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THE DUAL OF L°°(G) AND RELATED SPACES

COLIN C. GRAHAM, ANTHONY T. M. LAU, AND MICHAEL LEINERT

Abstract. Let X be a Banach space and G a locally compact Hausdorff 

group that acts as a group of isometric linear operators on X . The opera­

tion of x G G on X will be denoted by Lx . We study the set Xc of ele­

ments // G X such that x i-> Lxp is continuous with respect to the topol­

ogy on G and the norm-topology on X. The spaces X studied include 

Af(G)*, LUC(G)*, L°°(G)*, VN(G), and VN(G)* . In most cases, charac­

terizations of Xc do not appear to be possible, and we give constructions that 

illustrate this. We relate properties of Xc to properties of G . For example, if 

Xc is sufficiently small, then G is compact, or even finite, depending on the 

case. We give related results and open problems.

0. Introduction

Let X be a Banach space and G a locally compact Hausdorff group that acts 

as a group of isometric linear operators on X . The operation of x G G on X 

will be denoted by Lx . We denote by Xc or (X)c (depending on how com­

plicated the name for X is) the set of elements /z G X such that x Lx[i is 

continuous with respect to the topology on G and the norm-topology on X . We 

study Xc when X is one of the spaces M(G)*, LUC(G)*, L^\G^ , VN(G), 

and VN(Gf , and (with less emphasis) some other spaces. We also consider 

elements of (I*)c in relation to translation-invariant means on X .

When X = Xc, jt* f is well defined for every /z G M(G) and every f G X . 

We can then define by repeated applications of duality /z * t for all /z G Af(G) 

and all r g X* or X* * . If r g (X*' *)c, we get a second definition of “/z * t,” 

by using the continuity of x h+ Lxt . Those definitions of convolution do not 

always coincide. See [Ru2] for the proof that there are translation-invariant
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means r on L°°(G) for which the two convolutions disagree for absolutely 

continuous //’s.

In addition to discussing continuity properties of translation, we will discuss 

measurability and semicontinuity properties. By weak measurable we mean that 

x , f) is measurable for all f in the space in question and all // in its 

dual space. We call the group action lower semicontinuous if for each x & X 

and each e > 0 , the set {g e G : ||Lgx - x|| > e} is open in G .

Our motivation comes from the well-known fact that M(G\ = L1 (G) and 

from some of the ideas in [GLL],

1. Continuity of translation in A7(G) and M(G)*

Let M(G) denote the space of regular Borel measures on the locally compact 

group G and Af(G)* the dual space of M(G). See [GM] for information about 

M(G).

We denote the set of bounded Borel functions on G by B^G).

Our first theorem consists of a summary of well-known and elementary facts.

There are three general patterns that arise, (i) Xc = X if and only if G is 

discrete (this is usually easily seen), (ii) If Xc is “small,” then G is “small” 

(usually compact), (iii) If Xc is very small (especially if it has the “wrong” 

norm), then G is finite. The specific meaning of the terms in quotes will vary 

with the space X. One also hopes to find that Xc is a “natural” space; but, 

that rarely seems to occur, and in fact “natural” generally seems to coincide 

with “small” or “very small.”

In all cases, the operation of G on X will be translation, or the (multiple) 

dual of translation. Translation can be thought of as convolution with a point 

mass, and we shall often use that point of view. Sometimes left translation will 

appear as L* when a dual of it is being considered.

We begin with a brief study of in § 1, and then turn to (LUC(G)*)c

in §2. Note that our LUC(G) is the space of “right uniformly continuous 

functions” as defined in [HR, vol. 1, p. 275].

In §3, we discuss (£°°(G)*)C. Since L>:j{G)c = LUC(G), the left uni­

formly continuous functions on G, there is nothing more that we can say about 

L°°(G)C. In §4 we deal with VN(G)C. In §5 we consider (VN(G)*)C. For 

the reader not familiar with VN(G), we point out that for a locally compact 

abelian group G with dual group T, VN(G) = LX(JG). Of course, translation 

in VN(G) corresponds to multiplication by a character in L=O(T), so behavior 

at infinity is what is important for continuity. In particular, (Loc(T))c contains 

C0(T) (but is not equal to it, in general).

§6 contains miscellaneous results and open problems. In the Appendix we 

give proofs of (well-known) results that we cannot find in the literature in the 

form we need.

A will denote the spectrum of the C*-algebra being discussed (which algebra 

will be clear from the context).
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Proposition 1.1. Let G be a locally compact group. Then the following hold.

(I) M{G)C = L\G).

(ii) M(Gjc = LUC(G) if and only if G is finite.

(iii) (JWfGff c B^G) if and only if G is discrete.

(iv) (Mfjff D B^G) if and only if G is discrete.

(v) (Af(G)*)c = Af(G)* if and only if G is discrete.

Proof, (i) is well known. See [GM, 8.2.1] for another proof and history. Here

is a simple proof. For v e M(Gf, and f G C00(G), the vector integral 

f f(y)L du exists and coincides with the ordinary convolution f * v , which 

is in L!(G). Hence, v can be approximated in norm by elements of L1 (G), 

and hence v G L^G).

(ii) Let M(Gf = LUC(G), so Lx (G) = LUC(G) by (i). Thus, every constant 

function is in Z?(G), so G is compact. If G were not discrete, then Z?(G) 

would contain functions that are unbounded, and that would contradict the 

assumption M(G)C = LUC(G).

(iii) Let / be the linear functional such that (/,//) = f dpd where pd

denotes the discrete part of p. If G is not discrete, then x e M(Gf , and 

/ ^(G), so one direction of (iii) follows. On the other hand, if G is

discrete, then (Af(G)*)c = M(G)*,M(G) = L^G), and M(G)* = L°°(G). 

This proves (iii).

(iv) If G is discrete, then ^(G) = l'x'(Gdf as we have just seen, and the

assertion follows trivially. If G is not discrete, then there exist f that

are not left uniformly continuous. Such f cannot be elements of (M(G)*)C.

(v) follows from (iii)-(iv), since ^(G) C M(G)* always holds. 

A subspace Y of M(fj) is an L-subspace if it is closed and if p E Y and 

v < p imply v eY .

Proposition 1.2. Let M(G) = fjfi Xa be a decomposition of M(G) into mu­

tually singular L-subspaces which are translation-invariant. Let (fifi be a set 

of left uniformly continuous, uniformly bounded, functions on G. Define x by 

(X , p} = f fadYInp, where Hq is the projection of M(G) onto X . Then 

Z€(M(G)*)C.

Proof. This is immediate.

Proposition 1.3. Let G be a locally compact group. Then the following hold.

(i) If X E (M(Gjfic, then the restriction of x to L\G) agrees with an element 

of LUC(G).

(ii) If G is abelian and x £ AAf(G) is such that x (/, <5(x) * //) is 

continuous for some p with (x, if f 0, then the restriction of x to Md(G) 

agrees with a continuous character on G.

Proof. We leave the proof of (i) to the reader and only sketch the proof of (ii).
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Note that

(z , 3x * /z - p} = (z , 3x){% , p)-(x,lf-

And, of course, (z , is the value of the character z at x e G . 

Proposition 1.4. Let G be a nondiscrete locally compact group. Then the follow­

ing hold.

(i) There exists p E M(G) such that x Lxp is not weak measurable from 

G to M(fP).

(ii) The action of G on M(Gf is neither lower semicontinuous nor weak* 

measurable from G to M(Gf .

Remark. The action of G on M(Gf is always lower semicontinuous, since 

M(fj) is the dual space of CfG), where the action is continuous. See [GLL] 

for details.

Proof. We first prove the nonlower semicontinuity. Let g E G, g f e, and 

define 0 E M(Gf by {f, p) = p({e}) - //({g}). Then

(2 for x = g, g-1 ;

\\Lx(b - </>\\ = j 1 for x f e, g, g~l ;

I 0 for x — e .

Therefore {x : \\Lx0 - 0|| > 3/2} is not open and the action of G is not lower 

semicontinuous.

We now prove the nonmeasurability. We assume the axiom of choice, of 

course, so that there is a nonmeasurable subset E of G (see Lemma A.2 for 

a formal statement and a sketch of a proof). Let z S M(Gf be such that 

(Z , p) — 0 for all continuous p E M(G) and (z > if = p{E} for all discrete p . 

Let p = J(e) where e is the identity of G. Then x (Ex%, p) — (z > Lxlf 

is the characteristic function of E, so x Lxp is not weak measurable and 

x Lxx is not weak* measurable. 

Remark. An alternative proof of the nonlower semicontinuity can be obtained 

by adapting the nonmeasurability proof, as follows. If, instead of being non­

measurable, E is a dense subgroup without interior (see Lemma A.l), then 

||LvZ - zll = 0 if x E E and ||LXZ - Zll = 1 if * £ E. The nonlower 

semicontinuity follows at once.

2. Continuity of translation in LUC*

Let LUC = LUC(G) denote the space of left uniformly continuous functions 

on the locally compact group G. Then LUC is a commutative C*-subalgebra 

of L°°(G), and therefore LUC has a maximal ideal space (spectrum) A = 

ALUC(G). The dual space LUC* = LUC(G)* is the space M(A) of regular 

Borel measures on A. The group action on LUC(G)* is weak* continuous (that 

is obvious) and hence lower semicontinuous [GLL],
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Proposition 2.1. Let G be a locally compact group. Then

(LUC(G)*)c = LUC(G)*

if and only if G is discrete.

Proof. Point evaluation at g e G is an element of LUC(G)* . Of course, if 

x e G and x f e, then there exists f e LUC(G) such that \\f\\ = 1 , f(xg) = 

1 , and /(g) = -1 . Therefore ||L*dg - <5g|| = 2 . Proposition 2.1 now follows.

Proposition 2.2. Let G be a locally compact group. Then (LUC(G)*)c is an 

L-subspace of LUC(G)*.

Proof. Note that LUC(G) is a commutative C*-algebra, so

LUC(G) = C(ALUC(G)) and LUC(G)* = Af(ALUC(G)),

where ALUC(G) is the maximal ideal space of LUC(G). It follows that 

LUC(G) is dense in L\p) for every p e LUC(G)*. Thus, it will suffice 

to show that if p & (LUC(G)*)c and / e LUC(G), then fp e (LUC(G)*)c, 

which is a 2 - £ argument and is left to the reader. 

We will use the following lemma in the proof of Proposition 2.4.

Lemma 2.3. Let W be a translation-invariant closed subspace of LUC(G). Let 

p e (Bz*)c. If X is a translation-invariant subspace of L°°(G) containing W , 

then there exists u e X* such that the restriction of v to W agrees with p .

Proof. Indeed, (IF )c is a Banach module under convolution by L (G). The 

continuity of translation means that the approximate units of L (G) are ap­

proximate units for the module action. The Cohen Factorization Theorem [HR, 

vol. II, pp. 268-270] applies, and we can write p — f * p , where / e Ll(fP) 

and p e (H/*)c. Let / be an extension of p to an element of LUC(G)*, and 

define v e (PU*)c by (^, g) = (/,/* g) for g e W. Since, for / e Z? (G) 

and g e W, the vector integral f f(y)Lygdy is norm-convergent, and since 

d> commutes with this integral, we have u — p on W . 

Proposition 2.4. Let G be a locally compact group. Then (LUC(G)*)c = L{{G) 

if and only if G is compact.

Proof. If G is compact, then LUC(G) = C(G), LUC(G)* = M(G) and there­

fore (LUC(G)*)c = G\G) by (the proof of) [GM, 8.3.1] or Proposition 

l.l(i).

If G is not compact, then C0(G) does not contain nonzero constants. Define 

the linear functional p on C © C0(G) by ft, a + /) = a, for all a e C and 

f G C0(G). Use Lemma 2.3 to extend p to an element (call it p also) of 

(LUC(G)*)f. Since p annihilates C0(G), p Ll(ff. □

Remark. We may extend Proposition 2.4 by the following: G is compact if 

and only if every element of (LUC(G)*)c is either in Z?(G) or absolutely 
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continuous with respect to a translation-invariant mean on LUC(G). As we 

shall see in Theorem 3.10 (with PF = LUC(G')), all noncompact groups G are 

such that there exist /z g (LUC(G)*)c which are singular with respect to all 

translation-invariant means.

Lemma 2.5. Let G be a nondiscrete locally compact group. Let x g ALUC(G) 

and U be a neighborhood of the identity e of G. Then there exist an infinite 

set of g G U such that L x f x and the L„x are distinct. 
o 6

Proof. See [GnL] for an argument that proves that there exists one g g U such 

that Lgx x. We will use that assertion in what follows. We may suppose 

that U is a compact neighborhood of e. Now, suppose to the contrary that 

{Lgx : g G U] — {%j, ... , xn} for some integer n > 1 . Fix 1 < j < n and 

consider the set Xj = {g : Lgx = xy}. Then Xj = n<eLUC(G){£ • J\Lgx) = 

/(x)} . Each of the sets in the intersection is closed, since we are considering 

LUC(G). Hence, Xj is closed. Hence, the set U is a finite union of the closed 

sets X{, ... , Xn . One of those sets, say X{ , must contain a neighborhood W 

of some element gQ . Let F be a neighborhood of e such that VW C X{ . 

Then Lgx = xl for all g G W. But there exists h G F such that Lhxx x{ . 

But then LhLgx x{ , a contradiction. 

Theorem 2.6. Let G be a nondiscrete locally compact group and let p be a 

measure in LUC(G)* with a nonzero discrete part. Then p is not an element 

d/(LUC(G)*)c.

Proof. Let p = a-X- + oo, where the x] e A and co is a continuous 

measure. We may assume ax = max|a | > 0. Let 0 < £ < Oj/5 . Choose an 

integer k > 0 such that ffj>k |o;| < e • Choose disjoint compact neighborhoods 

Fj, ... , Vk of xl , ... , xk . Let U be a compact neighborhood of e such 

that UXj c F for 1 < j < k. By Lemma 2.5, there exists g G U such 

that gx{ X; . Since LUC(G) = C(A), there exists f G LUC(G) such that 

f = 0 outside of V{, f \f\ doo + f \ f\ dLgoo < e , ||/’||oo = 1, f(*f) = 1, and 

/(gXj) = 0.

Then

||g/z-//|| > \{gp- p, f)\ > Ictjl -2e-2e > laJ/5. 

3. Continuity of translation in L

We begin the study of L°°* with a summary of some old results about con­

tinuity and measurability. First, though, we remind the reader that L°° may 

be identified with the set of continuous functions on a compact space, so L°° 

may be identified with the space of all regular Borel measures on that same 

space. Hence, the usual notions of absolute continuity and singularity apply to 

elements of L°°* .

Proposition 3.1. Let G be a locally compact group. The following are equivalent'.

(i) G is discrete.
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(ii) L°°(G)f = L°°(G).

(111) (L°°(G)*)C = L°°(G)*.

595

Proof. The equivalence of (i) and (ii) amounts to the (well-known) assertion 

that not every bounded measurable function on a locally compact group is con­

tinuous, except when the group is discrete. For the equivalence of (i) and (iii), 

let p be any element of L°°(G)* whose restriction to C0(G) is evaluation at 

the identity e of G. Then ||£v/z — /z|| = 2 (just take the supremum against 

elements of C0(G) whenever x f e). 

Proposition 3.2. Let G be a locally compact group. If G is not discrete, and 

G is amenable as a discrete group, then there exist p, v g L°°(G)* such that 

x Lxp is not weak* measurable as a function from G to L°°*, and x Lxv 

is not lower semicontinuous.

Proof. The assertion about nonmeasurability is a restatement of a result of 

Rudin [Ru3], Here are the details. We may assume that G is cr-compact. 

Let N be a compact normal subgroup of G such that G/N is metrizable and 

nondiscrete. (For a proof of the existence of N, see Lemma A.4.) By [Ru3], 

there exists f G L^IG/N') such that for every f : G/N [0, 1], there exists 

p G LLxfG/N) for which </>(x) = (/, Lxp) for all x e G/N. The standard 

duality argument (using the canonical inclusion L°°(G/N) c L°°(G)) shows we 

may identify f with an element of £°°(G) and p with an element of A£°°(G). 

[Indeed, the Silov boundary of L°°(G/N) is the entire maximal ideal space and 

L°°(G/N) can be identified with a closed subalgebra of £°°(G). Thus, point 

evaluations lift from the maximal ideal space of L°°(G/N) to £°°(G).] We let 

</> be the characteristic function of a nonmeasurable subset of G/N , so that the 

inverse image E' of E in G is nonmeasurable. This establishes the assertion 

of nonweak* measurability.

For the nonlower semicontinuity, we let HQ be a countable dense subgroup 

of G/N and let H be the pre-image of Ef in G. [Such If exists because 

G/N is cr-compact and metrizable.]

Let f G L^IG/N) C £°°(G) and r G A£°°(G) be such that

Let {ma} be a net of discrete measures on H such that for every x G H, 

\\Lxma - ma\\ 0. (Such a net exists by the amenability of Gd .) Let v be 

a weak* accumulation point of {ma * r}. Then Lxv = v for all x e H . Of

(L t , f) = f lfxeHoN'’ 

I 1 if x £ H0N.

This implies that

course,

(Lxv , f) = lim(£ m f) = / 0

1.1 if x H .

{x : \\Lxv-v\\ > 1/2} D {x : \(Lxv - u, f)\ >\/2} = G\H, 
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and

{x: \\Lxu-v\\ > 1/2} CG\H.

Since H is dense and without interior, the nonlower semicontinuity follows. 

Remarks, (i) A result of Talagrand [T] can be used to give a different proof of 

the assertion about nonmeasurability in Proposition 3.2(ii). The result is this: if 

Martin’s axiom is assumed, then a function f g L'fG') is Riemann integrable 

if and only if for every // G Lx(Gf, x (Lxp, f) is measurable.

(ii) For R and T, there are more constructive proofs of the assertion about 

nonlower semicontinuity in Proposition 3.2; see Theorem 3.4(ii)-(iii).

(in) In all cases, L (G) C (L (G) ) . We have not been able to characterize

(iv) Since translation is continuous for the predual of L°°(fP), translation 

is lower semicontinuous on L°°(G). But the failure of weak* measurability 

in L°°(G)* implies the failure of weak measurability of translation in £>O(G). 

Hence, lower semicontinuity does not imply weak measurability.

We now show that the study of continuity under translation of measures 

fi on AL°°(G) for a locally compact group G can be reduced to the case of 

nonnegative measures.

Proposition 3.3. Let G be a locally compact group and let p e L°°(Gf. Let 

p = px - p2 + i[p2 - pf) denote the decomposition of p where the Pj are all 

nonnegative, px ± p^, and p3 L p4.

(i) If x Lxp is continuous, then x Lxpt G continuous for j — 

1,...,4. A

(ii) If x i->- Lxp is continuous, then x Lx|/z| is continuous.

(iii) The converse of (ii) is false.

Proof, (i) Assume that x Lxp is continuous. Fix x G G. It is obvious 

that the real and complex parts of p translate continuously. We may therefore 

assume that p is real. We give the proof for j: = 1 .

Let A denote the set where p and 3X * p are both positive. Let B denote 

the set where p is positive and 3X * p is negative. And let C denote the set 

where p is negative and 3X * p is positive. Then

ll/z - 3x * p\\ > Up - 3x * ZZ)H|| + \\(R - 3X */z)|B|| + ||(/^ - 3X *//)|C||

> IK^ ~ * z^iJI + IIG^ibII + ll(~A *

= II/l -#x *zfII •

This proves the continuity of Lxp{ .

(ii) Assume that x Lxp is continuous. Fix £ > 0. We shall show that for 

each fixed x ,

(3.1) \\Lx\p\ - |/z| || < \\Lxp -p\\ + £.

This will suffice to complete the proof.
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Recall that for each v e L°°(Gf , ||u|| = sup£^=1 |u(Ep|, where the supre­

mum is taken over all finite Borel partitions {E-} of AL°°(G).

We consider ||Lv|/z| - |/r| || . Since = \Lxp\ , we have

£(i,|//|(C) - l/WI) = EI ICaKC) - ■

for any Borel partition {£,}L , and for suitable finite Borel partitions {Ej 

of E., 1 < i < J , we have
7 — —

Eiiuiak^) - < E Eiu^.Ji-Ei^-.Ji
j k k

< E EiC/t(£7. +£
J k

j,k

< \\Lxp-p\\ + e.

Since the preceding holds for all finite Borel partitions {Ej} of AL°°(G;), (3.1) 

follows.

(iii) We give an example. Let G — R. Let w be a translation-invariant 

mean on L°° (R) and let f be an idempotent function in L°°(R) such that 

x is not continuous. (See Theorem 3.4(i) for an example of such an

oj and f.) Let p — (1 - 2/)cu. (Here, “1” obviously denotes the constant 

function.) Then co = \p\, so x >-> Lx\p\ is continuous, while x Lxp cannot 

be continuous. 

Remarks, (i) The conclusion and proof of Proposition 3.3(i) hold for order­

preserving group actions. For example, they hold for LUC(G)* in place of 

L'x:'(G)*. The proof does not hold for translation on VN(G), although a similar 

result does hold; see Proposition 4.1.

(ii) We do not know whether Proposition 3.3(iii) holds for all nondiscrete 

groups.

We now show that (L°°(R)*)c is not an L-space. The method gives an 

alternative proof of the nonlower semicontinuity of the action of R on L°°(R)*, 

as well as that of the action on L°°(T)* : the relevant assertions are included in 

the statement of the next result.

Theorem 3.4. (i) There exists a translation-invariant mean // G L°°(R)* and 

an idempotent function f G L°°(R) such that fp $ (L°°(R)*)C. In particular, 

(L'x>(R)*)c is not an L-space.

(ii) The action of R on L (R)* is not lower semicontinuous.3O

(iii) The action of T on L°°(X)* is not lower semicontinuous.

Proof, (i) We let p be any weak* accumulation point of 2a)]wr} • Then

p is a translation-invariant mean. We define f as the characteristic function 
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of the union E = |J En , where

|10"-l

r„ = 2n + ’U (27/10", (2j + l)/10").

7=0

Then |, because E contains half of each interval {2k, 2k + 1) and

is disjoint from each interval {2k - 1, 2k).

Define 10~r for all j > 1, f = xE, and v = . For 1 < j <

k < oc , we have

\{E + x.) n E n [2k, 2k + 1]| =

which converges to jg(l - x) as k —+ oo .

Thus, fi{{E+Xj)nE) = ^{1-Xj) , and = | + |-^(l-xy)

| - | > 0. It follows that v (L°°(R)*)c.

(ii) We use the notation of (i). For 1 < j < n, let Xj n = . 10 ^- If

k > n and E, )i, v are as in (i), then

\(E + X] n) n E n (27c, 2k + 1)1 = I - ,

so n{{E + xjn) nF) = |(1 -xjn) and

which converges to xy /2 as n —> oo . Thus, for j = 1 (in fact, for every j > 1), 

\\Lx v - i/|| > f (see the end of the proof of (i) above). Since x - < ^ , we have 

Xj n/2 < x./2 < |. The set {x e R : \\Lxv - i'll > |} 1S not open, since it 

contains x{ — |, but not a neighborhood of x{ , as it does not contain any x{ n 

for j > 1 . This concludes the proof of (ii).

(iii) We identify T with the set [0, 1). We let v be a weak* accumulation 

point in L3O(T)* of the sequence of L’-functions fn = nX[\_\/n . The restric-

E 
tion of z/ to C(T) is the point mass at the identity. For k > 1 , let mk = 10 

and pik = ~ ^j/m u ■ Let k be a weak* accumulation point of the .

Then /z is a mean on L°°(T) that is invariant with respect to translation by 

finite sums of the form k j/mk .

Let Cj = [0, 1) \ ULo^fo ’ Io + lAo) • Lor k > 1 , let

Let C = n^=1 Cm . Then C is a compact set with no interior and with nonzero 

Lebesgue measure. (By starting with a large value of m , the Lebesgue measure

1 [10%] +1) 1

2 2-10^ / 9’
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of C could be made to be as close to 1 as desired.) For a E T, 

by an obvious abuse of notation.

We claim that (j, /c) = |C| (the Lebesgue measure of C). Indeed, for 

each fixed k and all m > k, (/^ , zc ) = |CJ , and the claim follows. We 

also claim that, if the sequence {ej} consists mostly of 0’s, with an occasional 

1, then a = ^£;. 10”7 is such that {Lafi, zc) = 0. Indeed, suppose that for 

„22"
j > 1, a, = £r=y 10 . Then La_a^ = fi for j > I, so La= La^ for all

1 < j, I < oc . For fixed j and k = 2j , we have

(La.P'k ■> Q+i) = ’ Q+i) =

2^7+1

because 0 < a-+x < 10” =10” and because all the intervals of the form

2^ 2^ 2^+I

(/ • 10” , / • 10” +10” ) are missing from Ck+X . Since Cm decreases for

increasing m , we have

+/ ■ C) = lim A ■ = 0 •

9^

Thus, ||Efc//-//|| = 0 for all finite sums h = 7-10 , and \\La = |C|

for all 7 . It follows that {x : \\L fi - /z|| > is not open. 

Remarks, (i) If is a translation-invariant mean constructed as in (i) above 

and £ > 0 is given, then there exists a compact open subset E C A£°°(R) with 

measure /z(E) > | - £ and a sequence {gn} tending to zero such that for all 

sufficiently large n , we have

(a) //(£ E n E) = 0 , and
°n

(b) Each gn is the limit of a sequence {gn k} with r(L E n E) > | — £ .

So the set E , which is almost half of the spectrum, behaves in a very strange 

way. To find E, we let rj = 10”w < £ and let E be the union of the sets

x k ~ ' kJ -.k ’ ,k 11 t •

r=0 \ 102 102 )

Then is the Geffand transform of zF . We set gn = 2 an^

gn,k~ TLkr=n 10 2 . The indices n > m are “sufficiently large” in the preceding.

(ii) The proof of Theorem 3.4(iii) above actually shows more. Namely, that 

there is a probability measure /a E E°°(T)* and a compact subset E of AEOO(G) 

such that z£ is the Geffand transform of /c and /j^L^E) = fjJJEk) for all g 

in the (dense) subgroup H of elements of T with finite decimal expansion, 

and there is a sequence g 0 such that j(E E) = 0 for all n . We know 
°n

that L g is carried by Ec (the complement of E) and that ]u(Ec) can be 
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made arbitrarily small by changing C , and that after such changing of E the 

very same gn still works so we also can obtain (by an increasing limit in E, so 

to speak)

0 for all g G H;

2 for suitable g arbitrarily close to 0.

Let co be a translation-invariant mean on G. For a nonzero element /z e 

(LOO(G:)*)C, we have |//| G (L°°(G)*)C by Proposition 3.3(ii), so

*'(/) = y {Lx\p\, /) doo

exists for every f g L°°(G) and = v/\\v\\ defines a translation-invariant 

mean.

Proposition 3.5. Let G be compact, let p G (L°°(Cr)*)c and let co be a transla­

tion-invariant mean on L°°(G). Then p < p

Proof. Clearly, we may assume that p > 0, ||/z|| = 1 , and in consequence 

v =

Let £ > 0 be given. To show that p < pw, we must find 3 > 0 such 

that whenever f e L°°(G) with 0 < f < 1 and {pw, f) < 3 , we then have 

{p, f) < £ . Let U be a compact neighborhood of e such that \\L p - /z|| < | 

for y e U. Because co is a translation-invariant mean, co(Lfi f 0, so the 

number 3 — ^Cjo(U) > 0. Let f G L°°(fj) with 0 < f < 1 and (pM, f) < 3 . 

Then

f) = lG{Lyp, f)da> > j (Lyp,f) dco > m(C) (fi,

Hence, co(U){p , f) < 3 + ^cofLfi = £Co(U). 

Remark. Proposition 3.5 suggests the possibility that fL°°(Gf')c is an L-sub- 

space (band). We have shown (see Theorem 3.4) that is not the case for G = R, 

and we suspect it is false even for (some?) compact groups. Of course, it is ex­

actly in the compact case that establishing this possibility would give a complete 

characterization of (L0O(Gr)*)c as the L-space generated by the translation­

invariant means on L°°(fj). In the noncompact case, we show (Theorem 3.10) 

that the situation is even worse: for many G there are elements of (L^{Gf)c 

that are not absolutely continuous with respect to a translation-invariant mean 

(nor, in many cases, with respect to Haar measure as well—see also Theorem 

3.7). We explore in the remainder of this section variations on those two themes: 

how close is (LOO(G')*)C. to being a band? How close is (L'yKj')*)c to contain­

ing only elements absolutely continuous with respect to a translation-invariant 

mean? See also the Remarks following Theorem 3.4 for some calculations re­

lated to that subspace question.

Lemma 3.6. Let G be a locally compact group. Let x e .

(i) If G is nondiscrete, then 3X (L°°(6!)*)c.

(ii) If 3x. f p for some translation-invariant mean p , then G is finite.

\\LgP ~P\\ =
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Proof, (i) By Lemma 2.5, every neighborhood U of e contains an element g 

such that gx f x . Of course, then ||<5 - = 2 , so (i) follows.

(ii) Suppose first that G is not discrete and that 3X f /z for some translation­

invariant mean /z. Then /z contains a nonzero point mass at x . Let U be 

any neighborhood of e. By Lemma 2.5 (or [GnL]), there exists an infinite set 

g. of points in U such that Lx are distinct. Hence, /z contains an infinite 

set of equal point masses. That contradicts the finiteness of /z and proves (ii) 

for nondiscrete G.

If G is discrete, then for any x e A£°°(G), Lgx f x for all g G G [Rup, 

Corollary 4.8], We now argue as in the nondiscrete case. 

Theorem 3.7. Let G be a unimodular locally compact group with an infinite 

closed discrete subgroup H. Then there exists an element p G (£°°(G)*)c that 

is singular with respect to every translation-invariant mean on G and with respect 

to l\G).

Proof. If G is discrete (so H — G will do), then the theorem asserts the 

existence of /z G L°°* such that /z ± v for all translation-invariant means v ; 

and /z £ £r(G). Choose /z = J(x) in Lemma 3.6(ii), where x G A£°°(G) is at 

infinity, that is, annihilates C0(G).

We thus may assume that G is not discrete. Let U be a compact neighbor­

hood of the identity e of G such that UU~X A H — {e} . Let f be an element 

of L°°{Hf that is singular to all invariant means and to all elements of Ll (H) 

(for example, f = Sx as in Lemma 3.6). For f g £°°(G) and h G //, we 

define £/(/?) = fuhfdu. Then Tf g £°°(/f). We set (/z,/) = {f, Tf). 

Then clearly p e £°°(G)* . Furthermore, we claim that lim v_f> T f — Tf with 

convergence in norm uniformly for f in the unit ball of £°°(G). It will follow 

that p G (£°°(G)*)C.

We establish that claim. Note that for f g £°°(G), a g G, and h g H,

TxfW= I (Lxffit)dt= [ f(t)dt.

JUh Jx~xUh

It follows that

\TxfW

— Il/lloo / %Uh\dt — II/IIqJIAc^U/z •

Since G is unimodular, the last line is independent of h . Since U is compact, 

Xfj G £*(G). The claim now follows.

The linear functional p has one property we use: if f is the characteristic 

function of UH, then f p = p .

Now consider the subspace Y of £°°(G) consisting of functions that are 

constant on each set of the form Uh for h G H , and zero outside UH . Then 

Y is isomorphic to L00 (H). Let v be a positive translation-invariant mean 
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on L°°(G). Then the restriction of v to Y gives a translation-invariant linear 

functional on L°° (Ff), though it may be zero.

We argue by contradiction, and suppose that /z / z/. Then z/ cannot be 

zero on Y . Indeed let f be the characteristic function of UH. Then fp = 

//, as observed above. Let /z = pa + ps, where pa is absolutely continuous 

with respect to z/ and ps is singular with respect to z/. If fv — 0, then 

Pa — fHa fv = 0. Hence fv 0. Hence v is not zero on Y. Hence 

v restricts to a translation-invariant functional (of norm possibly smaller than 

one) on Y . Since the restriction of /z to Y is exactly (f), the restriction of v is 

singular with respect to . Therefore there exists a sequence {fn} of functions 

in the unit ball of Y (which we identify with L°° (//)) such that fnp->p and 

fnv —> 0 (both in norm). Hence v -1 /z.

Furthermore, if /z / L\G), then the restriction of /z to Y is not singular 

with respect to L^H), another contradiction of the choice of </>. □

For abelian groups, we have another version of Theorem 3.7; this is a special 

case of Theorem 3.10; we include it because its proof is different from those of 

Theorem 3.7 and Theorem 3.10.

Proposition 3.8. Let G be a noncompact abelian group and let W be a C*- 

translation-invariant subalgebra of L°°(G) that contains AP(fP). Then there 

exists p e (PF*)C, /z > 0, such that every nonnegative extension of p to L°°(G) 

is singular with respect to every translation-invariant mean on L'fG').

Proof. We first construct p . Let v be a probability measure on the Bohr 

compactification bG of G such that v is singular with respect to mbG and 

such that the support of v in the dual group T of G is compact (here T has 

its regular—nondiscrete—topology). Such a v can be found by taking a Riesz 

product on bG based on a relatively compact sequence in T. Let co be an 

extension of v to LX[G'! • Fix f e Ll(G) such that ||/||j < 2, Suppf is 

compact, and f = 1 on Supp z> . Define a linear functional p on W by

g {(D , f * g) = (p, g).

We claim that p has the required properties. First, because of the convolution 

with f, p G (L3C(G)*)C, so the restriction of p to W is in (fF*)c- Second, 

p extends v . Finally, if p were not singular with respect to a translation­

invariant mean r, then the restriction of p to AP(G) would not be singular 

with respect to the restriction of r. (Here we use the nonnegativity of p .) 

Since v is singular, this cannot happen. 

For some nonabelian groups and with W = APlff, the conclusion of Propo­

sition 3.8 is false, as we now show. Note that SL(2, R) satisfies the hypotheses 

of the next result.

Proposition 3.9. Let G be a locally compact group such that AP(G) is finite di­

mensional. Then every element of AP(G)* is absolutely continuous with respect 

to the translation-invariant mean on APlfj).
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Proof. Let Gap denote the /IP-compactification of G. Then Gap is a fi­

nite group of cardinality n , and AP{G) = C(GP). Define for each f G 

AP(G),mfp) = n~xff{f(x} : x G Gap}, where /(x) = (x, f) for each 

x 6 Gap C AP(fP)*. Then m is the unique translation-invariant mean on 

AP(G). Of course, if // e AP(Gf , then is a measure on the finite discrete 

space G . 

Let CB{G) denote the continuous bounded functions on G .

Theorem 3.10. Let G be a noncompact locally compact group. Let W be a 

translation-invariant C* -subalgebra of L°°(G) such that W = W A CB(G) 

separates points of G. Then there exists a nonnegative p G (JF*)c such that 

the restriction of p to W' is singular with respect to every translation-invariant 

mean on W'. Thus, every extension of p to a nonnegative element of L°°(G)* 

is singular to every translation-invariant mean on L°°(G).

Proof. We let A be the maximal ideal space of W'. For each x G G, let 

denote the point evaluation at x : Iff, h) = A(x) for all h e W1. If x G G, 

then x <f is (weak*) continuous from G -> W'* and one-to-one. Let f f 0 

be a continuous function on G with compact support K . Define p by

(//, A) = y hf)f(t} dt for f g W.

Then p^w, (considered as a measure on A) is nonzero and has support con­

tained in K = {if : x G K} . We claim that m(K) = 0 for every translation­

invariant mean m on W'. Indeed, since G is not compact, there exists a 

sequence {x;} of elements of G such that

x-K n x-K = 0 for if j . 
I J ' J

Hence,

(x/A')~ n {xKf^ = 0 for if j .

If «?((x-Al)~) f 0, with m translation invariant, then m(U;(x;W)~) = oc , a 

contradiction. We claim that x i—> * p is continuous. To see this, fix x G G 

and h G W . Then

ff * p , h) = {p, Lxh) = y hfxt')f(fdt = j hf)f(x~ifdt.

Hence, if x —> x , then 
7 a 7

IIA *a-<5x*All < \\L f-L J\\,-0. 
a a

Since translation-invariant means are nonnegative, restriction of a translation­

invariant mean to W' is a (scalar multiple of a) translation-invariant mean on 

W (if W' does not contain the constants, by a “translation-invariant mean” 

on W' we mean a positive translation-invariant functional on W1 of norm 

one), and the restriction to W' of any nonnegative extension of p will agree 

with p . 
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Let G be a locally compact group, and let L1 (G)° denote the anmhilator of 

£* (G) in £°°(G)**. Since iFif) is a commutative Banach algebra, £°°(G)** 

is also a commutative Banach algebra, £°°(G)* is an £-space of bounded Borel 

measures on the maximal ideal space of Lx (G), and L^G)0 is a weak* closed 

ideal in £°°(G)**. Because of the £-space structure, there exists an idempotent 

z E £°°(G)** such that £'(G)° = z£°°(G)** . We define P to be the projection 

on £°°(G)* given by

(P//,/) = (/z,(l-z)/) for all / e £°°(G).

Lemma 3.11. In the preceding circumstances, the following hold'.

(i) For each x E G,

Lx(hk) = Lx(h)Lfk) for all h , k E L°°(G)**.

(ii) For each x E G, LxLl (G)° = l\G)° , L*xz = z , and LxP - P.

(iii) For each x E G, L*xP = P£* .

(iv) If m is a left translation-invariant mean on L°°(G), then Pm E Ll (G) 

is a positive left invariant functional. If G is not compact, then Pm = 0 and 

(1 — P)m = m .

Proof, (i) This follows from the fact that £°°(G) is weak* dense in £°°(G)**, 

and that multiplication in £°°(G)** is separately continuous in the weak* topol­

ogy.

(n) Let f E l\G)°, f E L\G), and x E G. Then (£**/, f) = {f, Lxf). 

Hence, LxLi (G)° — l\G)° . Furthermore, £**z is also an identity on P^G)0. 

To see this, let f E L ‘ (G)° . Then

(£;*z)(/) = (£7z)(£7 (£;_,/))

= L**(z(L*-i/)) by (i)

It follows that £** z = z .

(iii) We apply (ii) at the second to third equality below. Let x E G, f E 

L°°(G)* , and f E L^G)** . Then

(L’(l - /) = «•- PW L"f) = zL‘‘f)

(iv) Since P is a projection from an idempotent element of £°°(G)**, Pm 

is a positive measure (functional). By (iii), Pm is also invariant. Of course, if 

G is noncompact, then the only invariant element of P1 (G) is the zero measure, 

and (iv) follows. 

Proposition 3.12. Let G be a locally compact group, and let W be a left transla­

tion-invariant W* -subalgebra of L°°(G). If W does not admit a left translation­

invariant mean of the form pf-, where

{pf,h) = f ff)hf)dt forallhEW



CONTINUITY OF TRANSLATION 605

and where f E Ll(fP), then every p, is singular with respect to each left 

translation-invariant mean on W when regarded as measures on A(PF**).

Proof. In this case, W*, the unique predual of W , is exactly {pf : f E L1 (G)} . 

The theorem now follows from Lemma 3.11, which is valid with (G) re­

placed by W.

Corollary 3.13. Let G be a noncompact locally compact group. Then every 

nonzero element of l\G) is singular with respect to every left translation­

invariant mean on L°°(G) when regarded as measures on A(L°°(G)**).

Theorem 3.14. Let G be a locally compact group. Then the following are equiv­

alent.

(i) (L”(G)-)C = L'(G).

(ii) L°°(fP) has a unique left translation-invariant mean.

Proof. If (i) holds, then LUC(G)* = Ll (G) also (by Lemma 2.3), so G is com­

pact by Proposition 2.4. If (ii) holds, then [Ch] shows that G is compact. We 

therefore may assume that G is compact, for both directions of the equivalence.

(i) => (ii) First, remember that (since G is compact), mG is a translation­

invariant mean. If co is a translation-invariant mean, then (by the hypothesis 

of (i)), co E L\G), so co — mG, so there is at most one translation-invariant 

mean on G, and (ii) follows.

(ii) => (i) By the first paragraph, we may assume that G is compact. Let 

p E {L°°{Gff. Since G is compact, Haar measure mG is a translation­

invariant mean, so Proposition 3.5 may be applied, with the conclusion that 

p is absolutely continuous with respect to the translation-invariant mean pm . 

By (ii), pmG = mG. 

Remark. If G is amenable as a discrete group (and therefore amenable in its 

original topology as well), then L°°(G) has more than one left translation­

invariant mean; see [Gnl, Ru2] for a proof. However, for n > 3 and G = 

5O(«,R) the situation is different: L^°(G) has a unique left translation­

invariant mean (see [M, Dr]).

4. Continuity of translation in VN(G)

Let VN = VN(G) denote the von Neumann algebra of the locally compact 

group G; that is, VN(G) is the dual space of A(G). Then VN is a C*- 

subalgebra of the bounded operators on Z?(G).

We define a number of norms and spaces as follows. For f e LfG), define 

ll/llc* = P(/)ll ’ where 2 is the regular representation of G . For f E l\G) , 

we define

||/||c« = sup{||Tiff)|| : n is a continuous unitary representation of G}.

We define C*(G) to be the completion of L[(G) in the norm ||-||c. and C*(G) 

to be the completion of L\G) in the norm || • ||c* . We set BfG) = C*(G)* 
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and B(G) = C*(G)* . It is always the case that 5A(G) is closed in 5(G). If G 

is amenable, then 5(G) = 5/G). We let Cj(G) be the closure in VN(G) of 

L\Gd). Finally, Cj*(G/ is the closure in VN(G^) of L\Gf. Here Gd is G 

with the discrete topology. If Gd is amenable, then C*d(G} = C^lGf [DR1, 

Proposition 3.4],

Proposition 4.1. Let G be a locally compact group. If f and f* are both in 

\TfGf, then f+ G VN(G)c, where f+ is the nonnegative part of Re(/) = 

|(/ + /*)• If G is compact or f normal, the hypothesis on f* is superfluous.

Proof. For the first part, we may suppose that f = f*. Let P be a spectral 

projection of f such that fP = f . Then

l|Gx/-/|| = sup \(JfJ-ff], £)| > sup \fL f - f)Pr], £)|

= sup \{(L f — f — \\L f — f \\.

IMIIKIil<i

This proves the first part. We always have f G VN(G)C if and only if |/*| = 

|//*|1/2 G VN(G)C. [Indeed, f g VN(G)C implies |//*|1/2 G VN(G)C (as it 

is a limit of polynomials in f/*). Conversely, suppose that |/*| 6 VN(G)C, 

and let f = u\f\ be the polar decomposition of f. Then \f*\u G VN(G)c. 

But \f*\u — uu*\f*\u — u\f\ = f. Hence f G VN(G)C.] If f is normal, then 

|/*| = |/|, so / is in VN(G)C if and only if /* is. The same assertion holds 

for compact G and any f e VN(G) by Theorem 4.4(ii) below. 

Proposition 4.2. Let G be a locally compact group. Then VN(G)C = VN(G) if 

and only if G is discrete.

Proof. Point evaluation at g G G is an element of VN(G). Of course, if 

x G G, then there exists / G /1(G) such that ||/|| = 1, f(xg) = 1, and 

/(g) = 0 . Therefore \\L*xdg - > 1 . □

Let G be a locally compact group. Then VN(G) and L (G) are both 

subspaces of the algebraic dual of /1(G) A Cc(G). Hence, the intersection 

VN(G) nL2(G) is well defined. In fact, we can illustrate this more precisely, as 

follows. Let / G L2(G)nL1(G). Then g f fgdx defines a linear functional 

on /4(G), thus giving rise to an element of VN(G) = /1(G)* . On the other hand, 

/ operates on L/G) by convolution, thus giving rise to an element of VN(G). 

These two elements of VN(G) are the same. Thus, such an / can be thought 

of as an element of L (G) n VN(G), and the intersection is not empty.

Proposition 4.3. Let G be a unimodular locally compact group. Then the fol­

lowing hold.
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(i) VN(G)C A £2(G) is norm dense in NbfiGf .

(ii) If VNiff A £2(G) is norm dense in NSfiG}, then G is discrete.

Proof, (i) Obviously,

(4.1) L\G) A £2(G) * VN(G)C C VN(G)C,

and the set on the left side of (4.1) is norm-dense in VN(G)C, since L\G) A 

2 1
£ (G) is norm-dense in £ (G). On the other hand

(4.2) £ (G) A £ (G) * VN(G)C C £2(G),

since if g G /1(G) A £2(G), f e G1 (G) A £2(G), and /z e VN(G)c, then 

l(/^^)l = l^,/^)l<hllvNll/ll2kll2-

In the above, the function f is defined by /(x) = /(x-1). Therefore ||/*/z||2 < 

II^IIvnII/112 • Now W follows.

(ii) Suppose that G is not discrete. Let f G VN(G) A £ (G). We claim 

that ||/- Id > 1 , where Id denotes the identity in VN(G); that is, Id 

is evaluation of / g /1(G) at the identity e of G. Let g e /1(G) be such 

that g(e) = 1 , ||g||^ < 1 , and the support of g is concentrated in a small 

neighborhood U of e . If U is sufficiently small, then (/, g) is near 0, while 

(Id,g) = l. Hence ||/-Id > 1 . 

Theorem 4.4. Let G be a locally compact group. Then the following hold.

(i) C;(G)CVN(G)C.

(ii) VN(G)c — C^(G) if and only if G is compact.

(iii) VN(G)c = £1(G) if and only if G is finite.

Proof, (i) is obvious from the definition. We prove (ii) (for which the assertion 

of (i) provides the motivation). It is obvious that for all groups, C*(G) C

VN(G)C. If G is compact, then £2(G) C £!(G), and so by Proposition 4.3(i),

£!(G) is norm-dense in VN(G)C, that is, VN(G)C = C*(G).

Now suppose that VN(G)C = C*(G), and that G is not compact. Then by 

[Gn3], there exists T g VN(G) and S G Cf (G) such that either ST C*(G), 

or TS C*(G). In the first case, the operator ST g VN(G)c . In the second 

case, the operator S*£* g VN(G)c and £*S* = (ST)* £ cf(G). We have a 

contradiction.

(iii) If VN(G)C = L^G), then C*(G) = £!(G), so £!(G) can be renormed 

as a C*-algebra. Hence G must be finite; see [Ga], □

Corollary 4.5. Let G be an infinite compact group. Suppose that Gd {and hence 

G) is amenable. Then VN(G)C A Cj'(G) = {0}.

Proof. Indeed, by Theorem 4.4, VN(G/ = C*(G). Dunkl and Ramirez [DR1] 

show that if Gd is amenable, then C*(G) A Cd(G) = {0}. 
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Remark. There exist compact infinite groups G such that

C;(G)CCj(G),

so that, in particular,

VN(G)cCCj(G).

For example, SO(n, R) for n > 3 is such a group; see [CLR] (for n > 5) 

and [Dr] (for n = 3, 4). On the other hand, Md(fP) n C/G) = {0} for all 

nondiscrete G as is shown by a 2 - e argument. \Md(fj) is the set of discrete 

measures.]

5. Continuity of translation in VN(G)*

As in §4, we let VN = VN(G) denote the von Neumann algebra of the locally 

compact group G; that is, VN(G) is the dual space of A(G); see [E]. In this 

section, however, we study VN(G)* and (VN(Gf) .

We will sometimes use the three spaces CA*(G), Cj(G), and Cj(G^) as de­

fined in §4.

Theorem 5.1. Let G be a locally compact group. Then the following hold.

(i) (VN(G)*)C = VN(G)* if and only if G is discrete.

(ii) If G is abelian and nondiscrete, then x Lxp is neither lower semicon- 

tinuous from G to VN(G)* nor weak* measurable.

Proof, (i) If G is not discrete, 3e is not in the VN-norm closure of the span 

of {3x : x g G, x f e}. (To see this, suppose that 6 = ff] (ff: is a finite 

sum of point masses none of which is the identity. Let f G T(G) such that 

/(e) = 1, H/II^q = 1, and /(x/ = 0 for 1 < j < n . Then ||Je - > 1 .

Hence 3 is not in that closure.) The Hahn-Banach Theorem shows that there 

exists p G VN(G)* such that (p, 3f) = 1 and (p, 3X) = 0 for all x f e . Then

* p - /z||vn(G)‘ > |(^ * R - A, <5/1 = 1 for all x f e .

(ii) Let H be a nonmeasurable subgroup of G. (Such exist by Lemma A.3.) 

We let- W be the norm-closed subalgebra of VN(G) generated by {/(x) : x G 

H] . As the characteristic function \H of H is positive-definite, there is an 

idempotent measure r on the Bohr compactification bV of the dual group T of 

G such that the Fourier-Stieltjes transform of t is the characteristic function 

of H. Convolution against t gives a projection from TT’(F) onto W, so W 

is a direct summand of ^F(F). Therefore there exists / G TP(F)* such that 

(/ } f) = /(0) if f g W and (/,/) = 0 for all / in the closure of Md(G\H). 

Extend / to an element of VN* . Let {mQ} be a net of discrete probability 

measures on H such that for every x G H, ||J(x) * ma - ma\\ —> 0. Let 0 be 

an accumulation point of {mn * x} ■ Then Lxf — f for all x G H. For all 

f G JP(T), (L%</> - 0, /) = {Lxx ~X, ff Also,
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f 0 if x G H;
||ZYZ -Zll > \<Lxx - x, = <*

x A (1 otherwise.

Hence G\H = {x : \\Lx(j) - 0|| > |} . This set is not open, since otherwise H 

would be closed (and therefore measurable). This gives the nonlower semiconti­

nuity. The nonmeasurability is obvious, since {Lxx , <5(0)) is the characteristic 

function of H . 

Let G be a locally compact group. Then Md(fj) is a subspace of VN(G), 

and restriction gives a natural mapping of VN(G)* onto Cj^G)* . In particular, 

evaluation at points of G gives a mapping fl of VN(Gf into the bounded 

complex-valued functions on G. We can say more, however.

Proposition 5.2. Let G be a locally compact group. Then the following hold.

(i) FI maps VN(G)* into B(Gf).

(ii) II maps (VN(G)*)C into B(G).

(iii) If G is amenable, then fl maps (VN(G)*)c onto B(fP).

(iv) If Gd is amenable, then fl maps NIA(Gf onto B{Gd).

Proof, (i) Let 0 G VN(G)*, and let f e M,(G). Then {Uf, f) = {f,f). 

Thus,

IW,/)1<||0||VN(G)‘ ll-^llc^G) — VN(G)‘ ll/llc-fc,)-

Therefore ||II0||^(^) < ||0Hvn(g)* •

(ii) If 0 g (VN(G)*)C, then nd g C(G). In particular, H0 G C(fP)QB(Gf) . 

Therefore 110 e B(G) by [E].

(iii) If G is amenable, then there exists a bounded approximate identity {fa} 

in A(G). Furthermore, this bounded approximate identity may be chosen so 

that for each x G G, limQ - fa\\ — 0. See the Appendix, Lemma A.5, 

where this assertion is stated formally and a proof is given. Fix f G BIG). 

Then ||/a/|| < C||/|| and faf —» f uniformly on compact sets. Let f be any 

accumulation point of {faf} in VN(G)* (such exists since A(G) C H(G)** = 

VN(G)*). Obviously, H0 = f. It remains to show that f G (VN(G)*)C.

If £ > 0 is given, then there exists a neighborhood U of e such that 

||LV/- /|| < £ for all x g U. Then

\\Lx</> - dll < limjup \\Lxfaf - /q/||

< Iimasup[||(£x/Q)(L%/) - (L./J/H + \\(Lxfff - faf\\]

< (suPll/all)e + ll/ll Um sup ||Lx/a ~ fj = Ce.

a

Hence, 0 g (VN(G)*)c .

(iv) If Gd is amenable, then Cd(fP) = Cd(Gf) by [DR1, Proposition 3.4], 

Hence, C*(G0) is a closed subspace of VN(G). By duality, B(Gf) is a quotient 

of VN(G)*. That quotient mapping is, obviously, the mapping n. □
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Remarks, (i) The mapping n is one-to-one if and only if G is finite. This 

amounts to the assertion that C^G) equals VN(G), which can only happen 

when G is finite, by Proposition 5.5.

(ii) If G is discrete, El VN(G)* = BfG), by duality.

When G is a compact abelian group, the identification of (VN(G)*) is 

particularly easy. We give the background, and then the formal assertion and 

its proof.

Suppose that G is a locally compact abelian group. Then VN(G) = Z,°°(T), 

where T is the dual group of G. Translation in VN(G) corresponds to mul­

tiplication of elements of L°° (T) by characters on T. The mapping II cor­

responds to a projection of VN(G)* onto MfbY), given by restriction to the 

almost periodic functions on T. Furthermore, because translation in VN(G) 

corresponds to multiplication by characters, if // e (VN(G)*)C is identified with 

the corresponding measure on A VN(G), then the positive part p e (VN(G)*)c 

also.

Proposition 5.3. Let G be a compact abelian group. Let p e VN(G)*. Then 

p e (VN(G)*)_ if and only if \p\ = where f ■ > 0 and H/L is a

multiple of a character on G {distinct for different j), and the convergence in 

norm is absolute.

Proof. It suffices to prove the assertions for p > 0.

(i) Suppose that p e (VN(G)*)f. Then II/z e B{G) — A(G) by Theorem 

5.1(ii), so Up = ffkiyi with > 0 and yzeF.

The mapping II is induced by the projection P of A VN(G) —> bY given by 

restriction to the almost periodic functions on T. Let = XP-'{y yP ■ Since 

P~{{yj} TP~x{yf = 0 whenever;//, ||//|| = E ll^-ll •

(ii) Now suppose that p = E P, > each >f > is a nonnegative point 

mass at the character y., and Ell^ll = C < oo. Let £ > 0 and choose 

n > 0 such that E7>n II/?/II < £ • Let U be a neighborhood of 0 e G such that 

|(x, yj) - 11 < e/C for 1 < j < n . Then

< 22ll(A, 7,) - l)A,ll + 2« < 

j<n

It follows that p e (VN(G)*)c. □

Since T(G) is a closed subset of its second dual, which is VN(Gj*, II maps 

A(G) one-to-one into B{G). In all cases, A(G) C (VN(G)*)C. This raises the 

obvious question: When does A(G) = (VN(G)*)C?

Theorem 5.4. Let G be a locally compact group. Suppose that (VN(G)*)C = 

T(G). Then the following hold.
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(i) If G is amenable, then G is compact.

(ii) If Gd is amenable, then G is finite.

Proof, (i) Indeed, since the mapping II maps (VN(G)*)C onto B(G} by Propo­

sition 5.2(iii), y4(G) = B(G), so G is compact.

(ii) By part (i), we may assume that G is compact. (If Gd is amenable, so 

is G, as a simple argument shows.)

Suppose that G is compact and infinite, so not discrete. Let W be the 

closed subalgebra of VN(G) generated by the union of C^(G) and Cj(G). 

Then, in fact, W is the direct sum of Q*(G) and C^G), by [DR1]. This 

uses the amenability of Gd and the nondiscreteness of G. Let G W* be 

such that = 0 on C^(G) and {(/), p) = (1, p} for all p G Cj'(G), where 

1 G A(G) is the function constantly one. Let f' be an extension of f to an 

element of VN(G)* . Then Tlf' = 1 but f 1 , since f = 0 on Q*(G). If 

f G (VN(G)*)C, we would be done. We now modify f'.

By the amenability of Gd , there exists a net of discrete probability measures 

{ma} such that for all x G G, ||Rxma-ma|| —> 0 , where Rx is right translation. 

Let / G VN(G)* be any weak* accumulation point of {ma * fi'} . It is easy to 

see that Lxx = / for all x G G. Hence, / G (VN(G)*)C. Of course, since 

X is a weak* accumulation point of the m * f / is zero on C^(G), while 

U, f} = (1, f) for all f G C*(G). Hence fl/ = 1 and / f 1 • □

Remark. If G is amenable and H(VN(G)*)C = A(G), then G is compact. The 

proof is the same as for Theorem 5.4(i).

Proposition 5.5. Let G be a locally compact group. Then the following are 

equivalent.

(i) n maps NYfiGf one-to-one onto its image.

(n) C;(G)=VN(G).

(iii) G is finite.

Proof, (i) => (ii) follows by an application of the Hahn-Banach Theorem, since 

Cj'(G) is a closed subspace of VN(G)c.

(ii) => (iii) This is a consequence of [Gn2, Theorem 4]; we give a direct 

proof. If (ii) holds, then

l\G) * C*(G) = £1(G)*VN(G) = VN(G)C.

But it is always the case that Q*(G) □ L^G) * Cj(G), and that VN(G)c D 

C*(G). Therefore VN(G)* = C*(G), so G is compact by Theorem 4.4

It remains to show that G is discrete. Since VN(G) = Cj(G), VN(G) has 

a unique topological invariant mean. This follows from [DR2, Theorems 2.8 

and 2.11], By [Ren], G must be discrete.

That (iii) => (i) is obvious. 

Remark. If the equivalent conditions of Proposition 5.5 are satisfied, then, of 

course, the image of H is A(G} = B(G) = BfGfi , since G is finite.
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6. Miscellaneous results and open questions

We consider in this section results related to those in the preceding sections 

and questions we believe to be open.

When G acts continuously on the Banach space X, then G acts lower 

semicontinuously on the dual space X* of X [GLL], If the action of G on X 

is discontinuous, the action on X* may still be lower semicontinuous. On the 

other hand, lower semicontinuous action on X does not necessarily imply any 

continuity or measurability (in the sense of Bourbaki) property for the actin on 

X* . We see this from the following example.

Example 6.1. Let G = T and let X be the set of functions on Tf/ that vanish 

at infinity: X = C0(Ty). Then the following hold.

(i) Translation from T to X is not lower semicontinuous, though it is weakly 

measurable.

(ii) Translation from T to T* is lower semicontinuous (and weak* Borel).

(iii) Translation from T to JV** is not weak* measurable and not lower 

semicontinuous.

Proof, (i) The nonlower semicontinuity is easy. We think of T as the interval 

[0, 2zr). Let h be the function that is 1 at 0, -1 at ti , and zero everywhere 

else. Then for x f 0, * h — h\\ = 2 if x = ti and * h - h\\ — 1

if x f ti . Hence {v : ||J * h - h\\ > 1} is not open, and G does not act 

lower semicontinuously. The map x f) has countable support for

all countably supported /z and countably supported f, and there are no other 

such /z’s or /’s. The weak measurability now follows.

(ii) Let a3x and b3y be point masses in J* = Ll(Xf) . Then

\\a#x ~b3y\\ = | VA + \b\

\a~b\

if xfy\ 

if x = y .

Thus, moving point masses apart does not decrease norms. Hence, for all /z 

with finite support, and all £ > 0, A = {x : ||3x * /z - /z|| > e} is open. Indeed, 

if y g A and 2 > 0 is less than the distances between all points in the support 

of |/z| + |<5r * /z|, then {z : - z\ < A} C A . Of course, then by a standard 2e

argument, this holds for all /z € L’iT^). Hence, T acts lower semicontinuously 

on X*.. The assertion about weak* measurability follows exactly as for (i).

(iii) Let / be the characteristic function of a nonmeasurable subset N C T. 

Then {3x% , 3f = /(a) , so translation of / is not even weak* measurable. We 

obtain the nonlower semicontinuity of the action of X*‘ by taking / to be the 

characteristic function of the rationals (elements of finite order) in T. 

Here are some questions that appear to be open, with references to results 

related to them. Some of our questions are quite specific; others are rather 

open-ended.

1. Does lower semicontinuity of the action of G on X* always imply weak* 

measurability? Lower semicontinuity does not imply weak measurability of the 

group action; see Proposition 1.4 and the Remark after it.
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2. If % Lxp is weakly measurable from G to Af(G), is /z G l'(G)? 

(Yes, if /z is a Riesz product and G = T.) In the case of abelian G, such a 

/z must be in RadL'(G) = {v G Af(G) : P(/) = 0 for all / G AALGj'ffi}; see 

[GM, 8.3.4],

3. If G is compact, and /z G (£OO(G)*)C and f G £°°(G), is fp e 

(L°°(Gf)c? This question asks if Proposition 3.3 extends to £°°(G)* . An 

affirmative answer would give a complete characterization of {LX'{G)*)C for 

compact G, by Proposition 3.5.

4. Does Proposition 3.3(iii) hold for all nondiscrete groups?

5. Is the action of G on VN(G)* never semicontinuous? never Borel?

6. Let Rm denote the space of bounded Riemann-integrable functions on 

the compact group G; that is, Rm is the set of all bounded Borel functions 

f on G such that there exists a Borel function g equal to f except on a null 

set and g is continuous off of a null set. Then Rm is a commutative C*- 

subalgebra of £°°(G). It is not hard to show [S] that (Rm*)c = £*(G) . Of 

course, Rm is translation-invariant. Furthermore, a straightforward argument 

shows that there exists a largest closed translation-invariant subalgebra X of 

£°°(G) with (X*)c = £1(G). What is X? Is X larger then Rm?

7. Do there exist translation-invariant C*-subalgebras X Rm of £°°(G) 

for which (F*) is an L-space? An L-space not equal to LX(G}?

8. Let G be a locally compact abelian group, and S the structure semigroup 

of M(fj) (see [GM, Chapter 5]). Is the mapping from AAf(G) x S —>• C given 

by evaluation at the element of S (semi)continuous in each variable separately? 

(This question is motivated by a result of B. E. Johnson [J], which states that 

a function separately continuous on a product space is measurable with respect 

to each product of Borel measures.)

9. Does the result of [J] also apply to translation-invariant means on L°° ?

10. Does (VN(G)*)C. = A(G) imply G is finite for all locally compact groups? 

See Theorem 5.4.

11. VN(G)* = £°°(G) occurs if and only if G is finite (just dualize and 

apply Theorem 4.4(iii)). Can £O°(G) be dense in VN(G)*?

12. In the preceding questions, replace “translates continuously” by “trans­

lates measurably” (norm, weak, or weak*).

A. Appendix

We give here three results which seem to be in the folklore, but for which 

we can give no adequate reference, a fourth, for which our proof seems to be 

simpler than most, and a fifth result, which may be new, but which is proved 

by old methods.

Lemma A.l. Let G be a nondiscrete locally compact group. Then G has an 

open subgroup that has a dense subgroup H of empty interior.

Proof. Let L be a cr-compact open subgroup of G. Let K be a compact, nor­

mal subgroup of L such that L/K is metrizable and nondiscrete (see Lemma 

A.4 for a proof of the existence of such a X). Then L/K has a dense subse­
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quence. Let E be the subgroup of L/K generated by such a sequence. Then 

E is countable, so it cannot have interior. Let H be the pre-image of E in L . 

Then H is a dense subgroup of L that has no interior. 

We use a more complicated version of the same idea for the proof of the 

next assertion.

Lemma A.2. Let G be a nondiscrete locally compact group. Then G has a subset 

that is not Haar measurable.

Proof. Let L be a cr-compact open subgroup of G. Let K be a compact, 

normal subgroup of L such that L/K is metrizable. Then the Haar measure 

on, and the measurable subsets of, L/K form a measure and a-algebra that are 

isomorphic to Lebesgue measure on either T or R (depending on whether L/K 

is compact or not). The pull-back of a nonmeasurable subset of [0, 1] to L/K 

and then to L (and hence to a subset of G}, yields the required nonmeasurable 

set. We omit the remaining details and verifications. 

Hewitt and Ross [HR, vol. I, 16.13(d)] give a proof of the fact that every 

compact abelian group has a nonmeasurable subgroup. The next lemma gives 

the extension to nondiscrete, not necessarily compact abelian groups. The proof 

here is essentially that of [HR],

Lemma A.3. Let G be a nondiscrete locally compact abelian group. Then G 

has a subgroup H such that

(i) H is not Haar measurable.

(li) The subgroup H is such that for any open subgroup K of G of the form 

K = R" x C where C is compact, KfiKCtHj is countably infinite.

(iii) Any subgroup H' having the property of (ii) is necessarily nonmeasurable.

Proof, (i) is immediate from (ii)-(iii).

(ii) We consider various cases. We consider (in effect) G to be compactly 

generated, and the cases to follow come from the structure theorem for locally 

compact abelian groups: G has an open subgroup of the form R" x C, where 

C is compact and n > 0 .

Case I. G = R. Let Q denote the rational numbers in R, and let £R be 

a Hamel basis for R over Q. We may assume that 1 G ER. Let //R = 

Q(ER \ {1}), the Q-lmear span of ER \ {1} . Then R = HR ® Q, and the 

assertion of (ii) follows.

Case II. G = T. We define T = R/Z, where Z C Q is the set of integers. 

Then R —> T maps HR onto a subgroup HT of elements of T and Q maps 

onto the subgroup Q of elements of finite order. Of course, T = Q ® Hx , and 

the assertion of (ii) follows.

Case III. G has an open subgroup of the form K — R" x C, where C is 

compact and n > 1 . Let //R be as in Case I, and let H — HR x R x C. 

Then H is dense in the open subgroup K , and K/H is countable.
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To see that H has the required property, we must show that whenever Kx = 

R"1 x Cx is the product of Euclidean space with a compact abelian group Cx , 

then KJ(KX A 77) is countable.

First note that since Kx isopen, KxnK is open, and KX/{KXCK) is discrete. 

But since K{ A K is open in Kx = R”1 x Cx , Kj A K = R”1 x C2 , where C2 is 

also compact. It follows that KX/(KX A K) is compact as well as discrete; that 

is, that K{ A K has finite index in K{ . Then

#^/(^ nF) < (#KX/(KX nOW W/W^))

< #KJ(KX TH^K/H,

which is countably infinite. Thus, H has the required property.

Case IV. G has an open compact subgroup K and the torsion subgroup T of 

K is such that K/T is countably infinite. Let H = T. Suppose that A'j is a 

compact open subgroup of G. Then KX/{KX A 7f) is compact and discrete, so 

the countability of KX/(KX A 77) follows just as in (A.l).

Case V. G has an open compact subgroup K and the torsion subgroup T 

of K is such that N = K/T is uncountable. Then by [F, vol. I, Theorem

l. 1], N is torsion-free. Let E be a maximal independent subset of N. For 

x e N, x 0 and m e Z, m 0, let ~x denote the unique (because N 

is torsion-free) element y e N such that my = x whenever it exists, and e 

when it does not exist. Then clearly U^=i ^Gp(E) = N, where Gp(E) is the 

group generated by E. Let F be a one element subset of E, let II denote 

the quotient mapping of K —> N, and let H = n-1((J“=1 Ag,^(E’\F)). To 

see that 77 has the required property, we argue as follows. Since T C H, 

it is enough to show that 7V/((J^=1 ^Gp{E\F)) is countable, that is, we may 

assume that 77 = ((J^=1 ^Gp{E\F)) and that T = {0} . Then every element 

x G N has the form x = — (Y}k , ±x ) + - 7, where the x- g E\F, and

m, r, s are integers with m, s > 0. Since there are only a countable number 

of possibilities for the choices for r, 5 and since E is independent and N 

torsion-free, 7V/((J^=1 ^Gp^E\F)') is countable.

If Kx is any open subgroup of G, then KX/(KX nTV) is discrete and compact, 

and the calculation used in (A.l) completes the proof.

Case VI. G has a compact-open subgroup K with torsion subgroup T such 

that K/T is finite, so the torsion subgroup T is open. (This is the final case.) 

We may take K — T . Since K is compact and abelian, the (nonzero) elements 

of K must have a finite upper bound p for their orders, because of the Baire 

category theorem. This bound is called the exponent of K . For groups with 

finite exponent, Theorem 17.2 of [F] applies: K = A is a direct sum 

of finite cyclic groups Kt . Let F c I be countably infinite with F I, so 

H = ®ze/\F7f; has K/H countably infinite.

If Kx is a compact and open subgroup of G, then Kx must also be a torsion 

subgroup. As before, KXQK has finite index in , so the calculation of (A.l) 

shows that KJ(KX A 77) is countable. This ends the proof of (ii).
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(iii) If K is compact and open, then K is the countable union of the cosets 

of K A H', so each of these cosets must be nonmeasurable, and H' is non- 

measurable. We may therefore assume that K has the form R” x C where 

n > 1 and C is a compact (possibly trivial) group. Suppose that H' D K were 

measurable. Since K = , where xn G K , m(HfK) > 0. By

Steinhaus’s Theorem [GM, 8.3.4], (Kn//) + (KTH') contains a neighborhood 

of the identity. Since K A H' is a subgroup, it is thus an open subgroup of 

K = Rn x C . In particular, K A H' contains a set of the form U x {0}, where 

U is open in R . It follows at once that K A H' — R" x C', where C' is an 

open subgroup of C. But K/(K A H') = C/C' is countable, so C' cannot be 

both open and of infinite index in the compact group C. This contradiction 

shows that K A H' is not measurable. □

Remark. Our original proof of (iii) above used the continuity of translation in 

L1 (G), which is more in keeping with the spirit of this paper (but the argument 

was much longer).

The next result is known in many forms; we believe our proof is simpler than 

most. See [HR, I, pp. 71 and 83] for the more common version and for some 

of the history. The result seems to be due originally to Kakutani and Kodaira 

[KK, Satz 6], whose proof involves representations.

Lemma A.4. Let G be a o-compact, nondiscrete locally compact group. Then G 

has a closed normal subgroup N such that G/N is metrizable, N has measure 

zero and G/N is nondiscrete. Furthermore, if {/,} is a countable sequence of 

Baire functions on G, then N may be chosen so that the are constant on 

cosets of N.

Proof. Let K be a sequence of compact subsets of G such that V. C K+1 for 

all j > 1 and G = U;>1 K . Let {U} be a sequence of symmetric compact 

neighborhoods of e whose measures decrease to 0 such that C L

and xU-.,x~l C U■ for all x G K and all j > 1 . Let N = U■. Then N 

and G/N have the required properties. Indeed, mG(N} = 0, since mG(N) < 

mG(Ufor all j, while G/N is metrizable, since the sets LLN form a basis 

for G/N at eN. Since N has zero Haar measure, G/N is not discrete.

The second assertion follows easily from the first. We may assume that the 

f. are continuous and compactly supported (that is where we use “Baire” in the 

hypothesis). Choose the Uk as above, but subject to the further restriction that 

sup |/y(xy) - fj(x)\ + |7^(yx) - /y(x)| < 2~k where the supremum is taken over 

all y G Uk , x G G, and j < k . The required conclusion follows easily.  

Lemma A.5. If G is amenable, then A(G) contains a bounded approximate 

identity {fa} such that gcfx) = \\Lxfa - fj converges to 0 uniformly on 

compact subsets of G .

Proof. We use a slight modification of the standard construction [L], [P, pp. 

70, 72, 96]. Our index set {+} will be the set of pairs (e, K) where 8 > 0, 
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and K ranges over compact subsets of G containing the identity e . Of course, 

(e, K) > (£j, if and only if e < and K D Kx . For each pair (f, K), 

set K' = K~XK . Since G is amenable, there exists a compact subset U of G 

such that 0< \U\ and \K’U\ < (1 +£)|U|.

The function u F= XU,,*L is 1 on K and has norm bounded by
8 , A I U I AC U

\KU\l/2\U\~l/2 < Vl + £.

Hence {u£ K} yields a bounded approximate identity for A(G). For x e K, 

we have

\\^xUe,K “ W£,xH^ = * ^KU “

a’kcacc12

- |U|1/2

Because x-1 K and K are subsets of K1, and both contain the identity, e , 

\x~lKUAKU\ < \x~lKUAU\ + \KUMJ\

= \x~'kU\U\ + \KU\U\ < 2e\U\,

we have \\L u v — u JI < for all x G K . 
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