Another proof of the Shirali-Ford theorem

Michael Leinert

ABSTRACT. Shirali and Ford showed that every hermitian Banach *-algebra is symmetric. Meanwhile there have been several proofs of this theorem. We give another proof, a fairly conceptual one. It actually shows that every *-algebra which admits a spectral C^* -seminorm is completely symmetric.

Let A be a Banach *-algebra, i.e. a Banach algebra with a (not necessarily continuous) involution. Suppose that A is hermitian, i.e. the spectrum of selfadjoint elements $a = a^* \in A$ is real. The famous theorem of Shirali and Ford then states that A is symmetric, i.e. every element a^*a , where $a \in A$, has its spectrum $\sigma(a^*a)$ contained in $[0, \infty)$. There are several proofs of this theorem (see [DB; Theorem 33.2] and the comments before it as well as [Pt], [B1], [B2], [F]). We give another proof starting from the fact that, on hermitian algebras, the Pták functional $s(a) = r(a^*a)^{1/2}$, where r(b) denotes the spectral radius of $b \in A$, is a spectral C^* -seminorm, i.e. a C^* -seminorm which dominates the spectral radius on A (see [DB; Theorem 33.1(a), (d), (j), (k)] for a proof of this fact). Let A_1 denote the algebra with unit adjoined.

THEOREM (Shirali and Ford). Every hermitian Banach *-algebra is symmetric.

PROOF. A is hermitian if and only if A_1 is hermitian, as is easily checked, so we may suppose $1 \in A$. Let $a \in A$ and $\lambda \in \sigma_A(a^*a)$. If B is the closed subalgebra of A generated by 1 and a^*a , by Gelfand's theorem there is an algebra homomorphism $\varphi : B \to \mathbb{C}$ with $\varphi(a^*a) = \lambda$. For $b \in B$ we have $|\varphi(b)| \leq r_B(b) = r_A(b) \leq s(b)$, the last inequality holding because A is hermitian ([DB; 33.1(a)]). Since s is a seminorm on A, by Hahn-Banach there is a linear extension $f : A \to \mathbb{C}$ of φ with $|f(c)| \leq s(c)$ for all $c \in A$. Since $f(1) = \varphi(1) = 1$, the following proposition implies positivity of f, hence $\lambda = \varphi(a^*a) = f(a^*a) \geq 0$.

PROPOSITION. Let q be a C^* -seminorm on a complex *-algebra A with unit. Let $f : A \to \mathbb{C}$ be linear with $|f(a)| \leq q(a)$ for all $a \in A$ and f(1) = 1. Then f is positive.

PROOF. For a C^* -algebra this is well known (see for instance [DB; Corollary 22.18]). So the proof is a reduction to this case. For the reader's convenience, we

©2007 American Mathematical Society

²⁰⁰⁰ Mathematics Subject Classification. MSC: 46 K 05.

Key words and phrases. Hermitian algebra, symmetric algebra, Shirali-Ford theorem.

MICHAEL LEINERT

write the argument down. The set $N = \{a \in A | q(a) = 0\}$ is a *-ideal in A. On the *-algebra A/N define \dot{f} and \dot{q} by $\dot{f}(\dot{a}) = f(a), \dot{q}(\dot{a}) = q(a)$ where $\dot{a} = a + N$, $a \in A$. Then \dot{q} is a C^* -norm on A/N, and $|\dot{f}(\dot{a})| \leq \dot{q}(\dot{a})$ for $\dot{a} \in A/N$. Denote the completion of $(A/N, \dot{q})$ by (C, || ||), and the continuous extension of \dot{f} to C by F. We have $|F(b)| \leq ||b||$ for $b \in C$ and $F(\dot{1}) = 1$, hence $||F|| = F(\dot{1})$ where $\dot{1}$ is the unit of C. Since C is a C^* -algebra, F is positive. So, for $a \in A$, we have $f(a^*a) = F(\dot{a}^*\dot{a}) \geq 0$, i.e. f is positive. \Box

REMARK 1. If we replace a^*a in the proof of the theorem by $a_1^*a_1 + \ldots + a_k^*a_k$, we obtain complete symmetry of A (i.e. the spectrum of elements $a_1^*a_1 + \ldots + a_k^*a_k$ is contained in $[0, \infty)$). The concept of complete symmetry is due to Wichmann [W].

REMARK 2. If one wants to use a more elementary argument (without use of Gelfand's theorem), the third and fourth sentence of the theorem's proof should be replaced by "The map $\varphi : \sum_{0}^{n} \alpha_k (a^*a)^k \mapsto \sum_{0}^{n} \alpha_k \lambda^k$ from the subalgebra *B* of all polynomials in a^*a to the complex numbers \mathbb{C} is well defined, linear, and satisfies $|\varphi(b)| \leq r_A(b) \leq s(b)$ for $b \in B$. The last inequality holds because *A* is hermitian."

From the above remarks and the theorem's proof we obtain the following

COROLLARY. Every complex *-algebra which admits a spectral C^* -seminorm is completely symmetric.

PROOF. (i) If A is a *-algebra with unit, q a spectral C*-seminorm on it, let $x_1, \ldots, x_n \in A$ and $y = \sum x_i^* x_i$. If $\lambda \in \sigma(y)$, the map $\varphi : p(y) \mapsto p(\lambda)$ is well defined linear from the subalgebra B of all polynomials in y to \mathbb{C} satisfying $|\varphi(b)| \leq r(b) \leq q(b)$ for all $b \in B$. By Hahn-Banach there is a linear extension $f : A \to \mathbb{C}$ with $|f(a)| \leq q(a)$ for all $a \in A$. Since $f(1) = \varphi(1) = 1$, f is positive (see the Proposition), so $\lambda = \varphi(y) = f(y) = f(\sum x_i^* x_i) \geq 0$.

(ii) If A has no unit, let r_1 denote the spectral radius in A_1, q_1 the canonical C^* seminorm extension of q to A_1 . Since $(\mu + a) \mapsto |\mu|$ is a C^* -seminorm on A_1 , so
is $q': \mu + a \mapsto \max\{|\mu|, q_1(a)\}$. For $\mu + a \in A_1$ one has $r_1(\mu + a) \leq |\mu| + r_1(a) =$ $|\mu| + r(a) \leq |\mu| + q(a) \leq 2 \max\{|\mu|, q_1(a)\} = 2q'(\mu + a)$. For $c = \mu + a$ this implies $r_1(c) = r_1(c^n)^{1/n} \leq 2^{1/n}q'(n) \to q'(n)$, so q' is a spectral seminorm on A_1 . By (i), A_1 and hence A is completely symmetric.

D.Birbas states in [B1,Theorem 3.2(i)] that every involutive algebra with realvalued subadditive Pták function (which then is a spectral C^* -seminorm, see [B1,Lemma 3.1]) is symmetric. His proof actually shows complete symmetry. At first sight, this seems to be a rather special case of the above Corollary, but on the other hand, any nonzero spectral C^* -seminorm has to coincide with the Pták function.

Let us also mention that the Corollary provides a more direct proof for the main part of [P,Proposition 10.4.2].

References

- [B1] D. Birbas, *Pták function and symmetry*, Rend. Circ. Mat. Palermo, **47** (1998), pp. 431–446.
 [B2] D. Birbas, *On symmetric algebras*, J. Math. Sciences **95** (1999), pp. 2609–2620.
- [DB] R. S. Doran and V. A. Belfi, Characterizations of C*-algebras. The Gel'fand-Naimark Theorems, Marcel-Dekker, New York and Basel, 1986.

260

- [F] M. Fragoulopoulou, The Shirali-Ford theorem as a consequence of Pták theory for hermitian Banach algebras, Studia Math. 150 (2002), pp. 121–132.
- [P] Th. W. Palmer, Banach Algebras and the General Theory of *-Algebras, 2, Cambridge University Press, 2001.
- [Pt] V. Pák, Banach algebras with involution, manuscr. math. 6 (1972), pp. 245–290.
- [W] J. Wichmann, The symmetric radical of an algebra with involution, Arch. Math. 30 (1978), pp. 83–88.

Institut für Angewandte Mathematik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 294, D-69120 Heidelberg, Germany

E-mail address: leinert@math.uni-heidelberg.de