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Prefae

This work originated in 1999 when my advisor Professor Dr. Matthias Krek

had the idea that a generalization of Alain Connes' result about the Hoh-

shild and yli homology of the algebra of smooth funtions on a smooth

manifold ould also hold in the onept of his previously de�ned stratifolds.

These stratifolds, whih he invented and sine then have gone through various

stages of development, are some kind of singular spaes. We will introdue

stratifolds in detail in hapter 1 but should mention so far, that they belong

to the lass of strati�ed spaes. Roughly spoken a strati�ed spae is a spae

whih is deomposed into smooth manifolds, the so alled strata. To suh

spaes one an assoiate some kind of algebra of smooth funtions. The most

naive way is to say, that a funtion on a strati�ed spae is smooth, if the

restrition to any of the strata is smooth. It will turn out, that this is not

enough for our purposes, but it gives us a �rst idea. In setion 1.3 we will in-

trodue the algebra C

1

(X) of smooth funtions on a stratifold in detail. The

analytial properties of this algebra is where the onept of stratifolds di�ers

from other onepts of singular spaes. The standpoint of this work is the

analytial one, that is we onsider the algebra C

1

(X) as our starting point

and all other onstrutions and methods will evolve from it.Nevertheless, we

keep things as geometri as possible.

One an say, that from the analyti standpoint the theory of smooth

manifolds is quite well developed. This means, that there are onepts like

di�erential forms, di�erential operators, geometri onstrutions like urva-

ture and onnetions and so on. Sine around 1960 when strati�ed spaes

�rst appeared in the literature ( see [Whitney℄ and [Thom℄ ) people tried to

generalize these onepts to strati�ed spaes. In the ontext of di�erential

forms and de Rham ohomology one should mention Verona �rst of all ( see

[Verona71℄ ). He introdued di�erential forms and proved some kind of de

Rham theorem for strati�ed spaes whih ome together with some kind of

tubular neighbourhoods around the strata. His approah di�ers from ours
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in the sense that he onsiders di�erential forms strata by strata, satisfying

ertain ompatibility onditions, whereas our start point is the spae X itself

and the algebra C

1

(X) of smooth funtions on X. In his work about inter-

setion homology (see [Brasselet91℄) Brasselet used the ideas of Verona to

give a desription of intersetion homology of so alled pseudo manifolds in

terms of di�erential forms with ertain extra onditions. Pseudo manifolds

are losely onneted to what we all loally oned stratifolds. A good sum-

mary of the atual state of researh on strati�ed spaes in general has been

given by Paum in his \Habilitationsshrift" ( see [Paum℄ ). His work is

mostly based on so alled Whitney strati�ed spaes. How these spaes are

related to stratifolds is a work in progress by Anna Grinberg. Paum also

takles the problem of Hohshild homology for these spaes and gives some

partial answers. In a quite di�erent ontext, namely the ontext of rational

homotopy theory, di�erential forms on simpliial omplexes have been intro-

dued by Quillen [GriÆths℄. Quillen also proves a de Rham theorem in this

ontext. In his work [Teleman98℄ Teleman laims (but doesn't proof) that

Quillen's ideas together with his result about loalization of the Hohshild

omplex will work to generalize Connes' result mentioned in the beginning to

simpliial omplexes. Our two main results onern the de Rham ohomology

and the Hohshild homology of stratifolds. The �rst one an be summarized

as follows.

Theorem 1. Let X be a ompat stratifold. Then there is a natural isomor-

phism

H

n

dR

(X)! Hom(H

n

(X);R)

for all n 2 N given by integration of di�erential forms on lasses in the

integral homology of X.

We will prove this theorem in hapter 4, where we also prove an analogous

statement when X is nonompat. Our seond theorem has a more analyti

harater and is a generalization of [Connes87℄.

Theorem 2. Let X be a loally oned stratifold. Then there is a natural

topologial isomorphism

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X))

for all n 2 N.

In Theorem 2 the left hand side stands for some ompleted version of

di�erential forms on a stratifold whereas the right hand side stands for the
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ontinuous Hohshild homology of a ompleted version of C

1

(X). These

objets will be onstruted in hapters 5 and 6. We will prove Theorem 2 in

hapter 7. Sine in the manifold ase Hohshild and yli homology is lo-

sely onneted to what is alled index theory, we hope that this result is one

step forward in generalizing this theory to some lasses of singular spaes.

Sine I was always fasinated by the interations between analysis, algebra

and topology I must thank my advisor Prof. Dr. Matthias Krek that he

gave me the right task as a theme for my dotoral thesis. His idea about

how smooth funtions on stratifolds should look like showed all its strength

when proving Theorem 2. I must also thank Prof. Brue Blakadar from

the University of Nevada, Reno who gave me advie on some of the more

analytial parts of this work. Also I thank Prof. Don Pfa� and his wife for

giving me aommodation during my stay in Reno. From the department of

mathematis in Heidelberg I thank Anna Grinberg for many mathematial

and nonmathematial disussions. From the department of mathematis in

Mainz I thank Frank Baldus. Also I thank Anna Warzeha for our interesting

disussions, our nie walks in the Odenwald and some other things. Of ourse

I have to thank my parents too.
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Kapitel 1

Introdution to Stratifolds

In this hapter we will introdue a lass of topologial spaes, we all strati-

folds. These spaes have been invented by Matthias Krek in 1998 to serve

as the right objets, to give a very onrete geometri desription of ordinary

integral homology as a bordism theory. Sine then there have been various

versions of these objets. The one we use here, in partiular the version of

stratifolds with boundary is the one whih suits our purposes best.

We will present our version of stratifolds and study some basi properties

of this lass of spaes. Stratifolds are in some kind onstruted similar to

CW-omplexes, but have a muh �ner struture. Construtions known from

di�erential topology an be generalized to a ertain lass of stratifolds. In

fat, speial lasses of them form bordism ategories. In one ase the asso-

iated homology theory is ordinary integral homology. This desription of

singular homology is due to Krek and will be of major importane in the

later hapters. Our main soure for this hapter is [Krek00℄.

1.1 The Class of -Manifolds

Roughly spoken, stratifolds will be obtained by gluing together a ouple of

smooth manifolds. To do this gluing proess in a nie and organized way and

also for strutural properties of the assoiated algebra of smooth funtions

on a stratifold the introdution of a ertain lass of manifolds, we all -

manifolds has been proven suessful.From the ollar theorem in di�erential

topology (see [Hirsh℄,page 113) it follows, that every smooth manifold W

with boundary possesses a ollar, whih is given by an embedding

 : �W � [0; �)!W

1



for some � > 0. In general many hoies of the map  are possible. Two suh

ollars 

1

,

2

on W will be alled equivalent, if there is an open neighbour-

hood U of �W in W suh that 

1

and 

2

oinide on 

�1

1

(U) = 

�1

2

(U) �

�W � [0; �). We denote the equivalene lass of a ollar  with [℄. As one

ould expet, the \" in \-manifold" stands for ollared manifold.

De�nition 1.1.1. A -manifold is a pair (W; [℄), where W is a smooth

manifold with boundary and [℄ is an equivalene lass of a ollar on W .

Often we write W when in fat we mean (W; [℄) and just speak of a

manifold when we really mean -manifold. In situations, when emphasize is

made on, that the manifold in question is not treated as a -manifold, we

will speak of a manifold in the naive sense. Also all onstrutions whih are

based on manifolds in the naive sense will be referred to as that.

Two -manifolds (W

1

; [

1

℄) and (W

2

; [

2

℄) will be alled di�eomorphi and

treated as equal, if there is a di�eomorphism f : W

1

! W

2

, suh that the

indued ollar f

�



1

:= f Æ

1

Æ(f

�1

j�W

2

�id) and 

2

are equivalent. This notion of

di�eomorphay of -manifolds seems very natural, though it is very strit and

not so well suited for our purposes. We will de�ne a ategory of -manifolds

using the following de�nition of smooth funtions on a -manifold as a start

point.

De�nition 1.1.2. Let (W; [℄) be a -manifold. By de�nition a map

g :W ! R

belongs to C

1

(W; [℄) if g is smooth on W and there exists an open neigh-

bourhood U of �W in �W � [0; �) suh that the following diagram ommutes

U � �W � [0; �)

gÆ //

p

''O

O

O

O

O

O

O

O

O

O

O

O

R

�W

g

OO

Here p denotes the projetion on the �rst oordinate.

In other words a funtion on (W; [℄) is smooth, if it is smooth in the

naive sense and has the property that in a small neighbourhood of the boun-

dary it is onstant along the ollar, i.e. in diretion of the paths t 7! (x; t)

for x 2 �W . It should be lear that C

1

(W; [℄) indeed only depends on the

equivalene lass of the ollar. Later we will often write C

1

(W ) instead of

2



C

1

(W; [℄) to shorten the notation. There should be no misunderstandings,

sine if we treat W as a manifold in the naive sense we use the symbol

C

1

naive

(W ).

Of ourse the algebra C

1

(W; [℄) di�ers from the algebra C

1

naive

(W ). This

will show best when studying the loal situation. The following proposition

gives an answer to that.

Proposition 1.1.1. Let (W; [℄) denote a -manifold, let x 2 W be a point

and and let O

W;x

= lim

�!

x2U

C

1

(U; [i

U

�

℄)) denote the algebra of germs at

x. Here U runs through the open neighbourhoods of x 2 W and eah U is

onsidered as a -manifold itself using the inlusion map i

U

: U ! W and

the indued ollar i

U

�

. Let n denote the dimension of W . Then there are two

ases.

1. If x lies in the interior W

Æ

of W we have O

W;x

�

=

O

R

n

;0

.

2. If x lies in the boundary �W of W we have O

W;x

�

=

O

R

n�1

;0

.

Proof. In the �rst ase, hoosing loal oordinates will prove that O

W;x

�

=

O

R

n

;0

. In the seond ase one an hoose oordinates around x as follows.

Take as a �rst oordinate the oordinate t whih is given by (y; t) 7! t

8(y; t) 2 �W � [0; �) in a small neighbourhood of x and for the remaining

n�1 oordinates x

1

; :::x

n�1

take a set of oordinates y

1

; :::y

n�1

of �W de�ned

in a neighbourhood of x in �W and de�ne x

i

((y; t)) := y

i

(y). Using these

oordinates the ondition on g : W ! R to belong to C

1

(W; [℄) is not to

depend on t for t small. On the other side, there is no restrition on the other

n� 1 oordinates. This of ourse shows O

W;x

�

=

O

R

n�1

;0

.

Let us now introdue smooth maps between -manifolds

De�nition 1.1.3. Let (W

1

; [

1

℄) and (W

2

; [

2

℄) be -manifolds and let

f : W

1

!W

2

be a map. We say that f is smooth if for any g 2 C

1

(W

2

; [

2

℄) the ompositi-

on g Æ f : W

1

! R lies in C

1

(W

1

; [

1

℄). We denote the set of these funtions

by C

1

((W

1

; [

1

℄); (W

2

; [

2

℄)).

We an now setup our ategory of -manifolds as follows. Objets are

-manifolds and morphisms are smooth maps between -manifolds. In this

ontext an isomorphism between two -manifolds is a smooth map

3



f : (W

1

; [

1

℄) ! (W

2

; [

2

℄) suh that the inverse map f

�1

exists and is on-

tained in C

1

((W

2

; [

2

℄); (W

1

; [

1

℄)). The -manifolds (W

1

; [

1

℄) and (W

2

; [

2

℄)

are then alled isomorphi. We should mention that there is a real di�erene

between isomorphisms and di�eomorphisms of -manifolds. An isomorphism

allows some kind of reparametrization in diretion along the ollar whih

a di�eomorphism doesn't. We admit, that the name di�eomorphism in this

ontext might be a little bit onfusing, sine for most topologists a di�eo-

morphism is a smooth map whih has a smooth inverse. In our sense this

orresponds exatly to an isomorphism. We should keep that in mind.

1.2 Stratifolds

In this setion we introdue stratifolds in its most general form. We should

remind again that the word manifold here stands for -manifold. Though this

is not of importane in this setion, it will be ruial in the next one.

De�nition 1.2.1. Let X be a topologial spae, � � X be a subspae and R

be a manifold. Let R

Æ

= R��R denote the interior part of R. Let ' : R! X

be a map, suh that

'(R

Æ

) � X � �

'(�R) � �

and ' indues a homeomorphism

R [

'

� � X:

We all X � � the regular part of X and � the singular part of X. We

refer to ' as a singular hart of the pair (X;�). The pair (X;�) is alled

a singular spae.

Let us approah our �rst de�nition of a stratifold.

De�nition 1.2.2. A topologial spae X together with proper maps

'

i

: R

i

! X;

where i runs through an index set I � N, is alled a stratifold if these data

satisfy the following onditions :

1. For any i 2 I the spae R

i

is a manifold of dimension i.

4



2. For any pair i 6= j 2 I

'

i

(R

Æ

i

) \ '

j

(R

Æ

j

) = ;

and X =

S

i2I

'

i

(R

Æ

i

).

3. For any i 2 I '

i

is a singular hart of the pair (X

i

; X

i�1

), where

X

i

=

S

j2f0;::ig\I

'

j

(R

Æ

j

) and X

i

is losed in X.

Though the harts belong to the de�nition of a stratifold, we do most

times only speak of the stratifold X, keeping the harts in mind.

We all

dim(X) = supfi 2 IjR

i

6= ;g (1.1)

the dimension of X. If the dimension of X is n, we refer to � = X

n�1

as

the singular part of X and X � � � R

Æ

n

as to the regular part. Clearly

(X;�) beomes a singular spae with singular hart '

n

. More general, we

all

S

i

= X

i

�X

i�1

(1.2)

the i-th stratum of X, and it is lear, that by hoosing these sets as strata

X beomes a strati�ed spae. Clearly

S

i

� R

Æ

i

and sometimes the R

i

will be referred to as the full strata of X. We should

also mention, that under this de�nition stratifolds of in�nite dimensions are

allowed, and some of our results are also valid in this ase. X

i

is alled the

i-skeleton of X and learly is itself a stratifold and will be onsidered as this

throughout the whole work. We should mention that in bordism theory of

stratifolds a di�erent de�nition of dimension has been used by Krek, de�ning

the dimension of X as sup(I).We will denote this dimension as Dim(X).

Clearly we have that

dim(X) � Dim(X):

If more than one stratifold ours at the same time, we use symbols like

R

i

(X),S

i

(X) et. to denote the orresponding data.

5



From the onstrution of stratifolds, it should arise, that they are built

similar to CW omplexes. Instead of ells, we attah arbitrary manifolds. In

partiular, any CW omplex an be given the struture of a stratifold, by

hoosing all of the R

i

as diss. The attahing maps then indue harts. On

the other hand, any manifold, hene any of the strata R

i

an be given a

CW struture. These strutures an be used to de�ne a CW struture on the

stratifold. Though, there is no anonial way to do this, and it's ompletely

unlear, how this CW struture orresponds to the struture as a stratifold.

Other questions, like triangulation of stratifolds and pieewise linear stru-

tures have to be seen in the same ontext and so far, haven't been takled.

As topologial spaes stratifolds will turn out to be paraompat. This

will follow from the existene of a partition of unity ( see Corollary 1.7.1

). Moreover they are loally ompat, even in the in�nite ase. This follows

similar as in the ase of CW omplexes, sine we onsider the weak topology

orresponding to the deomposition into strata. The empty set ; will be

onsidered as a stratifold of any spei�ed dimension. Let us give some less

trivial examples.

Example 1.2.1. 1. Given a manifold M without boundary and let m be

its dimension. We get a stratifold of dimension m by hoosing

I = fmg; R

m

=M

and ' : R

m

!M as the identity. This is the way we onsider manifolds

as stratifolds if nothing else is said. Clearly dim(M) = m is the same

as the dimension of M , if M is onsidered as a manifold.

2. Given two topologial manifolds W;S of dimension r respetively s,

where s < r and a proper map f : �W ! S. Then the topologial spae

X =W [

f

S

is onsidered as a stratifold by hoosing I = fs; rg,

R

r

=W;R

s

= S

and '

r

respetively '

s

as the natural projetions of W respetively S

on the quotient spae X. Clearly dim(X) = r. If the map f : �W ! S

is surjetive, X an be onsidered as a manifold with singularities in

the set S, hene the notation S for singularities. The whole onept of

stratifolds is a generalization of this.

6



3. If in the last example we hoose S to onsist only of points, we speak of

manifolds with isolated singularities. In algebrai geometry many

people are interested in the resolution of suh singularities. The reso-

lution of isolated singularities in the world of topologial stratifolds has

been studied in [Grinberg00℄.

At the end of this hapter we should try to give at least one motivation

for the name that has been hosen to denote our lass of spaes. The name

stratifold just seems right to indiate that this lass of spaes onsists of

strati�ed spaes where speial emphasize has been made on the role of the

strata and the way how they are glued (folded) together.

1.3 Smooth Strutures on Stratifolds

We will now assign an extra struture to stratifolds, whih we all smoo-

thness. This struture will help us, to arry over onstrutions known from

di�erential topology of manifolds to the world of stratifolds.Sine so far, we

have only allowed smooth manifolds for the strata, the reader might think,

we already have something, we ould all smooth stratifold. This, let's say

smoothness on the strata, turns out to be unsatisfying. The strata an be

glued together in a very wild way, so the right notion of smoothness should

reet, that the gluing proess is done in a fairly nie and smooth way. This

will lead us to the de�nition of a smooth stratifold.

Let X be a stratifold. We all a funtion

f : X ! R

smooth, if for any i 2 I the omposition

R

i

'

i

//
X

f //
R

de�nes an element in C

1

(R

i

), where C

1

(R

i

) is the algebra of funtions on

R

i

de�ned in De�nition 1.1.2. Clearly these maps build an R algebra, whih

we denote with C

1

(X).

De�nition 1.3.1. A stratifold X is alled a smooth stratifold if for any

i 2 I the image of the indued map

'

�

i

: C

1

(X

i�1

)! C(�R

i

)

7



is ontained in C

1

(�R

i

). If X and Y both are smooth topologial stratifolds

we all a map f : X ! Y smooth if the image of the indued map

f

�

: C

1

(Y )! C(X)

is ontained in C

1

(X). We denote the set of these funtions with C

1

(X; Y ).

The ondition on X to be a smooth stratifold an now simply be re-

stated as that for any i 2 I the restrition of the hart '

i

to �R

i

lies in

C

1

(�R

i

; X

i�1

) in other words, the attahing maps are smooth.

Example 1.3.1. If we require W;S and f : �W ! S as in Example 1.2.1

to be smooth, we end up with a smooth stratifold sine the map

'

�

m

: C

1

(X

m�1

)! C(�R

m

)

is preisely the map indued by f .

From this point on, we will only onsider smooth stratifolds and usually

omit the word smooth in front of stratifold. When we write stratifold, we

always mean smooth stratifold.

The following ategory of stratifolds is the ategory we work with.

Objets are stratifolds and morphisms are smooth maps between stratifolds.

In this ontext an isomorphism between stratifolds is a smooth map whih

has a smooth inverse.In this ase the algebras of smooth funtions are iso-

morphi. Hene isomorphi stratifolds are indistinguishable by the methods

presented in this work, and will therefore be treated as equal. We should

mention, that other ategories of stratifolds so far appeared in di�erent on-

texts, as for example in [Grinberg00℄ and [Minatta01℄. We should mention

one speial ase, sine it ours in the de�nition of loally oned stratifolds.

We all two stratifolds X and Y di�eomorphi, if there is a homeomor-

phism f : X ! Y whih is indued by di�eomorphisms f

i

: R

i

(X)! R

i

(Y )

of -manifolds on all full strata. As in the ase of -manifolds, there is a real

di�erene between di�eomorphisms and isomorphisms. Nevertheless, a dif-

feomorphism is always an isomorphism in our ategory. We will keep that in

mind.

We lose this setion by studying the loal piture, in equal how smooth

funtions on a stratifold X behave in a small neighbourhood of some point

8



x 2 X. The following proposition states that the algebra of germs of fun-

tions at some point x 2 X, whih we briey de�ne as

O

X;x

= lim

�!

x2U

C

1

(U) (1.3)

is ompletely determined by restriting these funtions to the stratum S

k

.

Here U runs through the open neighbourhoods of x 2 X and the limit is

taken by restrition. It is not lear at this point, what exatly we mean with

C

1

(U) for an open subset U � X. Briey, we an say, that U inherits the

struture of a stratifold, so that we an speak of C

1

(U). How this is done

in more detail is presented in setion 1.4. We nevertheless think it might

be helpful for understanding how C

1

(X) is built up, to state the following

proposition at this point.

Proposition 1.3.1. Let X be a stratifold and x 2 S

k

be a point in the k-

stratum of X. Then the map indued by restrition

O

X;x

! O

S

k

;x

is an isomorphism.

In other words, the proposition says that we an somehow interpret the

algebra C

1

(X) as built up of the algebras C

1

(S

k

) put together in a nie

way. As we will see in the proof, the reason for this to be true lies in the use

of the onept of -manifolds ( ompare Proposition 1.1.1) .

Proof. Let i � k. We will �rst show

O

X

i+1

;x

�

=

O

X

i

;x

;

where the map is given by restrition. To see this let f 2 O

X

i+1

;x

be an

element in the kernel of the restrition map. That is f is de�ned on some

open neighbourhood U � X

i+1

and f

jU\X

i

= 0. Sine S

i+1

\ S

i

= ; we have

'

�1

i+1

(U \X

i

) � �R

i+1

:

Here '

i+1

denotes the i-th hart of the stratifoldX. Sine U\X

i

is open inX

i

we have that '

�1

i+1

(U \X

i

) is open in �R

i+1

. Sine f Æ'

i+1

2 C

1

(R

i+1

) must

approah the boundary onstant along the ollar in a small neighbourhood V

of �R

i+1

in R

i+1

it vanishes on an open neighbourhood

~

U of '

�1

i+1

(U \X

i

) in

R

i+1

suh that the image '

i+1

(

~

U) of

~

U is an open neighbourhood of x in X

i+1

on whih f vanishes. This proves injetivity for O

X

i+1

;x

! O

X

i

;x

: A similar

argument, where we extend a funtion given on an open subset of �R

i+1

on

9



an open subset of R

i+1

onstant along the ollar will prove surjetivity of the

latter map. Clearly we have that

O

X;x

= lim

�!

k�i

O

X

i

;x

:

Sine all maps in the diret limit are isomorphisms we have

O

X;x

= O

X

k

;x

Sine the k-stratum S

k

is open in the k-skeleton X

k

, we also have

O

X

k

;x

�

=

O

S

k

;x

;

where the isomorphism is again given by restrition. Hene the proposition

follows.

1.4 Substratifolds

Let X be a stratifold with strata R

k

(X) and harts '

k

. For a subset A � X

we an onsider the sets

'

�1

k

(A) � R

k

(X):

Let's assume that eah of the '

�1

k

(A) is a submanifold of R

k

(X). Then we

an de�ne

R

j

(A) =

a

dim('

�1

k

(A))=j

'

�1

k

(A)

to get a strati�ation of A. We also get maps

 

j

: R

j

(A)! A

by restriting the harts '

k

to the orresponding omponents of R

j

(A). We

all these data the indued data on A. The following is our de�nition of a

substratifold.

De�nition 1.4.1. With the notation from above A � X is alled a sub-

stratifold, if the '

�1

k

(A) are submanifolds of the R

k

(X) and A together with

the indued data has the struture of a stratifold.

The following examples are easy, nevertheless they are important.

Example 1.4.1. 1. Any open subset U of a stratifold X an, and will

throughout this work be onsidered as a substratifold of X.

2. For any number i 2 N the i-skeleton X

i

is a substratifold of X. We

have a natural sequene

; = X

�1

� X

0

� ::: � X

n

= X

where eah inlusion means as a substratifold.

10



1.5 Stratifolds with Boundary

As in the world of manifolds there is also a onept of stratifolds with boun-

dary. In fat, there is more than one onept of stratifolds with boundary.

All onepts of ourse have in ommon that they are generalizations of the

onept of stratifolds in the way that a stratifold with boundary the empty

set is the same as a stratifold. Furthermore they have in ommon, that some

ategories of stratifolds with boundary form bordism ategories. The latter

fat will be exploited later. For this work the following onept is suited best.

It was also the original onept (see [Krek99℄).

De�nition 1.5.1. Let (X;�; �X) be a triple of topologial spaes, suh that

� � X and �X � X, and let R be a manifold with boundary �R smoothly

deomposed as

�R = �

+

R [ �

�

R;

suh that

�(�

+

R) = �

+

R \ �

�

R = �(�

�

R):

Furthermore let ' : R! X be a map whih satis�es the following onditions

1. '(R

Æ

) = X � (� [ �X)

2. '(�

+

R) � �

3. '(�

�

R) � �X:

If ' indues a homeomorphism

X = R [

'

j�

+

R

�

we all (X;�; �X) a singular spae with boundary and ' a singular

hart of (X;�; �X):

Now we proeed similar as in the de�nition of stratifolds without boun-

dary as follows.

De�nition 1.5.2. A pair of topologial spaes (X; �X) together with proper

maps

'

i

: R

i

! X;

where i runs through an index set I is alled a stratifold with boundary

if the following onditions hold :

11



1. For any i 2 I the spae R

i

is a manifold of dimension i with boun-

dary �R

i

smoothly deomposed as �R

i

= �

+

R

i

[ �

�

R

i

similar to the

deomposition in De�nition 1.5.1.

2. For any i 2 I we have '

i

(�

�

R

i

) � �X and �X together with harts

 

i

:= '

i+1j�

�

R

i+1

and R

i

(�X) = �

�

R

i+1

is a stratifold.

3. For any pair i 6= j 2 I we have '(R

Æ

i

[ (�

�

R

i

)

Æ

)\'(R

Æ

j

[ (�

�

R

j

)

Æ

) = ;

and X =

S

i2I

'(R

Æ

i

[ (�

�

R

i

)

Æ

).

4. For any i 2 I the map '

i

is a singular hart of the singular spae with

(X

i

; X

i�1

; (�X)

i

) where X

i

=

S

j2f0;::;ig\I

'(R

Æ

i

[ (�

�

R

i

)

Æ

) and X

i

is

losed in X.

5. The maps '

ij�

+

R

i

: �

+

R

i

! X

i�1

and '

ij�

�

R

i

: �

�

R

i

! �X are smooth.

We onsider all stratifolds with boundary the empty set as stratifolds. A

substratifold of a stratifold with boundary is de�ned in pure analogy to

De�nition 1.4.1 , namely a set A � X suh that A with the indued data is

a stratifold with boundary. It is then lear that the sets X��X and �X are

substratifolds of X. The following example shows that any stratifold an be

realised as the boundary of a stratifold with boundary namely the one over

the stratifold.

Example 1.5.1. Let X be a stratifold without boundary. We give the one

CX over X the struture of a stratifold with boundary as follows. Let I =

[0; 1℄ be the losed unit interval.

R

0

(CX) = pt

R

k

(CX) = R

k�1

(X)� I

�

+

R

k

(CX) = R

k�1

(X)� f0g [ �R

k�1

(X)� I

�

�

R

k

= R

k�1

(X)� f1g

 

k

: R

k

(CX) = R

k�1

(X)� I ! CX

(x; t) 7! ['

k�1

(x); t℄;

where the '

k

denote the harts of X. It an be veri�ed that CX together with

these data de�nes a stratifold with boundary, whih we all the one over X.

It is lear from the onstrution that �(CX) = X.

12



The example above has major onsequenes for bordism theories based

on stratifolds ( see setion 1.9 ). If in the onstrution above, we exhange

I = [0; 1℄ by the half open interval [0; 1) the \-" part of �R

k

in the de�nition

above vanishes and we get a stratifold without boundary. We denote this

stratifold with X and all it the open one of X. We have

X = CX � �CX = CX �X:

1.6 Loally Coned Stratifolds

In this setion we will introdue loally oned stratifolds. They are in lose

onnetion to so alled pseudo manifolds, see for example [Borel87℄ for the

de�nition. The idea behind the de�nition is, that loally eah singularity has

a neighbourhood whih is a one over a stratifold of smaller dimension. More

preisely we have the following de�nition.

De�nition 1.6.1. We all an n dimensional stratifold loally oned, if for

eah k 2 I and x 2 S

k

there exists a neighbourhood U

x

in X and a stratifold

L

x

of dimension n� k � 1 together with a di�eomorphism of stratifolds

U

x

�

=

B

k

� L

x

;

where L

x

denotes the open one over the stratifold L

x

and B

k

the open unit

ball in eulidean k-spae. L

x

will be referred to as the link at x and U

x

will

be alled a one neighbourhood of x.

Replaing L

x

in the de�nition above by a produt of ones yields to a

lass of stratifolds whih is alled loally produt oned stratifolds.

It an easily be seen that the stratifolds L

x

ourring in the de�nition

above, are also loally oned ( see [Weber01℄ ). Our results onerning de

Rham ohomology of stratifolds are valid for general stratifolds, whereas our

results on Hohshild homology of stratifolds are only valid for loally oned,

or more general loally produt oned stratifolds. The reason for this is, that

when we know the algebra C

1

(X), we know the algebra C

1

(X) almost

as well. Hene the loal situation is far easier and obtainable by indutive

methods, than in the general ase of a stratifold. Another nie aspets of

loally oned stratifolds is that the introdution of some nie onditions on

the links an also yield to interesting new homology theories. This an also

be found in [Weber01℄.
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1.7 Some Properties of Stratifolds

In this setion, we establish some properties of stratifolds whih will be useful

in later hapters.

Lemma 1.7.1. Let X be a stratifold and x 2 X. Let U be an open neigh-

bourhood of x. Then there is a smooth funtion � : X ! [0;1), suh that

supp(�) � U and �(x) > 0.

Proof. This is Lemma 4.2. of [Krek00℄. The proof presented there works also

in the ase of in�nite dimensional stratifolds.

The existene of a smooth partition of unity, subordinated to a ertain

open overing is established by the following orollary.

Corollary 1.7.1. Let X be a stratifold and (U

j

)

j2J

be an open overing of

X. Then there is a smooth partition of unity (f

j

)

j2J

subordinated to the

overing, in equal f

j

2 C

1

(X) suh that

X

j2J

f

j

� 1

X

with supp(f

j

) � U

j

and 8x 2 X the set fj 2 J jf

j

(x) 6= 0g is �nite.

Proof. see [Krek00℄.

As a onsequene of the existene of partitions of unity we get the follo-

wing result.

Corollary 1.7.2. Let X be a stratifold, then X is paraompat as a topolo-

gial spae.

1.8 Stratifolds and Orientation

Sine we have seen, that any stratifold is the boundary of its one, the bor-

dism ategory of all stratifolds is not partiularly interesting. To get some-

thing more interesting, we will introdue orientations on stratifolds. Before

we proeed, the reader should be reminded at the di�erene between dim(X)

and Dim(X) (see (1.1) and page 7).

De�nition 1.8.1. A stratifold X of dimension Dim(X) = n is said to be

Z=2- oriented if R

n�1

(X) = ;. We say that X is Z- oriented, if in addition

the top stratum R

n

(X) is an oriented manifold.

The fat that the seond highest stratum of an oriented stratifold is empty

will be ruial, when proving a generalisation of Stokes' Theorem in hapter

4 .
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1.9 Bordism Theory based on Stratifolds

One intention of the onstrution of stratifolds was to give a onrete bor-

dism like desription of singular homology. In this setion we briey outline

the onstrution of Krek given in [Krek99℄.

Let X; Y be Z oriented, ompat stratifolds of some given dimension n.

We say X and Y are bordant, if there is a Z oriented n + 1 dimensional

ompat stratifold W with boundary

�W = X + (�Y );

where �Y denotes Y with orientation reversed. We all W a bordism bet-

ween X and Y .

Now let Z be a topologial spae. We onsider lasses [f : X ! Z℄, where

two lasses [f : X ! Z℄ and [g : Y ! Z℄ are alled equivalent if X and

Y are bordant via a bordism W and there is a map h : W ! Z suh that

h

jX

= f and h

jY

= g. This indeed de�nes an equivalene relation. The set of

equivalene lasses of these objets beomes a group with addition indued

by the topologial sum.

In the situation above we let n run through the natural numbers and end

up with a funtor

H

�

: Top! GrAb

from the ategory of topologial spaes to the ategory of graded abelian

groups. Moreover it an be shown, that this funtor is a homology theo-

ry. This remains valid if one redues the ategory of stratifolds involved by

assuming some nie extra onditions, for example on the strata of some gi-

ven dimensions et. In this ontext interesting new questions in the study

of homology theories arise. Some of them have been studied by Leibyll in

[Leibyll00℄. In our ase the question whih homology theory arises from this

onstrution is ompletely answered by the following theorem.

Theorem 1.9.1. The homology theory given by bordism of Z oriented strati-

folds is naturally isomorphi to ordinary integral homology. That means there

is a natural equivalene between the funtors H

�

and HZ

�

where the latter

means singular homology with integer oeÆients.

Proof. [Krek99℄
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Kapitel 2

Tools from Sheaf Theory

In this hapter we present some of the basi onepts of sheaf theory. The

reader who is familiar with things like sheaf theoreti ohomology an skip

this hapter or may look up things later. By brutal fore we ould have

avoided the use of sheaf theory entirely, but we think it makes proofs more

elegant. Sine this hapter only presents methods and tools, we skip almost

any proof, but say exatly where it an be found in the book of Bredon

[Bredon97℄. The reader who wants more detailed information about sheaves

should also onsult this book.

2.1 Basi De�nitions

Throughout this hapter X denotes a topologial spae.

De�nition 2.1.1. A presheaf A of abelian groups on X is a ontravariant

funtor from the ategory of open subsets of X and inlusions as morphisms

to the ategory of abelian groups. This means to any open subset U � X there

is assoiated an abelian group A(U) and if V � U is another open subset of

X, then there is a restrition map

r

U;V

: A(U)! A(V );

suh that whenever W � V � U are three open subsets of X the equation

r

U;W

= r

V;W

Æ r

U;V

holds.

To simplify the notation we often write s

jV

instead of r

U;V

(s) for the re-

strition of an element s 2 A(U) to a subset V � U:

16



The following examples are fundamental in the sense, that all sheaves or

presheaves ourring in this work, will be based on these.

Example 2.1.1. 1. Let G be any group and X a topologial spae. Then

we an assoiate G to any open subset of X, in equal G(U) = G for

all open subsets U of X. This learly de�nes a presheaf on X whih we

all the onstant sheaf G with value G on X.

2. Let X be a stratifold. If we onsider an open subset U � X as a sub-

stratifold of X aording to Example 1.4.1, we an build C

1

(U). The

assoiation

U 7! C

1

(U)

for all open subsets U of X is a presheaf on X. The restrition maps

are given by restrition of funtions. We denote this presheaf O

X

and

refer to it as the struture sheaf on X.

The presheaves in the example above have more struture, than it is

required for presheaves. Indeed, they are sheaves. This is our next de�nition.

De�nition 2.1.2. A presheaf A over a topologial spae X is alled a sheaf,

if it satis�es the following two onditions

1. If U =

S

�

U

�

is an open overing of an open subset U � X, and

s; t 2 A(U) are elements, suh that s

jU

�

= t

jU

�

for eah of the U

�

, than

s = t.

2. If under the onditions above there are given s

�

2 A(U

�

) for eah of

the U

�

suh that s

�

jU

�

\U

�

= s

�

jU

�

\U

�

for all indies � and �, then there

is an element s 2 A(U) suh that s

jU

�

= s

�

for all � .

It is lear from the de�nition, that the onstant sheaf and the struture

sheaf O

X

of a stratifold are indeed sheaves. On the other side there is a

anonial way to onstrut sheaves out of presheaves. This proess is alled

shea��ation. For this let A be a presheaf on X. For eah x 2 X de�ne the

stalk of A at x to be

A

x

= lim

�!

x2U

A(U) (2.1)

where U runs through the open neighbourhoods of X. This group ontains

the loal struture of A at the point x. An Element of A

x

is given by the

equivalene lass of some s 2 A(U). We denote this lass with s

x

. We give

S

x2X

A

x

the topology generated by the open sets

fs

x

2 A

x

jx 2 U; s 2 A(U)g; 8 U � X open:
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We denote this spae with A. It omes together with a ontinuous map

� : A ! X;

whih is the projetion on the base point of the orresponding stalk. For an

open subset U � X let us denote the setions of A over U as �(U;A): Then

it is lear, that the assoiation U 7! �(U;A) is a sheaf on X. Sometimes we

denote this sheaf by

Sheaf(U 7! A(U)):

The proess of shea��ation also shows, how one an imagine sheafs geome-

trially as topologial spaes. This is the ontent of the next proposition.

Proposition 2.1.1. Let A be a presheaf on X. Then the assoiated topolo-

gial spae A has the following properties.

1. � : A! X is a loal homeomorphism.

2. Eah of the A

x

= �

�1

(x) is an abelian group, and will be alled the

stalk of A at x 2 X.

3. The group operations on the stalks are ontinuous. This means that the

map

� : f(�; �) 2 A�Aj�(�) = �(�)g ! A;

(�; �) 7! �� �

is ontinuous.

If A is already a sheaf the groups A(U) and �(U;A) are naturally isomorphi.

So in the ase we are starting with a sheaf, shea��ation yields to nothing

new.

The reader should be warned, that as topologial spaes, sheaves in gene-

ral have no partiularly good topologial properties.For example they usually

lak to be Hausdor�. It follows from the proposition above, that the �bres

are always disreet. As a onsequene, in some ases ontinuous setions an

look very obsure.

In the following alligraphi letters always orrespond to the related ro-

man letters, though aording to the proposition above we often identify a
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sheaf A with its assoiated topologial spae A. If Y � X denotes an arbi-

trary subspae, we an restrit the sheaf A on Y whih is

A

jY

= �

�1

(Y )! Y: (2.2)

To get a ategory of sheafs, we have to say, what a morphism of sheaves

is.

De�nition 2.1.3. 1. Let A and B be presheaves on X. A morphism of

presheaves

h : A! B

is a olletion of group homomorphisms

h

U

: A(U)! B(U)

de�ned for all open subsets U � X, whih are ompatible with the

restrition maps. In the language of ategory theory h : A ! B is a

natural transformation between the funtors A and B.

2. Let A and B be sheaves on X. A morphism

h : A! B

is a ontinuous map h : A! B, suh that

h(A

x

) � B

x

for all x 2 X and the restritions of h to the stalks are group homo-

morphisms.

These two de�nitions are related in the way, that a morphism of pres-

heaves h : A ! B indues a morphism of sheaves h : A ! B, where A and

B are onstruted out of A and B by the proess of shea��ation. This is

done by passing to diret limits. On the other side, any morphism of sheaves

h : A! B indues a morphism on presheaves, by passing to setions.

We will now proeed by de�ning subsheaves and quotient sheaves as well

as images and kernels. The ategory of sheaves in fat will turn out to be an

abelian ategory and methods from homologial algebra an be applied.

De�nition 2.1.4. 1. A subsheaf A of a sheaf B on X is an open sub-

spae of B, suh that A

x

= A \ B

x

is a subgroup of B

x

for all x 2 X.

It is then lear, that A is a sheaf on X with its indued struture.
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2. Let A be a subsheaf of B. We de�ne the quotient sheaf B=A as the

shea��ation of the presheaf whih assoiates to an open subset UofX

the abelian group B(U)=A(U).

De�nition 2.1.5. 1. Let h : A ! B be a morphism of sheaves. We de�ne

the kernel of h to be

ker(h) := f� 2 Ajh(�) = 0g:

This is a subsheaf of A. On the other side, it is lear that the image

of h

im(h) = fh(�)j� 2 Ag � B

is a subsheaf of B.

2. We all a sequene

A

f //
B

g //
C

of morphisms of sheaves exat , if im(f) = ker(g).

Given a sequene

A

f //
B

g //
C

of morphisms of presheaves, shea��ation yields to a orresponding sequene

of sheafs. It an be seen, that this sequene is exat, if and only if the sequene

of presheaves above is exat on stalks. Sine passing to diret limits is exat

this for example is the ase, if for eah open subset U � X the sequene

A(U)

f

U //
B(U)

g

U //
C(U)

is exat. The latter ondition though is not a neessary ondition for a se-

quene of sheaves to be exat.

Now let X and Y be two topologial spaes and f : X ! Y be a map.

Let A be a sheaf on X and B be a sheaf on Y . Given these data, one an

onstrut two new sheaves as follows.

De�nition 2.1.6. 1. In the situation above we de�ne the diret image

of A under f to be the sheaf on Y whih assoiates to eah open subset

U � X the abelian group A(f

�1

(U). The two onditions in De�nition

2.1.2 an be easily veri�ed. We denote this sheaf with fA.
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2. We de�ne the inverse image of B under f to be the sheaf on X, given

by the pullbak

f

�

B = f(x; b) 2 X � Bjf(x) = �(b)g:

It is easy to hek, that this is indeed a sheaf.

2.2 Supports

In this setion we disuss supports of setions in sheaves. For most of our

purposes, we an restrit our attention to arbitrary in equal losed supports

or ompat supports. In two ases though the situation is more deliate and

we will give a general treatment here. Let X be an arbitrary topologial

spae.

De�nition 2.2.1. A family of supports on X is a family � of losed subsets

of X suh that

1. Any losed subset of a member of � is again a member of �.

2. The family � is losed under �nite unions.

A family of supports � is alled paraompatifying if eah element of

� is paraompat and has a losed neighbourhood whih is in �. The two

most important families of supports are the family of losed and the family

of ompat supports on X. In general it is unlear, whether these systems are

paraompatifying. For the family of ompat supports, a suÆient ondition

on the spae is to be loally ompat. Sine stratifolds are by onstrution

loally ompat and by Corollary 1.7.2 paraompat and furthermore losed

subsets of paraompat spaes are paraompat the following proposition

holds.

Proposition 2.2.1. Let X be a stratifold. Then the family of losed as well

as the family of ompat supports are paraompatifying.

Let Y � X be a subset and � a system of supports on X. Then we de�ne

a system of supports on Y

�

jY

= fK � Y jK 2 �g: (2.3)

Now let A be a sheaf on X and s 2 A(X) be a global setion. We de�ne

the support of s as

supp(s) = fx 2 Xjs

x

6= 0g (2.4)
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and denote this set with jsj. This set is already losed, sine it's omplement

is open, whih an be veri�ed easily. Now let � be a family of supports. The

global setions of A with supports in � are denoted with �

�

(A). If � is the

family of ompat supports we also write �



(A) for the setion with ompat

supports. If � is the family of all losed subsets of X we simply write �(A).

The funtor

A! �

�

(A)

from the ategory of sheaves to the ategory of abelian groups is left exat.

In general this funtor is not right exat. In fat the right derived funtors

lead to sheaf theoreti ohomology, whih will be treated in Setion 2.3 .

De�nition 2.2.2. Let � be a family of supports. A sheaf A on X is alled

�-soft, if the restrition map A(X) ! A(K) for any K 2 � is surjetive.

Here A(K) is de�ned as

A(K) = lim

�!

K�U

A(U):

The importane of the following proposition will only show up in the next

hapter. Nevertheless we think it might be helpful to state it at this plae,

sine it also delivers a good example for a soft sheaf.

Proposition 2.2.2. Let X be a stratifold. And let � be either the family of

all losed subsets or the family of all ompat subsets of X. Then the struture

sheaf O

X

of X is �-soft.

Proof. Let A � X be a losed subset and f 2 O

X

(K) be de�ned on an open

neighbourhood U of A. Sine by Corollary 1.7.2 as a spae X is paraompat,

we an �nd an open neighbourhood V � U of A suh that the losure

�

V of

V is still ontained in U . This follows for example from [Bredon97℄ page 20

applied to the open overing X = U [ (X � A) of X. Now by applying

Corollary 1.7.1 we an �nd a partition of unity subordinated to the open

overing of X given by

X = U [ (X �

�

V ):

In this way we get smooth funtions � and � on X, suh that

� + � � 1;

supp(�) � U; supp(�) � X �

�

V :
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From this, it is lear that �

jV

� 1 and hene

�

f = f � �

is a well de�ned smooth funtion on X suh that

�

f

jV

= f

jV

, wih shows the

laimed surjetivity in the de�nition above.

Proposition 2.2.3. Let � be a paraompatifying family of supports and let

0!A

0

!A! A

00

! 0

be an exat sequene of sheaves. Suppose that A

0

is soft. Then the sequene

of global setions with support in �

0! �

�

(A

0

)! �

�

(A)! �

�

(A

00

)! 0

is also exat.

Proof. [Bredon97℄ page 67.

Similar to sheafs with values in the ategory of graded abelian groups

one an onsider sheafs with values in the ategory of rings, algebras et. .

Almost any algebrai onstrution an be arried over to sheaves. We start

with the notion of a module.

De�nition 2.2.3. Let A be a sheaf of rings on X. We all a sheaf B over

X a module over A, if for eah open set U � X the abelian group B(U) is

equipped with a module struture over A(U) suh that the restrition maps

are module homomorphisms.

Example 2.2.1. Let M be a smooth manifold. Then the struture sheaf O

M

is a sheaf of rings. The sheaf 


n

M

of di�erential forms on M is a module over

O

M

.

The following proposition is very important, when we onsider the sheaf

of di�erential forms on a stratifold. For a proof see [Bredon97℄ page 69.

Proposition 2.2.4. Let � be a paraompatifying family of supports, then

any module over a �-soft sheaf is again a �-soft sheaf.
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2.3 Sheaf Theoreti Cohomology Theory

Sheaf theoreti ohomology is a very important tool in algebrai geometry

and some other parts of mathematis. For a given sheaf we give an expliit

resolution to de�ne its ohomology. Thus we avoid homologial algebra terms

and don't bother to de�ne things like injetive sheafs et. Throughout this

setion let � be a family of supports

Let A be a sheaf on X. For an open subset U � X let

C

0

(U;A) := ff : U 9 9 KAj� Æ f = idg (2.5)

denote the set of not neessarily ontinuous setions from U into A.Suh not

neessary ontinuous setions are alled serrations. An alternative way is

to say

C

0

(U;A) =

Y

x2U

A

x

:

The assoiation

U ! C

0

(U;A)

de�nes a sheaf on X whih we denote with C

0

(X;A). Sine eah ontinuous

setion an also be onsidered as a serration we have an inlusion

A(U)! C

0

(U;A) = C

0

(X;A)(U)

and hene a natural monomorphism

� : A ! C

0

(X;A):

We de�ne

Z

1

(X;A) = oker(� : A ! C

0

(X;A)):

In this way we get an an exat sequene

0

//
A

� //
C

0

(X;A)

� //
Z

1

(X;A)

//
0

:

Indutively we de�ne

C

n

(X;A)) = C

0

(X;Z

n

(X;A)) (2.6)
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Z

n+1

(X;A) = Z

1

(X;Z

n

(X;A)): (2.7)

In this way we get exat sequenes of the form

0

//
Z

n

(X;A)

� //
C

n

(X;A)

� //
Z

n+1

(X;A)

//
0

:

By spliing these sequenes together we get a long exat sequene

0

//
A

� //
C

0

(X;A)

d //
C

1

(X;A)

d //
C

2

(X;A)

d //
:::

;

where d = � Æ �. It is an easy exerise to show that this sequene is exat. So

we end up with what we all the anonial resolution of the sheaf A. Any

other exat sequene of the form above, where C

i

(X;A) is replaed by some

sheaves L

i

is alled a resolution of A.

Let us proeed with onstruting a hain omplex from this resolution.

We de�ne

C

n

�

(X;A) := �

�

(C

n

(X;A)) (2.8)

and an now present the de�nition of sheaf theoreti ohomology

groups of a spae X with oeÆients in the sheaf A:

De�nition 2.3.1. Let X be a topologial spae and let A be a sheaf over X.

The ohomology groups of X with oeÆients in the sheaf A and supports in

� are de�ned as

H

n

�

(X;A) =

ker(d : C

n

�

(X;A)! C

n+1

�

(X;A))

im(d : C

n�1

�

(X;A)! C

n

�

(X;A))

:

In general we suppress the index � if � denotes the system of losed supports.

In fat the homology groups above are the right derived funtors of the

left exat funtor �

�

and to de�ne sheaf ohomology, we ould have hosen

any injetive resolution of A instead of the anonial resolution. The resul-

ting ohomology groups would have been the same. This would require more

homologial algebra though, so we stay with this very onrete de�nition.

Sine �

�

is left exat, we have an exat sequene

0! �

�

(A)! �

�

(C

0

(X;A))! �

�

(C

1

(X;A));

so by de�nition of the ohomology groups and (2.8) there is a natural iso-

morphism

�

�

(A)

�

=

H

0

�

(X;A):
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Hene we see that the ohomology lasses of dimension 0 are preisely the

global setions of the sheaf with support in �.

From the de�nition of C

n

�

(X;A) it an easily be seen, that as a funtor on

sheaves C

n

�

(X;�) is exat. So if we start with an exat sequene of sheaves

0! A

0

!A! A

00

! 0;

we get a long exat sequene of ohomology groups

:::! H

p

�

(X;A

0

)! H

p

�

(X;A)! H

p

�

(X;A

00

)

!

H

p+1

�

(X;A

0

):::;

from whih things like the Mayer-Vietoris sequene and exision an be

followed.

The most famous example for sheaf theoreti ohomology is probably the

�

Ceh-ohomology of a spae X, whih in ase X is a nie spae oinides

with the singular ohomology.

Example 2.3.1. Let X be a topologial spae and G an abelian group.Let

G be the onstant sheaf with value G on X. Then H

p

�

(X;G) are alled the

�

Cheh-ohomology groups of X.

2.4 Ayli Sheaves

Ayli sheaves over a spae X are objets with trivial ohomology. More

preisely we say :

De�nition 2.4.1. Let A be a sheaf over some spae X and � a family of

supports. We all A �-ayli if

H

p

�

(X;A) = 0; 8p > 0:

The following proposition will be fundamental in hapter 4 when proving

de Rham's theorem for stratifolds. There it will be applied on the omplex

of sheaves 


�

X

of di�erential forms on a stratifold X.

Proposition 2.4.1. Let X be a topologial spae and

0

//
A

� //
L

0

d //
L

1

d //
L

2

d //
:::

be a resolution of A by �-ayli sheaves, then there is a natural isomorphism

H

p

(�

�

(L

�

); d)

�

=

H

p

�

(X;A):
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Proof. The proof is very easy and follows diretly from the last part of setion

2.2. The proof an also be found in the book of Bredon [Bredon97℄ page

47.

For our purposes the following proposition is of major importane. The

proof an be found in [Bredon97℄ page 68 but uses the onept of abby

sheaves, whih we don't introdue here.

Proposition 2.4.2. Let � be a paraompatifying system of supports and X

be a topologial spae. Furthermore let A be a �-soft sheaf over X. Then A

is �-ayli.

2.5 Relative Sheaf Cohomology

As in almost any ohomology theory, there is also a relative version of sheaf

theoreti ohomology. Let Y be a subspae of the topologial spae X and

let

i : Y ! X

be the inlusion. This indues a morphism of sheaves

i

�

: C

�

(X;A)! iC

�

(Y;A

jY

);

where the right hand side denotes the diret image under i.We de�ne a new

omplex of sheaves as

C

�

(X; Y;A) = ker i

�

:

From this we get a hain omplex de�ning

C

�

�

(X; Y;A) = �

�

(C

�

(X; Y;A)); (2.9)

for any family of supports �, where the di�erential is given by the the re-

strition of the di�erential on C

�

�

(X;A). The relative version of homology is

now de�ned as follows.

De�nition 2.5.1. Let A be a sheaf over the topologial spae X, � a family

of supports on X, and let Y � X be a subspae. Then 8n 2 N we de�ne

H

n

�

(X; Y;A) =

ker(d : C

n

�

(X; Y;A))! C

n+1

�

(X; Y;A))

im(d : C

n�1

�

(X; Y;A))! C

n

�

(X; Y;A))

:
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As usual there are some strong relations between absolute and relative

ohomology, though in general one has to be areful on the hoie of systems

of supports. We will only use the following exat sequene of pairs and some

version of exision in sheaf ohomology, whih we will state afterward.

Proposition 2.5.1. Let � be a paraompatifying family of supports. Under

the assumptions above there is a long exat sequene of ohomology groups

:::! H

p

�

(X; Y;A)! H

p

�

(X;A)! H

p

�

(Y;A

jY

)! H

p+1

�

(X; Y;A)! :::

Proof. The proof is easy, nevertheless uses the onept of abby sheaves. It

an be found in [Bredon97℄ page 84.

Proposition 2.5.2. If in addition to the assumptions above, the spae Y is

a losed subspae of X, then there is a natural isomorphism

H

p

�

(X; Y;A)

�

=

H

p

�

jX�Y

(X � Y;A):

Proof. The proof of this statement an be found in [Bredon97℄ on page 87.
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Kapitel 3

Construtions from Algebra

In this short hapter we present some of the algebrai tools we use in the

later hapters. Probably most of the readers are well aquainted to things

like loalization or the loal global priniple. Not so well known are algebrai

di�erential forms. Throughout the hapter R denotes a ommutative ring.

In general we do not suppose that this ring R has a unit. If so we denote

this unit with 1

R

. If R has also the struture of an algebra over a �eld k,

we swith symbols and denote it with A. Again we do not suppose that A

has a unit but we onentrate on the ase, where the underlying �eld k has

harateristi zero. Later A will be the algebra C

1

(X) of smooth funtions

on a stratifold X or some related algebra and k will be the real or omplex

numbers.

3.1 Loalization

Let S � R be a multipliative subset of the ring R, that is S is losed under

multipliation. Let M be a module over R. We de�ne the loalization ofM

at S, denoted M

S

, as the set of equivalene lasses

(m; s) 2M � S

under the equivalene relation

(m; s) � (m

0

; s

0

);

whenever there is an element t 2 S suh that

t � (s

0

m� sm

0

) = 0:
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The equivalene lass of (m; s) will be denoted with

m

s

. Suh equivalene

lasses build an abelian group with addition given by

m

s

+

m

0

s

0

=

s

0

m+ sm

0

ss

0

:

Appliation on M = R will give us a ring R

S

with multipliation

r

s

�

r

0

s

0

=

rr

0

ss

0

:

M

S

then beomes a module over R

S

in a natural way. Furthermore let

� :M ! N

be a homomorphism of R-modules, then we get an homomorphism of R

S

-

modules

�

S

:M

S

! N

S

;

m

s

7!

�(m)

s

:

It is not hard to see that

M

S

�

=

R

S




R

M:

In pratie loalisations are often done at maximal ideals. For example let

P � R be a maximal ideal of R, then

S = R� P

is a multipliative subset of R. We all M

P

= M

S

the loalization of M at

P .

The following lemma gives a nie example of loalization and in addition

shows how loalization helps to understand the loal situation, for example

in ase of a stratifold X.

Lemma 3.1.1. Let X be a ompat stratifold and C

1

(X) its algebra of

smooth funtions. Every maximal ideal P in C

1

(X) is of the form

P = ker(ev

x

: C

1

(X)! R);

where ev

x

denotes the evaluation map at some point x 2 X. Furthermore

C

1

(X)

P

�

=

O

X;x

:
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Proof. Clearly for any x 2 X we have that ker(ev

x

) is a maximal ideal. Now

let P be any maximal ideal in C

1

(X). Assume that P is not of the kind

desribed in the proposition. Then for any x 2 X there exists f

x

2 P suh

that f

x

(x) 6= 0. Clearly we an assume f

x

(x) > 0. It is not hard to see,

that by ompatness of X one an use a �nite number of these funtions

and paste them together with a partition of unity to get a funtion f 2 P

suh that f(x) > 0 8x 2 X. But then we have that 1=f is a well de�ned

funtion in C

1

(X) and sine P is an ideal 1 = (1=f) � f 2 P , whih is a

ontradition to P being a maximal ideal. For the seond assertion let f=g

denote an element in C

1

(X)

P

. Then there is a neighbourhood U of x suh

that g

jU

has no zeroes. Hene the funtion f=g is well de�ned on U and we

an onsider its equivalene lass [f=g℄ 2 O

X;x

. The assoiation f=g 7! [f=g℄

is learly surjetive. It is also injetive. If f=g maps to zero, then for some

open neighbourhood V of x we have f

jV

= 0. It follows from Proposition

1.7.1 that we an �nd � 2 C

1

(X) suh that �(x) 6= 0 and supp(�) � V .

Hene in C

1

(X)

P

we have

f=g = 1=� � � � f=g = 1=� � (� � f)=g = 0

sine � � f is idential zero.

In some ases, the loalization of a module is muh easier to handle,

beause it has some good properties. For example it might turn out that

some loalization of a module is a free module over the loalized ring. The

following de�nition is a speial ase of this.

De�nition 3.1.1. Let M be a module over the ring R. We all M a loally

free module, if for any maximal ideal P of R the loalization M

P

is free over

R

P

.

In our ase it will turn out that ertain modules of di�erential forms will

be loally free over the algebra of smooth funtions on a stratifold.

3.2 The Loal Global Priniple

The loal global priniple is somehow a bridge between the loal and the

global pitures. If we know a ring loalized at any maximal ideal P it should

somehow be possible to identify the ring itself. In some sense this is what the

following proposition states.

Proposition 3.2.1. Let � :M ! N be a homomorphism of R-modules suh

that for any maximal ideal P of R the loalized map �

P

: M

P

! N

P

is a

mono-, respetively epi-, respetively isomorphism , then � itself is a mono-,

respetively epi-, respetively isomorphism.
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Proof. The Proof of this proposition an be found in [Eisenbud95℄ page 68.

3.3 Adjuntion of a Unit

Some of our algebras doesn't ome with a unit element, in equal an element

1

A

2 A whih satis�es 1

A

� a = a � 1

A

= a 8a 2 A. For any k algebra A we

an onsider

A

+

:= A� k (3.1)

as a vetorspae over k and de�ne a multipliation on this vetorspae via

(a; r) � (b; s) := (ab + rb+ sa; rs): (3.2)

Together with this multipliation A

+

is a ommutative k-algebra with unit

given by the element (0; 1). We get the following short exat sequene of

k-algebras

0

//
A

' //
A

+

� //
k

//
0

;

where the maps are given as

'(a) := (a; 0); 8a 2 A

�(a; r) := r; 8(a; r) 2 A

+

:

In general this sequene is not a split exat sequene of algebras. In the ase

we already started with a unital algebra there is a splitting given by the map

Æ : A

+

! A

Æ(a; r) := a + r � 1

A

:

In this ase we have an isomorphism of algebras A

+

= A�k. Identifying a and

(a; 0) for all a 2 A we onsider A as a subset of A

+

. Using this identi�ation

we have that A is a maximal ideal in A

+

.
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3.4 Derivations

Sine derivations play a major role in the following hapters, we briey re-

ount the de�nition and some elementary properties. For this let M be a

bimodule over A whih is also a vetorspae over k suh that multipliation

with elements of A and of k is assoiative. If A has a unit, M inherits the

k-vetorspae struture from A using the map

r 7! r � 1

A

; 8r 2 k:

De�nition 3.4.1. We denote the set of k-linear maps

D : A!M;

whih satisfy the Leibniz rule

D(ab) = (Da)b+ a(Db)

with Der(A;M) and all it derivations of A with values inM . In aseM = A

is the regular module over A, we write Der(A) = Der(A;A).

In the unital ase, we always assume that the unit 1

A

ats as the identity

on M . The Leibniz rule then implies that D(1

A

) = 0, hene beause of k-

linearity

D(� � 1

A

) = 0; 8� 2 k: (3.3)

Later when we deal with Hohshild and Cyli Homology, topologial alge-

bras will our. It then makes sense to speak of ontinuous derivations. We

don't use an extra symbol, but say so, if we require derivations to be onti-

nuous. Anyway, in the end it will turn out that in the ase we are interested

in, that is A = C

1

(X) = M , there are no non-ontinuous derivations. The

situation there is similar to the manifold ase, where any derivation an be

represented by a smooth vetor�eld, hene is ontinuous.

3.5 Di�erential Forms for Algebras

In this setion we generalize the onept of di�erential forms, as known in

the world of smooth manifolds, to arbitrary ommutative algebras. In this

setion, for a matter of simpliity we assume all algebras to be unital. Unlike

for Hohshild homology there is not muh about di�erential forms for nonu-

nital algebras in the literature. Nevertheless nonunital versions of the stu�

presented in this setion are possible, though a little bit tehnial. There are

also versions working in the nonommutative ase (see [Loday91℄, page 82).
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De�nition 3.5.1. Let A be a ommutative, unital algebra over k. We denote

with F (A) the free A-module generated in symbols da 8a 2 A and with R(A)

the submodule whih is generated by the elements of the form

d(ab)� adb� bda 8a; b 2 A:

We de�ne the A-module of di�erential 1-forms or Kaehler di�erentials on

A as




1

A

= F (A)=R(A):

This A module has a universal property whih is losely onneted to

what we have done in the previous setion.

Proposition 3.5.1. Let M be a bimodule over A and let D : A ! M be

any M valued derivation on A. Furthermore let d : A! 


1

A

denote the map,

whih assoiates to a 2 A the lass of da in 


1

A

. Then there is unique A-linear

map f : 


1

A

!M suh that the following diagram ommutes

A

d

��

D //
M




1

A

f

>>||||||||

:

Hene there is an isomorphism

Der(A;M)

�

=

Hom

A

(


1

A

;M):

Proof. This is lear from the onstrution of 


1

A

.

We will now give a seond onstrution of 


1

A

. Its strength will show up,

when de�ning topologial versions of the stu� presented in this setion (see

hapter 5). Let us onsider the multipliation map

A
 A! A

a
 b! ab:

We denote the kernel of this map with I and onsider it as a module over A.

Let us also onsider the ideal I

2

and �nally the quotient I=I

2

. This will be

our andidate for 


1

A

. Clearly, as an A-module I is generated by elements of

the form

1

A


 a� a
 1

A

8a 2 A: (3.4)
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Let us denote lasses of elements of the form (3.4) modulo I

2

as

[1

A


 a� a
 1

A

℄:

The following proposition gives answer on how this is related with 


1

A

.

Proposition 3.5.2. Let A be a unital ommutative algebra. Then there is a

natural isomorphism




1

A

! I=I

2

da 7! [1

A


 a� a
 1

A

℄:

Proof. [Loday91℄ page 26.

We an now de�ne higher di�erential forms by using the exterior algebra

onstrution.

De�nition 3.5.2. For a unital ommutative algebra A, let




n

A

= �

n

A




1

A

be the A module of di�erential n- forms over A.

This module has a universal property, whih an simply be obtained by

omposing the two universal properties of the exterior produt onstrution

and di�erential 1-forms and has something to do with alternating forms on

derivations. We don't go into this in detail.

As the following proposition shows. The proess of building di�erential

forms is ompatible with the proess of loalization. This fat proves very

useful in alulations.

Proposition 3.5.3. Let A be a unital ommutative algebra and P be a ma-

ximal ideal in A. Then there is a natural isomorphism of modules over A

P




n

A

P

�

=

(


n

A

)

P

:

Proof. Sine the proess of building alternating algebras is ompatible with

loalization, we an assume n = 1. In this ase, it is not hard to see, that

(


n

A

)

P

has the universal property of Proposition 3.5.1. for A

P

from whih the

proposition follows. See also [Weibel95℄ page 307 .
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That algebraially de�ned di�erential forms are in fat a generalization of

the onept of di�erential forms on manifolds as one an �nd in [Bredon91℄

on page 261 for example, is the ontent of the following proposition.

Proposition 3.5.4. Let M be a ompat smooth manifold and A = C

1

(M)

denote the algebra of smooth funtions on M . Furthermore let 


n

(M) denote

the module of di�erential n-forms on M Then there is a natural isomorphism




n

C

1

(M)

�

=




n

(M):

Proof. Clearly there is a well de�ned map




n

C

1

(M)

! 


n

(M)

f

0

df

1

:::df

n

7! f

0

df

1

:::df

n

;

where the left hand expressions is understood as an algebrai di�erential

form, whereas the right hand expression stands for the alternating n-fold

produt of the n di�erential one forms df

1

; :::df

n

and the smooth funtion f

0

.

This map is an isomorphism. To hek this, using the loal global priniple

( Proposition 3.2.1 ) together with Proposition 3.5.3 and Lemma 3.1.1 one

an assume that M = R

k

. In this ase the proposition is learly true.
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Kapitel 4

de Rham Theory of Stratifolds

In this hapter we will generalize onepts like vetor�elds and de Rham

ohomology whih are well known in the world of smooth manifolds to the

world of stratifolds. The main result of this hapter is the generalization of

de Rham's theorem to the ase of stratifolds, namely that the de Rham o-

homology with ompat support of a stratifold X is naturally isomorphi to

its real valued singular ohomology with ompat support. We present a very

onrete and geometri isomorphism, whih is given by integrating di�eren-

tial forms over homology lasses.

4.1 Tangentspaes

Let X be a stratifold. As before, we denote with O

X

the struture sheaf of X.

Let x 2 X be a point and O

X;x

the stalk of O

X

at x. The following de�nition

of the tangent spae of X at the point x has to be seen in omplete analogy

to the ase of a smooth manifold.

De�nition 4.1.1. We de�ne the tangent spae of the stratifold X at some

point x 2 X as

T

x

X = Der(O

X;x

;R):

Clearly T

x

X is a vetorspae over the real numbers. From Proposition

1.3.1 it follows, that if x lies in the k-th stratum S

k

of X, we have

O

X;x

�

=

O

S

k

;x

;

where O

S

k

denotes the struture sheaf of the k stratum. The isomorphism is

given by restrition of germs to the k-stratum. We follow that

Der(O

S

k

;x

;R)

�

=

Der(O

X;x

;R)

37



indued by the inlusion of the k-stratum. So we have proven the following

easy, but nevertheless important proposition.

Proposition 4.1.1. Let X be a stratifold and x 2 S

k

� X. Then the inlu-

sion of the k-th stratum indues an isomorphism

T

x

S

k

�

=

T

x

X:

In partiular the dimension of T

x

X is equal to k.

Clearly, if we have a smooth map f : X ! Y between two stratifolds, we

get an indued map O

Y;f(x)

! O

X;x

. This map then indues a map

f

�

: Der(O

X;x

;R) ! Der(O

Y;f(x)

;R);

whih is the same as a map

f

�

: T

x

X ! T

f(x)

Y: (4.1)

We all f

�

the tangential of f at the point x. It is lear that f

�

is a vetor-

spae homomorphism.

In the proposition above no restritions on the dimension of the stratifold

are needed. So, even an in�nite dimensional stratifold has �nite dimensional

tangentspaes. The dimension of the tangentspae depends on the stratum

whih ontains the point. In anyway the dimension of the tangentspaes

varies. This is one major di�erene to the world of manifolds. It makes it

somehow diÆult to de�ne something as the tangentbundle by pasting to-

gether the tangentspaes in a ertain way. We don't bother to de�ne some

alternative of the tangentbundle and ome right away to vetor�elds. In the

manifold ase, smooth setions of the tangentbundle are in one to one or-

respondene to the derivations of the algebra of smooth funtions. This will

be our start point in the next setion.

4.2 Derivations and Vetor�elds

De�nition 4.2.1. For a stratifold X we denote with Der(X) the derivations

of the algebra C

1

(X).

So far nothing has been said about the topology of C

1

(X) and derivati-

on here just means derivation, we don't require anything as ontinuous here.

Later we will introdue a topology on C

1

(X) and in analogy to the mani-

fold ase it will beome lear, that any derivation of C

1

(X) is automatially
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ontinuous.

We should begin with a property ofDer(X) we all loality, whih means

that for any D 2 Der(X) and f 2 C

1

(X) the value of Df at some point

x 2 X only depends on the behaviour of f in a small neighbourhood of x.

We all know this behaviour of derivations from the world of manifolds, and

the reason this is valid for stratifolds as well is Lemma 1.7.1

Proposition 4.2.1. Let D 2 Der(X) and f; g 2 C

1

(X). Let x 2 X be

some point and U be an open neighbourhood of x in X suh that f

jU

= g

jU

.

Then

Df(x) = Dg(x):

Proof. We have (f � g)

jU

� 0. Aording to Lemma 1.7.1 we an hoose

� 2 C

1

(X) suh that �(x) = 1 and supp(�) � U . Then 0 � � � (f � g) on

the whole of X, hene

0 = D(� � (f � g)) = D� � (f � g) + � �D(f � g):

Evaluation at x shows that Df(x) = Dg(x).

We will give an expliit desription of Der(X) in form of vetor�elds on

the strata R

k

of the stratifold X. Let us denote the vetor�elds on R

k

with

�(R

k

). We should remind the reader at this point, that sine we are working

with -manifolds, for x 2 �R

k

we have from Proposition 1.1.1 that

O

R

k

;x

�

=

O

�R

k

;x

:

Clearly this isomorphism arries over when we onsider derivations on O

R

k

;x

.

So we have a natural isomorphism

T

x

R

k

�

=

T

x

�R

k

:

This isomorphism is given by forgetting the omponent orthogonal to the

boundary. One might think that this is a loss of information. It isn't, when

we onsider vetor�elds on R

k

, sine then, the omponent orthogonal to the

boundary does have an impat on germs, when onsidered arbitrary lose to

the boundary, but not on the boundary. Sine all our vetor�elds are assu-

med to be smooth, the behaviour lose to the boundary uniquely determines

the behaviour on the boundary. Another point to keep in mind is that an

arbitrary vetor�eld on R

k

in general won't deliver a derivation of C

1

(R

k

).
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This is beause funtions in C

1

(R

k

) have to satisfy that extra ondition to

be onstant along the ollar lose to the boundary. To get derivations from

vetor�elds on R

k

, we must require some ondition on the omponents ortho-

gonal to the boundary, whih guarantees the ondition to be onstant along

the ollar. This will be expressed in ondition 2. of De�nition 4.2.2 .

De�nition 4.2.2. Let X be a stratifold with harts '

k

and strata R

k

for

k 2 I. We de�ne

�(X) � f = (

k

)

k2I

j

k

2 �(R

k

)g;

to be those sequenes of vetor�elds whih satisfy the following two onditions.

1. For any pair x 2 R

k

and y 2 R

j

suh that '

k

(x) = '

j

(y) = z 2 X

'

k�

(

k

(x)) = '

j�

(

j

(y)) 2 T

z

X:

2. For any k let p

k

: �R

k

� [0; �) ! �R

k

denote the projetion from the

ollar of R

k

to the boundary. Then for any y 2 �R

k

the funtion

[0; �)! T

y

�R

k

t 7! p

k�

(y; t)

is onstant in a small neighbourhood of zero.

�(X) has a natural struture as a module over C

1

(X) and will be alled the

module of vetor�elds on the stratifold X.

We will now reognize Derivations on C

1

(X) as vetor�elds on X. This

is the ontent of the following theorem.

Theorem 4.2.1. There is an isomorphism of modules over C

1

(X)

Der(X)

�

=

�(X):

Proof. Let D 2 Der(X) be a given derivation and let R

k

denote the full

strata of X. We de�ne 

k

2 R

k

as follows. Let x 2 R

k

and f

jx

2 O

R

k

;x

be

de�ned on an open subset U of R

k

. The set V := U \ R

Æ

k

is also open and

beause of the properties of the harts '

k

, we have that '

k

(V ) is an open

subset of S

k

.Then

g := f Æ '

�1

kj'

k

(V )
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is a smooth funtion de�ned on an open subset of S

k

. As in the proof of

Proposition 1.3.1 there is a unique way to extend g on an open subset of X.

We an then further extend g to the whole of X. De�ne



k

(x)(f

jx

) := (Dg)('

k

(x)):

This is well de�ned by the property of loality ofD and the expliit extension

in a small neighbourhood of '

k

(V ). To hek ondition 2 from De�nition

4.2.2, we identify x = (y; t) 2 �R

k

� [0; �) in a small neighbourhood of the

boundary. Let f 2 O

�R

k

;y

and let p : �R

k

� [0; �) be the projetion on the

�rst oordinate. Then the funtion f Æ p on R

k

is onstant in the seond

variable whih means the germ f

j(y;t)

remains onstant when t is hanged.

This allows us to take one single funtion g 2 C

1

(X) as above whih suits

all these germs. We then get

p

�



k

(y; t)(f

jy

) = 

k

(y; t)(f Æ p

j(y;t)

) = (Dg)('

k

(y; t)):

The latter funtion is onstant in t for small t, sine D is a derivation on

C

1

(X) and hene Dg 2 C

1

(X). If f

1jx

and f

2jx

are two elements in O

R

k

;x

both de�ned on U , then we have extensions g

1

respetively g

2

and g

1

� g

2

oinides with the anonial extension of f

1jx

� f

2jx

in a small neighbourhood

of '

k

(V ). Hene



k

(x)(f

1jx

� f

2jx

) = D(g

1

� g

2

)('

k

(x)) = (Dg

1

� g

2

+ g

1

�Dg

2

)('

k

(x));

whih shows that 

k

(x) is a derivation, hene 

k

(x) 2 T

x

R

k

. This onstrution

gives us vetor�elds 

k

on R

k

. These vetor�elds also satisfy the ompatibility

ondition, whih an be seen as follows. Let z 2 X and f

jz

2 O

X;z

, x 2 R

k

y 2 R

j

suh that '

k

(x) = '

j

(y) = z. Then by de�nition of 

k

and 

j

we have



k

(x)(f Æ '

kjx

) = (Df)('

k

(x)) = (Df)('

j

(y)) = 

j

(y)(f Æ '

jjy

):

Hene 

D

= (

k

)

k2I

is a well de�ned element in �(X). The assoiation D 7!



D

learly is a homomorphism of modules over C

1

(X). On the other side

let there be given a vetor�eld  = (

k

)

k2I

2 �(X) and let f 2 C

1

(X) be a

smooth funtion on X.Let x 2 X be a point and y an arbitrary point in the

preimage of x under some '

k

. We de�ne

D



f(x) := 

k

(x)(f Æ '

kjy

):

By the ompatibility ondition of the 

k

this value doesn't depend whether

on the hoie of k 2 I nor on the speial hoie of y 2 R

k

. The ontinuity of

the funtion

D



f : x 7! D



f(x)
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is lear from the topology of X as a quotient spae (see De�nition 1.2.1 and

De�nition 1.2.2). It remains to hek that D



f is smooth in our sense. To

show this let '

k

be a hart of X. Then

x 7! (D



f Æ '

k

)(x) = D



f('

k

(x)) = 

k

(x)(f Æ '

kjx

)

learly varies smoothly on x 2 R

k

. Let x = (y; t) 2 �R

k

� [0; �) be a point in

the ollar of R

k

. Then

(y; t) 7! (D



Æ '

k

)(y; t) = 

k

(y; t)(f Æ '

kj(y;t)

);

doesn't depend on t for small t beause the germ f Æ'

kj(y;t)

remains onstant

when the seond variable is hanged for small t and 

k

satis�es ondition 2 of

De�nition 4.2.2. Hene we have proven that D



f 2 C

1

(X) and by a trivial

argument D



2 Der(C

1

(X)). By onstrution it is lear that the maps

 7! D



D 7! 

D

are inverse to eah other. Hene the statement of the theorem follows.

To get a better feeling of how vetor�elds or equally derivations on a

stratifold look like, we should give an example.This is the most easy example

one ould think of, nevertheless reets the situation very well.

Example 4.2.1. We onsider S

1

= [0; 1℄ [

'

pt: as a two strata stratifold,

where '(0) = '(1) = pt. In this ase both onditions of De�nition 4.2.2 are

empty, hene V et(S

1

) = V et([0; 1℄). The latter an then be identi�ed with

smooth funtions on the unit interval. This has to be onsidered as a module

over

C

1

(S

1

) = ff : [0; 1℄! R; f(0) = f(1); fonstant around f0; 1gg:

So, as we an easily see, V et(S

1

) is not �nitely generated over C

1

(S

1

).

This situation arries over to any stratifold whih has singularities. It makes

life harder, when one is trying to use theorems of ommutative algebra to

establish results for vetor�elds (or later di�erential forms), ause most of

them only work in the �nitely generated ase.
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4.3 Di�erential Forms on Stratifolds

In setion 3.5 we already introdued di�erential forms for arbitrary ommu-

tative unital algebras. This of ourse works for the algebra A = C

1

(X) for

a stratifold X. On the other side, this onstrution is somehow abstrat and

ungeometri. For this reason we hoose the following approah, whih is mo-

delled as lose as possible on the manifold ase. We will later show, that in

the ompat ase both versions of di�erential forms oinide.

On a manifold M , a di�erential form is given as a smooth setion

! :M !

a

x2M

�

n

T

�

x

M =

a

x2M

Alt

n

(T

x

M;R);

where the two right hand expressions have been given an appropriate to-

pology and Alt

n

denotes the alternating n-forms.. For a stratifold X we

mentioned that it is not easy, to give

`

x2X

�

n

T

�

x

X any natural topology. It

is well known, that in the manifold ase a not neessary ontinuous setion

of �

n

T

�

M is a di�erential form if and only if it an loally be represented as

a sum of forms

f

0

df

1

^ ::: ^ df

n

;

where the f

i

are smooth funtions onM . This is the start point for our de�ni-

tion of di�erential forms on stratifolds. Usually we skip the ^ in our notation.

Given funtions f

0

; :::f

n

on a stratifold X, we de�ne f

0

df

1

:::df

n

as the

setion

f

0

df

1

:::df

n

: X !

a

x2X

�

n

T

�

x

X =

a

x2X

Alt

n

(Der(O

X;x

);R) (4.2)

(f

0

df

1

:::df

n

)(x)(D

1

; :::; D

n

) =

X

�2�

n

(�1)

sign�

f

0

(x)D

1

f

�(1)jx

:::D

n

f

�(n)jx

; (4.3)

where �

n

denotes the permutations of f1; 2; :::ng and D

i

2 Der(O

X;x

;R) are

derivations. For omparison to the manifold ase see for example [Bredon91℄

page 262. We an now de�ne di�erential forms on stratifolds.

De�nition 4.3.1. Let X be a stratifold. A setion

! : X !

a

x2X

�

n

T

�

x

X
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is alled a di�erential n-form, if for any x 2 X there is an open neigh-

bourhood U � X and �nitely many smooth funtions f

j

i

de�ned on U suh

that

!

jU

=

X

j

f

j

0

df

j

1

:::df

j

n

as de�ned in (4.2),(4.3) We denote with 


n

(X) the set of di�erential n-forms

and onsider 


n

(X) as a module over C

1

(X).

When working with non ompat stratifolds, we have to pay attention

on the supports of ertain di�erential forms. This yields to the following

de�nition.

De�nition 4.3.2. Let ! 2 


n

(X) be a di�erential n-form on a stratifold X.

We all the losure of

fx 2 Xj!(x) 6= 0g

the support of X and denote it supp(!). We further de�ne




n



(X) := f! 2 


n

(X)jsupp(!) is ompat g

to be the module over C

1

(X) of di�erential n-forms on X with ompat

support.

By de�nition it is lear that 


0

(X) = C

1

(X) and 


0



(X) = C

1



(X)

where the latter denotes smooth funtions on X with ompat support.The

geometri meaning of higher order di�erential forms beomes learer, when

we study the loal piture in form of sheaves in setion 4.5.

4.4 Funtorial Properties of Di�erential Forms

Sine we de�ned the tangential g

�

of a smooth map g : X ! Y between

stratifolds it is very easy to see that the assoiation

X 7! 


n

(X)

is funtorial. In fat this is ompletely analogous to the manifold ase. The

map g indues maps

g

�

: T

x

X ! T

g(x)

Y:
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Let ! 2 


n

(Y ) then we de�ne g

�

! 2 


n

(X) as

g

�

!(x)(D

1

; :::; D

n

) = !(g(x))(g

�

D

1

; :::; g

�

D

n

):

If ! is loally represented by a sum

!

jU

=

X

j

f

j

0

df

j

1

:::df

j

n

;

so is g

�

! by

g

�

!

jg

�1

(U)

=

X

j

(f

j

0

Æ g)d(f

j

1

Æ g):::d(f

j

n

Æ g):

4.5 Sheaves of Di�erential Forms

By the de�nition of di�erential forms, it is lear that the assoiation

U 7! 


n

(U)

for open subsets U of a stratifold X de�nes a sheaf on X. We denote this

sheaf by 


n

X

and all it the sheaf of di�erential forms on X.

Proposition 4.5.1. Let � be either the system of ompat or losed sup-

ports. Then the sheaf 


n

X

of di�erential n-forms on a stratifold X is �-soft.

In partiular it is �-ayli.

Proof. This is an appliation of Propositions 2.2.1, 2.2.2 and 2.2.4 on the

module 


n

X

over O

X

We should now study the loal piture in form of the germs 


n

X;x

of the

sheaf of di�erential n-forms at some point x 2 X. The following proposition

is a generalisation of Proposition 1.3.1.

Proposition 4.5.2. Let S

k

be the k-stratum of the stratifold X and x 2 S

k

.

Then the inlusion

i : S

k

! X

indues an isomorphism




n

X;x

�

=




n

S

k

;x

;

where the right hand side denotes the germ of di�erential n-forms on the

smooth manifold S

k

.
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Proof. The reason for this to be true is the fat that loally, di�erential forms

are representable by the exterior produt of di�erentials of smooth funtions

and smooth funtions in a lose neighbourhood of a stratum are identi�ed by

their restrition to the stratum.The latter is the ontent of Proposition 1.3.1

. To be more preise, we let n = 1, x 2 X be some point in the k-stratum S

k

and dg 2 


1

X;x

suh that

i

�

dg = d(g Æ i) = 0 2 


1

S

k

;x

:

Then sine S

k

is a smooth manifold, we have that g is onstant in a small

neighbourhood V of x in S

k

. By Proposition 1.3.1 there is also a small neigh-

bourhood U of x in X, suh that g restrited to U is onstant. Hene, by

de�nition of dg and (3.3) we have that dg

jU

= 0 so that dg = 0 2 


1

X;x

whih

proves injetivity in the ase n = 1. Surjetivity is also lear from Proposition

1.3.1 . For general n the proposition follows from the fat, that




n

X;x

�

=

�

n

O

X;x




1

X;x

;




n

S

k

;x

�

=

�

n

O

S

k

;x




1

S

k

;x

;

and last but not least

O

X;x

�

=

O

S

k

;x

;

where in general �

�

R

denotes the exterior algebra over the ring R.

We should mention at this point, that the same tehnique used in Lemma

3.1.1 an be used to show that




n

X;x

= 


n

(X)

P

; (4.4)

where P = ker(ev

x

: C

1

(X) ! R) indiates loalization at P . This for

example shows that for a ompat stratifold X as a module over C

1

(X) we

have that 


n

(X) is loally free, and the loal rank is given by

�

n

k

�

for x 2 S

k

.

Sine 


n

(X) is not �nitely generated as a module over C

1

(X) one an not

follow from this, that it is projetive as a module over C

1

(X). In fat it is

not, sine in this ase, the loal rank would be onstant.

Sine we know, how 


n

(X) loally looks like, we an establish the gene-

ralization of Proposition 3.5.4 for stratifolds.
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Proposition 4.5.3. Let X be a ompat stratifold and A = C

1

(X) the

algebra of smooth funtions on X. Then there is a natural isomorphism




n

C

1

(X)

�

=




n

(X):

Proof. The proof is the same as in Proposition 3.5.4 using the loal global

priniple, Proposition 4.5.2 and the remark above.

4.6 de Rham Cohomology of Stratifolds

To build a version of de Rham ohomology for stratifolds, absolute or sheaf

theoreti, we have to de�ne an operator d, whih is known as exterior deriva-

tion in the manifold ase. With our de�nition of di�erential forms, to de�ne

d beomes very easy.

De�nition 4.6.1. Let X be a stratifold and ! 2 


n

(X) a di�erential form

suh that loally

!

jU

=

X

j

f

j

0

df

j

1

:::df

j

n

:

De�ne d! 2 


n+1

(X) as the di�erential form whih is loally represented as

(d!)

jU

=

X

j

df

j

0

df

j

1

:::df

j

n

:

That d! is indeed a well de�ned di�erential form is lear from the de�ni-

tion. To show that d! doesn't depend on the loal representation is somehow

tehnial, and only uses algebrai properties of 


n

(X). This an be looked

up in the book [Weibel95℄, page 349. So we get an operator

d : 


n

(X)! 


n+1

(X): (4.5)

We all this operator exterior derivation in analogy to the manifold ase,

where it an be de�ned via the same method used here. Sine d(1

X

) = 0,

where 1

X

denotes the onstant funtion with value 1 on X, it follows from

the de�nition of d that d Æ d = 0. hene we get a hain omplex (


�

(X); d)

whih we all the de Rham omplex of X.

The following lemma states that d is also well de�ned, when working with

ompat supports.

47



Lemma 4.6.1. The exterior di�erential

d : 


n

(X)! 


n+1

(X)

maps 


n



(X) into 


n+1



(X).

Proof. Let 


n



(X). We have to show that supp(d!) is ompat. Sine we know

that supp(!) is ompat, we an �nd a �nite number of open sets U

1

; :::; U

k

in X suh that ! is loally representable on eah of the U

j

and

supp(!) �

k

[

i=1

U

i

:

Sine X is loally ompat, we an hoose eah U

i

to be relative ompat.

By de�nition of d, d! is zero outside this union, hene

supp(d!) �

k

[

i=1

U

i

�

k

[

i=1

�

U

i

:

This proves that supp(d!) is ompat.

One an even show, that d dereases supports, but we won't need this.

We are now able to de�ne the de Rham ohomology groups.

De�nition 4.6.2. Let X be a stratifold. For n 2 N we all

H

n

dR

(X) =

ker(d : 


n

(X)! 


n+1

(X))

im(d : 


n�1

(X)! 


n

(X))

the de Rham ohomology groups of X. We also de�ne

H

n

dR;

(X) =

ker(d : 


n



(X)! 


n+1



(X))

im(d : 


n�1



(X)! 


n



(X))

to be the de Rham ohomology groups with ompat support.

Both groups of ourse oinide if the stratifold X is ompat. If X is non

ompat, we're mostly interested in the de Rham ohomology groups with

ompat support. We don't present any theorems for non ompat supported

ohomology in this ase.

For our sheaf theoreti approah it is very useful to see the de Rham

omplex not only as a hain omplex, but as a omplex of sheaves. Sine the
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exterior di�erential d as de�ned in (4.5) is learly natural with respet to

inlusions it indues a morphism of sheaves

d : 


n

X

! 


n+1

X

8n 2 N (4.6)

Again we have d Æ d = 0. Hene we get a omplex of sheaves

0

//
R

� //
O

X

= 


0

X

d //



1

X

d //



2

X

d //
:::

We all this omplex aording to the previous de�nition the de Rham

omplex of X. The following proposition an be seen as a generalisation of

the Poinare lemma for manifolds.

Proposition 4.6.1. Let X be a stratifold and � be either the family of om-

pat supports or the family of losed supports then the de Rham omplex is a

resolution of the onstant sheaf R by �-ayli sheafs.

Proof. By Proposition 4.5.1 the sheaves 


n

X

are �-ayli and we are left to

show that the de Rham omplex is exat. Exatness has to be heked on

the stalks, so let x 2 X be some point. Then x lies in some stratum S

k

and

sine by Proposition 4.5.2




n

X;x

�

=




n

S

k

;x

the omplex on stalks is preisely the omplex

0

//
R

� //
O

S

k

;x

= 


0

S

k

;x

d //



1

S

k

;x

d //



2

S

k

;x

d //
:::

The exatness of this omplex follows from the Poinare Lemma applied to

the smooth manifold S

k

. Hene we have proven the proposition.

The last proposition has the following immediate onsequene whih we

state as a theorem beause it alulates the de Rham groups.

Theorem 4.6.1. Let X be a stratifold, then its de Rham ohomology groups

with ompat support are isomorphi to its real valued singular ohomology

groups with ompat support, i.e.

H

�

dR;

(X)

�

=

H

�



(X;R)

Proof. By proposition 4.6.1 above the de Rham omplex is a resolution of

the onstant sheaf R by ayli sheaves. Aording to Proposition 2.4.1 this

resolution indues an isomorphism

H

�

(�



(


�

X

))

�

=

H

�



(X;R):
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On the left side of the last equation we have the de Rham ohomology groups

of X with ompat support, whereas on the right side by de�nition we have

the ompat supported ohomology groups of X with oeÆients in the on-

stant sheaf X. The latter groups are for nie spaes, in partiular for strati-

folds, isomorphi to the ompat supported singular ohomology groups with

real oeÆients. Hene, we have proven the theorem.

In setion 4.10. we give a geometrial meaning to this isomorphism whih

is given by integration. Integration of forms on stratifolds will be introdued

in the next setion.

4.7 Integration of Di�erential Forms on Stra-

tifolds

We assume the reader is familiar with the proess of integrating di�erential

forms on manifolds. Integration of forms on the full strata R

k

(X) ofX an be

done using a Riemannian square density assoiated to a Riemannian metri

on R

k

(X) as it is done in [Lang99℄,pages 466-470. The reader who doesn't

know how to work with densities an also think of integration via a volume-

form on the top stratum. Of ourse this only works for the top stratum of Z

oriented stratifolds, but in the end, this will be the only ase where we need

integration. Nevertheless, here is the general version.

We let X be a stratifold and ! 2 


k



(X) be a di�erential form on X. Let

'

k

: R

k

! X be the hart of the k-dimensional stratum. Then '

�

k

! whih is

de�ned by it's loal representations

'

�

k

!

jU

=

X

j

(f

j

0

Æ '

k

)d(f

j

1

Æ '

k

):::d(f

j

k

Æ '

k

)

is a di�erential form with ompat support on the smooth manifold R

k

.

De�nition 4.7.1. Let X be a stratifold and ! 2 


k



(X) a di�erential k-form

on X, then we de�ne

Z

X

! :=

Z

R

k

'

�

k

!:

There is one major di�erene to the manifold ase, that is, that integrati-

on of k forms whih have smaller degree than the dimension of the stratifold

may yield nontrivial results. This e�et is indeed very interesting and an be

used to de�ne ertain subomplexes of di�erential forms whih might lead to
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interesting new ohomology theories. But so far this is only speulation, and

as we mentioned earlier in this work only integration over the top stratum

plays a role.

In the following setion we present a version of Stokes Theorem for di�e-

rential forms on stratifolds.

4.8 Stokes' Theorem for Di�erential Forms

on Stratifolds

When integration of di�erential forms is de�ned, a natural question is, whe-

ther there is a Stokes' like theorem suh as

Z

X

d! =

Z

�X

i

�

!;

where i : �X ! X denotes the inlusion. In general this will not be true. As

the proof of the theorem below will show, suh a formula an only hold in

general, if the seond highest stratum of X is empty. This ondition is satis-

�ed by Z and Z=2 oriented stratifolds, whih we are partiularly interested

in, sine they are the building bloks of integral respetively Z=2 homology.

Theorem 4.8.1. Let X be a Z or Z=2 oriented stratifold and let n = Dim(X).

Let ! 2 


n�1



(X) be a di�erential form on X and let i : �X ! X denote the

inlusion. Then we have

Z

X

d! =

Z

�X

i

�

!:

Proof. Of ourse we will use Stokes' theorem for manifolds. By de�nition of

the integral on the left side we have

Z

X

d! =

Z

R

n

'

�

n

d! =

Z

R

n

d'

�

n

! =

Z

�R

n

j

�

'

�

n

!

=

Z

�R

+

n

j

�

'

�

n

! +

Z

�R

�

n

j

�

'

�

n

!;

where j : �R

n

! R

n

denotes the inlusion and '

n

: R

n

! X is the n-th

hart of X. On the other side we have again by de�nition of the integral and

the top stratum of �X that

Z

�X

i

�

! =

Z

�R

�

n

j

�

'

�

n

!:
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So we have proven the theorem, when we show that

Z

�R

+

n

j

�

'

�

n

! = 0:

Sine by the orientability assumption on X we have X

n�1

= X

n�2

and for

dimensional reasons ( see Proposition 4.5.2 )

!

jX

n�1

= !

jX

n�2

= 0:

We also have that i

�

! = !

jX

n�1

and hene the theorem follows from the

following ommutative diagram

�R

+

n

'

n //

'

n

##GGGGGGGG
X

X

n�1

i

OO :

4.9 Relative de Rham Cohomology

As in almost any ohomology theory there is also a relative version of de

Rham ohomology of stratifolds. This relative version an be ompared to

the absolute one by a long exat sequene, similar to the exat sequene of

pairs known from singular ohomology. This will be done in this setion.

Let X be a stratifold and Y � X be a substratifold. The inlusion map

i : Y ! X

indues a morphism of sheaves over X

i

�

: 


n

X

! i


n

Y

;

where i


n

Y

denotes the diret image of 


n

Y

under i (see De�nition 2.1.6). This

map is given by restrition.

Lemma 4.9.1. Let Y be a losed substratifold of X. Then i

�

: 


n

X

! i


n

Y

is

surjetive.
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Proof. We have to prove surjetivity of the maps on stalks

i

�

x

: 


n

X;x

! (i


n

Y

)

x

for all x 2 X. This is lear for x 2 X � Y sine then (i


n

Y

)

x

= 0. So let

us assume that x 2 Y . There is a stratum S

k

(X) of X ontaining x. Let

S

i

(Y ) = S

k

(X)\Y be the orresponding stratum of Y whih ontains x. By

de�nition of substratifold in setion 1.4. S

i

(Y ) is a submanifold of S

k

(X). By

hoosing a tubular neighbourhood for example, we an see that the indued

map

i

�

x

: 


n

S

k

(X);x

! 


n

S

i

(Y );x

is surjetive. By Proposition 3.4.2 we also have




n

X;x

�

=




n

S

k

(X);x




n

Y;x

�

=




n

S

i

(Y );x

from whih the proposition follows.

We de�ne a new sheaf on X by




n

X;Y

:= kern(i

�

: 


n

X

! i


n

Y

): (4.7)

This sheaf is given by the assoiation

U 7! ker(i

�

: 


n

X

(U)! 


n

Y

(U \ Y )):

In partiular we have




n

X;Y

(X) = ker((i

�

: 


n

(X)! 


n

(Y )):

Clearly the di�erential d on 


�

X

indues a di�erential also denoted by d on




�

X;Y

, so that we get a omplex of sheaves over X.

The de�nition of relative de Rham ohomology is as follows.

De�nition 4.9.1. Let X be a stratifold and Y � X be a substratifold. We

de�ne the relative de Rham groups with ompat support of the pair

(X; Y ) as

H

k

dR;

(X; Y ) :=

ker(d : �



(X;


k

X;Y

)! �



(X;


k+1

X;Y

))

im(d : �



(X;


k�1

X;Y

)! �



(X;


k

X;Y

))

:
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Sine 


n

X;Y

is a module over O

X

it is also a � soft sheave for � either the

family of losed or ompat supports. In this ontext we will only use the

latter system. This fat enables us to prove the following proposition.

Proposition 4.9.1. Let X be a stratifold and Y � X be a losed substrati-

fold, then there exist a long exat sequene of de Rham ohomology groups

::! H

k

dR;

(X; Y )! H

k

dR;

(X)! H

k

dR;

(Y )! H

k+1

dR;

(X; Y )! :::

Proof. Consider the short exat sequene of sheaves over X

0

//



n

X;Y

//



n

X

i

�

//
i


n

Y

//
0

:

Sine 


n

X;Y

is soft it follows from Proposition 2.2.3 that we have an exat

sequene

0

//
�



(X;


n

X;Y

)

//
�



(X;


n

X

)

i

�

//
�



(X; i


n

Y

)

//
0

for all n. These sequenes add up to a short exat sequene of hain om-

plexes. By appliation of a fundamental lemma of homologial algebra this

sequene indues the sequene from the proposition.

Besides the long exat sequene above, there is another way to ompare

the relative groups with the absolute ones. This is in general known as ex-

ision. Again let X be a stratifold and Y be a losed substratifold. Then

X�Y is an open subset of X, and by Example 1.4.1 a stratifold itself. Hene

we an ompare the relative de Rham ohomology groups of the pair (X; Y )

with the absolute ones of the stratifold X � Y . The following proposition

says that they are isomorphi.

Proposition 4.9.2. Let X be a stratifold and Y � X be a losed substrati-

fold, then we have a natural isomorphism

H

k

dR;

(X; Y )

�

=

H

k

dR;

(X � Y ); 8k:

Proof. We apply Proposition 2.5.2 to the ase A = 


k

X;Y

and p = 0.Then it

follows that

�



(X;


k

X;Y

)

�

=

�



(X � Y;


k

X;Y

):

Sine i


k

Y jX�Y

= 0 we have




k

X;Y jX�Y

�

=




k

XjX�Y

:

Sine also 


k

XjX�Y

�

=




k

X�Y

we get a natural isomorphism

�



(X;


k

X;Y

)

�

=

�



(X � Y;


k

X�Y

)

from whih the proposition follows.
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4.10 de Rham's Isomorphism for Stratifolds

In this setion we assume that X is a ompat stratifold. We have already

stated by using sheaf ohomology that de Rham ohomology of X is the

same as its singular ohomology with real oeÆients. This has been done

by a more or less abstrat isomorphism. In this setion, we will see, that

similar as in the world of manifolds there is a nie geometri desription of

this isomorphism, given by integrating forms over yles and identifying

H

�

(X;R)

�

=

Hom(H

�

(X);R):

Instead of using singular simplies as representatives for yles in integral ho-

mology we use singular stratifolds and the desription of integral homology

as a bordism theory as presented in setion 1.9. This approah is far better

suited for our situation.

Assume we have an element in H

n

(X) represented by a singular stratifold

f : Y ! X;

where Y is a stratifold with Dim(Y ) = n. Without loss of generality we an

assume that f is smooth. Let ! 2 


n

(X) be a di�erential form on X. Then

we an de�ne

!(f) :=

Z

Y

f

�

!;

where the integral on the right side is de�ned as in the previous setion. We

will now establish that the assoiation

! 7! (f 7! !(f))

indues a well de�ned homomorphism

H

�

dR

(X)! Hom(H

�

(X);R):

To show this we have to verify that this map doesn't depend on the various

hoies made above.This follows from the following two lemmas.

Lemma 4.10.1. Let f

1

: Y

1

! X respetively f

2

: Y

2

! X represent the

same lasses in H

n

(X) and let ! 2 


n

(X) be a yle, in equal d! = 0 . Then

with the de�nition above !(f) = !(g).
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Proof. Sine f

1

and f

2

represent the same lasses in homology, there is a

bordism g : W ! X. This means �W = Y

1

t �Y

2

and g

jY

1

= f

1

respetively

g

jY

2

= f

2

. From our version of Stokes' theorem it follows that

0 =

Z

W

g

�

d! =

Z

W

dg

�

! =

Z

�W

i

�

g

�

! =

Z

Y

1

f

�

1

! �

Z

Y

2

f

�

2

!

= !(f

1

)� !(f

2

):

Lemma 4.10.2. Let d! 2 


n

(X) be a oboundary and let f : Y ! X

represent an element in H

n

(X). Then d!(f) = 0.

Proof. Sine �Y = ;, Stokes' Theorem implies

d!(f) =

Z

Y

f

�

d! =

Z

Y

df

�

! =

Z

�Y

f

�

! = 0:

It is lear that the map de�ned above is indeed a homomorphism. We all

this homomorphism de Rham homomorphism and denote it by

� : H

�

dR

(X)! Hom(H

�

(X);R): (4.8)

The next Theorem is a geometrial version of Theorem 4.6.1.

Theorem 4.10.1. The de Rham homomorphism � of (4.8) is an isomor-

phism.

Proof. We use the de Rham Theorem for smooth manifolds as one an �nd

it in [Bredon97℄ for example. Let n = dim(X). The theorem follows via

indution on the skeleta of X, by applying the pair sequene on the pair

(X;X

n�1

) and identifying H

k

dR

(X;X

n�1

) via Proposition 4.9.2 with the or-

dinary k-th ompat supported de Rham ohomology group of the smooth

manifold X �X

n�1

from the �ve lemma and the ommutative diagram

H

k�1

dR

(X

n�1

) ! H

k

dR

(X

n

;X

n�1

) ! H

k

dR

(X

n

) ! H

k

dR

(X

n�1

) ! H

k+1

dR

(X

n

;X

n�1

)

# # # # #

H

k�1

(X

n�1

;R) ! H

k

(X

n

;X

n�1

;R) ! H

k

(X

n

;R) ! H

k

(X

n�1

;R) ! H

k+1

(X

n

;X

n�1

;R)
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Kapitel 5

Some Construtions on

Topologial Vetorspaes and

Algebras

In this hapter we present some more or less elementary things from analysis,

whih are ruial to understand the part on Hohshild homology of strati-

folds. Sine the analysis of topologial vetorspaes over the real numbers

is not partiularly well developed, from now on we work over the omplex

numbers. This means that from now on, whenever we write C

1

(X) for a

stratifold or C

1

naive

(M) for a manifold treated in the naive sense, we mean

omplex valued funtions. Those an be obtained by simply tensoring the

real valued versions with C . All information in this hapter has been taken

either from the book \Topologial Vetorspaes, Distributions and Kernels\

[Treves℄ or the book \The Homology of Banah and Topologial Algebras"

[Helemskii℄.

5.1 Fr�ehetspaes

All vetorspaes here are onsidered over the omplex numbers. A topolo-

gial vetorspae is simply a vetorspae together with a topology whih

is ompatible with the linear struture, that is addition and salar multipli-

ation are ontinuous. In addition to the properties of a topologial vetor-

spae a topologial algebra has a ontinuous multipliation. Most times

we onsider Hausdor� topologial vetorspaes and algebras. In hapter 6

though, when we disuss Hohshild homology, we will see, that in general

the Hohshild homology groups lak the Hausdor� property. A topologi-

al vetorspae E is alled metrizable if there exists a metri on E whih
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generates the topology. Any metrizable topologial vetorspae possesses a

translation invariant metri. We then think of this spae as equipped with

suh a metri. E is alled omplete, if any Cauhy sequene in E onverges

in E. There is a proess alled ompletion whih onstruts a omplete to-

pologial vetorspae

�

E out of a topologial vetorspae E, together with a

topologial embedding

E !

�

E

with dense image. Sine we only onsider metrizable vetorspaes, we don't

have to bother about �lters. A topologial vetorspae is alled loally on-

vex if there is a basis of neighbourhoods of 0 2 E onsisting of onvex sets.

A seminorm p on E is a norm, whih laks the property of de�niteness, in

equal there might be vetors x 6= 0 2 E suh that p(x) = 0. Any seminorm

p on E indues a topology on E. We are now ready to de�ne Fr�ehetspaes.

De�nition 5.1.1. A Fr�ehetspae is a topologial vetorspae E whih is

omplete, metrizable and loally onvex.

Let us disuss the following for our purposes fundamental example. Let 


be an open subset of R

n

and denote with x

1

; :::; x

n

the anonial oordinates.

For a multi-index I = (i

1

; :::; i

n

) of nonnegative integers, we shall write

�

I

�x

I

= (

�

�x

1

)

i

1

:::(

�

�x

n

)

i

n

:

Let's denote with jIj = i

1

+ ::: + i

n

the length of I whih is the same as the

order of the di�erential operator

�

I

�x

I

. Let us now onsider the vetorspae

C

1

(
) of omplex valued smooth funtions on 
. For any integer m 2 N

and any ompat subset K of 
 we de�ne a seminorm by setting

jf j

m;K

= sup

jIj�m

(supfj

�

I

f

�x

I

(x)j; x 2 Kg): (5.1)

These seminorms indue a loally onvex topology on C

1

(
). Convergene

in this topology means uniform onvergene on ompat subsets in all deri-

vatives. Hene it is not hard to see, that this spae is omplete. By hoosing

a ountable subfamily fp

n

g of the family of seminorms above, suh that the

family fp

n

g still generates the topology on C

1

(
), we an de�ne a metri

on C

1

(
) by setting

d(f; g) =

X

n2N

p

n

(f � g)

2

n

(1 + p

n

(f � g))

: (5.2)
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This indeed de�nes a metri on C

1

(
) and it is not so hard to see, that the

topology de�ned by the metri is the same as the topology de�ned by the

seminorms. So we have more or less shown, that C

1

(
) is a Fr�ehet spae.

More details an be found in [Treves℄ pages 86-89. For a smooth manifold

M treated in the naive sense we an endow the vetorspae C

1

naive

(M) of all

smooth funtions with a Fr�ehetspae struture using loal harts in the sa-

me way, as it was done above. In the following, when we speak of C

1

naive

(M)

we mean smooth funtions on M together with this Fr�ehetspae struture.

In general to any loally onvex topologial vetorspae one an onstrut

a family of seminorms whih generates the topology. See [Treves℄ pages 62-63

for example. We need this fat in the next setion, when de�ning tensorpro-

duts on topologial vetorspaes.

In the topologial ontext, two topologial vetorspaes are onsidered as

equal, if there is a topologial isomorphism between the two of them. In

general it is not so easy to deide, given a ontinuous bijetive linear map,

whether it is a topologial isomorphism or not, or equivalently, whether its al-

gebraially de�ned inverse is ontinuous. In the world of Fr�ehetspaes things

are easier, sine we have the following proposition, whih is also known as

the open mapping theorem. We will use that proposition several times in

hapters 6 and 7. For a proof see [Treves℄ page 170.

Proposition 5.1.1. Let E and F be Fr�ehetspaes and � : E ! F a onti-

nuous linear and bijetive map. Then � is a topologial isomorphism, in equal

�

�1

is ontinuous.

5.2 Tensorproduts of Topologial Vetorspaes

Let us denote with E and F two loally onvex topologial vetorspaes. We

will de�ne two kind of tensorproduts E
F , namely the �- and the �- tensor-

produt. The latter is also alled the projetive tensorprodut. We denote

with E

0

�

and F

0

�

the ontinuous duals of E and F together with its weak

topologies. Weak topology means, that a sequene of ontinuous linearforms

on E onverges, if and only if it onverges point wise. We do now onsider

the vetorspae B(E

0

�

; F

0

�

) of ontinuous bilinear forms on E

0

�

respetively

F

0

�

. We give B(E

0

�

; F

0

�

) a topology by embedding it in a slightly larger spae.

This spae will be denoted with B

�

(E

0

�

; F

0

�

) and onsists of the bilinear forms

whih are ontinuous in eah variable provided with the topology of uniform
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onvergene on sets whih are produts of an equiontinuous subset of E

0

with an equiontinuous subset of F

0

. Clearly

B(E

0

�

; F

0

�

) � B

�

(E

0

�

; F

0

�

):

This inlusion indues a topology on B(E

0

�

; F

0

�

). Let us now onsider the

algebrai tensorprodut E 
 F and the algebrai isomorphism

E 
 F

�

=

B(E

0

�

; F

0

�

):

This isomorphism indues a topology on E
F whih we all the �-topology.

We denote the spae E
F together with this topology as E


�

F and denote

its ompletion with

E

^




�

F: (5.3)

The latter spae is a omplete, loally onvex vetorspae and is alled the

�-tensorprodut of E and F .

There is another way to de�ne a natural topology on E 
 F using se-

minorms. This onstrution will result in the so alled �- or projetive ten-

sorprodut. For given seminorms p and q on E respetively F we de�ne a

seminorm p
 q on E 
 F as follows. For � 2 E 
 F let

(p
 q)(�) = inff

X

j

p(x

j

)q(y

j

)j� =

X

j

x

j


 y

j

g (5.4)

where the in�mum is taken over all �nite sets of pairs (x

j

; y

j

) suh that

� =

X

j

x

j


 y

j

:

Now let p

i

; i 2 I respetively q

j

; j 2 J be families of seminorms generating

the topologies of E respetively F . By the onstrution above we get a family

of seminorms p

i


 q

j

. This family then indues a loally onvex topology on

E 
 F , whih is alled the �- or projetive topology. E 
 F together with

this topology will be denoted as E


�

F . Its ompletion will be denoted with

E

^




�

F (5.5)

and is alled the �- or projetive tensorprodut of E and F . It is a omplete,

loally onvex topologial vetorspae.

The methods above also work in the ase, where more then two vetor-

spaes are involved. The projetive tensorprodut has the following universal

property (see proposition 4.9, hapter 2 in [Helemskii℄).
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Proposition 5.2.1. Let E,F ,G be Fr�ehetspaes and � : E � F ! G a

ontinuous, bilinear map. Let

i : E � F ! E

^




�

F

(e; f)! e

^


f

the anonial map, then there exists a unique ontinuous homomorphism �̂ :

E

^




�

F ! G suh that the following diagram ommutes

E � F

� //

i

��

G

E

^




�

F

�̂

<<xxxxxxxxx

The following proposition gives an expliit desription of the elements

in the projetive tensorprodut of two Fr�ehetspaes. This shows up to be

useful in alulations.

Proposition 5.2.2. Let E and F be two Fr�ehetspaes and � 2 E

^




�

F be

an element in the projetive tensorprodut. Then � has the form

� =

1

X

n=0

�

n

x

n

^


y

n

;

where (�

n

) is a sequene of real respetively omplex numbers suh that

P

1

n=0

j�

n

j <

1 and (x

n

) and (y

n

) are zero sequenes in E respetively F .

Proof. This is Theorem 45.1 on page 459 in [Treves℄.

5.3 Nulear spaes

In general the �- and the projetive tensorprodut doesn't oinide. On the

other hand there is a large lass of topologial vetorspae where they do

oinide. These spaes are alled nulear spaes. More preisely we have the

following de�nition.

De�nition 5.3.1. A loally onvex topologial vetorspae E is said to be

nulear if for every loally onvex topologial vetorspae F the anonial

map

E

^




�

F ! E

^




�

F

is a topologial isomorphism.

61



For nulear spaes E and F we simply write E

^


F meaning any of the

two isomorphi tensorproduts above.

Let us list some of the properties of nulear spaes.

1. A loally onvex topologial vetorspae E is nulear, if and only if its

ompletion

�

E is nulear.

2. A linear subspae of a nulear spae is nulear.

3. The quotient of a nulear spae modulo a losed linear subspae is

nulear.

4. Any produt of nulear spaes is nulear.

5. A ountable topologial diret sum of nulear spaes is nulear.

6. A Hausdor� projetive limit of nulear spaes is nulear.

7. A ountable indutive limit of nulear spaes is nulear.

8. If E and F are nulear , then E

^


F is also nulear.

5.4 Further Examples

At this point we should at least give some examples of nulear spaes and

some appliations of the tensorproduts disussed above. Others will follow.

In the last setion we introdued a topology on the algebra C

1

naive

(M) of

smooth funtions on a manifold M , whih made it into a Fr�ehetalgebra.

For reasons of simpliity we assume that M has no boundary, so C

1

(M) =

C

1

naive

(M). It is not so easy to see, but nevertheless true, that C

1

(M) is

nulear. Let E be any Fr�ehetspae. Then it follows from [Treves℄ Theorem

44.1 on page 449, that the natural map

C

1

(M)
 E ! C

1

(M;E);

f 
 e 7! (x 7! f(x) � e);

where f denotes a smooth omplex valued funtion on M and e an arbitrary

vetor in E, indues a topologial isomorphism

C

1

(M;E)

�

=

C

1

(M)

^




�

E:
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Sine C

1

(M) is a nulear spae, the right side is isomorphi to C

1

(M)

^




�

E.

In partiular for a seond manifold M

0

let's hoose E = C

1

(M

0

) and we

have a natural series of isomorphisms

C

1

(M �M

0

)

�

=

C

1

(M;C

1

(M

0

))

�

=

C

1

(M)

^


C

1

(M

0

); (5.6)

where the right side denotes either one of the tensorproduts. The map on

the left side is given by �xing the �rst oordinate in the produt. The ase

when M will be replaed by a stratifold will be dealt with in setion 5.7.

5.5 Tensorproduts and Alternating Produts

of Fr�ehetmodules over Fr�ehetalgebras

In the algebrai ase, tensorproduts do not only work in the ase of ve-

torspaes over a �eld, but also in the ase of modules over some ring. The

situation in the Fr�ehet world is similar. For a matter of simpliity, we assu-

me that all Fr�ehetspaes in this setion are also nulear, so we don't have

to worry whih tensorprodut we take.

De�nition 5.5.1. Let A be a Fr�ehetalgebra andM be a Fr�ehetspae, whih

is also a module over A, suh that addition and multipliation with elements

of A is ontinuous, then we all M a Fr�ehetmodule over A

Now letM

1

;M

2

and N be Fr�ehetmodules over the Fr�ehetalgebra A, and

let

� :M

1

�M

2

! N

be a ontinuous A-bilinear map. By the universal property of the tensorpro-

dut of Fr�ehetspaes, � indues a ontinuous map ~� : M

1

^


M

2

! N suh

that the following diagram ommutes

M

1

�M

2

� //

i

��

F

M

1

^


M

2

~�

::vvvvvvvvvv

;

where i is the anonial map from the produt into the tensorprodut ( see

Proposition 5.2.1 ). Sine � is not only bilinear, but A-bilinear, we see that

elements like

am

1

^


m

2

�m

1

^


am

2

8a 2 A;m

1

2 M

1

; m

2

2M

2
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are ontained in the kernel of ~�. Hene if we de�ne M

1

^




A

M

2

to be the

quotient of M

1

^


M

2

by the losure of the module generated by elements of

the form above, we get an A-linear, ontinuous map �̂ : M

1

^




A

M

2

! F . We

de�ne

j :M

1

�M

2

!M

1

^




A

M

2

as the omposition of i with the natural map onto the quotient. From what

we have done so far, it is lear that our onstrution satis�es the following

universal property.

Proposition 5.5.1. Let M

1

^




A

M

2

be as de�ned above and � : M

1

�M

2

!

N be a ontinuous A-bilinear map, where N is another Fr�ehetmodule over

the Fr�ehetalgebra A. Then there is a unique ontinuous A-linear map �̂ :

M

1

^




A

M

2

! N suh that the following diagram ommutes

M

1

�M

2

� //

j

��

F

M

1

^




A

M

2

�̂

::uuuuuuuuuu

:

Using this kind of tensorprodut, we are able to de�ne alternating pro-

duts, and hene an exterior algebra. M still denotes a Fr�ehetmodule over

a Fr�ehetalgebra A. We an then build the n-fold tensorprodut M

^




n

A

and

divide out the losure of the submodule whih is generated by elements of

the form

m

1

^


:::

^


m

i

^


:::

^


m

j

^


:::

^


m

n

�m

1

^


:::

^


m

j

^


:::

^


m

i

^


:::

^


m

n

:

The result is again a Fr�ehetmodule over A and will be denoted with

�

�

n

A

M .

From the onstrution it is lear that it satis�es the following universal pro-

perty.

Proposition 5.5.2. Let

�

�

n

A

M be as de�ned above and let

� :M � :::�M ! N

be a ontinuous multilinear alternating map, where N denotes another Fr�ehetmodule

over the Fr�ehetalgebra A. Then there is a unique ontinuous A-linear map

�̂ :

�

�

n

A

M ! N making the following diagram ommutative

M � :::�M

� //

i

��

N

�

�

n

A

M

�̂

99rrrrrrrrrrr

:
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Here i is de�ned as the omposition of the natural map into the tensorprodut

and the projetion onto the quotient.

As in the purely algebrai ase, one an show, that if M and N are both

Fr�ehetmodules over A, there is a natural topologial isomorphism

�

�

n

A

(M �N)

�

=

X

p+q=n

�

�

p

A

M

^




�

�

q

A

N: (5.7)

5.6 Di�erential Forms for Nulear Fr�ehetalgebras

In this setion we will modify the ideas presented in setion 3.5. to suit the

ase of a topologial algebra, or more preisely a unital ommutative nule-

ar Fr�ehet algebra. The modi�ations are neessary to ompare di�erential

forms with Hohshild homology, as we do in hapters 6 and 7. As in the al-

gebrai ase, nonunital and nonommutative versions of the ideas presented

in this setion are possible.

To start with, let J denote the kernel of the multipliation map

A

^


A! A

a

^


b! ab:

Clearly J is an A-Fr�ehet bimodule. Let

�

J

2

denote the losure of the submo-

dule J

2

. Let us de�ne

�




1

A

= J=

�

J

2

: (5.8)

An appliation of the properties of nulear Fr�ehetspaes listed in setion 5.3

shows that

�




1

A

is a Fr�ehet bimodule over A. There is a anonial map i of

A into

�




1

A

given by

a 7! [a

^


1� 1

^


a℄ =: da:

As in setion 3.5. it an be seen that this map is a derivation and

�




1

A

has the

following universal property.

Proposition 5.6.1. Let

�




1

A

be as de�ned above andM any Fr�ehet bimodule

over A. Let further D : A!M be a ontinuous derivation. Then there exists
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a unique ontinuous A-linear map f :

�




1

A

! M , whih makes the following

diagram ommutative

A

D //

i

��

M

�




1

A

f

>>||||||||

:

Let us now de�ne higher di�erential forms. Applying the methods of the

previous setion, we are able to make the following de�nition.

De�nition 5.6.1. Let A be a unital ommutative nulear Fr�ehetalgebra.

We de�ne the module of di�erential n-forms over A to be

�




n

A

:=

�

�

n

�




1

A

:

This is a Fr�ehetmodule over A.

Using the desription of 


1

A

in Proposition 3.5.2 and De�nition 3.5.2 we

get a natural map




n

A

!

�




n

A

:

The following proposition states, that

�




n

A

an be onsidered as the ompletion

of 


n

A

.

Proposition 5.6.2. Let A be a unital ommutative nulear Fr�ehetalgebra.

Then the natural map 


n

A

!

�




n

A

is injetive and has dense image.

Proof. Without loss of generality we an assume n = 1. Let us denote the

kernel of the multipliation map A
A! A with I and let J be the kernel of

the multipliation map A

^


A! A. Clearly I � J . In fat, J is the losure of

I in A

^


A. From this it follows that the image is dense. Further I

2

= I \

�

J

2

,

from whih injetivity follows.

The following identity will later be useful to identify di�erential forms on

Stratifolds whih are produts.

Proposition 5.6.3. Let A and B be unital ommutative nulear Fr�ehetalgebras.

Then there is a natural topologial isomorphism

�




n

A

^


B

�

=

X

p+q=n

�




p

A

^




�




q

B

:
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Proof. Let us �rst show, that there is a anonial isomorphism

�




1

A

^


B

�

=

�




1

A

^


B � A

^




�




1

B

:

Clearly there is a derivation on A

^


B with values in the right hand side given

by

d(a

^


b) = da

^


b + a

^


db:

The universal property of the left hand side hene gives us a well de�ned

map

�




1

A

^


B

!

�




1

A

^


B � A

^




�




1

B

d(a

^


b) 7! da

^


b + a

^


db:

This map has an inverse given by

da

^


b 7! d(a

^


1)(1

^


b)

a

^


db 7! (a

^


1)(1

^


db):

Clearly all these maps are ontinuous. We do now use the identity at the end

of the last setion and get

�




p

A

^


B

�

=

�

�

n

A

^


B

(

�




1

A

^


B � A

^




�




1

B

)

�

=

X

p+q=n

�




p

A

^




�




q

B

:

5.7 The Case of a Stratifold

In this setion we onsider the algebra C

1

(X) of smooth omplex valued

funtions on a stratifold as de�ned in setion 1.3 in more detail. At this

point, we should remind the reader, that for a -manifoldW with boundary,

the algebra C

1

(W ) as de�ned in setion 1.1 slightly di�ers from what is

lassial known to be the algebra of smooth funtions on W . To distinguish

these two algebras, we write C

1

naive

(W ), when we treat W in the naive sense,

in equal, when we make no onditions along the ollar. We already know

that for eah stratum R

k

of X the algebras C

1

naive

(R

k

) are nulear Fr�ehet

algebras. We onsider

C

1

(X) �

Y

k

C

1

naive

(R

k

)
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as a subalgebra. In this way C

1

(X) inherits a loally, onvex, metrizable

topology. Unfortunately C

1

(X) laks one desirable property. It is not om-

plete. This e�et is due to the fat, that for a -manifold W with boundary

the algebra C

1

(W ) is inomplete as a subspae of C

1

naive

(W ). For example

it is not hard to onstrut a sequene in C

1

(W ) whih onverges to a fun-

tion, whih is not onstant along the ollar for any given neighbourhood of

the boundary. On the other side any limit f of funtions in C

1

(W ) has the

property, that

(

�

�t

)

k

f

j�W

= 0; 8k > 0

where t is the ollar parameter. This means that all derivatives of f ortho-

gonal to the boundary at the boundary are zero. That this is indeed true

follows from the fat, that one an hange the order of di�erentiation and

building the limit if the onvergene is strong enough. At this point it is not

hard to see, that the ompletion

�

C

1

(W ) of C

1

(W ) is preisely given by

�

C

1

(W ) = ff 2 C

1

naive

(W )j(

�

�t

)

k

f

j�W

= 0 8k > 0g: (5.9)

The spae above is now a omplete, metrizable and loally onvex spae,

hene a Fr�ehetspae. Sine C

1

naive

(W ) is nulear it follows from the list of

statements in setion 5.3 that

�

C

1

(W ) is also a nulear spae. In ase of a

stratifold X we get for the ompletion

�

C

1

(X) of C

1

(X) the spae

�

C

1

(X) = ff 2 C(X)jf Æ '

k

2

�

C

1

(R

k

) 8kg; (5.10)

where the maps '

k

denote the harts of X. The algebra

�

C

1

(X) then is a

nulear Fr�ehetalgebra. Using this and Proposition 5.6.2 implies that

�




n

�

C

1

(X)

an be identi�ed with the ompletion of 


n

(X). It is not hard to show, that

the algebraially de�ned exterior derivation d on 


n

(X) ( see (4.5) ) genera-

lizes to give an exterior derivation d on

�




n

�

C

1

(X)

. Hene one also gets de Rham

ohomology groups in this ase. If we assume, that X has �nite dimensional

homology groups we have that the de Rham ohomology groups in both ases

oinide beause of denseness and �nite dimensionality.

Now onsider the ase, where we are given two stratifolds X and Y . We

let

�

C

1

par

(X � Y ) = ff 2 C(X � Y )jf Æ i

x

2

�

C

1

(Y ); f Æ i

y

2

�

C

1

(X); 8x 2 X; y 2 Y g;
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where

i

x

: Y ! X � Y;

y 7! (x; y)

and respetively

i

y

: Y ! X � Y;

x 7! (x; y)

denote the inlusion of the fators into the produt. The subindex par in

�

C

1

par

(X � Y ) stands for partial di�erentiable. The reader should notie that

the algebra

�

C

1

par

(X � Y ) di�ers from the algebra

�

C

1

(X � Y ), where the

latter algebra denotes the ompletion of the algebra of smooth funtion on

the produt stratifold X � Y (see [Krek00℄) Nevertheless in the ase when

one of the two stratifolds is in fat a smooth manifold (in the naive sense) the

two algebras above oinide. The algebra of partial di�erentiable funtions

on a produt is important beause of the following proposition.

Proposition 5.7.1. Let X and Y be stratifolds, then there is a natural iso-

morphism

�

C

1

par

(X � Y )

�

=

�

C

1

(X)

^




�

C

1

(Y )):

If either X or Y is a smooth manifold the subsript par an be omitted.

Proof. It is lear how to generalize the onept of smooth omplex valued

funtions on a stratifold X to smooth vetor valued funtions, at least when

the domain is itself a Fr�ehetspae ( see [Treves℄ page 412 ). For a Fr�ehet

spae E let us denote this algebra with

�

C

1

(X;E). There is a anonial

isomorphism

�

C

1

(X;E)

�

=

�

C

1

(X)

^




�

E:

This fat is proven in [Treves℄ on page 449 in the ase where

�

C

1

(X) has been

replaed by C

1

(
) where 
 is a domain in R

n

. The proof works ompletely

analogous in our ase. Now, we an use the identi�ation

�

C

1

par

(X � Y )

�

=

�

C

1

(X;

�

C

1

(Y ))
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given by

f 7! (x 7! f(x;�)):

From this we get

�

C

1

par

(X � Y )

�

=

�

C

1

(X)

^




�

�

C

1

(Y )

and sine all the spaes involved are nulear, this tensorprodut oinides

with the projetive tensorprodut and we are done with the proof.

The following orollary of Proposition 5.7.1. will be of major importane

when we will study the Hohshild homology of loally oned stratifolds.

Corollary 5.7.1. Let X be a stratifold and denote with X the open one

over X. Further let

�

C

1

0

(X) := ker(ev

pt

:

�

C

1

(X)! R)

be the kernel of the evaluation map at the one point, whih is denoted by pt.

Then there is a natural topologial isomorphism

�

C

1

0

(X)

�

=

�

C

1

(X)

^




�

C

1

0

([0; 1));

where the half open interval [0; 1) is onsidered as a 1 dimensional -manifold.

Proof. Consider the following exat sequene

0!

�

C

1

0

([0; 1))! C

1

((�1; 1))! C

1

((�1; 0));

where the right hand map is given by restrition. Sine all spaes in the

sequene above are nulear, tensoring this with

�

C

1

(X) remains exat (see

[Brodzki,Lykova99℄). This leads to the following exat sequene

0!

�

C

1

(X)

^




�

C

1

0

([0; 1))!

�

C

1

(X)

^


C

1

(�1; 1)!

�

C

1

(X)

^


C

1

(�1; 0):

This sequene embeds in the following ommutative diagram, where the lower

row is also exat and all vertial maps are given by multipliation in the

standard way.

0

//
�

C

1

(X)

^




�

C

1

0

([0; 1))

//

��

�

C

1

(X)

^


C

1

(�1; 1)

//

��

�

C

1

(X)

^


C

1

(�1; 0)

��

0

//
�

C

1

0

(X)

//
�

C

1

(X � (�1; 1))

//
�

C

1

(X � (�1; 0))

:

From Proposition 5.7.1 it follows that both vertial maps on the right side

are isomorphisms. A short diagram hase will then show, that the left vertial

map is also an isomorphism.
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In general it is unlear, if a short exat sequene of nulear Fr�ehetalgebras

0! A! B ! C ! 0

indues a short exat sequene of the form

0!

�




n

A

!

�




n

B

!

�




n

C

! 0:

In the purely algebrai ase there are some theorems about when suh a

short exat sequene exists (see [Loday91℄ and [Weibel95℄ ). The situation in

our ase, onerning the algebra

�

C

1

(X) is far easier. We have the following

proposition where we treat the 1-manifold with boundary (�1; 0℄ in the naive

sense.

Proposition 5.7.2. For n > 0 the short exat sequene of nulear Fr�ehetalgebras

0!

�

C

1

0

(X)!

�

C

1

(X � (�1; 1))!

�

C

1

(X � (�1; 0℄)! 0

indues a short exat sequene of di�erential forms

0!

�




n

�

C

1

(X)

!

�




n

�

C

1

(X�(�1;1))

!

�




n

�

C

1

(X�(�1;0℄)

! 0:

Proof. Using the natural topologial isomorphisms

�

C

1

(X � (�1; 1))

�

=

�

C

1

(X)

^


C

1

(�1; 1);

�

C

1

(X � (�1; 0℄)

�

=

�

C

1

(X)

^


C

1

(�1; 0℄

and the result of Proposition 5.6.3 we get the following ommutative diagram

�




n

�

C

1

(X�(�1;1))

��

�

= // �



n

�

C

1

(X)

^



C

1

(�1; 1)�

�




n�1

�

C

1

(X)

^




�




1

C

1

(�1;1)

��
�




n

�

C

1

(X�(�1;0℄)

�

= // �



n

�

C

1

(X)

^


C

1

(�1; 0℄�

�




n�1

�

C

1

(X)

^




�




1

C

1

(�1;0℄

; (5.11)

where all horizontal maps are isomorphisms and the vertial maps are given

by restrition. Sine the unitization of

�

C

1

0

(X)

�

=

�

C

1

(X)

^




�

C

1

0

([0; 1)) is

�

C

1

(X) we an use Proposition 5.2.2 to represent any element f in

�

C

1

(X)

as

f =

1

X

i=0

�

i

g

i

^


h

i

+ ;
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suh that g

i

2

�

C

1

(X), h

i

2

�

C

1

0

([0; 1)) and  2 C is the value of f at the

one point. Sine we an neglet onstants when alulating di�erential forms

of degree higher than zero it follows again from Proposition 5.6.3 that the

anonial map

�




n

�

C

1

(X)

!

�




n

�

C

1

(X)

^




�

C

1

0

([0; 1))�

�




n�1

�

C

1

(X)

^




�




1

�

C

1

0

([0;1))

(5.12)

df = d(

1

X

i=0

�

i

g

i

^


h

i

) 7!

1

X

i=0

�

i

dg

i

^


h

i

�

1

X

i=0

�

i

g

i

^


dh

i

is a topologial isomorphism. Let us now show, that the right hand side of

the expression (5.12) is exatly the kernel of the right hand restrition map

in the ommutative diagram (5.11). For this reason we tensor the short exat

sequene

0!

�

C

1

0

([0; 1))! C

1

((�1; 1))! C

1

((�1; 0℄)! 0

with

�




n

�

C

1

(X)

and the short exat sequene

0!

�




1

�

C

1

0

([0;1))

!

�




1

C

1

((�1;1))

!

�




1

C

1

((�1;0℄)

! 0

with

�




n�1

�

C

1

(X)

and add those two sequenes. The resulting sequene is exat

again (see [Brodzki,Lykova99℄) and that �nally proves the proposition.
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Kapitel 6

Hohshild Homology

In this hapter we give a short introdution to what in general is known as

Hohshild homology. There are various versions of Hohshild Homology,

depending on how muh struture of the underlying algebras is taken into

aount. The two most important ases are Hohshild homology of gene-

ral algebras, whih we all algebrai Hohshild homology and Hohshild

homology of nulear Fr�ehetalgebras, whih we all ontinuous Hohshild

homology. These two versions will be presented in the following two setions.

6.1 Algebrai Hohshild Homology

Algebrai Hohshild Homology is the most elementary version of Hohshild

homology. It is de�ned for arbitrary not neessarily unital algebras. Throug-

hout this setion we assume that A is an assoiative algebra over a �eld

k of harateristi zero. The �eld k will also be referred to as the ground

�eld. Algebrai Hohshild Homology has many appliations in algebra and

algebrai geometry. It was the �rst version to be de�ned and resembles the

underlying ideas best. Also we think it is helpful to know the algebrai ase,

before any topologial struture is taken into aount. This is, why we pre-

sent this version here, though we atually won't apply it to the algebras we

are interested in.

Most of what we present in this setion has been taken out of the book

\Cyli Homology" from Loday [Loday91℄. Of ourse we restrit ourselves to

the basi de�nitions and just give some examples for omputations in Hoh-

shild homology. The tensor produt 
 always stands for the tensorprodut




k

over the ground �eld k.

73



For eah n 2 N we assoiate to A the group

C

n

(A) := A


(n+1)

: (6.1)

We de�ne operators b

n

and b

0

n

as follows.

b

0

n

: C

n

(A)! C

n�1

(A) (6.2)

b

0

n

(a

0


 :::
 a

n

) =

n�1

X

i=0

(�1)

i

a

0


 :::
 a

i

a

i+1


 :::
 a

n

b

n

: C

n

(A)! C

n�1

(A) (6.3)

b

n

(a

0


 :::
 a

n

) = b

0

n

(a

0


 :::
 a

n

) + (�1)

n

a

n

a

0


 a

1


 :::
 a

n�1

:

Sine b

n�1

Æ b

n

= 0 = b

0

n�1

Æ b

0

n

= 0 we get two hain omplexes C

�

(A) =

(C

n

(A); b

n

) and C

bar

�

(A) = (C

n

(A); b

0

n

). The �rst omplex is alled theHoh-

shild omplex, the seond omplex is alled the bar-omplex. Both om-

plexes give rise to homology groups. Let us �rst onsider the ase when the

algebra A is unital. In this ase the maps

s

n

: C

n

(A)! C

n+1

(A)

s

n

(a

0


 :::
 a

n

) = 1

A


 a

0


 :::
 a

n

de�ne a ontration of the omplex C

bar

�

(A). So the bar-omplex is not par-

tiularly interesting in the unital ase. We all the homology groups of the

Hohshild omplex the Hohshild homology groups.

De�nition 6.1.1. Let A be a unital algebra. We de�ne the n-th Hohshild

homology group of A as

HH

n

(A) =

ker(b

n

: C

n

(A)! C

n�1

(A))

im(b

n+1

: C

n+1

(A)! C

n

(A))

:

Diret alulation yields to the following examples.
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Example 6.1.1. 1. If we take A = k to be the ground �eld, we have

HH

n

(k) =

(

k if n = 0;

0 else

(6.4)

2. By de�nition the �rst boundary operator b

1

in the Hohshild omplex

maps a
 b to the ommutator [a; b℄ = a
 b� b
 a. Hene we have

HH

0

(A) = A=[A;A℄: (6.5)

In the ase that A is ommutative we have HH

0

(A) = A.

In general alulations of Hohshild homology groups using the Hoh-

shild omplex turn out to be very ompliated. As the following proposition

shows Hohshild homology groups an also be alulated by using ertain

projetive resolutions of A. Let A

op

denote the algebra A with the opposite

multipliation.

Proposition 6.1.1. We onsider A as a module over A
A

op

via (a
b)� =

ab. Then

HH

�

(A) = Tor

A
A

op

�

(A;A):

In this way we an use any projetive resolution of A over A
A

op

to alulate

the Hohshild homology groups of A.

Proof. see [Loday91℄ on page 12.

Any homomorphism f : A! B of algebras indues a map in the same di-

retion between the Hohshild omplexes. So, the assoiation A 7! HH

n

(A)

is a ovariant funtor. This of ourse is also lear from the Tor desription of

the last proposition.

In the following we assume that A is ommutative. In this ase Hohshild

homology an be seen as a re�nement of the onept of di�erential forms for

algebras, as onstruted in hapter 3. The onnetion between those two on-

epts is made by the antisymmetrization whih we will onsider next.

Let us denote with �

n

the group of permutations of the set f1; 2; :::ng.

There is an operation of �

n

on C

n

(A) given by

� � (a

0


 :::
 a

n

) = a

0


 a

�

�1

(1)


 :::
 a

�

�1

(n)

:
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k-linear extension indues an operation of the group algebra k[�

n

℄ of �

n

on

C

n

(A). We let �

n

2 k[�

n

℄ be the element

�

n

=

X

�2�

n

sign(�)�:

�

n

indues a map whih we denote by �

n

again

�

n

: A
 �

n

A! C

n

(A)

a

0


 a

1

^ ::: ^ a

n

7! �

n

� (a

0


 :::
 a

n

):

It is not hard to show (see [Loday91℄,page 27) that this map fators to a well

de�ned A-linear map

a

0

da

1

:::da

n

! �

n

� (a

0


 :::
 a

n

):

We all this map the antisymmetrization map and denote it

�

n

: 


n

A

! HH

n

(A) (6.6)

We also have a natural map �

n

: C

n

(A) ! 


n

A

in the other diretion. �

n

is given by

�

n

(a

0


 :::
 a

n

) = a

0

da

1

:::da

n

:

One readily veri�es, that �

n

Æ b = 0. So �

n

indues a map

�

n

: HH

n

(A)! 


n

A

(6.7)

The maps �

n

and �

n

are related in the following way.

Proposition 6.1.2. Let A be a unital, ommutative algebra. Then the om-

position �

n

Æ �

n

is multipliation with n! on 


n

A

. Sine har(k) = 0, this is

an isomorphism. In partiular �

n

is injetive and 


n

A

is a diret summand of

HH

n

(A).

Proof. This follows from

a

0

da

�

�1

(1)

^ ::: ^ da

�

�1

(n)

= sign(�)a

0

da

1

^ ::: ^ da

n

for all � 2 �

n

and j�

n

j = n!.

76



In general the question remains whether the map �

n

is an isomorphism or

not. In the algebrai ase, there is the Hohshild-Kostant-Rosenberg theo-

rem, whih states that �

n

is an isomorphism, whenever the algebra A is

smooth (see [Loday91℄, page 102).

Let us now turn to the ase where the algebra A is not neessarily unital.

We already mentioned that nonunital algebras play a role in our onside-

rations. The Hohshild omplex of A is still de�ned and a natural thing

would be, as in the unital ase to de�ne the Hohshild homology groups of

A as the homology groups of the Hohshild omplex. It turns out, that in

general this is not the right de�nition. From the topologial point of view,

the situation should be ompared to the ase, where a homology theory on

the ategory of pointed topologial spaes is transferred to a homology theo-

ry on the ategory of topologial spae by simply adding a base point and

then take the okernel of the map, whih is indued by the inlusion of this

base point. Homomorphism of unital algebras take the unit element into the

unit element, hene an be ompared to morphisms in the ategory of poin-

ted spaes. Adding a base point an be ompared to adding a unit element.

In this sense the following de�nition seems to be natural, at least from the

topologial point of view.

De�nition 6.1.2. Let A denote a not neessarily unital algebra and A

+

its

unitization. The n-th Hohshild homology group of A is de�ned as

HH

n

(A) = oker(i

�

: HH

n

(k)! HH

n

(A

+

));

where i : k ! A

+

denotes the inlusion.

In the ase that A is unital, this de�nition oinides with De�nition 6.1.1.

In the nonunital ase we have that in general the Hohshild homology groups

as de�ned in De�nition 6.1.2 doesn't oinide with the homology groups of

the Hohshild omplex. The latter groups are alled the naive Hohshild

homology groups and will be denoted as HH

naive

n

(A). The importane of

these groups will show up in the following. Let us denote the homology

groups of the bar-omplex of A as H

bar

n

(A). The following proposition relates

the three homology groups de�ned above.

Proposition 6.1.3. Let A be a not neessarily unital algebra. Then there is

a long exat sequene

:::! HH

naive

n

(A)! HH

n

(A)! H

bar

n

(A)! HH

naive

n�1

(A)! :::
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Proof. see [Loday91℄, page 30

From the long exat sequene above one an dedue, that when the bar-

omplex is ayli, naive Hohshild homology and Hohshild homology

oinide. We mentioned earlier that in the unital ase the bar-omplex is

ontratible, hene ayli. So the following de�nition is a generalization of

being unital.

De�nition 6.1.3. Let A be a not neessarily unital algebra. We all A H-

unital if the bar-omplex of A is ayli, in equal

H

bar

n

(A) = 0 8n 2 N :

To deide, whether a nonunital algebra is H-unital or not in general an

be quite diÆult. One an show ([Loday91℄,page 32) that an algebra with lo-

al units isH-unital. So for example the algebra C

1

0

(X) of smooth funtions

on the one over a stratifold X whih vanish at the one point is H-unital.

The following proposition is of major importane. It tells us in whih

ases Hohshild homology behaves like a homology theory for algebras, in

equal arries short exat sequenes of algebras into long exat sequenes of

Hohshild homology groups.

Proposition 6.1.4. Let A be a unital algebra and let I � A be an ideal

whih is H-unital. Then there is a long exat sequene of Hohshild homology

groups

:::! HH

n

(I)! HH

n

(A)! HH

n

(A=I)! HH

n�1

(I)! :::

6.2 Continuous Hohshild Homology

The version of Hohshild homology we will use in hapter 7, to determine the

Hohshild homology of a loally oned stratifold is not the standard one, as

we disussed in the previous setion, but a topologial version. Most of what is

presented in this setion an be seen as a suitable ompletion of the algebrai

ase. A referene for this setion is the original work of Connes [Connes87℄.

We also refer to the artiles of Wodziki [Wodziki89℄ and Brodzki/Lykova

[Brodzki,Lykova99℄ about exision in ontinuous Hohshild homology. From

now on we assume that A is a nulear Fr�ehetalgebra. For any natural number

n 2 N let

�

C

n

(A) = A

^


(n+1)
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be the (n + 1)-fold ompleted tensor produt. Sine A is nulear by our

assumption, it doesn't matter whih of the two tensorproduts we use at

this point. Clearly, when onsidered on the Cartesian produt the operators

b

n

and b

0

n

in (6.2) respetively. (6.3) are multi linear and ontinuous. By

the universal property of

^


 they indue operators

�

C

n

(A) !

�

C

n�1

(A) again

denoted by b

n

and b

0

n

. We all

�

C

�

(A) = (

�

C

n

(A); b

n

) (6.8)

the ontinuous Hohshild omplex and

�

C

bar

�

(A) = (

�

C

n

(A); b

0

n

) (6.9)

the ontinuous bar-omplex. The omplexes C

�

(A) and C

bar

�

(A) an be

onsidered as dense subomplexes of the orresponding omplexes.

De�nition 6.2.1. Under the assumptions above the n-th ontinuous Hoh-

shild homology group of A is de�ned as the A module

HH

n

(A) =

ker(b

n

:

�

C

n

(A)!

�

C

n�1

(A))

im(b

n+1

:

�

C

n+1

(A)!

�

C

n

(A))

:

In the following we will sometimes omit the word ontinuous in front of

Hohshild homology. Whether we mean algebrai or ontinuous Hohshild

homology should then be lear from the ontext. As in the algebrai ase,

these groups are modules over A. As quotient spaes of topologial vetor-

spaes, the Hohshild homology groups are also topologial vetorspaes.

In fat they are topologial modules over A. In general though, these ve-

torspae are non-Hausdor�. This often makes things diÆult. For example a

Kuenneth like theorem for the Hohshild homology of A

^


B doesn't seem

to appear in the literature. On the other side, if the ontinuous Hohshild

homology groups are Hausdor� , then they are automatially nulear Fr�ehet

( see our list on setion 5.3 ) and most onstrutions work. In our ase, that

is A =

�

C

1

(X) for a stratifold X the Hohshild homology groups will turn

out to be Hausdor� and we are on the safe side.

Using the de�nition one an ompute the ontinuous Hohshild homo-

logy of C similar as in (6.4). For an arbitrary unital nulear Fr�ehetalgebra

the same alulation as in (6.5) shows that HH

1

(A) = A=[A;A℄.

We will now show, that Hohshild homology an also be desribed as

a topologial version of a partiular torsionprodut. This will enable us to

alulate the Hohshild homology groups in ertain ases by using projetive

resolutions. Of ourse, we have to de�ne these terms �rst.
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De�nition 6.2.2. A loally onvex topologial vetorspae M is alled a to-

pologial module over A if M is a module over A and salar multipliation

as well as addition is ontinuous. M is alled topologial projetive if it is a

topologial diret summand of a module of the form N = A

^


E, where E is

a loally onvex vetorspae.

Projetivity an also be haraterized by a universal property whih is

similar to the algebrai ase, where homomorphisms are replaed by admis-

sible homomorphisms. For a general treatment of the ategory of nulear

Fr�ehet algebras and admissible maps, the reader should onsult the book of

Helemskii [Helemskii℄. We ome to what is alled a projetive resolution.

De�nition 6.2.3. Let M be a topologial module over A. A topologial pro-

jetive resolution of M is an exat sequene of topologial projetive A mo-

dules and A-linear maps

:::M

2

b

2 //
M

1

b

1 //
M

0

b

0 //
M

;

whih admits an C -linear ontinuous ontration

s

i

:M

i

!M

i+1

;

b

i+1

s

i

+ s

i�1

b

i

= id 8i:

Now let A

op

denote the algebra A with the opposite multipliation and

B = A

^


A

op

. The algebra A itself beomes a topologial B-module by setting

(a

^


b) �  = ab:

The following proposition gives an answer to how to ompute Hohshild

homology groups using projetive resolutions.

Proposition 6.2.1. Let (M

n

; b

n

) be a topologial projetive resolution of A

over B. Then the Hohshild homology groups of A oinide with the homo-

logy groups of the omplex

:::M

3

^




B

A

b

3 //
M

2

^




B

A

b

2 //
M

1

^




B

A

b

1 //
M

0

^




B

A

:

There is a standard projetive resolution of A over A

^


A

op

alled the

bar-resolution. This resolution is onstruted similar to the bar-resolution

de�ned in (6.1),(6.2) though shouldn't be onfused with the latter, sine it

is by onstrution a resolution over A

^


A

op

rather than k as in (6.1),(6.2). It
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an be obtained as follows. For n 2 N we take M

n

= A

^


(n+2)

. We onsider

this as a module over A

^


A

op

via

(a

^


b) � (a

0

^


:::

^


a

n+1

) = aa

0

^


:::

^


a

n+1

b:

From the isomorphism

M

n

�

=

(A

^


A

op

)

^


A

^



n

it follows that M

n

is projetive in the sense of De�nition 6.2.2. We de�ne a

di�erential

b

0

:M

n

!M

n�1

b

0

(a

0

^


:::

^


a

n+1

) =

n

X

i=0

(�1)

i

a

0

^


::

^


a

i

a

i+1

^


:::

^


a

n+1

:

It is not hard to verify that this omplex is ontinuous and k-linear ontra-

tible via

s

n

:M

n

!M

n+1

s

n

(a

0

^


:::

^


a

n+1

) = 1

A

^


a

0

^


:::

^


a

n+1

:

Hene M

�

is a projetive resolution of A over A

^


A

op

. We all this resolution

the bar-resolution. To ompute the Hohshild homology of A , we have to

tensor the bar-resolution with A over A

^


A

op

. Some easy alulation then

shows that the resulting omplex is preisely (

�

C

�

(A); b).

We do now use this proposition to alulate the Hohshild homology in

the ase where A = C

1

(B) onsists of smooth omplex valued funtions on

the open unit dis B in R

n

. We will onstrut an expliit projetive resolution

and show that

HH

k

(C

1

(B))

�

=




k

(B); 8k 2 N :

Here the right hand side denotes omplex di�erential forms on B. We will

later use this result to proof a similar result for loally oned stratifolds. For

eah k 2 N we de�ne modules over C

1

(B �B)

M

k

:= C

1

(B � B;�

k

(C

n�

)):
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Here C

n�

denotes the spae of linear forms on C

n

. Clearly

M

k

�

=

C

1

(B �B)

^


�

k

(C

n�

);

where ompletion is atually unneessary, sine the vetorspae �

k

(C

n�

) is

�nite dimensional. Nevertheless, it follows that eah M

k

is free, hene pro-

jetive. Further let  denote the di�erene funtion

 : B � B ! R

n

� C

n

;

(a; b) = b� a:

This map indues maps we denote with i



i



:M

k+1

!M

k

;

i



!(a; b)(v

1

; :::; v

k

) = !(a; b)((a; b); v

1

; :::v

k

) = !(a; b)(b� a; v

1

; :::v

k

):

Here ! 2 M

k+1

denotes a form, a; b are points in B � R

n

and v

1

; :::v

k

are

elements of C

n

In other words i



is ontration with the vetor�eld . Let us

now onsider the following sequene

0

C

1

(B)

oo
C

1

(B � B) =M

0

�

�

oo
M

1

i

oo
M

2

i

oo
:::

i

oo
;

where � : B ! B�B denotes the diagonal map. To show that this sequene

de�nes a topologial projetive resolution of C

1

(B) over C

1

(B � B) we

have to give a ontinuous C -linear ontration. For this let s

k

: M

k

! M

k+1

be de�ned as follows. Let e

�

1

; :::; e

�

n

denote the dual basis of the standard

anonial basis of C

n

, and let ! 2M

k

be given as

!(a; b) = f(a; b)e

�

i

1

^ ::: ^ e

�

i

k

;

where f 2 C

1

(B�B) is a smooth funtion on B�B and i

1

; :::; i

k

2 f1; :::ng.

In this ase we de�ne

s

k

!(a; b) :=

n

X

j=1

Z

1

0

�f

�y

j

(a; a+ t(b� a))t

k

e

�

j

^ e

�

i

1

^ ::: ^ e

�

i

k

dt:

In the following we suppress the subsript k and simply write s!. We have

(i



s!)(a; b) =

n

X

j=1

(

Z

1

0

�f

�y

j

(a; a + t(b� a))t

k
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�f

k

X

l=1

(�1)

l+1

(b� a)

i

l

e

�

j

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

g+ (b� a)

j

e

�

i

1

^ ::: ^ e

�

i

k

):

From this we get the expression

(i



s!)(a; b) = f

n

X

j=1

Z

1

0

�f

�y

j

(a; a+ t(b� a))t

k

(b� a)

j

e

�

i

1

^ ::: ^ e

�

i

k

dtg

+f

k

X

l=1

n

X

j=1

Z

1

0

(�1)

l+1

�f

�y

j

(a; a + t(b� a))t

k

(b� a)

i

l

e

j

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

dtg:

The hain-rule of di�erentiation applied to the �rst sum gives

i



s!(a; b) =

Z

1

0

d

dt

f(a; a+ t(b� a))t

k

e

�

i

1

^ ::: ^ e

�

i

k

dt

+f

k

X

l=1

n

X

j=1

Z

1

0

(�1)

l+1

�f

�y

j

(a; a + t(b� a))t

k

(b� a)

i

l

e

j

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

dtg:

Now we perform partial integration with the �rst integral on the right side.

This yields us to the following expression

i



s!(a; b) = f(a; a+ t(b� a))t

k

j

1

0

e

�

i

1

^ ::: ^ e

�

i

k

�

Z

1

0

f(a; a+ t(b� a))kt

k�1

e

�

i

1

^ ::: ^ e

�

i

k

dt

+f

k

X

l=1

n

X

j=1

Z

1

0

(�1)

l+1

�f

�y

j

(a; a + t(b� a))t

k

(b� a)

i

l

e

j

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

dtg:

Calulating the �rst term on the right side is easy and gives

i



s!(a; b) = !(a; b) +R(a; b);

where R(a; b) denotes the rest, i.e. the integral and the double sum on the

right side.
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Now we alulate the expression si



!(a; b). The de�nition give us

si



!(a; b) =

k

X

l=1

(�1)

l

f

n

X

j=1

Z

1

0

�f

�y

j

(a; a+ t(b� a))(a + t(b� a)� a)

i

l

�f(a; a + t(b� a))Æ

j;i

l

t

k�1

dt e

�

j

^ e

�

i

1

^ :::

b

e

�

i

l

^ ::: ^ e

�

i

k

g:

Reordering terms and evaluation of the Kroneker symbol Æ

j;i

l

yields to

si



!(a; b) =

k

X

l=1

(�1)

l

f

n

X

j=1

Z

1

0

�f

�y

j

(a; a+ t(b� a))(b� a)

i

l

t

k

dt e

�

j

^ e

�

i

1

^ :::

b

e

�

i

l

^ ::: ^ e

�

i

k

g

+(�1)

l+1

Z

1

0

f(a; a+ t(b� a))t

k�1

dt e

�

i

l

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

:

Shu�ing e

�

i

l

from the �rst to the i

l

-th position in e

�

i

l

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

hanges the sign by the fator (�1)

l�1

. This anels with the fator (�1)

l+1

in front of the seond term on the right side, and we see, that this term is a-

tually independent of the summation index l. Hene for this term summation

over l is just multipliation with k. Taking a lose look on the summands we

an reognize, that we end up with �R(a; b), where R(a; b) was de�ned on

the previous page. So we get

si



!(a; b) + i



s!(a; b) = �R(a; b) + !(a; b) +R(a; b) = !(a; b):

This proves

si



+ i



s = id:

It is not hard to see, that s is ontinuous and C -linear. So far we have

onstruted a topologial projetive Resolution of C

1

(B) over C

1

(B � B).

We are now able to prove the following proposition.

Proposition 6.2.2. For any k 2 N we have

HH

k

(C

1

(B))

�

=




k

(B)

Proof. We alulate the Hohshild homology of C

1

(B) by tensoring the

topologial projetive resolution from above over C

1

(B � B) with C

1

(B).

For any k 2 N we have

M

k

^




C

1

(B�B)

C

1

(B) = (C

1

(B �B)

^


�

k

(C

n�

))

^




C

1

(B�B)

C

1

(B)
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= �

k

(C

n�

)

^


C

1

(B) = 


k

(B):

Sine  as de�ned in the onstrution of our resolution is zero on the diagonal,

we have

i



^




C

1

(B�B)

id

C

1

(B)

= 0:

Hene the tensored omplex has zero di�erentials and we get 


k

(B) for the

k-th homology group of this omplex.

So far, the isomorphism above is more or less abstrat. From the universal

properties of the various onstrutions involved, it follows that the maps �

n

and �

n

as de�ned in the algebrai ase in (6.6) and (6.7) indue orresponding

maps

�

n

:

�




n

A

! HH

n

(A) (6.10)

�

n

: HH

n

(A)!

�




n

A

(6.11)

for any unital,nulear and ommutative Fr�ehetalgebra and n 2 N . Here

HH

n

(A) stands of ourse for the ontinuous Hohshild homology of A. It is

not hard to see, that the isomorphism of Proposition 6.2.2 is given by these

maps. In general we have the following proposition, whih is the ontinuous

ounterpart to Proposition 6.1.2.

Proposition 6.2.3. Let A be a unital ommutative nulear Fr�ehetalgebra.

Then the omposition �

n

Æ �

n

is multipliation with n! on

�




n

A

. Hene

�




n

A

is a

topologial diret summand of HH

n

(A) and �

n

is an embedding.

Proof. This is ompletely analogous as in Proposition 6.1.2

Let us briey say something about the funtorial properties of onti-

nuous Hohshild homology. Clearly a ontinuous homomorphism between

two nulear Fr�ehet algebras

f : A! B

indues a hain map between the Hohshild omplexes and hene maps

f

�

: HH

n

(A)! HH

n

(B); 8n 2 N :

The following result is stated in [Karoubi℄ and an be seen as a Kuenneth

like theorem for hain omplexes in the world of nulear Fr�ehetspaes.
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Lemma 6.2.1. Assume we have two hain omplexes

0

M

0

oo
M

1

doo
M

2

:::

doo

0

N

0

oo
N

1

d

0

oo
N

2

:::

d

0

oo

onsisting of nulear Fr�ehetspaes. Let us further assume, that all homology

groups of these two omplexes are Hausdor�, in equal the boundary maps have

losed images. Then the ompleted tensorprodut (M

�

^


N

�

; d

^


1+(�1)

�

1

^


d

0

)

of both omplexes is again a hain omplex of nulear Fr�ehetspaes and there

is a natural isomorphism

H

n

(M

�

^


N

�

)

�

=

X

p+q=n

H

p

(M

�

)

^


H

q

(N

�

):

As an appliation of Lemma 6.2.1 we have the following proposition.

It will help us, to prove our main theorem about Hohshild homology of

stratifolds in hapter 7.

Proposition 6.2.4. Let X and Y be stratifolds and assume that 8n 2 N the

antisymmetrization maps

�

X

n

:

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X))

�

Y

n

:

�




n

�

C

1

(Y )

! HH

n

(

�

C

1

(Y ))

are topologial isomorphisms. Then the same is true for the antisymmetriza-

tion maps

�

X�Y

n

:

�




n

�

C

1

par

(X�Y )

! HH

n

(

�

C

1

par

(X � Y )):

Proof. Sine we know from the assumption that the Hohshild homology

groups of

�

C

1

(X) and

�

C

1

(Y ) are Hausdor� and furthermore from Proposi-

tion 5.7.1 we have

�

C

1

par

(X � Y )

�

=

�

C

1

(X)

^




�

C

1

(Y ), we an apply Lemma

6.2.1 as well as Proposition 5.6.3 to get the following ommutative diagram

where the horizontal maps are isomorphisms

�




n

�

C

1

par

(X�Y )

�

= //

�

n

��

P

p+q=n

�




p

�

C

1

(X)

^




�




q

�

C

1

(Y )

P

p+q=n

�

p

^


�

q

��

HH

n

(

�

C

1

par

(X � Y )

�

= //
P

p+q=n

HH

p

(

�

C

1

(X))

^


HH

q

(

�

C

1

(Y ))

:

That this diagram is indeed ommutative follows from ompatibility of the

antisymmetrization map with produts (see [Weibel95℄, page 322).
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We should now onsider the nonunital ase. The unitization A

+

of a

possibly nonunital nulear Fr�ehetalgebra A is as a vetorspae isomorphi

to A�C and hene has a natural nulear Fr�ehet struture. As in the algebrai

ase we de�ne the ontinuous Hohshild homology of A as follows.

De�nition 6.2.4. Let A be a not neessarily unital nulear Fr�ehetalgebra.

We de�ne its Hohshild homology by

HH

n

(A) := oker(i

�

: HH

n

(C ) ! HH

n

(A

+

));

where A

+

denotes the unitization of A and i

�

denotes the map whih is in-

dued by the natural inlusion of C into A

+

.

Clearly, this de�nition oinides with the older one, in the ase A already

was unital. Furthermore, we have

HH

0

= A

+

=k = A

HH

n

(A) = HH

n

(A

+

); 8n > 0:

Nonunital nulear Fr�ehetalgebras often our as losed ideals in unital

nulear Fr�ehetalgebras. The nonunital nulear Fr�ehetalgebra we are mainly

interested in is given by the kernel of the evaluation map

ev

x

:

�

C

1

(X)! R:

Analogous to the algebrai ase, we have ontinuous versions of naive Hoh-

shild homology and bar homology whih we again denote with HH

naive

n

(A)

and H

bar

n

(A). The following de�nition is the ontinuous ounterpart of De�-

nition 6.1.3.

De�nition 6.2.5. Let A be a possibly nonunital nulear Fr�ehetalgebra. We

all A H-unital if the ontinuous bar-omplex of A is ayli, in equal

H

bar

n

(A) = 0 8n 2 N :

A ontinuous version of Proposition 6.1.3 an be found in [Brodzki,Lykova99℄.

In this work one an also �nd the following exision theorem whih is the

ontinuous ounterpart of Proposition 6.1.4.
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Proposition 6.2.5. Let 0 ! I ! A ! A=I ! 0 be an exat sequene of

nulear Fr�ehetalgebras suh that A is unital and I is H-unital. Then there

is a long exat sequene of ontinuous Hohshild homology groups

::

//
HH

n

(I)

//
HH

n

(A)

//
HH

n

(A=I)

Æ //
HH

n�1

(I)

//
::

:

As for ontinuous Hohshild homology there is also a desription of on-

tinuous bar-homology as partiular torsion produt. To be more preise there

is a topologial isomorphism

H

bar

�

(A) = Tor

A

+

�

(C ; C ); (6.12)

where Tor denotes the redued tor groups ( see [Wodziki89℄ ).

As one an possibly imagine, in general it turns out to be very diÆult

to determine whether a losed ideal I in a unital nulear Fr�ehetalgebra is

H-unital or not. In our ase, we an use a tehnique introdued by Wodziki

( see [Wodziki89℄ ) and a result by Voigt (see [Voigt℄) to prove the following

proposition.

Proposition 6.2.6. Let B be a unital nulear Fr�ehet algebra and

�

C

1

0

([0; 1)) = ker(res : C

1

((�1; 1))! C

1

(�1; 0))

the ompleted algebra of smooth funtion on the -manifold [0; 1) vanishing at

zero. Then the nonunital nulear Fr�ehet algebra

�

C

1

0

([0; 1))

^


B is H-unital.

Proof. Let

� =

1

X

i=0

�

i

(f

i

0

^


b

i

0

)

^


:::

^


(f

i

n

^


b

i

n

) 2

�

C

n

(

�

C

1

0

([0; 1))

^


B)

be an element in the ontinuous bar omplex. Here �

i

is a sequene of omplex

numbers suh that

P

1

i=0

j�

i

j < 1 and f

i

j

respetively b

i

j

onverge to zero as i

goes to in�nity ( see proposition 5.2.2 ). The fatorization theorem of Voigt

(see [Voigt℄, Thm. 3.4) applied to

�

C

1

0

([0; 1)) and the sequene (f

i

0

) gives us

funtions g

i

2

�

C

1

0

([0; 1)) for all i 2 N and h 2

�

C

1

0

([0; 1)) with the following

properties.

1. f

i

0

= h � g

i

8i 2 N

2. g

i

2

�

C

1

0

([0; 1)) � (f

i

0

ji 2 N)
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The expression in ondition 2 denotes the losure of the ideal in

�

C

1

0

([0; 1))

whih is generated by the funtions f

i

0

. Let us de�ne � 2

�

C

n

(

�

C

1

0

([0; 1))

^


B)

as

� =

1

X

i=0

�

i

(g

i

^


b

i

0

)

^


:::

^


(f

i

n

^


b

i

n

):

From ondition 2 on the previous page, it follows that

� 2

�

C

1

0

([0; 1))

^


B) � � �

�

C

n

(

�

C

1

0

([0; 1))

^


B): (6.13)

Here the term in the middle denotes the losure of the ideal generated by �.

A simple alulation shows, that

� = b

0

((h

^


1

B

)

^


�) + (h

^


1

B

)

^


b

0

(�): (6.14)

Let us now assume that � is a yle in the ontinuous bar omplex. Then

b

0

(�) = 0. Hene by ontinuity and

�

C

1

0

([0; 1))

^


B linearity of b

0

it follows

from (6.13) that b

0

(�) = 0. Hene by (6.14) we have that

� = b

0

((h

^


1

B

)

^


�)

is a boundary in the ontinuous bar omplex and the bar omplex is ayli.

We will soon use the following orollary.

Corollary 6.2.1. Let X be a stratifold and let X denote the one over X.

Then the nulear Fr�ehetalgebra

�

C

1

0

(X) whih onsists of the smooth maps

on X whih vanish at the one point is H-unital.

Proof. From Proposition 5.7.1. we have

�

C

1

0

(X)

�

=

�

C

1

(X)

^




�

C

1

0

([0; 1)):

The orollary now follows from Proposition 6.2.6 by setting B =

�

C

1

(X).

The next proposition shows, that when we know the antisymmetrization

map is an isomorphism for a stratifold X, it also is for the oned stratifold

X. Besides the loalization result in hapter 7, this is the main step towards

proving our general result about the Hohshild homology of loally oned

stratifolds in setion 7.3.
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Proposition 6.2.7. Let X be a stratifold suh that 8n 2 N the antisymme-

trization maps for X

�

X

n

:

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X))

are topologial isomorphisms, then the same is true for the antisymmetriza-

tion maps for X

�

X

n

:

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X)):

Proof. Sine for n = 0 there is nothing to show we an assume n � 1. By

naturality of the antisymmetrization map and Proposition 5.7.2, H-unitality

of

�

C

1

0

(X) indues the following ommutative diagram with exat rows.

0

// �



n

�

C

1

(X)

//

��

�




n

�

C

1

(X�(�1;1))

//

��

�




n

�

C

1

(X�(�1;0℄)

//

��

0

::

Æ //
HH

n

(

�

C

1

(X))

//
HH

n

(

�

C

1

(X � (�1; 1)))

//
HH

n

(

�

C

1

(X � (�1; 0℄))

Æ //
::

Here the half open interval (1; 0℄ has been treated in the naive sense. The

vertial maps in this diagram are given by the various antisymmetrization

maps. The ones at the right side are isomorphisms by Proposition 6.2.6.Sine

we have the diagram available 8n � 1 it follows that the onneting homo-

morphism Æ is zero. Hene we an replae \..." in the diagram by 0 and the

proposition follows from the �ve lemma.
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Kapitel 7

Hohshild Homology of

Stratifolds

In the ase that M is a losed manifold, Alain Connes proved in [Connes87℄

that the ontinuous Hohshild homology of the algebra C

1

(M) is isomor-

phi to the module of di�erential forms on M , where both are onsidered as

modules over C

1

(M).Using methods of Teleman it an be shown, that the

latter is true also for non ompat manifolds with boundary. In this hapter

we will generalize this result to the ase where X is a loally oned stratifold.

Not muh is known about the algebrai Hohshild homology of C

1

(M), so

we won't say anything about the algebrai Hohshild homology of C

1

(X)

for a stratifold X.

7.1 The Hohshild Complex of a Stratifold

In this setion, we will rewrite the Hohshild omplex of a stratifoldX, whih

by de�nition is the ontinuous Hohshild omplex of the algebra

�

C

1

(X) in

form of smooth funtions on Cartesian produts of X. This makes the Hoh-

shild omplex more favourable to topologial onstrutions suh as partiti-

ons of unity et. Sine ontinuous Hohshild homology is only de�ned on

nulear Fr�ehetalgebras, it is neessary to work with the ompleted version

�

C

1

(X) of C

1

(X). To shorten the notation we write C

�

(X) for the Hoh-

shild omplex of X.

In the following setions we use the natural isomorphism of Proposition

5.7.1 to identify the Hohshild omplex with the following omplex

C

n

(X) =

�

C

1

par

(X

n+1

) (7.1)
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(bF )(x

0

; ::::; x

n�1

) =

n�1

X

i=0

(�1)

i

F (x

0

; :::; x

i

; x

i

; :::; x

n�1

) + (�1)

n

F (x

0

; :::; x

n�1

; x

0

);

(7.2)

where F denotes an n hain interpreted as a funtion on the (n+ 1)-fold

Cartesian produt of X. The subsript par is explained in Proposition 5.7.1.

This form of the Hohshild omplex of X will be of partiular importane

in the following setion.

7.2 Loalization of the Hohshild Complex

In this setion we show, that the Hohshild omplex of a stratifold X on-

tains a large ayli subomplex. This subomplex onsists of the Hohshild

hains

F : X

n+1

! R;

whih vanish in a neighbourhood of the diagonal �

n+1

� X

n+1

. The methods

applied by Teleman in [Teleman98℄ to show this for the ase of a smooth

manifold, also work in the ase of a stratifold, one we have proven the

following lemma. For a matter of ompleteness we also illustrate Teleman's

ideas.

Lemma 7.2.1. Let X be a stratifold, then there exists a metri d on X whih

generates the topology and satis�es

d

2

2

�

C

1

par

(X �X):

Proof. To show the existene of suh a metri d on X, we will modify the

proof of the Urysohn metrization theorem, whih states that every regular T

1

spae with ountable base of topology is metrizable. During the disussion

of the basi properties of a stratifold in hapter 1, we mentioned that, for

any two disjoint and losed subsets A and B of X there is a funtion f

A;B

2

C

1

(X) suh that A � f

�1

A;B

(0) and B � f

�1

A;B

(1). This funtion also belongs to

�

C

1

(X). Let us now onsider a omplete family F of suh funtion, that is for

any two disjoint and losed subsets A and B of X there is f

A;B

2 F as above.

We an assume that F is ountable. Let [0; 1℄

F

denote the spaemap(F; [0; 1℄)

where [0; 1℄ denotes the unit interval and the topology is given by the produt

topology. Let us assume that F is given by the family ff

n

jn 2 Ng. Then we
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an identify [0; 1℄

F

with the spae of in�nite sequenes (x

n

)

n2N

with entries

in the interval [0; 1℄. It is a standard exerise in analysis that

d

1

((x

n

); (y

n

)) :=

v

u

u

t

1

X

i=1

1

2

n

(x

n

� y

n

)

2

is a metri on [0; 1℄

F

whih generates the topology. Obviously this metri has

the property, that when �xing all but one oordinate, it's square depends

smoothly on that free oordinate. Now, as one an see in the book [Kelley℄

on page 125 for example, the map

 : X ! [0; 1℄

F

x 7! (f(x))

f2F

is a topologial embedding. Sine all omponent funtions are elements of

�

C

1

(X) it is lear that  is also smooth. Here we onsider a map on the

in�nite dimensional spae [0; 1℄

F

as smooth, if and only if it is partially

smooth. Sine omposition of smooth maps is smooth we �nd that

 

�

d

1

: X �X ! R

(x; y) 7! d

1

( (x);  (y))

has the property ( 

�

d

1

)

2

2

�

C

1

par

(X �X). Setting d :=  

�

d

1

will �nish the

proof.

We an now proeed with the Teleman method. Let � : [0;1)! [0; 1℄ be

a smooth funtion, suh that supp(�) � [0; 1℄ and �

j[0;1=2℄

� 1. For t > 0 we

de�ne

�

t

: [0;1)! [0; 1℄;

�

t

(s) := �(s=t):

These funtions have the following properties :

1. supp(�

t

) � [0; t℄

2. �

tj[0;t=2℄

� 1
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Now for any k 2 N let us de�ne funtions �

k

as

�

k

: X

k+1

! [0;1)

�

k

(x

0

; x

1

; :::; x

k

) = d(x

0

; x

1

)

2

+ d(x

1

; x

2

)

2

+ ::: + d(x

k

; x

0

)

2

: (7.3)

Here d denotes a funtion on X �X suh as in Lemma 7.2.1 . In words,

�

k

measures the distane of a point in X

k+1

from the diagonal. Clearly �

k

2

�

C

1

par

(X

k+1

). Let

U

t;k

:= f(x

0

; x

1

; :::; x

k

)j�

k

(x

0

; :::; x

k

) < tg

be the t-neighbourhood of the diagonal �

k+1

� X

k+1

. Let C

t

�

(X) be the

subomplex of the Hohshild omplex C

�

(X) where C

t

k

(X) ontains the

elements of C

k

(X) vanishing on U

t;k

. Let

C

0

�

(X) = lim

�!

C

t

�

(X)

where the limit goes as t goes to zero. The omplex C

0

�

(X) onsists of the

hains vanishing in an arbitrary neighbourhood of the diagonal.

Proposition 7.2.1. Let X be a stratifold.The omplex C

0

�

(X) is ayli.

Proof. We de�ne an operator

E

t

: C

k

(X)! C

k+1

(X);

E

t

(F )(x

0

; :::; x

k+1

) = �

t

(d(x

0

; x

1

)

2

) � F (x

1

; :::; x

k+1

); 8F 2 C

k

(X)

This operator maps C

s

k

into C

s=4

k+1

whih an easily be veri�ed. A alulation

also shows that

b Æ E

t

+ E

t

Æ b = 1�N

t

;

where N

t

is de�ned as

N

t

(F )(x

0

; :::; x

k

) = (�1)

k

�

t

(d(x

0

; x

1

)

2

) � fF (x

1

; x

2

; :::x

k

; x

0

)� F (x

1

; x

2

; :::x

k

; x

1

)g

8F 2 C

k

(X):
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Diret alulation also shows that b Æ N

t

= N

t

Æ b. Let's onsider the k-th

power of N

t

that is (N

t

)

k

. For F 2 C

k

(X) we get

(N

t

)

k

F (x

0

; :::; x

k

) =

k�1

Y

i=0

�

t

(d(x

i

; x

i+1

)

2

) �G(x

0

; :::; x

k

);

where G(x

0

; :::; x

k

) is a linear ombination of funtions built out of F by

restriting to ertain diagonals and permutation of some arguments. For the

produt in front of G to be not zero, we must have d(x

i

; x

i+1

)

2

< t for eah

0 � i � k � 1. The triangle equation shows that in this ase we also have

d(x

0

; x

k

) < kt

1=2

. Hene we have

�

k

(x

0

; :::; x

k

) =

k�1

X

i=0

d(x

i

; x

i+1

)

2

+ d(x

k

; x

0

)

2

< kt + k

2

t:

Hene for F 2 C

(k+k

2

)t

k

(X) we have that (N

t

)

k

(F ) = 0. Let's de�ne another

operator

K

t

: E

t

�

k�1

X

r=0

(N

t

)

r

: C

(k+k

2

)t

k

(X)! C

(k+k

2

)4

�(k+1)

t

k+1

(X):

By onstrution this operator satis�es

b ÆK

t

+K

t

Æ b = 1;

whih proves the theorem by taking the diret limit where t goes to zero.

From the previous proposition we know, that any Hohshild lass in

HH

n

(

�

C

1

(X)) an now be represented by a yle F whih has support ar-

bitrary lose to the diagonal. One an now use a partition of unity and the

�

C

1

(X) module struture onHH

n

(

�

C

1

(X)) to see that the following orollary

is true.

Corollary 7.2.1. Let X be a stratifold and (U

i

ji 2 I) be a loally �nite

open overing of X, where I is some index set. Let further F 2 C

n

(X) be

a Hohshild yle. Then there are Hohshild yles F

i

2 C

n

(X) suh that

supp(F

i

) 2 (U

i

)

n+1

8i 2 I and

F �

X

i2I

F

i

are homologous.
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7.3 Hohshild homology of loally oned stra-

tifolds

In this setion we will �nally show that the Hohshild homology of the

algebra

�

C

1

(X) of a loally oned stratifold X is isomorphi to the module

�




n

�

C

1

(X)

of di�erential forms. Besides the result on de Rham ohomology of

stratifolds this an be seen as the main result of this work. After all the work

we did in hapters 5 and 6 and in the beginning of hapter 7, the proof seems

to be quite easy.

Theorem 7.3.1. Let X be a loally oned stratifold. Then 8n 2 N the anti-

symmetrization maps

�

n

:

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X))

are topologial isomorphisms.

Proof. Let n 2 N . We have to show that the antisymmetrization map �

n

is

surjetive in equal any Hohshild yle in HH

n

(

�

C

1

(X)) is antisymmetri.

From Corollary 7.2.1. it suÆes to show, that this is loally the ase. Hene

we an assume that our stratifold is of the kind B

k

�L where B

k

denotes the

open unit ball of dimension k and L denotes the open one over a stratifold

of dimension less than the dimension ofX. Using indution on the dimension,

we an assume that the antisymmetrization maps �

L

n

for L are isomorphisms

8n 2 N . From Proposition 6.2.7 it then follows that the antisymmetrization

maps for L are also isomorphisms. From Proposition 6.2.2. it follows, that

the antisymmetrization maps for B

k

are isomorphisms. Hene the theorem

follows from Proposition 6.2.6.

As we mentioned earlier, the same proof goes through for loally produt

oned stratifolds.

7.4 Some Remarks on Cyli Homology of

Stratifolds

This setion is only informal, so we don't give any proofs and don't bother

to de�ne things exatly.

If we divide out a yli ation from the Hohshild omplex (6.8), in

equal identifying yles, whih arise from another by yli permutation,
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we get another omplex, whih is sometimes alled Connes' omplex. The

homology groups of this omplex are alled yli homology groups and

will be denoted by

HC

n

(A):

These groups are related to the Hohshild homology groups by the so alled

Connes' exat sequene

:::HH

n

(A)

I //
HC

n

(A)

S //
HC

n�2

(A)

B //
HH

n�1

(A)

I //
:::

:

The operator S is the so alled Connes periodiity operator and orre-

sponds via some identi�ations to the Bott periodiity operator in K-theory.

In the ommutative ase it is not hard to show, that via the antisymmetri-

zation map, up to a fator the operator

B Æ I : HH

n

(A)! HH

n+1

(A)

exatly orresponds to the operator

d :

�




n

A

!

�




n+1

A

:

Using this and Connes' exat sequene one an proeed exatly as in [Connes87℄

to prove the following.

Proposition 7.4.1. Let X be a loally oned stratifold with �nite dimensio-

nal homology groups. Then 8n 2 N there is a natural topologial isomorphism

HC

n

(

�

C

1

(X))

�

=

�




n

�

C

1

(X)

=d

�




n�1

�

C

1

(X)

�H

n�2

dR

(X)�H

n�4

dR

(X)::::

7.5 Closing Remarks

In the end, the reader has the right to ask, why it might be important to

know something about the Hohshild homology of loally oned stratifolds.

In the framework of index theory on manifolds as well as in the framework

of nonommutative geometry, Hohshild homology and in partiular yli

homology have been proven suessful. One ould say that this door has been

opened by Connes' work about the yli homology of the algebra C

1

(M)

for a smooth manifoldM . For example, people studied Hohshild and yli

homology of algebras onsisting of pseudo di�erential operators on manifolds

(see [Shulze℄ ). Motivated by questions from theoretial physis, people be-

gan studying the analysis of singular spaes. In their onsiderations, some
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kind of di�erential operators on singular spaes play a role. One might now

hope to learn something about these, by studying their Hohshild homolo-

gy for example. Though we must learly say, that the approah on singular

spaes, whih we have taken in this work is probably to naive and not suita-

ble for more ompliated analyti onstrutions ( like for example di�erential

operators, onnetions et. ) it is to my knowledge the �rst omplete result

about the Hohshild homology of some version of singular spaes. We hope

the reader thinks this is justi�ation enough to have spent some of his time

reading this work.
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