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Abstract Let G be a compactly generated group of polynomial growth and co a 

weight function on G. For a large class of weights we characterize symmetry of the 

weighted group algebra L1 (G, co). In particular, if the weight co is sub-exponential, 

then the algebra L1 (G, m) is symmetric. For these weights we develop a functional 

calculus on a total part of L1 (G, co) and use it to prove the Wiener property.

Mathematics Subject Classification (2000): 43A20, 22D15, 22D12.

1 Introduction

Weighted group algebras play an important role in different areas of harmonic 

analysis. For abelian groups, the properties of these algebras are well known since 

the works of Beurling [Be39], [Be47], Domar [Do56] and Vretblad [Vr73], For 

non-abelian groups, however, the results are sparse. The aim of the present paper 

is to develop a corresponding non-abelian theory. We first give the definition of a 

weight and introduce the notion of weighted group algebras.
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1.1 Definition. Let G be a locally compact group. A weight co on G is a Borel 

function

co : G —» [1, oo[

such that

co(st) < co(s)a>(t) Vs,tEG.

In this paper all weights are assumed to be symmetric, i.e.,

co(s~') = co(s) Vs e G.

By changing to an equivalent Banach algebra norm on L1(G,co), we may 

assume without loss of generality that the weight co is upper semi-continuous, see 

[Rei67, Ch. 3 § 7], Moreover, we shall always require the function co to be bounded 

on compact sets. Hence, if G is compact, every weight co is equivalent to a constant 

one. In the remainder of this paper we shall exclude the trivial case of a compact 

group G. Let us give some examples of weights:

1) Let (T, E) be a strongly continuous representation of the locally compact group

G on the Banach space E. Then

cu(5) = max{||T(s)||0/7, ||T(v-1)||op}

and

®i(s) = Il7'(s)l|op + lir(i“1)llop

are weights on G. These weights are in general not upper semi-continuous, but 

can be suitably modified as mentioned above.

2) The function co(s) = 1 for all 5 e G is the trivial weight on G.

3) The function t e''1'' is a weight on R. Likewise, the function t i-> , with

0 < a < 1 and y > 0 fixed, is a weight function.

Given a weight co on G, we define the weighted group algebra L] (G, co) to be 

the set of all measurable functions f from G to C such that

ll/L = [ \f(x)\co(x)dx<oo.

Jg

Then L1 (G, co) is a Banach *-algebra  for the usual convolution and involution. One 

motivation to study weighted group algebras stems from Gabor analysis, where it is 

important to understand the invertibility of convolution operators and related oper­

ators on function spaces different from L] or L2. See [GL01,Jan95] for problems 

of this type.

If G is a connected, simply connected, nilpotent Lie group and if co is a poly­

nomial weight on G (in the sense that co is bounded by a polynomial function in 

the canonical coordinates of the first or second kind), then the harmonic analysis 

properties of L*(G,  co) are well understood. In particular, L\G,co) is symmet­

ric, it has the Wiener property, and there exist minimal ideals of a given hull. The 

closed proper prime ideals of L!(G, co) (in particular the kernels of algebraically 

or topologically irreducible representations of LJ(G, co)) coincide with the ker­

nels ker Jr A L1 (G, co), ji E G, and the algebraically and topologically irreducible 



Weighted group algebras on groups of polynomial growth 793

^-representations of L1 (G, co) may be characterized [MMB98]. On the other hand, 

if co increases more rapidly, it is not known whether, for every algebraically or 

topologically irreducible representation (E, E) of L\G, co), there exists tc e G 

such that ker T = ker tt O L] (G, co).

First we study the symmetry of weighted group algebras for compactly gener­

ated groups of polynomial growth. For the group G = Z this question is equivalent 

to the validity of a weighted version of Wiener’s lemma on absolutely conver­

gent Fourier series and a complete answer was obtained by Naimark [Nai72]. For 

groups of polynomial growth and polynomial weights the symmetry of E1 (G, co) 

was shown by Pytlik [Pyt73 J. The most difficult case, namely the symmetry of the 

full E1-algebra was proved only recently by Losert [LosOl] as a consequence of a 

detailed structure theorem for groups of polynomial growth.

In the locally compact group G let e denote the neutral element and \ U\ the left 

Haar measure of a Borel set U C G.

1.2 Definition. A locally compact, compactly generated group G is said to have 

(at most) polynomial growth, if there exists a compact symmetric neighbourhood 

U C G and constants C > 0 and D e N (the smallest D is called the order of 

growth of G) such that G = UXi Un anc^ \Uk\ — ^kD fork E IT. We write 

[PG] for the class of compactly generated, locally compact groups of polynomial 

growth.

We say that G has strict polynomial growth, if there exists a compact symmetric 

neighbourhood U C G and constants Ci, C2 > 0 and D > 0 (again called the 

order of growth of G) such that

C\kD <\Uk\ <C2kD for k e N.

Note that we always assume that G e [PG] is compactly generated. By replac­

ing U by a suitable power of itself, one may assume in this definition that the 

interior int(G) of U is a symmetric neighbourhood of e and generates G, i.e., 

G = UX1 int(t/)n. For brevity we shall call an open, symmetric and relatively 

compact neighbourhood of the identity that generates G a generating neighbour­

hood.

It is known that connected Lie groups [Gui73] and finitely generated discrete 

groups [Gro81] of polynomial growth have strict polynomial growth.

For a given generating neighbourhood U we define a function Xu : G -> [l,oo[ 

by

tu(x) = inf{n e N | x e Un} for*  / e, xu(e) = 1

Then xu serves as a “metric” on G and the function a>u(x) = 1 + xy(x) is a 

natural weight on G (see [Hul71 ,Lud87]). An arbitrary weight a> on G satisfies the 

inequality

m(x) <

where C — In supxg{/ a>(x). Moreover, for every a such that 0 < a < 1 and every 

C > 0, the function

a>(x) = eCru^a, Vx e G,
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is a weight on G. Such weights appear naturally in the following situation: Let G be 

a connected, nilpotent Lie group. Let Gi be the derived group of G, i.e., the closed 

subgroup generated by the elements of the form [x, y] = x~iy~1xy, x, y g G. 

Let V be a generating neighbourhood in G and V = U D G\ the corresponding 

neighbourhood of e in Gi. Then it is shown in [AleOO] that

(1 +rt/lG1U)) < K • (1 + rv(x))2, Vx g Gi,

for some positive constant K. Consequently, if co is any weight on G, then

i

w|gi (*)  < eCrv(x)~ , Vx g Gi,

for some constant C.

To any weight co and any generating neighbourhood G we associate a weight 

: Z -> [1, oo[ by

wW = = sup{w(y) | y G U1*1}-

Now we list some possible properties of weights with increasing strength.

(i) We say that a weight co satisfies the Gelfand-Naimark-Raikov condition if

lim co(xk)*  = 1 Vx G G. 

k^>oo

(ii) The weight co satisfies the condition (S) if

lim = 1.

k-+oo

(Hi) We call the weight co sub-exponential of degree at most a, 0 < a < 1, if there 

exists C > 0 such that

co(x) < eCruMa Vx G G.

In this paper, we shall prove the following results:

Theorem (3.13). Let G G [PG], If the weight co satisfies condition (S), then 

L\G, co) is symmetric.

For radial weights, i.e., weights which depend only on xu for some neigh­

bourhood U, we obtain a converse on groups of strict polynomial growth. In fact, 

this converse is true for the larger class of tempered weights which are defined 

as follows: A weight co : G —> [1, oc[ on G G [PG] is called tempered if there 

i

exist a sequence q > 0, k G N with lim/; sj) = 1, an I G N and a generating 

neighbourhood U such that for all k e N:

o>(x) > £k sup{a>(y) | y g Gk}, Vx G G \ Gkl.

Under this technical condition we prove the following converse.
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Theorem (3.18). Let G be as in the above theorem, but of strict polynomial growth 

and assume that co is tempered. lfLx(G,co) is symmetric, then co satisfies condition 

(S).

The main tools in proving these theorems are the structure theorem for groups 

of polynomial growth of Losetl [LosOl], the Gaussian estimates of Hebisch and 

Saloff-Coste [HSC93] and the methods of Ludwig [Lud79].

For sub-exponential weights we develop a functional calculus on a total part of 

L1 (G, co) in Section 4. This functional calculus and the symmetry of L1 (G, co) are 

essential tools for proving the Wiener property in Section 5.

Theorem (5.6). Let G e [PG] and co be a sub-exponential weight on G. Then 

LfG, co) has the Wiener property, i.e., for every proper, closed, two-sided ideal I 

ofLfG, co) there exists a topologically irreducible ^-representation tt ofL1 (G, co) 

on a Hilbert space such that 1 C ker it.

2 Some results on weights

2.1 Polynomial weights

a) Let G be a compactly generated, locally compact group of polynomial growth 

with generating neighbourhood U. Let Tu(x) = inf{Zr | x e Uk}. A weight 

co : G -> [1, oo[ is said to be polynomial if there exist a > 0 and C > 0 such 

that

cu(x) < C(1 + Tu(x))a, Vx e G.

b) In particular the weight cou(x) = 1 + Tu(x) is polynomial. For every a > 0 

this weight satisfies the inequality

coa(xy) < ca(coa(x) + coa(y)), Vx,yeG

for some ca > 0 [Lud87],

c) In [MMB98] a weight on a connected nilpotent Lie group is said to be poly­

nomial if, for any Jordan-Holder basis {Ao, X],... , Xn} of the Lie algebra, 

a>(x) is bounded by a polynomial in the coordinates (jq, X2, ■ •• , xn) of x = 

exp(xoXo) exp(xiXi) • • ■ exp(x„Xn) [resp. in the coordinates (%i, X2, ■ ■ ■ ,xn) 

of x = exp(xoXo + xjXi + ... + xnXn)]. This definition is equivalent to the 

one given in a), by arguments of [Lud87].

d) In [Pyt82] Pytlik defines a weight co to be polynomial if

w(xy)

sup - - - - - - - -  < oo ,
x.yeG ^(*)  + ^(y)

and he shows that such a weight is polynomial in the sense of a). Thus a) seems 

to be the most general definition of a polynomial weight.

e) Polynomial weights are of course sub-exponential. Hence all the results of this 

paper are in particular true for polynomial weights.
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2.2 For a weight co and a generating neighbourhood U, we define vf : Z —> 

[1, oof by

wt/W = vfi(k) = supMy) | y e Uw}.

Then is a symmetric weight on the additive group Z and increasing on Z+. Since 

the “metric” tjj satisfies Tu(xy) < Tu(x) + Tt/(y), the function co defined by 

d) = Vy O Ty

is again a weight. Then co < co and co is an increasing function of T[/(x). If co is 

sub-exponential of degree at most a, then the same is true for co. More generally, if 

w(x) < M>(T[/(x)), Vx 6 G for some increasing function T, G(x) = Vt/(r[/(x)) < 

4/(ti/(x)), 4x e G.

2.3 We investigate the symmetry of weighted group algebras. In case of the most 

basic group Z the algebra G1 (Z, ca) is symmetric if and only if lim_»oo  = 1 

[Nai72], This result motivates the following definition.

*

Definition. A weight co is said to satisfy the Gelfand-Naimark-Raikov (G-N-R) 

condition if

lim co(xky =1 Vi eG. 

k^-oo

Since k i-» ca(x^) is sub-multiplicative, the above limit always exists and is 

actually an infimum.

2.4 We notice that

lim co(xky < 

k-^-oo

lim vu(k) 

k-*oo

Vx e G.

In fact, if T(/(x) — I, then xk e Ukl, and so 1 < co(xk) < vu(lk) < vu(k)1. Hence,

, i / j\/

1 < Hindoo co(xKy < lim^^oo vu(ky I

2.5 A uniform analogue of the condition in (2.3) is to require the G-N-R con­

dition for the weight v^, that is lim^_>oc Vy(ky = 1. Since this limit is just the 

inverse of the radius of convergence of the power series £2,z>0 Vy(n)z" and since 

Vy(k) >1, 4 k 6 N, we may reformulate this condition as follows.

Definition. A weight co satisfies condition (S) if for all 8 > 0

V - - - r < OO.
y (l+£)‘ U
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Remarks.

a) Condition (S) is independent of the choice of the generating neighbourhood. In 

fact, if V is another one there exist n, m such that U C V'1 and V C Um. Then

vu(k) = sup cu(x) < sup cu(x) 

xeUk x&Vnk

= Vy(kn) < Uy(Ze)'1.

Similarly, uy(Zt) < vt/(Z:)'” and both inequalities together imply 

i . i
lim vu(k)k = 1 <=> lim vy(k)k — 1. 

k—>oo k->oc

b) Recall that w(x) = sup{to(y) | T{/(y) < = v^(T[/00)-Hence,

and we see that m satisfies condition (S) if and only if co does.

c) If G e [PG] then for some constants C > 0, D > 0 we have \Uk+i \Uk\ < 

C(Z: + 1)D. Hence, if co satisfies condition (S), then

CO / „ \ I

/ I / co(x)dx I - - - - 7
“ \Juk+l\Uk J (1+*?)*

2° (k+])D

< C y^vu(k + 1)—-—-r < oo, Vs > 0. 

(1+s)*

d) Assume that there exists an increasing function + : Z+ —> with

lim^-^oo = Q guch the weight co satisfies for some C > 0

cu(x) < Ce^TuM\

Then co satisfies condition (S). In fact, 

OO 1 OO 1

T- - - - r vu(^) < C T- - - - T e<P(t) < oo,

+ (l+e)‘ ~ A(l+£)‘

k—i k=1

because the radius of convergence of the series e®d^zk is e~~^ = 1.

2.6 Examples

a) If co(x) < eCtu^a, 0 < a < 1, then <T(s) = Csa. By (2.5.d), co satisfies 

condition (S). Consequently, every sub-exponential weight, and in particular 

every polynomial weight, satisfies condition (S).

b) It is easy to check that the function

cu(x) = e[ln(rc/(x)+1)]“, 0<a<l, VxeG,

is a weight satisfying co(x) < xu (x) + 1 for all x e G \ U. Since co is dominated 

by a polynomial weight, it satisfies condition (S).

c) If cu(x) = eCruG) for Some C > 0, then v^(n) = eCn,a e N, and 

lim^oo = ec 1. For this weight the condition (S) is not satisfied.

d) If ct>(x) = Cr'zuGyn; wjth o < yn < ijyn p cn > 0,^cn < oo, we may 

take d>(5) — cnsrn in (2.5.d), and thus co satisfies condition (S).
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2.7 We need a lemma on the existence of special (discrete) one parameter sub­

groups in groups of polynomial growth.

Lemma. If G e [PG] and U is a generating neighbourhood of e, then there is 

some x g G and f > 0 such that Tu(xn} > fn for all n e N.

Proof. To prove this statement, we use the following characterization by Losert 

[LosOl, Thm. 2]: A compactly generated group G has polynomial growth if and 

only if there is a finite descending sequence of normal subgroups of G, G = Gq D 

Gi D ... D G„-i D Gn = {e}, such that Gq/Gi and G„_j are compact and 

Gj/Gj+} = RG' x for j = 1, ... , n — 2, and every G j / G j+\ is an [FC]G- 

group. (see (3.11) for the definition).

(a) Assume first that G = 7? x define the generating neighbourhood K by 

K = {(z, m) g G : ||z||2 < 1, m = 0 or ±1} and let r(x) = min{n|x g nK] 

for x G G. If x f e and r = min{m|mx K], then r(n%) > ^n for all n G N.

(b) Next assume that G has a closed normal subgroup H such that G/H = R^ x 

and choose x G G \ H arbitrary. Let V be a generating neighbourhood of e 

in G with corresponding metric r. We claim that lim^^ > 0. To see 

this, project everything into G / H by the canonical projection y i-> y = yH. 

Then V is a generating neighbourhood of G/H and the corresponding metric

. r n\

i satisfies r(y) > t (y). Since x e, step (a) implies that hm,,-^,-^-2 > 

lim iWT > o

(c) Finally assume that G is non-compact and Gq, ... , Gn are as in Losert’s 

theorem above. Let W be a generating neighbourhood of e in Gi and the 

corresponding metric. Using (a) and (b) we see that lim^^^771^ ) > 0 for 

x G Gi \ G2.

In order to obtain the same conclusion for a metric tq on Gq, we show that 

tq|G[ is equivalent to tj by using an argument of Guivar’ch [Gui73].

Choose a generating neighbourhood V of e in Gq such that V D W andp(V) = 

Gq/G1 where p is the canonical projection from Gq onto Gq/G1. This can be done 

because Gq/Gi is compact.

If x G Gi and tj(x) = n, i.e., x G Wn \ W”-1, then x G Vn, so r0(x) < n = 

Tj(x).

On the other hand, since p( V) = Gq/Gi, we have Gq = Gi • V = >

so there is r e N with V2 C W'V. By induction we have Vn+1 C W'nV. Now 

assume tq(%) = n for x G G], i.e., x g Vn \ Vn~1. Then x G (Wr(/2-1)V) O 

Gi = JVr('2~1)(V O Gj) C Wr(n-1)Wfl = wr(n~1)+a for suitable a G N. So 

T] (x) < rn + la - r) < An = Ar0(x) where A > 0 is some constant. Hence for 

x G Gi \ G2

T0(xfl) 1 Tl(x'2)

— . llUlrt —> 00 

n A

If we use a different generating neighbourhood V with corresponding metric f, then 

by equivalence of tq and f the results holds true for f (with a possibly different 

constant). n
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2.8 We call a weight co radial with respect to some generating neighbourhood U,

if co(x) is a function of tu(x). An example of a radial weight function is given by 

co(x) = where : Z+ —> [0, oof is sub-additive. We notice that is

sub-additive if $ is the restriction of a concave function : R+ -> R+.

Conversely, if co is radial with respect to U (and G is not compact), then the 

sequence (Un)nE^ never stabilizes, and thus is surjective onto N, and m(%) = 

e'NmOO), for some function : N —> [0, oof. If m E N and m = n + k, then there 

exists, y, z e G such thatxy = z, Tu(x) = n, tu(y) = and R/Cz) = m. Conse­

quently, 4>(m) = lncu(z) < ln(m(x)m(y)) = Incn(x) + lncu(y) = <t>(n) + <b(k). 

That is, is necessarily subadditive.

Corollary. Assume that the weight co is radial with respect to some generating 

neighbourhood U. Then co = e®OZu fulfills the G-N-R condition if and only if 

lim^oo |$(£) = 0.

Proof Assume that -> 0. For x E G set nk = ru(xk), k e N. If nk 

is a bounded sequence, then clearly -» 0 and 1 < lim^oo co(xkW- = 

lim^oo e k = 1. If nk is unbounded, then there exists a subsequence, which by 

abuse of notation we denote by nk again, such that both nk -+ oo and nk < kzu (x). 

Consequently tu(x) and 1 < linty-»oo co(xk}k = inf^e^ co(xk)k =

K rlfo

Qi.nk) inf, (x\

inf^oc e~E~ < e nk =1. For the converse implication we note 

that Lemma (2.7) ensures the existence of > 0 and x e G with nk = Tu(xk) > 

fik. If 1 = lim^ootuuM, then lim^oo < lim^oo — 

a- "k

lim^oo =0. 

2.9 Let co be a weight on (Z, +) and set v(k) = sup{co(Z) | \l\ < k}.

a) By definition it is clear that both lim^oo co(kW = <A > 1 and lim^_oo r>(^)r = 

C2 > I exist and that c\ < c^. On the other hand, for some nk < k we have 

u(Zr) = co(n^). Now, if (n^j^gN is abounded sequence then lim^-^oo u(^)^ = 1 

and ci and C2 coincide. If (nk)keN is unbounded then

i i _L

C2 < v(k)k = co(pik)k < co{nG)nk —> ci, as k —> oo.

That is ci = C2 in this case too.

b) If c = lim^oo a>(k)k > 1, then co is almost increasing in the following sense: 

There exists I such that for all k E N, \n\ > Ik implies co(n) > co(fc).

For, otherwise we find sequences ki, ni with ni > Ikj such that co(n./) < co(kf). 

Then

± ± J_

c < co(n/)"' < co(kf)ni < cofki),ki.

If the sequence kj remains bounded then the right hand side tends to one as

I oo, and c = 1 follows. If A:/ —> oo then we estimate for Z >2 the right 

1 1 i i
hand side by co(kf)lki <co(kfi7ki —> c5, as I -» oo. Then 1 < c < c2, and this 

again yields the contradiction c = 1.
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2.10 Definition. We call a weight co : G —> [1, oof on a locally compact group G 

tempered if there exist a sequence q > 0, k G N with lim  s[/k = 1, an I gN and 

a generating neighbourhood U such that for all k g N;

*

<w(x) > £k sup{w(y) | y g Uk], Vx e G \ Ukl.

Remarks.

a) Every weight co satisfying condition (S) is tempered. To see this, let sk =

i

vu(kf-[, then we have lim*̂  = 1 and 8kvu(k2) = 1 < w(x), Vx g G, as 

claimed.

b) On the other hand, if G has polynomial growth and co is a tempered weight 

that fulfills the G-N-R condition, then it satisfies condition (S). To see this, we 

choose x G G and L g N as in Lemma (2.7) so that Tu(xn') > j-n ^n- If 

sk , I, U are as in the above definition then Tu(xklL) > kl, and we have

SkVuW = 8k supMy) I y e Uk] < co(xklL).

Hence,

1 < lim vy(ky < lim (—co(xklLfG < ( lim co(xk)*} IL= 1. 

k—>oo k—>oo'8k 'k-+oo

We summarize these observations in a lemma.

Lemma. Let G G [PG]. Then a weight co satisfies condition (S), if and only if co is 

tempered and satisfies the G-N-R condition.

c) A radial weight on any compactly generated group is tempered. To prove this, we 

may assume that co does not satisfy condition (S), i.e., c — lim-^  uffikyt > 1. 

Let co' denote the weight on Z for which a/(Ty(x)) = tu(x) for a suitable gener­

ating neighbourhood U. Then vfk) = supfo/ri) | \l\ < k} = sup{tu(x) | ru(x) <

*

i i

k] = (&) and (2.9.a) implies that lim^oo &> (&)£ = lim/;^0C! vfkft —c > 1.

Let 8k — then lim*-^  = 1. We take I as in (2.9.b) and see that for 

x G G with tj/(x) > Ik:

co(x) = co'(tu(x)) > cofik} = skv(k) = 8kVy(k).

2.11 Let H be a compactly generated subgroup of the compactly generated, 

locally compact group G. Let K and U be generating neighbourhoods in H and 

G respectively with K C U. For x G H we have tj/U) — t^(x). Hence, if 

cu(x) < Ce®(Tu<^\ Vx G G, for some increasing function then

cu|w(x) < CeO(r*(x)), Vx G H.

In particular, if co is sub-exponential of degree at most a, then the same is true for 

co\h. Moreover,

= SL1P{C6llw(^) I e Nn} < sup{cu(x) | x G U"} — , n g N,

and co\h satisfies the condition (S) whenever co does.



Weighted group algebras on groups of polynomial growth 801

2.12 Let N be a closed normal subgroup of G with canonical projection p : G -»

G/N and let U be a generating neighbourhood of G. Then V = pf/U') = UN C 

G/N is a generating neighbourhood in G/N such that Ty(i) < r^(x) for all x g G. 

To any weight co on G/N we associate a weight w on G by w(x) = a)op(x) = cu(i). 

If <w(i) < on G/N for some increasing function $, then also

w(x) < Ce0(ry(x)), VxeG.

So, if co is sub-exponential of degree at most a on G/N, then the same is true for 

w on G. Moreover,

— sup{w(x) | x g Un} = sup{cu(i) | x g V"} = Vq/n

and w satisfies condition (S) on G if and only if co satisfies condition (S) on G/N.

2.13 Conversely, given a weight co on G and a closed normal subgroup N we 

define a weight co on the quotient group G/N by

ca(i) = inf{ca(x7?) | n G N], Yx G G/N.

It is easy to check that for all x, y g G/N'. co(xy} < cb(x)d>(y). Since co is upper 

semi-continuous, co is upper semi-continuous, too, hence measurable.

Let U be a generating neighbourhood in G, V = p(U\ and let tj and i\/ be 

the corresponding “metrics” on G and on G/N respectively. If inf„e/v < k, 

then xn g Uk for some n g N. Hence x G Vk and ry(i) < k. Conversely, 

if rv(i) < k then there are ,... , Xk E U such that x = x\ .. .Xk, and thus 

xn = .. .Xk for some n e N. It follows that inf„e/v T[/(xrz) < k and thus

ry(i) = infneiv rt/(xn), Vx g G.

An inequality of the form

co(x) < Ce^(Tu(x)), Vx g G,

with increasing T therefore implies

ca(x) < Ce4’^0, Vi g G/N.

In particular, if co is a sub-exponential weight on G of degree at most a, then the 

same is true for co on G/N. Clearly,

VG/N,V(fll = SUp{tb(x) | X E V'1} < SLip{w(x) | X E U'1} =

Thus co on G/N inherits condition (S), temperedness, and the G-N-R condition 

from co on G.
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3 Symmetry of /J(G, w)

3.1 We first mention some properties of the Banach algebra L1 (G, co) that hold 

for arbitrary locally compact groups and arbitrary weights co. The algebra L1 (G, co) 

is a -algebra  for the involution defined by f  (x) = A (x~1) / (x ~1). The left trans­

lations a i—> af, where afA) = /(a-ix), are strongly continuous from G to 

L1 (G, co). The same is true for the right translations. The algebra L] (G, co) admits 

bounded approximate identities. This property ensures that the closed left, right, 

and two-sided ideals in L1 (G, co) are just the closed left, right, and two-sided trans­

lation invariant subspaces. Let tc be a strongly continuous representation of G on 

a Banach space such that for all x g G, ||tt(x) ||op < C ■ co(x) for some positive 

constant C. Then tt defines a representation of L} (G, co) by

* *

^(/) = [ f(x)7T(x)dx.

Jg

If the representation tc of G is irreducible, the same is true for the correspond­

ing representation of L\G, co). Conversely, let ti' be a continuous representation 

of L^G, co) on a Banach space E. Suppose that ti' is non-degenerate, i.e., that 

ji'(L\G, co))E is dense in E. Because of the existence of bounded approximate 

identities, the classical proof shows that there exists a representation n of G satis­

fying ||tt(x)||op < C • co(x) and such that

rt'(/) = / f(x)7i(x)dx, for all f g L\G, co).

Jg

3.2 We are only interested in ^-representations on Hilbert spaces. Using 

[Lep67, Satz 5] it is easy to see that we have in this case:

If ttz is a ^representation of L\G, co) on a Hilbert space 77, then it is the 

restriction of a ^-representation of L1 (G).

The previous remarks apply in particular to it g G (the set of equivalence clas­

ses of topologically irreducible unitary representations of G). There is a bijection 

between G and the equivalence classes of topologically irreducible, continuous 

^-representations of L1 (G, co).

3.3 A Banach--algebra  A is called symmetric if for all a G A the spectrum of 

aa  is positive. An equivalent condition is that for all a = a  G A the spectrum is 

real. Leptin showed in [Lep73] that this is equivalent to the fact that every proper 

modular left ideal is contained in the kernel of a positive hermitian functional. 

If the algebra A contains bounded two-sided approximate identities, the positive 

functional may be taken to be continuous [BD73],

*

* *

3.4 The symmetry of the group algebra L1 (G) has been studied extensively. For 

instance, in [Pog77] Poguntke shows that connected, nilpotent Lie groups have 

symmetric group algebras. In [Lud79] Ludwig proves that the same is true for 

compact extensions of nilpotent groups and for connected groups of polynomial 

growth. Recently, Losert [LosOl] showed the symmetry for every compactly gen­

erated, locally compact group of polynomial growth. For weighted group algebras 
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only few results are known. In [Py 182] Pytlik proves that, if G is a connected locally 

compact group with polynomial growth and if co is a polynomial weight on G such 

that co~x e LP(G) for some p, 0 < p < oo, then Z? (G, co) is symmetric.

On the other hand, L1 (R, e1) with the exponential weight e1 is not symmetric, 

because it admits non-unitary characters [Nai72].

3.5 In this section we shall show that for a compactly generated, locally compact 

group of polynomial growth and for a sub-exponential weight, or more generally 

for a weight satisfying condition (S), the weighted group algebra L1 (G, co) is sym­

metric. For this we use the notation and the proof of [Lud79] and the structure 

theorem of [LosOl ]. For groups of strict polynomial growth we shall show a partial 

converse.

3.6 First we give some equivalent spectral descriptions of the symmetry of 

weighted L]-algebras. Denote by L the left regular representation of G (and of 

lJ(G)) on L2(G). For an element a of a Banach--algebra  A let <j(a) and v(fl), 

or more precisely o^(o) and vyfa), denote its spectrum and its spectral radius, 

respectively.

*

Theorem. Assume that G G [PG] and that co is a weight on G. Then the following 

are equivalent:

(z) L1 (G, co) is symmetric.

W vL\G,a))^ = II L(/) Lp for all f = f*  g L\G,co).

(iH) vLfG,a>)U} = pLi(Gff)forallf = /*  g L\G,m).

(jv) = v(L(f)) for all f = f*  G Ll(G, co).

(v) = ^L\G)(f)f°rall f = f*  G L\G, co).

Proof. We prove the following scheme of implications:

(z) => (zz) <= (zzz) 

ft ft

(zu) => (v)

(z) => (zz) Let f = /*  g L](G,co). Since lf(G,co) is symmetric, there is 

a bounded ^representation jt of Z? (G, co) on a Hilbert space 77 with ufofff) — 

uLfG,aA^ (see [Nai72, p. 312], Corollary; note that for selfadjoint elements the 

left spectrum is the full spectrum), consequently

vD(G,®)(/) = v(tt(/)) = || rr(/) ||op . (1)

We may assume jt to be non-degenerate because restricting tt to the essential sub­

space of H does not affect || tv (/) ||Op. Now by (3.2) jt is the restriction to L1 (G, co) 

of a ^representation jt of LX(G). We therefore have || jr(f) Hop = II tf(/) Hop < 

II fof) Hop because G is amenable. Hence by (1) we obtain vL\^G coff) < 

II L(f) Hop - The reverse inequality always holds.

(ii) (zy) follows from [Hul72, Prop. 2.5] (see also the Appendix below). 

(z’t>) => (z) is obvious.
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(zv) => (v) We have ot,1(G,w)(/) = o-(L(/)) C o'^i(G)(/). The reverse 

inclusion aLi(G)(/) c oii(G;Ci;)(/) always holds.

(v) => (zzz) is obvious.

(zzz) => (zz) Since by Losert’s fundamental result L1 (G) is symmetric [LosOl], 

we have vLi(G)(/) = || L(/) ||0/3 (this follows by the implication (z) => (zz) for 

cu = 1, but can also be seen directly). Consequently, (zzz) implies vLi(G w)(/) = 

l|T(/)||op. ’ □

The reader may have noticed that the first five implications hold for arbitrary 

locally compact groups and weights to, except that in (z) => (zz) we also have used 

the amenability of G.

3.7 The following conditions are also equivalent to those in the theorem:

(Hi)' vLi(G tt))(/) = vLi(G)(/) for all / eL1(G,zv).

0'v)' = ^(L(/)) for all f e lA(G, co).

W' crLi(Ga))(f) = a(L(ff) for all f = g*  * g where g e L\G,co).

(y)Z o'zdtG.^C/) = fora11 f e ")•

0)" ^(G.^C/) = cta’(G)(/) fora11 f = <?*  *3  where g e L\G,oo).

In fact one has the following scheme of implications:

(zv)z => (v)Z => (zzz)z 

ft 4

(zv) => (v) ==> (zzz)

(zu)ZZ =*  (v)" =>• (z) .

With the exception of (v)" => (z) the horizontal implications are as in the above 

proof and, except (zv) => (zv)z, the vertical ones are trivial. Now, (v)zz => (z) is 

a consequence of the fact that L1 (G) is symmetric and (zv) => (z v)z may be seen 

applying the following lemma.

Lemma. Assume that 13 is a Banach-*-algebra  and A a not necessarily norm 

closed ^-subalgebra. IfaAfg) = cr^^g) for all g = g*  G A, then aA(f) = aBhf) 

holds for all f G A.

Proof. For f e A, the inclusion crA(f) D cr^(/) clearly holds true and it suffices 

to show that aA(f) c crB(f).

If A has an identity, p say, then p*  = p = p1 is true in 13. Further 0 0 oA(p) — 

oB(p) and p is invertible in 13. It follows that p is the identity for 13.

If f G A is invertible in 13, then /*/  is invertible in 13. Since 0 crB(f*  f) = 

cr/tC/*/),  it follows that f*f  is invertible in A. Similarly, (//*) ”1 exists in A. 

But then f is invertible in A, because it has the left inverse (/*/)  1 /*  and the 

right inverse /*(//*) -1.

Now, for A. g C \ <yB{f) we apply this argument to h = f — hp and obtain

i °a<JA

If A has no identity, we may assume that 13 contains an identity e, possibly 

adjoining one to 13.
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Next for f g A we have 0 e crg(/), because otherwise, by the above argument, 

f*f  would be invertible in A.

IfX ^OandX £ as(/),then (/-Xe)*(/-Xe)  = /*/- kf -X/*  + |X|2e is 

invertible in 13. Hence — |X|2 <x^(f*f  — kf — kf*)  = cy^(f*f  — kf — kf*)  and 

(/ — X)*(/  — X) is invertible in Ae, the algebra obtained by adjoining an identity 

to A. So f — X has the left inverse ((/ — X)*(/  — X))~'(/ — X)*  in Ae. Similarly 

we obtain a right inverse. Hence X y o(/)-

Thus we obtained <Ta(/) c crjs(f) in this case too. 

3.8 Recall that the group G acts on L](G,o>) by left translations x/(y) = 

/(x-1y) and that || %/ ||w < cu(x) || f ||w. Denote by S the bounded positive hermi­

tian sesquilinear forms on L1 (G, co). Then the group anti-acts on S by xB{f, g) — 

B(xf,x g),i.e., {xy)B = yGB). For f, g g L\G,co) we have

\xB(f, g)| < w(x)2|| B Uli f ||w||g L for all x e G

and the resulting estimate

B(f*g,f*g)=[  f(x)B(xg, f *g)dx

JG

< [ \f(x)Gco(x)^\f(x)Aco(x)~^B(xg,xg)^B(f * g, f * g)^ dx 

JG

~(Jg 2 ^lG\f(x)\co(xriB(xg,xg)dxy

* B(f * g, f *g)L

Hence,

B{f *g,f*g)<  || f IG [ \f(x)\xB(g,g)co(x) 1 dx.

JG

3.9 We use the following notation of [Lud79], Let F be a subspace of L1 (G, co) 

and H c G a subgroup. Define Sp C S by

-S’" = {B g S | hB = B V/i g H and B{F, /) = 0 V/ g l\g,co)}.

As in [Lud79] one obtains that the algebra L\G, co) is symmetric if and only if 

S? A {0} for every proper modular left ideal I c Ll(G, co). Since the closure of 

I is again a proper modular left ideal, the Hahn-Banach theorem guarantees the 

existence of a continuous linear functional q A 0 on LJ(G, co) vanishing on /. 

Then (/, g) q(f)q(g) is in S/. Hence

SI = {B e S \ BG, /) = 0 V/ g L\G, co)} a {«}■
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3.10 Let I be a closed proper modular left ideal of F1 (G, o>) with the modular 

right unit a. As in [Lud79], one sees that B(ct, a) > 0 for all B g \ {0}. For any 

non-zero B e S[ we have

xB(a, a)

SUP '—< +°° 

eg v W

This follows from the estimate

B(f, f) = B(f *a,  f *a)

< ll/IL I |/(x)|w(x)-1 xB(a,ot)dx 

Jg

< \\f\\i w 

xeG

xB(a, a)

a>2(.x)

< CII/llJ llallj.

3.11 Before stating and proving the main lemma necessary for the symmetry of 

F'(G, to), we recall the following definition.

Definition. Let G be a locally compact group acting on the locally compact group 

H by automorphisms (for instance, if H is a normal subgroup of G or a quotient 

group of G). We say that H is an [FC]^ group, if the G-orbits in H are relatively 

compact in H.

3.12 This concept is useful in the following lemma:

Lemma. Let G G [PG] and co a weight satisfying condition (S). Let H and N be 

closed normal subgroups of G such that N C H and such that H/N is [FC]^. 

Let I be a proper closed modular left ideal in L1 (G, to) with modular right unit a. 

Then:

s" {0} => # {0}.

Proof. We adapt the proof of [Lud79] to our situation. Assume that S^ {0} and 

choose a non-zero form B g S^. Let K C H/bl be compact and e > 0 arbitrary. 

We shall show the existence of B e S^ such that B(a,a) >

\\B\\= sup \B(f, g)|<l 

ll/IL=llglL=l

and 

(2)

for all f g Ll(G,co) and all k g K.

As H/N is an [FC]^ group and its inner automorphisms are contained in the 

image of G under the homomorphism c : G —> Aut(H/A) induced by conju­

gation, the structure theorem 3.20 of [GM71] implies that H/N has a compact 

G-invariant neighbourhood of the identity (see Lemma 2 of [LosOl]). It follows 
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that the G-conjugacy classes of K in H/N, which are relatively compact, are con­

tained in a compact symmetric neighbourhood U of the identity e in H/N. Let 

V = |JS t>e the grouP generated by U. Then V is open in H/N. We use the 

following function p — p£ introduced by Jenkins [Jen76] and defined on V by

pts') = pe(s) = (1 +£)~k ifseUk+l\Uk.

It is easy to check that

\p(st) - p(f)| < £p(f) and \p(ts) - p(Z)| < £p(t)

for all s g U and all t G V. We use p to define B' g by

B\f,g) = [ P(v) g)dv

Jv

for all f,g£ L] (G, co), where dv is the Haar measure on H/N. To show that this 

integral is well-defined and convergent, we first notice that G/N acts on . In 

fact, for v G G and n G N

vn B vnv~^ -v v( vnv~^ ^) v B ■

By assumption, co satisfies condition (S) on G, hence condition (S) holds also for 

d>ox\G/N by (2.13), and for cu|y on the compactly generated subgroup V of G/N 

by (2.11). In other words, if

Sk = sup cb(v), 

v&Uk

i

then lim^oo s£ — 1. Moreover, (3.8) implies that

I <,-■*>(/, g)l sc inf ^(irWlir IMsIU

neN

= c®(i)-,)2iiriwi«ii«, = c£i(1))2ii/n„iigii„.

Combining this with the polynomial growth of H/N, i.e., \Uk\ < AkD for some 

D g N and some A > 0, we estimate

oo „
l^(/,g)l <E / \p(v)\\^B(f,g)\dv

OO

< CAII/IMglMl + 1)%2+1(1 +er<t+1).

£=0

The last series converges by (2.5.c). It is easy to check that B' is non-zero and in 

, and (3.10) shows that

xB'(a, a)

0 < b = sup- - z- - -  < oo.

xeG cu2(x)



808 G. Fendler et al.

Now choose y g G such that

yB'(a,a) 1 

w2(y) ~ 2b

and define B g by 

1 1

B = - • —- - - yB .
b co2(y) y

Then by definition B(a, a) > | and by (3.10) we have

|B(/,g)| < B(f,f)~2B(g,g)^

xB(a, a)
< 11/hkLsup^/-^

xeG CUZ(%)

1 r 1 i

< 11/LllgL • t • sup[-^-—r-S (yXot, yjra)J

0 xeG M W

= 11/IMIglL-

This proves that ||5|| < 1. To show the continuity property (2) of B, we estimate 

for all u G K and all f g L1 (G, a>) that

— t ■ 2/ \ (yu^’ ~ B (y?' yf^\

b arty)

= Y • -577 ■ I / P(i>)[ v-1 B( yuf, yuf) - v-1 yf, y/dpvl

P wz(y) \JV ■ 1

< 7 • -57- • [ |p((ywy-1w)’) - p(w)l (v-iy)-5(/. 

b ar(y) Jv

As (ywy-1) e U and v g V,

|H5(/,/)-5(/,/)| < 7-~4~- I p(b)^B(yf, yf)dV

b cu2(y) Jv

— 7 ■ 2r \ ’ B (yf' y^ 

b a>z(y)

<^ii/i£.

Now we may finish the proof as in [Lud79]. For K C H/ N compact and for 8 > 0, 

let

AK,£ = {BeS^\ ||B||<1, B^a,a)>]~,

| kB(f, f) - B(f, /)| < 8\\f\\l, Vf G L\G, a), yk G K}. 
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Then B g Ak,s and Ak,£ -=fi 0. The intersection of finitely many sets A^e is 

non-empty and each is weak *-closed  in

(s/) = S? G{B g S I ||B|| < 1}.

Since (S^h is compact in the weak ^-topology, there exists B[ g Q 

{Ak,£ I K compact, £ > 0}. Then B\(a, a) > | and so B\ 0. Moreover 

||Bi || < 1 and hB]ff,f) = #i(/,/) for all f G L\G,co) and all h G H. 

By the polarization identity, /?B\(f, g) = B\(f, g) for all f,gtL[ (G, co) and all 

he H. Hence B\ g Sf and Sf {0}. □

3.13 Theorem. Let G E [PG], If a weight co on G satisfies condition (S), then the 

algebra L\G, co) is symmetric. In particular, if co is a sub-exponential weight on 

G, then L1 (G, cu) is symmetric.

Proof. We argue as in [Lud79]. We apply Lemma 3.12 inductively to the normal 

series of Losert’s structure theorem [LosOl, Thm. 2] which we have stated in the 

proof of Lemma 2.7. Since Sj fi=- 0, we conclude that Sj7 7^ 0. Thus L](G, <z>) is 

symmetric. 

3.14 For discrete groups we draw the following more explicit and useful con­

sequence of the theorems (3.6) and (3.13) in the spirit of Wiener’s lemma for 

absolutely convergent Fourier series.

Corollary. Assume that G is a discrete, finitely generated group of polynomial 

growth and that co satisfies condition (5). If f g ^(G, co) and the convolution 

operator L(f) is invertible on l2(G), then f is invertible in £l(G, co) and as a 

consequence L(f)~] is bounded simultaneously on all £P(G, co), 1 < p < 00.

In this form, the theorems have found applications in signal analysis [GL01].

3.15 Next let SM = Qc>0 L[(G, coc). If G is discrete, U C G a generating 

neighbourhood and co > (1 + tu)8 for some 8 > 0, then consists of all func­

tions f satisfying f(x) = o(co(x)~c) for all C > 0. Therefore we may call SM the 

Frechet algebra of w-rapidly decreasing functions on G.

Corollary. If the weight co satisfies condition (S), then

^(/) = o-(L(f)) for all f G SM.

In particular, if G is discrete and f G SM is such that L(f) is invertible, then f is 

invertible in SM.

If co(x) = 1 + T[/(x), then S(J) coincides with the space S of rapidly decreasing 

junctions in the sense of Hulanicki [Hul72]: Let f e Sm, then we have for every 

C > 0 that

nC ■ f \f(x)\dx

JG\Un

< / \f (x)| a>c (x) dx -> 0 , since fEL](G,coC). (3) 

Jg\u11
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Thus fG\Un \f\(x)dx = o(n c) for every C > 0, and so / e 5 by Hulanicki’s 

definition.

Conversely, assume that fG\Un = o(n~c) holds for all C > 0, i.e.,

f e S. Then, for every C' > 0, the sum fG\Un \f(x)\dx ■ nc'+2 ■ n~2 < 

const ^2X1 n~2 converges and so fG |/|(x)a>c (yxfdx < oo, i.e., f e SM. As a 

consequence, the above corollary applied to the special case co = 1 + provides 

a sharpened version of the theorem in [Hul72],

3.16 For every generating neighbourhood U of a non-compact group G the 

sequence \Uk\ is increasing and divergent. Hence

limsup(|t/* +1| - |(?|)£ > 1.

>oo

This holds true because otherwise the estimate |G| = lim^oo |Un | = 

|k^+11 — |C^|) + |£/| < oo would yield a contradiction.

3.17 Lemma. Assume that co is a tempered weight on a locally compact, compactly 

generated group G of strict polynomial growth. Let U be a generating neighbour­

hood and p e LfG,co) be compactly supported, non-negative, symmetric with 

[G p(pd)dx — 1 and inf{/?(%)|x e U} > 0. Then for every a > 1 there exists 

L > 0 such that for all x e G:

lim<z>(x*)*  <

j \ ryU) 

lim vG(k) k I 

£ /

„,ry(x),. , ( \Ltu(x)
a vL3G,cofP)

Proof. For co let Sk, I, U be as in Definition (2.10). We apply the lower Gaussian 

estimate of Hebisch and Saloff-Coste [HSC93, Thm. 5.1] to p. (This is where we 

need the strict polynomial growth of G.) This estimate then yields for all n, k with 

(k + 1)Z <

I p* n(x)co(x)dx > / p* n(x)co(x)dx

G Jukl+l\ukl

f d mW2

> / (Cn) ?e c " co(x)dx

J (jkl+l\(jkl

Choosing any integer Lq > 2C" and n = L^kl we obtain

(j! ((fc+l)02 D 1 / *Lc,kl  z X / XJ
£tui,(k) <eC~r (CW^|c/tW| _|^yc p^'W^dx.

It follows that

i

i c7 / 1 \ tt , ,

limdnf < ePi lim inf ( _ |(£//)^ J •
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Hence, by (3.16), applied to the generating neighbourhood Ul:

lim vG(k)k = inf vu(k)*  < eLo vLuGa))(p)L°l. 

k k

qLl 

Finally we choose Lq large enough so that e Lo < a and we set L = LqI. Then for 

any x e G

k 1 1 /. iVy(x)

lim cu(x )£ < lim V[/(T[/(x ))^ < lim vG (jy (x)kfk < I lim vG(fc)k I , 

k^-oo k-+oo k^oo \ k /

and the assertion follows. 

3.18 Theorem. Let G be a compactly generated, locally compact group of strict 

polynomial growth. Assume that co is a tempered weight on G. If L\G, co) is sym­

metric, then co fulfills the condition (S). This applies in particular to radial weights.

Proof. Since co is symmetric and the group of polynomial growth G is unimod- 

ular, any real-valued symmetric L1-function is selfadjoint. By theorem (3.6) the 

symmetry of L\G,(jo) implies that for f e L}(G, co) with f = f*  > 0 we 

have vLi(G w)(f) = vLi(G)(f) = fG f(x)dx. Let U be a generating neighbour­

hood, f = f*  > 0 be compactly supported with inf{f(x)|x e U] > 0 and 

fG f(x^x — 1 • F°r x G and any a > 1 we have by Lemma 3.17.

1 J
1 < lim vu(k)k < ct vLi{G (Vff) = a.

Since a > 1 was arbitrary, co satisfies condition (S).

4 Functional calculus

4.1 In this section we shall develop a functional calculus on a total part of 

L[(G,co) for compactly generated groups of polynomial growth and sub-expo­

nential weights. It is similar to the one given for L](G) and 5(G) in [Dix60], 

[Pyt73] and [Hul84],

4.2 For a generating neighbourhood U and corresponding metric xG, 0 < a < 1, 

and C > 0, we set (x) = eCru(x)a ancj define the (Frechet) algebra La(G) to be

La(G) = P| L\G,wca).

C>0

The following inclusions are obvious: If 0 < a < f < 1 and C, C' > 0, then

L^G) C L\G, wcp) C L„(G) C L1 (G, wf).
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4.3 Let /  /  e L](G,cd) C Lx(G) be a hermitian element. Then f operates 

on L2(G) by

*

L(f) : L2(G) L2(G)

g I—» L(/)(g) = f *g-

This defines a self-adjoint operator on L2(G). For any A. g C we now consider

+oo | +oo j

«ov> = EiiW’’1 = (E ; ;,i’ * (< v>,

k=l k=ok

where we denoted h* k the &-th convolution power of h g ZJ(G). As ||M(iA./)||eu < 

w(z’A./) e L](G,co). Motivated by an argument in [Pyt73] and impos­

ing some additional condition on /, we will obtain a sub-exponential bound for 

||zz(zA./)||w in (4.4) below. If we denote by 4*  the function

ei{ - 1 1 k

vp(r) =- - - - = > - - - - - (zr/,

zr r/(*+D!  

K=0

then

z/(zX/) = 4>(A/)*(zA./)

and for A, G R

gi M — J 

||L(4>(A/))||op = sup |—:—-| < 1,

/zea(L(V)) '41

where or(L(A./)) denotes the spectrum of the operator L(A./) on L2(G).

4.4 Let U be an open relatively compact symmetric neighbourhood of e with 

associated “metric” r = ru. Since G has polynomial growth, there exists D e N 

and A > 0 such that \Un\ < AnD. Let cd be a sub-exponential weight of degree at 

most a, 0 < a < 1, that is, <z>(%) < eCr<x^ for some C > 0.

Choose f = /*  G L2(G) n L^(G) for / G]a, 1[. For A. G Rwe compute 

IlwCzA./)!!^ through the following decomposition:

l|w(fV)L = I \u(iXf)(x)\co(x)dx+ [ \uG^f)M\cD(x)dx . 

JUn JG\Un

The first integral is estimated by

[ |z/(z’A./)(x)|tu(x)6?x = / |4>(A./) * (iXf)(x)\cD(x)dx 

Jun Jun

< II  (?^/)IIl2(z/«) ■ llwlt/n llL2(i/n)*

< ||L(4/(V))IIgp • |A| • 11/112 • sup |o>(x)| • |G'!P

xeUn

< .Vll/lh-W-ec"°n?.
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Setting w(x) = eCr<^, the second integral is bounded as follows:

= [ —-—|u(zk/)(x)|w(x)a>(x)6?x

J G\un u>(x)

< (sup flit"" < 00.

x£Un

Since (ww)(x) < eCx^ • eCrW“ < e2Cr(x)^ for 0 < a < ^ < 1 and / e L/j(G), 

we conclude that f e L1 (G, wa>) and the previous estimate makes sense. Further­

more, since r(x) > n for x £ Un, we obtain w(x) > and supx^„(^y) < 

e~CnP _ This proves that

||w(zV)L < A2||/||2 • |X| -eCna -n% + e~Cnt> • e|x|ll/u“ foran„ e N.

To minimize this expression with respect to n, we choose n to be

n = L(^WII/IU)*  + 1)J,

where |xj is the integer part of x > 0. For this choice of n, we have —Cn^ + 

|k|Il/Ilw« < o, and

eCna < eC((l|X|||/||wa))?+l)“ < CieC2|X|?

for some positive constants C] and C2. Similarly

< (<f wimu)’ +i)? <c3u + wM.

for some positive constant C3. Hence

ll«(iV)k < A/lh • W • Cl . eCM1> C3 ■ (1 + |X| ?)° + 1

< C'(l + ■6-C"W’i

where 0 < ^ < 1 and the constants C, C" > 0 depend on || f ||2, || f || WCl}, C, and

4.5 We define Ay to be the space of all periodic C°°-functions with Fourier coeffi­

cients in^fZ, wy),i.e.,<p e Ayif<p(x) = Enez 4>Weinx and^ez <

00. Then Ay is an algebra under pointwise multiplication. Since wy is sub-expo­

nential, a result of Beurling [Be39] and Domar [Do56, Thm. 2.11] implies that Ay 

contains functions of arbitrary small support. As a consequence of [Do56, L. 1.24] 

for every s > 0 and every interval [p, q] e (0, 2tt) such that p + £ < q — £, there 

exists a function p e Ay satisfying

0 < p < 1, 

supp<p C [p,q], 

p(x) = 1 for x e [p 4- 8, q — e].
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4.6 The algebra Ay is a sufficiently rich algebra to act on certain subspaces of 

L] (G, co). Let co be a sub-exponential weight of degree at most a, 0 < a < fi < 1, 

and 0 < | < y < 1. If / = /  e L2(G) n Lp(G), then cp g Ay with <p(0) = 0 

operates on f through

*

<?{/} =

neZ

The resulting function <p{f} is in L1 (G, o>). To see this, we use the estimate of (4.4) 

and obtain that

neZ

E
i X D+2 /->//1 „ 17J .

Cz(l + |n|?) — ec ■ \<p(n)\

neZ

< C e^Y |^(n)| < oo,

neZ

since 0 < < y < 1.

4.7 If cp, i// g Ay, then cp■ \[i also operates on f, since Ay is an algebra. Moreover,

(<P • V0{/} = <p{f} * Wl-

To see this, it suffices to check that

This identity follows from the fact that for any *-representation  p of L (G, o>),

OO /■

PM/}) = V V

neZ k—1

Here cp(p(f)) is obtained by the usual functional calculus applied to the hermitian 

operator p(f). In fact, the spectral measure E of p(/) is compactly supported, and 

using 9?(0) = 0 we obtain

<P(P(/)) = [ cp(x)dE(x)

JR

= / e,nx cp(ri) dE{x)

neZ

= f — V)<p(n)dE(x)

Jr

= / (e;Z7X — \}dE{x)cp{n)

Jr
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neZ k—1

(
°° /■ \k \

neZk—l /

4.8 If 99 is a C°°-function on R with compact support, such that 99(C)) = 0 and 

|<p(A.)|elxlx dk < 00, then the functional calculus on L2(G) Pl Lp(G) may also 

be defined by

<?{/) = 7- 

2tt

w(zA./)^(X)r/X

The properties are the same as before.

5 Wiener property

5.7 Let us recall the following definition:

Definition. Let Abe a Banach-*-algebra.  We say that A has the Wiener property 

if for every proper closed two-sided ideal I of A, there exists a topologically irre­

ducible ^-representation 71 of A such that 1 C ker tt. If A is of the form Ll (G~) for 

some locally compact group G, we say that the group G has the Wiener property.

5.2 Examples

a) The algebra L1 (R) has the Wiener property. In this case the Wiener property 

means that for every proper closed ideal I of L1 (R) there exists a e R such that

1 C°°
1 c[f e t‘(R) I /(a) = — / f(x)e~iaxdx = 0). 

J — QQ

b) More generally, if G is a locally compact group with polynomial growth, hence 

compactly generated by our definition, then L!(G) has the Wiener property 

[LosOl],

c) Compact extensions of nilpotent groups have the Wiener property [Lud79]. In 

particular, nilpotent Lie groups possess the Wiener property.

d) There are connected, simply connected exponential Lie groups that fail to have

the Wiener property. One example is the group 64.9(G) = exp 04.9(G) whose 

Lie algebra is generated by X, Y, Z, T satisfying [T, X] = —X, [T, T] =

Y, [X, T] = T, see [Lep73,Pog77].

e) The affine group has the Wiener property. More generally, this is true for every 

semi-direct product of abelian groups [Pyt82].
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5.3 In this section we shall study the Wiener property for algebras of the form 

L ’ (G, co), where G e [PG] and co is a sub-exponential weight of degree at most a, 

0 < a < 1. Let (fj)jEj be a bounded approximate identity in L1 (G, co) such that

/; = // for all j , 

sup ||/7-Ha, = C0 < 00, 

jeJ

U supp/j C K,

j^J

where K a fixed compact, symmetric neighbourhood of e.

We shall show that there exists a periodic function cp g Ay for suitable y < 1 

with <p(l) = 1, cp = 0 in a neighbourhood of 0, such that

^{/;} = ^<p{n)u(infj) 

neZ

converges for all j, and such that

IM/j} *g -> 0 (4)

for all continuous functions g with compact support in G.

If 99(1) = 1 and <p(0) = 0, then

M/)} *<?  - = II 52 *g  - e,ng] Ho,.

neZ

In the sequel we shall use the same techniques as in the construction of the functional 

calculus in 4.4 to show that this second expression tends to 0.

5.4 First we show that for a fixed n and j —> oo

OO /. . i,
infi V5 IHla, in

e Jj *g  = ^ *g e §■

k=0

In fact, for any e > 0 we may find M g N (independent of j) such that

»f ^]||“ - £ +£ ^«» <s •

k=M ' ' k=M k=M

On the other hand, as (/;); is an approximate identity, we have

f’k*g

as j -o- oo for all k, and hence

k=o
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Combining these estimates we have shown that 

einfj * g eing

converges in L}(G, co) for any fixed n. Hence, for any function <p with <p(l) = 1 

and 99(0) = 0 and any N e N fixed, we have

22 <p(n)[einfj * g - eing] 0.

\n\<N

5.5 Next we show that we may choose cp such that, for any s > 0, there exists 

N g N such that

|| 22 <P(n)[elnfj *g-e^g]^  < 22 l<£(«)llk'Vy *glb

|n|>2V |«|>7V

+ I J2 < 6,

\n\>N

independently of j. Suppose that we have already determined cp and N\ such that

V IwOlk”-*sL,  < p (5)

|n|>M

for all j, then (as YlneZ V(n)ein — <P(1) — 1 converges) we can choose N > Ni 

such that

i 22 5)^e'n\ hii« <

|n|>7V

Thus it suffices to show (5). For this purpose, we decompose the L1 (G, tu)-norm 

as

\\elnfj * <?IL = [ \einfj * g(x)\a)(x)dx + [ \einfj * g(x)\a)(x) dx 

JuM Jg\um

where M g N. Then

/ \ein^ * g(x)\a)(x)dx < ||e,Z!^7 * g\yM W[P-mM\ • llwlt/M llL2(t/w) 

JuM

< A^\\einfJ g|| 2MT ec'Ma*

< A2||g||2MT ec'Ma ,

because the norm of the convolution operator by in Z,2(G) equals 1 for all j, 

and because |t/M| < AMD by polynomial growth. Choose 0 < a < fl < 1 and 

let w(x) = ec'Tu^. Then

[ \einfj * g(x)\v(x)dx < sup

Jg\um x^um w(x)

£e-C'"'’l|e'"r/||w<<,||g||u,(„.
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Since all fj have their support in the fixed compact set K, we estimate

II fi II W(j) — sup W(x)||/;||w < C < 00. 

x&K

Hence

<e^c .

Combining all estimates we obtain

< A?\\g\\2M%ec'Ma + e~c'MP eMC \\g\\wa).

Similar to (4.4) we now choose M to be

M= L(^l»l)’ + 1J.

where |xj is the integer part of x. Then \n|C — C’< 0 and

*gL < Al||g||2ec'(<£l'l|)?+1)“ ■ (<T|n|)’ + 1)T + llsU«

< B\n\beB'^

for some new constants B, B', b independent of j.

Now choose y, such that 0 < < y < 1. By (4.5) there exists a function

<p g Ay such that

<p = 0 in a neighbourhood of 0 (6)

0 < <p < 1 (7)

<p(l) = l (8)

suppcp C]O, 2tt[ . (9)

For this <p e Ay, we have

22 l^(«)l \\einfi *sll<y  < C 22 l^(w)| e|,l|X < oo. 

z?eZ neZ

Consequently, there exists N] such that

22 i^(«)i \\e'nfj *<? l < |- 

hl>^i

5.6 Theorem. Let G e [PG] and let a> be a sub-exponential weight on G. Then 

Z? (G, cu) has the Wiener property.
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Proof. Assume that I C L\G, cu) is a closed two-sided ideal not contained in 

any kernel of a topologically irreducible ^-representation of L1 (G, co). Let M =

I j e 7}, where <p, (fj)jej are as in (5.3). By (4) in (5.3) any closed ideal 

containing M will also contain the dense subspace of continuous compactly sup­

ported functions and thus coincide with L1 (G, co). In the language of ideal theory, 

the hull h(M) of M is empty where h(M) is defined as h(M) = {ker p | M C ker p) 

and p ranges over all topologically irreducible ^-representation of L\G, co).

Now choose x/f G Ar satisfying the conditions (6) and (7) (with 1// in place of 

cp) and f = 1 on supp9? A [0, 2jt J. Clearly h(M) — 0 C h(p/s{fj}) for each j e J. 

By (4.7) we have for each j g J:

f{fj] = <P(fj}

Now we apply Lemma 2 of [Lud80] and we conclude that M c /.As shown above 

I coincides with L[ (G, co). □

Let us point out that the result of [Lud80] used in the proof makes crucial use of 

the symmetry of the underlying algebra. In our case the symmetry of /J (G, co) for 

G e [PG] and sub-exponential weight co is an important and necessary, though 

somewhat hidden ingredient in the proof of Theorem 5.6.

6 Appendix

In the proof of Theorem 3.6 we have used the following statement of [Hul72],

6.1 Proposition. [Hul72, Prop. 2.5] Let Abe a Banach--algebra  and S a (not 

necessarily closed) ^-subalgebra of A. Let T be a faithful ^-representation of A 

on a Hilbert space 7Y satisfying

*

II Tx ||op = lim ||x”||« for all x = x*  G 5. 

n—>oo

If A has a unit, e say, assume in addition that Te = idyp Then for every x = x*  in 

S we have

°a(x) = o(Tx).

It seems that the proof in [Hul72] yields only the equality oyt(x)\{0] = or(Tx)\{0}. 

This is sufficient for all purposes of symmetry. However, since we need the full 

result as stated, we include a modification which covers zero too. We use the nota­

tion of [Hul72] except that we still denote the spectrum of a by o'(a). For the proof 

we use the following lemma.

6.2 Lemma. Let 13 be the || W^-closure of some commutative ^-subalgebra of 

A. If idyt is in the operator norm closure of the image of 13 under T, there is some 

e G 13 with Te = idpp It follows that A has a unit, namely e.

Proof of the Lemma. As in [Hul72] and by continuity, A. : x i-> || Tx ||op and v : 

x lim,? || xn |p/” are equivalent norms on 13. The completion 13x is a commuta­

tive C*-algebra  and isomorphic to T(J3)\ and by assumption 13k contains a unit.
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As P is dense in and every (p e X (13) can be extended to (p e X (J3X) because 

v ~ X on 13, the Gelfand spaces X(J3) and X(Px) are homeomorphic via the map 

<p|g. Since the unit of Px has Gelfand transform 1, there is f 6 13 such that 

\\f — 1 lloo < 3- As | f | > I on X(J3), there is a unit element e in 13 (see [BD73]), 

and Te = idpp For a & A we have Ta-ae = Ta — TaidpL — 0 and similarly 

Ta-ea = 0- Since T is faithful, a = ae = ea, so e is a unit for A. 

Proof of the Proposition. For x = x*  e S let 13 be a commutative || || ^-closed 

*-subalgebra of A containing x. We distinguish several cases.

Case I. If the assumptions of the Lemma hold for P, i.e. id-pt e P\ we have

°aW = &b(x) = {(pM\(p e X(Z3) = X(Px)} = aBx(x) = (yBCHfTx),

(10)

where the outer equality signs hold, because the spectrum in the “middle” does not 

separate the complex plane and A and P as well as Px and B(7Y) have a common 

unit element.

Case II. If id'H $ P\ there are two further cases:

(i) A has no unit. Then 0 e 04 (x) by definition. Since Px + Cid^ = Px ® C, 

we have 0 e ^B^+dd-n (%) = c’B('Hfhx), because Px + Cid^t and B(?i) 

have the common unit element idy-p For the nonzero spectral values, (10) 

still applies, so

(?a(x) = cyBCH)(Tx).

(ii) A has a unite, and by assumption Te = id^. It follows e £ 13 (as id-^ Px). 

Because of P + Ce = P ® C we obtain 0 e crB+ce(x) — &aAA as P + Ce 

and A have the common unit element e. We also have 0 e orB(H)(^r) as in 

(i). For the nonzero spectral values, (10) applies, so

<?a(A) = ob^(Tx) . □
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