algorithms. Even though it is more straight-forward to
access algorithmically via our approach, we �rst note that this problem is still NP-hard (as is
the original problem).

Theorem 4.4. Finding a (global) minimizer of the quadratic penalty relaxation (4.7) of the mul-
tivariate Potts problem is an NP-hard problem.

The proof is given in Section 4.3.3 below. In Section 4.2.2, we have proposed Algorithm 4.1
to approach the quadratic penalty relaxation of the multivariate Potts problem. We show that
Algorithm 4.1 converges to a local minimizer of the quadratic penalty relaxation and that a
feasible point of the original multivariate Potts problem is nearby.
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Theorem 4.5. We consider the iterative Potts minimization Algorithm 4.1 for the quadratic
penalty relaxation (4.7) of the multivariate Potts problem.

(i) Algorithm 4.1 computes a local minimizer of the quadratic penalty relaxation (4.7) of the
multivariate Potts problem for any starting point. The convergence rate is linear.

(ii) We have the following relation between local minimizers L, global minimizers G and the
�xed points Fix(I) of the iteration of Algorithm 4.1,

G ⊂ Fix(I) ⊂ L. (4.35)

(iii) Assume a tolerance ε we are willing to accept for the distance between the us , i.e.,∑
s,s ′

cs,s ′ ‖us − us ′ ‖
2
2 =

∑
s,s ′

cs,s ′
∑
i, j

|(us )i j − (us ′ )i j |
2 ≤ ε2. (4.36)

Running Algorithm 4.1 with the choice of the parameter ρ by

ρ > 2ε−1 σ−1/2
1 S−1/2‖A‖‖ f ‖ (4.37)

(where σ1 is the smallest non-zero eigenvalue ofCTC withC given by (4.52); for the partic-
ular choice of the coupling given by (4.9), σ1 = S and σ1 = (2 − 2 cos(2π/S )), respectively)
yields a local minimizer of the quadratic penalty relaxation (4.7) such that the us are close
up to ε, i.e., (4.36) is ful�lled.

The proof is given in Section 4.3.5 below. We recall that a solution of Algorithm 4.1 is not
a feasible point for the initial Potts problem (4.5). However, it produces a δ -approximative
solution u∗, i.e., there is µ∗ and a partitioning P∗ such that∑

s,s ′
cs,s ′ ‖u

∗
s − u

∗
s ′ ‖

2
2 < δ , and L(µ∗) < δ , (4.38)

where L(µ∗) is given by (4.56) below. In this context, we note that the conditions for a local
minimizer of (4.5) are given by

∑
s,s ′ cs,s ′ ‖u

∗
s −u

∗
s ′ ‖

2
2 = 0 and the Lagrange multiplier condition

L(µ∗) = 0. Hence, (4.38) intuitively means that both the constraint and the Lagrange multiplier
condition are approximately ful�lled for the partitioning induced byu∗. Further, a feasible point
for the Potts problem (4.5) (or, equivalently, (4.4)) is nearby which is detailed in the following
theorem.

Theorem 4.6. We consider the iterative Potts minimization Algorithm 4.1 for the quadratic
penalty relaxation (4.7) in connection with the (non-relaxed) Potts problem (4.5).

(i) Algorithm 4.1 produces an approximative solution w.r.t. (4.38) of the Potts problem (4.5).

(ii) The projection procedure of Section 4.2.2 (which was formulated as Procedure 4.1) applied
to the solution u ′ = (u ′1, . . . ,u

′
S ) of Algorithm 4.1 produces a feasible image û (and a valid

partitioning) for the Potts problem (4.5) which is close to u ′ in the sense that

‖u ′s − û‖ ≤ C1ε for all s ∈ {1, . . . , S }, (4.39)
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where ε = maxs,s ′ ‖u ′s −u ′s ′ ‖ quanti�es the deviation between the components us andC1 =

#Ω/4. If the imaging operator A is lower bounded, i.e., there is a constant c > 0 such that
‖Au‖ ≥ c ‖u‖, a local minimizer u∗ of the Potts problem (4.5) is nearby, i.e.,

‖u∗ − û‖ ≤

√
η

c
(4.40)

where
η :=

(
‖A‖2εC2

1 + 2‖A‖C1‖ f ‖2
)
ε . (4.41)

The proof of Theorem 4.6 can be found at the end of Section 4.3.4, where most relevant
statements are shown before in Section 4.3.3. Theorem 4.6 is a theoretical justi�cation that in
practice we may use Algorithm 4.1 for the Potts problem (4.5) (for an arbitrary small tolerance
we may �x in advance).

In Section 4.2.2, we have proposed Algorithm 4.2 to approach the Potts problem (4.5). We
�rst show that Algorithm 4.2 is well-de�ned.

Theorem 4.7. Algorithm 4.2 is well-de�ned, that is, the inner iteration governed by (4.30) termi-
nates. More precisely, for any k ∈ N, there is n ∈ N such that the termination criterium given by
(4.30) holds.

The proof of Theorem 4.7 is given in Section 4.3.6. We obtain the following results concern-
ing the convergence properties of Algorithm 4.2.

Theorem 4.8. We consider the iterative Potts minimization algorithm (Algorithm 4.2) for the
Potts problem (4.5).

• Any cluster point of the sequence u (k ) is a local minimizer of the Potts problem (4.5) (which
implies that the components of each limit u∗ are equal, i.e., u∗s = u

∗
s ′ for all s, s

′.)

• If A is lower bounded, the sequence u (k ) produced by Algorithm 4.2 has a cluster point and
the produced cluster points are local minimizers of the Potts problem (4.5).

The proof of Theorem 4.8 can be found in Section 4.3.6.

4.3.2. Estimates on operator norms and Lagrange multipliers

Lemma 4.9. The spectral norm of the block matrix B given by (4.10) satis�es

‖B‖2 ≤

(
1
S ‖A‖

2
2 + 2 max

s ∈{1, ...,S }

S∑
s ′:s ′,s

ρs,s ′

) 1
2

. (4.42)

For the particular choice of constant ρs,s ′ = ρ (independent of s, s ′) as on the left-hand side of (4.9)
we have the improved estimate

‖B‖2 ≤

(
1
S ‖A‖

2
2 + Sρ

) 1
2

. (4.43)
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For only coupling neighboring us with the same constant ρ, i.e., the right-hand coupling of (4.9),
we have

‖B‖2 ≤

(
1
S ‖A‖

2
2 + αρ

) 1
2

, where α =



4, if S is even,
2 − 2 cos

(
π (S−1)

S

)
, if S is odd.

(4.44)

Proof. We write the matrix B in block form B =

(
S−1/2Ã

P̃

)
. Here Ã denotes an S × S- block

diagonal matrix with each diagonal entry being equal to A, where A is the matrix representing
the forward/imaging operator; see (4.10). The matrix P̃ is given as the lower

(
S
2

)
× S- block in

(4.10) which represents the soft constraints.
Using this decomposition of B,we may decompose the symmetric and positive (semide�nite)

matrix BTB according to

BTB = 1
S Ã

T Ã + P̃T P̃ , (4.45)

where ÃT Ã is an S × S- block diagonal matrix with each diagonal entry being equal to ATA,
and P̃T P̃ is an S × S- block diagonal matrix with block entries given by

P̃T P̃ =

*.....
,

∑S
k=2 ρ1,k I −ρ1,2I −ρ1,3I . . . −ρ1,S I
−ρ1,2I

∑S
k=1,k,2 ρ2,k I −ρ2,3I . . . −ρ2,S I
...

...

−ρ1,S I −ρ2,S I −ρ3,S I . . .
∑S−1

k=1 ρS,k I

+/////
-

, (4.46)

with ρl,k := ρk,l for l > k . Using Gerschgorin’s Theorem (see for instance [178]), the eigen-
values of P̃ are contained in the union of the balls with center xr =

∑S
k=1,k,r ρr,k and radius

xr =
∑S

k=1,k,r | − ρr,k |. These balls are all contained in the larger ball with center 0 and radius
2 ·maxr xr . This implies (4.42).

For seeing (4.43) we decompose an argument u = (u1, . . . ,uS ) according to u = ū + u0 with
an “average” part ū = ( 1

S
∑S

i=1ui , . . . ,
1
S
∑S

i=1ui ) and u0 := u − ū such that u0 has average 0, i.e.,∑S
i=1u

0
i = 0, where 0 denotes the vector containing only zero entries here. In the situation of

(4.43), the matrix P̃T P̃ has the form P̃T P̃ = ρ (S · I − (1, . . . , 1) (1, . . . , 1)T ) We have P̃T P̃ū = 0.
Further, P̃T P̃u0 = ρSu0. Hence, the largest modulus of an eigenvalue of P̃T P̃ equals ρS which
in turn shows the estimate (4.43).

For seeing (4.44), we notice that in case of (4.44), the matrix P̃T P̃ has cyclic shift structure
with three nonzero entries in each line. The discrete Fourier matrix w.r.t. the cyclic group of or-
der S diagonalizes P̃T P̃ . The corresponding eigenvalues are given by λk = ρ

(
2 − 2 cos

(
2π k

S

))
,

where k = 0, . . . , S − 1. Thus, the largest modulus of an eigenvalue given by 4 ρ, if S is even,
and by ρ ·

(
2 − 2 cos

(
π (S−1)

S

))
otherwise. �

We recall that we have de�ned the notion of a directional partitioning I (cf. De�nition 4.2)
and discussed its relation with the concept of a partitioning near (4.26). For a function f : Ω →
RS (representing S component functions f1, . . . , fS : Ω → R) de�ned on a discrete domain Ω
we consider the orthogonal projection PI associated with a directional partition I. First we
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sort the intervals I into I1, . . . ,IS according to their associated directions as , s = 1, . . . , S, and
then we let

PI f =
*..
,

PI1 f1
...

PIS fS

+//
-
, where PIs fs |I =

∑
x ∈I fs (x )

#I
, (4.47)

i.e., the function PIs fs on the interval I is given by the arithmetic mean of fs on the interval
I for all intervals I ∈ Is , and for all s = 1, . . . , S . Here, #I denotes the number of elements in
I .We note that PI de�nes an orthogonal projection on the corresponding `2-space of discrete
functions f : Ω → RS with the norm ‖ f ‖2 =

∑
s,i |( fs )i |

2 where i iterates through all the
indices of fs .

We consider a partitioning P of Ω, its induced directional partitioning IP w.r.t. a set of S
directions a1, . . . ,aS , and de�ne the subspace

AP = PIP (`2 (Ω,R
S )) (4.48)

of functions which are constant on the intervals of the induced directional partitioning IP
(which are invariant w.r.t. the orthogonal projection PIP ).

The functions д : Ω → R which are piecewise constant w.r.t. a partitioning P, i.e., they are
constant on each segment Pi , are in one-to-one correspondence with the linear subspace BP
of AP given by

BP =
{
f ∈ AP : f1 = . . . = fS

}
(4.49)

which we show in the following lemma.

Lemma 4.10. There is a one-to-one correspondence between the linear space of piecewise constant
functions w.r.t. the partitioningP, and the subspaceBP ofAP via themapping ι : д 7→ (д, . . . ,д).

Proof. Let д be a piecewise constant mapping w.r.t. the partitioning P . Then (д, . . . ,д) is con-
stant on each interval I of the induced directional partitioning IP , and (д, . . . ,д) ∈ BP . This
shows that ι is well-de�ned in the sense that its range is contained in BP . Obviously, ι is an
injective linear mapping so that it remains to show that any f ∈ BP is the image under ι of
some д : Ω → R which is piecewise constant w.r.t. the partitioning P . To this end, let f ∈ BP .
By de�nition, f has the form f = (д, . . . ,д) for some д : Ω → R. Now, towards a contra-
diction, assume there is a segment Pi and points x ,y ∈ Pi with д(x ) , д(y). Since there is a
path x0 = x , . . . ,xN = y connecting x ,y in Pi with steps in a1, . . . ,aS , we have that for any
i there is an interval I in the induced partitioning IP containing xi together with xi+1. Since
д is constant on each I in IP we get д(xi ) = д(xi+1) for all i which implies д(x ) = д(y). This
contradicts our assumption and shows the lemma. �

We use the identi�cation given by Lemma 4.10 to de�ne, for a given partitioning P, the
projection QP onto BP by

QP f =
*..
,

πP f
...

πP f

+//
-
, where π f |Pi =

∑S
s=1

∑
x ∈Pi fs (x )

#Pi S
, (4.50)
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i.e., taking the average w.r.t. the segment and all component functions as given by (4.27). As
the components of QP f are all identical, we will not distinguish between QP and πP in the
following. Hence, we also use the symbol QP f to denote the scalar-valued function which is
piecewise constant on the partitioning P .

On the space AP , we consider the following problem

argmin
u1, ...,uS

S∑
s=1

1
S

Aus − f 2
2 subject to Cu = 0, (4.51)

which corresponds to searching for a solution which belongs to BP given the directional par-
titioning. Here, C denotes the constraint matrix

C =

*....................
,

c1,2I −c1,2I 0 . . . 0 0
c1,3I 0 −c1,3I . . . 0 0

...
...

c1,S I 0 0 . . . 0 −c1,S I
0 c2,3I −c2,3I . . . 0 0

...
...

0 c2,S I 0 . . . 0 −c2,S I
...

0 0 0 . . . cS−1,S I −cS−1,S I

+////////////////////
-

, (4.52)

where the cs,s ′ are as in (4.7); in particular, if cs,s ′ = 0, the corresponding row is removed from
the constraint matrix C . For the special choices of (4.9), we have

C =

*....................
,

I −I 0 . . . 0 0
I 0 −I . . . 0 0
...

...

I 0 0 . . . 0 −I
0 I −I . . . 0 0
...

...

0 I 0 . . . 0 −I
...

0 0 0 . . . I −I

+////////////////////
-

, and C =

*.............
,

I −I 0 0 . . . 0 0 0
0 I −I 0 . . . 0 0 0
0 0 I −I . . . 0 0 0

...
...

0 0 0 0 . . . I −I 0
0 0 0 0 . . . 0 I −I
−I 0 0 0 . . . 0 0 I

+/////////////
-

(4.53)

which re�ects the constraints u1 = . . . = uS .We recall that µP is a Lagrange multiplier of the
problem in (4.51) if

min
u ∈BP

S∑
s=1

1
S

Aus − f 2
2 = min

u ∈AP

S∑
s=1

1
S

Aus − f 2
2 + µ

T
P
Cu . (4.54)
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We note that for quadratic problems such as in (4.51) Lagrange multipliers always exist [15].
We have the identity

2
S PIPÃ

T ÃPIPu
∗
P
− 2

S PIPÃ
T f̃ = PIPC

T µP = C
T µP , (4.55)

or, equivalently,

L(µP ) := 
2
S PIPÃ

T ÃPIPu
∗
P
− 2

S PIPÃ
T f̃ − PIPC

T µP
 = 0, (4.56)

where Ã is the block diagonal matrix with constant entry A on each diagonal component, f̃ =
( f T , . . . , f T )T is a block vector of corresponding dimensions with entry f in each component,
and u∗

P
is a minimizer of the constraint problem on BP . We note that the last equalityCT µP =

PIPC
T µP in (4.55) holds as the left-hand side of (4.55) is contained in the image of PIP .

The following lemma gives estimates on the norm of the Lagrange multiplier µP .

Lemma 4.11. We consider a partitioning P of the discrete domain Ω, and the corresponding
quadratic problem (4.51). There is a Lagrange multiplier µP for (4.51) with

‖µP ‖ ≤ 2σ−1/2
1 S−1/2‖A‖‖ f ‖, (4.57)

where σ1 is the smallest nonzero eigenvalue ofCTC forC given by (4.52). For the particular choice
of C given by the left-hand side of (4.53) we have

‖µP ‖ ≤
2
S ‖A‖‖ f ‖; (4.58)

and, for the particular choice of C given by the right-hand side of (4.53) we have

‖µP ‖ ≤ 2(2 − 2 cos(2π/S ))−1/2S−1/2‖A‖‖ f ‖, (4.59)

(e.g., for S = 4 we have 2 − 2 cos(2π/S ) = 2). In particular, the right-hand side and the constants
in all these estimates are independent of the particular partitioning P.

Proof. For any minimizer u∗
P

of the constraint problem in BP , we have that

‖ 2
S PIPÃ

T ÃPIPu
∗
P
− 2

S PIPÃ
T f̃ ‖ ≤ ‖ 2

S Ã
T Ãu∗

P
− 2

S Ã
T f̃ ‖ ≤ 2

S ‖A‖‖ f̃ ‖ ≤
2
√
S

S ‖A‖‖ f ‖, (4.60)

where we recall that Ã is the block diagonal matrix with constant entryA, and f̃ is a block vec-
tor with entry f in each component. The �rst inequality is a consequence of the fact that PIP
is an orthogonal projection. The second inequality may be seen by evaluating the functional
for the constant zero function (which always belongs to BP ) as a candidate and by noting that
‖AT ‖ = ‖A‖.

Using (4.55), it follows from (4.55) that ‖CT µP ‖ ≤
2√
S
‖A‖‖ f ‖. Choosing µP in the comple-

ment of the zero space of CT , we get

‖CT µP ‖ ≥ inf
x ∈(ker(CT ))⊥, ‖x ‖=1

‖CTx ‖ ‖µP ‖. (4.61)
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We observe that �nding the in�mum in (4.61) corresponds to �nding the square root of the
smallest nonzero eigenvalue of CTC . This is because (i) the nonzero eigenvalues of CTC equal
the nonzero eigenvalues of CCT , i.e.,

min
{
σ : σ ∈ spectrum(CCT ) \ {0}

}
= min

{
σ : σ ∈ spectrum(CTC ) \ {0}

}
= σ1, (4.62)

where σ1 is the smallest nonzero eigenvalue ofCTC . Further, (ii) for x ∈
(
ker

(
CT

))⊥
,we have

‖CTx ‖2 = 〈x ,CCTx〉 ≥ min
{
σ : σ ∈ spectrum(CCT ) \ {0}

}
· ‖x ‖2. Hence, using (4.62) in (4.61)

we get that ‖CT µP ‖ ≥
√
σ1‖µP ‖, and together with (4.55) and (4.60), we obtain

‖µP ‖ ≤ σ
−1/2‖CT µP ‖ ≤ 2σ−1/2S−1/2‖A‖‖ f ‖ (4.63)

which shows (4.57).
Now we consider the particular choice of C given by the left-hand side of (4.53). Similar to

the derivation in (4.46), we have thatCTC = S · I − (1, . . . , 1) (1, . . . , 1)T ). Further, the constants
constitute the kernel of CTC and any vector u in its orthogonal complement is mapped to Su .
Hence, σ1 = S which shows (4.58).

Finally, we consider the particular choice of C given by the right-hand side of (4.53). As
already explained in the proof of Lemma 4.9, the discrete Fourier transform shows that the
corresponding eigenvalues are given by λk = ρ

(
2 − 2 cos

(
2π k

S

))
, where k = 0, . . . , S − 1.

The smallest nonzero eigenvalue is thus given by 2 − 2 cos(2π/S ). This shows (4.59) which
completes the proof of the lemma. �

4.3.3. The quadratic penalty relaxation of the Potts problem and its relation
to the Potts problem

In this section, we point out several relations between the Potts problem and its quadratic
penalty relaxation. In particular, we show Theorem 4.4 and parts of Theorem 4.6. We start out
by showing that the quadratic penalty relaxation of the Potts problem is still NP-hard. This
was formulated as Theorem 4.4.

Proof of Theorem 4.4. We consider the quadratic penalty relaxation (4.7) of the multivariate
Potts problem in its formulation (4.13) which reads

Pγ ,ρ (u1, . . . ,uS ) =
B (u1, . . . ,uS )

T − д
2

2
+ γ

 D (u1, . . . ,uS )
0,ω
,

where B and д are given by (4.10) and D is given by (4.11). We recast u : (u1, . . . ,uS ) : Ω → RS

as a function û : X → R on the discrete interval X ⊂ Z of size S#Ω as follows: for us , we
consider the discrete lines in the image with direction as and consider u on these lines as a
vector; next we concatenate these vectors starting with the one corresponding to the leftmost
upper line to obtain a vector of length #Ω; for each s we obtain such a vector and we again
concatenate these vectors starting with index s = 1, 2, . . . , S to obtain the resulting vector
which we denote by û .With this serialization at hand, we may arrange B,д and D accordingly
and obtain the univariate Potts problem

P̂γ ,ρ (û) =
B̂û − д̂


2

2
+ γ ω̂∇û

0
,
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where ω̂ : X → [0,∞) is a weight vector, ω∇û denotes pointwise multiplication, and B̂, д̂
are the matrix and the vector corresponding to B,д w.r.t. the serialization. The weight vec-
tor can be zero which happens at the line breaks, i.e., those indices where two vectors have
been concatenated in the above procedure. More precisely, constant data induce a directional
partitioning on Ω and the image of the directional partitioning under the above serialization
procedure induces a partitioning of the univariate domain D; precisely between the segments,
the weight vectors equals zero. Now, for each segment [d1, . . . ,dr ] in D,we transform the basis
δd1 , . . . ,δdr to the basis δd2−δd1 , . . . ,δdr −δdr−1 ,

1
r
∑r
l=1 δdl obtained by neighboring di�erences

and the average. As a result (which is in detail elaborated in [182]), we obtain a problem of the
form

P̂γ ,ρ (û) =
B̃ũ − b̃


2

2
+ γ ω̂ũ

0
, (4.64)

where ω̂ : D → [0,∞). Problem (4.64) is a sparsity problem which is known to be NP-hard;
see, for instance, [182]. This shows the assertion. �

We give characterizations of the local minimizers of the relaxed Potts problem (4.7) and of
the Potts problem (4.4), respectively.

Lemma 4.12. A local minimizer u = (u1, . . . ,uS ) of the quadratic penalty relaxation (4.7) is
characterized as follows. Let I be the directional partitioning induced by the minimizer u and
P = PI be the induced partitioning, then u is a minimizer of the problem

min
u ∈AP

Fρ (u), where Fρ (u) =
∑S

s=1
1
S

Aus − f 2
2 + ρ‖Cu‖

2. (4.65)

Conversely, if u minimizes (4.65) , then u is a minimizer of the relaxed Potts problem (4.7).

Proof. Let u = (u1, . . . ,uS ) be a local minimizer of the quadratic penalty relaxation (4.7). Then
there is a neighborhoodU of u such that, for any v ∈ U , Pγ ,ρ (v ) ≥ Pγ ,ρ (u). Now if v ∈ AP
and ‖v − u‖ is small, then

∑S
s=1ωs ∇asus 0 =

∑S
s=1ωs ∇asvs 0 which implies that

Fρ (u) = Pγ ,ρ (u) − γ
S∑
s=1

ωs ∇asus 0 ≤ Pγ ,ρ (v ) − γ
S∑
s=1

ωs ∇asvs 0 = Fρ (v ). (4.66)

This shows thatu is a local minimizer of (4.65). Conversely, we assume thatu minimizes (4.65).
If the directional partitioning I ′ induced byu is coarser than I consider the coarser directional
partitioning I ′ instead of I. Let the maximum norm of h = (h1 . . . ,hS ) be smaller than the
height of the smallest jump of u, then, for u + h,

S∑
s=1

ωs ∇as (us + hs ) 0 ≥

S∑
s=1

ωs ∇asus 0 . (4.67)

If inequality holds in (4.67), then the continuity of Fρ implies that Fρ (u + h) ≥ Fρ (u) − ε for
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small enough h and arbitrary ε . Hence,

Pγ ,ρ (u) = Fρ (u) + γ
S∑
s=1

ωs ∇asus 0 ≤ Fρ (u + h) − γ min
s
ωs + γ

S∑
s=1

ωs ∇as (us + hs ) 0 + ε

≤ Fρ (u + h) + γ
S∑
s=1

ωs ∇as (us + hs ) 0 = Pγ ,ρ (u + h), (4.68)

if we choose ε small enough. If equality holds in (4.67) we have that u +h ∈ AP which implies
Fρ (u) ≤ Fρ (u+h) sinceu is a minimizer of Fρ onAP . This in turn implies Pγ ,ρ (u) ≤ Pγ ,ρ (u+h)
by the assumed equality in (4.67). Together, in any case, Pγ ,ρ (u) ≤ Pγ ,ρ (u +h) for any small h.
This shows that u is a local minimizer of Pγ ,ρ which completes the proof. �

Lemma 4.13. We consider a function u∗ : Ω → R and its induced partitioning P . Then u∗ is a
local minimizer of the Potts problem (4.4), if and only if (u∗, . . . ,u∗) minimizes (4.51) w.r.t. P .

Proof. Since the proof of this statement is very similar to the proof of Lemma 4.12 we keep it
rather short and refer to the proof of Lemma 4.12 if more explanation is necessary. Let u be a
minimizer of (4.4) which is equivalent to ū = (u, . . . ,u) being a minimizer of (4.6). There is a
neighborhoodU of ū such that, for any v̄ = (v, . . . ,v ) ∈ U , Pγ (v ) ≥ Pγ (u). For v̄ ∈ BP with
small ‖v̄ − ū‖, we have

∑S
s=1ωs ∇asu 0 =

∑S
s=1ωs ∇asv 0 . Hence, by the de�nition of Pγ in

(4.6), ‖Au − f ‖22 ≤ ‖Av − f ‖22 which shows that (u∗, . . . ,u∗) minimizes (4.51).
Conversely, let ū = (u, . . . ,u) be a minimizer of (4.51) with the partitioning P induced by u.

For h̄ = (h, . . . ,h) with absolute value smaller than the minimal height of a jump of u,we have
the estimate

∑S
s=1ωs ∇as (u + h) 0 ≥

∑S
s=1ωs ∇asu 0 . If inequality holds in this estimate, the

continuity of Fρ implies that ‖A(u +h) − f ‖22 ≥ ‖Au − f ‖22 − ε for small enough h and arbitrary
ε . Hence, Pγ (ū) ≤ ‖A(u+h)− f ‖22 −γ mins ωs +γ

∑S
s=1ωs ∇as (u + h) 0+ε ≤ Pγ ,ρ (ū+h̄) if ε is

small. If equality holds above, i.e,
∑S

s=1ωs ∇as (u + h) 0 =
∑S

s=1ωs ∇asu 0 , then ū + h̄ ∈ BP

which implies that ‖Au − f ‖22 ≤ ‖A(u + h) − f ‖22 since ū is a minimizer of the corresponding
functional on BP . As a consequence, Pγ (ū) ≤ Pγ (ū + h̄) for any small perturbation h. This
shows that u is a local minimizer of Pγ which completes the proof. �

We prove that local minimizers of the quadratic penalty relaxation of the Potts problem are
approximate local minimizers of the Potts problem.

Proposition 4.14. Any local minimizer of the quadratic penalty relaxation (4.7) is an approxi-
mate local minimizer in the sense of (4.38) of the Potts problem (4.5).

Proof. By Lemma 4.12, a local minimizer u = (u1, . . . ,uS ) of the quadratic penalty relaxation
(4.7) is a minimizer of the problem (4.65). Thus, we consider a local minimizer u of (4.7) with
induced partitioning P = PI . As u minimizes (4.65), we have

1
S PIÃ

T ÃPIu −
1
S PIÃ

T f̃ + ρPIC
TCPIu = 0 (4.69)

since the gradient projected toAP equals zero for any local minimizer of the restricted problem
on the subspaceAP . (The notation is as in (4.56) above.) We de�ne µ by µ = ρCPIu and obtain

L(µ ) = ‖ 1
S PIÃ

T ÃPIu −
1
S PIÃ

T f̃ + PIC
T µ‖ = 0 (4.70)
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by (4.69). It remains to show that ‖Cu‖ becomes small. To this end, we observe that, by
Lemma 4.15, for arbitrary v = (v1, . . . ,vS ) ∈ A

P ,

‖Cv ‖ = ‖CPIv ‖ ≤
1
ρ ‖µ

∗‖ +

√
Fρ (v )−minx∈AP Fρ (x )

ρ ,

where µ∗ is an Lagrange multiplier of (4.51). Plugging in the minimizer u for v yields ‖Cu‖ <
1
ρ ‖µ

∗‖. Thus, by letting δ = 1
ρ ‖µ

∗‖, we obtain∑
s,s ′

cs,s ′ ‖u
∗
s − u

∗
s ′ ‖

2
2 = ‖Cu‖

2 < δ , (4.71)

and L(µ ) = 0 by (4.70) which by (4.38) shows the assertion and completes the proof. �

For the proof of Proposition 4.14 and for subsequent proofs, we need the next lemma. Similar
statements are [128, Proposition 13] and [142, Lemma 2.5]. However, since there are di�erences
concerning the precise estimate in these references, and the setup here is slightly di�erent, we
provide a brief proof.

Lemma 4.15. Let P be a partitioning and I = IP be the corresponding induced partitioning.
For arbitrary v = (v1, . . . ,vS ) ∈ A

P it holds that

‖Cv ‖ = ‖CPIv ‖ ≤
1
ρ ‖µ

∗‖ +

√
Fρ (v )−minx∈AP Fρ (x )

ρ , (4.72)

where µ∗ is an arbitrary Lagrange multiplier of (4.51).

Proof. By [128, Corollary 2], we have for arbitrary v = (v1, . . . ,vS ) ∈ A
P that∑S

s=1
1
S

Avs − f 2
2 − min

(y, ...,y )∈BP
Ay − f 2

2 ≥ −‖µ
∗‖ ‖Cv ‖. (4.73)

Then,

Fρ (v ) − min
x ∈AP

Fρ (x ) ≥
∑S

s=1
1
S

Avs − f 2
2 + ρ‖Cv ‖

2 − min
(y, ...,y )∈BP

Fρ (y, . . . ,y)

=
∑S

s=1
1
S

Avs − f 2
2 + ρ‖Cv ‖

2 − min
(y, ...,y )∈BP

Ay − f 2
2

≥ ρ‖Cv ‖2 − ‖µ∗‖ ‖Cv ‖. (4.74)

For the �rst inequality we used the de�nition of Fρ and restricted the set with respect to which
the minimum is formed which results in a potentially larger functional value. For the equality
we notice that, for (y, . . . ,y) ∈ BP , we have C (y, . . . ,y) = 0, and for the last inequality we
employed (4.73). Now, by writing z2 −

‖µ∗ ‖
‖ρ ‖ z = z2 −

‖µ∗ ‖
ρ z +

(
‖µ∗ ‖
2ρ

)2
−

(
‖µ∗ ‖
2ρ

)2
= (z −

‖µ∗ ‖
2ρ )2 −(

‖µ∗ ‖
2ρ

)2
and plugging this into (4.74) with z := ‖Cv ‖ we obtain

Fρ (v )−minx∈AP Fρ (x )
ρ ≥

(
‖Cv ‖ −

‖µ∗ ‖
2ρ

)2
−

(
‖µ∗ ‖
2ρ

)2
, (4.75)
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and consequently

���‖Cv ‖ −
‖µ∗ ‖
2ρ

��� ≤
√

Fρ (v )−minx∈AP Fρ (x )
ρ +

(
‖µ∗ ‖
2ρ

)2
≤

√
Fρ (v )−minx∈AP Fρ (x )

ρ +
‖µ∗ ‖
2ρ , (4.76)

where the last inequality is a consequence of the fact that the unit ball w.r.t. the `1-norm is con-

tained in the the unit ball w.r.t. the `2-norm. As a consequence, ‖Cv ‖ ≤
√

Fρ (v )−minx∈AP Fρ (x )
ρ +

‖µ∗ ‖
2ρ +

‖µ∗ ‖
2ρ which completes the proof. �

Next, we see that for any local minimizer of the quadratic penalty relaxation (4.7), a nearby
feasible point can be found by using the projection procedure (Procedure 4.1) of Section 4.2.2.
What is more, if the imaging operator A is lower bounded, we �nd a nearby minimizer.

Proposition 4.16. Applying Procedure 4.1 to a local minimizeru ′ = (u ′1, . . . ,u
′
S ) of the quadratic

penalty relaxation (4.7) produces a feasible image û (together with a valid partitioning) for the
Potts problem (4.5) which is close to u ′,i.e.,

‖u ′s − û‖ ≤ C1ε for all s ∈ {1, . . . , S }, (4.77)

where ε = maxs,s ′ ‖u ′s − u ′s ′ ‖ quanti�es the deviations between the us . We denote C1 = #Ω/4, for
the number of elements #Ω in Ω. Further, if the imaging operator A is lower bounded, i.e., there is
a constant c > 0 such that ‖Au‖ ≥ c ‖u‖, a local minimizer u∗ of the Potts problem (4.5) is nearby
in the sense that

‖u∗ − û‖ ≤

√
η

c
, where (4.78)

η :=
(
‖A‖2εC2

1 + 2‖A‖C1‖ f ‖2
)
ε . (4.79)

Proof. We let the directional partitioning induced by u ′ be I and denote the corresponding
induced partitioning by P = PI . We note that Procedure 4.1 applied to u ′ precisely produces

(û, . . . , û) = QPu
′, (4.80)

for the projection QP de�ned in (4.50). First, we see that the average (ū)i j =
1
S
∑S

s=1 (u
′
s )i j

ful�lls |(ū)i j − (u ′s )i j | < ε . Further, the function value of û which is piecewise constant w.r.t. P
is obtained by û |Pi =

∑
x ∈Pi ū (x )/#Pi . Hence, we have the estimate

‖u ′s − û‖
2
2 ≤ εL, (4.81)

where L is the maximal length of a path connecting any two pixels as given by De�nition 4.3.
As a worst case estimate, we get L ≤ C1 where we de�ne C1 as one fourth of the number of
elements in Ω, i.e., C1 =

#Ω
4 . This shows (4.77).
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For Fρ given by (4.65), we have

Fρ (u
′) ≤ Fρ (û, . . . , û) =

∑S

s=1
1
S

Aû − f 2
2

≤
∑S

s=1
1
S

(Aû −Au ′s2 +
Au ′s − f 2

)2

≤
∑S

s=1
1
S

(
‖A‖εC1 + Au ′s − f 2

)2
(4.82)

≤ ‖A‖2ε2C2
1 + 2‖A‖εC1

∑S

s=1
1
S

Au ′s − f 2 +
∑S

s=1
1
S

Au ′s − f 2
2

≤ η + Fρ (u
′),

with
η =

(
‖A‖2εC2

1 + 2‖A‖C1‖ f ‖2
)
ε, (4.83)

as given in (4.79). The �rst inequality holds as a local minimizer of the quadratic penalty relax-
ation (4.7), u ′ is the global minimizer of Fρ on AP by Lemma 4.12 and since (û, . . . , û) ∈ AP

by construction. The next inequalities apply the triangle inequality and estimates on matrix
norms. The last inequality is a consequence of the fact that

∑S
s=1

1
S

Au ′s − f 2 ≤ ‖ f ‖2. Other-
wise, if ‖Au ′s − f ‖2 > ‖ f ‖2, choosing u ′s = 0 would yield a lower functional value which would
contradict the minimality of u ′.

Now we consider the partitioning P ′ induced by û, and the corresponding minimizeru∗, i.e.,

(u∗, . . . ,u∗) = argmin
u ∈BP′

Fρ (u), (4.84)

where, for (u, . . . ,u) ∈ BP
′

, we have Fρ (u, . . . ,u) = Au − f 2
2 . By Lemma 4.13, u∗ is a local

minimizer of the Potts problem (4.4). On the other hand, by orthogonality we have

Au∗ = PA(BP′ ) f , and ‖ f − PA(BP′ ) f ‖
2 = min

u ∈BP′
Fρ (u), (4.85)

where PA(BP′ ) denotes the orthogonal projection onto the image of BP′ under the linear map-
ping A. Thus,

‖Aû −Au∗‖2 = ‖Aû − PA(BP′ ) f ‖
2

= ‖Aû − f ‖2 − ‖ f − PA(BP′ ) f ‖
2 = ‖Aû − f ‖2 − ‖Au∗ − f ‖2. (4.86)

Inserting u∗ in the estimate (4.82), we obtain

Fρ (u
′) ≤ Fρ (u

∗, . . . ,u∗) ≤ Fρ (û, . . . , û) ≤ η + Fρ (u
′) ≤ η + Fρ (u

∗, . . . ,u∗). (4.87)

This allows us to further estimate

‖Aû −Au∗‖2 = ‖Aû − f ‖2 − ‖Au∗ − f ‖2 ≤ ‖Au∗ − f ‖2 + η − ‖Au∗ − f ‖2 = η. (4.88)

If the operator A is lower bounded, then

‖û − u∗‖2 <
1
c2 ‖Aû −Au

∗‖2 ≤
η

c2 (4.89)

which completes the proof. �
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4.3.4. Majorization-minimization for multivariate Potts problems

In this section, we lay the foundation of the convergence analysis of Algorithm 4.1 and Algo-
rithm 4.2. To this end, we �rst recall basics on surrogate functionals. We consider functionals
F (u) of the form F (u) = ‖Xu − z‖2 + γ J (u), where X is a given (measurement) matrix with
operator norm ‖X ‖ < 1 (the operator norm is formed w.r.t. the `2-norm), z is a given vector (of
data), J is an arbitrary (not necessarily convex) lower semicontinuous functional, and γ > 0 is
a parameter. The surrogate functional F surr (u,v ) of F (u) is given by

F surr (u,v ) = F (u) + ‖u −v ‖2 − ‖Xu − Xv ‖2. (4.90)

Lemma 4.17. Consider the functionals F (u) = ‖Xu − z‖2 + γ J (u) as above with ‖X ‖ < 1. (For
our purposes, J is the regularizer ‖D (u)‖0,ω given by (4.12).) Then, for the associated surrogate
functional F surr given by (4.90) (with J as regularizer), it holds that

(i) the inequality
F surr (u,v ) ≥ F (u)

holds for all v ; and F surr (u,v ) = F (u) if and only if u = v ;

(ii) the functional values F (uk ) of the sequence uk de�ned by the surrogate iteration uk+1 =

argminu F surr (u,uk ) are non-increasing, i.e.,

F (uk+1) ≤ F (uk ); (4.91)

(iii) the distances between consecutive members of the sequence uk converge to zero, i.e.,

lim
k→∞

‖uk+1 − uk ‖ = 0. (4.92)

We note that for minimizing F the condition ‖X ‖ < 1 can always be achieved by rescaling,
i.e., by dividing the functional F by a number larger than ‖X ‖2. Proofs of the general statements
(i)-(iii) above can be found in [59, 22, 75].

We now employ properties of the quadratic penalty relaxation Pγ ,ρ (u1, . . . ,uS ) of the Potts
functional which was given by (4.7). The strategy is similar to the approach to the univariate
case which was considered in [201]. We �rst show that the minimizers of Pγ ,ρ (u1, . . . ,uS ) with
B = id in (4.13) (which are precisely the solutions of (4.21)) have a minimal directional jump
height that depends on the scale parameter γ , the directional weights ωs and the constant Lρ
only, but not on the input data. For the multivariate discrete function u = (u1, . . . ,uS ) (and
the directional system as , s = 1, . . . , S), a directional jump is a jump of the s-th component
us in direction as . In particular, jumps of the components us in directions as ′ , s ′ , s are not
considered.

Lemma 4.18. We consider the functional Pγ ,ρ (u1, . . . ,uS ) of (4.13) for B = id and data h =
(h1, . . . ,hS ). Equivalently, we consider the problem (4.21) for arbitrary data h = (h1, . . . ,hS ).
Then there is a constant c > 0 which does not depend on the minimizer u∗ = (u∗1, . . . ,u

∗
S ) of

76



(4.21) and the data h such that the minimal directional jump height jmin (u
∗) (w.r.t. the directional

system as , s = 1, . . . , S,) of a minimizer u∗ ful�lls

jmin (u
∗) ≥ c, (4.93)

where the constant c depends on γ , the directional weights ωs and the constant Lρ .

Proof. By writing u = (u1, . . . ,uS ) we restate (4.21) as minimizing

P id
γ /L2

ρ
(u1, . . . ,uS ) = ‖u − h‖

2
2 +

γ

L2
ρ

 D (u1, . . . ,uS )
0,ω
, (4.94)

where we use the notation ‖D (u1, . . . ,uS )‖0,ω =
∑S

s=1ωs ∇asus 0 introduced in (4.12). We let

c =

√
γ mins∈{1, . . .,S } ωs

L2
ρW

, (4.95)

where W denotes the maximal length of the signal u per dimension (to �x ideas, for an l × b
image, we haveW = max(l ,b)). Towards a contradiction, we assume that hmin (u

∗) < c, which
means that the minimizer u∗ has a directional jump of height smaller than c .We construct an
elementu ′with a smaller P id

γ /L2
ρ

value thanu∗ (which yields a contradiction asu∗ is a minimizer

of P id
γ /L2

ρ
). To this end, we let as be a direction such that the component u∗s of u∗ has a jump

with height smaller than c . We denote the two (discrete) directional intervals in direction as
which border the directional jump by I1, I2. We letm1,m2 andm be the mean of hs on I1, I2 and
I1 ∪ I2, respectively. We de�ne

u ′s ′ = u
∗
s ′ if s ′ , s, and u ′s (x ) =




m if x ∈ I1 ∪ I2,
u∗s (x ) otherwise.

(4.96)

By construction, ‖∇asu ′s ‖0 = ‖∇asu∗s ‖0 − 1 and thus

‖D (u ′1, . . . ,u
′
S )‖0,ω = ‖D (u∗1, . . . ,u

∗
S )‖0,ω − ωs ≤ ‖D (u∗1, . . . ,u

∗
S )‖0,ω − min

s ∈{1, ...,S }
ωs . (4.97)

Since u∗ is a minimizer of P id
γ /L2

ρ
, its s-th component u∗s equals m1 on I1 and m2 on I2. Further,

as u ′s ′ = u
∗
s ′ if s ′ , s and u∗s and u ′s only di�er on I1 ∪ I2, we have that

‖u ′ − h‖2 =
S∑

s ′=1
‖u ′s ′ − hs ′ ‖

2 =

S∑
s ′=1,s ′,s

‖u∗s ′ − hs ′ ‖
2 + ‖u∗s − hs ‖

2 + l1 |m1 −m |
2 + l2 |m2 −m |

2

< ‖u∗ − h‖2 +Wc2, (4.98)

where l1, l2 denote the length of I1 and I2, respectively. Employing (4.97) together with (4.98)
we get

P id
γ /L2

ρ
(u ′1, . . . ,u

′
S ) =

u ′ − h2
2 +

γ

L2
ρ

 D (u ′1, . . . ,u
′
S )

0,ω

< ‖u∗ − h‖2 +Wc2 +
γ

L2
ρ
‖D (u∗1, . . . ,u

∗
S )‖0,ω −

γ

L2
ρ

min
s ∈{1, ...,S }

ωs

≤ ‖u∗ − h‖2 +
γ

L2
ρ
‖D (u∗1, . . . ,u

∗
S )‖0,ω = P id

γ /L2
ρ
(u∗1, . . . ,u

∗
S ).
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The validity of the last inequality follows by (4.95). Together, u ′ has a smaller functional value
than u∗ which is a contradiction to u∗ being a minimizer which shows the assertion. �

We have gathered all ingredients to prove the following proposition which states the con-
vergence of Algorithm 4.1 to a local minimizer of the quadratic penalty relaxation.

Proposition 4.19. The iteration (4.24) of Algorithm 4.1 converges to a local minimizer of the
quadratic penalty relaxation Pγ ,ρ of the Potts functional given by (4.7). The convergence rate is
linear.

Proof. We divide the proof into three parts. First, we show that the directional partitionings
induced by the iterates u (n) become �xed after su�ciently many iterations. In the second part,
we derive the convergence of Algorithm 4.1 and in the third part, we show that the limit point
is a local minimizer of Pγ ,ρ .

(i) We �rst show that the directional partitioning In induced by the iterates u (n) gets �xed
for large n. For every n ∈ N, the iterate u (n) of Algorithm 4.1 is a minimizer of the functional
Pγ ,ρ of (4.13) for the choice B = id as it appears in (4.21) and data h = (h1, . . . ,hS ) given
by (4.22). By Lemma 4.18 there is a constant c > 0 which is independent of the particular
u (n) = (u (n)

1 , . . . ,u
(n)
S ) of (4.21) and the data h such that the minimal directional jump height

jmin (u
(n) ) ful�lls

jmin (u
(n) ) ≥ c for all n ∈ N. (4.99)

We note that the parameter γ , the directional weights ωs and the constant Lρ –which the
constant c depends on by Lemma 4.18– are �xed in the iterations of Algorithm 4.1.

If two iterates u (n),u (n+1) induce di�erent directional partitionings In , In+1, their `∞-dist-
ance satis�es ‖u (n)−u (n+1) ‖∞ > c/2 since bothu (n),u (n+1) have minimal jump height of at least
c and the induced directional partitionings are di�erent. This implies ‖u (n) − u (n+1) ‖2 > c/2
for the `2-distance as well. This can only happen for small n, since by Lemma 4.17 we have
‖u (n)−u (n+1) ‖2 → 0 as n increases. Hence, there is an N such that, for all n ≥ N , the directional
partitionings In are identical.

(ii) We use the previous observation to show the convergence of Algorithm 4.1. We consider
the iterates u (n) with n ≥ N . These have the same induced directional partitionings which we
denote by I ′ and all jumps have minimal jump height c . Hence, for n ≥ N , the iteration of
(4.21) can be written as

u (n+1) = PI′ (h
(n) ), (4.100)

where PI′ is the orthogonal projection onto the space AP which consists of the functions
which are piecewise constant w.r.t. the directional partitioning I ′, and where h (n) depends on
u (n) via

h (n)
s = u

(n)
s +

1
SL2

ρ
A∗ f − 1

SL2
ρ
A∗Au (n)

s −
∑

s ′:s ′,s

ρs,s′
L2
ρ
(u (n)

s − u
(n)
s ′ ), for all s ∈ {1, . . . , S }, (4.101)

as given by (4.22). As introduced before, we use the symbols Ã to denote the block diagonal
matrix with constant entry A on each diagonal component, and f̃ for the block vector of cor-
responding dimensions with entry f in each component. With this notation we may write
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(4.100) as
u (n+1) = PI′

(
(I − 1

SL2
ρ
(Ã)T Ã − 1

SL2
ρ
ρ CTC )u (n) + 1

SL2
ρ
ÃT f̃

)
. (4.102)

Since u (n) is piecewise constant w.r.t. the directional partitioning I ′, we have u (n) = PI′u
(n) .

By using this fact and the fact that PI′ is an orthogonal projection, we obtain

u (n+1) =

(
I −

((
ÃPI′√
SLρ

)T (
ÃPI′√
SLρ

)
+

(√
ρCPI′
√
SLρ

)T (√
ρCPI′
√
SLρ

)))
u (n) +

(
ÃPI′√
SLρ

)T f̃
√
SLρ
. (4.103)

SinceCÃT f̃ = 0, the iteration (4.103) can be interpreted as the Landweber iteration for the block
matrix consisting of the upper block (ÃPI′ )/(

√
SLρ ) and the lower block (

√
ρCPI′ )/(

√
SLρ ) and

data f̃ /(
√
SLρ ) extended by zeros. The Landweber iteration converges at a linear rate; see, e.g.,

[72]. Thus, the iteration (4.100) convergences and further Algorithm 4.1 converges at a linear
rate to some limit u∗.

(iii) We show that u∗ is a local minimizer. Since u∗ is the limit of the iterates u (n) , the jumps
of u∗ also have minimal height c, the number of jumps are equal to those of the u (n) for all
n ≥ N , and the induced directional partitioning I∗ equals the partitioning I ′ of the u (n) for
n ≥ N . Since u∗ equals the limit of the above Landweber iteration, u∗ minimizes Fρ given by
(4.65) on API′ . Then by Lemma 4.12, u∗ is a local minimizer of the relaxed Potts functional
Pγ ,ρ which completes the proof. �

After having shown the convergence of Algorithm 4.1 to a local minimizer, we can show
Theorem 4.6.

Proof of Theorem 4.6. Assertion (i) was stated and shown as Proposition 4.14 in Section 4.3.3.
By Proposition 4.19, Algorithm 4.1 produces a local minimizer. Then, assertion (ii) is a conse-
quence of Proposition 4.16. �

4.3.5. Estimating the distance between the objectives

The following lemma is a preparation for the proof of item (iii) of Theorem 4.5.

Lemma 4.20. We consider Algorithm 4.1 for the quadratic penalty relaxation (4.7) of the multi-
variate Potts problem. For any output u = (u1, . . . ,uS ) of Algorithm 4.1, the deviations between
the components are bounded by(∑

s,s ′
cs,s ′ ‖us − us ′ ‖

2
2

) 1
2
≤ 2σ−1/2

1 S−1/2‖A‖‖ f ‖/ρ, (4.104)

where σ1 denotes the smallest non-zero eigenvalue of CTC for C given by (4.52).

Proof. Sinceu = (u1, . . . ,uS ) is the output of Algorithm 4.1, it is a local minimizer of the relaxed
Potts problem (4.7). In particular, there is a directional partitioning I on which u is piecewise
constant. We denote the induced partitioning by P = PI . By Lemma 4.15 we have(∑

s,s ′
cs,s ′ ‖us − us ′ ‖

2
2

) 1
2
= ‖Cu‖ = ‖CPIu‖ ≤

1
ρ ‖µ

∗‖ +

√
Fρ (u )−minx∈AP Fρ (x )

ρ , (4.105)
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where µ∗ is a Lagrange multiplier of (4.51). We have that ‖µ∗‖ ≤ 2σ−1/2
1 S−1/2‖A‖‖ f ‖ for any

partitioning of the discrete domain Ω by Lemma 4.11 and in particular for the partitioning
P = PI . This shows that

‖Cu‖ ≤ 2σ−1/2
1 S−1/2‖A‖‖ f ‖/ρ +

√
Fρ (u )−minx∈AP Fρ (x )

ρ .

Since u is a local minimizer of the relaxed Potts problem (4.7), it is a minimizer of Fρ onAP by
Lemma 4.12 and the second summand on the right hand side equals zero. This shows (4.104)
which completes the proof. �

We have now gathered all ingredients to show Theorem 4.5.

Proof of Theorem 4.5. (i) This is shown by Proposition 4.19. (ii) We �rst show that any global
minimizer of the relaxed Potts functional Pγ ,ρ given by (4.7) appears as a stationary point of Al-
gorithm 4.1. To this end, we initialize Algorithm 4.1 with a global minimizer ū∗ = (u∗1, . . . ,u

∗
S ).

Then, we have for all v̄ = (v1, . . . ,vS ) with v̄ , ū∗,

P surr
γ ,ρ

(
v1, . . . ,vS ,u

∗
1, . . . ,u

∗
S

)
= Pγ ,ρ (v̄ ) − ‖Bv̄ − Bū

∗‖2 + ‖v̄ − ū∗‖2 (4.106)

> Pγ ,ρ (v̄ ) ≥ Pγ ,ρ (ū
∗) = P surr

γ ,ρ (ū
∗, ū∗),

where B is given by (4.10). The estimate (4.106) states that ū∗ is the minimizer of the surrogate
functional w.r.t. the �rst component, i.e., it is the minimizer of the mapping v̄ 7→ P surr

γ ,ρ (v̄, ū
∗).

Thus, the iterate ū (1) = (u (1)
1 , . . . ,u

(1)
S ) of Algorithm 4.1 equals ū∗ when the iteration is started

with ū∗. Thus, a global minimizer ū∗ is a stationary point of Algorithm 4.1. It remains to show
that each stationary point of Algorithm 4.1 is a local minimizer of the relaxed Potts functional
Pγ ,ρ . This was essentially done in the proof of Proposition 4.19: start the iteration (4.21) with
a stationary point u ′; its limit equals u ′ and thus is a local minimizer by Proposition 4.19.

(iii) We estimate by Lemma 4.20

(∑
s,s ′

cs,s ′ ‖us − us ′ ‖
2
2

) 1
2
≤ 2σ−1/2

1 S−1/2‖A‖‖ f ‖/ρ < ε . (4.107)

The second inequality follows by the choice of ρ in (4.37) as ρ > 2ε−1 σ−1/2
1 S−1/2‖A‖‖ f ‖. This

shows (iii) which completes the proof. �

4.3.6. Convergence analysis of Algorithm 4.2

We begin with showing that Algorithm 4.2 is well-de�ned, that is, the inner iteration (4.30)
terminates which was formulated as Theorem 4.7.

Proof of Theorem 4.7. The assertion we have to show is that for any k ∈ N there is n ∈ N such
that

u
(k,n)
s − u (k,n)

s ′
 ≤

t

ρk
√
cs,s ′
, and u

(k,n)
s − u (k,n−1)

s
 ≤

δk
Lρ
. (4.108)
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Concerning the right-hand side of (4.108), we note that by Proposition 4.19, the iteration (4.24)
converges to a local minimizer of the quadratic penalty relaxation Pγ ,ρ (u1, . . . ,uS ) of the Potts
functional. The inner loop of Algorithm 4.2 corresponds to the iteration (4.24) (for the current
penalty parameter ρ which increases with k). As a consequence, the distance between consec-
utive iterates u (k,n)

s ,u (k,n−1)
s of the inner loop converges to zero for increasing n which proves

the right-hand side of (4.108) for su�ciently large n and all k ∈ N.
Concerning the left-hand inequality in (4.108), we notice that the inner loop of Algorithm 4.2

would converge to a minimizer ū (k ),∗ = (u (k ),∗
1 , . . . ,u (k ),∗

S ) if it was not terminated by (4.108)
for all k ∈ N. As ū (k ),∗ is a local minimizer of the relaxed Potts problem (4.7) for the parameter
ρk , it is a minimizer of Fρk on AP (where P denotes the partitioning induced by ū (k ),∗) by
Lemma 4.12. Thus, for any k ∈ N and any ξ > 0 there is ū (k,n) = (u (k,n)

1 , . . . ,u (k,n)
S ) such that

Fρk (ū
(k,n) ) − Fρk (ū

(k ),∗) < ξ . We let τ = (t − 2σ−1/2
1 S−1/2‖A‖ ‖ f ‖)/ρk , and choose ξ = ρkτ

2.

Then by using Lemma 4.15 we obtain

√
cs,s ′

u
(k,n)
s − u (k,n)

s ′
2
= ‖Cū (k,n) ‖ ≤ 1

ρk
‖µ∗‖ +

√
Fρk (ū

(k,n ) )−Fρk (ū
(k ),∗)

ρk

≤ 1
ρk
‖µ∗‖ +

√
ξ
ρk
≤ 1

ρk
‖µ∗‖ + τ ≤ t

ρk
, (4.109)

where µ∗ is a Lagrange multiplier of (4.51). Here, the last inequality holds since by Lemma 4.11
we have ‖µ∗‖ ≤ 2σ−1/2

1 S−1/2‖A‖‖ f ‖ which implies τ ≤ (t −µ∗)/ρk . The estimate (4.109) shows
the left-hand inequality in (4.108) which completes the proof. �

We have gathered all ingredients to prove Theorem 4.8 which stated the convergence prop-
erties of Algorithm 4.2.

Proof of Theorem 4.8. We �rst show that any accumulation point of the sequenceu (k ) produced
by Algorithm 4.2 is a local minimizer of the Potts problem (4.5). Letu∗ be such an accumulation
point and let I∗ be its induced directional partitioning. We can extract a subsequence u (kl )

of the sequence u (k ) such that u (kl ) converges to u∗ as l → ∞ and such that the directional
partitionings Ikl induced by the u (kl ) all equal the directional partitioning I∗, i.e., Ikl = I∗
for all l ∈ N.We let

µkl = −2ρkl Cu
kl (4.110)

with C given by (4.52) and obtain the following estimation

‖ 2
S Ã

T Ãukl − 2
S Ã

T f̃ −CT µkl ‖ = ‖ 2
S Ã

T Ãukl − 2
S Ã

T f̃ + 2ρklC
T Cukl ‖

= ‖∇Fρkl (u
kl )‖ ≤

δkl
Lρkl

≤ δkl . (4.111)

We recall that Ã was the block diagonal with the matrixA as the diagonal components and that
Fρkl was given by (4.65). The second before last inequality follows from the right-hand side of
(4.108). We further estimate

‖µkl ‖ = ρkl ‖Cu
kl ‖ < ρkl

St
ρkl
= St
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which follows from the left-hand side of (4.108). Hence, the sequence µkl is bounded and by the
Bolzano-Weierstraß-theorem it has a cluster point µ∗. By restricting to a further subsequence
(we omit the new indexation for readability and continue using l for the index) we get that

µkl → µ∗ for l → ∞. (4.112)

On this subsequence, we have that u (kl ) → u∗ and that µkl → µ∗. Taking limits on both sides
of (4.111) gives

2
S Ã

T Ãu∗ − 2
S Ã

T f̃ −CT µ∗ = 0 (4.113)

since δkl → 0 as l → ∞. Furthermore,

‖Cu∗‖ ≤ lim
l→∞

‖µkl ‖
ρkl

≤ ‖µ∗‖ lim
l→∞

1
ρkl
= 0 (4.114)

which implies that the components of u∗ are equal, i.e., u∗s = u∗s ′ for all s, s ′. Therefore, u∗ is a
feasible point for the Potts problem (4.5). Equivalently, lettingP∗ be the partitioning induced by
u∗,we have that u∗ ∈ BP∗ . Then (4.113) implies that u∗ minimizes (4.51) which by Lemma 4.13
means that u∗ is a local minimizer of (4.5). In other words, any component of u∗ (which are all
equal) minimizes the Potts problem (4.4). This shows the �rst assertion of Theorem 4.8.

We continue with the second assertion of Theorem 4.8, i.e., if A is lower bounded, then
the sequence u (k ) produced by Algorithm 4.2 has a cluster point. Then, in view of the above
considerations, each cluster point is a local minimizer which shows the assertion. To this end,
we show that the sequence u (k ) produced by Algorithm 4.2 is bounded if A is lower bounded.
This in turn implies by the Heine-Borel property of �nite dimensional Euclidean spaces that
it has a cluster point. We assume that A is lower bounded and consider the sequence u (k ) =

(u (k )
1 , . . . ,u

(k )
S ) produced by Algorithm 4.2. As in the proof of Theorem 4.7 we see that, for any

k ∈ N, there is a local minimizer u (k ),∗ = (u (k ),∗
1 , . . . ,u (k ),∗

S ) of (4.7) such that

‖u (k ) − u (k ),∗‖ ≤ C2δk , (4.115)

whereC2 is a constant which does not depend on k . By Lemma 4.12, u (k ),∗ is a minimizer of Fρ
on AP (where P is the partitioning induced by u (k ),∗). Thus,

1
S

∑S

s=1
‖Au (k ),∗

s − f ‖2 ≤ Fρ (u
(k ),∗) ≤ ‖ f ‖2

which follows from choosing the zero function as a candidate. This implies

1
S

∑S

s=1
‖Au (k ),∗

s ‖2 ≤ 4‖ f ‖2. (4.116)

Now as A is lower bounded, there is a constant c > 0 such that

‖u (k ),∗‖2 = 1
S

∑S

s=1
‖u (k ),∗

s ‖2 ≤ 1
S

∑S

s=1
c2‖Au (k ),∗

s ‖2 ≤ 4c2‖ f ‖2, (4.117)

where we used (4.116) for the last inequality. By combining this estimate with (4.115) we obtain

‖u (k ) ‖ ≤ ‖u (k ) − u (k ),∗‖ + ‖u (k ),∗‖ ≤ C2δk + 2c‖ f ‖. (4.118)

Since δk was chosen as a sequence converging to zero, (4.118) shows that the sequence u (k ) is
bounded which implies that it has cluster points which completes the proof. �
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4.4. Experimental results

In this section, we illustrate the potential of our methods for di�erent imaging tasks. We start
out by providing the necessary implementation details. Next, we compare the results of the
quadratic relaxation (4.7), i.e., Algorithm 4.1, and of the Potts problem (4.4), i.e., Algorithm 4.2.
We continue with applying Algorithm 4.2 to blurred image data and to the reconstruction from
incomplete Radon data. Finally, we consider the image partitioning problem which corresponds
to the classical Potts model.

Implementation details. We implemented Algorithm 4.1 and Algorithm 4.2 for the cou-
pling schemes in (4.9) and the 8-neighborhood discretization, i.e., the set of compass and diag-
onal directions (1, 0), (0, 1), (1, 1), (1,−1) with weights ω1,2 =

√
2 − 1 and ω3,4 = 1 −

√
2

2 .
Concerning Algorithm 4.1, we observed both visually and quantitatively appealing results

for relaxed step-sizes Lλρ = Lρ
(
λ + (1 − (n + 1)−1/2) (1 − λ)

)
where the parameter 0 < λ ≤ 1 is

chosen empirically and where Lρ denotes the estimate in Lemma 4.9. We stopped the iterations
when the closeness condition (4.23) was ful�lled and the iterates did not change anymore, i.e.,
when ‖u (n)

1 −u
(n−1)
1 ‖/(‖u (n)

1 ‖+ ‖u
(n−1)
1 ‖) and ‖u (n)

2 −u
(n−1)
2 ‖/(‖u (n)

2 ‖+ ‖u
(n−1)
2 ‖) became smaller

than 10−6. The result of Algorithm 4.1 was transformed into a feasible solution of (4.5) by
applying the projection procedure described in Section 4.2.2 (Procedure 4.1). We initialized the
algorithm with the result of 1000 Landweber iterations with step-size 1/‖A‖2 w.r.t. the least
squares problem induced by the linear operator A and data f .

Concerning Algorithm 4.2, we initialized the coupling parameter by ρ (0) = 10−3 in all exper-
iments and incremented it by the factor τ = 1.05 in each outer iteration. The δ -sequence was
chosen as δ (k ) = 1

ηρ (k ) with η = 0.95 for the full coupling scheme and η = 0.98 for coupling con-
secutive variables only. Analogously to Algorithm 4.1, we performed step (i) of Algorithm 4.2
with the relaxed step sizes Lλρ = Lρ

(
λ + (1 − (n + 1)−1/2) (1 − λ)

)
for an application-dependent

parameter 0 < λ ≤ 1 and for the estimate Lρ in Lemma 4.9. We stopped the iterations when
the relative discrepancy between the �rst two splitting variables ‖u (k )

1 −u
(k )
2 ‖/(‖u

(k )
1 ‖+ ‖u

(k )
2 ‖)

became smaller than 10−6. We initialized Algorithm 4.2 with AT f .

Comparison of Algorithm 4.1 and Algorithm 4.2. We compare Algorithm 4.1 and Algo-
rithm 4.2 for blurred image data, that is, the linear operator A in (4.2) amounts to the convolu-
tion by a kernel K . In the present experiment, the kernel was a Gaussian kernel with standard
deviation σ = 3 and size 6σ + 1. We coupled all splitting variables and chose the step-size
parameter λ = 0.4 for Algorithm 4.1 and λ = 0.35 for Algorithm 4.2, respectively. In Figure 4.3,
we applied both methods to a blurred natural image. While both algorithms yield reasonable
partitioning results, Algorithm 4.2 provides smoother edges than Algorithm 4.1 which further
produces some smaller segments (at the treetops).

Blurred image data. For the following experiments, we focus on Algorithm 4.2. In case of
motion blur, we set the step-size parameter to λ = 0.25, while for Gaussian blur we used λ =
0.35 as we did in Figure 4.3. We compare the proposed method with the Ambrosio-Tortorelli
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(a) Original [111] (b) Blurred data (c) Algorithm 4.1,
γ = 0.1, ε = 2‖ f ‖

(d) Algorithm 4.2,
γ = 0.1

Figure 4.3.: Partitioning of a blurred image with Algorithm 4.1 and Algorithm 4.2. The image was blurred
by a Gaussian kernel of standard deviation 3. We note that both methods provide reasonable partition-
ings. In general, Algorithm 4.2 provides smoother edges than Algorithm 4.1 (see, e.g., the boundary
between meadow and forest or the cow’s back). Further, Algorithm 4.1 produces some smaller seg-
ments around the treetops.

approximation [3] of the classical Mumford-Shah model (which tends to the Potts model for
increasing smoothing penalty) which is given by

Aε (u,v ) = γ

∫
ε |∇v |2 +

(v − 1)2

4ε
dx + α

∫
v2‖∇u‖2 dx +

1
2

∫
(K ∗ u − f ) dx , (4.119)

where v is an indicator function and ε > 0 is an edge smoothing parameter which must be
chosen empirically in practice. The parameter γ > 0 controls the weight of the (smoothed)
edge length penalty and the parameter α > 0 controls the amount of smoothing. Thus, a
higher value of α promotes solutions which are closer to being piecewise constant. In the
limit α → ∞ minimizers of (4.119) are piecewise constant. The implementation follows the
scheme of [10], i.e., the functional Aε is alternately minimized w.r.t.u and v . This corresponds
to iteratively solving the Euler-Lagrange equations

2αv ‖∇u‖22 + γ
v − 1

2ε
− 2εγ∇2v = 0, and (K ∗ u − f ) ∗ K̃ − 2α div (v2∇u) = 0, (4.120)

where K̃ (x ) := K (−x ). The �rst equation is solved w.r.t. v using a minres solver and the second
equation is solved by using the conjugate gradient method as described in [10]. The iterations
were stopped when both variables did not change anymore, i.e., if both ‖uk+1 − uk ‖/(‖uk ‖ +
10−6) < 10−3 and ‖vk+1 −vk ‖/(‖vk ‖ + 10−6) < 10−3 hold.

In Figure 4.4, we restore a tra�c sign from simulated horizontal motion blur. In the Ambro-
sio-Tortorelli approximation we set α = 105 to obtain a piecewise constant result. We observe
that both the Ambrosio-Tortorelli approximation and the proposed method restore the data
to a human readable form. However, the Ambrosio-Tortorelli result shows clutter and blur
artifacts. Our method provides sharp edges and shows less artifacts.

In Figure 4.5, we partition a natural image which was blurred by a Gaussian kernel and
corrupted by Gaussian noise. We observed that the Ambrosio-Tortorelli result was heavily
corrupted by artifacts for the previous choice α = 105. This might be attributed to the under-
lying linear systems in scheme (4.120) which become severely ill-conditioned for large choices
of the variation penalty α . Thus, we chose the moderate variation penalty α = 5 which does
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(a) Original (b) Blurred and noisy data (c) Ambrosio-Tortorelli,
α = 105, γ = 0.8, ε = 1/2

(d) Proposed, γ = 0.15

Figure 4.4.: Restoration of a tra�c sign from simulated horizontal motion blur and Gaussian noise. The
motion blur has 80 pixel length and the Gaussian noise has standard deviation σ = 0.02. The Ambrosio-
Tortorelli result shows noise and blur artifacts as well as bumpy edges (see, e.g., the boundaries of the
digits). The proposed result provides smoother edges and produces less clutter.

(a) Original (b) Blurred and noisy data (c) Ambrosio-Tortorelli,
α = 5, γ = 0.03, ε = 1/30

(d) Proposed, γ = 0.2

Figure 4.5.: Partitioning of an image blurred by a Gaussian kernel of standard deviation 7 and corrupted
by Gaussian noise with σ = 0.2. The result of the Ambrosio-Tortorelli approximation does not yield
a convincing partitioning of the scene, in particular many parts of the �sh are merged with the back-
ground. The proposed approach provides a partitioning which re�ects many parts of the �sh.

only provide an approximately piecewise constant result. The result does not fully separate
the background from the �sh in terms of edges. On the other hand, the result of the proposed
method yields a sharp boundary between the background and the �sh. Further, it highlights
various segments of the �sh.

Reconstruction from undersampled Radon data. We consider the task of image recon-
struction from (undersampled) Radon data which appears for example in computed tomogra-
phy. The Radon transform of a bivariate function u is given by

Ru (θ , s ) =

∫ ∞

−∞

u (sθ + tθ⊥)dt , (4.121)

where s ∈ R, θ ∈ S1 and θ⊥ ∈ S1 is (counterclockwise) perpendicular to θ ; see [150]. (We
here denote by S1 the unit sphere in R2.) In our experiments, we use a discrete variant of the
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(a) Original (b) FBP (Ram-Lak Filter)
MSSIM: 0.085

(c) TV, µ = 2.35
MSSIM: 0.938

(d) Proposed, γ = 3
MSSIM: 0.984

Figure 4.6.: Reconstruction of the Shepp-Logan phantom from undersampled discrete Radon data
(25 projection angles) corrupted by Gaussian noise with standard deviation σ = 0.7. The proposed
method provides a genuine piecewise constant reconstruction and the MSSIM is improved by the factor
11.58 for �ltered backprojection and by 1.05 for total variation, respectively.

Radon transform which was created with the AIR tools software package [91]. Concerning our
method, we employed coupling of consecutive splitting variables only and used the step-size
parameter λ = 0.11. We quantify the reconstruction quality with the mean structural similarity
index (MSSIM) which is bounded from above by one, where higher values indicate better results
(cf. Section 2.4).

We compare the proposed method to classical �ltered back projection (FBP) which is the
standard method in practice [159]. We used the Matlab implementation of the FBP together
with the standard Ram-Lak �lter. Furthermore, we compare our method with total variation
(TV) regularization [169]. The TV result is obtained by minimizing the convex functional
‖Ru − f ‖22 + µ‖∇u‖1 with parameter µ > 0. We used the Chambolle-Pock algorithm for the
minimization [51] and the corresponding model parameter µ was tuned w.r.t. the MSSIM index.

In Figure 4.6, we show the reconstruction results for the Shepp-Logan phantom from un-
dersampled (25 angles) and noisy Radon data. The standard �ltered back projection method
(FBP) produces strong streak artifacts which are typical for angular undersampling, and the
reconstruction su�ers from noise. The TV result and the proposed method both provide con-
siderably improved reconstruction results. Yet, the proposed method achieves a higher MSSIM
value than TV and the result is less grainy.

Image partitioning. Finally, we consider the classical Potts problem which corresponds to
A = id in (4.2). Our method uses the full coupling scheme and the step-size parameter was
chosen as λ = 0.55.

To put our result in context we compared it with the results of the L0 gradient smoothing
method of Xu et. al [208], the state-of-the-art α-expansion graph cut algorithm based on max-
�ow/min-cut which uses the library GCOptimization 3.0 of Veksler and Delong [27, 26, 127]
and the Ambrosio-Tortorelli model. The L0 gradient smoothing [208] uses a parameter κ > 1 to
control the convergence speed and a smoothing weight ν . In our experiments, we set κ = 1.01
and ν = 0.1. For graph cuts we used the same neighborhood weights and jump penalty as for
the proposed method. The discrete labels were computed via k-means.
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(a) Original (b) Noisy data (c) Ambrosio-Tortorelli,
γ = 0.5, α = 105, ε = 1/100

(d) L0 gradient smoothing,
κ = 1.01, ν = 0.1

(e) Graph cuts, γ = 0.4,
256 labels

(f) Proposed, γ = 0.4

Figure 4.7.: Partitioning of a natural image corrupted by Gaussian noise with standard deviation σ = 0.2.
The Ambrosio-Tortorelli result is noisy and corrupted by clutter. The L0 gradient smoothing overseg-
ments the large window on the left-hand side, while it smooths out details of the cross on the right-hand
side. The proposed result is visually competitive with the state-of-the-art graph cuts result.

In Figure 4.7, we partition a natural image which was corrupted by Gaussian noise. The
Ambrosio-Tortorelli result shows clutter and remains noisy. The L0 gradient smoothing over-
segments the textured window area, while it smooths out details of the cross. The state-of-
the-art graph cuts method and the proposed method both provide satisfying results which are
visually comparable. Hence, while the proposed method can handle general linear operatorsA,
the quality of the results forA = id is comparable with the state-of-the-art graph cut algorithm
for the special case A = id.

4.5. Summary of the chapter

In this chapter, we developed new iterative minimization strategies for the inverse multivariate
Potts model and corresponding quadratic penalty relaxations. Our schemes are based on major-
ization-minimization using surrogate functionals. Compared to related schemes for sparsity
problems, i.e., minimizing ‖u‖0 instead of ‖∇u‖0, [75, 22, 142, 143], the proposed schemes did
not decompose into pointwise thresholding, but into non-separable linewise problems which
could be solved by dynamic programming.
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Subsequently, we gave a convergence analysis for the proposed algorithms. In particular,
we showed convergence of the quadratic penalty relaxation scheme to a local minimizer of
the (still NP-hard) relaxed problem. We further proposed a projection procedure to obtain a
feasible solution for the Potts problem from a solution of the quadratic penalty relaxation such
that a minimizer of the Potts problem is nearby. Regarding the scheme for the non-relaxed
problem, we proved convergence towards local minimizers on subsequences. These results are
comparable with the results of [142, 143] for sparsity problems, where we had to deal with the
additional challenge of subproblems which did not pointwise decompose.

We illustrated the applicability of the proposed schemes in numerical experiments. This
included deconvolution problems, joint reconstruction and segmentation from undersampled
Radon data and the image partitioning problem.
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5. The Multi-Channel Potts Prior for
Multi-Spectral Computed Tomography

In this chapter, we consider image reconstruction from multi-spectral computed tomography
(CT) data with the Potts prior. This chapter is based on the publication [116].

Organization of the chapter. First, in Section 5.1, we give an overview and discuss related
work. In Section 5.2, we give a brief description of the measurement process in multi-spectral
CT and formulate the corresponding reconstruction problem. In Section 5.3, we discuss the
multi-channel Potts prior. We recall the multi-channel Potts model and brie�y recall the ADMM
approach of [183] in Section 5.4. In Section 5.5, we propose a new approach based on the su-
periorization of the conjugate gradient method (CG) with the multi-channel Potts prior, which
we call Potts S-CG. A comparison of Potts ADMM and Potts S-CG is given in Section 5.6. In
Section 5.7, we illustrate the potential of Potts ADMM and Potts S-CG by comparing them to
existing TV-type approaches in numerical experiments. More precisely, we compare the re-
constructions of two phantoms from simulated multi-spectral CT measurements. Section 5.8
concludes the chapter with a summary.

5.1. Overview and related work

In this chapter, we consider the (multi-channel) Potts prior for the multi-channel reconstruction
problem in multi-spectral X-ray computed tomography (CT). X-ray imaging entails polychro-
matic X-ray sources, that is, the emitted photons have a spectrum of energies. Conventional
CT detectors do not capture di�erent energies. However, there are materials which may not be
distinguished from another in conventional CT as their linear attenuation coe�cients (LAC)
are nearly equal. Yet, their LAC’s might di�er when the whole energy spectrum is considered.
Thus, such materials may be distinguished, when measurements for multiple energy-levels are
available. This phenomenon may be utilized by using energy-discriminating photon counting
detectors [172].

As in conventional CT, due to shot noise, sampling e�ects and modeling e�ects, the recon-
struction process in multi-spectral CT needs to be regularized. This is often done by imposing
prior structural knowledge on the unknown function in terms of a penalty called prior. In
principle, one could apply the existing priors and models for conventional CT to reconstruct
each channel of the multi-channel images in multi-spectral CT separately. However, it is well-
known that the channel images in multi-spectral CT are strongly correlated in the sense that
region boundaries are spatially aligned across the channels. Therefore, an appropriate prior
should exploit this property by enforcing the spatial correlation of the channels and aid the
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reconstruction of particularly noise-prone channels by employing the less problematic chan-
nels. We will see that the multi-channel version of the Potts prior has the appealing property
that the edges of the channels are enforced to share spatial positions. This property is espe-
cially attractive for multi-spectral CT reconstruction as mentioned above, which we illustrate
by comparing the multi-channel Potts prior to existing TV-based priors.

We investigate two reconstruction schemes for multi-spectral CT problems based on the
Potts prior which are based on energy minimization and superiorization, respectively. In par-
ticular, we apply the multi-channel Potts prior both in terms of the Potts model and in terms of a
new Potts-based superiorization approach. On the algorithmic side, we use an ADMM approach
for the minimization problem corresponding to the Potts model. Regarding the superiorization
approach, we choose the conjugate gradient method as the basic algorithm. We identify these
approaches as suitable choices by comparing them to a penalty method for the Potts model and
to a superiorization method using Landweber iterations.

To the author’s knowledge the (multi-channel) Potts prior has neither been considered in
the context of multi-spectral CT nor in the context of the superiorization methodology yet.

Related work. For related work concerning the Potts model, we refer to Chapter 4. We start
with related work on multi-spectral CT reconstruction and material decomposition. Kazantsev
et al. [114] consider energy-discriminating photon-counting detectors and propose a regu-
larizer based on directional TV, which chooses new reference channels in each iteration in a
probabilistic manner. They compare their method to other existing TV-based approaches by
reconstructing the geocore phantom, which we also consider in our experiments. Toivanen et
al. [187] studied reconstruction from three channels obtained from low dose acquisition pro-
tocols. A multi-channel reconstruction method which models the reconstruction as the sum of
low-rank and a sparse matrix was proposed in [82]. In [168], the authors use total nuclear vari-
ation to regularize the reconstruction. Furthermore, tensor nuclear norm based regularizers
to enforce channel-coupling were proposed in [171]. Material decomposition of multi-spectral
CT images was considered in [141] and material decomposition of medical dual-energy CT
images was considered in [65]. In [69], the authors propose a method to solve the nonlinear
decomposition problem in multi-spectral X-ray imaging.

Next, we give related work on superiorization. The terms “superiorization” and “pertur-
bation resilience” �rst appeared in [60]. Important notions were also introduced in [97]. A
condensed introduction and examples can be found, e.g., in [45] and the references therein.
The journal Inverse Problems had a special issue on superiorization [46]. Byrne [36] studied
similarities between some superiorization algorithms and optimization methods. In [96], the
(preconditioned) conjugate gradient algorithm and algebraic reconstruction techniques (ART)
are perturbed by non-ascending directions w.r.t. the total variation prior. The methods were ap-
plied to (single-channel) tomographic image reconstruction problems. Perturbations by means
of the TV prior have been considered in [218] as well. The potential of the superiorization
methodology was illustrated in [47] by comparing it to convex optimization approaches. For
an extensive overview, we refer the interested reader to the continuously updated bibliography
on superiorization in [44].
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Detectors

Emitter

X-rays

Object

Figure 5.1.: Illustration of the (multi-spectral) CT measurement model for a single angle and the fan-
beam geometry. The emitter (or, X-ray source) sends photons in the form of X-rays through the object
of interest. The detectors count the number of incident photons, which were not absorbed by the object.
Typically, dense materials absorb a higher amount of photons, so that the corresponding detectors count
fewer photons. The emitter and detectors are rotated around the object to obtain measurements from
multiple angles.

5.2. Multi-spectral CT imaging

In this section, we brie�y explain the measurement process, i.e., the forward model of multi-
spectral CT. In particular, we derive the mathematical formulation of the reconstruction prob-
lem for which we develop our methods. We start with conventional single-energy measure-
ments and subsequently generalize this to multi-spectral measurements. For more details on
multi-spectral CT imaging, including general measurement setups, we refer to [95, 146].

5.2.1. Forward model

Basic single-channel line integral model and Beer’s law. The measurement process in
CT is typically modeled in terms of line integrals. We provide a brief description of this model.
To this end, we assume an X-ray source which emits a number of photons I0, also called inten-
sity �ux, along a line L through an object. Further, we assume a detector placed behind the
object, which counts the number of photons I1 incident to the detector. As the photons pass
through the object, a certain amount of them is absorbed by the materials they hit. This phe-
nomenon is modeled by the attenuation coe�cient function û, that is, the relative change (here,
decrease) of intensity of I satis�es I ′(z)/I (z) = −û (z). (We note that û (z) is material-dependent
as one material may absorb more photons than another one, e.g., bone tissue absorbs more pho-
tons than water.) Here, z ∈ Ω and Ω ⊂ R2 denotes the domain of the object. Integration along
L yields ∫

L

û (z) dz = −

∫
L

I ′(z)/I (z) dz = log I0 − log I1, (5.1)
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which, after taking the exponential on both sides, corresponds to

I1 = I0 exp
( ∫
L

−û (z) dz
)
. (5.2)

Equation (5.2) is known as Beer’s law. To sum up, the detector counts the number of incident
photons I1 and the number of emitted photons I0 is known from calibration.

Typically, the above measurements are taken for many lines L, i.e., many X-rays are shot
through the object from multiple (equidistant) angles. The quantities of interest are the un-
known linear attenuation coe�cients (LAC)1 û (z) which are indirectly given in terms of line
integrals (5.2). If the attenuation coe�cients û have been reconstructed, they allow us to ob-
tain information from inside the object in a destruction-free manner. For instance, information
of interest might be the location of bones in organic tissue or cavities in compound bodies. We
give an illustration of the measurement process for a single angle and the so-called fan-beam
geometry in Figure 5.1.

Multi-spectral version of Beer’s law. The model (5.2) makes the implicit assumption that
the photons emitted by the photon source all have the same energy. However, X-ray imaging
entails polychromatic X-ray sources, that is, the emitted photons have a spectrum of energies.
In conventional CT, the involved energies are accumulated and the photons are assumed to
have a common energy. In contrast, energy-discriminating photon counting detectors provide
multi-spectral measurements. To this end, we consider the multi-spectral version of Beer’s law

I1 (ε ) = I0 (ε ) exp
(∫
L

−û (z, ε ) dz

)
, (5.3)

where ε denotes the energy, I1 is the spectrum of the X-ray beam incident on the detector and
z ∈ Ω denotes the spatial position. Further, û holds the energy dependent linear attenuation
coe�cients that need to be reconstructed and I0 is the energy dependent intensity �ux of the
X-ray source corresponding to ray L from the source to a given detector element.

Discrete measurement model. In the following, we consider M detectors and assume that
the measurements (5.3) are taken from p equidistant angles. Thus, a total number of m = pM
discrete measurements are available. Towards a discrete model, we discretize the (unknown)
function û on the continuous domain Ω which results in a function u on an n ×n pixel grid Ω′.
It is given by

u (j, ε ) =
∑
z∈Ω

χj (z)û (z, ε ), (5.4)

where χj denotes the characteristic function2 corresponding to the pixel j ∈ Ω′. From (5.3) and
for pairs of source-detector positions indexed by i , we now obtain

I1,i (ε ) = I0,i (ε ) exp
(
−

∑
j ∈Ω′

Ai j u (j, ε )
)
, i = 1, . . . ,m, (5.5)

1The unit of the LAC is typically 1/cm.

2 For a set B, χB (x ) =



1 if x ∈ B,
0 if x < B.
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where we denote by

Ai j :=
∫
Li

χj (z) dz, i = 1, . . . ,m, j ∈ Ω′, (5.6)

the intersection length of ray i with pixel j. (In particular, Ai j = 0 if the ray i does not intersect
pixel j.) We assume that each photon-counting detector acquires the measurements on an
interval of energies [εc , εc+1). Hence, the detectors provide the measurements

Yi,c =

∫ εc+1

εc
I0,i (ε ) exp

(
−

∑
j ∈Ω′

Ai ju (j, ε )
)
dε, i = 1, . . . ,m, c = 1, . . . ,C . (5.7)

After discretizing the energy spectrum with step-size δ > 0, we obtain

Yi,c ≈
∑

ε=εc ,εc+δ, ...,εc+1−δ

I0,i (ε ) exp
(
−

∑
j ∈Ω′

Ai j u (j, ε )
)
, i = 1, . . . ,m, c = 1, . . . ,C . (5.8)

The following simpli�ed measurement model becomes increasingly accurate for �ne energy
resolutions, i.e., if δ is small, [114]:

Yi,c ≈ I0,i (εc ) exp
(
−

∑
j ∈Ω′

Ai j u (j, εc )
)
, i = 1, . . . ,m, c = 1, . . . ,C . (5.9)

After taking the logarithm, (5.9) corresponds to

fi,c ≈
∑
j ∈Ω′

Ai j u (j, εc ), i = 1, . . . ,m, c = 1, . . . ,C, (5.10)

where we denote fi,c = − log
(

Yi,c
I0,i (εc )

)
. Towards a compact notation, we let fc ∈ Rm hold

the fi,c for all rays i = 1, . . . ,m = pM and de�ne the linear operator A = (Ai, j )i=1, ...,m, j ∈Ω′ :
Rn×n → Rm , which holds the ray incidence geometry of the measurement setup. Hence, we
obtain the linear measurement model

fc ≈ Auc (5.11)

for the channels c = 1, . . . ,C .
It is common to assume shot noise for photon counting detectors, that is, the measurements

are Poisson distributed. Thus, in a setup incorporating noise, the corresponding variant of (5.9)
is given by

Yi,c ∼ Poiss
{
I0,i (εc ) exp

(
−

∑
j ∈Ω′

Ai j u (j, εc )
)}
. (5.12)

As a result, note that fc in (5.11) is not deterministic due to (5.12). The multi-spectral CT
reconstruction problem corresponds to determining u1, . . . ,uC from the measurements (5.11).

Remark 5.1. We note that the made assumptions guarantee a measurement model which is
linear. This model is frequently used in the literature [89, 82, 171, 168, 114, 187]. We brie�y
recall its known limitations.
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(i) For coarse energy resolutions, the step between (5.8) and (5.9) becomes increasingly in-
accurate.

(ii) We made the implicit assumption that the energy-dependent detection answers in (5.7)
are represented by characteristic functions χ[εc ,εc+1) of the pairwise disjoint intervals
[εc , εc+1). More realistic detector answer functions would not be constant on the corre-
sponding energy spectrum nor would they have disjoint supports.

5.2.2. Reconstruction

In multi-spectral CT, it is common to use model-based reconstruction approaches as a direct
inversion of (5.11) is not feasible due to the present shot noise (5.12), sampling e�ects, and
necessary simpli�cations in the modeling. Instead, the reconstruction u is usually modeled as
the minimizer of an energy function. Typically, such an energy function corresponds to the
(weighted) sum of a data termD and a regularizer R, i.e., the reconstruction is modeled as the
solution of a minimization problem of the form

argmin
u ∈Rn×n×C

C∑
c=1
D (Auc , fc ) + γ R (u). (5.13)

The data termD promotes closeness to the data f and R imposes regularity onu by penalizing
deviations from a priori �xed assumptions on u. The parameter γ > 0 balances the two terms.

Data term. Concerning the data termD, it is common in CT to employ the penalized weight-
ed least squares model (PWLS) [65, 114, 171]. The PWLS serves as a (computationally more
tractable) quadratic approximation of the log-likelihood function associated with the Poisson
distribution in (5.12); see [170]. The PWLS is given by

D (Auc , fc ) = ‖Auc − fc ‖
2
Wc
= ‖W

1
2
c Auc −W

1
2
c fc ‖

2, (5.14)

where each Wc ∈ Rm×m is a diagonal matrix which weighs the measurements within the re-
spective channel. More precisely, the entries ofWc are chosen as the number of detected pho-
tons in the c-th energy bin (5.9). (Please note that ‖ · ‖ corresponds to the Frobenius norm, i.e.,
‖u‖2 =

∑
i, j,c u

2
i jc .)

Regularizing term. In general, an appropriate regularizing term R in (5.13) should enforce
prior knowledge on the unknown result u. For example, compound solid bodies are (approx-
imately) piecewise homogeneous so that an adequate regularizer may enforce piecewise con-
stancy onu. We note that it is generally assumed that the channelsu1, . . . ,uC of multi-spectral
CT images are strongly correlated [114, 187, 65, 171, 115]. In particular, it was observed that the
edges in the channels are spatially correlated, i.e., they are located at the same positions across
the channels. As a result, a regularizer R in (5.13) should enforce prior structural knowledge
on each channel as well as strong correlation between the channels.

In this chapter, we propose to use the (multi-channel) Potts prior for R, which combines
structural knowledge and strong channel correlation as explained in the next section.
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Jump alignment

(a) Channel-wise Potts prior

Jump consistency

(b) Channel-wise Potts prior

(c) Multi-channel Potts prior (d) Multi-channel Potts prior

Figure 5.2.: Channel-coupling with the multi-channel Potts prior. First column: (a) the channel-wise
Potts prior tends to produce jumps at shifted positions in the channels. (c) The multi-channel Potts
prior enforces the jumps to be spatially aligned across channels (called the jump alignment property of
the multi-channel Potts prior). Second column: (b) the channel-wise Potts prior may open jumps in a
single channel only. (d) The jumps produced by the multi-channel Potts prior are typically present in
all channels. Hence, the multi-channel Potts prior provides jump consistency.

Remark 5.2. An instance of (5.13) (for single-channel signals) is given by the inverse Potts
model (4.4) in Chapter 4. There, D was given by the squared `2-norm and R was given by
the Potts prior (as de�ned below (4.4)), i.e., the results are piecewise constant. Unfortunately,
the methods of Chapter 4 are not well-suited for multi-spectral CT: the methods depend on
the spectral norm of the forward operator A (cf. Section 2.2), which becomes very large for
realistic multi-spectral measurements. Further, due to the Poisson noise in (5.12), the `2-data
term in (4.4) is not an appropriate choice; see above.

5.3. The multi-channel Potts prior

In the following, we describe the multi-channel Potts prior and explain how it enforces strong
correlation between channels. This property is especially bene�cial for the reconstruction of
multi-channel images from multi-spectral CT measurements (5.11) as stated in Section 5.2.
Recall that the single-channel Potts prior was de�ned below (4.4).

We consider a multi-channel image û : Ω → RC with open domain Ω ⊂ R2 and codi-
mension C ∈ N. The c-th component function of û is denoted by ûc . Further, we denote the
(distributional) Jacobian of û analogously to the single-channel case by ∇û. Similarly to the
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single-channel Potts prior, the multi-channel Potts prior penalizes the length of the support of
the (distributional) Jacobian of û, i.e.,

‖∇û‖0 = length
({
x ∈ Ω : ∇û (x ) , 0

})
, (5.15)

where length is understood as the one-dimensional Hausdor� measure as in (4.3). The discrete
counterpart of (5.15) for the function u : Ω′ → RC on the discrete lattice Ω′ = {1, . . . ,n} ×
{1, . . . ,n} is now given by

‖∇û‖0 ≈
S∑
s=1

ωs ‖∇dsu‖0. (5.16)

Here, the right-hand side of (5.16) counts the number of �nite di�erence vectors, which have
at least one non-zero entry, i.e.,

‖∇dsu‖0 =
���
{
x ∈ Ω′ : x + ds ∈ Ω′, uc (x ) , uc (x + ds ) for at least one c ∈ {1, . . . ,C}

}���. (5.17)

The integer vectors ds ∈ Z2 and weights ωs > 0 are chosen as described in (4.4). Due to (5.17),
the value of the multi-channel Potts prior for a jump between x and x + ds in all channels
is the same as for opening a jump in a single channel only. On the one hand, this enforces
potential jumps at close positions to be spatially aligned across channels in view of the lower
costs compared with multiple jumps in di�erent channels (jump alignment). On the other hand,
jumps are always introduced for all channels simultaneously as higher closeness to the data
can be ensured (jump consistency). Thus, the edges of multi-channel images regularized by
the multi-channel Potts prior are spatially aligned across all channels, or, in other words, the
spatial locations of the edges in the channels are enforced to be completely correlated.

In Figure 5.2, we illustrate the jump alignment and the jump consistency provided by the
multi-channel Potts prior by comparing it to the channel-wise Potts prior for dual-channel
one-dimensional data.

In the following two sections, we work out two approaches to the numerical reconstruction
of piecewise constant multi-channel volume functions by means of the (multi-channel) Potts
prior. Firstly, we consider the multi-spectral Potts model, which corresponds to a minimization
problem of the form (5.13) with the Potts prior as the regularizer R. We approach the Potts
model numerically with the ADMM scheme of [183]. Secondly, we derive a new approach
based on the Potts prior, which is not of the form (5.13), i.e., it is not based on an energy
minimization model. Rather, we use the Potts prior to superiorize an existing iterative solver
for (weighted) least squares problems – the conjugate gradient algorithm (CG). In particular,
the Potts prior is viewed as a target function which perturbs the iterations of CG towards Potts
superiorized results (cf. Section 2.2).

5.4. Potts-based ADMM

The multi-spectral Potts model for the (linear) forward operator A : Rn×n → Rm and multi-
spectral data f ∈ Rm×C is given by the following minimization problem

u∗ = argmin
u :Ω→RC

C∑
c=1
D (Auc , fc ) + γ

S∑
s=1

ωs ‖∇dsu‖0. (5.18)
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Here, D is the PWLS data �delity term from (5.14), which ensures channel-wise closeness of
u to the data. The nonnegative parameter γ balances the data �delity and the Potts prior. It
is worth considering the limit cases of γ : for γ → 0 the minimizer of (5.18) has minimal data
�delity and no regularization takes places. Forγ → ∞ the minimizer of (5.18) will be a constant
function (with minimal data �delity).

Algorithmic approach with the ADMM. To obtain good approximate solutions of (5.18),
we follow the approach �rst presented in [181] and extended to inverse problems in [183],
which is based on the ADMM. We brie�y recall the scheme for the reader’s convenience and
provide the necessary adaptations to multi-spectral CT.

The approach uses the ADMM to approach the multi-channel Potts problem in (5.18). As a
�rst step, we recast (5.18) as a constrained problem. To this end, we introduce splitting variables
u1, . . . ,uS (each corresponding to a direction ds of the discrete gradient) and the variable v
(corresponding to the data term) under the restriction that they are equal. Hence, we consider
the constrained problem

min
v,u1, ...,uS

C∑
c=1
D (Avc , fc ) +

S∑
s=1

γωs ‖∇dsus ‖0

subject to us − ut = 0 for all 1 ≤ s < t ≤ S,

v − us = 0 for all s = 1, . . . , S .

(5.19)

It is a basic but important observation that we did not alter the original problem, i.e., (5.18)
and (5.19) are equivalent. The ADMM approach requires to form the augmented Lagrangian
of (5.19) which is given by

Lµ,ρ
(
v, {us }, {λs,t }, {τ s }

)
=

C∑
c=1
D (Avc , fc )

+

S∑
s=1

{
γωs ‖∇dsu

s ‖0 +
ρ
2 ‖v − u

s + τ s
ρ ‖

2 − 1
2ρ ‖τ

s ‖2 +

S∑
t=s+1

‖us − ut + λs,t
µ ‖

2 − 1
2µ ‖λ

s,t ‖2
}
.

(5.20)

The constraints in (5.19) are now part of the functional in the form of the corresponding squared
deviations weighted by the nonnegative parameters µ, ρ. The variables λs,t ,τs ∈ Rn×n×C are
the corresponding Lagrange multipliers. In each ADMM iteration, the Lagrangian L is se-
quentially minimized w.r.t. v and u1, . . . ,uS . Further, a gradient ascent step is performed on
the multipliers.

After some algebraic manipulation (see [183]; we also conduct a very similar derivation later
in Section 7.3), the minimization of the Lagrangian w.r.t. the data variable v reads

argmin
v
Lµ,ρ = argmin

v

C∑
c=1
D (Avc , fc ) +

µS
2

v −
1
S

S∑
s=1

(
us −

τs
ρ

)
2
, (5.21)
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i.e., (5.21) is a PWLS Tikhonov problem in view of the additional squared `2-terms. Further-
more, the minimization of the Lagrangian w.r.t. us is given by

argmin
us

Lµ,ρ = argmin
us

2γωs
ρ+µ (S−1) ‖∇dsus ‖0 +

us −
ρv+τs+

∑S
t=s+1 (µut−λs,t )+

∑s−1
r=1 (µur+λr ,s )

ρ+µ (S−1)


2
.

(5.22)

We elaborate on e�ciently solving the subproblems (5.21)-(5.22) in the subsequent paragraph.
As it is common when dealing with non-convex problems, we employ monotonically increas-
ing sequences (µk )k ∈N, (ρk )k ∈N as coupling parameters. This allows the splitting variables to
develop rather independently in the �rst iterations and forces them to become equal in the
later iterations. We summarize the Potts ADMM approach in Algorithm 5.1.

Algorithm 5.1: Potts ADMM

Input: Forward operator A ∈ Rm×n2 , multi-spectral sinogram f ∈ Rm×c , PWLS weights
W ∈ Rm×m×C , stopping parameter tol > 0, jump penalty γ > 0

Output: u∗ ∈ Rn×n×C

1 Initialize v0,u0
1, . . . ,u

0
S , λ

0
s,t ,τ

0
s by zero.

2 k ← 0

3 repeat
/* Solve the channel-wise PWLS Tikhonov problems */

4 vk+1 = argminv ‖Av − f ‖2Wc
+

µkS
2

v −
1
S
∑S

s=1

(
uks −

τ ks
ρk

)
2

/* Solve linewise Potts problems along the directions ds */
5 for s = 1, . . . , S do

6 wk
s =

ρkvk+τ ks +
S∑

t=s+1
(µkukt −λ

k
s,t )+

s−1∑
r=1

(µkuk+1
r +λkr ,s )

ρk+µk (S−1)

7 uk+1
s = argminus

2γωs
ρk+µ (S−1) ‖∇dsus ‖0 + ‖us −w

k
s ‖

2

8 end
/* Update the multipliers */

9 λk+1
s,t = λ

k
s,t + µk

(
uk+1
s − uk+1

t

)
for all s , t

10 τ k+1
s = τ ks + ρk

(
vk+1 − uk+1

s

)
for all s

/* Increase the coupling parameters */
11 µk ← µk+1, νk ← νk+1

12 k ← k + 1

13 until ‖uks − uks+1‖∞ < tol for all s = 1, . . . , S − 1 and ‖uks −v
k ‖∞ < tol for all s;

14 return u∗ = 1
S
∑S

s=1u
k
s
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Solving the subproblems in the ADMM scheme. We explain how to solve the subprob-
lems (5.21) and (5.22) e�ciently. We start with the �rst subproblem (5.21). For arbitrary data
f , z ∈ Rn×n×C and µ > 0 it is given by

v∗ = argmin
v ∈Rn×n×C

C∑
c=1
‖W

1
2Avc −W

1
2 fc ‖

2 +
µ
2 ‖v − z‖

2. (5.23)

The PWLS Tikhonov problem (5.23) decomposes channel-wise into C problems. Hence, the
unique minimizer v∗ is channel-wise determined by the weighted normal equations(

ATWcA +
µ

2
I
)
v∗c = ATWc fc + µzc . (5.24)

(Note that I denotes the identity.) Consequently, solving (5.23) corresponds to solving the linear
system (5.24) for each c = 1, . . . ,C . We use the conjugate gradient method to solve (5.24).

The second subproblem has the generic form

argmin
us

‖u − f ‖2 + γ ‖∇dsus ‖0 (5.25)

for some data f ∈ Rn×n×C and γ > 0. Analogously to the subproblem (4.33) in Chapter 4, (5.25)
decomposes into univariate Potts problems along the paths in f induced by ds (cf. Figure 4.2).
In contrast to (4.33), the univariate Potts problem we have to solve here are given w.r.t. multi-
channel data, i.e.,

argmin
w ∈Rn×C

‖w − д‖2 + γ ‖∇w ‖0. (5.26)

We describe the extensions to solve (5.26) with the solver of Chapter 3. Now the symbol E I
in (3.14) denotes the sum of the channel-wise approximation errors E Ic = minд

∑
i ∈I |дi,c −д |

2,
i.e.,

E I =

C∑
c=1
E Ic . (5.27)

As a direct consequence of (5.27) and Theorem 3.10, we obtain:

Corollary 5.3. Algorithm 3.1 solves the univariate multi-channel Potts problem (5.26) in O (n2C )
time.

Hence, the theoretical computational costs grow only linearly in the number of channels.
Thus, the subproblems may be e�ciently solved for vector-valued data with a large number of
channels C as it appears in multi-spectral CT.

5.5. Potts-based superiorization

We propose a superiorization approach to the reconstruction problem in multi-spectral CT.
Recall that superiorization approaches alternate between basic algorithmic operations and tar-
get function reduction steps according to (2.12). In this section, we propose methods which
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take the CG method (the variant given by Algorithm 2.1) as the basic algorithm and the (multi-
channel) Potts prior (5.18) as the target function to obtain Potts superiorized, i.e., piecewise
constant, solutions. As a result, the iterates are not CG iterates but perturbed versions of them,
so that the classical result that the CG method converges (theoretically) after a �xed number
of iterations (which is equal to the number of columns of the underlying system matrix) can-
not be expected to hold anymore. However, we will see that the termination of its perturbed
counterpart may still be ensured.

We recall that both energy minimization methods and superiorization typically result in two
steps within an algorithmic scheme: a forward step followed by a regularizing step. However,
the interpretation of these steps is di�erent. Please note that basics on the superiorization
methodology are given in Section 2.2.

5.5.1. Perturbing the CG method with the block-wise Potts prior

To keep things focused, we begin with single-channel measurements and the simplest aniso-
tropic neighborhood for the Potts prior. In a subsequent section, we provide the extensions to
multi-channel measurements and the more isotropic neighborhood with diagonal directions.

As a starting point, we consider the penalized weighted least squares model (PWLS) corre-
sponding to the forward operator A, weights W and (single-channel) data f , which is, analo-
gously to (5.14), given by

u∗ ∈ argmin
u

1
2

Au − f 
2

W
= argmin

u

1
2

W
1
2Au −W

1
2 f 

2
. (5.28)

As the next step, we duplicate the objective variable u and incorporate the di�erences between
the two emerging variables u1,u2 weighted by a parameter µ > 0. This will allow us to apply
the CG method to an overdetermined problem and will serve as the basis for using a block-wise
(more accessible) version of the Potts prior. The modi�ed problem is given by

(u∗1,u
∗
2 ) ∈ argmin

u1,u2

1
2



*..
,

W
1
2A 0
0 W

1
2A

µI −µI

+//
-

(
u1
u2

)
−

*..
,

W
1
2 f

W
1
2 f
0

+//
-



2

. (5.29)

(Recall that I denotes the identity.) We remark that we considered such a modi�cation also in
Chapter 4. The problems (5.28) and (5.29) are equivalent in the following sense: a minimizer
u∗ of (5.28) yields via (u∗,u∗) a minimizer of (5.29). Conversely, a minimizer (u∗1,u

∗
2 ) of (5.29)

satis�es u∗1 = u∗2 and u∗1 is a minimizer of (5.28). We prove this in a more general situation in
Proposition 5.8 below. Consequently, we did not alter the original PWLS problem (5.28).

To solve the weighted least squares problems (5.29), we consider the corresponding normal
equations (

ATWAu1 + µ
2 (u1 − u2)

ATWAu2 + µ
2 (u2 − u1)

)
=

(
WAT f
WAT f

)
. (5.30)

We note that for CT problems these linear systems are typically overdetermined. If the basic
PWLS problem (5.28) is overdetermined, the linear system (5.30) can be algorithmically ap-
proached by the CG method (as given in Algorithm 2.1) which converges to the solution of
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(5.30) and thus to the solution of (5.29). In contrast to the Landweber method –applying the
gradient descent method to the least squares objective– the step sizes of the CG method do not
depend on the operator norm of A which is particularly advantageous for CT problems, where
the operator norm of A is typically large and the Landweber method becomes unfavorable
(recall also Remark 5.2 and the paragraph above Algorithm 2.1).

Algorithm 2.1 provided the pseudocode of the used variant of the CG method. We recall that
Algorithm 2.1 corresponds to a variant of the CG method which is strongly bounded perturbation
resilient (cf. De�nition 2.2 and Theorem 2.6). Hence, the CG method can be perturbed by
bounded perturbations w.r.t. a target function, while the termination of the algorithm remains
ensured.

Perturbations by steps towards the proximal mapping of the block-wise Potts prior.
Towards Potts regularized solutions, we will use the (block-wise) Potts prior as the target func-
tion. The basic scheme is given as follows.

Algorithm 5.2 (Basic Potts superiorization scheme).
1. Choose an initial perturbation parameter β0 > 0 and an annealing parameter 0 < a < 1,

set k ← 0. Iterate until stopping criterion:

2a. Perform a CG step on (u1,u2)
k w.r.t. the normal equations (5.30) and obtain (u1,u2)

k+1/2.

2b. Perturb the iterate proportionally to βk with the Potts prior: (u1,u2)
k+1 ← Pβk (u1,u2)

k+1/2

2c. Update βk+1 ← aβk , k ← k + 1. Go to 2a.

Typically, in the context of superiorization, the perturbation Pβ in step 2b corresponds to
adding a non-ascending direction w.r.t. the target function (cf. De�nition 2.7) to the current
iterate with appropriate step-size as in De�nitions 2.2 and 2.7. Thereby, the target function
values of the iterates are decreased so that the �nal result should become more desirable in
terms of the target function. For a smooth target function, a non-ascending direction may be
obtained from the negative gradient. Decreasing the parameter β in step 2c ensures that the
perturbations –denoted by Pβ in step 2b– become smaller in the course of the iterations and∑∞

k=0 βk < ∞.
As the Potts prior is non-smooth, we resort to the evaluation of proximal mappings – a

common practice in non-smooth optimization. To this end, we de�ne the block-wise Potts prior

F (u1,u2) = ‖∇1u1‖0 + ‖∇2u2‖0. (5.31)

The block-wise Potts prior (5.31) corresponds to the sum of the row-wise jumps in u1 and the
column-wise jumps in u2. The proximal mapping of F for β > 0 is given by

proxβF (u1,u2) = argmin
v1,v2

F (w1,w2) +
1

2β
(u1,u2) − (w1,w2)


2
. (5.32)

(We recall that by Theorem 3.8 the right-hand side of (5.32) is unique for almost all u1,u2, so
that using the equality in (5.32) is reasonable.) The proximal mapping (5.32) can be evaluated
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e�ciently. To see this, we note that the minimization in (5.32) can be performed for each block
w1,w2 separately. These smaller problems are instances of (5.25) for γ = 2β , which can be
solved by dynamic programming as described in Section 5.4. Hence, (5.32) can be e�ciently
evaluated. In this context, we note that omitting the introduction of u1,u2 in (5.29) would lead
to a proximal mapping in a single variable only whose evaluation corresponds to solving a
two-dimensional Potts problem which is NP-hard.

It is well-known that the proximal mapping corresponding to a convex lower semicontinu-
ous function can be written in additive form (2.12) using the generalized gradient [47]. This,
however, is not feasible for the block-wise Potts prior as it is not convex. The following propo-
sition ensures that we still can use (5.32) to obtain non-ascending directions (cf. De�nition 2.7)
for the block-wise Potts prior. To this end, we �rst note the following lemma.

Lemma 5.4. Let J1 (w ) denote the positions of the horizontal jumps ofw and J2 (w ) the positions
of vertical jumps of w , i.e., {x ,x + ds } ∈ Js (w ) if and only if w (x ) , w (x + ds ), s = 1, 2. Then
we have the inclusions J1 (ū1) ⊂ J1 (u1) and J2 (ū2) ⊂ J2 (u2) for (ū1, ū2) = proxβF (u1,u2). In other
words, the proximal mapping of the block-wise Potts prior does not introduce jumps which were
not already present in its arguments.

Proof. We note that the statement follows from the analogous statement for the univariate
Potts problem as the proximal mapping of the block-wise Potts prior corresponds to row- and
column-wise univariate Potts problems (as discussed below (5.31)). For the univariate Potts
problem, the statement was proven in [206, Lemma 4.2]. �

Lemma 5.5. For any u = (u1,u2) and β ≥ 0, the vector given by

v = (v1,v2) :=



proxβ F (u1,u2)−(u1,u2)

δ if proxβF (u1,u2) , (u1,u2),

0 otherwise,
(5.33)

where δ = ‖ proxβF (u1,u2) − (u1,u2)‖, satis�es ‖v ‖ ≤ 1 and F
(
u + t · v

)
≤ F (u) for all t ≥ 0

w.r.t. to the block-wise Potts prior F . Thus, (5.33) yields a non-ascending direction for the block-wise
Potts prior at u = (u1,u2).

Proof. The proof essentially follows from Lemma 5.4: starting from u = (u1,u2), no additional
jumps will be opened in u + t · v for any t ≥ 0 as v1 is constant on the (discrete) row inter-
vals of constant value of u1 and v2 on the (discrete) column intervals of constant value of u2.
Consequently, F

(
u + t · v

)
≤ F (u) for all t ≥ 0 which completes the proof. �

A perturbation strategy for step 2b of Algorithm 5.2 in terms of adding non-ascending di-
rections is now given by

Pβk

(
(u1,u2)

k+1
)
=



(u1,u2)

k+1/2 + βk
proxβk F

(
(u1,u2)

k+1/2
)
−(u1,u2)

k+1/2

δ if δ > 0,
(u1,u2)

k+1/2 otherwise

=: (u1,u2)
k+1/2 + βk ·

(
v1,v2

)k
,

(5.34)
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where δ = ‖ proxβk F (u1,u2)
k+1/2 − (u1,u2)

k+1/2‖. The summability of the parameters βk by
step 2c of Algorithm 5.2 ensures that (5.34) produces a sequence of bounded perturbations
as de�ned in De�nition 2.2. In particular, the sequence βk of annealing parameters satis�es∑

k βk < ∞ and the sequence of additive perturbations vk = (v1,v2)
k is bounded as ‖vk ‖ ≤ 1.

We summarize the above considerations in the following theorem.

Theorem 5.6. Algorithm 5.2 with the perturbations given by (5.34), i.e., adding non-ascending
directions w.r.t. the block-wise Potts prior, and the stopping criterion

‖W
1
2Au1 −W

1
2 f ‖2 + ‖W

1
2Au2 −W

1
2 f ‖2 + ‖µ (u1 − u2)‖

2 < ε (5.35)

terminates for every ε > ε0 and initializations u1,u2, where ε0 is the minimal value of the under-
lying (weighted) least squares problem (5.28) or, equivalently, (5.29).

Proof. The proof follows from Theorem 2.6, Lemma 5.5 and property (ii) in De�nition 2.2. �

Concerning the parameters βk , we used the scaling ‖AT f ‖2/‖A‖22 to adjust βk to the scale of
the data which corresponds to employing the sequence βk =

‖AT f ‖2
‖A‖22

β̃k , where β̃k is summable,

i.e.,
∑

k β̃k < ∞, e.g., β̃k = akβ0 for 0 < a < 1 and β0 > 0 as in Algorithm 5.2.

Perturbations by the proximalmapping of the block-wise Potts prior. We derived per-
turbations in terms of the block-wise Potts prior by taking a step towards its proximal mapping.
By Lemma 5.5 this approach yields a sequence of non-ascending directions w.r.t. the block-wise
Potts prior and Theorem 5.6 ensures the termination of the corresponding instance of Algo-
rithm 5.2. As (5.34) takes a step towards the proximal mapping of the block-wise Potts prior,
we may consider perturbations which take the proximal mapping itself, that is,

Pβk

(
(u1,u2)

k+1
)
= proxβk F

(
(u1,u2)

k+1/2
)
. (5.36)

It follows immediately from optimality in the proximal mapping that the block-wise Potts value
of Pβk

(
(u1,u2)

k+1
)

is lower or equal than the one of (u1,u2)
k+1/2. (This also follows from

Lemma 5.5.)
In our experiments (see Figure 5.3), we observed that this perturbation strategy improves

upon the perturbations given by (5.34). Furthermore, the perturbation strategy (5.36) needs not
to be scaled by some constant factor to bring (u1,u2)

k+1/2 and its perturbation Pβk
(
(u1,u2)

k+1
)

to the same scale. We remark that (5.36) may also be seen as an additive perturbation by
de�ning (v1,v2)

k = 1
βk

(
proxβk F

(
(u1,u2)

k+1/2
)
− (u1,u2)

k+1/2
)
, so that (5.36) could be written

as (u1,u2)
k+1/2 + βk (v1,v2)

k .

Remark 5.7. It is an open question whether (5.36) yields bounded perturbations in the sense
of De�nition 2.2. In [47], this was proven for the special case of (smoothed) total variation. The
proof uses the Lipschitz continuity of the target function. Unfortunately, neither the Potts prior
nor the block-wise Potts prior are even continuous. In general, the results for perturbations
obtained from evaluating proximal mappings are rather rare in the literature. However, the
practical results encourage future work on this topic.
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5.5.2. Potts S-CG

In view of (5.29), a large choice of the parameter µ enforces the CG steps to put more emphasis
on the deviations between u1 and u2. Thus, large values of µ lead to results u1,u2 which are
closer to each other. Furthermore, the block-wise Potts prior (5.31) perturbsu1,u2 towards row-
wise and column-wise piecewise constancy, respectively. In order to obtain solutions which
satisfy equality, i.e., u1 = u2, and which are in addition genuinely piecewise constant, we pro-
pose a modi�ed version of Algorithm 5.2 inspired by penalty methods for energy minimization:
after the steps 2a-2b in Algorithm 5.2 have been conducted, we increase the coupling param-
eter µ. By starting with a low value µ0, the CG steps give more weight to the data �delity
in the �rst iterations, while in the later iterations they give more weight to the discrepancies
between u1 and u2. Thus, the variables become closer in the later iterations until they become
(approximately) equal. This modi�ed superiorization approach is summarized in the following
scheme, which we call Potts S-CG (Potts superiorized conjugate gradient).

Algorithm 5.3 (Basic anisotropic Potts S-CG scheme).

1. Choose an initial perturbation parameter β0 > 0 and coupling parameter µ0 > 0. Choose
an annealing parameter 0 < a < 1, set k ← 0. Iterate until u1,u2 become equal:

2a. Perform a CG step on (u1,u2)
k w.r.t. the normal equations (5.30) for µ = µk and obtain

(u1,u2)
k+1/2.

2b. Perturb (u1,u2)
k+1/2 by the proximal mapping of the block-wise Potts prior for the current

perturbation parameter βk , i.e., (u1,u2)
k+1 ← proxβk F (u1,u2)

k+1/2.

2c. Update βk+1 ← aβk , increase the coupling parameter µk+1 ← (µ0β0)/βk , k ← k + 1.
Go to 2a.

In Figure 5.3, we compare the results of the perturbation strategies (5.34), (5.36) and the Potts
S-CG approach for image reconstruction from undersampled noisy Radon data (measurements
from 25 projection angles corrupted by Gaussian noise of variance σ = 0.25). For the pertur-
bation strategies (5.34), (5.36), we used the coupling parameter µ = 10 and the stopping rule
(5.35) with ε =mσ 2+ µ2, wherem denotes the total number of measurements. Potts S-CG used
the initial coupling parameter µ0 = 0.02 and the iteration was stopped whenu1,u2 became (ap-
proximately) equal. All three approaches used the annealing parameter a = 0.99 and β0 = 1.
We observe that all perturbation strategies improve upon unperturbed CG. Furthermore, we
see that taking the proximal mapping (5.36) produces a more regularized solution than adding
non-ascending directions (5.34). Finally, the result of Potts S-CG is genuinely piecewise con-
stant and has the highest MSSIM value (cf. Section 2.4 for details on the MSSIM).

In the following, we give further details concerning the Potts S-CG approach. In particular,
we describe the extensions for more isotropic solutions and multi-channel data.

Extension to more isotropic discretizations and multi-channel measurements. We
extend the Potts S-CG approach to more isotropic discretizations, i.e., directions d1, . . . ,dS , and
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(a) Original (b) Unperturbed CG,
MSSIM=0.383

(c) Perturbed by non-ascending
directions, µ=10, MSSIM=0.828

(d) Perturbed by proximal
mappings, µ=10, MSSIM=0.965

(e) Potts S-CG,
µ0=0.02, MSSIM=0.988

Figure 5.3.: Reconstructions from undersampled Radon data (25 projection angles corrupted by Gaussian
noise with σ = 0.25). (a) Original. (b) Unperturbed CG method. (c) Perturbing the CG iterations with
non-ascending directions for the block-wise Potts prior improves upon the unperturbed CG method. (d)
Perturbing with the proximal mapping of the block-wise Potts prior yields a further regularized result.
(e) The proposed Potts S-CG method produces a less grainy and piecewise constant result and achieves
the highest MSSIM value.
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multi-channel measurements f . First, we note that the basic PWLS problem for multi-channel
measurements is given by the channel-wise sum

min
u

C∑
c=1

1
2
‖W

1
2Auc −W

1
2 fc ‖

2. (5.37)

As a preparation, we de�ne the block-matrices Aµ,c given by

Aµ,c =

*..................................
,

W
1
2
c A

W
1
2
c A

. . .

W
1
2
c A

µI −µI 0 . . . 0 0
µI 0 −µI . . . 0 0

...
...

µI 0 0 . . . −µI
0 µI −µI . . . 0 0

...
...

0 µI 0 . . . 0 −µI
...

0 0 0 . . . µI −µI

+//////////////////////////////////
-

and f c =

*..................................
,

W
1
2
c fc

W
1
2
c fc
...

W
1
2
c fc

0
0
...
...
...
...
...

0

+//////////////////////////////////
-

. (5.38)

The upper block part of Aµ,c realizes the data �delities for the c-th channel and its lower part
the mutual deviations between the variables (u1, . . . ,uS ) in the c-th channel. By using this
notation we may now formulate the corresponding PWLS problem, that is, the counterpart of
(5.29); it is given by

(u∗1, . . . ,u
∗
S ) ∈ argmin

u1, ...,uS

C∑
c=1

1
2

Aµ,c (u1,c , . . . ,uS,c )
T − f c


2

(5.39)

and the corresponding normal equations for each channel are given by

A
T
µ,cAµ,c (u1,c , . . . ,uS,c )

T = A
T
µ,c f c . (5.40)

After evaluating the multiplications in (5.40), we obtain the following more explicit equations

*.........
,

∑S
t=2 µ

2 (u1,c − ut,c ) +A
TWcAu1,c

...∑S
t,s µ

2 (us,c − ut,c ) +A
TWcAus,c

...∑S−1
t=1 µ

2 (uS,c − ut,c ) +A
TWcAuS,c

+/////////
-

=

*.........
,

ATWc fc
...

ATWc fc
...

ATWc fc

+/////////
-

(5.41)

for each channel c = 1, . . . ,C . The next proposition establishes the relation between the basic
weighted least squares problem (5.37) and its augmented counterpart (5.39).
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Algorithm 5.4: CG step for the augmented weighted least squares problem (5.39)
Input: Forward operator A, multi-spectral sinogram f , weightsWc , coupling parameter µ,

current iterates u,p,h
Output: Updated iterates u,p,h

1 for c = 1, . . . ,C do
2 дs,c ← ATWcAus,c −A

TWc fc +
∑

t,s µ
2 (us,c − ut,c ) for all s = 1, . . . , S ,

3 α =
∑
s (дs,c )T hs,c∑
s (ps,c )T hs,c

,

4 ps,c ← −дs,c + αps,c for all s = 1, . . . , S ,
5 hs,c ← ATWcAps,c +

∑
t,s µ

2 (ps,c − pt,c ) for all s = 1, . . . , S ,
6 κ = −

∑
s (дs,c )T ps,c∑
s (hs,c )T ps,c

,

7 us,c ← us,c + κps,c for all s = 1, . . . , S
8 end

Proposition 5.8. (i) A minimizer u∗ of the least squares problem (5.37) induces a minimizer of
the augmented least squares problem (5.39) via (u∗, . . . ,u∗). (ii) A minimizer (u∗1, . . . ,u

∗
S ) of the

augmented least squares problem (5.39) satis�es u∗1 = . . . = u∗S . Further, u
∗
1 is a minimizer of

(5.37) as well. (iii) If A has full column rank, then u∗ is the (unique) minimizer of (5.37) if and
only if (u∗, . . . ,u∗) is the (unique) minimizer of (5.39).

Proof. (i) Let u∗ be a minimizer of (5.37) and we de�ne (v1, . . . ,vS ) = (u∗, . . . ,u∗). We show
that (v1, . . . ,vS ) satis�es the normal equations (5.41) which is su�cient for a minimizer of
(5.39). It holds by de�nition thatvs = vt for all s, t . Asu∗ satis�es the normal equations of (5.37),
we further obtain ATWAvs,c = ATW fc for all channels c = 1, . . . ,C . Together, (v1, . . . ,vS )
satis�es (5.41) for all channels c = 1, . . . ,C . (ii) We show that the equality of the block variables
u∗s of a minimizer follows from optimality. To this end, let (u∗1, . . . ,u

∗
S ) be a minimizer of (5.39).

Towards a contradiction, we assume that there are s , t such that u∗s , u∗t which in particular
means

∑S
s=1

∑S
t=s+1

1
2 ‖u

∗
s,c −u

∗
t,c ‖ > 0 for at least one channel c . For (v1, . . . ,vS ) := (u∗, . . . ,u∗)

as above we have that
∑S

s=1
1
2 ‖W

1
2Av∗c −W

1
2 fc ‖

2 is minimal for each c in view of u∗ being a
minimizer of (5.37). Further, by de�nition the quadratic deviations between the block variables
vanish, i.e.,

∑S
s=1

∑S
t=s+1

1
2 ‖vs,c −vt,c ‖

2 = 0 for all c . As the sum of these two terms corresponds
to the objective in (5.39), (v1, . . . ,vS ) yields a lower objective value than (u∗1, . . . ,u

∗
S ) which is

a contradiction, so u∗1 = . . . = u∗S . From the normal equations (5.40) follows immediately
ATWAu∗1,c = ATW fc for all c which corresponds to the normal equations of (5.37). (iii) The
third assertion follows from (i) and (ii) together with the uniqueness of least squares problems
for full-rank matrices. �

By following the lines of the CG algorithm (cf. Algorithm 2.1), a CG step on (5.39) is given
by Algorithm 5.4.

Next, we derive the perturbation step by means of the proximal mapping of the block-wise
Potts prior with S directions. We de�ned the block-wise Potts prior for the special case S = 2
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Algorithm 5.5: Multi-channel Potts S-CG

Input: Forward operator A ∈ Rm×n2 , multi-spectral sinogram f ∈ Rm×c , PWLS weights
W ∈ Rm×m , annealing parameter 0 < a < 1, initial parameters β0, µ0 > 0, stopping
parameter tol > 0

Output: u∗ ∈ Rn×n×C

1 Initialize for all s = 1, . . . , S :
2 u0

s = ATW f , p0
s = ATW f , h0

s = ATWAp0
s +

∑
t,s µ

2
0 (p

0
s − p

0
t )

3 k ← 0

4 repeat
/* Increase the splitting penalty parameter proportionally to βk */

5 µk ← (µ0β0)/βk
/* Compute solutions of linewise Potts problems with jump penalty 2βk : */

6 (u1, . . . ,uS )
k+1/2 = argmin

v1, ...,vS

∑
s ‖u

k
s −vs ‖

2 + 2βkωs ‖∇dsvs ‖0

/* Peform a CG step on (u1, . . . ,uS )
k+1/2 w.r.t. the weighted normal equations (5.41) : */

7 for c = 1, . . . ,C do
8 Compute uk+1

s,c ,h
k+1
s,c ,p

k+1
s,c from uk+1/2

s,c ,hks,c ,p
k
s,c for all s = 1, . . . , S by

Algorithm 5.4 for µ = µk
9 end

10 βk+1 ← aβk
11 k ← k + 1
12 until ‖uks − uks+1‖∞ < tol for all s = 1, . . . , S − 1;

13 return u∗ = 1
S
∑S

s=1u
k
s

in (5.31). For the more general situation with S directions as above, it is given by

F (u1, . . . ,uS ) =
S∑
s=1

ωs ‖∇dsus ‖0. (5.42)

(Recall the de�nition of ‖∇dsus ‖0 in (5.17) and the weights ωs from Section 4.2.1.) To perturb
the CG iterates of (5.41) by means of the block-wise Potts prior (5.42), we need to evaluate
its proximal mapping as above. The proximal mapping of the block-wise Potts prior for S
directions (5.42) is de�ned by

proxβF (u1, . . . ,uS ) = argmin
w1, ...,wS

F (w1, . . . ,wS ) +
1

2β

S∑
s=1
‖us −ws ‖

2. (5.43)

As seen in Section 5.4, the minimization in (5.43) decomposes into problems, which depend
on one of the us only. These smaller problems are of the form (5.26), which can be e�ciently
solved with the solver developed in Chapter 3. In Algorithm 5.5, we provide the pseudocode
of the Potts S-CG algorithm for more isotropic discretizations and multi-channel data.
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5.6. Comparison of Potts ADMM and Potts S-CG

Handling the forward operator. Potts ADMM introduces an additional splitting variable
v in (5.19) to cope with the forward operator A. Consequently, one has to solve a Tikhonov
problem (5.21) w.r.t.A andv in each iteration of Potts ADMM. In contrast, Potts S-CG does not
introduce such a splitting variable and only requires a CG step w.r.t.A in each iteration, i.e., it
requires only applying A and AT in each iteration instead of solving a Tikhonov problem. As a
result, Potts S-CG needs more iterations, while the iterations are cheaper than in Potts ADMM
(Figure 5.4: Potts S-CG 0.95 sec/iteration, Potts ADMM 2.35 sec/iteration).

Reconstruction from undersampled multi-channel Radon data. Next, we consider the
reconstruction of a colored, i.e., three-channel, Shepp-Logan Phantom from undersampled
multi-channel Radon data corrupted by additive Gaussian noise (20 angles, σ = 0.35). Further,
we study the data deviation, 1

S
∑

s,c ‖Au
k
s,c−fc ‖

2, and the block-wise Potts prior,
∑

s ωs ‖∇dsu
k
s ‖0,

as a function of the iteration index. To put the results into context, we also include the recon-
struction result and iteration data of a penalty method for the Potts model, which relaxes the
constrained problem (5.19) by replacing the constraints by a sequence of softened constraints.
To �x ideas, this method corresponds to Potts ADMM with the Lagrange multipliers set to zero.
Furthermore, we include the Potts superiorized Landweber method (Potts S-Landweber), which
corresponds to Potts S-CG with Landweber steps instead of CG steps. (Recall that a Landweber
step corresponds to a gradient descent step w.r.t. the (weighted) least squares problem (5.37);
see also Example 2.1.)

In Figure 5.4, we show the results. First, we note that the jumps of all results are spa-
tially aligned across the channels which illustrates the considerations on the multi-channel
Potts prior in Section 5.3. Concerning the reconstruction quality, we observe that the penalty
method as well as Potts S-Landweber produce spurious artifacts near segment boundaries.
Potts ADMM and Potts S-CG yield improved reconstruction results which are close to the
groundtruth. This con�rms the theoretical considerations of Section 5.5.1 that the Landweber
method is not a favorable basic algorithm in the sense of superiorization, when large opera-
tor norms are involved. Moreover, the results con�rm that the Lagrange multipliers in Potts
ADMM (the “memory” of the iterations) play a crucial role for the reconstruction quality. These
qualitative �ndings are re�ected by the values of the block-wise Potts prior and the data de-
viations over the iterations: Potts ADMM and Potts S-CG arrive at values which are close to
the values of the groundtruth. This illustrates that the results of Potts ADMM and Potts S-CG
agree with the data and at the same time minimize the (block-wise) Potts prior.

5.7. Experimental results

In this section, we illustrate the potential of the (multi-channel) Potts prior for multi-spectral
computed tomography. More precisely, we consider the Potts S-CG algorithm (Algorithm 5.5)
and the Potts ADMM algorithm (Algorithm 5.1) and compare them with existing TV-type ap-
proaches. First, we provide the necessary implementation details of Potts ADMM and Potts
S-CG. Next, we brie�y recall the TV, TNV and dTVp prior. To obtain a qualitative comparison,
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(a) Original 256 × 256 (b) Penalty method (c) Potts ADMM

(d) Potts S-Landweber (e) Potts S-CG

(f) Block-wise Potts prior (g) Data �delity

Figure 5.4.: Potts ADMM and Potts S-CG for undersampled noisy multi-channel Radon data (20 angles,
σ = 0.35). Top: the jumps of all results are spatially aligned across the channels. However, the penalty
method and Potts S-Landweber produce some spurious artifacts near the segment boundaries. Potts
ADMM and Potts S-CG produce improved reconstruction results which are close to the groundtruth.
On close inspection, we observe that some of the segment boundaries are brie�y smoother in the Potts
ADMM result than in the Potts S-CG result (see, e.g., the upper boundary of the right ellipse). Bottom:
the values of the block-wise Potts prior and the data deviations over the iterations re�ect the qualitative
�ndings as Potts ADMM and Potts S-CG achieve values which are near the values of the groundtruth.
This shows that the solutions of Potts ADMM and Potts S-CG simultaneously agree with the data and
minimize the (block-wise) Potts prior.
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(a) Quartz (b) Pyrite (c) Galena (d) Gold

Figure 5.5.: The geocore phantom consists of four inorganic materials: (a) quartz, (b) pyrite, (c) galena
and (d) gold. The background is air.

Figure 5.6.: Left: the full X-ray spectrum and the range of energies (45-114 keV) used for modeling the
measurements of the geocore phantom. The spectrum is discretized into 70 energy bins. Right: MSSIM
values of the reconstructions of the geocore phantom for all energy bins. The channel-coupling methods
achieve larger MSSIM values than channel-wise TV. For the majority of the energy-bins, the result of
Potts ADMM and Potts S-CG have higher MSSIM values than the TV-type regularizers dTVp and TNV
(Potts ADMM: 57 channels, Potts S-CG: 38 channels).

we then consider the geocore phantom used in [114]. Finally, we give a quantitative compari-
son of the methods for a phantom which consists of few organic materials.

Implementation details. We provide the necessary implementation details. We begin with
Potts ADMM (Algorithm 5.1). As coupling sequences, we employ ρk = 10−7 · k2.01, µk = ρk/S .
For the stopping criterion, we set tol = 10−5. We solve the Tikhonov subproblems (5.21)
using Matlab’s built-in function pcg which is applied to the weighted normal equations (5.24)
with standard tolerance 10−6 and a maximum number of 2000 iterations. We use the previous
iteration vk−1 as initial guess, so that after the �rst ADMM iterations only few pcg iterations
are needed. Regarding Potts S-CG (Algorithm 5.5), we used the annealing parameter a = 0.999
and the initial coupling µ0 = 10−4. For the stopping criterion, we set tol = 10−5.

Methods for comparison. We compare the Potts ADMM and the Potts S-CG method with
classical channel-wise total variation (TV), channel-coupling total nuclear variation (TNV)
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[168] and the probabilistic directional TV method (dTVp), which was proposed in [114].
Channel-wise TV corresponds to the `1-norm of the discrete gradient ‖∇u‖1 for each channel

separately. Its application corresponds to solving the convex problem, for a parameter α > 0,
given by

argmin
u

C∑
c=1
‖Auc − fc ‖W + α ‖∇uc ‖1. (5.44)

The TNV regularizer uses the nuclear norm of the discrete Jacobian in each pixel of a multi-
channel image to correlate the channels. Applying TNV corresponds to the convex problem

argmin
u

C∑
c=1
‖Auc − fc ‖W +

∑
x ∈Ω

α ‖Du (x )‖∗, (5.45)

where α > 0 is a parameter, Du (x ) is the 2×C matrix of channel-wise �nite di�erences of u at
the point x and ‖ · ‖∗ denotes its nuclear norm, i.e., the sum of its singular vales.

The dTVp regularizer is a modi�cation of the directional TV (dTV) regularizer. The dTV
regularizer enforces correlation between a channel imagew and a reference channelv by means
of the directional di�usion of the channel given the known reference channel. To �x ideas, we
denote by vec(w ) ∈ Rn2 the column-wise vectorization of w and by Dx the 2 × n2-matrix such
that Dxvec(w ) is the �nite di�erences vector of w at the point x . Then, dTV is given by

dTV(w,v ) =
∑
x ∈Ω′
‖PvDxvec(w )‖2, Pv =




I −
Dx vec(v )vec(v )TDT

x
‖Dx vec(z ) ‖2 if Dxvec(v ) , 0,

I if Dxvec(v ) = 0
(5.46)

for a single-channel image w and reference v . The multi-channel version of (5.46) is given by

C∑
c=1

dTV(uc ,vc ), (5.47)

wherevc denote the reference channel for uc . In contrast to dTV, for dTVp the reference chan-
nels are not �xed, but chosen probabilistically in each iteration of the reconstruction process.
The reference channels are chosen among the channels of the former iterate of u. This process
uses a probability mass function, which is based on the channel-wise geometric mean of the
estimated signal-to-noise ratios (SNR). Hence, channels with high SNR are more likely to be
selected as a reference channel. We note that the dTVp regularizer is non-convex [114].

We used the implementation of [114], which employs the FISTA method (fast iterative shrink-
age thresholding) [11] to approach the respective minimization problems. Thus, the FISTA
method converges to the global minimizers of (5.45) and (5.44) as TV and TNV are convex.
However, this does not necessarily hold for dTVp which is non-convex.

Geocore phantom. We start out with a qualitative comparison w.r.t. the geocore phantom
of [114]. The phantom has size 512 × 512 and consists of four materials: quartz, pyrite, galena,
and gold; see Figure 5.5. The width of the domain is set ro 1 cm, the distance from the X-ray
source to the rotation center to 3 cm, the distance from the source to the detector is 5 cm and
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the width of the detector array is 2 cm. The X-ray spectrum was simulated with the spektr
software package [173]. The energy spectrum of the emitted photons is shown on the left-
hand side of Figure 5.6 for the used tube potential (120 kVp) and photon �ux I0 = 4 · 104. The
photon attenuation coe�cients for the materials were obtained from the PhotonAttenuation
software package [188]. The energy range is chosen as 45-114 keV and is discretized into 70
energy bins. The multi-spectral measurements were simulated with the Astra-Toolbox [189]. In
particular, we set the fan-beam scanning geometry and obtained the measurements according
to 120 projection angles from a larger version of the phantom (1024 × 1024). For TV, TNV and
dTVp, we used the model parameters as given in [114], i.e., αTV = 4.2 · 10−4, αT NV = 1.2 · 10−3

and αdTVp = 3.3 · 10−3. Potts ADMM used the jump penalty γ = 0.075 and Potts S-CG the
initial perturbation parameter β0 = 500.

In Figure 5.7, we show the reconstructions for three depicted channels. We observe that Potts
ADMM and Potts S-CG produce sharp boundaries across the channels, while also showing
considerably fewer artifacts than the methods of comparison. These qualitative �ndings are
con�rmed by the corresponding MSSIM values (see also the right-hand side of Figure 5.6),
which are higher for Potts ADMM and Potts S-CG for the majority of the channels.

Organic spheres phantom. In the last paragraph, we considered the geocore phantom,
which consisted of inorganic materials, many energy channels and a moderate number of
projections were available. Next, we conduct a quantitative comparison in terms of a phan-
tom, which consists of organic materials and only few energy bins and projection angles are
available. To this end, we consider the 256 × 256 phantom of Figure 5.8, which consists of
homogeneous regions �lled with muscle, fat and bone tissue. The domain and detector width
as well as the distances involved in the measurement process are the same as for the geocore
phantom. The X-ray spectrum as well as the LAC’s of muscle, fat and bone were simulated with
the spektr software package for the used tube potential (150 kVp) and photon �ux I0 = 105. In
this context, we note that the measurements were simulated according to (5.8) to avoid the in-
verse crime. Then, for the reconstruction, the linear model (5.9) was used. We show the LAC’s
of the involved materials and the X-ray spectrum in Figure 5.9. The detectors bin the X-ray
spectrum into three energy bins. We note that the LAC’s of fat and muscle tissue are very close,
especially for higher energies. Thus, the reconstruction approaches should aid the recovery of
the third channel (the one which holds highest energies among the three channels) by employ-
ing the other two (less problematic) channels. Again, we simulate the measurements with the
Astra-toolbox and use a fan-beam scanning geometry with 25 projection angles (obtained from
a larger 512× 512 version of the phantom). Hence, the reconstruction approaches have to deal
with the additional challenge of highly undersampled measurements.

The individual model parameters were chosen empirically. More precisely, we determined
the model parameters by choosing the optimal ones w.r.t. to the mean value of the channel-
wise MSSIM’s. In particular, for TV and TNV, the optimal parameter α was chosen among
{10−4, 1.5 · 10−4, . . . , 10−3}. As dTVp is of probabilistic nature, we repeated the computation for
each parameter α �ve times and chose the best result. Here, we let α ∈ {10−4, 2 · 10−4, . . . , 2 ·
10−3}. The jump penalty of Potts ADMM was chosen from γ ∈ {10−5, 2 · 10−5, . . . , 2 · 10−4} and
for Potts S-CG, the initial perturbation parameter was obtained from β0 ∈ {1, . . . , 20}.
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Figure 5.7.: Reconstruction results of the geocore phantom for three selected energy bins. Channel-wise
TV exhibits artifacts at the segment boundaries in the second channel and does not recover the inner
segments in the third channel. TNV yields an improved reconstruction, but still shows (blueish) artifacts
at the segment boundaries. The dTVp result has sharper boundaries than TV and TNV, but the artifacts
at the segment boundaries are still present. The Potts ADMM and the Potts S-CG results show less
artifacts and the boundaries are sharp. Further, they achieve the highest MSSIM values for two out of
the three depicted channels, which is representative for the full energy spectrum; see Figure 5.6.
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(a) Muscle tissue (b) Fat tissue (c) Bone tissue

Figure 5.8.: The organic spheres phantom consists of three materials. (a) Muscle tissue, (b) fat tissue and
(c) bone tissue. The background is air. The main challenge is to separate the regions with muscle tissue
and those with fat tissue as fat and muscle have very similar LAC’s throughout the considered energy
spectrum; see Figure 5.9.

Figure 5.9.: Modeling the measurements of the organic spheres phantom. Left: the LAC’s of fat, bone and
muscle tissue. The highlighted area depicts the used energy range. The LAC curves of fat and muscle
are close. Right: the full X-ray spectrum and the used energy range (15-120 keV) for modeling the data
of the organic spheres phantom. The spectrum is binned into three energy bins by the detectors and
their boundaries are depicted by the dashed vertical lines.

In Figure 5.10, we show the reconstructions together with the corresponding (optimal) MSSIM
values. We observe that Potts ADMM and Potts S-CG achieve the highest MSSIM values for
all three channels and the MSSIM values of Potts ADMM and Potts S-CG are rather close.
Furthermore, the fact that Potts ADMM and Potts S-CG achieve higher MSSIM values than
the other methods is re�ected by the reconstructions: the result of channel-wise TV exhibits
blurry boundaries and the segments corresponding to the fat tissue are not recovered in the
third channel. TNV provides an improved reconstruction of the third channel. However, the
segment boundaries remain di�use. The dTVp method produces sharp boundaries in all three
channels, but introduces some spurious artifacts near the boundaries. Potts ADMM and Potts
S-CG recover the segments and provide sharp boundaries throughout the channels. Further,
they show fewer artifacts.
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Figure 5.10.: Reconstructions of the organic spheres phantom. The channel-wise TV result exhibit blurry
boundaries and smooths out the fat segments in the third channel. TNV yields an improved reconstruc-
tion for the third channel. However, the boundaries are still blurry. The dTVp method produces sharp
boundaries in all three channels, but introduces some spurious artifacts near the boundaries. Potts
ADMM and Potts S-CG recover the segments and provide sharp boundaries throughout the channels.
Further, they show fewer artifacts and achieve the highest MSSIM values for all three channels.

116



5.8. Summary of the chapter

In this chapter, we considered the multi-channel reconstruction problem in multi-spectral
CT. In particular, we focused on measurements obtained by energy-discriminating photon-
counting detectors. We started out by brie�y describing the corresponding linear measurement
model. We noted that the edges in the di�erent energy channels are typically spatially corre-
lated. Hence, an appropriate regularizer incorporates this prior knowledge in the reconstruc-
tion process, i.e., such a regularizer should couple the channels. Furthermore, we found that
the multi-channel Potts prior provides a strong channel coupling in the sense that the jumps of
the results are enforced to be at the same spatial positions across the channels. This property is
especially bene�cial for the multi-channel images in multi-spectral CT as their channels have
a strong structural correlation. We employ the multi-channel Potts prior by minimizing the
multi-spectral Potts model. To this end, we adapted the ADMM strategy proposed in [183] to
the multi-channel reconstruction problem in multi-spectral CT. Furthermore, we proposed new
reconstruction approaches based on Potts superiorization of the conjugate gradients method
(CG). Here, the iterates of the CG method were perturbed w.r.t. the (block-wise) Potts prior
towards more desirable solutions. We have shown that one obtains non-ascending directions
w.r.t. the block-wise Potts prior by taking steps towards its proximal mapping. The correspond-
ing superiorization approach, which perturbs the iterates by adding these non-ascending direc-
tions, turned out to yield improved results compared to the non-perturbed CG. Furthermore,
we showed that the theoretical termination of the resulting algorithm is ensured. In practice,
we observed further improved results when we perturbed the iterates with the proximal map-
ping itself. Based on this observation, we developed a new Potts superiorization approach,
which we call Potts S-CG. Potts S-CG uses the proximal mapping as before and additionally
lets the underlying PWLS problem evolve in the course of the iterations, so that the �nal result
becomes genuinely piecewise constant.

The energy minimization approach (Potts ADMM) and the superiorization approach (Potts
S-CG) both produce solutions which are (multi-channel) Potts-regularized. We identi�ed Potts
ADMM and Potts S-CG as suitable choices within their respective class of methods by compar-
ing them to a penalty method and a method which Potts-superiorizes the Landweber iteration,
respectively. Despite the di�erent abstract interpretations, the iterations in Potts ADMM as
well as Potts S-CG involve a data step and a regularizing step. The latter decomposes into uni-
variate Potts problems (solved e�ciently by the method of Chapter 3). A signi�cant di�erence
between Potts ADMM and Potts S-CG is that the data step of Potts ADMM corresponds to
solving a Tikhonov problem, while the data step of Potts S-CG corresponds to one CG step.

In numerical experiments, we applied Potts ADMM and Potts S-CG to simulated multi-
spectral CT data and compared them to the existing TV-based methods. The bene�ts of these
methods based on the Potts prior manifested themselves in sharper edges and mostly higher
MSSIM values than the TV-type methods. These bene�ts may be attributed to the channel-
coupling by the multi-channel Potts prior.
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6. Smoothing Images with the Second Order
Mumford-Shah Model

In this chapter, we consider second and higher order Mumford-Shah models for images. This
chapter is based on the publication [120].

Organization of the chapter. In Section 6.1, we give an overview and discuss related work.
In Section 6.2, we reformulate second and higher order Mumford-Shah models in terms of
Taylor jets and derive corresponding discrete formulations. We start with the second order
anisotropic case, and proceed with discussing on how to increase the isotropy and how to deal
with the general higher order case. We further consider an approach based on distances be-
tween Taylor jets and discuss its relation to the previously proposed approach. In particular,
we point out a particular instance which is motivated by Hermite interpolation. In Section 6.3,
we develop a strategy for minimizing the energy functional. In Section 6.4, we apply the pro-
posed approach to the second order Mumford-Shah model to numerical data and compare it
with existing numerical approaches. Furthermore, we use the proposed method in connection
with edge detection. Finally, Section 6.5 concludes the chapter with a summary.

6.1. Overview and related work

Mumford-Shah models are established variational tools for edge preserving smoothing of im-
ages. The models produce a piecewise smoothed image together with the corresponding edges.
The classical �rst order Mumford-Shah model (cf. (1.1)) [148, 149] is given by the minimization
problem

argmin
u,Γ

∫
Ω
|u (x ) − f (x ) |2 dx + β2

∫
Ω\Γ
‖∇u (x )‖2 dx + γ length(Γ). (6.1)

We recall that the arguments of the functional are a (closed) set Γ which represents the edge
set and a function u which is smooth on Ω ⊂ R2 outside the edge set Γ, i.e., u is continuously
di�erentiable on Ω \ Γ. For more details we refer to (1.1) and below in Chapter 1.

Already in Chapter 3, we saw that �rst order (univariate) Mumford-Shah models exhibit the
“gradient-limit e�ect” (recall Figure 3.2) [21]. It describes the phenomenon that spurious edges
are introduced to account for steep slopes in the signal/image. The gradient-limit e�ect stems
from penalizing the (squared) norm of the gradient of u in (6.1), i.e., the model penalizes devi-
ations from constant functions as their gradients are zero. In Chapter 3, we considered higher
order Mumford-Shah models to address the gradient-limit e�ect in the univariate situation. In
this chapter, we consider higher Mumford-Shah models for images with special emphasis on
the second order Mumford-Shah model.
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We start by formulating the second order Mumford-Shah model. To this end, we replace
the gradient in (6.1) by the Hessian matrix as proposed in [21] and obtain the second order
Mumford-Shah model

argmin
u,Γ

∫
Ω
|u (x ) − f (x ) |2 dx + β2

∫
Ω\Γ
‖∇2u (x )‖2F dx + γ length(Γ), (6.2)

where the second order penalty is now the squared Frobenius norm of the Hessian matrix
∇2u of u which is given by ‖∇2u (x )‖2F = ∂11u (x )

2 + 2∂12u (x )
2 + ∂22u (x )

2. The arguments of the
second order Mumford-Shah functional are the closed (edge) set Γ as well as a functionu which
is twice continuously di�erentiable on Ω outside the edge set Γ. The remaining symbols have
the same role as in the �rst order Mumford-Shah model. Analogously to the univariate case,
the second order Mumford-Shah model (6.2) does not penalize linear trends in u. In Figure 6.1,
we illustrate how the second order Mumford-Shah model can prevent the gradient-limit e�ect
by recovering steep color gradients.

We note that the squared L2-distance in (6.2) which promotes closeness to data f may be
replaced by a general Lp-based distance or a more general pseudo-metric to account for dif-
ferent noise types. Further, one may replace the Frobenius norm of the Hessian by another
norm. For instance, one could employ weighted `2-type norms ‖∇2u (x )‖2w = w11∂11u (x )

2 +

2w12∂12u (x )
2 + w22∂22u (x )

2 with positive weights w11,w12,w22. Furthermore, Blake and Zis-
serman [21] also considered the Laplacian of u instead of the (weighted) Frobenius norm of
the Hessian of u. However, they report on undesired e�ects when using this modi�cation. A
natural choice corresponds to the norm of ∇2u (x ) as a bilinear form. In view of the di�culty
of computing operator norms, (weighted) Frobenius norms of the Hessian are a computable
compromise. (Further, also more general Schatten norms, in particular, trace norms, have been
considered in the context of regularizing ill-posed problems (using di�erent regularizers); see
for instance [133].)

Second derivatives add an additional level of complexity. Thus, the second order models are
at least as demanding as the classical �rst order Mumford-Shah models, both on the theoretical
and the algorithmic side. On the algorithmic side, there are far fewer approaches to the second
order Mumford-Shah model than for the �rst order Mumford-Shah model. The graduated non-
convexity approach by Blake and Zisserman, cf. [21], and Ambrosio-Tortorelli type approaches
[2, 216, 215] are the only approaches the author is aware of. Hence, the main goal of this chapter
is to derive algorithms for second order Mumford-Shah models. Work on theoretical aspects is
discussed in the related work section below.

In this chapter, we develop an algorithmic framework for second order Mumford-Shah mod-
els based on reformulations of second (and higher) order Mumford-Shah models in terms of
Taylor jets. After discretization, these reformulations allow to model a local Taylor expansion
in each pixel, in contrast to an image value only. We propose an algorithmic approach to the
corresponding minimization problems which uses an ADMM splitting such that all subprob-
lems can be solved exactly and non-iteratively These subproblems correspond to univariate
segmented jet problems for which we derive fast solvers which use the dynamic programming
approach of Chapter 3 as a basis. To show the potential of the proposed method, we apply it
to numerical data. In particular, we perform a qualitative and quantitative comparison of our
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(a) Noisy data (b) Clean image (groundtruth)

(c) First order Mumford-Shah model (d) Second order Mumford-Shah model
(with the proposed method)

(e) Detail of (a) (f) Detail of (b) (g) Detail of (c) (h) Detail of (d)

Figure 6.1.: Qualitative comparison of �rst and second order Mumford-Shah models. The classical �rst
order Mumford-Shah model produces extra spurious edges to amount for steep slopes which is called
the “gradient-limit e�ect” (see, e.g., the rooftop or the �oor next to the amphora). The second order
Mumford-Shah model recovers steep color gradients and yields an overall smoother image. (The re-
spective model parameters were chosen optimally w.r.t. the MSSIM).

algorithmic approach with the methods for the second order Mumford-Shah problem existing
in the literature.

Related work. The model (6.2) was proposed by Blake and Zisserman [21]. In particular,
they proposed a more general model which incorporates an additional penalty for the kink set
of the image and is called the weak plate model. The second order Mumford-Shah model (6.2)
considered in the present work corresponds to the weak plate energy where the kink parameter
is set to zero. In many image processing applications one is typically interested in detecting
the jumps. Hence, setting the kink parameter to zero is reasonable. The weak plate energy has
later been termed “Blake & Zisserman model” by several authors; e.g., [39]. We avoid this term
as the �nite di�erence discretization of the �rst order Mumford-Shah functional is frequently
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called Blake-Zisserman functional as well; e.g., [79].
Regarding theoretical results, the existence of minimizers has been shown in [39]. Related

work on minimizers is [41, 24]. In particular, [41] studies properties of local minimizers and
[24] considers the generic uniqueness of minimizers. Other aspects are Euler equations [40] and
density estimates [42]. The approximation by elliptic functionals in the sense of Γ-convergence
and related algorithms based on these approximations have been investigated in [2]. (As corre-
sponding approximations for the �rst order Mumford-Shah model are frequently named after
Ambrosio-Tortorelli, we call these approximations Ambrosio-Tortorelli type approximations.)
Partial Γ-convergence and compactness results are obtained in [28] for a discrete potential
formulation of the second order Mumford-Shah model.

Concerning algorithms, Blake and Zisserman proposed the graduated non-convexity (GNC)
approach [21]. Another class of algorithms is based on Ambrosio-Tortorelli type approxima-
tions. For �rst order models such an approach was �rst proposed in [2]. For second order mod-
els, it has been considered in [216, 215] where they propose a numerical scheme which employs
the Ambrosio-Tortorelli type approximation of the second order Mumford-Shah model.

6.2. Higher order Mumford-Shah models based on jet
formulations

In this section, we reformulate higher order Mumford-Shah models and, in particular, second
order Mumford-Shah models in terms of Taylor jets. Based on these reformulations, we propose
a suitable discretization to obtain discrete higher order Mumford-Shah models. We start with
the anisotropic second order case, proceed with the extension to near-isotropic discretizations
and then discuss the case of higher order Mumford-Shah models. Finally, we brie�y discuss
discrete models based on distances between Taylor jets and discuss their relation to the ap-
proach considered before. Particularly, we reveal a speci�c instance, which is motivated by
classical univariate Hermite interpolation.

6.2.1. Jet formulation of higher order Mumford-Shah models

We here derive a new formulation of higher order Mumford-Shah models in terms of Taylor
jets. For basics on Taylor jets –as we need them in this section– we refer to Section 2.3. We �rst
develop the concepts for single-channel images and generalize them to multi-channel images
later on (in Section 6.3.4). We start with second order Mumford-Shah models of the form (6.2)
and consider higher order Mumford-Shah models afterwards.

Jet formulation of second order Mumford-Shah models. In the following, we use the
notation introduced in (2.20), i.e., the �rst order Taylor jet Ju of the twice continuously di�er-
entiable function u : Ω → R in the point x is represented by Jx = (u (x ),a J (x ),b J (x )) with
a J (x ) = ∂1u (x ), b J (x ) = ∂2u (x ).

As a �rst step, we use this representation to rewrite the squared Frobenius norm of the
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Hessian matrix employed in (6.2) as

R (Jux ) = R (Jx ) := ‖D2ux ‖
2
F = λ ∂11u (x )

2 + (1 − λ) ∂1a J (x )
2 + λ ∂22u (x )

2

+ (1 − λ) ∂2b J (x )
2 + ∂2a J (x )

2 + ∂1b J (x )
2, (6.3)

taking into account the constraints

a J (x ) = ∂1u (x ), and b J (x ) = ∂2u (x ). (6.4)

The consistency condition (6.4) ensures that (u (x ),a J (x ),b J (x )) represents a Taylor jet. Thus,
(6.3) is indeed a reformulation of the Frobenius norm of the Hessian matrix of u for any real
valued parameter λ. From now on, we let λ ∈ [0, 1] in (6.3). We reformulate the consistency
condition for a J in (6.4) to its integral form given by

Ca (Jx ) : u (x1,x2) +

∫ x1+ρ

x1

a J (ξ ,x2) dξ = u (x1 + h,x2) −

∫ x1+h

x1+ρ
a J (ξ ,x2) dξ , (6.5)

where h > 0 and ρ is such that 0 < ρ < h. Analogously, we reformulate the consistency
condition for b J in (6.4) as

Cb (Jx ) : u (x1,x2) +

∫ x2+ρ

x2

b J (x1, ξ ) dξ = u (x1,x2 + h) −

∫ x2+h

x2+ρ
b J (x1, ξ ) dξ . (6.6)

The following basic proposition ensures that (6.5) together with (6.6) are indeed a reformulation
of the consistency condition (6.4), i.e., that (6.4) is equivalent to (6.5) together with (6.6).

Proposition 6.1. The consistency constraints given by (6.4) and the conditions as given by Ca (Jx )
and Cb (Jx ) are equivalent.

Proof. We proof the equivalence of the �rst item of (6.4) and (6.5) and note that the proof for
the second item of (6.4) and (6.6) works analogously. The identity (6.5) follows from (6.4) by
simply plugging in a(x ) = ∂1u (x ) and using the fundamental theorem of calculus. Conversely,
if (6.5) holds for all h > 0, then also 1

h (u (x1 + h,x2) − u (x1,x2)) =
1
h

∫ x1+h
x1

a(ξ ,x2)dξ . Then
taking the limit h → 0 yields ∂1u (x ) = a(x ) which can be seen by, e.g., applying the mean value
theorem to the right-hand side before taking the limit. �

As a consequence of Proposition 6.1, we will also call (6.5) and (6.6) consistency conditions.
We note that we will frequently drop the index J in our notation in the following.

By using (6.3) together with the consistency conditions (6.5) and (6.6) we obtain a formulation
of the second order Mumford-Shah model (6.2) in terms of Taylor jets given by

argmin
J ,Γ

∫
Ω
|u (x ) − f (x ) |2 dx + β2

∫
Ω\Γ
R (Jx ) dx + γ length(Γ) (6.7)

subject to Ca (Jx ) and Cb (Jx ), for all x ∈ Ω \ Γ. (6.8)

The minimization takes place w.r.t. �rst order jets J which are represented in the form (2.20)
and the constraint (6.8) ensures that J is indeed the Taylor jet of a function u, i.e., J = Ju . As in
the function setting before, the set Γ is chosen from the set of �nite unions of smooth curves.
We record the following observation whose proof is straight-forward.
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Theorem 6.2. The second order Mumford-Shah model (6.2) and its jet formulation (6.7), (6.8)
are equivalent. In particular, the constrained problem of minimizing (6.7) subject to (6.8) has a
minimizer.

Proof. First, we consider a minimizer u∗ (together with the edge set Γ∗) of (6.2) and let Ju∗ =
J 1u∗ be its �rst order Taylor jet de�ned by (2.13). We note that Ju∗ is well-de�ned on the
complement of the closed edge set Γ∗. By its de�nition as a Taylor jet, Ju∗ meets the constraints
(6.8). The functional value of Ju∗ (together with Γ∗ as second argument) w.r.t. (6.7) equals the
functional value of u∗ (together with Γ∗ as second argument) w.r.t. (6.2). Furthermore, for any
admissible jet J , i.e., for J ful�lling the constraints (6.8), (with edge set Γ) the functional value
of J (together with Γ as second argument) w.r.t. (6.7) equals the functional value of u (together
with Γ as second argument) w.r.t. (6.2). Here, u denotes the coe�cient function u obtained by
identifying the jet J (x ) with its coe�cient functions u (x ), a J (x ), and b J (x ) according to (2.20).
Hence, if (u∗, Γ∗) minimizes (6.2), then (Ju∗, Γ∗) minimizes (6.7) under the constraints (6.8).

For the converse direction we assume that the jet J ∗ (together with the edge set Γ∗) minimizes
(6.7) subject to (6.8). We identify the jet J ∗ with its coe�cient functionsu∗, a∗J , and b∗J according
to (2.20). We note that the functional value of (J ∗, Γ∗) w.r.t. (6.7) equals the functional value
of u∗ w.r.t. (6.2). Further, for a candidate function u, together with a candidate edge set Γ, the
functional value w.r.t. (6.7) of its Taylor jet Ju (which ful�lls (6.8)) together with Γ equals the
functional value of (u, Γ) w.r.t. (6.2). Hence, (u∗, Γ∗) is a minimizer of (6.2).

The statement on the existence of a minimizer for (6.7) subject to (6.8) is a consequence
of the existence of a minimizer of the equivalent problem (6.2) which has been shown in [39].
(Please note that in this reference a minimizer of (6.2) is called a strong minimizer of the Blake-
Zisserman functional.) �

Remark 6.3. We can also obtain an analogous jet formulation for any weighted `2-type norm
‖∇2u (x )‖2w = w11∂11u (x )

2+2w12∂12u (x )
2+w22∂22u (x )

2 with nonnegative weightsw11,w12,w22,

by inserting the weights into (6.3) and proceeding analogously.

Jet formulation of general higher order Mumford-Shah models. In the following, we
use the notation of Section 2.3 for general higher order di�erentials. We consider the general
k-th order Mumford-Shah model

argmin
u,Γ

∫
Ω
|u (x ) − f (x ) |2 dx + β2

∫
Ω\Γ
‖Dku (x )‖2w dx + γ length(Γ). (6.9)

Here, Dku (x ) denotes a general k-th order di�erential of u at x and the squared norm

‖Dku (x )‖2w =
∑

α : |α |=k
wα

k !
α ! |∂αu (x ) |

2 (6.10)

measures the magnitude of Dku (x ). The summation in (6.10) takes place w.r.t. all multiindices
α of order k , the symbol wα denotes a positive weight for each α and ∂αu (x ) denotes the k-
th order derivative of the function u at x w.r.t. the directions given by α . (We note that the
special case k = 2 together with wα = 1 for all α corresponds to the problem (6.7), (6.8)
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considered before.) The arguments of the k-th order Mumford-Shah functional are the (closed)
discontinuity set Γ as well as a functionu which is k times continuously di�erentiable on Ω \Γ.
The other symbols have the same role as in the �rst and second order Mumford-Shah models.
We emphasize that the k-th order Mumford-Shah functional (6.9) does not penalize polynomial
trends of orderk−1 withinu .As discussed for the second order model, a natural norm ‖Dku (x )‖
for Dku (x ) would be its norm as a (symmetric) k-linear form. However, since computing this
expression involves the computation of eigenvalues for the unknown u at any point x . Thus,
employing this norm would be computationally very demanding. For this reason we consider
(6.10) which yields a computationally more accessible alternative.

We introduce new functions vα1 , one function for each multiindex α1 with α1 < α . Analo-
gously to (6.4), we employ the consistency condition

vα1 (x ) = ∂α1u (x ), (6.11)

where in particular v (0,0) = u. By using the consistency condition (6.11) we rewrite (6.10) as

R (Jk−1
x ) := R (Jx ) = ‖Dku (x )‖2w =

∑
(α1,α2)∈Z

w ′(α1,α2)
|∂α2vα1 (x ) |

2, (6.12)

where (α1,α2) are the members of the set Z of admissible pairs of multiindices and w ′
(α1,α2)

are the respective nonnegative weights. (The weights w ′
(α1,α2)

are chosen such that the sum of
all w ′

(α1,α2)
which represent the same multiindex α , i.e., α1 + α2 = α , equal wα

k !
α ! .) The set of

admissible pairs of multiindices is given by

Z =
{
(α1,α2) ∈ N2

0 × N2
0 : |α1 | + |α2 | = k ; precisely one component of α2 is zero

}
. (6.13)

We point out that, for each of the newly introduced functions vα1 , only partial derivatives
with respect to one coordinate direction are involved. Next, we restate the consistency condi-
tion (6.11) for each (α1,α2) ∈ Z (which implies that α2 is nonzero) in integral form as

C(α1,α2) (Jx ) : vα1 (x )+

∫ x+ρ α2
|α2 |

x
vα1+

α2
|α2 |

(ξ ) dξ = vα1 (x+h
α2
|α2 |

)−

∫ x+h α2
|α2 |

x+ρ α2
|α2 |

vα1+
α2
|α2 |

(ξ ) dξ , (6.14)

for h > 0 and ρ with 0 < ρ < h. As for the second order case, the equivalence of the di�eren-
tial constraints (6.11) and the integral constraints (6.14) is a consequence of the fundamental
theorem of calculus.

The reformulation of the k-th order penalty (6.12) together with the consistency conditions
(6.14) allows us to formulate general higher order Mumford-Shah models of the form (6.9) in
terms of Taylor jets by

argmin
J ,Γ

∫
Ω
|u (x ) − f (x ) |2 dx + β2

∫
Ω\Γ
R (Jx ) dx + γ length(Γ) (6.15)

subject to C(α1,α2) (Jx ), for all (α1,α2) ∈ Z , and for all x ∈ Ω \ Γ. (6.16)

The minimization takes place w.r.t. (k − 1)-th order jets; the constraints (6.16) ensure that Jx is
the Taylor jet of a function; again, the discontinuity set Γ is chosen from the set of �nite unions
of smooth curves.
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6.2.2. Discretization

To apply the jet formulation of the Mumford-Shah models to image data (which are discrete)
we need a discrete formulation. We start out with the (anisotropic) discretization of the jet
formulation of the second order Mumford-Shah model (6.7). Then we consider means to de-
rive more isotropic discretizations of the second order Mumford-Shah model. Finally, we dis-
cuss discretizations of higher order Mumford-Shah models and discuss on how to increase the
isotropy in this general situation.

We �x the notation. First, we let h denote the grid size of the discrete rectangular image
domain Ωh = {h, 2h, . . . ,hm} × {h, 2h, . . . ,hn} and we use the symbols e1 = (1, 0)T , e2 = (0, 1)T
to denote the compass directions.

In the discrete situation, the data term is given as the sum of the quadratic deviations between
the discrete data f : Ωh → R and the discrete candidate u : Ωh → R. We use the following
notion of a discrete edge set which is suitable for our purposes.

De�nition 6.4 (Discrete edge set). As edge set Γ of a discrete image we understand a subset
of the edges K =

{
{x ,x + e1}, {x ,x + e2} : x ,x + e1,x + e2 ∈ Ωh

}
of the (undirected) four-

neighborhood graph with vertex set Ωh . We denote the edges in direction e1 by Γ1 and those
in direction e2 by Γ2.We denote the number of edges in Γ j by |Γ j |, j = 1, 2.

We use the symbol Γ for both discrete and continuous edge sets. It will be clear from the
context if we refer to Γ as the edge set in the continuous domain or its discrete counterpart.

Next, we need a discretization of the second order penalty (6.3). As the image domain is a
pixel grid, we use �nite di�erences. The second directional derivatives ∂11u and ∂22u of u for
the coordinate axis in (6.3) are discretized in terms of second order central di�erences of u in
direction e1 and e2, respectively. The discrete gradients of the jet coe�cients a and b in (6.3)
are given by forward di�erences in directions e1 and e2. More precisely, we denote the for-
ward di�erences operator w.r.t. the direction e1 by ∇1, i.e., ∇1a(x ) =

a (x+he1)−a (x )
h . Further, we

denote by ∇2
1 the second order di�erences operator, i.e., ∇2

1u (x ) =
u (x−he1)−2u (x )+u (x+he1)

h2 . The
analogue expressions for the direction e2 are denoted by ∇2 and ∇2

2, respectively. To discretize
the integrals in the consistency condition (6.5) we employ the simplest quadrature rule based
on piecewise constant approximation, i.e.,∫ x1+ρ

x1

a J (ξ ,x2) dξ ≈ ρa(x1,x2) and
∫ x1+h

x1+ρ
a J (ξ ,x2) dξ ≈ (h − ρ)a(x1 + h,x2),

respectively. We consider the quadratic penalty relaxation of the problem (6.7), (6.8). By using
the approximation above we obtain the penalty α ���u (x )+ρa J (x )−u (x+he1)+ (h−ρ)a J (x+he1)

���
2
,

where α > 0 is a parameter. This term yields the discrete soft constraints which correspond
to Ca (Jx ). (We note that employing hard constraints is undesired as will be explained in Re-
mark 6.5 below.) In the same way, we obtain the discrete soft constraints corresponding to
Cb (Jx ), that is, α ���u (x )+ρb J (x )−u (x +he2)+ (h−ρ)b J (x +he2)

���
2
. After including the discretiza-

tion of R (Jx ) in terms of �rst and second di�erences as detailed above, we obtain the term
P (Jx ) = P1 (Jx ) + P2 (Jx ) which denotes the discrete second order Mumford-Shah regularizer
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for the smooth part in the jet formulation; it is given by

P1 (Jx ) = P1
λ,α,ρ (Jx ) =λ |∇

2
1u (x ) |

2 + (1 − λ) |∇1a J (x ) |
2 + |∇1b J (x ) |

2 (6.17)

+ α ���u (x ) + ρa J (x ) − u (x + he1) + (h − ρ)a J (x + he1)
���
2
,

and

P2 (Jx ) = P2
λ,α,ρ (Jx ) =λ |∇

2
2u (x ) |

2 + (1 − λ) |∇2b J (x ) |
2 + |∇2a J (x ) |

2 (6.18)

+ α ���u (x ) + ρb J (x ) − u (x + he2) + (h − ρ)b J (x + he2)
���
2
.

We discuss the parameters α , λ, ρ. The jet-parameter α controls the coupling between the im-
age u and the slope variables a J and b J . The jet-parameter λ ∈ [0, 1] balances the second order
di�erences in u and the �rst order di�erences in the slope variables a J and b J , respectively.
Intuitively, for large values of α , the usage of di�erent values of the parameter λ has a small
in�uence since then the slopes are tightly coupled with the image. In view of symmetry, a
reasonable choice for the evaluation parameter ρ ∈ [0,h] corresponds to ρ = h/2. In connec-
tion with this, we notice that, in order to obtain symmetry, it would also be possible to use
a pair of evaluation parameters ρ1, ρ2 with ρ2 = h − ρ1 and average the results. As we will
see in Section 6.3.2, this is algorithmically more expensive than a single evaluation parameter
which motivates to employ ρ = h/2 throughout this chapter. For a discussion on the practical
in�uence of the parameters λ and α we refer to the experimental section.

Remark 6.5. We note that the straight-forward discretization of the hard constraint (6.5), i.e.,
requiring that u (x1,x2) + ρa(x1,x2) = u (x1 + h,x2) − (h − ρ)a(x1 + h,x2), where h > 0 and
0 < ρ < h, is undesired. This constraint means to evaluate the a�ne-linear polynomials/the
jet elements sitting in (x1,x2) and (x1+h,x2) in the point (x1+ρh,x2) and require that they are
equal. In turn this would mean that the polynomials in neighboring points are equal which is
undesired here because this corresponds to a discrete variant of the a�ne-linear Potts model
instead. This interesting model is considered separately in Chapter 7.

Discrete objective of the secondorderMumford-Shahmodel; anisotropic version. We
have gathered all necessary ingredients for a discrete jet formulation of the second order Mum-
ford-Shah model (6.7); it is given by

argmin
J ,Γ1,Γ2

‖u − f ‖2 +
∑

x ∈Ωh\Γ1

β2P1 (Jx ) +
∑

x ∈Ωh\Γ2

β2P2 (Jx ) + γ |Γ
1 | + γ |Γ2 |. (6.19)

In Figure 6.2, we illustrate the resulting (discrete) jet J for di�erent choices of β . In particular,
we see that the jet elements are allowed to vary within segments, that is, the corresponding
a�ne planes may be twisted w.r.t. their neighbors. The amount of variation is controlled by
the smoothing parameter β . (Recall that for β → ∞ no variation is allowed.)

We record that the discrete model (6.19) has a minimizer.

Theorem 6.6. The discrete second order Mumford-Shah jet model in its anisotropic version (6.19)
has a minimizer.
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We give the proof of Theorem 6.6 together with the proof of the analogue statement for the
near isotropic discretization which is formulated as Theorem 6.10 below.

The following example motivates a particular choice of the jet parameters α , λ which can be
related to the notion of univariate Hermite splines.

Example 6.7. For the choice λ = 0, α = 12/h6, where h denotes the grid size, and the evaluation
point ρ = h/2 in (6.17) and (6.18) we obtain

P1 (Jx ) = |∇1a(x ) |
2 + |∇1b (x ) |

2 + 12
h6

���u (x ) +
h
2a(x ) − u (x + he1) +

h
2a(x + he1)

���
2
, (6.20)

and

P2 (Jx ) = |∇2a(x ) |
2 + |∇2b (x ) |

2 + 12
h6

���u (x ) +
h
2b (x ) − u (x + he2) +

h
2b (x + he2)

���
2
; (6.21)

We call the problem (6.19) with the implementations (6.20) and (6.21) the discrete second order
spline-related Mumford-Shah jet model.
To motivate this name, we notice that the cubic (univariate) Hermite spline p which interpolates

the values u (x ),u (x + he1) and the directional derivatives a(x ),a(x + he1) in direction e1 along
the segment [x ,x + he1] is characterized by the minimizing property

p∗ = argmin
p is a cubic polynmial

∫ x+he1

x
p ′′(z)2dz, (6.22)

subject to the constraints that the cubic polynomial p interpolates both the values u (x ),u (x +he1)
and the directional derivatives a(x ),a(x +he1). The minimizing energy of p∗ in (6.22) is given by

d (Jx , Jx+he1 ) := |a(x ) − a(x + he1) |
2 + 12

h6
���u (x ) +

h
2a(x ) − u (x + he1) +

h
2a(x + he1)

���
2
. (6.23)

This expression can also be seen as a distance between two line elements consisting of function
value and directional derivative, i.e., two univariate �rst order Taylor jets. (This is detailed in Sec-
tion 6.2.3, where we study discrete second order models in terms of distances between jets.) After
adding a corresponding term for the derivatives in the orthogonal direction, we obtain precisely
(6.20). The analogous consideration with the roles of the coordinate directions e1 and e2 inter-
changed yields (6.21).

Increasing the isotropy, near isotropic discretizations. We extend our approach to ob-
tain a near-isotropic discretization of the second order Mumford-Shah model; the bene�t of
employing a near-isotropic discretization is illustrated in Figure 6.3. To this end, we consider
the following generalization of De�nition 6.4 w.r.t. eight neighborhoods.

De�nition 6.8. The eight-neighborhood edge set Γ of a (discrete) image is a subset Γ of the
edges K of the (undirected) eight-neighborhood graph with vertex set Ωh which is given by
K =

{
{x ,x + ej } : x ,x + ej ∈ Ωh for j = 1, 2, 3, 4

}
, for the coordinate directions e1, e2 and the

diagonal directions e3 = e1 + e2, e4 = e1 − e2. The edges in the coordinate directions e1, e2 are
denoted by Γ1 and Γ2, respectively, and those in the diagonal directions e3 and e4 by Γ3 and Γ4,

respectively. The number of edges in Γ j are denoted by |Γ j |, j = 1, 2, 3, 4.
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(a) Input data

(b) β = 0.25 (c) β = 0.75 (d) β = 2

Figure 6.2.: Illustration of the (discrete) jet coe�cients for three values of the smoothing parameter β .
The pink spheres correspond to the pixel values of the smoothed images u above and the small plates
illustrate the �rst order polynomials in each pixel given by u,a,b. We observe that for larger values of
β , less variation is allowed between jet elements (outside edges). In the limit case β → ∞, no variation
is allowed which corresponds to another model, the a�ne-linear Potts model. (The a�ne-linear Potts
model is considered separately in Chapter 7.)

Towards including an eight-neighborhood in our discretization, we use the invariance of
the Frobenius norm w.r.t. rotations and rewrite the second order Mumford-Shah model (6.2)
equivalently as

argmin
u,Γ

‖u − f ‖22 + β
2
∫
Ω\Γ

(
1
2 ‖∇

2u (x )‖2F +
1
2 ‖R∇

2u (x )RT ‖2F dx
)
+ γ length(Γ), (6.24)

where R denotes the rotation w.r.t. the angle π/4 about the origin in R2. By applying the rota-
tions R and RT to the Hessian matrix ∇2u (x ) of u in (6.24) we obtain the identity

R∇2u (x )RT = 1
2

(
∂11u (x ) + 2∂12u (x ) + ∂22u (x ) ∂22u (x ) − ∂11u (x )

∂22u (x ) − ∂11u (x ) ∂11u (x ) − 2∂12u (x ) + ∂22u (x )

)
. (6.25)

The entries on the main diagonal on the right-hand side of (6.25) correspond to the second
directional derivatives w.r.t. the diagonal directions e3/

√
2 = (e1 + e2)/

√
2 and e4/

√
2 = (e1 −
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(a) Noisy input (b) Anisotropic discretization (c) Near-isotropic discretization

(d) Original [4] (e) Edge set of (b) (f) Edge set of (c)

(g) Details of (b) and (e) (h) Details of (c) and (f)

Figure 6.3.: Comparison of the anisotropic and the near-isotropic discretization. The the near-isotropic
discretization yields smoother boundaries than the anisotropic discretization which exhibits “geometric
staircasing” (see, e.g., the detail view or the edge between the sky and the cupola).

e2)/
√

2, respectively. The o� diagonal entries correspond to the mixed second derivatives w.r.t.
the directions e3/

√
2 and e4/

√
2. As a result, (6.25) corresponds to the Hessian matrix for the

coordinate system formed by e3/
√

2 and e4/
√

2. In the following, we use the symbols

c (x ) = ∂e3u (x ) and d (x ) = ∂e4u (x ), (6.26)

to denote the directional derivatives of u w.r.t. the directions e3 and e4, respectively. By
linearity, the diagonal derivatives c (x ) and d (x ) can be written as c (x ) = a(x ) + b (x ) and
d (x ) = a(x )−b (x ), respectively. (We recall that the symbols a,b were used to denote the direc-
tional derivatives w.r.t. the coordinate axes.) We employ this notation in (6.25) to rewrite the
second summand in the integral on the right-hand side of (6.24) as

R π
4
(Jx ) := ‖R∇2u (x )RT ‖2 = 1

4λ |∂e3∂e3u (x ) |
2 + 1

4λ |∂e4∂e4u (x ) |
2

+ 1
4 (1 − λ) |∂e3c (x ) |

2 + 1
4 (1 − λ) |∂e4d (x ) |

2 + 1
4 |∂e4c (x ) |

2 + 1
4 |∂e3d (x ) |

2,
(6.27)

where ∂ν denotes the directional derivative w.r.t. the direction ν .
We �x the jet notation which is suitable for a more isotropic discretization of the second order

Mumford-Shah model. We consider jets J represented via (2.20) by Jx := (u (x ),a J (x ),b J (x ))
as before and we further de�ne c = c J := a J + b J as well as d = d J := a J − b J . (We note that
a J ,b J play the role of variables and c J ,d J are de�ned via a J ,b J .)
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Similarly to (6.5), (6.6), we can write the consistency conditions for Cc (Jx ) and Cd (Jx ) in
integral form. For Cc (Jx ) this corresponds to

Cc (Jx ) : u (x ) +

∫ x+ρe3

x
c (ξ ) dξ = u (x + he3) −

∫ x+he3

x+ρe3

c (ξ ) dξ , (6.28)

where h > 0 and ρ is such that 0 < ρ < h. In terms of a J ,b J this corresponds to

Cc (Jx ) : u (x ) +

∫ x+ρe3

x
(a(ξ ) + b (ξ )) dξ = u (x + he3) −

∫ x+he3

x+ρe3

(a(ξ ) + b (ξ )) dξ . (6.29)

The above integrals are understood as univariate integrals along the straight line segments
which connect the points x , x + ρe3 and x + ρe3, x + e3, respectively. Analogously, we obtain
for Cd (Jx ),

Cd (Jx ) : u (x ) +

∫ x+ρe4

x
(a(ξ ) − b (ξ )) dξ = u (x + he4) −

∫ x+he4

x+ρe4

(a(ξ ) − b (ξ )) dξ . (6.30)

We use the consistency conditions in the above form to rewrite the second order Mumford-
Shah problem (6.2) as its jet formulation

argmin
J ,Γ

∫
Ω
|u (x ) − f (x ) |2 dx + β2

∫
Ω\Γ

1
2

(
R (Jx ) + R π

4
(Jx )

)
dx + γ length(Γ)

subject to Ca (Jx ),Cb (Jx ),Cc (Jx ),Cd (Jx ), for all x ∈ Ω \ Γ,
(6.31)

where R (Jx ) was de�ned in (6.3).
We now consider discretizing (6.31). Similarly to (6.17)-(6.18), we obtain the discrete second

order penalties with respect to the diagonal directions e3, e4. The second order penalty with
respect to e3 is given by

P3 (Jx ) =
1
4λ |∇

2
3u (x ) |

2 + 1
4 (1 − λ) |∇3c (x ) |

2 + 1
4 |∇3d (x ) |

2

+ α ′���u (x ) + ρc (x ) − u (x + he3) + (h − ρ)c (x + he3)
���
2
,

(6.32)

where we recall that c (x ) is short for a(x ) +b (x ) and d (x ) is short for a(x ) −b (x ). Further, the
�rst and second order �nite di�erences ∇3 of c,d and ∇2

3 of u w.r.t. the direction e3 = e1+e2 are
given by ∇3c (x ) =

1
h (c (x + he3) − c (x )) and ∇2

3u (x ) =
1
h2 (u (x − he3) − 2u (x ) + u (x + he3)) .

Analogously, we obtain the second order penalty for e4,

P4 (Jx ) =
1
4λ |∇

2
4u (x ) |

2 + 1
4 (1 − λ) |∇4d (x ) |

2 + 1
4 |∇4c (x ) |

2

+ α ′���u (x ) + ρd (x ) − u (x + he4) + (h − ρ)d (x + he4)
���
2
,

(6.33)

where ∇4,∇
2
4 denote the �rst and second order di�erences w.r.t. the direction e4 = e1 − e2. The

parameters λ, ρ have the same roles as discussed below (6.18). The parameter α ′ > 0 denotes
the diagonal analogue of the parameter α discussed below (6.18).

Remark 6.9. The factor 1/4 which appears in (6.32) and (6.33) accounts for taking second
order di�erences w.r.t. the vectors e3 and e4 which have length

√
2. The same factor appears in

front of a J and b J as for them �rst order di�erences are formed w.r.t. the vectors e3, e4. Further,
they are related to �rst order derivatives of u for the same vectors of length

√
2.
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Discrete objective of the second order Mumford-Shah model, near isotropic version.
We can now formulate the near-isotropic discrete second order Mumford-Shah model in jet
formulation,

argmin
J ,Γ

‖u − f ‖2 + β2
4∑

s=1

∑
x ∈Ωh\Γs

1
2P

s (Jx ) + γ
4∑

s=1
ωs |Γ

s |. (6.34)

As for the �rst order Mumford-Shah and Potts model (cf. Section 4.2.1), we employ the weights
ωs given by ω1 = ω2 =

√
2 − 1 and ω3 = ω4 = 1 −

√
2

2 . We record the existence of minimizers.

Theorem 6.10. The discrete second order Mumford-Shah jet model in its near isotropic version
(6.34) has a minimizer.

Since the proofs are similar, we give a uni�ed proof of Theorem 6.6 and Theorem 6.10.

Proof of Theorem 6.6 and Theorem 6.10. For the anisotropic situation of Theorem 6.6, we denote
the energy in (6.19) by F (Γ, J ), and rewrite it in the following suitable way:

F (Γ, J ) = γ |Γ1 | + γ |Γ2 | + EΓ (J ) (6.35)

with
EΓ (J ) = ‖u − f ‖2 +

∑
x ∈Ωh\Γ1

β2P1 (Jx ) +
∑

x ∈Ωh\Γ2

β2P2 (Jx ). (6.36)

Analogously, for the situation of Theorem 6.10, we also use the symbol F (Γ, J ) to denote the
energy in (6.34) and rewrite it as

F (Γ, J ) = γ
4∑

s=1
ωs |Γ

s | + EΓ (J ) (6.37)

with

EΓ (J ) = ‖u − f ‖2 + β2
4∑

s=1

∑
x ∈Ωh\Γs

1
2P

s (Jx ). (6.38)

Now we can reformulate the assertion of both theorems in a uni�ed way: F (Γ, J ) has a mini-
mizer.

For a �xed edge set Γ the function which incorporates all terms depending on the discrete
jet J is given by EΓ (J ) in (6.35) and (6.37), respectively. In both cases, �nding the minimum of
EΓ (J ) w.r.t. J corresponds to solving a least squares problem in the discrete coe�cient functions
u,a,b of the discrete jet J = (u,a,b). Therefore, there is a (not necessarily unique) jet J ∗Γ that
minimizes EΓ (J ) for �xed Γ. By denoting Ẽ (Γ) := minJ EΓ (J ), we obtain

inf
Γ
Ẽ (Γ) = inf

Γ, J
F (Γ, J ). (6.39)

Since the set to optimize for on the left-hand side of (6.39) is �nite, the in�mum is attained and
a minimum exists. Having found a minimizer Γ∗ of Ẽ (Γ), then (Γ∗, J ∗Γ ) is a minimizer of F (Γ, J ).
Thus, the right-hand side of (6.39) has a minimizer which completes the proof. �
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We extend the spline-related discrete model introduced in Example 6.7 to the more isotropic
situation.

Example 6.11. We here discuss the more isotropic variant of the discrete second order spline-
related Mumford-Shah jet model introduced in Example 6.7. In addition to the regularizing atoms
P1 and P2 de�ned via (6.20) and (6.21), respectively, we employ the atoms P3 and P4 in (6.34). For
P3, P4, we choose λ = 0, α ′ = 3

2h6 for the grid size h in (6.32) and (6.33). Together, we obtain

P3 (Jx ) =
1
4 |∇3c (x ) |

2 + 1
4 |∇3d (x ) |

2 + 3
2h6

���u (x ) +
h
2c (x ) − u (x + he3) +

h
2d (x + he3)

���
2
, (6.40)

and

P4 (Jx ) =
1
4 |∇4d (x ) |

2 + 1
4 |∇4c (x ) |

2 + 3
2h6

���u (x ) +
h
2c (x ) − u (x + he4) +

h
2d (x + he4)

���
2
. (6.41)

We call the problem (6.34) with the implementations of Ps given by (6.20), (6.21), (6.40) and (6.41),
the discrete near-isotropic second order spline-related Mumford-Shah jet model.

In our experiments (see Figure 6.3 and Section 6.4), we compare the anisotropic (four-neigh-
borhood) and the near-isotropic (eight-neighborhood) discretization. We observe that the near-
isotropic discretization signi�cantly reduces geometric staircasing e�ects.

Remark 6.12. We note that the key ingredient to derive more isotropic discretizations is the
invariance of the Frobenius norm under orthogonal transformations. In particular, this makes
the functional invariant under rotations. This observation makes it possible to increase the
isotropy further by including knight move di�erences (recall Section 4.2.1).

Since knight moves correspond to rotations of an angle chosen from the set {arctan(±1/3),
arctan(±3)}, we may employ the techniques used to derive (6.24) (6.25) to obtain analogous
formulas for the knight move case. Then it is possible to derive a corresponding jet formula-
tion as well as a corresponding discretization by following the recipe for the four- and eight-
neighborhood case.

Extension to higher order models. We point out the considerations needed to generalize
the approach presented for the second order Mumford-Shah model to higher order models.

We start with the anisotropic case. We recall the jet formulation of higher order Mumford-
Shah models (6.15), (6.16). We start from (6.15), (6.16) and derive a discretization by following
the lines of the anisotropic second order case. The notions of discrete edge sets and discrete
data terms remain the same as in the second order case. We observe that (6.15), (6.16) use
higher order di�erentials up to order k . Each di�erential depends on one coordinate direction
only. To discretize l-th order derivatives we employ (central) l-th order �nite di�erences. More
precisely, by (6.13) the multiindex α2 has the form α2 = (l , 0) or α2 = (0, l ) for a positive integer
l ≤ k . If α2 = (l , 0), we use ∇l1u (x ) =

∑l
r=0

(
r
l

)
(−1)r+1u (x1 + dl/2e − r ,x2) where d·e assigns

the smallest integer which is larger or equal to the argument. If α2 = (0, l ), we employ the
di�erence ∇l2u (x ) =

∑l
r=0

(
r
l

)
(−1)r+1u (x1,x2 + dl/2e − r ).

Next, we have to discretize the consistency conditions (6.14) in integral form for each (α1,α2)
in the admissible set Z . To this end, we use the simplest quadrature rule based on piecewise
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constant approximation (as in the second order case) to obtain∫ x+ρ α2
|α2 |

x
vα1+

α2
|α2 |

(ξ ) dξ ≈ ρvα1+
α2
|α2 |

(x ) and∫ x+h α2
|α2 |

x+ρ α2
|α2 |

vα1+
α2
|α2 |

(ξ ) dξ ≈ (h − ρ)vα1+
α2
|α2 |

(x + h
α2

|α2 |
).

By using these discretizations we obtain the discrete objective function of the (anisotropic) k-th
order Mumford-Shah model given by

argmin
J ,Γ

‖u − f ‖2 +
∑

x ∈Ωh\Γ1

β2P1 (Jx ) +
∑

x ∈Ωh\Γ2

β2P2 (Jx ) + γ |Γ
1 | + γ |Γ2 |. (6.42)

Here, Jx denotes a (k −1)-th order jet which is represented by the (now discrete) grid functions
vα1 (x ) with α1 such that |α1 | < k . Further, for s ∈ {1, 2}, we employ the discrete higher order
penalties given by

Ps (Jx ) = Psθ,ρ (Jx ) =
∑

(α1,α2)∈Zs

w ′(α1,α2)
���∇
|α2 |
s vα1

���
2

(6.43)

+ θ
∑

(α1,α2)∈Zs

����vα1 (x ) + ρvα1+
α2
|α2 |

(x ) −vα1 (x + h
α2
|α2 |

) + (h − ρ)vα1+
α2
|α2 |

(x + h α2
|α2 |

)
����
2
,

where the weights w ′
(α1,α2)

are given in (6.12) and where we subdivide the set Z in (6.13) into

Z1 =
{
(α1,α2) : |α1 | + |α2 | = k ; the second component of α2 equals 0

}
, (6.44)

and
Z2 =

{
(α1,α2) : |α1 | + |α2 | = k ; the �rst component of α2 equals 0

}
. (6.45)

Finally, we point out how to obtain near isotropic discretizations of general higher order
Mumford-Shah models. Here, we assume that the weights wα in (6.10) all equal one. We need
this assumption to guarantee the rotational invariance of the (continuous domain) higher order
Mumford-Shah functional which is shown by the following well-known lemma. The essential
point here is that the weights are equal, that is, equality to one is not needed but convenient
from a notational point of view. We record the following folklore lemma. We give a short proof
for the reader’s convenience.

Lemma 6.13. Let f : Ω → R be a su�ciently smooth function de�ned on an open set Ω ⊂ Rd

with d being a positive integer. Further, let R be a rotation, i.e., R denotes an orthogonal linear
operator with determinant equal to one. Then

d∑
i1, ...,ik=1

|Dk fx (Rei1 , . . . ,Reik ) |
2 =

d∑
i1, ...,ik=1

|Dk fx (ei1 , . . . , eik ) |
2. (6.46)

Please note that for k = 2, (6.46) states the rotational invariance of the Hessian matrix of f .
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Proof. The assertion of the lemma follows by induction. The case k = 1 follows from the
rotational invariance of the Euclidean norm of the gradient. The induction step is given by

d∑
i1, ...,ik=1

|Dk fx (Rei1 , . . . ,Reik ) |
2 =

d∑
i1, ...,ik=1

|Dk fx (ei1 , . . . , eik−1 ,Reik ) |
2

=

d∑
i1, ...,ik=1

|Dk fx (ei1 , . . . , eik ) |
2,

where the �rst equality follows from the induction hypothesis and the second equality from
the rotational invariance of the Euclidean norm of the gradient. �

Lemma 6.13 allows us to rewrite the general higher order Mumford-Shah model (6.9) with
unit weights as

argmin
u,Γ

∫
Ω

��u (x ) − f (x )��2 dx + β2
∫
Ω\Γ

(
1
2 ‖D

ku (x )‖2F +
1
2 ‖D

ku (x ) (R ·, . . . ,R ·)‖2F
)
dx (6.47)

+ γ length(Γ),

We may now proceed similarly to the paragraphs after (6.31) to derive a corresponding jet
formulation and then a corresponding more isotropic discretization. Finally, we note that Re-
mark 6.12 also applies to the case of higher order Mumford-Shah models. Hence, if needed,
it is possible to include knight moves in the setup by incorporating corresponding additional
rotation terms into (6.47).

6.2.3. Discrete formulations based on distances between polynomials

The regularizing terms of (discrete) �rst order Mumford-Shah models may be formulated in
terms of distances of neighboring items of the discrete image u. In the anisotropic case, this
corresponds to the functional

R (J , Γ) = β2
∑

x ∈Ωh\Γ1

d (ux1+h,x2 ,ux1,x2 )
2 + β2

∑
x ∈Ωh\Γ2

d (ux1,x2+h ,ux1,x2 )
2 + γ |Γ |,

where d is a distance. For single-channel images, d amounts to the absolute value of the dif-
ferences and for multi-channel images, d is typically the Euclidean distance; see, e.g., [21, 101].
For higher order models, higher order di�erences of u are involved such that a direct interpre-
tation in terms of distances is not possible at �rst glance. However, we shift the perspective
to distances between Taylor jets instead of function values. This allows to generalize the dis-
tance based perspective to higher orders. We here develop this perspective and reveal that
the discrete second order spline-related Mumford-Shah jet models introduced in Examples 6.7
and 6.11 are instances of such distances.

We start out by considering the functional which describes the anisotropic (discrete) situa-
tion,

R (J , Γ) = β2
∑

x ∈Ωh\Γ1

d (Jx1+h,x2 , Jx1,x2 )
2 + β2

∑
x ∈Ωh\Γ2

d (Jx1,x2+h , Jx1,x2 )
2 + γ |Γ |. (6.48)
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Here, as previously, Γ denotes the edge set and J denotes the jet to optimize for. The symbol d
is new in (6.48): d may depend on the location x as well as on the direction ei , i = 1, 2,

d =
(
dix1,x2

)
x=(x1,x2)∈Ω,i ∈{1,2}

. (6.49)

For �xed x , i we require that dix1,x2 is a distance between polynomials. More precisely, dix1,x2 is
non-negative, symmetric and ful�lls the triangle inequality. In particular, dix1,x2 is zero if and
only if its two arguments de�ne the same polynomial. In the second order case, they de�ne the
same a�ne-linear function. Summing over all indices yields a distance on the corresponding
(discrete) jets. Therefore, we call d a jet distance. The remaining symbols in (6.48) have the
same meaning as before.

We can obtain instances ofdix1,x2 from a set of linear functionalsφ j = (φ j )
i
x1,x2 : Πk−1 → R on

the linear space of (k − 1)-th order bivariate polynomials Πk−1 which may depend on x1,x2, i .
It follows from basic linear algebra that we have to choose linear functionals φ j such that the
dimension of their span equals the dimension of Πk−1. Then we de�ne

dix1,x2 (J , J
′) =

∑
j

���φ j (J − J
′)���

2
. (6.50)

In the second order situation, we may consider three linearly independent linear functionals
on the linear space of a�ne-linear polynomials φ j : Π1 → R. Thereby, we obtain

dix1,x2 (J , J
′) =

3∑
j=1

���φ j (J − J
′)���

2
. (6.51)

By basic linear algebra, dix1,x2 (J , J
′) = 0 if and only if J and J ′ describe the same polynomial.

The triangle inequality and symmetry hold by construction. Therefore, (6.50) and (6.51) indeed
de�ne distances. We note that such distances have the additional bene�t of being distances
induced by norms, and even more, by scalar products.

We consider examples.

Example 6.14. We de�ne a �rst class of jet distances for �rst order jets which are based on slope
and point evaluations: we �x a �rst order polynomial P and de�ne the linear functionals

φ1 (P ) = (φ1)
i
x1,x2 (P ) =

∂

∂x1
P (z), φ2 (P ) = (φ2)

i
x1,x2 (P ) =

∂

∂x2
P (z), and φ3 (P ) =

√
αP (z).

Here, φ1,φ2 yield the partial derivatives of P and φ3 evaluates P in the point z weighted by α >
0. If we consider a �rst order jet J in its representation Jx = (u (x ),a J (x ),b J (x )), we see that
φ1 (Jx ) = a J (x ), φ2 (Jx ) = b J (x ), φ3 (Jx ) =

√
α Jx (z), α > 0, in (6.51). In particular, φ1 and φ2 do

not depend on the evaluation point z, whereas φ3 does. (Note that all functionals depend on x1,x2.
The functional φ3 in particular depends on the evaluation point z which itself will be chosen to
depend on x1,x2.) Using these functionals, we obtain the jet distance d de�ned via

dix1,x2 (J , J
′) = |ax − a

′
x |

2 + |bx − b
′
x |

2 + α |Jx (z) − J
′
x (z) |

2. (6.52)

The remaining degrees of freedom in (6.52) are the points z in which the the jet elements are
evaluated and the weight α > 0. A reasonable choice of the evaluation point z is a point on the
line segment between x and x + ei , i.e. z = x + ρei , ρ ∈ [0, 1].
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In view of (6.17) and (6.18), we see that the jet distances of Example 6.14 yield discretizations
of the second order Mumford-Shah model in the sense of Section 6.2.2. More precisely, they
de�ne the subclass of (6.17), (6.18) with the jet-parameter λ being zero.

Finally, we remark that maybe the simplest class of jet distances is given by point evaluations
only. This means that each φ j corresponds to the evaluation in a point zj . For �rst order jets,
this results in the jet distance

d (Jx , Jy ) =
3∑
j=1
|Jx (zj ) − Jy (zj ) |

2, (6.53)

where the three points zj are non-collinear. A reasonable choice of the evaluation point zj is
given by z1 = x , z2 = x + e1, and z3 = x + e2. (Alternatively, one could choose more than three
points whose span equals R2.)

Spline-based jet distance. We discuss the discrete second order spline-related Mumford-
Shah jet models introduced in Examples 6.7 and 6.11. In the following, we interpret and mo-
tivate this approach in the context of distances between polynomials. To this end, we con-
sider two one-dimensional jet elements Jx and Jx+h , x ∈ R, with function values and slopes
u (x ),u (x + h),a(x ),a(x + h).We recall that cubic Hermite splines interpolate data points and
given derivative data by third order polynomials. We consider the cubic Hermite polynomial p
which interpolates the datau (x ),u (x +h),a(x ),a(x +h) and interpret its energy as a univariate
jet distance, i.e., we consider d (Jx , Jx+h ) =

∫ x+h
x p ′′(z)2 dz. We note that (6.22) is zero if and

only if the interpolating polynomial p is a�ne-linear. This is in turn the case if and only if
the jet elements Jx , Jx+h are equal (which means that Jx , Jx+h describe the same a�ne-linear
function/polynomial). The univariate spline-based jet distance then reads

d (Jx , Jx+h ) = |a(x ) − a(x + h) |
2 + 12

h6
���u (x ) +

h
2a(x ) − u (x + h) +

h
2a(x + h)

���
2
. (6.54)

We note that the second summand in (6.54) corresponds to evaluating Jx and Jx+h in the point
x + 1

2h and comparing the resulting values.
Motivated by the univariate situation, we de�ne the spline-based jet distance dspline by

dspline (Jx , Jy ) = |a(x ) − a(y) |
2 + |b (x ) − b (y) |2 + 12

h6
���u (x ) +

h
2a(x ) − u (y) +

h
2a(y)

���
2
. (6.55)

For the other direction, we simply exchange the roles of a and b .
We observe that the spline-based jet distance (6.55) falls into the class of jet distances de�ned

Example 6.14. This can be seen by choosing the weight α = 12
h6 and the point evaluation

parameter ρ = 1
2h in (6.52).

Remark 6.15. We point out that the generalization to more isotropic settings (using diagonal
directions, as well as knight move directions) is straightforward. For instance, the spline based
jet distance which incorporates diagonal directions is given via (6.20), (6.21), (6.40), (6.41). Fur-
ther, jet distances on (k − 1)-th order polynomials may be employed to deal with general k-th
order Mumford-Shah problems. Examples which are based on evaluations of point values and
values of higher derivatives can be deduced from (6.43) (by choosing w ′

(α1,α2)
= 0 for |α2 | > 1).
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6.3. Algorithmic approach

Here, we develop an algorithmic approach to the discrete second order Mumford-Shah model
in its jet formulation (6.19). To this end, we employ an ADMM splitting strategy. (ADMM
approaches have turned out to often work well for various non-convex problems, e.g., [197, 211,
54, 101].) We derive the proposed ADMM splitting in Section 6.3.1. The problem is split in a
way such that all subproblems can be solved exactly. In Section 6.3.2, we derive e�cient solvers
for these subproblems which are based on the dynamic programming techniques developed in
Chapter 3. We further provide the extensions to more isotropic discretizations and to multi-
channel images in Section 6.3.3 and in Section 6.3.4, respectively.

6.3.1. Splitting approach to the anisotropic discretization with the ADMM

We consider the jet-based discrete Mumford-Shah model in its anisotropic formulation (6.19).
The derivations in the more isotropic case are similar but involve more notation. We consider
them in Section 6.3.3 below. As a starting point, we split the target jet J into two variables
J 1, J 2 subject to the constraint that they are equal:

argmin
J 1, J 2,Γ1,Γ2

{
F (J 1, J 2, Γ1, Γ2) =

1
2 ‖u

1 − f ‖2 + 1
2 ‖u

2 − f ‖2 + β2
( ∑
x ∈Ωh\Γ1

P1 (J 1
x ) +

∑
x ∈Ωh\Γ2

P2 (J 2
x )

)
+ γ |Γ1 | + γ |Γ2 |

}
subject to J 1

x = J
2
x for all x ∈ Ωh .

(6.56)

The constraints in (6.56) ensure that (6.56) and the original problem (6.19) are equivalent. We
recall that two jets are equal if and only if their o�sets and slopes are equal (2.20). Thus, we
understand the equality constraints in (6.56) as the equalities of the discrete o�sets and slopes
of J 1 and J 2. We treat them asm ×n-matrices u1,u2, a1,a2, b1,b2. (Recall that ‖ · ‖ corresponds
to the Frobenius norm.) Towards an ADMM approach, we need to formulate the augmented
Lagrangian of (6.56). It is given by

Lµ,ν (J
1, J 2, Γ1, Γ2,τu ,τa ,τb ) = F (J 1, J 2, Γ1, Γ2) +

µ
2 ‖u

1 − u2‖2 + 〈τu ,u
1 − u2〉

+ ν
2 ‖a

1 − a2‖2 + 〈τa ,a
1 − a2〉 + ν

2 ‖b
1 − b2‖2 + 〈τb ,b

1 − b2〉.
(6.57)

The equality constraints in (6.56) are now part of the objective in the form of quadratic devi-
ations. The variables τu ,τa ,τb ∈ Rm×n denote the Lagrange multipliers which correspond to
the equality constraints. We note that µ,ν > 0 are parameters which determine how strong
di�erences between the split variables are penalized. In this context, we note that we use dif-
ferent coupling parameters for the pixel values u and the slopes a,b since both typically live
on di�erent scales.

Each iteration of the ADMM corresponds to minimizing the Lagrangian L w.r.t. J 1, Γ1 and
w.r.t. J 2, Γ2 followed by gradient ascents on the Lagrange multipliers τu , τa , τb . In the following,
we derive this iterative scheme. First, we complete the squares in (6.57) and obtain

Lµ,ν (J
1, J 2, Γ1,Γ2,τu ,τa ,τb ) = F (J 1, J 2, Γ1, Γ2) +

µ
2 ‖u

1 − (u2 − τu
µ )‖

2 − 1
2µ ‖τu ‖

2

+ ν
2 ‖a

1 − (a2 − τa
ν )‖2 − 1

2ν ‖τa ‖
2 + ν

2 ‖b
1 − (b2 −

τb
ν )‖

2 − 1
2ν ‖τb ‖

2.
(6.58)
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We derive the subproblem corresponding to J 1. (The derivation for J 2 is completely analogous.)
The minimization problem in J 1 is given by

argmin
J 1,Γ1

1
2 ‖u

1 − f ‖2 + γ |Γ1 | +
∑

x ∈Ωh\Γ1

β2P1 (J 1
x ) +

µ
2 ‖u

1 − (u2 − τu
µ )‖

2

+ ν
2 ‖a

1 − (a2 − τa
ν )‖2 + ν

2 ‖b
1 − (b2 −

τb
ν )‖

2.

(6.59)

The other terms in (6.58) do not depend on J 1, so we dropped them. To bring (6.59) into a
convenient form we use the fact that

N∑
i=1

xi (p − ti )
2 =

( N∑
i=1

xi
) (
p −

∑N
i=1 tixi∑N
i=1 xi

)2
+C (6.60)

holds for p, t1, . . . , tN ∈ R and x1, . . . ,xN > 0 and a constantC that does not depend on p [181].
We apply (6.60) to the terms in (6.59) which involve u1 and obtain

argmin
J 1,Γ1

{
γ |Γ1 | +

∑
x ∈Ωh\Γ1

β2P1 (J 1
x ) +

1+µ
2

u
1 −

f +µ (u2−τu /µ )
1+µ


2

+ ν
2 ‖a

1 − (a2 − τa
ν )‖2 + ν

2 ‖b
1 − (b2 −

τb
ν )‖

2
}
.

(6.61)

A �nal multiplication by 2
ν yields the desired subproblem w.r.t. J 1. As a result, we obtain the

following iterative scheme.

(
(J 1) j+1, (Γ1) j+1

)
= argmin

J 1,Γ1

2γ
νj
|Γ1 | +

1+µ j
νj


u1 −

f +µ j

(
(u2) j−τ ju /µ j

)
1+µ j



2
+

∑
x ∈Ω\Γ1

2β 2

νj
P1 (J 1

x )

+
a

1 −
(
(a2) j − (τa )

j/νj

)
2
+

b
1 −

(
(b2) j − (τb )

j/νj

)
2
,

(
(J 2) j+1, (Γ2) j+1

)
= argmin

J 2,Γ2

2γ
νj
|Γ2 | +

1+µ j
νj


u2 −

f +µ j

(
(u1) j+1+τ ju /µ j

)
1+µ j



2
+

∑
x ∈Ω\Γ2

2β 2

νj
P2 (J 2

x )

+
a

2 −
(
(a1) j+1 + (τa )

j/νj

)
2
+

b
2 −

(
(b1) j+1 + (τb )

j/νj

)
2
,

(τu )
j+1 = (τu )

j + µ j ((u
1) j+1 − (u2) j+1),

(τa )
j+1 = (τa )

j + νj ((a
1) j+1 − (a2) j+1), (6.62)

(τb )
j+1 = (τb )

j + νj ((b
1) j+1 − (b2) j+1).

We employ increasing sequences (µ j )j ∈N, (νj )j ∈N for the penalty parameters as it is common
when dealing with non-convex problems. Thereby, we allow the splitting variables to evolve
rather independently in the beginning and become closer in the course of the iterations. We
stop the iteration (6.62) when the jets J 1 and J 2 become (approximately) equal.
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(a) Decomposition of the �rst
ADMM suproblem

(b) Solving the segmented jet problem
for the data along the red arrow

(c) The boundaries in (b) yield
the horizontal edges Γ1

Figure 6.4.: (a) The �rst ADMM subproblem in (6.62) decomposes into univariate segmented jet problems
along the pixel rows. (b) The univariate segmented jet problem along the red arrow in (a) for data u,a,b
and solution u∗,a∗,b∗. The red dashed lines indicate the boundaries of the optimal partition I∗. (c) The
partition boundaries of the univariate subproblems (b) constitute the directional edges Γ1 in (6.62).

6.3.2. E�cient solution of the subproblems

In each iteration of the ADMM (6.62), we have to solve the two non-convex minimization
problems in J 1 and J 2, respectively. The crucial observation is that the second order penalty
P1 operates exclusively along the rows of an image and P2 along the columns (recall (6.17) and
(6.18)). As a consequence, the subproblems in (6.62) decompose into univariate segmented least
squares problems along the rows and columns of the image domain Ω. In Figure 6.4, we give
an illustration of the decomposition of the �rst subproblem.

These subproblems can be solved in parallel. We develop a solver based on the ideas of
the solver for univariate higher order Mumford-Shah problems of Chapter 3. In particular, we
adapt it to deal with the present problems.

We consider exemplarily the �rst subproblem of (6.62) as the second subproblem of (6.62)
works analogously. To this end, we reformulate the univariate problem in terms of partitions
instead of the edges Γ1 : for o�set data u ∈ Rn and slope data a,b ∈ Rn these problems have
the generic form given by

(J ∗,I∗) = (6.63)

argmin
J=(u,a,b )T ∈Rn,

I partition of {1, ...,n }

∑
I ∈I

{
η2‖uI − u I ‖

2
2 + ‖aI − aI ‖

2
2 + ‖bI − b I ‖

2
2 + β

′2
|I |∑
j=1

P1 (Jj )

}
+ γ ′( |I | − 1),

where P1 corresponds to the second order penalty (6.17) and γ ′,η, β ′ are nonnegative parame-
ters. A solution of (6.63) depends on the jet J as well as the partition I which is given as a set
of discrete intervals of the form I = {l , l + 1, . . . , r } (cf. Section 3.2). As in Chapter 3, we denote
a discrete interval with bounds l , r by I = l : r . The penalty term P1 involves �rst and second
order di�erences. In this context, we note that the �rst order di�erence ∇ is only well-de�ned
for vectors with length greater than 1 and the second order di�erence ∇2 for length greater
than 2, respectively. Consequently, we let ∇aI = ∇bI = 0 for |I | = 1 and ∇2uI = 0 for |I | ≤ 2.
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We explain the relation between the partition I and the directional edges Γ1 in (6.62). There
is an edge between neighboring pixels x and x + e1, that is {x ,x + e1} ∈ Γ

1, if and only if x and
x + e1 belong to two distinct segments I1, I2 ∈ I. Consequently, |I | − 1 counts the number of
edges in Γ1 along the image row; see also Figure 6.4.

We can formulate problem (6.63) in terms of the partition only by

I∗ = argmin
I partition of 1:n

∑
I ∈I

(
E I + γ ′

)
, (6.64)

where E I denotes the (optimal) jet approximation error on the segment I , that is,

E I = min
J=(v,w,z )

η2‖v − u I ‖
2
2 + ‖w − aI ‖

2
2 + ‖z − b I ‖

2
2 + β

′2
|I |∑
j=1

P (Jj ). (6.65)

After an optimal partition I∗ in (6.64) was found, the optimal jet J ∗ is recovered by solving the
least squares objective (6.65) w.r.t. u,a,b for each segment I ∈ I separately.

The partitioning problem (6.64) can be solved e�ciently by the algorithm developed in Chap-
ter 3. To see this, we denote the functional in (6.64) by B, i.e.,

B (I) =
∑
I ∈I

(
E I + γ ′

)
. (6.66)

Accordingly, we denote the minimal value on the reduced domain 1 : r by

B∗r = min
I partition on 1:r

B (I). (6.67)

The minimal value B∗r on the domain 1 : r satis�es the Bellman equation

B∗r = min
l=1, ...,r

{
El :r + γ ′ + B∗l−1

}
, (6.68)

where we set B∗0 = −γ
′. Thus, by the dynamic programming principle we can compute

B∗1,B
∗
2, . . . until we reach B∗n . We keep track of an optimal partition I∗ by storing at step r

the minimizing argument l ′ of (6.68) as the value Lr , so that L encodes the boundaries of an
optimal partition.

In contrast to the problems considered in Chapter 3, the problems here are given in terms
of discrete jets (6.63) instead of discrete functional values only. Nevertheless, the error update
scheme of Algorithm 3.1 can be applied. To this end, we reformulate (6.65) as the least squares
problem

El :r = min
v,w,z

‖Aq
(
v1,w1, z1, . . . ,vq ,wq , zq

)T
− дlr ‖2, (6.69)

where q = r − l + 1 denotes the length of the interval I = l : r and the system matrix Aq ∈

R(7q−5)×(3q ) and the vector дl :r ∈ R7q−5 are given by

Aq =

(
Eq

β ′Dq

)
, дl :r =

(
ηul ,al ,bl , ηul+1,al+1,bl+1, . . . , ηur ,ar ,br , 0, . . . , 0

)T
. (6.70)
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Here, the diagonal matrix Eq and the band matrix Dq in Aq are given by

Eq =

*.............
,

η
1

1
. . .

η
1

1

+/////////////
-

∈ R3q×3q and Dq =

*...............
,

dT1
dT2
dT3
dT4

. . .

dT1
dT2
dT3

+///////////////
-

∈ R4q−5×3q

for the band vectors d1, . . . ,d4. The band vector d1 represents the softened jet-consistency
constraint via

d1 =
√
α

(
1 ρ 0 −1 (1 − ρ) 0

)T
, (6.71)

the band vector d2 the weighted forward di�erence in the slope variable a by

d2 =
√

1 − λ
(
0 −1 0 0 1 0

)T
, (6.72)

the band vector d3 the forward di�erence in the slope variable b,

d3 =
(
0 0 −1 0 0 1

)T
, (6.73)

and the band vector d4 the weighted second-order central di�erence in the pixel values u by

d4 =
√
λ

(
1 0 0 −2 0 0 1

)T
. (6.74)

Thus, the system matrixAq has a (sparse) band structure such that we can employ the error up-
date strategy developed in Chapter 3 and in turn Algorithm 3.1 (cf. Remark 3.11). We recall that
Algorithm 3.1 provides a theoretical worst case quadratic runtime guarantee for solving (6.64)
which scales linearly in practice when using the pruning strategies discussed in Chapter 3.

We recall that we discussed the possibility of using a pair of evaluation parameters ρ1, ρ2
in Section 6.2.2. There, we pointed out that such a choice is algorithmically more expensive.
Indeed, in this situation the band matrix Dq has two band vectors of the form of d1 instead of
one. This would increase the computational costs as more matrix entries need to be eliminated
for each error update.

6.3.3. Extension to more isotropic discretizations

We extend the algorithmic approach of Section 6.3.1 to the more isotropic discretization (6.34)
of the second order Mumford-Shah model. To this end, we split the target jet J of the dis-
cretized problem (6.75) into four variables J 1, . . . , J 4. Analogously to Section 6.3.1, we obtain
the constrained problem

argmin
J 1, ..., J 4,Γ

{
F
(
{J s }s , Γ

)
=

4∑
s=1

{
1
4 ‖u

s − f ‖2 + β2
∑

x ∈Ωh\Γs

1
2P

s (J sx ) + ωsγ |Γ
s |

}}
subject to J sx = J

t
x for all x ∈ Ωh , and 1 ≤ s < t ≤ 4. (6.75)
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As in Section 6.3.1, we apply the ADMM to (6.75). To this end, we formulate the augmented
Lagrangian of (6.75) which is given by

Lµ,ν ({J
s }s , {Γ

s }s , {τ
s,t
u }, {τ

s,t
a }, {τ

s,t
b }) = F

(
{J s }s , {Γ

s }s
)
+

4∑
s=1

4∑
t=s+1

(
µ
2 ‖u

s − (ut − τ s,tu
µ )‖2

− 1
2µ ‖τ

s,t
u ‖

2 + ν
2 ‖a

s − (at − τ s,ta
ν )‖2 − 1

2ν ‖τ
s,t
a ‖

2 + ν
2 ‖b

s − (bt −
τ s,tb
ν )‖2 − 1

2ν ‖τ
s,t
b ‖

2
)
.

(6.76)

The symbols τ s,tu ,τ
s,t
a ,τ

s,t
b denote the Lagrange multipliers which correspond to the equal-

ity constraints J s = J t . After some algebraic manipulations (which are analogous to the
anisotropic case above), we obtain the ADMM iterations given by(

(J s ) j+1, (Γs ) j+1
)
= argmin

J s ,Γs

2ωsγ
(S−1)νj |Γ

s | +
∑

x ∈Ω\Γs

β 2

(S−1)νj P
s (J sx ) +

2+µ jS (S−1)
νjS (S−1)

u
s − (us ) j

2

+
a

s − (as ) j
2
+

b
s − (b

s
) j

2
, for all s = 1, . . . , S = 4,

(τ s,tu ) j+1 = (τ s,tu ) j + µ j ((u
s ) j+1 − (ut ) j+1),

(τ s,ta ) j+1 = (τ s,ta ) j + νj ((a
s ) j+1 − (at ) j+1),

(τ s,tb ) j+1 = (τ s,tb ) j + νj ((b
s ) j+1 − (bt ) j+1), for all 1 ≤ s < t ≤ S = 4,

(6.77)

where we use the following abbreviations

(us ) j =

2f + µ jS
(

S∑
t=s+1

(
(ut ) j − (τ s,tu ) j

µ j

)
+

s−1∑
r=1

(
(ur ) j+1 +

(τ r ,su ) j+1

µ j

))
2 + µ jS (S − 1)

, (6.78)

(as ) j = 1
S−1

S∑
t=s+1

(
(at ) j − (τ s,ta ) j

νj

)
+ 1

S−1

s−1∑
r=1

(
(ar ) j+1 +

(τ r ,sa ) j

νj

)
, (6.79)

(b
s
) j = 1

S−1

S∑
t=s+1

(
(bt ) j −

(τ s,tb ) j

νj

)
+ 1

S−1

s−1∑
r=1

(
(br ) j+1 +

(τ r ,sb ) j

νj

)
. (6.80)

The important observation is that each penalty Ps operates exclusively on the paths induced
by the direction es (cf. Figure 4.2 for an illustration of these paths). Hence, similarly to the
anisotropic four-neighborhood discretization (6.62) the subproblems w.r.t. (J s , Γs ) decompose
into univariate segmented least squares problems along the lines induced by direction es . We
solve these subproblems as described in Section 6.3.2.

6.3.4. Multi-channel images

We extend the proposed approach to multi-channel images. First, we see that applying the
second order Mumford-Shah model (6.2) to multi-channel images f : Ω → RL is not equivalent
to applying the single-channel model for each channel separately. Typically, such a channel-
wise approach leads to undesired artifacts as the edges are not enforced to be aligned across
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(a) Noisy data (b) Channel-wise (c) Multi-channel

(d) Clean image (e) Edge set of (b) (f) Edge set of (c)

Figure 6.5.: Comparison of channel-wise and multi-channel second order Mumford-Shah models. The
channel-wise approach does not enforce the edges to be aligned across the di�erent channels. Hence,
the edge set is not always consistent with the produced image (see, e.g., the bottom right petal in (b,c)).
The multi-channel approach aligns the edges across the color channels and can preserve more details
(see, e.g., the upper part of the blossom in (e,f)).

the channels. We refer to our experiments for a visual impression (see Figure 6.5, Section 6.4),
where we compare the channel-wise approach with the one proposed next.

Jet formulation for multi-channel images. As a �rst step, we generalize (2.17) and de�ne
the Taylor jet of a vector-valued function u : Ω → RL by

Ju (x ) =
(
Ju1 (x ), . . . , JuL (x )

)T
=

(
J 1
x , . . . , J

L
x

)T
, (6.81)

i.e., it consists of the Taylor expansions of the component functions ul : Ω → R of u. The
multi-channel version of the jet formulation (6.31) is now given by

argmin
J ,Γ

L∑
l=1

( ∫
Ω
|ul (x ) − fl (x ) |

2 dx + β2
∫
Ω\Γ
R (J lx ) dx

)
+ γ length(Γ)

subject to Ca (J
l
x ) = 0 and Cb (J lx ) = 0 for all x ∈ Ω \ Γ, l = 1, . . . ,L,

(6.82)

where the minimum is taken over multi-channel �rst order jets.

Discrete multi-channel problem. The discretization of the edge penalty (in the sense of
Section 6.2.2) is the same as in the single-channel case as the domain of the image is unchanged.
We apply the discrete second order penalty and the relaxed jet constraints for each channel
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separately and take the sum. Thus, the multi-channel counterpart of (6.17) is given by

P1
λ,α,ρ (Jx ) =

L∑
j=1

P1
λ,α,ρ (J

j
x ) (6.83)

and accordingly for P2, P3, P4. In analogy to the single-channel case (6.75), we introduce the
jets J 1, . . . , J 4 as splitting variables. and obtain the following discrete constrained problem

argmin
J 1, ..., J 4,Γ

{
F
(
{J s }s , Γ

)
=

4∑
s=1

{ L∑
l=1

1
4 ‖u

s
l − fl ‖

2 + β2
∑

x ∈Ωh\Γs

1
2P

s (J sx ) + ωsγ |Γ
s |

}}
subject to (J lx )

s = (J lx )
t for all x ∈ Ωh , and 1 ≤ s < t ≤ 4, l = 1, . . . ,L.

(6.84)

The Lagrangian of (6.84) is now understood w.r.t. the Lagrange multipliers τ s,tu ,τ
s,t
a ,τ

s,t
b ∈

Rm×n×L and the squared Frobenius norm ‖u‖2 =
∑

i, j,l u
2
i, j,l . The derivation of the ADMM

scheme is analogous to the single-channel case.

Univariate subproblems formulti-channel data. We can apply our solver for the univari-
ate subproblems also to multi-channel data. To this end, we recall the multi-channel jet-based
second order penalty (6.83) and observe that the jet approximation errors E I in Section 6.3.2
are now given by the channel-wise sum

E I =

L∑
l=1
E Il . (6.85)

Therefore, we can extend the error update strategy to the multi-channel case by channel-wise
updating the approximation errors. We note all channels share the same system matrix Aq

which was de�ned in (6.70). Hence, the recurrence coe�cients for the error update scheme
have to be computed only once instead of L times. As a direct consequence of (6.85) and The-
orem 3.10 we obtain:

Corollary 6.16. The multi-channel version of the proposed scheme produces an exact solution of
the subproblems in (6.63) with O (n2L) time.

In view of the linear complexity in the number of channels, the proposed algorithm can be
e�ectively applied to vector-valued images with a high-dimensional codomain.

6.4. Experimental results

In this section, we apply the proposed approach to the second order Mumford-Shah model to
numerical data. First, we provide the necessary implementation details. Then, we discuss the
in�uence of the parameters α , λ which arise in the proposed discretization with Taylor jets. In
particular, we single out a particular set of parameters which we use in the following. After-
wards, we illustrate the bene�ts of using the eight-neighborhood discretization and of using
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the multi-channel model. Then, we compare the proposed jet-based method to a basic splitting
approach which uses second order directional di�erences only. The central topic of this section
is a qualitative and quantitative comparison of our algorithmic approach with the methods for
the second order Mumford-Shah problem existing in the literature. These approaches are the
graduated non-convexity approach of Blake and Zisserman [21] and the Ambrosio-Tortorelli
type approach of Zanetti et al. [216, 215]. Finally, we show the potential of the proposed method
in connection with edge detection.

Implementation details. We employ the algorithmic scheme (6.77) for the near-isotropic
discretization (6.75) if not stated otherwise. The splitting jets are initialized by us = f , as =
0, bs = 0 and the multipliers τ s,tu ,τ

s,t
a ,τ

s,t
b are all initialized by zeros. The initial coupling

parameters are chosen as µ0 = 10−3, ν0 = 10−2. (We recall that the pixel values and the slopes
typically live on di�erent scales.) After each iteration, we increase the coupling parameters
µ,ν by the factor 1.3 until the splitting jets become (approximately) equal. More precisely,
we stopped the iteration when the relative di�erence between consecutive splitting jets was
smaller than 10−5, i.e., when ‖ (qs ) j − (qs+1) j ‖/(‖ (qs ) j ‖ + ‖ (qs+1) j ‖), for all q ∈ {u,a,b} became
smaller than 10−5 for each 1 ≤ s < 4. We point out that we always observed the numerical
convergence of the proposed method.

Investigation of discretization parameters. We experimentally study the in�uence of the
parameters α ,α ′ and λ which were introduced in connection with our jet-based discretization
of the second order Mumford-Shah functional in Section 6.2.2; see (6.17), (6.18), (6.32), and
(6.33). We brie�y recall the meaning of these parameters. The parameter λ ∈ [0, 1] balances
the second order central di�erences of the pixel values u and the forward di�erences of the
slope variables a and b, respectively; the positive parameters α ,α ′ couple the slope variables a
and b (which represent the derivative part in the Taylor jet of u) and the directional di�erences
of the image u. Motivated by the discrete near-isotropic second order spline-related Mumford-
Shah jet model in Section 6.2.2 (cf. (6.40), (6.41)) we let

α ′ = 1
8α . (6.86)

Figure 6.6 shows the results of the proposed near-isotropic jet formulation (6.19) for di�erent
values of α and λ.We observe that, for large values of α , the results become rather insensitive to
the particular choice ofα . Further, for su�ciently largeα the results are also quite insensitive to
the choice of λ. (This is as expected and con�rms the theoretical considerations of Section 6.2.2.)
The experiments in Figure 6.6 suggest that choosing α in the order of 10 is su�ciently large in
practice and, then, the results are very similar. This motivates to stick to a particular choice of
these parameters in the following experiments of this chapter. Concretely, we chose

α = 12, λ = 0. (6.87)

We observe that this choice is also appealing from a theoretical viewpoint since this choice
realizes the spline-based jet distance dspline of Example 6.11 and Section 6.2.3.
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(a) Clean image (b) Data

λ = 0

α
=

1

λ = 0.5 λ = 1

α
=

3
α
=

12
α
=

35

Figure 6.6.: Di�erent choices of jet-related parameters (6.17). We compare the results for di�erent choices
of the jet-related parameters λ,α . Generally, we observe that larger choices of the jet-related parameter
α lead to more detected edges (see, e.g., the rightmost column of spheres and its corresponding edges in
the detail view). Choosing a higher weight λ of the second order di�erences yield more edges as well.
For su�ciently large values of α , say α in the order of 10, these trends saturate. (Note that the point
evaluation parameter has been �xed to ρ = 1

2 for all experiments in this �gure.)
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Bene�ts of increasing the isotropy and of coupling the channels. In Section 6.2.2, we
have extended the proposed approach to the (near-isotropic) eight-neighborhood discretiza-
tion to increase the isotropy. In Figure 6.3, we show the bene�t of this extension by comparing
the results of the proposed approach using the eight-neighborhood discretization with using
the four-neighborhood discretization. We observe, that the eight-neighborhood discretization
provides smoother boundaries than the four-neighborhood discretization which exhibits “ge-
ometric staircasing e�ects”.

In Section 6.3.4, we have extended the proposed approach to deal with multi-channel images,
i.e., with vector-valued data. We show the bene�t of this extension by comparing it with the
channel-wise application of the single-channel approach in Figure 6.5. We observe that in the
channel-wise approach the edge set is not always consistent with the produced image whereas,
in the multi-channel approach, the produced edges are aligned across the color channels and
more details are preserved.

Bene�ts of the jet-based approach compared with a basic splitting approach. We mo-
tivate the proposed jet-based approach by comparing it with a basic splitting approach which
uses no jet formulation but second order directional di�erences only. To this end, we combined
the pure use of second order directional di�erences with an ADMM splitting approach which
was proposed for �rst order Mumford-Shah functionals in [101]. The basic approach uses the
following straightforward discretization of the second order Mumford-Shah model

argmin
u,Γ

‖u − f ‖2 +
4∑

s=1

{
β2

∑
x ∈Ωh\Γs

1
‖es ‖2
|∇2

su (x ) |
2 + ωs γ |Γ

s |

}
. (6.88)

We employ a discrete eight-neighborhood to measure the edge set (as de�ned in Section 6.2.2),
and, “for the smoothing part”, second order di�erences in coordinate and diagonal directions.
We may then proceed similar as in [101] to algorithmically approach (6.88). In particular, we
may follow the derivation of the ADMM splitting scheme there to arrive at [101, Eq. (16)]. In
contrast to the univariate �rst order Mumford-Shah problems appearing in [101, Eq. (16)], we
here have to solve the corresponding second order univariate Mumford-Shah problems. We
use Algorithm 3.1 to solve them. We call the just presented approach the basic approach.

In Figure 6.7, we see the practical bene�t of the proposed jet-based approach compared with
the basic approach: the edges produced by the basic approach are prone to clutter, while the
edges produced by the proposed jet-based approach are smoother and show less clutter.

Remark 6.17. It is necessary to employ the diagonal directions in (6.88): the discrete model
which uses horizontal and vertical second order di�erences only, i.e.,

argmin
u,Γ

‖u − f ‖2 +
∑

x ∈Ωh\Γ1

β2 |∇2
1u (x ) |

2 +
∑

x ∈Ωh\Γ2

β2 |∇2
2u (x ) |

2 + γ |Γ1 | + γ |Γ2 |, (6.89)

would not yield a reasonable anisotropic discrete variant of the second order Mumford-Shah
model (6.2). Indeed, the discrete smoothing term in (6.89) |∇2

1u (x ) |
2+ |∇2

2u (x ) |
2 does not re�ect

the mixed derivatives part ∂1∂2u (x ). However, they are present in (6.2) via the Frobenius norm
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(a) Clean image [4] (b) Noisy data, σ = 0.03

(c) Second order di�erences discretization (d) Proposed jet-based discretization

Figure 6.7.: Comparison of the basic second order di�erences approach and the proposed jet-based ap-
proach. The edge set produced by the basic approach based on second order di�erences exhibits clutter
(see, e.g., the left cross in the detail view and the roof). The proposed jet-based approach produces a
smoother and more coherent edge set.

of the Hessian of u . This lack is rather severe as the respective kernels di�er signi�cantly. (We
note that (6.88) uses second order directional di�erences only as well. However, the mixed
derivatives part in (6.2) is re�ected here which can be seen by the bilinearity of the second
derivative.)

6.4.1. Comparison with the graduated non-convexity approach and the
Ambrosio-Tortorelli approach

We compare the proposed approach to the existing approaches to second order Mumford-Shah
models. These approaches are the graduated non-convexity (GNC) approach proposed by Blake
and Zisserman [21], as well as the Ambrosio-Tortorelli type approach by Zanetti et al. [2, 216,
215]. We perform a qualitative and a quantitative evaluation.
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The graduated non-convexity approach. In [21], Blake and Zisserman proposed the so-
called weak plate model. It models both jumps denoted by Γs (called steps) and kinks denoted
by Γc in the image (called creases). For the squared Frobenius norm of the Hessian the model
energy is given by∫

Ω
|u (x ) − f (x ) |2 dx + β2

∫
Ω\(Γc∪Γs )

‖∇2u (x )‖2 dx + γs |Γs | + γc |Γc |, (6.90)

where γs ≥ 0 and γc ≥ 0 denote the jump and kink penalty, respectively, while β denotes the
smoothing penalty. The discrete counterpart is formulated in terms of a potential and is given
by

F (u) = ‖u − f ‖2 +
∑
x ∈Ω′

дγ ,β

(√
Vx

)
. (6.91)

Here, the truncated quadratic potentialдγ ,β is given byдγ ,β (t ) = min
{
β2t2,γ

}
. and for x ∈ Ω′,

the quadratic variation of u in x is given by

Vx = |∇
2
1u (x ) |

2 + |∇2
2u (x ) |

2 + 2|∇1∇2u (x ) |
2, (6.92)

where the last summand ∇1∇2u (x ) = u (x + e2) + u (x − e1) − u (x ) − u (x + e1 + e2) denotes a
discretization of the mixed partial derivative. (Recall that ∇2

1 and ∇2
2 denote the second order

�nite di�erences in horizontal and vertical direction, respectively.) Blake and Zisserman in-
terpret the points with дγ ,β (

√
Vx ) = γ as edge set and distinguish between creases and jumps

where the latter appear as contours which are two elements wide. (In other words, a jump
amounts to two neighboring kinks perpendicular to the edge.)

Blake and Zisserman proposed a graduated non-convexity approach (GNC) to (6.91). The
central idea is to solve a sequence of minimization problems which are easier to handle than
(6.91). Initially, the non-convex energy F is approximated by a convex function F ∗. Then a
whole sequence of energies F (p ) is constructed which depends on the parameter 1 ≥ p ≥ 0.
In particular, F (1) = F ∗, F (0) = F and F (p ) changes in a continuous way from F (1) to F (0) . In
other words, a kind of homotopy is constructed. One solves the corresponding minimization
problems sequentially for decreasing values ofp, 1 ≥ p > 0 and the previous result provides the
starting point for the nextp. For our implementation, we follow [21] and use the approximating
energies F (p ) = ‖u − f ‖2 +

∑
x ∈Ω′ д

(p )
γ ,β (
√
Vx ), where the approximation of дγ ,β is given by

д
(p )
γ ,β (t ) =




β2t2 if |t | < γ/(β2r ),

γ − c ( |t | − r )2/2 if γ/(β2r ) ≤ |t | < r ,

γ if |t | > r .

Here, r 2 = γ (2/c + 1/β2) and c = 1/(32p). For each parameter p in the parameter sequence
p ∈ { 1

2j : j ∈ N0,
1
2j >

1
β } ∪ {

1
β } we use gradient descend to minimize F (p ) . The result for F (p ) is

used as input for the next approximating functional F (p/2) . For the gradient descent, we employ
an Armijo-type line search and stop when the relative change of energy becomes smaller than
10−3. For p = 1 we initialize u by the input image f .
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(a) Clean image (b) JPEG data (c) GNC (d) Ambrosio-
Tortorelli

(e) Proposed
algorithm

Figure 6.8.: Qualitative comparison of approaches to the second order Mumford-Shah model for JPEG
compressed data. After suppressing the JPEG block artifacts, the result of the graduated non convexity
approach (GNC) and the result of the Ambrosio-Tortorelli approach do not preserve all of the sharp
edges of the original image and they produce relatively thick edges or “doubled” edges (see, e.g., the
detail view). The proposed method preserves more sharp edges of the original image and the edges are
better localized (see, e.g., the detail view).

The Ambrosio-Tortorelli approach. In [216, 215], Zanetti et al. use a sequence of ellip-
tic functionals to approximate the second order Mumford-Shah model. As the approximation
resembles the approximation of the �rst order Mumford-Shah model proposed by Ambrosio
and Tortorelli [3], we refer to it as the Ambrosio-Tortorelli (type) approach. The Ambrosio-
Tortorelli type approach corresponds to minimizing one of these approximating functionals
which are given by

F (u, z) = µ

∫
Ω
|u (x ) − f (x ) |2dx +

∫
Ω
z2‖∇2u‖2dx + αAT ε (z). (6.93)
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Here, the edge indicator function z replaces the edge set Γ in the second order Mumford-Shah
model (6.2) and the length of the edge set in (6.2) is approximated by the Ambrosio-Tortorelli
component

AT ε (z) =

∫
Ω
ε ‖∇z‖2 +

1
4ε

(z − 1)2dx , (6.94)

where ε > 0 denotes the edge smoothing parameter (which is chosen empirically in practice).
An edge at point x is indicated by z (x ) ≈ 0.

We use the algorithmic approach of [215]. There, the minimization of the discrete objective
(by means of forward and central di�erences) is approached with a vector-valued block coor-
dinate descent as the discrete objective is quadratic in each variable when �xing the other. In
each iteration, descent directions for u and z are found by using iterative preconditioned con-
jugate gradient (pcg). These descent directions are applied to u and z with a constant step-size
which exploits that the underlying quadratic problems are symmetric and positive de�nite.
The iterations are stopped when the relative change of the energy becomes lower than 10−3

and the maximum number of iterations is 65. The variable u is initialized by the data image f ,
the edge indicator z by ones and the edge smoothing parameter is set to ε = 0.01 as in [215].

Qualitative comparison. We investigate the qualitative e�ects of the di�erent approaches
to the second order Mumford-Shah model. We �rst consider a clip art image which was cor-
rupted by a lossy JPEG compression/decompression. A typical e�ect of JPEG compression are
the creation of block artifacts and Gibbs e�ects near edges; see Figure 6.8. The original image
has only constant regions and regions with a color gradient. Thus, the second order Mumford-
Shah model is a reasonable model for restoring the image. (Note that there is a series of other
variational models for removing JPEG artifacts, for example [208, 29, 56, 154, 30, 31, 158].)
The purpose of the present experiment is to visualize the e�ects of the di�erent approaches to
the second order Mumford-Shah model (rather than proposing a new model for JPEG artifact
removal). We chose the respective model parameters such that the compression artifacts are
removed, while as many edges as possible are preserved. We observe that the proposed method
preserves more edges of the original image than the GNC approach and the Ambrosio-Tortorelli
approach (see, e.g., the detail view or the house roofs in Figure 6.8).

Next we consider a mosaic image which has –literally by construction– a block pattern in
terms of the �ne-grained structure given by the single mosaic stones; see Figure 6.9. Simi-
larly to the previous experiment, we want to smooth out these block patterns, while preserv-
ing the edges of the depicted scene. In this experiment –for better comparability– we use a
�xed smoothing parameter for all methods and then adjust the edge penalty. The smoothing
penalty µ of the Ambrosio-Tortorelli type approach and the smoothing parameter β of the GNC
approach and of the proposed approach are all set to one. The remaining respective model pa-
rameters are chosen to smooth out the mosaic structure in the background. In Figure 6.9, we
observe that the edges produced by the GNC approach frequently have breaks and they are
often thicker than the proposed edge set. We recall that the Ambrosio-Tortorelli approach pro-
duces an edge indicator function z rather than a binary edge map. There are points where the
edge indicator function satis�es z (x ) < 1 that have no counterpart in the form of an abrupt
change in the produced image (e.g., the left side of the chicken and the front of the basket).
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(a) Input (b) GNC (c) Edges of (b) (d) Details of (b) and (c)

(e) Ambrosio-Tortorelli (f) Edges of (e) (g) Details of (e) and (f)

(h) Proposed algorithm (i) Edges of (h) (j) Details of (h) and (i)

Figure 6.9.: Qualitative comparison of approaches to the second order Mumford-Shah model for the
Roman food mosaic image. The edge set of the GNC approach frequently shows “dashed” outlines (see,
e.g., the �shes and the basket) and is often thicker than the proposed edge set (see, e.g., the horizontal
edge above the chicken or the eye of the brown �sh). The edge indicator function of the Ambrosio-
Tortorelli type approach yields grayish contours that have no counterpart in the sense of an abrupt
change in the produced image (e.g., the left side of the chicken and the front of the basket). Further,
values that indicate an edge are often spread across several pixels (e.g., the cords in the upper left corner).
The edge set produced by the proposed method is better localized and corresponds to the locations of
abrupt changes in the produced image.
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γ β GNC AT Prop.

0.025 0.5 1460.1 1228.6 1064.2
1 2732.4 1944.2 1474.0
2 5409.6 2837.3 1783.0
3 8729.8 3519.0 1918.2
5 17148.0 4787.3 2049.3
8 32323.7 6874.9 2141.1

0.035 0.5 1493.6 1312.9 1138.2
1 2842.9 2136.9 1624.0
2 5815.9 3176.4 2014.3
3 9536.4 3955.2 2193.2
5 17863.2 5288.9 2371.2
8 33581.0 7280.7 2498.8

0.05 0.5 1500.0 1376.5 1200.4
1 2878.4 2301.4 1760.9
2 5877.3 3518.4 2252.1
3 9630.9 4433.9 2486.1
5 19677.9 5959.5 2728.3
8 34300.2 7950.1 2904.8

0.1 0.5 1480.5 1390.9 1262.2
1 2767.1 2377.8 1928.3
2 5790.6 3858.3 2595.0
3 10317.9 5111.4 2953.7
5 21490.8 7229.5 3354.2
8 38044.1 9857.4 3672.6

Table 6.1.: Mean values of the proxy energy (6.95) on the IVC dataset [132]. We report the results for
the edge penalties γ and the smoothing penalties β given in the �rst and second column, respectively.
The proposed method attains lower mean energies than the GNC method and the AT method.

Furthermore, the edge indicator function is often spread across several pixels (e.g. the cords
in the upper left corner). The edge set of the proposed method is typically sharper localized
than those of the other methods (that is, the width of the edges is smaller, typically only one
or two pixels). At the same time, the edge set is binary by construction. Consequently, no
binarization step is necessary as in the Ambrosio-Tortorelli approach, and the edge set su�ers
less from broken edges than the GNC approach.

Quantitative comparison. We start the quantitative comparison with a comparison in terms
of model energy. Regarding the energy used for the comparison, we observe the following: we
can not use the discrete energy (6.19) since its evaluation requires a discrete jet �eld and the
methods of comparison (the GNC approach and the Ambrosio-Tortorelli approach) do not pro-
vide jet �elds. Employing the weak plate energy (6.91) is not appropriate since it uses di�erent
penalties for the kinks and jumps which is not re�ected in the considered continuous model
(6.2). The Ambrosio-Tortorelli approximation yields a whole family of elliptic energies depend-
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(a) Input

(b) GNC, E = 3989.8 (c) AT, E = 2058.3 (d) Prop., E = 1497.8

Figure 6.10.: Results and energies for the “avion” image from the IVC dataset [132] with γ = 0.05 and
β = 2. The detail images reveal that GNC and AT tend to produce duplicate edges near object boundaries
(see, e.g., the right boundary of the rear wing). The proposed approach (Prop.) yields sharp edges and
achieves the lowest energy value. The mean energies on the IVC dataset for additional values of γ , β
are reported in Table 6.1.

ing on the parameter ε in the Ambrosio-Tortorelli component of the energy (6.94) and there
is no reasonable means to distinguish one of them with respect to which one should compare.
A reasonable discrete (proxy) energy for which all algorithms provide the necessary input is
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given by

E (u, Γ) =‖u − f ‖2 + β2C (Hu, Γ) + γ `(Γ). (6.95)

Here, `(Γ) = |Γ1 | + |Γ2 | measures the length of the horizontal and vertical jump sets. We
measure the edge length in this anisotropic way here due to simplicity and because we can
provide the necessary information for all methods of comparison. (In connection with this we
point out that the Ambrosio-Tortorelli approach actually yields an edge indicator function. We
derive an edge set from it as explained below. To keep this derivation transparent and simple is
a particular reason to consider the edge penalty `(Γ) above.) For the smoothing termC (Hu, Γ),
we use the sum of the squared Frobenius norms of the discrete Hessian Hu and exclude those
entries ofHu for which the stencils of the underlying �nite di�erences inu meet the edge set Γ.
(Here,Hu (x ) is de�ned in terms of the second order di�erences in coordinate directions and the
mixed second order di�erences given by ∇2∇1u (x ) = u (x+e1+e2)−u (x+e2)−u (x+e1)+u (x ).)

We note that (6.95) yields a discretization of the second order Mumford-Shah model in its
formulation (6.2) (with the squared Frobenius norm of the Hessian discretized in terms of �nite
di�erences of u only). In view of this, the energy (6.95) and the proposed jet-based energy
(6.19) are related as two discretizations of the two equivalent formulations of the second order
Mumford-Shah model (6.2) and (6.15). However, the energy (6.95) does not require a jet to be
evaluated. Its evaluation only requires a piecewise smoothed image u and a corresponding
discrete edge set Γ = Γ1 ∪ Γ2 as arguments.

For the comparison we identify the parametersα , µ of the Ambrosio-Tortorelli type approach
(6.93) with the parameters of (6.95). The smoothing parameter µ in the Ambrosio-Tortorelli for-
mulation directly corresponds to 1

β 2 in (6.95). Therefore, we set µ = 1
β 2 . For the edge penalty,

we let α = γ/(2εβ2 + 1
2ε β

2) which is motivated as follows: we consider a binary image with a
single vertical edge. For a given edge parameter γ , the corresponding edge penalty should be
γ times the height of the image. We require that the Ambrosio-Tortorelli component (which
accounts for the edge part) attains the same value. To evaluate the Ambrosio-Tortorelli func-
tional we need an edge indicator function z. We make the idealized assumption that the edge
indicator function is binary. Then, for su�ciently large β , the edge indicator function equals
zero in a two pixel wide tube along the edge and is one elsewhere. Further, for su�ciently
large β , the only nonzero contribution to the Ambrosio-Tortorelli functional value is given by
the Ambrosio-Tortorelli component. Thus, the total function value is given by 2αβ2 (ε + 1

4ε )
times the height of the image. Setting this term equal to γ times the height of the image yields
α = γ/(2εβ2 + 1

2ε β
2).

In order to evaluate the proxy energy (6.95) for the output of the Ambrosio-Tortorelli ap-
proach, we need to derive an edge set Γ from the edge indicator function z. To this end, we
employ the following procedure. We �rst threshold the edge indicator function by z ≤ 1

2 .

Among the remaining candidates, we then choose the ones that realize the smallest row-wise
and column-wise univariate energy given by

β2 |∇2
1u (x j, :) |

2 + β2 |∇2∇1u (x j, :) |
2 + γ |Γ1

j, : | and β2 |∇2
2u (x:,i ) |

2 + β2 |∇2∇1u (x:,i ) |
2 + γ |Γ2

:,i |,

respectively. (Please note that the �nite di�erences are not taken across Γ1 and Γ2, respectively.)
We point out that, pure thresholding often produces “thicker” edges than this procedure. Typ-
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ically, this would result in higher functional values. For the GNC method, the candidates for
the edges are those pixels x for which the corresponding quadratic potential in (6.91) satis�es
дγ ,β (Vx ) = γ . The edge thinning is done as for the Ambrosio-Tortorelli approach.

To compare the energy values of the three methods, we use the IVC dataset [132] which
consists of 10 natural color images of size 512 × 512. Each image is slightly corrupted by
Gaussian noise with standard deviation σ = 0.02. First, we discuss the choice of the parameters
γ and β in (6.95). If γ → 0, the results will (approximately) reproduce the data f by introducing
edges for nearly all pixels which is typically not desired. We consider a �xed (and not too small)
γ . If the parameter β is too small relative toγ the produced results only have a few edges and the
results correspond (approximately) to Tikhonov regularized solutions. (For �xed γ , and β → 0
we indeed obtain the Tikhonov solution which can be con�rmed analytically.) On the other
hand, for parameters β which are too large relative to γ , the solutions become approximately
piecewise a�ne-linear. (In the limit β → ∞, the solutions are indeed piecewise a�ne-linear.
We develop an algorithm for that problem, i.e., the a�ne-linear Potts model, in Chapter 7.)
Further, for larger values of β there are some issues with the methods of comparison. The
computation of descent directions in the Ambrosio-Tortorelli scheme for u,z becomes di�cult
since the underlying linear systems become ill-conditioned for large β and moderate γ . The
practical consequences are too many edges in the produced results. For the GNC approach, the
initial convex relaxation is less tight for larger values of β ; see [21]. We observe that the results
of the GNC method are not su�ciently smoothed and also exhibit too many edges for larger
values of β . Consequently, we choose the range of γ and β such that we obtain meaningful
results for the IVC dataset. In particular, γ is not too small to reproduce the data, β is in an
intermediate range relative to γ , and β is small enough such that the methods of comparison
still produce reasonable results.

In Table 6.1, we report the mean energies of each method for the parameters

γ ∈ {0.025, 0.035, 0.05, 0.1} and β ∈ {0.5, 1, 2, 3, 5, 8}.

(See Figure 6.10 for example results.) The proposed method yields lower mean energies than
the other methods which illustrates the e�ectiveness of the proposed algorithmic approach
(6.62). In particular, for larger smoothing parameters, the energies of the proposed method are
notably lower. Although a su�ciently large choice of β for approximating the piecewise a�ne-
linear case (β ≈ 500) is about a magnitude larger than β = 8, the GNC and the AT approach
become already problematic: the approaches produce too many edges (“clutter”). Further, the
GNC results are not su�ciently smooth within segments. This is re�ected by the large energy
values attained by AT and GNC for β ≥ 3 reported in Table 6.1. The proposed method remains
competitive also for large choices of β .

We next give a quantitative comparison in terms of the denoising performance. To this
end, we consider the CSIQ image dataset [130] which consists of 30 natural color images of
size 512 × 512. We corrupt each image by additive Gaussian noise with standard deviation
σ = 0.1. The model parameters were chosen to provide the best MSSIM values (cf. Sec-
tion 2.4 for details concerning the MSSIM). In particular, for the GNC approach, we chose
the best parameters from γ ∈ {0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25} and β ∈ {0.5, 1, 2, 5, 10}.
For the Ambrosio-Tortorelli type approach (6.93), we let µ ∈ {10k , 5 · 10k : k = −3, . . . , 0}
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MSSIM
Image Noisy

image
GNC
result

AT
result

Prop.
result

1600 0.695 0.876 0.865 0.877
aerial-city 0.493 0.805 0.800 0.812
boston 0.465 0.751 0.745 0.756
bridge 0.523 0.830 0.821 0.835
butter-�ower 0.372 0.654 0.658 0.666
cactus 0.753 0.891 0.894 0.897
child-swimming 0.648 0.839 0.826 0.841
couple 0.700 0.913 0.913 0.915
elk 0.612 0.869 0.866 0.869
family 0.482 0.732 0.732 0.740
�sher 0.627 0.935 0.936 0.939
foxy 0.728 0.887 0.880 0.891
geckos 0.682 0.846 0.861 0.852
lady-liberty 0.552 0.953 0.947 0.957
lake 0.656 0.768 0.779 0.769
log-seaside 0.702 0.864 0.852 0.865
monument 0.478 0.777 0.764 0.775
native-american 0.570 0.872 0.866 0.871
redwood 0.448 0.733 0.720 0.731
roping 0.463 0.644 0.642 0.645
rushmore 0.674 0.825 0.819 0.825
shroom 0.625 0.870 0.885 0.886
snow-leaves 0.460 0.667 0.663 0.672
sunset-sparrow 0.790 0.941 0.938 0.941
sunsetcolor 0.417 0.852 0.859 0.864
swarm 0.462 0.917 0.901 0.913
trolley 0.646 0.825 0.818 0.844
turtle 0.608 0.910 0.911 0.914
veggies 0.524 0.672 0.666 0.673
woman 0.535 0.827 0.823 0.827

Table 6.2.: Quantitative comparison of the denoising performance on the CSIQ dataset. We report the
MSSIM values for each test image. The respective model parameters were chosen optimally w.r.t. the
MSSIM. The clean images were corrupted by additive Gaussian noise with σ = 0.1. We compare the
proposed approach (abbreviated by Prop. above) with the graduated non-convexity approach (GNC)
and the Ambrosio-Tortorelli approach to the second order Mumford-Shah model (AT).

and α ∈ {10k , 5 · 10k : k = −5, . . . , 0} similarly to [215]. For the proposed method, we let
γ ∈ {0.04, 0.05, . . . , 0.1} and β ∈ {1, 2, 3, 5, 15}. We report the results in Table 6.2 and note
that for most of the images (24 out of 30), the proposed method achieves the best MSSIM. In
Figure 6.11, we show example results.
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(a) Noisy “sunsetcolor”
image, MSSIM=0.417

(b) GNC,
MSSIM=0.852

(c) Ambrosio-Tortorelli,
MSSIM=0.859

(d) Proposed,
MSSIM=0.864

Figure 6.11.: An example from the CSIQ dataset. All three approaches to the second order Mumford-
Shah problem give a reasonable denoising result, yet, the result of the proposed method has a slightly
higher MSSIM than the results of the other approaches (which is representative for the CSIQ dataset, see
Table 6.2). Qualitatively, we observe that the proposed approach produces more sharp object boundaries
and preserves more small scale details (see, e.g., the detail view).

6.4.2. Edge detection

We here investigate the potential of the proposed method in connection with edge detection.
More precisely, we employ the output of the proposed approach, and in particular the derived
edge set, to obtain strong edge sets and weak edge sets. Then, a hysteresis step is performed to
obtain the �nal result. The idea of strong and weak edge sets in connection with hysteresis
thresholding was already used by the classical Canny edge detector [38]. In the Canny edge
detector, a pixel belongs to the �nal edge set if it either belongs to the strong edge set or to a
connection component of the weak edge set which contains at least one strong edge pixel. Two
thresholds on the gradient magnitude are employed to determine the weak and strong edges:
after a non-maximum suppression, pixels exceeding the upper threshold belong to the strong
edges, whereas the ones with values between the lower threshold and the upper threshold
belong to the weak edges.

We here employ a di�erent notion of strong and weak edge sets based on the result of the
proposed approach to the second order Mumford-Shah model. In particular, the weak and
strong edges are determined based on the regularized edge set Γ and the regularized image u.
Basically, if there are indications for an edge from both outputs Γ and u of the Mumford-Shah
regularization, then the corresponding pixel belongs to the strong edge set. If there are only
indications by one of the outputs Γ and u, it is part of the weak edge set. More precisely, the
procedure is as follows.

Procedure 6.1. 1. Obtaining indications for an edge based on u . (i) For each pixel x ∈ Ω′,
determine the discrete gradientDu (x ) = (∇1u (x ),∇2u (x )) ofu and determine its magnitude
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(a) Input (b) Weak edge set (c) Strong edge set (d) Final result after
the hysteresis step

Figure 6.12.: Illustration of the steps of the proposed edge detection procedure. The weak edge set
contains the signi�cant edges (see, e.g., the contours of the girl on the left), but also spurious edges (see,
e.g., the foreground). The strong edge set shows less spurious edges, but misses some important edges
(see, e.g., the girl on the left). After the hysteresis step, the �nal result complements the strong edge set
by including missing edges, while having less spurious edges than the weak edge set.

G (x ) = ‖Du (x )‖2. (ii) Thresholding: if G (x ) > η for the threshold η, keep those x in the
candidate set. (iii) Edge thinning via non-maximum suppression: compare the gradient
magnitude at the candidate x with the two neighbors w.r.t. the orientation t of the gradient
at x and let x ∈ Cu if it yields the largest gradient magnitude. More formally,

Cu =
{
x : ‖G (x )‖2 > η and ‖G (x )‖2 ≥ max

(
‖G (x + t )‖, ‖G (x − t )‖

)}
.

2. Computing the weak edge set. We de�ne the weak edge set as the union of the output
Γ′ = Γ1 ∪ Γ2 of horizontal and vertical edges of the Mumford-Shah regularization model
with the candidate set Cu from the previous step, i.e.,

Eweak = Γ′ ∪Cu .

3. Computing the strong edge set. Get the strong edge set by thresholding Γ′, i.e.,

Estrong = Γ′ ∩ {x : ‖G (x )‖2 > η}.

(We notice that Γ′ is already thin and no thinning is necessary here.)

4. Hysteresis step. The �nal result E is the union of the strong edge set and those weak edges
which are connected to the strong edge set (w.r.t. the eight-neighborhood).

In Figure 6.12, we give an illustration of the weak edge set, the strong edge set and the
hysteresis step.

We compare our approach with Canny edge detection [38]. There, the image is �rst �ltered
with the (sampled) directional derivatives of a Gaussian. This amounts to �rst smoothing and
then passing to the gradient image. After performing non-maximum suppression, a hysteresis
step is performed on the resulting gradient image. This step employs a strong and a weak edge
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F-score (ODS) F-score (OIS)

Canny edge detector 0.583 0.633
Proposed method 0.624 0.664

Table 6.3.: Quantitative comparison on the BSD500 test set. We report the global F-scores of the detected
edges for the Berkley test set for parameter values optimal on dataset scale (ODS) and optimally chosen
on image scale (OIS). The proposed method yields higher global F-scores on both dataset scale and image
scale compared with Canny edge detection.

set which are derived by two thresholds as already explained above. (We note that this is in
contrast to the proposed scheme which only employs a single threshold η.)

We perform a quantitative comparison of the proposed method and Canny edge detection
for the 200 test images of the Berkley segmentation dataset (BSD500) [4]. The quality of the
results of the proposed scheme and of Canny edge detection is measured by their maximum F-
score. The F-score is de�ned as the harmonic mean of precision and recall, i.e., 2·Precision ·Recall

Precision+Recall
w.r.t. the provided human annotated groundtruth. Precision rates the amount of correctly de-
tected edges among all detected edges and Recall rates the amount of correctly recovered
edges among all ground truth edges. The F-score is bounded by 0 and 1, where high values
are preferable. We use the Matlab implementation of the Canny edge detector. We tune the
thresholds by choosing them optimally w.r.t. the F-score among η1 ∈ {0.01, 0.02, . . . , 1} for
the high threshold η1 and η2 = κη1 with κ ∈ {0, 0.1, . . . , 0.9} for the low threshold η2. The
standard deviation of the Gaussian in the smoothing step is chosen as the standard Matlab
parameter which is given by

√
2. For the proposed method, we let β = 150 be �xed, the edge

penalty be chosen from γ ∈ {0.01, 0.02 . . . 0.1, 0.125, 0.15, 0.2, 0.25, 0.3} and the threshold from
η ∈ {0, 0.001, . . . , 0.01} ∪ {0.015, 0.02, . . . , 0.2} ∪ {0.25, 0.3, . . . , 1}. In Table 6.3, we report the F-
scores of Canny edge detection and the proposed method. In particular, we report the F-scores
for the optimal parameters on a dataset scale (ODS) and for the optimally chosen parameters
for each image separately (OIS). The proposed scheme achieves higher F-scores on both dataset
scale and image scale. As illustration, we show example results in Figure 6.13. In our exper-
iments, we observe that the strong edge set of the proposed method contains the prominent
edges of the input image which are then complemented by the weak edge set via the hysteresis
step such that spurious edges are suppressed (see also Figure 6.12).

6.5. Summary of the chapter

In this chapter, we developed an algorithmic framework for second order Mumford-Shah mod-
els. As a �rst step, we reformulated second (and higher) order Mumford-Shah models equiva-
lently in terms of Taylor jets. After discretizing this jet-based formulation, we obtained a family
of discrete second order models. We proved that these discrete models have a minimizer. To-
wards a numerical approach, we then derived an appropriate ADMM splitting. This splitting
was designed in a way which allowed us to solve all subproblems exactly and non-iteratively.
These subproblems do not correspond to solving standard univariate (second order) Mumford-
Shah problems, but to solving univariate segmented least square jet problems. We derived fast
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(a) Input (b) Canny, F = 0.786 (c) Proposed method, F = 0.829

(d) Input (e) Canny, F = 0.705 (f) Proposed method, F = 0.783

Figure 6.13.: Examples of edge detection results from the Berkley data set. From left to right: input image
from the BSD500 data set, results for Canny edge detection, and the results of the proposed scheme. We
observe that the edges detected by the proposed method are often more complete than the edges detected
by the Canny method (see, e.g., the boundary on the left side of the castle in the �rst image or the left
side of the boat in the second image). This is re�ected by the F-values reported below the results which
are higher for the proposed method.

solvers for these segmented jet estimation problems using the dynamic programming tech-
niques of Chapter 3. The scheme further takes into account the consistency of the produced
jet with the image and realizes the appropriate coupling of the subproblems with regard to
the jet formulation. We illustrated the potential of the proposed approach to the second order
Mumford-Shah problem in numerical experiments. In particular, we showed its bene�t com-
pared to a basic splitting approach which uses second order directional di�erences only. We
performed a qualitative and quantitative comparison with existing methods for this problem.
We observed that in most cases the proposed scheme produces slightly better results than these
methods. In particular, the edge sets are sharply located and show fewer breaks. Finally, we
used the proposed method as a basis for an edge detector.
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7. Image Partitioning with the A�ne-Linear
Potts Model

In this chapter, we consider the a�ne-linear Potts model for image partitioning. This chapter
is based on the publications [117, 119].

Organization of the chapter. In Section 7.1, we give an overview and discuss related work.
In Section 7.2, we derive a reformulation of the a�ne-linear Potts model in terms of Taylor jets
and derive a corresponding discrete formulation. In Section 7.3, we develop the proposed algo-
rithm and extend the approach to multi-channel images. In Section 7.4, we apply the proposed
algorithm to natural color images. In particular, we compare our approach to the state-of-the-
art method based on the iterative application of the graph cut algorithm. Finally, Section 7.5
concludes the chapter with a summary.

7.1. Overview and related work

A central task in computer vision is image partitioning. It describes the task of dividing the
domain of an image into regions of homogeneous image characteristic [80, 92]. In a supervised
setup, learning based approaches, most notably convolutional neural networks, have become
standard. If training data is not su�ciently available, model-based methods will be employed.
Classical approaches use k-means clustering, region growing (see e.g. [16]), and the watershed
algorithm (see e.g. [17]). A popular variational approach to image partitioning is the Potts
model (1.2) which is frequently applied for unsupervised segmentation of color images [53, 27],
depth images [27], texture images [113], and medical images [165, 183], to mention only some
examples. We recall that the Potts model partitions the image domain into segments of constant
color intensity such that the total boundary length is small and the corresponding piecewise
constant image is close to the input image.

As already seen in Chapter 3 for univariate signals, the piecewise constant model assump-
tion of the Potts model is often restrictive as many types of images possess linear trends within
their segments. Consider for example the sky in a landscape image, or an object with an illu-
mination gradient in a conventional image. In such situations, applying the Potts model can
produce extra (spurious) segments at steeper slopes and the results become oversegmented; see
Figures 7.1 and 7.2. A natural way to allow for linear trends in an image is to consider a model
which allows for a�ne-linear segments. Taking this into account leads to the a�ne-linear Potts
model which for an input image f : Ω → R de�ned on an open domain Ω ⊂ R2 corresponds
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(a) Input image (b) Classical Potts model (c) A�ne-linear Potts model

Figure 7.1.: Comparison of the classical (constant) Potts model and the a�ne-linear Potts model. The
classical Potts model oversegments the sky, while the right boundary of the cave is merged with the
mountain. The a�ne-linear Potts model yields an improved partitioning. The scanline plots of the blue
channel reveal that the piecewise constant model produces spurious segments to account for the color
gradient in the sky; the a�ne-linear Potts model adjusts to the color gradient.

to the minimization problem given by

argmin
u,P

∑
P ∈P

{∫
P
|u (x ) − f (x ) |2 dx +

γ

2
length(∂P )

}
,

subject to u |P is a�ne-linear for all P ∈ P .
(7.1)

The minimum is taken w.r.t. the partitions P of the image domain Ω and the corresponding
piecewise a�ne-linear functions u on Ω. A partition P of Ω is understood as a set of pairwise
disjoint connected subsets P (the segments) whose union equals Ω. The parameterγ > 0 in (7.1)
controls the tradeo� between the length penalty and the data �delity. Figure 7.1 illustrates the
Potts model and the a�ne-linear Potts model for a natural image with color gradients. While
the Potts model introduces spurious segments to approximate steep color gradients, the a�ne-
linear Potts model recovers the color gradients and provides an improved result.

On the one hand, one might be principally interested in solving (7.1) to �nd an optimal
partition P∗, which may be used for segmentation or superpixelations as for instance in [196,
55]. On the other hand, one might be more interested in �nding an optimal piecewise a�ne-
linear function u∗, which may be used for the regularization of �ow �elds as in [77] or for the
guidance of image �lters as in [139]. We focus in this chapter on the e�cient computation of
the partition.

Another possibility to account for color gradients in images is the piecewise smooth Mum-
ford-Shah model (1.1) which penalizes deviations from piecewise constant functions. However,
the piecewise smooth model comes with side-e�ects: the estimated discontinuity set is in gen-
eral not the boundary set of a partition as it can have open ends (crack tips), and it su�ers from
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(a) Input (b) Potts model, γ = 0.3 (c) Mumford-Shah model,
γ = 0.03, β = 10

(d) A�ne-linear Potts
model, γ = 0.4

Figure 7.2.: Comparison of the Potts model, the a�ne-linear Potts model and the Mumford-Shah model
for color gradients. Top: solution u∗; center: scanlines of the blue channel along the highlighted red
line in the input image, bottom: discontinuity sets corresponding to u∗. The Potts model oversegments
the input image. The Mumford-Shah model produces extra (spurious) discontinuities at steeper slopes
(“gradient limit e�ect”) and the discontinuity set is further not the boundary set of a partition (so-called
“crack tips”). The a�ne-linear Potts model recovers the steep gradients and the produced discontinuity
set forms a partition.

the gradient limit e�ect; see Figure 7.2 for an illustration and see Chapter 3 for the univariate
situation.

In this chapter, we develop a novel algorithm to e�ciently compute approximate solutions
of the a�ne-linear Potts model (7.1). To this end, we reformulate the underlying minimization
problem in terms of Taylor jets which eliminates the dependence on the partition P in (7.1).
We propose a novel algorithmic approach based on the ADMM, where all subproblems can be
solved exactly and non-iteratively The subproblems decompose into linewise segmented jet
estimation problems for which we derive fast solvers using the dynamic programming tech-
niques of Chapter 3.

Related work. For related work regarding the (classical) Potts model (also sometimes called
`0 gradient smoothing), we refer to Section 4.1. Besides the challenges of computing the Potts
model (cf. Chapter 4), the a�ne-linear case comes with an additional complication: a com-
monly used reformulation, which eliminates the dependence on the partition and which is
used in many algorithmic approaches for the Potts model (cf. (4.4)), has no direct analogy for
the a�ne-linear case. In fact, the variety of algorithms is much smaller for the a�ne-linear
Potts model. Existing approaches are based on graduated non-convexity [21], active contours
[196], graph cuts [27, 19, 62, 212] and ADMM splitting [77]. We discuss these algorithms in
more detail in the next paragraph.

Further related work is the total generalized variation model (TGV) [32] which can be seen
as an `1-based convex relative of the a�ne-linear Potts model. The results of TGV are approxi-
mately piecewise a�ne-linear. In contrast to the a�ne-linear Potts model, the solution of TGV
does not yield a partition of the image. In [85], the authors apply a piecewise a�ne-linear
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image model in the context of the analysis sparsity model in the sense of compressed sensing.
We notice that the solutions do not yield a partition directly. We �nally mention the related
recent work [209] on piecewise a�ne-linear estimation in connection with deep edge aware
�lters.

Approaches to the a�ne-linear Potts model. One can sort the approaches to the a�ne-
linear Potts problem into two classes: those that are mainly interested in �nding an approx-
imately optimal partition P∗ and those that are mainly interested in computing an approx-
imately piecewise a�ne estimate u∗. The latter ones, in general, produce an approximation
which does not yield a partition as we will see below.

(i) Partition-based methods. The common starting point is the formulation of the a�ne-
linear Potts problem in terms of partitions:

argmin
P

∑
P ∈P

{
min
a,b,c

∫
P
|ax1 + bx2 + c − f (x ) |2 dx +

γ

2
length(∂P )

}
. (7.2)

This formulation gives rise to the following iterative repartitioning scheme

1. Choose an initial partition P0.

2. Iterate until convergence:

a. for all P ∈ P j compute the optimal a�ne coe�cients,

(a∗,b∗, c∗) = argmin
a,b,c

∑
x ∈P

|ax1 + bx2 + c − f (x ) |2;

b. compute a partition P j+1 which is (approximately) optimal for the determined
set of a�ne coe�cients.

While step 2a is a simple linear regression, step 2b is an NP-hard optimization problem.
One possibility to tackle this problem is to represent the partition by level set functions
and to evolve them guided by a PDE (active contours approach), see e.g. [196]. Another
possibility is to compute the partition by a min-cut/max-�ow algorithm (graph cuts ap-
proach) which is used for instance in [105, 63, 212]. The graph cut approach is often em-
ployed because a highly e�cient library exists [27, 26, 127]. We use this method (which
uses graph cuts partitioning) as the benchmark method.

(ii) Function-based methods without explicit partitioning. In their early work, Blake and Zis-
serman [21] proposed to use a graduated non-convexity approach (GNC). The �rst step
of GNC is to approximate the non-convex energy function F of the closely related weak
plate model by a convex function F ∗. Then a whole sequence of energy functions F (p ), 1 ≥
p ≥ 0 depending on the parameter 1 ≥ p ≥ 0 is constructed such that F (1) = F ∗ and
F (0) = F and F (p ) changes in a continuous way from F (1) to F (0) . One sequentially solves
the corresponding minimization problems (e.g. by gradient descent) for 1 ≥ p > 0 and
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decreasing p using the results of a higher p as starting point for the next lower p. Blake
and Zisserman point out that GNC shows good performance for small variation penalties
of the weak plate model. Unfortunately, the a�ne-linear Potts model is the limiting case
of the weak plate model for in�nitely large variation penalty, and the GNC results are
less favorable in this case. Recently, Fortun et al. [77] proposed a method using a split-
ting into coupled subproblems. The splitting is such that the subproblems boil down to
univariate a�ne-linear Potts problems which can be solved e�ciently. We will elaborate
on the relations to the proposed method later on (Section 7.3.4). For now, the important
point is that the �nal results do not provide partitions.

Advantages and tradeo�s. The central advantage of the partition-based approaches is that
they explicitly yield a partition which can be directly employed in a segmentation pipeline or as
a basis for a superpixel generator. Furthermore, a corresponding piecewise a�ne-linear func-
tion can be easily computed by linear regression on the segments. On the �ipside, the existing
partition-based approaches need an initialization procedure to obtain an initial partitioning.
Further, their runtime grows with the number of labels and parallelization of the algorithms is
more involved. The advantages of function-based methods are that they do not need an initial
partitioning, and that they can be easily parallelized. The main drawback of function-based
methods is that they only provide a (not necessarily) piecewise a�ne-linear approximation of
the piecewise a�ne-linear function u whose discontinuity set is in general not the boundary
set of a partition. As an undesirable side-e�ect, this means that the functional value in (7.2)
cannot be evaluated directly which makes it di�cult to quantify the quality of the algorithms.

The proposed algorithm uni�es the advantages of partition-based methods and those of
function-based methods: (i) it directly yields a partition P; (ii) it does not need an initialization
procedure; (iii) its average computation times are almost independent of the choice of the edge
penalty; (iv) it is highly parallelizable. The experimental results show that the proposed method
improves upon the state-of-the-art approach to the a�ne-linear Potts model in the sense that
the algorithm has faster computation times and achieves lower functional values.

7.2. The a�ne-linear Potts model based on a jet formulation

To keep the presentation focused on the novel concepts, we carry out the derivations for single-
channel images from Section 7.2.1 to Section 7.3.2. The extension to multi-channel images is
discussed in Section 7.3.3.

7.2.1. Jet formulation of the a�ne-linear Potts model

A key point in our derivation is the formulation of problem (7.1) in terms of Taylor jets. We
recall that the Taylor jet of a function u is a �eld of Taylor polynomials (recall Section 2.3). In
the following, we will need the (�rst order) jet Ju of a functionu. The Taylor jet Ju at the point
x ∈ Ω is de�ned as the �rst order polynomial Jux given by

Jux (z) = u (x ) + ∂1u (x ) (z1 − x1) + ∂2u (x ) (z2 − x2), (7.3)
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where z ∈ R2 is the argument of the polynomial (recall Section 2.3). Thus, Jxu is the (�rst
order) Taylor polynomial of u centered at x . Summing up, the jet Ju : Ω → Π1 is a function
on Ω with values in the space Π1 of bivariate polynomials of order one; in particular, Jux is a
polynomial, and Jux (z) denotes the point evaluation of the polynomial Jux at the point z ∈ R2.

It is a basic but important observation that u is piecewise a�ne-linear if and only if the jet Ju
is piecewise constant.

Therefore we may reformulate (7.1) as

argmin
u,P

∑
P ∈P

{ ∫
P
|u (x ) − f (x ) |2 dx +

γ

2
length(∂P )

}
,

subject to Ju |P is constant for all P ∈ P .
(7.4)

If we denote the length of the jump set of the jet Ju by ‖∇Ju‖0 (cf. Section 4.1), we can cast
(7.4) into the form

u∗ = argmin
u

∫
Ω
|u (x ) − f (x ) |2 dx + γ ‖∇Ju‖0. (7.5)

(We note that the factor 1/2 in the �rst term of (7.4), which compensated for the double count-
ing of the boundaries, vanishes in this formulation.) Solutions of (7.5) are piecewise a�ne-
linear because ‖∇Ju‖0 < ∞ if and only if the jet Ju of u is piecewise constant.

Instead of minimizing over u directly, we lift the problem to the jet space. This has the
advantage that we may access the regularizing term more explicitly, while the data term still
has a concrete representation in terms of jets. A basic but important observation is that there
is a one-to-one correspondence between piecewise constant (�rst order) polynomial �elds and
the Taylor jets of piecewise a�ne-linear functions. First, let us denote by PC(Ω,Π1) the space
of piecewise constant �elds of �rst order polynomials. For each J ∈ PC(Ω,Π1) there is the
corresponding piecewise a�ne-linear function u (x ) = Jx (x ) such that Ju = J . (Recall that Jx is
the evaluation of the �eld J at the point x , that is, a �rst order polynomial, and Jx (x ) denotes its
evaluation at the point x .) This allows us –instead of (7.5)– to consider the following equivalent
minimization problems over polynomial �elds

J ∗ = argmin
J ∈Π(Ω;Π1)

∫
Ω
|Jx (x ) − f (x ) |2 dx + γ ‖∇J ‖0. (7.6)

The key advantage of the jet-based formulation (7.6) is that the piecewise a�ne-linear problem
in u has transformed into a piecewise constant problem in J . In particular, the connected
components of the level sets of J ∗ are exactly the segments of the corresponding partition P∗,
and we have u∗ (x ) = J ∗x (x ) for all x ∈ Ω.

7.2.2. Discretization

Let Ω′ = {1, . . . ,m} × {1, . . . ,n} be the discrete image domain. In the discrete setting, the
arguments to optimize for are �elds J : Ω′ → Π1 of a�ne-linear polynomials on the discrete
domain Ω′. We may adopt a common way of discretizing the length penalty term in (7.6)
similarly to the discretization of the length penalty in the Potts model in Section 4.2.1,

‖∇J ‖0 ≈
∑S

s=1
ωs ‖∇ds J ‖0, (7.7)
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see [48, 49, 181]. The terms on the right-hand side count the number of changes of the �eld J
w.r.t. to a direction ds ∈ Z2. That is,

‖∇ds J ‖0 =
���
{
x ∈ Ω′ : Jx , Jx+ds , x + ds ∈ Ω

′
}���. (7.8)

The directions ds form a neighborhood system {d1, . . .dS }, with S ≥ 2. We here focus on the
more isotropic discretization {e1, e2, e1+e2, e1−e2} with weightsω1,2 =

√
2−1 andω3,4 = 1−

√
2

2
(cf. Section 4.2.1).

By employing the discretization (7.7) for the proposed jet formulation (7.6), we obtain the
discrete problem

J ∗ = argmin
J :Ω′→Π1

∑
x ∈Ω′
|Jx (x ) − f (x ) |2 + γ

S∑
s=1

ωs ‖∇ds J ‖0. (7.9)

Minimizing (7.9) is a challenging problem: the second sum in (7.9) makes the problem non-
smooth, non-convex and even NP-hard [190, 27]. We record that the discrete problem (7.9) has
a minimizer.

Theorem 7.1. The discrete a�ne-linear Potts model in its jet formulation (7.9) has a minimizer.

The proof is analogous to the proof of Theorems 6.6 and 6.10 given below Theorem 6.10 in
Chapter 6.

7.3. Algorithmic approach

We present a new algorithmic approach to the a�ne-linear Potts model (7.9). We employ a
splitting approach based on the ADMM. To this end, we reformulate the original unconstrained
problem (7.9) as an equivalent constrained problem with additional splitting variables. It turns
out that the subproblems arising in the ADMM scheme for this constrained problem can be
solved exactly and e�ciently by adapting the solver developed in Chapter 3. Afterwards, we
give details on the extension to multi-channel images. Finally, we discuss the relation of the
proposed approach to existing approaches.

7.3.1. Splitting approach with the ADMM

In order to access the discrete length term (7.7) more directly, we reformulate (7.9) as a con-
strained problem. To this end, we split up the target J into S polynomial �elds, J 1, . . . , JS ,
subject to the constraints that they are all equal:

argmin
J 1, ..., J S

S∑
s=1

{ 1
S

∑
x ∈Ω′
|J sx (x ) − f (x ) |2 + γωs ‖∇ds J

s ‖0

}
subject to J s = J t for all 1 ≤ s < t ≤ S .

(7.10)
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Note that due to the equality constraints, (7.10) is equivalent to the original problem (7.9).
Since two bivariate �rst-order polynomials are equal if and only if their evaluation in three
non-collinear points in R2 is equal, we can rewrite (7.10) as

argmin
J 1, ..., J S

S∑
s=1

{ 1
S

∑
x ∈Ω′
|J sx (x ) − f (x ) |2 + γωs ‖∇ds J

s ‖0

}
subject to J sx (x ) = J

t
x (x ),

J sx (x + e1) − J
s
x (x ) = J

t
x (x + e1) − J

t
x (x ),

J sx (x + e2) − J
s
x (x ) = J

t
x (x + e2) − J

t
x (x ),

for all x ∈ Ω′, and all s, t with 1 ≤ s < t ≤ S .

(7.11)

Recall that e1 = (1, 0)T , e2 = (0, 1)T denote the coordinate directions. It is convenient to intro-
duce the following notation

us (x ) := J sx (x ), the function value of J sx at x , (7.12)
as (x ) := J sx (x + e1) − Jx (x ), the horizontal slope of J sx , (7.13)
bs (x ) := J sx (x + e2) − Jx (x ), the vertical slope of J sx . (7.14)

for the function value at the base point x and the slopes (i.e., the partial derivatives) of the poly-
nomial Jx .We treatus ,as ,bs as (m×n)-matrices whose entries are given byus (x ),as (x ),bs (x ),
x ∈ Ω′. Then, the constraint in (7.11) can be written as

us = ut , as = at , bs = bt , (7.15)

for all s, t with 1 ≤ s < t ≤ S . In this context, we recall that the o�sets in the origin c (x )
of the polynomials Jx are simply obtained by c (x ) = u (x ) − x1a(x ) − x2b (x ). We note that
the presented jet formulation results in a rather strong coupling which incorporates also the
slopes/derivatives of the considered polynomials.

We now decompose the constrained problem into coupled subproblems using an ADMM
approach. That is, we form the augmented Lagrangian form of (7.11) and iteratively perform
a block-coordinate-wise minimization and gradient ascent steps on the Lagrange multipliers.
We note that ADMM schemes often work well for non-convex problems; see, e.g., [197, 211,
54, 101]. The augmented Lagrangian form of (7.11) is given by

Lµ,ν ({J
s }, {τ s,tu }, {τ

s,t
a }, {τ

s,t
b }) =

∑S

s=1

{
ωsγ ‖∇ds J

s ‖0 +
1
S ‖u

s − f ‖2

+
∑S

t=s+1

(
µ
2

u
s − (ut − τ s,tu

µ )
2
− 1

2µ ‖τ
s,t
u ‖

2 + ν
2

a
s − (at − τ s,ta

ν )
2
− 1

2ν ‖τ
s,t
a ‖

2

+ ν
2

b
s − (bt −

τ s,tb
ν )

2
− 1

2ν ‖τ
s,t
b ‖

2
)}
,

(7.16)

where the τ s,tu ,τ
s,t
a ,τ

s,t
b ∈ Rm×n denote the Lagrange multipliers and ‖ · ‖ is the Frobenius

norm, i.e. ‖u‖2 = (
∑

i, j u
2
i j ) for u ∈ Rm×n . The hard constraints in (7.11) are now part of the
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functional in the form of soft constraints, i.e., the squared Frobenius norms of the di�erences
of the splitting variables. The parameters µ,ν > 0 determine how strong di�erences between
the splitting variables are penalized. Note that we utilize two di�erent coupling parameters:
one for the slope variables a,b and one for the base point variableu . This is because slopes and
base points typically live on di�erent scales.

In each iteration, we minimize Lµ,ν w.r.t. each J s and perform a gradient ascent on the La-
grange multipliers. For a �xed s , the according minimization problem reads

argmin
J
Lµ,ν = argmin

J

{
ωsγ ‖∇ds J ‖0 +

1
S ‖u − f ‖2

+

S∑
t=s+1

(
µ
2 ‖u − (ut − τ s,tu

µ )‖2 + ν
2 ‖a − (at − τ s,ta

ν )‖2 + ν
2 ‖b − (bt −

τ s,tb
ν )‖2

)
+

s−1∑
r=1

(
µ
2 ‖u − (ur + τ r ,su

µ )‖2 + ν
2 ‖a − (ar + τ r ,sa

ν )‖2 + ν
2 ‖b − (br +

τ r ,sb
ν )‖2

)}
.

(7.17)

Note that all other terms in (7.16) do not depend on J s , so we dropped them. In the following,
we bring (7.17) into a convenient form (similarly to the derivation in Section 6.3.1). To this end,
we will use repeatedly the fact that∑N

i=1
xi (p − ti )

2 =
(∑N

i=1
xi

) (
p −

∑N
i=1 tixi∑N
i=1 xi

)2
+C (7.18)

holds forp, t1, ..., tN ∈ R and x1, ...,xN > 0 and a constantC that does not depend onp. Initially,
this allows us to rewrite the summands in (7.17) and we get

argmin
J

{
ωsγ ‖∇ds J ‖0 +

1
S ‖u − f ‖2

+
(S−s )µ

2
u −

∑S
t=s+1 (u

t −
τ s,tu
µ )

(S − s )


2
+

(s−1)µ
2

u −
∑s−1

r=1 (u
r +

τ r ,su
µ )

(s − 1)


2

+
(S−s )ν

2
a −

∑S
t=s+1 (a

t −
τ s,ta
ν )

(S − s )


2
+

(s−1)ν
2

a −
∑s−1

r=1 (a
r +

τ r ,sa
ν )

(s − 1)


2

+
(S−s )ν

2
b −

∑S
t=s+1 (b

t −
τ s,tb
ν )

(S − s )


2
+

(s−1)ν
2

b −
∑s−1

r=1 (b
r +

τ r ,sb
ν )

(s − 1)


2
}
.

(7.19)

Again, we dropped terms that do not depend on J . For readability we introduce the following
abbreviations for the sums in (7.19):

Λ =
∑S

t=s+1
(ut − τ s,tu /µ ), Ψ =

∑S

t=s+1
(at − τ s,ta /ν ),

∆ =
∑S

t=s+1
(bt − τ s,tb /ν ), Γ =

∑s−1

r=1
(ur + τ r,su /µ ),

Φ =
∑s−1

r=1
(ar + τ r,sa /ν ), Θ =

∑s−1

r=1
(br + τ r,sb /ν ).
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We insert these abbreviations and apply (7.18) to all but the �rst line of (7.19) and obtain

argmin
J

ωsγ ‖∇ds J ‖0 +
1
S ‖u − f ‖2 +

(S−1)µ
2

u −
Λ+Γ
S−1


2
+

(S−1)ν
2

a −
Ψ+Φ
S−1


2
+

(S−1)ν
2

b −
∆+Θ
S−1


2
.

(7.20)

A �nal application of (7.18) to both remaining terms that depend on u in (7.20) leads to

argmin
J

ωsγ ‖∇ds J ‖0 +
2+µS (S−1)

2S
u −

2f +µS (Λ+Γ)
2+µS (S−1)


2
+

(S−1)ν
2

a −
Ψ+Φ
S−1


2
+

(S−1)ν
2

b −
∆+Θ
S−1


2

(7.21)

and after multiplying (7.21) by 2
(S−1)ν , we obtain

argmin
J

2ωsγ
(S−1)ν ‖∇ds J ‖0 +

2+µS (S−1)
νS (S−1)

u −
2f +µS (Λ+Γ)
2+µS (S−1)


2
+

a −
Ψ+Φ
S−1


2
+

b −
∆+Θ
S−1


2
. (7.22)

Together with the gradient ascents on the Lagrange multipliers we derive the following itera-
tive procedure

(J s ) j+1 = argmin
J

2ωsγ
(S−1)νj ‖∇ds J ‖0 +

2+µ jS (S−1)
νjS (S−1) ‖u − (us ) j ‖2 + ‖a − (as ) j ‖2 + ‖b − (b

s
) j ‖2

for all s = 1, ..., S,

(τ s,tu ) j+1 = (τ s,tu ) j + µ j
(
(us ) j+1 − (ut ) j+1

)
, (7.23)

(τ s,ta ) j+1 = (τ s,ta ) j + νj
(
(as ) j+1 − (at ) j+1

)
,

(τ s,tb ) j+1 = (τ s,tb ) j + νj
(
(bs ) j+1 − (bt ) j+1

)
for all 1 ≤ s < t ≤ S,

where the superscript j denotes the iteration number and where we used the following abbre-
viations

(us ) j =

2f + µ jS
(

S∑
t=s+1

(
(ut ) j − (τ s,tu ) j

µ j

)
+

s−1∑
r=1

(
(ur ) j+1 +

(τ r ,su ) j+1

µ j

))
2 + µ jS (S − 1)

,

(as ) j = 1
S−1

∑S

t=s+1

(
(at ) j − (τ s,ta ) j

νj

)
+ 1

S−1

∑s−1

r=1

(
(ar ) j+1 +

(τ r ,sa ) j+1

νj

)
,

(b
s
) j = 1

S−1

∑S

t=s+1

(
(bt ) j −

(τ s,tb ) j

νj

)
+ 1

S−1

∑s−1

r=1

(
(br ) j+1 +

(τ r ,sb ) j+1

νj

)
.

As it is common when dealing with non-convex problems, we employ increasing coupling
sequences (µ j )j ∈N, (νj )j ∈N as coupling parameters. Note that the computation of us ,as ,b

s
and

the Lagrange multiplier updates only involve pointwise basic arithmetic operations. We stop
the iterations when the splitting variables become (approximately) equal. Please note that we
return the mean values to avoid accentuating a particular set of splitting variables. We provide
a pseudocode for the the algorithmic scheme in Algorithm 7.1.
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Algorithm 7.1: ADMM strategy for the a�ne-linear Potts problem

Input: Image f ; edge penalty γ > 0; directions {ds }Ss=1

Output: Piecewise a�ne-linear approximation u;
corresponding piecewise constant �eld of �rst order polynomials (a,b, c )
/* Initialization */

1 J s = (us ,as ,bs ) = ( f , 0, 0) for all s = 1, . . . , S
2 τ s,tu ,τ

s,t
a ,τ

s,t
b = 0 for all 1 ≤ s < t ≤ S ; j ← 1

3 repeat
4 for s = 1, . . . , S do

/* Compute data for jet subproblems */

5 us ←

2f +µ jS

(
S∑

t=s+1

(
ut− λ

s,t
µj

)
+
s−1∑
r=1

(
ur+ λ

r ,s
µj

))
2+µ jS (S−1)

6 as ← 1
S−1

∑S
t=s+1

(
at − τ s,t

νj

)
+ 1

S−1
∑s−1

r=1

(
ar + τ r ,s

νj

)
7 b

s
← 1

S−1
∑S

t=s+1

(
bt −

ρs,t

νj

)
+ 1

S−1
∑s−1

r=1

(
br +

ρr ,s

νj

)
/* Solve the linewise segmented jet estimation subproblems w.r.t. direction ds */

8 J s ← argmin
J

2ωsγ
(S−1)νj ‖∇ds J ‖0 +

2+µ jS (S−1)
νjS (S−1) ‖u − u

s
‖2 + ‖a − as ‖2 + ‖b − b

s
‖2

9 end
/* Update the Lagrange multipliers */

10 for s = 1, . . . , S do
11 for t = s + 1, . . . , S do
12 τ s,tu ← τ s,tu + µ j (u

s − ut )

13 τ s,ta ← τ s,ta + νj (a
s − at )

14 τ s,tb ← τ s,tb + νj (b
s − bt )

15 end
16 end

/* Update coupling parameters */
17 µ j ← µ j+1, νj ← νj+1
18 j ← j + 1

19 until max
i, j

{
|qs (i, j )−qs+1 (i, j ) |
|qs (i, j ) |+ |qs+1 (i, j ) |

}
≤ ηstop for all s = 1, . . . , S − 1, q ∈ {u,a,b};

/* Take averages of splitting variables */
20 u ← 1

S
∑S

s=1 u
s ; a ← 1

S
∑S

s=1 a
s ; b ← 1

S
∑S

s=1 b
s ;

/* Compute o�sets in origin c from u,a,b */
21 for x ∈ Ω′ do
22 c (x ) ← u (x ) − x1a(x ) − x2b (x );
23 end
24 return u,a,b, c;
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7.3.2. E�cient solution of the subproblems

The �rst line of (7.23) corresponds to solving S non-convex minimization problems in J 1, ..., JS .
The crucial observation is that by (7.8) these subproblems decompose into mutually indepen-
dent one-dimensional partitioning problems along the paths in Ω′ induced by the direction ds .
In this context, we observe that they can further be solved in parallel. (An illustration of these
paths was given in Figure 4.2 in Chapter 4.) In the following, we describe an exact and e�-
cient solver for the one-dimensional partitioning problems. It follows the ideas for the solver
developed in Chapter 3 which we adapt to deal with the problems here.

We consider exemplarily the �rst subproblem in (7.23) and note that solving the others can
be done analogously. Let u,a,b ∈ Rn denote the data for the functional values and the data for
the slopes, respectively. Then by using the notation (7.12)-(7.14), the univariate problems we
have to solve have the generic form

J ∗ = argmin
u,a,b ∈Rn

η2‖u − u‖2 + ‖a − a‖2 + ‖b − b‖2 + γ ′‖∇J ‖0. (7.24)

We recall that for the one-dimensional domain {1, . . . ,n}, the symbol ‖∇J ‖0 counts the number
of changes of J , i.e. ‖∇J ‖0 = |{i ∈ 1, . . . ,n − 1} : Ji , Ji+1}|. Consequently, (7.24) is a one-
dimensional segmented least squares problem on {1, . . . ,n}.

As a �rst step, we reformulate (7.24) in terms of partitions only. Recall that a partition I of
{1, . . . ,n} is a set of pairwise disjoint discrete intervals of the form I = {l , l + 1, . . . , r } such
that {1, . . . ,n} =

⋃
I ∈I I (cf. Section 3.2). We use the notation I = l : r as in Chapter 3. The

formulation in terms of the partition only is now given by

I∗ = argmin
I partition of 1:n

∑
I ∈I

(
E I + γ ′

)
, (7.25)

where E I denotes the (optimal) jet approximation error on the segment I in the sense of

E I = min
α,β,δ ∈R

∑
i ∈I

η2 |δ + iα − ui |
2 + |α − ai |

2 + |β − bi |
2. (7.26)

As a second step, the corresponding optimal jet J ∗ is recovered from the optimal partition I∗
by solving the least squares objective (7.26) w.r.t. u,a,b for each segment I ∈ I separately.

The partitioning problem (7.25) can be solved with the algorithm developed in Chapter 3. To
see this, we denote the objective in (7.25) by B, i.e.,

B (I) =
∑
I ∈I

(
E I + γ ′

)
. (7.27)

On the reduced domain 1 : r , r < n we denote its minimal value by

B∗r = min
I partition on 1:r

B (I). (7.28)

We observe that the minimal value B∗r on the domain 1 : r satis�es the Bellman equation

B∗r = min
l=1, ...,r

{
El :r + γ ′ + B∗l−1

}
, (7.29)
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where we set B∗0 = −γ
′. Thus, the dynamic programming principle [12] allows us to compute

B∗1,B
∗
2, . . . until we reach B∗n . We keep track of an optimal partition I∗ by storing at step r

the minimizing argument l ′ of (7.29) as the value Lr , so that L encodes the boundaries of an
optimal partition.

Similar to Section 6.3.2, the problems here are given in terms of discrete jets and not in
terms of discrete function values only. However, the error update scheme of Chapter 3 can
nevertheless be employed to solve the partitioning problem (7.25). To this end, we reformulate
(7.26) to

El :r = min
α,β,δ

‖Aq
(
α , β,δ

)T
− дl :r ‖2, (7.30)

where q = r −l +1 denotes the length of the interval I = l : r and the system matrixAq ∈ R3q×3

and the data vector дl :r ∈ R3q are given by

Aq =

*.............
,

η 0 η
1 0 0
0 1 0
...
...
...

qη 0 η
1 0 0
0 1 0

+/////////////
-

, and дl :r =

*.............
,

ηul
al
bl
...

ηur
ar
br

+/////////////
-

. (7.31)

Since the system matrices Aq are tall, we can e�ciently employ the error update strategy de-
veloped in Chapter 3 and consequently Algorithm 3.1 to solve (7.24) (see also Remark 3.11).

7.3.3. Multi-channel images

We �rst note that solving the a�ne-linear Potts problem (7.1) for multi-channel images f :
Ω → RK is not equivalent to solving the single-channel variant channel by channel. The latter
approach typically leads to undesired artifacts as the partition boundaries are not enforced to
be aligned over the channels; see Figure 7.3.

Jet formulation formulti-channel images. To extend the proposed approach to the multi-
channel a�ne-linear Potts problem, we consider the �rst order Taylor jet ofu : Ω → RK which
is given by the Taylor jets of its component functions, i.e.,

Jxu = (Jxu1, ..., JxuK )
T . (7.32)

Then, the multi-channel version of the jet formulation (7.6) is given by

J ∗ = argmin
J ∈Π(Ω;(Π1)K )

γ ‖∇J ‖0 +
K∑
k=1

∫
Ω
|Jx,k (x ) − fk (x ) |

2 dx . (7.33)

where the minimum is taken over piecewise constant multi-channel jets. (We here use the
notation Jx,k to denote the polynomial at x corresponding to the k-th channel.) As the domain
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(a) Input image (b) Channel-wise approach (68.0 sec) (c) Multi-channel approach (26.9 sec)

Figure 7.3.: Comparison of channel-wise application of the a�ne-linear Potts model and the multi-
channel a�ne-linear Potts model for the input image (a). The channel-wise approach (b) su�ers from
color artifacts (see, e.g., the face of the right boy or the ears of the left boy). (c) The multi-channel
approach yields a more reasonable image approximation and an improved partition. Furthermore, it
needs less computation time.

of the image does not change in the multi-channel case, the discretization of the jump penalty
in (7.7) remains unchanged. We note that the partition boundaries are enforced to be aligned
across the channels. This can be seen by looking at the counting of the directional di�erences
in (7.8): in the multi-channel case, we have that Jx , Jx+ds if and only if Jx , Jx+ds are di�erent
in at least one component, i.e., if and only if Jx,k , Jx+ds ,k for at least one k ∈ {1, . . . ,K }. That
means, opening a “jump” between x and x + ds in all channels has no extra costs compared to
opening a jump in a single channel.

Discrete multi-channel problem. Starting from (7.33) –in analogy to the derivation start-
ing from (7.6) in the single-channel case– we obtain the discretized problem

J ∗ = argmin
J :Ω′→(Π1)K

∑
x ∈Ω′

K∑
k=1
|Jx,k (x ) − fk (x ) |

2 + γ
S∑
s=1

ωs ‖∇ds J ‖0. (7.34)

Then the analogue of the splitting (7.10) for the single-channel case becomes

argmin
J 1, ..., J S

1
S

∑
x ∈Ω′

K∑
k=1
|J sx,k (x ) − fk (x ) |

2 + γ
S∑
s=1

ωs ‖∇ds J
s ‖0

subject to J s = J t for all 1 ≤ s < t ≤ S .

(7.35)

We rewrite (7.35) in the way of (7.11) which gives

argmin
J 1, ..., J S

S∑
s=1

{ 1
S

∑
x ∈Ω′

K∑
k=1
|J sx,k (x ) − fk (x ) |

2 + γωs ‖∇ds J
s ‖0

}
subject to us (x ) = ut (x ), asx (x ) = at (x ), bsx (x ) = b

t (x ),

for all x ∈ Ω′, and all s, t with 1 ≤ s < t ≤ S,

(7.36)

where we used notation (7.12)-(7.14) and note that nowus ,as ,bs ∈ Rm×n×K . The Lagrangian of
(7.36) which corresponds to (7.16) in the single-channel case is now understood w.r.t. the La-
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(a) Input image (b) Fast progression,
φ = 1.7, 37 iterations,

E = 2899.9

(c) Medium progression,
φ = 1.3, 65 iterations

E = 2821.7

(d) Slow progression,
φ = 1.05, 285 iterations

E = 2796.0

Figure 7.4.: E�ect of the progression parameter. Small progression parameters φ yield improved parti-
tions and lower functional values E, but more iterations are needed. As a good compromise of runtime
and quality, we �nd the medium choice φ = 1.3.

grange multipliers τ s,tu ,τ
s,t
a ,τ

s,t
b ∈ Rm×n×K and the squared Frobenius norm ‖u‖2 =

∑
i, j,k u

2
i jk .

The further derivation of the algorithm is analogous to the single-channel case.

Univariate subproblems for multi-channel data. Concerning the univariate subprob-
lems, the jet approximation errors E I in the dynamic programming scheme are given by the
channel-wise sum

E I =

K∑
k=1
E Ik . (7.37)

Consequently, the error update strategy based on Givens rotations from Section 7.3.2 can be
used by simply updating the approximation errors channel-wise. For this we can use the same
system matrix Aq from (7.31) for all channels and the recurrence coe�cients in Algorithm 3.1
have to be computed only once for all channels. It is straightforward to see that Corollary 6.16
applies here as well, i.e., the multi-channel version of the proposed scheme produces an exact
solution of the subproblems (7.24) in O (n2K ) time.

7.3.4. Relation to other approaches

In contrast to the proposed approach, the splitting approach in [77] couples the function values
u only. In view of the jet formulation of the a�ne-linear Potts model, a “complete” coupling
requires also to couple the slopes. Hence, the method in [77] is the straightforward extension
of the method in [181] and can be seen as a relaxation of the proposed method. The approach
in [77] leads to standard univariate a�ne-linear Potts subproblems instead of the jet estimation
subproblems in the proposed approach. In contrast, the proposed method requires a tailored
subproblem solver, see Section 7.3.2. Compared with [77], a main advantage of the proposed
method is that it yields a partition directly.

Another related problem is given (in a discretized version) by

argmin
u :Ω′→R

γ
S∑
s=1

ωs ‖∇
2
dsu‖0 +

∑
x ∈Ω′
|u (x ) − f (x ) |2. (7.38)
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(a) Input image (b) Piecewise a�ne-linear
approximation u
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(c) 3D-plot of (b)
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(d) Horizontal slopes a
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(e) Vertical slopes b
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(f) O�sets in origin c

Figure 7.5.: Illustration of the jet result. While the reconstruction u is piecewise a�ne-linear (b),(c), the
corresponding �eld of �rst order polynomials (i.e., the corresponding jet) is piecewise constant (d)-(f).

We stress that this is not equivalent to the a�ne-linear Potts model. The relevant di�erence
is that ‖∇2

dsu‖0 counts the number of kinks of u instead of the number of a�ne coe�cient
changes. The practical consequence is that the functional favors solutions which tend to have
kinks rather than jumps (cf. Section 3.2.4 and Example 3.9 for the univariate case).

7.4. Experimental results

In this section, we �rst give the necessary implementation details. Then we apply the pro-
posed method to a synthetic image to give an illustration of the computed �eld of �rst order
polynomials. After recalling the methods for comparison, we compare them with the proposed
method qualitatively. Finally, we give a quantitative comparison of the proposed method with
the state-of-the-art method based on iterative repartitioning with graph cuts.

Implementation details. We initialize the splitting variables by u0 = f , a0 = b0 = 0. As
initial coupling parameters we set µ0 = 10−3,ν0 = min{450γ µ0, 1}. After each iteration (7.23),
we increase µ,ν by the factor φ. As a good compromise of runtime and quality, we found
the choice φ = 1.3; see Figure 7.4. We stopped the iteration when the largest pointwise rel-
ative di�erence between consecutive splitting variables became smaller than 10−2, i.e., when
max
x ∈Ω′

|qs (x )−qs+1 (x ) |
|qs (x ) |+ |qs+1 (x ) | ≤ 10−2 for s = 1, . . . , S − 1 which corresponds to ηstop = 10−2 in Algo-

rithm 7.1. All experiments were conducted on a workstation (Intel XeonE5-2620v4, 2.10GHz,
16 cores, 256 GB RAM).

Illustration of the produced jet. In addition to the piecewise a�ne-linear approximation
u of the input image f , the proposed method yields the corresponding piecewise constant
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(a) Input (b) GNC (c) FPAME

(d) GC (64 labels) (e) GC (256 labels) (f) Proposed

Figure 7.6.: Qualitative comparison of approaches to the a�ne-linear Potts model. Upper half: results
u∗; lower half: the edge sets derived from u∗ for the partition-free methods (GNC and FPAME), and
the boundaries of the partition P∗ for the partition-based methods (GC and the proposed method),
respectively. The edge sets of the partition-free methods do not always correspond to closed curves, i.e.,
the edge sets do not form the boundaries of a partition.
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Figure 7.7.: Comparison to iterative repartitioning with graph cuts. The proposed approach and the
graph cut approach both provide reasonable partitions. Yet, there are some slight di�erences. For,
e.g., γ = 0.5, graph cuts still opens a segment for the water, but not for the fence. In the proposed
approach, this is vice versa. As a general tendency, we observe that the proposed approach produces
more segments throughout all γ -levels. We report the model energies E of the results and runtimes
below the images.
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GC (256 labels)

GC (64 labels)

Proposed

γ GC (64 labels) GC (256 labels) Proposed

0.05 1802.2 1802.1 1772.3

0.15 3180.3 3178.2 3146.0

0.50 5484.8 5480.7 5418.2

1.00 7324.7 7317.5 7202.7

2.00 9551.5 9526.4 9356.7

Figure 7.8.: Quantitative comparison with iterative graph cuts on the Berkley test set. Left: average
runtimes for the Berkley test set. The proposed method has signi�cantly lower mean computation
times than the iterative graph cuts method (the proposed approach needs roughly 28 sec. for any γ ).
Right: mean energies over the Berkeley test set and the parameters γ in the left column. The proposed
method achieves the lowest mean energies.

�eld of �rst order polynomials in terms of their coe�cients a,b, c . In Figure 7.5, we apply
the proposed algorithm to a synthetic image and illustrate the corresponding jet by 3D-plots.
Indeed, while u is piecewise a�ne-linear, the corresponding �eld of �rst order polynomials is
piecewise constant and encodes the partition associated with u.

Methods for comparison. The methods for comparison are the graduated non-convexity
approach (GNC), the method of [77] (FPAME), and the iterative repartitioning scheme based on
graph cuts (GC). We implemented GNC by following the lines of [21]. We recall that GNC solves
a relaxed problem that has a smoothing parameter (recall Section 6.4). We tested several such
parameters and obtained the best visual results for the choice 54. Regarding FPAME, we adapted
the method [77] to the `2-data term here. As GNC and FPAME do not directly yield a partition
we extracted their edge sets by taking second order �nite di�erences and thresholding as in
[21, 77]. The iterative repartitioning scheme uses the α-expansion algorithm of the toolbox
GCO v3.0 [27, 26, 127]. In order to obtain a reasonable initial partition P0 for the iterative
repartitioning scheme, we extracted L (equidistant) color values from the image and performed
a piecewise constant partitioning for these initial labels. Then we proceeded with the iterative
repartitioning approach until the relative improvement of the energy became smaller than 10−3

or after a maximum number of 10 iterations was reached.

Qualitative comparison. A qualitative comparison is given in Figure 7.6. We observe that
GNC does not give a genuinely piecewise a�ne-linear estimate. The edge sets of GNC and
FPAME have open ends. Hence, they are not the boundaries of a partition. As a conse-
quence, GNC and FPAME do not allow for an evaluation of the functional value which hin-
ders a quantitative evaluation in terms of the energy. (Note that [21, 77] also do not provide a
post-processing which we could use to obtain a partition.) Thus, in the following quantitative
evaluation, we focus on a detailed comparison to GC.
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GC (256 labels) Proposed

E = 4921.8; 787.2s E = 4832.6; 32.7s

E = 4333.7; 423.9s E = 4287.8; 25.5s

E = 3952.8; 554.3s E = 3780.4; 26.9s

E = 6476.9; 338.0s E = 6377.8; 29.6s

Figure 7.9.: Example results for the Berkeley data set. From left to right: four images from the BSD500,
results of the graph cut approach (256 initial labels), and results of the proposed approach. The model
parameter is γ = 0.5. Energies and runtimes are reported below the images.

Quantitative comparison to iterative repartitioning with graph cuts. We compare our
method to GC with respect to energy value and runtime. First, we observe that the results
of GC depend on the number of chosen initial labels: in most cases, choosing more labels
leads to a lower energy value, while it also increases the runtime; see Figure 7.7. Hence, we
compare our approach to GC with a smaller and a larger number of initial labels (64 and 256).
To get meaningful results we used the test images of the Berkeley segmentation data set [4]
which consist of 200 natural 481 × 321 color images. Figure 7.8 reveals that the proposed
method achieves lower mean energies and faster computation times than GC which illustrates
the e�ectiveness of the algorithm. In particular for small model parameter γ , the proposed
scheme is signi�cantly faster. We provide further examples in Figure 7.9.
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We observed the convergence of the proposed scheme in all our experiments. For this kind
of problems theoretical convergence results are rather weak in general. In particular, also for
the state-of-the-art method based on iterative application of graph cuts (we compare with here)
the convergence is observed only empirically as well.

7.5. Summary of the chapter

In this chapter, we developed an e�cient algorithm for computing approximate solutions of
the a�ne-linear Potts model which is a method for image partitioning based on a�ne-linear
segments. Hence, in contrast to the classical (constant) Potts model, the a�ne-linear Potts
model allows for estimating linear trends on the segments. As a result, the a�ne-linear Potts
model frequently yields improved partitioning results than the Potts model as natural images
often possess linear trends.

A novel formulation of the underlying minimization problem in terms of Taylor jets allowed
us to invoke a splitting into few tightly coupled jet-subproblems for which we developed an
e�cient and exact solver. We saw that, in contrast to GNC and FPAME, the proposed method
provides a genuine partition of the image. Our experiments showed that the proposed approach
yields results with lower average model energies than those of the benchmark approach based
on iterative repartitioning using graph cuts (with α-expansion moves). Hence, the model en-
ergy is e�ciently minimized. At the same time, it needs less computation time than the bench-
mark method.
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8. Discussion

We presented and studied novel algorithmic approaches to Mumford-Shah and Potts models
which are variational methods for edge-preserving smoothing and partitioning of signals and
images. The application of Mumford-Shah and Potts models corresponds to dealing with hard
non-convex minimization problems. Already the simplest case of piecewise constant solutions,
the classical Potts model, corresponds to solving an NP-hard problem when applied to images
and indirect data, respectively. Finding new algorithmic approaches to Mumford-Shah and
Potts models is an active �eld of research.

In Chapter 3, we studied the univariate situation and noticed that the classical �rst order
Mumford-Shah and Potts models have limitations when applied to signals with (steep) slopes.
In this situation, the classical (�rst order) models have the tendency to produce spurious seg-
ments which are not present in the clean signal (oversegmentation). This well-known short-
coming is called the gradient limit e�ect in literature. We addressed the gradient limit e�ect
by switching to higher orders: higher order Mumford-Shah models do not penalize deviations
from constant signals, but deviations from polynomial signals within segments. Analogously,
solutions of higher order Potts models are not piecewise constant but piecewise polynomial.
We showed that the solutions of the models are unique for almost all input data. Towards a
solver, we noted that the higher order models can be solved via dynamic programming just
like the �rst order models. However, the existing approaches are either too slow or become
numerically unstable when applied to higher order models. Hence, we developed a fast solver
for higher order Mumford-Shah and Potts models, which uses recurrence relations based on
Givens rotations. We further obtained stability results and proved that the proposed algorithm
has a quadratic worst case complexity. In numerical experiments, we demonstrated the bene-
�ts and limitations of higher order Mumford-Shah and Potts models. We further observed that
practical runtimes can be improved to linear ones, when including suitable pruning techniques.

In Chapter 4, we considered the inverse Potts model for joint reconstruction and partition-
ing of images which are given indirectly in terms of measured data only. In contrast to the
previous situation of univariate data given directly, the underlying minimization problem is
NP-hard here. We developed two iterative minimization strategies for the problem. The �rst
approach addressed a (still NP-hard) quadratic penalty relaxation of the problem. It was based
on solving a sequence of easier to handle surrogate minimization problems. These surrogate
problems decomposed into univariate Potts problems which could be solved by the algorithm
presented in Chapter 3. We proved that the algorithm converges to a local minimum of the
relaxed problem which is in the range of what can be expected best in view of the NP-hardness
of the problem. We proposed a projection procedure which constructs a feasible solution of the
original problem from the solutions of the relaxed problem. We further proved that the result
of this procedure is close to a minimum of the original problem given the imaging operator
is lower bounded. The second approach addressed the (not relaxed) Potts problem by iterat-
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ing between running the �rst algorithm for the relaxed problem and updating the relaxation
parameters according to a certain rule. We proved that the thereby obtained algorithm con-
verges to a local minimum of the Potts problem (on subsequences). This result is comparable
to the existing results for sparsity problems for which the subproblems decompose pointwise.
In contrast, the subproblems we had to solve decomposed only linewise. We illustrated the
potential of the proposed algorithms in numerical experiments which included direct parti-
tioning of blurred images, reconstruction from undersampled Radon data and classical image
partitioning.

In Chapter 5, we considered the reconstruction problem in multi-spectral CT. We noted that
the edges in the images of the di�erent energy channels are typically spatially correlated. To
this end, we proposed to employ the multi-channel Potts prior. We showed that the multi-
channel Potts prior provides a strong channel coupling. Most notably, the edges are enforced
to be at the same spatial positions across the channels. We applied the multi-channel Potts prior
by minimizing the multi-spectral Potts model with the ADMM strategy proposed in [183] (Potts
ADMM). Furthermore, we proposed new reconstruction approaches based on the superioriza-
tion of the conjugate gradient method (CG). More precisely, the CG iterates were perturbed
with non-ascending directions w.r.t. the (block-wise) Potts prior which corresponded to tak-
ing steps towards the proximal mapping of the block-wise Potts prior. Superiorizing the CG
method in this way yielded improved results compared to the unperturbed CG method. Further,
as the used variant of the CG method is strongly perturbation resilient, the resulting algorithm
had a theoretical termination guarantee. However, we observed that perturbing the iterates by
taking the proximal mapping of the block-wise Potts prior itself produced improved results.
Based on this observation, we developed a new Potts superiorization approach – Potts S-CG.
Potts S-CG perturbs the CG iterates with proximal mappings and further lets the underlying
linear system evolve, so that the �nal result becomes genuinely piecewise constant. On the
algorithmic side, a signi�cant di�erence between Potts ADMM and Potts S-CG was that Potts
ADMM solved a Tikhonov problem in each iteration, while Potts S-CG had to perform a sin-
gle CG step only. We applied both methods to simulated multi-spectral CT data and compared
them to existing TV-based methods. The bene�ts of Potts ADMM and of Potts S-CG manifested
in sharper edges and mostly higher MSSIM values than the TV-type methods.

In Chapter 6, we considered second and higher order Mumford-Shah models for edge pre-
serving image smoothing. Analogously to the univariate case, the classical Mumford-Shah
model can exhibit the gradient limit e�ect when applied to images with color gradients. To
overcome the gradient limit e�ect, we considered the second order Mumford-Shah model. In-
stead of penalizing the squared Euclidean norm of the gradient of the image in each point,
the second order Mumford-Shah model penalizes the squared Frobenius norm of the Hessian.
As a result, the functional penalizes deviations of the image from a�ne-linear functions out-
side its edges (instead of deviations from constant functions). As a �rst step, we reformulated
the second order Mumford-Shah model in terms of Taylor jets which allowed for an explicit
modeling of the partial derivatives. After discretization, we obtained a family of discrete jet
formulations of the second order Mumford-Shah model. Towards generalizations, we also re-
formulated general higher order Mumford-Shah models in terms of Taylor jets and pointed out
the considerations needed to discretize them. We developed an algorithm based on an ADMM
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splitting approach such that the emerging subproblems decoupled into univariate segmented
jet estimation problems. For these subproblems, we derived an e�cient solver based on our
solver for univariate higher order Mumford-Shah models. In numerical experiments, we il-
lustrated the advantages of the proposed jet-based discrete formulation by comparing it with
a (not jet-based) discretization in terms of second order �nite di�erences only. Further, we
compared our approach to the existing approaches to the second order Mumford-Shah model
qualitatively and quantitatively. Eventually, we showed the potential of the proposed method
in connection with edge detection.

Finally, Chapter 7 was concerned with the a�ne-linear Potts model for the image partitioning
problem. The classical Potts model approaches the image partitioning problem by segmenting
the image domain into segments of constant color intensity. This can lead to oversegmentation,
when applied to images with linear trends as the Potts model introduces additional (spurious)
segments to account for these trends. A natural way to allow for linear trends is the a�ne-
linear Potts model. Compared with the (classical) Potts model, the result is not constant within
the segments but a�ne-linear. Towards an algorithm, we lifted the problem to the jet space
so that the solutions corresponded to piecewise constant Taylor jets. We approached the dis-
crete problem –which was now a piecewise constant problem in terms of Taylor jets– with
an ADMM splitting approach. The emerging subproblems decomposed into univariate seg-
mented jet problems for which we derived an e�cient solver based on our solver for univariate
higher order Potts problems. We conducted a quantitative comparison with the state-of-the-
art method based on iterative repartitioning using graph cuts. The proposed method achieves
lower mean functional values and is signi�cantly faster.

Future work

An interesting area of future research is the application of univariate higher order Mumford-
Shah and Potts models for the joint reconstruction and segmentation of signals given indirectly
in terms of measured data. Towards an algorithm, our solver in Chapter 3 could be the basis for
a method which minimizes a sequence of surrogate functionals [201] or for an ADMM splitting
approach [182]. Further, as data can be corrupted by noise other than Gaussian white noise
(e.g., Laplacian noise or impulsive noise), another interesting topic might be the extension to
general data terms (e.g., a data term using the `1-norm) [182].

Similarly, one might extend our approach to the second order Mumford-Shah model in Chap-
ter 6 to other data terms and to indirectly given images, respectively. This has already been
done for the classical Mumford-Shah model in [101]. There, the additional challenge of gen-
eral data terms and forward operators, respectively, was accounted for by solving an additional
Tikhonov problem in each iteration. Next, one could consider other smoothing penalties than
the squared (weighted) Frobenius norm of the Hessian. Examples for such smoothing penal-
ties are the (entry-wise) `1-norm or Schatten norms of the Hessian. Furthermore, in Chapter 6
we derived jet formulations of general higher order Mumford-Shah models and discussed on
how to derive corresponding discretizations. Deriving algorithmic approaches to higher order
models and studying their performance are another interesting topic for future research.

Another interesting topic corresponds to the application of the proposed Potts S-CG method
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of Chapter 5 to further imaging problems. Examples may be blurred images, MRI, PET, image
partitioning or the fusion problem for multimodal measurements. Further, it is an interesting
topic to study the approach w.r.t. theoretical aspects. As stated in Remark 5.7, it is an open
question whether the perturbations obtained from evaluating the proximal mapping of the
block-wise Potts prior correspond to additive non-ascending directions. Finally, we think it
might be rather fruitful to use the (second order) Mumford-Shah prior as well as the a�ne-
linear Potts prior in superiorization approaches. The proposed splitting scheme in Chapter 5
might serve as a basis.

A further potential direction of future research corresponds to studying a piecewise quadratic
Potts model for the image partitioning problem. In particular, it would be interesting to deter-
mine if the extension to quadratic segments could improve upon a�ne-linear segments, which
we considered here. A reformulation in terms of Taylor jets as for the a�ne-linear Potts model
could be a starting point. Analogously to the second order Mumford-Shah model, one could
extend the approach of Chapter 7 to indirectly given images and general data terms; such ex-
tensions have been considered for the Potts model in [183].

On the theoretical side, an interesting topic of future research is to complement our empiri-
cal observation of convergence of the proposed algorithms in Chapters 6 and 7 by a theoretical
convergence analysis. A starting point may be [197], which is concerned with the global con-
vergence of the ADMM in non-convex and non-smooth optimization.
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A. Appendix

In the following, we provide de�nitions related to the continuous Mumford-Shah and Potts
models.

De�nition A.1 (Hausdor� measure, [94]). Let m < n. Denoting the diameter diam(B) =
sup{‖x − y‖, x ,y ∈ B} of a nonempty set B ⊂ Rn , we de�ne for a set A ⊂ Rn ,

Hm
ε (A) = inf

{ ∞∑
i=1

α (m)
(

1
2 diam(Bi )

)m
: A ⊂

∞⋃
i=1

Bi , Bi ⊂ Rn , diam(Bi ) < ε
}
, (A.1)

where α (m) is the volume of m-dimensional unit sphere and the in�mum is taken over all
countable covers (Bi )i ∈N ofA by sets Bi of diameter strictly smaller than ε . Them-dimensional
Hausdor� measure of a set A ⊂ Rn is then given by the limit

Hm (A) = lim
ε→0
Hm
ε (A). (A.2)

Please note that the limit in (A.2) exists sinceHm
ε (A) is monotonically increasing for decreasing

values of ε . However, the limit is not necessarily �nite (e.g.,m = 1, n = 2, A = R2).

De�nition A.2 (Distributional gradient). For an open subset Ω ⊂ Rn we let C∞0 (Ω) be the
space of test functions, i.e., C∞0 (Ω) is the space of in�nitely di�erentiable functions on Ω with
compact support. Then the space of distributions is the space of continuous linear functionals
d : C∞0 (Ω) → R, that is, the dual space C∞0 (Ω)∗. The gradient of a distribution d is the vector
of distributions de�ned via ∇d (ϕ) =

(
− d (

∂ϕ
∂xi

)
)n
i=1

. Since a locally integrable function f :
Ω → R can be understood as a distribution df by df (ϕ) =

∫
Ω
f (x )ϕ (x )dx for all ϕ ∈ C∞0 (Ω), its

distributional gradient is understood as ∇df and we write ∇f = ∇df since the distributional
gradient of a di�erentiable function coincides with its usual gradient.

De�nition A.3 (Functions of bounded variation). Let u ∈ L1 (Ω) be an integrable function on
an open and bounded domain Ω ⊂ R2. The total variation of u in Ω is given by

V (u,Ω) = sup
{ ∫

Ω
u (x ) divϕ (x ) dx : ϕ ∈ C1

c (Ω,R
2), ‖ϕ‖L∞ (Ω) ≤ 1

}
, (A.3)

where ‖ · ‖L∞ (Ω) is the essential supremum norm. The space of functions of bounded variation
BV (Ω) is de�ned as those integrable functions on Ω which have �nite total variation, i.e.,

BV (Ω) = {u ∈ L1 (Ω) : V (u,Ω) < ∞}. (A.4)

To �x ideas, ifu is continuously di�erentiable, then: u ∈ BV (Ω) if and only if
∫
Ω
‖∇u‖2 dx < ∞.
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De�nitionA.4 (Special functions of bounded variation). Letu ∈ L1
loc (Ω) be a locally integrable

function on the open domain Ω ⊂ R2. Then u is a special function of bounded variation, i.e.,
u ∈ SBV (Ω), if:

(i) There are measurable functions f ,д : Ω → R2 such that
∫
Ω
‖ f ‖ dH 2+

∫
Ω
‖д‖ dH 1 < ∞,

whereH 1,H 2 are the one- and two-dimensional Hausdor� measure, respectively.

(ii) The equality
∫
Ω
u divϕ dH 2 =

∫
Ω
〈ϕ, f 〉dH 2 +

∫
Ω
〈ϕ,д〉dH 1 holds for all ϕ ∈ C1

c (Ω,R
2).

We note that SBV (Ω) is a proper subspace of BV (Ω).
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