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SYMMETRY AND INVERSE-CLOSEDNESS

OF MATRIX ALGEBRAS AND FUNCTIONAL CALCULUS 

FOR INFINITE MATRICES

KARLHEINZ GROCHENIG AND MICHAEL LEINERT

Abstract. We investigate the symbolic calculus for a large class of matrix 

algebras that are defined by the off-diagonal decay of infinite matrices. Ap

plications are given to the symmetry of some highly non-commutative Banach 

algebras, to the analysis of twisted convolution, and to the theory of localized 

frames.

1. Introduction

The purpose of this paper is twofold: on the one hand, we develop a functional 

calculus for various classes of infinite matrices with off-diagonal decay, and on the 

other hand, we construct explicit examples of symmetric highly non-commutative 

involutive Banach algebras.

Our point of departure is two important results about the properties of inverse 

matrices. Assume that A is an infinite matrix that is bounded on -£2(Z) with bounded 

inverse. If either a^i — 0 for \k — l\ > M (A is a banded matrix) or if \aki\ = 

O(e-Q:lfe_^) (exponential off-diagonal decay), then the inverse matrix B = A-1 

satisfies \bki\ — for some /?, 0 < < a. See [12, 24, 30] for a few
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versions of this statement.

Similarly Jaffard’s Theorem [24] says that if A is boundedly invertible on ^2(Zd) 

and \aki\ — O(|k — Z|-s) for some s > d, then its inverse B = A-i has the same 

polynomial-type off-diagonal decay \bki\ = O(|fc — Z|~s). This result is even more 

striking, because the order of polynomial decay is preserved exactly, whereas the 

order of exponential decay is not preserved in general.

Both types of results are highly relevant and have numerous applications in 

numerical analysis [9, 12, 33, 35], wavelet theory [24], time-frequency analysis [5, 17], 

and sampling theory [1, 19], to mention just a few non-trivial applications.

In these problems it seems desirable to treat decay conditions that are interme

diate between polynomial decay (too slow) and exponential decay (too fast, and 

not exactly preserved). In this paper we treat so-called “subexponential” decay 

conditions and prove several versions of Jaffard’s Theorem for a lav,ge class of decay 

conditions. We give examples to show that our results are sharp.
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From a different point of view, Jaffard’s Lemma can be viewed as a functional 

calculus for certain matrix algebras. The statements resemble the Wiener-Levy 

theorem for absolutely convergent Fourier series, but now they are for extremely 

non-commutative algebras. In this context it seems natural to approach the problem 

with Banach algebra techniques and the notion of symmetric involutive algebras. 

Yet Jaffard’s ingenious proof is purely analytical, using commutator estimates and 

a bootstrap argument. Despite its beauty and depth, the original proof cannot be 

adapted to other decay conditions, because it uses special properties of polynomial 

weights. While estimates of spectral radii occur implicitly in [24], no reference to 

Banach algebras is made. In this paper we develop the necessary Banach algebra 

techniques to extend Jaffard’s Theorem to subexponential decay of matrices. As a 

by-product, we obtain a new and more algebraic proof of Jaffard’s Lemma.

Our second motivation concerns the concept of symmetry and inverse closedness 

of Banach algebras. Here an involutive algebra is symmetric if the spectrum of pos

itive elements is positive. While there are many abstract results about symmetric 

Banach algebras (see [4, 27, 28] and references cited there), it is often extremely 

difficult to verify the symmetry of specific examples. The recent breakthrough by 

Losert [25] has renewed interest in understanding the symmetry of specific classes of 

involutive Banach algebras. Solving a 30-year old conjecture, Losert [25] succeeded 

in showing that the group algebra of a compactly generated, locally compact group 

of polynomial growth is symmetric. Subsequently, we have developed techniques to 

verify the symmetry of weighted Zd-algebras on locally compact groups of polyno

mial growth [15] and of Banach algebras of twisted convolution [20].

Our main results about the functional calculus with infinite matrices can also be 

interpreted as statements about the symmetry of a large class of matrix algebras. In 

a sense they extend our results for locally compact groups [15] to Banach algebras 

of operators which have much less structure. In this regard, Barnes’s results on 

Banach algebras of integral operators [3] need to be mentioned. These are in a 

similar spirit, but unfortunately they work only for sublinear weights.

We expect our main results to be useful in numerical applications. Theorems 6 

and 10 help unify, refine, and improve all those results where previously Jaffard’s 

Lemma had been used. In Section 5 we discuss two mathematical problems where 

our main theorems either lead to significant simplification or to conceptual progress.

First, we briefly study the spectrum of twisted convolution operators and prove 

a (non-commutative) version of Wiener’s Lemma. Based on our main theorem, 

we give a new, concise, and much shorter proof of Wiener’s Lemma for twisted 

convolution. This statement has been instrumental for the construction of Gabor 

frames with good time-frequency concentration and the solution of a conjecture of 

Janssen and Feichtinger [20].

Second, we offer an new treatment of localized frames and their duals. A new 

definition of localization highlights the role of Banach algebras in frame theory and 

allows for a conceptually much simpler approach to localized frames.

Furthermore, one could revisit other topics where off-diagonal decay of inverse 

matrices is crucial. We mention Jaffard’s “lemme de fenetre and perturbation the

ory [24], the finite section method for operator equations [21, 35] and for frames [9], 

local error estimates of wavelet and Gabor expansions [1], or the time-frequency 

decay of dual Gabor windows [17]. These applications were orginally formulated 



FUNCTIONAL CALCULUS FOR INFINITE MATRICES 2697

with polynomial decay conditions; in all of them, one may substitute Jaffard’s The

orem by Theorems 6 or 10 and then obtain refinements of existing results (with 

subexponential decay functions) that had not been available before.

Finally, let us mention that the main results could also be stated for integral 

operators on suitable measure spaces. Since only technicalities and not new ideas 

are required, we will not state these results explicitly.

The paper is organized as follows: In Section 2 we collect background on weight 

functions used to quantify off-diagonal decay of matrices and present the main tools 

from Banach algebra theory. In Section 3 we give the first version of a functional 

calculus for Banach algebras of matrices that are defined by Schur-type conditions. 

These are technically easier to treat than decay conditions. The treatment of decay 

conditions is then carried out in Section 4 and is based on the main result of 

Section 3. In the final Section 5 we discuss two applications to twisted convolution 

and to localized frames.

2. Decay conditions and matrix algebras

2.1. Weights. A weight v is a non-negative function on For the study of decay 

conditions of matrices it is natural to impose the following additional conditions:

(a) Let || ■ || be a norm on and let p : [0, oo) —> [0, oo) be a continuous 

concave function, normalized by p(0) = 0. Then v is of the form

(1) v(x) = .

Then v satisfies v(0) = 1, u(.r) = t>(—x) and v is submultiplicative, i.e.,

(2) c(.r + ?/) < u(.t)u(?/) •

(b) v satisfies the GRS-condition (Gelfand-Raikov-Shilov condition [16])

(3) lim v(nx')pn = 1 for all x G .

n—>oo

Equivalently, we have

hm —— = 0 . 
t £

We will call a weight satisfying these conditions an admissible weight and hence

forth use only such weights. Note that unless v (and thus p) is bounded, p must be 

strictly increasing as a consequence of its concavity property.

In the following we will always assume that the weight v is defined on Rd, al

though we mainly use the restriction of v to Zf/.

Examples. The typical examples of admissible weights are the polynomial weights 

vs(x) = (1 + |t|)s for s > 0 and the subexponential weights of the form u(x) = 

for ct > 0 and 0 < (3 < 1. More general weights arc mixtures of the form

u(t) = ea^ (1 + |t|)s (log(e + |t|))\

where a > 0,0 < /3 < 1, s > 0, and t > 0.

For later use we remark that the polynomial weights ts(x) = (1 + |x|)s, s > 0, 

are also “weakly subadditive”. This means that there is a k, — k(s) (and without 

loss of generality we may assume that k > 1) such that

(4) Ds(x + p) < k(ts(x)+ rs(p)) x,y .
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2.2. Matrix algebras. We now introduce classes of infinite matrices defined by 

the off-diagonal decay of their entries. The decay will be quantified by an admissible 

weight function v on Zd.

Definition 1. The class consists of all matrices A = (aA:z)fc,/ezd such that

(5) sup 52 v(k — Z) < oo and sup 52 \aki\ v(k — Z) < oo

keZd iezd l&d kezd

with norm

(6) miUi = max{sup 52 |afcZ|u(A; - Z), sup 52 \aki\v(k - Z)} .

k iezd 1 kezd

We write A1 in the case of the trivial weight v = 1. In this notation the standard 

Schur test states that if A G .A1, then A is bounded on all £p(Zd) for 1 < p < oo; 

see, e.g., [17, L. 6.2.1],

Definition 2. The class Av consists of all matrices A = (aki)k i^zd such that, for 

some C > 0,

(7) \aki\ < Cv(k - Z),-1 V/c,ZeZd.

A Banach space norm on Av is given by

(8) HIIa, = sup \aki\v(k - Z).

fc,ZGZd

Lemma 1. (a) A( (and A1) is always an involutive Banach algebra of bounded 

operators acting on ^2(Zd). The involution is given by the adjoint matrix A* with 

entries (A*)ki — Pk and is an isometry on .A* and A1.

(b) If ^keZd < oo, then Av Q A1. If in addition v satisfies u-1 * t>-1 < 

CT-1 (such a v is called subconvolutive [13]/ then Av is an algebra of bounded 

operators on f2(Zd).

Proof. By Schur’s test A1 consists exactly of those matrices that are bounded 

simultaneously on f1(Zd) and I°°(Zd) (and hence on t2(Zd)). The .Ad-norm is 

the larger of the operator norms on A or on £°° and thus A1 is a Banach algebra.

For the weighted case we use the submultiplicativity in the form v{k — Z) < 

; — Z) and estimate for A, B G A( that

52 \(AB)kl\v(k - Z) = 52 I 52 akjbjiMk - Z)

iezd t&zd jezd

< 52 52 IM Mv(k ~ ~ 0
i&zdjezd

< V IM v(k ~j)( W 52
jezd i&zd

< Hllw, vuz/

and likewise for supz Y2k(AB)ki-

(b) Since u-1 e we have supfceZd 72iezd \aki\ < ^12iezdV(k ~ 0-1 — 

C u(Z)-1 < oo- and likewise for supz Hence Av C A1. Now let A, B G Av,
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then \ciki\ < || - I) 1, and likewise for the entries of B. Combined with the

subconvolutivity of 1/v, we obtain that

|(AB)fcj| = I /\

jezd

< miu \\b\\Av 52 v(k~jrlv^ -o-1

< \\A\\Av\\B\\A.Cv(k-l)-1 Vk,leZd.

This means that ||AB||Aj < CHAH^ ||B||^. 

The algebra Av is difficult to deal with, because banded matrices are not dense 

in Av and because (8) is not a Banach algebra norm. (To obtain a Banach alge

bra, we would have to use the equivalent, but quite inconvenient, norm HAJiy = 

suPL>eA„ \\d\\a =1 ll-A-DH^.) For the treatment of Av we introduce a class of aux

iliary algebras.

Definition 3. Let s > 0, let u be an admissible weight on and set v(t) = 

u(rr)rs(x) = u(x)(l + |t|)s. We define BUtS to be the Banach space BU)S = A\ C\AV 

with norm

(9) imiihu,s = + imu >

where n > 1 is the constant appearing in the subadditivity of rs in (4).

The following statement can be viewed as a generalization of Brandenburg’s 

results in [6] from commutative convolution algebras to highly non-commutative 

algebras of matrices.

Lemma 2. (a) The class Bu,s with norm (9) is an involutive Banach algebra.

(b) If s > d, then Av C A\ and thus Bu,s — Av with equivalent norms.

Proof, (a) In addition to its submultiplicativity, the weight v — uts satisfies the 

following inequality:

v(z + y) = u(x + y)rs(x + y)

< k u(x)u(y} (rs(x) +rs(?/))

= k (v(xfufy) + u(x)v(yf} .

If A, B e Bu,s, we obtain

||41B||^ = sup | akAim\v(k - I + I - m) 

fc,™ezy l&d

< sup 52 |qfc;| K,v(k - Z) |fym|n(Z - m)

k,m.&d leZd

+ sup y \aki\K,u(k - Z) |fym|u(Z - m)

< sup£ IfymHZ - m) + k||B|[^ sup 52 H/Rfc - 0

m I k I

yiMII-T, I|b||Ai + ha||Ai (|B|UJ.
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Using Lemma 1 and (9) we find that

= kHbiIai + HBIU

< ||B|Uj, +«dMh„l|B|U1 + MUIIBIU.)

< MIIb.„IIB||Su...

(b) If s > d, then ^2fceZd ts-1(A;) = J2fceZd(l + MU'5' < °° is summable, and thus 

sup 52 \aki\u(k ~ l)Ts(k - lMk ~ < HIU„ sup V Ts{k - 0-1 = CHIU. •

fcGZdZeZd leZd

Interchanging k and Z, we obtain ||A||_4i < C||A|Uv, and so Av C A* and Bu s = 

Av. “ ’ □

Notation. We write 17.4(A) for the spectrum of a matrix A in the algebra A and 

cr(A) for the spectrum of A as an operator acting on ^2(Zd). The corresponding 

spectral radii are Pa(A) — max{|A| : A G 04(A)} and p(A) = max{|A| : A G o(A)}. 

By the spectral radius formula we have Pa(A) = limn-*oo HUIa™- If A = A* is 

self-adjoint, then p(A) = ||A||op = supce^2(Zd) ||Ac||2/||c||2.

2.3. Symmetric Banach algebras. A Banach algebra A is called symmetric if 

ca(A*A) C [0, oo) for all A G A. Equivalently, A is symmetric if and only if 

A — A* G A implies that 0.4(A)

The standard example of a non-commutative symmetric algebra is the C*-algebra 

of bounded operators Z3(7Y) on a Hilbert space 7Y (as well as the norm-closed sub

algebras of B(7Y)).

A pair of nested Banach algebras A G 13 is called a Wiener pair if A G A and 

A-1 G B implies A-1 G A [16]. In the recent literature, one sometimes says that A 

is inverse closed in B [3, 4] or that A is a spectral subalgebra of B [26, 28].

In the theory of Banach algebras the symmetry is interesting in its own right, 

because symmetric Banach algebras share many properties of C*-algebras [27, 28]. 

While symmetry is defined intrinsically in terms of the Banach algebra itself, the 

concept of inverse-closedness describes a relation between two nested Banach al

gebras. Nevertheless, the two concepts are closely related, and almost always is 

the symmetry of a Banach algebra A proved by showing that it is inverse-closed in 

a C*-algebra. Technically, this is accomplished by the following lemma of Hulan- 

icki [23] (see also [15] for a corrected proof). We give a formulation that is most 

suitable for our purposes.

Lemma 3. Assume that A is an involutive Banach algebra with identity and 

contained in B(jH). If for all self-adjoint A = A* G A

(11) p^(A) =p(A) = ||A||op ,

then cta(A) = H) for A e A. Consequently, A and BfH) form a Wiener parr 

and A is a symmetric Banach algebra.

Note that if A G B with a common unit, then 023(A) C 0.4(A) and pg (A) < 

Pa(A) for all A G A. So in order to apply Hulanicki’s lemma and to show that 

A G £>(7d) is symmetric, it suffices to show the reverse inequality

Pa(A) < p(a) = ||A||op

for all A = A* G A. This is the strategy we will use in the sequel.
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To put the inverse-closedness in perspective, we briefly recall the Riesz functional 

calculus [31]. Let A G 13, let U be an open neighborhood of (a connected component) 

of cr5(A), let 7 C U \ ctb(A) be a “contour” of ctb(A), and let f be analytic on U. 

Then the 13-valued integral

/(Y = A /

is a well-defined element in 13, and the map / —> /(A) is an algebra homomorphism. 

Now assume that A is inverse-closed in 13 and that A E A Q 13. Since 74(A) = 

cj 13(A), the above integral is also well defined in A. Thus we can formulate the 

following consequence of inverse-closedness.

Corollary 4. If A is inverse-closed in 13 with common identity, then Riesz func

tional calculi for A and 13 coincide.

2.4. Barnes’ Lemma. The following statement shows that for weakly growing 

weights the algebras A* are symmetric. Though important in its own right, it is 

only implicit in Barnes [3] (combine Lemma 4.6 with the main inequality in the 

proof of Theorem 4.7).

Lemma 5. Assume that u(x) = (1 + Al)15 for 0 < <5 < 1. Then for all A — A* E A* 

we have

(15) maxfsup - 0 , sup ~ 0} <

k iezd 1 kyzd

(12) PaiJA) - pxi(A) = ||A||op .

In particular, A^ is symmetric.

It seems an open question as to whether A1 is also symmetric.

3. Schur-type conditions

In this section we show that the matrix algebras A* are inverse closed in Z3(£2(Zd)) 

for a very general and useful class of weights, namely log-concave weights satisfying 

the GRS-condition and a very weak growth condition.

Our main theorem yields the symmetry of the algebras A*.

Theorem 6. Assume that v is an admissible weight function satisfying the weak 

growth condition

(13) v(x) > C(1 + |m|)5 for some 5, 0 < 5 < 1.

Then

(14) pAi(A) = ||A]|op for all A = A* E Aj .

Consequently, 741(A) = 7(A) for all A E A± and A^ is a symmetric Banach 

algebra.

We state the symmetry property and inverse closedness explicitly in the form 

that is needed in many applications.

Corollary 7. Assume that v is an admissible weight function satisfying the condi

tion u(z) > C(1 + |t|)<5 for some <5 > 0. If a matrix A is invertible on ^2(Zd) and 

satisfies the weighted Schur-type conditions
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then the inverse matrix A 1 = (fr/cj^/ezd satisfies the same conditions, i.e.,

(16) max{sup ~ 0 , SUP 22 IM*# “ 0} < oo-

fc zezd 1 kezd

If in addition A acts as a positive operator on £2(Zd>)) then also the matrices cor

responding to Aa for a g R are in A} ■

For the proof of Theorem 6 we construct a sequence of auxiliary weights vn by 

using a technique developed in [29] and [20].

Lemma 8. For any unbounded admissible weight function v there exists a sequence 

of admissible weights vn with the following properties:

(a) < vn < v for all n E N,

(b) there exist cn > 0 such that v < cnvn, and

(c) linin^oo vn — 1 uniformly on compact sets ofPd.

Note that (a) implies that all vn satisfy the GRS-condition, and (a) and (b) imply 

that all the vn are equivalent. Consequently the algebras A} and A}ri coincide and 

have equivalent norms. In particular, we obtain that, for every A E A[,

(17) Pa^A) = PaiJA) VnEN.

Proof. Since the concave function P is strictly increasing (otherwise v would be 

bounded), it has an inverse function p-1.

Now set

/ p(p) — n
(18) qn = sup - - - - - >0.

Since P is continuous and linm-^ P^~n = 0 by the GRS condition (3), the supre- 

ft

mum is assumed, and there exists a fin > p-1(n) such that

Now define the sequence of functions Pn : [0, oo) —> [0, oo) as follows:

zonx 7 a if 0 < P < fin,
(2°) Pn(p) = S / A -r n

[p(p)-n lfp>Pn-

The associated sequence of weights vn on is then given by

(21) vn(x) = epn(-11x11 \

We verify that this sequence of weights possesses the stated properties. By 

construction each Pn is continuous and concave (it is a Legendre transform!) and 

satisfies Pn < P. Therefore the weights vn are admissible in the sense of Section 2.1.

By (18) 7„+i < 7„ and by the GRS condition lim^oo = 0, therefore vn(z) = 

e7nlkll for ii^n < —* oo converges to the constant function 1 uniformly on

compact sets.

Further, since un(a?) = e~nv(x) for ||ai|| > fin, we may set cn = sup{en; , ||z|| 

< fin} and obtain that v(x) < cnvn(xf

The monotonicity vn+i < vn is clear for ||x|| > fin, because pn+i(p) = Pn(h) ~ 1 

for p > fin- On the complement we observe that pn+i(0) = pn(0) an(l Pn+i(/?n+i) <
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Figure 1. Construction of the modified weights (20).

pn(/3n+i). Therefore the graph of the linear function pn+i lies under the concave 

function pn on [0, /?n+i], and so un+i < vn on all of Rd. 

Lemma 9. Under the hypotheses of Theorem 6 and with vn as in Lemma 8, the 

following identities hold for every A = A* G Al:

(22) lim ||A||^i = , and
n—>oo

(23) = p^i(A) = ||A||op .

Proof, (a) Let e > 0. For self-adjoint A G Al we have

HlUi = sup V \aki\vn(k - L).

l^d

Since by construction of vn we have vn(x) = e-nu(x) for ||x|| > /3n, there is some 

no = ng(e) G N such that

sup ^2 \aki\vndk~l) <e~n°\\A\\Ai < e. 

keZd iezd:\\k-i\\>pno

By monotonicity un+i < vn < v for all n we therefore obtain that for all n > no 

sup J2 \aki\vn(k — L) < e.

ke^d leXd-.\\k~l\\>Pno

If ||x|| < /?no, then vn converges to 1 uniformly, so for n > m = ni(e) we have that 

sup Hd w(fc - 0 < (1 + €) sup 52 \aki\ •

fceZd ZGZ<*:||fc-Z||</3no k&d lezd.

Combining these estimates we obtain that for n > max(no,ni)

< € + (1 +. e) || AH^i .

We conclude that

lim HAII^i < VA G Al. 

n—>oo

The reverse inequality is obvious, since vn > 1 for all n.
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(b) Using step (a) and the equivalence of the weights v and vn, we then have 

PA\,(A)k = pAi(Ak) = pAi (Ak) < IMXj, VnsN.

v un Vn

Consequently,

P_4>«< lim ||A‘|U. VieN,

n—>oo Vn

and so by taking fc-th roots we have

< lim II^H^ = p^i(A).
fc—»oo

Since v(x) > C(1 + |x|)J = Tj(.r) and 8 > 0, we have the inclusion A„ C A^, 

and so Barnes’s Lemma (Lemma 5) shows that pAi\A') = ||A||op. Consequently, 

pAi(A) — ||A||op, as desired. 

Proof of Theorem 6 and Corollary 7. We combine Hulanicki’s Lemma 3 with the 

identity for spectral radii (23) of Lemma 9 and conclude the equality of the spectra 

cr(A) = CT41 (A) for all A E A\,. This implies that A* is a symmetric Banach 

algebra.

In particular, if A E A^ is invertible on £2(Zd), then A is also invertible as an 

element of A},.

Now assume that A E Af is invertible and induces a positive operator on E(Zd). 

Then cr(A) C [5, ||A||op] for some 8 > 0, and thus 041(A) C [5, ||A||op]. By the Riesz 

functional calculus (Corollary 4 or [31, Thm. 3.10]) all powers A“ are in A^. 

Remarks. 1. Note the Lemma 8 is false when v does not satisfy the GRS-condition. 

For instance, if v is an exponential weight, where v(x) = ea^ for some a > 0, then 

Lemma 8 fails.

Theorem 6 is sharp in dimension d = 1 as is shown by adaption of an example 

in [16]. Assume that limn_>00 v(nk(f)1/n — (3 > 1 for some ko E N. Then since v is 

submultiplicative, we have

(24) lim v(n)1/n — inf v(n)1/'n = (3^k° — ea

n—^oa neN

for some a > 0.

Let h be the coefficients of the trigonometric polynomial /z(<x) = e27riw — e^'7 and 

consider the associated convolution operator Ac = h * c on £2(Z). Its matrix has 

the entries A^i — h^-i, so A is in fact a banded matrix and ||A||_4i = ||A||^i < 00. 

Clearly A(<z>) 0,Vuq and by explicit computation we have p(cj) = l/7z.(cu) = 

e-<^ne-2™(n+i)aq Therefore A is invertible with inverse A-1c = g * c. 

Choosing 8 < a, then we conclude from (24) that ||A“1 ||>vi = EEo e Snv^ = 

For a weight v violating the GRS-condition, Theorem 6 is false.

2. In some applications more general index sets are needed. The proof of Theo

rem 6 carries over to arbitrary countable index sets W endowed with a non-trivial 

metric d. To apply Lemma 5, we have to assume that the volume of balls B(x,r) 

grows polynomially in the radius r and independently of x E Af (see condition 

(4.1) in [3]). For further reference we formulate a version of Corollary 7 explic

itly: Assume that p : [0,oc) —> [0,oo) is a continuous, concave function satisfying 

p(0) = 0, p(i) > C' + 51og(l+ t) for some C > 0 and 8 E (0,1] and lim^oo = 0.
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Set v(m,n) = ep^m,n^ for m,n G . If a matrix A = (amn)m,nerf is invertible 

on ^2(W”) and satisfies the estimates

max{ sup ^2 \amn\v(m, n) > sup /2 lamn|u(m, 7l)} < OO,

then the inverse matrix A-1 = (&mn)m,n6jV satisfies the same conditions

max{ sup 52 |^mn|u(m,n), sup J2 n)} < oo.

meA<neM n^meM

4. OFF-DIAGONAL DECAY OF INVERSE MATRICES

We next consider the matrix algebras BUjS and Av. The following statement is 

a consequence of Theorem 6.

Theorem 10. Assume thatu is an admissible weight, <5, s > 0, u > t§, andv = urs. 

Then

(25) pbu,S(A) = ||A||op for all A = A* G Bu,s.

Consequently, ai3u s(A) = cr(A) and J3U,S is a symmetric Banach algebra.

Proof. To establish the required identity of spectral radii, we follow [6].

Assume that A G Bu.s C Av; then the important inequality (10) (used for 

establishing that BUjS is a Banach algebra) implies that

<2KHnllwJMnllw Vn > 1.

Consequently

M2nIKs = + H2nIU

< 2^11^ Hmui +

= 2^1^11^

By taking roots we obtain

PBu.fiA) = lim ||A2n||^ 

n—>oo u’s

< lim(2«)^||A"||J1 \\An\\^

= PA}fiAfi/2 pSu JA)1/2 .

This implies that

Psu.fiA) < Pa^JA).

Since A* C A^, we can apply Theorem 6 and obtain

(26) p^u s(A) < pai (A) = pa^(A) = ||A||op VA = A* g £3U)S.

Consequently we have derived the identity

pBuJA^ = \\A\\op VA = TgSu,s.

The remainder of the proof is as in the proof of Theorem 6: we use Hulanicki’s

Lemma 3 to conclude that ctbU)S(A) = <t(A) for all A G Bu,s, and we are done. 

For s > d we have BUjS = Av, and so we obtain the following result on the 

inversion of matrices with a given off-diagonal decay.
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Corollary 11. Assume that u is an admissible weight, s > d, and v — urs. If A 

is invertible on f2(Zd) and satisfies the off-diagonal condition

(27) \akl\ < Cv(k ~ It1,

then the inverse matrix B = A~ [ satisfies the condition

(28) \bkl\ BC'vy-iy1.

If in addition A is positive and invertible, then the matrices B = Aa for a G R also 

satisfy a decay condition like (27).

Proof. For s > d the algebras Bu,s and Av coincide by Lemma 2. Thus the state

ment follows from Theorem 10. 

Remarks. 1. By choosing v(x) = for 5 > 0, we recover Jaffard’s Theorem [24] 

with an entirely different proof.

2. For completeness we formulate a version of Corollary 11 for arbitrary index 

sets J\I with a metric d. Assume that p : [0, oo) —> [0, oo) is continuous, concave, 

p(0) — 0 and lim*-^ = p. Set v(m, n) = ep(d(m,n))(l + d(m, n))s for m,n G N, 

where s is chosen such that supTO + d(m,n)) s < oo. If a matrix

A = ym,n)m,neA/' invertible on and satisfies the estimates

sup |amn|t>(m,n) < oo, 

m,nGAf

then the inverse matrix A^1 = (6mn)m,neJV also satisfies

sup \bmn\v(m,n) < oo .

5. Applications

In this section we present two applications of the previous theorems. In fact, 

it is exactly these topics that have motivated us to seek refinements of Jaffard’s 

Theorem. Since the context and the connections to related areas are well docu

mented in the cited literature and would only be distractive, we will focus on the 

mathematical key points. In the first problem (twisted convolution) the application 

of Theorem 6 yields a significantly shorter proof than the original one. In the sec

ond problem our treatment sheds new light on the role of matrix algebras in frame 

theory.

5.1. Wiener’s Lemma for twisted convolution.

Definition 4. Given 9 > 0, the twisted convolution of two sequences a = (aki)k,i&zd 

and b = (bki)k i^zd on (with finite support) is defined to be

(29)

(a fo b)(m, n) = akibrn^k,n-ie2^ld<m^k>4 = am-k,n-l^1TZ0k^n bki • 

k,iezd k,i&zd

Since

(30) ||a fo b||p < || |a| * |b| ||p < ||a||i ||b||p ,

the twisted convolution operator Tac = a foe is bounded on ^p(Z2rf) for any a G 

^(Z2d).
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We next apply Theorem 6 and Corollary 7 to this special class of operators and 

give a new and significantly shorter proof of Wiener’s Lemma for twisted convolu

tion in [20].

Theorem 12. Assume that (a) a G ^(Z2d) for an admissible weight satisfying the 

GRS-condition (3) and (13) and that (b) the (twisted) convolution operator Ta is 

invertible on £2(%2d).

Then a is invertible in ^}(Z2d) and so T.p1 = 7b for some b G ^(Z2d). Conse

quently Ta is invertible simultaneously on all for 1 < p < oo.

Proof. By (29) the matrix A associated to Ta has the entries

a _  „ ‘27ri9k-(n — l)
A-(k, I), (m,n) — am — k.n—le

Consequently for a G ^(Z2d) we have

(31) sup - m,l - n) = ||a||£i < oo,

(fc,z)ez2d (mjn)eZ2d

and likewise with indices interchanged. Thus ||A||_4i = ||a||^i and A G A(. Now by 

Theorem 6 we also have B := A-1 G A(. It is left to show that B corresponds to 

a (twisted) convolution operator Tb. So let b G /;2(Z2d) be the solution of Tab = 5 

with 5(0) = 1 and 5(fc) = 0 for k G Z2d \ {0}. The (twisted) convolution operator 

7b is certainly defined on the dense subspace ^°(Z2d) = {c : suppc is finite}, and 

by a version of (30) it maps ^°(Z2d) into ^2(Z2d). Then for all c G £°(Z2d)

Ta(Tb - B)c = a (b ^c) - TaTa-ic = c - c = 0.

Since we have Tb — B on the dense subspace ^°(Z2d), the matrix of Tb coincides 

with B, and so (31) implies that b G £^(Z2d). 

Remark. 1. The original proof in [20] is more complicated and uses the special 

structure of the twisted convolution and its relation to the representation theory of 

certain groups of Heisenberg-type and to the rotation algebras in operator theory.

2. Strictly speaking, the unweighted case does not follow from Theorem 6 because 

of the additional condition (13). In this case, one may use a little known lemma 

of Sjbstrand [32] which states that a certain subalgebra of A1 is inverse-closed in 

B(£2).

3. Theorem 12 is the main ingredient in the construction of Gabor frames with 

good time-frequency concentration (as measured by the decay of the short-time 

Fourier transform); see [20, 14, 34] for the necessary background on time-frequency 

analysis and signal analysis.

5.2. Localization of frames. A frame in a Hilbert space 77 is an overcomplete 

set that yields stable series expansions similar to orthonormal expansions, but with 

more flexibility. While the concept of a frame is a pure Hilbert space concept, most 

(mathematical and real) applications make use of additional features of frames, 

namely structure (Gabor frames, frames of reproducing kernels, wavelet frames, 

etc.) and localization. While general frames and structured frames are well under

stood and are the subject of many treatises [7, 8, 11, 17, 22], the notion of localized 

frames is a new idea [18, 19, 2] and far from being fully explored. The concept 

of localization makes frame expansions meaningful for other Banach spaces besides 

77 [19] and plays a key role in the characterization of certain Banach spaces by means 

of frames and in the investigations of sparse representations with frames [19, 10].
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Here we introduce a new version of localized frames that involves matrix algebras 

and highlights the role of their Banach algebra properties. We will provide a refine

ment of the concept of localized frames that bridges the gap between polynomial 

localization and exponential localization defined in [19].

A set 8 = {ex : x G A} is a frame for a Hilbert space H if the associated frame 

operator Sf := {fAx)^x is bounded on and has a bounded inverse. Here 

X C is a relatively separated set; this means that

sup card {x G X : x G k + [0, l]'z} = v < oo .

kezd

(In a function space we think of the subscript x as the center of the “essential 

support” of ex.) Since S is invertible, every f G 7Y has an expansion of the form 

f = Hxex^fxx}S~rex = ^xeX(f, S~1ex)ex, where 8 = {S-1eT : x G X} is the 

dual frame.

Let A be an involutive Banach algebra of infinite matrices contained in B(^2(Zd)) 

with the following properties: (a) A is inverse-closed in B(/?2(Zd)), and (b) A is 

solid, i.e., if A = (flfez) G A and \bki\ < |afcz|, then the matrix B = (b^) is also in 

A. The matrix algebras A^, Bu,s and Av are solid by definition of the norm and 

inverse-closed by Theorems 6 and 10.

In the following we compare a frame 8 to a Riesz basis. Let {gk ■ k G Zf/} be a 

Riesz basis of with dual basis {gi : I G Zd}.

Since the index set is relatively separated, we can majorize (ex,gi) for x G 

k + [0, l]d by

(32) |(e^,^)|< V \{ex,gi)\<v max \(ex,gi)\ := bkt.

xexn(k+ o,i d)

^eAG(fc+[0,l]d)

We set bki — 0 if X A (A: + [0, l]d) = 0. Likewise we define a matrix C by the entries 

cki := zymaxa.eA-n(fc+[0?1]d) Ke^,

Definition 5. A frame 8 for H is called A-localized with respect to the Riesz basis 

{gk : k E Zd}, if both B G A and C G A.

In particular, if A = Av for an admissible weight v on then Definition 5 

implies that that 8 is A^-localized if

max{|(ex,pfc)|, < Cv(x - kfr\ x G X,k E%d .

For v(x) = (1 + |ir|)s we recover the notion of polynomial localization of [19].

The main theorem of [19] can be generalized as follows:

Theorem 13. If 8 is an A-localized frame for hi, then its dual frame 8 is also 

A-localized.

Proof. The proof is identical to the proof of [19, Thm. 3.5b]. We just substitute 

Jaffard’s Theorem by the property that A is inverse-closed in B(f2(Z2<7)). To give 

the reader an idea how it works, we indicate the main lines of the proof. We keep 

the notation of [19].

Step 1. Let (T/)(A:) = (f,gk)- Since {gk : k G Zd} is a Riesz basis of H, 

T is an isomorphism from hi onto ^2(Zd) with inverse L-Ic = '12kezd ck9k for 

c = (cfc) G ^2(Zd). Then the frame operator S can be factored as S = r-1TT, 

where T is the matrix of S with respect to the given Riesz basis. It has the entries

Tki = {Sgi.gk) — y^e^gk) .

x&X
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Note that T is invertible on ^2(Zd) if and only if S is invertible on 7Y.

Step 2. Estimating the entries of T,

IT-1 < E E I {dl > &x) (&x5 9k) |

mgZd An(m+[0,l]d)

< E bmicmk = (CAB'jki.

m£Zd

By hypothesis B, C G A, therefore T G A as well.

Step 3. Since T G A and T is invertible on £2(Z2d), we conclude that T-1 G A. 

(This is where Theorems 6 and 10 come in.) Let T-1 = (u^); then the matrix 

U — (|ufcj) is also in A.

Step 4. To show that 8 is Zl-localized, we must check the size of {S~} ex, gi) 

and of (S~Ax,gi) . We use that S'-1 = r-1T-1T and obtain that

cki = v max |(S'"1e.r,pz)|

xGA’n(fc+[0,l]d)

= v max I CrS~lex}(T)\
xeArn(fc+[o,i]d) v

= u max | ’V (,T~'1)im{ex,gA)\

IGAn(fc+[0,l]d)

< u |wZm| max
xe^n(fc+[o,i]d)

= E = (GW)*! ■

771 GZd

Since C, U G A and A is an algebra, we find that C G A. By interchanging the role 

of gk and gk, we obtain that the matrix B with entries

bki = max \{S~[ex,gi)\

a?GAn(fc+[0,l]d)

is also in A. Thus 8 is A-localized. 

For examples on how Theorem 13 can be applied we refer to the sections on 

sampling theorems and Gabor frames in [19]. These sections could be rewritten 

for A-localized frames instead of polynomially localized frames and yield stronger 

conclusions.
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