INAUGURAL-DISSERTATION

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät

der

Ruprecht - Karls - Universität

Heidelberg

vorgelegt von

Mr. Sc. Molekularbiologin Maja Vujić

aus Belgrad, Jugoslawien

Tag der mündlichen Prüfung:

Thema

GENE EXPRESSION PROFILING REVEALS NOVEL ACTIONS OF GLUCOCORTICOIDS ON IMMUNE CELLS DURING INFLAMMATION

Gutachter:

Prof. Dr. Günther Schütz

Prof. Dr. Richard Herrmann

CONTENTS

1. SUMMARY	1
2. INTRODUCTION	3
2. 1. PRIMING THE INNATE IMMUNE REPONSE	3
2. 2. ANTI-INFLAMMATORY ACTIONS OF GLUCOCORTICOIDS	6
2. 2. 1. GLUCOCORTICOID RECEPTOR IN THE REGULATION OF GENE TRANSCRIPTION	6
2. 2. 2. FUNCTIONAL AND CELL-SPECIFIC MUTATIONS OF THE GLUCOCORTICOID RECEPTOR	9
2.3. MOLECULAR LINK BETWEEN LPS AND GR SIGNALLING IN MACROPHAGES;	
GENE EXPRESSION PROFILING METHODOLOGIES	11
2. 3. 1. SUPPRESSIVE SUBTRACTIVE HYBRIDIZATION	12
2. 3. 2. GENE ARRAYS	13
	15
4. RESULTS	<u> 16</u>
A A In vitro cui tude de deditoneau Macdoduaces	16
	10
4. 2. GENE EXPRESSION PROFILING OF PERITONEAL MACROPHAGES	19
4. 2. 1. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED mRNAs BY THE SSH APPROACH	19
4. 2. 1. 1. Quantitative expression analysis of transcripts obtained by SSH: Measuring	
the expression levels on nylon arrays containing transcripts from SSH-library	23

4. 2. 1. 2. Quantitative expression analysis of transcripts obtained by the SSH:	
Evaluation of SSH-array data using real-time quantitative PCR	29
4. 2. 2. The effects of GCs on the expression of LPS target genes in peritoneal	
MACROPHAGES FROM WILD TYPE AND GR mutant mice	31
4. 2. 3. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED mRNAs BY OLIGONUCLEOTIDE	
GENE CHIP ANALYSIS	34
4.3. CORRELATION BETWEEN SSH-ARRAY AND OLIGONUCLEOTIDE GENE CHIP DATA	36
4. 4. PATTERNS OF GENE EXPRESSION; MOLECULAR MECHANISMS OF GR ACTION	40
4. 5. CONSTRUCTING A DATABASE FOR mRNA CHANGES IN PERITONEAL MACROPHAGES	
DURING STIMULATION WITH LPS AND GCs	47
5. DISCUSSION	48
5. 1. CRITICAL ASPECTS ON TECHNIQUES TO MONITOR GENE EXPRESSION	48
5. 2. BEYOND GENE EXPRESSION PROFILING	50
5. 3. SIGNATURES OF INFLAMMATION	51
5. 4. THE CONSEQUENCES OF LPS ACTIVATION OF PERITONEAL MACROPHAGES AND	
THE MODULATORY ROLE OF GCs	51
5. 4. 1. LPS activates the TNF- α signalling pathway	62
6. MATERIAL AND METHODS	67
6. 1. BIOLOGICAL MATERIAL	67
6. 1. 1. MOUSE STRAIN MODELS	67
6. 1. 2. CLONING VECTOR AND BACTERIAL STRAIN	67
6. 1. 3. PRIMERS USED	68
6. 1. 4. OLIGONUCLEOTIDE GENE CHIP ARRAYS	70

6. 2. METHODS	71
6. 2. 1. ISOLATION OF PERITONEAL MACROPHAGES	71
6. 2. 2. MOLECULAR CLONING	71
6. 2. 3. PLASMID DNA ISOLATION	72
6. 2. 4. DNA/RNA ELECTROPHORESIS	72
6. 2. 5. POLYMERASE CHAIN REACTION	73
6. 2. 6. QUANTITATIVE REAL-TIME PCR	73
6. 2. 7. PCR-BASED AUTOMATIC SEQUENCING	77
6. 2. 8. RNA ISOLATION	77
6. 2. 9. RNASE PROTECTION	77
6. 2. 10. Suppressive Subtractive Hybridization	78
6. 2. 11. GENE ARRAY CONSTRUCTION ON NYLON MEMBRANES	81
6. 2. 12. PROBE PREPARATION AND HYBRIDISATION OF SSH-ARRAYS	81
6. 2. 13. IMAGE ANALYSIS AND DATA INTERPRETATION	82
6. 2. 14. PROBE PREPARATION AND HYBRIDISATION OF OLIGONUCLEOTIDE CHIP ARRAYS	83
6. 2. 15. BIOINFORMATICS AND DATABASE DEVELOPMENT	86
7. ACKNOWLEDGEMENTS	88
8. ABBREVIATIONS	89
9. REFERENCES	93

10. 1. GENE EXPRESSION PROFILES	111
10. 2. GROUP 1-A	112
10. 2. 1. EXPRESSION LEVELS OF GENES/ESTS REPRESENTING GROUP 1-A	113
10. 2. 2. NORMALISED EXPRESSION OF GENES/ESTS REPRESENTING GROUP 1-A	122
10. 3. GROUP 1-B	131
10. 3. 1. EXPRESSION LEVELS OF GENES/ESTS REPRESENTING GROUP 1-B	132
10. 3. 2. NORMALISED EXPRESSION OF GENES/ESTS REPRESENTING GROUP 1-B	137
10. 4. GROUP 1-C	142
10. 4. 1. EXPRESSION LEVELS OF GENES/ESTS REPRESENTING GROUP 1-C	143
10. 4. 2. NORMALISED EXPRESSION OF GENES/ESTS REPRESENTING GROUP 1-C	146
10. 5. GROUP 1-D	149
10. 5. 1. EXPRESSION LEVELS OF GENES/ESTS REPRESENTING GROUP 1-D	150
10. 5. 2. NORMALISED EXPRESSION OF GENES/ESTS REPRESENTING GROUP 1-D	153
10. 6. GROUP 1-E	156
10. 6. 1. EXPRESSION LEVELS OF GENES/ESTS REPRESENTING GROUP 1-E	157
10. 6. 2. NORMALISED EXPRESSION OF GENES/ESTS REPRESENTING GROUP 1-E	160
10. 7. GROUP 2-A	163
10. 7. 1. EXPRESSION LEVELS OF GENES/ESTS REPRESENTING GROUP 2-A	164
10. 7. 2. NORMALISED EXPRESSION OF GENES/ESTS REPRESENTING GROUP 2-A	171
10. 8. GROUP 2-B	178
10. 8. 1. EXPRESSION LEVELS OF GENES/ESTS REPRESENTING GROUP 2-B	179
10. 8. 2. NORMALISED EXPRESSION OF GENES/ESTS REPRESENTING GROUP 2-B	182
10. 9. GROUP 2-C	185
10. 9. 1. EXPRESSION LEVELS OF GENES/ESTS REPRESENTING GROUP 2-C	186
10. 9. 2. NORMALISED EXPRESSION OF GENES/ESTS REPRESENTING GROUP 2-C	189

1. SUMMARY

The innate immune response is triggered by bacterial activators such as lipopolysaccharide (LPS) which, upon binding to CD14 and TLR4 receptors on responsive cells, is able to activate numerous cell signalling events. This leads to cytokine and chemokine secretion, complement activation, eicosanoides synthesis, production of reactive oxygen intermediates, nitric oxide and other mediators, which co-ordinate the body's response to inflammation. In addition to the beneficial effects of such a response to LPS, this activation also accounts for the pathophysiologic state usually observed in septic shock. To suppress the ongoing inflammation, several glucocorticoid-based drugs have been used. Their efficacy as immunosuppressive and anti-inflammatory agents is based upon their ability to activate the glucocorticoid receptor (GR) which in turns predominantly mediates transrepression of target genes.

A combination of array-based technologies and subtractive suppressive hybridisation has allowed for the identification of genes that are altered upon activation of peritoneal macrophages by LPS, and those whose expression is further modulated upon administration of glucocorticoids (GC). In total, more than 350 genes/ESTs were identified as being induced or repressed by LPS, whereas 106 (30%) of them responded to GC treatment. The molecular mechanisms of GC action on the expression of LPS induced or repressed genes have been deciphered using peritoneal macrophages (PM Φ) obtained from GR^{dim} and GR^{LysCre} mutant mice. GR^{dim} mice carry a dimerisation-defective GR in which the receptor is no longer able to dimerise and bind to its response elements in the promoter region of target genes. In contrast, GR interactions with other

transcription factors such as AP-1 and NF- κ B, which are independent of binding to DNA, are preserved. Only a small subset of all GC-regulated genes in peritoneal macrophages (12 out of 106) were identified as also being modulated by GCs in GR^{dim} cells. On the other hand, the expression of 94 (89%) of GC-responsive genes/ESTs was not modulated in peritoneal macrophages from GR^{dim} mice. Cell-specific GR^{LysCre} mutant mice lack the GR in cells of the myeloid lineage. Survival of GR^{LysCre} mutants upon LPS injection has been shown to be severely impaired compared to wild type mice. Gene expression profiling of PM Φ from GR^{LysCre} mice confirmed the GR-specificity of GC action, since induction or repression of target genes by GCs was abolished in these cells.

The combination of state of the art expression profiling approaches with the use of functionselective and tissue-specific GR mouse mutants led to the conclusion that activation of macrophages by LPS evokes rapid transcription of various pro- and anti-inflammatory mediators. Furthermore, this analysis highlights the importance of both DNA-binding dependent and independent actions of the GR in modulating cell responses to inflammatory stimuli. Finally, identifying the spectrum of genes whose expression is influenced by GCs will allow development of selective GC-based drugs able to discriminate between two mechanisms of GR actions, thus contributing to better anti-inflammatory therapies.

2. INTRODUCTION

2. 1. PRIMING THE INNATE IMMUNE REPONSE

The immune system of higher vertebrates consists of two components: innate and adaptive [1]. The immediate, innate response is mediated largely by macrophages and granulocytes (e.g. neutrophils), cells that phagocyte the pathogens and concurrently co-ordinate additional host responses by synthesising a wide range of inflammatory mediators [2]. Once internalised by macrophages, the infectious agent is degraded within the maturing phagosome and the components of the pathogen are presented to T cells. This results in activation of the adaptive immune response and establishment of protective immunity [2]. While all multicellular organisms have some form of innate host defence system, adaptive immunity occurs only in vertebrates [3].

A major challenge to the innate immune system is to detect and discriminate between a large number of potential pathogens. This task has been achieved by the evolution of a variety of pattern-recognition receptors (PRRs) [4]. PRRs of the innate immune defence system, such as CD14, mannose binding protein, toll-like receptors (TLRs), and alternative complement system are expressed on membrane surfaces or in soluble forms. They function to detect microbial structures, which are foreign to and structurally distinct from host-defined structures [2,4]. They recognise conserved motifs on pathogens that are called pathogens-associated molecular patterns, PAMPs [4]. This important recognition system induces the expression of co-stimulatory molecules on antigen presenting cells and serves to alert the host to initiate a series of clearance mechanisms to eliminate the invading microbial agents [4]. PAMPs have essential roles in the biology of the invading agents and include mannans in the yeast cell wall, formylated peptides and various

bacterial cell-wall components such as lipopolysaccharide (LPS, endotoxin), lipopeptides, peptidoglycans, lipoteichoic acids, lipoarabinomannan (LAM) and bacterial DNA [4,5].

LPS is an essential structural component of the outer membrane of all Gram-negative bacteria [6]. Investigations into the structural components of LPS demonstrated that conserved lipid A region is necessary for LPS stimulation of macrophages [7-9]. Nevertheless, oligosaccharide components of LPS, and more specifically 2-keto-2-deoxyoctulosonic acid (KDO) determinants, may function to facilitate either the initial interaction, or some biochemical signal transductive mechanism [10,11]. Although CD14 is known to bind LPS, this PRR is anchored into the cell membrane by a glycosyl phosphatidylinositol linkage, which suggests that it would have little signalling capacity [6,12,13]. There is now clear evidence that mammalian Toll-like receptors, together with CD14 receptor, mediate the response to LPS [5,10,11,14-21]. TLRs contain a cytoplasmic portion that is homologous to the IL-1 receptor and hence can trigger intracellular signalling pathways [22-27]. These signals, in turn, activate transcription factors (mainly NF- κ B and AP-1) which trigger a wide variety of cellular responses, including cytokine and chemokine production, release of reactive oxygen and nitrogen intermediates all of which are responsible for the pathophysiologic reaction (Figure 1) [24,28]. Despite the intense research on LPS, it is now clear that other microbial products also act as potent activators of innate immunity and that the immune system encounters a 'cocktail' of these molecules when interacting with pathogens in vivo. Overactivation of the inflammatory response by LPS and other pathogens can lead to irreversible destruction of organs and tissues (i.e. multiorgan dysfunction syndrome), and eventually death [5,29-31].

LPS is recognised by the CD14 receptor. CD14 associates with the cell surface by means of a glycolipid linkage and is not capable of generating a transmembrane signal. It is likely that the LPS alone or LPS-CD14 complex activates TLR4, which in turn signals through the adapter protein MyD88 and the serine kinase IRAK. This leads to the autophosphorylation of IRAK, which then forms a complex with TRAF6 and this, in turn, results in the activation of the MAP 3-kinase family member, and finally the I- κ B kinases. Sequential phophorylation of I- κ B leads to its proteolytic degradation and translocation of NF- κ B to the nucleus. Concomitantly, members of the activator protein-1 (AP-1) transcription factor family (Jun and Fos) are activated, and together with NF- κ B are involved in the transcription of immune response genes. Taken from *http://www.biocarta.com*

2. 2. ANTI-INFLAMMATORY ACTIONS OF GLUCOCORTICOIDS

The characteristics of the inflammatory response and the site of inflammation differ depending on the invading pathogenic agent, but all involve the recruitment and activation of inflammatory cells and the production of various proteins that are involved in the complex inflammatory cascades [32]. The increased expression of cytokines, chemokines, growth factors, enzymes. receptors and adhesion molecules is the result of enhanced gene transcription/translation since many of them are not expressed under normal resting conditions [32,33]. Glucocorticoids (GC) have been demonstrated to block the expression of multiple cytokines and chemokines. This inhibition has been reported to occur at the transcription level for IL-1 to IL-6, IL-11, IL-12, IL-13, TNF- α and M-CSF [34-38]. Most of these genes require transcription factors, such as AP-1, NF- κ B, or NF-AT, for their expression, suggesting that GCs may exert their anti-inflammatory function by interfering with the activity of some of these factors. This may explain their therapeutic efficacy in the treatments of allergic diseases (rhinitis, atopic dermatitis), asthma, rheumatoid arthritis, inflammatory bowel disease and autoimmune diseases which are marked by high expression of interleukins and other mediators [34].

2. 2. 1. Glucocorticoid receptor in the regulation of gene transcription

GCs exert their effects by binding to the glucocorticoid receptor (GR), which is predominantly localised in the cytoplasm of target cells [39-41]. Inactivated GR is bound to a protein complex of approximately 300 kDa that includes two molecules of heat-shock protein (hsp90), an immunophilin protein and various other inhibitory proteins [42]. The hsp90 molecules act as a molecular chaperone, preventing the unoccupied GR from translocating to the nuclear compartment, in the absence of a ligand [42]. Once the ligand binds to the GR, hsp90 dissociates, thus exposing two nuclear localisation signals on GR allowing the activated GR-ligand complex to rapidly move into the nucleus and bind to DNA.

The activated GR then directly or indirectly regulates the transcription of target genes (Figure 2) [40,43]. Transactivation by the GR requires binding of receptor homodimers to consensus glucocorticoid response elements (GREs), defined as the palindromic 15 bp sequence AGAACA*nnn*TGTTCT (where *n* is any nucleotide), in the promoter region of glucocorticoid-responsive genes [44,45]. Recent evidence suggests that the GR dimer undergoes a cycle of non-specific bindings to DNA in which it attaches and dissociates repeatedly until a high-affinity GRE site is encountered [46]. Whereas the mechanism of transactivation is well characterised, transrepression of target genes by steroid hormones is much less understood.

Most genes that are negatively regulated by the GR do not contain a classical GRE, and therefore, distinct modes of action using different classes of response elements, namely negative, composite, and tethering GREs, have been proposed to account for transrepression [47-50]. Negative GREs have been found in only a few genes and require DNA binding of the GR, as exemplified by the pro-opiomelanocortin (POMC) gene (Figure 2) [49].

GR may also inhibit protein synthesis by reducing the stability of mRNA containing constitutive AUrich elements in the 3'-UTR, thus shortening the turnover time of the mRNA [51]. This is a mechanism whereby GCs inhibit the synthesis of the cytokine granulocyte-macrophage colonystimulating factor (GM-CSF), which plays a key role in the survival of inflammatory cells at the site of inflammation [52]. This mechanism may also be important for the repressive effect of GCs on inducible cyclooxygenase (COX-2) expression [53,54].

Finally, at composite elements, such as in the proliferin gene promoter, the GR contacts DNA together with another transcription factor, whereas at tethering elements, repression is mediated by protein-protein interaction without direct DNA binding by the GR (e.g. collagenase type I and collagenase-3) (Figure 2) [44,55-59]. Direct protein-protein interaction between AP-1 and the liganded GR was shown to result in repression of collagenase gene expression, whereby AP-1/GR complex prevents GR interaction with respective response elements [5,60-63]. In addition to the cross talk with AP-1, GR may also interact with the p65 subunit of NF- κ B in a similar manner, and this mechanism has been proposed to account for many of the immunosuppressive effects of GCs [64-66]. Direct protein-protein interactions have been demonstrated between GR and CREB, and

between signal transducers and activators of transcription (STATs) proteins, such as STAT3, STAT5 and STAT6 [67-71]. This suggests that GCs modulate either the binding or activation of these transcription factors and thus modify the expression of inflammatory genes. The repressive action of GCs may be due to competition between GR and the binding sites on CBP for other transcription factors including AP-1, NF- κ B, Sp1, Ets, NF-AT and STATs [72-74]. The interactions between activated GR and transcription factors usually occur within the nucleus, but may also occur in the cytoplasm [75]. Alternatively, activated GR may bind to one of several transcriptional co-repressor molecules that have different histone deacetylase activity. This would result in the deacetylation of histones, tightening of DNA around histone residues and thus reduced access of transcription factors such as AP-1 and NF- κ B to their binding sites and finally the repression of inflammatory genes [76,77].

Figure 2. Classical model of glucocorticoid action

Glucocorticoids enter the cell and bind to cytoplasmic glucocorticoid receptor (GR) that is complexed with two molecules of heat shock protein (hsp90). The ligand bound receptor translocates to the nucleus where, as a dimer, it binds to glucocorticoid recognition sequences (GRE) in the 5'-upstream promoter sequence of glucocorticoid-responsive genes. GREs may increase transcription and negative (n)GREs may decrease transcription, resulting in increased or decreased mRNA synthesis. Direct interaction between the transcription factors AP-1 and NF- κ B and the GR may result in mutual repression. In this way glucocorticoids may counteract the chronic inflammatory effects of cytokines which activate these transcription factors. A positive interaction between GR and STAT5 suggests that GCs may enhance the effects of certain cytokines.

2. 2. 2. Functional and cell-specific mutations of the glucocorticoid receptor

Separation of the transactivation and transrepressive domains of the GR has been demonstrated using reporter gene constructs in transfected cells with selective mutations of the GR [78]. The clinical relevance of these effects was demonstrated by the generation of GR^{dim/dim} mice (denoted as GR^{dim}) [79]. The point mutation (A458T) was introduced into the second zinc finger of the GR by gene targeting using the Cre/loxP recombination system [79] (Figure 3). This resulted in impaired receptor dimerisation and thereby prevented GRE-dependent transactivation while the functions that require cross-talk with other transcription factors remained intact [79]. In contrast to

GR^{-/-} mice, which die shortly after birth due to a number of severe abnormalities, GR^{dim} mice are viable, showing that DNA-binding independent activities of GR are important for survival [79,80]. In GR^{dim} animals, dexamethasone was able to inhibit AP-1-driven gene transcription, but the ability to facilitate GRE-mediated effects such as cortisol suppression, erythroblast proliferation and T cell apoptosis were markedly inhibited [79].

It has been previously described that cells of myeloid lineage play a major role in the maintenance of tissue homeostasis and immunological defence. In particular, the mononuclear phagocytes, including blood monocytes and resident tissue macrophages, are of key importance for the establishment of innate immunity as well as the cytokine-mediated regulation of acquired immune responses [3]. The in vivo contribution of GR signalling in establishing the proper innate immune response has been demonstrated by generation of a mouse mutant, which has the GR selectively inactivated in macrophages and granulocytes (F. Tronche et al., unpublished). In order to conditionally target these cells for the expression of the GR, a modified GR^{flox/flox} allele was generated, using homologous recombination in embryonic stem cells, where exon 3, which encodes the first zinc-finger of the GR DNA-binding domain, was flanked by two loxP sites (Figure 3) [81]. Mice homozygous for GR^{flox/flox} appeared normal and expression of the GR protein was identical to that of wild type mice. GR^{flox/flox} mice were crossed with mice expressing the Cre recombinase under murine M lysozyme promoter (LysMcre mice) [82,83]. This resulted in generation of viable GR^{flox/flox;LysCre} mutant mice, abbreviated further as GR^{LysCre} (F. Tronche et al., unpublished data). Preliminary studies investigating the possible impact of the altered cytokine response in GR^{LysCre} mice, conducted by determining the survival rate upon LPS injection, revealed an enhanced mortality of these mice in comparison to control littermates (F. Tronche, H. M. Reichardt, A. Bauer, unpublished data), thus underscoring the importance of GR signalling in myeloid cells for protection against an overshooting inflammatory response.

Figure 3. Targeted disruption of the GR locus

The murine GR gene and its domains are depicted at the top, with the relative position of exons 1-9 indicated. Modified GR loci are denoted as GR^{dim} and $GR^{flox/flox}$. A point mutation (alanine 458 to threonine) was introduced into the second zinc finger (exon 4) in the DNA-binding domain of the $GR^{dim/dim}$ allele. The $GR^{flox/flox}$ allele was constructed to have exon 3, which encodes the first zinc finger of the GR DNA-binding domain, flanked by two loxP sites (triangles).

2. 3. MOLECULAR LINK BETWEEN LPS AND GR SIGNALLING IN MACROPHAGES; GENE EXPRESSION PROFILING METHODOLOGIES

LPS is thought to stimulate macrophages to respond more rapidly and effectively against invading agents. Several recent studies have supplied a wealth of data regarding molecular changes in response to LPS stimulation [6,84-88]. However, the spectrum of genes whose expression is altered by GCs during LPS stimulation of macrophages has not been extensively analysed. One way to investigate this process as well as to identify genes that contribute to LPS's critical role during inflammation, is with a general approach such as gene expression profiling.

Since the expression pattern of a gene provides putative information about its function, a number of approaches have been developed to determine the cell and tissue-specific distribution of

large numbers of genes, and/or to identify those that are differentially expressed between two or more given populations. Some of these methods are designed for *de novo* isolation of genes expressed at different levels in samples being compared. Most of these techniques are limited in that they are only capable of analysing a limited number of transcripts simultaneously and do not provide quantitative data on expression levels. Examples include differential display (DD) [89], representation difference analysis (RDA) [90,91], and suppressive subtractive hybridisation (SSH) [92]. The following methods, provide direct information about transcript abundance, as they exploit high-throughput sequencing and sequence databases either to estimate transcript abundance, e.g. EST numerical analysis and serial analysis of gene expression (SAGE) [93,94], or to construct DNA microarrays of thousands of gene sequences derived from the databases using either nylon membranes of glass slides as solid support (e.g. gene fragments arrays or oligonuclotide arrays) [95,96]. The latter allow the expression of hundreds of genes to be studied simultaneously without biasing conclusions drawn from a subset of genes presumed to be involved in a process under investigation.

2. 3. 1. Suppressive subtractive hybridization

Suppressive subtractive hybridisation is a powerful approach to identify and isolate cDNAs of differentially expressed genes [92,97-100]. The method is designed to selectively amplify target cDNA fragments and simultaneously suppress nontarget cDNA amplification [92,101]. It overcomes the problem of differences in mRNA abundance by incorporating a hybridisation step that normalises (equalises) sequence abundance during the course of subtraction by standard hybridisation kinetics. With a single subtractive hybridisation round, greater than 1,000-fold enrichment for differentially expressed cDNAs can be achieved [92,101]. SSH generates small cDNAs ranging from 50 to ~1,000 bp which can be from any part of the mRNA. While this methodology is more high-throughput and generates less false positives then DD-RTPCR, the short cDNA fragments need to be subcloned or extended to yield more information about the sequence of corresponding transcripts [91,92]. Apart from the characterisation of known

transcripts, SSH also permits the isolation of novel, uncharacterised genes. However, its major drawback is the inability to quantitatively measure the expression of enriched cDNAs. For this purpose, additional mRNA quantitative methods have to be included to determine the expression levels of subtracted genes/ESTs.

2. 3. 2. Gene arrays

Array-based technologies have made it straightforward to simultaneously monitor the expression pattern of thousands of genes across a wide variety of tissues, cell types, and conditions [95,96,102]. The technique is amenable to the analysis of a few hundred well-defined genes or family members as well as to the monitoring of 'global' expression profiles of the entire complement of an organism's expressed genes [103-107]. In addition to providing broad and in-depth information on gene expression patterns, gene microarrays are a powerful tool to dissect the mechanism of action of drug candidates and their metabolic pathways, and/or to identify potential markers to follow effect and dose of drugs in the clinical setting [104,108-110].

Microarrays of gene fragments (PCR/cDNA products) are typically constructed using sequences of characterised genes and/or ESTs [96,111,112]. Nevertheless, one can also readily array inserts from clones randomly picked from a cDNA or subtracted library [107]. The oligonucleotide gene expression chip (Affymetrix, Santa Clara, CA) is designed to contain 25-mer oligonucleotide sequences from a gene/EST of interest tiled directly on the solid glass wafer. The oligonucleotides are organised as perfect match/mismatch pairs (PM/MM) with the mismatch acting as a control for hybridisation specificity [110]. These short oligonucleotides can be designed to discriminate between splice variants and members of gene families (up to 70-80% of homology). In these cases, hybridisation patterns of inserts reveal information on gene expression (abundance). Still, a major drawback of either nylon-based cDNA arrays or oligonuclotide arrays, is the inability to identify low abundant mRNAs that usually fall within the 'noise' of the hybridisation.

Finally, although techniques for large-scale gene expression profiling have advanced considerably, some limitations remain to be addressed, such as enhanced ability to constantly identify low

abundant mRNA, improved signal-to-noise ratio, standardised software systems for the collection, quality scoring, and tracking of data, as well as extracting biological information from the immense amount of data [105,113].

3. AIM OF THE PROJECT

One way to decipher the molecular events of the macrophage response during inflammation caused by LPS, and the modulatory role of GCs on this process, is to determine differential changes in genes expression.

To meet this objective, suppressive subtractive hybridisation (SSH) and gene array hybridisation approaches, techniques that rely on quantitative and qualitative analysis of mRNA content, were employed. In order to confirm that GC effects are mediated specifically via the GR, and to dissect the mechanisms of GR actions on modulating the expression of LPS induced/repressed genes, gene expression profiling analysis was performed using peritoneal macrophages obtained from GR^{LysCre} and GR^{dim} mutant mice. Dimerisation-defective GR^{dim} mice will address whether GCs-mediated induction/repression of LPS-target genes is achieved in a DNA-binding dependent or independent manner by GR interaction with other transcription factor (proteins).

The results obtained using a combination of state of the art expression profiling approaches with functional and tissue-specific mouse mutants should provide a deeper understanding of the molecular pathogenesis of LPS and the molecular mechanisms of anti-inflammatory actions of GCs.

4. RESULTS

4. 1. In vitro CULTURE OF PERITONEAL MACROPHAGES

Macrophages have evoked the ability to recognise bacterial products and to initiate an immune response to clear the invading agent [85]. An innate pattern of this response is triggered by LPS, which promotes rapid changes in signalling pathways within macrophages and adaptive changes in gene expression [6,85]. In order to examine how the gene expression profile in macrophages is affected upon LPS stimulation, an *in vitro* model of peritoneal macrophages was established. To obtain primary peritoneal macrophages (PM Φ), mice were injected intra-peritoneal with thioglycollate and the cells were harvested by peritoneal lavage [114]. To confirm that the isolated cells were macrophage monoclonal antibody, which detects Mac-3 antigen on tissue and thioglycollate-elicited PM Φ . After overnight culture, 90-95% of the adherent cells stained positively for the expression of Mac-3 as illustrated in Figure 4. The remaining 5-10% of the cells represented mostly lymphocytes and some granulocytes.

Figure 4. Staining of macrophage cytospin section using M3/84 antibody

Cytospin sections were prepared using 100,000 cells obtained by peritoneal lavage. Immunohistochemical staining was performed with the M3/84 antibody which reacts with the Mac-3 antigen expressed on mononuclear phagocytes. The analysis was performed by Prof. Dr. H-J. Gröne from the Department of Cell and Molecular Pathology, German Cancer Research Centre, Heidelberg.

In order to monitor the process of macrophage activation by LPS, isolated PM Φ were treated with LPS and the mRNA expression of two major proinflammatory cytokines known to be induced by LPS (TNF- α and IL-6) was measured using the RNase protection assay. Already after 30 min of LPS (100 ng/ml) application, the mRNA expression of both cytokines was increased and reached a maximum at 1h (42-fold increase) and 6h (16-fold increase) for TNF- α and IL-6, respectively (Figure 5). After 24h the mRNA expression of TNF- α and IL-6 was almost back to basal levels. Collectively, these results establish that prepared PM Φ cultures can be considered almost pure and respond, as expected, to inflammatory stimuli such as LPS.

Figure 5. Time course of TNF- $\!\alpha$ and IL-6 mRNA expression upon LPS-stimulation of PM $\!\Phi$

mRNA expression of TNF- α and IL-6 was analysed by RNase protection using total RNA obtained from unstimulated PM Φ and cells stimulated by LPS (100 ng/ml) for the indicated times. α -³²P-UTP antisense RNA probes for TNF- α , IL-6 and cytochrome C (cyt-C) were *in vitro* transcribed and hybridised against 5 µg of total RNA from each treatment. Cyt-C was used to normalise the data. Signal intensities were quantified by Phospholmager and the analysis is shown in the lower panel. The data are representative of two RNase protection experiments.

4. 2. GENE EXPRESSION PROFILING OF PERITONEAL MACROPHAGES

As demonstrated previously, LPS promotes rapid production of TNF- α , IL-6 and other proand anti-inflammatory mediators, which are involved in the endotoxin signalling cascade [85]. To address experimentally early LPS-mediated activation events, PM Φ were stimulated *in vitro* by LPS (100 ng/ml) for 2h. Further more, the role of glucocorticoids (GC) in modulating the LPS elicited response at molecular level was investigated upon dexamethasone administration to PM Φ (1 µM dex added 1h prior to LPS).

In order to decipher the molecular mechanisms of GC-mediated action, mice containing two different types of mutation in the GR were used in this study. GR^{dim} mutant mice were generated by gene targeting to have impaired dimerisation. However, those GR interactions, which are independent of receptor binding to DNA, are preserved in these mice [79]. The second strain of mutant mice, GR^{LysCre}, have been generated to selectively lack the GR in cells of the myeloid lineage and are therefore expected to be refractory to GC treatment (Dr. F. Tronche, unpublished data).

Differential gene expression of LPS-stimulated PM Φ and the modulatory role of GCs on this process was examined by exploiting the methods of suppressive subtractive hybridisation (SSH) combined with real-time quantitative PCR, and oligonucleotide gene chip arrays.

4. 2. 1. Identification of differentially expressed mRNAs by the SSH approach

SSH is thought to allow isolation and identification of both known and novel genes/ESTs that are differentially expressed between two cell populations [92]. The enrichment of differentially expressed cDNAs is achieved by incorporating a suppressive PCR step, whereas two hybridisation steps account for normalisation (equalisation) of low and high abundant mRNA transcripts [92]. Although SSH supports generation of genes/ESTs which are differentially expressed, it does not provide information on the quantitative expression of enriched transcripts.

In order to identify genes and ESTs differentially expressed in LPS stimulated PMO, a subtracted and normalised library was constructed using the SSH technology (see Material and *Methods* Section). The mRNAs prepared from LPS-stimulated PM Φ of wild type animals (*tester*) were subtracted against unstimulated mRNAs (driver). The resulting cDNA pool should thus be enriched for transcripts that are up regulated in LPS stimulated cells. 290 clones were picked from the SSH library and processed by automatic PCR sequencing. This analysis revealed 212 clones containing inserts of 300-500 bp in size on average, which were used in homology search in GenBank and EMBL databases using BLAST (available at http://www.ncbi.nlm.nih.gov/BLAST/) algorithm. An outline of the procedure is given in Figure 6. The results of the database homologies found were classified into the following categories: known mouse genes (for sequences with high identity over the majority of the insert) and ESTs (expressed sequence tags of unknown function which are either homologous to mouse ESTs or represent novel transcripts). 61 known genes were identified from the SSH library screen. They were grouped into 8 functional categories based on the information derived from the PubMed literature, as shown in Table 1. Some genes were represented by multiple SSH-fragments, which often derived from different parts of the gene. For example, the immune-responsive gene (Irg1) was represented by 10 SSH-fragments. However, most identified genes were represented by only one or two SSH-fragments. Out of 76 ESTs obtained, 63 had partial homologies to sequences in the databases whereas 13 ESTs corresponded to novel transcripts.

Figure 6. Generation of SSH library and database sequence homology search

The above illustration shows the types of sequences isolated and the results of a database homology search with these sequences. 136 SSH-fragments showed homology to 61 known genes. In the case of the ESTs and novel sequences, the "real" number of genes identified is unknown as the sequences so not reflect full length genes and several may correspond to the same gene.

Acc. Num.	Gene Name	Functional classes	#
X75926	ABC1 transporter transmembrane protein		1
U04672	BMP receptor/ BRK-1 type I receptor		1
X13987	CD14		4
X933278	F4/80 gene	Cell surface antigens	1
X07640	Mac-1& cell surface glycoprotein	and transmembrane proteins	1
U37226	plasma phospholipid transfer protein		1
AC005835	T-cell receptor α,β,γ		1
AF124741	Toll-like receptor 2		2
K02782	complement component C3 α,β subunit		1
G198293	IL-1β		3
M74294	IL-1R antagonist protein	Cytokines,	1
X75337	IL-2Ry	chemokines	1
J03783	IL-6	and their receptors	2
X53798	macrophage inflammatory protein-2 (MIP-2)		2
M59378	TNFR-I		3
M38296	tumor necrosis factor alpha (TNF-α)		10
D37837	65-kDa macrophage cytosolic protein		1
AF133912.1	ARL-6 interacting protein	Cytoskeleton	1
M21495	cytoplasmic y-actin gene	and motility proteins	2
X93167	fibronectin		3
M87276	trombospondin-1		15
NM_023885	chloride intralcellular channel protein (mitochondrial), Clic4		1
L21768	eps15		1
U43384	gp91phox (Cybb)		2
X65026	GTP-binding protein		1
AF119038	lg heavy chain VH12-JH	Modulators,	1
L38281	immune-responsive gene (Irg-1)	intracellular transducers	10
AF061260	immunosuperfamily protein BL2	and adaptor molecules	1
AF072543	inhibitory receptor SHPS-1 long isoform		2
L20315	MPS1		1
AJ001616	myeloid associated differentiation protein		1
Y11550	p40 protein		1
L24118	primary response gene B94		6
AF020313	proline-rich protein 48		1
U92793	α-glucosidase II α subunit		1
D85596	AMP deaminase H-type		1
Z38015	DMR-N9 gene and DM-PK gene		1
AF046783.1	lysyl hydroxylase 3		1
M82831	macrophage metalloelastase		1
AF135185	MAPK38ß		1
X16490	PAI-2	Protein turnover	1
AF133125.1	phospholipase C δ-1		1
AF181829	Pleckstrin		5
M94967	prostaglandin synthase/cyclooxigenase (COX-2)		2
x78542	protease-6		1
AF062484	SDP8		1
M55154	transglutaminase (1 gm 2)		1
D105/6	ubiquitin activation enzyme E1		1
AF069502	ubiquitin specific protease UBP43 (Usp18)		1
019463	AZU ZIP		4
X13661	erungation factor 1-α (EF1-α)		1
NM_005762	NKAB-associated protein 1 (TF1B)	I ranscription factors	1
AF155372	אר-אס µוועט אר-אס אר אס אר א	and UNA-binding proteins	1
M57999	pro repros NE-RB precursor		3
AF010305	Stra13 pasic helix-loop-helix cotactor		1
A140/8	zip so (11511) extenio e actin	<i>H</i>	1
XU3/65	cycupiasmic p-actin	House-keeping genes	1
N03035U	insumoma (ng) gene	0	1
793032 V06369	okr-piotein 39	Uncogenes	1
700000 V97564	C-ms proto-oncogene	Biboormal DNA	10
702004		KIDUSUIIIAI KINA	10
⊥ ne classifu	cation of the 61 known genes, represented by 136 SSH-f	ragments, is based on	

Table 1. Functional classes of homologous genes found in the SSH library

to gene information from PubMed. The numer of SSH-fragments representing each homologue gene is indicated by the simbol #. The accession Number (Acc. Num.) for each gene is given.

4. 2. 1. 1. Quantitative expression analysis of transcripts obtained by SSH: Measuring the expression levels on nylon arrays containing transcripts from SSH-library

In order to enable a high-throughput quantitative expression analysis of subtracted genes/ESTs, with the intent of identifying those associated with the LPS phenotype in PM Φ , gene array technology was employed [95,111]. For this purpose, inserts from SSH clones were PCR amplified and spotted on to nylon Hybond N⁺ membranes using robotic printing. Multiple housekeeping genes and randomly selected DNAs were also spotted and served as internal/normalisation controls. The 'SSH-arrays' were then hybridised with α -³²P dATP labelled first strand cDNA probes derived from the *tester* and *driver* samples (Figure 7). To permit comparison between multiple array experiments, the data set were normalised to each other using the average expression level of selected house-keeping genes (for details see *Material and Methods*).

A. unstimulated (ctrl)

B. stimulated with LPS (LPS)

1 2 3 4 5 6 7 8 9 10 11 12

C. Comparison of expression levels in unstimulated and LPS-stimulated PM $\!\Phi$

Figure 7. Expression profile of LPS-stimulated PM Φ as assessed by hybridisation of SSH-arrays

The SSH-arrays were hybridised with α -³²P dATP-labelled first-strand cDNA probe derived from unstimulated PM Φ of wild type mice (A) and, cells stimulated with 100 ng/ml of LPS for 2h (B). The hybridisation signals were collected using a Phosphoimager. The circled pairs of cDNA spots represent the genes that are differentially expressed upon LPS stimulation of PM Φ compared to unstimulated cells. These data are representative of three hybridisation experiments. Blue and red circles indicate duplicates of differentially expressed known genes and ESTs, respectively; (C) Scatter plot of measured expression intensities. Measurements of empty spots or spotted heterologous DNA are indicated by black crosses. House-keeping genes used to standardise the median of differences to the centreline of the plot are coloured in red. Spots representing genes with differential expression are in blue. The red, green and black lines indicate 1-, 2- and 4-fold differences in expression level, respectively. Using the criteria of differential expression by a factor of two or more, the expression level of 34, out of 140 unique SSH genes/ESTs, were found to be induced by LPS. These mRNAs correspond to 21 known genes and 13 ESTs which are listed in Table 2. The gene information provided by SSH-array analysis is available at *http://www.dkfz.de/tbi/macrophage*.

Table 2. Analysis of differential expression of subtracted genes/ESTs upon LPS stimulation of PMΦ by array hybridisation

		Grid	hvhri	disation inte	ncities	Амегаль		hvhrir	Visation inte	ncitiec	Ачегане		Fold change
Acc. Num.	Gene / clone Name	position	ctri #	ctrl #2	ctrl #3	ctrl	StDev	LPS #1	LPS #2	LPS #3	LPS	StDev	LPS/ctrl
D37837	65-kDa protein	D8G	1012.80	486.60	1322.10	940.50	422.42	2916.00	1168.80	2861.60	2315.47	993.41	2.5
U19463	A20 protein	A2E	3813.60	1243.10	1307.10	2121.27	1465.95	11212.50	4457.40	2653.60	6107.83	4511.83	2.9
X75926	ABC 1 transporter	D4G	1536.00	607.90	1296.60	1146.83	481.83	10233.00	3198.80	4558.50	5996.77	3731.15	5.2
U92793	α-glucosidase II α subunit	B8G	1148.20	506.80	1454.80	1036.60	483.75	2832.10	1387.40	3697.90	2605.80	1122.49	2.5
L24118	B94 gene	B3E	457.40	212.70	694.80	454.97	241.06	3369.20	1455.10	3430.00	2751.43	1123.07	6.0
K02782	C3 α, β subunit	C5G	1447.00	551.00	1197.90	1065.30	462.48	4355.20	2097.90	3050.80	3167.97	1133.20	3.0
X13987	CD14	A4G	2769.00	1043.00	2316.60	2042.87	894.97	15942.20	4976.90	10435.70	10451.60	5482.67	5.1
NM_013885	Clic4	H11E	521.00	363.40	541.00	475.13	97.28	6033.10	2123.20	1893.10	3349.80	2326.65	7.1
M94967	C0X-2	B1G	890.50	428.70	741.20	686.80	235.66	6327.30	2039.50	5308.10	4558.30	2240.08	6.6
X93167	Fibronectin	D7G	1395.90	523.70	1472.70	1130.77	527.14	4513.80	1281.00	3258.80	3017.87	1629.81	2.7
M21495	y-actin	E6G	2206.10	1226.80	2319.30	1917.40	600.75	9139.60	4125.30	7717.60	6994.17	2584.24	3.6
G198293	IL-1ß	DeG	5450.50	2052.30	2878.50	3460.43	1772.27	99093.00	23768.00	29988.00	50949.67	41809.18	14.7
J03783	IL-6	E2G	606.30	255.80	518.70	460.27	182.41	11264.80	3368.70	3158.10	5930.53	4620.81	12.9
L38281	lrg-1	A7G	1057.40	287.30	574.10	639.60	389.21	6143.10	1705.90	2872.10	3573.70	2300.30	5.6
X07640	Mac-1œ	D9G	715.80	548.90	1210.30	825.00	343.96	2575.70	1376.60	2799.50	2250.60	765.13	2.7
X53798	MIP-2	F3G	1411.50	677.00	1097.10	1061.87	368.52	4502.90	1441.00	4254.50	3399.47	1700.62	3.2
X16490	PAI-2	D12G	3096.80	1451.20	z	2274.00	1163.61	9629.30	7446.40	ş	8537.85	1543.54	3.8
AF181829	Pleckstrin	A3E	920.20	476.40	1205.70	867.43	367.50	2397.70	2108.50	6970.50	3825.57	2727.43	4.4
M38296	TNF-a	B5G	437.50	168.30	541.00	382.27	192.39	3650.10	1934.00	4431.60	3338.57	1277.61	8.7
M59378	TNFR-I	A1G	700.80	ł	545.20	623.00	110.03	2125.20	ł	1151.80	1638.50	688.30	2.6
AF069502	UBP43 (Usp18)	E7G	1007.10	530.90	860.70	73.99.57	243.92	11829.10	3594.30	7243.20	7555.53	4126.28	9.4

		Grid	hybric	lisation inte	nsities	Average		hybrid	lisation inter	nsities	Average		Fold change
Acc. Num.	Gene / clone Name	position	ctrl #1	ctrl #2	ctrl #3	ctrl	StDev	LPS #1	LPS #2	LPS#3	LPS	StDev	LPS/ctrl
	clone 14.4	A4E	1029.70	317.10	1382.70	909.83	542.82	2970.20	1797.50	2861.80	2543.17	648.04	2.8
	clone 15-7	A5E	ł	110.30	344.70	227.50	165.75	ş	313.20	1017.70	665.45	498.16	2.9
	clone 274	B1E	ł	131.40	243.00	187.20	78.91	ł	495.70	1352.00	923.85	605.50	4.9
ш	clone 33.8	B5E	ł	76.20	512.80	294.50	308.72	ł	493.30	1391.90	942.60	635.41	3.2
	clone II 23.3	C11E	ł	252.20	887.10	569.65	448.94	ł	581.60	1812.80	1197.20	870.59	2.1
s	clone II 33.4	D6E	1226.60	577.00	1250.40	1018.00	382.10	15179.30	4849.20	6679.40	8902.63	5512.24	8.7
	clone II 34-6	D7E	ł	156.10	544.60	350.35	274.71	ł	606.90	1143.10	875.00	379.15	2.5
н	clone II 52-2	E2E	198.80	69.00	ł	133.90	91.78	2074.40	1009.10	ł	1541.75	753.28	11.5
	clone II 9-5	C2E	ł	544.40	792.70	668.55	175.57	ł	2139.90	3384.10	2762.00	879.78	4.1
	clone III 14-1	F4E	ł	131.10	232.10	181.60	71.42	ł	510.80	1222.80	866.80	503.46	4.8
	clone III 3-1	E6E	1827.50	837.00	988.80	1217.77	533.47	5698.00	2473.20	3016.70	3729.30	1726.47	3.1
	clone III 3.3	E7E	ł	285.80	983.30	634.55	493.21	ł	762.70	2145.00	1453.85	977.43	2.3
	clone III 6-1	E8E	2	182.30	397.70	290.00	152.31	2	567.60	1430.60	999.10	610.23	3.4

|--|

4. 2. 1. 2. Quantitative expression analysis of transcripts obtained by the SSH: Evaluation of SSH-array data using real-time quantitative PCR

Quantitative real-time PCR (LightCycler, Roche) was used to confirm and more accurately measure differential expression of 21 genes, identified by SSH-array analysis. This method allows measurements to be made during the log-linear phase of a PCR, in contrast to conventional PCR, where quantification is acquired only in the plateau phase (end-point determination) [115]. For this purpose, fluorescent dsDNA SYBR Green I dye was used, which allowed on-line monitoring of product synthesis during each PCR cycle. The hypoxanthine phosphoribosyltransferase (HPRT) gene was used as an 'external standard' and normalisation reference gene. The analysis was performed using first strand cDNAs obtained from unstimulated and LPS stimulated PMΦ from wild type mice. The expression of 21 LPS-inducible genes evaluated by real-time quantitative PCR is shown in Table 3.

					Average					Average		Fold change
Acc. Num.	Gene Name	ctrl #1	ctrl #2	ctrl #3	ctrl	StDev	LPS #1	LPS #2	LPS #3	LPS	StDev	LPS/ctrl
J37837	65-kDa protein	2.58	2.31	2.78	2.56	0.24	5.92	5.86	6.24	6.01	0.20	2.3
J19463	A20 protein	11.40	17.90	10.70	13.33	3.97	84.50	73.70	101.60	86.60	14.07	6.5
192793	ABC 1 transporter	3.20	2.33	3.18	2.90	0.50	10.30	5.81	7.84	7.98	2.25	2.8
(75926	α-glucosidase II α subunit	2.11	0.74	ł	1.43	0.97	2.65	0.79	ł	1.72	1.32	1.2
24118	B94 gene	35.05	30.99	ł	33.04	2.89	533.25	116.79	ł	325.02	294.48	9.8
<02782	C3 α, β subunit	8.10	8.20	6.00	7.43	1.24	32.20	24.70	20.50	25.80	5.93	3.5
<13987	CD14	11.58	12.17	10.99	11.58	0.59	45.51	44.09	46.92	45.51	1.42	3.9
NM_013885	Clict	0.86	5.84	2.39	3.03	2.55	8.90	14.26	10.31	11.16	2.78	3.7
M94967	C0X.2	0.02	0.05	ł	0.03	0.02	10.32	19.28	ł	14.80	6.34	> 100
/ 93167	Fibronectin	63.79	51.14	15.94	43.62	24.79	67.49	75.24	18.54	57.09	25.03	1.3
M21495	y-actin	5.23	8.83	6.90	6:99	1.80	41.88	21.78	32.60	32.09	10.06	4.6
G198293	IL-1ß	5.70	0.02	0.08	1.93	3.26	14.90	5.28	8.49	9.56	4.90	4.9
103783	IL-6	0.06	0.01	0.01	0.02	0.03	13.21	11.41	6.63	9.84	3.01	> 100
38281	lrg-1	21.99	21.52	16.10	19.87	3.27	621.84	518.84	439.00	526.56	91.66	26.5
X07640	Mac-1c	23.89	41.21	ş	32.55	12.25	24.27	59.71	ş	42.00	25.07	1.3
(53798	MIP.2	1.01	0.95	1.08	1.01	0.07	83.93	60.79	119.07	87.93	29.35	86.8
X16490	PAI-2	6.68	25.05	75.35	35.69	35.55	71.76	83.32	188.20	114.43	64.15	3.2
AF181829	Pleckstrin	1.88	3.12	0.18	1.73	1.48	8.24	9.75	4.83	7.61	2.52	4.4
M38296	TNF-cs	0.06	0.04	0.01	0.04	0.02	28.80	13.39	9.80	17.33	10.09	> 100
M59378	TNFR.I	9.78	4.39	1.95	5.36	3.98	17.21	33.74	20.65	23.87	8.72	4.5
4F069502	UBP43 (Usp18)	1.43	3.16	ş	2.30	1.22	10.78	8.55	۶	9.67	1.58	4.2

Table 3. Confirmation and quantification of relative gene expression by real-time quantitative PC

Real-time PCR quantification of relative expression of 21 genes identified in the SSH-array analysis. The expression intensities in unstimulated (ctrl) and LPS-stimulated (LPS) cells from wild type mice were quantified and normalised to HPRT expression. The fold change was calculated relative to the value from unstimulated cells (LPS / ctrl). The average values from two or three real-time PCR experiments (indicated as #1, #2 and #3) are indicated in orange. ctrl -unstimulated PMΦ from wild type mice; LPS - PMΦ from wild type mice stimulated for 2 h with LPS (100 ng/ml); StDev - Standard deviation; Acc. Num. -Accession Number; ~ - no data available
The expression of 18 genes determined by real-time PCR correlated well with data obtained by array analysis (see also Table 2). In contrast, a differential expression of less than 2-fold was detected for Mac-1 α , fibronectin and α -glucosidase II α subunit by real-time PCR analysis, which did not correlate with the SSH-array results. These genes were classified as non-differentially expressed genes and were excluded from further analysis.

4. 2. 2. The effects of GCs on the expression of LPS target genes in peritoneal macrophages from wild type and GR mutant mice

The SSH approach, substantiated by array and real-time PCR analysis, provided an initial set of 18 genes whose expression was up-regulated upon LPS stimulation. To investigate the role of GCs and the mechanism(s) of GR action on modulating the expression of these genes, PM Φ were treated with dexamethasone (1 μ M dex) 1h prior to LPS stimulation (100 ng/ml; 2h). Differential gene expression was tested in PM Φ from wild type, GR^{dim} and GR^{LysCre} mice upon LPS and dex+LPS stimulation, using real-time quantitative PCR [79,115]. Table 4 summarises the expression patterns of 9, out of 18 LPS-inducible genes, which were strongly modulated by GCs in PM Φ from wild type mice. The expression levels of Irg-1, B94, A20 protein, γ -actin, TNFR-I, Pleckstrin, C3 α , β subunit, 65-kDa cytosolic protein and ABC1 transporter remained unchanged upon GCs administration (data not shown).

				wild	type	1		Fold c	hange
Acc. Num.	Gene Name	ctrl	StDev	LPS	StDev	dex+LPS	StDev	LPS/ctrl	LPS/dex+LPS
X13987	CD14	11.58	0.59	45.51	1.42	15.43	0.55	3.9	2.9
NM_013885	Clic4	3.03	2.55	11.16	2.78	4.60	1.55	3.7	2.4
M94967	COX-2	0.03	0.02	14.80	6.34	2.22	0.99	>100	6.7
G198293	IL-1 β	1.93	3.26	9.56	4.91	1.83	1.43	4.9	5.2
J03783	IL-6	0.02	0.02	9.84	3.01	2.03	1.10	>100	4.8
X53798	MIP-2	1.01	0.07	87.93	29.35	23.92	3.95	86.8	3.7
X16490	PAI-2	35.69	35.55	114.43	64.15	35.56	2.46	3.2	3.2
M38296	TNF-α	0.04	0.02	17.33	10.09	1.48	0.71	>100	11.7
AF069502	UBP43	2.30	1.22	9.67	1.58	3.88	0.58	4.2	2.5

Table 4. Comparison of differential expression of LPS target genes upon GC-stimulation of PM Φ from wild type and GR mutant mice

				GR ^{dir}	m			Fold c	hange
Acc. Num.	Gene Name	ctrl	StDev	LPS	StDev	dex+LPS	StDev	LPS/ctrl	LPS/dex+LPS
X13987	CD14	8.46	2.77	116.12	37.50	100.35	9.11	13.7	1.2
NM_013885	Clic4	0.75	0.21	5.20	0.43	5.71	1.83	6.9	0.9
M94967	COX-2	0.00	0.00	5.75	3.11	2.15	0.78	>100	2.7
G198293	IL-1 β	0.09	0.04	9.81	0.08	2.68	0.58	>100	3.7
J03783	IL-6	1.07	0.75	7.41	2.34	1.75	0.93	6.9	4.2
X53798	MIP-2	2.90	4.54	53.17	20.52	16.37	8.55	18.3	3.2
X16490	PAI-2	3.36	1.65	90.80	38.67	99.94	21.80	27.0	0.9
M38296	TNF-α	0.02	0.01	13.84	0.92	2.62	0.32	>100	5.3
AF069502	UBP43	2.71	~	9.16	~	3.49	~	3.4	2.6

				G R Ly	sCre			Fold c	hange
Acc. Num.	Gene Name	ctrl	StDev	LPS	StDev	dex+LPS	StDev	LPS/ctrl	LPS/dex+LPS
X13987	CD14	18.04	~	182.11	~	275.58	~	10.1	0.7
NM_013885	Clic4	9.11	2.61	27.95	2.02	29.39	2.79	3.1	1.0
M94967	COX-2	0.72	~	15.50	~	17.80	~	21.5	0.9
G198293	IL-1 β	0.16	~	8.54	~	5.52	~	53.4	1.5
J03783	IL-6	0.03	0.00	4.45	1.58	6.38	2.42	>100	0.7
X53798	MIP-2	0.00	~	13.35	~	16.02	~	>100	0.8
X16490	PAI-2	60.98	~	228.08	~	151.37	~	3.7	1.5
M38296	TNF-α	0.57	0.03	21.74	5.87	28.20	1.40	38.1	0.8
AF069502	UBP43	2.25	1.41	1.81	0.69	1.93	1.19	0.8	0.9

Quantification of relative gene expression upon LPS and dex+LPS stimulation of PM Φ was analysed using real-time PCR. Listed are those 9 genes whose mRNA expression levels were elevated by LPS and modulated by GCs by more than 2-fold. The expression intensities were quantified and normalised to HPRT expression. The fold change was calculated relative to the value from unstimulated cells (LPS / ctrl), and relative to cells stimulated with dex+LPS (LPS / dex+LPS). The data represent average values from two to three real-time PCR experiments. Values obtained by real-time PCR analysis are indicated in orange. ctrl - unstimulated PM Φ ; LPS - PM Φ stimulated for 2 h with LPS (100 ng/ml); StDev - Standard deviation; ~ - no data available

A comparison of differential gene expression in unstimulated, LPS and dex+LPS stimulated cells from wild type, GR^{dim} and GR^{LysCre} mice, demonstrated that the expression levels of 18 LPSinducible genes identified in wild type PMΦ were also increased in PMΦ derived from GR mutant mice. Therefore, the cell response to LPS does not involve the activation of GR-dependent genes. Of these 18 genes, the expression of 6 (TNF- α , IL-6, IL-1 β , MIP-2, COX-2 and UBP43) was downmodulated by GCs by more than 50% in cells of wild type and GR^{dim} mice. In GR^{dim} PMΦ, GCs exert their effects by binding to a dimerisation-defective glucocorticoid receptor, which is able to mediate gene repression by interacting with other proteins, such as NF- κ B and AP-1, in a DNAbinding independent manner [79]. 3 genes (CD14, PAI-2 and Clic4) were found to be repressed in PMΦ from wild type but not but not GR^{dim} mice, suggesting that they are regulated in a GR-DNA dependent manner. PMΦ from GR^{LysCre} mice lack a functional GR and are therefore expected to be refractory to GCs. None of the 18 LPS-inducible genes was repressed by GCs in GR^{LysCre} PMΦ, confirming that the observed effects are indeed GR-specific.

Collectively, these data illustrated the use of the SSH technique to obtain numerous transcripts which are differentially expressed in LPS-stimulated PM Φ . Some of the identified genes have already been described in the extensive literature on macrophage biology (e.g. TNF- α , IL-6) [116], whereas others such as ubiquitin binding protein (UBP43) [117] and chloride intracellular channel (Clic) 4 [118], are reported here for the first time as LPS-inducible transcripts. In addition, investigation of GCs modulatory roles on the expression of LPS inducible genes with the use of functional and cell-specific GR mutant mice provided insight into the mechanisms by which GR regulates the expression of target genes.

4. 2. 3. Identification of differentially expressed mRNAs by oligonucleotide gene chip analysis

Gene chip technology was used in addition to SSH, to provide a more global profiling of differential expression of a variety of genes and gene families encoding for proteins with a wide range of functions [96,110,112]. Although restricted to a number of selected genes and ESTs, a major advantage of this method is the simultaneous profiling and quantitative analysis of mRNA changes in a single hybridisation experiment.

The oligonucleotide gene chip station, provided by the company Affymetrix, Santa Clara, CA, was used to analyse expression patterns of a variety of genes upon LPS-stimulation and to explore the role of GCs in modulating their expression. The MuU74Av2 oligonucleotide gene chip, which contains 12488 oligonucleotide probe sets corresponding to more than 8000 murine genes and 4000 ESTs, was used to reveal patterns of gene expression in unstimulated, LPS stimulated (100 ng/ml; 2h) and dex+LPS stimulated PM Φ (1 µM dex added 1h prior to LPS). Cells were obtained from wild type and two mutant mouse strains, generated by gene targeting to have either impaired dimerisation function of the GR (GR^{dim}) [79], or to lack GR in cells of the myeloid lineage (GR^{LysCre}) (F. Tronche et al., unpublished).

The standard labelling protocol, suggested by Affymetrix, recommends the use of 1 μ g of poly(A)⁺RNA or 8-10 μ g of total RNA, as starting material [106,112,119]. The RNA is subjected to one round of mRNA amplification by *in vitro* transcription (IVT) [119]. This method is believed to maintain the complexity and linearity (relative distribution) of the original mRNA population, and as such should be suitable to produce specific probes for high-throughput studies, and to detect differentially expressed genes [106,112]. A recently published report described a modified amplification protocol, which minimises the generation of template-independent products and generates the sufficient quantities of message-derived material [120]. By applying a second round of cDNA synthesis and *in vitro* transcription, the required starting material was reduced significantly such that quantities between 2 and 200 ng of total RNA were used [120]. This experiment recaptured very well the trends and salient features of the data set obtained using 10 μ g of total RNA in standard Affymetrix protocol, with high correlation coefficients (0.994 > r > 0.984) [120].

Since on average 5-7 μ g of total RNA was obtained from one mouse (corresponds to 1-3 x 10⁶ PM Φ), the hybridisation probes were therefore generated using 200 ng of total RNA as staring material and two rounds of IVT according to the modified amplification protocol (for details please refer to the *Material and Methods* Section).

cRNA probes generated from unstimulated, LPS and dex+LPS-stimulated PM Φ from wild type, GR^{dim} and GR^{LysCre} mice, were hybridised with the MuU74Av2 oligonucleotide gene chips. The array images were captured and reduced to intensity values [Average Differences (AD)] and absolute calls [Present (P) / Absent (A) / Marginal (M)] using GeneChip Software (MicroArray Suite version 4.0, Affymetrix, Santa Clara, CA). The expression level for each gene was derived from the 16 representative oligonucleotide pairs using a trimmed mean algorithm. Those genes/ESTs which were rated as present (P) by the GeneChip software (Affymetrix) and which fulfilled certain criteria were selected for further analysis.

After 2h of LPS treatment, the RNA expression levels of 327 transcripts, corresponding to 158 genes and 169 ESTs, were significantly and reproducibly elevated by more than 2-fold in PM Φ from wild type, GR^{dim} and GR^{LysCre} mice. The expression of 225 of these transcripts was not changed by treatment with GCs in PM Φ from wild type, GR^{dim} or GR^{LysCre} mice. On the other hand, the expression of 102 of the LPS-induced transcripts was modulated by GCs by more than 2-fold in wild type PMD. 11 genes/ESTs, out of these 102, were affected by GCs to similar extent in cells from both GR^{dim} and wild type mice, indicating that GR-mediated regulation of these genes is independent of the receptor binding to DNA. 91 genes/ESTs were repressed by GCs in cells from wild type but not GR^{dim} mice, indicating that these genes are modulated via a mechanism requiring GR binding to DNA. As expected, none of the GR regulated genes/ESTs identified was found to be modulated by GCs in $GR^{LysCre} PM\Phi$, confirming that GC-mediated gene regulation of LPS-induced genes/ESTs is mediated via the GR. Due to the extensive amount of data accumulated from the oligonucleotide array analysis, the complete data set on the expression levels of 327 target genes/ESTs is presented in the Appendix and is also available at web site http://www.dkfz.de/tbi/macrophage.

4. 3. CORRELATION BETWEEN SSH-ARRAY AND OLIGONUCLEOTIDE GENE CHIP DATA

Gene array approaches provided a cross-section of the diversity of macrophage genes, whose mRNA expression levels were altered at a given time point after LPS and/or dex+LPS stimulation. Several of the identified transcripts such as TNF- α , IL-6, COX-2, IL-1 β , TNFR-I, MIP-2 and Irg-1 were identified by both SSH and oligonucleotide array analysis confirming the validity of the generated data. In addition, these data showed that changes in patterns of gene expression agreed gualitatively but that there was certain guantitative variation. To ameliorate such discrepancies in order to define the expression pattern(s) of an identified target gene with high reliability, an independent verification using real-time PCR was performed. As illustrated in Table 5, quantitative disagreements were observed when the expression of TNF- α , IL-6, MIP-2 and IL- 1β genes was measured by oligonucleotide gene chip arrays and by real-time PCR. In those cases where array and real-time PCR results were in disagreement, the later were taken as a more reliable measurement of gene expression [115]. This decision was based on experiments showing that real-time quantitative PCR is highly sensitive and reproducible method. The product synthesis and reliable quantification analysis of relative gene expression was observed in intra- (two repeats on one LightCycler run) and inter-assay (two independent runs), over six orders of magnitude under a satisfactory test linearity (0.98 < r < 1.00). Finally, expression of 2 of these questionable genes was further substantiated by RNase protection assays (data not shown).

		X	ildty	9 0	Fold	change		G R dim		Fold	change
Acc. Num.	Gene Name	ctrl	LPS	dex+LPS	LPS/ctrl	LPS/dex+LPS	ctrl	LPS	dex+LPS	LPS/ctrl	LPS/dex+LPS
3198293	IL-1ß	3460.40	50949.70		14.7						
		3565.65	86212.00	50256.95	24.2	1.7	8497.60	83023.03	73836.73	9.8	1.1
		1.93	9.56	1.83	5.0	5.2	0.09	9.81	2.68	> 100	3.7
J03783	IL-6	460.30	5930.50		12.9						
		69.10	27738.90	9667.75	> 100	2.9	65.77	18572.87	13893.30	> 100	1.3
		0.02	9.84	2.03	> 100	4.8	1.07	7.41	1.75	6.9	4.2
(53798	MIP-2	1061.90	3399.50		3.2						
		5567.70	48481.60	35722.00	8.7	1.4	5074.97	40017.53	40120.00	7.9	1.0
		4.26	92.45	23.92	21.7	3.9	2.90	53.17	16.37	18.3	3.2
M38296	TNF-a	382.27	3338.57		8.7						
		682.05	67676.55	27160.20	99.2	2.5	989.43	63700.63	37811.60	64.4	1.7
		0.04	17.33	1.48	> 100	11.7	0.02	13.84	2.62	> 100	5.3

Table 5. Correlation of mRNA expression patterns

The cDNA expression patterns of cognate mRNAs are listed in the expression columns extracted from the respective databases. Differential gene expression indicated as fold change is given as measured by SSH- (yellow), oligonucleotide gene array analysis (green) and real-time PCR (orange). Discrepancies in gene expression detected by the different methods are indicated in blue. ctrl - unstimulated PMΦ; LPS - PMΦ stimulated for 2 h with LPS (100 ng/ml); dex+LPS - PMΦ stimulated 1h with dex (1µM) prior to LPS (100 ng/ml; 2 h); Acc. Num. - Accession Number

All together, these results suggest that the semiquantitative array techniques can reliably detect trends in altered gene expression but may over or underestimate the magnitude of these changes. This limitation may not be only due to the method used to estimate gene expression but also due to alternative splice isoforms or closely related genes that give different measurements depending on the sequences (i.e. oligonucleotide) used to represent a gene. Parameters that may contribute to disconcordance between array and real-time PCR results are summarised in Table 6.

	SSH-arrays	Oligonucleotide gene chip	Real-time quantitative PCR
Gene Representation	cDNA/PCR fagment; >300 bp in size; <i>Rsal</i> fragments can derive from any part of a gene; Neither 3' nor 5' biased	Oligonucleotide probe pairs; 16 oligonucleotide pairs (PM/MM); 3'-UTR biased	Gene-specific primer pairs can be designed from any selected part of a gene; Usual primer length: 18-22 nt; Additional primers can be included to cover other regions of a gene; Gene specificity can be achieved by blasting primer sequences
Starting material:	100 ng of mRNA	200 ng of total RNA	first-strand cDNA (RT using 0.5-2 µg of total RNA)
RNA amplification:	ee	 T7 RNA amplification 1. two rounds of IVT amplification 2. shortening of the 5⁻region of template during IVT, due to use of random hexamers 3. fragments are proned to overamplification (preferential amplification of short fragments) 	none
Labelling method:	radioactive (reverse transcription performed using $\alpha^{32}\text{P-ATP})$	fluorescent biotin labelling during the last IVT using 11-bio-NTP)	fluorescent (SYBR Green I dye)
Detection method:	hybridisation of nylon membranes; correlation cofficient < 0.947 the signal might derive from a l	hybridisation of glass slide arrays; correlation cofficient < 0.998 nighly homologue gene or splice variant	PCR amplification; 0.98 < correlation cofficient < 1.0
Background subtraction:	AIS and MATLAB software	Microarray Suite Genechip software vs. 4.0	none
Normalisation:	set of house-keeping genes or 'selected' NC genes	spike-in controls (defined by manufacturer)	usually one house- keeping gene
Data mining:	MATLAB; Excel	Microarray Suite Genechip software; Excel	LightCycler SDM-method (Roche)

Table 6. Potential sources of discrepancies between arrays and real-time PCR data

Table illustrates some major differences between arrays (SSH- and oligounucleotide gene chip) and real-time PCR analysis. Several steps that may contribute to disagreement of data are described. For experimental details, please refer to the *Material and Methods* Section; NC - not changed; RT - reverse transcription; IVT - *in vitro* transcription; SDM - Second Derivative Maximum

4. 4. PATTERNS OF GENE EXPRESSION; MOLECULAR MECHANISMS OF GR ACTION

To obtain a broad range of information on the response of PMΦ to LPS stimulation and modulatory role of GCs on this process, SSH and oligonucleotide gene chip techniques were used in the current study. The results which identified differential expression of numerous genes/ESTs in response to LPS suggested that the macrophage's transcriptional machinery undergoes a massive change following this stimulation. Specifically, the expression of 350 Genes/ESTs were found to be modulated by LPS by more than 2-fold. These transcripts were classified into Group 1 (204 genes/ESTs) and Group 2 (146 genes/ESTs), according to whether LPS caused an increase or decrease of gene/EST expression, respectively (Table 7). Similar patterns of gene expressions were also observed in GR^{dim} and GR^{LysCre} PMΦ. Of these 350 LPS-regulated genes/ESTs, 244 (69.7 %) did not respond to GC treatment [Fold change (LPS/dex+LPS) less than 2-fold]. These genes/ESTs are classified into Group 1-A and 2-A (Table 7, Figure 8). Upon LPS-stimulation, the expression level of the 140 gene/ESTs belonging to Group 1-A, was increased by several fold by LPS and was unaffected by treatment with dex+LPS, in PMΦ from wild type, GR^{dim} and GR^{LysCre mice} (Table 7, Figure 8). Expression level of the 104 genes/ESTs belonging to Group 2-A, where decreased by LPS stimulation.

Of the identified LPS target genes/ESTs, 106 (30.3%) were regulated by GCs, since their expression levels were either down- or up-regulated by dex+LPS treatment of PM Φ obtained from wild type animals (Fold change=LPS/dex+LPS is \geq 2-fold or \leq 0.5-fold) (Table 7). It was expected that the expression of some genes/ESTs, upon LPS or dex+LPS stimulation, would follow similar patterns (trends) in wild type and in GR^{dim} PM Φ . This would support a mechanism of GR action independent of its binding to DNA, where GR interacts with other transcription factors (or proteins) to regulate gene transcription. Some genes/ESTs while regulated by GCs in cells from wild type mice may not be regulated in PM Φ from GR^{dim} mice. These genes would require an interaction of GR with DNA to be modulated by GCs.

Based on this, 6 additional subgroups can be distinguished according to the molecular mechanisms by which GR mediates repression/induction of LPS target genes/ESTs, as illustrated in Figure 8:

• Group 1-B and Group 2-C, consist of 47 and 4 genes/ESTs, respectively, which are repressed upon GCs in wild type but not in GR^{dim} mice, indicating that GR acts in a DNA-binding dependent manner.

• Group 1-C represents 10 genes/ESTs which were repressed by the GR in cells from wild type and in GR^{dim} mice. These genes thus require DNA-binding independent action of the GR for their regulation.

• Group 1-D and Group 2-B represent 5 and 38 genes/ESTs, respectively, whose expression was further increased by dex+LPS treatment compared to LPS alone. In this case, GR acts in a DNA-binding dependent fashion, since induction in gene expression was observed only in cells from wild type but not GR^{dim} mice.

• Group 1-E consists of only 2 genes. The expression of these genes was increased by GCs in $PM\Phi$ from wild type and GR^{dim} mice indicating that GR acts in a DNA-binding independent fashion.

In total, 182 ESTs have been identified by SSH and oligonucleotide gene chips analysis as being significantly modulated by LPS and by GCs, which did not match any gene name in the public databases. This is only an approximate estimate of the number of novel genes found because a fraction of the mRNAs for known genes still have poor 5' representation and even uncharacterised 3' untranslated region. It could be, in some cases that those identified ESTs represent, or belong to, the same gene(s), the question that will be finally solved when more complete sequences are obtained. In any case, their presence indicates that a substantial fraction of the regulatory or functional circuitry of macrophages remains unexplored and that valuable tools for their investigation will emerge from a combination of RNA expression studies and analysis of genomic sequences.

	Expre	ssion is increased/dec (Fold change ≥ 2-folc 350 (168 Genes / 182	r <u>reased by</u> I ≤ 0.5-fold) ESTs)	Sd		
	Expres	sion is increased by LPS 27 Genes / 77 ESTs)		sroup 1		
	Expres 146 (41	sion is decreased by LPS I Genes / 105 ESTs)	0	sroup 2		
Expression is increased/decreated in the increased of the	ised by LPS n wild type <2-fold) ESTs)		Expressic and is mo (Fold cha 106 (59 0	on is increased/de odulated by GCs it inge \geq 2-fold or \leq (cenes / 47 ESTs)	creased by LPS 1 wild type 0.5-fold)	
Expression increased by LPS and is not modulated by GCs in wild type 140 (80 Genes / 60 ESTs)	Group 1-A		Expression and is modu 64 (47 Gen	is increased by LPS ulated by GCs in wild t es / 17 ESTs)	ype Group 1-B,-C,-D,-E	
Expression decreased by LPS and is not modulated by GCs in wild type 104 (29 Genes / 75 ESTs)	Group 2-A		Expression and is modu 42 (12 Gen	is decreased by LPS ulated by GCs in wild t es / 30 ESTs)	ype Group 2-B, -C	
	Expression is and is not mo	increased/decreased	PV LPS	Expressio and is mo	n is increased/decreased	d by LPS
	(0.5-fc 94 (48	ld< Fold change <2-fo Genes / 46 ESTs)	(p)	12 (F	old change ≥ 2-fold or ≤ ((11 Genes / 1 ESTs)).5-fold)
	Expression is increand is not modulated and is not modulated 52 (36 Genes / 16	eased by LPS ted by GCs in GR ^{dim} ESTs) G Cou	up 1-B,-D	Expression is and is modula 12 (11 Genes	increased by LPS ated by GCs in GR ^{din} s/1 ESTs) G Co L	ıp 1-C,-E
	Expression is decr and is not modulat 42 (12 Genes / 30	eased by LPS ted by GCs in GR ^{dim} ESTs) G Co t	up 2-B,-C			
Shown is the total number of genes 350 genes/ESTs belonging to Group	and ESTs, which v 1 and 2 and the r	were identified by SSH- and espective subgroups are sl	d oligonuclec hown in the <i>i</i>	łtide gene chip array Appendix and are av	/ analysis. The expression dat /ailable at <i>http://www.dkfz.de/</i>	ta sets from all t <i>bi/macrophag</i> e

Results

Figure 8. The mechanism of GR action in the regulation of expression of LPS target genes/ESTs in PM Φ from wild type and GR mutant mice

Genes are grouped according to the mechanism by which GR modulates their expression. A graphical illustration of expression patterns of genes/ESTs comprising Group 1-A, -B, -C, -D, -E, 2-A, -B, -C, is shown in the form of a histogram with explanation given in the text. The method used to represent the expression profile of each group and the measured expression levels of genes/ESTs are shown in detail in the Appendix and at *http://www.dkfz.de/tbi/macrophage*.

4. 5. CONSTRUCTING A DATABASE FOR mRNA CHANGES IN PERITONEAL MACROPHAGES DURING STIMULATION WITH LPS AND GCs

From the obtained results. in-house database (available an at http://www.dkfz.de/tbi/macrophage) was constructed that includes 3 interlinked subdatabases for collecting gene information from SSH, oligonucleotide gene chip arrays and real-time PCR. The linkage between subdatabases was established by GenBank accession numbers. This database was developed to provide a reference for later research on PMΦ response to LPS and GCs. It contains an in-depth pattern analysis of gene expression in PM Φ from wild type, GR^{dim} and GR^{LysCre} mice and includes not only genes/ESTs represented in public databases but also novel transcripts revealed by this study.

5. DISCUSSION

5. 1. CRITICAL ASPECTS ON TECHNIQUES TO MONITOR GENE EXPRESSION

The recently developed technique of SSH has allowed cloning and isolation of cDNAs that are differentially expressed between two RNA populations being compared [92,101]. The study described here showed, in accordance with others, that the SSH technique is a relatively simple and efficient method for generating differentially expressed genes/ESTs. The relative difference in gene expression apparently did not impact whether a gene is recovered by SSH. In a mixed population of differentially expressed genes, in which some differ by few-fold and others by several orders of magnitude, both low and highly expressed genes were equally amplified with no obvious preference for the later genes. For example, IL-6 [121], TNF- α [116] and MIP-2 [122] showed fold change in expression of more than 100, whereas CD14 [12] expression changed by just 4-fold. 2 SSH-fragments from the subtracted library were found to correspond to the IL-6 and MIP-2 genes, whereas TNF- α and CD14 were represented by 10 and 4 SSH-fragments, respectively. Furthermore, fragments from high (e.g. Irg1, PAI-2 gene [123,124]) and low abundant transcripts (e.g. UBP43 [117,125], MIP-2 [122]) were isolated, demonstrating that the absolute expression level was not a crucial determinant for identifying genes.

However, there are some limitations inherent to SSH. As with all subtractive approaches, only two samples can be compared at a time (e.g. LPS-stimulated versus non-stimulated cells). Furthermore, two micrograms of $poly(A)^{+}$ RNA from both cell populations are needed in the analysis. Depending on the source of RNA, this amount may be difficult to obtain, as with PM Φ in

which only 5-7 µg of total RNA was obtained per mouse. To circumvent this problem, a technique capable of amplifying small amounts of mRNA, without significantly distorting the information content of both *driver* and *tester* cDNAs, could be incorporated to generate sufficient quantities of both cDNA samples [126]. Finally, each SSH experiment leads to the recovery of distinct number of cDNAs, which likely represent a subset of all the differentially expressed genes.

Whereas the generation of a subtracted library can be accomplished rather quick, identification and characterisation of enriched transcripts along with their quantitative expression analysis, is much more time-consuming. In order to profile the expression of enriched genes/ESTs simultaneously, inserts from SSH clones were arrayed onto nylon membranes and their expression measured by hybridisation. Surprisingly, this analysis revealed only 25% of all processed SSH sequences as differentially expressed upon LPS stimulation of PMΦ. The remaining 75%, which showed no differential expression, were thus considered as 'false-positive' genes/ESTs.

On the other hand, nylon- and glass slide- based arrays have become the preferred tool for rapid determination of gene expression as they allow simultaneous profiling of differential expression of numerous genes in a single hybridisation experiment [95,102,105,109]. However, the array methods already faced some limitations in particular for the quantification of differential expression of low abundant mRNAs. Since, low abundant mRNAs usually give a signal close to background level, the calculated ratios for these genes tend to be high and thus not a reliable indicator of differential gene expression [127]. On the basis of this considerations, an independent method for quantification of gene expression (such as by real-time quantitative PCR) should be included in order to evaluate and more reliably quantify level(s) of differential gene(s) expression [115]. In addition to this, certain improvements in array manufacturing, hybridisation conditions, signal-to-noise ratio and refinements in statistical analysis of the data, are all expected to enhance the ability to consistently and more accurately quantify levels of gene expression and to accelerate data mining.

5. 2. BEYOND GENE EXPRESSION PROFILING

Following the simultaneous analysis of several hundreds or thousand genes at the mRNA level, the challenge becomes how to efficiently utilise this information to provide insights into an investigating process(es). The advantage of characterised genes for which reagents such as antibodies, cell lines, and knockout mice are available gives the possibility for testing plausible hypotheses generated from the data. Some applications of transcript profiling include, among others, gene promoter analysis, sequence and structure characterisation of novel ESTs, RNA interference (siRNA), and finally, development of certain animal models where changes in gene expression can be recorded and compounds to modulate their expression considered and tested. Information collected from combined multiple gene expression profiling approaches can be used to prepare 'custom chips' which contain selected genes/EST, that can be probed with RNAs from different tissues. Furthermore, sequences of unknown ESTs and genes identified here suffice to clone their cDNAs, and some of these gene products may be useful as pharmaceutical targets for novel intervention therapies.

Further more, the findings of this study are based on changes in mRNA expression levels which do not necessarily correspond to changes in protein levels. There are several reports in the literature where differences between mRNA and protein levels appear to be substantially larger than initially assumed [16,128,129]. Possible causes include differential expression of certain mRNAs at various stages of cell growth and differentiation *in vitro*, translation regulation, post-translation protein modification and selective degradation or excretion of proteins *in vivo*. Differences observed between gene expression and protein abundance suggest that selective post-transcriptional controls may be as important as changes in mRNA levels. At present, post-transcriptional control is less well explored than transcriptional control [16,128,129]. Therefore, novel high-throughput strategies, equipment and bioinformatical tools should be developed to make such systematic, global and quantitative analysis feasible in order to fully pursue the biological relevance of generated data.

5. 3. SIGNATURES OF INFLAMMATION

The combination of gene expression profiling approaches with the use of function- and tissue-specific mouse mutants, suggested that the macrophage's transcriptional program undergoes a massive change during activation by LPS and highlighted the myriad of ways in which cells attempt to control inflammation. As hypothesised here, LPS, as a structural component of all Gram-negative bacteria, should play a principal role in stimulating the early innate response of macrophages [6,85]. A few recent studies have compared changes in host gene expression caused by virulent bacteria and purified LPS [88,130]. These reports showed a remarkable degree of overlap between genes induced by virulent bacteria and purified LPS, suggesting that there is a redundancy in host response. This supports the concept that different bacterial inputs can initiate a conserved program of macrophage responses. Comparison of changes in gene expression in PMΦ activated by LPS, with those obtained using other cells of innate and/or acquired immunity, and different bacterial structural components, will likely reveal a conserved host gene expression profile that serves as a common signature of inflammation and infection.

5. 4. THE CONSEQUENCES OF LPS ACTIVATION OF PERITONEAL MACROPHAGES AND THE MODULATORY ROLE OF GCs

Comparison between resting and LPS-stimulated macrophages revealed comprehensive LPS-inducible gene expression profile. This data provides molecular evidence that, upon stimulation with LPS, macrophages will reprioritise their gene expression away from normal physiology towards establishing an anti-inflammatory state. In addition to the beneficial effects of such a response, the activation of host-derived inflammatory mediators can also account for the deleterious pathophysiologic state [31].

The insights gained from the current gene expression analysis suggest that upon LPS stimulation, macrophages enhance transcription of genes involved in a variety of cell processes, from cell-cell communication, immune and stress response, chemotactic migration, and controlled cell death (Table 8). The release of proinflammatory and antibacterial mediators (interleukins, macrophage inflammatory proteins, complement components, small inducible cytokines), represents only a subset of the potential stimulatory loops created when a macrophage population is stimulated with LPS [85]. Other products act back upon the macrophages themselves to regulate the late LPS response and include end products of both the cyclooxygenase and lipoxygenase pathways of arachidonic acid (COX-2, prostaglandin E synthase, cholesterol hydroxylase), growth and differentiation factors (G-CSF, M-CSF, GM-CSF), in addition to surface expression of macrophage receptors and other markers (CD14, TNFR-I, dystroglycan, R13 adenosine receptor, G-protein coupled receptor TDAG8, CCR1, CCR5) [85]. Activation of macrophages is deleterious only at the extremes and normally forms part of the protective immune response. However, the possibility that small changes in the levels or ratios of some transcription factors, receptors, cytokines and other identified genes could produce marked changes, potentially limits the significance of generated data and their relevance in certain (patho)physiological states.

Table 8. Clustering of gene expression patterns according to common involvement in biological processes

Genes for which information on protein function and role in biological processes was available from MJD, SwissProt (available at *http:// www.expasy.ch*), GeneNest (available at *http://www.dkfz.de/tbi/services/GeneNest/index*) and Gene Ontology databases were sorted by GeneOntology clustering algorhytm. This analysis was done with the use of scripts written in the Perl programming language (available at *http://www.perl.com/*) and the Sequence Retrieval System, SRS (Tim Beißbarth, personal communication).

Main biological processes are indicated with the respective clusters titled in dark blue. Genes whose expression was modulated only by LPS (increased/decreased) are shown in black (see also Group 1-A and 2-A in Figure 8). Genes modulated by LPS and further by GCs are indicated depending on the mechanism of GR action. Those which are modulated by GR in a DNA-binding dependent fashion, i.e. not regulated in GR^{dim} PM Φ , are shown in blue (see also Group 1-B, 1-D, 2-B, 2-C in Figure 8), whereas those employing DNA-binding independent action of GR, i.e. genes which are affected in GR^{dim} and in wild type PM Φ , are shown in red (see also Group 1-C, 1-E in Figure 8).

Due to the extensive amount of data generated, genes are represented in clusters by Gene Name and Accession Number only. A detailed gene expression analysis is available in the Appendix and at *http://www.dkfz.de/tbi/macrophage* site.

Α.

	Cell-to-Cell Signalling
	Cell Communication and Cell Adhesion
Acc. Num	Gene Name
M26071	Coagulation factor III
M63801	Connexin 43 (alpha-1 gap junction)
D10475	Epimorphin
M90551	Intercellular adhesion molecule
L07508	Mouse Golli-mpb (alternate transcript from clone BG21)
M33960	Mouse plasminogen activator inhibitor (PAI-1)
X62700	muPAR1
X16490	PAI-2
D89571	Ryudocan core protein
M84487	Vascular cell adhesion molecule 1
	Extracellular Signalling Receptors
X13987	CD14 gene
U43512	Dystroglycan 1
X69619	Inhibin β-A
U14135	Integrin α V (Cd51)
L32838	Interleukin 1 receptor antagonist (IL-1rn) gene
M83312	Tumor necrosis factor receptor superfamily, member 5
	G-protein Coupled Receptor Protein Signaling
AI644801	Adora2a gene, exon 1 (and joined CDS)
U77630	Adrenomedullin
U05673	Balb/C clone R13 adenosine receptor subtype
U67187	G protein signaling regulator RGS2 (rgs2)
U39827	Putative G protein-coupled receptor TDAG8 (TDAG8)

В.

	Cell Growth and Maintenance
Acc. Num	Gene Name
M13926	Colony stimulating factor, granulocyte
J04103	E26 avian leukemia oncogene 2, 3 domain
V00727	FBJ osteosarcoma oncogene
X03020	Granulocyte-macrophage colony stimulating factor (GM-CSF)
X57687	LYL gene (clone L6)
AI852608	RNA 3'-terminal phosphate cyclase-like protein (rcl1 gene)
U10531	Ski/sno related
	Cell Cycle
U00937	GADD45 protein (gadd45) gene
X61940	Growth factor-inducible immediate early gene (3CH134)
	Cytoskeleton
M21495	Cytoplasmic γ-actin gene
L00919	Erythrocyte protein band 4.1

С.

	Cell Motility / Chemotaxis
Acc. Num	Gene Name
AF022990	CC chemokine receptor-5 (CCR5) gene
U29678	Chemokine (C-C) receptor 1
J04596	GRO1 oncogene
J04491	Macrophage inflammatory protein (MIP-1a)
X53798	Macrophage inflammatory protein 2 (small inducible cytokine A3)
M35590	Macrophage inflammatory protein (MIP-1β)
M19681	Small inducible cytokine A2 (PDGF-inducible protein)
U27267	Small inducible cytokine B subfamily, member 5

D.

	Immune Resoponse
Acc. Num	Gene Name
L41352	Amphiregulin
K02782	Complement component C3 α , β subunit
X56602	Interferon-induced 15-KDa
M86672	Interleukin 12a
M14639	Interleukin 1a
M15131	Interleukin 1β
J03783	Interleukin 6
AV152244	ISG15 gene

Ε.

	Cell Death - Apoptosis
Acc. Num	Gene Name
U19463	A20 zinc-finger protein
U75506	BH3 interacting domain death agonist
U23778	Hematopoietic-specific early-response A1-b protein (A1b) gene
U23778	Hematopoietic-specific early-response A1-d protein (A1d) gene
M59378	Murine tumor necrosis factor I receptor (TNFR-I)
X87128	p75 TNF receptor DNA
U44088	TDAG51 (TDAG51)
D86344	Topoisomerase-inhibitor suppressed
L15435	Tumor necrosis factor (ligand) superfamily, member 9
D84196	Tumor necrosis factor alpha (TNF- α)

F .	
	Intracellular Signal Transduction
Acc. Num	Gene Name
M28489	(clone Mu6a) ribosomal protein S6 kinase (rsk)
D37837	65-kDa macrophage cytosolic protein
U20159	76 kDa tyrosine phosphoprotein SLP-76
AJ242778	ABINI, (A20-binding inhibitor of NF-kappa B activation, large)
L03290	Amino acid transporter, cationic 2 (low affinity)
AJ130975	Ariadne-2 protein
AI844806	Borg4
AF076156	Catechol-O-methyltransferase
NM_013885	Chloride intracellular channel 4 (mitochondrial) (Clic4)
U53455	Chloride ion current inducer protein (CLCI)
X78445	Cyp1-β-1 cytochrome P450
X55663	Cytoplasmic tyrosine kinase, Dscr28C related (Drosophila)
U78818	Downstream of tyrosine kinase 1
X70764	ELKL motif kinase
X14961	Fatty acid binding protein heart 1
Z29532	Follistatin
U10551	GTP binding protein (gene overexpressed in skeletal muscle)
L07924	Guanine nucleotide dissociation stimulator for a ras-related GTPase
M98036	Guanine nucleotide exchange factor delta subunit (JGR1A)
AW122990	Hagoromo
AI642048	I-kappaB α chain
U19799	I-kappaB β chain
AF042487	Intermediate conductance potassium channel mIK1
L16956	Janus kinase 2
X66473	Matrix metalloproteinase 1
X61399	Mouse F52 novel protein
M73696	Murine Glvr-1
X54149	Myeloid differentiation primary response gene 118
AF073882	Myotubularin related protein 7
X86000	N-glycan alpha 2,8-sialyltransferase
D83484	Protein tyrosine phosphatase epsilon
AW047476	Putati∨e purine nucleotide binding protein
M22998	Solute carrier family 2 (facilitated glucose transporter), member 1
U88328	Suppressor of cytokine signalling-3 (SOCS-3)
L35302	The receptor-associated factor 1 (TRAF-1)
D78141	Tnf receptor-associated factor 5 (TRAF-5)
U59864	TRAF-interacting protein (I-TRAF)
AF069502	Ubiquitin specific protease UBP43

G.

Nuclear Control of Cellular Activation		
Acc. Num	Gene Name	
M61909	Avian reticuloendotheliosis viral (v-rel) oncogene homolog A	
U08185	B lymphocyte induced maturation protein	
AF017085	BAP-135 homolog (Diws1t)	
M62362	CCAAT/enhancer binding protein (C/EBP), α	
M28845	Early growth response 1	
AA182189	Ets-protein Spi-C	
AF017128	Fos-like antigen 1	
M32489	Interferon concensus sequence binding protein	
D43643	Mouse YL-1 YL-1 protein (nuclear protein with DNA-binding ability)	
L36829	Mus musculus a A-crystallin-binding protein I (a A-CRYBP1) gene	
AB028921	NAKAP95	
AW047899	NF-kappa B subunit p100, alternative splice products	
M57999	NF-kappa B light chain gene enhancer in B-cells 1, p105	
U20735	transcription factor junB (junB) gene	
X62940	Transforming growth factor beta 1 induced transcript 4	
X14678	Zinc finger protein 36	

Н.

	Cell Energetics	
	Protein Metabolism	
Acc. Num	Gene Name	
L09737	GTP cyclohydrolase 1	
M60474	Myristoylated alanine rich protein kinase C substrate	
U05245	T-cell lymphoma invasion and metastasis 1	
	Lipid Metabolism	
M62766	3-hydroxy-3-methylglutaryl-coenzyme A reductase	
AF059213	Cholesterol 25-hydroxylase	
M94967	Cyclooxygenase 2	
U35233	Endothelin 1	
U11680	Glycerol-3-phosphate acyltransferase gene	
X57437	Histidine decarboxylase cluster	
AB033887	mACS4 variant2 Acyl-CoA synthetase 4 variant2	
AI060798	PGES prostaglandin E synthase	
M34141	Prostaglandin-endoperoxide synthase 1	
M26270	Stearoyl-coenzyme A desaturase 2	
AI854821	U8	
	Carbohydrate Metabolism	
M96265	Galactose-1-phosphate uridyl transferase (GALT)	
Y11666	Gene encoding hexokinase II, exon 1 (and joined CDS)	
X04725	Insulin I	
X13586	Murine 2,3-bisphosphoglycerate mutase	
AI853802	Phosphofructokinase-1 C isozyme	
Z14132	Sphingomyelin phosphodiesterase 1, acid lysosomal	
Nucleobase, Nucleoside and Nucleotide Metabolisn		
U22262	Apolipoprotein B editing complex 1	
D44464	Uridine phosphorylase	
U27398	Xeroderma pigmentosum, complementation group C	

I.

NON-CLASSIFIED GENES	
Acc. Num	Gene Name
X75926	ABC1 transporter transmembrane protein
X82786	Antigen identified by monoclonal antibody Ki 67
AF02915	Antigen identified by monoclonal antibody MRC OX-2
M64292	B-cell translocation gene 2, anti-proliferative
D85785	Brain immunological-like with tyrosine-based motifs
D89613	Cytokine inducible SH2-containing protein
U86137	Cytokine inducible SH2-containing protein 7
AB001990	Dcra
D30782	Epiregulin
AI845886	eRF1
X67644	gly96
U05265	Glycoprotein 49 B
AI323667	Immune-responsive gene 1 (Irg1)
AF077861	Inhibitor of DNA binding 2
AB024717	Macrophage C-type lectin Mincle
AB012808	mBOCT
M59821	Mouse growth factor-inducible protein (pip92)
M73748	Mouse OTS-8
Y15163	Mrg1 protein
AB026569	MSSP
AF181829	Pleckstrin
L24118	Primary response gene B94 (TNF induced protein 2)
AF020313	Proline-rich protein 48
AF030185	Putative beta chemokine receptor (E01)
U90926	Putative TNF-resistance related protein
X95281	Retinal short-chain dehydrogenase/reductase
AI840446	SCHIP-1
AF099973	Schlafen2 (Slfn2)
D78188	SCID complementing gene 2
U86137	Telomerase associated protein 1
X70956	TOP gene for topoisomerase I, exons 19-21
AB030505	UBE-1c1, UBE-1c2, UBE-1c3
D83266	vav-T

Stimulation by LPS enhanced the macrophage's ability to interact with other cells through the coordinated expression of receptors, such as ICAM-1, VCAM-1, TNFR-I, TNFR superfamily member 5, CD14, integrin- α and β , and G-protein coupled receptors, which act to transmit the signal and activate intracellular transduction pathways (Table 8A). Importantly, GCs influenced the expression of the CD14 receptor [12,131], which is involved in endotoxin entry into the cell, emphasising their potency in interfering with early inflammatory events.

LPS stimulation of macrophages broadly affected the expression of chemokines such as MIP-1 α [132], MIP-1 β , MIP-2 α [133], GRO1 and chemokine receptors (CCR1 and CCR5)[134], which are involved in the recruitment and trafficking of inflammatory leukocytes to the site of inflammation [135] (Table 8C). Whereas macrophage chemotaxis is rapidly inhibited by LPS and TNF- α , (within 1h of treatment) [136], the repression of CCR1, CCR5, MIP1 β , MIP2, and TNF- α by GCs, might restore this process in order to allow recruitment of macrophages to combat the inflammation. These results indicate that a wide variety of chemokines may also orchestrate under pathophysiologic conditions and play a role in inflammatory reactions. In addition, altered expression of various proteases and protease inhibitors (PAI-1, PAI-2), muPAR1 and dystroglycan may promote macrophage entry into infected tissues via remodelling the extracellular matrix [137-139](Table 8A).

Elevated transcription of the inhibitory κ B (I- κ B) α and β inhibitory subunits of NF- κ B was observed upon LPS stimulation of PM Φ . These proteins are known to down-regulate the transcriptional program initiated by the translocation of NF- κ B to the nucleus [140]. The levels of the mRNA encoding NF- κ B p105 and NF- κ B p100 were strongly increased upon incubation of cells with LPS (Table 8F, G) and similar observation were reported when cells were treated with TNF- α or PMA [141]. This indicates that for the fast responses to external signals, preformed cytosolic NF- κ B is sufficient but that longer lasting responses need the direct induction of NF- κ B mRNA [141]. The present study also identified a few participants of ubiquitination-dependent protein degradation pathway as being involved in macrophage response to LPS stimulation [142]. Specifically, the expression of UBP43 [117,125] and Ariadne-2 protein was induced upon LPS stimulation of

macrophages, whereas the expression of *Hagoromo* decreased. The role of these proteins in the LPS response is at present unclear. However, degradation of the I- κ B α and β subunits is mediated by the ubiquitination system. Thus increased activity of the ubiquitination degradation system would be expected to result in increased I- κ B degradation and thus increased expression of NF- κ B target genes [143,144].

Immediate early genes such as junB [145], tristetraprolin (Zfp36) [146], Egr-1 [147], NF-kB [148] and Ets-protein, were up-regulated by LPS, while the expression of C/EBP α and NAKAP95 was decreased (Table 8G). Tristetraprolin, encoded by the gene Zfp36, regulates mRNA stability. Studies with knockout mice have shown that it lowers TNF- α protein levels by binding to the AU-rich elements in TNF- α mRNA [146,149,150]. This causes destabilisation of TNF- α messenger, which accounts for many anti-inflammatory responses promoted by LPS itself. Egr-1 controls both monocyte development and appears necessary for maintenance of macrophage differentiation, as the expression of many cytokines and receptors important during the inflammatory response are regulated by Egr-1 activity [147]. Expression of these transcription factors during macrophage maturation is usually coupled with an inhibition of cell proliferation. The expression level of some genes controlling transition through the G1 to S phase of the cell cycle, such as cyclin D1 and cyclin-dependent kinase (cdk) 4, were described to be down-regulated [88]. At present, the biological significance of the decreased expression of numerous genes mostly remains to be clarified.

5. 4. 1. LPS activates the TNF- α signalling pathway

Numerous proinflammatory cytokines and interleukins (TNF- α , IL-1 α , IL-1 β , IL-6, IL-12), were expressed at higher levels in LPS-stimulated macrophages than in resting cells and these mediators play a central role in the initiation of systemic response [31,85,151]. It has been recently described that autocrine production of TNF- α is sufficient to induce apoptosis of macrophages and neutrophils, in a time- and dose-dependent manner [152,153]. The potent regulatory abilities of

TNF- α are transduced by the cell-surface receptors type I, TNFR-I (55 kD), and type II, TNFR-II (75 kD) [154-159] (Figure 9). TNF- α and TNFR-I/II, along with several other components of its signalling loop (TRAF-1, TRAF-5, TRAF-interacting protein) [24,160], were identified as LPS-inducible genes (Table 8E, F). These mediators, in turn, activate downstream signal transducers, which can promote apoptosis via activation of NF- κ B [148,153,161].

On the other hand, LPS-induced apoptosis may be tempered by the expression of mediators such as BID, A20 protein and Gadd45. BH3-interacting domain death agonist (BID) has been described to counter the protective anti-apoptotic effects of BCL2 and serves as a proximal substrate for activated caspase-8. Following cleavage by caspase-8, BID translocates to the mitochondria where it triggers cytochrome c release and membrane depolarisation [162,163] (Figure 9). In BID -/cultured cells treated with TNF, this apoptotic resonse is delayed or significantly altered [164]. The mRNA expression levels of BID were decreased when PMΦ were stimulated by LPS and remained unchanged upon GCs administration. This finding would indicate that decreased expression of BID might counteract apoptosis observed when macrophages were treated with LPS [152,153], similar to the effects seen with BID -/- cells.

The expression of TNF- α primary response A20 zinc-finger protein [165,166] was elevated by LPS and, as with BID, its expression was not modulated by GCs. The role of A20 protein was demonstrated by the generation of A20-/- deficient mutant mice which showed severe inflammation and cachexia, hypersensitivity to LPS and TNF and failed to terminate TNF-induced NF- κ B responses [167] (Figure 9).

The expression of the Gadd45 gene was increased several fold upon LPS stimulation of PM Φ and was efficiently repressed by GCs via a DNA-binding dependent mechanism of GR action. It has been reported that antisense inhibition of Gadd45 result in prolonged JNK activation and cytotoxicity after TNFR triggering. Therefore, during LPS stimulation, down-regulation of JNK through the transcriptional activation of Gadd45, would be beneficial for the cell [168,169] (Figure 9).

Together, the massive activation of the TNF- α pathway by LPS points to different mechanisms of gene regulation that enable proper cell response to proinflammatory stimuli such as LPS and defend macrophages from an inflammatory burst. All this suggests that there must be a balance, tightly controlled, between proinflammatory responses and negative feed back regulation during LPS stimulation of macrophages, at least in early stages.

Figure 9. TNF- α signalling loop

The TNFR superfamily contains several members with homologous cytoplasmatic domains known as death domains (DD). TNF-induced receptor aggregation recruits the adapter protein TRADD-3,-5, FADD, TRAF-2 and RIP to form an active TNFR-I signalling complex. This triggers an apoptotic response mediated by the proteolytic caspase cascade that results in the degradation of many critical cellular proteins. Modified from *http://www.biocarta.com*.

5.5. THE PHYSIOLOGICAL RELEVANCE OF DIFFERENT MODES OF GENE REGULATION BY THE GR

Targeted mutagenesis of the GR has revealed an essential function of the receptor in survival and regulation of multiple physiological processes. Mutant mice containing a dimerisationdefective GR (GR^{dim} mice) revealed that transcriptional regulation dependent on DNA binding is dispensable for survival, since in these mutants GR functions, which involve receptor binding to GRE, are no longer present [79]. Analysis of these mice under challenging conditions (i.e. upon LPS injection) demonstrated the beneficial effects of GR, since GR^{dim} mice were resistant to LPSinduced endotoxic shock to an extent similar as their control littermates (H. M. Reichardt, personal communication). In contrast, mice containing a macrophage specific deletion of the GR (GR^{LysCre} mutant mice) lack the beneficial effects of the glucocorticoid-regulatory circuit in this cell type. It can be speculated that the lack of the GR in macrophages from these mice impairs phagocytosis, which is normally regulated by GCs [2,170], and renders these cells unable to remove toxic and apoptotic cells. This, in turn, contributes to a persistent inflammatory environment and may account for the enhanced mortality rate observed in these mice upon LPS injection (H. M. Reichardt, F. Tronche, personal communication). Together, these results underscore the importance of GR signalling in PMΦ for the control of physiological and pathological processes.

Current gene expression profiling study supported by *in vivo* animal experiments, allowed the molecular mechanisms of GR signalling during LPS stimulation of macrophages to be deciphered. Numerous LPS responsive genes have been identified as also being regulated by GCs which are involved in a variety of biological processes (Table 8; see also Figure 8 and Table 7 in the *Results* Section). GR regulates the expression of these genes either via receptor interaction with DNA or via protein-protein interactions which are independent of DNA binding. More than 90 genes/ESTs (89% of all GC-regulated genes) have been identified as significantly modulated by GCs treatment. For these genes, the preferential mechanism of GR action involved binding of the GR to DNA (Figure 8). This clearly shows that a substantial number of genes with a wide variety of functions exist which are modulated (induced or repressed) by GR in a DNA-binding dependent manner. In contrast, 12 of the 106 GC-responsive genes/ESTs (i.e. 11%) were identified as being

modulated by GCs in GR^{dim} macrophages, and are thus regulated by GR-DNA binding independent interactions. Some of these genes, such as IL-6 [121], TNF- α [151], IL-1 β [171], MIP-2 [122] and COX-2 [54], are among the most prominent and important proinflammatory mediators and down-regulation of their transcription by the GR could account for the beneficial, immunomodulatory, effects of GCs, at least, during early inflammatory stages. Thus interaction of GR with other proteins, which is independent of receptor binding to DNA, is an important mechanism of glucocorticoid-mediated regulation of gene expression. Interestingly, the expression of both endothelin 1 and growth factor-inducible immediate early gene was found to be increased upon GC administration to GR^{dim} macrophages. Although the lack of co-operative DNA binding by GR^{dim} receptor severely impedes its ability to bind conventional GREs, some DNA elements might exist that permit direct DNA binding by GR independent of dimerisation, thus resulting in gene activation by the GR^{dim} [172,173]. Increased expression of endothelin 1 and growth factor-inducible interaction(s) between GR^{dim} and other transcription factors (proteins), similarly as has been reported in the literature [69,70,174].

These data support, to certain extent, the hypothesis that most of the anti-inflammatory effects of GCs are mediated by GR actions independent of binding to DNA, thus resulting in gene repression [34,175]. The side effects, often observed during long-term GC treatment, are likely due to transactivation of genes through binding of the GR to DNA. Therefore, the potential to constitute a new class of anti-inflammatory glucocorticoid-based drugs, which would be able to separate beneficial effects of GCs from deleterious ones (transrepression from transactivation), is already under way [176,177]. The findings that more than 90 GC-responsive gene are being modulated by GR in a DNA-binding dependent manner will certainly help in the future development of novel glucocorticoid-based agents. Finally, how *in vitro* separation of transrepression from transactivation activity translates into *in vivo* models is expected to provide evidence of therapeutic usefulness of such "dissociated" drugs.
6. MATERIAL AND METHODS

6. 1. BIOLOGICAL MATERIAL

6. 1. 1. Mouse strain models

- C57BL/6 mice were obtained from CR Wiga, Germany.

- GR^{dim} mice were generated by homologous recombination using Cre/loxP system, as previously described by H. M. Reichardt et al [79]. A point mutation (alanine 458 to threonine) in the exon 4 of the murine GR gene has been introduced by site-directed mutagenesis, that affected the structure of the second zinc-finger in the DNA-binding domain of GR.

- GR^{flox/flox} mice were generated by flanking exon 3 of the GR allele by two loxP sites [81].

- LysMcre conditional mutant mice were generated by targeted insertion of the *cre* cDNA into endogenous M lysosyme locus causing Cre to be expressed in cells of myeloid lineages [82].

- GR^{LysCre} mutants were generated by Dr. F. Tronche (unpublished), by crossing GR^{flox/flox} and LysMcre conditional mutants.

6. 1. 2. Cloning vector and bacterial strain

The pT7Blue cloning vector (Novagen Inc.) with following sequence landmarks was used for cloning and sequencing: 2887 bp in size, multiple cloning region containing an *Eco*RV blunt cloning site, a T7 promoter, f1 origin of replication, *lac* Z sequences and ampicillin resistance.

NovaBlue Singles cells (Novagen Inc.) were used for heat-shock transformation reactions. The identification of recombinants was achieved through α -complementation, in which deletion mutants of the operator-proximal segment of *lacZ* gene were complemented by β -galactosidase-negative mutants that have the intact operator-proximal region. The Lac+ bacteria that resulted from the α -complementation formed blue colonies in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl- β -D-galactosidase (X-gal) allowing easy recognition. In contrast, insertion of DNA into the polycloning site of the plasmid resulted in production of an amino-terminal fragment that was not capable of α -complementation, therefore bacteria carrying the recombinant plasmid formed white colonies.

6. 1. 3. Primers used

Commercially available and gene-specific primers, used in this study, are listed bellow. Gene-specific primer pairs were designed using Primer3 input program (available at: *http://www-genome.wi.mit.edu/cgi-bin/primer/primer3www.cgi*).

CDS (cDNA sequence) primer (Clontech, Palo Alto, CA)

5'-AAGCAGTGGTAACAACGCAGAGTAC(T)₃₀N₋₁N -3' [N = A, C, G, or T; N₋₁ = A, C, or G].

SMART II primer (Clontech, Palo Alto, CA)

5'-AAGCAGTGGTAACAACGCAGAGTACGCGGG-3'

T7 primer:

5'-AATACGACTCACTATAGGG-3'

U-19 primer:

5'-GGTTTTCCCAGTCACGACG-3'

(dT)-T7 primer:

5'-GCATTAGCGGCCGCGAAATTAATACGACTCACTATAGGGAGA(T)₂₁N-3'

HPRT; Accesion Number [J00423]; product size 389 bp

5'-CATTATGCCGAGGATTTG-3' and 5'-TTGGGGGCTGTACTGCTTA-3'

TNF-a; Accesion Number [M38296]; product size 379 bp

5'-CATTCCTGCTTGTGGCAGGG-3' and 5'-GCAAATCGGCTGACGGTGTG-3'

IL-6; Accesion Number [J03783]; product size 471 bp

5'-CACAAGTCCGGAGAGGAGAC-3' and 5'-GCCACTCCTTCTGTGACTCC-3'

IL-1_β; Accesion Number [M15131]; product size 332 bp

5'-TCCTGAACTCAACTGTGA-3' and 5'-CCAGCAGGTTATCATCAT-3'

MIP-2a; Accesion Number [X53798]; product size 440 bp

5'-GGAAGCCTGGATCGTACCTG-3' and 5'-CTGTTCTACTCTCCTCGGTGC-3'

CD14; Accesion Number [X13987]; product size 445 bp

5'-GGACACGGAAGCAGATCTGG -3' and 5'-GAACTTGAGGGGACAGAGGG-3'

PAI-2; Accesion Number [X16490]; product size 452 bp

5'-CTCACCCTAAAAGGGGAAGACC-3' and 5'-CTGGGTGAATATCATGGGAAAG-3'

Clic4; Accesion Number [NM_013885]; product size 385 bp

5'-GCCTTAGTGGGTGTGAGGTG-3' and 5'-TCCAAGGTGGAGGGCTTATAC-3'

USP43; Accesion Number [AF069502]; product size 412 bp

5'-GCTGGAGAAGATGCAGGACAG-3' and 5'-GCTTCAGAACCTGTTTCCAAG-3'

COX-2; Accesion Number [M94967]; product size 390 bp

5'-GCAAACGCTTCTCCCTGAAG -3' and 5'-CGCTTGCATTGATGGTGGCTG -3'

Irg1; Accesion Number [L38281]; product size 584 bp

5'-CGGTGCCTTCTATGCCAACT-3' and 5'-CCACCGTGTCCCTGCATAGC-3'

B94; Accesion Number [L24118]; product size 394 bp

5'-GCTCCTCACACCACCACAGTC-3' and 5'-TCATCAACAGCGGTCGTCTACA-3'

A20 protein; Accesion Number [U19463]; product size 408 bp

5'-ACAAGCAAGTGCAGGAAAGC-3' and 5'-ACTCGTTGGCTTAGGTGCTG-3'

γ-actin; Accesion Number [M21495]; product size 492 bp

5'-CAGCAAGCAGGAGTATGATGAG-3' and 5'-GGCAAGAAGGAGTGGTAACTGG-3'

TNFR-I; Accesion Number [M59378]; product size 399 bp

5'-GAGGTTGGCTTTGGGTGTGTT-3' and 5'-ATGTATGGGGTGGTGGTCAG-3'

Pleckstrin; Accesion Number [AF181830]; product size 500 bp

5'-GCAAGGGATGTCCTTATTGGTC-3' and 5'-CAGTGTTGCATCACTTACGTGC-3'

C3 α , β subunit; Accesion Number [K02782]; product size 396 bp

5'-AGAGAAGGACGATGGGATGC-3' and 5'-CACGTGTCCTTCCCAATGATG-3'

65 kDa protein; Accesion Number [D37837]; product size 461 bp

5'-CTCTCACGCTGGCATTGGTTTG -3' and 5'-CTCAGGCTTGTCTGTGTCGATTTC-3'

ABC1; Accesion Number [X75926]; product size 449 bp

5'-TGGTGTGGAACCAAGCAGAC-3' and 5'-GCAACACTGAACAAGAGAACCAA-3'

Fibronectin; Accesion Number [X93167]; product size 410 bp

5'-GCCTCAATCCAAATGCCTCT-3' and 5'-ACTGCCAAAGCCCAAGCAC-3'

Mac-1a; Accesion Number [X07640]; product size 405 bp

5'-ATCTCAACTTCACGGCTTCAGAG-3' and 5'-GGATCTCAGTGCTGCTCACAAG-3'

 α glucosidase II α subunit; Accesion Number [U92793]; product size 405 bp

5'-GCTGTAACTGGAGCACAGTCATTTG-3' and 5'-CCTAATTGTGTGGAAGCGTCTCCC-3'

6. 1. 4. Oligonucleotide gene chip arrays

Mouse oligonucleotide array GeneChip U74Av2, which contain oligonucleotide probe sets corresponding to approximately 12000 genes/ESTs, were purchased from Affymetrix, Santa Clara, CA (*http://www.affymetrix.com*).

6.2. METHODS

6. 2. 1. Isolation of peritoneal macrophages

Mice were injected intra-peritoneal with 1.5 ml of sterile 2.98% water-solubilised thioglycollate medium (Sigma) and cells were harvested after four days by peritoneal lavage using 5-7 ml of cold PBS (1.2 M NaCl, 280 mM Na₂HPO₄x2H₂O, 25 mM KH₂HPO₄). After centrifugation, supernatant was discarded and the pellet was resuspended in RPMI medium supplemented with 10 % FCS (GIBCO, BRL).

Freshly isolated peritoneal macrophages (PM Φ) were seeded at a concentration of 10⁷ cells in 100 mm dishes containing RPMI medium with 10% FCS (GIBCO, BRL). The cells were allowed to adhere to the plastic surface for approximately 3 hours and non-adherent cells were removed by exchanging the medium [114]. After overnight incubation at 37°C in 5% CO₂, cells were treated with vehicle, with 100 ng/ml LPS (E.coli 055:B5, Sigma) for 2h, or with 1 μ M dexamethasone (Sigma) 1h prior to LPS. During treatment, cells were kept in RPMI medium without FCS.

6. 2. 2. Molecular cloning

For subcloning purposes, Perfectly Blunt Cloning Kit (Novagen Inc.) was used. Briefly, DNA fragments generated from PCR were first extracted with chloroform to inactivate the Taq DNA Polymerase avoiding the possible regeneration of termini heterogeneity on the PCR product. This consisted of adding chloroform:isoamyl alcohol (24:1) to the PCR reaction and vortexing vigorously for 1 min and centrifugation at 14.000 rpm for 1 min. The aqueous phase was transferred into a fresh tube and an aliquot (2 µl) was used in the end conversion reaction to generate DNA fragments with blunt ends to allow cloning into vector. The end-conversion reaction was performed in presence of 5 µl of enzyme mix, supplied in the kit, in a total reaction volume of 10 µl. After 15 min incubation at 22°C, the enzyme was heat-inactivated for 5 min, the mixture cooled briefly on

ice and then used in ligation reactions. For this purpose, 50 ng of pT7Blue vector and 10 μ l of the insert prepared in the end conversion reaction was ligated with 4 U of T4 DNA Ligase for 2 hours at 22°C. A molar ratio of insert to vector of 2.5:1 was maintained under these conditions.

NovaBlue Singles cells were transformed with 1 μ l of ligation reaction using the heat shock method (30 seconds in a 42°C water bath) and cooled for 2 minutes on ice. Cells were recovered by adding 80 μ l of room temperature SOC medium (2 % tryptone, 0.5% Bacto yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 20 mM glucose), incubated for 30 minutes at 37°C with shaking. The transformation mixture, 10 μ l and 90 μ l, was spread on LB agar plates [LB medium (1 % Tryptone (Difco), 0.5 % Bacto yeast extract (Difco), 0.5 % NaCl, 50 μ g/ml ampicillin), 1.5 – 2% (w/v) Bacto-agar (Difco), 80 μ M isopropylthio-ß-D-galactosid (IPTG), 70 μ g/ml X-gal].

6. 2. 3. Plasmid DNA isolation

Plasmid DNA was isolated according to the following procedure (Quiagen): 1.5 ml of overnight bacterial culture was centrifuged and the pellet resuspended in 0.05 ml of P1 solution (1M Tris-Cl pH 8.0, 0.5M EDTA pH 8.0) and 0.1 ml of P2 (0.2M NaOH, 1% SDS). Then, 0.075 ml of 3M K-acetate pH 4.5 was added and the mixture centrifuged for 10 min at 14.000 rpm. The supernatant was transferred to a new tube, mixed with 0.33 ml of 6 M guanidinethyocyanat and 0.45 ml of 2-butanol and centrifuged. The pellet was washed once with 70% ethanol and resuspended in 50 µl of TE buffer (10 mM Tris-Cl pH 8.0, 1 mM EDTA pH 8.0). The quality of isolated DNA was checked by gel electrophoresis.

6. 2. 4. DNA/RNA electrophoresis

1-2.5 % agarose gels were used for the analysis of DNA fragments of 0.2 - 5 kb size, as well as for RNA samples. The gels were prepared using 1x TBE buffer (0.09 M Tris-Cl, 0.09 M Boric acid, 2 mM EDTA pH 8.0) containing 1 µg/ml ethidium bromid; 1x TBE was used as a running

buffer. Electrophoresis was performed at constant voltage for 30-60 minutes, and the DNA/RNA bands were visualised using a UV-transilluminator.

6. 2. 5. Polymerase Chain Reaction

The amplification of DNA fragments of known sequence was performed using Polymerase Chain Reaction (PCR)[178]. This method consists of 30-40 cycles, each with 3 basic steps: denaturation of DNA, annealing of primer to template at the specific melting temperature of the primer, and polymerisation at 72°C [178]. For all PCR reactions, a master mix was prepared containing 1x PCR buffer (Roche), 1.5 mM MgCl₂, 5 μ M each dATP, dTTP, dGTP, dCTP (Pharmacia), 0.5 μ M 'forward' and 0.5 μ M 'reverse' primer. Reactions were carried out in a 20 μ I volume using 100-200 ng DNA as template and 1 U of *Taq* DNA Polymerase.

6. 2. 6. Quantitative real-time PCR

The real-time quantitative PCR was performed using the LightCycler – FastStart DNA Master SYBR Green I ready-to-use PCR reaction mix, which contains *Taq* DNA Polymerase and DNA double-strand specific SYBR Green I dye (Roche Diagnostics, Mannheim, Germany). The FastStart *Taq* DNA Polymerase is held inactive at room temperature due to the heat-labile blocking groups on some of the amino acid residues of the enzyme. SYBR Green I is a fluorescence dye, which binds to the amplified PCR products during each phase of DNA synthesis allowing the amplicon to be detected by fluorescence. The mRNA/cDNA abundance was calculated relative to the expression of a house-keeping gene HPRT, which was also used as 'external standard' for creating a calibration curve.

LightCycler PCR reactions were performed in a 10 μ l volume using 2 μ l of 1:10 diluted first strand cDNA, 1 μ l of "a+b" pre-mix (FastStart enzyme and SYBR Green I dye), 2 mM MgCl₂, and 0.5 μ M primer mix, with amplification conditions as follows:

Step 1: pre-incubation and denaturation of the template DNA: 95°C for 10 min;

Step 2: Amplification of target DNA: 45 cycles (95°C for 15 sec, 60°C for 5 sec, 72°C for 15 sec);

Step 3: Melting curve analysis for product identification (set according to the LightCycler Operator's Manual version 3.0, Roche Molecular Biochemicals);

Step 4: Cooling the rotor and thermal chamber and subsequent setting of the fluorescence parameters (set according to the LightCycler Operator's Manual version 3.0, Roche Molecular Biochemicals).

A. Monitoring of PCR reaction

LightCycler PCR reactions are monitored with SYBR Green I and acquisitions are taken once per cycle following extension. The accuracy of measurements during the log-linear phase of PCR indicates that significant variations in the amount of starting material cannot be differentiated by signals measured in the plateau phase. An on-line examination determines the point were the second derivative of the amplification curve is at its maximum. Once the cycle with maximum second derivative is found, a parabola is fit to the region to determine the fractional cycle with the maximum second derivative.

B. Standard curve

A standard curve is constructed using HPRT as 'external standards'. The crossing points (cycle number) are plotted against the log concentration (copy number) of the HPRT standard DNA

C. Melting curve analysis

Each peak represents the Tm as it 'melts off' the template DNA. The sample containing only water shows no peak. Melting temperatures of HPRT are between 82-83°C and 87-88°C (indicating gene isomers) and of ABC1 gene between 87°C.

Sample	HPRT	crossing point	
standard (10 ⁶)	9.0 x 10⁵	17.51	
standard (10⁵)	1.1 x 10⁵	20.97	
standard (10⁴)	1.2 x 10⁴	24.23	
Sample	HPRT	crossing point	
wt, ctrl	999.40	28.57	
wt, LPS	917.90	28.72	
Sample	ABC1	crossing point	
wt, ctrl	2326	27.20	
wt, LPS	5334	25.85	

D. Relative quantification using 'external standards'

ABC1/HPRT	Fold change (LPS / ctrl)
2.33	2.5
5.81	

Figure 10. Real-time quantitative PCR analysis (LightCycler)

Real-time PCR run is illustrated for HPRT and ABC1 genes. The measurements by the realtime PCR are performed during the log-linear phase of a PCR and are calculated by LightCycler software (Second Derivative Maximum, Roche) (Figure 10A). As such, the analysis allows a more reliable quantification of mRNA expression, providing that the amplification efficiencies of 'external standard' RNAs and for the RNA being investigated, are equal during the PCR reaction (Figure 10B). The product specificity is controlled during the last segment of the PCR program, where melting of PCR products serves to eliminate non-specific fluorescent signals, since specific PCR products give a single, sharply defined melting curve with a narrow peak (Figure 10C). In contrast, primer-dimers melt at lower temperature and have broader peaks. The quantification of gene abundance/expression is than calculated relative to the expression of HPRT gene (Figure 10D).

6. 2. 7. PCR-based automatic sequencing

Sequencing reactions were performed using the Big Dye terminator Cycle sequencing kit (Perkin Elmer Applied Biosystem, cat. # 4303152) according to the manufacturer's introductions. Labelled DNAs were run on a ABI 377 Sequencer (PE Applied Biosystem) and analysed with the 377 DNA Sequencer Data Collection program version 1.1 (ABI Prism) and DNA Sequencing Software version 2.1.1 (ABI Prism). Reactions were performed using the T7 or U-19 primer.

6.2.8. RNA isolation

Total RNA was isolated using the Qiagen RNeasy kit according to the manufacturer's instruction (Qiagen). Isolated RNA was subjected to DNase I treatment for 30 min at 37°C, follwed by phenol:chloroform extraction. The RNA was precipitated with 2.5 volumes 100% ethanol and 1/10 volume sodium acetate, pH 5.2, resuspended in RNase free water and stored at -70°C.

 $Poly(A)^{+}$ RNA was purified from total RNA using the Oligotex mRNA kit (Qiagen). The concentration and purity of the RNA was determined by $OD_{260/A280}$ reading. The quality of the RNA was assessed by gel electrophoresis and ethidium bromide staining.

6. 2. 9. RNase Protection

The *in vitro* transcription system was used for the synthesis of single stranded RNAs [179]. Specifically, plasmid containing DNA-fragments of interest was linearised using the *Eco*RI restriction enzyme which leaves a 5'overhanging end. Linearised DNA was extracted using phenol/chloroform, precipitated and the pellet resuspended in water to 0.5 µg/µl.

cDNA fragments from murine TNF- α , IL-6 and cytochrome C genes (379 bp, 471 bp and 110 bp, respectively), cloned into the *Eco*RV site of pT7Blue vector, were used for antisense RNA probe synthesis. The reaction was performed using 250 ng of DNA-template, 1 x T3/T7 transcription buffer (40 mM Tris-Cl pH 8.0, 50 mM NaCl, 8 mM MgCl₂, 2 mM spermidin, 10 mM DTT), 5 μ M each rATP, rGTP, rCTP, 4 μ M UTP, 25 μ Ci α ³²P-UTP, 0.01 M DTT, 2.5 U of RNasin

(Promega) and 1 U of T7 RNA Polymerase. The reaction was incubated for 30 minutes at 37°C. Digestion of DNA was performed in 1 x DNase buffer (50 mM Tris-Cl pH 7.5, 5 mM MgCl₂, 1 mM DTT) in the presence of 20 U of DNase I enzyme and 20 µg of tRNA, for 15 minutes at 37°C. After phenol/chloroform extraction, the reaction was precipitated, centrifuged, the pellet washed once with 75% ethanol/ 25% 0.1 M Na-acetate and finally dissolved in 1 x hybridisation buffer (40 mM Pipes, 0.4 M NaCl, 1 mM EDTA, 80% formamide). The incorporation of radionucleotides was measured as described in section 2. 8.

 α -³²P-UTP labelled antisense RNA probes (200,000 cpm) were then subjected to hybridisation against 5 µg of total RNA during overnight at 54°C in 80% formamide. The excess of probe was removed by digestion in RNase buffer (10 mM Tris-Cl pH 7.5, 300 mM NaCl, 5 mM EDTA, 40 µg/ml RNase A, 3.500 U/ml RNase T1). The reaction was stopped by incubation with proteinase K and Tween 20/ NP-40 for 15 min. After phenol/chloroform extraction and precipitation, the pellet was dissolved in sample loading buffer (5 mM EDTA, 50% formamide, brom phenol blue dye). The samples were heat denaturated and loaded onto a denaturing 6% polyacrylamide gel. The protected fragments were analysed after exposure to phosphoimager screen using Analytical Imaging Station (AIS, Imaging Research Inc.).

6. 2. 10. Suppressive Subtractive Hybridization

Suppressive subtractive hybridisation (SSH) was performed using the PCR-Select cDNA Subtraction Kit, Clontech, Palo Alto, CA. Briefly, two mRNA populations were converted into *tester* cDNA, which contained differentially expressed transcripts, and *driver*, as the reference cDNA. The *tester* and the *driver* cDNAs were prepared using 2 μ g of poly(A)⁺RNA from LPS-stimulated macrophages (100 ng/ml LPS, 2 h) and 2 μ g of poly(A)⁺RNA from non-treated macrophages, respectively. As a control, 2 μ g of skeletal muscle poly(A)⁺RNA, provided in the kit, was used. All steps were carried out according to the manufacturer's instructions. The quality and efficiency of subtraction was controlled by PCR using two housekeeping genes (G3PDH and β -actin). The expression of TNF- α and IL-6 cytokines, which are expected to be enriched by the procedure,

was therefore tested in unsubtracted and subtracted tester and driver samples and their amplification controled on agarose gel electrophoresis as suggested by the manufacturer. Schematical representation of the SSH method is depicted in Figure 11.

Figure 11. The PCR select cDNA subtraction technique (SSH)

The *tester* and the *driver* cDNAs are digested with *Rsal*, a four-base-cutting restriction enzyme that yieldes blunt ends. The *tester* cDNA is then subdivided into two portions, and each is ligated with a different cDNA adaptor. Two hybridisations are then performed. In the first, an excess of *driver* is added to each sample of *tester*. Mixtures are heat denaturated and allowed to anneal generating several types of molecules. During the second hybridisation, the two primary hybridisation samples are mixed together without prior denaturation. Here, only the remaining equalised and subtracted single strand *tester* cDNAs can reassociate and form new double stranded hybrids with different ends corresponding to adaptor sequences. The entire population of molecules is then subjected to PCR to amplify the desired differentially expressed sequences. A second PCR is performed using nested primers to further reduce any background PCR products and to enrich for differentially expressed sequences. Taken from *http://www.clontech.com*

6. 2. 11. Gene array construction on nylon membranes

The subtracted library was created by cloning the SSH-products using a pT7Blue perfectly blunt cloning kit (Novagen Inc.). The transformation mixture was spread on LB agar plates and, after overnight growth at 37°C, recombinant clones were replica plated on Hybond N⁺ nylon membranes. Filters were then hybridised with the labelled SSH-products which were used for the initial cloning.

292 SSH-clones were sequenced as described in Section VI 2. 7. Inserts were used for homology search in the GenBank and EMBL database using BLAST algorhythm (available at *http://www.ncbi.nlm.nih.gov/BLAST/*). Inserts of 212 clones were PCR amplified in 50 µl reaction volumes using T7 and U-19 primer under following amplification conditions: 95°C for 5 min; (95°C for 1 min; 57°C for 1 min; 72°C for 1 min) x 35; 72°C for 10 min. Reactions were carried out in the MJ Research Peltier DNA Thermal Cycler 200. The SSH-arrays were generated by spotting 1 µl of amplified PCR products in duplicates, on a Hybond N⁺ nylon membranes, using robotic workstations. Membranes were pre-treated for 20 minutes in denaturation solution (1.5 M NaCl, 0.5 M NaOH), and after spotting, washed for 1 min in neutralisation solution (1.5 M NaCl, 0.5 M Tris pH 7.2, 0.001 M EDTA), UV cross-linked and stored at -20°C. The SSH-arrays include partial cDNA sequences of 61 known genes, 76 novel ESTs, 9 housekeeping genes and several controls (i.e. cloning vector, empty spot, mouse genomic DNA).

6. 2. 12. Probe preparation and Hybridisation of SSH-arrays

100 ng of poly(A)⁺RNA from unstimulated and LPS-stimulated macrophages from wild type mice, was converted into labelled first strand cDNA using 40 μ Ci α^{32} P dATP (Amersham), 5 μ M each dCTP, dGTP, dTTP, 1 μ M 10 x CDS primer (Clontech), 1x first-strand buffer (GIBCO, BRL), 0.01 M DTT and 200 U of SuperScript II reverse transcriptase (GIBCO, BRL). After 1 h 30 min incubation at 42°C, 2 μ I of 0.5 M EDTA was added to stop the reaction, and the labelled first-strand cDNAs were purified using ProbeQuant G-50 Micro Columns (Amersham). The labelling efficiency was checked by chromatography in Polygram Cel 300 PEI (pre-coated plastic sheets) using 0.75 M

 NaH_2PO_4 pH 3.5 as a buffer, and the percent of incorporated radionucleotides measured by the Cherenkov method in the scintilation counter. Prior to hybridisation to SSH-arrays, probes were denaturated for 5 min at 95°C.

The SSH-arrays were prehybridized for 30 min in ExpressHyb solution (Clontech) containing 100 μ g/ml heat-denaturated salmon sperm DNA (Sigma) at 60°C. The hybridisation was performed at 60°C, using 1.5 x 10⁶ cpm of labelled first-strand cDNA probe. After overnight incubation, SSH-arrays were washed according to the following low- and high-stringency conditions: 3 x 30 min at 60°C in washing solution I (2 x SSC, 1% SDS), 2 x 15 min at 60°C in washing solution II (0.1 x SSC, 0.5 % SDS), and 5 min at room temperature in 2 x SSC. The SSH-arrays were then exposed to a phosphoimager screen (Fujifilm, Japan) and the signals intensities quantitated using a Fuji Phosphoimager.

6. 2. 13. Image analysis and data interpretation

The quantitation of the intensity of hybridisation at each position on the nylon-based arrays was calculated using a commertially available Analytical Imaging Station software (Array Vision, Imaging Research Inc.) and the MATLAB version 5.3 (MathWorks Inc.). MATLAB is an interpreted programming environment suited for matrix calculation, available at *http://www.dkfz.de/tbi/services/matlab2web/webdiffs*. The software was run on a Sun Ultra 5 workstation under the Solaris operating system. Both softwares provide a sophisticated grid placement method, tools for background correction, and image filtration. Additionally, scatter plot was obtained for a rapid visualisation of the overall differences between the conditions [127].

Statistical analysis of the hybridisation signals was performed according to the following criteria: a) normalisation of the raw counts obtained after initial analysis of the arrays was assessed using house-keeping genes and/or the set of genes, which did not change during the experiments; b) background correction, performed around each grid's primary element individually and subtracted from the value of each spot using appropriate softwares; c) fold change - candidate

genes were selected if the median hybridisation intensity values was altered by more then two-fold upon treatments.

6. 2. 14. Probe preparation and Hybridisation of oligonucleotide chip arrays

200 ng of total RNA from each sample (unstimulated, LPS-, dex+LPS-stimulated macrophages from wild type, GR^{dim} and GR^{LysCre} mice) was used to prepared cDNA according to protocol developed by Baugh LR et al. [120], as illustrated in Figure 12. A single modification was included regarding the temperature at which the reverse transcription reaction was performed (instead of 42°C, incubation at 50°C was used since it resulted in a higher yield of cDNAs). This has been previously verified in experiments using 8 µg vs. 200 or 20 ng of mouse total RNA that were amplified and hybridised to Affymetrix U74Av2 chips with high correlation factor (r = 0.998) observed in intra- and interchip variation (Dr. M. Kenzelmann, personal communication).

Briefly, reverse transcription was performed in 10 µl with 100 ng (dT)-T7 primer, 100 U SuperScript II (Life Technologies), 20 U RNase inhibitor, 0.4 µg T4gp32 (USB), 1 mM dNTPs each, 10 mM DTT, in 1x first-strand buffer (Life Technologies) for 1h at 50°C, in air incubator. Second strand synthesis (SSS) was carried out in the presence of 20 U DNA polymerase I, 1 U *E. coli* RNase H, and 5 U E.coli DNA ligase, 0.1 mM dNTPs each, in 0.5x second-strand buffer (Life Technologies), at 15°C for 2 h. The double stranded (ds) cDNA was polished by adding 10 U T4 DNA polymerase and incubated for further 15 min. cDNA was phenol/chlorophorm purified, ethanol precipitated and transcribed (1° IVT) by adding 40 µl of IVT mix [160 U T7 RNA polymerase (Promega), 7.5 mM each GTP, ATP, UTP, CTP, 10 mM DTT, 60 U RNase inhibitor, 1x buffer (Ampliscribe Epicentre Ampliscribe kit); 9h at 42°C]. Amplified antisense RNA (aRNA) was purified on RNeasy spin columns from Qiagen, 0.5 µg random hexamers (Life Technologies) added and the reverse transcription carried in thermal cycler with a heated lid under following conditions: 20 min at 37°C, 20 min at 42°C, 10 min at 50°C, 10 min at 55°C, 15 min at 65°C. SSS was performed ommitting the ligase under the above described conditions. Namely, 1 U RNase H was added to the reaction and incubation continued in thermal cycler for 30 min at 37°C, and then 2 min at 95°C. The reaction

was then chilled on ice, 100 ng (dT)-T7 primer added, and incubation continued for 10 min at 42°C. For the second IVT (2° IVT), modified biotin-11-UTP was included following the instruction of Enzo Diagnostics. The concentration was determined by $OD_{260/A280}$ reading.

First strand synthesis		
5'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AAA(A)n (T)21 T7 promoter	mRNA fs cDNA
Second strand synthesis	(T)21 T7 promotor	6 - DN/4
5'	(A)21 c_T7 promoter	ts cDNA ss cDNA
1° <i>in vitro</i> transcription 3'	-UUU(U)n	aRNA
First strand synthesis	•UUU(U)n •AAA(A)n	aRNA fs cDNA
Second strand synthesis 5'	AAA(A)n c_T7 promoter (T)21 T7 promoter	fs cDNA ss cDNA
2° in vitro transcription	-UUU(U)n	aRNA

Figure 12. Generation of labelled aRNA probes by in vitro transcription (IVT)

Probes were generated according to described amplification protocol by Baugh et al. [120]. The first reverse transcription was performed using 200 ng of total RNA in the presence of T7 primer containing T7 promoter site and T_{21} residues at its 3'end. During the second strand synthesis, antisense RNA (aRNA) was generated which was then used as a templet for the reverse transcription performed with random hexanuleotides. For the second IVT, biotinilated UTP was included to obtained labelled aRNA probes which were subsequently hybridised with oligonucleotide gene chip arrays. fs cDNA - first strand cDNA ss cDNA - second strand cDNA aRNA - antisense RNA c_T7 promoter - antisense T7 promoter the symbol indicates biotin-11-UTP

9 µg of each biotin-modified product was fragmented to 50- to 150-nt size in 1x fragmentation buffer for 35 min at 95°C, and the quality of unfragmented and fragmented cRNA checked by agarose gel electrophoresis. Five samples were hybridised to Affymetrix Test3 chip which demonstrated that the amplified cRNAs were of good quality. The samples were then hybridised to mouse GeneChip MuU74Av2 Array (Affymetrix) as described in the Affymetrix GeneChip Expression Analysis Technical Manual. After overnight hybridisation, arrays were washed and stained with streptavidin-phycoerythrin (Molecular Probes) and scanned on a HewlettPackard scanner.

Generated array images were reduced to intensity values, average differences (AD) and absolute calls [present (P)/absent (A)/marginal (M)] using GeneChip Software (MicroSuite version 4.0, Affymetrix, Santa Clara, CA). DNAs were considered expressed if their oligonucleotide set results were rated as P by the software. A single raw expression level for each gene was derived from the 16 oligonucleotide pairs representing each gene by using a trimmed mean algorithm. Genes/ESTs with the average difference (AD) less than 200 in all treated samples (i.e. unstimulated, LPS and dex+LPS stimulated cells) were considered unchanged because of their low expression levels. Absolute Calls (AC) from same treatments derived from 2 or 3 experiments, in case of wild type and GR^{LysCre}, and GR^{dim} samples), were merged ("concatenated") using functions of Microsoft Excel software. The average (mean value) was calculated from the average difference (AD) values from 2-3 hybridisation experiments for each treatment. These values were than used to calculate the fold change of gene/ESTs expression, given as LPS/ctrl and LPS/dex+LPS, for differentially expressed transcripts Fold change≥ 2 or Fold change≤ 0.5. Filtering and sorting the data were performed with Microsoft Excel.

6. 2. 15. Bioinformatics and database development

Sequences from gene expression profile analysis were classified as known genes, ESTs, genomic sequences or novel genes. All the sequences or gene fragments were searched using BLAST algorhythm (available at *http://www.ncbi.nlm.nih.gov/BLAST/*) against GenBank indices. A

databases of genes or ESTs whose expression levels changed during LPS, dex+LPS stimulation was constructed containing information for each one. This included, if available, GenBank matches, Locus link or Unigene clusters, expression patterns, tissue distribution, subcellular localisation, family and superfamily classification, synonym(s) protein name, gene name(s), notation of possible functions, pathways involved, and hyperlinks to the database searches and related references. Supplementary information is available at *http://www.dkfz.de/tbi/macrophage*

7. ACKNOWLEDGEMENTS

This work has been done in the Department of Molecular Biology of Cell I, at German Cancer Research Centre, Heidelberg, under the supervision of Prof. Dr. Günther Schütz and Prof. Dr. Richard Hermann. Deutsche Forschungsgemeinschaft supported this work through Graduiertenkolleg "Signalsysteme und Genexpression in entwicklungsbiologischen Modellsystemen", SFB484, co-ordinated by Prof. Dr. Werner Müller.

My special thanks goes to Prof. Dr. Günther Schütz for the opportunity and pleasure to work with him, support and fruitful discussions we had during past years.

I would like to acknowledge the help and work of Dr. Holger M. Reichardt, who established the basis for this study and thought me 'of glucocorticoids and mice'.

Being the part of gene expression profiling group I had the pleasure to work with Dr. Tim Beißbarth, Dr. Marc Kenzelmann and Dr. Rosa Arribas-Prat, to whom I thank for invaluable discussions.

I thank Nadine Sold, Ralf Klären, and Marita Schrenk for technical assistance, Dr. François Tronche for the use of macrophage-specific mutant mice and Prof. Dr. H-J. Gröne for immunohistochemical stainings.

To all present and former members of Schütz's group I thank for pleasant working atmosphere.

Further thanks to Dr. Holger M. Reichardt, Dr. Stefan Berger, Dr. Marc Kenzelmann, Dr. Wolfgang Schmid and Dr. Brenda Stride for critically reading the manuscript.

However, nothing of this would have been possible without endless love and support of my family and great friends from Yugoslavia and abroad. Above all I thank my mammy Milica, Milan, Anita, Duško, Emys, Vekili, Neki, teta-Tanja and čika-Pera, Aničići and dedicate this work to them.

8. ABBREVIATIONS

- (n)GREs negative glucocorticoid responsive elements
- 65 kDa protein macrophage cytosolic 65-kDa protein
- A/P/M Absent/Present/Marginal
- ABC1 ABC1 transporter
- Acc. Num. Accession Number
- AD Average Difference
- AP-1 Activator Protein 1
- aRNA antisense RNA
- B94 primary response gene B94
- BID BH3-interacting domain death agonist
- BLAST Basic Logical Alignment Search Tool
- bp base pairs
- C3 α , β complement component 3 α , β subunit
- CBP cAMP-responsive element binding protein (CREB)-binding protein
- CCR chemokine receptor
- cDNA complementary DNA
- CDS complementary DNA sequence
- Clic4 Chloride intracellular channel 4 (mitochondrial)
- COX-2 Cyclooxygenase
- Cre Cre recombinase
- cyt-C cytochrome C
- DBD DNA binding domain
- DD Differential Display

- dex dexamethasone
- DNA Deoxyribonucleic acid
- dNTPs deoxyribonucletide triphosphate
- **DTT** Dithiothreitol
- Egr1 Early growth response 1
- EST Expressed Sequence Tag
- FCS Foetal calf serum
- flox floxed loxP
- fs cDNA first strand cDNA
- GCs Glucocorticoids
- G-CSF Granulocytes-colony stimulating factor
- GM-CSF Granulocytes/macrophage-colony stimulating factor
- GR Glucocorticoid Receptor
- $\mathsf{GR}^{\mathsf{dim}}$ $\mathsf{GR}^{\mathsf{dim}/\mathsf{dim}}$
- GREs glucocorticoid responsive elements
- GR^{LysCre} GR^{flox/flox;LysCre}
- GRO1 growth factor-inducible immediate early gene (3CH134)
- h hours
- HPRT hypoxanthine phosphoribosyltransferase
- hsp90 heat-shock protein 90
- ICAM-1 Intracellular cell adhesion molecule 1
- I- κB Inhibitor of NF- κB
- IL Interleukin
- IPTG isopropylthio-ß-D-galactosid
- Irg1 Immune-resonsive gene 1
- I-TRAF Inhibitory TRAF
- IVT in vitro transcription
- JNK c-jun N-terminal kinase
- kDa kilo Daltons

- KDO 2-keto-2-deoxyoctulosonic acid
- LAM Lipoarabinomannan
- LB Luria broth
- LBD Ligand binding domain
- LBP LPS-binding protein
- LPS Lipopolysaccharide
- Lys Lysozyme
- M-CSF Macrophage-colony stimulating factor
- MADP Myeloid associated differention protein
- MAP kinase mitogen-activated protein kinase
- MIP Macrophage inflammatory protein
- mRNA messenger RNA
- muPAR1 mouse nurokinase-type plasminogen activator receptor, type 1
- NF-AT Nuclear factor of activated T cells
- NF-κB Nuclear factor kappaB
- nt nucleotides
- ss DNA second strand DNA
- STAT Signal transducers and activators of transcription
- PAI Plasminogen activator inhibitor
- PAMPs Pattern-associated molecular patterns
- PBS Phosphate saline buffer
- PCR Polymerase chain reaction
- PM/MM perfect match / mismatch
- $\mathsf{PM}\Phi$ peritoneal macrophages
- Pol Polymerase
- POMC pro-opiomelanocortin
- PRRs Pattern-recognition receptors
- RAP-PCR RNA fingerprinting by arbitrary primer PCR

- RDA Representation difference analysis
- rNTPs ribonucletide triphosphate
- SAGE Serial Analysis of Gene Expression
- SDM Second Derivative Maximum software
- SDS Sodiumodecylsulphate
- SMART II Switching mechanism at 5' end of RNA template II
- Sp1 SV40 promoter-1
- ss cDNA second strand cDNA
- SSH Suppressive Subtractive Hybridisation
- StDev Standard Deviation
- TLR Toll-like receptor
- TNF Tumour necrosis factor
- **TNFR TNF receptor**
- TRAF TNFR-associated factor
- UBP ubiquitin binding protein (ubiquitin specific protease)
- UTR untranslated region
- VCAM-1 Vascuolar cell adhesion molecule 1
- wt wild type
- X-gal 5-bromo-4-chloro-3-indolyl-ß-D-galactosidase
- Zfp Zinc-finger protein

9. REFERENCES

- 1. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA: **Phylogenetic perspectives in innate immunity**. *Science* 1999, **284**:1313-1318.
- 2. Aderem A, Underhill DM: Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999, **17**:593-623.
- 3. Medzhitov R, Janeway CA: Innate immune recognition and control of adaptive immune responses. *Seminars in Immunology* 1998, **10**:351-353.
- 4. Janeway CA, Jr., Medzhitov R: Introduction: the role of innate immunity in the adaptive immune response. *Semin Immunol* 1998, **10**:349-350.
- 5. Aderem A, Ulevitch RJ: Toll-like receptors in the induction of the innate immune response. *Nature* 2000, **406**:782-787.
- 6. Ulevitch RJ, Tobias PS: Recognition of Gram-negative bacteria and endotoxin by the innate immune system. *Curr Opin Immunol* 1999, **11**:19-22.
- 7. Raetz CR: Biochemistry of endotoxins. Annu Rev Biochem 1990, 59:129-170.
- 8. Darveau RP: Lipid A diversity and the innate host response to bacterial infection. *Curr Opin Microbiol* 1998, 1:36-42.
- Chen T-Y, Lei M-G, Suzuki T, Morrison DC: Lipopolysaccharide receptors and signal transduction pathways in mononuclear phagocytes. In *Macrophage Biology and Activation*. Edited by Russell S, Gordon S: Springer-Verlag; 1992:169-188.,
- Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, et al.: Toll-like receptor 4 impairs ligand-specific recognition of bacterial lipopolysaccharide. *J Clin Invest* 2000, 105:497-504.

- 11. Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B: Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. *Proc Natl Acad Sci U S A* 2000, **97**:2163-2167.
- Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. *Science* 1990, 249:1431-1433.
- Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ: Structure and function of lipopolysaccharide binding protein. *Science* 1990, 249:1429-1431.
- 14. Krutzik SR, Sieling PA, Modlin RL: The role of Toll-like receptors in host defense against microbial infection. *Curr Opin Immunol* 2001, **13**:104-108.
- Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al.: Defective LPS signalling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. *Science* 1998, 282:2085-2088.
- 16. Anderson KV: Toll signalling pathways in the innate immune response. *Curr Opin Immunol* 2000, **12**:13-19.
- Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M: Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. *Science* 1995, 270:286-290.
- Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D: Endotoxintolerant mice have mutations in Toll-like receptor 4 (Tlr4). *J Exp Med* 1999, 189:615-625.
- Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ: Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. *Nature* 1998, 395:284-288.
- Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M: Human Toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. *J Exp Med* 1998, 188:2091-2097.

- 21. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M: MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll- like receptor 4. J Exp Med 1999, 189:1777-1782.
- Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA, Jr.: MyD88 is an adaptor protein in the hToll/IL-1 receptor family signalling pathways.
 Mol Cell 1998, 2:253-258.
- 23. Yang RB, Mark MR, Gurney AL, Godowski PJ: Signalling events induced by lipopolysaccharide-activated toll-like receptor 2. *J Immunol* 1999, **163**:639-643.
- Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A: The human Toll signalling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor- associated factor 6 (TRAF6). J Exp Med 1998, 187:2097-2101.
- 25. Medzhitov R, Janeway C, Jr.: Innate immune recognition: mechanisms and pathways. *Immunol Rev* 2000, **173**:89-97.
- 26. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K: The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. *Nature* 1999, 398:252-256.
- 27. Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA, Ghosh S: ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. *Genes Dev* 1999, **13**:2059-2071.
- Irie T, Muta T, Takeshige K: TAK1 mediates an activation signal from Toll-like receptor(s) to nuclear factor-kappaB in lipopolysaccharide-stimulated macrophages. *FEBS Lett* 2000, 467:160-164.
- 29. Baumgartner JD, Glauser MP: Immunotherapy of endotoxemia and septicemia. *Immunobiology* 1993, **187**:464-477.
- 30. Horn DL, Morrison DC, Opal SM, Silverstein R, Visvanathan K, Zabriskie JB: What are the microbial components implicated in the pathogenesis of sepsis? Report on a Symposium. *Clinical Infectious Diseases* 2000, 31:851-858.

- 31. Karima R, Matsumoto S, Higashi H, Matsushima K: The molecular pathogenesis of endotoxic shock and organ failure. *Mol Med Today* 1999, **5**:123-132.
- 32. Adcock IM: Glucocorticoid-regulated transcription factors. *Pulm Pharmacol Ther* 2001, **14**:211-219.
- 33. Buratowski S: Mechanisms of gene activation. Science 1995, 270:1773-1774.
- 34. Barnes PJ: Anti-inflammatory actions of glucocorticoids: molecular mechanisms. *Clin Sci (Colch)* 1998, **94**:557-572.
- 35. Guyre PM, Girard MT, Morganelli PM, Manganiello PD: **Glucocorticoid effects on the production and actions of immune cytokines**. *J Steroid Biochem* 1988, **30**:89-93.
- 36. Wu CY, Fargeas C, Nakajima T, Delespesse G: Glucocorticoids suppress the production of interleukin 4 by human lymphocytes. *Eur J Immunol* 1991, 21:2645-2647.
- 37. Rolfe FG, Hughes JM, Armour CL, Sewell WA: Inhibition of interleukin-5 gene expression by dexamethasone. *Immunology* 1992, **77**:494-499.
- Kern JA, Lamb RJ, Reed JC, Daniele RP, Nowell PC: Dexamethasone inhibition of interleukin 1 beta production by human monocytes. Posttranscriptional mechanisms. J Clin Invest 1988, 81:237-244.
- 39. Muller M, Renkawitz R: The glucocorticoid receptor. *Biochim Biophys Acta* 1991, **1088**:171-182.
- 40. Beato M, Herrlich P, Schutz G: Steroid hormone receptors: many actors in search of a plot. *Cell* 1995, 83:851-857.
- 41. Beato M, Truss M, Chavez S: Control of transcription by steroid hormones. *Ann N Y Acad Sci* 1996, **784**:93-123.
- 42. Pratt WB, Toft DO: Steroid receptor interactions with heat shock protein and immunophilin chaperones. *Endocrinology Review* 1997, **18**:306-360.
- 43. Gronemeyer H: Control of transcription activation by steroid hormone receptors. *Faseb J* 1992, **6**:2524-2529.
- 44. Truss M, Beato M: Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. *Endocr Rev* 1993, **14**:459-479.

- 45. Jantzen HM, Strahle U, Gloss B, Stewart F, Schmid W, Boshart M, Miksicek R, Schütz
 G: Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. *Cell* 1987, 49:29-38.
- 46. Lieberman BA, Nordeen SK: **DNA intersegment transfer, how steroid receptors** search for a target site. *Journal of Biological Chemistry* 1997, 272:1061-1068.
- Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR: Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. *Science* 1990, 249:1266-1272.
- 48. Miner JN, Diamond MI, Yamamoto KR: Joints in the regulatory lattice: composite regulation by steroid receptor-AP1 complexes. *Cell Growth Differ* 1991, **2**:525-530.
- 49. Drouin J, Sun YL, Chamberland M, Gauthier Y, De Lean A, Nemer M, Schmidt TJ: Novel glucocorticoid receptor complex with DNA element of the hormone- repressed POMC gene. *Embo J* 1993, **12**:145-156.
- 50. Meyer T, Gustafsson JA, Carlstedt-Duke J: **Glucocorticoid-dependent transcriptional repression of the osteocalcin gene by competitive binding at the TATA box**. *DNA Cell Biol* 1997, **16**:919-927.
- 51. Garcia-Gras EA, Chi P, Thompson AE: Glucocorticoid-mediated destabilisation of cyclin D3 mRNA involves RNA-protein interactions in the 3'-untranslated regioun of the mRNA. *The Journal of Biological Chemistry* 2000, **275**:22001-22008.
- 52. Bickel M, Iwai Y, Pluznik DH, Cohen RB: Binding of sequence-specific proteins to the adenosine- plus uridine- rich sequences of the murine granulocyte/macrophage colony-stimulating factor mRNA. *Proc Natl Acad Sci U S A* 1992, **89**:10001-10005.
- 53. Ristimaki A, Narko K, Hla T: Down-regulation of cytokine-induced cyclo-oxygenase2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. *Biochem J* 1996, 318:325-331.
- 54. Lasa M, Brook M, Saklatvala J, Clark AR: Dexamethasone destabilizes cyclooxygensae 2 mRNA by inhibiting mitogen-activated protein kinase p38. *Molecular and Cellular Biology* 2001, 21:221-380.

- 55. Miner JN, Yamamoto KR: Regulatory crosstalk at composite response elements. *Trends Biochem Sci* 1991, **16**:423-426.
- 56. Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, Herrlich P: Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. *Cell* 1990, **62**:1189-1204.
- 57. Schüle R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM: Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. *Cell* 1990, **62**:1217-1226.
- Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin M: Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein- protein interaction. *Cell* 1990, 62:1205-1215.
- 59. König H, Ponta H, Rahmsdorf HJ, Herrlich P: Interference between pathway-specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. *Embo J* 1992, **11**:2241-2246.
- 60. Pfahl M: Nuclear receptor/AP-1 interaction. Endocr Rev 1993, 14:651-658.
- 61. Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M: Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. *Cell* 1987, **49**:729-739.
- 62. Gack S, Vallon R, Schaper J, Ruther U, Angel P: Phenotypic alterations in fostransgenic mice correlate with changes in Fos/Jun-dependent collagenase type I expression. Regulation of mouse metalloproteinases by carcinogens, tumor promoters, cAMP, and Fos oncoprotein. *J Biol Chem* 1994, 269:10363-10369.
- 63. Schreiber M, Baumann B, Cotten M, Angel P, Wagner EF: Fos is an essential component of the mammalian UV response. *Embo J* 1995, **14**:5338-5349.
- 64. Ray A, Prefontaine KE: Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. *Proc Natl Acad Sci U S A* 1994, 91:752-756.

- 65. Caldenhoven E, Liden J, Wissink S, Van de Stolpe A, Raaijmakers J, Koenderman L, Okret S, Gustafsson JA, Van der Saag PT: **Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids**. *Mol Endocrinol* 1995, **9**:401-412.
- 66. Adcock IM, Shirasaki H, Gelder CM, Peters MJ, Brown CR, Barnes PJ: The effects of glucocorticoids on phorbol ester and cytokine stimulated transcription factor activation in human lung. *Life Sci* 1994, **55**:1147-1153.
- 67. Imai E, Miner JN, Mitchell JA, Yamamoto KR, Granner DK: Glucocorticoid receptorcAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. *J Biol Chem* 1993, 268:5353-5356.
- Peters MJ, Adcock IM, Brown CR, Barnes PJ: Beta-adrenoceptor agonists interfere with glucocorticoid receptor DNA binding in rat lung. *Eur J Pharmacol* 1995, 289:275-281.
- 69. Zhang Z, Jones S, Hagood JS, Fuentes NL, Fuller GM: **STAT3 acts as a co-activator** of glucocorticoid receptor signalling. *J Biol Chem* 1997, **272**:30607-30610.
- 70. Stocklin E, Wissler M, Gouilleux F, Groner B: Functional interactions between Stat5 and the glucocorticoid receptor. *Nature* 1996, **383**:726-728.
- 71. Moriggl R, Berchtold S, Friedrich K, Standke GJ, Kammer W, Heim M, Wissler M, Stocklin E, Gouilleux F, Groner B: Comparison of the transactivation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells. *Mol Cell Biol* 1997, 17:3663-3678.
- 72. Arias J, Alberts AS, Brindle P, Claret FX, Smeal T, Karin M, Feramisco J, Montminy M: Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. *Nature* 1994, **370**:226-229.
- 73. Kamai I, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, et al.: A CBP intergrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. *Cell* 1996, 85:403-414.

- 74. Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell-J EJ: **Two contact** regions between Stat1 and CBP/p300 in interferon gamma signalling. *Proc Natl Acad Sci USA* 1996, **93**:15092-15096.
- 75. Adcock IM, Barnes PJ: Tumour necrosis factor alpha causes retention of activated glucocorticoid receptor within the cytoplasm of A549 cells. *Biochem Biophys Research Communication* 1996, **225**:1127-1132.
- 76. Wolffe AP: Transcriptional control. Sinful repression. Nature 1997, 387:16-17.
- 77. Ito K, Barnes PJ, Adcock IM: Different histone acetylation induced by glucocorticoids and IL-1beta in human epithelial cells (A549). Am J Resp Crit Care Med 1999, 159:A719.
- 78. Heck S, Kullmann M, Gast A, Ponta H, Rahmsdorf HJ, Herrlich P, Cato AC: A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. *Embo J* 1994, 13:4087-4095.
- 79. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, et al.: DNA binding of the glucocorticoid receptor is not essential for survival. *Cell* 1998, 93:531-541.
- 80. Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schutz G: Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. *Genes Dev* 1995, 9:1608-1621.
- 81. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G: Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. *Nat Genet* 1999, 23:99-103.
- Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I: Conditional gene targeting in macrophages and granulocytes using LysMcre mice. *Transgenic Res* 1999, 8:265-277.
- 83. Clarke S, Greaves DR, Chung LP, Tree P, Gordon S: The human lysozyme promoter directs reporter gene expression to activated myelomonocytic cells in transgenic mice. *Proc Natl Acad Sci U S A* 1996, **93**:1434-1438.

- 84. Ihle JN: Cytokine receptor signalling. Nature 1995, 377:591-594.
- 85. Sweet MJ, Hume DA: Endotoxin signal transduction in macrophages. *J Leukoc Biol* 1996, **60**:8-26.
- 86. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS, Jr.: Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. *Science* 1995, 270:283-286.
- 87. Suzuki T, Hashimoto S, Toyoda N, Nagai S, Yamazaki N, Dong HY, Sakai J, Yamashita T, Nukiwa T, Matsushima K: Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. *Blood* 2000, 96:2584-2591.
- Rosenberger CM, Scott MG, Gold MR, Hancock RE, Finlay BB: Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. *J Immunol* 2000, 164:5894-5904.
- 89. Liang P, Pardee AB: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [see comments]. *Science* 1992, **257**:967-971.
- Lisitsyn N, Wigler M: Cloning the differences between two complex genomes.
 Science 1993, 259:946-951.
- 91. Hubank M, Schatz DG: Identifying differences in mRNA expresion by representational difference analysis of cDNA. *Nucleic Acid Research* 1994, **22**:5640-5648.
- 92. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, et al.: Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. *Proc Natl Acad Sci U S A* 1996, **93**:6025-6030.
- Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis of gene expression. Science 1995, 270:484-487.
- Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW: Gene expression profiles in normal and cancer cells. *Science* 1997, 276:1268-1272.

- Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. *Science* 1995, 270:467-470.
- 96. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ: High density synthetic oligonucleotide arrays. *Nat Genet* 1999, **21**:20-24.
- 97. Hedrick SM, Cohen DI, Nielsen EA, Davis MM: Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. *Nature* 1984, **308**:149-153.
- 98. Robert C, Barnes FL, Hue I, Sirard MA: Subtractive hybridization used to identify mRNA associated with the maturation of bovine oocytes [In Process Citation]. *Mol Reprod Dev* 2000, **57**:167-175.
- 99. Bogush ML, Velikodvorskaya TV, Lebedev YB, Nikolaev LG, Lukyanov SA, Fradkov AF, Pliyev BK, Boichenko MN, Usatova GN, Vorobiev AA, et al.: Identification and localization of differences between Escherichia coli and Salmonella typhimurium genomes by suppressive subtractive hybridization. *Mol Gen Genet* 1999, **262**:721-729.
- 100. Dessens JT, Margos G, Rodriguez MC, Sinden RE: Identification of differentially regulated genes of Plasmodium by suppression subtractive hybridization. *Parasitol Today* 2000, **16**:354-356.
- 101. Diatchenko L, Lukyanov S, Lau YF, Siebert PD: Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. *Methods Enzymol* 1999, **303**:349-380.
- 102. Heller RA, Schena M, Chai A, Shalon D, Bedilion T, Gilmore J, Woolley DE, Davis RW: Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc Natl Acad Sci U S A 1997, 94:2150-2155.
- 103. DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. *Science* 1997, **278**:680-686.
- 104. Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai H, et al.: **Drug target validation and identification of**
secondary drug target effects using DNA microarrays [see comments]. Nat Med 1998, 4:1293-1301.

- 105. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. *Mol Biol Cell* 1998, 9:3273-3297.
- 106. Mahadevappa M, Warrington JA: A high-density probe array sample preparation method using 10- to 100- fold fewer cells. *Nat Biotechnol* 1999, **17**:1134-1136.
- 107. Meier-Ewert S, Lange J, Gerst H, Herwig R, Schmitt A, Freund J, Elge T, Mott R, Herrmann B, Lehrach H: Comparative gene expression profiling by oligonucleotide fingerprinting. *Nucleic Acids Res* 1998, **26**:2216-2223.
- 108. Young RA: Biomedical discovery with DNA arrays. Cell 2000, 102:9-15.
- 109. Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK: Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. *Proc Natl Acad Sci U S A* 1999, **96**:12833-12838.
- 110. Wallace RW: **DNA on a chip: serving up the genome for diagnostics and research**. *Molecular Medicine Today* 1997,:384-389.
- 111. Schummer M, Ng W, Nelson PS, Bumgarner RE, Hood L: Inexpensive handheld device for the construction of high-density nucleic acid arrays. *Biotechniques* 1997, 23:1087-1092.
- Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, et al.: Expression monitoring by hybridization to high-density oligonucleotide arrays. *Nat Biotechnol* 1996, **14**:1675-1680.
- 113. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. *Proc Natl Acad Sci U S A* 1998, **95**:14863-14868.
- 114. Handel-Fernandez M, DM L: Isolation of macrophages from tissued, fluids, and immune response sites. In *Macrophage*. Edited by Paulnock D: Oxford University Press Inc., New York; 2000:1-2.

- 115. Mauer S, Wittwer C, Nakagawara K (Ed): *Rapid Cycle Real-time PCR: methods and applications* Berlin, Heidelberg, New York: Springer Verlag; 2001.
- 116. Tracey KJ, Cerami A: Tumor necrosis factor: an updated review of its biology. *Crit Care Med* 1993, **21**:S415-422.
- 117. Liu LQ, Ilaria R, Jr., Kingsley PD, Iwama A, van Etten RA, Palis J, Zhang DE: A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation. *Mol Cell Biol* 1999, 19:3029-3038.
- 118. Fernandez-Salas E, Sagar M, Cheng C, Yuspa SH, Weinberg WC: **p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein**. *J Biol Chem* 1999, **274**:36488-36497.
- 119. Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH: Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 1990, 87:1663-1667.
- 120. Baugh LR, Hill AA, Brown EL, Hunter CP: Quantitative analysis of mRNA amplification by in vitro transcription. *Nucleic Acids Res* 2001, **29**:E29.
- 121. Akira S, Kishimoto T: **IL-6 and NF-IL6 in acute-phase response and viral infection**. *Immunol Rev* 1992, **127**:25-50.
- 122. Wang MJ, Jeng KC, Shih PC: Differential expression and regulation of macrophage inflammatory protein (MIP)-1alpha and MIP-2 genes by alveolar and peritoneal macrophages in LPS-hyporesponsive C3H/HeJ mice. *Cell Immunol* 2000, **204**:88-95.
- 123. Dickinson JL, Bates EJ, Ferrante A, Antalis TM: Plasminogen activator inhibitor type
 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate
 biological function. *J Biol Chem* 1995, 270:27894-27904.
- 124. Gan H, Newman GW, Remold HG: Plasminogen activator inhibitor type 2 prevents programmed cell death of human macrophages infected with Mycobacterium avium, serovar 4. *J Immunol* 1995, **155**:1304-1315.

- 125. Schwer H, Liu LQ, Zhou L, Little MT, Pan Z, Hetherington CJ, Zhang DE: Cloning and characterization of a novel human ubiquitin-specific protease, a homologue of murine UBP43 (Usp18). *Genomics* 2000, 65:44-52.
- 126. Zhumabayeva B, Diatchenko L, Chenchik A, Siebert PD: Use of SMART-generated cDNA for gene expression studies in multiple human tumors. *Biotechniques* 2001, 30:158-163.
- 127. Beissbarth T, Fellenberg K, Brors B, Arribas-Prat R, Boer J, Hauser NC, Scheideler M, Hoheisel JD, Schutz G, Poustka A, et al.: Processing and quality control of DNA array hybridization data. *Bioinformatics* 2000, **16**:1014-1022.
- 128. Lian Z, Wang L, Yamaga S, Bonds W, Beazer-Barclay Y, Kluger Y, Gerstein M, Newburger PE, Berliner N, Weissman SM: Genomic and proteomic analysis of the myeloid differentiation program. *Blood* 2001, 98:513-524.
- 129. Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. *Mol Cell Biol* 1999, **19**:1720-1730.
- 130. Kaufmann SH: **Immunity to intracellular bacteria**. *Annu Rev Immunol* 1993, **11**:129-163.
- 131. Wurfel MM, Hailman E, Wright SD: Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein. *J Exp Med* 1995, **181**:1743-1754.
- 132. Widmer U, Yang Z, van Deventer S, Manogue KR, Sherry B, Cerami A: Genomic structure of murine macrophage inflammatory protein-1 alpha and conservation of potential regulatory sequences with a human homolog, LD78. *J Immunol* 1991, 146:4031-4040.
- 133. Yamamoto Y, Klein TW, Friedman H: Induction of cytokine granulocytemacrophage colony-stimulating factor and chemokine macrophage inflammatory protein 2 mRNAs in macrophages by Legionella pneumophila or Salmonella typhimurium attachment requires different ligand-receptor systems. *Infect Immun* 1996, 64:3062-3068.

- 134. Baggiolini M, Dewald B, Moser B: Human chemokines: an update. Annu Rev Immunol 1997, **15**:675-705.
- 135. Matsukawa A, Hogaboam CM, Lukacs NW, Lincoln PM, Evanoff HL, Kunkel SL: Pivotal role of the CC chemokine, macrophage-derived chemokine, in the innate immune response. *J Immunol* 2000, 164:5362-5368.
- 136. Grimshaw MJ, Balkwill FR: Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation--a potential mechanism. *Eur J Immunol* 2001, **31**:480-489.
- 137. Murphy G, Gavrilovic J: **Proteolysis and cell migration: creating a path?** *Curr Opin Cell Biol* 1999, **11**:614-621.
- 138. Henry MD, Campbell KP: Dystroglycan inside and out. *Curr Opin Cell Biol* 1999, 11:602-607.
- 139. Hemler ME: Dystroglycan versatility. Cell 1999, 97:543-546.
- 140. Velasco M, Diaz-Guerra MJ, Martin-Sanz P, Alvarez A, Bosca L: Rapid Up-regulation of IkappaBbeta and abrogation of NF-kappaB activity in peritoneal macrophages stimulated with lipopolysaccharide. *J Biol Chem* 1997, **272**:23025-23030.
- 141. Meyer R, Hatada EN, Hohmann HP, Haiker M, Bartsch C, Rothlisberger U, Lahm HW, Schlaeger EJ, van Loon AP, Scheidereit C: Cloning of the DNA-binding subunit of human nuclear factor kappa B: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor alpha. *Proc Natl Acad Sci U S A* 1991, 88:966-970.
- 142. Rolfe M, Chiu MI, Pagano M: The ubiquitin-mediated proteolytic pathway as a therapeutic area. *J Mol Med* 1997, **75**:5-17.
- 143. Israel A: The IKK complex: an integrator of all signals that activate NF-kappaB? *Trends Cell Biol* 2000, **10**:129-133. _00001729 _00001729.
- 144. Karin M, Ben-Neriah Y: Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. *Annu Rev Immunol* 2000, **18**:621-663.
- 145. Fujihara M, Muroi M, Muroi Y, Ito N, Suzuki T: Mechanism of lipopolysaccharidetriggered junB activation in a mouse macrophage-like cell line (J774). *J Biol Chem* 1993, **268**:14898-14905.

- 146. Carballo E, Lai WS, Blackshear PJ: Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. *Science* 1998, **281**:1001-1005.
- 147. McMahon SB, Monroe JG: The role of early growth response gene 1 (egr-1) in regulation of the immune response. *J Leukoc Biol* 1996, **60**:159-166.
- 148. Barnes PJ, Karin M: Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. *N Engl J Med* 1997, **336**:1066-1071.
- 149. Taylor GA, Thompson MJ, Lai WS, Blackshear PJ: Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. *Mol Endocrinol* 1996, **10**:140-146.
- 150. Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ: Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. *Mol Cell Biol* 1999, **19**:4311-4323.
- 151. Vassalli P: The pathophysiology of tumor necrosis factors. Annu Rev Immunol 1992, **10**:411-452.
- 152. Xaus J, Comalada M, Valledor AF, Lloberas J, Lopez-Soriano F, Argiles JM, Bogdan C, Celada A: LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-alpha. *Blood* 2000, **95**:3823-3831.
- 153. Vandenabeele P, Declercq W, Vanhaesebroeck B, Grooten J, Fiers W: Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. *J Immunol* 1995, **154**:2904-2913.
- 154. Lewis M, Tartaglia LA, Lee A, Bennett GL, Rice GC, Wong GH, Chen EY, Goeddel DV: Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. *Proc Natl Acad Sci U S A* 1991, **88**:2830-2834.
- 155. Goodwin RG, Anderson D, Jerzy R, Davis T, Brannan CI, Copeland NG, Jenkins NA, Smith CA: Molecular cloning and expression of the type 1 and type 2 murine receptors for tumor necrosis factor. *Mol Cell Biol* 1991, **11**:3020-3026.

- 156. De Vos K, Goossens V, Boone E, Vercammen D, Vancompernolle K, Vandenabeele P, Haegeman G, Fiers W, Grooten J: The 55-kDa tumor necrosis factor receptor induces clustering of mitochondria through its membrane-proximal region. *J Biol Chem* 1998, 273:9673-9680.
- 157. Tartaglia LA, Goeddel DV: Two TNF receptors. Immunol Today 1992, 13:151-153.
- 158. Thoma B, Grell M, Pfizenmaier K, Scheurich P: Identification of a 60-kD tumor necrosis factor (TNF) receptor as the major signal transducing component in TNF responses. *J Exp Med* 1990, **172**:1019-1023.
- 159. Heller RA, Song K, Fan N, Chang DJ: The p70 tumor necrosis factor receptor mediates cytotoxicity. *Cell* 1992, **70**:47-56.
- 160. Lee SY, Choi Y: TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)- and CD30-TRAF signalling complexes that inhibits TRAF2-mediated NF-kappaB activation. *J Exp Med* 1997, **185**:1275-1285.
- 161. Peppelenbosch M, Boone E, Jones GE, van Deventer SJ, Haegeman G, Fiers W, Grooten J, Ridley AJ: Multiple signal transduction pathways regulate TNF-induced actin reorganization in macrophages: inhibition of Cdc42-mediated filopodium formation by TNF. *J Immunol* 1999, **162**:837-845.
- 162. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. *Cell* 1998, 94:481-490.
- 163. Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. *Cell* 1998, **94**:491-501.
- 164. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ: Biddeficient mice are resistant to Fas-induced hepatocellular apoptosis. *Nature* 1999, 400:886-891.
- 165. Hu X, Yee E, Harlan JM, Wong F, Karsan A: Lipopolysaccharide induces the antiapoptotic molecules, A1 and A20, in microvascular endothelial cells. *Blood* 1998, 92:2759-2765.

- 166. Opipari AW, Jr., Boguski MS, Dixit VM: The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. *J Biol Chem* 1990, 265:14705-14708.
- 167. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A: Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. *Science* 2000, 289:2350-2354.
- 168. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G: Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. *Nature* 2001, 414:308-313.
- 169. Hambleton J, Weinstein SL, Lem L, DeFranco AL: Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide- stimulated macrophages. *Proc Natl Acad Sci U* S A 1996, 93:2774-2778.
- 170. Liu Y, Cousin JM, Hughes J, Van Damme J, Seckl JR, Haslett C, Dransfield I, Savill J, Rossi AG: **Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes**. *J Immunol* 1999, **162**:3639-3646.
- 171. Bertini R, Bianchi M, Ghezzi P: Adrenalectomy sensitizes mice to the lethal effects of interleukin 1 and tumor necrosis factor. *J Exp Med* 1988, **167**:1708-1712.
- 172. Pearce D, Yamamoto KR: Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. *Science* 1993, **259**:1161-1165.
- 173. Trapp T, Rupprecht R, Castren M, Reul JM, Holsboer F: Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. *Neuron* 1994, **13**:1457-1462.
- 174. Nishio Y, Isshiki H, Kishimoto T, Akira S: A nuclear factor for interleukin-6 expression (NF-IL6) and the glucocorticoid receptor synergistically activate transcription of the rat alpha 1-acid glycoprotein gene via direct protein-protein interaction. *Mol Cell Biol* 1993, **13**:1854-1862.
- 175. Resche-Rigon M, Gronemeyer H: Therapeutic potential of selective modulators of nuclear receptor action. *Curr Opin Chem Biol* 1998, **2**:501-507.

- 176. Vayssiere BM, Dupont S, Choquart A, Petit F, Garcia T, Marchandeau C, Gronemeyer H, Resche-Rigon M: Synthetic glucocorticoids that dissociate transactivation and AP1 transrepression exhibit antiinflammatory activity in vivo. *Mol Endocrinol* 1997, 11:1245-1255.
- 177. Belvisi MG, Wicks SL, Battram CH, Bottoms SE, Redford JE, Woodman P, Brown TJ, Webber SE, Foster ML: Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. *J Immunol* 2001, **166**:1975-1982.
- 178. Bauer D. WP, Rohde L. and Struss M.: **PCR Methods and Applications**. (Cold Spring Harbor Lab. Press, Plain-view, NY) 1994,:S97-S108.
- 179. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR: Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. *Nucleic Acids Res* 1984, **12**:7035-7056.

10. APPENDIX

10. 1. GENE EXPRESSION PROFILES

Gene/ESTs which have been identified by SSH-, oligonucleotide gene array analysis and by real-time PCR, are grouped according to their expression patterns upon LPS- and dex+LPS stimulation of peritoneal macrophages from wild type, GR^{dim} and GR^{LysCre} mice.

Expression level of genes/EST obtained by SSH-array analysis were confirmed by real-time PCR and the values representing the Fold change are shown in orange, whereas those obtained by oligonucleotide gene chip arrays are in green.

Expression profiles of genes/ESTs representing Group 1-A, -B, -C, -D, -E and Group 2-A,-B, -C are shown as normalised values for **ctrl**, **LPS** and **dex+LPS**, obtained by following calculation method:

	ex	pressior	n levels		normalised expression							
Gene	ctrl	LPS	dex+LPS	Sum	ctrl	LPS	dex+LPS					
"1"	X 1	y 1	Z ₁	x ₁ +y ₁ +z ₁	$x_1/(x_1+y_1+z_1)$	$y_1/(x_1+y_1+z_1)$	$z_1/(x_1+y_1+z_1)$					
"2"	X ₂	y ₂	Z ₂	x ₂ +y ₂ +z ₂	x ₂ /(x ₂ +y ₂ +z ₂)	$y_2/(x_2+y_2+z_2)$	$z_2/(x_2+y_2+z_2)$					
:	:	:	:	:	:	:	:					
:	:	:	:	:	:	:	:					
"n"	Xn	Уn	Zn	x _n +y _n +z _n	$x_n/(x_n+y_n+z_n)$	$y_n/(x_n+y_n+z_n)$	$z_n/(x_n+y_n+z_n)$					

K...total number of genes/ESTs in a Group

10. 2. GROUP 1-A

		wild ty	уре			GR dim				GR ^{LysCre}			
	ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		
Sum:	14.65	63.91	48.43	Sum:	13.55	54.69	52.76	Sum:	18.20	57.58	45.22		
Mean:	0.12	0.50	0.38	Mean:	0.11	0.45	0.44	Mean:	0.15	0.48	0.37		
StDev:	0.06	0.08	0.09	StDev:	0.05	0.06	0.07	StDev:	0.06	0.06	0.06		
Fold chan	ge (LPS/cti	rl)	4.4	Fold chan	ige (LPS/cl	trl)	4.0	Fold char	old change (LPS/ctrl)				
Fold chan	ge (LPS/de	ex+LPS)	1.3	Fold chan	ige (LPS/d	ex+LPS)	1.0	Fold char	d change (LPS/dex+LPS)				

10. 2. 1. Expression levels of genes/ESTs representing Group 1-A

				wild ty	/ p e			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	LPS	<u>LPS</u>
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
M62766	3-hydroxy-3-methylglutaryl-coenzyme A reductase	231.05	AA	630.1	PA	550.55	PP	2.7	1.1
U20159	76 kDa tyrosine phosphoprotein SLP-76	2701.2	PP	9712.7	PP	6870.65	PP	3.6	1.4
AJ242778	ABINI (A20-binding inhibitor of NF-kappa B activation. large)	2390	PP	11725.2	PP	6170.3	PP	4.9	1.9
AI644801	Adora2a gene, exon 1 (and joined CDS)	1783.75	PP	5123	PP	7213.05	PP	2.9	0.7
U77630	Adrenomedullin	107.7	AA	2073.7	PP	2802.55	PP	19.3	0.7
L36829	alphaA-crystallin-binding protein I (alphaA-CRYBP1) gene	148.25	PA	371.6	PP	430.8	PP	2.5	0.9
L03290	Amino acid transporter, cationic 2 (low affinity)	5154.75	PP	23862.5	PP	13030.1	PP	4.6	1.8
X82786	Antigen identified by monoclonal antibody Ki 67	585.9	PP	7152.8	PP	7486.4	PP	12.2	1.0
AF029215	Antigen identified by monoclonal antibody MRC OX-2	306.3	PP	710.95	PP	603.25	ΡР	2.3	1.2
AJ130975	Ariadne-2 protein	102.35	PP	566.45	PP	350	ΡР	5.5	1.6
M61909	Avian reticuloendotheliosis viral (v-rel) oncogene homolog A	6859.6	PP	14086.2	PP	11018.9	PP	2.1	1.3
U08185	B lymphocyte induced maturation protein	504.9	PP	1221.3	PP	1239.15	РР	2.4	1.0
M64292	B-cell translocation gene 2, anti-proliferative	3849.7	PP	10871.1	PP	8526.8	PP	2.8	1.3
AI844806	Borg4 gene	458.55	AA	1113.25	PP	1273.4	PP	2.4	0.9
D85785	Brain immunological-like with tyrosine-based motifs	284.4	AP	1204.3	PP	629.3	PP	4.2	1.9
M26071	Coagulation factor III	192.65	PA	9822.35	PP	6442.75	ΡР	51.0	1.5
M13926	Colony stimulating factor, granulocyte	316.3	AM	9303.9	PP	7122.55	ΡР	29.4	1.3
M63801	connexin 43 (alpha-1 gap junction)	147.15	PA	1847.15	PP	1630.2	РР	12.6	1.1
U88325	Cytokine inducible SH2-containing protein 7	109.2	AA	1036.65	AP	663	ΡР	9.5	1.6
J04103	E26 avian leukemia oncogene 2, 3 domain	2862.45	PP	23700.7	PP	18098.3	ΡР	8.3	1.3
M28845	Early growth response 1	359.2	PP	2517.4	PP	3165.3	РР	7.0	0.8
X70764	ELKL motif kinase	1977.55	PP	4648.7	PP	5759.45	РР	2.4	0.8
D87691	eRF1	3327.8	PP	9735.8	PP	5704.4	PP	2.9	1.7
X61399	F52 mRNA a novel protein	2084.05	PP	20886.3	PP	21583.8	PP	10.0	1.0
Z29532	follistatin	256.8	AA	1537.1	PP	808.05	PP	6.0	1.9
AF017128	Fos-like antigen 1	51.75	AA	382.6	AP	291.2	РР	7.4	1.3
Y11666	gene encoding hexokinase II, exon 1 (and joined CDS)	189.6	AP	1404	PP	943.4	PP	7.4	1.5
M73696	Glvr-1	1278.25	PP	5256.75	PP	2671.2	PP	4.1	2.0
U05265	Glycoprotein 49 B	5434.6	PP	15302.2	PP	7693.1	PP	2.8	2.0
J04596	GRO1 oncogene	6890.65	PP	56231.3	PP	30771	ΡР	8.2	1.8
M59821	growth factor-inducible protein (pip92)	657.7	PP	2379.25	PP	3369.8	ΡР	3.6	0.7
U10551	GTP binding protein (gene overexpressed in skeletal muscle)	120.3	PA	2331.8	PP	1564.8	ΡР	19.4	1.5
L09737	GTP cyclohydrolase 1	1023.65	PP	3814.4	PP	2373.2	ΡР	3.7	1.6
U23778	hematopoietic-specific early-response A1-b protein (A1b) gene	4054.35	PP	23670.2	PP	18522.6	ΡР	5.8	1.3
U23781	hematopoietic-specific early-response A1-d protein (A1d) gene	7829.1	PP	37784.7	PP	22921.1	ΡР	4.8	1.6
X57437	Histidine decarboxylase cluster	405.35	AP	3559.8	PP	2487.35	PP	8.8	1.4
U57524	I kappa B alpha gene, exons 2-6	1202.8	AP	7270.55	PP	4564.45	PP	6.0	1.6

		GR ^{dim}				Fold ch	ange			GR ^{LysC}	C r e			Fold ch	ange	
ctrl		LPS		dex+LF	PS	<u>LPS</u>	LPS	ctri		LPS		dex+LF	PS	<u>LPS</u>	LPS	Grid
AD	AC	AD	AC	AD	AC	ctrl	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
204.93	PAA	424.07	PPA	392.73	PAA	2.1	1.1	153.35	PA	408.50	PP	242.50	AA	2.7	1.7	104285_at
2217.33	PPP	7544.10	PPP	7520.20	PPP	3.4	1.0	2767.20	PP	5544.60	PP	5106.95	PP	2.0	1.1	102957_at
2982.63	PPP	11462.53	PPP	14349.13	PPP	3.8	0.8	4187.65	PP	14819.40	PP	11757.55	PP	3.5	1.3	104755_at
1661.40	PPP	6391.63	PPP	4922.47	PPP	3.8	1.3	1313.30	PP	4703.80	PP	3686.10	PP	3.6	1.3	101363_at
84.13	AAA	1300.93	РРР	1240.73	PPP	15.5	1.0	95.60	AA	679.85	PP	364.75	PP	7.1	1.9	102798_at
163.20	AAA	373.30	РРА	408.47	PPA	2.3	0.9	112.45	PA	325.45	PP	252.05	PA	2.9	1.3	92908_at
3324.73	PAP	13674.37	РРР	19361.53	PPP	4.1	0.7	5364.40	PP	14765.40	PP	9711.25	PP	2.8	1.5	92736_at
371.93	AAP	6162.57	PPP	7285.70	PPP	16.6	0.8	553.75	PP	4743.60	PP	6895.20	PP	8.6	0.7	99457_at
215.23	PAP	690.43	PPP	272.60	PAP	3.2	2.5	557.20	PP	1706.40	PP	1187.50	PP	3.1	1.4	101851_at
219.33	MAP	570.53	РРР	627.70	PPP	2.6	0.9	218.65	PA	469.85	PP	439.70	PP	2.1	1.1	95600_at
6241.90	PPP	14194.93	РРР	11763.90	PPP	2.3	1.2	6077.35	PP	12957.05	PP	10041.80	PP	2.1	1.3	97813_at
483.93	PPP	1458.53	PPP	1702.03	PPP	3.0	0.9	802.85	PP	2008.10	PP	2107.65	PP	2.5	1.0	92904_at
3399.20	PPP	12374.13	РРР	7983.17	PPP	3.6	1.6	4668.00	PP	10511.00	PP	12683.40	PP	2.3	0.8	101583_at
346.47	ААА	1120.70	РРР	2239.97	PPP	3.2	0.5	647.45	АА	2004.35	PP	2129.25	PP	3.1	0.9	94036_at
360.03	PAA	1337.60	РРР	1126.27	PPP	3.7	1.2	967.45	PA	2334.90	PP	1178.85	PP	2.4	2.0	95804 <u>g</u> at
454.10	AAP	3999.13	РРР	3839.87	РРР	8.8	1.0	479.40	PA	6147.40	PP	4303.20	PP	12.8	1.4	97689_at
172.93	МАА	7244.17	РРР	6817.07	РРР	41.9	1.1	600.30	PA	7778.10	PP	5791.45	ΡР	13.0	1.3	94142_at
279.67	AAP	1451.67	РРР	3060.20	PPP	5.2	0.5	819.65	ΡР	3930.95	PP	3254.25	PP	4.8	1.2	100064_f_at
110.47		872.97	ррр	738.57	РРР	7.9	1.2	329.05	PA	1607.90	PA	1540.20	PA	4.9	1.0	92832 at
2891.83	PPP	21039.80	РРР	23990.20	РРР	7.3	0.9	4045.65	РР	21848.95	РР	18077.15	РР	5.4	1.2	94246 at
675.97	APP	3464.57	РРА	1950.73	РРА	5.1	1.8	633.50	РА	3480.85	PP	3210.00	РР	5.5	1.1	 98579 at
2278.60	PPP	4608.80	ррр	4158.43	РРР	2.0	1.1	1506.40	РР	3719.40	РР	4849.00	РР	2.5	0.8	
2679.77	PPP	6340.57	ррр	7783.00	РРР	2.4	0.8	3469.95	РР	8200.15	РР	5922.80	РР	2.4	1.4	 160451 at
3207.77	PPP	24164.27	PPP	21991.37	PPP	7.5	1.1	3970.40	РР	20244.75	РР	16930.55	PP	5.1	1.2	97203 at
80.60	APA	348.03	PPP	457.33	PPP	4.3	0.8	652.10	PP	2757.45	PP	2372.60	PP	4.2	1.2	98817 at
137.20	ААА	701.80	РРР	578.00	РРР	5.1	1.2	91.30	АА	535.65	РР	344.15	мр	5,9	1.6	99835 at
607.40	AAP	1331.63	PPP	1294.33	PPP	2.2	1.0	563.70	PP	1496.20	PP	885.80	PP	2.7	1.7	94375 at
931.87	PPP	3105.70	PPP	1788.43	PPP	3.3	1.7	1684.80	PP	6240.65	PP	4852.95	PP	3.7	1.3	103065 at
6821.97	PPP	15567.70	PPP	15847.70	PPP	2.3	1.0	7266.90	PP	15696.45	PP	11262.10	PP	2.2	1.4	92217 s at
6924 90	PPP	56210 63	PPP	52517.03	PPP	8.1	1.1	20639 50	PP	56899 25	PP	57935 25	PP	2.8	1.0	95349 g at
1080.50	PPP	2739.57	PPP	2107.33	PPP	2.5	13	768.85	PP	1879.00	PP	1406 10	PP	24	13	99109_at
103 57	ΔΔΡ	889.57	PPP	1292.27	PPP	8.6	07	195.10	р <u>а</u>	1910.05	PP	1684.30	PP	9.8	11	92534 at
1142 10	PPP	3903 37	PPP	3918 20	ррр	3.4	1.0	1589.10	PP	5072 75	PP	3868.95	PP	32	1.3	102313 at
3819.67	PPP	23636 97	PPP	20781 57	ррр	62	11	5400.70	PP	19754 50	PP	15606.45	PP	37	13	102914 e at
8733 67	DAD	35843 62	DDD	30800 02	DDD	A A	12	11645 00	DP	30665 70	DP	28009.75	DD	2.6	11	03860 5 3+
507 52		2974 33	DPP	4199.02	DDD	4.4	0.7	422.15		50503.70	DP	20030.75		12.0	1.1	03328 -+
1440 57	APP	4955.43	PPP	5897.30	PPP	3.4	0.8	1112 80	PP	4762.35	PP	4435 50	PP	4.3	1.1	101554 at

				wild ty	pe		Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LPS	<u>LPS</u>	LPS
Num.		AD	AC	AD	AC	AD AC	ctri	dex+LPS
U19799	IkB-beta	3073.05	PP	9275.15	PP	6941 PP	3.0	1.3
L38281	Immunoresponsive gene 1	493	AA	11356.5	PP	7864.75 PP	23.0	1.4
U14135	Integrin alpha V (Cd51)	118.85	PA	268.45	MP	177.2 PP	2.3	1.5
M90551	Intercellular adhesion molecule	3079.7	PP	8117.65	PP	7277.75 PP	2.6	1.1
M14639	Interleukin 1 alpha	4186.35	PP	68021.8	PP	40521.1 PP	16.2	1.7
AV152244	ISG15 gene	143	AP	2704.95	AP	1949.75 PP	18.9	1.4
AB024717	macrophage C-type lectin Mincle	2970.25	PP	17033.3	PP	11314 PP	5.7	1.5
AB033887	mACS4 variant2 mRNA Acyl-CoA synthetase 4 variant2	431.45	PP	984.2	PP	510.55 PP	2.3	1.9
Y15163	mrg1 protein	986.75	PP	6929.55	PP	5315.25 PP	7.0	1.3
X62700	muPAR1 mRNA	1145.65	PP	4277.8	PP	4387.1 PP	3.7	1.0
X54149	Myeloid differentiation primary response gene 118	1722.15	PP	14243.3	PP	9224.7 PP	8.3	1.5
AF073882	myotubularin related protein 7	94.15	AA	683	PP	343.2 PP	7.3	2.0
AW047899	NF-kappaB subunit p100 (Nfkb2)	1490.2	PP	6728.3	PP	4304.4 PP	4.5	1.6
M57999	Nuclear factor of kappa light chain gene enhancer in B-cells 1, p105	10189.2	PP	41537.4	PP	24668.9 PP	4.1	1.7
X87128	p75 TNF receptor DNA	12037.3	PP	53911.8	PP	30292.9 PP	4.5	1.8
AI060798	PGES prostaglandin E synthase	5694.9	PP	16964.5	PP	11120.5 PP	3.0	1.5
AF020313	proline-rich protein 48	4475.85	PP	12988.2	PP	9174.3 PP	2.9	1.4
D83484	protein tyrosine phosphatase epsilon	3488.75	PP	10779.1	PP	7296.7 PP	3.1	1.5
AF030185	putative beta chemokine receptor (E01)	1186.55	PP	30187.8	PP	18011.3 PP	25.4	1.7
AW047476	Putative purine nucleotide binding protein	1787.45	PP	5868.85	PP	3080.25 PP	3.3	1.9
AI852608	RNA 3'-terminal phosphate cyclase like protein (rcl1 gene)	840.1	PP	6134.9	PP	7513.5 PP	7.3	0.8
AF099973	schlafen2 (Slfn2)	30655.4	PP	68634	PP	55098 PP	2.2	1.2
D78188	SCID complementing gene 2	6877.7	PP	13842.9	PP	7413.45 PP	2.0	1.9
U10531	Ski/sno related	88.65	AA	908.05	PP	505.05 PP	10.2	1.8
J04491	Small inducible cytokine A3	1873.95	PP	51543.4	PP	36185.8 PP	27.5	1.4
U88328	suppressor of cytokine signalling-3 (SOCS-3)	715.95	AP	13336	PP	8692.25 PP	18.6	1.5
L35302	Tnf receptor-associated factor 1	801.55	PP	7488.95	PP	5576 PP	9.3	1.3
D78141	Tnf receptor-associated factor 5	2326.9	PP	5521.75	PP	5381.6 PP	2.4	1.0
X70956	TOP gene topoisomerase I, exons 19-21	3045.05	PP	13531.3	PP	10191 PP	4.4	1.3
U59864	TRAF-interacting protein I-TRAF	2182.8	PP	8861.45	PP	5232.05 PP	4.1	1.7
X62940	Transming growth factor beta 1 induced transcript 4	518.7	PP	4082.15	PP	5307.3 PP	7.9	0.8
L15435	Tumor necrosis factor (ligand) superfamily, member 9	304.15	AA	18749.8	PP	22043 PP	61.6	0.9
L24118	Tumor necrosis factor induced protein 2	6218.7	PP	40661.2	PP	28317.8 PP	6.5	1.4
M83312	Tumor necrosis factor receptor superfamily, member 5	497.5	PP	2801.55	PP	1714.1 PP	5.6	1.6
AI854821	U8 gene	2255.25	PP	6753.5	PP	3551.05 PP	3.0	1.9
AB030505	UBE-1c1, UBE-1c2, UBE-1c3	1431.65	PP	5339.55	PP	2817.35 PP	3.7	1.9
X14678	Zinc finger protein 36	1314.6	PP	5459.1	PP	3458.55 PP	4.2	1.6

		GR ^{dim}				Fold ch	ange			GR LysC	C r e			Fold ch	ange	
ctrl		LPS		dex+LF	s	<u>LPS</u>	LPS	ctri		LPS		dex+LF	PS	<u>LPS</u>	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
3912.43	PPP	12936.00	PPP	14003.63	PPP	3.3	0.9	3811.05	PP	10272.75	PP	7887.95	PP	2.7	1.3	99982_at
510.73	AAP	10347.60	PPP	10490.33	PPP	20.3	1.0	770.35	PA	7678.05	PP	7114.20	PP	10.0	1.1	98774_at
82.63	AAP	250.07	APP	272.00	PPP	3.0	0.9	57.80	AA	321.55	PA	137.55	PA	5.6	2.3	98366_at
2207.73	PPP	7671.47	PPP	9948.17	PPP	3.5	0.8	3226.70	PP	9173.00	PP	6879.75	PP	2.8	1.3	96752_at
4375.10	PPP	53808.60	PPP	52001.20	PPP	12.3	1.0	15713.90	PP	61153.05	PP	56106.20	PP	3.9	1.1	94755_at
98.87	AAP	2913.50	PPP	2066.17	PPP	29.5	1.4	194.90	PP	978.70	PP	396.85	PA	5.0	2.5	161511_f_at
4203.20	PPP	14740.50	PPP	11127.80	PPP	3.5	1.3	6202.55	PP	17337.65	PP	11685.85	PP	2.8	1.5	96551_at
185.60	AAP	449.33	PPP	796.87	PPP	2.4	0.6	448.80	ΡР	930.85	PP	629.35	PP	2.1	1.5	104017_at
1036.60	PPP	3298.97	PPP	3363.53	PPP	3.2	1.0	1265.50	PP	5223.55	PP	3950.80	PP	4.1	1.3	101973_at
2038.87	PPP	7393.50	РРР	6690.10	PPP	3.6	1.1	1389.90	PP	4484.40	PP	3258.65	PP	3.2	1.4	102663_at
1653.00	PPP	17925.80	РРР	17013.07	PPP	10.8	1.1	6706.55	PP	19848.70	PP	13729.80	PP	3.0	1.4	102779_at
82.10	AAP	476.43	РРР	632.57	PPP	5.8	0.8	71.90	АА	439.40	PA	233.00	PA	6.1	1.9	103228_at
2104.97	PPP	9363.60	PPP	8058.07	PPP	4.4	1.2	2121.90	PP	8364.65	PP	5363.45	PP	3.9	1.6	103614_at
14055.43	PPP	46612.30	PPP	39582.90	PPP	3.3	1.2	14866.05	ΡР	35463.75	PP	28680.00	PP	2.4	1.2	98427_s_at
11968.90	PPP	35488.67	РРР	34498.87	PPP	3.0	1.0	15930.70	PP	44496.70	PP	31629.50	PP	2.8	1.4	94928_at
5259.97	PPP	20098.47	РРР	17289.70	PPP	3.8	1.2	10599.35	PP	21484.65	PP	17979.45	PP	2.0	1.2	104406_at
7716.00	PPP	16341.43	PPP	10733.10	PPP	2.1	1.5	5316.80	ΡР	12791.15	PP	10757.95	PP	2.4	1.2	102710_at
3150.83	PPP	8572.73	РРР	7759.03	PPP	2.7	1.1	3846.35	ΡР	11117.50	PP	6242.80	PP	2.9	1.8	101932_at
1602.63	PPP	18584.07	РРР	18780.93	PPP	11.6	1.0	1502.05	PP	15915.50	PP	11172.20	PP	10.6	1.4	93617_at
1751.10	PPP	8476.17	РРР	9062.73	PPP	4.8	0.9	3068.05	ΡР	7955.95	PP	5082.75	PP	2.6	1.6	103202_at
1032.97	PPP	4794.03	РРР	7464.93	PPP	4.6	0.6	2050.55	ΡР	7278.60	PP	4685.00	PP	3.5	1.6	98923_at
17892.13	PPP	73197.40	РРР	79388.67	РРР	4.1	0.9	22527.15	ΡР	64343.15	PP	60141.95	ΡР	2.9	1.1	92471 iat
8184.07	PPP	16897.00	РРР	8998.47	PPP	2.1	1.9	7086.70	ΡР	17483.50	PP	11702.75	PP	2.5	1.5	160468_at
150.57	ААА	427.17	РРА	722.37	PPA	2.8	0.6	183.55	PA	1086.40	PP	522.30	PP	5.9	2.1	94752_s_at
1701.17	PPP	41635.97	РРР	49390.90	РРР	24.5	0.8	8023.00	ΡР	57805.20	PP	44083.20	ΡР	7.2	1.3	102424 at
1337.53	AAP	18737.33	РРР	17795.50	PPP	14.0	1.1	1630.95	ΡР	12542.10	PP	8808.30	PP	7.7	1.4	92232_at
804.40	APP	6553.23	РРР	5571.57	PPP	8.1	1.2	2403.50	РР	11337.40	РР	7759.95	ΡР	4.7	1.5	94186 at
2313.23	PPP	4921.27	РРР	4483.07	PPP	2.1	1.1	2323.85	РР	6010.15	PP	3788.00	ΡР	2.6	1.6	– 103255 at
5410.57	РРР	12293.83	РРР	12071.00	РРР	2.3	1.0	4823.60	РР	17435.25	РР	13432.70	РР	3.6	1.3	95694 at
1911.63	PPP	5623.10	PPP	6398.23	PPP	2.9	0.9	3888.60	РР	9027.55	PP	6836.70	РР	2.3	1.3	 103328 at
532.90	PPP	4774.47	РРР	2240.30	PPP	9.0	2.1	288.85	РА	4495.05	PP	4487.55	ΡР	15.6	1.0	93728 at
338.27	ААА	20047.70	РРР	24029.30	PPP	59.3	0.8	206.95	АА	6017.50	РР	6381.90	РР	29.1	0.9	
7113.90	PPP	44771.23	РРР	34607.13	PPP	6.3	1.3	9218.55	РР	31749.40	PP	24571.60	РР	3.4	1.3	 160489 at
801.50	PPP	6357.20	PPP	3331.13	PPP	7.9	1.9	976.30	PP	3407.75	PP	2058.40	РР	3.5	1.7	92962 at
1920.33	PPP	5597.93	PPP	5668.00	PPP	2.9	1.0	3262.25	PP	7520.50	PP	5136.65	PP	2.3	1.5	 160171 fat
1192.30	PPP	3132.53	PPP	2323.00	PPP	2.6	1.3	1595.30	PP	4407.15	PP	3415.75	РР	2.8	1.3	99592 fat
1609.90	PPP	5432.77	PPP	3822.00	PPP	3.4	1.4	2383.65	PP	7561.90	PP	5417.10	PP	3.2	1.4	92830_s_at

				wild ty	/pe			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	LPS	<u>LPS</u>
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
AI323667	mp96e12.x1 Mus musculus cDNA, 3 end	5010.1	PP	46000.3	PP	37691.4	PP	9.2	1.2
AA168418	mr29a03.r1 Mus musculus cDNA, 5 end	173.65	AA	534.8	PA	451.8	PP	3.1	1.2
AI592541	ms93f10.y1 Mus musculus cDNA, 5 end	533.9	AA	2643.75	PP	1348.85	PP	5.0	2.0
AA204579	mt84d11.r1 Mus musculus cDNA, 5 end	308.35	PA	1470	PP	842.4	PP	4.8	1.7
AV138783	Mus musculus cDNA	3748.1	PP	23467	PP	14877.9	PP	6.3	1.6
AV374591	Mus musculus cDNA, 3 end	35.45	AA	3497.35	PP	2553.05	PP	98.7	1.4
C78513	Mus musculus cDNA, 3 end	167.3	AP	6264.8	PP	3931.3	ΡР	37.4	1.6
AV374868	Mus musculus cDNA, 3 end	2545.45	PP	26143.8	PP	22029.7	PP	10.3	1.2
C76063	Mus musculus cDNA, 3 end	187.2	PA	1026.9	PP	772.25	PP	5.5	1.3
AV309347	Mus musculus cDNA, 3 end	655.2	PP	2811.35	PA	4122.25	PP	4.3	0.7
AV341518	Mus musculus cDNA, 3 end	675.1	PP	1952.2	PP	1221.9	ΡР	2.9	1.6
AA959291	ua14g10.r1 Mus musculus cDNA, 5 end	277.95	MP	986.2	ΡР	755.1	РР	3.5	1.3
AI006319	ua70b05.r1 Mus musculus cDNA, 5 end	942.75	PP	2938.6	ΡР	1905.05	ΡР	3.1	1.5
AA833425	ub58d03.r1 Mus musculus cDNA, 5 end	2368.2	PP	7494.95	ΡР	5159.25	ΡР	3.2	1.5
AA960466	ub58f11.s1 Mus musculus cDNA, 3 end	1185.6	PP	2843.55	ΡР	2048.35	PP	2.4	1.4
AI462105	ub70b01.x1 Mus musculus cDNA, 3 end	929.4	PP	3901.15	PP	2430.65	PP	4.2	1.6
AI642048	ub75b05.x1 Mus musculus cDNA, 3 end	4457.25	PP	21789.6	PP	20765.8	PP	4.9	1.0
AI286698	ub84b09.r1 Mus musculus cDNA, 5 end	5214.65	PP	12311	PP	12468.1	PP	2.4	1.0
AI837100	UI-M-AK0-adc-d-02-0-UI.s1 Mus musculus cDNA, 3 end	673.65	PP	3452.55	ΡР	2833.65	ΡР	5.1	1.2
AI846304	UI-M-AK1-aez-g-06-0-UI.s1 Mus musculus cDNA, 3 end	508.15	AP	1758.65	PP	1483.1	ΡР	3.5	1.2
AI837543	UI-M-AL0-abs-d-04-0-UI.s1 Mus musculus cDNA, 3 end	226.35	PP	514.45	PA	558.45	ΡР	2.3	0.9
AI844128	UI-M-AL1-ahj-d-06-0-UI.s1 Mus musculus cDNA, 3 end	1304.55	PP	4817.7	ΡР	4958.9	PP	3.7	1.0
AI840446	UI-M-AN0-aci-b-05-0-UI.s1 Mus musculus cDNA, 3 end	346.9	ΜΑ	1039.45	ΡР	619.5	ΡР	3.0	1.7
AI845886	UI-M-AO1-aeg-h-09-0-UI.s1 Mus musculus cDNA, 3 end	3011.6	PP	7897	ΡР	6557.2	PP	2.6	1.2
AI852645	UI-M-BH0-aiu-h-04-0-UI.s1 Mus musculus cDNA, 3 end	233.55	PP	596.1	ΡР	461.2	PP	2.6	1.3
AI852144	UI-M-BH0-ajb-e-09-0-UI.s1 Mus musculus cDNA, 3 end	2864.4	PP	10106	ΡР	7454.3	PP	3.5	1.4
AI854506	UI-M-BH0-ajj-b-09-0-UI.s1 Mus musculus cDNA, 3 end	436.75	PA	3644.9	ΡР	2064.55	ΡР	8.3	1.8
AI853712	UI-M-BH0-ajq-d-05-0-UI.s1 Mus musculus cDNA, 3 end	420.4	PP	1884.55	ΡР	1825.7	PP	4.5	1.0
AW046627	UI-M-BH1-ald-c-09-0-UI.s1 Mus musculus cDNA, 3 end	431.75	AP	3521.1	ΡР	3506.35	ΡР	8.2	1.0
AW047023	UI-M-BH1-alp-h-11-0-UI.s1 Mus musculus cDNA, 3 end	6536.8	PP	15083.5	ΡР	10257.9	ΡР	2.3	1.5
AW047811	UI-M-BH1-als-a-04-0-UI.s1 Mus musculus cDNA, 3 end	3115.4	PP	9709.5	ΡР	16104.2	РР	3.1	0.6
AW048937	UI-M-BH1-amo-d-08-0-UI.s1 Mus musculus cDNA, 3 end	2290.8	PP	9615.05	РР	11651.8	РР	4.2	0.8
AW049031	UI-M-BH1-amp-o-08-0-UI.s1 Mus musculus cDNA. 3 end	8996.3	PP	18128.7	РР	9698.3	PP	2.0	1.9
AW124934	UI-M-BH2.1-apu-q-11-0-UI.s1 Mus musculus cDNA. 3 end	374.05	PP	2095.8	РР	2089.75	PP	5.6	1.0
AW123514	UI-M-BH2.1-agb-c-04-0-UI.s1 Mus musculus cDNA. 3 end	248.1	AP	802.6	РР	760.15	РР	3.2	1.1
AW215863	up02c11.x1 Mus musculus cDNA.3 end	209.65	AP	812.45	AP	1225.75	PP	3.9	0.7
AA259683	va36d09.r1 Mus musculus cDNA, 5 end	222	PA	967.05	ΡР	552.35	ΡР	4.4	1.8

		GR ^{dim}				Fold ch	ange			GR ^{LysC}	C r e			Fold ch	ange	
ctrl		LPS		dex+LF	PS	LPS	LPS	ctri		LPS		dex+LF	PS	<u>LPS</u>	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
5989.10	PPP	42998.43	PPP	42143.97	PPP	7.2	1.0	7242.15	PP	39890.75	PP	33177.75	PP	5.5	1.2	98773_s_at
183.80	AAP	499.37	PPP	610.17	PPP	2.7	0.8	328.55	PA	684.05	PP	600.75	PP	2.1	1.1	93462_at
290.60	ААА	2069.03	PPP	1468.37	PPP	7.1	1.4	800.65	PP	2387.45	PP	1808.35	PP	3.0	1.3	103691_at
87.30	PAA	3193.47	PPA	2482.50	APA	36.6	1.3	188.90	PA	48.10	PA	113.60	PA	0.3	0.4	104177_at
3797.27	РРР	26414.00	PPP	24899.60	PPP	7.0	1.1	9512.25	PP	30040.85	PP	22345.55	PP	3.2	1.3	161666_f_at
170.53	AAP	3312.73	PPP	2715.23	PPP	19.4	1.2	294.35	PP	2439.65	PP	2656.10	PP	8.3	0.9	161903_f_at
358.27	AAP	9171.23	PPP	7693.07	PPP	25.6	1.2	308.45	PA	4787.50	PP	2971.40	PP	15.5	1.6	97693_at
3609.03	PPP	30376.87	PPP	28130.87	PPP	8.4	1.1	5176.20	PP	25088.95	PP	21586.85	PP	4.8	1.2	162206_f_at
308.37	РРА	1223.83	PPP	822.93	PPP	4.0	1.5	277.60	PA	639.35	PP	417.90	PA	2.3	1.5	95848_at
561.53	PPP	3679.57	PPP	3995.10	PPP	6.6	0.9	444.50	PA	2719.35	PP	4132.65	PP	6.1	0.7	161931_r_at
418.00	PAP	1082.70	PPP	1098.03	APP	2.6	1.0	1034.75	PP	2639.95	PP	1998.30	PP	2.6	1.3	162095_f_at
318.80	PAP	916.87	РРР	604.13	PPP	2.9	1.5	280.40	PA	658.95	PP	840.85	ΡР	2.4	0.8	99874_at
1002.97	PPP	2606.80	PPP	2731.90	PPP	2.6	1.0	1365.35	PP	2818.70	PP	2166.45	PP	2.1	1.3	94980_at
3174.80	РРР	8368.87	РРР	6196.70	PPP	2.6	1.4	3243.40	PP	7675.55	PP	6988.15	PP	2.4	1.1	96135_at
1637.43	РРР	4123.80	PPP	3479.00	PPP	2.5	1.2	1419.55	PP	2936.80	PP	2244.15	PP	2.1	1.3	104152_at
702.67	РРР	1774.63	РРР	3373.23	PPP	2.5	0.5	979.35	PP	2601.50	PP	2311.10	PP	2.7	1.1	94963_at
5622.53	РРР	21709.17	РРР	23252.30	PPP	3.9	0.9	6495.10	ΡР	20205.50	PP	18592.55	PP	3.1	1.1	104149_at
5186.00	PPP	17577.63	PPP	22819.60	PPP	3.4	0.8	6132.30	PP	13849.35	PP	12920.95	PP	2.3	1.1	99992_at
1022.13	РРА	9265.10	РРР	9256.83	PPP	9.1	1.0	1352.05	PA	4269.80	PP	2437.45	PP	3.2	1.8	103040_at
580.30	РРР	1415.73	РРР	1447.83	РРР	2.4	1.0	566.45	PA	1322.30	PP	1321.15	PP	2.3	1.0	161073_at
159.07	PAA	724.53	PPP	518.83	РРА	4.6	1.4	229.15	PA	825.70	PP	548.85	PA	3.6	1.5	98778_at
1593.53	РРР	6061.47	PPP	5298.07	PPP	3.8	1.1	2362.25	PP	5563.20	PP	4169.40	PP	2.4	1.3	96930_at
293.50	PAA	612.13	РРР	699.93	РРР	2.1	0.9	399.70	PA	1912.30	PP	1383.05	PP	4.8	1.4	160708_at
2796.23	РРР	6340.20	PPP	6905.90	PPP	2.3	0.9	3396.45	PP	7477.20	PP	6107.90	PP	2.2	1.2	98608_at
192.30	PAP	743.50	РРР	572.90	PPP	3.9	1.3	396.55	PP	1059.30	PP	723.75	PP	2.7	1.5	101372_at
2731.17	РРР	8428.73	РРР	8234.40	PPP	3.1	1.0	3307.00	ΡР	7384.80	PP	5637.90	PP	2.2	1.3	94461_at
1488.40	APP	5686.13	РРР	4148.03	РРР	3.8	1.4	558.90	PA	3745.80	ΡР	2459.60	ΡР	6.7	1.5	96206_at
229.73	APP	2067.03	РРР	1304.07	PPP	9.0	1.6	330.55	PP	825.75	PP	1488.85	PP	2.5	0.6	104645_at
238.87	РРР	2156.57	РРР	1398.87	PPP	9.0	1.5	650.85	PP	4443.00	PP	3797.85	PP	6.8	1.2	96841_at
4863.43	РРР	13649.00	РРР	11554.03	PPP	2.8	1.2	7996.70	PP	16212.00	PP	10924.60	PP	2.0	1.5	96010_at
3139.70	РРР	7695.50	РРР	8973.23	PPP	2.5	0.9	3851.00	PP	8204.25	PP	7485.45	PP	2.1	1.1	98912_at
1499.37	РРР	10565.13	PPP	6521.97	PPP	7.0	1.6	2910.05	PP	6060.05	PP	5654.30	PP	2.1	1.1	94881_at
5498.50	РРР	12979.17	РРР	11566.27	PPP	2.4	1.1	7048.80	PP	16548.70	PP	11628.25	PP	2.3	1.4	98083_at
567.07	PPP	2687.63	PPP	2373.87	PPP	4.7	1.1	512.50	PP	1043.15	PP	1141.80	PP	2.0	0.9	94505_at
329.73	AAP	840.20	РРР	999.63	PPP	2.5	0.8	250.55	PA	1273.55	PP	893.70	PP	5.1	1.4	96208_at
254.97	АРМ	1010.50	РРА	1073.00	PPP	4.0	0.9	93.75	AA	458.40	PA	385.70	РМ	4.9	1.2	93419_at
158.10	AAP	919.17	РРР	736.27	PPP	5.8	1.2	328.85	PP	817.90	PP	511.65	PP	2.5	1.6	95360_at

				wild ty	/pe			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	LPS	LPS
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
AA290180	vb34d04.r1 Mus musculus cDNA, 5 end	302.3	PP	941.15	PP	639.45	ΡР	3.1	1.5
AA614971	vo32e09.r1 Mus musculus cDNA, 5 end	580.6	ΡР	16531.1	РР	12015.9	ΡР	28.5	1.4
AA815845	vp71h06.r1 Mus musculus cDNA, 5 end	235.8	AP	631.9	PP	472.55	ΡР	2.7	1.3
AI506285	vq56g05.x1 Mus musculus cDNA, 3 end	5858.2	PP	14644.4	PP	22000.8	ΡР	2.5	0.7
AA656775	vr50e03.s1 Mus musculus cDNA, 5 end	1416.85	PP	3867.2	PP	4699.85	ΡР	2.7	0.8
AA690218	vr79g01.s1 Mus musculus cDNA, 5 end	414.85	PP	2573.2	PP	3002	ΡР	6.2	0.9
AA764261	vv49f08.r1 Mus musculus cDNA, 5 end	2220.85	PP	6032.9	PP	3945.3	ΡР	2.7	1.5
AA738776	vv67d07.r1 Mus musculus cDNA, 5 end	514.05	PP	1544.95	PP	1251.35	ΡР	3.0	1.2
AI642662	vw01d07.x1 Mus musculus cDNA, 3 end	521.8	PP	5751.05	PP	7322.85	ΡР	11.0	0.8
AA959954	vw53a09.s1 Mus musculus cDNA, 3 end	1802.35	PP	13540.8	PP	17476.4	ΡР	7.5	0.8
D37837	65 kDa cytosolic protein	2.21		6.75		4.3		3.1	1.6
U19463	A20 protein	13.33		86.6		76.8		6.5	1.1
X75926	ABC1 transporter	2.9		7.98		5.87		2.8	1.4
K02782	C3 alpha, beta subunit	7.43		25.8		20.1		3.5	1.3
M21495	gamma-actin	6.99		32.09		16.95		4.6	1.9
AF181830	⁻ Pleckstrin	1.73		7.61		11.8		4.4	0.6

		GR ^{dim}				Fold ch	ange			GR ^{LysC}	C r e			Fold ch	ange	
ctrl		LPS		dex+LF	PS	<u>LPS</u>	LPS	ctrl		LPS		dex+LF	PS	<u>LPS</u>	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
262.97	РМР	835.23	РРР	776.80	РРР	3.2	1.1	275.85	РМ	740.25	PP	569.85	PP	2.7	1.3	97111_at
1014.63	PPP	11999.57	PPP	12947.97	PPP	11.8	0.9	1884.85	PP	14647.95	PP	11433.95	PP	7.8	1.3	98988_at
216.83	РРР	586.20	РРР	854.23	РРР	2.7	0.7	163.75	PA	348.95	PA	253.30	PA	2.1	1.4	104206_at
3683.77	РРР	11144.33	РРР	10850.30	РРР	3.0	1.0	3071.15	ΡР	6163.15	ΡР	4140.20	ΡР	2.0	1.5	96501_at
1559.63	РРР	4052.00	РРР	5150.20	PPP	2.6	0.8	1872.10	PP	3993.75	PP	3084.30	PP	2.1	1.3	96778_at
177.03	AAP	1525.03	РРР	2202.67	PPP	8.6	0.7	650.50	PP	1728.60	PP	1241.75	PP	2.7	1.4	98569_at
1592.40	APP	3758.80	РРР	3207.97	РРР	2.4	1.2	1564.65	PA	4208.20	ΡР	3264.30	ΡР	2.7	1.3	104533_at
721.30	РРР	1640.90	РРР	1609.27	РРР	2.3	1.0	1114.95	ΡР	2246.65	PP	1912.70	ΡР	2.0	1.2	103393_at
503.33	AAP	6121.83	PPP	10988.23	PPP	12.2	0.6	1943.15	PP	6215.20	PP	5576.20	PP	3.2	1.1	97740_at
1634.83	PPP	20996.47	PPP	20782.17	PPP	12.8	1.0	2756.00	PP	6761.75	PP	4256.60	PP	2.5	1.6	103446 at

10. 2. 2. Normalised expression of genes/ESTs representing Group 1-A

Acc. Vertects I Name Mum. Image: Comparison of Co		
Mic2768 3-hydroxy-3-methylglutaryl-coenzyme A reductase M62768 3-hydroxy-3-methylglutaryl-coenzyme A reductase AU2159 76 KDa tyrosine phosphoprotein SLP-76 AJ242770 ABINI (A20-binding inhibator of NF-kappa B activation. large) Al44801 Adora2a gene, exon 1 (and joined CDS) U77830 Adrenomedulin L38829 alphaA-crystallin-binding protein 1 (alphaA-CRYBP1) gene L38209 Amigen identified by monoclonal antibody KI 67 AF029216 Antigen identified by monoclonal antibody KI 67 AF029215 Antigen identified by monoclonal antibody MRC OX-2 AJ130975 Ariadne-2 protein M61909 Avian relculeendotheliosis viral (v-rel) oncogene homolog A U09186 B lymphocyte induced maturation protein M642902 B-cell translocation gene 2, anti-proliferative Al44800 Borg4 gene D85786 Brain immunological-like wth tyrosine-based motifs M28450 colony stimulating factor, granulocyte M38901 connexin 43 (alpha-1 gap juncton) U88355 Cytokine inducible SH2-containing protein 7 J04103 E28 arian leukemia oncogene 2, 3 domain </th <th>ACC.</th> <th>IGENE/EST NAME</th>	ACC.	IGENE/EST NAME
machanism Trigunosy-interplanal prototing Interferences U20159 76 kob syrosine phosphoprotein SLP-76 Al242778 ABINI (A20-binding inhibitor of NF-kappa B activation. large) Al44401 Adora2a gene, exon 1 (and joined CDS) U77630 Adrenomedullin L38229 alphaA-crystallin-binding protein 1 (alphaA-CRYBP1) gene L03200 Amino acid transporter, cationi 2 (low affinity) X82786 Antigen identified by monoclonal antibody KI 67 Artigen identified by monoclonal antibody MRC OX-2 Al130975 Antigen identified by monoclonal antibody MRC OX-2 Al130976 Antigen identified by monoclonal antibody MRC OX-2 Al130976 Bymphocyte induced maturation protein Bini munuclogical-like with tyrosine-based motifs M61909 Avian reticuloendotheliosis viral (v-rel) oncogene homolog A U08185 Bymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al184400 Gorg4 gene D08765 Bini immunological-like with tyrosine-based motifs M2801 connexin 43 (alpha-1 gap junction) U8825 Cytokine inducbie SH2-coratining protein 7 <	M62766	3 hydroxy 3 mathylalutani coonzyma A reductasa
Octors Procession AL242778 ABIN (A20-binding inhibitor of NF-kappa B activation. large) AldeAse0 Adara2a gene, exon (and joined CDS) U77630 Adrenomedullin L38829 alphaA-crystallin-binding protein I (alphaA-CRYBP1) gene L03290 Amino acid transporter, cationic 2 (low affinity) X82786 Antigen identified by monoclonal antibody Ki 67 AF029215 Antigen identified by monoclonal antibody Ki 07 AJ130975 Ariadne-2 protein M61909 Avian reticuleendotheliosis viral (v-rel) oncogene homolog A U08186 B ymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al444006 Borg4 gene D85785 Brain immunological-like with tyrosine-based motifs M26071 Coegulation factor III M13926 Colony stimulating factor, granulocyte M38301 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28925 Early growth response 1 X70764 ELKL motif kinase </td <td>1/20150</td> <td></td>	1/20150	
A222.78 Activi (Accoording Initiator of NP-Adple 8 activation. large) Al644801 Adora2a gene, exon 1 (and joined CDS) U77630 Actenomedulin L36829 alphaA-crystallin-binding protein 1 (alphaA-CRYBP1) gene L03290 Amino acid transporter, cationic 2 (low affinity) X82786 Antigen identified by monoclonal antibody KI 67 AF029215 Antigen identified by monoclonal antibody MRC OX-2 AJ130975 Ariadne-2 protein M61909 Avian reticuloendotheliosis viral (v-rel) oncogene homolog A U08185 B ymphocyte induced maturation protein M64202 B-cell translocation gene 2, anti-proliferative Al444006 Borg4 gene D95795 Brain immunological-like with tyrosine-based motifs M282071 Coagulation factor III M19326 Colony stimulating factor, granulocyte M83081 convexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukernia oncogene 2, 3 domain M28455 Early growth response 1 X70764 ELKL motif kinase D97891 eRF1 X6107128 Fos-like antigen 1	020159	A RINI (400 bis/ing iskibiling of NE lenge D setimation lenge)
Alor42a gene, exon 1 (and joined CUS) U77830 Adrenomedullin L36829 alphaA-crystallin-binding protein I (alphaA-CRYBP1) gene L30320 Amino acid transporter, cationic 2 (low affinity) X82786 Antigen identified by monoclonal antibody Ki 67 AF029215 Antigen identified by monoclonal antibody MRC OX-2 AJ130975 Arian reticuloendotheliosis viral (v-rel) oncogene homolog A U08185 B ymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al844806 Borg4 gene D95785 Brain immunological-like with tyrosine-based motifs M20011 Coagulation factor III M1992 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28484 Entry growth response 1 X70764 ELKL motif kinase D97895 Fos- inke antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73896 GNr-1 U05255 Gycoprotein 49 B J04596	AJ242778	
U7/530 Adrenomedulin 136829 alphaA-crystallin-binding protein 1 (alphaA-CRYBP1) gene U03290 Arnion acid transporter, cationic 2 (tow affinity) X82786 Antigen identified by monoclonal antibody Ki 67 AF029215 Antigen identified by monoclonal antibody Ki 67 AF029215 Ariadne-2 protein M61909 Avian reticuloendotheliosis viral (v-rel) oncogene homolog A U08185 B lymphocyte induced maturation protein M64202 B-cell translocation gene 2, anti-proliferative Alla4486 Borg4 gene U08195 Brain immunological-like with tyrosine-based motifs M62071 Coegulation factor III M13926 Colory stimulating factor, granulocyte M63901 connexin 43 (alpha-1 gap junction) U88355 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28454 Early growth response 1 X70764 ELKL motif kinase D97691 eRF1 X81389 Fos-like antigen 1 Y1166 gene encoding hexokinase II, exon 1 (and joined CDS) M73896 Glv-1 U05255 Gycoprotein 49 B J04596 GRO1 oncogene J04596 GRO1 oncogene J04596 GRO1	A1644801	Adoraza gene, exon 1 (and joined CDS)
L39829 alphaA-crystalin-binding protein ((alphaA-CrYBP)) gene L03290 Amino acid transporter, cationic 2 (low affinity) X82786 Antigen identified by monoclonal antibody Ki 67 AF029215 Antigen identified by monoclonal antibody MRC OX-2 Al130975 Ariadne-2 protein M61909 Avian reticuloendotheliosis viral (v-rel) oncogene homolog A U08185 B lymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al844806 Borg4 gene D95785 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M19926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28454 Early growth response 1 X70764 ELKL motif kinase D87691 eRF1 X81399 F52 mRNA a novel protein Z19532 follistatin Afort112 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M736	077630	
L03290 Amino acid transporter, catonic 2 (low attinity) X82786 Antigen identified by monoclonal antibody Ki 67 AF028215 Antigen identified by monoclonal antibody MRC OX-2 AJ130975 Arian reticuloendotheliosis viral (v-rel) oncogene homolog A U08185 B tymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al844806 Borg4 gene D85785 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28445 Early growth response 1 X70764 ELKL motif kinase D87781 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF017128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73966 Giv-1 U05265 Giycoprotein 49 B J04596 GRO1 oncogene	L36829	alphaA-crystallin-binding protein I (alphaA-CRYBP1) gene
X82786 Antigen identified by monoclonal antibody Ki 67 AF029215 Antigen identified by monoclonal antibody MRC 0X-2 AJ130975 Ariadne-2 protein M61909 Avian reticuloendotheliosis viral (v-rel) oncogene homolog A U09195 B lymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative AI844806 Borg4 gene D85765 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte consxin 43 (alpha-1 gap junction) consxin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E28 avian leukemia oncogene 2, 3 domain M28445 Early growth response 1 X70764 ELKL motif kinase D87691 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF0171128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 GRV-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U105516 GTP binding protein (gene overexpressed in skeletal muscle) <t< td=""><td>L03290</td><td>Amino acid transporter, cationic 2 (low affinity)</td></t<>	L03290	Amino acid transporter, cationic 2 (low affinity)
AF028215 Antigen identified by monoclonal antibody MRC 0X-2 AJ130975 Ariadne-2 protein M61909 Avian reticuloendotheliosis viral (v-rel) oncogene homolog A U08186 B lymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al184806 Borg4 gene D85785 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E28 avian leukemia oncogene 2, 3 domain M28074 ELKL motif kinase D87891 eRF1 X70764 ELKL motif kinase D87891 folistatin AF017128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73996 Giv-1 U05255 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10556 GPC volovdrolase 1 U10576 GTP binding pr	X82786	Antigen identified by monoclonal antibody Ki 67
AJ130975 Ariadne-2 protein M61909 Avian reticuloendotheliosis viral (v-rel) oncogene homolog A U08185 B lymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al44806 Borg4 gene D85785 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88382 Evaluation inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28045 Early growth response 1 X70764 ELKL motif kinase D87691 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF017128 Fos-like antigen 1 Y11166 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 Giv-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) U05674	AF029215	Antigen identified by monoclonal antibody MRC OX-2
M61909 Avian reticuloendotheliosis viral (v-rel) oncogene homolog A U00185 B Jymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al844806 Borg4 gene D85785 Brain immunological-like with tyrosine-based motifs M6001 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M8845 Early growth response 1 X70764 ELKL motif kinase D87691 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF017122 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 GIv-r1 U05265 Giscoprotein 49 B J04596 GR01 oncogene M59821 growth factor-inducible protein (pip92) U105265 GIP cyclohydrolase 1	AJ130975	Ariadne-2 protein
U08186 B lymphocyte induced maturation protein M64292 B-cell translocation gene 2, anti-proliferative Al844806 Borg4 gene D85785 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28455 Early growth response 1 X70764 ELKL motif kinase D87691 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF017128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 Giv-1 U05265 Giycoprotein 49 B J04596 GR01 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle)	M61909	Avian reticuloendotheliosis viral (v-rel) oncogene homolog A
M64292 B-cell translocation gene 2, anti-proliferative Al844806 Borg4 gene D85785 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28845 Early growth response 1 X70764 ELKL motif kinase D97691 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF017128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 Glv-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M598211 growth factor-inducible protein (pip92) U105511 GTP binding protein (gene overexpressed in skeletal muscle)	U08185	B lymphocyte induced maturation protein
Al844806 Borg4 gene D85785 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28945 Early growth response 1 X70764 ELKL motif kinase D87691 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF017128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 Givr-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle)	M64292	B-cell translocation gene 2, anti-proliferative
D85785 Brain immunological-like with tyrosine-based motifs M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28845 Early growth response 1 X70764 ELKL motif kinase D87691 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF017128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 GIv-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP evclohydrolase 1	AI844806	Borg4 gene
M26071 Coagulation factor III M13926 Colony stimulating factor, granulocyte M63801 connexin 43 (alpha-1 gap junction) U88325 Cytokine inducible SH2-containing protein 7 J04103 E26 avian leukemia oncogene 2, 3 domain M28845 Early growth response 1 X70764 ELKL motif kinase D87691 eRF1 X61399 F52 mRNA a novel protein Z29532 follistatin AF017128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 Glvr-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP cyclohydrolase 1	D85785	Brain immunological-like with tyrosine-based motifs
M13926Colony stimulating factor, granulocyteM63801connexin 43 (alpha-1 gap junction)U88325Cytokine inducible SH2-containing protein 7J04103E26 avian leukemia oncogene 2, 3 domainM28845Early growth response 1X70764ELKL motif kinaseD87691eRF1X61399F52 mRNA a novel proteinZ29532follistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GRC1 oncogeneM59821growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L09737GTP cyclohydrolase 1	M26071	Coagulation factor III
M63801connexin 43 (alpha-1 gap junction)U88325Cytokine inducible SH2-containing protein 7J04103E26 avian leukemia oncogene 2, 3 domainM28845Early growth response 1X70764ELKL motif kinaseD87691eRF1X61399F52 mRNA a novel proteinZ29532follistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GRO1 oncogeneM59821growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L09737GTP cyclohydrolase 1	M13926	Colony stimulating factor, granulocyte
U88325Cytokine inducible SH2-containing protein 7J04103E26 avian leukemia oncogene 2, 3 domainM28845Early growth response 1X70764ELKL motif kinaseD87691eRF1X61399F52 mRNA a novel proteinZ29532follistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GRO1 oncogeneM598211growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L09737GTP cyclohydrolase 1	M63801	connexin 43 (alpha-1 gap junction)
J04103E26 avian leukemia oncogene 2, 3 domainM28845Early growth response 1X70764ELKL motif kinaseD87691eRF1X61399F52 mRNA a novel proteinZ29532follistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GR01 oncogeneM598211growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L09737GTP cyclohydrolase 1	U88325	Cytokine inducible SH2-containing protein 7
M28845Early growth response 1X70764ELKL motif kinaseD87691eRF1X61399F52 mRNA a novel proteinZ29532folistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GRO1 oncogeneM598211growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L097377GTP cyclohydrolase 1	J04103	E26 avian leukemia oncogene 2, 3 domain
X70764ELKL motif kinaseD87691eRF1X61399F52 mRNA a novel proteinZ29532follistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GRO1 oncogeneM59821growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L09737GTP cyclohydrolase 1	M28845	Early growth response 1
D87691eRF1X61399F52 mRNA a novel proteinZ29532follistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GRO1 oncogeneM59821growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L09737GTP cyclohydrolase 1	X70764	ELKL motif kinase
X61399F52 mRNA a novel proteinZ29532follistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GRO1 oncogeneM59821growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L09737GTP cyclohydrolase 1	D87691	eRF1
Z29532follistatinAF017128Fos-like antigen 1Y11666gene encoding hexokinase II, exon 1 (and joined CDS)M73696Glvr-1U05265Glycoprotein 49 BJ04596GRO1 oncogeneM59821growth factor-inducible protein (pip92)U10551GTP binding protein (gene overexpressed in skeletal muscle)L09737GTP cyclohydrolase 1	X61399	F52 mRNA a novel protein
AF017128 Fos-like antigen 1 Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 Glvr-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP cyclohydrolase 1	Z29532	follistatin
Y11666 gene encoding hexokinase II, exon 1 (and joined CDS) M73696 Glvr-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP cyclohydrolase 1	AF017128	Fos-like antigen 1
M73696 Glvr-1 U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP cyclohydrolase 1	Y11666	gene encoding hexokinase II, exon 1 (and joined CDS)
U05265 Glycoprotein 49 B J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP cyclohydrolase 1	M73696	Glvr-1
J04596 GRO1 oncogene M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP cyclohydrolase 1	U05265	Glycoprotein 49 B
M59821 growth factor-inducible protein (pip92) U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP cyclohydrolase 1	J04596	GR01 oncogene
U10551 GTP binding protein (gene overexpressed in skeletal muscle) L09737 GTP cvclohvdrolase 1	M59821	growth factor-inducible protein (pip92)
L09737 GTP cvclohvdrolase 1	U10551	GTP binding protein (gene overexpressed in skeletal muscle)
	L09737	GTP cvclohvdrolase 1
U23778 hematopojetic-specific early-response A1-b protein (A1b) gene	U23778	hematopoietic-specific early-response A1-b protein (A1b) gene
U23781 hematopoietic-specific early-response A1-d protein (A1d) gene	U23781	hematopojetic-specific early-response A1-d protein (A1d) gene
X57437 Histidine decarboxylase cluster	X57437	Histidine decarboxylase cluster
U57524 I kappa B alpha gene, exons 2-6	U57524	I kappa B alpha gene, exons 2-6

-

	wild t	уре			GR ^{dim}	I			G R L y s i	Cre		
	<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
1411.70	0.16	0.45	0.39	1021.73	0.20	0.42	0.38	804.35	0.19	0.51	0.30	104285_at
19284.55	0.14	0.50	0.36	17281.63	0.13	0.44	0.44	13418.75	0.21	0.41	0.38	102957_at
20285.45	0.12	0.58	0.30	28794.30	0.10	0.40	0.50	30764.60	0.14	0.48	0.38	104755_at
14119.80	0.13	0.36	0.51	12975.50	0.13	0.49	0.38	9703.20	0.14	0.48	0.38	101363_at
4983.95	0.02	0.42	0.56	2625.80	0.03	0.50	0.47	1140.20	0.08	0.60	0.32	102798_at
950.65	0.16	0.39	0.45	944.97	0.17	0.40	0.43	689.95	0.16	0.47	0.37	92908_at
42047.30	0.12	0.57	0.31	36360.63	0.09	0.38	0.53	29841.05	0.18	0.49	0.33	92736_at
15225.10	0.04	0.47	0.49	13820.20	0.03	0.45	0.53	12192.55	0.05	0.39	0.57	99457_at
1620.50	0.19	0.44	0.37	1178.27	0.18	0.59	0.23	3451.10	0.16	0.49	0.34	101851_at
1018.80	0.10	0.56	0.34	1417.57	0.15	0.40	0.44	1128.20	0.19	0.42	0.39	95600_at
31964.60	0.21	0.44	0.34	32200.73	0.19	0.44	0.37	29076.20	0.21	0.45	0.35	97813_at
2965.35	0.17	0.41	0.42	3644.50	0.13	0.40	0.47	4918.60	0.16	0.41	0.43	92904_at
23247.55	0.17	0.47	0.37	23756.50	0.14	0.52	0.34	27862.40	0.17	0.38	0.46	101583_at
2845.20	0.16	0.39	0.45	3707.13	0.09	0.30	0.60	4781.05	0.14	0.42	0.45	94036_at
2118.00	0.13	0.57	0.30	2823.90	0.13	0.47	0.40	4481.20	0.22	0.52	0.26	95804 <u>g</u> at
16457.75	0.01	0.60	0.39	8293.10	0.05	0.48	0.46	10930.00	0.04	0.56	0.39	97689_at
16742.75	0.02	0.56	0.43	14234.17	0.01	0.51	0.48	14169.85	0.04	0.55	0.41	94142_at
3624.50	0.04	0.51	0.45	4791.53	0.06	0.30	0.64	8004.85	0.10	0.49	0.41	100064_f_at
1808.85	0.06	0.57	0.37	1722.00	0.06	0.51	0.43	3477.15	0.09	0.46	0.44	92832_at
44661.40	0.06	0.53	0.41	47921.83	0.06	0.44	0.50	43971.75	0.09	0.50	0.41	94246_at
6041.90	0.06	0.42	0.52	6091.27	0.11	0.57	0.32	7324.35	0.09	0.48	0.44	98579_at
12385.70	0.16	0.38	0.47	11045.83	0.21	0.42	0.38	10074.80	0.15	0.37	0.48	99458_i_at
18768.00	0.18	0.52	0.30	16803.33	0.16	0.38	0.46	17592.90	0.20	0.47	0.34	160451_at
44554.10	0.05	0.47	0.48	49363.40	0.06	0.49	0.45	41145.70	0.10	0.49	0.41	97203_at
2601.95	0.10	0.59	0.31	885.97	0.09	0.39	0.52	5782.15	0.11	0.48	0.41	98817_at
725.55	0.07	0.53	0.40	1417.00	0.10	0.50	0.41	971.10	0.09	0.55	0.35	99835_at
2537.00	0.07	0.55	0.37	3233.37	0.19	0.41	0.40	2945.70	0.19	0.51	0.30	94375_at
9206.20	0.14	0.57	0.29	5826.00	0.16	0.53	0.31	12778.40	0.13	0.49	0.38	103065 at
28429.85	0.19	0.54	0.27	38237.37	0.18	0.41	0.41	34225.45	0.21	0.46	0.33	92217 sat
93892.90	0.07	0.60	0.33	115652.57	0.06	0.49	0.45	135474.00	0.15	0.42	0.43	95349 g at
6406.75	0.10	0.37	0.53	5927.40	0.18	0.46	0.36	4053.95	0.19	0.46	0.35	99109 at
4016.90	0.03	0.58	0.39	2285.40	0.05	0.39	0.57	3789.45	0.05	0.50	0.44	92534 at
7211.25	0.14	0.53	0.33	8963.67	0.13	0.44	0.44	10530.80	0.15	0.48	0.37	102313 at
46247 15	0.09	0.51	0.40	48238 20	0.08	0 4 9	0.43	40761 65	0 13	0 4 8	0.38	102914 s at
68534.90	0.11	0.55	0.33	74887 23	0.11	0.48	0.41	70410.35	0.17	0 44	0.40	93869 s at
6452 50	0.06	0.55	0.39	7660.90	0.08	0.38	0.55	8249.65	0.05	0.61	0.34	93328 at
13037.80	0.09	0.56	0.35	12293.30	0.12	0.40	0.48	10310.65	0.11	0.46	0.43	101554 at

_	
Acc.	Gene/EST Name
NUM.	
U19799	IkB-beta
L38281	Immunoresponsive gene 1
U14135	Integrin alpha V (Cd51)
M90551	Intercellular adhesion molecule
M14639	Interleukin 1 alpha
AV152244	ISG15 gene
AB024717	macrophage C-type lectin Mincle
AB033887	mACS4 variant2 mRNA Acyl-CoA synthetase 4 variant2
Y15163	mrg1 protein
X62700	muPAR1 mRNA
X54149	Myeloid differentiation primary response gene 118
AF073882	myotubularin related protein 7
AW047899	NF-kappaB subunit p100 (Nfkb2)
M57999	Nuclear factor of kappa light chain gene enhancer in B-cells 1, p105
X87128	p75 TNF receptor DNA
AI060798	PGES prostaglandin E synthase
AF020313	proline-rich protein 48
D83484	protein tyrosine phosphatase epsilon
AF030185	putative beta chemokine receptor (E01)
AW047476	Putative purine nucleotide binding protein
AI852608	RNA 3'-terminal phosphate cyclase like protein (rcl1 gene)
AF099973	schlafen2 (Slfn2)
D78188	SCID complementing gene 2
U10531	Ski/sno related
J04491	Small inducible cytokine A3
U88328	suppressor of cytokine signalling-3 (SOCS-3)
L35302	Tnf receptor-associated factor 1
D78141	Tnf receptor-associated factor 5
X70956	TOP gene topoisomerase I, exons 19-21
U59864	TRAF-interacting protein I-TRAF
X62940	Transming growth factor beta 1 induced transcript 4
L15435	Tumor necrosis factor (ligand) superfamily, member 9
L24118	Tumor necrosis factor induced protein 2
M83312	Tumor necrosis factor receptor superfamily, member 5
AI854821	U8 gene
AB030505	UBE-1c1, UBE-1c2, UBE-1c3
X14678	Zinc finger protein 36

	wild t	уре			GR ^{dim}			G R ^{LysCre}				
	<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
19289.20	0.16	0.48	0.36	30852.07	0.13	0.42	0.45	21971.75	0.17	0.47	0.36	99982_at
19714.20	0.03	0.58	0.40	21348.67	0.02	0.48	0.49	15562.60	0.05	0.49	0.46	98774_at
564.50	0.21	0.48	0.31	604.70	0.14	0.41	0.45	516.90	0.11	0.62	0.27	98366_at
18475.10	0.17	0.44	0.39	19827.37	0.11	0.39	0.50	19279.45	0.17	0.48	0.36	96752_at
112729.25	0.04	0.60	0.36	110184.90	0.04	0.49	0.47	132973.15	0.12	0.46	0.42	94755_at
4797.70	0.03	0.56	0.41	5078.53	0.02	0.57	0.41	1570.45	0.12	0.62	0.25	161511_f_at
31317.50	0.09	0.54	0.36	30071.50	0.14	0.49	0.37	35226.05	0.18	0.49	0.33	96551_at
1926.20	0.22	0.51	0.27	1431.80	0.13	0.31	0.56	2009.00	0.22	0.46	0.31	104017_at
13231.55	0.07	0.52	0.40	7699.10	0.13	0.43	0.44	10439.85	0.12	0.50	0.38	101973_at
9810.55	0.12	0.44	0.45	16122.47	0.13	0.46	0.41	9132.95	0.15	0.49	0.36	102663_at
25190.15	0.07	0.57	0.37	36591.87	0.05	0.49	0.46	40285.05	0.17	0.49	0.34	102779_at
1120.35	0.08	0.61	0.31	1191.10	0.07	0.40	0.53	744.30	0.10	0.59	0.31	103228_at
12522.90	0.12	0.54	0.34	19526.63	0.11	0.48	0.41	15850.00	0.13	0.53	0.34	103614_at
76395.40	0.13	0.54	0.32	100250.63	0.14	0.46	0.39	79009.80	0.19	0.45	0.36	98427_s_at
96241.90	0.13	0.56	0.31	81956.43	0.15	0.43	0.42	92056.90	0.17	0.48	0.34	94928_at
33779.85	0.17	0.50	0.33	42648.13	0.12	0.47	0.41	50063.45	0.21	0.43	0.36	104406_at
26638.30	0.17	0.49	0.34	34790.53	0.22	0.47	0.31	28865.90	0.18	0.44	0.37	102710_at
21564.50	0.16	0.50	0.34	19482.60	0.16	0.44	0.40	21206.65	0.18	0.52	0.29	101932_at
49385.60	0.02	0.61	0.36	38967.63	0.04	0.48	0.48	28589.75	0.05	0.56	0.39	93617_at
10736.55	0.17	0.55	0.29	19290.00	0.09	0.44	0.47	16106.75	0.19	0.49	0.32	103202_at
14488.50	0.06	0.42	0.52	13291.93	0.08	0.36	0.56	14014.15	0.15	0.52	0.33	98923_at
154387.30	0.20	0.44	0.36	170478.20	0.10	0.43	0.47	147012.25	0.15	0.44	0.41	92471_i_at
28134.00	0.24	0.49	0.26	34079.53	0.24	0.50	0.26	36272.95	0.20	0.48	0.32	160468_at
1501.75	0.06	0.60	0.34	1300.10	0.12	0.33	0.56	1792.25	0.10	0.61	0.29	94752_s_at
89603.10	0.02	0.58	0.40	92728.03	0.02	0.45	0.53	109911.40	0.07	0.53	0.40	102424_at
22744.15	0.03	0.59	0.38	37870.37	0.04	0.49	0.47	22981.35	0.07	0.55	0.38	92232_at
13866.50	0.06	0.54	0.40	12929.20	0.06	0.51	0.43	21500.85	0.11	0.53	0.36	94186_at
13230.25	0.18	0.42	0.41	11717.57	0.20	0.42	0.38	12122.00	0.19	0.50	0.31	103255 at
26767.25	0.11	0.51	0.38	29775.40	0.18	0.41	0.41	35691.55	0.14	0.49	0.38	95694 at
16276.30	0.13	0.54	0.32	13932.97	0.14	0.40	0.46	19752.85	0.20	0.46	0.35	103328 at
9908.15	0.05	0.41	0.54	7547.67	0.07	0.63	0.30	9271.45	0.03	0.48	0.48	93728 at
41096.90	0.01	0.46	0.54	44415.27	0.01	0.45	0.54	12606.35	0.02	0.48	0.51	92415 at
75197.65	0.08	0.54	0.38	86492.27	0.08	0.52	0.40	65539.55	0.14	0.48	0.37	160489 at
5013 15	0 10	0.56	0.34	10489 83	0.08	0.61	0.32	6442 45	0 15	0.53	0.32	92962 at
12559.80	0.18	0.54	0.28	13186 27	0.15	0.42	0.43	15919.40	0.20	0.47	0.32	160171 f at
9588 55	0.15	0.56	0.20	6647.93	0.19	0.47	0.35	9418 20	0.17	0.47	0.36	99592 f at
10232.25	0.13	0.53	0.34	10864.67	0.15	0.50	0.35	15362.65	0.16	0.49	0.35	92830 s at

_	
Acc.	Gene/EST Name
Num.	mm06a12 v1 Mus musaulus aDNA_2 and
AI323007	
AA168418	
AI592541	ms93710.y1 Mus musculus cDINA, 5 end
AA204579	mt84d11.r1 Mus musculus cDNA, 5 end
AV138783	
AV374591	Mus musculus cDNA, 3 end
C78513	Mus musculus cDNA, 3 end
AV374868	Mus musculus cDNA, 3 end
C76063	Mus musculus cDNA, 3 end
AV309347	Mus musculus cDNA, 3 end
AV341518	Mus musculus cDNA, 3 end
AA959291	ua14g10.r1 Mus musculus cDNA, 5 end
AI006319	ua70b05.r1 Mus musculus cDNA, 5 end
AA833425	ub58d03.r1 Mus musculus cDNA, 5 end
AA960466	ub58f11.s1 Mus musculus cDNA, 3 end
AI462105	ub70b01.x1 Mus musculus cDNA, 3 end
AI642048	ub75b05.x1 Mus musculus cDNA, 3 end
AI286698	ub84b09.r1 Mus musculus cDNA, 5 end
AI837100	UI-M-AK0-adc-d-02-0-UI.s1 Mus musculus cDNA, 3 end
AI846304	UI-M-AK1-aez-g-06-0-UI.s1 Mus musculus cDNA, 3 end
AI837543	UI-M-AL0-abs-d-04-0-UI.s1 Mus musculus cDNA, 3 end
AI844128	UI-M-AL1-ahj-d-06-0-UI.s1 Mus musculus cDNA, 3 end
AI840446	UI-M-AN0-aci-b-05-0-UI.s1 Mus musculus cDNA, 3 end
AI845886	UI-M-AO1-aeg-h-09-0-UI.s1 Mus musculus cDNA, 3 end
AI852645	UI-M-BH0-aiu-h-04-0-UI.s1 Mus musculus cDNA, 3 end
AI852144	UI-M-BH0-ajb-e-09-0-UI.s1 Mus musculus cDNA, 3 end
AI854506	UI-M-BH0-ajj-b-09-0-UI.s1 Mus musculus cDNA, 3 end
AI853712	UI-M-BH0-ajq-d-05-0-UI.s1 Mus musculus cDNA, 3 end
AW046627	UI-M-BH1-ald-c-09-0-UI.s1 Mus musculus cDNA, 3 end
AW047023	UI-M-BH1-alp-h-11-0-UI.s1 Mus musculus cDNA, 3 end
AW047811	UI-M-BH1-als-a-04-0-UI.s1 Mus musculus cDNA, 3 end
AW048937	UI-M-BH1-amo-d-08-0-UI.s1 Mus musculus cDNA, 3 end
AW049031	UI-M-BH1-amp-g-08-0-UI.s1 Mus musculus cDNA, 3 end
AW124934	UI-M-BH2.1-apu-q-11-0-UI.s1 Mus musculus cDNA. 3 end
AW123514	UI-M-BH2.1-agb-c-04-0-UI.s1 Mus musculus cDNA, 3 end
AW215863	up02c11.x1 Mus musculus cDNA. 3 end
AA259683	va36d09.r1 Mus musculus cDNA. 5 end

-

	wild t	уре			GR ^{dim}			G R ^{LysCre}				
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
88701.75	0.06	0.52	0.42	91131.50	0.07	0.47	0.46	80310.65	0.09	0.50	0.41	98773_s_at
1160.25	0.15	0.46	0.39	1293.33	0.14	0.39	0.47	1613.35	0.20	0.42	0.37	93462_at
4526.50	0.12	0.58	0.30	3828.00	0.08	0.54	0.38	4996.45	0.16	0.48	0.36	103691_at
2620.75	0.12	0.56	0.32	5763.27	0.02	0.55	0.43	350.60	0.54	0.14	0.32	104177_at
42092.95	0.09	0.56	0.35	55110.87	0.07	0.48	0.45	61898.65	0.15	0.49	0.36	161666_f_at
6085.85	0.01	0.57	0.42	6198.50	0.03	0.53	0.44	5390.10	0.05	0.45	0.49	161903_f_at
10363.40	0.02	0.60	0.38	17222.57	0.02	0.53	0.45	8067.35	0.04	0.59	0.37	97693_at
50718.95	0.05	0.52	0.43	62116.77	0.06	0.49	0.45	51852.00	0.10	0.48	0.42	162206_f_at
1986.35	0.09	0.52	0.39	2355.13	0.13	0.52	0.35	1334.85	0.21	0.48	0.31	95848_at
7588.80	0.09	0.37	0.54	8236.20	0.07	0.45	0.49	7296.50	0.06	0.37	0.57	161931_r_at
3849.20	0.18	0.51	0.32	2598.73	0.16	0.42	0.42	5673.00	0.18	0.47	0.35	162095_f_at
2019.25	0.14	0.49	0.37	1839.80	0.17	0.50	0.33	1780.20	0.16	0.37	0.47	99874_at
5786.40	0.16	0.51	0.33	6341.67	0.16	0.41	0.43	6350.50	0.21	0.44	0.34	94980 at
15022.40	0.16	0.50	0.34	17740.37	0.18	0.47	0.35	17907.10	0.18	0.43	0.39	96135 at
6077.50	0.20	0.47	0.34	9240.23	0.18	0.45	0.38	6600.50	0.22	0.44	0.34	 104152 at
7261.20	0.13	0.54	0.33	5850.53	0.12	0.30	0.58	5891.95	0.17	0.44	0.39	94963 at
47012.55	0.09	0.46	0.44	50584.00	0.11	0.43	0.46	45293.15	0.14	0.45	0.41	 104149 at
29993.75	0.17	0.41	0.42	45583.23	0.11	0.39	0.50	32902.60	0.19	0.42	0.39	99992 at
6959.85	0.10	0.50	0.41	19544.07	0.05	0.47	0.47	8059.30	0.17	0.53	0.30	103040 at
3749.90	0.14	0.47	0.40	3443.87	0.17	0.41	0.42	3209.90	0.18	0.41	0.41	161073 at
1299.25	0.17	0.40	0.43	1402 43	0.11	0.52	0.37	1603.70	0.14	0.51	0.34	98778 at
11081.15	0.12	0.43	0.45	12953.07	0.12	0.47	0.41	12094.85	0.20	0.46	0.34	96930 at
2005 85	0.17	0.52	0.31	1605 57	0.18	0.38	0 44	3695.05	0.11	0.52	0.37	160708 at
17465.80	0.17	0.45	0.38	16042.33	0.17	0.40	0.43	16981 55	0.20	0.02	0.36	98608 at
1290.85	0.18	0.46	0.36	1508 70	0.13	0.49	0.38	2179.60	0.18	0.49	0.33	101372 at
20424 70	0.10	0.49	0.36	19394 30	0.10	0.40	0.00	16329 70	0.20	0.45	0.00	94461 at
61/6 20	0.14	0.40	0.34	11322.57	0.14	0.40	0.37	6764 30	0.08	0.55	0.36	96206_at
4130.65	0.10	0.46	0.44	3600.83	0.10	0.50	0.36	2645 15	0.00	0.31	0.56	104645 at
7459.20	0.06	0.47	0.47	3794 30	0.06	0.57	0.37	8891 70	0.07	0.50	0.00	96841 at
31979 10	0.00	0.47	0.32	30066.47	0.00	0.07	0.39	35133 30	0.07	0.46	0.40	96010 at
29020 10	0.21	0.47	0.52	10000.47	0.10	0.40	0.55	10540.70	0.20	0.40	0.30	09012 at
20929.10	0.11	0.34	0.56	19606.43	0.10	0.59	0.45	14624.40	0.20	0.42	0.38	04001_at
23557.60	0.10	0.41	0.49	16060.47	80.0	0.57	0.35	14624.40	0.20	0.41	0.39	94661_at
36823.30	0.24	0.49	0.26	30043.93	0.18	0.43	0.38	35225.75	0.20	0.47	0.33	98083_at
4559.60	0.08	0.46	0.46	5628.57	0.10	0.48	0.42	2697.45	0.19	0.39	0.42	94505_at
1810.85	0.14	0.44	0.42	2169.57	0.15	0.39	0.46	2417.80	0.10	0.53	0.37	96208_at
2247.85	0.09	0.36	0.55	2338.47	0.11	0.43	0.46	937.85	0.10	0.49	0.41	93419_at
1741.40	0.13	0.56	0.32	1813.53	0.09	0.51	0.41	1658.40	0.20	0.49	0.31	95360_at

Acc.	Gene/EST Name
Num.	
AA290180	vb34d04.r1 Mus musculus cDNA, 5 end
AA614971	vo32e09.r1 Mus musculus cDNA, 5 end
AA815845	vp71h06.r1 Mus musculus cDNA, 5 end
AI506285	vq56g05.x1 Mus musculus cDNA, 3 end
AA656775	vr50e03.s1 Mus musculus cDNA, 5 end
AA690218	vr79g01.s1 Mus musculus cDNA, 5 end
AA764261	vv49f08.r1 Mus musculus cDNA, 5 end
AA738776	vv67d07.r1 Mus musculus cDNA, 5 end
AI642662	vw01d07.x1 Mus musculus cDNA, 3 end
AA959954	vw53a09.s1 Mus musculus cDNA, 3 end
D37837	65 kDa cytosolic protein
U19463	A20 protein
X75926	ABC1 transporter
K02782	C3 alpha, beta subunit
M21495	gamma-actin
AF181830	Pleckstrin

	wild t	уре			GR ^{dim}	1			G R ^{L y s}	Cre		
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	LPS	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
1882.90	0.16	0.50	0.34	1875.00	0.14	0.45	0.41	1585.95	0.17	0.47	0.36	97111_at
29127.55	0.02	0.57	0.41	25962.17	0.04	0.46	0.50	27966.75	0.07	0.52	0.41	98988_at
1340.25	0.18	0.47	0.35	1657.27	0.13	0.35	0.52	766.00	0.21	0.46	0.33	104206_at
42503.35	0.14	0.34	0.52	25678.40	0.14	0.43	0.42	13374.50	0.23	0.46	0.31	96501_at
9983.90	0.14	0.39	0.47	10761.83	0.14	0.38	0.48	8950.15	0.21	0.45	0.34	96778_at
5990.05	0.07	0.43	0.50	3904.73	0.05	0.39	0.56	3620.85	0.18	0.48	0.34	98569_at
12199.05	0.18	0.49	0.32	8559.17	0.19	0.44	0.37	9037.15	0.17	0.47	0.36	104533_at
3310.35	0.16	0.47	0.38	3971.47	0.18	0.41	0.41	5274.30	0.21	0.43	0.36	103393_at
13595.70	0.04	0.42	0.54	17613.40	0.03	0.35	0.62	13734.55	0.14	0.45	0.41	97740_at
32819.50	0.05	0.41	0.53	43413.47	0.04	0.48	0.48	13774.35	0.20	0.49	0.31	103446_at
13.26	0.17	0.51	0.32									
176.73	0.08	0.49	0.43									
16.75	0.17	0.48	0.35									
53.33	0.14	0.48	0.38									
56.03	0.12	0.57	0.30									
21.14	0.08	0.36	0.56									

10. 3. GROUP 1-B

		wild t	уре			GR dim				GR ^{LysCre}			
	ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		
Sum:	5.75	31.03	10.23	Sum:	4.88	22.18	19.94	Sum:	6.59	23.03	17.39		
Mean:	0.12	0.66	0.22	Mean:	0.10	0.47	0.42	Mean:	0.14	0.49	0.37		
StDev:	0.07	0.09	0.06	StDev:	0.06	0.07	0.08	StDev:	0.06	0.07	0.08		
Fold chan	ge (LPS/cti	rl)	5.4	Fold char	nge (LPS/c	trl)	4.5	Fold chan	nge (LPS/ctrl) 3.5				
Fold chan	ge (LPS/de	ex+LPS)	3.0	Fold char	nge (LPS/d	ex+LPS)	1.1	Fold chan	ige (LPS/d	ex+LPS)	1.3		

10. 3. 1. Expression levels of genes/ESTs representing Group 1-B

				wild ty	/pe			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	<u>LPS</u>	LPS
Num.		AD	AC	AD	AC	AD	AC	ctrl	dex+LPS
U05673	Balb/C clone R13 adenosine receptor subtype mRNA	24.5	AA	1052.05	PP	398.8	PP	42.9	2.6
AF059213	cholesterol 25-hydroxylase mRNA	104.35	AA	2067.4	PP	641.3	PP	19.8	3.2
X78445	Cyp1-b-1 mRNA for cytochrome P450	4890	PP	17777.3	PP	3123.4	ΡР	3.6	5.7
D89613	Cytokine inducible SH2-containing protein	468.15	AA	2284.3	PP	632.3	PP	4.9	3.6
D30782	epiregulin	20.85	AA	12690.2	PP	620.5	PP	>100	20.5
AA182189	Ets-protein Spi-C	406.65	PA	1348.55	PP	436.05	ΡР	3.3	3.1
X14961	Fatty acid binding protein heart 1	206.75	PP	604.05	PP	301.35	ΡР	2.9	2.0
U00937	GADD45 protein (gadd45) gene	4283.1	PP	35013.3	PP	8438.75	PP	8.2	4.1
L32838	germline interleukin 1 receptor antagonist (IL-1rn) gene	21684.1	PP	75172	PP	35693.5	PP	3.5	2.1
M88242	glucocortoid-regulated inflammatory prostaglandin G/H synthase	337.05	PA	29481.3	PP	7016.65	PP	87.5	4.2
X67644	gly96 mRNA	8260.6	PP	35366.7	PP	11560.7	PP	4.3	3.1
L07924	guanine nucleotide dissociation stimulator for a ras-related GTPase	2995.85	PP	8353.7	PP	3533.05	PP	2.8	2.4
X69619	Inhibin beta-A	584.9	MP	11589.7	PP	3939.7	PP	19.8	2.9
AF077861	Inhibitor of DNA binding 2	6011.7	PP	23077.6	PP	7493.3	PP	3.8	3.1
X04725	Insulin I	1426.25	PP	5745.45	PP	1745.75	ΡР	4.0	3.3
M86672	Interleukin 12a	142.6	AA	891.95	PP	263.1	ΡР	6.3	3.4
L16956	Janus kinase 2	2244.95	PP	10135.6	PP	4992.25	ΡР	4.5	2.0
X66473	Matrix metalloproteinase 1	1084.15	PP	5503.8	PP	444.45	ΡР	5.1	12.4
X62502	MIP-1b	230.25	AP	35888.1	ΡР	24462.6	ΡР	>100	1.5
AB026569	MSSP	3417.65	PP	9653.55	PP	3521.2	ΡР	2.8	2.7
M60474	Myristoylated alanine rich protein kinase C substrate	990.55	PP	4823.7	PP	2157.2	ΡР	4.9	2.2
X86000	N-glycan alpha 2,8-sialyltransferase	4723.4	PP	15825	PP	7267.85	ΡР	3.4	2.2
M73748	OTS-8 mRNA	739.55	PP	2195	PP	664.95	ΡР	3.0	3.3
U90926	putative TNF-resistance related protein mRNA	723.3	AA	3539.15	PP	834.35	ΡР	4.9	4.2
M19681	Small inducible cytokine A2	861.95	PA	11712.3	PP	4024.1	ΡР	13.6	2.9
U27267	Small inducible cytokine B subfamily, member 5	2516.35	PP	21524.5	PP	4174.45	ΡР	8.6	5.2
M22998	Solute carrier family 2 (facilitated glucose transporter), member 1	232.75	PA	1678.95	ΡР	587.4	ΡР	7.2	2.9
U44088	TDAG51 (TDAG51) mRNA	40.2	АА	2981.6	PP	763.8	PP	74.2	3.9
U20735	transcription factor junB (junB) gene, 5 region and cds	716.8	PP	4118.5	PP	1659	PP	5.7	2.5
D44464	uridine phosphorylase	252.25	AA	2055.9	PP	744.85	PP	8.2	2.8
M84487	Vascular cell adhesion molecule 1	112.15	AA	2110.15	PP	437.6	PP	18.8	4.8

		GR ^{dim}				Fold ch	ange		GR ^{LysCre}				Fold ch			
ctrl		LPS		dex+LF	PS -	<u>LPS</u>	<u>LPS</u>	ctrl		LPS		dex+LF	s	LPS	<u>LPS</u>	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
110.47	AAP	944.17	PPP	1485.47	PPP	8.5	0.6	325.10	PP	1916.65	PP	1387.80	PP	5.9	1.4	97733_at
901.93	AAP	7928.07	PPP	6854.10	PPP	8.8	1.2	490.55	PA	3362.25	PP	1738.80	PP	6.9	1.9	104509_at
1615.93	PAP	7293.30	PAP	4295.93	PAP	4.5	1.7	8158.40	PP	17267.30	PP	11968.90	PP	2.1	1.4	99979_at
375.27	AAA	2177.97	PPP	1492.07	PPP	5.8	1.5	367.00	PA	1618.65	PP	1091.80	PP	4.4	1.5	100022_at
180.57	AAP	6258.00	PPP	3200.53	PPP	34.7	2.0	132.90	PA	10976.85	PP	8727.70	PP	82.6	1.3	98802_at
262.10	PAP	652.83	PAP	865.40	PPP	2.5	0.8	232.75	AA	583.70	PP	490.65	PP	2.5	1.2	103454_at
125.40	AAP	480.17	PPP	714.17	PPP	3.8	0.7	84.85	AA	342.35	PP	228.80	PP	4.0	1.5	94214_at
3912.87	PPP	20761.87	PPP	18333.63	PPP	5.3	1.1	10079.15	PP	39827.35	PP	26299.85	PP	4.0	1.5	102292_at
16479.77	PPP	59681.37	PPP	53195.00	PPP	3.6	1.1	27167.80	PP	60056.10	ΡР	48697.05	PP	2.2	1.2	93871_at
200.10	AAP	15051.93	PPP	12226.23	PPP	75.2	1.2	1610.60	PP	17450.35	ΡР	16302.20	PP	10.8	1.1	104647_at
6332.23	PPP	26809.87	PPP	24985.63	PPP	4.2	1.1	5987.35	PP	33877.15	ΡР	23024.50	PP	5.7	1.5	94384_at
2673.47	PPP	5919.20	PPP	5560.00	PPP	2.2	1.1	2866.25	PP	11405.70	PP	8642.25	PP	4.0	1.3	100530_at
376.60	AAP	3952.77	PPP	3695.60	PPP	10.5	1.1	1182.50	PP	8966.20	PP	7068.75	PP	7.6	1.3	100277_at
8088.70	PPP	16251.23	PPP	18729.37	PPP	2.0	0.9	8706.65	PP	20571.15	PP	16117.95	PP	2.4	1.3	93013_at
794.50	PPP	6722.47	PPP	3513.40	PPP	8.5	1.9	1731.15	PP	3723.25	PP	3064.50	PP	2.2	1.2	97659_r_at
88.47	AAP	741.10	PPP	512.23	PAA	8.4	1.4	1379.35	PP	6137.60	PP	4109.05	PP	4.4	1.5	100773_at
1841.07	РРР	9687.73	РРР	9124.00	РРР	5.3	1.1	3939.15	PP	8373.85	PP	5956.25	PP	2.1	1.4	101457_at
540.43	РРР	2121.03	РРР	1738.23	PPP	3.9	1.2	2112.80	PA	6896.50	PP	4692.20	ΡР	3.3	1.5	100484_at
135.03	AAP	41623.40	РРР	35773.60	РРР	>100	1.2	3397.60	PP	26442.50	ΡР	20423.90	PP	7.8	1.3	94146_at
1322.20	PAP	5336.63	PPP	4106.00	PPP	4.0	1.3	2395.20	PP	5512.25	PP	4027.20	PP	2.3	1.4	94972_at
1679.40	PPP	5200.60	PPP	5662.97	PPP	3.1	0.9	1564.80	PP	3378.30	PP	3805.30	PP	2.2	0.9	96865_at
4791.87	PPP	12622.47	PPP	6378.53	PPP	2.6	2.0	6609.50	PP	15890.55	PP	11088.45	PP	2.4	1.4	102318_at
470.87	PPP	982.30	PPP	763.33	PPP	2.1	1.3	638.45	PP	1334.10	PP	836.10	PP	2.1	1.6	104469_at
716.00	MAM	3046.27	PPP	1847.77	PPP	4.3	1.6	2939.65	PP	12115.45	PP	5911.55	PP	4.1	2.0	100717_at
603.97	PAP	7705.83	PPP	14460.07	PPP	12.8	0.5	3232.05	PP	9796.50	PP	4012.70	PP	3.0	2.4	102736_at
2868.93	PAP	10644.40	PPP	8354.63	PPP	3.7	1.3	12302.60	PP	25242.00	PP	22028.15	PP	2.1	1.1	98772_at
466.67	PAP	934.40	PAP	1252.67	PPP	2.0	0.7	843.45	PA	1982.10	PP	1036.20	PP	2.3	1.9	93738_at
273.40	AAP	2445.50	PPP	2434.20	PPP	8.9	1.0	188.95	PP	4588.30	PP	3664.90	PP	24.3	1.3	160829_at
476.53	PAP	2312.90	PPP	1638.40	PPP	4.9	1.4	515.45	PP	1705.30	PP	1597.00	PP	3.3	1.1	102363_r_a
356.47	ААА	1078.80	PPP	593.80	PAP	3.0	1.8	687.50	PP	2197.45	PP	1116.25	PP	3.2	2.0	100030_at
6.43	ААА	1715.50	PPP	1539.87	PPP	266.7	1.1	132.30	PA	2734.75	PP	1352.40	PA	20.7	2.0	92558 at

				wild ty	/pe			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	LPS	LPS
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
AI327518	mb43a09.y1 Mus musculus cDNA, 5 end	3370.2	PP	9505.95	PP	3475.85	ΡР	2.8	2.7
AV292869	Mus musculus cDNA, 3 end	178.6	AP	1971.8	РР	467.45	РР	11.0	4.2
D18865	MUSGS01047 Mus musculus cDNA, 3 end	216.7	PP	447.4	PA	203.3	ΡР	2.1	2.2
AI121305	uc30b06.r1 Mus musculus cDNA, 5 end	61.25	AA	2046.45	PP	439.75	ΡР	33.4	4.7
AI047791	uh83e04.r1 Mus musculus cDNA, 5 end	764.1	PP	3948.15	PP	1676.85	ΡР	5.2	2.4
AI842065	UI-M-AN1-afg-a-10-0-UI.s1 Mus musculus cDNA, 3 end	2011.6	PP	5860.35	PP	1684.05	ΡР	2.9	3.5
AI853996	UI-M-BH0-aiv-g-11-0-UI.s1 Mus musculus cDNA, 3 end	469.75	PA	1136.6	PP	539.15	PP	2.4	2.1
AI853531	UI-M-BH0-ajd-f-01-0-UI.s1 Mus musculus cDNA, 3 end	281.25	PA	1854.75	PP	873.9	PP	6.6	2.1
AI852314	UI-M-BH0-aje-g-07-0-UI.s1 Mus musculus cDNA, 3 end	794.7	PP	2863.2	PP	904.95	PP	3.6	3.2
AA608277	vn61g12.r1 Mus musculus cDNA, 5 end	202.65	PA	10431.9	PP	3955.35	PP	51.5	2.6
AA681998	vr45a06.s1 Mus musculus cDNA, 5 end	260.8	PA	1202.45	PP	577.35	PP	4.6	2.1
AA717740	vt98b12.r1 Mus musculus cDNA, 5 end	412.95	PP	1594.35	PP	381	ΡР	3.9	4.2
AA823202	vw41h10.r1 Mus musculus cDNA, 5 end	982.95	PP	5842.7	PP	2840.35	ΡР	5.9	2.1
M34510	CD14	11.58		45.51		15.43		3.9	2.9
NM_013885	Clic4	3.03		11.16		4.60		3.7	2.4
 X16490	PAI-2	35.69		114.43		35.56		3.2	3.2

		GR ^{dim}				Fold ch	ange			GR ^{LysC}	re			Fold ch	ange	
ctrl		LPS		dex+LF	s	<u>LPS</u>	LPS	ctrl		LPS		dex+LF	s	LPS	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
1410.17	PPP	4273.60	PPP	3446.40	PPP	3.0	1.2	7995.40	PP	16108.50	ΡР	9589.95	ΡР	2.0	1.7	103219_at
252.03	APP	1295.10	PPP	1188.93	PPP	5.1	1.1	146.75	AA	1536.10	ΡР	1282.05	ΡР	10.5	1.2	161281_f_a
212.03	APA	456.23	PAP	292.93	PPP	2.2	1.6	130.15	AP	363.05	PP	346.10	PP	2.8	1.0	101217_at
101.97	AAP	1676.23	PPP	1637.13	PPP	16.4	1.0	104.95	AA	725.20	PA	331.35	PA	6.9	2.2	97413_at
763.10	PPP	3522.10	PPP	2721.97	PPP	4.6	1.3	872.15	PP	2760.15	ΡР	2683.30	ΡР	3.2	1.0	160588_at
2240.20	РРР	6827.57	PPP	6869.17	РРР	3.0	1.0	2719.95	PP	6042.05	ΡР	4578.80	ΡР	2.2	1.3	104735_at
426.83	PAP	956.50	PPP	907.07	РРР	2.2	1.1	283.50	PA	706.25	ΡР	460.10	PA	2.5	1.5	96238_at
365.30	AAP	3844.30	PPP	6581.90	PPP	10.5	0.6	1035.65	PP	3912.15	ΡР	2672.85	ΡР	3.8	1.5	93975_at
457.80	PPP	1585.07	PPP	1695.53	PPP	3.5	0.9	851.35	PP	1836.15	PP	1350.50	ΡР	2.2	1.4	94970_at
571.73	AAP	7720.43	PPP	8690.83	PPP	13.5	0.9	1499.80	PA	12826.00	PP	9632.50	PP	8.6	1.3	99864_at
264.53	PAP	878.47	PPP	860.90	PPP	3.3	1.0	390.30	PP	1117.80	PP	1418.00	PP	2.9	0.8	97527_at
372.73	PAA	835.27	PPP	526.43	PPA	2.2	1.6	622.55	PP	1627.75	PP	1559.20	PP	2.6	1.0	95655_at
1055.30	PPP	3524.90	РРР	3327.83	РРР	3.3	1.1	1449.65	ΡР	4707.15	ΡР	3714.35	ΡР	3.2	1.3	98917_at
8.46		116.12		100.35		13.7	1.2	18.04		182.11		575.58		10.1	0.3	
0.75		5.20		5.71		6.9	0.9	9.11		27.95		29.39		3.1	1.0	
3.36		90.80		99.94		27.0	0.9	60.98		228.08		151.37		3.7	1.5	

10. 3. 2. Normalised expression of genes/ESTs representing Group 1-B

Acc.	Gene/EST Name											
Num.												
U05673	Balb/C clone R13 adenosine receptor subtype mRNA											
AF059213	cholesterol 25-hydroxylase mRNA											
X78445	Cyp1-b-1 mRNA for cytochrome P450											
D89613	Cytokine inducible SH2-containing protein											
D30782	epiregulin											
AA182189	Ets-protein Spi-C											
X14961	Fatty acid binding protein heart 1											
U00937	GADD45 protein (gadd45) gene											
L32838	germline interleukin 1 receptor antagonist (IL-1rn) gene											
M88242	glucocortoid-regulated inflammatory prostaglandin G/H synthase											
X67644	gly96 mRNA											
L07924	guanine nucleotide dissociation stimulator for a ras-related GTPase											
X69619	Inhibin beta-A											
AF077861	Inhibitor of DNA binding 2											
X04725	Insulin I											
M86672	Interleukin 12a											
L16956	Janus kinase 2											
X66473	Matrix metalloproteinase 1											
X62502	MIP-1b											
AB026569	MSSP											
M60474	Myristoylated alanine rich protein kinase C substrate											
X86000	N-glycan alpha 2,8-sialyltransferase											
M73748	OTS-8 mRNA											
U90926	putative TNF-resistance related protein mRNA											
M19681	Small inducible cytokine A2											
U27267	Small inducible cytokine B subfamily, member 5											
M22998	Solute carrier family 2 (facilitated glucose transporter), member 1											
U44088	TDAG51 (TDAG51) mRNA											
U20735	transcription factor junB (junB) gene, 5 region and complete cds											
D44464	uridine phosphorylase											
M84487	∣ Vascular cell adhesion molecule 1											
	wild t	ype			GR ^{dim}			G R ^{LysCre}				
-----------	-------------	------	---------	-----------	-------------------	------------	---------	------------------------------	-------------	------------	---------	-------------
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
1475.35	0.02	0.71	0.27	2540.10	0.04	0.37	0.58	3629.55	0.09	0.53	0.38	97733_at
2813.05	0.04	0.73	0.23	15684.10	0.06	0.51	0.44	5591.60	0.09	0.60	0.31	104509_at
25790.70	0.19	0.69	0.12	13205.17	0.12	0.55	0.33	37394.60	0.22	0.46	0.32	99979_at
3384.75	0.14	0.67	0.19	4045.30	0.09	0.54	0.37	3077.45	0.12	0.53	0.35	100022_at
13331.50	0.00	0.95	0.05	9639.10	0.02	0.65	0.33	19837.45	0.01	0.55	0.44	98802_at
2191.25	0.19	0.62	0.20	1780.33	0.15	0.37	0.49	1307.10	0.18	0.45	0.38	103454_at
1112.15	0.19	0.54	0.27	1319.73	0.10	0.36	0.54	656.00	0.13	0.52	0.35	94214_at
47735.15	0.09	0.73	0.18	43008.37	0.09	0.48	0.43	76206.35	0.13	0.52	0.35	102292_at
132549.55	0.16	0.57	0.27	129356.13	0.13	0.46	0.41	135920.95	0.20	0.44	0.36	93871_at
36835.00	0.01	0.80	0.19	27478.27	0.01	0.55	0.44	35363.15	0.05	0.49	0.46	104647_at
55188.00	0.15	0.64	0.21	58127.73	0.11	0.46	0.43	62889.00	0.10	0.54	0.37	94384_at
14882.60	0.20	0.56	0.24	14152.67	0.19	0.42	0.39	22914.20	0.13	0.50	0.38	100530_at
16114.30	0.04	0.72	0.24	8024.97	0.05	0.49	0.46	17217.45	0.07	0.52	0.41	100277_at
36582.60	0.16	0.63	0.20	43069.30	0.19	0.38	0.43	45395.75	0.19	0.45	0.36	93013_at
8917.45	0.16	0.64	0.20	11030.37	0.07	0.61	0.32	8518.90	0.20	0.44	0.36	97659_r_at
1297.65	0.11	0.69	0.20	1341.80	0.07	0.55	0.38	11626.00	0.12	0.53	0.35	100773_at
17372.75	0.13	0.58	0.29	20652.80	0.09	0.47	0.44	18269.25	0.22	0.46	0.33	101457_at
7032.40	0.15	0.78	0.06	4399.70	0.12	0.48	0.40	13701.50	0.15	0.50	0.34	100484_at
60580.85	0.00	0.59	0.40	77532.03	0.00	0.54	0.46	50264.00	0.07	0.53	0.41	94146_at
16592.40	0.21	0.58	0.21	10764.83	0.12	0.50	0.38	11934.65	0.20	0.46	0.34	94972_at
7971.45	0.12	0.61	0.27	12542.97	0.13	0.41	0.45	8748.40	0.18	0.39	0.43	96865_at
27816.25	0.17	0.57	0.26	23792.87	0.20	0.53	0.27	33588.50	0.20	0.47	0.33	102318_at
3599.50	0.21	0.61	0.18	2216.50	0.21	0.44	0.34	2808.65	0.23	0.47	0.30	104469_at
5096.80	0.14	0.69	0.16	5610.03	0.13	0.54	0.33	20966.65	0.14	0.58	0.28	100717_at
16598.30	0.05	0.71	0.24	22769.87	0.03	0.34	0.64	17041.25	0.19	0.57	0.24	102736_at
28215.30	0.09	0.76	0.15	21867.97	0.13	0.49	0.38	59572.75	0.21	0.42	0.37	98772_at
2499.10	0.09	0.67	0.24	2653.73	0.18	0.35	0.47	3861.75	0.22	0.51	0.27	93738_at
3785.60	0.01	0.79	0.20	5153.10	0.05	0.47	0.47	8442.15	0.02	0.54	0.43	160829_at
6494.30	0.11	0.63	0.26	4427.83	0.11	0.52	0.37	3817.75	0.14	0.45	0.42	102363_r_at
3053.00	0.08	0.67	0.24	2029.07	0.18	0.53	0.29	4001.20	0.17	0.55	0.28	100030_at
2659.90	0.04	0.79	0.16	3261.80	0.00	0.53	0.47	4219.45	0.03	0.65	0.32	92558_at

Acc.	Gene/EST Name
Num.	
AI327518	mb43a09.y1 Mus musculus cDNA, 5 end
AV292869	Mus musculus cDNA, 3 end
D18865	MUSGS01047 Mus musculus cDNA, 3 end
AI121305	uc30b06.r1 Mus musculus cDNA, 5 end
AI047791	uh83e04.r1 Mus musculus cDNA, 5 end
AI842065	UI-M-AN1-afg-a-10-0-UI.s1 Mus musculus cDNA, 3 end
AI853996	UI-M-BH0-aiv-g-11-0-UI.s1 Mus musculus cDNA, 3 end
AI853531	UI-M-BH0-ajd-f-01-0-UI.s1 Mus musculus cDNA, 3 end
AI852314	UI-M-BH0-aje-g-07-0-UI.s1 Mus musculus cDNA, 3 end
AA608277	vn61g12.r1 Mus musculus cDNA, 5 end
AA681998	vr45a06.s1 Mus musculus cDNA, 5 end
AA717740	vt98b12.r1 Mus musculus cDNA, 5 end
AA823202	vw41h10.r1 Mus musculus cDNA, 5 end
M34510	CD14
NM_013885	Clic4
X16490	PAI-2

	wild t	уре			GR ^{dim}	1		G R ^{LysCre}				
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
16352.00	0.21	0.58	0.21	9130.17	0.15	0.47	0.38	33693.85	0.24	0.48	0.28	103219_at
2617.85	0.07	0.75	0.18	2736.07	0.09	0.47	0.43	2964.90	0.05	0.52	0.43	161281_f_at
867.40	0.25	0.52	0.23	961.20	0.22	0.47	0.30	839.30	0.16	0.43	0.41	101217_at
2547.45	0.02	0.80	0.17	3415.33	0.03	0.49	0.48	1161.50	0.09	0.62	0.29	97413_at
6389.10	0.12	0.62	0.26	7007.17	0.11	0.50	0.39	6315.60	0.14	0.44	0.42	160588_at
9556.00	0.21	0.61	0.18	15936.93	0.14	0.43	0.43	13340.80	0.20	0.45	0.34	104735_at
2145.50	0.22	0.53	0.25	2290.40	0.19	0.42	0.40	1449.85	0.20	0.49	0.32	96238_at
3009.90	0.09	0.62	0.29	10791.50	0.03	0.36	0.61	7620.65	0.14	0.51	0.35	93975_at
4562.85	0.17	0.63	0.20	3738.40	0.12	0.42	0.45	4038.00	0.21	0.45	0.33	94970_at
14589.90	0.01	0.72	0.27	16983.00	0.03	0.45	0.51	23958.30	0.06	0.54	0.40	99864_at
2040.60	0.13	0.59	0.28	2003.90	0.13	0.44	0.43	2926.10	0.13	0.38	0.48	97527_at
2388.30	0.17	0.67	0.16	1734.43	0.21	0.48	0.30	3809.50	0.16	0.43	0.41	95655_at
9666.00	0.10	0.60	0.29	7908.03	0.13	0.45	0.42	9871.15	0.15	0.48	0.38	98917_at
72.52	0.16	0.63	0.21	224.93	0.04	0.52	0.45	775.73	0.02	0.23	0.74	
18.79	0.16	0.59	0.24	11.66	0.06	0.45	0.49	66.45	0.14	0.42	0.44	
185.68	0.19	0.62	0.19	194.10	0.02	0.47	0.51	440.43	0.14	0.52	0.34	

10. 4. GROUP 1-C

		wild t	уре			GR dim			GR ^{LysCre}				
	ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		
Sum:	0.33	4.71	0.96	Sum:	0.33	4.40	1.27	Sum:	0.42	2.65	2.92		
Mean:	0.06	0.78	0.16	Mean:	0.05	0.73	0.21	Mean:	0.07	0.44	0.49		
StDev:	0.07	0.11	0.06	StDev:	0.07	0.08	0.04	StDev:	0.15	0.10	0.11		
Fold change (LPS/ctrl) 14.2			Fold char	nge (LPS/c	trl)	13.3	Fold change (LPS/ctrl)			6.3			
Fold change (LPS/dex+LPS) 4.9				Fold char	nge (LPS/d	ex+LPS)	3.5	Fold chan	ld change (LPS/dex+LPS)				

10. 4. 1. Expression levels of genes/ESTs representing Group 1-C

				wild ty	/ p e			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS .	LPS	LPS
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
L41352	Amphiregulin	43.05	АА	5595.05	PP	150.7	ΡР	>100	37.1
X03020	Granulocyte-macrophage colony stimulating factor (GM-CSF)	18.6	АА	4496.5	PP	24.95	AA	>100	>100
X56602	Interferon-induced 15-KDa protein	375.45	AP	6924.65	PP	3458.55	ΡР	18.4	2.0
AI848841	UI-M-AJ1-ahb-c-08-0-UI.s1 Mus musculus cDNA, 3 end	121.25	AP	579.35	AP	87.6	PP	4.8	6.6
M94967	COX-2	0.03		14.80		2.22		> 100	6.7
G198293	IL-1beta *	1.93		9.56		1.83		5.0	5.2
J03783	IL-6 *	0.02		9.84		2.03		> 100	4.8
X53798	MIP-2 *	4.26		92.45		23.92		21.7	3.9
M38296	TNF-alpha *	0.04		17.33		1.48		> 100	11.7
AF069502	UBP43	2.30		9.67		3.88		4.2	2.5
M15131	IL-1beta *	3565.65	ΡР	86212	PP	50257	РР	24.2	1.7
X54542	IL-6 *	69.1	АА	27738.9	PP	9667.75	PP	>100	2.9
X53798	MIP-2 *	5567.7	ΡР	48481.6	PP	35722	PP	8.7	1.4
D84196	TNF-alpha *	685.05	ΡР	67676.6	PP	27160.2	PP	98.8	2.5

		GR ^{dim}				Fold ch	ange			GR ^{LysC}	re			Fold ch	ange	
ctrl		LPS		dex+LF	PS	<u>LPS</u>	<u>LPS</u>	ctrl		LPS		dex+LF	PS .	LPS	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctrl	dex+LPS	position
55.70	ААА	2385.13	PPP	849.50	РРР	42.8	2.8	39.35	AA	931.95	ΡР	746.30	PP	23.7	1.2	99915_at
247.90	ААА	7137.80	PPA	2354.97	APA	28.8	3.0	52.20	AA	2598.00	PP	1217.15	PP	49.8	2.1	92948_at
238.20	AAP	7374.77	PPP	3585.43	PPP	31.0	2.1	409.90	PP	2090.40	ΡР	1024.35	PP	5.1	2.0	98822_at
104.00	РРМ	531.67	PAP	228.13	PPP	5.1	2.3	25.65	AA	329.95	PA	379.60	PA	12.9	0.9	104030_at
0.003		5.75		2.15		> 100	2.7	0.72		15.50		17.80		21.5	0.9	
0.09		9.81		2.68		> 100	3.7	0.16		8.54		5.52		53.4	1.5	
1.07		7.41		1.75		6.9	4.2	0.03		4.45		6.38		> 100	0.7	
2.90		53.17		16.37		18.3	3.2	0.0005		13.350		16.020		> 100	0.8	
0.02		13.84		2.62		> 100	5.3	0.57		21.74		28.20		38.1	0.8	
2.71		9.16		3.49		3.4	2.6	2.25		1.81		1.93		0.8	0.9	
8497.60	APP	83023.03	PPP	73836.73	PPP	9.8	1.1	22622.25	PP	76487.45	PP	77784.35	PP	3.4	1.0	103486_at
65.77	AAP	18572.87	PPP	13893.30	РРР	>100	1.3	478.75	PP	17948.70	PP	15379.65	PP	37.5	1.2	102218_at
5074.97	РРР	40017.53	PPP	40120.00	РРР	7.9	1.0	17759.40	PP	43285.65	PP	41961.90	PP	2.4	1.0	101160_at
989.43	AAP	63700.63	РРР	37811.60	РРР	64.4	1.7	2331.45	PP	50744.60	ΡР	35286.30	ΡР	21.8	1.4	102629_at

10. 4. 2. Normalised expression of genes/ESTs representing Group 1-C

Acc.	Gene/EST Name
Num.	
L41352	Amphiregulin
X03020	Granulocyte-macrophage colony stimulating factor (GM-CSF)
X56602	Interferon-induced 15-KDa protein
AI848841	UI-M-AJ1-ahb-c-08-0-UI.s1 Mus musculus cDNA, 3 end
M94967	COX-2
G198293	IL-1beta
J03783	IL-6
X53798	мір-2
M38296	TNF-alpha
AF069502	UBP43

	wild t	уре		G R dim				G R ^{L y s}	Cre			
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
5788.80	0.01	0.97	0.03	3290.33	0.02	0.72	0.26	1717.60	0.02	0.54	0.43	99915_at
4540.05	0.00	0.99	0.01	9740.67	0.03	0.73	0.24	3867.35	0.01	0.67	0.31	92948_at
10758.65	0.03	0.64	0.32	11198.40	0.02	0.66	0.32	3524.65	0.12	0.59	0.29	98822_at
788.20	0.15	0.74	0.11	863.80	0.12	0.62	0.26	735.20	0.03	0.45	0.52	104030_at
17.05	0.00	0.87	0.13	7.90	0.00	0.73	0.27	34.02	0.02	0.46	0.52	
13.32	0.14	0.72	0.14	12.58	0.01	0.78	0.21	14.22	0.01	0.60	0.39	
11.89	0.00	0.83	0.17	10.23	0.10	0.72	0.17	10.86	0.00	0.41	0.59	
120.63	0.04	0.77	0.20	72.44	0.04	0.73	0.23	29.37	0.00	0.45	0.55	
18.85	0.00	0.92	0.08	16.48	0.00	0.84	0.16	50.51	0.01	0.43	0.56	
15.85	0.15	0.61	0.24	15.36	0.18	0.60	0.23	5.99	0.38	0.30	0.32	

10. 5. GROUP 1-D

		wild ty	уре			GR dim			GR ^{LysCre}				
	ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		
Sum:	0.24	1.18	3.58	Sum:	0.33	2.04	2.62	Sum:	0.51	2.38	2.10		
Mean:	0.05	0.24	0.72	Mean:	0.07	0.41	0.52	Mean:	0.10	0.48	0.42		
StDev:	0.04	0.08	0.10	StDev:	0.04	0.06	0.06	StDev:	0.05	0.10	0.07		
Fold chan	old change (LPS/ctrl) 4.9			Fold change (LPS/ctrl)			6.2	Fold change (LPS/ctrl)			4.7		
Fold chan	Fold change (LPS/dex+LPS) 0.3				Fold change (LPS/dex+LPS) 0.				nge (LPS/d	ex+LPS)	1.1		

10. 5. 1. Expression levels of genes/ESTs representing Group 1-D

				wild ty	/ p e			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	<u>LPS</u>	<u>LPS</u>
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
M33960	plasminogen activator inhibitor (PAI-1) mRNA, complete cds	67.9	AA	4102.95	PP	9294.4	PP	60.4	0.4
D89571	ryudocan core protein, complete cds	208.85	PA	1952.1	PP	16660.8	PP	9.3	0.1
AI647003	ub68e09.x1 Mus musculus cDNA, 3 end	1240.15	PP	3247.2	PP	8304.9	PP	2.6	0.4
AI849939	UI-M-BG0-ahz-g-03-0-UI.s1 Mus musculus cDNA, 3 end	582.4	AP	3463.6	AP	10134.8	PP	5.9	0.3
AW121294	UI-M-BH2.3-aog-d-09-0-UI.s1 Mus musculus cDNA, 3 end	167	AA	531.35	AP	1251.2	PP	3.2	0.4

		GR ^{dim}				Fold ch	ange			GR ^{LysC}	re			Fold ch	ange	
ctrl		LPS		dex+LF	s	LPS	<u>LPS</u>	ctrl		LPS		dex+Ll	s	LPS	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
1169.90	APP	9978.30	PPP	10027.37	PPP	8.5	1.0	224.15	РМ	2164.85	PP	1227.45	PP	9.7	1.8	94147_at
229.77	PAA	4284.33	PPP	7036.00	PPP	18.6	0.6	206.30	PA	2382.60	PP	1910.20	PP	11.5	1.2	98590_at
1581.00	РРР	4031.00	РРР	6023.30	РРР	2.5	0.7	1893.40	PP	3976.70	PP	6557.75	PP	2.1	0.6	100958_at
470.50	PPP	3207.13	PPP	3071.00	PPP	6.8	1.0	1379.60	PP	7736.90	PP	6844.10	PP	5.6	1.1	103460_at
188.60	ААА	1422.83	РРР	2123.13	РРР	7.5	0.7	311.90	PP	847.60	ΡР	722.00	PP	2.7	1.2	96747_at

10. 5. 2. Normalised expression of genes/ESTs representing Group 1-D

Acc.	Gene/EST Name
Num.	
M33960	plasminogen activator inhibitor (PAI-1) mRNA, complete cds
D89571	ryudocan core protein, complete cds
AI647003	ub68e09.x1 Mus musculus cDNA, 3 end
AI849939	UI-M-BG0-ahz-g-03-0-UI.s1 Mus musculus cDNA, 3 end
AW121294	UI-M-BH2.3-aog-d-09-0-UI.s1 Mus musculus cDNA, 3 end

	wild type			GR ^{dim}			G R ^{LysCre}					
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
13465.25	0.01	0.30	0.69	21175.57	0.06	0.47	0.47	3616.45	0.06	0.60	0.34	94147_at
18821.75	0.01	0.10	0.89	11550.10	0.02	0.37	0.61	4499.10	0.05	0.53	0.42	98590_at
12792.25	0.10	0.25	0.65	11635.30	0.14	0.35	0.52	12427.85	0.15	0.32	0.53	100958_at
14180.80	0.04	0.24	0.71	6748.63	0.07	0.48	0.46	15960.60	0.09	0.48	0.43	103460_at
1949.55	0.09	0.27	0.64	3734.57	0.05	0.38	0.57	1881.50	0.17	0.45	0.38	96747_at

10. 6. GROUP 1-E

	wild type					GR dim			GR ^{LysCre}			
	ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS	
Sum:	0.09	0.46	1.46	Sum:	0.11	0.53	1.36	Sum:	0.13	0.75	1.12	
Mean:	0.04	0.23	0.73	Mean:	0.05	0.27	0.68	Mean:	0.07	0.37	0.56	
StDev:	0.04	0.02	0.01	StDev:	0.03	0.03	0.00	StDev:	0.05	0.09	0.04	
Fold chan	Fold change (LPS/ctrl) 5.4				Fold change (LPS/ctrl)			Fold change (LPS/ctrl)			5.7	
Fold chan	Fold change (LPS/dex+LPS) 0.3				change (LPS/dex+LPS)			Fold chan	0.7			

10. 6. 1. Expression levels of genes/ESTs representing Group 1-E

				wild ty	ре			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	<u>LPS</u>	<u>LPS</u>
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
U35233	Endothelin 1	93.65	AA	1335.65	PP	4029	PP	14.3	0.3
X61940	Growth factor-inducible immediate early gene (3CH134)	1434.9	PP	4527	PP	15175.8	PP	3.2	0.3

		GR ^{dim}				Fold ch	ange			GR ^{LysC}	re			Fold ch	ange	
ctrl		LPS		dex+LF	s	<u>LPS</u>	<u>LPS</u>	ctrl		LPS		dex+LF	s	LPS	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
191.30	PAA	1630.57	PPP	3800.67	РРР	8.5	0.4	69.55	AA	1021.00	PA	1253.50	PP	14.7	0.8	102737_at
1035.07	PPP	3324.27	PPP	9385.00	РРР	3.2	0.4	1902.70	PP	5914.20	PP	11011.65	PP	3.1	0.5	104598_at

10. 6. 2. Normalised expression of genes/ESTs representing Group 1-E

.

Acc.	Gene/EST Name
Num.	
U35233	Endothelin 1
X61940	Growth factor-inducible immediate early gene (3CH134)

- 1

	wild type			GR ^{dim}					G R ^{L y s}	Cre		
	<u>ctrl</u>	LPS_	dex+LPS		<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
5458.30	0.02	0.24	0.74	5622.53	0.03	0.29	0.68	2344.05	0.03	0.44	0.53	102737_at
21137.65	0.07	0.21	0.72	13744.33	0.08	0.24	0.68	18828.55	0.10	0.31	0.58	104598_at

10. 7. GROUP 2-A

	wild type					GR dim			GR ^{LysCre}		
	ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS
Sum:	: 58.97 19.50 25.5			Sum:	60.97	20.88	22.15	Sum:	53.80	19.43	30.76
Mean:	0.57	0.19	0.25	Mean:	0.59	0.20	0.21	Mean:	0.52	0.19	0.30
StDev:	0.08	0.04	0.06	StDev:	0.07	0.04	0.06	StDev:	0.09	0.05	0.11
Fold chan	Fold change (LPS/ctrl) 0.3				Fold change (LPS/ctrl)			Fold change (LPS/ctrl)			
Fold chan	old change (LPS/dex+LPS) 0.8				nge (LPS/d	ex+LPS)	0.9	Fold chan	0.6		

10. 7. 1. Expression levels of genes/ESTs representing Group 2-A

				wild ty	/pe			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	LPS	<u>LPS</u>
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
M28489	(clone Mu6a) ribosomal protein S6 kinase (rsk) mRNA	2563.35	PP	1110	AP	1491	PP	0.4	0.7
U22262	Apolipoprotein B editing complex 1	13807.8	PP	3699	PP	4558.5	РР	0.3	0.8
AF017085	BAP-135 homolog (Diws1t) mRNA	5105.55	PP	2547.05	PP	4579.15	PP	0.5	0.6
U75506	BH3 interacting domain death agonist	360.65	PP	156.7	AA	177.2	PP	0.4	0.9
AF076156	Catechol-O-methyltransferase	3347.95	PP	744.7	AP	1319.05	ΡР	0.2	0.6
U53455	chloride ion current inducer protein (CLCI) mRNA	4235.4	PP	1286.7	PP	1173.2	ΡР	0.3	1.1
X55663	Cytoplasmic tyrosine kinase, Dscr28C related (Drosophila)	2948.95	PP	1030.2	PP	1323.75	РР	0.3	0.8
AB001990	Dcra	3817.7	PP	1655	PP	2276.45	PP	0.4	0.7
U78818	Downstream of tyrosine kinase 1	1348.55	PP	479.45	AP	660.35	ΡР	0.4	0.7
D10475	Epimorphin	2204.45	PP	532.5	AP	455.3	ΡР	0.2	1.2
L00919	Erythrocyte protein band 4.1	1106.55	PP	473.7	ΡР	599.45	ΡР	0.4	0.8
V00727	FBJ osteosarcoma oncogene	2287.1	PP	335.1	AP	309.9	ΡР	0.1	1.1
U67187	G protein signaling regulator RGS2 (rgs2) mRNA	1231.65	PP	235.4	AP	175.55	ΡР	0.2	1.3
M96265	galactose-1-phosphate uridyl transferase (GALT) mRNA	442.65	PP	106.1	AA	180.4	РА	0.2	0.6
L07508	Golli-mpb mRNA (alternate transcript from clone BG21)	2799.4	PP	701.3	ΡР	1035.55	ΡР	0.3	0.7
M98036	guanine nucleotide exchange factor delta subunit (JGR1A) mRNA	744.7	PP	342.7	ΜΑ	528.3	ΡР	0.5	0.6
AW122990	Hagoromo	1126.9	PP	526.2	AP	560.1	PP	0.5	0.9
M32489	Interferon concensus sequence binding protein	5456.35	PP	1534.35	PP	1948.05	PP	0.3	0.8
AF042487	intermediate conductance potassium channel mIK1 mRNA	558.4	PP	172	AP	312.95	РР	0.3	0.5
X57687	LYL gene (clone L6)	5826	PP	1737.1	PP	1875.8	ΡР	0.3	0.9
AB028921	NAKAP95	813.65	PP	373.8	AP	478.9	PP	0.5	0.8
AI853802	Phosphofructokinase-1 C isozyme	1075.9	PP	502.9	PP	591.1	ΡР	0.5	0.9
M34141	Prostaglandin-endoperoxide synthase 1	1966	PP	902.4	ΡР	956.8	ΡР	0.5	0.9
X95281	retinal short-chain dehydrogenase/reductase	1729.3	PP	284.7	AP	446.15	ΡР	0.2	0.6
U05245	T-cell lymphoma invasion and metastasis 1	788.05	PP	293.1	PA	348.7	ΡР	0.4	0.8
X64361	vav mRNA	3159	PP	919.65	ΡР	1360	ΡР	0.3	0.7
D83266	vav-T	4363	PP	1496.15	ΡР	2022.25	ΡР	0.3	0.7
U27398	Xeroderma pigmentosum, complementation group C	620.2	PP	183.1	AP	250.15	ΡР	0.3	0.7
D43643	YL-1 mRNA for YL-1 protein (nuclear protein with DNA-binding ability)	607.45	AP	242.6	AP	289.3	ΡР	0.4	0.8
AA980810	ua45h04.r1 Mus musculus cDNA, 5 end	754.95	PP	120.95	AA	147.6	ΡР	0.2	0.8
AI462312	ub62c01.x1 Mus musculus cDNA, 3 end	602	PP	260.35	ΡР	304.5	ΡР	0.4	0.9
AI882440	uc01f05.r1 Mus musculus cDNA, 5 end	2728.95	PP	367.75	AP	583.05	ΡР	0.1	0.6
AI154249	ud30f12.r1 Mus musculus cDNA, 5 end	4947.6	PP	2377.05	AP	1584.55	РР	0.5	1.5
AI115399	uh85b06.r1 Mus musculus cDNA, 5 end	1011.1	ΡР	366.85	РР	443.3	РР	0.4	0.8
AI841137	UI-M-AH0-acz-g-06-0-UI.s1 Mus musculus cDNA, 3 end	8690.15	РР	3206.4	РР	4219.35	РР	0.4	0.8
AI848207	UI-M-AH1-agg-q-08-0-UI.s1 Mus musculus cDNA. 3 end	2025.6	PP	544.5	РР	955.25	РР	0.3	0.6
AI849587	UI-M-AH1-agr-e-02-0-UI.s1 Mus musculus cDNA, 3 end	2225.8	PP	990.4	РР	1679.9	PP	0.4	0.6

	GR ^{dim}					Fold ch	ange			GR ^{LysC}	Сге			Fold ch	ange	
ctrl		LPS		dex+LF	P S	<u>LPS</u>	LPS	ctrl		LPS		dex+LF	PS .	LPS	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
2686.20	PPP	1055.00	PPP	1377.37	PPP	0.4	0.8	2069.70	PP	919.75	PP	1040.25	PP	0.4	0.9	97405_at
14127.83	PPP	2273.20	PPP	2305.83	PPP	0.2	1.0	12858.10	PP	4488.85	PP	3226.80	PP	0.3	1.4	98398_s_at
5713.57	PPP	2535.40	PPP	2440.60	PPP	0.4	1.0	3605.05	PP	1767.00	PP	5630.05	PP	0.5	0.3	94295_at
381.83	PPP	121.30	APA	71.27	AAA	0.3	1.7	233.50	PP	88.70	PA	138.50	PA	0.4	0.6	98433_at
2576.33	PPP	827.37	PPP	882.90	PPP	0.3	0.9	1754.55	PP	595.30	PP	686.30	ΡР	0.3	0.9	98535_at
2656.20	PPP	949.57	PAP	1785.90	PPP	0.4	0.5	4645.15	PP	2125.25	PP	2014.55	ΡР	0.5	1.1	93812_at
3380.97	PPP	1115.33	PPP	1495.50	PPP	0.3	0.7	2582.00	PP	993.65	PP	1529.60	ΡР	0.4	0.6	103539_at
4232.17	PPP	1349.27	PPP	2040.90	PPP	0.3	0.7	3826.40	PP	1706.10	PP	1730.95	ΡР	0.4	1.0	101104_at
1771.40	PPP	499.27	PPP	690.10	PPP	0.3	0.7	1157.30	ΡР	469.85	PP	367.55	ΡР	0.4	1.3	102896_at
3154.37	PPP	486.43	PAP	689.43	PPP	0.2	0.7	1527.25	PP	409.45	PP	361.45	PA	0.3	1.1	104482_at
794.47	PPA	278.00	PPA	427.70	PPA	0.3	0.6	539.85	PP	200.65	AA	1186.80	PA	0.4	0.2	160379_at
2836.30	PPP	478.33	РРР	493.13	PPP	0.2	1.0	1058.50	PP	284.55	PP	499.90	PP	0.3	0.6	160901_at
2557.07	PPP	200.47	РМА	357.53	PPA	0.1	0.6	2592.50	ΡР	315.15	PP	458.75	ΡР	0.1	0.7	97844_at
515.00	PPP	155.77	МАА	163.03	РРМ	0.3	1.0	490.35	AP	122.55	PA	335.45	РМ	0.2	0.4	104616 <u>g</u> at
2121.43	PPP	700.40	РРР	533.77	PPP	0.3	1.3	3230.80	PP	891.60	PP	1647.05	PP	0.3	0.5	96310_at
856.63	PPP	398.23	PPP	376.00	PPP	0.5	1.1	760.55	PP	358.00	PA	589.70	PA	0.5	0.6	95046_s_at
1434.43	PPP	709.47	PAP	500.63	PPP	0.5	1.4	923.55	PP	374.60	PP	531.45	ΡР	0.4	0.7	102478_f_at
7594.57	PPP	3521.63	РРР	2679.07	PPP	0.5	1.3	6909.60	PP	1937.70	PP	1151.00	ΡР	0.3	1.7	98002_at
660.97	PPP	315.50	PPP	502.23	PPP	0.5	0.6	943.20	РМ	260.10	PA	1268.65	PA	0.3	0.2	102198_at
8838.63	PPP	3105.17	PPP	1295.97	PPP	0.4	2.4	5545.50	PP	1873.95	PP	1065.70	ΡР	0.3	1.8	100468 <u>g</u> at
832.77	РРР	311.47	РРА	326.73	PPA	0.4	1.0	836.10	ΡР	295.60	PP	492.25	РА	0.4	0.6	101947_at
1253.57	PPP	532.50	РРР	633.63	PPP	0.4	0.8	1735.85	ΡР	775.35	PP	733.50	ΡР	0.4	1.1	97834 <u>g</u> at
1092.73	PPP	450.67	PPP	508.83	PPP	0.4	0.9	2655.55	ΡР	1168.50	PP	1205.60	ΡР	0.4	1.0	95597_at
2326.00	РРР	909.43	РРР	568.37	РРР	0.4	1.6	1423.35	ΡР	442.85	PP	775.10	ΡР	0.3	0.6	102797_at
511.60	APP	192.63	PAA	262.87	APP	0.4	0.7	736.40	ΡР	282.45	AP	497.35	ΡР	0.4	0.6	102283_at
2710.03	PPP	919.40	РРР	1265.50	PPP	0.3	0.7	3086.90	PP	1200.45	PP	1424.90	ΡР	0.4	0.8	99799_at
3934.03	PPP	1426.93	РРР	2130.93	PPP	0.4	0.7	3956.25	ΡР	1947.80	PP	1983.40	ΡР	0.5	1.0	96511_s_at
635.17	PPP	207.10	РРА	169.83	APA	0.3	1.2	454.20	PP	73.75	PA	477.55	PA	0.2	0.2	95626_at
825.80	PPP	269.53	PAA	265.63	APP	0.3	1.0	756.70	PP	354.90	AP	517.90	PP	0.5	0.7	160363_at
487.93	РРР	31.90	AAP	127.10	APP	0.1	0.3	438.85	ΡР	107.00	PP	208.85	ΡР	0.2	0.5	160922_at
595.73	PPP	213.63	APP	373.43	PPP	0.4	0.6	685.40	PP	221.60	PA	1967.70	PP	0.3	0.1	161076_at
2076.53	PPP	280.27	РРР	565.20	PPP	0.1	0.5	2483.65	ΡР	523.15	PA	547.70	РА	0.2	1.0	104293_at
3430.63	РРР	1613.73	РРМ	847.27	PPA	0.5	1.9	2165.35	ΡР	539.15	PP	4584.35	РР	0.2	0.1	100511_at
775.83	PPP	331.63	РРР	282.37	PPP	0.4	1.2	970.45	PP	381.10	PP	312.65	ΡР	0.4	1.2	
10443.30	PPP	3885.53	PPP	3168.73	PPP	0.4	1.2	6150.05	PP	2990.35	PP	2469.15	PP	0.5	1.2	160311_at
1873.50	РРР	574.20	РРР	679.37	РРР	0.3	0.8	1980.75	РР	697.85	РР	799.05	РР	0.4	0.9	103852 at
4425.23	PPP	1306.40	PPP	2768.27	PPP	0.3	0.5	1791.65	PP	799.95	AP	708.70	мр	0.4	1.1	95465_s_at

				wild ty	/pe		;	Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LP\$	S	<u>LPS</u>	<u>LPS</u>
Num.		AD	AC	AD	AC	AD A	AC	ctri	dex+LPS
AI849497	UI-M-AH1-agt-d-06-0-UI.s1 Mus musculus cDNA, 3 end	444.55	MP	172.9	AA	223.45 F	эр	0.4	0.8
AI835963	UI-M-AI0-aao-h-06-0-UI.s1 Mus musculus cDNA, 3 end	627.4	PP	140.8	AA	224.1 F	PA	0.2	0.6
AI842242	UI-M-AI1-afp-d-07-0-UI.s1 Mus musculus cDNA, 3 end	2476.9	PP	600.6	AA	922.95 F	эр	0.2	0.7
AI837229	UI-M-AK0-ade-e-06-0-UI.s1 Mus musculus cDNA, 3 end	1549.15	PP	437.4	AP	499.8 F	эр	0.3	0.9
AI837679	UI-M-AK0-adj-b-10-0-UI.s1 Mus musculus cDNA, 3 end	1889.45	PP	646.85	AP	1146.9 F	эр	0.3	0.6
AI843884	UI-M-AK1-aeu-e-10-0-UI.s1 Mus musculus cDNA, 3 end	7502.15	PP	1053.6	PP	1505.55 F	эр	0.1	0.7
AI845902	UI-M-AK1-aex-b-07-0-UI.s1 Mus musculus cDNA, 3 end	1362.05	PP	600.95	PP	684.1 F	эр	0.4	0.9
AI849679	UI-M-AL1-ahl-e-09-0-UI.s1 Mus musculus cDNA, 3 end	970.5	PP	312.7	AP	309.45 F	эр	0.3	1.0
AI849743	UI-M-AL1-ahn-d-06-0-UI.s1 Mus musculus cDNA, 3 end	440.05	PP	130.95	PP	234.35 F	эр	0.3	0.6
AI844739	UI-M-AL1-ahq-d-01-0-UI.s1 Mus musculus cDNA, 3 end	1842.05	PP	663.95	MP	854.7 F	эр	0.4	0.8
AI846531	UI-M-AN1-aff-f-08-0-UI.s1 Mus musculus cDNA, 3 end	816.2	PP	289.15	PA	304.55 A	4A	0.4	0.9
AI846534	UI-M-AN1-aff-f-11-0-UI.s1 Mus musculus cDNA, 3 end	865.55	PP	388.2	PA	420.15 F	эр	0.4	0.9
AI838655	UI-M-AO0-aca-c-08-0-UI.s1 Mus musculus cDNA, 3 end	3072.75	PP	808.75	AP	974.15 F	эр	0.3	0.8
AI838702	UI-M-AO0-aca-h-06-0-UI.s1 Mus musculus cDNA, 3 end	1873.85	PP	75.25	AA	108.5 F	PA	0.0	0.7
AI840137	UI-M-AO0-acc-b-07-0-UI.s1 Mus musculus cDNA, 3 end	4511.85	PP	1778.25	PP	2251.65 F	эр	0.4	0.8
AI841579	UI-M-AP0-abn-e-04-0-UI.s1 Mus musculus cDNA, 3 end	1275.25	PP	543.55	MP	414.15 F	эр	0.4	1.3
AI846994	UI-M-AP1-agj-c-06-0-UI.s1 Mus musculus cDNA, 3 end	1864.75	PP	648.6	AP	1130.55 F	эр	0.3	0.6
AI836322	UI-M-AQ0-aag-a-02-0-UI.s2 Mus musculus cDNA, 3 end	1185.95	PP	544.95	AP	990.4 F	эр	0.5	0.6
AI843384	UI-M-AQ1-adz-f-07-0-UI.s1 Mus musculus cDNA, 3 end	1269.95	PP	453.05	AP	668.95 F	эр	0.4	0.7
AI845183	UI-M-BG0-aht-a-12-0-UI.s1 Mus musculus cDNA, 3 end	2226.9	PP	738.6	AP	849.85 F	эр	0.3	0.9
AI850087	UI-M-BG0-aia-f-10-0-UI.s1 Mus musculus cDNA, 3 end	1164.6	PP	363.2	AP	333.6 F	эр	0.3	1.1
AI851750	UI-M-BH0-aim-c-02-0-UI.s1 Mus musculus cDNA, 3 end	934.3	PP	461.4	AP	501.55 F	эр	0.5	0.9
AI853960	UI-M-BH0-aiv-d-02-0-UI.s1 Mus musculus cDNA, 3 end	564.8	PP	281.75	AA	420.2 F	PA	0.5	0.7
AI852087	UI-M-BH0-aja-g-04-0-UI.s1 Mus musculus cDNA, 3 end	3158.5	PP	543.45	AP	830.5 F	эр	0.2	0.7
AI852741	UI-M-BH0-aji-h-09-0-UI.s1 Mus musculus cDNA, 3 end	664.7	PP	196.1	PA	223.95 F	эр	0.3	0.9
AI851064	UI-M-BH0-ajv-h-03-0-UI.s1 Mus musculus cDNA, 3 end	4313.55	PP	1853.75	PP	2270.5 F	эр	0.4	0.8
AI851207	UI-M-BH0-ajx-f-06-0-UI.s1 Mus musculus cDNA, 3 end	607.7	PP	214	PA	230.25 F	PA	0.4	0.9
AI850953	UI-M-BH0-akd-e-11-0-UI.s1 Mus musculus cDNA, 3 end	7710.55	ΡР	3208.45	PP	3888.05 F	эр	0.4	0.8
AW046438	UI-M-BH1-akp-d-11-0-UI.s1 Mus musculus cDNA, 3 end	397.95	PP	167.7	AA	181.7 F	эр	0.4	0.9
AW045753	UI-M-BH1-akt-a-10-0-UI.s1 Mus musculus cDNA, 3 end	1018.35	ΡР	498.4	PP	560.8 F	эр	0.5	0.9
AW046027	UI-M-BH1-alc-h-08-0-UI.s1 Mus musculus cDNA, 3 end	1293.3	ΡР	369.9	AP	420 F	эр	0.3	0.9
AW047450	UI-M-BH1-all-e-01-0-UI.s1 Mus musculus cDNA, 3 end	609.7	ΡР	143.05	AA	221.6 F	эр	0.2	0.6
AW047874	UI-M-BH1-als-g-02-0-UI.s1 Mus musculus cDNA. 3 end	2836.35	РР	627.5	PP	862.25 F	эр	0.2	0.7
AW047978	UI-M-BH1-alv-d-06-0-UI.s1 Mus musculus cDNA. 3 end	5815.75	PP	1856.4	PP	2263.8 F	эр	0.3	0.8
AW047237	UI-M-BH1-amb-g-05-0-UI.s1 Mus musculus cDNA. 3 end	1354.3	PP	462.15	MP	549.3 F	ър	0.3	0.8
AW047237	UI-M-BH1-amb-g-05-0-UI.s1 Mus musculus cDNA 3 end	1409.45	PP	391.85	AP	557,45 F	ър	0.3	0.7
AW048989	UI-M-BH1-amp-b-07-0-UI.s1 Mus musculus cDNA, 3 end	450.45	PP	124.3	AA	89 F	- A	0.3	1.4

		GR ^{dim}				Fold ch	ange			GR LysC	re			Fold ch	ange	
ctri		LPS		dex+LF	s	<u>LPS</u>	LPS	ctrl		LPS		dex+LF	s	<u>LPS</u>	<u>LPS</u>	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
884.33	PPP	217.93	PAA	154.47	PAA	0.2	1.4	637.40	PP	135.45	AA	250.05	PP	0.2	0.5	160161_at
630.47	APP	260.10	AAA	209.37	AAA	0.4	1.2	624.90	PP	258.40	AP	237.35	PA	0.4	1.1	160615_at
2134.27	PPP	608.47	PAM	735.23	PAP	0.3	0.8	2797.05	PP	604.80	PA	1143.15	PA	0.2	0.5	104332_at
1292.03	PPP	333.83	PPP	422.37	PPP	0.3	0.8	1206.40	PP	583.30	PP	532.65	PP	0.5	1.1	94241_at
1785.80	PPP	700.50	PPP	719.40	PPP	0.4	1.0	2217.35	PP	900.15	PP	1007.85	PP	0.4	0.9	98065_at
8813.77	PPP	1238.47	PPP	940.00	PPP	0.1	1.3	5730.95	PP	1539.10	PP	1098.50	PP	0.3	1.4	95618_at
2403.70	PPP	1032.33	PPP	806.20	PPP	0.4	1.3	1422.35	PP	547.50	PP	1767.00	PA	0.4	0.3	92787_at
683.53	APP	165.43	AAA	423.57	PAA	0.2	0.4	896.45	PA	236.35	AA	628.05	PA	0.3	0.4	99151_at
391.50	PAA	185.33	РРА	199.77	PPA	0.5	0.9	382.70	РМ	121.25	PA	336.80	PP	0.3	0.4	103760_at
1603.33	PPP	749.27	МАА	470.97	PPA	0.5	1.6	1516.40	PP	602.60	PA	768.50	PP	0.4	0.8	160747_at
1146.67	APP	425.90	PPA	352.03	PPP	0.4	1.2	622.80	PA	286.95	PA	292.15	ΡР	0.5	1.0	160351_at
1095.13	PPP	415.83	PPP	521.77	PPP	0.4	0.8	1463.15	PP	727.00	PP	593.20	ΡР	0.5	1.2	160846_at
5882.07	PPP	1882.33	PPP	2845.80	PPP	0.3	0.7	3756.50	PP	1103.65	PP	665.80	PP	0.3	1.7	94504_at
1616.43	APA	533.40	МАР	583.47	AAA	0.3	0.9	1834.60	AP	436.60	AA	314.15	PA	0.2	1.4	97012_f_at
5151.83	PPP	2280.03	РРР	1417.33	PPP	0.4	1.6	4151.40	PP	1749.75	PP	2855.20	PP	0.4	0.6	96615_at
1072.20	PPP	462.83	PPA	417.07	PPP	0.4	1.1	1339.50	PP	651.40	PA	650.80	PA	0.5	1.0	160713_at
1986.50	PPP	920.40	APP	882.77	PPP	0.5	1.0	1069.65	PP	431.95	PA	916.95	PP	0.4	0.5	93838_at
1159.53	PPA	540.27	PPA	544.70	PPP	0.5	1.0	1119.90	PP	485.50	PA	662.90	PA	0.4	0.7	101929_at
1318.60	РРР	543.83	РРР	357.83	APA	0.4	1.5	919.55	ΡР	262.45	PA	466.05	PA	0.3	0.6	101356_at
2201.03	PPP	905.23	РРР	764.87	PAP	0.4	1.2	1918.60	ΡР	876.00	PP	1838.70	ΡР	0.5	0.5	99635_at
1277.00	РРР	342.40	РРА	319.80	PAA	0.3	1.1	1240.50	ΡР	200.25	AA	798.25	РА	0.2	0.3	104032_at
937.10	РРР	436.30	АМА	361.33	APA	0.5	1.2	1010.85	ΡР	444.95	ΡР	538.20	PA	0.4	0.8	100473_at
663.00	PPA	305.00	PAA	293.23	PPA	0.5	1.0	555.20	PA	207.00	мм	191.00	AA	0.4	1.1	92857_at
3773.43	PPP	696.57	РРР	817.97	PAP	0.2	0.9	1868.85	PP	824.70	PP	755.65	ΡР	0.4	1.1	95665_at
714.77	РРР	189.53	РРР	306.80	PPP	0.3	0.6	557.55	PP	241.30	PA	368.25	PA	0.4	0.7	160824_at
4927.77	PPP	2155.23	PPP	2542.37	PPP	0.4	0.8	4241.15	PP	1880.60	ΡР	2420.55	ΡР	0.4	0.8	92622_at
705.53	РРР	326.10	РМА	356.90	PPP	0.5	0.9	674.80	ΡР	271.95	РМ	348.05	РА	0.4	0.8	94509_at
7094.57	РРР	2042.13	РРР	2030.40	PPP	0.3	1.0	5308.45	ΡР	2570.70	ΡР	2203.10	ΡР	0.5	1.2	97485_at
502.10	PPP	155.00	ААМ	101.77	PAA	0.3	1.5	300.85	ΡР	141.75	PA	264.10	РА	0.5	0.5	97514_at
903.07	РРР	381.00	РРР	369.43	MPP	0.4	1.0	1109.95	ΡР	498.00	PP	1236.05	ΡР	0.4	0.4	104217_at
1363.03	PPP	390.10	РРР	564.53	PPP	0.3	0.7	897.25	ΡР	219.45	PP	461.15	PA	0.2	0.5	
530.63	PPP	224.57	APA	335.83	PPA	0.4	0.7	775.15	PP	178.75	PA	275.25	PA	0.2	0.6	160597 at
2924.97	ррр	697.00	РРР	584.90	PAP	0.2	1.2	3326.95	РР	945.55	РР	715.00	ΡР	0.3	1.3	103773 at
5700.17	PPP	2042.07	РРР	1506.13	PPP	0.4	1.4	5017.90	РР	1744.45	РР	1768.85	РР	0.3	1.0	104102 at
1394.03	РРР	305.47	PPA	266.70	PAA	0.2	1.1	1319.35	РР	288.55	РР	1397.90	РР	0.2	0.2	95940 fat
1300.90	РРА	445.33	PPA	212.07	APA	0.3	2.1	1121.45	РР	255.95	AP	1266.65	РА	0.2	0.2	95939 iat
410.00	PAP	81.53	AAA	93.20	AAA	0.2	0.9	183.75	PA	65.85	AA	130.50	PA	0.4	0.5	99360_at

				wild ty	/pe			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	LPS	LPS
Num.		AD	AC	AD	AC	AD	AC	ctrl	dex+LPS
AW049351	UI-M-BH1-amr-h-10-0-UI.s1 Mus musculus cDNA, 3 end	3959	PP	1826.8	PP	1959.95	PP	0.5	0.9
AW060270	UI-M-BH1-amv-g-11-0-UI.s1 Mus musculus cDNA, 3 end	2087.7	PP	767.1	PA	1420.5	PP	0.4	0.5
AW049376	UI-M-BH1-ane-c-05-0-UI.s1 Mus musculus cDNA, 3 end	613.8	PP	207.9	PA	170.2	PP	0.3	1.2
AW050342	UI-M-BH1-ang-c-10-0-UI.s1 Mus musculus cDNA, 3 end	720.65	PP	192.9	AA	323.35	PA	0.3	0.6
AW049730	UI-M-BH1-ani-g-03-0-UI.s1 Mus musculus cDNA, 3 end	479.4	PP	181.45	PP	224.25	PP	0.4	0.8
AW122831	UI-M-BH2.1-aoz-d-08-0-UI.s1 Mus musculus cDNA, 3 end	6325.1	PP	2214.95	PP	3154.05	PP	0.4	0.7
AW122914	UI-M-BH2.1-apa-f-12-0-UI.s1 Mus musculus cDNA, 3 end	369.25	PP	156.4	AA	238.35	PP	0.4	0.7
AW123154	UI-M-BH2.1-apd-c-06-0-UI.s1 Mus musculus cDNA, 3 end	632.1	PP	248.45	AP	392.85	ΡР	0.4	0.6
AW123396	UI-M-BH2.1-apf-h-12-0-UI.s1 Mus musculus cDNA, 3 end	1497.35	PP	429.65	PP	629.55	ΡР	0.3	0.7
AW124836	UI-M-BH2.1-apk-e-10-0-UI.s1 Mus musculus cDNA, 3 end	5823.95	PP	2346.55	PP	4352.05	PP	0.4	0.5
AW123783	UI-M-BH2.1-apm-d-01-0-UI.s1 Mus musculus cDNA, 3 end	1277.1	PP	440.4	PP	563.45	ΡР	0.3	0.8
AW124359	UI-M-BH2.1-apq-h-06-0-UI.s1 Mus musculus cDNA, 3 end	1196.5	PP	460.8	AP	515.1	ΡР	0.4	0.9
AW125010	UI-M-BH2.1-apv-g-03-0-UI.s1 Mus musculus cDNA, 3 end	1508	PP	503.65	AP	853.2	ΡР	0.3	0.6
AW125314	UI-M-BH2.1-apy-d-10-0-UI.s1 Mus musculus cDNA, 3 end	2006.05	PP	662.1	PP	552.45	PP	0.3	1.2
AW125333	UI-M-BH2.1-apy-f-04-0-UI.s1 Mus musculus cDNA, 3 end	1776.85	PP	566.45	AP	553.65	PP	0.3	1.0
AW121453	UI-M-BH2.2-aon-e-02-0-UI.s1 Mus musculus cDNA, 3 end	2976.35	PP	1008.7	PP	1490.25	ΡР	0.3	0.7
AW122114	UI-M-BH2.2-aor-a-11-0-UI.s1 Mus musculus cDNA, 3 end	2639.55	PP	643.4	AA	951.9	ΡР	0.2	0.7
AW122766	UI-M-BH2.2-aot-h-10-0-UI.s1 Mus musculus cDNA, 3 end	475.45	PA	204.65	AA	205.75	РМ	0.4	1.0
AW122419	UI-M-BH2.2-aow-f-09-0-UI.s1 Mus musculus cDNA, 3 end	728.75	PP	300.9	AP	342.25	PP	0.4	0.9
AW125822	UI-M-BH2.2-aqk-b-05-0-UI.s1 Mus musculus cDNA, 3 end	800.7	PP	356.35	PP	696.6	ΡР	0.4	0.5
AW120628	UI-M-BH2.3-anz-a-04-0-UI.s1 Mus musculus cDNA, 3 end	4673.4	PP	1489.35	AP	2027.55	PP	0.3	0.7
AW121695	UI-M-BH2.3-aoc-f-07-0-UI.s1 Mus musculus cDNA, 3 end	3514.25	PP	1394.35	PP	2351.05	ΡР	0.4	0.6
AW121162	UI-M-BH2.3-aoh-g-10-0-UI.s1 Mus musculus cDNA, 3 end	1456.5	PP	513.95	AP	814.1	ΡР	0.4	0.6
AW121972	UI-M-BH2.3-aoj-a-09-0-UI.s1 Mus musculus cDNA, 3 end	2008	PP	735.25	PP	1157.95	PP	0.4	0.6
AI315698	uj34a01.x1 Mus musculus cDNA, 3 end	1540.4	PP	693.2	PA	1291.25	ΡР	0.5	0.5
AI987835	um07f07.x1 Mus musculus cDNA, 3 end	6562.65	PP	2586.15	PP	2748	ΡР	0.4	0.9
AA681764	vt61b04.r1 Mus musculus cDNA, 5 end	876.55	PP	266.35	AA	416	ΡР	0.3	0.6
AA790056	vt78h04.r1 Mus musculus cDNA, 5 end	857.25	PP	259	AP	398.35	ΡР	0.3	0.7
AA914734	vy91g08.r1 Mus musculus cDNA, 5 end	1708.1	PP	539.25	PP	560.7	РР	0.3	1.0
AA939571	vz51d08.r1 Mus musculus cDNA, 5 end	6283.75	PP	2095.15	PP	4099.4	РР	0.3	0.5

	GR ^{dim}			Fold change			GR ^{LysCre}			Fold change						
ctrl		LPS		dex+LF	s	<u>LPS</u>	<u>LPS</u>	ctri		LPS		dex+LF	s	<u>LPS</u>	<u>LPS</u>	Grid
AD	AC	AD	AC	AD	AC	ctrl	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
4170.43	PPP	1689.60	PPP	1257.20	PPP	0.4	1.3	2049.40	PP	918.85	PP	803.50	PP	0.4	1.1	100948_at
2150.90	PPP	1068.33	PPP	1327.60	PPP	0.5	0.8	2292.15	PP	956.00	PP	1035.25	PP	0.4	0.9	97868_at
546.00	PPP	223.10	PAA	196.73	PPP	0.4	1.1	620.50	PP	220.20	PP	345.15	ΡР	0.4	0.6	93056 <u>g</u> at
574.70	MAP	237.43	AAP	333.67	AAP	0.4	0.7	532.95	PP	194.05	MA	356.65	PA	0.4	0.5	95027_at
243.07	PPP	79.57	AAA	141.90	PAA	0.3	0.6	312.90	PP	49.25	AA	130.60	PA	0.2	0.4	100597_at
8044.97	PPP	2598.33	PPP	2551.13	PPP	0.3	1.0	6805.30	PP	2447.10	PP	3323.15	PP	0.4	0.7	103404_at
422.17	PPP	181.37	PAA	168.23	PAA	0.4	1.1	336.60	PA	96.65	PA	237.70	PA	0.3	0.4	160135_at
569.50	PPP	181.57	AAP	259.33	APA	0.3	0.7	495.00	PP	192.70	PA	408.20	PA	0.4	0.5	160783_at
1589.17	PPP	456.60	PPP	388.70	PPP	0.3	1.2	1063.75	PP	338.30	PP	373.85	PP	0.3	0.9	100565_at
6700.77	PPP	1893.77	PPP	1335.90	PPP	0.3	1.4	8637.10	PP	3814.55	PP	3374.55	PP	0.4	1.1	160671_at
1196.90	PPP	461.60	PMP	552.57	PPP	0.4	0.8	1379.55	PP	683.65	PP	922.40	PP	0.5	0.7	99139_at
1228.63	PPP	552.03	PPA	372.63	PPA	0.4	1.5	1006.65	PP	365.75	PP	514.15	PP	0.4	0.7	103866_at
1616.53	PPP	609.53	PPP	784.27	PPP	0.4	0.8	1100.45	PP	383.85	PM	1115.80	PP	0.3	0.3	97446_at
1609.97	PPP	674.43	PPP	351.40	PPA	0.4	1.9	1468.35	PP	697.80	PP	531.35	PP	0.5	1.3	102936_at
2261.43	PPP	621.50	PPP	754.73	PPP	0.3	0.8	1371.85	PP	548.20	PP	1878.85	PA	0.4	0.3	101426_at
3006.83	PPP	627.03	PPA	962.93	PPP	0.2	0.7	2523.15	PP	1254.70	PP	1419.65	PP	0.5	0.9	160242_at
2148.37	PAP	757.67	PAA	865.40	PAA	0.4	0.9	1883.40	PP	530.40	AA	606.35	AA	0.3	0.9	92525_i_at
443.13	PAP	214.97	MPA	244.67	PPA	0.5	0.9	546.45	PA	267.00	AA	159.40	PA	0.5	1.7	97257_at
741.27	PPP	287.90	PPP	409.63	PPP	0.4	0.7	758.30	PP	325.30	PA	767.30	PP	0.4	0.4	94490_at
996.07	PPP	374.80	PPP	461.83	PPP	0.4	0.8	770.00	PP	330.90	PP	861.85	ΡР	0.4	0.4	103251_at
5646.93	PPP	1763.70	PPP	1465.33	PPP	0.3	1.2	5506.35	PP	1443.15	PP	4137.05	ΡР	0.3	0.3	95161_at
3519.90	PPP	1752.53	PPP	1981.97	PPP	0.5	0.9	3983.90	PP	1918.70	PP	2287.65	PP	0.5	0.8	160307_at
1445.43	PPP	471.20	PPP	641.53	PPP	0.3	0.7	1113.85	PP	509.20	PP	1278.25	PP	0.5	0.4	98057_at
2080.13	PPP	804.23	PPP	652.77	PPP	0.4	1.2	1925.00	PP	697.50	PP	1096.15	PP	0.4	0.6	104602_at
1487.60	PPP	640.77	PPP	904.23	PPP	0.4	0.7	1104.30	PP	456.40	PP	1036.25	PP	0.4	0.4	104670_at
7530.17	PPP	2685.37	PPP	2406.07	PPP	0.4	1.1	4929.55	PP	2179.90	PP	2745.45	PP	0.4	0.8	98461_at
1007.73	PPP	370.07	PPP	397.00	PPP	0.4	0.9	848.00	PP	277.85	PP	420.65	PP	0.3	0.7	94459_at
928.33	PPP	428.87	PPP	274.80	PPP	0.5	1.6	956.80	PP	386.45	PP	840.35	PP	0.4	0.5	103467 <u>g</u> at
1394.50	PPP	489.03	PPP	504.73	PPP	0.4	1.0	1067.50	PP	413.10	PP	902.00	PP	0.4	0.5	104263_at
7598.17	PPP	3068.70	PPP	3903.03	PPP	0.4	0.8	5339.95	PP	2088.65	PP	3165.55	PP	0.4	0.7	104148 at

10. 7. 2. Normalised expression of genes/ESTs representing Group 2-A

ACC.	Gene/EST Name							
N00400	(class Mutch) sikasaanal asatain SC kinasa (sak) seDNA							
M28489								
022262	Apolipoprotein B editing complex 1							
AF017085	BAP-135 homolog (Diws1t) mRNA							
U75506								
AF076156	Catechol-O-methyltransferase							
U53455	chloride ion current inducer protein (CLCI) mRNA, partial cds							
X55663	Cytoplasmic tyrosine kinase, Dscr28C related (Drosophila)							
AB001990	Dcra							
U78818	Downstream of tyrosine kinase 1							
D10475	Epimorphin							
L00919	Erythrocyte protein band 4.1							
V00727	FBJ osteosarcoma oncogene							
U67187	G protein signaling regulator RGS2 (rgs2) mRNA							
M96265	galactose-1-phosphate uridyl transferase (GALT) mRNA							
L07508	Golli-mpb mRNA (alternate transcript from clone BG21)							
M98036	guanine nucleotide exchange factor delta subunit (JGR1A) mRNA							
AW122990	Hagoromo							
M32489	Interferon concensus sequence binding protein							
AF042487	intermediate conductance potassium channel mIK1 mRNA							
X57687	LYL gene (clone L6)							
AB028921	NAKAP95							
AI853802	Phosphofructokinase-1 C isozyme							
M34141	Prostaglandin-endoperoxide synthase 1							
X95281	retinal short-chain dehydrogenase/reductase							
U05245	T-cell lymphoma invasion and metastasis 1							
X64361	vav mRNA							
D83266	vav-T							
U27398	Xeroderma pigmentosum, complementation group C							
D43643	YL-1 mRNA for YL-1 protein (nuclear protein with DNA-binding ability)							
AA980810	ua45h04.r1 Mus musculus cDNA, 5 end							
AI462312	ub62c01.x1 Mus musculus cDNA, 3 end							
AI882440	uc01f05.r1 Mus musculus cDNA. 5 end							
AI154249	ud30f12.r1 Mus musculus cDNA. 5 end							
AI115399	uh85b06.r1 Mus musculus cDNA. 5 end							
AI841137	UI-M-AH0-acz-q-06-0-UI.s1 Mus musculus cDNA, 3 end							
AI848207	UI-M-AH1-agg-g-08-0-UI.s1 Mus musculus cDNA. 3 end							
AI849587	UI-M-AH1-agr-e-02-0-UI.s1 Mus musculus cDNA, 3 end							

	wild type				I		G R ^{LysCre}					
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
5164.35	0.50	0.21	0.29	5118.57	0.52	0.21	0.27	4029.70	0.51	0.23	0.26	97405_at
22065.25	0.63	0.17	0.21	18706.87	0.76	0.12	0.12	20573.75	0.62	0.22	0.16	98398_s_at
12231.75	0.42	0.21	0.37	10689.57	0.53	0.24	0.23	11002.10	0.33	0.16	0.51	94295_at
694.55	0.52	0.23	0.26	574.40	0.66	0.21	0.12	460.70	0.51	0.19	0.30	98433_at
5411.70	0.62	0.14	0.24	4286.60	0.60	0.19	0.21	3036.15	0.58	0.20	0.23	98535_at
6695.30	0.63	0.19	0.18	5391.67	0.49	0.18	0.33	8784.95	0.53	0.24	0.23	93812_at
5302.90	0.56	0.19	0.25	5991.80	0.56	0.19	0.25	5105.25	0.51	0.19	0.30	103539_at
7749.15	0.49	0.21	0.29	7622.33	0.56	0.18	0.27	7263.45	0.53	0.23	0.24	101104_at
2488.35	0.54	0.19	0.27	2960.77	0.60	0.17	0.23	1994.70	0.58	0.24	0.18	102896_at
3192.25	0.69	0.17	0.14	4330.23	0.73	0.11	0.16	2298.15	0.66	0.18	0.16	104482_at
2179.70	0.51	0.22	0.28	1500.17	0.53	0.19	0.29	1927.30	0.28	0.10	0.62	160379_at
2932.10	0.78	0.11	0.11	3807.77	0.74	0.13	0.13	1842.95	0.57	0.15	0.27	160901_at
1642.60	0.75	0.14	0.11	3115.07	0.82	0.06	0.11	3366.40	0.77	0.09	0.14	97844_at
729.15	0.61	0.15	0.25	833.80	0.62	0.19	0.20	948.35	0.52	0.13	0.35	104616 <u>g</u> at
4536.25	0.62	0.15	0.23	3355.60	0.63	0.21	0.16	5769.45	0.56	0.15	0.29	96310_at
1615.70	0.46	0.21	0.33	1630.87	0.53	0.24	0.23	1708.25	0.45	0.21	0.35	95046_s_at
2213.20	0.51	0.24	0.25	2644.53	0.54	0.27	0.19	1829.60	0.50	0.20	0.29	102478_f_at
8938.75	0.61	0.17	0.22	13795.27	0.55	0.26	0.19	9998.30	0.69	0.19	0.12	98002_at
1043.35	0.54	0.16	0.30	1478.70	0.45	0.21	0.34	2471.95	0.38	0.11	0.51	102198_at
9438.90	0.62	0.18	0.20	13239.77	0.67	0.23	0.10	8485.15	0.65	0.22	0.13	100468_g_at
1666.35	0.49	0.22	0.29	1470.97	0.57	0.21	0.22	1623.95	0.51	0.18	0.30	101947_at
2169.90	0.50	0.23	0.27	2419.70	0.52	0.22	0.26	3244.70	0.53	0.24	0.23	97834 g at
3825.20	0.51	0.24	0.25	2052.23	0.53	0.22	0.25	5029.65	0.53	0.23	0.24	95597 at
2460.15	0.70	0.12	0.18	3803.80	0.61	0.24	0.15	2641.30	0.54	0.17	0.29	 102797 at
1429.85	0.55	0.20	0.24	967.10	0.53	0.20	0.27	1516.20	0.49	0.19	0.33	 102283 at
5438.65	0.58	0.17	0.25	4894.93	0.55	0.19	0.26	5712.25	0.54	0.21	0.25	99799 at
7881.40	0.55	0.19	0.26	7491.90	0.53	0.19	0.28	7887.45	0.50	0.25	0.25	96511 s at
1053.45	0.59	0.17	0.24	1012.10	0.63	0.20	0.17	1005.50	0.45	0.07	0.47	95626 at
1139.35	0.53	0.21	0.25	1360.97	0.61	0.20	0.20	1629.50	0.46	0.22	0.32	 160363 at
1023.50	0.74	0.12	0.14	646.93	0.75	0.05	0.20	754.70	0.58	0.14	0.28	160922 at
1166.85	0.52	0.22	0.26	1182.80	0.50	0.18	0.32	2874.70	0.24	0.08	0.68	161076 at
3679 75	0.74	0 10	0 16	2922.00	0.71	0 10	0 19	3554 50	0 70	0 15	0 15	104293 at
8909.20	0,56	0,27	0.18	5891.63	0.58	0.27	0.14	7288.85	0.30	0.07	0.63	100511 at
1821.25	0.56	0.20	0.24	1389.83	0.56	0.24	0.20	1664 20	0.58	0.23	0.19	103711 at
16115 90	0.54	0.20	0.24	17497 57	08.0	0.27	0.19	11609 55	0.53	0.26	0.21	160311 at
3525 35	0.57	0.15	0.27	3127.07	08.0	0.18	0.22	3477.65	0.57	0.20	0.23	103852 at
4896.10	0,45	0,20	0.34	8499.90	0.52	0.15	0.33	3300.30	0.54	0.24	0.21	95465 s at

•	
Acc.	Gene/EST Name
Num.	
A1849497	UI-M-AH1-agt-d-06-0-UI.s1 Mus musculus cDNA, 3 end
AI835963	UI-M-AI0-aao-h-06-0-UI.s1 Mus musculus cDNA, 3 end
AI842242	UI-M-AI1-afp-d-07-0-UI.s1 Mus musculus cDNA, 3 end
AI837229	UI-M-AK0-ade-e-06-0-UI.s1 Mus musculus cDNA, 3 end
AI837679	UI-M-AK0-adj-b-10-0-UI.s1 Mus musculus cDNA, 3 end
AI843884	UI-M-AK1-aeu-e-10-0-UI.s1 Mus musculus cDNA, 3 end
AI845902	UI-M-AK1-aex-b-07-0-UI.s1 Mus musculus cDNA, 3 end
AI849679	UI-M-AL1-ahl-e-09-0-UI.s1 Mus musculus cDNA, 3 end
AI849743	UI-M-AL1-ahn-d-06-0-UI.s1 Mus musculus cDNA, 3 end
AI844739	UI-M-AL1-ahq-d-01-0-UI.s1 Mus musculus cDNA, 3 end
AI846531	UI-M-AN1-aff-f-08-0-UI.s1 Mus musculus cDNA, 3 end
AI846534	UI-M-AN1-aff-f-11-0-UI.s1 Mus musculus cDNA, 3 end
AI838655	UI-M-AO0-aca-c-08-0-UI.s1 Mus musculus cDNA, 3 end
AI838702	UI-M-AO0-aca-h-06-0-UI.s1 Mus musculus cDNA, 3 end
AI840137	UI-M-AO0-acc-b-07-0-UI.s1 Mus musculus cDNA, 3 end
AI841579	UI-M-AP0-abn-e-04-0-UI.s1 Mus musculus cDNA, 3 end
AI846994	UI-M-AP1-agj-c-06-0-UI.s1 Mus musculus cDNA, 3 end
AI836322	UI-M-AQ0-aag-a-02-0-UI.s2 Mus musculus cDNA, 3 end
AI843384	UI-M-AQ1-adz-f-07-0-UI.s1 Mus musculus cDNA, 3 end
AI845183	UI-M-BG0-aht-a-12-0-UI.s1 Mus musculus cDNA, 3 end
AI850087	UI-M-BG0-aia-f-10-0-UI.s1 Mus musculus cDNA, 3 end
AI851750	UI-M-BH0-aim-c-02-0-UI.s1 Mus musculus cDNA, 3 end
AI853960	UI-M-BH0-aiv-d-02-0-UI.s1 Mus musculus cDNA, 3 end
AI852087	UI-M-BH0-aja-g-04-0-UI.s1 Mus musculus cDNA, 3 end
AI852741	UI-M-BH0-aji-h-09-0-UI.s1 Mus musculus cDNA, 3 end
AI851064	UI-M-BH0-ajv-h-03-0-UI.s1 Mus musculus cDNA, 3 end
AI851207	UI-M-BH0-ajx-f-06-0-UI.s1 Mus musculus cDNA, 3 end
AI850953	UI-M-BH0-akd-e-11-0-UI.s1 Mus musculus cDNA, 3 end
AW046438	UI-M-BH1-akp-d-11-0-UI.s1 Mus musculus cDNA, 3 end
AW045753	UI-M-BH1-akt-a-10-0-UI.s1 Mus musculus cDNA, 3 end
AW046027	UI-M-BH1-alc-h-08-0-UI.s1 Mus musculus cDNA, 3 end
AW047450	UI-M-BH1-all-e-01-0-UI.s1 Mus musculus cDNA, 3 end
AW047874	UI-M-BH1-als-g-02-0-UI.s1 Mus musculus cDNA, 3 end
AW047978	UI-M-BH1-alv-d-06-0-UI.s1 Mus musculus cDNA, 3 end
AW047237	UI-M-BH1-amb-g-05-0-UI.s1 Mus musculus cDNA, 3 end
AW047237	UI-M-BH1-amb-g-05-0-UI.s1 Mus musculus cDNA, 3 end
AW048989	UI-M-BH1-amp-b-07-0-UI.s1 Mus musculus cDNA, 3 end

T.
	wild t	уре			GR ^{dim}			G R ^{LysCre}				
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	LPS	<u>dex+LPS</u>	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
840.90	0.53	0.21	0.27	1256.73	0.70	0.17	0.12	1022.90	0.62	0.13	0.24	160161_at
992.30	0.63	0.14	0.23	1099.93	0.57	0.24	0.19	1120.65	0.56	0.23	0.21	160615_at
4000.45	0.62	0.15	0.23	3477.97	0.61	0.17	0.21	4545.00	0.62	0.13	0.25	104332_at
2486.35	0.62	0.18	0.20	2048.23	0.63	0.16	0.21	2322.35	22.35 0.52 0.		0.23	94241_at
3683.20	0.51	0.18	0.31	3205.70	0.56	0.22	0.22	4125.35	0.54	0.22	0.24	98065_at
10061.30	0.75	0.10	0.15	10992.23	0.80	0.11	0.09	8368.55	0.68	0.18	0.13	95618_at
2647.10	0.51	0.23	0.26	4242.23	0.57	0.24	0.19	3736.85	0.38	0.15	0.47	92787_at
1592.65	0.61	0.20	0.19	1272.53	0.54	0.13	0.33	1760.85	0.51	0.13	0.36	99151_at
805.35	0.55	0.16	0.29	776.60	0.50	0.24	0.26	840.75	0.46	0.14	0.40	103760_at
3360.70	0.55	0.20	0.25	2823.57	0.57	0.27	0.17	2887.50	0.53	0.21	0.27	160747_at
1409.90	0.58	0.21	0.22	1924.60	0.60	0.22	0.18	1201.90	0.52	0.24	0.24	160351_at
1673.90	0.52	0.23	0.25	2032.73	0.54	0.20	0.26	2783.35	0.53	0.26	0.21	160846_at
4855.65	0.63	0.17	0.20	10610.20	0.55	0.18	0.27	5525.95	0.68	0.20	0.12	94504_at
2057.60	0.91	0.04	0.05	2733.30	0.59	0.20	0.21	2585.35	0.71	0.17	0.12	97012_f_at
8541.75	0.53	0.21	0.26	8849.20	0.58	0.26	0.16	8756.35	0.47	0.20	0.33	96615_at
2232.95	0.57	0.24	0.19	1952.10	0.55	0.24	0.21	2641.70	0.51	0.25	0.25	
3643.90	0.51	0.18	0.31	3789.67	0.52	0.24	0.23	2418.55	0.44	0.18	0.38	93838_at
2721.30	0.44	0.20	0.36	2244.50	0.52	0.24	0.24	2268.30	0.49	0.21	0.29	101929_at
2391.95	0.53	0.19	0.28	2220.27	0.59	0.24	0.16	1648.05	0.56	0.16	0.28	101356_at
3815.35	0.58	0.19	0.22	3871.13	0.57	0.23	0.20	4633.30	0.41	0.19	0.40	99635 at
1861.40	0.63	0.20	0.18	1939.20	0.66	0.18	0.16	2239.00	0.55	0.09	0.36	 104032_at
1897.25	0.49	0.24	0.26	1734.73	0.54	0.25	0.21	1994.00	0.51	0.22	0.27	 100473 at
1266.75	0.45	0.22	0.33	1261.23	0.53	0.24	0.23	953.20	0.58	0.22	0.20	92857 at
4532.45	0.70	0.12	0.18	5287.97	0.71	0.13	0.15	3449.20	0.54	0.24	0.22	 95665 at
1084.75	0.61	0.18	0.21	1211.10	0.59	0.16	0.25	1167.10	0.48	0.21	0.32	 160824 at
8437.80	0.51	0.22	0.27	9625.37	0.51	0.22	0.26	8542.30	0.50	0.22	0.28	– 92622 at
1051.95	0.58	0.20	0.22	1388.53	0.51	0.23	0.26	1294.80	0.52	0.21	0.27	94509 at
14807.05	0.52	0.22	0.26	11167.10	0.64	0.18	0.18	10082.25	0.53	0.25	0.22	 97485 at
747.35	0.53	0.22	0.24	758.87	0.66	0.20	0.13	706.70	0.43	0.20	0.37	 97514 at
2077.55	0.49	0.24	0.27	1653.50	0.55	0.23	0.22	2844.00	0.39	0.18	0.43	104217 at
2083.20	0.62	0.18	0.20	2317.67	0.59	0.17	0.24	1577.85	0.57	0.14	0.29	93777 at
974 35	0.63	0 15	0.23	1091 03	0 4 9	0.21	0.31	1229 15	0.63	0 15	0.22	160597 at
4326 10	0.66	0.15	0.20	4206 87	0.70	0.17	0.14	4987 50	0.67	0.19	0.14	103773 at
9935 95	0.59	0.19	0.23	9248 37	0.62	0.22	0.16	8531 20	0.59	0.20	0.21	104102 at
2365 75	0.57	0.20	0.23	1966 20	0.71	0.16	0.14	3005.80	0.44	0.10	0.47	95940 f at
2358 75	0.07	0.20	0.20	1958 30	0.66	0.10	0.14	2644.05	0.42	0.10	0.49	95939 i at
663.75	0.68	0.19	0.13	584.73	0.70	0.14	0.16	380.10	0.48	0.17	0.34	99360 at

.

8.00	
ACC. Num.	Gene/EST Name
AW049351	UI-M-BH1-amr-h-10-0-UI.s1 Mus musculus cDNA, 3 end
AW060270	UI-M-BH1-amv-g-11-0-UI.s1 Mus musculus cDNA, 3 end
AW049376	UI-M-BH1-ane-c-05-0-UI.s1 Mus musculus cDNA, 3 end
AW050342	UI-M-BH1-ang-c-10-0-UI.s1 Mus musculus cDNA, 3 end
AW049730	UI-M-BH1-ani-g-03-0-UI.s1 Mus musculus cDNA, 3 end
AW122831	UI-M-BH2.1-aoz-d-08-0-UI.s1 Mus musculus cDNA, 3 end
AW122914	UI-M-BH2.1-apa-f-12-0-UI.s1 Mus musculus cDNA, 3 end
AW123154	UI-M-BH2.1-apd-c-06-0-UI.s1 Mus musculus cDNA, 3 end
AW123396	UI-M-BH2.1-apf-h-12-0-UI.s1 Mus musculus cDNA, 3 end
AW124836	UI-M-BH2.1-apk-e-10-0-UI.s1 Mus musculus cDNA, 3 end
AW123783	UI-M-BH2.1-apm-d-01-0-UI.s1 Mus musculus cDNA, 3 end
AW124359	UI-M-BH2.1-apq-h-06-0-UI.s1 Mus musculus cDNA, 3 end
AW125010	UI-M-BH2.1-apv-g-03-0-UI.s1 Mus musculus cDNA, 3 end
AW125314	UI-M-BH2.1-apy-d-10-0-UI.s1 Mus musculus cDNA, 3 end
AW125333	UI-M-BH2.1-apy-f-04-0-UI.s1 Mus musculus cDNA, 3 end
AW121453	UI-M-BH2.2-aon-e-02-0-UI.s1 Mus musculus cDNA, 3 end
AW122114	UI-M-BH2.2-aor-a-11-0-UI.s1 Mus musculus cDNA, 3 end
AW122766	UI-M-BH2.2-aot-h-10-0-UI.s1 Mus musculus cDNA, 3 end
AW122419	UI-M-BH2.2-aow-f-09-0-UI.s1 Mus musculus cDNA, 3 end
AW125822	UI-M-BH2.2-aqk-b-05-0-UI.s1 Mus musculus cDNA, 3 end
AW120628	UI-M-BH2.3-anz-a-04-0-UI.s1 Mus musculus cDNA, 3 end
AW121695	UI-M-BH2.3-aoc-f-07-0-UI.s1 Mus musculus cDNA, 3 end
AW121162	UI-M-BH2.3-aoh-g-10-0-UI.s1 Mus musculus cDNA, 3 end
AW121972	UI-M-BH2.3-aoj-a-09-0-UI.s1 Mus musculus cDNA, 3 end
AI315698	uj34a01.x1 Mus musculus cDNA, 3 end
AI987835	um07f07.x1 Mus musculus cDNA, 3 end
AA681764	vt61b04.r1 Mus musculus cDNA, 5 end
AA790056	vt78h04.r1 Mus musculus cDNA, 5 end
AA914734	vy91g08.r1 Mus musculus cDNA, 5 end
AA939571	vz51d08.r1 Mus musculus cDNA, 5 end

- -

	wild t	уре			GR ^{dim}	I		G R ^{LysCre}				
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
7745.75	0.51	0.24	0.25	7117.23	0.59	0.24	0.18	3771.75	0.54	0.24	0.21	100948_at
4275.30	0.49	0.18	0.33	4546.83	0.47	0.23	0.29	4283.40	0.54	0.22	0.24	97868_at
991.90	0.62	0.21	0.17	965.83	0.57	0.23	0.20	1185.85	0.52	0.19	0.29	93056 <u>g</u> at
1236.90	0.58	0.16	0.26	1145.80	0.50	0.21	0.29	1083.65	0.49	0.18	0.33	95027_at
885.10	0.54	0.21	0.25	464.53	0.52	0.17	0.31	492.75	0.64	0.10	0.27	100597_at
11694.10	0.54	0.19	0.27	13194.43	0.61	0.20	0.19	12575.55	0.54	0.19	0.26	103404_at
764.00	0.48	0.20	0.31	771.77	0.55	0.24	0.22	670.95	0.50	0.14	0.35	160135_at
1273.40	0.50	0.20	0.31	1010.40	0.56	0.18	0.26	1095.90	0.45	0.18	0.37	160783_at
2556.55	0.59	0.17	0.25	2434.47	0.65	0.19	0.16	1775.90	0.60	0.19	0.21	100565_at
12522.55	0.47	0.19	0.35	9930.43	0.67	0.19	0.13	15826.20	0.55	0.24	0.21	160671_at
2280.95	0.56	0.19	0.25	2211.07	0.54	0.21	0.25	2985.60	0.46	0.23	0.31	99139_at
2172.40	0.55	0.21	0.24	2153.30	0.57	0.26	0.17	1886.55	0.53	0.19	0.27	103866_at
2864.85	0.53	0.18	0.30	3010.33	0.54	0.20	0.26	2600.10	0.42	0.15	0.43	97446_at
3220.60	0.62	0.21	0.17	2635.80	0.61	0.26	0.13	2697.50	0.54	0.26	0.20	102936_at
2896.95	0.61	0.20	0.19	3637.67	0.62	0.17	0.21	3798.90	0.36	0.14	0.49	101426_at
5475.30	0.54	0.18	0.27	4596.80	0.65	0.14	0.21	5197.50	0.49	0.24	0.27	160242_at
4234.85	0.62	0.15	0.22	3771.43	0.57	0.20	0.23	3020.15	0.62	0.18	0.20	92525_i_at
885.85	0.54	0.23	0.23	902.77	0.49	0.24	0.27	972.85	0.56	0.27	0.16	97257_at
1371.90	0.53	0.22	0.25	1438.80	0.52	0.20	0.28	1850.90	0.41	0.18	0.41	94490_at
1853.65	0.43	0.19	0.38	1832.70	0.54	0.20	0.25	1962.75	0.39	0.17	0.44	103251_at
8190.30	0.57	0.18	0.25	8875.97	0.64	0.20	0.17	11086.55	0.50	0.13	0.37	95161_at
7259.65	0.48	0.19	0.32	7254.40	0.49	0.24	0.27	8190.25	0.49	0.23	0.28	160307_at
2784.55	0.52	0.18	0.29	2558.17	0.57	0.18	0.25	2901.30	0.38	0.18	0.44	98057_at
3901.20	0.51	0.19	0.30	3537.13	0.59	0.23	0.18	3718.65	0.52	0.19	0.29	104602_at
3524.85	0.44	0.20	0.37	3032.60	0.49	0.21	0.30	2596.95	0.43	0.18	0.40	104670_at
11896.80	0.55	0.22	0.23	12621.60	0.60	0.21	0.19	9854.90	0.50	0.22	0.28	98461_at
1558.90	0.56	0.17	0.27	1774.80	0.57	0.21	0.22	1546.50	0.55	0.18	0.27	94459_at
1514.60	0.57	0.17	0.26	1632.00	0.57	0.26	0.17	2183.60	0.44	0.18	0.38	103467_g_at
2808.05	0.61	0.19	0.20	2388.27	0.58	0.20	0.21	2382.60	0.45	0.17	0.38	104263_at
12478.30	0.50	0.17	0.33	14569.90	0.52	0.21	0.27	10594.15	0.50	0.20	0.30	104148_at

10. 8. GROUP 2-B

		wild ty	уре			GR dim			GR ^{LysCre}				
	ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		
Sum:	19.83	4.59	13.58	Sum:	22.59	7.38	8.03	Sum:	18.82	6.49	12.69		
Mean:	0.52	0.12	0.36	Mean:	0.59	0.19	0.21	Mean:	0.50	0.17	0.33		
StDev:	0.11	0.05	0.11	StDev:	0.09	0.04	0.06	StDev:	0.10	0.05	0.12		
Fold change (LPS/ctrl) 0.2				Fold char	ige (LPS/c	trl)	0.3	Fold change (LPS/ctrl)			0.3		
Fold change (LPS/dex+LPS) 0.3				Fold char	ige (LPS/d	ex+LPS)	0.9	Fold chan	ige (LPS/d	ex+LPS)	0.5		

10. 8. 1. Expression levels of genes/ESTs representing Group 2-B

				wild ty	/ p e			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	s	<u>LPS</u>	<u>LPS</u>
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
X13586	2,3-bisphosphoglycerate mutase (BPGM; EC 5.4.2.4)	359.15	PP	31.25	AA	212.55	PP	0.1	0.1
M62362	CCAAT enhancer binding protein (CEBP), alpha	2916.35	PP	672.55	PP	1352.5	PP	0.2	0.5
U43512	Dystroglycan 1	2204.05	PP	138.75	MP	1154.25	PP	0.1	0.1
U11680	glycerol-3-phosphate acyltransferase gene	472.25	PP	77	MA	164.05	PP	0.2	0.5
AB012808	mBOCT	921.05	PP	245.8	AM	514.5	PP	0.3	0.5
U39827	putative G protein-coupled receptor TDAG8 (TDAG8) mRNA	1423.65	PP	379.3	AP	804.15	PP	0.3	0.5
Z14132	Sphingomyelin phosphodiesterase 1, acid lysosomal	2581.7	PP	863	AP	1944.35	PP	0.3	0.4
M26270	Stearoyl-coenzyme A desaturase 2	2997.9	PP	920.5	PP	2006.45	PP	0.3	0.5
U86137	Telomerase associated protein 1	724.05	PP	7.6	AA	244.85	PP	0.0	0.0
D86344	Topoisomerase-inhibitor suppressed	514.1	PP	161.05	AA	2547.15	PP	0.3	0.1
AI414025	ma02g05.x1 Mus musculus cDNA, 3 end	1234.1	AP	434.8	PP	1111.8	PP	0.4	0.4
AI596360	me60c05.x1 Mus musculus cDNA, 3 end	897.65	PP	195.7	AA	561.6	PP	0.2	0.3
AA014745	mh18b05.r1 Mus musculus cDNA, 5 end	886.75	PP	317.2	PP	797.45	PP	0.4	0.4
AA048058	mj24a07.r1 Mus musculus cDNA, 5 end	651.25	PP	70.15	AA	417.05	PP	0.1	0.2
AV265258	Mus musculus cDNA, 3 end	1736.75	PP	770.95	PP	1610.9	PP	0.4	0.5
AV244370	Mus musculus cDNA, 3 end	1445	ΡР	489.15	PP	1193.35	PP	0.3	0.4
AV376312	Mus musculus cDNA, 3 end	805.95	PP	182.9	PA	442.5	PP	0.2	0.4
AI226158	ue85d06.y1 Mus musculus cDNA, 5 end	1044.2	PP	213.35	AA	754.9	PP	0.2	0.3
AI839899	UI-M-AH0-acw-d-06-0-UI.s1 Mus musculus cDNA, 3 end	621.25	ΡР	209.7	AP	424.85	ΡР	0.3	0.5
AI847490	UI-M-AI1-afs-g-11-0-UI.s1 Mus musculus cDNA, 3 end	2368.75	ΡР	542.05	PP	1443.15	PP	0.2	0.4
AI835989	UI-M-AJ0-abb-a-04-0-UI.s1 Mus musculus cDNA, 3 end	1025.55	PP	266.7	AA	540.4	PP	0.3	0.5
AI839232	UI-M-AK0-adh-d-11-0-UI.s1 Mus musculus cDNA, 3 end	1780.2	ΡР	769.95	PP	1605.35	PP	0.4	0.5
AI843106	UI-M-AK1-aes-e-01-0-UI.s1 Mus musculus cDNA, 3 end	3499.7	PP	750.45	PP	4430.65	PP	0.2	0.2
AI841364	UI-M-AM0-adv-f-01-0-UI.s1 Mus musculus cDNA, 3 end	1062.6	РМ	153.95	АМ	1088.25	PP	0.1	0.1
AI841777	UI-M-AN0-acl-d-07-0-UI.s1 Mus musculus cDNA, 3 end	5888.7	PP	1979.9	PP	4324.05	PP	0.3	0.5
AI847661	UI-M-AP1-agm-a-04-0-UI.s1 Mus musculus cDNA, 3 end	1298.2	ΡР	199.2	AA	607.15	PP	0.2	0.3
AI847699	UI-M-AP1-agm-d-10-0-UI.s1 Mus musculus cDNA, 3 end	861.1	ΡР	164.15	AA	361.75	PP	0.2	0.5
AI842544	UI-M-AQ1-aea-e-05-0-UI.s1 Mus musculus cDNA. 3 end	1011.9	PP	116.6	AA	273.55	PP	0.1	0.4
AI845735	UI-M-AQ1-aeb-b-07-0-UI.s1 Mus musculus cDNA. 3 end	296.3	РР	43.85	AA	123.5	AP	0.1	0.4
AI850202	UI-M-BG1-aie-b-01-0-UI.s1 Mus musculus cDNA. 3 end	1973.3	ΡР	411.55	AP	925.5	ΡР	0.2	0.4
AI851901	UI-M-BH0-aix-d-03-0-UI.s1 Mus musculus cDNA. 3 end	752.8	PP	191.05	PP	385.75	PP	0.3	0.5
AW049360	UI-M-BH1-ane-a-10-0-UI.s1 Mus musculus cDNA. 3 end	1114.55	PP	215.45	MP	2517.3	PP	0.2	0.1
AW124250	UI-M-BH2.1-aph-f-11-0-UI.s1 Mus musculus cDNA. 3 end	5326.4	PP	2583.9	PP	5823.95	PP	0.5	0.4
AW123746	UI-M-BH2.1-apl-h-09-0-UI.s1 Mus musculus cDNA 3 end	591 1	PP	66 75	AA	269 55	PP	0,1	0.2
AW(121330	UI-M-BH2 2-aom-b-01-0-UI s1 Mus musculus cDNA 3 end	1597 7	PP	534.5	PP	1320 45	PP	0.3	0.4
A\N/125438	III-M-BH2 3-agh-g-08-0-11 s1 Mus musculus cDNA 3 and	4040.05	PP	1559.95	PP	3414 9	PP	0.4	0.5
A\A/107702	um33b01 x1 Mus musculus cDNA 3 end	559.65	PP	131 55	PΔ	265 55	PP	0.7	0.5
AA960603	windows from the musculus cDNA 3 and	7621	PP	2327.7	PP	6599.65	PP	0.2	0.4
AA960603	vw64d05.s1 Mus musculus cDNA, 3 end	7621	PP	2327.7	PP	6599.65	PP	0.3	0.4

		GR ^{dim}				Fold ch	ange		GR LysCre				Fold change			
ctrl		LPS		dex+LF	s	<u>LPS</u>	LPS	ctrl		LPS		dex+LF	s	<u>LPS</u>	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
326.27	PAP	126.27	APA	119.87	APA	0.4	1.1	393.45	PP	146.40	AA	699.65	PA	0.4	0.2	94815_at
6596.03	PPP	1152.27	PPP	1773.13	PPP	0.2	0.6	3602.95	PP	1039.95	PP	766.60	PP	0.3	1.4	98447_at
1580.53	PPP	475.43	AAP	544.73	PAP	0.3	0.9	1015.95	PP	504.15	AA	1014.75	PA	0.5	0.5	101109_at
505.60	PPP	185.30	APP	149.40	MPP	0.4	1.2	533.95	PP	95.85	AA	308.85	PP	0.2	0.3	101867_at
902.43	PPP	306.40	AAA	299.30	PMA	0.3	1.0	534.55	AP	206.05	AA	214.10	AA	0.4	1.0	95012_at
2707.40	PPP	723.30	PPP	626.37	PPA	0.3	1.2	1712.30	PP	813.15	AP	823.90	PP	0.5	1.0	96553_at
2525.80	PPP	1026.07	PPP	819.03	PPP	0.4	1.3	2018.90	PP	661.55	PP	778.70	PP	0.3	0.8	100099_at
2164.67	PPP	834.17	PAA	865.93	PPP	0.4	1.0	2723.95	PP	676.70	PP	3981.35	PP	0.2	0.2	95758_at
739.27	PPM	165.27	PAA	237.20	PMA	0.2	0.7	552.85	PP	199.10	AA	140.90	АА	0.4	1.4	93367_at
657.70	PPP	310.47	РРА	319.10	PPA	0.5	1.0	719.80	PP	335.00	PP	1926.30	PA	0.5	0.2	103029_at
1442.37	APP	557.20	AAP	451.93	ААА	0.4	1.2	1137.00	AP	401.05	AP	1397.60	PA	0.4	0.3	104502_f_at
1768.03	PPP	402.60	РРР	354.47	PPP	0.2	1.1	923.95	PP	209.95	PP	522.00	PP	0.2	0.4	161013_f_at
703.40	PPP	327.27	PAP	348.37	PPP	0.5	0.9	1291.50	PP	260.30	PP	535.50	РМ	0.2	0.5	98855_r_at
602.83	PPP	169.33	ААА	159.63	PAA	0.3	1.1	325.05	PP	134.45	AA	948.85	PA	0.4	0.1	160625_f_at
1991.43	PPP	880.37	РРР	1343.30	PPP	0.4	0.7	1591.05	ΡР	564.90	PP	1068.70	ΡР	0.4	0.5	161214_r_at
1369.97	PPP	613.97	РРР	556.73	PPP	0.4	1.1	937.90	РР	419.30	PP	514.35	PP	0.4	0.8	161183_at
1227.93	PPP	337.67	APP	207.07	PAP	0.3	1.6	684.50	PP	136.20	AA	443.15	PP	0.2	0.3	161817_f_at
833.63	PMP	236.87	ААА	449.53	PAA	0.3	0.5	950.30	РМ	309.50	AA	899.10	PA	0.3	0.3	102412_at
792.33	PPP	389.17	РРР	473.80	PPP	0.5	0.8	836.25	PP	392.05	PP	305.00	PP	0.5	1.3	160654_at
2337.07	PPP	940.37	РРР	1049.23	PPP	0.4	0.9	2636.95	ΡР	1193.90	PP	1619.30	ΡР	0.5	0.7	160282_at
864.83	PPP	137.47	APP	78.17	PPA	0.2	1.8	799.80	PA	300.25	PP	409.35	PP	0.4	0.7	103447_at
1937.10	PPP	813.57	РРР	1057.67	PPP	0.4	0.8	3090.85	PP	1310.30	РР	2967.60	РР	0.4	0.4	103685 at
5076.80	PPP	453.80	РРА	481.47	PPA	0.1	0.9	3056.20	PP	376.85	PP	2760.80	PP	0.1	0.1	95731_at
779.80	PPA	277.17	PAA	529.10	PPA	0.4	0.5	1258.85	РР	567.75	PA	411.95	PA	0.5	1.4	95556 at
4222.73	PPP	1482.23	РРР	1860.50	PPP	0.4	0.8	3105.10	ΡР	1144.20	ΡР	1769.80	ΡР	0.4	0.6	104320 at
1416.07	PPP	379.60	PAP	282.93	PAP	0.3	1.3	1134.25	РР	346.20	ΡР	641.10	PA	0.3	0.5	 102374_at
440.00	PPA	182.93	PAP	143.87	PAA	0.4	1.3	522.15	РР	208.60	PP	348.80	РА	0.4	0.6	104699_at
1044.60	PPP	289.37	РРР	296.23	РРР	0.3	1.0	747.10	ΡР	175.40	PA	419.35	РА	0.2	0.4	104298_at
361.50	APP	92.00	PAA	63.40	ААА	0.3	1.5	177.00	РА	68.90	AA	85.15	РА	0.4	0.8	93325_at
1896.40	PPP	819.53	РРР	966.53	PPP	0.4	0.8	1907.20	ΡР	728.75	PP	1088.90	ΡР	0.4	0.7	95468_at
955.53	PPP	292.13	РРА	469.97	PPP	0.3	0.6	947.30	ΡР	340.25	PP	268.50	PP	0.4	1.3	94382_at
1652.93	PPP	395.00	РРР	534.67	PPP	0.2	0.7	1403.10	ΡР	413.60	PP	640.60	PP	0.3	0.6	104389_at
6422.53	PPP	3122.60	РРР	2366.37	РРР	0.5	1.3	7056.05	PP	2959.85	PP	5119.95	PP	0.4	0.6	101072_at
636.60	PPP	228.53	PAA	268.00	РРР	0.4	0.9	660.65	РР	233.20	РР	620.90	РА	0.4	0.4	95759 at
1765.27	PPP	614.80	PPP	694.87	PPP	0.3	0.9	1339.95	РР	547.60	РР	954.20	РР	0.4	0.6	94403 at
3041.57	PPP	1370.70	РРР	2098.97	РРР	0.5	0.7	5009.85	РР	2404.70	РР	3103.00	РР	0.5	0.8	 101070 at
378.20	APP	166.17	AAP	191.40	PPA	0.4	0.9	257.80	РР	59.75	AA	192.80	PA	0.2	0.3	102883 at
8610.47	PPP	1992.07	PPP	2208.93	PPP	0.2	0.9	6860.35	РР	1953.45	PP	4732.20	PP	0.3	0.4	160273_at

10. 8. 2. Normalised expression of genes/ESTs representing Group 2-B

•	
ACC.	Gene/EST Name
Num.	
X13586	2,3-bisphosphoglycerate mutase (BPGM; EC 5.4.2.4)
M62362	CCAAT enhancer binding protein (CEBP), alpha
U43512	Dystroglycan 1
U11680	glycerol-3-phosphate acyltransferase gene, nuclear gene for mitochondrial protein
AB012808	mBOCT
U39827	putative G protein-coupled receptor TDAG8 (TDAG8) mRNA
Z14132	Sphingomyelin phosphodiesterase 1, acid lysosomal
M26270	Stearoyl-coenzyme A desaturase 2
U86137	Telomerase associated protein 1
D86344	Topoisomerase-inhibitor suppressed
AI414025	ma02g05.x1 Mus musculus cDNA, 3 end
AI596360	me60c05.x1 Mus musculus cDNA, 3 end
AA014745	mh18b05.r1 Mus musculus cDNA, 5 end
AA048058	mj24a07.r1 Mus musculus cDNA, 5 end
AV265258	Mus musculus cDNA, 3 end
AV244370	Mus musculus cDNA, 3 end
AV376312	Mus musculus cDNA, 3 end
AI226158	ue85d06.y1 Mus musculus cDNA, 5 end
AI839899	UI-M-AH0-acw-d-06-0-UI.s1 Mus musculus cDNA, 3 end
AI847490	UI-M-AI1-afs-g-11-0-UI.s1 Mus musculus cDNA, 3 end
AI835989	UI-M-AJ0-abb-a-04-0-UI.s1 Mus musculus cDNA, 3 end
AI839232	UI-M-AK0-adh-d-11-0-UI.s1 Mus musculus cDNA, 3 end
AI843106	UI-M-AK1-aes-e-01-0-UI.s1 Mus musculus cDNA, 3 end
AI841364	UI-M-AM0-adv-f-01-0-UI.s1 Mus musculus cDNA, 3 end
AI841777	UI-M-AN0-acI-d-07-0-UI.s1 Mus musculus cDNA, 3 end
AI847661	UI-M-AP1-agm-a-04-0-UI.s1 Mus musculus cDNA, 3 end
AI847699	UI-M-AP1-agm-d-10-0-UI.s1 Mus musculus cDNA, 3 end
AI842544	UI-M-AQ1-aea-e-05-0-UI.s1 Mus musculus cDNA, 3 end
AI845735	UI-M-AQ1-aeb-b-07-0-UI.s1 Mus musculus cDNA, 3 end
AI850202	UI-M-BG1-aie-b-01-0-UI.s1 Mus musculus cDNA, 3 end
AI851901	UI-M-BH0-aix-d-03-0-UI.s1 Mus musculus cDNA, 3 end
AW049360	UI-M-BH1-ane-a-10-0-UI.s1 Mus musculus cDNA, 3 end
AW124250	UI-M-BH2.1-aph-f-11-0-UI.s1 Mus musculus cDNA, 3 end
AW123746	UI-M-BH2.1-apl-h-09-0-UI.s1 Mus musculus cDNA, 3 end
AW121330	UI-M-BH2.2-aom-b-01-0-UI.s1 Mus musculus cDNA, 3 end
AW125438	UI-M-BH2.3-aqh-g-08-0-UI.s1 Mus musculus cDNA, 3 end
AW107702	um33b01.x1 Mus musculus cDNA, 3 end
AA960603	vw64d05.s1 Mus musculus cDNA, 3 end

- 1

	wild t	уре			GR ^{dim}	I		G R ^{LysCre}				
	<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS		<u>ctrl</u>	LPS	<u>dex+LPS</u>	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
602.95	0.60	0.05	0.35	572.40	0.57	0.22	0.21	1239.50	0.32	0.12	0.56	94815_at
4941.40	0.59	0.14	0.27	9521.43	0.69	0.12	0.19	5409.50	0.67	0.19	0.14	98447_at
3497.05	0.63	0.04	0.33	2600.70	0.61	0.18	0.21	2534.85	0.40	0.20	0.40	101109_at
713.30	0.66	0.11	0.23	840.30	0.60	0.22	0.18	938.65	0.57	0.10	0.33	101867_at
1681.35	0.55	0.15	0.31	1508.13	0.60	0.20	0.20	954.70	0.56	0.22	0.22	95012_at
2607.10	0.55	0.15	0.31	4057.07	0.67	0.18	0.15	3349.35	0.51	0.24	0.25	96553_at
5389.05	0.48	0.16	0.36	4370.90	0.58	0.23	0.19	3459.15	0.58	0.19	0.23	100099_at
5924.85	0.51	0.16	0.34	3864.77	0.56	0.22	0.22	7382.00	0.37	0.09	0.54	95758_at
976.50	0.74	0.01	0.25	1141.73	0.65	0.14	0.21	892.85	0.62	0.22	0.16	93367_at
3222.30	0.16	0.05	0.79	1287.27	0.51	0.24	0.25	2981.10	0.24	0.11	0.65	103029_at
2780.70	0.44	0.16	0.40	2451.50	0.59	0.23	0.18	2935.65	0.39	0.14	0.48	104502_f_at
1654.95	0.54	0.12	0.34	2525.10	0.70	0.16	0.14	1655.90	0.56	0.13	0.32	161013_f_at
2001.40	0.44	0.16	0.40	1379.03	0.51	0.24	0.25	2087.30	0.62	0.12	0.26	98855_r_at
1138.45	0.57	0.06	0.37	931.80	0.65	0.18	0.17	1408.35	0.23	0.10	0.67	160625_f_at
4118.60	0.42	0.19	0.39	4215.10	0.47	0.21	0.32	3224.65	0.49	0.18	0.33	161214_r_at
3127.50	0.46	0.16	0.38	2540.67	0.54	0.24	0.22	1871.55	0.50	0.22	0.27	161183_at
1431.35	0.56	0.13	0.31	1772.67	0.69	0.19	0.12	1263.85	0.54	0.11	0.35	161817_f_at
2012.45	0.52	0.11	0.38	1520.03	0.55	0.16	0.30	2158.90	0.44	0.14	0.42	102412_at
1255.80	0.49	0.17	0.34	1655.30	0.48	0.24	0.29	1533.30	0.55	0.26	0.20	160654_at
4353.95	0.54	0.12	0.33	4326.67	0.54	0.22	0.24	5450.15	0.48	0.22	0.30	160282_at
1832.65	0.56	0.15	0.29	1080.47	0.80	0.13	0.07	1509.40	0.53	0.20	0.27	103447_at
4155.50	0.43	0.19	0.39	3808.33	0.51	0.21	0.28	7368.75	0.42	0.18	0.40	103685_at
8680.80	0.40	0.09	0.51	6012.07	0.84	0.08	0.08	6193.85	0.49	0.06	0.45	
2304.80	0.46	0.07	0.47	1586.07	0.49	0.17	0.33	2238.55	0.56	0.25	0.18	95556 at
12192.65	0.48	0.16	0.35	7565.47	0.56	0.20	0.25	6019.10	0.52	0.19	0.29	
2104.55	0.62	0.09	0.29	2078.60	0.68	0.18	0.14	2121.55	0.53	0.16	0.30	 102374 at
1387.00	0.62	0.12	0.26	766.80	0.57	0.24	0.19	1079.55	0.48	0.19	0.32	 104699 at
1402.05	0.72	0.08	0.20	1630.20	0.64	0.18	0.18	1341.85	0.56	0.13	0.31	 104298 at
463.65	0.64	0.09	0.27	516.90	0.70	0.18	0.12	331.05	0.53	0.21	0.26	 93325 at
3310.35	0.60	0.12	0.28	3682.47	0.51	0.22	0.26	3724.85	0.51	0.20	0.29	 95468 at
1329.60	0.57	0.14	0.29	1717.63	0.56	0.17	0.27	1556.05	0.61	0.22	0.17	94382 at
3847.30	0.29	0.06	0.65	2582.60	0.64	0.15	0.21	2457.30	0.57	0.17	0.26	104389 at
13734.25	0.39	0.19	0.42	11911.50	0.54	0.26	0.20	15135.85	0.47	0.20	0.34	101072 at
927.40	0.64	0.07	0.29	1133.13	0.56	0.20	0.24	1514.75	0.44	0.15	0.41	95759 at
3452 65	0.46	0.15	0.38	3074.93	0.57	0.20	0.23	2841.75	0.47	0.19	0.34	94403 at
9014 90	0.45	0.17	0.38	6511.23	0.47	0.21	0.32	10517 55	0.48	0.23	0.30	101070 at
956 75	0.58	0.14	0.28	735 77	0.51	0.23	0.26	510 35	0.51	0.12	0.38	102883 at
16548.35	0.46	0.14	0.40	12811.47	0.67	0.16	0.17	13546.00	0.51	0.14	0.35	160273 at

10. 9. GROUP 2-C

		wild t	уре			GR dim			GR ^{LysCre}				
	ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		ctrl	LPS	dex+LPS		
Sum:	2.69	1.01	0.30	Sum:	2.24	0.90	0.86	Sum:	2.93	0.66	0.41		
Mean:	0.67	0.25	0.08	Mean:	0.56	0.22	0.21	Mean:	0.73	0.17	0.10		
StDev:	0.06	0.03	0.03	StDev:	0.06	0.03	0.06	StDev:	0.09	0.05	0.05		
Fold change (LPS/ctrl) 0.4				Fold char	ige (LPS/c	trl)	0.4	Fold change (LPS/ctrl)			0.2		
Fold chan	Fold change (LPS/dex+LPS) 3.3				Fold change (LPS/dex+LPS) 1.0				ige (LPS/d	ex+LPS)	1.6		

185

10. 9. 1. Expression levels of genes/ESTs representing Group 2-C

				wild ty	/pe			Fold ch	ange
Acc.	Gene/EST Name	ctrl		LPS		dex+LF	PS	<u>LPS</u>	<u>LPS</u>
Num.		AD	AC	AD	AC	AD	AC	ctri	dex+LPS
AF022990	CC chemokine receptor-5 (CCR5) gene, complete cds	1505.6	PP	421.7	PP	57.75	PA	0.3	7.3
U29678	Chemokine (C-C) receptor 1	5883.55	PP	2162.35	PP	796.05	PP	0.4	2.7
AV370035	Mus musculus cDNA, 3 end	1088.55	PP	445.25	PP	125.85	AP	0.4	3.5
AW046775	UI-M-BH1-alt-h-01-0-UI.s1 Mus musculus cDNA, 3 end	1998.75	ΡР	913.35	PP	349	ΡР	0.5	2.6

		GR ^{dim}				Fold ch	ange			GR ^{LysCre}				Fold change		
ctrl		LPS		dex+LF	PS -	LPS	LPS	ctrl		LPS		dex+LF	°S	LPS	LPS	Grid
AD	AC	AD	AC	AD	AC	ctri	dex+LPS	AD	AC	AD	AC	AD	AC	ctri	dex+LPS	position
639.13	PPP	270.93	PPP	270.83	APA	0.4	1.0	2279.35	PP	339.70	PP	232.90	AA	0.1	1.5	102718_at
3597.03	РРР	1557.43	PPP	2079.10	PPP	0.4	0.7	9514.40	РР	3762.45	PP	2228.40	PP	0.4	1.7	99413_at
1486.03	РРР	697.10	APP	410.87	APP	0.5	1.7	678.55	PP	119.85	АА	35.25	АА	0.2	3.4	161968_f_at
1325.60	PPP	392.93	PAP	388.43	PPP	0.3	1.0	1498.50	ΡР	334.85	PP	312.65	PA	0.2	1.1	104744_at

10. 9. 2. Normalised expression of genes/ESTs representing Group 2-C

Acc.	Gene/EST Name
Num.	
AF022990	CC chemokine receptor-5 (CCR5) gene, complete cds
U29678	Chemokine (C-C) receptor 1
AV370035	Mus musculus cDNA, 3 end
AW046775	UI-M-BH1-alt-h-01-0-UI.s1 Mus musculus cDNA, 3 end

	wild type				GR ^{dim}				G R ^{LysCre}			
	<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	LPS	dex+LPS		<u>ctrl</u>	<u>LPS</u>	dex+LPS	Grid
Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum	position
1985.05	0.76	0.21	0.03	1180.90	0.54	0.23	0.23	2851.95	0.80	0.12	0.08	102718_at
8841.95	0.67	0.24	0.09	7233.57	0.50	0.22	0.29	15505.25	0.61	0.24	0.14	99413_at
1659.65	0.66	0.27	0.08	2594.00	0.57	0.27	0.16	833.65	0.81	0.14	0.04	161968_f_at
3261.10	0.61	0.28	0.11	2106.97	0.63	0.19	0.18	2146.00	0.70	0.16	0.15	104744_at