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Abstract Let G be a compactly generated group of polynomial growth and w a
weight function on G. For a large class of weights we characterize symmetry of the
weighted group algebra L' (G, w). In particular, if the weight w is sub-exponential,
then the algebra L! (G, w) is symmetric. For these weights we develop a functional
calculus on a total part of L'(G, w) and use it to prove the Wiener property.

Mathematics Subject Classification (2000): 43A20, 22D15, 22D12.

1 Introduction

Weighted group algebras play an important role in different areas of harmonic
analysis. For abelian groups, the properties of these algebras are well known since
the works of Beurling [Be39], [Be47], Domar [Do56] and Vretblad [Vr73]. For
non-abelian groups, however, the results are sparse. The aim of the present paper
is to develop a corresponding non-abelian theory. We first give the definition of a
weight and introduce the notion of weighted group algebras.
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1.1 Definition. Ler G be a locally compact group. A weight w on G is a Borel
function )
w:G—>[1,00[

such that
w(st) <w(s)w(t) Vs, t eG.

In this paper all weights are assumed to be symmetric, i.e.,
w(s‘l) — @O e E

By changing to an equivalent Banach algebra norm on L!(G, ), we may
assume without loss of generality that the weight w is upper semi-continuous, see
[Rei67, Ch. 3 § 7]. Moreover, we shall always require the function e to be bounded
on compact sets. Hence, if G is compact, every weight w is equivalent to a constant
one. In the remainder of this paper we shall exclude the trivial case of a compact
group G. Let us give some examples of weights:

1) Let (T, E) be astrongly continuous representation of the locally compact group
G on the Banach space E. Then

w@(s) = max{| T lops 1T Dl

and
@01(8) = 1T llop + 176 Hllop

are weights on G. These weights are in general not upper semi-continuous, but
can be suitably modified as mentioned above.

2) The function w(s) = 1 for all s € G is the trivial weight on G.

3) The function ¢ > e/l is a weight on R. Likewise, the function ¢ > e?"I", with
0 <a < 1land y > 0 fixed, is a weight function.

Given a weight @ on G, we define the weighted group algebra L' (G, w) to be
the set of all measurable functions f from G to C such that

T /G I s

Then L! (G, w) is a Banach *-algebra for the usual convolution and involution. One
motivation to study weighted group algebras stems from Gabor analysis, where it is
important to understand the invertibility of convolution operators and related oper-
ators on function spaces different from L' or L2. See [GLO1,Jan95] for problems
of this type.

If G is a connected, simply connected, nilpotent Lie group and if w is a poly-
nomial weight on G (in the sense that w is bounded by a polynomial function in
the canonical coordinates of the first or second kind), then the harmonic analysis
properties of LY(G, w) are well understood. In particular, LY(G, w) is symmet-
ric, it has the Wiener property, and there exist minimal ideals of a given hull. The
closed proper prime ideals of L'(G, w) (in particular the kernels of algebraically
or topologically irreducible representations of L'(G, w)) coincide with the ker-
nels ker 7 N L!(G, w), & € G, and the algebraically and topologically irreducible
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*-representations of LY(G, w) may be characterized [MMB98]. On the other hand,
if @ increases more rapidly, it is not known whether, for every algebraically or
topologically irreducible representation (T, E) of L'(G, w), there exists 7 € G
such that ker T = ker 7 N L1(G, w).

First we study the symmetry of weighted group algebras for compactly gener-
ated groups of polynomial growth. For the group G = Z this question is equivalent
to the validity of a weighted version of Wiener’s lemma on absolutely conver-
gent Fourier series and a complete answer was obtained by Naimark [Nai72]. For
groups of polynomial growth and polynomial weights the symmetry of L'(G, w)
was shown by Pytlik [Pyt73]. The most difficult case, namely the symmetry of the
full L'-algebra was proved only recently by Losert [Los01] as a consequence of a
detailed structure theorem for groups of polynomial growth.

In the locally compact group G let e denote the neutral element and |U| the left
Haar measure of a Borel set U C G.

1.2 Definition. A locally compact, compactly generated group G is said to have
(at most) polynomial growth, if there exists a compact symmetric neighbourhood
U C G and constants C > 0 and D € N (the smallest D is called the order of
growth of G) such that G = | J52, U™ and |U*| < CkP  fork € N. We write
[PG] for the class of compactly generated, locally compact groups of polynomial
growth.

We say that G has strict polynomial growth, if there exists a compact symmetric
neighbourhood U C G and constants C1, C, > 0 and D > 0 (again called the
order of growth of G) such that

CikP? < |U* < CokP forkeN.

Note that we always assume that G € [PG] is compactly generated. By replac-
ing U by a suitable power of itself, one may assume in this definition that the
interior int(U) of U is a symmetric neighbourhood of ¢ and generates G, i.e.,
G = (U2, int(U)". For brevity we shall call an open, symmetric and relatively
compact neighbourhood of the identity that generates G a generating neighbour-
hood.

It is known that connected Lie groups [Gui73] and finitely generated discrete
groups [Gro81] of polynomial growth have strict polynomial growth.

For a given generating neighbourhood U we define a function tyy : G — [1, oo
by

twx)=inf{n e N|x e U"} forx #£e, 1yle)=1

Then 7y serves as a “metric” on G and the function wy (x) = 1 + ty(x) is a
natural weight on G (see [Hul71,Lud87]). An arbitrary weight w on G satisfies the
inequality

w(x) < )
where C = Insup, .y @ (x). Moreover, for every a such that 0 < @ < 1 and every
C > 0, the function

D) SrE Bt iniclG,
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is a weighton G. Such weights appear naturally in the following situation: Let G be
a connected, nilpotent Lie group. Let G be the derived group of G, i.e., the closed
subgroup generated by the elements of the form [x, y] = x~'y~lxy, x,y € G.
Let U be a generating neighbourhood in G and V = U N G the corresponding
neighbourhood of e in Gy. Then it is shown in [Ale00] that

(I + 1l (™) <K -(1+v(®x)?, VxeGy,

for some positive constant K. Consequently, if w is any weight on G, then

1
e Omret W s nieiGs

for some constant C.
To any weight w and any generating neighbourhood U we associate a weight

v 1 Z — [1, 00[ by
vy (k) = v (k) = sup{w(y) | y € U}

Now we list some possible properties of weights with increasing strength.

(i) We say that a weight w satisfies the Gelfand-Naimark-Raikov condition if
lim w(x)f =1 Vx e G.
k— 00
(ii) The weight w satisfies the condition (S) if
lim v (k)k = 1.
k— o0
(iii) We call the weight w sub-exponential of degree at most«, 0 < a < 1, if there

exists C > 0 such that

w(x) < CTU vy € G.

In this paper, we shall prove the following results:

Theorem (3.13). Let G € [PG]. If the weight w satisfies condition (S), then
LY(G, w) is symmetric.

For radial weights, i.e., weights which depend only on 7y for some neigh-
bourhood U, we obtain a converse on groups of strict polynomial growth. In fact,
this converse is true for the larger class of tempered weights which are defined
as follows: A weight w : G — [1,00[ on G le [PG] is called tempered if there

exist a sequence & > 0, k € N with limg elf = 1,an [ € N and a generating
neighbourhood U such that for all k € N:

w(x) > g supfw(y) |y € Uk}, Vx € G\ uia

Under this technical condition we prove the following converse.



Weighted group algebras on groups of polynomial growth 795

Theorem (3.18). Let G be as in the above theorem, but of strict polynomial growth
and assume that w is tempered. If L' (G, w) is symmetric, then w satisfies condition

(S).

The main tools in proving these theorems are the structure theorem for groups
of polynomial growth of Losert [LosO1], the Gaussian estimates of Hebisch and
Saloff-Coste [HSC93] and the methods of Ludwig [Lud79].

For sub-exponential weights we develop a functional calculus on a total part of
L'(G, ®) in Section 4. This functional calculus and the symmetry of LY(G, w) are
essential tools for proving the Wiener property in Section 5.

Theorem (5.6). Let G € [PG] and w be a sub-exponential weight on G. Then
LY (G, w) has the Wiener property, i.e., for every proper; closed, two-sided ideal 1
of LY(G, w) there exists a topologically irreducible x-representation w of L' (G, w)
on a Hilbert space such that I C ker 7.

2 Some results on weights

2.1  Polynomial weights

a) Let G be a compactly generated, locally compact group of polynomial growth
with generating neighbourhood U. Let ty(x) = inf{k | x € U*]. A weight
o : G — [1,00] is said to be polynomial if there exist « > 0 and C > 0 such
that

W)= @Il By o)) P IR R G

b) In particular the weight wy (x) = 1 4 ty(x) is polynomial. For every a > 0
this weight satisfies the inequality

% (xy) < cq(@*(x) + 0*(y)), Vx,yeG

for some ¢, > 0 [Lud87].

¢) In [MMBO98] a weight on a connected nilpotent Lie group is said to be poly-
nomial if, for any Jordan-Holder basis {Xo, X1, ..., X} of the Lie algebra,
w(x) is bounded by a polynomial in the coordinates (x1, x2, ... ,x,) of x =
exp(xoXo) exp(x1X1) - - - exp(x, Xp,) [resp. in the coordinates (X1, X2, ... , Xn)
of x = exp(XoXo + %1 X1 + ...+ X, X,,)]. This definition is equivalent to the
one given in a), by arguments of [Lud87].

d) In [Pyt82] Pytlik defines a weight w to be polynomial if

w(xy)
S o(x) + w(y)

and he shows that such a weight is polynomial in the sense of a). Thus a) seems
to be the most general definition of a polynomial weight.

e) Polynomial weights are of course sub-exponential. Hence all the results of this
paper are in particular true for polynomial weights.
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2.2 For a weight w and a generating neighbourhood U, we define vf; : Z —
[1, oo[ by

vy (k) = v (k) = sup{w(y) | y € UM},

Then vf} is a symmetric weight on the additive group Z and increasing on Z... Since
the “metric” 7y satisfies 1y (xy) < ty(x) + ty (y), the function & defined by

®=vj oty

is again a weight. Then w < @ and @ is an increasing function of ty (x). If w is
sub-exponential of degree at most «, then the same is true for @. More generally, if
w(x) < ¥(ty(x)), Yx € G forsome increasing function WV, o(x) = vy (ty(x)) <
Y(ty(x)), Yx € G.

2.3 We investigate the symmetry of weighted group algebras. In case of the most

1
basic group Z the algebra INZ, w) is symmetric if and only if limy oo w (k)% =1
[Nai72]. This result motivates the following definition.

Definition. A weight w is said to satisfy the Gelfand-Naimark-Raikov (G-N-R)
condition if

lim w(xk)% =Y e G
k—o00

Since k — w(x¥) is sub-multiplicative, the above limit always exists and is
actually an infimum.

2.4 We notice that

Ty (X)
lim w(x)F = (klim uU(k)z> Vx € G.
=200

k— 00

In fact, if Ty (x) = [, then x¥ € UM andso1 < w(x*) < vy (lk) < vy (k)!. Hence,

1< limis oo 0 (9 < (limiosoo v t).

2.5 A uniform analogue of the condition in (2.3) is to require the G-N-R con-
1 . . . . . .

dition for the weight vy}, that is limg, « v (k)¥ = 1. Since this limit is just the

inverse of the radius of convergence of the power series ), vy (n)z" and since

v‘l‘/’ (k) > 1, Yk € N, we may reformulate this condition as follows.

Definition. A weight w satisfies condition (S) if for all ¢ > 0

(0.9]

1
Z——— v (k) < o0.
b (1+ 8)*
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Remarks.

a) Condition (S) is independent of the choice of the generating neighbourhood. In
fact, if V is another one there exist n, m such that U C V" and V. C U™. Then

vy (k) = sup w(x) < sup w(x)
xeU*k xeynk

= vy (kn) <wy(k)".
Similarly, vy (k) < vy (k)™ and both inequalities together imply
lim vy(®)F =1 < lim vy(K)F = 1.
k—o00 k— o0

b) Recall that@(x) = sup{w(y) | Ty (y) < Ty (x)} = v (ty (x)). Hence, v@ =y
and we see that @ satisfies condition (S) if and only if @ does.

¢) If G € [PG] then for some constants C > 0, D > 0 we have |U"Jrl \ Uk| =
C(k + 1)P. Hence, if w satisfies condition (S), then

o0

1
Z </Uk+1\Uka)(x)dx> —(] g

k=1
(RS2

o
SCZUU(k+1)(1+—5)k

k=l

- Floon i (s ST

d) Assume that there exists an increasing function ® : Z; — R, with
¢,(Z") = 0 such that the weight w satisfies for some C > 0

limy, 5 o
w(x) < Ce®E)

Then w satisfies condition (S). In fact,

@ (kY < C @ (k) !
I;(1+8)k i 5 ;(1“)” Lk

: : diisl 2 0(a),
because the radius of convergence of the series 3 e®® zk is lim, , e 7 = 1.

2.6 Examples

a) fowk) < e€Cv®* 0 <a < 1, then D(s) = Cs*. By (2.5.d), w satisfies
condition (S). Consequently, every sub-exponential weight, and in particular
every polynomial weight, satisfies condition (S).

b) Itis easy to check that the function

o(x) = @D g o 5 <1 Yx e G,

is a weight satisfying w(x) < 1y (x)+1 forall x € G\ U. Since w is dominated
by a polynomial weight, it satisfies condition (S).
o) If w(x) = €W for some C > 0, then vy (n) = e" n e N, and

limy, 0 V37 ()7 = eC # 1. For this weight the condition (S) is not satisfied.

d) fo(x) = eXn O™ WithO <y, < Lya 1 1,00 > 0, Y ¢n < 00, we may
take ®(s) = 3, c,s7 in (2.5.d), and thus w satisfies condition (S).
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2.7 We need a lemma on the existence of special (discrete) one parameter sub-
groups in groups of polynomial growth.

Lemma. If G € [PG] and U is a generating neighbourhood of e, then there is
some x € G and B > 0 such that Ty (x") > Bn foralln € N.

Proof. To prove this statement, we use the following characterization by Losert
[LosO1, Thm. 2]: A compactly generated group G has polynomial growth if and
only if there is a finite descending sequence of normal subgroups of G, G = Gy D
Gi1 D ... D G NG —"{e}¥suchithat!G /G and"G,, * Fare compact and
Gj/Gjr1 ZRY x Zliforj=1,...,n—2,and every G;/Gj 1 is an [FCl-
group. (see (3.11) for the definition).

(a) Assume first that G = R* x Z!, define the generating neighbourhood K by
K={(z,m)e G:|zl2 <1,m=0o0r £ 1} and let t(x) = min{n|x € nK}
forx € G.If x # e and r = min{m|mx ¢ K}, then t(nx) > %n foralln € N.

(b) Next assume that G has a closed normal subgroup H such that G/H = R* x 7!
and choose x € G \ H arbitrary. Let V be a generating neighbourhood of e
in G with corresponding metric 7. We claim that lim,,_, I(fl'") =0, forsee
this, project everything into G/H by the canonical projection y > y = yH.

Then V is a generating neighbourhood of G/H and the corresponding metric
w6

T satisfies T(y) > (). Since x # ¢, step (a) implies that lim,, , = — =
Lo SHEOR. o
(¢) Finally assume that G is non-compact and Gy, ..., G, are as in Losert’s

theorem above. Let W be a generating neighbourhood of e in G| and 7; the
. e 5 . T (X")
corresponding metric. Using (a) and (b) we see that lim, , =~ > 0 for
x € G \ Ga.
In order to obtain the same conclusion for a metric tp on Go, we show that
tolcl is equivalent to t; by using an argument of Guivar’ch [Gui73].

Choose a generating neighbourhood V of e in Gg such that V. > Wand p(V) =
Go/G1 where p is the canonical projection from G onto Go/G . This can be done
because Go/G is compact.

It e G andin) o) ="n, i.c.; x e W\ w1 thenx € V*,so1p(x) <n =
GOk

On the other hand, since p(V) = Go/G1,wehave Go = G-V = | ekyaes v,
so there is 7 € N with V2 C W’ V. By induction we have V"*! ¢ W"V. Now
assume to(x) = n for x € Gy, ie,x € V" \ V7?1 Then x € W'®=Dy)n
G, = WoDwnGy) c we-Dwe = wre=D+a for suitable a € N. So
71(x) < rn+ (a —r) < An = Atp(x) where A > 0 is some constant. Hence for
x € Gy \ Gy
> — lim — >0

lim
250 > =0 22 n—o00 n

If we use a different generating neighbourhood V with corresponding metric 7, then
by equivalence of 7y and 7 the results holds true for 7 (with a possibly different

constant). m]
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2.8 We call a weight w radial with respect to some generating neighbourhood U,
if w(x) is a function of 7y (x). An example of a radial weight function is given by
w(x) = W) where @ : Zy — [0, oo[ is sub-additive. We notice that ® is
sub-additive if @ is the restriction of a concave function ® : R, — R,

Conversely, if  is radial with respect to U (and G is not compact), then the
sequence (U™),cn never stabilizes, and thus 7y is surjective onto N, and w (x) =
e®@W ™) for some function ® : N — [0, oo[. If m € N and m = n + k, then there
existx, y,z € G suchthatxy = z, 7y (x) = n, Ty (y) = k, and 1y (z) = m. Conse-
quently, ®(m) = Inw(z) < In(wx)w(y)) =hwx) +hoy) = PMH) + (k).
That is, ® is necessarily subadditive.

Corollary. Assume that the weight w is radial with respect to some generating
neighbourhood U. Then o = e®°% fulfills the G-N-R condition if and only if
limg 00 1 ® (k) = 0.

2@, 0.Forx € Gsetng = ty(x*), k € N. If ng
<1>(n/<)

Proof. Assume that

is a bounded sequence, then clearly — O and 1 = limk_,ocw(xk)i =
D(ng)
limg—oo ek = 1.If ng is unbounded, then there exists a subsequence, which by

abuse of notation we denote by ny again, such thatboth ny — coandny < kty(x).

1 1
Consequently q)("") = <1)("")ty(x) and 1 < hmk%oow(xk)k infrey w(x¥)x =
; LAY f —’L , e
infel e = &' e W) 1 For the converse implication we note

that Lemma (2.7) ensures the existence of 8 > 0 and x € G with ny = 1y (x%) >

() @ (k) =
—nki‘ =l

Blonlfoilai— hmk_,ooa)(x")F thenplimpsi
D (ng)

< im0

limg s o0

2.9 Letw be aweighton (Z, +) and set v(k) = sup{w(l) | |I| < k}.

a) By definitionitis clear that both limy 0o  (k)F = ¢; > 1and limy_ 0 v(k)F =
¢y > 1 exist and that ¢; < ¢;. On the other hand, for some n; < k we have
v(k) = w(ng). Now, if (ng)ren is a bounded sequence then limg_; o v(k)% — 1
and ¢ and ¢, coincide. If (ny)gen is unbounded then

511
() v(k)% — w(nk)% <wnp)™* — c;, ask — oo.
That is ¢; = ¢; in this case too.
: 1 . 5 5 :
b) If ¢ = limy_, oo w(k)* > 1, then w is almost increasing in the following sense:

There exists [ such that for all k € N, |n| > Ik implies @ (n) > w (k).
For, otherwise we find sequences k;, n; with n; > lk; such that w(n;) < w(k;).
Then
L 1 1
c 2o <wtk)™ < olk)™.
If the sequence k; remains bounded then the right hand side tends to one as
[ — 00, and ¢ = 1 follows. If k; — oo then we estimate for [ > 2 the right

1 1
hand side by w (k)™ < w(k;)® — c%, as/ —> 00.Thenl <c¢ < c%, and this
again yields the contradiction ¢ = 1.
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2.10 Definition. We call a weight w : G — [1, 0o[ on a locally compact group G
tempered if there exist a sequence € > 0, k € N with limy, s,l/k =1,anl € Nand
a generating neighbourhood U such that for all k € N:

w(x) > exsuplw(y) | y € UX), Vx e G\ UM,
Remarks.
a) Every weight w satistying condition (S) is tempered. To see this, let & =
1

vy (k)~1, then we have limy slf ="1'and'epvy(k)' = 1= wl(r), "V '€l Fas
claimed.

b) On the other hand, if G has polynomial growth and w is a tempered weight
that fulfills the G-N-R condition, then it satisfies condition (S). To see this, we
choose x € G and L € N as in Lemma (2.7) so that 7y (x*) > Iln Vn. If

&, 1, U are as in the above definition then ty (x*/£) > ki, and we have

exvy (k) = g sup{w(y) | y € UK} < w(x¥1).

Hence,

L

1 ) 1 1 )
=i I3 1 b KIL\\E < li kyz =1.
L e B = i (e GioNie (i o ()

We summarize these observations in a lemma.

Lemma. Let G € [PG]. Then a weight w satisfies condition (S), if and only if w is
tempered and satisfies the G-N-R condition.

¢) Aradial weight on any compactly generated group is tempered. To prove this, we
may assume that w does not satisfy condition (S), i.e., ¢ = limy_ vﬁ (k)% >ale
Let o’ denote the weight on Z for which o’ (7 (x)) = w(x) for a suitable gener-
ating neighbourhood U. Then v (k) = sup{w'(1) | |I| < k} = sup{w(x) |ty (x) <
k} = vy (k) and (2.9.a) implies that limg w’(k)% = Iy v(k)% — e
et ept= “;/—(k/‘) then limg_, oo sk% = 1. We take [ as in (2.9.b) and see that for
x € G with 7y (x) > [lk:

w(x) = o' (ty(x)) > &' (k) = gvk) = vy (k).

2.11 Let H be a compactly generated subgroup of the compactly generated,
locally compact group G. Let K and U be generating neighbourhoods in # and
G respectively with K C U. For x € H we have 1y (x) < tx(x). Hence, if
w(x) < Ce®@WW) vy e G, for some increasing function @ then

o) = Ce2 =@ wx e H,

In particular, if w is sub-exponential of degree at most «, then the same is true for
w| g . Moreover,

UZ’,F;((”) = sup{w|g (x) | x € K"} < sup{lw(x) | x e U"} =vg y(n), n€EN,

and w| g satisfies the condition (S) whenever w does.



Weighted group algebras on groups of polynomial growth 801

2.12  Let N be aclosed normal subgroup of G with canonical projection p : G —
G/N and let U be a generating neighbourhood of G. Then V = p(U) = UN C
G/ N is a generating neighbourhood in G /N such that ty (x) < 1y (x) forallx € G.
To any weightw on G /N we associate a weight w on G by w(x) = wop(x) = w(x).
If w(x) < Ce®™ @) on G/N for some increasing function ®, then also

w(x) < Ce2Ct yx e G.

So, if @ is sub-exponential of degree at most « on G /N, then the same is true for
w on G. Moreover,

vG y () = sup{w(x) | x € U"} = sup{w(x) | & € W= Ug/N,V(”)

and w satisfies condition (S) on G if and only if w satisfies condition (S) on G/N.

2.13 Conversely, given a weight w on G and a closed normal subgroup N we
define a weight w on the quotient group G/N by

w(x) = inf{ow(xn) | n.e Nk V% € G/ Nes

It is easy to check that for all X, y € G/N: w(xy) < o(x)w(y). Since w is upper
semi-continuous, @ is upper semi-continuous, too, hence measurable.

Let U be a generating neighbourhood in G, V = p(U), and let tyy and 7y be
the corresponding “metrics” on G and on G/ N respectively. If inf ey Ty (xn) <k,
then xn € U for some n € N. Hence x € V¥ and 1y (%) < k. Conversely,
ife w00l ok then there are %1, 5. U such that & = x;.. . %y, andsthus
xn = x1...x; for some n € N. It follows that inf,cy Ty (xn) < k and thus
avae )= inf;, - N o sy Yx € (G

An inequality of the form

wiE) = Ce® W) Yy e G,
with increasing @ therefore implies
Ax) =Ce™ VO VY EGIN

In particular, if w is a sub-exponential weight on G of degree at most «, then the
same is true for w on G/N. Clearly,

vg/n,v (1) = suple(x) | & € V") < sup{w(x) | x € U"} = v% , (n).

Thus @ on G/N inherits condition (S), temperedness, and the G-N-R condition
from w on G.
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3 Symmetry of L1(G, w)

3.1 We first mention some properties of the Banach algebra L' (G, w) that hold
for arbitrary locally compact groups and arbitrary weights w. The algebra L' (G, w)
is a x-algebra for the involution defined by f*(x) = A(x~!) f(x~!). The left trans-
lations a —  f, where , f(x) = f(a~'x), are strongly continuous from G to
P, w). The same is true for the right translations. The algebra LY (G, w) admits
bounded approximate identities. This property ensures that the closed left, right,
and two-sided ideals in L (G, w) are just the closed left, right, and two-sided trans-
lation invariant subspaces. Let 7w be a strongly continuous representation of G on
a Banach space such that for all x € G, 7)) llop < C - w(x) for some positive
constant C. Then 7 defines a representation of L1(G, w) by

ke /G iR

If the representation 7 of G is irreducible, the same is true for the correspond-
ing representation of L' (G, w). Conversely, let 7’ be a continuous representation
of L'(G, w) on a Banach space E. Suppose that 7" is non-degenerate, i.e., that
7' (LY (G, w))E is dense in E. Because of the existence of bounded approximate
identities, the classical proof shows that there exists a representation 7 of G satis-
fying || (x)]lop < C - w(x) and such that

() :/ Filw@)dx; > forall fre i (Glio):
G

3.2 We are only interested in s-representations on Hilbert spaces. Using
[Lep67, Satz 5] it is easy to see that we have in this case:

If 7/ is a #-representation of LI(G, ) on a Hilbert space H, then it is the
restriction of a *-representation of L'(G).

The previous remarks apply in particular to 7 € G (the set of equivalence clas-
ses of topologically irreducible unitary representations of G). There is a bijection
between G and the equivalence classes of topologically irreducible, continuous
k-representations of LG w).

3.3 A Banach-x-algebra A is called symmetric if for all a € A the spectrum of
a*a is positive. An equivalent condition is that for all a = a* € A the spectrum is
real. Leptin showed in [Lep73] that this is equivalent to the fact that every proper
modular left ideal is contained in the kernel of a positive hermitian functional.
If the algebra A contains bounded two-sided approximate identities, the positive
functional may be taken to be continuous [BD73].

3.4 The symmetry of the group algebra L'(G) has been studied extensively. For
instance, in [Pog77] Poguntke shows that connected, nilpotent Lie groups have
symmetric group algebras. In [Lud79] Ludwig proves that the same is true for
compact extensions of nilpotent groups and for connected groups of polynomial
growth. Recently, Losert [Los01] showed the symmetry for every compactly gen-
erated, locally compact group of polynomial growth. For weighted group algebras
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only few results are known. In [Pyt82] Pytlik proves that, if G is a connected locally
compact group with polynomial growth and if w is a polynomial weight on G such
that o~ € LP(G) for some Pyl < p- =00, then LY(G,w)is symmetric.

On the other hand, L' (R, ey with the exponential weight elfl'is not symmetric,
because it admits non-unitary characters [Nai72].

3.5 Inthis section we shall show that for a compactly generated, locally compact
group of polynomial growth and for a sub-exponential weight, or more generally
for a weight satisfying condition (S), the weighted group algebra L! (G, w) is sym-
metric. For this we use the notation and the proof of [Lud79] and the structure
theorem of [Los01]. For groups of strict polynomial growth we shall show a partial
converse.

3.6 First we give some equivalent spectral descriptions of the symmetry of
weighted L!-algebras. Denote by L the left regular representation of G (and of
LI(G)) on L2(G). For an element a of a Banach-x-algebra A let o (@) and v(a),
or more precisely o 4(a) and v 4(a), denote its spectrum and its spectral radius,
respectively.

Theorem. Assume that G € [PG] and that w is a weight on G. Then the following
are equivalent:

(1) 7L (G, w) is symmetric.
(i) VLl(G,w)(f) =1 L(f) llop forall f = f*€ LG, o)
(iii) Vi) (f) = v (f) forall f = f* € LY(G, ).
(iv) Op1(G.w)(f) =0 (L)) forall f = f* € LY(G, w).
W) o160 (f) = 0Ly (f) forall f = f* € L1(G, w).

Proof. We prove the following scheme of implications:
@)= ) & @i

N f
(v) = (v)

@ =Gy et f — " e L‘(G,w). Since L'(G, w) is symmetric, there is
a bounded *-representation 7 of L!(G, w) on a Hilbert space ‘H with o (w (f)) =
OL1(G,w)(f) (see [Nai72, p. 312], Corollary; note that for selfadjoint elements the
left spectrum is the full spectrum), consequently

VL1 Gw) () = v(@(f) = 17 (f) llop - (D

We may assume 7 to be non-degenerate because restricting 7 to the essential sub-
space of H does not affect || 77 (f) |lop. Now by (3.2) 7 is the restriction to LY(G, w)
of a x-representation 7 of L!(G). We therefore have @i o=l G llop
| L(f) llop because G is amenable. Hence by (1) we obtain VL1G,w) ()
| L(f) llop- The reverse inequality always holds.
(ii) = (iv) follows from [Hul72, Prop. 2.5] (see also the Appendix below).
(iv) = (i) is obvious.

IATA
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(iv) = (v) We have 0;1(G,,)(f) = o(L(f)) C o116 (f). The reverse
inclusion o1y (f) C 0p1(G.4) (f) always holds.
(v) = (iii) is obvious.
(iii) = (ii) Since by Losert’s fundamental result L1 (G) is symmetric [LosO1],
we have vy () = I L(f) llop (this follows by the implication (i) = (ii) for
= 1, but can also be seen directly). Consequently, (iii) implies VL1G.w) () =

L) llop- ]

The reader may have noticed that the first five implications hold for arbitrary
locally compact groups and weights w, except that in (i) = (ii) we also have used
the amenability of G.

3.7 The following conditions are also equivalent to those in the theorem:
(i) V16w () = v (f) forall f e LY(G, w).
(iv) op16.0)(f) =0 (L(f)) forall f e L1(G,w).
) oy (f) =o(L(f)) forall f=g**gwhereg e L'(G,w).
LY(G,w)
W) 0L1G.0)(f) = o116y (f) for all f € LY(G, o).
W) 0L1(G.w)(f) = 0p1(G)(f) forall £ = g* % g where g € L'(G, ).

In fact one has the following scheme of implications:

=

(iv) = (v) = (iii)

f I I
i e =)
4 U

)@= ) =1

With the exception of (v)” = (i) the horizontal implications are as in the above
proof and, except (iv) = (iv)’, the vertical ones are trivial. Now, (v)” = (i) is
a consequence of the fact that L'(G) is symmetric and (iv) = (iv)’ may be seen
applying the following lemma.

Lemma. Assume that B is a Banach-x-algebra and A a not necessarily norm
closed x-subalgebra. If 6. 4(g) = op(g) forall g = g* € A thenoA(f) = op(f)
holds for all f € A.

Proof. For f € A, the inclusion o 4(f) D op(f) clearly holds true and it suffices
to show that o.4(f) C op(f).

If A has an identity, p say, then p* = p = p?is true in B. Further O ¢ o 4(p) =
o(p) and p is invertible in B. It follows that p is the identity for B.

If f e Aisinvertible in B, then f* f is invertible in B. Since 0 ¢ op(f* f) =
oA(f*f), it follows that f* f is invertible in A. Similarly, (ff*) ! exists in A.
But then f is invertible in 4, because it has the left inverse (f*f)~1 f* and the
right inverse f*(ff*)~L.

Now, for A € C\ og(f) we apply this argument to » = f — Ap and obtain
A g oalf). .

If A has no identity, we may assume that B contains an identity e, possibly
adjoining one to B.
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Next for f € Awehave 0 € og(f), because otherwise, by the above argument,
f*f would be invertible in A.

If A #0and A ¢ og(f),then (f —Xre)*(f —Xe) = f*f—Xf—_kf*+|k|zeis
invertible in B. Hence —|A|? ¢ og(f*f —Af —Af*) = oA(f*f —Af —Af*)and
(f — M)*(f — M) is invertible in A,, the algebra obtained by adjoining an identity
to A. So f — A has the left inverse ((f — A)*(f — A)~1(f — A)* in A,. Similarly
we obtain a right inverse. Hence A ¢ o 4(f).

Thus we obtained o 4(f) C og(f) in this case too. o

3.8 Recall that the group G acts on L'(G, w) by left translations . f(y) =
f(x~'y)andthat |, f ||o < @(x) || f |l». Denote by S the bounded positive hermi-
tian sesquilinear forms on LY(G, w). Then the group anti-acts on S by yB(f, g) =
B(x fox 8),1-€., (xy)B = y(+ B). For f, g € L1(G, w) we have

kB(f, )l <@ Bl fllollgllo forallx e G

and the resulting estimate

B(f*g,f*g>=/Gf<x>B<xg,f*g>dx

s/ £ I F)20(x) 2B(g. xg)IB(f * g, f * g)% dx
G

1 1
<(/ Flomdr)( [ 1700w Bue xdx)’
G G
x B(f % g, f *g)?2.
Hence,
BOf =g,y ghsill i ”wfc | ()] xB(g, gw(x)~" dx.

3.9 We use the following notation of [Lud79]. Let F be a subspace of LG @)
and H C G a subgroup. Define Sﬁ @ S by

SH¥ ={BeS|yB=BYheHandB(F, f) =0Yf e LYG, v)).

As in [Lud79] one obtains that the algebra Ll(G, ) is symmetric if and only if
S,G # {0} for every proper modular left ideal / ¢ L!(G, w). Since the closure of
[ is again a proper modular left ideal, the Hahn-Banach theorem guarantees the
existence of a continuous linear functional ¢ # 0 on L1(G, w) vanishing on 7.
Then (f, g) = q(f)q(g)isin S;. Hence

Si={BeS|BU, f)=0Yf € LY(G, w)} # {0).
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3.10 Let I be a closed proper modular left ideal of L'(G, w) with the modular
right unit «. As in [Lud79], one sees that B(«, «) > Oforall B € S,G \ {0}. For any
non-zero B € §; we have

B ; )
0 < sup Xg& < +o00.
xeG 07 (x)

This follows from the estimate
B(f, ) = B(f *a, f x«a)
uﬂm[gfumwn*xmmawx

+B(a, a)
<< 2
= gy

< CIfI3 llee)2.

IA

3.11  Before stating and proving the main lemma necessary for the symmetry of
L! (G, w), we recall the following definition.

Definition. Let G be a locally compact group acting on the locally compact group
H by automorphisms (for instance, if H is a normal subgroup of G or a quotient
group of G). We say that H is an [F C]; group, if the G-orbits in H are relatively
compact in H.

3.12 This concept is useful in the following lemma:

Lemma. Let G € [PG] and w a weight satisfying condition (S). Let H and N be
closed normal subgroups of G such that N C H and such that H/N is [FC].
Let I be a proper closed modular left ideal in L' (G, w) with modular right unit a.
Then:

SV = [0) == SE £ (0).

Proof. We adapt the proof of [Lud79] to our situation. Assume that S;V #+ {0} and
choose a non-zero form B € S}V. Let K C H/N be compact and ¢ > 0 arbitrary.
We shall show the existence of B € S,N such that B(a, o) > %,

BBFE " sup ~ (B(f. gl =1
I fllo=llgllo=1
and
L B(f, )= B(f, Pl <ellfII? )

forall f € L'(G,w) and all k € K.

As H/N is an [FC] group and its inner automorphisms are contained in the
image of G under the homomorphism ¢ : G — Aut(H/N) induced by conju-
gation, the structure theorem 3.20 of [GM71] implies that H /N has a compact
G-invariant neighbourhood of the identity (see Lemma 2 of [LosO1]). Tt follows
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that the G-conjugacy classes of K in H/N, which are relatively compact, are con-
tained in a compact symmetric neighbourhood U of the identity ¢ in H/N. Let
V= U,fgf U* be the group generated by U. Then V is open in H/N. We use the
following function p = p, introduced by Jenkins [Jen76] and defined on V by

p(s) = pe(s) = (1 + &) % ifs e UK\ U*.
It is easy to check that

lo(st) — p()| <ep(t) and |p(ts) — p(1)| < ep(t)

foralls € U and all 1 € V. We use p to define B € S;V by

Bl Fig) /V p(®) 31 B(f, £)d

forall f, g € Ll (G, w), where dv is the Haar measure on H/N. To show that this
integral is well-defined and convergent, we first notice that G/N acts on S ;V .In
fact, forv e Gandn € N

W‘B = vnv‘l-vB o U( vnv*lB) = UB-

By assumption, w satisfies condition (S) on G, hence condition (S) holds also for
won G/N by (2.13), and for w|y on the compactly generated subgroup V of G/N
by (2.11). In other words, if

sk = sup w(v),
veUk
1
then limy s o s,f = 1. Moreover, (3.8) implies that

li-1B(f, @)1 < C inf 0@~ f lloll ¢ llo
= Co™ I fllolgllo = CoO®? fllwlgllw -

Combining this with the polynomial growth of H/N, i.e., |UX| < AkP for some
D € N and some A > 0, we estimate

B'(f, = )| | ;-1 B(f, 8)|dv
| (fg)l<]§/yk+]wklp(v)llv (f, 9ldi

o0
< CAllfllollgllo(l + &) Y (k + DPsZ, (1 + &)~ *+D,
k=0

The last series converges by (2.5.c). It is easy to check that B’ is non-zero and in
S;V, and (3.10) shows that

B/
Oahi=Jisup )ﬂ < 00
oG DAl
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Now choose y € G such that

B (0t o) gl

e
@ (@)d b2

and define B € S;V by

et B’
e )

Then by definition B(a, o) > % and by (3.10) we have
~ ~ 1 ~ 1
|B(f,8)l < B(f, f)2B(g,8)?

B(a, )
< I fllollgle sup Z———
e W)

1 1
< 1 fllwllglle - Z : Sug[mB/( yx &, yxa)]
RE
= 1 fllollgllo-

This proves that ||§ || < 1. To show the continuity property (2) of B, we estimate
forallu € K and all f € LY(G, w) that

| «B(f, f) — B(f, )

1 1 7 /
:Z-m'!B(yuf,yuf)wB(yf’yf)l

1 1 5 )
— 3 205 | | POLrBOut b = 2B F 95

1 1 il J )
= i a)z—(y) /V lo((yuy ]U) N2 (v"]y)‘B(f’ fdv.

As (yuy~ 1) e U and v € V,

VIS
w?(y)
1

02 (y)
B
I£12.

IA

LB, ) — BOE ) : /pr) N

B/ G )

Il

Sl & S| ™

IA
®» »

Now we may finish the proof as in [Lud79]. For K C H/N compact and for & > 0,
let

1
Ag.={BeSY| |Bll=1, Bla,a) = 5
|k BLF ) =BG £l =€l 12, Y.f € LG, »), Yk € K].



Weighted group algebras on groups of polynomial growth 809

Then B € Ak and Ag o # . The intersection of finitely many sets Ag ¢ is
non-empty and each Ak . is weak *-closed in

(57)1 —S¥n{BesS| Bl <1).

Since (S;V)l is compact in the weak #-topology, there exists By € [
{Ak e | K compact,e > 0}. Then Bi(a, @) > % and so By # 0. Moreover
IBill < 1 and yBi(f, f) = Bi(f, f) foriall"f e LY (G,w) and all h € H.
By the polarization identity, , B1(f, g) = B1(f, g) forall f, g € LY(G, w) and all
h € H.Hence By € SH and S + {0}. O

3.13 Theorem. Let G € [PG]. If a weight w on G satisfies condition (S), then the
algebra L' (G, w) is symmetric. In particular, if w is a sub-exponential weight on
G, then L'(G, w) is symmetric.

Proof. We argue as in [Lud79]. We apply Lemma 3.12 inductively to the normal
series of Losert’s structure theorem [LosO1, Thm. 2] which we have stated in the
proof of Lemma 2.7. Since S; # @, we conclude that SIG # . Thus L (G, w) is
symmetric. O

3.14  For discrete groups we draw the following more explicit and useful con-
sequence of the theorems (3.6) and (3.13) in the spirit of Wiener’s lemma for
absolutely convergent Fourier series.

Corollary. Assume that G is a discrete, finitely generated group of polynomial
growth and that w satisfies condition (S). If f € NG, w) and the convolution
operator L(f) is invertible on 02(G), then f is invertible in (G, w) and as a
consequence L(f)’1 is bounded simultaneously on all £ (G, w), 1 < p < oo.

In this form, the theorems have found applications in signal analysis [GLO1].

3.15 Nextlet Sy = [exo LY(G,»"). If G is discrete, U C G a generating
neighbourhood and w > (1 + 77)? for some § > 0, then S,, consists of all func-

tions f satisfying f(x) = o(w(x)~C) forall C > 0. Therefore we may call S,, the
Frechet algebra of w-rapidly decreasing functions on G.

Corollary. If the weight w satisfies condition (S), then
os U —io(LCf) forall " fie' S,

In particular, if G is discrete and f € S, is such that L( f) is invertible, then f is
invertible in S,,.

If w(x) = 14 1y (x), then S, coincides with the space S of rapidly decreasing
functions in the sense of Hulanicki [Hul72]: Let f € S,,, then we have for every
C > 0 that

n® f Lf ()] dx
G\U"

5/ I oS Gaidns =0, hsinee B if € (G5 (3)
G\U"
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Thus fG\U” | £1(x)dx = o(n=C) for every C > 0, and so f € S by Hulanicki’s
definition.

Conversely, assume that fG\U,, [ f1(x)dx = o(n=C) hol‘ds fior alll € = 0ie:,
f € 8. Then, for every C" = 0, thie sum Y =2 fG\U,, |f)ldx - n€+2 . n72 <
const Y °° , n~2 converges and so iz |f10)o€ (x)dx < 00, ie., f € Sp. As a
consequence, the above corollary applied to the special case w = 1 4 17 provides
a sharpened version of the theorem in [Hul72].

3.16 For every generating neighbourhood U of a non-compact group G the
sequence |U| is increasing and divergent. Hence

lim sup(JU*H | — [UXDF > 1.

k—o00

This holds true because otherwise the estimate |G| = lim,_ o |U"| =
(352, IlU*H1 = |U¥]) + |U| < oo would yield a contradiction.

3.17 Lemma. Assume that wis a tempered weight on a locally compact, compactly
generated group G of strict polynomial growth. Let U be a generating neighbour-
hood and p € L'(G,w) be compactly supported, non-negative, symmetric with
fG p(x)dx = 1 and inf{p(x)|x € U} > 0. Then for every o > 1 there exists
L > 0 such that for all x € G: -

| D\ )
lim w(x")F < (n,{n vu(kﬂ) = o™ Pvpig @)Y

Proof. For w let e, [, U be as in Definition (2.10). We apply the lower Gaussian
estimate of Hebisch and Saloff—Coste [HSC93, Thm. 5.1] to p. (This is where we
need the strict polynomial growth of G.) This estimate then yields for all n, k with

(atiiiles w7

/p“uwuwxz/ P () w(x)dx
G Ukl+l\ukl

, 1y (02

Z/ (Cn)_’?e_c 4 w(x)dx
UkH—I\ukl

DY = (eI
= (Cnf Tens . 7, counve Lot

Choosing any integer Lo > 2C” and n = Lokl we obtain
< 0 CLokl)? ———+ xX)w(x)dx.
exvp (k) < e (CLoM)? ey | P M @)

It follows that
¥

R 1 Gl b i 1 Lol
llmkmf vy (k)x < elo l1mk1nf (|(Ul)k+1| 5 ,(Ul)k!) VLL(G.) (D) -
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Hence, by (3.16), applied to the generating neighbourhood U &

(&)

aq
lilgn UU(k)% = irlif vu(k)% <elo VLl(G,w)(P)LOI.
ol
Finally we choose L large enough so that e 70 < o« and we set L = Lo/. Then for
anyx € G

Ty (x)
lim oG®)E < lim vyl E)E < lim vy @Gkt < <1im vU(k)Z> ,
k—o00 k—o00 k—o00 k

and the assertion follows. O

3.18 Theorem. Let G be a compactly generated, locally compact group of strict
polynomial growth. Assume that w is a tempered weight on G. If LY(G, w) is sym-
metric, then w fulfills the condition (S). This applies in particular to radial weights.

Proof. Since w is symmetric and the group of polynomial growth G is unimod-
ular, any real-valued symmetric L'-function is selfadjoint. By theorem (3.6) the
symmetry of L!(G, w) implies that for f € L'(G,w) with f = f* > 0 we
have VELG.w) () = vy (f) = fG f(x)dx. Let U be a generating neighbour-
hood, f = f* > 0 be compactly supported with inf{f(x)|x € U} > 0 and
/G f(x)dx = 1.For x € G and any « > 1 we have by Lemma 3.17.

L <limvy(0F <o vpgu(H- =a

Since o > 1 was arbitrary, w satisfies condition (). i

4 Functional calculus

4.1 In this section we shall develop a functional calculus on a total part of
LY(G, ) for compactly generated groups of polynomial growth and sub-expo-
nential weights. It is similar to the one given for LY(G) and S(G) in [Dix60],
[Pyt73] and [Hul84].

4.2 For a generating neighbourhood U and corresponding metric 1,0 < o < 1,
and C > 0, we set wg (x) = €™ and define the (Fréchet) algebra L, (G) to be

BGY = o[BG W)
@0

The following inclusions are obvious: If 0 < o < 8 < 1 and C, C’ > 0, then

L3(G) G ES(@a5), & LidGe LG, ws).
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4.3 Letf = f* € L'(G,w) C L'(G) be a hermitian element. Then f operates
on L*(G) by

L LG — k6
gr— L(f)(g)=f=*g.

This defines a self-adjoint operator on L?(G). For any A € C we now consider

+00 1 +o00 1
A A =N *k: 72 *k iR
u(irf) ;k!o ¥9) (]g @ T ) * (iAf)

where we denoted 7** the k-th convolution power of h € L'(G). As |u(irf) e <
eMifllo, u(irf) € LG, ). Motivated by an argument in [Pyt73] and impos-
ing some additional condition on f, we will obtain a sub-exponential bound for
[lu(GAf)]lw in (4.4) below. If we denote by W the function

qj(t)_e”—l_i 1 "
ATV e Ay el
then

u@@rf) =WQAf) * (@rf)
and for A € R

eti—1

ILVASfDllop = sup |zt

pea (LGS K
where o (L(Lf)) denotes the spectrum of the operator L(Af) on L2(G).
4.4 Let U be an open relatively compact symmetric neighbourhood of e with
associated “metric” t = ty. Since G has polynomial growth, there exists D € N
and A > 0 such that |U"| < AnP. Let w be a sub-exponential weight of degree at
most @, 0 < a < 1, that is, w(x) < €7@ for some C > 0.

€hoose i = i LG n Lg(G) for B €la, 1[. For A € R we compute
lu(ixf)|le through the following decomposition:

N GAf) Nl :/ lu(@Af)(x)|w(x)dx +/ [u@rf)(x)|w(x)dx .
un G\U"

The first integral is estimated by
/ luG@Af)(x)|w(x)dx = / W f) * (AS)(x)|w(x)dx
un ur

< IS * GAO 2wy - lolun 2@
< WL AN lap 1 1F12 - sup [0 1%k
xeUn

1 D
< A7||fll2- A - €€ nT.
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Setting w(x) = eCT(X)ﬂ, the second integral is bounded as follows:

1
/ lu@Af) (D) ]wx)dx = / lu@Af) (o) |wx)w(x)dx
G\U" G\U" U)(x)

< (sup w(x)—l)el}\\llfllww < 00.
x¢u"n

Since (ww)(x) < eCr(x)ﬂ,eCz(xY’ o 62Cr(x)ﬂ for0 <a < B <land f € Lﬁ(G),
we conclude that f € Ll (G, ww) and the previous estimate makes sense. Further-
more, since t(x) > n for x ¢ U", we obtain w(x) > ec”ﬂ and SUP g n (ﬁ) <
¢=C"" This proves that

GAP) o < AZ[ Fllz - 1AL - €57 -n% + e . P Ifluo foralln € N.

To minimize this expression with respect to n, we choose n to be

i L(%mnfnww)% +1)J,

where | x| is the integer part of x > 0. For this choice of n, we have —Cnf +
A fllwe < O, and

: 7 41)" ;
1% < C(EMIF )P +1)" o) ,Cat

for some positive constants Cy and C,. Similarly

D
2

1 a1 D 15D
n?z < ((EI)\HIfnwa))ﬁ +1)2 < C3(1+ 1A|%)7,

for some positive constant C3. Hence

1 g 10D
leGAf | = AZ|Fllz M- C1- S22 s (14 A[B)Z +1
= el (2l L

o

where 0 < 7 < 1 and the constants C’, C” > 0 depend on || f 2, || f lwes C, and
B.

4.5 Wedefine Ay, to be the space of all periodic C°°-functions with Fourier coeffi-
cientsin£'(Z, wy).ie.,p € Ay ife(x) = 3, 7 6™ and Y, 5 |6(n)| ™ <
0o. Then A, is an algebra under pointwise multiplication. Since w,, is sub-expo-
nential, a result of Beurling [Be39] and Domar [Do56, Thm. 2.11] implies that A,
contains functions of arbitrary small support. As a consequence of [Do56, L. 1.24]
for every ¢ > 0 and every interval [p, ¢q] € (0, 27) such that p + ¢ < g — &, there
exists a function ¢ € A, satistying

0F =% <18

supp¢ C [p, q],
px)=1forxe[p+e,q—c¢].
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4.6 The algebra A, is a sufficiently rich algebra to act on certain subspaces of
LY(G, ). Let  be a sub- exponential weight of degree at most o, 0 < ¢ < B < 1,
and 0 < % <M RS A e L2(G)ﬂL/3(G) then ¢ € A, with ¢(0) =0
operates on f through

=) _@mulinf).

nez

The resulting function ¢{ f} is in L' (G, w). To see this, we use the estimate of (4.4)
and obtain that

ot Hlw < D lutnf)llol @)l

nez
1 o B
< 3¢/ + B M G|
nez
<CY "I < oo,
neZ

since0<%<y<1.

4.7 Ifg, ¥ € A, then -1 also operates on f, since A, is an algebra. Moreover,

(@ - {f} = olf}x¥{f}

To see this, it suffices to check that
L((¢-WI{fD) = L(p{f}) o L(¥{S})-

This identity follows from the fact that for any *-representation p of LY(G, w),

plolf >—ZZ(’”) PN ) = p(p ().

neZ k=1

Here ¢(p(f)) is obtained by the usual functional calculus applied to the hermitian
operator p( f). In fact, the spectral measure E of p(f) is compactly supported, and
using ¢(0) = 0 we obtain

e(p(f)) :/(p(x)dE(x)

/ Z "X 5(n) dE(x)

nez

/ Z igks (p(n)a’E(x)

nez

= Z/ X~ 1)dE(x)§n)

nez
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00 e sl
S BB AL
neZ k=1 :
i) e
<ZZ o(n )) = p(pls).
neZ k=1 '

4.8 If ¢ is a C*°-function on R with compact support, such that ¢(0) = 0 and
fIR |¢3(k)|e‘w d)\ < oo, then the functional calculus on L2(G) N Lg(G) may also
be defined by

1 +o00
olf) = 3= f WA
T

—00

The properties are the same as before.

5 Wiener property

5.1 Letus recall the following definition:

Definition. Let A be a Banach-x-algebra. We say that A has the Wiener property
if for every proper closed two-sided ideal 1 of A, there exists a topologically irre-
ducible x-representation w of A such that I C ker . If A is of the form L' (G) for
some locally compact group G, we say that the group G has the Wiener property.

5.2 Examples

a) The algebra L'(R) has the Wiener property. In this case the Wiener property
means that for every proper closed ideal 7 of L' (R) there exists @ € R such that

[0.]

= 1 :
Clfel'® | fla)= 2—/ Flx)etavdx — o).
T

—00

b) More generally, if G is a locally compact group with polynomial growth, hence
compactly generated by our definition, then L'(G) has the Wiener property
[LosO1].

¢) Compact extensions of nilpotent groups have the Wiener property [Lud79]. In
particular, nilpotent Lie groups possess the Wiener property.

d) There are connected, simply connected exponential Lie groups that fail to have
the Wiener property. One example is the group G4,9(0) = exp g4.9(0) whose
Lie algebra is generated by X, Y, Z, T satisfying [T, X] = —X, [T,Y] =
7 [ | — T seet Il epf8aPo o]

e) The affine group has the Wiener property. More generally, this is true for every
semi-direct product of abelian groups [Pyt82].
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5.3 In this section we shall study the Wiener property for algebras of the form
Ll (G, ), where G € [PG] and w is a sub-exponential weight of degree at most «,
0 <a < 1.Let (fj)jes be a bounded approximate identity in L'(G, w) such that

fi=1f; forall j,

sup || fillo = Co < 00,
el

Usuppfj @k

jel

where K a fixed compact, symmetric neighbourhood of e.
We shall show that there exists a periodic function ¢ € A,, for suitable y < 1
with (1) = 1, ¢ = 0 in a neighbourhood of 0, such that

olfi} =D @mulinf))
nez

converges for all j, and such that

”‘p{fj} *g—gllw —> 0 4

for all continuous functions g with compact support in G.
If. o(1) ==lsand @(0)= 0 then

lo{fi} g —gllo=1D_ ™ x g — el |-
nez

In the sequel we shall use the same techniques as in the construction of the functional
calculus in 4.4 to show that this second expression tends to 0.

5.4 First we show that for a fixed n and j — o0

= (in)t Ella
i xg = Z Tfj*k xg — e'g.
k=0 j

In fact, for any & > 0 we may find M € N (independent of ;) such that

COmL A
1Y g (’”) X4l < Z CEllglo + Z —||g||w <.
k=M :

On the other hand, as (f;); is an approximate identity, we have

Il
frrrg =3¢

as j — oo for all k, and hence

N
u Z by oGS
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Combining these estimates we have shown that
eixg — g
converges in L' (G, w) for any fixed n. Hence, for any function ¢ with (1) = 1

and ¢(0) = 0 and any N € N fixed, we have

Y o™i xg - gl - 0.
In|<N

5.5 Next we show that we may choose ¢ such that, for any ¢ > 0, there exists
N € N such that

1Y emie™ixg—eglllo < D 18MIle™ * gllw
[n|>N In|>N

+1 Y eme™lliglo <&,

|n|>N
independently of j. Suppose that we have already determined ¢ and Ny such that

Y Blle™  gllo < 2, ®)

[n|>N1

for all j, then (as ),z @(n)e'™ = @(1) = 1 converges) we can choose N > N
such that

| D0 Gme gl < 5.

|n|>N
Thus it suffices to show (5). For this purpose, we decompose the L' (G, w)-norm
as
165 5 gl = [ 1€ sgwlotds+ [ e s glwds
uM G\UM

where M € N. Then

fU 16" x gl (dx < 16 % glym 2y - Nolyullzm,

lf &t D
< A2|ei x glla M T M

2
< Adllgla M% M7,
because the norm of the convolution operator by ¢/ in L>(G) equals 1 for all j,

and because |[UM| < AMP by polynomial growth. Choose 0 < & < 8 < 1 and
let w(x) = eC'W®? Then

/ e * g(x)|w(x)dx < sup
G\UM xgUM

< e—C'Mﬂ ”einfj

e’ gl s

lwo llglwe -
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Since all f; have their support in the fixed compact set K, we estimate

I fillwe < sullz w@)| fillo < C < o0.
xe '

Hence

”ei”fj [t oM llwe < e,

Combining all estimates we obtain
B 1 D o~rpga —_C'MB
le™i  gll, < AZ||glaMZeC M 4 e CMZIC o)), .

Similar to (4.4) we now choose M to be
@ 1
M= L(Elnl)“ <
where |x ] is the integer part of x. Then |n|C — C'MP < 0and
inf; . C’((anl)%ﬂ)a C : 2
e % gllo < AZllgl2 e\ @ (G D7 +1)7 + liglhuo
f B|n|h€B’|n|%
for some new constants B, B’, b independent of ;.

Now choose y, such that 0 < % < y < 1. By (4.5) there exists a function
@ € A, such that

@ = 0 in a neighbourhood of 0 (6)
0<gp<1 (7
o) =4 (8)
suppe CJ0, 27 [. )

For this ¢ € A,,, we have

> gl €™ % gll, < C Y 1@ e < oo.

nez neZ

Consequently, there exists N such that

~ [ . &
> eI 1™  gllo < 5.
[n|>N1

5.6 Theorem. Let G € [PG] and let @ be a sub-exponential weight on G. Then
LY (G, w) has the Wiener property.
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Proof. Assume that [ C L' (G, w) is a closed two-sided ideal not contained in
any kernel of a topologically irreducible x-representation of LY(G,w). Let M =
{p{fj} | j € J}, where @, (f})jes are as in (5.3). By (4) in (5.3) any closed ideal
containing M will also contain the dense subspace of continuous compactly sup-
ported functions and thus coincide with L'(G, w). In the language of ideal theory,
the hull (M) of M is empty where h(M ) is defined as h(M) = {kerp | M C ker p}
and p ranges over all topologically irreducible *-representation of L'(G, w).

Now choose ¥ € A, satisfying the conditions (6) and (7) (with v in place of
@)and ¢ = 1 onsupp ¢ N[0, 27]. Clearly h(M) = @ C h(y{f;}) foreach j € J.
By (4.7) we have for each j € J:

vifi) xolfi} = W - olf;} = elf)}

Now we apply Lemma 2 of [Lud80] and we conclude that M C /. As shown above
I coincides with L' (G, w). O

Let us point out that the result of [Lud80] used in the proof makes crucial use of
the symmetry of the underlying algebra. In our case the symmetry of L' (G, w) for
G € [PG] and sub-exponential weight w is an important and necessary, though
somewhat hidden ingredient in the proof of Theorem 5.6.

6 Appendix

In the proof of Theorem 3.6 we have used the following statement of [Hul72].

6.1 Proposition. [Hul72, Prop. 2.5] Let A be a Banach-x-algebra and S a (not
necessarily closed) x-subalgebra of A. Let T be a faithful *-representation of A
on a Hilbert space 'H satisfying

H Tx “()p = nlingo ||Xn”% forallx = x* =5k

If A has a unit, e say, assume in addition that T, = idy. Then for every x = x* in
S we have

oax) = a(Ty).

It seems that the proof in [Hul72] yields only the equality o 4(x) \ {0} = o (T)\{0}.
This is sufficient for all purposes of symmetry. However, since we need the full
result as stated, we include a modification which covers zero too. We use the nota-
tion of [Hul72] except that we still denote the spectrum of a by o (a). For the proof
we use the following lemma.

6.2 Lemma. Let B be the || || a-closure of some commutative x-subalgebra of
A. If idy is in the operator norm closure of the image of B under T, there is some
e € Bwith T, = idy. It follows that A has a unit, namely e.

Proof of the Lemma. As in [Hul72] and by continuity, A : x — | T llop and v :
x > lim, || x" ||'/" are equivalent norms on B. The completion B is a commuta-

S ; . =k ¥ ; :
tive C*-algebra and isomorphic to 7 (B)", and by assumption B* contains a unit.
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As Biis dense in B* and every ¢ € X (B) can be extended to @ € X(B*) because
v ~ X on B, the Gelfand spaces X (B) and X (B") are homeomorphic via the map
(p = 90|B. Smce the unit of B* has Gelfand transform 1, there is f € B such that
||f oo < 5 1 As |f| > 2 on X (B), there is a unit element e in B (see [BD73]),
anadL b= idH Fora € A we have T,_,, = T, — T,idyy = 0 and similarly
I, X5 = Ok Sincet7 is faithfull a¥=lae —lea,lsotelisia unitifor Al O

Proof of the Proposition. For x = x* € S let B be a commutative || | 4-closed
*-subalgebra of A containing x. We distinguish several cases.

Case L. If the assumptions of the Lemma hold for B, i.e. idy € B*, we have

oA(x) = 0p(x) = {p(x)lp € X(B) = X(BY)) = o (x) = app)(Tx),
(10)

where the outer equality signs hold, because the spectrum in the “middle” does not
separate the complex plane and .4 and B as well as B* and B(H) have a common
unit element.

Case II. If idy ¢ B, there are two further cases:
(i) A has no unit. Then 0 € o 4(x) by definition. Since B* + Cidy = B* @ C,
we have 0 € o cjgy, (¥) = o) (1), because B* + Cidy and B(H)
have the common unit element id7. For the nonzero spectral values, (10)
still applies, so
oA(x) = oper) (Tx).

(ii) A hasaunite, and by assumption 7, = idp. Itfollowse ¢ B (asidy ¢ B
Because of B+ Ce = B@ C we obtain 0 € o5.c.(x) = 04(x),as B+ Ce
and 4 have the common unit element e. We also have 0 € op) (%) as in
(i). For the nonzero spectral values, (10) applies, so

oA(x) = opy(Tx) . o
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