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SYMMETRY OF WEIGHTED P-ALGEBRAS 

AND THE GRS-CONDITION

GERO FENDLER, KARLHEINZ GROCHENIG AND MICHAEL LEINERT

Abstract

Let G be a compactly generated, locally compact group of polynomial growth. Removing a 

restrictive technical condition from a previous work, we show that the weighted group algebra 

Li(G) is a symmetric Banach *-algebra if and only if the weight function w satisfies the GRS- 

condition. This condition expresses in a precise technical sense that w grows subexponentially.

1. Introduction and results

We investigate the symmetry of the weighted group algebra L^G) for a locally 

compact group of polynomial growth. On the one hand, we are motivated by the 

old question in abstract harmonic analysis of how Wiener’s lemma for absolutely 

convergent Fourier series can be generalized to non-commutative groups [12, 13]. 

On the other hand, we are motivated by concrete applications of harmonic analysis 

in signal analysis and numerical mathematics [7, 8, 19]. Here the concepts of 

symmetry and of inverse-closedness provide a useful form of symbolic calculus. 

In the applied context it is crucial to investigate weighted Zd-algebras, because the 

weight allows us to model decay conditions in a quantitative manner.

It turns out that the class of locally compact groups of polynomial growth is most 

suitable for our investigation. A locally compact group G is said to be compactly 

generated if there exists a compact neighbourhood U of the identity such that 

G = IJ^Li Un. A relatively compact symmetric neighbourhood U C G with G = 

UjjL i Un will be called a generating neighbourhood. A compactly generated group 

G is said to have (at most) polynomial growth, if for some generating neighbourhood 

there exist constants C > 0 and D G N such that \Uk\ © CkD for k G N. (Here and 

in the sequel \U\ denotes the Haar measure of the Borel set U.) We write [PG] for 

the class of compactly generated, locally compact groups of polynomial growth.

The detailed structure of groups of polynomial growth is now well understood 

and culminates in the structure results of Losert [14, 15].

In this paper we are interested in the symmetry of the group algebra L1(G) 

and certain subalgebras. Let A be an involutive Banach algebra. Writing <r^(a) for 

the spectrum of a G A and ©4(a) for its spectral radius, A is called symmetric 

if cr>i(a*a) C [0, oo) for all a G A. (Equivalently, A is symmetric if and only if 

a = a* G A implies that cr^(a) C R.) If L1(G) is symmetric and G is amenable, 

then the spectrum of the convolution operator Lfg = f * g acting on LP(G) is 

independent of p G [1, oo] for all f G L1(G); see [2, 7].

It was a long-standing conjecture that groups in [PG] have a symmetric group 

algebra [13]. This conjecture was completely solved by Losert [15] by combining 

his structure theorem with a method of Ludwig [16].
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Theorem 1.1 [15]. If G G [PG], then L^G) is symmetric.

In our study of weighted group algebras we use locally bounded measurable 

weight functions w : G —> R+ with the following properties: w(e) > 1, where e is the 

identity element of G, w(z) = ^(v'1), and cv(xy) < ca(z>Q/) for all x, y E G, that 

is, cd is symmetric and submultiplicative. In particular, is bounded on compact 

sets of G and cc(x) > 1 for all x G G.

We may assume without loss of generality that cc is continuous (just replace w 

by an equivalent weight of the form ao * 0, where 0 iy 0 is a symmetric, continuous 

function with compact support and a > 0 is suitably chosen; see [4]).

Let dx denote the Haar measure on G, then L^(G) is the weighted group algebra 

consisting of all measurable functions for which the norm

ll/llzd(G) = [ \f(x)\cv(x)dx (1)

JG

is finite. As a consequence of the properties of w, L^(G) is a Banach ^-algebra under 

convolution f *p(x) = f(y)g(y~ lx) dy and the usual involution f*(x) = /(x-1). 

Since ca(a?) iy 1, L^(G) is a subalgebra of LX(G).

To study the symmetry of L^,(G), we need additional conditions on the weight ca.

Definition 1.2. (a) A weight ca on G is said to satisfy the GRS-condition if

lim ca(aT)1//n = 1 V x E G. (2)

n—>oo

(In [5] this condition was called the GNR condition.)

(b) A weight w on G is said to satisfy condition {S') if for some generating 

neighbourhood U of G

lim sup cc(y)1/n = lim sup ca(xiX2 ... xn)^n — 1. (3)

n^°°y&un n^°° X1,...,xncU

Both conditions describe in a precise formal way the ‘sub-exponential growth’ of 

uj. The GRS-condition was introduced by Gelfand, Raikov and Shilov in [6] and 

nowadays is named after these authors. Condition (S) is a uniform version of the 

GRS-condition and clearly implies the GRS-condition. Furthermore, it is easy to 

see that if the condition (S) holds true for one generating neighbourhood U, then 

it holds for all generating neighbourhoods of G. For explicit examples of weights 

satisfying these conditions see [5].

Our main result characterizes the symmetry of L^{G) in terms of the weight ca.

Theorem 1.3. Let G be a locally compact, compactly generated group of poly

nomial growth and oj a weight on G. Then the following conditions are equivalent.

(i) ca satisfies the GRS-condition.

(ii) uj satisfies condition (S).

(hi) L^G) is symmetric.

(iv) (G)(/) = tLi(g)(/) for all f G L^(G).

The equivalence of conditions (i)-(iv) was proved under a restrictive technical 

condition in [5] where ca was assumed to be ‘tempered’. A careful investigation of 

our previous proof which is based on Ludwig’s original method [16] reveals that the 

temperedness of ca is not necessary and that (ii), (hi) and (iv) are equivalent without 
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any further restrictions on cm In addition, these conditions are also equivalent to 

the GRS-condition which is probably the cleanest and easiest condition to check.

In particular, the two conditions on the weight ca, namely the GRS-condition and 

condition (S), are equivalent. Although the equivalence (i) <=> (ii) is a statement 

about the weights, we can show it only via the symmetry of L^(G). On compactly 

generated locally compact abelian groups, we have a direct proof of this equivalence, 

see Lemma 2.2. In addition, we know a direct proof of this equivalence for connected 

nilpotent Lie groups and are confident that the results of Guivarc’h and Losert can 

be used for a direct proof of (i) (ii) in the general case, but it is easier to pass 

through the symmetry of L^(G).

The statement of Theorem 1.3 is satisfying and aesthetically pleasing. The proof 

of implication (i) => (iii) is somewhat unpleasant, because it rests on a subtle 

refinement of our previous proof in [5], but does not yield a new conceptual insight. 

However, using Theorem 1.1, we will derive a direct and conceptually easier proof 

that condition (S) implies the symmetry of L^IG} (Section 3). The method is of 

interest in itself because it can be used in other situations to deduce the symmetry of 

a ‘weighted Banach algebra’ from the symmetry of the unweighted Banach algebra, 

see [7, 8] for more results of this type.

2. The GRS-condition and symmetry

In this section we prove Theorem 1.3. We first show the equivalence of the GRS- 

condition and the condition (S) on compactly generated, locally compact abelian 

groups.

Lemma 2.1. Let iv : R [1, oo) be a weight function onR. If lim,^^. Wri J1 A = 1, 

then co satisfies both the GRS-condition and condition (S).

Proof. Since the function 4>(x) = logcj(cc), x G R is sub-additive, a standard 

lemma [3, Lemma VIII.1.4] implies that inR>o t-1<I>(t) = lim^oo t-1T(t), so the 

condition limn^00w(n)1'’1 = 1 implies the GRS-condition. Introducing the weight 

v on N by u(/c) = sup{ca(a;) : )x| < k}, we know by the same reasoning that 1 < 

limfc^oo v(fc)1//fc =: c exists. If c > 1, then there exist Xk G R, with Xk V k such that 

linifc^oo (^(xfc)1^ > 1. Since uj is bounded on compact sets, the sequence Xk must 

converge to oo. However, since Xk V k, we have 1 < xfxk)^k V cu (xfc)1/^ 1, a

contradiction. 

Lemma 2.2. On a compactly generated, locally compact abelian group the 

GRS-condition and condition (S) are equivalent.

Proof. By the structure theorem for compactly generated, locally compact 

abelian groups [11, Theorem 9.8], G splits as a direct product G = Rd x 

Ze x K, where K is a compact group. Accordingly, we have u>(^x,y,z) < 

a>|Rd (x) (y) (x, y,z) G Rd x Ze x K and it suffices to consider each factor

separately.

Clearly, is bounded and so we need only consider the two other factors. 

Again we may dominate each of these factors by the product of the restrictions 

of the weight to the single coordinates, and consequently we are left with weights 

defined on R or on Z.
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For a weight on R. we have just seen the validity of this implication in Lemma 2.1, 

and for a weight on Z the argument is even simpler: just omit the first part of the 

proof of Lemma 2.1. 

In a crucial part of the argument below, we need a result of Hebisch and Saloff- 

Coste [10] that was proved only for groups of strict polynomial growth. The 

following lemma shows that this is no restriction. The equivalence of polynomial 

growth and strict polynomial growth is a consequence of the structure results in [9, 

15]. We include the short proof, since the result is not stated in the literature.

Lemma 2.3. Every locally compact, compactly generated group G of polyno

mial growth has strict polynomial growth, that is, there exist a compact symmetric 

generating neighbourhood of the identity U C G and constants Ct, C2 > 0 and 

D > 0 such that

CrkD G\Uk\ d C2kD forked.

The exponent D is called the order of growth of G.

Proof. If G has polynomial growth, then it contains a maximal compact normal 

subgroup C such that G/C is a Lie group [15, Proposition 1], Since G and GfC have 

the same order of growth [9, Theorem 1.4], we may assume that G is a Lie group.

By [15, Propositions 3 and 4] G possesses a maximal solvable normal subgroup 

R, such that G/R is compact. Once again G and R have the same order of 

growth. Furthermore, R is compactly generated by [15, Proposition 2]. Now [9, 

Corollary III.3] implies that R has strict polynomial growth. 

We now turn to the proof of Theorem 1.3. The equivalence of (iii) and (iv) is in 

[5, Theorem 3.6 and Lemma 3.8], where similar equivalent conditions are stated. 

The implication (ii) ==» (i) is trivial.

We first prove the implications (iv) =y (i) and (iv) ==> (ii).

Proposition 2.4. If aLi (/) = crLi(G)(/) for all f e L^G), then uj satisfies 

both the GRS-condition and condition (S).

Proof. Given a relatively compact symmetric generating neighbourhood U of 

the identity, we choose a continuous symmetric function p = p* > 0 with compact 

support satisfying the conditions inf{p(x) : x E U} > 0 and J p(x) dx = 1.

Condition (iv) implies that the spectral radius of p in the algebra L^(G) equals its 

spectral radius in L1(G), that is, 77,1 (G)(p) = Q,i(G)(p) = J p(x) dx — 1. We now 

use pointwise Gaussian estimates for convolution powers of probability densities 

on groups of strict polynomial growth, which is possible by Lemma 2.3. By [10, 

Theorem 5.1] there exist positive constants C, C',C" such that for k < nfC" and 

any Borel set Ek C Uk

pn(x)o(x)dxk [ (Cn) D^e c k'2/nx{x) dx

G J Ek

> (CnrD/2e-c'k2/nmi{^ : x G Ek}\Ek\.
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Hence,

/ f \ 1/fc

1 < inf{w(a?) : x E Ek}1/k < (Cn)D/(2fc)ec'fc2/(nfc) |Efc|”1/fc ( pn(x)u(x) dx )

\Jg /

If we now choose L > C" and n = Lk, then

1 limsup (inf{cu(z) : x E Ek})1^

k—+OQ

< ec'/L limsup\Ek|-1//crLi (G)(p)L

< ec'IL limsup \Ek|“1/fc.

k—>oo

Since L C" is arbitrary, we find that

1 < limsup(inf{w(z) : x E < limsup[E/y l/'. (4)

fc—>oo k—>oo

To show that (4) implies both the GRS-condition and condition (S), we will 

choose the sequence Ek appropriately.

For the GRS-condition let x E G arbitrary, x E Ul, say. We set j(fc) = [(Zc — 1)/Z] 

(where [r] denotes the integer part of r) and Ek = x3(kiU. Then Ek C Uk and 

\Ek\ = \U\, and we obtain

limsup(inf : y E x3^U= 1- 

k—>oo

If y E x3U, then E = yu for some u E U. Set c = supueG ui(u) < oo, then

1 < (x>{xJ) < sup w(u) inf cu(p) = cinf{cj(p) : y E x3U} . (5)

u&U y&xiU

Since j(k)l ~ k it follows that

1 lim 'x(xr)r^ = Jim Jim (inf {w(p) : y E x3^U}^^k = 1.

Thus a) satisfies the GRS-condition.

For condition (S) we choose Ek as follows. For each k 1 let yk-i E Uk~x be 

such that cj(j/fc_i) > |sup{w(t/) : y E Uk~r} and set Ek — yk-iU. Then Ek C Uk 

and \Ek\ — \U\. As above, we obtain

1 < sup{w(y) : y E Uk^} 2u(>_1)

<2supcj(u) inf w(p) = 2cinf[c4y) : y E yk-yU}.

u&U y&Vk-iU

Taking roots and a limit, we obtain from (4)

1 < lim (sup{cc(p) : y E i7fc“1})lyZfc 

k—><x

< lim (2c)1/fc lim (inf{w(p) : y E yk-iU})l/k = 1. 

k—>oo k—->oo

Thus w satisfies condition (S). 

Finally, we prove the remaining implication (i) => (iii). For this we revisit and 

refine the proof of [5, Theorem 3.13] which was based on Losert’s structure 

theorem [15, Theorem 2] and a method of Ludwig [16],

Definition 2.5. Let G be a locally compact group acting on the locally com

pact group H by automorphisms (for instance, if H is a normal subgroup of G or 



630 GERO FENDLER, KARLHEINZ GROCHENIG AND MICHAEL LEINERT

a quotient group of G). We say that H is an [FG] J group, if the G-orbits in H are 

relatively compact in H.

The group G acts on F^(G) by left translations, so that xf/y) = f(x 

and ||x/||li (G) C II/Hli (g). We denote by S the bounded positive hermitian 

sesquilinear forms on B^(G). Then the group anti-acts on S by xB(f,g) = 

B(xf,xg), that is, (xy)B = y(xB). We use the following notation of [16]. For any 

subspace F C B^(G) and any subgroup H C G we define the subspace Sp C S by

S// = {B G S\hB = BV h G H and B(FJ) = 0 V/ G L^G)}.

Then the algebra B^(G) is symmetric if and only if S*f {0} for every proper 

modular left ideal I C Zj(G) (same proof as in [16]). Since the closure of I is again 

a proper modular left ideal, the Hahn-Banach theorem guarantees the existence 

of a continuous linear functional q 0 on L/(G') vanishing on I. Then the form 

(/,£?) 7(/)q(p) is in ST = S{Te} and so

Si = {B G S|B(I,/) = 0 V f G L^G)} {0}.

For a normal subgroup TV c G we write g for the canonical projection of g G G to 

G/TV.

Lemma 2.6. Let G G [PG] and H and N be closed normal subgroups of G such 

that N C H and such that H/N is [FG] J. Given a weight co on G, assume that the 

weight (<D|h) defined by (co\p/)(Ji) — infnG7v cj|H(/zn) for h G H/N satisfies condition 

(S) on H/N. Let I be a proper closed modular left ideal in L/(G) with modular 

right unit a. Then

S? * {0} S» / {0}.

Proof. This lemma has been stated and proved in [5] under the assumption that 

co satisfies the condition (S) on the whole group G. The only point where this is 

important is to ensure that a certain integral over an open subgroup V of H/N is 

finite. An inspection of the precise details of the proof in [5] shows that the lemma 

remains valid under the less restrictive assumption that (w|h) satisfies condition 

(S). 

Proposition 2.7. If co satisfies the GRS-condition, then L^^G) is a symmetric 

Banach algebra.

Proof. By Losert’s structure theorem [15] the group G G [PG] contains a series 

of normal subgroups

G = Go D Gx D ... D Gn_i D Gn = {e}

such that Go/Gi and Gn_i are compact and Gi-^/Gi for i = — 1 are

compactly generated torsion free abelian [FC]/ groups. Given the weight co on G 

satisfying the GRS-condition it is clear that the derived weights (ca|G-i_1) (the dot is 

with respect to GJ satisfy the GRS-condition on Gi-\/Gi too. As these quotients 

are either compact or abelian, it is either trivial or follows from Lemma 2.2 that 

these weights satisfy the condition (S).
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Finally, if I C L^(G) is a modular ideal, we may apply Lemma 2.6 repeatedly 

to this normal series. Since ST {0} we obtain Sf {0}. Thus L^(G) is symmetric.

□

3. Condition (S) implies symmetry

In this section we offer a direct proof that condition (S) implies the symmetry of

In the following we consider a nested pair of involutive Banach ^-algebras A Q B 

with common involution. We assume that A is continuously embedded in B.

A nested pair A C B with common identity is called a Wiener pair if a G A and 

a-1 e B implies that a-1 G A [6]. In the recent literature, one sometimes says that 

A is inverse closed in B (see [1]) or that A is a spectral subalgebra of B (see [18]).

We denote the group of invertible elements in A by G(A). Then A is inverse 

closed in B if and only if

G(A) = G(B) n A

Since invertibility in A and in B coincide, we obtain immediately the so-called 

spectral invariance property

04(a) = as (a) V a G A.

The following lemma is a useful tool for dealing with symmetry.

Lemma 3.1. Let A C B be a nested pair of Banach algebras that either have a 

common identity element or both have no identity.

(a) Then the following are equivalent:

(i) day(a) C da&(a) for all a G A;

(ii) day (a) C a^(a) for all a G A;

(iii) ry(a) = r 13(a) for all a G A;

(iv) for every a G A with ||a||s < 1 there exists n G N (depending on a) such 

that ||an||_4 < 1.

(b) If, in addition, A and B have a common involution and B is symmetric, then 

(i)-(iv) are equivalent to:

(v) oy(a) — 013(a) for all a G A.

In particular, in this case, if any of the conditions (i)-(iv) is satisfied, then A is 

symmetric.

Proof, (a) The implications (i) <=> (ii) => (iii) follow directly from the inclusion 

as (a) C oy(a).

To prove (iii) => (ii) in the case that A and B have a common identity, assume 

that A as(a), An ay(a), and Xn A. Since the inversion is continuous on 

G(B) and A — a G G(B), we have supneN || (Xn — <a) -1 ||zg := C is finite. We write 

A a — Xn a (Xn A) — (An a)(l (Xn A)(An a) ).

If |An — A | < 1/2G, then

Gt((An - A)(An - a)-1) = rB((Xn - A)(An - a)-1) A • C < 1,

so A —a is invertible in A, and the inverse is (A — a)-1 = Y^=(J(Xn — X)k (Xn— 

a)~k(Xn — a)-1, with absolute convergence in A. Thus A day (a).
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If A and B have no identity, it is not immediately clear that (iii) extends 

automatically to all elements A + a where A G C and a G A after adjoining an 

identity. We therefore give a modified proof using the quasi-product aob = a+b-ab 

and the quasi-inverse aq of a. Let A and Xn G C as above, and note that A 0 since 

0 G (75(a). As above, we check the identity

Since quasi-inversion is continuous, we have supneN ||(a/An)9||5 := D is finite. If 

|An — A| < |X\/2D, we obtain

so ((A — An)/A)(a/An)9 is quasi-invertible in A, hence a/X is quasi-invertible in A, 

because it is the quasi-product of two quasi-invertible elements. Thus A 0 da^(a).

(iii) => (iv) If ||a||B < 1, then

inf IMlT = PAa) = PbH < INIs < 1,

n(EN

and (iv) follows.

(iv) => (iii) For a G A and 6 > 0 there is a k G N such that ||ufc||z3 < (ps(a)+e)fc. 

Set ae — (a/(pB(a) + e))fc, then ||ae||z3 < and by assumption we have ||a7lU < 1 

for some n G N. This implies that \\akn||^ < (/25(a) + c)fcn, and by taking roots we 

obtain /94(a) < Ab (a) + e. The claim follows.

(b) We prove the implication (ii) ==> (v). First assume that a = a* G A. Since B 

is symmetric, we have (75(a) C R. Consequently (ii) implies that 04(a) = da^(a) C 

(75(a) C R and therefore 04(a) = a 13(a).

For arbitrary elements a G A we observe that A — a is invertible if and only if the 

self-adjoint elements (A — a)*(A — a) and (A — a)(A — a)* are both invertible. Thus 

04(a) = 05(a) for all a G A.

The implications (v) => (i), (ii), (iii) are trivial. 

Remark 3.2. (1) The equivalence (ii) <=> (iii) follows also from [17, Coro

llary 2.5.10].

(2) For the case that B is the C*-algebra of bounded operators on a Hilbert space, 

the implication (iii) => (v) is usually called Hulanicki’s lemma [12] and is crucial 

in many cases for the verification of the symmetry of a Banach ^-algebra.

(3) Since conditions (i) and (ii) carry over to the algebras with an identity 

adjoined Ai and B^, so do (iii) and (iv) by part (a) of the lemma.

(4) If A C B are involutive Banach algebras with common involution and B is 

symmetric, such that one of them has an identity which is not an identity for the 

other, then each of (i)-(iv) implies that 04(a) U {0} = 05(a) U {0}, for all a G A. 

(Apply the lemma to Ai and Bi.)

As a preliminary result we need the symmetry of weighted which was 

characterized by Gelfand, Raikov and Shilov [6].
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Lemma 3.3. Assume that v is a weight on Z satisfying the GRS-condition. If 

b = (bj)jGZ € and bj 0, then

r££(Z)(0 = r£RZ)(k) = IHli! (6)

that is, 

/ oo \ 1/n

lim I V bjibh ... bjn + j2 + ■ • • + jn) 

n—>oo \ £' /
\ Jl,L,...Jn=-OO /

/ OO \ Ln

= lim I b31b02 ■ ■ -bJn] = Pill- (7)

n-^-oo \ £/
\ jl J2v ,jn — — 00 /

Proof. To provide some intuition about the meaning of the GRS-condition, we 

provide a sketch of the proof.

Since the Banach algebra £*(Z) is generated by the element 5i (where 5i(l) = 1 

and 5i (j) = 0 for j 1) and its inverse, any character (continuous multiplicative 

functional) of ^(Z) is completely determined by its value = x(5i) E C. Thus 

we may identify the Gelfand spectrum of G( (Z) with a compact subset Kv of C by 

writing for the character satisfying yz(5i) = 3.

By Gelfand’s theorem

= sup{\xz{b)\ : z E Kv}, V & E Gj,(Z). (8)

Given z E Kv we have for all n E Z

EN = ||«rlb(z)>fc(<5pl = kln-

Since lirnn^cx/c(n)1/ri = 1 by assumption, we must have |z| < 1. Likewise, 

limn_ ,.XJ v(—7i)1/n = 1 implies that |z| > 1. Consequently Kv C T. Conversely 

T C Kv because every character of G(Z) restricts to a character of (Z). Now (8) 

implies that — rp^(b) for all b E 1),(Z).

If bj iy 0, then clearly r£i(z)(&) = ||&||i and so (6) holds. 

We can now prove the following theorem.

Theorem 3.4. Assume that G E [PG]. If co satisfies condition (S), then L^(G) 

is symmetric, and

= ee) vfenjG),

where Lf is the regular representation of Ll(Gf) on L2(G).

Proof. In view of Lemma 3.1, we first show the identity of spectral radii 

•rLl(G)(/) — rn1(G)(/) f°r all f E L^(G). We first calculate the L^(G)-norm of 

/n = /*/*•••* / by induction and find that

||/'1||li(G) < [ |/(^i)| |/O2)| ■ ■ • \fM\w(xi.. .xn) dxi dx2 • • -dxn. (9)

Jg Jg

Fix a generating neighbourhood of the identity U and assign a weight v on Z to 

the weight 3 on G by setting

u(n) = sup x>{y). 

y&UM
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By definition, if a> satisfies condition (S) on G, then v satisfies the GRS-condition 

on Z.

Since G = U^Li (Un \ as a disjoint union (where U° = 0), we may split 

each integral in (9) as JG = £^=1 This yields

IIFIkf (G)

52 ••• l/(^i)l • • ■ • ■ .Xn^dxx .. .dxn.

(10)

If Xj G Uk] \ Ukj~\ then x\ ... xn G Ukl+'"+kn and so

u(x1...xn')^ sup cu(y) = v{ki + ... + kn).

y£UkiP- - t-fcn

Set bk := \f(x)\dx and b = (bk)k&r Then clearly we have ||/||Li = ||&||i,

and we can recast (10) as

ll/n||Lf(G) 52 bklbk2 • • • bknv(ki + k2 + ... + kn) = ||&n||^i • 

fci ,k2,...,kn =1

We now apply Lemma 3.3 and see that

rLi(G)(/) =nlhn ||r||^n(G)

lim Pn|l2/n = G;(^) = M^) = ||&||i
n—>oo '-v v

= 11/10-

Thus for all k G N we have

rti(G)(/)=rt.(G)(r)1/^||M|g\

and by letting k —> oo we obtain

^Li(G)(/) < ^i(G)(/)- (11)

The converse inequality is elementary, and so we have proved that r^i. (G)(/) — 

^Li(G)(/) for all f G Li(G).

By Lemma 3.1 we have <tli(G)(/) = o'l1(G)(/), an(i since Lr(G) is symmetric 

by Losert’s Theorem 1.1, we conclude that L^(G) is also symmetric. Since G is 

amenable and LX(G) is symmetric, we also have crLi(G)(/) = cr(Ly) for all f E

(see [2, 7]). ' □
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