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Let A be a Banach algebra. The Cohen factorization theorem [5] states 

that A factorizes (i.e., every element of A can be written as a product) if A 

has a bounded left approximate identity. One cannot hope for such a 

factorization theorem under the weaker assumption of an unbounded 

approximate identity {ep}, even if the norms ||^ll tend to infinity at a 

prescribed rate. This can be seen for instance by looking at the Banach 

algebra given in Remark a) after Theorem 1, since for any net {dp} in [1, oo) 

with dp-+ oo, it contains an approximate identity {ep} with He^U — dp. Despite 

of this fact that for unbounded approximate identities no global factorization 

result is possible, one still can obtain “local” results, i.e., factorization for 

specific elements. This is what we shall consider. The main result is Theorem 4. 

Roughly speaking, it states that the elements of certain approximation spaces 

in the Banach module X can be written as products.

A simple proof of Cohen’s factorization theorem is added in the 

Appendix.

Throughout this note, A denotes a real or complex Banach algebra, X a 

left Banach - A - module with module constant x 1: ||ox||x x ||a|| ||x||x. The 

norm closure of a set B is denoted by B.

Theorem 1. Let xeX be such that:

(1) There are a < 1 and K > 0 such that for every £ > 0 there is eeA with 

||e|| K •£-“ and ||ex — x||x < £.

(2) If Et —>■ 0 is a strictly decreasing sequence of positive numbers, there is a 

sequence {ef in A where et corresponds to according to (1) (with cl and K 

fixed) and ei+1 et = e/ei+1 = et.

Then for every £ > 0 there are aeA and ye Ax <= X such that

(i) x = ay;

(ii) Ilk - 7c||x < £.
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(It actually suffices to satisfy the assumptions for just one suitable 

sequence [s,} and a corresponding sequence {ej, that is: (1) should hold for 

£,• and et, and one should have ei+lei = ejei+1 = et. One may for instance 

consider = n~p where 1 < /? < a-1.)

Remark, a) The above theorem is best possible in the following 

sense: If in (1) the norm estimate Ks~a with a < 1 is weakened to the 

theorem fails. We see this from the following example. Let A be the space of 

all bounded functions f: [1, oo) -» R such that vanishes at infinity.

With pointwise operations and norm ||/|| = sup{|t/(t)| | te[l, co)}, A is a 

Banach algebra. Consider the function gif) = t~2. We have ge A. Let e > 0 

and e be the characteristic function of [1, 1/e]. We have \\eg — g|| = £ and ||e|| 

= l/£. Condition (2) of the theorem is also clearly satisfied, so g satisfies the 

assumptions of the theorem with a = 1. But it is impossible to write g as a 

product h-k with h, keA, since 1 = t~2-t2 does not vanish at infinity.

b) One cannot hope in general to obtain all factorable elements of a 

given Banach -A - module X by the above theorem, even if X = A. If ze A is 

factorizable, it need not be contained in the closure of Az (see [12]).

A proof of Theorem 1 can be obtained by refining and modifying to 

some extent the proof of Cohen’s theorem given in the Appendix.

Theorem 2. Let X be a Banach module over a Banach algebra A. Let 

xeX be such that there exist a sequence {en}n^i in A, some kcNu{0}, 

a 0, ft > 1, and positive constants Kt, K2 such that

(i) enej = e7e„ = en for j n + k;

(ii) ||e„x-x||x Kr 2~nan~p for n 1;

(in) WenWA^K^n  ̂for n^l.

Then there exist sequences {afjff in A and {yfjff in X such that 

2k + 1

x = a^j. In particular, one has x — ay in the case k = 0.

j= i
Proof. Set = 0 for m^O and dn = en-en_i for neZ. Let 

n + k

d* — dj (i.e., dn &n + k ^n-k— 1)'

j=n-k

As a consequence of (i) we have

dnd* = d*dn = dn for all n,

dn d* = df dn = 0 for \n-j\ 2k +1.

From (ii) we obtain

(4) ll^n+i xllx 2 na n f

so converges absolutely and

(5)

GO

x = lim enx = £ dnx.

n= 1
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According to (iii) we have for n>k+l

(6) \\d*\\A^ K22{n+k}a(n + krp + K22{n~k~1)a(n-k-irP

K32na(n-k-iyp.

Define now for j = 1, ..., 2k + 1

Ij = {/ + (2k + 1) i | i = 0, 1, 2, ...},

(7) xj=^dnx.

nelj

In view of (3) we can write

(8) *j = £ (2-“<JJ)(2”d,x)

ne/j

= (Z 2"narf*)(E 2nadnx) = ajyj.

nelj nelj

The two series in brackets converge absolutely because of (4) and (6). So we 

obtain

2k+1 2k+1

x = Z xi= Z ajyj-

j= 1 J= 1

Remark, f) Since the coefficients of d* and dnx in (8) can be changed 

for finitely many n (subject to the condition that, for fixed n, the product 

2k+ 1

stays 1) we can achieve Z kj to be arbitrarily close to x. In particular, if 

i

k = 0 we can choose y arbitrarily close to x. By doing so, the norm of the 

first factor may possibly be increased.

g) Suppose k = 0. As in the case of Cohen’s factorization theorem it is

possible to factor large sets M cz X over the same element oe4: Whenever 

all xeM satisfy the required estimates for the same sequence in A,

the corresponding first factor can be supposed to be the same.

h) Suppose k > 0. If we consider the subsequence e'n = enk, then (ii) and

(iii) in the above theorem are still satisfied (with a replaced by kct) whereas (i) 

is improved to e'n e'n+ x = e'n+ x e'n = e'n (i.e. we have k = 1 for the new 

sequence). Hence we obtain

Corollary 3. Under the hypotheses of Theorem 2 the element x can be 

written as a sum of three products: x = aY yx + a2 y2 + a3 Vi (independent of 

k 1).

Looking at the proof of Theorem 2 we see that it works in more general 

cases. Roughly speaking we need that the product ||e„IL ||e„x-x||x goes to 

zero sufficiently fast. For instance we have the following theorem:

Theorem 4. Let X be a Banach module over a Banach algebra A and 

let xeX be such that there are a sequence in A, a positive sequence 
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c = in a strictly positive sequence r = and constants KeR+, 

keNufi} satisfying the following conditions:

(i) ejen = enCj = en for j n + k;

(ii) ||e„x-x||x < for n^l;

(iii) INL rn for n 1;

(iv) K~ 1 rn < rn+ j + Krn and K1 cn < cn+1 Kcn for n 1.

2k + 1

Then there exist elements a^A and y^X such that x = E aiXi-

i = 1

In particular, x = ay in the case k = 0.

Proof. We may assume {cn} to be strictly positive. Repeat the proof of

Theorem 2. The estimates (4) and (6) are now replaced by

(4') ||J„x||x Kir„

and

(6') \m\A^K2rn.

We have

Xj = ( X rn 1 Cn d*) ( E Cn 1 dn *), 

nel j nelj

the two series in brackets converging absolutely.

We come now to the applications of the individual factorization results. 

The first concerns Banach spaces of measurable functions with an algebra A 

acting by pointwise multiplication. More precisely, let (£2, X, p) be a cr-finite 

measure space, and let (X, || ||x) be a solid BF - space of (classes of) locally 

integrable functions on £2. Recall that (X, || ||x) is called solid whenever for 

feX and any locally integrable function g on U satisfying fg(z)\ + |/(z)| 

/z-almost everywhere it follows that g belongs to X and satisfies ||g||x + ||/||% 

(i.e., X is a Banach module over Lc0(f2, Z,//) with respect to pointwise 

multiplication). Under these conditions we have

Theorem 5. Let f eX and p 1 be given. Suppose there exist K > 0 

and d>l/p+l such that for any neN one can find gnEX satisfying 

^(supp gn) < 2" and \\f—gn\\x^K2~n/pn d. Then there exist hE Lp(Q, X, p) 

and gEX such that f = hg. In the case X = Lq(Q, X, p) it is sufficient to 

suppose d > 1/q+l/p.

Proof. We choose A := UolTfi. X, p), with its natural norm || ||p + 

+ || ||oo as Banach algebra, operating on X by pointwise multiplication. Let 

n
en be the characteristic function of (J suppgt. Then one has ||e„IL 1 + 

k = 1

+ 2("+1)/p < 4 • 2nlp, and using the identity gn = engn

Wf-f^nWx II/- 9n\\x + llen (dn ~7")l IX
^(l+l|en||oo)ll/-^lx^2K2-^n-d
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for n 1. If one has d > 2, Theorem 4 applies immediately. That d > 1 + 1/p is 

still sufficient follows from the proof of the theorem, using the fact that a sum 

OO CO

Y fj is convergent in LP(Q, X, p) if £ ll/jllp < oo and the functions fj are 

j= i J= i
supported by pairwise disjoint, measurable sets. A similar argument applies to 

the additional remarks concerning the special case X = Lq(Q, X, p).

Remark, k) The assumption d > 1/p+l, respectively d > 1/p+l/q, in 

the theorem is the best possible in the following sense: If we admit 

instead of “>”, the theorem fails. This is seen from the following example: 

Let p, qe[l, oo), d = 1/p+l/g and X = lq(N). For keX define 

ck = 2~ndn~d if 2”^k<2"+1.

Let f = {ck}keN and gn = enf where en is the characteristic function of 

{1, ..., 2"}. We have

= QT 2k(1 ~dq) k~dq]l/q 

n

n

(note that 1— dq = — q/p < 0) 

n~d-K(X~dqy'lq = K2~nlprTd

nr-i/jia^E2‘■(2-“ a-]1'-

So the assumptions of Theorem 5 are satisfied, but f cannot be written as a 

product since it is not in /1/d:

oo oo

^2k-(2-kd/c-d)1/d = ^k-1 = oo.

i i

l) The members of (X, || ||x) satisfying the assumption of the theorem 

for some fixed d > 0 constitute a so-called approximation space (cf. [15]). It 

is a quasi-Banach space with respect to a suitable quasi-norm.

m) Sequence spaces (more precisely: solid BK- spaces) are the most 

simple examples for the above situation.

n) It is easy to replace Lp above by a suitable Lorentz space L(p, q) [2], 

Orlicz space [11], Lorentz-Zygmund space [1], or any other suitable 

rearrangement invariant solid BF - space Y on (Q, X, p) [13], Whether such 

a space Y can be used or not depends on its fundamental function: <j(t)

IcmIy, where M is any measurable subset of <2 with p(M) = t.

o) A careful repetition of the proof of the theorem reveals that, for
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example, in the case X = Lq the sequence n~d may even be replaced by any 

positive sequence 1/s = 1/p+l/g. If however instead of “{cn}e/s”

we assume “{c„}e/r for all r > s\ the theorem fails as is seen from the 

example given in a).

p) Using Plancherel’s theorem and the Fourier transform the special 

case X = L2(G) can be reformulated as follows:

Corollary 6. Let G be a locally compact abelian group, and let ft be 

the Haar measure on the dual group G. Suppose that for f g L2 (G) there exist 

{dn}n>i^^ and a sequence in L2(G) satisfying /7(suppX) < 2" and

\\f~fnW2 dn2~n/2. Then f belongs to the Fourier algebra A(G)^C°(G), 

more precisely: f is equal almost everywhere to some f'eA(G) (i.e. f'cL^G)).

Remark, q) For G = T, the unit circle, the above result constitutes 

one direction of a result due to S. Steckin (cf. [18], [15]).

A result in a similar direction is the following one:

Theorem 7. Let G be a compact, abelian group. Let s 2 be fixed. If 

for some f eLp(G) and a suitable constant K > 0 it is possible to find for each 

heN a trigonometric polynomial tn with at most 2n nonzero (Fourier) 

coefficients, such that

II/- dip K2~enn~d for n^l, q := l/s' +|l/p—1/2| and some d > 2, 

then there exist hELs(G) and gELp(G) such that f — h*g.

Proof. Let en be a trigonometric polynomial such that en*tk — tk for 

k = 1, 2, ..., n. We may suppose that en has at most 2n+1 nonvanishing 

coefficients aj = 1. The norm ||dlp-*p of the convolution operator induced on 

LP(G) by en can be estimated by

forn>l.

The result holds for p = 2, since ||ej|2^2 = ||e„||oo = 1; and for p = 1, co, since 

lldloo-oo = IkJli-i lldli < lldli < 2("+1)/2. The general estimate follows 

therefrom by means of the Riesz-Thorin convexity theorem (complex 

interpolation, cf. [2]). Consequently

II/-/* dip < II/-dip+Id *^-/* dip

<ll/-dlp+ld-/llplldlp^p

<c K22~enn~d-2n[1/p~1/2}.

On the other hand, by the Hausdorff-Young inequality one has 

lldls<lldls'^^32(1-1/s)n.

Theorem 4 now applies to give the result.

At the end of this paper we show that the factorization theorems for 

Lipschitz spaces as given by various authors (cf. [3/4], [16/17], and [20/21]) 



FACTORIZATION IN BANACH MODULES 113

may also be considered as individual factorization theorems in the above 

sense. For the formulation of one theorem in that direction we shall need the 

following notations: G will be assumed to be a totally disconnected locally 

compact group, with a decreasing sequence {Gn}n>1 of compact open 

00

subgroups, satisfying IGn-C G„| < M for n 2, and Q Gn = {e}. We write 

n= i

mn : = 2 (Gn) (Haar measure). X will denote a homogeneous Banach space, 

i.e., a Banach space, continuously embedded in lf0C(G) and being an essential 

Banach module over L1 (G) with respect to convolution (or equivalently: G 

acts on X isometrically by translations and y\-+Ly f is a continuous 

mapping from G into X for any f eX (cf. [9])). For f eX the modulus of 

continuity is then given by m(/, n) : = sup [HLy/—f\\x | yeG„). Our result 

now reads as follows:

Theorem 8. Let G and X be as above. Suppose that for some feX 

there exist d >2 and K > 0 such that

mfp~roj(f,ri)^Kn~d forn^l.

Then there exist heLp(G) and qeX such that f — g*h.

Proof. We consider X as a Banach module over the Segal algebra 

(A, || ||J := (L'nC, || IL + || ||p). If we set en : = m~x cGn, the normalized 

characteristic function of Gn, it is clear that ||e„||4 = l + =: rn, and

condition i) of Theorem 4 is satisfied for k = 0. On the other hand vector - 

valued integration implies

\\en*f-f\\B f \\Lyf-f\\x\eM\dy < «(/, n).

Gn

Therefore Theorem 4 can be applied to give the result.

Remark, r) If one replaces A = L1 n Lp by another Segal algebra 

(S, || ||5), for which one has control of ||ej|s (such as the intersection of L1 (G) 

with certain Lipschitz spaces) one may obtain several variants of the above 

theorem, e.g. factorizations over elements in Lipschitz spaces.

s) As in Corollary 6 factorization results can be used to derive 

Bernstein-type theorems for Lipschitz spaces (observing that A(G) 

= L2(G)*L2(G)). Such results are usually based on a characterization of the 

Lipschitz spaces via decompositions of the Fourier transforms of their 

elements. Making use of these characterizations it is also possible to derive 

various kinds of factorization theorems for Lipschitz spaces or Besov spaces 

on Rn (cf. [19] for a typical example).

Appendix. We include a simple proof of Cohen’s theorem.

If A is a Banach algebra, let Au be the algebra with identity u adjoined 

and norm ||2u + a|| = |z| + ||u||. Let X be a left Banach - A - module with norm

8 — Colloquium Mathematicum 51 
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|| ||x and module constant x^l: ||ax||x < x ||a|| ||x||x. By a left approximate 

identity for X bounded by d 1 we mean a net {ep} in Au with U^H d and 

11^ x — x||x -> 0 for xeX. For fixed y>0 we set Ep = (1 — y)u + yep. Clearly 

[Ep] is again a bounded left approximate identity for X. If y is sufficiently 

yd
small (such that - - < 1), then

1-7

=(W)-‘ f &)'

k=o \ z

00 / yd V
exists and is bounded by (1— y)-1 Y - -  = const, and

k=0\1—y/

l|£/T1x-x|lx = WE/^x-E^EpxWx < const \\x-Ep x||x —> 0,

so {Ef1} is again a bounded left approximate identity for X. For the 

following we fix some small y and the above notation Ep.

Theorem (Cohen). Let A be a Banach algebra, X a left Banach - A - 

module, and let [ep] be a net in A that is a left approximate identity for A and 

for X bounded by d. Then for every xeX and e > 0 there are aeA and ye Ax 

such that

(i) x = ay;

(ii) lly-x||x < £•

Proof. Let xeX and £ > 0. We construct by induction a sequence {£„} 

such that the products En...Ev and Ef1... E~1 x converge to a e A and y e X 

respectively, thus obtaining x = lim En... Er • Ef1... En 1 x = ay. Choose 

n —>oo

Ej = Ep such that ||Ef1 x —< e/2. If Ex, ...,En have been chosen, we 

have En...El = (1 — y)nu + an, with anE A, and we choose E„+1 =Epn+l such 

that

(1) l|£n+i an-an\\

and

£
(2) ||E„+1x-x||x <x||e1-1...E;1||2"+1 '

Then we have

||Er1.. ,E;y x-Ey...E;‘ x||x sc x||Ef1..IIEJ, x-x||x <

so y = lim E^' ...E~l x exists and ||y-x||x < e. Clearly ysAx. Since
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En...El — (l—y)nu + an, we have

En+l(En...EJ = (l—y)nEn+i+En+lan, 

hence

||E„+1 ...E{ -£„... EJI (l-y)"||E„+1-u|| + ||T„+i an-an\\,

so by (1), a = lim En...Ex exists. We have aeA since (1 — y)" w-> 0. Now 

n ->oo

x = lim En... E{ E± 1... E~ 1 x = ay. 

n ->oo

Remark, a) We remind the reader that it was Cohen’s fundamental 

idea to construct, by means of the E,, a sequence of invertible elements 

zned„ such that A (note that a is not invertible) and z~l x converges,

too. It was Koosis (cf. [ 10]) who considerably simplified the proof by noting 

that could be chosen in the form EX...E„. We use En...E] instead, in 

order not to need a two-sided approximate indentity, and we do not return 

to the et- in the proof (except for Remark d) below where it is necessary) since 

working with the E, makes things more obvious.

b) The approximations taken in the proof are canonical because {E^} 

and {Ep1} are left approximate identities. It is clear that an rather than 

En...Ex has to occur in (1), since [EZJ is an approximate identity for A but 

not for Au. So, once the starting-point x = En... Ev E^1... E“ 1 x has been 

chosen, the proof is automatic, if one just uses the obvious facts that {Ep} 

and [Epl] are bounded left approximate identities.

c) It is clear that the proof above also works in the operator setting of 

[6].

d) The assertion

(iii) ||u|| d

is usually included in the above theorem (and has been proved by Cohen, 

too, without being explicitly stated). Assumed (i) and (ii), it is clear that (iii) is 

implied by

(iii') ||a||^d + E

since x = ay may be written as

d d + s

x = ~T-a-—ry.
d + & a

We obtain (iii') together with (i) and (ii) if, in the proof of the theorem, 

we replace the last three sentences by the following: Since En...E{ 

= (1—y)"u + a„, we have

E„+1...E1 = (1 — y)"£„+1 + E„+1 an
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whose A-component a„+1 is (l-y)nye/in+1 + En+1 an, so by (1) we have

||a„+i ...aJI < (l-y)"yd+^.

Hence a = lim un(=lim £„...£,) exists and

00

ll^ll < ll«ill+ E (i-y)”y^+£ d+e 

n= 1

because HczJI = Hye^JI yd. We have

x = lim En... Ej • Er 1 .. .En 1 x = ay.
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